Data Article

Chemical data on environmental matrices from an abandoned mining site

Daniela Medas*, Rosa Cidu, Giovanni De Giudici, Francesca Podda

Department of Chemical and Geological Sciences, Via Trentino 51, 09127 Cagliari, Italy

A R T I C L E I N F O

Article history:
Received 31 October 2018
Received in revised form 6 February 2019
Accepted 20 February 2019
Available online 1 March 2019

Keywords:
Water chemistry
Mining environments
Pollution
Biomineral

A B S T R A C T

This article contains analytical data on chemical composition of waters and solid samples (mining wastes and biominerals) collected in an abandoned mining area, and they are related with the research article "Geochemistry of rare earth elements in water and solid materials at abandoned mines in SW Sardinia (Italy)" (Medas et al., 2013).

Specifically, we present physicochemical data (temperature, electrical conductivity, pH, and redox potential), major components and the main contaminants (Zn, Mn, Cd, Ni, Cu, Pb) detected in stream waters and drainages from mine wastes. Waters were monitored from 2009 to 2011 during different seasonal conditions to give an insight into metal dispersion under different hydrological conditions.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Data

Water and solid samples were collected in the Ingurtosu Zn-Pb abandoned mining site, located in the South-West of Sardinia, Italy. Physicochemical data and major components of the Rio Naracauli waters are reported in Tables 1–3; Tables 4–6 show concentrations of selected metals (Mn, Cd, Ni, Cu and Pb) in the stream waters. Physicochemical data, major components, and selected metals (Mn, Cd, Ni, Cu and Pb) of the Rio Pitzinarri tributary are reported in Tables 7 and...
Tables 9 and 10 show the physicochemical data, major components, and selected metals (Mn, Cd, Ni, Cu and Pb) in waters draining mine tailings. Data on solid samples (mine tailings and biominerals) are reported in Tables 11 and 12. For a detailed description and discussion of the data see Ref. [1].

2. Experimental design, materials, and methods

2.1. Study area

Environmental and health problems [2–7] associated with the dispersion of metals and with their transfer from the geosphere to the biosphere [8–11] are becoming increasingly common worldwide. The knowledge of metal pathways is a fundamental parameter to plan efficient remediation actions of waters and soils and it can be achieved by an accurate geochemical investigation. In this context, chemical composition of stream waters and drainages from mine tailings were monitored from 2009 to 2011, and mine wastes and biominerals were analyzed. During the mining activity, wastes were disposed near the Rio Naracauli, the main stream of the area, resulting in a relevant threat for the health of living organisms. When the mine was closed (1968), dump and tailings were abandoned without applying any remediation technique [1,12]. Zinc dispersion along the stream is controlled by the bioprecipitation of two biominerals: hydrozincite, Zn₅(CO₃)₂(OH)₆ [9,10], and an amorphous Zn-silicate [13–15].

2.2. Materials and methods

Biominerals and mine waste samples were dried at room temperature, and ground for acid digestion by a microwave (ETHOS One, Advanced Microwave Digestion System, Milestone), according to Ref. [1]. Samples were digested in duplicate and analyzed to estimate method precision (expressed as standard deviation/mean concentration) that was in the range 0.1–5%. To evaluate
The analytical accuracy of the acid digestion procedure, experimental values and the certified values of the reference material RTS-3 (CANMET, Canadian Certified Reference Materials Project (CCRMP)), prepared with the same mixture, were compared, and the percentage recovery of each metal was calculated as:

\[
\text{% Recovery} = \frac{\text{Mean value of the measured concentration}}{\text{Certified concentration}} \times 100
\]

Recovery was between 85 and 102%.
Zn and S\(_{\text{tot}}\) were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES, ARL Fisons ICP Analyzer 3520 B), and Fe, Zn, Pb, Cd, Mn, Co, Ni, Cu, Al, As, Cr, Sb and Ag were determined by inductively coupled plasma mass spectrometry (ICP-MS, Perkin-Elmer, Elan 5000/DRC-e, USA).

Stream waters, from the Rio Naracauli (NS-100 to NS-1600) and the Rio Pitzinurri tributary (sample D), and drainages from tailings (samples A and B) were collected from 2009 to 2011. Temperature, electrical conductivity (Cond), pH, redox potential (Eh), and alkalinity were determined on site according to Ref. [1]. Major cations were determined by ICP-OES and Zn, Cu, Ni, Cd, Mn and Pb were determined by ICP-MS on filtered (0.4 \(\mu\)m, Nuclepore 111130) and acidified samples (1% HNO\(_3\) suprapure grade). Anions were analyzed by ion chromatography (Dionex ICS3000) on filtered and non-acidified aliquots.

Procedural blanks, standard solutions and reference solutions (SRM 1643e and EnviroMAT Drinking Water, High EP-H-3 and Low EP-L-3) were analyzed after every five samples to estimate potential

Table 2

Sample	Date	T \(\degree\)C	pH	Eh \(\text{mV}\)	Cond \(\mu\)S/cm	Ca \(\text{mg/l}\)	Mg \(\text{mg/l}\)	Na \(\text{mg/l}\)	K \(\text{mg/l}\)	Zn \(\text{mg/l}\)	HCO\(_3\) \(\text{mg/l}\)	Cl \(\text{mg/l}\)	SO\(_4^{2-}\) \(\text{mg/l}\)	SiO\(_2\) \(\text{mg/l}\)
NS-100	10 June 2009	18	7.5	445	1396	149	61	57	6.4	34	218	104	512	7.7
NS-170	10 June 2009	21	7.6	429	1370	149	61	57	6.5	23	209	106	500	9.8
NS-330	10 June 2009	20	7.8	424	1814	249	87	67	7.2	16	245	104	500	10
NS-420	10 June 2009	21	7.9	407	1808	254	88	80	7.6	11	232	104	476	9.4
NS-590	10 June 2009	24	8.2	387	1793	254	90	68	7.5	4.2	211	104	787	8.8
NS-100	17 June 2009	19	7.3	471	nd	157	65	62	6.2	35	218	106	512	11
NS-170	17 June 2009	22	7.5	451	nd	150	64	61	6.0	22	198	104	503	10
NS-330	17 June 2009	20	7.6	447	nd	242	82	60	7.2	15	253	109	835	10
NS-420	17 June 2009	21	7.8	435	nd	248	90	67	7.6	11	232	104	503	10
NS-590	17 June 2009	24	8.0	417	nd	253	89	66	7.3	2.9	228	109	874	9.3
Table 3
Temperature, pH, redox potentials (Eh), electrical conductivity (Cond) and major components in the Rio Naracauli waters.

Sample	Date	T °C	pH	Eh	Cond μS/cm	Ca	Mg	Na	K	Zn	HCO₃⁻	Cl	SO₂⁻	SiO₂
NS-100	11 November 2009	10	7.0	494	1182	96	29	54	8.0	119	77	68	471	11
NS-420	11 November 2009	16	7.0	468	1431	157	53	63	7.6	69	115	79	590	8.6
NS-100	28 November 2009	16	7.1	482	1113	104	34	56	7.2	56	101	87	398	11
NS-420	28 November 2009	17	7.6	472	1740	240	80	66	8.1	13	225	93	752	8.1
NS-590	28 November 2009	17	7.6	472	1740	300	100	72	8.2	130	235	97	798	8.6
NS-100	13 March 2010	18	7.3	437	1420	152	64	57	7.4	31	209	88	495	8.9
NS-420	13 March 2010	17	7.6	451	1719	226	83	65	8.0	15	225	93	752	8.1
NS-590	13 March 2010	16	7.6	451	1719	256	97	72	8.4	130	235	97	798	8.6
NS-100	28 June 2010	16	7.0	469	1417	143	51	58	10.0	57	134	90	540	13
NS-420	28 June 2010	17	7.6	490	1519	160	60	56	9.0	11	245	100	725	9.5
NS-590	28 June 2010	19	7.8	435	1975	280	97	72	8.0	9.7	216	96	895	8.2
NS-100	28 June 2010	19	8.0	431	1965	280	97	72	7.6	9.7	216	96	895	8.2
NS-420	28 June 2010	16	7.8	450	1453	156	65	61	8.0	18	208	92	500	9.7
NS-590	28 June 2010	17	7.7	474	1680	231	76	65	8.0	5.9	216	96	696	6.2
NS-100	29 October 2010	17	7.2	475	1266	121	43	56	10.0	58	97	91	510	12
NS-420	29 October 2010	15	7.3	437	1394	143	51	58	10.0	57	134	90	540	13
NS-590	29 October 2010	15	7.3	437	1394	143	51	58	10.0	57	134	90	540	13
NS-100	29 October 2010	15	7.3	437	1394	143	51	58	10.0	57	134	90	540	13
NS-420	29 October 2010	15	7.3	437	1394	143	51	58	10.0	57	134	90	540	13
NS-590	29 October 2010	15	7.3	437	1394	143	51	58	10.0	57	134	90	540	13
NS-100	29 October 2010	15	7.3	437	1394	143	51	58	10.0	57	134	90	540	13
Table 4
Mn, Cd, Ni, Cu and Pb in the Rio Naracauli waters, continues.

Sample	Date	Mn	Cd	Ni	Cu	Pb
NS-100	18 March 2009	1160	345	130	5.1	76
NS-170	18 March 2009	1160	342	127	4.6	51
NS-330	18 March 2009	750	223	131	3.6	32
NS-420	18 March 2009	720	220	108	2.2	18
NS-590	18 March 2009	700	210	110	1.6	7.6
NS-630	18 March 2009	220	98	43	2.2	8.7
NS-1200	18 March 2009	173	103	34	3.4	15
NS-1600	18 March 2009	170	74	28	1.6	8.3
NS-100	25 March 2009	1242	318	150	5.0	59
NS-170	25 March 2009	1230	307	124	2.9	28
NS-330	25 March 2009	757	204	122	4.4	31
NS-420	25 March 2009	752	202	127	3.3	19
NS-590	25 March 2009	750	192	94	2.2	6.3
NS-100	17 April 2009	620	173	99	2.4	32
NS-170	17 April 2009	550	153	91	<2.3	12
NS-330	17 April 2009	469	139	71	<2.3	8.9
NS-420	17 April 2009	1040	242	124	5.2	34
NS-590	17 April 2009	1120	229	112	<2.3	25
NS-100	03 June 2009	1000	311	113	4.7	81
NS-170	03 June 2009	1080	296	106	2.5	41
NS-330	03 June 2009	583	192	96	2.4	34
NS-420	03 June 2009	522	176	89	<2.3	19
NS-590	03 June 2009	498	160	66	<2.3	11
Table 5
Mn, Cd, Ni, Cu and Pb in the Rio Naraculi waters, continues.

Sample	Date	Mn	Cd	Ni	Cu	Pb
		µg/l				
NS-100	10 June 2009	1200	246	126	4.2	71
NS-170	10 June 2009	1270	233	110	2.7	26
NS-330	10 June 2009	560	156	98	2.54	29
NS-420	10 June 2009	495	144	92	<2.3	21
NS-590	10 June 2009	446	127	65	<2.3	6.9
NS-100	17 June 2009	1213	246	122	4.1	70
NS-170	17 June 2009	1260	224	108	<2.3	23
NS-330	17 June 2009	451	137	99	<2.3	27
NS-420	17 June 2009	409	130	90	<2.3	11
NS-590	17 June 2009	367	118	62	<2.3	6.5
NS-100	25 June 2009	1124	281	121	3.7	70
NS-170	25 June 2009	1025	260	105	1.6	15
NS-330	25 June 2009	285	134	102	2.1	13
NS-420	25 June 2009	271	127	94	9.6	6.4
NS-590	25 June 2009	258	125	71	1.7	4.2
NS-100	08 July 2009	666	365	83	5.9	122
NS-170	08 July 2009	583	350	78	2.5	39
NS-330	08 July 2009	235	162	94	3.0	3.0
NS-420	08 July 2009	206	154	84	1.7	8.9
NS-590	08 July 2009	180	150	62	1.6	5.5
NS-100	15 July 2009	607	350	75	5.4	116
NS-170	15 July 2009	540	342	71	2.6	44
NS-330	15 July 2009	213	152	91	2.5	22
NS-420	15 July 2009	190	148	81	1.7	10
NS-590	15 July 2009	160	136	59	1.4	6.0
NS-100	29 July 2009	620	289	70	3.9	99
NS-170	29 July 2009	563	264	63	1.5	16
NS-330	29 July 2009	173	102	86	2.4	18
NS-420	29 July 2009	141	99	77	1.8	8.5
NS-590	29 July 2009	118	92	53	1.3	7.7
NS-330	19 August 2009	220	152	88	<3.5	18
NS-420	19 August 2009	93	149	82	<3.5	7.8
NS-590	19 August 2009	92	140	58	<3.5	7.7
NS-100	19 October 2009	113	456	52	5.5	150
NS-170	19 October 2009	106	398	45	3.5	82
NS-420	19 October 2009	326	213	88	<3.5	18
NS-590	19 October 2009	287	173	72	<3.5	6.4
NS-1200	19 October 2009	12	130	24	3.8	61
NS-100	11 November 2009	81	1215	80	20	278
NS-420	11 November 2009	290	700	96	6.5	82
NS-100	28 November 2009	283	674	62	5.7	137
NS-420	28 November 2009	430	183	90	<3.5	16
NS-590	28 November 2009	352	163	70	<3.5	6.7
contaminations, and the accuracy and precision of trace element analysis. The limits of detection (LOD) and of quantification (LOQ) were calculated as 3 times and 10 times the standard deviation of the blank measurements, respectively. Rhodium was added as internal standard for ICP-MS analysis to correct for instrumental drift.

Table 6
Mn, Cd, Ni, Cu and Pb in the Rio Naracauli waters.

Sample	Date	Mn	Cd	Ni	Cu	Pb
NS-100	17 March 2010	1459	290	132	5	55
NS-420	17 March 2010	580	187	99	2.3	17
NS-590	17 March 2010	534	184	92	1.8	11
NS-100	21 April 2010	1470	266	122	3.6	53
NS-170	21 April 2010	1407	247	114	1.7	15
NS-330	21 April 2010	423	144	100	3.2	23
NS-420	21 April 2010	345	140	88	1.9	11
NS-590	21 April 2010	302	119	65	1.3	3.5
NS-1200	21 April 2010	55	76	24	2.2	14
NS-100	30 June 2010	471	609	79	5	74
NS-170	30 June 2010	439	584	82	<3	15
NS-330	30 June 2010	242	117	85	3.6	23
NS-420	30 June 2010	165	108	71	<3	7.3
NS-590	30 June 2010	112	83	46	<3	6.3
NS-1200	30 June 2010	31	162	33	<3	25
NS-100	29 October 2010	5.1	645	69	3.6	134
NS-170	29 October 2010	8.8	637	69	2.2	47
NS-420	29 October 2010	390	119	95	3.7	15
NS-590	29 October 2010	300	109	55	1.1	12
NS-1200	29 October 2010	19	84	18	2.7	34
NS-1600	29 October 2010	55	49	13	1.2	3.6
NS-100	01 December 2010	840	870	114	10	144
NS-420	01 December 2010	640	700	110	5.9	67
NS-590	01 December 2010	430	690	99	3.2	30
NS-1600	01 December 2010	58	95	18	3.5	20
NS-100	26 January 2011	1400	320	120	4.2	26
NS-330	26 January 2011	770	210	100	2.8	24
NS-420	26 January 2011	720	210	90	2.0	19
NS-590	26 January 2011	500	210	90	1.7	20
NS-1200	26 January 2011	130	87	33	2.7	24
NS-1600	26 January 2011	96	66	26	2.2	21
NS-100 (h 10:50)	02 February 2011	810	510	100	7.8	53
NS-100 (h 13:30)	02 February 2011	820	520	100	12	57
NS-330 (h 11:00)	02 February 2011	580	360	113	5.6	49
NS-330 (h 13:42)	02 February 2011	570	360	107	5.3	44
NS-590 (h 11:05)	02 February 2011	470	420	90	2.9	31
NS-590 (h 13:56)	02 February 2011	470	430	90	2.8	27
NS-100	11 February 2011	1300	260	110	4.2	20
NS-330	11 February 2011	750	200	122	3.0	26

Table 7
Temperature, pH, redox potentials (Eh), electrical conductivity (Cond) and major components in the tributary waters.

Sample	Date	T °C	pH	Eh mV	Cond μS/cm	Ca	Mg	Na	K	Zn	HCO3⁻	Cl	SO4⁻	SiO2 mg/l
Rio Pitzinurri (D)	21 April 2010	15	8.3	471	546	28	13	57	3.2	0.3	102	91	37	24
Rio Pitzinurri (D)	29 October 2010	13	7.9	450	702	37	17	71	3.6	2.1	132	124	56	23
Rio Pitzinurri (D)	18 March 2009	13	8.2	440	524	25	12	59	3.3	0.3	96	79	38	21
Rio Pitzinurri (D)	19 October 2009	17	7.3	458	690	44	20	82	3.9	2.7	143	136	71	22
Table 8
Mn, Cd, Ni, Cu and Pb in the tributary waters.

Sample	Date	Mn (µg/l)	Cd (µg/l)	Ni (µg/l)	Cu (µg/l)	Pb (µg/l)
Rio Pitzinurri (D)	21 April 2010	47	2.4	3	0.9	2.1
Rio Pitzinurri (D)	29 October 2010	15	15	4.4	3.3	4.9
Rio Pitzinurri (D)	18 March 2009	26	4.2	1.6	1.3	3.0
Rio Pitzinurri (D)	19 October 2009	41	22	7.8	3.8	2.9

Table 9
Temperature, pH, redox potentials (Eh), electrical conductivity (Cond) and major components in the tailing drainages.

Sample	Date	T (°C)	pH	Eh (mV)	Cond (µS/cm)	Ca (mg/l)	Mg (mg/l)	Na (mg/l)	K (mg/l)	Zn (mg/l)	HCO₃⁻ (mg/l)	Cl (mg/l)	SO₄²⁻ (mg/l)	SiO₂ (mg/l)
A	18 March 2009	19	6.9	473	2660	148	42	55	6.3	600	21	99	1347	11
A	25 March 2009	12	6.6	547	2760	153	42	55	7.5	630	23	101	1365	12
A	17 April 2009	18	6.5	659	1940	158	40	55	6.1	640	34	87	1568	13
A	07 May 2009	22	6.5	539	2460	160	42	56	6.7	690	22	94	1503	14
A	11 November 2009	14	6.6	452	2680	209	48	59	9.0	704	21	71	1700	8.6
A	01 December 2010	16	6.7	503	2290	161	38	51	9.0	710	21	71	1672	13
A	02 February 2011	13	6.6	591	2280	141	32	50	6.1	699	39	70	1360	12
A	02 February 2011	14	6.9	646	2130	140	32	47	5.9	634	22	77	1683	13
A	11 February 2011	10	6.8	531	3280	170	42	52	6.5	760	26	79	1690	14
B	25 March 2009	16	6.6	508	2600	107	67	70	5.6	530	17	154	1263	12
B	17 April 2009	21	6.4	656	1510	76	49	73	4.2	300	28	134	796	17
B	07 May 2009	25	6.5	516	2100	95	62	75	5.0	463	20	155	1051	12
B	21 May 2009	24	6.2	580	2190	111	71	84	5.7	514	13	172	1171	13
B	27 May 2009	21	6.4	529	2220	117	75	83	5.1	533	13	165	1213	13
B	01 December 2010	18	7.0	606	2350	104	71	55	8.0	540	45	77	1400	13
B	02 February 2011	13	6.6	541	1428	61	40	61	3.6	280	27	106	680	6.5
B	02 February 2011	15	7.0	524	1449	65	41	64	3.4	280	35	106	664	6.5
B	11 February 2011	14	7.0	515	1821	87	53	66	4.2	390	20	116	920	13

Table 10
Mn, Cd, Ni, Cu and Pb in the tailing drainages.

Sample	Date	Mn (µg/l)	Cd (µg/l)	Ni (µg/l)	Cu (µg/l)	Pb (µg/l)
A	18 March 2009	144	5700	320	19	875
A	25 March 2009	154	5980	273	15	611
A	17 April 2009	1100	5500	287	29	507
A	07 May 2009	101	6130	279	12	970
A	11 November 2009	675	7170	360	112	1010
A	01 December 2010	1115	6500	59	68	600
A	02 February 2011	980	5300	333	87	490
A	02 February 2011	1003	5500	344	83	566
A	11 February 2011	820	5800	350	79	700
B	25 March 2009	2960	5040	128	7.5	87
B	17 April 2009	1570	3000	100	4.2	35
B	07 May 2009	1995	3900	102	4.9	88
B	21 May 2009	2350	4575	112	5.5	134
B	27 May 2009	2320	4660	119	5.5	154
B	01 December 2010	2315	5065	120	11	94
B	02 February 2011	980	2300	72	5.8	43
B	02 February 2011	973	2300	66	6.6	45
B	11 February 2011	1200	3200	95	7.1	64
Acknowledgments

The UMBRELLA project was founded by the European Commission, FP7-ENVIRONMENT, ENV.2008.3.1.2.1. - Recovery of degraded soil resources.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103801.

Table 11
Sulphur, Fe, Zn, Al, Pb, Mn, Cu, As, Cd, Cr, Sb, Co, and Ag concentrations in mine tailings.

Sample	Date	S	Fe	Zn	Al	Pb	Mn	Cu	As	Cd	Cr	Sb	Co	Ag	
		g/kg		mg/kg			mg/kg			mg/kg					
MTA - 1	28-Apr-12	12	27	19	2.6	10	1160	880	170	80	60	100	20	20	
MTA - 2	28-Apr-12	13	36	19	39.5	17	1800	720	250	130	90	30	40	25	
MTA - 3	28-Apr-12	7.1	29	18	7.2	10	1300	710	230	90	60	90	40	20	
MTB - 1	28-Apr-12	10	20	22	6.5	1.8	1010	530	140	100	40	40	55	4	
MTB - 2	28-Apr-12	8.3	27	25	2.8	2.1	1240	370	100	100	40	50	10	5	
MTB - 3	28-Apr-12	8.9	14	27	3.9	0.7	710	370	80	130	40	40	10	4	

Table 12
Sulphur, Zn, Pb, Ni, Cd, Fe, Mn, Cu and Co concentrations in the bio-hydrozincites (N34-42) and Fe-hydrozincite + bio-hydrozincite sample (N32).

Sample	Station	Date	S	Zn	Pb	Ni	Cd	Fe	Mn	Cu	Co
			g/kg	mg/kg							
N32	NS170	21 May 2009	1.8	465	5.5	420	510	50500	400	420	50
N34	NS590	27 May 2009	1.8	530	0.9	930	850	630	650	70	70
N36	NS590	03 June 2009	1.8	460	1.5	890	790	2600	610	80	70
N37B	NS420	10 June 2009	1.7	490	1.6	650	600	1700	470	120	50
N39	NS420	15 July 2009	1.6	520	0.9	900	750	130	400	65	41
N41A	NS420	29 July 2009	1.4	510	1.1	830	620	260	310	80	30
N42	NS420	29 July 2009	1.7	540	0.9	1000	720	180	360	60	40

References

[1] D. Medas, R. Cidu, G. De Giudici, F. Podda, Geochemistry of rare earth elements in water and solid materials at abandoned mines in SW Sardinia (Italy), J. Geochem. Explor., 133 (2013), https://doi.org/10.1016/j.gexplo.2013.05.005.
[2] P.C. Nagajyoti, K.D. Lee, T.V.M. Sreekanth, Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. Lett. 8 (2010) 199–216, https://doi.org/10.1007/s10311-010-0297-8.
[3] M. Gavrilescu, Removal of heavy metals from the environment by biosorption, Eng. Life Sci. 4 (2004) 219–232, https://doi.org/10.1002/elsc.200420026.
[4] R.K. Sharma, M. Agrawal, Biological effects of heavy metals: an overview, J. Environ. Biol. 26 (2005) 301–313.
[5] M. Yousefi, H. Najafi Saleh, M. Yaseri, M. Jalilzadeh, A.A. Mohammadi, Association of consumption of excess hard water, body mass index and waist circumference with risk of hypertension in individuals living in hard and soft water areas, Environ. Geochem. Health (2018), https://doi.org/10.1007/s10653-018-0206-9.
[6] H.N. Saleh, M. Panahande, M. Yousefi, F.B. Asghari, G. Oliveri Conti, E. Talaee, A.A. Mohammadi, Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in neyshabur plain, Iran, Biol. Trace Elem. Res. (2018), https://doi.org/10.1007/s12011-018-1516-6.
[7] A.A. Mohammadi, M. Yousefi, J. Soltani, A.G. Ahangar, S. Javan, Using the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sediments, Environ. Sci. Pollut. Res. 25 (2018) 30315–30324, https://doi.org/10.1007/s11356-018-3026-7.
[8] D. Medas, G. De Giudici, M.A. Casu, E. Musu, A. Gianoncelli, A. Iadecola, C. Meneghini, E. Tamburini, A.R. Sprocati, K. Turnau, P. Lattanzi, Microscopic processes ruling the bioavailability of Zn to roots of euphorbia pithyusa L. Pioneer plant, Environ. Sci. Technol. 49 (2015), https://doi.org/10.1021/es503842w.
[9] G. De Giudici, D. Medas, C. Meneghini, M.A. Casu, A. Gianoncelli, A. Iadecola, S. Podda, P. Lattanzi, Microscopic biomineralization processes and Zn bioavailability: a synchrotron-based investigation of Pistacia lentiscus L. roots, Environ. Sci. Pollut. Res. 22 (2015), https://doi.org/10.1007/s11356-015-4808-9.
[10] D. Medas, G. De Giudici, C. Pusceddu, M.A. Casu, G. Birarda, L. Vaccari, A. Gianoncelli, C. Meneghini, Impact of Zn excess on biomineralization processes in *Juncus acutus* grown in mine polluted sites, J. Hazard Mater. (2017), https://doi.org/10.1016/j.jhazmat.2017.08.031.

[11] A. Takdastan, M. Mirzabeygi (Radfard), M. Yousefi, A. Abbaspia, R. Khodadadia, H. Soleimani, A.H. Mahvi, D.J. Naghan, Neuro-fuzzy inference system Prediction of stability indices and Sodium absorption ratio in Lordegan rural drinking water resources in west Iran, Data Brief 18 (2018) 255–261. https://doi.org/10.1016/j.dib.2018.02.075.

[12] G. De Giudici, R.B. Wanty, F. Podda, B.A. Kimball, P.L. Verplanck, P. Lattanzi, R. Cidu, D. Medas, Quantifying biomineralization of zinc in the rio Naracauli (Sardinia, Italy), using a tracer injection and synoptic sampling, Chem. Geol. 384 (2014), https://doi.org/10.1016/j.chemgeo.2014.07.002.

[13] D. Medas, P. Lattanzi, F. Podda, C. Meneghini, A. Trapananti, A. Sprocati, M.A. Casu, E. Musu, G. De Giudici, The amorphous Zn biomineralization at Naracauli stream, Sardinia: electron microscopy and X-ray absorption spectroscopy, Environ. Sci. Pollut. Res. 21 (2014), https://doi.org/10.1007/s11356-013-1886-4.

[14] F. Podda, D. Medas, G. De Giudici, P. Ryszka, K. Wolowski, K. Turnau, Zn biomineralization processes and microbial biofilm in a metal-rich stream (Naracauli, Sardinia), Environ. Sci. Pollut. Res. 21 (2014), https://doi.org/10.1007/s11356-013-1987-0.

[15] D. Medas, F. Podda, C. Meneghini, G. De Giudici, Stability of biological and inorganic hemimorphite: implications for hemimorphite precipitation in non-sulfide Zn deposits, Ore Geol. Rev. 89 (2017), https://doi.org/10.1016/j.oregeorev.2017.07.015.