Representations of Genetic Tables, Bimagic Squares, Hamming Distances and Shannon Entropy

Inder J. Taneja
Departamento de Matemática
Universidade Federal de Santa Catarina
88.040-900 Florianópolis, SC, Brazil.
e-mail: itaneja@gmail.com
http://www.mtm.ufsc.br/~taneja

Abstract
In this paper we have established relations of the genetic tables with magic and bimagic squares. Connections with Hamming distances, binomial coefficients are established. The idea of Gray code is applied. Shannon entropy of magic squares of order 4×4, 8×8, and 16×16 are also calculated. Some comparison is also made. Symmetry among restriction enzymes having four letters is also studied.

Key words: Genetic Code, Codon, Magic Squares, Hamming distances, Probability distributions, Shannon entropy.

1 Introduction

Genetic code is the set of rules by which information encoded in RNA/DNA is translated into amino acid sequences in living cells. The bases for the encoded information are nucleotides. There are four nucleotide bases for RNA: Adenine, Uracil, Guanine, and Cytosine, which are labeled by A, U, G and C respectively, (in DNA Uracil is replaced by Thymine (T)). In canonical genetic code, codons are tri-nucleotide sequences such that each triplet relates to an amino acid. For example, the codon CAG encodes the amino acid Glutamine.

Amino acids are the basic building blocks of proteins. It stimulated interest of other researchers to study how genetic code was translated into amino acids. There are 20 different amino acids (plus start and stop codons), and since there are four nucleotide bases, A, U, T and C, there are 4^n different combinations of bases, for a string of length n. Therefore, $n = 3$ is the smallest number of bases that could be used to represent the 20 different amino acids. There is degeneracy between the codons, i.e., more than one codon can represent the same amino acid; however, two different amino acids cannot be represented by the same codon. The following CODON table is well-known in the literature.

	T	C	A	G
T	TTT (Phe)	TTC (Phe)	TAT (Try)	TGT (Cys)
C	TTA (Leu)	TCA (Ser)	TAA (Stop)	TGA (Stop)
A	TTG (Leu)	TCG (Ser)	TAG (Stop)	TGG (Trp)
G	CTT (Leu)	CTC (Leu)	CAT (His)	CGT (Arg)
	CTA (Leu)	CTA (Leu)	CAA (Glu)	CGA (Arg)
	CTT (Leu)	CTC (Leu)	CAC (His)	CGC (Arg)
	CTA (Leu)	CTA (Leu)	CAG (Glu)	CGG (Arg)

The DNA (Deoxyribonucleic acid) molecule residing in the cell nucleus encodes information conventionally represented as a symbolic string over the alphabet. The combination between single strands of DNA takes
place according to “Watson-Crick [12] complementarity” that says that the only permissible combinations between bases are $A - T$ or $T - A$ and $C - G$ or $G - C$ hence one strand can easily be used to predict the other in a double stranded chain. Let us consider the following configurations of 4^n for each value of n.

(i) For $n = 1$: In this case we have $4^1 = 4$. This gives

$$M_1 := \begin{bmatrix} C & A \\ T & G \end{bmatrix}.$$

(ii) For $n = 2$: In this case we have $4^2 = 16$. This gives

$$M_2 := \begin{bmatrix} CC & AC & TC & GC \\ CA & AA & TA & GA \\ CT & AT & TT & GT \\ CG & AG & TG & GG \end{bmatrix}.$$

(iii) For $n = 3$: In this case we have $4^3 = 64$. This gives

$$M_3 := \begin{bmatrix} CCC & ACC & TCC & GCC & CTC & ATC & TTC & GTC \\ CCA & ACA & TCA & GCA & CTA & ATA & TTA & GTA \\ CCT & ACT & TCT & GCT & CTT & ATT & TTT & GTT \\ CCG & ACG & TCG & GCG & CTG & ATG & TTG & GTG \\ CAC & AAC & TAC & GAC & CGC & AGC & TGC & GGC \\ CAA & AAA & TAA & GAA & CGA & AGA & TGA & GGA \\ CAT & AAT & TAT & GAT & CGT & AGT & TGT & GTG \\ CAG & AAG & TAG & GAG & CGG & AGG & TGG & GGG \end{bmatrix}.$$

(iv) For $n = 4$, we have M_4 with $4^4 = 256$ combinations of blocks of four letters, for $n = 5$, we have M_5 with $4^5 = 1024$, etc.

2 Gray Codes: Binary representations

2.1 First Approach

Let us represent the letters C, A, T and G in two different ways:

(i) $C = 00, \ A = 01, \ T = 10$ and $G = 11$.

(ii) $C = 1, \ A = 2, \ T = 3$ and $G = 4$.

(iii) The CODON table given above is formed of three letters out of four, i.e., A, T, G and C. According to (i), we can write, for example, $TTA \sim 101001, AGC \sim 011100$, etc. Thus we have six digit binary representations of 64 members available in CODON table. Let us apply the change of base 2 to base 10 (decimal) using the formula $(abcdef)_2 : = a \cdot 2^5 + b \cdot 2^4 + c \cdot 2^3 + d \cdot 2^2 + e \cdot 2^1 + f \cdot 2^0$ and then writing $(abcdef)_2 + 1$, we have, $TTA \sim 101001 \sim 41$ and $AGC \sim 011100 \sim 28$, etc. Similarly, we can write the four digits binary representation in decimal forms, such as $(abcd)_2 : = a \cdot 2^3 + b \cdot 2^2 + c \cdot 2^1 + d \cdot 2^0$, and then writing $(abcd)_2 + 1$. Just for simplicity, we have added 1.

The notations given in (i) and (ii) can be seen in [4, 6, 2, 8, 10]. Decimal representation of the numbers is given by $C = (00)_2 \sim 0, A = (01)_2 \sim 1, T = (10)_2 \sim 2$ and $G = (11)_2 \sim 3$. For simplicity, we have added 1 and considered in (ii) as 1, 2, 3, and 4 instead of 0, 1, 2 and 3 respectively. We shall use frequently these three
representations and shall bring magic squares of different orders According to above notations we have

\[
M_1 := \begin{bmatrix}
C & A \\
T & G \\
\end{bmatrix} \sim \begin{bmatrix}
00 & 01 \\
10 & 11 \\
\end{bmatrix} \sim \begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix},
\]

(1)

\[
M_2 := \begin{pmatrix}
0000 & 0100 & 1000 & 1100 \\
0001 & 0101 & 1001 & 1101 \\
0010 & 0110 & 1010 & 1110 \\
0011 & 0111 & 1011 & 1111 \\
\end{pmatrix},
\]

(2)

\[
M_2 := \begin{pmatrix}
11 & 21 & 31 & 41 \\
12 & 22 & 32 & 42 \\
13 & 23 & 33 & 43 \\
14 & 24 & 34 & 44 \\
\end{pmatrix},
\]

(3)

and

\[
M_2 := \begin{pmatrix}
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
4 & 8 & 12 & 16 \\
\end{pmatrix}.
\]

(4)

The expressions appearing in (1) are due to (i), (ii) and (iii). The expression (2) is due to (i), (3) is due to (ii) and (3) is due to (iii). Similar tables can also be written for the matrix \(M_3\) Some of them can be seen in [4, 6, 7, 8, 10].

2.2 Second Approach

Following [2, 3], we use the following correspondence for the nucleotides and two-bit Gray codes:

\[
\begin{align*}
C & \sim \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \\
A & \sim \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \\
T & \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } G \sim \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \\
\end{align*}
\]

The genetic code-based matrix, which will contain all nucleotide strings of length \(n\) is defined as \(M_n\). The Gray code sequences represented by \(M_n\) will be denoted by a \(2^n \times 2^n\) matrix. Here are corresponding Gray code representations

\[
M_1 := \begin{bmatrix}
C & A \\
T & G \\
\end{bmatrix} \sim \begin{bmatrix}
\begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\
\begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
\end{bmatrix} \sim \begin{bmatrix}
0 & 1 \\
0 & 1 \\
\end{bmatrix}.
\]

In information theory, the Hamming distance between two strings of equal length is the number of positions for which the corresponding symbols are different. Put another way, it measures the minimum number of substitutions required to change one into the other, or the number of errors that transformed one string into the other. Thus we observe that the Hamming distances of letters \(C\) and \(G\) is 0 and of letters \(A\) and \(T\) is 1. Replacing the same in the other cases we have

\[
M_2 := \begin{bmatrix}
CC & AC & TC & GC \\
CA & AA & TA & GA \\
CT & AT & TT & GT \\
CG & AG & TG & GG \\
\end{bmatrix} \sim \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 2 & 2 & 1 \\
1 & 2 & 2 & 1 \\
0 & 1 & 1 & 0 \\
\end{bmatrix},
\]

and

\[
M_3 := \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 2 & 2 & 1 \\
1 & 2 & 2 & 1 & 2 & 3 & 3 & 2 \\
1 & 2 & 2 & 1 & 2 & 3 & 3 & 2 \\
1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 \\
1 & 2 & 2 & 1 & 0 & 1 & 1 & 0 \\
2 & 3 & 3 & 2 & 1 & 2 & 2 & 1 \\
2 & 3 & 3 & 2 & 1 & 2 & 2 & 1 \\
1 & 2 & 2 & 1 & 0 & 1 & 1 & 0 \\
\end{pmatrix}.
\]
In the theory of discrete signal processing as a fundamental operation for binary variables, modulo-2 addition is utilized broadly. By definition, the modulo-2 addition of two numbers written in binary notation is made in a bitwise manner in accordance with the following rules:

\[
0 + 0 = 0, \quad 1 + 0 = 1, \quad 0 + 1 = 1, \quad 1 + 1 = 0
\]

For example, modulo-2 addition of two binary numbers 110 and 101, gives the result 110 ⊕ 101 = 011(3), where 3 is the decimal representation of 011. In case of 10 and 01, we have 10 ⊕ 01 = 11(3), where 3 is the decimal representation of 11(⊕ is the symbol for modulo-2 addition. The distance in this symmetry group is known as the Hamming distance. The modulo-2 addition of any two binary numbers always results in a new number from the same series. If any system of elements demonstrates its connection with diadic shifts, it indicates that the structural organization of its system is related to the logic of modulo-2 addition. In particular we have

\[
M_1 := \begin{bmatrix} C & A \\ T & G \end{bmatrix} \sim \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \end{bmatrix}
\]

\[
M_2 := \begin{bmatrix} CC & AC & TC & GC \\ CA & AA & TA & GA \\ CT & AT & TT & GT \\ CG & AG & TG & GG \end{bmatrix} \sim \begin{bmatrix} 00 & 10 & 10 & 00 \\ 01 & 11 & 11 & 01 \\ 01 & 11 & 11 & 01 \\ 00 & 10 & 10 & 00 \end{bmatrix}
\]

and

\[
M_3 := \begin{bmatrix} 000 & 100 & 100 & 000 & 010 & 110 & 110 & 010 \\ 001 & 101 & 101 & 001 & 011 & 111 & 111 & 011 \\ 001 & 101 & 101 & 001 & 011 & 111 & 111 & 011 \\ 000 & 100 & 100 & 000 & 010 & 110 & 110 & 010 \\ 010 & 110 & 110 & 010 & 000 & 100 & 100 & 000 \\ 011 & 111 & 111 & 011 & 001 & 101 & 101 & 001 \\ 011 & 111 & 111 & 011 & 001 & 101 & 101 & 001 \\ 010 & 110 & 110 & 010 & 000 & 100 & 100 & 000 \end{bmatrix}
\]

The results are obtained by using the binary operations given above for example, \(GT \sim \begin{bmatrix} 11 \\ 10 \end{bmatrix} \sim 01 \), i.e., \(11 \oplus 10 = 01 \), \(ACT \sim \begin{bmatrix} 001 \\ 100 \end{bmatrix} \sim 101 \), i.e., \(001 \oplus 100 = 101 \), etc. The decimal transformations are

\[
(00)_2 \sim 0, \quad (01)_2 \sim 1, \quad (10)_2 \sim 2, \quad (11)_2 \sim 3
\]

and

\[
(000)_2 \sim 0, \quad (001)_2 \sim 1, \quad (010)_2 \sim 2, \quad (011)_2 \sim 3
\]

\[
(100)_2 \sim 4, \quad (101)_2 \sim 5, \quad (110)_2 \sim 6, \quad (111)_2 \sim 7
\]

This gives

\[
M_2 := \begin{bmatrix} 0 & 2 & 0 \\ 2 & 2 & 0 \\ 1 & 3 & 1 \\ 3 & 3 & 1 \\ 0 & 2 & 2 \end{bmatrix}
\]

and

\[
M_3 := \begin{bmatrix} 0 & 4 & 4 & 0 & 2 & 6 & 6 & 2 \\ 1 & 5 & 5 & 1 & 3 & 7 & 7 & 3 \\ 1 & 5 & 5 & 1 & 3 & 7 & 7 & 3 \\ 0 & 4 & 4 & 0 & 2 & 6 & 6 & 2 \\ 2 & 6 & 6 & 2 & 0 & 4 & 4 & 0 \\ 3 & 7 & 7 & 3 & 1 & 5 & 5 & 1 \\ 3 & 7 & 7 & 3 & 1 & 5 & 5 & 1 \\ 2 & 6 & 6 & 2 & 0 & 4 & 4 & 0 \end{bmatrix}
\]
3 Reconfiguration Tables and Magic Squares

This section deals with the reconfigurations of matrices given above. These reconfigurations are made in such a way that using the notations given in section 2.1, lead use to magic squares or bimagic squares. Here below are the definitions of magic and bimagic squares

- A **magic square** is a collection of numbers put as a square matrix, where the sum of element of each row, each column and two principal diagonals are the same sum. For simplicity, let us write it as S_1

- **Bimagic square** is a magic square where the sum of squares of each element of rows, columns and two principal diagonals are the same. For simplicity, let us write it as S_2.

3.1 Reconfiguration Tables of order 4x4

Let us reconsider the matrix M_2 as

$$M_2^{4 \times 4} := \begin{bmatrix} AT & TG & CC & GA \\ CA & GC & AG & TT \\ GG & CT & TA & AC \\ TC & AA & GT & CG \end{bmatrix}.$$ \hspace{1cm} (5)

In the above configuration, we have permutations of letters C, A, T and G are the first and second places, in various situations, for example, in each row, in each column, main diagonals, each group of order 2×2, middle group of order 2×2, four corner elements, symmetrical diagonals, etc. These configurations are of the following type

$$\begin{bmatrix} AT & TG \\ CA & GC \end{bmatrix}, \begin{bmatrix} GC & AG \\ CT & TA \end{bmatrix}, \begin{bmatrix} CA & GC & AG & TT \end{bmatrix}, \begin{bmatrix} CC & AG \\ TA & GT \end{bmatrix}, \text{etc.}$$

Here below are 20 combinations where the first and second members are the permutations of the letters C, A, T and G:

1	2	3	4	5	5	5	5	9	9	10	10	14	15	15	14	17	19	20	18
1	2	3	4	6	6	6	6	9	9	10	10	16	13	13	16	19	17	18	20
1	2	3	4	7	7	7	7	11	11	12	12	16	13	13	16	20	18	17	19
1	2	3	4	8	8	8	8	11	11	12	12	14	15	15	14	18	20	19	17

According to notations (i), (ii) and (iii) given in section 2.1, we have

0110	1011	0000	1101
23	34	11	42
7	12	1	14
0001	1100	0111	1010
12	41	24	33
2	13	8	11
1111	0010	1001	0100
44	13	32	21
16	3	10	5
1000	0101	1110	0011
31	22	43	14
9	6	15	4
In all the three situations we have magic squares of order 4×4 with $S_1^{4\times4} := 2222$, $S_1^{4\times4} := 110$ and $S_1^{4\times4} := 34$ respectively. The last one is well-known Khajurao magic square of order 4×4:

$$
\begin{array}{cccc}
7 & 12 & 1 & 14 \\
2 & 13 & 8 & 11 \\
16 & 3 & 10 & 5 \\
9 & 6 & 15 & 4
\end{array}
$$

The above magic square of order 4×4 is one of the most perfect magic square known in the literature. Its connections with genetic code can be seen in [11]. This is one of the very little work available on magic squares connecting DNA.

According to binary operations given in section 2.2, we have

$$
M_B^{4\times4} := \begin{bmatrix}
11 & 10 & 00 & 01 \\
01 & 00 & 10 & 11 \\
00 & 01 & 11 & 10 \\
10 & 11 & 01 & 00
\end{bmatrix} \sim \begin{bmatrix}
3 & 2 & 0 & 1 \\
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 2 \\
2 & 3 & 1 & 0
\end{bmatrix}.
$$

We observe that the matrix $M_B^{4\times4}$ is a composition of two mutually orthogonal diagonalize Latin squares, while the matrix $M_B^{4\times4}$ is not a diagonalize Latin square.

3.2 Reconfiguration Tables of order 8x8

Here we shall reorganize the CODON table or the matrix M_3 given in section 1 in such way that it becomes as magic square of order 8×8. We shall present two different ways:

1. Four magic squares of order 4×4 of the sum $S_1^{4\times4}$ having all the properties of the configuration matrix $M_3^{4\times4}$ given by (5).
2. Binagic square of order 8×8.

3.2.1 First Representations

Let us consider the following reorganization of matrix M_3 or the above CODON table:

CCC	TAT	GTG	AGA	CAA	TCG	GGT	ATC
GTA	AGG	CCT	TAC	GGC	ATT	CAG	TCA
AGT	GTC	TAA	CCG	ATG	GGA	TCC	CAT
TAG	CCA	AGC	GTC	TCT	CAC	AIA	GGG
CTG	TGA	GCC	AAT	CTG	TTT	AAG	GAG
GCT	AAC	CTA	GGT	GAG	ACA	CGC	TTT
AAA	GCG	TGT	CTC	ACC	GAT	Ttg	CGA
TGC	CTT	AAG	GCA	TTA	CGG	ACT	GAC

In the above configuration we have the same properties of the magic square of order 4×4 given by (5), i.e., there are many permutation of the letters C, A, T and G in the first, second and third places. Each block of order 4×4, half-row, half-column, half-principle diagonals etc. are also follow the same property. There are much more combinations of this type in the above configuration. In another way we can say there is a uniform distributions of letters C, A, T and G. Using the notations (i), (ii) and (iii) given in section 2.1, we have
The above table brings three different magic squares of order 8×8, i.e., in each case we have $S_{1}^{8 \times 8} := 444444$, $S_{1}^{8 \times 8} := 2220$ and $S_{1}^{8 \times 8} := 260$ respectively. Moreover, the above magic square is also bimagic in columns, i.e., for each column we have $S_{2}^{8 \times 8} := 44893328844$, $S_{2}^{8 \times 8} := 717060$ and $S_{2}^{8 \times 8} := 11180$ respectively. Also, each block of order 4×4 is a magic square with $S_{1}^{4 \times 4} := 222222$. Sum of each block of order 2×2 also has the same sum as of $S_{1}^{4 \times 4}$.

3.2.2 Second Representation

We observe that the above magic square is bimagic only in columns. Here below we shall present a little different representation of CODON table resulting in bimagic square of order 8×8. Let us consider the following configuration:

CGG	TTC	TCG	CAC	ATT	GGA	GAT	ACA
AFA	GGT	GAA	ACT	CGC	TGG	TCC	CAG
CCC	TAG	TGC	CTG	AAA	GCT	GTA	ACT
AAT	GCA	GTG	AGA	CCG	TAC	TGG	CTC
TAA	CCT	CIA	TGT	GCC	AAG	AGC	GTG
GCG	AAC	AGG	GTC	TAT	CCA	CTT	TGA
TTT	CGA	CAT	TCA	GAG	ATC	ACG	GAC
GCC	ATG	ACC	GAG	TTA	CGT	CAA	TCT

In the above configuration we have permutations of four letters C, A, T and G only in the first and third place in each block of order 2x2, half-row, half-column, half-principal diagonals etc. Again, using the notations (i), (ii) and (iii) given in section 2.1, we have
The idea of Watson and Crick [12], they considered it as coefficients and:

3.4 Hamming Distances and Binomial Coefficients

In the first representation, we have bimagic many other combinations in the above table giving connection with (a), (b) and (c) each block of order 2.

Many authors [5, 6, 9] made connections with this prime number. Both the representations we have three cases. In the first, we can write half-sum of rows, columns and two principal diagonal as multiple of 37, i.e., in the first case we have \(S_1^{8\times8} = 444444 = 12012 \times 37 \);

(b) \(S_2^{8\times8} = 4489328844 = 1213333212 \times 37 \); and

(c) \(S_3^{8\times8} = 260; \quad S_2^{8\times8} = 11180 \).

We observe that (a) and (b) both \(S_1^{8\times8} \) and \(S_2^{8\times8} \) are multiple of 37. This is not true in case of (c). Still, in (a), (b) and (c) each block of order 2 \(\times \) 4 is also bimagic

3.3 Connections with Prime Number 37

Many authors [5, 6, 9] made connections with prime number 37. Here also we shall bring some interesting connections with this prime number. Both the representations we have three cases. In the first, we can write the sum \(S_1^{8\times8} = 444444 = 12012 \times 37 \) In the second case we have \(S_2^{8\times8} = 2220 = 37 \times 60 \). Also, in both cases these we have half-sum of rows, columns and two principal diagonal as multiple of 37, i.e., in the first case we have \(\frac{1}{2} S_1^{8\times8} = 222222 = 6 \times 1001 \times 37 \), and in the second case we have \(\frac{1}{2} S_2^{8\times8} = 1110 = 30 \times 37 \). There are many other combinations in the above table giving connection with 37. For example each block of 2 \(\times \) 2 is of sum \(\frac{1}{2} S_1^{8\times8} \). In case of \(S_2^{8\times8} \) we have \(S_2^{8\times8} = 4489328844 = 1213333212 \times 37 \) and \(S_2^{8\times8} = 717060 = 37 \times 19380 \). In the first representation, we have bimagic sum only in each column.

3.4 Hamming Distances and Binomial Coefficients

The idea of Hamming distances is given in section 2.2. Here we consider more representations to bring binomial coefficients and and bimagic squares. Kappraff and Adamson [4] considered \(C = G \) and \(A = U/T \). Following the idea of Watson and Crick [12], they [4] considered it as \(A = T = 2 \) and \(C = G = 3 \). For simplicity,
let us consider here $A = T = a$ and $C = G = b$, where it is understood that $TTG = a \times a \times b = a^2b$, $AGC = a \times b \times b = ab^2$, etc. Accordingly, we have

(i) For $n = 1$:

$$
\begin{array}{c|cc}
0 & 1 \\
\hline
b & a \\
1 & 0 \\
a & b \\
\end{array}
$$

(ii) For $n = 2$:

$$
\begin{array}{c|cc|cc}
1 & 2 & 0 & 1 & 1 \\
\hline
ab & b^2 & a^2 & ab & 1 \\
0 & 1 & 2 & a^2 & 1 \\
1 & 0 & 1 & ab & b^2 \\
a & ab & 2 & b^2 & 1 \\
\end{array}
$$

(iii) For $n = 3$: According to configuration given in section 3.2.1, we have

$$
\begin{array}{c|cc|cc|cc|cc|cc|cc|cc|cc}
0 & a^3 & 3 & 1 & 2 & 2 & 1 & 2 & 2 & a^2b \\
\hline
3 & b^3 & a^{b^2} & 1 & 2 & a^2b & a^2b & 1 & ab^2 & ab^2 \\
2 & a^{b^2} & ab & 1 & 2 & 1 & 3 & 0 & a^2b & a^2b \\
2 & a^2b & 0 & 1 & 2 & ab^2 & a^2b & ab^2 & ab^2 \\
2 & a^2b & ab^2 & 1 & 2 & ab^2 & a^2b & 0 & 1 & 3 & ab^2 \\
1 & ab^2 & 2 & 0 & 3 & ab^2 & a^3 & 1 & ab^2 & a^3 \\
1 & ab^2 & 3 & 0 & 0 & a^3 & a^3 & 1 & ab^2 & 0 & 3 & b^3 \\
3 & b^3 & ab^2 & 2 & 1 & ab^2 & a^2b & 2 & a^2b & 2 & a^2b & 1 & ab^2 \\
1 & ab^2 & 2 & 0 & 3 & ab^2 & a^3 & 0 & a^3 & 3 & ab^2 \\
\end{array}
$$

According to configuration given in section 3.2.2 we have
The interesting fact in the above tables is that in the first case, it is symmetric in rows, columns and principal diagonals, while it is not true in the second case. In the second case it holds only in rows. The tables studied above gives us the following frequency distributions:

n	Hamming distances	Frequency distributions	Binomial coefficients	Sum
1	0 1 0 1 2 1 1 3	2^1 = 2 a b 1 2 a 2	(a + b)^1	
2	0 1 2 1 1 0 1 3	2^2 = 4 a^2 2ab b^2 2	(a + b)^2	
3	0 1 2 1 1 3 2 1	2^3 = 8 a^3 3a^2b 3ab^2 b^3 2	(a + b)^3	

For more properties of above table refer to [H].

3.5 Binary Operations

Considering the notations and binary operations given in section 2.2, i.e., $CGT := \begin{pmatrix} 011 \\ 010 \end{pmatrix} \sim 001$, $ATC := \begin{pmatrix} 010 \\ 100 \end{pmatrix} \sim 110$, etc. This operations gives us eight possibilities, i.e., 000, 001, 010, 011, 100, 101, 110 and 111. Let us represent 000 → a, 001 → b, 010 → c, 011 → d, 100 → e, 101 → f, 110 → g and 111 → h. Instead of decimal representations as 0, 1, 2, 3, 4, 5, 6 and 7 we have considered here the letters a, b, c, d, e, f, g and h respectively. According to section 3.2.1, we have the following table:

a	b	c	d	e	f	g
d	e	b	g	a	h	c
f	c	h	a	g	b	e
g	b	e	d	f	c	h
e	f	a	h	b	g	d
b	g	d	e	c	f	a
h	a	f	c	e	d	g
c	d	g	b	h	a	f
We observe that we have 16 matrices of order 2×2 divided in two groups formed by the elements $(a, d, e, h) \sim (000, 011, 100, 111)$ and $(b, c, f, g) \sim (001, 010, 101, 110)$. The above configuration is well-known diagonalize Latin square of order 8×8. In the second case, i.e., for the section 3.2.2, we don’t have symmetric configuration. See below:

![Matrix Configuration](attachment:image.png)

4 Restriction Enzymes

There are (ref. Reiner [11]) 402 known restriction enzymes. Out of these 402 enzymes, 108 cut at a tetrameric sequence containing the four different bases. Of these 108, 100% have either AT or GC dimers (or both) in the sequence. None of 108 enzymes have G apart from C and A apart from T, as in $AGTC$. Thus, all 108 enzymes cut at the tetrameric sequence which is complementary to its reverse cyclic permutation. The specific antiparallel sequences and the enzymes at which they cut are listed below. Reiner [11] considered following two different combinations of four letters having together, either $AT − TA$ or $GC − CG$ specifying antiparallel enzymes. See the table below:

Antiparallel $A − T, G − C$ in same orientation (88)	Antiparallel $A − T, G − C$ in opposite orientation (20)
$AGCT (9)$	$TAGC (0)$
$CGTA (0)$	$ACGT (2)$
$TACG (0)$	$GTA C (4)$
$CTAG (9)$	$GCTA (0)$
$GCAT (1)$	$TGC A (11)$
$TCGA (32)$	$ATCG (0)$
$ATGC (0)$	$CATG (3)$
$GATC (45)$	$CGAT (0)$

Interestingly, the above pairs follows the same cyclic permutations, i.e., for example, $A − G − C − T − A − G − C$.

4.1 Distribution of four Letter Combinations

Very less work can be seen in literature having the combinations of four letters in four places. Most of the work is towards codon representation given above. Thus we observe that we $4^4 = 256$ possibilities of writing combinations of four letters in four places. Here below is a configuration 16×16 having all the 256 possibilities.
The construction of above table is based on the same techniques of the magic of $M_{4 \times 4}^4$. It has the same properties as of $M_{4 \times 4}^4$. Moreover, the antiparallel pairs appearing in the above table are in the same block in each case. They lies in the last eight blocks of order 4×4.

4.2 Bimagic Squares of Order 16x16

Let us consider now the representations (i) and (ii) of the letters C, A, T and G as given in section 2.1. These representations lead us to following two bimagic square of order 16×16.

4.2.1 First representation

This representation is according (i) given in section 2.1, by choosing $C = 00$, $A = 01$, $T = 10$ and $G = 11$. This we have written in two parts:

Part 1:

00000000	10011001	11101110	01110111	00010110	10001111	11110000	01100001
11100111	01111110	00001001	10001000	11110001	01101000	00011111	10000110
01111001	11100000	10010111	00001110	01101111	11110110	10000001	00011000
10011110	00000111	01100000	11101001	10001000	00010001	01101110	11111111
00101101	10110100	11000011	01011000	00110011	10100110	11010101	01000110
11001010	01010011	00100100	10111011	11011100	01001010	00110100	10101101
01010100	11001101	01100100	00100011	10111011	11011100	11010101	00110101
10110000	00100110	01011101	11001000	01001101	10110010	10111100	01010100
00110011	10111110	11101100	01000000	01001000	10110101	10110011	01001110
10010000	10110100	11101101	11001100	01000100	10101011	10110111	01001100
Part 2:

00101011	10110010	11000101	01011100	00111101	10100100	11010111	01011010	00110011	10101101	01010101	01100101	11100110
11011000	01010101	00100010	10111011	11010110	01000011	00110100	11110111	01001010	00110010	11010100	01100100	11111100
01010100	10110011	10111100	00100010	01000101	10100111	01001101	00110110	11011000	00010110	11101100	01101100	10001110
11001111	00000101	01100110	11110111	10001101	01010101	00101100	11101001	01000110	00111000	10011010	00100010	11111100

Let us combine the parts 1 and 2 as given below

\[
\begin{array}{|c|c|}
\hline
\text{Part 1} & \text{Part 2} \\
\hline
\end{array}
\]

This gives us a bimagic square of order 16 \(\times\) 16 with \(S_{16\times16}^1 := 88888888\) and \(S_{16\times16}^2 := 897867554657688\). Each block of order 4 \(\times\) 4 is also a magic square with \(S_{4\times4}^1 := 22222222\). Square of sum of each term in each block of order 4 \(\times\) 4 is also \(S_{16\times16}^{2,2} := 897867554657688\). Here only \(S_{16\times16}^{2,2}\) is divisible by 37 i.e., \(S_{16\times16}^{2,2} := 897867554657688 = 24266690666424 \times 37\).

4.2.2 Second representation

This representation is according to (ii) given in section 2.1 by choosing \(C = 1\), \(A = 1\), \(T = 3\) and \(G = 4\).
Here again we have bimagic square of order 16×16 with $S_{16}^{16} = 444440$ and $S_{2}^{16} = 143634120$. Each block of order 4×4 is also a magic square with $S_{16}^{16} = 111110$. Square of sum of each term in of each block of 4×4 is also $S_{2}^{16} = 143634120$.

4.2.3 Third representation

Applying the change of base 2 to base 10 (decimal) in first case, i.e.,

$$(abdefgh)_{2} := a \cdot 2^{7} + b \cdot 2^{6} + c \cdot 2^{5} + d \cdot 2^{4} + e \cdot 2^{3} + f \cdot 2^{2} + g \cdot 2^{1} + h \cdot 2^{0}$$

then writing $(abdefgh)_{2} + 1$, we get the bimagic square of order 16×16 with sum $S_{16}^{16} = 2056$ and $S_{2}^{16} = 351576$. Also each block of order 4×4 is a magic square with sum $S_{4}^{16} = 514$.

Here again we have bimagic square of order 16×16 with $S_{16}^{16} = 444440$ and $S_{2}^{16} = 143634120$. Each block of order 4×4 is also a magic square with $S_{16}^{16} = 111110$. Square of sum of each term in of each block of 4×4 is also $S_{2}^{16} = 143634120$.

1	154	239	120	23	144	249	98	44	179	198	93	62	165	212	75
232	127	10	145	242	105	32	135	205	86	35	188	219	68	53	174
122	225	152	15	112	247	130	25	83	204	189	38	69	222	171	52
159	8	113	234	137	18	103	256	182	45	92	195	164	59	78	213
46	181	196	91	60	163	214	77	7	160	233	114	17	138	255	104
203	84	37	190	221	70	51	172	226	121	16	151	248	111	26	129
85	206	187	36	67	220	173	54	128	231	146	9	106	241	136	31
180	43	94	197	166	61	76	211	153	2	119	240	143	24	97	250
55	176	217	66	33	186	207	88	30	133	244	107	12	147	230	125
210	73	64	167	200	95	42	177	251	100	21	142	237	118	3	156
80	215	162	57	90	193	184	47	101	254	139	20	115	236	157	6
169	50	71	224	191	40	81	202	132	27	110	245	150	13	124	227
28	131	246	109	14	149	228	123	49	170	223	72	39	192	201	82
253	102	19	140	235	116	5	158	216	79	58	161	194	89	48	183
99	252	141	22	117	238	155	4	74	209	168	63	96	199	178	41
134	29	108	243	148	11	126	229	175	56	65	218	185	34	87	208

According to above three constructions the Reiner [11] table of antiparallelism is given by

Antiparallel	AGCT	CGTA	TACG	CTAG	GCAT	TCAG	AGTC	GATC	SUM
A-T, G-C	01110010	00110001	10010011	00010011	11001001	10001101	01010110	11010100	44444444
in same	2413	1432	3214	1324	4123	3142	2341	4231	22220
orientation	115	58	40	48	19	14	10	7	1028

Antiparallel	TAGC	ACCG	GTAC	GCTA	TGCA	ATCG	CATG	CGAT	SUM
A-T, G-C	10011001	01001110	11100100	11001001	10110001	01100011	00100111	10101110	44444444
in opposite	3241	2143	4321	4132	3412	2314	1234	1423	22220
orientation	157	79	229	202	178	100	28	55	1028

We have the same sum in both the situations, i.e., in the same as well as in the opposite orientation of the genetic letters.

4.3 Hamming Distances and Binomial Coefficients

Here also we shall consider more representations to bring Hamming distances and binomial coefficients. Using the same notations of section 3.4, we have the following table with Hamming distances and binomial coefficients:

Here we observe the symmetry in elements in each row, each column and each block of order 4×4. The same symmetry we have in principal diagonals too. This don't happened in case of order 8x8. Thus there is a straight relationship with the binomial coefficients and Hamming distances, i.e., $0 \rightarrow b^{1}$, $1 \rightarrow ab^{3}$, $2 \rightarrow a^{2}b^{2}$, $3 \rightarrow a^{3}b$ and $4 \rightarrow a^{4}$. Accordingly, we have the following frequency distribution table:
[Table]

- Frequency distribution

n	Hamming distances	Frequency distributions	Binomial coefficients	Sum
1	0 1	2^2 = 2	ab	(a + b)^2
2	0 1 2	2^2 = 4	a^2 2ab b^2	(a + b)^2
3	0 1 2 3	2^3 = 8	a^3 3a^2b 3ab^2 b^3	(a + b)^3
4	0 1 2 3 4	2^4 = 16	a^4 4a^3b 6a^2b^2 4ab^2 a^4	(a + b)^4
5	0 1 2 3 4 5	2^5 = 32	a^5 5a^4b 10a^3b^2 10a^2b^3 5ab^4 b^5	(a + b)^5
6	0 1 2 3 4 5 6	2^6 = 64	a^6 6a^5b 15a^4b^2 20a^3b^3 15a^2b^4 6ab^5 b^6	(a + b)^6

The above table allow us to extend the results for the next values of n. Some studies having combinations of four letters can be seen in [1].

5 Shannon’s Entropy and Genetic Tables

The idea of Shannon entropy is well-known in the literature on information theory. It is defined as

\[H(P) = - \sum_{i=1}^{n} p_i \log p_i \]

where \(P = (p_1, p_2, ..., p_n) \), \(p_i > 0 \), \(\sum_{i=1}^{n} p_i = 1 \) is a set of probability distribution associated with a random variable \(X = \{x_1, x_2, ..., x_n\} \). Applications of Shannon entropy to genetic code can be seen in many works. In [13, 14], authors introduce the idea of genome order index given by

\[S(P) = \sum_{i=1}^{n} p_i^2 \]

In Information theory the expression \(S(P) \) is famous as quadratic entropy. Thus based the magic squares given above we shall calculate Shannon entropy and genome order index. First, we shall transform values in probabilities dividing by sum of each row or column. Here we shall consider only the first case.
5.1 Shannon Entropy of Order 4x4

In section 3.1, we have three different kind of magic squares of order 4 × 4. The first one is with binary digits. In this let us divide the each value by the magic sum. This gives us the following probability distributions:

- **Probability distributions**

	0.4500	0.0050	0.0455	0.4995
0.0495	0.4955	0.4550	0.0000	
0.5000	0.0450	0.0045	0.4505	
0.0005	0.4545	0.4950	0.0500	

- **Shannon entropy**

Based on above probability distributions, let us calculate the values of Shannon entropy. The table below give these values.

	0.3683
0.0400	0.0114
0.0646	0.1511
0.1505	0.0606
0.0005	0.2567
0.0256	0.3783
0.0256	0.3783
0.0256	0.3716
0.0256	0.2667

We observe that the value of Shannon entropy varies from 0.2567 to 0.3777.

5.2 Shannon Entropy of Order 8x8

In sections 3.2.1 and 3.2.2, we have two different kinds of magic squares of order 8 × 8. The magic square appearing in section 3.2.2 is bimagic. In both the cases, we considered here below the first one with binary digits. In these cases let us divide the each value by their magic sum. This gives us the following probability distributions:

5.2.1 First case

Here below is a table for probability distributions based on the binary magic square of order 8 × 8 given in section 3.2.1.

- **Probability distribution**

	0.00000	0.22525	0.24977	0.02498	0.00023	0.22502	0.25000	0.02475
0.24975	0.02500	0.00020	0.22523	0.24998	0.02477	0.00025	0.22500	
0.02500	0.24975	0.22523	0.00020	0.02477	0.24998	0.22500	0.00025	
0.22525	0.00000	0.24977	0.22502	0.00023	0.02475	0.25000	0.02475	
0.00227	0.22748	0.24750	0.22725	0.00250	0.22725	0.24773	0.02252	
0.24752	0.02273	0.22750	0.22750	0.00225	0.22750	0.24775	0.00248	
0.02273	0.24752	0.22750	0.00225	0.02250	0.24775	0.22727	0.00248	
0.22748	0.00227	0.02275	0.24750	0.22725	0.00250	0.02252	0.24773	
• Shannon entropy

Based on above probability distributions, let us calculate the values of Shannon entropy. The table below give these values.

	0.0000	0.1458	0.1505	0.0400	0.0008	0.1458	0.1505	0.0398	0.6766
0.1505	0.0401	0.0001	0.1458	0.1505	0.0398	0.0009	0.1458	0.6734	
0.0400	0.1505	0.1458	0.0001	0.0398	0.1505	0.1458	0.0009	0.6734	
0.1458	0.0000	0.0400	0.1505	0.1458	0.0008	0.0398	0.1505	0.6732	
0.0060	0.1463	0.1501	0.0374	0.0065	0.1462	0.1501	0.0371	0.6797	
0.1501	0.0373	0.0060	0.1463	0.1501	0.0371	0.0065	0.1462	0.6796	
0.0374	0.1501	0.1463	0.0060	0.0371	0.1501	0.1462	0.0065	0.6796	
0.1463	0.0060	0.0374	0.1501	0.1462	0.0065	0.0371	0.1501	0.6797	
0.6761	0.6761	0.6761	0.6768	0.6768	0.6769	0.6769	0.6763		

We observe that the values of Shannon entropy varies from 0.6732 to 0.6797

5.2.2 Second case

In this case we shall deal with bimagic square given in section 3.2.2 with binary digits. The table below is the probability distributions table:

• Probability distribution

	0.00250	0.22725	0.22502	0.00023	0.02477	0.24998	0.24775	0.02250
0.02475	0.25000	0.24773	0.02252	0.00248	0.22727	0.22500	0.00025	
0.00000	0.22525	0.22748	0.00227	0.02273	0.24752	0.24975	0.02500	
0.02275	0.24750	0.24977	0.02498	0.00002	0.22523	0.22750	0.00225	
0.22523	0.00002	0.00225	0.22750	0.24750	0.02275	0.02498	0.24977	
0.24752	0.02273	0.02500	0.24975	0.22525	0.00000	0.00227	0.22748	
0.22727	0.00248	0.00025	0.22500	0.25000	0.02475	0.02252	0.24773	
0.24998	0.02477	0.02250	0.24775	0.22725	0.00250	0.00023	0.22502	

• Shannon entropy

	0.0065	0.1462	0.1458	0.0008	0.0398	0.1505	0.1501	0.0371	0.6763
0.0398	0.1505	0.1501	0.0371	0.0065	0.1462	0.1458	0.0009	0.6769	
0.0000	0.1458	0.1463	0.0060	0.0374	0.1501	0.1505	0.0400	0.6761	
0.0374	0.1501	0.1505	0.0400	0.0001	0.1458	0.1463	0.0060	0.6761	
0.1458	0.0001	0.0060	0.1463	0.1501	0.0374	0.0400	0.1505	0.6761	
0.1501	0.0373	0.0401	0.1505	0.1458	0.0000	0.0060	0.1463	0.6761	
0.1462	0.0065	0.0009	0.1458	0.1505	0.0398	0.0371	0.1501	0.6769	
0.1505	0.0398	0.0371	0.1501	0.1462	0.0065	0.0008	0.1458	0.6768	
0.6763	0.6763	0.6766	0.6766	0.6764	0.6763	0.6766	0.6766	0.6763	
We observe that the values of Shannon entropy varies from 0.6761 to 0.6769. Thus conclude that in the second case the variation is much less than in the first case. Moreover in the second case the values are very much close to each other. Since we know that magic square with probability distributions is bimagic square. In this case we have $S_{2^4 \times 4} := S(P) = 0.2273$

5.3 Shannon Entropy of Order 16×16

Here we shall give directly the Shannon entropy table based on the first representation of bimagic square of order 16×16 given in section 4.

P	S

In this case, the sum of the lines or columns are very much near to each other. Thus we observe that in case of bimagic squares of order 8×8 and 16×16, sums representing Shannon entropy are very much close to each other in each case. In both the cases the Shannon entropy is same upto three digit decimal. This gives that the bimagic squares give better results. The above magic square of order 16×16 of probability distributions is bimagic square. In this case we have $S_{2^4 \times 4} := S(P) = 0.11364$ This value is much more less than the value of Shannon’s entropy, i.e., approximately, $H(P) = 0.9775$.

References

[1] Baldi, P. and Baisnee, P.F., Sequence Analysis by Additive Scale: DNA Structure for Sequences and Repeat of all Lengths, Bioinformatics, 16(10)(2000), 865-889.

[2] Crowder, T. and Li, Chi-Kwong, Studying Genetic Code by a Matrix Approach, Crowder, T. and Li, Chi-Kwong, Studying Genetic Code by a Matrix Approach, Bulletin of Mathematical Biology, 72(4)(2010), 953-972.

[3] He, M., Petoukhov, S. V. and Ricci, P., Genetic code, hamming distance and stochastic matrices, Bulletin for Mathematical Biology, 66(2004), 1405–1421.

[4] Kappraff, J. and G.W. Adamson, Generalized Genomic Matrices, Silver Means. And Pythagorean Triples, Forma, 24(2009), 41-48.

[5] Négadi, T., Symmetry Groups for the Rumer-Konopel’chenko-Shcherbak “Bisections” of the Genetic Code and Applications, Internet Electronic Journal of Molecular Design, 3(2004), 247-270.

[6] Négadi, T., A Connection between Shcherback’s Arithmetical and Yang’s 28-gon Polyhedral “view” of the Genetic Code, Internet Electronic Journal of Molecular Design, 2(2003), 247-270.

[7] Petoukhov S.V. (2008) Matrix genetics, part 1: permutations of positions in triplets and symmetries of genetic matrices. arXiv:0803.0888

[8] Petoukhov S.V. (1999). Genetic Code and the Ancient Chinese Book of Changes, Symmetry: Culture and Science, Vol. 10(3-4)(1999), 211-226
[9] ShCherbak, V.I., Arithmetic inside the universal genetic code, *Biosystems*, 70(3)(2003), 187-209.

[10] Stambuk, N. Universal Metric Properties of Genetic Code, *Croatica Chemica Acta*, 73 (4)(2000), 1123-1139.

[11] Reiner, B.S., Cyclic Permutations in the Genetic Code, the 4x4 Magic Square and the Antiparallelism of DNA, *J. Theor. Biology*, 110(1984), 681-690.

[12] Watson, J. D. and F.H.C. Crick, A structure for deoxyribose nucleic acid. *Nature*, 171(1953), 737-738

[13] Zhang, C.T., F. Gao ande R. Zhang, Segmentation Algorithm for DNA Sequences, *Physical Review*, E72(2005), 041917.

[14] Zhang, Y., Relations between Shannon Entropy and Genome Order Index in Segmenting DNA Sequences, *Physical Review*, E79(2009), 041918.