SYNTHESIS OF NEW SULPHANILAMIDE BASED SCHIFF BASE NICKEL COMPLEXES WITH STUDY OF ITS ANTIBACTERIAL ACTIVITY AND NANOPARTICLE SYNTHESIS

R. R. Surve¹,* and S. T. Sankpal ²

¹Department of Chemistry, A.C.S. College, Lanja- 416701 (Maharashtra), India.
²A.S.P. College, Devrukh-415804, Dist. Ratnagiri, Maharashtra, India.
*E-mail: surverishikesh1@gmail.com

ABSTRACT
Schiff base contains the Azomethine group prepared by reaction of the carbonyl group and amine group. In this project, Schiff bases of sulphanilamide on the treatment of imidazole-2-carboxaldehyde and Dehydroacetic acid have been synthesized. Further, their Nickel complexes have been synthesized. They were characterized by IR, Mass, NMR, UV-Vis spectra and found to have square planar geometry. They were screened with few bacteria and found to have good antibacterial activity against gram-negative bacteria. Further, NiO nanoparticles were synthesized by thermal decomposition of the above synthesized Nickel Schiff base complexes and found to have 93-98 nm particle size.

Keywords: Sulphanilamide, Schiff Base, Square Planar, Antibacterial Activity, Nanoparticles.

INTRODUCTION
Schiff base simply contains Azomethine functional group and is synthesized by condensation of the carbonyl group with the amine.¹ This Schiff base has a unique property to bind with different metal ions increasing its applicability in the different fields. This Schiff bases have huge applications in most of the field especially in the pharmaceutics as shown below in the Fig.-1 and even for the quantitative analysis, hence increasing attention of many researchers to derive more new Schiff base metal complexes.²,³

In the Present Study, we focus on the synthesis of Schiff base by combining sulphanilamide with two different aldehydes and study of its antimicrobial activity. It is an organic compound consists of an aniline derivative with the presence of sulphonamide group. Modern antibiotics have displaced sulphanilamide with some more efficient potent antibiotics. The Sulphanilamide based Schiff base metal complexes are of capable research interest owing to the prevalent antibacterial resistance in the pharmacy field. The

© RASĀYAN. All rights reserved

Fig.-1: Applications of Schiff Bases

http://dx.doi.org/10.31788/RJC.2020.1315532
stoichiometry of the formed Schiff base metal complex can be determined by slope ratio method, mole ratio method and jobs method of continuous variation.

EXPERIMENTAL
Schiff base compounds were prepared by following the published standard procedures. All the chemicals were obtained from Merck.

Synthesis of Schiff Base I

(E)-4-(1H-imidazol-2-yl)methyleneamino)benzenesulfonamide
The above following Schiff bases are synthesized by reflux of mixture of aldehyde and aromatic amine in water. 1 milimole of each imidazole-2-carboxaldehyde and sulphanilamide in 10 cm³ distilled water was taken in the round bottom flask. This was refluxed for 3 hours. After completion of the reflux process, the content was cooled in air. The Schiff base was collected in solid-state, washed, recrystallized through ethanol and dried in a desiccator. The formed ligand is stable at room temperature. It is soluble in alcohol, chloroform at high temperature, DMSO and DMF.

\[
\text{H}_2\text{NO}_2\text{S} - \text{NH}_2 + \text{HOC-N} = \text{CH} - \text{SNH}_2 + \text{O} \rightarrow \text{H}_2\text{NO}_2\text{SO}_2\text{NH}_2
\]

Scheme-1: Synthesis of Schiff Base L₁

Synthesis of Metal Complex
The metal complex is produced by reflux of the ethanol solution of above-prepared ligand and Nickel chloride in 2:1 mole ratio, i.e. 2 millimoles of the above-prepared ligand in slight excess was taken in a round bottom flask with 25 ethanol. The Schiff base gets dissolved in it. 1 millimole of Nickel chloride was taken and dissolved in 5 cm³ of alcohol. This dissolved Nickel chloride was further added drop-wise in hot ligand solution. Few drops of dilute ammonia are added to maintaining its pH in the range of 7.5 to 8.0. The contents were refluxed for three hours. The precipitate of complex formed was filtered and washed with dilute ammonia and dried in a desiccator.

Synthesis of Schiff Base II

(E)-4-(1-(4-methyl-2,6-dioxocyclohex-3-enyl)ethylideneamino)benzenesulfonamide
Schiff base II is synthesized by reflux of mixture of DHA and sulphanilamide in alcohol. 1milimole of both DHA and sulphanilamide was taken in 10 cm³ ethanol in the round bottom flask. It was refluxed for 3 hours. After refluxing, the content is cooled. The Schiff bases were collected in solid-state, washed, recrystallized through ethanol, and dried in a desiccator. This ligand is also stable at room temperature. It is soluble in alcohol, chloroform at high temperature, DMSO and DMF.

\[
\text{H}_2\text{NO}_2\text{S} - \text{NH}_2 + \text{O} \rightarrow \text{H}_2\text{NO}_2\text{SO}_2\text{NH}_2
\]

Scheme-2: Synthesis of Schiff Base L₂

Synthesis of Metal Complex
The metal complex is produced by reflux of the ethanol solution of above-prepared ligand and Nickel chloride in a 2:1 ratio, i.e. 2 millimoles of the above-prepared ligand in slight excess was taken in a round bottom flask with 10 ml ethanol. 1 millimole of Nickel chloride was taken and dissolved in 10 cm³ alcohol. This dissolved Nickel chloride solution was added drop-wise in hot ligand solution. Few drops of
dilute ammonia are added to maintain its pH in the range of 7.5 to 8.0. These were refluxed basically for 2 hours. The precipitate of complex formed was filtered and washed with dilute ammonia and desiccated.

RESULTS AND DISCUSSION

The Physical Properties of above Synthesised Schiff Bases are given in the following table and discussed in coming sections.

Table-1: Physical Properties of Schiff Bases

S. No.	Molecular Formula	Compound Code	Melting Point	Colour	Analytical Data
	C₁₀H₁₃N₂O₂S	L₁	>300°C	Yellow	
					C 48
					H 5.2
					N 22.4
					O 12.8
					S 12.8
	C₁₅H₁₆N₂O₄S	L₂	>300°C	Pale yellow	
					C 55.7
					H 4.9
					N 8.6
					O 19.81
					S 9.9

Spectral Analysis of Schiff Base L₁

Infra-Red Spectral Data

The data of IR spectra of the above synthesized Schiff base ligand shows –C=N- stretching band around 1800 cm⁻¹ and also one of the band at 1744.10 which can be consigned to the azomethine moiety, this confirms the condensation between the amino group of sulphanilamide and the ketone of DHA information of the Schiff base.⁶⁷

Mass Spectra

The Mass spectra revealed that molecular ion peak at m/e 249.12 indicates the formation of the Schiff base ligand which further undergoes fragmentations giving other smaller peaks.
NMR Spectra
H1NMR studies show the peak that δ 2.0 ppm of –NH\textsubscript{2} group attached to –SO\textsubscript{2} group. The peak from δ 6.71 to 7.71 multiplet is present for the Benzene ring. The peak at 3.3 ppm δ is for –N=CH-, methine group. 2.0 ppm δ for N-H group, 2.6 and 2.65 triplets for >CH\textsubscript{2} group of imidazole. The peak for one more –NH\textsubscript{2} group at around 3.5 ppm is not obtained indicating desired product formation.

Spectral Studies of Schiff Base L\textsubscript{2}
Infra-Red Spectral Data
IR spectra of the above synthesized Schiff base L\textsubscript{2} shows the IR band around 1685.69 cm-1 which can be assigned to the azomethine moiety, this confirms the condensation between the amino group of sulphanilamide and the ketone of DHA information of the Schiff base.

Mass Spectra
The Mass spectra revealed that molecular ion peak at m/e 323.3 indicates formation of the Schiff base ligand which further undergoes fragmentations giving other smaller peaks.

NMR Spectra
H1NMR studies show the peak that δ 0.9 ppm singlet and δ 1.71 ppm singlet of the methyl group of DHA. δ 2.0 ppm of –NH\textsubscript{2} group attached to –SO\textsubscript{2} group. 3.2 ppm δ singlet for the methane group. 3.17 and 3.02 ppm for the methylene group. Peak around 7.5 to 7.9 ppm multiplet indicates benzene. The peak for the para-substituted –NH\textsubscript{2} group is not found indicated undergoing condensation reaction.
Physical Properties of Above Synthesised Schiff Bases Metal Complexes

Table-2: Physical Properties of Schiff Bases Metal Complexes

S. No.	Molecular Formula	Compound Code	Colour	pH Range of Precipitation	M.P./ D.P. Temperature	Analytical Data (%)
						C H N O Ni
1	NiC₁⁵H₁₃N₅O₇S	Ni-L₁	Green	7.5 - 8.0	>300°C	43.0 4.6 20.0 11.4 10.4
2	NiC₁₅H₁₃N₅O₇S	Ni-L₂	Dark Yellow	7.5 - 8.0	>300°C	51.0 4.5 7.3 18.1 8.3

Conductivity and Electronic Absorption Data of Ni (II) Complexes

Table-3: Conductivity and Electronic Absorption Data of Ni (II) Complexes

S. No.	Compound Code	Molar Conductance Ω⁻¹ cm⁻¹ mol⁻¹	Magnetic Properties	Absorption Maxima cm⁻¹ (nm)
				A₂g T₂g(F) Strong
1	Ni-L₁	34.3	Diamagnetic	440nm(227000)
2	Ni-L₂	29.2	Diamagnetic	560nm(17,857)

Fig.-6: Absorbance Vs. Wavelength Plot to obtain λ_max for Two Metal Complexes.

Octahedral Complexes generally consists of three bands in the range of 7000-13000 cm⁻¹, 10,000-20,000 cm⁻¹, 19,000 cm⁻¹- 27,000 cm⁻¹. Whereas, square planar complexes show strong absorption bands in the range of 15,000 to 25,000 cm⁻¹ and 25,000-35,000 cm⁻¹ and also very low absorption band near 11,000 to 13,000 cm⁻¹. Hence from the above data, it is revealed that complexes formed may have square planar structure.⁹,¹⁰

Spectral Analysis of Metal Complexes

Infra-Red Spectral Data

IR spectra of the above synthesized Schiff base ligand L₁ displays IR band around 1700 cm⁻¹ which is assigned to the –CH=N- group get shifted to 1698.83 cm⁻¹, and band of 1744.10 cm⁻¹ gets shifted to 1743.91 i.e. very marginally shifted towards lower side this confirms that azomethine donates its electrons to the Ni²⁺ forming metal complex. Also, a water molecule having broadband is observed around 3000 to 3500 cm⁻¹. The same nature of IR is plotted for other Schiff base-metal complex NiL₂.
IR spectra of the Schiff base L_2 shows IR band around 1685.69 cm\(^{-1}\) which is assigned to the azomethine group get shifted to 1680.71 cm\(^{-1}\), this confirms that azomethine donates its electrons to the Ni\(^{2+}\) forming metal complex. Hence, through all of the above data, we revealed that both the complexes have square planar geometry.

Antibacterial Properties

The Antimicrobial action was evaluated by the cup plate agar diffusion method by evaluating inhibition zones in millimeters.\(^{11,12}\) In-vitro antimicrobial activity of the prepared Nickel Complexes and that of the standard have been estimated against four following bacteria strains which include gram-positive bacteria like *S. Aurious*, *S. Pyogen* and gram-negative bacteria like *E. Coli*, *P. Aeraginosa*. The results of antimicrobial action of the complexes indicate that the complexes show good antibacterial activity against gram-negative bacteria whereas it didn’t show activity against gram-positive bacteria.
Observations
Hence, the above-reported compound has very good antibacterial action against gram-negative bacteria whereas it doesn’t have any action counter to gram-positive bacteria indicating is specific and selective in nature.

\[
\text{H}_2\text{NO}_2\text{S} \quad \text{N} \equiv \text{C} \quad \text{H} \\
\text{Ni}^{2+} \\
\text{N} \equiv \text{C} \quad \text{H} \quad \text{SO}_2\text{NH}_2
\]

Scheme-3: Schiff base L₁ Metal Complex

\[
\text{H}_2\text{NO}_2\text{S} \quad \text{N} \equiv \text{C} \quad \text{H} \\
\text{Ni}^{2+} \\
\text{O} \quad \text{C} \quad \text{H} \quad \text{O} \\
\text{H}_3\text{C} \quad \text{C} \quad \text{H}_3 \quad \text{O} \\
\text{SO}_2\text{NH}_2
\]

Scheme-4: Schiff base L₂ Metal Complex

Bacterium	ZONE Inhibition (mm)	
Complex NiL₁ (1000 ppm)	Complex NiL₂ (1000 ppm)	
E.Coli	14	15
P.Aeruginosa	14	16
S.Aurous	----------	----------
S.Pyogen	----------	----------

Nanoparticle Synthesis
Nickel oxide is also synthesized by the thermal decomposition method. The weighed quantity of above-synthesized Nickel-metal complexes was taken into silica crucible. The silica crucible was kept in a muffle furnace. The furnace was then heated at 700°C for 3 hours in a normal atmosphere. The product obtained after thermal decomposition was naturally cooled to room temperature. The residue obtained in silica crucible was used for further characterization.

Characterisation of SEM
SEM image indicates that obtained product NiO nanoparticles are highly crystalline. The microgram looks to be gentle and shows rough morphology. The appearance of particles is in an irregular spherical
shape. The particles are highly agglomerated and they are essentially clusters of nanoparticles. The observation of some larger nanoparticles may be due to its high surface energy and high surface tension. So we conclude that prepared NiO particles are in the Nano-meter range. The average diameter of the particles observed in 94 to 99 nm.

Nickel oxide is an important metal oxide with many uses, such as it is the vital foundation for several high-critical temperature superconductors and resources with giant magneto resistance, and is also used as pigments in dyes, catalysts in many organic reactions, semiconductor, solar cells, gas sensors, cathode materials and magnetic loading media.

Fig.-1: Cup Plate Method Determining Activity against *P. Aeruginosa*

Fig.-2: Cup Plate Method Determining Activity Against *E. Coli."

CONCLUSION

The composition of these Metal ligand complexes can be confirmed by the Slope ratio method, mole ratio method and jobs method of continuous variation. All the results as mentioned above with the help of IR, Mass, NMR, UV-Vis spectra also reveals that the two prepared Nickel complexes have proposed 1:2 metal to ligand stoichiometry with square planar geometry. The estimated antimicrobial activity suggests that the complexes are having good antibacterial activity against gram-negative bacteria and hence may assist as means of transportation for initiation of the ligand as standard cytotoxic compounds. Also, the synthesized NiO Nanoparticles have good size in the range of 95 nm which can have a wide variety of applications and its further study needs to be revealed as it has application in the field of semiconductor, solar cells, storage media and pharmacy and cathode materials.

ACKNOWLEDGMENT

The corresponding author is thankful to the University of Mumbai for sanctioning the grant to this research project.

REFERENCES

1. S. Kousar, Lambert Academic Publishing (2015), Chemistry 68, (2015).
2. A. R. Ibrahim, *International Journal of Advanced Research*, 3(8), 315(2015).
3. Nabil Ramadan Bader, *Rasayan Journal of Chemistry*, 3(4), 660(2010).
4. Kamble Ganesh Joshi, Sunil Kokare, Arjun Zanje, Sunil Kolekar, Sanjay Ghule, Anil Gaikwad, Shashikant Anuse, Mansing, *Separation Science and Technology*, 52, (2016), DOI: 10.1080/01496395.2016.1255229
5. R. M. Patil and N. V. Thakkar, *Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry*, 30(6), 1159(2000).
6. M. Montazerzohori, S. Joohari, V. Nourooozi, S. Hashemi, Z. Kazemi, S. Musavi, *Indian Journal of Science and Technology*, 4(4), (2011).
7. Suraj B. Ade, M.N. Deshpande and J.H. Deshmukh, *Rasayan Journal of Chemistry*, 5(1), 10(2012).
8. B. M. Kalshetty, R. S. Gani, S.S. Karabasannavar and M.B. Kalashetti, *Global Journal of Science Frontier Research Chemistry*, 13(2), 28(2013).
9. F. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern, 896(1990).
10. Seema I. Habib and Praffullakumar A. Kulkarni, *International Journal of Advances in Pharmacy, Biology and Chemistry*, 1(2), 234(2012).
11. Ramachandra Akkasali, Nirdosh Patil and S. D. Angadi, *Rasayan Journal of Chemistry*, 2(1), 81(2009).
12. S.Pattanaik, S.S. Rout, J.Panda, P.K. Sahu and M Banerjee, *Rasayan Journal of Chemistry*, 4(1), 136(2011).
13. M.E. Mhadaye, Ph. D. Thesis, Department of Chemistry, University of Mumbai, Mumbai, Maharashtra, India (2017).
14. L. A. Saghatforoush, S. Sanati, Gh. Marandi M. Hasanzadeh, *Journal of Nanostructures*, 3, 33(2013), DOI: 10.7508/jns.2013.journal of01.005
15. A. B. Shaikh, U. B. Barache, T. N. Lokhande1, G. S. Kamble, M. A. Anuse and S. H. Gaikwad, *Rasayan Journal of Chemistry*, 10(3), 967(2017), DOI:10.7324/RJC.2017.1031804
16. Ganesh S. Kamble, Ashwini P. Gaikwad, Balasaheb N. Kokare, Sanjay S. Kolekar, Sung.
17. H. Han, Mansing A. Anuse, *Industrial & Engineering Chemistry Research*, 50(19), (2011), DOI: 10.1021/ie200812w

[RJC-5532/2019]