RESIDUES FOR MAPS GENERICALLY TRANSVERSE TO DISTRIBUTIONS

LEONARDO M. CÂMARA AND MAURÍCIO CORRÊA

Abstract. We show a residues formula for maps generically transversal to regular holomorphic distributions.

1. Introduction

Let \(f : X \to Y \) be a singular holomorphic map between complex manifolds \(X \) and \(Y \), with \(\dim(X) := n \geq m =: \dim(Y) \), having generic fiber \(F \). Consider the singular set of \(f \) defined by
\[
S := \text{Sing}(f) = \{ p \in X : \text{rank}(d f(p)) < m \}.
\]
If \(Y = C \) is a curve, Iversen in [11] proved the following multiplicity formula
\[
\chi(X) - \chi(F) \cdot \chi(C) = (-1)^n \sum_{p \in \text{Sing}(f)} \mu_p(f),
\]
where \(\mu_p(f) \) is the Milnor number of \(f \) at \(p \). Izawa and Suwa [14] generalized Iversen’s result for the case where \(X \) is possibly a singular variety.

A generalization of the multiplicity formula for maps was given by Diop in [7]. In his work he generalized some formulas involving the Chern classes given previously by Iversen [11], Brasselet [3, 4], and Schwartz [17]. More precisely, Diop showed that if \(S \) is smooth and \(\dim(S) = m - 1 \) then
\[
\chi(X) - \chi(F) \cdot \chi(Y) = (-1)^{n-m+1} \sum_j \mu_j \int_{S_j} c_{q-1}(f^*(TY)|_{S_j} - L_j),
\]
where \(S = \cup S_j \) is the decomposition of \(S \) into irreducible components, \(\mu_j = \mu(f|_{\Sigma_j}) \) is the Milnor number of the restriction of \(f \) to a transversal section \(\Sigma_j \) to \(S_j \) at a regular point \(p_j \in S_j \), and \(L_j \) is the line bundle over \(S_j \) given by the decomposition \(f^*d f(TX|_{S_j}) \oplus L_j = f^*(TY)|_{S_j} \).

On the other hand, Brunella in [5] introduced the notion of tangency index of a germ of curve with respect to a germ of holomorphic foliation: given a reduced curve \(C \) and a foliation \(\mathcal{F} \) (possibly singular) on a complex compact surface. Suppose that \(C \) is not invariant by \(\mathcal{F} \) and that \(C \) and \(\mathcal{F} \) are given locally by \(\{ f = 0 \} \) and a vector field \(v \), respectively. The tangency index \(I_p(\mathcal{F}, C) \) of \(C \) with respect to \(\mathcal{F} \) at \(p \) is given by the intersection number
\[
I_p(\mathcal{F}, C) = \dim \mathcal{O}_2/(f, v(f)).
\]
Using this index, Brunella proved the following formula
\[
c_1(\mathcal{O}(C))^2 - c_1(T_{\mathcal{F}}) \cap c_1(\mathcal{O}(C)) = \sum_{p \in \text{Tang}(\mathcal{F}, C)} I_p(\mathcal{F}, C),
\]
where \(T_{\mathcal{F}} \) is the tangent bundle of \(\mathcal{F} \) and \(\text{Tang}(\mathcal{F}, C) \) denotes the non-transversality loci of \(C \) with respect to \(\mathcal{F} \). In [9] and [10], T. Honda also studied Brunella’s tangency formula. Distributions...
and foliations transverse to certain domains in \(\mathbb{C}^n \) has been studied by Bracci and Scárdua in [2] and Ito and Scárdua in [12].

Recently, Izawa [13] generalized certain results due to Diop [7] in the foliated context. More precisely, let \(f : X \to (Y, \mathcal{F}) \) be a holomorphic map such that \(\mathcal{F} \) is a regular holomorphic foliation of codimension one in \(Y \). Let \(S(f, \mathcal{F}) \) be the set of points where \(f \) fails to be transverse to \(\mathcal{F} \). Suppose \(S(f, \mathcal{F}) \) is given by isolated points and let \(\overline{\mathcal{F}} := f^* \mathcal{F} \). Since \(\mathcal{F} \) is regular, we may find local coordinates in a neighborhood of \(p \in \text{Sing}(f) \) and \(f(p) \) in such a way that \(f = (f_1, \cdots, f_m) \) and \(\overline{\mathcal{F}} \) is given by \(\ker(df_m) \) nearby \(p \). If we pick \(g_i := \frac{\partial g_i}{\partial x_i} \) (i.e., \(df_m = g_1 dx_1 + \cdots + g_n dx_n \)), then

\[
\chi(X) - \sum_{i=1}^{r} f_*(c_{n-i}(TX) \cap [X]) \cap c_1(\mathcal{N}_\mathcal{F})^i = (-1)^n \sum_{p \in S(f, \mathcal{F})} \text{Res}_p \left[\frac{dg_1 \wedge \cdots \wedge dg_m}{g_1, \cdots, g_m} \right],
\]

where \(\mathcal{N}_\mathcal{F} \) denotes the normal sheaf of \(\mathcal{F} \).

In this paper we generalize the above results for a regular distribution \(\mathcal{F} \) in \(Y \) of any codimension with the following residual formula for the non-transversality point \(s \) of \(\mathcal{F} \) with respect to \(\mathcal{F} \).

In order to state our main result, let us introduce some notions. Let \(f : X \to (Y, \mathcal{F}) \) be a holomorphic map and suppose that \(X \) and \(Y \) are projective manifolds. We say that the set of points in \(X \) where \(f \) fails to be transversal to \(\mathcal{F} \) is the ramification locus of \(f \) with respect to \(\mathcal{F} \), and denote it by \(S(f, \mathcal{F}) \). The set \(R(f, \mathcal{F}) := f(S(f, \mathcal{F})) \) is called the branch locus or the set of branch points of \(f \) with respect to \(\mathcal{F} \). Let \(S(f, \mathcal{F}) = \cup S_j \) be the decomposition of \(S \) into irreducible components, then we denote by \(\mu(f, \mathcal{F}, S_j) \) the multiplicity of \(S_j \) and call it the ramification multiplicity of \(f \) along \(S_j \) with respect to \(\mathcal{F} \). As usual, we denote by \([W] \) the class in the Chow group of \(X \) of the subvariety \(W \subset X \). The class \(f_*[S_j] = [R_j] \) is called a branch class of \(f \). Observe that \(R(f, \mathcal{F}) \) is the set of tangency points between \(f(X) \) and \(\mathcal{F} \) if \(\dim(X) \leq \dim(Y) \).

Theorem 1.1. Let \(f : X \to (Y, \mathcal{F}) \) be a holomorphic map of generic rank \(r \) and \(\mathcal{F} \) a non-singular distribution of codimension \(k \) on \(Y \). Suppose the ramification locus of \(f \) with respect to \(\mathcal{F} \) has codimension \(n - k + 1 \), then

\[
f_*(c_{n-k+1}(TX) \cap [X]) + \sum_{i=1}^{r} (-1)^i f_*(c_{n-k+1-i}(TX) \cap [X]) \cap s_i(\mathcal{N}_\mathcal{F})^i = (-1)^n \sum_{R_j \subset R} \mu(f, \mathcal{F}, S_j)[R_j],
\]

where \(s_i(\mathcal{N}_\mathcal{F}) \) is the \(i \)-th Segre class of \(\mathcal{N}_\mathcal{F} \).

Some consequences of this result are the following.

Corollary 1.2 (Izawa). If \(k = 1 \), then

\[
\chi(X) - \sum_{i=1}^{r} f_*(c_{n-i}(TX) \cap [X]) \cap c_1(\mathcal{N}_\mathcal{F})^i = (-1)^n \sum_{p \in S(f, \mathcal{F})} \text{Res}_p \left[\frac{dg_1 \wedge \cdots \wedge dg_m}{g_1, \cdots, g_m} \right].
\]

In fact, if \(k = 1 \) we have \(c_n(T_X) \cap [X] = \chi(X) \) by the Chern-Gauss-Bonnet Theorem. Since \(\mathcal{N}_\mathcal{F} \) is a line bundle, then \(s_i(\mathcal{N}_\mathcal{F})^i = (-1)^i c_1(\mathcal{N}_\mathcal{F})^i \) for all \(i \). The above Izawa’s formula [13] Theorem 4.1] implies the multiplicity formula

\[
\chi(X) - \chi(F) \cdot \chi(C) = (-1)^n \sum_{p \in \text{Sing}(f)} \mu_p(f).
\]

Corollary 1.3 (Tangency formulae). Let \(X \subset Y \) be a \(k \)-dimensional submanifold generically transverse to a non-singular distribution \(\mathcal{F} \) on \(Y \) of codimension \(k \). Then

\[
[c_1(\mathcal{N}_X|Y) - c_1(T_X)] \cap [X] = \sum_{R_j \subset R} \mu(f, \mathcal{F}, S_j)[R_j].
\]
In particular, if $\det(T_F)|_X - \det(N_{X|Y})$ is ample, then X is tangent to F.

If $X = C$ is a curve on a surface Y, we have $[C] = c_1(\mathcal{O}(C)) = c_1(N_{X|Y})$. This yields Brunella’s formula

$$c_1(\mathcal{O}(C))^2 - c_1(T_F) \cap c_1(\mathcal{O}(C)) = \sum_{p \in \text{Tang}(F, C)} I_p(F, C).$$

Moreover, this formula coincides with the Honda’s formula \cite{10} in case F is a one-dimensional foliation and X is a curve.

In Section 3, we prove Theorem \cite{11} and Corollary \cite{12}.

Acknowledgments. The second named author was partially supported by CAPES, CNPq and Fapesp-2015/20841-5 Research Fellowships. Finally, we would like to thank the referee by the suggestions, comments and improvements to the exposition.

2. Holomorphic distributions

Let X be a complex manifold of dimension n.

Definition 2.1. A codimension k distribution F on X is given by an exact sequence

$$F : 0 \rightarrow N^*_F \rightarrow \Omega^k_X \rightarrow \Omega^k_F \rightarrow 0,$$

where N^*_F is a coherent sheaf of rank $k \leq \dim(X) - 1$ and Ω^k_F is a torsion free sheaf. We say that F is a foliation if at the level of local sections we have $d(N^*_F) \subset N^*_F \wedge \Omega^k_X$. The singular set of the distribution F is defined by $\text{Sing}(F) := \text{Sing}(\Omega^k_F)$. We say that F is regular if $\text{Sing}(F) = \emptyset$.

Taking determinants of the map $N^*_F \rightarrow \Omega^k_X$, we obtain a map:

$$\det(N^*_F) \rightarrow \Omega^k_X,$$

which induces a twisted holomorphic k-form $\omega \in H^0(X, \Omega^k_X \otimes \det(N^*_F)^*)$. Therefore, a distribution can be induced by a twisted holomorphic k-form $H^0(X, \Omega^k_X \otimes \det(N^*_F)^*)$ which is locally decomposable outside the singular set of F. That is, for each point $p \in X \setminus \text{Sing}(F)$ there exists a neighborhood U and holomorphic 1-forms $\omega_1, \ldots, \omega_k \in H^0(U, \Omega^1_U)$ such that

$$\omega|_U = \omega_1 \wedge \cdots \wedge \omega_k.$$

Moreover, if F is a foliation then by Definition 2.1 we have

$$d\omega_1 \wedge \cdots \wedge \omega_k = 0$$

for all $i = 1, \ldots, k$. The tangent sheaf of F is the coherent sheaf of rank $(n - k)$ given by

$$T_F = \{ v \in T_X; i_v \omega = 0 \}.$$

The normal sheaf of F is defined by $N_F = T_X/T_F$. It is worth noting that $N_F \neq (N^*_F)^*$ whenever $\text{Sing}(F) \neq \emptyset$. Dualizing the sequence (1) one obtains the exact sequence

$$0 \rightarrow T_F \rightarrow T_X \rightarrow (N^*_F)^* \rightarrow \text{Ext}^1(\Omega^k_F, \mathcal{O}_X) \rightarrow 0,$$

so that there is an exact sequence

$$0 \rightarrow N_F \rightarrow (N^*_F)^* \rightarrow \text{Ext}^1(\Omega^k_F, \mathcal{O}_X) \rightarrow 0.$$

Definition 2.2. Let $V \subset X$ an analytic subset. We say that V is tangent to F if $T_p V \subset (T_F)_p$, for all $p \in V \setminus \text{Sing}(V)$.
3. Proof of the main results

We begin by proving the main theorem.

Proof of Theorem 1.1 Consider a map \(f : X \rightarrow Y \) and let \((U, x)\) and \((V, y)\) be local systems of coordinates for \(X\) and \(Y\) such that \(f(U) \subset V\). Since \(F\) is a regular distribution, we may suppose that it is induced on \(U\) by the \(k\)-form \(\omega_1 \wedge \cdots \wedge \omega_k\). Therefore, the ramification locus of \(f\) with respect to \(F\) on \(U\) is given by

\[
S(f, F)|_U = \{ f^*(\omega_1 \wedge \cdots \wedge \omega_k) = f^*(\omega_1) \wedge \cdots \wedge f^*(\omega_k) = 0 \}.
\]

In other words, the ramification locus \(S(f, F)\) coincides with \(\text{Sing}(f^*(F))\).

Let us denote \(\tilde{F} := f^*(F)\). Let \(\{U_\alpha\}\) be a covering of \(Y\) such that the distribution \(F\) is induced on \(U_\alpha\) by the holomorphic 1-forms \(\omega_1^\alpha, \ldots, \omega_k^\alpha\). Hence, on \(U_\alpha \cap U_\beta \neq \emptyset\) we have \((\omega_1^\alpha \wedge \cdots \wedge \omega_k^\alpha) = g_{\alpha\beta}(\omega_1^\beta \wedge \cdots \wedge \omega_k^\beta)\), where \(\{g_{\alpha\beta}\}\) is a cocycle generating the line bundle \(\text{det}(N^*_{\tilde{F}})^*\). Then the distribution \(\tilde{F}\) is induced locally by \(f^*(\omega_1^\alpha), \ldots, f^*(\omega_k^\alpha)\). This shows that \(N^*_{\tilde{F}}\) is locally free. Therefore the singular set of \(\tilde{F}\) is the loci of degeneracy of the induced map

\[
N^*_{\tilde{F}} \rightarrow \Omega^1_X.
\]

By hypothesis, the ramification locus of \(f\) with respect to \(F\), which is given by \(\text{Sing}(\tilde{F})\), has codimension \(n - k + 1\), then it follows from Thom-Porteous formula \([8]\) that

\[
c_{n-k+1}(\Omega^1_X - N^*_{\tilde{F}}) \cap [X] = \sum_j \mu_j[S_j],
\]

where \(\mu_j\) is the multiplicity of the irreducible component \(S_j\). It follows from \(c(\Omega^1_X - N^*_{\tilde{F}}) = c(\Omega^1_X) \cdot s(N^*_{\tilde{F}})\) that

\[
c_{n-k+1}(\Omega^1_X - N^*_{\tilde{F}}) = \sum_{i=0}^{n-k+1} c_{n-k+1-i}(\Omega^1_X) \cap s_i(N^*_{\tilde{F}}),
\]

where \(s_i(N^*_{\tilde{F}})\) is the \(i\)-th Segre classe of \(N^*_{\tilde{F}}\). Since \(X_0 := X - \text{Sing}(\tilde{F})\) is a dense and open subset of \(X\), then by taking the cap product we have

\[
c_{n-k+1}(\Omega^1_X - N^*_{\tilde{F}}) \cap [X] = c_{n-k+1}(\Omega^1_X - N^*_{\tilde{F}}) \cap [X_0] = \sum_{i=0}^{n-k+1} (c_{n-k+1-i}(\Omega^1_X)) \cap [X_0] \cap s_i(f^*N^*_{\tilde{F}}).
\]

It follows from the projection formula that

\[
f_*(c_{n-k+1}(\Omega^1_X - N^*_{\tilde{F}})) \cap [X] = \sum_{i=0}^{n-k+1} f_*(c_{n-k+1-i}(\Omega^1_X) \cap [X]) \cap s_i(N^*_{\tilde{F}}) = \sum_j \mu_j f_*[S_j].
\]

Now, we prove our tangency formulæ as a consequence of the main theorem.

Proof of Corollary 1.3 Let \(i : X \hookrightarrow Y\) be the inclusion map. It follows from Theorem 1.1 that

\[
i_*(c_1(T_X) \cap [X]) - i_*(|[X]) \cap s_1(N^*_{\tilde{F}}) = - \sum_{R_j \subset R} \mu(f_*F, S_j)[R_j].
\]
On the one hand, we have $c_1(T_Y|_X) = c_1(N_{X|Y}) + c_1(T_X)$, and on the other hand, we have $c_1(T_Y|_X) = c_1(T_X|_X) + c_1(N_X|_X)$. Since $s_1(N_X^*) = -c_1(N_X^*) = c_1(N_X|_X)$, we obtain

$$[c_1(N_{X|Y}) - c_1(T_X)] | [X] = \sum_{R_j \subset R} \mu(f, F, S_j)[R_j].$$

Now notice that, by construction, the cycle

$$Z = \sum_{R_j \subset R} \mu(f, F, S_j)[R_j]$$

is an effective divisor on X, since $\mu(f, F, S_j) \geq 0$. If the line bundle $\det(T_Y)|_X - \det(N_X|_Y) = -[\det(N_X|_Y) - \det(T_Y)|_X]$ is ample, we obtain

$$0 < -[\det(N_X|_Y) - \det(T_Y)|_X] \cdot C = -Z \cdot C,$$

for all irreducible curve $C \subset X$. If X is not invariant by F and $\det(T_Y)|_X - \det(N_X|_Y)$ is ample, we obtain an absurd. In fact, in this case $Z \cdot C < 0$, contradicting the fact that Z is effective.

4. Examples

4.1. Integrable example. This example is inspired by an example due to Izawa [13]. Consider $Y = \mathbb{P}^3 \times \mathbb{P}^1 \times \mathbb{P}^1$ and the subvariety $X = F^{-1}(0) \cap g^{-1}(0)$ given by the homogenous equations

$$F(x, y, z) = \sum_{i=0}^{3} x_i^\ell, \quad G(x, y, z) = \sum_{i=0}^{1} x_i y_i,$$

where $([x], [y], [z]) = ((x_0 : x_1 : x_2 : x_3), (y_0 : y_1), (z_0 : z_1)) \in Y$ are homogeneous coordinates. By a straightforward calculation one may verify that X is smooth. In Y we consider the foliation F given by the fibers of the map $\pi : \mathbb{P}^3 \times \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1$ and let $f : X \to Y$ be the inclusion map. We will analyze the branch points of the f with respect to F.

A simple but exhaustive calculation shows that there is no branch point in the hypersurface $x_0 = 0$, thus we concentrate in the Zariski open set $x_0 \neq 0$.

The affine charts for $y_0 \neq 0$. In the affine charts for $x_0 \neq 0$ and $y_0 \neq 0$ the equations defining X assume the form

$$1 + x^\ell + y^\ell + z^\ell = 0,$$

$$1 + u x = 0,$$

where $(1 : x : y : z) = (1 : \frac{x_1}{x_0} : \frac{x_2}{x_0} : \frac{x_3}{x_0})$ and $(1 : v) = (1 : \frac{y_1}{y_0})$. This yields the parametrization of X given by

$$x = (-1)^\frac{\ell}{2}(y^\ell + z^\ell + 1)^\frac{1}{2},$$

$$v = (-1)^\frac{\ell}{2}(y^\ell + z^\ell + 1)^{-\frac{1}{2}}.$$

Now, recall that the leaves of F are given by $\{const\} \times C$, hence the tangency points between X and F are the solutions to the equation $du = u_a dy + u_z dz = 0$. Thus the set of tangency points coincides with the solutions of the following system of equations

$$0 = \frac{\partial v}{\partial y} = (-1)^{\frac{\ell}{2}}(y^\ell + z^\ell + 1)^{-\frac{\ell}{2}},$$

$$0 = \frac{\partial v}{\partial z} = (-1)^{\frac{\ell}{2}}(y^\ell + z^\ell + 1)^{-\frac{\ell}{2}}.$$
or in other words
\[
\begin{cases}
 x = (-1)^{\frac{1}{\ell}} \\
y^\ell - 1 = 0 \\
z^\ell - 1 = 0 \\
v = -(-1)^{-\frac{1}{\ell}}
\end{cases}
\]

The solutions to this system of equations are given in terms of homogeneous coordinates by

\[S^{0,0}_k = \{(1 : \alpha_k : 0 : 0)\} \times \{(1 : -1/\alpha_k)\} \times \mathbb{P}^1,\]

where \(\alpha_k = \exp((2k+1)\pi i/\ell), k = 0, \ldots, \ell - 1\). Note that \(S^{0,0}_k\) is a solution with multiplicity \((\ell - 1)^2\) and that these solutions are contained in the codimension 2 variety given by \(x_2 = x_3 = 0\).

The affine chart for \(y_1 \neq 0\). On the other hand in the affine charts for \(x_0 \neq 0\) and \(y_1 \neq 0\) the equations defining \(X\) assume the form

\[1 + x^\ell + y^\ell + z^\ell = 0,\]
\[u + x = 0,
\]
where \((1 : x : y : z) = (1 : \frac{x_1}{x_0} : \frac{y_1}{x_0} : \frac{z_1}{x_0})\) and \((u : 1) = (\frac{u_1}{y_1} : 1)\). This leads to the parametrization of \(X\) given by

\[x = (-1)^{\frac{1}{\ell}}(y^\ell + z^\ell + 1)^{\frac{1}{\ell}} + 1\]
\[u = (-1)^{\frac{1}{\ell}}(y^\ell + z^\ell + 1)^{\frac{1}{\ell}}.\]

Since the leaves of \(\mathcal{F}\) are given by \(\{\text{const}\} \times \mathbb{C}\), then the tangency points between \(X\) and \(\mathcal{F}\) are the solutions to the equation \(du = u_y dy + u_z dz = 0\). Therefore the set of tangency points coincides with the solution to the system of equations

\[0 = \frac{\partial u}{\partial y} = (1)\frac{\ell+1}{\ell} y^{\ell-1}(y^\ell + z^\ell + 1)^{\frac{1}{\ell}}\]
\[0 = \frac{\partial u}{\partial z} = (1)\frac{\ell+1}{\ell} z^{\ell-1}(y^\ell + z^\ell + 1)^{\frac{1}{\ell}}\]

or in other words with the solutions to the system of equations

\[
\begin{cases}
 x = (-1)^{\frac{1}{\ell}} \\
y^\ell - 1 = 0 \\
z^\ell - 1 = 0 \\
u = -(-1)^{\frac{1}{\ell}}
\end{cases}
\]

In homogeneous coordinates the solutions to this system of equations are given by

\[S^{0,1}_k = \{(1 : \alpha_k : 0 : 0)\} \times \{(\alpha_k : 1)\} \times \mathbb{P}^1,\]

where \(\alpha_k = \exp((2k+1)\pi i/\ell), k = 0, \ldots, \ell - 1\). Note that \(S^{0,1}_k\) is a solution with multiplicity \((\ell - 1)^2\) and that this solution is contained in the codimension 2 variety \(x_2 = x_3 = 0\). Notice also that \(S^{0,1}_k = S^{0,0}_k\) for all \(k = 0, \ldots, \ell - 1\).

The residual formula. Consider the projections \(\pi_1 : Y = \mathbb{P}^3 \times \mathbb{P}^1 \rightarrow \mathbb{P}^3, \pi_2 : Y = \mathbb{P}^3 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1, \pi_3 : Y = \mathbb{P}^3 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1\) and \(\rho : Y = \mathbb{P}^3 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1 \times \mathbb{P}^1\). As usual, we denote a line bundle on \(Y\) by \(O(a, b, c) := \pi_1^* O_{\mathbb{P}^3}(a) \otimes \pi_2^* O_{\mathbb{P}^1}(b) \otimes \pi_3^* O_{\mathbb{P}^1}(c)\), with \(a, b, c \in \mathbb{Z}\). Now denote \(h_3 = c_1(O(1, 0, 0)), h_{1,1} = c_1(O(0, 1, 0)),\) and \(h_{1,2} = c_1(O(0, 0, 1))\).

Summing up, the set of non-transversal points is given by the following cycle

\[S = \sum_{k=0}^{\ell-1}(\ell - 1)^2 S^{0,0}_k.\]
Since \([S^0_k] = h_3^3 \cdot h_{1,1}\), we concluded that
\[
[S] = (\ell - 1)^2 \sum_{k=0}^{\ell-1} [S^0_k] = \ell(\ell - 1)^2 h_3^3 \cdot h_{1,1}.
\]

Recall that \(n = 3, k = 2, r = 2\), thus the left side of the formula stated in Theorem 1.1 assumes the form
\[
f_* (c_{n-k+1}(T_X) \cap [X]) = \sum_{i=1}^{r} (-1)^i f_* (c_{n-k+1-i}(T_X) \cap [X]) \cap s_i(N_X^r) = c_2(T_X) \cap [X] - c_1(T_X) \cap [X] \cap s_1(N_X^r) + c_0(T_X) \cap [X] \cap s_2(N_X^r) = \{ c_2(T_X) - c_1(T_X) \cap s_1(N_X^r) + s_2(N_X^r) \} \cap [X].
\]

Since the associated line bundles of \(V(x_0^3 + x_1^4 + x_2^4 + x_3^4)\) and \(V(x_0 y_0 + x_1 y_1)\) are \(\mathcal{O}(\ell, 0, 0)\) and \(\mathcal{O}(1, 1, 0)\), respectively, we have the short exact sequence
\[
0 \rightarrow T_X \rightarrow T_Y|_X \rightarrow \mathcal{O}(\ell, 0, 0) \oplus \mathcal{O}(1, 1, 0)|_X \rightarrow 0.
\]

Now let \(h_3 = c_1(\mathcal{O}(0, 0, 0)), h_{1,1} = c_1(\mathcal{O}(0, 1, 0)), h_{1,2} = c_1(\mathcal{O}(0, 0, 1))\), then by the Euler sequence for multiprojective spaces \([9]\), we conclude that
\[
c(T_Y) = (1 + h_3)^4 (1 + h_{1,1})^2 (1 + h_{1,2})^2.
\]

with relations \((h_3)^4 = (h_{1,1})^2 = (h_{1,2})^2 = 0\). Since \(c(\mathcal{O}(\ell, 0, 0) \oplus \mathcal{O}(1, 1, 0)) = (1 + \ell h_3)(1 + h_3 + h_{1,1})\) and
\[
c(T_Y)|_X = c(T_X) \cdot c(\mathcal{O}(\ell, 0, 0) \oplus \mathcal{O}(1, 1, 0)|_X)
\]
it follows that
\[
c_1(T_X) = (3 - \ell)h_3 + h_{1,1} + 2h_{1,2}, \quad c_2(T_X) = (4 - \ell)h_3 h_{1,1} + (6 - 2\ell)h_3 h_{1,2} + (3 - 3\ell + \ell^2)h_3^2 + 2h_{1,1} h_{1,2}.
\]

We calculate the Segre classes \(s_i(N_X^r)\) for \(i = 1, \ldots, r\). Since in our example \(r = 2\), then it is enough to calculate \(s_i(N_X^r), i = 1, 2\). The foliation \(\mathcal{F}\) is the restriction of \(\rho : Y = \mathbb{P}^3 \times \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1 \times \mathbb{P}^1\) to \(X\), then the normal bundle of \(\mathcal{F}\) is
\[
N_{\mathcal{F}} = \rho^*(T_{\mathbb{P}^3} \oplus T_{\mathbb{P}^1})|_X = (\mathcal{O}(0, 2, 0) \oplus \mathcal{O}(0, 0, 2))|_X.
\]
Thus \(N_X^r = (\mathcal{O}(0, -2, 0) \oplus \mathcal{O}(0, 0, -2))|_X\). Since \((h_{1,1})^2 = (h_{1,2})^2 = 0\) we get
\[
s_1(N_X^r) = 2(h_{1,1} + h_{1,2}), \quad s_2(N_X^r) = 4h_{1,1} h_{1,2}.
\]

Observe that
\[
c_1(T_X) \cap s_1(N_X^r) = ((3 - \ell)h_3 + h_{1,1} + 2h_{1,2}) \cdot (2(h_{1,1} + h_{1,2})) = (6 - 2\ell)h_3 h_{1,1} + (6 - 2\ell)h_3 h_{1,2} + 6h_{1,1} h_{1,2}.
\]

Thus
\[
c_2(T_X) - c_1(T_X) \cap s_1(N_X^r) + s_2(N_X^r) = (4 - \ell)h_3 h_{1,1} + (6 - 2\ell)h_3 h_{1,2} + (3 - 3\ell + \ell^2)h_3^2 + 2h_{1,1} h_{1,2} - ((6 - 2\ell)h_3 h_{1,1} + (6 - 2\ell)h_3 h_{1,2} + 6h_{1,1} h_{1,2}) + 4h_{1,1} h_{1,2} = (\ell - 2)h_3 h_{1,1} + (3 - 3\ell + \ell^2)h_3^2.
\]

Moreover, we have
\[
[X] = [V(x_0^4 + x_1^4 + x_2^4 + x_3^4)] \cap [V(x_0 y_0 + x_1 y_1)] = \ell h_3 + h_{1,1} = \ell h_3^2 + \ell h_{3} h_{1,1}.
\]
Thus
\[\{c_2(T_X) - c_1(T_X) \cap s_1(N^*_2) + s_2(N^*_2)\} \cap [X] = [(\ell - 2)h_3h_{1,1} + (3 - 3\ell + \ell^2)h^3] \cdot [h^2_3 + \ell h_3h_{1,1}].\]

Finally, we obtain
\[\{c_2(T_X) - c_1(T_X) \cap s_1(N^*_2) + s_2(N^*_2)\} \cap [X] = \ell(\ell - 2 + 3 - 3\ell + \ell^2)[h^3_3h_{1,1}]
\[= \ell(\ell - 1)^2h^3_3h_{1,1} = [S].\]

4.2. Non-integrable example. Let \(X\) be a complex-projective manifold of dimension \(\dim(X) = 2n + 1\). A contact structure on \(X\) is a regular distribution \(\mathcal{F}\) induced by a twisted 1-form
\[\omega \in H^0(X, \Omega^1_X \otimes L),\]
such that \(\omega \wedge (d\omega)^n \neq 0\) and \(L\) is a holomorphic line bundle. Suppose that the second Betti number of \(X\) is \(h_2(X) = 1\) and that \(X\) is not isomorphic to the projective space \(\mathbb{P}^{2n+1}\). Then it follows from [15] that there exists a compact irreducible component \(H \subset \text{RatCurves}^n(X)\) of the space of rational curves on \(X\) such that the intersection of \(L\) with the curves associated with \(H\) is 1. Moreover, if \(C \subset X\) is a generic element of \(H\), then \(C\) is smooth, tangent to \(\mathcal{F}\), and
\[TX|_C = \mathcal{O}_C(2) \oplus \mathcal{O}_C(1)^{n-1} \oplus \mathcal{O}_C^{n+1},\]
\[TF|_C = \mathcal{O}_C(2) \oplus \mathcal{O}_C(1)^{n-1} \oplus \mathcal{O}_C^{n-1} \oplus \mathcal{O}_C(-1).\]

See [16] Fact 2.2 and Fact 2.3. In particular, we obtain that \(N_{C|X} = \mathcal{O}_C(1)^{n-1} \oplus \mathcal{O}_C^{n+1}\), since \(T_C = \mathcal{O}_C(2)\). Then
\[\det(T_F)|_C - \det(N_{C|X}) = \mathcal{O}_C(1)\]
is ample. Examples of such manifolds are given by homogeneous Fano contact manifolds, cf. [1]. This example satisfies the conditions of Corollary [13].

REFERENCES

[1] A. Beauville, Fano contact manifolds and nilpotent orbits. Comment. Math. Helv. 73 (1998), no. 4, 566–583. MR1639888 (99e:14046)
[2] F. Bracci and B. Scárdua, Holomorphic vector fields transverse to polydiscs. J. London Math. (2) Soc., 75, 1, (2007), 99–115. MR2302732 (2008i:32049)
[3] J.-P. Brasselet, Une généralisation de la formule de Riemann-Hurwitz. Journées de géométrie analytique (Univ. Poitiers, Poitiers, 1972), pp. 99–106. Bull. Soc. Math. France Suppl. Mémo., No. 38. Soc. Math. France, Paris, 1974. MR0361176 (50 #13622)
[4] J.-P. Brasselet, Sur une formule de M. H. Schwartz relative aux revêtements ramifiés. C. R. Acad. Sci. Paris Sér. A-B. 283 (1976), no. 2, A1, A41–A44. MR0419818 (54 #7836)
[5] M. Brunella, Feuilletages holomorphes sur les surfaces complexes compacte. Ann. Sci. cole Norm. Sup. (4) 30 (1997), no. 5, 569–594. MR1474805 (98i:32051)
[6] M. Corrêa JR. and M. G. Soares, A Poincaré type inequality for one-dimensional multiprojective foliations. Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 3, 485–503. MR2833814 (2012h:32037)
[7] E. H. C. M. Diop, Résidus d’applications holomorphes entre variétés, Hokkaido Math. J. 29 (2000), no. 1, 171–200. MR1745509 (2001g:32077)
[8] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Band 2, Springer-Verlag, Berlin, 1984. xi+470 pp. ISBN: 3-540-12176-5. MR0732620 (85k:14004)
[9] T. Honda, A localization lemma and its applications, Singularities and complex analytic geometry (Kyoto, 1997). Sūrikaisekikenkyūshō Kōkyūroku No. 1033 (1998), 110–118. MR1660634 (2000e:58044)
[10] T. Honda, Tangential index of foliations with curves on surfaces, Hokkaido Math. J. 33 (2004), no. 2, 255–273. MR2072998 (2005i:32036)
[11] B. Iversen, Critical points of an algebraic function, Invent. Math., 12 (1971), 210–224. MR0342512 (49 #7258)
[12] T. Ito and B. Scárdua, On the classification of non-integrable complex distributions, Indag. Math. (N.S.), 17 (2006), 397–406. MR2321108 (2008i:32053)
[13] T. Izawa, Residues for non-transversality of a holomorphic map to a codimension one holomorphic foliation, J. Math. Soc. Japan 59 (2007), no. 3, 899–910. MR2344833 (2009a:32045)
[14] T. Izawa and T. Suwa, *Multiplicity of functions on singular varieties*, Internat. J. Math. 14 (2003), no. 5, 541–558. MR1993796 (2004f:14009)

[15] S. Kebekus, *Lines on contact manifolds*, J. Reine Angew. Math. 539 (2001), 167–177. MR1863858 (2002h:14069)

[16] S. Kebekus, *Lines on complex contact manifolds. II*, Compos. Math. 141 (2005), no. 1, 227–252. MR2099777 (2005i:14052)

[17] M. H. Schwartz, *Champs de repères tangents à une variété presque complexe*, Bull. Soc. Math. Belg. 19 (1967) 389–420. MR 0243449 (39 #4771)

Leonardo M. Câmara: DEPTO. DE MAT. – CCE, UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO – UFES

Current address: Av. Fernando Ferrari 514, 29075-910, Vitória - ES, Brasil.

E-mail address: leonardo.camara@ufes.br

M. Corrêa: DEPTO. DE MAT. – ICEX, UNIVERSIDADE FEDERAL DE MINAS GERAIS – UFMG

Current address: Av. Antônio Carlos 6627, 31270-901, Belo Horizonte-MG, Brasil.

E-mail address: mauriciomatufmg@gmail.com