Are Yao Graph and Theta Graph Void Free?

Weisheng Si
School of Computing, Engineering, and Mathematics
University of Western Sydney
Sydney, Australia
w.si@uws.edu.au

Abstract—Greedy Forwarding algorithm is a widely-used routing algorithm for wireless networks. However, it can fail if the wireless network topologies contain void scenarios (or simply called voids). Since Yao Graph and Theta Graph are two types of geometric graphs exploited to construct wireless network topologies, this paper studies whether these two types of graphs contain voids. Specifically, this paper shows that when the number of cones in Yao Graphs or Theta Graphs is less than 6, Yao Graphs and Theta Graphs can have voids, but when the number of cones equals or exceeds 6, Yao Graphs and Theta Graphs are free of voids.

Index Terms—greedy forwarding, Yao graph, Theta graph, void scenario, wireless networks.

I. INTRODUCTION

With the use of GPS or other localization techniques, the position information of wireless nodes becomes available in many wireless sensor networks, wireless mesh networks, or vehicular ad hoc networks. For these networks, the network topology can be modeled by a geometric graph \(G(V, E) \) in which each node in \(V \) is associated with \((x, y)\)-coordinates, and each edge in \(E \) represents a connection between two nodes and has a weight equal to the Euclidean distance between these two nodes.

An important routing algorithm under the above geometric graph model is the Greedy Forwarding algorithm [1]: when a node \(u \) forwards a packet with destination node \(t \), \(u \) sends this packet to its neighbor that has the smallest Euclidean distance to \(t \). Here, two nodes \(u \) and \(v \) are said to be each other’s neighbor if the edge \(uv \) is present in the graph. The advantages of the Greedy Forwarding algorithm include: (1) low computation overhead at a node, (2) low space overhead for a packet, and (3) the capability to achieve short paths.

However, Greedy Forwarding does not succeed on a graph that contains the void scenario (shortened as void) [1], in which for a certain destination \(t \), a node does not have a neighbor with a smaller distance to \(t \) than its own distance to \(t \). Thus, whether a geometric graph contains voids becomes an important property to study. To the convenience of study, we formally define the concept void-free as follows. Let \(d(a, b) \) denote the Euclidean distance between node \(a \) and node \(b \); if for any node pair \((u, v)\) in a geometric graph \(G \), \(u \) always has a neighbor \(w \) such that \(d(w, v) < d(u, v) \), \(G \) is said to be void-free.

The void-free property has been studied for several types of geometric graphs used in wireless networks such as Relative Neighborhood Graph [2], Gabriel Graph [3], and Delaunay Triangulation [4]. In [5], Delaunay Triangulations are shown to be void-free. In [6], counter-examples are given to show that Relative Neighborhood Graphs and Gabriel graphs are not void-free for certain node sets. However, for Yao Graphs [7] and \(\Theta \)-Graphs (or Theta Graphs) [8], which are also leveraged in many works [9-12] to construct network topologies, no results exist on the void-free property yet. Therefore, this paper investigates this aspect. For later reference in this paper, the definitions of Yao Graph and \(\Theta \)-Graph are stated below.

Given a set \(V \) of nodes on the plane, the directed Yao Graph with an integer parameter \(k \) \((k \geq 1)\) on \(V \) is obtained as follows. For each node \(u \in V \), starting from the direction of positive y-axis, draw \(k \) equally-spaced rays \(l_1, l_2, \ldots, l_k \) originating from \(u \) in clockwise order (see Fig. 1 (a) below). These rays divide the plane into \(k \) cones, denoted by \(c(u, 1), c(u, 2), \ldots, c(u, k) \) respectively in clockwise order. To avoid overlapping at boundaries, it is required that the area of \(c(u, i) \), where \(1 \leq i \leq k \), excludes the ray \(l_i \), and includes the ray \(l_{(i+1) \mod k} \). In each cone of \(u \), draw a directed edge from \(u \) to its closest node by Euclidean distance in that cone. Ties are broken arbitrarily. These directed edges will form the edge set of the directed Yao graph on \(V \). The undirected Yao Graph (or simply Yao Graph) on \(V \) is obtained by ignoring the directions of the edges. Note that if both edge \(uv \) and \(vu \) are in the directed Yao graph, only one edge \(uv \) exists in the Yao graph. Fig. 1 (b) gives an example of Yao graph with \(k=5 \).

![Fig. 1. Cones and an example of Yao Graph for k=5.](image)

Similar to Yao graph, the undirected \(\Theta \)-Graph (or simply \(\Theta \)-Graph) is also obtained by letting each node \(u \in V \) select a ‘closest’ node in each of its cones to have an edge. The only difference is that ‘closest’ in \(\Theta \)-Graph means the smallest
lies outside the circle C_v.

Networks and robotics also be applied to other research areas such as transportation. When $1 \leq k \leq 5$, some node sets exist such that Y_k is not void-free for certain node sets on the plane.

The main contributions of this paper are as follows:

- When $1 \leq k \leq 5$, Y_k and Θ_k are not void-free for certain node sets on the plane.
- When $k \geq 6$, Y_k and Θ_k are void-free for any node set on the plane.

II. COUNTER EXAMPLES WHEN $1 \leq k \leq 5$

When $1 \leq k \leq 5$, we give counter examples to show that Y_k and Θ_k are not always void-free. Specifically, we establish the following two propositions.

Proposition 1. When $1 \leq k \leq 5$, some node sets exist such that Y_k are not void-free.

Proof: When $1 \leq k \leq 3$, we give a counter-example node set V_0 with four nodes u, v, a, and b as shown in Fig. 2, where the dotted auxiliary circle C_v is centered at v and has radius $d(u, v)$, and the dotted auxiliary lines emanating from each node are only drawn for $k = 3$.

When $k = 1$, Y_1 on V_0 is actually the nearest neighbor graph on V_0 [13], thus only having two edges ua and vb. As node a lies outside the circle C_v, u does not have a neighbor with a shorter distance to v. So Y_1 is not void-free on V_0.

When $k = 2$ and 3, Y_2 and Y_3 on V_0 are the same and depicted by solid lines in Fig. 2. Again, node u does not have a neighbor with a shorter distance to v. So Y_2 and Y_3 are not void-free on V_0.

When $k = 4$, we give a counter-example node set V_4 with six nodes u, v, a, b, c, and d as shown in Fig. 3. In this figure, the dotted circle C_v is centered at v and has radius $d(u, v)$. The resulting Y_4 on V_4 is depicted by solid lines. Since nodes a and b are outside the circle C_v, node u does not have a neighbor with shorter distance to v. So both Y_4 is not void-free on V_4.

When $k = 5$, we give a counter-example node set V_5 with six nodes u, v, a, b, c, and d as shown in Fig. 4. Their positions have the following relationship: v is on the ray l_2 originating from u, so v is located inside $c(u, l)$; d is located inside $c(v, 4)$; b is located inside $c(u, 3)$, $c(d, 4)$, and $c(v, 4)$; c is located inside $c(u, 2)$, $c(d, 3)$ and $c(v, 3)$; a, b, and c are outside the circle C_v which is centered at v and has radius $d(u, v)$. With this node placement, the resulting Y_5 on V_5 is shown by solid lines in Fig. 4. As nodes a, b, and c are outside the circle C_v, node u does not have a neighbor with a shorter distance to v. So Y_5 is not void-free on V_5.

Fig. 2. The counter-example node set V_0 on which Yao Graphs are not void-free for $k = 1, 2, 3$.

Fig. 3. The counter-example node set V_4 on which Yao Graphs are not void-free for $k = 4$.

Fig. 4. The counter-example node set V_5 on which Yao Graphs are not void-free for $k = 5$.
According to the definition of Y_k, must reside in one cone of Θ_k, and V_0 also apply to Θ_k. This is that, for $k = 1, 2, 3, \Theta_k$ on V_0 are the same as Y_k on V_1, and for $k = 4, \Theta_4$ on V_1 is the same as Y_4 on V_2. Therefore, we can have the following proposition.

Proposition 2. When $1 \leq k \leq 5$, some node sets exist such that Θ_k are not void-free.

Moreover, we verified our counter examples by experiments. Specifically, by using the online tool ‘Visualization of Spanners’ [14], we confirmed that our counter examples V_0, V_1, V_2 indeed give all the Y_k’s and Θ_k’s as depicted in the previous figures.

III. PROOFS FOR VOID-FREE WHEN $K \geq 6$

When $k \geq 6$, we show that Y_k and Θ_k are void-free for any node set by proving the following two propositions.

Proposition 3. When $k \geq 6$, Y_k are void-free for any node set.

Proof: This proof is done by providing the following method through which, for any two given nodes u, v in a Y_k with $k \geq 6$, we can find a neighbor w in Y_k such that $d(w, v) < d(u, v)$. To start, node v must reside in one cone of u (see Fig. 5). According to the definition of Y_k, u connects to one of its closest neighbors in that cone. Denote this neighbor by w, the next step is to find a neighbor w in Y_k such that $d(w, v) < d(u, v)$. If u, w, and v are collinear, this inequality obviously holds. Otherwise, we can draw a triangle connecting nodes u, w, and v. When $k \geq 6$, the angle of a cone is no more than $\pi/3$. Because w and v cannot fall on different boundaries of a cone at the same time (due to cone’s definition), we have $\angle uvw < \pi/3$ and also $\angle uvw + \angle uvw > 2\pi/3$. Since $d(u, w) \leq d(u, v)$, we have $\angle uvw \leq \angle uvw$. Since we already know $\angle uvw + \angle uvw > 2\pi/3$, we have $\angle uvw > \pi/3$. Thus, $\angle uvw > \angle uvw$. Since $\angle uvw$ and $\angle uvw$ are opposites of $\angle uvw$, we have $d(u, v) < d(w, v)$. □

![Fig. 5. Proof for Yao Graph for $k \geq 6$.](Image)

Proposition 4. When $k \geq 6$, Θ_k are void-free for any node set.

Proof: This proof is also done by providing a method by which for any given u, v in a Θ_k with $k \geq 6$, u can always find a neighbor w in Θ_k such that $d(w, v) < d(u, v)$. Similar to the above proof, node v must reside in one cone of u (see Fig. 6). According to the definition of Θ_k, u connects to its neighbor that has the shortest projection distance on the bisector of that cone. Denote this neighbor by w, and the projection points of w and v on the bisector by w' and v' respectively. If u, w, and v are collinear, obviously we have $d(w, v) < d(u, v)$. Otherwise, nodes u, w, and v form a triangle. There can be two cases as illustrated in Fig. 6: in Case 1, $\angle uvw$ faces the bisector; in Case 2, $\angle uvw$ does not face the bisector.

For Case 1, when $k \geq 6$, the angle between the boundary and the bisector is no more than $\pi/6$. Thus we have $\angle uvw < \pi/6$. Hence, we have $\angle uvw < \angle uvw$. Because w and v cannot fall on different boundaries of a cone (due to cone’s definition), we have $\angle uvw < \angle uvw$. Thus, $\angle uvw < \angle uvw$. Since edge vw opposites $\angle uvw$ and edge uv opposites $\angle uvw$, we have $d(w, v) < d(u, v)$.

![Fig. 6. Proof for Theta Graph for $k \geq 6$.](Image)

For Case 2, it is easy to show $d(u, w) < d(u, v)$. Then, following the proof for Proposition 3, we can obtain $d(w, v) < d(u, v)$.

Finally, we note that the above two proofs still work when a node encounters ties to select ‘closest’ neighbors in a cone to construct an edge in Yao Graph or Θ_k-Graph.

IV. CONCLUSIONS

Desired by the Greedy Forwarding algorithm, the void-free property becomes an important issue to investigate for wireless networks. This paper studies whether Yao Graph and Θ_k-Graph are void-free for different k, where k represents the number of cones. Specifically, this paper shows that (1) when $1 \leq k \leq 5$, Y_k and Θ_k may not be void-free, and the counter examples given are verified by experiments; (2) when $k \geq 6$, Y_k and Θ_k are void-free for any node set.

REFERENCES

[1] B. Karp and H. T. Kung, "GPSR: Greedy Perimeter Stateless Routing for Wireless Networks," in ACM MobiCom, pp. 243-254, 2000.

[2] G. T. Toussaint, "The relative neighborhood graph of a finite planar set," Pattern Recognition, pp. 261-268, 1980.

[3] K. R. Gabriel and R. R. Sokal, "A new statistical approach to geographic variation analysis," Systematic Zoology, pp. 259-278, 1969.

[4] M. d. Berg, M. v. Kreveld, M. Overmars, and O. Schwarzkopf, Computational geometry: algorithms and applications, 3rd ed. New York: Springer, 2008.

[5] P. Bose and P. Morin, "Online Routing in Triangulations," SIAM Journal of Computing, vol. 33, pp. 937-951, 2004.

[6] W. Si, B. Scholz, J. Gudmundsson, G. Mao, R. Boreli, and A. Y. Zomaya, "On Graphs Supporting Greedy Forwarding for Directional
Wireless Networks," in IEEE International Conference on Communications (ICC), 2012.

[7] A. C. Yao, "On constructing minimum spanning trees in k-dimensional spaces and related problems," SIAM Journal on Computing, 1982.

[8] K. Clarkson, "Approximation algorithms for shortest path motion planning," in ACM Symposium on Theory of Computing, pp. 56-65, 1987.

[9] F. Li, Z. Chen, and Y. Wang, "Localized Topologies with Bounded Node Degree for Three Dimensional Wireless Sensor Networks," in International Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2011.

[10] S. Poduri, S. Pattern, B. Krishnamachari, and G. S. Sukhatme, "Using Local Geometry for Tunable Topology Control in Sensor Networks," IEEE Transactions on Mobile Computing, vol. 8, pp. 218-230, 2009.

[11] W.-Z. Song, Y. Wang, X.-Y. Li, and O. Frieder, "Localized algorithms for energy efficient topology in wireless ad hoc networks," in ACM Int. Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2004.

[12] X.-Y. Li, W.-Z. Song, and W. Wang, "A unified energy-efficient topology for unicast and broadcast," in ACM Int. Conference on Mobile Computing and Networking (MobiCom), 2005.

[13] D. Eppstein, M. S. Paterson, and F. Yao, "On nearest-neighbor graphs," Discrete and Computational Geometry, vol. 17, pp. 263–282, 1997.

[14] P. Specht, M. Smid, J. Tusch, and M. Specht, Visualization of Spanners, http://isgwww.cs.uni-magdeburg.de/~spanner/TSpanner.html, 2012.