Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes

Linda B Lester*1, Hung-Chih Kuo3, Laura Andrews1, Brian Nauert1 and Don P Wolf2

Address: 1Department of Medicine, Oregon Health & Sciences University, Portland, OR, USA, 2Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA and 3Stem cell program, Genomics Research Centre, Academia Sinica, 128, Sec.2, Academia Road, Nankang Disl, 115 Taipei, Taiwan

Email: Linda B Lester* - lesterl@ohsu.edu; Hung-Chih Kuo - kuohuch@gate.sinica.edu.tw; Laura Andrews - andrewla@ohsu.edu; Brian Nauert - nauertb@ohsu.edu; Don P Wolf - wolfd@ohus.edu

* Corresponding author

Abstract

Embryonic stem cells (ES) can self-replicate and differentiate into all cell types including insulin-producing, beta-like cells and could, therefore, be used to treat diabetes mellitus. To date, results of stem cell differentiation into beta cells have been debated, largely due to difficulties in defining the identity of a beta cell. We have recently differentiated non-human primate (rhesus) embryonic stem (rES) cell lines into insulin producing, beta-like cells with the beta cell growth factor, Exendin-4 and using C-peptide as a phenotype marker. Cell development was characterized at each stage by gene and protein expression. Insulin, NKX6.1 and glucagon mRNA were expressed in stage 4 cells but not in early undifferentiated cells. We concluded that rES cells could be differentiated extrinsically to insulin producing cells. These differentiated rES cells could be used to develop a non-human primate model for evaluating cell therapy to treat diabetes. To facilitate the identification of beta-like cells and to track the cells post-transplantation, we have developed a marker gene construct: fusing the human insulin promoter (HIP) to the green fluorescent protein (GFP) gene. This construct was transfected into stage 3 rES derived cells and subsequent GFP expression was identified in C-peptide positive cells, thereby substantiating endogenous insulin production by rES derived cells. Using this GFP detection system, we will enrich our population of insulin producing rES derived cells and track these cells post-transplantation in the non-human primate model.

Review

Diabetes Mellitus (DM) is a collection of heterogeneous disorders that result in glucose homeostasis abnormalities and produce metabolic complications that are frequently debilitating and life threatening. Currently, approximately 17 million Americans [1-6] are affected by DM; and this number is expected to increase by 165% in the USA in the next 30 years [7]. Identifying methods to treat or cure DM, along with efforts to prevent its development, will be a key in stemming this pandemic.

Central to the development of DM is the relative loss of insulin production from the pancreatic beta cells. Replacing these cells has been a therapeutic goal for decades and could prevent the morbidity and mortality associated with DM. Recently, islet transplantations were successful in restoring normal glycemic control [8]. This success...
provides proof that replacing functional β cell mass is an effective treatment for DM.

Although islet transplantation has shown significant promise, it remains an unlikely therapy for patients with DM primarily due to the lack of available human islet tissue [9,10]. Furthermore, individual patients will require repeat islet transplantations to offset the slow but progressive loss of transplanted islet function [11]. Since β cells are the only sources of insulin in the body, an unlimited and renewable supply of β cells or islets will be needed to successfully treat DM by transplantation [12-14].

An ideal tissue source for transplantation would be β cell lines with glucose-mediated insulin release, that are not immunogenic, tumorogenic or at risk of transmitting infectious disease, and are able to replicate ex vivo without losing their differentiation potential [15]. While such a cell line does not yet exist, islet progenitor (adult stem cells) or embryonic stem (ES) cells are prime candidates [13]. Both adult and embryonic stem cells have the potential to proliferate ex vivo and differentiate into islet-like cells [16,17]. If these techniques can be translated into the growth and isolation of islet cells, this would provide a source of replaceable islet tissue.

Embryonic stem cells

ES cells, present in the inner cell mass of the pre-implantation embryo, are immortal and pluripotent [18]. Clonal mouse ES cell lines differentiate into islet-like phenotypes, ex vivo [19] and in vivo [17]. This methodology has also been applied to human ES cells; however, the process produces a mixed population of cells containing only about 3% insulin positive cells [20]. Although ES cells have the potential to differentiate into islet like cells, early work was limited by the identification of the β cell phenotype using insulin immunocytochemistry. This identification method has recently been invalidated because insulin is a growth factor present in the conditioned media used to differentiate and grow the cells [21]. A recent publication demonstrates that insulin in the media is pinocytosed into apoptotic cells and thus, is indistinguishable to endogenous insulin when identified by immunocytochemical or radioimmuno assays. Therefore, the identification of insulin can falsely identify apoptotic cells as insulin producing cells [21]. Subsequent to this publication, mouse ES cells were differentiated into insulin producing cells in media containing no additional insulin demonstrating the capacity of ES cells to develop into insulin-producing, β-like cells [22]. These studies highlight the need for specific and irrefutable markers of the β cell phenotype.

Identifying beta like cells

Gene expression can be used to identify cell lineage and is not adversely affected by compounds in the media. In addition to insulin production and release, lineage restricted gene expression can also be used to identify developing β cells [23,24]. We utilized this information to identify β cell like phenotype development from differentiating rhesus ES cells and adult monkey islet cells. Total RNA was isolated from ES cells used in three separate differentiation experiments and RT-PCR performed using oligonucleotides based on the human gene sequence for genes of the pancreatic lineage. Genes associated with early β cell development such as NeuroD [25,26] and Nestin were identified in stage two cells while PDX-1 and insulin gene expression was detectable only after stage two, consistent with the presence of cells with a differentiated phenotype (Figure 1). Gene markers of other cell lineages including amylase and enolase were detected in stage four cells. This suggested that cells have undergone some degree of differentiation into β-like cells as indicated by the expression of insulin and PDX-1.
In addition to identifying β-cell lineage restricted genes, C-peptide, cleaved from proinsulin during insulin processing, can be used to identify an insulin producing, β-like cell. This methodology circumvents the problems associated with measuring mature insulin. Since C-peptide antibodies do not cross react with mature insulin or insulin in the growth media C-peptide is a direct measure of endogenous insulin production [27]. We were able to identify the production of insulin by rES cells grown in the presence of insulin using C-peptide immunocytochemistry (Figure 2). This data, along with the gene expression data, suggests that the rES cells are differentiating into insulin producing cells. At this time, however, further modifications to the culture conditions are needed to enhance cell differentiation and develop islet-like structures. Development of additional methods to identify the β cell phenotype that are sensitive and specific would greatly enhance these differentiation protocols.

Tagging ES cells for purification and identification post-transplantation

One approach to identifying the β cell phenotype is to tag insulin producing cells with a fluorescent marker. Marker genes such as the green fluorescent protein (GFP) can be used to purify cells populations by FACS and to track cells following transplantation [28]. We have generated a human insulin promoter (HIP)-GFP construct to be used specifically for these purposes. This construct will allow GFP expression to tag insulin producing cells and provide a means to purify insulin producing cells from the mixed cell population using fluorescent cell sorting (FACS).
We transfected rhesus ES derived cells at stage 3, prior to the addition of specific β cell growth factors. GFP expression was identified by fluorescent microscopy following 1 week of culture with the β cell growth factor, Exendin 4 [29-33]. Cells were co-stained for C-peptide to identify endogenous insulin production (Figure 3). We identified cells that co-expressed C-peptide and GFP supporting use of the HIP-GFP construct as a method to identify insulin producing ES derived cells. In addition to providing a means to identify and purify insulin producing cells, tagging the ES cells could allow their tracking post-transplantation.

Transplantation of ES cells into diabetic animal models

Development of animal transplantation models will be necessary to study the safety and efficacy of ES derived cell transplants. For DM therapies, ES derived β cells transplanted into the streptozotocin induced diabetic SCID mouse should provide elementary insights. In the past, use of rhesus monkeys and other non-human primate models provided critical information resulting in changes to the islet transplant protocol [34,35]. As with islet transplantation studies, the rhesus monkey has proved to be an invaluable model for other diabetes-related studies [36-38]. Therefore, an ideal primate model to study transplantation of ES cells is the chemically induced diabetic rhesus monkey. Tagging the ES derived cells prior to transplantation will provide an important tool in the investigation of ES cell transplantation.

Conclusion

The high cost and rising number of affected patients makes diabetes a major health crisis for the entire world. Current therapeutic options, with the exception of islet transplantation, have, at best, reduced the effects of diabetes. Stem cells (adult or embryonic) are currently the most promising candidates for islet cell replacement therapies. Recent advances differentiating embryonic stem cells into insulin producing cells have pointed out this potential, as well as, the pitfalls to the current approach. We have demonstrated insulin production from rhesus ES cells using C-peptide as a marker, thus avoiding the pitfall of insulin detection. In addition, we have transfected ES cells with a HIP-GFP construct to identify insulin producing, ES derived cells. This methodology will allow us to develop a pre-clinical model of cell transplantation in rhesus monkeys. Such a model is critical in the evaluation of the ES cell-based transplantation safety and efficacy.

Acknowledgements

The Juvenile Diabetes Research Association (RS-2003 to LBL) and the NIH (RR 15199 to DPW) provided funding for these studies.

We are very grateful to Dr. C.V. Wright, Vanderbilt University, for the gift of the anti-PDX-1 antibody and Dr. Michael German, UCSF, for the gift of the human insulin promoter cDNA.

References

1. Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, Knowler WC: The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 2000, 23:1108-1112.
2. Harris MI: Diabetes in America: epidemiology and scope of the problem. Diabetes Care 1998, 21:C11-14.
3. Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Kaplan JP: The continuing epidemics of obesity and diabetes in the United States. JAMA 2001, 286:1195-1200.
4. Mokdad AH, Ford ES, Bowman BA, Nelson DE, Engelgau MM, Vinicor F, Marks JS: Diabetes Trends in the US: 1990-1998. Diabetes Care 2000, 23:1278-1283.
5. Mokdad AH, Ford ES, Bowman BA, Nelson DE, Engelgau MM, Vinicor F, Marks JS: The continuing increase of diabetes in the US. Diabetes Care 2001, 24:412.
6. Narayan KM, Gregg EW, Fagot-Campagna A, Engelgau MM, Vinicor F: Diabetes—a common, growing, serious, costly, and potentially preventable public health problem. Diabetes Res Clin Pract 2000, 50:577-84.
7. Boyle JP, Honecutt AA, Narayan KM, Hoerger TJ, Geiss LS, Chen H, Thompson TJ: Projection of Diabetes Burden Through 2050. Diabetes Care 2001, 24:1936-1940.
8. Shapiro AM, Lakey JRT, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV: Islet Transplantation in Seven Patients with Type 1 Diabetes Mellitus using A Glucocorticoid-Free Immunosuppressive Regimen. N Engl J Med 2000, 343:230-238.
9. Mathieu C: Current limitations of islet transplantation. Transplant Proc 2001, 33:1707-1708.
10. Zwillich T: Islet transplants not yet ready for prime time. Science 2000, 289:531-532.
11. Ryan EA, Lakey JRT, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabino-vitch A, Elliot I, Bigam D, Kneteman NM, Warnock GL, Larsen I, Shapiro AM: Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 2001, 50:716-709.
12. Swenne I: Pancreatic Beta-cell growth and diabetes mellitus. Diabetologia 1992, 35:193-201.
13. Serup Palle, Mandrup-Poulsen Thomas: In-vitro differentiation of pancreatic beta-cells. Diabetes 2000, 531-532.
14. Serup Palle, Mandrup-Poulsen Thomas: In-vitro differentiation of pancreatic beta-cells. Diabetes Care 2001, 24:1936-1940.
15. Serup Palle, Mandrup-Poulsen Thomas: In-vitro differentiation of pancreatic beta-cells. Diabetes 2001, 50:1691-1697.
16. Beattie Gillian M., Cirulli Vincenzo, Lopez Ana D., Hayek Alberto: Ex Vivo Expansion of Human Pancreatic Endocrine Cells. Journal of Clinical Endocrinology Metab 1997, 82:1852-1856.
17. Bonner-Weir S, Taneya M, Weir GC, Tatarakiewicz K, Song KH, Sharma A, O’Neil JJ: In vitro cultivation of human islets from expanded ductal tissue. PNAS 2000, 97:7999-8004.
18. Soria B: In-vitro differentiation of pancreatic beta-cells. Differentiation 2001, 68:205-219.
19. Thompson JA, Itskovitz-Eldor J, Shapiro SS: Embryonic stem cell lines derived from human blastocysts. Science 1998, 281:1145-1147.
20. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R: Differentiation of Embryonic Stem Cells to Insulin-Secreting Structures Similar to Pancreatic Islets. Science 2001, 292:1389-1394.
21. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M: Insulin Production by Human Embryonic Stem Cells. Diabetes 2001, 50:1691-1697.
22. Rajagopal J, Anderson WJ, Kume S, Martinez OL, Melton DA: Insulin Staining of ES Cell Progeny from Insulin Uptake. Science 2003, 299:363.
23. Kahn BW, Jacobson LM, Hullett DA, Ochoada JM, Oberley TD, Lang KM, Odorico JS: Pancreatic Precursors and Differentiated Islet Cell Types From Murine Embryonic Stem Cells. An in Vitro
Model to Study Islet Differentiation. Diabetes 2003, 52:2016-2024.

23. Edlund H: Pancreatic organogenesis: developmental mechanisms and implications for therapy. Nature Reviews Genetics 2002, 3:524-532.

24. Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J, Wolheim CB: Pdx1 Level Defines Pancreatic Gene Expression Pattern and Cell Lineage Differentiation. J Biol Chem 2001, 276:25279-25286.

25. Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H: Conversion of Xenopus into neurons by NeuroD, a basic helix-loop-helix protein. Science 1995, 268:836-844.

26. Naya FJ, Huang HF, Qui Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ: Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in Beta2/neuroD-deficient mice. Genes and Development 1997, 11:2323-2334.

27. Hori Yuichi, Rulifson Ingrid, Tsal BC, Helt JJ, Cahoy JD, Kim Seung K: Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002, 99:16150-16155.

28. Eiges R, Schuldiner M, Drukker M, Yanuka O, Isskovitz-Eldor J, Benveniste H: Establishment of human embryonic stem cell-transplanted clones carrying a marker for undifferentiated cells. Current Biology 2001, 11:514-518.

29. Xu G, Stoffers DA, Habener JF, Bonner-Weiser S: Exendin-4 stimulated both beta cell replication and neogenesis, resulting in increased beta cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999, 48:2270-2276.

30. Tourrel Cecile, Baillie Danielle, Lacorne Matthieu, Meile Marie-Jo, Kergoat Micheline, Portha Bernard: Persistent Improvement of Type 2 Diabetes in the Goto-Kakizaki Rat Model by Expansion of the (beta)-Cell Mass During the Prediabetic Period With Glucagon-Like Peptide-1 or Exendin-4. Diabetes 2002, 51:1443-1452.

31. Movassat J, Beattie Gillian M., Lopez Ana D., Hayek Alberto: Exendin 4 up-regulates expression of PDX 1 and hastens differentiation and maturation of human fetal pancreatic cells. J Clin Endocrinol Metab 2002, 87:4775-4781.

32. Rolin Bidda, Larsen Marianne O., Godfredsen Carsten F., Deacon Carolyn F., Carr Richard D., Wilken Michael, Knudsen Lotte Bjerre: The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002, 283:E745-752.

33. Tourrel Cecile, Baillie Danielle, Meile Marie-Jo, Kergoat Micheline, Portha Bernard: Glucagon-Like Peptide-1 and Exendin-4 Stimulate (beta)-Cell Neogenesis in Streptozotocin-Treated Newborn Rats Resulting in Persistently Improved Glucose Homeostasis at Adult Age. Diabetes 2001, 50:1562-1570.

34. Hirshberg B, Mog Steven, Patterson Noelle, Leconte John, Harlan DM: Histopathological Study of Intrahepatic Islets Transplanted in the Nonhuman Primate Model Using Edmonton Protocol Immunosuppression. J Clin Endocrinol Metab 2002, 87:5424-5429.

35. Hirshberg B, Montgomery S, Wysoki MG, Xu H, Tadaki D, Lee JE, Hines K, Gaglia J, Patterson Noelle, Leconte John, Hale Douglas, Chang Richard, Kirk AD, Harlan DM: Pancreatic Islet Transplantation Using the Nonhuman Primate (Rhesus) Model Predicts That the Portal Vein Is Superior to the Celiac Artery as the Islet Infusion Site. Diabetes 2002, 51:2135-2140.

36. Kenyon NS, Chatzipetrou M, Masetti M, Ranuncoli A, Oliviera M, Wagnen JL, Kirk AD, Harlan DM, Burdly LC, Ricordi C: Long-term survival and function of intrahepatic islet allotransplants in rhesus monkey treated with humanized anti-CD154. Proc Natl Acad Sci USA 1999, 96:8132-8137.

37. Theriault BR, Thistlethwaite JR, Levi setti MG, Wardrip CL, Szot G, Bruce DS, Rilo H, Li X, Gray GS, Bluestone JA, Padrid PA: Induction, maintenance, and reversal of streptozotocin-induced insulin-dependent diabetes mellitus in the juvenile cynomolgus monkey (Macaca fascicularis). Transplantation 1999, 68:331-337.

38. Thomas JM, Contereras JL, Smyth CA, Lobashevskya A, Jenkins S, Hubbard WJ, Eckhoff DE, Stavrour S, Neville DM, Thomas FT: Successful reversal of streptozotocin-induced diabetes with stable allogeneic islet function in a preclinical model of type 1 diabetes. Diabetes 2001, 50:1227-1236.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp