Effect of Helicobacter pylori infection on gastric epithelial cell proliferation

Hong Gao, Ji Yao Wang, Xi Zhong Shen and Jian Jun Liu

Subject headings Helicobacter pylori; cell proliferation; vacAs1a strain; gastric epithelial cell

INTRODUCTION
Helicobacter pylori (H. pylori) infection is one of the main pathogens of chronic gastritis and duodenal ulcer (DU), and it may be considered as a risk factor in the incidence of gastric cancer[1]. H. pylori infection may lead to the anomaly of gastric epithelial cell proliferation, which is closely related to the development of gastric cancer. Vacuolating cytotoxin (VacA) is an important virulence factor and vacA subtype determines the toxic activity of H. pylori[2]. According to its signal sequence, it can be grouped into type s1a, s1b, s1c and s2[3,4]. Strains harboring vacAs1a are more closely related with digestive diseases[5] and may be the strains with high toxicity. The effect of H. pylori infection on gastric epithelial cell proliferation depends on the vacA subtype[6]. The report of the effect of strains with vacAs1a on gastric epithelial cell proliferation has not been found in China. We particularly study the effect of this strain in order to reveal whether the patients suffering from H. pylori infection have accelerated proliferation of gastric epithelium compared with non-infected patients, and whether the strains harboring vacAs1a have more severe effect on it.

MATERIALS AND METHODS
Patients
Patients suffering from dyspepsia underwent diagnostic endoscopy and biopsy. Those taking H2 antagonists, proton pump inhibitors, non-steroidal anti-inflammatory drugs, antibiotics or bismuth salts were excluded from the study. Patients with gastric ulcer or cancer were also excluded. Eighty-four patients with chronic gastritis (CSG) and 16 patients with duodenal ulcer (DU) with mean age of 46.45 years (22 years - 76 years) entered the study. Biopsy specimen were taken from the site approximately 2 cm-5 cm from the pyloric antrum. H. pylori infection was confirmed by fast urease test, Giemsa stain and culture. At least two positive results of test regarded as H. pylori infection.

Histology and diagnosis of H. pylori infection
Two antral and one corpus biopsy specimens were routinely processed and stained with haematoxylin and eosin. Examine H. pylori by fast urease test, modified Giemsa stain and culture. At least two positive results of test regarded as H. pylori infection.

Immunohistochemistry
An antral biopsy specimen was put immediately into RPMI containing bromodeoxyuridine (BrdU, 5 g/L). It was immersed in a water bath for 60 min at 37°C and then fixed in Carnoy solution. Sections were stained with anti-BrdU antibody by ABC technique. The nuclei of proliferative cell were stained. Five hundred epithelial cells were counted and the number of positively stained epithelial cell nuclei expressed in percentage as labelling index (LI%). All sections were examined by the same person who was unaware of the subject’s H. pylori status.

Polymerase chain reaction
H. pylori DNA was extracted routinely. vacAs1a amplified by PCR, 50 µL reaction solution contains the following: 1 × reaction buffer, dNTP mixture (0.2mM each), vacAs1a primers (0.2µM each), 1.25 unit Taq DNA polymerase and 4 µL template. PCR program comprises predenaturation at 94°C for 4 min, followed by 37 cycles of 1 min at 94°C, 90s at 52°C, 45s at 72°C, and a final incubation at 72°C for 7 min. PCR products were inspected by electrophoresis on 2% agarose gels stained by ethidium bromide. It is regarded as vacAs1a positive if a clear band can be seen at 190bp. Primers: 5'-GTCAGCATCACACGCAAC-3', 5'-CTGCTTG-

RESULTS
The prevalence of H. pylori infection in CSG patients was 50%, and that of DU reached 93.75% (P<0.01), but the disparity of vacAs1a proportion between H. pylori positive CSG and DU was not significant (43.59% vs 58.33%, P<0.05).

There is significant difference on LI% between...
CSG and DU (P<0.05), but considering the different prevalence of *H. pylori* infection, we got negative result (P>0.05) from comparing the LI% between positive cases of CSG and DU. The results (Table 1) of analyzing the effect of *H. pylori* infection and its different strains on proliferation, showed that patients with *H. pylori* had higher LI% (6.14% ± 1.21%) than *H. pylori* negative ones (2.43% ± 0.61%, P<0.001). Patients harboring vacAs1a strains had significantly higher gastric epithelial cell proliferation LI% (n = 24, 8.00% ± 1.46%) than those with non-vacAs1a strains (n = 27, 4.51% ± 0.86%, P<0.02) or noninfected patients (P<0.001).

The sections were graded into mild, moderate and severe according to the extent of inflammation and intestinal metaplasia. Statistics shows a close relationship between inflammation and *H. pylori* status (P<0.005), however it is negative on metaplasia (P>0.05). No significant relationship was found between inflammation and vacAs1a genotype (P>0.05).

The results show that inflammation and neutrophil infiltration were closely related to epithelial cell proliferation (P<0.001), but not to metaplasia (P>0.05). Multivariate linear-regression analysis shows that among the factors, such as age, sex, DU, inflammation, neutrophil infiltration, intestinal metaplasia, vacAs1a strains, non-vacAs1a strains and so on, vacAs1a strain and inflammation are the independent factors influencing the epithelial cell proliferation.

| Table 1 BrdU LI% of the patients (x ± s) |
|-------------------------------|------------------|
| LI% | case number |
| H. pylori-positive | 6.14 ± 1.21* | 57a |
| vacAs1a positive | 8.00 ± 1.46** | 24 |
| vacAs1a negative | 4.51 ± 0.86e | 27 |
| H. pylori-negative | 2.43 ± 0.61 | 43 |

P<0.001 vs H. pylori negative patients; ^P<0.01 vs H. pylori negative patients; ^P<0.02 vs non-vacAs1a H. pylori patients; ^P<0.05 vs vacAs1a were not examined in 6 cases because of loss of specimens.

| Table 2 Multivariate linear-regression analysis |
|-------------------------------|-----------------|
| LI% | coefficient | SD | t | P > | | 95% confidence interval |
| vacAs1a | 4.47 | 1.37 | 3.27 | 0.002 | 1.76 | 7.19 |
| inflammatory | 3.89 | 1.21 | 3.22 | 0.002 | 1.49 | 6.30 |
| coefficient | 4.50 | 1.89 | 2.38 | 0.019 | 0.75 | 8.26 |

DISCUSSION

The genesis of gastric cancer is the result of long-term effect of multiple factors of environment and host. Epidemiological investigation and histological evidences showed that *H. pylori* infection was related to gastric cancer independently. *H. pylori* infection induced gastric epithelial cell proliferation, increase of mitosis and mutation[7]. Because of the instability of the genome of the proliferative cell, hyperproliferation increases the possibility of DNA damage and aneuploidy. Dysplasia may evolve into carcinoma if damaged DNA cannot be repaired on time or fail in promoting the apoptosis system. Accelerated cellular proliferation rate is the property of malignant tissue and has been confirmed in gastric carcinoma[8].

The genesis of most gastric adenocarcinomas is believed to follow a series of defined histologic steps from normal gastric mucosa to chronic gastritis, atrophic gastritis, intestinal metaplasia, and neoplasia[9]. It has been postulated that *H. pylori* plays a causative role at the early phases in this chain of malignant progression[10]. Therefore, we studied CSG and DU patients (part of them had intestinal metaplasia).

The prevalence of *H. pylori* in DU patients (93.75%) was much higher than that in CSG (50%) which supports the conclusion that *H. pylori* is a closely associated pathogen of DU.

It is reported that gastric epithelial cell proliferation in *H. pylori* associated gastritis patients increased prominently compared with normal control subjects and patients with *H. pylori* negative chronic gastritis, and it reduced after *H. pylori* was eradicated[11-16]. Our results are in agreement with these reports.

No significant difference was found on BrdU LI% between *H. pylori* positive DU and CSG patients which reveals that the existence of DU does not alter the status of proliferation, some factors other than hyperproliferation such as increased apoptosis may play an important role, in the genesis of DU by keeping the dynamic equilibrium of the epithelium[17-20]. But some CSG patients cannot keep efficiently this equilibrium, in other words, the proliferation increases without corresponding apoptosis, DNA is prone to be attacked by other carcinogens, resulting in canceration.

About 50% population infected by *H. pylori*, gastric cancer or DU only occur in a small portion of them. This may be associated with many factors, one of the determinants is the virulence of the strain infected.

Compared with the non-vacAs1a strains infected patients, epithelial cell proliferation of the vacAs1a strains infected patients was much higher. So vacAs1a *H. pylori* strains may be able to promote the epithelial cell proliferation. Multivariate linear-regression shows that vacAs1a strain is an independent influencing factor, which further supports the conclusion that vacAs1a strain is of high virulence. In view of the importance of hyperproliferation during the genesis of gastric cancer, vacAs1a strain may play a critical role in it.

There is much difference on the constitution of the vacA subtype of *H. pylori* according the reports from different areas. The proportion of vacAs1a strain varied greatly[11,21]. There have been few reports on the genotype of vacA in China. She et al reported the relationship between 60 *H. pylori* strains and the alimentary diseases. The relevance
ratios of vacAs1 in gastric cancer, peptic ulcer and chronic gastritis were 87.5%, 78.9% and 9.1% respect ively[22]. There was obvious geographical discrepancy in the distributi on of \textit{H. pylori} vacA subtype.

We found that intestinal metaplasia had nothing to do with \textit{H. pylori} infection. This result corresponds with the report of Cahill \textit{et al.} We also found that intestinal metaplasia was not correlated with proliferation, which differs with some other reports in its clinical importance, the relationship with gastric cancer and effect on cell proliferation. Therefore, we cannot draw conclusion that intestinal metaplasia is not associated with proliferation. Further studies will be conducted.

The mechanism that \textit{H. pylori} and its different strains accelerate proliferati on is not clear. Ricci \textit{et al} found that \textit{H. pylori} can inhibit cell proliferation \textit{in vitro}, while cytotoxin-associated gene (CagA) does not affect proliferation[23]. \textit{H. pylori} can induce proliferation \textit{in vivo}, so \textit{H. pylori} may act by this suggesting that \textit{H. pylori} based on its ability of inciting inflammatory reaction, influencing the gastric secretion, but not the direct action of virulence to exact the effect on cell proliferation.

Inflammation and neutrophil filtration are both associated with \textit{H. pylori} infection. That means \textit{H. pylori} infection can arouse acute and chronic inflammation. Accelerated proliferation is related to the extent of inflammation, and the latter is highly related to \textit{H. pylori} infection. This points out that \textit{H. pylori} infection may promote proliferation by inflammation, which was once reported by Lynch \textit{et al}[11,12]. It is also shown that inflammation acts on proliferation as an independent factor. \textit{H. pylori} infection affects proliferation at least partly by inflammatory action. On the contrary patients harboring vacA\textsubscript{As1} strains have similar inflammatory response to those with non-vacA\textsubscript{As1} strains, but their ability of inducing proliferation differed. Thereby \textit{H. pylori} may promote proliferation by inflammation, and vacA\textsubscript{As1} strains may act by the mechanism other than inflammation, such as the increase of ammonia[24], gastrin[25], and the decrease of ascorbic acid concentration[26,27].

We found that \textit{H. pylori} infection was closely related to gastric epithelial cell proliferation, and the vacA\textsubscript{As1} strains had higher activity. The vacA\textsubscript{As1} strain and extent of inflammation affect proliferation independently. But the effect of \textit{H. pylori} and its different strains on apoptosis is not clear and needs further studies. Besides, \textit{H. pylori} can be typed into m1 and m2 strains according to vacA middle sequence, and positive or negative cagA. They may have different effects on proliferation and apoptosis, these may play important roles in the pathogenicity of \textit{H. pylori}.

REFERENCES

1. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. \textit{N Engl J Med}, 1991;325:1127-1131.
2. Atherton JC. The clinical relevance of strain types of Helicobacter pylori. \textit{Gut}, 1997;40:701-703.
3. Atherton JC, Cao P, Peek RM, Tummuru MKR, Blaser MJ, Corer TL. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. \textit{J Biol Chem}, 1995;270:17771-17777.
4. van Doorn LJ, Figueiredo C, Sanna R, Pena S, Midolo P, Enders KWNG, Atherton JC, Blaser MJ, Quint WGV. Expanding allelic diversity of \textit{H. pylori} VacA gene. \textit{Gutinfection}, 1997;11:92-99.
5. Peek RM, Mos SF, Thain KT, Perez-Perez GI, Wang S, Miller GO, Atherton JC, Holt PR, Blaser MJ. Helicobacter pylori vacA strain and CagA expression in gastric epithelial cell proliferation from apoptosis. \textit{J Natl Cancer Inst}, 1997;89:863-868.
6. Ohyama S, Yonemura Y, Miyazaki I. Proliferative activity and malignancy in human gastric cancers. Significance of the proliferation rate and its clinical applications. \textit{Cancer}, 1992;69:314-321.
7. Correa P. Human gastric carcinogenesis: a multifactorial process. First American cancer society award lecture on cancer epidemiology and prevention. \textit{Cancer Res}, 1992;52:6735-6740.
8. Cahill RJ, Kilgallen C, Beattie S, Hamilton H, O’Morain C. Gastric epithelial cell kinetics in progression from normal mucosa to gastric cancer. \textit{Gut}, 1996;36:177-181.
9. Lynch DAF, Mapstone NP, Clarke AMT, Sobota GM, Jackson P, Morrison L, Dixon MF, Quinpe P, Axon AT. Cell proliferation in Helicobacter pylori associated gastritis and the effect of eradication therapy. \textit{Gut}, 1995;36:360-363.
10. Hibi K, Mitomi H, Koizumi W, Tanabe S, Saigengi K, Okayasu I. Enhanced cellular proliferation and p53 accumulation in gastric mucosa chronically infected with \textit{H. pylori}. \textit{Gut}, 1996;39:177-181.
11. Ricci V, Ciacci C, Zarrilli R, Pession C, Bleck JS, Mams MP. Regulation of gastric epithelial cell growth by \textit{Helicobacter pylori}: evidence for a major role of apoptosis. \textit{Gastroenterology}, 1997;113:1836-1847.
12. Jones NL, Shannon PT, Cutz E, Yeger H, Sherman PM. Increase in proliferation and apoptosis of gastric epithelial cells in the natural history of \textit{Helicobacter pylori} infection. \textit{Am J Pathol}, 1997;151:1695-1703.
13. Chen G, Sordello EM, Ramey WG, Reidy J, Holt PR, Krajewski S. Apoptosis is gastric epithelial cells in induced by \textit{Helicobacter pylori} and accompanied by increased expression of BAK. \textit{Biochem Biophys Res Commun}, 1997;239:626-632.
14. van Doorn LJ, Figueiredo C, Megraud F, Pena S, Midolo P, De Magalhaes E, Ghawaly N, Ezzat F. Cellular proliferation and ploidy of the gastric mucosa: the role of \textit{Helicobacter pylori}. \textit{Hepato-Gastroenterology}, 1996;44:880-885.
15. Morukami R, Kusama M, Kimura T, Sekikawa T, Okada M, Nasu Y. \textit{Helicobacter pylori} infection accelerates human gastric mucosal cellular proliferation. \textit{J Gastroenterol}, 1997;32:184-188.
16. Fraser AG, Sim R, Samkey EA, Dillon AP, Pounder RE. Effect of eradication of \textit{Helicobacter pylori} on gastric epithelial cell proliferation. \textit{Aliment Pharmacol Ther}, 1994;8:167-173.
17. Berstad AE, Hatlebakk JG, Maartmann-Moe H, Berstad A, Brandtzæg P. \textit{Helicobacter pylori} gastritis and epithelial cell proliferation in patients with reflux oesophagitis after treatment with lansoprazole. \textit{Gut}, 1997;41:740-747.
18. Moss SF, Calam J, Agarwal B, Wang S, Holt PR. Induction of gastric epithelial apoptosis by \textit{Helicobacter pylori}. \textit{Gut}, 1996;38:498-501.
19. Wagner S, Bed W, Westermann J, Logan RPH, Bock CT, Trautwein C, Bleck JS, Mams MP. Regulation of gastric epithelial cell growth by \textit{Helicobacter pylori}: evidence for a major role of apoptosis. \textit{Gastroenterology}, 1997;113:1836-1847.
20. Shi BS, Chen YX. The examination and importance of Campylobactor pylori VacA S1 gene. \textit{Fujian Jike Dazhe Xuebao}, 1993;21:22-24.
21. Ricci V, Ciacci C, Zarrilli R, Sonini P, Tummuru MKR, Blanco CDV, Bruni CB, Cover TL, Blaser MJ. \textit{Helicobacter pylori} infection affects proliferation of gastric epithelial cells. \textit{Gutinfection}, 1999;4:167-173.
22. She FF, Shi BS, Chen YX. The examination and importance of Campylobactor pylori VacA S1 gene. \textit{Fujian Jike Dazhe Xuebao}, 1993;21:22-24.
23. Tsujii M, Kawanabo S, Tsujii S, Tada T, Nagann K, Sasaki Y, Hayashii N, Fusamato H, Kamada T. Cell kinetics of mucosal atrophy in rat stomach induced by long-term administration of ammonia. \textit{Gastroenterology}, 1993;105:1554-1561.
24. Sobhana I, Vallot T, Megraud F, \textit{Helicobacter pylori}, a recovered bacterium. Implication in gastrointestinal diseases. \textit{Presse Med}, 1995;24:67-73,75-76,78-79.
25. Sobolan GM, Crabtree JE, Dixon MF, Schorah CJ, Taylor JD, Radbou RN, Healey RN, Axon ATR. Effect of \textit{Helicobacter pylori} on local and systemic immune response, gastric mucosal histology and gastric juice ascorbic acid concentrations. \textit{Gut}, 1991;32:1415-1418.
26. Ruiz B, Rood JC, Fontham ETH, Malcom GT, Hunter FM, Sobhana M, Johnson WD, Correa P. Vitamin C concentration in gastric juice before and after anti-\textit{Helicobacter pylori} treatment. \textit{Am J Gastroenterol}, 1994;89:533-539.