Introduction

Viruses are obligate intracellular parasites comprised of a nucleic acid genome (RNA or DNA) that is encased within a proteinaceous capsid particle and/or lipid envelope. Genome replication and virion assembly are central processes in the life cycles of all viruses. In many cases, a virus will first make multiple copies of its genome and then subsequently package those copies into newly formed viral capsids or envelopes. However, rotaviruses and other members of the Reoviridae family differ in that they replicate their genomes in concert with virion assembly. Specifically, the segmented, double-stranded RNA (dsRNA) rotavirus genome is copied within a subviral assembly intermediate that goes on to become a mature, infectious virion. A key feature of this replicase–assembly process is that the rotavirus polymerase (VP1) is only active when tethered to the core shell protein (VP2) beneath each of the icosahedral fivefold axes [3]. The rotavirus genome is made up of 11 dsRNA segments, coding for 6 structural proteins (VP1–VP4, VP6, and VP7) and 6 non-structural proteins (NSP1–NSP6) [4]. The TLP is the infectious form of the virus that attaches to and enters into host cells. However, during the cell entry process, the outer VP4–VP7 layer of the TLP is shed, depositing a double-layered particle (DLP) into the cell cytoplasm. VP1 polymerases within the DLP synthesize single-stranded, positive-sense RNAs (+RNAs), which acquire a 5' cap structure (m⁷GpppG) by the activities of VP3 [5]. These +RNAs serve as mRNA templates for protein synthesis, and they are also selectively assorted and packaged into an early assembly intermediate where they serve as templates for genome replication by VP1 (see details below) [6]. The mechanism by which rotavirus acquires one of each of its 11 genome segments is poorly understood, yet studies of other Reoviridae members suggest that...
this assortment process is mediated by RNA–RNA interactions among the single-stranded transcripts [6–7].

What are the structures and functions of early rotavirus assembly intermediates?

Atomic resolution structures have been determined for rotavirus TLPs and DLPs, revealing exquisite details about capsid protein organization [1–2, 8]. By contrast, much less is known about the structures of early, replicase-competent assembly intermediates for rotavirus. One reason for our lack of knowledge about these particles is the fact that they are encased within viroplasms, which are discrete, cytoplasmic inclusions ~1–3 μm in diameter (Fig 1B) [9]. At <100 nm in diameter, assembly intermediates are too small to be seen using conventional
light microscopy, and unfortunately, viroplasms are so electron-dense that internal features can’t be resolved by higher-resolution electron microscopic (EM) imaging (Fig 1C). Subviral particles capable of mediating in vitro dsRNA synthesis can be isolated from rotavirus-infected cells using biochemical approaches [10–13]. These putative early assembly intermediates contain VP1, VP2, VP3, and VP6, as well as NSP2, a multifunctional viral nonstructural protein critical for viroplasm formation and genome replication [14]. When viewed using negative-stain EM, the isolated particles are heterogeneous in their sizes and features (Fig 1D) [13]. Specifically, the smaller particles (~30–40 nm in diameter) exhibit smooth borders, whereas the larger particles (~50–70 nm in diameter) show a rough, honeycomb pattern on their surface, reminiscent of 80-nm DLPs. Unlike DLPs, however, the isolated assembly intermediates are very fragile and highly permeable to metal stains and RNases, suggesting that they do not have fully formed capsid layers. One hypothetical model of the rotavirus replicase–assembly pathway is that the smaller, smooth particles turn into the larger, rough particles and ultimately into DLPs (Fig 1D). For instance, the ~30-nm smooth particle could represent the earliest rotavirus assembly intermediate, within which genome replication is initiated by VP2-bound VP1. Biochemical data suggest that each VP1 polymerase functions independently within an assembly intermediate but that 11 polymerases act in synchrony with each other so that the genome segments are synthesized at the same time [11]. It is not known how the activity of one polymerase is coordinated with those of the other polymerases. Nevertheless, as the polymerases convert the +RNAs into dsRNAs, the particle presumably expands and begins to acquire a VP6 layer, forming a larger rough particle. Prior to final DLP assembly, the nonstructural protein NSP2 must be removed. Nascent DLPs egress from the viroplasm and bud into the adjacent endoplasmic reticulum, where they are converted into TLPs by addition of VP4 and VP7 [15–16]. Further studies are required to elucidate higher resolution structures, compositions, and activities of isolated rotavirus assembly intermediates and to test this hypothetical model of early morphogenesis.

How does the VP2 core shell engage the VP1 polymerase during early particle assembly?

To initiate genome replication (i.e., dsRNA synthesis), the VP1 polymerase must be bound by the core shell protein VP2. In DLPs or TLPs, VP2 is organized as 12 interconnected, decameric units (Fig 2A), but its structural organization in assembly intermediates is not known [1–2,8]. The VP2 monomers in each decamer unit adopt one of two slightly different conformations (VP2-A and VP2-B). One conformation, VP2-A, converges tightly around the icosahedral axis, whereas the other conformation, VP2-B, intercalates between adjacent VP2-A monomers. The extreme N-terminal region of VP2 (residues ~1–100) protrudes inward and makes contact with VP1 (Fig 2B). Estrozi et al. predicted that VP1 is positioned against the inner surface of the VP2 core shell off-center from the fivefold axis and that it is stabilized against the core shell by VP2 N termini [17]. The regions of VP2 that contact VP1 in the DLP structure are the same as those shown to be important for VP2-mediated VP1 enzymatic activation in vitro [18]. This observation suggests that the VP1 and VP2 binding interaction during the early replicase–assembly process may be similar to the VP1 and VP2 binding interaction during transcription.

VP1 is a globular, cage-like enzyme comprised of a central polymerase domain (with canonical finger, palm, and thumb subdomains) that is flanked by extended N- and C-terminal domains [19]. Together, these three domains create four distinct tunnels within VP1 that support nucleoside triphosphate (NTP) entry, +RNA entry, +RNA exit, and dsRNA exit (Fig 2C). Within the DLP, VP1 is proposed to be oriented with its +RNA exit tunnel facing towards the
VP2 core shell; such an orientation would facilitate the egress of +RNAs from the DLP capsid layers during transcription (Fig 2C) [5]. This orientation of VP1 is also similar to that proposed for the polymerases of other Reoviridae family members [20–21]. However, the importance of VP2 binding to the VP1 +RNA interface for VP1 replicase function has yet to be biochemically tested. It also remains unclear how VP2 engagement of VP1 leads to enzymatic activation of the polymerase. The structure of VP1 in complex with template +RNA—but in the absence of VP2—reveals an auto-inhibited, inactive polymerase with at least two malpositioned elements: the so-called “priming loop” of VP1 (which stabilizes the initiating NTP during genome replication) is bent too far forward, and the +RNA template is bound out-of-register with the active site (Fig 2C) [19]. Thus, VP2 engagement of VP1 may trigger a series of conformational changes in the polymerase interior, including repositioning the priming loop and +RNA template to allow for the initiation of dsRNA synthesis. Further studies seeking to test this hypothesis will benefit from a robust in vitro assay that recapitulates VP2-dependent VP1 activation [22–23].

Perspectives

During their intracellular life cycles, viruses make numerous copies of their nucleic acid genomes and package them into nascent particles. Viral genome replication and particle assembly are often highly coordinated within the infected cell to maximize efficiency. Rotaviruses and other Reoviridae family members may very well exhibit the utmost level of coordination, as they replicate their genomes concurrent with assembly of new virions. The mechanism of this concerted replicase–assembly process is not completely understood. Isolated rotavirus subviral particles that can perform dsRNA synthesis in vitro are just beginning to be characterized in terms of their structure and composition, and there is much to be learned about how the activity of the rotavirus VP1 polymerase is regulated via interaction(s) with the core shell protein VP2 in the context of the assembling particle. Although other viruses do not perform this same multitasking feature of replicating their genomes while assembling particles, it is apparent that they also must regulate the activities of their polymerases. The vast majority of viral polymerases do not function as sole polypeptides during infection [24]. Instead, they are components of multisubunit complexes, and interactions between the protein constituents dictate the polymerase activity. Thus, studies of rotavirus polymerase regulation during
particle assembly may broadly inform an understanding of how other viruses ensure that genome replication occurs at the right place and time in the infected cell.

References

1. Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC (2011) Atomic model of an infectious rotavirus particle. EMBO J 30:408–416. https://doi.org/10.1038/emboj.2010.322 PMID: 21157433
2. Li Z, Baker ML, Jiang W, Estes MK, Prasad BV (2009) Rotavirus architecture at subnanometer resolution. J Virol 83:1754–1766. https://doi.org/10.1128/JVI.01855-08 PMID: 19036817
3. Prasad BV, Rothnagel R, Zeng CQ, Jakana J, Lawton JA, Chiu W, Estes MK (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473. https://doi.org/10.1038/382471a0 PMID: 8684490
4. Estes MK, Kapikian AZ (2007) Rotaviruses and Their Replication, In: Knipe DM, Howley PM (Eds). Fields Virology. 5th Edition. Lippincott Williams and Wilkins; Philadelphia, p. 1917–1974.
5. Lawton JA, Estes MK, Prasad BV (2000) Mechanism of genome transcription in segmented dsRNA viruses. Adv Virus Res 55:185–229. PMID: 11050943
6. McDonald SM, Nelson M, Turner PE, Patton JT (2016) Reassortment in segmented RNA viruses: mechanisms and outcomes. Nat Rev Microbiol 7:448–460.
7. Fajardo T Jr, Sung PY, Roy P (2015) Disruption of specific RNA-RNA interactions in a double-stranded RNA virus inhibits genome packaging and virus infectivity. PLoS Pathog 11:e1005321. https://doi.org/10.1371/journal.ppat.1005321 PMID: 26647970
8. McClain B, Settembre E, Temple BR, Bellamy AR, Harrison SC (2010) X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol 397:587–599. https://doi.org/10.1016/j.jmb.2010.01.055 PMID: 20122940
9. Eichwald C, Rodriguez JF, Burrone OR (2004) Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. J Gen Virol 85:625–634. https://doi.org/10.1099/vir.0.19611-0 PMID: 14993647
10. Patton JT, Gallegos CO (1988) Structure and protein composition of the rotavirus replicase particle. Virology 166:358–365. PMID: 2845649
11. Gallegos CO, Patton JT (1989) Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172:616–627. PMID: 2552662
12. Patton JT, Gallegos CO (1990) Rotavirus RNA replication: single-stranded RNA extends from the replicase particle. J Gen Virol 71 (Pt 5):1087–1094.
13. Boudreaux CE, Kelly DF, McDonald SM (2015) Electron microscopic analysis of rotavirus assembly-replication intermediates. Virology 477:32–41. https://doi.org/10.1016/j.virol.2015.01.003 PMID: 25855339
14. Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BV (2012) Rotavirus non-structural proteins: structure and function. Curr Opin Virol 2:380–8. https://doi.org/10.1016/j.co.viro.2012.06.003 PMID: 22789743
15. Trask SD, McDonald SM, Patton JT (2012) Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 10:165–177. https://doi.org/10.1038/nrmicro2673 PMID: 22266782
16. López T1, Camacho M, Zayas M, Nájera R, Sánchez R, Arias CF, López S (2005) Silencing the morphogenesis of rotavirus. J Virol 79:184–92. https://doi.org/10.1128/JVI.79.1.184-192.2005 PMID: 15596814
17. Estrozi LF, Settembre EC, Goret G, McClain B, Zhang X, Chen JZ, Grigorieff N, Harrison SC (2013) Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J Mol Biol 425:124–132. https://doi.org/10.1016/j.jmb.2012.10.011 PMID: 23089332
18. McDonald SM, Patton JT (2011) Rotavirus VP2 core shell regions critical for viral polymerase activation. J Virol 85:3095–3105. https://doi.org/10.1128/JVI.02360-10 PMID: 21246043
19. Lu X, McDonald SM, Tortorici MA, Tao YJ, Vasquez-Del Carpio R, Nibert ML, Patton JT, Harrison SC (2008) Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Structure 16:1678–1688. https://doi.org/10.1016/j.str.2008.09.006 PMID: 19006820
20. Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS (2003) Revovirus polymerase lambda3 localized by cryo-electron microscopy of virions at a resolutionn 7.6 A. Nature Struct Biol 10:1011–1018. https://doi.org/10.1038/nsb1009 PMID: 14608373
21. Zhang X, Ding K, Chang W, Sun J, Zhou ZH (2015) In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature 527:531–534. https://doi.org/10.1038/nature15767 PMID: 26503045
22. Patton JT (1996) Rotavirus VP1 alone specifically binds to the 3’ end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis. J Virol 70:7940–7947. PMID: 8892917

23. Tortorici MA, Broering TJ, Nibert ML, Patton JT (2003) Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus. J Biol Chem 278:32673–32682. https://doi.org/10.1074/jbc.M305358200 PMID: 12788926

24. McDonald SM (2013) RNA synthetic mechanisms employed by diverse families of RNA viruses. Wiley Interdiscip Rev RNA 4:351–367. https://doi.org/10.1002/wrna.1164 PMID: 23606593