THE RESPONSES OF GROWTH PERFORMANCE, DIGESTIBILITY AND BLOOD BIOCHEMISTRY OF CHICKENS TO THE DOSE AND ADMINISTRATION METHOD OF ENZYMES

A. S. El-Shafey¹; Asmaa Sh. Elnaggar¹ and M. I. El-Kelawy²

¹Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Egypt. ²Department of Poultry Production, Faculty of Agriculture, New Valley University, Egypt.

(Received 16/6/2021, accepted 1/8/2021)

SUMMARY

The aim of this study was to investigate the responses of growth performance, digestibility and blood biochemistry to the dose and administration method of enzymes. A total of 150 unsexed 1-d-old Arbor Acres broiler chickens were divided equally among 5 dietary treatments with 6 replicates per treatment and five chickens each. All experimental groups were fed the same basal diet and given 5 multienzyme treatments: The 1st group, the control group, did not receive multienzyme supplementations. The 2nd, 3rd, 4th and 5th groups were given multienzyme in water at 100 and 150% of the recommended dosage in drinking water given either continuously or intermittently methods, respectively. In the continuous method, the multienzyme is added to the water over the day. While, in intermittently method, the multienzyme is added to the water over the day followed by day off during the 35th days of age. The addition of multienzyme either at 100 or 150% to water improves the growth performance and nutrient digestibility i.e. dry matter, crude protein and ether extract of broiler chickens compared with the control. However, 100% of multienzyme resulted in the best growth performance than that 150% multienzyme group. Intermittently administration exhibited significantly better growth performance and nutrient digestibility i.e. dry matter and NFE than those given multienzyme with continuously administration way. There were no significant effects of the multienzymes dose and the administration methods on carcass characteristics and blood biochemical constituents except triglycerides and creatinine. In conclusion, broilers received multienzymes at 100% intermittently in water exhibited significantly higher growth rate and significantly the best FCR. Production index was also the best of this group.

Keywords: Broilers, multienzyme, administration method and dose of enzyme.

INTRODUCTION

The use of enzymes in corn soybean diets for broilers is essential as to overcome the anti-nutritional factors even in non-vicious grains and protease inhibitors as will, which might limit nutrient digestibility’s in the gut (Slominski, 2011 and Yegani and Korver, 2013). Chicken broilers is still unable to take advantage of 400-450 kcal of energy per kilogram of diet because its non starch polysaccharides (NSP) content which impede digestion of nutrients by broilers due to the shortage or absence of digestive enzymes capable of the hydrolyze of NSP (Cowieson, 2010). The use of NSP enzymes may be desired to hydrolyze of the anti-nutritional of ingredients to attain the best performance and profit from these diets (Slominski, 2011). Enzymes supplementation in broiler diets increasing activities of digestive enzyme (Alagawany et al., 2017) and improved the endogenous enzyme production thus improves the absorption of nutrients by the chickens (Angel et al., 2011).

The usage of enzymes in the feeding of broilers has enhances feed digestibility, minimizing the anti-nutritional effects and promoting the productivity indexes (Attia et al., 2003 and Hooge et al., 2010), the digestibility rates (Fafiolu et al., 2015 and Zeng et al., 2015). And improved growth performance (Attia et al., 2014a; Fafiolu et al., 2015 and Williams et al., 2014and 2018), survival rate (Abdel-Hafeez et al., 2016), reduce the pollutant potential of excreta (Costa et al., 2008), improved the economic efficiency (Attia et al., 2008 and El-Serwyy et al., 2012) and gut ecology (Cowieson, 2010 and Attia et al., 2014b). However, the effect of multienzyme counted on dietary composition and enzyme type (Attia; 2003; Abudabos, 2012 and Attia et al., 2014a). This study aimed to investigate the responses of growth performance, digestibility and blood biochemistry of broilers to the dose and administration method of enzymes.

Issued by The Egyptian Society of Nutrition and Feeds
MATERIALS AND METHODS

The study was carried out at the Al-Bostan Experimental Poultry Farm, Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Egypt.

Experimental design and dietary treatments:

One hundred and fifty-one-day-old Arbor Acres broiler chicks were randomly distributed into five treatment groups. Each treatment group consisted of six replicates of 5 unsexed birds each. All experimental groups were fed the same base diet and were given 5 multienzyme treatments: The 1st group, the control group, did not receive multienzyme supplemements. The 2nd, 3rd, 4th and 5th groups were given multienzymes in water at 100 and 150% from recommended dosage in drinking water given either continuous or intermittent methods, respectively. In the continuous method, the multienzyme is added to the water over the day. While in intermittent method, the multienzyme is added to the water over the day followed by day off during the 1st through the 35th days of age. The experimental diets were formulated to meet requirements of broiler chickens according to NRC (1994). The multienzyme (Galzym® produced by Textan company and imported by El Nehesi company, it is a combination of a group of exogenous and fibrolytic enzymes consisted of, cellulase:10000000 unit, xylanase 1500000 unit, lipase 6500 unit, alpha amylase 250000 unit, protease 400000 unit and Pectinase 300000 unit). The recommended dose of enzymes is 1ml/3L water. The composition of the experimental diets is presented in Table (1).

Table (1): Ingredients and chemical composition of the experimental basal diets fed during the experiment stages.

Item	Starter (1-21d)	Grower (22-35d)
Ingredients (g/kg)		
Yellow corn	512.3	518.1
Rye	0	50
Soybean meal (44% CP)	328	244
Dicalcium phosphate	18.00	16.00
Limestone	10.00	10.00
NaCl	3.00	4.50
Full fat soybean meal	100	130
Vit+min premix	3.00	3.00
L-Lysine	1.00	1.90
DL-Methionine	2.00	2.50
Vegetable oil	22.70	20.00
Total	1000	1000
Calculated or determined composition (g/kg):		
Dry matter	864	880
Crude protein(CP)	227	209
CP	221	210
ME (Kcal./Kg)	3018	3055
Crude fat,	61	65
Crude fibre	40.2	37.2
Crude fibre,	36.1	35.5
NFE,	625	640
Calcium	8.58	8.45
Available phosphate	4.07	3.78
Methionine	5.48	5.71
Methionine+cystine	9.10	9.05
Lysine	13.18	12.53
Ash,	51.1	53.5

1Vit+Min mix. provides per kilogram of the diets: Vit. A, 12000 IU; vit. E (DL-a-tocopheryl acetate) 20 mg; menadione 2.3 mg, Vit. D3, 2200 IU, riboflavin 5.5 mg, calcium pantothenate f2 mg, nicotinic acid 50 mg, Choline 250 mg, vit. B12 10 µg, vit. B6 3 mg, thiamine 3 mg, folic acid 1 mg, d-biotin 0.05 mg. Trace mineral (mg/kg of diets): Mn 80 Zn 60, Fe 35, Cu 8, selenium 0.1 mg. 2Analyzed values. 3Calculated values.
Animal housing and management: Chicks were raised in battery brooders. Each replicate was kept in a cage (30 × 35 × 45). Chicks had full access to feed and water during the experimental period. The housing temperature was 32°C during the 1st week and declined gradually to 2°C each week and was then stabilized at 25°C until slaughter. A light schedule was 23 h light until 7th day followed by 20 h light from 8th day to through the experimental period until 3 day before slaughter test (8-35 days of age).

Experimental procedures and growth performance measurements: Broilers in each replicate were weighed (g) at 1, 21 and 35 d of age, and the body weight gain (BWG, g/chick) was calculated. Feed intake (FI) was recorded for each replicate (g/chick) and thereby feed conversion ratio (FCR, g feed/g gain) and survival rate (SR, 100 - mortality rate) during the periods from 1-21, 22-35 and 1-35 d of age were calculated.

Apparent digestibility of dry matter (DM), crude protein (CP), ether extract (EE), crude fiber (CF) and ash was done according to (Aggoor et al., 2000). The DM, CP, EE, CF and ash of feeds and excrement were determined according to (AOAC, 2004) and expressed on DM basis.

Carcass characteristics measurements: At 35 d of age, six broiler chicks (3 males and 3 females) from each group were slaughtered after 8 hours fasting, processed and the weight of carcass and internal organs were taken and expressed as (% of live body weight (LBW).

Blood sampling and laboratory analyses: At slaughtering, six blood samples per treatment were collected in clean non-heparinised tubes. The serum was separated by centrifugation at 1500 x g for 10 minutes at 4°C, and stored at -18°C until analysis. The serum profiles were determined using commercial diagnostic kits (Diamond Diagnostics Company, Cairo, Egypt). Glucose concentration (mg/dl) was measured according to Trinder (1969). Total protein (g/dl) was measured according to Henry et al. (1974), albumin (g/dl) was measured according to Doumas (1971), globulin (g/dl) was measured according to Coles (1974). The activities (µ/l) of the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes were determined according to the method described by Reitman and Frankel (1957). In addition, serum samples were assigned for determination of creatinine and urea (Bartles et al., 1972), triglycerides (Fossati and Prencipe, 1982), total cholesterol (Stein, 1986), high density lipo-protein, HDL (Lopez-Virella, 1977), while low density lipo-protein (LDL) was determined according to (Friedewald et al., 1972).

Statistical analysis:

The statistical analysis was performed using a completely randomized design and all data collected were subjected to analysis using a two-way ANOVA procedure (Statistical Analysis System (SAS), 2002). The statistical model included the effects of the dose of the multi-enzymes (0, 100 and 150%), method of administration (continuously vs. intermittently) and their interactions according to the following model:

\[Y_{ij} = \mu + D_i + AM_j + (D \times AM)_{ij} + e_{ij} \]

Where \(Y_{ij} \) = observed value; \(\mu \) = overall mean; \(D_i \) = doses effect; \(AM_j \) = administration method effect; \((D \times AM)_{ij} \) = interaction between the two effects; \(e \) = random error. Before analysis, all percentages were subjected to logarithmic transformation (log(x+1)) to normalize data distribution. The differences among means were determined using Duncan’s new multiple range test (Duncan, 1955).

RESULTS AND DISCUSSION

Growth and Feed:

The effect of different dose of multienzyme given in water continuously or intermittently on the production performance of broiler chickens are summarized in Table (2). The results indicate that BWG during the periods from 1-21 and 1-35 days of age and FCR during all experimental periods were significantly affected by the dose of the enzyme, method of administration, and the interaction between them. The intermittent addition of multienzyme at 100% to water improves the BWG during the periods from 1-21 and 1-35 days of age and FCR during the periods from 1-21, 22-35 days of age and 1-35 days of age compared to other treatments. In addition, enzyme supplemented continuously at 100 and 150% as well as 100% intermittent increases BWG during the periods from 1-21 and 1-35 days of age and improved FCR during the periods from 1-21, 22-35 and 1-35 days of age compared to the control group. However, FI of broiler chickens during most of the experimental periods was insignificantly affected by the dose of the multienzyme, supplementation method and the interaction between the dose of the enzyme and the administration method except for enzyme supplemented continuously increased FI compared to the control group during the periods from 1-35 days of age.
Table (2): Effect of different dose of multienzymes given in water continuously or intermittently on growth performance in broiler chicks during the starter and growing-finishing periods.

Treatment effect	Body weight gain (g)	Feed intake (g)	Feed conversion ratio²
	1-21 d 22-35d 1-35d	22-35d	1-21 d 22-35d 1-35d
Control	567c 1108 1675c	898 2105 3003	1.58a 1.90a 1.79a
100%	711a 1184 1895a	1010 2065 3075	1.42c 1.74c 1.62c
150%	685b 1166 1851b	1017 2093 3110	1.48b 1.79b 1.68b

Effect of enzyme dose

Control	567c 1108 1675c	898 2105 3003	1.58a 1.90a 1.79a
Con	686b 1163 1848b	1019 2104 3123ab	1.48b 1.81b 1.68b
Int	710a 1188 1898a	1009 2054 3063ab	1.42c 1.73c 1.61c

Effect of administration method

Control	567b 1108 1675c	898 2105 3003	1.58a 1.90a 1.79a
100% Con	686b 1159 1845b	1022 2102 3125	1.49b 1.81b 1.69b
100% Int	736a 1210 1946a	998 2028 3025	1.35c 1.67c 1.55c
150% Con	685b 1167 1851b	1014 2106 3120	1.48b 1.80b 1.68b
150% Int	685b 1166 1851b	1020 2081 3101	1.48b 1.78b 1.67b

Interaction between enzyme dose and administration method

Control	567b 1108 1675c	898 2105 3003	1.58a 1.90a 1.79a
Con	686b 1159 1845b	1022 2102 3125	1.49b 1.81b 1.69b
Int	736a 1210 1946a	998 2028 3025	1.35c 1.67c 1.55c
150% Con	685b 1167 1851b	1014 2106 3120	1.48b 1.80b 1.68b
150% Int	685b 1166 1851b	1020 2081 3101	1.48b 1.78b 1.67b

RMSE 22.11 40.84 32.04 44.05 74.91 32.04 0.032 0.037 0.021

Probability level

Dose Method Interaction	0.015 0.005 0.411 0.134 0.0004 0.0004 0.0017 0.0001

Con=Continuous; Int= intermittently

1Number of observation =6 replicates per subgroup of each treatments.

abWithin columns (for each effect), means not sharing similar superscripts are significantly different at P = 0.05.

Apparent digestibility of nutrients and European production index:

Data concerning the effects of the dose of the enzyme and the administration method on the apparent digestibility of the nutrients of broiler chicks are shown in Table (3). Only the dose of the multienzyme had a significant effect on the digestibility of DM, CP and EE. The addition of multienzyme (100 or 150%) to water improves the digestibility of DM and CP of broiler chickens compared with the control, and 100% multienzyme had the best digestibility of DM and CP. However, there were no significant effects due to the dose of the multienzyme on the apparent digestibility of CF, NFE and ash. Furthermore, broilers received multienzymes intermittently exhibited significantly better digestibility of CP than those given multienzyme continuously and the control group. There were no significant effects from the administration method on the apparent digestibility of DM, EE, CF and ash.

The present study indicates that the addition of multienzyme 100% intermittently to water improves the growth performance of broiler chickens compared with the control. The positive effect of enzymes on growth performance of broilers was observed along with considerable increasing in nutrient digestibility i.e. NFE and ash of this group. In addition, intermittently administration was adequate which may resulted in considerable saving in cost of additives. The present results are agreement with those reported by Zeng et al. (2015) and Alagawany et al. (2017). These improvements could be attributed to the increased digestive enzyme activities (Alagawany et al., 2017). Furthermore, these improvements could be also attributed to the eliminating the adverse impacts of anti-nutritional compounds and enhancing the availability and absorption of nutrients through increasing the digestibility of the ingested diets thereby improving growth performance of broilers (Attia 2003; Kocher et al., 2015 and Abdel-Hafeez et al., 2016). In addition, multienzyme was found to improve energy utilization in corn-soybean meal and sorghum-soybean meal diets because the digestion of starch and cereal cell walls (Attia et al., 2003 and Attia et al., 2008). However, the effect of multienzyme counted on dietary composition and enzyme type (Attia; 2003; Abudabos, 2012 and Attia et al., 2014a).
Table (3): Effect of different dose of multienzymes given in water continuously or intermittently on apparent nutrient digestibility in broiler chicks.

Treatment effect	Apparent nutrients digestibility, %					
	Dry matter	Crude protein	Ether extract	Crude fiber	Nitrogen free extract	Ash
Effect of enzyme dose						
Control	74.3c	65.7c	76.1c	28.2	75.8	35.8
100%	77.0a	70.9a	80.5a	30.4	77.9	37.7
150%	76.4b	69.8b	79.1b	30.4	78.0	37.4
Effect of administration method						
Control	74.3	65.7c	76.1	28.2	75.8c	35.8
Con	76.8	69.6b	80.0	30.3	77.3b	37.4
Int	76.6	71.0a	79.6	30.5	78.6a	37.7
Interaction between enzyme dose and administration method						
Control	74.3	65.7	76.1	28.2	75.8c	35.8c
100% continuums	77.2	70.2	80.4	30.5	77.8a	38.1a
100% Int	76.9	71.6	80.6	30.3	78.1ab	37.4ab
150% continuums	76.4	69.1	79.7	30.1	76.8bc	36.8bc
150% Int	76.3	70.4	78.5	30.7	79.2ab	38.0ab
RMSE	0.892	0.960	1.059	0.812	1.539	1.397
Probability level						
Dose	0.0215	0.0010	0.0002	0.9384	0.8864	0.4529
Method	0.4934	0.0001	0.1775	0.5121	0.0093	0.5227
Interaction	0.6349	0.8189	0.0524	0.1471	0.0389	0.0386

Con=Continuous; Int= intermittently

1Number of observation =6 replicates per subgroup of each treatments.

abc Within columns (for each effect), means not sharing similar superscripts are significantly different at P = 0.05.

Only the interaction between the dose of the multienzyme and the administration method had a significant effect on the digestibility of NFE and ash. Numerically, groups supplemented with either 100 or 150% multienzyme continuously or intermittently had significantly higher EE digestibility compared to the control group and group given 100% enzymes intermittently had better EE digestibility than those given 150% enzyme intermittently. In addition, NFE and ash digestibility was significantly higher of enzyme supplemented groups than the control groups with the exception of those given 150% continuously. On the other hand, broilers received multienzyme at 100% continuously had higher digestibility of NFE and ash than groups received 150% enzyme by the same method.

Carcass traits and inner body organs:

The carcass characteristics and body organs of broiler chicks as affected by multienzyme and/or the method of administration are shown in Table (4).

The weight and percentages of dressing, abdominal fat, gizzard and proventriculus were not significantly affected by the dose of the enzyme, their method of administration, and the interaction between them with the exception of carcass weight with the administration method. However, groups supplemented with 150% multienzyme had higher weight and percentages of the intestinal (Table 4) and lower percentages of pancreas (Table 5) than the 100% multienzymes and control groups. Moreover, groups supplemented with 100% multienzyme had higher percentages of liver weight than the control. Furthermore, broilers who received multienzyme with continuously method exhibited significantly higher carcass weight, as well as percentages and weight of the intestinal and heart than those given at multienzyme with intermittently method. Moreover, broilers received enzymes at 150% continuously had higher percentages of the intestinal than other groups.
El-Shafey et al.

Table (4): Effect of different dose of multienzymes given in water continuously or intermittently on some carcass characteristics and inner body organs in broiler chicks¹.

Treatment effect	Carcass and organs parameters									
	Carcass weight, g	Dressing, %	Abdominal fat, g	Abdominal fat, %	Gizzard ulus, g	Gizzard . %	Proventriculus, g	Proventriculus, %	Intestinal, g	Intestinal, %
Effect of enzyme dose										
Control	1490	73.5	15.37	0.71	23.4	1.15	6.22	0.312	94.0b	4.66b
100%	1441	71.2	25.17	1.26	23.2	1.14	7.46	0.380	97.1b	4.78b
150%	1439	68.1	23.18	1.10	22.5	1.07	7.25	0.341	122a	5.78a
Control	1490b	73.5	15.37	0.71	23.4	1.15	6.22	0.312	94.0b	4.66b
100% Con	1550	71.3	24.82	1.13	25.7	1.19	7.40	0.350	104.4	4.80b
100% Int	1332	71.2	25.52	1.38	20.6	1.10	7.50	0.404	89.8	4.76b
150% Con	1495	70.7	25.24	1.19	23.2	1.10	7.520	0.352	140.0	6.66a
150% Int	1383	65.6	21.12	1.20	21.9	1.05	6.980	0.330	104.0	4.90b
RMSE	167	3.58	5.85	0.262	3.69	0.177	1.247	0.063	15.636	0.643
Probability level										
Dose	0.979	0.071	0.457	0.198	0.711	0.400	0.732	0.229	0.002	0.002
Method	0.039	0.119	0.521	0.821	0.065	0.428	0.706	0.587	0.002	0.005
Interaction	0.485	0.139	0.369	0.079	0.253	0.784	0.584	0.205	0.142	0.007

¹Number of observation = 6 replicates per subgroup of each treatments.

Con=Continuous; Int= intermittently
⁴ Within columns (for each effect), means not sharing similar superscripts are significantly different at P = 0.05.

Our results showed that the weight and percentages of dressing, abdominal fat, gizzard and were not significantly affected by the dose of the enzymes, their method of administration, and the interaction between them. Based on these results, supplemental enzyme blend at the concentrations evaluated in this study may not exert drastic impacts on broilers. These results are in line with Mushtaq et al. (2009) who found no effect of enzyme supplementation on carcass traits. Also, De Araujo et al. (2014) and Alagawany et al. (2017) who found no effect of enzyme supplementation on carcass traits except liver percentage which was decreased with enzyme supplementation. Also, Rabie and Abo El-Maaty (2015) found that enzyme addition did not significantly affect carcass traits of Japanese quail. Attia et al. (2014b), Dalólio et al. (2016) and Al-Harthi (2017) reported that the parameters of carcass yield and carcass parts were not affected by the enzyme supplementation of diets fed to broiler chickens. These differences in carcass parameters of broiler chickens may be returned to composition and form of the diet as well as type and levels of enzymes used.

Blood serum biochemical constituents and indices of liver and kidney functions:

The results for serum indices of liver and kidney functions of the broiler chicks as they were affected by multienzyme supplementation and/or the administration method are shown in Tables (6 and 7). There were no significant effects from the multienzyme dose and the administration method on blood biochemical constituents and the serum indices of liver and kidney functions (Table 6) except for triglycerides, creatinine and HDL (Table 7). Broilers received multienzyme with continuously method exhibited significantly lower blood creatinine, but higher triglycerides and HDL than those given at multienzyme with intermittently method and the control group. Also, there were no significant differences in liver and renal functions indices due to the interactions between the dose of enzymes and the administration method except in ALT, alkaline phosphatase, urea, albumin, albumin/globulin ratio and triglycerides.
Table (5): Effect of different dose of multienzymes given in water continuously or intermittently on inner body organs in broiler chicks.

Treatment effect: Effect of enzyme dose	Absolute weight (g) and relative weight (%) of carcass characteristics and inner organ	Liver weight, g	Liver weight, %	Pancreas weight, g	Pancreas weight, %	Heart weight, g	Heart weight, %
Control		39.7	2.00	4.38	0.222 a	9.4	0.458
100%		48.1	2.39a	4.37	0.221 a	10.1	0.491
150%		45.0	2.14ab	3.59	0.169 b	11.7	0.554
Effect of administration method							
Control		39.7	2.00	4.38	0.222	9.4b	0.458b
Con		47.0	2.21	4.33	0.203	12.5a	0.582a
Int		46.1	2.32	3.71	0.189	9.3b	0.463b
Interaction between enzyme dose and administration method							
Control		39.7	2.00	4.38	0.222	9.4	0.458
100% Con		1.19	2.21	4.52	0.212	12.6	0.576
100% Int		47.2	2.50	4.22	0.228	7.68	0.406
150% Con		45.1	2.10	4.10	0.193	12.4	0.588
150% Int		44.9	2.10	3.18	0.150	11.0	0.520
RMSE		6.540	0.254	0.788	0.045	2.260	0.073
Probability level		0.299	0.039	0.059	0.030	0.120	0.069
Dose		0.741	0.345	0.109	0.532	0.005	0.002
Method		0.787	0.345	0.404	0.176	0.097	0.137
Interaction							

Con=Continuous; Int= intermittently

1 Number of observation =6 replicates per subgroup of each treatments.

abc Within columns (for each effect), means not sharing similar superscripts are significantly different at P = 0.05.

Broilers, who received 150% intermittently in water had lower ALT than other groups. In addition, broilers received 100% continuously and 150% intermittently in water, had higher alkaline phosphatase than the other groups. Moreover, broilers received 150% continuously in water, had lower urea than those given at 100% continuously and control group, and higher albumin and triglycerides than the other groups. However, broilers received 150% continuously had the highest serum albumin.

In general, with a few exceptions, our results showed that there were no significant effects from the multienzymes dose and the administration method on the serum indices of liver and kidney functions and blood biochemical constituents. These results partially agree with Mehri et al. (2010) suggested that β-mannanase did not influence the blood serum proteins (albumin, alpha 1-, alpha 2-, beta and gamma-globulins). Also, Gheisari et al. (2011) showed that dietary enzyme treatments had no impact on serum protein concentrations. El-Katcha et al. (2014) observed that supplementation of enzyme had no significant effect on blood serum AST and ALT as well as cholesterol and triglyceride concentrations when compared with birds fed on the same diet without enzyme addition. Dinani et al. (2017) showed that enzyme supplementation had no significant on serum total protein, albumin, globulin and their ratio. Khaled et al. (2017) did not observe any significant (P>0.05) effect of β-mannanase supplementation on serum alkaline phosphates, ALT, AST, uric acid and creatinine. Conversely to our results, Azarfar (2013) and Alagawany et al. (2017) who pointed out that the control diet resulted in significantly higher concentrations of total cholesterol and its fractions than the other diets which contained 1 g enzyme /kg. All blood serum parameters were not affected by enzyme supplementation (El-Serwy et al., 2012 and Fathey, 2012).
Table (6): Effect of different dose of multienzyme given in water continuously or intermittently on indices of liver and kidney functions in broiler chicks.

Treatment effect	Indices of liver and renal function						
Effect of enzyme dose							
Control	60.8	54.6	1.114	8.4	22.4	1.04	21.72
100%	60.6	54.2	1.118	9.6	21.9	1.01	22.28
150%	59.4	54.3	1.096	9.4	21.3	0.98	22.45
Effect of administration method							
Control	60.8	54.6	1.114	8.4	22.4	1.04	21.72
Con	60.6	54.2	1.118	9.1	21.4	0.92	23.73
Int	59.4	54.3	1.096	9.9	21.8	1.07	21.01
Interaction between enzyme dose and administration method							
Control	60.8a	54.6	1.114	8.4b	22.40a	1.04	21.72
100% Con	60.0a	53.6	1.118	10.4a	22.40a	0.92	24.92
100% Int	61.2a	54.8	1.118	8.8b	21.40ab	1.10	19.64
150% Con	61.2a	54.8	1.118	7.8b	20.40b	0.92	22.54
150% Int	57.6b	53.8	1.074	11.0a	22.20ab	1.04	22.36
RMSE	1.41	1.393	0.41	1.10	1.48	0.158	3.97
Probability level							
Dose	0.071	0.874	0.247	0.687	0.374	0.676	0.925
Method	0.071	0.874	0.247	0.118	0.552	0.047	0.140
Interaction	0.001	0.093	0.247	0.046	0.676	0.167	

 AST: Aspartate aminotransferase.
 AST**: Aspartate aminotransferase.
 ALT: Alanine aminotransferase.
 ALT*: Alanine aminotransferase.

Table (7): Effect of different dose of multienzymes given in water continuously or intermittently on blood biochemical constituents of broiler chicks.

Treatment effect	Blood biochemical constituents									
Effect of enzyme dose										
Control	6.44	2.82	3.62	0.788	6.4	172.4	213.6	37.4	84.2	0.445
100%	6.21	2.92	3.28	0.910	9.5	172.4	213.6	36.4	83.6	0.436
150%	6.15	3.0	3.15	0.971	10.1	173.4	213.6	36.1	84.5	0.427
Effect of administration method										
Control	6.44	2.82	3.62	0.788	6.4	172.4b	213.6	37.4a	84.2	0.445
Con	6.11	3.01	3.09	0.990	9.4	174.0a	212.0	37.7a	84.6	0.446
Int	6.25	2.91	3.34	0.881	10.2	171.8b	212.2	34.8b	83.5	0.417
Interaction between enzyme dose and administration method										
Control	6.44	2.82d	3.62	0.788a	6.40	172.4b	213.6	37.4	84.2	0.444
100% Con	6.14	2.86c	3.28	0.870b	9.0	172.4b	211.2	37.6	83.4	0.450
100% Int	6.26	2.98b	3.28	0.920b	10.0	172.4b	212.6	35.2	83.8	0.421
150% Con	6.06	3.16a	2.90	1.10b	9.8	175.6a	212.8	37.8	83.8	0.440
150% Int	6.24	2.84c	3.40	0.840b	10.4	171.2b	212.8	34.4	83.2	0.413
RMSE	0.205	0.194	0.300	0.130	0.980	1.86	3.95	2.87	2.41	0.036
Probability level										
Dose	0.591	0.367	0.345	0.237	0.186	0.245	0.823	0.817	0.414	0.601
Method	0.117	0.262	0.078	0.077	0.083	0.016	0.911	0.034	0.320	0.092
Interaction	0.745	0.019	0.078	0.016	0.653	0.016	0.505	0.699	0.179	0.941

 Con=Continuous; Int= intermittently
 *Number of observation = 6 replicates per subgroup of each treatments.
 abWithin columns (for each effect), means not sharing similar superscripts are significantly different at P = 0.05.
 ALT*: Alanine aminotransferase.
 AST**: Aspartate aminotransferase.

El-Shafey et al.
CONCLUSION

Given the above, based on the results obtained in this study, it can be inferred that the inclusion of the multienzyme in broiler drink water, in the levels recommended by the manufacturer, 100%, enhanced the efficiency of the growth performance and did not significantly influence the carcass characteristics and blood biochemical constituents. Furthermore, intermittent supplementation resulted in 50% saving in the cost of additives.

REFERENCES

Abdel-Hafeez, H. M.; Saleh, E. S. E.; Tawfeek, S. S.; Youssef, I. M. I. and Abdel-Daim, A. S. A. (2016). Utilization of potato peels and sugar beet pulp with and without enzyme supplementation in broiler chicken diets: effects on performance, serum biochemical indices and carcass traits. J of Anim. Physiology and anim Nut., 102 (1): 56-66.

Abudabos, M. A.(2012). Phytate phosphorus utilization and intestinal phytase activity in laying hens. Italian J. of Anim. Sci., 11:e8 doi:10.4081/ijas.2012.e8.

Aggoor, F.A.; Attia, Y.A. and Qota, E.M. (2003). Value of rice bran, its maximal cost of additives and intermittent supplementation on growth efficiency of the growth performance and did not significantly influence the carcass characteristics and blood chemistry of broilers. Poult Sci., 90 (10): 2281-2286.

AOAC (2004). Association of Official Analytical Chemists. Official Methods of Analysis. 18th ed., Washington, DC, USA.

Attia, Y. A. (2003). Performance, carcass characteristics, meat quality and plasma constituents of meat type drakes fed diets containing different levels of lysine with or without a microbial phytase. Archiv of Anim. Nut., 66: 39-48.

Attia, Y. A.; El-Tahawy, W. S.; Abd El-Hamid, A. E.; Nizza, A.; Bovera, F.; Al-Harthi, M. A. and El-Kelway, M. I. (2014a). Effect of feed form, pellet diameter and enzymes supplementation on growth performance and nutrient digestibility of broiler during days 21-37 of age. Archiv Tierzucht, 57, 3: 1-11. doi: 10.7482/0003-9438-57-034. https://www.arch-animal-breed.net/57/34/2014/.

Attia, Y. A.; El-Tahawy, W. S.; Abd El-Hamid, A. E.; Nizza, A.; El-Kelway, M. I.; Al-Harthi, M. A. and Bovera, F. (2014b). Effect of feed form, pellet diameter and enzymes supplementation on carcass characteristics, meat quality, blood plasma constituents and stress indicators of broilers. Archiv Tierzucht, 57, 30, 1-14, doi: 10.7482/0003-9438-57-030. https://www.arch-animal-breed.net/57/30/2014/.

Attia, Y. A.; Tag El-Din, A. E.; Zeweil, H. S.; Hussein, A. S.; Qota, E. M. and Arafat, M. A. (2008). The effect of supplementation of enzyme on laying and reproductive performance in Japanese quail hens fed nigella seed meal. The J. of Poult. Sci., 45:110-115. https://www.jstage.jst.go.jp/article/jpsa/45/2/45_45_110/_article/-char/en

Attia, Y.A.; Qota, E. M. A.; Aggoor F. A. M. and Kies, A. K. (2003). Value of rice bran, its maximal utilization and upgrading by phytase and other enzymes and diet- formulation based on available amino acid for broiler chicks. Archiv Für Geflügelkunde, 67 (4):157-166. https://www.european-poultry-science.com/artikel.dll/s-157-166_NzgwNQ.PDF.
Azarfar, A. (2013). Effect of hemicell enzyme on the performance, growth parameter, some blood factors and ileal digestibility of broiler chickens fed corn/soybean-based diets. J. of Cell and Anim. Biology, 7:85–91.

Bartles, H.; Bohmer, M. and Heierli, C. (1972). Serum creatinine determination without protein precipitation. Clinica Chimica Acta, 37: 193-197.

Coles, E. H. (1974). Veterinary clinical pathology. IST ED. 211-213 W.B. Sauder, company, Philadelphia, London, Toronto.

Costa, F. G. P.; Goulart, C. C.; Figueiredo, D. F.; Oliveira, C. F. S. and Silva, J. H. V. (2008). Economic and environmental impact of using exogenous enzymes on poultry feeding. Inter. J. of Poult. Sci., 7: 311-314.

Cowieson, A. (2010). Strategic selection of exogenous enzymes for corn/soy-based poultry diets. J. Poult. Sci., 47(1):1-7.

Dalólio, F. S.; Moreira, J.; Albino, L. F. T.; Vaz, D. P.; Pinheiro, S. R. F.; Valadares, L. R. and Pires, A. V. (2016). Exogenous enzymes in diets for broilers. Revista Brasileira de Saúde e Produção Animal, Salvador, 17(2): 149-161. http://dx.doi.org/10.1590/S1519-99402016000200003.

De Araujo, W.; Albino, L. F. T.; Rostagno, H. S.; Hannas, M. I.; Pessoa, G. B. S.; Messias, R. K. G.; Lelis, G. R. and Ribeiro, V. Jr. (2014). Sunflower meal and enzyme supplementation of the diet of 21-to 42-d-old broilers. Brazil J. of Poult. Sci., 16:17–24.

Dinani, O. P.; Tyagi, P. K.; Tyagi, P. K.; Mandal A.B. and Jaiswal, S. K. (2017). Effect of feeding fermented guar meal vis-Á-Vis toasted guar meal with or without enzyme supplementation on immune response, caeca micro flora status and blood biochemical parameters of broiler quails international. J Pure Applied Bioscience. 5 (1): 624-630 (2017) ISSN: 2320–7051.

Doumas, B. (1971). Colorimetric determination of serum albumin. Clinica Chimica Acta, 31: 400-403.

Duncan, D.B.(1955). Multiple range and multiple “F” test. Bio- metrics,11:1-42.

El-Katcha, M. I.; Soltan, M. A.; El-Kaney, H. F. and Karwarie, E. R. (2014). Growth performance, blood parameters, immune response and carcass traits of broiler chicks fed on graded levels of wheat instead of corn without or with enzyme supplementation. Alex. J. of Vet. Sci., 40:95–111. doi: 10.5455/ajvs.48232.

El-Serwy, Amina A., Shoeib, M. s. and Fathey I. A. (2012). Performance of broiler chicks fed mash or pelleted diets containing corn-with-cobs meal with or without enzyme supplementation. J. of Anim. and Poult. Prod., Mansoura University., Vol.3 (3): 137-155.

Fafiolu, A. O.; Oduguwa, O. O.; Jegede, A. V.; Tukura, C. C.; Otarotimi, I. D.; Teniola, A. A. and Alabi, J. O. (2015). Assessment of enzyme supplementation on growth performance and apparent nutrient digestibility in diets containing undecorticated sunflower seed meal in layer chicks. Poult. Sci., 94(8): 1917–1922, https://doi.org/10.3382/ps/pev136.

Fathey, I. A. (2012). Nutritional studies on poultry. Ph. D. thesis, Faculty of Agriculture Mansoura University, Egypt.

Fossati, P. and Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical chemistry, 28: 2077-2080.

Friedewald, W. T.; Levy, R. I. and Frederickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clinical chemistry, 18: 499-502.

Gheisari, A. A.; Shavakhi, Zavareh M.; Toghyani, M.; Bahadoran, R. and Toghyani, M. (2011). Application of incremental program, an effective way to optimize dilatory inclusion rate of guar meal in broiler chicks. Livestock Sci., 94:823.

Henry, R.; Cannon, D. and Winkelman, J. (1974). Clinical chemistry, principles and techniques, 2nd edition, Harper and Row, New York, USA.

Hooge, D. M.; Pierce, J. L.; Mcbride, K.W. and Rig olin, P. J. (2010). Metaanalysis of broiler chicken trials using diets with or without allzyme SSF enzyme complex. Inter. J. of Poult. Sci., 9 (9):819-823.
Khaled, N. E.; Ragaa, N. M.; Tony, M. A. and El-Banna, R. A. (2017). Effect of dietary inclusion of guar meal with or without βmannanase supplementation on broiler performance and immunity. Pakistan J. of Nut., 16: 341-350.

Kocher, A.; Hower, JM and Moran, C.A (2015). A dual enzyme product containing protease in broiler diet: efficacy and tolerance. J. of Applied Anim. Nut., 3: 1-14 https://doi.org/10.1017/jan.2015.4

Lopez-Virella, M. F.; Stone, S.; Eills, S. and Collwel, J. A. (1977). Determination of HDL-cholesterol using enzymatic method. Clin. Chem., 23: 882-884.

Mehri, M.; Adibmoradi, M.; Samie, A. and Shivazad, M. (2010) Effects of Mannanase on broiler performance, gut morphology and immune system. African J. of Biotech., Vol. 9 (37), pp. 6221-6228.

Mushtaq, T.; Sarwara, M.; Ahmad, G.; Mirza, M. A.; Ahmad, T.; Mushtaq, M. M. H. and Kamran, Z. (2009). Influence of sunflower meal based diets supplemented with exogenous enzyme and digestible lysine on performance, digestibility and carcass response of broiler chickens. Anim. Feed Sci. and Tec., 149:275–286.

NRC (1994). National Research Council, Nutrient requirement of poultry. National Academy Press, Washington, DC, USA.

Rabie, M. H. and Abo El-Maaty, H. M. A. (2015) Growth performance of Japanese quail as affected by dietary protein level and enzyme supplementation. Asian J. of Anim. and Vet. Advances, 10:74–85

Reitman, S. and Frankel, S. (1957). A Method for determination of enzymatic activities. American Journal of Clinical Pathology, 287: 56-58.

SAS Institute (2002). SAS/STAT User's guide statistics. SAS institute INC., Cary. NC, USA.

Slominski, B. A. (2011). Recent advances in research on enzymes for poultry diets. Poult. Sci., 90:2013–2023.

Stein, E. A. (1986). Quantitative enzymatic colorimetric determination of total cholesterol in serum or plasma. In: Textbook of Clinical Chemistry. N. W. Tietz, editor. WB. Saunders, Philadelphia, USA Pp. 879-886.

Trinder, P. (1969). Enzymatic colorimetric determination of glucose in serum, plasma or urine. Ann. of Clin. Biochem, 6: 24-26.

Williams, M. P.; O’Neil, H. V. M.; York, T. and Lee, J. T. (2018). Effects of nutrient variability in corn and xylanase inclusion on broiler performance, nutrient utilisation, and volatile fatty acid profiles. J. of Applied Anim. Nut., 6:e1. https://doi.org/10.1017/jan.2017.11

Williams, M. P.; Klein, J. T.; Wyatt, C. L.; York, T. W. and Lee, J. T. (2014). Evaluation of xylanase in low-energy broiler diets. J. of Applied Poult. Res., 23:188–195.

Yegani, M. and Korver, D. R. (2013). Effects of corn source and exogenous enzymes on growth performance and nutrient digestibility in broiler chickens. Poult. Sci., 92:1208-1220.

Zeng, Q.; Huang, X.; Luo, Y.; Ding, X.; Bai, S.; Wang, J.; Xuan, Y.; Su, Z.; Liu, Y. and Zhang, K. (2015). Effects of a multi-enzyme complex on growth performance, nutrient utilization and bone mineralization of meat duck. J. of Anim. Sci. and Biotec., 6-12. DOI 10.1186/s40104-015
الأداء الإنتاجي وهضم العناصر الغذائية والصفات الكيميائية للدم في كتائikit التسمين وتأثيرها بجرعه وطريقة إضافة الأنزيمات

علي سعيد الشافعي1، اسماء شوقي النجاح1 و محمود إبراهيم الكيلاوي2

1 قسم الانتاج الحيواني والدواجن، كلية الزراعة، جامعة المنهاج، مصر.
2 قسم التاج الدواجن، كلية الزراعة، جامعة الزيت الجديد، مصر.

تهدف هذه الدراسة لتقديم مدى استجابة الأداء الإنتاجي وهضم العناصر الغذائية والصفات الكيميائية للدم للمواد إضافة إضافية وكذلك جرعة الأنزيمات. استخدم عدد 150 كنكة تسمين أربوزيكر وتوزيعها بتساوي وشكل عشوائي إلى خمس مجموعات تجريبية، كل مجموعة تحتوي على ست مكرات بحيث تحتوي كل مكررة على خمسة كتائيت. المجموعة الأولى استخدمت كمجموعة كنترول والتي لم يضاف لها أي انتيويات. المجموعة الثانية والثالثة والرابعة والخامسة اضف لهم مخطط الأنزيمات في ماء التربة بنسبه إضافيه 100 و150% من الجرعة الموصى بها اعطت لهم بشكل مستمر أو متقطع على التوالي. العينة المستمرة لإضافة مخطط الأنزيمات كانت تضاف للكلائتات على مدار اليوم. بينما الطريقة المتقطعة لإضافة مخطط الأنزيمات كانت تضاف على مدار اليوم بليبي يوم بدون إضافه خلال الفترة من عمر يوم حتى عمر 35 يوم.

وأوضح النتائج أن إضافة مخطط الأنزيمات سواء عند مستوي 100% أو 150% في الماء أدت إلى زيادة معيارى في الأداء الإنتاجي وهضم العناصر الغذائية مقارنة بمجموعة الكنترول. كما أوضحت النتائج أن إضافة 100% من مخطط الأنزيمات أعطت أداء إنتاجي أفضل من تلك التي اضف لها 150% من مخطط الأنزيمات. الكتائيت التي اضف لها مخطط الأنزيمات بشكل متقطع أعطى أداء إنتاجي وهضم العناصر الغذائية أفضل معنى من تلك الطيور التي أضيف لها مخطط الأنزيمات بشكل مستمر. لم تؤثر جرعة أو طريقة إضافة مخطط الأنزيمات على خصائص الطيور والمصطلحات الكيميائية للماء الجريسيات الثلاثي والكروتدين. من هذه الدراسة يمكن أن نستنتج أن إضافة مخطط الأنزيمات بشكل متقطع بنسبة إضافة 100% في الماء أعطت أفضل زيادة معيارى في معدل النمو ومعامل التحويل وكذلك معامل الإنتاج.