Semi-relativistic description of quasielastic neutrino reactions and superscaling in a continuum shell model

J.E. Amaro1, M.B. Barbaro2, J.A. Caballero3, T.W. Donnelly4, C. Maieron5

1Departamento de Física Moderna, Universidad de Granada, Granada 18071, Spain

2Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino
Via P. Giuria 1, 10125 Torino, Italy

3Departamento de Física Atómica, Molecular y Nuclear
Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain

4Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

5INFN, Sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy

Abstract
The so-called semi-relativistic expansion of the weak charged current in powers of the initial nucleon momentum is performed to describe charge-changing, quasielastic neutrino reactions (\(\nu_\mu, \mu^-\)) at intermediate energies. The quality of the expansion is tested by comparing with the relativistic Fermi gas model using several choices of kinematics of interest for ongoing neutrino oscillation experiments. The new current is then implemented in a continuum shell model together with relativistic kinematics to investigate the scaling properties of \((e,e')\) and \((\nu_\mu, \mu^-)\) cross sections.

\textbf{PACS:} 25.30.Pt; 25.30.Fj, 24.10.Jv,

\textbf{Keywords:} Nuclear reactions; Neutrino scattering; Quasielastic electron scattering; Scaling; Relativistic models.
1 Introduction

The importance of neutrino-induced reactions in nuclei has been stressed in connection with the neutrino oscillation experiments performed by the KARMEN and LSND collaborations [1]–[8]. In experiments of this type relatively low ν_e or ν_μ energies are involved (at most a few hundreds of MeV) and so the nuclear excitations involved can be described by standard non-relativistic models of the reaction including the relevant machinery (RPA correlations, large-basis shell models, Δ-hole excitations, final-state interactions, etc.) for this energy regime, where in particular giant resonances may play an important role [9]–[16].

However, when passing to the ongoing and next generations of neutrino experiments, MiniBooNE, K2K/T2K, MINOS, NOνA, and MINERνA [17]–[22], the neutrino beam energies increase to the GeV level, and typically large energies and momenta are transferred to the nucleus. For these kinematics relativity is important and non-relativistic models of the reaction such as those listed above are bound to fail unless the relevant relativistic ingredients are included.

First of all the use of relativistic kinematics is required, and must be implemented in the model. From quasielastic (QE) electron scattering studies we know that a good approximation to the correct kinematics consists in the substitution

$$\lambda \rightarrow \lambda(1 + \lambda)$$

with $\lambda = \omega/2m_N$, where ω is the energy transfer and m_N the nucleon mass. This substitution can easily be performed in all places in the calculation — except in the nucleon form factors, where the correct value of momentum transfer $Q^\mu = (\omega, q)$ must be used. Second, a good approximation to the current matrix elements is required. The current is traditionally obtained from the fully relativistic one by some expansion procedure, usually through the Foldy-Wouthuysen transformation, which is valid for small momenta compared with the nucleon mass. Within this procedure relativistic effects were studied for neutrino energies up to 300 MeV in [23], showing that a good agreement is obtained between fully relativistic and non-relativistic Fermi gas calculations, when terms up to order $(q/m_N)^3$ are included in the latter. Similar results were obtained at larger energies, for the scattering of atmospheric neutrinos from oxygen [24], where, however, it must be noted that, due to the steep decrease of the atmospheric neutrino spectrum at large energies [25], the most important contributions to the process correspond to relatively small energy transfers. Obviously the Foldy-Wouthuysen expansion is not applicable for the high values of the momentum transfer q which are of interest for the new experiments, i.e., for values around 1 GeV/c. In this case a different expansion procedure must be performed in which q and ω can be arbitrarily large.
The first goal of this paper is thus to develop an approximation to the nuclear charged current (CC) that accounts for specific relativistic effects which are relevant to intermediate energy quasielastic neutrino reactions. The CC is obtained here through an expansion that only requires the momentum of the initial nucleon to be small, while it treats exactly the dependence on (ω, q). Moreover the resulting semi-relativistic (SR) current is simple enough to be easily implemented in already existing non-relativistic models of (ν_l, l^-) and $(\bar{\nu}_l, l^+)$ reactions, where $l = e$ or μ. It is presented here as an extension of the electromagnetic and weak-neutral current expansion originally derived in [26] and that in recent years has been widely tested and applied in several collaborations to describe a wide variety of inclusive and exclusive electron scattering observables for intermediate energies and excitations in the vicinity of the QE peak [27]–[37]. Extensions of the SR expansion to meson-exchange currents have also been developed [38, 39], and a detailed description of their application to two-body currents can be found in a recent review article [40].

In this paper we apply the SR model to neutrino-induced reactions for the first time. Apart from the different isospin dependence, the SR expansion coincides essentially with that of the weak neutral current performed in [26]. The only difference is that in the present reaction we have to include the time component of the axial-vector current. That component was not considered in [26] because it does not contribute significantly to parity-violating electron scattering.

We check the quality of the SR expansion in the context of the Relativistic Fermi Gas (RFG) model. This is a very convenient model for our purposes, since it is fully relativistic and simple enough to be solved exactly. Also this model is capable of getting the basic size and shape of the QE (e, e') cross section. Thus we shall show that, starting from the non-relativistic Fermi gas, performing the replacement in Eq. (1) in the kinematics and implementing the new SR charged current, we reproduce basically the RFG results for (ν_μ, μ^-) reactions. This “relativizing” procedure can easily be extrapolated to more sophisticated finite nuclei models of the reaction. The result will at least reproduce appropriately the allowed kinematical region and the relevant relativistic content of the current operator. Of course features related to the relativistic aspects of the dynamics cannot be accounted for by our procedure. In context we note that studies of relativistic nuclear dynamics in charged and neutral-current neutrino-nucleus QE scattering have already been presented in some previous work [41, 42, 43, 44, 45]. In these studies a basic focus was to analyze the effects introduced by various descriptions of the final nucleon relativistic states upon the integrated cross sections.

We illustrate the relativizing procedure by applying it to the continuum shell model (CSM), i.e., nucleons in a mean field taken here to be a Woods-Saxon potential. We use the same (real) potential for initial and final states in order to maintain orthogonality between
nuclear states. In this way we extend the SR shell model of [26] to neutrino reactions at the QE peak. Since the use of relativistic kinematics is potentially equivalent to solving a Klein-Gordon equation, the present SR continuum shell model includes some aspects of a relativistic mean field.

With such a model we are in a position to fulfill the second goal of this paper, which is to investigate superscaling properties of both \((e, e')\) and \((\nu_\mu, \mu^-)\) inclusive cross sections at the QE peak for intermediate energies, namely the degree to which one finds that the reduced cross sections are independent of the momentum transfer (scaling of the first kind) or the nuclear species (scaling of the second kind) or both (superscaling). Exhaustive analyses of the \((e, e')\) world data and explorations of various aspects of their scaling properties have been performed in [46]–[52]. In particular, in recent work [53] the approach has been extended to the \(\Delta\) peak, allowing one to construct a semi-empirical model based on scaling which is very successful in describing the experimental \((e, e')\) cross section up to the \(\Delta\) peak for high energies. This model allowed us in [53] to generate predictions for the \((\nu_\mu, \mu^-)\) cross section, under the reasonable hypothesis that it presents, for high energies, scaling properties similar to those of the \((e, e')\) cross section. This hypothesis is true by construction in the RFG and can be also demonstrated at least for the conventional Plane Wave Impulse Approximation (PWIA) in the high \(q\) limit \(^1\). However, when distortion of the ejected nucleon is present, a general proof of scaling cannot be provided, while for lower energies it is clear that the axial-vector and vector matrix elements are renormalized differently in the nuclear medium due to RPA correlations, and this can obviously modify the scaling properties of the neutrino cross section. For higher energies one expects that nuclear effects such as from RPA correlations are less important than at low energies. In this work we use the SR shell model to investigate the degree of violation of the scaling hypothesis for the QE peak region within the Distorted Wave Impulse Approximation (DWIA), where the distortion of the ejected nucleon is described with a real potential. We perform this study in two steps. First we focus on the \((e, e')\) cross section and study the scaling properties of the separate response functions. Once the superscaling has been verified for electromagnetic processes, we are able to reconstruct the \((\nu_\mu, \mu^-)\) cross section from the \((e, e')\) one using the scaling hypothesis and compare it with the one computed directly using the SR shell model. Thus, at least within the context of the SR shell model discussed in the present work, following this procedure we shall be able to check the consistency of our approach and quantify the degree to which scale-breaking effects are expected to enter. As we shall see below, there appears to be very little impact from this source of scale-breaking on the scaling approach used in [53] to predict neutrino-induced cross sections.

\(^1\)However, this is broken to some degree by the Relativistic PWIA (RPWIA) where factorization no longer obtains.
The paper is organized in the following way. In Sec. 2 we begin with a brief review of the general formalism for neutrino scattering, and present the expansion of the CC. We particularize the formalism for the shell model, and introduce the general multipole expansion of the responses, with some details on the derivation of the Coulomb multipoles of the axial-vector current placed in Appendix A. We also provide the expressions for the factorized PWIA in Appendix B. In Sect. 3 we present results for the \((\nu_\mu, \mu^-)\) reaction for several choices of kinematics and several nuclei of interest. We first perform an analysis of the quality of the relativizing procedure by comparison with the RFG for the relevant kinematics. The quality of the various components of the SR current can be checked separately by examining the individual response functions that contribute to the process. We then focus on the SR shell model and perform the scaling analysis of the longitudinal and transverse electromagnetic responses as functions of the momentum transfer for various nuclei. We apply the scaling hypothesis to reconstruct the \((\nu_\mu, \mu^-)\) cross section starting from the electromagnetic scaling function and compare with the shell model results. Finally, in Sec. 4 we present our conclusions.

2 Formalism

In this section we briefly present the basic formalism for neutrino-induced reactions. Some of the previous approaches to the general formalism for these reactions can be found in [41], [54]–[57].

2.1 Charge-changing neutrino cross section

Here we focus on the particular case of \((\nu_\mu, \mu^-)\), while the cases of anti-neutrinos or of other lepton species can be easily obtained with obvious changes. The four-momenta of the incident neutrino and detected muon are \(k_\mu = (\epsilon, k)\) and \(k'_\mu = (\epsilon', k')\), respectively. The four-momentum transfer is \(Q^\mu = k_\mu - k'_\mu = (\omega, q)\). We use a coordinate system with the \(z\)-axis pointing along \(q\) and the \(x\)-axis along the transverse component of the incident momentum, \(i.e.\), \(k^\perp = k - \frac{1}{q^2}(k \cdot q)q\). We follow the formalism of [53] where the cross section is written as

\[
\frac{d\sigma}{dQ'd\epsilon'} = \sigma_0 J^2, \tag{2}
\]

with

\[
\sigma_0 = \frac{G^2 \cos^2 \Theta_c}{2\pi^2} \frac{k'\epsilon' \cos^2 \Theta}{2}. \tag{3}
\]
Here $G = 1.166 \times 10^{-11}$ MeV$^{-2}$ is the Fermi constant, θ_c is the Cabibbo angle, $\cos \theta_c = 0.975$, and the angle $\tilde{\theta}$ is defined as

$$
\tan^2 \frac{\tilde{\theta}}{2} = \frac{|Q^2|}{(\epsilon + \epsilon')^2 - q^2},
$$

with $Q^2 = \omega^2 - q^2 < 0$. The nuclear structure information is contained in \mathcal{F}_+^2, defined by

$$
\mathcal{F}_+^2 = \hat{V}_{CC} R_{CC} + 2 \hat{V}_{CL} R_{CL} + \hat{V}_{LL} R_{LL} + \hat{V}_T R_T + 2 \hat{V}_{T'} R_{T'},
$$

where the kinematical factors \hat{V}_K coming from the leptonic tensor are defined by

$$
\hat{V}_{CC} = 1 - \delta^2 \tan^2 \frac{\tilde{\theta}}{2},
$$

$$
\hat{V}_{CL} = \frac{\omega}{q} + \frac{\delta^2}{\rho'} \tan^2 \frac{\tilde{\theta}}{2},
$$

$$
\hat{V}_{LL} = \frac{\omega^2}{q^2} + \left(1 + \frac{2\omega}{q \rho'} + \rho \delta^2 \right) \delta^2 \tan^2 \frac{\tilde{\theta}}{2},
$$

$$
\hat{V}_T = \tan^2 \frac{\tilde{\theta}}{2} + \frac{\rho}{2} - \delta^2 \left(\frac{\omega}{q} + \frac{1}{2} \rho \rho' \delta^2 \right) \tan^2 \frac{\tilde{\theta}}{2},
$$

$$
\hat{V}_{T'} = \frac{1}{\rho'} \left(1 - \frac{\omega \rho'}{q} \delta^2 \right) \tan^2 \frac{\tilde{\theta}}{2}.
$$

In Eqs. (6–10), following [53], we have defined

$$
\delta = \frac{m'}{\sqrt{|Q^2|}}
$$

$$
\rho = \frac{|Q^2|}{q^2}
$$

$$
\rho' = \frac{q}{\epsilon + \epsilon'}.
$$

Note that the only dependence on the muon mass m' is contained in the δ coefficient.

Finally the weak response functions are given by

$$
R_{CC} = W^{00}
$$

$$
R_{CL} = -\frac{1}{2} \left(W^{03} + W^{30}\right)
$$

$$
R_{LL} = W^{33}
$$

$$
R_T = W^{11} + W^{22}
$$

$$
R_{T'} = -\frac{i}{2} \left(W^{12} - W^{21}\right)
$$
in terms of the inclusive hadronic tensor [54]:

\[W^{\mu\nu}(q, \omega) = \sum_{fi} \delta(E_f - E_i - \omega) \langle f|J^\mu(Q)|i\rangle^* \langle f|J^\nu(Q)|i\rangle. \]

(19)

In Eq. (19), \(J^\mu(Q) \) is the hadronic CC current operator, to be specified below, and a sum over final states and an average over initial spin is assumed.

2.2 Semi-relativistic charge-changing current

We begin with the basic relativistic charged weak current of the nucleon, \(j^\mu = j^\mu_V - j^\mu_A \). In this work we employ only the Standard Model of electroweak interactions at tree level and thus, for example, do not include radiative corrections or contributions from second-class currents (see [54]). We use the conventions of [58]. The vector and axial-vector currents are given by

\[j^\mu_V(p', p) = \bar{u}(p') \left[2 F^V_1 \gamma^\mu + i \frac{F^V_2}{m_N} \sigma^{\mu\nu} Q_\nu \right] u(p) \]

(20)

\[j^\mu_A(p', p) = \bar{u}(p') \left[G_A \gamma^\mu + G_P \frac{Q^\mu}{2m_N} \right] \gamma^5 u(p), \]

(21)

where for the isovector nucleon form factors \(F^V_{1,2} = (F^p_{1,2} - F^n_{1,2})/2 \) we use the Galster parameterization [59] and \(u(p) \) is the free Dirac spinor of the nucleon. The axial-vector and pseudoscalar form factors are parameterized as

\[G_A = \frac{g_A}{1 - Q^2/M_A^2} \]

(22)

\[G_P = \frac{4m_N^2}{m_N^2 - Q^2} G_A \]

(23)

with \(g_A = 1.26, M_A = 1032 \) MeV.

The SR approximation to this current is then obtained by inserting the appropriate free spinors \(u(p), u(p') \), and \(\gamma \) matrices, and performing an expansion in powers of \(\eta \equiv p/m_N \) to first-order. The procedure was developed in [26, 38, 40] for the electromagnetic and transverse neutral, vector and axial-vector currents, and is based on the fact that inside the nucleus \(|\eta| \) is a good expansion parameter, the characteristic dimensionless nuclear scale being \(\eta_F = k_F/m_N \simeq 1/4 \). We exploit QE kinematics, while further reasonable simplifications are eventually needed in order to arrive at simple expressions that are easily implementable in traditional non-relativistic calculations. For the vector current we use the following SR approximation:

\[j^0_V = \xi_0 + i \xi'_0 (\kappa \times \eta) \cdot \sigma \]

(24)

\[j^\perp_V = \xi_1 \eta^\perp + i \xi'_1 \sigma \times \kappa, \]

(25)
where

\[
\begin{align*}
\xi_0 &= \frac{\kappa}{\sqrt{\tau}} 2G^V_E, \quad \xi'_0 = \frac{2G^V_M - G^V_E}{\sqrt{1 + \tau}} \\
\xi'_1 &= 2G^V_M \sqrt{\frac{\tau}{\kappa}}, \quad \xi_1 = 2G^V_E \sqrt{\frac{\tau}{\kappa}}
\end{align*}
\]

(26)

and use has been made of the dimensionless variables \(\kappa = q/2m_N \) and \(\tau = \kappa^2 - \lambda^2 \).

From vector current conservation, the longitudinal component is given by \(J^3_V = \frac{\lambda}{\kappa} J^0_V \). Note that in Eqs. (24,25) the various terms making up the current are similar to the ones that can be found in traditional non-relativistic expansions commonly used for the charged current (see for instance [16]), except for the \(\kappa \) and \(\tau \)-dependent factors, \(\xi, \xi' \), that provide the required relativistic behavior. In \(J^0_V \) we include the first-order \((O(\eta)) \) contribution. This spin-orbit term is proportional to the operator \((\kappa \times \eta) \cdot \sigma \) and is of some importance for high \(q \) values. On the other hand, the transverse component \(J^\perp_V \) is the sum of the usual magnetization \((\sigma \times \kappa) \) piece plus a first-order term, the convection term which is proportional to \(\eta^\perp \), that gives in general a very small \(^2\) contribution to the cross section for high \(q \) [26, 28].

In the case of the axial-vector sector, only the transverse component of the weak neutral current was expanded in [26]. We use the following version of the corresponding SR current

\[
J^\perp_A = \zeta'_1 \sigma^\perp, \quad \zeta'_1 = \sqrt{1 + \tau} G_A
\]

(28)

Note that we have neglected the terms of order \(\eta \) since, as we shall show in the next section (and also demonstrated in [26] in the context of parity-violating electron scattering), they are small while adding unnecessary complications to the shell model calculation. They can be safely neglected for our purposes. Remarkably the factor \(\sqrt{1 + \tau} \) in Eq. (28) already accounts for the most part for relativistic effects in this current (see [26] for the full expansion of this current to first-order in \(\eta \)).

We are left with the 0 and \(z \) components of the axial-vector current. Their SR expressions are presented here for the first time. Using a notation reminiscent of that used in Appendix A of [26], they are written to first-order in \(\eta \) as

\[
\begin{align*}
J^0_A &= \zeta'_0 \kappa \cdot \sigma + \zeta''_0 \eta^\perp \cdot \sigma \\
J^z_A &= \zeta'_3 \kappa \cdot \sigma + \zeta''_3 \eta^\perp \cdot \sigma
\end{align*}
\]

(29)

(30)

where

\[
\begin{align*}
\zeta'_0 &= \frac{1}{\sqrt{\tau} \kappa} G'_A, \quad \zeta''_0 = \frac{\kappa}{\sqrt{\tau}} \left[G_A - \frac{\lambda^2}{\kappa^2 + \kappa \sqrt{\tau (\tau + 1)}} G'_A \right] \\
\zeta'_3 &= \frac{1}{\sqrt{\tau}} G'_A, \quad \zeta''_3 = \frac{\lambda}{\sqrt{\tau}} \left[G_A - \frac{\kappa}{\kappa + \sqrt{\tau (\tau + 1)}} G'_A \right]
\end{align*}
\]

(31)

(32)

\(^2\)Note that \(\eta = p/m_N \) is essentially the velocity \(v \) of the initial struck nucleon in units of \(c \).
and we have introduced the following combination of axial-vector and pseudoscalar form factors

\[G'_A = G_A - \tau G_P. \]

(33)

For these components of the axial-vector current, Eqs. (29, 30), we have performed the expansion to first-order in \(\eta \). The first-order axial-convective term is proportional to \(\sigma \cdot \eta^\perp \), and, as for the spin-orbit and convection terms, only the perpendicular velocity \(\eta^\perp \) appears. As we shall show below, for the kinematics of interest in this work the \(G'_A \) form factor which drives the zeroth-order terms turns out to be small due to cancellations in Eq. (33) between \(G_A \) and \(\tau G_P \). In such cases the \(O(\eta) \) term is dominant in these current components.

2.3 The continuum shell model

In this work we restrict our attention to the closed-shell \(^3\) nuclei \(^{12}\)C, \(^{16}\)O and \(^{40}\)Ca, which we describe in a Continuum Shell Model (CSM). Thus the present model does not include nuclear correlations. Such effects are important for low energy, in particular in the axial responses, and have been estimated for instance in the RPA approach of Ref. [15], but are expected to be smaller at the GeV energies considered in this paper. The initial state \(|i\rangle \) appearing in the hadronic tensor, Eq. (19), is described as a Slater determinant representing the uncorrelated nuclear core with all shells occupied. Since we are working in the impulse approximation, the final states are particle-hole excitations coupled to total angular momentum \(J \), namely \(|f\rangle = |(ph^{-1})J\rangle \). The single hole, \(|h\rangle = |\epsilon_h l_h j_h\rangle \), and particle, \(|p\rangle = |\epsilon_p l_p j_p\rangle \), wave functions are obtained by solving the Schrödinger equation with a Woods-Saxon potential

\[V(r) = -V_0 f(r, R_0, a_0) + \frac{V_{ls}}{m_n^2 r} \frac{df(r, R_0, a_0)}{dr} \mathbf{l} \cdot \mathbf{\sigma} + V_C(r), \]

(34)

where

\[f(r, R, a) = \frac{1}{1 + e^{(r-R)/a}} \]

(35)

and \(V_C(r) \) is the Coulomb potential of a charged sphere of charge \(Z - 1 \) and radius \(R_0 \) (it is equal to zero for neutrons). The parameters of the potential are fitted to the experimental energies of the valence shells and are given in Table 1. In the shell model the energy transfer is computed as the difference between the (non-relativistic) single-particle energies of particle and hole \(\omega = \epsilon_p - \epsilon_h \). The relativistic kinematics are taken into account by the substitution

\[\epsilon_p \rightarrow \epsilon_p (1 + \epsilon_p/2m_N) \]

(36)

as the eigenvalue of the Schrödinger equation for the particle; c.f., Eq. (1).

\(^3\)By shell here we mean a sub-shell with quantum numbers \(nlj \).
Table 1: Woods-Saxon potential parameters for protons (p) and neutrons (n). The units are MeV for V_i, and fm for a_0 and r_0. The reduced radius parameter r_0 is defined by $R_0 = r_0A^{1/3}$.

	V_0^p	V_{LS}^p	V_0^n	V_{LS}^n	r_0	a_0
12C	62.0	3.20	60.00	3.15	1.25	0.57
16O	52.5	7.00	52.50	6.54	1.27	0.53
40Ca	57.5	11.11	55.00	8.50	1.20	0.53

Since the nuclear states have good angular momentum, it is convenient for the shell model calculation to perform a multipole expansion of the components of the current operator in terms of the usual Coulomb (C), longitudinal (L), transverse electric (E) and transverse magnetic (M) operators \[26, 54, 60\], defined by

\[
\hat{C}_{J0}(q) = \int d^3r j_J(qr) Y_{J0}(\hat{r}) J_0(r) \tag{37}
\]
\[
\hat{L}_{J0}(q) = \frac{i}{q} \int d^3r \nabla [j_J(qr)Y_{J0}(\hat{r})] \cdot J(r) \tag{38}
\]
\[
\hat{E}_{Jm}(q) = \frac{1}{q} \int d^3r \nabla \times [j_J(qr)Y_{JJm}(\hat{r})] \cdot J(r) \tag{39}
\]
\[
\hat{M}_{Jm}(q) = \int d^3r j_J(qr) Y_{JJm}(\hat{r}) \cdot J(r) \tag{40}
\]

where $j_J(qr)$ is a spherical Bessel Function and $Y_{JJm}(\hat{r})$ is a vector spherical harmonic.

The nuclear response functions are then written as

\[
R_{CC} = 4\pi \sum_\alpha \left(|C_\alpha^V|^2 + |C_\alpha^A|^2 \right) \tag{41}
\]
\[
R_{CL} = 2\pi \sum_\alpha \left(C_{\alpha^*}^V L_{\alpha}^V + C_{\alpha}^V L_{\alpha}^V + C_{\alpha^*}^A L_{\alpha}^A + C_{\alpha}^A L_{\alpha}^A \right) \tag{42}
\]
\[
R_{LL} = 4\pi \sum_\alpha \left(|L_{\alpha}^V|^2 + |L_{\alpha}^A|^2 \right) \tag{43}
\]
\[
R_T = 4\pi \sum_\alpha \left(|E_{\alpha}^V|^2 + |M_{\alpha}^V|^2 + |E_{\alpha}^A|^2 + |M_{\alpha}^A|^2 \right) \tag{44}
\]
\[
R_{T'} = 2\pi \sum_\alpha \left(E_{\alpha}^V M_{\alpha}^A + E_{\alpha}^A M_{\alpha}^V + E_{\alpha}^V M_{\alpha}^A + E_{\alpha}^A M_{\alpha}^V \right) \tag{45}
\]

where in the sums $\epsilon_p = \epsilon_h + \omega$ is modified according to Eq. (36), and we use the index α to label the quantum numbers $\alpha = (h, l_p, j_p, J)$. Moreover, the C, L, E and M multipoles of the vector and axial-vector currents are defined by the reduced matrix elements of the corresponding operators

\[
C_\alpha^V + iC_\alpha^A = \langle f|\hat{C}_J(q)|i \rangle \tag{46}
\]
\begin{align}
L^\alpha_\nu + iL^A_\alpha &= \langle f || \hat{L}_J(q) || i \rangle \\
E^\nu_\alpha + iE^A_\alpha &= \langle f || \hat{E}_J(q) || i \rangle \\
-iM^\nu_\alpha - M^A_\alpha &= \langle f || \hat{M}_J(q) || i \rangle .
\end{align}

These reduced matrix elements are given in [26] for the vector and axial-vector transverse operators, and in [60] for the leading-order longitudinal axial-vector component. In the present paper we add the first-order convective term of the axial-vector current $\eta^\perp \cdot \sigma$ appearing in Eqs. (29,30). The C^A_α and L^A_α multipoles of this new term are presented in Appendix A.

The sums over α in Eqs. (41–45) are infinite and have to be truncated in the calculation once convergence is reached. In our approach the number of multipoles is determined by the maximum of the total angular momentum, J_{max}. We fix this quantity by computing the response functions setting the potential in the final state to zero and comparing with the factorized PWIA (see Appendix B for details). The number J_{max} increases with q and with the number of nucleons, A. In the next section up to 41 multipoles have to be summed up for the case where $q = 1.5$ GeV/c.

3 Results

3.1 Test of the SR approach

The quality of the SR expansion of the charged current is illustrated in Figs. 1–3. There we show the separate vector, axial-vector and total response functions of 12C for three values of the momentum transfer, $q = 0.5, 1,$ and 1.5 GeV/c. The Fermi momentum is chosen to be $k_F = 220$ MeV/c. We show the separate response functions instead of cross sections because in these functions we can appreciate better the contribution of the various current components and the behavior of the SR approximation as a function of the momentum and energy transfers. This can be seen in the figures by comparing the solid lines, representing the RFG result (exact relativistic answer) with the dashed lines, corresponding to the Semi-Relativistic Fermi Gas (SRFG). This last model is obtained by implementing the SR expansion of the current in a non-relativistic Fermi gas, although with relativistic kinematics. The accord of the two models is almost perfect for the three values of q considered. In Fig. 1 we only show R^V_{CC} and R^V_T, since R^V_{CL} and R^V_{LL} are related to R^V_{CC} by current conservation. In Fig. 2 we show instead the three response functions, since the axial-vector current is not conserved. Finally, in Fig. 3 we show the sums of Figs. 1 and 2 and also the interference response R_T'.

In Figs. 1–3 we also show with dotted lines the CSM responses, computed using the
Figure 1: Vector response functions of 12C for three values of the momentum transfer. Solid lines: RFG with $k_F = 220$ MeV/c. Dashed lines: SRFG. Dotted: CSM. Dot-dashed: PWIA.

relativizing procedure. For comparison we also show the PWIA results obtained by setting the potential in the final state to zero (or, equivalently, by integration of the factorized exclusive responses, as shown in Appendix B). The CSM response functions are quantitatively similar in magnitude to the RFG and are centered approximately around the same value of ω. The major discrepancy between the two models is found for the axial-vector R_{CC}^A, R_{CL}^A and R_{LL}^A response functions, where the CSM responses are slightly larger in magnitude than the RFG ones. These responses are in general small compared with the corresponding vector responses. This is a consequence of the suppression of the axial-vector current in the longitudinal channel due to small value of the form factor G'_A, defined in Eq. (33), for these kinematics. In fact, from the definition in Eq. (23) of the pseudoscalar form factor one has

$$G'_A = \left(1 - \frac{Q^2}{Q^2 - m_n^2}\right) G_A .$$

(50)

At the intermediate energies of interest, $|Q^2| \gg m_n^2$, and hence the factor inside the parenthesis in Eq. (50) is also small, of order $O(m_n^2/Q^2)$. In this situation the first-order, axial-vector convective term of the current, which is proportional to $\eta^\perp \cdot \sigma$ (see Eqs. (29,30)), is dominant over the zeroth-order contribution, and the corresponding response functions are in general small compared with the vector ones. An example is shown in Fig. 4 where we display the separate contributions of the zeroth- and first-order terms to the axial-vector response R_{CC}^A.
Figure 2: As for Fig. 1, but now for the axial-vector responses
Figure 3: As for Fig. 1, but now for the total (vector plus axial-vector) responses
of 12C for $q = 500$ MeV/c in the CSM. For higher values of q the zeroth-order contribution is much smaller than the others.

![Figure 4: Axial-vector response R_{CC}^A of 12C in the CSM. Solid: contribution of the zeroth-order term in the SR expansion. Dashed: first-order contribution.](image)

From inspection of the responses R_{CC}, R_T and $R_{T'}$, we observe that the PWIA results are clearly shifted to the right of the CSM by roughly the averaged depth of the potential ~ 35 MeV. This shift is present also in the separate vector and axial-vector responses. In the case of the CL and LL the shift is larger due to the energy factors used to compute the L component of the current. The origin of the shift in PWIA is related to the different treatment of the nuclear hamiltonian in the initial and final states [27]: while the energy of the initial bound neutron is the sum of kinetic plus potential, $\epsilon_h = t_h + v_h$, the exiting proton is a plane wave and has only kinetic energy $\epsilon_p = t_p$. Accordingly, for fixed ω there is an imbalance between potential energies in the initial and final states, yielding $\omega = t_p - t_h - v_h$. However in the CSM we use the same potential for the initial and final state, which now has $\epsilon_p = t_p + v_p$. Hence $\omega = t_p - t_h + v_p - v_h$. Thus in the CSM the potential energies of particle and hole partially cancel out and this explains why the position of the peak is close to the RFG, where only kinetic energies enter. Of course the cancellation is not perfect, and a slight shift to the right of the RFG is also observed in the CSM. This small shift of the CSM is the behavior expected from previous theoretical studies [61].

Another test of the SR approximation is illustrated by the results shown in Fig. 5 for the differential cross section 12C(ν_μ, μ^-). Therein we show examples for two incident neutrino energies, $\epsilon = 1$ and 1.5 GeV, and for two scattering angles $\theta = 45^\circ, 135^\circ$, as a function of the exiting muon energy ϵ'; so in this case we are testing different ranges of q and ω, which can be high or low depending on the kinematics. We see again that the RFG and SRFG
predictions are almost equal in all the cases, while the CSM also gives similar results, with the exception of the characteristic tails and slight shift, that now is to the left of the RFG since ω decreases with ϵ'.

Summarizing this subsection, using the Fermi gas as “testing arena” for the approximated CC current, we have found that the accord between the results obtained using the SR expansion and the exact relativistic result is almost perfect for the intermediate and high values of q and ω considered. The CSM relativized using our procedure gives rise to cross sections which are within the allowed kinematical region and of a magnitude similar to those of the RFG. This behavior of the CSM is similar to what was found for (e, e') reactions in [26]. We should underscore the fact that the CSM is used here just as illustration of how one can use our relativizing procedure in a more complex model than the Fermi gas, and of the results that are to be expected from it. In particular, especially when discussing lower energies where non-relativistic approaches are valid, more elaborated models exist that
describe the \((e,e')\) experimental data rather well. For example, it is well known from other work that final-state interactions can significantly modify the bare CSM or RPA responses, mainly through medium renormalization of the particle-hole excitations. This mechanism can be approximately taken into account by using an effective nucleon mass that produces a shift and by a folding of the bare responses, producing an asymmetric broadening which improves the agreement with the experimental data [62, 63, 64].

3.2 Scaling

In this subsection we work within the CSM. We first focus on the inclusive electron scattering reaction, and investigate the scaling properties of the electromagnetic responses for various choices of kinematics for \(^{12}\text{C},^{16}\text{O},\) and \(^{40}\text{Ca}\). The \((e,e')\) cross section is given by

\[
\frac{d\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} (v_L R_L + v_T R_T).
\]

(51)

The same SR expansion for the vector current, Eqs. (24,25), is employed here for the electromagnetic sector.

We compute the CSM scaling functions as

\[
f_L = \frac{R_L}{G_L}, \quad f_T = \frac{R_T}{G_T}
\]

(52,53)

with

\[
G_K = \Lambda_0 (ZU_K^p + NU_K^n) \quad K = L, T,
\]

(54)

where \(\Lambda_0\) is given in Eq. (94) and the electromagnetic single-nucleon functions for protons, \(U_K^p\), and neutrons, \(U_K^n\), are defined similarly to the ones given in Appendix B for the vector current, \(U_{CC}^V\) and \(U_Y^V\).

The scaling behavior can be studied by plotting these functions against the scaling variable [46]

\[
\psi = \frac{1}{\sqrt{\xi_F}} \frac{\lambda - \tau}{\sqrt{(1 + \lambda)\tau + \kappa \sqrt{\tau(1 + \tau)}}}
\]

(55)

for different kinematics and for different nuclei. Here \(\xi_F = \sqrt{1 + k_F^2/m_N^2} - 1\).

A study of the behavior of \(f_L\), computed for various values of the momentum transfer, is summarized in Fig. 6. We plot together \(f_L\) for \(q = 0.5, 0.7, 1, 1.3,\) and \(1.5\ \text{GeV/c}\). All of the curves approximately collapse into one. Small violations of the scaling are seen at low \(\psi\) coming from the low-energy potential resonances for \(q = 0.5\ \text{GeV/c},\) which disappear for
Figure 6: Scaling of the first kind in the CSM with scaling functions obtained from the longitudinal electromagnetic responses in the CSM. In each panel we include $q = 0.5, 0.7, 1, 1.3$ and 1.5 GeV/c.
Figure 7: As for Fig. 6, but now including in each panel the nuclei 12C, 16O and 40Ca.
Figure 8: Scaling function f_L obtained from the longitudinal electromagnetic response (solid lines), compared with the scaling function f_T obtained from the transverse response (dashed lines), for several values of q.
higher q-values. Thus scaling of the first kind is approximately achieved in the CSM. Note that scaling also holds for $|\psi| > 1$, the region where the RFG responses are zero.

Scaling of the second kind, \textit{i.e.}, independence of the nuclear species for fixed q, is illustrated in Fig. 7. We plot together f_L for the three nuclei studied. The fitted Fermi momenta are 220, 215 and 240 MeV/c for 12C, 16O and 40Ca, respectively. The collapse of the three curves into one is clearly seen, with small deviations at the region of the maximum. Again the exception is found for $q = 0.5$ GeV/c in the resonance region. Since both kinds of scaling are found, we conclude that superscaling occurs within our model.

Finally, in Fig. 8 we show what has been called scaling of the zeroth kind \cite{50}, \textit{i.e.}, the longitudinal and transverse scaling functions, f_L and f_T, also collapse into one universal function f. Experimentally, deviations from scaling in the region of the QE peak mainly occur in the transverse response, and are related to contributions beyond the impulse approximation, in particular to meson-exchange currents \cite{49, 50}. Since these contributions are not included in our CSM, the L and T responses scale in the same way, as shown in Fig. 8.

In the present work we do not compare with the experimental (e, e') scaling function because, as stated above, the CSM is still lacking some ingredients (for instance, medium modifications to the p-h propagator, inclusion of energy-dependent potentials, \textit{etc.}), without which one should not expect to obtain excellent agreement with the experimental data. The focus of the present study has been limited to showing that superscaling occurs at the level of relativized CSM.

Let us now turn to neutrino reactions. In \cite{53} a semi-empirical model, based on the superscaling property of the L responses of 12C and 16O for high momentum transfer, was proposed to predict the neutrino inclusive cross sections up to the Δ peak. The latter were calculated starting from the RFG expression for the cross sections and substituting the “theoretical” RFG superscaling functions with phenomenological ones (one for the QE and a different one for the Δ peak), derived from fits of electron scattering data. Therefore this reconstruction, besides assuming the validity of superscaling in electron scattering, relies on the hypothesis that it also holds for the neutrino inclusive cross section for the high energies involved, so that electron scattering results can safely be used as input in neutrino scattering calculations. This assumption obviously cannot be tested using the RFG model, since, as stated in the introduction, it is true by construction.

In the present work we have at hand a model, the CSM, for both the QE (e, e') and (ν_μ, μ^-) reactions that has been relativized and so should be able to handle modeling at high energies. Moreover, superscaling of the electromagnetic responses is well satisfied by the CSM. Hence we can adopt the same approach as in \cite{53} treating the CSM electromagnetic scaling function as a pseudo-phenomenological one and using it to compute neutrino cross sections. Upon comparing cross sections obtained this way with those obtained directly
using the CSM we can then gain some insight into the degree to which the shell model incorporates effects which are scale-breaking. While the level of scaling-violation is expected to be quite small, since we have already seen excellent superscaling in the figures discussed above, the specific differences in the roles played by the various current operators involved in electromagnetic and CC weak processes might lead to different sensitivities to scale-breaking effects. Accordingly, it is useful to compare the cross sections obtained within the scaling approach with those computed directly using the model. In context it should be noted that this does not imply in general that the scaling approach has been shown to be robust, since here the comparisons are being made entirely within limited models which clearly lack elements that may play some role in the responses and may be scale-breaking — we know of at least one such ingredient, namely, meson-exchange currents which have been shown to provide scale-breaking corrections that enter typically at the 10% level in the overall cross sections. Nevertheless, the study presented below indicates that the scale-breaking effects incorporated in the present models are in fact quite small.

We show typical results of this study in Figs. 9 and 10 for 12C and 16O, respectively. The cross section for (ν_μ, μ^-) is shown for two incident energies and for two scattering angles. The dashed lines have been computed from the scaling function f_L obtained from the analysis of (e,e') CSM predictions. To be precise, we use Eq. (93) to compute the neutrino responses, substituting f^{RFG} by f_L. The solid lines correspond to the exact CSM result. The differences found between the two approaches are quite small, at most $\sim 3%$. These small differences are produced by the slightly different scaling behavior of the axial-vector and vector responses, that, however, has little effect on the total cross section. Due to the simplicity of the CSM, these results cannot be taken as a definite proof of superscaling, but certainly represent an important step forward in establishing the validity of the approach presented in [53].

4 Conclusions

One of the goals of the present study has been to explore the degree to which scaling and superscaling behaviors are reached for relatively high-energy semi-leptonic inclusive reactions with nuclei at excitation energies in the vicinity of the quasielastic peak. The focus has been placed on comparisons between the Fermi gas model (both the fully relativistic Fermi gas and a semi-relativized version of it) and a relativized continuum shell model.

Since we are interested in energies of several GeV, relativity is clearly a required ingredient. In the present work we have presented a clear and direct procedure that allows one to incorporate some classes of relativistic effects and thereby to relativize otherwise non-relativistic models of the reaction, such as the shell model employed here. We use the two
versions of the Fermi gas model to motivate the procedures followed. Two steps are involved: first, one relativizes the kinematics in the reaction, and second, expansions are made for the single-nucleon currents in the problem. In the present work we have extended our previous treatments to include the full charge-changing weak interaction current. Importantly, because the expansions are made to first-order in p/m_N, but not at all in q/m_N or ω/m_N, they differ from the traditional FW expansions and for QE scattering should be more robust at high energies where expansions in q/m_N and ω/m_N clearly fail.

Using the two versions of the Fermi gas model and the relativized continuum shell model, together with some results from the plane-wave impulse approximation, to represent both electromagnetic, (e,e'), and CC weak, (ν_μ, μ^-), processes, we have proceeded to quantify the level of scaling violation. This allows us to evaluate the corresponding uncertainty in the predictions one makes for the neutrino cross section using the scaling approach with
input from analyses of electron scattering data. In the present paper we have shown that for intermediate to high energies the description of the final state through a real mean field seems not to change appreciably the scaling and superscaling properties of the electromagnetic response functions at the quasielastic peak, and that the scaling function extracted from these is basically the same as for the (νµ, µ−) reaction.

Although the present analysis performed within the relativized shell model does not constitute a proof of the scaling hypothesis in the general case, scaling studies such as those presented here allow us to gain additional insight and, in particular, to rule out (or not) some reaction mechanisms as possible causes of scaling violations.

In summary, the relativizing procedure followed in the present work embodies some of the ingredients that are almost certainly required for a successful description of such inclusive processes in the quaselastic regime — models which do not take at least these ingredients into account are very likely to fail in the several GeV energy region of interest here. This does not mean, however, that additional dynamical features are not needed before a full understanding of these high-energy responses will be attained. In particular, other studies
being pursued in parallel by us hold some promise for reaching a good understanding of the phenomenologically-derived scaling function used recently to make predictions for CC neutrino reactions in the GeV region. Some of these results will be presented in the near future.

Acknowledgments

This work was partially supported by funds provided by DGI (Spain) and FEDER funds, under Contracts Nos. BFM2002-03218, BFM2002-03315 and FPA2002-04181-C04-04 and by the Junta de Andalucía, and by the INFN-CICYT collaboration agreement (project “Study of relativistic dynamics in electron and neutrino scattering”). It was also supported in part (TWD) by the U.S. Department of Energy under cooperative research agreement No. DE-FC02-94ER40818.

A Multipoles of the convective axial-vector operator

Here we compute the Coulomb multipoles of the convective axial-vector charge operator, which is the first-order term in the expansion of \(j_A^0 \) (Eq. (29)). The corresponding coordinate-space operator is given by

\[
\rho_C(q) \equiv e^{i q \cdot r} \zeta''_0 \eta_\perp \cdot \sigma ,
\]

where \(r \) is the coordinate of the nucleon over which the operator acts. To obtain the multipole operators we proceed by writing the above operator in the form:

\[
\rho_C(q) = e^{i q \cdot r} \zeta''_0 \left(\eta - \frac{\eta \cdot q}{q^2} q \right) \cdot \sigma = \zeta''_0 \sigma \cdot \left(\eta + \frac{\eta \cdot \nabla}{q^2} \nabla \right) e^{i q \cdot r} .
\]

Performing in this equation the multipole expansion of the plane wave for \(q \) along the z-axis

\[
e^{i q \cdot r} = \sqrt{4 \pi} \sum_J i^J [J] j_J(qr) Y_{J0}(\hat{r}) ,
\]

where \([J] = \sqrt{2J + 1} \), we obtain

\[
\rho_C(q) = \sqrt{4 \pi} \sum_J i^J [J] \hat{C}_{J0}(q) ,
\]

where the Coulomb multipole operators are

\[
\hat{C}_{J0}(q) = \zeta''_0 \sigma \cdot \left(\eta + \frac{\eta \cdot \nabla}{q^2} \nabla \right) j_J(qr) Y_{J0}(\hat{r}) .
\]
Later on we will also make the substitution $p \rightarrow -i\nabla$, although in this equation ∇ operates only on $j_j(qr)Y_{j0}(\hat{r})$.

The procedure now is to use Racah algebra and the general properties of spherical harmonics and spherical Bessel functions to write the above operator in explicit spherical-tensor form. The following expressions can be obtained:

\[
\hat{C}_{j0} = \zeta_0'' \left[\hat{C}_{j0}^{(1)} + \hat{C}_{j0}^{(2)} \right] \\
\hat{C}_{j0}^{(1)} = \frac{i}{m} \sum_{L} [L] U_{jLj} \\
\hat{C}_{j0}^{(2)} = -\frac{i}{m} \sum_{s=\pm 1} \sum_{s'=\pm 1} \frac{(J + \delta_{s1})^{1/2}(J' + \delta_{s'1})^{1/2}}{[J][J']} U_{J''J'} U_{J,J''}
\]

where $J' = J + s$, $J'' = J' + s'$ and $s, s' = \pm 1$ (coming from the derivative of the Bessel function, which is a linear combination of the Bessel functions for $J \pm 1$), and we have defined the auxiliary coupled operator

\[
U_{J''J',J} \equiv j_{J''}(qr) [\sigma \otimes [Y_{J''}(\hat{r}) \otimes \nabla],j]_{J0}
\]

Next we proceed to compute the reduced matrix elements of this U-operator between shell-model particle and hole states $\langle p \rangle = \frac{1}{2} l_p j_p$, and $\langle h \rangle = \frac{1}{2} l_h j_h$. Using standard Racah algebra [65, 66] we obtain

\[
\langle p \rangle \langle U_{J''J',J} \rangle \langle h \rangle = (-)^{l_h+s'} \sqrt{\frac{3}{2\pi}} [l_p][j_p][j_h][J][J'] [J''] \left\{ \begin{array}{ccc} \frac{1}{2} & l_p & j_p \\ \frac{1}{2} & l_h & j_h \\ 1 & J' & J \end{array} \right\} \\
\times \sum_{s_h=\pm 1} [L_h] s_h (l_h + \delta_{s_h1})^{1/2} \left\{ \begin{array}{ccc} J'' & 1 & J' \\ l_h & l_p & L_h \end{array} \right\} \left\{ \begin{array}{ccc} l_p & J'' & L_h \\ 0 & 0 & 0 \end{array} \right\} \\
\times \int_0^\infty dr \ r^2 R_p(r) j_{J''}(qr) \left(\frac{d}{dr} - s_h \frac{l_h + \delta_{s_h,-1}}{r} \right) R_h(r),
\]

where $R_p(r)$ and $R_h(r)$ are the radial wave functions, $L_h = l_h + s_h$, and $s_h = \pm 1$. We can now use this result in Eqs. (63,64). It is convenient to use the following identities involving products of six-j and three-j coefficients, for $J'' = J' + s'$ and $L_h = l_h + s_h$, with $s', s_h = \pm 1$:

\[
\left\{ \begin{array}{ccc} J'' & 1 & J' \\ l_h & l_p & L_h \end{array} \right\} \left(\begin{array}{ccc} l_p & J'' & L_h \\ 0 & 0 & 0 \end{array} \right) = \frac{P_{p+l_h+J''}}{[L_h][l_h][J'][J'']} \left\{ \begin{array}{ccc} l_h & J' & l_p \\ 1 & -1 & 0 \end{array} \right\} \left(\begin{array}{ccc} l_h & J' & l_p \\ 0 & 0 & 0 \end{array} \right)
\]

\[
\left\{ \begin{array}{ccc} (l_h + \delta_{s_h,-1}) (J' + \delta_{s'1})^{1/2} \left(\begin{array}{ccc} l_h & J' & l_p \\ 1 & -1 & 0 \end{array} \right) \\ - s_h s' (l_h + \delta_{s_h1}) (J' + \delta_{s'1})^{1/2} \left(\begin{array}{ccc} l_h & J' & l_p \\ 0 & 0 & 0 \end{array} \right) \right\}
\]

25
\[
\begin{align*}
\begin{cases}
J & 1 & J \\
 l_h & l_p & L_h \\
\end{cases}
\begin{pmatrix}
l_p & J & L_h \\
0 & 0 & 0 \\
\end{pmatrix}
= \frac{P_{p+1}^+}{[l_h][l_h][J]} (l_h + \delta_{h,-1}) \begin{pmatrix}
l_h & J & l_p \\
1 & -1 & 0 \\
\end{pmatrix} \tag{68}
\end{align*}
\]
where \(P_n^+\) is the parity function equal to one if \(n\) is even and zero if \(n\) is odd. We also use the following product of a nine-\(J\) and a three-\(J\)
\[
\begin{align*}
\begin{cases}
\frac{1}{2} & l_p & j_p \\
\frac{1}{2} & l_h & j_h \\
1 & J' & J \\
\end{cases}
\begin{pmatrix}
l_h & J' & l_p \\
0 & 0 & 0 \\
\end{pmatrix}
= \frac{(-)^{j_p+j_p+1/2}}{\sqrt{6}} \frac{P_{p+h+J+1}^+}{[l_p][l_h][J][J']}
\times \frac{\chi_p + \chi_h + sJ + \delta_{s1}}{\sqrt{J + \delta_{s1}}} \begin{pmatrix}
 j_p & j_h & J \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
\end{pmatrix} \tag{69}
\end{align*}
\]
where \(\chi_p = (-1)^{j_p+j_p+1/2}(j_p + \frac{1}{2})\). After some work, we finally arrive at the matrix elements written in the form
\[
\langle p|\hat{C}_J^{(1)}|h\rangle = \frac{i}{m} A_J(ph) \int_0^\infty dr r R_p^*(r) j_J(qr) R_h(r) \\
+ \frac{i}{m} B_J(ph) \int_0^\infty dr r^2 R_p^*(r) j_J(qr) \frac{dR_h(r)}{dr} \tag{70}
\]
\[
\langle p|\hat{C}_J^{(2)}|h\rangle = \frac{i}{m} \sum_{s=\pm1} A_{J,J'}(ph) \frac{1}{q} \int_0^\infty dr R_p^*(r) j_{J'}(qr) R_h(r) \\
+ \frac{i}{m} \sum_{s=\pm1} B_{J,J'}(ph) \int_0^\infty dr r^2 R_p^*(r) j_{J'}(qr) \frac{dR_h(r)}{dr} \tag{71}
\]
where \(J' = J + s\), \(s = \pm1\), and \(j_{J'}(z)\) is the derivative of the Bessel function. We have defined the following coefficients
\[
A_J(ph) = P_{p+h+J+1}^+ \sqrt{J+1} l_h(l_h+1) b_{JJ} - \sum_{s=\pm1} \frac{[J']}{[J]} \sqrt{J' + \delta_{s1}} b_{JJ'} a_J \tag{72}
\]
\[
B_J(ph) = P_{p+h+J+1}^+ \frac{(-)^{j_p+4}}{4\pi} [J_p][J_h][J] \begin{pmatrix}
 j_p & j_h & J \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
\end{pmatrix} a_J \tag{73}
\]
\[
A_{J,J'}(ph) = P_{p+h+J+1}^+ \sqrt{J+\delta_{s1}} l_h(l_h+1) \sqrt{J' + 1) a_J b_{JJ'} \tag{74}
\]
\[
B_{J,J'}(ph) = P_{p+h+J+1}^+ \frac{(-)^{j_p+2}}{4\pi} [J_p][J_h][J] \langle \chi_p + \chi_h + sJ + \delta_{s1} \rangle \begin{pmatrix}
 j_p & j_h & J \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
\end{pmatrix} \tag{75}
\]
where the factors \(a_J\) and \(b_{JJ'}\) are defined as follows:
\[
a_J = (-)^{j_p} \sqrt{\frac{3}{2\pi}} [l_p][l_h][j_p][j_h][J] \tag{76}
\]
\[
b_{JJ'} = \begin{cases}
\frac{1}{2} & l_p & j_p \\
\frac{1}{2} & l_h & j_h \\
1 & J' & J \\
\end{cases} \begin{pmatrix}
l_h & J' & l_p \\
1 & -1 & 0 \\
\end{pmatrix} \tag{77}
\]
B PWIA

We follow the approach of [27]. In PWIA the inclusive response functions can be written as an integral over the missing momentum \(p = p' - q \), with \(p' = \sqrt{2m_N\epsilon_p} \),

\[
\left[R^K_{\text{PWIA}}(q, \omega) \right]_h = \frac{m_N}{q} \int_{[p'-q]} dp' p \int_0^{2\pi} d\phi \, w^K(p', p) M_h(p)
\]

(78)

of the scalar momentum distribution for each occupied shell

\[
M_h(p) = \frac{2j_h + 1}{4\pi} |\bar{R}_h(p)|^2 ,
\]

(79)

where \(\bar{R}_h(p) \) is the radial wave function in momentum space. The single-nucleon exclusive responses \(w^K(p', p) \), for \(K = CC, CL, LL, T, T' \) are readily computed using the vector, Eqs. (24,25), and axial-vector, Eqs. (28,29,30), current components

\[
w^V_{CC} = w^V_{CC} + w^A_{CC}
\]

(80)

\[
w^V_{CC} = \xi_0^2 + \xi_0^2 \kappa^2 \eta_{\perp}^2
\]

(81)

\[
w^A_{CC} = \xi_0^2 \kappa^2 + \xi_0^2 \eta_{\perp}^2
\]

(82)

\[
w_{CL} = w^V_{CL} + w^A_{CL}
\]

(83)

\[
w^V_{CL} = -\frac{\lambda}{\kappa} w^V_{CC}
\]

(84)

\[
w^A_{CL} = -\frac{\xi_0^2 \zeta_{\perp}^2}{\kappa} - \frac{\xi_0^2 \zeta_{\perp}^2}{\kappa} \eta_{\perp}^2
\]

(85)

\[
w_{LL} = w^V_{LL} + w^A_{LL}
\]

(86)

\[
w^V_{LL} = \left(\frac{\lambda}{\kappa} \right)^2 w^V_{CC}
\]

(87)

\[
w^A_{LL} = \frac{\zeta_{\perp}^2 \kappa^2}{\kappa^2} + \frac{\zeta_{\perp}^2 \eta_{\perp}^2}{\kappa^2}
\]

(88)

\[
w_T = w^V_T + w^A_T
\]

(89)

\[
w^V_T = 2 \xi_1^2 \kappa^2 + \xi_1^2 \eta_{\perp}^2
\]

(90)

\[
w^A_T = 2 \xi_1^2
\]

(91)

\[
w_{T'} = 2 \xi_1 \xi_{\perp} \kappa.
\]

(92)

Since these functions do not depend on the azimuthal angle of \(p \), namely \(\phi \), the response functions in Eq. (78) are reduced to an integral over the missing momentum \(p \), which is performed numerically.

C The relativistic Fermi gas

Here we summarize the expressions for \((\nu_, \mu^-)\) reactions in the RFG model. We follow [37], where the expressions were written to leading order. Here we write the full results for the
non-Pauli blocked regime of interest in this work. The nuclear response functions are written as

\[R_K = N\Lambda_0 U_K f_{RFG}(\psi), \quad K = CC, CL, LL, T, T', \]

where \(N \) is the neutron number,

\[\Lambda_0 = \frac{\xi_F}{m_N \eta_F^2}. \]

Here \(\eta_F = k_F/m_N, \xi_F = \sqrt{1 + \eta_F^2} - 1 \). In Eq. (93) \(f_{RFG}(\psi) \) is the scaling function of the RFG

\[f_{RFG}(\psi) = \frac{3}{4}(1 - \psi^2)\theta(1 - \psi^2) \]

and \(\psi \) is the scaling variable given in Eq. (55). Finally, we give the single-nucleon responses \(U_K \). For \(K = CC \) we have

\[U_{CC} = U^V_{CC} + (U^A_{CC})_{c.} + (U^A_{CC})_{n.c.} \]

\[U^V_{CC} = \frac{\kappa^2}{\tau} \left[\frac{(2G^V_E)^2 + (2G^V_N)^2 + \tau(2G^V_M)^2}{1 + \tau} \right], \]

where

\[\Delta = \frac{\tau \kappa^2}{\kappa^2} \xi_F(1 - \psi^2) \left[\kappa \sqrt{1 + \frac{1}{\tau} + \frac{\xi_F}{3}(1 - \psi^2)} \right] \]

and we have written the axial-vector response as the sum of conserved (c.) plus non conserved (n.c.) parts,

\[(U^A_{CC})_{c.} = \frac{\kappa^2}{\tau} G^2 A \Delta \]

\[(U^A_{CC})_{n.c.} = \frac{\lambda^2}{\tau} G^2 A'. \]

For \(K = CL, LL \) we have

\[U_{CL} = U^V_{CL} + (U^A_{CL})_{c.} + (U^A_{CL})_{n.c.} \]

\[U_{LL} = U^V_{LL} + (U^A_{LL})_{c.} + (U^A_{LL})_{n.c.}, \]

where the vector and conserved axial-vector parts are determined by current conservation as

\[U^V_{CL} = -\frac{\lambda}{\kappa} U^V_{CC} \]

\[(U^A_{CL})_{c.} = -\frac{\lambda}{\kappa} (U^A_{CC})_{c.} \]

\[U^V_{LL} = \frac{\lambda^2}{\kappa^2} U^V_{CC} \]

\[(U^A_{LL})_{c.} = \frac{\lambda^2}{\kappa^2} (U^A_{CC})_{c.}, \]
while the n.c. parts are

\[
\begin{align*}
(U^A_{CL})_{\text{n.c.}} &= -\frac{\lambda\kappa}{\tau}G_A'^2, \quad (107) \\
(U^A_{LL})_{\text{n.c.}} &= \frac{\kappa^2}{\tau}G_A'^2. \quad (108)
\end{align*}
\]

Finally the transverse responses are given by

\[
\begin{align*}
U_T &= U^V_T + U^A_T, \quad (109) \\
U^V_T &= 2\tau(2G_M^V)^2 + \frac{(2G_E^V)^2 + \tau(2G_M^V)^2}{1 + \tau}\Delta, \quad (110) \\
U^A_T &= 2(1 + \tau)G_A^2 + G_A^2\Delta, \quad (111) \\
U_T' &= 2G_A(2G_M^V)^2(1 + \tau)[1 + \tilde{\Delta}], \quad (112)
\end{align*}
\]

with

\[
\tilde{\Delta} = \sqrt{\frac{\tau}{1 + \tau}}\frac{\xi_F(1 - \psi^2)}{2\kappa}. \quad (113)
\]

References

[1] D.A. Krakauer et al., Phys. Rev. C 45, 2450 (1992)
[2] B. Zeitnitz, Prog. Part. Nucl. Phys. 32, 351 (1994)
[3] B.E. Bodmann et al., Phys. Lett. B 332, 251 (1994)
[4] M. Albert et al., Phys. Rev. C 51, R1065 (1995)
[5] C. Athanassopoulos, et al., Phys. Rev. C 56 (1997) 2806.
[6] C. Athanassopoulos, et al., Phys. Rev. C 58, 2489 (1998)
[7] A. Aguilar et al., Phys. Rev. D 64, 112007 (2001)
[8] L.B. Auerbach et al., Phys. Rev. C 66, 015501 (2002)
[9] E. Kolbe, K. Langanke and P. Vogel, Phys. Rev. C 50, 2576 (1994).
[10] E. Kolbe, K. Langanke and P. Vogel, Phys. Rev. C 62 055502 (2000).
[11] E. Kolbe, K. Langanke, and P. Vogel, Nucl. Phys. A652, 91 (1999).
[12] A.C. Hayes and I.S. Towner, Phys. Rev. C 61, 044603 (2000).
[13] C. Volpe, N. Auerbach, G. Colo, T. Suzuki, and N. Van Giai, Phys. Rev. C 62, 015501 (2000).

[14] T.S. Kosmas and E. Oset, Phys. Rev. C 53, 1409 (1996).

[15] J. Nieves, J.E. Amaro, M. Valverde, Phys. Rev. C 70, 055503 (2004).

[16] F. Krmpotić, A. Samana, and A. Mariano, nucl-th/0410086.

[17] Y. Fukuda et al. [Super-Kamiokande Collaboration],
 Phys. Rev. Lett. 81 (1998) 1562;

[18] M. H. Ahn et al. [K2K Collaboration], Phys. Rev. Lett. 90 (2003) 041801;

[19] E. Ables et al. [MINOS Collaboration], A Long baseline neutrino oscillation experiment at Fermilab. FERMILAB-Proposal-0875.

[20] E. Church et al., [BooNe Collaboration], “A proposal for an experiment to measure muon-neutrino to electron-neutrino oscillations and muon-neutrino disappearance at the Fermilab Booster: BooNE”, Fermilab-Proposal-0898.

[21] I. Ambats et al., [NOvA Collaboration], “NOvA proposal to build an off-axis detector to study muon-neutrino to electron-neutrino oscillations in the NuMI”, Fermilab-Proposal-0929

[22] D. Drakoulakos et al. [MINERvA Collaboration], “Proposal to perform a high-statistics neutrino scattering experiment using a fine-grained detector in the NuMI beam”, hep-ex/0405002

[23] T. Kuramoto, M. Fukugita, Y. Kohyama and K. Kubodera, Nucl. Phys. A 512, 711 (1990).

[24] J. Engel, E. Kolbe, K. Langanke and P. Vogel, Phys. Rev. D 48, 3048 (1993)

[25] see for example G. D. Barr, T. K. Gaisser, P. Lipari, S. Robbins and T. Stanev, Phys. Rev. D 70, 023006 (2004) and references therein.

[26] J.E. Amaro, J.A. Caballero, T.W. Donnelly, E. Moya de Guerra, A.M. Lallena, and J.M. Udias, Nucl. Phys. A602, 263 (1996).

[27] J.E. Amaro, J.A. Caballero, T.W. Donnelly, E. Moya de Guerra, Nucl. Phys. A 611 (1996) 163.
[28] S. Jeschonneck and T.W. Donnelly, Phys. Rev. C57 (1998) 2438.

[29] J.E. Amaro and T.W. Donnelly, Ann. Phys. (N.Y.) 263 56 (1998).

[30] J.E. Amaro, T.W. Donnelly, Nucl. Phys. A 646 (1999) 187.

[31] J.M. Udias, J.A. Caballero, E. Moya de Guerra, J.E. Amaro, and T.W. Donnelly, Phys. Rev. Lett. (1999)

[32] L. Alvarez-Ruso, M.B. Barbaro, T.W. Donnelly and A. Molinari, Phys. Lett. B 497, 214 (2001).

[33] J.E. Amaro, T.W. Donnelly, Nucl. Phys. A 703 (2002) 541.

[34] M. Mazziotta, J.E. Amaro, F. Arias de Saavedra, Phys. Rev. C 65, 034602 (2002).

[35] F. Kazemi Tabatabaei, J.E. Amaro, J.A. Caballero, Phys. Rev. C68 (2003) 034611.

[36] F. Kazemi Tabatabaei, J.E. Amaro, J.A. Caballero, Phys. Rev. C69 (2004) 064607.

[37] J.E. Amaro, J.A. Caballero, T.W. Donnelly, F. Kazemi Tabatabaei, Nucl. Phys. A (in press)

[38] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly and A. Molinari, Nucl. Phys. A 643, 349 (1998).

[39] J. E. Amaro, M. B. Barbaro, J. A. Caballero and F. Kazemi Tabatabaei, Phys. Rev. C 68 (2003) 014604.

[40] J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly and A. Molinari, Phys. Rep. 368, 317 (2002).

[41] W. M. Alberico et al., Nucl. Phys. A 623, 471 (1997).

[42] W. M. Alberico et al., Phys. Lett. B 438 (1998) 9

[43] W. M. Alberico et al., Nucl. Phys. A 651 (1999) 277.

[44] C. Maieron, M. C. Martínez, J. A. Caballero and J.M. Udías, Phys. Rev. C 68 (2003) 048501

[45] A. Meucci, C. Giusti and F.D. Pacati, Nucl. Phys. A 739 (2004) 277; 744 (2004) 307

[46] W.M. Alberico, A. Molinari, T.W. Donnelly, E.L. Kronenberg and J.W. Van Orden, Phys. Rev. C 38, 1801 (1988).
[47] D. B. Day, J. S. McCarthy, T. W. Donnelly and I. Sick, Ann. Rev. Nucl. Part. Sci. 40, 357 (1990).

[48] M. B. Barbaro, R. Cenni, A. De Pace, T. W. Donnelly and A. Molinari, Nucl. Phys. A 643, 137 (1998)

[49] T. W. Donnelly and I. Sick, Phys. Rev. Lett. 82, 3212 (1999)

[50] T. W. Donnelly and I. Sick, Phys. Rev. C 60, 065502 (1999)

[51] C. Maieron, T. W. Donnelly and I. Sick, Phys. Rev. C 65, 025502 (2002)

[52] M. B. Barbaro, J. A. Caballero, T. W. Donnelly and C. Maieron, Phys. Rev. C 69, 035502 (2004)

[53] J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly A. Molinari, and I. Sick, Phys. Rev. C 71, 015501 (2005)

[54] T. W. Donnelly and R. D. Peccei, Phys. Rept. 50, 1 (1979).

[55] T. W. Donnelly, Prog. Part. Nucl. Phys. 13, 183 (1985).

[56] H. Kim, S. Schramm and C. J. Horowitz, Phys. Rev. C 53, 2468 (1996).

[57] M. B. Barbaro, A. De Pace, T. W. Donnelly, A. Molinari and M. J. Musolf, Phys. Rev. C 54, 1954 (1996).

[58] J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

[59] S. Galster et al., Nucl. Phys. B32 221 (1972).

[60] J.E. Amaro, C. Maieron, J. Nieves and M. Valverde, nucl-th/0409017

[61] R. Rosenfelder, Phys. Lett. B 79, 15 (1978).

[62] R.D. Smith and J. Wambach, Phys. Rev. C 38 (1988), 10

[63] J.E. Amaro, G. Co’, A.M. Lallena, Ann. Phys. (N.Y.) 221 (1993) 306.

[64] J.E. Amaro, G. Co’, A.M. Lallena, Nucl. Phys. A 578 (1994) 365.

[65] A.R. Edmonds, Angular Momentum in Quantum Mechanics, Third Printing (Princeton Univ. Press, Princeton, 1974).
[66] M. Rotenberg, R. Bivins, N. Metropolis, and J.K. Wooten, Jr., “The 3-j and 6-j Symbols”, MIT Press, Cambridge, MA, 1959.