ON HAUSDORFF DIMENSION OF THE SET OF NON-ERGODIC DIRECTIONS OF TWO-GENUS DOUBLE COVER OF TORI

YAN HUANG
School of Mathematics and Statistics, Henan University
Kaifeng 475004, China

(Communicated by Yitwah Cheung)

Abstract. Cheung, Hubert and Masur [Invent. Math., 183(2011), no.2, pp. 337-383] proved that the Hausdorff dimension of the set of nonergodic directions of billiards in a kind of rectangle with barrier is either 0 or \(\frac{1}{2} \). As an application of their argument, we prove that there exist the third-kind two-genus double covers of tori in which the set of minimal and non-ergodic directions have Hausdorff dimension \(\frac{1}{2} \).

1. Introduction. A translation surface has a collection of directional flows which preserves the Lebesgue measure induced by its translation structure. It is classical that the subset of ergodic directions is of full measure. See [7].

For quantifying the subset of non-ergodic directions further, it is naturally to consider the Hausdorff dimension. In fact, the Hausdorff dimension provides a functor on the moduli space of translation surfaces, which is invariant under the action of \(G = \text{GL}_+ (2, \mathbb{R}) \) and is constant almost everywhere with respect to its natural measure. See [8].

Non-ergodic directions in two-genus translation surfaces are studied extensively. In [4], Cheung and Masur proved that for a two-genus translation surface either it is a Veech surface, or it has uncountable non-ergodic directions. On the other hand, the Hausdorff dimension of the set of non-ergodic directions is equal to \(\frac{1}{2} \) for almost every translation surface in the stratum \(\mathcal{H}(2) \). See [1].

For any \(\lambda \in (0, 1) \) let \(Q_\lambda \) be a \(\frac{1}{2} \)-by-1 rectangle with a horizontal barrier of length \(\frac{1-\lambda}{2} \) initiated from the middle point of the vertical side. There is a standard procedure to turn billiards in \(Q_\lambda \) into the directional flows on a translation surface. Denote the translation surface by \(X_\lambda \). It is easy to see that \(X_\lambda \) be the resulting surface by gluing two copies of \(T^2 \) together along a horizontal geodesic segment of length \(\lambda \). See [2], [3] and [5]. It seems that by now \(X_\lambda \) is the only translation surface, of which the Hausdorff dimension of the set of non-ergodic directions is calculated concretely, except Veech surfaces.

Let \(\mathcal{E} \) be the space of two-genus translation surfaces, which is a double cover of a flat torus. Then \(\mathcal{E} \subset \mathcal{H}(1,1) \) is an affine invariant sub-manifold of complex dimension 3. Currently, the study of affine invariant sub-manifold is active. See

2010 Mathematics Subject Classification. Primary: 32G15.
Key words and phrases. Translation surface, ergodicity, Hausdorff dimension, Diophantine number.

The author is supported by NSFC under grant No. 11401167.
It should be interesting to consider the Hausdorff dimension functor restricting on affine invariant sub-manifolds.

A saddle connection γ of a two-genus translation surface is said to be \textit{separating} if the complement of $\gamma \cup j(\gamma)$ has two connected components, where j is the hyper-elliptic involution. The corresponding direction is also said to be \textit{separating}. It is known that a two-genus translation surface always has infinitely many separating directions. See [10] and [9]. Recall that a direction in a translation surface is periodic if there is a closed geodesic in this direction.

\textbf{Definition 1.1.} $X \in E$ is of the first kind if there are two separating and periodic directions; the second kind if there is only one separating and periodic direction; the third kind if there is no separating and periodic direction at all.

It is obviously that the classification of surfaces in E is invariant under the G-action. Moreover, $X \in E$ is of the first kind if and only if X is a Veech surface, which means that its non-ergodic directions are countable; the second kind if and only if X belongs to the G-orbit of X_λ for a unique irrational λ. In 2011 Cheung, Hubert and Masur [3] proved that the set of nonergodic directions on X_λ has Hausdorff dimension either $\frac{1}{2}$ or 0, depending on the sequence of k-th convergent of λ satisfies the Pérez-Marco condition

$$\sum \log \log q_{k+1} < \infty$$

or not. Hence it would be desirable to know whether the set of non-ergodic directions on any double cover $X \in E$ has Hausdorff dimension either $\frac{1}{2}$ or 0. In fact, we get the following result:

\textbf{Theorem 1.2.} \textit{There exist $X \in E$ of the third kind such that the Hausdorff dimension of the set of its minimal and non-ergodic directions is equal to $\frac{1}{2}$}.

The paper is organized as following: In Section 2 one classifies two-genus double covers of tori; Theorem 3.1 is proved in Section 3 under the existence of good trees of slits; Section 4 is devoted to prove the existence of such trees.

2. \textbf{Double cover of tori.} To generalize X_λ, denote by X_ϕ, $0 \leq \Re \phi, \Im \phi < 1$, the resulting surface of gluing two copies of the flat torus T^2 along an oriented geodesic segment with two different end points, of which the holonomy is equal to ϕ. See Figure 1.

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{figure1.png}
\caption{The double cover}
\end{figure}

\textbf{Proposition 1.} \textit{Suppose that $X \in E$. Then X belongs to the G-orbit of X_ϕ for some ϕ.}
Proof. The famous Riemann-Hurwitz’s formula implies that \(\mathcal{E} \subset \mathcal{H}(1,1) \). Since the moduli space of one-genus translation surfaces \(\mathcal{H}_1 = G/SL(2,Z) \), there exists \(Y \) in the \(G \)-orbit of \(X \) such that \(Y \) is a double cover of the flat torus \(T^2 \). Without loss of generality, assume that the images of two singular points of \(Y \) are \([0] \) and \([\phi] \).

As shown in Figure 2, it turns out that either \(Y = X_\phi \), \(Y = X_{1-\phi} \), \(Y = X_{i-\phi} \), or \(Y = X_{1+i-\phi} \).

Corollary 1. Let \(X \in \mathcal{E} \) be a double cover. Then \(X \) is of the first kind if and only if it is Veech surface; \(X \) is of the second kind if and only its \(G \)-orbit contain \(X_\lambda \) with \(\lambda \not\in \mathbb{Q} \), and such \(\lambda \) is unique.

A slit of \(X_\phi \) is defined to be the holonomy of an oriented separating saddle connection in \(X_\phi \). Denote by \(S(\phi) \) the set of all slits of \(X_\phi \).

Proposition 2. If \(\phi \not\in \mathbb{Q}[i] \), then \(S(\phi) = \{ \pm \phi + 2v : v \in \mathbb{Z}[i] \} \).

Proof. Cut the flat torus \(T^2 \) with two marked points \([0] \) and \([\phi] \) along three saddle connections with holonomies \(\phi, 1 + i - \phi \) and \(1 - \phi \). one gets a hexagon. Because \(X_\phi \) is a double cover of \(T^2 \) branched at \([0] \) and \([\phi] \). \(X_\phi \) can be realized as two copies of the hexagons gluing together along the side.

Take any \(\phi + m + in \), where \(m + in \in \mathbb{Z}[i] \). Cutting the two hexagons along the geodesic line determined by \(\phi + m + in \) results a finite number of pieces of polygon. To get \(X_{\phi+m+in} \), at first glue these polygons along the sides determined by \(\phi + m + in \) to get two new hexagons; next glue these new hexagon along sides determined by \(\phi, 1 + i - \phi \) and \(1 - \phi \). See Figure 3. Then some tedious manipulation yields that \(X_{\phi+m+in} = X_\phi \) if and only \(m + in \in 2\mathbb{Z}[i] \).

Notation. For any \(w \in S(\phi) \) denoted by \(\Re(w) \) the real part of \(w \) and \(\Im(w) \) its imaginary part; denote by \(|w| \), named the height of \(w \), the absolute value of \(\Im(w) \); and denote by \(\alpha(w) \), named the inverse slope of \(w \), the quotient \(\frac{\Re(w)}{\Im(w)} \).
3. **Proof of Theorem 1.2.** Let $NE(\phi)$ be the set of inverse slopes of minimal and non-ergodic directions in X_ϕ and let $H\dim(\phi)$ be the Hausdorff dimension of $NE(\phi)$. Recall that an irrational number α is Diophantine if there exist constants $c > 0$ and $e > 0$ such that
\[|\alpha - \frac{p}{q}| \geq \frac{c}{q^e} \]
for any integers p and $q > 0$.

Theorem 3.1. Suppose that $\Im(\phi)$ is a reduced rational number $\frac{\xi}{\eta}$. If $\Re(\eta\phi)$ is Diophantine, then $H\dim(\phi) = \frac{1}{2}$.

Remark 1. If $\Im\phi = 0$, i.e. $\xi = 0$ and $\eta = 1$, Theorem 3.1 is just Theorem 2 in [2]; if otherwise, X_ϕ is of the third kind. Hence Theorem 3.1 implies the main theorem.

Proposition 3. Suppose that $w_j \in S(\phi)$ with $|w_j| > |w_j+1|$ for any $j \geq 0$. If
\[\sum |w_j \times w_{j+1}| < \infty, \quad (1) \]
then α_{w_j} converges to some $\alpha \in NE(\phi)$.

Proof. Since
\[
|\alpha_{w_j} - \alpha_{w_{j+1}}| \leq |\alpha_{w_j} - \alpha_{w_{j+1}}| + \ldots + |\alpha_{w_{j+l}} - \alpha_{w_{j+l+1}}|
\]
\[
= \frac{|w_j \times w_{j+1}|}{|w_j||w_{j+1}|} + \ldots + \frac{|w_{j+l} \times w_{j+l+1}|}{|w_{j+l-1}||w_{j+l}|}
\]
\[
\leq \frac{1}{|w_j|^2} (|w_j \times w_{j+1}| + \ldots + |w_{j+l-1} \times w_{j+l}|),
\]
it follows from (1) that $\{\alpha_{w_j}\}$ is a Cauchy sequence.

Without loss of generality, assume that $\lim_{j \to +\infty} \alpha_{w_j} = 0$. Using Masur and Smillie’s Theorem (c.f. [3]), the vertical direction is a non-ergodic direction provided that $\lim_{j \to +\infty} |\Re w_j| = 0$. Since $\lim_{j \to +\infty} \alpha_{w_j} = 0$ and $|w_j| \leq |w_{j+1}|$,
\[
|\alpha_{w_j}| \leq \sum_{k \geq j} |\alpha_{w_k} - \alpha_{w_{k+1}}|
\]
\[
= \sum_{k \geq j} \frac{|w_k \times w_{k+1}|}{|w_k||w_{k+1}|}
\]
\[
\leq \sum_{k \geq j} \frac{|w_k \times w_{k+1}|}{|w_j|}.
\]
Hence
\[
|\Re w_j| = |w_j||\alpha_{w_j}|
\]
\[
\leq \sum_{k \geq j} |w_k \times w_{k+1}|.
\]
Using (1) again, $\lim_{j \to +\infty} |\Re w_j| = 0$. \(\square\)

Definition 3.2. Let w and w' be two slits in $S(\phi)$. For $\delta > 0$, w' is a δ-child of w if
\[
|q\alpha_w - p| \leq \frac{1}{|w| \log |w|} \quad (2)
\]
and

\[|w|^{1+\delta} \leq q \leq 2|w|^{1+\delta}, \quad (3) \]

where \(p \) and \(q \) are co-prime integers such that \(w' = w + 2(p + iq) \) and \(\Im(qw) > 0 \).

Proposition 4. Suppose that \(w' \) and \(w'' \) are two different \(\delta \)-children of \(w \in \mathcal{S}(\phi) \). Then \(|\alpha_{w'} - \alpha_{w''}| \geq \frac{1}{8|w|^{2+2\delta}}\) provided that \(|w|\) is large enough.

Proof. Assume that \(w' = w + 2(p + iq) \) and \(w'' = w + 2(p' + iq') \). Since \(w' \neq w'' \),

\[\left| \frac{p}{q} - \frac{p'}{q'} \right| \geq \frac{1}{|qq'|} \geq \frac{1}{4|w|^{2+2\delta}}. \]

On the other hand,

\[|\alpha_{w'} - \frac{p}{q}| = \frac{|w' \times (p + iq)|}{|w'| |q|} = \frac{|w \times (p + iq)|}{(|w| + 2|q|) |q|} \leq \frac{|w||q\alpha_w - p|}{2|q|^2} \leq \frac{1}{2|w|^{2+2\delta} \log |w|} \]

and similarly,

\[|\alpha_{w''} - \frac{p'}{q'}| \leq \frac{1}{2|w|^{2+2\delta} \log |w|}. \]

As a result,

\[|\alpha_{w'} - \alpha_{w''}| \geq |\alpha_{w'} - \frac{p}{q} + \frac{p}{q} - \frac{p'}{q'} + \frac{p'}{q'} - \alpha_{w''}| \geq \frac{1}{4|w|^{2+2\delta}} - \frac{2}{2|w|^{2+2\delta} \log |w|} \]

\[= \frac{1}{|w|^{2+2\delta}} (1/4 - 1/ \log |w|) \geq \frac{1}{8|w|^{2+2\delta}} \]

for sufficiently large \(|w|\).

Definition 3.3. For any \(\delta > 0 \), a \(\delta \)-tree \(V \) of slits is a disjoint union of subsets \(V_j, j \geq 0 \), of \(\mathcal{S}(\phi) \) such that there is a unique 0-level slit and each \((j + 1)\)-level slit is a \(\delta \)-child of some \(j \)-level slit. And \(V \) is good if there exists a constant \(C \) such that each slit \(w \in V \) has at least \(C|w|^{\delta}/|w| \) \(\delta \)-children in \(V \).

For any \(w \in \mathcal{S}(\phi) \) denote by \(I(w) \) the closed interval centered at \(\alpha_w \) with diameter \(\frac{4}{|w|^{2+\delta}} \). For any \(\delta \)-tree \(V = \bigcup V_j \) of slits denote \(K(V) = \bigcap_j K(V_j) \), where \(K(V_j) = \bigcup_{w \in V_j} I(w) \).
Proposition 5. Let V be a δ-tree and $|w_0|$ its 0-level slit. Then

(i) $K(V) \subset \text{NE}(\phi)$; furthermore,

(ii) if V is good and $|w_0|$ is sufficiently large, $H.\text{dim}K(V) \geq \frac{1}{2+3\delta+\delta^2}$.

Proof. As mentioned above, for any $\alpha \in K(V)$ there exist a sequence of j-level slits w_j such that w_{j+1} is a δ-child of w_j and $\alpha \in I(w_j)$. Suppose that $w_j+1 = w_j + 2(p_j + iq_j)$. Since $I(w_j) = 4|p_j| (1+\delta)^2$,

$$|\alpha_{w_j} - \alpha| \leq \frac{2}{|w_j|^{2+\delta}}.$$

Hence $\lim_{j \to +\infty} \alpha_{w_j} = \alpha$. On the other hand,

$$|w_j \times w_{j+1}| = 2|w_j \times (p_j + iq_j)| = 2|w_j||q_j \alpha_{w_j} - p_j| \leq \frac{2}{\log |w_j|} \leq \frac{2}{\log |w_{j-1}|^{1+\delta}} \leq \frac{2}{(1+\delta)^2 \log |w_0|}.$$

Therefore, $\sum |w_j \times w_{j+1}| < +\infty$ which implies that $\alpha \in \text{NE}(\phi)$ by Proposition 3.

If $w' = w + 2(p + iq)$ is a δ-child of w, then it follows that $|w'| = |w| + 2q \geq 2|w|^{1+\delta}$ and

$$|\alpha_{w'} - \alpha_w| = \frac{|w \times w'|}{|w||w'|} = \frac{2|w \times (p + iq)|}{|w||w'|} = \frac{2|q \alpha_{w} - p|}{|w'|} \leq \frac{1}{|w|^{2+\delta}}.$$

Hence $I(w') \subset I(w)$. Assume that $w'' = w + 2(p' + iq')$ is another child of w. Let $d(I(w'), I(w''))$ be the distance between $I(w')$ and $I(w'')$. Then Proposition 4 implies that

$$d(I(w'), I(w'')) = |\alpha_{w'} - \alpha_{w''}| - \frac{2}{|w'|^{2+\delta}} - \frac{2}{|w''|^{2+\delta}} \geq \frac{4}{8|w|^{2+2\delta}} - \frac{2}{|w'|^{2+\delta}} - \frac{2}{|w''|^{2+\delta}} \geq \frac{4}{8|w|^{2+2\delta}} - \frac{2}{|w'|^{2+\delta}} - \frac{2}{|w''|^{2+\delta}} \geq \frac{4}{8|w|^{2+2\delta}} - \frac{4}{(2|w|^{1+\delta})^{2+\delta}} \geq 16|w|^{2+2\delta},$$

which completes the proof.
provided that $|w|^{\delta(1+\delta)}$ is larger than 16.

Assume that $w \in V_j$ is a slit of level j and w' and w'' are two δ-children in V_{j+1} of w. Since there is a unique 0-level slit w_0 in V and each $(j+1)$-level slit is a δ-child of some j-level slit, it turns out that $K(V_j)$ is a disjoint union of finitely many closed intervals such that $K(V_{j+1}) \subset K(V_j)$ and

$$|w_0|^{(1+\delta)^j} \leq |w| \leq (5^{\frac{1}{\delta}}|w_0|)^{(1+\delta)^j} \leq |w_0|^{(1+\delta)^{j+1}},$$

provided that $5^{\frac{1}{\delta}} \leq |w_0|$. Then the distance $dist(I(w'), I(w''))$ between $I(w')$ and $I(w'')$ satisfies

$$dist(I(w'), I(w'')) \geq \frac{1}{16|w|^{2(1+\delta)}} \geq \frac{1}{16|w_0|^{2(1+\delta)^{j+2}}} := \epsilon_j.$$

If V is good, then there is a constant C such that $I(w)$ contains at least

$$\frac{C|w|^\delta}{\log |w|} \geq \frac{C}{\log |w_0|} \frac{|w_0|^{\delta(1+\delta)^j}}{(1+\delta)^{j+1}} := m_j,$$

closed intervals in $K(V_{j+1})$, provided that $|w_0|$ is large enough.

Using the classical estimation of Hausdorff dimension (c.f. [6]),

$$\text{H.dim}(K(V)) \geq \liminf_{j \to +\infty} \frac{\log(m_0 \ldots m_{j-1})}{-\log(m_j \epsilon_j)}.$$

Calculating directly, it follows that

$$\liminf_{j \to +\infty} \frac{\log(m_0 \ldots m_{j-1})}{-\log(m_j \epsilon_j)} = \liminf_{j \to +\infty} \frac{\delta \log |w_0| \sum_{k=0}^{j-1} (1+\delta)^k - \sum_{k=0}^{j-1} (k+1) \log(1+\delta) + j \log(C \log |w_0|)}{(1+\delta)^j \log |w_0| (2 + 3\delta + 2\delta^2) + (j+1) \log(1+\delta) + \log 16 - \log C}$$

$$= \liminf_{j \to +\infty} \frac{(1+\delta)^j \log |w_0| - j(j+1) \log(1+\delta) + j \log C - \log |w_0|}{(1+\delta)^j (2 + 3\delta + 2\delta^2) + (j+1) \log(1+\delta) + \log 16 - \log C}$$

$$= \frac{1}{2 + 3\delta + \delta^2}.$$

4. Existence of good tree. The section is devoted to the existence of good δ-tree, of which the unique 0-level slit has arbitrarily large height.

Theorem 4.1. If $\Re(\eta \phi)$ is Diophantine, then for any $\delta > 0$ and $M > 0$ there exists a good δ-tree in $S(\phi)$ such that the height of its 0-level slit is larger than M.

For any irrational number α denote by $\text{Spec}(\alpha)$ the sequence formed by heights of the convergents of α. Let $\frac{p_k}{q_k}$ be the k-th convergent of α. It is well-known that

$$\frac{1}{q_k(q_k + q_{k+1})} \leq |\alpha - \frac{p_k}{q_k}| \leq \frac{1}{q_k q_{k+1}} \quad (4)$$
and
\[p_{k+1} + iq_{k+1} = a_{k+1}(p_k + iq_k) + p_{k-1} + iq_{k-1}, \] (5)
where \(a_k \) is the \(k \)-th partial quotient of \(\alpha \). Conversely, if \(p \) and \(q \) are integers satisfying
\[|\alpha - \frac{p}{q}| \leq \frac{1}{2q^2}, \] (6)
then \(\frac{p}{q} \) is a convergent of \(\alpha \), where \(\frac{p}{q} \) is unnecessarily reduced.

The hypothesis that \(\mathcal{R}(\eta\phi) \) is Diophantine implies that there are constants \(c_0 > 0 \) and \(e_0 > 0 \) such that
\[|w \times (p + iq) - n| \geq \frac{c_0}{|q|^{e_0}} \] (7)
for any \(w \in \mathcal{S}(\phi) \), \(p + iq \in \mathbb{Z}[i] \) with \(|q| > 0 \) and \(n \in \mathbb{Z} \). Fix a real number \(N \) such that \(e_0 < N\delta \).

Definition 4.2. A slit \(w \in \mathcal{S}(\phi) \) is normal if for every real number \(n, 1 \leq n \leq 1 + N, \ Spec(\alpha_w) \cap [e^{n\delta}|w|\log|w|, |w|^{1+n\delta}] \neq \emptyset \); a slit \(w \in \mathcal{S}(\phi) \) is \(n \)-good, \(n > 0 \), if \(\ Spec(\alpha_w) \cap [e^{n\delta}|w|\log|w|, |w|^{1+n\delta}] \neq \emptyset \).

Proposition 6. A \(N \)-good slit \(w \in \mathcal{S}(\phi) \) is normal if \(|w| \) is sufficiently large.

Proof. By definition a \((N+1) \)-good slit is always normal. So it suffices to prove the proposition in the case that \(w \) is not \((N+1) \)-good.

Let \(q_k \) be the largest in \(\ Spec(\alpha_w) \cap [1, |w|^{1+\delta}] \). Then \(q_k = e^{n_1\delta}|w|\log|w| \) with \(N \leq n_1 < N+1 \). According to the right hand of (4) and the Diophantine condition (7), it follows that \(q_{k+1} \leq |q_k \alpha - p_k|^{-1} \leq (1/c_0)|w|^c_0 \leq (1/c_0)|w|(e^{N+1}|w|\log|w|)^{e_0} \). On the other hand, \(\lim_{|w| \to +\infty} |w|^{1-N\delta} \log|w| = 0 \). Therefore, \(q_{k+1} \leq |w|^{1+N\delta} \) provided that \(|w| \) is large enough.

Since \(N \leq n_1 \), it is clear that \(q_{k+1} \in [e^{n\delta}|w|\log|w|, |w|^{1+n\delta}] \) for any \(n_1 < n \leq (N+1) \). It follows that \(w \) is normal.

Proposition 7. For any \(M > 0 \) there exist normal slits \(w \in \mathcal{S}(\phi) \) with \(|w| \geq M \).

Proof. By Proposition 6, it suffices to prove the existence of \(N \)-good slits with arbitrarily large height.

At first, assert that there exists a slit \(w_1 \) with \(|w_1| > M \) such that \(\ Spec(\alpha_{w_1}) \cap [1, |w_1|^{1+\delta}] \neq \emptyset \). Take a slit \(w_2 \) with \(|w_2| > M \). Suppose that \(\ Spec(\alpha_{w_2}) \cap [1, |w_2|^{1+\delta}] = \emptyset \). Set \(w_1 = w_2 + 2m(p + iq) \), where \(m \) is a positive integer and \((p, q) \) is a convergent of \(\alpha_{w_2} \). Then \(|q| \leq |w_1|^{1+\delta} \) for \(m \) large enough. On the other hand, the RHS of (4) implies that
\[|\alpha_{w_1} - \frac{p}{q}| = \frac{|w_1 \times (p + iq)|}{|w_1||q|} = \frac{|w_2 \times (p + iq)|}{|w_1||q|} \leq \frac{1}{|q|(|w| + 2m|q|)|w|^{\delta}} \leq \frac{1}{2|q|^2}. \]

Since \(\gcd(p, q) = 1 \), it follows from (6) that \((p, q) \) is a convergent of \(\alpha_{w_1} \). The assertion follows.
Now it remains to get a N-good slit from w_1. Assume that w_1 is not N-good. Let q_k be the largest height in $\text{Spec}(\alpha w_1) \cap [1, |w_1|^{1+\delta}]$. Since $q_{k+1} > |w_1|^{1+\delta}$, the RHS of (4) implies $\Delta := (|w_1||q_k \alpha w_1 - p_k|^{-1}) > |w_1|^\delta$. Then there exists a positive integer m such that $w = w_1 + 2m(p_k + iq_k)$ satisfies that $e^{N\delta} \log |w| + 1/2 \leq \Delta \leq |w|^\delta$.

Indeed, if m is smallest for the right hand of the above sequence, then

$$\Delta > (|w_1| + 2(m - 1)|q_k|)^\delta$$

$$\geq (|w_1| + 2(m - 1))^{\delta}$$

$$\geq (2(m - 1))^{\delta}.$$

It follows from (7) that

$$\Delta = \frac{1}{q_k \times (p_k + iq_k)}$$

$$\leq \frac{c_0}{c_0}$$

$$\leq \frac{|w_1|^{c_0(1+\delta)}}{c_0}.$$

Then $m \leq \frac{1}{2c_0^\delta} |w_1|^{(1+\delta)c_0} + 1$, which means that

$$e^{N\delta} \log |w| + 1/2 = e^{N\delta} \log(|w_1| + 2m|q_k|) + 1/2$$

$$\leq e^{N\delta} \log \{|w_1| + 2[\frac{1}{2c_0^\delta} |w_1|^{(1+\delta)c_0} + 1]|w_1|^{1+\delta}\} + 1/2.$$

Since

$$\lim_{|w_1| \to \infty} |w_1|^{-\delta} \log \{|w_1| + 2[\frac{1}{2c_0^\delta} |w_1|^{(1+\delta)c_0} + 1]|w_1|^{1+\delta}\} = 0,$$

it follows that

$$e^{N\delta} \log |w| + 1/2 \leq |w_1|^\delta$$

$$\leq \Delta,$$

provided $|w_1|$ is large enough.

Now claim that $w = w_1 + 2m(p_k, q_k)$ is N-good. In fact,

$$|\alpha_w - p_k/q_k| = \left| \frac{w \times (p_k + iq_k)}{|w||q_k|} \right|$$

$$= \frac{|w_1 \times (p_k + iq_k)|}{|w||q_k|}$$

$$= \frac{1}{|w||q_k|\Delta}$$

$$\leq \frac{1}{|w||q_k||w_1|^{1+\delta}}$$

$$\leq 1/(2q_k^2),$$

which by (6) implies (p_k, q_k) is a convergent of α_w. Suppose that (p_k, q_k) is the k'-th convergent of α_w. Then

$$q_{k+1} \leq |q_k \alpha_w - p_k|^{-1}$$

$$= |w|\Delta$$

$$\leq |w|^{1+\delta}$$
and

\[q_{k+1} \geq \frac{|q_k \alpha - p_k|^{-1} - q_k}{w|\Delta - q_k} \geq |w|(e^{N\delta \log |w| + 1/2}) - q_k \geq e^{N\delta |w| \log |w|}. \]

So \(w \) is \(N \)-good. \(\square \)

Figure 4. The parallelogram domain

As indicated in Figure 4, let \(\Sigma(\alpha, Q, R) \) denote the parallelogram domain

\[\Sigma(\alpha, Q, R) = \{ x + iy \in \mathbb{C} : |y\alpha - x| < \frac{1}{Q}, R \leq y \leq 2R \}. \]

The density of coprime integers in \(\Sigma(\alpha, Q, R) \) is defined to be

\[\text{dens}(\Sigma(\alpha, Q, R)) = \frac{\#(\{ a + ic \in \mathbb{Z}[i] \cap \Sigma(\alpha, Q, R) : \gcd(a, c) = 1 \})}{\text{Area}(\Sigma(\alpha, Q, R))} \]

Lemma 4.3. [2] There exist constants \(A_0 > 0 \) and \(\rho_0 > 0 \) such that whenever \(\text{area}(\Sigma) \geq A_0 \)

\[\text{Spec}(\alpha) \cap [Q, R] \neq \emptyset \Rightarrow \text{dens}(\Sigma) \geq \rho_0 \]

In the remainder of this section, assume that \(w \in S(\phi) \) is normal. Let \(q_k \) be the largest in \(\text{Spec}(\alpha_w) \cap [1, |w|^{1+\delta}] \). Define \(n_1 \geq 1 \) by \(q_k = e^{n_1 \delta |w| \log |w|} \) and define \(n_3 > 1 \) uniquely by \(q_{k+1} = |w|^{1+n_3 \delta} \). Let \(n := \min(n_1, N + 1) \) and let \(Q = e^{n \delta |w| \log |w|}, Q' = 8|w|^{1+\delta} \) and \(R = |w|^{1+\delta} \).

Definition 4.4. A \(\delta \)-child \(w' \) of \(w \) is nice if \(w' = w + 2(p + iq) \) with \(p + iq \in \Sigma(\alpha, Q, R) \) and \(|q\alpha - p| \geq \frac{1}{Q'} \).

Let \(c_1 = 2\rho_0/e^{(N+1)\delta} \).

Proposition 8. A normal slit \(w \) has at least \((c_1|w|^\delta / \log |w| - 1) \) nice \(\delta \)-children.

Proof. Using Lemma 4.3, \(w \) has at least \(c_1|w|^\delta / \log |w| \) \(\delta \)-children \(w' = w + 2(p + iq) \) with \(p + iq \in \Sigma(\alpha, Q, R) \).

It remains to show that there are at most one \(\delta \)-child \(w' = w + 2(p + iq) \) such that \(|q\alpha_w - p| < \frac{1}{8|w|^{1+\delta}} \). Suppose \(w'' = w + 2(p + iq) \) and \(w''' = w + 2(p' + iq') \) are
two different children satisfying the above inequality. Then
\[\frac{|p - p'|}{q'} \leq |\alpha_w - \frac{p}{q}| + |\alpha_w - \frac{p}{q'}| < \frac{1}{4|w|^{2+2\delta}}. \]

On the other hand,
\[\frac{|p - p'|}{q'} \geq \frac{1}{qq'} \geq \frac{1}{4|w|^{2+2\delta}}. \]

This leads to a contradiction. \(\Box \)

Proposition 9. Suppose that \(w' = w + 2(p + iq) \) is a nice \(\delta \)-child of \(w \). Then \((p, q)\) is the \(k'\)-th convergent of \(\alpha_w \) such that \(q_{k'+1} \in [|w'| \log |w'|, |w'|^{1+\delta}] \).

Proof. It is easy to see that
\[|\alpha_w - \frac{p}{q}| = \frac{|w||q\alpha_w - p|}{|w'|q} \leq \frac{1}{(e^{n\delta} \log |w|)|w'|q} \leq \frac{1}{2q^2}. \]

Since \(\gcd(p, q) = 1 \), it follows from (6) that \((p, q)\) is also a convergent of \(w' \).

Suppose that \((p, q)\) is the \(k'\)-th convergent \((p_{k'}, q_{k'})\) of \(\alpha_{w'} \). Using the LHS of (4), it follows that
\[q_{k'+1} \geq \frac{1}{|q_{k'}\alpha_{w'} - p_{k'}|} - q_{k'} \]
\[= \frac{|w'|}{|w||q\alpha_w - p|} - q \]
\[\geq \frac{e^{n\delta}|w'|}{|w'|(|w'| \log |w| - 1/2)} \]
\[\geq e^{(n-1)\delta}|w'||w'| \left(\frac{e^{\delta} \log |w|}{\log(|w| + 4|w|^{1+\delta})} - \frac{1}{2 \log |w|} \right). \]

Moreover, due to \(\lim_{|w| \to \infty} \frac{e^{\delta} \log |w|}{\log(|w| + 4|w|^{1+\delta})} = \frac{e^{\delta}}{1+\delta} > 1 \), it follows that
\[q_{k'+1} \geq e^{(n-1)\delta}|w'||w'| \log |w'| \]
provided that \(|w|\) is large enough.

Using the RHS of (4) again,
\[q_{k'+1} \leq \frac{|q_{k'}\alpha_{w'} - p_{k'}|^{-1}}{|w'|} \leq \frac{|w||q\alpha - p|}{|w'|} \leq \frac{|w'|}{|w'|/8|w|^{1+\delta}} = 8|w|^{\delta}|w'|. \]
Since \(\lim_{|w| \to \infty} \frac{1}{1+2|w|} = 0 \), it follows that
\[
8|w|^{\delta}|w'| \leq 8\frac{|w|^\delta}{|w'||^{1+\delta}}|w'|^{1+\delta}
= 8\frac{|w|^\delta}{|w||^{1+\delta}}|w'|^{1+\delta}
= 8\left(\frac{|w|}{|w|+2q}\right)^\delta|w'|^{1+\delta}
\leq 8\left(\frac{1}{1+2|w|}\right)^\delta|w'|^{1+\delta}
\leq |w'|^{1+\delta}
\]
provided that \(|w| \) is large enough. Therefore, \(w' \) is \((n-1)\)-good. \(\square \)

Let \(\tilde{V} \) be the collection of nice children of \(w \), which are not normal. It is obviously that \(\tilde{V} = \emptyset \) when \(n_1 \geq N+1 \). It remains to consider the case that \(n_1 < N+1 \).

Proposition 10. Suppose that \(n_1 < N + 1 \). Let \(w' \in \tilde{V} \) and \(q_{v'} \) the largest in \(\text{Spec}(\alpha_{w'}) \cap [1, |w'|^{1+\delta}] \). Then
(i) \(q_{v'} \in \left[|w'| \log |w'|, e^{N_0} |w'| \log |w'| \right] \) and
(ii) there are at most \(e^{N_0} \) positive integers \(a \) such that
\[
|w \times (p_{v'} + iq_{v'})| \leq \frac{1}{|w||n_2+\delta|^2},
\]
where \(n_2 := \max\{1, n_1-1\} \).

Proof: Since \(n_1 < N + 1 \), it follows that \(n = n_1 \). The definition of \(q_{v'} \) implies that \(q_{v'-1} = |w'|^{1+n'\delta} \) for some real number \(n' > 1 \). Since \(w' \) is \((n-1)\)-good, it follows that \(q_{v'} = e^{n'\delta} |w'| \log |w'| \) for some real number \(n'' \geq n_1 - 1 \geq 0 \). Using Proposition 6, \(w' \) is not \(N \)-good so that \(n'' < N \); this proves (i).

The fact that \(w' \) is not normal implies that \(n' \geq n'' \). Otherwise, \(q_{v'+1} = |w'|^{1+n''\delta} \in [e^{n\delta} |w'| \log |w'|, |w'|^{1+n\delta}] \) for any \(n \in (n'', N+1) \), and
\[
q_{v'} = e^{n''\delta} |w'| \log |w'| \in [e^{n\delta} |w'| \log |w'|, |w'|^{1+n\delta}]
\]
for any \(n \in [1, n'']. \) Thus \(w' \) is normal, contradicting to the assumption.

Consider \(q_{v'} \in \text{Spec}(\alpha_{w'}) \) in Proposition 9. Since \(q_{k'+1} \in [\log |w'|, |w'|^{1+\delta}] \), the definition of \(q_{v'} \) implies that \(q_{v'} \geq q_{k'+1} \). The recurrence relations satisfied by convergents imply that \((p_{v'}, q_{v'}) = a(q_{k'+1}, q_{k'+1}) + b(p_{v'}, q_{v'}) \) for some integers \(a > 0 \) and \(b \geq 0 \). By (i),
\[
e^{N_0} |w'| \log |w'| \geq q_{v'} \geq aq_{k'+1} \geq a |w'| \log |w'|.
\]
Hence \(a \leq e^{N_0} \).

Since the cross product of consecutive convergents is \(\pm 1 \),
\[
|w'||q_{v'} |\alpha_{w'} - p_{v'}| = |w' \times (p_{v'} + iq_{v'})|
\]
\[\begin{align*}
&= \left| [w + 2(p_{k'} + iq_{k'})] \times [a(p_{k'+1} + iq_{k'+1}) + b(p_{k'} + iq_{k'})] \right| \\
&= \left| [w \times (p_{k'} + iq_{k'}) + 2a[(p_{k'} + iq_{k'}) \times (p_{k'+1} + iq_{k'+1})]] \right| \\
&= \left| [w \times (p_{k'} + iq_{k'})] \pm 2a \right|.
\end{align*} \]

Since \(n' > 1, n' \geq n'' \) and \(n'' \geq n' \), then \(n' \geq n_2 \). Because of the RHS of (4) and \(|w'| = |w| + 2q_{k'} \geq |w|^{1+\delta} \),
\[\begin{align*}
|w'| |q_{w'} \alpha_w - p_{w'}| &\leq \frac{|w'|}{q_{w'} + 1} \\
&\leq \frac{|w'|}{|w'|^{1+\delta}} \\
&\leq \frac{1}{(|w|^{1+\delta})^{1+\delta}} \\
&\leq \frac{1}{|w|^{n_2 \delta + n_2 \delta^2}}.
\end{align*} \]

and (ii) follows. \(\square \)

Thus \(\tilde{V} \) is decomposed as a finite union of subsets \(\tilde{V}_{\pm a} \). Let \(Q_{\pm a} \) denote the corresponding set of heights \(q_{w'} \), associated to the slits in \(\tilde{V}_{\pm a} \) in Proposition 10.

Proposition 11. \(\hat{V}_{\pm a} \) and \(Q_{\pm a} \) have the same number of elements.

Proof. It suffices to show that the map \(\hat{V}_{\pm a} \to Q_{\pm a} \) is injective. Let \(w'' \) be different from \(w' \) with the corresponding image \(q_{w''} \). By the RHS of (4),
\[\begin{align*}
|\alpha_{w'} - p_{w'}| &\leq \frac{1}{q_{w'} q_{w'+1}} \\
&\leq \frac{1}{q_{w'} |w'|^{1+\delta}} \\
&\leq \frac{1}{(|w| \log |w'|) |w'|^{1+\delta}} \\
&\leq \frac{1}{2^{2+\delta} |w|^{2+3\delta+\delta^2}}.
\end{align*} \]

(The second step is implied by the definition of \(q_{w'} \).) It follows form Proposition 4 that \(|\alpha_{w'} - \alpha_{w''}| \geq \frac{1}{8 |w|^{2+\delta}} \). As a result, the rational numbers \(\frac{p_{w}}{q_{w}} \) and \(\frac{p_{w''}}{q_{w''}} \) are distinct.

It is easy to see that
\[\begin{align*}
|\frac{p_{w}}{q_{w}} - \frac{p_{w''}}{q_{w''}}| &\leq |\alpha_{w'} - \frac{p_{w'}}{q_{w'}}| + |\alpha_{w''} - \frac{p_{w''}}{q_{w''}}| + |\alpha_{w'} - \alpha_{w''}| \\
&\leq \frac{1}{2^{1+\delta} |w|^{2+3\delta+\delta^2}} + \frac{4}{|w|^{2+\delta}}.
\end{align*} \]

By Proposition 10,
\[\begin{align*}
\frac{1}{q_{w}} &\geq e^{N \delta |w| \log |w'|} \\
&\geq e^{N \delta (|w| + 4|w|^{1+\delta}) \log (|w| + 4|w|^{1+\delta})} \\
&\geq \frac{1}{16(2 + \delta) e^{N \delta |w|^{1+\delta} \log |w|}}.
\end{align*} \]
Then and representatives of two different clusters are separated by a distance of at least d for some positive integer p/q. For any two different q and q', having at most k characters, such that q and q' fall into the same cluster.

Suppose that $q < \bar{q}$, the number C of clusters satisfies that $(C - 1)|w|^{1+\delta} < e^{N\delta}|w'| \log |w'|$. Then

$$
C \leq \frac{e^{N\delta}|w'| \log |w'|}{|w|^{1+\delta}} + 1
$$

provided that $|w|$ is large enough. Thus the proposition follows from the claim.

It remains to prove the claim. Assume that $q < \bar{q}$, and $q_k = \bar{q} = dq_k$ where $d = \gcd(p/q)$. Using Proposition 10 again,

$$
| \bar{q} \alpha_w - \bar{p} | = | q v \alpha_w - p v | \leq | (q v \alpha_w - p v) | \leq | q v \alpha_w - p v | + | q v \alpha_w - p v | = 2 | q v \alpha_w - p v | \leq \frac{2}{|w|^{1+\delta}}.
$$

Since $q < \bar{q} < |w|^{1+\delta}$ and $n_2 \geq 1$, it follows that

$$
| \alpha_w - \frac{p}{\bar{q}} | = | \alpha_w - \frac{p}{\bar{q}} | \leq \frac{2}{|w|^{1+\delta}} + \frac{2}{|w|^{1+\delta}} \leq 1/2q^2
$$

provided that $|w|$ is large enough. Since $\gcd(p, q) = 1$, it follows from (6) that (p, q) is a convergent of α_w.

Suppose that $q = q_k \in \text{Spec}(\alpha_w)$ for some index k'. By the hypothesis that $q < \bar{q}$, it follows that $q_k \leq q_k$, i.e. $k' \leq k$. In fact, $k' = k$. If otherwise, then

$$
| q_k \alpha_w - \bar{p} | = \frac{1}{q_k + q_k - 1}
$$

and

$$
| q_k \alpha_w - \bar{p} | = \frac{1}{q_k + q_k - 1}
$$
which contradicts the previous inequality.

The LHS of (4) implies that
\[
d = \frac{\bar{q}_k \alpha - \bar{p}}{q_k \alpha - p_k} \\
\leq \frac{2(q_{k+1} + q_k)}{|w|^{1+n_3}\delta+n_2\delta^2} \\
\leq \frac{2(|w|^{1+n_3} + |w|^{1+\delta})}{|w|^{1+n_2\delta+n_2\delta^2}} \\
\leq 4|w|^{(n_3-n_2)\delta-n_2\delta^2} \\
\leq 4|w|^{\delta-\delta^2},
\]

where $1 < n_3$ is defined by $q_{k+1} = |w|^{1+n_3\delta}$, provided that $|w|$ is large enough. Since w is normal, $n_3 \leq n_1$. This together with the definition of n_2 in Proposition 10 implies $n_3 - n_2 \leq n_1 - n_2 \leq 1$ and $n_2 \geq 1$. Thus the claim is proved.

REFERENCES

[1] J. S. Athreya and J. Chaika, The Hausdorff dimension of non-uniquely ergodic directions in $H(2)$ is almost everywhere $\frac{1}{2}$, Geom. Topol., 19 (2015), 3537–3563.

[2] Y. Cheung, Hausdorff dimension of the set of nonergodic directions. With an appendix by M. Boshernitzan, Ann. of Math., 158 (2003), 661–678.

[3] Y. Cheung, Y. P. Hubert and H. Masur, Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Invent. Math., 183 (2011), 337–383.

[4] Y. Cheung and H. Masur, Minimal non-ergodic directions on genus-2 translation surfaces, Ergodic Theory Dynam. Systems, 26 (2006), 341–351.

[5] A. Eskin, H. Masur and M. Schmoll, Billiards in rectangles with barriers, Duke Math. J., 118 (2003), 427–463.

[6] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 1990.

[7] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math., 124 (1986), 293–311.

[8] H. Masur and J. Smillie, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math., 134 (1991), 455–543.

[9] C.T. McMullen, Dynamics of SL$_2(R)$ over moduli space in genus two, Ann. of Math., 165 (2007), 397–456.

[10] A. Wright, From rational billiards to dynamics on moduli spaces, Bull. Amer. Math. Soc. (N.S.), 53 (2016), 41–56.

Received for publication February 2017.

E-mail address: huangyan@amss.ac.cn