The effect of B_4C amount on wear behaviors of Al-Graphite/B_4C hybrid composites produced by mechanical alloying

İjlal Şimşek*

Karabuk University, TOBB Technical Sciences Vocational School, Department of Machinery and Metal Technology, 78050, Karabuk, Turkey, ORCID ID orcid.org/0000-0001-6542-8567

ARTICLE INFO

Article history:
Received 22 April 2019
Revised form 31 May 2019
Accepted 19 June 2019
Available online 30 June 2019

Review Article

DOI: 10.30728/boron.556707

Keywords:
Aluminum matrix composites, Friction coefficient, Mechanical alloying, Wear behaviors.

ABSTRACT

In this study, wear behavior of composite materials produced by mechanical alloying method adding different amounts of B_4C in the Al-Gr matrix were investigated. After adding 2% (vol.) graphite to the aluminum matrix, 3 different amounts (3%, 6% and 9%) of B_4C were added. The composite powders prepared were mechanically alloyed for 60 minutes. The milled powders were cold-pressed under 700 MPa pressure. The green compacts produced were sintered at 600 °C for 120 minutes. The sintered B_4C reinforced aluminum composite materials were characterized by the Scanning Electron Microscope, X-ray diffraction, and hardness and density measurements. Wear tests were performed on a standard pin-on-disc wear testing device with a load of 20 N at a sliding speed of 0.5 ms⁻¹ and four different sliding distances (between 250-1000 m) according to ASTM G99 standard. As a result of the studies, the hardness increases as the amount of B_4C in the composite material increases, while the density of AMC decreases. As a result of the wear tests, the highest weight loss was obtained in the non-reinforced Al-Gr matrix alloy, while the lowest weight loss was obtained in 9% B_4C reinforced composite materials. However, it was observed that there was a decrease in the friction coefficient with increasing amount of reinforcement.

1. Introduction

Particle reinforced aluminum matrix composites (AMCs) are considered as a group of materials that can be developed due to their lightness, high strength, low thermal expansion coefficient and good wear resistance [1, 2]. Different reinforcing elements such as SiC [3], Al$_2$O$_3$ [4], TiB$_2$ [5, 6], TiC [7] and B_4C [8, 9] are widely used in the production of these composites. Boron carbide (B_4C), which is among the lightweight ceramic material groups, has high neutron absorbing characteristics as well as high melting temperature, high mechanical properties and good chemical resistance [8, 10]. In contrast, B_4C has significant disadvantages such as low fracture toughness and high sintering temperature have significant disadvantages. Therefore, B_4C particles are preferred as a reinforcing element in the particle reinforced AMCs [2, 11]. In the production of the particle-reinforced AMCs, different production methods are widely used, such as die casting, non-pressurized infiltration, spray forming and powder metallurgy [12, 13]. In the production of AMCs, some problems are encountered, such as reinforcement phase wettability and non-homogeneous distribution during the methods such as casting and non-pressurized infiltration [14, 15]. Powder metallurgy method is widely used in AMC production as it offers some advantages such as homogeneous reinforcement distribution and low process temperatures, as well as not requiring a secondary treatment [16-18]. Mechanical properties of the composites can be improved depending on the amount of reinforcement phase in the matrix in AMCs. In many previous studies, it has been stated that as the amount of reinforcement in the matrix increases, the hardness and therefore the wear resistance of the composite material are increased [5, 6, 15, 19]. In addition, in a study by Pul et al. [14], it is emphasized that the addition of solid lubricants such as MoS$_2$, BN, Gr and CaF$_2$ in the particle-reinforced AMCs improves the wear resistance of the composites. Among these solid lubricants, graphite has a very low friction coefficient during sliding, since it contains weakly bonded layers even though it has strong crystalline bonds. Al-Gr alloy composites exhibit lower friction and higher wear resistance, but have high damping capacity and good processability, but Al-Gr alloy composites have reduced mechanical properties due to their graphite content [20]. In the study by Jadhav et al. [21], it has been stated that the density decreases with graphite and B_4C reinforcement in A356/B$_4C$/Gr composite material and the hardness increases, and there is also an improvement in the tensile strength. In another similar study, it was reported that the hardness, tensile, bending and compressive strengths of Al7075-Al$_2$O$_3$-graphite hybrid composites were increased as the weight percentage of the ceramic reinforcing element increased, while the hybrid composites containing graphite exhibited excellent wear resistance [22]. Therefore, in this study, different amounts of B_4C were added to Al-Gr alloy matrix...
composite materials were produced by mechanical alloying method which is a powder metallurgy method. It is aimed to determine the effect of addition of B,C in different amounts in the structure of composite materials on the microstructure and wear behaviors under a constant load.

2. Materials and methods

In the experimental studies, aluminum (Al) powder (vol.%) having a size of <50 μm and a purity of 99.5% and graphite of 2% having a size of <40 μm were used as the matrix material. The Al matrix was reinforced with B,C (vol.%) having a powder size of <30 μm in three different amounts (3%, 6% and 9%). The chemical composition of the AMCs powders produced is provided in Table 1.

Table 1. The chemical composition of the AMCs powders.

Al	Graphite (%)	B,C (%)	
Al-Gr	98	2	---
3B,C	95	2	3
6B,C	92	2	6
9B,C	89	2	9

The powders having the chemical composition given in Table 1 are mechanically alloyed in a planetary mill. During Mechanical alloying/Mechanical milling (MA/MM) processes, a stainless steel milling cell (400 ml), stainless steel balls having a diameter of 10 mm, a ball to powder ratio of 1:10, 1% of ethanol is used to prevent agglomeration, and a milling time of 60 minutes were used in the atmospheric environment. Mechanically alloyed Al composite powders were cold pressed (700 MPa) and green compacts of Ø10x7 mm were produced. The produced green compacts were sintered at 600 °C under argon for 120 min and cooled to room temperature in a furnace. A Protherm HLF 50 heat treatment furnace was used for the sintering process. Standard metallographic treatments (sandblasting and polishing) were applied for the microstructure analyses and the samples prepared were etched with a solution of 2 ml HF, 3 ml HCl, 20 ml HNO₃, 175 ml H₂O (Keller’s) solution for 10-15 seconds. Microstructural analyses of the etched samples were carried out by Carl Zeiss Ultra Plus Gemini Scanning Electron Microscope and Electron Diffraction Spectroscopy (SEM+EDS). In addition, the sintered samples were characterized by X-ray diffraction (XRD), and hardness and density measurements. For XRD analysis were recorded on a Rigaku Ultima IV X-ray diffraction spectrometer using Cu kα (λ: 1.54A) and a scanning rate of 3°/min. Diffraction patterns were obtained with 2 theta (Bragg angle) between 10° and 90°. Density measurements were made according to Archimedes’ principle. Density measurements were taken on three samples and averaged. Hardness measurements were taken with using Shimadzu microhardness tester for 10 seconds by using HV2. The hardness measurements were obtained by using three different samples, at five different points and used averaged. Wear tests were carried out at four different (between 250-1000 m) sliding distances at a sliding speed of 0.5 ms⁻¹ under a load of 20 N on a pin on disc wear test device according to ASTM G99 standard. Before each wear test, the surface of samples and disks were cleaned with acetone. In the wear tests, three different samples were tested for each parameter and the results were averaged. Wear rates were calculated by the equation given in Equation 1 using the weight loss results obtained.

\[Wa = \frac{\Delta m}{M.s.p} \] (1)

Wherein, \(Wa \) is the wear rate, \(\Delta m \) is the weight loss (g) obtained after the wear test, \(M \) is the load (N) used in the tests, \(s \) is the sliding distance (m), and \(p \) is the density (g/cm³) of the wear sample. After the wear test, SEM images of the worn surface were examined and the active wear mechanisms were tried to be determined.

3. Results and discussion

The microstructure of the SEM images and large area EDS results of the different amounts of B,C reinforced AMCs are given in Figure 1.

When the microstructure SEM images of AMCs produced by the addition of different amounts of B,C in the Al-Gr matrix were given in Figure 1. In Figure 1.a, seen that there were undissolved graphite particles in the Al matrix. This situation was described with formation of the large Gr particles in the Al matrix with mechanical alloying, and so the graphite particles were not completely dissolved in the structure. In a previous study, it was stated that in the Al-C system, the smaller graphite particles were completely dissolved in the structure and the larger graphite particles remained as graphite particles in the structure [23]. Sinan et al. [24] described the graphite powders could be distributed homogeneously in the Al matrix with mechanical alloying time at room temperature. It is clear that B,C added to the Al-Gr matrix is homogeneously distributed. It is seen that the B,C added as reinforcement is located at the grain boundaries. However, it is understood on the SEM images that there is an oxidation in the structure (white points). In the large area EDS results given in Figure 1.e, this is supported by the presence of some O with matrix Al, B and C. In addition, as the amount of reinforcement in the structure increases, micro-voids occur especially at the grain boundaries. The XRD analysis result of the composite material in which 9% of B,C are added to the Al-Gr matrix is given in Figure 2.

In Figure 2, XRD analysis results were given. In Figure 2 seen that Al₃C₄ compound which is expected to occur in the structure together with matrix Al, C (graphite) and B,C is formed. In the study of Bostan et al. [25], it is stated that Al₃C₄ compound is formed in the nanoscale in the alloy by sintering in Al-C system produced by the mechanical alloying method. It is also
understood that Al\(_3\)B\(_4\)C is formed in the structure. In the study of Mohanty et al. [26], it was stated that Al-B-C compounds were formed along the grain boundaries in the structure with B\(_4\)C added at a ratio of 1% and 2%, and as the amount of B\(_4\)C increased (3%-25%), Al-B, boron carbide and Al-boron carbide were formed instead of Al-B-C triple system. However, in the same study, it was stated that the microstructure became more complex with increasing amount of B\(_4\)C in the structure and the phase accumulation increased along the grain boundaries. The changes in the hardness and density of AMC materials produced by adding different amounts of B\(_4\)C to the Al-Gr matrix are given in Figure 3.

When the hardness changes of the AMCs produced by adding different amounts of B\(_4\)C given in Figure 3 are examined, it is seen that this parameter increases with increasing amount of reinforcement as compared to the reference material (Al-Gr). The lowest hardness value was obtained as 687 HV in the matrix material.
The highest hardness was obtained as 788 HV in the composite material with 9% of B_4C. This can be explained by the mixture law given in Equation 2 [27].

\[H_c = H_m F_m + H_t F_t \]

(2)

Hc, Hm and Ht given in the equation are the hardness of the composite, matrix and reinforcement material respectively, Fm and Ft are the fraction of the matrix and reinforcement material respectively. According to Equation 1, the hardness increases due to the increased hard reinforcement ratio in the matrix. Similar results were obtained in the previous studies [11, 18, 28, 29]. The hardness increases could be described with the increasing of the reinforcement ratios in the AMC system [30]. Also, the density changes were given in Figure 3. The decreases of the density ratios in Figure 3 could be described with the increasing of B_4C reinforcement ratios in the AMC parts [31]. The highest density value was obtained in the matrix material (Al-Gr) as 2.68 g/cm³, whereas the lowest density value was obtained in the material with 9% of B_4C as 2.64 g/cm³. This decrease in AMC densities could be described with the B_4C particules having lower density ratios than main matrix. Also, when the wear rate results were examined in Figure 4, it could be seen that they were compatible with the results of weight loss. In addition, the wear rate was decreased as the sliding distance and the amount of reinforcement in the matrix are increased [34]. However, the presence of graphite in the composition of composite materials was another reason for the decreasing of the wear rate. In the graphite-containing Al hybrid composites, the graphite between the pin/disc reduces the wear by facilitating the sliding over the contact surface [35, 36]. In Figure 5 seen the friction coefficients of the composite materials produced by the addition of different B_4C amounts in the Al-Gr matrix under a constant load.
In Figure 5, the friction coefficients of the composite materials with different amounts of B_4C were given. In Figure 5 could be seen that the friction coefficient decreases with the amount of reinforcement and sliding distance. The oxide layer formed by the effect of heat caused by friction between the pin-disc is effective in reducing the friction coefficient. Similar results were obtained in a study by Özyürek et al. [5]. In addition, the graphite in the composition of the composite materials production was another important factor in the reduction of friction coefficient. In the study of Baradeswaran and Perumal [22], they were stated that the graphite in the structure reduces the friction coefficient by about 50%. In Figure 6 given the SEM images of the worn surface images of the AMC materials produced by the addition of the different B_4C amounts in the Al-Gr matrix.

![Figure 6](image1.png)

Figure 6. SEM images of the worn surface of the AMC materials produced by the addition of different amounts of B_4C, Al-Gr (a), Al-Gr + 3% B_4C (b), 6% B_4C (c), 9% B_4C (d).

![Figure 7](image2.png)

Figure 7. SEM and MAPPING images of the worn surface of the Al-Gr + 9% of B_4C composite material.
In Figure 6, the SEM images of the worn surface of the composite materials were given and in the images determined that with the increasing of the B\(_4\)C ratios the damages on the surfaces decreased. Especially in the Al-Gr alloy used as a matrix (Figure 6.a), the oxides (white areas) formed with stripping were seen more clearly. It was understood that the stripping on the sample surfaces decreases depending on increasing amount of B\(_4\)C. It was clearly seen that the stripping was having minimal on the worn surface of the composite material containing 9% of B\(_4\)C as compared to the other composites. In addition, the friction coefficient results given in Figure 6 supported this situation. Increased surface roughness due to spilling on the surface causes friction coefficient to increase. MAPPING results of the worn surface of AMC materials produced by adding different amounts of B\(_4\)C to the Al-Gr matrix were given in Figure 7.

In the MAPPING images of the AMCs reinforced with different amounts of B\(_4\)C (Figure 7) were clear determined that an oxide layer was formed on the surface (due to pin-ring friction) as a result of the wear tests. The heat released between the disc and the sample contact surfaces during wear tests causes the formation of oxide layers on the surface of the Al matrix. This oxide layer on the surface was an important factor affecting the tribological parameters such as weight loss, friction coefficient and wear rate. Because, this oxide layer on the surface was protected the surface with its solid lubricant effect [22]. The graphite (C), which exhibits a homogeneous distribution in the matrix as well as the oxide layer formed on the worn surface, forms a thin film in the metal-metal contact region during friction and this film prevents the oxide particles from breaking [36]. Therefore, both the graphite in the structure and the oxide layer formed during the wear test serve as a solid lubricant together, which makes a significant contribution to the wear resistance of the Al composite. In previous similar studies, it was stated that the graphite addition in the main matrix has formed a film layer that acts as a solid lubricant on the contact surface. Also, this film was increased the wear resistance of composite materials. [37, 38].

4. Conclusions

The results of the wear behavior of the composite materials were given as below results, obtained after the addition of different B\(_4\)C amounts in the Al-Gr matrix under a constant load.

- It was determined that B\(_4\)C reinforcement was distributed homogenously in the microstructure of the Al/Gr/B\(_4\)C composites produced using powder metallurgy method, as expected and that they usually located at the grain boundaries. Micro-voids were formed as the amount of reinforcement increases.

- It was determined in the Al-Graphite-9% B\(_4\)C structures XRD analysis results that, the Al\(_2\)C\(_3\) and Al\(_2\)B\(_4\)C

intensities formation were determined in the produced parts which were formed in the main phase structure.

- The hardness of Al-Graphite-B\(_4\)C AMCs was increased with increasing amount of B\(_4\)C in the matrix.

- The density of Al-Graphite-B\(_4\)C AMCs was decreased with increasing amount of B\(_4\)C in the matrix.

- As a result of the wear tests, the highest weight loss was obtained in the non-reinforced Al-Graphite sample. It was determined that weight loss decreased with increasing B\(_4\)C in the matrix.

- As a result of the wear tests, the highest friction coefficient was obtained with the non-reinforced Al-Graphite sample. It could be described with the friction coefficient of the composites, which was decreased depending on the increasing of the amount of B\(_4\)C addition in the matrix (Al-Gr).

References

[1] Kaczmar J. W., Pietrzak K., Wlosiński W., The production and application of metal matrix composite materials, J. Mater. Process. Technol., 106 (1-3), 58-67, 2000.

[2] Alizadeh M., Paydar M. H., Jazi F. S., Structural evaluation and mechanical properties of nanostructured Al/ B\(_4\)C composite fabricated by ARB process, Compos. Part B: Eng., 44 (1), 339-343, 2013.

[3] Özyürek D., Tekeli S., An investigation on wear resistance of SiCp-reinforced aluminium composites produced by mechanical alloying method, Sci. Eng. Compos. Mater., 17 (1), 31-38, 2010.

[4] Özyürek D., Tekeli S., Güral A., Meyveci A., Gürü M., “Effect of Al\(_2\)O\(_3\) amount on microstructure and wear properties of Al-Al\(_2\)O\(_3\) metal matrix composites prepared using mechanical alloying method, Powder Metall. Met. Ceram., 49 (5-6), 289-294, 2010.

[5] Ozyurek D., Tuncay T., An investigation of sintering characteristics of reinforced with 15% TiB\(_2\) titanium composites. Metallofiz. Novyeishie Tekhnol., 32 (5), 663-671, 2010.

[6] Ozyurek D., Ciftci I., An investigation into the wear behaviour of TiB\(_2\) particle reinforced aluminium composites produced by mechanical alloying, Sci. Eng. Compos. Mater., 16 (1-2), 5-12, 2011.

[7] Cabeza M., Feijoo I., Merino P., Pena G., Pérez M. C., Cruz S., Rey P., Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005Al aluminium alloy matrix composite, Powder Technol., 321, 31-43, 2017.

[8] Chen H. S., Wang W. X., Li Y. L., Zhou J., Nie H. H., Wu Q. C., The design, microstructure and mechanical properties of B\(_4\)C/6061Al neutron absorber composites fabricated by SPS, Mater. Des., 94, 360-367, 2016.

[9] Yazdani A., Salahinejad E., Evolution of reinforcement distribution in Al–B\(_4\)C composites during accumulative
Toz metalurjisiyla ilgili bir dizi çalışma ve araştırma bulunmaktadır. Örneğin, Aksöz S., Özdemir A.T., Bostan B. (2019) AA2014 alüminyum合金ında boron karbidede 그것은 입자 재료의 합성과 압력조절 및 고온 처리에 의한 압착 및 마찰성의 변화를 연구하였다.

D. Chu H. S., Liu K. S., Yeh J. W., (2014) Al2O3/Al alloy hybrid composite: Fabrication and properties. J. Mater. Sci., 49 (1), 37-42, 2004.

Pul M., Kıcıkkürk G., Çalış R., Şeker U., (2007) Effects of reinforcement volume fraction on the abrasive wear behaviour of Al-MgO composites produced by the vacuum infiltration method, Proc. IMechE Part J. Eng. Tribol., 225 (2), 84-90, 2011.

Bor-C/Al neutron absorbers, J. Nucl. Mater., 437 (1-3), 350-358, 2013.

Aksöz S., Özdemir A.T., Bostan B., (2016) Boron-carbide-reinforced aluminum 1100 matrix composites: Fabrication and properties. Mater. Sci. Eng., A, 498 (1-2), 42-52, 2008.

Cheng J. P., Agrawal D. K., Komarneni S., Mathis M., Roy R., (2014) Microwave processing of WC-Co composites and ferroic titanates, Mater. Res. Innovations, 1 (1), 44-52, 1997.

Ghasali E., Alizadeh M., Ebadzadeh T., Hossein Pakseresht A., Rahbari A., (2015) Investigation on microstructural and mechanical properties of B2C-aluminum matrix composites prepared by microwave sintering, J. Mater. Res. Technol., 4 (4), 411-415.

Ay H., Özyürek D., Yıldırım M., Bostan B., (2016) The effects of B2C amount on hardness and wear behaviours of 7075-B2C composites produced by powder metallurgy method, Acta Phys. Pol. A, 129 (4), 565-568, 2016.

Aksöz S., Özdemir A.T., Çalış R., Altnok Z., Bostan B., (2017) Effects of sintering, aging and cryogenic treatments on structural and mechanical properties of AA2014-B2C composites, J. Fac. Eng. Archit. Gaz., 28 (4), 831-839, 2013.

Aksöz S., Bican O., Çalış R., Bostan B., (2018) Effect of T7 heat treatment on the dry sliding friction and wear properties of the SiC-reinforced AA 2014 aluminium matrix composites produced by vacuum infiltration, Proc. IMechE Part J. Eng. Tribol., 228 (3), 312-319, 2014.

Aksöz S., Bostan B., (2018) Effects of the AA2014/B4C MMCs production with casting and post casting sintering operations on wear behaviors, BORON, 3 (2), 132-137, 2018.

Ipek R., Qureshi M. M. U., Rana R. S., (2015) The effect of hot forging and heat treatment on wear properties of Al6061-Al2O3 nano composites, Mater. Today.: Proc., 4 (2), 4042-4048, 2017.

Mahdavi S., Akhlaghi F., (2011) Effect of the graphite content on the tribological behavior of Al/Gr and Al/30SiC/Gr composites processed by in situ powder metallurgy (IPM) method, Tribol. Lett., 44 (1), 1-12, 2011.

Zhao H., Liu L., Hu W., Shen B., (2007) Friction and wear behavior of Ni-graphite composites prepared by electroforming, Mater. Des., 28 (4), 1374-1378, 2007.

Ravindran P., Manisekar K., Narayanasamy P., Selvakumar N., Narayanasamy R., (2012) Application of factorial techniques to study the wear of Al hybrid composites with graphite addition, Mater. Des., 39, 42-54, 2012.

Akhlaghi F., Zare-Bidaki A., (2005) Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced in situ powder metallurgy method, Wear, 266 (1-2), 37-45, 2009.

Çolak N. Y., (2019) The fabrication process and mechanical properties of SiCp/Al-Si metal matrix composites for automobile air-conditioner compressor pistons, Mater. Sci. Eng., A, 713, 2019.

Mühendislik Bilimleri Dergisi, 28 (2), 259-266, 2016.

Çolak N. Y., Turhan H., (2016) Toz metalurjisi yöntemle üretilen SiO2, taktikali alüminyum kompozitlerin aşınma ve mekanik özellikleri araştırılması, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 28 (2), 25-32, 2000.