Favored neutrino mass mechanisms of the $0\nu\beta\beta$-decay unified by an interpolating formula

F Šimkovic1,2,3, A Babič2,4,5, S Kovalenko6 and M I Krivoruchenko2,7,8

1 Comenius University, Mlynská dolina F1, SK-842 48 Bratislava, Slovakia
2 Boboliubov Laboratory of Theoretical Physics, JINR 141980 Dubna, Russia
3 Czech Technical University in Prague, 128-00 Prague, Czech Republic
4 Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical U., 115 19 Prague, Czech Republic
5 Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague, Czech Republic
6 Universidad Técnica Federico Santa María, Centro-Cientifico-Tecnológico de Valparaiso, Casilla 110-V, Valparaiso, Chile
7 Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow, Russia
8 Department of Nano-, Bio-, Information, and Cognitive Technologies, Moscow Institute of Physics and Technology, 9 Institutskii per. 141700 Dolgoprudny, Moscow Region Russia

E-mail: simkovic@fmph.uniba.sk

Abstract. The neutrino mass mechanisms of the neutrinoless double beta decay ($0\nu\beta\beta$-decay) generated within the left-right symmetric models are discussed by taking advantage of an interpolating formula for nuclear matrix element depending on the neutrino mass. Its application is justified by a weak dependence of mean square neutrino momentum, which is a properly scaled ratio of nuclear matrix elements for the light and heavy neutrino mass mechanisms, on decaying isotope. Due to this fact there is a single unified lepton number violating parameter including dependendence on all neutrino masses in the decay rate and the light and heavy neutrino mass mechanisms can be hardly distinguished by observing the $0\nu\beta\beta$-decay on different isotopes. Further, a see-saw type neutrino mixing, which relates neutrino mixing in light and heavy neutrino sectors, is proposed. By considering the current limit on the $0\nu\beta\beta$-decay half-life of ^{136}Xe the regions of dominance of exchange of light and heavy neutrinos are identified.

1. Introduction
The main aim of experiments on the search for the neutrinoless double beta decay process ($0\nu\beta\beta$-decay) [1],

$$(A, Z) \rightarrow (A, Z + 2) + 2e^-, \quad (1)$$

is to prove that neutrinos are Majorana particles and to measure the effective Majorana neutrino mass

$$m_{\beta\beta} = \left| \sum_{j=1}^{3} U_{ej}^2 m_j \right|, \quad (2)$$

where U_{ej} is the element of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix and m_j is the mass of neutrino. It is assumed that the conventional light neutrino exchange
mechanism generated by left-handed V-A weak currents is the dominant mechanism of the $0\nu\beta\beta$-decay.

The value of $m_{\beta\beta}$ can be evaluated with help of neutrino oscillation parameters by making an assumption about the mass of lightest neutrino and by choosing a type of spectrum (normal or inverted) and values of CP violating Majorana phases. In future experiments, a sensitivity a few tens of meV to $m_{\beta\beta}$ is planned to be reached. This is the region of the inverted hierarchy of neutrino masses. In the case of the normal mass hierarchy $m_{\beta\beta}$ is too small, a few meV, to be probed in the $0\nu\beta\beta$-decay experiments of the next generation [1].

However, there is a possibility that the $0\nu\beta\beta$-decay is governed by another mechanism having origin in theories beyond the Standard model of particle physics. Currently, the attention is paid to the left-right symmetric theories [2, 3], which allow to understand the smallness of neutrino masses in a natural way. In this scenario, there are additional contributions to the $0\nu\beta\beta$-decay rate due right-handed currents and heavy neutrinos.

In this contribution we show that the observation of the $0\nu\beta\beta$ half-life with different isotopes will not allow to distinguish light and heavy neutrino mass mechanisms of this process as the effective neutrino momentum, which is determined through the ratio of corresponding nuclear matrix elements, depends only weakly on a given isotope. This fact allows to introduce a general lepton number violating parameter (LNV) of these mechanisms by taking advantage of the interpolating formula for the nuclear matrix element depending on neutrino mass. Further, the dominance of light and heavy neutrino mass mechanisms is studied by considering the seesaw type neutrino mixing in which mixing of heavy neutrinos is related to the mixing of light neutrinos due to unitary condition.

2. The $0\nu\beta\beta$-decay expressed with interpolating formula

The Majorana neutrino mass mechanisms of the $0\nu\beta\beta$-decay within left-right symmetric models (LRSM) [2, 3] are considered. The left-handed ν_{eL} and right-handed ν_{eR} weak eigenstate electron neutrinos are expressed as superpositions of the light and heavy mass eigenstate Majorana neutrinos ν_j and N_j as follows:

$$\nu_{eL} = \sum_{j=1}^{3} (U_{ej}\nu_j + S_{ej}N_j^C)$$
$$\nu_{eR} = \sum_{j=1}^{3} (T_{ej}^*\nu_j^C + V_{ej}^*N_j) .$$

(3)

The 3×3 block matrices in flavor space U, S, T, V form a 6×6 unitary neutrino mixing matrix [4]

$$U = \begin{pmatrix} U & S \\ T & V \end{pmatrix} .$$

(4)

It is a generalization of the PMNS matrix, which diagonalizes the general 6×6 Dirac-Majorana neutrino mass matrix in the Langrangian. As a result one ends up with 3 light m_i (i=1,2 and 3) and 3 heavy M_i (i=1,2 and 3) neutrino masses.

For sake of simplicity the possible $W_L - W_R$-mixing is not taken into account and the subdominant left-right interference term for the $0\nu\beta\beta$-decay half-life is neglected. Then, we have

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}_F q^2 \left\{ \sum_{i=1}^{3} \left(U^2_{ej} m_i M'^{0\nu}(m_i) + S_{ej}^2 M_i M'^{0\nu}(M_i) \right) \right\}^2$$
$$+ \lambda^2 \left\{ \sum_{i=1}^{3} \left(T^2_{ej} m_i M'^{0\nu}(m_i) + V^2_{ej} M_i M'^{0\nu}(M_i) \right) \right\}^2 .$$

2
Here, $\lambda = (M_{WL}/M_{WR})^2$, where M_{WL} and M_{WR} ($M_{WL} < M_{WR}$) are masses of W_L and W_R gauge bosons, respectively. m_p is the proton mass and g_A is the unquenched value of axial-vector coupling constant ($g_A = 1.269$). The phase-space factor $G^{0\nu}$ is tabulated for various $0\nu\beta\beta$-decaying nuclei in Ref. [5]. The nuclear matrix element $M^{0\nu}(m)$ is given by [6]

$$M^{0\nu}(m) = \frac{1}{m_p m_e} \frac{R}{2\pi^2 g_A^2} \sum_n \int d^3x d^3y e^{i p(x-y)} \int \frac{\langle 0_F^+ \mid J^{\mu\nu}(x) \mid n \rangle \langle n \mid J^{\mu\nu}_0(y) \mid 0_F^+ \rangle}{\sqrt{p^2 + m^2} \sqrt{p^2 + m^2 + E_n - (E_i + E_F)}/2}. \tag{5}$$

Here, m_e and R are the mass of electron and the nuclear radius, respectively. Initial and final nuclear ground states with energies E_I and E_F are denoted by $|0_F^+\rangle$ and $|0_F^+\rangle$, respectively. The summation runs over intermediate nuclear states $|n\rangle$ with energies E_n. For sake of simplicity we assume that coupling constants of left- and right-handed weak one-body nuclear charged currents are the same, $J_{\mu fR} = J_{\mu fL} = J_{\mu f}$. $J_{\mu f}^{\mu\nu}$ depends on the effective value of axial-vector coupling constant g_A^{eff} of the nucleon in a nucleus.

Nuclear matrix elements associated with light and heavy neutrino mass mechanisms, $M^{0\nu}_0$ and $M^{0\nu}_N$, are limiting cases of $M^{0\nu}(m)$ in Eq. (5):

$$M^{0\nu}(m_i \rightarrow 0) = \frac{1}{m_p m_e} M^{0\nu}_0, \quad M^{0\nu}(M_i \rightarrow \infty) = \frac{1}{M_i^2} M^{0\nu}_N. \tag{6}$$

To a good accuracy $M^{0\nu}(m)$ can be approximated by the formula

$$M^{0\nu}(m) \simeq M^{0\nu}_N \frac{1}{\langle p^2 \rangle + m^2}. \tag{7}$$

interpolating two limiting cases in (6). The parameter of this “interpolating formula”,

$$\langle p^2 \rangle = m_p m_e M^{0\nu}_N M^{0\nu}_0 \tag{8}$$

is interpreted as the mean square neutrino momentum in a nucleus. We note that the “interpolating formula” in Eq. (7) reproduces the “exact” QRPA result with rather good accuracy except for the transition region where its deviation amounts 20% - 25% [6].

The current values of the matrix elements $M^{0\nu}_0$ and $M^{0\nu}_N$ calculated within the interacting shell model (ISM) [7], interacting boson model (IBM)[8], quasiparticle random phase approximation (QRPA) [9, 10], projected Hartree-Fock Bogoliubov approach (PHFB)[11], and covariant density functional theory (CDFT) [12] are presented, e.g., in Tables 6 and 7 of Ref. [1]. The value of corresponding parameter $\sqrt{\langle p^2 \rangle}$ is shown for various isotopes in Table 1. The unquenched value of axial-vector coupling constant and the Argonne two-nucleon short-range correlations are assumed.

For the averaged value $\sqrt{\langle p^2 \rangle}$ and variance σ associated with considered nuclear structure approaches we find

$$\sqrt{\langle p^2 \rangle}_{\sigma}(\sigma) = \begin{cases} 155(17) \text{ MeV}, & \text{(ISM)} \\ 120(17) \text{ MeV}, & \text{(IBM)} \\ 175(11) \text{ MeV}, & \text{(QRPA)} \\ 128(4) \text{ MeV}, & \text{(PHFB)} \\ 132(5) \text{ MeV} & \text{(CDFT)} \end{cases} \tag{9}$$
Table 1. The values of the parameter $\sqrt{\langle p^2 \rangle}$ of the interpolating formula specified in Eq. (10) for a given isotope calculated within different nuclear structure approaches: interacting shell model (ISM) [7], interacting boson model (IBM)[8], quasiparticle random phase approximation (QRPA) [9, 10], projected Hartree-Fock Bogoliubov approach (PHFB)[11], and covariant density functional theory (CDFT) [12]. The Argonne short-range correlations are taken into account. The non-quenched value of weak axial-vector coupling g_A is assumed.

Method	$\sqrt{\langle p^2 \rangle}$ [MeV]										
	^{48}Ca	^{76}Ge	^{82}Se	^{96}Zr	^{100}Mo	^{116}Cd	^{124}Sn	^{128}Te	^{130}Te	^{136}Xe	^{150}Nd
ISM	178	134	138	153	159	170					
IBM	113	103	103	129	136	130	109	109	109	107	155
QRPA	189	163	164	180	174	157	186	178	180	183	
PHFB	130	127	131	132	121						
CDFT	122	129	131	129	131	133	138	138	137	138	

We notice a large spread of values of the parameter $\sqrt{\langle p^2 \rangle}$ due to different nuclear structure approaches. The largest and smallest value (175 MeV and 120 MeV) is obtained within the QRPA with isospin restoration [9, 10]) and the IBM [8], respectively. However, in the case of all nuclear structure approaches the variance σ is very small of the order of 3-10 %. It allows to conclude that $\langle p^2 \rangle$ is practically the same for all isotopes of experimental interest and can be replaced with averaged value $\langle p^2 \rangle_a$. This conclusion is also supported by the statistical treatment of $M_{\nu_N}^{0\nu}$ and $M^{0\nu}_N$ performed in Ref. [13].

By taking the advantage of the “interpolating formula” (7) with the parameter $\langle p^2 \rangle_a$ to good accuracy the $0^{\nu}\beta\beta$-decay half-life in Eq. (5) can be rewritten as

$$[T_{1/2}^{0\nu}]^{-1} = \eta_{\nu_N}^2 g_A^2 |M_{\nu}^{0\nu}|^2 G^{0\nu}.$$ (10)

with

$$\eta_{\nu_N}^2 = \sum_{j=1}^{3} \left(U_{ej}^2 \frac{m_j}{m_e} + S_{ej}^2 \frac{\langle p^2 \rangle_a}{\langle p^2 \rangle_a + M_j^2/m_e} \right)^2 + \lambda^2 \sum_{j=1}^{3} \left(T_{ej}^2 \frac{m_j}{m_e} + V_{ej}^2 \frac{\langle p^2 \rangle_a}{\langle p^2 \rangle_a + M_j^2/m_e} \right)^2.$$ (11)

Here, the parameter η_{ν_N} is a general lepton number violating parameter for light and heavy neutrino mass mechanisms in the context of the left-right symmetric models, which does not depend on the isotope under consideration.

From Eqs. (10) and (11) it follows that the dominance of light or heavy neutrino mechanisms of the $0^{\nu}\beta\beta$-decay can not be established by an observation of this process on different isotopes. This task requires an additional information or assumption concerning neutrino masses and mixing.

3. Study of the dominance of light and heavy neutrino mass mechanisms

For sake of simplicity the flavor universal mixing between the active and sterile neutrino sectors of the seessaw mixing matrix U is proposed to study the dominance of light and heavy neutrino mass mechanisms in the $0^{\nu}\beta\beta$-decay rate. We have

$$U = \begin{pmatrix} U_0 & \zeta & 1 \\ -\zeta & 1 & V_0 \end{pmatrix}.$$ (12)
Here, $\zeta = \frac{m_D}{m_{LNV}}$, where m_D is the typical scale of the charged leptons masses and m_{LNV} is the LNV scale of the order of the Majorana masses M_i of the heavy neutrinos. U_0 can be identified with the PMNS U matrix ($U = U_0$). From the unitarity conditions we find

$$V_0 = U_0^\dagger, \quad U_0 U_0^\dagger = (1 - \zeta^2) \mathbf{1}, \quad V_0 V_0^\dagger = (1 - \zeta^2) \mathbf{1}.$$ \hspace{1cm} (13)

It is assumed that a small violation of the unitarity of U_0 and V_0 matrices is beyond the current accuracy of phenomenological determination of elements of the PMNS matrix.

Further, we assume that $m_{LNV}^2 \gg \langle p^2 \rangle_a$ and the seesaw relations for neutrino masses $m_i \simeq m_D^2/M_{LNV}$ and $M_i \simeq m_{LNV}$. We find

$$\eta_{LNV}^2 = \frac{1}{m_c^2} \left(m_{\beta\beta}^2 + (M_{\beta\beta}^R)^2 \right), \quad M_{\beta\beta}^R = \lambda \frac{\langle p^2 \rangle_a}{m_D^2} \left| \sum_{j=1}^3 U_{0j}^\dagger (U_{0j})^2 m_j \right|.$$ \hspace{1cm} (14)

The matrix U^\dagger expressed with three mixing angles θ_{12}, θ_{13} and θ_{23} and three CP violating phases α_1, α_2 and δ takes the form

$$V_0 = \begin{pmatrix}
 c_{12} c_{13} e^{-i \alpha_1} & -s_{12} c_{23} - c_{12} s_{13} s_{23} e^{-i \delta} e^{-i \alpha_2} & s_{12} s_{23} - c_{12} s_{13} c_{23} e^{-i \delta} e^{-i \alpha_1} \\
 s_{12} c_{13} e^{-i \alpha_2} & c_{12} c_{23} - s_{12} s_{13} s_{23} e^{-i \delta} & -s_{12} s_{23} - s_{12} s_{13} c_{23} e^{-i \delta} e^{-i \alpha_2} \\
 s_{13} e^{i \delta} & c_{13} s_{23} & c_{13} c_{23}
\end{pmatrix}.$$ \hspace{1cm} (15)
Here, $c_{ij} \equiv \cos(\theta_{ij})$ and $s_{ij} \equiv \sin(\theta_{ij})$. We note that each element of the first row is multiplied by the same phase $e^{-i\alpha_1}$, i.e., the Majorana phase α_1 (and α_2 as well) does not affect the heavy neutrino LNV parameter $M^{R}_{\beta\beta}$ within considered scenario. On the contrary, the Dirac phase δ affects $M^{R}_{\beta\beta}$ and has no impact on $m_{\beta\beta}$.

In Fig. 1 the region of dominance of $M^{R}_{\beta\beta}$ mechanism over $m_{\beta\beta}$ mechanism in the $0\nu\beta\beta$-decay rate is displayed in the plane of parameters m_D and m_0 (the lightest neutrino mass). The cases of the normal (left panel) and inverted hierarchy (right panel) of neutrino masses are discussed. We see that in the case of normal (inverted) hierarchy $m_D \leq 1.5$ MeV ($m_D \leq 2.9$ MeV) is already excluded by the present experimental lower bound on the $0\nu\beta\beta$-decay half-life of 136Xe.

4. Conclusions

In summary, the light and heavy neutrino mass mechanisms of the $0\nu\beta\beta$-decay generated within the left-right symmetric models were analyzed. It was found that properly scaled ratio of nuclear matrix elements for the light and heavy neutrino mass mechanisms, which can be identified with square mean neutrino momentum (p^2) of the interpolating formula, exhibits practically no dependence on isotope for all favoured nuclear structure methods. This fact allows to introduce new lepton number violating parameter $\eta_{L,N}$, which is a coherent sum of square lepton number violating parameters $m_{\beta\beta}$ and $M^{R}_{\beta\beta}$ associated with light and heavy neutrino exchange mechanisms, respectively. It is concluded that the observation of the $0\nu\beta\beta$-decay on two and more nuclear isotopes will allow to decide about the dominance of light or heavy neutrino-mass mechanism in the decay rate.

Further, a viable see-saw type 6×6 neutrino mixing matrix (see Eq.(12)), where due to unitarity condition the 3×3 mixing matrix of heavy neutrinos is just hermitian conjugate of the 3×3 mixing matrix (PMNS matrix) of light neutrinos, was proposed. Within this neutrino mixing scenario the dominance of light and heavy neutrino mass mechanisms in the plane of parameters of Dirac mass m_D and lightest neutrino mass m_0 was established by using the experimental constraint on the $0\nu\beta\beta$-decay of 136Xe and assuming $\lambda = 7.7 \cdot 10^{-4}$.

Acknowledgments

This work is supported by the VEGA Grant Agency of the Slovak Republic under Contract No. 1/0922/16, by Slovak Research and Development Agency under Contract No. APVV-14-0524, RFBR Grant No. 16-02-01104, Underground laboratory LSM - Czech participation to European-level research infrastructure CZ.02.1.01/0.0/0.0/16 013/0001733.

References

[1] Vergados J D, Ejiri H and Šimkovic F 2016 Int. J. Mod. Phys. E 25 1630007
[2] Pati J C and Salam A 1974 Phys. Rev. D 10 275; Mohapatra R and Pati J C 1975 Phys. Rev. D 11 2558
[3] Senjanović G and Mohapatra R N 1975 Phys. Rev. D 12 1502; Mohapatra R N and Senjanovic G 1980 Phys. Rev. Lett. 44 912; 1981 Phys. Rev. D 23 165
[4] Xing Zhi-zhong 2012 Phys. Rev. D 85 013008
[5] Kotilla J and Iachello F 2012 Phys. Rev. C 85 034316
[6] Faessler A, González M, Kovalenko S and Šimkovic F 2014 Phys. Rev. D 90 096010
[7] Horoi M and Neacsu A 2016 Phys. Rev. C 93 024308
[8] Barca J, Kotila J and Iachello F 2015 Phys. Rev. C 91 034304
[9] Šimkovic F, Rodin V, Faessler A and Vogel P 2013 Phys. Rev. C 87 045501
[10] Fang D, Faessler A and Šimkovic F 2015 Phys. Rev. C 92 044301
[11] Rath P, Chandra R, Raina P, Chaturvedi K and Hirsch J 2012 Phys. Rev. C 85 014308
[12] Song L S, Yao J M, Ring P and Meng J 2017 Phys. Rev. C 95 024305
[13] E. Lisi, A.M. Rotunno, and F. Šimkovic, Phys. Rev. D 92, 093004 (2015).
[14] A. Meroni, S. T. Petcov and F. Šimkovic, JHEP 1302, 025 (2013).
[15] The KamLAND-Zen Collab., Gando A et al. 2016 Phys. Rev. Lett. 117 082503