\textbf{\lambda\text{-ANALOGUES OF \textit{r}\text{-STIRLING NUMBERS OF THE FIRST KIND}}}

TAEKYUN KIM AND DAE SAN KIM

\textsc{Abstract.} In this paper, we study \lambda\text{-analogues of the \textit{r}\text{-Stirling numbers of the first kind which have close connections with the \textit{r}\text{-Stirling numbers of the first kind and \lambda\text{-Stirling numbers of the first kind. Specifically, we give the recurrence relations for these numbers and show their connections with the \lambda\text{-Stirling numbers of the first kind and higher-order Dahee polynomials.}}}

1. Introduction

It is known that the Stirling numbers of the first kind are defined as

\[(x)_n = \sum_{l=0}^{\text{n}} S_1(n, l)x^l, \quad \text{(see [1, 2, 6 \text{--} 9, 14])}, \quad (1.1)\]

where \((x)_0 = 1, (x)_n = x(x - 1) \cdots (x - n + 1), \quad (n \geq 1).\)

For \(\lambda \in \mathbb{R},\) the \lambda\text{-analogue of falling factorial sequence is defined by

\[(x)_0,\lambda = 1, (x)_n,\lambda = x(x - \lambda)(x - 2\lambda) \cdots (x - (n - 1)\lambda), \quad (n \geq 1), \quad \text{(see [2, 10, 14, 15, 17])}, \quad (1.2)\]

In view of (1.1), we define \lambda\text{-analogues of the Stirling numbers of the first kind as

\[(x)_n,\lambda = \sum_{k=0}^{n} S_1,\lambda(n, k)x^k, \quad \text{(see [2, 11 \text{--} 13, 16, 17])}. \quad (1.3)\]

It is not difficult to show that

\[(1 + \lambda t)^x = \sum_{l=0}^{\infty} \left(\begin{array}{c} x \\ l \end{array}\right)_{\lambda} \frac{x^l}{l!}t^l, \quad \text{(see [4, 7 \text{--} 17])}, \quad (1.4)\]

where \left(\begin{array}{c} x \\ l \end{array}\right)_{\lambda}, \text{are the \lambda\text{-analogues of binomial coefficients \left(\begin{array}{c} x \\ l \end{array}\right)} given by \left(\begin{array}{c} x \\ l \end{array}\right)_{\lambda} = \frac{(x)_l,\lambda}{l!}.\n
2010 \text{ Mathematics Subject Classification.} \quad 11B73; 11B83.

\textit{Key words and phrases.} \lambda\text{-analogues of the \textit{r}\text{-Stirling numbers of the first kind, higher-order Dahee polynomials.}
The \(r \)-Stirling numbers of the first kind are defined by the generating function
\[
\frac{1}{k!} \left(\log(1 + t) \right)^k (1 + t)^r = \sum_{n=k}^{\infty} S_1^{(r)}(n, k) \frac{t^n}{n!}, \quad \text{(see [3, 20 – 23]).} \tag{1.5}
\]
where \(k \in \mathbb{N} \cup \{0\} \) and \(r \in \mathbb{R} \).

The unsigned \(r \)-Stirling numbers of the first kind are defined as
\[
(x + r)(x + r + 1) \cdots (x + r + n - 1) = \sum_{k=0}^{n} \left[\begin{array}{c} n + r \\ k + r \end{array} \right] x^k, \quad \text{(see [1, 17, 22]).} \tag{1.6}
\]
Thus, by (1.5), we get
\[
(x + r)_n = (x + r)(x + r - 1) \cdots (x + r - n + 1) = \sum_{k=0}^{n} S_1^{(r)}(n, k) x^k, \quad \text{(see [1]).} \tag{1.7}
\]
From (1.6) and (1.7), we note that
\[
S_1^{(r)}(n, k) = (-1)^{n-k} \left[\begin{array}{c} n + r \\ k + r \end{array} \right] . \tag{1.8}
\]

The higher-order Daehee polynomials are defined by
\[
\left(\frac{\log(1 + t)}{t} \right)^k (1 + t)^x = \sum_{n=0}^{\infty} D_n^{(k)}(x) \frac{t^n}{n!}, \quad \text{(see [5, 18, 19, 24]).} \tag{1.9}
\]
When \(x = 0 \), \(D_n^{(k)} = D_n^{(k)}(0) \) are called the higher-order Daehee numbers. In particular, for \(k = 1 \), \(D_n(x) = D_n^{(1)}(x) \), \((n \geq 0) \), are called the ordinary Daehee polynomials.

In this paper, we consider \(\lambda \)-analogues of \(r \)-Stirling numbers of the first kind which are derived from the \(\lambda \)-analogues of the falling factorial sequence and investigate some properties for these numbers. Specifically, we give some identities and recurrence relations for the \(\lambda \)-analogues of \(r \)-Stirling numbers of the first kind and show their connections with the \(\lambda \)-Stirling numbers of the first kind and higher-order Daehee polynomials.

2. \(\lambda \)-analogues of \(r \)-Stirling numbers of the first kind

From (1.3) and (1.4), we have
\[
(1 + \lambda t)^x = \sum_{k=0}^{\infty} (x)_k,_{\lambda} \frac{t^k}{k!} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} S_{1,\lambda}(k, n) x^n \right) \frac{t^k}{k!} \\
= \sum_{n=0}^{\infty} \left(n! \sum_{k=0}^{\infty} S_{1,\lambda}(k, n) \frac{t^k}{k!} \right) \frac{x^n}{n!}. \tag{2.1}
\]
On the other hand, we also have
\[
(1 + \lambda t)^{\lambda} = e^{\frac{\lambda}{\lambda} \log(1 + \lambda t)} = \sum_{n=0}^{\infty} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^n \frac{x^n}{n!},
\]
(2.2)

Therefore, by (2.1) and (2.2), we get the generating function for \(S_{1,\lambda}(n, k), (n, k \geq 0) \), which is given by
\[
\frac{1}{n!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^n = \sum_{k=n}^{\infty} S_{1,\lambda}(k, n) \frac{t^k}{k!},
\]
(2.3)

Now, we define \(\lambda \)-analogues of \(r \)-Stirling numbers of the first kind as
\[
\frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^{\lambda} = \sum_{n=k}^{\infty} S_{1,\lambda}^{(r)}(n, k) \frac{t^n}{n!},
\]
(2.4)

where \(k \in \mathbb{N} \cup \{0\} \), and \(r \in \mathbb{R} \).

From (2.3) and (2.4), we note that \(S_{1,\lambda}^{(0)}(n, k) = S_{1,\lambda}(n, k), (n \geq k \geq 0) \). Also, it is easy to show that
\[
(1 + \lambda t)^{\lambda} (1 + \lambda t)^{\lambda} = \sum_{n=0}^{\infty} (x + r)_{n,\lambda} \frac{t^n}{n!}.
\]
(2.5)

By (2.5), we get
\[
\sum_{n=0}^{\infty} (x + r)_{n,\lambda} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\frac{x + r}{n} \right) \frac{t^n}{n!} = (1 + \lambda t)^{\lambda} e^{\frac{\lambda}{\lambda} \log(1 + \lambda t)}
\]
\[
= \sum_{k=0}^{\infty} x^k \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^{\lambda}
\]
(2.6)

Therefore, by comparing the coefficients on both sides of (2.6), we obtain the following theorem.

Theorem 2.1. For \(n \geq 0 \), we have
\[
(x + r)_{n,\lambda} = \sum_{k=0}^{n} S_{1,\lambda}^{(r)}(n, k) x^k.
\]
Now, we observe that
\[
\sum_{k=0}^{\infty} x^k \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t) \]
\[
= \left(\sum_{k=0}^{\infty} x^k \sum_{m=k}^{\infty} S_{1,\lambda}(m, k) \frac{t^m}{m!} \right) \left(\sum_{l=0}^{\infty} \frac{(r)_{l,\lambda}}{l!} \right)
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{m=0}^{k} \binom{n}{m} S_{1,\lambda}(m, k)(r)_{n-m,\lambda} x^k \right) \frac{t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{m=0}^{k} \binom{n}{m} S_{1,\lambda}(m, k)(r)_{n-m,\lambda} x^k \right) \frac{t^n}{n!}.
\]

Thus, by (2.6) and (2.7), we get
\[
\sum_{k=0}^{\infty} S_{1,\lambda}^{(r)}(n, k) x^k = \sum_{k=0}^{n} \left(\sum_{m=0}^{k} \binom{n}{m} S_{1,\lambda}(m, k)(r)_{n-m,\lambda} \right) x^k.
\]

Therefore, by comparing the coefficients on both sides of (2.8), we obtain the following theorem.

Theorem 2.2. For \(n \geq 0 \), we have
\[
S_{1,\lambda}^{(r)}(n, k) = \sum_{m=k}^{n} \binom{n}{m} S_{1,\lambda}(m, k)(r)_{n-m,\lambda}.
\]

Now, we define \(\lambda \)-analogues of the unsigned \(r \)-Stirling numbers of the first kind as follows:
\[
(x + r)(x + r + \lambda)(x + r + 2\lambda) + \cdots + (x + r + (n-1)\lambda) = \sum_{k=0}^{n} [\frac{n+r}{k+r}]_{r,\lambda} x^k. \quad (2.9)
\]

Note that \(\lim_{\lambda \to 1} [\frac{n+r}{k+r}]_{r,\lambda} = [\frac{n+r}{k+r}]_{r} \), \((n \geq k \geq 0) \).

By Theorem 2.1 and (2.7), we get
\[
(x - r)_{n,\lambda} = \sum_{k=0}^{n} S_{1,\lambda}^{(-r)}(n, k) x^k, \quad (2.10)
\]
and
\[
(x - r)_{n,\lambda} = \sum_{k=0}^{n} (-1)^{n-k} [\frac{n+r}{k+r}]_{r,\lambda} x^k. \quad (2.11)
\]
From (2.10) and (2.11), we can easily derive the following equation (2.12).

\[S_{1,\lambda}^{(-r)}(n, k) = (-1)^{n-k} \binom{n+r}{k+r}, \quad (n \geq k \geq 0). \]

(2.12)

For \(n \geq 1 \), by Theorem 2.1, we get

\[(x + r)_{n+1,\lambda} = \sum_{k=0}^{n+1} S_{1,\lambda}^{(r)}(n + 1, k)x^k = \sum_{k=1}^{n+1} S_{1,\lambda}^{(r)}(n + 1, k)x^k + (r)_{n+1,\lambda}. \]

(2.13)

On the other hand, by (1.2), we get

\[(x + r)_{n+1,\lambda} = (x + r)_{n,\lambda}(x + r - n\lambda) \]

\[= x \sum_{k=0}^{n} S_{1,\lambda}^{(r)}(n, k)x^k - (n\lambda - r) \sum_{k=0}^{n} S_{1,\lambda}^{(r)}(n, k)x^k \]

\[= \sum_{k=1}^{n} S_{1,\lambda}^{(r)}(n, k-1)x^k - \sum_{k=1}^{n} (n\lambda - r)S_{1,\lambda}^{(r)}(n, k)x^k + (r - n\lambda)(r)_{n,\lambda} + x^{n+1} \]

\[= \sum_{k=1}^{n} \left\{ S_{1,\lambda}^{(r)}(n, k-1) - (n\lambda - r)S_{1,\lambda}^{(r)}(n, k) \right\} x^k + (r)_{n+1,\lambda} + x^{n+1}. \]

(2.14)

Therefore, by Theorem 2.1 and (2.14), we obtain the following theorem.

Theorem 2.3. For \(1 \leq k \leq n \), we have

\[S_{1,\lambda}^{(r)}(n + 1, k) = S_{1,\lambda}^{(r)}(n, k-1) - (n\lambda - r)S_{1,\lambda}^{(r)}(n, k). \]

From (2.4), we note that

\[\frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^z = \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k \sum_{l=0}^{\infty} \frac{r_l}{l!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^l \]

\[= \sum_{l=0}^{\infty} \left(\frac{k + l}{l} \right)^r \frac{1}{(k+l)!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^{k+l} \]

\[= \sum_{l=0}^{\infty} \left(\frac{k + l}{l} \right)^r \sum_{n=k+l}^{\infty} S_{1,\lambda}(n, k+l) \frac{t^n}{n!} \]

\[= \sum_{l=0}^{\infty} r_l \left(\frac{k + l}{l} \right)^r \frac{n!}{(n+k)!} \sum_{n=k+l}^{\infty} S_{1,\lambda}(n, k+l) \frac{t^n}{n!} \]

\[= \sum_{n=0}^{\infty} \left(\frac{n!t^k}{(n+k)!} \right) \sum_{l=0}^{n} r_l \left(\frac{k + l}{l} \right) S_{1,\lambda}(n + k, k + l) \frac{t^n}{n!} \]

(2.15)
On the other hand, we have
\[
\frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^\frac{k}{r} = \frac{t^k}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda t} \right)^k (1 + \lambda t)^\frac{k}{r} \\
= \left(\sum_{l=0}^{\infty} \binom{k}{l} \frac{\lambda^l t^l}{l!} \right) \left(\sum_{m=0}^{\infty} \binom{r}{m, \lambda} \frac{t^m}{m!} \right) \frac{t^k}{k!} \quad (2.16)
\]
\[
= \left(\sum_{n=0}^{\infty} \sum_{l=0}^{n} \binom{n}{l} \binom{k}{l} \frac{\lambda^l t^l}{l!} \binom{r}{n-m, \lambda} \frac{t^{n-m}}{(n-m)!} \right) \frac{t^k}{k!}.
\]
Thus, by (2.15) and (2.16), we get
\[
\sum_{l=0}^{n} \binom{n}{l} \frac{\lambda^l t^l}{l!} S_{1, \lambda}(n+k, k+l) = \sum_{l=0}^{n} \binom{n}{l} D_{l}^{(k)} \lambda^l (r)_{n-l, \lambda} t^n (2.17)
\]
Therefore, by (2.17), we obtain the following theorem.

Theorem 2.4. For \(n \geq 0 \), we have
\[
\sum_{l=0}^{n} \binom{n}{l} D_{l}^{(k)} \lambda^l (r)_{n-l, \lambda} t^n = \sum_{l=0}^{(k+l)} \binom{k+l}{n} (n+k) S_{1, \lambda}(n+k, k+l).
\]

Now, we observe that
\[
\frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^\frac{k}{r} = \left(\sum_{l=0}^{\infty} \binom{r}{l, \lambda} \frac{t^l}{l!} \right) \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k \\
= \sum_{n=k}^{\infty} \left(\sum_{m=k}^{n} \binom{n}{m} S_{1, \lambda}(m, k)(r)_{n-m, \lambda} \right) \frac{t^n}{n!}.
\]
Therefore, by (2.14) and (2.18), we obtain the following theorem.

Theorem 2.5. For \(n, k \geq 0 \), with \(n \geq k \), we have
\[
S_{1, \lambda}^{(r)}(n, k) = \sum_{m=k}^{n} \binom{n}{m} (r)_{n-m, \lambda} S_{1, \lambda}(m, k).
\]
From (2.4), we note that
\[
\frac{1}{m!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^m \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^\frac{k}{r} \\
= \binom{m+k}{m} \frac{1}{m!} \binom{r}{m, \lambda} \frac{t^m}{m!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^{m+k} (1 + \lambda t)^\frac{k}{r} \quad (2.19)
\]
\[
= \binom{m+k}{m} \sum_{n=m+k}^{\infty} S_{1, \lambda}^{(r)}(n, m+k) \frac{t^n}{n!}.
\]
On the other hand,
\[
\frac{1}{m!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^m \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^{\frac{r}{\lambda}}
\]
\[
= \left(\sum_{l=m}^{\infty} S_{1,\lambda}(l, m) \frac{t^l}{l!} \right) \left(\sum_{j=k}^{\infty} S_{1,\lambda}(j, k) \frac{t^j}{j!} \right)
\]
\[
= \sum_{n=m+k}^{\infty} \left(\sum_{l=k}^{n-m} \binom{n}{l} S_{1,\lambda}(l, k) S_{1,\lambda}(n - l, m) \right) \frac{t^n}{n!}.
\]

(2.20)

Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.6. For \(m, n, k \geq 0\) with \(n \geq m + k\), we have
\[
\binom{m+k}{m} S_{1,\lambda}^{(r)}(n, m+k) = \sum_{l=k}^{n-m} \binom{n}{l} S_{1,\lambda}(l, k) S_{1,\lambda}(n - l, m).
\]

By (2.21), we get
\[
\sum_{n=k}^{\infty} S_{1,\lambda}(n, k) \frac{t^n}{n!} = \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^{\frac{r}{\lambda}} (1 + \lambda t)^{-\frac{r}{\lambda}}
\]
\[
= \left(\sum_{l=k}^{\infty} S_{1,\lambda}^{(r)}(l, k) \frac{t^l}{l!} \right) \left(\sum_{m=0}^{\infty} \binom{-\frac{r}{\lambda}}{m} \lambda^m t^m \right)
\]
\[
= \left(\sum_{l=k}^{\infty} S_{1,\lambda}^{(r)}(l, k) \frac{t^l}{l!} \right) \left(\sum_{m=0}^{\infty} (-1)^m (r + (m - 1)\lambda)_{m,\lambda} \frac{t^m}{m!} \right)
\]
\[
= \sum_{n=k}^{\infty} \left(\sum_{l=k}^{n} \binom{n}{l} S_{1,\lambda}^{(r)}(l, k) (-1)^n (r + (n - l - 1)\lambda)_{n-l,\lambda} \right) \frac{t^n}{n!}.
\]

(2.21)

Comparing the coefficients on both sides of (2.21), we have the following theorem.

Theorem 2.7. For \(n, k \geq 0\), with \(n \geq k\), we have
\[
S_{1,\lambda}(n, k) = \sum_{l=k}^{n} \binom{n}{l} S_{1,\lambda}^{(r)}(l, k) (-1)^{n-l} (r + \lambda(n - l - 1))_{n-l,\lambda}.
\]
From (1.9), we have
\[
\frac{1}{k!}\left(\frac{\log(1+\lambda t)}{\lambda}\right)^k (1+\lambda t) \tilde{\tau} = \frac{t^k}{k!}\left(\frac{\log(1+\lambda t)}{\lambda t}\right)^k (1+\lambda t) \tilde{\tau}
\]
\[
= \frac{t^k}{k!} \left(\sum_{m=0}^{\infty} D_m^{(k)} \lambda^m \frac{t^m}{m!}\right) \left(\sum_{l=0}^{\infty} (r)_{l,\lambda} \frac{t^l}{l!}\right)
\]
\[
= \frac{t^k}{k!} \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \binom{n}{m} D_m^{(k)} \lambda^m (r)_{n-m,\lambda}\right) \frac{t^n}{n!}.
\]
On the other hand, by (2.4), we get
\[
\frac{1}{k!}\left(\frac{\log(1+\lambda t)}{\lambda}\right)^k (1+\lambda t) \tilde{\tau} = \sum_{n=k}^{\infty} S_{1,\lambda}(n, k) \frac{t^n}{n!}
\]
\[
= \frac{t^k}{k!} \sum_{n=0}^{\infty} S_{1,\lambda}(n + k, k) \frac{n!}{(n+k)!} \frac{t^n}{n!}.
\]
Thus, by comparing the coefficients on both sides of (2.22) and (2.23), we get
\[
\sum_{m=0}^{\infty} \binom{n}{m} D_m^{(k)} \lambda^m (r)_{n-m,\lambda} = \frac{1}{(n+k)!} S_{1,\lambda}(n, k). \quad (2.24)
\]
Therefore, by (2.24), we obtain the following theorem.

Theorem 2.8. For \(n, k \geq 0\), we have
\[
S_{1,\lambda}(n + k, k) = \binom{n + k}{n} \sum_{m=0}^{n} \binom{n}{m} D_m^{(k)} \lambda^m (r)_{n-m,\lambda}.
\]
From (1.9), we note that
\[
\frac{1}{k!}\left(\frac{\log(1+\lambda t)}{\lambda}\right)^k (1+\lambda t) \tilde{\tau} = \frac{t^k}{k!}\left(\frac{\log(1+\lambda t)}{\lambda t}\right)^k (1+\lambda t) \tilde{\tau}
\]
\[
= \frac{t^k}{k!} \sum_{n=0}^{\infty} \lambda^n D_n^{(k)} \frac{t^n}{n!}.
\]
By (2.23) and (2.25), we get
\[
S_{1,\lambda}(n + k, k) = \lambda^n \frac{(n+k)!}{n!k!} D_n^{(k)} \frac{t^n}{n!} = \lambda^n \binom{n+k}{n} D_n^{(k)} \frac{t^n}{n!}, \quad (n \geq 0). \quad (2.26)
\]
In particular, for \(r = 0\), from (2.21) and (2.26) we have
\[\lambda^n \binom{n+k}{k} D_n^{(k)} = S_{1,\lambda}(n+k, k) \]

\[= \sum_{l=k}^{n+k} \binom{n+k}{l} S_{1,\lambda}^{(r)}(l, k)(-1)^{n+k-l}(r + (n + k - l - 1)\lambda)_{n+k-l,\lambda}, \tag{2.27} \]

where \(n, k \geq 0 \).

Therefore, by (2.27), we obtain the following theorem.

Theorem 2.9. For \(n, k \geq 0 \), we have

\[\lambda^n \binom{n+k}{k} D_n^{(k)} = \sum_{l=k}^{n+k} \binom{n+k}{l} S_{1,\lambda}^{(r)}(l, k)(-1)^{n+k-l}(r + (n + k - l - 1)\lambda)_{n+k-l,\lambda}. \]

In addition,

\[D_n^{(k)} = \frac{1}{(n+k)} \sum_{l=k}^{n+k} S_{1,\lambda}^{(r)}(l, k)(-1)^{n+k-l}(r + (n + k - l - 1)\lambda)_{n+k-l,\lambda}. \]

Now, we observe that

\[\sum_{n=k}^{\infty} S_{1,\lambda}(n, k) \frac{t^n}{n!} = \frac{1}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^{\frac{t}{\lambda}} e^{-\frac{t}{\lambda} \log(1 + \lambda t)} \]

\[= \left(\sum_{l=k}^{\infty} S_{1,\lambda}^{(r)}(l, k) \frac{t^l}{l!} \right) \left(\sum_{m=0}^{\infty} (-1)^m r^m \frac{1}{m!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^m \right) \]

\[= \left(\sum_{l=k}^{\infty} S_{1,\lambda}^{(r)}(l, k) \frac{t^l}{l!} \right) \left(\sum_{j=0}^{\infty} \sum_{m=0}^{\infty} S_{1,\lambda}(j, m) \frac{t^j}{j!} \right) \]

\[= \sum_{n=k}^{\infty} \sum_{j=0}^{n-k} \binom{n}{j} (-1)^{n-k-j} S_{1,\lambda}(j, m) S_{1,\lambda}(n-j, k) \frac{t^n}{n!}. \tag{2.28} \]

Therefore, by comparing the coefficients on both sides of (2.28), we obtain the following theorem.

Theorem 2.10. For \(n, k \geq 0 \), with \(n \geq k \), we have

\[S_{1,\lambda}(n, k) = \sum_{j=0}^{n-k} \sum_{m=0}^{j} \binom{n}{j} (-1)^{m} r^m S_{1,\lambda}(j, m) S_{1,\lambda}(n-j, k). \]
For $m, n \geq 0$, we define λ-analogues of the Whitney’s type r-Stirling numbers of the first kind as
\[
(mx + r)_{n, \lambda} = (mx + r)(mx + r - \lambda)(mx + r - 2\lambda) \cdots (mx + r - (n - 1)\lambda)
\]
\[
= \sum_{k=0}^{n} T_{1, \lambda}^{(r)}(n, k|m)x^k.
\] (2.29)

By (2.29), we get
\[
\sum_{n=0}^{\infty} (mx + r)_{n, \lambda} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} T_{1, \lambda}^{(r)}(n, k|m)x^k \right) \frac{t^n}{n!}
\]
\[
= \sum_{k=0}^{\infty} \left(\sum_{n=k}^{\infty} T_{1, \lambda}^{(r)}(n, k|m) \frac{t^n}{n!} \right) x^k.
\] (2.30)

On the other hand, by binomial expansion, we get
\[
\sum_{n=0}^{\infty} (mx + r)_{n, \lambda} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \binom{mx + r}{n} \frac{t^n}{n!}
\]
\[
= (1 + \lambda t)^{mx + r} = (1 + \lambda t)^{\frac{mx + r}{\lambda}} e^{mx \frac{\log(1 + \lambda t)}{\lambda}}
\]
\[
= \sum_{k=0}^{\infty} \frac{m^k}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^{\frac{k}{\lambda}} x^k.
\] (2.31)

Comparing the coefficients on both sides of (2.30) and (2.31), the generating function for $T_{1, \lambda}^{(r)}(n, k|m)$, $(n, k \geq 0)$, is given by
\[
\frac{m^k}{k!} \left(\frac{\log(1 + \lambda t)}{\lambda} \right)^k (1 + \lambda t)^{\frac{k}{\lambda}} = \sum_{n=k}^{\infty} T_{1, \lambda}^{(r)}(n, k|m) \frac{t^n}{n!}.
\] (2.32)

From (2.4) and (2.32), we note that
\[
S_{1, \lambda}^{(r)}(n, k) = \frac{1}{m^k} T_{1, \lambda}^{(r)}(n, k|m), \quad (n \geq k \geq 0).
\] (2.33)

It is known that the r-Whitney numbers are defined as
\[
(mx + r)^n = \sum_{k=0}^{n} m^k W_{m,r}(n, k)(x)_k, \quad \text{(see [3]).}
\] (2.34)

By (1.3), we get
\((mx + r)_{n, \lambda} = \sum_{l=0}^{n} S_{1, \lambda}(n, l)(mx + r)^l\)

\[
= \sum_{l=0}^{n} S_{1, \lambda}(n, l) \sum_{j=0}^{l} m^j W_{m,r}(l, j)(x)_j
\]

\[
= \sum_{j=0}^{n} \sum_{l=0}^{n} S_{1, \lambda}(n, l)m^j W_{m,r}(l, j)(x)_j
\]

\[
= \sum_{j=0}^{n} \sum_{l=0}^{n} S_{1, \lambda}(n, l)m^j W_{m,r}(l, j)\sum_{k=0}^{j} S_{1}(j, k)x^k
\]

\[
= \sum_{k=0}^{n} \left(\sum_{j=k}^{n} \sum_{l=j}^{n} S_{1, \lambda}(n, l)S_{1}(j, k)m^j W_{m,r}(l, j) \right)x^k. \tag{2.35}
\]

Therefore, by (2.29) and (2.35), we obtain the following theorem.

Theorem 2.11. For \(n, k \geq 0\), with \(n \geq k\), we have

\[
T_{1, \lambda}^{(r)}(n, k|m) = \sum_{j=k}^{n} \sum_{l=j}^{n} S_{1, \lambda}(n, l)S_{1}(j, k)m^j W_{m,r}(l, j).
\]

References

1. A. Z. Border, *The r-Stirling numbers*, Discrete math. **49** (1984), 241–259.
2. L. Carlitz, *Degenerate Stirling, Bernoulli and Eulerian numbers*, Utilitas Math. **15** (1979), 51–88.
3. C. B. Corcino, R. B. Corcino, N. Acala, *Asymptotic estimates for r-Whitney numbers of the second kind*, J. Appl. Math. **2014**, Art. ID 354053, 7 pp.
4. D. V. Dolgy, T. Kim, *Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials*, Proc. Jangjeon Math. Soc. **21** (2018), no. 2, 309–317.
5. B. S. El-Desouky, A. Mustafa, *New results on higher-order Daehee and Bernoulli numbers and polynomials*, Adv. Difference Equ. **2016**, Paper No. 32, 21 pp.
6. H. W. Gould, *Stirling number representation problems*, Proc. Amer. Math. Soc. **11** (1960), 447-451.
7. G.-W. Jang, T. Kim, H.-I. Kwon, *On the extension of degenerate Stirling polynomials of the second kind and degenerate Bell polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) **28** (2018), no. 2, 305–316.
8. G.-W. Jang, J. Kwon, J.G. Lee, *Some identities of degenerate Daehee numbers arising from nonlinear differential equation*, Adv. Difference Equ. **2017**, Paper No. 206, 10 pp.
9. D. S. Kim, T. Kim, *Daehee numbers and polynomials*, Appl. Math. Sci. (Ruse) **7** (2013), no. 117-120, 5969-5976.
10. T. Kim, *A note on degenerate Stirling polynomials of the second kind*, Proc. Jangjeon Math. Soc. **20** (2017), no. 3, 319–331.
11. T. Kim, \(\lambda\)-analogue of Stirling numbers of the first kind, Adv. Stud. Contemp. Math. (Kyungshang) 27 (2017), no. 3, 423–429.
12. T. Kim, G.-W. Jang, A note on degenerate gamma function and degenerate Stirling number of the second kind, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 2, 207–214.
13. T. Kim, D.S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys. 24 (2017), no. 2, 241-248.
14. T. Kim, D.S.Kim, G.-W. Jang, Extended Stirling polynomials of the second kind and extended Bell polynomials, Proc. Jangjeon Math. Soc. 20 (2017), no. 3, 365–376.
15. T. Kim, D.S. Kim, L.-C. Jang, H. I. Kwon, Extended degenerate stirling numbers of the second kind and extended degenerate Bell polynomials, Utilitas Math. 106 (2018), 11–21.
16. T. Kim, D. S. Kim, H.-I. Kwon, A note on degenerate Stirling numbers and their applications, Proc. Jangjeon Math. Soc. 21 (2018), no. 2, 195-203.
17. T. Kim, Y. Yao, D.S. Kim, G.-W. Jang, Degenerate r-Stirling Numbers and r-Bell Polynomials, Russ. J. Math. Phys. 25 (2018), no. 1, 44-58.
18. C. Liu, Wuyungaowa, Application of probabilistic method on Daehee sequences, Eur. J. Pure Appl. Math. 11 (2018), no. 1, 69-78.
19. E.-J. Moon, J.-W. Park, S.-H. Rim, A note on the generalized \(q\)-Daehee numbers of higher order, Proc. Jangjeon Math. Soc. 17 (2014), no. 4, 557-565.
20. J.-W. Park, On the \(q\)-analogue of Daehee numbers and polynomials, Proc. Jangjeon Math. Soc. 19 (2016), no. 3, 537-544.
21. S.-S. Pyo, Degenerate Cauchy numbers and polynomials of the fourth kind, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 1, 127–138.
22. J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers. The unpublished notes of H. W. Gould. With a foreword by George E. Andrews. World Scientific Publishing Co. Pte. Ltd., Singapore, 2016 xv+260 pp.
23. Y. Simsek, On \(q\)-deformed Stirling numbers, Int. J. Math. Comput. 15 (2012), no. 2, 70-80.
24. Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 27 (2017), no. 2, 199–212.

DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA
E-mail address: tkkim@kw.ac.kr

DEPARTMENT OF MATHEMATICS, SOGAN UNIVERSITY, SEOUL 121-742, REPUBLIC OF KOREA
E-mail address: dskim@sogang.ac.kr