Extracellular proteases are crucial regulators of cell function. The family of matrix metalloproteinases (MMPs) has classically been described in the context of extracellular matrix (ECM) remodelling, which occurs throughout life in diverse processes that range from tissue morphogenesis to wound healing. Recent evidence has implicated MMPs in the regulation of other functions, including survival, angiogenesis, inflammation and signalling. There are at least 25 members of the MMP family and, collectively, these proteases can degrade all constituents of the ECM. As a result of their potent proteolytic activity, abnormal MMP function can also lead to pathological conditions. The most widely studied disease that involves MMPs is cancer metastasis. In this case, the tumour cell is thought to use MMPs to overcome multiple structural barriers and establish a new focus of growth at a distant site from the primary tumour mass. In the nervous system, MMPs have also been associated with pathogenesis, particularly in multiple sclerosis (MS) and malignant gliomas. A growing literature has linked MMPs to stroke, to Alzheimer’s disease and to viral infections of the central nervous system (CNS). The goal of this review is to acquaint the reader with the biology of MMPs, particularly the functions of MMPs that are not associated with matrix turnover. We will highlight the roles of MMPs in pathology of the nervous system, and emphasize the fact that MMPs can also have physiological functions during CNS repair and ontogeny. Last, we will discuss the function of another group of metalloproteinases — ADAMs (a disintegrin and metalloproteinase) — in CNS pathophysiology, as these proteins might be responsible for many of the activities previously ascribed to MMPs.

Metalloproteinases — the cast
MMPs are part of a larger family of structurally related zinc-dependent metalloproteinasises called metzincins. Other subfamilies of the metzincins are ADAMs, bacterial serralysins and the astacins. Metzincins use three histidine (H) residues to bind the zinc ion at their active site. In addition, there is a distinct β-turn at the active site, which is delineated by a methionine residue (‘met-turn’) and seems to be essential for activity. There is about 20% similarity between metzincin subfamilies, but identity at the catalytic domain is much higher.

On the basis of substrate preference and protein-domain considerations, MMP family members have been categorized into subgroups that include gelatinases, stromelysins, collagenases, membrane-type (MT)-MMPs and ‘other MMPs’. However, there is much overlap in substrate specificity between subgroups. Structurally, MMPs are divided into three

DISINTEGRINS

Peptides found in the venoms of various snakes that inhibit the function of integrins of the β1 and β3 classes.
HEMOPEXIN
Serum glycoprotein that binds haem and transports it to the liver for breakdown and iron recovery.

domains (FIG. 1); an amino-terminal propeptide region, an amino-terminal catalytic domain (which contains the zinc-binding motif) and a carboxy-terminal domain, which has a high level of similarity to members of the HEMOPEXIN family and is involved in ECM substrate binding for many MMPs. The carboxy-terminal hemopexin-like domain is a four-bladed β-propeller structure that is present in all MMPs except MMP7 and MMP26 (matrilysin and matrilysin-2). A hinge region, which is short in collagensases and long in other MMPs, connects the carboxy- and amino-terminal domains. A short signal sequence ('pre-domain') lies at the amino-terminal end of the protein, before the propeptide region, and is clipped off as newly synthesized MMPs travel to the cell surface. Last, unlike other MMP groups, the six MT-MMPs are membrane proteins. MT4-MMP (MMP17) and MT6-MMP (MMP25) are glycosyl-phosphatidylinositol (GPI)-anchored MMPs (REF. 3), whereas the other MT-MMPs are transmembrane proteins.

The ADAM family of metalloproteinases is also referred to as MDC (metalloproteinase, disintegrin, cysteine-rich) proteins. Biological roles for ADAM members include specialized functions in cell adhesion, sperm–egg fusion (for example, ADAM1 and -2), myoblast fusion (ADAM12) and the ectodomain shedding of cell-surface proteins (for example, ADAM9, -10 and -17). Most ADAMs have a prodomain, a metalloprotease region, a disintegrin domain for adhesion, a cysteine-rich region, epidermal-growth-factor (EGF) repeats, a transmembrane module and a cytoplasmic tail (FIG. 1). So, ADAMs are unique among cell-surface proteins in having both adhesive and proteolytic activities. The cysteine-rich region and EGF repeats are thought to mediate cell fusion or the interaction of ADAMs with other molecules such as chaperone proteins. The cytoplasmic tails of ADAM9 and -12 interact with protein kinase C and with src, respectively, implicating some ADAM family members as signalling molecules5,6. Although most ADAMs are transmembrane proteins, some members (for example, ADAM11, -12, -17 and -28) also have alternatively spliced forms that diverge before the transmembrane module to generate a soluble, secreted protein. It is important to note that only about half of the ADAM family members have a metalloproteinase domain that contains the catalytic-site consensus sequence, indicating that, in ADAMs

Table 1 | Matrix metalloproteinase family members

Member	Name	M latent/active (kDa)	Furin activation site	Collagen substrates	Pro-MMP substrates	Other matrix substrates
MMP1	Collagenase 1	55/45	I, II, III, VII, VIII, X	2, 9	Agg, Gel, PG	
MMP2	Gelatinase A	72/66	I, III, IV, V, VII, X, XI, XIV	1, 9, 13	Agg, EL, FN, Gel, LN, PG, VN	
MMP3	Stromelysin 1	57/45	III, IV, IX, X, XI	1, 7, 8, 9, 13	Agg, EL, FN, Gel, LN, PG, VN	
MMP7	Matrilysin	28/19	IV, X	1, 2, 9	Agg, Casein, EL, FN, Gel, LN, PG, VN	
MMP8	Collagenase 2	75/58	I, II, III, VII, VIII, X	1, 2, 9	Agg, EL, FN, Gel, LN, PG, VN	
MMP9	Gelatinase B	92/86	IV, V, VII, X	9	Agg, EL, FN, Gel, PG, VN	
MMP10	Stromelysin 2	57/44	III, IV, IX, X	1, 8	Agg, EL, FN, Gel, LN, PG	
MMP11	Stromelysin 3	51/44	Yes			
MMP12	Metalloelastase	54/45/22†	IV	Casein, EL, FN, Gel, LN, PG, VN		
MMP13	Collagenase 3	60/48	I, II, III, IV, VII, IX, X, XIV	9	Agg, FN, Gel	
MMP14	MT1-MMP	66/56	Yes	II, III	2, 13	Agg, EL, FN, Gel, LN
MMP15	MT2-MMP	72/60	Yes		2	Agg, FN, Gel, LN
MMP16	MT3-MMP	64/52	Yes	III	2	Gel, FN
MMP17	MT4-MMP	57/53	Yes		Fibrinogen/fibrin	
MMP18	Collagenase 4	70/53	I			
MMP19	RAS I1	54/45	IV	Gel, FN, LN		
MMP20	Enamelysin	54/22	Yes		Amelogenin	
MMP21	Xenopus MMP	70/53	Yes			
MMP22	Chick embryo MMP	51/42	Yes		Casein, Gel	
MMP23	Yes					
MMP24	MT5-MMP	Yes		2	Gel	
MMP25	MT6-MMP	Yes	IV	Gel, FN		
MMP26	Matrilysin 2/endothetase	28/19		Gel		
MMP27	Human MMP22†	56/45	Yes		Casein	

MMP4, MMP5 and MMP6 were found to be identical to other MMPs, and are not listed according to this nomenclature. *The list of substrates, collated from REFs 15,56,100, is by no means exhaustive and emphasizes those from the extracellular matrix. †The activation of MMP12 involves the removal of the propeptide region to produce an intermediate active form (45 kDa), followed by atypical carboxy-terminal processing to produce the fully active enzyme (22 kDa). 1MMP27 is the human orthologue of chick embryo MMP22. M, molecular mass; MMP, matrix metalloproteinase; Agg, aggrecan; Gel, gelatin; PG, proteoglycan link protein; EL, elastin; FN, fibronectin; LN, laminin; VN, vitronectin; MT, membrane type; RAS I1, rheumatoid arthritis synovial inflammation 1.
REVIEWS

Figure 1 | Domain structure of MMPs and ADAMs. The generic structure of matrix metalloproteinases (MMPs) shown here describes most MMP family members. Note that gelatinases (MMP2 and -9) have a unique fibronectin type II-like domain inserted into the catalytic site, whereas MT-MMPs have a transmembrane domain at the carboxy terminus. Matrixlysin (MMP7) lacks the hinge and the carboxy terminus. The hemopexin-like module of MMPs contains four repeat units; the first and fourth are connected by a disulphide bridge. The ‘C’ at the propeptide region denotes the cysteine residue that ligates the zinc in the catalytic domain to keep the enzyme inactive. For ADAMs (a disintegrin and metalloproteinase), the core structure of most members is also depicted. Most ADAMs are integral membrane proteins owing to the presence of the transmembrane domain. However, alternative splicing generates a secreted form of some ADAMs. It should be noted that some ADAMs (ADAM2, -7, -11, -14, -18, -22 and -29) lack the intact zinc-binding site and, furthermore, that the metalloprotease domain is not retained in several mature proteins of this family (for example, ADAM1 and -2). These proteins are therefore not considered true degradative enzymes. Last, the ADAMTS proteins are ADAMs that contain one or more thrombospondin type I motifs at the carboxy terminus. They are also distinguished from ADAMs by the lack of epidermal-growth-factor (EGF)-like, transmembrane and cytoplasmic domains.

Regulation of metalloproteinase activity

The activity of metalloproteinases is tightly regulated, as these molecules are potent proteolytic enzymes that are capable of widespread destruction. Their first regulatory step is at the level of transcription, as most MMPs are not constitutively expressed but are transcribed after cell activation. Transcription of many MMPs is promoted by inflammatory cytokines, growth factors, chemokines, oncogenes and cell–cell or cell–matrix interactions.

Post-translational modifications provide a second level of MMP regulation. Many MMPs are expressed as inactive proenzymes in which the cysteine residue at the propeptide region binds the zinc ion present at the catalytic site. Activating factors include the plasminogen–plasmin cascade, as well as other MMPs (Table 1) that disrupt the interaction between cysteine and zinc (the so-called ‘cysteine switch’ mechanism) and then remove the propeptide region for full activation. Non-proteolytic compounds such as sulfhydryl-reactive agents (4-aminophenylmercuric acetate) and denaturants (urea) can also activate proenzymes. A subset of MMPs contains a cleavage site for furin-like prohormone convertases between the propeptide and catalytic domains; this subset includes the pro-MMPs, which are activated during secretion and appear on the cell surface in the active form.

A third means to control MMP activity is by the interaction of active MMPs with tissue inhibitors of metalloproteinases (TIMPs; see Refs 14,15 for comprehensive reviews). Four TIMPs are now known and they cause inactivation by binding to the catalytic site of MMPs. Interestingly, TIMPs are also required for the activation of some MMPs. In this regard, a complex formed by TIMP2 and the carboxyl terminus of pro-MMP2 has been found to bind MT1-MMP (MMP14) on the cell surface. An adjacent MT1-MMP molecule then removes the propeptide region of MMP2 (Ref. 16). The pro-MMP–TIMP–MT-MMP trimolecular complex highlights another feature of MMP regulation: the active protease is found focally in the pericellular region, rather than being diffusely distributed. In addition, other means also exist to localize MMP activity to the pericellular region. For example, activated MMP2 can bind the vβ3 integrin, whereas active MMP9 can interact with the hyaluronan receptor CD44 on the cell membrane.

In the case of ADAMs, less is known about the regulation of their activity. Several ADAMs are kept in the inactive state through the interaction of a cysteine residue at the propeptide domain with zinc in the metalloproteinase module. So, as with MMPs, these ADAMs might be activated by the cysteine switch mechanism that disrupts the cysteine–zinc interaction to expose the catalytic site. ADAMs might also be regulated at the transcriptional level. For example, interleukin-1 (IL-1) can induce transcription of some ADAM members. Little is known of the physiological importance in the CNS: ADAM10 (kuzbanian) and ADAM17, also known as TACE (tumour-necrosis-factor-α-converting enzyme).
inhibitors of ADAMs. The crystal structure of the protease domain of human ADAM17 (TACE) shows that, although the active-site cleft is similar to what is found in MMPs, its secondary structure differs. These features might account for the finding that, whereas TIMP3 inhibits TACE, TIMP1 does not. Also, ADAM10 is inhibited by TIMP1 and -3, and by hydroxamates, but not by TIMP2 and -4 (REF. 18). So, TIMP3 might be a more general inhibitor of several ADAM family members, including the ADAMTSS. It is not known if more specific, endogenous non-TIMP ADAM inhibitors exist.

Metalloproteinases and CNS diseases

In the adult CNS, most MMPs are expressed at low or undetectable levels, although there are some exceptions. For example, RNASE PROTECTION ASSAYS have revealed a high constitutive expression of MMP11 and -14 in the adult mouse brain (REF. 32). Similarly, the more sensitive polymerase chain reaction (PCR) technique has revealed the expression of MMP2, -3, -7 and -9 in the normal rat spinal cord (REF. 33). But, overall, MMPs are largely absent from the normal CNS and their upregulation has been reported in several neurological disorders and after injury. By contrast, in the case of ADAMs, over 17 family members are normally expressed in the adult CNS (REF. 9). For example, ADAM17 has been localized by immunohistochemistry to astrocytes and endothelial cells in adult human brain (REF. 33), whereas ADAM8 has been detected in neurons and oligodendrocytes in the uninjured adult rat CNS (REF. 22). However, the literature on the expression of ADAMs in CNS pathology is limited.

We will divide our discussion of the role of MMPs and ADAMs in pathology into three parts: their role in neuroinflammation and MS, their involvement in malignant gliomas, and their participation in other neurological conditions such as stroke, viral infections and Alzheimer’s disease.

Metalloproteinases in neuroinflammation and MS. MS is an immune disorder characterized by demyelination and axonal loss. The presence of proteinases in the cerebrospinal fluid (CSF) of patients with MS has been known for over 20 years; some of these proteinases were recently identified as MMPs. Specifically, MMP9, which is absent in the CSF of normal individuals, is upregulated in MS and in other inflammatory neurological diseases (REF. 25). MMP profiles in serum and in leukocytes are also altered in MS. So, when compared to healthy controls, MS patients show increased MMP9 messenger RNA in leukocytes and elevated MMP9 levels in serum. Similarly, the MMP9:TIMP1 ratio in the serum of people with MS is higher than normal (REF. 26). The serum MMP9 content in MS patients is higher during relapse than in an off-period (REF. 27). By using GADOLINIUM-ENHANCED MAGNETIC RESONANCE IMAGING (MRI) techniques, it was found that MS patients with high MMP9 and low TIMP1 levels tended to worsen (REF. 28). Several groups have shown increased post-mortem expression of various MMP members (MMP2, -3, -7 and -9) in the brains of patients with MS (REFS 27, 28). Cellular sources of MMPs in the diseased brain include infiltrating leucocytes (lymphocytes and macrophages) and intrinsic CNS cells (perivascular and parenchymal microglia, astrocytes and even neurons). Although it has been less thoroughly investigated, most studies indicate that TIMP1 and -2 might not be altered in MS compared with controls (REF. 29). No data are available for TIMP3 and -4.

MMPs are also dysregulated in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Increased expression of MMP7, -9 and -12 is observed in the rat CNS immediately preceding, and in parallel with, the development of symptoms. By contrast, transcripts encoding MMP2, -3, -11 and -13 were undetectable (REF. 30). Surprisingly, the elevation of MMP7 is not noted in mouse EAE, in which a prominent increase in MMP3, -9 and -12 occurs (REF. 31). So, overall, a common elevation of MMP9 and -12 is found in MS, and in mouse and rat EAE models.

The correlation between elevated MMPs and disease activity is probably causal, as inhibitors of metalloproteinase activity (for example, GM6001, Ro-9790 and BB1101) alleviate or prevent EAE (REFS 1, 31). Also, 3–4-week-old mice that lack MMP9 are less impaired after the induction of EAE when compared with wild-type animals (REF. 32). In humans, interferon-β, a drug used against MS, attenuates MMP9 production by T cells in vitro, in agreement with the decreased capacity of T cells to traverse ECM barriers (REF. 33). In addition, MS patients treated with interferon-β show a decrease in the content of serum MMP9 and a lowering of the number of MMP9-expressing leukocytes (REF. 34). Together, these observations indicate that the antagonism of MMP function might contribute to the efficacy of interferon-β in MS.

Studies of MS and EAE have revealed several mechanisms that help to account for the involvement of MMPs in CNS pathology (FIG. 2). First, there is good evidence that T cells and other leukocytes use MMPs to penetrate ECM barriers, including the basement membrane that surrounds cerebral capillaries. In this regard,
the capacity of macrophages from MMP12-null mice to penetrate basement membranes is markedly diminished in vitro and in vivo. Also, when T cells are applied onto a monolayer of endothelial cells that overlie a barrier of collagen matrix, the addition of GM6001, an metalloproteinase inhibitor, did not prevent the T cells from traversing the endothelial barrier. However, the entry of T cells into the collagen matrix is abolished. One result of disrupting the basement membrane is the breakdown of the blood–brain barrier (BBB). This has been shown experimentally by the intracerebral injection of MMPs and the subsequent leakage of microvessels. In addition, there is a good correlation between gadolinium-enhanced MRI activity in humans, an index of BBB dysfunction, and the serum content of MMP9 (REFS 25,26).

MMPs have other undesirable consequences in the CNS parenchyma (FIG. 2). When injected into the CNS, MMPs can disrupt myelin and cause demyelination. Furthermore, some of the fragments of the MMP-mediated digestion of myelin basic protein (MBP) can induce EAE when injected into rodents. Also, human MMP9 cleaves human MBP into peptide fragments, one of which is the immunodominant epitope in humans. Another mechanism by which MMPs might promote an inflammatory response is by the conversion of precursor, inactive molecules into their activated forms. Tumour-necrosis factor (TNF)-α — a pro-inflammatory cytokine with several actions that include oligodendrocyte toxicity — is first made as a 26-kDa membrane-associated protein that requires proteolytic conversion to the fully active 17-kDa protein. Although TACE is known to be the protease that mediates the physiological maturation of TNF-α (REF 41), it is clear that MMP7 and MT4-MMP can also efficiently mediate this conversion. Other molecules, such as transforming growth factor (TGF)-α, IL-6, TNF receptors, E-selectins and FAS LIGAND (FasL), are also synthesized as precursors that require processing by MMPs or ADAMs for maturation. So, in pathological conditions in which local levels of MMPs are high, these molecules might significantly modulate inflammation in the CNS.

Another pathogenic effect of MMPs in the CNS is neurotoxicity. Vos et al. reported that MMP1 is toxic to spinal cord neurons in vitro, and we found a similar neurotoxic effect of MMP2 (REF 44). An alternative mechanism for MMP-mediated death might involve the phenomenon known as ‘anoikis’ (Greek for homelessness); cells that are attached to an ECM substrate survive through integrin signalling and death ensues when the cell is detached. In principle, MMPs can indirectly cause cell death by degrading ECM and therefore interfering with cell attachment and integrin signalling. Indeed, neuronal death in the hippocampus after kainate-induced seizures in animals has been attributed to proteases that degrade laminin. Finally, it has been noted that MMP7, but not MMP2, -3 or -9, acts on cell-associated FasL to convert it into soluble FasL, which induces apoptosis of epithelial cells. Conversely, MMP7-mediated cleavage of FasL protects sarcoma and colon carcinoma cells from chemotherapy-induced cytotoxicity. Given the presence of Fas and Fasl in the CNS, MMPs could affect cell survival or death by similar mechanisms. In summary, the excessive production of MMPs in the CNS can be neurotoxic through several mechanisms (FIG. 2).

The literature on the upregulation of ADAMs in the CNS of MS patients is still in its infancy. Cells of the immune system produce various ADAMs (REF 48), and it is likely that several ADAMs will be elevated in the CNS during neuroinflammation and MS. Also, with the exception of ADAM17 described above, much remains to be explored about the consequences of the aberrant expression of ADAMs in the CNS.

Metalloproteinases in malignant gliomas. An extensive literature links MMPs to tumour invasiveness and metastasis, as remodelling of the ECM is thought to be necessary for a tumour cell to advance. More recent studies have extended the roles of MMPs to other features of tumour progression, notably proliferation, angiogenesis and survival. Essentially, all MMP members have been linked to cancers of various origins. So, it is not surprising that there are many reports of the increased expression of MMPs in brain tumours in situ and in vitro. Specifically, the upregulation of MMP2, -9 and all the MT-MMP members has been noted in high-grade specimens of GLIOBLASTOMA MULTIFORME (GBM) as compared to lower-grade cases or to non-transformed control brains. The finding that AG3340 — an inhibitor of metalloproteinase activity — inhibits glioma growth, invasion and angiogenesis in animals highlights the importance of MMPs in the progression of brain tumours.

MMP2, MT1- and MT2-MMP have been localized to glioma cells in addition to CNS elements by in situ hybridization. By contrast, MMP9 is predominantly expressed in blood vessels at proliferative margins. A simplistic interpretation of these results is that MMP2 and MT-MMPs might regulate glioma invasiveness, whereas MMP9 might be crucial for angiogenesis. In this regard, the capacity of various glioma lines to migrate across a reconstituted basement membrane in vitro is correlated with the levels of MMP2 expression.

Furthermore, the ability of the C6 gliosarcoma line to migrate along myelin is related to MT1-MMP activity. As mentioned earlier, MT1-MMP facilitates the activation of MMP2, and an excessive MT1-MMP activity was recently noted in GBMs (REF 52). Similarly, factors that stimulate glioma motility, such as hepatocyte growth factor/scatter factor, increase MMP2 or MT1-MMP levels. Conversely, inhibitors of MMP activity, including BB94 and BB2516, reduce glioma invasion in tissue culture.

Several MMPs can be activated by the serine protease plasmin. The plasmin cascade starts with binding of urokinase plaminogen activator (uPA) to its receptor molecule uPAR. This results in uPA activation and the subsequent conversion of plasminogen to plasmin by uPA. It is noteworthy that the uPA and uPAR are upregulated in GBMs (REF 57), endowing the tumour with the machinery to activate its own MMPs.
effectively. In support of this idea, downregulation of uPAR in a glioma cell line led to decreased capacity to invade brain aggregates. The expression of MMPs by glioma cells highlights a difference between CNS and systemic cancers. In the latter (for example, breast cancers), MMPs are often expressed by the stroma, rather than by the tumour itself. So, several mechanisms seem to exist for bestowing glioma cells with the capacity for autonomous, sustained growth.

TIMPs are also altered in gliomas. A decrease in TIMP2 content in GBM compared to lower-grade tumours has been noted in some, but not all, studies. This decrease would potentially remove a counterbalance for MMP activity. Although earlier studies noted a decrease of TIMP1 with increasing grades of glioma, later studies noted that it was actually upregulated in GBM (REFS 30,32). It is worth noting in this context that TIMPs have several properties that can contribute to the pathophysiology of cancer cells. Indeed, TIMPs have mitogenic action, and regulate survival and apoptosis independently of their inhibitory functions on MMPs (REF. 14).

Finally, elevated expression of various MMPs has been shown for other CNS tumour classes, including childhood astrocytomas, neuroblastomas and meningiomas. Overall, an excess of MMP activity seems to characterize many brain tumours. The development of metalloproteinase inhibitors to treat gliomas seems warranted and some are already being tested in clinical trials. A role for ADAMs in glioma biology remains to be defined and the related literature is limited at present.

Metalloproteinases in other neurological conditions. A role for metalloproteinases in stroke is indicated by the finding that MMP2 and -9 are rapidly upregulated after focal cerebral ischaemia in rats. In humans, elevation of brain MMP9 is detected post mortem within days of infarction and, interestingly, this protein remained elevated in patients that died months after the event. In another report, MMP9 was strongly expressed by neutrophils in tissues from patients up to one week after an infarct, whereas the expression of MMP2 and -7 was less marked. From one week to five years, neutrophils were absent in the lesions and the large number of macrophages present were immunoreactive for MMP2 and -7 (REF. 28). The elevated MMP expression might contribute to the tissue destruction in stroke. As noted earlier, MMPs have the capacity to kill neurons (FIG. 2). Indeed, the intravenous treatment of rats with a neutralizing MMP9 antibody one hour before vessel occlusion reduced infarct size by 28% (REF 61). In addition, the size of infarcts after ischaemia in MMP9-null mice was less than that observed in wild-type controls.

Viral infections of the CNS have been increasingly associated with the production of MMPs. Elevated expression of MMP9 has been detected in the CSF of HIV-infected patients. MMP2, -7 and -9 are increased in the CSF of patients with HIV-associated dementia compared to that of non-demented AIDS patients. When brain-derived sequences of the HIV-transactivating protein TAT (tyrosine aminotransferase), obtained from demented patients, were expressed in U937 monocyteoid cells and human macrophages, elevated MMP2 and -7 expression was obtained compared to TAT sequences from non-demented patients. These elevated MMPs resulted in neuronal death. Collectively, the results indicate that HIV infection induces MMP expression in macrophages and that the latter are the possible sources of MMPs and neurotoxicity in the CNS of people with HIV-associated dementia. Other viruses, including EPSTEIN–BARR VIRUS, HTLV-1 and CORONA VIRUS have also been reported to increase the expression of MMPs in susceptible cell types. Of interest, these viruses have been associated with MS pathology, raising the possibility that viral-induced demyelination might involve MMP intermediaries.

MMPs are also associated with Alzheimer’s disease, although the history has been full of false leads. Alzheimer’s disease is characterized by plaques that are formed mostly by the deposition of amyloid-β (Aβ) — a peptide derived from cleavage of the amyloid precursor protein (APP), an integral membrane molecule. Three proteases — α-, β- and γ-secretase — are involved in APP cleavage at different sites to generate Aβ peptides of various lengths. The predominant cleavage is mediated by α-secretase, and this mode of cleavage is thought to be non-amyloidogenic. By contrast, the combination of β-secretase and γ-secretase activities releases the amyloidogenic Aβ peptide. The aspartyl protease BACE (β-site APP cleavage enzyme) is the best candidate to be the β-secretase, whereas the γ-secretase activity depends on proteins known as presenilins.

It was initially suggested that MMP2 was the α-secretase, but this idea was quickly disputed. Moreover, it was also suggested that MMP2 had β-secretase-like activity. Furthermore, the presence of immunoreactive TIMP in plaques of Alzheimer’s disease led to the speculation that an MMP was excessively produced or activated in the plaques, as TIMPs have high affinity for MMPs and would therefore localize to sites of protease activity.

It was subsequently suggested that the α-secretase activity was mediated by a non-MMP metalloproteinase, largely on the basis of studies using pharmacological inhibitors. Indeed, there is now good evidence for ADAM10 (REF. 73) and ADAM17 (REF. 74) as α-secretases. If this proves to be the case, these ADAMs could have a protective action against Alzheimer’s disease, as they would funnel APP towards the non-amyloidogenic pathway. It is worthwhile investigating whether the function of ADAMs is deficient or altered in Alzheimer’s disease. Recently, hippocampal neurons that are immunoreactive for ADAM1 and -2 were detected in Alzheimer’s disease patients but not in age-matched controls. In addition, levels of these proteins were also elevated.

MMPs are also implicated in other diseases of the nervous system, including inflammatory myopathies and peripheral nerve axotomy. The involvement of MMPs in degenerative diseases of the CNS, including AMYOTROPHIC LATERAL SCLEROSIS, is an area of increasing interest. It is likely that the list of neurological disorders associated with aberrant MMP or ADAM expression will grow over the years.
REiUeWS

Metalloproteinases in CNS ontogeny and repair

Although our discussion has so far revolved around the detrimental roles of metalloproteinases, it must be stressed that some of the functions of MMPs in the CNS might be beneficial. For example, some MMPs and TIMPs are expressed in the CNS during development, pointing to their possible importance in brain maturation. Furthermore, MMPs are rapidly upregulated after nearly all types of injury to the CNS, including trauma, indicating their possible relevance in tissue repair. In this section, we focus on the lesser-known beneficial aspects of metalloproteinases in the CNS.

In concordance with the classic role of MMPs in modulating the motility of cells across tissue matrices, metalloproteinases might regulate the migration of precursor cells to their destinations during neural development. Neural stem cells express MMP2 and all four TIMPs (REF. 80), and the migration of an oligodendrocyte progenitor requires MMP activity in vitro. The protein NOTCH affects cell-fate decisions in neurogenesis, and both ADAM10 (REF. 81,82) and ADAM17 (REF. 83) have been shown to activate the notch signalling cascade.

Another role for MMPs in CNS development might lie in myelogenesis, the process whereby oligodendrocytes extend several processes from their soma that reach and enwrap axons to form myelin. The initial expansion of oligodendroglial processes is immense and could require remodelling of the brain matrix by MMPs. This hypothesis has been tested and oligodendrocytes were found to express MMP9 during the period of myelogenesis. Furthermore, the inhibition of MMP activity in vitro prevented the extension of oligodendroglial processes. Other metalloproteinases could also regulate myelogenesis, but this remains to be tested. The rabbit corpus callosum expresses MMP1 and -3 before and during myelination, whereas ADAM10 is expressed in oligodendrocytes before and during myelogenesis.

In parallel with myelogenesis, metalloproteinases also participate in axon elongation. Early studies noted the presence of proteolytic activity at neuronal growth cones during attachment and reattachment events. Some of the activity is probably contributed by metalloproteinases, as interference with MMP activity inhibited growth-cone motility. Inducers of neuronal differentiation and axonal outgrowth, such as nerve growth factor, laminin or retinoic acid, enhanced the expression of MMP2, -3 and -9 by dorsal root ganglion (DRG) neurons, PC12 and neuroblastoma cells.

Furthermore, growth cones of PC12 cells that stably expressed MMP3 had a reduced capacity to penetrate a reconstructed basement membrane. In vivo, Drosophila melanogaster flies that carry mutations in the protein Kuzbanian (the mammalian homologue is ADAM10) show axon stalling during development. In a study in which neurtic outgrowth of DRG neurons that grow on top of normal adult nerves was evaluated, the slow neurite elongation was further reduced by treatment with metalloproteinase inhibitors. By contrast, pre-treating the nerves with recombinant MMP2 accelerated neurite growth. Further studies led to the conclusion that DRG neurons expressed MMP2 that degraded and inactivated the neurite-inhibiting activity of chondroitin sulphate proteoglycans present on nerves, leading to the exposure of permissive laminin for neurite outgrowth. Indeed, cleavage of a specific peptide bond in an ECM molecule leads to profound functional changes in other systems. For example, the cleavage of the Ala586–Leu587 bond in the α2 chain of laminin–5 by MMP2 induced migration of breast epithelial cells by exposing a cryptic pro-migratory site on laminin–5 (REF. 92). The biologically active sites in matrix molecules that become exposed after structural or conformational alterations have been termed ‘matrixcryptins’, and the name matricryptins has been used to describe the resulting ECM fragments that have biological activity. Last, in concordance with the activity of MMP2 on proteoglycans described above, metalloproteinases might be used in the CNS to destroy other inhibitory proteins. C6 glioma cells and fibroblasts transfected with MT1-MMP could digest N1250 (REF. 55), a Nogo protein identified as one of the most potent inhibitors of axonal elongation. In this way, some MMPs might act by neutralizing inhibitory proteins for axonal outgrowth.

Although these data implicate metalloproteinases in the creation of penetrable paths for axonal elongation, metalloproteinases can also regulate guidance cues for growth cones. Ephrins are guidance molecules that bind to receptor tyrosine kinases of the Eph family. When the growth cone of a neuron that expresses Eph receptors encounters ephrin ligands on the surface of another cell, this facilitates the adherence of the cells to each other and bidirectional signalling to occur. The
The challenges ahead

The challenges associated with defining the roles of MMPs in the CNS are several-fold. First, it is obvious that metalloproteinases can be both friends and foes in the CNS. We will therefore have to understand the balance between these states and the context that swings the pendulum between beneficial and detrimental roles. Second, a given metalloproteinase might have different properties at a given condition, dependent on factors such as spatial localization and cellular source. For example, MMP9 expressed by a macrophage in the vicinity of myelin might produce demyelination, whereas the same MMP elaborated by oligodendrocytes at the tip of their processes might promote remyelination. In this context, an inhibitor of MMP9 would simultaneously curb both detrimental and reparative processes. So, the challenge is to identify all the functions of a given metalloproteinase in a particular situation and to evaluate if the net result of its inhibition is worthwhile. A third challenge is related to establishing the identity of the metalloproteinase involved in a given function. Many of the pharmacological inhibitors that are available at present lack specificity towards members of a subfamily and will often antagonize the activity of members of different metalloproteinase families. So, when functions are ascribed to particular metalloproteinases,
it has to be clear, not only which metalloproteinase is involved, but also whether one is dealing with the right subfamily of metzincin metalloproteinases. Clearly, the next generation of pharmacological inhibitors must be able to discriminate between subfamilies and between members of each subfamily. Mice with null mutations for specific MMPs and ADAMs are already available and can help to discriminate functions of specific metalloproteinases. However, these valuable resources often show compensatory upregulation of activity of other MMPs as a result of the gene deletion and the analysis of these animals must therefore be interpreted with caution.

The identification of their physiological substrates is intimately related to the task of defining the functions of metalloproteinases in the CNS. Although it is clear that various MMP members can act on certain ECM components in vitro (TABLE 1), much remains to be discovered about their natural substrates in vivo. In the case of ADAMs, their CNS substrates are largely unknown and research needs to focus on this area. Similarly, the ways in which metalloproteinases are transcribed and interact with other molecules, such as chemokines, remain to be elucidated.

Can any consensus be adopted at this point as to whether metalloproteinases should be targeted for inhibition to treat specific CNS diseases? Given that the aberrant expression of MMPs is correlated with conditions such as MS, we suggest that the use of metalloproteinase inhibitors is warranted. If factors such as inflammation, which cause the disease to worsen, can be curbed, then the side effects of impairing reparative activities might be a reasonable trade-off. However, much more specific inhibitors and a clearer view of which metalloproteinase member to antagonize would help towards rational therapeutics.

In summary, much remains to be learned about the biology and pathology of metalloproteinases in the CNS. We welcome the explosion of this field, as the rewards of an increased understanding would seem to be immense.

Links

DATABASE LINKS

- Multiple sclerosis
- Alzheimer’s disease
- Hemopexin
- MMP7
- MMP26
- MT4-MMP
- MT6-MMP
- ADAM1
- ADAM2
- ADAM12
- ADAM9
- ADAM10
- ADAM17
- ADAM11
- ADAM28
- ADAM15
- ADAM19
- ADAM8
- TIMP1
- TIMP2
- TIMP3
- TIMP4
- TIMP1
- TIMP2
- TIMP4
- TIMP5
- TIMP4
- MMP11
- MMP14
- MMP3
- MMP13
- MMP12
- uPAR
- TAT
- NOTCH
- Ephrins
- Netrin 1
- DCC
- MCP3
- Rantes

1. Yong, V. W., Keski-Oja, C. A., Fagray, P. A., Ball, R. & Edwards, D. R. Matrix metalloproteinases and diseases of the central nervous system. Trends Neurosci. 21, 75–80 (1998).

2. Blocker, W. et al. The metzincins: – Epidemiological and sequential relations between the astacins, astadinas, serpins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 863–860 (1995).

3. Kojima, S., Itoh, Y., Matsumoto, S., Masuho, Y. & Seiki, M. MMP-2 is the second glycosaminoglycan-induced (EGP)–anchored MMP. FASEB J. 480, 142–146 (2000).

4. Schiottorp, J. & Blobbe, C. P. Metalloproteinase-disintegrins: modular proteins capable of promoting cell–cell interactions and recruiting signals by protein–ectodomain shedding. J. Cell Sci. 112, 3603–3617 (1999).

5. Yong, V. W. et al. The potential use of MMP inhibitors to treat CNS diseases. Exp. Opin. Invest. Drugs 8, 255–268 (1999).

6. Nagase, H. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151–161 (1997). This details the mechanisms by which several MMP members are activated.

7. Edwards, D. R. In Matrix Metalloproteinase Inhibitors in Cancer Therapy (eds Cinderlin, N. J. & Appel, K.) 67–84 (Humana Press, Inc., Totawa, New Jersey, 2000).

8. Woessner, J. F. & Nagase, H. Matrix Metalloproteinases and TIMPS (Oxford Univ. Press, 2000).

9. Murphy, G. & Knapp, K. Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol. 15, 511–518 (1997).

10. Yu, G. Q., Stamenkovic, I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. J. Biol. Chem. 273, 35–48 (1998).

11. Amour, A. et al. The in vitro activity of ADAM10 is inhibited by TIMP1 and TIMP3. FASEB J. 2735–279 (2005).

12. Veid, G. G. et al. Interleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo. J. Neurosci. Res. 61, 212–224 (2000).

13. Clumans, J. M. et al. Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumor necrosis factor-α inhibitor. J. Neuroimmunol. 74, 85–94 (1997).

14. Goodard, D. R., Burting, R. A. D. & Woodroffe, M. N. Astrozoye and astrocytic cell expression of ADAM 17 (TACE) in adult human CNS. Glia 34, 267–271 (2001).

15. Schiottorp, J., Nattvist-Hafell, S., Yamamoto, S., Jockusch, H. & Bartosz, J. W. Tumor necrosis factor-α induces a metalloproteinase-disintegrin, ADAM17 (CD106): implications for neuron–glia interactions during neurodegeneration. J. Neurosci. 20, 7866–7917 (2000).

16. Gibbels, K., Maus, S., Carton, H. & Oepen, C. Galactosine in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J. Neuroimmunol. 44, 29–34 (1992).

17. Lee, M. A. et al. The expression of tissue-type plasminogen activator in multiple sclerosis. Ann. Neurol. 108, 53–63 (2000).

18. Dubois, B. et al. Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and neuroprotective tail lesions. J. Clin. Invest. 104, 1507–1515 (1999).

19. Shawe, D. et al. Interferon-β decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann. Neurol. 40, 853–863 (1996).

20. Leppert, D., Waubant, E., Bueh, K. M., Orslene, J. R. & Hauser, S. L. Interferon-β1b inhibits gelatinase secretion and in vivo migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis. Ann. Neurol. 40, 846–852 (1996).

21. REFERENCES 33 and 34 describe a key role of metalloproteinases in the mice central nervous system in normal and inflammatory states. Am. J. Pathol. 152, 729–741 (1998).

22. Duzel, S. et al. Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview. J. Neuroimmunol. 72, 155–161 (1997).

23. Chandel, S. et al. Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview. J. Neuroimmunol. 72, 155–161 (1997).

24. Zenios, V. et al. Multiple sclerosis: pro- and anti-inflammatory cytokines and metalloproteinases are affected differently by treatment with IFN-β. J. Neuroimmunol. 108, 236–243 (2000).

25. Shipley, J. M., Wesselschmidt, R. L., Kobayashi, D. K., Loy, T. J. & Shapiro, S. D. Metalloelastase is required for
matrix metalloproteinases in murine multiple sclerosis. Proc. Natl. Acad. Sci. USA 93, 3942–3946 (1996).
37. Nakada, M. & Doelling, D. K. The relationship of cell integrity and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis. Lab. Invest. 78, 1401–1409 (1998).
38. Rosenberg, G. A. et al. T1MP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res. 726, 203–207 (1996).
39. Matsuoka, M. & Perry, V. H. Delayed type hypersensitivity lesions in the central nervous system are inhibited by inhibitors of matrix metalloproteinases. J. Neuroimmunol. 69, 141–149 (1996).
40. Opdeklap, G. & Van Damms, J. Cytokine-regulated proteases in immune diseases. Immunol. Today 15, 103–107 (1994).

An excellent review that describes several key concepts on the generation of encephalographic fragments after the incubation of myelin proteins with MMPs. The fact that one of these fragments is the immunodominant epitope of myelin basic protein supports the concept of MMPs as foes in MS.

Black, R. A. et al. A metalloproteinase cleistogin that releases tumor necrosis factor-alpha from cells. Nature 385, 723–725 (1997).

English, W. R. et al. Membrane-type matrix metalloproteinase (MMP-17) has tumor necrosis factor-related apoptosis-inducing activity and does not act as an MMP-Fz. J. Biol. Chem. 275, 14046–14055 (2000).

Vos, C. M. et al. Cytokitoe by matrix metalloproteinase-1 in organ culture cord and dissociated neuronal cultures. Exp. Neurol. 163, 324–330 (2000).

The toxicity of MMPs on CNS neurons was described in this article.

Johnson, J. B. et al. HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Ann. Neurol. 49, 250–261 (2001).

Giacco, R. et al. Hydroxyl radical signaling the role of the disintegrin-metalloprotease TACE. J. Biol. Chem. 276, 1001–1011 (2001).

Blackburn, M. A. et al. The interaction of MMP-9 with focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Clin. Blood Flow Metab. 20, 1691–1699 (2000).

Sporer, B. et al. Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J. Infect. Dis. 178, 854–867 (1998).

Conant, K. et al. Cerebral spinal fluid levels of MMP-2, 7, and 9 are associated with human immunodeficiency virus infection. Ann. Neurol. 46, 391–398 (1999).

Edwards, J. A., Denis, F. & Talbot, P. J. Activation of glial cells by human cord vascular endothelial growth factor. J. Neuroimmunol. 73, 81–90 (2001).

Saikko, D. J. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol. 8, 447–453 (1998).

Vaziri, P. et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic proteinase BACE. Science 286, 735–741 (1999).

Miyakawa, K., Hasegawa, M., Funahashi, R. & Umeda, M. A metalloproteinase inhibitor domain in Alzheimer amyloid precursor protein α-galactosidase A possesses a β-secretase-like activity in cleaving the proprotein. J. Biol. Chem. 272, 8289–8291 (1997).

LePage, R. N. et al. Amyloid β-protein precursor of Alzheimer’s disease. FEBS Lett. 377, 267–270 (1995).

Perass, N., Prochno, J. W. & Ziskin, D. Localization of tissue inhibitor of metalloproteinase α1 in Alzheimer’s disease and normal brain. J. Neurochem. Exp. 54, 16–22 (1996).

Qu, W. et al. β-secretase cleavage of β-secretase cleavage of Alzheimer amyloid precursor protein by a calcium-dependent metalloproteinase from cultured sympathetic and sensory neurons. J. Biol. Chem. 272, 6673–6679 (1997).
Multiple sclerosis
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=126200

Alzheimer’s disease
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104300

hemopexin
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3263

MMP7
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4316

MMP26
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=56547

MT4-MMP
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4326

MT6-MMP
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=64386

ADAM1
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=8759

ADAM2
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=2515

ADAM12
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=8038

ADAM9
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=8754

ADAM10
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=102

ADAM17
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=6868

src
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=6714

ADAM11
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4185

ADAM28
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=10863

ADAM15
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=8751

ADAM19
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=8728

ADAM8
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=101

ADAM23
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=8745

TIMP2
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=7077

MT1-MMP
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4323

MMP9
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4318

TIMP3
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=7078

TIMP1
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=7076

TIMP4
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=7079

MMP11
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4320

MMP14
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4323

MMP3
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4314

MMP13
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4322

MMP12
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4321

uPAR
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=5329

TAT
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=6898

NOTCH (NOTCH1)
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=4851

ephrins
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=1942

netrin 1
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=9423

DCC
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=1630

MCP3
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=6354

RANTES
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=6352
Biographies

V. Wee Yong is a central nervous system (CNS) glial biologist and neuro-immunologist whose research has been influenced by two diseases of the CNS: multiple sclerosis and malignant gliomas. Several lines of his investigations have converged on metalloproteinases as mediators of tissue injury or as facilitators of repair. Yong favours the concept that the precise spatial and temporal expression of specific metalloproteinase members in particular cell types determines whether these proteases serve as friends or foes in the CNS.

Christopher Power is a clinical scientist, neurologist and neurovirologist, who has been investigating the consequences of viral infections of the central nervous system (CNS). His work has implicated matrix metalloproteinases (MMPs) as the mediators of toxicity in the CNS after infections by several viruses, including HIV. The focus of his laboratory is directed towards understanding the mechanisms by which lentiviruses (HIV and FIV) cause neuronal death through the actions of MMPs.

Peter Forsyth is a clinical scientist and neuro-oncologist, who has investigated the aberrant expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs) in facilitating the growth and invasiveness of malignant glioma cells. He has used TIMPs and other metalloproteinase inhibitors in pre-clinical testing in animal models of gliomas. Forsyth has also participated in clinical trials of metalloproteinase inhibitors in gliomas.

Dylan Edwards is interested in the roles of matrix metalloproteinases and ADAMs (a disintegrin and metalloproteinase) in normal and pathological tissue remodelling. He focuses on metalloproteinases in angiogenesis and cancer biology, as well as the gene regulation of metalloproteinases and tissue inhibitors of metalloproteinases.

At a glance

• Matrix metalloproteinases (MMPs) and ADAMs (a disintegrin and metalloproteinase) are part of a larger family of structurally related zinc-dependent metalloproteinases called metzincins. Structurally, MMPs are divided in three domains: an amino-terminal propeptide region, an amino-terminal catalytic domain, and a carboxy-terminal domain that is involved in substrate binding. ADAMs have a prodomain, a metalloprotease region, a disintegrin domain for adhesion, a cysteine-rich region, epidermal-growth-factor repeats, a transmembrane module and a cytoplasmic tail.

• The activity of MMPs is tightly regulated in several ways: at the level of transcription, by post-translational modifications such as proteolysis, and through the action of endogenous tissue inhibitors of metalloproteinases. The regulation of ADAMs is less well understood, although there is some evidence that the same three levels of regulation might control ADAM activity.

• MMPs and ADAMs have been implicated in neuroinflammation and multiple sclerosis (MS), in the pathogenesis of malignant gliomas, and in other neurological conditions such as stroke, viral infections and Alzheimer’s disease. In the case of ADAMs, their role in these pathological states has begun to be explored, but the available literature is still in its infancy.

• Although the detrimental roles of metalloproteinases are well documented, some of their functions in the central nervous system (CNS) might be beneficial. For example, some metalloproteinases are expressed in the CNS during development, pointing to a possible role in brain maturation. Similarly, metalloproteinases have been implicated in myelogenesis and axon growth. Furthermore, metalloproteinases are upregulated after injury to the CNS, indicating a possible relevance to tissue repair.

• Several challenges remain in the study of metalloproteinases and their role in brain function. It will be necessary to understand the balance between the beneficial and detrimental roles of MMPs to determine whether they can be used as targets for therapeutic intervention. It will also be important to identify the physiological substrates of the different metalloproteinases, and to develop selective antagonists against the various members of the metalloproteinase families; the lack of such tools constitutes one of the main limitations to the growth of the field at present.