Effect of a novel succinamic acid derivative as potential anti-diabetic agent in experimental diabetic rats

Nikhil Khurana1,*, Pankaj Sharma2,*, Sunita Bhagat3, Suman Bala Sharma4,*

1, Deptt. of Biochemistry, University College of Medical Sciences (Univ. of Delhi), Delhi, India
2, Deptt. of Chemistry, University of Delhi, Delhi-110007, India
3, Deptt. of Chemistry, Atma Ram Sanatan Dharma College (Univ. of Delhi), New Delhi, India
*Both the authors have equal contribution

ABSTRACT

4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid which is a succinamic acid derivative has been synthesized in 3 step reaction with malaic acid. Its structure confirmation was done by various techniques like 1H NMR, 13C NMR, & HRMS and is recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. In the present study, the effect of 4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid on plasma glucose, serum insulin, serum lipid profile and lipid peroxidation in streptozotocin–nicotinamide induced type 2 diabetic model was investigated. 4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid was administered orally (20 mg/kg b.w.) to streptozotocin + nicotinamide (STZ + NAD) induced diabetic rats for 28 days. A significant increase in fasting blood glucose levels, HbA1c levels, Serum lipid profile (TG & TC) and in the levels of Malondialdehyde (MDA, end product of lipid peroxidation) was observed in STZ + NAD diabetic rats whereas the levels of high density lipoprotein-cholesterol (HDL-C) and serum insulin levels were significantly decreased in STZ + NAD induced diabetic rats. The effect of 4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid was compared with glibenclamide, a reference drug. Treatment with 4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid and glibencamide resulted in a significant reduction of fasting blood glucose levels with increase in plasma insulin levels in diabetic treated rats. 4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid also resulted in a significant improvement in serum lipids and lipid peroxidation products. Our results suggest the potential role of 4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid in the management of type-2 diabetes mellitus experimental rats.

Keywords: 4-{(benzyloxy) amino}-2-hydroxy-4-oxobutanoic acid, dyslipidemia, streptozotocin induced diabetes, lipid peroxidation

INTRODUCTION

Diabetes Mellitus (DM), commonly referred as diabetes, is a group of metabolic disorders in which the sugar levels are high over a prolonged period in blood which results in hypoglycemia, lipoprotein abnormalities, raised metabolic rate. According to WHO, global prevalence of DM in 2014 was 9% among adults1. India is the diabetic capital of the world, predicted to have 57.2 million diabetic populations by the year 20152. The estimated burden of individuals with diabetes in South East Asia aged between 20 to 79 years was equivalent to 78.3 million in 2015, which was expected to rise to 140.2 million by 20403. Diabetes is a progressive disease and is associated with many complications like neuropathy, retinopathy, nephropathy and cardiovascular disease.

At molecular level, insulin resistance is associated predominantly with defect in activation and expression of proximal molecules of insulin signaling pathway e.g., Insulin receptor, Insulin receptor substrate (IRS) etc.5-6 There are many side effects associated with prolong use of insulin and hypoglycemic disease. As incident rate of diabetes mellitus continue to rise, there is growing need to identify novel antidiabetic agent with less side-effects and improved efficacy. About 80 % of world populations use the herbal drugs, for treatment of various diseases.6 The anti-hyperglycemic activity of Eugenia jambolana (Botanical name- Syzygium cumini) from its seeds, fruit pulp, barkand roots has been well established7-10. Sharma et. al has already isolated the active antihyperglycemic compound known as alpha hydroxy succinamic acid (F1hc)(US Patent number 6,426,826 dated
6th August 2002; Indian Product Patent number: 2,30,753 February 2009) from the fruit pulp of Eugenia jambolana11. Therefore, it is expected that succinamic acid derivatives will possess antidiabetic and antioxidant properties. Alpha hydroxy acids including malic acid, glycolic acid, citric acid, tartaric acid, lactic acid and others are group of natural acids found in foods. 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid is a class of alpha hydroxy acid derivative, which is widely found in food, medicine and cosmetic industries12. Due to the seasonal barriers and less yield of herbal anti-diabetic compound (FIIc) obtained from the fruit pulp of E.jambolana, this study was designed to synthesize and to assess the anti-hyperglycemic, hypo-lipidemic and antioxidant potential of 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid (succinamic acid derivative) in nicotinamide-streptozotocin-induced type-2 diabetic rats. The structure of the synthesized compound is displayed in Fig. 1.

Figure 1: Structure of 4-((benzyloxy)amino)-2-hydroxy-4-oxobutanoic acid

MATERIAL AND METHODS

Chemistry

Succinic acid derivative was synthesized according to Scheme 1 starting with malic acid. L and D form of malic acid are available as hydroxyl carboxylic acid; it fulfills the primary condition for selective esterification of malic acid. In order to convert malic acid to 2, the hydroxyl group present at the α position of carboxy group required for selective esterification. Malic acid was alkylated by treatment with trifluoroacetic anhydride and methanol through a malic anhydride intermediate shown in fig. 2, which was in-situ converted to give 3-hydroxy-4-methoxy-4-oxobutanoic acid(2). Compound 2 was treated with O-benzylhydroxylamine(3) using amide coupling condition to give methyl 4-((benzyloxy)amino)-2-hydroxy-4-oxobutanoate(4). Compound 5 was obtained from 4 by using basic hydrolysis conditions to give 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid (5). Melting points of all synthesized compounds were determined on an electrothermal apparatus. Malic acid, TFAA, EDC. HCl, HOBt, TEA, NaOH were procured from Spectrochem Pvt. Ltd., India. All solvents were purified and dried by standard methods.

Step 1:
Procedure for synthesis of 3-hydroxy-4-methoxy-4-oxobutanoic acid

Trifluoroacetic anhydride (45 ml) was added to L-malic (1) acid (10.0 g, 1 eq) at 00C and allowed to stir at rt. After 1.5h, excess of TFAA and TFA were distilled off on rotary evaporator at temperature < 30 °C. The white crystalline compound obtained was cooled to 0°C and anhydrous methanol (50 mL) was added portion wise. The reaction mixture was further allowed to stir at rt for 3h. The progress of reaction was monitored by TLC and after the completion of reaction, excess methanol was distilled off under reduced pressure. The crude compound was purified by column chromatography using silica gel (60:120 mesh) in 10-40 % EtOAc: Hexane as solvent system. The desired compound was obtained in 40% EtOAc:Hexane as white solid. m.p. 69-70 0C ; Yield : 50.67 % ; 1H NMR (400 MHz, DMSO): 12.31 (br s, 1H, -COOH), 4.33 (t, 1H), 3.62 (s, 3H), 2.62 (d, J=15.57 Hz., 1H, Ha), 2.46 (d, J=15.57 Hz., 1H, Hb) ; 13C NMR (100 MHz, DMSO) 8: 174.09, 172.22, 72.02, 63.67, 55.45, 36.03; HRMS (ESI) (M+H)+Calcd for C5H8O5: 148.0372, found 148.0367.
Step 2:

Procedure for synthesis of methyl 4-((benzylloxy)amino)-2-hydroxy-4-oxobutanoate (4)

To a stirred solution of 2 (1.0 g, 1 eq) in THF, EDCl.HCl (1.5 eq) was added and reaction mixture was allowed to stir at rt for 10 min. Then HOBT (1.5 eq) was added followed by the addition of TEA (3.0 eq) and compound 3 (1.2 eq). The resultant reaction mixture was allowed to stir at rt for 12 h. Progress of reaction was monitored by TLC and after the completion of reaction, it was diluted with water and extracted with EtOAc (3x50 ml). Then organic layer was washed with brine, dried over anhydrous NaSO4 and concentrated under reduced pressure. The crude product was purified by column chromatography using silica gel (60-120 mesh) in 10-40 % EtOAc: Hexane as solvent system. The desired compound was obtained in 45 % EtOAc: hexane as off white solid. m.p. 68-720°C; Yield: 49.07 %; 1H NMR (400 MHz, DMSO-d6): 11.05 (br s, 1H, -NH), 7.37-7.43 (m, 5H), 4.75 (s, 3H), 4.86 (t, J=NH), 3.61 (s, 2H), 2.35 (d, J=5.04 Hz, 3H), 2.24 (d, J=7.97 Hz, 2H); 13C NMR (100 MHz, DMSO) δ: 174.09, 169.22, 133.59, 129.48, 129.05, 128.46, 78.02, 63.67, 54.55, 36.03. ; HRMS (ESI) [M+H]+ Calcd for C11H13NO5: 254.0950, found 254.1021.

\[
\text{NaOH, MeOH} \quad 0^\circ \text{C to rt, 6h}
\]

Step 3:

Procedure for synthesis of 4-((benzylloxy)amino)-2-hydroxy-4-oxobutanoic acid (5)

To a stirred solution of 4 (1.0 g, 1 eq) in MeOH, aqueous solution of NaOH (5 eq) was added and allowed to stir at rt for 6 h. Progress of reaction was monitored by TLC and after completion of reaction, the reaction mixture was concentrated under reduced pressure. The reaction mixture was acidified with 1N HCl which resulted in the formation of solid compound and was filtered through sintered funnel, washed with cold H2O and dried under high vacuum to give desired compound 5 as off white solid. m.p. 79-820°C; Yield: 55.32 %; 1H NMR (400 MHz, DMSO-d6): 11.03 (br s, 1H, -NH), 7.39-7.32 (m, 5H), 4.76 (s, 3H), 4.30 (t, J=4.86 Hz, 2H), 2.35 (dd, J=14.20 Hz, 3H), 1.92 (dd, J=14.21 Hz, 3H); 13C NMR (100 MHz, DMSO) δ: 172.62, 169.63, 134.02, 129.46, 129.04, 128.458, 78.019, 63.832, 35.972; HRMS (ESI) [M+H]+ Calcd for C11H13NO5: 239.0794, found 239.0879.

Biology

Experimental animals: Male Wistar albino rats (weighing 220 - 250 grams) were procured from Central Animal House of University College of Medical Sciences (UCMS), University of Delhi, India. The animals were housed in standard conditions of temperature (22 ± 2°C) and at 12 hour light-dark cycle. The rats were fed with commercial diet (Hindustan liver Ltd, Mumbai) and water ad libitum. The experimental protocol was approved by the Institutional Animal Ethical Committee (IAEC), UCMS, Delhi, India (UCMS/IAEC/26 granted on 30th December 2013)

Induction of diabetes in rats

Overnight fasted animals were made diabetic by intraperitoneal injection of freshly prepared Streptozotocin (Sigma Chemical Company, USA) in citrate buffer (0.1 M, pH 4.5) at a dose of 45 mg/kg body weight. Nicotinamide at a dose of 230 mg/kg body weight was given 15 minutes prior to STZ injection for the development of stable type 2 diabetes mellitus. The control rats were only injected with citrate buffer. After 72 h of induction when blood glucose was stabilized, fasting blood glucose (FBG) was determined and rats having FBG >250 mg/dl were designated as having diabetes mellitus and were used in this experiment. The experimental period lasted for 4 weeks and day 0 was designated as the day when rats were confirmed to be diabetic.

The animals were divided into 4 groups and each group consisted of 6 rats:

- **Group A**: Healthy control (normal saline)
- **Group B**: Diabetic control (normal saline)
- **Group C**: Diabetic treated with 4-((benzylloxy)amino)-2-hydroxy-4-oxobutanoic acid
- **Group D**: Diabetic treated with glibenclamide

1/50 of LD50 was considered as sublethal dose of 4-((benzylloxy)amino)-2-hydroxy-4-oxobutanoic acid and it was used as therapeutic dose in the subsequent work which was calculated to be 18 mg/kg b.w. Glibenclamide was given as a standard drug orally at a dose of 600μg/kg of body weight / day for 4 weeks to group D.

Acute toxicity study and determination of LD50

LD50 of the studied compound 4-((benzylloxy)amino)-2-hydroxy-4-oxobutanoic acid was determined as described by Afifi et al14. In this experiment, six groups each of 6 male albino rats weighing 180-220 g were used. One group serves as control and other groups of mice were orally administered the tested compound by gastric tube in gradual increasing doses (200, 400, 600, 800 and 1000mg/kg b. w.). After 48 hours of administration, the number of dead animals in each group was counted, mean of dead animals in two successive doses (z) and the constant factor between two successive doses (d) were recorded and LD50 was calculated as follow:

\[
\text{LD50} = \frac{\text{the highest dose which kill all animals} \cdot \Sigma(z.d)}{n}
\]

Where n: number of animals in groups = six animals in each group.

Biochemical parameters:

Blood was drawn from retro orbital plexus by using micro-capillary technique from all overnight fasted animals on
day 1 and afterwards at week 4 of the study. Whole blood was drawn for the estimation of glycated hemoglobin and plasma/serum was separated from blood for the estimation of fasting blood glucose, lipid profile, serum insulin levels and oxidative stress parameters. These samples were carefully processed and stored in -80 °C deep freezer. All the parameters were measured using commercially available kits: Plasma fasting blood glucose (Centric, GmbH, Gernany), Glycosylated Hemoglobin (Hb1Ac; Biosystems S.A., Costa Brava, Spain), Total serum cholesterol (Infinite; Accurex Biomedical, Thane, India), Serum triglycerides (Infinite; Accurex Biomedical, Thane, India), HDL-Cholesterol (Infinite; Accurex Biomedical, Thane, India) Insulin (Ray Biotech Rat ELISA kit, USA) and Malondialdehyde (MDA) levels using standard techniques.

Insulin test was performed using Rayto 2100c microplate ELISA reader (Rayto, China). The amount of insulin was quantified by sandwich enzyme-linked immuno sorbent assay (ELISA). The absorbance was measured at 450 nm through ELISA plate reader.

Statistical analysis: Two ways ANOVA was applied for the comparison of parameters between the groups followed by Tukey’s test. Pearson’s coefficient of correlation was calculated for all the 4 groups together and separately for all the above mentioned parameters. Difference was assumed to be significant at the level of p < 0.05.

RESULTS & DISCUSSION

Chemistry (Synthesis)

In this research work, we have synthesized derivative of hydroxy succinamic acid with one polar and other side non polar as building block for preparation of α-hydroxy acid.3 Our synthetic strategy starts from the easily available compound, malic acid and trifluoroacetiticanhydride, which converted into cyclic anhydride intermediate, then this cyclic anhydride intermediate on treatment with MeOH led to the synthesis of 3-hydroxy-4-methoxy-4-oxobutanoic (2). Then, this compound was treated with O-benzylhydroxylamine followed by the amide coupling condition to give methyl 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanonate (4). Then compound (4) was hydrolyzed under basic conditions to give target compound 4-((benzyloxy)amino)-2-hydroxy-4-oxobutanoic acid (5). Target compound (5) was synthesized. All synthesized compound confirmed by 1H-NMR, 13C-NMR and HRMS data.

Biological studies

For determination of lethal dose LD50 of 4-((benzyloxy)amino)-2-hydroxy-4-oxobutanoic acid, single gradual increasing doses were administered to various groups of normal albino rats. The number of dead animals in each group was counted after 48 hours of compound administration and LD50 was calculated which was found to be 767 mg/kg b.w. Based on this toxicity study, the orally therapeutic dose was calculated (18 mg/kg of b.w.) which is about1/50 of LD50 which is so far from LD50. (Table 1)

In the present study, a significant improvement was observed in glycemic index, serum insulin, lipid profile and lipid peroxidation products in 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid treated rats. The various biochemical parameters has been summarized in Table 2 & 3.

Table 1: Determination of LD50 of 4-((benzyloxy) amino)-2-hydroxy-4-oxobutanoic acid in male albino wistar rats

Dose (mg/kg b.w.)	Total no of animals	No of dead animals	z	d	Σ(zd)
200	6	0	-	200	-
400	6	1	0.5	200	100
600	6	2	1.5	200	300
800	6	3	2.5	200	500
1000	6	4	3.5	200	700
1200	6	6	5	200	1000

z: mean number of dead animals in two successive doses
 d: constant factor between two successive doses
LD50 = Median lethal dose which kill all animals - Σ(z.d)/n = 1200-2600/6 =767 mg/kg b. w.
1/50 of LD50 is about 18 mg/kg b. w. which was considered as sublethal dose that was used as therapeutic dose in the subsequent studies.

Table 2: Showing glycemic index and serum insulin levels at week 0 and at week 4 after treatment with 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide

Parameters	Time points	Group A	Group B	Group C	Group D
FBG (mg/dl)	Week 0	97±6.7	232.2±7.9a	226.4±7.85b,d	224.2±9.6c
	Week 4	96±5.64	247.45±5.64a	124.3±5.46b,d	118±2.75c,b
HbA1c %	Week 0	5.01±0.12	5.32±0.28a	5.24±0.29b,d	5.38±0.22b,cb
	Week 4	5.18±0.10	8.58±0.68a	6.01±0.22b,d	5.94±0.23b,cb
Serum Insulin (pmol/L)	Week 0	15.16±0.64	8.86±0.58a	8.96±0.34b,d	8.67±0.24b,cb
	Week 4	15.64±0.56	7.46±0.19a	12.46±0.42b,d	13.12±0.35b,cb

Values are mean ± S.D. (n=6) (p<0.001)

- a= Group A vs Group B, b= Group A vs Group C, c= Group A vs Group D, d= Group B vs Group C

Effect of 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid on fasting blood glucose levels

FBG levels were measured at week 0 & week 4 for entire experimental groups. A significant (p<0.01) decrease in FBG levels were observed in 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide treated groups as compared to diabetic control rats.

Effect of 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid on HbA1c levels

The glycosylated Hb (HbA1c) level was significantly increased in the diabetic control rats when compared to normal control (p<0.001). The HbA1c level was lowered significantly in 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide treated groups.

Table 3: Showing serum lipids and malonaldehyde (MDA) levels at week 0 and at week 4 after treatment with 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide

Parameters	Time points	Group A	Group B	Group C	Group D
Serum Total Cholesterol (TC) (mg/dl)	Week 0	60.55±4.48	61.23±7.66a	62±5.38 b,d	60.04±6.34 c,b
	Week 4	61.92±4.32	90.86±4.68b	72.04±6.09 b,d	76.04±4.09 b,d
Serum Triglycerides (TG) (mg/dl)	Week 0	63.85±5.01	65.60±4.45a	64.14±4.8 b,d	67±6.62 b,c
	Week 4	65.84±14	104.0±6.26b	82.26±5.01 b,d	86±34.50 b,c
HDL-Cholesterol (HDL-c) (mg/ml)	Week 0	38.21±1.68	37.32±1.60a	37.67±1.50 b,d	37±1.63 b,c
	Week 4	37.67±1.09	25.17±1.12b,d	34±0.19 b,d	32±0.11 b,c
Malondialdehyde (MDA) (pmol/mg)	Week 0	4.2±0.42	4.1±0.25	4.32±0.22 b,d	4.1±0.36 b,c
	Week 4	4.3±0.26	8.08±0.45a	6.4±0.15 b,d	5.92±0.48 b,c

Values are mean ± S.D. (n=6) (p<0.001)

- a= Group A vs Group B, b= Group A vs Group C, c= Group A vs Group D, d= Group B vs Group C

Effect of 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid on serum TC

The mean serum total cholesterol levels of normal control rats was 60.56 ± 4.48 mg/dl, which was significantly (p < 0.001) increased to 90.86 ± 6.48 mg/dl in the diabetic control rats (Table 3). This increased serum TC level was significantly decreased by treatment with 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide.

Effect of 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid on serum TG

The mean serum triglyceride level of normal control rats was 64.88 ± 4.15 mg/dl, which significantly (p < 0.001) increased to 104.00 ± 6.26 mg/dl in the diabetic control rats (Table 3). This increased serum triglyceride level significantly decreased by treatment with 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide.

Effect of 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid on serum HDL-c

Induction of diabetes caused significant (p < 0.001) decrease in serum HDL-cholesterol levels of 38.20±81.68 mg/dl to 25.17 ± 1.12 mg/dl when compared against normal control rats (Table 3). Treatment with 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid produced significant increase in the serum HDL-cholesterol levels.

Effect of 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid on Malondialdehyde levels

Compared to normal control rats, diabetic control rats showed a significant increase in MDA levels (p=0.001). 4-((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid and glibenclamide treated groups showed a significant decrease in the MDA levels when compared to diabetic control rats (p<0.001).

In our study, we have observed that 4((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid decreases plasma glucose and increased plasma insulin in streptozotocin-nicotinamide induced diabetic rats. The possible mechanism of action of 4((benzyl oxy) amino)-2-hydroxy-4-oxobutanoic acid that can be correlated with the effect of...
sulphonylureas that promote insulin secretion by closure of K+- ATP channels, membrane depolarization and stimulation of Ca2+ influx, an initial key step in insulin secretion15-16.

In diabetes hyperglycemia is accompanied with dyslipidemia i.e., characterized by increase in TC, TG & fall in HDL-c. The increased serum lipids (TG & TC) which may be due to due to the increased mobilization of free fatty acids from peripheral deposits, since insulin inhibits hormone sensitive lipase17. This altered serum lipid profile was significantly (p<0.001) revered back to normal after treatment with 4-((benzoyloxy) amino)-2-hydroxy-4-oxobutanoic acid). This suggests its potential as a lipid lowering agent.

It has been found that the rate of formation of Malonaldehyde (MDA) is significantly increased in diabetic rats compared to healthy rats18. Several studies have confirmed the involvement of free radicals in the genesis of diabetes mellitus and their role in the induction of lipid peroxidation during diabetes19. The possible mechanism that can be correlated would be the diffusion of lipid peroxidation products from the site of tissue damage and therefore can be measured in plasma20.

REFERENCES

1. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Emerging Risk Factors Collaboration. Lancet. 2010; 375(9713):2215-2222.

2. Pradeep R, Deepa R, and Mohan V. Epidemiology of diabetes in India-current perspective and future projections. J Indian Med Assoc. 2002; 100 (3):144-8

3. Ogunstova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128:40-50.

4. Peetson KF, Shulman GI. Etiology of Insulin Resistance. Am J Med. 2006; 119:S106

5. Samuel VT, Shulman GI. Integrating mechanisms for insulin resistance: Common threads and missing links. Cell. 2012; 148(5):852-71

6. Tylor DA. Botanical supplements: weeding out the health risks. Environmental Health Perspectives. 2004; 112(13):A750-753

7. Sharma R, Balomajumder, and P. Roy. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats, Food and Chemical Toxicology. 2008; 46 (7):2376–2383.

8. Ravi K, Sivagnanam K, Subramanian S. Anti-diabetic activity of Eugenia jambolana seed kernels on streptozotocin-induced diabetic rats. J Med Food. 2004; 7 (2):187-191.

9. Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res. 2013: 712092.

10. Tanwar R.S., Sharma S.B., Singh U.R., et al. Antiatherosclerotic Potential of Active Principle Isolated from Eugenia jambolana in Streptozotocin- Induced Diabetic Rats. Evid Based Complement Altern Med. 2011; 127641.

11. Sharma, S.B., Nasir A., Prabhuk K.M., et al. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol. 2006; 104(3):367-373.

12. Taofiq O, Gonzalez-Paramas, Barreiro M, Ferreira I. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules. 2017; 22:281.

13. Scudellati T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood). 2012; 237(5):481-490.

14. Afifi NA, Ramadan A, El-Kashouy EA, El-Banna HA. Some pharmacological activities of essential oils of certain umbelliferous fruits. Vet Med J Giza. 1994; 42:85-92.

15. Zawalich WS, Zawalich KC: Biochemical mechanisms involved in monomethyl succinate-induced insulin secretion. Endocrinology. 1992; 131:649–654.

16. Ladriere L, Louchami K, Vinambar C, Kadiata MM, Djikli H, Villanueva Penacarrillo ML et al.: Insulinotropic action of the monoethyl ester of succinic acid. Gen Pharm. 1998; 31:377-383.

17. Al-Shamaony L, Al-Khazraji SM, Twaiji IA: Hypoglycemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol. 1994; 43:167–171

18. Hamadi N, Mansour A, Hassan MH, Khalifi-Touhami F, Badary O. Ameliorative effects of resveratrol on liver injury in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol. 2012; 26:384–392.

19. Mano T, Shinohara R, Nagasaka A, Nakagawa H, Uchimura K, Hayashi R et al.: Scavenging effect of nicorandil on free radicals and lipid peroxide in streptozotocin-induced diabetic rats. Metabolism. 2000; 49:427–431, 2

20. Kwasniewska S, Pianacza G, Zieba M, Piotrowski W, Nowak D: Increased serum concentrations of conjugated dienes and malondialdehyde in patients with pulmonary tuberculosis. Respiratory Med. 1999; 93:272–276

Our findings indicate that 4-((benzoyloxy) amino)-2-hydroxy-4-oxobutanoic acid) possesses potent antioxidant properties due to its inhibition of the formation of lipid peroxidation-end product, MDA, in the type 2 diabetic rats.

CONCLUSION

In this study, we have found that the novel synthetic 4-((benzoyloxy) amino)-2-hydroxy-4-oxobutanoic acid has anti-hyperglycemic, hypolipidemic and antioxidant potentials in STZ +NAD induced type 2 diabetic rats. These effects may be due to insulinogenic action and extrapolapetal effects in addition to the enhancing action on the antioxidant defense system. However, further clinical studies are required to assess the safety and efficacy of the of 4-((benzoyloxy) amino)-2-hydroxy-4-oxobutanoic acid and to elucidate its role a potent antidiabetic agent.

Acknowledgments: The authors acknowledge Indian Council of Medical Research, New Delhi for their financial support.

Conflicts of interest:

The authors declare that they have no conflicting interest.