Codes in the atomic weights of chemical elements

Lutvo Kurić
Institute of Economics, University of Sarajevo, Trg Oslobođenja 1, Sarajevo, Bosnia and Herzegovina
E-mail address: lutvokuric@yahoo.com

ABSTRACT

The subject of this thesis is a digital approach to the investigation of the digital basis of digital Periodic Table. The digital mechanism of this Table have been analyzed by the application of cybernetic methods, information theory and system theory, respectively. This paper is to report that we discovered new methods for development of the new technologies in chemistry. It is about the most advanced digital technology which is based on program, cybernetics and informational systems and laws. The results in practical application of the new technology could be useful in chemistry, bioinformatics, genetics, bio-chemistry and other natural sciences.

Keywords: Digital Periodic Table; atomic weight; digital chemistry; digital chemical code; biochemistry

1. INTRODUCTION

The subjects of our research are program lawfulness, cybernetic lawfulness, and informational lawfulness in Periodic system Table. In the science, one question has been present for a long time, that is, if there is one unique common connection that links all chemical elements in this Table.

The doubt is, if the periodical is only a physical-chemical matter of objective material relationship or maybe a matter of numbers and mathematics. With the goal to find the answers on some of those questions, we have made a decision to do a research on, if in this Table exists program, cybernetic and information lawfulness.

Results is: We have discovered that sequences of all elements in this Table conducted, not just according to their chemical and periodical characteristics, but especially according to the program lawfulness, cybernetic lawfulness, and informational lawfulness.

In fact, we have discovered the digital balance in distribution of elements in Periodic system Table is achieved. Here we wish to present our points of views about the program-cybernetics lawfulness in this Table.

2. RESULTS

Results of our research show that the processes of sequencing the chemical elements are conditioned and arranged not only with chemical and biochemical, but also with program, cybernetic and informational lawfulness too. At the first stage of our research we replaced...
chemical elements from the Periodic Table with atomic numbers of those elements. This study translates the periodic table of elements from a digital form and explores the idea of improving readers' comprehension and retention of complex information. It is designed to help readers visualize abstract information by actively engaging them in their learning experience. It also helps them understand the interconnectedness of complex systems the periodic table of elements being a prime example by translating digital numerical information into visual patterns that can be detected and compared. Users will hopefully apply this form of learning to other areas as well.

Decode the digital chemical language

The above algorithms enable to decode the digital chemical language and to discover codes that mutually connect the parameters in digital images from Periodic Table.

Examples:

![Diagram of Periods 2 and 3](image)

ToeplitzMatrix \([(3, 17, 16, 6, 14, 8, 9, 11, 10, 12, 13, 7, 15, 5, 4, 18)]\)

Input:

ToeplitzMatrix \([3, 17, 16, 6, 14, 8, 9, 11, 10, 12, 13, 7, 15, 5, 4, 18]\)
Result:

\[
\begin{bmatrix}
3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 & 12 & 13 & 7 & 15 & 5 & 4 & 18 \\
17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 & 12 & 13 & 7 & 15 & 5 & 4 \\
16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 & 12 & 13 & 7 & 15 & 5 \\
6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 & 12 & 13 & 7 & 15 \\
14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 & 12 & 13 & 7 \\
8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 & 12 & 13 \\
9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 & 12 \\
11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 & 10 \\
10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 & 11 \\
12 & 10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 & 9 \\
13 & 12 & 10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 & 8 \\
7 & 13 & 12 & 10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 & 14 \\
15 & 7 & 13 & 12 & 10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 & 6 \\
5 & 15 & 7 & 13 & 12 & 10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 & 16 \\
4 & 5 & 15 & 7 & 13 & 12 & 10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3 & 17 \\
18 & 4 & 5 & 15 & 7 & 13 & 12 & 10 & 11 & 9 & 8 & 14 & 6 & 16 & 17 & 3
\end{bmatrix}
\]

Dimensions:

\[16 \text{ (rows)} \times 15 \text{ (columns)}\]
Matrix plot:

Determinant

361 921 706 319 096 000

Trace:

48

Characteristic polynomial:

\[x^{16} - 48x^{15} - 15560x^{14} - 923664x^{13} - 16340370x^{12} + 131503056x^{11} + 7498197700x^{10} + 48216061008x^9 - 903534607975x^8 - 12166319607776x^7 + 16426714927848x^6 + 908518833522816x^5 + 2968577934473952x^4 - 20173450118317440x^3 - 131428116530327808x^2 - 113267913919712640x + 361921706319096000\]

Condition number:

250,923

Atomic numbers
Atomic weight
Li
6.941
Cl
35.45
Si
12.01
O
28.09
F
16,00
Na
172,551

Norm(ListCorrelate({172,551, 185,011, 198,081, 194,091, 194,091, 198,081, 185,011, 172,551}, {1499,468}, conjugate, {1}), p)
Input

\[\| \text{ListCorrelate}\left[172\,551 \times 185\,011 \times 198\,081 \times 194\,091 \times \\
194\,091 \times 198\,081 \times 185\,011 \times 172\,551, \{1499, 468\}^{x}, \{1\}\right] \|_p \]

\(z^* \) is the complex conjugate of \(z \)

Result

\[\| \text{ListCorrelate}\left[1506\,352\,099\,619\,394\,602\,254\,357\,057\,648\,679\,896\,126\,161, \\
\{1499^{x*}, 468^{x*}\}, \{1\}\right] \|_p \]

	Ne	Mg	Al	N	P	B	Be	Ar
Ne	20.18	24.31	16,941	14.01	30.97	10.81	9.012	39.95
Na	22.99	20.18	24,31	16,941	14.01	30.97	10.81	9.012
F	19.00	22.99	20.18	24.31	16,941	14.01	30.97	10.81
O	16.00	19.00	22.99	20.18	24.31	16,941	14.01	30.97
Si	28.09	16.00	19.00	22.99	20.18	24,31	16,941	14.01
C	12.01	28.09	16.00	19.00	22.99	20.18	24,31	16,941
Cl	35.45	32.07	12.01	28,09	16.00	19.00	22,99	20.18

\[\text{d^2/dp^2 EuclideanDistance(ListCorrelate\left\{2, 12, 24, 1, 23, 23, 27, 1, 23, 10, 6, 24, \\
25, 1, 23, 10, 6, 28, 24\right\}, \{931\}^{x*(x^*\text{conjugate})}, \{1\}), p) \]
Derivative:

\[
\frac{\partial^2}{\partial p^2}\left(\text{EuclideanDistance}\left[\text{ListCorrelate}\left[
\begin{array}{cccccc}
185, & 79 \times 174, & 65 \times 159521 \times 161521 \times 164401 \times 159211 \times 149223 \times 166183, \\
[166, & 183]^* & \{1\}, & p \right]\right]
\end{array}
\right]\right)
\]

\[
295433\,821\,123\,396 \,187\,908 \,881\,027\,896 \,188\,782 \,136\,719 \,111\,140 \,633\,508 \,056\,911 \times
\]

\[
632\,769 \,\sqrt{2} \,\left[166\,^* - 183\,^*\right] +
\]

\[
-1.087\,076\,485 \,116\,655 \,707\,288 \,593 \,094 \,489 \,766 \,p \left(166\,^* + 183\,^*\right) +
\]

\[
2\left(622\,623\,056 \,850 \,555 \,129 \,099 \,541 \,695 \,067 \,330 \,455 \times
\]

\[
2^{\times\,^*}\,^* \times 3^{\times\,^*} \,^* \times 5^{633\,^*} \,^* +
\]

\[
295\,433\,821\,123\,396 \,187\,908 \,881\,027\,903 \,660 \,258\,818 \,925 \,892 \,689 \,828 \times
\]

\[
0.083\,397\,719\,598 \,229 \,27\,556 \,^{x\,^*} \,^* +
\]

\[
295\,433\,821\,123\,396 \,187\,908 \,881\,027\,903 \,660 \,258\,818 \,925 \,892 \,689 \,828 \times
\]

\[
0.083\,397\,719\,598 \,229 \,33\,489 \,^{x\,^*} \,^* + p^3/2
\]

Ne	Mg	Al	N	P	B			
20.18	24.31	16,941	14.01	30.97	10.81	117,221		
Na	Ne	Mg	Al	N	P			
22.99	20.18	24.31	16,941	14.01	30.97	129,401		
F	Na	Ne	Mg	Al	N			
19.00	22.99	20.18	24.31	16,941	14.01	117,431		
O	F	Na	Ne	Mg	Al			
16.00	19.00	22.99	20.18	24.31	16,941	119,421		
Si	O	F	Na	Ne	Mg			
28.09	16.00	19.00	22.99	20.18	24.31	130,57		
C	Si	O	F	Na	Ne			
12.01	28.09	16.00	19.00	22.99	20.18	118,27		
Ne	Na	F	O	Si	C	S	Cl	
-----	-----	-----	-----	-----	-----	-----	-----	
20,18	22,99	19,00	16,00	28,09	12,01	32,07	35,45	185,79
Mg	Ne	Na	F	O	Si	C	S	
24,31	20,18	22,99	19,00	16,00	28,09	12,01	32,07	174,65
Al	Mg	Ne	Na	F	O	Si	C	
26,98	24,31	20,18	22,99	19,00	16,00	28,09	12,01	169,56
N	Al	Mg	Ne	Na	F	O	Si	
14,01	26,98	24,31	20,18	22,99	19,00	16,00	28,09	171,56
P	N	Al	Mg	Ne	Na	F	O	
30,97	14,01	26,98	24,31	20,18	22,99	19,00	16,00	174,44
B	P	N	Al	Mg	Ne	Na	F	
10,81	30,97	14,01	26,98	24,31	20,18	22,99	19,00	169,25
Be	B	P	N	Al	Mg	Ne	Na	
9,012	10,81	30,97	14,01	26,98	24,31	20,18	22,99	159,262
Ar	Be	B	P	N	Al	Mg	Ne	
39,95	9,012	10,81	30,97	14,01	26,98	24,31	20,18	176,222

Ne	Na	F	O	Si	C	S
20,18	22,99	19,00	16,00	28,09	12,01	32,07
Mg	Ne	Na	F	O	Si	C
24,31	20,18	22,99	19,00	16,00	28,09	12,01
Al	Mg	Ne	Na	F	O	Si
26,98	24,31	20,18	22,99	19,00	16,00	28,09
N	Al	Mg	Ne	Na	F	O
14,01	26,98	24,31	20,18	22,99	19,00	16,00
P	N	Al	Mg	Ne	Na	F
30,97	14,01	26,98	24,31	20,18	22,99	19,00
B	P	N	Al	Mg	Ne	Na
10,81	30,97	14,01	26,98	24,31	20,18	22,99
Be	B	P	N	Al	Mg	Ne
9,012	10,81	30,97	14,01	26,98	24,31	20,18

| 136,272 | 150,25 | 15,034 | 143,47 | 157,55 | 142,58 | 15,034 |

etc.
Making a sequence of all phenomena in Periodic system Table is conducted according to the exact mathematical laws (for such descriptions we can use theory of systems and cybernetics. The results of our research show that the processes of sequencing the periodic table are conditioned and arranged not only with chemical and biochemical lawfulness, but also with program, cybernetic and informational lawfulness too. Translation of the chemical language of these table into a digital language may be very useful for developing new methods of predicting of phenomenon in chemistry, biochemistry, genetic, medicine and other natural sciences. Examples: protein sub-cellular localization, membrane protein type, protein structure secondary prediction or any other protein attributes.

3. CONCLUSIONS

Indeed, the sequencing of the biochemistry is determined not only by biochemical features, but also by cybernetic and information principles. For this reason, research in this field deals more with the quantitative rather than qualitative characteristics of biochemical information and its biochemical basis. For the purposes of this paper, specific physical and chemical factors have been selected in order to express the chemical information for chemical elements. Numerical values are them assigned to these factors, enabling them to be measured. In this way it is possible to determine of a connection really exists between the quantitative ratios in the process of transfer of biochemical information and the qualitative appearance of the biochemistry. To select these factors, preference is given to classical physical and chemical parameters, including the atomic numbers in the relevant chemical elements, their analog values, the position in periodic table, and their frequencies.

Going through these parameters, it becomes clear that there is a mathematical relationship between quantitative ratios and the qualitative appearance of the chemical elements and that there is a measurement method that can be used to describe the biochemistry of those elements.

References

[1] L. Kurić, International Letters of Chemistry, Physics and Astronomy 10 (2014) 62-73.
[2] L. Kurić, J. Comput Sci Biol 2 (2009) 101-116.
[3] L. Kurić, Journal de la Societe de statistique de Paris 127(2) (1986).
[4] L. Kurić, GJMR 10(1) (2010) 15.
[5] L. Kurić, Advances and Applications in Bioinformatics and Chemistry (2010) 45-58.
[6] L. Kurić, GJMR 1(1) (2010) 15.
[7] L. Kurić, International Journal of Computer Technology and Application 2(2) (2011) 216-241.
[8] L. Kurić, International Journal of Computer Technology and Application 2(2) (2011) 258-273.
[9] L. Kurić, *Journal of Chemical Engineering and Material Science* 2(5) (2011).

[10] L. Kurić, *International Letters of Chemistry, Physics and Astronomy* 11(3) (2014) 202-213.

[11] L. Kurić, *International Letters of Chemistry, Physics and Astronomy* 12 (2014) 31-50.

(Received 27 March 2014; accepted 05 April 2014)