Mid-circuit correction of correlated phase errors using an array of spectator qubits

K. Singh†, C. E. Bradley‡, S. Anand‡, V. Ramesh‡, R. White‡, H. Bernien‡

Scaling up invariably error-prone quantum processors is a formidable challenge. Although quantum error correction ultimately promises fault-tolerant operation, the required qubit overhead and error thresholds are daunting. In a complementary proposal, colocated, auxiliary “spectator” qubits act as in situ probes of noise and enable real-time, coherent corrections of data qubit errors. We used an array of cesium spectator qubits to correct correlated phase errors on an array of rubidium data qubits. By combining in-sequence readout, data processing, and feedforward operations, these correlated errors were suppressed within the execution of the quantum circuit. The protocol is broadly applicable to quantum information platforms and establishes key tools for scaling neutral-atom quantum processors: mid-circuit readout of atom arrays, real-time processing and feedforward, and coherent mid-circuit reloading of atomic qubits.

Realizing large-scale programmable quantum systems that can overcome inevitable noise sources is a central challenge for modern physics (1, 2). Environmental noise and experimental parameter drift necessitate strategies to reduce their impact and overcome resulting qubit errors. Although quantum error correction will ultimately be required, achieving the necessary qubit operation fidelities is an outstanding challenge for present quantum computing platforms (3–9). Moreover, the effectiveness of error-correction codes is reduced by correlated errors (10, 11), which may naturally occur when the qubits are in close spatial proximity or are controlled by shared hardware (12–16).

To address these challenges, a number of techniques have been developed to mitigate the effects of noise, such as composite pulses (17), optimal control (18), dynamical decoupling (17, 19), Hamiltonian learning (20), and machine learning-based control engineering (21). These techniques have found great success, but they are typically tailored to specific noise models or require careful calibration and thus face challenges when used in realistic, fluctuating environments. For example, dynamical decoupling generates a filter function that mitigates a particular spectrum of noise, with passbands remaining that are not suppressed (22). Additionally, it is only effective if the correlation time of the noise is long with respect to the interpulse delay.

Recent theoretical work has proposed a complementary technique based on “spectator” qubits—additional qubits that are colocated with the computational “data” qubits and are susceptible to the same noise sources. Spectator qubits act as in situ probes of that noise, such that measurement and feedforward can be used to coherently protect the data qubits during the execution of a quantum algorithm (23–25). Notably, under two key conditions, spectator protocols are agnostic to the spectrum and correlation time of the noise source. First, the noise-induced dynamics must be correlated between the spectator and data qubits. Second, an estimate of those dynamics must be made by reading out the spectator qubits—and a subsequent feedforward operation applied—much faster than the timescale over which the data and spectator qubits decorrelate. This second requirement has limited the experimental implementation of such protocols because a substantial number of measurements are required to reliably estimate the effects of a dynamic noise environment. Furthermore, the spectator qubit readouts must be performed mid-circuit without perturbing the data qubits.

In this work, we overcome these challenges and demonstrate real-time correction of correlated phase errors using a dual-species array of individually trapped neutral atoms. The protocol is outlined in Fig. 1A. Data qubits (rubidium atoms) and spectator qubits (cesium atoms) are laser-cooled into optical tweezer arrays (26). During logic operations on the data qubits, mid-circuit readouts (MCRs) on the array of ~60 spectator qubits enable single-shot estimation of globally correlated phase errors. The readout results are processed in real time and used to infer the noise-induced phase accrued by the ~60 data qubits. Crucially, owing to the cross-talk–free operation of the two species, these readouts do not disturb the coherence of the data qubits. We leverage a classical control architecture to perform in-sequence feedforward, such that correlated errors on the data qubits are mitigated within the execution of the quantum circuit. Finally, we show that the spectator qubits can be

Footnotes:

†Intelligence Community Postdoctoral Research Fellowship Program, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. ‡Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. ‡Department of Physics, University of Chicago, Chicago, IL 60637, USA.

*Corresponding author. Email: bernien@uchicago.edu

†These authors contributed equally to this work.

Fig. 1. Spectator qubit protocol with a dual-species atom array. (A) Feedforward loop for real-time correction of correlated phase errors between data qubits (Rub atom, blue) and spectator qubits (Cs atoms, yellow). A mid-circuit, single-shot phase estimation on the spectators is used to infer the noise-induced phase accrued by the data qubits. This information enables a real-time correction on the data qubits before the final readout, which suppresses dephasing. Subsequently, spectator qubits lost during readout can be replenished while maintaining data qubit coherence. (B) Example fluorescence image of the dual-species atom array. Scale bar indicates ~10 μm. (C) Microwave Rabi oscillations of the data and spectator qubits. Dashed lines are fits to exponentially decaying sinusoids.
replenished within the data qubit coherence time, an essential step toward repeated measurements and the continuous operation of atom-based quantum processors.

MCR of spectator qubits

Our experiment is performed on arrays of 10-by-10 and 11-by-11 sites for the spectator and data qubits, respectively (Fig. 1B), which are stochastically loaded with an average loading fraction of ~55%. The experimental apparatus has been upgraded from our previous work (26) to incorporate qubit initialization, manipulation, and readout, along with classical hardware to implement real-time processing and feedback.

Here, the qubits are encoded into long-lived hyperfine states (\(|F = 1, m_F = 0\rangle : = |0\rangle_{\text{Rb}}\) and \(|F = 2, m_F = 0\rangle : = |1\rangle_{\text{Rb}}\) for Rb; \(|F = 3, m_F = 0\rangle : = |0\rangle_{\text{Cs}}\) and \(|F = 4, m_F = 0\rangle : = |1\rangle_{\text{Cs}}\) for Cs, where \(F\) is the total angular momentum and \(m_F\) is the magnetic quantum number). Microwave driving of the data and spectator qubits after optical pumping into the XY8 sequence by selectively removing all states \(|\phi\rangle\) is unchanged in the absence of MCR (blue circles). Dashed lines are fits (29). The inset shows coherence measurements for early (square) and late (triangle) evolution times. (C) Example fluorescence histogram of a spectator qubit. Solid lines are fits to a bimodal Poisson distribution. (D) Cumulative histogram of the discrimination infidelities of the spectator qubits during MCR (29); eCDF, empirical cumulative distribution function. (E) Coherence of spectator qubits. The measured spectator coherence time is \(T_{1/2} = 136(7)\) ms.

An essential ingredient for the spectator protocol is to perform MCR of the spectator qubits without inducing additional data qubit decoherence. This is challenging in single-species atom arrays because all atoms are resonant with the excitation laser and the measured qubits scatter light, which can decohere the data qubits through reabsorption. To overcome this, several ideas have been proposed and demonstrated, including coherently transporting qubits into readout cavities (27) or using additional shelving states to hide atoms from excitations from the readout light, as demonstrated for trapped ions (4). However, realizing cross-talk-free imaging in large atom arrays has remained an outstanding challenge. A key motivation behind the dual-species approach is that the different atomic species have distinct optical transitions, and measurements on one species are not expected to influence the other (26, 28).

In a first experiment, we characterized the spectator qubit MCR and measured its impact on the data qubit coherence. The quantum circuit is shown in Fig. 2A. During an XY8 decoupling sequence on the data qubits, an XY4 sequence was performed on the spectators. The spectator qubits were measured within the XY8 sequence by selectively removing all atoms in the \(|1\rangle_{\text{Cs}}\) state by a resonant laser pulse and then fluorescence imaging for 15 ms. The coherences of the data and spectator qubits as a function of their individual dephasing times are shown in Fig. 2, B and E, respectively. Although the camera exposure time is fixed, the imaging light is applied for a variable time, \(5\tau\) (of a total of 16τ), to determine its effect on the data qubits. Crucially, the data qubit coherence time is unaftered by the MCR protocol.

\[T_{1/2,\text{MCR}} = 0.68(1)\text{s}, T_{2,\text{MCR}} = 0.38(2)\text{s} \]

The large detuning of the imaging light leads to negligibly low spontaneous scattering rates of \(<10^{-7}\) Hz. Moreover, spontaneous Raman scattering events that change these \(m_F\) states are further suppressed by a factor of 0.009 owing to destructive interference of the off-resonant transition amplitudes (22). The theoretical \(T_1\) time from this decay channel is thus \(<10^4\) s, resulting in a data qubit bit-flip rate from readout cross-talk of \(<10^{-14}\) during the 15-ms MCR. This readout duration was chosen to balance the requirements for achieving a high discrimination fidelity while minimizing the time for a feedforward operation (29). The discrimination fidelity of the spectator qubits (Fig. 2D) is extracted from a bimodal fit to the fluorescence histogram of each spectator qubit, as exemplified in Fig. 2C. Across the spectator array, we find a mean fidelity of 0.989(5), showing that the spectator qubit states are well resolved by MCR.

Spectator protocol and correction of phase errors

The preservation of data qubit coherence during spectator readout opens the possibility for feedforward operations within a quantum circuit. Under simultaneous evolution, noise channels can induce correlated phase errors between the data and spectator qubits. Importantly, the large number of spectator qubits allows single-shot estimation of the acquired phase from one simultaneous MCR. The phase accrued by the
owing to magnetic field noise spectator qubits are synchronously decoupled and acquire correlated errors and corrected in real time (green arrow). (A) Noise channels induce correlated phase errors (red arrows) between the two sets of qubits. Measurement of the spectators along the y axis enables single-shot phase estimation, from which the phase accrued by the data qubits can be inferred and corrected in real time (green arrow). (B) Gate sequence. The data and spectator qubits are synchronously decoupled and acquire correlated errors owing to magnetic field noise B_z. The spectator qubit decoupling sequence is truncated, with the remaining time assigned for MCR and feedforward. CPU, central processing unit; QPU, quantum processing unit. (C) Example coherence measurement of the data qubits at the end of the sequence, with the feed-forward turned on (green squares) and off (blue triangles). Field noise is applied at $f_{AC} = 36.2$ Hz and 10.7 mG RMS. Dashed lines are fits, from which we extract $\langle \sigma_y \rangle = 0.53(1)$ and $0.02(2)$ for feedforward on and off, respectively. (D) Data qubit $\langle \sigma_y \rangle$ as a function of the RMS noise strength at f_{AC}. The shaded green region indicates the correctable range (see text). (E) Data qubit $\langle \sigma_x \rangle$ as a function of the noise frequency at 10.7 mG RMS. The shaded gray region indicates an absolute gain in the measured coherence. For (D) and (E), solid lines are the results of numerical simulations (see text).

Fig. 3. Mid-circuit correction of correlated phase errors. (A) Noise channels induce correlated phase errors (red arrows) between the two sets of qubits. Measurement of the spectators along the y axis enables single-shot phase estimation, from which the phase accrued by the data qubits can be inferred and corrected in real time (green arrow). (B) Gate sequence. The data and spectator qubits are synchronously decoupled and acquire correlated errors owing to magnetic field noise B_z. The spectator qubit decoupling sequence is truncated, with the remaining time assigned for MCR and feedforward. CPU, central processing unit; QPU, quantum processing unit. (C) Example coherence measurement of the data qubits at the end of the sequence, with the feed-forward turned on (green squares) and off (blue triangles). Field noise is applied at $f_{AC} = 36.2$ Hz and 10.7 mG RMS. Dashed lines are fits, from which we extract $\langle \sigma_y \rangle = 0.53(1)$ and $0.02(2)$ for feedforward on and off, respectively. (D) Data qubit $\langle \sigma_y \rangle$ as a function of the RMS noise strength at f_{AC}. The shaded green region indicates the correctable range (see text). (E) Data qubit $\langle \sigma_x \rangle$ as a function of the noise frequency at 10.7 mG RMS. The shaded gray region indicates an absolute gain in the measured coherence. For (D) and (E), solid lines are the results of numerical simulations (see text).

To demonstrate this capability, we injected global magnetic field noise with amplitudes and frequencies comparable to those typically found in laboratory environments. The phase of the noise was random in each experimental repetition, without shot-to-shot temporal correlations. We focused on monochromatic noise for ease of synthesis and interpretation of protocol performance but note that our scheme is generally agnostic to the noise spectrum. The pulse sequence for the experiment is shown in Fig. 3B. The data and spectator qubits underwent synchronous dynamical decoupling and acquired correlated errors from the common noise. Although the filter function of the Carr-Purcell-Meiboom-Gill (CPMG)-type dynamical decoupling sequence partially mitigates such noise, certain frequencies still couple into the sequence, occurring at odd-harmonics of $f_{AC} = 1/(4\pi) = 36.2$ Hz, where 2π is the time between π-pulses (22). The spectators sample this noise for three-quarters of the total evolution time of the data qubits, with the remainder of the time assigned for MCR and feedforward. To achieve fast camera processing and feedback, we used a camera-linked classical control architecture for in-sequence processing of the fluorescence images, which in turn triggers an arbitrary-waveform generator to perform real-time updates of the phase of the final data qubit $\pi/2$ pulse (29). The phase update of this final $\pi/2$ pulse is equivalent to a z-axis qubit rotation, which is used to correct the noise-induced phase error on the data qubits.

To estimate the phase acquired by the spectators, Φ_S, MCR was performed along an axis orthogonal to the state preparation axis. Accordingly, the collective expectation value of the array can be inverted to give an estimate, $\Phi_S = \arcsin(\langle \sigma_y \rangle/C)$, where C is a scaling factor that describes the amplitude of the signal in the absence of injected noise (29). Φ_S is uniquely defined when the accrued phase lies within $[-\pi/2, \pi/2]$, beyond which the protocol breaks down. The estimated noise-induced phase accrued by the data qubits is given by $\Phi_S = \gamma/\beta\Phi_S$, where $\gamma = 4/3$ is the ratio of the sensing times and $\beta = 1.35$ is the ratio of the second-order Zeeman shifts of the clock states (29). With this knowledge, a real-time correction can be applied.

We first probed the case for which the noise is maximally coupled, at $f_{AC} [10.7$ mG root mean square (RMS)]. Without the spectator protocol, the random phase of the noise leads to complete dephasing of the data qubits. Notably, the feedforward corrects the noise-induced phase in each experimental repetition, resulting in a recovery of the data qubit coherence (Fig. 3C). The coherence as a function of the noise amplitude is shown in Fig. 3D. In stark contrast to the rapid decay observed in the absence of feedforward, the spectator...
protocol robustly preserves coherence for field strengths less than 11 mG. Beyond this value, the accrued phases on the spectator qubits can exceed ±π/2, where the protocol can no longer unambiguously detect phase errors.

Next, we studied the dependence on the noise frequency for an RMS noise strength of 10.7 mG (Fig. 3E). For a range of frequencies close to f_s, real-time correction results in an absolute gain in the measured signal, shielding the data qubits from otherwise deleterious decoherence. A pair of small additional features occur near f_s in the “feedback-on” spectrum, arising from the finite spectator readout time, which leads to decorrelation between the data and spectator qubits. Reducing the fraction of time used for MCR would suppress these effects. Outside this region, feedforward causes a slight reduction in the measured coherence, which results from imperfect phase estimation. For both the amplitude and frequency sweep, the salient features of the data are well described by simple simulations of the experiment with no free parameters aside from a global amplitude rescaling (Fig. 3, D and E). These simulations are based on the assumption of monochromatic noise that solely perturbs the frequencies of the qubits (29). At stronger noise strengths, a slight discrepancy occurs, which likely arises from a breakdown of these assumptions.

Alongside our numerical simulations, analytic expressions can be derived for the error due to quantum projection noise (QPN) in the phase-estimation step. In the absence of any correlated dephasing, QPN-induced feedforward errors modulate the data qubit expectation values \(\langle s_x \rangle \) by \(f = 1 - \frac{\tau_{\text{dec}}}{\tau_{\text{q}}} \) (29). For our experimental parameters \(C = 0.46, N = 61 \), where \(N \) is the average number of loaded spectator qubits, we find \(f \approx 0.88 \), which is in good agreement with the numerical simulations.

In the context of quantum information processing, it is interesting to consider the requirements to reach \(f > 0.99 \). Without any change in \(\gamma \) or \(\beta, f = 0.99 \) could be achieved for \(N = 165 \) and \(C = 1 \). At present, the value of \(C \) is limited primarily by uncorrelated dephasing of the spectator qubits, which is caused by thermal motion in the optical tweezers and tweezer-induced \(T_2 \) processes. Thermal motion can be reduced by additional cooling schemes, and \(T_2 \) can be improved by increased detuning of the optical tweezers.

Beyond optimizing for \(\gamma = 1, f \) can be further improved by reducing \(\beta \), at the cost of a reduced range of correctable data qubit errors, \(\Phi_{\text{D,max}} = \gamma \beta \pi / 2 \). This could be achieved with alternative spectator qubit states, such as magnetic field–sensitive states.

Although in this work we focus on magnetic field noise, the protocol can also mitigate common-mode control errors. For instance, by cotrapping the data and spectator qubits using the same laser system (such as a far-detuned 1064-nm laser), phase errors induced by intensity fluctuations of the trapping-laser light could be corrected.

Coherent reloading of spectator qubits

In these experiments, fluorescence-based detection of the spectators involves selectively removing those in the \(|1\rangle_{\text{S}} \) state before imaging. Therefore, performing repetitive MCRs will continuously deplete the array. Although low-loss readout techniques exist (30, 31), finite losses always remain from both the readout itself and the trapping lifetime. Therefore, continuous operation of atom-based quantum processors will require reload and reset operations that overcome these erasure errors (32, 33). In this work, we explored two methods for reloading spectators while maintaining coherent data qubits. These build on our standard procedure, in which a two-dimensional magneto-optical trap (MOT) generates a beam of atoms that is laser-cooled into the tweezer array via a three-dimensional MOT.

The first reloading approach uses a stroboscopic MOT that is applied synchronously with an XY4 sequence on the data qubits to decouple them from the magnetic field gradient (Fig. 4A). Without the gradient, this decoupling sequence gives \(T_2^{\text{XY4}} = 0.45(1) \) s. With it, we find \(T_2^{\text{XY4}} = 0.42(3) \) s, but the functional form is modified (29). The spectator array is reloaded on a much shorter timescale of 150(50) ms, defined as the time taken to reach \(1 - 1/e \) of the asymptotic loading fraction. The pulsed MOT saturates at a loading fraction of 0.49. (B) Reloading spectators using PGC during data qubit decoupling. The data qubit coherence time is \(T_2^{\text{XY}} = 0.64(5) \) s with the PGC light and \(T_2^{\text{XY}} = 0.65(2) \) s without it. Reloading occurs on a faster timescale of 90(30) ms compared with (A), saturating at a fraction of 0.32. Dashed lines are fits (29).

![Fig. 4. Reloading of spectator qubits while maintaining data qubit coherence.](image-url)
data qubit coherence time \(T_2^{\text{sys}} = 0.64(5) \text{ s} \) is unchanged from the values presented in Fig. 2, and the spectator qubit array is reloaded on a timescale of 90(30) ms. The fraction of total reloaded spectators is lower than that in the previous method, saturating at 0.32. We hypothesize that this is limited by the 2-mm-diameter cooling beams. Incorporating larger cooling beams will likely increase the loading fraction for both approaches and would enable reloading times of a few tens of milliseconds (34). Coherence times on the order of seconds can be achieved by using further detuned trapping light and a larger number of decoupling pulses (9).

Discussion and outlook

A central challenge for all quantum architectures is to increase system sizes while maintaining low physical error rates. Our demonstration of the use of spectator qubits to measure and correct correlated phase noise is a broadly applicable strategy that can be used to reduce error rates in quantum computing platforms. Furthermore, spectator protocols could be used in conjunction with standard quantum error correction strategies to protect against correlated errors as well as increase the fidelity of operations beyond the fault-tolerance threshold. An attractive feature of this protocol is that it does not necessitate interactions (two-qubit gates) or individual spectator qubit control, which reduces hardware complexity. The use of spectator qubits for noise measurements may provide opportunities in quantum sensing and metrology (22, 35, 36) and for improving clock coherence within a single device through differential spectroscopy between the data and spectator qubits (37). Whereas in this work we focused on global noise, arrays of spectator qubits may also enable the detection of spatially varying noise fields that can be suppressed by local qubit addressing (24). Careful engineering of the spectator qubits and their control sequences may improve protocol performance. For example, spectator qubits could be encoded in states with enhanced or reduced noise sensitivity to increase the phase resolution or the range of tolerable noise (25). This can be achieved by using nonzero \(m \) states or by entangling the spectator qubits (22).

The methods demonstrated in this work constitute a set of quantum-control techniques that are essential for atom-array quantum processors, including MCR, feedforward operations, and the reloading of auxiliary qubits while maintaining quantum data. Combining these capabilities with programmable intra-species (9, 38) and interspecies Rydberg gates will enable auxiliary qubit–assisted measurements as required for quantum error correction (32, 33, 39) and efficient preparation of long-range entangled states (40). These same capabilities also enable the exploration of complex dynamical quantum behavior under continuous observation, including measurement-induced phase transitions (41).

Note added in proof: After the consideration of this manuscript, a preprint paper was published that describes MCR of a neutral atom by shelving in hyperfine states (42).

REFERENCES AND NOTES

1. E. T. Campbell, B. M. Terhal, C. Vullot, Nature 549, 172–179 (2017).
2. B. M. Terhal, Rev. Mod. Phys. 87, 307–346 (2015).
3. C. Ryan-Anderson et al., Phys. Rev. X 11, 041058 (2021).
4. L. Podster et al., Nature 605, 675–680 (2022).
5. Y. Zhao et al., Phys. Rev. Lett. 129, 030501 (2022).
6. S. Krimmer et al., Nature 605, 669–674 (2022).
7. R. Achariya et al., Nature 614, 676–681 (2023).
8. M. H. Abobeih et al., Nature 606, 884–889 (2022).
9. D. Bluethemann et al., Nature 604, 451–456 (2022).
10. J. Preskill, Quantum Inf. Comput. 13, 181–194 (2013).
11. A. G. Fowler, J. M. Martinis, Phys. Rev. A 89, 032316 (2014).
12. S. Kuhn et al., Phys. Rev. A 72, 023406 (2005).
13. T. Monz et al., Phys. Rev. Lett. 106, 130506 (2011).
14. N. Wiebe et al., Nature 508, 503–507 (2014).
15. C. E. Bradley et al., Phys. Rev. X 9, 031045 (2019).
16. J. M. Boter et al., Phys. Rev. X 10, 215313 (2020).
17. C. D. Whiten et al., Nature 594, 369–373 (2021).
18. L. M. Vandersypen, I. L. Chuang, Rev. Mod. Phys. 76, 1037–1069 (2005).
19. H. A. Rabitz, M. M. Hsieh, C. M. Rosenthal, Science 303, 1998–2001 (2004).
20. T. Guillou, D. B. Baker, M. S. Conradi, J. Magn. Reson. 89, 479–484 (1990).
21. M. D. Shulman et al., Nat. Commun. 5, 5156 (2014).
22. S. Navada, V. Frey, J. Sastrawan, S. Dona, M. J. Biercuk, Nat. Commun. 8, 14016 (2017).
23. C. L. Degu, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 031002 (2017).
24. S. Majumder, L. Andreia de Castro, K. R. Brown, NPJ Quantum Inf. 6, 19 (2020).
25. R. S. Gupta, L. C. Goria, M. J. Biercuk, Phys. Rev. A 102, 042511 (2020).
26. H. Song, A. Chantarsi, B. Tonekaboni, H. M. Wiseman, Phys. Rev. A 107, L030601 (2023).
27. K. Singh, S. Anand, A. Pocklington, J. T. Kemp, H. Bernien, Phys. Rev. X 12, 011040 (2022).
28. E. Deit et al., Phys. Rev. Lett. 129, 203602 (2022).
29. J. T. Zhang et al., Quantum Sci. Technol. 7, 035006 (2022).
30. See supplementary materials.
31. A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, A. Browaeys, Phys. Rev. Lett. 106, 133003 (2011).
32. I. Cong et al., Phys. Rev. X 12, 021049 (2022).
33. X. Wu, S. Kolokwitz, S. Puri, J. D. Thompson, Nat. Commun. 13, 4657 (2022).
34. A. Steine, M. Chowdhury, C. Foot, J. Opt. Soc. Am. 9, 2142 (1992).
35. I. S. Madjarov et al., Phys. Rev. X 9, 041052 (2019).
36. M. A. Norca et al., Science 366, 93–97 (2019).
37. M. E. Kim et al., Nat. Phys. 19, 25–29 (2023).
38. T. M. Graham et al., Nature 604, 457–462 (2022).
39. M. Morgado, S. Whitlock, AVS Quantum Sci. 3, 023501 (2021).
40. R. Verresen, N. Tantivasadakarn, A. Vishwanath, Efficiently preparing Schrödinger’s cat, tractors and non-Abelian topological order in quantum devices. arXiv:2112.03061 ([quant-ph]) (2021).
41. Y. Li, X. Chen, M. P. A. Fisher, Phys. Rev. B 98, 205136 (2018).
42. T. M. Graham et al., Mid-circuit measurements on a neutral atom processor. arXiv:2303.10051 ([quant-ph]) (2023).
43. K. Singh et al., Data and plotting code for “Mid-circuit correction of correlated phase errors using an array of spectator qubits.” Zenodo (2023); https://doi.org/10.5281/zenodo.7612718.

ACKNOWLEDGMENTS

We thank H. Levine, J. Covey, and A. Clark for fruitful discussions and critical reading of the manuscript. Funding: We acknowledge funding from the Office for Naval Research (N00014-20-1-2510), the Air Force Office of Scientific Research (FA9550-21-1-0209), the NSF Quantum Leap Challenge Institutes (QLCI) for Hybrid Quantum Architectures and Networks (NSF award 2016136), and the Sloan Foundation. This material is based upon work supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, and was supported by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at the Pritzker School of Molecular Engineering administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the Office of the Director of National Intelligence. Author contributions: K.S., C.E.B., S.A., V.R., R.W., and H.B. contributed to the experiments. K.S., C.E.B., S.A., and H.B. contributed to the analysis of the results and preparation of the manuscript. Competing interests: The work described in this article is included in a patent application filed with the US Patent and Trade Office by the University of Chicago. Data and materials availability: The data and code supporting this study are available at Zenodo (43). License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/science-licenses-journal-article-reuse

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.adc5337
Materials and Methods
Supplementary Text
Figs. S1 to S5
Tables S1 and S2
References (44–48)
Submitted 24 August 2022; accepted 15 May 2023
Published online 25 May 2023
10.1126/science.adc5337