Replacement of cement with industrial by-products in cement mortar: An experimental investigation

A. Aljobbory1,2 and H. Al-Lammi1
1 Ministry of Construction, Baghdad, Iraq
Email: Aljobbory_81@yahoo.com

Abstract. The manufacture of cement has been described as a significant exporter of carbon gases pollution and other contaminants, with (1000) kilograms of cement reportedly producing one ton of Carbon gases. The effects of these gases in the atmosphere on public health and the atmosphere are negative impacts. As a result, industrials by-products become more eco-friendly and sustainable comparing with Portland cement in terms of cement use and emissions of carbon gases. The effect of partial substitution in mortar by ground granulated blast furnace slag (GGBS) and coal fly ash (CFA) is the subject of this investigation. Three separate GGBS and CFA blends have been utilized, and they have been checked at 7 days, 14 days, and 28 days curing age. To investigate the mechanical properties of the three mixtures, the compression test has been utilized. The experiment indicates that raising the percentage of GGBS and CFA in the mixture reduced the compressive strength of these mixes. 20 to 33% was the reduction in the compressive strength of the mixtures with supplementary Cementous materials, which might be considered sufficient.

1. Introduction
Nowadays, have a significant role in building manufacturing, and the essential part of it is Portland cement [1-3]. However, the manufacture of Portland cement has been an increasing issue as a significant volume of carbon gases, and some other pollutants are emitted into the environment throughout this phase [4-7]. The available literature, reveals that the production of cement produces around 6% to 8% of the overall Co2 in the environment [8-10]. To put it another way, generating (1000) kilogram of Portland cement is expected to yield one ton of Carbon dioxide. Carbon dioxide and other pollutants gases caused a significant increase in air temperature and the atmosphere overall. This last phenomenon endangers global safety by increasing water contamination and causing drought in certain countries of the planet [11-13]. Furthermore, concrete factories generate vast volumes of waste effluents with high suspended particle concentrations, pH values (close to 11), and sedimentation [14-17], both of which pose a hazard to marine organisms in aquatic ecosystems [16, 18, 19]. As a result of the unfavorable effects of the construction materials factories on global safety and the atmosphere, effective management strategies, as well as articulate wastewater technologies such as filtering [20-27], combination technologies [24, 28-30], flocculation [13, 16, 23, 31-40], and electro-chemical techniques [26, 41-48], as well as drainage alternatives [49-51], are needed.
Several researchers have currently been tasked with discovering substitute supplementary cementitious materials that can supplement a portion of Portland cement, such as ground granulated blast furnace slab (GGBS) and coal fly ash (CFA) [52]. Utilizing these admixtures as a partial substitute material could save power, money and reduce greenhouse gas emissions. Because of the pozzolanic characteristic of coal fly ash (CFA) and ground granulated blast furnace slab (GGBS), they are widely utilizing to partially replace Portland cement. As a result, utilizing these ingredients has a substantial impact on the cement mixture characteristics [52, 53].
The influences of ground granulated blast furnace slab (GGBS) and coal fly ash (CFA) on conventional cement were investigated in this research. The major aim of this report is to check how these compounds influence the mechanical properties of cement mixtures at 7 days, 14 days, and 28 days of curing period.
2. Experimental program

To compare the compression strength of mixtures produced by partially substituting Portland cement with crushed fly ash (CFA) and ground granulated blast furnace slag (GGBS), several experiments have been carried out. The ratios of crushed fly ash (CFA) and ground granulated blast furnace slag (GGBS) utilized in samples, as well as the design of mixtures, are subsequently neglected.

2.1 Materials

The ground granulated blast furnace slag (GGBS) and coal fly ash (CFA) have been utilized as cementitious substitution substances in this research. The ground granulated blast furnace slag (GGBS) is a secondary product produced during the production of ferrous metals, and it is characterized as a “nonmetallic material composed mainly of Ca2SiO4 and other compounds that is formed in a molten state concurrently with iron in a kiln,” according to ACI-116R. Silicates comprise the essential component of GGBS. Slag cooling is specifically responsible for producing multiple kinds of blast furnace slag required by various end-users. Slag's characteristics change dramatically as it cools. GGBS is a non-toxic substance that can be used to make high-value, user-friendly cementitious materials for a variety of structural engineering fields [54, 55].

CFA is a secondary product of crushed burning coal in thermal energy stations. It is collected as quite thin, mainly circular glassy grains from the evaporator coils by dust collecting devices till they are emitted into the air from the energy stations. The fly ash atoms have a different dimension, where their radius varies from less than 0.5μm to more than 75μm. It has a smoother texture than conventional cement. The forms and proportional quantities of incombustible content in the coal utilized decide the chemical structure of fly ash [56, 57].

Portland cement was used as the basic binding material in this experiment because of its excellent mechanical properties, which aid in its binding with all other components of the mixture. BS-EN 196-2:2013 has been utilized to evaluate the cement used in this project. Figures 1 and 2 list the chemical characteristics of cementitious admixtures. Coal fly ash, Portland Cement, and the ground granulated blast furnace meet the requirements of BS-EN 450-1:2012, BS-EN 197-1:2011, and BS-EN 15167-1:2006.
2.2 Methods of testing

Three specimens (100x100x100 mm) were poured and measured for each sample to evaluate the compressive strength of Portland cement mixtures. Checking the cubes just with Portland cement and after that with separate substitution ratios of ground granulated blast furnace slag and coal fly ash to understand its effects on the compressive strength of the cement mixes. After pouring the cement cubes and handled them with care, the cubes have been molded and cured it’s at different periods of 7, 14, and 28 days, then, the compressive strength was calculated for each cube.

2.3 Design of Mixtures

The quantity of aggregate, supplementary cementitious products, water, and Portland cement, in a mortar mixture, is determined using the mix design approach used in this study. To match the classification scales, natural sand was selected. For all of the mixes, two parts of Portland cement to five parts of fine aggregate was the ratio of sand to binding materials (CFA + cement + GGBS). As well as, the percentage of water to binding materials was 0.4. Figure 3 presents the value of each element of mixing as well as the blend style proportions. To assess the strength of composite mortar, all cubes were subjected to a compression examination. Ground granulated blast furnace slag and coal fly ash could be utilized to evaluate the mechanical characteristics of cement mortar by 10x10x10 cm cubes. After 7, 14, and 28 days of cure, these cubes were examined by a compression instrument. Cubes were evaluated after gradually applying the load from the compression machine till these cubes were a failure. The impacted force was divided by an area of (10000) square millimeters to measure the compressive resistance of these cubes.
3. Results

Table (1) and Figure 4 show the examining results of the cubes for cement mortar with partial substitution of ground granulated blast furnace slab and coal fly ash at varying proportion and curing times, after examining them with a compression machine.

Table 1: the compressive strengths of the developed mortars at tested ages.

Test No.	Portland cement %	CFA %	GGBS %	Average of compressive strength (MPa) at 7 days	14 days	28 days
1	100	0	0	9.9	11	13.5
2	60	20	20	7.24	9.07	10.4
3	40	30	30	5.30	7.25	7.77

It is shown that partially adding ground granulated blast furnace slab and coal fly ash in cementitious mixtures leads to a decrease in the compressive strengths of these mixtures. When comparing mixture No. (2) with the third mixture, it is evident that mixture (2) has a lower compressive intensity decrease. For such as, after 7 days of pretreatment, the compressive intensity of the blends was reduced by 26% and 46%, respectively, as compared to the first blend (Figure 4). On another side, utilizing 40% partially replacing content reduced the compressive efficiency of cementitious mortar by 46% after 7 days, but this percentage slipped to 30% after 4 weeks. This suggests that it was at a young age, ground granulated blast furnace slab and coal fly ash are inert materials that require duration to interact with the elements of a cement mortar. To summarize, the limited substitution of CFA and GGBS can be achieved at a rate of 20 to 33% to achieve better quality while reducing emissions. This is because supplementary cementitious materials usually minimize the compressive properties of cementitious mixtures, which is an essential component in the manufacturing gel (C-S-H) in cement mixes. The findings show that specimens that have been cured for 28 days have a greater compressive characteristic. To explanation, as mention above the curing age affects the compressive strength of cementitious mortars. where, curing period influences the benefit and improvement of C-S-H, which contributes to a reduction in the number of Internal spaces or permeability in the mortar matrix, which influences the properties of concrete and increases the strength development of these mixes. When comparing mixture three at 14 and 28 days to the same specimens at 7 days, the improvement in compressive intensity was 27% and 32%, consecutive.
Figure 4: Shows the compressive strength of blends after 7, 14, and 28 days of curing.

The current study looked at the compressive strength of concrete specimens for 28 days; however, further research is needed to look at extended periods and equate the findings to conventional concrete samples of the same age. The built-in sensors can also be utilized for that [58, 59], as sensors have demonstrated high-quality results in a variety of engineering sector, including communications [60] and water quality [61].

4. Conclusions

Drawn from the results of this research, it can be concluded that when ground granulated blast furnace slag and coal fly ash are utilized to substitute Portland cement in mortars, the compressive intensity reduces as the ratio of GGBS and CFA is increased. Also, whenever the ratio of the cementitious material maximized, the curing time should be longer to ensure achieve better compression characteristics. Utilizing about 20 to 33% as a partial substitute for cement may be suitable values, as increasing this value reduces the concrete’s compressive characteristics.

Since the current report just looked at the compressive strength of concrete samples for 28 days, further ages must be studied in the future. The built-in sensors can be utilized for that as sensors have demonstrated a high-quality result in a variety of engineering sector.

References

[1] Shubbar A A, Jafer H, Dulaimi A, Hashim K, Atherton W and Sadique M 2018 The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach Construction and Building Materials 187 1051-60
[2] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). In: 11th International Conference on Developments in eSystems Engineering (DeSE), (Cambridge, UK pp 214-9
[3] Al-Anbari R, Alnakeeb A, Abdulredha M J E and Journal T 2013 Landfill site selection for Kerbala municipal solid wastes by using geographical information system techniques 32 13
[4] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent Advances in Cement Research 32 1-38
[5] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash Karbala International Journal of Modern Science 6 1-23
[6] Grmasha R A, Al-sarej O J, Salman J M, Hashim K S and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust WithinThree Land-Uses of Babylon Governorate,
Iraq: Distribution, Sources, and Health Risk Assessment. *Journal of King Saud University - Engineering Sciences* **33** 1-18

[7] Abdulredha M, Al Khaddar R and Jordan D 2017 Hoteliers’ attitude towards solid waste source separation through mega festivals: A pilot study in Karbala. In: *International Conference for Doctoral Research: BUID*

[8] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. *Data in Brief* **31** 105961-72

[9] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering* (Berlin: Springer)

[10] Abdulredha M, Al Khaddar R, Jordan D, Al-Attabi A and Alzeyadi A 2017 Public participation in solid waste management during mega festivals: A pilot study. In: *WCST World Congress on Sustainable Technologies Proceedings 2017: Infonomics Society* pp 38-41

[11] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K J W M 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression. *Journal of King Saud University - Engineering Sciences* **33** 1-18

[12] Hashim K S, Idoowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M J M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor. *Journal of King Saud University - Engineering Sciences* **33** 1413-8

[13] Hashim K S, Al Khaddar R, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M, Alawsh R J S and Technology P 2019 Electrocoagulation as a green technology for phosphate removal from River water. *Journal of King Saud University - Engineering Sciences* **33** 1413-8

[14] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. In: *IOP Conference Series: Materials Science and Engineering: IOP Publishing* p 012032

[15] Hassan Alnaimi I J I, Abuduljaleel Al-Janabi, Khalid Hashim, Michaela Gkantou, Salah L. Zubaidi, Patryk Kot, Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants. In: *IOP Conference Series: Materials Science and Engineering* (University of Kufa, Najaf, Iraq pp 1-9

[16] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride. In: *IOP Conference Series: Materials Science and Engineering: IOP Publishing* p 012038

[17] Abdulredha M, Rafid A, Jordan D and Hashim K J P E 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition. *Journal of King Saud University - Engineering Sciences* **33** 779-84

[18] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology. *Procedia Engineering* **196** 792-9

[19] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor. *Journal of Water Process Engineering* **20** 207-16

[20] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water. In: *IOP Conference Series: Materials Science and Engineering: IOP Publishing* p 012034

[21] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. In: *IOP Conference Series: Materials Science and Engineering: IOP Publishing* p 012064
[22] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. In: *IOP Conference Series: Materials Science and Engineering*; IOP Publishing p 012031

[23] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater *Journal of Water Process Engineering* 33 101079-86

[24] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dreged sediment. In: *First International Conference on Materials Engineering & Science*, (İstanbul Aydn University (IAU), Turkey pp 12-22

[25] Shubbar A A, Jafer H, Abdulredha M, Al-Khafaji Z S, Nasr M S, Al Masoodi Z and Sadique M J O B E 2020 Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days 30 101327

[26] Aayef A N, Al Masoodi W T M, Kamel R J, Abdulredha M, Almansoori N A, Kot P and Muradov M 2021 An experimental study for adapting electrocoagulation as a technique for fluoride removal from water. In: *IOP Conference Series: Materials Science and Engineering*; IOP Publishing p 012012

[27] Al-Sareji O J, Abdulreamaha, Mubarak H A, Grmasha R A, Alnowaishry A, Kot P, Al-Khaddar R and AlKhayyat A 2021 Copper removal from water using carbonized sawdust. In: *IOP Conference Series: Materials Science and Engineering*; IOP Publishing p 012015

[28] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach *Journal of Environmental Management* 197 80-8

[29] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor *Journal of Environmental Management* 189 98-108

[30] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach *Journal of Environmental Management* 196 224-33

[31] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter. In: *IOP Conference Series: Materials Science and Engineering*; IOP Publishing p 012035

[32] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water. In: *IOP Conference Series: Materials Science and Engineering*; IOP Publishing p 012073

[33] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq pp 12-22

[34] Hashim K S, Al-Saati N H, AlQuzweeni S S, Zubaidi S L, Kot P, Kraidal I, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq pp 25-32

[35] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidal I, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. In: *2nd International Scientific Conference*, (Al-Qadisiyah University, Iraq pp 12-22
[36] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study Desalination and Water Treatment 150 406-12

[37] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel Desalination and Water Treatment 168 165-74

[38] Abdulredha M, Muhsin A A, Al-Janabi A, Alajmi B N, Gkantou M, Amoako-Attah J, Al-Jumeily D, Mustafina J and AlKhayyat A 2021 Using SF and CKD as cement replacement materials for producing cement mortar. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012007

[39] Isra’a S S, Al-Janabi A, Abdulredha M, Alkandari A, Abdellatif M and Yeboah D 2021 Reusing of furnace bottom ash as an adsorbent for phosphate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012006

[40] Jawad S F, Saddam N S, Adaami Q J, Kareem M M, Abdulredha M, Mubarak H A, Kot P, Gkantou M and AlKhayyat A 2021 Dye removal from textile wastewater using solar-powered electrocoagulation reactor. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012016

[41] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012036

[42] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012037

[43] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 756 1-16

[44] Hashim K S, Shaw A, Al-Khaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment Journal of Cleaner Production 280

[45] Hashim K S, Al-Khaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management (Berline: Springer)

[46] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makiadbadi M, Naghdali Z, Hashim K S and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes Separation Science and Technology 55 3184-94

[47] Abdulredha M, Kot P, Al Khaddar R, Jordan D, Abdulridha A J E, Development and Sustainability 2020 Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq 22 1431-54

[48] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Al Masoodi Z, Sadique M and Hashim K J D i B 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations

[49] Abdulredha M, Rafid A, Jordan D and Hashim K 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition Procedia Engineering 196 779-84

[50] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences Waste Management 87 761-71
[51] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression Waste Management 77 388-400

[52] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. In: First International Conference on Civil and Environmental Engineering Technologies (ICCEET), (University of Kufa, Iraq pp 31-8

[53] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust Journal of Building Engineering 32 1-17

[54] Shumuye E and Jun Z 2018 A review on Ground Granulated Blast Slag GGBS in Concrete. In: Eighth International Conference On Advances in Civil and Structural Engineering-CSE,

[55] Suresh D, Nagaraju K J I j o m and engineering c 2015 Ground granulated blast slag (GGBS) in concrete—a review 12 76-82

[56] Taoufiq L, Laamyem A, Essediqi E, Monkade M and Zradba A J J M E S 2018 Recycling coal fly ash and coal bottom ash from Moroccan thermal power plant in concrete manufacturing 9 1312-7

[57] Nagrockienė D, Rutkauskas A J C and Materials B 2019 The effect of fly ash additive on the resistance of concrete to alkali silica reaction 201 599-609

[58] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection Sensors 19 5175-89

[59] Teng K H, Kot P, Muradov M, Shaw A, Hashim K, Gkantou M and Al-Shamma’a A 2019 Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete Sensors 19 547-59

[60] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna Sensors 19 1813-23

[61] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy. In: 12th International Conference on Developments in eSystems Engineering (DeSE), (Kazan, Russia pp 429-33