Cavity-induced superconducting and \(4k_F\) charge-density-wave states

Ameneh Sheikhan\(^1,2\) and Corinna Kollath\(^2\)

\(^1\)Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
\(^2\)HISKP, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany

We propose two experimental setups for fermionic atoms in a high-finesse optical resonator in which either a superconducting state with s-wave symmetry of the pairs or a \(4k_F\) charge density wave can self-organize. In order to stabilize the s-wave pairing, a two component attractively interacting fermionic gas is confined to a one dimensional chain structure by an optical lattice. The tunneling of the atoms along the chains is suppressed initially by an energy offset between neighboring sites. A Raman transition using the cavity mode and a transversal pump laser then reintroduces a cavity-assisted tunneling. The feedback mechanism between the cavity field and the atoms leads to a spontaneous occupation of the cavity field and of a state of the fermionic atoms which is dominated by s-wave pairing correlations. Extending the setup to a quasi-one-dimensional ladder structure where the tunneling of atoms along the rungs of the ladder is cavity-assisted, the repulsively interacting fermionic atoms self-organize into a \(4k_F\) charge density wave. We use adiabatic elimination of the cavity field combined with state-of-the-art density matrix renormalization group methods in finite systems in order to identify the steady state phases of the system.

I. INTRODUCTION

The coupling of light to matter has been the subject of exciting investigation. In particular, the coupling of ultracold atoms to the light field of an optical resonator has led to many interesting phenomena \([1]\). This includes the realization of the Jaynes Cummings model by the coupling of a single two-level atom to the radiation field of an optical high finesse cavity \([2,3]\) and the recent open-system realization of the Dicke model by the loading of a Bose-Einstein condensate into an optical cavity \([4,5]\). The Dicke model exhibits a quantum phase transition due to a collective coupling of the atoms to the light field; the condensed atoms can be either in a phase characterized by a homogeneous density and a vanishing cavity field or self-organize into a supersolid phase with checkerboard density patterns and occupied cavity field. This phase transition which was predicted theoretically \([6,7]\) is driven by the cavity induced long-range interactions between atoms. In the open-system realization the self-organized phase is the so-called attractor state of the dissipative system due to the photon loss from the mirrors of the cavity.

The additional application of underlying static lattices has been achieved in order to investigate the direct competition between short-range interactions of the atoms and the cavity induced long-range interactions \([10,11]\). The interplay between these interactions leads to the emergence of complex phases e.g. a self-organized Mott-insulator or a self-organized charge density wave state \([12,13]\). A variety of different self-organized phases has been proposed theoretically \([14]\). For example, the self-organization of bosonic atoms into different geometries \([15,16]\), of fermionic atoms into super-radiant phases \([17,18]\) and in multimode cavities \([19,20]\) have been studied. Moreover, different theoretical proposals have been designed in order to realize a spin-orbit coupling \([21,22]\) and artificial gauge fields \([23,24]\) mediated by the cavity field. In these systems the self-organized phases can be topologically non-trivial and carry chiral current.

In this work interacting fermions are coupled to a cavity mode exploiting Raman processes involving a cavity mode to induce tunneling between two sites of a preexisting lattice. We show the self-organization of fermions into an s-wave superconducting state in case of one dimensional chains with attractive interaction and into a charge density wave with \(4k_F\)-oscillations in the case of a ladder geometry with repulsive interaction.

In the following we first describe the setup for the interacting fermions in one-dimension coupled to a cavity mode and introduce the corresponding theoretical model in Sec. II. Particularly, by adiabatically eliminating the cavity mode we derive an effective Hamiltonian for the fermionic atoms together with a self-consistency condition. We also give the stability condition for the non-trivial self-organized solutions of the effective Hamiltonian in which the cavity is occupied. In Sec. III we study the system solving the self-consistent equation numerically by DMRG methods. Also the stability of the s-wave superconducting phase induced by the cavity is investigated. In Sec. IV we introduce the fermionic system in the ladder geometry coupled to the cavity. In Sec. V we discuss the properties and stability of self-organized phases of this model.

II. SETUP AND THEORETICAL MODEL FOR THE ONE-DIMENSIONAL CHAINS

We consider an ultracold spin-balanced interacting fermionic gas inside an optical cavity, where the cavity is oriented along \(x\)-direction (see Fig. 1(a)). The fermions are subjected to an anisotropic, three-dimensional optical lattice which confines them into an array of decoupled chains along the \(y\)-direction. Tunneling in the \(y\)-direction is suppressed by an energy offset \(\Delta\) between neighboring sites which, for example, can be created by an AC Stark shift gradient or a superlattice. For both
spin states, tunneling is restored by two resonant two-photon Raman transitions similar to the setups discussed in Ref. 49 for the gradient and in Ref. 50 for the superlattice. We describe here the situation for the gradient in detail which can then be adapted to the superlattice setup. The Raman transitions use two standing-wave pump laser beams with frequencies ω_{p1}, ω_{p2} along y-direction and one mode of the cavity with resonance frequency $\omega_c \approx \omega_{p1} + \Delta/h \approx \omega_{p2} - \Delta/h$ (see Fig. 1(b)). We assume all other cavity modes to be far-detuned. The overlap integrals along the chain for both spin up and down states, to balance the strength of the tunneling in two directions of the optical lattice and the cavity mode [43]. In order to describe the system in terms of the atomic spin up and down states and the cavity mode. Considering the periodic structure of the underlying lattice we can express the Hamiltonian in the tight-binding approximation. Using the rotating frame with frequency $\omega_p = \omega_{p1} + \omega_{p2}$, we obtain

$$\begin{align*}
H &= H_c + H_{ac} + H_{int}, \\
H_c &= \hbar \delta_p a^\dagger a, \\
H_{ac} &= -\hbar \tilde{\Omega}(a^\dagger + a) \sum_{j,\sigma} \left(c^\dagger_{j,\sigma} c_{j+1,\sigma} + H.c. \right), \\
H_{int} &= U \sum_j n_{j,\uparrow} n_{j,\downarrow}.
\end{align*}$$

(1)

Here, $c_{j,\sigma}(c^\dagger_{j,\sigma})$ annihilates (creates) a fermionic atom with spin $\sigma = \uparrow, \downarrow$ on site j of the chain. The operator $n_{j,\sigma} = c^\dagger_{j,\sigma} c_{j,\sigma}$ is the density operator. The fermions interact with the on-site interaction strength U. The cavity field operator a' (a^\dagger) annihilates (creates) a cavity photon in the considered cavity mode and H_c represents the dynamics of the cavity field in the rotating frame. The average cavity-pump detuning is denoted by $\delta_p = (\tilde{\omega}_c - \omega_p)$.

The cavity-assisted tunneling along the chain is described by the term H_{ac} with the effective Rabi frequency $\hbar \tilde{\Omega} = \hbar \Omega_{p1} g_0 \phi_{\perp} \phi_{\parallel}$, $\Omega_{p1,\parallel}$ denotes the Rabi frequency of the first pump beam for the spin up state and g_0 is the vacuum-Rabi frequency of the cavity. The overlap integrals $\phi_{\perp} \phi_{\parallel}$ are effective parameters depending on the Wannier states and can be tuned via the geometry of the optical lattice and the cavity mode [45]. In order to balance the strength of the tunneling in two directions along the chain for both spin up and down states, the Rabi frequency of the pump beam $i = 1, 2$ for spin $\sigma = \uparrow, \downarrow$ is chosen as $\Omega_{p1,\sigma} = \Omega_{p1} \gamma_{\omega_{p1} - \omega_{p2}}^{\omega_{p1} - \omega_{p2}}$.

Considering the dissipative nature of the imperfect optical resonator, the dynamics of the system follows the Lindblad master equation,

$$\begin{align*}
\dot{\rho}(t) &= -i/\hbar [H, \rho(t)] + D(\rho(t)) \\
D(\rho) &= \kappa (2a^\dagger a \rho - a \rho a^\dagger - \rho a^\dagger a) + \kappa (2a^\dagger a \rho - a \rho a^\dagger - \rho a^\dagger a), \tag{2}
\end{align*}$$

where κ is the bare cavity loss rate. The resulting equation of motion for the cavity mode is given by

$$i\partial_t a = -\tilde{\Omega} K + (\delta_{cp} - i\kappa) a. \tag{3}$$

Here, $K = \sum_{j,\sigma} (c^\dagger_{j,\sigma} c_{j+1,\sigma} + H.c.)$ is defined as the tunneling operator. Furthermore, we eliminate the cavity field dynamics adiabatically from the equations of motion by using its steady state solution α of the equation $\partial_t \langle a \rangle = 0$ which is given by

$$\alpha = \langle a \rangle = \frac{\tilde{\Omega}}{\delta_{cp} - i\kappa} \langle K \rangle. \tag{4}$$

Replacing the cavity operator by its stationary state value in the equation of motions for the fermionic operators leads us to an effective Hamiltonian for the fermions which is the well known Hubbard model:

$$H_F = -J K + H_{int}. \tag{5}$$

The feedback of the cavity field on the dynamics of the atoms appears through the self-consistent determination of the tunneling amplitude $J = A\langle K \rangle$ with $A = 2\hbar \tilde{\Omega}^2/\delta_{cp} + \kappa^2$. We will call A loosely the pump strength, since this is typically one of the easiest experimental nobes in order to tune the value of A. The stationary states of the system are determined by the solution of the effective Hamiltonian (Eq. 5) together with the self-consistency equation. In order to determine the steady states, we calculate the dependence of the expectation value of the tunneling $\langle K \rangle/L$ on the tunneling amplitude J within the effective model and solve numerically the self-consistency condition. Additionally to the existence of non-trivial solutions, their stability needs to be assured.

A stability condition can be derived by probing the dynamics of the cavity field and only considering its linear fluctuations above the desired solution similar to the approach in Refs. 41, 51. Using Eq. 4, the equations of motion of the coordinate and momentum quadratures of the cavity field, i.e., $x_a \equiv \langle a + a^\dagger \rangle$ and $p_a = -i\langle a - a^\dagger \rangle$ are

$$\begin{align*}
\partial_t x_a &= -\kappa x_a + \delta_{cp} p_a, \\
\partial_t p_a &= -\delta_{cp} x_a - \kappa p_a + 2\tilde{\Omega} \langle K \rangle \tag{6}
\end{align*}$$

with stationary solutions $x_a = 0$ and $p_a = 0$. We consider linear fluctuations around the stationary solutions, $x_a = x_a^{(s)} + \tilde{x}_a$ and $p_a = p_a^{(s)} + \tilde{p}_a$, and also linearize the average of the tunneling in terms of the fluctuations $\langle K \rangle \approx \langle K \rangle^{(s)} + d\langle K \rangle^{(s)}/dx_a \tilde{x}_a$, where $\langle K \rangle^{(s)}$
is the value of the tunneling corresponding to the stationary solution $x_a^{(s)}$. From Eqs. (6) we can derive a set of differential equations for the fluctuations

$$
\begin{align*}
\partial_t \tilde{x}_a &= -\kappa \tilde{x}_a + \delta_c \tilde{p}_a \\
\partial_t \tilde{p}_a &= \left(-\delta_c + 2\tilde{\Omega} \frac{d(K)^{(s)}}{dx_a^{(s)}} \right) \tilde{x}_a - \kappa \tilde{p}_a.
\end{align*}
$$

The eigenvalues of the Jacobian of this set of differential equations are given by

$$
\lambda_{\pm} = -\kappa \pm \sqrt{-\delta_c^2 + 2\delta_c \tilde{\Omega} \frac{d(K)^{(s)}}{dx_a^{(s)}}}.
$$

The stable stationary solutions are the ones for which the eigenvalues have a negative real part.

Thus, the stability condition for the system with $\delta_c \rightarrow 0$ reads

$$
\left(\frac{d(K)^{(s)}}{dJ^{(s)}} \right) \frac{|U|}{AL} < 0
$$

where the derivative of the tunneling is evaluated at the stationary solution.

The model (Eq. 2) possesses a \mathbb{Z}_2 symmetry, since it is invariant under the transformation $a \rightarrow -a, c_{j,\sigma} \rightarrow (-1)^j c_{j,\sigma}$. For the parameters under consideration, the tunneling K has the same sign as J, such that there exists only a non-trivial steady state if the cavity-pump detuning δ_c is positive (blue detuned). Without loss of generality we consider $J \geq 0$ in our calculations.

We determine the physical properties of the effective model using the density matrix renormalization group (DMRG) algorithm. A high-performance DMRG code for finite systems with open boundary conditions which uses ITensor library [52], enables us to target correlations over long distances. We focus in our simulations on a filling $n = \frac{N_\uparrow + N_\downarrow}{L} = 0.9375$ and zero magnetization $M_z = N_\uparrow - N_\downarrow = 0$ where N_\uparrow (N_\downarrow) is the number of fermions with spin up (down) and L is the number of sites of the chain. We expect the main findings to be stable with respect to parameter changes. In DMRG simulations we use a chain of $L = 192$ with $N_\uparrow + N_\downarrow = 180$ or $L = 384$ with $N_\uparrow + N_\downarrow = 360$. The results presented in this work are calculated using a bond dimension of up to $M = 5000$ which leads, as we verified, to a good accuracy for the considered cases.

III. SELF-ORGANIZED S-WAVE SUPERCONDUCTING STATE

In order to determine the non-trivial self-consistent solutions, we calculated using DMRG methods the dependence of the expectation value of the tunneling $\langle K \rangle$ on the tunneling amplitude J and solve the self-consistency condition numerically. In Fig. 2 the expectation value of the tunneling $\langle K \rangle / L$ is represented for different tunneling amplitudes rescaled by the interaction. The self-consistency condition can be rewritten as $\langle K \rangle / L = \frac{|U|}{AL} J / |U|$. This form makes it clear that the self-consistency condition has an easy graphical interpretation. Using the dependence of the expectation value of the tunneling on the tunneling amplitude shown in Fig. 2 the condition can be interpreted graphically by determining the intersection of this curve $\langle K \rangle / L$ with a linear curve $\frac{|U|}{AL} J / |U|$ where its slope $\left(\frac{AL}{|U|} \right)^{-1}$ depends on the pump strength A. Moreover the graphical interpretation of the stability condition is that a solution is
stable if at the corresponding intersection the derivative of the curve for the expectation value of the tunneling is less than the slope of the linear curve. For large values of the pump strength there exists a stable non-trivial self-consistent solution of the self-consistency equation as shown for one example in Fig. 2. The exact dependence of the expectation value of the tunneling at low values of the tunneling amplitude J determines whether there exists a critical pump strength below which only an empty cavity field is the trivial solution of the self-consistency equation. Our numerical solution suggests that above a critical pump strength the non-trivial solutions emerge. Due to the finite resolution of the numerical data and the slight finite size effects, we cannot pinpoint an exact value of this critical pump strength. The non-trivial self-consistent solutions at large pump strength A are stable, since the slope of the expectation value of the tunneling approaches the non-interacting value ($U = 0$) shown by the red arrow. The green solid line is the linear curve with slope $\left(\frac{AL}{|U|} \right)^{-1} \approx 3.87$. The crossing of the two curves gives the self-consistent solution with $J = \frac{2}{5}|U|$.

FIG. 2. (color online) The expectation value of the tunneling $\langle K \rangle / L$ for an attractive Hubbard chain $U < 0$ versus the rescaled tunneling amplitude $J/|U|$. Shown are two system size $L = 192, L = 384$ with filling $n = 0.9375$ which lie on top of each other. When the tunneling is very large compared to the interaction the value of the tunneling approaches the non-interacting value ($U = 0$) shown by the red arrow. The green solid line is the linear curve with slope $\left(\frac{AL}{|U|} \right)^{-1} \approx 3.87$. The crossing of the two curves gives the self-consistent solution with $J = \frac{2}{5}|U|$.

FIG. 3. (color online) The density-density and s-wave pairing correlations of the attractive Hubbard chain with $J = \frac{2}{5}|U|$ calculated from DMRG for a system size $L = 384$ and $N = 360$ particles ($n = 0.9375$). Whereas both correlations decay algebraically, the s-wave pairing correlation is the dominant correlation. The pairing correlation has oscillations with period of $2\pi n = 4k_F$ on top and is fitted with the function $l^{-\gamma}(a + b \cos(2\pi n(l - l_0)))$ (dashed line). Fits with algebraic functions $\sim l^{-\gamma}$ are also shown (solid lines).

pairing correlations defined by $\langle \Delta_s(j) \Delta_s^\dagger(j+l) \rangle$ with the onsite pairs $\Delta_s(j) = c_{j,\uparrow}c_{j,\downarrow} - c_{j,\downarrow}c_{j,\uparrow}$ which decay algebraically with distance. This is shown in Fig. 3 for an attractive interaction with $J = \frac{2}{5}|U|$. Compared to other correlations in the system the decay of the s-wave pairing correlation is the slowest decay and it oscillates with the period of $2\pi n = 4k_F$. Due to the gap in the spin sector of the excitations, the spin correlations decay exponentially fast with distance (not shown) and the faster algebraic decay of the density-density correlations $\langle \Delta n(j) = n(j) - \langle n(j) \rangle \rangle$ is shown in Fig. 3. We note that in the weakly interacting regime the bosonization method shows a relation between the exponent of the algebraic decay of these correlations; the density-density correlation decays as l^{-K_ρ} in which K_ρ is known as the Luttinger liquid parameter while the s-wave pairing correlation decays as l^{-1/K_ρ}. For the parameters used in Fig. 3 the Luttinger liquid parameter extracted from the density-density correlations $K_\rho = 1.13$ is very close to the Luttinger liquid parameter extracted from the s-wave pairing correlations $K_\rho = \frac{1}{\alpha_{2\pi}N} = 1.124$. One would expect that in the thermodynamic limit ($L \to \infty$) these two values become equal. The cavity-induced s-wave superconducting phase is stable by the cavity dissipation and leaking of photons from the cavity signals the emergence of the super-radiant phase and equivalently the superconducting phase.
FIG. 4. (color online) A balanced mixture of fermionic atoms in two internal states is loaded into a structure of decoupled ladders formed by optical lattices. Tunneling along the rung of the ladder is strongly suppressed by a potential offset Δ between neighboring lattice sites and restored by a cavity-assisted Raman process.

FIG. 5. (color online) Graphical interpretation of the self-consistency condition. The dependence of the rung tunneling (blue circles) on different ratios of the tunneling amplitudes J_\perp/J_\parallel is shown for the repulsive Hubbard ladder with $U = 8J_\parallel$, $J_\perp = 2J_\parallel$ for systems of $L = 192$ rungs and $N = 360$ particles ($n = 0.9375$). Both correlations decay algebraically with distance. The curves are fitted with the function $t^{-\beta}(a + b \cos(2\pi n(l - l_0)))$ with the period of $2\pi n = 4k_F$ (dashed lines). The fits with only the algebraic function are also shown as guide to the eye (solid lines). The density-density correlations decay slower than the superconducting correlations and, thus, are dominating which is the signature of the charge density wave CDW ($4k_F$).

FIG. 6. (color online) The density-density correlations (orange squares) and the unconventional pair correlations (blue circles) versus distance l computed starting from site $j = 20$ in a Hubbard ladder with $U = 8J_\parallel$, $J_\perp = 2J_\parallel$ for systems of $L = 192$ rungs and $N = 352$ particles ($n = 0.9375$). Both correlations decay algebraically with distance. The curves are fitted with the function $t^{-\beta}(a + b \cos(2\pi n(l - l_0)))$ with the period of $2\pi n = 4k_F$ (dashed lines). The fits with only the algebraic function are also shown as guide to the eye (solid lines). The density-density correlations decay slower than the superconducting correlations and, thus, are dominating which is the signature of the charge density wave CDW ($4k_F$).

IV. SETUP AND THEORETICAL MODEL FOR THE LADDER STRUCTURE

We extend the model to an array of ladders in which the tunneling along the legs of the ladders is the standard tunneling and only the tunneling on the rungs of the ladders is induced by the Raman process (see Fig. 4). In order to reach this situation, decoupled ladders with an energy offset Δ between their legs are generated by three dimensional optical (super)-lattices (see for example Ref. [44] for more details). No energy offset along the legs of the ladders is employed. Thus, the tunneling along the legs is the standard tunneling and the tunneling along the rungs of the ladders is initially suppressed and reenforced by the cavity-assisted tunneling introduced in the previous section. Performing the same approximations as before, the Hamiltonian describing the ladder structures reads

$$H = H_c + H_\parallel + H_{ac} + H_{\text{int}},$$

$$H_c = \hbar \delta c_0 a_\dagger a,$$

$$H_\parallel = -J_\parallel \sum_{j,\sigma,m=0,1} \left(c_{m,j,\sigma} c_{m+1,j,\sigma} + H.c. \right),$$

$$H_{ac} = -\hbar \Omega (a_\dagger + a) \sum_{j,\sigma} \left(c_{0,j,\sigma} c_{1,j,\sigma} + H.c. \right),$$

$$H_{\text{int}} = U \sum_{j,m=0,1} n_{m,j,\uparrow} n_{m,j,\downarrow}.$$ \hspace{1cm} (10)

Here, $c_{m,j,\sigma} (c_{m,j,\sigma}^\dagger)$ annihilates (creates) an atom with spin $\sigma = \uparrow, \downarrow$ on rung j and leg m of the ladder. For notational simplicity we introduce the tunneling operator along the rungs of the ladder as $K_\perp = \sum_{j,\sigma} \left(c_{0,j,\sigma} c_{1,j,\sigma} + H.c. \right)$. The dynamics of the system is again described by a Lindblad master equation due to
the presence of losses from the cavity. Using the adiabatic elimination of the cavity field, one can derive an effective Hamiltonian for the fermions with a self-consistency condition given by,

\[H_F = H_0 + H_\perp + H_{\text{int}}, \]
\[H_\perp = -J_\perp K_\perp, \]
\[J_\perp = A(K_\perp). \] (11)

The pump strength \(A = \frac{2m_0^2 \delta}{\epsilon_F^2 + \kappa_F^2} \) is defined as before. The effective Hamiltonian is the Hubbard Hamiltonian on a ladder which shows the power-law decay of the correlation functions and has been studied before, see e.g. [53 55] for analytical and [56 59] for numerical studies. The stability condition for the solutions is

\(\left(\frac{d(K_\perp)/L}{dJ_\perp/L} \right) < \left(\frac{A L}{J_\perp} \right)^{-1}. \)

We simulate the effective model employing the DMRG method for a ladder of size \(2 \times L \) with \(L = 192, \ N = 360 \) particles and \(M_\perp = 0 \). The maximum bond dimension we consider is \(M = 5000 \) and we checked the convergence of our results in this parameter.

V. SELF-ORGANIZATION OF THE 4k_F CHARGE DENSITY WAVE

As in the previous situation, a graphical interpretation of the self-consistency condition \((K_\perp)/L = J_\parallel J_\perp/J_\parallel \) exists. Graphically, this means that in order to find the solutions of the self-consistency equation one needs to find the intersections of \((K_\perp)/L \) and a linear line with the slope \((\frac{A L}{J_\parallel})^{-1} \). In Fig. 6 the expectation value of the rung tunneling \(\langle K_\perp \rangle/L \) is plotted versus the tunneling amplitude \(J_\perp/J_\parallel \). A monotonically rise with a turning in the curvature is found. Due to this complex dependence of the expectation value of the rung tunneling on the tunneling amplitude, different situations can occur depending on the value of the pump strength \(A \): (i) there might be no intersection, i.e. no non-trivial solution exists, (ii) one intersection, (iii) more than one intersection for a certain pump strength (shown). Our numerical solution suggests a critical pump strength below which no non-trivial stable solution of the self-consistency condition exists, i.e. in this steady state the cavity is not occupied and no tunneling between the different legs of the ladders occurs. Above the critical value in an interval of the pump strength \(A_{cr,1} < A < A_{cr,2} \) our numerical solution gives at least two solutions of the self-consistency condition. However, in the case of two non-trivial solutions only the solution with the larger value of the tunneling amplitude is stable according to the stability condition. For strong values of the pump strength, \(A > A_{cr,2} \), our results show only one stable non-trivial solution. As shown in Fig. 5 the solutions with \(J_\perp/J_\parallel > 1.65 \) are stable.

For each of the stable non-trivial solutions the cavity field becomes dynamically occupied and the two legs of the ladder are coupled by the cavity-induced tunneling. In order to obtain information about the properties of the fermions in this steady state, we need to consider the properties of the effective Hamiltonian. At repulsive interaction in the Hubbard model on a ladder, a crossover between two interesting phases occurs. At intermediate rung tunneling, an unconventional superconductor emerges and at small and large rung tunneling a 4k_F charge density wave (CDW_{4k_F}) forms [53 55]. \(k_F \) is the Fermi wave-vector which is set by the filling as \(2\pi n = 4k_F \).

Both the singlet-pair correlations, \(\langle \Delta_d(j)\Delta_s^\dagger(j + l) \rangle \) with the singlet on a rung \(\Delta_d(j) = \frac{c_{0,j+1\downarrow}^\dagger c_{0,j\downarrow} - c_{0,j\uparrow}^\dagger c_{0,j+1\uparrow}}{2} \), and the density-density correlations, \(\langle \Delta n(j)\Delta n(j + l) \rangle \), decay algebraically. The slowest and, thus, the dominating decay is characterizing the properties of the state. The algebraic decay of the correlations in the Hubbard ladder has been studied previously using DMRG [56 59].

For the considered interaction strength of \(U = 8J_\parallel \) we determine the crossover between d-wave superconductor and 4k_F-charge-density wave by comparing the algebraic decay of the singlet-pair correlations, i.e. \(\langle \Delta_d(j)\Delta_s^\dagger(j + l) \rangle \), and density-density correlations for different rung tunneling. As an example, we show in Fig. 6 the density correlation and singlet-pair correlations for the solution with \(J_\perp/J_\parallel = 2 \). The period of \(4k_F = 2\pi n \) is clearly seen in both correlations. Whereas at small distances the singlet-pair correlation has a larger amplitude than the density-density correlation, at long distances the 4k_F-density-density correlation shows the slower decay and is dominating. The bosonization predicts that the exponent of the d-wave pairing correlation is equal to the inverse of the exponent of the density-density correlation which is not yet the case for the results shown in Fig. 6. One would expect that this relation is fulfilled in the thermodynamic limit and here we can discuss the slower decay of the d-wave pairing correlations compared to other correlations up to the system size considered in the simulations (\(L = 192 \)).

The crossover between the phases approximately occurs at \((J_\perp/J_\parallel)_{cr} \approx 1.6 \) with a dominating CDW_{4k_F} phase for larger values of \(J_\perp/J_\parallel \) which corresponds to the stable non-trivial solutions of the self-consistency condition (see Fig. 5). This means that in the self-organized setup at the considered interaction strength only the CDW_{4k_F} phase is stabilized. Let us note that we find a similar behavior for different interaction strength, different fillings and different anisotropies of tunneling along the legs of the ladder. Thus, it seems that the unconventional superconducting state cannot be stabilized easily by the coupling to the cavity.

VI. CONCLUSION

To summarize, the coupling mechanism we introduced between atoms and the cavity field can lead to a self organization into an s-wave superconducting phase for a
chain of attractively interacting atoms and into a 4kF-charge density wave on a ladder geometry with repulsive interaction. These steady states are stable and protected against dissipative fluctuations of the system and can be realized in the experiment by the super-radiant phase in which the cavity field is occupied and photons leak from the cavity. We could not stabilize in the ladder geometry the unconventional superconducting phase for the considered parameters even changing the interaction, particle filling and anisotropy of the tunneling along the legs of the ladder.

VII. ACKNOWLEDGEMENTS

We would like to thank T. Gianarchi, M. Köhl and E. Orignac for fruitful discussions. We acknowledge support from research council of Shahid Beheshti University, G.C. (A.S.), the DFG (TR 185 project B3, FOR1807, SFB 1238 project C05, and Einzelantrag) and the ERC (Grant Number 648166) (C.K.).

[1] Helmut Ritsch, Peter Domokos, Ferdinand Brennecke, and Tilman Esslinger. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 85:553–601, Apr 2013.
[2] Girish S. Agarwal. Quantum Optics. Cambridge University Press, 2013.
[3] Serge Haroche and Jean-Michel Raimond. Exploring the Quantum. Oxford University Press, 2006.
[4] K. Baumann, C. Guerin, F. Brennecke, and T. Esslinger. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature, 464:1301, 2010.
[5] H. Keßler, J. Klinder, M. Wolke, and A. Hemmerich. Steering matter wave superradiance with an ultranarrow-band optical cavity. Phys. Rev. Lett., 113:070404, Aug 2014.
[6] Peter Domokos and Helmut Ritsch. Collective cooling and self-organization of atoms in a cavity. Phys. Rev. Lett., 89:253003, Dec 2002.
[7] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael. Proposed realization of the dicke-model quantum phase transition in an optical cavity qed system. Phys. Rev. A, 75:013804, Jan 2007.
[8] G. Szirmaia D. Nagy and P. Domokos. Self-organization of a Bose-Einstein condensate in an optical cavity. Eur. Phys. J. D, 48:127, 2008.
[9] Francesco Piazza, Philipp Strack, and Wilhelm Zwerger. Bose-Einstein condensation versus dickehepplieb transition in an optical cavity. Annals of Physics, 339:135 – 159, 2013.
[10] T. J. Elliott and I. B. Mekhov. Engineering many-body dynamics with quantum light potentials and measurements. Phys. Rev. A, 94:013614, Jul 2016.
[11] M. Reza Bakhtiari, A. Hemmerich, H. Ritsch, and M. Thorwart. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice. Phys. Rev. Lett., 114:123601, Mar 2015.
[12] Christoph Maschler and Helmut Ritsch. Cold atom dynamics in a quantum optical lattice potential. Phys. Rev. Lett., 95:260401, Dec 2005.
[13] C. Maschler, I. B. Mekhov, and H. Ritsch. Ultracold atoms in optical lattices generated by quantized light fields. The European Physical Journal D, 46(3):545–560, 2008.
[14] Jonas Larson, Bogdan Danski, Giovanna Morigi, and Maciej Lewenstein. Mott-insulator states of ultracold atoms in optical resonators. Phys. Rev. Lett., 100:050401, Feb 2008.
[15] Wolfgang Niedenzu, Rainer Schulze, András Vukics, and Helmut Ritsch. Microscopic dynamics of ultracold particles in a ring-cavity optical lattice. Phys. Rev. A, 82:043605, Oct 2010.
[16] A. O. Silver, M. Hohenadler, M. J. Bhaveen, and B. D. Simons. Bose-hubbard models coupled to cavity light fields. Phys. Rev. A, 81:023617, Feb 2010.
[17] Sonia Fernández-Vidal, Gabriele De Chiara, Jonas Larson, and Giovanna Morigi. Quantum ground state of self-organized atomic crystals in optical resonators. Phys. Rev. A, 81:043407, Apr 2010.
[18] Yongqiang Li, Liang He, and Walter Hofstetter. Lattice-supersolid phase of strongly correlated bosons in an optical cavity. Phys. Rev. A, 87:051604, May 2013.
[19] Renate Landig, Lorenz Hruby, Nishant Dogra, Maucelle Landini, Rafael Mottl, Tobias Donner, and Tilman Esslinger. Quantum phases from competing short- and long-range interactions in an optical lattice. Nature, advance online publication, Apr 2016. Letter.
[20] J. Klinder, H. Keßler, M. Reza Bakhtiari, M. Thorwart, and A. Hemmerich. Observation of a superradiant mott insulator in the dicke-hubbard model. Phys. Rev. Lett., 115:230403, Dec 2015.
[21] Shabnam Safaei, Christian Miniatura, and Benoît Grémaud. Triangular and honeycomb lattices of cold atoms in optical cavities. Phys. Rev. A, 92:043810, Oct 2015.
[22] Julian Leonard, Andrea Morales, Philip Tupancic, Tilman Esslinger, and Tobias Donner. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature, 543:87 EP —, Mar 2017.
[23] Jonas Larson, Giovanna Morigi, and Maciej Lewenstein. Cold fermi atomic gases in a pumped optical resonator. Phys. Rev. A, 78:023815, Aug 2008.
[24] Markus Müller, Philipp Strack, and Subir Sachdev. Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions. Phys. Rev. A, 86:023604, Aug 2012.
[25] Francesco Piazza and Philipp Strack. Umklapp superradiance with a collisionless quantum degenerate fermi gas. Phys. Rev. Lett., 112:143003, Apr 2014.
[26] J. Keeling, J. Bhaveen, M., and D. Simons. Fermionic superradiance in a transversely pumped optical cavity. Phys. Rev. Lett., 112:143002, Apr 2014.
[27] Yu Chen, Zhenhua Yu, and Hui Zhai. Superradiance of degenerate fermi gases in a cavity. Phys. Rev. Lett., 112:143004, Apr 2014.
[28] Yu Chen, Hui Zhai, and Zhenhua Yu. Superradiant phase transition of fermi gases in a cavity across a feshbach resonance. *Phys. Rev. A*, 91:021602, Feb 2015.

[29] Sarang Gopalakrishnan, Benjamin L. Lev, and Paul M. Goldbart. Emergent crystallinity and frustration with Bose-Einstein condensates in multimode cavities. *Nature Physics*, 5(11):845–850, 2009.

[30] Stefan Nimmrichter, Klemens Hammerer, Peter Asenbaum, Helmut Ritsch, and Markus Arndt. Master equation for the motion of a polarizable particle in a multimode cavity. *New Journal of Physics*, 12(8):083003, 2010.

[31] Philipp Strack and Subir Sachdev. Dicke quantum spin glass of atoms and photons. *Phys. Rev. Lett.*, 107:277202, Dec 2011.

[32] Sarang Gopalakrishnan, Benjamin L. Lev, and Paul M. Goldbart. Frustration and glassiness in spin models with cavity-mediated interactions. *Phys. Rev. Lett.*, 107:277201, Dec 2011.

[33] Hessam Habibian, André Winter, Simone Paganelli, Heiko Rieger, and Giovanna Morigi. Bose-glass phases of ultracold atoms due to cavity backaction. *Phys. Rev. Lett.*, 110:075304, Feb 2013.

[34] Alexander Janot, Timo Hyart, Paul R. Eastham, and Bernd Rosenow. Superfluid stiffness of a driven dissipative condensate with disorder. *Phys. Rev. A*, 89:013627, Jan 2014.

[35] Michael Buchhold, Philipp Strack, Subir Sachdev, and Sebastian Diehl. Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures. *Phys. Rev. A*, 87:063622, Jun 2013.

[36] Y. Deng, J. Cheng, H. Jing, and S. Yi. Bose-Einstein condensates with cavity-mediated spin-orbit coupling. *Phys. Rev. Lett.*, 112:143007, Apr 2014.

[37] Lin Dong, Lu Zhou, Biao Wu, B. Ramachandhran, and Han Pu. Cavity-assisted dynamical spin-orbit coupling in cold atoms. *Phys. Rev. A*, 89:011602, Jan 2014.

[38] Jian-Song Pan, Xiong-Jun Liu, Wei Zhang, Wei Yi, and Guang-Can Guo. Topological superradiant states in a degenerate fermi gas. *Phys. Rev. Lett.*, 115:045303, Jul 2015.

[39] Bikash Padhi and Sankalpa Ghosh. Spin-orbit-coupled bose-einstein condensates in a cavity: Route to magnetic phases through cavity transmission. *Phys. Rev. A*, 90:023627, Aug 2014.

[40] Farokh Mivehvar and David L. Feder. Synthetic spin-orbit interactions and magnetic fields in ring-cavity qed. *Phys. Rev. A*, 89:013803, Jan 2014.

[41] Farokh Mivehvar and David L. Feder. Enhanced stripe phases in spin-orbit-coupled bose-einstein condensates in ring cavities. *Phys. Rev. A*, 92:023611, Aug 2015.

[42] C.-M. Halati, A. Sheikhian, and C. Kollath. A cavity-induced artificial gauge field in a Bose-Hubbard ladder. *ArXiv e-prints*, July 2017.

[43] Corinna Kollath, Ameneh Sheikhian, Stefan Wolff, and Ferdinand Brennecke. Ultracold fermions in a cavity-induced artificial magnetic field. *Phys. Rev. Lett.*, 116:060401, Feb 2016.

[44] Ameneh Sheikhian, Ferdinand Brennecke, and Corinna Kollath. Cavity-induced chiral states of fermionic quantum gases. *Phys. Rev. A*, 93:043609, Apr 2016.

[45] Ameneh Sheikhian, Ferdinand Brennecke, and Corinna Kollath. Cavity-induced generation of nontrivial topological states in a two-dimensional fermi gas. *Phys. Rev. A*, 94:061603, Dec 2016.

[46] Stefan Wolff, Ameneh Sheikhian, and Corinna Kollath. Dissipative time evolution of a chiral state after a quantum quench. *Phys. Rev. A*, 94:043609, Oct 2016.

[47] W. Zheng and N. R. Cooper. Superradiance induced particle flow via dynamical gauge coupling. *ArXiv e-prints*, April 2016.

[48] Kyle E. Ballentine, Benjamin L. Lev, and Jonathan Keeling. Meissner-like effect for a synthetic gauge field in multimode cavity qed. *Phys. Rev. Lett.*, 118:045302, Jan 2017.

[49] Hirokazu Miyake, Georgios A. Siviloglou, Colin J. Kennedy, William Cody Burton, and Wolfgang Ketterle. Realizing the harper hamiltonian with laser-assisted tunneling in optical lattices. *Phys. Rev. Lett.*, 111:185302, Oct 2013.

[50] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch. Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices. *Phys. Rev. Lett.*, 111:185301, Oct 2013.

[51] Lin Tian. Cavity-assisted dynamical quantum phase transition at bifurcation points. *Phys. Rev. A*, 93:043850, Apr 2016.

[52] ITensor c++ library available at http://itensor.org.

[53] T. Giamarchi. *Quantum Physics in One Dimension*. Oxford University Press, Oxford, 2004.

[54] F.H.L. Essler, H. Frahm, F. Gohmann, A. Klumper, and T. Giamarchi. *Quantum Physics in One Dimension*. Oxford University Press, Oxford, 2004.

[55] E. Orignac and T. Giamarchi. Effects of disorder on two strongly correlated coupled chains. *Phys. Rev. B*, 56:7167–7188, Sep 1997.

[56] R. M. Noack, S. R. White, and D. J. Scalapino. Correlations in a two-chain hubbard model. *Phys. Rev. Lett.*, 73:882–885, Aug 1994.

[57] R. M. Noack, S. R. White, and D. J. Scalapino. The ground state of the two-leg hubbard ladder with ultracold atoms in optical lattices. *Phys. Rev. Lett.*, 111:185301, Oct 2013.

[58] R.M. Noack, S.R. White, and D.J. Scalapino. The ground state of the two-leg hubbard ladder a density-matrix renormalization group study. *Physica C: Superconductivity*, 270(3):281 – 296, 1996.

[59] Michele Dolfi, Bela Bauer, Sebastian Keller, and Matthias Troyer. Pair correlations in doped hubbard ladders. *Phys. Rev. B*, 92:195139, Nov 2015.