Scheduled removal of central venous catheters (CVC) to prevent CVC-related bloodstream infections in patients with hematological disease or autologous stem cell transplantation: a registry-based randomized simulation-study

Jens Panse1,2 · Daniela Tölle3 · Eva Fiegle1,2 · Jan-Hendrik Naendrup2,4 · Martin Schmidt-Hieber5 · Boris Böll2,4 · Marcus Hentrich6 · Daniel Teschner3,7 · Enrico Schalk8

Received: 2 April 2022 / Accepted: 13 August 2022 / Published online: 17 August 2022 © The Author(s) 2022

Abstract
Although not generally recommended, scheduled central venous catheter (CVC) removal is sometimes carried out in order to reduce the CVC-related bloodstream infection (CRBSI) incidence. We conducted a simulation for scheduled CVC removal within the multicenter CRBSI registry (SECRECY). Non-tunneled jugular and subclavian CVC in patients with hematological disease or with germ cell tumors (including patients receiving autologous stem cell transplantation [SCT]) were included. Cases were randomized in a 1:1:1:1 ratio to either a simulated, scheduled CVC removal after 7, 14, and 21 days, or to non-simulated, unscheduled CVC removal (control group). The primary endpoint was definitive CRBSI incidence for a scheduled CVC removal after 14 days (dCRBSI-D14rmv). Among other, secondary endpoints were definite CRBSI incidence for a scheduled removal after 7 days (dCRBSI-D7rmv) and 21 days (dCRBSI-D21rmv). Data on 2984 CVC were included. Patients’ median age was 59 (range 16–95) years, 58.8% being male. The vast majority (98.4%) were patients with hematological malignancies. Jugular veins were the main insertion site (93.2%). dCRBSI-D14rmv was 3.10/1000 CVC days as compared to 4.15/1000 CVC days in the control group (p = 0.23). There was a significant difference between dCRBSI-D7rmv (0.86/1000 CVC days) and controls (p < 0.001), but not between dCRBSI-D21rmv (4.10/1000 CVC days) and controls (p = 0.96). Our data suggest that in patients with hematological diseases or autologous SCT recipients scheduled CVC removal after 14 days does not result in a lower CRBSI incidence compared to unscheduled removal.

Trial registration: DRKS00006551, 2014/09/29, retrospectively registered.

Keywords Central venous catheter · Central venous catheter–related bloodstream infection · Prevention · Scheduled removal · Hematology · Registry-based randomized simulation-study
Introduction

Central venous catheter (CVC)-related bloodstream infections (CRBSI) are potentially preventable complications associated with high morbidity, especially in patients with hematological malignancies [1–3]. The risk for CRBSI is influenced by patient-related, CVC-related, and hospital-related parameters [4, 5]: Patients with hematological malignancies have been shown to be at higher risk for CVC-related infectious complications compared to patients with solid tumors [2], and the risk is associated with the degree and duration of neutropenia [4, 6–8]. In addition, the risk for CRBSI is increased by longer dwelling times of CVC. In a prospective study on 613 neutropenic patients the CRBSI rate was increased by more than 1.5-fold for the entire cohort compared to the rate 14 days after CVC insertion [9]. Thus, prompt removal of CVC no longer required is considered to be an effective measure to reduce CRBSI risk and is recommended in respective guidelines [3, 4].

Although not generally recommended [3, 4, 10], routine CVC replacements are often performed, e.g., every 7 days in intensive care units (ICU) [11, 12]. However, this approach did not reduce the CRBSI incidence [13, 14], because patients with CVC in situ from 1 to 15 days have less risk of bloodstream infection (BSI) than patients with CVC in situ for more than 15 days; e.g. by day 7, 98% of the patients remained free of BSI [15]. A previous study on 1194 CVC cases—mostly patients with hematological malignancies—failed to determine an optimal cutoff time-point at which a prophylactic CVC replacement would prevent CRBSI [16]. In addition, in patients with hematological malignancies, CVCs are often kept in place after administration of intensive chemotherapy regimens for supportive therapies such as intravenous fluids, electrolytes, and transfusions during the vulnerable neutropenic phase despite the fact that they are not absolutely necessary in a strict sense.

The objective of the present study is to add further evidence against a scheduled routine CVC removal in patients with hematological diseases. Given the lack of data from randomized controlled trials (RCT) in the setting of hematological patients [17] a registry-based randomized simulation-study was used.

Patients and methods

Registry oversight and study design

The SECRECY registry (Study to Evaluate Central Venous Catheter-related Infections in Hematology and Oncology; German Clinical Trial Register [DRKS], no. DRKS00006551) is an ongoing, clinical CRBSI registry starting in March 2013 including mainly patients with hematological malignancies, along with few patients with solid tumors and benign hematological diseases [18]. Currently, six sites are active in Germany. Surveillance data are collected on CRBSI of all non-selected, consecutive patients with centrally inserted short-term, non-tunneled jugular, subclavian or femoral vein CVC inserted for routine clinical use in adult patients generally treated on hematology and oncology wards. One center, however, also included hematological and oncological patients receiving treatment in an ICU or intermediate care unit. All CVC were inserted according to local standard operating procedures.

CRBSI were classified according to the 2012 Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) definition [19]. The microbiological specimens were investigated and analyzed at the local sites and local investigators assessed the CRBSI diagnoses.

The registry was approved by the central ethics committee (Magdeburg University Hospital, approval no. 84/14) as well as by local ethics committees of the respective sites.

Registry data entered until March 2021 only on the jugular and subclavian vein CVC ≥ 1 day in situ were used for the present analysis. Underlying diseases included only hematological malignancies, benign hematological diseases, and germ cell tumors (including patients who received autologous stem cell transplantation [SCT] after high-dose chemotherapy). Only CRBSI classified as definite (dCRBSI) or probable (pCRBSI) were considered with the combination of both being summarized as dpCRBSI.

We performed an analysis of simulated CVC removal at 7, 14, and 21 days after CVC insertion. A classic landmark analysis with survival data derived from Kaplan–Meier estimates ignores all events before a time-point [20]. However, our method used here, in a manner of modified and “reverse” landmark analysis, ignores all CVC days and CRBSI events after the landmark of day 7, 14, or 21, respectively, thus simulating CVC removal (see Fig. 1 for examples). Comparable to general epidemiology, incidences were calculated as CRBSI numbers per 1000 CVC days [21], instead of using cumulative incidence estimated with the Kaplan–Meier method. Simulated cases with scheduled CVC removal were compared to real CRBSI cases without simulated premature CVC removal (control group).

Study endpoints

The primary endpoint was dCRBSI incidence for a scheduled CVC removal after 14 days of CVC insertion (dCRBSI-D14rmv). Secondary endpoints were dCRBSI incidence for
a scheduled removal after 7 days (dCRBSI-D7rmv), and 21 days (dCRBSI-D21rmv), as well as dpCRBSI incidence for a scheduled removal after 7, 14, and 21 days (dpCRBSI-D7rmv, dpCRBSI-D14rmv, and dpCRBSI-D21rmv). In addition, the number of CVC needed to be removed (NNR) to prevent one CRBSI was calculated for each endpoint.

Randomization

Consecutive cases of the registry were stratified per center and randomized in a 1:1:1:1 ratio to either scheduled CVC removal after 7 days (D7rmv), 14 days (D14rmv), and 21 days (D21rmv) or unscheduled CVC removal (control group). For randomization Sealed Envelope™ (London, UK), a web-based platform for randomization and online databases for clinical trials, was used (https://www.sealedenvelope.com/).

Statistical analysis

In a RCT with neutropenic patients and a median time of CVC in situ of 17 days, the overall dCRBSI rate was 6.0% (37/613) and dCRBSI rate within 14 days after CVC insertion was 3.3% (20/613) [9], showing a rate reduction of about 50%. For the primary endpoint, we therefore assumed a reduction of 50% in the dCRBSI rate for a scheduled CVC removal after 14 days compared to the overall dCRBSI rate. Based on a two-sided type I error α = 0.05, 1492 assessable cases were calculated to reach a power of 1-β = 0.8, meaning 746 cases per group.

For comparison of CRBSI rates, the “N-1” χ^2 test was used as recommended [22, 23]. The CRBSI incidences were compared using the z test.

Statistical analysis was carried out using MedCalc® (Ostend, Belgium), a statistical software package for biomedical research (https://www.medcalc.org/), and IBM® SPSS® Statistics, version 26 (Armonk, NY, USA). Two-sided p values < 0.05 were considered statistically significant.

Results

A total of 2984 CVC cases were included (Fig. 2). Baseline characteristics and causative pathogens for CRBSI are summarized in Table 1. Patients had a median age of 59 (range 16–95) years and were mostly men (58.8% [1754/2984]). The great majority were patients with hematological malignancies (98.4% [2936/2984]): acute myeloid leukemia in 40.8% (1217/2984), followed by multiple myeloma (21.2% [634/2984]) and non-Hodgkin lymphoma (20.5% [612/2984]). A small fraction of 1.3% (n = 39) comprised patients with germ cell tumors, including those who had received autologous SCT after high-dose chemotherapy. Nine (0.3%) patients had a benign hematological disease. Jugular veins were the predominant insertion site (93.2%), about 10% of the CVCs were antimicrobial-coated CVC, and in approximately one-third of the cases, chlorhexidine-coated CVC dressings were used. About every sixth patient (17.6%) was neutropenic at the time of CVC insertion. Baseline characteristics were well balanced between the four groups. In the control group, CVC were in situ for a median of 14 days (interquartile range [IQR] 7–23). In this group, the median time to dCRBSI onset and to dpCRBSI onset was 13 days (IQR 10–20.5) and 12 days (IQR 10–18), respectively. Coagulase-negative staphylococci were the predominant pathogen for dCRBSI and dpCRBSI in all four groups.

The dCRBSI rate for scheduled CVC removal after 14 days was 3.5% (25/746) compared to 6.7% (50/746) in
the control group \((p = 0.004)\). The dCRBSI rate for day 21 removal was 5.6% (42/746; \(p = 0.38\)), and 0.5% (4/746; \(p < 0.001\)) for day 7.

Similarly, the dpCRBSI rate for scheduled CVC removal after 14 days was 6.2% (46/746) compared to 11.7% in the control group (87/746; \(p < 0.001\)). The dpCRBSI rate for day 21 removal was 9.1% (68/746; \(p = 0.10\)), and 0.9% (7/746; \(p < 0.001\)) for day 7 removal.

With respect to dCRBSI incidences, no significant differences were identified between scheduled CVC removal after 14 days compared to the control group. dCRBSI-D14_{rmv} was 3.10/1000 CVC days compared to 4.15/1000 CVC days in controls \((p = 0.23)\) (Table 2).

In addition, there was no difference between dCRBSI-D21_{rmv} and the control group, but dCRBSI-D7_{rmv} was significantly lower when compared to the control group \((p < 0.001)\). In line with that, dpCRBSI-D7_{rmv} was also significantly lower compared to controls \((p < 0.001)\), but no differences could be found for dpCRBSI-D21_{rmv} and dpCRBSI-D14_{rmv} (Table 2).

The calculated NNR for dCRBSI-D14_{rmv}, dCRBSI-D21_{rmv}, and dCRBSI-D7_{rmv} were 30, 94, and 17, respectively. For dpCRBSI-D14_{rmv}, dpCRBSI-D21_{rmv}, and dpCRBSI-D7_{rmv}, the NNR were 19, 40, and 10, respectively.

By scheduled CVC exchange after 14 days, 52.4% (391/746) of CVC would be removed prematurely by simulation. The respective numbers for day 7 and day 21 are 74.3% (555/746) and 26.4% (197/746).

Discussion

In this large multicenter, registry-based randomized simulation-study in patients with malignant and benign hematological diseases and germ cell tumors (including those who received autologous SCT) scheduled CVC removal was not superior compared to unscheduled CVC removal regarding definitive CRBSI. As the dCRBSI incidence on day 14 was not lower than in controls, the primary endpoint of the study was not reached.

All NNR calculated for both the primary and secondary endpoints are \(\geq 10\), not supporting a scheduled CVC removal as only single digit “number needed to treat” values are regarded to be relevant in routine clinical practice, particularly if changes in routine efficacy measures are considered [24]. This indication of unnecessary CVC removal is in accordance with the number of confirmed infections within a large meta-analysis of ICU patients,
showing that many CVCs were removed due to suspected infection, but only every ninth case (169/1527) emerged as confirmed infection [25]. Our finding of a reduced dCRBSI incidence by a scheduled CVC removal on day 7 after CVC insertion should not result in changes in clinical practice. CVC in patients with hematological malignancies are generally longer in place given the need for supportive therapies [26] and approximately three-quarters of CVC would be removed unnecessarily.

Unfortunately published studies use different definitions of infectious complications in patients with CVC [27] and different epidemiological key figures like infection rates, incidence, or relative risk, which makes comparisons difficult. To address this issue, a standardized approach was adopted for defining CRBSI [28].

Table 1: Baseline characteristics

Patients	D7rmv, n=746	D14rmv, n=746	D21rmv, n=746	Control, n=746
Median age, years (IQR)	59 (49–66)	63 (51–67)	59 (51–66)	59 (48–66)
Men, n (%)	425 (57.0)	442 (59.2)	433 (58.0)	454 (60.9)
Underlying disease, n (%)				
Acute myeloid leukemia	299 (40.1)	320 (42.9)	288 (38.6)	310 (41.6)
Acute lymphoblastic leukemia	68 (9.1)	58 (7.8)	65 (8.7)	59 (7.9)
Non-Hodgkin lymphoma	146 (19.6)	122 (16.4)	178 (23.9)	166 (22.3)
Multiple myeloma	166 (22.3)	160 (21.4)	166 (22.3)	142 (19.0)
Hodgkin lymphoma	27 (3.6)	28 (3.8)	16 (2.1)	20 (2.7)
Others	40 (5.4)	35 (4.7)	35 (4.7)	36 (4.8)

CVC				
Internal jugular vein, n (%)	695 (93.2)	688 (92.2)	697 (93.4)	701 (94.0)
Antimicrobial-coated, n (%)	77 (10.3)	69 (9.2)	75 (10.1)	73 (9.8)
CHG-coated dressings, n (%)	231 (31.0)	232 (31.1)	235 (31.5)	238 (31.9)
Neutropeniaa at insertion, n (%)	132 (17.7)	132 (17.7)	124 (16.6)	136 (18.2)

CRBSI Causative pathogens, n/N (%)				
dCRBSI				
CoNS	1/4 (25.0)	14/25 (56.0)	36/42 (85.7)	32/50 (64.0)
Enterobacteriaceae	1/4 (25.0)	1/25 (4.0)	1/24 (2.4)	1/50 (2.0)
Other Gram-negative bacteria	0	2/25 (8.0)	2/42 (4.8)	2/50 (4.0)
Other Gram-positive bacteria	1/4 (25.0)	5/25 (20.0)	2/42 (4.8)	6/50 (12.0)
Candida spp	1/4 (25.0)	2/25 (8.0)	1/24 (2.4)	1/50 (2.0)
Multibacterial	0	1/25 (4.0)	0	1/50 (2.0)

dpCRBSI				
CoNS	2/7 (28.6)	29/46 (63.0)	56/68 (82.4)	63/87 (72.4)
Enterobacteriaceae	1/7 (14.3)	1/46 (2.2)	3/68 (4.4)	1/87 (1.1)
Other Gram-negative bacteria	0	2/46 (4.3)	2/68 (2.9)	1/87 (1.1)
Other Gram-positive bacteria	3/7 (42.9)	11/46 (23.9)	4/68 (5.9)	1/87 (1.1)
Candida spp	1/7 (14.3)	2/46 (4.3)	2/68 (2.9)	1/87 (1.1)
Multibacterial	0	1/46 (2.2)	1/68 (1.5)	4/87 (4.6)

Table 2: Outcome analyses

CRBSI incidence, x/1000 CVC days	D7rmv, n=746	D14rmv, n=746	D21rmv, n=746	Control, n=746
dCRBSI	0.86 (p<0.001)	3.10 (p=0.023)	4.10 (p=0.96)	4.15
dpCRBSI	1.30 (p<0.001)	5.71 (p=0.019)	6.64 (p=0.60)	7.22

*D7rmv, D14rmv, and D21rmv cases with scheduled CVC removal after 7, 14, and 21 days, respectively. IQR interquartile range, CVC central venous catheter, CHG chlorhexidine gluconate, CRBSI CVC-related bloodstream infection, dCRBSI definite CRBSI, dpCRBSI combined definite plus probable CRBSI, CoNS coagulase-negative staphylococci *Including myeloproliferative neoplasms, myelodysplastic syndromes, aplastic anemias, germ cell tumors

*aNeutrophils <500/µL or white blood count <1000/µL

*Primary endpoint of the study; all other values/calculations are secondary endpoints

*p values for comparison of the D7rmv, D14rmv, and D21rmv group, respectively, with the control group
between epidemiological data difficult. It is therefore recommended to use the CRBSI incidence (incidence density; calculated per 1000 CVC days) rather than the CRBSI rate, to be able to compare CVC length of site use [21].

Thus, dCRBSI-D14\textsubscript{rmv} was chosen as a primary endpoint for reasons of comparability, as this endpoint was also chosen in a previous RCT on CRBSI in neutropenic patients [9]. Furthermore, a study on 1375 ICU patients, considered CVC use of 15 days or less as short exposure [15], and in a matched-pair analysis comparing data from an RCT with real-world data from our group [28], the median CVC time was 16 days (IQR 9–23). The median time to dCRBSI onset was 14 days (IQR 11–22).

It should be noted that dCRBSI is the most stringent microbiologically based definition of CRBSI [9, 19] yielding consistent epidemiological data [27, 29] that allow for comparison between RCT and real-world studies [28, 29].

Besides procedure-related risks, a major disadvantage of CVC re-insertion in hematological patients is the likelihood of cytopenia at the time of scheduled CVC removal after 7, 14, or 21 days. While neutropenia at the time-point of CVC insertion does not pose a clinically relevant problem [30], thrombocytopenia < 20,000/µL requires prophylactic platelet transfusions [31, 32]. A large number of patients in our cohort had thrombocytopenia < 20,000/µL on day 7, 14, or 21 after CVC insertion (Table 3), indicating the need for prophylactic platelet transfusion – with all the well-known potential risks in case if CVC exchange [32].

In addition, CVC insertion is associated with a high symptom burden in cancer patients as up to 57% of patients experience pain, pressure and burning, or other generalized symptoms such as fatigue, distress, and drowsiness; symptoms were reported to be severe in almost one-third of patients undergoing CVC insertion [33]. In our cohort, a median of 2 (range 1–12) CVC insertions per patient would be required if a scheduled CVC removal on day 14 would have been performed.

While conventional RCT are considered to be one of the most powerful tools clinical researchers possess, we nonetheless used the instrument of a registry-based randomized simulation-study to answer our key question [34].

In conclusion, in patients with hematological diseases and those who received autologous SCT, a scheduled CVC removal after 14 days does not result in a lower CRBSI incidence as compared to unscheduled CVC removal, and can thus not be recommended.

Acknowledgements The authors thank the entire SECRECY staff for their great support and documentation.

Author contribution All authors were involved in patients’ management and data collection. ES designed the study and analyzed the data. ES, JP, MSH, MH, and DT discussed the data. ES and JP wrote the manuscript, and all authors commented and revised the previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval This study was performed in line with the principles of the Declaration of Helsinki. The SECRECY registry was approved by the central ethics committee (Magdeburg University Hospital, approval no. 84/14) as well as by respective local ethics committees.

Patient consent Given the nature of routine clinical data and the anonymization of patients’ data, written informed consent was not required within the study. However, written informed consent was mandatory for procedures during the clinical routine.

Conflict of interest The authors declare no competing interests.

Clinical trial registration SECRECY (Study to Evaluate Central Venous Catheter-related Infections in Hematology and Oncology) was registered in the German Clinical Trial Register (DRKS; no. DRKS00006551).

Table 3 Platelet counts at 7, 14, and 21 days after CVC insertion
Day 7, n=883
Platelet count, x/µL
Mean ± standard deviation
Range
Median
Interquartile range
Platelet count < 20,000/µL, n/N (%)

Data derived from the whole Magdeburg cohort of the SECRECY registry; the same inclusion criteria as stated in the main text. Per every inserted CVC, the platelet count on days 7, 14, and 21 after CVC insertion was documented if the CVC was still in situ on these days.

CVC central venous catheter
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. O’Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S, Healthcare Infection Control Practices Advisory Committee (HICPAC) (2011) Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis 52:e162–e193. https://doi.org/10.1093/cid/cir25

2. Zakhour R, Chaftari AM, Raad II (2016) Catheter-related infections in patients with haematological malignancies: novel preventive and therapeutic strategies. Lancet Infect Dis 16:e241–e250. https://doi.org/10.1016/S1473-3099(16)30213-4

3. Böll B, Schalk E, Buchheidt D, Hasenkamp J, Kiehl M, Kiderlen TR, Kochanek M, Koldehoff M, Kostrewa P, Claßen AJ, Mellinghoff SC, Metzner B, Penack O, Ruhnke M, Vehreschild MJGT, Weissinger F, Wolf HH, Karthaus M, Hentrich M (2021) Central venous catheter-related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol 100:239–259. https://doi.org/10.1007/s00277-020-04286-x

4. Safdar N, Kluger DM, Maki DG (2002) A review of risk factors for catheter-related bloodstream infection caused by percutaneously inserted, noncuffed central venous catheters: implications for preventive strategies. Medicine (Baltimore) 81:466–479. https://doi.org/10.1097/01.MED.0000025792-200211000-00007

5. Beckmann SE, Henderson DK (2015) Infections caused by percutaneous intravascular devices. In: Bennett JE, Dolin R, Blaser MJ (eds) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th edn. Elsevier, Philadelphia, pp 3310–3324

6. Elishoov H, Or R, Strauss N, Engelhard D (1998) Nosocomial colonization, septicemia, and Hickman/Broviac catheter-related infections in bone marrow transplant recipients. A 5-year prospective study. Medicine (Baltimore) 77:83–101. https://doi.org/10.1097/00005124-199803000-00002

7. Howell PB, Walters PE, Donowitz DR, Farr BM (1995) Risk factors for infection of adult patients with cancer who have tunneled central venous catheters. Cancer 75:1367–1375. https://doi.org/10.1002/1097-0142(19950315)75:6<1367::AID-CNC28207506203>3.0.CO;2-z

8. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB (2003) Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis 36:1103–1110. https://doi.org/10.1086/374339

9. Biehl LM, Huth A, Panse J, Krämer C, Henrich M, Engelhardt M, Schäfer-Eckart K, Kolfa G, Kiehl M, Wendtner CM, Karthaus M, Ullmann AJ, Hellmich M, Christ H, Vehreschild MJGT (2016) A randomized trial on chlorhexidine dressings for the prevention of catheter-related bloodstream infections in neutropenic patients. Ann Oncol 27:1916–1922. https://doi.org/10.1093/annonc/mdw275

10. [No authors listed] Prävention von Infektionen, die von Gefäßkathetern ausgehen: Teil 1 – Nichtgetunnelte zentralvenöse Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (2017) Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 60:171–206. https://doi.org/10.1007/s00103-016-2487-4

11. Ullman RF, Gurevich I, Schoch PE, Cunha BA (1990) Colonization and bacteremia related to duration of triple-lumen intravascular catheter placement. Am J Infect Control 18:201–207. https://doi.org/10.1016/0196-6553(90)90185-u

12. Morzaria P, Carle C (2021) Should central venous catheters be routinely replaced in adults? Br J Hosp Med (Lond) 82:1–2. https://doi.org/10.12968/hmed.2020.0711

13. Cobb DK, High KP, Sawyer SG, Sable CA, Adams RB, Lindley DA, Pruitt TL, Schwenzer KJ, Farr BM (1992) A controlled trial of scheduled replacement of central venous and pulmonary-artery catheters. N Engl J Med 327:1062–1068. https://doi.org/10.1056/NEJM199210083271505

14. Cook D, Randolph A, Kerneran P, Cupido C, King D, Soukup C, Bruin-Buusson C (1997) Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 25:1417–1424. https://doi.org/10.1097/00003246-199710000-00033

15. McLaws ML, Berry G (2005) Nonuniform risk of bloodstream infection with increasing central venous catheter-days. Infect Control Hosp Epidemiol 26:715–719. https://doi.org/10.1086/502608

16. Schalk E, Biehl LM, Färber J, Schlüter D, Vehreschild MJGT, Fischer T (2017) Determination of a cutoff time point for prophylactic exchange of central venous catheters for prevention of central venous catheter-related bloodstream infections in patients with hematological malignancies. Infect Control Hosp Epidemiol 38:888–889. https://doi.org/10.1017/ice.2017.92

17. Wu O, McCartney E, Heggie R, Germaine E, Paul J, Soulis E, Dilson D, Ryan C, Sim M, Dixon-Hughes J, Agarwal R, Bodenham A, Menne T, Jones B, Moss J (2021) Venous access devices for the delivery of long-term chemotherapy: the CAVA three-arm RCT. Health Technol Assess 25:1–126. https://doi.org/10.3310/hta25470

18. Schalk E, Hanus L, Färber J, Fischer T, Heidel FH (2015) Prediction of central venous catheter-related bloodstream infections (CRBSIs) in patients with haematologic malignancies using a modified Infection Probability Score (mIPS). Ann Hematol 94:1451–1456. https://doi.org/10.1007/s00277-015-2387-y

19. Henrich M, Schalk E, Schmidt-Hieber M, Chaberny I, Mousset S, Buchheidt D, Ruhnke M, Penack O, Salwender H, Wolf HH, Christopeit M, Neumann S, Maschmeyer G, Karthaus M, Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (2014) Central venous catheter-related infections in hematology and oncology. 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol 25:936–947. https://doi.org/10.1093/annonc/mdt545
20. Dafni U (2011) Landmark analysis at the 25-year landmark point. Circ Cardiovasc Qual Outcomes 4:363–371. https://doi.org/10.1161/CIRCOUTCOMES.110.957951

21. Bouza E, Burillo A, Muñoz P (2002) Catheter-related infections: diagnosis and intravascular treatment. Clin Microbiol Infect 8:265–274. https://doi.org/10.1046/j.1469-0691.2002.00385.x

22. Campbell I (2007) Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat Med 26:3661–3675. https://doi.org/10.1002/sim.2832

23. Richardson JTE (2011) The analysis of 2 × 2 contingency tables—yet again. Stat Med 30:890; author reply 891–2. https://doi.org/10.1002/sim.4116

24. Citrome L (2008) Compelling or irrelevant? Using number needed to treat can help decide. Acta Psychiatr Scand 117:412–419. https://doi.org/10.1111/j.1600-0447.2008.01194.x

25. Takashima T, Schults J, Mihala G, Corley A, Ullman A (2018) Complication and failures of central vascular access device in adult critical care settings. Crit Care Med 46:1998–2009. https://doi.org/10.1097/CCM.000000000003370

26. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ (2005) Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23:5675–5687. https://doi.org/10.1200/JCO.2005.07.061

27. Tomlinson D, Mermel LA, Ethier MC, Matlow A, Gillmeister B, Sung L (2011) Defining bloodstream infections related to central venous catheters in patients with cancer: a systematic review. Clin Infect Dis 53(7):697–710. https://doi.org/10.1093/cid/cir523

28. Schalk E, Teschner D, Henrich M, Böll B, Panse J, Schmidt-Hieber M, Vehreschild MJGT, Bielh LM (2020) Central venous catheter-related bloodstream infections in patients with hematological malignancies: comparison of data from a clinical registry and a randomized controlled trial. Infect Control Hosp Epidemiol 41:254–256. https://doi.org/10.1017/ice.2019.335

29. Schalk E, Vehreschild MJGT, Bielh LM (2021) Influence of different definitions of central venous catheter-related bloodstream infections on epidemiological parameters in cancer patients. Infect Control Hosp Epidemiol 42:501–503. https://doi.org/10.1017/ice.2020.274

30. Tölle D, Henrich M, Pelzer BW, Kremers P, Schulz S, Böll B, Panse J, Schmidt-Hieber M, Teschner D, Schalk E (2019) Impact of neutropenia on central venous catheter-related bloodstream infections in patients with hematological malignancies at the time of central venous catheter insertion: A matched-pair analysis. Infect Control Hosp Epidemiol 40:1204–1206. https://doi.org/10.1017/ice.2019.224

31. Zeidler K, Arn K, Senn O, Schanz U, Stussi G (2011) Optimal preprocedural platelet transfusion threshold for central venous catheter insertions in patients with thrombocytopenia. Transfus 51:2269–2276. https://doi.org/10.1111/j.1537-2995.2011.03147.x

32. Kaufman RM, Djulbegovic B, Ganser A, Kleinman S, Tinmouth AT, Capocelli KE, Cipolle MD, Cohn CS, Fung MK, Grossman BJ, Mintz PD, O’Malley BA, Sesok-Pizzini DA, Shander A, Stack GE, Webert KE, Weinstein R, Welch BG, Whitman GI, Wong EC, Tobian AAR, AABB, (2015) Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med 162:205–213. https://doi.org/10.7326/M14-1589

33. Raad S, Chaftari AM, Hackem RY, Shah P, Natividad E, Cleeland CS, Rosenblatt J (2018) Removal and insertion of central venous catheters in cancer patients is associated with high symptom burden. Expert Rev Med Devices 15:591–596. https://doi.org/10.1080/17434440.2018.1500892

34. Li G, Sajobi TT, Menon BK, Korngut L, Lowerison M, James M, Wilson SB, Williamson T, Gill S, Drogo LL, Smith EE, Vohra S, Hill MD, Thabane L (2016) Symposium on Registry-Based Randomized Controlled Trials in Calgary (2016) Registry-based randomized controlled trials- what are the advantages, challenges, and areas for future research? J Clin Epidemiol 80:16–24. https://doi.org/10.1016/j.jclinepi.2016.08.003

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.