A review of seagrass detection, mapping and monitoring applications using acoustic systems

Mustafa Umit Gumusay, Tolga Bakirmaz, Inci Tuney Kizilkaya and Nedim Onur Aykut

Geomatic Engineering, Yildiz Technical University, Istanbul, Turkey; Biology, Ege University, Izmir, Turkey

ABSTRACT

Seagrass meadows are key elements of marine ecosystems as they affect the physical, chemical and biological environment and provide habitats for fish and invertebrates. Human activities have caused a deterioration in seagrass which has led to unstable benthic habitats; therefore, to prevent major decline, seagrass distribution must be mapped and monitored. Acoustic systems allow researchers, scientists and decision makers to collect high-resolution datasets such as bathymetry, backscatter and sub-bottom profiles. These systems are able to characterise the properties of the seafloor including plants, sediments and habitats. In this review, we examine seagrass mapping, monitoring and detection applications using acoustic systems in the literature. Although there are various methodologies for data collection, processing, classification and validation, these are limited to certain seagrass species or study areas. Further worldwide research is required to achieve consistent seagrass detection systems with data acquisition, pre-processing, classification and post-processing.

Introduction

Seagrass ecosystems provide ecologically essential functions which influence the physical, chemical and biological environment in coastal waters by producing and exporting organic carbon, regulating carbon dioxide, nutrient cycling, sediment stabilisation, preventing coastal erosion and reducing exposure to the bacterial pathogens of humans, fish and invertebrates (Lamb et al., 2017; Orth et al., 2006). As seagrasses grow, they rise into the reefs, trap sediment, mediate the movement of the waves, clarify the water and protect the beaches from erosion. Thus, the role of seagrass meadows in coastal marine environments is often compared to that of a forest (Boudouresque et al., 2012). These species are large and live for a long time, but they grow slowly (1–6 cm per year) and take a long time to regenerate once harmed (Pergent et al., 2016).

Seagrass and other benthos in the sea ecosystem are under human pressure (Brown, Smith, Lawton, & Anderson, 2011). Fishing, mining, pollution and other human activities damage the seabed ecosystem and reduce the benthic biodiversity. If no precautions are taken, fish and sea products are estimated to dramatically reduce by the middle of the 21st century (Worm et al., 2006), and all the world’s oceans are said to be affected (Halpern et al., 2008). According to the studies, only 5–10% of the world’s seafloor is mapped (Wright & Heyman, 2008). Therefore, it is impossible to manage resources effectively and protect ecologically substantial areas. Marine ecosystems must be mapped to determine marine protected areas (MPAs) and manage resources. Due to the limitations of classic surveying techniques, information about benthic habitat’s ecologic function and geographic diversity is scarce (Wright & Heyman, 2008). Geological and biological research into the seafloor was carried out in the early part of the 19th century by collecting samples from the bottom of the sea (Eleftheriou, 2013); however, sampling techniques such as grab and trawl cannot characterise biological patterns and processes (Van Rein, Brown, Quinn, & Breen, 2009). These techniques provide detailed information about small areas. However, it is impossible to present biological characteristics of the seafloor on a large scale (Brown et al., 2011).

Benthic mapping and bathymetry derivation (Dekker Arnold et al., 2011; Lyons, Phinn, & Roelfsema, 2011), seagrass biomass and productivity (Hill, Zimmerman, Bissett, Dierssen, & Kohler, 2014), estuarine and coastal water quality estimation (Brando & Dekker, 2003), other coastal features and processes extraction (Klemas, 2012) studies utilising LiDAR, optical and hyperspectral satellite and airborne remote sensing technologies are widely available in the literature. As relatively easy to implement acoustic technologies have rapidly developed and became widespread, it is now possible to quickly derive accurate and high-quality backscatter and
bathymetry information that cannot be derived from optical sensors and to map the physical aspects of marine and coastal areas (Brown & Blondel, 2009; Wright & Heyman, 2008). It is now possible to obtain geomorphological and habitat information for sea bottom-related studies in extensive areas using broad-acoustic beam systems, such as side scan sonar (SSS), ground discriminating single-beam echo-sounders (e.g. RoxAnn, QTC-View, Submerged Aquatic Vegetation Early Warning System [SAVEWS]), multiple narrow-beam swath bathymetry systems, multibeam echosounder (MBES), recreational-grade fish finder SSS, forward-looking sonar (e.g. DIDSON ARIS, EchoPilot FLS, Simrad ForwardScan) and Multispectral MBES (Godet, Fournier, Toupoint, & Olivier, 2009; Wright & Heyman, 2008). By combining these techniques with conventional or remotely operated underwater vehicles (ROV) in situ to characterise the geological and biological seafloor characteristics, it is possible to produce thematic seafloor maps for management applications and defining MPAs. High-resolution seafloor mapping has recently become more prevalent as these tools become more affordable, more widely available and are integrated with Geographic Information System (GIS) (Brown et al., 2011; Mayer, 2006).

In this paper, we review the literature on seagrass mapping, detection and monitoring applications using mainly acoustic systems. There are also studies that benefit from optical and airborne systems in the same manner reviewed by Hossain, Bujang, Zakaria, and Hashim (2015). Therefore, studies using these systems are not covered in this paper.

Principal acoustic technologies for seagrass mapping applications

Seagrasses belong to four families known as Posidoniaceae (9 species), Zosteraceae (24 species), Hydrocharitaceae (25 species) and Cymodoceaceae (18 species), that is, a total of 76 species. The status and trends for these species according to The International Union for Conversation of Nature (IUCN) Red List of Threatened Species (www.iucnredlist.org) are shown in Table 1. The IUCN provides nine types of status description on its red list of species. In Table 1, the species have been given with their status and trends.

Family	Genera	Species	Status	Trend	Family	Genera	Species	Status	Trend
Posidoniaceae	Posidonia	Angustifolia	LC	STA	Hydrocharitaceae	Enhalus	acoroides	LC	DCR
		Australis	NT	DCR	Thalassia	hemprichii	LC	STA	
		Coriscaea	LC	STA	testudinum	LC	STA		
		Denhartogii	LC	STA	Halophila	australis	LC	STA	
		Kirmmani	LC	STA	bailloni	VU	DCR		
		Oceanica	LC	DCR	beccari	VU	DCR		
		Ostenfeldii	LC	N/A	capricorni	LC	N/A		
		Robertsoniae	N/A	N/A	decipiens	LC	STA		
		Sinuosa	VU	DCR	engelmannii	NT	DCR		
Zosteraceae	Phyllospadix	Iwatensis	VU	DCR	euphlebia	DD	N/A		
		Japonicus	EN	DCR	gaudichaudii	N/A	N/A		
		Jupeziuki	N/A	N/A	hawaiiana	VU	DCR		
		Scouleri	LC	STA	japonica	N/A	N/A		
		Serratus	LC	STA	johnsonii	LC	INCR		
		Torreyi	LC	STA	major	N/A	N/A		
Zostera	Angustifolia	Angustifolia	N/A	N/A					
		Asiatica	NT	DCR					
		Cogitososa	VU	DCR					
		Capensis	VU	DCR					
		Capricorni	N/A	N/A					
		Caulescens	NT	DCR					
		Chilensis	EN	DCR					
		Geojensena	EN	DCR					
		Japonica	LC	INCR					
		Marina	LC	DCR					
		Micronata	N/A	N/A					
		Cymodoceaceae	Amphibolis	antartica	LC	STA			
		Muellerii	LC	STA					
		Nigraulis	LC	DCR					
		Nottii	LC	DCR					
		Novazelandica	N/A	N/A					
		Pacifica	LC	N/A					
		Polychlamys	LC	STA					
		Tasmanica	LC	STA					
Cymodoceaceae	Syringodium	Filiforme	LC	STA					
		Isoetifolium	LC	STA					
		Thalassodendron	Ciliatum	N/A					
		Leptozaula	N/A	N/A					
		Pachyziurus	LC	N/A					

LC: least concern; NT: near threatened; VU: vulnerable; EN: endangered; DD: data deficient; DCR: decreasing; INCR: increasing; STA: stable; N/A: information not available (www.iucnredlist.org).
As can be seen from Figures 1 and 2, seagrass species are widely distributed along temperate and tropical coastlines around the world (Short, Carruthers, Dennison, & Waycott, 2007). Figure 1 shows the estimated distribution map of seagrass along the North and South American coasts. Figure 2 shows the estimated distribution map of seagrass in Europe, Africa, Asia and Australia. Each

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{Seagrass species estimated distribution in North and South America. (Data Source: IUCN, Map created by T. Bakirman).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{Seagrass species estimated distribution in Europe, Africa, Asia and Australia. (Data Source: IUCN, Map created by T. Bakirman).}
\end{figure}
geographic distribution data is produced for each species by IUCN based on former scientific studies.

There are many acoustic techniques for seagrass mapping, detection and monitoring applications discussed in the literature. The study by Newton and Stefanon (1975) seems one of the first studies that benefits from acoustic technology for marine biology application. In the study, it is aimed to show the effect of fishery dredging and distribution of P. oceanica using SSS. Maceina and Shireman (1980) used a recording fathometer to determine the distribution and biomass of hydrialla (Hydrilla verticillata) and American eelgrass (Vallisneria americana). Hanley (1982) and Stent and Hanley (1985)’s studies are the first examples of assessing submerged aquatic plant populations in lakes and reservoirs using SBES. However, the observed plant Elodea canadensis belongs to inland waters; it has not been classified as a seagrass species. The SAVEWS, which is a compact SBES system, developed by the United States (US) Army Engineer Research and Development Centre. This system was used to map low-density Halophila, Cymodoceca, Syringodium and Zostera in tropical US waters (Lee Long, Roder, McKenzie, & Hundley, 1998). Between 1997 and 1998, seagrass mapping studies have been carried out with Sector Scan Imaging Sonars (SSIS) (Bozzano, Mantovani, Siccardi, & Castellano, 1998; Roberto Bozzano & Siccardi, 1997; Siccardi, Bozzano, & Bono, 1997) and active hydroacoustic methods (Sabol, McCarthy, & Rocha, 1997).

The study by Komatsu et al. (2003) conducted in Otsushi Bay on the Sanriku coast of Japan is the first example of using MBES to map seagrass (Zostera caulescens) beds. In 2005, Descamp, Pergent, Ballesta, & Fouliquie utilised acoustics telemetry, which is a local underwater positioning system based on an acoustical interferometric scheme, to survey and map P. oceanica beds in coastal areas of France. In 2007, Warren and Peterson tried a different approach using an Acoustic Doppler Current Profiler (ADCP) to measure vegetation and canopy height. Lo Iacono et al. (2008) focused on imaging P. oceanica meadows by conducting a high-resolution sub-bottom profiler survey along with aerial photogrammetry in the Mediterranean Sea. In 2014, the US Army Engineer Research and Development Centre upgraded SAVEWS with SAVEWS Jr. under the Aquatic Plant Control Research Programme. SAVEWS Jr. uses two frequencies (200 and 800 kHz) to determine the bottom depth and presence/absence of submerged aquatic vegetation (SAV; B. Sabol et al., 2014). In recent years, recreational grade side sonar has become popular for sub-strate mapping studies in rivers (Buscombe, 2017; Hamill, Buscombe, & Wheaton, 2018). This low-cost technology has also been applied for measuring seagrass cover in shallow environments by Greene, Rahman, Kline, and Rahman (2018).

Even though various methods have been applied in seagrass studies, as the acoustic and sonar technologies have developed it is observed that MBES, SSS and SBES systems are the most common in recent scientific studies. The main technological advances can be summarised as the transition from analogue to digital data acquisition, the ability to record bathymetry along with backscatter with SSS using interferometry and narrower beam angles for MBES systems. Water column data is another innovation to detect objects between the seafloor and sea surface. Recently, multispectral acoustic backscatter, which allows observation of seafloor in multiple frequencies, has been developed. These survey grade systems are easy to implement in any study area. However, they have high marketing prices. Therefore, low-cost systems such as forward-looking sonar (FLS), fish finder sonar and recreational grade SSS have also become widespread.

Discussion

In this paper, we review 91 seagrass related studies which comprise 58 journal articles, 20 conference proceedings, 7 technical notes, 2 books, 3 Ph.D. and 1 MSc. thesis, as listed in Table 2. As it can be seen in Figure 3 which is derived from Table 2, the studies focused on seagrass became highly popular in recent years.

Acoustic instruments

As mentioned in the previous section, various acoustic methods have been used in seagrass related studies. Until 2003, it can be observed that SSS, SBES and other acoustic systems were the most commonly used methods. From 2003, using MBES increased as narrower beam angles for these systems have been exploited which allows production of high-resolution integrated bathymetry and backscatter. A total of 34 studies utilised SSS while SBES has been used in 29 studies and MBES in 24. Sixteen studies examined the capabilities of other systems such as sector scan imaging sonar, acoustic telemetry, or passive acoustics. Note that the total number exceeds 91 since some studies dealt with more than one acoustic system data.

Although standard SSS systems produce visually good backscatter, they cannot collect information about depth. From this view point, four studies examined the possibility of seagrass mapping using a combination of SSS backscatter and SBES depth information (Legrand et al., 2010; McCarthy & Sabol, 2000; Rahmoomanfar & Rahman, 2016; Rahmoomanfar, Yari, Rahman, & Kline, 2017) and five studies dealt with integration of MBES and SSS (Kendrick et al., 2005; Renato et al., 2016; Shono, Komatsu, Sato, Koshinuma, & Tada, 2004; van Rein, Brown, Quinn, Breen, & Schoeman, 2011).
Study	Acoustic method	Main data	Ancillary data	Seagrass species	Position	Echo Sounder Hardware	Frequency	Ground Truth	Software	Study area size	Study area	Classification method		
(Prampolini, Blondel, Foglini, & Mattardico, 2018)	MBES	Backscatter	Bathymetry	N/A	P. oceanica	N/A	Kongsberg BM710	70–100 kHz	117 kHz	Grab	CARIS HIPS & IP	1400 km²	Malta	
(King et al., 2018)	SSS	Backscatter	Bathymetry	N/A	T. testudinum	S. filliforme	N/A	Lowrance HDS-9	Gen 3	StructureScan	N/A	ReefMaster V2	N/A	Trinidad
(Greene et al., 2018)	SSS	Backscatter	WorldView3 Aerial Imagery	N/A	A. antarctica	Zostera sp.	N/A	Lowrance HDS-9	Gen 3	StructureScan	1400 km²	2	Malaysia	
(Daniel, Ierodiaconou et al., 2018)	MBES	Backscatter	Bathymetry	N/A	P. oceanica	N/A	Kongsberg EM710	70–100 kHz	117 kHz	Grab	CARIS HIPS & IP	1400 km²	Malta	
(King et al., 2018)	SSS	Backscatter	Bathymetry	N/A	T. testudinum	S. filliforme	N/A	Lowrance HDS-9	Gen 3	StructureScan	N/A	ReefMaster V2	N/A	Trinidad
(Greene et al., 2018)	SSS	Backscatter	WorldView3 Aerial Imagery	N/A	A. antarctica	Zostera sp.	N/A	Lowrance HDS-9	Gen 3	StructureScan	1400 km²	2	Malaysia	
(Daniel, Ierodiaconou et al., 2018)	MBES	Backscatter	Bathymetry	N/A	P. oceanica	N/A	Kongsberg EM710	70–100 kHz	117 kHz	Grab	CARIS HIPS & IP	1400 km²	Malta	
(King et al., 2018)	SSS	Backscatter	Bathymetry	N/A	T. testudinum	S. filliforme	N/A	Lowrance HDS-9	Gen 3	StructureScan	N/A	ReefMaster V2	N/A	Trinidad
(Greene et al., 2018)	SSS	Backscatter	WorldView3 Aerial Imagery	N/A	A. antarctica	Zostera sp.	N/A	Lowrance HDS-9	Gen 3	StructureScan	1400 km²	2	Malaysia	

*Table 2. Seagrass-related studies listed by their publication year (Recent first – ^Full text not available in English, **Full text not available, N/A: Information Not Available).*
Study	Acoustic method	Main data	Ancillary data	Seagrass species	Position	Echo Sounder Hardware	Frequency	Ground Truth	Software	Study area size	Study area	Classification method	
(Reshminy et al., 2014)	SBES	Backscatter	WorldView-2	Z. marina	DGPS	QTC View V	200 kHz	Video	QTC IMPACT	N/A	Canada	PCA, unsupervised Bayesian k-means clustering	
(Vandermeulen, 2014)	SSS	Backscatter	N/A	Z. marina	DGPS	SportScan	330 kHz	Video	SonarWebMAP	N/A	Canada	Visual	
(J. P. Barrell, 2014)	SBES	Raw Ping Data	Quickbird, Aerial Photo.	Z. marina	DGPS	BioSonics DE-X	430 kHz	Video	BioSonics EcoSAV v1.2	N/A	Canada	EcoSAV	
(J. Barrell & Grant, 2013)	SBES	Raw Ping Data	N/A	Z. marina	DGPS	BioSonics DE-X	430 kHz	Video	BioSonics EcoSAV v1.2	N/A	Canada	SAVEWS	
(Montefalcone et al., 2013)	SSS	Backscatter	N/A	P. oceanica	DGPS	N/A	100 kHz, 190–210 kHz	Video	N/A	GIS	N/A	Italy	N/A
(Munday et al., 2013)	SBES	Raw Ping Data	N/A	N/A	DGPS	BioSonics MX	200 kHz	Video	BioSonics Visual Habitat	N/A	USA	PCA & Clustering	
(Mallelief et al., 2012)	MRES	Backscatter, Bathymetry	N/A	N/A	DGPS	Kongsberg EM 3002	300 kHz	ROV, Scuba	HIPS/SIPS, PRISM	28 km²	Malta	Supervised Classification	
(Sánchez-Carnero et al., 2012)	SSS	Backscatter	N/A	P. oceanica	DGPS	Simrad EM400P	200 kHz	Scuba	ArcGIS, R	15 km²	Spain	Based on canopy height	
(Hamilton & Parnum, 2011)	MBES	Backscatter, Bathymetry	N/A	N/A	N/A	Reson SeaBat 8125	455 kHz	Grab	Matlab	N/A	Australia	Unsupervised statistical clustering	
(Di Maida et al., 2011)	MBES	Backscatter, Bathymetry	N/A	P. oceanica	DGPS	Reson SeaBat 8125	455 kHz	Scuba	Reson PDS 2000	N/A	Italy	Classification Tree	
(Micallef et al., 2012)	MBES	Backscatter	N/A	N/A	N/A	Reson SeaBat	455 kHz	Scuba	Reson PDS 2000	N/A	Italy	Classification Tree	
(J. P. Barrell, 2014)	SSS	Backscatter	N/A	Z. marina, Z. noltii, P. oceanica	DGPS	Marine Electronics 1640/2640	1.1 MHz	Video, Scuba	N/A	N/A	UK, Italy	Seagrass Index	
(Descamps et al., 2011)	Telemetry	Acoustic Interferometry	N/A	P. oceanica	DGPS	Aqua-Metre D100	N/A	Scuba	ArcGIS 9.3	N/A	France	N/A	
(M. van Reen et al, 2011)	SSS, MBES	Backscatter, Bathymetry	N/A	Z. marina	DGPS, (MBES), GPS, (SSS)	EdgeTech Model 272-TD (SSS), Kongsberg EM 3002D (MBES)	100 kHz (SSS), 293 kHz (MBES)	Video	GeoAcoustics GeoPro v4, ArcGIS (SSS), Fledermaus (MBES)	4 km²	UK	N/A	
(Collins, Sconpad, & Mallinson, 2010)	SSS	Backscatter	N/A	Z. marina	DGPS	N/A	800 kHz	Scuba	N/A	N/A	UK	N/A	
(De Falco et al., 2010)	MBES	Backscatter, Bathymetry	N/A	P. oceanica	DGPS	Reson SeaBat 8111	100 kHz	Video, Grab	CMST Matlab Toolbox	N/A	Italy	Factor Analysis	
(Legrand et al., 2010)	SSS, SSS	Backscatter, Bathymetry	Aerial Photography	N/A	GPS	GeoSwath Plus (SSS), RoxAnn (AGDS)	250 kHz (SSS), 50 kHz (SSS)	Video	GeoSwath Plus, Simrad ES60	452 km²	France	Maximum Likelihood	
(Py et al., 2010)	SSS, Split Beam Echo Sounder	Backscatter	Aerial Photography, Chlorophyll a	Z. marina	DGPS	GeoSwath Plus (SSS), Simrad ES60	250 kHz (SSS)	Video	ArcGIS 9.2	22.8 km²	France	N/A	
(Chamberlain et al., 2009)	SBES	Bathymetry, Canopy Height and Density	N/A	N/A	DGPS	BioSonics DT 6000	420 kHz	Scuba	EcoSAV	N/A	USA	SAVEWS	
(LeFebvre et al., 2009)	SSS	Sediment Imaging Sonar	N/A	Z. marina	DGPS	Marine Electronics 1640/2640	1.1 MHz	Video, Scuba	N/A	N/A	UK	Seagrass Index	
(Malthus & Karpouzli, 2009)	SSS	Backscatter, Bathymetry	IKONOS	N/A	DGPS	Kongsberg GeoAcoustics DF	100 kHz, 500 kHz	Video	N/A	24 km²	Columbia	Discriminant function analysis	

(Continued)
Table 2. (Continued).

Study	Acoustic method	Main data	Ancillary data	Seagrass species	Position	Echo Sounder Hardware	Frequency	Ground Truth	Software	Study area size	Study area	Classification method
(Tseng, 2009)	SBES, Taconic PROFILER System (TAPS)	Backscatter, Bathymetry	Digital Camenex	P. sinuosa, P. australis	GPS	SIMBAD EQ00 (SBES)	38, 200 kHz (SBES), 265, 420, 700, 1100, 1850 and 3000 kHz (TAPS)	Video	EchoView	N/A	Australia	Waveform Analysis
(Lo Isanno et al., 2008)	Sub-Bottom Profiler	Sesmo acoustic records	Aerial Photography	P. oceanica	N/A	Innomar SES-2000	6 kHz	N/A	Innomar-ISE 2.9	N/A	Spain	N/A
(Sagawa et al., 2008)	SSS	Backscatter for Ground Truthing Bathymetry, Backscatter	Aerial Photography	Z. caulescens, Z. asiatica	N/A	Teledyne SS-1624	N/A	Video, Scuba	TNT-mips 6.9	N/A	Japan	N/A
(Stevens et al., 2008)	SBES	Backscatter	N/A	P. oceanica	N/A	Video, Scuba	N/A	N/A	USA	SAVEWS	N/A	
(Collier & Humber, 2007)	SSS	Backscatter	N/A	P. oceanica	N/A	Video, Scuba	N/A	N/A	N/A	Australia	N/A	
(D. leodescaonou et al., 2007)	MBES	Backscatter, Bathymetry	N/A	Z. caulescens, Z. asiatica	N/A	Video, Scuba	N/A	ENVI 4.2, ArcGIS 9.1	25.8 km²	Australia	Automated Decision Tree	
(Karpouzli & Malthus, 2007)	SSS	Backscatter, Bathymetry	N/A	GeoAcoustics	100 kHz, 500 kHz	Yes	N/A	MatLab	N/A	Australia	Self-Developed Algorithm	
(Parnum, 2007)	MBES	Backscatter, Bathymetry	N/A	GeoAcoustics	455 kHz	N/A	N/A	MatLab	N/A			
(Ryan et al., 2007)	MBES	Bathymetry	N/A	GeoAcoustics	456 kHz	N/A	N/A	N/A	N/A	N/A		
(B. Sabol et al., 2007)	MBES, SBES	Bathymetry, Canopy Height	N/A	GeoAcoustics	4020 kHz (SBES), 300 kHz (MBES)	N/A	SAVEWS, HyPack (Survey)	3.25 ha	USA	DSP Algorithm (SAVEWS)		
(Waren & Peterson, 2007)	ACDP	Vertical Backscatter Profiles	N/A	GeoAcoustics	600 kHz	Scuba	N/A	N/A	USA	N/A		
(Arnizzone, Bellucci, & Masonino, 2006)	SSS	Backscatter	N/A	GeoAcoustics	100 kHz	Video, ArcGIS 9.0, ArcVew 3.2	N/A	Italy	Visual			
(Leeche et al., 2006)	SSS	Backscatter	N/A	GeoAcoustics	100 kHz	Video, ArcGIS 9.0, ArcVew 3.2	N/A	Italy	Visual			
(Montefalcone, Albertini, N. Bianchi, Mariani, & Morri, 2006)	SSS	Backscatter	N/A	GeoAcoustics	100 kHz	Video, ArcGIS 9.0, ArcVew 3.2	N/A	Italy	Visual			
(Siwabessy, Parnum, Garnier, & McLaeux, 2006)	MBES, SBES	Backscatter, Bathymetry	N/A	GeoAcoustics	455 kHz	N/A	N/A	N/A	Australia	Decision Trees		
(Descamp et al., 2000)	Acoustic Telemetry	Backscatter, Bathymetry	N/A	GeoAcoustics	450 kHz (MBES), 38, 200 kHz (SBES), 265 kHz – 3 kHz (TAPS)	Video, Grab, Stereo Photos	MatLab (MBES), RoxAnn (SBES)	N/A	Australia	E1-E2 (SBES)		
(Gavrilov, et al.)	MBES, Taps	Backscatter, Bathymetry	N/A	GeoAcoustics	120 kHz	Video, Echoview, SeaBed Mapper 2.4, ArcVew 3.2	290 km²	Australia	E1-E2			

(Continued)
Study	Acoustic method	Main data	Ancillary data	Seagrass species	Position	Echo Sounder Hardware	Frequency	Ground Truth	Software	Study area size	Study area	Classification method
(Kendrick et al., 2005)	SSS, MBES	Backscatter, Bathymetry	Landsat	P. sinuosa, P. australis, P. angustifolia, P. ostenfeldii, Amphibolis sp., Halophila, Syringodium, Thalassodendron sp.	DGPS	Edgetech (SSS), Reson SeaBat 8125 (MBES)	100 kHz (SSS), 450 kHz (MBES)	Video	ArcView 3.2	878 km2	Australia	Visual
(B. Regf et al., 2005)	SBES	Backscatter	Depth Sounder(5D)	N/A	GPS Handheld	QTC View GDS, Suzuki ES 2025 (DS)	200 kHz, 50 kHz	N/A	QTC Impact	N/A	USA	QTC Impact
(B. M. Regf & Purkis, 2005)	SBES	Backscatter	IKONOS	N/A	DGPS	QTC View GDS	200 kHz, 50 kHz	Video	QTC Impact	10 km2	UAE	Cluster Analysis based on Bayesian Approach (QTC Impact) DSP Algorithm (SAVEWS)
(Sabol, Shafer, & Lord, 2005)	MBES	Canopy Height	N/A	Z. marina	DGPS	Biosonics DT4000	420 kHz	N/A	SAVEWS	20 ha	USA	DSP Algorithm (SAVEWS)
(Skeabessy, Garnier, & Pamun, 2005)	MBES	Backscatter, Bathymetry	N/A	N/A	DGPS	Reson SeaBat 8125	450 kHz	Video	CMST Matlab Toolbox	N/A	Australia	N/A
(Pamun, Skeabessy, & Gavriev, 2004)	MBES	Backscatter, Bathymetry	N/A	N/A	N/A	Reson SeaBat 8125	450 kHz	Grab	N/A	N/A	Australia	Textual analysis, Angular dependence of acoustic backscatter
(Shono et al., 2004)	MBES, SSS	Backscatter	N/A	Z. caulescens, Z. asiatica	N/A	RESON SeaBat9001 (MBES), Klein SYSTEM3000 (SSS)	455 kHz (MBES), 130–445 kHz (SSS)	N/A	N/A	N/A	USA	N/A
(Komatsu et al., 2003)	MBES	Bathymetry	N/A	Z. caulescens	DGPS	RESON SeaBat 9001	455 kHz	Scuba	HYPACK	1.8 ha	Japan	Difference in depth
(B. Sabol & Johnston, 2002)	MBES	Canopy Height	N/A	Z. marina	DGPS	Odom EchoTasc 3200 MKII, Biosonics DT4000	200 kHz, 420 kHz	N/A	SAVEWS	3 ha	USA	DSP Algorithm (SAVEWS)
(Bruce M. Sabol, Eddie Melton, Chamberlain, Doenning, & Haunert, 2002)	SBES	Canopy Height	N/A	T. testudinum, H. weightii, S. filiforme	DGPS	BioSonics DT4000	420 kHz	N/A	SAVEWS	N/A	USA	DSP Algorithm (SAVEWS)
(Domico, 2001)	SSS	Canopy Height	N/A	Z. marina	DGPS	BioSonics DT4000 (MBES), Klein 5500	420 kHz, 455 kHz	Scuba, ROV	N/A	N/A	USA	
(Mulhearn, 2001)	SSS	Canopy Height	N/A	Aerial Photography	DGPS	Odom EchoTasc 3200 MKII, Biosonics DT4000	200 kHz, 420 kHz	N/A	SAVEWS	18 ha	USA	DSP Algorithm (SAVEWS)
(Bruce M. Sabol & Johnston, 2001)	SBES	Canopy Height	N/A	Z. marina	N/A	Odom EchoTasc 3200 MKII, Biosonics DT4000	200 kHz, 420 kHz	N/A	SAVEWS	N/A	USA	DSP Algorithm (SAVEWS)
(Schneider, Burczynski, Monteleone, & Vale, 2001)	Split Beam Echo Sounder	Canopy Height	N/A	Z. marina, Z. Nolti	DGPS	BioSonics DT6000	2088 kHz	Yes	BioSonics Visual Acquisition, SAVEWS	4 km2	Spain	BioPlant Software

(Continued)
Study	Acoustic method	Main data	Ancillary data	Seagrass species	Position	Echo Sounder Hardware	Frequency	Ground Truth	Software	Study area size	Study area	Classification method
(McCarthy & Sabol, 2000)	SSS, SBES	Backscatter, Canopy Height	N/A	Z. marina	DGPS	EG&G 272 – Klein 2000 (SSS), Biosonics DT 4000 (SBES)	100-500 kHz (SSS), 420 kHz (SBES)	Video, Scuba	N/A	N/A	N/A	N/A
(Pasqualini et al., 2000)	SSS	Backscatter	N/A	P. oceanica	DGPS	N/A	N/A	Scuba	Multiscope software, version 2.4, Matra Cap System	1400 km	France	Statistical Segmentation Algorithm
(Piazzi, Acunto, & Gennelli, 2000)	SSS	Backscatter	Airborne Teledetection Visible Infrared Scanner	P. oceanica	DGPS	N/A	100-500 kHz	Scuba, ROV	N/A	N/A	Italy	N/A
(Guan, Chamberlain, Sabol, & Doering, 1999)	SBES	Canopy Height	N/A	V. americana	Biosonics DT 4000	420 kHz	N/A	SAVEWS	N/A	USA	N/A	
(Piazzi, Acunto, & Gennelli, 2000)	SSS	Backscatter	N/A	P. oceanica	DGPS	N/A	N/A	Scuba	Multiscope software, version 2.4, Matra Cap System	1400 km	France	Statistical Segmentation Algorithm
(Pasqualini et al., 2000)	SSS	Backscatter	Aerial Photography	P. oceanica	DGPS	N/A	420 kHz	Scuba, Surfer	N/A	Australia	Intensity	
(A. P. Lyons & Abraham, 1999)	SSS, SBES	Backscatter	N/A	P. oceanica	DGPS	N/A	N/A	Scuba	Multiscope software, version 2.4, Matra Cap System	1400 km	France	Statistical Segmentation Algorithm
(Pasqualini et al., 1998)	SSS	Backscatter	Aerial Photography	P. oceanica	DGPS	N/A	N/A	Scuba	Multiscope software, version 2.4, Matra Cap System	1400 km	France	Statistical Segmentation Algorithm
(B. Sabol et al., 1997)	N/A	N/A	N/A	Z. marina	N/A	N/A	N/A	Scuba	Multiscope software, version 2.4, Matra Cap System	1400 km	France	Statistical Segmentation Algorithm
(Sicardi et al., 1997)	Imaging Sonar	Backscatter	N/A	P. oceanica	DGPS	N/A	N/A	Scuba	Multiscope software, version 2.4, Matra Cap System	1400 km	France	Statistical Segmentation Algorithm
(P. A. Siljeström, Roy, & Moreno, 1996)	SSS	Backscatter	N/A	P. oceanica, C. nodosa, Z. marina	DGPS	Klein model 595	100 kHz	500 kHz	N/A	Spain	Isodata, Minimum Distance, k-means, k-NN	
(P. Siljeström et al., 1995)	SSS	Backscatter	N/A	P. oceanica	DGPS	Klein model 595	100 kHz	500 kHz	N/A	Spain	Isodata, Maximum Likelihood, Minimum Distance, k-means	
(Maceina, Shireman, Langeland, & Canfield, 1984)	SSS	Backscatter	N/A	Z. marina, E. candensis	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Stent & Hanley, 1985)	SSS	Backscatter	N/A	E. candensis	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Newton & Stefano, 1985)	SSS	Backscatter	N/A	H. verticillata	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Maceina & Shireman, 1980)	Fathometer	Bathymetry	N/A	H. verticillata	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Wight & Fulford, 1980)	Fathometer	Bathymetry	N/A	H. verticillata	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Stent & Hanley, 1985)	SSS	Backscatter	N/A	V. americana, H. verticillata	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Maceina & Shireman, 1980)	Fathometer	Bathymetry	N/A	V. americana, H. verticillata	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Maceina & Shireman, 1980)	Fathometer	Bathymetry	N/A	V. americana, H. verticillata	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
(Maceina & Shireman, 1980)	Fathometer	Bathymetry	N/A	V. americana, H. verticillata	DGPS	Klein model 595	100 kHz	500 kHz	N/A	USA	N/A	
Some studies compared the performance of different acoustic methods (B. Sabol, Graves, & Preston, 2007; van Rein et al., 2011), examined manual versus acoustic methods (Chamberlain, Doering, Orlando, & Sabol, 2009) and analysed different MBES backscatter outputs (Innangi et al., 2015). Although acoustic methods provide high-resolution seafloor data, optical satellite images can also be utilised to extract information for wide coverage in shallow areas depending on the water turbidity. Karpouzli and Malthus (2007) focused on integrating SSS with IKONOS while other scientists compared the performance of SBES with IKONOS (B. M. Riegl & Purkis, 2005), WordView-2 (Reshitnyk, Costa, Robinson, & Dearden, 2014) and Quickbird (J. Barrell, Grant, Hanson, & Mahoney, 2015). Aerial photogrammetry is also one of the valid information sources which can be integrated with acoustic data (Legrand et al., 2010; Lo Iacono et al., 2008; Maceina & Shireman, 1980; Mulhearn, 2001; Pasqualini, Pergent-Martini, Clabaut, & Pergent, 1998).

SBES is the most affordable system among survey grade echo sounder solutions. However, gaps can be occurred between survey lines due to working principle geometry of the system. Therefore, it is not feasible to cover huge survey areas. But, these systems are still useful for shallow areas around a couple of meters with dense seagrass. On the other hand, SSS systems provide high-resolution backscatter with wide swath coverage. However, these systems do not acquire co-registered bathymetry. Even though some SSS systems can provide co-acquired bathymetry using interferometry, the measurement principle has limitations (Lurton, 2002). Therefore, SSS bathymetry products are not as accurate as MBES bathymetry. Since SSS systems are used as towfish, position information which is essential for seagrass related studies is computed roughly compared to SBES and MBES systems. Recent technology allows MBES systems to collect highly accurate bathymetry and backscatter by integrating with auxiliary sensors such as gyro and motion sensor. Based on swath angle of the transducer and water depth, they offer wide coverage along survey lines which is generally around 3–4 times of the current water depth. For the same reason, MBES systems are not always the best choice in depths of a couple of meters. One can also prefer to use an SBES system in this scenario due to the high retail prices of MBES systems in the market. Recently recreational grade SSS systems have become widespread due to the same reason. They cost approximately 10% of survey grade SSS. They are extensively utilised by scientists for substrate mapping (Daniel Buscombe, 2017; Buscombe, Grams Paul, & Smith Sean, 2016; Hamill et al., 2018; Hamill, Wheaton, Buscombe, Grams, & Melis, 2017) and benthic habitat mapping (Daniel Buscombe, 2017; Cheek Brandon, Grabowski Timothy, Bean Preston, Groeschel Jillian, & Magnelia Stephan, 2016; Kaeser & Litts, 2010; Kaeser Adam, Litts Thomas, & Tracy, 2013) in river environments. However, this technology has not been widely exploited for seagrass mapping or detection studies except by Greene et al. (2018) and Kingon, Thijs, Robinson, Maharaj, & Garcia (2018). Greene et al. (2018) have constructed a SSS to measure seagrass cover within the Lower Laguna Madre in Texas, USA. Kingon et al. (2018) developed a seagrass mapping system on a budget consisting of a kayak, Lowrance HDS, ReefMaster and Google Earth software. Based on the results of these studies, recreational grade SSS systems are efficient hardware which provides satisfactory data for seagrass-related studies.

FLS systems are generally used recreational activities for safe navigation. They are also utilised for object detection (Galceran, Djapic, Carreras, & Williams, 2012; Hurtós, Palomeras, Carrera, & Carreras, 2017), object segmentation (Banerjee, Ray, Shome, & Sanyal, 2014) and target recognition (Ferreira, Djapic, Micheli, & Caccia, 2014) studies.
However, we have encountered no seagrass-related studies benefits from FLS. On the other hand, a survey grade forward-looking multibeam sonar has been developed within the European MAST III program (COSMOS Project) (Cervenka, 1998). The developed forward-looking multibeam sonar has been applied for seafloor segmentation using angular backscatter responses (Haniotis, Cervenka, Negreira, & Marchal, 2015).

There are also other acoustic methods used by scientist for seagrass applications such as acoustic telemetry (Descamp, Pergent, Ballesta, & Foulquier, 2005), ADCP (Warren & Peterson, 2007), sub-bottom profiler (Lo Iacono et al., 2008), sediment imaging sonar (Lefebvre, Thompson, Collins, & Amos, 2009) and passive acoustics (Felisberto, Rodriguez, Santos, Zabel, & Jesus, 2016).

Frequency

Backscatter data depends on the frequency of the echo transmitted into seafloor by the transducer. The frequency of the transducer directly affects the received dB levels in the backscatter dataset. While some systems offer multiple frequency options for the survey, certain systems only work for a constant frequency.

MBES frequency used in the seagrass applications varies from 100 to 455 kHz. The most used MBES systems are the Teledyne RESON SeaBat series, followed by Kongsberg and R2Sonic. For SBES systems, the frequencies are between 38 and 430 kHz. The most frequently used SBES systems are BioSonics, SIMRAD, QTC and Odom. Some systems also offer split beam options such as the BioSonics DT-X series. SSS systems have a wider frequency range for seagrass mapping applications starting from 100 up to 800 kHz. The most commonly used SSS systems can be summarised as EdgeTech, Klein, EG&G, Imagine and SIMRAD. We have analysed two seagrass-related studies using recreational-grade sonar systems. They both use Lowrance StructureScan HD transducers but with different frequencies as 455 and 800 kHz.

Within the scope of European MAST III program, a forward-looking MBES called COSMOS which transmits signals at 100 kHz has been developed. Haniotis et al. (2015)’s study results show the developed system can also be utilised for seagrass-related applications.

Existing multi-frequency MBES R2Sonic 2026 collects data with 100, 200 and 400 kHz simultaneously. According to Costa (2018), 100 kHz is the most discriminative frequency, and multispectral backscatter may be an effective tool for applications focused soft bottoms. Gaida, Tengku Ali, Snellen, and Simons (2018)’s study shows that the combination of 200 and 400 kHz yields the highest number of acoustic classes while the combination of 100 and 400 kHz provides the highest discrimination performance. There is currently no study in literature focusing on seagrass mapping using multispectral backscatter.

Although there are studies investigating the relationship between used frequency and seagrass in laboratory environment such as Wilson and Dunton (2009), there is no study that applies laboratory results to a real application or investigating this relationship in the field.

Data

Bathymetry and backscatter are the most common acoustic datasets used in seagrass applications. According to a survey conducted by Lucieer et al. (2017), almost 30% of scientists are interested in seagrass applications featuring backscatter data. Most of the seagrass applications take advantage of backscatter data (57 studies) while some use it solely (33 studies). It is also integrated with bathymetry (31 studies), canopy height (2 studies) and fish finder (1 study). Even though applications can be found in the literature based only on bathymetry data (7 studies), backscatter data is mostly used with bathymetry (Lurton & Lamarche, 2015).

One can observe that backscatter is an essential data set for seagrass applications. Recent technology allows MBES systems to acquire better resolution backscatter images by mimicking SSS geometry such as R2Sonic TruePix data which makes it an ideal tool for seagrass applications. In most of the studies, researchers do not give too many details about backscatter pre-processing, and its effects are not investigated deeply. This is a key factor since processes such as time varied gain (TVG) or beam pattern corrections have a huge effect on obtained decibel (dB) levels. There are also some corrections applied by sonar systems. Parnum (2007) investigates beam pattern, saturation and pulse duration MBES system effects on backscatter data. In more recent studies, Lamarche and Lurton (2018) and Schimel et al. (2018) exhaustively analyses MBES backscatter data processing and its effects on data.

Most multibeam systems are monochromatic which operates around a single frequency (Hughes Clarke, 2015). Researchers have investigated various methods to obtain multispectral backscatter for a better seafloor characterization (Brown, Beaudoin, Brissette, & Gazzola, 2017). Hughes Clarke (2015) achieved this aim by mounting a pair of MBES system in the same vessel for data acquisition. Brown et al. (2010) used multiple survey platforms simultaneously during data acquisition for their study. More recently, multispectral acoustic backscatter which allows collecting data using different frequencies simultaneously has been developed. Multispectral data gives more information and
a better insight into the seafloor as each frequency provides distinct outputs and a false colour composite image of backscatter can be created (Brown et al., 2017). R2Sonic launched a multispectral challenge at GeoHab 2017 conference providing a sample data collected via R2Sonic 2026. The researchers have been asked to present their work which focuses on using multispectral backscatter in bottom characterization at GeoHab 2018 conference. In this context, the use of multispectral backscatter was investigated for benthic habitat mapping (Costa, 2018), seabed sediment classification (Gaida et al., 2018), seafloor characterization (Daniel Buscombe, Grams, & Kaplinski, 2018). These studies show that using multiple frequencies provides improved discrimination of the seafloor that can be also applied to seagrass-related studies. Multiple frequencies also allow creating false colour RGB composite images. This may lead to the formation of a vegetation index using band combinations such as Normalized Difference Vegetation Index (NDVI) used in terrestrial studies.

Water column is another output data for echo sounders which collects continuous information from the sea surface to seafloor. A detailed review about water column MBES data applications can be found in Colbo, Ross, Brown, and Weber (2014). They investigated water column MBES data applications in two topics: biological applications, geophysical and oceanographic applications. Biological applications are summarised as fisheries, marine mammals, zooplankton, kelp ecosystems, aquaculture while geophysical and oceanographic applications are mentioned as gas venting, near-surface bubbles, suspended sediment, physical oceanography and wrecks/archaeological oceanography. Although there does not seem any seagrass-related study using water column data, McGonigle, Grabowski, Brown, Weber, and Quinn (2011)’s method can be applied to seagrass mapping studies. The study investigates to identify kelp canopies by benefitting from water column returns of MBES system. One reason for the absence of seagrass studies with water column data can be described as the requirement of huge disk spaces which makes it challenging to collect, process and analyse the data (Gee, Doucet, Parker, Weber, & Beaudoin, 2012). There is currently a working group that aims to develop processing workflows and methodologies for water column data (Lamarche, Le Gonidec, Greinert, Lucieer, & Lurton, 2017).

Positioning

The positioning is a vital component for seagrass mapping as it is for any regular mapping application. However, the position data in seafloor mapping is not as precise as land or navigation applications. Based on the reviewed literature, anything below 1 m to decimeter precision is sufficient for seagrass applications. While most of the studies took advantage of differential GPS (DGPS), two studies used real-time kinematic (RTK) GPS (Pribičević, Đapo, Kordić, & Pijanović, 2016; Stevens, Lacy, Finlayson, & Gelfenbaum, 2008).

Even though DGPS can provide enough horizontal accuracy, one can also take advantage of GPS tide to improve the vertical accuracy of products using RTK GPS systems. If the study area has dynamic tide changes during the day and nearest tide station is a few kilometres away, resulting data would not be sufficient without GPS tide information.

Seagrass species

There are 76 known species of seagrasses, so species information is as crucial as the final research products in resource management and determining the MPAs.

In 48 studies, the researchers worked on a single species while 19 focused on multiple species. In 23 articles, the authors did not specify significant seagrass species. The most focused seagrass species are *P. oceanica* and *Z. marina* with 33 and 20 studies, respectively (Table 3).

P. oceanica studies are numerous as expected due to it being an essential endemic plant for Mediterranean marine ecosystem. This plant is already near threatened in the Western Mediterranean basin and more information on species distribution, and threats impact in the Eastern and Southern Mediterranean basin is

Table 3. Study count for seagrass species.
Species

P. oceanica
Z. marina
C. nodosa
H. australis
P. australis
Z. caulescens
A. antarctica
H. decipiens
H. verticillata
H. wrightii
needed. Therefore, *P. oceanica* has been taken under protection by EU legislation, the Bern and Barcelona Conventions and national legislation (EC Council Regulation N° 1967/2006) (Regulation, 2006). There are also national legal frameworks for the protection of *P. oceanica* in Albania, Croatia, France, Italy, Montenegro, Slovenia, Spain and Turkey.

Z. marina is also an essential species of seagrass that is in decline. Even though there have been restoration works in Europe and North America, there is no known national or international legal framework for protecting this species.

Although seagrass species are distributed around the world, not every species has been considered and investigated deeply. The study distribution map can be seen in Figure 4. Three studies did not specify the study area, and two stated the name of the sea only.

Most of the studies focused on a single area. Some authors tried their approach in multiple areas in the same country. Only two studies focused on multiple areas in different countries (Lyons & Pouliquen, 1998; Paul, Lefebvre, Manca, & Amos, 2011).

In-situ data

Ground truth data is vital for classification of input data, validation of the final product or assessing the conditions of the study area.

While 63 studies met this requirement, 27 studies did not integrate or provide any in situ data in their research. Of 63 studies, 46 used the single ground truth collection method, and multiple methods were applied in the rest of the researches. The most preferred ground truth collection methods are underwater video and scuba diving which was used in 38 and 22 studies, respectively (Table 4).

Method	Count
Video	38
Scuba	22
Grab	7
Method not stated	4
Aerial image	2
Buoy	2
Image	2
Vegetation sampler	1

It can be observed that former studies do not include ground truth information because it was not feasible to collect information via scuba diving and grab samples for relatively large study areas. Remotely Operated Vehicle (ROV) (Ferretti et al., 2017) and Autonomous Underwater Vehicle (AUV) (Ierodiaconou et al., 2018) technology have eased this process considerably. *In situ* sampling techniques have been extensively analysed by researchers for seabed habitat mapping (Coggan et al., 2007) and monitoring (Van Rein et al., 2009).

Data classification methods

Classification is a widely used tool for extracting information from images and implemented in seagrass related studies. It is a rapidly developing tool being employed in different marine applications for a long time. In this section, we discuss which classification methods exist, how they have evolved through the years and the future of automated classification techniques focusing mainly on seagrass mapping, detection and monitoring applications but also seafloor characterization studies.

King (1967) used echograms to classify five sedimentary bottom types. The echogram classification is
based on shape and compaction of the bottom sediment. In 1979, Pace and Dyer used Gray-Level Co-occurrence Matrices (GLCMs) for seafloor characterization and textural analysis of side scan imagery introduced by Haralick, Shanmugam, and Dinstein (1973). They suggest quickly computable 14 grey-tone spatial dependent features calculated based on average spatial relationships between pixels. More grey level features have been proposed by scientists in the following years. For example, Pace and Dyer (1979) exploited 11 features in their study, 8 of which are defined by Haralick (1974) and 3 of which are defined by themselves. They have applied a decision rule model based on Euclidean distance for classification of SSS image. Chivers (1990) and Orłowski (1984) have proposed a method benefits from a measurement of the relationship between energy features using multiple echoes from the bottom to determine sedimentation type which generally known as E1 (roughness) – E2 (hardness) method. Reut, Pace, and Heaton (1985) developed a spectral analysis method that widens system bandwidth and can classify signals scattered from six seabed types. They state that the shape of the probability distribution of the scattered field intensity is related to seafloor roughness and not sensitive to hardness. Pace and Gao (1988) proposes new spectral based features derived from the power spectrum of the backscattered signals using Fourier analysis to discriminate six seabed types. Reed and Hussong (1989) also employed GLCMs for classification of SeaMARC II SSS imagery. They applied principal component analysis (PCA) on 14 features proposed by Haralick (1974). Angular second moment, contrast, entropy and angular inverse difference moment have been determined as most contributing features among all. They also propose a new feature based on the sum of the differences of orthogonal GLCMs which is a measure of the isotopy of the image. They utilised a modified version of unsupervised k-means and supervised minimum distance classification algorithms on SeaMARC II SSS images. In Lurton and Pouliquen (1992)’s approach, signal envelopes have been integrated, normalized, averaged and compared with the theoretical curves for seven sea bottom types. Schiagintweit (1993) presents field results of RoxAnn system which uses E1-E2 method to map five distinct sediments. Hughes Clarke (1994) developed a technique to produce backscatter strength as a function of grazing angle using GLORIA SSS and SeaBeam MBES. They utilise an empirical approach for classification where angular response curves are matched with in situ data and matched pairs are then used to deduce the process for other regions without in situ data. Stewart, Min, and Marra (1994) have applied a neural-network approach on feature space derived from backscatter. The algorithm focuses on feature selection, training-pattern design and network configuration.

The first automated classification of seagrass study was carried out in 1995 by scanning original SSS images into a digital environment (P. Siljeström, Moreno, & Rey, 1995). The authors applied isodata, maximum likelihood and minimum distance classification algorithms to scanned sonar images to produce a distribution map for *P. oceanica* for their study area. This study can be taken as a pioneer automatic classification approach for seagrass related studies. Before this study, most of the seagrass mapping-related studies were realized by manually or visually measurements from sonar images.

As echo sounders with digital output capability have become widespread and with the development of narrow beam MBES, sonar image classification applications have increased. Hughes Clarke, Mayer, and Wells (1996) have created angular response curves for sediments using EM1000 MBES at 95 kHz. They stated these curves alone are not discriminative enough; however, they would be useful with the combination of textural features such as GLCMs (Reed & Hussong, 1989) and power spectral methods (Pace & Gao, 1988). Dugelay, Graffigne, and Augustin (1996) proposed a semi-automatic mosaic interpretation for low-frequency deep water MBES based on segmentation using a Markov Random Field. The algorithm considers statistical and geometrical properties of the pixels with corrections for the variations of angular backscattered signals as explained by de Moustier and Alexandrou (1991). Siccardi et al. (1997)’s study focused on analysing seabed vegetation in terms of presence-absence and sparse-dense via high frequency 2 MHz sector scan sonar. They extracted features from bathymetry (e.g. mean value, standard deviation, mean deviation, skewness, kurtosis, target range, signal range) and backscatter (e.g. energy, entropy, contrast, homogeneity GLCMs). They applied PCA on feature space and determined 6 features account for 91% of all features. K-means algorithm was exploited for classification of remaining feature space. In studies of Blondel (1999) and Blondel, Parson, and Robigou (1998), only entropy and homogeneity GLCMs are used in a software package called TexAn, which was developed for seafloor characterization. For classification of sediment types, they applied the measurement space guided algorithm, which is stated to have the advantage of not to be biased by the statistical predominance of some regions. In Pasqualini, Clabaut, Pergent, Benyoussef, and Pergent-Martini (2000)’s study, filtering, thresholding and statistical clustering have been applied to segment *P. oceanica* seagrass bed textures. This clustering method is based on statistical properties of pixels and pixel neighbourhood correlation information. In 2001, an Acoustic
Ground Discrimination Systems (AGDS) called SAVEWS was developed by the US Army Engineer Research and Development Centre that works based on bottom tracking (Bruce M. Sabol & Johnston, 2001). The system analyses the data via the U.S. Army Corps of Engineers developed signal processing algorithm. The first step of the algorithm is to detect and track the bottom, and then, the spatial distribution of echo intensity above the determined threshold level is examined above the detected bottom for vegetation (B. M. Sabol & Burczynski, 1998; Sabol, Kasal, & Melton, 1998). The drawback of this method is that system cannot properly track bottom in dense seagrass areas due to the high reflectivity of seagrass depending on its species and density (B. Sabol et al., 1997). The algorithm overcomes this problem by creating a depth histogram with each GPS ping. The system calculates the sharpest rise and the most commonly occurring depth is queried in the histogram with each GPS ping. The latest updated version of this system is called SAVEWS Jr. (B. Sabol et al., 2014). In the same year, Preston, Christney, Bloomer, and Beaudet (2001) demonstrated sediment classification results of QTC Multiview software. The software produces over 130 features such as GLCMs, Fast Fourier Transforms (FFTs), fractal dimension, high order moments, histogram and quantile. Since it would not be sufficient to cluster over 130 features, PCA has been applied to reduce feature space. Finally, k-means method is employed on reduced feature space for classification of the sea bottom. Atallah et al. (2002) used wavelet analysis based on grain size on bathymetric SSS data for seafloor sediment classification. Tegowski, Gorska, and Klusek (2003) developed an algorithm that uses maxima location in echo envelope series to determine the bottom via 208 kHz BioSonics DT 4200. They have studied a series of echo envelope parameters, such as spectral width and fractal dimension. They have compared vegetated and bare bottom in terms of these parameters. In Komatsu et al. (2003)’s study, seagrass has been distinguished from the bottom using the difference in depth between maximum depth and the sandy bottom. They have used this approach to map the distribution of seagrass and estimate seagrass volume and biomass. In a more recent study, they have used a similar technique to map three categories of relative abundance as dense, sparse and little to no seagrass (Hamana & Komatsu, 2016). Cutter, Rzhanov, and Mayer (2003) have implemented a modified version of local Fourier histograms texture feature classification method to MBES data for automatic seafloor segmentation. A local Fourier transform is calculated for each cell which provides information to characterize the frequencies in the signal. Finally, the classification is utilised by using fuzzy k-means cluster analysis. Dartnell and Gardner (2004) proposed a two-step empirical technique that exploits both bathymetry and backscatter data to predict seafloor sediments on a pixel by pixel basis. The first step is to apply supervised classification on backscatter based on grain size and ground truths. The results are then used in the latter step as rules for a hierarchical decision tree classification. Collier and Brown (2005) have investigated the correlation of SSS backscatter with grain size distribution using dual frequency (100 and 410 kHz) SSS and 22 sediment grab samples. They processed the raw sonar data and extracted statistical information for comparison with sediment grain size based on applying empirically derived amplitude grazing angle correction to the acoustic data.

One of the main progress in backscatter processing is the development of the GeoCoder package by Luciano Fonseca from The Centre for Coastal and Ocean Mapping at the University of New Hampshire. GeoCoder is a mosaicking tool that can read backscatter data in multiple formats and apply radiometric and geometric corrections to the data including corrections for beam pattern effects. The package also includes remote estimation of surficial seafloor properties by applying of an unsupervised Angular Range Analysis (ARA) method which preserves the backscatter angular information to use it for seafloor characterization. The process applies corrections for seafloor slope, beam pattern, TVG, angle varying gain (AVG) and insonification area. Then, four parameters from near range (90°–65°), four parameters from far range (65°–35°), one parameter from outer range (35°–5°) and orthogonal distance parameter from intercept-slope graph are calculated. Finally, the average angular response is compared to density fluid models derived from the Biot theory (Williams, 2001). Although this theory only takes sedimentations into consideration, it cannot be used in seagrass mapping. The GeoCoder package is licensed for most commercial hydrographic software such as Caris, Reson, Fugro, Triton, Hypack, IVS 3D and Chesapeake Technology (Fonseca, Brown, Calder, Mayer, & Rzhanov, 2009; Fonseca & Calder, 2005; Fonseca & Mayer, 2007).

Gavrilov et al. (2005) have measured angular response curves of backscatter at 450 kHz for high and dense seagrass and sand covered seafloor. It is stated that high and dense seagrass depends weakly on the incidence angle. Even though sand backscattering level is relatively low, it decreases considerably with the incidence angle. In his PhD thesis, Parnum (2007) developed a feature space called angle cube which is derived from backscatter. It is created by approximate reconstruction of the angular dependence at each point of the grid using spatial interpolation. Following feature reduction, unsupervised and supervised classification methods have been
applied on remaining feature space combined with bathymetric features (slope, standard deviation, etc.). He applied his technique to multiple study areas with vegetation such as seagrass and rhodolith. Ierodiaconou, Laurenson, Burq, and Reston (2007) used high and low pass filters to backscatter data to obtain three band false colour image. This image was processed along with bathymetry derivatives to create an automated decision tree classification system for benthic habitat mapping. Hamilton (2007) statistically clustered curves using Clustering Large Applications algorithm developed by Kaufman and Rousseeuw (1990). This method was employed in a later study by Hamilton and Parnum (2011) for unsupervised clustering of backscatter curves from across the port and starboard side of the swath for seabed segmentation including seagrass and rhodolith. Lucieer (2007) and Lucieer (2008) proposed an object-oriented hierarchical classification via e-Cognition software to identify reef and sand areas. Erdey-Heydorn (2008) developed an ArcGIS Seabed Characterization Toolbox to investigate benthic habitats. The toolbox includes a supervised texture classification workflow based on SSS mosaic, bathymetry, hillshade and rugosity. Maximum likelihood classifier is applied to these datasets. And finally, classification results are combined with Bathymetry Position Index (BPI) grids to create final habitat maps. Rattray, Ierodiaconou, Laurenson, Burq, and Reston (2009) have used QUEST (Quick Unbiased Efficient Statistical Tree) decision tree classifier (Loh & Shih, 1997) on combined bathymetry and backscatter derivative data to map five benthic biological groups including algae and invertebrates. Fakiris and Papatheodorou (2009) have developed a MATLAB toolbox for acoustic classification of SSS imagery called SonarClass. The toolbox creates five GLCMs, four first-order grey statistics and two 2D Fourier spectrum statistics. Following the employment of a novel feature reduction process on feature space, nearest neighbour classification method is applied to the data. Simons and Snellen (2009) presented a supervised Bayesian seafloor classification method that uses MBES averaged backscatter data per beam at a single angle. As a first step, the algorithm starts with non-linear curve fitting which is fitting a model to the histogram of selected measured backscatter strengths. After determining the probability distribution function for each seafloor type, Bayes decision rule classification is applied to the data. In later years, Alevizos, Snellen, Simons, Siemes, and Greinert (2013) improved this method by utilising a combination of beams simultaneously to obtain the optimal number of classes for unsupervised classification. Preston (2009) have created 132 GLCMs, first- and second-order statistics from backscatter and applied PCA for feature reduction. For clustering 80 km² multibeam survey data of Stanton Banks, Mahalanobis distance method was used. Lucieer and Lucieer (2009) applied fuzzy clustering algorithm (FCM) which is an extension of unsupervised k-means or isodata method and fuzzy maximum likelihood estimation clustering for seafloor classification. FCM provides similar results to k-means and isodata and also contains information class membership and classification uncertainty. Marsh and Brown (2009) have employed an artificial neural network (ANN) model called self-organizing map (SOM) (Kohonen, 1990) to classify MBES backscatter and bathymetry. SOM can effectively create a low-dimensional representation of high-dimensional input signals. The architecture has been applied based on normalized backscatter strength and bathymetric beam-level data. In the mentioned study, SOM was evaluated by comparing with other classification methods such as isodata, learning vector quantisation and competitive neural network. It has been observed that SOM is an efficient method for classifying MBES data with high accuracy. De Falco et al. (2010) investigated relationship between multibeam backscatter, sediment grain size, and P. oceanica seagrass distribution. The most important finding related to seagrass mapping in this study is that the acoustic response of seagrass is mainly linked to the leaf canopy rather than the substrate it is growing on. Ierodiaconou, Monk, Rattray, Laurenson, and Versace (2011) compared three automated classification techniques for predicting benthic biological communities using the same training and evaluation datasets. The three classification methods were QUEST, CRUISE (Classification Rule with Unbiased Interaction Selection and Estimation) (Kim & Loh, 2001) and maximum likelihood. According to the results, the QUEST method provided better results than other methods. While CRUISE method still provides an overall accuracy close to QUEST, maximum likelihood method produced poor results with the maximum overall accuracy of 39%. Lucieer and Lamarche (2011) utilised unsupervised FCM to sediment samples to identify most appropriate class count and their spatial cores. FCM results are used as training samples for classification of MBES imagery using object-based image analysis (OBIA). The MBES backscatter and bathymetry have been segmented into smaller objects using Definiens Developer v8.0 software. After the creation of object features (GLCM entropy and correlation), nearest neighbour supervised classification was applied and four sediment classes were obtained. Micalef et al. (2012) proposed a multi-method GIS-based geomorphometric and textural analytical technique to map habitat distribution using high-resolution MBES data. The method starts by classifying the seabed into morphological zones and features based on morphometric derivatives.
(e.g. slope gradient, profile curvature), BPI and geomorphometric mapping. Then the area is divided into two zones as unvegetated and seagrass covered areas based on roughness estimation. Unvegetated areas were classified into sedimentation using maximum likelihood classifier on entropy, homogeneity and backscatter intensity. Seagrass covered areas were classified into seagrass on sand and gravel and seagrass on sand using maximum likelihood classifier on bathymetry data. Finally, morphology and composition results were combined to produce a habitat distribution map of the study area. Sánchez-Carnero, Rodríguez-Pérez, Couñago, Aceña, and Freire (2012) used vertically oriented SSS to detect and map *P. oceanica* meadows. They used acoustic data saved as RAW files integrated with GPS data in NMEA format. After bottom detection, the first meter above the bottom is considered to have possible plants of interest. In that range, intensities higher than the determined threshold is estimated as vegetation. Using Scuba diving data as ground truth, the detection method’s accuracy is calculated as 72%. Hasan, Ierodiaconou, and Monk (2012) combined angular response classification and backscatter image segmentation for benthic biological habitat mapping. Angular response curves have been classified using QUEST decision tree along with ground truth data. Backscatter image was converted into a pseudo colour image. The image was segmented using mean-shift technique via Edge Detection and Image Segmentation (EDISON) tool based on five-dimensional feature space (R, G, B, X, Y). The segmented polygons centroids were calculated, and nearest neighbour algorithm was exploited to assign predicted class information from angular curves to polygons. This method was utilised to map distributions of invertebrates, red and brown algae. Rzhanov, Fonseca, and Mayer (2012) benefit from angular response data to label over segmented backscatter image mosaic. This labelling process is conducted by constructing a catalogue. They propose three methods for automatic catalogue construction. The first approach is using quasi-random sampling of the physical parameter space such as acoustic impedance, roughness, etc. The second approach benefits from backscatter strength versus grazing angle histogram. The third approach is based on coarse segmentation of backscatter mosaic into segment expected in the catalogue. Brown, Sameoto, and Smith (2012) derived six features from MBES data. Bathymetry, slope, curvatures and three principal components of QTC textural features are used for CLUSTER procedure in Idriisi software. This procedure uses a histogram peak technique of cluster analysis based on a maximum of seven layers. Hasan, Ierodiaconou, and Laurenson (2012) compared performances of maximum likelihood classifier, QUEST, random forest and support vector machine (SVM) in classifying MBES backscatter data. For biota classification, SVM and random forest have provided the highest overall accuracy with 84.8% and 83.8%, respectively. The same methods resulted in high overall accuracies for substratum with 82.6% and 83%. Lucier, Hill, Barrett, and Nichol (2013) investigated methods to derive accurate spatial products for shallow coastal water through MBES data classification methods and segmentation scales along with autonomous underwater vehicle images. They employed 12 bathymetry and 6 backscatter derivatives. MBES data was segmented in two different scales (30 and 60) to investigate the influence of segment size on classification accuracy. The segmented images were classified using classification trees, random forests and k-nearest neighbour for substratum, rugosity and sponge cover individually. Random forest with 30 segmentation scale provided the highest overall accuracy for classification of substratum and rugosity, while k-nearest neighbour with both segmentation scale performed best for sponge classification with same overall accuracy value. Huang, Siwabessy, Nichol, Anderson, and Brooke (2013) tested seven feature analysis approaches for classification of MBES backscatter angular response curves to map seabed cover types. The multibeam swath was split into port and starboard sides, and the angular response curves with 1° bin were generated between 4° and 51° incidence angles using 97 seabed samples. They propose 7 feature analysis methods that produce 4 to 48 variables for classification. Supervised classification process with seven sediment classes was executed using the Probability Neural Network (Specht, 1990) in DTREG software. Diesing et al. (2014) evaluated OBIA and machine learning (random forest) techniques for classifying MBES data to map seabed sediments. OBIA and random forest classification processes were executed on backscatter and bathymetry derivatives. A pixel-by-pixel comparison of classification results was carried out with the Map Comparison Kit software (Visser & de Nijs, 2006). Random forest method outperformed OBIA with an overall accuracy of 76%, while overall accuracy for OBIA was 67%. Stephens and Diesing (2014) evaluated six supervised classification techniques for MBES and grain size data. These techniques are classification trees (CT), SVM, k-NN, neural networks (NN), random forest (RF) and naive bayes (NB). After creating secondary acoustic features from backscatter and bathymetry, classifiers were trained using different input features. First training data consists of solely bathymetry and backscatter. Second training data consists of features from results of feature reduction process. Final training data covers all of the input features. NB technique with second training data (NB2) outperformed other methods with other
training datasets. In a later study, they took their work to another step. Instead of comparing different classification techniques, they combined best performing classification results according to balanced error rate (Diesing & Stephens, 2015). They created a three model combination (NB2, RF2, CT1) and five model combination (NB2, RF2, CT1, NN1, SVM1). The five model ensemble outperformed three of the five component models (RF2, NN1, SVM1). Additionally, the authors propose a novel measure of confidence based on agreement and accuracy. Calvert, Strong, Service, McGonigle, and Quinn (2015) evaluated maximum likelihood supervised classification and isocluster unsupervised classification on three MBES datasets, namely backscatter, backscatter with bathymetry and derivatives, bathymetry and derivatives. Buscombe et al. (2016) proposed a new algorithm that uses spectral analysis on echograms for automated riverbed sediment classification using low-cost SSS. The routine estimates average length scales of acoustic fluctuation in signals from echograms which are statistical representations that integrate with attributes of bed texture. These are calculated by using a Morlet Wavelet Transform and removal of bias caused by varying sonar geometry. In another study, this method was integrated into open source and freely available a software package called PyHum which also offers data processing and correction tools (Buscombe, 2017). Rahmemonofar and Rahman (2016) proposed an automatic method to detect seagrass potholes using SSS images. They applied mathematical morphology technique and calculated standard deviation to enhance the image and identify the pothole patterns. Same authors developed another process to detect seagrass potholes in sonar images (Rahmemonofar et al., 2017). This process starts with image enhancement consisting of adaptive thresholding and wavelet noise removal. Finally, level set method is applied to detect boundaries of potholes. In Rahmemonofar, Rahman, Kline, and Greene (2018), they applied slightly different image enhancement and seagrass pattern identification steps. Sonar image is enhanced by applying adaptive histogram equalization, top hat filter, and Gaussian adaptive thresholding. Then, seagrass patterns are identified by executing binarization by optimum threshold and filling up holes and extracting potholes by using closing morphological filtering. Montereale Gavazzi et al. (2016) compared textural analysis (TexAn), Jenks Optimization, maximum likelihood, OBIA (e-Cognition) and manual classification methods for seabed mapping using MBES data and ground truth data. They identified SAV, bare muddy bottom and sponges. According to their results, pixel based method provides higher accuracies and accuracy measure depend highly on the number of classes. Herkul, Peterson, and Paekivi (2017) used the mathematical models of RF and generalized additive models on MBES data to map seabed substrate. Statistics are calculated from bathymetry, backscatter, slope, and GLCM textural features. These statistics are independent variables in models created in R statistical software package to map distributions of the hard and soft substrate, Mytilus and hydrozoa. It is stated that most dominant variables in models are mean depth and mean backscatter statistics. Ferretti et al. (2017) used different classification techniques to map P. oceanica distribution via ROV equipped with SBES and video recorder. NN, decision trees and SVM were applied on acoustic data, and all methods provided high accuracies in P. oceanica detection. Buscombe, Grams, and Kaplinski (2017) proposed a method which focuses on strengthening the relationship between backscatter and sediment composition using MBES to map a canyon river consisting of sand, gravel, cobbles, boulders and SAV. The method starts with the removal of beam scale and spectral filtering of suprabeam scale topographic effects in backscatter. The results show that the high pass component associated with bed forms topography or vegetation and the low past component associated with sediment patches. Finally, coherent scales between backscatter and topography are analysed using cospectra. Hamill et al. (2018) used linear least squares and GMM (2 models) for automated segmentation of bed textures using recreational-grade SSS. In this study, SSS imagery is used to derive first order statics and GLCM textures. GMM results seem more promising for applications in areas consisting of similar sedimentary environments. Turner, Babcock, Hovey, and Kendrick (2018) investigated efficiency of single classifiers against model ensembles for seabed substratum maps. The model ensemble is constituted from RF, CT and NB where each classifier votes for each point. Then, substratum is classified based on the majority of voting. If no class can provide the majority, the point is classified based on the vote of the best performing classifier (in this case RF). It is stated that even though model ensembles provide better accuracy, it is not always required unless single classifier performance is poorer than expected. Ierodiaconou et al. (2018) analysed combination of pixel-based (PB) and OBIA of MBES data for habitat mapping including seagrass and macro algae in shallow waters. PB and OBIA derivatives were created and used as predictors in RF modelling. Although OBIA results have overall accuracy higher than PB approach, a combined model approach outperformed OBIA and PB methods alone. Lacharité, Brown, and Gazzola (2018) aimed to create a single habitat map from four non-overlapping surveys via 4 MBES with different frequencies. They proposed a classification technique for bathymetry and uncalibrated
backscatter which consist of segmentation with OBIA and classification using supervised nearest neighbour algorithm. Since backscatter depends directly on the frequency, this classification workflow was applied to each survey separately, and then combined to create a seamless benthic habitat map. Buscombe et al. (2018) compared GMM and CRF probabilistic models for seafloor classification using multispectral backscatter against monospectral backscatter. According to study results, both approaches performed better with multispectral backscatter compared to each monospectral backscatter frequency alone (100, 200, 400 kHz). Additionally, comparing two methods based on multispectral backscatter, CRF provided a higher average classification accuracy. Gaida et al. (2018) proposed an extension of the Bayesian method for seafloor sediment classification using multispectral backscatter data. Results indicate that use of multispectral backscatter leads to improved discrimination between different sediment types. Costa (2018) employed regression trees to classify seven benthic habitats. The results of this study show that multispectral backscatter is more suitable for soft bottom applications.

Review of developed classification techniques for seabed mapping shows that pre-processing of acoustic data has a strong effect on classification accuracy and results. This is relatively straightforward for bathymetry processing since guidelines for data processing and minimum standards have been determined by The International Hydrographic Organization (Iho, 2008). However, since backscatter is under the influence of frequency, navigation, sonar geometry, seafloor characteristics, etc., it is more complex to specify workflows for all scenarios. Therefore, in most studies, processing of the backscatter data is site or application specific. There are also corrections during data acquisition applied by the sonar itself which are not always clear enough to researchers. Considering mentioned factors, Backscatter Working Group (BSWG) within GeoHab have published guidelines and recommendations for backscatter processing (Lurton & Lamarche, 2015). We will not further discuss the processing of backscatter data here, as this topic extensively analysed recently by researchers in terms of MBES backscatter (Lamarche & Lurton, 2018; Schmel et al., 2018), recreational grade SSS backscatter (Buscombe, 2017) and comparison of MBES and SSS (Le Bas & Huvenne, 2009).

Automated classification of seagrass distribution can be performed using signal-based and image-based classification methods. Signal-based methods deals with echograms (SBES), sonograms (SSS) and angular response curves (MBES). Single beam AGDSs such as SAVWES, RoxAnn and QTC View exploit unsupervised signal-based methods. These methods are based on bottom tracking (Sabol & Johnston, 2001), roughness-hardness (Gavrilov et al., 2005) and Bayesian cluster analysis (B. Riegler, Moyer, Morris, Virnstein, & Dodge, 2005), respectively. There are also studies dealing with supervised classification of raw SBES data using clustering (Munday, Moore, & Burczynski, 2013) and machine learning techniques (Ferretti et al., 2017). According to reviewed studies, it can be said that, due to point based data acquisition geometry of SBES, researchers have shifted to swath systems which provide more coverage.

Employment of signal-based methods on SSS data is not investigated widely for seagrass mapping applications (Karpouzli & Malthus, 2007; Sánchez-Carnero et al., 2012). Angular response curves are found to be useful to discriminate different seafloor types (Hughes Clarke, 1994). Since SSS cannot provide integrated bathymetry with backscatter, it cannot be used for angular response analysis due to lack of geometrical information (Brown et al., 2011).

With the capability of high-resolution simultaneous bathymetry and backscatter data acquisition, MBES is efficient hardware for this analysis. Gavrilov et al. (2005) created angular response curves based on incidence angle for seagrass using MBES at 450 kHz. Studies indicate that angular response curves are efficient features to map seagrass distributions (De Falco et al., 2010; Hamilton & Parnum, 2011; Parnum, 2007) and both unsupervised and supervised classification methods can discriminate seagrass patches successfully (Parnum, 2007).

Image-based methods which generally employed to swath systems deal with raster data of bathymetry, backscatter and derivatives. SSS is an adequate system for geological and geophysical mapping (Brown & Collier, 2008). Despite image-based methods on SSS are utilised in seagrass mapping studies (Legrand et al., 2010; Moreno López, Rey Salgado, & Siljestrom, 1998; Pasqualini et al., 2000; Siljestrom et al., 1995), SSS is not used in machine learning methods due to lack of bathymetry data.

Processed MBES data consist of regular gridded bathymetry and angle independent mosaicked backscatter imagery. Workflows of image-based methods generally start with feature extraction since it is not feasible to perform classification only with these two datasets. There are several derivatives of bathymetry and backscatter used in image-based seabed classification studies (Diesing, Mitchell, & Stephens, 2016). The most common bathymetry derivatives can be summarized as slope, aspect (northness and eastness), standard deviation, BPI, rugosity, and curvature. Bathymetry derivatives can be used solely for morphological segmentation. However, this is not the case generally for seagrass mapping as this process requires textural features with the exception of methods based on depth range (Hamana & Komatsu, 2016; Komatsu et al., 2003; Sabol et al., 2007) and roughness estimation (Micallef et al., 2012). The most
common backscatter derivatives can be summarized as GLCM, ARA, Hue-Saturation-Intensity (HSI), FFT and Moran’s I. We observed there is no common accepted agreement on selection of appropriate features which are the best for seagrass mapping. For example, Ierodiaconou et al. (2018) preferred to use HSI to create false colour backscatter image, while Blondel, Prampolini, and Foglini (2015) used GLCM Homogeneity and Energy. Feature extraction process is generally followed by feature selection as it is not practical to use all calculated derivatives in classification due to computational time and accuracy. The objective of feature selection is to determine the most contributing data sets and eliminate inferiors. This is achieved by feature reduction (or dimensionality reduction) of feature space algorithms such as PCA.

Image-based classification methods for seagrass mapping using MBES data can be grouped as (i) unsupervised or supervised, and (ii) pixel-based or object-based classification. Whilst the application of sediment mapping via MBES is widely carried out using OBIA (Lacharité et al., 2018), machine learning (Turner et al., 2018), supervised and unsupervised classification (Calvert et al., 2015), combined approach (Diesing & Stephens, 2015) and statistical learning (Herkül et al., 2017), applications of these methods for seagrass mapping is limited. Ierodiaconou et al. (2007) applied automated decision trees on backscatter and bathymetry derivatives. Di Maida et al. (2011) exploited statistical decision trees to discriminate seagrass meadows. Blondel et al. (2015) used unsupervised k-means clustering on GLCM homogeneity and energy. Ierodiaconou et al. (2018) combined PB and OBIA using RF for improved classification accuracy. While unsupervised methods do not require input data except class number for classification, in situ data is still needed for labelling or validation. Recently, Calvert et al. (2015) evaluated supervised and unsupervised classification methods for benthic habitat mapping. However, main interest seems shifted to machine learning methods and model ensembles of multiple methods. This is also the case in seagrass mapping applications, yet the evaluation of supervised and unsupervised machine learning methods such as SVM and SOM for seagrass mapping remains unexplored to date.

Multispectral backscatter can be a milestone that will shift benthic habitat mapping studies to a higher level. The ability to collect data with multiple frequencies simultaneously better discriminates seabed characteristics (Daniel Buscombe et al., 2018; Costa, 2018; Gaida et al., 2018). There is no study to date dealing with this recent technology for seagrass mapping application. Since multiple backscatters allow to create false colour images which include different information in each band, this may ease the process to adapt terrestrial remote sensing methods to image-based seabed classification. Besides this, using false colour images, various indices like NDVI can be created for better discrimination of seagrass and other SAV.

Another approach can be the use of each backscatter individually to extract derivatives from backscatter at different frequencies. This method can be evaluated to indicate which frequency contributes the most for seagrass detection, as Costa (2018) demonstrated for sediments.

Conclusions

Anthropogenic effects such as fishing, trawling, coastal infrastructures threaten marine ecosystems and reduce benthic biodiversity. Seagrasses are an indispensable heritage of marine ecosystem and considerably fragile to these activities since they habitat generally in shallow coastal zones (Duarte, 1991). Therefore, it is critical to map the distribution of seagrass to make policies and determine MPAs. From this perspective, if seagrasses are protected, then the biodiversity-related with seagrass will also be protected (Harris & Baker, 2012). There are several methods for benthic habitat and seagrass mapping. In this paper, we examine 91 studies related to seagrass mapping, monitoring, and detection using acoustic systems under the 12 headings in Table 2, from which, these conclusions are stated:

- Various methods of seagrass mapping were used by researchers in the literature. Recently, most studies have focused on either MBES, SSS or SBES and using MBES increased after 2003 due to hardware developments (narrow beam angles) that allows it to acquire high-resolution backscatter integrated with bathymetry. The development of multispectral MBES opened a new perspective and provided a more discriminative dataset for researchers. The pioneer studies encourage us that this recent technology can be implemented to seagrass studies to obtain promising and reliable results. Recreational grade SSS systems have also become quite popular in recent years as an alternative to survey grade system which is employed to habitat mapping studies due to their cost effectiveness even though they do not provide high-resolution products as survey grade systems. Consequently, the choice of the acoustic device can vary depending on the size of study area, study area depth, budget concerns and mapping strategy (automatic or manual).
- It is a widely known fact that backscatter and bathymetry is the most common dataset for seagrass mapping. Multispectral backscatter would also be a perfect addition to these core
datasets in the future. Since this data set consists of multiple bands, it can be used by applying different image processing techniques, the accuracy of seagrass classification can be increased. Beside this, it is a fact that the creation of different band combinations from false colour images can obviously improve visual interpretation capability for manual studies. One can also expect to come across seagrass studies dealing with MBES water column data. This can be explained by the need for high computing power and hard disk space for collecting, storing and processing of water column data.

- There is no common agreement on which frequency is the best for discriminating seagrass. According to the studies, seagrass backscatter depends highly on leaf canopy rather than the substrate it is grown on.
- Most studies obtained position information using DGPS provides one decimetre to a metre accuracy is an acceptable level for most underwater studies. According to the progress of the current studies, in the future, RTK GPS systems can take an important place. Especially in small study areas, in terms of the reliability and usability of data products, proper resource management and determination of MPAs must be implemented using high accuracy GPS solutions such as RTK GPS. Researchers can also take advantage of GPS tide information to improve vertical accuracy using high accuracy GPS solution especially in study areas with dynamic tide changes.
- Researchers frequently focused on two seagrass species in their studies; P. oceanica and Z. marina. If we examine the seagrass study distribution map in Figure 4, the study areas are concentrated in the USA, Australia and Italy. P. oceanica is an endemic plant that forms the Mediterranean ecosystem, prevents coastal erosion and regulates carbon dioxide absorption on land and in the sea. This species has a long life span while its growth rate and regeneration is slow. Even though it is protected by EU legislation, the Bern and Barcelona Conventions and national legislation (Regulation, 2006), it is in decline. Even it is already in a “Near Threatened” state in the Western Mediterranean basin, it is believed this species will be in a vulnerable state unless threats are reduced. Therefore, to protect the future of P. oceanica in the Mediterranean region, more information on species distribution, and the impact of the threats in the Eastern and Southern Mediterranean basin is needed. Z. marina which extends into the Arctic in Alaska, Canada, Greenland and northern Europe and into the tropics in Baja California and Mexico is found in the north Atlantic and the North Pacific and in the Mediterranean and Black Seas. Even though there have been protection and rehabilitation efforts since the 1940s in Europe and North America, it is still declining in these areas. Additionally, the current global population trend of Z. marina is decreasing.

- In terms of the reliability, validation and accuracy of the study products, ground truth data are essential. Therefore, as it has been integrated into most of the studies, ground truth is a must-have dataset for future work, especially for automatic classification. It is now more feasible and practical to collect ground truth data using technological ROV and AUV devices.
- Different freeware (SonarScope, PyHum) and commercial software (HIPS&SIPS, FMGT, Hypack, SonarWiz) are used in the seagrass-related studies for surveying, post-processing and classification. The processing of backscatter data is a key factor as different software for the same dataset can produce different dB levels. BSWG have published guidelines and recommendations for backscatter data acquisition and processing. As this report suggests, hardware-related uncertainties in backscatter measurements must be reduced by constructors.
- Although only 31 studies out of 91 reported study area size, this information is important to understand the applicability of the proposed method for wider coverage areas. Largest and smallest study areas are reported as 1400 km2 and 1.8 ha, respectively.
- Various benthic habitat and seagrass classification methods have been reviewed. This can be performed by signal-based methods using echograms, sonograms, angular response curves and image-based methods using backscatter and bathymetry raster data. Signal-based methods are widely integrated into AGDS based on bottom tracking and MBES based on angular response curves. Image-based methods are mostly exploited in swath systems. MBES is more preferred than SSS in image-based classification applications since MBES allows to create more derivatives for feature extraction. It can be clearly said that the seagrass classification related studies have been evolved from semi-automatic approaches to machine learning and model ensemble methods. Additionally, use of recent technology, multispectral backscatter can ease the process to adapt terrestrial remote sensing methods to image-based seabed classification which would slightly close the gap between terrestrial and marine remote sensing.

Seagrass mapping, detecting and monitoring studies have increased in recent years. Developments in
machine learning technologies such as deep learning can bring more efficient results and open a new perspective. The use of open acoustic data can allow creating success deep learning architectures and seagrass classification problem can be solved easily. In this context, we conducted a MBES (R2Sonic 2024) survey in a 5 km² study area in Gulluk Bay, Turkey, to investigate performances of different segmentation algorithms such as Mean-Shift, Iterative Simple Linear Clustering, Whale Optimization, SVM, ANN, Fuzzy Segmentation and the effects of backscatter corrections for seagrass ($P. oceanica$) mapping. This work aims to be a step towards a better understanding of MBES backscatter processing and classification. At the end of this study, we plan to share obtained results as labelled data for future deep learning studies.

Sustainable monitoring of marine ecosystem requires policies for controlling and supervising of human activities which need to be realized urgently to protect the marine ecosystem to save the future of benthic habitat.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research has been funded by Yildiz Technical University, Scientific Research Projects Office [Project No: 2015-05-03-KAP-01] and TUBITAK [Project No: 1059BI141601481].

ORCID

Tolga Bakirman http://orcid.org/0000-0001-7828-9666

References

Alevizos, E., Snellen, M., Simons, D.G., Siemes, K., & Greinert, J. (2015). Acoustic discrimination of relatively homogeneous fine sediments using Bayesian classification on MBES data. Marine Geology, 370, 31–42. doi:10.1016/j.margeo.2015.10.007

Ardizzone, G., Belluscio, A., & Maiorano, L. (2006). Long-term change in the structure of a Posidonia oceanica landscape and its reference for a monitoring plan. Marine Ecology, 27(4), 299–309. doi:10.1111/mae.2006.27.issue-4

Atallah, L., Probert Smith, P.J., & Bates, C.R. (2002). Wavelet analysis of bathymetric sidescan sonar data for the classification of seafloor sediments in Hopvågen Bay - Norway. Marine Geophysical Researches, 23(5), 431–442. doi:10.1023/B:MARI.0000018239.07561.76

Banerjee, S., Ray, R., Shome, S.N., & Sanyal, G. (2014). Noise induced feature enhancement and object segmentation of forward looking SONAR image. Procedia Technology, 14, 125–132. doi:10.1016/j.protcy.2014.08.017

Barrell, J., & Grant, J. (2013). Detecting hot and cold spots in a seagrass landscape using local indicators of spatial association. Landscape Ecology, 28(10), 2005–2018. doi:10.1007/s10980-013-9937-2

Barrell, J., Grant, J., Hanson, A., & Mahoney, M. (2015). Evaluating the complementarity of acoustic and satellite remote sensing for seagrass landscape mapping. International Journal of Remote Sensing, 36(16), 4069–4094. doi:10.1080/01431161.2015.1076208

Barrell, J.P. (2014). Quantification and spatial analysis of seagrass landscape structure through the application of aerial and acoustic remote sensing (PhD). Canada: Dalhousie University.

Blondel, P. (1999). Textural analysis of sidescan sonar imagery and generic seafloor characterization. The Journal of the Acoustical Society of America, 105(2), 1206–1206. doi:10.1121/1.425676

Blondel, P., Parson, L.M., & Robigou, V. (1998, 28 September-1 October). TexAn: Textural analysis of sidescan sonar imagery and generic seafloor characterization. IEEE Oceanic Engineering Society. OCEANS’98 Conference Proceedings (Cat. No.98CH36259), Nice, France.

Blondel, P., Prampolini, M., & Foglini, F. (2015, September 07-09). Acoustic textures and multibeam mapping of shallow marine habitats - Examples from Eastern Malta. Bath, UK: Seabed and Sediment Acoustics: Measurements and Modelling, University of Bath.

Boudouresque, C.-F., Bernard, G., Bonhomme, P., Charbonnel, E., Diviacco, G., Meinesz, A., ... Tunesi, L. (2012). Protection and conservation of Posidonia oceanica meadows. Monaco: RAMOGE and RAC/SPA.

Bozzano, R., Mantovani, R., Siccardi, A., & Castellano, L. (1998, September-October 28). Acoustic backscattering from marine vegetation. OCEANS ’98 Conference Proceedings, Nice, France.

Bozzano, R., & Siccardi, A. (1997). Underwater vegetation detection in high frequency sonar images: A preliminary approach. In A. Del Bimbo (Ed.), Image analysis and processing: 9th international conference, ICIAP ’97 Florence, Italy, September 17 –19,1997 proceedings, Volume II (pp. 576–583). Berlin, Heidelberg: Springer Berlin Heidelberg.

Brando, V.E., & Dekker, A.G. (2003). Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1378–1387. doi:10.1109/TGRS.2003.812907

Brown, C.J., Beaudoin, J., Brissette, M., & Gazzola, V. (2017). Setting the stage for multispectral acoustic backscatter research. United States Hydrographic Conference 2017, Galveston, Texas, USA.

Brown, C.J., & Blondel, P. (2009). Developments in the application of multibeam sonar backscatter for seafloor habitat mapping. Applied Acoustics, 70(10), 1242–1247. doi:10.1016/j.apacoust.2008.08.004

Brown, C.J., & Collier, J.S. (2008). Mapping benthic habitat in regions of gradational substrata: An automated approach utilising geophysical, geological, and biological relationships. Estuarine, Coastal and Shelf Science, 78(1), 203–214. doi:10.1016/j.ecss.2007.11.026

Brown, C.J., Sameoto, J.A., & Smith, S.J. (2012). Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. Journal of Sea Research, 72, 1–13. doi:10.1016/j.seares.2012.04.009

Brown, C.J., Smith, S.J., Lawton, P., & Anderson, J.T. (2011). Benthic habitat mapping: A review of progress
towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine, Coastal and Shelf Science*, 92(3), 502–520. doi:10.1016/j.ecss.2011.02.007

Brown, C.J., Smyth, S., Furlong, A., King, G., Costello, G., Potter, P., & Melton, J.S. (2010). A synergistic approach to improve multibeam backscatter classification methods for geological/habitat mapping. *Hydro 2010 Conference*, Rostock, Warnemunde, Germany.

Buscombe, D. (2017). Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar. *Environmental Modelling & Software*, 89, 1–18. doi:10.1016/j.envsoft.2016.12.003

Buscombe, D., Grams Paul, E., & Smith Sean, M.C. (2016). Automated riverbed sediment classification using low-cost sidescan sonar. *Journal of Hydraulic Engineering*, 142(2), 06015019. doi:10.1061/(ASCE)HY.1943-7900.0001079

Buscombe, D., Grams, P.E., & Kaplinski, M. (2018, May 8). Probabilistic models of seafloor composition using multispectral acoustic backscatter: The benthic detectors. *Santa Barbara, California: GeoHab.*

Buscombe, D., Grams, P.E., & Kaplinski, M.A. (2017). Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds. *Journal of Geophysical Research: Earth Surface*, 122(10), 1771–1793.

Calvert, J., Strong, J.A., Service, M., McGonigle, C., & Quinn, R. (2015). An evaluation of supervised and unsupervised classification techniques for marine benthic habitat mapping using multibeam echosounder data. *ICES Journal of Marine Science*, 72(5), 1498–1513. doi:10.1093/icesjms/fsu223

Castro, E.T., & Arjona, I.P. (2017). Métodos de muestreo para el estudio del estado ecológico de fanerogamas marinas en el Mediterráneo (Master). Universidad Politécnica De Valencia.

Cervenka, P. (1998, May 23–27). Characterization and observation of the seafloor with a new multi-beam front-scan sonar system (project COSMOS). Third European Marine Sciences and Technology Conference, Lisbon, Portugal.

Chamberlain, R.H., Doering, P.H., Orlando, B., & Sabol, B.M. (2009). Comparison of manual and hydroacoustic measurement of seagrass distribution in the Caloosahatchee estuary, Florida. *Florida Scientist*, 72(4), 386–405.

Cheek Brandon, D., Grabowski Timothy, B., Bean Preston, T., Groeschel Jillian, R., & Magnelia Stephanie, J. (2016). Evaluating habitat associations of a fish assemblage at multiple spatial scales in a minimally disturbed stream using low-cost remote sensing. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 26(1), 20–34. doi:10.1002/aqc.2569

Chivers, R.C. (1990). New acoustic processing for under-way surveying. *Hydrog Journal*, 56, 9–17.

Coggan, R., Populus, J., White, I., Sheehan, K., Fitzpatrick, F., & Piel, S. (2007). Review of standards and protocols for seabed habitat mapping. In *Mapping European Seabed Habitats (MESH)* (pp. 106–203). Peterborough, UK.

Colantoni, P., Gallignani, P., Fresi, E., & Cinelli, F. (1982). Patterns of Posidonia oceanica (L.) Delile Beds around the Island of Ischia (Gulf of Naples) and in adjacent waters. *Marine Ecology*, 3(1), 53–74. doi:10.1111/j.1439-0485.1982.tb00105.x

Colbo, K., Ross, T., Brown, C., & Weber, T. (2014). A review of oceanographic applications of water column data from multibeam echosounders. *Estuarine, Coastal and Shelf Science*, 145, 41–56. doi:10.1016/j.ecss.2014.04.002

Collier, J.S., & Brown, C.J. (2005). Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments. *Marine Geology*, 214(4), 431–449. doi:10.1016/j.margeo.2004.11.011

Collier, J.S., & Humber, S.R. (2007). Time-lapse side-scan sonar imaging of bleached coral reefs: A case study from the Seychelles. *Remote Sensing of Environment*, 108(4), 339–356. doi:10.1016/j.rse.2006.11.029

Collins, K.J., Suonpää, A.M., & Mallinson, J.J. (2010). The impacts of anchoring and mooring in seagrass, Studland Bay, Dorset, UK. *Underwater Technology*, 29(3), 117–123. doi:10.3723/ut.29.117

Costa, B.R. (2018, May 7–11). Multispectral acoustic backscatter: How useful is it for marine habitat mapping and management? Santa Barbara, California, USA: GeoHab.

Cutter, G.R., Rzhayov, Y., & Mayer, L.A. (2003). Automated segmentation of seafloor bathymetry from multibeam echosounder data using local Fourier histogram texture features. *Journal of Experimental Marine Biology and Ecology*, 285–286, 355–370. doi:10.1016/S0022-0981(02)00537-3

Dartnell, P., & Gardner, J.V. (2004). Predicting seafloor facies from multibeam bathymetry and backscatter data. *Photogrammetric Engineering & Remote Sensing*, 70(9), 1081–1091. doi:10.14358/PERS.70.9.1081

De Falco, G., Tonielli, R., Di Martino, G., Innangi, S., Simeone, S., & Michael Parnum, I. (2010). Relationships between multibeam backscatter, sediment grain size and Posidonia oceanica seagrass distribution. *Continental Shelf Research*, 30(18), 1941–1950. doi:10.1016/j.csr.2010.09.006

de Mouster, C., & Alexandrou, D. (1991). Angular dependence of 12-kHz seafloor acoustic backscatter. The *Journal of the Acoustical Society of America*, 90(1), 522–531. doi:10.1121/1.401278

Dekker Arnold, G., Phinn Stuart, R., Anstee, J., Bissret, P., Brando Vittorio, E., Casey, B., … Roelfsema, C. (2011). Intercomparation of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. *Limnology and Oceanography: Methods*, 9(6), 396–425.

Descamp, P., Holon, F., Ballesta, L., Guilbert, A., Guillot, M., Boissy, P., … Deter, J. (2011). Fast and easy method for seagrass monitoring: Application of acoustic telemetry to precision mapping of Posidonia oceanica beds. *Marine Pollution Bulletin*, 62(2), 284–292. doi:10.1016/j.marpolbul.2010.10.012

Descamp, P., Pergent, G., Ballesta, L., & Foulquie, M. (2005). Underwater acoustic positioning systems as tool for Posidonia oceanica beds survey. *Comptes rendus biologies*, 328(1), 75–80.

Di Maida, G., Tomasello, A., Luzzu, F., Scannavino, A., Pirrotta, M., Orestano, C., & Calvo, S. (2011). Discriminating between Posidonia oceanica meadows and sand substratum using multibeam sonar. *ICES Journal of Marine Science*, 68(1), 12–19. doi:10.1093/icesjms/fsq130

Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A., & Dove, D. (2014). Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. *Continental Shelf Research*, 84, 107–119. doi:10.1016/j.csr.2014.05.004

Diesing, M., Mitchell, P., & Stephens, D. (2016). Image-based seabed classification: What can we learn from
Hanley, S. (1982). A technique for surveying aquatic plant populations using an echo-sounder. Proc., EWRSS 6th Symp. Aquatic Weeds, Novi Sad, Yugoslavia.

Haralick, R.M. (1974). Texture-Tone study with application to digitized imagery. Kansas, USA: Kansas Univ/Center for Research Inc., Lawrence Remote Sensing Lab.

Haralick, R.M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, (6), 610–621. doi:10.1109/TSMC.1973.4309314

Harris, P.T., & Baker, E.K. (2012). Why map benthic habitats? In P.T. Harris & E.K. Baker (Eds.), Seafloor geomorphology as benthic habitat (pp. 3–22). London: Elsevier.

Hasan, C.R., Ierodiaconou, D., & Monk, J. (2012). Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multibeam sonar. Remote Sensing, 4(11), 3427–3443. doi:10.3390/rs4113427

Herkul, K., Peterson, A., & Paekivi, S. (2017). Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows. Estuarine, Coastal and Shelf Science, 192, 57–71. doi:10.1016/j.ecss.2017.04.026

Hill, V.J., Zimmerman, R.C., Bissett, W.P., Dierssen, H., & Kohler, D.D.R. (2014). Evaluating light availability, seagrass biomass, and productivity using hyperspectral airborne remote sensing in Saint Joseph’s Bay, Florida. Estuaries and Coasts, 37(6), 1467–1489. doi:10.1007/s12237-013-9764-3

Hossain, M.S., Bujang, J.S., Zakaria, M.H., & Hashim, M. (2015). The application of remote sensing to seagrass ecosystems: An overview and future research prospects. International Journal of Remote Sensing, 36(1), 61–114. doi:10.1080/01431161.2014.990649

Huang, Z., Siwabessy, J., Nichol, S., Anderson, T., & Brooke, B. (2013). Predictive mapping of seabed cover types using angular response curves of multibeam backscatter data: Testing different feature analysis approaches. Continental Shelf Research, 61–62, 12–22. doi:10.1016/j.csr.2013.04.024

Hughes Clarke, J.E., Mayer, L.A., & Wells, D.E. (1996). Shallow-water imaging multibeam sonars: A new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Marine Geophysical Researches, 18(6), 607–629. doi:10.1016/0143-077X(96)00013-7

Hurtós, N., Palomeras, N., Carrera, A., & Carreras, M. (2017). Autonomous detection, following and mapping of an underwater chain using sonar. Ocean Engineering, 130, 336–350. doi:10.1016/j.oceeng.2016.11.072

Ierodiaconou, D., Laurenson, L., Burq, S., & Reston, M. (2007). Marine benthic habitat mapping using Multibeam data, georeferenced video and image classification techniques in Victoria, Australia. Journal of Spatial Science, 52(1), 93–104. doi:10.1080/14498596.2007.9635105

Ierodiaconou, D., Monk, J., Rattray, A., Laurenson, L., & Versace, V.L. (2011). Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations. Continental Shelf Research, 31(2, Supplement), S28–S58. doi:10.1016/j.csr.2010.01.012

Ierodiaconou, D., Schimel, A.C.G., Kennedy, D., Monk, J., Gaylard, G., Young, M., ... Rattray, A. (2018). Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters. Marine Geophysical Research, 39(1), 271–288.

Iho, S. (2008, February). 44 IHO standards for hydrographic surveys. Monaco: International Hydrographic Organization.

Innangi, S., Barra, M., Di Martino, G., Parunum, L.M., Tonielli, R., & Mazzola, S. (2015). Reson Seabat 8125 backscatter data as a tool for seabed characterization (Central Mediterranean, Southern Italy): Results from different processing approaches. Applied Acoustics, 87, 109–122. doi:10.1016/j.apacoust.2014.06.014

Jordan, A., Lawler, M., Halley, V., & Barrett, N. (2005). Seabed habitat mapping in the Kent Group of islands and its role in Marine protected area planning. Aquatic Conservation: Marine and Freshwater Ecosystems, 15(1), 51–70. doi:10.1002/(ISSN)1099-0755

Kaerad Adam, J., Litts Thomas, L., & Tracy, T.W. (2013). Using low-cost side-scan Sonar for benthic mapping throughout the lower flint river, Georgia, USA. River Research and Applications, 29(5), 634–644. doi:10.1002/rra.v29.5

Kaerader, A.J., & Litts, T.L. (2010). A novel technique for mapping habitat in navigable streams using low-cost side scan Sonar. Fisheries, 35(4), 163–174. doi:10.1077/1548-8446.35.4.163

Karpouzi, E., & Malthus, T.J. (2007, July 23–28). Integrating dual frequency side scan sonar and high spatial resolution satellite imagery for monitoring coral reef benthic communities. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain.

Kaufman, L., & Rousseeuw, P.J. (1990). Finding groups in data: An introduction to cluster analysis. Hoboken, New Jersey, USA: John Wiley & Sons.

Kendrick, G., Harvey, E., McDonald, J., Pattiaratchi, C., Cappo, M., Fromont, J., ... Baxter, K. (2005). Characterising the fish habitats of the Recherche Archipelago. Fisheries Research and Development Corporation report project (2001/060)

Kim, H., & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. Journal of the American Statistical Association, 96(454), 589–604.

King, L.H. (1967). Use of a conventional echo-sounder and textural analyses in delineating sedimentary facies: Scotian Shelf. Canadian Journal of Earth Sciences, 4(4), 691–708. doi:10.1139/e67-046

Kingon, K.C., Thijis, N., Robinson, M., Maharaj, B., & Garcia, M. (2018, May 7–11). Seagrass mapping on a budget using a kayak, Lowrance HDS sidescan sonar system, ReefMaster and Google Earth software. Santa Barbara, California: GeoHab.

Klemas, V. (2012). Airborne remote sensing of coastal features and processes: An overview. Journal of Coastal Research, 29(2), 239–255.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480. doi:10.1109/5.58325

Komatsu, T., Igarashi, C., Tatsukawa, K., Sultana, S., Matsuoka, Y., & Harada, S. (2003). Use of multi-beam sonar to map seagrass beds in Otsuchi Bay on the Sanriku Coast of Japan. Aquatic Living Resources, 16 (3), 223–230. doi:10.1016/S0990-7740(03)00045-7

Lacharité, M., Brown, C.J., & Gazzola, V. (2018). Multisource multibeam backscatter data: Developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods. Marine Geophysical Research, 39(1), 307–322. doi:10.1007/s11001-017-9331-6

Lamarche, G., Le Gonidec, Y., Greinert, J., Lucieer, V.L., & Lurton, X. (2017). Building capability for in situ quantitative characterisation of the ocean water column using
acoustic multibeam backscatter data. Rennes, France: Water Column Acoustics Workshop Report.

Lamarche, G., & Luton, X. (2018). Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars. Marine Geophysical Research, 39(1), 5–22. doi:10.1007/s11001-017-9315-6

Lamb, J.B., van de Water, J.A.M., Bourne, D.G., Altier, C., Hein, M.Y., Fiorenza, E.A., ... Harvell, C.D. (2017). Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. [10.1126/science.aal1956]. Science, 355(6326), 731.

Le Bas, T.P., & Huvonen, V.A.I. (2009). Acquisition and processing of backscatter data for habitat mapping – Comparison of multibeam and sidescan systems. Applied Acoustics, 70(10), 1248–1257. doi:10.1016/j.apacoust.2008.07.010

Lee Long, W.J., Roder, C.A., McKenzie, L.J., & Hundley, A. J. (1998). Preliminary evaluation of an acoustic technique for mapping seagrass habitats. Townsville, Australia: Great Barrier Reef Marine Park Authority.

Lefebvre, A., Thompson, C.E.L., Collins, K.J., & Amos, C.L. (2000). Use of a high-resolution profiling sonar and a towed video camera to map a Zostera marina bed, Solent, UK. Estuarine, Coastal and Shelf Science, 82(2), 323–334. doi:10.1016/j.ecss.2009.01.027

Legrand, H., Lenfant, P., Sotheran, I.S., Foster-Smith, R.L., Galzin, R., & Maréchal, J.P. (2010). Mapping marine benthic habitats in Martinique (French West Indies). Caribbean Journal of Science, 46(2–3), 267–282. doi:10.18475/cjos.v46i2.a15

Leriche, A., Pasqualini, V., Boudouresque, C.-F., Bernard, G., Bonhomme, P., Clabaut, P., & Denis, J. (2006). Spatial and temporal variations of a Posidonia oceanica seagrass meadow facing human activities. Aquatic Botany, 84(4), 287–293. doi:10.1016/j.aquabot.2005.10.001

Lo Iacono, C., Mateo, M.A., Gracia, E., Guasch, L., Carbonell, R., Serrano, L., ... Dañobeitia, J. (2008). Very high-resolution seismo-acoustic imaging of seagrass meadows (Mediterranean Sea): Implications for carbon sink estimates. Geophysical Research Letters, 35(18), n/a-n/a. doi:10.1029/2008GL034773

Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification Trees. Statistica Sinica, 7(4), 815–840.

Lucier, V., Hill, N.A., Barrett, N.S., & Nichol, S. (2013). Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuarine, Coastal and Shelf Science, 117, 94–106. doi:10.1016/j.ecss.2012.11.001

Lucier, V., & Lamarche, G. (2011). Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand. Continental Shelf Research, 31(11), 1236–1247. doi:10.1016/j.csr.2011.04.016

Lucier, V., & Luciere, A. (2009). Fuzzy clustering for seafloor classification. Marine Geology, 264(3), 230–241. doi:10.1016/j.margeo.2009.06.006

Lucier, V., Roche, M., Degredele, K., Malik, M., Dolan, M., & Lamarche, G. (2017). User expectations for multibeam echo sounders backscatter strength data-looking back into the future. Marine Geophysical Research, 39(1–2), 23–40.

Lucier, V.L. (2007). The application of automated segmentation methods and fragmentation statistics to characterise rocky reef habitat. Journal of Spatial Science, 52(1), 81–91. doi:10.1080/14498596.2007.9635104

Lucier, V.L. (2008). Object-oriented classification of sidescan sonar data for mapping benthic marine habitats. International Journal of Remote Sensing, 29(3), 905–921.

Luton, X. (2002). An introduction to underwater acoustics: Principles and applications. Chichester, UK: Praxis Publishing.

Luton, X., & Lamarche, G. (2015). Backscatter measurements by seafloor-mapping sonars. In Guidelines and recommendations. Eastsound, WA, USA: Geohab Report.

Luton, X., & Pouliquen, E. (1992, October 26–29). Automated sea-bed classification system for echo-sounders. OCEANS 92 Proceedings in Mastering the Oceans Through Technology, Newport, RI, USA.

Lyons, A.P., & Abraham, D.A. (1999). Statistical characterization of high-frequency shallow-water seafloor backscatter. The Journal of the Acoustical Society of America, 106(3), 1307–1315. doi:10.1121/1.428034

Lyons, A.P., & Pouliquen, E. (1998). Measurements of high-frequency acoustic scattering from seabed vegetation. Journal of the Acoustical Society of America, 103(p), 2934. doi:10.1121/1.422172

Lyons, M., Phinn, S., & Roelfsema, C. (2011). Integrating quickbird multi-spectral satellite and field data: Mapping bathymetry, seagrass cover, seagrass species and change in moreton Bay, Australia in 2004 and 2007. Remote Sensing, 3(1), 42–64. doi:10.3390/rs3010042

Maceina, M.J., & Shireman, J.V. (1980). The use of a recording fathometer for determination of distribution and biomass of hydrilla. Journal of Aquatic Plant Management, 18, 34–39.

Maceina, M.J., Shireman, J.V., Langeland, K.A., & Canfield, D.E., Jr. (1984). Prediction of submerged plant biomass by use of a recording fathometer. Journal of Aquatic Plant Management, 22, 35–38.

Malthus, T.J., & Karpouzli, E. (2009). On the benefits of using both dual frequency side scan sonar and optical signatures for the discrimination of coral reef benthic communities. In Silva S. (Ed.), Advances in sonar technology (pp. 165–190). Rijeka, Crota: InTech.

Marsh, I., & Brown, C. (2009). Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV). Applied Acoustics, 70(10), 1269–1276. doi:10.1016/j.apacoust.2008.07.012

Mayer, L.A. (2006). Frontiers in seafloor mapping and visualization. Marine Geophysical Researches, 27(1), 7–17. doi:10.3390/rs3010042

McCarthy, E.M., & Sabol, B. (2000). Acoustic characterization of submerged aquatic vegetation: Military and environmental monitoring applications. OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158), Providence, RI, USA.

McGonigle, C., Grabowski, J.H., Brown, C.J., Weber, T.C., & Quinn, R. (2011). Detection of deep water benthic macroalgae using image-based classification techniques on multibeam backscatter at Cashes Ledge, Gulf of Maine, USA. Estuarine, Coastal and Shelf Science, 91(1), 87–101. doi:10.1016/j.ecss.2010.10.016

Micallef, A., Le Bas, T.P., Huvonen, V.A.I., Blondel, P., Hühnerbach, V., & Deidun, A. (2012). A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Continental Shelf Research, 39, 14–26. doi:10.1016/j.csr.2012.03.008

Miner, S.P. (1998). Application of acoustic hydrosurvey technology to the mapping of eelgrass (Zostera marina) distribution in Humboldt Bay, California, Coastal Zone.
A new synthetic index and a protocol for monitoring the status of Posidonia oceanica meadows: A case study at Sanremo (Ligurian Sea, NW Mediterranean). Aquatic Conservation: Marine and Freshwater Ecosystems, 16(1), 29–42. doi:10.1002/aqc.1099-0755

Montefalcone, M., Rovere, A., Parravincini, V., Albertelli, G., Morri, C., & Bianchi, C.N. (2013). Evaluating change in seagrass meadows: A time-framed comparison of Side Scan Sonar maps. Aquatic Botany, 104, 204–212. doi:10.1016/j.aquabot.2011.05.009

Montereale Gavazzi, G., Madricardo, F., Janowski, L., Krusz, A., Blondel, P., Sigovini, M., & Foglini, F. (2016). Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats – Application to the Venice Lagoon, Italy. Estuarine, Coastal and Shelf Science, 170, 45–60. doi:10.1016/j.ecss.2015.12.014

Moreno López, A., Rey Salgado, J., & Siljeström, P. (1998). Benthic phanerogam species recognition in side scan sonar images: importance of the sensor direction: Consiglio nazionale delle ricerche (Italia).

Mulhearn, P.J. (2001). Mapping seabed vegetation with side-scan sonar. Melbourne, Australia: Aeronautical and Maritime Research Lab.

Munday, E., Moore, B., & Burczynski, J. (2013, September 23–27). Hydroacoustic mapping system for quantitative identification of aquatic macrophytes, substrate composition, and shallow water bathymetric surveying. OCEANS 2013, San Diego, CA, USA.

Newton, R.S., & Stefanon, A. (1975). Application of side-scan sonar in marine biology. Marine Biology, 31 (3), 287–291. doi:10.1007/BF00387155

Orłowski, A. (1984). Application of multiple echoes energy measurements for evaluation of sea bottom type. Oceanologia, 19, 61–78.

Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourquean, J.W., Heck, J.K.L., ... Williams, S.L. (2006). A Global Crisis for seagrass ecosystems. BioScience, 56(12), 987–996. doi:10.1641/0006-3568-(2006)56[987:AGCFSE]2.0.CO;2

Pace, N.G., & Dyer, C.M. (1979). Machine classification of sedimentary sea bottoms. IEEE Transactions on Geoscience Electronics, 17(3), 52–56. doi:10.1109/TGE.1979.294612

Pace, N.G., & Gao, H. (1988). Swathe seabed classification. IEEE Journal of Oceanic Engineering, 13(2), 83–90. doi:10.1109/48.559

Parnum, I.M. (2007). Benthic habitat mapping using multi-beam sonar systems (PhD). Curtin University.

Parnum, I.M., Siwabessy, P.J.W., & Gavrilov, A.N. (2004). Identification of seafloor habitats in coastal shelf waters using a multibeam echosounder. In Proceedings of Acoustics 2004, Gold Coast, Australia.

Pasqualini, V., Clabaut, P., Pergent, G., Benyousef, L., & Pergent-Martini, C. (2000). Contribution of side scan sonar to the management of Mediterranean littoral ecosystems. International Journal of Remote Sensing, 21(2), 367–378. doi:10.1080/01431160210885

Pasqualini, V., Pergent-Martini, C., Clabaut, P., & Pergent, G. (1998). Mapping of Posidonia oceanica using aerial photographs and side scan Sonar: Application off the Island of Corsica (France). Estuarine, Coastal and Shelf Science, 47(3), 359–367. doi:10.1016/s0272-7714(98)00361

Paul, M., Lefebvre, A., Manca, E., & Amos, C.L. (2011). An acoustic method for the remote measurement of seagrass metrics. Estuarine, Coastal and Shelf Science, 93(1), 68–79. doi:10.1016/j.ecss.2011.04.006

Pergent, G., Gerakaris, V., Sghaier, Y.R., Zakhamra-Sraier, R., Fernandez Torquemada, Y., & Pergent-Martini, C. (2016). Posidonia oceanica (errata version published in 2017). Retrieved Date.

Pergent, G., Monnier, B., Clabaut, P., Gascon, G., Pergent-Martini, C., & Valette-Sansevin, A. (2017). Innovative method for optimizing Side-Scan Sonar mapping: The blind band unveiled. Estuarine, Coastal and Shelf Science, 194, 77–83. doi:10.1016/j.ecss.2017.05.016

Piazzì, L., Acunto, S., & Cinelli, F. (2000). Mapping of Posidonia oceanica beds around Elba Island (western Mediterranean) with integration of direct and indirect methods. Oceanologica Acta, 23(3), 339–346. doi:10.1051/oceanl:2000088

Plus, M., Dalloyau, S., Trut, G., Auby, I., De Montaudouin, X., Emery, E., ... Viau, C. (2010). Long-term evolution (1988-2008) of Zostera spp. Meadows in Arcachon Bay (Bay of Biscay). Estuarine Coastal and Shelf Science, 87(2), 357–366. doi:10.1016/j.ecss.2010.01.016

Prampolini, M., Blondel, P., Foglini, F., & Madricardo, F. (2018). Habitat mapping of the Maltese continental shelf using acoustic textures and bathymetric analyses. Estuarine, Coastal and Shelf Science, 207, 483–498. doi:10.1016/j.ecss.2017.06.002

Preston, J. (2009). Automated acoustic seabed classification of multibeam images of Stanton Banks. Applied Acoustics, 70 (10), 1277–1287. doi:10.1016/j.apacoust.2008.07.011

Preston, J.M., Christney, A.C., Bloomer, S.F., & Beaudet, I. L. (2001, November 5–8). Seabed classification of multibeam sonar images. MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA.

Pribičević, B., Dapo, A., Kordić, B., & Pijanović, N. (2016). Mapping of underwater habitats based on the analysis of backscatter intensity of the return acoustic signal. Annual 2016 of the Croatian Academy of Engineering, 1 (2016), 79–96.

Rahmeneonifar, M., & Rahman, A. (2016). Automatic seagrass pattern identification on sonar images. SPIE Defense+ Security.

Rahmeneonifar, M., Rahman, A.F., Kline, R.J., & Greene, A. (2018). Automatic seagrass disturbance pattern identification on Sonar Images. IEEE Journal of Oceanic Engineering, 1–10. doi:10.1109/JOE.2017.2780707

Rahmeneonifar, M., Yari, M., Rahman, A., & Kline, R. (2017, July 21–26). The first automatic method for mapping the pothole in seagrass. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA.

Rattray, A., Jerodiasconou, D., Laurenson, L., Burq, S., & Reston, M. (2009). Hydro-acoustic remote sensing of benthic biological communities on the shallow South East Australian continental shelf. Estuarine, Coastal and Shelf Science, 84(2), 237–245. doi:10.1016/j.ecss.2009.06.023

Reed, T.B., & Hussong, D. (1989). Digital image processing techniques for enhancement and classification of SeaMARC II side scan sonar imagery. Journal of Geophysical Research: Solid Earth, 94(B6), 7469–7490. doi:10.1029/B094iB06p0746

Regulation, C. (2006). No. 1967/2006 of 21 December 2006, concerning management measures for the sustainable exploitation of fishery resources in the Mediterranean Sea, amending Regulation (EEC) No. 2847/93 and repealing Regulation (EC) No. 1626/94.
Sagawa, T., Mikami, A., Komatsu, T., Kosaka, N., Kosako, A., Miyazaki, S., & Takahashi, M. (2008). Technical Note. Mapping Seagrass Beds Using IKONOS Satellite Image and Side Scan Sonar Measurements: a Japanese Case Study. International Journal of Remote Sensing, 29(1), 281–291.

Sánchez-Carnero, N., Rodríguez-Pérez, D., Couñago, E., Aceña, S., & Freire, J. (2012). Using vertical Sidescan Sonar as a tool for seagrass cartography. Estuarine, Coastal and Shelf Science, 115, 334–344. doi:10.1016/j.ecss.2012.09.015

Schiaigintwiet, G.E.O. (1993, October 18–21). Real-time acoustic bottom classification for hydrography a field evaluation of RoxAnn. Proceedings of OCEANS ‘93.

Schimel, A.C.G., Beaudoin, J., Parnum, I.M., Le Bas, T., Schmidt, V., Keith, G., & Ierodiaconou, D. (2018). Multibeam sonar backscatter data processing. Marine Geophysical Research, 39(1), 121–137. doi:10.1007/s11001-018-9341-z

Schneider, P., Burczyński, J., Monteoliva, A., & Valle, A. (2001). Results from submerged aquatic plant assessment using digital echosounder technique. In International Council for the Exploration of the Sea, Joint Session of FTFB and FAST Working Groups (pp. 23–27). Seattle, WA, USA.

Shono, K., Komatsu, T., Sato, Y., Koshinuma, J., & Tada, S. (2004, November 9–12). Integrated hydro-acoustic survey scheme for mapping of sea bottom ecology. OCEANS ’04. MTTS/IEEE TECHNO-OCEAN ’04, Kobe, Japan.

Short, F., Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 350(1), 3–20. doi:10.1016/j.jembe.2007.06.012

Siccardi, A., Bozzano, R., & Bono, R. (1997, October 6–9). Seabed vegetation analysis by a 2 MHz sonar. OCEANS ’97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada.

Siljeström, P., Moreno, A., & Rey, J. (1995). Technical note Seafloor characterization through side scan sonar image processing. International Journal of Remote Sensing, 16(4), 625–632. doi:10.1080/01431169508954429

Siljeström, P.A., Rey, J., & Moreno, A. (1996). Characterization of phanerogam communities (Posidonia oceanica and Cymodocea nodosa) using side-scan-sonar images. ISPRS Journal of Photogrammetry and Remote Sensing, 51(6), 308–315. doi:10.1016/S0924-2716(96)00025-1

Simons, D.G., & Snellen, M. (2009). A Bayesian approach to seafloor classification using multi-beam echo-sounder backscatter data. Applied Acoustics, 70(10), 1258–1268. doi:10.1016/j.apacoust.2008.07.013

Siwabessy, P.J.W., Gavrilov, A.N., & Parnum, I. (2005). Swath system deployed in Cockburn Sound for follow up trials of using snippets to classify seabed/benthos. Pert, Western Australia: Curtin University of Technology CMST.

Siwabessy, P.J.W., Parnum, I., Gavrilov, A., & McCauley, R. D. (2006). Overview of coastal water habitat mapping research for the Coastal CRC Technical Report 86: Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management Brisbane.

Sonoki, S., Shao, H., Morita, Y., Minami, K., Shoji, J., Hori, M., & Miyashita, K. (2016). Using acoustics to determine eelgrass bed distribution and to assess the seasonal variation of ecosystem service. PLOS One, 11(3), e0150890. doi:10.1371/journal.pone.0150890
