I. INTRODUCTION

As Hartle and Srednicki [1] correctly note, “An increasingly common kind of reasoning in fundamental cosmology starts from an assumption that some property of human observers is typical in some class C of objects in the universe,” for example in τ = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) which they cite later. They go on to claim [1] that “it is perfectly possible (and not necessarily unlikely) for us to live in a universe in which we are not typical.” While I agree that it is perfectly possible, in this paper I shall argue that it would be unlikely when one properly normalizes the likelihoods.

That is, I shall argue that within each possible theory of the universe, the likelihood would be small that we are atypical, though one could assign a sufficiently high prior probability to a theory in which we are atypical to overcome this small likelihood. That is, the theory might have such high a priori probability that after a Bayesian analysis it could have the highest a posteriori probability even though it makes us atypical and unlikely. However, purely from the likelihoods, properly normalized, typicality is favored, contrary to what Hartle and Srednicki conclude when they do not require that the sum of the likelihoods for all possible observations sum to unity.

A key issue to be discussed below is how likelihoods are to be defined by a theory, which seems to lie at the heart of Hartle and Srednicki’s disagreement with calculations favoring typicality. Another key issue is the gap between the first sentence of their conclusion (v), “We have data favoring typicality. Another key issue is the gap between competing theories unless it can be demonstrated that the relevant probabilities are insensitive to it.”

Strictly speaking, I also agree with conclusion (vi), whose first sentence is, “In a fundamental theory of quantum cosmology, there is no need for any assumption of typicality to predict what we might see.” I would say that all we need to do is consider theories that predict correctly normalized likelihoods for all possible observations, and then the typicality will be automatically reflected in these likelihoods.

I furthermore strongly agree with Hartle and Srednicki in using Bayesian probability theory [13, 14, 15], with its prior probability \(P(T_i) \) for each theory \(T_i \), its likelihoods \(P(D_j|T_i) \) or conditional probabilities for each possible data set \(D_j \) given the theory \(T_i \), and its posterior probabilities \(P(T_i|D_j) \) or reverse conditional probabilities for the theories \(T_i \) given the particular data set \(D_j \) that is obtained. These posterior probabilities are given in terms of the prior probabilities and the likelihoods by Bayes’ theorem,

\[
P(T_i|D_j) = \frac{P(D_j|T_i)P(T_i)}{\sum_i P(D_j|T_i)P(T_i)}. \tag{1.1}
\]

In particular, I concur with Hartle and Srednicki that Bayesian analysis provides a framework for distinguishing “facts, logical deduction, and prejudices.” As they nicely express it, “Data are the domain of facts, likelihoods are the domain of logical deduction, and the priors are the domain of theoretical prejudice.”

In this Bayesian approach, my key difference from Hartle and Srednicki is that I propose that one follow the normalization principle: One should only consider theories that each give likelihoods summing to unity for all possible data sets,

\[
\sum_j P(D_j|T_i) = 1. \tag{1.2}
\]

I shall take an atypical observation to be an observed data set that has an anomalously low likelihood, so that atypical observations are unlikely, giving small weights in
Bayes’ theorem. (I think of observations as being more fundamental than observers and hence shall focus on typical or atypical observations rather than on typical or atypical observers, but one could define an atypical observer as one who makes atypical observations.)

Here I am not using the technical definition of typicality I have proposed in [16, 17, 18], which after email discussions with Srednicki [19] I realize has some problems that I shall discuss elsewhere [20], but the looser idea that atypical observations are those that would be unlikely to be chosen in a random selection from all observations predicted by the theory. Although a precise definition is not needed here, it might help to have the following definition in mind as an example:

Consider all the observed data sets \(D_j\) predicted by some theory \(T_i\), and rank them in decreasing order of their normalized likelihoods \(P(D_j|T_i)\). Define the median observation \(D_m\) as the one with the smallest value of \(m\) in this ordered sequence such that \(\sum_{j \leq m} P(D_j|T_i) > 1/2\). Then one might define the typicality of any observed data set \(D_j\) in this theory as being \(t_j = P(D_j|T_i)/P(D_m|T_i)\). For \(j \leq m\), the typicality is large, \(t_j \geq 1\), so that at least half of the likelihood occurs for observed data sets with high typicality. Atypical observations would correspond to low typicality, \(t_j < 1\), and would occur only for \(j > m\) and a small fraction of the total amount of likelihood. That is, it is unlikely that an observation would be atypical if it were selected randomly with a probability given by its normalized likelihood.

II. DATA

There are different ideas for what should constitute a data set \(D_j\) to be used in a Bayesian probability analysis. Since each theory \(T_i\) is supposed to assign a likelihood \(P(D_j|T_i)\) to each data set \(D_j\), it should be the theory that defines the possible data sets. Thus different ideas of what the data sets are may be considered as differences in the theories. However, to compare different theories by a Bayesian analysis, they should all have data sets that are members of some single encompassing set of data sets, say \(S\). Then for any theory whose data sets form only a proper subset of \(S\), one can simply say that that theory predicts zero likelihood for all other data sets of \(S\). In this way we can say that each theory \(T_i\) assigns a unique value to the likelihood \(P(D_j|T_i)\) for each data set \(D_j\) in the full set \(S\) of such data sets.

Although my argument does not depend on which full set of data sets \(S\) is chosen (so long as it is precisely defined), let me give some possible choices. The one that seems the most fundamental to me is the set, say \(S_1\), of all possible conscious perceptions [16, 17, 18, 21, 22, 23, 24]. Roughly, each individual conscious perception is all that a conscious observer is aware of at once, what Bostrom [25] calls an observer-moment. If this conscious perception is regarded as a data set, the data would be the content of that awareness. In this \(S_1\), each different possible conscious perception would be a member, and any two perceptions with different contents would be different data sets.

Hartle and Srednicki use an HSI, a human scientific IGUS (information gathering and utilizing system), with the data set including “every scrap of information that the HSI possesses about the physical universe: every record of every experiment, every astronomical observation of distant galaxies, every available description of every leaf, etc., and necessarily every piece of information about the HSI itself, its members, and its history.” Although they consider only the data set \(D\) that our particular HSI has (and thereby avoid the issue of normalizing the likelihoods over all possible data sets), one can certainly consider all such data sets, say forming the set \(S_2\). Every such data set within \(S_2\) would differ if it had different scraps of information or different information within at least one of the scraps.

Another possible set, say \(S_3\), of data sets would be the set of all complete physical descriptions of all planets (including what is on them, of course). Each physical different planet would give a different data set in this set of data sets.

Yet another possible set of data sets, say \(S_4\), would be the set of all complete descriptions of the causal past of any event of spacetime (assuming for this that spacetime has a definite causal structure, which is not likely to be true in quantum gravity).

For any particular Bayesian analysis, one should have a definite set \(S\) of well-defined possible alternative data sets. There should be some parallelism between the data sets within \(S\), so it would not appear to be a good idea, for example, to use an \(S\) that is the union of the set \(S_1\) of all possible conscious perceptions and the set \(S_2\) of all possible HSI data sets, since each HSI data set may contain one or more (usually many) conscious perceptions.

Because the set \(S\) of data sets must be well defined, with distinct members (the data sets themselves), the data sets within \(S\) must all be different and can be regarded as different alternatives, different possible observations. By assumption, an observation (whether a conscious perception, all the data of an HSI, or all the data of a planet) is of a distinct data set \(D_j\) with \(S\), and therefore each theory \(T_i\) should assign a definite likelihood \(P(D_j|T_i)\) for each data set \(D_j\). Since the data sets are alternatives of what might be observed, and since by assumption some particular data set actually is observed, for each theory \(T_i\) the sum of the likelihoods (the conditional probabilities of the data sets, given the theory) should sum to unity, the normalization condition [12].

III. LIKELIHOODS

Each normalized likelihood \(P(D_j|T_i)\) that I have discussed above may be regarded as the probability, conditional upon the theory \(T_i\), that an observation (randomly chosen without restricting the data) gives the data set
D_j. If one considers the observation to be made by an observer (whether a single conscious being at one time, a human scientific information gathering and utilizing system, an entire planet, or an entire region of spacetime), it is a ‘first-person’ observation, a distinct alternative to any other first-person observation of a different data set. Since as first-person observations, the different data sets are mutually exclusive (the first-person at one time observes only one data set), their probabilities should add up to one, the normalization principle expressed by Eq. (1.2).

Hartle and Srednicki implicitly discard the first-person nature of the observation. Instead of using the full first-person knowledge, “We observe the data set D_j,” they consider only the reduced third-person knowledge and say, “All we know is that there exists at least one such region containing our data.” Therefore, instead of calculating the likelihood of our data D as the normalized likelihood of this data set out of all other possible first-person data sets, they effectively calculate the (different) probability that this data set exists in at least one region. That is, they consider not all possible data sets D_j in S as the alternatives, but simply the binary alternatives that our particular data set D occurs somewhere and that D does not occur somewhere.

These two procedures, theirs and mine, are equivalent in usual laboratory experiments in which only one data set actually occurs (in a single branch of the Everett many-worlds wavefunction). Then if any data set D_j occurs that is different from D, D does not also occur, so the probability that D does not occur is the sum of the probabilities for all D_j different from D. But in a large enough universe, many different data sets can all actually occur. Then the probability that D does not occur can be much smaller than the sum of the probabilities for each of the other data sets to occur.

The third-person existence of two different data sets, D_1 and D_2 with j ≠ k, is not mutually exclusive or inconsistent, but the first-person observation of two different data sets is mutually exclusive. Therefore, the third-person existence probabilities for the data sets can be different from the first-person observational probabilities for these same data sets.

Ordinary quantum theory with a complete orthogonal set of projection operators, or the consistent histories approach with a decoherent set of class operators, is well-suited for calculating the third-person existence probabilities. But if one wants the first-person observational probabilities, one needs something more.

For example, consider a toy model for S that consists of only two possible data sets, D_1 and D_2. Suppose that the quantum state is such that with unit probability, there exists 1 region with an observer observing the data set D_1, and 999 regions that each have an observer observing the data set D_2. Ordinary quantum theory would give the third-person existence probability of both D_1 and D_2 as unity. Since these two existence possibilities are not mutually exclusive, their existence probabilities do not add up to 1 but rather to 2. On the other hand, it would be quite reasonable to assume that the first-person observational probabilities are the same for all 1000 regions, so that the normalized probability of D_1 is 0.001 and of D_2 is 0.999. That is, there are 999 times as many regions with D_2 as there are with D_1 (and we assume that there is nothing else of importance, other than these different data sets, distinguishing the observers in the two regions, so all of them can be considered to have equal weight), so the probability of observing D_2 is 999 times the probability of observing D_1.

If the data sets are conscious perceptions, then one way of getting normalized probabilities for each of them is by the framework of Sensible Quantum Mechanics or Mindless Sensationalism, which in the discrete normalizable case assigns a probability to each conscious perception that is the expectation value of a corresponding positive ‘awareness operator.’ There is no requirement that these positive operators be orthogonal to each other or even be proportional to projection operators (though they might be approximately proportional to the integral over all of spacetime of projection operators in local regions). In the example above, assuming that the operator corresponding to D_1 (for the first region) and to D_2 (for the remaining 999 regions) receives the same contribution to the expectation value from each region, then since there are 999 times as many regions giving D_2, the corresponding awareness operator would have 999 times the probability as that for D_1, leading to the same probabilities as in the previous paragraph.

Hartle and Srednicki object that calculations like this one “make the selection fallacy” that we are randomly chosen from a class of objects by some physical process, despite the absence of any evidence for such a process,” further stating in a particular example, “In fact, there has been no selection at all.” As mentioned in the Introduction, I do agree with them that “We have data that we exist in the universe, but we have no evidence that we have been selected by some random process,” but I disagree with their conclusion that “We should not calculate as though we were.” If the universe does have many observers, there is indeed no physical selection within them of which exist and which do not, since they all exist in the third-person sense. However, to interpret one’s first-person experience, it is perfectly legitimate to calculate as if it were randomly selected from the set of all observations.

Bostrom has cogently argued in p. 162, for the Strong Self-Sampling Assumption (SSSA): “One should reason as if one’s present observer-moment were a random sample from the set of all observer-moments in its reference class.” This is similar to how I might today state my Conditional Aesthetic Principle (CAP): “Unless one has compelling contrary evidence, one should reason as if one’s conscious perception were a random sample from the set of all conscious perceptions.”
would argue \[11\] that the reference class of all observer-moments (which I would call conscious perceptions, each being all that one is consciously aware of at once) should be the universal class of all observer-moments.

Comments analogous to that about the "selection fallacy" may be made about the different branches of the wavefunction in the many-worlds interpretation of quantum theory, in which the wavefunction never collapses. All of the branches with nonzero amplitude may be considered actually to occur, with no real physical selection between them, but for an observer predicting what he may observe in the future, it may be legitimate to make what might be called the Copenhagen fallacy and calculate as if there were probabilities for the various branches of the wavefunction to be selected, say by a postulated collapse of the wavefunction. Just as in this many-worlds case where it may be legitimate to reason as if there are probabilities for the selection of a particular branch of the wavefunction (even if in fact there is no such selection), so in the many-observations case it may be legitimate to reason as if there are probabilities for the selection of a particular observation.

Let me make the parallel between the Copenhagen fallacy and the selection fallacy more explicit:

Collapse of the wavefunction is false (the "Copenhagen fallacy"). But we can calculate likelihoods as if it happens and use them in a Bayesian analysis to get posterior probabilities for theories.

Selection of observers is false (the "selection fallacy"). But we can calculate likelihoods as if it happens and use them in a Bayesian analysis to get posterior probabilities for theories.

IV. CONSEQUENCES

When the full first-person information about an observation or observed data set is taken into account ("We observe \(D\)"), and not just the third-person account ("\(D\) exists"), then we can consider all the different data sets to be mutually exclusive and hence have normalized likelihoods. It is then natural to have likelihoods that vary monotonically with the typicality assigned to the observation, so that less typical observations have lower likelihood. More simply, atypical observations are unlikely.

The requirement that the likelihoods be normalized means that it does matter what other observations are possible in a theory, besides what we may actually observe. A theory that predicts a huge number of other possible observations of significant relative likelihood, say by Boltzmann brains \[3, 6, 7, 8, 9, 10, 11, 12\], would tend to give a lower likelihood for our observation than a theory that does not. This contradicts the second sentence of Hartle and Srednicki’s conclusion (ii): “What other observers might see, how many of them there are, and what properties they do or do not share with us are irrelevant for this process.”

Requiring the likelihoods of observations to be normalized first-person probabilities, instead of the third-person existence probabilities, also releases theories from the enormous limitations of the second sentence of Hartle and Srednicki’s conclusion (iv): “Cosmological models that predict that at least one instance of our data exists (with probability one) somewhere in spacetime are indistinguishable no matter how many other exact copies of these data exist.” If one were forced to abide by that limitation, then a huge variety of cosmological models with a sufficiently large universe (spatially noncompact cosmologies, and also spatially compact cosmologies with enough inflation) would give nearly unit probability for our data set and hence the same likelihoods. Thus observations would count for nothing in distinguishing between these theories, and much of cosmology would cease to be an observational science.

Carter \[30\] has noted that the assumptions of Hartle and Srednicki, considering only our data and not what other observers might see, is an example of what, in comparison with the anthropic principle of assuming that we are typical until it is shown otherwise \[50\], he has labeled \[51\] “the more sterile and restrictive autocentric principle.” Since Hartle and Srednicki’s arguments imply that one could not distinguish observationally any cosmological theory that gives unit (or even any other equal) likelihood to our observed data, it certainly seems better to choose other principles that lead to varying likelihoods and hence the possibilities of testing cosmological theories observationally.

If Hartle and Srednicki’s assumptions were adopted, then theories with a sufficiently vast and varied multiverse to predict the existence of our data with near certainty would all have the same weight in a Bayesian analysis, greater than that of any theory that predicted the existence of our data with significantly less than unit likelihood. This would seem to give an unfair advantage to multiverse theories. It would also make them subject to the criticism that they explain everything (since a huge variety of data sets would then have nearly unit existence likelihood) and thereby explain nothing. This seems far too cheap a solution to the goal of science to explain our observations.

A suitable multiverse theory might turn out to be the best explanation of our observations, but it should have to earn that status by its high prior probability (from such considerations as being “simple, beautiful, precisely formulable mathematically, economical in their assumptions, comprehensive, unifying, explanatory, accessible to existing intuition, etc. etc.),” as Hartle and Srednicki nicely put it) and by not too low a nontrivial value it gives for the likelihood of our observed data set. Replacing the normalized first-person observational probabilities with the third-person existence probabilities is a cheat, like putting the theory on steroids.

In a Bayesian analysis to try to find a theory with the maximum a posteriori probability, it seems unlikely that one can avoid the tension between trying to make the a priori probability high and trying to make the likeli-
hood of our observations also high. For me, the simplest theory, with the highest \textit{a priori} probability, would be the theory that nothing exists. However, the likelihood of our observations would then be zero, so this theory is ruled out observationally. (It would also run into the problem of not obeying the normalization principle, since it would give no nonzero observational likelihoods at all to normalize.) The theory that everything existed would seem to me to be the next simplest theory and hence have the next highest \textit{a priori} probability. If one then used existence probabilities (conditional upon the theory) as likelihoods, as Hartle and Srednicki seem to advocate, then this simple theory would give unit likelihoods for all possible observations and hence presumably the highest \textit{a posteriori} probability.

Should we then quit physics and say that we have the best possible theory of everything, namely the simple theory that everything possible exists? I would say that this is far too cheap an answer.

If instead we include the normalization principle as I am advocating, then one would have to normalize the likelihoods of all the observations. In, in the theory that everything exists, one made the simple assignment that all of the infinite number of possible observations have equal likelihood, then their normalized value would be zero, and the resulting \textit{a posteriori} probability for this theory would be zero, as indeed I would say it is. One could of course try to go to the improved theory in which all possible observations exist, they have varying likelihoods that are normalized. Then we are back to the problem of assigning nontrivial likelihoods, which complicates the theory and reduces its \textit{a priori} probability. Thus we have the challenge of finding the best theory that neither is so complicated that it makes its \textit{a priori} probability too small, nor has the normalized likelihoods spread so thinly that it makes the likelihood of our observation too small (e.g., by making us highly atypical).

One might try to go to the other extreme, maximizing the typicality of our observed data set by formulating the theory to predict that data set and only that data set, thereby giving it unit likelihood. However, it would be very surprising if any theory existed that predicted our observations uniquely and was fairly simple. Since such a theory is likely to be quite complicated, it would naturally be assigned a low \textit{a priori} probability. Most scientists would presumably believe that even if one has to reduce the likelihood and typicality of our observed data from unity, one can gain far more in the \textit{a priori} probability for a simpler theory. In other words, it seems improbable that only our observed data exists or has nonzero probability, and much more probable that the correct theory predicts non-unit first-person observational probability for our data.

If we postulate that the first-person observational probabilities that a theory predicts are not true probabilities for an actual selection of our data from all possible data sets, but rather measures for the actual existence of the various data sets, then giving up on finding a simple theory predicting unit likelihood for our data set is equivalent to saying that other data sets actually do exist. In this way we are led to a many-observations theory. The many might be provided by a sufficiently large universe, by the many-worlds of the Everett version of quantum theory, and/or by a string landscape. It seems that the trade-off between \textit{a priori} probabilities and likelihoods suggests that many different observed data sets exist, but not all possible observed data sets exist equally (i.e., with equal measures or equal likelihoods of being observed).

\section{Example}

Let us take some set S of all possible data sets under consideration and consider theories to explain one of them. Suppose that the set of all possible data sets is countable (though logically it need not be, if for example they form a continuum). Imagine that there is a procedure for ordering them by their complexity, so that D_j represents the simplest possible data set, and so on. Then D_j is the jth simplest data set. Let us assume that our observed data set has $j \gg 1$, so that what we observe is by itself not extremely simple.

The theory, say T_1, that gives the maximum likelihood for this data set would be the one that predicts that it alone occurs uniquely, so that it has unit likelihood, $P(D_j|T_1) = 1$. Assuming the background knowledge of the S of all the possible data sets and their ordering by complexity, theory T_1 could be specified simply by giving the integer j. For most integers j of similar value, this information would not be compressible, so one could say that the number of bits of information in this single-observation theory is roughly $\log_2 j$.

Next, consider an alternative multi-observation theory in which the likelihoods for the various possible data sets come from some specific normalized probability distribution. For simplicity and concreteness, consider theory T_N which gives the geometric distribution with mean $N \geq 1$, so $P(D_j|T_N) = (N - 1)^{-j-1}/N^j$. If we wanted to choose N to maximize the likelihood $P(D_j|T_2)$, we would need to choose $N = j$. However, this theory, T_j, would have more information than T_1 (with the extra amount, above that specifying $N = j$, saying that T_j gives a geometric distribution). Hence this T_j theory would presumably be assigned a lower \textit{a priori} probability than T_1. Furthermore, it would also give a lower likelihood, $P(D_j|T_j) = (j - 1)^{-j-1}/j^j \approx e^{-j}/j \ll 1 = P(D_j|T_1)$, where the approximation and strong inequality occurs for $j \gg 1$, as I am assuming. Therefore, T_j would give a much lower \textit{a posteriori} probability than T_1, showing that multi-observation theories need not be better than single-observation theories.

On the other hand, T_N can be chosen to be much simpler than T_j (assuming the generic case in which j is an incompressible large integer, with roughly $\log_2 j$ bits of incompressible information) by choosing N to
be much simpler than \(j \). However, to keep the likelihood \(P(D_j | T_j) \) from becoming too much smaller than the maximum value \(P(D_j | T_j) \approx e^{-1}/j \) for fixed \(j \) and \(N \) allowed to vary, \(N \) should be chosen to be roughly the same value as \(j \), say within a factor of 2 of \(j \). For example, if \(N \approx j/2 \), then \(P(D_j | T_N) \approx (2/j)e^{-2} \approx (2/e)P(D_j | T_j) \approx 0.736P(D_j | T_j) \approx 0.271/j \), whereas if \(N \approx 2j \), then \(P(D_j | T_N) \approx (0.5/j)e^{-0.5} \approx (\sqrt{\pi}/2)P(D_j | T_j) \approx 0.824P(D_j | T_j) \approx 0.303/j \). Thus for \(N \) within a factor of 2 of \(j \), we always get \(P(D_j | T_N) > 1/(4j) \).

Now we can simply choose \(N \) to be the nearest power of 2 less than or equal to \(j \), \(N = 2^{[\log_2 j]} \), with the square bracket denoting the integer part of the logarithm to base 2. Then in binary, \(N \) has a 1 followed by \([\log_2 j]\) 0’s, the same as \(j \) with all binary digits after the first truncated to 0. Thus whereas specifying \(j \) requires all \([\log_2 j]\) binary digits after the leading 1 to be specified, with \([\log_2 j]\) bits of information, \(N \) just requires a specification of how many 0’s it has after the leading 1, which is just \([\log_2 [\log_2 j]]\) bits of information. For very large generic (incompressible) \(j \), \(N \) thus has much less information than that in \(j \) itself.

Therefore, if the gain in the \textit{a priori} probability of \(T_N \) from its relative simplicity of \(N \), over that of the more complex \(T_1 \), overcomes the decrease in the likelihood of the observed data set \(D_j \) from unity for \(T_1 \) to near \(1/(4j) \) for \(T_N \), then in Bayes’ theorem, Eq. \((4.1) \), the \textit{a posteriori} probability \(P(T_N | D_j) \) for the multi-observation theory \(T_N \) with \(N = 2^{[\log_2 j]} \) will exceed \(P(T_1 | D_j) \) for the single-observation theory \(T_1 \). In particular, this would be the case if the prior probabilities obey the inequality \(P(T_N) > 4jP(T_1) \).

Suppose that one re-orders the \(T_1, T_N \), and other possible theories (assumed to be countable) into increasing order of complexity and lets \(I \) be the integer that gives this new order, from 1 for the simplest theory, on up through successively larger integers for more complex theories. Then \(T_1 \) and \(T_N \) for integers \(N > 1 \) will all have places in this order, so that one will get the function \(I(i) \) where \(i = 1 \) for \(T_1 \) and \(i = N \) for \(T_N \). (Of course, the resulting infinite countable set of values \(I(i) \) will not exhaust the positive integers, since there will also be another countably infinite set of other theories whose \(I(i)’s \) will partially intertwine the \(I(i)’s \).) \(I \) will be roughly 2 to the power of the number of bits needed to specify the theory, so \(I(1) \sim j \) and \(I(N) \sim \log_2 j \) for \(N = 2^{[\log_2 j]} \) and \(j \gg 1 \).

Now let us suppose that we take the \textit{a priori} probabilities \(P(T_i) = p(I) \) to be a monotonically decreasing function of the order of complexity \(I \), so that simpler theories are assigned higher prior probabilities and more complex theories are assigned lower prior probabilities. If the prior probabilities as a function of \(I, p(I) \), fall off too slowly with \(I \), then one will get that the posterior probability of the single-observation theory \(T_1 \) is greater than that of the multi-observation theory \(T_N \) for any \(N \), such as the simple choice \(N = 2^{[\log_2 j]} \). However, if \(p(I) \) falls off sufficiently rapidly with \(I \), then instead the simpler multi-observation theory will be favored with the higher \textit{a posteriori} probability.

In the example above, it appears that it is sufficient for \(p(I) \) to fall off at least as rapidly as \(I^{-s} \) for any \(s > 1 \), or even as \(I^{-1}(\ln I)^{-s} \) for any \(s > 1 \). For example, consider \(p(I) = (6/\pi^2)I^{-2} \), which would give a normalized prior probability distribution for a countably infinite set of theories ordered by complexity, with \(I = 1 \) for the simplest, etc. This set of priors would then give the ratio of the posterior probability of the multi-observation theory \(T_N \) to that of the single-observation theory \(T_1 \) as \(P(T_N | D_j)/P(T_1 | D_j) \sim j/(4\log_2 j) \gg 1 \). Thus with this choice of priors, the greater simplicity of the multi-observation theory over the single-observation theory would more than compensate for the reduced likelihood it gives to the observed data set, so in the end the multi-observation theory is favored.

Another simple set of prior probabilities that I have advocated \(\{16, 17, 18\} \) is \(p(I) = 2^{-I} \). Since this very strongly favors simpler theories (each of which is twice as probable \textit{a priori} as the next simplest), in the example above it gives a much higher posterior probability to the multi-observation theory: \(P(T_N | D_j)/P(T_1 | D_j) \sim 2^j/(4j^2) \).

The situation is somewhat similar to theories of solipsism versus theories in which other people are real. Solipsism would give a higher likelihood for one’s observations, but it is not nearly so simple as theories that other people are real. Therefore, when one chooses prior probabilities falling sufficiently rapidly with complexity (as humans apparently do implicitly without even consciously thinking about it), in the end one favors theories in which other people are real.

The example above shows that typicality itself, in the form of increased likelihoods, often is not sufficient to overcome the higher prior probabilities one might like to assign to simpler theories that may predict larger numbers of possible observed data sets and correspondingly lower likelihoods for each. However, this does not work if the simpler theory predicts too large a range of observed data sets and hence makes the normalized likelihood of each one too small. In particular, theories that predict that all possible observations, out of an infinite set, occur with equal likelihood give zero likelihood for any particular data set and hence have zero posterior probabilities (unless absolutely all of the prior probability is concentrated upon such theories).

VI. CONCLUSIONS

We have seen that when one imposes the \textit{normalization principle} and restricts to theories that each give likelihoods summing to unity for all possible data sets, typicality is automatically favored in the likelihoods. Since this preference comes directly from the normalized likelihoods, it is not and need not be introduced “through a suitable choice of priors” as Hartle and Srednicki \[1\]
suggest. Instead, the prior probabilities for theories may be chosen to “favor theories that are simple, beautiful, precisely formulable mathematically, economical in their assumptions, comprehensive, unifying, explanatory, accessible to existing intuition, etc., etc.,” as Hartle and Srednicki propose.

The only sense in which I could be said to favor putting typicality into the priors would be the interpretation that imposing the normalization principle effectively assigns zero prior probabilities to theories in which the likelihoods of all possible observations do not sum to unity, as I would indeed do if that interpretation were forced upon me. But not imposing this requirement does not seem to me to make sense (and also leads to many sterile cosmological theories that cannot be tested against observations). It seems rather analogous to not imposing the requirement of mathematical consistency. Therefore, I would argue that the normalization principle is a fundamental principle of probability for multi-observation theories that need not be listed among the optional properties Hartle and Srednicki have nicely enumerated for the theoretical prejudice of choosing the priors.

Typicality by itself does not guarantee that the theory with the highest posterior probability will make us typical. However, typicality is favored in the likelihoods. One need not impose it separately, but in discussions in which one does not explicitly invoke the full Bayesian framework, assuming typicality may be a legitimate shortcut for selecting between different theories for our observations. We are unlikely to be highly atypical.

Acknowledgments

I am most grateful to James Hartle and Mark Srednicki for a multitude of email communications. The hospitality of the George P. and Cynthia W. Mitchell Institute for Fundamental Physics of the Physics Department at Texas A&M University, and of the Beyond Center for Fundamental Concepts in Science of Arizona State University, were appreciated for offering me opportunities to speak in person on this subject with Hartle (and with other persons such as Gary Gibbons and Seth Lloyd). The hospitality of Edgar Gunzig and the Cosmology and General Relativity symposium of the Peyresq Foyer d’Humanisme in Peyresq, France, enabled me to talk to Brandon Carter and others there about these ideas. This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

[1] J. B. Hartle and M. Srednicki, Phys. Rev. D 75, 123523 (2007) arXiv:0704.2630.
[2] J. Garcia-Bellido, A. D. Linde and D. A. Linde, Phys. Rev. D 50, 730 (1994) arXiv:astro-ph/9312039.
[3] A. Vilenkin, Phys. Rev. Lett. 74, 846 (1995) arXiv:gr-qc/9406010.
[4] L. Dyson, M. Kleban, and L. Susskind, JHEP 0210, 011 (2002) arXiv:hep-th/0208013.
[5] D. N. Page, “Is our universe likely to decay within 20 billion years?” arXiv:hep-th/0610079.
[6] R. Bousso and B. Freivogel, JHEP 0706, 018 (2007) arXiv:hep-th/0610132.
[7] D. N. Page, JCAP 0701, 004 (2007) arXiv:hep-th/0610199.
[8] A. Linde, JCAP 0701, 022 (2007) arXiv:hep-th/0611043.
[9] D. N. Page, “Return of the Boltzmann brains,” arXiv:hep-th/0611158.
[10] A. Vilenkin, JHEP 0701, 092 (2007) arXiv:hep-th/0611271.
[11] D. N. Page, “Is our universe decaying at an astronomical rate?” arXiv:hep-th/0612137.
[12] T. Banks, “Entropy and initial conditions in cosmology,” arXiv:hep-th/0701416.
[13] M. Srednicki, Phys. Rev. A 71, 052107 (2005) arXiv:quant-ph/0501009.
[14] E. T. Jaynes, Probability Theory: the Logic of Science (Cambridge 2003).
[15] D. M. Appleby, Optics and Spectroscopy 99, 447 (2005) arXiv: quant-ph/0408058.
[16] D. N. Page, “Sensible quantum mechanics: Are only perceptions probabilistic?” arXiv:quant-ph/9506010.
[17] D. N. Page, Int. J. Mod. Phys. D5, 583 (1996) arXiv:gr-qc/9507024.
[18] D. N. Page, in Universe or Multiverse?, edited by B. J. Carr (Cambridge University Press, Cambridge, 2007), pp. 411-429 arXiv:hep-th/0610101.
[19] M. Srednicki, private communication (2007).
[20] D. N. Page, in preparation.
[21] D. N. Page, “Probabilities don’t matter,” arXiv:gr-qc/9411004.
[22] D. N. Page, “Aspects of Quantum Cosmology,” arXiv:gr-qc/9507025.
[23] D. N. Page, “Quantum Cosmology Lectures,” arXiv:gr-qc/9507028.
[24] D. N. Page, in Consciousness: New Philosophical Perspectives, edited by Q. Smith and A. Jokic (Oxford, Oxford University Press, 2003), pp. 468-506 arXiv:quant-ph/0108039.
[25] N. Bostrom, Anthropic Bias: Observation Selection Effects in Science and Philosophy (Routledge, New York and London, 2002).
[26] R. B. Griffiths, J. Statist. Phys. 36, 219 (1984).
[27] R. Omnès, J. Statist. Phys. 53, 893, 933, and 957 (1988).
[28] M. Gell-Mann and J. B. Hartle, in Complexity, Entropy, and the Physics of Information, SFI Studies in the Sciences of Complexity, ed. W. Zurek (Addison-Wesley, Reading, 1990), Vol. VIII.
[29] M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345 (1993) arXiv:gr-qc/9210010.
[30] B. Carter, private communication (2007).
[31] B. Carter, “Anthropic principle in cosmology,” arXiv:gr-qc/0606117.