SUBSET SUMS IN \mathbb{Z}_p

HOI H. NGUYEN, ENDRE SZEMERÉDI, AND VAN H. VU

ABSTRACT. Let \mathbb{Z}_p be the finite field of prime order p and A be a subset of \mathbb{Z}_p. We prove several sharp results about the following two basic questions:

1. When can one represent zero as a sum of distinct elements of A?
2. When can one represent every element of \mathbb{Z}_p as a sum of distinct elements of A?

1. Introduction

Let A be an additive group and A be a subset of A. We denote by S_A the collection of subset sums of A:

$$S_A = \{ \sum_{x \in B} x \mid B \subset A, |B| < \infty \}.$$

The following two questions are among the most popular questions in additive combinatorics

Question 1.1. When $0 \in S_A$?

Question 1.2. When $S_A = G$?

If S_A does not contain the zero element, we say that A is zero-sum-free. If $S_A = G$ ($S_A \neq G$), then we say that A is complete (incomplete).

In this paper, we focus on the case $G = \mathbb{Z}_p$, the cyclic group of order p, where p is a large prime. The asymptotic notation will be used under the assumption that $p \to \infty$. For $x \in \mathbb{Z}_p$, $\|x\|$ (the norm of x) is the distance from x to 0. (For example, the norm of $p - 1$ is 1.) All logarithms have natural base and $[a, b]$ denotes the set of integers between a and b.

1.3. A sharp bound on the maximum cardinality of a zero-sum-free set.

How big can a zero-sum-free set be? This question was raised by Erdős and Heilbronn [4] in 1964. In [8], Szemerédi proved that

Theorem 1.4. There is a positive constant c such that the following holds. If $A \subset \mathbb{Z}_p$ and $|A| \geq cp^{1/2}$, then $0 \in S_A$.

V. Vu is an A. Sloan Fellow and is supported by an NSF Career Grant.
A result of Olson [6] implies that one can set $c = 2$. More than a quarter of century later, Hamindoune and Zémor [7] showed that one can set $c = \sqrt{2} + o(1)$, which is asymptotically tight.

Theorem 1.5. If $A \subset \mathbb{Z}_p$ and $|A| \geq (2p)^{1/2} + 5 \log p$, then $0 \in S_A$.

Our first result removes the logarithmic term in Theorem 1.5, giving the best possible bound (for all sufficiently large p). Let $n(p)$ denote the largest integer such that $\sum_{i=1}^{n-1} i < p$.

Theorem 1.6. There is a constant C such that the following holds for all prime $p \geq C$.

- If $p \neq \frac{n(p)(n(p)+1)}{2} - 1$, and A is a subset of \mathbb{Z}_p with $n(p)$ elements, then $0 \in S_A$.
- If $p = \frac{n(p)(n(p)+1)}{2} - 1$, and A is a subset of \mathbb{Z}_p with $n(p) + 1$ elements, then $0 \in S_A$. Furthermore, up to a dilation, the only 0-sum-free set with $n(p)$ elements is $\{-2, 1, 3, 4, \ldots, n(p)\}$.

To see that the bound in the first case is sharp, consider $A = \{1, 2, \ldots, n(p) - 1\}$.

1.7. **The structure of zero-sum-free sets with cardinality closed to maximum.** Theorem 1.6 does not provide information about zero-sum-free sets of size slightly smaller than $n(p)$. The arch typical example for a zero-sum-free set is a set whose sum of elements (as positive integers between 1 and $p - 1$) is less than p. The general phenomenon we would like to support here is that a zero-sum-free set with sufficiently large cardinality should be close to such a set. In [1], Deshouillers [1] showed

Theorem 1.8. Let A be a zero-sum-free subset of \mathbb{Z}_p of size at least $p^{1/2}$. Then there is some non-zero element $b \in \mathbb{Z}_p$ such that

$$\sum_{a \in bA, a < p/2} \|a\| \leq p + O(p^{3/4} \log p)$$

and

$$\sum_{a \in bA, a > p/2} \|a\| = O(p^{3/4} \log p).$$

The main issue here is the magnitude of the error term. In the same paper, there is a construction of a zero-sum-free set with $c p^{1/2}$ elements ($c > 1$) where

$$\sum_{a \in bA, a < p/2} \|a\| = p + \Omega(p^{1/2})$$

and

$$\sum_{a \in bA, a > p/2} \|a\| = \Omega(p^{1/2}).$$
It is conjectured [1] that $p^{1/2}$ is the right order of magnitude of the error term. Here we confirm this conjecture, assuming that $|A|$ is sufficiently close to the upper bound.

Theorem 1.9. Let A be a zero-sum-free subset of \mathbb{Z}_p of size at least $0.99(2p)^{1/2}$. Then there is some non-zero element $b \in \mathbb{Z}_p$ such that

$$\sum_{a \in bA, a < p/2} \|a\| \leq p + O(p^{1/2})$$

and

$$\sum_{a \in bA, a > p/2} \|a\| = O(p^{1/2}).$$

The constant 0.99 is adhoc and can be improved. However, we do not elaborate on this point.

1.10. **Complete sets.** All questions concerning zero-sum-free sets are also natural for incomplete sets. Here is a well-known result of Olson [6]

Theorem 1.11. Let A be a subset of \mathbb{Z}_p of more than $(4p - 3)^{1/2}$ elements, then A is complete.

Olson’s bound is essentially sharp. To see this, observe that if the sum of the norms of the elements of A is less than p, then A is incomplete. Let $m(p)$ be the largest cardinality of a small set. One can easily verify that $m(p) = 2p^{1/2} + O(1)$. We now want to study the structure of incomplete sets of size close to $2p^{1/2}$. Deshouillers and Freiman [3] proved

Theorem 1.12. Let A be an incomplete subset of \mathbb{Z}_p of size at least $(2p)^{1/2}$. Then there is some non-zero element $b \in \mathbb{Z}_p$ such that

$$\sum_{a \in bA} \|a\| \leq p + O(p^{3/4} \log p).$$

Similar to the situation with Theorem 1.8, it is conjectured that the right error term has order $p^{1/2}$ (see [2] for a construction that matches this bound from below). We establish this conjecture for sufficiently large A.

Theorem 1.13. Let A be an incomplete subset of \mathbb{Z}_p of size at least $1.99p^{1/2}$. Then there is some non-zero element $b \in \mathbb{Z}_p$ such that

$$\sum_{a \in bA} \|a\| \leq p + O(p^{1/2}).$$

Added in proof. While this paper was written, Deshouillers informed us that he and Prakash have obtained a result similar to Theorem 1.6.
2. Main lemmas

The main tools in our proofs are the following results from \cite{9}.

Theorem 2.1. Let A be a zero-free-sum subset of \mathbb{Z}_p. Then we can partition A into two disjoint sets A' and A'' where

- A' has negligible cardinality: $|A'| = O(p^{1/2}/\log^2 p)$.
- The sum of the elements of (a dilate of) A'' is small: There is a non-zero element $b \in \mathbb{Z}_p$ such that the elements of bA'' belong to the interval $[1, (p - 1)/2]$ and their sum is less than p.

Theorem 2.2. Let A be an incomplete subset of \mathbb{Z}_p. Then we can partition A into two disjoint sets A' and A'' where

- A' has negligible cardinality: $|A'| = O(p^{1/2}/\log^2 p)$.
- The norm sum of the elements of (a dilate of) A'' is small: There is a non-zero element $b \in \mathbb{Z}_p$ such that the sum of the norms of the elements of bA' is less than p.

The above two theorems were proved (without being formally stated) in \cite{?}. A stronger version of these theorems will appear in a forthcoming paper \cite{5}. We also need the following simple lemmas.

Lemma 2.3. Let $T' \subset T$ be sets of integers with the following property. There are integers $a \leq b$ such that $[a, b] \subset S_T$, and the non-negative (non-positive) elements of $T \setminus T'$ are less than $b - a$ (greater than $a - b$). Then

$$[a, b + \sum_{x \in T \setminus T', x \geq 0} x] \subset S_T,$$

$$([a + \sum_{x \in T \setminus T', x \leq 0} x, b] \subset S_T).$$

The (almost trivial) proof is left as an exercise.

Lemma 2.4. Let $K = \{k_1, \ldots, k_l\}$ be a subset of \mathbb{Z}_p, where the k_i are positive integers and $\sum_{i=1}^l k_i \leq p$. Then $|S_K| \geq l(l + 1)/2$.

To verify this lemma, notice that the numbers

$$k_1, \ldots, k_l, k_1 + k_l, k_2 + k_l, \ldots, k_{l-1} + k_l, k_1 + k_{l-1} + k_l, \ldots, k_{l-2} + k_{l-1} + k_l, \ldots, k_1 + \cdots + k_l$$

are different and all belong to S_K.
3. Proof of Theorem 1.6

Let A be a zero-free-sum subset of \mathbb{Z}_p with size $n(p)$. In fact, as there is no danger for misunderstanding, we will write n instead of $n(p)$. We start with few simple observations.

Consider the partition $A = A' \cup A''$ provided by Theorem 2.1. Without loss of generality, we can assume that the element b equals one. Thus $A'' \subset [1, (p-1)/2]$ and the sum of its elements is less than p. Set $I_n := [1, n]$ be the set of the first n positive integers. We first show that most of the elements of A'' belong to I_n.

Lemma 3.1. $|A'' \cap I_n| \geq n - O(n/ \log n)$.

Proof By the definition of n and the property of A''

$$\sum_{i=1}^{n} i \geq p > \sum_{a \in A''} a.$$

Assume that A'' has l elements in I_n and k elements outside. Then

$$\sum_{a \in A''} a \geq \sum_{i=1}^{l} i + \sum_{j=1}^{k} (n + j).$$

It follows that

$$\sum_{i=1}^{n} i > \sum_{i=1}^{l} i + \sum_{j=1}^{k} (n + j),$$

which, after a routine simplification, yields

$$(l + n + 1)(n - l) > (2n + k)k.$$

On the other hand, $n \geq k+l = |A''| \geq n-O(n/ \log^2 n)$, thus $n-l = k+O(n/ \log^2 n)$ and $n+l+1 \leq 2n-k+1$. So there is a constant c such that

$$(2n - k + 1)(k + cn/ \log^2 n) > (2n + k),$$

or equivalently
\[\frac{cn}{k \log^2 n} > \frac{k + 1}{2n - k + 1}. \]

Since \(2n - k + 1 \leq 2n + 1\), a routine consideration shows that \(k^2 \log^2 n = O(n^2)\) and thus \(k = O(n/\log n)\), completing the proof.

The above lemma shows that most of the elements of \(A''\) (and \(A\)) belong to \(I_n\). Let \(A_1 = A \cap I_n\). It is trivial that

\[|A_1| \geq |A'' \cap I_n| = n - O(n/\log n). \]

Let \(A_2 = A \setminus A_1\). We have

\[t := |I_n \setminus A_1| = |A_2| = |A| - |A_1| = O(n/\log n). \]

Next we show that \(S_{A_1}\) contains a very long interval. Set \(I := [2t + 3, (n + 1)(\lfloor n/2 \rfloor - t - 1)]\). The length of \(I\) is \((1 - o(1))p\); thus \(I\) almost cover \(Z_p\).

Lemma 3.2. \(I \subset S_{A_1}\).

Proof We need to show that every element \(x\) of in this interval can be written as a sum of distinct elements of \(A_1\). There are two cases:

Case 1. \(2t + 3 \leq x \leq n\). In this case \(A_1\) contains at least \(x - 1 - t \geq (x + 1)/2\) elements in the interval \([1, x - 1]\). This guarantees that there are two distinct elements of \(A_1\) adding up to \(x\).

Case 2. \(x = k(n + 1) + r\) for some \(1 \leq k \leq \lfloor n/2 \rfloor - t - 2\) and \(0 \leq r \leq n + 1\). First, notice that since \(|A_1|\) is very close to \(n\) (in fact it is enough to have \(|A_1|\) slightly larger than \(2n/3\) here), one can find three distinct elements \(a, b, c \in A_1\) such that \(a + b + c = n + 1 + r\). Consider the set \(A'_1 = A_1 \setminus \{a, b, c\}\). We will represent \(x - (n + 1 + r) = (k - 1)(n + 1)\) as a sum of distinct elements of \(A'_1\). Notice that there are exactly \(\lfloor n/2 \rfloor\) ways to write \(n + 1\) as a sum of two different positive integers. We discard a pair if (at least) one of its two elements is not in \(A'_1\). Since \(|A'_1| = n - t - 3\), we discard at most \(t + 3\) pairs. So there are at least \(\lfloor n/2 \rfloor - t - 3\) different pairs \((a_i, b_i)\) where \(a_i, b_i \in A'_1\) and \(a_i + b_i = (n + 1)\). Thus, \((k - 1)(n + 1)\) can be written as a sum of distinct pairs. Finally, \(x\) can be written as a sum of \(a, b, c\) with these pairs.

Now we investigate the set \(A_2 = A \setminus A_1\). This is the collection of elements of \(A\) outside the interval \(I_n\). Since \(A\) is zero sum free, \(0 \notin A_2 + I\) thanks to Lemma 3.2. It follows that
A_2 \subset \mathbb{Z}_p \setminus \{I_n \cup (-I) \cup \{0\} \subset J_1 \cup J_2 ,

where J_1 := [-2t - 2, -1] and J_2 = [(n+1), p - (n+1)(\lfloor n/2 \rfloor - t - t)] = [(n+1), q].

We set \(B := A_2 \cap J_1 \) and \(C := A_2 \cap J_2 \).

Lemma 3.3. \(S_B \subset J_1 \).

Proof Assume otherwise. Then there is a subset \(B' \) of \(B \) such that \(\sum_{a \in B'} a \leq -2t - 3 \) (here the elements of \(B \) are viewed as negative integers between \(-1\) and \(-2t - 3\)). Among such \(B' \), take one where \(\sum_{a \in B'} a \) has the smallest absolute value. For this \(B' \), \(-4t - 4 \sum_{a \in B'} a \leq -2t - 3 \). On the other hand, by Lemma 3.2, the interval \(2t + 3, 4t + 4 \) belongs to \(S_{A_1} \). This implies that \(0 \in S_{A_1} + S_{b} \subset S_A \), a contradiction.

Lemma 3.3 implies that \(\sum_{a \in B} |a| \leq 2t + 2 \), which yields

\[
|B| \leq 2(t + 1)^{1/2}.
\]

(1)

Set \(s := |C| \). We have \(s \geq t - 2(t + 1)^{1/2} \).

Let \(c_1 < \cdots < c_s \) be the elements of \(C \) and \(h_1 < \cdots < h_t \) be the elements of \(I_n \setminus A_1 \).

By the definition of \(n \), \(\sum_{i=1}^{n} i > p > \sum_{i=1}^{n-1} i \). Thus, there is an (unique) \(h \in I_n \) such that

\[
p = 1 + \cdots + (h - 1) + (h + 1) + \cdots + n.
\]

(2)

A quantity which plays an important role in what follows is

\[
D := \sum_{i=1}^{s} c_i - \sum_{j=1}^{t} h_j.
\]

Notice that if we replace the \(h_j \) by the \(c_i \) in (2), we represent \(p + D \) as a sum of distinct elements of \(A \)

\[
p + D = \sum_{a \in X, X \subset A} a.
\]

(3)

The leading idea now is to try to cancel \(D \) by throwing a few elements from the right hand side or adding a few negative elements (of \(A \)) or both. If this was always possible, then we would have a representation of \(p \) as a sum of distinct
elements in A (in other words $0 \in S_A$), a contradiction. To conclude the proof of Theorem 1.6, we are going to show that the only case when it is not possible is when $p = n(n + 1)/2 - 1$ and $A = \{-2, 1, 3, 4, \ldots, n\}$. We consider two cases:

Case 1. $h \in A_1$. Set $A'_1 = A_1 \setminus \{h\}$ and apply Lemma 3.2 to A'_1, we conclude that $S_{A'_1}$ contains the interval $I' = [2(t + 1) + 3, (n + 1)(\lfloor n/2 \rfloor - t - 2)]$.

Lemma 3.4. $D < 2(t + 1) + 3$.

Proof Assume $D \geq 2(t + 1) + 3$. Notice that the largest element in J_2 (and thus in C) is less than the length of I'. So by removing the c_i one by one from D, one can obtain a sum $D' = \sum_{i=1}^{s'} c_i - \sum_{j=1}^{t} h_j$ which belongs to I', for some $s' \leq s$. This implies

$$\sum_{i=1}^{s'} c_i = \sum_{j=1}^{t} h_j + \sum_{a \in X} a$$

for some subset X of A'_1. Since $h \notin A'_1$, the right hand side is a sub sum of the right hand side of (2). Let Y be the collection of the missing elements (from the right hand side of (2)). Then $Y \subset A_1$ and $\sum_{i=1}^{s'} c_i + \sum_{a \in Y} a = p$. On the other hand, the left hand side belongs to $S_{A_1} + S_{A_2} \subset S_A$. It follows that $0 \in S_A$, a contradiction.

Now we take a close look at the inequality $D < 2(t + 1) + 3$. First, observe that since A is zero-sum-free, $-S_B \subset \{h_1, \ldots, h_t\}$. By Lemma 3.3, $\sum_{a \in B} |a| \leq 2t + 2 < p$. As B has $t - s$ elements, by Lemma 2.4, S_B has at least $(t - s)(t - s + 1)/2$ elements. It follows that

$$\sum_{i=1}^{t} h_i \leq (2t + 2) + \sum_{j=0}^{(t-(t-s)(t-s+1)/2)+1} (n - j).$$

On the other hand, as all elements of C are larger than n

$$\sum_{i=1}^{s} c_i \geq \sum_{i=1}^{s} (n + i).$$

It follows that D is at least

$$\sum_{i=1}^{s} (n + i) - (2t + 2) - \sum_{j=0}^{(t-(t-s)(t-s+1)/2)+1} (n - j).$$
If \(t - s \geq 2 \), then \(s > t - (t - s)(t - s + 1)/2 \), so the last formula has order \(\Omega(n) \gg t \), thus \(D \gg 2(t+1) + 3 \), a contradiction. Therefore, \(t - s \) is either 0 or 1.

If \(t - s = 0 \), then \(D = \sum_{i=1}^{t} c_i - \sum_{i=1}^{t} h_i \geq t^2 \). This is larger than \(2t + 5 \) if \(t \geq 4 \). Thus, we have \(t = 0, 1, 2, 3 \).

- \(t = 0 \). In this case \(A = I_n \) and \(0 \in S_A \).
- \(t = 1 \). In this case \(A = I_n \setminus \{ h_1 \} \cup c_1 \). If \(c_1 - h_1 \neq h \), then we could substitute \(c_1 \) for \(h_1 + (c_1 - h_1) \) in (2) and have \(0 \in S_A \). This means that \(h = c_1 - h_1 \). Furthermore, if \(h < 2t + 5 = 7 \) so both \(c_1 \) and \(h_1 \) are close to \(n \). If \(h \geq 3 \),
 \[
p = \sum_{i=1}^{h-1} i + \sum_{j=h+1}^{n} j = \sum_{i=2}^{h-2} i + \sum_{h+1 \leq j \leq n, j \neq h_1} j + c_1.
\]

Similarly, if \(h = 1 \) or 2 then we have

- \(t > 1 \). Since \(D < 2t + 5 \), \(h_1, \ldots, h_t \) are all larger than \(n - 2t - 4 \). As \(p \) is sufficiently large, we can assume \(n \geq 4t + 10 \), which implies that \([1, 2t+5] \subset A_1 \). If \(h \neq 1 \), then it is easy to see that \([3, 2t+5] \subset S_{A_1 \setminus \{ h \}} \). As \(t > 1 \), \(D \geq t^2 \geq 4 \) and can be represented as a sum of elements in \(A_1 \setminus \{ h \} \). Omitting these elements from (3), we obtain a representation of \(p \) as a sum of elements of \(A \). The only case left is \(h = 1 \) and \(D = 4 \). But \(D \) can equal 4 if and only if \(t = 2 \), \(c_1 = n + 1, c_2 = n + 2, h_1 = n - 1, h_2 = n \). In this case, we have

 \[
p = \sum_{i=1}^{h} i + \sum_{h+2 \leq j \leq n, j \neq h_1} j + c_1.
\]

Now we turn to the case \(t - s = 1 \). In this case \(B \) has exactly one element in the interval \([-2t - 2, -1] \) (modulo \(p \)) and \(D \) is at least \(s^2 - (2t + 2) = (t-1)^2 - (2t+2) \). Since \(D < 2t + 5 \), we conclude that \(t \) is at most \(6 \). Let \(-b \) be the element in \(B \) (where \(b \) is a positive integer). We have \(b \leq 2t + 2 \leq 14 \). \(A_1 \) misses exactly \(t \) elements from \(I_n \); one of them is \(b \) and all other are close to \(n \) (at least \(n - (2t+4) \)). Using this information, we can reduce the bound on \(b \) further. Notice that the whole interval \([1, b-1] \) belongs to \(A_1 \). So if \(b \geq 3 \), then there are two elements \(x, y \) of \(A_1 \) such that \(x + y = b \). Then \(x + y + (-b) = 0 \), meaning \(0 \in S_A \). It thus remain to consider \(b = 1 \) or 2. Now we consider a few cases depending on the value of \(D \).

- \(D \geq 5 \). Since \(A_1 \) misses at most one element in \([1, D] \) (the possible missing element is \(b \)), there are two elements of \(A_1 \) adding up to \(D \). Omitting these elements from (3), we obtain a representation of \(p \) as a sum of distinct elements of \(A \).
• $D = 4$. If $b = 1$, write $p = \sum_{a \in X, a \neq 2} a + (-b)$. If $b = 2$, then $p = \sum_{a \in X, a \neq 1, 3} a$. (Here and later X is the set in (3).)
• $D = 3$. Write $p = \sum_{a \in X, a \neq 3} a + (-b)$.
• $D = 2$. If $b = 1$, then $p = \sum_{a \in X, a \neq 2} a$. If $b = 2$, then $p = \sum_{a \in X} a + (-2)$.
• $D = 1$. If $b = 1$, then $p = \sum_{a \in X} a + (-1)$. If $b = 2$, then $p = \sum_{a \in X, a \neq 1} a$.
• $D = 0$. In this case (3) already provides a representation of p.

$D = -1$. In this case $s < 2$. But since $h \neq b$, s cannot be 0. If $s = 1$ then $b = 2$ and $c_1 = n + 1$, $h_1 = n$. By (2), we have $p = \sum_{i=1}^{h-1} i + \sum_{j=h+1}^n j$ and so

$$p + (h - 1) = \sum_{1 \leq i \leq n + 1, i \notin \{2, n\}} i$$

where the right hand side consists of elements of A only. If $h - 1 \in A$ then we simply omit it from the sum. If $h - 1 \notin A$, then $h - 1 = 2$ and $h = 3$. In this case, we can write

$$p = \sum_{1 \leq i \leq n + 1, i \notin \{2, n\}} i + (-2).$$

$D = -2$. This could only occur if $s = 0$ and $b = 2$. In this case $A = \{-2, 1, 3, \ldots, n\}$. If $h = 1$, then $p = \sum_{i=1}^n = n(n + 1)/2 - 1$ and we end up with the only exceptional set. If $h \geq 3$, then $p + (h - 2) = \sum_{1 \leq i \leq n, i \neq 2} i$. If $h \neq 4$, then we can omit $h - 2$ from the right hand side to obtain a representation of p. If $h = 4$, then we can write

$$p = \sum_{1 \leq i \leq n, i \neq 2} i + (-2).$$

Case 2. $h \notin A$. In this case we can consider A_1 instead of A_1'. The consideration is similar and actually simpler. Since $h \notin A$, we only need to consider $D := \sum_{i=1}^n c_i - \sum_{1 \leq j \leq h, j \neq h} h_j$. Furthermore, as $h \notin A$, if $s = 0$ we should have $h = b$ and this forbid us to have any exceptional structure in the case $D = -2$. The detail is left as an exercise.

4. Proof of Theorem 1.9

We follow the same terminology used in the previous section. Assume that A is zero-sum-free and $|A| = \lambda n = \lambda (2p)^{1/2}$ with some $1 \geq \lambda \geq .99$. Furthermore, assume that the element b in Theorem 2.1 is one. We will use the notation of the previous proof. Let the core of A be the collection of all pairs $(a, a') \in A \times A, a \neq a'$ and $a + a' = n + 1$. Theorem 1.9 follows directly from the following two lemmas.

Lemma 4.1. The core of A has size at least $6n$.

Lemma 4.2. Let A be a zero-sum-free set whose core has size at least $(1/2 + \epsilon)n$ (for some positive constant ϵ). Then
\[\sum_{a \in A, a < p/2} a \leq p + \frac{1}{\epsilon}(n + 1) \]

and

\[\sum_{a \in A, a > p/2} ||a|| \leq (\frac{1}{\epsilon} + 1)n. \]

Proof (Proof of Lemma 4.1.) Following the proof of Lemma 3.1, with \(l = |A'' \cap I_n| \) and \(k = |A'' \setminus I_n| \), we have

\[(l + n + 1)(n - l) > (2n + k)k. \]

On the other hand, \(n \geq k + l = |A''| = |A| - O(n/\log^2 n) \), thus \(n - l = k + n - |A| + O(n/\log^2 n) = (1 - \lambda + o(1))n + k \) and \(n + l \leq (1 + \lambda)n - k \). Putting all these together with the fact that \(\lambda \) is quite close to 1, we can conclude that that \(k < .1n \).

It follows (rather generously) that \(l = \lambda n - k - O(n/\log^2 n) > .8n \).

The above shows that most of the elements of \(A \) belong to \(I_n \), as

\[|A_1| = |A \cap I_n| \geq |A'' \cap I_n| > .8n. \]

Split \(A_1 \) into two sets, \(A'_1 \) and \(A''_1 := A_1 \setminus A'_1 \), where \(A'_1 \) contains all elements \(a \) of \(A_1 \) such that \(n + 1 - a \) also belongs to \(A_1 \). Recall that \(A_1 \) has at least \([n/2] - \ell \) pairs \((a_i, b_i)\) satisfying \(a_i + b_i = n + 1 \). This guarantees that \(|A'_1| \geq 2([n/2] - \ell) \geq .6n \).

On the other hand, \(A'_1 \) is a subset of the core of \(A \). The proof is complete.

Proof (Proof of Lemma 4.2) Abusing the notation slightly, we use \(A'_1 \) to denote the core of \(A \). We have \(|A'_1| \geq (1/2 + \epsilon)n \).

Lemma 4.3. Any \(l \in [n(1/\epsilon + 1), n(1/\epsilon + 1) + n] \) can be written as a sum of \(2(1/\epsilon + 1) \) distinct elements of \(A'_1 \).

Proof First notice that for any \(m \) belongs to \(I_\epsilon = [(1-\epsilon)n, (1+\epsilon)n] \), the number of pairs \((a, b) \in A'_1 \) satisfying \(a < b \) and \(a + b = m \) is at least \(en/2 \). Next, observe that any \(k, \ell \in [0, n] \), is a sum of \(1/\epsilon + 1 \) integers (not necessarily distinct) from \([0, en]\). Consider \(l \) from \([n(1/\epsilon + 1), n(1/\epsilon + 1) + n]\); we can represent \(l - n(1/\epsilon + 1) \) as a sum \(a_1 + \cdots + a_{1/\epsilon + 1} \) where \(0 \leq a_1, \ldots, a_{1/\epsilon + 1} \leq en \). Thus \(l \) can be written as a sum of \(1/\epsilon + 1 \) elements (not necessarily distinct) of \(I_\epsilon \), as \(l = (n + a_1) + \cdots + (n + a_{1/\epsilon + 1}) \).

Now we represent each summand in the above representation of \(l \) by two elements of \(A'_1 \). By the first observation, the numbers of pairs are much larger than the number of summands, we can manage so that all elements of pairs are different.
Recall that A'_1 consists of pairs (a'_i, b'_i) where $a'_i + b'_i = n + 1$, so

$$\sum_{a' \in A'_1} a' = (n + 1)|A'_1|/2.$$

Lemma 4.4. $I' := [n(1/\epsilon + 1), \sum_{a' \in A'_1} a' - (n + 1)/\epsilon] \subset S_{A'_1}$.

Proof Lemma 4.3 implies that for each $x \in [n(1/\epsilon + 1), n(1/\epsilon + 1) + n]$ there exist distinct elements $a'_1, \ldots, a'_{2(1/\epsilon + 1)} \in A'_1$ such that $x = \sum_{i=1}^{2(1/\epsilon + 1)} a'_i$. We discard all a'_i and $(n + 1) - a'_i$ from A'_1. Thus there remain exactly $|A'_1|/2 - 2(1/\epsilon + 1)$ different pairs (a''_i, b''_i) where $a''_i + b''_i = n + 1$. The sums of these pairs represent all numbers of the form $k(n + 1)$ for any $0 \leq k \leq |A'_1|/2 - 2(1/\epsilon + 1)$. We thus obtained a representation of $x + k(n + 1)$ as a sum of different elements of A'_1, in other word $x + k(n + 1) \in S_{A'_1}$. As x varies in $[n(1/\epsilon + 1), n(1/\epsilon + 1) + n]$ and k varies in $[0, |A'_1|/2 - 2(1/\epsilon + 1)]$, the proof is completed. \[\blacksquare\]

Let $A_2 = A \setminus A_1$ and set $A'_2 := A_2 \cap [0, (p - 1)/2]$ and $A''_2 = A_2 \setminus A'_2$. We are going to view A''_2 as a subset of $[-(p - 1)/2, -1]$.

We will now invoke Lemma 2.3 several times to conclude Lemma 4.2. First, it is trivial that the length of I' is much larger than n, whilst elements of A_1 are positive integers bounded by n. Thus, Lemma 2.3 implies that

$$I'' := [n(1/\epsilon + 1), \sum_{a \in A_1} a - (n + 1)/\epsilon] \subset S_{A_1}.$$

Note that the length of I'' is greater than $(p - 1)/2$. Indeed $n \approx (2p)^{1/2}$ and

$$|I''| = \sum_{a \in A_1} a - (n + 1)/\epsilon - n(1/\epsilon + 1) \geq \sum_{a \in A'_1} a - O(n)$$

$$\geq (1/2 + \epsilon)n(n + 1)/2 - O(n) > (p - 1)/2.$$

Again, Lemma 2.3 (applied to I'') yields that

$$[n(1/\epsilon + 1), \sum_{a \in A_1 \cup A'_2} a - (n + 1)/\epsilon] \subset S_{A_1 \cup A'_2}$$

and

$$[\sum_{a \in A''_2} a + n(1/\epsilon + 1), \sum_{a \in A_1} a - (n + 1)/\epsilon] \subset S_{A_1 \cup A''_2}.$$
The union of these two long intervals belongs to S_A

$$\left[\sum_{a \in A''_1} a + n(1/\epsilon + 1), \sum_{a \in A_1 \cup A'_2} a - (n + 1)/\epsilon \right] \subset S_A.$$

On the other hand, $0 \not\in S_A$ implies

$$\sum_{a \in A''_1} a + n(1/\epsilon + 1) > 0$$

and

$$\sum_{a \in A_1 \cup A'_2} a - (n + 1)/\epsilon < p.$$

The proof of Lemma 4.2 is completed.

\section{5. Sketch of the proof of Theorem 1.13}

Assume that A is incomplete and $|A| = \lambda p^{1/2}$ with some $2 \geq \lambda \geq 1.99$. Furthermore, assume that the element b in Theorem 2.2 is one. We are going to view \mathbb{Z}_p as $[-(p - 1)/2, (p - 1)/2]$.

To make the proof simple, we made some new invention: $n = \lfloor p^{1/2} \rfloor$, $A_1 := A \cap [-n, n]$, $A'_1 := A \cap [0, n]$, $A''_1 := A \cap [-n, -1]$, $A'_2 := A \cap [n + 1, (p - 1)/2]$, $A''_2 := A \cap [-p - 1)/2, -(n + 1)], t'_1 := |A'_1|, t''_1 := |A''_1|, t_1 := |A_1| = t'_1 + t''_1.$

Notice that $|A''|$ (in Theorem 2.2) is sufficiently close to the upper bound. The following holds.

Lemma 5.1. Most of the elements of $A''(A)$ belong to $[-n, n]$;

- both t'_1 and t''_1 are larger than $(1/2 + \epsilon)n$,
- t_1 is larger than $(2^{1/2} + \epsilon)n$

with some positive constant ϵ.

As a consequent, both $S_{A \cap [-n, -1]}$ and $S_{A \cap [1, n]}$ contain long intervals thanks to the following Lemma, which is a direct application of Lemma 4.3 and argument provided in Lemma 3.2.

Lemma 5.2. If X is a subset of $[1, n]$ with size at least $(1/2 + \epsilon)n$. Then

$$\left[(n + 1)(1/\epsilon + 1), (n + 1)(n/2 - t - c_\epsilon) \right] \subset S_X$$
where \(t = n - |X| \) and \(c_\epsilon \) depends only on \(\epsilon \).

Now we can invoke Lemma 2.3 several times to conclude Theorem 1.13.

Lemma 5.2 implies

\[
I' := \left[(n + 1)(1/\epsilon + 1), (n + 1)(n/2 - t_1' - c_\epsilon) \right] \subset S_{A_1'}.
\]

and

\[
I'' := \left[-(n + 1)(n/2 - t_1'' - c_\epsilon), -(n + 1)(1/\epsilon + 1) \right] \subset S_{A_2'}.
\]

Lemma 2.3 (applied to \(I' \) and \(A_2' \); \(I'' \) and \(A_1' \) respectively) yields

\[
\left[\sum_{a''_1 \in A_1''} a''_1 + (n + 1)(1/\epsilon + 1), (n + 1)(n/2 - t_1' - c_\epsilon) \right] \subset S_{A_1}
\]

and

\[
\left[-(n + 1)(n/2 - t_1'' - c_\epsilon), \sum_{a'_1 \in A_1'} a'_1 - (n + 1)(1/\epsilon + 1) \right] \subset S_{A_1}.
\]

which gives

\[
I := \left[\sum_{a''_1 \in A_1''} a''_1 + (n + 1)(1/\epsilon + 1), \sum_{a'_1 \in A_1'} a'_1 - (n + 1)(1/\epsilon + 1) \right] \subset S_{A_1}.
\]

Note that the length of \(I \) is greater than \((p - 1)/2\). Again, Lemma 2.3 (applied to \(I \) and \(A_2' \), \(I \) and \(A_2'' \) respectively) implies

\[
\left[\sum_{a''_1 \in A_1'' \cup A_2''} a''_1 + (n + 1)(1/\epsilon + 1), \sum_{a'_1 \in A_1'} a'_1 - (n + 1)(1/\epsilon + 1) \right] \subset S_{A_1}
\]

and

\[
\left[\sum_{a''_1 \in A_1''} a''_1 + (n + 1)(1/\epsilon + 1), \sum_{a'_1 \in A_1' \cup A_2'} a'_1 - (n + 1)(1/\epsilon + 1) \right] \subset S_{A_2}.
\]

The union of these two intervals belongs to \(S_{A_1} \).

\[\left[\sum_{a'' \in A''_1 \cup A''_2} a'' + (n + 1)(1/\epsilon + 1), \sum_{a' \in A'_1 \cup A'_2} a' - (n + 1)(1/\epsilon + 1) \right] \subset S_A. \]

On the other hand, \(S_A \neq \mathbb{Z}_p \) implies

\[\sum_{a' \in A'_1 \cup A'_2} a' - \sum_{a'' \in A''_1 \cup A''_2} a'' - 2(n + 1)(1/\epsilon + 1) < p. \]

In other word

\[\sum_{a \in A} \|a\| \leq p + O(p^{1/2}). \]

REFERENCES

[1] Jean-Marc Deshouillers, \textit{Quand seule la sous-somme vide est nulle modulo p}, the proceeding of the Journees Arithmetiques 2005.

[2] Jean-Marc Deshouillers, \textit{Lower bound concerning subset sum wich do not cover all the residues modulo p}, Hardy- Ramanujan Journal, Vol. 28(2005) 30-34.

[3] Jean-Marc Deshouillers and Gregory A. Freiman, \textit{When subset-suns do not cover all the residues modulo p}, Journal of Number Theory 104(2004) 255-262.

[4] Paul Erdős and Heilbronn Hans Arnold, \textit{On the addition of residue classes modulo p}, Acta Arith. 9 (1964) 149–159.

[5] Hoi H. Nguyen, E. Szemerédi and Van H. Vu, Classification theorems for sumsets, in preparation.

[6] J. E. Olson, \textit{An addition theorem modulo p}, J. Combinatorial Theory 5(1968), 45-52.

[7] Hamidoune Yahya Ould and Zémor Gilles, \textit{On zero-free subset sums}, Acta Arith. 78 (1996) no. 2, 143–152.

[8] Endre Szemerédi, \textit{On a conjecture of Erdős and Heilbronn}, Acta Arith. 17 (1970) 227-229.

[9] Endre Szemerédi and Van H. Vu , \textit{Long arithmetic progression in sumsets and the number of x-free sets}. Proceeding of London Math Society, 90(2005) 273-296.

Department of Mathematics, Rutgers, Piscataway, NJ 08854

Department of Computer Science, Rutgers, Piscataway, NJ 08854

Department of Mathematics, Rutgers, Piscataway, NJ 08854

E-mail address: vanvu@math.rutgers.edu