Identification of the energy consumption macromodel for the energy complex in oil and gas producing enterprise into the generalized golden section metric

V I Kolesov¹, G A Khmara² and M I Khakimyanov³

¹Department of Road transport, construction and road machines, Tyumen Industrial University, Vолодарского St., 38, Tyumen, 625000, Russia
²Department of Electric power industry, Tyumen Industrial University, Vолодарского St., 38, Tyumen, 625000, Russia
³Department of Electrical Engineering and Electrical Equipment, Ufa State Petroleum Technological University, Kosmonavtov St., 1, Ufa, 450062, Russia

E-mail: hakimyanovmi@gmail.com

Abstract. The problems of increasing the energy efficiency of oil and gas production are becoming very urgent. The cost of purchasing electricity greatly affects the cost of hydrocarbons. The cost of electricity is an important contributor to the price of oil and gas. This is due to low oil and gas prices and expensive electricity. Reliable power supply to oil and gas fields is a big problem. Oil companies are starting to use gas turbine power plants, solar panels and wind turbines. Under these conditions, oil companies are trying to optimize their energy costs. Most of the electricity is consumed by downhole production and injection wells. Development of mathematical models allows minimizing power consumption. All technological processes of oil and gas production are interconnected. Water injection into the reservoir affects the production pumps. The operation of borehole pumps affects the oil treatment and pipeline transportation systems. The tools’ synthesis for modelling development strategies in the electric power field into oil and gas producing enterprises (OGPE) is considered. The structural and parametric identification of the macromodel for energy consumption in the OGPE energy complex into the generalized Golden section metric is performed. The calculations’ results are given.

1. Introduction

Oil production is an important industry for many CIS countries. The amount of oil produced per year is shown in the table 1. The diagram of oil production by the CIS countries is shown in Figure 1 [1].

Substantiation of the development strategy for large-weights technological systems is a fundamental state’s aim. At the same time, the main difficulty is to understand the development mechanism itself. It ultimately determines the working algorithm of the management process.

Such kind tasks arise, in particular, during the electrotechnical complexes’ efficiency managing in oil and gas producing enterprises (OGPE) [2-4]. Unfortunately, there are no unified approaches and complete clarity in the issues of the efficient approach substantiation for their solution [5, 6]. It makes difficult to achieve an effective result. This article attempts to fill the gap with modern technologies base.
Table 1. The amount of oil produced, million tons/year.

Country	Oil production
Russia	504.08
Kazakhstan	81.21
Azerbaijan	50.25
Turkmenistan	9.42
Uzbekistan	4.6
Ukraine	3.8
Belarus	1.56
Kyrgyzstan	0.07
Tajikistan	0.02
Moldova	0.02

Figure 1. Oil production by the CIS countries, million tons in year.

The structure of electricity consumption by various technological processes at the field is shown in figure 2.
Figure 2. The structure of electricity consumption by various technological processes at the field.

The following technological processes are the most energy intensive [7]:
- well pumps (56.70%);
- reservoir pressure maintenance system (26.60%);
- in-field oil pumping (6.70%);
- gas compression (5.10%);
- in-field gas transfer (1.30%);
- water intake (1.20%);
- other production needs (2.30%);
- administrative expenses (0.20%).

2. Problem solution

Electrotechnical complexes on the weights of oil and gas production enterprises belong to the class of complex systems. It is necessary to apply scientific methods based on a systematic approach [8, 9] to improve the efficiency of their management. A well-known authority in the field of complex systems management is the Institute of Management Problems by V. A. Trapeznikov into the Russian Academy of Sciences. This Institute develops a number of scientific methods for improving the efficiency of management that are widely used in practice [10]. One of them is the "Golden section" method (or "Golden proportion"). It is the basis of the modern scientific direction "F-technology" (F – Fibonacci) [11, 12].

Practice shows that in the vast majority of situations, the method of the "generalized Golden section" (GGS) works when a proportion is performed between the parts of single segment [13]:

\[
(1/x)^q = x/(1 - x),
\]

from which it follows

\[
x^q + x - 1 = 0,
\]

where:
- \(x\) – is the dominant;
- \(1 - x = x_c\) – is the subdominant;
- \(q\) and \(g\) – are indicators \((g = q + 1)\).

It is important to note that the classical "Golden proportion" is only a special case of the ratio (1) when \(q = 1\).

The root of equation (2) \(x_{opt}\) characterizes the share of the dominant in the total unit result (figure 3).

Taking into account that \(+ x_c = 1\), the ratio (1) can be written as \(1 - x = x^g\) or

\[
x = 1 - (1 - x_c)^g.
\]
Figure 3. Solution of equation $x_{opt}^g + x_{opt} - 1 = 0$.

In practice, this relationship between the dominant x and the subdominant x_c is widely used in the "Pareto" ABC analysis [14]. This analysis is focused on identifying priority components in a complex multi-component system. It turned out that the Pareto diagram is almost perfectly approximated by the function:

$$y = 1 - (1 - x)^{g(x)},$$

(4)

where $x = r/r_{max}; r$ and r_{max} – are the current and maximum rank, respectively.

As you can see, the ratio (4) is similar to the ratio (3). The indicator g does not depend on x in a complex system which is ideally suited to the GGS.

As you know, the Pareto diagram is based on the rank distribution of the "weights" w_k for the complex system components. It is essentially their cumulate, the increasing sum of the "weights" $y = \sum_{k=1}^{n} w_k$ (here k - is the rank number; n – is the number of the system components).

In a complex system that perfectly corresponds to the GGS, when $y = 1 - (1 - x)^g$ the "weights" structure is clearly determined and subdues the regularity

$$w_k = \left(1 - \frac{k - 1}{n}\right)^g - \left(1 - \frac{k}{n}\right)^g.$$

(5)

In this case, the senior " weights" w_1 is associated with the indicator g by the ratio

$$w_1 = 1 - \left(1 - \frac{1}{n}\right)^g,$$

(6)

it allows to easily determine the indicator

$$g = \frac{\ln(1 - w_1)}{\ln(1 - 1/n)}$$

(7)

by the known value w_1 and then build a rank distribution of "weights" $w_k(r)$.

According to the studies [15, 16], the senior "weights" is estimated at 0.5 level with the energy efficiency analysis for the seven-component electrical complex of OGPE (figure 4).

\[g = \frac{\ln(1-w)}{\ln(1-1/n)} = \frac{\ln(1-0.5)}{\ln(1-1/7)} = 4.4966. \]

The total energy is

\[W_\Sigma = \sum_{k=1}^{7} W_k \]

and the "weights" of the components is

\[w_k = W_k / W_\Sigma. \]

At the same time, the rank distribution \(g = 4.4966 \) of "weights" \(w_k \) and the Pareto diagram

\[\gamma(r) = 1 - \left(1 - \frac{r}{7} \right)^4.4966 \]

based on it should have the form shown in figure 5. Comparison of calculated and actual "weights" gives reason to believe that the real results do not contradict the accepted hypothesis about the mechanism operation of "generalized Gold division" in practice.

3. The "weights" structure of the system components

The "weights" structure of the system components carries information about its organizational level. The structural entropy

\[H = -\sum_{k=1}^{n} w_k \ln w_k \]
or its normalized value

\[H_n = H / \ln(n) \]

acts as a numerical characteristic. The relative entropy of a binary system (in which \(n = 2 \)) is usually used as a reference standard.

The relative entropy of a real system is compared with it. It corresponds to a situation where

\[-\sum_{k=1}^{7} w_k \cdot \ln(w_k) / \ln(7) - \ln(2), \]

where \(w_p \) and \(w_h \) are shares of order and chaos that meet the normalization condition \(w_p + w_h = 1 \).

The "weights" data is required to calculate the relative entropy of a seven-component electrotechnical complex. Their values are shown in the table 2. They are calculated in the GGS metric. Entropy is \(H = 1.238 \). Relative entropy is \(H_n = 0.6362 \). The \(H_n = 0.6362 \) level in the binary system (reference standard) corresponds to the share of order – \(w_p = 0.84 \) and the share of chaos \(w_h = 0.16 \). It means that the OGPE electrotechnical complex belongs to the class of open systems with a high organizational level.

Table 2. The "weights" data of a seven-component electrotechnical complex.

Rank (r)	\(w_k \)	\(w_k \cdot \ln(w_k) \)
1	0.5	0.347
2	0.28	0.356
3	0.14	0.275
4	0.059	0.166
5	0.019	0.074
6	0.003	0.019
7	1.585 \times 10^{-4}	0.001
In addition, the results of the Pareto ABC analysis are presented in figure 5. Its specifics are described in [17, 18] point in detail. The key role of ABC analysis is the priority objects’ identification [19, 20]. They make a major contribution to the output product. The main objects are those whose ranks are in the A+B area (see figure 5). There are three of them: \(W_{PW} \) (electricity consumed by producing wells), \(W_{RPM} \) (electricity used to maintain reservoir pressure) and \(W_{BPS} \) (electricity consumed by booster pump stations).

4. Conclusion
Thus, the following conclusions can be made on the results of the conducted researches:
1. The actual structure of the energy consumption weighting coefficients for the electrotechnical complex OGPE does not contradict the law "generalized Golden section".
2. The rank distribution of "weights" indicates that the analysed complex system belongs to the class of open systems with a high organizational level.
3. The number of priority ranks does not exceed three ranks in the analysed seven-component complex system. It determines the prospective direction for further work to improve management efficiency.
4. The producing wells, the system for maintaining reservoir pressure and the system for infilling oil pumping are the objects with priority ranks to improve the energy efficiency of OGPE.

References
[1] Rzayev A H, Rezvan M H and Khakimyanov M I 2013 Automation artificial lift systems in the CIS Oil & Gas Business 5 19-29
[2] Khakimyanov M I and Shafikov I N 2013 Analiz potrebleniya elektroenergii pri mekanizirovannoy dobyche nefti elektrotsentrobezhnymi nasosami [Analysis of energy consumption for mechanized oil production electric submersible pumps] Elektrotekhnicheskii i Informatsionnye Kompleksy i Sistemy 9(3) 37-41 [In Russian]
[3] Kolesov V I, Savinykh Yu A and Khmara G A 2014 Perspektivnyye teknologii v neftegazovoy otрасли v usloviyakh ustoychivogo innovatsionnogo razvitiya regiona [Advanced technologies in the petroleum complex in the conditions of stable innovation development of the region] izvestiya Vysshikh Uchebnykh Zavedeniy. Neft' i Gaz 6 23-8 [In Russian]
[4] Latypov I S, Khmara G A and Sushkov V V 2017 Podkhod k obosnovaniyu vybora energoeffektivnogo formy vitogo neizolirovannogo provoda vozduushnoy linii elektroperedachi klassa napryazheniya 6 - 35 kV [Approach to substantiating the choice for the twisted non-insulated wire’ energy-efficient form of an overhead power transmission line with voltage class 6-35 kV] Promyshlennaya Energetika 4 8-12 [In Russian]
[5] Kolesov V I, Khmara G A and Portnyagin A L 2015 Modelirovaniye energoeffektivnosti burenii i gasheniy v gazovikh skvazhinn [Modeling of power-efficiency of oil and gas wells drilling] Izvestiya Vysshikh Uchebnykh Zavedeniy. Neft' i Gaz 4 56-64 [In Russian]
[6] Menezes G S, Silva-Filho A G, Souza V L, Medeiros V W, Lima M E, Gandra R and Braganca R 2012 Energy estimation tool fpga-based approach for petroleum industry In 2012 41st Int. Conf. on Parallel Processing Workshops (Pittsburgh: IEEE) pp 600-1
[7] Ivanovskiy V N, Sabirov A A, Degovtsov A V, Tretyakov O V, Mazein I I, Merkushev S V, Krasnoborov D N 2019 Improving the efficiency of oil well operation with small diameter lateral holes Delovoy zhurnal NEFTEGAZ.RU 6s(90) 44-51
[8] Kolesov V I, Khmara G A and Portnyagin A L 2018 System aspects of price responsive energy consumption IOP Conf. Ser.: Earth Environ. Sci. 181 012015
[9] Chen L Y and Wang T C 2009 Optimizing partners’ choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR Int. J. of Production Economics 120(1) 233-42
[10] Aleksanov A A, Bochkov A F, Prangishvili I V and Yadykin I B 2004 System aspects in creating a corporative information control system for a regional power company Thermal Engineering 51(9) 754-62
[11] Prangishvili I V, Burkov V N, Gorgidze I A, Javakhadze G S and Khurodze R I 2009 Systemic
Chen T L, Cheng C H and Teoh H J 2007 Fuzzy time-series based on Fibonacci sequence for stock price forecasting Physica A: Statistical Mechanics and its Applications 380 377-90

Pronzato L, Wynn H P and Zhigljavsky A A 1998 A generalized golden-section algorithm for line search IMA J. of Mathematical Control and Information 15(2) 185-214

Tykocki J and Jordan A 2014 Pareto-ABC Analysis of High Voltage Single Core Cable Temperature Przegląd Elektrotechniczny 90(10) 172-8

Khakimyanov M I, Shafikov I N and Khusainov F F 2015 Control of sucker rod pumps energy consumption In 2015 Int. Siberian Conf. on Control and Communications SIBCON (Omsk: IEEE) pp 1-4

Khakimyanov M I, Shafikov I N and Khusainov F F 2018 Electric Submersible Pumps in Oil Production and Their Efficiency Analysis In Titel: Proc. of the 4th Int. Conf. on Applied Innovations in IT (Hochschule Anhalt) pp 35-8

Chen Y, Li K W and Liu S F 2008 A comparative study on multicriteria ABC analysis in inventory management In 2008 IEEE Int. Conf. on Systems, Man and Cybernetics (Singapore: IEEE) pp 3280-5

Chu C W, Liang G S and Liao C T 2008 Controlling inventory by combining ABC analysis and fuzzy classification Computers & Industrial Engineering 55(4) 841-51

Zasadzień M 2014 Using the Pareto diagram and FMEA (Failure Mode and Effects Analysis) to identify key defects in a product Management Systems in Production Engineering 4(165) 153-6

Hematyar S 2011 Fuzzy classification of gas power plant spare parts by combination statistical classification technique, SAW, ABC analysis In 2011 IEEE Int. Conf. on Industrial Engineering and Engineering Management pp 1800-4