Immunologic Difference between Hypersensitivity to Mosquito Bite and Hemophagocytic Lymphohistiocytosis Associated with Epstein-Barr Virus Infection

Wen-I Lee1,2*, Jainn-Jim Lin3,6,9, Meng-Ying Hsieh3,4, Syh-Jae Lin7, Tang-Her Jaing1,5, Shih-Hsiang Chen5, Iou-Jih Hung5, Chao-Ping Yang5, Chin-Jung Chen7, Yhu-Chering Huang7, Shin-Pai Li8, Jing-Long Huang1,2*

1 Primary Immunodeficiency Care And Research (PICAR) Institute, Chang Gung Children's Hospital, Taoyuan, Taiwan, 2 Department of Pediatrics, Division of Allergy Asthma and Rheumatology, Chang Gung Children's Hospital, Taoyuan, Taiwan, 3 Department of Microbiology & Immunology, Chang Gung University College of Medicine, Taoyuan, Taiwan, 4 Department of Pediatrics, Division of Neurology, Chang Gung Children's Hospital, Taoyuan, Taiwan, 5 Department Pediatrics, Division of Hematology/Oncology, Chang Gung Children’s Hospital, Taoyuan, Taiwan, 6 Department of Pediatrics, Division of Critical Care and Emergency Medicine, Chang Gung Children’s Hospital, Taoyuan, Taiwan, 7 Department of Pediatrics, Division of Infection, Chang Gung Children’s Hospital, Taoyuan, Taiwan, 8 Department of Microbiology and Immunology, Chang Gung University College of Medicine, Taoyuan, Taiwan

Abstract

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening, virus-triggered immune disease. Hypersensitivity to mosquito bite (HMB), a presentation of Chronic Active Epstein-Barr Virus infection (CAEBV), may progress to HLH. This study aimed to investigate the immunologic difference between the HMB episodes and the HLH episodes associated with EBV infection. Immunologic changes of immunoglobulins, lymphocyte subsets, cytotoxicity, intracellular perforin and granzyme expressions, EBV virus load and known candidate genes for hereditary HLH were evaluated and compared. In 12 HLH episodes (12 patients) and 14 HMB episodes (4 patients), there were both decreased percentages of CD4+ and CD8+ and increased memory CD4+ and activated (CD2+HLADR+) lymphocytes. In contrast to HMB episodes that had higher IgE levels and EBV virus load predominantly in NK cells, those HLH episodes with virus load predominantly in CD3+ lymphocyte had decreased perforin expression and cytotoxicity that were recovered in the convalescence period. However, there was neither significant difference of total virus load in these episodes nor candidate genetic mutations responsible for hereditary HLH. In conclusion, decreased perforin expression in the HLH episodes with predominant-CD3+ EBV virus load is distinct from those HMB episodes with predominant-NK EBV virus load. Whether the presence of non-elevated memory CD4+ cells or activated lymphocytes (CD2+HLADR+) increases the mortality rate in the HLH episodes remains to be further warranted through larger-scale studies.

Citation: Lee W-I, Lin J-J, Hsieh M-Y, Lin S-J, Jaing T-H, et al. (2013) Immunologic Difference between Hypersensitivity to Mosquito Bite and Hemophagocytic Lymphohistiocytosis Associated with Epstein-Barr Virus Infection. PLoS ONE 8(10): e76711. doi:10.1371/journal.pone.0076711

Editor: Micah Luftig, Duke University Medical Center, United States of America

Received: June 8, 2013; Accepted: August 27, 2013; Published: October 18, 2013

Copyright: © 2013 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by a Chang-Gung Medical Research Progress Grant (CMRPG 450022, 490012, and 480051) and a National Science Council Grant (NSC99-2314-B-182-003-MY3 and 102-2314-B-182A-039-MY3). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wen2707@hotmail.com (W-IL); long@adm.cgmh.org.tw (J-LH)

These authors contributed equally to this work.

Introduction

The Epstein-Barr virus (EBV) infects B cells through surface CD21 in healthy individuals who are often asymptomatic or may present as infectious mononucleosis (IM) [1]. The outgrowth of EBV-infected B cells is controlled by T help cells secreting interferon (IFN)-γ and NK-mediated cytotoxicity, and later destroyed by EBV-specific cytotoxic T lymphocytes [2,3]. Patients with chronic active EBV (CAEBV) infection may have IM-like chronic symptoms such as fever and lymphadenopathy, and serologic evidence of persistent EBV infection [4–9]. Moreover, CAEBV can be exacerbated into fulminant (catastrophic) hemophagocytic lymphohistiocytosis (HLH) [10–14] and present with cytopenia, coagulopathy, central nervous system symptoms, and lipid changes, aside from IM-like features [15]. Known candidate mutations of SH2D1A/SAP, PRF1, UNC13D, STX11, STXBP2, XIAP, and ITK can inhibit the exocytotic process of polarization, docking, priming, and fusion in cytotoxic T/natural killer (NK) cells, subsequently lead to defective cytotoxicity and overwhelming HLH in some rare hereditary and sporadic cases [16–20].

Hypersensitivity to mosquito bite (HMB) is a unique feature characterized by bulla formation with intense erythema on mosquito-bitten sites, escar healing and systemic manifestations like fever, lymphadenopathy, and splenomegaly [21,22]. Around 70% of CAEBV patients present as the HMB episode (HMB-CAEBV) and have the potential of developing fulminant HLH [23].

To understand the possible mechanisms of HMB transformation into fulminant HLH, we evaluated and compared immunologic
Table 1. Laboratory hematology, treatment, and prognosis of patients with hemophagocytic lymphohistiocytosis (HLH)* and hypersensitivity to mosquito bite (HMB) episodes related to EBV infection.

Patient/ Sex	Onset year (AD)	Fever	Cytopenia	Hemophagocytosis	Hypertriglycemia and/or hypofibrinogenemia	Splenomegaly/Lymphadenopathy	Ferritin*	Decreased NK activity	AST/ALT*	Treatment	Deceased after treatment	
EBV-associated HLH (survival)												
ES1/M 6Y2M	1995	+	+ (Hb = 8.7; PL = 12K)	+	++ (TG = 332)/--	--	++ (1479)	+	326/118	IVIG/ST/VP16		
ES2/F 3Y6M	1998	+	+ (Hb = 8.4; PL = 24K)	+	ND/ND	++	+ (3298)	ND	762/170	IVIG/ST		
ES3/M 10Y7M	2001	+	+ (Hb = 7.8; PL = 35K)	+	ND/ND	++	+ (11788)	ND	16/10	ST		
ES4/M 1Y	2005	+	+ (Hb = 8.2; PL = 20K)	+	++ (TG = 293)/--	+/--	+ (13906)	+	603/358	IVIG/ST/CsA/VP16		
ES5/F 2Y10M	2006	+	+ (Hb = 8.3; Neu = 990; PL = 90K)	+	--/ND	++	(11788)	ND	16/10	ST		
ES6/F 6Y6M	2006	+	+ (Hb = 8.5; PL = 56K)	+	--/--	++	+ (2404)	+	342/214	IVIG/ST/CsA/VP16		
EBV-associated HLH (mortality)												
EM1/M 3Y2M	1992	+	+ (Hb = 7.0; PL = 26 K)	+	ND/ND	++	+ (7821)	ND	471/204	IVIG/ST	14 days	
EM2/M 6Y6M	1993	+	+ (Hb = 5.5; Neu = 384; PL = 93K)	+	--/+ (Fibri = 80)	++	+ (2134)	ND	289/1285	IVG	8 days	
EM3/M 1Y10M	2001	+	+ (Hb = 7.9; Neu = 540; PL = 14K)	+	++ (TG = 295)/ND	+/--	+ (14523)	+	358/253	IVG/ST/G-CSF	29 days	
EM4/F 1Y7M	2002	+	+ (Hb = 5.1; Neu = 36; PL = 70K)	+	++ (TG = 473)/++ (Fibri = 47)	++	+ (1543)	++	2109/485	IVG	13 days	
EM5/F 5Y2M	2005	+	+ (Hb = 8.4; PL = 49K)	+	++ (TG = 506)/ND	+/--	-- (334)	+	63/23	IVG/ST	58 days	
EM6/M 11Y	2005	+	+ (Hb = 8.3; Neu = 60; PL = 67K)	+	--/+ (Fibri = 89)	++	-- (345)	+	66/45	IVG/CsA	15 days	
Hypersensitivity to Mosquito bite (HMB)-CAEBV												
H1/M 12Y3M	2003	+	--	--	--/ND	++	(2785)	--	237/174	ST/NSAID		
H2/M 4M	2005	+	--	--	--/ND	++	--	--	149/82	ST/NSAID		
H3/M 12Y	2006	+	--	--	--/ND	++	--	--	73/65	ST/NSAID		
H4/M 18 Y	2006	+	--	--	--/ND	++	--	--	89/55	ST/NSAID		
H5/M 18Y	2006	+	--	--	--/ND	++	--	--	75/58	ST/NSAID		
H6/M 18Y	2006	+	--	--	--/ND	++	--	--	45/78	ST/NSAID		
H7/M 18Y	2006	+	--	--	--/ND	++	--	--	114/62	ST/NSAID		
H8/M 18Y	2006	+	--	--	--/ND	++	--	--	112/57	ST/NSAID		
changes of immunoglobulins, lymphocyte subsets, cytotoxicity, intracellular perforin and granzyme expressions, EBV virus load and known candidate genes in patients with the episodes of HMB-CAEBV and EBV-HLH.

Results

Patients' Characteristics

During the 20-year period of 1993–2012, fourteen HMB episodes in 4 CAEBV patients (one female) and twelve HLH episodes in 12 patients (five females) associated with EBV infection (EBV-HLH) were studied in Table 1. The HMB episode could be a characteristic feature of CAEBV along with fever, lymphadenopathy or/and hepatosplenomalgy. At mosquito-bitten sites (Fig. 1), clear or/and hemorrhagic bulla with intense erythematous swelling typically occurred. They progressed into necrosis or ulcers, and healed with residual scarring as escar.

In contrast to HMB-CAEBV episodes (the range of onset-age, 4 months–21 years; median, 12 years 3 months), acute EBV-HLH episodes (range, 1–11 years; median, 3 years 4 months) had cytopenia (Hb, 9.0 mg/dl and thrombocytopenia, 100,000/mm³ in all; neutropenia, 1,000/mm³ in 5 patients), coagulopathy (abnormal PT, aPTT, D-dimmer, or fibrogen in 7 patients), and atypical lymphocytes (over 10% in 3 patients). Both groups often had splenomegaly, lymphadenopathy, and varying degrees of elevated aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT) levels.

The main treatment regimens in patients with HLH episodes based on the HLH 2004 guidelines [15] included IVIG, steroids (prednisolone or dexamethasone), etoposide, and cyclosporine A. Six (50%) of 12 acute EBV-HLH patients who did not receive etoposide (VP16) and cyclosporine A treatment were mortalities. In four HMB-CAEBV patients who did not develop HLH episode to date, NSAID or steroids were given for febrile episodes.

Serology studies for EBV in 26 episodes from 16 patients showed that 11 HLH patients (ES1-ES6 except ES4 and EM1-EM6) had primary EBV infection with positive anti-VCA-IgM or/and positive anti-EBEA (\geq160) (Table 2). One episode of HLH (patient ES4) and 14 HMB episodes (4 patients H1–H4) had mainly positive anti-VCA IgG and/or negative VCA IgM, suggestive of EBV reactivation. The EBV viral load detected by copy numbers in all episodes was \geq10²⁻³ copies/ug, compatible with EBV activation [24]. In contrast to the HMB episodes with EBV copy number predominantly in NK cells, the HLH episodes had EBV virus load predominantly in lymphocytes (CD3⁺).

Nonetheless, there was no significant difference in virus load of total lymphocytes among the HLH (survivors and fatal victims) and HMB episodes.

Immunoglobulin and Lymphocyte Sub-population

In eight HLH episodes (8 patients) and 14 HMB episodes (4 patients), the basic immune function of immunoglobulins, lymphocyte sub-populations, memory cells, and activated lymphocytes revealed immune heterogeneity in each group. Based on the normal reference [25], relatively higher IgG, and/or IgA were present in two fatal HLH cases (patients EM5 and EM6), but not in HMB cases. The Trend of decreased percentages of total CD4⁺ but increased memory CD4⁺ and activated lymphocyte (CD2⁺HLA-DR⁺) was noted among survivors of the HLH and the HMB groups (Table 3).
Cytotoxicity to K562 Cell Lines and the Expression of Perforin and Granzyme

Lymphocyte/NK cell cytotoxicity to K562 cells was evaluated in 8 HLH episodes (8 patients) and 14 HMB episodes (4 patients) during the febrile stage (Table 4). In contrast to those with HMB episodes, the eight HLH patients, of course, met more than five out of eight diagnostic criteria including decreased cytotoxicity, which returned to a normal range during the convalescent stage among survivors.

Intracellular perforin rather than granzyme expression significantly diminished below the normal ranges in NK cells (TCR\(\alpha\beta\)-CD56+ or CD16+56+) in the HLH episodes, but not in the HMB episodes (Table 4). The NKT (TCR\(\alpha\beta\)+CD56+) cells had similar results (data not shown). In the convalescent period, there were relatively lower perforin expressions in the four survivors of HLH despite being within the normal range. The HMB group had no such differences in cytotoxicity and in the expressions of perforin and granzyme.

Analysis of Candidate Genes

All patients received genetic analysis for the PFR1, Mun13-4, STX11, STXBP2 and ITK genes. Eleven male patients had further SH2D1A/SAP and XIAP sequencing but no mutation was identified.

Discussion

Without reaching the HLH diagnostic criteria, patients with the HMB episodes could have better prognosis than those with HLH episodes. Based on an updated international meeting for EBV-associated lympho-proliferative diseases (LPD) and the recent Kimura et al. study of 108 cases [24,26], EBV-associated LPD are defined to be overlapping umbrella syndromes and encompass five subgroups including CAEBV of T/NK-cell type (or systemic EBV plus T-cell LPD of childhood), HLH, severe mosquito bite allergy (or hypersensitivity to mosquito bite, HMB), hydroa vacciniforme (HV), and HV-like lymphoma [26]. Using these concepts to the patients here, four HMB patients initially presented as “severe mosquito bite allergy” without splenomegaly nor lymphadenopathy in the enrolled time, but gradually developed as CAEBV NK cell type with splenomegaly or/and lymphadenopathy after several HMB episodes. As noted in previous reports [26–30], patients with HMB have the potential to progress to HLH, and even lymphoma. To recognize the herald feature at an earlier stage by comparing HMB and HLH episodes, the HLH episodes with CD3-predominant virus load had lower perforin expression and thus related to impaired cytotoxicity that partially contributed to the development of HLH. In contrast, these HMB episodes with NK-predominant EBV virus load and higher IgE level had normal perforin expressions and did not reach a threshold to impair cytotoxicity. In HMB-CAEBV patients, higher IL-13 level, a Th2-type cytokine, were detected and could induce the differentiation
of B cells and enhance a class switch to IgE [23]. Whether the majority of EBV virus shifted from NK cells in the HBM status to T-lymphocytes after several HBM episodes and cytokine alternation, reached the threshold to weaken cytotoxicity and therefore cause HLH episode remains to be determined by additional study.

The possibility of “shift” hypothesis was observed in a 35-year-old female patient who experienced at least eight HBM episodes since her first attack at the age of 21. Unfortunately, she succumbed to HLH acceleration in 1990 (beyond the study period of 1992–2012) [31]. Her EBV virus load evaluated by copy numbers from frozen PBMC revealed almost an equal amount in NK cells (10^3.4) and in T lymphocytes (10^3.1) during the HBM episodes, but eventually became more in T lymphocytes (10^4.2) than NK cells (10^3.6) in the HLH status after several HMB episodes [21,32]. Thus in Japan, CAEBV patients with the HBM episodes are encouraged to receive hematopoietic stem cell transplantation as early as possible if suitable donors are available [24,33], to prevent the process of HLH development and the oncogenic transformation of lymphoma [26–30].

Genetic defects of PFR1, Mun13-4, STX11, STXBP2, ITK (autosomal recessive), SH2D1A/XAP, and XIAP (X-linked) are responsible for hereditary HLH, with increased susceptibility to recurrent, and/or fatal EBV infection [15–20]. However, all are wild type in the study patients because of the conservative culture that discourage consanguineous marriage in our regions. Such findings are consistent with a recent genetic study from a cohort of 67 children of Chinese descent who had HLH and wild type candidate genes [34]. However, parallel to restored cytotoxicity after effective chemotherapy, perforin expression recovered but was maintained at the relatively lower border of the normal range. Single nucleotide polymorphism (SNP) of A91V and N252S in the PFR1 gene was found to decrease perforin expression and function that cause atypical HLH [35,36], but not identified of such SNP in our patients. This reflects that patients with borderline perforin expression may have decreased the perforin-granzyme B pathway to some extent, leading to insufficient apoptosis and subsequently developing HLH. EBV latent membrane protein 1 (LMP1) has been demonstrated to diminish SH2D1A expression and stronger

| Table 2. EBV serology and evidence in EBV-HLH and HMB-CAEBV episodes. |
|--------------------------|--------------------------|----------------------|
| Patient (Year) | Serum antibodies of EBV profile | EBV Virus load log copies/ug genomic DNA |
| | EBEA | EBNA | VCA IgG | VCA IgM | CD3+ | CD16+CD56+ |
| EBV-HLH-Survival | | | | | | |
| ES1 (1995) | 320 | + | 320 | – | 5.6 | NA |
| ES2 (1998) | NA | NA | 320 | + | 3.9 | 2.8 |
| ES3 (2001) | NA | NA | 320 | + | 4.7 | 3.2 |
| ES4 (2005) | 80 | + | 640 | – | 4.2 | 2.3 |
| ES5 (2006) | 80 | + | 320 | + | 3.7 | 2.7 |
| ES6 (2006) | 80 | – | 320 | + | 4.9 | 2.4 |
| EBV-HLH-Mortality | | | | | | |
| EM1 (1992) | 320 | + | 1280 | + | NA | NA |
| EM2 (1993) | 160 | + | 160 | – | 4.6 | NA |
| EM3 (2001) | NA | + | 160 | + | 5.1 | NA |
| EM4 (2002) | 20 | NA | NA | + | 3.7 | 3.0 |
| EM5 (2005) | 20 | – | 320 | + | 4.5 | 3.2 |
| EM6 (2005) | 160 | + | 80 | – | 3.4 | 2.1 |
| HMB-CAEBV | | | | | | |
| H1 (2003) | 80 | 20 | 640 | – | 3.1 | 5.2 |
| (2005) | 80 | + | 640 | – | 4.1 | 5.7 |
| (2006) | 160 | + | 320 | – | NA | NA |
| (2008) | 20 | + | 640 | – | 2.7 | 4.9 |
| (2011) | 20 | – | 1280 | – | 3.0 | 4.7 |
| H2 (2005) | NA | + | – | + | 2.4 | 5.1 |
| (2007) | 20 | + | 320 | – | NA | NA |
| (2012) | 20 | + | 640 | – | 3.9 | 4.7 |
| H3 (2005) | 160 | + | – | + | 2.9 | 3.7 |
| (2006) | 80 | + | 640 | – | NA | NA |
| (2011) | 80 | + | 1280 | – | 2.7 | 5.4 |
| H4 (2006) | 20 | + | 640 | – | 2.9 | 3.5 |
| (2010) | 20 | + | 160 | – | NA | NA |
| (2012) | 20 | + | 640 | – | 3.6 | 4.8 |

Abbreviations: EBV, Epstein-Barr virus; ENEA, Epstein-Barr virus early antigen; EBNA, Epstein-Barr virus nuclear antigen; VCA, viral capsid antigen; IgG, immunoglobulin G; IgM, immunoglobulin M; NA, not available.
doi:10.1371/journal.pone.0076711.t002
Table 3. Serum immunoglobulin values and lymphocyte subsets in HLH-EBV and HMB-CAEBV episodes related to EBV infection.

Patient	Immunoglobulin level (mg/dl)*	Absolute lymphocyte count	Lymphocyte subsets percentages (%)b	Memory cell*	Activated lymphocyte					
	IgM	IgA	IgG	IgE	CD4	CD8	CD19	CD16/56	CD4+T−	B−
EBV-associated survival										
ES1 1995	164	173	1190	79	1432					
ES4 2005	38	17	674	107	2135	9.5	14.8	71.5	3.8	51.6
ES5 2006	42	59	867	42	4290	19.0	11.2	9.1	36.9	42.6
ES6 2006	143	69	1495	147	3192	38.8	34.1	11.2	8.4	45.7
EBV-associated dead										
EM3 2001	42	59	867	42	4290	38.8	34.1	11.2	8.4	45.7
EM4 2002	32	46	568	56	446	41.5	32.7	8.7	3.4	13.0
EM5 2005	53	57	756	86	877	40.8	20.4	10.4	4.2	8.3
EM6 2007	45	576	1495	147	3192	38.8	34.1	11.2	8.4	45.7
Hypersensitivity to Mosquito bite (HMB)										
H1 2003	110	236	1650	1804	1874	14.9	10.9	11.5	59.0	48.2
H2 2005	89	215	1756	1124	1945	19.4	11.4	14.8	47.2	54.2
H3 2008	127	246	1942	2497	1258	27.3	11.2	19.7	38.7	39.7
H4 2011	169	231	1237	1785	2013	33.7	12.1	17.5	45.2	47.1
Normal range	25	125	256	1756	1442	25.5	10.9	11.5	59.0	48.2

Abbreviations: NA, not available; ↓ or ↑, below or above the normal range, respectively.

*Normal ranges were from Stiehm RE. Immunologic Disorders in Infants and Children. 6th ed. Philadelphia, PA: Philadelphia Press, 2003.

**Memory CD4+ T cell lymphocyte percentage = CD4+CD45R0+/CD4+CD45R0− and CD4+CD45R0−; Memory CD19+ B cell lymphocyte percentage = CD19+CD27+ CD19+CD27− and CD19+CD27−; Activated lymphocyte percentage = CD2+HLADR+/all lymphocytes.

doi:10.1371/journal.pone.0076711.t003

inflammation [37]. Whether the similar inhibitory effect of EBV infection-associated factors (LMP1 or other antigens derived from EBV) on the perforin expression is worth being investigated further.

Notably in our patients, fatal HLH patients did not have elevated memory CD4+ cells and activated CD2+HLADR+ lymphocytes. Correlative to the differentiation and development of memory CD4+ cells and activated lymphocytes, T-cell receptor (TCR) in naive T cells recognized MHC class II (HLA-DR) on EBV-antigen-presenting cells (APC) and triggered signaling one pathway and subsequently programmed as T effector cells after additional stimulation from signal two or more accessory pathways [38,39]. Some subgroup of T effector cells that expressed activation molecules such as HLADR+, CD40L, ICOS, or CD69 and belonged to one pattern of the activated lymphocytes were able to continuously mature into memory T cells for robust augmentation to fight EBV infection and overcome cytokine-related catastrophic response in persistent and un-eradicated pathogen reactivation [38,40]. Thus, elevated activated lymphocytes and memory CD4+ cells trended to decrease but memory CD4+ cells trended to increase in survivors (in Table 3). However, lack of increased percentages of activated lymphocytes and memory CD4+ cells during the episode status in those fatal HLH patients implied that impending exhaustion of the whole T cell pool, challenged by EBV repeated activation, could be a warning sign of hematopoietic bone marrow failure, contributing to worse prognosis.
The attenuated perforin expression and predominant-CD3 lymphocyte EBV virus load are distinct in HLH episodes from the HMB episodes. And, the absence of elevated memory CD4+ cell or activated CD2+HALDR+ lymphocytes increase mortality in HLH episodes. Such immunologic alternation rather than genetic defects highlight the possible evolution mechanism of EBV-associated HMB episodes progressing into HLH episodes in the rare cases and warrants further verification through larger-scale studies.

Materials and Methods

Patients

Patients with an HMB episode had high fever, intense local erythematos responses to mosquito bites, lymphadenopathy, and splenomegaly [21,22]. Those with fulminant HLH episode met the updated diagnostic criteria of the HLH Study Group of the Histiocyte Society [15] and all had hemophagocytosis in bone marrow aspirates. For evidence of EBV infection, EBV RT-PCR detection and viral load detected by copy numbers were determined as previously reported [11]. Serologic antibodies, including anti-viral capsid antigen IgG (EBV-VCA IgG), anti-early antigen IgG (EBEAA IgG), anti-viral capsid antigen IgM (EBV-VCA IgM), and anti-nuclear antigen (EBNA) were evaluated using immuno-fluorescent ELISA.

The clinical features, treatment, prognosis, and immunologic function, including immunoglobulin levels and lymphocyte subsets of T-, B-, NK-, activated lymphocytes, and memory cells, were evaluated and compared in patients with HMB and HLH episodes after Chang Gung Human Investigation Committee approved this study and documented the humanity process. The patients’ parents or guardians provided written and verbal informed consent.

Table 4. Cytotoxicity to K 562 cells and perforin and granzyme expressions in NK cells in the episodes and recovery status of EBV-HLH and HMB-CAEBV.

Patient	Cytotoxicity to K562 cell lines	Perforin expression in NK cells	Granzyme expression in NK cells					
	Effector to target cell ratio	(gated by CD56+TCRd1− or CD16+CD56+)	(gated by CD56+TCRd1− or CD16+CD56+)					
	Ratio	Recovery	Acute	Percentage (mean fluorescent intensity)	Ratio	Recovery	Acute	Percentage (mean fluorescent intensity)
---------	-------	----------	-------	--------------------------	-------	----------	-------	--------------------------
EBV-associated survival								
ES1	2003	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%
ES2	2004	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%
ES3	2005	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%
ES4	2006	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%	98.9%

Abbreviations: NA, not available.

Bold and italicized numbers meant below the normal range.

*Healthy normal ranges were obtained from the mean ±2 standard deviations.

doi:10.1371/journal.pone.0076711.t004

The attenuated perforin expression and predominant-CD3 lymphocyte EBV virus load are distinct in HLH episodes from the HMB episodes. And, the absence of elevated memory CD4+ cell or activated CD2+HALDR+ lymphocytes increase mortality in HLH episodes. Such immunologic alternation rather than genetic defects highlight the possible evolution mechanism of EBV-associated HMB episodes progressing into HLH episodes in the rare cases and warrants further verification through larger-scale studies.

Materials and Methods

Patients

Patients with an HMB episode had high fever, intense local erythematous responses to mosquito bites, lymphadenopathy, and splenomegaly [21,22]. Those with fulminant HLH episode met the updated diagnostic criteria of the HLH Study Group of the Histiocyte Society [15] and all had hemophagocytosis in bone marrow aspirates. For evidence of EBV infection, EBV RT-PCR detection and viral load detected by copy numbers were determined as previously reported [11]. Serologic antibodies, including anti-viral capsid antigen IgG (EBV-VCA IgG), anti-early antigen IgG (EBEAA IgG), anti-viral capsid antigen IgM (EBV-VCA IgM), and anti-nuclear antigen (EBNA) were evaluated using immuno-fluorescent ELISA.

The clinical features, treatment, prognosis, and immunologic function, including immunoglobulin levels and lymphocyte subsets of T-, B-, NK-, activated lymphocytes, and memory cells, were evaluated and compared in patients with HMB and HLH episodes after Chang Gung Human Investigation Committee approved this study and documented the humanity process. The patients’ parents or guardians provided written and verbal informed consent.
Cytotoxicity to K562 Leukemia Cell Lines by Single-cell Level

Heparinized venous blood samples (10–15 ml) from enrolled patients and healthy controls were delivered to the laboratory within 72 hours. Peripheral blood mononuclear cells (PBMC) as effector cells were isolated from heparinized venous blood by Ficoll-Hypaque (Pharmacia Biotech, Piscataway, NJ). Effector (E) and K562 target (T) leukemia cells were added in 10 mm×10 mm wells to yield E/T ratios of 25:1 and 12.5:1 as indicated if there were enough cells. Control wells, including isolated target or effector cells, were assayed to determine spontaneous cell death. The cells were mixed by gentle tapping, and then centrifuged at 200 xg for 1 min and incubated at 37℃ in 5% CO2 over night (around 16 hours). Mouse anti-human CD45 monoclonal antibody (μl) directly conjugated with FITC (Pharmingen, San Jose, CA) were added to each tube, mixed gently, and incubated for 20 min on ice. Twenty μl of PI (Sigma, St. Louis, MA) at 1 ug/ml were added to each tube before acquisition. Cytotoxicity to K562 cell lines was measured as the percentage of PI-stained K562 cells by flow cytometry, as previously described [42,43].

Perforin and Granzyme Expression by Flow Cytometry

Fresh PBMC (5×10⁶) were incubated for 30 min at 4℃ in 50 μl of staining buffer (PharMingen) supplemented with 10% pooled human serum and 2 μl per CP-conjugated anti-TCR μ, fluorescein isothiocyanate (FITC)-conjugated anti-CD16, and/or anti-CD56 monoclonal antibody (all from Pharmingen). The cells were then washed, pelleted, and permeabilized in Cytofix/Cytoperm reagents/materials/analysis tools: J-JL T-HJ S-HC I-JH C-PY C-JC Y-CH S-PL. The fixed or permeabilized cells were then incubated in 50 μl staining buffer with 2 μl phycoerythrin (PE)-conjugated anti-perforin and anti-granzyme mAb (PharMingen) for 30 min at 4℃. Data from three-color flow cytometry were calculated and analyzed using the cellquest software (Becton Dickinson).

Sequence Analysis of SH2D1A/SAP, PFR1, Mun13-4, STX11, STXB2, XIAP and ITK Genes

Total RNA was isolated from PBMC with TRIzol (GIBCO-BRL, Gaithersburg, MA) as previously described [44]. Briefly, 2 ug of RNA in a total volume of 20 μl was reverse-transcribed into cDNA using oligo-dT primer and superscript RNaH-reverse transcription (GIBCO-BRL). Two oligonucleotide primers designed from the Gene Bank were selected for each gene to cover the entire coding region of these genes, as previously described [16–20,43,44]. If a specific mutation was identified, the corresponding genomic exons/intron regions were amplified and re-confirmed.

Acknowledgments

The authors wish to thank the patients and their families for their kind cooperation, and all of the doctors for their referrals.

Author Contributions

Conceived and designed the experiments: W-IL J-LH. Performed the experiments: W-IL J-JL. Analyzed the data: J-JL M-YH S-JL. Contributed reagents/materials/analysis tools: J-JL T-HJ S-HC C-PY C-JC Y-CH S-PL. Wrote the paper: W-IL.

References

1. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Birko PA, et al. (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81: 4510–4514.
2. Rickinson AB, Moss DJ (1997) Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15: 405–431.
3. Wilson AD, Redenbach I, Williams NA, Morgan AJ (1986) CD14+ T cells inhibit growth of Epstein-Barr virus-transformed B cells through CD95/CD95 ligand-mediated apoptosis. Int Immunol 10: 1149–1157.
4. Jones JF (1989) A perspective of Epstein-Barr virus diseases. Adv Pediatr 36: 307–346.
5. Rickinson AB, Kieff E, Fields BN, Knipe DM, Fields’ virology. 3d ed. Vol 2. Philadelphia: Lippincott-Raven, 1996: 2397–2416.
6. Rickinson AB (1986) Chronic, symptomatic Epstein-Barr virus infections. Immunol Today 7: 13–14.
7. Ishihara S, Okada S, Wakiguchi H, Kurashige T, Morishima T, et al. (1995) Chronic active Epstein-Barr virus infection in children in Japan. Acta Paeriatrica 84: 1271–1273.
8. Straus SE (1998) The chronic mononucleosis syndrome. J Infect Dis 177: 405–412.
9. Okano M, Matsumoto S, Osato T, Sakiyama Y, Thiele GM, et al. (1991) Severe chronic active Epstein-Barr virus infection syndrome. Clin Microbiol Rev 4: 129–135.
10. Kimura H, Kanegane H, Tsuge I, Okamura T, et al. (2001) Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood 98: 290–296.
11. Jones J, Shirin S, Abramskows C, Tubbs RR, Sciotti CG, et al. (1988) T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318: 733–741.
12. Kikuta H, Taguchi Y,Tomizawa K, Kojima K, Kamamura N, et al. (1988) Epstein-Barr virus genome positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333: 453–457.
13. Kawa-Ha K, Ishihara S, Nominoya T, Yumura-Yagi K, Har J, et al. (1989) CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA. J Clin Invest 84: 31–35.
14. Quintanilla-Martinez L, Kumar S, Reid F, Reynolds E, Terry-Feldstein J, et al. (2000) Fuhrmann EBV+ T cells lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood 96: 443–451.
15. Junna GE, Schneider EM (2004) Modern management of children with haemophagocytic lymphohistiocytosis. Br J Haematol 124: 14–21.
16. Cöte M, Mirnager MM, Burgess A, Mahloun I, Picard C, et al. (2009) Munc13-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest 119: 3767–3773.
17. Nichols KE (2007) FHL4: NK cells pack less punch. Blood 110: 1705–1706.
18. Rigaud S, Foudranche MC, Lambert N, Pasquier B, Mateo V, et al. (2006) XIAP deficiency in humans causes a X-linked lymphoproliferative syndrome. Nature 444: 118–119.
19. Pacholpiny Schaud J, Canioni D, Moschos D, Toutou F, Mahlaou N, et al. (2011) Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 117: 1522–1529.
20. Hock K, Feyen O, Niehues T, Rinchendorf F, Huhn N, et al. (2009) Girl heterozygous for an IL-2Rα-negative T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferative. J Clin Invest 119: 1350–1358.
21. Asada H (2007) Hypersensitivity to mosquito bites: a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. J Dermatol Sci 45: 153–160.
22. Pacheco SE, Gottschalk SM, Greise MV, Bishop MK, Okamura T, et al. (2005) Chronic active Epstein-Barr virus infection of natural killer cells presenting as severe skin reaction to mosquito bites. J Allergy Clin Immunol 116: 470–472.
23. Kimura H, Hoshino Y, Hara S, Sugaya N, Kawada J, et al. (2005) Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J Infect Dis 191: 531–539.
24. Kimura H, Ito Y, Kawa S, Gotou K, Takahashi Y, et al. (2012) EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood 119: 673–686.
25. Shearer WT, Rosenblatt HM, Gelman RS, Oyomotio P, Plasger S, et al. (2003) Pediatric AIDS Clinical Trials Group. Lymphocyte subsets in healthy children from birth through 15 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol 112: 973–980.
26. Cohen JJ, Kimura H, Nakamura S, Ko YH, Jaffe ES (2008) Epstein-Barr virus-associated lymphoproliferative disease in non-immunocompromised hosts: a status report and summary of an international meeting, 8–9 September 2008. Ann Oncol 20: 1472–1482.
27. Imadome K, Shinizu N, Arai A, Miura O, Watanabe K, et al. (2005) Coexpression of CD40 and CD40 ligand in Epstein-Barr virus-infected T and NK cells and their role in cell survival. J Infect Dis 192: 1340–1348.
28. Park S, Bang H, Kim EK, Park SB, Sung YK, et al. (2010) Hodgkin’s lymphoma arising in a patient with hypersensitivity to mosquito bites: a case report. J Clin Oncol 28: e148–150.
29. Zhang Z, Shi Q, An X, Ma H, Zhou H, et al. (2009) NK/T-cell lymphoma in a child with hypersensitivity to mosquito bites. J Pediatr Hematol Oncol 31: 855–857.

30. Tokura Y, Ishihara S, Tagawa S, Seo N, Ohshima K, et al. (2001) Hypersensitivity to mosquito bites as the primary clinical manifestation of a juvenile type of Epstein-Barr virus-associated natural killer cell leukemia/lymphoma. J Am Acad Dermatol 45: 569–578.

31. Tsai WC, Luo SF, Liaw SJ, Kuo TT (1989) Mosquito bite allergies terminating as hemophagocytic histiocytosis: report of a case. Taiwan Yi Xue Hui Za Zhi 88: 639–642.

32. Asada H, Miyagawa S, Sunikawa Y, Yamaguchi Y, Itami S, et al. (2003) CD4+ T-lymphocyte-induced Epstein-Barr virus reactivation in a patient with severe hypersensitivity to mosquito bites and Epstein-Barr virus-infected NK cell lymphocytosis. Arch Dermatol 139: 1601–1607.

33. Gotoh K, Ito Y, Shibata-Watanabe Y, Kawada J, Takahashi Y, et al. (2008) Clinical and virological characteristics of 15 patients with chronic active Epstein-Barr virus infection treated with hematopoietic stem cell transplantation. Clin Infect Dis 46: 1525–1534.

34. Zhizhuo H, Junmei X, Yuelin S, Qiang Q, Chunyan L, et al. (2012) Screening the PRF1, UNC13D, STX11, SH2D1A, XIAP, and ITK gene mutations in Chinese children with Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 58: 410–414.

35. Voskoboinik I, Sutton VR, Ciccone A, House GM, Chia J, et al. (2007) Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood 110: 1104–1109.

36. Voskoboinik I, Thia MC, Trapani JA (2005) A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood 105: 4700–4706.

37. Chuang HC, Lay JD, Hsieh WC, Wang HC, Chang Y, et al. (2003) Epstein-Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome. Blood 106: 3690–3696.

38. Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2: 251–262.

39. Abbas AK, Lichtman AH (2003) Antigen receptors and accessory molecules of T lymphocytes. In Cellular and Molecular immunology (5th eds). Philadelphia, WB Saunders, pp. 105–123.

40. Abbas AK, Lichtman AH (2003) Activation of T lymphocytes. In Cellular and Molecular immunology (5th eds). Philadelphia, WB Saunders, 163–188.

41. Chang YS, Tyau YS, Lin ST, Tsai MS, Pao CC (1998) Detection of Epstein-Barr virus DNA sequences in nasopharyngeal carcinoma cells by enzymatic DNA amplification. J Clin Microbiol 28: 2398–2402.

42. Lin SJ, Cheng PJ, Huang YJ, Kuo ML (2004) Evaluation of cytotoxic function and apoptosis in interleukin (IL)-12/IL-15-treated umbilical cord or adult peripheral blood natural killer cells by propidium-iodide based flow cytometry. Pediatr Allergy Immunol 15: 79–85.

43. Lee WI, Kuo ML, Huang JL, Lin SJ, Wu CJ (2005) Distribution and clinical aspects of primary immunodeficiencies in a Taiwan pediatric tertiary hospital during a 20-year period. J Clin Immunol 25: 162–173.

44. Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, et al. (2005) Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood 105: 1801–1809.