Tuberculosis (TB) still remains the largest killer infectious disease despite the availability of several chemotherapeutic drugs and vaccines. In Iraq the incidence rate was estimated to be 45/100,000 [1]. Antibiotic resistance is very high, in 2008, it has been estimated that 6.6% of isolates were resistant to four drugs in use (Isoniazid, Rifampicin, Streptomycin and Ethambutol) [2], besides the existence of strains which were resistant to mono-, di-, and tri-antibiotics at a high rate, however, WHO estimated MDR (Multi-drug resistance) at 3.4% in 2011 in new TB cases [3]. Iraq has been identified as middle TB burden country in the world and ranks 8th of 22 EMR (Eastern Mediterranean Regions) countries according to estimated incidence of all types of TB [3].

1. Introduction

Despite ever-increasing amounts of biological data from high-throughput experiments and increasing sequencing projects at exponential rates [4], there is a deficiency in functional annotation for many newly sequenced proteins, for example, in bacterial genomes as many as 40% (or more) of proteins labeled "Uncharacterized protein", "Unknown" or "Hypothetical proteins" [5]. The deluge of data needs an efficient computational method to extract information from these data. So, one of the major tasks in post-genomic era of genome annotation is assigning functions of the gene products based mostly on amino acid sequences in order to capitalize on the knowledge gained through these sequencing efforts [6].

Again in Iraq, different studies on TB are carrying on in association with WHO and San Raffaele Scientific Institute / Italy...
2. Materials and methods

2.1 Sequence Retrieval: Hypothetical proteins (List) of M. tuberculosis H37Rv strain were downloaded from database of this strain (http://www.imtech.res.in/raghava/mycoprint/mtb-browse.html), and protein sequence were obtained from Tuberculist database (http://tuberculist.epfl.ch).

2.2 Prediction of Major Functions of Proteins: VICMPred server (http://www.imtech.res.in/raghava/vicmpred/submission.html) was used [10].

2.3 Prediction of Subcellular Localization of Proteins: The Cello available online tool was used in this study “Cello v2.0 http://cello.life.nctu.edu.tw/” [11].

2.4 Annotation via Orthology: The egg NOG database and egg NOG 2.0 software http://eggnog.embl.de/version_2/ were used [12], and groups were classified [13,14].

2.5 Annotation via Gene Ontology: The GO database release (2013) was used via AmiGO v1.8 http://amigo.geneontology.org/cgi-bin/amigo/go.cgi [15, 16].

2.6 UniProt Database: http://www.uniprot.org/ was used to complete some predictions which were not covered by other approaches [17].

3. Results

Database for virulent strain M. tuberculosis H37Rv was used to get the protein sequences, and only protein designated hypothetical were chosen, others labeled conserved hypothetical, putative, unknown proteins were excluded. The numbers of hypothetical proteins were 617 out of total proteins 3918, this means that hypothetical proteins consist 15.75%, while conserved hypothetical proteins were 1533 (23.4%). So, all hypothetical proteins compromised 39.13% (Table S1).

Another batch of hypothetical proteins (Rvs) were exclude as they have been investigated by others [18]. So the work was concentrated on the remaining Rvs (303 proteins), (Supplementary Table S2).

The distribution of studied proteins into major functional groups like: cellular process (Which include cell division, cell envelope biogenesis, cell motility and signal transduction), information and storage molecules (include transcription, translation and DNA replication), metabolic molecules (include energy production, carbohydrates, amino acids, nucleotides, lipid transport and metabolism), in addition to prediction of virulence factors was performed on all protein are shown in Figure 1, using VICMPred [10,19]. Cellular localization of proteins is shown in Figure 2, using Cello software [11]. Distribution among COG groups shown in Figure 3.
“J, translation, including ribosome structure and biogenesis; L, replication, recombination and repair; K, transcription; O, molecular chaperones and related functions; M, cell wall structure and biogenesis and outer membrane; N, secretion, motility and chemotaxis; T, signal transduction; P, inorganic ion transport and metabolism; C, energy production and conversion; G, carbohydrate metabolism and transport; E, amino acid metabolism and transport; H, coenzyme metabolism; I, lipid metabolism; D, cell division and chromosome partitioning; R, general functional prediction only; S, no functional prediction.”

GO annotation of proteins is shown in Table 1. It was possible to annotated 102 proteins (33.66%). Therefore, UniProt database was used to get more annotated proteins as shown in Table 2.
Table 1: Results of GO prediction

Rv ID	Prediction	GO results
Rv0008c	Cell wall synthesis	protein CwsA
Rv0011c	Cell division	protein CrgA
Rv0203	Possible exported	protein
Rv0240	Probable ribonuclease	VapC24
Rv0272c	Similarity to	hypothetical protein Rv0272c
Rv0298	Antitoxin	
Rv0299	Toxin	
Rv0300	Antitoxin VapB2	
Rv0398c	Secreted protein	
Rv0550c	Antitoxin VapB3	
Rv0582	Probable ribonuclease	VapC26
Rv0636	(3R)-hydroxyacyl-ACP dehydratase subunit HadB	
Rv0662c	Putative antitoxin	VapB7
Rv0666	Possible membrane	protein
Rv0678	Conserved protein	
Rv0736	Anti-sigma-L factor	RslA
fadB	Probable fatty	oxidation protein FadB
Rv0860	Uncharacterized	membrane protein ArfB
Rv0909	Antitoxin Rv0909/MT0933	
Rv0923c	Similarity to	hypothetical protein Rv0923c
Rv0948c	Intracellular	chorismate mutase
Rv1024	Cell division	protein DivIC
Rv1035c	Transposase	
Rv1041c	Transposase	
Rv1103c	Antitoxin MazE3	
Rv1113	Antitoxin VapB32	
Rv1155	Putative pyridoxine	pyridoxamine 5'-phosphate oxidase
Rv1174c	T-cell antigen	
Rv1222	RNA polymerase sigma-70 factor, ECF subfamily	
Rv1231c	Membrane protein	
Rv1234	Transmembrane protein	
Rv1302	Decaprenyl-phosphate	N-acetylglucosamine phosphotransferase
Rv1390	DNA-directed RNA polymerase subunit omega	
Rv1476	Membrane protein	
Rv1825	UPF0749 protein Rv1825/MT1873	
Rv1871c	Deazaflavin-dependent nitroreductase	
Rv1885c	Secreted chorismate mutase	
Rv1926c	Immunogenic protein	MPT63
Rv1955	Toxin HigB	
Rv1957	SecB-like chaperone	Rv1957
Rv1960c	Antitoxin ParD1	
Rv2054	Carboxymethylenbutenolidase	
Rv2142c	Toxin ParE2	
Rv2146c	YggT family protein	
Rv2147c	Cell division	protein SepF
Rv2159c	Alkylhydroperoxidase	AhpD family core domain-containing protein
Rv2235	Uncharacterized	SURF1-like protein Rv2235/MT2294
Protein ID	Description	
------------	--	
Rv2253	Secreted protein	
Rv2274c	Putative toxin MazF8	
Rv2275	Cyclo(L-tyrosyl-L-tyrosyl) synthase	
Rv2290	Putative lipoprotein LppO	
Rv2319c	Universal stress protein	
Rv2453c	Probable molybdenum cofactor guanylyltransferase	
Rv2476c	NAD-specific glutamate dehydrogenase	
Rv2515c	DNA-binding protein, putative	
Rv2549c	Probable ribonuclease VapC20	
Rv2550c	Antitoxin VapB20	
Rv2553c	Probable conserved membrane protein	
Rv2554c	Putative Holliday junction resolvasse	
Rv2566	Long conserved protein	
Rv2573	Putative 2-dehydropantoate 2-reductase	
Rv2616	Conserved protein	
Rv2617c	Probable transmembrane protein	
Rv2618c	Fluoroquinolones export permease protein	
Rv2731	Conserved alanine and arginine rich protein	
Rv2819c	CRISPR type III-associated RAMP protein Csm5	
Rv2949c	Chorismate--pyruvate lyase	
Rv3004	Low molecular weight protein antigen 6 cfp6	
Rv3038c	Conserved protein	
Rv3040c	Conserved protein	
Rv3091	Conserved protein	
Rv3113	HAD hydrolase, family IA	
Rv3191c	Transposase	
Rv3358	Toxin RelK	
Rv3378c	Diterpene synthase	
Rv3386	Transposase	
Rv3413c	Anti-sigma-D factor RsdA	
Rv3427c	Putative ATP-binding protein Rv3427c in insertion sequence	
Rv3428c	Putative transposase Rv3428c	
Rv3437c	Possible conserved transmembrane protein	
Rv3479	Possible transmembrane protein	
Rv3493c	Conserved hypothetical Mce associated alanine and valine rich protein	
Rv3541c	Conserved protein	
Rv3552	Putative CoA-transferase subunit beta Rv3552/MT3656	
Rv3587c	Probable conserved membrane protein	
Rv3611	Hypothetical arginine and proline rich protein	
Rv3632	Possible conserved membrane protein	
Rv3669c	Probable conserved transmembrane protein	
Rv3675	Possible membrane protein	
Rv3689	Probable conserved transmembrane protein	
Rv3690	Probable conserved membrane protein	
Rv3691	Uncharacterized membrane protein Rv3691	
Rv3698	Conserved protein	
Rv3705c	Conserved protein	
Rv3808c	Galactofuranosyl transferase GlfT2	
Rv3835	Uncharacterized membrane protein Rv3835/MT3943	
Rv3849	Nucleoid-associated protein EspR	
Rv3879c	ESX-1 secretion-associated protein EspK	
Rv3885c	ESX-2 secretion system protein EccE2	
Table 2: Results of UniProt database

Rv ID	Description
Rv0008c	Cell wall synthesis and cell shape protein A
Rv0048c	Membrane protein
Rv0090	Membrane protein
Rv0240	Probable ribonuclease VapC
Rv0298	Antitoxin
Rv0300	Antitoxin
Rv0420c	Transmembrane protein
Rv0550c	Antitoxin
Rv0582	Probable ribonuclease VapC
Rv0664	Antitoxin
Rv0692	Mycofactocin system RPExFGAL protein
Rv0887c	PhnB protein
Rv0948c	Chorismate mutase
Rv0961	Membrane protein
Rv0962c	Lipoprotein lprP
Rv1103c	Antitoxin
Rv1113	Antitoxin
Rv1324	Thioredoxin
Rv1494	Antitoxin
Rv1692	HAD hydrolase, family IIA
Rv1721c	Antitoxin
Rv1744c	Membrane protein
Rv1885c	Chorismate mutase
Rv1888c	Transmembrane protein
Rv2081c	Transmembrane protein
Rv2142c	Toxin
Rv2232	5'-nucleotidase
Rv2253	Secreted protein
Rv2274c	Toxin
Rv2525c	Tat (Twin-arginine translocation) pathway signal sequence
Rv2532c	N utilization substance protein B
Rv2549c	Probable ribonuclease VapC
Rv2550c	Antitoxin
Rv2597	Membrane protein
Rv3387	Transposase
Rv3428c	Transposase
Rv3445c	ESAT-6 like protein EsxU
Rv3645	Adenylate cyclase
Rv3849	ESX-1 secretion-associated regulator EspR
Rv3889c	ESX-2 secretion-associated protein EspG2
Rv3891c	Esat-6 like protein esxD

4. Discussion
The virulent strain *M. tuberculosis* H37Rv, is one of the pathogens which is worth to be investigated more, this strain was first isolated in 1905 and is the most widely used in tuberculosis researches, the complete genome sequence and annotation was published in 1998 by Welcome Trust Sanger Institute [21]. The genome of *M. tuberculosis* H37Rv contains about 4,000 protein coding genes, of which more than 1/4-1/3 have been annotated as ‘hypothesized’. The genome has a very high 'guanine + cytosine' content that is reflected in the biased amino acids content of the proteins [18]. The genome was re-annotated more than once using different Bioinformatics tools. Genes and its products of this strain designated *Rv*, and upon re-annotation some were changed with extension “c” if they are found on the complementary strand (antisense strand) [4] and these composed about 334 out of 617 (54.13%) of hypothetical proteins. More than one database are specialized for *M. tuberculosis*, such as TubercuList (http://tuberculist.epfl.ch/), which is routinely updated. Different *M. tuberculosis* strains annotated appear to have slight differences in the gene numbers and consequently different numbers of hypothetical proteins [4, 22].

Many attempts were done to characterize and annotate the hypothetical proteins using different Bioinformatics web tools [22], Doerks et al. (2012) carried out a prediction of a large number of hypothetical orfome (497 genes) using different approaches, these gene products (proteins) were associated with different aspects of bacterial activities, by this they raised the functional annotation to about 88% of this medically important bacteria. Although several studies improved functional annotation of open reading frames (ORFs), considerable fractions are still labeled as ‘hypothetical’, ‘conserved hypothetical’ ‘unknown’ or other similar terms imply that there is no functional indication [18], and for this current study was carried out to cover some of these fractions. It is well known that improving the functional annotation is of a great importance for different purposes, such as understanding the pathogenicity process and helps in drug and vaccine design [18].

Therefore, computational approaches for prediction of *M. tuberculosis* proteins can be used to complement the existing wet lab techniques, such predictions provide a method to annotate *M. tuberculosis* Rv proteomes with Subcellular localization and functional information rapidly. After BCG introduction in 1921 till now, we do not have any promising vaccine against tuberculosis, so the membrane proteins predicted (see Figure 2) can be more investigated and exploited as candidate for vaccine development, these proteins was subjected to initial check (hydrophobicity / data not shown) and seems to be promising.

The other approach used in this study was the annotation via orthology use eggNOG this dependent indirectly on GO. The resulted groups seems to be in general agreement with the major functional classification (see Figure 1 and Figure 3). In this approach, proteins in different species can be combined into orthologous groups, which are known to be appropriate for functional analyses and annotation of newly sequenced genomes as the orthologous genes tend to have the same functions [23].

The bulk of hypothetical proteins belong to orthologous group as defined by eggNOG, and thus is amenable to comparative analysis [18,24]

The other approach used in protein functional prediction was Gene Ontology. GO is one of the greatest contributor to the area of functional annotation and play a critical role in modern biology and cover many organisms from different kingdoms. In this study the newest GO database (Release 2013) was used, but most of the proteins still annotated as uncharacterized proteins, OR they are not included in the database yet.

UniProt database was used to get annotation of more hypothetical proteins (as shown in Table 2), some proteins were annotated, which are in agreement with AmiGO prediction (Rv0008c, Rv0298, Rv0300, Rv0550c, Rv0582, Rv0948c, Rv1103c, Rv1113, Rv1885c, Rv2142c, Rv2253, Rv2274c, Rv2549c, Rv2550c, Rv3428c, Rv3849), however, GO annotations were more informative.

For pathogenic organisms, hypothetical proteins hamper the research for new and effective drug targets, and weaken understanding the pathogenicity processes and full understanding the virulence [20]. Now, the global burden of TB has taken a new dimension due to the emergence of drug resistant varieties of *M. tuberculosis* besides synergy of HIV [25], which capitalizes the necessity of more researches.

5. Conclusion

Although plain annotation of hypothetical proteins is beneficial, but, this field still needs more and more efforts, such investigation of conserved, unknown, putative and other proteins. Advanced research needs to characterize the predicted proteins more deeply using sophisticated software and specialized databases such as pdb and performing docking studies [26].

It is strongly indicated that communication mechanisms are existed in cells [27]. These can be exploited to design drugs to disturb the signal transduction pathways and shove the drug resistance away.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

The author thanks Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Iraq.

Reference

1. Ministry of Health of Iraq (MOH). National TB program TB (2013). Epidemiological Situation in Iraq, Fifth National Conference of Tuberculosis / Al-Basra.
2. Al-Kareemi K. Effect of Diacetyl on *Mycobacterium tuberculosis* In Vitro. MSc. thesis. Dept. of Microbiology, College of Medicine, University of Baghdad, Iraq 2008.

3. WHO. Global Tuberculosis Control. Geneva, WHO Report, 2012.

4. J. Pryor M., Médigue C., Cole S., Re-annotation of the genome sequence of *Mycobacterium tuberculosis* H37Rv, *Microbiology* 2002; 148: 2967-73.

5. Enault F., Suhre K., Claverie J. Phydac “Gene Function Predictor”: A gene annotation tool based on genomic context analysis, *BMC Bioinformatics*, 2005; 6: 247.

6. Mazandu, G.K.; Mulder, N.J. Scoring protein relationships in functional interaction networks predicted from sequence data, *PLoS One* 2011; 19: e18607.

7. Al-Rubayai D. Molecular Detection of Specific Mutation Associated with Isoniazid or Rifampicin resistance among Category II Pulmonary Tuberculosis Using DNA Microarray. PhD thesis, College of Medicine, Al-Nahrain University, Iraq 2011.

8. Al-Himyari A. Role of Human Genetic Polymorphisms in Susceptibility to Tuberculosis in Babil Province-Iraq. PhD thesis, College of Medicine, University of Babylon, Iraq 2012.

9. Ali R. Molecular Study and Genotyping of *Mycobacterium tuberculosis* Complex Isolated in Respiratory Center in Baghdad. PhD thesis, Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Iraq 2013.

10. Saha S., Raghava G., VICMpred : SVM-based method for the prediction of functional proteins of gram negative bacteria using amino acid patterns and composition, *Genomics Proteomics & Bioinformatics* 2006; 4:42-7.

11. Yu C., Chen Y., Lu C., Hwang J. Prediction of protein subcellular localization. *Proteins* 2006; 64: 643–51.

12. Muller J., Szklarczyk D., Julien P., Letunic I., Roth A., Kuhn M., et al eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations, *Nucleic Acids Res.* 2010; 8:190-5.

13. Tatusov R., Koonin E., Lipman D., A genomic perspective on protein families Science, 1997; 278: 631-7.

14. Tatusov R., Galperin M., Natale D., Koonin E. The COG database: A tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res.* 2000; 28:33-6.

15. Clarke E., Loguercio S., Good B., Su A., A task-based approach for Gene Ontology evaluation, *J Biomed Semantics* 2013; Suppl 1:S4.

16. Carbon S., Ireland A., Mungall C., Shu S., Marshall B., Lewis S., AmiGO: online access to ontology and annotation data, *Bioinformatics* 2009; 25:288-9.

17. Magrane M., UniProt Consortium., UniProt Knowledgebase: a hub of integrated protein data. Database 2011; Article ID bar 00.

18. Doersk T., Noort V., Minge P., Peer P. Annotation of the *M. tuberculosis* Hypothetical Orfeome: Adding Functional Information to More than Half of the Uncharacterized Proteins, *PLoS ONE* 2012; 7: e34302.

19. Pillai L., Chauhan U. Prediction of subcellular localization and function of hypothetical proteins of *mycobacterium tuberculosis* H37RA strain *Int. J. Pharma Bio Sci.* 2012; 3: 856–62.

20. Mazandu G., Mulder N., Function prediction and analysis of *Mycobacterium tuberculosis* hypothetical proteins, *Int J Mol Sci.* 2012; 13:7283-302.

21. Cole S., Brosch R., Parkhill J., Garnier T., Churcsher C., Harris D. et al, Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence, *Nature* 1998; 11:393:537-44.

22. Anandakumar S., Shanmughavel P., Computational Annotation for Hypothetical Proteins of *Mycobacterium Tuberculosis*. *J Comput Sci Syst Biol* 2008; 1:50-62.

23. Koonin E. Orthologs, paralogs and evolutionary genomics, *Annu Rev Genet* 2005; 39: 309–38.

24. Muller J., Szklarczyk D., Julien P., Letunic I., Roth A., eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. *Nucleic Acids Res* 2010; 38: D190–D95.

25. Nunn P., Williams B., Floyd K., Dye C., Elzinga G., Raviglione M., *Tuberculosis control in the era of HIV*, *Nat Rev Immunol* 2005; 5:819-26.

26. Rambabu R., Peri S., Allam A., Computational analysis and function prediction of a hypothetical protein 1RW0. *Int. J. Comp. Bioinformatics and In Silico Modeling*; 2012; 1: 58-62.

27. Karthik K., Chandra N. *Mycobacterium tuberculosis* interactome analysis unravels potential pathways to drug resistance. *BMC Microbiology* 2008; 8: 234-45.

Cite this article as: Zahra M. Al-Khafaji, In *Silico* Investigation of Rv Hypothetical Proteins of Virulent Strain *Mycobacterium tuberculosis* H37Rv. *Indian J. Pharm. Biol. Res.* 2013; 1(4):81-88.