Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics

Moses Charikar* Vaggos Chatziafratis*

October 3, 2016

Abstract

Dasgupta recently introduced a cost function for the hierarchical clustering of a set of points given pairwise similarities between them. He showed that this function is NP-hard to optimize, but a top-down recursive partitioning heuristic based on an α_n-approximation algorithm for uniform sparsest cut gives an approximation of $O(\alpha_n \log n)$ (the current best algorithm has $\alpha_n = O(\sqrt{\log n})$). We show that the aforementioned sparsest cut heuristic in fact obtains an $O(\alpha_n)$-approximation. The algorithm also applies to a generalized cost function studied by Dasgupta. Moreover, we obtain a strong inapproximability result, showing that the Hierarchical Clustering objective is hard to approximate to within any constant factor assuming the Small-Set Expansion (SSE) Hypothesis. Finally, we discuss approximation algorithms based on convex relaxations. We present a spreading metric SDP relaxation for the problem and show that it has integrality gap at most $O(\sqrt{\log n})$. The advantage of the SDP relative to the sparsest cut heuristic is that it provides an explicit lower bound on the optimal solution and could potentially yield an even better approximation for hierarchical clustering. In fact our analysis of this SDP served as the inspiration for our improved analysis of the sparsest cut heuristic. We also show that a spreading metric LP relaxation gives an $O(\log n)$-approximation.

*Computer Science Department, Stanford University, moses@cs.stanford.edu, vaggos@stanford.edu
1 Introduction

Hierarchical Clustering (HC) of a data set is a recursive partitioning of the data into clusters. Such methods are widely used in data analysis. To be more formal, in the Hierarchical Clustering (HC) problem, the input is a weighted undirected graph \(G = (V, E, w) \). Each data point corresponds to a node in the graph and edges connect similar points. The heavier the edge weight the stronger the similarity between the data points. The goal is to produce a partitioning of the data into successively smaller clusters, starting from the original graph \(G \) as the initial cluster and ending with \(n \) singleton clusters. The HC is represented as a tree with leaves corresponding to data points and internal nodes corresponding to clusters in the hierarchy.

Such a hierarchical decomposition of data has several advantages over flat clustering (\(k \)-means, \(k \)-center etc): firstly, there is no need to fix the number \(k \) of clusters we want to create; secondly, large datasets are understood simultaneously at many levels of granularity and thirdly, many greedy heuristics with provable approximation guarantees ([Das16]) can be used to construct it.

Despite its important applications for many scientific areas such as biology (e.g. gene expression), data analysis, phylogenetics, social sciences and statistics, HC and the algorithms we use to solve it in practice are not yet well-understood. Many heuristics have been proposed, some of which are based on a natural “bottom-up” approach by recursively merging data that are similar: at the beginning each data point is a separate cluster and we start merging them based on their similarity as we go up the hierarchy. These are the so-called agglomerative methods that are provided by standard Data Analysis packages and include for example single-linkage, average linkage etc. ([JD88, JMF99, BLG14, IITF09]). These methods are specified procedurally rather than in terms of an objective function for HC; this lack of objective functions for the problem of HC was addressed by the recent work of Dasgupta ([Das16]). He introduced a simple cost function that, given pairwise similarities between data points, assigns a score to any possible tree on those points. The tree corresponds to the hierarchical decomposition of the data and its score reflects the quality of the solution.

Let \(T \) be any rooted (not necessarily binary) tree that has a leaf for each point in our dataset. For a node \(u \) in \(T \), we denote with \(T[u] \) the subtree rooted at \(u \), and with \(\text{leaves}(T[u]) \subseteq V \) we denote the leaves of this subtree. For leaves \(i, j \in V \), the expression \(i \vee j \) denotes their lowest common ancestor in \(T \), i.e. \(T[i \vee j] \) is the smallest subtree whose leaves include both \(i \) and \(j \). The following cost function is the HC cost function:

\[
\text{cost}_G(T) = \sum_{ij \in E} w_{ij} |\text{leaves}(T[i \vee j])|.
\] (1)

We observe that a heavy edge should not be cut at the top of the tree because it would cause a high cost due to the term \(|\text{leaves}(T[i \vee j])| \) that would be large. For example, if an edge \(\{i, j\} \) of unit weight is cut at the first split of the data, then we pay \(n \). If it is cut further down, in a subtree that contains a \(\delta \) fraction of the data, then we pay \(\delta n \). We would like to find a tree \(T^* \) that minimizes the above cost. It is not difficult to see that there must always exist an optimal tree that is binary, since by converting any split that creates more than two subtrees to a sequence of binary splits, we can never increase the cost. A generalized version for the cost function is also considered in [Das16]:

\[
\text{cost}_G(T) = \sum_{ij \in E} w_{ij} f(|\text{leaves}(T[i \vee j])|).
\] (2)
1.1 Related Work

Dasgupta introduced the cost function (1) and explained why it is a good objective function for hierarchical clustering. He presented some interesting special cases (e.g., planted partitions) for which optimizing (1) actually finds the correct underlying HC. He showed that optimizing it is an NP-hard problem and showed that a simple heuristic based on an α_n approximation for Sparsest Cut will achieve a factor $O(\alpha_n \cdot \log n)$ approximation. The current best α_n ratio for Sparsest Cut is $O(\sqrt{\log n})$ from a breakthrough result of [ARV09]. The heuristic starts by taking Sparsest Cut for the input graph G, splitting it into (G_1, G_2) and then applying Sparsest Cut recursively to the pieces G_1, G_2. Dasgupta also proved that a slightly modified heuristic yields basically the same approximation guarantee for optimizing (2).

Another natural approach for dealing with HC is to try to optimize standard popular cost functions for flat clustering, such as the k-means, k-median or k-center ([DL05, Pla03, LNRW10]). However, with this approach, it is necessary to cut at some level the hierarchy so that we get k clusters at the end or use many different values of k to achieve a satisfying depth of decomposition.

People have also studied methods of HC in terms of statistical consistency ([Har85, CDKL14, EBW15]), where data points are sampled from a fixed underlying distribution and we are interested in the convergence of the tree structure obtained from the data as the sample size goes to infinity. Only a few methods are known to be consistent ([CDKL14, EBW15]). Furthermore, the authors of [BLG14] study the performance of agglomerative clustering techniques in the presence of noise and they propose a new algorithm that is more robust and performs better in cases with noisy data where traditional agglomerative algorithms fail.

Recently we were informed that independently of our work, Roy and Pokutta [RP16] got a similar result for Hierarchical Clustering via spreading metrics. In particular, they used an LP relaxation based on ultrametrics to prove an $O(\log n)$ approximation. The LP relaxation they formulated was similar to ours but we viewed it as a vector programming relaxation and we managed to obtain an $O(\sqrt{\log n})$ approximation. As far as their analysis is concerned they used the extensively studied (in the context of graph partitioning) idea of sphere growing (see [LR88, GVY93, ENRS99, CGW03, ENRS00]). On the other hand, we got our initial $O(\log n)$ approximation by proving that the hierarchical clustering objective function falls into the divide and conquer approximation algorithms via spreading metrics paradigm of [ENRS00] and combining it with a result of Bartal ([Bar04]). Finally, they also gave the same constant factor inapproximability result as we did, based on the small set expansion hypothesis.

1.2 Our results and structure of the paper

We show (Section 2) that the recursive sparsest cut (RSC) algorithm that uses any α_n-approximation algorithm for uniform sparsest cut achieves an $O(\alpha_n)$ approximation for hierarchical clustering, shaving a $\log n$ factor from Dasgupta’s analysis. The analysis can be modified to prove that the same guarantee holds even for the generalized cost function (2). We also present (Section 3) a strong inapproximability result for HC, in particular, that it is hard to approximate HC to within any constant factor assuming the Small Set Expansion (SSE) Hypothesis. In Section 4, we present an SDP relaxation based on spreading metrics with integrality gap at most $O(\sqrt{\log n})$ for HC. The advantage of the SDP relative to the sparsest cut heuristic is that it provides an explicit lower bound on the optimal solution and could potentially yield an even better approximation for hierarchical clustering. In fact, we first developed a rounding algorithm for this SDP and our analysis later served as the inspiration for our improved analysis of the sparsest cut heuristic for both cost functions (1) and (2). Finally, we show how the spreading metrics paradigm of [ENRS00]...
in combination with a result of Bartal [Bar04] (Appendix B) can be exploited in order to get an \(O(\log n)\) approximation for hierarchical clustering via a linear program (Appendix C). We conclude in Section 5 with questions for further research. Some preliminaries are deferred to the Appendix A and omitted proofs are given in Appendix D.

A key idea behind our analysis of the recursive sparsest cut algorithm as well as the formulation of the SDP relaxation is to view a hierarchical clustering of \(n\) data points as a collection of partitions of the data, one for each level \(t = n - 1, \ldots, 1\). Here the partition for a particular level \(t\) consists of maximal clusters in the hierarchical clustering of size at most \(t\). When we partition a cluster of size \(r\), we charge this to levels \(t \in [r/4, r/2]\) of this collection of partitions. This is crucial for eliminating the \(\log n\) term in the approximation guarantee.

2 Better Analysis for Recursive Sparsest Cut (RSC)

As discussed previously, Dasgupta [Das16] showed that a simple top-down Recursive Sparsest Cuts (RSC) heuristic that uses an \(\alpha_n\)-approximation algorithm for uniform sparsest cut gives an approximation of \(O(\alpha_n \log n)\) for hierarchical clustering. More precisely, the RSC heuristic starts from the given graph \(G = (V, E)\), uses any \(\alpha_n\)-approximation algorithm for sparsest cut, thus splitting \(G\) into \((G_1, G_2)\) and then recurses on \(G_1\) and \(G_2\). The output is a binary tree of the sequence of cuts performed by the algorithm.

In this section, by drawing inspiration from our SDP construction and analysis presented later in Section 4, we present an improved analysis for this simple heuristic, dropping the \(\log n\) factor and showing that it actually yields an \(O(\alpha_n)\) approximation. This is satisfying since any improvement for Sparsest Cut would immediately yield a better approximation result for hierarchical clustering. Additionally, fast algorithms (i.e. nearly linear time algorithms) for Sparsest Cut ([She09]) render the heuristic useful in practice.

2.1 Analysis of RSC heuristic
Let the given graph be \(G = (V, E)\). We suppose for clarity of presentation that it is unweighted; the analysis applies directly to weighted graphs and later, we see how to generalize it for more general cost functions. Let \(OPT\) be the optimal solution for hierarchical clustering (we abuse notation slightly by using \(OPT\) to denote both the solution as well as its objective function value). Let \(OPT(t)\) be the maximal clusters in \(OPT\) of size at most \(t\). We denote \(E_{OPT}(t)\) the edges that are cut in \(OPT(t)\), i.e. edges with end points in different clusters in \(OPT(t)\). For convenience, we also define \(E_{OPT}(0) \triangleq E\).

Claim 2.1. \(OPT = \sum_{t=0}^{n-1} |E_{OPT}(t)|\).

Proof. Consider any edge \((u, v) \in E\). Suppose that the size of the minimal cluster in \(OPT\) that contains both \(u\) and \(v\) is \(r\). Then the contribution of \((u, v)\) to the LHS is \(r\). On the other hand, \((u, v) \in E_{OPT}(t)\) for all \(t \in \{0, \ldots, r - 1\}\). Hence the contribution to the RHS is also \(r\). \(\square\)

It will be convenient to use the following bound that is directly implied by the above claim:

\[
2OPT = 2 \cdot \sum_{t=0}^{n-1} |E_{OPT}(t)| \geq \sum_{t=0}^{n} E_{OPT}(\lfloor t/2 \rfloor) \tag{3}
\]

Let’s look at a cluster \(A\) with size \(|A| = r\) in the solution produced by RSC. Using a sparsest cut approximation algorithm, we create two clusters \(B_1, B_2\) with sizes \(s, (r - s)\) respectively, with
Given an unweighted graph G, the Recursive Sparsest Cut algorithm achieves an $O(\alpha_n)$ approximation for the hierarchical clustering problem.

Proof. The proof follows easily by combining (3), (4), (5), (6) and summing over all clusters A created by RSC. See Appendix D. \qed
2.2 Generalized Cost Function and RSC

In the original [Das16] paper introducing the objective function of hierarchical clustering, Dasgupta also considered the more general cost function: $cost_G(T) = \sum_{ij \in E} w_{ij} f(|\text{leaves}(T[i \cup j])|)$, where f is defined on the non-negative reals, is strictly increasing, and has $f(0) = 0$ (e.g., $f(x) = \ln(1+x)$ or $f(x) = x^2$). For this more general cost function, he proved that a slightly modified greedy top-down heuristic (using unweighted case, we use here the same definitions for OPT-trees, is defined on the nonnegative reals, is strictly increasing and continues to yield an $O(\alpha_n \cdot \log n \cdot c_f)$ approximation\(^1\), where $c_f \triangleq \max_{1 \leq n' \leq n} \frac{f(n')}{f(n'/3)}$). Now, we analyze the previous RSC algorithm (with no modifications), but in the case of a weighted graph G and when we are trying to optimize the generalized cost function.

We again make the natural assumptions that the function f acting on the number of leaves in subtrees, is defined on the nonnegative reals, is strictly increasing and $f(0) = 0$ (also see Remark 1). We also define: $c_f \triangleq \max_{1 \leq n' \leq n} \frac{f(n')}{f(n'/3)}$. For what follows, we abuse notation slightly for ease of presentation and write $r/2, r/4$ etc. instead of $[r/2], [r/4]$ etc. As in the simple unweighted case, we use here the same definitions for OPT and $E_{OPT}(t)$. Let $w(E_{OPT}(t))$ denote the total weight of the edges $E_{OPT}(t)$, i.e. the edges cut by OPT at level t, where we define $w(\emptyset) = 0$ and we also define $g(t) \triangleq f(t+1) - f(t)$. We note that $\sum_{t=0}^{r-1} g(t) = f(r) - f(0) = f(r)$.

Claim 2.4. $\sum_{t=0}^{r-1} w(E_{OPT}(t)) \cdot g(t) = OPT$

Proof. We will prove that the contributions of an edge $e = (u, v)$ to the LHS and RHS are equal. Let $A (|A| = r_e)$ be the minimal cluster in the optimal solution that contains both u, v. The contribution of e to the RHS is: $w_e \cdot f(r_e)$. As for the contribution to the LHS, since A is minimal and $|A| = r_e$, we deduce that $e \in OPT(t), \forall t < r_e$. Also for levels $t \geq r_e$ we have $e \in A$ or some superset of A and thus $e \notin OPT(t)$ Hence the contribution to the LHS is: $w_e \cdot \sum_{t=0}^{r-1} g(t) = w_e \cdot f(r)$. \(\square\)

Focus on a cluster $A (|A| = r)$ in the solution produced by the algorithm. Let $cut(A)$ denote the edges in A cut by partitioning A. This contributes $w(cut(A)) \cdot f(r)$ to the objective. We will charge our cost using the following quantity related to the optimum solution: $\sum_{t=r/4}^{r/2-1} w(E_{OPT}(t) \cap A) \cdot g(t)$.

For that, we look at $OPT(r/2) \cap A$ and let’s say that clusters $A_1, A_2, ..., A_k$ are induced by this partition, each being of size $|A_i| = \gamma_i|A| \leq |A|/2 = r/2$ ($\gamma_i \leq 1/2$). Then,

$$SC(A) \leq \sum_{i} w(A_i \setminus A_{i+1}) \leq \frac{2 \cdot w(E_{OPT}(r/2) \cap A)}{r^2 \cdot 1/2}$$

where $SC(A)$ is the optimum sparsest cut (value) for A. Since we used an α_n-approximation,

$$\frac{w(cut(A))}{s(r-s)} \leq \alpha_n \cdot SC(A) \leq \frac{4\alpha_n \cdot (w(E_{OPT}(r/2) \cap A))}{r^2} \implies w(cut(A)) \cdot f(r) \leq 4\alpha_n \cdot \frac{s}{r} \cdot w(E_{OPT}(r/2) \cap A) \cdot f(r) \quad (7)$$

Since $w(E_{OPT}(t) \cap A) \geq w(E_{OPT}(t+1) \cap A)$, we have:

$$\sum_{t=r/4}^{r/2-1} w(E_{OPT}(t) \cap A) \cdot g(t) \geq w(E_{OPT}(r/2) \cap A) \cdot \sum_{t=r/4}^{r/2-1} g(t) = (f(r/2) - f(r/4)) \cdot w(E_{OPT}(r/2) \cap A) \quad (8)$$

\(^1\)There isn’t a direct polynomial time implementation of this heuristic for arbitrary functions f to the best of our knowledge; however, a heuristic based on balanced cut will achieve similar guarantees.
Using equations (7), (8), we get that:

\[
 w(\text{cut}(A)) \cdot f(r) \leq 4\alpha_n \cdot \frac{s}{r} \cdot \frac{f(r)}{f(r/2) - f(r/4)} \cdot \sum_{t=r/4}^{r/2-1} w(\text{OPT}(t) \cap A) \cdot g(t)
\]

(9)

We now sum up the cost contributions of all clusters created in our hierarchical clustering solution. Let \(s(A) \) be the size of the smaller piece produced in partitioning \(A \).

\[
 \text{cost}_{RSC} = \sum_A w(\text{cut}(A)) \cdot f(|A|) \leq 4\alpha_n \cdot c_f \sum_A \frac{|A|}{|A|/4} \sum_{t=|A|/4}^{|A|/2-1} w(\text{OPT}(t) \cap A) \cdot g(t)
\]

(10)

To complete our argument we need to make the comparison between \(\text{OPT} \) which is: \(\sum_{t=0}^{n-1} w(\text{OPT}(t)) \cdot g(t) \) and the sum

\[
 \sum_A \frac{s(A)}{|A|} \sum_{t=|A|/4}^{|A|/2-1} w(\text{OPT}(t) \cap A) \cdot g(t),
\]

(11)

where the first summation goes over all clusters \(A \) in the solution we produce.

Claim 2.5. \(\sum_A \frac{s(A)}{|A|} \sum_{t=|A|/4}^{|A|/2-1} w(\text{OPT}(t) \cap A) \cdot g(t) \leq 2 \cdot \sum_{t=0}^{n-1} w(\text{OPT}(t)) \cdot g(t) \)

Proof. Consider some edge \(e = (u, v) \in \text{OPT}(t) \). Focus on sets \(A \) in the solution produced such that \(e \in \text{OPT}(t) \cap A \) so that \(e \) contributes to the term \(\sum_{t=|A|/4}^{|A|/2-1} w(\text{OPT}(t) \cap A) \cdot g(t) \) in the LHS. For all such clusters \(A \), we need to have: \(|A|/4 \leq t < |A|/2 \implies 2t < |A| \leq 4t \).

Let \(A_1, A_2, ..., A_{k-1} \) be the sets for which the term \(w(\text{OPT}(t) \cap A) \) appears: \(A_1 \) is the largest cluster (satisfying \(2t < |A_1| \leq 4t \)) that contains the edge \(e = (u, v) \) and when split we call its larger piece \(A_2 \) (again this set contains \(e \)) etc., \(A_{k-1} \) is the last set for which the term appears and \((u, v) \) does not appear in \(A_k \) (\(A_k \) is the larger piece of the two that we got when we partitioned \(A_{k-1} \)). We have:

\[
 \sum_{i=1}^{k-1} \frac{s(A_i)}{|A_i|} = \frac{|A_1| - |A_2|}{|A_1|} + \frac{|A_2| - |A_3|}{|A_2|} + \ldots + \frac{|A_{k-1}| - |A_k|}{|A_{k-1}|} \leq \sum_{i=1}^{k-1} \frac{|A_i|}{\min_i |A_i|} \leq \frac{|A_1|}{2t} \leq 2.
\]

(12)

(the constant can be optimized, but it does not change the asymptotic bound).

Thus the contribution of every edge \(e \in \text{OPT}(t) \) to the LHS is at most \(2w_e g(t) \). Note that this is exactly the contribution to the RHS. This establishes the claim.

Theorem 2.6. \(RSC \) achieves an \(O(c_f \cdot \alpha_n) \) approximation of the generalized objective function for Hierarchical Clustering.

Proof. The proof follows from (10), Claim 2.4, (7), (8), (9), (11), and (12). See Appendix D.

Remark 1. In order for our guarantee to be useful, we need \(c_f \) to be a constant (or a slowly growing quantity). This would mean that \(f \) is polynomially growing. We observe that in the case where the function \(f \) is exponentially growing then our guarantee is not interesting (and in fact we may need to use a different strategy than RSC) and in the case \(f \) is logarithmic, then we would get a factor \(\approx O(\alpha_n \log n) \) approximation, which is the same guarantee as [Das16].
3 Hierarchical Clustering Hardness and the Small Set Expansion Hypothesis

In this section, we prove a strong inapproximability result, showing that, even in unweighted graphs (i.e. unit cost edges), the Hierarchical Clustering objective is hard to approximate to within any constant factor, assuming the Small Set Expansion hypothesis.

3.1 SSE and hardness amplification

Given a graph $G(V,E)$, define the following quantities for non-empty subsets $S \subseteq V$: normalized set size $\mu(S) \triangleq |S|/|V|$, and edge expansion $\Phi_G(S) \triangleq \frac{|E(S,V \setminus S)|}{\sum_{i \in S} d_i}$ (here d_i is the degree of i). The Small Set Expansion hypothesis was introduced by Raghavendra and Steurer [RS10].

Problem 3.1 (Small-Set Expansion(η, δ)). Given a regular graph $G(V,E)$, distinguish between the following two cases:

Yes: There exists a non-expanding set $S \subseteq V$ with $\mu(S) = \delta$ and $\Phi_G(S) \leq \eta$.

No: All sets $S \subseteq V$ with $\mu(S) = \delta$ are highly expanding with $\Phi_G(S) \geq 1 - \eta$.

Hypothesis 3.2 (Hardness of approximating Small-Set Expansion). For all $\eta > 0$, there exists $\delta > 0$ such that the promise problem Small-Set Expansion(η, δ) is NP-hard.

[RS10] showed that the Small Set Expansion Hypothesis implies the Unique Games Conjecture of Khot [Kho02]. A decision problem is said to be SSE-hard if Small-Set Expansion(η, δ) reduces to it by a polynomial time reduction for some constant η and all $\delta > 0$. Raghavendra, Steurer and Tulsiani [RST10] showed the following hardness amplification result for graph expansion (see Preliminaries for Gaussian Graphs definitions):

Theorem 3.3. For all $q \in \mathbb{N}$ and $\epsilon, \gamma > 0$, it is SSE-hard to distinguish between the following two cases for a given graph $H = (V_H,E_H)$:

Yes: There exist q disjoint sets $S_1, ..., S_q \subseteq V_H$ satisfying for all $l \in [q]$: $\mu(S_l) = 1/q$ and $\Phi_H(S_l) \leq \epsilon + o(\epsilon)$.

No: For all sets $S \subseteq V_H$: $\Phi_H(S) \geq \Phi_{G(1-\epsilon/2)}(\mu(S)) - \gamma/\mu(S)$, where $\Phi_{G(1-\epsilon/2)}(\mu(S))$ is the expansion of sets of volume $\mu(S)$ in the infinite Gaussian graph $G(1-\epsilon/2)$.

3.2 Hierarchical Clustering Hardness

Now we are ready to prove our main hardness result. Our proof follows the argument of [RST10] for establishing the hardness of Minimum Linear Arrangement. We prove the following:

Theorem 3.4. (Hardness of Hierarchical Clustering). For every $\epsilon > 0$, it is SSE-hard to distinguish between the following two cases for a given graph $G = (V,E)$, with $|V| = n$:

Yes: There exists a decomposition tree T of the graph such that $\text{cost}_G(T) \leq \epsilon n |E|$.

No: For any decomposition tree T of the graph $\text{cost}_G(T) \geq c \sqrt{n |E|}$.

Proof. We apply Theorem 3.3 for the following values: $q = \lceil 2/\epsilon \rceil$, $\epsilon' = \epsilon/3$ and $\gamma = \epsilon$. We need to first handle the **Yes** case. We get that the vertices can be divided into sets $S_1, S_2, ..., S_q$, each having size $n/q = n\epsilon/2$, such that at most $\epsilon' + o(\epsilon')$ fraction of edges leave the sets (i.e. go across sets). Now consider the hierarchical clustering solution that first partitions the vertices into the sets $S_1, S_2, ..., S_q$ and then partitions each S_i arbitrarily. Edges inside the set S_i contribute at most $|S_i|$ to the objective function and this is $|S_i| = n/q = \epsilon n/2$. Moreover, edges whose endpoints are
in different sets will have contribution at most \(n \); but there are at most \(\epsilon/2 \) fraction of such edges and so the overall objective for this hierarchical clustering solution is at most \(c \epsilon n |E| \).

Now, we handle the No case by using the argument of [RST10] for Minimum Linear Arrangement that follows from an observation of [DKSV06] and the fact that the objective function of Minimum Linear Arrangement is always less than the cost of Hierarchical Clustering. To see the latter, observe that if we have a hierarchical clustering tree \(T \) then consider the ordering of the vertices induced by the order that they appear as leaves in \(T \) (like projecting the leaves to a line). Then, the stretch of an edge \((u, v)\) that is cut, can be at most the size of the subtree that corresponds to that edge and this is exactly the quantity: \(|\text{leaves}(T[u \lor v])|\). Since we know ([RST10, DKSV06]) that in the No case, for all orderings \(\pi : V \to [n], E_{(u,v)\sim E}[|\pi(u) - \pi(v)|] \geq c \sqrt{\epsilon} n \), it immediately follows that: \(\text{cost}_G(T) \geq c \sqrt{\epsilon} n |E| \).

4 Approximation for HC using SDP

In this section, we present our SDP relaxation for HC based on spreading metrics, we point out its relation with the SDP relaxation of \(k\)-balanced partitioning in [KNS09] and we prove that it is an \(O(\sqrt{\log n}) \) approximation for both the simple and the generalized cost function.

4.1 Writing the SDP

We view a hierarchical clustering of \(n \) data points as a collection of partitions of the data, one for each level \(t = n - 1, \ldots, 1 \). The partition for a particular level \(t \) satisfies the property that every cluster has size at most \(t \); additionally, for every vertex \(i \), the cluster containing vertex \(i \) at level \(t \) is the maximal cluster in the hierarchy with size at most \(t \). The partition at level \((t - 1) \) is a refinement of the partition at level \(t \). Note that the partition corresponding to \(t = 1 \) must consist of \(n \) singleton clusters. We represent the partition at level \(t \) by the set of variables \(x_{ij}^t, i, j \in V \), where \(x_{ij}^t = 1 \) if \(i \) and \(j \) are in the same cluster at level \(t \) and \(x_{ij}^t = 0 \) if \(i \) and \(j \) are in different clusters. For each such \(i \) and \(j \), we point out some properties of these variables \(x_{ij}^t \) satisfied by an integer solution corresponding to an actual hierarchical clustering:

1. **refinement**: \(x_{ij}^t \leq x_{ij}^{t-1} \). If \(i \) and \(j \) are separated at level \(t \), then they continue to be separated at level \(t - 1 \).

2. **triangle inequality**: \(x_{ij}^t + x_{jk}^t \geq x_{ik}^t \). In the clustering at level \(t \), if \(i \) and \(j \) are in the same cluster, \(j \) and \(k \) are in the same cluster, then \(i \) and \(k \) are in the same cluster.

3. **\(l_2^2 \) metric**: The triangle inequality condition implies that \(x_{ij}^t \) is a metric. Further, we can associate unit vectors \(v_i^t \) with vertices \(i \) at level \(t \) such that \(x_{ij}^t = \frac{1}{2} ||v_i^t - v_j^t||_2^2 \). In order to do this, all vertices in the same cluster at level \(t \) are assigned the same vector, and vertices in different clusters are assigned orthogonal vectors.

4. **spreading**: \(\sum_j x_{ij}^t \geq n - t \). For the clustering at level \(t \), there are at most \(t \) vertices in the same cluster as \(i \). Hence there are at least \(n - t \) vertices in different clusters. For each such vertex \(j \), \(x_{ij}^t = 1 \) implying the inequality.

5. **cluster size**: The size of the smallest cluster in the hierarchy containing both vertices \(i \) and \(j \) is given by \(1 + \sum_{t=1}^{n-1} x_{ij}^t \). Suppose \(C \) is the smallest cluster containing both \(i \) and \(j \). Then for \(t \geq |C| \), the partition at level \(t \) must contain \(C \) or some superset of \(C \). Hence \(x_{ij}^t = 0 \) for
\(t \geq |C| \). For \(t < |C| \), the clustering at level \(t \) must have \(i \) and \(j \) in different clusters, hence \(x_{ij}^t = 1 \). Hence \(\sum_{t=1}^{n-1} x_{ij}^t = |C| - 1 \). Finally, we can write the SDP relaxation SDP-HC as follows:

\[
\min \sum_{t=1}^{n-1} \sum_{ij \in E} x_{ij}^t w_{ij} = \min \sum_{t=1}^{n-1} \sum_{ij \in E} \frac{1}{2} \|v_i^t - v_j^t\|^2 w_{ij}
\]

(SDP-HC)

such that: \(x_{ij}^t \leq x_{ij}^{t-1}, \quad t = n-1, n-2, \ldots 1 \)
\(x_{ij}^0 = 1, \forall i, j \in V \) and \(x_{ij}^t \leq 1, \forall i, j, t \)
\(x_{ij}^t = \frac{1}{2} \|v_i^t - v_j^t\|^2 \) and \(\|v_i^t\|^2 = 1, \forall i \in V \)
\(x_{ij}^t \leq x_{jk}^t + x_{ik}^t, \forall i, j, k \in V, \forall t \) and \(\sum_j x_{ij}^t \geq n - t, \forall i, t \)

It is easy to see that an optimal solution to SDP-HC can be computed in polynomial time. By the preceding discussion, we have shown that SDP-HC is a valid relaxation for HC:

Lemma 4.1. The value of an optimal solution to SDP-HC can be computed in polynomial time, and gives a lower bound on the cost of an optimal solution to the hierarchical clustering problem.

4.2 Connections of SDP-HC with Balanced Partitioning

The authors of [KNS09] write an SDP relaxation for the problem of \(k \)-Balanced Partitioning (\(k \)-BP) which was the following (SDP-\(k \)-BP):

\[
\min \sum_{ij \in E} w_{ij} \cdot \frac{1}{2} \|v_i - v_j\|^2
\]

(SDP-\(k \)-BP)

such that: \(\|v_i - v_j\|^2 + \|v_j - v_k\|^2 \geq \|v_i - v_k\|^2, \forall i, j, k \in V \)
\(\sum_{j \in S} \frac{1}{2} \|v_i - v_j\|^2 \geq |S| - \frac{n}{k}, \forall S \subseteq V, i \in S \)

Their result was that the above relaxation is an \(O(\sqrt{\log k \log n}) \) approximation (bi-criteria \(\nu = 2 \)) algorithm for \(k \)-BP, that will create pieces of size at most \(2n/k \).

Claim 4.2. Let \(A \) be a cluster of size \(r \). SDP-HC solution restricted to set \(A \), at level \(t = r/4 \) is a valid solution for \(k \)-balanced partitioning based on the SDP-\(k \)-BP relaxation, where \(k = 4 \).

Proof. See Appendix D. \(\square \)

In order to produce a hierarchical clustering from the SDP solution, we recursively partition \(V \) in a top down fashion: while partitioning a cluster \(A \), we use the SDP-HC solution restricted to set \(A \) at level \(t = |A|/4 \) as a valid solution for \(4 \)-balanced partitioning and invoke the algorithm of [KNS09] as a black box. Let \(E_A \) be the edges cut by the algorithm when splitting cluster \(A \). From the analysis of [KNS09], we get that (for us \(k = 4 \), so \(\log k \) is constant):

\[
w(E_A) \leq O(\sqrt{\log n}) \cdot SDP_A(r/4)
\]

(13)

and we partition \(A \) into pieces of size at most \(\leq 2 \cdot r/4 = r/2 \) (bi-criteria). In the analysis that follows we will use this result as a black box.
4.3 \(O(\sqrt{\log n}) \) approximation for Hierarchical Clustering

Now we go on to see that the integrality gap of our SDP-HC is \(O(\sqrt{\log n}) \). Let \(r \) be the size of a cluster \(A \) in the solution produced. For our charging argument, we observe that the we pay \(r \cdot w(E_A) \) where \(E_A \) are the edges cut by the [KNS09] algorithm when partitioning \(A \). We will charge this cost to \(\sum_{t=r/8+1}^{r/4} SDP_A(t) \geq \frac{r}{8}SDP_A(r/4) \) (note that as \(t \) decreases more edges are cut). Thus, using [KNS09], the total cost of the solution produced (where \(r \) depends on \(A \)):

\[
\text{cost}_{HC} = \sum_A r \cdot w(E_A) \leq O(\sqrt{\log n}) \sum_A \sum_{t=r/8+1}^{r/4} SDP_A(t).
\]

Claim 4.3. \(\sum_A \sum_{t=|A|/8+1}^{|A|/4} SDP_A(t) \leq O(\text{SDP-HC}). \)

Proof. See Appendix D.

Theorem 4.4. The cost of the solution produced by the SDP-HC rounding algorithm is within a factor of \(O(\sqrt{\log n}) \) from the SDP value.

Proof. Using Claim D.4 and (14) we get that \(\text{cost}_{OPT} \leq O(\sqrt{\log n}) \cdot \text{SDP-HC} \).

4.4 The case of the generalized cost function

Now, we consider the performance of SDP-HC-gen (where SDP-HC-gen is essentially the same as SDP-HC where actually we multiply each term in the objective function by \(g(t) = f(t+1) - f(t) \) for the generalized cost function and we show essentially the same guarantee (for the proof, see Appendix D):

Theorem 4.5. The cost of the solution produced by the SDP-HC-gen rounding algorithm is within a factor of \(O(\sqrt{\log n} \cdot c_f) \) from the SDP value where \(c_f \triangleq \max_{r \in \{1, \ldots, n\}} \frac{f(r)}{f(r/4) - f(r/8)} \).

5 Conclusion and Further Research

We proved that the recently introduced objective function for hierarchical clustering in [Das16], can be approximated within a factor of \(O(\alpha_n) \) by repeatedly taking \((\alpha_n \text{ approximations to}) \) Sparsest Cuts and within \(O(\sqrt{\log n}) \) using a spreading metric SDP relaxation. We also proved that it is hard to approximate the HC objective function within any constant factor assuming the Small Set Expansion Hypothesis, which was the first strong inapproximability for the problem to the best of our knowledge. We finally presented an LP based \(O(\log n) \) approximation by showing that HC falls into the spreading metrics paradigm of [ENRS00].

We would like to conclude the paper asking if we can do even better for this particular problem. The reason why we might face difficulties in improving the approximation guarantee may have to do with the much more basic problem of Minimum Balanced Bisection. It seems implausible that we would get a better approximation for hierarchical clustering before getting an improvement in the current best approximation guarantee for Balanced Bisection. It is also interesting to try to come up with other suitable cost functions for HC, apart from those considered here.

Another direction for research is that of beyond worst case analysis. What can we say about exact recovery on \(\gamma \)-stable instances under Bilu-Linial [BL12b] notion of stability? For example, in [MMV14] they show that the standard SDP relaxation for MAX-CUT is integral if the instance is
sufficiently stable \((\gamma \geq c_{\sqrt{\log n}} \log n\) for some absolute constant \(c > 0\)). It would be nice to formalize and say something similar for our problem, since this would not only explain the success of certain heuristics for HC based on finding sparsest cuts, but also justify their use in practice, assuming that in real applications most instances are stable (such an assumption for clustering problem is widely accepted; for more see [BL12a, BL12b, MMV14] and references therein). Finally, we also find interesting the scenario where the input graph is drawn from a probability distribution for which there is a truly hierarchical structure. Can we then prove that a suitable SDP relaxation will indeed find a hierarchical structure close to the actual underlying hierarchy with high probability?
References

[AMS11] Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results for maximum edge biclique, minimum linear arrangement, and sparsest cut. *SIAM Journal on Computing*, 40(2):567–596, 2011.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph partitioning. *Journal of the ACM (JACM)*, 56(2):5, 2009.

[Bar04] Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In *European Symposium on Algorithms*, pages 89–97. Springer, 2004.

[BL12a] Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. In *International Colloquium on Automata, Languages, and Programming*, pages 63–74. Springer, 2012.

[BL12b] Yonatan Bilu and Nathan Linial. Are stable instances easy? *Combinatorics, Probability and Computing*, 21(05):643–660, 2012.

[BLG14] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clustering. *Journal of Machine Learning Research*, 15:3831, 2014.

[CDKL14] Kamalika Chaudhuri, Sanjoy Dasgupta, Samory Kpotufe, and Ulrike Luxburg. Consistent procedures for cluster tree estimation and pruning. *IEEE Transactions on Information Theory*, 60(12):7900–7912, 2014.

[CGW03] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative information. In *Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on*, pages 524–533. IEEE, 2003.

[CHKR06] Moses Charikar, Mohammad Taghi Hajiaghayi, Howard Karloff, and Satish Rao. l_2 spreading metrics for vertex ordering problems. In *Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm*, pages 1018–1027. Society for Industrial and Applied Mathematics, 2006.

[Das16] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In *Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2016, pages 118–127, New York, NY, USA, 2016. ACM.

[DKSV06] Nikhil R Devanur, Subhash A Khot, Rishi Saket, and Nisheeth K Vishnoi. Integrality gaps for sparsest cut and minimum linear arrangement problems. In *Proceedings of the thirty-eighth annual ACM symposium on Theory of computing*, pages 537–546. ACM, 2006.

[DL05] Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering. *Journal of Computer and System Sciences*, 70(4):555–569, 2005.

[EBW15] Justin Eldridge, Mikhail Belkin, and Yusu Wang. Beyond hartigan consistency: merge distortion metric for hierarchical clustering. 2015.

[ENRS99] Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Fast approximate graph partitioning algorithms. *SIAM Journal on Computing*, 28(6):2187–2214, 1999.
[ENRS00] Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation algorithms via spreading metrics. *Journal of the ACM (JACM)*, 47(4):585–616, 2000.

[FL07] Uriel Feige and James R Lee. An improved approximation ratio for the minimum linear arrangement problem. *Information Processing Letters*, 101(1):26–29, 2007.

[GVY93] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi) cut theorems and their applications. In *Proceedings of the twenty-fifth annual ACM symposium on Theory of computing*, pages 698–707. ACM, 1993.

[Har85] J. A. Hartigan. Statistical theory in clustering. *Journal of Classification*, 2(1):63–76, 1985.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning*. Springer, 2nd edition, 2009.

[JD88] Anil K Jain and Richard C Dubes. *Algorithms for clustering data*. Prentice-Hall, Inc., 1988.

[JMF99] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review. *ACM computing surveys (CSUR)*, 31(3):264–323, 1999.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In *Proceedings of the thirty-fourth annual ACM symposium on Theory of computing*, pages 767–775. ACM, 2002.

[KNS09] Robert Krauthgamer, Joseph Seffi Naor, and Roy Schwartz. Partitioning graphs into balanced components. In *Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 942–949. Society for Industrial and Applied Mathematics, 2009.

[LNRW10] Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P Williamson. A general approach for incremental approximation and hierarchical clustering. *SIAM Journal on Computing*, 39(8):3633–3669, 2010.

[LR88] Tom Leighton and Satish Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In *Foundations of Computer Science, 1988., 29th Annual Symposium on*, pages 422–431. IEEE, 1988.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. *Journal of the ACM (JACM)*, 46(6):787–832, 1999.

[MMV14] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-linial stable instances of max cut and minimum multiway cut. In *Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’14, pages 890–906, Philadelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics.

[Pla03] C Greg Plaxton. Approximation algorithms for hierarchical location problems. In *Proceedings of the thirty-fifth annual ACM symposium on Theory of computing*, pages 40–49. ACM, 2003.
[RP16] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. 2016.

[RS10] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture. In Proceedings of the forty-second ACM symposium on Theory of computing, pages 755–764. ACM, 2010.

[RST10] Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion problems. In Computational Complexity (CCC), 2012 IEEE 27th Annual Conference on, pages 64–73. IEEE, 2010.

[She09] Jonah Sherman. Breaking the multicommodity flow barrier for o (vlog n)-approximations to sparsest cut. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages 363–372. IEEE, 2009.
A Preliminaries

Here, we would like to briefly discuss some important problems and definitions that will frequently come up in the rest of the paper. Some additional definitions and facts may be presented in the sections for which they are relevant.

Sparsest Cut. Given a weighted, undirected graph $G = (V, E, w)$ ($|V| = n$) we want to find a set $S \neq \emptyset, V$ that minimizes the ratio:

$$\frac{w(S, V \setminus S)}{|S| \cdot |V \setminus S|}$$

It is an NP-hard problem for which many important results are known including the LP relaxation of Leighton-Rao [LR99] with approximation ratio $O(\log n)$ and the SDP relaxation with triangle inequality of Arora, Rao, Vazirani [ARV09] with approximation ratio $O(\sqrt{\log n})$; it is a major open question if we can improve this approximation ratio.

Small-Set Expansion. SSE is a hardness assumption that informally tells us the following: Given a graph G, it should be hard to distinguish between the case where there exists a small set S that has only a few edges leaving it versus the case where for all small sets S there are many edges leaving the sets. For a formal statement see Section 3. This hardness assumption is closely connected to the Unique Games Conjecture (UGC) of [Kho02] and its variants. In particular, the SSE Hypothesis implies UGC([RS10]) and it has been used to prove many inapproximability results for problems like balanced separator and minimum linear arrangement ([RST10]).

k-Balanced Partitioning. Given a weighted undirected graph G on n vertices, the goal is to partition the vertices into k equally sized components of size roughly n/k so that the total weight of the edges connecting different components is small. It is an important generalization of well-known graph partitioning problems, including minimum bisection ($k=2$) and minimum balanced cut and it has applications in VLSI design, data mining (clustering), social network analysis etc. It is an NP-hard problem and the authors of [KNS09] present a bi-criteria (which means that pieces may have size $2n/k$ rather than n/k) approximation algorithm achieving an approximation of $O(\sqrt{\log n \log \log n})$. Their result will be useful in our analysis for our spreading metrics SDP in Section 4. However, for us the dependence on k will be unimportant since in our analysis we only need k to be a small constant (e.g. $k=4$).

Minimum Linear Arrangement. Given a weighted undirected multigraph $G(V, E, w)$ ($|V| = n$) we want to find a permutation $\pi : V \to \{1, 2, \ldots, |V|\}$ that minimizes:

$$\sum_{(x,y) \in E, x < y} w(x, y) \cdot |\sigma(y) - \sigma(x)|$$

A factor $O(\sqrt{\log n \log \log n})$ approximation for MLA was shown in [CHKR06, FL07]. In addition, some recent hardness results are also known: in [RST10] it is shown that it is SSE-hard to approximate MLA to within any fixed constant factor and in [AMS11] the authors prove that MLA has no polynomial time approximation scheme, unless NP-complete problems can be solved in randomized subexponential time.

Gaussian Graphs. For a constant $\rho \in (-1, 1)$, let $G(\rho)$ denote the infinite graph over \mathbb{R} where the weight of an edge (x, y) is the probability that two standard Gaussian random variables X, Y with correlation ρ equal x and y respectively. The expansion profile of Gaussian graphs is given by $\Phi_{G(\rho)}(\mu) = 1 - \Gamma_{\rho}(\mu)/\mu$ where the quantity $\Gamma_{\rho}(\mu)$ defined as

$$\Gamma_{\rho}(\mu) \triangleq \mathbb{P}_{(x,y) \sim G(\rho)}(x \geq t, y \geq t),$$

where t is a threshold such that $\mathbb{E}(X) = \mathbb{E}(Y) = 0$ and $\mathbb{V}(X) = \mathbb{V}(Y) = 1$.
where \mathcal{G}_ρ is the 2-dimensional Gaussian distribution with covariance matrix:

$$
\begin{bmatrix}
1 & \rho \\
\rho & 1
\end{bmatrix}
$$

and $t \geq 0$ is such that $\mathbb{P}_{(x,y) \sim \mathcal{G}_\rho} \{ x \geq t \} = \mu$.

B Spreading Metrics and Bartal’s Decomposition

Bartal ([Bar04]) presented a graph decomposition lemma and used it as a key ingredient in order to prove an $O(\log n)$ approximation guarantee for the spreading metrics paradigm in undirected graphs, thus improving the results for many problems considered in [ENRS00]. At a high level, the decomposition finds a cluster in the graph that has a low diameter, such that the weight of the cut created is small with respect to the weight of the cluster. The decomposition is essentially based on the decomposition of [GVY93] performed in a careful manner so as to achieve a more refined bound on the ratio between the cut and the cluster’s weight.

Let $G = (V, E)$ be an undirected graph with two weight functions $w, l : E \to \mathbb{R}^+$. We interpret $l(e)$ to be the length of the edge e, and the distance $d(u, v)$ between pairs of vertices u, v in the graph, is determined by the length of the shortest path between them. Given a subgraph $H = (V_H, E_H)$ of G, let d_H denote the distance in H, let $\Delta(H)$ denote the diameter of H, and $\Delta = \Delta(G)$. We also define the volume of H, $\phi(H) = \sum_{e \in E_H} w(e)l(e)$.

Given a subset $S \subseteq V$, $G(S)$ denotes the subgraph of G induced by S. Given partition (S, \bar{S}), let $\Gamma(S) = \{(u, v) \in E; u \in S, v \in \bar{S}\}$ and $\text{cut}(S) = \sum_{e \in \Gamma(S)} w(e)$. For a vertex v and $r \geq 0$, the ball at radius r around v is defined as $B(v, r) = \{ u \in V \mid d(u, v) \leq r \}$. Let $S = B(v, r)$. Define

$$
\bar{\phi}(S) = \bar{\phi}(v, r) = \sum_{e = (u, w): u, w \in S} w(e)l(e) + \sum_{e = (u, w) \in \Gamma(S)} w(e)(r - d(v, u)).
$$

Given a subgraph H, we can similarly define $\bar{\phi}_H$ with respect to the subgraph H. Define the spherical-volume of H,

$$
\phi^*(H) = \max_{v \in H} \bar{\phi}_H(v, \frac{\Delta(H)}{4}).
$$

In the following, we state three basic lemmas, which are based on a standard argument similar to that of [GVY93], before stating the main result in B.4. For the proofs, we refer the reader to [Bar04].

Lemma B.1. Given a graph G, there exists a partition (S, \bar{S}) of G, where S is a ball and

$$
\text{cut}(S) \leq \frac{8 \ln(\phi^*(G)/\phi^*(G(S)))}{\Delta(G)} \cdot \phi(S).
$$

The decomposition will become useful when it is applied recursively. This is particularly important for our main application which is hierarchical clustering and we can have a recursive approach where we find a good cut, creating two subgraphs and then we continue with the two new components. More generally, for the second lemma of [Bar04], we will be interested in applications which are associated with a cost function cost over subgraphs G of G which is nonnegative, 0 on singletons and obeys the following natural recursion rule:
\[\text{cost}(\hat{G}) \leq \text{cost}(\hat{G}(S)) + \text{cost}(\hat{G}(\bar{S})) + \Delta(\hat{G}) \cdot \text{cut}(S). \] (15)

Now we state the second basic lemma:

Lemma B.2. Any cost function defined by (15) obeys
\[\text{cost}(G) \leq O(\log(\phi/\phi_0)) \cdot \phi(G), \]
where \(\phi = \phi(G) \) and \(\phi_0 \) is the minimum value of \(\phi(\hat{G}) \) on non-singleton subgraphs \(\hat{G} \).

Finally, we have the third lemma which will give us the \(O(\log n) \) approximation. We can obtain a bound depending only on \(n \), by modifying the process slightly by associating a volume \(\phi(G)/n \) with the nodes, like in [GVY93]. This will ensure that \(\phi_0 \geq \phi(G)/n \) and by substituting we get what we want:

Lemma B.3. The function defined by (15) using the modified procedure obeys
\[\text{cost}(G) \leq O(\log n) \cdot \phi(G). \]

Now we turn our attention to the connection with the spreading metrics paradigm. Having the definition of a spreading metric in mind (see Section C) and the previous three recursive graph decomposition lemmas we can easily obtain the following theorem, as proved in [Bar04]:

Theorem B.4. There exists an \(O(\log n) \) approximation for problems in the spreading metrics paradigm.

C LP Spreading Metrics and \(O(\log n) \) approximation

We prove here that the hierarchical clustering objective function defined above falls into the divide and conquer approximation algorithms via spreading metrics paradigm of [ENRS00].

The spreading metric paradigm applies to minimization problems on undirected graphs \(G = (V, E) \) with edge weights \(w(e) \geq 1 \). We also have an auxiliary graph \(H \) and a scaler function on subgraphs of \(H \) (e.g. size of the components of \(H \)). A decomposition tree \(T \) is a tree with nodes corresponding to non-overlapping subsets of \(V \), forming a recursive partition of the nodes \(V \). For a node \(t \) of \(T \), we denote by \(V_t \) the subset at \(t \). Associated are the subgraphs \(G_t, H_t \) induced by \(V_t \). Let \(F_t \) be the set of edges that connect vertices that belong to different children of \(t \), and \(w(F_t) = \sum_{e \in F_t} w(e) \). The cost of \(T \) is \(\text{cost}(T) = \sum_{t \in T} \text{scaler}(H_t) \cdot w(F_t) \).

Definition C.1. A spreading metric is a function on the edges of the graph \(l : E \rightarrow \mathbb{R}^+ \) satisfying the following two properties:

1. Lower bound property: The volume of the graph \(\sum_{e \in E} w(e)l(e) \) is a lower bound on the optimal cost.
2. Diameter property: For any \(U \subseteq V \) and \(H_U \) the subgraph of \(H \) induced by \(U \), has diameter \(\Delta(U) \geq \text{scaler}(H_U) \).

We closely follow their formulation for the Linear Arrangement problem, which also falls into the spreading metrics paradigm, but we make the necessary semantic changes. We need to show the divide and conquer applicability and the spreading metrics applicability of their result for our problem.

Firstly, to establish the divide and conquer applicability we consider any binary decomposition tree \(T \) that fully decomposes the problem. (we normalize the edge weights by dividing with the minimum edge weight). Note that there is a 1−1 correspondence between the leaves of \(T \) and the
vertices of G. The solution to the hierarchical clustering problem that is represented by T is easily given by the cuts, in G, induced by the internal nodes of T. The cost of the tree T is:

$$\text{cost}_G(T) = \sum_{t \in T} |V_t|w(F_t). \quad (16)$$

where V_t and F_t are the set of vertices and cut corresponding to the tree node t and $w(F_t)$ is the total weight of the edges cut at this internal node t. We need to show that this cost bounds the cost of solutions built up from T. For this we prove that for every tree node t the cost of the subtree rooted at t, denoted T_t, bounds the cost of solutions built up from T_t to the hierarchical clustering problem for the subgraph of G induced by the set of vertices V_t. We prove the claim by induction on the level of the tree nodes. The claim clearly holds for all leaves of T. Consider an internal tree node $t \in T$ and denote its two children by t_L and t_R. By induction the claim holds for both t_L and t_R. The solution represented by T_t is given by concatenating the solutions represented by T_{t_L} and T_{t_R}. Note that the additional cost is at most $|V_t|$ times the capacity of the cut F_t that separates V_{t_L} from V_{t_R}. We get

$$\text{cost}_G(T_t) \leq \text{cost}_G(T_{t_L}) + \text{cost}_G(T_{t_R}) + |V_t|w(F_t). \quad (17)$$

The inductive claim follows.

We now show how to compute the spreading metric that assigns length $l(e)$ to an edge $e \in E$ of the graph. Consider the following linear program (LP1):

$$\min \sum_{e \in E} w(e) \cdot l(e) \quad (18)$$

s.t. $\forall U \subseteq V, \forall v \in V : \sum_{u \in U} dist_t(u, v) \geq \frac{1}{4}(|U|^2 - 1)$ \quad (19)

$\forall e \in E : l(e) \geq 0 \quad (20)$

In the linear program, we follow the notation that regards $l(e)$ as edge lengths, and $dist_t(u, v)$ is the length of the shortest path from u to v. We will refer to constraint (6) as the spreading constraint. The linear program can be solved in polynomial time since we can construct a separation oracle. In order to verify that the spreading constraint (19) is satisfied, for each vertex v, we sort the vertices in V in increasing order of distance $dist_t(u, v)$ and verify the spreading constraint for all prefixes U of this sorted order.

Lemma. Let $l(e)$ denote a feasible solution of the linear program. For every $U \subseteq V$ with $|U| > 1$, and for every vertex $v \in U$ there is a vertex $u \in U$ for which $dist_t(u, v) \geq \frac{1}{10}|U|$.

Proof. The average distance of a node $u \in U - \{v\}$ from v is greater than $\frac{1}{4}(|U| - 1)$, because of the constraint corresponding to U and v. Therefore, there exists a vertex $u \in U$ whose distance from v is at least the average distance from v, and the lemma follows, since $dist_t(u, v) \geq \frac{1}{4}(|U| - 1) \geq \frac{1}{10}|U|$. ($|U| > 1$)

Note that the previous lemma comes short of the diameter guarantee by a factor of 10: while the diameter guarantee requires that the diameter of a subset U be greater than $|U|$, the proven bound is only $|U|/10$. However, it is known that this only affects the constant in the approximation factor.
In the next lemma, we prove that the volume of an optimal solution of the linear program satisfies the lower bound property.

Lemma. The cost of an optimal solution of the linear program is a lower bound on the cost of an optimal hierarchical clustering of G.

Proof. Consider any binary hierarchical clustering given by the sequence of cuts in the decomposition tree T and define $l(e) = |\text{leaves}(T_i \cup j)|$ for edge $e = (i, j) \in E$. It is easy to see that this is indeed a metric and it is actually an ultrametric. We show that $l(e)$ is a feasible solution for the linear program. The cost $\sum_{e \in E} w(e) \cdot l(e)$ equals the cost of the hierarchical clustering induced by the tree T. The feasibility of $l(e)$ is proved as follows: Consider a subset $U \subseteq V$ and a vertex $v \in U$. We observe that the average distance from v of the vertices in U will be minimized when U is “packed around” v, meaning that with each cut we peel off only one vertex at a time. We have that:

$$\sum_{u \in U} \text{dist}_l(u, v) = 2 + 3 + ... + |U| \geq \frac{1}{2}(|U|^2 - 1) \geq \frac{1}{4}(|U|^2 - 1)$$

Hence, $l(\cdot)$ is a feasible solution and the lemma follows. \qed

With the above two lemmas we have proved that our hierarchical clustering objective function falls into the spreading metrics paradigm, because it satisfies the lower bound property and the diameter property. Using Bartal’s decomposition and specifically Theorem B.4 from Section B we get an approximation guarantee of $O(\log n)$:

Theorem C.1. There exists an $O(\log n)$ approximation for the hierarchical clustering objective function defined by (1).

D Omitted Proofs

Theorem D.1. Given an unweighted graph G, the Recursive Sparsest Cut algorithm achieves an $O(\alpha_n)$ approximation for the hierarchical clustering problem.

Proof. By combining (3), (4), (5), (6) and summing over all clusters A created by RSC, we get the following result for the overall performance guarantee:

$$\text{cost}_{RSC} = \sum_{A} r \cdot |E(B_1, B_2)| \leq \sum_{A} 4\alpha_n s|E_{OPT}(\lfloor r/2 \rfloor) \cap A| \leq$$

$$\leq 4\alpha_n \sum_{A} \sum_{t=r-s+1}^{r} |E_{OPT}([t/2]) \cap A| \leq 4\alpha_n \sum_{t=1}^{n} |E_{OPT}([t/2])| \leq 8\alpha_n \cdot \text{OPT} \quad \square$$

Theorem D.2. RSC achieves a $O(c_f \cdot \alpha_n)$ approximation of the generalized objective function for Hierarchical Clustering.

Proof. From (10),

$$\text{cost}_{RSC} \leq 4\alpha_n \cdot c_f \sum_{A} \frac{s(A)}{|A|} \sum_{t=|A|/2}^{\lfloor |A|/2 - 1 \rfloor} w(E_{OPT}(t) \cap A) \cdot g(t)$$

20
Combining the above with Claim 2.4, (7), (8), (9), (11), (12), we get that the total cost of the RSC is at most $\text{cost}_{\text{RSC}} \leq (8c_f \alpha_n) \cdot \text{OPT} = O(c_f \cdot \alpha_n)$. □

Claim D.3. Let A be a cluster of size r. SDP-HC solution restricted to set A, at level $t = r/4$ is a valid solution for k-balanced partitioning based on the SDP-k-BP relaxation, where $k = 4$.

Proof. To see this we need to compare the set of constraints imposed by SDP-HC and SDP-k-BP. In SDP-HC, we have some additional constraints: $x_{ij}^t \leq 1$ and $v_i^t \leq 1$, but that is fine since imposing extra constraints just makes a stricter relaxation. Now let’s look at the spreading constraints: In SDP-HC we have $\sum_j x_{ij}^t \geq n-t \Rightarrow \sum_{j \in S} x_{ij}^t \geq |S|-t$ which is basically the SDP-k-BP spreading constraints. Thus, by looking at the SDP-HC solution restricted to set A ($|A| = r$), at level $t = r/4$, we can get a valid 4-balanced partitioning solution of A. □

Claim D.4. $\sum_A \sum_{t = |A|/8+1}^{\lfloor |A|/4 \rfloor} \text{SDPA}(t) \leq O(\text{SDP-HC}).$

Proof. The flavor of this analysis is similar to our RSC result from Section 2. Let’s look at an edge $e = (u, v)$ at a fixed level t. For which sets A do we get the term $\text{SDPA}(t)$ where both endpoints $u, v \in A$? In order for u, v to belong to A: $t \in \left(\lfloor |A|/8 \rfloor, \lfloor |A|/4 \rfloor \right) \Rightarrow 4t \leq |A| < 8t$. There can be at most one such $|A|$, so LHS is charged only once. To see why A is unique, suppose we had two such clusters $|A_1|, |A_2|$ that both contained u, v with their sizes $|A_1|, |A_2| \in \{4t, 8t\}$. Since we have a hierarchical decomposition, one of A_1, A_2 is ancestor of the other. Let’s say, wlog, A_1 is ancestor of A_2. But then, all of its descendants are of size below the range $[4t, 8t)$ due to the 4-partition, which is a contradiction. □

Remark 2. In the above analysis, whenever we write $|A|/4$ we mean $\lfloor |A|/4 \rfloor$. However this will not affect the result. Plus, we used $O(\text{SDP-HC})$, because some additional constants might be introduced whenever the set A is small ($|A| < 8$).

Theorem D.5. The cost of the solution produced by the SDP-HC-gen rounding algorithm is within a factor of $O(\sqrt{\log n} \cdot c_f)$ from the SDP value where $c_f \triangleq \max_{r \in \{1, \ldots, n\}} \frac{f(r)}{f(r/4) - f(r/8)}$.

Proof. Let A be a cluster of size $|A| = r$ and let $g(t) = f(t+1) - f(t)$. We want to compare the cost of OPT for splitting A with our solution $\text{SDPA}(t)$ for levels $t = r/8 + 1, \ldots, r/4$. Using (13):

$$\text{cost}_{\text{OPT}}(A) = f(r) \cdot w(E_A) \leq O(\sqrt{\log n}) f(r) \cdot \text{SDPA}(r/4) \leq$$

$$\leq O(\sqrt{\log n}) \frac{f(r)}{f(r/4) - f(r/8)} \sum_{t = r/8+1}^{r/4} \text{SDPA}(t) \cdot g(t) \leq$$

$$\leq O(\sqrt{\log n}) \cdot c_f \sum_{t = r/8+1}^{r/4} \text{SDPA}(t) \cdot g(t).$$

Using now Claim D.4 and summing over all clusters A in the hierarchical clustering we get:

$$\text{OPT} \leq O(\sqrt{\log n}) \cdot c_f \cdot \text{SDP-HC}.$$

where $\sum_A \sum_{t = r/8+1}^{r/4} \text{SDPA}(t) \cdot g(t) \leq O(\text{SDP-HC})$ holds from Claim 2.5 (slightly modified). □

Remark 3. As in Remark 1, here f should be polynomially growing.