Nonperturbative and Perturbative Aspects of Photo- and Electroproduction of Vector Mesons

H.G. Dosch

Institut für Theoretische Physik,
Philosophenweg 16, D-6900 Heidelberg, Germany

E. Ferreira

Instituto de Física, Universidade Federal do Rio de Janeiro
C.P. 68528, Rio de Janeiro 21945-970, RJ, Brazil

Abstract

We discuss various aspects of vector meson production, first analysing the interplay between perturbative and nonperturbative aspects of the QCD calculation. Using a general method adapted to incorporate both perturbative and nonperturbative aspects, we show that nonperturbative effects are important for all experimentally available values of the photon virtuality Q^2. We compare the huge amount of experimental information now available with our theoretical results obtained using a specific nonperturbative model without free parameters, showing that quite simple features are able to explain the data.
I. INTRODUCTION

Electroproduction of vector mesons provides an interesting laboratory for studying the interplay between perturbative and nonperturbative QCD. Most emphasis has been put on the perturbative side of the calculations\(^1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\). There the production process is considered to be mediated by two gluon exchange and the coupling of the gluons to the hadron, generally a proton, is taken from a phenomenologically determined gluon distribution as obtained from deep inelastic scattering (DIS). The coupling of the exchanged photons to the produced quarks is treated perturbatively. This is justified if there is a truly hard scale and the produced quarks stay close together.

The emphasis put on perturbation theory is understandable given its justification in terms of basic elements of QCD. Nevertheless we think it is useful and even necessary to scrutinize also the other side of the medal, namely the nonperturbative aspects, and investigate its consequences. To examine the roles and magnitudes of different effects we have chosen an approach which starts from general expressions and investigate the limit where perturbation theory holds. We derive and discuss particularly the deviations from perturbative QCD induced by nonperturbative effects.

There are several important reasons for this approach.

- Even if the produced vector mesons are heavy, the effect of binding by a confining potential is not negligible at presently accessible values of the photon virtuality \(Q^2\). The binding effect influences very strongly the \(Q^2\) dependence of the production amplitude.

- Even for high values of \(Q^2\) the production of transversely polarized vector mesons receives important contributions from regions where the two produced quarks are widely separated.

- In spite of a clear transition from the perturbative to the nonperturbative regime, there are nevertheless striking systematic features in the production of light and heavy vector mesons, whose understanding requires the incorporation of nonperturbative methods.

- The gluon distribution of the proton as obtained from DIS allows only to calculate production amplitudes with zero momentum transfer. This requires
quite essential extrapolations in the analysis of the experimental data. Since
the approach discussed here is based on a space-time picture it takes skewing
effects automatically into account, and therefore the dependence of the pro-
duction amplitude on (moderate) values of t, the momentum transfer from the
virtual photon to the proton, can be calculated.

- In QCD the production of vector mesons is closely related to purely hadronic
scattering processes without requiring the use of vector dominance models.
In order to obtain a unified picture, a handling of nonperturbative effects is
clearly necessary.

- Closely related to the previous item is the relation between QCD and Regge
theory. In order to investigate possible bridges between the two approaches
again nonperturbative methods must be used.

The calculation of photo and electroproduction presented in this paper uses a general
method for high energy scattering based on the functional integral approach to QCD
and on the WKB method, which is capable of incorporating both the perturbative
and nonperturbative aspects [11, 12]. The nonperturbative input is given by a special
model of nonperturbative QCD, called stochastic vacuum model [13, 14], that has
been successfully applied in many fields, from hadron spectroscopy to high energy
scattering. The very satisfactory results of the model in purely nonperturbative
regions gives a strong weight to our determination of nonperturbative correction
terms near the perturbative regime. The energy dependence is based on the two-pomeron
model of Donnachie and Landshoff [15].

In previous papers we have investigated photoproduction [16] and electroproduction
[17] of J/ψ vector mesons. We have also used the same framework to investigate
some general features of photo and electroproduction of all S-wave vector mesons
[18] which arise from the structure of the overlaps of photon and vector meson wave
functions.

In the recent years many more data have been obtained in HERA experiments, with
higher accuracy and statistics, and their comparison with theoretical calculations
provide opportunities to understand and describe important general features of the
dynamics governing these processes. In particular, we may learn in what extent
the experimentally observed features are contained in the global nonperturbative
aspects of the systems in the final and initial states, such as their wave functions and the long range correlation properties of the intervening forces. In this paper we describe very successfully most of these recent data, using the same framework that has been tested in several other cases, without the introduction of any free parameter.

Our paper is organized as follows.

In Sec. 2 we describe the methods used in the theoretical calculations of photo and electroproduction of vector mesons. Since this has already been done on several occasions, we only give a short and schematic description, and then focus the attention on the comparison with the usual perturbative treatment.

In Sec. 3 we present the results of our calculations of photo and electroproduction of all 1S-wave vector mesons and compare them with the experimental data. We show that the predictions for all observables, the absolute values as well as the dependence on the photon virtuality Q^2, the momentum transfer t and the energy W are very satisfactory.

In the summary we comment on our results and present them in context.

The appendix gives formulas and details of the theoretical calculations and presents some of their general properties.

section General formulæ

and the strictly perturbative limit

We start from a general approach to scattering based on functional integrals and the WKB approximation, which has been adapted to hadron hadron scattering and to photo and electroproduction of vector mesons hadrons. The basic features can be seen in Fig. 1 that represents the loop-loop scattering amplitude in real space time. The space time trajectory of the photon is represented by a quark-antiquark loop, that of the proton by a quark-diquark loop. The transition to observable electroproduction amplitudes of hadrons is achieved through a superposition of the loop-loop amplitudes with the light cone wave functions of the hadrons and the photon used as weights. This leads to an electroproduction amplitude of the form

$$T_{\gamma^* \rightarrow V, \lambda}(W, t; Q^2) =$$

(1.1)
FIG. 1: Loop-loop scattering.

$$(-2iW^2) \int d^2 R_1 d z_1 \psi_{\gamma\lambda}(z_1, R_1)^* \psi_{\gamma^*\lambda}(z_1, R_1, Q^2) J(q, W, z_1, \tilde{R}_1) ,$$ \hspace{1cm} (1.2)

with

$$J(q, W, z_1, \tilde{R}_1) = \int d^2 R_2 d^2 b e^{-i\tilde{q} \tilde{b}} |\psi_p(R_2)|^2 S(b, W, z_1, \tilde{R}_1, z_2 = 1/2, \tilde{R}_2) .$$ \hspace{1cm} (1.3)

Here $S(b, W, z_1, \tilde{R}_1, 1/2, \tilde{R}_2)$ is the scattering amplitude of two dipoles with separation vectors \tilde{R}_1, \tilde{R}_2, colliding with impact parameter vector \tilde{b}; \vec{q} is the momentum transfer vector of the reaction, with

$$t = -q^2 - m_p^2(Q^2 + M_V^2)/W^4 + O(W^{-6}) \approx -q^2 .$$ \hspace{1cm} (1.4)

In these expressions $Q^2 = -p_{\gamma^*}^2$ is the photon virtuality, W is the center of mass energy of the γ^*-proton system, and $t = (p_V - p_{\gamma^*})^2$ is the invariant momentum transfer from the virtual photon to the produced vector meson; z_1 is the longitudinal momentum fraction of the quark in the virtual photon and in the vector meson, and we call $\bar{z}_1 = 1 - z_1$; $\psi(z, \vec{R})$ represent the light cone wave functions.

The differential cross section is given by

$$\frac{d\sigma}{dt} = \frac{1}{16\pi W^4} |T|^2 .$$ \hspace{1cm} (1.5)

For the special case of forward production ($\vec{q} = 0$) this approach reduces to the dipole model for electroproduction [22].

Details of the evaluation of the loop-loop amplitude in the stochastic vacuum model can be found in previous publications [16, 21].
A. The perturbative limits

and nonperturbative corrections

For the photon wave functions \(\psi_{\gamma^*,\lambda}(z_1, R_1, Q^2) \) we use the well known lowest order expressions, keeping the same notation used before \[16, 17\].

If we concentrate on high values of virtuality \(Q^2 \) the two valence quarks stay close together and we may use the dipole cross section of a small object of size \(R_1 \), that is

\[
J(\bar{q} = 0, W, z_1, \bar{R}_1) = C(W, Q^2) R_1^2. \tag{1.6}
\]

If we furthermore ignore the transverse extension of the vector mesons, replacing

\[
\psi_{V\lambda}(z_1, R_1) \rightarrow \psi_{V\lambda}(z_1, 0), \tag{1.7}
\]

we can perform the \(R_1 \) integration in Eq. (1.2) explicitly.

Later we introduce specific ansätze for the vector-meson wave functions \(\psi_{V\lambda}(z_1, R_1) \) and use the results of a specific model, the stochastic vacuum model, for the evaluation of the loop-loop scattering amplitude \(J(\bar{q}, W, z_1, \bar{R}_1) \), but for the moment we stick to the general formulae and first study the corrections to the strictly perturbative limit.

We first consider the simpler case of longitudinally polarized photons, where we obtain with the replacement (1.7) (for later discussion we keep the dependence on the quark mass \(m_f \) in our expressions):

\[
T_{\gamma^*p\rightarrow Vp,\lambda=0}^{\text{pert}} = -(2iW^2) 16 C(W, Q^2) \hat{e}_f \frac{\sqrt{3} \alpha}{2\pi} Q \int_0^1 dz_1 \frac{8\pi z_1^2 \bar{z}_1^2}{(z_1 \bar{z}_1 Q^2 + m_f^2)^2} \psi_{V0}(z_1, 0). \tag{1.8}
\]

The wave function at the origin \(\psi_{V0}(z_1, 0) \) is related to the coupling of the vector meson to the electromagnetic current \(f_V \) by

\[
f_V = \hat{e}_V \sqrt{3} \frac{1}{\sqrt{4\pi}} \int_0^1 dz_1 16 z_1 \bar{z}_1 \psi_{V0}(z_1, 0). \tag{1.9}
\]

Here \(\hat{e}_f \) is the quark charge, and \(\hat{e}_V \) is the effective charge in the meson, that is \(\hat{e}_V = 1\sqrt{2} \) for the \(\rho \) and \(\hat{e}_V = 1/3\sqrt{2} \) for the \(\omega \) meson, while for the \(\phi, \psi \) and \(\Upsilon \) mesons we have \(\hat{e}_V = \hat{e}_f \).

We introduce

\[
\eta_L(Q^2) = (Q^2/4 + m_f^2)^2 \int_0^1 dz_1 \frac{4 z_1^2 \bar{z}_1^2 \psi_{V0}(z_1, 0)}{(z_1 \bar{z}_1 Q^2 + m_f^2)^2} / \int_0^1 dz_1 z_1 \bar{z}_1 \psi_{V0}(z_1, 0) \tag{1.10}
\]
and then write the perturbative expression as

\[T_{\gamma^{*} p \rightarrow V p, \lambda=0}^{\text{pert}} = (-4\pi i W^2) f_V \sqrt{\pi e_f} \eta_L(Q^2) \frac{Q}{(Q^2/4 + m_f^2)^2} C(W, Q^2). \]

(1.11)

Noting that the longitudinal wave function is suppressed at the end points \(z_1 = 0, \ z_1 = 1 \), we see that in the limit \(Q^2 \to \infty \) the mass \(m_f \) can be neglected against \(z_1 \bar{z}_1 Q^2 \) and the expression \(\eta_L \) becomes independent of \(Q^2 \)

\[\eta_L \to \frac{\int_0^1 dz_1 \psi_{V0}(z_1, 0)}{4 \int_0^1 dz_1 z_1 \bar{z}_1 \psi_{V0}(z_1, 0)}. \]

(1.12)

This is the correction factor due to the longitudinal extension of the meson as obtained in [3] (up to a factor 2 due to different definitions). However, for practical purpose we keep using the expression (1.10) with finite quark masses. If there were no binding effects, \(z_1 \) would be 1/2 and therefore \(\eta_L \) would approach 1 for \(Q^2 \) going to infinity.

Comparing Eq. (1.11) with the perturbative expression for the longitudinal electroproduction of vector mesons [3] we obtain

\[C(W, Q^2) = \frac{\pi^2}{3} xG(x, Q^2) \alpha_s(Q^2), \]

(1.13)

where \(x \) is the Bjorken variable \(x = (Q^2 + M_V^2)/W^2 \). This yields the well known relation between the dipole cross section and the gluon density [23]. After introducing our specific model for the meson wave functions in subsection 1.C we will present numerical values for \(\eta_L(Q^2) \), which represents the longitudinal momentum correction to the pure perturbative calculation of the amplitude for longitudinal photons.

Nonperturbative effects also lead to a finite extension of the vector meson and to a deviation of the simple quadratic behaviour of the “dipole cross section” \(J(\vec{q} = 0, W, z_1, R_1) \) in Eq. (1.6). We present numerical values for the rather large corrections due to these effects in subsection 1.C.

As it is well known, the treatment of the transverse polarisation is more delicate for at least two reasons.

- There is no strong suppression of the photon wave function at the end points \(z_1 = 0, \ z_1 = 1 \) and therefore the effective scale, namely \(z_1 \bar{z}_1 Q^2 \) might be quite low even for highly virtual photons. This makes among other things a systematic 1/\(Q^2 \) analysis impossible since the factor corresponding to Eq. (1.12) diverges due to the singularities at the end points \(z_1 = 0, 1 \).
The meson wave function is supposed to be more complicated and relativistic contributions are likely to be important even for rather heavy mesons.

For simplicity we assume that the wave function of the vector meson has the same tensor structure as the transverse photon. Then the overlap function (1.2) brings with the replacement (1.7) the form

$$T_{\gamma p \rightarrow V p, \lambda = 1}^{\text{pert}} =$$

$$-2iW^2 C(W, Q^2) \hat{e}_f \sqrt{6\alpha} 4m_f^2 \psi_{V1}(z_1, 0) + 16 \omega^2 (z_1^2 + \bar{z}_1^2) \psi_{V1}^{(1)}(z_1, 0)$$

$$\left(z_1 \bar{z}_1 Q^2 + m_f^2 \right)^2,$$

where

$$\psi_{V1}^{(1)}(z_1, 0) = \frac{-1}{2\omega^2} \left(\frac{\partial}{\partial (R^2)} \psi_{V1} \right)(z_1, 0).$$

The relation to the decay constant f_V is here given by

$$f_V = \hat{e}_V \sqrt{6} M_V \frac{1}{\sqrt{4\pi}} \int_0^1 dz_1 \frac{m_f^2 \psi_{V1}(z_1, 0) + 2\omega^2 (z_1^2 + \bar{z}_1^2) \psi_{V1}^{(1)}(z_1, 0)}{z_1 \bar{z}_1}. (1.16)$$

This leads to a relativistic correction factor η_T which is of order $O(\omega^2/m_f^2)$, given by

$$\eta_T(Q^2) = (Q^2/4 + m_f^2)^2 \int_0^1 dz_1 \frac{4m_f^2 \psi_{V1}(z_1, 0) + 16 \omega^2 (z_1^2 + \bar{z}_1^2) \psi_{V1}^{(1)}(z_1, 0)}{z_1 \bar{z}_1 Q^2 + m_f^2}$$

$$\times \int_0^1 dz_1 \frac{4m_f^2 \psi_{V1}(z_1, 0) + 8\omega^2 (z_1^2 + \bar{z}_1^2) \psi_{V1}^{(1)}(z_1, 0)}{4 z_1 \bar{z}_1}. (1.17)$$

The final result for the for transverse polarisation is written analogous to Eq. (1.11), that is

$$T_{\gamma p \rightarrow V p, \lambda = 1}^{\text{pert}} = (-4\pi i W^2) f_V \sqrt{\frac{\alpha}{\pi \hat{e}_V}} \eta_T(Q^2) \frac{Q}{(Q^2/4 + m_f^2)^2} C(W, Q^2). (1.18)$$

Only in the absence of binding effects it would be $\omega = 0, \ z_1 = \frac{1}{2}$, and we would then have $\eta_T(Q^2) \rightarrow 1$ for $Q^2 \rightarrow \infty$, as it is in the case of longitudinal polarization.

Numerical values for the correction coefficients η_T, η_L evaluated in a specific model are given in subsection [C]. Strong deviations of η_L and η_T from unity indicate important deviations of the amplitudes from the pure perturbative calculation, due to longitudinal momentum in the photon-meson overlap and to relativistic effects.

Important additional corrections arise from the finite extension of the vector mesons, and they are also discussed in subsection [C].
B. The specific non-perturbative model

In order to obtain numerical information on the corrections discussed in the two previous subsections, we need to use models both for the wave functions and for the interaction of gluons and hadrons.

The photon enters through its usual perturbative wave function. In model calculations it has been shown that the perturbative wave function can be used also for small values of $Q^2 + m_f^2$ if an appropriate constituent mass is introduced. For light mesons, the masses have been determined by comparison with the phenomenological two point function for the vector current. The approach has been successfully applied in the theoretical calculation of structure functions, Compton amplitudes and photon-photon scattering.

The wave function has been adapted from photons to vector mesons including relativistic corrections motivated by the structure of the vector current. As in previous papers, we use two forms of meson wave functions: the Bauer-Stech-Wirbel (BSW) and the Brodsky and Lepage (BL) forms, which are detailed in the Appendix. We use this type of wave function for all vector mesons, with quark masses determined from a best fit to the vector current (they are $m_u = m_d = 0.2, m_s = 0.3, m_c = 1.25, m_b = 4.2$ GeV).

Our non-perturbative treatment of the high energy process is based on functional integration and on the stochastic vacuum model. The method has been described in several occasions, and we only quote here a few of its characteristic features. The model is based on the assumption that nonperturbative QCD can be approximated by a Gaussian process in the colour field strengths; the gluon field correlator is therefore the quantity determining the full dynamics. Its parameters are taken from lattice calculations. The model yields confinement in non-Abelian gauge theories and leads to realistic quark-antiquark potentials for heavy quarks. It can be used to determine the loop-loop scattering amplitudes mentioned in the introduction and visualized in Fig. 1.

For the energy dependence we have introduced in the model the two-pomeron scheme of Donnachie and Landshoff. Small dipoles couple to the hard and large dipoles to the soft pomeron. The transition radius was determined through the investigation of the proton structure function. Again we refer to the literature.
for more information and collect some details and the relevant parameters in the Appendix.

C. Numerical results
for the nonperturbative corrections

In order to exhibit the importance of the nonperturbative contributions we display their effects explicitly in this subsection. We hasten to add that for the final calculations as given in Sec. [11] we do not split our results into perturbative and nonperturbative parts, but give directly the full theoretical results.

The correction factors \(\eta_L \) (1.10) and \(\eta_T \) (1.17) are displayed in Fig. 2 as functions of \(Q^2 + 4m_f^2 \) for several vector mesons. The factor \(\eta_L \) reflects the effect of the distribution of the longitudinal momentum; we notice that it remains of order 1, and its influence is rather weak. In contrast, the correction in the transverse amplitude due to the factor \(\eta_T \), reflecting mainly relativistic corrections to the transverse wave function, is very important, especially for high values of \(Q^2 + m_f^2 \). Its large values at high \(Q^2 \) for the production of \(\rho \)-mesons indicate that the measurement of the ratio of the longitudinal to the transverse production cross sections tests mainly the wave function. According to our calculations, only the quantity \(\eta_T \) for light mesons is very sensitive to the specific choice of the wave function.

There are large effects due to the finite extensions of the mesons. We denote by \(E \) the ratio of the full amplitudes (1.2) to the purely perturbative ones (1.11), (1.18). The ratio \(E \) is displayed in Fig. 3, left, the results for both polarisations are very similar.

The effects are by no means negligible, even for the heavy mesons. The suppression due to the finite extension at low values of \(Q^2 \) leads, in the full range of presently available data, to a much weaker decrease in \(Q^2 \) than inferred from purely perturbative expressions.

For large values of the quark-antiquark separation \(R_1 \), the dipole cross section differs from the pure \(R_1^2 \)-behaviour as given by (1.6), (1.13). We denote by \(D \) the ratio of production amplitudes of the more realistic dipole cross section obtained with the stochastic vacuum model divided by the result obtained with the purely quadratic expression (1.6). This factor \(D \) is also displayed in Fig. 3, right, we see that it is

10
FIG. 2: Correction factors η_L, (1.10) and η_T, (1.17) due to the longitudinal momentum distribution in the longitudinal and transverse wave function of the mesons. The factors are similar for the BL and BSW wave functions, except for η_T for light mesons. The differences in these cases are illustrated by the comparison of the long-dashed and short-dashed curves corresponding to the BL (long-dashed) and the BSW (short-dashed) wave functions for the ρ-meson.

FIG. 3: Correction factors in the evaluation of amplitudes for electroproduction. The factor E in the left is due to the finite extension of the meson wave function and the correction factor D in the right is due to nonperturbative corrections to the simple R_1^2 dependence of the dipole cross section. The factors are very similar for longitudinal and transverse polarisations.

important only for the light mesons at low values of Q^2. Also D is similar for the longitudinal and transverse polarisation.

The importance of nonperturbative contributions to vector meson photoproduction has been stressed before [32], using a different approach to nonperturbative corrections.
II. THEORETICAL RESULTS
AND COMPARISON WITH EXPERIMENT

A detailed description of the framework of our calculations can be found in our previous papers [16, 17, 18, 21]. The basis for the determination of the loop-loop scattering amplitude represented in Fig. 1 is the model of the stochastic vacuum. The calculations are determined by two parameters, the correlation length of the nonperturbative gluon fluctuations and the strength of the gluon condensate, which can be extracted from lattice calculations [29].

All parameters have been determined from other sources, and they are collected in Appendix A. Our calculations contain therefore no adjustable parameter and all theoretical results are true predictions.

In the following we present a comparison of our theoretical results with the available data of elastic photo and electroproduction of the S-wave vector mesons, namely $J/\psi, \Upsilon, \rho, \omega, \phi$.

A. Photo and electroproduction of the J/ψ meson

In Fig. 4 we show the data for the integrated elastic cross section σ of J/ψ electroproduction at the fixed energy $W=90$ GeV as a function of the photon virtuality Q^2. The data are from Zeus [33, 34] and H1 [35] collaborations. The theoretical calculations (solid line) are made using the BL (Brodsky-Lepage) form of the vector meson wave function; the BSW-wave function yields very similar results. The agreement between data and the theoretical calculations is remarkable. The dotted line in the figure, which nearly coincides with our theoretical calculation is a fit to the data proposed in the experimental paper, with the usual form

$$\sigma = \frac{A}{(1 + Q^2/M_V^2)^n}.$$ (2.1)

Fig. 5 shows the ratio R of the longitudinal to the transverse cross sections

$$R = \frac{\sigma_L}{\sigma_T},$$ (2.2)

again for J/ψ elastic electroproduction at $W=90$ GeV. As the ratio cancels influences of the specific dynamical model, this quantity tests directly details of the overlaps.
of wave functions, helping the study of their longitudinal and transverse structures. The data are from Zeus [33, 34] and H1 [35] collaborations at HERA. As seen in the figure, the presently available data are not very accurate. The theoretical calculations with the two kinds of wave function - BL and BSW - give nearly the same results for $\sigma = \sigma^L + \sigma^T$ and for $R = \sigma^L/\sigma^T$.

Fig. 4 shows the comparison of our calculations for the energy dependence of cross sections with the recent Zeus and H1 data [33, 34, 35] and older photoproduction data from fixed target experiments [38, 39] at lower energies. For illustration of our results for electroproduction we show data and theoretical results in the Q^2 range 6.8 - 7 GeV2 for which there are both Zeus and H1 data.

Often the W dependence of experimental cross sections is fitted through single powers in the form

$$\sigma = \text{Const.} \times W^{\delta(Q^2)},$$

which may be useful in limited W ranges. Values of the parameter δ obtained at several values of Q^2 in J/ψ electroproduction are compared to our theoretical
FIG. 5: Ratio R of longitudinal and transverse cross sections for J/ψ electroproduction as function of Q^2 for fixed energy $W=90$ GeV. Data from Zeus [34, 36] and H1 [35, 37] collaborations at HERA. The solid line and dashed lines show our theoretical calculations respectively with the BL (solid) and the BSW (dashed) wave functions. A good numerical representation for the BL result is $R(Q^2) \approx 0.76 \left(\frac{Q^2}{M^2} \right) / \left(1 + \frac{Q^2}{M^2} \right)^{0.09}$.

predictions in Fig. 7, based on the two-pomeron scheme.

In contrast to purely perturbative approaches, our theoretical treatment allows to calculate the dependence of the cross section on the momentum transfer t. The data on the t-distribution in J/ψ photo [33, 35] and electroproduction [34, 35] at $W=90$ GeV are shown in Fig. 8 together with our theoretical results (solid lines). Also shown are electroproduction data and calculations at $Q^2 = 6.8 - 7$ GeV2 where measurements from both Zeus and H1 are available.

Our calculation predicts a curvature in the log plot for the t distribution, which we may describe with the form

$$\frac{d\sigma}{dt}\bigg|_{t=0} = \frac{d\sigma}{dt}\bigg|_{t=0} \times F(|t|) = \frac{d\sigma}{dt}\bigg|_{t=0} \times \frac{e^{-b|t|}}{(1 + a|t|)^2}.$$ \hspace{1cm} (2.4)

For $\gamma^*p \rightarrow p\psi$ at $W=90$ GeV our calculations at $Q^2 = 0$ give $a = 4.06$ GeV$^{-2}$ and $b = 1.75$ GeV$^{-2}$. Present data give no clear cut evidence for this curvature. The distribution becomes flatter as Q^2 increases, but in the investigated range does practically not change with the energy (no shrinking).

In order to determine the integrated cross section the experimental data have to be
FIG. 6: Energy dependence of the integrated elastic cross section for J/ψ production from the HERA collaborations \cite{33,34,35}, compared with our theoretical calculations. The fixed target photoproduction data are from the E-401 and E-516 experiments \cite{38,39}. Electroproduction is represented by the Q^2 range 6.8-7.0 GeV2, for which there are both Zeus and H1 data points.

extrapolated to the point of minimum momentum transfer. This brings a theoretical bias to the experimental points. It is therefore meaningful to compare our theoretical results with observed data at small but finite momentum transfer. This is done in Fig. 9; the agreement is excellent.

B. Photo and electroproduction of Υ meson

For the Υ there are only two data points for photoproduction, at $<W>$=120 GeV \cite{40} and $<W>$=143 GeV \cite{41}, shown together with our theoretical energy dependence in Fig. 10. In the second plot we show our calculation of the Q^2 dependence at the fixed energy $W=130$ GeV, together with the data for $Q^2 = 0$ at the energies 120 and 143 GeV. Both plots show a fairly good agreement with the data. It should be noted that, in spite of the high mass scale, the finite extension of the meson has a considerable effect, as can be seen in Fig. 3 left.
FIG. 7: Q^2 dependence of the δ parameter describing the energy dependence of the J/ψ integrated elastic cross section, from Zeus and H1 collaborations [33, 34, 35], compared to our theoretical predictions.

FIG. 8: The t dependence of the differential cross sections of J/ψ elastic photo [33, 35] and electroproduction [34, 35]. The Zeus(2002) photoproduction results have separate information from events with ψ decaying into $\mu^+\mu^-$ (full circles) and e^+e^- (empty circles). The solid lines represent our theoretical results.
FIG. 9: Q^2 and W dependences of the (nearly) forward differential cross sections of J/ψ elastic photo

[33, 35] and electroproduction

[34, 35]. The solid lines represent our theoretical results.

FIG. 10: Integrated elastic cross section of Υ photoproduction as function of the energy and electroproduction at the energy $W=130$ GeV as a function of Q^2. The data at the energies $<W> = 120$ and 143 GeV are respectively from Zeus [40] and H1 [41] collaborations. The solid lines represent our theoretical calculations using the BL wave function.
C. Photo and electroproduction of ρ meson

The classical fixed target experiments [42, 43, 44, 45, 46] provide important reference for the magnitudes of cross sections in ρ photo and electroproduction at center of mass energies about 20 GeV. The data are shown in Fig. 11 together with the results of our calculation. The agreement is satisfactory given the quite important discrepancies within the data in the interval $Q^2 = 4 - 7 \text{ GeV}^2$.

![Graph showing integrated elastic cross section for ρ electroproduction at the energy W=20 GeV as a function of the photon virtuality Q^2. The data are from fixed target experiments [42, 43, 44, 45, 46], spanning almost two decades. The solid line represents the results of our calculations.](image)

FIG. 11: Integrated elastic cross section for ρ electroproduction at the energy $W=20 \text{ GeV}$ as a function of the photon virtuality Q^2. The data are from fixed target experiments [42, 43, 44, 45, 46], spanning almost two decades. The solid line represents the results of our calculations.

Fig. 12 shows the data for the integrated elastic cross section σ of ρ electroproduction at the fixed energy $W=90 \text{ GeV}$ as a function of the photon virtuality Q^2. The data are from Zeus [36, 47] and H1 [48, 49] collaborations. The solid line represents the theoretical calculations using the BL form of the vector meson wave function. Our theoretical calculations give an overall, good description of the data but do not reproduce the details of the Q^2 dependence of ρ electroproduction as well as they did in J/ψ production. The present data indicate that in the ρ meson case a fitting of a simple form like Eq. (2.1) is not satisfactory for the whole Q^2 range. Two of such forms may be applied, with a transition in the values of both parameters (normalization and power) occurring somewhere in the Q^2 range from 5 to 7. More
experimental measurements are needed to clarify the structure of the data in this region, which may contain important information about the dynamics of the process.

Fig. 12 shows the integrated elastic cross section of ρ electroproduction at the energy $W=90$ GeV as a function of Q^2. The data are from Zeus [36, 47] and H1 [48, 49] collaborations. The solid line shows our theoretical results using the BL wave function.

Fig. 13 shows the ratio $R = \sigma^L / \sigma^T$ of cross sections for longitudinal and transverse polarisations, for ρ elastic electroproduction at $W=20$ and 90 GeV. The data at 90 GeV are from NMC [46], Zeus [36, 47], and H1 [48, 49]. The $W=20$ GeV data are from the E-665 experiment [45]. To indicate the differences, the theoretical results for both BL (solid line) and BSW (dashed line) wave functions are displayed. For large Q^2, R becomes very sensitive to the values of the small transverse cross section. The measurement of this quantity R therefore provides important tests on the structure of the meson wave function.

Fig. 14 shows the energy dependence of ρ electroproduction for several values of Q^2 together with our theoretical results. On the right-hand-side plot we show the effective power δ for the energy dependence (see eq. (2.3)) for the W-region of approximately 30 to 130 GeV. The experimental points are from Zeus [36, 47, 51] and H1 [48, 49]. Our theoretical description, solid line, is very satisfactory within the experimental errors.

There are no published measurements of the differential cross section $d\sigma / dt$ in ρ production for nonzero values of Q^2. The Zeus photoproduction data at $W=75$ and
FIG. 13: Ratio R between longitudinal and transverse cross sections for ρ electroproduction as function of Q^2 for fixed energies $W=20$ GeV, with data from E-665 [45], and $W=90$ GeV with data from NMC [46], Zeus [36, 47] and H1 [48, 49, 50]. The solid and dashed lines show the theoretical calculations with the BL and BSW wave functions respectively.

94 GeV [51, 52] are shown in Figs. 15. In the low t range there are new preliminary data from H1 [53] at several energies. The numbers for the differential cross sections at 70 GeV for low t extracted from their plots are included in the figure, and they seem to confirm the previous Zeus measurements at $W=75$ GeV [51]. Our theoretical calculations are shown in the figures, the description is satisfactory.

D. Photo and electroproduction of ω meson

As particles of about the same size and mass, ω and ρ have similar behaviour in the soft processes that we study here.

The Q^2 dependence of ω photo and electroproduction [54, 55] is shown in Fig. 16. The agreement between our results and the data is not perfect, but satisfactory, in view that there is no free parameter involved in the calculations.

The existing data [56, 57] on the t dependence of the differential cross section in ω production are shown in Fig. 17. In the figure are put together the data points of the energies $W=15$ GeV (with $Q^2 = 0$) and $W=80$ GeV (with $Q^2=0.1$ GeV2), and the corresponding theoretical curves. The coincidence of shapes exhibits the universality of the form factors of t dependence in our model. Our prediction of a
FIG. 14: Energy dependence of ρ electroproduction cross section in the region from approximately 30 to 130 GeV. The solid lines show our theoretical calculations for several values of Q^2 and the data are from Zeus [36, 47, 51] and H1 [48, 49] collaborations. The plot in the right hand side shows data and theoretical values for the parameter δ of the energy dependence W^δ.

curvature in the plot of $d\sigma/d|t|$ seems to be confirmed by the data.

E. Photo and electroproduction of ϕ meson

The ϕ meson has a strategic place between the J/ψ and the ρ meson and may help to understand the differences in behaviour of heavy and light vector mesons and also to clarify the interplay of perturbative and nonperturbative aspects of QCD.

In Fig. 18 we show the Q^2 dependence of the integrated elastic cross section in ϕ photo and electroproduction at $W=75$ GeV [58, 59, 60], together with our theoretical calculations. As in the case of ρ electroproduction, there is indication that the data cannot be well represented by a single expression of the form of Eq. (2.1). The data are poorer here than in the ρ case, and it is important to investigate the possibility of a transition region in an intermediate Q^2 range below 10 GeV2 in which the normalization and the power change values rather rapidly.

The data for the ratio $R = \sigma^L/\sigma^T$ for $W=75$ GeV as function of Q^2 [59, 60] are shown in Fig. 19, together with our results with BL and BSW wave functions. The calculations exhibit, as in the ρ meson case, the sensitivity of the ratio R to details.
FIG. 15: Experimental data and our theoretical prediction (solid line) for the t dependence of ρ photoproduction cross sections. The published data are from the Zeus collaboration, at the energies 75 GeV (low t) \cite{51} and 94 GeV (large t) \cite{52}. The 94 GeV data are rescaled with a factor $(90/94)^{0.16} = 0.993$ in the figure. We also include in the low-t figure preliminary information from H1 \cite{53}, extracted from their plots, for $W=70$ GeV.

FIG. 16: Q^2 dependence of the cross section of ω elastic production \cite{54,55}. The solid line represents our calculations.

of the wave functions. Offering a reference for the two kinds of calculation, the plot also shows (dotted line) a fit of the data, made by experimentalists.

The effective power $\delta(Q^2)$ describing the energy dependence as W^δ in ϕ elec-
FIG. 17: t dependence of ω photoproduction cross sections \([56, 57]\). The plot puts together data points at the energies $W=15$ GeV (with $Q^2 = 0$) and $W=80$ GeV (with $Q^2=0.1$ GeV2), and the corresponding theoretical curves. The curvature and the similarities of shapes of the t distributions for two different energies and Q^2 values are characteristic features of our framework.

production \([60]\) is shown in Fig. 20 and compared with our results using the two-pomeron model. The theoretical Q^2 dependence is similar to that of J/ψ and ρ production, whereas the experimental points, with large errors, indicate a flatter behaviour. Obviously more data are necessary.

Our calculations give very good descriptions for the Q^2 dependence of the differential elastic cross section in forward directions in ϕ electroproduction, as it does in the J/ψ case. Fig. 21 shows the comparison with the experimental data \([60]\).

There are no published measurements of $d\sigma/d|t|$ in ϕ production for nonzero Q^2. The Zeus photoproduction data at 94 GeV \([52, 58]\) are shown in Fig. 22. Our theoretical calculations give a very satisfactory description.

F. Results concerning several vector mesons

The quantitative predictions made in a unique way for different kinds of vector mesons cover several scales of magnitudes in cross sections. This global coverage is
FIG. 18: Q^2 dependence of ϕ production cross sections at $W=75$ GeV and our theoretical description. The data are from Zeus [58, 60] and H1 [59].

FIG. 19: Q^2 dependence of the ratio $R = \sigma^L/\sigma^T$ in ϕ electroproduction [58, 60] at fixed energy $W=75$ GeV. The solid and dashed lines represent our calculations with BL (solid) and BSW (dashed) wave functions; the dotted line is a fit of the form $R = 0.51 \left(\frac{Q^2}{M^2}\right)^{0.86}$.

exhibited in Fig. 23. The same global description is given for the forward differential cross section shown in Fig. 24. In this figure the charge factors squared \hat{e}_V^2, see Eq. (1.9), for each kind of meson are extracted, making the quantities almost universal in
FIG. 20: The effective power δ parameter governing the energy dependence of ϕ electroproduction. The data are from Zeus [60], the solid line is our theoretical result.

FIG. 21: Q^2 dependence of the differential cross sections of ϕ elastic in the forward direction. The solid lines represent our calculation. The second plot contains the same information, showing the typical behaviour of a straight line in the variable $Q^2 + M_V^2$.

a $Q^2 + M_V^2$ plot. However, the universality is only approximate, and our calculation predicts correctly the observed displacements.

The data on the energy dependence of the integrated cross sections for ρ, ϕ and ψ mesons have been presented and compared to the theoretical predictions for each
FIG. 22: \(t \) dependence of \(\phi \) photoproduction cross sections and its theoretical description in our nonperturbative calculation with the stochastic vacuum model. The published data are from the Zeus collaboration, at the energy 94 GeV, first at low \(t \) \cite{58} and then at larger \(t \) \cite{52}.

The parameter \(\delta(Q^2) \) of the suggested simple energy dependence

\[
\sigma(Q^2) = \text{Const.} \times W^\delta(Q^2)
\]

has also been given in each case. This parametrization is an approximation valid in a limited energy range, since the true energy dependence in our calculation is determined by the two-pomeron scheme, but it is considered useful in practice.

We then evaluate \(\delta \) using the energy range \(W=20 - 100 \) GeV, for all values of \(Q^2 \). The results are put together in Fig. \ref{fig:26}. We note that all curves start at the minimum value \(4 \times 0.08 \) at the same unphysical point \(Q^2 + M_V^2 = 0 \) and all are asymptotic to \(\delta = 4 \times 0.42 \) as \(Q^2 \) increases. We then have the form of parametrization

\[
\delta(Q^2) = 0.32 + 1.36 \frac{(1 + Q^2/M_V^2)^n}{A + (1 + Q^2/M_V^2)^n}
\]

(2.5)

and the values for \(A \) and \(n \) are given in table \ref{table:1}.

Our model has definite predictions for the \(t \) dependence in differential cross sections. The shape can be conveniently represented by the form given in Eq. (2.4). Fig. \ref{fig:26} shows the form factor \(F(|t|) \) for all vector mesons at fixed energy \(W=90 \) GeV.
FIG. 23: Integrated elastic cross sections for all vector mesons at $W=90$ GeV, as functions of $Q^2 + M_V^2$. The lines represent our theoretical calculations.

FIG. 24: Differential cross sections in a forward direction for all vector mesons at $W=90$ GeV, as functions of $Q^2 + M_V^2$, with extraction of charge factors. The lines represent the theoretical calculations with the stochastic vacuum model as in Fig. 23.

The curvature in the log graph is a prediction of our framework. The values of the parameters as functions of Q^2 are shown in one of the plots. In Table II some numerical values of a, b are given.
Meson	ρ	ϕ	J/ψ	Υ
A	124.926	51.9183	2.0624	0.9307
n	1.239	1.239	1.12	0.22

TABLE I: Values of A and n in the exponent $\delta(Q^2)$ from Eq. 2.5

As the virtuality Q^2 grows, the ranges of the overlap functions decrease, and the electroproduction cross sections of all mesons become flatter, all tending together to the shape characteristic of the Υ meson, with same limiting values $a = 4.02$ GeV2 and $b = 1.60$ GeV2 for the parameters. The limiting shape of the distribution for very large Q^2 is illustrated in Fig. 27, where we see all vector mesons superposed. In the figure we draw the bit of straight line representing the slope considered as the average for the interval from $|t| = 0$ to $|t| = 0.2$ GeV2. As indicated inside the plots, the calculations of form factors presented in the figures are made for $W = 90$ GeV. In the second plot presented in Fig. 27 we show the (absence of) dependence of the form factor on the energy W. Thus we predict that there is no shrinking of the forward peak in $d\sigma/d|t|$ as the energy increases. The experimental data are not yet sufficient to test all these predictions.

FIG. 25: Parameter $\delta(Q^2)$ of the energy dependence of the cross sections.
FIG. 26: Form factor $F(|t|)$ of the $|t|$ distribution in the elastic differential cross sections photoproduction of vector mesons, with the characteristic curvatures in the log plot predicted in our calculations. The curves follow the shapes given by Eq. (2.4), with $a(Q^2)$ and $b(Q^2)$ represented in the second figure. Specific numerical values of the parameters for $Q^2 = 0, 10$ and 20 GeV2 are given in Table II. The values in the limit of very large Q^2 are $a = 4.02$ GeV$^{-2}$ and $b = 1.60$ GeV$^{-2}$.

TABLE II: Some values of the parameters a and b of $\frac{d\sigma}{dt} = \frac{d\sigma}{dt}_{t=0} \times e^{-b|t|} (1+a|t|)^2$ eq. (2.4). The full Q^2 dependence is shown in Fig. 26.

Meson	$Q^2 = 0$ (GeV$^{-2}$)	$Q^2 = 10$ GeV2	$Q^2 = 20$ GeV2			
$\rho(770)$	7.06	3.09	4.349	1.996	4.145	1.846
$\omega(782)$	7.20	3.08	4.323	1.990	4.141	1.835
$\phi(1020)$	5.40	2.77	4.211	1.934	4.091	1.807
$J/\psi(1S)$	4.06	1.75	4.026	1.696	4.022	1.670
$\Upsilon(1S)$	4.03	1.61	4.027	1.606	4.025	1.604

III. SUMMARY AND DISCUSSION

We have shown the predictions for elastic electroproduction processes using two basic ingredients:

1) the overlaps of photon and meson wave functions, written as packets of quark-
FIG. 27: The plot in the left hand side shows the shape of the $|t|$ distribution in the differential cross section for electroproduction common to all vector mesons for very large Q^2. The straight line passes through the points $|t|$ equal to zero and 0.2 GeV2, indicating the average slope that would be measured in this limit. The plot in the right hand side shows that $F(|t|)$ does not depend significantly on the energy, and thus measurement of slopes at fixed Q^2 would give a constant value for each vector meson.

antiquark dipoles, with protons described also as packets of dipoles (in a convenient diquark model for the nucleon),
2) the interaction of two dipoles described in terms of geometric variables in an impact parameter representation of the amplitudes based on nonperturbative properties of the QCD gluon field.

These quantities put together and integrated over the distribution of dipoles in initial and final states lead to a correct description of the data concerning all vector mesons.

In all cases the variations with energy are very well described by the Regge picture, with soft and hard pomerons coupled to large and small dipoles, respectively. We recall that in approaches mainly based on perturbation theory the energy (or x) dependence is introduced through the gluon distribution in the proton.

Each of the different mesons enter in the calculation characterized only by the masses and charges of its quark contents, and with their normalized wave function individualized only by the corresponding electromagnetic decay rate (related to the value
of the wave function at the origin).

The specific nonperturbative input is the stochastic vacuum model, which has been successfully applied in many fields, from hadron spectroscopy to high energy scattering. The basic interaction of two dipoles depends only on universal features of the QCD field, which are the numerical values of the gluon condensate and of the correlation length of the finite range correlations. These two quantities have been determined by lattice investigations and tested independently in several instances of phenomenological use of the dipole-dipole interaction.

As has already been pointed out [18], the main features of the Q^2 dependence of electroproduction of vector mesons are contained in the overlap integral. For values of Q^2 attainable at present this overlap integral is determined by perturbative QCD, through the photon wave function, and by nonperturbative QCD, through the meson wave function. The production of transversely polarized mesons is determined by the meson wave function even for very high values of Q^2. The importance of nonperturbative effects in vector meson production has also been stressed in [32], where the perturbative two gluon exchange has been supplemented by an exchange of nonperturbative gluons. In our approach, which incorporates both perturbative and nonperturbative effects, we are able to give a fair overall description of all observables of vector meson production: the energy dependence, the Q^2 dependence, the ratio of longitudinal to transverse mesons and the angular distribution.

In this paper our calculations are compared to the large amount of recent HERA data for $\rho, \omega, \phi, J/\psi$ and Υ mesons.

APPENDIX: QCD AND WAVE FUNCTION PARAMETERS

Here we recall some expressions and the numerical values of quantities used in the nonperturbative contributions, which have been unchanged for many applications.

The loop-loop scattering amplitude $S(b, W, z_1, \vec{R}_1, z_2 = 1/2, \vec{R}_2)$ determining the essential quantity $J(q^*, W, z_1, \vec{R}_1)$ in Eq. [13], can be calculated using the stochastic vacuum model. The essential input parameters of this model are the correlation length a of the gauge invariant two gluon correlator and the gluon condensate $\langle g^2 F F \rangle$. These quantities have been determined in lattice calculations [29]. The
numerical values used in this and previous papers are
\[a = 0.346 \text{ fm} \quad \langle g_s^2 F F \rangle a^4 = 23.5. \]
(A.1)

The constant \(\kappa = 0.74 \) appearing in the correlation functions preserves its value determined by lattice calculations.

The energy dependence is based on a two-pomeron model, small dipoles with size \(R < R_c \) couple to the hard pomeron with an intercept \(\alpha_{P_h}(0) = 1.42 \), whereas large dipoles with \(R > R_c \) couple to the soft pomeron with an intercept \(\alpha_{P_s}(0) = 1.08 \). The transition radius \(R_c \) has been determined from the \(x \)-dependence of the proton structure function to \(R_c = 0.22 \text{ fm} \).

For the proton wave function occurring in Eq. (1.3) we use a diquark-quark Gaussian wave function with the transverse radius \(R_P = 0.75 \text{ fm} \).

The light quark masses which can simulate confinement effects in the otherwise perturbative photon wave function \[m_u = m_d = 0.2 \text{ GeV} \quad m_s = 0.3 \text{ GeV} \].
(A.2)

For the heavy quarks we take the renormalized masses in the \(\overline{\text{MS}} \) scheme
\[m_c = 1.25 \text{ GeV} \quad m_b = 4.2 \text{ GeV} \]
(A.3)

The full form of photon and vector meson wave functions used in our work, including the helicity dependences, have been presented before \[16, 18 \], with two forms for the vector mesons: the Bauer-Stech-Wirbel (BSW) \[25 \], and the Brodsky and Lepage (BL) \[26 \] wave functions, where the separate \(r, z \) dependences are respectively
\[\phi_{\text{BSW}}(z, r) = \frac{N}{\sqrt{4\pi}} \sqrt{z \bar{z}} \exp \left[- \frac{M_V^2}{2 \omega^2} (z - \frac{1}{2})^2 \right] \exp \left[- \frac{1}{2} \omega^2 r^2 \right], \]
(A.4)

(here \(M_V \) represents the vector meson mass) and
\[\phi_{\text{BL}}(z, r) = \frac{N}{\sqrt{4\pi}} \exp \left[- m_f^2 (z - \frac{1}{2})^2 \right] \exp \left[- 2 z \bar{z} \omega^2 r^2 \right], \]
(A.5)

with \(m_f \) representing the quark mass.

The parameters \(N \) (normalization) and \(\omega \) (that fixes the extension) are determined using the electromagnetic decay rates of the vector mesons. Their values are collected \[18 \] in Table III.
TABLE III: Parameters of the vector meson wave functions

Meson	f_V (GeV)	BSW ω(GeV) N	BL ω(GeV) N
$\rho(770)$	0.15346	0.2159 5.2082 0.3318 4.4794	0.2778 2.0766 0.3434 1.8399
$\omega(782)$	0.04588	0.2084 5.1770 0.3033 4.5451	0.2618 2.0469 0.3088 1.8605
$\phi(1020)$	0.07592	0.2568 4.6315 0.3549 4.6153	0.3113 1.9189 0.3642 1.9201
$J/\psi(1S)$	0.26714	0.5770 3.1574 0.6759 5.1395	0.6299 1.4599 0.6980 2.3002
$\Upsilon(1S)$	0.23607	1.2850 2.4821 1.3582 5.9416	1.3250 1.1781 1.3742 2.7779

After summation over helicity indices, the overlaps of the photon and vector meson
wave functions

$$\rho_{\gamma^* V, \lambda}(Q^2; z_1, R_1) = \psi_{V \lambda}(z_1, R_1)^* \psi_{\gamma^* \lambda}(Q^2; z_1, R_1)$$ \(A.6)$$

that appear in Eq.\((\ref{eq:1.2})\) are given by

$$\rho_{\gamma^* V, \pm 1; BSW}(Q^2; z, r) = \hat{e}_V \sqrt{\frac{6\alpha}{2\pi}} (\epsilon_f \omega^2 r[z^2 + \bar{z}^2]K_1(\epsilon_f r) + m_f^2 K_0(\epsilon_f r)) \phi_{BSW}(z, r)$$ \(A.7)$$

and

$$\rho_{\gamma^* V, \pm 1; BL}(Q^2; z, r) = \hat{e}_V \sqrt{\frac{6\alpha}{2\pi}} (4\epsilon_f \omega^2 rz[\bar{z}^2 + z^2]K_1(\epsilon_f r) + m_f^2 K_0(\epsilon_f r)) \phi_{BL}(z, r)$$ \(A.8)$$

for the transverse case, BSW and BL wave functions respectively. For the longitudinal case we can write jointly

$$\rho_{\gamma^* V, 0; X}(Q^2; z, r) = -16\hat{e}_V \sqrt{\frac{3\alpha}{2\pi}} \omega z^2 \bar{z}^2 Q K_0(\epsilon_f r) \phi_X(z, r) ,$$ \(A.9)$$

with X standing for BSW or BL. The effective quark charges \hat{e}_V are $1/\sqrt{2}$ for ρ, $1/3\sqrt{2}$ for ω, $-1/3$ for ϕ and Υ and $2/3$ for ψ. The quantity

$$\epsilon_f = \sqrt{z(1-z)Q^2 + m_f^2}$$ \(A.10)$$

and the modified Bessel functions are introduced by the photon wave functions.

[1] A. Donnachie and P. Landshoff, Phys. Lett. B 311 (1987) 403.
[2] M.G. Ryskin, Z. Phys. C 57 (1993) 89.
[3] S.J. Brodsky, L. Frankfurt, J.F. Gunion, A.H. Mueller, M. Strikman, Phys. Rev. D 50 (1994) 3134.
[4] M.G. Ryskin, R.G. Roberts, A.D. Martin, E.M. Levin, Z. Phys. C 76 (1997) 231.
[5] E. Gotsman, E. Ferreira, E. Levin, U. Maor and E. Naftali, Phys. Lett. B 503 (2001) 277.
[6] E. Gotsman, E. Levin, U. Maor and E. Naftali, Phys. Lett. B 532 (2002) 37.
[7] L. Frankfurt, W. Koepf and M. Strikman, Phys. Rev. D 54, 3194 (1996).
[8] L. Frankfurt, W. Koepf and M. Strikman, Phys. Rev. D 57, 512 (1998).
[9] A. D. Martin, M. G. Ryskin and T. Teubner, Phys. Rev. D 62, 014022 (2000).
[10] E. Gotsman, E. Levin, M. Lublinsky, U. Maor and E. Naftali, Acta Phys. Polon. B 34, 3255 (2003).
[11] O. Nachtmann, Annals Phys. 209 (1991) 436.
[12] C. Ewerz and O. Nachtmann, hep-ph/0404254 and hep-ph/0604087.
[13] H.G. Dosch, Phys. Lett. B 190 (1987) 177.
[14] H.G. Dosch and Y.A. Simonov, Phys. Lett. B 205 (1988) 339.
[15] A. Donnachie and P.V. Landshoff, Phys. Lett. B 437 (1998) 408.
[16] H.G. Dosch, E. Ferreira, Eur. Phys. J. C 29 (2003) 45.
[17] H.G. Dosch, E. Ferreira, Phys. Lett. B 576 (2003) 83.
[18] E. Ferreira and V.L. Baltar, Nucl.Phys.A 748 (2005) 608.
[19] H.G. Dosch and A. Kramer, Phys. Lett. B 252 (1990) 669.
[20] H.G. Dosch, E. Ferreira and A. Kramer, Phys. Rev. D 50 (1994) 1992.
[21] H.G. Dosch, T. Gousset, G. Kulzinger and H. J. Pirner, Phys. Rev. D 55 (1997) 2602.
[22] B.Z. Kopeliovich, J. Nemchik, N.N. Nikolaev, and B.G. Zakharov, Phys. Lett. B324 (1994) 469; Phys. Lett. B309, 179 (1993).
[23] B. Blaettel, G. Baym, L. L. Frankfurt and M. Strikman, Phys. Rev. Lett. 70 (1993) 896.
[24] H.G. Dosch, T. Gouset and H.J. Pirner, Phys. Rev. D 57 (1998) 1666.
[25] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C 34 (1987) 103; Z. Phys. C29, 637 (1985);
[26] G.P. Lepage and S.J. Brodsky, Phys. Rev. D 22 (1980) 2157; S.J. Brodsky, H.C. Pauli and S.S. Pinsky, Phys. Rep. 301, 299 (1998).
[27] G. Dosch, S. Donnachie, P. Landshoff, and O. Nachtmann, *Pomeron Physics and*
[28] A. Di Giacomo, H. G. Dosch, V. I. Shevchenko and Y. A. Simonov, Phys. Rep. 372 (2002) 319.

[29] M. D’Elia, A. Di Giacomo and E. Meggiolaro, Nucl. Phys. Proc. Suppl. 73 (1999) 515.

[30] A. Donnachie, H.G. Dosch and M. Rueter, Eur. Phys. J. C 13 (2000) 141.

[31] A. Donnachie and H.G. Dosch, Phys. Rev. D 65 (2002) 014019.

[32] A. Donnachie, J. Gravelis and G. Shaw, Phys. Rev. D 63 (2001) 114013.

[33] ZEUS Coll., S. Chekanov et al., Eur.Phys.J. C24 (2002)345-360.

[34] ZEUS Coll., S. Chekanov et al., Nucl.Phys.B695(2004) 3.

[35] H1 Coll., A. Aktas et al., Eur.Phys.J. C46 (2006)585-603.

[36] ZEUS Coll.(1999), J.Breitweg et al.,Eur.Phys.J.C6(1999)603-627.

[37] H1 Coll.(1999), C.Adloff et al.,Eur.Phys.J.C10(1999)373-393.

[38] E-401 Coll., M. Binkley et al., Phys.Rev.Lett. 49(1982)73.

[39] E-516 Coll., B.H. Denby et al., Phys.Rev.Lett. 52(1984)795

[40] J. Breitweg et al., Zeus Coll., Phys. Lett. B 437 (1998) 432.

[41] C. Adloff et al., H1 Coll. Phys. Lett. B 483 (2000) 23.

[42] R.M. Egloff et al., Phys. Rev. Lett. 43(1979)657.

[43] Chio Coll., W.D. Shambroom et al., Phys. Rev. D 26 (1982) 1.

[44] EMC Coll., J.J. Aubert et al., Phys. Lett B 161(1985) 203 ; J. Ashman et al., Z. Phys. C 39 (1988) 169.

[45] M.R. Adams et al.,E-665 experiment, Z. Phys. C 74 (1997) 237.

[46] M. Arneodo et al., NMC Coll., Nucl. Phys. B 429 (1994) 503 ; P. Amaudruz et al., Z. Phys. C 54 (1992) 239.

[47] ZEUS Coll. - Preliminary, Budapest Conference 2001.

[48] C. Adloff et al., H1 Coll. Eur. Phys. J. C 13 (2000) 371.

[49] H1 Coll. - Preliminary, Aachen Conference 2003.

[50] S. Aid et al, H1 Coll., Nucl. Phys. B 468 (1996) 3.

[51] - Zeus Coll., J. Breitweg et al.,Eur.Phys.J.C 2(1998) 247.

[52] - Zeus Coll., J. Breitweg et al.,Eur.Phys.J.C 2(1998) 247.

[53] - H1prelim-06-011, presented in DIS-2006, Tsukuba, Japan, April 2006.

[54] Zeus Coll.,M. Derrick et al. Z.Phys. C73 (1996) 73.

[55] Zeus Coll., J. Breitweg et al. Phys.Lett. B487(2000)273.
[56] FNAL-401, J. Busenitz et al., Phys. Rev. D40 (1989) 1.

[57] M. Derrick et al., ZEUS Coll. Z. Phys. C73 (1996) 73.

[58] Zeus Coll., M. Derrick et al. Phys. Lett. B377 (1996) 259.

[59] H1 Coll. (2000) , C. Adloff et al. Phys. Lett. B 483 (2000) 360.

[60] ZEUS Coll. (2005) , S. Chekanov et al. Nucl. Phys. B718 (2005) 3.