RESEARCH ARTICLE

Genome-wide analysis of R2R3-MYB transcription factors in Japanese morning glory

Ayane Komatsuzaki1, Atsushi Hoshino2,3, Shungo Otagaki1, Shogo Matsumoto1, Katsuhiro Shiratake1,

1 Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan, 2 National Institute for Basic Biology, Okazaki, Japan, 3 Department of Basic Biology, SOKEN DAI (The Graduate University for Advanced Studies), Okazaki, Japan

* shira@agr.nagoya-u.ac.jp

Abstract

The R2R3-MYB transcription factor is one of the largest transcription factor families in plants. R2R3-MYBs play a variety of functions in plants, such as cell fate determination, organ and tissue differentiations, primary and secondary metabolisms, stress and defense responses and other physiological processes. The Japanese morning glory (Ipomoea nil) has been widely used as a model plant for flowering and morphological studies. In the present study, 127 R2R3-MYB genes were identified in the Japanese morning glory genome. Information, including gene structure, protein motif, chromosomal location and gene expression, were assigned to the InR2R3-MYBs. Phylogenetic tree analysis revealed that the 127 InR2R3-MYBs were classified into 29 subfamilies (C1-C29). Herein, physiological functions of the InR2R3-MYBs are discussed based on the functions of their Arabidopsis orthologues. InR2R3-MYBs in C9, C15, C16 or C28 may regulate cell division, flavonol biosynthesis, anthocyanin biosynthesis or response to abiotic stress, respectively. C16 harbors the known anthocyanin biosynthesis regulator, InMYB1 (INIL00g10723), and putative anthocyanin biosynthesis regulators, InMYB2 (INIL05g09650) and InMYB3 (INIL05g09651). In addition, INIL05g09649, INIL11g40874 and INIL11g40875 in C16 were suggested as novel anthocyanin biosynthesis regulators. We organized the R2R3-MYB transcription factors in the morning glory genome and assigned information to gene and protein structures and presuming their functions. Our study is expected to facilitate future research on R2R3-MYB transcription factors in Japanese morning glory.

Introduction

Transcription factors (TFs) are essential for the regulation of gene expression. Specific binding of TFs to cis-elements in promoter regions of genes activates or represses gene expression, thereby controlling various physiological events, such as tissue and organ developments, metabolic processes, and stress responses [1–4]. A large number of TF genes are present in the
plant genome, accounting for about 7% of all genes in the genome [5]. TFs can be classified into different families according to the conserved amino acid sequences in their DNA binding domains [6].

MYB TF family is among the largest TF families in plants and possess a highly conserved MYB DNA-binding domain consisting of 1–4 imperfect MYB repeat sequences on the N-terminal side [2]. Each repeat consists of 50–55 amino acid residues, containing three regularly spaced tryptophan (W) residues that together form a helix-turn-helix hold. The second and third α-helices in each repeat interacts with the major DNA groove [7, 8]. MYB proteins can be classified into four subfamilies according to the number of MYB repeats: 1R-MYB, 2R (R2R3)-MYB, 3R(R1R2R3)-MYB, and 4R-MYB, harboring one, two, three, or four MYB repeats, respectively [9, 10]. 1R-MYBs are also called MYB-related proteins. R2R3-MYBs are dominant in plants [2].

After the identification of the first MYB TF in plants, various MYB TF family members have been identified and characterized in a wide range of plant species, including Arabidopsis thaliana [9], Solanum lycopersicum [11], Populus trichocarpa [12], Zea mays [13], Glycine max [14], Malus domestica [15], Beta vulgaris [16], and Solanum tuberosum [17]. The functions of MYBs, particularly that of R2R3-MYBs, have been thoroughly investigated. R2R3-MYBs play important roles in various biological processes, including regulation of cell cycle, cell fate and differentiation, tissue and organ development, primary and secondary metabolism, hormone biosynthesis and signal transduction, and response to biotic and abiotic stress [9]. For example, AtMYB75 (PAP1), AtMYB90 (PAP2), AtMYB113 and AtMYB114 in Arabidopsis [18, 19], AN2 in petunia [20], MdMYBA, MdMYB1, MdMYB10 and MdMYB110a in apple [21, 22], SlMYB12 in tomato [23], and StAN1 in potato [11, 24] regulate anthocyanin biosynthesis. MIXTA, an R2R3-MYB in Antirrhinum majus, was reported to regulate elongation of epidermal cells in petals and leaves, as well as trichome formation [25, 26]. MIXTA-like proteins, including AmMYBML1, AmMYBML2 and AmMYBML3 of A. majus, PhMYB1 of petunia, and AtMYB16 and AtMYB106 of Arabidopsis, are known to have similar functions as the MIXTA [26–29].

Japanese morning glory (Ipomoea nil) has been a traditional floricultural plant in Japan since the 17th century. It is widely used as a model plant for studies of flowering, flower color, and floral organ morphology because of its keen day-length sensitivity and the existence of various varieties and mutants in flower color and morphology [30–34]. Notably, the whole genome of this plant has been sequenced [35]. The genome information and bio-resources of morning glory, including information on seeds of more than 1,500 cultivars and mutants and genomic and cDNA clones, are available from the National BioResource Project of the Ministry of Education, Culture, Sports, Science and Technology (https://shigen.nig.ac.jp/asagao/).

The major mutagens in Japanese morning glory are Tpn1 family transposons [30] and most flower color mutations are caused by transposon insertion into anthocyanin biosynthesis genes, such as chalcone synthase, chalcone isomerase, dihydroflavonol 4-reductase, and UDP-glucose:flavonoid 3-O-glucosyltransferase [36–39].

These anthocyanin biosynthesis genes are regulated by R2R3-MYB TF, bHLH (basic-Helix-Loop-Helix) protein, and WD repeat (tryptophan-aspartic acid repeat, WDR) protein [40, 41]. In Japanese morning glory, InMYB1 and InWDR1 were identified as regulators of anthocyanin biosynthesis [42], and the insertion of the Stowaway-like transposon InSto1 into the InWDR1 gene causes flower color mutation [43]. In addition, mutations in TFs causes changes in the morphology of morning glory flowers. For example, double-flower mutation is caused by transposon insertion in the MADS-box TF [44], and separated or tubular petal mutation is caused by a transposon insertion into the GARPF TF [45]. The functions of TFs in determining the color and morphology of flowers have been studied not only in morning glory but also in

Funding: This work was supported partially by the Grant-in-Aids for Scientific Research (KAKENHI: 15H04449, 16K14850, 20K20372, 18H03950, 21K19111, 21H02184) to K.S. from the Japan Society for the Promotion of Science (JSPS: https://www.jsps.go.jp/english/index.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.
other floricultural plants, and TFs have been used as targets in molecular breeding to change flower color and morphology (http://www.cres-t.org/fiore/public_db/index.shtml) [46].

As described above, R2R3-MYBs play various important roles in plants, however, information on R2R3-MYBs in morning glory is currently limited. Clarification of R2R3-MYB functions in this plant is important for understanding of flowering, coloration and morphology, and other important traits of flowers. The Japanese morning glory ‘Tokyo Kokei Standard line’ genome (750 Mb) has been sequenced up to 98%, and scaffolds covering 91.42% of the assembly have been anchored to 15 pseudo-chromosomes [35]. In this study, we identified 126 genes encoding R2R3-MYB TFs in the Japanese morning glory genome and assigned and listed their information, such as gene ID, gene structure, protein motif, chromosomal location, gene expression profile, and physiological functions.

Materials and methods

Identification of R2R3-MYBs in Japanese morning glory genome

To identify candidates of Japanese morning glory R2R3-MYBs, we performed a BLASTP search (e-value < 1e-10) of the Japanese morning glory genome database (http://viewer.shigen.info/asagao/) [35] using the Hidden Markov Model profile of the MYB binding domain (PF00249) from the Pfam (http://pfam.xfam.org/) [47] and the amino acid sequences of Arabidopsis R2R3-MYBs [9] as queries. Against the obtained non-redundant candidates of R2R3-MYBs, presence of the conserved MYB domain was confirmed by Pfam, SMART (http://smart.embl-heidelberg.de/) [48, 49] and PROSITE (https://prosite.expasy.org/) [50].

Candidates harboring two MYB domains (R2 and R3 domains) predicted by all Pfam, SMART and PROSITE were identified as Japanese morning glory R2R3-MYBs.

Multiple sequence alignment and phylogenetic analysis

The amino acid sequences of R2R3-MYBs were aligned using the ClustalW program [51], and an unrooted neighbor-joining phylogenetic tree was constructed using MEGA X [52] with the following parameters: Poisson model, pairwise deletion and 1,000 bootstrap replications. The Japanese morning glory R2R3-MYBs were classified based on a bootstrap value of 50 or higher. However, even if the bootstrap value was below 50, R2R3-MYBs associated with a particular subgroup of Arabidopsis R2R3-MYB were treated as a single clade. R2R3-MYBs that did not meet this condition were not considered to belong to any clade.

Gene structure and protein motif analyses

Gene structure (exon-intron structure) was schematized with the coding sequences and the genomic sequence of the Japanese morning glory R2R3-MYBs by the Gene Structure Display Server (GSDS: http://gsds.gao-lab.org/) [53]. Multiple Expectation Maximization for Motif Elicitation (MEME: https://meme-suite.org/meme/tools/meme) [54] was used to identify the conserved protein motifs of the R2R3-MYBs, with the following parameters: the maximum number of motifs was set to identify 20 motifs and optimum width of motifs was set from six to 100 amino acids.

Chromosomal location and gene duplication analysis

Information on the chromosome distribution of the InR2R3-MYB genes was obtained from the Japanese morning glory genome database, while MapChart [55] was used for the graphical presentation of chromosomal location. Tandemly duplicated genes were defined as an array of two or more InR2R3-MYB genes falling within 100 kb of one another.
In silico gene expression analysis

Gene expression data for various organs of morning glory were downloaded from the Japanese morning glory genome database (http://viewer.shigen.info/asagao/browse.php?data=data/Asagao_1.2/) and converted to 10 logarithms. A heatmap was then created using R package gplots (https://cran.r-project.org/web/packages/gplots/index.html). Details of the samples were described in Hoshino et al., (2016) [35]. Briefly, the embryo is immature green embryos; the flower includes fully opened flowers and flower buds at various stages; the leaf includes leaves of various sizes; the stem includes young stems with shoot tips; the seed includes seed coats at various developmental stages; the root is three-weeks-old roots.

Results and discussion

Identification and classification of the morning glory R2R3-MYBs

To identify the morning glory R2R3-MYBs, we performed a BLAST search of the morning glory genome database (http://viewer.shigen.info/asagao/) using the MYB domain (PF00249) from Pfam and 126 Arabidopsis R2R3-MYBs [9] as queries. A total of 270 candidates were identified from the BLAST search. Subsequently, the presence of the MYB domains was confirmed by the Pfam, SMART and PROSITE. As a result, 126 R2R3-MYBs, harboring two MYB domains, were identified (Table 1 and S1 Table). Among them, three InR2R3-MYBs, InMYB1, InMYB2 and InMYB3, had been reported [42]. Although INIL05g09651, which has the highest homology to the InMYB3, harbors only one MYB domain, INIL05g09651 was considered to be identical with InMYB3, thus, it was included in R2R3-MYBs. Finally, total 127 R2R3-MYBs were identified in the morning glory genome. Forty 1R-MYBs (MYB-related proteins), three R1R2R3-MYBs (3R-MYBs) and one 4R-MYB harboring one, three or four MYB domains, respectively, were also listed in S2 Table.

Arabidopsis R2R3-MYBs were classified into 23 functional subgroups (S1-S25) [9], some of which have been well characterized. To understand the evolutionary relationship between the R2R3-MYBs of morning glory and Arabidopsis and predict the functions of the morning glory R2R3-MYBs using those of Arabidopsis orthologues, a phylogenetic tree of the R2R3-MYBs was constructed (Fig 1). The phylogenetic trees revealed 29 subfamilies (C1-C29) of the morning glory R2R3-MYBs (InR2R3-MYBs). Eleven InR2R3-MYBs did not belong to any clade, while subfamily S12 of Arabidopsis R2R3-MYBs was absent in morning glory. Arabidopsis R2R3-MYBs belonging to S12 have been reported to regulate glucosinolate biosynthesis [56–58]. Glucosinolates are unique secondary metabolites in Brassicaceae [57], therefore morning glory has no homolog of Arabidopsis R2R3-MYBs in S12. On the other hand, C7 and C19 were found to be unique subfamilies in morning glory, suggesting that they might be responsible for unique functions in morning glory.

Gene structure and protein motif of InR2R3-MYBs

Gene structure (exon-intron structure) suggests the evolutionary background of genes. The gene structures of InR2R3-MYBs are shown in Fig 2B. INIL02g16845 in C6 and INIL08g38640 and INIL15g23810 in C25 have a large number of exons, i.e. 13 exons or 12 exons, respectively. In contrast, INIL01g25379, INIL01g25431, INIL06q38304, INIL14q41452, INIL14g41510 and INIL15g27998 in C28 and INIL04g32702 belonging to no clade have only one exon each.

Conserved protein motifs among the InR2R3-MYBs were determined using MEME (https://meme-suite.org/meme/tools/meme), and 20 conserved motifs were identified (Fig 2C and S3 Table). Most of InR2R3-MYBs have five highly conserved motifs in the same order; motif 3, 5/13, 1, 4 and 2. Motif 3 or motif 5/13 comprise helices 1 and 2 in the R2 repeat,
Subfamily	Gene ID	Gnomon (NCBI)	Chromosome number	Position on chromosome	strand	Number of amino acids	Number of exons
Morning glory	Arabidopsis						
C1	S24	INIL02g11823 XM_019329763.1	2	2,358,987 2,360,659	+	317	4
C1	S24	INIL11g16076 XM_019334837.1	11	14,828,803 14,831,927	+	307	3
C2		INIL04g04429 XM_019320704.1 XM_019320705.1 XM_019320706.1 XM_019320707.1	4	20,917,488 20,922,002	-	318	3
C2		INIL12g014 XM_019329763.1	12	898,729 901,810	+	309	3
C3	S11	INIL03g17749 XM_019337779.1	3	34,071,898 34,073,432	+	353	3
C3	S11	INIL04g32440 XM_019306400.1	4	3,676,755 3,678,276	-	378	3
C3	S11	INIL09g30441 XM_019303428.1	9	2,892,833 2,894,445	+	352	3
C3	S11	INIL14g04070 XM_019320491.1	14	5,046,365 5,047,724	-	326	3
C4	S1	INIL03g21132 XM_019342517.1	3	24,857,456 24,859,724	-	318	3
C4	S1	INIL05g28446 XM_019301469.1	5	7,573,292 7,574,886	-	308	3
C4	S1	INIL09g5855 XM_019311436.1	9	13,796,939 13,798,876	-	313	3
C4	S1	INIL10g12662 XM_019332084.1	10	4,262,363 4,264,568	+	311	3
C5	S9	INIL08g38600 XM_019315091.1	8	38,488,785 38,490,624	-	336	3
C5	S9	INIL08g38603 XM_019315089.1	8	38,538,443 38,543,065	+	336	3
C5	S9	INIL08g38605 XM_019314993.1	8	38,602,546 38,607,973	+	281	4
C5	S9	INIL08g38606 XM_019314995.1	8	38,655,992 38,666,483	-	333	3
C5	S9	INIL08g38607 XM_019315080.1	8	38,736,149 38,738,540	-	333	3
C6	S2	INIL12g083 XM_019325800.1	12	7,229,877 7,231,502	+	249	3
C6	S2	INIL13g08188 XM_019324572.1 XM_019324573.1 XM_019324574.1	13	1,602,872 1,604,928	-	261	3
C7	INIL06g15152 XM_019334487.1	6	47,132,344 47,133,424	+	237	3	
C7	INIL06g15156 XM_019334410.1	6	47,077,003 47,078,600	+	267	3	
C7	INIL09g30444 XM_019303240.1	9	2,937,097 2,938,314	-	266	3	
C7	INIL09g30445 XM_019303239.1	9	2,940,343 2,941,614	-	266	3	
C7	INIL09g30446 XM_019303432.1	9	2,952,676 2,953,774	-	260	3	
C8	INIL01g00015 XM_019323694.1	1	7,267,332 7,269,516	+	310	2	
C8	INIL02g11914 XM_019303008.1	2	3,350,345 3,351,718	-	296	4	
C8	INIL02g17162 XM_019336641.1	2	42,689,808 42,691,054	+	269	2	
C8	INIL05g09388 XM_019327136.1	5	1,193,059 1,194,487	-	283	3	
C8	INIL08g04788 XM_019321152.1	8	3,236,853 3,239,338	+	240	3	
C8	INIL11g15180 XM_019304955.1	15	9,663,646 9,667,201	+	261	2	
C9	S14	INIL01g36710 XM_019312234.1	1	5,231,116 5,238,495	+	273	4
C9	S14	INIL02g11599 XM_019330240.1	2	753,230 754,530	-	334	3
C9	S14	INIL02g16681 XM_019336497.1	2	39,162,404 39,163,938	+	277	3
C9	S14	INIL05g09674 XM_019326908.1	5	3,532,267 3,538,665	+	364	4
C9	S14	INIL08g00165 XM_019330044.1	8	27,155,955 27,168,867	+	399	6
C9	S14	INIL08g30969 XM_019304699.1	8	7,648,225 7,650,399	-	334	3
C9	S14	INIL10g12144 XM_019331575.1	10	286,800 288,308	-	325	3
C9	S14	INIL11g10021 XM_019327588.1	11	507,292 508,821	-	312	4
C9	S14	INIL11g18940 XM_019340046.1	11	6,203,502 6,204,856	+	256	3
C9	S14	INIL12g22053 XM_019343471.1	12	59,731,879 59,733,712	+	326	4
C9	S14	INIL14g41566 XM_019318620.1	14	57,516,461 57,524,802	+	377	3
C10	S16	INIL05g22908 XM_019344838.1	5	32,521,998 32,526,737	-	289	3

(Continued)
Subfamily	Gene ID	Gnomon (NCBI)	Chromosome number	Position on chromosome	strand	Number of amino acids	Number of exons	
Morning	Arabidopsis							
C10	S16	INIL11g18972	XM_019339450.1	11	-	5,950,686	294	3
C11	S13	INIL10g16278	XM_019335486.1	10	-	15,049,362	330	5
C11	S13	INIL14g06864	XM_019323598.1	14	+	39,922,743	273	3
C12	INIL03g11384	XM_019329572.1	3	5	+	28,505,899	499	6
C12	INIL09g26302	XM_019298694.1	9	10	+	36,703,389	319	3
C13	INIL03g18278	XM_019339022.1	3	4	+	37,886,710	354	3
C13	INIL05g24002	XM_019295562.1	1	6	-	36,357,513	311	3
C13	INIL06g23639	XM_019295011.1	6	7	+	39,073,755	315	3
C13	INIL06g37657	XM_019313132.1	6	8	+	6,003,732	330	2
C14	S4	INIL02g10399	XM_019328601.1	2	-	23,136,031	204	3
C14	S4	INIL04g34740	XM_019309686.1	4	+	337,406	286	2
C14	S4	INIL05g22708	XM_019345006.1	5	-	30,885,896	298	3
C14	S4	INIL08g31096	XM_019304555.1	8	-	6,205,257	177	3
C14	S4	INIL11g10884	XM_019328930.1	11	-	37,028,417	271	3
C14	S4	INIL14g35341	XM_019310094.1	14	-	50,845,779	253	2
C15	S7	INIL08g13530	XM_019332820.1	8	+	8,429,287	377	3
C15	S7	INIL13g07908	XM_019324780.1	13	-	3,578,882	338	3
C16	S6	INIL05g09649	XM_019327061.1	5	-	3,227,339	264	3
C16	S6	INIL05g09650	(InMYB2)	XM_019327060.1	5	3,269,350	261	3
C16	S6	INIL01g10723	(InMYB1)	XM_019328791.1	3	11,156	370	4
C16	S6	INIL11g0874		-	11	18,384,802	167	4
C16	S6	INIL11g0875	XM_019317839.1	11	18	18,354,162	509	6
C16	S6	INIL05g09651	(InMYB3)	XM_019327050.1	5	3,308,001	221	3
C17	S15	INIL02g10645	XM_019328367.1	2	-	36,405,994	220	3
C17	S15	INIL13g40955	XM_019317956.1	13	+	18,175,994	187	3
C18	INIL12g24707	XM_019296345.1	12	4	+	49,224,678	281	3
C18	INIL12g24714	XM_019296352.1	12	4	+	49,052,482	465	5
C18	INIL00g14902	XM_019334094.1	scaffold1249	12	-	12,847	306	3
C19	INIL05g23059	XM_019344607.1	5	5	-	33,970,297	277	2
C19	INIL06g37604	XM_019313528.1	6	6	+	6,532,453	261	3
C19	INIL06g37606	XM_019313505.1	6	6	+	6,503,384	283	3
C19	INIL15g31267	XM_019304856.1	15	15	+	8,040,255	316	2
C20	INIL05g04549	XM_019320800.1	5	5	+	4,950,049	245	3
C20	INIL13g08245	XM_019325222.1	13	13	-	1,195,101	245	3
C21	S20	INIL03g15019	XM_019334098.1	3	3	20,121,738	270	3
C21	S20	INIL08g31042	XM_019304544.1	8	-	6,850,033	161	4
C21	S20	INIL09g33277	XM_019307621.1	9	+	21,635,093	256	2

(Continued)
Subfamily	Gene ID	Gnomon (NCBI)	Chromosome number	Position on chromosome	strand	Number of amino acids	Number of exons			
Morning glory	Arabidopsis									
C22	S19	INIL13g07867	XM_019324507.1	13	3,970,381	3,972,335	-	276	4	
C22	S19	INIL05g32166	XM_019305881.1	5	6,487,045	6,489,795	+	202	3	
C22	S19	INIL11g09839	XM_019327880.1	11	1,630,664	1,632,375	+	209	3	
C23	S18	INIL03g17808	XM_019338754.1	3	34,489,427	34,491,554	-	488	3	
C23	S18	INIL07g33338	XM_019308404.1	7	17,374,648	17,378,922	+	555	3	
C23	S18	INIL08g20855	XM_019342298.1	8	768,427	774,261	-	485	3	
C23	S18	INIL12g21835	XM_019343649.1	12	56,783,326	56,787,720	-	546	2	
C24		INIL04g31722	XM_019305531.1	4	25,016,832	25,018,832	-	316	3	
C24		INIL12g0339	XM_019336624.1	12	1,998,415	2,000,547	-	356	3	
C25		INIL08g38640	XM_019315175.1	8	39,072,851	39,076,646	+	479	12	
C25		INIL15g23810	XM_019295130.1	15	19,600,746	19,605,217	-	435	12	
C26	S25	INIL07g06211	XM_019322785.1	7	5,237,655	5,239,775	+	436	4	
C26	S25	INIL07g06212	XM_019322786.1	7	5,282,005	5,283,994	+	437	4	
C26	S25	INIL08g13864		8	12,385,280	12,395,420	+	496	7	
C26	S25	INIL10g13265	XM_019331006.1	10	10,852,867	10,855,271	+	400	3	
C26	S25	INIL10g24763	XM_019318368.1	10	26,456,385	26,461,974	+	442	4	
C26	S25	INIL11g18437	"XM_019337230.1 XM_019337231.1"	11	23,717,996	23,723,540	+	1000	4	
C26	S25	INIL12g03514		-	62,534,852	62,537,936	+	376	3	
C26	S25	INIL00g27132	XM_019299745.1	scaffold2396	41,996	43,987	+	437	4	
C26	S25	INIL00g27134	XM_019299747.1	scaffold2396	81,536	83,702	+	426	5	
C27	S23	INIL05g24219	XM_019296142.1	5	39,630,059	39,634,323	+	413	2	
C27	S23	INIL05g31792	XM_019305543.1	5	11,790,376	11,794,185	-	418	2	
C28	S22	INIL01g25379	XM_019297609.1	1	40,455,242	40,456,541	+	310	1	
C28	S22	INIL01g25431	XM_019296795.1	1	40,067,944	40,068,983	-	248	1	
C28	S22	INIL02g17023	XM_019336024.1	XM_019336222.1	2	41,751,893	41,759,347	+	490	4
C28	S22	INIL06g38304	XM_019313214.1	6	1,088,480	1,089,498	+	284	1	
C28	S22	INIL07g12856	XM_019330943.1	10	6,140,664	6,141,561	-	231	2	
C28	S22	INIL14g41452	XM_019318549.1	14	58,438,380	58,439,332	+	269	1	
C28	S22	INIL14g15150	XM_019319149.1	14	58,016,155	58,017,432	-	297	1	
C28	S22	INIL15g27998	XM_019301166.1	15	3,986,197	3987766	+	348	1	
C28	S22	INIL15g29270	XM_019302518.1	15	25,282,729	25,284,526	+	344	2	
C29	S21	INIL08g38617	XM_019315081.1	XM_019315082.1	8	38,822,489	38,825,155	+	355	5
C29	S21	INIL09g36145	XM_019311794.1	9	10,412,907	10,416,698	+	252	3	
C29	S21	INIL10g12608	XM_019330829.1	10	3,850,307	3,852,298	-	359	5	
C29	S21	INIL14g35326	XM_019310126.1	14	50,677,228	50,678,541	-	264	2	
C29	S21	INIL14g41878	XM_019316795.1	14	54,482,443	54,484,119	+	269	3	

(Continued)
respectively. Motif 1 straddles helix 3 in the R2 repeat and helix 1 in the R3 repeat. Motif 4 and 2 composes helices 2 and 3 in the R3 repeat, respectively. In addition to the MYB domains, InR2R3-MYBs have subfamily-specific protein motifs, such as motif 7 and 10 in C2, motif 11 and 17 in C5, motif 14 in C16, motif 15 and 18 in C18, motif 16 in C23 and motif 19 in C28. These unique motifs might be related to functional differentiation of each subfamily.

Consensus amino acid sequence in the MYB domains of InR2R3-MYBs

The MYB domains of R2R3-MYB contain highly conserved sequences [2]. To determine the consensus amino acid sequence in the MYB domains of InR2R3-MYBs, Fig 3 shows the sequence logos of the R2 and R3 repeats in the InR2R3-MYBs.

Three regularly spaced tryptophan (W) residues in typical MYB domains are important for interaction with specific DNA sequences [8]. All InR2R3-MYBs, except INIL09g35855, had three W residues in the R2 repeat (Fig 3). In the R3 repeat, the first W residue is occasionally replaced by a hydrophobic amino acid, such as phenylalanine (F), isoleucine (I) or leucine (L), which is known for R2R3-MYBs in other plant species [11, 17]. The second W residue in the R3 repeat was conserved in all InR2R3-MYBs, whereas the third W residue was conserved in most InR2R3-MYBs but not in INIL02g17103, INIL04g09009, INIL08g38640, INIL15g23810 (replaced by F), INIL11g18427 (replaced by tyrosine (Y)), and INIL11g40874 (replaced by cysteine (C)).

Conserved amino acid residues in the MYB domains of InR2R3-MYBs

Conserved amino acid residues in the MYB domains were mainly distributed between the second and third conserved W residues in both R2 and R3 repeats (Fig 3). The region between the second and third W residues corresponds to helices 2 and helices 3 and their connecting loop (helix-turn-helix), and the region is important for binding to DNA [7, 8]. In particular, the third helix of each repeat (recognition helix) is essential for the direct interaction with DNA [59]. Therefore, the third helix of the MYB domain in each repeat is highly conserved.

Table 1. (Continued)

Subfamily	Gene ID	Gnomon (NCBI)	Chromosome number	Position on chromosome	strand	Number of amino acids	Number of exons
Morning glory	Arabidopsis			start	end		
INIL01g36685	XM_019312401.1	1	4,750,136	4,751,377	-	230	4
INIL02g16845	"XM_019336280.1 XM_019336291.1"	2	40,440,393	40447357	+	530	13
INIL02g17103	XM_019336309.1	2	42,313,284	42,314,620	-	201	3
INIL04g09009	XM_019326453.1	4	41,087,133	41,089,320	-	331	2
INIL04g32702	XM_019307395.1 XM_019307396.1 XM_019307397.1 XM_019307398.1	4	5,726,191	5,729,159	-	359	1
INIL05g22742	XM_019294163.1	5	31,169,266	31,171,433	-	416	3
INIL11g18974	XM_019339442.1 XM_019339443.1 XM_019339444.1 XM_019339445.1	11	5,940,454	5,942,722	-	269	3
INIL12g01151	XM_019331043.1	12	3,476,626	3,479,529	+	308	3
INIL12g03255	XM_019306760.1	12	64,661,271	64,662,685	-	240	3
INIL13g15530	XM_019335288.1	13	12,733,089	12,736,028	+	289	2
INIL05g14256	XM_019333608.1	15	11,477,909	11485736	-	249	3

https://doi.org/10.1371/journal.pone.0271012.t001
Chromosomal location of InR2R3-MYB genes

The chromosomal location of 127 InR2R3-MYB genes is shown in Fig 4. A total of 123 InR2R3-MYBs were mapped on 15 pseudo-chromosomes, while four InR2R3-MYBs (INIL00g10723, INIL00g14902, INIL00g27132, and INIL00g27134) were not mapped to pseudo-chromosomes but to scaffolds.

The distribution of InR2R3-MYBs in the pseudo-chromosomes were uneven. Chr. 8 harbored the largest number of 15 InR2R3-MYBs, followed by Chr. 5 with 14 InR2R3-MYBs. In contrast, the chromosome with the lowest number of InR2R3-MYBs was Chr. 7 (3 genes). Most InR2R3-MYBs locate at both ends of the chromosomes. In particular, relatively high
Fig 2. Gene structures and conserved protein motifs of the Japanese morning glory R2R3-MYBs. A: The list of R2R3-MYBs of the Japanese morning glory. The 127 R2R3-MYBs were clustered into 29 subfamilies. Numbers in parentheses indicates subfamily names of *Arabidopsis* R2R3-MYBs [9]. B: Exon-intron structures of the R2R3-MYBs. Exons are shown as green boxes, introns as black lines, and untranslated regions as blue boxes. C: Conserved protein motifs of the Japanese morning glory R2R3-MYBs. Motifs were identified using the MEME web server (https://meme-suite.org/meme/tools/meme). Different motifs are represented by different colored boxes. Details of the motifs were described in S3 Table.

https://doi.org/10.1371/journal.pone.0271012.g002
densities of R2R3-MYBs were observed in both arms of Chr. 5 and Chr. 8. Most central regions of these chromosomes lacked InR2R3-MYBs. These trends are consistent with those in tomato [11] and potato [17].

Tandem duplications of InR2R3-MYBs in the morning glory genome were estimated following the method of Huang et al. (2012) [60], that is, two or more homologous genes in a 100 kb chromosome region were defined as tandem duplicated genes. As shown in Fig 4, seven clusters of the tandem duplicated InR2R3-MYBs were identified as follows: three genes in Chr. 5 (INIL05g09649, INIL05g09650, INIL05g09651), two genes on Chr. 6 (INIL06g37606, INIL06g37604), two genes on Chr. 6 (INIL06g15152, INIL06g15156), two genes on Chr. 7 (INIL07g06211, INIL07g06212), five genes on Chr. 8 (INIL08g38600, INIL08g38603, INIL08g38605, INIL08g38606, INIL08g38607), three genes on Chr. 9 (INIL09g30444, INIL09g30445, INIL09g30446) and two genes on Chr. 11 (INIL11g40874, INIL11g40875). These InR2R3-MYBs are thought to be the result of gene duplication.

Functions of InR2R3-MYBs

In general, paralogs and orthologues have similar functions, and subfamily members are likely to share a common evolutionary origin and similar functions. Therefore, the functions of the morning glory InR2R3-MYB belonging to the 29 subfamilies (C1–29) were estimated based on the known functions of Arabidopsis AtR2R3-MYBs in the 23 subfamilies (S1–S25) (Fig 1).
C5 of morning glory corresponds to S9 of *Arabidopsis*, which includes AtMYB16 and AtMYB106 (NOK). AtMYB16 and AtMYB106 are MIXTA-like proteins that regulate petal and leaf epidermal cell elongation, trichome formation, and cuticle formation [28, 61–63]. Therefore, six InR2R3-MYBs in C5 may be involved in the regulation of petal and leaf epidermal cell elongation, trichome formation, and cuticle formation in morning glory.

Fig 4. Chromosomal locations of R2R3-MYB genes of Japanese morning glory. The chromosomal positions of the Japanese morning glory R2R3-MYB gene were mapped according to the Asagao Genome Database. A total of 123 of the R2R3-MYB genes are mapped on the 15 chromosomes, and four genes are mapped on the scaffolds. Red boxes indicate duplicated gene clusters on the chromosomes.

https://doi.org/10.1371/journal.pone.0271012.g004
Further, C9 of morning glory corresponds to S14 of *Arabidopsis*, which includes AtMYB37 (RAX2) and AtMYB84 (RAX3). These genes regulate lateral organ formation [64, 65]. Therefore, members of C9 may be involved in the regulation of cell division, such as the development of lateral organ formation in Japanese morning glory.

C15 of morning glory corresponds to S7 of *Arabidopsis*, which includes AtMYB11 (PFG2), AtMYB12 (PFG1) and AtMYB111 (PFG3). Because AtMYB11, AtMYB12 and AtMYB111 regulate flavonol biosynthesis [19], members of C15 may be involved in the regulation of flavonol biosynthesis in Japanese morning glory.

Additionally, C16 of morning glory corresponds to S6 of *Arabidopsis*, which includes AtMYB75 (PAP1) and AtMYB90 (PAP2). PAP1 and PAP2 regulate anthocyanin biosynthesis [18]. SixInR2R3-MYBs present in C16 may regulate anthocyanin biosynthesis in the morning glory. The function of C16 is discussed in detail in the following section.

C28 of the morning glory corresponds to S22 of *Arabidopsis*, which includes AtMYB44, AtMYB70 and AtMYB73. The expression of these genes is induced by abiotic stresses, such as drought and wounding [66]. Therefore, the InR2R3-MYBs in C28 may be involved in the regulation of abiotic stress responses.

Gene expression and physiological functions of InR2R3-MYBs

To understand the organ-specific gene expression patterns of InR2R3-MYBs, the RNAseq data of InR2R3-MYBs in six tissues (embryo, flower, leaf, root, seed coat, and stem) were obtained from the Asagao Genome Database (http://viewer.shigen.info/asagao/). The data were projected on a heat map, as shown in Fig 5.

Relatively high gene expression (RPKM>5) in all analyzed organs were observed in INIL04g32702, INIL11g18427 and INIL15g27998 (S5 Table). INIL04g32702 was homologous to AtMYB91 (AS1), which regulates leaf morphogenesis in *Arabidopsis* [67]. INIL04g32702 expression was high in embryos, flowers and leaves; thus, INIL04g32702 may be involved in their morphogenesis.

The expression of 60 InR2R3-MYBs was low in the all analyzed organs (RPKM<2), and no expression was observed for eight genes (INIL06g37606, INIL08g20855, INIL10g24763, INIL12g35514, INIL12g22053, INIL12g24714, INIL13g07867, and INIL15g29270) in all organs (S5 Table).

A number of InR2R3-MYBs showed organ-specific relatively high gene expression levels (RPKM>5). Eight InR2R3-MYBs (INIL02g11599, INIL11g09839, INIL11g18974, INIL11g40875, INIL12g04717, INIL13g04555, INIL14g04070, and INIL00g07237) were highly expressed in flower. INIL02g16845 was highly expressed specifically in leaf. Additionally, eight InR2R3-MYBs (INIL02g11914, INIL04g32440, INIL05g09649, INIL05g09649, INIL09g30444, INIL09g30446, INIL10g12144) and 2 InR2R3-MYBs (INIL02g10645, INIL05g09650) were highly expressed specifically in root or stem, respectively (S5 Table).

INIL02g11599 and INIL11g09839, which showed high and specific expression in flower, were in C22 and have high homology to *Arabidopsis* AtMYB35 (TDF1) or AtMYB21/24, respectively. AtMYB35 functions in the development and differentiation of tapetum tissue in anther [68]; therefore, INIL02g11599 may be involved in tapetum development. AtMYB21/24 regulates stamen filament development [69]; therefore INIL11g09839 is expected to be involved in stamen filament development. INIL12g01471, which was in the same clade with AtMYB17, was highly expressed in flower. AtMYB17 has been reported to regulate early inflorescence development [70]; therefore, INIL12g01471 may regulate early inflorescence development. INIL02g11914 and INIL05g09388, which have high homology to AtMYB20, showed high gene expression specifically in root. AtMYB20 negatively regulates drought stress
Fig 5. Gene expression profile of the R2R3-MYBs in Japanese morning glory. Gene expression data for various organs of Japanese morning glory was obtained from Ipomoea nil RNA-seq database (http://viewer.shigen.info/asagao/jbrowse.php?data=data/Asagao_1.2). The heat map were generated for the base 10 logarithms of the number of each RPKM value plus 1.0. Gene expression levels (low to high) are indicated by light to deep red color shades. Em: Embryo, F: Flower, L: Leaf, R: Root, Sc: Seed coat, St: Stem.

https://doi.org/10.1371/journal.pone.0271012.g005
response [71] and salt stress response [72], suggesting that INIL02g11914 and INIL05g09388 may regulate abiotic stress responses.

InR2R3-MYBs involves in anthocyanin biosynthesis

A well-known function of plant R2R3-MYBs is the regulation of anthocyanin biosynthesis, which is important in ornamental plants, including morning glory. In Japanese morning glory, InMYB1 have been reported to be involved in anthocyanin biosynthesis [42]. In addition, InMYB2 and InMYB3 have been reported as orthologs of petunia AN2, which regulates anthocyanin biosynthesis in petunia [42].

INIL05g09650 has a predicted transcript sequence matches the cDNA sequence of InMYB2 and thus identical to InMYB2. InMYB2 is expressed in all tissues colored with anthocyanins other than petal [42]. According to the RNA-seq database, INIL05g09650 is expressed mostly in stems, which accumulate anthocyanins other than petals (Fig 5). This suggests that InMYB2 and INIL05g09650 are identical. INIL05g09649, which has high homology to INIL05g09650, was highly expressed in stems (Fig 5). Therefore, INIL05g09649 may be involved in the regulation of anthocyanin biosynthesis in the stem along with INIL05g09650.

INIL05g09651 has the highest homology to InMYB3. INIL05g09651 lacks R2 repeat and contains only R2 repeat in the TKS line used in the genome database of the Japanese morning glory, while Morita et al. (2006) [42] reported that InMYB3 in KK/ZSK-2 line contains both R2 and R3 repeats. INIL05g09651 of the TSK line has a stop codon after the region encoding the R2 repeat. This is considered an interspecific polymorphism (single nucleotide substitution), and InMYB3 (INIL05g09651) is considered to lose function in the TKS line.

InMYB1 is expressed specifically in petal and is involved in the regulation of petal coloration (anthocyanin accumulation) in morning glory [42]. The promoter of InMYB1 can be used as a petal-specific promoter [73–75]. INIL00g10723, which was not mapped to any pseudochromosome, but to a scaffold (Fig 4), has the highest homology to InMYB1. The upstream sequence of INIL00g10723 was identical to the promoter region of InMYB1. Therefore, INIL00g10723 and InMYB1 were considered to be identical. However, the amino acid sequences of C-terminus of INIL00g10723 and InMYB1 were not identical, and an additional sequence was present in INIL00g10723. Morita et al. (2006) [42] reported that InMYB1 has three exons, while four exons are predicted in INIL00g10723, and the additional sequence corresponds to exon 4. Thus, we checked the genomic sequence and RNA-seq data of INIL00g10723 on Japanese morning glory database, and found an identical sequence to the three exons of InMYB1, with a stop codon after exon 3 of INIL00g10723 (S2A and S2B Fig). Therefore, we concluded that the predicted coding sequence of INIL00g10723 was incorrect, and InMYB1 and INIL00g10723 are identical.

Both INIL11g40874 and INIL11g40875, which have high homology to INIL00g10723, showed petal-specific expression. The numbers of exons of these two genes differed from other C23 genes. Therefore, as with INIL00g10723, we checked the genomic sequences of INIL11g40874 and INIL11g40875, and corrected the predicted coding regions, the transcription start points, and stop codon positions (S2 Fig). Consequently, the amino acid sequences of INIL11g40875 matched perfectly with those of InMYB1 (INIL00g10723), although the promoter region of INIL11g40875 matched with only 212 bp upstream region of InMYB1 and further upstream regions were not identical (S1 Fig). We concluded that INIL11g40875 and InMYB1 (INIL00g10723) are different genes that are thought to be produced by gene duplication.

The genomic sequence, including upstream and downstream regions, of INIL11g40874 is identical to that InMYB1 (INIL00g10723), except for exon 3 and its downstream. The non-identical region corresponds to the linkage point of contigs and the sequence is considered to
be erroneous. Therefore, we \textit{INIL00g10723}, \textit{INIL11g40874} and \textit{InMYB1} may be identical gene on Chr. 11. Our final discussion of C16 is summarized in S3 Fig.

Conclusion

In this study, we performed genome-wide analysis of R2R3-MYB transcription factors in Japanese morning glory. A total of 126 \textit{InR2R3-MYBs} were identified in the Japanese morning glory genome and their information, including gene structures, protein motifs and gene expression profiles, was collected. Our phylogenetic tree analysis revealed the presence of 29 subfamilies of \textit{InR2R3-MYBs}, and the predicted functions of each subfamily have been discussed using gene expression profile and based on the functions of \textit{Arabidopsis AtR2R3-MYBs}. This study provides essential and useful information for further functional and physiological studies on \textit{InR2R3-MYBs} in morning glory.

Supporting information

S1 Fig. Sequence alignment of the 5' upstream regions of \textit{INIL00g17023}, \textit{INIL11g40874} and \textit{INIL11g40875}. The 1026-bp upstream sequences of \textit{INIL00g17023}, \textit{INIL11g40874} and \textit{INIL11g40875} from the transcription start site were aligned. The number above the alignment indicates the position from the transcription start site. (TIF)

S2 Fig. Gene structures and genomic sequences of \textit{INIL00g17023}, \textit{INIL11g40874} and \textit{INIL11g40875}. A: \textit{INIL00g10723} and \textit{INIL11g40875} have stop codons in the same position as \textit{InMYB1}, suggesting that they have three exons, as with \textit{InMYB1}. Although the sequence of this region in \textit{INIL11g40874} is unknown because it corresponds to the linkage of contigs, the high homology of the other parts of the sequence suggests that it has three exons as well. B: RNA-seq data of \textit{INIL00g10723} supported that \textit{InMYB1} contain three exons, not four. (TIF)

S3 Fig. Phylogenetic tree of the C16. Phylogenetic tree was generated by the neighbor-joining method derived from a CLUSTAL alignment of the amino acid sequences of six members of C16. (TIF)

S1 Table. Amino acid sequences of 127 InR2R3-MYBs. (DOCX)

S2 Table. The list of the 1R-MYBs, 3R-MYBs and 4R-MYB identified in the genome of Japanese morning glory. (XLSX)

S3 Table. Sequences of the conserved motifs among the Japanese morning glory R2R3-MYBs. (XLSX)

S4 Table. Insertion and deletion of amino acid residue in the R2 and R3 domains of the Japanese morning glory R2R3-MYBs. (XLSX)

S5 Table. RPKM value of RNA-seq of the Japanese morning glory the Japanese morning glory R2R3-MYBs. (XLSX)
Acknowledgments
We thank the National Bioresource Project (NBRP) Moring glory for the discussion about the genome data and the reconfirmation of the annotations.

Author Contributions
Conceptualization: Katsuhiro Shiratake.
Data curation: Atsushi Hoshino, Shungo Otagaki.
Funding acquisition: Katsuhiro Shiratake.
Investigation: Ayane Komatsuzaki.
Project administration: Katsuhiro Shiratake.
Resources: Atsushi Hoshino.
Supervision: Katsuhiro Shiratake.
Writing – original draft: Ayane Komatsuzaki, Katsuhiro Shiratake.
Writing – review & editing: Ayane Komatsuzaki, Atsushi Hoshino, Shungo Otagaki, Shogo Matsumoto, Katsuhiro Shiratake.

References
1. Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal. 2011; 66(1):94–116. https://doi.org/10.1111/j.1365-313X.2010.04459.x PMID: 21443626
2. Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology. 2001; 4(5):447–456.
3. Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. Plant Science. 2014; 217:109–119. https://doi.org/10.1016/j.plantsci.2013.12.007 PMID: 24467902
4. Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis. Plant and Cell Physiology. 2008; 50(7):1232–1248.
5. Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, et al. Legume transcription factors: Global regulators of plant development and response to the environment. Plant Physiology. 2007; 144(2):538–549. https://doi.org/10.1104/pp.107.098061 PMID: 17556517
6. Pabo CO, Sauer RT. Transcription factors—structural families and principles of DNA recognition. Annual Review of Biochemistry. 1992; 61:1053–1095. https://doi.org/10.1146/annurev.bi.61.070192.005201 PMID: 1497306
7. Kanei-Ishii C, Sarai A, Sawazaki T, Nakagoshi H, He DN, Ogata K, et al. The tryptophan cluster—a hypothetical structural domain of the DNA-binding protein of the MYB protooncogene product. Journal of Biological Chemistry. 1990; 265(32):19990–19995. PMID: 2246275
8. Ogata K, Kaneishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, et al. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nature Structural Biology. 1996; 3(2):178–187. https://doi.org/10.1038/nsb0296-178 PMID: 8564545
9. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends in Plant Science. 2010; 15(10):573–581.
10. Rosinski JA, Atchley WR. Molecular evolution of the Myb family of transcription factors: Evidence for polyphyletic origin. Journal of Molecular Evolution. 1998; 46(1):74–83. https://doi.org/10.1007/PL00006285 PMID: 9419227
11. Li ZJ, Peng PH, Tian YS, Han HJ, Xu J, Yao QH. Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum. Plant and Cell Physiology. 2016; 57(8):1657–1677.
12. Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM. Expansion and diversification of the populus R2R3-MYB family of transcription factors. Plant Physiology. 2009; 149(2):981–993. https://doi.org/10.1104/pp.108.132795 PMID: 19091872
13. Du H, Feng BR, Yang SS, Huang YB, Tang YX. The R2R3-MYB Transcription Factor Gene Family in Maize. Plos One. 2012; 7(6). https://doi.org/10.1371/journal.pone.0037463 PMID: 22719841

14. Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology. 2012;12. https://doi.org/10.1186/1471-2229-12-106 PMID: 22776508

15. Cao ZH, Zhang SZ, Wang RK, Zhang RF, Hao YJ. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene conferring abiotic stress tolerance in plants. Plos One. 2013; 8(7). https://doi.org/10.1371/journal.pone.0069955 PMID: 23950843

16. Stracke R, Holtgrawe D, Schneider J, Pucker B, Sorensen TR, Weisshaar B. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biology. 2014;14. https://doi.org/10.1186/s12870-014-0249-8 PMID: 25249410

17. Li YM, Kui LW, Zhen L, Allan AC, Qin SH, Zhang JL, et al. Genome-wide analysis and expression profiles of the SrR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules. 2020; 148:817–832.

18. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant Journal. 2008; 53(5):814–827.

19. Stracke R, Ishihara H, Barsch GHA, Mehrtens F, Niehaus K, Weisshaar B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant Journal. 2007; 50(4):660–677.

20. Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, et al. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell. 1999; 11(8):1433–1444.

21. Espley RV, Hellens RP, Potterill J, Stevenson DE, Kutty-Amma S, Allan AC. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal. 2007; 49(3):414–427.

22. Chagné D, Kui LW, Espley RV, Volz RK, How NM, Rouse S, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology. 2013; 161(1):225–239. https://doi.org/10.1104/pp.112.206771 PMID: 23096157

23. Ballester AR, Molthoff J, de Vos R, Hekker BTL, Orzaez D, Fernandez-Moreno JP, et al. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor S1MYB12 leads to pink tomato fruit color. Plant Physiology. 2010; 152(1):71–84. https://doi.org/10.1104/pp.110.175585 PMID: 20249420

24. Li YM, Kui LW, Zhen L, Allan AC, Qin SH, Zhang JL, et al. Genome-wide analysis and expression profiles of the SrR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules. 2020; 148:817–832.

25. Chagné D, Kui LW, Espley RV, Volz RK, How NM, Rouse S, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology. 2013; 161(1):225–239. https://doi.org/10.1104/pp.112.206771 PMID: 23096157

26. Ballester AR, Molthoff J, de Vos R, Hekker BTL, Orzaez D, Fernandez-Moreno JP, et al. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor S1MYB12 leads to pink tomato fruit color. Plant Physiology. 2010; 152(1):71–84. https://doi.org/10.1104/pp.110.175585 PMID: 20249420

27. Li YM, Kui LW, Zhen L, Allan AC, Qin SH, Zhang JL, et al. Genome-wide analysis and expression profiles of the SrR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules. 2020; 148:817–832.

28. Stracke R, Holtgrawe D, Schneider J, Pucker B, Sorensen TR, Weisshaar B. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biology. 2014;14. https://doi.org/10.1186/s12870-014-0249-8 PMID: 25249410

29. Li YM, Kui LW, Zhen L, Allan AC, Qin SH, Zhang JL, et al. Genome-wide analysis and expression profiles of the SrR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules. 2020; 148:817–832.

30. Stracke R, Holtgrawe D, Schneider J, Pucker B, Sorensen TR, Weisshaar B. Genome-wide identification and characterisation of R2R3-MYB genes in sugar beet (Beta vulgaris). BMC Plant Biology. 2014;14. https://doi.org/10.1186/s12870-014-0249-8 PMID: 25249410

31. Li YM, Kui LW, Zhen L, Allan AC, Qin SH, Zhang JL, et al. Genome-wide analysis and expression profiles of the SrR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules. 2020; 148:817–832.

32. Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology. 2012;12. https://doi.org/10.1186/1471-2229-12-106 PMID: 22776508

33. Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology. 2012;12. https://doi.org/10.1186/1471-2229-12-106 PMID: 22776508

34. Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology. 2012;12. https://doi.org/10.1186/1471-2229-12-106 PMID: 22776508

35. Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology. 2012;12. https://doi.org/10.1186/1471-2229-12-106 PMID: 22776508

36. Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, et al. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biology. 2012;12. https://doi.org/10.1186/1471-2229-12-106 PMID: 22776508
35. Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, Itoh T, et al. Genome sequence and analysis of the Japanese morning glory *Ipomoea nil*. Nature Communications. 2016;7. https://doi.org/10.1038/ncomms13295 PMID: 27824041

36. Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S. Isolation of a suppressor-mutator enhancer-like transposable element, *Tpn1*, from Japanese morning glory bearing variegated flowers. Plant Cell. 1994; 6(3):375–383.

37. Hoshino A, Johzuka-Hisatomi Y, Iida S. Gene duplication and mobile genetic elements in the morning glories. Gene. 2001; 265(1–2):1–10. https://doi.org/10.1016/s0378-1119(01)00357-2 PMID: 11255002

38. Hoshino A, Park KI, Iida S. Identification of *r* mutations conferring white flowers in the Japanese morning glory (*Ipomoea nil*). Journal of Plant Research. 2009; 122(2):215–222.

39. Morita Y, Ishiguro K, Tanaka Y, Iida S, Hoshino A. Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories. Planta. 2015; 242(3):575–587. https://doi.org/10.1007/s00425-015-2321-5 WOS:000359831800007. PMID: 26007684

40. Quattrocchio F., Baudry A., Lepiniec L. and Grotewold E. The regulation of flavonoid biosynthesis. The Science of Flavonoids. 2006: 97–122.

41. Albert NW, Davies KM, Lewis DH, Zhang HB, Montefiori M, Brendolise C, et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell. 2014; 26(3):962–980. https://doi.org/10.1105/tpc.113.122069 PMID: 24642943

42. Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of *c* and *ca* mutations conferring white flowers in the Japanese morning glory. Plant and Cell Physiology. 2006; 47(4):457–470.

43. Hoshino A, Yoneda Y, Kuboyama T. A Stowaway transposon disrupts the *InWDR1* gene controlling flower and seed coloration in a medicinal cultivar of the Japanese morning glory. Genes & Genetic Systems. 2016; 91(1):37–40. https://doi.org/10.1266/ggs.15-00062 WOS:000382431800005. PMID: 27074980

44. Nitasaka E. Insertion of an *En/Spm*-related transposable element into a floral homeotic gene *DUPLICATED* causes a double flower phenotype in the Japanese morning glory. Plant Journal. 2003; 36 (4):522–531.

45. Iwasaki M, Nitasaka E. The *FEATHERED* gene is required for polarity establishment in lateral organs especially flowers of the Japanese morning glory (*Ipomoea nil*). Plant Molecular Biology. 2006; 62 (6):913–925.

46. Mitsuda N, Takiguchi Y, Hoshino A, Nitasaka E, Iida S. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of *c* and *ca* mutations conferring white flowers in the Japanese morning glory. Plant and Cell Physiology. 2006; 47(4):457–470.

47. Misuri J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: The protein families database in 2021. Nucleic Acids Research. 2021; 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913 PMID: 33125078

48. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Research. 2018; 46(D1):D493–D496. https://doi.org/10.1093/nar/gkx222 PMID: 29040681

49. Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research. 2021; 49(D1):D458–D60. https://doi.org/10.1093/nar/gkaa937 PMID: 33104802

50. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing developments at PROSITE. Nucleic Acids Research. 2013; 41(D1):E344–E47. https://doi.org/10.1093/nar/gks1067 PMID: 23161676

51. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007; 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404 PMID: 17846036

52. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 2018; 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096 PMID: 29722887

53. Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G. GSAS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015; 31(8):1296–1297. https://doi.org/10.1093/bioinformatics/btu817 PMID: 25504850

54. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Research. 2015; 43(W1):W34–W49. https://doi.org/10.1093/nar/gkv416 PMID: 25935851

55. Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity. 2002; 93(1):77–8. https://doi.org/10.1093/jhered/93.1.77 PMID: 12011185
56. Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, et al. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiology. 2005; 137 (1):253–262.

57. Gigolashvili T, Berger B, Mock HP, Muller C, Weisshaar B, Fluegge UI. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant Journal. 2007; 50 (5):886–901.

58. Gigolashvili T, Engqvist M, Yatusevich R, Muller C, Flugge UI. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytologist. 2008; 177(3):627–642.

59. Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, et al. Solution structure of a specific DNA complex of the MYB DNA-binding domain with cooperative recognition helices. Cell. 1994; 79 (4):639–648. https://doi.org/10.1016/0092-8674(94)90549-5 PMID: 7954830

60. Huang SX, Gao YF, Liu JK, Peng XL, Niu XL, Fei ZJ, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics. 2012; 287(6):495–513.

61. Jakoby MJ, Falkenhain D, Mader MT, Brininstool G, Wischnitzki E, Platz N, et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiology. 2008; 148(3):1583–1602.

62. Gilding EK, Marks MD. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events. Plant Journal. 2010; 64(2):304–317.

63. Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell. 2013; 25(5):1609–1624.

64. Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell. 2006; 18(3):598–611.

65. Müller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell. 2006; 18(3):586–597.

66. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology. 2008; 146 (2):623–635.

67. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature. 2000; 408(6815):967–971.

68. Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, et al. Defective in Tapetal Development and Function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant Journal. 2008; 55(2):99–107.

69. Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, et al. An Arabidopsis R2R3-MYB transcription factor, AMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. Fabs Letters. 2013; 587(12):1773–1778. https://doi.org/10.1016/j.febslet.2013.04.028 PMID: 23660402

70. Azuma M, Morimoto R, Hirose M, Morita Y, Hoshino A, Iida S, et al. A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops. Plant Biotechnology Journal. 2016; 14(1):354–363.

71. Azuma M, Oshima Y, Sakamoto S, Mitsuda N, Ohme-Takagi M, Otagaki S, et al. Dissecting promoter of InMYB1 gene showing petal-specific expression. Plant Biotechnology. 2018; 35(3):243–248.