Supplementary data to:

Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration

By Bradley A. Carlson, Ryuta Tobe, Elena Yefremova, Petra A. Tsuji, Victoria J. Hoffmann, Ulrich Schweizer, Vadim N. Gladyshev, Dolph L. Hatfield, Marcus Conrad

Supplementary materials & methods

Materials

Selenoprotein R (SelR) antibodies were from the laboratory of one of us (VNG). Txnrd1 (Catalog No. ab124954), Gpx1 (Catalog No. ab22604) and Gpx4 (Catalog No. ab125066) antibodies were purchased from Abcam, SepW (Catalog No. 600-401-A29) antibodies from Rockland, Gapdh (Catalog No. G9545) antibodies from Sigma-Aldrich, and anti-rabbit HRP conjugated secondary antibodies (Catalog No. 7074) from Cell Signaling Technology. Dulbecco’s phosphate buffered saline (DPBS) and NuPAGE polyacrylamide gels were obtained from Life Technologies. Wizard Genomic DNA Purification Kit was purchased from Promega. β-Nicotinamide adenine dinucleotide 2’-phosphate reduced tetrasodium salt hydrate (NADPH), 5,5’-dithiobis (DTNB) and aurothioglucose hydrate were from Sigma-Aldrich. PVDF membrane, iScript cDNA synthesis kit and SYBR green were from BioRad. Thiobarbituric Acid Reactive Substances (TBARS) Assay Kit was purchased from Cayman Chemical. TriPure isolation reagent and Complete Protease Inhibitor Cocktail Tablets were from Roche. BCA protein assay kit and SuperSignal West Dura Extended Duration Substrate were from Thermo Scientific.
Generation of Hepatocyte-specific Knockout Mice

Gpx4fl/fl mice in a C57BL/6 background were obtained as described [1] and crossed with mice carrying the Alb-Cre transgene (C57BL/6) [2] to obtain hepatocyte-specific Gpx4 knockout mice. Hepatocyte-specific Trspfl/fl knockout mice and Txnrd1fl/fl conditional knockout mice were generated as described [3, 4]. Male F2 generation offspring with genotypes Alb-Cre; Gpx4fl/fl, Alb-Cre; Trspfl/fl or Alb-Cre; Txnrd1fl/fl were mated with female Gpx4fl/fl, Trspfl/fl or Txnrd1fl/fl mice, respectively, and the resulting Alb-Cre; Gpx4fl/fl, Alb-Cre; Trspfl/fl and Alb-Cre; Txnrd1fl/fl knockout littermates were compared to the corresponding littermates, which were used as controls. Unless otherwise noted, littermates with the genotype Gpx4fl/fl served as controls for Alb-Cre; Gpx4fl/fl mice, littermates with the genotype Trspfl/fl served as controls for Alb-Cre; Trspfl/fl mice and littermates with the genotype Txnrd1fl/fl served as controls for Alb-Cre; Txnrd1fl/fl mice. To obtain combination knockout mice lacking liver Trsp, Gpx4 or Txnrd1, Alb-Cre; Trspfl/fl mice were mated with either Alb-Cre; Gpx4fl/fl or Alb-Cre; Txnrd1fl/fl mice.

Mice, genotyping and diets

Mice were maintained under standard conditions, with food and water given ad libitum. Genomic DNA from mouse tails was isolated using the Wizard Genomic DNA Purification Kit according to manufacturer’s instructions and genotyped using previously described primer sets for Gpx4 [1] and Txnrd1 [5]. Trsp [6] and the Alb-Cre transgene [3] were amplified using primers as described. Vitamin E-deficient (TD.88163) and a vitamin E-enriched diet (TD.130835) containing vitamin E in the form of DL-α tocopheryl acetate (500 IU/kg) were
obtained from Harlan Laboratories. The standard rodent diet used in this study (NIH-31) contained 41 IU/kg of DL-α tocopheryl acetate. To determine the effect of vitamin E on Alb-Cre; Gpx4^{fl/fl} mice, breeding pairs were provided either a vitamin E-deficient diet or a vitamin E-enriched diet. Male and female mice obtained from breeders receiving a vitamin E-enriched diet were maintained on this diet for a minimum of 6 weeks. For experiments requiring dietary depletion of vitamin E, mice were given a vitamin E-deficient diet at 6 weeks of age (TD.88163). Diets were administered to both knockout and littermate control mice in the same manner. Mice were handled in accordance with the National Institutes of Health Institutional Guidelines (NCI, NIH, Bethesda, MD, USA), and all mouse experiments were approved by the Animal Ethics Committee at the National Institutes of Health.

Protein isolation and western blotting

Tissues were washed twice with DPBS and then harvested in ice cold lysis buffer (50 mM Tris; pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1% Igepal and protease inhibitor). Protein concentrations were measured in the resulting cell extracts using a BCA protein assay kit, and 40 µg of total protein were electrophoresed on NuPAGE polyacrylamide gels, transferred on to PVDF membranes and incubated overnight at 4°C in Tris-buffered saline (TBS-T) containing 0.1% Tween 20 and 5% milk with antibodies for either Gpx1, Gpx4, Txnrd1, SelR, SepW or Gapdh. Membranes were washed with TBS-T and incubated in secondary antibody for 1 h. Immunolabeling was detected using SuperSignal West Dura Extended Duration Substrate and exposed to x-ray film.
Thioredoxin reductase activity assay

Txnrd1 activity was determined spectrophotometrically based on the method of Holmgren [7]. Briefly, Txnrd1 activity was determined as the difference between total Txnrd1 activity and the time-dependent increase in absorbance at 412 nm in the presence of aurothioglucose, a Txnrd1 inhibitor. Activity is expressed in µmol 5-thio-2-nitrobenzoic acid (TNB) formed/min/mg protein.

Lipid peroxidation assay

Lipid peroxidation, expressed in terms of malondialdehyde (MDA), was measured colorimetrically (540 nm) using the TBARS Assay Kit according to the manufacturer’s instructions in plasma obtained from Gpx4 control and Alb-Cre; Gpx4^{fl/fl} mice, either maintained on a vitamin E-supplemented diet for 9 weeks or maintained on a vitamin E-supplemented for 6 weeks and then placed on a vitamin E-deficient diet for 3 additional weeks.

Quantification of GSH and GSSG

Total glutathione (GSH) levels in liver were quantified using a glutathione assay kit according to the manufacturer’s instructions (Sigma-Aldrich).
Supplementary Fig. 1. Expression levels of Sec tRNA, Txnrd1 and Gpx4 in livers of control and Alb-Cre; Trspfl/fl mice. (A) Levels of Sec tRNA were analyzed by qPCR in control and knockout liver samples at 1, 6, 15 and 21 days post birth. Data are shown as relative levels normalized to Gapdh in all liver samples (n=3 for each genotype). *Denotes statistical difference (P < 0.05). (B) mRNA levels of Txnrd1 and Gpx4 were analyzed by qPCR in control and knockout liver samples at 1, 6, 15 and 21 days post birth. Data are shown as relative mRNA levels normalized to Gapdh in all liver samples (n=3 for each genotype). *Denotes statistical difference (P < 0.05). (C) Protein levels of Txnrd1 and Gpx4 were analyzed by western blot in control and Alb-Cre; Trspfl/fl liver samples at 1, 6, 15 and 21 days post birth. Levels of Gapdh are shown in the bottom panel as a control for protein loading.
Supplementary Fig. 2. mRNA expression levels of Nrf2-regulated genes in livers of control and Trsp-deficient mice. mRNA levels of *Gsta1*, *Srxn1* and *Cbr3* were analyzed by qPCR. Data are shown as relative mRNA levels normalized to *Gapdh* in all liver samples (n=3 for each genotype). *Denotes statistical difference (*P* < 0.05).
Supplementary Fig. 3. Breeding scheme for generation of combined Trsp and Gpx4 knockout mice. Parental and expected offspring genotypes are shown. Double knockout (DKO) pups have the genotype Alb-cre; Trsp^{fl/fl}; Gpx4^{+/+}.
Supplementary Fig. 4. Breeding scheme for generation of combined *Trsp* and *Txnrd1* knockout mice. Parental and expected offspring genotypes are shown. Double knockout (DKO) pups have the genotype *Alb-cre; Trsp*^{fl/fl}; *Txnrd1*^{fl/fl}.
Supplementary Table 1. Genotyping of pups of Alb-Cre; Trspfl/+; Gpx4fl/+ female x Alb-Cre; Trspfl/+; Gpx4fl/+ male mice.

Number of mice/genotype	Age examined	Mean number of pups/litter
	1 day	6.86

Supplementary Table 2. Genotyping of pups of Alb-Cre; Trspfl/+; Txnrd1fl/+ female x Alb-Cre; Trspfl/+; Txnrd1fl/+ male mice.

Number of mice/genotype	Age examined	Mean number of pups/litter
	1 day	8.64

Supplementary Table 3. Primers used for qPCR analysis.

Target	Forward Primer	Reverse Primer
Cbr3	GCCGGCATCGCGGCTTTATGAA	TGCAGACTCTGATGCTACACACCAC
Gclc	CACCCGCTTCGCTTTAGAATGGA	GACAGAGCTGGAATCCCCATCCCG
Gapdh	TCTTGGGCTACACTGAGGAC	TGTTGCTGATGCGGTATTCA
Gpx1	CAGGAGAATGGCAAGAATGA	GAAGGTAAAGAGCGGGTGAG
Gpx2	ATCAAACGGCTCCTCAAAGT	GGGACAGATTTGACGGGaATG
Gpx4	GCAGGAGGCCAGGAAGTAATC	GGCTGGACTTTTACACTTTG
Gsr	TCGTGCTGCTTGAGAAGGCC	GCAGGACGATTCGGAAGGTT
Gsta1	CGCAGACCAAGGGCCATCCTC	TTGCCCAATCATTTAAGTCG
Sec tRNA	GCCGGCATCGGCTCTCCTCAG	GCACCCGAAAGGGTGAATTGA
Sepr	TCCACGACTGCAAATGACGC	CTGCGCCAGGACACCTTTA
Sepw	TAGAGGGCAAGGTCCTGAAAG	AATCCATCTCTGGCCGTACT
Srxn1	GGTCGGGGTGATGCACTG	GGCTGGACTTTTACACTTTG
Txnrd1	CTACAGACCTGCGGTGC	ACCTCTCCACACAGATCC
Supplementary references

[1] A. Seiler, M. Schneider, H. Forster, S. Roth, E.K. Wirth, C. Culmsee, N. Plesnila, E. Kremmer, O. Radmark, W. Wurst, G.W. Bornkamm, U. Schweizer, M. Conrad, Glutathione Peroxidase 4 Senses and Translates Oxidative Stress into 12/15-Lipoxygenase Dependent- and AIF-Mediated Cell Death, Cell Metab, 8 (2008) 237-248.

[2] C. Postic, M. Shiota, K.D. Niswender, T.L. Jetton, Y. Chen, J.M. Moates, K.D. Shelton, J. Lindner, A.D. Cherrington, M.A. Magnuson, Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase, J Biol Chem, 274 (1999) 305-315.

[3] B.A. Carlson, S.V. Novoselov, E. Kumaraswamy, B.J. Lee, M.R. Anver, V.N. Gladyshev, D.L. Hatfield, Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function, J Biol Chem, 279 (2004) 8011-8017.

[4] B.A. Carlson, M.H. Yoo, R. Tobe, C. Mueller, S. Naranjo-Suarez, V.J. Hoffmann, V.N. Gladyshev, D.L. Hatfield, Thioredoxin reductase 1 protects against chemically induced hepatocarcinogenesis via control of cellular redox homeostasis, Carcinogenesis, 33 (2012) 1806-1813.

[5] C. Jakupoglu, G.K. Przemeck, M. Schneider, S.G. Moreno, N. Mayr, A.K. Hatzopoulos, M.H. de Angelis, W. Wurst, G.W. Bornkamm, M. Brielmeier, M. Conrad, Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development, Mol Cell Biol, 25 (2005) 1980-1988.
[6] E. Kumaraswamy, B.A. Carlson, F. Morgan, K. Miyoshi, G.W. Robinson, D. Su, S. Wang, E. Southon, L. Tessarollo, B.J. Lee, V.N. Gladyshev, L. Hennighausen, D.L. Hatfield, Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium, Mol Cell Biol, 23 (2003) 1477-1488.

[7] A. Holmgren, M. Bjornstedt, Thioredoxin and thioredoxin reductase, Methods Enzymol, 252 (1995) 199-208.