Role of 99mTc-(V)DMSA in Detecting Tumor Cell Proliferation

Fatma Al-Saeedi
Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Kuwait.

Abstract: Pentavalent technetium-99mTc dimercaptosuccinic acid (99mTc-(V)DMSA) is a tumor-seeking agent which was introduced to evaluate, image, and manage many types of cancers. In this review, the beginning of, and the most recent applications of using this agent was appraised. The relation with tumor cell detection and proliferation was reported and several mechanisms of uptake of 99mTc-(V)DMSA in tumor cells are described.

Keywords: 99mTc-(V)DMSA, cancer, cell proliferation

Introduction
Recently attempts have been made to find a more accurate and specific radioactive tracer to image the proliferative activity of various types of cancers, including breast cancer. 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), 18F-fluorothymidine (18F-FLT), and deoxyuridine has shown unclear results (Rasey et al. 2002; Toyohara et al. 2002; Buck et al. 2002). Pentavalent technetium-99mTc dimercaptosuccinic acid (99mTc-(V)DMSA) is a new tumor-seeking agent, which was introduced to evaluate, image, and manage medullary carcinoma of the thyroid (Ohta et al. 1984; Clarke et al. 1988). 99mTc-(V)DMSA uptake showed its presence and efficacy in detecting many other types of cancers; such as head and neck, in particular squamous cell carcinoma, and soft tissue tumors (Ohta et al. 1988; Watkinson et al. 1989), breast (Papantoniou et al. 2002; Kashyap et al. 1992), brain (Hirano et al. 1997), lung (Hirano et al. 1995; Atasever et al. 1997), bone (Lam et al. 1997), and in particular, for metastasis and high-grade tumors (Kiratli et al. 1998). However in patients with carcinomas of the liver and gastrointestinal tract, malignant melanoma and lymphoma, the role of 99mTc-(V)DMSA was absent (Ohta et al. 1988). Physiological uptake has been evidenced in the kidneys, nasal mucosa, lacrimal glands and blood pool such as in the heart and vessels. Uptake of 99mTc-(V)DMSA was also reported as normal distribution in the pituitary gland (Watkinson et al. 1990). It’s uptake in the breasts has often been noted. Nakamoto et al. (1997) reported that female breasts should be included in the normal biodistribution of 99mTc-(V)DMSA and should not be considered as pathological.

99mTc-(V)DMSA has a very high affinity for various tumors and increased uptake in tumors, but the mechanism of 99mTc-(V)DMSA uptake in tumors is still not fully elucidated. A working hypothesis based on the metal-complex equilibrium has anticipated the pH sensitive character of 99mTc-(V)DMSA. This character was suggested to be one of the factors that affected its accumulation in cancer cells (Horiuchi et al. 1998a).

Factually, tumours are well known to be more acidic than normal cells (Tannock and Rotin, 1989), in vivo 99mTc-(V)DMSA uptake was correlated to the lowering of pH of tumors by glucose administration using Ehrlich ascites tumor cells (EATC)-bearing mice (Horiuchi et al. 1998b). The study found evidence of correlation between the 99mTc-(V)DMSA uptake, which reflects the tumor acidity, and the 14C-deoxyglucose (14C-DG) uptake, which reflects the tumor glycolysis and viability in EATC-bearing mice. Horiuchi et al. (1998b) reported that 99mTc-(V)DMSA uptake by tumors was related to glucose-mediated acidosis, and this may reflect tumor cell viability. However, this was only reported by one study and in one type of cell lines (EATC) in vivo. This EATC also belongs to well-differentiated cells with very rapid growth rate and capacity of high aerobic glycolysis (Bustamante et al. 1981), and therefore it cannot reflect the accurate mechanism of 99mTc-(V)DMSA uptake by tumors.

One study suggested that 99mTc-(V)DMSA uptake by breast tumors is related to proliferative activity in breast, which is directly related to tumor grade (Papantoniou et al. 1999). In addition, Papantoniou...
et al. (2001) reported that 99mTc-(V)DMSA uptake by breast tumors and several breast lesions is related to the mitotic activity and the cellular proliferation of breast tumors or lesions. Recently a strong correlation between 99mTc-(V)DMSA uptake and cellular proliferation, as measured by Ki-67 expression (Ki-67, a monoclonal antibody that recognizes a labile epitope on a nuclear antigen expressed in cycling cells but not quiescent cells (Sawhney and Hall, 1992) was demonstrated (Papantoniou et al. 2004; Papantoniou et al. 2005). Papantoniou et al. (2004) showed that the proliferative activity is a major independent factor affecting 99mTc-(V)DMSA uptake in breast cancer as determined by Ki-67 expression and suggested that 99mTc-(V)DMSA uptake can be of clinical significance as an in vivo indicator of cell proliferation.

One in vitro study showed that 99mTc-(V)DMSA uptake in cancer cell lines (human breast cancer; MCF-7, human glioblastoma multiform; G152, human fibrosarcoma; HT1080, lung adenocarcinoma; A549, human amelanonic melanoma; M3DAU, and grade III human glioblastoma; U-87-MG) is closely related to proliferation rate and focal adhesion kinase (FAK). Because proliferation rate and FAK are linked to cancer progression, Denoyer et al. (2005) assumed that in vivo 99mTc-(V)DMSA uptake reflects tumor aggressiveness and that 99mTc-(V)DMSA uptake could provide clinicians with preoperative information not always obtainable by mammography.

In addition, its mechanism of uptake is thought to be due to the structural similarity between 99mTc-(V)DMSA core (phosphate-like ion TeO_4^{-3}) and phosphate (PO_4^{3-}) anion as taken by some cancer cells (Yokoyama and Saji, 1980; Wulfrank et al. 1989). 99mTc-(V)DMSA was originally designed as a metabolic mimic of phosphate, able to localize in cancer cells by supposed hydrolysis of the pentavalent DMSA complex within cancer cells to produce the phosphate-like ion TeO_4^{-3} (Horiuchi et al. 1986; Yokoyama and Saji, 1980; Yokoyama et al. 1981; Yokoyama et al. 1985), then the hydrolysis of TeO_4^{-3} and the subsequent metabolism or whatever mechanism starts in the cancer cells. The possible involvement of phosphate anion in 99mTc-(V)DMSA uptake by tumors was confirmed by the inhibition of the uptake of 99mTc-(V)DMSA in the presence of phosphate ion (Lam et al. 1996).

Phosphate ion carries a negative charge, and so it is weakly accumulated in the cytosol by simple diffusion. However, it enters cells via three different types of NaPi co-transporters: type I NaPi co-transporters or NPT1 in humans, expressed in liver and kidney (Ghishan et al. 1993; Li and Xie, 1995), type II NaPi co-transporters (NPT2 in humans), expressed in brain (Hisano et al. 1997), osteoclasts (Gupta et al. 1996), lung (Magagnin et al. 1993), small intestine and proximal tubes (Hilfiker et al. 1998), and type III NaPi co-transporters, which are a family of cell surface receptors for the Gibbon ape leukaemia virus (GALV) (Kavanaugh and Kabat, 1996). These receptors are highly related to phosphate cotransporters (PiT1 in humans). This protein family is found in several organs and many tumor-forming tissues (Kavanaugh and Kabat, 1996; Kavanaugh et al.1994; Johann et al. 1992; Miller and Miller, 1994; Uckert et al. 1998).

One study by Palmedo et al. (1996; 2000) demonstrated that 99mTc-(V)DMSA is a marker of phosphate transport and 99mTc-(V)DMSA enters a cancer cell line model specifically via type III NaPi co-transporters (PiT1) (Denoyer et al. 2004). This was recently demonstrated by Denoyer et al. (2004), by comparing 99mTc-(V)DMSA and phosphate uptake kinetics in three cancer cell lines (human breast cancer; MCF-7, human glioblastoma multiform; G152, and human osteosarcoma; MG-63) and showed that 99mTc-(V)DMSA uptake is specifically mediated by PiT1 in cancer cells. From this study, 99mTc-(V)DMSA uptake can be assumed to be cell specific, because MCF-7 and G152 cancer cell lines exhibited the same 99mTc-(V)DMSA uptake, whereas MG-63 cancer cell line showed the highest phosphate accumulation and the lowest 99mTc-(V)DMSA uptake.

Conclusion

In this review, 99mTc-(V)DMSA capability to detect cancer non invasively was reported. Several studies proposed the mechanism of 99mTc-(V)DMSA uptake that might be involved by cancer cells. In addition, some studies reported its relation to cancer cell proliferation and this uptake might be used as a proliferation marker in cancer cells. However, until now, no strict mechanism has been fully clarified.

References

Atasever, T., Gundogdu, C. et al. 1997. Evaluation of pentavalent Tc-99m DMSA scintigraphy in small cell and nonsmall cell lung cancers. *Nuklearmedizin*, 36(7):223–7.

Buck, A., Schirmmeister, H., Kuhn, T.H. et al. 2002. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. *Eur. J. Nucl. Med.*, 29:1317–23.

Bustamante, E., Morris, H.P. and Pederson, P.L. 1981. Energy metabolism of tumor cells. *J. Biol. Chem.*, 16:8699–704.
Clarke, S.E., Lazarus, C.R., Wraight, P. et al. 1988. Pentavalent (99mTc) DMSA, [131I]MIBG, and [99mTc]MDP—an evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. *J. Nucl. Med.*, 29(1):33–8.

Denoyer, D., Perek, N., Le Jeune, N. et al. 2005. Correlation between 99mTc(V)DMSA uptake and constitutive level of phosphorylated focal adhesion kinase in an in vitro model of cancer cell lines. *Eur. J. Nucl. Med. Mol. Imaging*, 32:820–7.

Denoyer, D., Perek, N., Le Jeune, N. et al. 2004. Evidence that 99mTc(V)-DMSA uptake is mediated by NaPi cotransporter type III in tumour cell lines. *Eur. J. Nucl. Med. Mol. Imaging*, 31(1):77–84.

Ghishan, F.K., Rebeiz, R., Honda, T. et al. 1993. Characterization and expression of a novel Na(+)−inorganic phosphate transporter at the liver plasma membrane of the rat. *Gastroenterology*, 105:519–26.

Gupta, A., Miyauchi, A., Fujimori, A. et al. 1996. Phosphate transport in osteoclasts: a functional and immunochimical characterization. *Kidney Int.*, 49:968–74.

Hilfiker, H., Hattenhauer, O., Traebert, M. et al. 1998. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. *Proc. Natl. Acad. Sci. U.S.A.*, 95:14564–6.

Hirano, T., Otake, H., Yoshida, I. et al. 1995. Primary lung cancer SPECT imaging with pentavalent technetium-99m-DMSA. *J. Nucl. Med.*, 36(2):202–7.

Hirano, T., Otake, H., Kazama, K. et al. 1997. Technetium-99m(V)-DMSA and thallium-201 in brain tumor imaging: correlation with histology and malignant grade. *J. Nucl. Med.*, 38(11):1741–9.

Hisano, S., Haga, H., Li, Z. et al. 1997. Immunohistochemical and RT-PCR detection of Na(+)−independent inorganic phosphate cotransporter (NaPi-2) in rat brain. *Brain Res.*, 772:149–55.

Horiiuchi, K., Saji, H. and Yokoyama, A. 1998a. Tc(V)-DMS tumor localization: mechanism of action. *Clin. Nucl. Med.*, 25:549–55.

Horiiuchi, K., Saji, H. and Yokoyama, A. 1998b. The pH sensitive properties of Tc(V)DMSA: analytical and in-vitro cellular studies. *Nucl. Med. Biol.*, 25(7):689–95.

Horiiuchi, K., Yomoeda, I., Yokoyama, A. et al. 1986. Tc(V)-DMS tumor imaging agent: Tc-complex dissociation equilibria, a relevant factor in tumor localisation. *In: Nicolini M, Bandoli G, Mazzi U., eds. Biomedical Imaging. Eur. J. Nucl. Med.*, 23(5):461–7.

Papantoniou, V., Christodoulidou, J., Papadaki, E. et al. 2002. Uptake and washout of 99mTc(V)dimercaptosuccinic acid and 99mTc-sestamibi in the assessment of histological type and grade in breast cancer. *Nucl. Med. Commun.*, 23(5):323–35.

Papantoniou, V., Hensel, J., Bender, H. et al. 2000. F-18 FDG, Tc-99m(DMSA) and Tc-99m MIBI in an animal breast cancer-model: comparison of tumor-uptake and correlation with scintigraphic and PET-detection. *Eur. J. Nucl. Med.*, 27:1130.

Papantoniou, V., Schomburg, A., Grunwald, F. et al. 1996. Technetium-99m-MIBI scintimammography for suspicious breast lesions. *J. Nucl. Med.*, 37:626–39.

Papantoniou, V., Christodoulidou, J., Papadaki, E. et al. 2002. Uptake and washout of 99mTc(V)dimercaptosuccinic acid and 99mTc-sestamibi in the assessment of histological type and grade in breast cancer. *Breast Cancer Research*, 4(2):R56–R62.

Papantoniou, V., Tsipou, S., Mantia, E. et al. 2005. Imaging in situ breast carcinoma (with or without an invasive component) with technetium-99m pentavalent dimercaptosuccinic acid and technetium-99m 2-thyoxo isobutyl isonitrile scintigraphy. *Breast Cancer Research*, 7(1):R33–R45.

Rasey, J.S., Grierson, J.R., Wiens, L.W. et al. 2002. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. *J. Nucl. Med.*, 43:1210–7.

Sawhney, N. and Hall, P.A. 1992. Ki67-structure, function, and new antibodies. *J. Pathol.*, 168(2):161–2.

Tannock, I.F. and Rotin, D. 1989. Acid pH in tumors and its potential for therapeutic exploitation. *Cancer Res.*, 49:4373–84.

Toyohara, J., Hayashi, A., Sato, M. et al. 2002. Rationale of 5-125I-iodo-2-methoxy isobutyl isonitrile scintigraphy. *Clin. Nucl. Med.*, 27:1130.

Watkinson, J.C., Lazarus, C.R., Maisey, M.N. et al. 1990. Technetium-99m-DMSA imaging in patients with bone metastases. *Nucl. Med. Commun.*, 11:313–7.

Wulfrank, D., Schelstraete, K., Small, F. et al. 1989. Analogy between tumor uptake of technetium-99m(V) dimercaptosuccinic acid and thallium-201 in brain tumor imaging: correlation with histology and thallium in brain tumor imaging: correlation with histology. *J. Nucl. Med.*, 30(2):174–80.

Wulfrank, D., Schelstraete, K., Small, F. et al. 1989. Analogy between tumor uptake of technetium-99m(V) dimercaptosuccinic acid (DMSA) and technetium-99m-MDP. *Clin. Nucl. Med.*, 14:488–593.

Yokoyama, A. and Saji, H. 1980. Tumor diagnosis using radioactive metal ions and their complexes. In: Sigel H, ed. Metal ions in biological systems. Volume 10. Basel/New York: Marcel Dekker, p 313–40.