МЕТОДИЧЕСКИЕ АСПЕКТЫ ИЗВЛЕЧЕНИЯ ЛИПИДОВ ИЗ БИОЛОГИЧЕСКИХ МАТРИЦ

Вострикова Н.Л.,* Кузнецова О.А., Куликовский А.В.
Федеральный научный центр пищевых систем им. В.М. Горбатова РАН, Москва, Россия

Ключевые слова: жир, определение жира, экстракция, растворитель

Аннотация
В работе представлены исследования по изучению степени экстрагирования сырого жира из мясных систем различными методами. Показаны сравнительные отличия методов экстракции в зависимости от полярности используемых растворителей. Жир извлекали, используя классический метод Сокслета, а также с использованием двухступенчатой экстракции. В качестве опытных образцов использовали специально приготовленные модельные системы, которые включали в себя как простую, так и многокомпонентную смесь в виде муки мясокостной, костной и мясорастительной. Выведено что при использовании неполярных растворителей теряется большое количество полярных липидов. Показано влияние растворителя на степень экстракции глицеридов, фосфатидов, свободных жирных кислот и продуктов окисления. Приведен ряд экспериментов и представлены результаты по степени выделения жира с помощью смесей органических растворителей с минеральной кислотой. Проведенное исследование позволяет выбрать наилучший метод экстракции для каждой группы мясного и мясосодержащего сырья. По результатам работы предложены методические рекомендации по использованию гидрофобных и гидрофильных растворителей и их смесей.

Рассмотрены методы извлечения липидов из пищевых продуктов после щелочного и кислотного гидролиза. Приведены примеры определения жиров инструментальными методами (рефрактометрический). Описаны классические методы определения содержания жира (методы Рэндалла, Твисселмана, Рушковского).

METHODOLOGICAL ASPECTS OF LIPID EXTRACTION FROM BIOLOGICAL MATRICES

Natal’ya L. Vostrikova,* Oksana A. Kuznetsova, Andrey V. Kulikovskii
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russia

Key words: fat, determination of fat, extraction, solvent

Abstract
The paper presents the studies on the degree of raw fat extraction from meat systems by various methods. Relative differences in extraction methods are shown depending on the polarity of solvents used. Fat was extracted using the classical Soxhlet method, as well as two-step extraction. Specially prepared model systems were used as test samples including both simple and multicomponent mixtures in the form of meat-and-bone meal, bone meal, and meat-and-plant meal. It was found that when using non-polar solvents, a large amount of polar lipids was lost. The influence of the solvent on the degree of extraction for glycerides, phosphatides, free fatty acids and oxidation products was shown. A number of experiments are presented and the results are given on the degree of fat extraction using mixtures of organic solvents with mineral acid. The studies allowed to choose the best extraction method for each type of meat and meat-containing raw materials. Based on the results, methodical recommendations are proposed on the use of hydrophobic and hydrophilic solvents and their mixtures. Methods of lipid extraction from food products after alkaline and acid hydrolysis are considered. Examples of fat determination by instrumental methods (refractometry) are given. Classical methods for fat content evaluation are described (Randall method, Twisselmann method, and Rushkovsky method).

Введение
Липидами (от греч. lipos — жир) называют сложную смесь органических соединений с близкими физико-химическими свойствами, которая содержится в растениях, животных и микроорганизмах. Липиды широко распространены в природе и вместе с белками и углеводами составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки. Они широко используются при получении многих продуктов питания, являются важными компонентами пищевого сырья, полуфабрикатов и готовых пищевых продуктов, во многом определяя их пицевую и биологическую полноценность и вкусовые качества [1,2].

Липиды не растворимы в воде (гидрофобны), хорошо растворимы в органических растворителях (бензине, дизельном эфире, хлороформе и др.).
В растениях липиды накапливаются главным образом, в семенах и плодах. Нижне приведено содержание липидов (%) в разных культурах: арахис (ядро) — 50–68; какао (бобы) — 49–57; подсолнечник — 30–58; соя (семена) — 15–25; кукуруза — 5,6; гречиха — 3,8; пшеница — 2,9.

По химическому строению липиды являются природными жирными кислотами, спиртами, альдегидами, представленными при помощи сложноэфирной, простой эфирной, фосфоэфирной, гликозидной связей. Липиды делятся на две основные группы: простые и сложные липиды. К простым нейтральным липидам (не содержащим атомов азота, фосфора, серы) относят производные высших жирных кислот и спиртов, глицериды, воски, эфиры холестерина, гликопептиды и другие соединения. Молекулы сложных липидов содержат в своем составе не только остатки высокомолекулярных карбоновых кислот, но и фосфорную или серную кислоты.

Липиды — важные ингредиенты пищи человека, так как обладают высокой энергетической ценностью и являются источником пластического материала для тканей организма. Отдельные компоненты жира — некоторые жирные кислоты, фосфатиды, стерои, жирорастворимые витамины — выполняют важные биологические функции в организме. Липиды — вещества растительного и животного происхождения, растворимые в органических растворителях и мало растворимые в воде, содержащие в молекуле высшие алкильные или ацильные радикалы.

При количественном определении липидов в исследуемом объекте предусматривается извлечение из него глицеридов и сопутствующих им веществ (пигментов, витаминов, свободных жирных кислот, фосфатидов и др.) [4,5].

Существующие методы определения содержания жира в различных видах сырья и продуктов можно условно подразделить на две группы — одноступенчатые и двухступенчатые.

Одноступенчатые методы, основанные на экстракции ультразвуком, ядерно-магнитного резонанса, фотометрии и инфракрасных лучей, позволяют проводить количественное определение жира непосредственно в исследуемом объекте. Однако для этого требуется сложное и дорогостоящее оборудование, а применение некоторых из них (например, метод ядерно-магнитного резонанса) рекомендуется в случае невозможности использования какого-либо другого метода для установления количества определяемого вещества в объекте.

Большинство физико-химических методов (экстракционно-весовые, рефрактометрические и др.), применяемых для количественного определения жира, относится ко второй группе. Характерной особенностью их является двуступенчатость — извлечение жира из объекта и количественное определение его. Для извлечения жира используют различные органические растворители — бензин, петролейный эфир, серный эфир, ацетон, хлороформ, моноброми- и монохлорнафталин, трикрезилортофосфат и др. Следует иметь в виду, что гидрофобные растворители (петролейный эфир, бензин и др.) извлекают вместе с глицеридами несколько меньше сопутствующих им веществ. Причем выделение их происходит селективно. Более быстро извлекаются глицериды, и медленнее — фосфатиды, свободные жирные кислоты и продукты окисления. В связи с этим, при применении гидрофобного растворителя процесс извлечения жира проходит длительно до 2…3 сут. Для ускорения и более полного выделения глицеридов и сопутствующих им веществ из анализируемого объекта рекомендуется использовать гидрофильные растворители (метиловый, этиловый эфир и др.) или смесь гидрофобных и гидрофильных растворителей (бинарные растворители) [6,7,8,9].

Методология

На практике для выделения липидов чаще всего используют два основных рутинных метода экстракции, позволяющих количественно извлекать липиды практически всех классов из самой ткани и ее фракций. Наиболее распространенным является метод Фолча, согласно которому экстракцию проводят смесью хлороформ-метанол (2:1) из расчета 20 частей экстрагируемого вещества на одну часть ткани. Этот метод позволяет получить достаточное количество нейтральных липидов, диацилглицерофосфолипидов и сфинголипидов. Лизофосфолипиды переходят в раствор лишь частично, а более полярные кислые липиды могут теряться при промывке растворами солей и водой. Однако при повторных экстракциях и ограничении промывок выход липидов можно повысить до количественного. Другой метод предложен Блайем и Дайером, когда экстракцию липидов осуществляют сместью хлороформ-метанол (1:1) из расчета 20 частей экстрагирующей смеси на одну часть ткани. Этот метод позволяет получить достаточно высокий выход нейтральных липидов, диацилглицерофосфолипидов и сфинголипидов. Лизофосфолипиды переходят в раствор лишь частично, а более полярные кислые липиды могут теряться при промывке экстракта растворами солей и водой. Однако при повторных экстракциях и ограничении промывок выход липидов можно повысить до количественного. Другой метод предложен Блайем и Дайером, когда экстракцию липидов осуществляют сместью хлороформ-метанол (1:1) из расчета 20 частей экстрагирующей смеси на одну часть ткани. Однако и в этом случае при промывке водой наиболее полярные кислые фосфолипиды и лизофосфолипиды переходят в водную фазу и теряются.

В зависимости от химической природы липидов используют модифицированные методы извлечения. Заменив сместь хлороформ-метанол на сместь хлороформа с 2%-ным раствором уксусной кислоты в мета-
ноле, можно повысить выход полярных липидов. Впоследствии для этих же целей была применена смесь хлороформ-метанол с 1М HCl (4:2:3) [10,11].

При экстракции нейтральных и общих липидов часто используют неполярные растворители, такие, как хлороформ, гексан, дизтиловый эфир. Естественно, что при этом теряется большое количество полярных липидов.

Для более полного понимания методологии извлечения липидов (жиров) из сырья и готовой продукции рассмотрим перечень методов чаще всего используемый, который приведён ниже.

Метод Гербера используют при определении жира в полуфабрикатах из мяса (мясной фарш, полуфабрикаты из котлетной массы), творога, в кулинарных изделиях, мучных кондитерских изделиях, молока и молочных продуктах, сухих продуктов детского и дietetического питания.

Метод основан на разрушении белков исследуемого продукта концентрированной серной кислотой и растворении жира в изоамиловом спирте. Образующийся в реакции изоамилового спирта с серной кислотой сложный эфир растворяется в ней, что способствует выделению жира. Полученную смесь центрифугируют в жиромерах (бутиметрах). Отделившийся жировой слой собирается в градуированной части жиромера и его определяют количественно.

Определение жира проводят в молочных или сливочных жиромерах, отличающихся размером и градуировкой. Объём деления в молочных жиромерах равен 0,1%. В сливочных жиромерах объём двух делений соответствует 1% жира в продукте при навеске 5 г. Их используют, если содержание жира в продукте превышает 10%.

Весовой или гравиметрический метод с экстракцией жира в микроизмельчителе. Метод используется для кулинарных изделий и некоторой продукции консервойной промышленности. Жир извлекают из продукта при измельчении последнего в микроизмельчителе. После отгонки растворителя высушенный жир взвешивают количественно.

Проба на омыление. Прибавляют 1–2 капли бромной воды и встряхивают. Быстрое исчезновение желтой окраски бромной воды указывает на присутствие ненасыщенных жирных кислот. Пробу с раствором масла в эфире прибавляют 1–2 капли бромной воды и встряхивают. Быстрое исчезновение желтой окраски бромной воды указывает на присутствие ненасыщенных кислот [16].

Техника жидкостной экстракции используется, например, для определения содержания жира в различных объектах. Экстракция по Сокслету является одной из самых широко распространенных аналитических техник. За последние годы она была значительно модернизирована, в частности, удалось увеличить температуру растворителя, вступающего в контакт с извлекаемым веществом, с целью уменьшить время экстракции. Модификации, представленные американским химиком Э. Рэндаллом, являются одними из самых эффективных в этом отношении:

Метод Рэндалла: метод состоит из двух этапов: на первом этапе образец в гильзе помещается в кипящий растворитель, а на втором промывается растворителем, капающим с конденсатора. Быстрое растворение компонентов образца происходит на первом этапе посредством кипящего растворителя, что значительно сокращает время, необходимое для всего анализа. Методика Рэндалла также позволяет восстановить использованный растворитель в конце процедуры экстракции.

Экстракция по Сокслету — это процесс извлечения растворимых веществ из твердых материалов, который был разработан немецким агрохимиком Францем фон Сокслетом в 1879 году. Метод Сокслета: растворение извлекаемого соединения происходит...
с помощью холодного растворителя, каивающего из конденсатора. Обычно полная экстракция длится часами [13,14].

Обсуждение

Большинство методов определения липидов в пищевых продуктах можно разделить на три группы.

Методы первой группы основаны на извлечении липидов из определяемого продукта путем многократного экстрагирования растворителем до тех пор, пока остаточное содержание их в продукте не будет представлять ничтожно малую величину. Затем из полученной вытяжки отгоняют растворитель, а остраки, содержащих липиды, высушивают и взвешивают (весовой метод определения жира). Это определению обычно проводят в специальных аппаратах для экстракции — аппаратах Сокслета, дающих возможность одной и той же порцией эфира многократно произвоить извлечение жира. Для экстракции используют неполярные растворители: диэтиловый эфир, гексан, петролейный эфир.

Разнообразная природа пищевых продуктов, обусловливающая различную прочность связи липидов с другими частями продукта, оказывает влияние на эффективность экстракции. Методы этой группы позволяют извлечь из пищевых продуктов свободные и слабосорбированные липиды. Прочно связанные липиды при этом не экстрагируются. Кроме того, жировые растворители экстрагируют не только глицериды жировых кислот, но и целый ряд других веществ: свободные жирные кислоты, органические кислоты, такие как яблочная; фосфатиды, стерины, эфирные масла, воскообразные вещества, смолы, альдегиды, кетоны, красящие вещества. Ввиду этого продукт, извлекаемый для извлечения жира, предварительно прощелочен и подсушивают, так как чем крупнее и влажнее частицы, тем медленнее извлекается жир; кроме того, из влажных объектов жир полностью не экстрагируется.

В связи с этим, а также ввиду значительного окисления липидов в процессе выделения, были предприняты поиски других, более эффективных способов экстракции.

Методы второй группы основаны на использовании для экстракции смеси полярного и неполярного растворителей. При этом полярный растворитель (обычно метанол или этанол) разрывает связь липидов с белками и другими компонентами пищевых продуктов, а неполярный (хлороформ, бензол, петролейный эфир) непосредственно растворяет липиды. Наиболее применение получили смеси: хлороформ-метанол (2:1) и хлороформ-этанол (2:1). Однако в отличие от методов первой группы, такие бинарные смеси извлекают дополнительно значительное количество нелипидов (до 25 % суммы экстрагируемых веществ). Поэтому во многих случаях появилась необходимость удаления этих веществ путем переработки в хлороформе или промывки 1 %-ным раствором NaCl или KCl.

Методы третьей группы предусматривают извлечение липидов из пищевых продуктов после кислотного или щелочного гидролиза. Для этого пищевой продукт гидролизуют водным или спиртовым раствором щелочи при нагревании. После щелочного гидролиза полученные мыла разлагают раствором кислоты, а выделившиеся жирные кислоты извлекаются эфиром (петролейным, диэтиловым) и освобождаются от примесей фильтрацией. После отгонна эфира, определяют массу жирных кислот, который пересчитывают на жир. Указанным методом выделяют липиды в нативном состоянии теоретически невозможно. Поэтому из их содержании в пищевых продуктах судят по количеству жирных кислот и неомыляемых веществ, выделяемых из гидролизата. К этой группе методов относится кислотный метод определения жира с помощью жиромера в молоке, молочных продуктах и консерах. Жир выделяют действием концентрированной серной кислоты при нагревании. Смесь центрифугируют. При этом жир переходит в фазу добавляемого изомолочного спирта. Объем выделившегося жира измеряют в градуировочной части жиромера.

Методы первой группы не рекомендуется для исследования продуктов, богатых фосфолипидами, прочилюсованными в клетках (некоторые виды рыб), но пригодны для продуктов, с преобладающим содержанием триглицеридов — масличных семян.

Методы второй группы практически во всех случаях позволяют получить надежные количественные результаты, но они относительно трудоемки и не всегда пригодны для массовых анализов.

Применение методов третьей группы, хотя и не приводит к извлечению натуральных липидов, в большинстве случаев позволяет получить результаты, близко совпадающие с результатами, полученными методами второй группы. Их преимущество — в возможности проведения массовых анализов [17,18].

Определение жира непрерывной экстракцией (по Сокслету). Жир экстрагируют из исследуемого
продукта серным эфиром в аппарате Сокслета, состоящего из экстрактора с сифонной трубкой, шарикового обратного холодильника и приемной колбы. Навеску тщательно измельченного продукта в количестве 5–10 г (в зависимости от предполагаемого содержания жира в продукте) отвешивают с точностью до 0,0001 г в патрон из фильтровальной бумаги. Перед экстракцией взятую навеску продукта подсушивают при температуре 100–105 °C в течение 2 ч.

Для изготовления патрона, прямоугольным кусочком фильтровальной бумаги несколько раз обертывают деревянную болванку или стеклянный цилиндр, диаметр которых несколько меньше диаметра экстрактора. Конец бумаги, выступающий за край болванки на длину ее диаметра, загибают складками и таким образом, дно патрона загибают складками. Высота патрона должна быть на 10–15 мм ниже верхнего колена сифонной трубки экстрактора.

Патрон с навеской помещают в экстрактор, который соединяют на шлифах с высушенной до постоянной массы приемной колбой и холодильником. В колбу предварительно наливают до 2/3 ее объема высушенногоперегнанного серного эфира. В холодильник путем нагревания и нагрева колбу с серным эфиром на водяной бане с закрытым электрическим или паровым нагревом на специальной закрытой электрической платформе. Температура воды в бане должна быть не более 60 °C. Пары растворителя, образующиеся в колбе при кипении, попадают в холодильник, сгущаются в жидкость, которая каплями стекает в экстрактор, где находится патрон с навеской продукта. Когда уровень растворителя в экстракторе поднимается несколько выше верхнего колена сифонной трубки, эфир с растворенным в нем жиром стечет в приемную колбу. После этого весь процесс повторяется снова. Пример оборудования для экстракции жира по методу Сокслета приведен на Рис. 1.

Жир экстрагируют в течение 10–12 ч, при этом нагревание и кипение эфира должны быть отрегулированы так, чтобы в час происходило 6–8 слияний при объеме экстрактора 100 мл. Для более полного извлечения жира навеску продукта перед экстракцией помещают в растворитель в течение 6–8 ч; настаивание ведут в экстракторе, наполненном эфиром ниже сифонной трубки.

Когда экстракция закончилась, патрон с навеской вынимают из экстрактора и растворитель из приемной колбы отгоняют в пустой экстрактор. Остаток жира в колбе высыхают в шкафу до постоянной массы при температуре 100–105 °C; первый раз колбу с жиром взвешивают через 1 ч сушки, а затем через каждые 0,5 ч. Перед взвешиванием колбу охлаждают в эксикаторе в течение 30–35 мин и затем взвешивают с точностью до 0,0001 г.

Количество жира (X,%) рассчитывают по следующей формуле:

\[X = \left(\frac{G - G_1}{g} \right) \cdot 100/g, \]

где \(G \) — масса колбы с жиром, г;
\(G_1 \) — масса пустой колбы, г;
\(g \) — навеска исследуемого продукта, г.

Конечный результат выражают как среднее арифметическое двух определений. Расхождение между двумя параллельными определениями не должно превышать 0,3 %.

Полноту выделения жира из навески анализируемого объекта следует проверять следующим образом. На чистое обезжиренное стекло нанести каплю растворителя. При полном выделении жира на стекле после испарения растворителя не должно появляться жирное пятно [19,20,21].

Определение жира настаиванием с растворителем. Навеску исследуемого продукта в количестве 2 г берут с точностью до 0,01 г в коническую колбу емкостью 50–100 мл. Приливают 10 мл растворителя — бензола или дихлорэтана, закрывают колбу корковой пробкой и снова взвешивают для определения массы растворителя. Жир экстрагируют в течение 1 ч, периодически взбалтывая навеску с растворителем. Затем содержимое колбы фильтруют через бумажный фильтр в сухую колбу, предварительно взвешенную с точностью до 0,001 г. Колбу с фильтратом взвешивают с точностью до 0,01 г и по разности определяют массу фильтрата.

Растворитель отгоняют на песочной бане, приняв соответствующие меры предосторожности, колбу с остатком помещают в сушильный шкаф и высушивают при температуре 100–105 °C. Затем колбу с жиром
охлаждают в экскаторе и взвешивают с точностью до 0,001 г.

Содержание жира (X,%) определяют по формуле:

\[X = \frac{G \cdot G_2 - G_1}{100 / (G_2 - G_1)} \cdot g \]

где \(G \) — количество растворителя, г;
\(G_2 \) — количество жира, г;
\(G_1 \) — количество фильтрата, г;
\(g \) — навеска исследуемого продукта, г.

Конечный результат выражают как среднее арифметическое двух определений. Расхождение между двумя параллельными определениями не должно превышать 0,3 % [22].

Определение жиров рефрактометрическим методом. Метод основан на определении коэффициента преломления раствора жира в \(a \)-монобромнафталине, автоле или смеси монобромнафталина с машинным маслом, которыми предварительно извлекают жир из исследуемого продукта. Растворение жира в любом из указанных растворителей вызывает понижение его показателя преломления, прямо пропорциональное концентрации жира в экстракте.

\(a \)-Бромнафталин имеет высокий показатель преломления — 1,65, он мало летуч и не растворяет воду. Все эти свойства делают его наиболее приемлемым растворителем при определении количества жира при помощи рефрактометра. При выполнении анализа применяют универсальный рефрактометр со шкалой, градуированной до \(nD = 1,75 \); сахарный рефрактометр, имеющий шкалу только до 1,54, непригоден для работы с монобромнафталином.

Методика определения жира с применением в качестве растворителя монобромнафталина. Навеску тщательно измельченного продукта в количестве около 2 г берут по разности с точностью до 0,0001 г в маленькую фарфоровую ступку (диаметр не более 5 см), добавляют из бюrette 1,3 мл мелкого прокаленного песка и около 6 г монобромнафталина, отвешенного по разности с точностью до 0,01 г. Тщательно растирают пестиком навеску с песком и растворителем в течение 5 мин. Затем содержимое ступки переносят на небольшой складчатый фильтр, диаметром 7 см, и полученный после фильтрования жировой экстракт собирают в маленький химический стаканчик.

Перемешивая экстракт стеклянной палочкой, 2–3 капли его наносят на призму рефрактометра и определяют коэффициент преломления. Определение рефракции повторяют не менее 3 раз с новыми порциями экстракта и берут для расчета среднее арифметическое.

Показатель преломления чистого монобромнафталина и испытуемого жирового экстракта определяют при одной и той же температуре. Температура во время определения поддерживается постоянной, что достигается пропусканием воды через оправы призм.

Количество жира (X,%) рассчитывают по следующей формуле:

\[X = 10^4 \cdot a \cdot (H - H_0) \cdot g / g_0 \]

где \(H_0 \) — показатель преломления чистого растворителя; \(H \) — показатель преломления испытуемого жирового экстракта; \(g \) — навеска растворителя, г; \(g_0 \) — навеска исследуемого продукта, г; \(a \) — показатель отношения процентного содержания жира в растворителе к разности между показателями преломления растворителя и жирового экстракта.

Для пищевых концентратов \(a \) равен 0,0368 [17]. При вычислении процента содержания жира пользуются показателями преломления и плотности жиров, указанными в Табл. 1.

Наименование жира	Коэффициент преломления \(nD \), плотность, г/см³	
Кунжутное масло	1,4730	0,919
Подсоленное масло	1,4736	0,924
Коровье масло	1,4605	0,920
Маргарин	1,4690	0,928
Арахисовое масло	1,4696	0,914
Горчицецкое масло	1,4769	0,918
Кондитерский жир	1,4674	0,928
Соеевое масло	1,4756	0,922
Кукурузное масло	1,4745	0,920
Концентраты	1,4746	0,922
Фосфатидные	1,4724	0,926
Кулинарный жир	1,4712	0,917

Методика определения жира с применением в качестве растворителей автола или смеси монобромнафталина и машинного масла. Около 5 г измельченного продукта отвешивают по разности с точностью до 0,01 г в небольшую фарфоровую ступку и добавляют 4 г взятых также по разности автола или смеси из 25 объемных единиц монобромнафталина и 75 объемных единиц машинного масла. Затем в ступку вносят 3 г мелкого прокаленного песка и полученную смесь тщательно растирают в течение 5–10 мин. Более длительное растирание рекомендуется для пищевых концентратов с мясом [24].

Если в качестве растворителя применяют смеси монобромнафталина и машинного масла, то растворяемую массу переносят из ступки на складчатый фильтр, 2–3 капли отфильтрованного жирового экстракта на навеску растворителя затем тщательно растирают до полного растворения. Температура во время определения поддерживается постоянной, что достигается пропусканием воды через оправы призм.

Методика определения жира с применением в качестве растворителей автола или смеси монобромнафталина и машинного масла. Около 5 г измельченного продукта отвешивают по разности с точностью до 0,01 г в небольшую фарфоровую ступку и добавляют 4 г взятых также по разности автола или смеси из 25 объемных единиц монобромнафталина и 75 объемных единиц машинного масла. Затем в ступку вносят 3 г мелкого прокаленного песка и полученную смесь тщательно растирают в течение 5–10 мин. Более длительное растирание рекомендуется для пищевых концентратов с мясом [24].

Если в качестве растворителя применяют смеси монобромнафталина и машинного масла, то растворляемую массу переносят из ступки на складчатый фильтр, 2–3 капли отфильтрованного жирового экстракта на навеску растворителя затем тщательно растирают до полного растворения. Температура во время определения поддерживается постоянной, что достигается пропусканием воды через оправы призм.
Содержание жира вычисляют по формуле, приведенной в методике определения жира с растворителем монобромнафталином. Показатель α равен: в случае применения автола — 0,3; в случае применения смеси монобромнафталина и машинного масла — 0,19. Расхождение между параллельными определениями не должно превышать 0,3 % [22].

Рефрактометрический метод определения количества жира является одним из самых быстрых методов. Им широко пользуются при исследовании пищевых концентратов и другой продукции, содержащей жир.

Определение жира центрифугированием. Метод применяется для определения жира в сухих молочных продуктах: молоке, сливках, масле, а также в яичном порошке и молочных смесях продуктов детского питания. Сущность метода заключается в том, что исследуемый продукт обрабатывают концентрированной серной кислотой в присутствии изоамилового спирта при нагревании и центрифугировании. При действии серной кислоты белок молочных продуктов переходит в растворимое соединение условной формулы: H₂SO₄–NH₂R(COOH)₆, в результате чего происходит отделение жира. Изоамиловосерный эфир, образующийся при добавлении изоамилового спирта, снижает поверхностное натяжение жировых шариков и способствует слипанию их в сплошную массу. Нагревание и центрифугирование ускоряют этот процесс. Для определения служат стеклянные приборы — бутирометры, в градуированной части которых собирается отделившийся жир. Объем жира отсчитывают непосредственно по шкале бутирометра. Бутирометр, имеющий двухлопастную пробку, предназначен для определения массовой доли жира в молоке и молочных продуктах. Наиболее распространён бутирометр для молока — стеклянный цилиндрический сосуд со шкалой, по которой определяют количество жира в молоке: цена деления шкалы 0,1 % по массе.

Методика определения дана применительно к сухим молочным продуктам. Для работы могут быть использованы бутирометры для сливок или молока (Рис. 2).

![Рис. 2. Примеры бутирометров](image)

Определение жира в бутирометре для сливок (при исследовании сухого цельного молока, сухих сливок, сухого масла). Навеску продукта в количестве 2,5 г (сухое молоко, сухие сливки) или 2 г (сухое масло) берут с точностью до 0,01 г в химический стакан с носиком емкостью 25–50 мл, приливают 4–5 мл серной кислоты (относительной плотностью 1,5–1,55) и тщательно растирают стеклянной палочкой. Полученную однородную массу количественно переносят через маленькую воронку в бутирометр и смывают стаканчик несколько раз кислотой той же плотности порциями по 3–4 мл, следя за тем, чтобы общий объем кислоты в бутироме составил 18–19 мл, а уровень содержимого бутирометра был ниже основания его горлышка на 7–8 мм. Затем приливают 1 мл изоамилового спирта.

Бутирометр плотно закрывают сухой каучуковой пробкой, обертывают полотенцем для предохранения рук от ожога, и, придерживая пробку, энергично встряхивают и одновременно несколько раз переворачивают для лучшего смешивания содержимого. Затем бутирометр помещают пробкой вниз в водяную баню с температурой 65–70 °C, при этом уровень воды в бане должен быть несколько выше уровня жидкости в бутироме. После полного растворения белковых веществ продукта, примерно через 7–8 мин, бутирометры вынимают и устанавливают столбик жира в градуированный части бутирометров, подкрутив пробку вверх или вниз. Затем бутирометры помещают симметрично в центрифугу узкими концами по направлению к центру и центрифугируют в течение 5 мин при 800–1000 об/мин (500–1000 г). После этого бутирометры снова ставят на 5 мин в водяную баню при температуре 65–70 °C, вторично центрифугируют 5 мин и после выдержки в бане в течение 5 мин при той же температуре быстро отсчитывают число делений, занимаемых столбиком жира. При отсчете бутирометр держат в вертикальном положении против света. Для удобства отсчета нижнюю границу столбика жира устанавливают при помощи пробки на каком-либо делении шкалы прибора. Содержание жира в процентах находят, умножая показание бутирометра на 2 при навеске 2,5 г и на 2,5 при навеске 2 г. Жир определяют в двух параллельных пробах, допускаемое расхождение — не более 0,5 %.

Определение жира в бутирометре для молока. При исследовании цельного и обезжиренного молока или сухих сливок навеску продукта берут в количестве 1,5 г с точностью до 0,01 г в химический стакан с носиком емкостью 25–50 мл, приливают 4 мл горячей воды с температурой 70–75 °C, тщательно растирают и полученную однородную смесь без потерь переносят через маленькую воронку в бутирометр, в который предварительно наливают 10 мл серной кислоты, относительной плотностью 1,81–1,82 т/см³; стаканчик 2 раза споласкивают дистилированной водой порциями по 3 мл, присоединяют ее к содержимому бутирометра. Затем добавляют 1 мл изоамилового спирта. В остальном анализ выполняют так, как указано выше. При исследовании сухого обезжиренного молока применяют трехкратное центрифугирование.
Содержание жира (X,%) вычисляют по формуле:

$$X = a \cdot \frac{K_1}{g},$$

gде a — показание бутирометра; K_1 — коэффициент для перевода показаний бутирометра в процентах; g — навеска продукта.

Расхождение между двумя параллельными определениями допускается не более 0,5% [25,26,27,28].

Для определения жира в тесте и готовых изделиях Всероссийский научно-исследовательский институт хлебопекарной промышленности, Москва, Россия (ВНИИХП) разработал ускоренный бутирометрический метод. Он основан на растворении исследуемой навески в 60 % серной кислоте в присутствии изоамилового спирта, который образует с навеской серной кислотой изоамиловосерный эфир, уменьшающий величину поверхностного натяжения жировых шариков и способствующих слипанию их в единий жировой слой. При анализе готовых изделий удаление всех включений и поверхностной отделку, анализируя только мякиш.

Средних проб теста или готовых изделий отбирают по две навески массой 2 г каждой. Их тщательно измельчают для лучшего раствора жира. Затем в стаканчиках погружают в фарфоровые стаканчики или тигли продукта после экстракции жира в продукте определяется по уменьшению массы.

Метод определения жира по обезжиренному остатку (по Рушковскому). Количество жира в продукте определяется по уменьшению массы сухой навески продукта после экстракции растворителем. Навеску исследуемого объекта в количестве 2...5 г, взвешенную с погрешностью 0,001 г, следует высушить в сушильном шкафу при температуре 100...105 °C и перенести в пакет из фильтровальной бумаги размером 8х9 см. Стенки бюксы протереть не большим количеством ваты, смоченной в эфире. Вату вместе с навеской поместить в пакет из фильтровальной бумаги. Пакет с навеской вложить во второй пакет размером 9х10 см так, чтобы линии загиба пакетов не совпадали, и перевязать их ниткой. Наружный пакет пронумеровать прямым графитовым карандашом, поместить в тюк биоиск, в которой ранее высушивалась навеска, и поставить в сушильный шкаф. Высушить до постоянной массы при температуре 100...105 °C. Можно сушить навеску непосредственно в пакете. Высушенный пакет с навеской должен быть помещен в экстрактор аппарата Сокслета. В один аппарат можно помещать несколько пакетов при условии, что все они полностью погружены в эфир и хорошо омыляют им. Продолжительность экстрагирования 10...12 ч.

Окончание процесса установливается следующим образом. Капли раствора (мисцеллы), вытекающего из экстрактора аппарата, следует нанести на часовое стекло. При полном извлечении жира из навески на стекле после испарения растворителя не должно быть жирного пятна. Пакеты с обезжиренной навеской пе ренести в тку биоиск и выдержать в вытяжном шкафу 20...30 мин для удаления эфира, а затем высушить в шкафу при температуре 100..105 °C до постоянной массы. Длительность процесса от 1 до 3 ч.

Содержание жира X, % рассчитывается по формуле:

$$X = \frac{(m_2 - m_1) \cdot 100}{m},$$

где m_1 — масса высушенных бюксы, пакета и навески продукта до экстракции, г; m_2 — масса высушенных бюксы, пакета и навески продукта после экстракции жира, g — навеска продукта.

Расхождение между параллельными определениями не должно превышать 0,5 % [30].

Метод Рэндалла. Так же, как и процесс в экстракторе Сокслета, метод осуществляют в 3 этапа: экстракция, промывка и сушка (Рис. 3).

Стакан с образцом помещается в растворитель. К растворителю подводится теплота. Пара растворителя поднимается в конденсатор. После капли сконденсировавшегося раствора попадают в стакан с образцом. Образец экстрагируется, и растворитель с апилом, проходя сквозь фритту, собираются в стакане с образцом. Промывка состоит из 2 стадий:

- растворитель упаривается и собирается в специальной емкости до тех пор, пока уровень расположения образца не будет выше уровня растворителя;
- оставшийся в стакане растворитель испаряется, после конденсации растворитель попадает в стакан с образцом, осуществляя промывку.
Стадия сушки протекает аналогично методу Сокслета. Оставшийся в стакане растворитель упаривается и попадает в емкость с растворителем. Анализ остается в стакане, а остатки образца — в стакане с образцом.

Метод Твиссельмана (экономичная непрерывная экстракция). Экстракция по методу Твиссельмана является экономичной альтернативой экстракции по методу Сокслета, позволяющей снизить время анализа и затраты на растворитель. Процесс экстракции занимает около 60 минут.

Принцип работы экстрактора по методу Твиссельмана (экономичная непрерывная экстракция): в отличие от рассмотренных ранее методов он проходит в 2 этапа: экстракция и сушка (Рис. 4).

Экстракция. Растворитель находится в стакане и нагревается. Пары растворителя проходят через экстракционную камеру с образцом и попадают в конденсатор. Сконденсировавшийся растворитель капает в экстракционную камеру с образцом, где протекает процесс экстрагирования. Одновременно растворитель с аналитом из экстракционной камеры переносится в стакан с растворителем. Время экстракции устанавливается заранее.

Сушка. На этапе сушки стакан с растворителем нагревается, растворитель упаривается и собирается в соответствующую емкость [32,33].

Заключение
Определение содержания жиров в сырье для производства пищевых продуктов, а также определение жирности пищевых продуктов является актуальной аналитической задачей для контрольных лабораторий на производстве и лабораторий контролирующих органов. Все возрастающие требования к качеству и безопасности пищевых продуктов, а также воспроизводимости и производительности традиционных методик выделения жира подталкивают современные пищевые лаборатории к поиску различных методов выделения и анализа жиров.

Выделение индивидуальных липидов из исходного материала обычно включает несколько этапов. Первым этапом является разрушение ткани путем измельчения сухого сырья, следующим — экстракция нейтральных липидов, затем экстракция суммы фосфо- и гликолипидов с последующим фракционированием и выделением чистых веществ. Полноту извлечения липидов обеспечивает максимальное размельчение материала. Полярные растворители, такие, как метанол и этанол, которые разрушают водородные связи и ослабляют электростатическое взаимодействие липидов с белками, наиболее эффективно экстрагируют липиды. Использование спиртов для экстракции фосфолипидов удобно и тем, что они дезактивируют большинство липолитических ферментов, которые в активной форме вызывают деградацию липидов. Длительность экстракции и полноту экстрагирования, а также способ и условия проведения экстракции определяют в каждом конкретном случае [34].

Таким образом, авторы в данном обзоре предприняли попытку осветить все доступные и известные методологии по извлечению липидов (жиров) из различных биологических матриц как растительного, так и животного происхождения.
Introduction

Lipids (from Greek «lipos» — fat) are a complex mixture of organic compounds with similar physical and chemical properties, which is found in plants, animals and microorganisms. Lipids are widely distributed in nature. Together with proteins and carbohydrates, they make up the basic mass of organic substances in all living organisms, being an obligatory component of every cell. Lipids are widely used in obtaining many food products, and are important components of food raw materials, semi-finished and finished food products, while largely determining their nutritional and biological value and taste [1,2].

Lipids are insoluble in water (hydrophobic) and well soluble in organic solvents (gasoline, diethyl ether, chloroform, etc.).

In plants, lipids accumulate mainly in seeds and fruits. Lipid content (%) in different plants is the following: peanut (kernel) — 50 to 68; cocoa (beans) — 49 to 57; sunflower — 30 to 58; soybean (seeds) — 15 to 25; corn — 5.6; buckwheat — 3.8; rice — 2.9; wheat — 2.7.

In animals and fish, lipids are localized in subcutaneous, cerebral and nerve tissues and tissues surrounding important organs (heart, kidneys). Lipid content in sturgeon carcass may be as high as 20–25 %, in herring — 10 %. In carcasses of terrestrial animals, it highly varies: 33 % (pork), 9.8 % (beef), 3.0 % (piglets). In deer milk its content is 17 to 18 %, in goat milk — 5.0 %, in cow milk — 3.5 to 4.0 %. Lipid content in certain types of microorganisms may be up to 60 % [3].

According to the chemical structure, lipids are derived from fatty acids, alcohols, and aldehydes, and are built using ester, ether, phosphoester, and glycosidic linkages.

Lipids are divided into two main groups: simple and complex lipids. Simple neutral lipids (not containing nitrogen, phosphorus, sulfur) include derivatives of higher fatty acids and alcohols, as well as glycerides, waxes, cholesterol esters, glycopeptides and other compounds. Molecules of complex lipids contain not only the residues of high molecular weight carboxylic acids, but also phosphoric or sulfuric acids.

Lipids are important ingredients of food, as they have high energy value and are a source of building material for human body tissues. Individual components of fat, i.e. some fatty acids, phosphatides, sterols, fat-soluble vitamins, have important biological functions in the body. Lipids are substances of plant and animal origin, soluble in organic solvents and slightly soluble in water. They contain higher alkyl or acyl radicals in the molecular structure.

Quantitative determination of lipids requires the extraction of glycerides and related substances (pigments, vitamins, free fatty acids, phosphatides, etc.) from the test object [4,5].

Existing methods for determining the fat content in different types of raw materials and products may be divided into two groups, i.e. one-step and two-stage ones.

One-step methods based on the ultrasound, nuclear magnetic resonance, photometry and infrared rays allow quantitative determination of fat directly in the test object. However, this requires complex and expensive equipment. Application of some of this equipment (for example, in nuclear magnetic resonance) is recommended only in case of the impossibility of using any other method for determining the amount of the certain substance.

Most of the physical and chemical methods (extraction weight, refractometry, etc.) used to quantify fat are from second group. Their characteristic feature is a two-step process — fat extraction from the object and the quantitative determination. For fat extraction, various organic solvents are used, i.e. gasoline, petroleum ether, diethyl ether, acetone, chloroform, monobromo- and monochloronaphthalene, tricresyl orthophosphate, etc. It should be kept in mind that hydrophobic solvents (petroleum ether, gasoline, etc.) extract together with glycerides somewhat less related substances. And their extraction is selective. Glycerides are extracted more rapidly, and phosphatides, free fatty acids and oxidation products are extracted slower. In this regard, when using a hydrophobic solvent, the fat extraction process lasts for up to 2 to 3 days. To accelerate the process and extract the glycerides and related substances from the test object more completely, it is recommended to use hydrophilic solvents (methyl and ethyl ethers, etc.) or a mixture of hydrophobic and hydrophilic solvents (binary solvents) [6,7,8,9].

Methods

In practice, for lipid extraction, two basic routine extraction methods are most often used, which allow to extract lipids quantitatively from tissue and its fractions of almost all biological classes. The most common is the Folch method, according to which extraction is carried out with a chloroform: methanol mixture (2:1) with 20 parts of extracting mixture per one part of tissue. This method allows to obtain a sufficiently high yield of neutral lipids, diacyl glycerophospholipids and sphingolipids. Lyosphospholipids are transferred into the solution only partially, and more polar acid lipids may be lost when the extract is washed out with salt solutions and water. However, repeated extractions and restriction of washing allow to increase the yield of lipids up to a quantitative level. Another method was proposed by Bligh and Dyer, when lipid extraction is carried out with a chloroform: methanol mixture (1:1) with two parts of the mixture per one part of tissue. However, even in this case, when washing out with water, the most polar acid phospholipids and lyosphospholipids are transferred into the aqueous phase and lost.

Depending on the chemical nature of lipids, modified extraction methods are used. By replacing the chloroform: methanol mixture with a mixture of chloroform and 2 % solution of acetic acid in methanol, the yield of polar lipids can be increased. Subsequently, for the same purposes, a mixture of chloroform: methanol with 1M HCl (4:2:3) was used [10, 11].
When extracting neutral and common lipids, nonpolar solvents such as chloroform, hexane, diethyl ether are often used. Obviously, in this case, a lot of polar lipids are lost.

For a more complete understanding the methodology of the lipid extraction from raw materials and finished products, the most commonly used methods are presented below.

Gerber method is used to determine fat in semi-finished meat products (minced meat, semi-finished products from minced meat), curd cheese, finished food products, bakery products, milk and dairy products, dried foods for children and healthy diet.

The method is based on the destruction of test product proteins with concentrated sulfuric acid and the dissolution of fat in isomyl alcohol. The ester formed in the reaction of isomyl alcohol with sulfuric acid dissolves in the latter, which enables fat extraction. The resulting mixture is centrifuged in the butyrometers. The separated fat layer is collected in the graduated part of butyrometer and is quantitatively determined.

Determination of fat is carried out in milk or cream butyrometers, which differ in size and graduation. The level of graduation mark in milk butyrometers is 0.1%. In cream butyrometers, the level of two graduation marks corresponds to 1% fat in the product with a weight of 5 g. The latter are used when the fat content in the product exceeds 10%.

Weight or gravimetric method with fat extraction in a microniser. The method is used for finished food products and some canned products. Fat is extracted from the product by grinding it in a microniser. After solvent distilling, the dried fat is weighed [12,13,14].

Refractometry method is used to determine fat in finished and semi-finished bakery products, semi-finished vegetable products, and canned products.

The method is based on the fact that when the fat is dissolved, the refraction index of the solvent decreases in proportion to the amount of fat present in it. By the difference between the refraction index of the pure solvent and the fat solution, the mass fraction of the latter is determined. The greater the difference between these indices, the more precise the definition [15].

The method for fat determining with preliminary starch hydrolysis is used to determine fat in finished and semi-finished bakery products (GOST 31902–2012). It is based on fat extraction by solvent from the sample pre-treated with hydrochloric acid, removing the solvent and weighing the fat.

For the qualitative oil determination, the following characteristic reactions exist.

Test for acrolein. Two to three drops of the test substance (oil, extract after solvent distillation) are heated in a test tube on a naked flame with 1.5 to 2 parts of anhydrous sodium sulfate. After foaming, the appearance of heavy white fume and pungent odor of acrolein causing lacrimation, indicates the presence of oil. Acrolein is unsaturated aldehyde \(\text{CH}_2=\text{CHCHO} \) formed from glycerin upon removal of two water molecules. If the fume is transferred to a test tube with Schiff’s reagent, then the latter becomes of red color.

Test for saponification. Two to three drops of the test substance are heated in a test tube with 5 cm\(^3\) of alcohol-alkali solution, then the alcohol is distilled. The remaining product is dissolved in water (soap is soluble in water). The addition of acid for acidic pH causes the formation of aqueous solution of fatty acids floating on the surface.

Test with haloids. This reaction is qualitative for oils containing unsaturated fatty acids. One or two drops of bromine water is added in a test tube with a solution of oil and shook. The rapid disappearance of yellow color of bromine water indicates the presence of unsaturated acids [16].

Liquid extraction technique is used, for example, to determine the fat content in various objects. Soxhlet extraction is one of the most widely used analytical techniques. In recent years, it has been significantly modernized, in particular, the temperature of the solvent coming into contact with the extracted substance was increased in order to reduce the extraction time. The modifications presented by the American chemist, E. Randall, are among the most effective ones in this respect:

Randall method consists of two stages: at the first stage, the sample in the sleeve is placed in a boiling solvent, and at the second stage, it is washed out with a solvent dripping from the condenser. Rapid dissolution of the sample components occurs in the first stage because of boiling solvent, which greatly reduces the time required for the entire assay. Randall method also allows the solvent to be recovered at the end of the extraction procedure.

Soxhlet extraction is a process of extraction of soluble substances from solid materials. It was developed by the German agrochemist Franz von Soxhlet in 1879. Soxhlet method is dissolution of the extracted compound using a cold solvent that drips from the condenser. Typically, a complete extraction lasts for several hours [13,14].

Discussion

Most methods for determining lipids in food can be divided into three groups.

The methods in first group are based on lipid extraction from the test product by repeated extraction with a solvent until the residual content in the product is negligible. Then, the solvent is distilled from the obtained extract, and the residue containing lipids is dried and weighed (weight method of fat determining). This operation is usually carried out in special extraction instrument, Soxhlet apparatus, that allows to produce repeated fat extraction with the same portion of ether. Non-polar solvents are used for the extraction, i.e. diethyl ether, hexane, petroleum ether.

The diverse nature of food products, which determines the different strength of lipid bonding to other parts of the product, affects the extraction efficiency. The meth-
ods of this group allow to extract free and slightly sorbed lipids from food products. Strongly bound lipids are not extracted. In addition, solvents extract not only fatty acid glycerides, but also a number of other substances, i.e. free fatty acids; organic acids such as succinic, tartaric, citric, and apple acid; phosphatides; sterols; essential oils; waxy substances; resins; aldehydes; ketones; colorants. In view of this, the product extracted by the solvents is not a pure fat. That is why it is called «raw fat». Often the difference between the weight of «raw fat» and the actual fat weight is neglected. The amount of impurities in «raw fat» increases, when you use non-dehydrated diethyl ether, which dissolves up to 2% moisture. Such ether easily extracts sugars contained in food raw materials (vegetables, cereals, etc.). Alcohol contained in diethyl ether readily dissolves many organic compounds. In view of this, diethyl ether used for fat extraction is pre-washed out with water to remove alcohol and dehydrated with annealed calcium chloride. After removing impurities, the ether is distilled.

To accelerate the extraction process and for complete fat extraction, the test product is thoroughly ground and dried, since the larger and moistier the particles, the more slowly the fat is extracted. In addition, fat is not completely extracted from moisty objects.

In this connection, and due to the significant oxidation of lipids in the extraction process, more efficient extraction methods were developed.

The methods in second group are based on the use of a mixture of polar and non-polar solvents for extraction. In this case, polar solvent (usually methanol or ethanol) breaks the bonds of lipids to proteins and other food components, and nonpolar solvent (chloroform, benzene, petroleum ether) directly dissolves the lipids. The most widely used mixtures are chloroform: methanol (2:1) and chloroform: ethanol (2:1). However, in contrast to the methods of the first group, such binary mixtures extract a significant amount of non-lipids (up to 25% of the amount of extractable substances). Therefore, in many cases, it became necessary to remove these non-lipid substances by re-dissolving in chloroform or washing out with a 1% solution of NaCl or KCl.

The methods in third group provide lipid extraction from food products after acid or alkaline hydrolysis. In this case, the food product is hydrolyzed by an aqueous or alcoholic solution of alkali with heating. After alkaline hydrolysis, the soaps obtained are decomposed by the acid solution, and released fatty acids are extracted with ether (petroleum, diethyl ether) and are purified by filtration. After the ether is distilled, the weight of fatty acids is determined, which is recalculated into fat weight. Theoretically, this method is unable to extract lipids in their native state. Therefore, their content in food is evaluated by the amount of fatty acids and unsaponifiable substances released from the hydrolysate. This group of methods includes the acid method of fat determining in milk, dairy products and canned foods with butyrometer. Fat is extracted by the concentrated sulfuric acid with heating. The mixture is centrifuged. In this case, the fat is transferred into the phase of the isoamyl alcohol added. The volume of the released fat is measured in the graduated part of butyrometer.

The methods in first group are not recommended for the products rich in phospholipids firmly bound in cells (some fish species), but are suitable for foods with a predominant triglyceride content, i.e. oil seeds.

The methods in second group, almost in all cases, allow obtaining reliable quantitative results, but they are relatively labor-consuming and not always suitable for large-scale routine analyzes.

The application of the third group methods does not lead to the extraction of natural lipids, but in most cases allows obtaining results that closely correspond to the results obtained by the methods of second group. Their advantage is the use in large-scale routine analyzes [17,18].

Determination of fat by continuous extraction (Soxhlet method). Fat is extracted from the test product with diethyl ether in a Soxhlet apparatus consisting of extractor with siphon tube, ball-shaped reflux condenser, and receiving flask. A sample of a thoroughly ground product in an amount of 5 to 10 grams (depending on the expected fat content in the product) is weighed with an accuracy of 0.0001 g and transferred into a filter paper cartridge. Before extraction, the sample of the product is dried at a temperature of 100 to 105 °C for 2 hours.

To make a filter paper cartridge, a rectangular piece of filter paper is wrapped several times around a wooden blank or glass cylinder, whose diameter is somewhat smaller than the diameter of the extractor. The part of the paper protruding beyond the edge of the blank for the length of its diameter is folded forming the cartridge bottom. A circle of filter paper and a piece of fat-free cotton wool are put on the bottom. The sample in the cartridge is closed from the top with a circle of filter paper and a piece of fat-free cotton wool. Free edges of the cartridge are folded. The height of the cartridge should be 10 to 15 mm below the upper bend of the extractor siphon tube.

Cartridge with sample is placed in extractor, which is connected to receiving flask dried up to a constant weight and condenser. The flask is previously filled up with dried distilled diethyl ether to 2/3 of its volume. The water is passed through the condenser, and the flask with diethyl ether is heated on a water bath with closed electric or steam heating on a special closed electric heater. The water temperature in the bath should not be higher than 60 °C. The solvent vapor formed in the flask during boiling go into the condenser. There it condenses into a liquid that drips down into the extractor, where the cartridge with the product sample is located. When the level of solvent in the extractor rises slightly above the upper bend of the siphon tube, the ether with dissolved fat flows into the receiving flask. After that, the entire process is repeated again. An example of equipment for fat extraction using Soxhlet method is shown in Figure 1.
Fat is extracted for 10–12 hours, while the heating and boiling of the ether should be adjusted for 6 to 8 drains per hour with an extractor volume of 100 ml. For a more complete fat extraction, the sample of the product is placed into the solvent for 6–8 hours before the extraction. The infusion is performed in the extractor filled with ether below the siphon tube.

When the extraction is completed, the cartridge with the sample is removed from the extractor and the solvent is distilled from the receiving flask into an empty extractor. The residual fat in the flask is dried in a desiccator to constant weight at a temperature of 100 to 105 °C. For the first time, the flask with fat is weighed after 1 hour of drying and then every 0.5 hours. Before weighing, the flask is cooled down in a desiccator and weighed with an accuracy of 0.0001 g. The amount of fat (X,%) is calculated by the following equation:

\[X = \left(\frac{G - G_1}{G_2} \right) \cdot 100 / g, \]

where \(G \) is the amount of solvent, g;
\(G_1 \) is the amount of fat, g;
\(G_2 \) is the amount of filtrate, g;
\(g \) is the weight of the test product sample, g.

The final result is expressed as the arithmetic mean of two determinations. The difference between two parallel determinations should not exceed 0.3% [22].

Determination of fat by refractometry method. The method is based on the determination of refraction index of a fat solution in \(a \)-monobromonaphthalene, motor oil or a mixture of monobromonaphthalene with motor oil, by which fat is previously extracted from the test product. Dissolving fat in any of these solvents causes a decrease in refraction index of the latter directly proportional to fat concentration in the extract.

\(a \)-Bromonaphthalene has high refraction index of 1.65; it is slightly volatile and does not dissolve water. All these properties make it the most suitable solvent for determining the amount of fat using a refractometer. When performing the analysis, a universal refractometer with a scale graded up to nD = 1.75 is used. A sugar refractometer with a scale of only up to nD = 1.54 is not suitable for working with monobromonaphthalene.

Method for determination of fat with monobromonaphthalene as a solvent. A sample of a thoroughly ground product in amount of about 2 g is weighted with an accuracy of 0.0001 g in a small porcelain mortar (not more than 5 cm in diameter), 1.3 ml of fine annealed sand are added, and about 6 g of monobromonaphthalene is weighted with an accuracy of 0.01 g. The sample with sand and solvent is thoroughly pestle for 5 minutes. Then, the contents of the mortar are transferred to a small folder filter with diameter of 7 cm. The fat extract obtained after filtration is collected in a small laboratory glass.

After stirring the extract with a glass rod, 2–3 drops of it is applied to the refractometer prism and the refraction index is determined. Determination of refraction is repeated at least 3 times with new portions of the extract and arithmetic mean is calculated.

The refraction indices of pure monobromonaphthalene and the fat extract are determined at the same temperature.
The temperature during the determination is kept constant, which is achieved by passing water through the prism casing.

The amount of fat ($X, \%$) is calculated by the following equation: $X = 10^4 \cdot a \cdot (N_20 - H) \cdot g / g_0$, where H is the refraction index of pure solvent; N_20 is the refraction index of the fat extract; g is the weight of the solvent; g_0 is the weight of the test product; a is the ratio of the fat percentage in the solvent to the difference between the refraction indices of the solvent and the fat extract. For food concentrates, a is 0.0368 [17]. When calculating fat percentage, the refraction index and the fat density indicated in Table 1 are used.

The refractometry method of determining the amount of fat is one of the most rapid methods. It is widely used in analysis of food concentrates and other products containing fat.

Determination of fat by centrifuging. The method is used to determine fat in dried dairy products, i.e. milk, cream, butter, as well as in egg powder and milk formulas for infants. In this method, the test product is treated with concentrated sulfuric acid in the presence of isooamyl alcohol with heating and centrifuging. Under the action of sulfuric acid, the protein of dairy products is converted into a soluble compound with chemical formula: $H_2SO_4\cdot NH_2R(COOH)_6$ resulting in fat separation. The isooamyl-sulfuric ether formed by the addition of isooamyl alcohol reduces surface tension of fat globules and promotes their aggregation. Heating and centrifuging accelerate this process. Glass instruments, butyrometers, are used for determination, in the graduated part of which the separated fat is collected. The volume of fat is measured directly on the butyrometer scale. Butyrometer, or a lactoscope, is designed to determine fat mass fraction in milk and dairy products. The most common butyrometer for milk is a glass cylindrical vessel with a scale, on which the amount of fat in milk is determined: one graduation mark is 0.1% by mass.

The determination procedure is given for dried dairy products. Butyrometers for cream or milk may be used (Figure 2).

Table 1. Values of refraction index n_{20}° and density $[23]$

Fat type	Refraction index n_{20}°	Density, g/cm3
Sesame oil	1.4730	0.919
Sunflower oil	1.4736	0.924
Butter	1.4605	0.920
Margarine	1.4690	0.928
Peanut butter	1.4696	0.914
Mustard oil	1.4769	0.918
Confectionery fat	1.4674	0.928
Soybean oil	1.4756	0.922
Corn oil	1.4745	0.920
Phosphatide concen-	1.4746	0.922
Cooking fat	1.4724	0.926
Hog grease	1.4712	0.917

Method for determination of fat using motor oil or a mixture of monobromonaphthalene and motor oil as solvents. About 5 grams of well-ground product is weighed with an accuracy of 0.01 g into a small porcelain mortar and 4 grams of motor oil or a mixture of 25 volume parts of monobromonaphthalene and 75 volume parts of motor oil are added. Then, 3 g of fine annealed sand are introduced into the mortar and the resulting mixture is thoroughly ground for 5 to 10 minutes. Longer grinding is recommended for food concentrates with meat [24].

When mixture of monobromonaphthalene and motor oil is used as a solvent, the ground mass is transferred from the mortar to a folded filter, 2 to 3 drops of the filtered fat extract are applied to refractometer prism and the refraction index is determined. In the case of using motor oil as a solvent, the mixture in a mortar is pestle with heat while immersing the mortar in a vessel with hot water. The ground mass is transferred from the mortar to a filter of two gauze fabric layers with a thin interlayer of cotton wool. Then, several drops of fat extract are squeezed out, cooled, applied to the refractometer prism and the refraction index is determined.

The fat content is calculated by the equation given in the procedure for determination of fat with monobromonaphthalene as a solvent. Value of a is equal to: in the case of using the motor oil, 0.3; in the case of using the mixture of monobromonaphthalene and motor oil, 0.19. The difference between two parallel determinations should not exceed 0.3% [22].

Figure 2. Butyrometers

Determination of fat in a cream butyrometer (for analyzing dried whole milk, dried cream, dried butter). A sample of 2.5 g (dried milk, dried cream) or 2 g (dried butter) is weighed with an accuracy of 0.01 g in 25–50 ml laboratory glass with a spout. Then, 4 to 5 ml of sulfuric acid are added (relative density 1.5 to 1.55) and thoroughly ground with a glass rod. The resulting homogeneous mass is quantitatively transferred through a small funnel into the butyrometer and the glass is washed several times with an acid of the same density in 3 to 4 ml portions ensuring that the total volume of acid in the butyrometer is 18 to 19 ml, and the content of the butyrometer is 7 to 8 mm below the neck. Then, 1 ml of isooamyl alcohol is added.

The butyrometer is tightly closed with a dry rubber stopper, wrapped with a towel to protect the hands from heat and vigorously shaken while holding the stopper and at the same time turned over several times for better mixing the contents. Then, the butyrometer is placed with a stopper down into a water bath at a temperature of 65 to
70 °C, while the water level in the bath should be slightly higher than the liquid level in the butyrometer. After complete dissolution of the protein substances of the product, about 7 to 8 minutes, butyrometers are removed and fat fraction is placed in the graduated part by turning the stopper upward or downward. Then, the butyrometers are placed symmetrically into the centrifuge with narrow ends toward the center and centrifuged for 5 minutes at 800 to 1000 rpm (500 to 1000 g).

After that, the butyrometers are put again in a water bath at a temperature of 65 to 70 °C for 5 minutes, re-centrifuged for 5 minutes and after staying in bath for 5 minutes at the same temperature, the number of graduation marks occupied by the fat is quickly counted. When counting, the butyrometer is held upright against the light. For convenient reading, the lower boundary of fat is placed on any graduation mark by stopper. The fat percentage is calculated by multiplying the butyrometer reading by 2 when sample weight is 2.5 g and by 2.5 when sample weight is 2 g. Fat is determined in two parallel samples. The difference between two parallel determinations should not exceed 0.5%.

Determination of fat in a milk butyrometer. When analyzing whole and skim milk or dried cream, the sample of the product is weighed in an amount of 1.5 g with an accuracy of 0.01 g in 25–50 ml laboratory glass with a spout, 4 ml of hot water with a temperature of 70 to 75 °C are added, the mixture is thoroughly ground and the resulting homogeneous product is transferred without losses through a small funnel into a butyrometer, in which 10 ml of sulfuric acid with relative density of 1.81 to 1.82 g/cm³ are preliminarily added. The glass is washed 2 times with distilled water in 3 ml portions, while adding it to the contents of the butyrometer. Then, 1 ml of isoamyl alcohol is added. In all other respects, the analysis is performed as described above. When analyzing dried skim milk, threefold centrifuging is used.

The fat content (X, %) is calculated by the following equation:

\[
X = a \cdot \frac{K_1}{g},
\]

where \(a\) is the butyrometer reading;
\(K_1\) is the coefficient for translating the butyrometer readings into percentages;
\(g\) is the weight of the product.

The difference between parallel determinations should not exceed 0.5 % [25,26,27,28].

To determine fat in dough and finished products, the All-Russian Research Institute of the Bakery Industry, Moscow, Russia, developed rapid butyrometric method. It is based on dissolving the sample in 60 % sulfuric acid and determining the fat in milk butyrometer by centrifuging in the presence of isoamyl alcohol, which forms isoamyl sulfuric ether with sulfuric acid. The former reduces the surface tension of fat globules and promotes their aggregation into continuous fat layer. When analyzing finished products, all inclusions and surface finish are removed, while analyzing only the crumb. Two average samples of 2 g each are taken from dough or finished products. They are carefully ground to better dissolve starch and protein in sulfuric acid. At the same time, samples are taken to determine the moisture content of the dough (by the VNIIHP-VC instrument, Chizhova’s device) and finished products. Dough or finished product samples are placed in porcelain cups with volume of 20 to 30 ml and 9 ml of 60 % sulfuric acid are added. The cups are immersed in a water bath with a water temperature of 80 °C and the samples are dissolved in sulfuric acid for 20 minutes with periodic stirring with a glass rod. After dissolving the sample, the dark liquid is transferred to the milk butyrometer by means of a glass rod, and the residue is washed out from the cup with 10 ml of 60 % H₂SO₄.

Carefully, not to soak the neck, 1 ml of isoamyl alcohol is added into the butyrometer, which is then tightly closed with rubber stopper. The mixture is gently stirred for 3 minutes and the butyrometers are placed in a water bath with a water temperature of 80 °C for 5 minutes (with stopper down). After 5 minutes, the butyrometers are removed from the water bath, placed in a Gerber milk centrifuge and centrifuged for 5 minutes at a speed of 1200 rpm. After centrifuging, the butyrometers are again placed in 80 °C water bath (with stopper down) for 5 minutes. Then, they are remove and the height of yellow fat layer above the dark liquid is measured according to the number of small graduation marks on the butyrometer graduated part [29].

The method for determination of fat content by the fat-free residue (according to Rushkovsky). The amount of fat in the product is determined by decreasing the weight of the dried sample after extraction with the solvent. Test sample of 2 to 5 g weighed with an accuracy of 0.001 g is dried in a desiccator at a temperature of 100 to 105 °C and transferred to a bag of filter paper with a size of 8 x 9 cm. Weighing cup walls are wiped with a small amount of cotton wool wetted in ether. Cotton wool with sample is put into a bag of filter paper. The bag with sample is put into the second bag with a size of 9 x 10 cm so that the folding lines do not match, and tied with a thread. The outer bag is numbered with a simple graphite pencil, placed in the same weighing cup, in which the sample was previously dried, and placed in desiccator. The sample is dried to a constant weight at a temperature of 100 to 105 °C. The sample may be dried directly in the bag. The dried bag with the sample is placed in the extractor of the Soxhlet apparatus. Several bags may be placed in one device provided that they are completely immersed in ether and well washed by it. Extraction time is 10 to 12 hours. The end of the process is established as follows. The drop of the solution (miscella) flowing from the extractor is applied to a watch glass. Upon full fat extraction, there should be no greasy stain on the glass after evaporation of the solvent. Bags with fat-free sample are transferred into the same weighing cup and held in exhaust fume hood for 20 to 30 min to remove ether, and then dried in a desiccator at 100 to 105 °C to constant weight. The duration of the process is 1 to 3 hours.
The fat content (X,%) is calculated by the following equation:

$$X = \frac{(m_1 - m_2) \cdot 100}{g},$$

where m_1 is the weight of the dried weighing cup, the bag and the sample of the product before extraction, g; m_2 is the weight of the dried weighing cup, the bag and the sample of the product after fat extraction; g is the weight of the sample.

The difference between parallel determinations should not exceed 0.5 % [30].

Randall method. As the process in the Soxhlet extractor, the method is carried out in 3 stages: extraction, washing out and drying (Figure 3).

![Figure 3. The apparatus for extracting fat by Randall method][1]

A cup with sample is placed in a solvent. The solvent is heated. The solvent vapor is transferred to condenser. Then, condensed solvent drops enter the cup with sample. The sample is extracted and the solvent with the analyte is collected in the sample cup. Washing out consists of 2 stages:
- the solvent is evaporated and collected in a special container until the sample level is above the solvent level;
- the solvent remaining in the cup is evaporated; after condensation, the solvent enters the cup with the sample carrying out the washing.

The drying stage is similar to the Soxhlet method. The solvent remaining in the cup is evaporated and enters the container with a solvent. The analyte remains in the cup, and the residual sample remains in the cup.

Twisselmann method (cost-efficient continuous extraction). Extraction by Twisselmann method is a cost-efficient alternative to Soxhlet extraction, which allows to reduce analysis time and solvent costs. The extraction process is about 60 minutes.

The principle of Twisselmann extractor (cost-efficient continuous extraction): in contrast to the methods considered earlier, it is carried out in two stages: extraction and drying (Figure 4).

![Figure 4. The apparatus for extracting fat by Twisselmann method][2]

The solvent is placed in a cup and is heated. The solvent vapor passes through the extraction chamber with the sample and enters the condenser. The condensed solvent drips into the extraction chamber with the sample where the extraction process proceeds. Simultaneously, the solvent with the analyte is transferred from the extraction chamber to the cup with solvent. The extraction time is set preliminarily.

Drying. At the drying stage, the cup with the solvent is heated, the solvent is evaporated and collected in a suitable container [32, 33].

Conclusion

Determination of fat content in food raw materials, as well as the determination of fat content in food products, is the urgent analytical problem for control laboratories of industry and regulatory bodies. Increasing requirements for the quality and safety of food, as well as the reproducibility and effectiveness of traditional fat extraction techniques force modern laboratories to search for different methods for extraction and analysis of fats.

Extraction of individual lipids from the raw material usually involves several steps. The first step is the destruction of the tissue by grinding of dried raw material, followed by the extraction of neutral lipids, and then the extraction of total phospho- and glycolipids followed by fractioning and extraction of pure substances. The degree of lipid extraction depends on the grinding of raw material. Polar solvents, such as methanol and ethanol, which destroy hydrogen bonds and weaken the electrostatic interaction of lipids with proteins, are most effective in extracting the lipids. The use of alcohols for the extraction of phospholipids is also convenient because the former deactivate the majority of lipolytic enzymes that cause lipid degradation. The extraction time and completeness, as well as the method and conditions, are determined in each particular case [34].

Thus, in this review, the authors attempted to highlight all available and well-known methods for lipid (fat) extraction from various biological matrices of both plant and animal origin.
1. Нечаев, А.П., Траубенберг, С.Е., Кочеткова, А.А., Колпакова, В.В., Виток, С.В., Кобелева М.Б. (2001). Пищевая химия. СПб. ГИОРД. — 256 с.
2. Евстигнеева, Р.П., Звонкова, Е.А., Серебрянникова, Г.А., Швец, В.И. (1983). Химия липидов, углеводов, витаминов. СПб. МГТУ. — 125 с.
3. Тютюнников, Б.Н. (1974). Пищевые жиры. М., НОРМА. — 240 с.
4. Прохорова, И.Я. (2004). Биохимия. М., Владос-пресс. — 240 с.
5. Северин, Е.С. (2011). Биохимия. Учебник для вузов. М., Стандартинформ. 2014. — 111 с.
6. История и свойства, применение. СПб, Профессия. — 752 с.
7. Химия жиров. М., МГТУ. — 240 с.
8. Киселев, Л.Ю., Забудский, Ю.И., Голикова, А.Р., Бронштейн, Л.М. (1986). Основы биохимии: Учебник. М., Высшая школа. — 551 с.
9. Не чаяев, А.П., Траубенберг, С.Е., Кочеткова, А.А., Калманович, С.А., Мартовщук, Е.В. (2014). Определение массовой доли жира [Электронный ресурс]: http://www.russbread.ru/kachestvo-xleba/metody-opredeleniya-fiziko-ximicheskix-pokazateley-kachestva-xleba-massovaya-dolya-zhira.html. Дата обращения 20.04.2018.
10. Luque de Castro, M.D., Garcia-Ayuso L.E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future, Analytica Chimica Acta, 369 (1–2), 1–10.
11. Корнена, Е.П., Калманович, С.А., Мартовщук, Е.В., Терещук, Л.В., Мартовщук, В.И., Позняковский, В.М. (2007). Экспертиза массы, жиров и продуктов их переработки. Качество и безопасность. Новосибирск, Сибирское университетское издательство. — 272 с.
12. Журавлева, М.Н. (2014). Теоретические основы товароведения продовольственных товаров и стандартизации: Учебник для студентов высш. учеб. заведений. Москва, Экономика и бизнес. — 240 с.
13. Киселев, Л.Ю., Забудский, Ю.И., Голикова, А.Р. Федосеева, М.С., Бронштейн, Л.М. (1986). Основы биохимии: Учебник. М., Высшая школа. — 551 с.
14. ГОСТ 31902–2012. «Зерновые и зернобобовые культуры. Методы определения массовой доли жира». М., Стандартинформ. 2014. — 201 с.
15. Руководство по химии и физике молока. СПб, Профессия. — 272 с.
16. Методы определения физико-химических показателей качества зерна и зерновых продуктов. СПб, Профессия. — 448 с.
17. Методы определения физико-химических показателей качества хлеба: массовая доля жира [Электронный ресурс]: http://www.russbread.ru/kachestvo-xleba/metody-opredeleniya-fiziko-ximicheskix-pokazateley-kachestva-xleba-massovaya-dolya-zhira.html. Дата обращения 20.04.2018.
18. Нечаяев, А.П., Траубенберг, С.Е., Кочеткова, А.А., Калманович, С.А., Мартовщук, Е.В. (2014). Определение массовой доли жира [Электронный ресурс]: http://www.russbread.ru/kachestvo-xleba/metody-opredeleniya-fiziko-ximicheskix-pokazateley-kachestva-xleba-massovaya-dolya-zhira.html. Дата обращения 20.04.2018.
19. Руководство по химии и физике молока. СПб, Профессия. — 448 с.
20. Luque de Castro, M.D., Garcia-Ayuso L.E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future, Analytica Chimica Acta, 369 (1–2), 1–10.
21. Выберите свой метод экстракции для анализа жира. [Электронный ресурс]: http://www.buchl.com/ru/ru/content/ — выберите свой методэкстракции для анализа жира. Дата обращения 11.04.2018.*
tive determination of the content and lipids in roasted coffee by near infrared spectroscopy. Analytica Chimica Acta, 509 (2), 217–227.
19. Wei H., Zhong Hongjian, Wang Hong. (2004). Improvement on the determination of crude oil by Soxhlet extraction. China Oils and Fats, 6, 52–54.
20. Luque de Castro, M.D., Garcia-Ayuso L.E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica Chimica Acta, 369 (1–2), 1–10.
21. Kornena, E.P., Kalmanovich, S.A., Martovschuk, E.V., Tereshchuk, L.V., Martovschuk, V.I., Poznakovskii, V.M. (2007). Examination of oils, fats and products of their processing. Quality and safety. Novosibirsk: Siberian University Publishing House. — 272 p. (in Russian)
22. Zhuravleva, M.N. (2014.) theoretical Foundations of commodity research of Foodstuffs and Standardization: a textbook for Students of Higher Education. educational institutions. Moscow: The Economy. — 201 p. (in Russian)
23. Methods for determining the physico-chemical parameters of the quality of bread: the mass fraction of fat [Electronic resource: http://www.russbread.ru/kachestvo-xleba/metody-opredeleniya-fiziko-ximicheskix-pokazatelej-kachestva-xleba-massovaya-dolya-zhira.html. Date of circulation 04.20.2018]
24. Azarova, N.G., Kosoy, V.D., Dorokhov, V.P., Ryzhov, S.A., Pudo, M.A. (2014). Determination of the rational content of fat in minced meat for the production of sausages. Storage and processing of farm products, 5, 35–37. (in Russian)
25. GOST RU14156–2015 “Milk and dairy products. Methods of extraction of lipids and liposoluble compounds. Moscow, Standartinform. 2017. — 11 p. (in Russian)
26. Abrosimov, V.M., Burkitbaev, M.O., Tsol, Yu.A. Method for determination of fat and protein content in milk. Patent RF no. 2056045. 1996. (in Russian)
27. Okhrimenko, O.V. (2014). Analysis and refinement of the method for determining the Reichert-Meissl number of milk fat. Molochnokhozayavstvenny Vestnik., 4 (16), 90–96. (in Russian)
28. Okhrimenko, O.V., Gorbatova, K.K., Okhrimenko, A.V. (2005). Laboratory practical work in chemistry and physics of milk. St. Petersburg: GIORD. — 256 p. (in Russian)
29. Yudina, T.A., Zaitsseva, L.V. (2014). The role of fatty foods in the preparation of baked goods for specialized food. International Conference “Bakery Production-2014”. 59–63. (in Russian)
30. Krishchapovich, V.I., Kolobov, S.V. (2006). Methods and technical means of quality control of food products. Moscow: ITC “Daskov and Co.” — 123 p. (in Russian)
31. Select your extraction method for fat analysis. [Mobility resource: https://www.buchi.com/ru-ru/content/select-your-method-excess-for-analyzing-fat. Date of circulation 04.11.2018]
32. Bukhtareva, E.F. Ilenko-Petrovskaya, T.P., Tverdkhlib, G.V. (2005). Commodity research of food fats, milk and dairy products. Moscow: UNITY-DANA. — 295 p. (in Russian)
33. Chursina, E.S., Stupak, M.V. (2006). Methods for determining fat and fiber. Veterinary, 1, 10–11. (in Russian)
34. Mullen, A.M. (2000). Predicting the eating quality of meat. Irish Journal of Agricultural and Food Research. 12, 3–18.