Method of calculating volumetric scaffold of monolithic slab formwork

V E Kondratenko, V V Devyatiarova, S V Albul* and L M Valeeva

National University of Science and Technology «MISIS», Moscow, Russian Federation

* albul@misis.ru

Abstract. Currently, when designing various residential buildings, there has been a tendency to use monolithic reinforced concrete to cover significant spans, often using structures with a complex geometric structure. This article proposes a methodology for calculating the permissible load on the scaffold racks from the conditions of strength and stability using the classical approaches of materials mechanics and structural mechanics for this purpose, in order to optimize the consumption of materials and to identify real "steps" of racks horizontally and vertically, while observing the requirements for such structures for strength and stability. Cases of non-standard arrangement of outside scaffold racks of monolithic slab’s formwork are considered.

1. Introduction

Recently, both in our country and abroad, complex innovative technologies have been developed and introduced into production [1–18], the implementation of which makes increased demands on the infrastructure. In the construction of buildings and structures intended for the implementation of complex technological operations [19-29], monolithic reinforced concrete slabs of significant areas are often used. During their construction, the formwork of the slabs is based on volumetric scaffold, consisting of vertical racks connected by horizontal links (figure 1).

The issue of calculating permissible loads was considered in [30 -36], however, due to the great responsibility imposed on the obtained results, additional studies are required.

This article proposes a methodology for calculating the permissible load on scaffold racks from the conditions of strength and stability, which made it possible to give specific recommendations for manufacturing some standard sizes of scaffolds.

2. Research methodology

Collecting the load on the intermediate scaffold rack (halfway span on each side of the rack) (figure 2), we obtain the value of the reducing force acting on the intermediate rack:

\[N = S \cdot L^2 = \Delta \cdot \gamma \cdot L^2 \]

where
- \(S \) – specific weight of slab, N/m²
- \(\Delta \) – slab thickness, m;
- \(\gamma \) – volumetric weight of slab material, N/m³.
\(L \) – distance between racks, m.

Obviously, the \(N/4 \) load acts on the corner racks, and \(N/2 \) on the outside racks.

\[\text{Figure 1. Scheme of load on racks of volumetric scaffold of monolithic slab formwork.} \]

\[\text{Figure 2. Load distribution on racks.} \]

Figure 3 shows dependencies between the load on the intermediate rack \(N \) and horizontal span \(L \) for various values of the slab specific weight \(S \) and the slab thickness \(\Delta \).

In case of nodal transmission of the vertical load on the rack of the volumetric scaffold, the rigid joints of the spatial structure when calculating the internal forces can be considered as swivel joints [30]. In this case, the structural bearing capacity is determined by the stability of the pivotally fixed rack’s element of length \(h \), where \(h \) is the distance between the horizontal links of the element. In a real design, the joint has a flange and wedge connection and is not absolutely rigid, which goes to the margin of safety.
Figure 3. The dependence of the load on the rack N on the span L.

In the practice of designing metal structures, the calculation of compressed racks by the coefficient of reduction of permissible stress is formalized [31].

The value of the permissible critical stress in the rack according to the stability criterion

$$[\sigma_s] = \varphi [\sigma_c]$$ \hspace{1cm} (2)

where φ – coefficient of reduction of permissible stress, depending on the rack flexibility λ; σ_c – permissible compression stress.

Permissible compressive force acting on the rack

$$[N] = A[\sigma_s]$$ \hspace{1cm} (3)

where A – cross-sectional area of the rack.

The coefficient of reduction of permissible stresses φ is determined in such a way that the experimentally observed spread of ultimate loads is overlapped. Coefficient φ depends on rack flexibility

$$\lambda = \mu \frac{l}{i}$$ \hspace{1cm} (4)

where $l = h$ – rack section length (distance between joints);
i – inertia radius of the rack cross-section;
μ – coefficient of reduction of length, depending on the type of fastening the ends of rack.

Successively, inertia radius of the rack cross-section:

$$i = \sqrt[3]{\frac{J}{A}}$$ \hspace{1cm} (5)

where J – cross-sectional area moment of inertia;
A – cross-sectional area of the rack;
where D – outer diameter of the rack; d – inner diameter of the rack.

For swivel joints of the ends of the rack section $\mu = 1$ (which goes to the margin of stability safety, because for other connection conditions $\mu < 1$).

The dependence of the compression stress coefficient φ on the rack flexibility λ for carbon basic steels is presented in the table 1 (for reference, presented the correspondence of the rack flexibility λ to the length of the rack section between horizontal links h for pipe $D = 59$ mm) [31]:

Table 1. Dependence of the compression stress coefficient φ on the rack flexibility λ.

λ	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
φ	1	0.99	0.96	0.94	0.92	0.89	0.86	0.81	0.75	0.69	0.60	0.52	0.45	0.40	0.36
h, m	-	-	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	-	-	-	-

Figure 4 shows the dependence of the coefficient φ on the rack flexibility of the rack section λ (length h).

![Figure 4](image_url)

Figure 4. Dependence of the coefficient of reduction of permissible stress φ on the rack flexibility λ.

Permissible compressive force on the rack:

$$[N] = A \cdot [\sigma_s] = A \cdot \varphi \cdot [\sigma_y]$$ \hspace{1cm} (8)

Yield strength of rack material [32]:

$$[\sigma_y] = \frac{R_s \cdot \gamma_c}{\gamma_f}$$ \hspace{1cm} (9)

where $R_s = 220$ MPa – compression resistance for pipes made from basic carbon steels;
\[\gamma_c = 0.95 \] – working conditions coefficient [31];
\[\gamma_f = 1.2 \] – load safety factor [33]

\[\left[\sigma_f \right] = \frac{220 \cdot 0.95}{1.2} = 174.2 \text{ MPa} \]

Figure 5 shows the dependence between permissible force (mass) on the rack [N] (t) and the rack section length \(h \) (sm) for the pipe \(D = 59 \text{ mm} \).

3. Results obtained

As the results of work, an example of calculating the formwork is given below:

Given: the thickness of the slab \(\Delta = 0.3 \text{ m} \). According to the chart (figure 2) or formula (1) for the selected span of the racks \(L = 2.5 \text{ m} \), we determine the load on the rack \(N = 4 \text{ t} \). According to the permissible load [N] = 4.5 t (figure 5) we determine the span of horizontal links \(h = 2.2 \text{ m} \).

Taking, for example, the span \(L = 3 \text{ m} \), we determine the load \(N = 6.75 \text{ t} \) (figure 2) and the load (figure 4) determine the span of horizontal links in height \(h = 1.5 \text{ m} \).

When calculating the scaffolds racks having a significant height \(H \) the load acting on the lower section should be considered, not only from the slab, but also from the own weight of the scaffolds. Thus, from the permissible load \(N \) should be subtracted all the overlying part of scaffold.

\[G = n \left(h \cdot G_f + 2L \cdot G_h \right) + 2L \cdot G_h \] \hspace{1cm} (10)

where \(n = H/h \),
\(H \) – scaffold height;
\(h \) – span between horizontal links;
\(L \) – span between racks;
\(G_f \) – linear weight of rack pipe;
\(G_h \) – linear weight of horizontal pipe.

Initial data:
Option 1:
Rack pipe: \(D = 59 \text{ mm}, d = 55 \text{ mm} \left(\delta = 2 \text{ mm} \right) \)
Horizontal pipe: $D = 48 \text{ mm}, d = 42.6 \text{ mm (}\delta = 2.7 \text{ mm)}$

Option 2:
Rack pipe: $D = 48 \text{ mm}, d = 42.6 \text{ mm (}\delta = 2.7 \text{ mm)}$

Material: basic carbon steel, $R_S = 220 \text{ MPa}$

Permissible load

$$[\sigma_f] = \frac{220 \cdot 0.95}{1.2} = 174.2 \text{ MPa}$$

Table 2. Rack specifications.
Option

1. $D = 59 \text{ mm}$
2. $D = 48 \text{ mm}$

Tables 1 and 2 show the calculation data for the permissible specific load from the slab S (kg/m2) and the slab thickness Δ (m) for the specific slab weight $\gamma = 25 \text{ MPa}$ depending on the parameters of the scaffold:

L – span between racks;
h – span between horizontal links for scaffold of various heights H (m).

4. Summary

The permissible specific load on the intermediate scaffold stand is calculated with a total standard safety factor $n = 1.26$ (rack stress is $[\sigma] = 174.2 \text{ MPa}$).

Given a certain idealization of the calculation scheme, inaccuracy in manufacturing and assembling scaffold elements, material defects and experience of using similar structures, the safety factor n can be increased. In this case, the permissible specific load and the slab thickness are reduced in proportion to the increase in safety factor.

The above technique can be successfully implemented in the production of new effective technologies and equipment [34–40].

References

[1] Bratan S and Roshchupkin S 2018 Synthesis of lumpner stochastic observer for estimation of the grinding operation state MATEC Web of Conferences 224 01133. DOI: 10.1051/matecconf/201822401133

[2] Roshchupkin S and Kharchenko A 2018 Method of building dynamic relations, estimating product and grinding circle shape deviations MATEC Web of Conferences 224 01001. DOI: 10.1051/matecconf/201822401001

[3] Bratan S and Roshchupkin S 2020 Preface IOP Conference Series: Materials Science and Engineering 709(1) 011001. DOI: 10.1088/1757-899X/709/1/011001

[4] Gutsalenko Y, Bratan S, Roshchupkin S, Dyadichev V and Menyuk S 2019 Investigation of the Structure and Properties of Copper-Tin Bonding M2-01 in Diamond Grinding Wheel Introducing Additional Energy in the Form of Electric Discharges into the Processing Zone Materials Today: Proceedings 11 pp 586-590. DOI: 10.1016/j.matpr.2019.01.033
[5] Gorbatyuk S, Pashkov A and Chichenev N 2019 Improved Copper-Molybdenum Composite Material Production Technology Materials Today: Proceedings 11(1) pp 31-35. DOI: 10.1016/j.matpr.2018.12.102

[6] Chichenev N A 2015 Import-replacing re-engineering of the drive of the rollers in the intermediate roller table of a continuous bloom caster Metallurgist 58(9-10) pp 892-895. DOI: 10.1007/s11015-015-0013-9

[7] Nikolaev V A, Rusakov A D and Chichenev N A 1996 Forecasting a multiroll mills rolls hardness Stal’ 9 pp 58-60

[8] Glukhov L M, Gorbatyuk S M, Morozova I G and Naumova M G 2016 Effective Laser Technology for Making Metal Products and Tools Metallurgist 60(3-4) pp 306-312. DOI: 10.1007/s11015-016-0682-2

[9] Naumova M G, Morozova I G, Zarapin A Y and Borisov P V 2018 Copper alloy marking by altering its surface topology using laser heat treatment Metallurgist 62(5-6) pp 464-469. DOI: 10.1007/s11015-018-0682-2

[10] Naumova M G, Morozova I G and Borisov P V 2019 Investigating the features of color laser marking process of galvanic chrome plating in order to create a controlled color image formation at given marking Materials Today: Proceedings 19 pp 2405-08. DOI: 10.1016/j.matpr.2019.08.044

[11] Naumova M G, Morozova I G, and Borisov P V 2020 Study of metal surface with color image obtained with laser marking Solid State Phenomena 299 SSP pp 973-948. DOI: 10.4028/www.scientific.net/SSP.299.943

[12] Keropyan A M 2016 Features of interaction of traction wheels of an electric locomotive and a diesel locomotive with rails in the conditions of open mountain works Journal of Friction and Wear 37(1) pp 78-82. DOI: 10.3103/S1068366616010074

[13] Keropyan A, Gorbatyuk S and Gerasimova A 2017 Tribotechnical Aspects of Wheel-Rail System Interaction Procedia Engineering 206 pp 564-569. DOI: 10.1016/j.proeng.2017.10.517

[14] Gerasimova A A, Keropyan A M and Girya A M 2018 Study of the Wheel–Rail System of Open-Pit Locomotives in Traction Mode Journal of Machinery Manufacture and Reliability 47(1) pp 35-38. DOI: 10.3103/S1052618818010065

[15] Bardovskii A D, Gerasimova A A, Keropyan A M and Bibikov P Y 2018 Infl uence of the mechanical characteristics of harp screen material on screening process Izvestiya Ferrous Metallurgy 61(9) pp 678-682. DOI: 10.17073/0368-0797-2018-9-678-682

[16] Gorbatyuk S M, Pashkov A N, Zarapin A Y and Bardovskii A D 2019 Development of Hot-Pressing Technology for Production of Aluminum-Based Metal-Matrix Composite Materials Metallurgist 62(11-12) pp 1261-66. DOI: 10.1007/s11015-019-00784-0

[17] Keropyan A M, Gorbatyuk S M, Bibikov P Y and Bardovski A D 2019 Influence of Roughness of Working Surfaces of the Wheel–Rail System of Open-Pit Locomotives with an Implementable Adhesion Coefficient Journal of Friction and Wear 40(1) pp 73-79. DOI: 10.3103/S1068366619010082

[18] Karelin I N, Sedykh V D and Sedykh L V 2013 Modernization of a sharply bending elbow in a steel pipeline Chemical and Petroleum Engineering 49(5-6) pp 351-354. DOI: 10.1007/s10556-013-9754-0

[19] Gerasimova A, Gorbatyuk S and Devyatariava V 2018 Application of gas-thermal coatings on low-alloyed steel surfaces Solid State Phenomena 284 SSP pp 1284-90. DOI: 10.4028/www.scientific.net/SSP.284.1284

[20] Gorbatyuk S, Kondratenko V and Sedykh L 2018 Tool stability analysis for deep hole drilling MATEC Web of Conferences 224 01035. DOI: 10.1051/mateconf/201822401035

[21] Gorbatyuk S M and Sedykh L V 2010 Improving the durability of rolling-mill rolls Metallurgist 54(5-6) pp 299-301. DOI: 10.1007/s11015-010-9297

[22] Bast J, Gorbatyuk S M, Kryukov I Yu 2011 Horizontal hcc-12000 unit for the continuous casting of semifinished products Metallurgist 55(1-2) pp 116-118. DOI: 10.1007/s11015-011-9399-1
[23] Gorbatyuk S M, Morozova I G and Naumova M G 2017 Reindustrialization principles in the heat treatment of die steels Steel in Translation 47(5) pp 308-312. DOI: 10.3103/S0967091217050047

[24] Gorbatyuk S M, Pavlov V M, Shapoval A N and Gorbatyuk M S 1998 Experimental use of rotary rolling mills to deform compacts of refractory metals Metallurgist 42(5-6) pp 178-183. DOI: 10.1007/BF02766359

[25] Zakharov A N, Gorbatyuk S M and Borisevich V G 2008 Modernizing a press for making refractories Metallurgist 52(7-8) pp 420-423. DOI: 10.1007/s10115-008-9072-5

[26] Gorbatyuk S M and Kochanov A V 2012 Method and equipment for mechanically strengthening the surface of rolling-mill rolls Metallurgist 56(3-4) pp 279-283. DOI: 10.1007/s11015-012-9571-2

[27] Gorbatyuk S M, Morozova I G and Naumova M G 2017 Development of the working model of production reindustrialization of die steel heat treatment Izvestiya Ferrous Metallurgy 60(5) pp 410-415. DOI: 10.17073/0368-0797-2017-5-410-415

[28] Keropyan A, Gorbatyuk S and Gerasimova A 2017 Tribotechnical Aspects of Wheel-Rail System Interaction Procedia Engineering 206 pp 564-569. DOI: 10.1016/j.proeng.2017.10.517

[29] Gorbatyuk S M, Osadchii V A and Tuktarov E Z 2011 Calculation of the geometric parameters of rotary rolling by using the utomated design system autodesk inventor Metallurgist 55(7-8) pp 543-546. DOI: 10.1007/s11015-011-9465-8

[30] Kondratenko V E, Gorbatyuk S M and Devyat'yarova VV 2019 Stroitel'naya mekhanika (Moscow: Izd.Dom NITU MISIS) ISBN 978-5-907226-27-2.

[31] Feodos'ev V I 2000 Soprotivlenie materialov (Moscow: Izd. MGGU)

[32] SNIIP II-23-81 Stal'nye konstruktsii (Moscow: Stroizdat)

[33] GOST 24258-88 Sredstva podmashchivaniya. Obshchie tekhnicheskie usloviya

[34] Gorbatyuk S, Kondratenko V and Sedykh L 2019 Influence of critical speed when working shafts with symmetrically located monolithic weighting on the accuracy of work surfaces Materials Today: Proceedings 19 pp 2361-64. DOI: 10.1016/j.matpr.2019.07.695

[35] Gorbatyuk S, Kondratenko V and Sedykh L 2019 Influence of critical speed when working shafts with asymmetrically located monolithic weighting on the accuracy of work surfaces Materials Today: Proceedings 19 pp 2117-20. DOI: 10.1016/j.matpr.2019.07.222

[36] Gorbatyuk S, Kondratenko V and Sedykh L 2019 Investigation of the Deep Hole Drill Stability When Using a Steady Rest Materials Today: Proceedings 11 pp 258-264. DOI: 10.1016/j.matpr.2018.12.140

[37] Polyakov Y A 2019 Assessment of the vehicle vibration loading with taking into account the dynamic stiffness of the leaf spring IOP Conference Series: Materials Science and Engineering 537(3) 032099. DOI: 10.1088/1757-899X/537/3/032099

[38] Keropyan A and Gorbatyuk S 2016 Impact of Roughness of Interacting Surfaces of the Wheel-Rail Pair on the Coefficient of Friction in their Contact Area Procedia Engineering 150 pp 406-410. DOI: 10.1016/j.proeng.2016.06.753

[39] Bibikov P Y, Bardovskiy A D and Keropyan A M 2019 Investigation of press classification process of weak rocks Materials Today: Proceedings 19 pp 2552-54. DOI: 10.1016/j.matpr.2019.08.207

[40] Gorbatyuk S M, Gerasimova A A and Belkina N N 2016 Applying thermal coatings to narrow walls of the continuous-casting molds Materials Science Forum 870 pp 564-567. DOI: 10.4028/www.scientific.net/MSF.870.564