On a Result of Atkin and Lehner

David Carlton

March 22, 1999

1 Introduction

We wish to give a new proof of one of the main results of Atkin-Lehner [1]. That paper depends, among other things, on a slightly strengthened version of Theorem 1 below, which characterizes forms in $S_k(\Gamma_0(N))$ whose Fourier coefficients satisfy a certain vanishing condition. Our proof involves rephrasing this vanishing condition in terms of representation theory; this, together with an elementary linear algebra argument, allows us to rewrite our problem as a collection of local problems. Furthermore, the classical phrasing of Theorem 1 makes the resulting local problems trivial; this is in contrast to the method of Casselman [3], whose local problem relies upon knowledge of the structure of irreducible representations of $GL_2(\mathbb{Q}_p)$. Our proof is therefore much more accessible to mathematicians who aren’t specialists in the representation theory of p-adic groups; the method is also applicable to other Atkin-Lehner-style problems, such as the level structures that were considered in Carlton [2].

Our proof of Theorem 1 occupies Section 2. In Section 3, we explain the links between this Theorem and the rest of Atkin-Lehner theory; in particular, we show that Theorem 1, together with either the Global Result of Casselman [3] or Theorem 4 of Atkin-Lehner [1], can be used to derive all of the important results of Atkin-Lehner theory.

2 The Main Theorem

Recall that, if $N|M$ and $d|(M/N)$, there is a map $i_d: M_k(\Gamma_0(N)) \to M_k(\Gamma_0(M))$ defined by

$$c_m(i_d(f)) = \begin{cases} 0 & \text{if } d \not| m \\ c_{m/d}(f) & \text{if } d|m. \end{cases}$$

This map sends cusp forms to cusp forms and eigenforms to eigenforms (with the same eigenvalues); up to multiplication by a constant, it is given by $f \mapsto f|\left(\frac{d}{0 1}\right)$.

Theorem 1. Let $f \in M_k(\Gamma_0(N))$ be such that $c_m(f) = 0$ unless $(m, N) > 1$. Then $f = \sum_{p|N} i_p(f_p)$, where p varies over the primes dividing N and where
\(f_p \in M_k(\Gamma_0(N/p)) \). Furthermore, if \(f \) is a cusp form (resp. eigenform) then the \(f_p \)'s can be chosen to be cusp forms (resp. eigenforms with the same eigenvalues as \(f \)).

Our proof rests on two elementary linear algebra lemmas:

Lemma 2. Let \(V_1, \ldots, V_n \) be vector spaces and, for each \(i \), let \(f_i \) be an endomorphism of \(V_i \). Then
\[
\ker(f_1 \otimes \cdots \otimes f_n) = \sum_{i=1}^n V_1 \otimes \cdots \otimes (\ker f_i) \otimes \cdots \otimes V_n.
\]

Proof. We can easily reduce to the case \(n = 2 \). If we write \(V_i = (\ker f_i) \oplus V_i' \) then \(f_i|_{V_i'} \) is an isomorphism onto its image, and
\[
V_1 \otimes V_2 = ((\ker f_1) \otimes (\ker f_2)) \oplus ((\ker f_1) \otimes V_2') \oplus (V_1' \otimes (\ker f_2)) \oplus (V_1' \otimes V_2').
\]
We see that \(f_1 \otimes f_2 \) kills the first three factors, and is an isomorphism from the fourth factor onto its image; \(\ker(f_1 \otimes f_2) \) is therefore the sum of the first three factors, which is what we wanted to show. \(\square \)

Lemma 3. Let \(V_1, \ldots, V_n \) be vector spaces and, for each \(i \), let \(V_i' \) and \(V_i'' \) be subspaces of \(V_i \). Then
\[
\left(\sum_{i=1}^n V_1 \otimes \cdots \otimes V_i' \otimes \cdots \otimes V_n \right) \cap (V_1'' \otimes \cdots \otimes V_n')
= \sum_{i=1}^n V_1'' \otimes \cdots \otimes (V_i' \cap V_i'') \otimes \cdots \otimes V_n''.
\]

Proof. Again, we can assume that \(n = 2 \). Write \(V_i = V_{i1} \oplus V_{i2} \oplus V_{i3} \oplus V_{i4} \) where \(V_{i1} = V_i' \cap V_i'' \), \(V_i' = V_{i1} \oplus V_{i2} \), and \(V_i'' = V_{i1} \oplus V_{i3} \). Then \(V_1' \otimes V_2 + V_1 \otimes V_2' \) is the direct sum of those \(V_1' \otimes V_2 \)'s where at least one of \(j \) or \(k \) is in the set \(\{1, 2\} \). Also, \(V_1'' \otimes V_2'' \) is the direct sum of the \(V_1' \otimes V_2 \)'s where \(j \) and \(k \) are both in the set \(\{1, 3\} \). Thus, their intersection is \((V_{11} \otimes V_{21}) \oplus (V_{11} \otimes V_{23}) \oplus (V_{13} \otimes V_{21}) \), as claimed. \(\square \)

Proof of Theorem 1. If \(f \in M_k(\Gamma_0(N)) \) then \(f|_{\left(\begin{smallmatrix} N^{-1} & 0 \\ 0 & 1 \end{smallmatrix} \right)} \in M_k(\Gamma^0(N)) \), where we define the group \(\Gamma^0(N) \) by
\[
\Gamma^0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \ \middle| \ b \equiv 0 \pmod{N} \right\}.
\]
Furthermore, up to multiplication by a constant, \(f|_{\left(\begin{smallmatrix} N^{-1} & 0 \\ 0 & 1 \end{smallmatrix} \right)} \) has the same Fourier coefficients as \(f \), except that we have to take the \(q \)-expansion with respect
to $e^{2\pi \sqrt{-1}/N}$ instead of $e^{2\pi \sqrt{-1}}$. Our Theorem, then, is equivalent to the statement that, if $f \in M_k(\Gamma^0(N))$ satisfies the condition

$$c_m(f) = 0 \text{ unless } (m, N) > 1$$

then $f = \sum_{p\mid N} f_p$ where $f_p \in M_k(\Gamma^0(N/p))$.

Let $M = M_k(\Gamma(N))$; it comes with an action of $\text{SL}_2(\mathbb{Z}/N\mathbb{Z})$. If $f \in M$ and $d\mid N$, define $\pi_d(f)$ to be $\sum_{d\mid m} c_m(f)q^m$. Then $\pi_d(f) \in M$: in fact,

$$\pi_d(f) = \frac{1}{d} \sum_{b=0}^{d-1} f|\begin{pmatrix} 1 & bN/d \\ 0 & 1 \end{pmatrix}.$$

The principle of inclusion and exclusion implies that f satisfies (1) if and only if

$$f = \sum_{p\mid N} \pi_p(f) - \sum_{p_1, p_2\mid N \text{ and } p_1 < p_2} \pi_{p_1p_2}(f) + \cdots.$$

Thus, if V is an irreducible $\text{SL}_2(\mathbb{Z}/N\mathbb{Z})$-representation contained in M, it suffices to prove our Theorem for a form in V, since the conditions of our Theorem can be expressed in terms of the action of $\text{SL}_2(\mathbb{Z}/N\mathbb{Z})$.

Let $N = \prod_{i=1}^n p_i^{n_i}$ be the prime factorization of N. Then $\text{SL}_2(\mathbb{Z}/N\mathbb{Z}) = \prod_i \text{SL}_2(\mathbb{Z}/p_i^{n_i}\mathbb{Z})$, so $V = \bigotimes_i V_i$ where V_i is a representation of $\text{SL}_2(\mathbb{Z}/p_i^{n_i}\mathbb{Z})$. Also, π_{p_i} acts as the identity on the V_j for $j \neq i$. So if we define

$$\pi(f) = f - \sum_{p\mid N} \pi_p(f) + \sum_{p_1, p_2\mid N \text{ and } p_1 < p_2} \pi_{p_1p_2}(f) - \cdots$$

then $\pi = (1 - \pi_{p_1}) \otimes \cdots \otimes (1 - \pi_{p_n})$ and $\ker(\pi)$ is the space of forms satisfying (1). Thus, Lemma 3 implies that

$$\ker(\pi) = \sum_{i=1}^n V_i \otimes \cdots \otimes (\ker(1 - \pi_{p_i})) \otimes \cdots \otimes V_n.$$

Turning now to the question of a form’s being in $M_k(\Gamma^0(N))$, that is the case if and only if the form is both in $M_k(\Gamma(N))$ and is invariant under the image $B(N)$ of $\Gamma^0(N)$ in $\text{SL}_2(\mathbb{Z}/N\mathbb{Z})$. Also, $B(N) = \prod_i B(p_i)$. Thus, setting V_i' to be the space of $B(p_i)$-invariant elements of V_i, Lemma 3 implies that an element of V is both in $\ker \pi$ and invariant under $B(N)$ if and only if it is in

$$\sum_{i=1}^n V_i'' \otimes \cdots \otimes (V_i' \cap V_i'') \otimes \cdots \otimes V_n''.$$

But if $v_i \in V_i$ is in $V_i' \cap V_i''$ then it is invariant both under $B(p_i)$ and under projection to the subspace of invariants under the cyclic subgroup generated by $(\begin{smallmatrix} 1 & p_i^{n_i-1} \\ 0 & 1 \end{smallmatrix})$; this last condition is equivalent to its being invariant under
Thus, our vector v_i is invariant under

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}/p_i^n\mathbb{Z}) \mid b \equiv 0 \pmod{p_i^{n-1}} \right\},$$

and $V_i' \otimes \cdots \otimes (V_i' \cap V_i'') \otimes \cdots \otimes V_n''$ is the set of invariants under

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}/N\mathbb{Z}) \mid b \equiv 0 \pmod{N/p_i} \right\},$$

i.e. the elements of $V \cap M_k(\Gamma_0(N/p_i))$, completing our proof.

The cusp form case is similar, replacing M by the space of cusp forms. The eigenform case then follows from the facts that the Hecke operators are simultaneously diagonalizable and that their action is preserved by the operators i_p. □

3 Newforms, Oldforms, and All That

In this Section, we explain the relation between Theorem 1 and the rest of Atkin-Lehner theory. We shall see that the whole theory follows from Theorem 1 together with facts about L-series associated to modular forms, as expressed by Theorem 4 of Atkin-Lehner [1] or the Global Result of Casselman [3]. We claim no originality in the methods used in this Section.

Define $K_0(N)$ to be the subspace of $f \in S_k(\Gamma_0(N))$ such that $c_m(f) = 0$ unless $(m, N) > 1$: thus, $K_0(N)$ is the subspace characterized in Theorem 1. Define $S_k(\Gamma_0(N))$ to be $S_k(\Gamma_0(N))/K_0(N)$; for $f \in S_k(\Gamma_0(N))$, $c_m(f)$ is well-defined exactly when $(m, N) = 1$. Also, let T^N be the free polynomial algebra over \mathbb{C} generated by commuting operators T_m for $(m, N) = 1$. Then T^N acts on $S_k(\Gamma_0(N))$ (where T_m acts as the m'th Hecke operator), and its action is diagonalizable; it is easy to see that its action descends to $\overline{S_k(\Gamma_0(N))}$. (For example, T_m commutes with the action of the operators π_d defined in the proof of Theorem 4.)

Proposition 4. The T^N-eigenspaces in $\overline{S_k(\Gamma_0(N))}$ are one-dimensional; furthermore, an eigenform $f \in \overline{S_k(\Gamma_0(N))}$ is zero if and only if $c_1(f) = 0$.

Proof. If $f \in \overline{S_k(\Gamma_0(N))}$ is an eigenform for T_m with eigenvalue $\lambda_m(f)$ then $c_m(f) = \lambda_m(f)c_1(f)$. Thus, if f is a T^N-eigenform then it is determined by its eigenvalues and by $c_1(f)$. □

This Proposition, together with Theorem 1, sometimes allows one to reduce questions about the spaces $S_k(\Gamma_0(N))$ to spaces whose eigenspaces are one-dimensional.

Proposition 5. If f and g are eigenforms in $\overline{S_k(\Gamma_0(N))}$ such that, for some D, they have the same eigenvalues λ_m for all m with $(m, ND) = 1$, then they have the same eigenvalues for all m with $(m, N) = 1$.

4
Proof. This is part of the Global Result of Casselman \[3\], or of Theorem 4 of Atkin-Lehner \[1\].

We should also point out that our Theorem 1 isn’t quite the same as Theorem 1 of Atkin-Lehner \[1\]. Their Theorem 1 assumes that \(c_m(f) = 0 \) unless \((m, ND) = 1\), and thus breaks down into two parts: showing that you can assume that \(D = 1 \), and our Theorem 1. It is easy to show that the first part is equivalent to Proposition 3, at least in the eigenform case; the cusp form case takes a bit more work.

We now present what is traditionally thought of as the core of Atkin-Lehner theory.

Theorem 6. If \(\{\lambda_m\} \) is a set of eigenvalues (for all \(m \) relatively prime to a finite set of primes) that occurs in some space \(S_k(\Gamma_0(N)) \) then there is a unique minimal such \(N \) (with respect to division) for which those eigenvalues occur, and the corresponding eigenspace is one-dimensional. If \(f \) is a basis element for that eigenspace and if \(M \) is a multiple of \(N \) then the corresponding eigenspace in \(S_k(\Gamma_0(M)) \) has a basis given by the forms \(id(f) \) where \(d \) varies over the (positive) divisors of \(M/N \).

Proof. For any positive integer \(M \), write \(V_0(M) \) for the set of eigenforms in \(S_k(\Gamma_0(M)) \) with eigenvalues \(\{\lambda_m\} \). By Proposition 3, we don’t have to worry exactly about which primes are avoided in our set of eigenvalues, so this notation makes sense. Furthermore, let \(N \) be a minimal level such that \(V_0(N) \) is nonzero. By Proposition 3, the image of \(V_0(N) \) in \(\overline{S}_k(\Gamma_0(N)) \) is one-dimensional. Theorem 3 shows that any element of the kernel of the map from \(V_0(N) \) to \(\overline{S}_k(\Gamma_0(N)) \) is of the form \(\sum_{p|N} i_p(f_p) \), where \(f_p \in V_0(N/p) \). But the minimality of \(N \) shows that there aren’t any such forms; the kernel is therefore zero, so \(V_0(N) \) is one-dimensional.

To see that \(N \) is unique, let \(S_k \) be the space of adelic cusp forms of weight \(k \) but of arbitrary level structure; it comes with an action of \(\text{GL}_2(\mathbf{A}_\infty) \), and elements of \(S_k(\Gamma_0(M)) \) correspond to elements of \(S_k \) invariant under the action of a certain subgroup \(U_0(M) = \prod_p U_0(p^{m_p}) \), where \(p \) varies over the set of all primes and \(p^{m_p} \) is the highest power of \(p \) that divides \(M \). Casselman’s Global Result says that the set \(V \) of forms in \(S_k \) with eigenvalues \(\{\lambda_m\} \) gives an irreducible representation of \(\text{GL}_2(\mathbf{A}_\infty) \); thus, it can be written as a restricted tensor product \(V = \bigotimes_p V^{U_0(p^{m_p})} \), and

\[
V_0(M) = \bigotimes_p V^{U_0(p^{m_p})}.
\]

Since \(U_0(p^{m_p}) \) contains \(U_0(p^{m+1}) \), for each \(p \) it is the case that, if for some power \(m_p \), \(V^{U_0(p^{m_p})} \) is nonzero, then there is a minimal such power. Thus, taking \(N \) to be the product of those minimal powers of \(p \), we see that, if for some \(M \), \(V_0(M) \) is nonzero, then it is nonzero for a unique minimal \(M \), namely our \(N \). (Alternatively, the uniqueness of the minimal level is part of Theorem 4 of Atkin-Lehner \[1\].)
Finally, to see that the eigenspace grows as indicated, let f be a nonzero element of $V_0(N)$ for N minimal. By Proposition 4, we can assume that $c_1(f) = 1$, since our argument above showed that the image of f in $\mathcal{S}_k(\Gamma_0(N))$ is nonzero. Fix some multiple M of N, and assume that we have shown that, for all proper divisors M' of M with $N \mid M'$,

$$V_0(M') = \bigoplus_{d \mid (M'/N)} i_d(f) \cdot \mathbb{C}. \tag{2}$$

We then want to show that the same statement holds with M in place of M'. Thus, let g be an element of $V_0(M)$. By Proposition 3, the image of $g - c_1(g)i_1(f)$ in $\mathcal{S}_k(\Gamma_0(M))$ is zero, so by Theorem 1

$$g = c_1(g)i_1(f) + \sum_{p \mid M} i_p(g_p)$$

for some forms $g_p \in V_0(M/p)$. Also, $g_p = 0$ unless $p \mid (M/N)$, since otherwise N wouldn’t divide M/p, contradicting the unique minimality of N. But then (2) implies that each g_p, and hence g, can be written as a linear combination of the forms $i_d(f)$ for $d \mid (M/N)$; it is easy to see that such an expression for g is unique.

References

[1] A. O. L. Atkin and J. Lehner. Hecke operators on $\Gamma_0(m)$. Math. Annalen, 185:134–160, 1970.

[2] D. Carlton. Moduli for Pairs of Elliptic Curves with Isomorphic N-torsion. PhD thesis, M.I.T., 1998.

[3] W. Casselman. On some results of Atkin and Lehner. Math. Annalen, 201:301–314, 1973.