NOTE
Wildlife Science

Phylogenetic characterization of *Isospora jaracimrmani* oocysts from a veiled chameleon (family Chamaeleonidae; *Chamaeleo calyptratus*) reared at a zoo in Ishikawa, Japan

Fitrine EKAWASTI1,2)#, Kazuya KITAGAWA3)#, Hiroshi DOMAE3)#, April Hari WARDHANA1,2,4)#, Junki NAGASAWA2)#, Tomoyuki SHIBAHARA2,5)#, Masaharu TOKORO6)#, Kazumi SASAI2,7)# and Makoto MATSUBAYASHI2,4,7)*#

1)Indonesian Research Center for Veterinary Science, Bogor 16114, Indonesia
2)Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
3)Ishikawa Zoo, Nomi, Ishikawa 923-1222, Japan
4)Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
5)Division of Pathology and Pathophysiology, National Institute of Animal Health, NARO, Tsukuba, Ibaraki 305-0856, Japan
6)Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
7)Asian Health Science Research Institute, Osaka Prefecture University, Osaka 598-8531, Japan

ABSTRACT. Oocysts of *Isospora* sp. were detected in the feces of a veiled chameleon (family Chamaeleonidae; *Chamaeleo calyptratus*) kept at a zoo in Ishikawa, Japan. Phylogenetic analysis placed the sequence in the cluster of *Isospora* spp. isolated from reptiles. Based on a comparison of morphological data of ten previously reported *Isospora* species from the Chamaeleonidae family, this isolate was morphologically similar to *I. jaracimrmani*, which has been considered to be a virulent species. This case study suggests the possibility that species of *Isospora* might not always cause disease because the animal that shed these oocysts showed no symptoms for more than two months.

KEY WORDS: *Isospora*, Japan, oocyst, veiled chameleon

The veiled chameleon (family Chamaeleonidae; *Chamaeleo calyptratus*) is endemic to the southwestern area of the Arabian Peninsula and is one of the most popular chameleon species in the world. They prefer humid coastal lowlands, coastal slopes, and high plateaus and generally feed on insects such as locusts, grasshoppers, and crickets, by capturing them with their sticky tongues. Chameleons sometimes consume the leaves of plants as a source of water, especially during the dry season [9].

To date, ten species of protozoan coccidian parasites, *Isospora*, have been isolated and described from seven members of the Chamaeleonidae from four geographic areas, Africa, the Republic of Madagascar, the Seychelles, and the Republic of Yemen (summarized by McAllister) [7] (see Table 1). Among them, *I. jaracimrmani* has been reported to cause serious health problems such as weight loss and weakness in infected hosts [11, 12]. In this study, isosporan oocysts were isolated from a veiled chameleon reared at a zoo in Japan. We compared the morphology of the isolates with that of previously reported isolates and analyzed the genetics to determine the species and phylogenetic position.

A veiled chameleon (1-year-old) kept in captivity at a zoo in Ishikawa Prefecture, Japan, since its birth in September 2017, was periodically screened for parasites as a routine examination before exhibition based on examination of feces by the sucrose centrifugal flotation method [19]. The chameleon did not show any clinical symptoms when fecal samples were collected. Oocysts of *Isospora* sp. were detected on November 8, 2018, and January 27, 2019 (Fig. 1), and an anti-coccidiostat, 5 mg of toltrazuril (0.1 ml) (Bayer
The database revealed a nucleotide identity of 99.9% with differences were observed in the sequences among these samples (Accession No. LC617200). BLAST searches of the GenBank J. Vet. Med. Sci. 83(8): previous detected in Chamaeleonidae, as summarized in Table 1, this isolate was most similar to an isolate of Isospora sp. previously reported primer pairs targeting the 18S rRNA gene [6]. Phylogenetic trees were constructed as described previously [4]. Briefly, sequences were aligned using Clustal X (Version 2.0) [5], and all gaps were deleted. Maximum likelihood analyses with 500 bootstrap replicates were performed using the MEGA software package (version 10.0) [18], and a phylogenetic tree was constructed using the substitution model with optional parameters of the Tamura-Nei model with (G+I) distribution [17].

Table 1. Comparison of morphology of *Isospora* spp. in the present study and in the ones isolated from the Chamaeleonidae

Species	Mean length × width (range) (µm)	Mean L/W (range)	Mi	OR	PG	Mean length × width (range) (µm)	Mean L/W (range)	SB	SSB	SR	Host	Locality	Refe
This study	35.5 (28.2–42.4) × 23.4 (19.4–27.4)	1.5 (1.14–1.99)	-	-	-	14.0 (12.6–16.1) × 11.3 (10.0–13.0)	1.27 (1.11–1.56)	+	+	+	Chamaeleo calyptratus	Japan	
Isospora brygooi	20.7 (17–25) × 19.3 (16–23)	1.1	-	-	+	12.2 (12–13) × 8.1 (8–9)	1.5	+	+	+	Furetiera pardalis	Namibia	
Isospora freedi	23.7 (21–26) × 21.2 (18–24)	1.1	-	-	+	13.9 (13–14) × 10.3 (9–11)	1.34	+	+	+	Chamaeleo calyptratus	Namibia	
Isospora jaracimrmani	38.4 (35.2–42.8) × 25.6 (23.8–27.0)	1.5	-	-	-	15.9 (14.8–17.0) × 11.2 (10.4–12.0)	1.4	+	-	+	Chamaeleo calyptratus	Yemen	
Isospora mandalai	36.9 (34–39) × 31.0 (26–35)	1.2	-	-	-	15.3 (14–16) × 11.1 (10–12)	1.37	+	+	+	Chamaeleo dilepis	Namibia	
Isospora mesnili	30 (diam)	-	-	-	-	16 × 10	1.6	-	-	+	Chamaeleo chameleon	Algeria	
Isospora muriya	23.6 (21.5–25) × 21.9 (21–23)	1.08	-	-	-	12.4 (12–13) × 8.7 (8–10)	1.4	+	+	+	Triceros jacksoni	Kenya	
Isospora necassi	26.3 (21–30) × 24.0 (20–27)	1.1	-	-	-	12.8 (12–14) × 9.8 (8–10)	1.31	+	+	+	Triceros melleri	Tanzania	
Isospora taizii	28 × 22	1.3	-	-	-	13 × 9	1.4	-	-	+	Chamaeleo calyptratus	Yemen	
Isospora tigris	22.5 (19–24) × 18 (16–20)	1.25	-	-	-	13.6 (12–15) × 7.6 (6–8)	1.9	+	+	+	Caluma tigris	Republic of the Seychelles	
Isospora wildi	25 (22–28) × 21 (18–24)	1.17	-	-	-	12.3 (12–13) × 9.7 (9–10)	1.28	+	+	+	Calima dilepis	Tanzania	

Blank: data not available, Mi: microple, OR: oocyst residuum, PG: polar granules, SB: stieda body, SSB: sub-stieda body, SR: sporocyst residuum.

Figure 1. *Isospora* oocysts detected in the feces of a veiled chameleon.
sexlineatus (family Lacertidae) and 99.8% from I. abdallahi (Accession No. KU180240) isolated from Acanthodactylus boskianus (family Lacertidae). We then constructed a phylogenetic tree using the 18S rRNA gene sequence obtained in the present study and published the sequences of related parasites. The sequence obtained in the present study was placed in a clade with the closely related Isospora spp. from reptiles (Fig. 2).

Isospora spp. that infect lizards are thought to show a high degree of host specificity [3], and more than 100 species of Isospora spp. have been described from reptiles, mainly based on the morphological data of oocysts and the host animal species [8]. The isolate in the present study was morphologically similar to I. jaracimrmani, which has previously been suggested to show pathogenicity [11, 12]. Although oocysts were not collected from the previously treated chameleon, both the previous case and the veiled chameleon in the present study did not show severe symptoms before administration of coccidiostats. Although these animals may have been lightly infected, this species of Isospora might not always cause the disease. One of the possible transmission routes might be breeding environments, including soils contaminated with oocysts. Although no sequence data of Isospora spp. from members of the Chamaeleonidae are available, the sequence from the isolate was placed in the cluster of Isospora spp. from reptiles of other families. However, compared to data available for other species of Coccidia (e.g., Eimeria spp.), the sequence data of Isospora spp. are largely lacking and, thus, there is a necessity of molecular analysis of the isolates and of other gene loci for understanding the classification or identification of parasites and for further evaluation of pathogenicity.
POTENTIAL CONFLICTS OF INTEREST. The authors declare that they have no conflicts of interest.

ACKNOWLEDGMENTS. The authors gratefully acknowledge Rika Sekiguchi and Noriko Asama (Osaka Prefecture University) for their help with fecal and molecular examinations. Financial support for this study was provided by a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) (Grant No. 19H04319).

REFERENCES

1. Abdel-Wasae, B. M. 2004. *Isospora taizi* (Apicomplexa: Eimeriidae), a new coccidian parasite from the Yemen chameleon (*Chameleo calyptratus*) (Sauria: Chamaeleo-oidae) in Taiz City, Yemen Republic. *Assist. Univ. Bull. Environ. Res.* 7: 29–34.

2. Brygoo, E. R. 1963. Contribution a la connaissance de laparasitologie des cameleons malgaches. *Ann. Parasitol. Hum. Comp.* 38: 525–739. [Medline] [CrossRef]

3. Duszynska, D. W., Upton, S. J. and Couch, L. 2008. Coccidia (*Eimeria* and *Isospora*) of Sauria. In: The Coccidia of the world. http://biology.unm.edu/coccidian/sauria.html [accessed on March 12, 2011].

4. Ekawasti, F., Kitagawa, K., Domae, H., Wardhana, A. H., Shibahara, T., Uni, S., Tokoro, M., Sasa, K. and Matsubayashi, M. 2020. Molecular identification of *Eimeria hesternani* and *Eimeria prionotemni* from a red-necked wallaby (Macropodidae; *Macropus rufogriseus*) in Japan. *Parasitol. Res.* 119: 1271–1279. [Medline] [CrossRef]

5. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, J. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics* 23: 2947–2948. [Medline] [CrossRef]

6. Matsubayashi, M., Carreno, R. A., Tani, H., Yoshiuchi, R., Kanai, T., Kimata, I., Uni, S., Furuya, M. and Sasa, K. 2011. Phylogenetic identification of *Cystoisospora* spp. from dogs, cats, and raccoon dogs in Japan. *Vet. Parasitol.* 176: 270–274. [Medline] [CrossRef]

7. Modrý, D. 1902. Sur une coccidie nouvelle, parasite du cameleon vulgaire. *C. R. Sci. Soc. Biol.* Edition Chimaira, Berlin.

8. Megía-Palma, R., Martínez, J., Nasri, I., Cuervo, J. J., Martín, J., Acevedo, I., Belliure, J., Ortega, J., García-Roa, R., Selmi, S. and Merino, S. 2016. Phylogenetic relationships of *Isospora, Lankesterella, and Caryospora* species (Apicomplexa: Eimeriidae) infecting lizards. *Org. Divers. Evol.* 16: 275–288. [CrossRef]

9. McAllister, C. T. 2012. Two new species of *Isospora* Schneider, 1881 (Apicomplexa: Eimeriidae) from the flap-necked chameleon *Chamaeleo dilepis* (Sauria: Chamaeleonidae) in the Republic of Namibia. *Syst. Parasitol.* 83: 15–20. [Medline] [CrossRef]

10. Modrý, D., Daszak, P., Volf, J., Vesely, M., Ball, S. J. and Koudela, B. 2001. Five new species of coccidia (Apicomplexa: Eimeriidae) from Madagascan chameleons (Sauria: Chamaeleonidae). *Syst. Parasitol.* 48: 117–123. [Medline] [CrossRef]

11. Modrý, D. and Koudela, B. 1997. Description of *Isospora jaracimrmani* sp. n. (Apicomplexa: Eimeriidae) from the Yemen chameleon *Chameleo calyptratus* (Sauria: Chamaeleonidae). *Folia Parasitol.* (Prague) 42: 313–316.

12. Modrý, D. and Koudela, B. 1998. *Isosporan* infections of *Chamaeleo calyptratus* represent growing problem for its breeding in captivity. *Reptile Amphibian Mag* 54: 38–41.

13. Modrý, D., Koudela, B. and Volf, J. 1997. Four new species of *Isospora* Schneider, 1881 (Apicomplexa: Eimeriidae) from reptiles from the islands of Seychelles. *Syst. Parasitol.* 37: 73–78. [CrossRef]

14. Modrý, D., Slapeta, J. R. and Koudela, B. 2000. Six new species of coccidia (Apicomplexa: Eimeriidae) from East African chameleons (Sauria: Chamaeleonidae). *J. Parasitol.* 86: 373–379. [Medline] [CrossRef]

15. Modrý, D. and Sloboda, M. 2004. Control of coccidiosis in chameleons using toltrazuril -results of an experimental trial-. pp. 93–99. In: Proceedings of the 7th International Symposium on Pathology and Medicine in Reptiles and amphibians (Seybold, J. and Mutschmann F. eds.), Edition Chimaira, Berlin.

16. Sergent, M. E. 1902. Sur une coccidie nouvelle, parasite du cameleon vulgaire. *C. R. Sci. Soc. Biol.* 54: 1260–1261 (Paris).

17. Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Mol. Biol. Evol.* 10: 512–526. [Medline] [CrossRef]

18. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30: 2725–2729. [Medline] [CrossRef]

19. Uga, S., Matsuo, J., Kono, E., Kimura, K., Inoue, M., Rai, S. K. and Ono, K. 2000. Prevalence of *Cryptosporidium parvum* infection and pattern of oocyst shedding in calves in Japan. *Vet. Parasitol.* 94: 27–32. [Medline] [CrossRef]

20. Walden, M. R. Characterizing the epidemiology of *Isospora amphiboluri* in captive bearded dragons (*Pogona Vitticeps*). 2009. Ph.D. thesis Louisiana State University. LSU Doctoral Dissertations, Baton Rouge, ed-05292009–214931.