How plants synthesize coenzyme Q

Jing-Jing Xu1,2,*, Mei Hu1,3, Lei Yang1,2 and Xiao-Ya Chen1,4

1Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
2Chenshan Plant Science Research Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
3Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
4State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
*Correspondence: Jing-Jing Xu (jjxu02@cemps.ac.cn)
https://doi.org/10.1016/j.xplc.2022.100341

ABSTRACT

Coenzyme Q (CoQ) is a conserved redox-active lipid that has a wide distribution across the domains of life. CoQ plays a key role in the oxidative electron transfer chain and serves as a crucial antioxidant in cellular membranes. Our understanding of CoQ biosynthesis in eukaryotes has come mostly from studies of yeast. Recently, significant advances have been made in understanding CoQ biosynthesis in plants. Unique mitochondrial flavin-dependent monoxygenase and benzenoid ring precursor biosynthetic pathways have been discovered, providing new insights into the diversity of CoQ biosynthetic pathways and the evolution of phototrophic eukaryotes. We summarize research progress on CoQ biosynthesis and regulation in plants and recent efforts to increase the CoQ content in plant foods.

Keywords: coenzyme Q, 4-hydroxybenzoic acid, mitochondria, biofortification, plant metabolism

Xu J.-J., Hu M., Yang L., and Chen X.-Y. (2022). How plants synthesize coenzyme Q. Plant Comm. 3, 100341.

INTRODUCTION

Coenzyme Q (CoQ), also known as ubiquinone, is an essential electron transporter in the oxidative respiratory chain that generates adenosine triphosphate (ATP). CoQ is synthesized by nearly all eukaryotes and some proteobacteria. Structurally, CoQ is composed of a benzoquinone head group attached to a polyisoprenoid tail whose number of isoprene units varies among species: 10 (CoQ10) in humans and some crops (such as tomato and soybean), CoQ6 in Arabidopsis thaliana and rice, CoQ8 in Escherichia coli, and CoQ9 in yeast (Saccharomyces cerevisiae). The quinone head group of CoQ can exist in three oxidation states: the fully oxidized form (CoQ, ubiquinone), the semi-oxidized form with one electron (CoQH, ubisemiquinone), and the fully reduced form (CoQH2, ubiquinol).

In eukaryotes, CoQ is a central component in mitochondrial oxidative phosphorylation, mediating the electron transfer from complex I (NADH:ubiquinone oxidoreductase) and II (succinate dehydrogenase) to complex III (cytochrome bc1 oxidoreductase). CoQ also serves as the electron acceptor for several other mitochondrial inner-membrane dehydrogenases (Banerjee et al., 2021) involved in pyrimidine biosynthesis (Evans and Guy, 2004), sulfide detoxification (Zhang et al., 2008; Ziosi et al., 2017), fatty acid β-oxidation, branched-chain amino acid oxidation (Watmough and Freman, 2010), and so on. CoQ is also a lipid-soluble antioxidant in all cellular compartments (Baschiera et al., 2021). Recently, CoQ was found to be a cofactor of ferroptosis suppressor protein 1, which reduces CoQ to CoQH2 to suppress ferroptosis (Bersuker et al., 2019; Doll et al., 2019). Because it is essential to human health and important in disease prevention and recovery (Cirilli et al., 2021), CoQ is among the most widely consumed dietary supplements (Arenas-Jal et al., 2020).

Biochemical characterizations of CoQ biosynthetic enzymes in eukaryotes have been focused on the yeast model S. cerevisiae. In most cases, human functional orthologs were identified through restoration of the respective yeast mutants. Progress in the characterization of CoQ biosynthesis in yeast, humans, and prokaryotes has been reviewed recently (Stefely and Pagliarini, 2017; Awad et al., 2018; Wang and Hekimi, 2019; Abby et al., 2020). The S. cerevisiae and human genes required for CoQ biosynthesis are written in capital letters. The corresponding proteins in humans are in uppercase letters, whereas in S. cerevisiae, they are written with only the first letter capitalized. We capitalize only the first letter for both genes and proteins of plants in this review: for example, human gene COQ3, human protein COQ3, yeast gene COQ3, yeast protein Coq3, Arabidopsis gene Coq3, and Arabidopsis protein Coq3. The prokaryotic proteins of CoQ biosynthesis are typically named with a prefix of “Ubi.”

The CoQ biosynthetic pathway can be divided into three parts: formation of the aromatic ring precursor, biosynthesis of the polyisoprenoid tail, and modifications of the aromatic ring (Figure 1).
Figure 1. The plant CoQ biosynthetic pathway.

The plant-specific enzymes are shown in a green background. The B-ring of kaempferol contributes to the 4-HB pool. For 4-HB biosynthesis, 4-HB, 4-hydroxybenzoic acid; PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; PXA1, peroxisomal ABC transporter one; and UGTs, uridine diphosphate (legend continued on next page).
How plants synthesize coenzyme Q

Although the eukaryotic CoQ biosynthetic pathway has not been fully defined to date, some components have been found to be conserved across fungi, metazoans, and plants (Toda et al., 2014). Most plants are photo-autotrophic; although photophosphorylation in the chloroplast is the major source of ATP supply, the mitochondrial oxidative respiratory chain is indispensable for plant survival. In recent years, plants have been reported to have special routes for generating the head group and a unique enzyme in the terminal stage. Here, we outline the CoQ biosynthetic pathway in plants and summarize progress in plant CoQ enhancement.

AROMATIC RING PRECURSOR BIOSYNTHESIS

4-hydroxybenzoic acid (4-HB) is the classic benzene quinone ring precursor of CoQ in eukaryotes and prokaryotes. The origins of 4-HB in different species have been reviewed recently (Fernandez-Del-Rio and Clarke, 2021). Here, we discuss 4-HB biosynthetic pathways in plants.

Plants synthesize all proteinogenic amino acids themselves. In plants, 4-HB is derived from either L-phenylalanine or L-tyrosine via independent pathways. Investigations using 13C-labeled compounds demonstrated that phenylalanine is a 2- to 5-fold better precursor than tyrosine in Arabidopsis (Block et al., 2014; Soubeyrand et al., 2019). Phenylalanine is deaminated by phenylalanine ammonia-lyase (PAL) and hydroxylated by cinna- mate 4-hydroxylase (C4H), producing p-coumaric acid in the cytosol (Table 1). The knockout mutant of C4H appears to be unable to convert phenylalanine into CoQ (Soubeyrand et al., 2018). Two routes have been shown to convert p-coumaric acid into 4-HB. The predominant route is the β-oxidative metabolism of p-coumaric acid, unique to plants, in which p-coumaric acid is imported into peroxisomes by peroxisomal ATP-binding cassette transporter 1 (PX1A1), which also transports other substrates for β-oxidation, including fatty acids and a wide range of bioactive molecules (Russell et al., 2014; Theodoulou et al., 2005; Zolman et al., 2001). PX1A1 has fatty acyl-coenzyme A (CoA) thioesterase activity (De Marcos Lousa et al., 2013), suggesting that the substrates of PX1A1 are transported as CoA esters. In peroxisomes, 4-coumarate CoA ligases (AT4G19010 and 4CL8 in Arabidopsis) catalyze the formation of p-coumaryl-CoA, initiating β-oxidative side chain shortening. The subsequent steps have been proposed to be similar to the shortening of cinnamoyl-CoA to benzoic acid, involving cinnamoyl-CoA hydratase and dehydrogenase and 3-ketoacyl-CoA thiolase (Widhalm and Dudareva, 2014). However, experimental evidence that these enzymes are responsible for the production of 4-HB is lacking. Loss of function of PX1A or AT4G19010 resulted in a 55%–65% decrease in CoQ content in Arabidopsis (Block et al., 2014), suggesting that β-oxidation of p-coumaric acid is the dominant route (Figure 1).

In another pathway, p-coumaric acid enters flavonoid biosynthesis in the cytosol, as covered and specifically discussed in a recent review (Berger et al., 2022). Genetic analyses and isotopic labeling experiments showed that 4-HB can be derived from kaempferol. First, 4CL3 catalyzes the formation of p-coumaryl-CoA. Chalcone synthase (CHS), the first committed enzyme in flavonoid biosynthesis, carries out the condensation of three malonyl-CoA with p-coumaryl-CoA, leading to the formation of naringenin chalcone, which is converted to kaempferol via the action of chalcone isomerase, flavanone 3-hydroxylase (F3H), and flavonol synthase. Knockout mutants of 4CL3, CHS, and F3H displayed a 15%–25% reduction in CoQ content. Then, the B-ring of kaempferol is proposed to be cleaved by heme-dependent peroxidases to generate 4-HB. This reaction requires a free hydroxyl group on C3 as well as a C2–C3 double bond in the C-ring, as naringenin, dihydrokaempferol, and kaempferol 3-β-D-glucopyranoside failed to release 4-HB in vitro. The candidate peroxidases have not been identified but are likely to be heme peroxidases because the activity was abolished by azide (Soubeyrand et al., 2018).

In plants, tyrosine also gives rise to 4-HB, but the steps and responsible enzymes have not been identified. Although tyrosine serves as the source of 4-HB in yeast and mammals, the tyrosine-to-4-HB pathway has not been fully defined in any eukaryotes. The first and last reactions in yeast have been characterized (Payet et al., 2016; Stefely et al., 2016). First, the deamination of tyrosine to 4-hydroxyphenylpyruvate (4-HPP) is catalyzed by five redundant aminotransferases (Aro8, Aro9, Bat2, Bna3, and Aat2) (Robinson et al., 2021), and the final step is achieved by aldehyde dehydrogenase Hfd1, which oxidizes 4-hydroxybenzaldehyde to 4-HB. Plants have functional tyrosine aminotransferase (Wang et al., 2016, 2019), but the in planta role of tyrosine aminotransferase in 4-HB biosynthesis has not been demonstrated. Hfd1 belongs to the aldehyde dehydrogenase family, and the human enzyme ALDH3A1 restored CoQ biosynthesis of the yeast Jfd1 strain (Payet et al., 2016). It is still unknown whether the last step is also conserved in plants. A recent report showed that hydroxyphenylpyruvate dioxygenase-like catalyzes the second reaction in mitochondria of human cells, converting 4-hydroxyphenylpyruvate to 4-hydroxymandelate (Banh et al., 2021). However, Arabidopsis has no homolog of hydroxyphenylpyruvate dioxygenase-like. Moreover, it remains unclear whether plant 4-HB production is completed in the mitochondria and how the aromatic ring precursor is transported across the mitochondrial inner membrane.

POLYSISPRENOID TAIL BIOSYNTHESIS

In plants, the isoprene subunits for the CoQ side chain are generated through the mevalonate (MVA) pathway, which also produces precursors for sesquiterpene, triterpene, sterol, and bras-sinosteroid biosynthesis (Zhou and Pichersky, 2020; Pu et al.,...
The mechanism underlying the import of isoprene units into the mitochondria remains uncharacterized. The polyisoprenoid tail is synthesized in mitochondria by Coq1, a trans-polyprenyl diphosphate synthase. The Arabidopsis homozygous transfer DNA knockout mutants of AtCoq1 (also known as AtSPS3) are embryo lethal (Ducluzeau et al., 2012). Polyprenyl diphosphate synthases catalyze the condensations of isopentenyl diphosphate with allylic substrates. In vitro enzyme assays showed that Coq1 can use dimethylallyl diphosphate, geranyl diphosphate, farnesyl diphosphate (FPP), or geranylgeranyl diphosphate as its allylic diphosphate primers (Ohara et al., 2010; Hsieh et al., 2011). Although the substrates used in planta remain uncertain, Arabidopsis loss-of-function mutants of FPS1 or FPS2 (FPP synthase) had a moderate reduction in CoQ9 contents (Closa et al., 2010), suggesting that FPP is a potential substrate. Arabidopsis contains five genes encoding eranylgeranyl diphosphate synthase (GGPPS), and GGPPS1 (AT1G49530) was shown to be targeted to the mitochondria (Zhu et al., 1997; Okada et al., 2000). It is still unclear whether these GGPPSs are responsible for the biosynthesis of CoQ (Ruiz-Sola et al., 2016), and the means by which the isoprenyl diphosphate substrates are transported into the mitochondria awaits elucidation.

Coq1 is believed to determine the side-chain length of CoQ, which varies among species. Based on its final product, Coq1 can be named hexaprenyl diphosphate synthase, octaprenyl diphosphate synthase, solanesyl diphosphate synthase, and decaprenyl diphosphate synthase. The side-chain length varies among species, with some monounsaturated CoQ species containing a single double bond. The double bond is introduced indirectly through the synthesis of the CoQ side chain, which contains a conjugated diene system.

Table 1. Genes involved in CoQ biosynthesis in Arabidopsis.

Gene	AGI	Function	References
C4H	AT2G30490	4-HB biosynthesis from phenylalanine	(Block et al., 2014)
PXA1	AT4G39850	4-HB biosynthesis from phenylalanine	(Block et al., 2014)
AT4G19010	AT4G19010	4-HB biosynthesis from phenylalanine	(Block et al., 2014)
4CL8	AT5G38120	4-HB biosynthesis from phenylalanine	(Soubeyrand et al., 2019)
4CL3	AT1G65060	4-HB biosynthesis from phenylalanine	(Soubeyrand et al., 2018)
CHS	AT5G13930	4-HB biosynthesis from phenylalanine	(Soubeyrand et al., 2018)
F3H	AT3G51240	4-HB biosynthesis from phenylalanine	(Soubeyrand et al., 2018)
IDI1	AT5G16440	isoprenoid biosynthesis	(Okada et al., 2008; Phillips et al., 2008)
IDI2	AT3G02780	isoprenoid biosynthesis	(Okada et al., 2008; Phillips et al., 2008)
FPS1	AT5G47770	isoprenoid biosynthesis	(Closa et al., 2010; Manzano et al., 2016)
FPS2	AT4G17190	isoprenoid biosynthesis	(Closa et al., 2010; Manzano et al., 2016)
Coq1	AT2G34630	isoprene polymerization	(Ducluzeau et al., 2012)
Coq2	AT4G23660	C3 prenylation	(Okada et al., 2004)
Coq3	AT2G09820	O methylations	(Avelange-Macherel and Joyard, 1998)
Coq5	AT5G7300	C2 methylation	(Toda et al., 2014)
Coq6	AT3G24200	C5 hydroxylation	(Latimer et al., 2021)
CoqF	AT1G24340	C6 hydroxylation	(Latimer et al., 2021)
Coq4	AT2G03890	scaffold protein?	(Toda et al., 2014)
Coq8	AT4G01660	ATPase	(Toda et al., 2014)
Coq9*	AT1G19140	isoprene lipid-binding protein	(Toda et al., 2014)
Coq11A*	AT5G10730	atypical short chain dehydrogenase and reductase	(Xu et al., 2021)
Coq11B*	AT5G15910	atypical short chain dehydrogenase and reductase	(Xu et al., 2021)

*Putative, lacking experimental supporting data.
How plants synthesize coenzyme Q

Family	Species	Common name	Predominant form of CoQ	References
Poaceae	Oryza sativa	Rice	CoQ9	(Ikeda and Kagei, 1979)
Poaceae	Triticum aestivum	Wheat	CoQ9	(Ikeda and Kagei, 1979)
Poaceae	Zea mays	Maize	CoQ9	(Threlfall and Whistance, 1970)
Cucurbitaceae	Cucumis melo	Muskmelon	CoQ9	(Threlfall and Whistance, 1970)
Cucurbitaceae	Cucumis sativus	Cucumber	CoQ9	(Threlfall and Whistance, 1970)
Asteraceae	Lactuca sativa	Cultivated lettuce	CoQ9	(Threlfall and Whistance, 1970)
Asteraceae	Cichorium intybus	Chicory	CoQ9	(Threlfall and Whistance, 1970)
Ericaceae	Vaccinium vitis-idaea	Cowberry	CoQ9	(Mattila and Kumpulainen, 2001)
Brassicaceae	Arabidopsis thaliana	Thale cress	CoQ9	(Xu et al., 2021)
Brassicaceae	Brassica oleracea var. botrytis	Cauliflower	CoQ10	(Mattila and Kumpulainen, 2001)
Brassicaceae	Brassica rapa subsp. pekinensis	Chinese cabbage	CoQ10	(Kettawan et al., 2007)
Fabaceae	Glycine max	Soybean	CoQ10	(Ikeda and Kagei, 1979)
Fabaceae	Pisum sativum	Pea	CoQ10	(Mattila and Kumpulainen, 2001)
Fabaceae	Arachis hypogaea	Peanut	CoQ10	(Ikeda and Kagei, 1979)
Solanaceae	Solanum lycopersicum	Tomato	CoQ10	(Mattila and Kumpulainen, 2001)
Solanaceae	Solanum tuberosum	Potato	CoQ10	(Mattila and Kumpulainen, 2001)
Solanaceae	Solanum melongena	Eggplant	CoQ10	(Kettawan et al., 2007)
Apiaceae	Daucus carota	Carrot	CoQ10	(Mattila and Kumpulainen, 2001)
Apiaceae	Petroselinum crispum	Parsley	CoQ10	(Kettawan et al., 2007)
Rosaceae	Malus domestica	Apple	CoQ10	(Mattila and Kumpulainen, 2001)
Rutaceae	Citrus clementina	Clementine	CoQ10	(Mattila and Kumpulainen, 2001)

Table 2. Predominant forms of CoQ in different plant species.

diphosphate synthase, which generate chains of 6 (C30), 8 (C40), 9 (C45), and 10 (C50) isoprene units, respectively. In plants (Table 2), several species of Poaceae, Cucurbitaceae, and Asteraceae have been shown to synthesize mainly CoQ9, whereas CoQ10 is predominant in Fabaceae and Solanaceae (Threlfall and Whistance, 1970; Ikeda and Kagei, 1979). Species in the same family may produce different CoQs. For example, in Brassicaceae, A. thaliana contains primarily CoQ9, but cauliflower (Brassica oleracea var. botrytis) accumulates CoQ10 (Mattila and Kumpulainen, 2001). The mechanism by which Coq1 determines the product length remains enigmatic, although studies in bacteria have proposed a “single-floor” or “double-floor” model for octaprenyl diphosphate synthases (Guo et al., 2004; Han et al., 2015).

AROMATIC RING MODIFICATIONS

The aromatic head is decorated into a fully substituted benzoquinone ring in mitochondria by one prenylation, one decarboxylation, three hydroxylations, and three methylations. First, the isoprene tail is attached to 4-HB, and then the ring is hydroxylated at C5, followed by O-methylation. After sequential decarboxylation and hydroxylation at C1, the ring is further modified via C2 methylation, C6 hydroxylation, and O-methylation (Figure 1). The order of these reactions in eukaryotes is still debatable (Acosta Lopez et al., 2019; Fernandez-Del-Rio and Clarke, 2021). Among the enzymes characterized, four (Coq2, Coq3, Coq5, and Coq6) are conserved across plants, fungi, and mammals. The recently identified CoqF is a unique flavin-dependent monooxygenase prevalent in plants and green algae but distinct from its counterpart in fungi and Metazoa. Besides these enzymes, a number of proteins without a clear catalytic role are also involved in CoQ biosynthesis.

Prenylation

Coq2, 4-hydroxybenzoate polyprenyl diphosphate transferase, transfers the polyisoprenoid chain to the 4-HB ring (Figure 1), generating the first lipophilic CoQ intermediate. Arabidopsis Coq2 (also known as AtPPT1) was able to complement the yeast coq2 deletion strain, and the knockout mutant of Arabidopsis was embryo lethal at an early stage (Okada et al., 2004).

Hydroxylations

CoQ biosynthesis requires hydroxylation on three positions of the aromatic ring: C1, C5, and C6. In E. coli, C1 hydroxylation is catalyzed by UbiH, a group A flavin-dependent monoxygenase (Pelosi et al., 2016). The C1-hydroxylase is unidentified in all eukaryotes.

The C5 hydroxylation is mediated by Coq6, a flavin-dependent monoxygenase that is conserved in eukaryotes, including plants (Toda et al., 2014). In the yeast and E. coli mutant strains in which the C5-hydroxylation-encoding gene was disrupted, CoQ production was recovered when Arabidopsis Coq6 was introduced (Latimer et al., 2021); however, the function of AtCoq6 in planta has yet to be characterized.

In yeast and humans, the C6 hydroxylation is catalyzed by Coq7, a di-iron protein. However, plants do not have a Coq7 homolog.
Recently, two teams independently reported that plants use a unique enzyme, which we named CoqF, to complete this last hydroxylation step (Latimer et al., 2021; Xu et al., 2021). CoqF restored CoQ biosynthesis when expressed in the yeast coq7 mutant and the *E. coli* ubiF (encoding C6 hydroxylase in some Gammaproteobacteria; Pelosi et al., 2016) mutant. Insertional mutations of *AtCoqF* resulted in embryo lethality that could be rescued by either human COQ7 or *E. coli* UbiF. In addition, suppression of CoqF expression in *Nicotiana benthamiana* via virus-induced gene silencing (VIGS) resulted in CoQ deficiency. CoqF is a unique flavin-dependent monooxygenase, in that it has a C-terminal extension (~200 amino acids), distinct from other flavin-dependent enzymes previously identified to participate in CoQ biosynthesis. Besides being ubiquitous in land plants, CoqF is also widely distributed in several other major groups of eukaryotes, such as green algae, Cryptista, Haptista, Stramenopiles, Alveolata, and Rhizaria, and it occurs sporadically in other eukaryotic domains owing to lateral gene transfers, providing an excellent marker for distinguishing eukaryotes (Xu et al., 2021). Notably, apicomplexan parasites such as *Plasmodium falciparum* et al., 2021) are functional in the fission yeast *Schizosaccharomyces pombe* (Toda et al., 2014), but its function in planta has not been confirmed.

Decarboxylation

In *E. coli*, the decarboxylation is catalyzed by the decarboxylase UbiD (Cox et al., 1969), supported by flavin prenyltransferase UbiX that produces a highly modified flavin cofactor for UbiD activity (White et al., 2015). The C1 decarboxylation in eukaryotes is still a mystery.

Other proteins

Besides the enzymes discussed above, several yeast proteins have been found to be required for efficient biosynthesis of CoQ, including Coq4, Coq8, Coq9, and Coq11; their homologs all exist in Arabidopsis.

Coq4 is thought to act as a scaffold protein that organizes the CoQ biosynthetic complex (Marbois et al., 2009), but the precise mechanisms are unclear. Coq8 is a member of an atypical kinase family, and it exhibits a conserved ATPase activity that is activated by CoQ-like phenolic compounds and cardiolipin-containing liposomes (Reidenbach et al., 2018). Overexpression of Coq8 in yeast coq-null mutants stabilized the remaining CoQ biosynthesis polypeptides (Xie et al., 2011, 2012). Expression of *Arabidopsis* Coq4 and Coq8 recovered CoQ biosynthesis in the *S. pombe* coq4- and coq8-null mutants, respectively (Toda et al., 2014).

Coq9 is a lipid-binding protein. In human models, it has been proposed that COQ9 may act as a "lipid presenter" to deliver intermediates directly to COQ7 (Lohman et al., 2019). For instance, COQ9 physically interacts with COQ7 and is required for C6 methylations.

Methylations

There are two methoxyl groups at C5 and C6 of the benzoquinone ring, both of which are methylated by Coq3 in eukaryotes.
How plants synthesize coenzyme Q

Hydroxylation catalyzed by Coq7 (Lohman et al., 2014, 2019). However, plants use the flavin-dependent CoqF instead of the di-iron Coq7 as the C6 hydroxylase, and the Arabidopsis homolog of Coq9 failed to complement the S. pombe coq9 deletion (Toda et al., 2014). Whether and how Coq9 participates in plant CoQ biosynthesis is an open question.

Coq11, a member of the atypical short-chain dehydrogenase and reductase superfamily, was identified as a constituent of the CoQ biosynthetic complex via affinity purification of tagged Coq proteins in yeast (Allan et al., 2015). The genome of Arabidopsis encodes several homologs of Coq11, two of which (Coq11A and Coq11B) show co-expression with CoQ biosynthesis (Xu et al., 2021). Again, their function has not been demonstrated.

Biosynthetic complex

Enzymes that act downstream of polyprenyl-hydroxybenzoate and additional associated proteins form a biosynthetic complex known as the CoQ-synthome or Complex Q. In yeast, Coq3–Coq9 and Coq11 are members of the complex. The CoQ-synthome also exists in humans (Floyd et al., 2016). In E. coli, seven Ubi proteins form a stable metabolon that synthesizes ubiquinone in the cytosol (Hajj Chehade et al., 2019). In plants, such a complex awaits exploration.

THE EVOLUTION OF PLANT CoQ BIOSYNTHESIS

Plants have evolved the unique ability to synthesize 4-HB from phenylalanine via two parallel routes. The phenylpropanoid pathway also serves as a starting point for the production of a variety of metabolites such as lignin, flavonoids, coumarins, and lignans. A recent analysis of the evolutionary history of key enzymes in the phenylpropanoid pathway showed that the enzymes involved in making p-coumarol-CoA from phenylalanine (PAL, C4H, and 4CL), are generally present across Embryophyta (de Vries et al., 2021). Homologs of the genes encoding PAL and 4CL can even be found in streptophyte algae, the algal sisters of land plants. In Arabidopsis, two peroxisomal 4CLs (AT4G19010 and 4CL8) have been identified to participate in this pathway. In the acyl-activating enzyme superfamily, AT4G19010 and 4CL8 belong to clade V (Shockey and Browse, 2011), which also contains several members that exhibit high activities toward fatty acids (Kienow et al., 2008). A phylogenetic analysis showed that the clade V members of Arabidopsis fell into a clade that included sequences from major lineages of land plants. It would be interesting to see whether peroxisomal 4CLs are widely distributed in plants. The second route is the conversion of p-coumaric acid into kaempferol. Among flavonoids, kaempferol is a flavonol that is widely present in land plant species ranging from bryophytes and ferns to seed plants. The second route is the conversion of kaempferol into 7-hydroxylated derivatives like kaempferol-3-O-glucoside, which is a major red-flavonoid pigment in many species (Washini and Murai, 2013). Notably, mammalian cells also have the ability to use exogenous kaempferol as a precursor for CoQ biosynthesis (Fernandez-Del-Rio et al., 2017). The mechanism of release of a CoQ ring precursor from kaempferol is likely to be conserved between plants and mammals (Fernandez-Del-Rio et al., 2020).

Plant Communications

Unlike animals and fungi, in which the C6 hydroxylation is catalyzed by Coq7, plants use CoqF (Figure 2). Although the two enzymes are functional counterparts, they are evolutionarily unrelated and have different origins: Coq7 is a di-iron hydroxylase, whereas CoqF belongs to an isolated subfamily of flavoenzymes. It has been proposed that CoqF emerged early during eukaryotic diversification and then became dominant among photosynthetic and related organisms. Both CoqF and Coq7 were found in Prasinodermophyta and Chlorophyta, but usually in different sublineages. In streptophyte algae and land plants, CoqF is the sole C6 hydroxylase, implying an adaptive advantage of this unique flavoenzyme in aerobic respiration during plant terrestrialization (Xu et al., 2021).

The bioactive compound shikonin and its derivatives are a group of red-pigmented naphthoquinones produced in many members of the family Boraginaceae. The shikonin and CoQ pathways share precursors and contain similar biochemical architectures, and evolutionary links between CoQ and shikonin biosynthesis have been identified in red gromwell, Lithospermum erythrorhizon (Auber et al., 2020; Suttiyut et al., 2022). The p-hydroxybenzoate:geranyltransferase genes and several gene candidates for shikonin biosynthesis were found to have evolved via duplication of the CoQ pathway genes. Further investigation of CoQ biosynthesis is likely to help gene discovery for the biosynthesis of shikonins and other quinone-bearing specialized metabolites.

REGULATION OF CoQ BIOSYNTHESIS

Regulation of CoQ biosynthesis in yeast and mammals has been reviewed recently, and Coq7 seems to be a key regulatory hub that integrates endogenous and environmental signals (Villalba and Navas, 2021). Far less is known about the regulation of CoQ biosynthesis in plants. Since plants use a distinct flavoenzyme in place of Coq7, it is likely that plants employ a different regulatory mechanism.

According to the Arabidopsis Electronic Fluorescent Pictograph Browser (Winter et al., 2007), Coq genes are highly expressed in seeds. Congruently, CoQ is distributed throughout the plant and more abundant in seeds (Xu et al., 2021). Analysis of Arabidopsis demonstrated the co-expression of genes involved in CoQ biosynthesis in mitochondria (Ducluzeau et al., 2012). In addition, genes involved in 4-HB biosynthesis (AT4G19010, C4H, 4CL3, CHS, CHI, F3H, and FLS1) and the MVA pathway (HMGR1, HMGR2, and HMGS) in the cytosol were also co-expressed with the Coq genes (Ducluzeau et al., 2012; Soubeyrand et al., 2018). It will be interesting to analyze the regulatory mechanisms at the transcriptional level.

It remains elusive how plants synthesize CoQ in response to environmental stimuli. A recent report showed that continuous high-light treatments promoted the de novo biosynthesis of CoQ in Arabidopsis (Soubeyrand et al., 2019); the underlying signaling pathway is worthy of investigation.

CoQ10 BIOFORTIFICATION

CoQ is endogenously synthesized in the human body, and CoQ levels decrease as people age (Ernster and Forsmark-Andree, 2008).
Plant Communications

1993). In addition, certain cholesterol-lowering drugs, such as statins, inhibit 3-hydroxy-3-methylglutaryl-CoA reductase activity, resulting in a decrease in CoQ (Bhagavan and Chopra, 2006). Dietary intake from food is another source of CoQ; however, this supply is not always sufficient because plant-based foods, particularly vegetables, fruits, and cereals, are generally low in CoQ contents (Pravst et al., 2010; Parmar et al., 2015). In addition, many plants synthesize CoQ9 instead of CoQ10 as the principal CoQ molecule. Thus, there is a great need for engineering CoQ10 production in plants. Major strategies used for CoQ10 biofortification include increasing precursor availability and overexpressing rate-limiting enzymes in mitochondria.

Increasing the precursor supply

4-HB serves as the skeleton for the CoQ head group. When 4-HB was fed to Arabidopsis seedlings, CoQ accumulated to as much as 150% of the control level (Soubeyrand et al., 2021). Overexpression of AT4G19010 or 4CL8, which encode 4-coumarate CoA ligases responsible for 4-HB production in peroxisomes, increased CoQ accumulation to ~150% of the wild-type level (Block et al., 2014; Soubeyrand et al., 2019). In knockout mutants of genes encoding kaempferol 3-O-glycosyltransferase that restricts the supply of 4-HB, CoQ content was elevated to 160% of the wild-type level (Soubeyrand et al., 2021). These results indicated that 4-HB supply limits plant CoQ biosynthesis.

Precursors of the isoprene tail are produced from the cytosolic MVA pathway. In Nicotiana tabacum, expression of a bacterial phosphomevalonate decarboxylase that increases available isopentenyl phosphate resulted in increased production of MVA-derived terpenoids; however, CoQ accumulation was not affected (Henry et al., 2018). One reason might be that the isoprenoid subunits produced in the cytosol were not efficiently transported to mitochondria.

Overcoming downstream rate-limiting steps

In mitochondria, transfer of the polypropenyl chain to 4-HB by Coq2 is considered to be a rate-limiting step in CoQ biosynthesis. Overexpression of Coq2 in Salvia miltiorrhiza resulted in up to a 3-fold increase in CoQ content (Liu et al., 2019). Heterologous expression of a yeast Coq2 in tobacco led to elevation of CoQ content, which was two times higher than that of the wild-type control (Ohara et al., 2004).

Recently, encouraging progress was achieved in tomato, which showed a 7-fold increase in CoQ10 production following overexpression of four genes encoding Arabidopsis 3-hydroxy-3-methylglutaryl-CoA reductase, E. coli chorismate pyruvate-lyase UbiC (which catalyzes the removal of pyruvate from chorismate to produce 4-HB), and tobacco Coq1 and Coq2, all driven by the tomato-fruit-specific E8 promoter (Fan et al., 2021). The results provide evidence that Coq1 and Coq2, which catalyze the decaprenyl chain formation and attachment in mitochondria, play a key role in determining the final CoQ10 yield.

Modifying the side-chain length

Another problem encountered in engineering CoQ in plants is that most cereal crops, as well as some vegetables and fruits, predominantly produce CoQ9, whereas human mitochondria synthesize CoQ10. Side-chain length has been shown to be a critical factor for CoQ biological activity, and the efficacies of CoQ analogs for medical purposes have been reviewed recently (Suarez-Rivero et al., 2021). Wang and Hekimi generated conditional Coq7 (also known as Mclk1) knockout mouse embryonic fibroblasts in which CoQ9 was undetectable and exogenously applied CoQs of varying isoprenoid chain length, CoQ9, which is the original species of CoQ in mice, appeared to improve respiratory chain activity more effectively than other CoQs tested (Wang and Hekimi, 2013). Another investigation, based on the kinetics of bovine respiratory complex I catalysis with a series of CoQs of different isoprenoid side-chain lengths (from 1 to 10 units), suggested that CoQ10 has both the highest binding affinity and the fastest binding rate (Fedor et al., 2017).

The length of the side chain is determined by Coq1. In rice and Panicum meyerianum, expression of decaprenyl diphosphate synthase from Gluconobacter suboxydans modified the length of the CoQ side chain from 9 to 10 isoprene units (Takahashi et al., 2006, 2009, 2010; Seo et al., 2011). The mechanism of Coq1-mediated chain-length determination is, however, poorly understood. Characterization of the catalytic steps will facilitate the development of CoQ10-enriched crops by selection of appropriate natural variations and genome editing.

FUTURE PERSPECTIVES

CoQ biosynthesis has been studied mainly in yeast and human cells, and thus our understanding of the diversity of the CoQ biosynthetic pathway in eukaryotes is highly limited. Recent investigations in plants have identified several unique enzymes in the plant CoQ biosynthetic pathway. It will be of great interest to search for the enzymes and cofactors that act in the steps that have not been identified in plants, and this should help us to understand the evolution of oxidative respiration from bacteria to eukaryotes.

In plants, CoQ is important for growth and development. Arabidopsis mutants lacking Coq1, Coq2, Coq3, or CoqF are embryo lethal (Avelange-Macherel and Joyard, 1998; Okada et al., 2004; Ducluzeau et al., 2012; Xu et al., 2021). Because CoQ is an essential component in mitochondrial oxidative phosphorylation, plant-specific enzymes of CoQ biosynthesis are potential targets for herbicide development.

At the moment, microbial fermentation is the major industrial source of CoQ10. Enhancement in plant foods can be a cost-effective and environmentally friendly strategy for improving CoQ10 supply. However, to date, little attention has been paid to CoQ10 biofortification, and current engineering strategies have had a relatively modest impact on CoQ10 production in plants. Recently, a genome-wide genetic screen of yeast identified 30 previously unknown regulators of CoQ accumulation; phospholipid metabolism was confirmed to be a key player, as deficiency in phosphatidylethanolamine methylation resulted in a 5-fold increase in CoQ (Ayer et al., 2021). It would be particularly interesting to test whether some of these regulators are functionally conserved in plants. A better understanding of the ubiquinone biosynthetic pathway and its regulatory mechanisms in plants will facilitate the breeding of CoQ10-enriched crop cultivars, hopefully in the near future.
How plants synthesize coenzyme Q

FUNDING
This work was supported by the National Key R&D Program of China (grant no. 2020YFA0907900), the Natural Science Foundation of China (grant nos. 32070338 and 31788103), and the Special Fund for Scientific Research of Shanghai Landscaping & City Appearance Administrative Bureau (grant no. G222414).

AUTHOR CONTRIBUTIONS
J.-J.X. and X.-Y.C. wrote the manuscript. M.H. and L.Y. contributed revisions.

ACKNOWLEDGMENTS
No conflict of interest is declared.

REFERENCES
Abbey, S.S., Kazemzadeh, K., Vragin, L., Pelesi, L., and Pierrel, F. (2020). Advances in bacterial pathways for the biosynthesis of ubiquinone. Biochim. Biophys. Acta Bioenerg. 1861:148259. https://doi.org/10.1016/j.bbapap.2020.148259.

Acosta Lopez, M.J., Trevisson, E., Canton, M., Vazquez-Fonseca, L., Morbidoni, V., Baschiera, E., Frasson, C., Pelosi, L., Rascalou, B., Desbats, M.A., et al. (2019). Vanillic acid restores coenzyme Q biosynthesis and ATP production in human cells lacking COQ6. Oxid. Med. Cell. Longev. 2019:1–11. https://doi.org/10.1155/2019/3904905.

Allan, C.M., Awad, A.M., Johnson, J.S., Shirasaki, D.I., Wang, C., Blaby-Haas, C.E., Merchant, S.S., Loo, J.A., and Clarke, C.F. (2015). Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J. Biol. Chem. 290:7517–7534. https://doi.org/10.1074/jbc.M114.633131.

Arenas-Jal, M., Sune-Negre, J.M., and Garcia-Montoya, E. (2020). Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 19:574–594. https://doi.org/10.1111/1541-4337.12539.

Auber, R.P., Suttiyut, T., McCoy, R.M., Ghaste, M., Crook, J.W., Pendleton, A.L., Widhalm, J.R., and Wisecaver, J.H. (2020). Hybrid de novo genome assembly of red grosswelt (Lithospermum erythrorhizon) reveals evolutionary insight into shikimic biosynthesis. Hortic. Res. 7:82. https://doi.org/10.1038/s41438-020-0301-9.

Avelange-Macherel, M.H., and Joyard, J. (1998). Cloning and functional expression of ATCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis. Plant J. 14:203–213. https://doi.org/10.1046/j.1365-313x.1998.00109.x.

Awad, A.M., Bradley, M.C., Fernandez-Del-Rio, L., Nag, A., Tsui, H.S., and Clarke, C.F. (2018). Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem. 62:361–376. https://doi.org/10.1042/EBC20170106.

Ayer, A., Fazakerley, D.J., Suarna, C., Maghzhal, G.J., Shiportoi, D., Lee, K.J., Bradley, M.C., Fernandez-Del-Rio, L., Tumanov, S., Kong, S.M., et al. (2021). Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biol. 46:102127. https://doi.org/10.1016/j.redox.2021.102127.

Banerjee, R., Purhonen, J., and Kallijärvi, J. (2021). The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. FEBS J. https://doi.org/10.1111/febs.16164.

Banh, R.S., Kim, E.S., Spiller, Q., Bancur, D.E., Yamamoto, K., Sohn, A.S.W., Shi, G., Jones, D.R., Kimmelman, A.C., and Pacold, M.E. (2021). The polar oxy-metabolome reveals the 4-hydroxymandelate CoQ10 synthesis pathway. Nature 597:420–425. https://doi.org/10.1038/s41586-021-03865-w.

Baschiera, E., Sorrentino, U., Caldera, C., Desbats, M.A., and Salvati, L. (2021). The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic. Biol. Med. 166:277–286. https://doi.org/10.1016/j.freeradbiomed.2021.02.039.

Berger, A., Latimer, S., Stutts, L.R., Soubeyrand, E., Block, A.K., and Basset, G.J. (2022). Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: an atypical node between specialized metabolism and primary metabolism. Curr. Opin. Plant Biol. 66:102165. https://doi.org/10.1016/j.pbi.2021.102165.

Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., Roberts, M.A., Tong, B., Maimone, T.J., Zoncu, R., et al. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692. https://doi.org/10.1038/s41586-019-1705-2.

Bhagavan, H.N., and Chopra, R.K. (2006). Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic. Res. 40:445–453. https://doi.org/10.1080/10715760600617843.

Block, A., Widholm, J.R., Fathi, A., Cahoon, R.E., Wamboldt, Y., Elowsky, C., Mackenzie, S.A., Cahoon, E.B., Chapple, C., Dudareva, N., et al. (2014). The origin and biosynthesis of the benzenoid moiety of ubiquinone (coenzyme Q) in Arabidopsis. Plant Cell 26:1938–1948. https://doi.org/10.1105/tpc.114.125807.

Bussell, J.D., Reichelt, M., Wiszniewski, A.A., Gershenson, J., and Smith, S.M. (2014). Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein abnormal INFLO RESCUE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiol. 164:48–54. https://doi.org/10.1104/pp.114.229807.

Cirilli, I., Damiani, E., Diulio, P.V., Hargreaves, I., Marcheggiani, F., Millichap, L.E., Orlando, P., Silvestri, S., and Tiano, L. (2021). Role of coenzyme Q10 in health and disease: an update on the last 10 years (2010–2020). Antioxidants 10:1325. https://doi.org/10.3390/antiox10081325.

Closa, M., Vranova, E., Bortolotti, C., Bigler, L., Arro, M., Ferra, A., and Grissem, W. (2010). The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest. Plant J. 63:512–525. https://doi.org/10.1111/j.1365-313X.2010.04253.x.

Cox, G.B., Young, I.G., McCann, L.M., and Gibson, F. (1969). Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol. J. Bacteriol. 99:450–458. https://doi.org/10.1128/jb.99.3.450-458.1969.

De Marcos Lousa, C., van Roermund, C.W.T., Postis, V.L.G., Dietrich, D., Kerr, I.D., Wanders, R.J.A., Baldwin, S.A., Baker, A., and Theodoulou, F.L. (2013). Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc. Natl. Acad. Sci. USA 110:1279–1284. https://doi.org/10.1073/pnas.1218034110.

de Vries, S.,urst-Jansen, J.M.R., Irisarri, I., Dhabalia Ashok, A., Ichsbeek, T., Feussner, K., Abreu, I.N., Petersen, M., Feussner, I., and de Vries, J. (2021). The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. Plant J. 107:975–1002. https://doi.org/10.1111/tpj.15387.

Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., Goya Grocin, A., Xavier da Silva, T.N., Panzilus, E., Scheel, C.H., et al. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature 578:689–698. https://doi.org/10.1038/s41586-019-1707-0.
Plant Communications

Ducluzeau, A.L., Wamboldt, Y., Elowsky, C.G., Mackenzie, S.A., Schuurink, R.C., and Basset, G.J. (2012). Gene network reconstruction identifies the authentic trans-precursor diphosphatase synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Plant J. 69:366–375. https://doi.org/10.1111/j.1365-313X.2011.04796.x.

Ernster, L., and Forsmark-Andree, P. (1993). Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin. Invest. 71:S60–S65. doi:10.1007/BF00226842.

Evans, D.R., and Guy, H.J. (2004). Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J. Biol. Chem. 279:33035–33038. https://doi.org/10.1074/jbc.R400007200.

Fan, H., Liu, Y., Li, C.Y., Jiang, Y., Song, J.J., Yang, L., Zhao, Q., Hu, Y.H., Chen, X.Y., and Xu, J.J. (2021). Engineering high coenzyme Q10 tomato. Metab. Eng. 68:86–93. https://doi.org/10.1016/j.ymben.2021.09.007.

Fedor, J.G., Jones, A.J.Y., Di Luca, A., Kaila, V.R.I., and Hirst, J. (2020). Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat. Plants 6:1070–1080. https://doi.org/10.1038/s41477-020-0187-z.

Henry, L.K., Thomas, S.T., Widhalm, J.R., Lynch, J.H., Davis, T.C., Kessler, S.A., Bohm, J., Um, P., and Dudareva, N. (2018). Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat. Plants 4:721–729. https://doi.org/10.1038/s41477-018-0220-z.

Hsieh, F.L., Chang, T.H., Ko, T.P., and Wang, A.H.J. (2011). Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl diphosphatase synthase. Plant Physiol. 155:1079–1090. https://doi.org/10.1090/pp.110.168799.

Ikeda, M., and Kagei, K. (1979). Ubiquinone content of eight plant species in cell culture. Phytochemistry 18:1577–1578. https://doi.org/10.1016/S0031-9422(00)98506-6.

Iwashina, T., and Murai, Y. (2013). Distribution of kaempferol glycosides and their function in plants. Chem. Phys. Res. J. 6:271–303.

Kettawan, A., Kunthida, C., Takahashi, T., Kishi, T., Chikazawa, J., Sakata, Y., Yano, E., Watabe, K., Yamamoto, Y., and Okamoto, T. (2007). The quality control assessment of commercially available coenzyme q(10)-containing dietary and health supplements in Japan. J. Clin. Biochem. Nutr. 41:124–131. https://doi.org/10.3164/jcbn.2007017.

Kienow, L., Schneider, K., Bartsch, M., Stohle, H.P., Weng, H., Miersch, O., Wasternack, C., and Kromb, E. (2008). Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J. Exp. Bot. 59:403–419. https://doi.org/10.1093/jxb/erm325.

Latimer, S., Keene, S.A., Stutts, L.R., Berger, A., Bernert, A.C., Soubeyrand, E., Wright, J., Clarke, C.F., Block, A.K., Couploune, T.A., et al. (2021). A dedicated flavin-dependent monooxygenase catalyzes the hydroxylation of demethoxyubiquinone into ubiquinone (coenzyme Q) in Arabidopsis. J. Biol. Chem. 297:101283. https://doi.org/10.1074/jbc.R121012920.

Liu, M., Chen, X., Wang, M., and Lu, S. (2019). SmPPT, a 4-hydroxybenzoate polyphenol diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza. Plant Cell Rep. 38:1527–1540. https://doi.org/10.1007/s00209-019-02463-5.

Lohman, D.C., Aydin, D., Von Bank, H.C., Smith, R.W., Linke, V., Weisenhorn, E., McDevitt, M.T., Hutchins, P., Wilkerson, E.M., Wancwicz, B., et al. (2019). An isoprene lipid-binding protein promotes eukaryotic coenzyme Q biosynthesis. Mol. Cell 73:763–774.e10. https://doi.org/10.1016/j.molcel.2018.11.033.

Lohman, D.C., Forouhar, F., Beebe, E.T., Stefely, M.S., Minogue, C.E., Ulbrich, A., Stefely, J.A., Sukumar, S., Luna-Sanchez, M., Jochem, A., et al. (2014). Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. Proc. Natl. Acad. Sci. USA 111:E4687–E4705. https://doi.org/10.1073/pnas.1413128111.

Manzano, D., Andrade, P., Caudea, D., Altabella, T., Arré, M., and Ferra, A. (2016). Suppressing farnesyl diphosphate synthase alters chloroplast development and triggers sterol-dependent induction of jasmonate- and Fe-related responses. Plant Physiol. 172:93–117. https://doi.org/10.1104/pp.116.010431.

Marbois, B., Gin, P., Gulmezian, M., and Clarke, C.F. (2009). The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim. Biophys. Acta 1791:69–75. https://doi.org/10.1016/j.bbalip.2008.10.006.

Mattila, P., and Kumpulainen, J. (2001). Coenzymes Q9and Q10: contents in foods and dietary intake. J. Food Compos. Anal. 14:409–417. https://doi.org/10.1006/jfca.2000.0983.

Meinke, D.W. (2020). Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 226:306–325. https://doi.org/10.1111/nph.16071.

Ohara, K., Sasaki, K., and Yazaki, K. (2010). Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa. J. Exp. Bot. 61:2683–2692. https://doi.org/10.1093/jxb/erq103.

Ohara, K., Kokado, Y., Yamamoto, H., Sato, F., and Yazaki, K. (2004). Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco. Plant J. 40:734–743. https://doi.org/10.1046/j.1365-313X.2004.02246.x.
How plants synthesize coenzyme Q

Okada, K., Saito, T., Nakagawa, T., Kawamukai, M., and Kamiya, Y. (2000). Five geranyleranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 122:1045–1056. https://doi.org/10.1104/pp.122.4.1045.

Okada, K., Kasahara, H., Yamaguchi, S., Kawade, H., Kamiya, Y., Nojiri, H., and Yamane, H. (2008). Genetic evidence for the role of isopentenyldiphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis. Plant Cell Physiol. 49:604–616. https://doi.org/10.1093/pcp/pcn032.

Okada, K., Ohara, K., Yazaki, K., Nozaki, K., Uchida, N., Kawamukai, M., Nojiri, H., and Yamane, H. (2004). The AIP1T gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana. Plant Mol. Biol. 55:567–577. https://doi.org/10.1007/s11103-004-1298-4.

Parmar, S.S., Jaiwal, A., Dhankher, O.P., and Jaiwal, P.K. (2015). Coenzyme Q10 production in plants: current status and future prospects. Crit. Rev. Biotechnol. 35:152–164. https://doi.org/10.3109/07388551.2013.823594.

Payet, L.A., Leroux, M., Willison, J.C., Kiñara, A., Pelosi, L., and Pierrel, F. (2016). Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem. Biol. 23:1241–1250. https://doi.org/10.1016/j.chembiol.2016.08.008.

Pelosi, L., Ducluzeau, A.-L., Loiseau, L., Barras, F., Schneider, D., Junier, I., Pierrel, F., and Dorestein, P.C. (2016). Evolution of ubiquinone biosynthesis: multiple proteobacterial enzymes with various regioselectivities to catalyze three contiguous aromatic hydroxylation reactions. mSystems 1:1–16. https://doi.org/10.1128/mSystems.00091-16.

Phillips, M.A., D’Auria, J.C., Gershenzon, J., and Pichersky, E. (2008). The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20:677–696. https://doi.org/10.1105/tpc.107.053926.

Poon, W.W., Barkovich, R.J., Hsu, A.Y., Frankel, A., Lee, P.T., Shepherd, J.N., Myles, D.C., and Clarke, C.F. (1999). Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J. Biol. Chem. 274:21665–21672. https://doi.org/10.1074/jbc.M112166200.

Pravst, I., Zmitek, K., and Zmitek, J. (2010). Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 50:269–280. https://doi.org/10.1080/10408390902773037.

Pu, X., Dong, X., Li, Q., Chen, Z., and Liu, L. (2021). An update on the function and regulation of methyletherthiol phosphate and mevalonate pathways and their evolutionary dynamics. J. Integr. Plant Biol. 63:1211–1226. https://doi.org/10.1111/jipb.13076.

Reidenbach, A.G., Kemmerer, Z.A., Aydin, D., Jochem, A., McDevitt, M.T., Hutchins, P.D., Stark, J.L., Stefeley, J.A., Reddy, T.R., Hebert, A.S., et al. (2018). Conserved lipid and small-molecule modulation of CoQ8 reveals regulation of the ancient kinase-like UbiB family. Cell Chem. Biol. 25:154–165.e11. https://doi.org/10.1016/j.chembiol.2017.11.001.

Robinson, K.P., Jochem, A., Johnson, S.E., Reddy, T.R., Russell, J.D., Coon, J.J., and Pagliarini, D.J. (2021). Defining intermediates and redundancies in coenzyme Q precursor biosynthesis. J. Biol. Chem. 296:100643. https://doi.org/10.1074/jbc.R220001200.

Ruiz-Sola, M.A., Barja, M.V., Manzano, D., Llorente, B., Schipper, B., Beekwilder, J., and Rodríguez-Concepcion, M. (2016). A single Arabidopsis gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms. Plant Physiol. 172:1393–1402. https://doi.org/10.1104/pp.16.01392.

Seo, M.S., Takahashi, S., Kadowaki, K., Kawamukai, M., Takahara, M., and Takamizo, T. (2011). Expression of CoQ10-producing ddsA transgene by efficient Agrobacterium-mediated transformation in Panicum miliaceum. Plant Cell Tissue Organ Cult. 107:325–332. https://doi.org/10.1007/s11240-011-9984-9.

Shockey, J., andBrowse, J. (2011). Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J. 66:143–160. https://doi.org/10.1111/j.1365-313X.2011.04512.x.

Soubeyrand, E., Johnson, T.S., Latimer, S., Block, A., Kim, J., Colquhoun, T.A., Butelli, E., Martin, C., Wilson, M.A., and Basset, G.J. (2018). The peroxidative cleavage of kaempferol contributes to the biosynthesis of the benzenoid moiety of ubiquinone in plants. Plant Cell 30:2910–2921. https://doi.org/10.1105/tpc.18.00688.

Soubeyrand, E., Kelly, M., Keene, S.A., Bernert, A.C., Latimer, S., Johnson, T.S., Elowsky, C., Colquhoun, T.A., Block, A.K., and Basset, G.J. (2019). Arabidopsis 4-COUMAROYL-COA LIGASE 8 contributes to the biosynthesis of the benzenoid ring of coenzyme Q in peroxisomes. Biochem. J. 476:3521–3532. https://doi.org/10.1042/BCJ20190688.

Stefely, J.A., and Pagliarini, D.J. (2017). Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 42:824–843. https://doi.org/10.1016/j.tibs.2016.07.008.

Stefely, J.A., Kwiecien, N.W., Freiberger, E.C., Richards, A.L., Jochem, A., Rush, M.J.P., Ulbrich, A., Robinson, K.P., Hutchins, P.D., Veling, M.T., et al. (2016). Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat. Biotechnol. 34:1191–1197. https://doi.org/10.1038/nbt.3683.

Suarez-Rivero, J.M., Pastor-Maldonado, C.J., Povea-Cabello, S., Alvarez-Cordoba, M., Villalon-Garcia, I., Munuera-Cabeza, M., Suarez-Carrillo, A., Talaveron-Rey, M., and Sanchez-Alcazar, J.A. (2021). Coenzyme Q10 analogues: benefits and challenges for therapeutics. Antioxidants 10:236. https://doi.org/10.3390/antiox10020236.

Suttiyut, T., Auber, R.P., Ghaste, M., Kane, C.N., McAdam, S.A.M., Wisecaver, J.H., and Withalam, J.R. (2022). Integrative analysis of the shikonin metabolic network identifies new gene connections and reveals evolutionary insight into shikonin biosynthesis. Hortic. Res. 10:uhab087. https://doi.org/10.1038/s41438-021-0087.

Takahashi, S., Ogijama, Y., Kusano, H., Shimada, H., Kawamukai, M., and Kadowaki, K. (2006). Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant. FEBS Lett. 580:955–959. https://doi.org/10.1016/j.febslet.2006.01.023.

Takahashi, S., Ohtani, T., Satoh, H., Nakamura, Y., Kawamukai, M., and Kadowaki, K. (2010). Development of coenzyme Q10-enriched rice using sugary and shrunken mutants. Biochm. Biotechnol. 74:182–184. https://doi.org/10.1271/bbb.90562.

Takahashi, S., Ohtani, T., Iida, S., Sunohara, Y., Matsushita, K., Maeda, H., Tanetani, Y., Kawai, K., Kawamukai, M., and Kadowaki, K.-i. (2019). Development of CoQ10-enriched rice from giant embryo lines. Breed. Sci. 69:321–326. https://doi.org/10.1270/jsbbs.59.321.

Theodoulou, F.L., Job, K., Slocombe, S.P., Footitt, S., Holdsworth, M., Baker, A., Larson, T.R., and Graham, I.A. (2005). Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol. 137:835–940. https://doi.org/10.1104/pp.105.059352.
Plant Communications

Threlfall, D.R., and Whistance, G.R. (1970). Biosynthesis of ubiquinone—a search for polyisoprene phenol and quinone precursors. Phytochemistry 9:355–359. https://doi.org/10.1016/s0031-9422(00)85147-x.

Toda, T., Hayashi, K., Ogiyama, Y., Yokomi, K., Nakagawa, T., Kaino, T., and Kawamukai, M. (2014). Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. PLoS One 9:e99038. https://doi.org/10.1371/journal.pone.0099038.

Villalba, J.M., and Navas, P. (2021). Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana. Phytochemistry 132:16–25. https://doi.org/10.1016/j.phytochem.2016.09.007.

Wang, M., Toda, K., and Maeda, H.A. (2016). The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim. Biophys. Acta Bioenerg. 1797:1910–1916. https://doi.org/10.1016/j.bbabio.2016.10.007.

White, M.D., Payne, K.A., Fisher, K., Marshall, S.A., Parker, D., Rattray, N.J., Trivedi, D.K., Goodacre, R., Rigby, S.E., Scrutton, N.S., et al. (2015). Ubix is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522:502–506. https://doi.org/10.1038/nature14559.

Ziosi, M., Di Meo, I., Kleiner, G., Gao, X.H., Barca, E., Sanchez-Quintero, M.J., Tadesse, S., Jiang, H., Qiao, C., Rodenburg, R.J., et al. (2017). Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway. EMBO Mol. Med. 9:96–111. https://doi.org/10.15252/emmm.201606356.

Zolman, B.K., Silva, I.D., and Bartel, B. (2001). The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. Plant Physiol. 127:1266–1278. https://doi.org/10.1104/pp.010550.