THE MANIFOLD OF FINITE RANK PROJECTIONS IN THE SPACE $\mathcal{L}(H)$.

José M. Isidro †
Universidad de Santiago de Compostela

December, 1999

Abstract. Given a complex Hilbert space H and the von Neumann algebra $\mathcal{L}(H)$ of all bounded linear operators in H, we study the Grassmann manifold M of all projections in $\mathcal{L}(H)$ that have a fixed finite rank r. To do it we take the Jordan-Banach triple (or JB*-triple) approach which allows us to define a natural Levi-Civita connection on M by using algebraic tools. We identify the geodesics and the Riemann distance and establish some properties of M.

0 Introduction

In this paper we are concerned with the differential geometry of the infinite-dimensional Grassmann manifold M of all projections in $Z := \mathcal{L}(H)$, the space of bounded linear operators $z: H \rightarrow H$ in a complex Hilbert space H. Grassmann manifolds are a classical object in Differential Geometry and in recent years several authors have considered them in the Banach space setting. Besides the Grassmann structure, a Riemann and a Kähler structure has sometimes been defined even in the infinite-dimensional setting. Let us recall some aspects of the history of the topic that are relevant for our purpose.

The study of the manifold of minimal projections in a finite-dimensional simple formally real Jordan algebra was made by U. Hirzebruch in [4], who proved that such a manifold is a compact symmetric Riemann space of rank 1, and that every such a space arises in this way. Later on, Nomura in [13, 14] established similar results for the manifold of fixed finite rank projections in a topologically simple real Jordan-Hilbert algebra. On the other hand, the Grassmann manifold M of all projections in the space $Z := \mathcal{L}(H)$ of bounded linear operators has been discussed by Kaup in [7] and [10]. It is therefore reasonable to ask whether a Riemann structure can always be defined in M and how does it behave when it exists. It is known that M has several connected components $M_r \subset M$ each of which consists of the projections in $\mathcal{L}(H)$ that have a fixed rank r, $1 \leq r \leq \infty$. We prove that M_r admits a Riemann structure if and only if $r < \infty$ establishing a distinction between the finite and the infinite dimensional cases. We then assume $r < \infty$ and proceed to discuss the behaviour of the Riemann manifold M_r, which looks very much like in the finite-dimensional case. One of the novelties is that we take JB*-triple approach instead of the Jordan-algebra approach of [4] and [13]. As noted in [1] and [5], within this context the algebraic structure of JB*-triple acts as a substitute for the Jordan algebra structure and provides a local scalar product known as the Levi form [10]. Although $\mathcal{L}(H)$ is not a Hilbert space, the JB*-triple approach and the use of the Levi form allows us to define a torsion-free affine connection ∇ on

1991 Mathematics Subject Classification. 48 G 20, 72 H 51.

Key words and phrases. Grassmann manifolds, Riemann manifolds, JB*-triples.

†Supported by Comisión Hispano-Húngara de Cooperación Científica y Tecnológica.
M_e that is invariant under the group $\text{Aut}^\circ(Z)$ of all surjective linear isometries of $\mathcal{L}(H)$. We integrate the equation of the geodesics and define an $\text{Aut}^\circ(Z)$-invariant Riemann metric on M_e with respect to which ∇ is a Levi-Civita connection. We prove that any two distinct points in M_e can be joined by a geodesic which (except for the case of a pair of antipodal points) is uniquely determined and is a minimizing curve for the Riemann distance, that is also computed. We prove that M_e is a symmetric manifold on which $\text{Aut}^\circ(Z)$ acts transitively as a group of isometries.

1 JB*-triples and tripotents.

For a complex Banach space Z, denote by $\mathcal{L}(Z)$ the Banach algebra of all bounded linear operators on Z. A complex Banach space Z with a continuous mapping $(a, b, c) \mapsto \{abc\}$ from $Z \times Z \times Z$ to Z is called a JB*-triple if the following conditions are satisfied for all $a, b, c, d \in Z$, where the operator $a\Box b \in \mathcal{L}(Z)$ is defined by $z \mapsto \{abz\}$ and $[,]$ is the commutator product:

1. $\{abc\}$ is symmetric complex linear in a, c and conjugate linear in b.
2. $[a\Box b, c\Box d] = \{abc\}\Box d - c\Box \{dab\}$.
3. $a\Box a$ is hermitian and has spectrum ≥ 0.
4. $\|\{aaa\}\| = \|a\|^3$.

If a complex vector space Z admits a JB*-triple structure, then the norm and the triple product determine each other. A derivation of a JB*-triple Z is an element $\delta \in \mathcal{L}(Z)$ such that $\delta\{zzz\} = \{(\delta z)zz\} + \{z(\delta z)z\} + \{zz(\delta z)\}$ and an automorphism is a bijection $\phi \in \mathcal{L}(Z)$ such that $\phi\{zzz\} = \{(\phi z)(\phi z)(\phi z)\}$ for $z \in Z$. The latter occurs if and only if ϕ is a surjective linear isometry of Z. The group $\text{Aut}(Z)$ of automorphisms of Z is a real Banach-Lie group whose Banach-Lie algebra is the set of derivations of Z. The connected component of the identity in $\text{Aut}(Z)$ is denoted by $\text{Aut}^\circ(Z)$. Two elements $x, y \in Z$ are orthogonal if $x\Box y = 0$. An element $e \in Z$ is called a tripotent if $\{eee\} = e$. The set $\text{Tri}(Z)$ of tripotents is endowed with the induced topology of Z. If $e \in \text{Tri}(Z)$, then $e\Box e \in \mathcal{L}(Z)$ has the eigenvalues $0, \frac{1}{2}, 1$ and we have the topological direct sum decomposition

$$Z = Z_1(e) \oplus Z_{1/2}(e) \oplus Z_0(e)$$

called the Peirce decomposition of Z. Here $Z_k(e)$ is the k-eigenspace and the Peirce projections are

$$P_1(e) = Q^2(e), \quad P_{1/2}(e) = 2(e\Box e - Q^2(e)), \quad P_0(e) = \text{Id} - 2e\Box e + Q^2(e),$$

where $Q(e)z = \{zee\}$ for $z \in Z$. We will use the Peirce rules $\{Z_i(e)Z_j(e)Z_k(e)\} \subset Z_{i-j+k}(e)$ where $Z_l(e) = \{0\}$ for $l \neq 0, 1/2, 1$. We note that $Z_1(e)$ is a complex unital JB*-algebra in the product $a \circ b := \{aeb\}$ and involution $a^\#: = \{eae\}$. Let

$$A(e) := \{z \in Z_1(e) : z^\# = z\}.$$

Then we have $Z_1(e) = A(e) \oplus iA(e)$. The Peirce spaces of Z with respect to a an orthogonal family of tripotents $\mathcal{E} = (e_i)_{i \in I}$ are defined by

$$Z_{ii} := Z_1(e_i)$$
$$Z_{ij} := Z_{1/2}(e_i) \cap Z_{1/2}(e_j), \quad i \neq j$$
$$Z_{i0} := Z_{0i} := Z_{1/2}(e_i) \bigcap_{j \neq i} Z_0(e_j)$$
$$Z_{00} := \bigcap_{i \in I} Z_0(e_i)$$
The Peirce sum \(P(\mathcal{E}) := \bigoplus_{i,j \in I} Z_{ij} \) relative to the family \(\mathcal{E} \) is direct and we have \(Z = P(\mathcal{E}) \) whenever \(\mathcal{E} \) is a finite set. Every \(\mathcal{E} \)-Peirce space is a JB*-subtriple of \(Z \) and the Peirce rules

\[
\{ Z_{ij} Z_{jk} Z_{kl} \} \subset Z_{il}
\]

hold for all \(i, j, k, l \in I \).

A tripotent \(e \) in a JB*-triple \(Z \) is said to be minimal if \(P_{1}(e)Z = Ce \), and we let \(\text{Min}(Z) \) be the set of them. Clearly \(e = 0 \) lies in \(\text{Min}(Z) \) and is an isolated point there. If \(e \in \text{Min}(Z) \) and \(e \neq 0 \) then \(\| e \| = 1 \) and by the Peirce multiplication rules we have \(\{ euv \} \in Z_{1}(e) = Ce \) for all \(u, v \in Z_{1/2}(e) \). Therefore we can define a sesquilinear form, called the Levi form, \(\langle \cdot, \cdot \rangle_{e}: Z_{1/2}(e) \times Z_{1/2}(e) \to \mathbb{C} \) by

\[
\{ euv \} = \langle v, u \rangle_{e}, \quad u, v \in Z_{1/2}(e).
\]

It is known [10] that \(\langle \cdot, \cdot \rangle_{e} \) is positive definite hence it defines a scalar product in \(Z_{1/2}(e) \) whose norm, called the Levi norm and denoted by \(| \cdot |_{e} \), satisfies

\[
| u |_{e}^{2} \leq \| u \|^{2}, \quad u \in Z_{1/2}(e)
\]

that is, we have the continuous inclusion \((Z_{1/2}(e), \| \cdot \|) \hookrightarrow (Z_{1/2}(e), | \cdot |_{e}) \). To simplify the notation, we shall omit the subindex \(e \) in both the Levi form and the Levi norm if no confusion is likely to occur.

JB*-triples include C*-algebras and JB*-algebras. A C*-algebra is a JB*-triple with respect to the triple product \(2\{ abc \} := (ab^{*}c + cb^{*}a) \). Every JB*-algebra with Jordan product \((a, b) \mapsto a \circ b \) and involution \(a \mapsto a^{*} \) is a JB*-triple with triple product \(\{ abc \} = (a \circ b^{*}) \circ c - (c \circ a) \circ b^{*} + (b^{*} \circ c) \circ a \).

We refer to [8,9,10,12] for the background of JB*-triples theory.

2 The manifold \(M \) of minimal projections

Let \(Z := \mathcal{L}(H) \), where \(H \) is a complex Hilbert space, and let \(M \subset \text{Tri}(Z) \) denote the set of all projections in \(Z \) endowed with its topology as subspace of \(Z \). Fix any non zero projection \(e_{0} \in M \) and denote by \(M \) the connected component of \(e_{0} \) in \(M \). Then all elements in \(M \) have the same rank as \(e_{0} \) and \(\text{Aut}^{0}(Z) \) acts transitively on \(M \) which is an \(\text{Aut}^{0}(Z) \)-invariant real analytic manifold whose tangent space at a point \(e \in M \) is

\[
T_{e}M = Z_{1/2}(e)_{s},
\]

the selfadjoint part of the \(1/2 \)-eigenspace of \(e \). If we set \(k_{u} := 2(u \square e - e \square u) \), then by [1, th. 3.3] a local chart of \(M \) in a suitable neighbourhood \(U \) of \(0 \) in \(Z_{1/2}(e)_{s} \) is given by

\[
u \mapsto f(u) := \exp k_{u}(e).
\]

Let \(\mathfrak{D}(M) \) be the Lie algebra of all real analytic vector fields on \(M \), and as in [1], define an affine connection \(\nabla \) on \(M \) by

\[
(\nabla_{X} Y)_{e} := P_{1/2}(e)Y'_{e}X_{e}, \quad e \in M, \quad X, Y \in \mathfrak{D}(M)
\]

(1).

Then \(\nabla \) is a torsion-free \(\text{Aut}^{0}(Z) \)-invariant affine connection on \(M \). For each \(e \in M \) and \(u \in Z_{1/2}(e)_{s} \) we let \(\gamma_{e,u}: \mathbb{R} \to M \) denote the curve \(\gamma_{e,u}(t) := \exp tk_{u}(e) \). Clearly we have \(\gamma_{e,u}(0) = e \) and \(\gamma_{e,u}(0) = u \in T_{e}M \). By [1, th. 2.7], \(\gamma_{e,u} \) is a \(\nabla \)-geodesic of \(M \). Let us introduce a binary product in \(Z \) by \(x \circ y := \{ xey \} \). Then \((Z, \circ) \) is a complex Jordan algebra where, as usual, \(x^{(n)} \)
denotes the n-th power of x in (Z, \circ) for $n \in \mathbb{N}$. For $u \in Z_{1/2}(e)$, the real Jordan subalgebra of (Z, \circ) generated by the pair (e, u) is denoted by $J[e, u]$ and we have $\gamma_{e,u} (\mathbb{R}) \subset J[e,u]$.

To make a more detailed study of the manifold M, we shall assume that e_0 is minimal. In such a case $J[e, u]$ coincides with the closed real linear span of the set $\{e, u, u^{(2)}\}$, in particular $\dim J[e, u] \leq 3$ and

$$\gamma_{e,u}(t) = (\cos^2 t\theta) e + \left(\frac{1}{2\theta}\sin 2t\theta\right) u + \left(\frac{1}{\theta^2}\sin^2 t\theta\right) u^{(2)}, \quad t \in \mathbb{R} \quad (2)$$

for some angle $0 \leq \theta < \pi$. If a, b are two distinct minimal projections and they are not orthogonal (that is, if the Peirce projection $P_1(a)b$ is invertible in the JB*-algebra $Z_1(a)$) then there is an unique geodesic $\gamma_{a,u}(t)$ joining a with b in M. Moreover, due to the minimality of e the tangent space $Z_{1/2}(e) \approx \{e\}^\perp$ appears naturally endowed with the Levi form (\cdot, e) and it turns out that the Levi norm $| \cdot |_e$ and the operator norm $\| \cdot \|$ are equivalent in $Z_{1/2}(e)$ (see \[6, th.5.1\]). Thus $(Z_{1/2}(e), | \cdot |_e)$ is a Hilbert space and an Aut^0-invariant Riemann structure can be defined in M by

$$g_e(X, Y) := \langle X_e, Y_e \rangle_e, \quad X, Y \in \mathcal{D}(M) \quad (3)$$

where $V_e \in Z_{1/2}(e)$ denotes the value taken by the vector field V at the point $e \in M$. By \[1\] g satisfies

$$Xg(Y, Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z), \quad X, Y, Z \in \mathcal{D}(M) \quad (4)$$

Therefore ∇ is the only Levi-Civita affine connection on M, and the geodesics are minimizing curves for the Riemann distance in M, which is given by the formula

$$d(a, b) = \cos^{-1} \left(\|P_1(a)b\|_e^2\right) = \theta.$$

M is symmetric Riemann manifold on which $\text{Aut}^0(Z)$ acts transitively as a group of isometries and there is a real analytic diffeomorphism of M onto the projective space $\mathbb{P}(H)$ over H, endowed with the Fubini-Study metric. We refer to \[1,5,6,13\] for proofs and background about these facts.

3 The manifold of finite rank projections in $\mathcal{L}(H)$.

In what follows we let M and M_r be the set of all projections in Z and the set of all projections that have a fixed finite rank r, respectively. If $a \in M_r$ then a frame for a is any family (a_1, \ldots, a_r) of pairwise orthogonal minimal projections in Z such that $a = \Sigma a_k$. Note that then the a_k have the form $a_k = (\cdot, \alpha_k)_{a_k}$ where (α_k) is an orthonormal family of vectors in the range $a(H)$.

3.1 Proposition. For every projection $a \in M$ the following conditions are equivalent:

1. The rank of a is finite.
2. The Banach space $Z_{1/2}(a)$ is linearly homeomorphic to a Hilbert space.

Proof. Let us choose an orthonormal basis $(\alpha_i)_{i \in I}$ in the range $a(H) \subset H$ of a. Then $a_i := (\cdot, \alpha_i)_{a_i}, i \in I$, is a family of pairwise orthogonal minimal projections that satisfy

$$a = \Sigma_{i \in I} a_i \quad \text{strong operator convergence in } Z$$

(5)

The space $Z_{1/2}(a)_s$ consists of the operators $u \in Z$ such that $2\{aau\} = u$ and using (5) it is easy to check that u can be represented in the form

$$u = \Sigma_{i \in I} (\cdot, \xi_i)_{a_i} + (\cdot, \alpha_i)_{\xi_i} \quad \text{strong operator convergence in } Z$$

where $\xi_i := u(\alpha_i)$ are vectors in H that satisfy $\xi_i \in a(H)^\perp$. By (4) each $u \in Z_{1/2}(a)_s$ is determined by the family $(\xi_i)_{i \in I}$. To simplify the notation, set $K := a(H)^\perp$ and $L := \ell_\infty(I, K)$ for the
Banach space of the families \((\xi_i)_{i \in I} \subset K\) with the norm of the supremum \(\| (\xi_i) \| = \sup_{i \in I} \| \xi_i \|\).

Then the mapping

\[L \to Z_{1/2}(a)_s, \quad (\xi_i) \mapsto u_\xi = \sum_{i \in I} [\langle \cdot, \alpha_i \rangle \xi_i + \langle \cdot, \xi_i \rangle \alpha_i] \]

is a continuous real linear vector space isomorphism, hence a homeomorphism. Thus if the operator norm in \(Z_{1/2}(a)_s\) is equivalent to a Hilbert space norm the same must occur with \(\ell_\infty(I, K)\), hence \(I\) must be a finite set which means that \(a = \Sigma a_i\) has finite rank. The converse is easy. \(\square\)

3.2 Lemma

Let \(a, b \in M_r\) with \(a = \Sigma a_k\) where the \((a_k)\) is a frame for \(a\), and let \(Q(a_k)b = \lambda_k a_k\), \((k = 1, \ldots, r)\). If \(P_1(a)\) is invertible in the JB*-algebra \(Z_1(a)\), then \(\lambda_k \neq 0\) for all \(k\). The set of all elements \(b \in M_r\) for which \(P_1(a) b\) is invertible in \(Z_1(a)\) is dense in \(M_r\).

Proof. Suppose that \(a_k = (\cdot, \alpha_k)\alpha_k\) and \(b_j = (\cdot, \beta_j)\beta_j\) are frames for \(a\) and \(b\) respectively. Then for each fixed \(k\) we have

\[Q(a_k)b = \{a_k b a_k\} = (\Sigma_j (|\alpha_k, \beta_j|)^2) a_k = \lambda_k a_k \]

where \(\lambda_k \geq 0\). Moreover \(\lambda_k = 0\) if and only if \(\alpha_k \in \{\beta_1, \ldots, \beta_r\}^\perp\) which is equivalent to \(a_k \perp b\).

But in such a case \(\text{range}(a_k) \subset \ker\{a_k b a_k\} = \ker P_1(a) b\) which contradicts the invertibility of \(P_1(a) b\). To simplify the notation set \(K := a(H) \subset H\) and note that \(\dim K = \text{rank} a = r < \infty\). The operators in \(Z_1(a) = aZa\) can be viewed as operators in \(L(K)\), therefore the determinant function is defined in \(Z_1(a)\) and an element \(z \in Z_1(a)\) is invertible if and only if \(\det(z) \neq 0\). Thus the set of the operators \(b \in Z\) for which \(P_1(a) b\) is invertible in \(Z_1(a)\) is an open dense subset of \(M_r\). \(\square\)

3.3 Lemma

If \(a, p\) and \(q\) are projections in \(M_r\) and \(P_{1/2}(a)p = P_{1/2}(a)q\), then \(p = q\).

Proof. Take frames for \(a, p, q\), compute \(P_{1/2}(a)p = 2(D(a \square a) - Q(a)^2)p\) and proceed similarly with \(q\). An elementary exercise of linear algebra yields \(\text{range}(p) = \text{range}(q)\), hence \(p = q\). \(\square\)

Let \(a \in M_r\) and choose any frame \((a_1, a_2, \ldots, a_r)\) for \(a\). As above \(Z_{1/2}(a)_s\) consists of the operators \(u = \Sigma (\cdot, \xi_k)\alpha_k + (\cdot, \alpha_k)\xi_k\) where \(\xi_k := u(\alpha_k)\) are vectors in \(H\) that satisfy \(\xi_k \in a(H)^\perp\).

Write \(u_k := (\cdot, \xi_k)\alpha_k + (\cdot, \alpha_k)\xi_k\). Then we have \(u = \Sigma u_k\) where the \(u_k\) are selfadjoint operators in \(Z = L(H)\) (in fact \(u_k \in Z_{1/2}(a)_s\)) that satisfy

\[u_j \square a_k = a_k \square u_j = 0, \quad j \neq k, \quad (j, k = 1, 2, \ldots, r) \tag{6} \]

The above properties of the \(a_k, u_k\) hold whatever is the frame \((a_1, a_2, \ldots, a_r)\). There are many families in those conditions and we are going to prove that, by making an appropriate choice of the \(a_k\) (a choice in which the tangent vector \(u \in Z_{1/2}(a)\) is also involved) we can additionally have

\[u_k \square u_j = u_j \square u_k = 0, \quad j \neq k, \quad (j, k = 1, 2, \ldots, r) \tag{7} \]

This will simplify considerably the calculations in the sequel. We need some material.

3.4 Lemma

With the above notation the set of minimal tripotents in \(Z_{1/2}(a)\) is

\[\{ (\cdot, \alpha)\xi + (\cdot, \xi)\alpha : \alpha \in a(H), \xi \in a(H)^\perp, \|\alpha\| = 1 = \|\xi\| \} \]

Proof. Let \(x \in Z\) be of the form \(x = (\cdot, \alpha)\xi + (\cdot, \xi)\alpha\) where \(\alpha, \xi \in H\) satisfy the above conditions. It is a matter of routine calculation to see that then \(2\{aax\} = x\) hence \(x \in Z_{1/2}(a)_s\). Moreover \(\{xx\} = x\) so that \(x\) is a tripotent and we can easily see that \(\{xZ_{1/2}(a)x\} \subset Cx\) which proves the minimality of \(x\) in \(Z_{1/2}(a)\). The converse is similar. \(\square\)

The following result should be compared to [14, prop. 3.4]
3.5 Lemma. Two minimal tripotents \(x = (\cdot, \alpha)\xi + (\cdot, \xi)\alpha \) and \(y = (\cdot, \beta)\eta + (\cdot, \eta)\beta \) in \(Z_{1/2}(a) \), are orthogonal if and only if \(\alpha \perp \beta \) and \(\xi \perp \eta \). In particular \(Z_{1/2}(a) \) has rank \(r \) for all \(a \in M \).

Proof. By \([2, \text{p. 18}]\) \(x \) and \(y \) are orthogonal if and only if the conditions \(xy^* = 0 = y^*x \) hold. Now it is elementary to complete the proof of the first statement. For the second part, let \((u_i)_{i \in I} \) be a family of pairwise minimal orthogonal tripotents in \(Z_{1/2}(a) \). Then \(u_i = (\cdot, \alpha_i)\xi_i + (\cdot, \xi_i)\alpha_i \), where \((\alpha_i) \subset a(H) \) and \(\xi_i \subset a(H)^+ \) are orthonormal families of vectors in \(H \). In particular \(a_i = (\cdot, \alpha_i) \alpha_i \) is a family of pairwise orthogonal projections with \(\Sigma a_i \leq a \). Since \(\text{rank}(a) = r \), we have cardinal \((I) \leq r \). The converse is easy. \(\square \)

Let \(a \in M \) be a fixed projection and take any tangent vector \(u \in Z_{1/2}(a) \) to \(M \) at \(a \). By lemma 3.2 \(Z_{1/2}(a) \) has finite rank, hence \([9, \text{cor. 4.5}]\) \(u \) has a spectral decomposition in the JB*-triple \(Z_{1/2}(a) \) of the form

\[
\begin{aligned}
&u = \rho_1 u_1 + \cdots + \rho_s u_s, \\
&0 \leq \rho_1 \leq \cdots \leq \rho_s = \|u\|, \\
&1 \leq s \leq r
\end{aligned}
\]

where the \(u_k \) are pairwise orthogonal minimal tripotents in \(Z_{1/2}(a) \). Therefore

\[
u_k = (\cdot, \alpha_k)\xi_k + (\cdot, \xi_k)\alpha_k, \quad \alpha_k \in a(H), \quad \xi_k \in a(H)^+, \]

\[
\|\alpha_k\| = 1 = \|\xi_k\|, \quad \alpha_j \perp \alpha_k, \quad \xi_j \perp \xi_k, \quad j \neq k
\]

Then \(a_k = (\cdot, \alpha_k)\alpha_k \) are pairwise orthogonal minimal projections in \(Z \) and \(\Sigma a_k \leq a \). In case \(s < r \), which occurs if some of the \(\rho_k = 0 \), we pick additional minimal orthogonal projections \(a_{s+1}, \ldots, a_r \) so as to have \(a = \Sigma a_k \). For the family \((a_1, \ldots, a_r) \) so constructed, called a frame associated to the pair \((a, u) \), both properties (6) and (7) hold. Remark that this frame needs not be unique, it depends on \(a \) and on \(u \) as well, and it is invariant under the group \(\text{Aut}^+(Z) \). In fact some more properties are valid now.

In accordance with section §1, each pair \((a_k, u_k) \) gives rise to a real Jordan algebra \(J_k = J[a_k, u_k] \) with the product \(x \circ k y = \{xa_k y\} \). We have \(\dim(J_k) = 3 \) and \(\{a_k, u_k, u_k^{(2)}\} \) is a basis of \(J_k \). Moreover, \(J_k \) is invariant under the operator \(g_k = 2(a_k \Box a_k - u_k \square a_k) \) where triple products are computed in \(Z = \mathcal{L}(H) \). In case \(s < \text{rank}(a) \) we set \(J_n = \mathbb{R}a_n \) as real Jordan algebras.

3.6 Lemma. The Jordan algebras \(J_k \) and \(J_l \) with \(k \neq l \), \((k, l = 1, \ldots, r) \) are orthogonal in the JB*-triple sense in \(Z \), that is \(\{J_kJ_l\} = 0 \).

Proof. For \(n \in \{k, l\} \subset \{1, \ldots, s\} \) with \(k \neq l \), let \(z_n \) be any element in the basis \(\{a_n, u_n, u_n^{(2)}\} \) of \(J_n \). Clearly it suffices to show that \(z_k z_l = 0 = z_l z_k \). As an example, we shall prove that \(u_k^{(2)} u_l^{(2)} = 0 \). It is a routine to check that \(u_k u_l = 0 \). Then

\[
u_k^{(2)} u_l^{(2)} = \{u_k a_k u_k\} \{u_l a_l u_l\} = (u_k a_k u_k)(u_l a_l u_l) = u_k a_k (u_k u_l) a_l u_l = 0
\]

as we wanted to see. \(\square \)

Consider now the vector space direct sum \(J := \bigoplus J_k \), and define a product \(z \circ w := \{zaw\} \) in \(J \) by

\[
z \circ w := \{zaw\} = \frac{1}{2} (zaw + waz) = \frac{1}{2} \sum_{1}^{r} (z_k a_k w_k + w_k a_k z_k) = \sum_{1}^{r} z_k \circ_k w_k
\]

where \(z_k, w_k \) are respectively the \(J_k \)-component of \(z \) and \(w \). It is now clear that \(J \) is a real Jordan algebra, that the product in \(J \) induces in each \(J_k \) its own product \(z \circ_k w = \{zaw\} \) and that the \(J_k \) are orthogonal as Jordan subalgebras of \(J \). It is also clear that \(J \) coincides with the closed real linear span of the set \(\bigcup_{1}^{r} \{a_k, u_k, u_k^{(2)}\} \), in particular \(\dim J \leq 3r < \infty \). Finally \(J[a, u] \subseteq J \) and we conjecture that the equality holds (see \([14, \text{prop. 3.5} \& \text{th. 3.6}]\)
4 Geodesics and the exponential mapping.

Consider M_r endowed with the affine connection ∇ given by (1). To discuss its geodesics, let us define an operator $g \in Z = \mathcal{L}(H)$ by

$$g_a = g_{a,u} : = 2(u \square a - a \square u) = 2\Sigma \rho_k(u_k \square a_k - a_k \square u_k) = \Sigma \rho_k g_{a_k, u_k}$$

where $u = \Sigma \rho_k u_k$ is the spectral decomposition of $u \in Z_{1/2}(a)$, the a_k is any frame associated to the pair (a, u) and $g_k : = g_{a_k, u_k}$ is defined in a obvious manner. If the spectral decomposition of u (see (8)) has $s \leq r$ non zero summands then we define $g_n : = 0$ for $n = s + 1, \ldots, r$. Then g_k is a commutative family of operators in Z, more precisely we have $g_k(J_l) = \{0\}$, $g_k g_l = g_l g_k = 0$ for all $k \neq l$, $(k, l = 1, \ldots, r)$ and g leaves invariant all the spaces J and J_k. Thus

$$\gamma_{a,u}(t) : = \exp t g(a) = \Sigma \exp t g_k(a_k), \quad t \in \mathbb{R}$$

By section §1 this curve is a geodesic in M_r and $\gamma_{a,u}(\mathbb{R}) \subset J[a, u] \subset J$. We can collect now the above discussion in the following statement (see [14, prop. 5.1 & 5.4]

4.1 Theorem. Suppose that we are given a point $a \in M_r$ and a tangent vector $u \in Z_{1/2}(a)$ to M_r at a. Then the geodesic of M_r that passes through a with velocity u is the curve

$$\gamma_{a,u}(t) = \Sigma \gamma_{a_k, u_k}(t), \quad t \in \mathbb{R},$$

where $\gamma_k : = \gamma_{a_k, u_k}$ is given by

$$\gamma_k(t) : = \gamma_{a_k, u_k}(t) = (\cos^2 \theta_k t) a_k + (\frac{1}{2\theta_k} \sin 2\theta_k t) u_k + (\frac{1}{\theta_k^2} \sin^2 \theta_k t) u_k^{(2)} \quad (G)$$

Here $u = \Sigma \rho_k u_k$ is the spectral decomposition of u in $Z_{1/2}(a)$, the a_k form a frame associated to the pair (a, u) and the numbers θ_k are given by $\cos^2 \theta_k : = \rho_k$ with $0 \leq \theta_k < \frac{\pi}{2}$.

Now we are in a position to define the exponential mapping. Suppose the tangent vector u lies in the unit ball $B_1(a) \subset Z_{1/2}(a)$, i.e. $\|u\| < 1$. For $t = 1$ the expression (G) yields

$$\gamma(1) = \Sigma (\cos^2 \theta_k) a_k + \Sigma (\frac{1}{2\theta_k} \sin 2\theta_k) u_k + \Sigma (\frac{1}{\theta_k^2} \sin^2 \theta_k) u_k^{(2)} \quad (E)$$

and a real analytic mapping form the unit ball $B_1(0) \subset Z_{1/2}(a)$ to the manifold M can be defined by

$$\text{Exp}_a(u) : = \gamma_{a,u}(1)$$

An inspection of (E) yields that the Peirce decomposition of $\gamma_{a,u}(1)$ relative to a is

$$P_1(a)\gamma_{a,u}(1) = \Sigma (\cos^2 \theta_k) a_k, \quad P_{1/2}(a)\gamma_{a,u}(1) = \Sigma (\frac{1}{2\theta_k} \sin 2\theta_k) u_k$$

$$P_0(a)\gamma_{a,u}(1) = \Sigma (\frac{1}{\theta_k^2} \sin^2 \theta_k) u_k^{(2)}$$

Remark that $0 < \cos^2 \theta_k \leq 1$, hence in particular $P_1(a)\gamma_{a,u}(1)$ lies in the set of all \mathcal{N}_a of all invertible elements in the JB*-algebra $Z_1(a)$. Clearly \mathcal{N}_a is an open neighbourhood of a in $Z_1(a)$. Remark also that $0 \leq \frac{1}{2\theta_k} \sin^2 \theta_k = \rho_k \leq \|u\| < 1$, hence $\Sigma (\frac{1}{2\theta_k} \sin^2 \theta_k) u_k$ is the spectral decomposition of $P_{1/2}(a)\gamma_{a,u}(1)$ in $Z_{1/2}(a)$. Thus $\text{Exp}_a B_1(a) \subset \mathcal{N}_a \subset M$. We refer to Exp_a as the exponential mapping.
5 Geodesics connecting two given points. The logarithm mapping.

Now we discuss the possibility of joining two given projections \(a \) and \(b \) such that \(P_1(a)b \) is invertible in the Jordan algebra \(Z_1(a) \), by means of a geodesic in \(M \). The remarks in the precedent section show how to proceed. First we compute the spectral decomposition of \(u := P_{1/2}(a)b \) in the JB*-triple \(Z_{1/2}(a) \). Assume it to be

\[
u = P_{1/2}(a)b = \sum_{k=1}^r \rho_k u_k, \quad 0 \leq \rho_1 \leq \cdots \leq \rho_r = \|u\| < 1, \quad 1 \leq k \leq r \]

where the \(u_k \) are pairwise orthogonal minimal tripotents in \(Z_{1/2}(a) \). Hence By lemma 3.4 the \(u_k \) have the form \(u_k = (\cdot, \alpha_k)\xi_k + (\cdot, \xi_k)\alpha_k \) for some orthonormal families of vectors \((\alpha_k) \subset a(H) \) and \((\xi_k) \subset a(H)\) by lemma 3.2 \(Q(a_k)b = \{a_kba_k\} = \lambda_k \) where \(\lambda_k \neq 0 \) since \(P_1(a)b \) is invertible in \(Z_1(a) \). Also \(|\lambda_k| = \|\{a_kba_k\}\| \leq 1 \). Thus \(0 < \lambda_k \leq 1 \) and a unique angle \(0 < \theta_k < \frac{\pi}{2} \) is determined by \(\cos^2 \theta_k = \lambda_k \). In this way we have got all the elements appearing in \((E)\). Let us define \(\tilde{\gamma}(t) := \Sigma \tilde{\gamma}_k(t) \) for \(t \in \mathbb{R} \) where

\[
\tilde{\gamma}_k(t) := (\cos^2 t \theta_k) a_k + \left(\frac{1}{2\theta_k} \sin 2t \theta_k \right) u_k + \left(\frac{1}{\theta_k^2} \sin^2 t \theta_k \right) u_k^{(2)}
\]

By section §1, each \(\tilde{\gamma}_k(t) \) is a geodesic in the manifold \(M_1 \) of all rank 1 projections. By the previous discussion \(\tilde{\gamma}_j(t) \) and \(\tilde{\gamma}_k(t) \) are orthogonal whenever \(j \neq k \), \(t \in \mathbb{R} \), hence \(\tilde{\gamma}_j(t) = \Sigma \tilde{\gamma}_k(t) \), \(t \in \mathbb{R} \), is a curve in the manifold \(M \) of projections of rank \(r \). Clearly \(\tilde{\gamma}(0) = \Sigma \tilde{\gamma}_k(0) = \Sigma a_k = a \) and we shall now show that \(\tilde{b} = \gamma(1) \) coincides with \(b \). As above \(P_{1/2}(a) = \tilde{b} = \Sigma (\frac{1}{2} \sin 2\theta_k) u_k = \Sigma \rho_k u_k \) is the spectral decomposition of \(P_{1/2}(a)b \) in \(Z_{1/2}(a) \), which by construction is the spectral decomposition of \(P_{1/2}(a)b \). Hence by lemma 3.3, \(\tilde{b} = \tilde{\gamma}(1) = b \). This gives a geodesic \(\gamma(t) \) that connects \(a \) with \(b \) in the manifold \(M \), and passes through the point \(a \) with the velocity \(u := P_{1/2}(a)b \). It is uniquely determined by the data \(a, b \) and the property \(\gamma_{a,b}(1) = b \).

Now we are in a position to define the logarithm mapping. Fix a point \(a \in M \) and let \(\mathcal{N}_a \subset M \) be the set of all projections \(b \in M \) such that \(P_1(a)b \) is invertible in the JB*-algebra \(Z_1(a) \). Define a mapping \(\log_\mathcal{N} \) from \(\mathcal{N}_a \subset M \) to the unit ball \(B_1(a) \subset Z_{1/2}(a) \) by declaring \(\log_\mathcal{N}(b) \) to be the velocity at \(t = 0 \) of the unique geodesic \(\gamma_{a,b}(t) \) that joins \(a \) with \(b \) in \(M \) and \(\gamma_{a,b}(1) = b \), in other words \(\log_\mathcal{N}(b) := P_{1/2}(a)b \). We refer to \(\log_\mathcal{N} \) as the logarithm mapping. Clearly \(\log_\mathcal{N} \) and \(\exp_\mathcal{N} \) are real analytic inverse mappings. In particular, the family \(\{\mathcal{N}_a, \log_\mathcal{N} : a \in M\} \) is an atlas of \(M \). We remark the fact that \(\gamma_{a,u}(0) = 0 \) for all \(u \in B_1(a) \) which shall be needed later on to apply the Gauss lemma [11, 1.9] and summarize the above discussion in the statement (see [14, th. 5.7 & prop. 5.8])

5.1 Theorem. Let \(a \) and \(b \) be two given projections in \(M \), and assume that \(P_1(a)b \) is invertible in the Jordan algebra \(Z_1(a) \). Then there is exactly one geodesic \(\gamma_{a,b}(t) \) that joins \(a \) with \(b \) in \(M \) and \(\gamma_{a,b}(1) = b \).

6 The Riemann structure on \(M \).

Let \(a \in M_r \) and choose any frame \((a_k) \) for \(a \). By section §1 we have vector space direct sum decomposition

\[
Z_{1/2}(a) = \bigoplus_{k=1}^r Z_{1/2}(a_k) \tag{9}
\]

which suggests to define a scalar product in \(Z_{1/2}(a) \) by

\[
\langle u, v \rangle := \frac{1}{\sqrt{r}} \sum_k \langle u_k, v_k \rangle_{a_k} \tag{10}
\]

where \(\langle \cdot, \cdot \rangle_{a_k} \) stands for the Levi form on \(Z_{1/2}(a_k) \). First we prove
6.1 Lemma. With the above notation, (9) defines an \(Aut^o \)-invariant scalar product on \(Z_{1/2}(a) \) that does not depend of the frame \(a = \Sigma_k \) and converts \(Z_{1/2}(a) \) into a Hilbert space.

Proof. Let \(\Sigma a_k \) and \(\Sigma a'_k \) denote two frames for \(a \) where \(a_k = (\cdot, \alpha_k)\alpha_k \) and \(a'_k = (\cdot, \alpha'_k)\alpha'_k \) for some orthonormal families \((\alpha_k), (\alpha'_k) \subset a(H) \). Extend them to two orthonormal bases of \(H \) and let \(u \in \mathcal{L}(H) \) be the unitary operator that exchanges these bases. Then \(u \) induces an isometry \(U \in Aut^o(Z) \) by \(Uz = uzu^{-1} \) that satisfies \(Ua_k = a_k \). The invariance of the Levi form together with (10) yields part of the result. The remainder is trivial. \(\square \)

A Riemann structure can now be defined in \(M_r \) in the following way. Let \(X, Y \in \mathfrak{D}(M) \) vector fields on \(M_r \), and for \(a \in M_r \) take any frame \(a = \Sigma a_k \). Then (9) gives representation \(X = \Sigma X_k, Y = \Sigma Y_k \) with \(X_k, Y_k \in Z_{1/2}(a_k) \) and we set

\[
g_a(X, Y) = \langle X, Y \rangle = \frac{1}{\sqrt{r}} \Sigma \langle X_k, Y_k \rangle a_k = \frac{1}{\sqrt{r}} \Sigma g_{a_k}(X_k, Y_k)
\]

This is a well defined \(Aut^o \)-invariant Riemann structure on \(M_r \). By section §1 each \(g_{a_k} \) has property (4) and a routine argument gives the same property for \(g \). Thus \(g \) is the only Levi-Civita connection in \(M_r \) and we can apply the Gauss lemma [11, 1.9] to conclude that the \(\nabla \)-geodesics are minimizing curves for the Riemann distance.

Recall that for a tripotent \(a \in Z \), the mapping \(\sigma_a: x_1 + x_1/2 + x_0 \mapsto x_1 - x_1/2 + x_0 \), where \(x \in Z \) and \(x_1 + x_1/2 + x_0 \) is the Peirce decomposition of \(x \) with respect to \(a \), called the Peirce symmetry of \(Z \) with center \(a \), is an involutory automorphism of \(Z \) that induces an isometric symmetry of \(M_r \) (see [6, th. 5.1]). We let \(\text{Isom} M_r \) and \(\mathfrak{S} \) denote the group of all isometries of the Riemann manifold \(M_r \) and the subgroup generated by the set \(S = \{ \sigma_a : a \in M_r \} \), respectively.

6.2 Proposition. With the above notation, \(M_r \) is a symmetric Riemann manifold in which the group \(\mathfrak{S} \) acts transitively.

Proof. Let \(a, b \in M_r \) be such that \(b \in \mathcal{N}_a \). Then \(a \) and \(b \) can be joined in \(M_r \) by a unique geodesic with \(\gamma(0) = a, \gamma(1) = b \). If \(c = \gamma(\frac{1}{2}) \), then \(\sigma_c \) is a symmetry of \(M_r \) such that \(\sigma_c(a) = b \). Thus the set \(S \) is transitive in \(\mathcal{N}_a \) and \(S \) is locally transitive in \(M_r \). Consider now the case \(b \not\in \mathcal{N}_a \).

Since \(M_r \) is pathwise connected, we can join \(a \) with \(b \) by a curve \(\Gamma \) in \(M_r \) and by a standard compactness argument there exists a finite set \(\{ b_0, \ldots, b_s \} \subset \Gamma[0, 1] \) such that \(b_0 = a, b_s = b \) and \(b_{k+1} \in \mathcal{N}_{b_k} \) for \(k = 1, \ldots, s \). An application of the above argument to each pair of consecutive points gives the result. \(\square \)

We now compute the Riemann distance in \(M_r \). Consider first the case of two points \(a, b \in M_r \) with \(b \in \mathcal{N}_a \). Let \(\gamma_{a,b}(t) \) be the unique geodesic that joins \(a \) with \(b \) in \(M_r \) and satisfies \(b = \gamma_{a,b}(1) \). Since \(Aut^o(Z) \) is transitive in \(\mathcal{N}_a \) and the Levi norm is \(Aut^o(Z) \)-invariant, we have

\[
|\gamma_{a,b}(t)|_{\gamma_{a,b}(t)} = |\gamma_{a,b}(0)|_{\gamma_{a,b}(0)} = |u|_a
\]

On the other hand, since the Levi norm in \(Z_{1/2}(a) \) is the direct hilbertian sum of the Levi norms in the \(Z_{1/2}(a_k) \), we have by section §1

\[
|u|^2_a = \frac{1}{r} \Sigma |u_k|^2_{a_k} = \frac{1}{r} \Sigma \theta_k^2
\]

where \(u = \Sigma \rho_k u_k \) is the spectral decomposition of \(u \) in \(Z_{1/2}(a) \), \((a_k) \) is the frame associated to the pair \((a, u) \) and \(\cos^2 \theta_k = \rho_k \). Therefore

\[
d(a, b) = \int_0^1 |\gamma_{a,b}(t)|_{\gamma_{a,b}(t)} \, dt = \int_0^1 |u|_a \, dt = |u|_a = \frac{1}{\sqrt{r}} \left(\Sigma \theta_k^2 \right)^{1/2}
\]
Consider now the case $b \notin \mathcal{N}_a$. By lemma 3.2 we can take a sequence $(b_n)_{n \in \mathbb{N}}$ in \mathcal{N}_a such that $b = \lim_{n \to \infty} b_n$. Since (D) holds for all b_n and the Riemann distance is continuous, we get the validity (D) for all $a, b \in M_r$. □

Note that expression (D) is a generalization of the classical formula for the Fubini-Study metric in the projective space $\mathbb{P}(H)$.

References

1. Chu, C.H., & Isidro, J. M., Manifolds of tripotents in JB^*-triples., Math. Z. (to appear).
2. Harris, L. A., Proceedings on Infinite Dimensional Holomorphy., Springer-Verlag, Lecture Notes in Maths. Vol. 364., 1973, p. 13-40.
3. Helgason, S., Differential Geometry and Symmetric Spaces., Academic Press., 1962.
4. Hirzebruch, U., Über Jordan-Algebren und kompakte Riemannische symmetrische Räume von Rang 1., Math. Z. 90 (1965), 339-354.
5. Isidro, J. M., The manifold of minimal partial isometries in the space $\mathcal{L}(H, K)$ of bounded linear operators., Acta Sci. Math. (Szeged) (to appear).
6. Isidro, J. M., The manifold of minimal tripotents in classical Cartan factors. (to appear).
7. Kaup, W., Über die Automorphismen Grassmanncher Mannigfaltigkeiten unendlicher Dimension., Math. Z. 144 (1975), 75-96.
8. Kaup, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces., Math. Z. 183 (1983), 503-529.
9. Kaup, W., Über die Klassifikation der symmetrischen Hermitesches Mannigfaltigkeiten unendlicher Dimension, I, II., Math. Ann. 257, 262 (1981 and 1983), 463-483 and 503-529.
10. Kaup, W., On Grassmannians associated with JB^*-triples. (to appear).
11. Klingenberg W., Riemannian Geometry., Walter der Gruyter 1982.
12. Loos, O., Bounded symmetric domains and Jordan pairs, Mathematical Lectures, University of California at Irvine 1977.
13. Nomura, T., Manifold of primitive idempotents in a Jordan-Hilbert algebra., J. Math. Soc. Japan 45 (1993), 37-58.
14. Nomura, T., Grassmann manifold of a JH-algebra., Annals of Global Analysis and Geometry 12 (1994), 237-260.
15. Sauter, J., Randstrukturen beschränhter symmetrischer Gebiete., Ph. D. Dissertation, Universitát Tübingen 1995.

Facultad de Matemáticas, Universidad de Santiago, 15706 Santiago de Compostela, SPAIN
E-mail address: jmisidro@zmat.usc.es