Spanning trees in graphs of high minimum degree with a universal vertex II: A tight result

Bruce Reed | Maya Stein

1Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
2Department of Mathematical Engineering, University of Chile, Santiago, Chile

Correspondence
Maya Stein, Department of Mathematical Engineering, University of Chile, Santiago, Chile.
Email: mstein@dim.uchile.cl

Funding information
Fondo Nacional de Desarrollo Científico y Tecnológico; Comisión Nacional de Investigación Científica y Tecnológica; ANID; Natural Sciences and Engineering Research Council of Canada

Abstract
We prove that, if m is sufficiently large, every graph on $m + 1$ vertices that has a universal vertex and minimum degree at least $\frac{2m}{3}$ contains each tree T with m edges as a subgraph. Our result confirms, for large m, an important special case of a conjecture by Havet, Reed, Stein, and Wood. The present paper builds on the results of a companion paper in which we proved the statement for all trees having a vertex that is adjacent to many leaves.

KEYWORDS
graph, maximum degree, minimum degree, spanning tree

1 | INTRODUCTION

It is easy to see that any graph of minimum degree at least m contains a copy of each tree with m edges, and that this bound is sharp. Variants replacing the minimum degree condition with another degree condition have also been proposed. The average degree is used in the well-known Erdős–Sós conjecture (see [5, 14] for recent results), and the median degree is used in the Loebl–Komlós–Sós conjecture, which was approximately solved in [8–11]. These variants are strengthenings of the observation at the beginning of the paragraph.

If, however, one wishes to strengthen the observation by simply weakening the imposed bound on the minimum degree of the host graph, the problem becomes impossible. For this, it suffices to consider the disjoint union of complete graphs of order m. This graph has minimum degree $m - 1$ and contains no tree with m edges.

But, if we are restricting our attention to spanning trees, it is still possible to embed bounded degree trees using a weaker minimum degree condition. Komlós, Sarközy and Szemerédi showed in [12] that for every $\delta > 0$, every large enough $(m + 1)$-vertex graph of
minimum degree at least \((1 + \delta) \frac{m}{2} \) contains each tree with \(m \) edges whose maximum degree is bounded by \(O \left(\frac{n}{\log n} \right) \). From the example given above, it is clear, though, that an analogue of the result from [12] could not be true for trees that are much smaller than the host graph, even if we would require a minimum degree of just below the size of the tree we are looking for.

So, it seems natural to seek an additional condition to impose on the host graph to make a statement in this direction come true. A condition on the maximum degree is an obvious candidate, since we may have to embed a star with \(m \) edges. The following conjecture in this respect has been put forward recently.

Conjecture 1.1 (Havet et al. [7]). Let \(m \in \mathbb{N} \). If a graph has maximum degree at least \(m \) and minimum degree at least \(\left\lceil \frac{2m}{3} \right\rceil \) then it contains every tree with \(m \) edges as a subgraph.

We remark that if the minimum degree condition is replaced by the much stronger bound \((1 - \gamma)m\), for a tiny constant \(\gamma \), a result along the lines of Conjecture 1.1 is true [7]. The conjecture also holds if the maximum degree condition is replaced by a large function in \(m \) [7].

Furthermore, an approximate version of Conjecture 1.1 holds for bounded degree trees and dense host graphs [3]. Such an approximate version even holds for a generalised form of Conjecture 1.1, where the bound on the minimum degree is allowed to be any value between \(\frac{m}{2} \) and \(\frac{2m}{3} \), with the maximum degree obeying a corresponding bound between \(2m \) and \(m \) (see [4] for details).

As further evidence for Conjecture 1.1, we prove that it holds when the graph has \(m + 1 \) vertices, if \(m \) is large enough. That is, we show the conjecture for the case when we are looking for a spanning tree in a large graph.

Theorem 1.2. There is an \(m_0 \in \mathbb{N} \) such that for every \(m \geq m_0 \) every graph on \(m + 1 \) vertices that has minimum degree at least \(\left\lceil \frac{2m}{3} \right\rceil \) and a universal vertex contains every tree \(T \) with \(m \) edges as a subgraph.

Clearly, our theorem can also be understood as a variant of the result by Komlós, Sarközy and Szemerédi mentioned above.

The proof of Theorem 1.2 follows quickly from a result obtained in the companion paper [15], and a second result, Lemma 2.2, which will be proved in the present paper. We present the two lemmas and give the short proof of Theorem 1.2 in the next section, deferring the proof of Lemma 2.2 to the subsequent sections.

2 | PROOF OF THEOREM 1.2

In the companion paper [15], we showed the following lemma.

Lemma 2.1 (Reed and Stein [15, Lemma 1.3]). For every \(\delta > 0 \), there is an \(m_\delta \) such that for any \(m \geq m_\delta \) the following holds for every graph \(G \) on \(m + 1 \) vertices that has minimum degree at least \(\left\lceil \frac{2m}{3} \right\rceil \) and a universal vertex.

1. If \(T \) is a tree with \(m \) edges, and some vertex of \(T \) is adjacent to at least \(\delta m \) leaves, then \(T \) embeds in \(G \).
Lemma 2.1 covers the proof of our main result for all trees which have a vertex with many leaves, namely at least δm leaves, for some fixed δ, but is of no help for trees which have no such vertex. This latter case is covered by the next lemma which will be proved in the present paper.

Lemma 2.2. There are $m_1 \in \mathbb{N}$, and $\delta > 0$ such that the following holds for every $m \geq m_1$, and every graph G on $m + 1$ vertices that has minimum degree at least $\left\lfloor \frac{2m}{3} \right\rfloor$ and a universal vertex.

If T is a tree with m edges such that no vertex of T is adjacent to more than δm leaves, then T embeds in G.

The proof of Lemma 2.2 is given in the next section, Section 3. It will rely on four auxiliary lemmas, Lemmas 3.2, 3.4, 3.6, and 3.7, of which one is proved right away in Section 3, one is from [15], and the remaining two will be proved in later sections of the present paper.

With Lemma 2.1 and Lemma 2.2 at hand, the proof of our main result, Theorem 1.2, is straightforward.

Proof of Theorem 1.2. We choose our output m_0 for Theorem 1.2 by taking the maximum value of m_1 and m_δ, where m_1 and δ are given by Lemma 2.2, and m_δ is given for input δ by Lemma 2.1. Given now T and G as in the theorem, Lemma 2.2 covers the case that T has no vertex adjacent to more than δm leaves, and Lemma 2.1 covers the remaining case. □

3 | THE PROOF OF LEMMA 2.2

We start by giving a quick overview of the proof of Lemma 2.2 in Section 3.1. As mentioned earlier, we formally organise the proof of Lemma 2.2 by splitting it up into four auxiliary lemmas, namely Lemma 3.2, Lemma 3.4, Lemma 3.6, and Lemma 3.7. These four auxiliary lemmas will be stated in Section 3.2. Section 3.3 then contains the proof of Lemma 2.2, under the assumption that the four auxiliary lemmas hold.

The easy proof of Lemma 3.2 is given in Section 3.4. Lemma 3.6 was proved in [15]. So, at the end of this section, there will be only two lemmas, Lemma 3.4 and Lemma 3.7, left to prove. In Sections 4 and 5, we state and prove two new lemmas, Lemma 4.1 and Lemma 5.1, which together imply Lemma 3.4. The last section of the paper, Section 6, is devoted to the proof of Lemma 3.7.

3.1 | Idea of the proof of Lemma 2.2

The idea of the proof is to first reserve a random set $S \subseteq V(G)$ for later use. Then, we embed into $G - S$ a very small subtree T^* of the tree T we wish to embed. Actually, we will only embed $T^* - L$, having chosen a subset $L \subseteq V(T^*)$ of some low degree vertices (either leaves or vertices of degree 2). The vertices from L will be left out of the embedding for now, as they will only be embedded at the very end.

The set L is slightly larger than the set S. This gives us some free space when we embed $T - T^*$, which will be useful. In fact, this freedom makes it possible for us to use a lemma from [15] (stated as Lemma 3.6 in the present paper) for embedding $T - T^*$, unless the graph G has a
very special structure, in which case an ad-hoc embedding is provided by Lemma 3.7. After this, there is a small leftover set of vertices of G, which, together with the set S, serves for embedding the vertices from L, by using an absorption argument.

3.2 Four auxiliary lemmas

In the present section, we present our four auxiliary lemmas, Lemma 3.2, Lemma 3.4, Lemma 3.6, and Lemma 3.7.

We start with the simplest of our lemmas, Lemma 3.2. This lemma enables us to find a convenient subtree T^* of a tree T. We need a quick definition before we give the lemma.

Definition 3.1 (γ-nice subtree, type 1, type 2). Let T be a tree with m edges. Call a subtree T^* of T with root t^* a **γ-nice subtree** if

1. $V(T^*) \leq \gamma m$; and
2. every component of $T - T^*$ is adjacent to t^*.

Consider the following additional conditions:

1. T^* contains at least $\left\lfloor \frac{\gamma m}{20} \right\rfloor$ disjoint paths of length 5 and all vertices on these paths have degree at most 2 in T.
2. T^* contains at least $\left\lfloor \frac{\gamma m}{40} \right\rfloor$ leaves from T.

If the former condition holds, we say T^* is of type 1, and if the latter condition holds, we say T^* is of type 2.

We are now ready to state the lemma that finds a γ-nice subtree of one of the two types.

Lemma 3.2. For all $0 < \gamma \leq 1$, any tree with $m \geq \frac{200}{\gamma}$ edges has a γ-nice subtree of type 1 or of type 2.

The proof of Lemma 3.2 is straightforward, but we prefer to leave it to the end of the present section, namely to Section 3.4, to be able to first focus on the proof of the main result.

Next, we exhibit a lemma that will enable us to transfer the embedding problem of the tree to an embedding problem of almost all of the tree, under the condition that we already embed a small part of it, that is, a γ-nice subtree, beforehand.

For convenience, let us use the following notation.

Definition 3.3 (m-good graph). Let $m \in \mathbb{N}$. Call a graph **m-good** if it has $m + 1$ vertices, minimum degree at least $\left\lceil \frac{2m}{3} \right\rceil$ and a universal vertex.

Lemma 3.4. There is an $m_0 \in \mathbb{N}$ such that the following holds for all $m \geq m_0$, and all γ with $\frac{2}{10} \leq \gamma < \frac{1}{30}$.
Let G be an m-good graph, with universal vertex w. Let T be a tree with m edges, such that no vertex of T is adjacent to more than $\frac{m}{10^2}$ leaves. Let T^* be a $γ$-nice subtree of T, of type 1 or 2, rooted at vertex t^*.

Then there are sets $L \subseteq V(T^*) \setminus \{t^*\}$ and $S \subseteq V(G)$ satisfying

$$|S| \leq |L| - \left(\frac{γ}{2} \right)^4 m.$$

Furthermore, for any $w' \in V(G) - S$, with $w' \neq w$, there is an embedding of $T^* - L$ into $G - S$, with t^* embedded in w', such that the following holds. Any embedding of $T - L$ into $G - S$ extending our embedding of $T^* - L$ can be extended to an embedding of all of T into G.

As mentioned earlier, later on we shall split Lemma 3.4 into two lemmas, Lemma 4.1 and Lemma 5.1, depending on the type of the $γ$-nice subtree. We will state and prove Lemma 4.1 in Section 4, and state and prove Lemma 5.1 in Section 5. Together, Lemmas 4.1 and 5.1 imply Lemma 3.4.

To state the remaining two of our four auxiliary lemmas, we need a simple definition. This definition describes the extremal case, where the graph G has a very specific structure (and therefore, the approach from the companion paper [15] does not work).

Definition 3.5. Let $γ > 0$. We say a graph G on $m + 1$ vertices is $γ$-special if $V(G)$ consists of three mutually disjoint sets X_1, X_2, X_3 such that

- $\frac{m}{3} - 3γm \leq |X_i| \leq \frac{m}{3} + 3γm$ for each $i = 1, 2, 3$; and
- there are at most $γ\frac{10}{3}X_i \cdot |X_i|$ edges between X_i and X_2.

The following lemma, which excludes the extremal situation, was proved in the companion paper [15].

Lemma 3.6 (Reed and Stein [15, lemma 7.3]). For all $γ < \frac{1}{10^6}$ there are $m_0 \in \mathbb{N}$ and $λ > 0$ such that the following holds for all $m \geq m_0$.

Let G be an m-good graph, which is not $γ$-special. Let T be a tree with m edges such that $T \subseteq G$ and no vertex in T is adjacent to more than $λm$ leaves. Let T^* be a $γ$-nice subtree of T, with root t^*, let $L \subseteq V(T^*) \setminus \{t^*\}$, and let $S \subseteq V(G)$ such that $|S| \leq |L| - \left(\frac{γ}{2} \right)^4 m$.

Assume that for any $W \subseteq V(G) - S$ with $|W| \geq γm$, there is an embedding $ϕ_W$ of $T^* - Y$ into $G - S$, with t^* embedded in W. Then there is a set $W \subseteq V(G) - S$ with $|W| \geq γm$, and an embedding of $T - Y$ into $G - S$ that extends $ϕ_W$.

Our last auxiliary lemma deals with the extremal case described in Definition 3.5.

Lemma 3.7. There are $m_0 \in \mathbb{N}$, $β \leq \frac{1}{10^6}$, and $γ_0, γ_1 \leq \frac{1}{50}$ such that the following holds for all $m \geq m_0$.

Suppose G is a $γ_0$-special $(m + 1)$-vertex graph of minimum degree at least $\left\lfloor \frac{2}{3}m \right\rfloor$, and suppose T is a tree with m edges such that none of its vertices is adjacent to more than $βm$
leaves. Let T^* be a γ_1-nice subtree of T, with root t^*, and let $L \subseteq V(T^*) \setminus \{t^*\}$. Assume there is a set $S \subseteq V(G)$ such that $|S| \leq |L| - \left\lfloor \left(\frac{2}{3} \right)^4 m \right\rfloor$.

Assume that for any $W \subseteq V(G) - S$ with $|W| \geq \gamma m$, there is an embedding ϕ_W of $T^* - Y$ into $G - S$, with t^* embedded in W. Then there is a set $W \subseteq V(G) - S$ with $|W| \geq \gamma m$, and an embedding of $T - Y$ into $G - S$ that extends ϕ_W.

We prove Lemma 3.7 in Section 6.

3.3 Proving Lemma 2.2

We now show how our four auxiliary lemmas imply Lemma 2.2.

Proof of Lemma 2.2. First, we apply Lemma 3.7 to obtain four numbers $\beta, \gamma_0, \gamma_1 > 0$ and $m_0^{\text{lem} 3.7} \in \mathbb{N}$. Next, we apply Lemma 3.4 to obtain a number $m_0^{\text{lem} 3.4}$. Finally, we apply Lemma 3.6 with input γ_0 to obtain another integer $m_0^{\text{lem} 3.6}$ as well as a number $\lambda > 0$.

For the output of Lemma 2.2, we will take

$$m_1 := \max \left\{ m_0^{\text{lem} 3.7}, m_0^{\text{lem} 3.4}, m_0^{\text{lem} 3.6}, \frac{200}{\gamma_0} \right\},$$

and

$$\delta := \min \{ \beta, \lambda, 10^{-23} \}.$$

Now, consider an m-good graph G, and a tree T with m edges as in the statement of Lemma 2.2. Use Lemma 3.2 together with Lemma 3.4, once for each input γ_0, γ_1, to obtain, for $i = 0, 1$, a γ_i-nice tree T_i^* with root t_i^*, and sets S_i, L_i satisfying

$$|S_i| \leq |L_i| - \left(\frac{4}{2} \right)^4 m.$$

Moreover, for $i = 0, 1$, there are embeddings of $T_i^* - L_i$ into $G - S_i$ that map the vertex t_i^* to any given vertex, except possibly the universal vertex of G. Furthermore, Lemma 3.4 guarantees that, to embed T into G, we only need to extend, for either $i = 0$ or $i = 1$, the embedding of $T_i^* - L_i$ given by the lemma to an embedding of all of $T - L_i$ into $G - S$.

For this, we will use Lemmas 3.6 and 3.7. More precisely, if G is not γ_0-special, then we can apply Lemma 3.6 to G with sets S_0 and L_0, together with the tree T_0^*. If G is γ_0-special, we can apply Lemma 3.7 to G with sets S_1 and L_1, together with the tree T_1^*. This finishes the proof of the lemma.

3.4 Proof of Lemma 3.2

We finish Section 3 by giving the short proof of Lemma 3.2.
Proof of Lemma 3.2. As an auxiliary measure, we momentarily fix any leaf \(v_L \) of the given tree \(T \) as the root of \(T \). Next, we choose a vertex \(t^* \) in \(T \) having at least \(\left\lceil \frac{ym}{2} \right\rceil \) descendants, such that it is furthest from \(v_L \) having this property.

Then, each component of \(T - t^* \) that does not contain \(v_L \) has size at most \(\left\lceil \frac{ym}{2} \right\rceil \). So, there is a subset \(S^* \) of these components such that

\[
\left\lceil \frac{ym}{2} \right\rceil \leq \sum_{S \in S^*} |S| \leq ym.
\]

Now, consider the tree \(T^* \) formed by the union of the trees in \(S^* \) and the vertex \(t^* \). Clearly, \(T^* \) fulfills items (i) and (ii) of Definition 3.1. If \(T^* \) contains at least \(\left\lceil \frac{ym}{40} \right\rceil \) leaves of \(T \), then \(T^* \) is \(\gamma \)-nice of type 2, and we are done.

Otherwise, \(T^* \) has at most \(\left\lceil \frac{ym}{40} \right\rceil \) leaves, and a standard calculation shows that \(T^* \) has at most \(\left\lceil \frac{ym}{40} \right\rceil \) vertices of degree at least 3. Delete these vertices from \(T^* \). It is easy to see that this leaves us with a set of at most \(\frac{ym}{20} \) paths, together containing at least \(\frac{ym}{20} \) vertices. All vertices of these paths have degree at most 2 in \(T \). Deleting at most four vertices on each path we can ensure all paths have lengths divisible by five, and together contain at least \(\frac{ym}{40} - 4 \cdot \frac{ym}{20} \geq \frac{ym}{4} + 5 \) vertices. Dividing each of the paths into paths of length five we obtain a set \(\mathcal{P} \) of at least \(\left\lceil \frac{ym}{20} \right\rceil \) disjoint paths in \(T^* \). So, \(T^* \) is \(\gamma \)-nice of type 1.

\[\square \]

4 | THE PROOF OF LEMMA 4.1

This section is devoted to the proof of the following lemma, which proves Lemma 3.4 for all \(\gamma \)-nice trees of type 1.

Lemma 4.1. There is an \(m_0 \in \mathbb{N} \) such that the following holds for all \(m \geq m_0 \), and for all \(\gamma > 0 \) with \(\frac{2}{10^3} \leq \gamma < \frac{1}{30} \).

Let \(G \) be an \(m \)-good graph. Let \(T \) be a tree with \(m \) edges, such that no vertex of \(T \) is adjacent to more than \(m/10^3 \) leaves. Let \(T \) have a \(\gamma \)-nice subtree \(T^* \) of type 1, with root \(t^* \).

Then there are sets \(L \subseteq V(T^*) \setminus \{t^*\} \) and \(S \subseteq V(G) \) satisfying \(|S| \leq |L| - \left(\frac{y}{2} \right)^4 m \).

Furthermore, for any \(w \in V(G) - S \), there is an embedding of \(T^* - L \) into \(G - S \), with \(t^* \) embedded in \(w \), such that any embedding of \(T - L \) into \(G - S \) extending our embedding of \(T^* - L \) can be extended to an embedding of all of \(T \) into \(G \).

In the proof of Lemma 4.1, some random choices are going to be made, and to see we are not far from the expected outcome, it will be useful to have the well-known Chernoff bounds at hand (see for instance [13]). For the reader’s convenience let us state these bounds here.

Let \(X_1, \ldots, X_n \) be independent random variables satisfying \(0 \leq X_i \leq 1 \). Let \(X = X_1 + \cdots + X_n \) and set \(\mu := \mathbb{E}[X] \). Then for any \(\varepsilon \in (0, 1) \), it holds that
\[
\Pr[X \geq (1 + \varepsilon)\mu] \leq e^{-\frac{\varepsilon^2}{2(1+\varepsilon)}} \quad \text{and} \quad \Pr[X \leq (1 - \varepsilon)\mu] \leq e^{-\frac{\varepsilon^2}{2}}.
\] (1)

We are now ready for the proof of Lemma 4.1.

Proof of Lemma 4.1. We choose \(m_0 = 10^{25} \). Now assume that for some \(m \geq m_0 \), we are given an \(m \)-good graph \(G \), and a tree \(T \) with \(m \) edges such that none of its vertices is adjacent to more than \(10^{-23}m \) leaves. We are also given a \(\gamma \)-nice subtree \(T^* \) of \(T \), with root \(t^* \), and a set \(\mathcal{P} \) of disjoint paths of length five such that

\[
|\mathcal{P}| = \left\lfloor \frac{\gamma m}{20} \right\rfloor,
\]

for some \(\gamma \) as in the lemma. We now define \(L \) as the set that consists of the fourth vertex (counting from the vertex closest to \(t^* \)) of each of the paths from \(\mathcal{P} \). Clearly,

\[
|L| = \left\lfloor \frac{\gamma m}{20} \right\rfloor \geq \left\lfloor \frac{m}{10^8} \right\rfloor, \quad (2)
\]

by our assumptions on \(\gamma \).

To prove Lemma 4.1, we need to do three things. First of all, we need to find a set \(S \subseteq V(G) \) of size at most \(|L| - \left\lfloor \frac{\gamma}{2} \right\rfloor^4 m \). Then, given any vertex \(w \in V(G) - S \), we have to embed \(T^* - L \) into \(G - S \), with \(t^* \) going to \(w \). Finally, we need to make sure that any extension of this embedding to an embedding of all of \(T - L \) into \(G - S \) can be completed to an embedding of all of \(T \).

It is clear that for the last point to go through, it will be crucial to have chosen both \(S \) and the set \(N \) of the images of the neighbours of the vertices in \(L \) carefully, to have the necessary connections between \(N \) and \(S \). Our solution is to choose both \(S \) and \(N \) randomly. More precisely, choose a set \(S \) of size

\[
|S| = |L| - \left\lfloor \left(\frac{\gamma}{2} \right)^4 m \right\rfloor \quad (3)
\]

uniformly and independently at random in \(V(G - w) \). Also, choose a set \(N \) of size

\[
|N| = 2|L| \quad (4)
\]

uniformly and independently at random in \(V(G - w - S) \).

Now, we can proceed to embed \(T' := T^* - L \) into \(G - S \). We will start by embedding the neighbours of vertices in \(L \) arbitrarily into \(N \). Let us keep track of these by calling \(n_1(x) \) and \(n_2(x) \) the images of the neighbours of \(x \), for each \(x \in L \).

Next, we embed \(t^* \) into \(w \), and then proceed greedily, using a breadth-first order on \(T^* \) (skipping the vertices of \(L \) and those already embedded into \(N \)). Each vertex we embed has at most two neighbours that have been embedded earlier (usually this is just the parent, but parents of vertices embedded into \(N \) have two such neighbours, and the root of \(T' \) has none). So, since \(G \) has minimum degree at least \(\left\lfloor \frac{2m}{3} \right\rfloor \) and given the small size of \(T' \), we can easily embed all of \(T' \) as planned.
It remains to prove that any extensions of this embedding can be completed to an embedding of all of T. This will be achieved by the following claim, which finishes the proof of Lemma 4.1.

Claim 4.2. For any set $R \subseteq V(G)$ of $|L| - |S|$ vertices, there is a bijection between L and $S \cup R$ mapping each vertex $x \in L$ to a common neighbour of $n_1(x)$ and $n_2(x)$.

To prove Claim 4.2, we define an auxiliary bipartite graph H having $V(G) - w$ on one side, and L on the other. We put an edge between $v \in V(G) - w$ and $x \in L$ if v is adjacent to both $n_1(x)$ and $n_2(x)$. We are interested in the subgraph H' of H that is obtained by restricting the $V(G - w)$-side to the set $S \cup R$ (but sometimes it is enough to consider degrees in H).

By the minimum degree condition on G, the expectation of the degree in H of any vertex $v \in V(G - w)$ is

$$E(\deg_H(v)) \geq \left(\frac{199}{300}\right)^2 |L|,$$

since v has at least $\left\lfloor \frac{2}{3}m - 1 \right\rfloor \geq \frac{199}{300}m$ neighbours in $G - w$, and thus, for any given $x \in L$, each $n_i(x)$ is adjacent to v with probability at least $\frac{199}{300}$. Therefore, the probability that all vertices of G have degree at least

$$d := \left(\frac{198}{300}\right)^2 |L|$$

is bounded from below by

$$\Pr[\delta(G) \geq d] \geq 1 - \sum_{v \in V(G - w)} \Pr[\deg_H(v) < d]$$

$$\geq 1 - (m + 1) \cdot e^{-\left(\frac{397}{199 \cdot 300}\right)^2 |L|},$$

$$\geq 0.9999,$$

where we used (1) (Chernoff’s bound) with $\varepsilon = \frac{199^2 - 198^2}{199^2} = \frac{397}{199^2}$, our bound on the size of L as given in (2) and the fact that $m \geq 10^{25}$.

Furthermore, since G has minimum degree at least $\left\lfloor \frac{2}{3}m \right\rfloor$, we know that for each $x \in L$, vertices $n_1(x)$ and $n_2(x)$ have at least $\frac{1}{3}m - 3$ common neighbours in $G - w$. Therefore, every vertex of L has degree at least $\frac{1}{3}m - 3$ in H. However, we are interested in the degree of these vertices into the set S. For a bound on this degree, first note that the expected degree of any vertex of L into the set S is bounded from below by $\frac{999}{3000} |S|$. Now again apply (1) (Chernoff’s bound), together with the fact that $|S| \geq 10^{17}$, to obtain that with probability greater than 0.9999, every element of L is incident to at least $\frac{998}{3000} |S|$ vertices of S.

Resumingly, we can say that with probability greater than 0.999 we chose the sets S and N such that the resulting graph H obeys the following degree conditions:
(A) the minimum degree of $V(G - w)$ into L is at least $\left(\frac{198}{300}\right)^2 |L|$; and

(B) the minimum degree of L into S is at least $\frac{998}{300} |S|$.

Let us from now on assume that we are in the likely situation that both (A) and (B) hold.

Further, assume there is no matching from $S \cup R$ to L in H'. Then by Hall's theorem\(^1\), there is a partition of L into sets L' and L'' and a partition of $S \cup R$ into sets J' and J'' such that there are no edges from L' to J'', and such that

$$|L'| < |L| \quad \text{and} \quad |L''| < |J'|.$$

Since $J'' \neq \emptyset$, and since by (A), each vertex in J'' has degree at least $\left(\frac{198}{300}\right)^2 |L|$ into L, and thus into L'', we deduce that

$$|J''| > |L''| \geq \left(\frac{198}{300}\right)^2 |L|.$$

Since also $L' \neq \emptyset$, and by (B), each of its elements has at least $\frac{998}{300} |S|$ neighbours in $S \cap J'$, we see that

$$|L'| > |J'| \geq \frac{998}{300} |S|.$$

Thus, using (2) and (3), as well as our upper bound on γ, we can calculate that

$$|L''| = |L| - |L'| \leq |S| + \left\lceil \left(\frac{\gamma}{2}\right)^4 m \right\rceil - \frac{998}{300} |S| \leq \frac{2003}{3000} |S|.$$

Let us iteratively define a subset S^* of $S \cap J''$ as follows. We start by putting an arbitrary vertex $v_0 \in S \cap J''$ into S^*, and while there is a vertex of $S \cap J''$ whose neighbourhood contains $\frac{m}{1000 \log m}$ vertices which are not in the neighbourhood of S^*, we augment S^* by adding any such vertex v that maximises $N(v) - N(S^*)$. We stop when there is no suitable vertex that can be added to S^*. Note that $|S^*| \leq 1000 \log m$.

Our plan is to show next that the set S^* has certain properties which are unlikely to be had by any set having certain other properties that S^* has (for instance, having size at most $1000 \log m$). More precisely, the probability that a set like S^* exists will be bounded from above by 0.005. This will finish the proof of Claim 4.2, as we then know that with probability at least 0.99 we chose sets S and N such that in the resulting graph H', the desired matching exists, and thus Claim 4.2 holds.

So, let us define Q as the set of all subsets of $V(G - w)$ having size at most $1000 \log m$. For each $Q \in Q$, let $V_1(Q)$ be the set consisting of all vertices of $G - w$ which have less than $\frac{m}{1000 \log m}$ neighbours outside $N(Q)$ (in the graph $G - w$).

\(^1\)Hall's theorem can be found in any standard textbook; it states that a bipartite graph with bipartition classes A and B either has a matching covering all of A, or there is an ‘obstruction’: a set $A' \subseteq A$ such that $|N(A')| < |A'|$.

Finally, let $Q' \subseteq Q$ contain all $Q \in Q$ for which
\[\frac{m}{10^9} \leq |V_i(Q)| \leq \frac{m}{3} + \frac{m}{\log m} + 2. \] (7)

Observe that, for $Q \in Q'$ fixed, the expected size of $V_i(Q) \cap S$ is
\[\mathbb{E}[|V_i(Q) \cap S|] = |V_i(Q)| \cdot \frac{|S|}{m} \]
because S was chosen at random in $G - v$. So by (3) and (2), and by (7), we see that
\[\frac{1}{2} \cdot \frac{m}{10^{17}} \leq \mathbb{E}[|V_i(Q) \cap S|] \leq \frac{|S|}{3} + \frac{|S|}{\log m} + 2 \leq \frac{38}{100}|S|, \] (8)
where the last inequality follows from the fact that $m \geq 10^{25}$. Now, we can use (1) (Chernoff's bound) and the first inequality of (8) to bound the probability that $|V_i(Q) \cap S|$ exceeds its expectation by a factor of at least $\frac{20}{19}$ as follows:
\[P\left[|V_i(Q) \cap S| \geq \frac{20}{19} \cdot \mathbb{E}[|V_i(Q) \cap S|] \right] \leq e^{-\frac{\mathbb{E}[|V_i(Q) \cap S|]}{820}} \leq e^{-\frac{m}{164 \cdot 10^2}} \leq \frac{0.001}{m^{\log m}}. \]

Since by (8), we know that
\[\frac{20}{19} \cdot \mathbb{E}[|V_i(Q) \cap S|] < \frac{41}{100}|S|, \]
and since $|Q| \leq m^{\log m}$ for each $Q \in Q$, we can deduce that
\[P \left[\exists Q \in Q' \text{ with } |V_i(Q) \cap S| \geq \frac{41}{100}|S| \right] \leq 0.001. \] (9)

Now, let us turn back to the set S^*. First of all, we note that by the definition of S^*, we have $S \cap J'' \subseteq V_i(S^*)$. Thus, we can use (5) and (3) to deduce that
\[|V_i(S^*) \cap S| \geq |J''| - |R| \]
\[\geq \left(\frac{198}{300} \right)^2 |L| - \left(\frac{y^4}{2} \right) m \]
\[\geq \left(\frac{197}{300} \right)^2 |S| \]
\[> \frac{43}{100}|S|. \] (10)

So, by (2) and (3), the first inequality of (7) holds for $Q = S^*$.

For a moment, assume that $N(S^*) \leq \frac{999}{1000}m$. Then, also the second inequality of (7) holds for $Q = S^*$, as otherwise, each of the at least $\frac{m}{1000}$ vertices of $V(G - w) \setminus N(S^*)$ sees at least $\frac{m}{\log m}$ vertices of $V_i(S^*)$, and so, by the definition of S^*, we have that
\[
\frac{m}{1000} \cdot \frac{m}{\log m} \leq e(V_1(S^*), V(G - w) \setminus N(S^*))
\]
\[
< \frac{m}{1000 \log m} \cdot |V_1(S^*)|
\]
\[
\leq \frac{m^2}{1000 \log m},
\]
a contradiction. Hence \(S^* \in Q\). But then, according to (9), we know that (10) is not likely to happen. So, with probability at least 0.998, we chose \(S\) in a way that all three of (A), (B), and

(C) \(|N(S^*)| \geq \frac{999}{1000} m\)

hold. We will from now on assume that we are in this likely case.

Consider the set \(Q^*\), which consists of all sets \(Q \in Q\) for which the first inequality in (7) holds, and for which \(|N(Q)| \geq \frac{999}{1000} m\). By (10) and by (C), \(S^* \in Q^*\).

Call \(Q^*_+\) the set of all \(Q \in Q^*\) for which at least one of the following holds:

- \(Q\) has a vertex of degree at least \(\frac{2m}{3} + \frac{m}{100}\); or
- \(Q\) has two vertices \(v, v'\) such that each sees at least \(\frac{m}{100}\) vertices outside the neighbourhood of the other one.

We are going to show that the sets \(Q \in Q^*_+\) typically have larger neighbourhoods in \(L\) than \(S^*\) has, and will thus be able to conclude that \(S^* \notin Q^*_+\), which will be crucial for the very last part of the proof.

For this, let \(X(Q)\) be the set of unordered pairs \(\{v, v'\}\) of distinct vertices which have a common neighbour in \(Q\), for each \(Q \in Q^*\). Then, because of the minimum degree condition we imposed on the graph \(G\), we know that each vertex \(v \in N(Q)\) is in at least \(\lfloor \frac{2m}{3} \rfloor - 2\) pairs of \(X(Q)\). So, since \(N\) was chosen at random in \(V(G - w)\), and because of the definition of \(Q^*\), we know that for any fixed set \(Q \in Q^*\), and any fixed vertex \(x \in L\), the probability that \(n_1(x)\) and \(n_2(x)\) have a common neighbour in \(Q\) can be bounded as follows:

\[
P[\{n_1(x), n_2(x)\} \in X(Q)] \geq \frac{\frac{999m}{1000} \cdot \left(\left\lfloor \frac{2m}{3} \right\rfloor - 2\right)}{m^2}.
\]

However, if we take any fixed \(Q \in Q^*_+\), and any fixed \(x \in L\), the bound becomes

\[
P[\{n_1(x), n_2(x)\} \in X(Q)] \geq \frac{\frac{999m}{1000} \left(\left\lfloor \frac{2m}{3} \right\rfloor - 2\right) + \min \left\{\left(\frac{2m}{3} + \frac{m}{100}\right) \frac{m}{100}, \left(\frac{m}{3} - 2\right) \frac{m}{100}\right\}}{m^2}
\]
\[
\geq \frac{669}{1000},
\]

a contradiction. Hence \(S^* \in Q\). But then, according to (9), we know that (10) is not likely to happen. So, with probability at least 0.998, we chose \(S\) in a way that all three of (A), (B), and

(C) \(|N(S^*)| \geq \frac{999}{1000} m\)

hold. We will from now on assume that we are in this likely case.

Consider the set \(Q^*\), which consists of all sets \(Q \in Q\) for which the first inequality in (7) holds, and for which \(|N(Q)| \geq \frac{999}{1000} m\). By (10) and by (C), \(S^* \in Q^*\).

Call \(Q^*_+\) the set of all \(Q \in Q^*\) for which at least one of the following holds:

- \(Q\) has a vertex of degree at least \(\frac{2m}{3} + \frac{m}{100}\); or
- \(Q\) has two vertices \(v, v'\) such that each sees at least \(\frac{m}{100}\) vertices outside the neighbourhood of the other one.

We are going to show that the sets \(Q \in Q^*_+\) typically have larger neighbourhoods in \(L\) than \(S^*\) has, and will thus be able to conclude that \(S^* \notin Q^*_+\), which will be crucial for the very last part of the proof.

For this, let \(X(Q)\) be the set of unordered pairs \(\{v, v'\}\) of distinct vertices which have a common neighbour in \(Q\), for each \(Q \in Q^*\). Then, because of the minimum degree condition we imposed on the graph \(G\), we know that each vertex \(v \in N(Q)\) is in at least \(\lfloor \frac{2m}{3} \rfloor - 2\) pairs of \(X(Q)\). So, since \(N\) was chosen at random in \(V(G - w)\), and because of the definition of \(Q^*\), we know that for any fixed set \(Q \in Q^*\), and any fixed vertex \(x \in L\), the probability that \(n_1(x)\) and \(n_2(x)\) have a common neighbour in \(Q\) can be bounded as follows:

\[
P[\{n_1(x), n_2(x)\} \in X(Q)] \geq \frac{\frac{999m}{1000} \cdot \left(\left\lfloor \frac{2m}{3} \right\rfloor - 2\right)}{m^2}.
\]

However, if we take any fixed \(Q \in Q^*_+\), and any fixed \(x \in L\), the bound becomes

\[
P[\{n_1(x), n_2(x)\} \in X(Q)] \geq \frac{\frac{999m}{1000} \left(\left\lfloor \frac{2m}{3} \right\rfloor - 2\right) + \min \left\{\left(\frac{2m}{3} + \frac{m}{100}\right) \frac{m}{100}, \left(\frac{m}{3} - 2\right) \frac{m}{100}\right\}}{m^2}
\]
\[
\geq \frac{669}{1000},
\]
where the two entries in the minimum stand for the two scenarios that may cause the set \(Q \) to belong to \(\Theta^\prime \). To see the term for the second scenario, observe that vertices \(v \) and \(v' \) have at least \(\frac{2m}{3} - 2 + \frac{m}{100} \) pairs of \(X(Q) \).

Therefore, fixing \(Q \in \Theta^\prime \), and letting \(L(Q) \) denote the sets of all \(x \in L \) with \(\{n_1(x), n_2(x)\} \in X(Q) \), we know that the expected size of \(L(Q) \) is bounded by

\[
\mathbb{E}[|L(Q)|] \geq \frac{669}{1000} |L|.
\]

As above, we can apply the Chernoff bound (1) to see that with very high probability, \(|L(Q)|\) is not much smaller than its expectation:

\[
\mathbb{P}\left(|L(Q)| \leq \frac{668}{669} \cdot \mathbb{E}[|L(Q)|]\right) \leq e^{-\frac{\mathbb{E}[|L(Q)|]}{2 \cdot 669^2}} \leq e^{-\frac{|L|}{2 \cdot 10^2}} \leq e^{-\frac{m}{2 \cdot 10^4}} \leq \frac{0.001}{m \log m},
\]

where we use (2) and the fact that \(m \geq 10^{25} \). So with probability at least 0.997, we have chosen \(N \) in a way that (A), (B), (C), and also

(A) \(|L(Q)| > \frac{668}{1000} |L| = \frac{2004}{3000} |L|\) for every \(Q \in \Theta^\prime \)

hold.

Because of (6) (and 3), and since \(L'' \supseteq L(S^*) \), this means that

\(S^* \notin \Theta^\prime \).

In particular, the degree of \(v_0 \) (in \(G - w \)) is less than \(\frac{2m}{3} + \frac{m}{100} \), and each vertex of \(S^* \) has less than \(\frac{m}{100} \) neighbours outside \(N(v_0) \). Moreover, by the choice of \(S^* \), we can deduce that

\[
\text{every vertex in } S \cap J'' \text{ has less than } \frac{m}{100} \text{ neighbours outside } N(v_0). \tag{11}
\]

By (3) and by (6), and since \(|R| = |L| - |S|\), we know that

\[
|S \cap J''| \geq |J''| - |R| \geq \left(\frac{198}{300}\right)^2 |L| - \left(\frac{\gamma}{2}\right)^4 m \geq \frac{2}{5} |S|.
\tag{12}
\]

Fix a subset \(Z \) of size \(\frac{m}{4} \) of \(G - w - N(v_0) \), and let us look at the average degree \(d \) of the vertices of \(Z \) into \(S \cap J'' \). We have

\[
d \cdot \frac{m}{4} = \sum_{v \in Z} \deg(v, S \cap J'') = \sum_{v \in S \cap J''} \deg(v, Z) \leq \frac{m \cdot |S \cap J''|}{100},
\]

where for the last inequality we used (11). Thus
Now use (12) to see that the average degree of the vertices of \(Z \) into \(S \) is bounded from above by
\[
\frac{|S \cap J^m|}{25}.
\]
This means that there must be at least one vertex in \(Z \), say the vertex \(z \), which has degree at most
\[
\left(\frac{2}{3} - \frac{100}{3} \right) |S|
\]
into \(S \). However, by Chernoff’s bound (1), and since the expected degree of any vertex of \(G - W \) into \(S \) is at least
\[
\left(\frac{2}{3} - \frac{1}{1000} \right) |S|,
\]
we know that this would only happen with probability at most 0.001. So we can assume we are in a situation where no such vertex \(z \) exists, and reach a contradiction, as desired.

Resumingly, we know that with probability at least 0.995, our choice of \(S \) and \(N \) guarantee that a set \(S^* \) as above does not exist in the resulting auxiliary graph \(H' \), and thus, Hall’s condition holds in \(H' \). This means we find the desired matching, which finishes the proof of Claim 4.2, and with it the proof of Lemma 4.1.

\[\square \]

5 | THE PROOF OF LEMMA 5.1

This section is devoted to the proof of the following lemma, which proves Lemma 3.4 for all \(\gamma \)-nice trees of type 2. So, since \(\gamma \)-nice trees of type 1 are covered by Lemma 4.1, this finishes the proof of Lemma 3.4.

Lemma 5.1. There is an \(m_0 \in \mathbb{N} \) such that the following holds for all \(m \geq m_0 \), and all \(\gamma > 0 \) with \(\frac{2}{10^3} \leq \gamma < \frac{1}{30} \).

Let \(G \) be an \(m \)-good graph, with universal vertex \(w \). Let \(T \) be a tree with \(m \) edges, such that no vertex of \(T \) is adjacent to more than \(\frac{m}{10^{13}} \) leaves. Let \(T \) have a \(\gamma \)-nice subtree \(T^* \) of type 2, with root \(t^* \).

Then there are sets \(L \subseteq V(T^*) \setminus \{t^*\} \) and \(S \subseteq V(G) \) satisfying \(|L| \leq |S| - \left(\frac{\gamma}{2} \right)^4 m \). Furthermore, for any \(w' \in V(G) - (S \cup \{w\}) \), there is an embedding of \(T^* - L \) into \(G - S \), with \(t^* \) embedded in \(w' \), such that any embedding of \(T - L \) into \(G - S \) extending our embedding of \(T^* - L \) can be extended to an embedding of all of \(T \) into \(G \).

In the proof of Lemma 5.1 we will use Azuma’s inequality which can be found for instance in [13]). This well-known inequality states that for any sub-martingale \(\{X_0, X_1, X_2, \ldots\} \) which for each \(k \) almost surely satisfies \(|X_k - X_{k-1}| < c_k \) for some \(c_k \), we have that

\[
P |X_n - X_0 \leq -t| \leq e^{-\frac{t^2}{2 \cdot \sum_{k=1}^n c_k}}
\]

for all \(n \in \mathbb{N}_+ \) and all positive \(t \).

Let us now give the proof of Lemma 5.1.

Proof of Lemma 5.1. We choose \(m_0 \in \mathbb{N} \) large enough so that certain inequalities below are satisfied.
Let G be an m-good graph, with universal vertex w. Let T be a tree with m edges, such that no vertex of T is adjacent to more than $\frac{m}{10^4}$ leaves. We are also given a γ-nice subtree T^* of T, with root t^*, and since T^* is of type 2, there is a set $L^* \subseteq V(T^*) \setminus \{t^*\}$ of $\frac{\gamma m}{40}$ leaves of T. Instead of L^*, we will work with the set L which is obtained from L^* by deleting all neighbours of t^*. Clearly,

$$|L| = \frac{\gamma m}{41} \geq \left\lfloor \frac{m}{10^9} \right\rfloor$$

leaves of T.

To prove Lemma 5.1, it suffices to find a set $S \subseteq V(G)$ satisfying $|S| \leq |L| - \left(\frac{m}{2}\right)^4 m$, to embed $T^* - L$ into $G - S$, and show that any extension of this embedding to an embedding of $T - L$ into $G - S$ can be completed to an embedding of all of T into G.

For this, let us define t as the vertex of T^* that is adjacent to most leaves from L^*. Define α so that t is incident to $\lceil \alpha m \rceil$ leaves and call L_t the set of these leaves. By the assumptions of the lemma, $\alpha \leq 10^{-23}$.

We now randomly embed $T^* - L$ in a top down fashion, where we start by putting t^* in to w'. At each moment, when we embed a vertex $v \neq t$, we choose a uniformly random neighbour of the image of the (already embedded) parent $p(v)$ of v. When we reach t, we embed t into w, the universal vertex of G. (This gives us some leeway when we later have to embed L.) We do not have to worry about the connection of w to the image of $p(t)$ because of the universality of w.

For every $x \in L$, let us call $n(x)$ the image of $p(x)$.

Next, we pick a set S of size

$$|S| = |L| - \left(\frac{m}{2}\right)^4 m$$

uniformly and independently at random in what remains of G. It only remains to prove the following analogue of Claim 4.2 to finish the proof of Lemma 5.1.

Claim 5.2. For any set $R \subseteq V(G)$ of $|L| - |S|$ vertices, there is a bijection between L and $S \cup R$ mapping each vertex $x \in L$ to a neighbour of $n(x)$.

To prove Claim 5.2, consider a set R of size $|L| - |S|$ such that there is no matching from L to $S \cup R$ in the auxiliary bipartite graph H which is defined as follows. The bipartition classes of this graph H are L and $S \cup R$, and every vertex $x \in L$ is joined to all unoccupied neighbours of the image $n(x)$ of the parent of x in $S \cup R$. Our aim is to derive a contradiction from the assumption that such a set R exists.

Our first observation is that by Chernoff’s bound (1) and by our assumption on the minimum degree of G, we know that with probability at least 0.999, every vertex of L has degree at least $\left(\frac{2}{3} - \frac{2}{10^4}\right)|L|$ in H.

Furthermore, as there is no matching from L to $S \cup R$ in H, we can apply Hall’s theorem. This gives a partition of L into sets L' and L'' and a partition of $S \cup R$ into sets J' and J'' such that there are no edges from L' to J'', and such that furthermore,
\[|J'| < |L'| \text{ and } |L'^n| < |J'^n|. \]

As \(L' \neq \emptyset \), we know that \(|J'| \geq \left(\frac{2}{3} - \frac{2}{10^4} \right) |L| \) and therefore,

\[|J'^n| \leq \left(\frac{1}{3} + \frac{2}{10^4} \right) |L|. \tag{15} \]

Since \(L'' \) contains all the children of \(t \) (this follows from the definition of \(H \) and from the fact that \(|U'| < m \)), and because of the definition of \(\alpha \), we know that \(L'' \) has size at least \(\lceil \alpha m \rceil \) and hence

\[|J''| > \lceil \alpha m \rceil. \tag{16} \]

We now consider the set \(V^* \) of vertices of \(G \) which are adjacent to at most \(\left(\frac{1}{3} + \frac{2}{10^4} \right) |L| \) vertices of \(L \) in \(H \). (The vertices in \(V^* \) are those that serve only for relatively few leaves in \(L \) as a possible image.) Note that the size of \(V^* \) depends on how we embedded \(T^* - L \) (which was done randomly). We plan to show that

with probability \(\geq 0.99 \), we embedded \(T^* - L \) such that \(|V^*| < \alpha m \). \tag{17} \]

Then, by (16) there is a vertex \(v \in J'' \setminus V^* \). As the neighbours of \(v \) in \(H \) are contained in \(L'' \), we get that

\[|J''| > |L''| \geq \left(\frac{1}{3} + \frac{2}{10^4} \right) |L|, \]

which is a contradiction to (15). This would prove Claim 5.2.

So, it only remains to show (17). For this, we start by bounding the probability that a specific vertex \(v \) is in \(V^* \). Consider any vertex \(p \) that is the parent of some subset \(L_p \) of \(L \), and recall that \(p \) was embedded randomly in the neighbourhood \(N_p \) of the image of the parent of \(p \). By our minimum degree condition on \(G \), we know that \(v \) is incident to at least \(\frac{499}{1000}|N_p| \) vertices of \(N_p \).

Hence, the probability that \(v \) is adjacent to \(p \) in \(G \), and thus to all of \(L_p \) in \(H \), is bounded from below by \(\frac{499}{1000} \). Since \(T^* - L \) is very small, this bound actually holds independently of whether \(v \) is adjacent to \(L_p \), for some other parent \(p' \). Therefore,

the expected degree of \(v \) into \(L_p \) is at least \(\frac{499}{1000}|L_p| \), \tag{18} \]

for each \(p \).

Our plan is to use Azuma's inequality (i.e., inequality (13) above). For this, order the set \(P \) of parents \(p \) of subsets \(L_p \) of \(L \) as above, writing

\[P = \{ p_1, p_2, \ldots, p_n \}. \]

For \(1 \leq i \leq n \), write \(d_i \) for the degree of \(v \) into \(L_{p_i} \). Now, define the random variable
\[X_k := \sum_{1 \leq i \leq k} d_i + \frac{499}{1000} \cdot \sum_{k < i \leq n} L_{p_i} \cdot \]

By (18), this is a submartingale. Observe that

\[X_0 = \frac{499}{1000} \cdot |L| \]

and

\[X_n = \text{deg}(v, L) . \]

We set \(c_k := |L_{p_k}| \) for all \(k \leq n \). Then \(\sum_{k=1}^{n} c_k = |L| \), and furthermore, by our choice of the vertex \(t \) in the beginning of the proof of Lemma 5.1, we know that

\[c_k \leq \alpha m, \text{ for all } k \leq n. \]

This, together with Azuma’s inequality (13), tells us that the probability that \(v \) is in \(V^* \) can be bounded as follows:

\[
\mathbb{P} [v \in V^*] \leq \mathbb{P} [\text{deg}(v, L) \leq \frac{336}{1000} |L|]
= \mathbb{P} \left[X_n - X_0 \leq -\frac{163}{1000} |L| \right]
\leq e^{-\frac{(163/1000)^2 |L|}{2am \cdot \sum_{k=1}^{n} c_k}}
\leq e^{-\frac{163^2}{2a \cdot 10^{35}}}
\leq e^{-\frac{1}{10^{19} \cdot \alpha}}.
\]

So, the expected size of \(V^* \) is at most \(m \cdot e^{-\frac{1}{10^{19} \cdot \alpha}} \). Using Markov’s inequality we see that the probability that \(V^* \) contains more than \(\alpha m \) vertices is bounded from above by

\[
\frac{e^{-\frac{1}{10^{19} \cdot \alpha}}}{\alpha} \leq 0.01,
\]

where we used the fact that \(\alpha \leq 10^{-23} \) by (14). This proves (17), and thus finishes the proof of Claim 5.2, and of Lemma 5.1.

\[\square \]

6 | THE PROOF OF LEMMA 3.7

The whole section is devoted to the proof of Lemma 3.7. We employ an ad-hoc strategy, which we briefly outline now.

First, we clean up the \(\gamma_0 \)-special host graph \(G \), ensuring a convenient minimum degree between and inside the three sets \(X_i \) (the witnesses to the fact that \(G \) is \(\gamma_0 \)-special, see Definition 3.5). Then, given the tree \(T \) with its \(\gamma_1 \)-nice subtree \(T^* \), rooted at \(t^* \), we preprocess the part \(T - T^* \) we have to embed. We do this by strategically choosing a small set
Z ⊆ V (T − (T* − t*))], and divide the set A of all components of T − (T* − t*) − Z into two sets A1 and A2, which have certain useful properties (see Claim 6.1). We embed T − L, extending the given embedding of T* − L.

We now distinguish three cases. In the first two cases, many elements of A are three-vertex paths, and we embed them into X1 ∪ X3 and embed the rest into X1 ∪ X2. In the third case, there are not so many elements of A that are three-vertex paths, and we will use the partition A1 ∪ A2 of A. Components from sets A1 will be embedded into X1 ∪ X3, and components from A2 will be embedded into X2 ∪ X3.

Let us now formally give the proof of Lemma 3.7.

6.1 | Setting up the constants and summarising the situation

For the output of Lemma 3.7, we choose

\[\beta := \frac{1}{10^{10}} \text{ and } m_0 := \frac{1}{\beta^{100}}, \]

and set

\[\gamma_0 := \frac{2}{10^7} \text{ and } \gamma_1 := \frac{1}{50}. \]

Now, assume we are given a \(\gamma \)-special \((m + 1)\)-vertex graph G of minimum degree at least \(\left\lfloor \frac{2m}{3} \right\rfloor \), for some \(m \geq m_0 \), together with a tree T having m edges, such that none of the vertices of T is adjacent to more than \(\beta m \) leaves. Assume T has a \(\gamma_1 \)-nice subtree \(T^* \) rooted at \(t^* \), and there are sets \(L \subseteq V(T^*) \setminus \{t^*\} \) and \(S \subseteq V(G) \) such that \(|S| \leq |L| - \left\lfloor \left(\frac{\gamma}{2}\right)^4 m \right\rfloor \).

Furthermore, for any large enough set \(W \), it is possible to embed \(T^* - L \) into a subset \(\varphi(T^* - L) \) of \(V(G) - S \), with \(t^* \) going to \(W \). (We will specify below which set \(W \) we will use.) Once \(T^* - L \) is embedded, our task is to embed the rest of \(T - L \) into \(G - (\varphi(T^* - L) \cup S) \). Observe that because of the discrepancy of the sizes of the sets \(L \) and \(S \), we can count on an approximation of at least \(\left\lfloor \left(\frac{\gamma}{2}\right)^4 m \right\rfloor \), that is, we know our embedding will leave at least \(\left\lfloor \left(\frac{\gamma}{2}\right)^4 m \right\rfloor \) vertices of \(G - (\varphi(T^* - L) \cup S) \) unused.

6.2 | Preparing G for the embedding

Since G is \(\gamma \)-special, there are sets \(X_1, X_2, X_3 \) partitioning \(V(G) \) such that

\[\frac{m}{3} - 3\gamma_0 m \leq |X_i| \leq \frac{m}{3} + 3\gamma_0 m \quad (19) \]

for each \(i = 1, 2, 3 \), and such that
there are at most $\gamma_0^{10|X_i| \cdot |X_j|}$ edges between X_i and X_j.

(20)

Using the minimum degree condition on G, and using (20), an easy calculation shows that we can eliminate at most $\gamma_0^5 m$ vertices from each of the sets X_i, for $i = 1, 2$, so that the vertices of the thus obtained subsets $X'_i \subseteq X_i$ each have degree at least $\left\lfloor \frac{2m}{3} \right\rfloor - \gamma_0^5|X_3 - 1| \leq X'_i \cup X_3$, for $i = 1, 2$. Then, because of (19), we can deduce that there are at least $(1 - 6\gamma_0)|X'_i||X_3|$ edges between the sets X'_i and X_3, for $i = 1, 2$. So, we can eliminate at most $2 \cdot \sqrt{6\gamma_0} m$ vertices from X_3, obtaining a set X'_3, so that each of the vertices in X'_3 has degree at least $(1 - 6\sqrt{\gamma_0})|X'_i| \leq X'_3$, for $i = 1, 2$.

Resumingly, we eliminated a few vertices from each of the sets X_1, X_2, X_3 to obtain three sets X'_1, X'_2, X'_3 satisfying

$$|X'_i| \geq |X_i| - 5\sqrt{\gamma_0} m$$

(21)

such that for $i = 1, 2$, and any vertex v in X'_3,

the degree of v into X'_i is at least $|X'_i| - 3\sqrt{\gamma_0} m$.

(22)

Furthermore, for $i = 1, 2$, for any $v \in X'_i$ and any $X \in \{X'_i, X'_3\}$,

the degree of v into X is at least $|X| - 6\sqrt{\gamma_0} m$.

(23)

Indeed, to see (23) for $X = X'_i$, we use (19) to calculate that

$$\text{deg}\left(v, X'_i\right) = \text{deg}\left(v, X'_i \cup X_3\right) - \text{deg}\left(v, X_3\right) \geq \left\lfloor \frac{2m}{3} \right\rfloor - \gamma_0^5|X_3 - 1| - |X_3|$$

$$\geq \left\lfloor \frac{m}{3} \right\rfloor - \left(\gamma_0^5 + 3\gamma_0\right)m$$

$$\geq |X'_i| - 6\sqrt{\gamma_0} m,$$

and for (23) for $X = X'_3$, we calculate similarly, also using (21), to see that

$$\text{deg}\left(v, X'_3\right) \geq \text{deg}\left(v, X'_i \cup X_3\right) - |X'_i| - \left(|X_3| - |X'_3|\right)$$

$$\geq \left\lfloor \frac{2m}{3} \right\rfloor - \gamma_0^5|X_3 - 1| - (|X_i| - |X'_3|)$$

$$\geq |X'_i| - 6\sqrt{\gamma_0} m.$$

6.3 Finding Z and grouping the components

Let us next have a closer look at the to-be-embedded $T - T^*$. This forest might have relatively large components, which, for reasons that will become clearer below, might add unnecessary difficulties to our embedding strategy. To avoid these difficulties, we will now find a set $Z \subseteq V(T - (T^* - t*))$ of up to three vertices so that all components in $T - (T^* - t*) - Z$ have
controlled sizes, and can be grouped into convenient sets. (Note that \(t^* \) may or may not lie in \(Z \).)

More precisely, our aim is to prove the following statement.

Claim 6.1. There are an independent set \(Z \subseteq V(T) \setminus V(T^* - t^*) \) with \(|Z| \leq 3\) and a partition of the set \(A \) of components of \(T - (T^* - t^*) - Z \) into sets \(A_1, A_2 \) such that for \(i = 1, 2 \),

(i) all but at most one \(T \in A \) has exactly one vertex \(r_T \) neighbouring \(Z \);

(ii) \(\frac{m}{3} + \gamma_1 m \leq \left| \bigcup_{T \in A_i} V(T) \right| \leq \frac{2m}{3} - \gamma_1 m \); and

(iii) if \(\left| \bigcup_{T \in A_i} V(T) \right| \geq \frac{\left| \bigcup_{T \in A} V(T) \right|}{2} + \frac{1}{\gamma_0} \), then each \(T \in A_i \) has at least \(\frac{1}{\gamma_0} \) vertices.

For proving Claim 6.1, we plan to use the following folklore argument, and for completeness, we include its short proof.

Claim 6.2. Every tree \(D \) has a vertex \(t_D \) such that each component of \(D - t_D \) has size at most \(\frac{|D|}{2} \).

Proof. To see Claim 6.2, temporarily root \(D \) at any leaf vertex \(v_L \). Let \(t_D \) be a vertex that is furthest from \(v_L \) having the property that \(t_D \) and its descendants constitute a set of at least \(\frac{|D|}{2} \) vertices. Then each component of \(D - t_D \), including the one containing \(v_L \), has at most \(\frac{|D|}{2} \) vertices. \(\square \)

We can now prove Claim 6.1.

Proof of Claim 6.1. Set \(T' := T - (T^* - t^*) \) and apply Claim 6.2 to \(T' \). We obtain a vertex \(z \). Let \(A_z \) be the set of all components of \(T' - z \).

First assume there is a set \(A_1 \subseteq A_z \) with

\[
\frac{|\bigcup_{T \in A} V(T)|}{2} \leq \left| \bigcup_{T \in A_1} V(T) \right| \leq \frac{2m}{3} - \gamma_1 m. \tag{24}
\]

We can assume that \(A_1 \) is smallest possible with (24). This choice guarantees that either \(A_1 \) has no components with at most \(\frac{1}{\gamma_0} \) vertices, or \(|\bigcup_{T \in A_1} V(T)| < \frac{|\bigcup_{T \in A} V(T)|}{2} + \frac{1}{\gamma_0} \).

So \(Z := \{z\}, A_1 \) and \(A_2 := A \setminus A_1 \) are as desired.

Now assume there is no set \(A_1 \) as in (24). Then

\[
\text{there is not set } A' \subseteq A_z \text{ with } \frac{m}{3} + \gamma_1 m \leq |\bigcup_{T \in A'} V(T)| \leq \frac{2m}{3} - \gamma_1 m. \tag{25}
\]

(since if there was such a set \(A' \), then either \(A' \) or \(A \setminus A' \) would qualify as \(A_1 \)). We claim that \(T' - z \) has three components \(C_1, C_2, C_3 \) such that
\[
\frac{m}{3} - 2\gamma m \leq |C| \leq \frac{m}{3} + \gamma m
\]

(26)

for \(i = 1, 2, 3\) (additionally, \(T' - z\) might have a set of very small components). Indeed, take a subset of \(A' \subseteq A\) such that \(|\cup_{T \in A}, V(T)|\) is maximised among all \(A'\) with \(|\cup_{T \in A}, V(T)| \leq \frac{2}{3}m - \gamma m\). Because of (25), we know that \(|\cup_{T \in A'}, V(T)| < \frac{m}{3} + \gamma m\), and moreover, for any component \(C\) from \(A \setminus A'\) we have that \(|V(C)| < \frac{2}{3}m - \gamma m\). So, \(|V(C)| > \frac{m}{2} - 2\gamma m\) for any such \(C\), and Claim 6.2 implies that \(|V(C)| \leq \frac{m}{2}\). Hence there are exactly two such components, \(C_1\) and \(C_2\), both of which fulfil (26), and \(A = A' \cup \{C_1, C_2\}\).

A similar argument (using the fact that we did not choose \(C_1\) together with a subset of \(A'\) instead of choosing \(A'\)) gives that \(A'\) contains a component \(C_3\) for which (26) holds, and that

\[
|V(T - T^* - C_1 - C_2 - C_3)| \leq 3\gamma m.
\]

(27)

We now embed \(T \rightarrow T^*\), distinguishing three cases. For convenience, let us define \(A^* \subseteq A\) as the set of those components that contain \(t^*\) or are adjacent to more than one vertex of \(Z\). By Claim 6.1 (i), \(|A^*| \leq 2\). Also, call \(T \in A\) bad if \(T\) is isomorphic to a 3-vertex path whose middle vertex has degree 2 in \(T\). Let \(B\) be the set of all bad components in \(A \setminus A^*\).

6.4 Embedding \(T \rightarrow T^*\) if \(B\) is large

We show that if

\[
|\cup_{T \in B} V(T)| > \frac{m}{2},
\]

(28)
then we can embed $T - T^*$. Indeed, choose W as the set X'_1. That is, we let $T^* - L$ be embedded into $\varphi(T^* - L) \subseteq (X_1 \cup X_2 \cup X_3) \setminus S$, with t^* embedded into any vertex from X'_1. We also embed all vertices from $Z \setminus \{t^*\}$ into vertices from X'_1, respecting possible adjacencies to t^*. After doing this, we define, for $i = 1, 2, 3$,

$$S_i := X'_1 \setminus (\varphi(T^* - L) \cup \varphi(Z) \cup S).$$

Note that, for $i = 1, 2, 3$, we have that

$$\frac{m}{3} + 3\gamma_0 m \geq |S_i| \geq \frac{m}{3} - 3\gamma_0 m - 5\sqrt[3]{\gamma_0} m - \gamma_1 m - 4 \geq \frac{m}{3} - \frac{11}{10}\gamma_1 m,$$

because of (19) and (21).

Consider the following way to embed trees from B into $S_2 \cup S_3$: We put the first vertex into S_3, the second vertex into S_2, and the third vertex into S_3. Embed as many trees from B as possible in this way. Because of (28), and because of (22) and (23), we will use all but at most $3\gamma_0 m + 3\sqrt[3]{\gamma_0} m$ of S_2 (and about half of S_3).

For the embedding of the remaining trees from A (including those trees from B that have not been embedded yet), note that for any tree $T \in A \setminus A^*$, we can embed the larger\(^2\) of its bipartition classes, minus the root r_T of T, into S_3, and the other bipartition class into S_1. For the trees $T \in A^*$ we can proceed similarly, only taking special care when embedding the parent p of a vertex that is already embedded (either t^* or a vertex from Z). We will embed p into either S_1 or S_3 (as planned), respecting the adjacencies to its two already embedded neighbours (both of which see almost all of $S_1 \cup S_3$, so this is not a problem). Note that if vertex t^* belongs to the class that was chosen to be embedded into S_3, we ‘spoil’ our plan by one vertex since t^* has been embedded in S_1.

We embed trees from A as long as we can in the manner described above. The next tree T is embedded with its larger bipartition class into $S_1 \cup S_3$, and the smaller class into S_3, using as much as possible of S_3. Because of (22) and (23), we will use all but at most $6\sqrt[3]{\gamma_0} m + 1$ vertices of S_3. The remaining trees from A are embedded into S_1, which finishes the embedding.

6.5 Embedding $T - T^*$ if B is medium-sized

We now show how to embed $T - T^*$ if

$$\frac{4}{9} m < |\bigcup_{T \in B} V(T)| \leq \frac{m}{2}. \quad (29)$$

In this case, we choose W as the set X'_3 if $t^* \in Z$, that is, we let $T^* - L$ be embedded into $\varphi(T^* - L) \subseteq (X_1 \cup X_2 \cup X_3) \setminus S$, with vertex t^* embedded into a vertex $\varphi(t^*)$ from X'_3. If $t^* \notin Z$, we choose W as the set X'_3.

Now assume that $T^* - L$ has been embedded. We next embed all vertices from $Z \setminus \{t^*\}$ into X'_3, respecting possible adjacencies to t^*. We then set, for $i = 1, 2, 3$,

\[^2\text{If both classes have the same size, we choose one class arbitrarily.}\]
\[S_i := X'_i \setminus (\varphi(T^* - L) \cup S \cup \varphi(Z \cup \{t^*\})), \]

and because of (19) and (21), we have

\[
\frac{m}{3} + 3\gamma_0 m \geq |S_i| \geq \frac{m}{3} - (3\gamma_0 + 5\sqrt{\gamma_0})m - \left(\gamma_i m - \left\lfloor \frac{\gamma_i}{2} m \right\rfloor\right) - 4
\]

\[
\geq \frac{m}{3} - \frac{11}{10} \gamma_i m. \tag{30} \]

We will now embed some trees \(T \in B \) in the following way. Embed the first and the third vertex of \(T \) into \(S_2 \), while the second vertex may go to either \(S_2 \) or \(S_3 \). We embed as many trees from \(B \) as possible in this way, and fill as much as possible of the set \(S_3 \), and we embed the few remaining trees from \(B \) into \(S_1 \). We finish the embedding by putting all the remaining components into \(S_1 \cup S_3 \), as follows.

Consider any tree \(\bar{T} \in \mathcal{A} \setminus (\mathcal{A}^* \cup \mathcal{B}) \), and let \(r_T \) denote its root. As the parent of \(r_T \) was embedded into \(S_3 \), we have to embed \(r_T \) into \(S_1 \), but then we could either embed \(T - r_T \) so that the even levels go to \(S_1 \), and the odd levels go to \(S_3 \), or we could embed \(T - r_T \) the other way around (if there is enough space). This means that for each \(T \in \mathcal{A} \), we can embed its larger bipartition class, except possibly for \(r_T \), into \(S_3 \), and the rest into \(S_1 \). Even better, since any vertex in \(S_3 \) is adjacent to almost all of \(S_3 \), we note that any of the vertices that went to \(S_3 \) could alternatively have been placed in \(S_1 \). Hence, we can embed \(T \) such that for any given \(t \), exactly \(t \) vertices go to \(S_3 \), and the rest go to \(S_1 \).

So, as long as there is reasonable space left in both sets \(S_1 \) and \(S_3 \), we know that for each tree \(T \in \mathcal{A} \setminus \mathcal{A}^* \) with \(|V(T)| \geq 5 \), one can embed two fifth of its vertices (or less, if desired) into \(S_3 \) (as \(\frac{2}{5}|V(T)| \leq \left\lfloor \frac{|T| - 1}{2} \right\rfloor \) for these trees). For trees \(T \in \mathcal{A} \setminus \mathcal{A}^* \) with \(|V(T)| < 5 \), it is easy to see that \(T \notin B \) ensures that at least half of its vertices can be embedded into \(S_1 \) (or less, if desired).

For the trees in \(\mathcal{A}^* \) we can argue analogously, except that the vertex \(t^* \) is already embedded into the set \(X'_1 \), and any neighbour of a vertex from \(Z \) is forced to go to \(S_1 \). Therefore we might have two vertices less than expected going to \(S_3 \), but this does not matter for the overall strategy. Thus, we can embed all trees from \(\mathcal{A} \setminus \mathcal{B} \) into \(S_2 \cup S_3 \), which finishes the embedding in this case.

6.6 Embedding \(T - T^* \) if \(B \) is small

We finally show how to embed \(T - T^* \) if

\[|\bigcup_{T \in B} V(T)| \leq \frac{4}{9} m. \tag{31} \]

As in the previous case, we set \(W := X'_1 \) if \(t^* \in Z \) and set \(W := X'_1 \) otherwise. Without loss of generality, let us assume that \(t^* \) lies in a component from \(\mathcal{A}_1 \) (otherwise we rename \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \)).

Now assume that \(T^* - L \) has been embedded. We now embed \(Z \setminus \{t^*\} \) into \(X'_3 \), respecting possible adjacencies to \(t^* \). We then embed the at most \(4\beta m \) leaves adjacent to \(Z \setminus \{t^*\} \) anywhere
in G, using (22) and (23). For $i = 1, 2, 3$, let S_i be the set of all unused vertices from $X'_i \setminus S$. By (19) and (21), and since $\beta \ll \gamma_0$, we calculate similarly as for (30) that

$$m/3 + 3\gamma_0 m \geq |S_i| \geq m/3 - \frac{11}{10}\gamma_0 m. \quad (32)$$

We will next embed the components from A. As in the previous case, we see that for any tree $T \in A \setminus (A^* \cup B)$, for any $i \in \{1, 2\}$, and for any $t \leq \left\lfloor \frac{|T| - 1}{2} \right\rfloor$, we can embed T into $S_i \cup S_3$ with exactly t vertices going to S_3. For the trees in A^* the same is true if we replace t with $t - 1$.

So, as above, the trees in B can be embedded with a third of their vertices (or less, if desired) going to S_3. The trees in $A \setminus B$ having size less than $\frac{1}{\gamma_0}$ can be embedded with two fifth of their vertices, or less, if desired, going to S_3. For the at most two trees in $A^* \setminus B$ the same is true, but we might have (in total) two vertices less in S_3. For the trees in A having size at least $\frac{1}{\gamma_0}$, however, we can work under the stronger assumption that half of their vertices (or less, if desired) may be embedded into S_3. This is so because there are at most $\gamma_0 m$ such trees, and hence for embedding their roots we will use at most $\gamma_0 m$ vertices, which is small enough to play no role in the calculations.

We will now see that the above implies that, for $i = 1, 2$, we can embed all trees from A_i into $S_i \cup S_3$, thus concluding the proof of Lemma 3.7.

Indeed, if both A_1 and A_2 contain elements of B, then by Claim 6.1 (iii), they contain roughly the same number of vertices. By (31), each A_i has few enough components from B to ensure that there is a reasonable number of vertices in components which can be embedded with at least two fifths in S_3. So we can embed all trees from A_i, leaving at most $15\sqrt{\gamma_0} m$ vertices from S_i unused (here we also use 22, 23, and 32).

On the other hand, if only the smaller set among A_1 and A_2 contains elements of B, then we can embed this set as before. For the other set we recall that since it does not contain any small trees, half of its vertices (or less, if desired) can be embedded into S_3. So we finish the embedding without a problem.

ORCID

Maya Stein © http://orcid.org/0000-0001-7922-6413

REFERENCES

1. M. Ajtai, J. Komlós, and E. Szemerédi, *On a conjecture of Loebl*. In Graph theory, combinatorics, and algorithms, Vols. 1, 2 (Kalamazoo, MI, 1992), Wiley, New York, 1995, pp. 1135–1146.
2. N. Alon and J. H. Spencer, *The probabilistic method*. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd ed., John Wiley & Sons Inc., Hoboken, NJ, 2008. With an appendix on the life and work of Paul Erdős.
3. G. Besomi, M. Pavez-Signé, and M. Stein, *Degree conditions for embedding trees*, SIAM J. Disc. Math. 33 (2019), no. 3, 1521–1555.
4. G. Besomi, M. Pavez-Signé, and M. Stein, *Maximum and minimum degree conditions for embedding trees*, SIAM J. Disc. Math. 34 (2020), no. 4, 2108–2123.
5. G. Besomi, M. Pavez-Signé, and M. Stein, *On the Erdős-Sós conjecture for trees with bounded degree*, Comb. Probab. Comput. 30 (2021), no. 5, 741–761.
6. P. Erdős, Z. Füredi, M. Loebl, and V. T. Sós, *Discrepancy of trees*, Stud. Sci. Math. Hungar. 30 (1995), no. 1–2, 47–57.
7. F. Havet, B. Reed, M. Stein, and D. Wood, *A variant of the Erdős-Sós conjecture*, J. Graph Theory. 94 (2020), no. 1, 131–158.

8. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, *The approximate Loebl-Komlós-Sós conjecture I: the sparse decomposition*, SIAM J. Disc. Math. 31 (2017), no. 2, 945–982.

9. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, *The approximate Loebl-Komlós-Sós conjecture II: the rough structure of LKS graphs*, SIAM J. Disc. Math. 31 (2017), no. 2, 983–1016.

10. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, *The approximate Loebl–Komlós–Sós conjecture III: the finer structure of LKS graphs*, SIAM J. Disc. Math. 31 (2017), no. 2, 1017–1071.

11. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, *The approximate Loebl–Komlós–Sós conjecture IV: embedding techniques and the proof of the main result*, SIAM J. Disc. Math. 31 (2017), no. 2, 1072–1148.

12. J. Komlós, G. Sárközy and E. Szemerédi, *Spanning trees in dense graphs*, Comb. Prob. Comput. 5 (2001), 397–416.

13. C. McDiarmid, *On the method of bounded differences*. In Surveys in combinatorics, 1989 (Norwich, 1989), vol. 141 of London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge, 1989, pp. 148–188.

14. V. Rozhoň, *A local approach to the Erdős-Sós conjecture*, SIAM J. Disc. Math. 33 (2019), no. 2, 643–664.

15. B. Reed and M. Stein, Embedding spanning trees in graphs of high minimum degree which have a universal vertex I: an approximate asymptotic version, *J. Graph Theory* (Accepted for publication).

How to cite this article: B. Reed and M. Stein, *Spanning trees in graphs of high minimum degree with a universal vertex II: a tight result*, J. Graph Theory. 2023;102:797–821. https://doi.org/10.1002/jgt.22899