Earthquake prediction analysis: The M8 algorithm
G. Molchan and L. Romashkova

Abstract
The quality of space-time earthquake prediction is usually characterized by a two-dimensional error diagram \((n, \tau)\), where \(n\) is the rate of failures-to-predict and \(\tau\) is the normalized measure of space-time alarm. The most interesting space measure for analysis of a prediction strategy is the rate of target events \(\lambda(dg)\) in a sub-area \(dg\). In this case the quantity \(H = 1 - (n + \tau)\) determines the prediction capability of the strategy. The uncertainty of \(\lambda(dg)\) causes difficulties in estimating \(H\) and the statistical significance, \(\alpha\), of prediction results. We investigate this problem theoretically and show how the uncertainty of the measure can be taken into account in two situations, viz., the estimation of \(\alpha\) and the construction of a confidence zone for \((n, \tau)\)-parameters of the random strategies. We use our results to analyse the M8 earthquake prediction algorithm.

Key words: earthquake interaction, forecasting, prediction, statistical seismology, seismicity and tectonics.

1. Introduction
To characterize the quality of space-time prediction of \(M \geq M_+\) earthquakes (prediction of the yes/no type, see Molchan, 2003) two quantities are commonly used, namely, the rate of failures-to-predict \(n\) and the rate of space-time alarm:

\[
\tau_{\omega} = \int_G \tau(g) \omega(dg).
\]

Here \(G\) is the area of prediction, \(\tau(g)\) is the rate of alarm at the point \(g\), and \(\omega(dg)\) is the normalized measure on \(G\), i.e., \(\int_G \omega(dg) = 1\). The choice of the measure depends on the prediction goals in mind and generally requires special motivation (see e.g., Kossobokov, 2005; Holliday, et al., 2005; Kagan, 2009a; Zechar & Jordan, 2008). Among all possible \(\omega(dg)\) the most important for application is the normalized rate measure of target events

\[
\omega(dg) = \lambda(dg \mid M_+) / \lambda(G \mid M_+),
\]

where \(\lambda(A \mid M_+)\) is the rate of \(M \geq M_+\) events in \(A\). We know that it is only in this special case that all trivial or random guess strategies are represented by the diagonal \(D : n + \tau_{\omega} = 1\) of the square \(0 \leq n, \tau_{\omega} \leq 1\) (Molchan & Keilis-Borok, 2008). In other cases the trivial strategies form a convex neighbourhood of the diagonal where they are arbitrarily mixed with non-random strategies.
In the case (2), the τ_ω and

$$H = 1 - (n + \tau_\omega)$$

acquire a simple statistical meaning: they give the rate of randomly and non-randomly (if $H > 0$) predicted target earthquakes, respectively. Therefore, we have $H = 0$ for any trivial and $H = 1$ for an ideal (100% successes) predictions. The intermediate values $0 < H < 1$ determine the degree of non-triviality for a strategy, π.

The quantity H can also be interpreted as a relative distance of π from the set of trivial strategies. To see this, we represent the space G as a set of nonintersecting sub-areas $\{G_i, i = 1,...,k\}$ where an alarm applies at once to all points of the sub-area concerned. Then the prediction characteristic $\{n, \tau(g)\}$ can be treated as the vector $(n, \tau_1, ..., \tau_k) = \vec{\epsilon}$ with $\tau_i = \tau(g)$ for $g \in G_i$, and the trivial strategies as points of the hyperplane $\vec{D}: n + \sum_{i=1}^k \tau_i \omega_i = 1$, where $\omega_i = \omega(G_i)$ and ω is given by (2). It is easy to check that

$$H = \rho(\vec{\epsilon}, \vec{D}) / \rho(\vec{0}, \vec{D}),$$

where $\rho(\vec{\epsilon}, \vec{D})$ is the Euclidian distance between $\vec{\epsilon}$ and \vec{D}, and $\vec{0} = (0,...0)$ is the parameter vector of the ideal strategy. The representation (4) evidently remains true on the (n, τ_ω) plane; in this case $\vec{\epsilon} = (n, \tau_\omega)$ and \vec{D} is the diagonal, D.

Because of these properties, the quantity H is very useful at the research stage of prediction (the current stage) where the following problems are investigated:

- predictability of large earthquakes in principle;
- limits of predictability for $M \geq M_\ast$ earthquakes depending on the information used, e.g., earthquake catalogs.

The first problem can be interpreted as estimation of the significance level α of the relation $H = 0$, and the second as finding a reliable upper bounds on H. As a rule the difficulties here consist in the too short period of prediction monitoring and in the limited amount of data available for the estimation of $\lambda(dg)$.

Among all earthquake prediction methods available at present, the M8 algorithm (Keilis-Borok & Kossobokov, 1990) with its ongoing $M \geq 8.0$ worldwide prediction test (hereinafter M8.0+) seems to be the best adapted to statistical analysis because of a sufficiently long period of its monitoring and a large area of investigation. The M8 has been tested starting from 1985; since 1992 the test is in real time (http://www.mitp.ru/en/predlist.html; Kossobokov et al., 1999; Kossobokov & Shebalin, 2003; Kossobokov, 2005). In 1985-2009 about two dozen $M \geq 8.0$ earthquakes occurred in the area of the M8 monitoring; more than half of these have been predicted. The M8.0+ monitoring space consists of a set of overlapping circles B_δ of radius $R = 668$ km (alarm unit) located along the Circum-Pacific and Alpine-Himalayan belts so as to cover the entire seismic zone (Fig. 1, the coordinates of the circles are listed in Table A, see Appendix). Despite the large area of the M8.0+ circles, a straightforward estimation of the target earthquake rates $\omega_i = \lambda(B_\delta | M_\ast) / \lambda(G | M_\ast)$ based on available catalogs is unreliable. Therefore earthquakes of lower magnitudes are commonly used for estimation of $\lambda(dg)$, which however does not remove completely the uncertainty of $\{\omega_i\}$ and generates additional problems.
The M8 algorithm is a notable phenomenon in statistical seismology, and its prediction capability has been analyzed more than once by various researchers (see e.g., Minster & Williams, 1998; Marzocchi et al., 2003). The authors of the M8 algorithm publish the results of the monitoring on a regular basis, and in particular the estimates of ω_τ, which are based on the rates of smaller (usually $M \geq 4.0$) earthquakes. Marzocchi et al. (2003) asserted that these ω_τ are significantly underestimated, and hence the prediction capability of the M8 is overestimated. Actually, this conclusion cannot be correct without consideration of the real M8 alarms.

Below we investigate theoretically the problem of significance of prediction results when $\omega(dg)$ is known inaccurately, and apply the theoretical results to the analysis of the M8 algorithm.

This work is closely connected with the investigations of the Collaboratory for the Study of Earthquake Predictability, CSEP (Jordan, 2006; Schorlemmer et al., 2007; Zechar & Jordan, 2008) focused on testing the earthquake prediction methods.

2. The theoretical aspect of prediction analysis

The rates of $M \geq M_\tau$ target earthquakes are not known exactly, and their empirical estimates are unreliable due to the very limited period of earthquake observation. That is why the earthquakes of lower magnitudes $M \geq M_\tau$ are commonly used for the estimation. The uncertainty of $\omega(dg)$ influences the estimation of the space-time alarm rate $\tau_\omega = \int_G \tau(g)\omega(dg)$, hence the estimation of the prediction significance. To analyze the problem we use the following error model for the measure $\omega(dg)$.
2.1 The error model for \(\omega(dg) \)

Divide the space \(G \) into a set of nonintersecting areas \(\{G_i, i = 1,...,k\} \), so that \(\tau(g) = \tau_i \) for \(g \in G_i \) and \(\omega_i = \lambda(G_i / M_+) / \lambda(G / M_+) \). Suppose that the estimates \(\{\hat{\omega}_i\} \) of \(\{\omega_i\} \) are based on \(M \geq M_+ \) earthquakes, \(N_\omega \) in number. The uncertainty of \(\{\omega_i\} \) can be specified by a confidence zone of level \(1 - \varepsilon \)

\[
\Omega_\varepsilon : \sum_{i=1}^{k} (\hat{\omega}_i - \omega_i)^2 / \hat{\omega}_i < q_\varepsilon
\]

with the appropriate threshold \(q_\varepsilon \). The left part of (5) to be multiplied by \(N_\omega \) is a statistic of the \(\chi^2 \) type with \(f = k - 1 \) degrees of freedom (Rao, 1965). The connection with the \(\chi^2 \) distribution becomes more legitimate if we make the following assumptions: the estimates \(\{\hat{\omega}_i\} \) are unbiased, i.e., the expectation of \(\hat{\omega}_i \) is \(\omega_i \); the events used to estimate \(\lambda(G_i | M_+) \) are weakly interdependent for different \(G_i \); and \(N_\omega \) is large enough. Then \(N_\omega q_\varepsilon \) can be obtained as the \(Q(1-\varepsilon, k-1) \) quantile of level \(1 - \varepsilon \) for the \(\chi^2_f \) distribution with \(f = k - 1 \), i.e.,

\[
N_\omega q_\varepsilon = Q(1-\varepsilon, k-1).
\]

2.2 The confidence zone of random strategies

The difficulty of using the \((n, \tau_\omega)\) plane for the estimation of space-time prediction results consists in the identification of random guess (or trivial) strategies. These strategies form a convex neighbourhood of the diagonal \(n + \tau_\omega = 1 \) whose size depends both on the \(\omega \) and \(\hat{\omega} \) measures (Molchan, 2010). The union of such zones, \(\hat{D}_\varepsilon \), over all \(\omega \) from (5) can be considered as a confidence zone of all trivial strategies on the \((n, \tau_\omega)\) plane with confidence level \(1 - \varepsilon \).

According to Molchan (2010), the zone \(\hat{D}_\varepsilon \) under condition (5) is a convex polygon which contains the diagonal \(n + \tau_\omega = 1 \) of the square \(0 \leq n, \tau_\omega \leq 1 \). For applications it is important to consider the lower boundary of \(\hat{D}_\varepsilon \), which is below the diagonal. Its vertices are located on the curve \(n = f(\tau) \), where

\[
f(\tau) = \begin{cases} 1 - \tau - \sqrt{q_\varepsilon \tau(1-\tau)}, & (1+q_\varepsilon)\tau < 1 \\ 0, & (1+q_\varepsilon)\tau > 1 \end{cases}
\]

The zone \(\hat{D}_\varepsilon \) can be slightly expanded by taking \(f(\tau) \) as a new lower boundary. Then the expanded confidence zone for the trivial strategies

\[
\hat{D}_\varepsilon^*: \quad f(\tau) \leq n \leq 1 - \tau, \quad 0 < \tau < 1,
\]

will have a confidence level \(\geq 1 - \varepsilon \) (Fig. 2).
Figure 2. Confidence zone \hat{D}_ε^* of level $1-\varepsilon$ for random strategies on the $(n, \tau_{\omega_{\varepsilon}})$ plane. The zone is specified for $\varepsilon = 0.01$, $k = 65$ (see (6)), and $N_{\omega_{\varepsilon}} = 238$ (the number of $Ms \geq 7.5$ events in the 1900-1984 Pacheco-Sykes catalog within the M8.0+ monitoring space).

Notation: $f(\tau)$ is the lower boundary of \hat{D}_ε^* (see (7)); $W = h_{\varepsilon}/\sqrt{2}$ is width of the zone.

The zone \hat{D}_ε^* is of interest because it does not depend on $\{\omega_{\varepsilon}\}$ and is specified by two parameters, ε and $N_{\omega_{\varepsilon}}$. For the sake of simplicity \hat{D}_ε^* can be used in probabilistic prediction (Zechar & Jordan, 2008) and, as we will show, for a restriction on $N_{\omega_{\varepsilon}}$. In fact, one important parameter of the \hat{D}_ε^* zone is its width

$$h_{\varepsilon} = \max_{\hat{D}_\varepsilon^*}(1-n-\tau_{\omega_{\varepsilon}}) = \max_{\tau} \sqrt{q_{\varepsilon}\tau(1-\tau)} = \sqrt{q_{\varepsilon}} / 2,$$

which is measured in units of the distance from the origin $(0,0)$ to the diagonal $n + \tau_{\omega_{\varepsilon}} = 1$. The value of h_{ε} is an upper bound on the apparent predictive capability of any trivial strategy on the $(n, \tau_{\omega_{\varepsilon}})$ plane. It is therefore natural to use the restriction

$$\sqrt{q_{\varepsilon}} / 2 \leq h_{\varepsilon},$$

where h_{ε} is a control parameter.

By (6,10) we have

$$N_{\omega_{\varepsilon}} \geq Q(1-\varepsilon, k-1)/4h_{\varepsilon}^2.$$

The M8 algorithm uses overlapping circles $G_i = B_{\varepsilon}(i)$. In order to be able to use the estimate (11), we find k as follows: $k = areaG / areaB_{\varepsilon} \approx 65$, i.e., k is the number of nonintersecting circles B_{ε} whose total area is the same as for the prediction space G.

Substituting in (11) the values $k = 65$ and $\varepsilon = 0.01$, we get the table:

h_{ε}	5%	5.5%
$N_{\omega_{\varepsilon}}$	9322	7704
Note that the 1977-2004 CMT catalog to be used below contains 8508 $M_w \geq 5.5$ events and 2843 $M_w \geq 6.0$ events within the M8.0+ monitoring space. The $M_w \geq 5.5$ data guarantee that $\varepsilon_h \leq 5.2\%$, while with $M_w \geq 6.0$ the value of ε_h becomes too great, $\varepsilon_h > 9\%$. Thus, we suppose to be reasonable $M_w \leq 5.5$ for M_w. Similarly, we have $M_s \leq 5.0$ for M_s (NEIC, 1969-2004) and $M_s \leq 5.5$ for mb (NEIC, 1963-2004). Note that a "correct" $\omega(dg)$ estimate by Marzocchi et al. (2003) is based on the $M_s \geq 7.5$ events from the 1900-1984 Pacheco-Sykes (1992) catalog. In that case we have $N_{\omega} = 238$, i.e., on the average less than 4 events per one of a 65 circles. Consequently, ε_h is inadmissibly high here, $\varepsilon_h > 30\%$ (see also Fig.2).

2.3. Significance level of prediction results

The prediction results for a period T^+ are described by $(\nu; N; \hat{\tau}(g), g \in G)$, where ν is the number of failures-to-predict, N the number of target events for the time T^+, and $\hat{\tau}(g)$ the actual relative alarm time at the point g.

Statistical significance of the result is estimated relative to an assumed model of target events. The nature of large target events is far from being understood (see, e.g., Romanowicz, 1993). The conventional null approximation is the Poisson model which is homogeneous in time and inhomogeneous in space with the rate measure $\lambda(dg | M_s)$ (the H_0 hypothesis).

Given $(N, \hat{\tau}(g))$, the conditional probability to have ν or less failures-to-predict under H_0 determines the observed significance of the prediction results, α. This quantity can be found from the binomial distribution with parameter N (the number of trials) and the probability of a success (here, random success),

$$\bar{\tau} = \int_G \hat{\tau}(g)\omega(dg),$$

as follows:

$$\alpha = \sum_{i=0}^{\nu} \binom{N}{i} \bar{\tau}^{N-i} (1 - \bar{\tau})^i = \binom{N}{\nu} \int_0^\nu (1 - x)^\nu dx = \nu^\nu \int_0^\nu d\nu,$$

(13)

where the $\binom{N}{i}$ are the binomial coefficients.

To estimate α in the conditions (5), note that the right-hand side of (13) is an increasing function of $\bar{\tau}$. (We recall that the higher the value of α, the greater degree of randomness is exhibited by the results.) It follows that we can derive an upper estimate of α from an upper estimate of $\bar{\tau}$.

When the space is discretized, $G = \bigcup G_i$, with nonintersecting G_i, the admissible variations in $\omega_i = \omega(G_i)$ are given by (5) and $\bar{\tau} = \sum_i \hat{\tau}_i \omega_i$. Hence, to find $\max \bar{\tau}$ we must take into account (5) and the relation $\sum_{i=1}^k \omega_i = 1$. This problem is easily solved by using Lagrange multipliers. The result is

$$\max \omega_i \bar{\tau} = \hat{\tau} + \sqrt{\omega_i \sigma_i},$$

(14)

where

$$\hat{\tau} = \int_G \hat{\tau}(g)\hat{\omega}(dg),$$

(15)
\[\sigma_r^2 = \int \hat{\tau}^2(g) \hat{\omega}(dg) - \hat{\tau}^2. \] (16)

Here, \(q_\varepsilon \) is given by (6) and \(\hat{\omega} \) is an unbiased estimate of \(\omega \) based on the total number \(N_\omega \) of the \(M \geq M_- \) events.

Since \(0 \leq \hat{\tau}(g) \leq 1 \), we have \(\sigma_r \leq 0.5 \). Consequently, the maximum disturbance of \(\hat{\tau} \) due to the uncertainty in \(\omega(dg) \) does not exceed \(h_\varepsilon \) (see (14) and (9)). In turn the restriction \(h_\varepsilon \leq h_0 \) depends on the sample size \(N_\omega \) (see (11)). The substitution \(\hat{\tau} = \hat{\tau} + \sqrt{q_\varepsilon \sigma_r} \) in (13) yields an upper estimate of \(\alpha \).

It remains to recall the assumptions that underlie this bound:
- the \(\omega(G_i) \) estimates are non-biased;
- the \(M \geq M_- \) events in different \(G_i \) used for \(\{\hat{\omega}(G_i)\} \) are weakly interdependent;
- the numbers of \(M \geq M_- \) events in \(\{G_i\} \) used to estimate \(\{\omega(G_i)\} \) are not small (greater than 10 in our calculations).

3. Analysis of prediction results: the M8 algorithm

3.1. The \(H_b \) and \(H_{GR} \) hypothesis

The estimation of alarm volume \(\tau_\omega \) is the central problem in the analysis of significance for prediction results. In M8.0+ this quantity depends on the measure \(\omega(dg) \) over the circles \(B_R \) of a large radius \(R=668 \) km, \(\omega = \omega(B_R(i)) \). Straightforward estimates of \(\omega_i \) based on large \((M = 8.0) \) events are very unstable. A possible way out of this difficulty is to use \(M > M_- \) events \((M_- < M_+) \), because they are much more numerous.

The following arguments can be advanced to support this decision for the M8 algorithm:
- Since the circles \(B_R \) are large, this allows us to disregard the specific distribution of smaller events that deviate from the main faults, which are as a rule responsible for large earthquakes;
- The circles are large compared with the rupture lengths of the target events. This provides a necessary condition for the recurrence curve to be linear in the range \((M, M_+) \) (Molchan et al., 1997). Assuming the Gutenberg-Richter relation (G-R) to be linear on \((M, M_+) \) (the \(H_{GR} \) hypothesis), we can find the rate of large events from that of smaller ones as follows:
 \[\lambda(B_R(i) \mid M) = C_i \lambda(B_R(i) \mid M_-), \] (17)
 where
 \[C_i = 10^{-b_i (M, M_-)}, \] (18)
 and \(b_i \) is the b-value in the circle \(B_R(i) \) for the range \((M_-, M_+) \);
- The hypothesis of the b-value universality is considered as admissible by some researchers (see, e.g., Kagan, 1999, 2009b). Using the 1982-1997 Harvard catalog Kagan (1999) concludes that the b-value is universal for events within 500 km depth and with magnitudes \(5.5 \leq M_w \leq 8.1 \). The hypothesis that the b-value is independent of region for the \(M_- \leq M \leq M_+ \) events will be referred to as the \(H_b \) hypothesis. Under \(H_b \) the coefficients \(C_i \) in (17) are independent of \(i \). Consequently, the
normalized rates ω_i of the $M \geq M_-$ and $M \geq M_+$ events are identical. Note that the use of ω_i estimates based on $M \geq M_-$ instead of $M \geq M_+$ automatically implies that the H_b hypothesis is true.

Figure 3. Cumulative frequency-magnitude relation for the sub-regions of the M8.0+ test area (see Appendix for abbreviation). The data are from the 1977-2008 CMT catalog.

Notation: b is the likelihood estimate of the b-value for $Mw \geq 5.5$; n_b is the number of $Mw \geq 5.5$ events.
Unfortunately, the hypothesis of a universal b-value is doubtful (see, e.g., Molchan et al., 1997), while small variations in the b-value can affect the significance estimate. Figure 3 shows a sequence of frequency-magnitude relations for 19 sub-regions in the M8.0+ prediction space. The sets of M8.0+ circles that make the sub-regions are listed in Table A, see Appendix. Figure 3 is based on the 1977-2004 CMT catalog.

To interpret the linearity of the empirical relation $\lg N(m)$ vs. m where $N(m)$ is number of $M \geq m$ events, we remind the following. By the Jensen's inequality, one has

$$ E \lg N(m) < \lg EN(m) = a - bm. $$

For large $N(m)$ the quantities $\lg N(m)$, $E \lg N(m)$, and $\lg EN(m)$ are close with each other, but it is not the case otherwise. Therefore, even under H_{GR} hypothesis we can observe a downward bend of the G-R curve when $N(m) \leq 10$. It follows from Fig. 3 that the frequency-magnitude relations in the range $MW: 5.5 - 8.0$ can be assumed to be linear for nearly all sub-regions. Note that a similar conclusion for Ms data is not so confident.

Figure 3 contains the b-value estimates obtained by the likelihood method for the magnitude range $MW \geq M_- = 5.5$ (see e.g. Molchan et al., 1997). The number of events in the sub-regions varies from 130 to 1758, which guarantees the accuracy $\sigma_b \leq 0.1$ for the b-value estimate. We have $b = 0.9 - 1.0$ for 16 sub-regions. The remaining three (Tonga-Kermadec trenches (TO), Bonin-Mariana trenches (BM), and South Sandwich islands (SS)) have their b-values above the normal level, more specifically, $b \approx 1.2$.

The following effect arises from the b-value being inhomogeneous. Suppose the $\{\omega_i\}$ are based on the $M \geq M_-$ seismicity. In virtue of (17) the weight ratio ω_i / ω_j is reduced by a factor of $\gamma = 10^{(b_i - b_j)(M_+ - M_-)}$, if the ω_i are calculated using the G-R relation (see (17)). Putting $b_i = 1.2$, $b_j = 0.9 - 1.0$, and $M_+ - M_- = 8.0 - 5.5 = 2.5$, we have $\gamma = 3 - 5.5$. The estimates of τ_ω may be sensitive to such changes in $\{\omega_i\}$ (see below).

The empirical estimate of the measure of the set A, $\omega(A)$ based on $M \geq M_-$ is given by

$$ \hat{\omega}(A) = n(A \mid M_-) / n(G \mid M_-), $$

(19)

where $n(A \mid M_-)$ is the number of $M \geq M_-$ events in A for the period T^-.

The estimate of $\omega(A)$ based on the G-R relation, i.e., under H_{GR}, is derived differently. Denote by $\{G_j\}$ the 19 sub-regions of G mentioned above and by $\{b_j\}$ the set of their respective b-values. For $A \subset G$ we have the estimate

$$ \hat{\omega}(A) = n_{GR}(A \mid M_-) / n_{GR}(G \mid M_-), $$

(20)

where

$$ n_{GR}(A \mid M_-) = \sum_i \left[g_i \in A \right] 10^{-b_{GR}(M_+ - M_-)}. $$

(21)

Here $[\cdot]$ is the (1,0) logical function, g_i is $M \geq M_-$ event in the volume $G \times T^-$, and $k(i) = j$ if G_j contains the circle B_R, whose centre is the nearest to g_i.

3.2. The data.
Our earthquake sources include:

- the National Earthquake Information Center Global Hypocenters Database, NEIC (GHDB, 1989) routinely updated through 2004 from NEIC Preliminary Determination of Epicenters data (PDE) (http://earthquake.usgs.gov/research/data/). The duplicates have been removed using the automatic procedure by Shebalin (1992). The database contains earthquakes with magnitude mb for the period 1963-2004 and Ms for 1969-2004;
- the Centroid Moment Tensor catalog, CMT (Ekstrom et al., 2005) (since 2007 the Global Centroid Moment Tensor catalog), Mw magnitude, 1977-2004;
- the Global Pacheco-Sykes Catalog (Pacheco & Sykes, 1992), Ms magnitude, 1900-1984.

Figure 4. Alarm rate $\hat{\tau}(B_\lambda)$ (right-hand axis) for 262 circles of the M8.0+ test and the annual rate of $M \geq M_\lambda$ events, $\lambda(B_\lambda)$, for the same circles (left-hand axis); the rate $\lambda(B_\lambda)$ depends on M_λ and magnitude type: mb, NEIC, 1963-2004 (top); Ms, NEIC, 1969-2004 (middle); and Mw, CMT, 1977-2004 (bottom). The alarm rate is given for the period 1985-2009.
Figure 4 represents the rates of $M \geq M_\ast$ events in 262 M8.0+ circles with different thresholds M_\ast for the NEIC and CMT catalogs. The vertical λ - axis is on a log scale by analogy with the Gutenberg-Richter relation, so that the nearly constant distance between adjacent plots supports the hypothesis of an exponential distribution for earthquake magnitudes in the circles. Figure 4 shows that the completeness level in the circles varies between 4.5 and 5.0 for mb, is around 5.0 for Ms, and around 5.5 for Mw. In addition, there are large differences in the overall seismicity level from circle to circle (by factors of 50 or 60).

Combining the estimates of completeness for Mw, Ms, mb with the upper bounds M_\ast in Section 2.2, we come to the preferable choice of M_\ast: $M_\ast = 5.5$ for Mw, and $M_\ast = 5.0$ for Ms and mb.

3.3. The τ_{ω} estimates

We recall the main parameters which are required to obtain $\hat{\tau}$:

- magnitude type, viz. mb, Ms, Mw;
- magnitude threshold M_\ast. The $M \geq M_\ast$ events are used to estimate $\omega(g)$, below $M_\ast = 4.5 - 7.0$;
- the past time period T_\ast^- which contains the $M \geq M_\ast$ events. Two variants of T_\ast^- are considered. The first, T_1^-, terminates before the beginning of the M8.0+ monitoring, i.e., by January 1, 1985; and the second, T_2^-, by December 26, 2004, i.e., before the Sumatra-Andaman mega-earthquake, which has noticeably affected the seismic background in the M8 prediction space. Both intervals have a common initial time which depends on magnitude type: 1963 for mb, 1969 for Ms, and 1977 for Mw. We use these two intervals for the following reasons. The extended time interval gives more data, which improves the stability of $\hat{\omega}(dg)$. However, the earthquakes that have occurred during the monitoring period (after January 1, 1985) and the target events are not independent, and this can affect the estimate of τ_{ω}. In particular, the aftershocks, which have not been eliminated from the catalogs, can increase the target event rate estimate within the correct alarm zone and thus reduce the significance of the prediction results. But the situation is not so simple, and on the whole the effect can disappear because the local weights $\hat{\omega}(dg)$ are normalized and included in $\hat{\tau}$ as $\hat{\tau}(g)\hat{\omega}(dg)$;
- the time period of monitoring T_\ast^+. There are two variants of T_\ast^+: the whole M8.0+ testing time, $T_1^+ = 1985 - 2009$, and the forward-prediction time, $T_2^+ = 1992 - 2009$;
- the type of $\omega(g)$ estimate, i.e., (19) or (20). The first is based formally on $M \geq M_\ast$ events only, the second also uses the H_{GR} hypothesis.

Table 1 summarizes the $\hat{\tau}$ estimates. For the sake of simplicity the $\hat{\tau}$ are shown for T_2^- only; the $\hat{\tau}$ for T_1^- are slightly smaller (as a rule the difference is less than 0.01). The extreme numbers of events, N_{ω}, used for the $\hat{\tau}$ differ by a factor of two hundred. Nevertheless, the values of $\hat{\tau}$ vary within 0.3-0.4. The greatest values of
\(\hat{\tau} \) for different time periods and different magnitude types occur at \(M_\text{c} = 5.0 \) (for \(mb, Ms \)) and at \(M_\text{c} = 5.5 \) (for \(Mw \)).

Table 1.

\(\hat{\tau} \cdot 100 \% \) for M8.0+ alarm depending on magnitude type, threshold \(M_\text{c} \), and monitoring period. All \(\omega \) - estimates are based on data in the time interval \(T_2^{-} \); \(N_\omega \) varies from 863 (\(Ms \geq 6.5 \)) to 139588 (\(mb \geq 4.5 \)); the \(\hat{\tau} \) estimates in brackets are based on small numbers of events \(N_\omega = 227 - 314 \).

Magnitude threshold \(M_\text{c} \)	\(mb \) \(1985-2009 \)	\(mb \) \(1992-2009 \)	\(Ms \) \(1985-2009 \)	\(Ms \) \(1992-2009 \)	\(Mw \) \(1985-2009 \)	\(Mw \) \(1992-2009 \)
4.5	37.9	35.8	37.3	34.8	-	-
5.0	39.6	38.0	38.7	36.2	40.7	38.3
5.5	37.9	36.4	37.5	35.0	41.3	38.8
6.0	36.1	34.3	36.7	34.3	38.7	36.1
6.5	(38.6)	(37.2)	(35.2)	(35.5)	(38.3)	(36.0)
7.0	-	-	-	-	-	-

\(H_{GR} \) hypothesis

	\(mb \)	\(Ms \)	\(Mw \)
5.0	-	35.7	33.1
5.5	-	34.2	31.7
6.0	-	32.2	29.6

Figure 5. Alarm rate \(\hat{\tau}(B_r) \) (right-hand axis) and normalized rate of \(Mw \geq 5.5 \) events, \(\omega(B_r) \), (left-hand axis) for 262 circles of the M8.0+ test. Two upper curves correspond to \(\omega(B_r) \) obtained under the \(H_{GR} \) hypothesis (filled circles) and when \(H_{GR} \) is not used (open circles). The intervals TO, BM, SS correspond to sub-regions (see Appendix) with a non-standard b-value, \(b \approx 1.2 \).
In particular, for $M_-=5.5$ (M_w) and T_i^+ we have $\hat{\tau}\cdot100\approx35\%$ under the H_{GR} hypothesis and $\hat{\tau}\cdot100\approx41\%$ when H_{GR} is not used. The difference in the estimates is related to the b-value effect discussed above. It can be observed by comparing the estimates $\hat{\omega}(B_{B}(i))$ derived for M_w with and without regional b-values (Fig. 5). As was to be expected, the zones with higher b-values ($b=1.2$), i.e., TO, BM and SS, exhibit considerable differences in ω_i. Figure 5 also shows the alarm rate τ_i in circles $B_{B}(i)$. One can see that the alarm rates in TO and BM are substantially greater than the mean level. Hence we have here a resonance of two effects, and, as a result, the observed variations in $\hat{\tau}$. Simultaneously we get an example of how small events can inflate the estimate $\hat{\tau}$.

As a supplement to Table 1, we estimated $\hat{\tau}$ using the $mb\geq4.0$ events from the NEIC and the $Ms\geq7.5$ events from the Pacheco-Sykes catalog. According to Marzocchi et al. (2003), it is only the second estimate which can be correct, and its value must be substantially greater than that of the first. As a matter of fact, the two estimates are nearly identical: for the period 1985-2009 we have $\hat{\tau}(mb\geq4.0)\cdot100=36.2\%$ and $\hat{\tau}(Ms\geq7.5)\cdot100=36.3\%$. Similarly to the preceding example, we conclude that the differences in the $\hat{\tau}$ estimates cannot be correctly interpreted, unless the respective alarms are taken into account.

What is much more important is that use of the both estimates in the analysis of M8 is questionable: the former because the H_{h} hypothesis requires substantiation for the magnitude interval $0.8-4.0$, and the latter in view of the scarcity of data, $N_\omega=238$. In other words, the choice of M_- faces two opposite tendencies: with increasing M_- the H_{GR} hypothesis about the frequency-magnitude relation in $(M_-;M_+)$, being linear becomes more likely; but at the same time the amount of available data N_ω decreases, thereby making the uncertainty of $\hat{\tau}_\omega$ larger.

3.4. The significance of M8.0+ results, α

Parameters. To restrict the number of options for the estimation of α we fix the following priorities:

- H_{GR} is considered as the main hypothesis, since it is more flexible than H_{h} and is in general agreement with the data in the sub-regions; the estimates of $\hat{\tau}$ (Table 1) obtained without H_{GR} are auxiliary and can be used for comparison;
- Of all magnitude scales, M_w is the most consistent with the H_{GR} hypothesis in $(M_-;M_+)$; mb is unsuitable for H_{GR} because of its saturation at large M;
- $M_-=5.0$ and 5.5 are considered as the preferred values of M_-: the reason for this is as follows: the quantity M_- is bounded from below by the magnitude of complete reporting and from above by a threshold that follows from the restrictions on N_ω in (11). As it is shown above, the choice $M_-=5.5$ for M_w and $M_-=5.0$ for Ms and mb magnitudes seems to be optimal. Moreover, the greatest values of $\hat{\tau}$ in Table 1 are reached for $M_-=5.0;5.5$.

In order to calculate the perturbation of $\hat{\tau}$ due to the errors in $\omega(dg)$ we use (14), namely, $\delta\hat{\tau}=\sqrt{Q(1-\varepsilon,k-1)/N_\omega}\cdot\sigma $, with $k=65$ and $\varepsilon=0.01$. Then we have $Q=93.2$. The values of N_ω and σ_τ for the period T_2^- are given in Tables 2 and 3,
respectively. The quantity σ_τ is very stable: $\sigma_\tau \approx 0.25 - 0.30$ for different types of magnitude (mb, Ms, Mw), thresholds M_- (5.0, 5.5), periods of monitoring (T_1^+, T_2^+), and the hypotheses (H_h, H_{GR}). Consequently $\delta\tilde{\tau} \approx 2.5 - 4\%$.

The ultimate values of $\tilde{\tau} = \hat{\tau} + \delta\tilde{\tau}$ under the H_{GR} hypothesis are given by Table 4. We have $\tilde{\tau} = 0.35 - 0.38$, $\hat{\tau} = 0.32 - 0.36$ for the two monitoring periods and two magnitude scales, Ms and Mw.

Table 2. Number of events N_ω for the period T_2^- depending on magnitude type and threshold M_-.

Magnitude threshold M_-	mb	Ms	Mw
5.0	51520	10792	18078
5.5	11947	5033	8508

Table 3. $\hat{\tau}_\sigma$ for M8.0+ alarm depending on magnitude type, threshold M_-, and monitoring period. The ω-estimates are the same as in Table 1.

Magnitude threshold M_-	mb	Ms	Mw
5.0	0.29	0.30	-
5.5	0.29	0.28	0.31

H_{GR} hypothesis

M_-	mb	Ms	Mw
5.0	-	0.24	-
5.5	-	0.24	0.25

Table 4. Upper estimate of τ, $\tilde{\tau} \cdot 100\%$, under the H_{GR} hypothesis.

Magnitude threshold M_-	Ms	Mw
5.0	37.9	-
5.5	37.5	38.0

Target events. It remains to find the number of target events for the monitoring period. This is the most sensitive point for calculating the significance of the M8. The M8 algorithm uses as the working magnitude the greatest of those provided for earthquake in the NEIC catalog. The uncertainty of the working magnitude appears to be ≈ 0.3, while the target events are counted exactly following the prescribed threshold $M_+ = 8.0$. Table 5 gives the list of $M \geq 8.0$ events from the NEIC catalog occurred in 1985-2009 in the M8.0+ prediction space. The table does not contain the March 12, 1995 Iturup, $Ms = Mw = 7.9$ earthquake. It is considered as a success on the M8 web-site because the reported magnitude was $M_{max}(NEIC) = 8.0$ up to 1997.
Table 5. List of large, $M_{\text{max}} \geq 8.0$, earthquakes from the NEIC catalog, which occurred in the area of M8.0+ monitoring in 1985-2009.

Region	Date	Lat	Lon	Magnitude	M8.0+ result				
				mb	Ms	m3	m4		
Mexico	1985.09.09	18.19	-102.53	6.8	8.1	7.9MsBRK	7.9MsPAS	Yes	
Kermadec	1986.10.20	-28.12	-176.37	6.6	8.1	8.3MsBRK	-	-	
Guam	1993.08.08	12.98	144.80	7.1	8.0	8.2MsBRK	7.8MwHRV	Yes	
Kurils	1994.10.04	43.77	147.32	7.3	8.1	7.9MsBRK	8.3MwHRV	Yes	
Samoa	1995.04.07	-15.20	-173.53	6.8	8.0	8.1MsBRK	7.4MwGS	Yes	
N. Guinea	1996.02.17	-0.89	136.95	6.5	8.1	8.2MwHRV	7.7MeGS	Yes	
Sumatra	2000.06.04	-4.72	102.09	6.8	8.0	8.3MeGS	7.9MwHRV	Yes	
Indonesia	2000.11.16	-3.98	152.17	6.0	8.2	8.2MsBRK	8.0MwHRV	No	
Indonesia	2000.11.17	-5.50	151.78	6.2	8.0	8.2MsBRK	7.8MwHRV	No	
Peru	2001.06.23	-16.26	-73.64	6.7	8.2	8.4MwHRV	8.3MwGS	No	
China	2001.11.14	35.95	90.54	6.1	8.0	7.8MwHRV	7.5MwGS	Yes	
Alaska	2002.11.03	63.65	-147.44	7.0	8.5	7.9MwHRV	8.1MeGS	No	
Hokkaido	2003.09.25	41.81	143.91	6.9	8.1	8.3MwHRV	8.1MwGS	No	
Sumatra	2004.12.26	3.29	95.98	7.0	8.8	9.0MwHRv	8.2MwGS	(*)	
Sumatra	2005.03.28	2.09	97.11	7.2	8.4	8.6MwHRV	8.1MwGS	No	
Tonga	2006.05.03	-20.19	-174.12	7.2	7.8	8.0MwHRV	7.9MwGS	Yes	
Kurils	2006.11.15	46.59	153.27	6.5	7.8	8.3MwHRV	7.9MwGS	No	
Kurils	2007.01.13	46.24	154.52	7.3	8.2	8.1MwGCMT	7.9MwGS	No	
Solomon	2007.04.01	-8.47	157.04	6.8	7.9	8.1MwGCMT	7.7MeGS	Yes	
Peru	2007.08.15	-13.39	-76.60	6.7	7.9	8.0MwGCMT	7.7MeGS	No	
Sumatra	2007.09.12	-4.44	101.37	6.9	8.5	8.5MwGCMT	8.2MeGS	Yes	
Sumatra	2007.09.12	-2.63	100.84	6.6	8.1	7.9MwGCMT	7.8MeGS	Yes	
China	2008.05.12	31.00	103.32	6.9	8.1	7.9MwUCMT	7.9MwGCMT	No	
Samoa	2009.09.12	-15.49	-172.09	7.1	8.1	8.1MwGCMT	8.0MwUCMT	Yes	

(*) The 26 December, 2004, Sumatra mega-earthquake does not belong to M8.0+ class (see text for details).

Another difficulty is that the upper magnitude threshold of target events is not specified. An analysis of the 2004 Sumatra-Andaman mega-earthquake showed it to be outside the $M_{8.0+}$ range (Kossobokov et al., 2009; Romashkova, 2009). This is natural, because the M8 algorithm is adjusted based on similarity considerations. This is in particular applicable to the alarm area unit B_8, which for $M_s = 9.0$ would be comparable with a hemisphere of the Earth. It is for the same reason that the authors of M8 use different parameters to predict M7.5+ and M8.0+ earthquakes. It follows that the range of the M8.0+ events under prediction should be restricted from above, say $M < 8.5$ by analogy with the M7.5+ test. The narrow range of target events and
the relatively large magnitude uncertainty considerably complicate the counting of target events. Below we specify M8.0+ range in two ways: $8.0 \leq M < 8.5$ and $8.0 \leq M < 8.7$.

The α estimates. Now we are ready to estimate the observed significance α for prediction results in the M8.0+ experiment. Using $\hat{\tau}$ (Table 1), $\tilde{\tau}$ (Table 4), and (13), we get a point estimate $\hat{\alpha}$, which is based on $\hat{\tau}$, and an upper estimate $\tilde{\alpha}$, which is based on $\tilde{\tau}$ (see Table 6). Table 6 shows $\hat{\alpha}$, $\tilde{\alpha}$ for the two periods of monitoring, for the two ranges of target events, for $Mw \geq M_-$ with $M_- = 5.5$, and for the H_{GR} hypothesis.

Table 6. Significance estimates for prediction results of the M8.0+ experiment. Notation: $\hat{\alpha}$ and $\tilde{\alpha}$ are point and upper estimates of the significance respectively; N is the number of target events; ν is the number of failures-to-predict; \tilde{H} is a conservative estimate of the M8.0+ prediction capability.

Period	Target range	$(N - \nu) / N$	$\alpha \cdot 100$ (%)	$\tilde{\alpha} \cdot 100$ (%)	$1 - \tilde{n} - \tilde{\tau} = \tilde{H} \cdot 100$ (%)
1985-2009	$8.0 \leq M < 8.7$	13/23	3.1	5.5	19
	$8.0 \leq M < 8.5$	12/20	2.2	3.8	22
1992-2009	$8.0 \leq M < 8.7$	11/21	4.7	8.3	17
	$8.0 \leq M < 8.5$	10/18	3.7	6.4	20

All point estimates $\hat{\alpha}$ (including those for $Ms \geq M_- = 5.5$ and $Ms \geq M_- = 5.0$) vary within the range 2-5%, supporting the assertion that the M8 algorithm is non-trivial. Comparison of $\hat{\alpha}$ for the two target magnitude ranges shows that $\hat{\alpha}$ is smaller for the range $8.0 \leq M < 8.5$. In this case $\hat{\alpha} = 2.2\%$ for $T_1^+ = 1985 - 2009$ and $\hat{\alpha} = 3.7\%$ for $T_2^+ = 1992 - 2009$. As for the upper estimates $\tilde{\alpha}$, we have the nominal significance $\tilde{\alpha} < 5\%$ for the case ($8.0 \leq M < 8.5$, T_1^+) only, while for ($8.0 \leq M < 8.5$, T_2^+) it is $\tilde{\alpha} = 6.4\%$. However $\tilde{\alpha}$ is unstable because the numbers (ν, N) are small. Indeed, a next $8.0 \leq M < 8.5$ event in M8.0+ area will have resulted in $(\nu, N+1)$ to replace (ν, N) in the case of successful prediction, or else it will be $(\nu+1, N+1)$ in the case of a failure-to-predict. Then for the period T_2^+ we shall have: $\tilde{\alpha} = 3.8\%$ or $\tilde{\alpha} = 9.4\%$, respectively, instead of the observed $\tilde{\alpha} = 6.4\%$.

Table 6 also contains the score: the number of successes $(N - \nu)$ to the number of target events (N), and a lower estimate of H: $\tilde{H} = 1 - \hat{n} - \tilde{\tau}$, where $\hat{n} = \nu / N$. The value $\tilde{H} \approx 20\%$ can therefore be considered as a conservative estimate of prediction capability for the M8 algorithm in prediction of $8.0 \leq M < 8.5$ events.
4. Conclusions and discussion

We have tried to provide a constructive answer to the question how to use correctly the inaccurate measure of target events $\omega(dg)$ to estimate the significance of prediction results and to find a confidence zone of trivial strategies on the (n, τ_ω) diagram.

In application to the results of M8.0+ prediction our analysis can be summed up as follows. The magnitude range of the target events is in need of additional specification. The interval $8.0 \leq M < 8.5$ seems to be most appropriate restriction for M8.0+. In this case there are 12 successes of 20 target events for the whole period of monitoring, 1985-2009. Then the point estimate of significance is $\hat{\alpha} = 2.2\%$ and the upper estimate is $\bar{\alpha} = 3.8\%$. However, for the period of advance prediction, 1992-2009, the score is 10 successes of 18, $\hat{\alpha} = 3.7\%$, and $\bar{\alpha} = 6.4\%$. On the whole, these results support the non-triviality of M8 as a predictor and at the same time indicate possible instability of the α–estimates. The prediction capability of M8.0+, i.e. the rate of non-randomly predicted target events in the range $8.0 \leq M < 8.5$, is conservatively estimated by $\tilde{H} \approx 20\%$.

The M8 algorithm has a modification called M8-MSc, which occasionally reduces the space alarm volume. In that case the requirements to be imposed on the estimates of the measure of space rate of target events become substantially more strict. For this reason we do not examine M8-MSc in this study.

The above analysis of prediction results remains within the framework of a purely scientific (academic) problem, which can be worded as follows: the predictability of large events and its limitations. In this context the question: “Can earthquakes be predicted?” (Geller et al., 1997) admits of quantitative answers, e.g., in terms of α and H. The answer to the question can become contradictory, when the notion of prediction is made to involve usefulness as well. For example, it is rather hard to find a user for the M8 where the spatial alarm unit is 1300 km across. But in case of the M8 non-triviality the size of alarm zone carries important information on the precursory zone size for large earthquake.

Unfortunately, criticisms of prediction often confuse the two criteria. In that case one can advance an argument like the following: if an event has occurred outside the monitored zone, but within the zone of the user's interest, the event is considered unpredicted (see the criticism of CN and M8 for Italy in Marzocchi, 2008). Such a broad treatment of prediction results virtually precludes any further statistical analysis of the original method.

The scientific program of the Southern California Earthquake Center focuses on creating universal methods for analysis of earthquake forecasting (Jordan, 2006; Zechar et al., 2009). Moving along this path, we have considered the problem of a fuzzy $\omega(dg)$, which is a tender spot that is common to the analysis of all prediction methods. Whether such difficulties can be overcome may depend on specific features of the algorithm being tested.
REFERENCES

Ekstrom, G., Dziewonski, A. M., Maternovskaya, N. N., Nettles, M., 2005. Global seismicity of 2003: centroid-moment tensor solutions for 1087 earthquakes, Phys. Earth Planet. Inter., 148, 327–351.

Geller, R. J., Jackson, D., Kagan, Y. Y., and Mulargia, F., 1997. Earthquakes cannot be predicted, Science, 275, 1616-1617.

GHDB, 1989. Global Hypocenters Data Base CD-ROM NEIC/USGS, Denver, CO, 1989 and its updates through December 2004.

Holliday, J. R., Nanjo, K. F., Rundle, J. B., and Turcotte, D. L., 2005. Earthquake forecasting and its verification, Nonlin. Processes Geophys., 12, 965-977.

Jordan, T. H., 2006. Earthquake predictability, brick by brick, Seismol. Res. Lett., 77(1), 3-6.

Kagan, Y. Y., 1999. Universality of the seismic moment-frequency relation, Pure Appl. Geophys., 155, 537-573.

Kagan, Y. Y., 2009a. Testing long-term earthquake forecasts: likelihood methods and error diagrams, Geophys. J. Int., 177(2), 532-542.

Kagan, Y. Y., 2009b. Earthquake size distribution: power-law with exponent b= 1/2?, Arxiv: 0908.1207 (physics,geo-ph).

Keilis-Borok, V.I., and Kossobokov, V.G., 1990. Premonitory activation of earthquake flow: algorithm M8, Phys. Earth Planet. Inter., 61, 73-83.

Kossobokov, V. G., 2005. Earthquake Prediction: Principles, Implementation, Perspectives. In: Keilis-Borok, V.I. (Ed.), Earthquake prediction and geodynamical processes, Comput. Seismol., 36, 3-175 (in Russian).

Kossobokov, V. G., Romashkova, L. L., Keilis-Borok, V. I., Healy, J. H., 1999. Testing earthquake prediction algorithms: Statistically significant real-time prediction of the largest earthquakes in the Circum-Pacific, 1992-1997, Phys. Earth Planet. Inter., 111, 3-4, 187-196.

Kossobokov, V. G., Shebalin, P. N., 2003. Earthquake prediction. In: Keilis-Borok, V. I. and A. A. Soloviev (eds.) (2003): Nonlinear dynamics of the lithosphere and earthquake prediction, Springer Publishers, Heidelberg; pp.141-207.

Marzocchi, W., 2008. Earthquake forecasting in Italy, before and after the Umbria-Marche seismic sequence 1997. A review of earthquake occurrence modeling at different spatio-temporal-magnitude scales, Annals of Geophysics, 52, 2/3, 405-416.

Marzocchi, W., Sandri, L., and Boschi, E., 2003. On the Validation of Earthquake-f orecasting Models: the Case of Pattern Recognition Algorithms, Bull. Seism. Soc. Am. 93, 5, 1994-2004.

Minster, J. B., and Williams, N., 1998. Systematic global testing of intermediate-term earthquake prediction algorithms, 1st ACES Workshop Proceedings.

Molchan, G. M., 2003. Earthquake prediction strategies - a theoretical analysis. In: Keilis-Borok, V. I. and A. A. Soloviev (eds.) (2003): Nonlinear dynamics of the lithosphere and earthquake prediction, Springer Publishers, Heidelberg, pp.209-237.

Molchan, G. M., 2010. Space-time earthquake prediction: the error diagrams, Pure Appl. Geophys. 167, 8/9, doi: 10.1007/s00024-010-0087-z.

Molchan, G. M., Keilis-Borok, V. I., 2008. Earthquake prediction: Probabilistic Aspect, Geophys. J. Int. 173, 1012-1017.

Molchan, G. M., Kronrod, T., and Panza, G. F., 1997. Multiscale Seismicity Model for Seismic Risk, Bull. Seismol. Soc. Am. 87, 1220-1229.
Pacheco, J.F., and L.R. Sykes, 1992. Seismic moment catalog of large shallow earthquakes, 1990 to 1989, *Bull. Seism. Soc. Am.* 82, 1306-1349.
Rao, C.R., 1966. Linear statistical inference and its applications. *Willey & Sons, N.Y.*
Romanowicz, B., 1993. Spatiotemporal patterns in the energy release of great earthquakes, *Science*, 260, 1923-1926.
Romashkova L.L., 2009. Global-scale analysis of seismic activity prior to 2004 Sumatra-Andaman mega-earthquake, *Tectonophysics*, 470, 329-344.
Schorlemmer, D., Gerstenberger, M.C., Wiemer, S., Jackson, D.D., Roads, D.A., 2007. Earthquake likelihood model testing, *Seismol. Res. Lett.* 78(1), 17-29.
Shebalin, P.N., 1992. Automatic duplicate identification in set of earthquake catalogues merged together, *U.S. Geol. Surv. Open-File Report 92-401*, Appendix II.
Zechar, J.D., and Jordan, T.H., 2008. Testing alarm-based earthquake predictions, *Geophys. J. Int.* 172, 715-724
Zechar, J.D., Schorlemmer, D., Luiks, M., Yu, J., Euchner, F., Maechling, P.J., Jordan, T.H., 2009. The Collaboratory for the study of Earthquake Predictability perspective on computational earthquake science, *Concurr. Comp.-Pract. E.*, doi: 10,1002/cpe.1519.
APPENDIX

Table A. Sub-regions and centres of the circles for the M8.0+ test.

No	Region	Lat	Lon	N	0
1	TO	-150.0	-175.0	67	TJ
2	TO	-17.50	-174.0	68	TJ
3	TO	-20.00	-175.5	69	JB
4	TO	-22.50	-175.9	70	JB
5	TO	-25.00	-177.0	71	TJ
6	TO	-27.50	-177.5	72	TJ
7	TO	-30.00	-178.0	73	TJ
8	TO	-32.50	-178.5	74	TJ
9	TO	-35.00	-180.0	75	TJ
10	TO	-37.00	-178.0	76	JB
11	TO	-39.00	-175.0	77	JB
12	TO	-2.00	-136.0	78	JB
13	GU	-2.25	-138.5	79	JB
14	GU	-2.50	-141.0	80	JB
15	GU	-3.75	-143.5	81	JB
16	GU	-5.00	-146.0	82	JB
17	GU	-5.00	-149.0	83	JB
18	GU	-5.00	-153.5	84	JB
19	GU	-6.25	-154.0	85	JB
20	GU	-7.50	-156.0	86	JB
21	GU	-8.75	-158.0	87	JB
22	GU	-10.00	-160.0	88	JB
23	GU	-10.50	-162.5	89	JB
24	GU	-11.00	-165.0	90	JB
25	GU	-13.00	-166.25	91	JB
26	GU	-15.00	-167.50	92	BM
27	GU	-17.50	-168.25	93	BM
28	GU	-20.00	-169.0	94	BM
29	GU	-21.25	-170.75	95	BM
30	JV	11.00	-93.00	96	KK
31	JV	9.50	-99.50	97	KK
32	JV	7.00	-94.50	98	KK
33	JV	5.00	-95.75	99	KK
34	JV	3.00	-97.00	100 KK	
35	JV	2.00	-98.50	101 AA	
36	JV	1.00	-100.00	102 AA	
37	JV	0.00	-101.50	103 AA	
38	JV	-5.00	-103.50	104 AA	
39	JV	-6.80	-107.00	106 AA	
40	JV	-8.00	-109.50	107 AA	
41	JV	-9.00	-112.00	108 AA	
42	JV	-9.25	-114.50	109 AA	
43	JV	-9.50	-117.00	110 AA	
44	JV	-9.50	-119.50	111 AA	
45	JV	-9.50	-122.00	112 AA	
46	JV	-8.25	-124.50	113 AA	
47	JV	-7.00	-127.00	114 WA	
48	PH	-6.00	-129.00	115 WA	
49	PH	-5.00	-131.00	116 WA	
50	PH	-3.50	-129.50	117 WA	
51	PH	-2.00	-128.00	118 WA	
52	PH	-1.00	-125.25	119 WA	
53	PH	0.00	-123.00	120 WA	
54	PH	0.00	-120.00	121 WA	
55	PH	1.50	-125.00	122 WA	
56	PH	3.00	-127.00	123 WA	
57	PH	5.25	-126.50	124 WA	
58	PH	7.50	-126.00	125 CA	
59	PH	9.75	-125.50	126 CA	
60	PH	12.00	-125.00	127 CA	
61	PH	15.00	-121.00	129 CA	
62	TJ	35.00	-136.00	130 CA	
63	TJ	34.00	-134.00	131 CA	
64	TJ	33.00	-132.00	132 CA	

Sub-regions and centres of the circles for the M8.0+ test.