COVID-19 Pandemic: A Wake-Up Call for Clean Air
Stephen A Mein, Isabella Annesi-Maesano, Mary B Rice

To cite this version:
Stephen A Mein, Isabella Annesi-Maesano, Mary B Rice. COVID-19 Pandemic: A Wake-Up Call for Clean Air. Annals of the American Thoracic Society, American Thoracic Society, 2021, 18 (9), pp.1450-1455. 10.1513/annalsats.202012-1542vp. hal-03192587

HAL Id: hal-03192587
https://hal.sorbonne-universite.fr/hal-03192587
Submitted on 8 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
COVID-19 Pandemic: A Wake-Up Call for Clean Air
Stephen A. Mein, MD¹, Isabella Annesi-Maesano, MD, PhD, DSc², Mary B. Rice, MD, MPH¹*

¹ Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
² Epidemiology of Allergic and Respiratory Diseases Department, Institute Pierre Louis of Epidemiology and Public Health, INSERM and Sorbonne Université, Paris, France
*MBR is Section Editor of AnnalsATS. Her participation complies with American Thoracic Society requirements for recusal from review and decisions for authored works.

Corresponding Author:
Stephen Andrew Mein, MD
330 Brookline Avenue
Boston, MA 02215
Email: smein@bidmc.harvard.edu

Author Contributions: SAM, IAM, and MBR each contributed to the paper design, drafting the manuscript and approval of the final version for publication. All authors verify accountability for all aspects of this paper.

Sources of Support: None

Running Header: COVID-19 and Air Pollution

Subject Category List: 6.1 Air Pollution: Epidemiology

Word Count: 1314

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints please contact Diane Gern (dgern@thoracic.org).
Since its identification in Wuhan, China, coronavirus disease 2019 (COVID-19) has infected more than 104 million and killed over 2.2 million people worldwide (1). Recent studies of air pollution and COVID-19 cases and mortality in diverse international settings add convincingly to a large body of evidence showing that exposure to air pollution exacerbates viral respiratory infections and consequently widens health disparities. Meanwhile, the global lockdown response through a near global economic standstill resulted in a temporary improvement in short-term air quality, likely reducing pollution-related, non-COVID-19 deaths. A large proportion of the global population, including those in Europe and the United States, still live in areas where ambient air pollution levels exceed World Health Organization guidelines, with racial minorities being disproportionately affected. In this commentary, we review studies linking air pollution to worse COVID-19 outcomes and discuss several ways in which the COVID-19 pandemic highlights the urgent need to address the global problem of air pollution through sustainable local and national policies to improve respiratory health and equity worldwide.

Proposed Mechanisms for Air Pollution and Worsened Viral Respiratory Infection

Air pollution exposure is associated with higher rates of hospitalizations and deaths from respiratory tract infections (2-5). Multiple studies have shown that elevated levels of air pollutants such as particulate matter (PM) and nitrogen dioxide (NO₂) impair the innate immune response and lead to both increased susceptibility to viruses and more severe viral infections (4,6,7). Experimental studies conducted in humans indicate that air pollution
damages cilia in the respiratory tract, the first line of defense against respiratory infections, and causes oxidative stress that may increase epithelial permeability (4,6,8,9). Air pollution exposure also impairs the ability of macrophages to phagocytose, thereby reducing viral clearance and promoting infectivity (4, 6). Consistent with this mechanistic evidence, human mortality has been higher in more polluted areas during prior respiratory viral pandemics such as severe acute respiratory syndrome (SARS) and the influenza pandemic of 1918 (10,11).

In the case of COVID-19, several additional mechanisms have been proposed for how short-term air pollution exposure may augment SARS-CoV-2 transmission or severity of infection. PM and NO\textsubscript{2} exposures lead to \textit{in vitro} overexpression of respiratory angiotensin converting enzyme 2 (ACE-2), the cellular target for SARS-CoV-2, which could, in theory, promote viral entry and infection (12,13). Speculation has been offered that airborne particles may act as platforms for SARS-CoV-2, allowing viral aerosols to remain suspended in the air for longer distances than in the case of droplets, thereby enhancing transmission between individuals (14,15). The evidence to support this hypothesis comes from a study identifying SARS-CoV-2 RNA on outdoor particulate matter in Bergamo, Italy and a similar study finding higher levels of influenza RNA in air samples collected during Asian dust storms (16,17). However, a more recent study in Italy concluded that outdoor airborne transmission is unlikely to play a significant role in the spread of SARS-CoV-2 after identifying only minimal atmospheric concentrations of the virus (18). While evidence in China suggests that short-term (e.g. daily) PM exposure is associated with higher COVID-19 infection rates, this may be explained by greater viral entry and replication by mechanisms described above, rather than via PM (19,20). No controlled exposure studies have confirmed that ambient PM concentrations increase
transmission of SARS-CoV-2 or other respiratory viruses and a recent expert workshop on SARS-CoV-2 transmission did not identify ambient pollution as a factor promoting disease transmission but recommended that it be examined further (21).

Exposure to ambient air pollution in the decades preceding the pandemic may worsen the severity of illness among those who are infected with COVID-19. Long-term air pollution exposure increases the risk of chronic cardiovascular, metabolic, and pulmonary conditions that are consistently linked to worse outcomes in those infected with respiratory viruses, especially COVID-19 (3,22). In addition, long-term air pollution exposure increases the risk of developing acute respiratory distress syndrome, the primary cause of death among those with respiratory failure from COVID-19 (23-25).

Associations Between Air Pollution and COVID-19 Infection Rates and Mortality

A growing body of evidence suggests that higher long-term exposure to outdoor pollutants, mostly to PM and NO\(_2\), increases the risk of infection and death from COVID-19 (26-31). One study estimates that particulate air pollution has contributed 15% to COVID-19 mortality worldwide, including 17% in North America and 19% in Europe (32). Table 1 includes studies published to date that utilized models to evaluate associations of long-term air pollution exposures and COVID-19 cases and deaths, controlling for many potential confounders such as timing of outbreak, population density, socioeconomic status, and co-morbidities. Notably, current studies remain restricted to county or municipal-level exposure/outcome data and are unable to adjust for individual-level risk factors given the limited publicly available data (33).
COVID-19 has disproportionately affected racial/ethnic minorities and low-income communities who have suffered higher rates of hospitalizations and mortality (34,35). Ambient air pollution may contribute to these severe disparities. In the United States, racial minorities on average have higher exposure to PM$_{2.5}$ and NO$_2$ compared to Caucasians, an inequality that has worsened despite improving air quality (36). Racial minorities are more likely to live in areas closer to industrial pollution and to work in business sectors with higher exposure to pollution. These inequalities in residential and occupational air pollution exposure may be a cause of the stark disparities of the COVID-19 pandemic along racial and ethnic lines.

COVID-19 Pandemic Highlights Scale of Pollution-Related Mortality

In an effort to control the spread of COVID-19, government policies dramatically decreased industrial activity and transportation, causing rapid improvements in air quality. Studies spanning multiple continents show NO$_2$ concentrations decreased by 50%, PM$_{2.5}$ concentrations by 40%, and PM$_{10}$ concentrations by 60% during global lockdowns (Figures 1 & 2) (37,38). The decline in air pollution levels likely improved mortality from non-communicable diseases, and thus may have softened the blow from COVID-19. PM$_{2.5}$ reductions during initial lockdowns are estimated to have avoided approximately 24,000 and 2,100 premature deaths in China and Europe, respectively, with similar health benefits attributed to NO$_2$ reductions (39,40). While there are historical examples of short-term air quality improvements leading to declines in admissions for respiratory conditions, similar studies have not yet been conducted for the
COVID-19 lockdowns and such studies would likely be confounded by overall reduced healthcare utilization during the lockdowns (41).

More than 91% of the world lives in areas that exceed the World Health Organization’s air quality guidelines and more people are impacted by worsening air quality each year (42,43). In the United States, approximately 45% of the population or 150 million Americans live in counties marked by ozone or PM$_{2.5}$ levels that exceed standards by 10 or more days per year, an increase compared to the prior three years, according to the American Lung Association’s 2020 State of the Air Report (43). Despite these growing numbers, government authorities including the United States Environmental Protection Agency (EPA) weakened air quality management by suspending the requirement to report PM emissions during the COVID outbreak in an effort to stimulate the economy (44). On December 7th 2020, the US EPA opted to retain current national standards for fine PM against the advice of experts in the field, who cited extensive evidence that current standards are responsible for thousands of premature deaths each year (45,46).

The COVID-19 pandemic has highlighted the widespread health consequences of ambient air pollution, including acute effects on respiratory immune defenses and chronic effects that lead to higher risk of chronic cardiopulmonary disease and ARDS. These chronic health effects likely explain the higher COVID-19 mortality among those exposed to more air pollution. The pandemic has also provided a glimpse into the health benefits of cleaner air. As we emerge from this devastating public health crisis, COVID-19 is a wakeup call for the need to adopt stricter air quality standards and end our tolerance for pollution in disadvantaged
neighborhoods. As part of our post-COVID-19 recovery, we must clean up the air to improve respiratory health and equality worldwide.
References

1. COVID-19 dashboard [Internet]. Baltimore (MD): Center for Systems Science and Engineering at Johns Hopkins University; revised 2020 December; accessed 2021 February 3. Available from: https://coronavirus.jhu.edu/map.html

2. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Disease Study 2015. *Lancet* 2017;389(10082):1907-1918.

3. Schraufnagel DE, Balmes JR, Cowl CT, Matteis SD, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies' environmental committee, part 2: Air pollution and organ systems. *Chest* 2019;155(2):417-426.

4. Cienciewicki J, Jaspers I. Air pollution and respiratory viral infection. *Inhal Toxicol* 2007;19(14):1135-1146.

5. Domingo JL, Rovira J. Effects of air pollutants on the transmission and severity of respiratory viral infections. *Environ Res* 2020;187:109650.

6. Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. *Free Radic Biol Med* 2020;151:56-68.

7. Gowdy KM, Krantz QT, King C, Boykin E, Jaspers I, Linak WP, et al. Role of oxidative stress on diesel-enhanced influenza infection in mice. *Part Fibre Toxicol* 2010;7:34.

8. Cao Y, Chen M, Dong D, Xie S, Liu M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. *Thorac Cancer* 2020;11(3):505-510.

9. Pathmanathan S, Krishna MT, Blomberg A, Hel leday R, Kelly FJ, Sandström T, et al. Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression of IL-5, IL-10, IL13, and ICAM-1 in the bronchial epithelium of healthy human airways. *Occup Environ Med* 2003;60(11):892-6.

10. Cui Y, Zhang ZF, Froines J, Zhao J, Wang H, Yu SZ, et al. Air pollution and case fatality of SARS in the People's Republic of China: An ecologic study. *Environ Health* 2003;2(1):15.

11. Clay K, Lewis J, Severnini E. What explains cross-city variation in mortality during the 1918 influenza pandemic? Evidence from 438 U.S. cities. *Econ Hum Biol* 2019;35:42-50.

12. Miyashita L, Foley G, Semple S, Grigg J. Traffic-derived particulate matter and angiotensin-converting enzyme 2 expression in human airway epithelial cells. BioRxiv 2020.05.15.097501 [preprint]. 2020 May 15. Available from https://www.biorxiv.org/content/10.1101/2020.05.15.097501v2

13. Paital B, Agrawal PK. Air pollution NO₂ and PM₂.₅ explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: A review. *Environ Chem Lett* 2020;1-18.
14. Martelletti L, Martelletti P. Air pollution and the novel Covid-19 disease: a putative disease risk factor. *SN Compr Clin Med* 2020;1-5.

15. Setti L, Passarini F, De Gennaro G, Barbieri P, Licen S, Perrone MG, et al. Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: first observational study based on initial epidemic diffusion. *BMJ Open* 2020;10(9):e039338.

16. Chen PS, Tsai FT, Lin CK, Yang CY, Chan CC, Young CY, et al. Ambient influenza and avian influenza virus during dust storm days and background days. *Environ Health Perspect* 2010;118(9):1211-1216.

17. Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. *Environ Res* 2020;188:109754.

18. Chirizzi D, Conte M, Feltracco M, Dinoi A, Gregoris E, Barbaro E, et al. SARS-CoV-2 concentrations and virus-laden aerosol size distributions in outdoor air in north and south of Italy. *Environ Int* 2020;146:106255.

19. Zhu Y, Xie J, Huang F, Cao L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. *Sci Total Environ* 2020;727:138704.

20. Wang B, Liu J, Li Y, Fu S, Xu X, Li L, et al. Airborne particulate matter, population mobility and COVID-19: a multi-city study in China. *BMC Public Health* 2020;20(1):1585.

21. National Academies of Sciences, Engineering, and Medicine 2020. Airborne transmission of SARS-CoV-2: Proceedings of a workshop in brief. Washington, DC: The National Academies Press; 2020.

22. Zhou F, Yu T, Du R, Fan G, Liu R, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. *Lancet* 2020;395(10229):1054-1062.

23. Rhee J, Dominici F, Zanobetti A, Schwartz J, Wang Y, Di Q, et al. Impact of long-term exposures to ambient PM$_{2.5}$ and ozone on ARDS risk for older adults in the United States. *Chest* 2019;156(1):71-79.

24. Reilly JP, Zhao Z, Shashaty MGS, Koyama T, Christie JD, Lanken PN, et al. Low to moderate air pollutant exposure and acute respiratory distress syndrome after severe trauma. *Am J Respir Crit Care Med* 2019;199(1):62-70.

25. Ware LB, Zhao Z, Koyama T, May AK, Matthay MA, Lurmann FW, et al. Long-term ozone exposure increases the risk of developing the acute respiratory distress syndrome. *Am J Respir Crit Care Med* 2016;193(10):1143-1150.

26. Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. *medRxiv* 2020.04.05.20054502 [preprint]. 2020 April 7. Available from https://www.medrxiv.org/content/10.1101/2020.04.05.20054502v2
27. Cole MA, Ozgen C, Strobl E. Air pollution exposure and Covid-19 in Dutch municipalities. *Environ Resour Econ (Dordr)* 2020;1-30.

28. Hendryx M, Luo J. COVID-19 prevalence and fatality rates in association with air pollution emission concentrations and emission sources. *Environ Pollut* 2020;265(Pt A):115126.

29. Travaglio M, Yu Y, Popovic R, Selley L, Santos Leal N, Martins LM. Links between air pollution and COVID-19 in England. *Environ Pollut* 2020; 268 (Part A).

30. Konstantinoudis G, Padellini T, Bennett JE, Davies B, Ezzati M, Blangiardo M. Long-term exposure to air-pollution and COVID-19 mortality in England: a hierarchical spatial analysis. medRxiv 2020.08.10.20171421 [preprint]. 2020 Aug 11. Available from https://www.medrxiv.org/content/10.1101/2020.08.10.20171421v1

31. Liang D, Shi L, Zhao J, Liu P, Schwartz J, Gao S, et al. Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the United States. *Innovation (N Y)* 2020;1(3):100047.

32. Pozzer A, Dominici F, Haines A, Witt C, Münzel T, Lelieveld J. Regional and global contributions of air pollution to risk of death from COVID-19. *Cardiovasc Res* 2020;116(14):2247-2253.

33. Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. *Sci Adv* 2020;6(45).

34. Wadhera RK, Wadhera P, Gaba P, Figueroa JF, Joynt Maddox KE, Yeh RW, et al. Variation in COVID-19 hospitalizations and deaths across New York City boroughs. *JAMA* 2020;323(21):2192-2195.

35. Sesé L, Nguyen Y, Giroux Leprieur E, Annesi-Maesano I, Cavalin C, Goupil de Bouillé J, et al. Impact of socio-economic status in patients hospitalised for COVID-19 in the Greater Paris area. *Eur Respir J* 2020;2002364. [preprint] 2020 Nov 5. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651837/pdf/ERJ-02364-2020.pdf

36. Rosofsky A, Levy JI, Zanobetti A, Janulewicz P, Fabian MP. Temporal trends in air pollution exposure inequality in Massachusetts. *Environ Res* 2018;161:76-86.

37. Tobias A, Carnerero C, Reche C, Massague J, Via M, Minguillon MC, et al. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. *Sci Total Environ* 2020;726:138540.

38. Mahato S, Pal S, Ghosh KG. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. *Sci Total Environ* 2020;730:139086.

39. Giani P, Castruccio S, Anav A, Howard D, Hu W, Crippa P. Short-term and long-term health impacts of air pollution reductions from COVID-19 lockdowns in China and Europe: A modeling study. *Lancet Planet Health* 2020;4(10):e474-e482.

40. Chen K, Wang M, Huang C, Kinney PL, Anastas PT. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. *Lancet Planet Health* 2020;4(6):e210-e212.
41. Pope CA 3rd. Respiratory disease associated with community air pollution and a steel mill, Utah Valley. *Am J Public Health*. 1989 May;79(5):623-8.

42. Ambient (outdoor) air pollution [Internet]. World Health Organization. [revised 2018 May; accessed 2020 December 16]. Available from https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

43. State of the air report 2020: key findings [Internet]. American Lung Association. [revised 2020, accessed 2020 December 16]. Available from http://www.stateoftheair.org/key-findings/

44. The New York Times. Trump, citing pandemic, moves to weaken two key environmental protections [accessed 2020 December 16]. Available from https://www.nytimes.com/2020/06/04/climate/trump-environment-coronavirus.html

45. U.S. Environmental Protection Agency. Review of the national ambient air quality standards for particulate matter. Research Triangle Park, NC: Health and Environmental Impacts Division, Office of Air Quality Planning and Standards; 2020. Docket ID No. EPA-HQ-OAR-2015-0072.

46. Independent Particulate Matter Review Panel, Frey HC, Adams PJ, Adgate JL, Allen GA, Balmes J, Boyle K, et al. The need for a tighter particulate-matter air-quality standard. *N Engl J Med* 2020;383(7):680-683.
Figure Legends

Figure 1: Decrease in Nitrogen Dioxide Levels over China Between January and February 2020 Following Economic Lockdown. Reprinted (permission pending) from NASA Earth Observatory. Airborne nitrogen dioxide plummets over China. Image by Joshua Stevens [accessed on 2020 December 16]. Available from https://earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china

Figure 2: Decrease in Nitric Dioxide Levels Over Europe During Economic Lockdown in Spring 2020 Compared to Spring 2019. Reprinted (permission pending) from The European Space Agency. Air pollution remains low as Europeans stay at home [accessed on 2020 December 16]. Available from https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Air_pollution_remains_low_as_Europeans_stay_at_home
Figure 1
Figure 2

March - April 2019

13 March - 13 April 2020

NO₂ tropospheric column

20 μmol/m²

Paris, -54% ± 15%

Milan, -47% ± 15%

Rome, -49% ± 15%

Madrid, -48% ± 15%

Barcelona
Study	Country	Exposure	COVID-19 Outcome	Principal Findings
Wu et al.	United States	PM$_{2.5}$ Average between 2000 - 2016	Mortality rate	Increase of 1 μg/m3 in PM$_{2.5}$ associated with an 8% increase in mortality rate
Cole et al.	The Netherlands	PM$_{2.5}$, NO$_2$, & SO$_2$ Average between 2015 - 2019	Cases Hospital admissions Deaths	1 μg/m3 increase in PM$_{2.5}$ associated with 9.4 more cases, 3.0 more hospital admissions, and 2.3 more deaths \ NO$_2$ (but not SO$_2$) associated with cases and deaths
Hendryx et al.	United States	PM$_{2.5}$*, diesel PM$^+$ & O$_3$* Average for 2016 & 2014	Cases Deaths	PM$_{2.5}$ and diesel PM associated with higher prevalence and mortality \ Diesel PM appeared to be the primary driver for associations with PM$_{2.5}$
Travaglio et al.	England	PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, NO, & O$_3$ Average between 2018 - 2019	Cases Deaths Infectivity rate	NO and NO$_2$ significant predictors of cases independent of population density \ 1 μg/m3 increase in SO$_2$ and NO associated with 17% and 2% higher mortality, respectively \ O$_3$ negatively associated with cases and deaths \ PM$_{2.5}$, PM$_{10}$, & SO$_2$ associated with SARS-CoV-2 infectivity (OR 1.12, 1.07, and 1.32 respectively) but not cases or deaths
Konstantinoudis et al.	England	PM$_{2.5}$ & NO$_2$ Average between 2014 - 2018	Mortality rate	1 μg/m3 increase in PM$_{2.5}$ and NO$_2$ associated with 1.4% and 0.5% higher mortality rate, respectively
Table 1: Studies evaluating long-term air pollution exposure and COVID-19 incidence or mortality.

Definition of abbreviations: CFR = case fatality rate; diesel PM = diesel particulate matter; IQR = interquartile-range; NO = nitric oxide; NO\(_2\) = nitric dioxide; O\(_3\) = ozone; PM\(_{2.5}\) = particulate matter <2.5 μm in diameter; PM\(_{10}\) = particulate matter <10 μm in diameter; SO\(_2\) = sulfur dioxide.

Liang et al. (October 2020)	United States	PM\(_{2.5}\), NO\(_2\), & O\(_3\) Annual mean between 2010 - 2016	CFR Mortality rate	NO\(_2\) associated with 11.3% and 16.2% higher CFR and mortality rate, respectively, per IQR
				PM\(_{2.5}\) associated with 14.9% higher mortality rate per IQR, but not with CFR
				No association between O\(_3\) and CFR or mortality rate