Data Article

Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition

Jaime Moreno-García, Juan Carlos Mauricio, Juan Moreno, Teresa García-Martínez

A Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Cordoba, Spain
b Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Cordoba, Spain

A R T I C L E I N F O

Article history:
Received 23 February 2016
Received in revised form 16 March 2016
Accepted 21 March 2016
Available online 28 March 2016

A B S T R A C T

In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis – based on cellular components and biological process GO terms – was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in “Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation” [1].

1. Specifications Table

| Subject area | Biology, Microbiology and Biochemistry
| Proteomics, Bioinformatics |

DOI of original article: http://dx.doi.org/10.1016/j.procbio.2016.02.011
* Corresponding author.
E-mail address: mi1gamaj@uco.es (J.C. Mauricio).
More specific subject area

Type of data

How data was acquired

Data format

Experimental factors

Experimental features

Data source location

Data accessibility

2. Value of the data

- Through the SGD Gene Ontology Slim Mapper tool, flor yeast stress proteins were sorted in cellular components and biological GO Terms. Comparison among stress and non-stress conditions of protein frequency sorted in each term, allows to highlight relevant GO Terms.
- The bioinformatics tools applied in this study allows to interpret biological information to be used for comparative proteomics studies.
- The association of proteomic data with protein activity assays and genetics may lead to the genetic improvement of flor yeast strains.

3. Data

Here, we show sub-cellular localizations (Table 1 in supplementary data) and biological processes (Table 2 in supplementary data) GO Terms in which the flor yeast stress related-proteins detected in stressed biofilm formation condition (BFC) and non-biofilm formation condition (NBFC) were sorted. Each type of biofilm formation stresses (lack of fermentable carbon source, ethanol, acetaldehyde and oxidative) were considered separately. Comparison with the Saccharomyces cerevisiae proteome frequency, p-value and the “GO Term frequency BFC/GO Term frequency NBFC” ratio highlighted most relevant cellular components and biological processes in each condition.

4. Experimental design, materials and methods

The effects of two different biofilm formation conditions (BFC and NBFC) on S. cerevisiae G1 flor yeast stress response related-protein expression patterns have been analyzed by using an offgel-based approach. Culture conditions were performed as described in the Process Biochemistry journal paper [1]. Briefly, after growing until the yeast viability reached 90% at the exponential phase, under the two different conditions: BFC with ethanol and glycerol and NBFC with glucose as the main
carbon sources; yeasts were collected and proteins extracted. In both conditions, for triplicates, three aliquots for proteomic analysis were carried out. OFFGEL fractionation, LTQ Orbitrap XL mass spectrometer identification, emPAI quantification [2] and SGD filtration were used to obtaining the stress response proteins in each condition. Bioinformatic tool Gene Ontology Slim Mapper from SGD (http://www.yeastgenome.org/), were applied in order to clarify the sub-cellular localization and biological processes of the identified proteins.

Acknowledgments

The authors wish to acknowledge co-funding of this work by Spain’s Ministry of Economy and Competitiveness (MINECO-INIA-CCAA) and the European Fund of Regional Development (FEDER, Grant RTA2011-00020-C02-02). The staff at the Central Service for Research Support (SCAI) of the University of Cordoba is also gratefully acknowledged for help with the analysis of the proteins.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.03.072.

References

[1] J. Moreno-García, J.C. Mauricio, J. Moreno, T. García-Martínez. Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation, Process Biochem. (2016) (in press), http://dx.doi.org/10.1016/j.procbio.2016.02.011.
[2] Y. Ishihama, Y. Oda, T. Tabata, T. Sato, T. Nagasu, J. Rappsilber, M. Mann, Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein, Mol. Cell. Proteom. 4 (2005) 1265–1272.