Age- and Sex-Specific Relationships between Household Income, Education, and Diabetes Mellitus in Korean Adults: The Korea National Health and Nutrition Examination Survey, 2008-2010

So-Ra Kim1‡, Kyungdo Han2,3‡, Jin-Young Choi4, Jennifer Ersek5, Junxiu Liu5, Sun-Jin Jo2, Kang-Sook Lee1,2, Hyeon Woo Yim1,2, Won-Chul Lee1,2, Yong Gyu Park3, Seung-Hwan Lee3*, Yong-Moon Park1,2,5*

1 Graduate School of Public Health, The Catholic University of Korea, Seoul, Korea, 2 Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea, 3 Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea, 4 Catholic Medical Center, The Catholic University of Korea, Seoul, Korea, 5 Department of Epidemiology and Biostatistics, Arnold School of Public Health, The University of South Carolina, Columbia, South Carolina, United States of America, 6 Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea

‡ These authors contributed equally to this work.
* markYMpark@gmail.com (YMP); hwanx2@catholic.ac.kr (SHL)

Abstract

Background
To investigate the effects of age and sex on the relationship between socioeconomic status (SES) and the prevalence and control status of diabetes mellitus (DM) in Korean adults.

Methods
Data came from 16,175 adults (6,951 men and 9,227 women) over the age of 30 who participated in the 2008-2010 Korea National Health and Nutrition Examination Survey. SES was measured by household income or education level. The adjusted odds ratios (ORs) and corresponding 95% confidence intervals (95% CI) for the prevalence or control status of diabetes were calculated using multiple logistic regression analyses across household income quartiles and education levels.

Results
The household income-DM and education level-DM relationships were significant in younger age groups for both men and women. The adjusted ORs and 95% CI for diabetes were 1.51 (0.97, 2.34) and 2.28 (1.29, 4.02) for the lowest vs. highest quartiles of household income and education level, respectively, in women younger than 65 years of age (both P for linear trend < 0.05 with Bonferroni adjustment). The adjusted OR and 95% CI for diabetes...
was 2.28 (1.53, 3.39) for the lowest vs. highest quartile of household income in men younger than 65 (\(P\) for linear trend < 0.05 with Bonferroni adjustment). However, in men and women older than 65, no associations were found between SES and the prevalence of DM. No significant association between SES and the status of glycemic control was detected.

Conclusions

We found age- and sex-specific differences in the relationship of household income and education with the prevalence of DM in Korea. DM preventive care is needed for groups with a low SES, particularly in young or middle-aged populations.

Introduction

There is a rapidly increasing number of patients with diabetes mellitus (DM) worldwide; in fact, this disease is being described as an ‘epidemic’ [1,2]. The prevalence of DM in South Korea was 1.5% in 1972 and has since increased to 9.1% in 2005 and 9.6% in 2009 [3,4]. According to the annual report from Korea national statistical office, the mortality due to DM reached 207 per million people, which ranked DM as the 5th most common cause of mortality in 2010. These statistics demonstrate that DM is indeed becoming a great concern to national health, particularly with the increased socioeconomic burden in the country.

Environmental factors substantially contribute to the development of DM and are closely related to socioeconomic status (SES). SES is mainly evaluated by educational status, income, and occupation of the subject [5] and has been reported to be linked to dietary habits, exercise frequency, and health behavior [6]. The inverse relationship between SES and alcohol and cigarette use has been well documented, and increased alcohol and cigarette consumption may be related to the higher occurrence of DM [7]. Additionally, it was noted that as SES increases, the likelihood of regular exercise also increases [8]. Furthermore, people with a low SES are more likely to have exposure to toxic substances and are also less likely to have access to appropriate medical care [9]. In this regard, previous studies suggested an inverse relationship between SES and DM [10–12]. A 14-year follow-up study in the United States confirmed that DM occurred more frequently in those with a low SES [13].

Recent studies have shown that the association between SES and DM may have country variation [14,15]. The social environment of Korea has changed dramatically along with the rapid industrial development and westernization, which may have greatly influenced the association between SES and DM [16]. However, previous research conducted in the Korean population has only focused on the education level of the subjects [16] or has not considered the possibility of differential associations by age groups [17]. In addition, the association between SES and the control status of DM has not been studied. In the present study, we further explored the relationship between SES and DM by examining both education and household income as indicators of SES by particularly focusing on the effects of age and sex in Korean adults using the representative national data.

Subjects and Methods

Study population

Data for this cross-sectional study were collected from the Korea National Health and Nutrition Examination Survey (KNHANES) conducted in 2008–2010. A complex, stratified,
multistage probability sampling design based on age, sex, and region was applied in this survey to represent the non-institutionalized civilian Korean population. Details of the surveys performed in KNHANES have been described previously [18,19]. A total of 29,235 participants completed this survey. We excluded individuals younger than 30 years of age because this group is likely to be socioeconomically unstable, especially in their income status. After further exclusion of those with missing data on household income or education level, 16,175 participants remained available for analysis (6,951 men and 9,227 women). The participants were stratified by sex and age group (younger than 65 years or older than 65 years). The reason for categorizing the study subjects by the age of 65 was to consider the possible difference in their working status, growing background and experiencing social transition period. The Institutional Review Board at The Catholic University of Korea approved this study (MC12EASE0054), and written informed consent was obtained from all participants.

Data collection
Participants were asked about their household income and education level through an interview. They answered questions regarding their age, sex, marital status, history of smoking and drinking, residence and physical activity through a self-administered questionnaire. Place of residence was classified as rural or urban. Marital status was classified as unmarried, married or single (divorce or separated). Occupation was categorized as 1) sales and services; 2) agriculture, forestry, fishery; 3) engineering, assembling, technical work; 4) manual labor; or 5) no job, student or housewife. Smoking status was categorized as current smoker, ex-smoker or never smoked. Data on frequency and amount of alcohol consumed per day were also collected and categorized as non-drinker (≤ 1 g/day), moderate drinker (1–29.9 g/day) or heavy drinker (≥ 30 g/day). Information on food consumption was obtained via interview using the 24-hour recall method. Total caloric intake and the proportions of energy from carbohydrate, protein and fat were also estimated. Physical activity (regular exercise and walking) was also assessed. Regular exercise was defined as doing moderate exercise (i.e., swimming slowly, tennis, volleyball) for half an hour, 5 or more days per week, or doing intensive exercise (i.e., running, climbing, cycling, swimming fast, football, basketball) for approximately 20 minutes, 3 or more days per week. Participants were classified as walkers if they reported walking for more than 30 minutes at a time at least 5 days per week. The participants’ height, weight and waist circumference in everyday clothing were measured. Height was measured with an accuracy of 0.1 cm using a portable stadiometer (Seca 225; Seca, Hamburg, Germany), and weight was measured to the nearest 0.1 kg using an electronic scale (GL-6000–20; Caskorea, Seoul, Korea). Waist circumference (WC) was measured to the nearest 0.1 cm at the end of expiration; the measurement was made at the midpoint of the lower margin of the ribcage and the iliac crest in the participant’s mid-axillary line using a measuring tape (Seca 200; Seca). Body mass index (BMI) was calculated by dividing weight in kilograms by height in meters squared (kg/m²). Blood samples were collected after at least 8 hours of fasting. The specimens were immediately centrifuged, aliquoted, frozen at −70°C and moved to the central laboratory (NeoDIN Medical Institute, Seoul, Korea). The serum levels of glucose, triglycerides and high-density lipoprotein (HDL)-cholesterol were measured enzymatically using an automatic analyzer (Hitachi 7600; Hitachi, Tokyo, Japan). Glycated hemoglobin (HbA1c) levels were analyzed in 1,686 subjects (851 men and 835 women) with DM by high-performance liquid chromatography using HLC-723G7 (Tosoh, Japan).

Socioeconomic status variables
Household income and education levels were used to assess SES. Monthly income was standardized according to the number of family members (monthly income/√ number of family
members) and was divided into 4 quartile groups: lowest, lower middle, higher middle, and highest. Education level was assessed according to the number of years of schooling and classified into four categories: ≤6 years (elementary school), 7–9 years (middle school), 10–12 years (high school), and more than 13 years (university).

Diagnosis of diabetes mellitus

The participants were classified as having DM if they met one of the following conditions: 1) fasting plasma glucose 126 mg/dL or higher, 2) medical diagnosis of DM by a trained medical professional, or 3) treatment with oral hypoglycemic agents or insulin injections. The control status of DM was evaluated by HbA1c levels, with less than 7% being regarded as the optimal level.

Statistical analysis

All analyses were conducted using SAS version 9.2 (SAS Institute Inc., Cary, NC, USA). The means ± standard error (SE) for the continuous variables or the percentages (SE) for the categorical variables were calculated. A one-way ANOVA or a Rao-Scott chi-square test was used to compare the groups. The SAS survey procedure was applied to reflect the complex sampling design and the sampling weights of KNHANES and to provide nationally representative prevalence estimates. The trend of the relationship between household income and education level with DM was examined using P for trend. Multiple logistic regression analyses were used to estimate the prevalence odds ratios (OR), and 95% confidence intervals (CIs) of DM were calculated for each SES category. Several models were applied to evaluate the potential mediation effect of modifiable behaviors such as diet or exercise as well as to consider the effects of known risk factors such as metabolic abnormalities. Thus, model 1 was adjusted for age, place, marital status, smoking, alcohol intake, and education level (across household income) or household income (across education level); model 2 was adjusted further for regular exercise, fat intake, and energy intake; model 3 was further adjusted for BMI, hypertension, high triglycerides (≥150 mg/dL), and low HDL-cholesterol (<40 mg/dL for men and <50 mg/dL for women). Considering multiple comparisons based on age and gender, a Bonferroni-corrected significance threshold (alpha = 0.01667) was applied. In addition, we conducted stratified analyses to assess effect modification by gender and age on the associations between education and household income and DM. Interaction by sex and age was also evaluated. We assessed three-way interaction between age, sex and either household income or education. We also assessed two-way interaction between age or sex and household income or education.

Results

Table 1 shows the characteristics of the study population. The mean (± SE) age was 48.6 ± 0.2 years for men and 50.1 ± 0.2 years for women. The prevalence of DM and impaired glucose tolerance were significantly higher in men compared to women. The levels of household income and education were also higher in men compared to women.

Table 2 shows the distribution of characteristics by household income and education groups for men. A higher household income was associated with a younger age, higher energy and fat intake, higher BMI and WC, but lower prevalence of hypertension and DM. The percentages of urban living, alcohol intake and intensive exercise were higher, while those of smoking and walking were lower, in parallel with increases in household income. This pattern was similar when evaluating education levels; however there were no differences in energy intake according to educational status. The results in men were generally similar to those reported in women.
Table 1. General characteristics of the study participants according to sex.

Variables	Men (n = 6,951)	Women (n = 9,227)	P
Age (years)	48.6 ± 0.2	50.1 ± 0.2	<0.001
Income			
Lowest	14.6 ± 0.6	17.5 ± 0.6	
Lower middle	24.8 ± 0.7	25.7 ± 0.7	
Higher middle	29.7 ± 0.7	27.8 ± 0.6	
Highest	30.9 ± 0.9	27.0 ± 0.8	
Education			<0.001
≤ 6 years	15.6 ± 0.6	31.5 ± 0.8	
7–9 years	12.9 ± 0.5	12.0 ± 0.4	
10–12 years	34.9 ± 0.8	34.4 ± 0.7	
≥ 13 years	36.7 ± 1.0	22.1 ± 0.7	
Place			0.921
Rural	21.4 (1.7)	21.4 (1.6)	
Urban	78.6 (1.7)	78.6 (1.6)	
Marital status			<0.001
Unmarried	8.4 (0.5)	3.2 (0.2)	
Married	86.3 (0.6)	77.3 (0.6)	
Single	5.3 (0.3)	19.5 (0.6)	
Occupation			<0.001
Sales and services	18.9 (0.8)	17.5 (0.6)	
Agriculture/forestry/fishery	13.0 (1.2)	7.4 (0.8)	
Engineering/Assembling/technical work	33.5 (1.0)	3.5 (0.3)	
Manual labor	10.4 (0.5)	12.5 (0.4)	
No job/student/housewife	24.3 (0.8)	59.2 (0.8)	
Smoking			<0.001
Never smoked	20.9 (0.6)	91.8 (0.4)	
Ex-smoker	28.7 (0.7)	2.7 (0.2)	
Current	50.4 (0.7)	5.5 (0.3)	
Alcohol intake			<0.001
None	15.2 (0.5)	36.8 (0.7)	
Moderate	65.6 (0.7)	61.7 (0.7)	
Heavy	19.2 (0.6)	1.5 (0.2)	
Energy intake (kcal/day)	2265.5 ± 14.5	1604.5 ± 9.1	<0.001
Fat intake (% of energy)	42.7 ± 0.5	27.8 ± 0.3	
Exercise			<0.001
High intensive exercise	19.2 (0.6)	14.3 (0.5)	
No	80.8 (0.6)	85.7 (0.5)	
Moderate exercise			0.230
Yes	12.9 (0.5)	13.7 (0.5)	
No	87.1 (0.5)	86.3 (0.5)	
Walking exercise			0.136
Yes	43.3 (0.8)	41.8 (0.7)	
No	56.7 (0.8)	58.2 (0.7)	
Body mass index (kg/m²)	24.2 ± 0.1	23.6 ± 0.1	<0.001
Waist circumference (cm)	85.4 ± 0.1	79.6 ± 0.2	<0.001

(Continued)
Table 1. (Continued)

Variables	Men (n = 6,951)	Women (n = 9,227)	P
Fasting glucose (mg/dL)	101.9 ± 0.4	97.6 ± 0.3	<0.001
High triglyceride	24.9 (0.6)	11.2 (0.4)	<0.001
Low HDL-cholesterol	22.1 (0.6)	10.5 (0.4)	<0.001
Hypertension	36.1 (0.8)	28.3 (0.6)	<0.001
Diabetes mellitus status			
Diabetes mellitus	10.9 (0.4)	8.9 (0.4)	<0.001
Impaired glucose tolerance	24.7 (0.6)	17 (0.5)	<0.001
Normal glucose tolerance	64.4 (0.7)	74 (0.5)	<0.001

Values are means ± SE or percentages (SE).

doi:10.1371/journal.pone.0117034.t001

Table 2. Distribution of characteristics according to socioeconomic status in men.

Variable	Household income	Education level	P							
	Lowest (n = 1,329)	Lower middle (n = 1,730)	Higher middle (n = 1,923)	Highest (n = 1,969)	≤6 years (n = 1,470)	7–9 years (n = 988)	10–12 years (n = 2,229)	≥13 years (n = 2,264)	P	
Age (years)	59.3 ± 0.5	49.2 ± 0.4	45.5 ± 0.3	46.1 ± 0.3	<0.001	62.6 ± 0.4	55.2 ± 0.4	46.2 ± 0.3	42.7 ± 0.3	<0.001
Place	Rural	32.9 (2.8)	22.8 (2.1)	18.9 (1.9)	16.2 (1.8)	40.1 (2.8)	30.1 (2.6)	20.7 (2.0)	11.0 (1.4)	0.001
	Urban	65.1 (2.8)	77.2 (2.1)	81.1 (1.9)	83.8 (1.8)	60.0 (2.8)	69.9 (2.6)	79.3 (2.0)	89.0 (1.4)	<0.001
Marital status	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Unmarried	11.0 (1.2)	7.9 (0.9)	7.9 (0.8)	8.0 (1.0)	2.5 (0.5)	4.6 (0.8)	9.6 (0.8)	11.1 (0.9)	<0.001	
Married	76.6 (1.5)	85.9 (1.2)	89.0 (0.9)	88.6 (1.2)	86.4 (1.2)	87.6 (1.4)	85.7 (1.0)	86.4 (1.0)	<0.001	
Single	12.4 (1.2)	6.2 (0.7)	3.1 (0.5)	3.4 (0.5)	11.2 (1.1)	7.8 (1.1)	4.7 (0.5)	2.5 (0.4)	<0.001	
Occupation	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sales and services	6.2 (0.9)	16.2 (1.1)	24.5 (1.4)	26.1 (1.8)	6.1 (0.9)	11.7 (1.3)	20.8 (1.2)	35.2 (1.8)	<0.001	
Agriculture/forestry/	18.7 (1.9)	13.6 (1.5)	9.5 (1.3)	11.6 (1.8)	26.0 (2.3)	18.0 (2.0)	7.7 (1.1)	4.8 (1.0)	<0.001	
fishery	Engineering/	13.5 (1.1)	35.5 (1.5)	41.0 (1.7)	38.7 (2.1)	17.6 (1.5)	34.8 (2.0)	45.3 (1.6)	26.4 (1.8)	<0.001
assembling/										
technical work	Manual labor	13.1 (1.2)	10.3 (1.0)	10.6 (1.0)	8.0 (1.0)	15.1 (1.3)	12.2 (1.4)	9.0 (0.8)	6.5 (1.0)	<0.001
No job/student/	48.5 (1.9)	24.4 (1.3)	14.4 (1.1)	15.6 (1.4)	35.2 (1.7)	23.4 (1.7)	17.2 (1.0)	27.1 (1.8)	<0.001	
Alcohol intake	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Never smoked	20.2 (1.6)	17.2 (1.1)	20.0 (1.1)	24.7 (1.1)	17.12 (1.3)	17.9 (1.5)	17.6 (0.9)	26.6 (1.1)	<0.001	
Ex-smoker	30.4 (1.5)	27.4 (1.2)	28.0 (1.2)	29.5 (1.2)	35.6 (1.7)	30.7 (1.9)	27.5 (1.1)	26.2 (1.0)	<0.001	
Current	49.5 (1.9)	54.9 (1.52)	52.0 (1.3)	45.8 (1.4)	47.3 (1.7)	51.4 (2.1)	54.9 (1.3)	47.1 (1.2)	<0.001	
Energy intake (kcal/	2102.4 ± 34.5	2200.6 ± 27.6	2292.5 ± 26.3	2302.6 ± 26.7	2191.3 ± 34.8	2273.1 ± 26.0	2210.2 ± 31.1	2241.0 ± 24.7	0.279	

(Continued)
However, in contrast to men, BMI and WC were lower in women with higher household incomes and education levels. None of the three-way interactions we evaluated were significant. However, there was significant interaction by sex on the relationship between education and DM ($P < 0.001$) as well as between household income and DM ($P = 0.009$). There was also significant interaction by age group on the relationship between education and DM ($P = 0.001$) and on the relationship between household income and DM ($P < 0.001$). This supported the rationale for stratified analyses by gender and age group (S1 Fig.). Next, we investigated the prevalence of DM in age- and sex-specific groups according to household income and education. In men less than 65 years old, the prevalence of DM in the lowest, lower middle, higher middle, and highest household income groups was 19.3%, 10.0%, 8.2%, and 7.6% (P for trend < 0.001), respectively. The corresponding percentages of DM in women less than 65 years of age were 11.3%, 8.0%, 4.5%, and 4.1% (P for trend < 0.001), respectively. However, there were no differences in the prevalences of DM in either men or women over 65 years old according to the household income status (Fig. 1B). In men less than 65 years old, the prevalence of DM was lower with higher education levels (16.3% with less than 6 years of education, 14.4% with 7–9 years of education, 8.8% with 9–12 years of education and 7.0% with over 13 years of education; P for trend < 0.001). The corresponding percentages of DM in women less than 65 years of age were

Table 2. (Continued)

Variable	Household income	Education level								
	Lowest (n = 1,329)	Lower middle (n = 1,730)	Highest (n = 1,923)	Highest (n = 1,969)	< 6 years (n = 1,470)	7–9 years (n = 988)	10–12 years (n = 2,229)	> 13 years (n = 2,264)	P	
Fat intake (% of energy)	36.5 ± 1.1	39.6 ± 0.9	43.2 ± 1.0	44.5 ± 1.0	34.8 ± 0.9	43.5 ± 1.0	38.2 ± 1.2	45.7 ± 1.0	<0.001	
Exercise									0.002	
High intensive exercise	<0.001				15.5 (1.21)	20.8 (1.6)	21.8 (1.0)	17.8 (0.9)	<0.001	
No	87.3 (1.2)	80.8 (1.2)	80.0 (1.0)	78.3 (1.1)	84.5 (1.2)	79.2 (1.6)	78.2 (0.9)	82.0 (0.9)	<0.001	
Moderate exercise	0.729								<0.001	
Yes	11.8 (1.2)	13.5 (1.0)	12.8 (0.9)	13.1 (0.8)	14.8 (1.2)	14.0 (1.3)	14.6 (0.9)	10.1 (0.7)	<0.001	
No	88.2 (1.2)	86.6 (1.0)	87.2 (0.9)	86.9 (0.8)	85.2 (1.2)	86.0 (1.3)	85.4 (0.9)	89.9 (0.7)	<0.001	
Walking exercise	0.004								<0.001	
Yes	48.8 (1.8)	44.1 (1.5)	41.6 (1.3)	41.5 (1.3)	51.1 (1.6)	41.8 (1.9)	44.6 (1.2)	39.2 (1.2)	<0.001	
No	51.2 (1.8)	55.9 (1.5)	58.4 (1.3)	58.5 (1.3)	48.9 (1.6)	58.2 (1.9)	55.4 (1.2)	60.8 (1.2)	<0.001	
Body mass index (kg/m²)	23.6 ± 0.1	24.0 ± 0.1	24.1 ± 0.1	24.3 ± 0.1	23.5 ± 0.1	24.1 ± 0.1	24.0 ± 0.1	24.4 ± 0.1	<0.001	
Waist circumference (cm)	84.0 ± 0.3	85.2 ± 0.3	85.0 ± 0.2	85.8 ± 0.2	<0.001	83.8 ± 0.3	85.0 ± 0.2	85.3 ± 0.3	85.7 ± 0.2	<0.001
Fasting glucose (mg/dL)	102.2 ± 1.1	101.6 ± 1.0	102.6 ± 0.8	101.2 ± 0.5	0.411	99.0 ± 0.8	102.8 ± 0.7	103.6 ± 1.0	101.9 ± 0.7	0.001
High triglyceride	23.8 (1.4)	25.6 (1.4)	25.1 (1.2)	24.8 (1.1)	0.8406	22.8 (1.5)	28.7 (1.7)	25.9 (1.1)	23.6 (1.0)	0.0233
Low HDL-cholesterol	24.8 (1.4)	22.2 (1.3)	22.1 (1.2)	20.7 (1.0)	0.1802	24.4 (1.4)	26.8 (1.7)	20.8 (1.0)	20.7 (1.0)	0.0014
Hypertension	47.2 (1.8)	35.6 (1.4)	33.5 (1.3)	33.9 (1.3)	<0.001	48.3 (1.8)	43.1 (1.9)	35.4 (1.2)	29.3 (1.2)	<0.001
Diabetes mellitus	20.0 (1.4)	11.2 (0.9)	8.9 (0.8)	8.4 (0.7)	<0.001	17.1 (1.1)	16.3 (1.3)	9.9 (0.7)	7.5 (0.6)	<0.001

Values are means ± SE or percentages (SE).

Obtained by ANOVA for continuous variables and by chi-square test for categorical variables.

doi:10.1371/journal.pone.0117034.t002

(Table 3). However, in contrast to men, BMI and WC were lower in women with higher household incomes and education levels.

None of the three-way interactions we evaluated were significant. However, there was significant interaction by sex on the relationship between education and DM ($P < 0.001$) as well as between household income and DM ($P = 0.009$). There was also significant interaction by age group on the relationship between education and DM ($P = 0.001$) and on the relationship between household income and DM ($P < 0.001$). This supported the rationale for stratified analyses by gender and age group (S1 Fig.). Next, we investigated the prevalence of DM in age- and sex-specific groups according to household income and education. In men less than 65 years old, the prevalence of DM in the lowest, lower middle, higher middle, and highest household income groups was 19.3%, 10.0%, 8.2%, and 7.6% (P for trend < 0.001), respectively. The corresponding percentages of DM in women less than 65 years of age were 11.3%, 8.0%, 4.5%, and 4.1% (P for trend < 0.001), respectively (Fig. 1A). However, there were no differences in the prevalences of DM in either men or women over 65 years old according to the household income status (Fig. 1B). In men less than 65 years old, the prevalence of DM was lower with higher education levels (16.3% with less than 6 years of education, 14.4% with 7–9 years of education, 8.8% with 9–12 years of education and 7.0% with over 13 years of education; P for trend < 0.001). The corresponding percentages of DM in women less than 65 years of age were
Table 3. Distribution of characteristics according to socioeconomic status in women.

Variable	Household income (n = 2,136)	Education level (n = 3,469)	P		
	Lowest (n = 2,290)	Lower middle (n = 2,426)			
	Higher middle (n = 2,375)	Highest (n = 2,838)			
		≤6 years (n = 1,059)			
		7–9 years (n = 1,283)			
		10–12 years (n = 1,861)			
		≥13 years (n = 1,861)			
Age (year)	61.6 ± 0.4	49.8 ± 0.3	46.1 ± 0.3	46.5 ± 0.3	<0.001
Place					
Rural	35.2 (2.6)	21.6 (2.0)	18.1 (1.8)	14.7 (1.6)	<0.001
Urban	64.8 (2.6)	78.4 (2.0)	81.9 (1.6)	85.3 (1.6)	<0.001
Marital status					
Unmarried	2.6 (0.5)	2.8 (0.4)	3.9 (0.5)	3.1 (0.5)	<0.001
Married	54.0 (0.34)	76.9 (1.1)	83.9 (0.9)	87.8 (0.9)	<0.001
Single	43.3 (1.3)	20.4 (1.0)	12.2 (0.8)	9.17 (0.7)	<0.001
Occupation					
Sales and services	8.9 (0.8)	19.0 (1.2)	21.8 (1.1)	18.9 (1.2)	<0.001
Agriculture/forestry/fishery	12.3 (1.2)	7.3 (0.9)	5.5 (0.8)	5.3 (0.9)	<0.001
Engineering/	2.1 (0.4)	4.0 (0.5)	4.4 (0.5)	3.0 (0.5)	<0.001
Engineering/	14.1 (0.9)	15.9 (1.0)	11.8 (0.8)	7.8 (0.8)	<0.001
Engineering/	62.6 (1.4)	53.9 (1.4)	56.5 (1.4)	65.0 (1.6)	<0.001
Smoking					
Never smoked	89.6 (0.8)	90.3 (0.8)	92.6 (0.6)	94.0 (0.6)	<0.001
Ex-smoker	3.6 (0.5)	2.3 (0.4)	3.1 (0.4)	2.1 (0.3)	<0.001
Current	6.80 (0.7)	7.4 (0.7)	4.3 (0.5)	4.0 (0.5)	<0.001
Alcohol intake					
None	51.5 (1.4)	37.0 (1.3)	32.7 (1.1)	30.2 (1.2)	<0.001
Moderate	46.7 (1.4)	61.8 (1.3)	65.1 (1.8)	69.1 (1.5)	<0.001
Heavy	1.9 (0.4)	1.2 (0.3)	2.2 (0.4)	0.7 (0.2)	<0.001
Energy intake (kcal/day)	1523.5 ± 18.2	1608.7 ± 16.4	1640.9 ± 15.7	1684.6 ± 17.4	<0.001
Fat intake (% of energy)	24.9 ± 0.5	27.9 ± 0.6	29.1 ± 0.5	31.4 ± 0.5	<0.001
Exercise					
High intensive exercise			<0.001		
Yes	10.8 (0.8)	13.4 (1.0)	15.5 (0.9)	16.9 (1.0)	<0.001
No	89.9 (0.8)	86.6 (1.0)	84.5 (0.9)	83.1 (1.0)	<0.001
Moderate exercise	0.147				
Yes	11.7 (0.8)	14.2 (1.0)	14.6 (0.9)	13.6 (0.9)	<0.001
No	88.3 (0.8)	85.8 (1.0)	85.4 (0.9)	86.4 (0.9)	<0.001
Walking exercise	0.080		<0.001		
Yes	41.1 (1.4)	44.5 (1.2)	41.1 (1.2)	40.5 (1.3)	<0.001
No	58.9 (1.4)	55.5 (1.2)	58.9 (1.2)	59.5 (1.3)	<0.001
Body mass index (kg/m²)	23.9 ± 0.1	24.0 ± 0.1	23.6 ± 0.1	23.3 ± 0.1	<0.001
Waist circumference (cm)	80.6 ± 0.3	80.5 ± 0.3	79.7 ± 0.2	78.5 ± 0.2	<0.001
Fasting glucose (mg/dL)	97.9 ± 0.8	99.4 ± 0.6	97.1 ± 0.5	96.2 ± 0.4	<0.001

(Continued)
13.8%, 6.5%, 5.0%, and 2.1% (P for trend < 0.001), respectively (Fig. 1C). However, this tendency was not observed in men or women over 65 years old (Fig. 1D).

The OR for DM according to household income and education was analyzed by age- and sex-specific groups (Table 4). When compared model 1 without potential mediators and model 2 with potential mediators, no discernible differences were observed in the ORs. After additional adjustment for BMI, hypertension, high triglycerides, and low HDL-cholesterol, in men and women less than 65 years of age, the adjusted ORs (95% CI) of DM for the lowest vs. highest quartile of household income were 2.28 (1.53, 3.39) and 1.51 (0.97, 2.34), respectively. This demonstrated the trend that a lower household income level was associated with a higher prevalence of DM (both P for linear trend < 0.05 with Bonferroni adjustment). In addition, in

Table 3. (Continued)

Variable	Lowest (n = 2,136)	Lower middle (n = 2,290)	Higher middle (n = 2,426)	Highest (n = 2,375)	P
Household income					
High triglyceride	17.5 (1.1)	12.5 (0.8)	9.4 (0.7)	7.3 (0.6)	<.0001
Low HDL-cholesterol	15.1 (0.9)	11.1 (0.8)	9.6 (0.7)	7.7 (0.6)	<.0001
Hypertension	49.4 (1.3)	26.9 (1.1)	22.4 (1.1)	20.4 (1.1)	<.0001
Diabetes mellitus	15.9 (1.0)	10.3 (0.7)	6.0 (0.7)	5.7 (0.6)	<.0001

Education level	≤ 6 years (n = 3,469)	7–9 years (n = 1,059)	10–12 years (n = 2,838)	≥ 13 years (n = 1,861)	P
High triglyceride	18.7 (0.8)	10.7 (1.1)	8.5 (0.6)	4.9 (0.6)	<.0001
Low HDL-cholesterol	16.8 (0.8)	10.1 (1.0)	7.4 (0.5)	6.7 (0.7)	<.0001
Hypertension	54.2 (1.1)	32.0 (1.7)	16.5 (0.8)	7.6 (0.8)	<.0001
Diabetes mellitus	18.2 (0.9)	7.5 (0.9)	5.4 (0.5)	2.2 (0.5)	<.0001

Values are means ± SE or percentages (SE).

Obtained by ANOVA for continuous variables and by chi-square test for categorical variables.

doi:10.1371/journal.pone.0117034.t003

Fig 1. The prevalence of diabetes mellitus according to the level of household income in participants less than (A) or greater than (B) 65 years old and to the level of education in participants less than (C) or greater than (D) 65 years old. NS, non-specific.

doi:10.1371/journal.pone.0117034.g001
Table 4. Age- and sex-specific odds ratios (95% CIs) for diabetes mellitus according to socioeconomic status.

Household income	Education level			
Highest	13–12 years	7–9 years	≤6 years	P for trend
Lower middle				
Lowest				

Men	≥65 years	<65 years	
n	1,969	1,799	
Age-adjusted	1.11 (0.83,1.48)	1.08 (0.82,1.43)	<0.001
Model 1	1.16 (0.84,1.61)	1.15 (0.81,1.64)	<0.001
Model 2	1.19 (0.86,1.64)	1.19 (0.86,1.64)	<0.001
Model 3	1.07 (0.81,1.42)	1.11 (0.83,1.49)	<0.001

Women	≥65 years	<65 years	
n	2,375	2,151	
Age-adjusted	1.06 (0.78,1.45)	1.06 (0.78,1.45)	<0.001
Model 1	0.98 (0.71,1.35)	1.03 (0.73,1.43)	<0.001
Model 2	1.02 (0.72,1.44)	1.02 (0.72,1.44)	<0.001

(Continued)
women less than 65 years of age, the adjusted OR (95% CI) of DM for the lowest vs. highest level of education was 2.28 (1.29, 4.02), suggesting that a lower education level was associated with a higher prevalence of DM (\(P \) for linear trend < 0.05 with Bonferroni adjustment). In men less than 65 years of age, the unadjusted analysis showed significant association between education level and the prevalence of DM. However, this relationship disappeared after adjusting for multiple variables including household income. In men and women over 65 years of age, no associations were found between SES and the prevalence of DM.

The control rate of DM, defined as an HbA1c level of less than 7%, was assessed in subjects with DM. In both men and women, and in both age groups, no significant differences in control rate were noted according to household income and education subgroups (S1 and S2 Tables, S2 and S3 Figs.).

Discussion

The present study showed a significant relationship between household income and DM, as well as a significant relationship between education level and DM, in younger age groups for men and women. In men younger than 65, household income level was inversely associated with the prevalence of DM. In women younger than 65, household income and education level were both inversely associated with the prevalence of DM. However, these associations were not observed in the older age group.

SES has different influences according to sex and age, and studies examining the relationship between SES and DM have reported that the relationship varied depending on sex, race and the degree of development of societies and countries \[11,20,21\]. A study regarding the factors that affect the difference between the sexes, explained that this occurs because the impacts of household income and education are different in men and women \[22,23\].

In this study, household income levels in young or middle aged men and women younger than 65 were found to be correlated with the prevalence of DM. A low household income is
known to be associated with a variety of low health status indicators, such as low birth weight, early childhood mortality, and adult mortality [24]. It also has been reported that people with lower levels of income have limited resources; thus, they would not have a wide range of choices for food or the economic ability to conduct activities that are helpful for health; they have also been reported to have a high degree of psychosocial stress [25]. Because the low income group may not be able to afford health-related activities while those with higher incomes are able to afford these activities, people with a higher income level are reported to have a higher ability to control their health [26,27].

Similarly, education level in young or middle aged women less than 65 years old was associated with DM. This result was similar to results in other studies reporting that a low education level is related to DM in women but not in men [28–30]. Women with a higher SES have been shown to eat adequate foods [31,32] and manage their weight through regular exercise and by checking their health status periodically. Education affects the acquisition and comprehension of health knowledge, and women with higher levels of education have easier access to information and resources that are helpful for health improvement; additionally, women in general have a higher level of interest in health issues than men. It has also been reported that women make a greater effort to conduct healthy living habits when they were given SES indulgence compared with men [33,34], and women with a lower SES have more psychosocial stress than men [35,36]. This coincides with a study stating that a low SES in women would cause more negative impacts on health than a low SES in men [37]. It has also been reported that cardiovascular disease and metabolic syndrome, which are related to DM, were also associated with a low SES in women [38,39].

When stratifying by age, neither household income nor education level was associated with DM in elderly people over 65 years of age, which contrasts with the results observed in the younger age group. Several possible explanations could be considered regarding this phenomenon. Because the development of DM is highly dependent on aging, people aged 65 years and older may be greatly influenced by their physical status rather than by their health habits or external factors. It is also believed that the difficulty of conducting an accurate measurement of income level due to the changing status of working and levels of income might influence the results in the older group [40]. Previous studies have reported that younger age groups may learn healthy living habits more easily than older groups [41]. In addition, young adults and middle-aged people comprise the age group that is primarily responsible for earning a living; this age group also deals with a lot of stress. In fact, it has been reported that younger people with lower levels of income may overlook their health [42]. Thus, the influence of SES might be greater in younger populations compared to older ones.

The findings in this study should also be interpreted while considering the rapid changes in the social environment of Korea [16]. Korea’s elderly population was born during underdeveloped period, and most of those people have not received formal education and have spent most of their lifetime during periods in which the national SES was low. The younger age group worked actively in the period of rapid industrial development during the late 20th century. Our data show a large difference in the distribution of household income or education level between the two age groups. Most of the individuals in the older age group had lower levels of household income and education. Therefore, it was expected that the younger age group, which had experienced more dynamic changes in economic development and received more education, was more likely to be affected by SES.

Unexpectedly, we did not observe any associations between the status of DM control and household income or education, which contrasts with the results of previous studies [43,44]. Although we do not have a clear answer at this time, the wide coverage from national health insurance and the nationwide management program for DM provided by public health centers
in Korea might have lowered barriers to treatment and may have given equal opportunity for
the treatment of DM, independent of a person’s SES. However, further studies in conjunction
with various factors affecting glycemic control (e.g., treatment modality, adherence to treat-
ment, medical cost) need to be performed.

This study has several limitations. First, it is a cross-sectional study, which makes it difficult
to address the temporal sequence of DM and income status or education; prospective studies
are needed to better understand the relationship between SES and DM. Second, using the data
generated by KNHANES, we were not able to identify the type of DM. Therefore, we confined
the subjects to those aged 30 and over in an effort to reduce the possibility of including type 1
DM. Third, this study utilized the level of household income and education as the indices to
represent SES; however, it is insufficient to evaluate SES with only those indices. Fourth, the
small sample size in the elderly women with higher education made a relative standard error
greater than 30%, which could result in unreliable estimates. We also did not include an index
considering organizations to which individuals belong and features of local communities (an
indicator of social support), which represents another limitation.

Conclusions

This study observed a relationship of household income and education with DM in Korea
using nationally representative data in adults between 30 and 65 years of age. These findings
highlight the inequality of health according to SES in the younger population. With the increas-
ing prevalence of DM and the fact that SES is one of the most important factors determining
one’s lifestyle, further study examining the effects of SES on DM is essential. Furthermore, pre-
ventive care is needed for groups with low SES, particularly in the young or middle-
aged populations.

Supporting Information

S1 Table. Age- and sex-specific odds ratios (95% CIs) for the higher HbA1c levels (≥ 7%) according to household income levels.
(DOCX)

S2 Table. Age- and sex-specific odds ratios (95% CIs) for the higher HbA1c levels (≥ 7%) according to education levels.
(DOCX)

S1 Fig. Effect modification by age group (A) and gender (B) on the relationship between household income, education and DM.
(TIF)

S2 Fig. The control rate of DM (HbA1c < 7%) according to the level of household income in participants less than (A) or greater than (B) 65 years old. NS, non-specific.
(TIF)

S3 Fig. The control rate of DM (HbA1c < 7%) according to the level of education in participants less than (A) or greater than (B) 65 years old. NS, non-specific.
(TIF)

Author Contributions

Conceived and designed the experiments: SRK KH SHL YMP. Analyzed the data: SRK KH JE JL SJJ KSL HWY WCL YGP. Wrote the paper: SRK JYC SHL YMP.
References

1. Guariguata L, Whiting D, Weil C, Unwin N (2011) The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes Res Clin Pract 94: 322–332. doi:10.1016/j.diabres.2011.10.040 PMID: 22100977

2. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, et al. (2006) Epidemic obesity and type 2 diabetes in Asia. Lancet 368: 1681–1688. PMID: 17098087

3. Kim DJ (2011) The epidemiology of diabetes in Korea. Diabetes Metab J 35: 303–308. doi:10.4093/dmj.2011.35.4.303 PMID: 21991400

4. Park Le B, Kim J, Kim DJ, Chung CH, Oh JY, et al. (2013) Diabetes epidemics in Korea: reappraise nationwide survey of diabetes “diabetes in Korea 2007”. Diabetes Metab J 37: 233–239. doi:10.4093/dmj.2013.37.4.233 PMID: 23991400

5. Galobardes B, Shaw M, Lawlor DA, Lynch JW, Davey Smith G (2006) Indicators of socioeconomic position (part 1). J Epidemiol Community Health 60: 7–12. PMID: 17708005

6. Brown AF, Ettner SL, Piette J, Weinberger M, Gregg E, et al. (2004) Socioeconomic position and health among persons with diabetes mellitus: a conceptual framework and review of the literature. Epidemiol Rev 26: 63–77. PMID: 15234948

7. Choi BC, Shi F (2001) Risk factors for diabetes mellitus by age and sex: results of the National Population Health Survey. Diabetologia 44: 1221–1231. PMID: 11692170

8. Yoon YS, Oh SW, Park HS (2006) Socioeconomic status in relation to obesity and abdominal obesity in Korean adults: a focus on sex differences. Obesity (Silver Spring) 14: 909–919. PMID: 16855201

9. Adler NE, Newman K (2002) Socioeconomic disparities in health: pathways and policies. Health Aff (Millwood) 21: 60–76. PMID: 11900187

10. Evans JM, Newton RW, Ruta DA, MacDonald TM, Morris AD (2000) Socio-economic status, obesity and prevalence of Type 1 and Type 2 diabetes mellitus. Diabet Med 17: 478–480. PMID: 10975218

11. Tang M, Chen Y, Krewski D (2003) Gender-related differences in the association between socioeconomic status and self-reported diabetes. Int J Epidemiol 32: 381–385. PMID: 12777423

12. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A (2011) Type 2 diabetes incidence and socioeconomic position: a systematic review and meta-analysis. Int J Epidemiol 40: 804–818. doi:10.1093/ije/dyr029 PMID: 21335614

13. Lee TC, Glynn RJ, Pena JM, Paynter NP, Conen D, et al. (2011) Socioeconomic status and incident type 2 diabetes mellitus: data from the Women’s Health Study. PLoS One 6: e27670. doi:10.1371/journal.pone.0027670

14. Assari S (2014) Cross-country variation in additive effects of socio-economics, health behaviors, and comorbidities on subjective health of patients with diabetes. J Diabetes Metab Disord 13: 36. doi: 10.1186/2251-6581-13-36 PMID: 24559091

15. Assari S, Lankarani RM, Lankarani MM (2014) Cross-country differences in the association between diabetes and disability. J Diabetes Metab Disord 13: 3. doi: 10.1186/2251-6581-13-3 PMID: 24393171

16. Ko MJ, Kim MK (2012) The relationship between high blood glucose and socio-economic position in childhood and adulthood in Korea: findings from the Korean National Health and Nutrition Examination, 2007–09. Int J Epidemiol: 1–10. PMID: 22523758

17. Lee DS, Kim YJ, Han HR (2013) Sex differences in the association between socio-economic status and type 2 diabetes: data from the 2005 Korean National Health and Nutritional Examination Survey (KNHANES). Public Health 127: 554–560. doi: 10.1016/j.puhe.2013.02.001 PMID: 23706862

18. Lee J, Lee S, Jang S, Ryu OH (2013) Age-Related Changes in the Prevalence of Osteoporosis according to Gender and Skeletal Site: The Korean National Health and Nutrition Examination Survey 2008–2010. Endocrinol Metab (Seoul) 28: 180–191. doi: 10.3803/EnM.2013.28.3.180 PMID: 24396677

19. Park YH, Shin JA, Han K, Yim HW, Lee WC, et al. (2014) Gender difference in the association of metabolic syndrome and its components with age-related cataract: the Korean National Health and Nutrition Examination Survey 2008–2010. PLoS One 9: e85068. doi: 10.1371/journal.pone.0085068 PMID: 24416342

20. Hosseinpour AR, Bergen N, Kunst A, Harper S, Guthold R, et al. (2012) Socioeconomic inequalities in risk factors for non communicable diseases in low-income and middle-income countries: results from the World Health Survey. BMC Public Health 12: 912. doi: 10.1186/1471-2458-12-912 PMID: 23102008

21. Ploubidis GB, Mathenge W, De Stavola B, Grundy E, Foster A, et al. (2013) Socioeconomic position and later life prevalence of hypertension, diabetes and visual impairment in Nakuru, Kenya. Int J Public Health 58: 133–141. doi: 10.1007/s00038-012-0389-2 PMID: 22814479
22. Rabi DM, Edwards AL, Southern DA, Svenson LW, Sargious PM, et al. (2006) Association of socioeconomic status with diabetes prevalence and utilization of diabetes care services. BMC Health Serv Res 6: 124. PMID: 17018153

23. Robbins JM, Vaccarino V, Zhang H, Kasi SV (2001) Socioeconomic status and type 2 diabetes in African American and non-Hispanic white women and men: evidence from the Third National Health and Nutrition Examination Survey. Am J Public Health 91: 76–83. PMID: 11189829

24. Duncan GJ (1996) Income dynamics and health. Int J Health Serv 26: 419–444. PMID: 8840196

25. Dallongeville J, Costel D, Ferrieres J, Arveiler D, Bingham A, et al. (2005) Household income is associated with the risk of metabolic syndrome in a sex-specific manner. Diabetes Care 28: 409–415. PMID: 15677801

26. Drewnowski A, Specter SE (2004) Poverty and obesity: the role of energy density and energy costs. Am J Clin Nutr 79: 6–16. PMID: 14684391

27. Larrimore J (2011) Does a higher income have positive health effects? Using the earned income tax credit to explore the income-health gradient. Milbank Q 89: 694–727. doi: 10.1111/j.1468-0009.2011.0647.x PMID: 22188352

28. Agardh EE, Ahlbom A, Andersson T, Efendic S, Grill V, et al. (2007) Socio-economic position at three points in life in association with type 2 diabetes and impaired glucose tolerance in middle-aged Swedish men and women. Int J Epidemiol 36: 84–92. PMID: 17510076

29. Kautzky-Willer A, Donner T, Jensby A, Rieder A (2012) Women show a closer association between educational level and hypertension or diabetes mellitus than males: a secondary analysis from the Austrian HIS. BMC Public Health 12: 392. doi: 10.1186/1471-2458-12-392 PMID: 22646095

30. Wikstrom K, Lindstrom J, Tuomilehto J, Saaristo TE, Korpi-Hyovalti E, et al. (2011) Socio-economic differences in dysglycemia and lifestyle-related risk factors in the Finnish middle-aged population. Eur J Public Health 21: 768–774. doi: 10.1093/eurpub/ckq164 PMID: 21088078

31. Turrell G, Kavanagh AM (2006) Socio-economic position in diet: modelling the association between socio-economic position and food purchasing behaviour. Public Health Nutr 9: 375–383. PMID: 16684390

32. Hur I, Jang MJ, Oh K (2011) Food and nutrient intakes according to income in korean men and women. Osong Public Health Res Perspect 2: 192–197. doi: 10.1016/j.phrp.2011.11.044 PMID: 24159472

33. Barbeau EM, Krieger N, Soobader MJ (2004) Working class matters: socioeconomic disadvantage, race/ethnicity, gender, and smoking in NHIS 2000. Am J Public Health 94: 269–278. PMID: 14759942

34. Loucks EB, Rehkopf DH, Thurston RC, Kawachi I (2007) Socio-economic disparities in metabolic syndrome differ by gender: evidence from NHANES III. Ann Epidemiol 17: 19–26. PMID: 17140811

35. Jeffery RW (1996) Socioeconomic status, ethnicity and obesity in British adults. Ann Epidemiol 6: 263–265. PMID: 8876835

36. Wardle J, Griffith J (2001) Socioeconomic status and weight control practices in British adults. J Epidemiol Community Health 55: 185–190. PMID: 11160173

37. Sorlie PD, Backlund E, Keller JB (1995) US mortality by economic, demographic, and social characteristics: the National Longitudinal Mortality Study. Am J Public Health 85: 949–956. PMID: 7604919

38. Schooling CM, Jiang CQ, Lam TH, Zhang WS, Cheng KK, et al. (2008) Life-course origins of social inequalities in metabolic risk in the population of a developing country. Am J Epidemiol 167: 419–428. PMID: 18056924

39. Veronika Brezinka FK (1996) Psychosocial factors of coronary heart disease in women: A review. Soc Sci Med 42: 1351–1365. PMID: 8739892

40. Kowall B, Rathmann W, Strassburger K, Meisinger C, Holle R, et al. (2011) Socioeconomic status is not associated with type 2 diabetes incidence in an elderly population in Germany: KORA S4/F4 cohort study. J Epidemiol Community Health 65: 606–612. doi: 10.1136/jech.2009.094086 PMID: 20693490

41. Myong JP, Kim HR, Jung-Choi K, Baker D, Choi B (2012) Disparities of metabolic syndrome prevalence by age, gender and occupation among Korean adult workers. Ind Health 50: 115–122. PMID: 22293725

42. Park BS, Jin GN, Choi YC, Chung JH, Kim KH, et al. (2005) Self-Management and Health-Related Quality of Life in Adolescent and Adulthood Diabetic Patients. J Korean Diabetes Assoc 29: 254–261.

43. Gallegos-Macias AR, Macias SR, Kaufman E, Skipper B, Kalishman N (2003) Relationship between glycemic control, ethnicity and socioeconomic status in Hispanic and white non-Hispanic youths with type 1 diabetes mellitus. Pediatr Diabetes 4: 19–23. PMID: 14655519

44. Hassan K, Loar R, Anderson BJ, Heptulla RA (2006) The role of socioeconomic status, depression, quality of life, and glycemic control in type 1 diabetes mellitus. J Pediatr 149: 526–531. PMID: 17011326