Models of the spontaneous emission of photons coupled to the electronic states of quantum dots are important for understanding quantum interactions in dielectric media as applied to proposed solid-state quantum computers, single photon emitters, and single photon detectors. The characteristic lifetime of photon emission is traditionally modeled in the Weisskopf-Wigner approximation. Here we model the fully quantized spontaneous emission, including near field effects, of a photon from the excited state of a quantum dot beyond the Weisskopf-Wigner approximation. We propose the use of discretized central-difference approximations to describe single photon states via single photon operators in 3+1 dimensions. We further show herein that one can shift from the traditional description of electrodynamics and quantum electrodynamics, in terms of electric and magnetic fields, to one in terms of a photonic wave function and its operators using the Dirac equation for the propagation of single photons.

The field of quantum computation (QC) and quantum information technology (QIT) has recently experienced escalated activity in the search for sources of photonic states coupled to their quantum sources [1, 2]. The observed increase in activity is in part due to the suggestion that quantum information processing based on the electron spins of quantum dots (QDs), coupled through optical modes of a micro-cavity, [1] could improve on schemes based on the energy states of trapped ions [3] and nuclear spins in chemical solution [4, 5]. Some advantages of a QC scheme based on the suggested semiconducting quantum dot arrays may include greater scalability, longer spin decoherence times, longer coherence lengths, and fast interactions mediated by photons [1]. In this contribution we present a model for describing the coupling between a single photonic state to the spin states of a quantum source (such as a QD) through optical modes present in a micro-cavity. Additional applications of this model may include the design of devices aimed at single photon emission [6], single photon detection [7, 8], quantum teleportation [9, 10], quantum computing within a quantum network [2], and quantum cryptography [11, 12, 13, 14]. This model requires a description of optical modes present in photonic crystals and dielectric micro-cavities. For example, in order to successfully describe the entanglement between photons and their quantum sources, it is imperative to achieve a resolution high enough to describe whispering gallery modes [15] available in dielectric microcavities such as micro-disks. This is especially important in applications that contrast classical computers, which depend on bits to store and process information, to quantum computers that depend on quantum bits (qubits).

As the name suggests, quantum binary digits are a quantum representation of the on and off state as interpreted in machines like ENIAC\(^{\dagger}\) and those in existence today. It is possible to visualize the relationship between bits and qubits by means of what is known as the Bloch sphere in terms of the on \(|1\rangle\) and off states \(|0\rangle\) of a bit and the state of a qubit \(|\Psi\rangle\). One major advantage of quantum computers is that they do not alter the Church-Turing thesis [16] since the do not allow the computation of functions which are not theoretically computable. So far it has been shown through the discoveries of Shor and others that it is possible to develop quantum algorithms for important problems like prime factorization [17], protocols for quantum error correction (QEC), and fault-tolerant QC [18]. Other algorithms in QC, that if physically implemented could be of immediate use, include Grover’s Algorithm for database searches [19] and the quantum Fourier Transform [20]. Also central to the discussion on QC and QEC is the decoherence rate of qubits. It is imperative to QC to find an implementation where qubits are well isolated from their environment [16]. Among suggested implementations for QC are Raman coupled low-energy states of trapped ions [3] and nuclear spins in chemical solution [4, 5]. Qubits based on these implementations could provide the first examples of QC up to the 5 through 10 qubits level. However, these implementations may not be scalable to more than 100 qubits [1].

Proposed implementations and promising schemes that could be scalable to more than 100 coupled qubits may be based on electron spins coupled by means of an optical mode of a photonic crystal or dielectric micro-cavity. One such scheme couples the electronic spin states of a Quantum Dot (QD) to the optical modes of a micro-disk [1]. Another promising scheme couples electronic QD states embedded inside nanocavities to the modes of a photonic crystal host [21, 22, 23]. An additional scheme recently realized experimentally has shown that Nitrogen-Vacancy centers in diamond can also be embedded inside a photonic crystal, which could enable fully scalable room-temperature quantum computing as a good alternative to using quantum dots. [24, 25, 26, 27].

The discussion for generating a theory on the interaction between such quantum sources and photonic states may be modeled after atomic systems [28]. For the case of a quantum source modeled after an effective two-level QD, the selection rules presented in figure (1) yield an interaction via the dipole approximation by implementing the state to state tran-
sition dipole moments of the QD [2]. To this end it is imperative to model spontaneous emission of a photon coupled to the electronic state of a quantum dot beyond the Weisskopf-Wigner approximation: which fixes the value of accessible modes from a possibly infinite set of frequencies ω_k to a single mode of a cavity or the transition frequency of the QD state as represented by ω_r [28].

Our proposed model describes the photon by means of a Dirac-like equation for the photon. Experimentally, the quantum state of a photon may be reconstructed using optical homodyne tomography techniques by measuring quantum noise statistics of field amplitudes at different optical phases [29, 30]. In this work, the rigorous description of the interaction between a quantum source and the generated Maxwell Field is initially made within the formalism of relativistic quantum field theory (QFT). In this description we begin within the canonical quantization procedure presented by the Gupta and Beuler method and the resulting interaction between these fields [31]. This procedure requires the definition of a Lagrangian and gauge for the interacting fields\(^2\). To follow this procedure, a connection between the photon wave function (PWF) [32, 33, 34, 35] and the four vector potential for a Maxwell Field has to be drawn. This canonical quantization procedure leads to two important results, the complex Maxwell Field Tensor and the coupled electron-photon field equations in terms of a field equation for the PWF. We show the first result to be a Lagrangian for a free complex Maxwell Field written in terms of a self-dual tensor representing the field tensor corresponding to the PWF that directly satisfies and yields equations of motion equivalent to the generalized Maxwell equations [36, 37, 38, 35]. In the second result we show the coupling between a quantum source and the Maxwell Field it generates. We additionally extend these results to show how these can be applied to model the emission of a single photon from a dielectric micro-cavity. Throughout the relativistic treatment of these fields we will maintain the Minkowski Metric to have the signature $(+,-,-,-)$, and adopt the 4-notation consistent with $x^\mu \equiv (ct, \vec{x})$, $\eta_{\mu\nu} x^\nu = x^\mu = (ct, -\vec{x})$.

Building on the work describing the PWF formalism, while working in Gaussian units in the presence of sources, one can define a self-dual tensor in terms of the electromagnetic field tensor [36] $\tilde{\mathcal{F}}^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu$ and its dual $\tilde{\mathcal{F}}^D = \frac{i}{2} \varepsilon_{\mu\nu\alpha\beta} \tilde{\mathcal{F}}^{\alpha\beta}$ as $\mathcal{G}^{\mu\nu} \equiv \tilde{\mathcal{F}}^{\mu\nu} - i\tilde{\mathcal{F}}^D$ in terms of the potential by

$$\mathcal{G}^{\mu\nu} = (\partial^\mu A^\nu - \partial^\nu A^\mu) - \frac{i}{2} \varepsilon_{\mu\nu\alpha\beta} (\partial^\alpha A^\beta - \partial^\beta A^\alpha)$$

from which it is possible to define a general gauge-invariant Lagrangian for a free photon via

$$\mathcal{L}_{\text{photon}} = -\frac{1}{8} \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu}$$

The same Lagrangian expressed in terms of the well known Faraday tensor[39] reads

$$\mathcal{L}_{\text{photon}} = -\frac{1}{8} (\tilde{\mathcal{F}}_{\mu\nu} \tilde{\mathcal{F}}^{\mu\nu} + i (\tilde{\mathcal{F}}_{\mu\nu} \mathcal{G}^{\mu\nu} + \mathcal{G}^D \mathcal{G}^{\mu\nu}) + \mathcal{G}^D \mathcal{G}^{\mu\nu})$$

with the corresponding matrix representation for the self-dual tensor given by

$$\mathcal{G}_{\mu\nu} = \begin{pmatrix} 0 & iF_+^y & iF_+^z & iF_0^+ \\ -iF_+^y & 0 & F_0^z & F_+^x \\ -iF_+^z & -F_0^z & 0 & F_+^x \\ -iF_0^+ & F_0^x & F_0^x & 0 \end{pmatrix}$$

Using \vec{E} and \vec{B} to represent electric and magnetic fields respectively [40], $F_{\mp} \equiv \pm iF_{\pm} = \vec{E} \pm i\vec{B}$ (given that i represents the unit pseudo-scalar [41]).

We defer to the traditional Quantum Electro-Dynamics (QED) interaction between an electron, a photon, and an additional gauge field as mitigated by $\bar{\psi}(\gamma^\mu A_\mu)\psi$ where $(\chi = \gamma^\mu A_\mu)$ via $A_{\text{Tot}} = A + A_{\text{Ext}}$ and therefore express the interaction Lagrangian for a gauge field A_μ and spinor $\psi \equiv (\varphi, \chi)$ similar to the the description in [42] by writing

$$\mathcal{L}_{\text{Int}} = \bar{\psi} \left(i\gamma^\mu \partial_\mu - \frac{e}{c} \bar{\psi} (A_{\text{Tot}}) \psi - \frac{1}{8} \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu} \right)$$

It is worth noting that this Lagrangian leads to electromagnetic fields that satisfy the principle of superposition as required by experiment along with their conservation laws and definition of spin. This is evident because there are only expressions quadratic in the field and first order time derivatives present in the action. Explicitly in terms of the relativistic equations of motion and their Hermitian conjugates

$$\left[i\gamma^\mu \partial_\mu + \frac{e}{c} \gamma^\mu A_{\mu,\text{Tot}} + m_0c \right] \psi = 0 \quad \text{(1)}$$

$$-\frac{e}{c} \bar{\psi} \gamma^\nu \psi + \partial_\mu \mathcal{G}^{\mu\nu} = 0 \quad \text{(2)}$$

In the non-relativistic limit working in the radiation gauge, these EOMs yield the well known Pauli-Schrödinger equation [43]. By quantizing the 3-vector potential while defining the new operators $f^f_+ = \vec{\nabla} \times \vec{A} - i\frac{e}{c} \partial_t \vec{A}$ & $f^f_- = \vec{\nabla} \times \vec{A} + i\frac{e}{c} \partial_t \vec{A}$,
the EOM for the photon may be expressed as a Dirac-like equation
\[
\left[\frac{i\hbar}{c} \partial_t - \frac{\hbar}{\imath} \partial_k \left(\frac{0}{\sigma_k^{(3)}} \right) \right] \left(\vec{F}_+ - \vec{F}_- \right) = 0
\]
(3)

where \(\sigma_k^{(3)} = -\varepsilon_{ijk} \) with \(\varepsilon_{ijk} \) representing the Levi-Civita permutation symbol. To define the quantized interaction term we expand the gauge field operator \(\vec{A} \) in terms of creation and annihilation operators through the use of plane waves and retain a phase factor \(\phi \) to account for its phase freedom [35]

\[
\vec{A} = \sum_{\vec{k}, \lambda} \frac{c}{\nu_k} \sqrt{\frac{\hbar \nu_k}{2V}} \left(\hat{\xi}_{\vec{k}, \lambda} a_{\vec{k}, \lambda} e^{-i(\nu_k t - \vec{k} \cdot \vec{x})} e^{-i\phi} + \text{H.c.} \right)
\]

Making the dipole approximation to the Pauli-Schrödinger equation [43], and changing to the interaction picture leads to the expression

\[
\begin{align*}
&\imath \hbar \partial_t |\varphi\rangle = e^{\frac{i\pi}{2}} \sum_{n, m, \vec{k}, \lambda} \sqrt{\frac{\hbar \nu_k}{2V}} \left(\hat{\xi}_{\vec{k}, \lambda} a_{\vec{k}, \lambda} e^{-i(\nu_k t - \vec{k} \cdot \vec{x})} e^{-i\phi} \\
&\quad + \hat{\xi}^*_{\vec{k}, \lambda} a^\dagger_{\vec{k}, \lambda} e^{i(\nu_k t - \vec{k} \cdot \vec{x})} e^{i\phi} \right) \cdot \left(\tilde{\gamma}_{nm} \sigma_{nm} e^{i\omega_{nm} t} \right) |\varphi\rangle
\end{align*}
\]

Assuming that \(\nu_k = c |\vec{k}| \) and making use of the identity [28]

\[
\frac{\vec{k}}{k} \times \hat{\xi}_{\vec{k}, \lambda} = -\sigma_i \hat{\xi}_{\vec{k}, \lambda},
\]
yields that the expression for the interaction can be written in terms of the operator \(\vec{F}_+ \)

\[
\vec{F}_+ = e^{-i\frac{\pi}{2}} \sum_{\vec{k}} \sqrt{\frac{2\hbar \nu_k}{V}} \left(\hat{\xi}_{\vec{k}, \lambda} a_{\vec{k}, \lambda} e^{-i(\nu_k t - \vec{k} \cdot \vec{x})} e^{-i(\phi - \frac{\pi}{2})} \\
+ \hat{\xi}^*_{\vec{k}, \lambda} a^\dagger_{\vec{k}, \lambda} e^{i(\nu_k t - \vec{k} \cdot \vec{x})} e^{i(\phi - \frac{\pi}{2})} \right)
\]

by shifting the phase of the interaction \(\phi \rightarrow \phi - \frac{\pi}{2} \), such that at \(\vec{x}_0 \),

\[
\imath \hbar \partial_t |\varphi\rangle = -\frac{1}{2} \sum_{\vec{k}, \lambda} \left(\vec{F}_+ - \vec{F}_- \right) \cdot \left(\tilde{\gamma}_{nm} \sigma_{nm} e^{i\omega_{nm} t} \right) |\varphi\rangle
\]

(4)

The EOMs as derived from (4) (in terms of the photonic wave functions), for the case of a two level quantum source with an energy band-gap of \(\Delta E = \hbar \omega_p \), defined by the state-vector

\[
|\sigma\rangle = c_a(t) |a0\rangle + c_b \hat{k}(t) |b\rangle
\]

interacting with it’s own spontaneously emitted field, are given by

\[
\begin{align*}
\imath \hbar \dot{c}_a(t) &= \left(\bar{\Psi}_{\gamma_a}^{(+)}(t) + \bar{\Psi}_{\gamma_a}^{(-)}(t) \right)_b e^{i\omega_p t} \cdot \tilde{\gamma}_{ba} \\
\imath \hbar \sum_{\vec{k}, \pm} \dot{c}_{b, \vec{k}, \pm}(t) &= \left(\bar{\Psi}_{\gamma_b}^{(-)}(t) + \bar{\Psi}_{\gamma_b}^{(+)}(t) \right)_a e^{-i\omega_p t} \cdot \tilde{\gamma}_{ab}
\end{align*}
\]

where \(\sigma, \gamma \) denote electronic and photonic states and \(a, b \) denote excited and ground states

\[
\begin{align*}
\bar{\Psi}_{\gamma_a}^{(+)}(t) &= e^{\frac{i\pi}{2}} \sum_{\vec{k}} \sqrt{\frac{\hbar \nu_k}{2V}} \hat{\xi}_{\vec{k}, \lambda} c_a(t) e^{-i(\nu_k t - \vec{k} \cdot \vec{x})} e^{-i(\phi - \frac{\pi}{2})} \\
&\quad + \hat{\xi}^*_{\vec{k}, \lambda} c_a^\dagger(t) e^{i(\nu_k t - \vec{k} \cdot \vec{x})} e^{i(\phi - \frac{\pi}{2})} \\
&\quad + \frac{\hbar \nu_k}{2V} \hat{\xi}_{\vec{k}, \lambda} c_a(t) e^{-i(\nu_k t - \vec{k} \cdot \vec{x})} e^{-i(\phi - \frac{\pi}{2})} \\
&\quad + \hat{\xi}^*_{\vec{k}, \lambda} c_a^\dagger(t) e^{i(\nu_k t - \vec{k} \cdot \vec{x})} e^{i(\phi - \frac{\pi}{2})}
\end{align*}
\]

Formally integrating these equations of motion while representing the polarization vectors as \(\hat{\xi}_{\vec{k}, \lambda} = \frac{1}{\sqrt{2}} \left(\hat{\theta} + i \hat{\phi} \right) \), \(\hat{\xi}_{\vec{k}, \lambda} = \frac{1}{\sqrt{2}} \left(\hat{\theta} - i \hat{\phi} \right) \), and the unit wave-vector as \(\vec{k} \equiv \hat{r} \), yield three poles \(z_n \) which need to be considered when solving for the probability density that ultimately gives rise to the spontaneously emitted photon, \(c_b \bar{\gamma}_b \). Each of these poles correspond to emission and re-absorption respectively and allow one to model Rabi oscillations associated with revival phenomena. These poles can be evaluated numerically or analytically by application of Demoivre’s theorem.

In figure (2) we present solutions for poles \(z_n \) in for transition wavelengths and transition dipole moment ranges in the intervals of 750 - 1300 nm and 20 to 100 Debye [44, 45, 46]. From these results, the poles of the contour integrals associated with the evaluation of \(c_a(t) \) are presented as in figure (2) and their physical meaning interpreted from their location in the complex plane; where the contours are closed with further causal constraints. The expression for the wave-function, prior to its

Fig. 2: Analytically evaluated poles \(z_n \) through use of Demoivre’s theorem. Plots present the relative change of the argument \(\theta \) in arc-seconds \(\Delta \theta \) for \(z_0 \) & \(z_1 \). For \(z_2 \) the change in the argument is of the order \(\Delta \theta \times 10^{-2} \). Radial length phasors \(z_n + i\omega_p \) for \(z_0 \) and \(z_1 \) are of the order of \(10^{13} \) , and for \(z_2 \) these are of the order of \(10^{15} \) as plotted with respect to transition frequency \(\omega_p \) in \(10^{13} \) and \(\frac{1}{\theta} = \frac{1}{10^{13}} \left(\frac{2\pi}{\omega_p} \right) \). Phasors with positive real components correspond to emission and those with positive real components correspond to revival in near field regions.
In this result we do not neglect terms of order $O\{r^{-2}\}$, usually neglected in the far-field approximation [28]. Writing $\vec{\psi}_{\alpha,b,i}$ along with $\Omega_{n} = \omega_{p} + iz_{n}$ and $\hat{x} = \vec{x} - \vec{x}_{0}$, and setting the speed of light within the interaction region to $c_{0} = \eta^{-1}c$, the components for an “emitting” pole with the contour closed over the lower half plane, are given by

$$I_{\pm,n,z} = \left[\left(\frac{1}{\bar{\rho}^{2}} - \frac{i\Omega_{n}}{\bar{\rho}^{2}c_{0}} \right) \zeta_{-} - \left(\frac{1}{\bar{\rho}^{2}} + \frac{i\Omega_{n}}{\bar{\rho}^{2}c_{0}} \right) \zeta_{+} \right] \vec{\psi}_{z}$$

as governed by the conditions that follow from the fact that the outgoing ζ_{-} and incoming ζ_{+} wave-fronts can not move faster than the speed of light.

$$\zeta_{-} = 4\pi^{2}\Theta(c_{0}\Delta t' - \delta) e^{-i\Omega_{n}(\Delta t' - \frac{\omega}{c_{0}}+t_{f})}$$

$$\zeta_{+} = 4\pi^{2}\Theta(c_{0}\Delta t' + \delta) e^{-i\Omega_{n}(\Delta t' + \frac{\omega}{c_{0}}+t_{f})}$$

We additionally go beyond the approximations which neglect revival [28], such that the components of an “absorbing” pole with the contour closed over the upper half plane, are given by

$$I_{\pm,n,x} = \left[\left(\frac{1}{\bar{\rho}^{2}} - \frac{i\Omega_{n}}{\bar{\rho}^{2}c_{0}} \right) \zeta_{-} - \left(\frac{1}{\bar{\rho}^{2}} + \frac{i\Omega_{n}}{\bar{\rho}^{2}c_{0}} \right) \zeta_{+} \right] \vec{\psi}_{z}$$

In this result we do not neglect terms of order $O\{r^{-2}\}$, usually neglected in the far-field approximation [28]. Writing $\vec{\psi}_{\alpha,b,i}$ along with $\Omega_{n} = \omega_{p} + iz_{n}$ and $\hat{x} = \vec{x} - \vec{x}_{0}$, and setting the speed of light within the interaction region to $c_{0} = \eta^{-1}c$, the components for an “emitting” pole with the contour closed over the lower half plane, are given by

$$I_{\pm,n,z} = \left[\left(\frac{1}{\bar{\rho}^{2}} - \frac{i\Omega_{n}}{\bar{\rho}^{2}c_{0}} \right) \zeta_{-} - \left(\frac{1}{\bar{\rho}^{2}} + \frac{i\Omega_{n}}{\bar{\rho}^{2}c_{0}} \right) \zeta_{+} \right] \vec{\psi}_{z}$$

as governed again by the conditions that follow from the fact that the outgoing ζ_{-} and incoming ζ_{+} wave-fronts can not move faster than the speed of light.

$$\zeta_{-} = 4\pi^{2}\Theta(c_{0}\Delta t' - \delta) e^{-i\Omega_{n}(\Delta t' - \frac{\omega}{c_{0}}+t_{f})}$$

$$\zeta_{+} = 4\pi^{2}\Theta(c_{0}\Delta t' + \delta) e^{-i\Omega_{n}(\Delta t' + \frac{\omega}{c_{0}}+t_{f})}$$

The coupling between (3), (5), and (6) was modeled computationally through use of the following algorithm as implemented in a leap-froging scheme [47] between real and imaginary parts of the wave-functions, both within and beyond the interaction regions.

- Initialize QD excited state
- Determine analytic approximation for c_{a}
- Use the leading coefficients and roots of the analytic form of c_{a} to determine the state of the photonic wave function $\vec{\psi}_{\gamma^{(+)}_{\alpha,b}}$ & $\vec{\psi}_{\gamma^{(-)}_{\alpha,b}}$ at the next time step
- At this new time step use the current state of the photonic wave function to update the state of the quantum dot
- Propagate $\vec{\psi}_{\gamma^{(+)}_{\alpha,b}}$ & $\vec{\psi}_{\gamma^{(-)}_{\alpha,b}}$
- Repeat from step 2
Weisskopf-Wigner approximation; both analytically and computationally. It was further demonstrated that the locality of a photonic state could be well described during spontaneous emission while energy is injected and exchanged between both single photon and quantum dot states. Test cases were directly compared for different values of $\Delta \tau$ & Δt. From these it was determined that the polynomial envelope functions for coherent oscillations were in agreement within the initial revival period of the quantum dot excited state. Furthermore, the theoretical approximations made accurately yield analytic and intuitive insight to the periodicity of the initial decay and revival phenomena present in the near field limit. This work therefore makes it feasible to computationally design photonic states to be emitted and detected by solid-state quantum dots embedded within dielectric structures and to compare them to experimental results by means of their corresponding density matrix and Wigner functions.

References

[1] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small. Quantum information processing using quantum dot spins and cavity qed. *Physical Review Letters*, 83(20), November 1999. 1

[2] HP Seigneur, M.N. Leuenberger, and WV Schoenfeld. Single-photon Mach-Zehnder interferometer for quantum networks based on the single-photon Faraday effect. *Journal of Applied Physics*, 104:014307, 2008. 1, 2

[3] JI Cirac and P. Zoller. Quantum computations with close trapped ions. *Physical Review Letters*, 74(20):4091–4094, 1995. 1

[4] D.G. Cory, A.F. Fahmy, and T.F. Havel. Ensemble quantum computing by nuclear magnetic resonance spectroscopy. *Proc. Nat. Acad. Sci.*, 94:1634–1639, 1997. 1

[5] N.A. Gershenfeld and I.L. Chuang. Bulk spin-resonance quantum computation. *Science*, 275(5298):350, 1997. 1

[6] Z. Yuan, B.E. Kordyna, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, and M. Pepper. Electrically driven single-photon source. *Science*, 295(5552):102, 2002. 1

[7] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai. A single-photon detector in the far-infrared range. *Nature*, 403(6766):405–407, 2000. 1

[8] O. Astafiev, S. Komiyama, T. Kutsuwa, V. Antonov, Y. Kawaguchi, and K. Hirakawa. Single-photon detector in the microwave range. *Applied Physics Letters*, 80:4250, 2002. 1

[9] D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger. Experimental quantum teleportation. *Nature*, 390(6660):575–579, 1997. 1

[10] C.H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W.K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. *Physical Review Letters*, 70(13):1895–1899, 1993. 1

[11] C.H. Bennett, G. Brassard, et al. Quantum cryptography: Public key distribution and coin tossing. In *Proceedings of IEEE International Conference on Computers, Systems and Signal Processing*, volume 175. Bangalore, India, 1984. 1

[12] A.K. Ekert. Quantum cryptography based on Bell’s theorem. *Physical Review Letters*, 67(6):661–663, 1991. 1

[13] DS Naik, CG Peterson, AG White, AJ Berglund, and PG Kwiat. Entangled state quantum cryptography: Eavesdropping on the Ekert protocol. *Physical Review Letters*, 84(20):4733–4736, 2000. 1

[14] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Schneid, M. Lindenthal, B. Blauensteiner, T. Jenneweit, J. Perdigues, P. Trojek, et al. Entanglement-based quantum communication over 144 km. *Nature Physics*, 3(7):481–486, 2007. 1

[15] SL McCall, AFJ Levi, RE Slusher, SJ Pearton, and RA Logan. Whispering-gallery mode microdisk lasers. *Applied physics letters*, 60(3):289, 1992. 1

[16] M.A. Nielsen, I. Chuang, and L.K. Grover. Quantum computation and quantum information. *American Journal of Physics*, 70:558, 2002. 1
