Clinical Implications of Genomic Loss of Heterozygosity in Endometrial Carcinoma

Bethany Bustamante, MD1; Risha Sinha, MD1; Briana Rice, MD1; Aaron Nizam, MD1; Weiwei Shan, MS, PhD1; Gary L. Goldberg, MD1; Veena John, MD1; Doug I. Lin, MD, PhD2; Natalie Danziger, BS2; Dean C. Pavlick, BS2; Julia A. Elvin, PhD2; and Marina Frimer, MD1,3

abstract

PURPOSE Homologous recombination deficiency, identified by homologous recombination deficiency gene alterations or high percentage of genome-wide loss of heterozygosity (gLOH), is associated with improved prognosis, platinum sensitivity (PS), and poly (ADP-ribose) polymerase inhibitor response in high-grade ovarian cancer. Since the copy number–high (CN-H) endometrial cancer molecular subtype (EC-MS) shares molecular features with high-grade ovarian cancer, our aim was to assign EC-MS on the basis of comprehensive genomic profiling (CGP) results and evaluate the gLOH status with clinical behavior of EC.

METHODS Eighty-two epithelial EC tumor tissues were sequenced by hybrid capture–based CGP, and results were used to assign EC-MS (ultramutated, microsatellite instability–high, CN-low; CN-high). Retrospective chart review established clinical characteristics, including PS. Relationships of PS, EC-MS, gene alterations, and gLOH were assessed statistically.

RESULTS PS and EC-MS of CN-H showed statistically significant difference in overall survival (OS). Most notably, when the CN-H EC-MS was subcategorized by gLOH status, there was a significant difference in OS with gLOH-H being associated with longer survival. Cox semi-proportional hazard modeling showed that gLOH, stage, and race were significant in modeling OS.

CONCLUSION The method of assigning EC-MS by CGP demonstrates similar clinical features to previous reports of EC-MS assigned by other methods. CGP can also assess gLOH status with gLOH-H most commonly seen in CN-H tumors. CN-H, gLOH-H patients showed significantly improved OS (hazard ratio, 0.100 [0.20-0.51 95% CI]). Thus, gLOH status may be a meaningful prognostic biomarker within the CN-H tumors and possibly across EC-MS.

JCO Precis Oncol 5:1013-1023. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Emerging data suggest that BRCA1/2 mutations and homologous recombination deficiency (HRD) may play a role in the pathogenesis of a subset of endometrial carcinomas. Homologous recombination is a high-fidelity DNA repair mechanism that repairs double-stranded DNA breaks. Platinum-based chemotherapeutics cause intrastrand links in DNA and have shown particular efficacy in killing HRD cancer cells, which are less able to repair this type of DNA damage. Because poly (ADP-ribose) polymerase inhibitors (PARPi) inhibit the secondary single-strand base excision repair process, platinum-sensitive (PS) HRD tumors treated with PARPi experience synthetic lethality in their ability to repair DNA damage: one DNA repair mechanism is lost to somatic or hereditary mutation and the second repair mechanism blocked by targeted therapy leads to irreversible cell damage and death.1

Loss of heterozygosity (LOH) is the irreversible loss of one parental allele of a gene and each instance can be detected by DNA sequencing of tumor tissue. A genome-wide LOH (gLOH) percentage can be assigned by assessing the ratio of affected DNA segments to unaffected segments across the tumor genome. High gLOH (gLOH-H) is observed in high-grade ovarian cancer (HGOC) with homozygous BRCA1/2 mutations, can be an indicator of HRD, and has been associated with PARP inhibitor sensitivity.2,3 The ARIEL 2 and 3 trials showed that a gLOH-H could identify a population of patients without BRCA1/2 mutations who might be HRD because of other mechanisms. Patients with mutBRCA or wtBRCA, gLOH-H (≥ 16%), and platinum-sensitive ovarian carcinomas treated with rucaparib demonstrated longer progression-free survival compared with patients with wtBRCA gLOH-L carcinomas. These results suggest that gLOH can be used to identify patients with wtBRCA ovarian cancers who might benefit from rucaparib because of an HRD-associated process.4,5 Recently, patients with mutBRCA1/2 pancreas, prostate,
Knowledge Generated
Among the copy number–high (CN-H) patients, gLOH-H status was associated with prolonged OS. Endometrial cancer molecular subtype can be assigned by comprehensive genomic profiling results, with similar clinical outcomes as compared with subtyping by other methods.

Relevance
The CN-H molecular subtype of endometrial cancer is associated with the worst prognosis of the four groups, but high gLOH can identify a subset of these patients with better prognosis. Further studies on the basis of this biomarker should be pursued to discover potential differential responses to treatments.
insertion and deletion alterations excluding known somatic and deleterious mutations on 0.8- to 1.1-Mb sequenced DNA as previously described, and microsatellite instability was determined at 95-114 loci as previously described.12,13 Genomic LOH was calculated by quantifying LOH at 3,500 sequenced SNPs excluding whole chromosome arm losses (defined as >90% loss of the arm) and SNPs with ≥40% mutant allele frequency as previously described and analytically validated in ovarian cancer samples.14 To pass quality control (QC) metrics for reporting, specimens required ≥35% computed tumor purity for gLOH and determinable tumor ploidy and copy number calls. Only patients with specimens that passed all QC criteria were included in our final analysis (n = 82). Scores were reported as percentage gLOH, and ≥16% was used to define the high-gLOH group on the basis of the threshold previously established in ovarian cancer.14

The entire cohort of epithelial endometrial carcinoma cases with passing QC metrics were assigned molecular subtypes (EC-MS) using microsatellite status, TMB, and the presence or lack of TP53 alterations. MSI-H subtype was assigned if microsatellite status is MSI-H with any TMB score and wtTP53 or mutTP53; CN-H subtype if MSS, any TMB score, and mutTP53; and CN-L subtype if MSS, TMB < 20 muts/Mb, and wtTP53. No ultramutated and POLE (MSS, TMB > 20 muts/Mb) cases were identified in the cohort. After obtaining institutional review board (IRB) approval, retrospective chart review established clinical characteristics for these patients (n = 82), including response to platinum adjuvant treatment (n = 48). Thirty-four cases were not evaluable for platinum status as they did not receive platinum-based systemic treatment, no follow-up data after platinum-based treatment was available, or patient had not reached interval of time (≥6 months) after completion of platinum to make determination of without relapse to meet definition of PS. PS was defined as progression-free survival ≥6 months per the ovarian cancer literature. Platinum-resistant (PR) patients included those who progressed on platinum therapy or progressed within 6 months after conclusion of platinum adjuvant therapy. Twelve patients were excluded from the recurrence-free survival (RFS) analysis as they presented at an advanced stage, underwent primary systemic therapy, never reached a disease-free state, and progressed on therapy. These 12 patients were included in the overall survival (OS) analysis.

Relationships of PS, gene alterations, EC-MS, and gLOH were assessed using t test or Wilcoxon rank-sum test for
continuous variables and chi-square and Fisher’s exact test for categorical variables. Kaplan-Meier nonparametric product-limit function was used to construct and estimate the RFS and OS in the current data set. Log-rank nonparametric test was used to compare the distribution of survival outcomes between groups of patients. To model survival outcomes by clinical variables, Cox semi-proportional hazard (Cox PH) model was used, and stepwise selection method was used to eliminate insignificant variables to the model. Hazard ratios and 95% CIs for the hazard ratios were provided for variables included in the Cox PH survival models.

RESULTS
Of the 82 patients with epithelial EC with evaluable QC criteria, 16 patients were MSI-H, 16 patients CN-L, and 50 patients CN-H molecular subtype. The demographics table (Table 1) reviews characteristics of the entire cohort and also compares the CN-H patients (column 3) with the non-CN-H subtypes (MSI-H and CN-L combined, column 2). There was a statistically significant difference in histotype between EC-MSs, with a preponderance of endometrioid and serous cases within CN-H and lower-grade endometroid cases falling within MSI-H and CN-L. Similarly, 98% of the CN-H cases were classified as grade 3, whereas the other EC-MSs showed a wider distribution of grade (25% grade 1, 22% grade 2, and 53% grade 3) (Table 1). Although there was no statistically significant difference in stage between CN-H and other molecular subtypes within this cohort, CN-H patients were more likely to undergo adjuvant chemotherapy (85% of CN-H cases compared with 48% of other molecular subtypes). Of the evaluable cases, 48 received platinum adjuvant chemotherapy, with 26 cases showing platinum-sensitive (PS) and 22 PR responses. There were no statistically significant differences in demographics between PS and PR groups (Appendix Table A1). However, recurrence rates were similar in both CN-H and the other EC-MSs (91% v 84%) reflecting the clinical selection criteria of advanced, aggressive, or recurrent disease used for pursuing CGP testing. Targeted therapy was used to treat the CN-H patients with about the same frequency as the other molecular subtypes (30% v 35%). Hormonal treatment was used in 40% of the MSI-H and CN-L patients and zero CN-H patients (Table 1).

When examining the relationship between gLOH-H status and EC-MS, there was a statistically significant association using a cutoff of 16% (P = .013) as has been applied in ovarian cancer, as well as a lower cutoff of 14% (P = .002). There was a higher proportion of gLOH-H within the CN-H cases, and the majority of MSI-H and CN-L cases were found to be gLOH-L (97%) (Table 1).

Kaplan-Meier curves for RFS showed statistical significance when stratified by either molecular subtype or platinum status. When stratifying by EC-MS, CN-H patients fared the worst, MSI-H had the longest RFS, and CN-L demonstrated intermediate RFS. Platinum-sensitive patients had significantly improved RFS. OS by EC-MS was not statistically significant (P = .076), but OS by platinum status was significant (P < .0001) (Fig 2). When CN-H cases were compared with the other molecular subtypes, they had significantly shorter RFS intervals (P < .0001). OS curves were statistically significant when comparing CN-H with other subtypes (P = .023) (Fig 3).

When assessing OS by gLOH, there was no statistically significant difference between gLOH-H (≥ 16%) and gLOH-L patients in the overall cohort (P = .074). However, when CN-H subtype cases were subclassified by gLOH status, CN-H gLOH-H patients had significantly improved OS compared with CN-H gLOH-L patients (P = .013) (Fig 4).

Cox semi-proportional hazard modeling of RFS and OS was performed using gLOH first as a categorical variable (gLOH high ≥ 16% and gLOH low < 16%) (Table 2) and then as a linear variable (Appendix Table A2). The gLOH both as a categorical variable and a linear variable was significant in modeling OS, along with stage IV and Black race. Linear modeling of gLOH suggests that as gLOH increases incrementally, there is a concordant increase in OS. Stage III and CN-H category were significant in modeling RFS (Table 2).

Finally, particular gene alterations were assessed for association with gLOH and platinum status. In all patients with CN-L and CN-H subtypes, patients with gLOH-H (> 16%) were enriched for alterations in FGFR1 (P = .04) and WHSC1L1 (P = .02). Platinum-sensitive patients with a CN-L or CN-H tumor types were enriched for alterations in KRAS (P = .05) compared with PR patients. There were three cases in the cohort with alterations in BRCA1/2. One patient harbored a homozygous, germline BRCA1 E1053* alteration and was gLOH-H (32.86%). Another had a homozygous, germline BRCA2 S1982fs*22 and was also gLOH-H (20.62%). A third case had a BRCA2 rearrangement predicted to result in a truncated protein and had a gLOH score categorized as low but was near the threshold (13.95%). All three patients were platinum-sensitive.

DISCUSSION
This study confirmed the validity of defining EC-MS by CGP characteristics, by comparing this surrogate for TCGA molecular subtype with clinical outcomes. Additionally, we aimed to extend our understanding by interrogating the relationship of EC-MS with gLOH status and platinum responsiveness. We found CGP-defined EC-MS showed similar clinical behavior of the three subtypes as previously observed in the TCGA analysis. Our cohort analysis validates the observation that compared with other molecular subtypes, CN-H serous-like tumors have significantly worse PFS as originally reported by Levine et al and a worse RFS as reported in the follow-up study by Talhouk et al, despite our cohort representing predominantly advanced or recurrent ECs of other molecular subtypes. The EC-MS was
TABLE 1. Demographic Data of Entire Patient Cohort and by TCGA Status

Characteristic	Entire Cohort (N = 82)	MSI-H and CN-L (n = 32)	CN-H (n = 50)	P
Age, years	65 (61-71)	61.5 (53-68)	66.5 (64-71)	.0077
Race, n (%)				
Asian and others	16 (20.0)	8 (25.0)	8 (16.7)	.067
Black	24 (30.0)	5 (15.6)	19 (39.6)	
White	40 (50.0)	19 (59.4)	21 (43.8)	
Histology, n (%)				< .001
Endometrioid	25 (30.5)	22 (68.8)	3 (6.0)	
Serous	30 (36.6)	2 (6.2)	28 (56.0)	
Carcinosarcoma	13 (15.9)	1 (3.1)	12 (24.0)	
Clear cell	8 (9.8)	5 (15.6)	3 (6.0)	
Others*	6 (7.3)	2 (6.2)	4 (8.0)	
Grade, n (%)				< .001
G1	8 (9.8)	8 (25.0)	0 (0.0)	
G2	7 (8.5)	7 (21.9)	0 (0.0)	
G3	67 (81.7)	17 (53.1)	50 (100.0)	
Stage, n (%)				.175
I	26 (31.7)	11 (34.4)	15 (30.0)	
II	3 (3.7)	3 (9.4)	0 (0.0)	
III	30 (36.6)	10 (31.2)	20 (40.0)	
IV	23 (28.0)	8 (25.0)	15 (30.0)	
Therapies				
Adjuvant chemotherapy, n (%)				.001
Yes	56 (71.8)	14 (48.3)	42 (85.7)	
Targeted therapy, n (%)				.775
Yes	19 (32.2)	7 (35.0)	12 (30.8)	
Hormonal therapy, n (%)				< .001
Yes	9 (15.3)	9 (45.0)	0 (0.0)	
Recurrence, n (%)				.443
Yes	62 (75.6)	21 (65.6)	41 (82.0)	
No	8 (9.8)	4 (12.5)	4 (8.0)	
Not evaluableb	12 (14.6)	7 (21.9)	5 (10.0)	
gLOH 16, n (%)				.013
Low < 16%	69 (84.1)	31 (96.9)	38 (76.0)	
High ≥ 16%	13 (15.9)	1 (3.1)	12 (24.0)	
gLOH 14, n (%)				.002
Low < 14%	65 (79.3)	31 (96.9)	34 (68.0)	
High ≥ 14%	17 (20.7)	1 (3.1)	16 (32.0)	

NOTE. Graphic compares the demographics of MSI-H and CN-L (column 3) versus CN-H (column 4). Please see Appendix Table A1 for demographics of platinum-sensitive versus platinum-resistant subgroups.

Abbreviations: CN-H, copy number–high; CN-L, copy number–low; gLOH, genome-wide loss of heterozygosity; MSI-H, microsatellite instability–high; RFS, recurrence-free survival; TCGA, The Cancer Genome Atlas.

*Histologies within the others category include undifferentiated, dedifferentiated, and poorly differentiated mullerian.

bPatients with advanced disease at time of diagnosis with no disease-free period were deemed not evaluable for recurrence and excluded from RFS analysis.
also a significant predictor for OS, when comparing CN-H subtype with the others. Again, seeing significance in the OS analysis maintain in this cohort is particularly interesting, since there was inherent selection bias by clinicians for ordering next-generation sequencing for patients with clinically more aggressive tumors or for those who had already recurred on standard treatment and needed alternative therapy options. Consistent with this, our cohort did not have any POLE ultramutated subtype, which has been observed to have the best outcome and is less likely to recur.15 Despite the cohort bias, statistical significance was maintained in OS analysis for PS and our analysis recapitulated established poor clinical outcomes for PR patients. As next-generation sequencing becomes more ubiquitous in patient care and molecular tumor subtyping of EC moves into the diagnostic workup of a patient to inform treatment decisions, a greater separation of OS curves will likely be observed.

Previous studies of HGOC have shown that HRD, irrespective of BRCA1/2 alteration status, is associated with better outcomes for patients treated with platinum...
agents.16,17 In this cohort of advanced ECs using gLOH-H status with > 16% threshold as a proxy for HRD, we found no statistically significant correlation between gLOH-H and PS, RFS, or OS when including all TCGA categories. However, similar to what has been described in HGOC, when we restricted the gLOH analysis to the most aggressive EC molecular subtype of the CN-H tumors, there was a significant difference in OS associated with gLOH status, with the gLOH-H patients living longer ($P = .013$) compared with the CN-H patients with gLOH-L. gLOH-H was also shown to be a significant predictor of OS by Cox semi-proportional hazard modeling. By comparison, in this cohort, the histologic category (endometrioid versus other histologies) was not associated with RFS or OS benefit in the multivariate analysis. This observation adds to prior studies that have reported inconsistent associations of histologic

\textbf{FIG 3.} CN-H RFS and OS compared with the other EC-MSs. (A) RFS compared between CN-H and other molecular subtypes (MSI-H and CN-L), $P < .0001$. (B) OS compared between CN-H and other molecular subtypes (MSI-H and CN-L), $P = .023$. CN-H, copy number–high; CN-L, copy number–low; EC-MS, endometrial cancer molecular subtype; MSI-H, microsatellite instability–high; OS, overall survival; RFS, recurrence-free survival.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{CN-H RFS and OS compared with the other EC-MSs. (A) RFS compared between CN-H and other molecular subtypes (MSI-H and CN-L), $P < .0001$. (B) OS compared between CN-H and other molecular subtypes (MSI-H and CN-L), $P = .023$. CN-H, copy number–high; CN-L, copy number–low; EC-MS, endometrial cancer molecular subtype; MSI-H, microsatellite instability–high; OS, overall survival; RFS, recurrence-free survival.}
\end{figure}

\textbf{FIG 4.} OS by gLOH 16% within entire cohort, then within CN-H molecular subtype. (A) OS within entire cohort by gLOH 16%, $P = .074$. (B) OS within CN-H cases, by gLOH 16%, $P = .013$. CN-H, copy number–high; gLOH, genome-wide loss of heterozygosity; OS, overall survival.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4}
\caption{OS by gLOH 16% within entire cohort, then within CN-H molecular subtype. (A) OS within entire cohort by gLOH 16%, $P = .074$. (B) OS within CN-H cases, by gLOH 16%, $P = .013$. CN-H, copy number–high; gLOH, genome-wide loss of heterozygosity; OS, overall survival.}
\end{figure}
TABLE 2. Cox Regression Modeling for RFS and OS by gLOH as a Categorical Variable (gLOH High ≥ 16%, Compared With gLOH Low < 16%)

Characteristic	RFS (n = 70)	OS (N = 82)
gLOH ≥ 16%	0.60 (0.25-1.41)	0.10*** (0.02-0.51)
Age, years	0.99 (0.96-1.03)	1.01 (0.97-1.05)
BMI	0.99 (0.94-1.04)	0.97 (0.91-1.04)
Stage III	2.98*** (1.38-6.47)	3.09** (1.18-8.10)
Stage IV	2.41* (0.93-6.29)	3.92*** (1.44-10.66)
Black race	1.72 (0.77-3.87)	3.37** (1.23-9.28)
CN-H	5.87*** (2.01-17.18)	1.82 (0.51-6.46)
Endometrioid histology	0.46 (0.16-1.38)	0.88 (0.26-3.01)

NOTE. See Appendix Table A2 for Cox regression modeling for RFS and OS by gLOH as a linear variable. *P < .05, **P < .01, ***P < .001.

Abbreviations: BMI, body mass index; CN-H, copy number–high; gLOH, genome-wide loss of heterozygosity; OS, overall survival; RFS, recurrence-free survival.

subtypes in high-grade disease with patient outcomes. For example, although Alkushi et al demonstrated survival advantage for endometrioid carcinomas, studies by Voss et al and Soslow et al both showed no difference in disease-specific survival between histologic subtypes. Given the ambiguous predictive value of histologic characterization, the results of our study support the additional utility of comprehensive genomic information to support more accurate disease classification as EC-MS that can better predict patient outcomes.

In trials of PARP inhibitors, BRCA1/2 alteration status and HRD as established by gLOH-H or other methods independent of BRCA alterations have demonstrated efficacy as biomarkers of therapy response. The utilization of a cutoff of 16% for gLOH-H in this study was based upon the results of the ARIEL 3 trial for ovarian cancer. Additionally, a recent study by Sokol et al demonstrated that gLOH-H cutoff of 14%-16% had adequate sensitivity and specificity as a genomic phenotype for stratifying biallelic mutBRCA alterations from wtBRCA, non-HRD tumors in ECs and supports our selection of a 16% threshold for this retrospective, correlative study. Consistent with the Sokol study, two of the three patients in our EC cohort with BRCA1/2 mutations were gLOH-H and the third had a score close to the threshold (13.96%) and notably all were platinum-sensitive.

This study has several limitations. As mentioned above, there was inherent selection bias for patients submitted for tumor genomic sequencing to have overwhelmingly presented with advanced disease or had already recurred on standard therapy. Additionally, the study has inherent weaknesses associated with the retrospective nature of review with some patients lost to follow-up or missing data. Finally, the sample size with evaluable platinum status was limited with 26 PS and 22 PR patients. Moreover, this study has important strengths. To our knowledge, it is the first study to investigate the relationship between clinical prognosis and percent genomic LOH in EC. Additionally, this study provides further evidence that defining EC molecular subtypes from comprehensive tumor genomic profiling results obtained during the course of clinical care yields prognostic information about clinical outcomes comparable with the more labor-intensive technique used by TCGA.

In summary, these results suggest gLOH may be an additional meaningful biomarker of prognosis beyond molecular subtype in EC, especially within the CN-H tumors. Further studies will focus on determining if gLOH-H predicts benefit or duration of response from platinum-based therapy. Additionally, prospective trials that include molecular subtype and HRD status assessment are needed to further optimize and validate a gLOH cutoff for both prognosis and to investigate the relevance of PARPi therapy in EC.

AFFILIATIONS

1Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Hempstead, Long Island, NY
2Foundation Medicine, Cambridge, MA
3Karches Center for Oncology, Feinstein Institutes for Medical Research, Manhasset, NY

CORRESPONDING AUTHOR

Marina Frimer, MD, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; e-mail: mfrimer@northwell.edu.

AUTHOR CONTRIBUTIONS

Conception and design: Bethany Bustamante, Veena John, Natalie Danziger, Julia A. Elvin, Marina Frimer

Collection and assembly of data: Bethany Bustamante, Risha Sinha, Briana Rice, Doug I. Lin, Natalie Danziger, Dean C. Pavlick

Data analysis and interpretation: Bethany Bustamante, Risha Sinha, Briana Rice, Aaron Nizam, Weiwei Shan, Doug I. Lin, Natalie Danziger, Julia A. Elvin, Marina Frimer

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by the authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please visit http://clincancerres.aoc.org/site/ifc.html.
Policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Doug I. Lin
Employment: Foundation Medicine
Stock and Other Ownership Interests: Roche Pharma AG

Natalie Danziger
Employment: Foundation Medicine
Stock and Other Ownership Interests: Roche

Dean C. Pavlick
Employment: Foundation Medicine
Stock and Other Ownership Interests: Roche

Julia A. Elvin
Employment: Foundation Medicine
Stock and Other Ownership Interests: Roche

Marina Frimer
Research Funding: GlaxoSmithKline

No other potential conflicts of interest were reported.

REFERENCES

1. Chi D, Berchuck A, Dizon D, et al: Principles and Practices of Gynecologic Oncology (ed 7). China, Philadelphia, Wolters Kluwer, 2017, pp 213-214, 266-267
2. Abkevich V, Timms KM, Hennessy BT, et al: Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 107:1776-1782, 2012
3. Pennington KP, Walsh T, Harrell MI, et al: Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 20:764-775, 2014
4. Swisher EM, Lin KK, Oza AM, et al: Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75-87, 2017
5. Coleman RL, Oza AM, Lorusso D, et al: Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1949-1961, 2017
6. Mateo J, Lord CJ, Serra V, et al: A decade of clinical development of PARP inhibitors in perspective. Ann Oncol 30:1437-1447, 2019
7. Golan T, Hammel P, Reni M, et al: Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 381:317-327, 2019
8. Sokol ES, Pavlick D, Khabianian H, et al: Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precis Oncol 4:442-465, 2020
9. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al: Integrated genomic characterization of endometrial carcinoma. Nature 497:67-73, 2013
10. Talhouk A, McConochy MK, Leung S, et al: A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer 113:299-310, 2015
11. Frampton GM, Fichtenholtz A, Otto GA, et al: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023-1031, 2013
12. Chalmers ZR, Connelly CF, Fabrizio D, et al: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34, 2017
13. Trabucco SE, Gowen K, Maund SL, et al: A novel next-generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability-high cases in 67,000 patient samples. J Mol Diagn 21:1053-1066, 2019
14. Lin K, Sun J, Matoney L, et al: Quantification of genomic loss of heterozygosity enables prospective selection of ovarian cancer patients who may derive benefit from the PARP inhibitor rucaparib. Eur J Cancer 51:5531-5532, 2015. (abstr 2701)
15. Haruma T, Nagasaka T, Nakamura K, et al: Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability. PLoS One 13:e0195655, 2018
16. Stronach EA, Paul J, Timms KM, et al: Biomarker assessment of HR deficiency, tumor BRCA1/2 mutations, and CCNE1 copy number in ovarian cancer: Associations with clinical outcome following platinum monotherapy. Mol Cancer Res 16:1103-1111, 2018
17. Pennington KP, Walsh T, Harrell MI, et al: Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 20:764-775, 2014
18. Soslow RA, Bissonnette JP, Wilton A, et al: Clinicopathologic analysis of 187 high-grade endometrial carcinomas of different histologic subtypes: Similar outcomes belies distinctive biologic differences. Am J Surg Pathol 31:979-987, 2007
19. Akhurst A, Köbel M, Kalloger SE, et al: High-grade endometrial carcinoma: Serous and grade 3 endometrioid carcinomas have different immunophenotypes and outcomes. Int J Gynecol Pathol 29:343-350, 2010
20. Voss MA, Ganesan R, Ludeman L, et al: Should grade 3 endometrioid endometrial carcinoma be considered a type 2 cancer—A clinical and pathological evaluation. Gynecol Oncol 124:15-20, 2011
21. Moore K, Colombo N, Scambia G, et al: Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 379:2495-2505, 2018
TABLE A1. Demographic Data of Patients Evaluable for Platinum Status, With Platinum-Resistant Versus Platinum-Sensitive Patients Compared

Characteristic	Platinum-Resistant (n = 22)	Platinum-Sensitive (n = 26)	P
Age, years	67.5 (63-71.8)	66 (60-67.8)	.5289
Race (%)			
Asian and others	4 (19.0)	6 (24.0)	.299
Black	10 (47.6)	6 (24.0)	
White	7 (33.3)	13 (52.0)	
Histology (%)			
Endometrioid	3 (13.6)	3 (11.5)	.767
Serous	8 (36.4)	14 (53.8)	
Carcinosarcoma	6 (27.3)	5 (19.2)	
Clear cell	3 (13.6)	3 (11.5)	
Others	2 (9.1)	1 (3.8)	
Grade (%)			
G1	0 (0.0)	0 (0.0)	1
G2	1 (4.5)	2 (7.7)	
G3	21 (95.5)	24 (92.3)	
Stage (%)			
I	5 (22.7)	9 (34.6)	.655
II	0 (0.0)	0 (0.0)	
III	11 (50.0)	12 (46.2)	
IV	6 (27.3)	5 (19.2)	
Status at last follow-up (%)			
No evidence of disease	0 (0.0)	6 (23.1)	.019
Alive with disease	6 (27.3)	10 (38.5)	
Died of disease	16 (72.7)	10 (38.5)	
Recurrence (%)			
No	0 (0.0)	6 (23.1)	.025
Yes	22 (100.0)	20 (76.9)	
Therapies			
Targeted therapy (%)			
Yes	5 (29.4)	6 (31.6)	1
Hormone therapy (%)			
Yes	1 (5.9)	1 (5.3)	1
TCGA (%)			
MSI-H	2 (9.1)	2 (7.7)	.324
CN-L	1 (4.5)	5 (19.2)	
CN-H	19 (86.4)	19 (73.1)	
gLOH 16 (%)			
< 16%	21 (95.5)	19 (73.1)	.055
≥ 16%	1 (4.5)	7 (26.9)	
gLOH 14 (%)			
< 14%	19 (86.4)	19 (73.1)	.307
≥ 14%	3 (13.6)	7 (26.9)	

Abbreviations: CN-H, copy number–high; CN-L, copy number–low; gLOH, genome-wide loss of heterozygosity; MSI-H, microsatellite instability–high; TCGA, The Cancer Genome Atlas.
| Characteristic | RFS
| | (n = 70) | OS
	(N = 82)	
gLOH linear variable	0.96 (0.92-1.01)	0.88*** (0.82-0.95)
Age, years	0.99 (0.96-1.03)	1.01 (0.97-1.06)
BMI	0.98 (0.94-1.03)	0.97 (0.91-1.03)
Stage III	3.05*** (1.41-6.58)	2.92** (1.10-7.77)
Stage IV	2.76** (1.05-7.27)	6.75*** (2.29-19.88)
Black race	1.73 (0.77-3.87)	3.78** (1.34-10.68)
CN-H	6.78*** (2.25-20.39)	2.83 (0.70-11.50)
Endometrioid histology	0.53 (0.17-1.63)	1.08 (0.29-3.97)

NOTE. *P < .05, **P < .01, ***P < .001.

Abbreviations: BMI, body mass index; CN-H, copy number–high; gLOH, genome-wide loss of heterozygosity; OS, overall survival; RFS, recurrence-free survival.