MO-LTR: Multiple Object Localization, Tracking and Reconstruction from Monocular RGB Videos

Kejie Li1 Hamid Rezatofighi2 Ian Reid1

Abstract—Semantic aware reconstruction is more advantageous than geometric-only reconstruction for future robotic and AR/VR applications because it represents not only where things are, but also what things are. Object-centric mapping is a task to build an object-level reconstruction where objects are separate and meaningful entities that convey both geometry and semantic information. In this paper, we present MO-LTR, a solution to object-centric mapping using only monocular image sequences and camera poses. It is able to localize, track and reconstruct multiple objects in an online fashion when a RGB camera captures a video of the surrounding. Given a new RGB frame, MO-LTR firstly applies a monocular 3D detector to localize objects of interest and extract their shape codes that represent the object shape in a learnt embedding space. Detections are then merged to existing objects in the map after data association. Motion state (i.e. kinematics and the motion status) of each object is tracked by a multiple model Bayesian filter and object shape is progressively refined by fusing multiple shape code. We evaluate localization, tracking and reconstruction on benchmarking datasets for indoor and outdoor scenes, and show superior performance over previous approaches.

I. INTRODUCTION

Reconstructing the 3D environment from images is a fundamental problem in robotics and computer vision. Early real-time approaches to this problem are sparse SLAM systems [1], [2] that represent the map as a set of sparse 3D points. The increasing computation power enables dense SLAM systems [3], [4], [5], where the reconstruction is composed of dense surfels or Truncated Signed Distance Function (TSDF).

Despite the high-quality geometric reconstruction produced by the aforementioned frameworks, for intelligent robotic applications that need to interact with the environment (e.g., fetching objects, tidying up rooms), it is essential to have the knowledge of both geometry and instance-level semantic information of a scene. With the advance of semantic understanding using deep neural nets, object-centric mapping, where the geometry and semantic properties of the environment are jointly carried out in form of object instances has gained rapid progress.

In this paper, we are concerned with the problem of online detection, tracking, and reconstruction of potentially dynamic objects from monocular videos. Although elements of this problem have been tackled extensively, few works have adequately addressed all three – online, dynamic, and monocular – simultaneously. Our system MO-LTR, judiciously combines a number of traditional and deep learning techniques to address the problem. Given a new RGB frame, a monocular 3D detector is used to localize objects presented in this view, and each detected object is mapped to a learnt shape embedding by our shape encoder. Meanwhile, the state, which includes kinematics and motion status (i.e. dynamic/static), of each existing object in the map is tracked via a multiple model Bayesian filter. Matchable objects, selected based on the motion state, are used to associate to the newly detected objects, after which, associated detections are merged to the map, the filters are updated and object shapes are incrementally refined by shape code fusion.

While approaches like Fusion++ [6] and FroDO [7] as-
sume a static environment, we argue that it is necessary to handle dynamic objects, because an agent (either a robot or a user in a AR/VR headset) is very likely to move objects when it interacts with the environment. Because there are both static and dynamic objects that have different motion models in our scenes and the motion status can be switched (from static to dynamic or vice versa at any point) due to human interaction, we employ a multiple model Bayesian filter to track object kinematics and motion status. Modeling the motion status explicitly gives us further advantage to manage termination of object trajectory during tracking. In contrast to common practice in most Multiple Object Tracking (MOT) approach [8], [9], which is using a predefined fixed time threshold to terminate object trajectories if not observed, we maintain static object in the map even if it has not been observed for a long time. The intuition behind is that static objects would persist whether it is observed or not while dynamic objects are more likely to move out from the environment. Objects with a live trajectory are termed matchable objects in this paper.

Besides handling dynamic objects, another important distinction of the proposed system to FroDO [7] is that we are able to process an image sequence online whereas FroDO is a batch-processing system.

MO-LTR also stands out from previous object-centric mapping approaches in terms of input modality. Unlike most existing systems that require a depth sensor [6], [10], [11], MO-LTR takes just monocular RGB images as input. Although works like MOTSFusion [12] also tried to replace a depth sensor with a monocular depth estimation network, the disadvantages are twofold: 1) depth prediction on object boundaries is extremely noisy and fusion using the noisy prediction accumulates error whereas the object surface of our reconstruction is smooth and clean by leveraging shape prior knowledge; 2) The depth map based reconstruction is not as complete as our shape prior based reconstruction because fusing multiple depth maps can only recover the visible surfaces. We show quantitatively in the experiment that the object reconstruction produced by the depth network is less accurate than our shape prior based reconstruction.

To summarize, the main contributions of our work are:

- We present MO-LTR, a unified framework for object-centric mapping, which is able to localize, track, and reconstruct multiple objects in an online fashion given monocular RGB videos.
- We demonstrate that the combination of monocular 3D detection, multiple model Bayesian filter and deep learnt shape prior leads to robust multiple object tracking and reconstruction.
- We evaluate the proposed system extensively showing more accurate reconstruction and robust tracking than previous approaches on both indoor and outdoor datasets.

II. RELATED WORK

In recent years, we have seen impressive progress in semantic aware reconstruction. Early works [13], [14], [15] use graphical models to assign semantic labels to a geometric reconstruction. SemanticFusion [16] employs a deep network to predict pixel-wise semantic labels given RGB frames, which are then fused into a semantic mapping by leveraging the geometric reconstruction from a RGBD SLAM. Although these approaches enrich the geometric reconstruction by attaching semantic labels, they are not object-centric as they cannot separate objects of the same class.

Pioneering works on object-centric mapping are based on template matching and thus is limited to a set of a-priori known objects. Gálvez-López et al. [17] propose a monocular-based SLAM that matches detections against objects in a database using bags of binary words. SLAM++ [18], a RGBD SLAM, uses point pair features to detect and align CAD models into the map. To remove the object template database, a number of approaches turns to deformable template [19], [20].

Learning a shape prior that takes advantage of object shape regularity is another research trend for object shape reconstruction. Intra-class full 3D shape variance is captured in a learnt latent space. Object shape is optimized in this latent space given image or depth evidence, and thus full 3D objects can be reconstructed even if only partial observation is available. Shape latent space is often learnt via (Kernal) PCA [21], [22] or GP-LVM [23], [24].

Motivated by the success of deep learning in scene recognition, deep networks are used as function approximators that map an image [25], [26] or images [27], [28] to a 3D object shape. Instead of a direct mapping, another line of works [29], [30], [31], [32] apply deep networks as powerful dimension compression tools to learn a shape embedding. Object shapes can be optimized in the embedding given visual observations. However, these methods are often constrained to single-object scenes where all observations can be assigned to the same object. When there are multiple objects in a scene (e.g., a dining room with a table surrounded by multiple chairs), data association that assigns observations to different objects is essential to apply those methods.

Leveraging a ray clustering based approach for data association, FroDO [7] demonstrates multi-object reconstruction from monocular image sequences. Although FroDO and the proposed system share common ground on following coarse-to-fine reconstruction, where objects are firstly localized and represented coarsely using cubes/ellipsoids, followed by a dense shape reconstruction, the ray clustering algorithm of FroDO assumes a static environment whereas the proposed system can work with both dynamic and static objects. Additionally, MO-LTR is an on-line approach, whereas FroDO is off-line.

There are a number of RGBD based approaches that leverage modern instance segmentation networks to fuse depth maps of each object instance separately to achieve object-centric mapping. Assuming a static environment, Fusion++ [6] generates a TSDF reconstruction for each object detected given a RGBD image sequence. MID-Fusion [10] takes a step forward by tracking the pose of each object to handle dynamic objects. Co-Fusion [33] and MaskFu-
Fig. 2: MO-LTR pipeline. Given a new RGB frame, we predict 6-DoF object pose with respect to the camera T_{cm}^{m+1} and object scale s (i.e. 3D dimension) for each object of interest, which is visualized as an oriented 3D bounding box. We also predict object class and 2D bounding box for each object. An image patch cropped by the 2D bounding box is mapped to a single-view shape code via the shape encoder. The state of objects in the map is tracked by a multiple model Bayesian filter. The motion status is indicated by different background colors of object poses. After filter prediction, matchable objects are used to associate to the new set of detections. A matched detection is attached to the object track, and the shape is progressively reconstructed by decoding the fused shape codes.

In the rest of the paper, we will use the following notation: lower-case bold t and upper-case bold T denote a vector and matrix respectively. T_{ab} denotes the transformation matrix from coordinate frame b to a. A vector in coordinate frame w is denoted as x^w.

IV. METHOD

IV. METHOD

We first give an overview of the system, and then describe the details of the system components in the subsequent sections, as indicated below.

A. System overview

Given a new RGB frame, MO-LTR first employs a monocular 3D detector to predict a 9-DoF object pose, object class label, and 2D bounding box [IV-B]. For each detected object, an image patch cropped by the 2D bounding box of an object is mapped to a shape code in a learnt shape embedding [IV-C]. State (i.e. pose and motion status) of each existing object in the map is modeled by a multiple model Bayesian filter. Prior to data association, we use the filter to predict object location and decide whether an object is matchable using the predicted motion status. The new detections are associated to the matchable objects based on a simple but practical pairwise cost (i.e. 3D Generalized IOU [36]) as the matching cost. We solve the linear assignment problem using the Munkres algorithm [37] to decide whether a detection merges to an object track or instantiates a new object in the map. Filters are updated using the associated detections [IV-D]. To reconstruct an object shape, multiple single-view shape codes are fused into a single one by taking the mean, which is decoded by the shape decode to a TSDF. The object shape is transformed to the world coordinate using the updated object pose [IV-E]. Fig.2 illustrates the pipeline of our system.

B. 3D localization

First, MO-LTR detects objects of interest given a RGB image. We apply a monocular 3D detector that takes a single RGB image as input, and outputs both 2D attributes (i.e. object class and 2D bounding box) and 3D attributes (i.e. object translation t_{co} and viewpoint R_{co} with respect to the camera, and object 3D dimension (s_x, s_y, s_z)). Technically, the detector is trained to predict an offset $(\Delta x, \Delta y)$ between the center of the 2D bounding box (x_{2d}, y_{2d}) and the projection center of the 3D shape (x_{3d}, y_{3d}) on the image plane. We also predict the object depth value z. Assuming we know the camera intrinsic parameters f_x, f_y, c_x, c_y, the object’s 3D center t_{co} in camera coordinate frame is recovered as follows:

$$t_{co} = \left(\frac{x_{3d} + \Delta x - c_x}{f_x}, \frac{y_{3d} + \Delta y - c_y}{f_y}, z \right)$$

To predict object viewpoint, we reformulate it as a classification problem, where azimuth R_{az} and elevation R_{ele} are discretized into 36 and 10 bins respectively. The rotation matrix is $R_{co} = R_{az}R_{ele}$. The transformation matrix $T_{co} \in SE(3)$ from the canonical object space to camera coordinate frame is:

$$T_{co} = \begin{bmatrix} R_{co} & t_{co} \\ 0 & 1 \end{bmatrix}$$

Together with the scale parameters, each detected object is localized as an oriented 3D bounding in the camera coordinate frame.
C. Shape embedding and inference

As a shape prior based reconstruction, we are interested to reconstruct the complete object shape even if only a partial observation is available. The formulation of our shape embedding and inference follows FroDO [7] closely. We use compact k-dimension shape codes \(l \in \mathbb{R}^k \) embedded in a learnt latent space to parameterize normalized object shapes in a canonical pose throughout our system. This latent representation effectively allows us to leverage the learnt latent space as a shape prior. A TSDF, where the zero-crossing level set is the object surface, can be decoded from the latent code via a DeepSDF decoder \(G(l) \) [38].

After each object has been detected, we estimate a single-view shape code by mapping its cropped 2D bounding box to the shape embedding using the shape encoder. Note that at this point we do not reconstruct the shape by decoding the single-view shape code; rather, shape is decoded later, once shape codes have been fused over time, as described in Section IV-E.

D. Tracking

Because single-view detections are mostly noisy, a common approach in MOT is to apply a Bayesian filter on the object motion to smooth the tracking trajectory [8], [9], and to provide motion predictions for better data association.

To deal with both dynamic and static objects, because there is no one-size-fit-all motion model for use within a Bayesian filter, we employ the well-known Interacting Multiple Model (IMM) filter [39], in which we maintain kinematics and a motion status selection variable under the assumption of linear kinematic and observation model and Gaussian noise. We can further leverage the motion status to finesse thresholds associated with the persistence of a trajectory when there is no observation.

Similar to any MOT approach that has to handle trajectory birth and death, we deal with trajectory birth via the standard method, which is instantiating a tentative trajectory from a detection. A tentative trajectory is upgraded to a confirmed trajectory only if it is observed \(n \) consecutive times. We treat trajectory termination differently. The death of an object trajectory is not controlled by a predefined fixed time threshold. Instead, an object trajectory is terminated only if it is a dynamic object and it is not observed in the last \(n \) frames (i.e. static objects remain in the map even if not observed).

For each RGB frame, while the 3D detector returns a set of new detections, the filter predicts the location and motion status of each existing object at the current frame. The next step is to associate the new detections to the existing objects. We construct a \(M \times N \) cost matrix between \(M \) new detections in the current frame and \(N \) matchable objects in the map, where each element represents the cost for associating the \(m \)th detected object to the \(n \)th objects in the map, and the cost is measured by the negative of pairwise 3D generalized IoU [36]. To calculate the IoU, the detections are transformed to world coordinate where the existing objects are. The optimal matching is found by the Munkres algorithm [37] with gating (i.e. A pair of detection and object is considered matched if the cost is below a fixed threshold). The filters are updated using the associated detections. Details of IMM filter prediction and update can be referred to [39].

E. Reconstruction

After object tracking, the last step of MO-LTR at each RGB frame is to reconstruct a dense shape of each object in the map. We fuse all single-view shape codes up to the current frame by averaging them into a single code \(I_f = \frac{1}{N} \sum_{i=1}^{N} I_i \). A TSDF that represents a object shape in the canonical object coordinate is decoded from the shape decoder \(X^o = G(l_f) \) given the fused shape code. An object shape mesh is extracted from the TSDF by the Marching Cube algorithm [40]. The mesh is then transformed to the world coordinate using updated pose from object tracking:

\[
X_{w} = T_{w_o} SX^o \tag{3}
\]

\[
S = \begin{bmatrix}
s_x, 0, 0 \\
0, s_y, 0 \\
0, 0, s_z
\end{bmatrix} \tag{4}
\]

where \(T_{w_o} \) is the rigid transformation from object coordinate to world coordinate and \(S \) is the scale matrix.

The shape and pose can be further optimized using visual cues, such as silhouette and photometric consistency, as done in FroDO [7], but the optimization is out of the scope of this paper.

F. Implementation Details

We dedicate this section to describe the implementation details of each component in the pipeline.

Our detector is built on top of a 2D detector DETR [41]. To predict the additional 3D attributes, we extend the original DETR by adding an independent prediction feed forward network for each additional attribute. For indoor scenes, we train the 3D detector on the ScanNet [42] images. Because ScanNet annotations do not provide object dimensions and orientation that we need for training our detector, we use the CAD model annotation provided by Scan2CAD [43]. We finetune the detector from the official release on the official ScanNet train/val split for 10 epochs. For outdoor scenes, we use an off-the-shelf detector from [44].

We use \(k = 64 \) dimensions for our shape embedding. The architecture of our shape decoder is identical to the original DeepSDF [38], and we closely follow DeepSDF in training procedure. The only difference is that we train separate embeddings for indoor (i.e. chair, table and display), and outdoor scenes (i.e. car). The architecture of our shape encoder is modified from the ResNet18 by changing the original output dimension to our embedding dimension. It is trained on synthetic images rendered from the ShapeNet [45] CAD models with random backgrounds.

We formulate the state vector of the IMM filter as a 7-dimensional vector \((\mu, \pi) \), where \(\mu = [c_x, c_y, c_x, v_x, v_y, v_z] \) is a 6-dimension vector that represents the center and velocity of an object and \(\pi \) is the model selection variable. Note that at present we do not incorporate object rotation in
the filter state. One complexity of doing so is that the rotation observation which we get via the deep network is badly non-Gaussian. Object center observation is from the monocular 3D detector, and the measurement covariance is set to \(0.01 I \in \mathbb{R}^{3\times3}\) and \(I \in \mathbb{R}^{3\times3}\) for indoor and outdoor environment respectively. We use zero velocity and the first observation to initialize the state mean, and covariance is initialized using identity matrix \(I \in \mathbb{R}^{6\times6}\). We use a constant velocity model (with acceleration as process noise) and zero velocity model (also known as random walk) for dynamic and static motion model respectively. The transition probability matrix is set to \([0.6, 0.4]; [0.4, 0.6]\]. An object is classified as static if \(p(\pi = \text{static}) > p(\pi = \text{dynamic})\).

The data association gating threshold is set to 1.75 for outdoor scenes, and 0.25 for indoor scenes. We need a higher threshold in outdoor environment to accommodate that outdoor objects move faster.

We use ground-truth camera poses in our experiments on KITTI and ScanNet for fair comparison, but the proposed system could work with any off-the-shelf SLAM systems to obtain camera poses. In the case of monocular SLAM, our monocular 3D detector and shape reconstruction can render a depth map in the metric scale, which can be used to recover the scale of the monocular SLAM trajectory.

V. EXPERIMENTS

A. Datasets

We quantitatively evaluate MO-LTR on KITTI [46] and ScanNet [42]. KITTI is a popular dataset used for object tracking benchmark in outdoor scenes. It consists of image sequences captured by a camera mounted on a moving vehicle in different road conditions. In contrast, sequences in ScanNet are captured in various indoor scenes (e.g., offices, living rooms, or conference rooms) using a hand held device. However, because the annotated bounding boxes in ScanNet annotation is subject to occlusion or reconstruction failure that leads to incomplete bounding boxes, following FroDO, we instead use the annotations from Scan2CAD [43] to obtain amodal 3D bounding boxes for evaluation. Since objects in ScanNet are static, we demonstrate indoor dynamic objects using self recorded videos qualitatively.

B. Localization

We compare MO-LTR with FroDO [7] on object localization rather than shape reconstruction because, while we share similarity in the ResNet-based shape encoder and DeepSDF decoder, the proposed work is different in the object detection and data association. We evaluate the proposed system against FroDO in 3D detection, a measurement for 3D object localization. Although object shape reconstruction is important for individual objects, it is obvious that localizing objects correctly in the scene dominates the overall reconstruction quality. Table I presents the comparison with FroDO on three common object categories (i.e., chair, table and display) in indoor scenes. Evaluation metric is the widely adopted mean Average Precision (mAP) in object detection, and the Intersection over Union threshold is set to 0.5.

We outperform FroDO on both chair and display and
Fig. 4: Object tracking on KITTI dataset. The tracking is consistent, and we correctly label dynamic/static objects using the mode selection variable in the IMM filter. The reconstruction of vehicles are also highlighted. Lidar points are used for visualization purpose.

mAP @ IoU=0.5	Chair ↑	Table ↑	Display ↑
FroDO [7]	0.32	0.06	0.04
Ours	0.39	0.06	0.10

TABLE I: 3D detection comparison

have similar performance on table. We believe that the improvement is due to the differences in our detection and data association approach. FroDO used 2D detections and a ray clustering approach for data association. The 3D bounding boxes are obtained by triangulating associated 2D detections. The ray clustering based data association suffers from local minima and leads to incorrect matching if objects are close to each other. MO-LTR circumvents this problem by using monocular 3D detection and thus the following data association works in the 3D space directly. Qualitative results of MO-LTR on ScanNet is shown in Fig. 3. It can be seen that the proposed method is more effective on chair than table, large dining or conference table in particular. We believe the reason for this is the fact that it is uncommon to have a complete view of a large object unless the camera is substantially away from the object, which does not happen a lot in ScanNet sequences. An incomplete view make localization and detection much harder.

C. Tracking

In the conventional KITTI benchmark evaluation, results of 3D MOT are evaluated following the 2D MOT evaluation, where 3D tracking results are projected to the image plane for evaluation. Therefore, it fails to reflect error on depth direction (i.e. an object located at any point along the projection rays in the same error). We instead use the 3D MOT evaluation recently proposed in AB3DMOT [8]. The evaluation metrics are Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP) and ID Switches (IDS).

We use CenterTrack [44], a monocular 3D multiple object tracking framework, as a baseline. While we share the same monocular 3D detector, the main difference is in the motion tracking and data association method. CenterTrack predicts the 2D object motion on the image plane using a deep network, and associates detections between adjacent frames using the IoU between 2D bounding boxes as a matching cost. Matches are found by a greedy search. We model each object motion using an independent IMM filter in the 3D space, and choose Munkres algorithm [37] over a greedy search.

TABLE II: Tracking comparison

The quantitative result is shown in Table II. We reduce the ID-switches significantly. We believe the reason for improvement are twofolds: 1) We perform object tracking and data association in the 3D space so objects in similar depth direction but with different values can be separate easily; 2) we solve the linear assignment problem in data association instead of a greedy search. The object ID consistency is crucial for object-centric mapping as duplicate object instances degenerate the reconstruction quality. We visualize our tracking result and the motion state estimation by the IMM filter in Fig. 4. More qualitative results of object tracking, motion state estimation and reconstruction on KITTI dataset are shown in the supplementary video.

D. Reconstruction

We compare MO-LTR against the monocular MOTSFusion, where they use a monocular depth estimation network followed by an instance segmentation network for object reconstruction to recover the visible surfaces of objects. Because MOTSFusion does not reconstruct full 3D shape, our method would be favoured if we were to evaluate reconstruction in 3D. Instead for a fairer comparison, we render our full 3D shape onto the image plane as a depth map, and compare the reconstruction quality against MOTSFusion via depth map evaluation.

Our shape prior driven approach outperforms MOTSFusion by a large margin as shown in Table III. MOTSFusion particularly suffers from RMSE indicating it is affected by the blurry object edge from the depth prediction and instance segmentation. To better contrast both methods, we visualize the comparison in Fig. 5. Even when MOTSFusion can reconstruct the surface accurately, our shape prior based reconstruction is still advantageous as we can reconstruct the full 3D shape of an object.

E. Indoor tracking and reconstruction

We run MO-LTR on a self-recorded video with the focus on demonstrating tracking objects whose motion status switches between dynamic and static throughout the video. MO-LTR is able to classify whether an object is static
TABLE III: Quantitative depth comparison to MOTSFusion

Methods	RMSE ↓	log RMSE ↓	Abs Rel ↓	Seq Rel ↓	δ < 1.25 ↑	δ < 1.25² ↑	δ < 1.25³ ↑
MOTSFusion (Mono.)	5.33	0.26	0.17	1.71	0.76	0.91	0.94
Ours	2.09	0.13	0.12	0.50	0.88	0.97	0.99

TABLE IV: Runtime analysis breakdown for each system component. det. obj. refers to detected object

stage	Detection	shape encode	association	shape decode
time (ms)	111/frame	4/det. obj.	3/frame	35/obj.

VI. CONCLUSION

In this paper, we presented MO-LTR, a framework for multi-object localization, tracking and reconstruction given monocular image sequences. We leverage the deep shape prior for complete and accurate shape reconstruction and the IMM filter to jointly track the motion of an object and discriminate motion status. We evaluate MO-LTR extensively on both indoor and outdoor scenes under both static and dynamic environment. While we show that the data association, which relies on the 3D GIoU, is practical, an interesting future direction is to develop a learning-based approach for data association. This could furthermore pave the way for an end-to-end learnable system. MO-LTR has benefited from SLAM to provide camera poses. Another promising future direction is to integrate MO-LTR into a SLAM framework such that the object prior knowledge could be leveraged in SLAM.

Acknowledgement We gratefully acknowledge the support of the Australian Research Council through the Centre of Excellence for Robotic Vision CE140100016 and Laureate Fellowship FL130100102

REFERENCES

[1] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in 2007 6th IEEE and ACM international symposium on mixed and augmented reality. IEEE, 2007, pp. 225–234.
[2] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-time single camera slam,” IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.
[3] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping in real-time,” in 2011 international conference on computer vision. IEEE, 2011, pp. 2320–2327.
[4] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-time dense surface mapping and tracking,” in 2011 10th IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011, pp. 127–136.
[5] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davison, “ElasticFusion: Dense slam without a pose graph.” Robotics: Science and Systems.
[6] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger, “Fusion++: Volumetric object-level slam,” in 2018 international conference on 3D vision (3DV). IEEE, 2018, pp. 32–41.
