Half-body MRI volumetry of abdominal adipose tissue in patients with obesity

Nicolas Linder 1,2*, Kilian Solty 1,2, Anna Hartmann 2, Tobias Eggebrecht 2, Matthias Blüher 2,3, Roland Stange 2 and Harald Busse 1

Abstract

Background: The purpose of this study was to determine to what extent the whole volumes of abdominal subcutaneous (ASAT) and visceral adipose tissue (VAT) of patients with obesity can be predicted by using data of one body half only. Such a workaround has already been reported for dual-energy x-ray absorption (DEXA) scans and becomes feasible whenever the field of view of an imaging technique is not large enough.

Methods: Full-body abdominal MRI data of 26 patients from an obesity treatment center (13 females and 13 males, BMI range 30.8–41.2 kg/m², 32.6–61.5 years old) were used as reference (REF). MRI was performed with IRB approval on a clinical 1.5 T MRI (Achieva dStream, Philips Healthcare, Best, Netherlands). Segmentation of adipose tissue was performed with a custom-made Matlab software tool. Statistical measures of agreement were the coefficient of determination R^2 of a linear fit.

Results: Mean ASAT$_{REF}$ was 12,976 (7812–24,161) cm³ and mean VAT$_{REF}$ was 4068 (1137–7518) cm³. Mean half-body volumes relative to the whole-body values were 50.8% (48.2–53.7%) for ASAT$_L$ and 49.2% (46.3–51.8%) for ASAT$_R$. Corresponding volume fractions were 56.4% (51.4–65.9%) for VAT$_L$ and 43.6% (34.1–48.6%) for VAT$_R$. Correlations of ASAT$_{REF}$ with ASAT$_L$ as well as with ASAT$_R$ were both excellent ($R^2 > 0.99$, $p < 0.01$). Corresponding correlations of VAT$_{REF}$ were marginally lower ($R^2 = 0.98$ for VAT$_L$, $p < 0.01$, and $R^2 = 0.97$ for VAT$_R$, $p < 0.01$).

Conclusions: In conclusion, abdominal fat volumes can be reliably assessed by half-body MRI data, in particular the subcutaneous fat compartment.

Keywords: Magnetic resonance imaging, Adipose tissue, Quantification, Segmentation, Volumetry, Obesity

Background

The increasing worldwide prevalence of obesity poses serious health and economic problems [1]. Obesity is characterized by the abundance of ectopic adipose tissue, which can be divided into visceral and subcutaneous fat with specific metabolic functions [2]. Visceral obesity is generally considered to have a negative impact on health resulting in an increased risk for cardiometabolic diseases such as diabetes mellitus type 2 or atherosclerosis, whereas excess subcutaneous fat is still discussed controversially [3, 4]. Various clinical trials have already used magnetic resonance imaging (MRI) to non-invasively characterize obesity [5]. Visceral and other ectopic fat volumes are usually quantified by segmentation of multiplanar images derived from computed tomography or magnetic resonance imaging. Quantitative measures of body composition can be essential for the monitoring of therapeutic approaches of patients with obesity such as sport interventions [6], pharmacological trials [7] or bariatric surgery [8–11].

For larger patients, the imaging field of view (FOV) of an MRI system (typically 50–55 cm) may be too small to cover the whole body laterally. Moreover, field distortions, spatial inhomogeneities of the applied electromagnetic pulses and imaging artefacts at the edges of the FOV may preclude proper image analysis. Dual energy X-ray absorptiometry (DEXA) measurements are also subject to weight and scan area restrictions for patients with obesity [12].

Surrogate DEXA measurements of one body half only have already been proposed in the mid-1990s to overcome
these limitations [12, 13]. Considering the approximate mirror symmetry of the human body (with respect to the median plane), we hypothesized that the total abdominal subcutaneous adipose tissue volume can be predicted by half-body data only. The goal of this work was to test this hypothesis for patients with obesity where the available MRI data still covers the entire lateral body.

Methods

Study population

MRI data at 1.5 T were available from a total of 224 patients (60 male) from an interventional clinical trial on obesity at a single institutional research center. Subjects with a BMI above 30 kg/m² (inclusion criterion) underwent MRI as part of a clinical characterization for the local obesity biobank. No additional imaging was performed for this retrospective analysis. Thirty-six of the male patients (60%) were excluded because subcutaneous fat amounts on any of the abdominal MR images (slice thickness 10 mm) were not fully contained within the field of view or showed image artifacts that prevented precise segmentation. Another 11 male patients were excluded because the upper landmark for the segmentation of abdominal subcutaneous fat (vertebra T9, see below) was not included in the trial dataset. The remaining 13 male patients were matched for age to 13 female patients. The mean BMI was 34.3 (range 30.8–41.2) kg/m².

Magnetic resonance imaging

Data were acquired on a standard clinical system that was upgraded from 1.5 to 3 Tesla throughout the original clinical trial (Achieva XR and dSTREAM, Philips, Best, Netherlands). For this analysis, however, we only considered one field strength (1.5 T) to reduce variability. Patients were examined in supine position with arms on the side and images were acquired in breath-hold technique (expiration) using the whole-body coil for signal reception. Fat-sensitive transverse MR images (two-point Dixon sequence, slice thickness 10 mm, interslice gap 0.5 mm) were acquired to minimally include the abdominal region between diaphragm and pelvic floor using two contiguous stacks of 25 images each. Our measurement of abdominal subcutaneous adipose tissue (ASAT) volume, however, relied on a fixed landmark (vertebra T9) rather the more variable position of the diaphragm as recommended by Ulrich et al. [14]. Further technical details, including all relevant MR parameters, can be found in a previous report [15, 16].

Image analysis

A custom-made software tool was used to semi-automatically segment the half-body adipose tissue areas after proper marking of the median line. This tool was developed under the Matlab-based Dicomflex framework [17] and is available in the Github software repository (https://github.com/Stangeroll/Dicomflex). Validation against a reference software was reported earlier [18]. The abdominal adipose tissue areas were identified by a trained experienced reader (A.H.) on all transverse slices (see above). Figure 1 shows an example of such a segmentation.

The fully segmented abdominal subcutaneous and visceral adipose tissue served as reference standard (ASAT\textsubscript{REF} and VAT\textsubscript{REF}). At the level of lumbar vertebra 4 or 5 between the dorsal aspect of the processus spinosus and the center of the corresponding vertebra, a reference median line dividing total ASAT into proper left and right portions (ASAT\textsubscript{L} and ASAT\textsubscript{R}) was drawn manually. This line was digitally pasted into all slices but could be modified in each slice to correct for potential scoliotic deformations.

Statistical analysis

Left and right half-body volumes were then plotted against the reference volumes. A linear fit yielded specific slopes and intercepts that can be regarded as conversion parameters between half and full measures:

\[
\text{ASAT}_{\text{EST-[L/R]}} = \text{ASAT}_{[L/R]} \cdot \frac{1}{f_{\text{ASAT-[L/R]}}} + b_{\text{ASAT-[L/R]}}
\]

\[
\text{VAT}_{\text{EST-[L/R]}} = \text{VAT}_{[L/R]} \cdot \frac{1}{f_{\text{VAT-[L/R]}}} + b_{\text{VAT-[L/R]}}
\]

where the index [L/R] denotes either the left or the right body side, ASAT\textsubscript{EST-[L/R]} and VAT\textsubscript{EST-[L/R]} are the estimated total fat volumes, ASAT\textsubscript{[L/R]} and VAT\textsubscript{[L/R]} are the partially measured volumes and \(f_{\text{ASAT-[L/R]}}\) and \(b_{\text{ASAT-[L/R]}}\) are the slope [no unit] and intercept [unit of volume] parameters of the corresponding linear fits.

Statistical measures of agreement were the coefficient of determination \(R^2\) of a linear fit, and Bland-Altman analyses between measured and predicted values. A Shapiro-Wilk statistic was considered to test for a normal distribution of the respective differences. A two-sided T-test was used to compare both genders in regards to BMI and age. All statistical analyses were performed with SPSS 24 (IBM, Armonk, NY) and \(p\)-values below 0.05 were considered to be significant.

Results

Data of 13 female and 13 male individuals were included. Mean BMI was 34.3 (range 30.8–41.2) kg/m² and mean age was 50.0 (range 32.6–61.5) years. Gender-specific patient characteristics are provided in Table 1. There was no statistical difference in age \((p = 0.571)\) or BMI \((p = 0.525)\) between genders. Image segmentation
and determination of VAT\textsubscript{REF}, VAT\textsubscript{L}, VAT\textsubscript{R}, ASAT\textsubscript{REF}, ASAT\textsubscript{L} and ASAT\textsubscript{R} could be successfully performed for all patients. Definition of the median line took about 2 min and total segmentation time was about 12 min per patient. Mean volumes of abdominal subcutaneous (ASAT\textsubscript{REF}) and visceral adipose tissue (VAT\textsubscript{REF}) were 12,976 (range 7812 – 24,161) cm\(^3\) and 4068 (1137 – 7518) cm\(^3\), respectively. Mean volumes of VAT\textsubscript{L} and VAT\textsubscript{R} were 2272 (611–3859) cm\(^3\) and 1795 (526–3654) cm\(^3\). Figure 2 illustrates the linear correlation between ASAT\textsubscript{L} and ASAT\textsubscript{REF}. Coefficients of determination were \(R^2 > 0.99\) over all patients. Values of ASAT\textsubscript{EST-L} were significantly higher in females compared to males (15,020 vs. 10,932 cm\(^3\)). Coefficients \(R^2\) between either ASAT\textsubscript{L} or ASAT\textsubscript{R} with ASAT\textsubscript{REF} were very high (0.99) and did not differ significantly between genders. In contrast, correlations between ASAT\textsubscript{L} and BMI were poor for both females \((R^2 = 0.26, p < 0.01)\) and males \((R^2 = 0.35, p < 0.01)\).

Considering VAT, females had a significantly \((p < 0.01)\) lower mean volume (2787 cm\(^3\)) than males (5350 cm\(^3\)). Coefficients of determination between VAT\textsubscript{L} or VAT\textsubscript{R} with VAT\textsubscript{REF} were both very good \((R^2 = 0.98 \text{ and } 0.97, \text{ respectively, both } p < 0.01)\). For VAT\textsubscript{R}, \(R^2\) was slightly better for males \((R^2 = 0.95)\) than for females \((R^2 = 0.90)\). Correlation with BMI was moderate in males \((R^2 = 0.46)\) and practically not given in females \((R^2 = 0.05)\).

Conversion parameter sets were \(\{f\text{ ASAT-L} = 0.5253, \ b\text{ ASAT-L} = -211.1 \text{ cm}^3\}\), \(\{f\text{ ASAT-R} = 0.4747, \ b\text{ ASAT-R} = 211.1 \text{ cm}^3\}\), \(\{f\text{ VAT-L} = 0.5207, \ b\text{ VAT-L} = 154.1 \text{ cm}^3\}\) and \(\{f\text{ VAT-R} = 0.4793, \ b\text{ VAT-R} = -154.1 \text{ cm}^3\}\). Mean values of the derived estimates were VAT\textsubscript{EST-L} = 4069.2, VAT\textsubscript{EST-R} = 4068.4, ASAT\textsubscript{EST-L} = 12,976.4 and ASAT\textsubscript{EST-R} 12,976.2. As a prerequisite for Bland-Altman analysis, the null hypothesis of volume differences coming from a normally distributed population could not be rejected \((p\text{-values between 0.051 and 0.931})\). The Bland-Altman plots for the left side (Fig. 2c and d) reveal a balanced distribution over the whole range of fat values with standard deviations of 361 cm\(^3\) and 267 cm\(^3\) for ASAT and VAT, respectively.

Discussion

Quantification of abdominal subcutaneous adipose tissue (ASAT) in patients with obesity is typically compromised by imaging limitations. Earlier reports of partial coverage of abdominal adipose tissue focused on either single slice or partial volume quantification and were mainly concentrating on visceral adipose tissue [15, 16, 19–21]. Therefore, the main objective of this study was to implement and evaluate a technique that estimates the ASAT volume of a patient from half-body data only. Here, validation was only performed for MRI datasets where the lateral body parts were fully contained in the FOV. Larger patients, in which these parts would normally be cut off, could then be placed with a lateral offset on the MRI table (see Fig. 3) to fully include one body half instead, preferentially the left one.

Our results revealed an excellent correlation between ASAT\textsubscript{REF} volumes and estimates from ASAT\textsubscript{L} or ASAT\textsubscript{R} with a slightly better agreement on the left side. This finding agrees with results from dual-energy X-ray absorptiometry [12] and also supports the assumption of a nearly symmetric ASAT distribution. Despite the pronounced lateral asymmetry of abdominal organs like the liver or spleen, VAT may still be predicted by half-body data. This may be explained by the observation that VAT is predominantly found in the lower two thirds of the abdomen where intestinal and pelvic structures show...
no distinct lateral preference. VAT volumes next to the liver and spleen are rather asymmetric but make up a small amount of total VAT only. In males, VAT_{R} should be preferred for VAT prediction; in females, differences between VAT_{L} and VAT_{R} were only marginal.

Our pilot study has some limitations. Like in other studies involving MRI segmentation of adipose tissue areas [18, 22], our sample size is relative small. Although the original trial data included patients with a maximum BMI of 57 kg/m^2, the strict inclusion criteria applied for validation here (all ASAT boundaries within FOV, no artifacts, available MRI data at position T9) resulted in an effective BMI range of 30–41 kg/m^2 only. The good agreement may therefore not hold for subjects with higher degrees of obesity. Our semi-automatic segmentation tool has been used for all clinical analyses as well and requires more processing time than the latest fully-automated approaches [23, 24]. Data were deliberately analyzed by one operator only to exclude variations during interactive segmentation and median-line definition. Results of our retrospective analysis were not validated against an independent method. Also, DEXA scans had been excluded from the clinical study protocol to avoid application of ionizing radiation. Ultrasound was not considered either because the underlying accuracy is also low [25]. Despite the limited availability and higher complexity, MRI is used increasingly and even referred to as a gold standard for the quantification of adipose tissue. Furthermore, the presented results should be transferable to computed tomography, which comprises an almost identical imaging geometry.

Conclusion

In conclusion, we have presented a unique workaround method to reliably quantify abdominal adipose tissue in patients with higher grades of obesity using MRI. It is of particular value for ASAT but may also be used to estimate VAT with slightly lower accuracy. We believe that this simple half-body MRI volumetry has a high practical value for characterization of obesity, both in research and treatment.

Future work should be directed towards an independent validation, a more standardized image segmentation and a potential definition of normative values like the ones

Table 1 Patient characteristics

	Females	Males
Count	13	13
Age [years]	49.0 (3.9–61.0)	50.9 (32.6–61.5)
BMI [kg/m^2]	34.9 (31.4–37.3)	33.7 (30.8–41.2)
ASAT_{REF} [cm^3]	15,020 (10,672 – 24,161)	10,932 (7812 – 16,349)
VAT_{REF} [cm^3]	2786 (1137 – 4174)	5350 (3282 – 7513)

Data of age and BMI are presented as mean and corresponding range. Presented p values are derived from a t-Test on equality of variances. BMI: body mass index, ASAT_{REF} reference abdominal subcutaneous adipose tissue (volume), VAT_{REF} reference visceral adipose tissue (volume).
recently reported for a normal-weight Swiss population [14]. Our Matlab tool, the source code and the corresponding framework are therefore available from a Github repository (https://github.com/Stangeroll/Dicomflex) to facilitate further efforts along that line [17].

Abbreviations

ASAT\textsubscript{LEFT}: Abdominal subcutaneous adipose tissue estimated from the left side of the body; ASAT\textsubscript{RIGHT}: Abdominal subcutaneous adipose tissue estimated from the right side of the body; ASAT\textsubscript{L}: Abdominal subcutaneous adipose tissue on the left side of the body; ASAT\textsubscript{R}: Abdominal subcutaneous adipose tissue on the right side of the body; ASAT\textsubscript{REF}: Abdominal subcutaneous adipose tissue on both sides of the body (reference); BMI: Body mass index; FOV: Field of view; MRI: Magnetic resonance imaging; VAT\textsubscript{L}: Visceral adipose tissue on the left side of the body; VAT\textsubscript{R}: Visceral adipose tissue on the right side of the body; VAT\textsubscript{REF}: Visceral adipose tissue on both sides of the body (reference).

Acknowledgments

Not applicable.

Authors’ contributions

NL, KS and HB designed the study. MB provided patient data. TE and RS designed the software for image analysis. NL, KS and HB designed the study. MB provided patient data. TE and RS performed analysis of images and data. NL wrote the manuscript. HB and MB revised the manuscript. NL was in charge of the final version. All authors reviewed the article and approved the submitted publication. All authors declare that there is no conflict of interest regarding the publication of this article.

Funding

We acknowledge financial support from the German Research Foundation (DFG) and Leipzig University within the program of Open Access Publishing. These funding bodies were not involved in the study design, data handling or manuscript editing.

Availability of data and materials

Data is available upon request from the corresponding author (nicolas.linder@medizin.uni-leipzig.de).

Ethics approval and consent to participate

Data collection, analysis and publication were approved by the Ethical Review Board (#159-12-21052012 and #017-12-23012012) of the Faculty of Medicine, Leipzig University, Germany (#284/10).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Diagnostic and Interventional Radiology, Leipzig University Hospital, Leipzig, Germany. 2. Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany. 3. Department of Medicine, Endocrinology and Nephrology, Leipzig University, Leipzig, Germany.

Received: 30 April 2019 Accepted: 27 September 2019 Published online: 22 October 2019

Fig. 3 Suggested workaround for adipose tissue quantification in patients with higher degrees of obesity. Sample transverse MR image after patient has been positioned non-centrally (laterally) on the MR table. Full-body fat amounts can be estimated from half-body measures (here: right) using reference/ conversion parameters derived here. MRI acquisition with (obese) patient in central (normal) position is prone to image artifacts or (anatomical) cutoffs on both sides which would prevent proper prediction.
15. Schaudinn A, Linder N, Garnov N, Kerlikowsky F, Blüher M, Dietrich A, et al. Predictive accuracy of single- and multi-slice MRI for the estimation of total visceral adipose tissue in overweight to severely obese patients: MRI prediction of visceral fat volumes. NMR Biomed. 2015;28(5):583–90.

16. Linder N, Schaudinn A, Garnov N, Blüher M, Dietrich A, Schütz T, et al. Age and gender specific estimation of visceral adipose tissue amounts from radiological images in morbidly obese patients. Sci Rep. 2016;6:22261.

17. Stange R, Linder N, Schaudinn A, Kahn T, Busse H. Dicomlex: a novel framework for efficient deployment of image analysis tools in radiological research. PLoS One. 2018;13(9):e020974.

18. Thörmer G, Bertram HH, Garnov N, Peter V, Schütz T, Shang E, et al. Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients. J Magn Reson Imaging. 2013;37(5):1144–50.

19. Irlbeck T, Massaro JM, Bamberg F, O’Donnell CJ, Hoffmann U, Fox CS. Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham heart study. Int J Obes. 2010;34(4):781–7.

20. Marzetti M, Brunton T, McCreight L, Pearson E, Docherty S, Gandy SJ. Quantitative MRI evaluation of whole abdomen adipose tissue volumes in healthy volunteers-validation of technique and implications for clinical studies. Br J Radiol. 2018;91(1087):20180205.

21. Schwenger NF, Machann J, Schirmil C, Springer F, Ludescher B, Stefan N, et al. Quantitative analysis of adipose tissue in single transverse slices for estimation of volumes of relevant fat tissue compartments: a study in a large cohort of subjects at risk for type 2 diabetes by MRI with comparison to anthropometric data. Invest Radiol. 2010;45(12):788–94.

22. Zhou A, Murillo H, Peng Q. Novel segmentation method for abdominal fat quantification by MRI. J Magn Reson Imaging. 2011;34(4):852–60.

23. Borga M, Thomas EL, Romu T, Rosander J, Fitzpatrick J, Dahlqvist Leinhard O, et al. Validation of a fast method for quantification of intra-abdominal and subcutaneous adipose tissue for large-scale human studies: quantification of IAAT and ASAT. NMR Biomed. 2015;28(12):1747–53.

24. Langner T, Hedström A, Mörwald K, Weghuber D, Forslund A, Bergsten P, et al. Fully convolutional networks for automated segmentation of abdominal adipose tissue deposits in multicenter water-fat MRI. Magn Reson Med. 2019;81(4):2736–45.

25. Murphy J, Bacon SL, Morais JA, Tsoukas MA, Santos S. Intra-abdominal adipose tissue quantification by alternative versus reference methods: a systematic review and meta-analysis. Obesity (Silver Spring). 2019;27(7):1115–22.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.