Human epidermal growth factor receptor 2 expression in gastric cancer patients treated with curative intent gastrectomy

Min Kyu Kim, Sang Eok Lee, Jang Sihn Sohn, In Seok Choi, Ju Ik Moon, Dae Sung Yoon, Ki Won Chun, Hye Yoon Lee, Nak Song Sung, Si Min Park, Won Jun Choi
Departments of Surgery and Pathology, Konyang University Hospital, Daejeon, Korea

Purpose: This study aimed to clarify the association between human epidermal growth factor receptor 2 (HER-2) status and the clinicopathologic factors of patients who underwent curative intent gastrectomy.

Methods: From June 2011 to May 2015, curative intent gastrectomy was performed in 441 patients at Konyang University Hospital. Among them, they evaluated the HER-2 status in 113 patients. Data on clinicopathologic parameters such as age, sex, histological subtype, endoscopic Lauren classification, tumor location, size, presence of lymphovascular invasion, invasion depth, pathologic stage, HER-2 overexpression, recurrence and survival were obtained. In this study, pathological HER-2 intensity scores of 0, 1+, and 2+ were assumed to be negative, 3+ only was to be positive for overexpression.

Results: In a total of 113 cases who underwent curative intent gastrectomy with HER-2 testing, 16 (14.2%) cases had positivity of HER-2 overexpression. HER-2 overexpression had significant associations with tumor stage (19.0% in I-IIIb vs. 2.9% in IIIc-IV, P = 0.036). Survival analysis of HER2 overexpression has no significant difference.

Conclusion: In this study, HER-2 overexpression rate was 14.2% and patient tumor stage had significant association with HER-2 overexpression.

Keywords: HER-2, Gastric cancer

INTRODUCTION

Gastric cancer is one of the most common cancers and the second leading cause of cancer related deaths worldwide [1,2]. Until now, many studies have investigated the prognostic factors of gastric cancer. For example, tumor size, invasion depth, lymph node involvement and distant metastasis status are known as important prognostic factors [3-5]. Specifically, these factors were sometimes related with operative plans; for instance, the extent of surgery [6,7].

In recent days, signal transduction related growth factor and its receptors were considered to have an important role in carcinogenesis [8-11]. Among them, the human proto-oncogene human epidermal growth factor receptor 2 protein (HER-2, also called c-erbB2 or Her-2/neu) processes tyrosine kinase activity as an encoding signal transduction pathway related to the regulation and differentiation of cell growth [12,13]. In fact, HER-2 oncogene was usually studied in relation to breast cancer, as a poor prognosis factor [9,14]. However, HER-2 oncogene has also appeared as an important prognostic factor in gastric cancer [4,8,12,15-21]. Especially, HER-2 oncogene status is related with the depth of invasion, lymph node and distant metastasis of gastric cancer [4,18,19].

Recent targeting therapy of gastric cancer has been gradually applied by using the humanized monoclonal antibody “Trastuzumab (Herceptin)” targeting HER-2 receptor. In this regard, HER-2 oncogene status is becoming important as a biomarker for evaluation and treatment of gastric cancer [8,20,22,23].

The aims of this study were to clarify the association between HER-2 status and patient’s clinicopathologic factors in patients...
who underwent curative intent gastrectomy.

**METHODS**

**Patients**

From June 2011 to May 2015, curative intent gastrectomy was performed on 441 patients. Among them, HER-2 status was tested in 113 patients who were diagnosed with advanced gastric cancer.

Data on clinicopathologic parameters such as age, gender, histological subtype, endoscopic Lauren classification, tumor location, size, presence of lymphovascular invasion, invasion depth, pathologic stage, HER-2 overexpression, recurrence, and survival were obtained from the medical records of the patients. The tumors were staged according to the 7th edition of the American Joint Committee on Cancer staging system [24]. Clinical outcome was evaluated from the date of surgery to the date of the last follow-up day.

**Samples and immunohistochemistry**

Gastric cancer tissue samples from patients who underwent curative intent gastrectomy were formalin-fixed and paraffin-embedded. These samples (n = 113) were obtained and arrayed manually until April, 2012. Later, it was performed by using an automatic tissue-arraying instrument (BenchMark, Ventana Medical System Inc.). Samples were divided on 3-um tissue sections and then section forms were made neutral-buffered, formalin-fixed, and paraffin-embedded. Tissue sections were fixed using coated slides (Menzel-Glaser: Superfrost plus) and then deparaffinization and hydration was done. Endogenous activity was controlled by incubation with 3% hydrogen peroxide. Antigen retrieval was done, and the primary antibody used (anti-Her2/neu (4B5) Rabbit Monoclonal Primary Antibody). The chromogen used was diaminobenzidine, and the samples were counterstained with hematoxylin.

**Interpretation**

All sections were evaluated by a pathologist who did not have any clinical information on the patients. The pathologist scored slides as 0, 1+, 2+, or 3+ according to the gastric cancer HER-2 interpre-

![Fig. 1. Interpretation of immunohistochemical HER-2 staining (×200). (A) No staining or membrane staining in <10% of invasive tumor cells. (B) Faint/barely perceptible membrane staining in ≥10% of invasive tumor cells; cells are only stained in part of their membranes. (C) Weak to moderate complete or basolateral membrane staining in ≥10% of invasive tumor cells. (D) Moderate to strong complete or basolateral membrane staining in ≥10% of invasive tumor cells. Tumor cell cluster with strong complete, basolateral, or lateral membrane reactivity irrespective of percentage of invasive tumor cells stained. HER-2, human epidermal growth factor receptor 2.](image-url)
tive guidelines for immunohistochemistry. It was determined that 0 was no staining or membrane staining in <10% of invasive tumor cells; 1+ was faint/barely perceptible membrane staining in ≥ 10% of invasive tumor cells–cells are only stained in part of their membranes; 2+ was weak to moderate complete or basolateral membrane staining in ≥ 10% of invasive tumor cells; and 3+ was moderate to strong complete or basolateral membrane staining in ≥ 10% of invasive tumor cells. In this study, intensity scores of 0, 1+ and 2+ were assumed to be negative, 3+ only was to be positive for overexpression. It is introduced in Fig. 1.

Statistical analysis
Statistical analysis was performed with the Statistical Package for Social Sciences PASW software ver. 18.0 (SPSS Inc., Chicago, IL, USA). The correlations between overexpression of HER-2 and clinicopathologic factors were evaluated using the Student’s t-test and chi-square test with Fisher’s exact test. Multivariate analyses were performed using logistic regression analysis on all variables found significant (>20%) by univariate analyses. Kaplan–Meier curve analysis and Log rank test were used to evaluate overall survival and recurrence free survival probability. Significance was considered by two-sided test with a P-value of less than 0.05.

RESULTS

Clinicopathologic characteristics
Among 113 patients in this study, the range of patient age was 24–91 years and the median age was 65 years. HER-2 overexpression was evaluated in 16 (14.2%) patients. The clinicopathologic factors of 113 patients who underwent curative intent gastrectomy are arranged in Table 1.

Association with HER-2 overexpression and patient clinicopathologic factors
In this study’s results, positivity of HER-2 overexpression had statistically significant associations with tumor stage over IIIb (P = 0.036). Multivariated analysis showed the same result for factors that had significant association. Association of clinicopathologic factors and HER2 overexpression are arranged in Tables 2 and 3.

Association with HER2 overexpression and patient’s survival
Among 113 patients, 5 patients (15.9%) died due to cancer, 13 patients were lost to follow-up, and 22 patients (19.5%) experienced recurrence. Because 13 patients were lost, the remaining 100 patients were included for survival analysis. The mean follow-up period was 17.4 months and the median follow-up period was 13.7

Table 1. Patient’s clinicopathologic characteristics

| Variable                      | Patients (n = 113) |
|-------------------------------|-------------------|
| **Sex**                       |                   |
| Male                          | 78 (69.0)         |
| Female                        | 35 (31.0)         |
| **Histology**                 |                   |
| Differentiated                | 46 (40.7)         |
| Undifferentiated              | 67 (59.3)         |
| **Lauren classification**     |                   |
| Intestinal                    | 45 (39.8)         |
| Diffuse                       | 39 (34.5)         |
| Mixed                         | 29 (25.7)         |
| **Tumor location**            |                   |
| Upper 1/3                     | 17 (15.0)         |
| Middle 1/3                    | 34 (30.1)         |
| Lower 1/3                     | 62 (54.9)         |
| **Depth of invasion**         |                   |
| pT1a                          | 1 (0.9)           |
| pT1b                          | 3 (2.7)           |
| pT2                           | 25 (22.1)         |
| pT3                           | 35 (31.0)         |
| pT4a                          | 45 (39.8)         |
| pT4b                          | 4 (3.5)           |
| **Lymph node invasion**       |                   |
| pN0                           | 37 (32.7)         |
| pN1                           | 22 (19.5)         |
| pN2                           | 14 (12.4)         |
| pN3                           | 40 (35.4)         |
| **Lymphovascular invasion**   |                   |
| Present                       | 74 (65.5)         |
| **Perineural invasion**       |                   |
| Present                       | 61 (54.0)         |
| **Stage**                     |                   |
| Ia                            | 2 (1.8)           |
| Ib                            | 14 (12.4)         |
| IIa                           | 20 (17.7)         |
| IIb                           | 20 (17.7)         |
| IIIa                          | 11 (9.7)          |
| IIIB                          | 12 (10.6)         |
| IIIC                          | 22 (19.5)         |
| IV                            | 12 (10.6)         |
| **Recurrence**                |                   |
| Present                       | 22 (19.5)         |
| **Survival**                  |                   |
| Alive                         | 95 (72.6)         |
| Death or f/u loss             | 18 (27.4)         |
| **HER-2**                     |                   |
| Negative                      | 97 (85.8)         |
| Positive                      | 16 (14.2)         |
| **Age (yr, mean ± SD)**       | 63.57 ± 12.63     |
| **Follow-up period (mo, median)** | 13.7 (0.4 – 47.6) |

Values are expressed by means ± standard deviation (SD) or numbers (%). f/u, follow-up; HER-2, human epidermal growth factor receptor 2.
In negative HER-2 overexpression, the 2-years overall survival (OS) rates were 78.1% and mean survival time was 37.5 months. In positive of HER-2 overexpression, it was 91.7% and 41.7 months. Between positive and negative of HER-2 overexpression, there was no significant difference for overall survival (P = 0.223) and recurrence free survival (P = 0.071).

Table 2. Univariate analysis of HER-2 overexpression and patient clinicopathologic factors

| Variable                  | HER-2 (–) (n = 97) | HER-2 (+) (n = 16) | P-value |
|---------------------------|--------------------|--------------------|---------|
| Sex                       | Male               | 67 (85.9)          | 11 (14.1) | 1.000 |
|                           | Female             | 30 (85.7)          | 5 (14.3)  |       |
| Age (yr)                  | ≤ 70               | 65 (89.0)          | 8 (11.0)  | 0.187 |
|                           | > 70               | 32 (80.0)          | 8 (20.0)  |       |
| Histology                 | Differentiated     | 36 (78.3)          | 10 (21.7) | 0.055 |
|                           | Undifferentiated   | 61 (91.0)          | 6 (9.0)   |       |
| Gross type                | Bormann type I     | 2 (100)            | 0 (0)     | 0.512 |
|                           | Bormann type II    | 11 (100)           | 0 (0)     |       |
|                           | Bormann type III   | 69 (85.2)          | 12 (14.8) |       |
|                           | Bormann type IV    | 9 (75)             | 3 (25)    |       |
|                           | Superficial type   | 6 (85.7)           | 1 (14.3)  |       |
| Lauren classification     | Intestinal         | 35 (77.8)          | 10 (22.2) | 0.129 |
|                           | Diffuse            | 36 (92.3)          | 3 (7.7)   |       |
|                           | Mixed              | 26 (89.7)          | 3 (10.3)  |       |
| Tumor location            | Upper              | 14 (85.4)          | 8 (17.6)  | 0.570 |
|                           | Middle             | 31 (91.2)          | 3 (8.8)   |       |
|                           | Lower              | 52 (83.9)          | 10 (16.1) |       |
| Depth of invasion         | pT1                | 3 (75.0)           | 1 (25.0)  | 0.303 |
|                           | pT2                | 22 (88.0)          | 3 (12.0)  |       |
|                           | pT3                | 28 (80.0)          | 7 (20.0)  |       |
|                           | pT4                | 44 (89.8)          | 5 (10.2)  |       |
| Lymph node invasion       | pN0                | 31 (83.8)          | 6 (16.2)  | 0.076 |
|                           | pN1                | 20 (90.9)          | 2 (9.1)   |       |
|                           | pN2                | 9 (64.3)           | 5 (35.7)  |       |
|                           | pN3                | 37 (92.5)          | 3 (7.5)   |       |
| Lymphovascular invasion   | Negative           | 32 (82.1)          | 7 (17.9)  | 0.402 |
|                           | Positive           | 65 (87.8)          | 9 (12.2)  |       |
| Perineural invasion       | Negative           | 43 (82.7)          | 9 (17.3)  | 0.375 |
|                           | Positive           | 54 (88.5)          | 7 (11.5)  |       |
| Stage                     | I                  | 13 (81.3)          | 3 (18.7)  | 0.056 |
|                           | II                 | 18 (90.0)          | 2 (10.0)  |       |
|                           | III                | 17 (85.0)          | 3 (15.0)  |       |
|                           | IIIB               | 8 (72.7)           | 3 (27.3)  |       |
|                           | IIC                | 8 (66.7)           | 4 (33.3)  |       |
|                           | IV                 | 22 (100)           | 0 (0)     |       |
| Recurrence                | Absent             | 80 (87.9)          | 11 (12.1) | 0.303 |
|                           | Present            | 17 (77.3)          | 5 (22.7)  |       |
| Survival                  | Alive              | 80 (84.2)          | 15 (15.8) | 0.461 |
|                           | Death or f/u loss  | 17 (94.4)          | 1 (5.6)   |       |
| Stage (specific)          | I–IIib             | 64 (81.0)          | 15 (19.0) | 0.036 |
|                           | IIC–IV             | 33 (97.1)          | 1 (2.9)   |       |
| Size                      | HER-2 (–)          | 6.08 ± 3.536       |         | 0.750 |
|                           | HER-2 (+)          | 5.78 ± 3.500       |         |       |

Values are expressed by means ± standard deviations or number (%).

*Using the Student’s t-test.

Table 3. Multivariate analysis of HER-2 overexpression and patient’s clinicopathologic factors

| Variable                  | Univariate (P-value) | Multivariate Odds ratio | P-value |
|---------------------------|----------------------|-------------------------|---------|
| Age                       | 0.187                | 1.969                   | 0.235   |
| Histology                 | 0.055                | 0.663                   | 0.535   |
| Lauren classification     | 0.129                | 0.697                   | 0.444   |
| Lymph node invasion       | 0.076                | 1.295                   | 0.339   |
| Stage (specific)          | 0.036                | 0.092                   | 0.040   |

HER-2, human epidermal growth factor receptor 2.

Fig. 2. Kaplan-Meier curve analysis with Log rank test. (A) Overall survival (0.223), and (B) recurrence free survival (0.071) of patients who underwent curative intent gastrectomy applied probability of HER-2 overexpression. HER-2, human epidermal growth factor receptor 2.
DISCUSSION

Through this study, we aimed to reveal the significant correlation between HER-2 overexpression in patients who underwent curative gastrectomy and their clinicopathologic factors. In our study, the positive rate of HER-2 overexpression was 14.2%, and this was similar to other studies [25].

HER-2 screening test indications have been established for breast cancer. The American Society of Clinical Oncology and the College of American Pathologists announced a clinical practice guideline for HER-2 testing for breast cancer [26]. According to this guideline, all patients with invasive breast cancer require their lesions be tested for HER-2 positivity; that test includes at least one of the two approved testing methods. And, if the cancer was metastatic, HER-2 screening tests would be done on the metastatic lesion. Especially, HER-2 positivity in breast cancer is related to a patient’s poor prognosis, and it is important to select the appropriate type of chemotherapy [9,14]. This guideline helps provide patients with options for HER-2 targeted therapy. The invention of HER-2 targeted therapy, Trastuzumab (Herceptin), induced steady improvement of treatment outcome on breast cancer [27,28].

Many studies have been done on HER-2 positivity in other cancers, like colon, lung, and stomach, as an increasing role of HER-2 positivity becomes more important in breast cancer. Especially, HER-2 positivity on gastric cancer, as in our study focus, was identified as a poor prognosis factor in gastric cancer patients, as with breast cancer [4,5,8,12,15-21]. However, up to now, research on the relevance of HER-2 positivity and gastric cancer is not sufficient to use in clinical practice. In Korea, HER-2 targeted therapy (Trastuzumab) is covered by our national health insurance system in HER-2 positive metastatic gastric and esophageal junctional cancer patients with no case of previous chemotherapy. Therefore evaluation of HER-2 status is important in Korea.

In other studies, HER-2 was evaluated as a prognostic factor of gastric cancer, though it is still not clarified. Son et al. [25] reported 15.1% of HER-2 positivity in gastric cancer underwent gastric surgery, and a significant correlation of HER-2 overexpression and histological grade and Lauren classification. Yet, this alone was not enough to evaluate prognostic values of HER-2 expression in gastric cancer. Oh et al. [11] reported HER-2 overexpression was associated with older age, differentiated histology, and intestinal type. Tanner et al. [8] reported an association between intestinal type and HER-2 overexpression, and they are associated with a poor outcome. In this study, we found that HER-2 has significant association with gastric cancer stage, as a specific setting of IIIB/IIIC.
idence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006;24:2137-50.
2. Shin HR, Jung KW, Won YJ, Kong HJ, Yim SH, Sung J, et al. National cancer incidence for the year 2002 in Korea. Cancer Res Treat 2007;39:139-49.
3. Gotoda T, Yanagisawa A, Sasaki M, Ono H, Nakanishi Y, Shimoda T, et al. Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer 2000;3:219-25.
4. Park DI, Yun JW, Park JH, Oh SJ, Kim HJ, Cho YK, et al. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci 2006;51:1371-9.
5. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic agent. Ann Oncol 2008;19:1523-9.
6. Lee SE, Lee JH, Ryu KW, Cho SJ, Lee JY, Kim CG, et al. Sentinel node mapping and skip metastases in patients with early gastric cancer. Ann Surg Oncol 2009;16:603-8.
7. Oh HH, Lee SE, Choi IS, Choi WJ, Yoon DS, Min HS, et al. The peak-standardized uptake value (P-SUV) by preoperative positron emission tomography-computed tomography (PET-CT) is a useful indicator of lymph node metastasis in gastric cancer. J Surg Oncol 2011;104:530-3.
8. Tanner M, Hollmen M, Junttila TT, Kapanen AI, Tommola S, Soini Y, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIA/IIBa gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol 2005;16:273-8.
9. Tiezzi DG, Andrade JM, Ribeiro-Silva A, Zola FE, Marana HR, Tiezzi MG. HER-2, p53, p21 and hormonal receptors proteins expression as predictive factors of response and prognosis in locally advanced breast cancer treated with neoadjuvant docetaxel plus epirubicin combination. BMC Cancer 2007;7:36.
10. Wu HW, Qin CY, Huang JL, Kong XY, Wang WJ, Bai WK. Correlations of beta-catenin, Ki67 and Her-2/neu with gastric cancer. Asian Pac J Trop Med 2014;7:257-61.
11. Oh HS, Eom DW, Kang GH, Ahn YC, Lee SJ, Kim JH, et al. Prognostic implications of EGFR and HER-2 alteration assessed by immunohistochemistry and silver in situ hybridization in gastric cancer patients following curative resection. Gastric Cancer 2014;17:402-11.
12. Ishikawa T, Kobayashi M, Mai M, Suzuki T, Ooi A. Amplification of the c-erbB-2 (HER-2/neu) gene in gastric cancer cells. Detection by fluorescence in situ hybridization. Am J Pathol 1997;151:761-8.
13. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985;230:1132-9.
14. Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 2000;18:3651-64.
15. Kono K, Takahashi A, Amemiy H, Ichihara F, Sugai H, Iizuka H, et al. Frequencies of HER-2/neu overexpression relating to HLA haplotype in patients with gastric cancer. Int J Cancer 2002;98:216-20.
16. Hofmann M, Stoss O, Shi D, Buttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology 2008;52:797-805.
17. Ruschoff J, Dietel M, Baretton G, Arbogast S, Walch A, Menges G, et al. HER2 diagnostics in gastric cancer: guideline validation and development of standardized immunohistochemical testing. Virchows Arch 2010;457:299-307.
18. Hsu JT, Chen TC, Tseng JH, Chiu CT, Liu KH, Yeh CN, et al. Impact of HER-2 overexpression/amplification on the prognosis of gastric cancer patients undergoing resection: a single-center study of 1,036 patients. Oncologist 2011;16:1706-13.
19. Kim KC, Koh YW, Chang HM, Kim TH, Yook JH, Kim BS, et al. Evaluation of HER2 protein expression in gastric carcinomas: comparative analysis of 1,414 cases of whole-tissue sections and 595 cases of tissue microarrays. Ann Surg Oncol 2011;18:2833-40.
20. Ruschoff J, Hanna W, Bilous M, Hofmann M, Osamura RY, Penault-Llorca F, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol 2012;25:637-50.
21. Huang D, Lu N, Fan Q, Sheng W, Bu H, Jin X, et al. HER2 status in gastric and gastroesophageal junction cancer assessed by local and central laboratories: Chinese results of the HER-EAGLE study. PLoS One 2013;8:e80290.
22. Nam HJ, Ching KA, Kan J, Kim HP, Han SW, Im SA, et al. Evaluation of the antitumor effects and mechanisms of PF00299804, a pan-HER inhibitor, alone or in combination with chemotherapy or targeted agents in gastric cancer. Mol Cancer Ther 2012;11:439-51.
23. Cui H, Cheng Y, Piao SZ, Xu YJ, Sun HH, Cui X, et al. Correlation between HER-2/neu(erbB-2) expression level and therapeutic effect of combination treatment with HERCEPTIN and chemotherapeutic agents in gastric cancer cell lines. Cancer Cell Int 2014;14:10.
24. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010;17:1471-4.
25. Son HS, Shin YM, Park KK, Seo KW, Yoon KY, Jang HK, et al. Correlation between HER2 overexpression and clinicopathological...
characteristics in gastric cancer patients who have undergone curative resection. J Gastric Cancer 2014;14:180-6.

26. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007;25:118-45.

27. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005;353:1659-72.

28. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005;353:1673-84.

29. Eom BW, Kim YW, Lee SE, Ryu KW, Lee JH, Yoon HM, et al. Survival and surgical outcomes after laparoscopy-assisted total gastrectomy for gastric cancer: case-control study. Surg Endosc 2012;26:3273-81.

30. Lee SE, Ryu KW, Nam BH, Lee JH, Choi II, Kook MC, et al. Prognostic significance of intraoperatively estimated surgical stage in curatively resected gastric cancer patients. J Am Coll Surg 2009;209:461-7.