Charge ordering in Ni1+/Ni2+ nickelates: La\textsubscript{4}Ni\textsubscript{3}O\textsubscript{8} and La\textsubscript{3}Ni\textsubscript{2}O\textsubscript{6}

A. S. Botana,1 V. Pardo,2,3 W. E. Pickett,4 and M. R. Norman1,*

1Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Departamento de Física Aplicada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
3Instituto de Investigaciones Tecnológicas, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
4Department of Physics, University of California Davis, Davis, California 95616, USA

(Dated: August 31, 2016)

\textit{Ab initio} calculations allow us to establish a close connection between the Ruddlesden-Popper layered nickelates and cuprates not only in terms of filling of d-levels (close to d9) but also because they show Ni1+ (S=1/2)/Ni2+ (S=0) stripe ordering. The insulating charge ordered ground state is obtained from a combination of structural distortions and magnetic order. The Ni2+ ions are in a low-spin configuration (S=0) yielding an antiferromagnetic arrangement of Ni1+ S=1/2 ions like the long-sought spin-1/2 antiferromagnetic insulator analog of the cuprate parent materials. The analogy extends further with the main contribution to the bands near the Fermi energy coming from hybridized Ni-d\textsubscript{xy}, d\textsubscript{yz}, d\textsubscript{zx} and O-p states.

PACS numbers: 71.20.-b, 75.47.Lx, 74.72.-h

Layered nickelates have been regarded as the best analog of high temperature superconducting cuprates if the Ni1+ state can be stabilized in analogy to Cu2+.1 The discovery of the Ruddlesden-Popper phases Ln\textsubscript{n+1}(NiO\textsubscript{2})\textsubscript{n}Ln\textsubscript{2}O\textsubscript{2} (Ln=La, Pr, Nd; n=1, 2, 3) with n cuprate-like NiO\textsubscript{2} layers reinvigorated the interest in nickelates2–9. Within this series, the trilayer La\textsubscript{4}Ni\textsubscript{3}O\textsubscript{8} (La\textsubscript{438}) and bilayer La\textsubscript{3}Ni\textsubscript{2}O\textsubscript{6} (La\textsubscript{326}) compounds are ionic but highly unconventional insulators7,8. As the n=3 and n=2 members of the series, they have a formal Ni valence of +1.33 and +1.5, respectively, which being non-integer should correspond to metallic behavior, yet both are insulating. The NiO\textsubscript{2} slabs are separated by fluorite structure LaO blocking layers that make the inter-trilayer/bilayer coupling very weak. The lack of apical oxygen ions reduces the interplane separation substantially and opens a large crystal field splitting. The d\textsubscript{z2} subbands along the z direction give rise to n molecular subbands. Depending on the relative magnitude of the crystal field splitting and Hund’s rule coupling, the ground state can be either high spin (HS) and insulating or low spin (LS) and metallic as depicted in Fig. 1.

The n=3 La\textsubscript{438} compound undergoes a phase transition to an insulating state at 105 K, accompanied by a dramatic increase in the resistivity and a discontinuity in the magnetization8,9. NMR experiments reveal the presence of spin fluctuations below 160 K10. From a theoretical point of view, the insulating character of La\textsubscript{438} was accounted for in terms of a molecular high spin (HS) state with the insulator-to-metal transition being spin driven11–13. With the gap being formed between d\textsubscript{z2} bands, the electronic structure of the high spin state differs from the one in cuprates.

Although the trilayer nickelate exhibits a transition likely accompanied by antiferromagnetic (AFM) order, the insulating bilayer material shows no transition down to 4 K7. Transport and magnetic measurements have shown that La\textsubscript{326} is a paramagnetic insulator with spin fluctuations similar to those seen in La\textsubscript{438}14. The e\textsubscript{g} crystal field splitting, Hund’s rule coupling, and ostensibly the AFM exchange in-
temperatures to access the transition itself. Chal-
caly require single crystals of La$_{326}$, which are chal-
cicable hybridization along c is viewed, the physics of the spin states and pos-
sibilities for an insulating molecular state are quite
similar in La$_{326}$ and La$_{438}$, though the different en-
ergy scales are such that the former has not shown a
transition yet in the temperature range studied.

Recently, Zhang et al. showed using x-ray diffraction
on single crystals of La$_{438}$ that the transition is asso-
ciated with real space ordering of charge within
each plane forming a striped ground state. The
supertall lattice propagation vector is oriented at 45$^\circ$ to
the Ni-O bonds with the stripes being weakly corre-
lated along c to form a staggered AB stacking
of the trilayers. Within each trilayer, the stripes are
stacked in phase from one layer to the next. This planar
charge modulation provides an alternate route to the
insulating state as compared to the previous picture
based on molecular orbitals formed by
hybridization along c.

Here, using density functional theory (DFT)-
based calculations, we show that a charge ordered
phase of Ni$^{1+}$ (S=$1/2$)/Ni$^{2+}$ (S=0) stripes has a
lower free energy than the previously suggested
molecular insulating state in La$_{438}$, and this ac-
counts for both the insulating nature and the su-
perlattic peaks seen experimentally. The gap opens
up from a combination of charge-ordered related
structural distortions and exchange splitting and is
formed solely within the d$_{x^2-y^2}$ manifold of states.

DFT calculations were performed using the all-
electron, full potential code WIEN2K based on an
augmented plane wave plus local orbital (APW+lo)
basis set, with atomic positions taken from a re-
cent crystal structure refinement. For the struc-
tural relaxations, we have used the Perdew-Burke-
Ernzerhof version of the generalized gradient ap-
proximation (GGA).

Our charge-ordered ground state configuration
for La$_{438}$ is found even in the absence of an on-
site Coulomb repulsion U and Hund’s rule cou-
puling strength J_H. But, to compute more reliably
the total energy difference between the 2D striped
phase and the 3D molecular insulating state, the
LDA+U scheme has been applied using the so-
called fully localized version for the double-counting
correction that incorporates a U and J_H for the
Ni 3d states. Chosen values for U and J_H are 4.75
and 0.68 eV, respectively, as used in earlier work.
Calculations confirm that a 2D charge ordered state
is more stable than the previously proposed HS state
by 0.4 eV/Ni within LDA+U, so large that the par-
ticular choice of U is not critical.

Charge ordering in La$_{438}$. In La$_{438}$, the average
formal Ni valence is +1.33. One possibility would be
an in-trimer charge-ordered configuration with
the outer Ni atoms being Ni$^{1+}$ and the inner Ni$^{2+}$
but this has been shown to be very unfavorable in
energy. All the Ni ions have the same valence,
the e_g states, with 2.67 electrons per Ni on average
can occur in two different ways: the LS state and the
HS state that give rise to a metallic and an insulat-
ing state, respectively (Fig. 1). These have been
the possibilities explored so far, without accounting
for any potential in-plane charge ordering that we
explore here.

To test the possibility of 2D charge ordering,
a $3\sqrt{2}a \times \sqrt{2}a \times c$ supercell was used with the
charge/spin pattern shown in Fig. 2. Formal Ni$^{1+}$:d^9
(S=$1/2$) and Ni$^{2+}$:d^8 (S=0) ions in a 2:1 ratio form
stripes at 45$^\circ$ to the Ni-O bonds with the Ni$^{1+}$
stripes coupled antiferromagnetically. Such type of
charge and spin ordering yields an AFM arrangement of Ni\(^{2+}\) \(S=\frac{1}{2}\) ions analog of the cuprate parent materials. Note that the imposed stacking of trilayers is AA and not the experimental AB one since that would require larger supercells. In either case, the coupling between trilayers is weak and within each trilayer the stripes are stacked in phase.

The structure has been relaxed with the lattice constants fixed to the experimental values, so only internal atomic positions were optimized. There is a significant distortion of the Ni-O distances in the NiO\(_2\) planes consisting of a modulation of the Ni-O bond length: shorter around the Ni\(^{2+}\) ions (\(\sim 1.95\)–1.96 \(\text{Å}\)) and longer around the Ni\(^{3+}\) ions (\(\sim 1.98\)–1.99 \(\text{Å}\)) keeping the average distance very similar to the experimentally reported value. Also, as shown in Fig. 2, there is significant buckling of the outer NiO\(_2\) planes with the inner plane remaining flat. The Ni-Ni distance (both in plane and out of plane) remains unaltered after the relaxation (3.96 \(\text{Å}\) in plane, 3.25 \(\text{Å}\) out of plane) given the fixed lattice constants.

Charge order-related structural distortions are responsible for the opening of a gap and the corresponding stabilization of the striped phase. Without distortions, a gap cannot be opened up to the highest \(U\) value reached in our calculations of 6 eV. Figure 3 shows the band structure for the unrelaxed structure (metallic, on the left) and for the distorted structure after relaxation (insulating, on the right). The insulating character of the derived distorted structure can be observed with a gap of 0.25 eV that opens up near \(X\) even without introducing a Coulomb \(U\). For a \(U\) of 4.75 eV the gap increases to only 0.6 eV.

As in cuprates, the gap is of \(d_{x^2-y^2}\)-only character. From the simple ionic picture, the Ni\(^{2+}\) \(d^8\) \((S=0)\) cations have two empty \(d_{x^2-y^2}\) bands. The Ni\(^{1+}\) \(d^9\) \((S=1/2)\) ions have one hole in the minority-spin \(d_{x^2-y^2}\) band, with the gap being formed between occupied and unoccupied \(d_{x^2-y^2}\) states. Since the Hund’s rule coupling is larger than the bandwidth, the introduction of \(U\) is not necessary to open a gap.

To further analyze the electronic structure, Fig. 4 shows the calculated orbital resolved \(e_g\) density of states (DOS) of the different Ni atoms. In the striped phase, the Ni\(^{2+}\) \((d^8\text{LS, }S=0)\) ions have all the \(z^2\) bands (majority and minority spin) occupied with the wide \(d_{x^2-y^2}\) band for both spin channels remaining unoccupied. For the Ni\(^{1+}\) \((d^9, S=1/2)\) ions, the \(d_{2z}\) states are also fully occupied and the \(d_{x^2-y^2}\) of the minority spin channel is unoccupied. The DOS clearly shows how the gap is formed between \(d_{x^2-y^2}\) bands with predominantly Ni\(^{1+}\) character at the top of the valence band and \(d_{x^2-y^2}\) bands with predominantly Ni\(^{2+}\) character at the bottom of the conduction band. The spin density, pictured in Fig. 4, also reveals \(d_{x^2-y^2}\)-only character. The analogy with cuprates extends further since there is a high degree of hybridization between Ni-\(d_{x^2-y^2}\) and O-\(p\) states in the vicinity of the Fermi level. This contrasts with the previously proposed insulating HS state where only \(d_{2z}\) states lie close to the Fermi level and O-\(p\) bands are at much lower energies, around 2 eV below the Fermi energy (see Fig. 1 in the Supplementary Material).

Since the discovery of stripe order in high \(T_c\) layered cuprates,\(^{24,25}\) spin/charge ordering has attracted considerable interest. Our results suggest that the underlying physics of stripe phases in nickelates and cuprates is intimately related in terms of pure electron count and because the stripe ordering of charges and magnetic moments involves bands of \(d_{x^2-y^2}\)-only character that are highly hybridized.

FIG. 4. (Color online) Calculated orbital resolved \(e_g\) density of states for Ni atoms in the trilayer for La438 obtained within GGA. Top curves spin-up, bottom curves spin-down. Left panel: Ni atoms in the outer layers (Ni1, Ni2 and Ni3, as shown in the central panel). Right panel: Ni atoms in the inner layer (Ni4, Ni5 and Ni6, as shown in the central panel). The central panel shows a three-dimensional plot of the spin density in the striped ground state, with an isosurface at 0.1 e/\(\text{Å}\) obtained using XCrySDen.\(^{21}\) Ni1 and Ni4 are the nonmagnetic Ni\(^{2+}\) ions. Different colors (shades of gray) represent the spin-up (spin-down) density.
with O-p states. Let us recall that similar stripe ordering has been observed and well studied in single layer nickelates, i.e. La$_{2-x}$Sr$_x$NiO$_4$ (LSNO)$_{26-28}$ However, they are further from cuprates in terms of electron count (between d9 and d8), spin state, and due to the role that d$_{z^2}$ orbitals play in the vicinity of the Fermi level.

The calculated magnetic moments confirm the formal charge states we have quoted. For the Ni$^{1+}$ ions, the magnetic moments inside the muffin-tin sphere are ± 0.6-0.7 μ_B. For Ni$^{2+}$, the moment is zero. To assess the physical Ni charge distributions, the decomposed radial charge densities inside Ni$^{1+}$ and Ni$^{2+}$ spheres were compared directly. The 3d occupations, obtained from the maximum in the radial charge density plots, are identical for Ni$^{2+}$ and Ni$^{1+}$. The majority and minority spin valence radial charge densities do differ as they must to give the moment, but the total 3d occupation does not differ (see Fig. 2 in the Supplementary Material). This invariance of the actual d electron occupation (i.e., the charge) in many charge-ordered oxide systems has been discussed in the past22,23. The formal charge of a cation involves the environment of the cation, including the distance to neighboring oxygen ions and the Madelung potentials from the structure (note that the energy difference of the Ni-2s core levels for Ni$^{1+}$ and Ni$^{2+}$ ions is 0.2 eV). Remarkably, despite the almost equal charge of the two types of Ni atoms, the band structure has a pronounced ionic character reflective of 1+ and 2+ valences.

Charge ordering in La$_{326}$. The similarities between La$_{438}$ and La$_{326}$ led us to study the possibility of charge ordering in the n=2 compound, with an average formal Ni valence +1.5. We predict a closely related checkerboard charge ordered insulating phase for La$_3$Ni$_2$O$_6$ that provides a 2D AFM spin-half insulator based on Ni$^{1+}$ (see Fig. 5). The checkerboard phase is more stable than the previously proposed HS state by 0.7 eV/Ni within LDA+U ($U=4.75$ eV) (again a large energy difference). The structural relaxations within GGA for this magnetic order share the main features with those for La$_{438}$: a shorter Ni-O bond length for Ni$^{2+}$ atoms (~1.97 Å) and a longer one around the Ni$^{1+}$ ones (~1.99 Å), as well as significant buckling of the NiO$_2$ plane. The magnetic moments obtained are consistent with the Ni$^{2+}$-Ni$^{3+}$ charge ordering picture. For the Ni$^{1+}$ ions, the magnetic moments inside the muffin-tin sphere are ±0.7 μ_B. For Ni$^{2+}$, the moment is zero.

In the case of La$_{326}$, the introduction of a U is needed to open a gap in the charge ordered state. Within GGA, the d$_{x^2-y^2}$ bands are wider (W~2 eV) than for La$_{438}$. With the gap being formed only between d$_{x^2-y^2}$ states in the charge ordered state, if the Hund’s rule coupling is smaller than the bandwidth, a U is needed to obtain an insulating solution. The corresponding orbital resolved density of states for Ni$^{1+}$ and Ni$^{2+}$ in La$_{326}$ is shown in Fig. 6. A decoupling of the states is clear: the e$_g$ bands are either Ni$^{1+}$ or Ni$^{2+}$ with negligible mixing and a gap of 0.55 eV. Both Ni sites have all z^2 states occupied with the relatively broad Ni$^{2+}$ d$_{x^2-y^2}$ states unoccupied. The Ni$^{1+}$ ions have d$_{x^2-y^2}$ orbitals split into upper and lower Hubbard bands by the Hubbard U, providing a moment near that expected for S=1/2. As in La$_{438}$, the gap is between occupied Ni$^{1+}$-d$_{x^2-y^2}$ and unoccupied Ni$^{2+}$-d$_{x^2-y^2}$ states.

To summarize, ab initio calculations give rise to a 2D AFM spin-half insulating ground state based on Ni$^{1+}$ (pseudo Cu$^{2+}$) stripes for Ruddlesden-Popper layered nickelates. The gap opens from a combination of charge ordered related structural distortions and magnetic order for both La$_3$Ni$_2$O$_8$ and La$_3$Ni$_2$O$_6$. Our results show a similar electronic structure of these layered nickelates to cuprates not only by pure electron count (close to a d9 configuration), but also because the bands involved around the Fermi level are of x^2-y^2 character only. These results bring renewed justification that layered nick-
elates of this type are the cuprate analog systems that are promising for studying the interplay between structure, magnetism, and possibly superconductivity.

We thank John Mitchell, Junjie Zhang, and Daniel Khomskii for stimulating discussions. Work at Argonne was supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, US DOE. V.P. thanks MINECO for project MAT2013-44673-R, the Xunta de Galicia through project EM2013/037, and the Spanish Government through the Ramon y Cajal Program (RYC-2011-09024). W.E.P. was supported by Department of Energy Grant No. DE-FG02-04ER46111.

1. P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O. K. Andersen, and K. Held, Phys. Rev. Lett. 103, 016401 (2009).
2. M. Greenblatt, Curr. Opin. Solid State Mater. Sci. 2, 174 (1997).
3. Z. Zhang, M. Greenblatt, and J. Goodenough, J. Solid State Chem. 108, 402 (1994).
4. M. G. Greenblatt, Z. Zhang, and M. H. Whangbo, Synth. Met. 85, 1451 (1997).
5. V. V. Poltavets, K. A. Lokshin, S. Dikmen, M. Croft, T. Egami, and M. Greenblatt, J. Am. Chem. Soc. 128, 9050 (2006).
6. V. V. Poltavets, K. A. Lokshin, M. Croft, T. K. Mandal, T. Egami, and M. Greenblatt, Inorg. Chem. 46, 10887 (2007).
7. V. V. Poltavets, M. Greenblatt, G. H. Fecher, and C. Felser, Phys. Rev. Lett. 102, 046405 (2009).
8. V. V. Poltavets, K. A. Lokshin, A. H. Neveldomsky, M. Croft, T. A. Tyson, J. Hadermann, G. Van Ten deloo, T. Egami, G. Kotliar, N. Aprobets-Warren, et al., Phys. Rev. Lett. 104, 206403 (2010).
9. J. Zhang, Y. S. Chen, D. Phelan, H. Zheng, M. R. Norman, and J. F. Mitchell, arxiv 1601.03711 (2016).
10. N. Aprobets-Warren, A. P. Dioguardi, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 83, 014402 (2011).
11. V. Pardo and W. E. Pickett, Phys. Rev. Lett. 105, 266402 (2010).
12. V. Pardo and W. E. Pickett, Phys. Rev. B 85, 245128 (2011).
13. V. Pardo and W. E. Pickett, Phys. Rev. B 85, 045111 (2012).
14. N. Aprobets-Warren, J. Crocker, A. P. Dioguardi, K. R. Shierer, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 88, 075124 (2013).
15. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria (2001).
16. E. Sjöstedt, L. Nördstrom, and D. Singh, Solid State Commun. 114, 15 (2000).
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
18. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
19. A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, Phys. Rev. B 67, 153106 (2003).
20. H. Wu, New J. Phys. 15. 023038 (2013).
21. A. Kokalj, Computational Materials Science 28, 155 (2003).
22. Y. Quan and W. E. Pickett, Phys. Rev. B 91, 035121 (2015).
23. Y. Quan, V. Pardo, and W. E. Pickett, Phys. Rev. Lett. 109, 216401 (2012).
24. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
25. V. I. Anisimov, M. A. Korotin, A. S. Mylnikova, A. V. Kozhevnikov, D. M. Korotin, and J. Lorenzana, Phys. Rev. B 70, 172501 (2004).
26. S.-W. Cheong, H. Y. Hwang, C. H. Chen, B. Batlogg, L. W. Rupp, and S. A. Carter, Phys. Rev. B 49, 7088 (1994).
27. Y. Ikeda, S. Suzuki, T. Nakabayashi, H. Yoshizawa, T. Yokoo, and S. Itoh, J. Phys. Soc. Jpn 84, 023706 (2015).