Inhibition of Dipeptidyl Peptidase-4 by Vildagliptin during Glucagon-like Peptide-1 Infusion Increases Liver Glucose Uptake in the Conscious Dog

Dale S. Edgerton,1 Kathryn M. S. Johnson,1 Doss W. Neal,1 Melanie Scott,1 Charles H. Hobbs,2 Xia Zhang,3 Alokesh Duttaroy,3 and Alan D. Cherrington1

From 1Vanderbilt University Medical Center, Nashville, Tennessee; 2Lovelace Respiratory Research Institute, Albuquerque, New Mexico; 3Novartis Institutes for BioMedical Research, Inc, Cambridge, MA.

Address correspondence to:
Dale S. Edgerton, PhD
Molecular Physiology and Biophysics
Vanderbilt University Medical Center
710 Robinson Research Building,
Nashville, TN 37232-0615, United States
E-mail: dale.edgerton@vanderbilt.edu

Submitted 18 April 2008 and accepted 26 September 2008.
ABSTRACT

Objective. This study investigated the acute effects of treatment with vildagliptin on dipeptidyl peptidase-4 (DPP-4) activity, glucagon-like peptide-1 (GLP-1) concentration, pancreatic hormone levels and glucose metabolism. The primary aims were to determine the effects of DPP-4 inhibition on GLP-1 clearance and hepatic glucose uptake.

Research Design and Methods. Fasted conscious dogs were studied in the presence (VIL, n=6) or absence (CON, n=6) of oral vildagliptin (1 mg/kg). In both groups, GLP-1 was infused into the portal vein (1 pmol/kg/min) for 240 min. During the same time, glucose was delivered into the portal vein at 4 mg/kg/min and into a peripheral vein at a variable rate to maintain the arterial plasma glucose level at 160 mg/dl.

Results. Vildagliptin fully inhibited DPP-4 over the 4h experimental period. GLP-1 concentrations were increased in the VIL group (50±3 versus 85±7 pM in the portal vein in CON and VIL, respectively; P<0.05) as a result of a 40% decrease in GLP-1 clearance (38±5 and 22±2 ml/kg/min, respectively; P<0.05). Although hepatic insulin and glucagon levels were not significantly altered, there was a tendency for plasma insulin to be greater (hepatic levels were 73±10 versus 88±15 µU/ml, respectively). During vildagliptin treatment net hepatic glucose uptake was 3-fold greater than in the CON group. This effect was greater than that predicted by the change in insulin.

Conclusions. Vildagliptin fully inhibited DPP-4 activity, reduced GLP-1 clearance by 40% and increased hepatic glucose disposal by means beyond GLP-1’s effects on insulin and glucagon secretion.
Glucagon-like peptide-1 (GLP-1) is a gut-derived hormone shown to enhance glucose-dependent insulin secretion, suppress inappropriately high glucagon secretion, slow gastric emptying and reduce food intake (1). In some type 2 diabetic patients (T2DM), GLP-1 levels are reduced, and elevation of GLP-1 by continuous infusion of the peptide leads to reductions in fasting glucose, post-prandial glucose excursions and hemoglobin A1C (2). The therapeutic potential of GLP-1 is limited, however, because it is rapidly inactivated by dipeptidyl peptidase-4 (DPP-4) (3; 4).

Vildagliptin is an orally effective selective DPP-4 inhibitor. In diabetic patients, vildagliptin improved glycemic control, increased the plasma insulin to glucagon molar ratio and reduced hemoglobin A1C levels (5; 6). During a meal tolerance test it augmented insulin secretion and decreased glucagon release, resulting in enhanced suppression of endogenous glucose production compared to placebo (7).

Ingested glucose and endogenously secreted GLP-1 are released from the gut, into the hepatic portal vein, which then perfuses the liver. Typically, studies have investigated the effects of DPP-4 inhibition following a meal, when GLP-1 secretion is increased. In the present study, GLP-1 and glucose were infused directly into the hepatic portal vein in the presence or absence of DPP-4 inhibition. The first aim was to examine the effect of vildagliptin on GLP-1 clearance under these carefully controlled conditions. In addition, although GLP-1 can increase glucose disposal by stimulation of insulin secretion, the hormone has been suggested to affect glucose metabolism by actions over and above its effects on the pancreas. Therefore, the second aim of this study was to investigate the effect of DPP-4 inhibition on glucose disposal, in particular by the liver.

RESEARCH DESIGN AND METHODS
Experiments were conducted on 12 healthy, conscious, 18h fasted dogs (20–27 kg). Prior to the study, they were fed a standard chow diet once a day, and water was provided ad libitum. The surgical facility met the standards published by the American Association for the Accreditation of Laboratory Animal Care, and the protocols were approved by the Lovelace Respiratory Research Institute Institutional Animal Care and Use Committee prior to the start of the study. All dogs underwent a laparotomy 3 weeks before the experiment in order to implant infusion catheters into the jejunal and splenic veins. Sampling catheters were implanted into the hepatic portal vein, the left hepatic vein and the left femoral artery. Ultrasonic flow probes (Transonic Systems Inc., Ithaca, NY) were placed around the hepatic and right iliac arteries and the portal vein, as described elsewhere (8). Intraportal catheters (splenic and jejunal) were used for the infusion of glucose (Baxter Healthcare Corporation, Deerfield, IL) and GLP-1 (Bachem, King of Prussia, PA). Each animal was used only once.

On the day of the study, intravenous catheters were placed into a leg vein for glucose delivery. Each experiment consisted of a basal period (−40 to 0 min) and an experimental period (0 to 240 min). Vildagliptin (1 mg/kg; VIL) or vehicle (sterile water; CON) were administered via stomach gavage at −20 min. Vildagliptin was well tolerated by all animals. At 0 min, constant portal infusions of glucose (4 mg/kg/min) and GLP-1 (1 pmol/kg/min) were started, and glucose was infused into a peripheral vein to maintain arterial plasma glucose at 160 mg/dl. Blood sampling and analytical procedures. Blood samples were collected from the femoral artery as well as the hepatic portal and hepatic veins. Hematocrit; plasma glucose, glucagon, insulin, cortisol and GLP-
Increased hepatic glucose uptake during DPP-4 Inhibition

1; and blood alanine, lactate, and glycerol concentrations were determined as previously described (8). Hepatic blood flow was measured using ultrasonic flow probes and a Transit-time Perivascular Flow Meter (Model T403, Ithaca, NY) as described elsewhere (8). DPP-4 activity was measured in plasma samples by using 7-Amino-4-methylcoumarin (AMC; Bachem cat. # Q-1025) as standard and H-Gly-Pro-AMC.HBr (Bachem cat. # I-1225) as substrate. Five µl of plasma were incubated with 15 µl of 100 µM substrate for 20 minutes, and absorption was measured at excitation/emission wavelength of 360 nm/460 nm with a spectrophotometer. The DPP-4 activity is expressed as mU/ml where mU = nmol/min.

Data analysis. Net hepatic substrate balance (NHB) was calculated with the arterial-venous difference method as NHB = load_{out} – load_{in}, where load_{out} = H × HF and load_{in} = (A × AF) + (P × PF), in which H, A, and P are the substrate concentrations in the hepatic vein, femoral artery, and hepatic portal vein blood or plasma, respectively, and HF, AF, and PF are the blood or plasma flows in the hepatic vein, hepatic artery, and portal vein, as determined by the ultrasonic flow probes. Using this calculation, a positive value represents net output by the liver, and a negative value represents net hepatic uptake. For glucose balance calculations, glucose concentrations were converted from plasma to blood values using previously published correction factors (9). Blood glucose concentrations were used for the calculation of net glucose balance because the use of whole blood glucose ensures accurate balance measurements regardless of the characteristics of glucose entry into the erythrocyte. Non-hepatic glucose uptake was calculated as the glucose infusion rate plus net hepatic glucose balance, with changes in the glucose mass accounted for when deviations from steady-state were present (10-12). The approximate substrate levels in plasma entering the liver sinusoids were determined using the formula [A×(AF/HF) + P×(PF/HF)], where hormone concentrations and flow are abbreviated as previously. GLP-1 clearance was determined by dividing the hormone infusion rate by its arterial concentration after the basal GLP-1 level was subtracted.

Statistical analysis. Data are presented as means ± SEM. Between group differences were analyzed with two-way analysis of variance (ANOVA), and univariate F tests were used for post-hoc comparisons (SigmaStat; SPSS). One-way ANOVA was used for comparisons of mean data and AUC. Statistical significance was accepted at P < 0.05.

RESULTS
Following oral administration of vildagliptin, the arterial and portal vein plasma DPP-4 activities remained fully suppressed over the 4 hour experimental period (Fig 1; P<0.05). As a result of portal vein GLP-1 infusion, the plasma GLP-1 levels in the CON group increased from 2±1 to 30±3 pM in the artery and 3±1 to 50±3 pM in the portal vein (basal period to average of the last 3h of the experimental period; Fig 2). The rise in GLP-1 was greater in the VIL group, increasing in the artery and portal vein, respectively, from 3±1 to 51±5 pM and 4±2 to 85±7 pM (P<0.05). Whole body GLP-1 clearance rates were 38±5 and 22±2 ml/kg/min during the last 3h in the CON and VIL groups, respectively (P<0.05).

Glucose was infused to increase the fasting arterial plasma glucose level from ~105 to ~160 mg/dl in both groups (Fig 3). The intraportal glucose infusion rate (GIR) was 4 mg/kg/min in both groups. To maintain the clamp, additional glucose had to be infused into a peripheral vein in both the CON (6.1±1.2 mg/kg/min) and VIL (8.6±1.5 mg/kg/min; P<0.05) groups (Fig 3).

In response to the rise in the plasma glucose level, in the CON group the plasma
Increased hepatic glucose uptake during DPP-4 Inhibition

insulin increased from 7±1 to 26±4 µU/ml in the artery and from 17±3 to 73±10 µU/ml in the hepatic sinusoids (increases of 4.1 and 4.3 fold, respectively, from the basal period to the last 3h; Fig 4). The rise in insulin in the VIL group tended to be larger (6±1 to 36±8 and 17±3 to 88±15 µU/ml; 5.5 and 5.4 fold), although they were not significantly different from the changes in the control group. The elevations in the arterial plasma C-peptide levels were not significantly different between groups, increasing in the CON group from 0.45±0.04 to 1.27±0.09 ng/ml (2.9 fold) and in the VIL group from 0.39±0.04 to 1.40±20 ng/ml (3.6 fold) during the two periods, respectively (Fig 5). Hepatic sinusoidal plasma glucagon levels decreased to similar values in the two groups; from 59±11 to 23±4 pg/ml and 43±3 to 23±4 pg/ml in the CON and VIL groups, respectively (Fig 5). The hepatic plasma insulin to glucagon molar ratios were not significantly different (72±10 and 86±14 in the CON and VIL groups, respectively) during the last 3h of the study.

Following a meal, glucose uptake by the liver is stimulated by increased glucose and insulin levels in the blood. Therefore, in response to the increases in hepatic glucose load, portal vein insulin to glucagon molar ratio, and plasma GLP-1 level, there was a switch in net hepatic glucose balance (NHGB) in the CON group from net output (2.4±0.1 mg/kg/min during the basal period) to net uptake (-0.7±0.1 mg/kg/min during the last 3h hours of the experimental period; Fig 6). In the VIL group, there was a greater response to these stimuli such that the liver switched from net hepatic glucose output of 2.1±0.2 to net hepatic glucose uptake of -2.1±0.5 mg/kg/min (P<0.05). Non-hepatic glucose uptake (non-HGU; mg/kg/min) increased from basal by 6.8±1.2 in the CON group (2.3±0.2 during the basal period to 9.1±1.2 during the last 3h, respectively) and by 8.1±1.4 in the VIL group (from 2.3±0.3 to 10.4±1.4, respectively; Fig 6). Although the non-hepatic response was not significantly different between the two groups, the increases in the rate of glucose uptake by the liver and non-hepatic tissues were greater with vildagliptin treatment by about the same magnitude (~1.2 mg/kg/min). Following vildagliptin treatment, net hepatic glucose fractional extraction was 3-fold greater (0.02±0.01 vs. 0.06±0.01 in the CON and VIL groups, respectively; Fig 7; P<0.05) as was the ratio of net hepatic glucose uptake to the hepatic insulin level (0.01±0.00 vs. 0.03±0.01 in the two groups, respectively; Fig 7; P<0.05) during the last 3h of the study. The ratios of non-HGU to arterial insulin, on the other hand, were similar in the two groups (0.38±0.04 vs. 0.35±0.05, respectively; Fig 7).

No differences in plasma cortisol (data not shown) were observed between groups. Free fatty acid and glycerol levels were ~25% lower in the VIL group during the basal period and tended to remain lower during the study, but the levels were not significantly different between groups at the end of the experiment (Table 1). There was no treatment effect on the arterial level or net hepatic balance of blood lactate or alanine (Table 1).

DISCUSSION

In this study, vildagliptin fully inhibited DPP-4 over a 4h experimental period. As a result GLP-1 clearance was reduced by 40% and the levels of the hormone in plasma were increased. Although hepatic insulin and glucagon levels were not significantly altered by treatment with the DPP-4 inhibitor, there was a tendency for plasma insulin to be greater. Hepatic glucose disposal was nevertheless increased by treatment, over and above effects attributable to a rise in insulin. No such effect was seen on non-hepatic glucose uptake.

GLP-1 levels in the circulation are regulated primarily by N-terminal cleavage at the position 2 alanine by DPP-4, and by renal elimination, but the kidneys appear to only
Increased hepatic glucose uptake during DPP-4 Inhibition

account for 10-20% of the degradation of intact GLP-1 (13). To our knowledge, an effect of vildagliptin on renal GLP-1 clearance is not known. In this study, DPP-4 inhibition resulted in a 70% increase in arterial and portal vein GLP-1 concentrations, which resulted from a 40% decrease in GLP-1 whole body clearance. It should be noted that GLP-1 clearance was determined by dividing the rate of intraportal GLP-1 infusion by the change in plasma GLP-1. Although it is possible that a decrease in endogenous GLP-1 secretion may have occurred, the basal GLP-1 levels were low (2-3 pM), therefore any decrease during the clamp period would have had only a small effect on the estimate of clearance. In addition, these results are in line with previous findings in T2DM patients in which 4 weeks of treatment with vildagliptin resulted in a 2-fold or greater increase in the post-meal rise in active GLP-1 (6; 14).

GLP-1 has previously been shown to increase (1) or have no effect on plasma insulin levels (15; 16) and vildagliptin has been demonstrated to increase (17), have no effect (6), or decrease (14) the levels of insulin following a meal. Although the stimulatory effect of GLP-1 on insulin secretion is well established (1; 18), in some studies insulin levels increased with GLP-1 treatment as a result of reduced hepatic insulin clearance (19-22) while in others (23-26) clearance was not affected. In the present study the increases in arterial C-peptide levels were greater in the vildagliptin group compared to the control group by the same relative magnitude as the increases in insulin levels which occurred, although the differences were not statistically significant between groups. Thus, it appears that any elevation in plasma insulin levels during vildagliptin treatment was the result of a difference in insulin secretion, not a decrease in clearance.

The role of GLP-1 on canine insulin secretion is not well understood. An incretin effect has been clearly shown to be present in the dog (27), but the role of GLP-1 in this effect has not been clearly established. It is known that a pharmacological level of GLP-1 can induce insulin secretion in isolated canine pancreata (28) and islets (29). In addition, we have shown that a pharmacological dose of exendin-4 (a GLP-1R agonist) is able to induce insulin secretion (30) while an incretin effect has not been demonstrated in other studies in the dog when GLP-1 was infused intraportally in physiological amounts (16; 27; 31; 32). In the present study we once again did not observe a significant effect of elevated GLP-1 on insulin secretion, although it is possible that a greater difference in GLP-1 between groups would have revealed an incretin effect.

Patients with T2DM often exhibit inappropriately high postprandial glucagon levels, which can be suppressed by GLP-1 (33) and vildagliptin (7). In the present study, glucagon decreased to levels which were very similar in both groups. Since the animals studied were non-diabetic, pancreatic α-cell sensitivity to inhibition by hyperinsulinemia and hyperglycemia may have been maximal, even in the absence of drug. In addition, the elevated concentration of GLP-1 in the vehicle treated group may have been sufficient to create GLP-1’s maximal effect on α-cell suppression.

While some studies in the human have not revealed extrapancreatic effects of GLP-1 (34-37), others have demonstrated insulin independent effects, including inhibition of glucose production (38). Stimulation of liver glucose uptake by GLP-1 has been reported in the dog (39; 40) while non-hepatic effects on glucose clearance have been reported in both dog and man (16; 41-44). Recently, it was reported that during a meal tolerance test, patients with T2DM treated with vildagliptin showed greater suppression of endogenous glucose production (7). This effect was associated with increased plasma insulin and
reduced plasma glucagon concentrations. No significant differences in the glucose disappearance or metabolic clearance rates were noted. In other recent studies, exenatide (an incretin mimetic) was shown to increase splanchnic (T2DM; (45)) and hepatic glucose uptake (normal dog; (30)). In both studies the effect was associated with an increase in plasma insulin concentration. In another study (normal dog; (31)) exenatide reduced postprandial glycemia independent of islet hormones and slowing of gastric emptying.

The present study extends these observations by demonstrating that DPP-4 inhibition, accompanied by increased GLP-1 levels, can increase hepatic glucose disposal. This occurred without a significant difference in the insulin to glucagon molar ratio, although the average hepatic insulin level in the VIL group was 15 µU/ml greater than in the control group. Even though this difference was not statistically significant, small differences in insulin can affect hepatic glucose production. Based on previous insulin dose response experiments (with intraportal glucose and insulin infusions), a 15 µU/ml difference would have increased net hepatic glucose uptake by ~0.4 mg/kg/min (46). Thus, net hepatic glucose uptake was ~1 mg/kg/min greater during vildagliptin treatment than would have been predicted from the difference in plasma insulin levels. Although hepatic glucose production was most likely fully inhibited in both groups due to the elevations in glucose and insulin, a difference in suppression of glucose production could also account for some of the difference in net hepatic glucose uptake between groups. Nevertheless, net hepatic glucose fractional extraction and the ratio of net hepatic glucose uptake to the insulin level at the liver were 3-fold greater during DPP-4 inhibition (Fig 7). Conversely, the tendency for non-hepatic glucose uptake to be increased was solely attributable to the prevailing arterial insulin levels (Fig 7).

DPP-4 inhibition also extends the half-life of GIP (gastric inhibitory polypeptide). However, since there was no stimulus for incretin secretion in the present study GIP levels presumably remained close to basal. Additional experiments would have to be performed, however, to definitively rule out the possibility that the effects observed in this study were due to differences in GLP-1 levels, not to changes in the activity of another substrate of DPP-4. The likelihood that they were attributable to GLP-1 is supported by our earlier studies. In one experiment, which used a similar design as the present study (no pancreatic clamp and glucose clamped at 160 mg/dl), when saline or GLP-1 were infused into the liver via the portal vein or hepatic artery, plasma insulin and glucagon levels were not affected by GLP-1 infusion (16). Nevertheless, the change from basal net hepatic glucose uptake was greater with GLP-1 vs. saline infusion by 1 to 1.5 mg/kg/min, although these differences were not statistically significant. In other studies in which hepatic insulin and glucagon levels were clamped at similar levels between groups, there was a linear relationship between net hepatic glucose uptake and the plasma concentration of GLP-1 (39). Thus, those studies support the present data which suggest a dose dependant increase in net hepatic glucose uptake.

The effect of vildagliptin treatment on liver glucose disposal was presumably mediated by the difference in GLP-1 concentrations between groups. The GLP-1 receptor has been identified in the hepatic portal vein (47) and the liver (48; 49) and could exert its effect through binding at either site, although it appears that portal receptors may not be necessary for the effect (39). Glucose entering the liver may be directed into glycogen since GLP-1 has been shown to increase glycogen storage in rat hepatocytes (50). Although DPP-4 was maximally inhibited by the start of the experimental
period, and the maximal difference in GLP-1 was present by the first sampling point in that period, the maximal difference in response of the liver was not apparent until 90 minutes. This slow onset of action may reflect the time required for the synthesis of gluco-regulatory proteins in the liver.

In summary, in the non-diabetic, overnight fasted dog, inhibition of DPP-4 by vildagliptin increased plasma GLP-1 levels by reducing its clearance by about 40%. In addition, the rise in GLP-1 associated with DPP-4 inhibition produced an augmentation of hepatic glucose utilization which was not accounted for by the hormone’s effects on the pancreas.

ACKNOWLEDGEMENTS

Lovelace Respiratory Research Institute received funding for these studies from Novartis Institutes for Biomedical Research.
Figure 1. Arterial and portal plasma DPP-4 activity in conscious dogs during the basal (-40 to 0 min) and experimental periods (0-240 min) treated with vehicle (○) or vildagliptin (■) (mean ± SEM; n=6 per group; * P<0.05).

Figure 2. Arterial and portal plasma GLP-1 levels in conscious dogs during the basal (-40 to 0 min) and experimental periods (0-240 min) treated with vehicle (○) or vildagliptin (■) (mean ± SEM; n=6 per group; * P<0.05).
Figure 3. Arterial plasma glucose level and peripheral glucose infusion rate in conscious dogs during the basal (-40 to 0 min) and experimental periods (0-240 min) treated with vehicle (○) or vildagliptin (■) (mean ± SEM; n=6 per group; * P<0.05). Glucose was infused into the portal vein at 4 mg/kg/min in both groups during the experimental period.

Figure 4. Arterial and hepatic sinusoidal plasma insulin levels in conscious dogs during the basal (-40 to 0 min) and experimental periods (0-240 min) treated with vehicle (○) or vildagliptin (■) (mean ± SEM; n=6 per group).
Increased hepatic glucose uptake during DPP-4 Inhibition

Figure 5. Arterial plasma C-peptide and hepatic sinusoidal plasma glucagon levels in conscious dogs during the basal (-40 to 0 min) and experimental periods (0-240 min) treated with vehicle (○) or vildagliptin (■) (mean ± SEM; n=6 per group).

Figure 6. Net hepatic glucose balance and non-hepatic glucose uptake in conscious dogs during the basal (-40 to 0 min) and experimental periods (0-240 min) treated with vehicle (○) or vildagliptin (■) (mean ± SEM; n=6 per group).
Figure 7. Hepatic plasma insulin to glucagon molar ratio, net hepatic glucose uptake to hepatic sinusoidal plasma insulin ratio and non-hepatic glucose uptake to arterial plasma insulin ratio during the last 3h of the experimental period (60-240 min) in conscious dogs treated with vehicle (□) or vildagliptin (■) (mean ± SEM; n=6 per group).
TABLE 1. Arterial blood lactate, alanine, and glycerol levels and net hepatic balance and plasma free fatty acid levels in 18h-fasted conscious dogs during the basal (-40 to 0 min) and experimental periods (0-240 min).

	Basal Period	Experimental Period (min)				
	-40 to 0	60	120	180	210	240
Plasma Free Fatty Acid Level (µmol/l)						
Control	924 ± 69	245 ± 54	117 ± 23	115 ± 27	147 ± 48	124 ± 39
Vildagliptin	736 ± 118*	111 ± 23	88 ± 26	71 ± 25	82 ± 31	66 ± 15
Blood Glycerol Level (µmol/l)						
Control	97 ± 6	42 ± 9	28 ± 4	31 ± 5	35 ± 6	32 ± 6
Vildagliptin	70 ± 9*	21 ± 4*	24 ± 4	20 ± 5	19 ± 4	16 ± 2
Net Hepatic Glycerol Uptake (µmol/kg/min)						
Control	1.7 ± 0.1	0.8 ± 0.2	0.5 ± 0.1	0.6 ± 0.2	0.6 ± 0.2	0.6 ± 0.2
Vildagliptin	1.6 ± 0.3	0.5 ± 0.2	0.5 ± 0.1	0.4 ± 0.2	0.5 ± 0.2	0.3 ± 0.1
Blood Lactate Level (µmol/l)						
Control	482 ± 81	534 ± 71	536 ± 89	545 ± 66	593 ± 72	564 ± 59
Vildagliptin	433 ± 87	571 ± 82	535 ± 83	555 ± 63	543 ± 49	551 ± 68
Net Hepatic Lactate Balance (µmol/kg/min)						
Control	-4.5 ± 0.7	2.4 ± 1.7	1.1 ± 0.8	0.3 ± 1.2	0.7 ± 0.9	1.5 ± 1.1
Vildagliptin	-2.3 ± 2.7	5.4 ± 2.4	2.1 ± 1.6	3.2 ± 1.7	2.5 ± 1.7	3.2 ± 1.9
Blood Alanine Level (µmol/l)						
Control	289 ± 24	261 ± 23	239 ± 16	230 ± 14	235 ± 16	225 ± 15
Vildagliptin	300 ± 33	275 ± 24	245 ± 13	217 ± 18	221 ± 21	219 ± 24
Net Hepatic Alanine Uptake (µmol/kg/min)						
Control	2.2 ± 0.2	1.5 ± 0.2	1.7 ± 0.1	2.1 ± 0.2	2.0 ± 0.1	2.2 ± 0.3
Vildagliptin	2.3 ± 0.4	1.8 ± 0.2	2.0 ± 0.5	2.2 ± 0.2	2.4 ± 0.2	2.5 ± 0.3

Mean ± SEM; n=6 per group; * P<0.05.
REFERENCES

1. Drucker DJ: The biology of incretin hormones. *Cell Metab* 3:153-165, 2006
2. Zander M, Madsbad S, Madsen JL, Holst JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. *Lancet* 359:824-830, 2002
3. Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ: Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and healthy subjects. *Diabetes* 44:1126-1131, 1995
4. Vilsboll T, Agerso H, Krarup T, Holst JJ: Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. *J Clin Endocrinol Metab* 88:220-224, 2003
5. Ahren B, Gomis R, Standl E, Mills D, Schweizer A: Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. *Diabetes Care* 27:2874-2880, 2004
6. Ahren B, Landin-Olsson M, Jansson PA, Svensson M, Holmes D, Schweizer A: Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. *J Clin Endocrinol Metab* 89:2078-2084, 2004
7. Balas B, Baig MR, Watson C, Dunning BE, Ligueros-Saylan M, Wang Y, He YL, Darland C, Holst JJ, Deacon CF, Cusi K, Mari A, Foley JE, DeFronzo RA: The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients. *J Clin Endocrinol Metab* 92:1249-1255, 2007
8. Edgerton DS, Cardin S, Emshwiller M, Neal D, Chandramouli V, Schumann WC, Landau BR, Rossetti L, Cherrington AD: Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism. *Diabetes* 50:1872-1882, 2001
9. Edgerton DS, Neal DW, Scott M, Bowen L, Wilson W, Hobbs CH, Leach C, Sivakumaran S, Strack TR, Cherrington AD: Inhalation of insulin (Exubera) is associated with augmented disposal of portally infused glucose in dogs. *Diabetes* 54:1164-1170, 2005
10. Donmoyer CM, Chen SS, Hande SA, Lacy DB, Ejiofor J, McGuinness OP: Hyperinsulinemia compensates for infection-induced impairment in net hepatic glucose uptake during TPN. *Am J Physiol Endocrinol Metab* 279:E235-243, 2000
11. Galassetti P, Koyama Y, Coker RH, Lacy DB, Cherrington AD, Wasserman DH: Role of a negative arterial-portal venous glucose gradient in the postexercise state. *Am J Physiol* 277:E1038-1045, 1999
12. Moore MC, Hsieh PS, Neal DW, Cherrington AD: Nonhepatic response to portal glucose delivery in conscious dogs. *Am J Physiol Endocrinol Metab* 279:E1271-1277, 2000
13. Meier JJ, Nauck MA: The potential role of glucagon-like peptide 1 in diabetes. *Curr Opin Investig Drugs* 5:402-410, 2004
14. Mari A, Sallas WM, He YL, Watson C, Ligueros-Saylan M, Dunning BE, Deacon CF, Holst JJ, Foley JE: Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. *J Clin Endocrinol Metab* 90:4888-4894, 2005
15. Ionut V, Hucking K, Liberty IF, Bergman RN: Synergistic effect of portal glucose and glucagon-like peptide-1 to lower systemic glucose and stimulate counter-regulatory hormones. *Diabetologia* 48:967-975, 2005
Increased hepatic glucose uptake during DPP-4 Inhibition

16. Johnson KM, Edgerton DS, Rodewald T, Scott M, Farmer B, Neal D, Cherrington AD: Intraportal GLP-1 infusion increases nonhepatic glucose utilization without changing pancreatic hormone levels. *Am J Physiol Endocrinol Metab* 293:E1085-1091, 2007

17. Ahren B, Holst JJ, Martensson H, Balkan B: Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice. *Eur J Pharmacol* 404:239-245, 2000

18. Drucker DJ: Enhancing incretin action for the treatment of type 2 diabetes. *Diabetes Care* 26:2929-2940, 2003

19. Ahren B, Thomaseth K, Pacini G: Reduced insulin clearance contributes to the increased insulin levels after administration of glucagon-like peptide 1 in mice. *Diabetologia* 48:2140-2146, 2005

20. Groop PH, Groop L, Totterman KJ, Fyhrquist F: Relationship between changes in GIP concentrations and changes in insulin and C-peptide concentrations after guar gum therapy. *Scand J Clin Lab Invest* 46:505-510, 1986

21. Kindmark H, Pigon J, Efendic S: Glucose-dependent insulinotropic hormone potentiates the hypoglycemic effect of glibenclamide in healthy volunteers: evidence for an effect on insulin extraction. *J Clin Endocrinol Metab* 86:2015-2019, 2001

22. Rudovich NN, Rochlitz HJ, Pfeiffer AF: Reduced hepatic insulin extraction in response to gastric inhibitory polypeptide compensates for reduced insulin secretion in normal-weight and normal glucose tolerant first-degree relatives of type 2 diabetic patients. *Diabetes* 53:2359-2365, 2004

23. Brandt A, Katschinski M, Arnold R, Polonsky KS, Goke B, Byrne MM: GLP-1-induced alterations in the glucose-stimulated insulin secretory dose-response curve. *Am J Physiol Endocrinol Metab* 281:E242-247, 2001

24. Hanks JB, Andersen DK, Wise JE, Putnam WS, Meyers WC, Jones RS: The hepatic extraction of gastric inhibitory polypeptide and insulin. *Endocrinology* 115:1011-1018, 1984

25. Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, Nauck MA: The reduction in hepatic insulin clearance after oral glucose is not mediated by gastric inhibitory polypeptide (GIP). *Regul Pept* 113:95-100, 2003

26. Meier JJ, Holst JJ, Schmidt WE, Nauck MA: Reduction of hepatic insulin clearance after oral glucose ingestion is not mediated by glucagon-like peptide 1 or gastric inhibitory polypeptide in humans. *Am J Physiol Endocrinol Metab* 293:E849-856, 2007

27. Ionut V, Liberty IF, Hucking K, Lottati M, Stefanovski D, Zheng D, Bergman RN: Exogenously imposed postprandial-like rises in systemic glucose and GLP-1 do not produce an incretin effect, suggesting an indirect mechanism of GLP-1 action. *Am J Physiol Endocrinol Metab* 291:E779-785, 2006

28. Kawai K, Suzuki S, Ohashi S, Mukai H, Ohmori H, Murayama Y, Yamashita K: Comparison of the effects of glucagon-like peptide-1-(1-37) and -(7-37) and glucagon on islet hormone release from isolated perfused canine and rat pancreases. *Endocrinology* 124:1768-1773, 1989

29. van der Burg MP, Guicherit OR, Frolich M, Gooszen HG: Insulinotropic effects of cholecystokinin, gastric inhibitory polypeptide and glucagon-like peptide-1 during perfusion of short-term cultured canine isolated islets. *Regul Pept* 60:61-67, 1995

30. Edgerton DS, Stettler KM, Rodewald TD, Farmer B, Lautz M, Hastings J, Snead W, Scott M, Cherrington AD: Intraportal exendin delivery increases liver and muscle glucose utilization. *Diabetes* 55:A28, 2006

31. Ionut V, Zheng D, Stefanovski D, Bergman RN: Exenatide Can Reduce Glucose Independent of Islet Hormones or Gastric Emptying. *Am J Physiol Endocrinol Metab*, 2008
Increased hepatic glucose uptake during DPP-4 Inhibition

32. Johnson KM, Edgerton DS, Rodewald T, Scott M, Farmer B, Neal D, Cherrington AD: Intraportally delivered GLP-1, in the presence of hyperglycemia induced via peripheral glucose infusion, does not change whole body glucose utilization. *Am J Physiol Endocrinol Metab* 294:E380-384, 2008

33. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hufner M, Schmiele WH: Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. *J Clin Endocrinol Metab* 87:1239-1246, 2002

34. Ahren B, Larsson H, Holst JJ: Effects of glucagon-like peptide-1 on islet function and insulin sensitivity in noninsulin-dependent diabetes mellitus. *J Clin Endocrinol Metab* 82:473-478, 1997

35. Orskov L, Holst JJ, Moller J, Orskov C, Moller N, Alberti KG, Schmitz O: GLP-1 does not acutely affect insulin sensitivity in healthy man. *Diabetologia* 39:1227-1232, 1996

36. Ryan AS, Egan JM, Habener JF, Elahi D: Insulinotropic hormone glucagon-like peptide-1-(7-37) appears not to augment insulin-mediated glucose uptake in young men during euglycemia. *J Clin Endocrinol Metab* 83:2399-2404, 1998

37. Vella A, Shah P, Reed AS, Adkins AS, Basu R, Rizza RA: Lack of effect of exendin-4 and glucagon-like peptide-1-(7,36)-amide on insulin action in non-diabetic humans. *Diabetologia* 45:1410-1415, 2002

38. Prigeon RL, Quddusi S, Paty B, D'Alessio DA: Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. *Am J Physiol Endocrinol Metab* 285:E701-707, 2003

39. Dardevet D, Moore MC, DiCostanzo CA, Farmer B, Neal DW, Snead W, Lautz M, Cherrington AD: Insulin secretion-independent effects of GLP-1 on canine liver glucose metabolism do not involve portal vein GLP-1 receptors. *Am J Physiol Gastrointest Liver Physiol* 289:E75-81, 2004

40. Dardevet D, Moore MC, Neal D, DiCostanzo CA, Snead W, Cherrington AD: Insulin-independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of heptoporal region. *Am J Physiol Endocrinol Metab* 287:E75-81, 2004

41. Vella A, Shah P, Basu R, Basu A, Camilleri M, Schwenk FW, Holst JJ, Rizza RA: Effect of glucagon-like peptide-1(7-36)-amide on initial splanchnic glucose uptake and insulin action in humans with type 1 diabetes. *Diabetes* 50:565-572, 2001

42. Meneilly GS, McIntosh CH, Pederson RA, Habener JF, Gingerich R, Egan JM, Elahi D: Glucagon-like peptide-1 (7-37) augments insulin-mediated glucose uptake in elderly patients with diabetes. *J Gerontol A Biol Sci Med Sci* 56:M681-685, 2001

43. Meneilly GS, McIntosh CH, Pederson RA, Habener JF, Gingerich R, Egan JM, Finegood DT, Elahi D: Effect of glucagon-like peptide 1 on non-insulin-mediated glucose uptake in the elderly patient with diabetes. *Diabetes Care* 24:1951-1956, 2001

44. Egan JM, Montrose-Rafizadeh C, Wang Y, Bernier M, Roth J: Glucagon-like peptide-1(7-36) amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: one of several potential extrapancreatic sites of GLP-1 action. *Endocrinology* 135:2070-2075, 1994

45. Cervera A, Wajcberg E, Srijwijtikamol A, Fernandez M, Zuo P, Triplitt C, Musi N, DeFronzo RA, Cersosimo E: Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. *Am J Physiol Endocrinol Metab* 294:E846-852, 2008

46. Myers SR, McGuinness OP, Neal DW, Cherrington AD: Intraportal glucose delivery alters the relationship between net hepatic glucose uptake and the insulin concentration. *J Clin Invest* 87:930-939, 1991
47. Vahl TP, Tauchi M, Durler TS, Elfers EE, Fernandes TM, Bitner RD, Ellis KS, Woods SC, Seeley RJ, Herman JP, D'Alessio DA: Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. *Endocrinology* 148:4965-4973, 2007

48. Villanueva-Penacarrillo ML, Delgado E, Trapote MA, Alcantara A, Clemente F, Luque MA, Perea A, Valverde I: Glucagon-like peptide-1 binding to rat hepatic membranes. *J Endocrinol* 146:183-189, 1995

49. Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE, 3rd: Functional expression of the rat glucagon-like peptide-1 receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. *Endocrinology* 133:57-62, 1993

50. Valverde I, Morales M, Clemente F, Lopez-Delgado MI, Delgado E, Perea A, Villanueva-Penacarrillo ML: Glucagon-like peptide 1: a potent glycogenic hormone. *FEBS Lett* 349:313-316, 1994