Transcriptional profiling reveals TRPM5-expressing cells involved in viral infection in the olfactory epithelium

B. Dnate’ Baxter¹,²,⁴, Eric D. Larson³,⁴, Paul Feinstein⁴, Arianna Gentile Polese¹,², Andrew N. Bubak⁵, Christy S. Niemeyer⁵, Laetitia Merle¹,², Doug Shepherd⁶, Vijay R. Ramakrishnan³, Maria A. Nagel⁵, and Diego Restrepo¹,²,*

¹Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
²Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
³Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
⁴Department of Biological Sciences, Hunter College, CUNY, New York, NY, 10065, USA
⁵Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
⁶Department of Pharmacology, University of Colorado Anschutz Medical Campus and Center for Biological Physics and Department of Physics, Arizona State University, USA

‡Co-first authors

*Corresponding author: Diego Restrepo, diego.restrepo@cuanschutz.edu
Understanding viral infection of the olfactory epithelium is essential because smell loss can occur with coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), and because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of fluorescent protein markers for olfactory sensory neurons and TRPM5. We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells and olfactory sensory neurons. These cells express the Tmprss2 transcript that encodes for a serine protease that primes the SARS-CoV-2 spike protein before entry into host cells. Our study provides new insights into a potential role for TRPM5-expressing cells in viral infection of the olfactory epithelium.
Self-reported loss of smell in a large fraction of patients with coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), (Giacomelli et al., 2020; Parma et al., 2020; Yan et al., 2020a; Yan et al., 2020b) raises the question of how SARS-CoV-2 affects olfaction in a subset of patients. Entry of SARS-CoV-2 into cells is mediated by spike protein attachment to the SARS-CoV receptor ACE2 followed by spike protein priming by the serine protease TMPRSS2 (Hoffmann et al., 2020). Chemosensory cells found in the airway (SCCs/brush cells) and intestinal epithelium (tuft cells) express the transient receptor potential cation channel subfamily M member 5 (TRPM5) and other elements of the taste transduction pathway and have been implicated in immune and inflammatory responses to bacterial, viral and parasitic infection (Luo et al., 2019; Maina et al., 2018; O'Leary et al., 2019; Perniss et al., 2020; Rane et al., 2019; Saunders et al., 2014; Tizzano et al., 2010). In the olfactory epithelium TRPM5 and other proteins involved in taste transduction are also expressed in SCC-like microvillous cells (MVCs) (Genovese and Tizzano, 2018; Lin et al., 2008), which have been proposed to be involved in a protective response to high concentrations of odorants (Fu et al., 2018; Lemons et al., 2017). The ACE2 receptor and TMPRSS2 are expressed in support cells, stem cells, and MVCs (Brann et al., 2020; Fodoulian et al., 2020). However, whether MVCs play a role in viral infection or viral infection defense of the olfactory epithelium is unknown.

Herein, we performed transcriptional profiling of MVCs and a subset of olfactory sensory neurons (OSNs) expressing eGFP under control of the TRPM5 promoter (OSN_eGFP+ cells) (Lin et al., 2007; Lopez et al., 2014). In order to profile these low abundance cells we used a modified version of Probe-Seq, which allows deep transcriptional profiling of specific cell
types identified by fluorescent markers as the defining feature (Amamoto et al., 2019). We crossed a mouse expressing mCherry in the nuclei of OSNs under control of the OMP promoter (OMP-H2B::mCherry mice) with TRPM5-eGFP transgenic mice (Clapp et al., 2006) (OMP-H2B::mCherry/TRPM5-eGFP mice). We isolated cells from the olfactory epithelium and used fluorescence-activated cell sorting (FACS) to sort MVC_eGFP cells (mCherry negative and eGFP positive) and cells labeled by OMP-driven mCherry that did or did not express eGFP (OSN_eGFP+ and OSN_eGFP- cells) followed by transcriptional profiling by RNA sequencing (RNAseq).
Results

Fluorescence-activated cell sorting of cells isolated from the main olfactory epithelium. The olfactory epithelium of OMP-H2B::mCherry/TRPM5-eGFP mice expressed nuclear mCherry driven by the OMP promoter in the intermediate layer of the olfactory epithelium (Figures 1a), as expected for the location of nuclei of mature OSNs (Farbman and Margolis, 1980). eGFP expression driven by the TRPM5 promoter was found in MVCs, with cell bodies located mostly in the apical layer of the epithelium (asterisks), and at lower expression levels in a subset of OSNs double-labeled with mCherry (Figure 1a), consistent with earlier publications (Lin et al., 2008; Lin et al., 2007; Pyrski et al., 2017).

We proceeded to isolate cells from the main olfactory epithelium of OMP-H2B::mCherry/TRPM5-eGFP mice (see Methods, Figure 1b). Figure 1c shows two isolated OSNs with differential expression of eGFP. Using flow cytometry we found that fluorescence intensity of individual cells for mCherry and eGFP spanned several orders of magnitude (Figure 1d). We proceeded to sort three groups of cells: high mCherry-expressing cells with low and high eGFP fluorescence (presumably mature OSNs, these cells are termed OSN_eGFP- and OSN_eGFP+ cells respectively) and cells with low mCherry and high eGFP expression (MVC_eGFP, presumably MVCs). Reverse transcription quantitative PCR (RT-qPCR) showed that, as expected the OSN_eGFP- and OSN_eGFP+ cells have higher levels of OMP transcript than MVC_eGFP cells (Figure 1e,i), and OSN_eGFP+ cells and MVC_eGFP cells have higher levels of eGFP transcript compared to OSN_eGFP- cells (Figure 1e,ii). Furthermore, compared to OSN_eGFP- cells both the MVC_eGFP cells and OSN_eGFP+ cells expressed higher levels
of TRPM5 transcript (Figure 1e,iii) and choline acetyl transferase (ChAT)(Figure 1e,iv), a protein involved in acetylcholine neurotransmission that is expressed in MVCs (Ogura et al., 2011). The asterisks in Figure 1e denote significant differences tested with either t-test or ranksum with p-values below the p-value of significance corrected for multiple comparisons using the false discovery rate (pFDR)(Curran-Everett, 2000) (pFDR is 0.033 for OMP, 0.05 for TRPM5, 0.05 for EGFP and 0.03 for ChAT, n=8 for OMP OSN_eGFP-, 4 for OMP OSN_eGFP+ and 4 for MVC_eGFP cells).

The number of OSN_eGFP+ cells sorted by FACS is decreased when OMP-H2B::mCherry/TRPM5-eGFP mice are placed in ventilated cages. In our vivarium we have ventilated cages (HV cages) where air is mechanically exchanged with fresh air once every minute and static cages (LV cages) where air is exchanged passively through a filter in the cover. When we moved the OMP-H2B::mCherry/TRPM5-eGFP to HV cages we noticed a decrease in the number of OSN_eGFP+ cells sorted per mouse (Figures 2a,b and c), suggesting that changes in ventilation conditions affect TRPM5 promoter-driven expression of eGFP. Following this observation, mice were moved back to LV cages. We proceeded to study the dependence of the number of OSN_eGFP+ cells sorted on the number of days in LV vs. HV cages. The number of OSN_eGFP+ cells is positively correlated with the number of days the animal spends in LV cages (Figure 2d) and negatively correlated to the number of days the animals spend in the HV cages (Figure 2e). Generalized linear model (GLM) analysis found significant differences for the number of OSN_eGFP+ cells sorted as a function of the number of days in LV cages (p<0.05, 26 observations, 24 d.f., F-statistic = 5.64, p-value for GLM <0.05) and the number of days in HV cages (p<0.05, 26 observations, 24 d.f., F-statistic = 5.99, p-value for GLM <0.05). For RNAseq
experiments one FACS sort was done using cells from mice born and maintained in HV housing, and the OSN_eGFP+ yield was low. Subsequently, we performed all FACS with cells isolated from the olfactory epithelium of mice raised in LV cages.

Coverage of TRPM5 transcript by RNAseq encompasses the full transcript in MVC_eGFP cells and OSN_eGFP+ cells. Pyrski and co-workers did not find full-length TRPM5 transcript in reverse transcriptase polymerase chain reactions with mRNA extracted from isolated OSNs from the adult mouse and did not find *in situ* signal in the OSN layer of the olfactory epithelium for the full-length TRPM5 transcript (Pyrski et al., 2017). These investigators found full-length TRPM5 transcript and strong *in situ* signal in MVCs. We find strong *in situ* signal for TRPM5 in MVC_eGFP cells located in the apical layer of the olfactory epithelium (Figure 3aii, asterisks). In addition, we find sparse TRPM5 *in situ* labeling in the nuclear OSN layer (Figure 3aii, arrows). In order to gain a better understanding of which TRPM5 transcript is expressed in OSNs we performed an analysis of TRPM5 transcript coverage for the RNAseq performed with RNA from the different groups of cells sorted by FACS. Consistent with *in situ* labeling, TRPM5 transcript was significantly higher in OSN_eGFP+ cells compared to OSN_eGFP- cells and in MVC_eGFP cells compared to OSN_eGFP- cells in both male and female adult mice (Figures 3b,c). To explore RNA sequencing coverage of individual *Trpm5* exons, we computed read depth over the sequence of the *Trpm5* gene for each sample. We found coverage for all exons in OSN_eGFP+ cells and for all exons except exon 1 and 5’UTR1 in MVC_eGFP cells, but there was no coverage in OSN_eGFP- cells (Figures 3b,c). GLM analysis found statistically significant differences for exons (p<0.001, 450 observations, 446 d.f., F-statistic = 33.8, p-value for GLM <0.001), but no overall significance between MVC and OSN_eGFP+ groups (p>0.05,
450 observations, 446 d.f., F-statistic = 33.8, p-value for GLM <0.001). However, post-hoc ranksum tests did yield significant differences between MVC and OSN_eGFP+ groups for exon 1 and 5’UTR1 (p<pFDR=0.0033). We observed no differences in coverage between male and female mice (within MVC_eGFP cells: p>0.05, 210 observations, 206 d.f., F-statistic = 22.8, p value for GLM <0.001; within OSN_GFP+: p>0.05, 240 observations, 236 d.f., F-statistic = 11.5, p value for GLM <0.001). Together, these data suggest that both OSN_eGFP+ cells and MVC_eGFP cells are capable of expressing full-length TRPM5 transcript.

RNAseq indicates that OSN_eGFP+, OSN_eGFP- and MVC are three distinct groups of chemosensory cells in the mouse olfactory epithelium. Differential gene expression analysis of the RNAseq data was used to compare the three olfactory epithelium cell groups sorted by FACS. We found that expression of 2000 genes was significantly higher in OSN_eGFP+ compared to OSN_eGFP-, and expression of 1821 genes was lower in OSN_eGFP+ cells (Figure 4 -figure supplement 1 shows the results of RNAseq and Figure 4 -figure supplement 2 shows the metadata). Figure 4a shows expression levels for the transcripts that showed the largest differences between OSN_eGFP+ and OSN_eGFP- cells. The transcripts for TRPM5 and eGFP were among the top 10 genes whose transcription was higher in OSN_eGFP+ compared to OSN_eGFP- with 105-fold and 42-fold increases respectively. This top 10 OSN_eGFP+ upregulated group also includes Avil and Adgrg6 that are involved in remodeling processes after peripheral nerve injury (Chuang et al., 2018; Jablonka-Shariff et al., 2020) and Espn, encoding for espin, a protein playing a structural role in microvilli of chemosensory cells (Sekerkova et al., 2004). Interestingly, the olfactory activity-dependent protein S100a5 (Fischl et al., 2014) is found among the top 10 OSN_eGFP+ downregulated transcripts suggesting that in these mice
the OSN_eGFP+ are not stimulated by the odorants in their housing environment (Figure 4a).

Additionally, a majority of the olfactory receptors show decreased transcription in OSN_eGFP+ compared to OSN_eGFP- cells (Figures 4a,b) and the volcano plot for olfactory receptor transcript expression shows only 25 olfactory receptors show increased expression in OSN_eGFP+ cells (Figure 4c, based on fold change > 4 and average expression > 100 counts, Table 1).

Expression of 4386 genes was significantly higher in MVC_eGFP cells compared to OSN_eGFP- cells, and expression of 5630 genes was lower in MVC_eGFP cells (Figure 5 – figure supplement 1). Transcripts for 550 olfactory receptors were lower in MVC_eGFP cells (Figure 5 – figure supplement 1), and no olfactory receptors were upregulated in MVC_eGFP cells compared to OSN_eGFP-. Figure 5a shows expression levels for the transcripts with the largest differences between MVC_eGFP cells and OSN_eGFP- cells. Six of the transcripts that are within the top 10 upregulated genes found in MVC_eGFP cells compared to OSN_eGFP- cells (Figure 5a) are also found within the 10 top upregulated transcripts when OSN_eGFP+ cells are compared to OSN_eGFP- cells (Figure 4a) (Adgrg6, Avil, Cd24a, eGFP, Espn and Trpm5).

TRPM5 and eEGFP were among the top 10 genes whose transcription was higher in MVC_eGFP cells compared to OSN_eGFP- cells with 1471-fold and 75-fold differences respectively. Interestingly, Pou2f3, a transcription factor important in differentiation of MVCs (Yamaguchi et al., 2014; Yamashita et al., 2017), is found within the top 10 upregulated genes found in MVC_eGFP cells compared to OSN_eGFP- (Figure 5a) and is also significantly higher in OSN_eGFP+ cells compared to OSN_eGFP- cells (Figure 5 – figure supplement 1). Finally, OMP and s100a5, genes for two proteins expressed in mature OSNs (Farbman and Margolis,
1980; Fischl et al., 2014), were among the top 10 downregulated transcripts in MVC_eGFP cells compared to OSN_eGFP- cells (Figure 5a).

We found expression of 3068 genes which was significantly higher in MVC_eGFP cells compared to OSN_eGFP+ cells, and expression of 4060 genes was lower in MVC_eGFP cells (Figure 5 – figure supplement 2). Figure 5b shows expression levels for the genes that showed the largest differences between MVC and OSN_eGFP+ cells. Among the 10 genes that are highly expressed in OSN_eGFP+ cells compared to MVC_eGFP cells we find Pde4a, a gene expressed in mature OSNs (Juilfs et al., 1997) (OMP is also significantly higher in OSN_eGFP+ cells, but is not among the top 10 genes, Figure 5 – figure supplement 2). Interestingly, Hcn2, a gene that encodes for a hyperpolarization-activated cAMP channel that has been postulated to participate in OSN axon growth and glomerular innervation (Mobley et al., 2010), is found in the top 10 upregulated OSN_eGFP+ genes. Finally, the gene encoding for the synaptic protein Snap25 is found in the top 10 upregulated lists for both OSN_eGFP+ and OSN_eGFP- indicating that both OSNs are involved in synaptic transmission (Figures 5a and b).

We did not find major differences in transcriptome profiling between males and females for genes that were differentially expressed between the three cell groups (Figure 5 – figure supplement 3,4). We found a substantial number of olfactory receptor genes that were differentially expressed between males and females (Figure 5 – figure supplement 4). Surprisingly, the differentially expressed olfactory receptors differed from receptors identified by van der Linden et al. (van der Linden et al., 2018). Finally, we compared expression of transcripts involved in taste transduction, canonical olfactory transduction, and non-canonical
OSNs (Figure 4d). The non-canonical OSNs considered here included guanilyl-cyclase D (GC-D) OSNs (Juilfs et al., 1997), Trpc2 OSNs (Omura and Mombaerts, 2014) and Cav2.1 OSNs (Pyrski et al., 2018). Both OSN_eGFP+ and OSN_eGFP- expressed low levels of Cancna1a encoding for Cav2.1 and Trpc2. OSN_eGFP- expressed higher levels of Trace amine-associated receptors (Liberles, 2015) than OSN_eGFP+ cells. Both OSN_eGFP+ and OSN_eGFP- expressed transcripts for OMP, BBS1 and 2 and proteins involved in the canonical olfactory transduction pathway, markers of canonical OSNs.

Gene ontology enrichment analysis reveals differences in chemosensory transduction and synaptic vesicle function between the three groups of cells. Perusal of the top differences between the three cell groups suggested that these are distinct chemosensory cell types found in the olfactory epithelium. Both OSN_eGFP+ and OSN_eGFP- share expression of OSN-specific transcripts, express distinct subsets of olfactory receptors and differ in expression of the activity-dependent transcript S100a5, and MVC_eGFP cells differ from both OSN groups in expression of transcripts for synaptic transmission and for markers of mature OSNs and microvillous cells.

In order to perform a thorough analysis of the differences between these chemosensory cell groups we performed an analysis of gene ontology (GO) enrichment for lists of genes related to chemosensory perception. When compared with either OSN_eGFP+ or OSN_eGFP- we found that MVC_eGFP cells were enriched for transcripts for the gene ontology list of sensory perception of sweet/umami taste (GO:0050916 and GO:0050916) (Figure 5d, Figure 5 – figure supplements 3,4) involving taste detection/transduction proteins that have been reported to be expressed in MVCs (Genovese and Tizzano, 2018; Hegg et al., 2010): Gnat3, encoding for gustducin, the G protein mediating sweet and umami taste transduction (McLaughlin et al.,
1992), *Ipr3*, encoding for the inositol-1,4,5-triphosphate receptor type 3 and *Tas1r3*, encoding for a gustducin-coupled receptor involved in umami and sweet taste (Damak et al., 2003; Zhang et al., 2003). Interestingly, the GO lists for sensory perception of sweet/umami taste (GO:0050916 and GO:0050917) and other lists for sensory and taste perception (GO:0050906, GO:0050912) are enriched in OSN_eGFP+ cells compared to OSN_eGFP- cells (Figure 4e, Figure 4 – figure supplement 3, including *Gnat3, Ipr3, Tas1r3*). Furthermore, gene ontology analysis for OSN_eGFP+ cells compared to OSN_eGFP- cells finds decreased enrichment for sensory perception of smell (GO:0007608) and G protein-coupled receptor signaling pathways (GO:0007186) that include a large number of olfactory receptors and transcripts encoding for proteins involved in peripheral olfaction such as *Gfy, Omp, Pde1c* and *Pde4a* (GO:0007608) and *Dgkg, Gng13, Itgb1, Nsg1* (GO:0007186). Finally, enrichment of gene ontology lists for synaptic vesicle function were decreased for MVC_eGFP cells compared with either OSN_eGFP+ or OSN_eGFP- cells (Figure 5c,d). Results of this gene ontology analysis of chemosensation and synaptic vesicle function reinforces the finding that the three cell groups in this study are distinct chemosensory cell types of the olfactory epithelium. OSN_eGFP+ cells are related to MVC_eGFP cells because of expression of taste perception gene ontology, but differ from MVC_eGFP cells in expression of olfactory receptors and transcripts related to synaptic function as expected for an OSN.

Gene ontology analysis finds enrichment of lists of viral-related, inflammation and immune transcripts in MVC_eGFP cells and OSN_eGFP+ cells. SCCs, tuft and brush cells have been implicated in responses to bacterial and viral infection, immunity and inflammation (Luo et al., 2019; Maina et al., 2018; O'Leary et al., 2019; Perniss et al., 2020; Rane et al., 2019; Saunders et
The fact that MVCs are closely related to these cells (Fu et al., 2018; Genovese and Tizzano, 2018; Ogura et al., 2011) lead us to search for gene ontology enrichment related to bacterial and viral infection, immunity and inflammation for MVC_eGFP cells. We found robust enrichment of these gene ontologies in MVC_eGFP cells and OSN_eGFP+ cells (Figures 4e, 5c,d). Transcripts related to viral infection that were higher in MVC_eGFP cells and OSN_eGFP+ cells compared to OSN_eGFP- cells (Figure 6) including those involved in viral entry into host cells, viral transcription and regulation of viral transcription, negative regulation of viral genome replication and negative regulation of viral process (Figures 4e, 5c, Figure 6 – figure supplements 1-3). We also found gene ontology enrichment in MVC_eGFP cells and OSN_eGFP+ cells compared to OSN_eGFP- cells for defense response to bacterium (Figure 6 – figure supplements 1-3).

Importantly, we also find enrichment for transcript expression for immunity and inflammation (Figures 4e, 5c,d and Figure 6 – figure supplements 1-3). Genes related to inflammation and immunity that were higher in MVC_eGFP cells and OSN_eGFP+ cells compared to OSN_eGFP- cells are shown in Figure 6 – figure supplements 4-7. Among these transcripts IL25 and its receptor Il17rb are enriched in both MVC_eGFP cells and OSN_eGFP+ cells. In SCCs, brush cells and tuft cell generation of IL25 leads to a type 2 inflammation and stimulates chemosensory cell expansion in a sequence of events that also involves cysteiny leukotrienes (Bankova et al., 2018; Luo et al., 2019; von Moltke et al., 2016). The presence of both Il25 and Il17rb suggests an autocrine effect. Furthermore, both cell types displayed increased expression of transcripts encoding for enzymes involved in eicosanoid biosynthesis such as Alox5, Ptgs1.
and Ptgs2 that are found in brush cells in the airways (Bankova et al., 2018) and tuft cells in the intestine (McGinty et al., 2020) where they drive type 2 immune responses.
Discussion

We performed transcriptional profiling of three chemosensory cells in the mouse olfactory epithelium: MVC_eGFP cells and two types of OSNs: OSN_eGFP+ and OSN_eGFP-. We found that while the transcriptome of each of these cell types is distinct they share common features across groups. The two groups of OSNs share transcript expression for proteins expressed in OSNs such as OMP, olfactory transduction proteins, and proteins involved in synaptic function. Yet, they differ in olfactory receptor expression and OSN_eGFP+ express taste transduction transcripts and other transcripts found in SCCs such as Il25 and Pou2f3. On the other hand, MVC_eGFP cells express transcripts encoding for taste transduction proteins and other transcripts found in SCCs such as Pou2f3 but they do not express transcripts for proteins involved in olfactory transduction and synaptic function, and they do not express olfactory receptors. Finally, we found that MVC_eGFP cells and OSN_eGFP+ cells express a substantial number of transcripts involved in viral infection, inflammation and immunity.

Here we find that OSN_eGFP+ are OSNs expressing full-length TRPM5 in the adult mouse (Figure 3). This raises the question why our results differ from Pyrski and co-workers who did not find full-length TRPM5 in OSNs (Pyrski et al., 2017). Likely, this is due to differences in environmental conditions that alter the number of OSNs expressing TRPM5 in the adult mouse (Figure 2). Interestingly, consistent with our finding of TRPM5 expression in OSNs, analysis of scRNA data in the literature indicates that there are 8 OSNs expressing TRPM5 among 3209 OSNs in the data set from Ziegler and co-workers (Ziegler et al., 2020) and 3 OSNs expressing TRPM5 among 2113 OSNs in the data set from Wu and co-workers (Wu et al., 2018). Finally, OSN_eGFP+ express low levels of the activity-dependent transcript s100a5 (Fischl et al., 2014)
(Figure 4a) suggesting that these cells express olfactory receptors that are not stimulated by odorants present in the cage.

Gene ontology analysis revealed that MVC_eGFP cells (and OSN_eGFP+ cells to a lesser extent) are enriched in viral-related transcripts compared to OSN_eGFP- (Figures 4e, 5c,d, and Figure 6 – figure supplements 1-3). To infect cells, viruses must interact with host cell membranes to trigger membrane fusion and viral entry. Membrane proteins at the surface of the host cell are thus key elements promoting or preventing viral infection. Here we find that transcripts for several membrane proteins and cell adhesion molecules involved in viral entry are enriched in MVC_eGFP cells. Plscr1 encodes a phospholipid scramblase which has been shown to promote herpes simplex virus (HSV) entry in human cervical or vaginal epithelial cells and keratinocytes (Cheshenko et al., 2018), and hepatitis C virus entry into hepatocytes (Gong et al., 2011). In contrast with its role in viral entry, PLSCR1 impairs the replication of other types of viruses in infected cells (influenza A virus (Luo et al., 2018), hepatitis B virus (Yang et al., 2012)). IFTM2 is another transmembrane protein that mediates viral entry. In contrast with PLSCR1, IFTM2 inhibits viral entry of human immunodeficiency virus (HIV, (Yu et al., 2015)), hepatitis C virus (Narayana et al., 2015), influenza A H1N1 virus, West Nile virus, and dengue virus (Brass et al., 2009). IFTM2 also inhibits viral replication (Brass et al., 2009) and protein synthesis (Lee et al., 2018). Nectins are transmembrane glycoproteins and constitute cell surface receptors for numerous viruses. There is wide evidence that HSV can enter host cells through Nectin-1 dependent mechanisms, particularly for neuronal entry (Kopp et al., 2009; Petermann et al., 2015; Sayers and Elliott, 2016; Shukla et al., 2012), and Nectin-4 appears essential for measles virus epithelial entry (Noyce and Richardson, 2012; Singh et al., 2015; Singh et al.,
2016). In addition to cell surface molecules, the mucus contains secreted proteins that confer protection against viruses to the underlying cells. Glycoproteins are major constituents of mucus and exhibit multiple pathogens binding-sites. We found the \textit{Ltf} transcript in MVC\textsubscript{eGFP} cells, which encodes for lactotransferrin. Lactotransferrin is a globular glycoprotein widely represented in the nasal mucus with anti-viral activity against Epstein-Barr virus (Zheng et al., 2014; Zheng et al., 2012), HSV (Shestakov et al., 2012; Valimaa et al., 2009) and Hepatitis C virus (Allaire et al., 2015).

Viruses have developed numerous strategies to overcome barrier mechanisms to enter the cells. After viral entry infected cells have other resources to fight against viral infection by disrupting the production of new viral particles, limiting inflammation processes and activating innate immune responses. For example, TRIM25 is an ubiquitin ligase that activates retinoic acid-inducible gene I (RIG-I) to promote the antiviral interferon response (Gack et al., 2007). Furthermore, influenza A virus targets TRIM25 to evade recognition by the host cell (Gack et al., 2009). In addition, TRIM25 displays a nuclear role in restricting influenza A virus replication (Meyerson et al., 2017). Zc3h12a, also known as MCPIP-1, inhibits hepatitis B and C virus replication, reduces virus-induced inflammation (Li et al., 2020; Lin et al., 2014), and exerts antiviral effects against influenza A virus (Dong et al., 2017). Finally, \textit{Pou2f3} also called \textit{Skn1a}, encodes for a key regulator for the generation of TRPM5-expressing cells in various epithelial tissues (Yamashita et al., 2017). \textit{Pou2f3} transcript was increased in MVC\textsubscript{eGFP} cells (and to a lesser extent in OSN\textsubscript{eGFP+}) compared to OSN\textsubscript{eGFP-}. \textit{Skn1a/Pou2f3}-deficient mice lack intestinal tuft cells and have defective mucosal type 2 responses to helminth infection in the intestine (Gerbe et al., 2016). Finally, both OSN\textsubscript{eGFP+} and MVC\textsubscript{eGFP} cells express Il25, an
interleukin that is involved in the inflammatory response of TRPM5-expressing epithelial cells in the airway epithelium and the gut (O'Leary et al., 2019), and in the skin Il25 expression leads to disruption of the epithelium and enhances HSV-1 and vaccinia virus replication (Kim et al., 2013).

Our findings of expression of virally relevant transcripts in MVC_eGFP cells complement published studies on the role of MVC-related SCCs in viral infection. In the trachea, viral-associated formyl peptides activate SCCs to release acetylcholine and activate mucociliary clearance by ciliated cells (Perniss et al., 2020). This activation is mediated by the TRPM5 transduction pathway in the SCC and muscarinic acetylcholine receptors in the ciliated cell. In a similar manner in the olfactory epithelium MVCs respond to ATP, which is involved in activating mucociliary movement by releasing acetylcholine and activating adjacent sustentacular cells through a muscarinic receptor (Fu et al., 2018). Therefore, viral infection could result in activation of MVCs resulting in activation of mucociliary clearance by adjacent sustentacular cells. In addition, in the anterior olfactory epithelium, where there is a higher density of MVCs, mice exposed to mild odorous irritants exhibited a time-dependent increase in apoptosis and a loss of mature OSNs without a significant increase in proliferation or neurogenesis (Lemons et al., 2020). Therefore, activation of MVCs by viruses could lead to loss of mature OSNs contributing to smell loss after viral infection. Interestingly, in the mouse distal lung, where there is no expression of SCCs, there was de novo generation of SCCs after infection with A/H1N1/PR/8 influenza virus (Rane et al., 2019) raising the question whether virus exposure could alter MVC number in the olfactory epithelium. Finally, because we find high expression of transcripts involved in Type 2 immune response in MVCs viral activation of these
cells could result in activation of cytokine-induced inflammation by long-term horizontal basal cells that activate type 1 immune responses within the olfactory epithelium (Chen et al., 2019).

The olfactory epithelium provides direct viral access to the brain through the olfactory nerve. Whether this olfactory path constitutes route of entry for viruses to the brain is a matter of intense discussion, especially because some viruses are postulated to be involved in encephalopathy and neurodegenerative disorders (Dando et al., 2014; Doty, 2008). Our findings that these TRPM5-bearing OSN_eGFP+ cells are enriched in virally-related genes suggests that these cells may be involved in or prevention of viral entry into the brain (and these two alternatives are not exclusive since they may be different for different viruses). On the one hand, we identified transcripts encoding for viral receptors in OSN_eGFP+ cells, suggesting that viruses can enter these OSNs. If viral particles were to enter the OSNs they could reach the olfactory bulb through anterograde transport along the olfactory nerve and from the olfactory bulb, viruses can spread throughout the brain along the olfactory bulb-hippocampus route. On the other hand, we found enrichment for transcripts encoding for proteins involved in limiting viral infection and promoting immune and anti-inflammatory responses in OSNs_eGFP+ and MVC_eGFP cells. In this case, viral spread to the brain would be prevented. Finally, the olfactory epithelium is innervated by the trigeminal nerve, and substance P immunostaining is closely associated with subsets of MVCs (Lin et al., 2008). This raises the question whether an interaction between MVCs and trigeminal nerve fibers could participate in local inflammation as found for SCCs (Saunders et al., 2014), and could modulate the entry of virus to the brain stem through the trigeminal nerve. Future experiments are necessary to study the potential role of MVC_eGFP cells and OSNs_eGFP+ in viral infection of the olfactory epithelium and the brain.
Recently, due to the current COVID-19 pandemic, researchers have focused their attention on investigating SARS-CoV-2 mechanism of entry into cells. SARS-CoV-2 targets mainly cells of the respiratory pathway where viral entry is mediated by ACE2 and TMPRSS2 (Hoffmann et al., 2020). Because numerous patients reported loss of smell (Giacomelli et al., 2020; Parma et al., 2020; Yan et al., 2020a; Yan et al., 2020b), researchers wondered about the mechanism for SARS-CoV-2 infection of the olfactory epithelium. In our study, we found the Tmprss2 transcript was significantly increased in MVC_eGFP cells and OSN_eGFP+ compared to OSN_eGFP- (Figure 6). We did not find Ace2 enrichment in these cells, but this may be due to inefficiency in finding with RNAseq low abundance transcripts like Ace2 (Ziegler et al., 2020).

Transcriptional profiling of single cells in the olfactory epithelium from other laboratories found expression of transcripts for both Tmprss2 and Ace2 in in sustentacular cells and stem cells, and at lower levels in MVCs (Brann et al., 2020; Fodoulian et al., 2020). Viral infection of sustentacular cells may explain loss of smell because these cells play a key role in supporting olfactory function by providing glucose for the energy necessary for olfactory transduction in the OSN cilia (Villar et al., 2017). Importantly, type I interferons, and to a lesser extent type II interferons induced by response of the host to SARS-CoV-2, and infection by other viruses inducing the interferon pathway increases Ace2 expression in the nasal epithelium (Ziegler et al., 2020). MVCs may play a role in SARS-CoV-2 infection of the olfactory epithelium because these cells may participate in activating inflammation of the epithelium that elicits type 1 immune response (Chen et al., 2019). Finally, our finding of transcripts involved in viral entry, replication and defense in a subset of OSNs raises the question whether viruses enter the central nervous system through the olfactory nerve (Bilinska et al., 2020). This is relevant to the
potential long term effect of SARS-CoV-2 and other viruses in neurological and neurodegenerative disorders (De Felice et al., 2020). Our study provides new insights into a potential role for TRPM5-expressing cells in viral infection of the main olfactory epithelium.
Materials and Methods

Key Resources Table

REAGENT TYPE	REAGENT or RESOURCE	SOURCE	IDENTIFIER	ADDITIONAL INFORMATION
Chemical compound, drug	BrainPhys Neuronal Medium	Stemcell Technologies		Product # 05791
Chemical compound, drug	Dispase II	Sigma		Product # D4693
Chemical compound, drug	AcGFP1/eGFP calibration beads	Takara		Flow cytometry calibration beads
Chemical compound, drug	mCherry calibration beads	Takara		Flow cytometry calibration beads
Chemical compound, drug	RQ1 RNase-free DNase	Promega		Product # M6101
Chemical compound, drug	Papain	Sigma		Product # P3125
Chemical compound, drug	Paraformaldehyde (32%)	Electron Microscopy Sciences		Product # 157145
Chemical compound, drug	RNAprotect Tissue Reagent	Qiagen		Product # 76526
Chemical compound, drug	RNeasy Plus Micro Kit	Qiagen		Product # 74034
Chemical compound, drug	High Capacity c-DNA Reverse Transcription kit	ABI		
Chemical compound, drug	18s rRNA	PE ABI		
Strain, strain background	TRPM5-eGFP	Dr. Robert Margolskee (Clapp et al., 2006)		
Strain, strain background	OMP-H2B::Cherry	Generated for this publication		This mouse will be deposited in Jackson Laboratories
Software, algorithm	MATLAB_R2018a	Mathworks	RRID: SCR_001622	
Software, algorithm	Illustrator	Adobe	RRID: SCR_010279	
Software, algorithm	Photoshop	Adobe	RRID: SCR_014199	
Software, algorithm	InDesign	Adobe		
---------------------	----------	-------		
MoFlo Astrios Summit Software (6.3.1.16945).	Beckman Coulter			
BBMap (BBDuk)	RRID:SCR_016968			
Salmon v1.2.1	https://combine-lab.github.io/salmon/	RRID:SCR_017036 (Patro et al., 2017)		
DeSEQ2 v1.28.0	bioconductor.org https://bioconductor.org/packages/release/bioc/html/DESeq2.html	RRID:SCR_015687 (Love et al., 2014)		
TopGO, v2.40.0	RRID:SCR_014798			
pHeatmap, 1.0.12	RRID:SCR_016418			
Ensembl GRCm38, v99				
R, v4.0	RRID:SCR_001905			
Tximport, v1.16.0	RRID:SCR_016752 (Li et al., 2009)			
SAMtools	SAMtools http://samtools.sourceforge.net/	RRID:SCR_002105		
Bedtools	RRID:SCR_006646			
STAR v2.5.3a	https://github.com/alexdobin/STAR	RRID:SCR_015899		
Sigmaplot, v12.5	Systat Software	RRID:SCR_003210		
Custom code for bioinformatics analysis	https://github.com/eric-d-larson/OE_TRPM5			

424
Overview of the method for transcriptional profiling of low abundance cell populations. For transcriptional profiling of TRPM5-bearing MVC_eGFP cells and OSN_eGFP+ cells that constitute a small fraction of the cells in the epithelium, we used FACS to separate the cell populations targeted for RNAseq (Amamoto et al., 2019). In our experiments, we isolated the cells from mice that expressed fluorescent marker proteins appropriate for cell sorting. OSNs were expressing mCherry under the control of OMP promoter. eGFP was expressed in MVCs and a subset of OSNs (OSN_eGFP+ cells) under control of the TRPM5 promoter.

Generation of OMP-H2B::Cherry mice. A PacI cassette containing PacI-H2B::mCherry-pA PGK-puro-pA-Pacl was inserted into an OMP gene-targeting vector (pPM9)(Mombaerts et al., 1996), which replaces the OMP coding sequence with the PacI cassette and expresses a H2B::mCherry fusion protein. Animals are maintained in a mixed 129/B6 background.

Animals. Mice with TRPM5-driven eGFP expression (Clapp et al., 2006) were crossed with OMP-H2B::Cherry mice. Both lines were maintained separately as homozygous and backcrossed regularly. Experiments were performed on mice from the F1 generation cross of TRPM5-eGFP and OMP-H2B::Cherry mice (OMP-H2B::mCherry/TRPM5-eGFP). PCR was used to verify genotype of experimental mice for eGFP and mCherry expression. Both male and female mice were used for experiments with ages ranging from 3-8 months. Estrous and cage mate information was collected for all female mice in conjunction with experimental use. Mice were housed in passive air exchange caging under a 12:12 light/dark cycle and were given food and water ad libitum. Mice were housed in the National Institutes of Health approved Center for Comparative Medicine at the University of Colorado Anschutz Medical Campus. All procedures
were performed in compliance with University of Colorado Anschutz Medical Campus Institutional Animal Care and Use Committee (IACUC).

Tissue dissociation of the olfactory epithelium. Following euthanasia via CO2 inhalation, the olfactory epithelium was immediately removed from the nasal cavity and epithelial tissue was separated from the bone in the turbinates. Care was taken not to include respiratory epithelium. The epithelium was dissociated enzymatically with Dispase II (2 mg/ml) diluted in Ringer’s solution (145mM NaCl, 5mM KCl, 20mM HEPES, 1mM MgCl2, 1mM CaCl2, 1mM Ny-Pyruvate, 5mM Glucose) (~25 minutes at 37°C) followed by an incubation in a papain plus Ca/Mg++ free Ringer’s solution (Ca/Mg++ free Ringer’s: 145mM NaCl, 5mM KCL, 20mM HEPES, 1mM Ny-Pyruvate, 1mM EDTA, L-cysteine: 1mg L-cysteine /1.5mL Ca/Mg++ free Ringer’s, Papain:1-3ul/1mL Ca/Mg++ free Ringer’s), for ~40-45 minutes at 37°C. Following incubation, DNase I (Promega) at 0.05U/µl and RNAse free 10x Reaction buffer (1:20) were added to solution and the tissue was gently triturated using a ~1mm opening pipette. Isolated OSNs were collected from supernatants via centrifugation and resuspended in cell sorting medium of 1x PBS (diluted from commercial 10x PBS, pH 7.4) and BrainPhys Neuronal Medium (Stemcell Technologies). Initially, isolated cells were examined with a confocal microscope to confirm efficacy of dissociation methods, and examine cell types and fluorescence. For RNAseq, cells were strained through a 40 µm cell strainer and kept on ice until sorted via flow cytometry.

Flow cytometry. Fluorescence activated cell sorting was performed in the University of Colorado Cancer Center Flow Cytometry Core on a Beckman Coulter MoFlo Astrios EQ using
MoFlo Astrios Summit Software (6.3.1.16945). eGFP signal was detected using a 488 nm laser and a bandpass 526/52nm collection filter. mCherry signal was detected using a 561 nm laser and a bandpass 614/20 nm collection filter. The 488nm laser was also used to detect light scatter. The threshold was set at 3%. Gating was set to exclude doublets and optimized as cell populations emerged based on fluorescent markers. Flow cytometry calibration beads for AcGFP1/eGFP and mCherry (Takara, 632594, 632595) were used as fluorescence intensity controls. Olfactory epithelium cell suspensions from wild type and OMP-H2B::Cherry mice or TRPM5-eGFP mice were sorted as controls for auto fluorescence for eGFP and mCherry populations respectively. Cells were sorted into RNAProtect Tissue Reagent (Qiagen).

RNA-extraction. Total RNA was extracted from sorted, pooled cells from each cell population using the RNeasy Plus Micro Kit (Qiagen) according to the manufacturers recommended protocol.

RT-qPCR. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to assess and confirm identities of cell types from each of the sorted cell populations. Following total RNA extraction, RT-qPCR was performed in the PCR core at University of Colorado Anschutz Medical Campus for the following markers: OMP, TRPM5, eGFP and ChAT. Primers and probes used for eGFP, TRPM5 and OMP were described in (Oshimoto et al., 2013). Predesigned primers and probes for ChAT were purchased from Life Technologies. The mRNA for these targets was measured by RT-qPCR using ABI QuantStudio 7 flex Sequence detector. 1µg total RNA was used to synthesize cDNA using the High Capacity c-DNA Reverse Transcription kit (ABI-P/N 4368814). cDNA was diluted 1: 2 before PCR amplification.
The TaqMan probes were 5’labeled with 6-carboxyfluorescein (FAM). Real time PCR reactions were carried out in MicroAmp optical tubes (PE ABI) in a 25 µl mix containing 8 % glycerol, 1X TaqMan buffer A (500 mM KCl, 100 mM Tris-HCl, 0.1 M EDTA, 600 nM passive reference dye ROX, pH 8.3 at room temperature), 300 µM each of dATP, dGTP, dCTP and 600 µM dUTP, 5.5 mM MgCl2, 1X primer-probe mix, 1.25 U AmpliTaq Gold DNA polymerase and 5 µl template cDNA. Thermal cycling conditions were as follows: Initiation was performed at 50°C for 2 min followed by activation of TaqGold at 95°C for 10 min. Subsequently 40 cycles of amplification were performed at 95°C for 15 secs and 60°C for 1 min. Experiments were performed with duplicates for each data point. Each PCR run included the standard curve (10 fold serially diluted pooled cDNA from control and experimental samples), test samples, no-template and NORT controls. The standard curve was then used to calculate the relative amounts of targets in test samples. Quantities of targets in test samples were normalized to the corresponding 18s rRNA (PE ABI, P/N 4308310).

RNA sequencing and pre-processing. RNA quality control, library preparation, and sequencing were performed at the University of Colorado Genomics and Microarray core. Extracted RNA was used as the input for the Nugen Universal Plus mRNA-seq kit (Redwood City, CA) to build stranded sequencing libraries. Indexed libraries were sequenced using an Illumina NovaSEQ6000. Library preparation and sequencing was performed in two batches, separated by gender. 11 female samples were sequenced with an average depth of 37.3 million +/- SD of 6.5 million read pairs, and 25 male samples were sequenced with an average depth of 34.8 million +/- SD of 3.5 million read pairs. Metadata for the samples submitted are shown in Figure 4 –
figure supplement 2. Raw BCL files were demultiplexed and converted to FASTQ format.

Trimming, filtering, and adapter contamination removal was performed using BBduk (Bushnell).

RNA Sequencing Analysis. Transcript abundance was quantified from trimmed and filtered FASTQ files using Salmon v1.2.1 (Patro et al., 2017) and a customized Ensembl GRCm38 (release 99) transcriptome (Zerbino et al., 2018). A customized version of the transcriptome was prepared by appending FASTA sequences of eGFP and mCherry to the GRCm38 FASTA file. The corresponding gene transfer format (GTF) file was modified accordingly to incorporate the new transcripts. Transcript abundance was summarized at the gene level using the TxImport (Soneson et al., 2015) package in R. Differential gene expression was quantified using DESeq2 (Love et al., 2014) with default parameters after removing genes with an average count of < 5 reads in each group. Significance was determined by FDR-adjusted p-value < 0.05. TopGO was used for gene ontology analysis (Alexa and Rahnenfuhrer, 2020). The input to TopGO was a list of significant DEGs and a list of all detected genes in the dataset. Enrichment was calculated by dividing the number of detected genes by the number of expected genes within each ontology of the TopGO output. To make the bar graphs in Figures 4 and 5, enrichment scores of downregulated GO terms were multiplied by -1 for visualization. Heatmap visualization was performed using pHeatmap in R (Kolde, 2019).

TRPM5 exon coverage. To visualize exon coverage of Trpm5, trimmed and filtered FASTQ files were mapped to the Ensembl GRCm38 (version 99) using STAR (params, version 2.5.3a)(Dobin et al., 2013). The genome FASTA and GTF files were modified as described
above. Read coverage was summarized by Trpm5 exon using a combination of Samtools (‘depth’ and ‘bedcov’)(Li et al., 2009) and Bedtools (Quinlan and Hall, 2010). Data were compared using a Scheirer-Ray-Hare test in R (rcompanion package).

Tissue Preparation for Fluorescence Microscopy and in situ. For euthanasia, mice were anesthetized with ketamine/xylazine (20–100 g/g of body weight), perfused transcardially with 0.1 M phosphate buffer (PBS) followed by a PBS-buffered fixative (EMS 32% Paraformaldehyde aqueous solution diluted to 4% with 1x PBS). The nose was harvested and postfixed for 12 h before being transferred for cryoprotection into PBS with 20% sucrose overnight. The olfactory epithelium was cryosectioned coronally into 16 µm-thick sections mounted on Superfrost Plus slides (VWR, West Chester, PA).

In situ. In situ hybridization was performed with the hybridization chain reaction method (Choi et al., 2018) using HCR v3.0 Probe Sets, Amplifiers, and Buffers from Molecular Instruments, Inc. Frozen slides were allowed to thaw and dry, then immersed in 70% ethanol overnight at 4°C, and allowed to dry again completely. Slides were inverted and placed on a Plexiglas platform inside a humidified chamber; subsequent steps were performed using this setup. Slides were incubated in 10 µg/µl proteinase K for 10 minutes at 37°C, then pre-hybridized with HCR hybridization buffer (30% formamide buffer from Molecular Instruments) for 10 minutes at 37°C. Trpm5-B3 probes and OMP-B2 probes (0.4 pmol of each probe in 100 µl HCR hybridization buffer per slide) were added, and slides were hybridized overnight at 37°C. Slides were briefly incubated in undiluted HCR Wash Buffer (30% formamide buffer from Molecular Instruments) at 37°C. Excess probes were removed by incubating slides for 15 minutes each at
37°C in solutions of 75% HCR Wash Buffer / 25% SSCT (5X SSC, 0.1% Tween, diluted in RNAse free water), 50% Buffer / 50% SSCT, 25% Buffer / 75% SSCT, and 100% SSCT. Slides were incubated in Amplification Buffer (Molecular Instruments) at room temperature for 30 minutes. B3 hairpins labeled with Alexa Fluor 647 and B2 hairpins labeled with Alexa Fluor 546 were prepared (6 pmol of each hairpin were heat shocked, then cooled for 30 minutes, and added to 100µl of Amplification Buffer) added to slides, and incubated overnight at room temperature. Excess hairpins were removed with three washes in SSCT at room temperature. Tissue was counterstained with DAPI, and slides were mounted using Invitrogen SlowFade Diamond Antifade Mountant (Thermo Fisher Scientific).

Fluorescence microscopy. Microscopy was performed with confocal microscopes (Nikon A1R or 3i Marianas). Images shown are flattened Z stacks. In situ images in Figure 3 were deconvolved in DeconvolutionLab 2 (Sage et al., 2017) using 10 rounds of Lucy-Richardson deconvolution (Lucy, 1974; Richardson, 1972) and a theoretical point spread function (PSF). The theoretical PSF was calculated using the Gibson-Lanni model (Gibson and Lanni, 1989) for 325 nm lateral and 800 nm axial pixel size, wavelength of the reporter dye molecule, and an air-immersion 20X NA 0.75 objective. Image was maximum projected and Gamma of 0.8 applied to the TRMP5 channel for viewing.

Statistical analysis. Statistical analysis was performed in Matlab (Mathworks, USA). Statistical significance was estimated using a generalized linear model (GLM), with post-hoc tests for all data pairs corrected for multiple comparisons using false discovery rate (Curran-Everett, 2000). The post hoc comparisons between pairs of data were performed either with a t-test, or a ranksum
test, depending on the result of an Anderson-Darling test of normality. 95% CIs shown in the
figures as vertical black lines or shading bounding the lines were estimated by bootstrap analysis
of the mean by sampling with replacement 1000 times using the bootci function in MATLAB.

Data availability. All data will be available in NCBI GEO. The code used for bioinformatics
analysis is found in https://github.com/eric-d-larson/OE_TRPM5
Acknowledgements: We would like to acknowledge the support of Nicole Arevalo for laboratory support, Jerome Artus and Anna-Katerina Hadjantonakis for the construction of the targeting vector and production of OMP-H2B::Cherry mice. This work was supported by NIDCD DC014253 (DR) and by the RNA Bioscience Initiative of the University of Colorado Anschutz Medical Campus (DS and DR). A Starr Stem Cell Grant (JA, AKH and PF) supported the production and characterization of the OMP-H2B::mCherry mouse strain.

Declaration of interests: The authors declare no competing interests.
Alexa, A., and Rahnenfuhrer, J. (2020). topGO: Enrichment Analysis for Gene Ontology (R Package).

Allaire, A., Picard-Jean, F., and Bisaillon, M. (2015). Immunofluorescence to Monitor the Cellular Uptake of Human Lactoferrin and its Associated Antiviral Activity Against the Hepatitis C Virus. J Vis Exp.

Amamoto, R., Garcia, M.D., West, E.R., Choi, J., Lapan, S.W., Lane, E.A., Perrimon, N., and Cepko, C.L. (2019). Probe-Seq enables transcriptional profiling of specific cell types from heterogeneous tissue by RNA-based isolation. Elife 8.

Bankova, L.G., Dwyer, D.F., Yoshimoto, E., Ualiyeva, S., McGinty, J.W., Raff, H., von Moltke, J., Kanaoka, Y., Frank Austen, K., and Barrett, N.A. (2018). The cysteiny1 leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci Immunol 3.

Bilinska, K., Jakubowska, P., Von Bartheld, C.S., and Butowt, R. (2020). Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chemical Neuroscience.

Brann, D.H., Tsukahara, T., Weinreb, C., Lipovsek, M., Van den Berge, K., Gong, B., Chance, R., Macaulay, I.C., Chou, H.-j., Fletcher, R., et al. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. bioRxiv, 2020.2003.2025.009084.
Brass, A.L., Huang, I.C., Benita, Y., John, S.P., Krishnan, M.N., Feeley, E.M., Ryan, B.J.,
Weyer, J.L., van der Weyden, L., Fikrig, E., et al. (2009). The IFITM proteins mediate cellular
resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243-1254.

Bushnell, B. BBMap (SourceForge).

Chen, M., Reed, R.R., and Lane, A.P. (2019). Chronic Inflammation Directs an Olfactory Stem
Cell Functional Switch from Neuroregeneration to Immune Defense. Cell Stem Cell 25, 501-513 e505.

Cheshenko, N., Pierce, C., and Herold, B.C. (2018). Herpes simplex viruses activate
phospholipid scramblase to redistribute phosphatidylserines and Akt to the outer leaflet of the
plasma membrane and promote viral entry. PLoS Pathog 14, e1006766.

Choi, H.M., Schwarzkopf, M., Fornace, M.E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha,
A., and Pierce, N.A. (2018). Third-generation in situ hybridization chain reaction: multiplexed,
quantitative, sensitive, versatile, robust. Development 145, dev165753.

Chuang, Y.C., Lee, C.H., Sun, W.H., and Chen, C.C. (2018). Involvement of advillin in
somatosensory neuron subtype-specific axon regeneration and neuropathic pain. Proc Natl Acad
Sci U S A 115, E8557-E8566.
Clapp, T.R., Medler, K.F., Damak, S., Margolskee, R.F., and Kinnamon, S.C. (2006). Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol 4, 7.

Curran-Everett, D. (2000). Multiple comparisons: philosophies and illustrations. AmJPhysiol RegulIntegrComp Physiol 279, R1-R8.

Damak, S., Rong, M., Yasumatsu, K., Kokrashvili, Z., Varadarajan, V., Zou, S., Jiang, P., Ninomiya, Y., and Margolskee, R.F. (2003). Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301, 850-853.

Dando, S.J., Mackay-Sim, A., Norton, R., Currie, B.J., St John, J.A., Ekberg, J.A.K., Batzloff, M., Ulett, G.C., and Beacham, I.R. (2014). Pathogens Penetrating the Central Nervous System: Infection Pathways and the Cellular and Molecular Mechanisms of Invasion. Clinical Microbiology Reviews 27, 691-726.

De Felice, F.G., Tovar-Moll, F., Moll, J., Munoz, D.P., and Ferreira, S.T. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the Central Nervous System. Trends in Neurosciences.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
Dong, C., Sun, X., Guan, Z., Zhang, M., and Duan, M. (2017). Modulation of influenza A virus replication by microRNA-9 through targeting MCPIP1. J Med Virol 89, 41-48.

Doty, R.L. (2008). The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol 63, 7-15.

Farbman, A.I., and Margolis, F.L. (1980). Olfactory marker protein during ontogeny: immunohistochemical localization. Developmental biology 74, 205-215.

Fischl, A.M., Heron, P.M., Stromberg, A.J., and McClintock, T.S. (2014). Activity-dependent genes in mouse olfactory sensory neurons. Chem Senses 39, 439-449.

Fodoulian, L., Tuberosa, J., Rossier, D., Landis, B.N., Carleton, A., and Rodriguez, I. (2020). SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. bioRxiv, 2020.2003.2031.013268.

Fu, Z., Ogura, T., Luo, W., and Lin, W. (2018). ATP and Odor Mixture Activate TRPM5-Expressing Microvillous Cells and Potentially Induce Acetylcholine Release to Enhance Supporting Cell Endocytosis in Mouse Main Olfactory Epithelium. Front Cell Neurosci 12, 71.

Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E., Farzan, M., Inoue, S., Jung, J.U., and Garcia-Sastre, A. (2009). Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439-449.
Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., et al. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920.

Genovese, F., and Tizzano, M. (2018). Microvillous cells in the olfactory epithelium express elements of the solitary chemosensory cell transduction signaling cascade. PLoS One 13, e0202754.

Gerbe, F., Sidot, E., Smyth, D.J., Ohmoto, M., Matsumoto, I., Dardalhon, V., Cesses, P., Garnier, L., Pouzolles, M., Brulin, B., et al. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226-230.

Giacomelli, A., Pezzati, L., Conti, F., Bernacchia, D., Siano, M., Oreni, L., Rusconi, S., Gervasoni, C., Ridolfo, A.L., Rizzardini, G., et al. (2020). Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis.

Gibson, S.F., and Lanni, F. (1989). Diffraction by a circular aperture as a model for three-dimensional optical microscopy. J Opt Soc Am A 6, 1357-1367.

Gong, Q., Cheng, M., Chen, H., Liu, X., Si, Y., Yang, Y., Yuan, Y., Jin, C., Yang, W., He, F., et al. (2011). Phospholipid scramblase 1 mediates hepatitis C virus entry into host cells. FEBS Lett 585, 2647-2652.
Hegg, C.C., Jia, C., Chick, W.S., Restrepo, D., and Hansen, A. (2010). Microvillous cells expressing IP3 receptor type 3 in the olfactory epithelium of mice. Eur J Neurosci 32, 1632-1645.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278.

Jablonska-Shariff, A., Lu, C.Y., Campbell, K., Monk, K.R., and Snyder-Warwick, A.K. (2020). Gpr126/Adgrg6 contributes to the terminal Schwann cell response at the neuromuscular junction following peripheral nerve injury. Glia 68, 1182-1200.

Juilfs, D.M., Fulle, H.J., Zhao, A.Z., Houslay, M.D., Garbers, D.L., and Beavo, J.A. (1997). A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci U S A 94, 3388-3395.

Kim, B.E., Bin, L., Ye, Y.M., Ramamoorthy, P., and Leung, D.Y.M. (2013). IL-25 enhances HSV-1 replication by inhibiting filaggrin expression, and acts synergistically with Th2 cytokines to enhance HSV-1 replication. J Invest Dermatol 133, 2678-2685.

Kolde, R. (2019). pheatmap: Pretty Heatmaps (cran.r-project.org).
Kopp, S.J., Banisadr, G., Glajch, K., Maurer, U.E., Grunewald, K., Miller, R.J., Osten, P., and Spear, P.G. (2009). Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci U S A 106, 17916-17920.

Lee, W.J., Fu, R.M., Liang, C., and Sloan, R.D. (2018). IFITM proteins inhibit HIV-1 protein synthesis. Sci Rep 8, 14551.

Lee, W.J., Fu, R.M., Liang, C., and Sloan, R.D. (2018). IFITM proteins inhibit HIV-1 protein synthesis. Sci Rep 8, 14551.

Lemons, K., Fu, Z., Aoude, I., Ogura, T., Sun, J., Chang, J., Mbonu, K., Matsumoto, I., Arakawa, H., and Lin, W. (2017). Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. eNeuro 4.

Lemons, K., Fu, Z., Aoude, I., Ogura, T., Sun, J., Chang, J., Mbonu, K., Matsumoto, I., Arakawa, H., and Lin, W. (2017). Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment. eNeuro 4.

Lemons, K., Fu, Z., Ogura, T., and Lin, W. (2020). TRPM5-expressing Microvillous Cells Regulate Region-specific Cell Proliferation and Apoptosis During Chemical Exposure. Neuroscience 434, 171-190.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.

Li, M., Yang, J., Zhao, Y., Song, Y., Yin, S., Guo, J., Zhang, H., Wang, K., Wei, L., Li, S., et al. (2020). MCPIP1 inhibits Hepatitis B virus replication by destabilizing viral RNA and negatively regulates the virus-induced innate inflammatory responses. Antiviral Res 174, 104705.
Liberles, S.D. (2015). Trace amine-associated receptors: ligands, neural circuits, and behaviors. Current opinion in neurobiology 34, 1-7.

Lin, R.J., Chu, J.S., Chien, H.L., Tseng, C.H., Ko, P.C., Mei, Y.Y., Tang, W.C., Kao, Y.T., Cheng, H.Y., Liang, Y.C., et al. (2014). MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J Immunol 193, 4159-4168.

Lin, W., Ezekwe, E.A., Jr., Zhao, Z., Liman, E.R., and Restrepo, D. (2008). TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci 9, 114.

Lin, W., Margolskee, R., Donnert, G., Hell, S.W., and Restrepo, D. (2007). Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 104, 2471-2476.

Lopez, F., Delgado, R., Lopez, R., Bacigalupo, J., and Restrepo, D. (2014). Transduction for Pheromones in the Main Olfactory Epithelium Is Mediated by the Ca2+-Activated Channel TRPM5. J Neurosci 34, 3268-3278.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

Lucy, L.B. (1974). An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745.
Luo, W., Zhang, J., Liang, L., Wang, G., Li, Q., Zhu, P., Zhou, Y., Li, J., Zhao, Y., Sun, N., et al. (2018). Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PLoS Pathog 14, e1006851.

Luo, X.C., Chen, Z.H., Xue, J.B., Zhao, D.X., Lu, C., Li, Y.H., Li, S.M., Du, Y.W., Liu, Q., Wang, P., et al. (2019). Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc Natl Acad Sci U S A 116, 5564-5569.

Maina, I.W., Workman, A.D., and Cohen, N.A. (2018). The role of bitter and sweet taste receptors in upper airway innate immunity: Recent advances and future directions. World J Otorhinolaryngol Head Neck Surg 4, 200-208.

McGinty, J.W., Ting, H.-A., Billipp, T.E., Nadjsombati, M.S., Khan, D.M., Barrett, N.A., Liang, H.-E., Matsumoto, I., and von Moltke, J. (2020). Tuft-Cell-Derived Leukotrienes Drive Rapid Anti-helminth Immunity in the Small Intestine but Are Dispensable for Anti-protist Immunity. Immunity 52, 528-541.e527.

McLaughlin, S.K., McKinnon, P.J., and Margolskee, R.F. (1992). Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563-569.

Meyerson, N.R., Zhou, L., Guo, Y.R., Zhao, C., Tao, Y.J., Krug, R.M., and Sawyer, S.L. (2017). Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation. Cell Host Microbe 22, 627-638 e627.
Mobley, A.S., Miller, A.M., Araneda, R.C., Maurer, L.R., Muller, F., and Greer, C.A. (2010). Hyperpolarization-activated cyclic nucleotide-gated channels in olfactory sensory neurons regulate axon extension and glomerular formation. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 16498-16508.

Mombaerts, P., Wang, F., Dulac, C., Chao, S.K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. (1996). Visualizing an olfactory sensory map. Cell 87, 675-686.

Narayana, S.K., Helbig, K.J., McCartney, E.M., Eyre, N.S., Bull, R.A., Eltahla, A., Lloyd, A.R., and Beard, M.R. (2015). The Interferon-induced Transmembrane Proteins, IFITM1, IFITM2, and IFITM3 Inhibit Hepatitis C Virus Entry. J Biol Chem 290, 25946-25959.

Noyce, R.S., and Richardson, C.D. (2012). Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol 20, 429-439.

O'Leary, C.E., Schneider, C., and Locksley, R.M. (2019). Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol 37, 47-72.

Ogura, T., Szebenyi, S.A., Krosnowski, K., Sathyanesan, A., Jackson, J., and Lin, W. (2011). Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol 106, 1274-1287.

Omura, M., and Mombaerts, P. (2014). Trpc2-Expressing Sensory Neurons in the Main Olfactory Epithelium of the Mouse. Cell Reports 8, 583-595.
Oshimoto, A., Wakabayashi, Y., Garske, A., Lopez, R., Rolen, S., Flowers, M., Arevalo, N., and Restrepo, D. (2013). Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons. PLoS One 8, e61990.

Parma, V., Ohla, K., Veldhuizen, M.G., Nim, M.Y., Kelly, C.E., Reed, D.R., Hummel, T., Munger, S., and Hayes, J.E. (2020). More than just smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. medRxiv, 2020.2005.2004.20090902.

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature methods 14, 417-419.

Perniss, A., Liu, S., Boonen, B., Keshavarz, M., Ruppert, A.L., Timm, T., Pfeil, U., Soltanova, A., Kusumakshi, S., Delventhal, L., et al. (2020). Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity 52, 683-699 e611.

Petermann, P., Rahn, E., Thier, K., Hsu, M.J., Rixon, F.J., Kopp, S.J., and Knebel-Morsdorf, D. (2015). Role of Nectin-1 and Herpesvirus Entry Mediator as Cellular Receptors for Herpes Simplex Virus 1 on Primary Murine Dermal Fibroblasts. J Virol 89, 9407-9416.

Pyrski, M., Eckstein, E., Schmid, A., Bufe, B., Weiss, J., Chubanov, V., Boehm, U., and Zufall, F. (2017). Trpm5 expression in the olfactory epithelium. Mol Cell Neurosci 80, 75-88.
Pyrski, M., Tusty, M., Eckstein, E., Oboti, L., Rodriguez-Gil, D.J., Greer, C.A., and Zufall, F. (2018). P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb. Frontiers in Cellular Neuroscience 12, 295.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.

Rane, C.K., Jackson, S.R., Pastore, C.F., Zhao, G., Weiner, A.I., Patel, N.N., Herbert, D.R., Cohen, N.A., and Vaughan, A.E. (2019). Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am J Physiol Lung Cell Mol Physiol 316, L1141-L1149.

Richardson, W.H. (1972). Bayesian-Based Iterative Method of Image Restoration*. J Opt Soc Am 62, 55-59.

Sage, D., Donati, L., Soulez, F., Fortun, D., Schmit, G., Seitz, A., Guiet, R., Vonesch, C., and Unser, M. (2017). DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 115, 28-41.

Saunders, C.J., Christensen, M., Finger, T.E., and Tizzano, M. (2014). Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A 111, 6075-6080.
Sayers, C.L., and Elliott, G. (2016). Herpes Simplex Virus 1 Enters Human Keratinocytes by a Nectin-1-Dependent, Rapid Plasma Membrane Fusion Pathway That Functions at Low Temperature. J Virol 90, 10379-10389.

Sekerkova, G., Zheng, L., Loomis, P.A., Changyaleket, B., Whitlon, D.S., Mugnaini, E., and Bartles, J.R. (2004). Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J Neurosci 24, 5445-5456.

Shestakov, A., Jenssen, H., Nordstrom, I., and Eriksson, K. (2012). Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infection in mice. Antiviral Res 93, 340-345.

Shukla, N.D., Tiwari, V., and Valyi-Nagy, T. (2012). Nectin-1-specific entry of herpes simplex virus 1 is sufficient for infection of the cornea and viral spread to the trigeminal ganglia. Mol Vis 18, 2711-2716.

Singh, B.K., Hornick, A.L., Krishnamurthy, S., Locke, A.C., Mendoza, C.A., Mateo, M., Miller-Hunt, C.L., Cattaneo, R., and Sinn, P.L. (2015). The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia. J Virol 89, 7089-7096.

Singh, B.K., Li, N., Mark, A.C., Mateo, M., Cattaneo, R., and Sinn, P.L. (2016). Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells. J Virol 90, 6808-6817.
Soneson, C., Love, M.I., and Robinson, M.D. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521.

Tizzano, M., Gulbransen, B.D., Vandenbeuch, A., Clapp, T.R., Herman, J.P., Sibhatu, H.M., Churchill, M.E., Silver, W.L., Kinnamon, S.C., and Finger, T.E. (2010). Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 107, 3210-3215.

Ualiyeva, S., Hallen, N., Kanaoka, Y., Ledderose, C., Matsumoto, I., Junger, W.G., Barrett, N.A., and Bankova, L.G. (2020). Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Science Immunology 5, eaax7224.

Valimaa, H., Tenovuo, J., Waris, M., and Hukkanen, V. (2009). Human lactoferrin but not lysozyme neutralizes HSV-1 and inhibits HSV-1 replication and cell-to-cell spread. Virol J 6, 53.

van der Linden, C., Jakob, S., Gupta, P., Dulac, C., and Santoro, S.W. (2018). Sex separation induces differences in the olfactory sensory receptor repertoires of male and female mice. Nat Commun 9, 5081.

Villar, P.S., Delgado, R., Vergara, C., Reyes, J.G., and Bacigalupo, J. (2017). Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose. J Neurosci 37, 5736-5743.
von Moltke, J., Ji, M., Liang, H.E., and Locksley, R.M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221-225.

Wu, Y., Ma, L., Duyck, K., Long, C.C., Moran, A., Scheerer, H., Blanck, J., Peak, A., Box, A., Perera, A., *et al.* (2018). A Population of Navigator Neurons Is Essential for Olfactory Map Formation during the Critical Period. Neuron 100, 1066-1082 e1066.

Yamaguchi, T., Yamashita, J., Ohmoto, M., Aoude, I., Ogura, T., Luo, W., Bachmanov, A.A., Lin, W., Matsumoto, I., and Hirota, J. (2014). Skn-1a/Pou2f3 is required for the generation of Trpm5-expressing microvillous cells in the mouse main olfactory epithelium. BMC Neurosci 15, 13.

Yamashita, J., Ohmoto, M., Yamaguchi, T., Matsumoto, I., and Hirota, J. (2017). Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PLoS One 12, e0189340.

Yan, C.H., Faraji, F., Prajapati, D.P., Boone, C.E., and DeConde, A.S. (2020a). Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol.

Yan, C.H., Faraji, F., Prajapati, D.P., Ostrander, B.T., and DeConde, A.S. (2020b). Self-reported olfactory loss associates with outpatient clinical course in Covid-19. Int Forum Allergy Rhinol.
Yang, J., Zhu, X., Liu, J., Ding, X., Han, M., Hu, W., Wang, X., Zhou, Z., and Wang, S. (2012). Inhibition of Hepatitis B virus replication by phospholipid scramblase 1 in vitro and in vivo. Antiviral Res 94, 9-17.

Yu, J., Li, M., Wilkins, J., Ding, S., Swartz, T.H., Esposito, A.M., Zheng, Y.M., Freed, E.O., Liang, C., Chen, B.K., et al. (2015). IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein. Cell Rep 13, 145-156.

Zerbino, D.R., Achuthan, P., Akanni, W., Amode, M.R., Barrell, D., Bhai, J., Billis, K., Cummins, C., Gall, A., Giron, C.G., et al. (2018). Ensembl 2018. Nucleic Acids Res 46, D754-D761.

Zhang, Y., Hoon, M.A., Chandrashekar, J., Mueller, K.L., Cook, B., Wu, D., Zuker, C.S., and Ryba, N.J. (2003). Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293-301.

Zheng, Y., Qin, Z., Ye, Q., Chen, P., Wang, Z., Yan, Q., Luo, Z., Liu, X., Zhou, Y., Xiong, W., et al. (2014). Lactoferrin suppresses the Epstein-Barr virus-induced inflammatory response by interfering with pattern recognition of TLR2 and TLR9. Lab Invest 94, 1188-1199.

Zheng, Y., Zhang, W., Ye, Q., Zhou, Y., Xiong, W., He, W., Deng, M., Zhou, M., Guo, X., Chen, P., et al. (2012). Inhibition of Epstein-Barr virus infection by lactoferrin. J Innate Immun 4, 387-398.
Ziegler, C.G.K., Allon, S.J., Nyquist, S.K., Mbano, I.M., Miao, V.N., Tzouanas, C.N., Cao, Y.,
Yousif, A.S., Bals, J., Hauser, B.M., et al. (2020). SARS-CoV-2 receptor ACE2 is an interferon-
stimulated gene in human airway epithelial cells and is detected in specific cell subsets across
tissues. Cell.
Name	OSN_eGFP-	OSN_eGFP+	MVC_eGFP	p-value adjusted
Olfr292	3.61	959	4.29	6.35E-09
Olfr282	2.05	486	0	8.01E-05
Olfr1434	53.3	7730	0	9.71E-16
Olfr390	101	10800	43.1	1.56E-16
Olfr305	6.14	612	0	6.3E-12
Olfr293	6.96	664	16.9	1.42E-07
Olfr378	3.41	322	0	1.1E-06
Olfr128	39.6	3660	12.7	7.33E-14
Olfr344	16.2	1050	0	1.4E-11
Olfr307	7.59	393	0	3.76E-06
Olfr391	156	8000	9.79	1.01E-15
Olfr299	13.1	651	0	4.58E-09
Olfr142	36.4	1720	3.77	1.62E-08
Olfr1	147	5720	52.7	3.08E-10
Olfr1279	16.4	552	10.9	3.52E-07
Olfr39	13.8	388	21	2.81E-06
Olfr1447	64.1	1610	0	1.23E-07
Olfr728	2150	45700	320	6.13E-22
Olfr727	560	11000	179	1.64E-07
Olfr1555-ps1	10.1	175	0	0.0397
Olfr346	27.6	465	0	3.85E-05
Olfr1228	533	5320	35.4	3.09E-08
Olfr1181	87.4	766	4.61	0.000766
Olfr943	97.1	844	2.89	0.000886
Olfr298	60.1	509	0	0.00132

Table 1. Levels of expression and adjusted p-value for the olfactory receptor genes whose levels are significantly higher in OSN_eGFP+ compared to OSN_eGFP-. These olfactory receptors had an adjusted p-value for expression level difference between OSN_eGFP+ compared to OSN_eGFP- and had a fold change > 4 and average expression > 100 counts.
Figure 1. Fluorescence activated sorting (FACS) of cells isolated from the olfactory epithelium.

a. TRPM5 promoter driven expression of eGFP and OMP promoter driven expression of mCherry in the olfactory epithelium. Expression of eGFP is found both in MVCs that do not express mCherry (asterisk) and in OSNs double labeled with eGFP and mCherry (arrow).
Composite, ii. eGFP, iii. mCherry, iv. Composite magnification. Magenta: mCherry, green: eGFP. Scale bar: i-iii, 50 µm, iv, 10 µm.

b. Schematic of RNA-seq process from tissue to RNA extraction. Mouse OE was dissociated into single cells and sorted via FACS. RNA was extracted from each of the resulting cell populations.

c. Two isolated OSNs differing in eGFP expression. Magenta: mCherry, green: eGFP. Scale bar: 10 µm.
d. Distribution of mCherry and eGFP fluorescence intensity for FACS-sorted cells. Three cell populations were isolated for RNAseq: Cells with low OMP promoter-driven mCherry expression and high TRPM5 promoter-driven eGFP expression (MVC_eGFP cells), cells with high OMP promoter-driven mCherry and low eGFP expression (OSN_eGFP- cells) and cells with eGFP expression of the same magnitude as MVC_eGFP cells and high OMP promoter-driven mCherry expression (OSN_eGFP+ cells). The number of cells collected for this FACS run were: OSN_eGFP-s 1,500,000, OSN_eGFP+s 5336 and MVC_eGFP cells 37,178.

e. qPCR levels (normalized to levels 18s RNA) for expression of transcripts encoding for OMP (i), TRPM5 (ii), eGFP (iii) and ChAT (iv). The asterisks denote significant differences tested with either t-test or ranksum with p-values below the significance p-value corrected for multiple comparisons using the false discovery rate (pFDR)(Curran-Everett, 2000). pFDR is 0.033 for OMP, 0.05 for TRPM5, 0.05 for eGFP and 0.03 for ChAT, n=8 for OMP OSN_eGFP-s, 4 for OMP OSN_eGFP+s and 4 for MVC_eGFP cells.
Figure 2. Decreased yield of OSN_eGFP+ cells when mice are moved from low ventilation (LV) to high ventilation (HV) cages.

a and b. Distribution of mCherry and eGFP fluorescence intensity for FACS-sorted cells that either were not transferred to HV cages (a) or were transferred to HV cages for 22 days before sorting (b).

c. Time course showing change in the number of sorted OSN_eGFP+s after mice were transferred to HV cages.

d and e. Dependence of the yield of OSN_eGFP+ cells after sorting on the number of days in LV cages (d) or the number of days in HV cages (e).
Figure 3. Coverage of TRPM5 transcript by RNAseq in the different cell groups sorted from the olfactory epithelium

a. In situ for TRPM5 and OMP transcripts in the olfactory epithelium shows strong label for TRPM5 in MVCs (asterisks) and sparse labeling in the OSN nuclear layer (arrows). i. OMP, ii. TRPM5, iii. Composite. The scale bar is 100 µm.

b and c. Coverage of the reads for the TRPM5 transcript for the different cell groups. Read coverage was computed with ‘Samtools depth’ over the region corresponding to the Trpm5 gene.

b. Coverage per exon. All samples normalized to TRPM5 reads show distribution among exons with little difference between MVC and OSN_eGFP+ cells.

c. Coverage shown per base pair as a function of location in the genomic DNA. Plots show read depth per base pair for each cell type normalized to total number of mapped reads. Gray shading indicates 95% confidence interval.
Figure 4. RNAseq comparison of OSN_eGFP- and OSN_eGFP+ cells.

a. Heatmap showing the top 10 upregulated and top 10 downregulated genes identified by DESeq2.

b. Heatmap showing all Olfr genes detected in the data.
For both a and b, row and column order were determined automatically by the *pHeatmap* package in R. For each data point relative expression was calculated by subtracting the average row value from each individual value.

c. Volcano plot of all Olfactory receptors, demonstrating the small number of enriched olfactory receptors in the OSN_eGFP+ population.

d. Hierarchical clustering of transcripts for taste transduction and transcripts expressed in canonical and non-canonical OSNs identified by RNAseq as significantly different in expression between the cell groups. We compared expression of transcripts involved in taste transduction, canonical olfactory transduction, and non-canonical OSNs. The non-canonical OSNs considered here included guanilyl-cyclase D (GC-D) OSNs (Juilfs et al., 1997), Trpc2 OSNs (Omura and Mombaerts, 2014), Cav2.1 OSNs (Pyrski et al., 2018), and OSNs expressing trace amine-associated receptors (Taars) (Liberles, 2015). Transcripts identified by DESeq2.

e. Gene ontology (GO) term enrichment was calculated from differentially expressed genes using *TopGO* in R. An enrichment value for genes with Fischer p value <0.05 was calculated by dividing the number of expressed genes within the GO term by the number expected genes (by random sampling, determined by *TopGO*).
Figure 5. RNAseq comparison of OSN_eGFP- and OSN_eGFP+ vs. MVC_eGFP cells.

a and b. Heatmaps showing hierarchical clustering of the top 10 upregulated and top 10 downregulated genes identified by DESeq2. **a.** OSN_eGFP- vs. MVC_eGFP cells. **b.** OSN_eGFP+ vs. MVC_eGFP cells. For both a and b, row and column order were determined automatically by the pHeatmap package in R. For each data point relative expression was calculated by subtracting the average row value from each individual value.
c and d. Gene ontology (GO) term enrichment was calculated from differentially expressed genes using TopGO in R. c. OSN_eGFP- vs. MVC_eGFP cells. d. OSN_eGFP+ vs. MVC_eGFP cells. An enrichment value for genes with Fischer p value <0.05 was calculated by dividing the number of expressed genes within the GO term by the number expected genes (by random sampling, determined by TopGO).
Figure 6. Significant differences in virally-related gene ontology. Heatmaps show hierarchical clustering of significantly differentially expressed genes identified by DESeq2. a. MVC_eGFP cells compared to OSN_eGFP-. b. OSN_eGFP+ compared to OSN_eGFP-.
Supplemental Information

Transcriptional profiling reveals TRPM5-expressing cells involved in viral infection in the olfactory epithelium

B. Dnate’ Baxter¹,², Eric D. Larson³ ‡, Paul Feinstein⁴, Arianna Gentile Polese¹,², Andrew N. Bubak⁵, Christy S. Niemeyer⁵, Laetitia Merle¹,², Doug Shepherd⁶, Vijay R. Ramakrishnan³, Maria A. Nagel⁵, and Diego Restrepo¹,²,*
Figure 4 – figure supplement 1. Excel worksheet with the results of comparison of gene transcription between OSN_EGFP+ and OSN_EGFP-.

Figure 4 – figure supplement 2. Metadata for the RNAseq.

Figure 5 - figure supplement 1. Excel worksheet with the results of comparison of gene transcription between MVC_eGFP cells and OSN_EGFP-.

Figure 5 - figure supplement 2. Excel worksheet with the results of comparison of gene transcription between MVC_eGFP cells and OSN_EGFP+.
Figure 5 – figure supplement 3. Hierarchical clustering of transcripts identified by RNAseq as significantly differentially expressed between male and female. a. OSN_eGFP-. b. MVC_eGFP+ cells c. OSN_eGFP+. Transcripts identified by DESeq2.
Figure 5 – figure supplement 4. Hierarchical clustering of olfactory receptor transcripts identified by RNAseq as significantly differentially expressed between male and female. a. OSN_eGFP-. b. OSN_eGFP+. Transcripts identified by DESeq2.
Figure 6 – figure supplement 1. Excel worksheet with the results of gene ontology enrichment analysis for OSN_eGFP+ compared to OSN_eGFP-.

Figure 6 - figure supplement 2. Excel worksheet with the results of gene ontology enrichment analysis for MVC_eGFP cells compared to OSN_EGFP-.

Figure 6- figure supplement 3. Excel worksheet with the results of gene ontology enrichment analysis for MVC_eGFP cells compared to OSN_EGFP+.
Figure 6- figure supplement 4. Significant differences in inflammation gene ontology for OSN_eGFP+ compared to OSN_eGFP-.
Figure 6- figure supplement 5. Significant differences in inflammation gene ontology for MVC_eGFP+ compared to OSN_eGFP-.
Figure 6- figure supplement 6. Significant differences in immune gene ontology for OSN_eGFP+ compared to OSN_eGFP-.
Figure 6- figure supplement 7. Significant differences in immune gene ontology for MVC_eGFP+ compared to OSN_eGFP-.