Development of a robust cascaded architecture for intelligent robot grasping using limited labelled data

Priya Shukla · Vandana Kushwaha · G. C. Nandi

Abstract
Grasping objects intelligently is a challenging task even for humans, and we spend a considerable amount of time during our childhood to learn how to grasp objects correctly. In the case of robots, we cannot afford to spend that much time on making it to learn how to grasp objects effectively. Therefore, in the present research we propose an efficient learning architecture based on VQVAE so that robots can be taught with sufficient data corresponding to correct grasping. However, getting sufficient labelled data is extremely difficult in the robot grasping domain. To help solve this problem, a semi-supervised learning-based model, which has much more generalization capability even with limited labelled data set, has been investigated. Its performance shows 6% improvement when compared with existing state-of-the-art models including our earlier model. During experimentation, it has been observed that our proposed model, RGGCNN2, performs significantly better, both in grasping isolated objects as well as objects in a cluttered environment, compared to the existing approaches which do not use unlabelled data for generating grasping rectangles. To the best of our knowledge, developing an intelligent robot grasping model (based on semi-supervised learning) trained through representation learning and exploiting the high-quality learning ability of GGCNN2 architecture with the limited number of labelled dataset together with the learned latent embeddings, can be used as a de-facto training method which has been established and also validated in this paper through rigorous hardware experimentations using Baxter (Anukul) research robot (Video demonstration).

Keywords Robot grasping · Vector quantizer · Variational auto-encoder (VAE) · Generative grasp · Representation learning

1 Introduction
Making a robot capable of manipulating objects in a dynamically changing real-world environment skillfully, the way we do, is extremely difficult. It turns out that for us also the object manipulation through grasping is challenging and it requires substantial learning. A child generally has a poor skill of grasping, and thus, they are normally not allowed to manipulate sophisticated/fragile items. But over the years, through training, kids grow skill and learn how to grasp objects with various shapes and sizes appropriately, making a grown up person capable of handling those items safely. Imparting such skill to a robot, although required, is extremely challenging due to the nonavailability of sufficient training data, since for making a robot capable of learning from experience, quality data are needed. This challenge has been drawing the attention from the researchers worldwide for many years. Robot grasp pose estimation has also been considered as most complex problem not only due to the dynamically changing object manipulation environment (like illumination and pose
changes of the objects to be grasped) but also due to the large categories of objects with different texture, shape or size required to be manipulated.

Previously, rigorous research has focused mainly on grasp planning, considering the different aspects of grasp pose synthesis in [1, 2] with limited success, due to its lack of learning ability and thus, grasp manipulations are confined to known objects only. With the advent of machine learning and deep learning techniques, researchers are trying to make grasping models to generalize grasp manipulation for unseen/unknown objects with the feature learning from quality robot grasp [3–5]. Initially, grasp detection has been considered as a computer vision problem which is further modified as a grasp rectangle detection [6, 7] problem achieving greater success. Primarily, in these approaches they find all the candidate grasp rectangles using deep neural networks and then, further determine the optimal grasp rectangle using candidate rectangles with the shallow neural network. This makes the grasp pose detection more time consuming process.

Models based on all these approaches, although work well in the laboratory environment, fail to work in the real-world environment. To overcome this problem and dependencies, pixel-wise anthropomorphic grasp prediction has been solved in [8], but it is limited to regular shaped objects only. To revamp the pixel-wise grasp prediction in [9], authors proposed the generative grasp concept which reduces the neural network parameters and makes its execution faster for optimal grasp predictions. To improve the performance, the architecture given in [9] has been further modified in [10]. Recently, authors in [11] propose a discrete representation learning with vector quantization which works significantly well for image [12, 13], audio [14, 15] and video [16, 17] datasets.

Owing to the abundance of unlabelled data and scarcity of labelled data, we propose to design a model which can utilize the unlabelled data together with whatever labelled data we have, saving on the expenses of a large labelled dataset. Further, the neural network should have the ability to generalize to the extent of understanding the data and the semantics behind it, rather than learning only the mapping between the input space and the output space. We have named our model as Representation-based Generative Grasp Convolutional Neural Network 2 (RGGCNN2) which uses VQVAE for representation learning in the encoding space and the GGCNN2 as a decoder for predicting the grasp patch. In doing so, we have exploited the variational autoencoder (VAE) paradigm, a powerful class of probabilistic models that facilitate generation and has the ability to model complex distributions. Due to its inherent strength, our architecture could produce enough unlabelled data to generalize better in producing optimal grasp rectangles/patches even with limited number of labelled dataset. It works efficiently and perform significantly better compared to the existing models in grasping objects in an isolated as well as cluttered environment for seen as well as unseen objects. Moreover, all the generated grasp for the tested objects have also been verified in a real-world environment with the Anukul (Baxter) research robot.

More specifically, following are our major research contributions:

- The grasp patches have been generated using a semi-supervised learning approach where it uses the VQVAE architecture for identifying the important features of the pixels in an image. Initially, VQVAE model is trained in an unsupervised way using an unlabelled dataset to regress the discrete latent representation. Due to its better data representation capability, the proposed approach is able to work significantly better with the limited number of labelled dataset.
- Subsequently, the existing model of VQVAE has been augmented with the Generative Grasp Convolutional Neural Network 2, (GGCNN2), for utilizing the vector quantized discrete latent space efficiently in grasp patch generation on an image and the generated grasp patches in the image configuration space have been mapped in robot configuration space to execute the robotic grasp successfully with the physical robot (Anukul).
- With the proposed modular solution, the robot is able to grasp the object, including novel objects successfully in isolated as well as cluttered environments.
- Developed a simple but elegant strategy of safe table top grasping for the target object without hitting other objects in the working environment.

Rest of the paper has been organized into six major sections as follows: Sect. 1 introduces the problem with insights of our major contributions. Section 2 critically analyses the previous research undertaken in this area. Detailed overview of the proposed approach has been discussed in the Sect. 3. All the prerequisite concepts with the proposed RGGCNN2 to robot execution have been detailed in Sect. 4. Section 5 demonstrates the experimental setup and analyses the experimental results with existing and proposed approaches. Finally, the conclusion and future scope of research is discussed in Sect. 6.

2 Analyses of previous related research

Robot grasping within an unstructured environment for novel object is an immense challenge. Robot grasping has been considered as a computer vision problem because to grasp a novel object with optimal pose involves image-based features. This strategy is referred as Robot for Vision where
based on image features robot calculates its pose to grasp an object successfully. Earlier research is mostly focused on hand-knitted features [18], which is very monotonous and tiring task but required for data driven grasp approaches [2]. With the advent of deep learning, computer vision has shown excellent improvements in areas like object detection and localization[19, 20].

Predominantly, grasping is a fundamental problem of robotics, which is mutating year after years like planning [1, 2] to learning [5, 21]. Due to the availability of giant deep network architectures coupled with huge data processing power, deep learning is playing a very significant role in grasp prediction for seen and unseen objects [22, 23]. Grasp detection with grasp patch (grasp rectangle) estimation has brought revolutionary improvement in deep learning-based robot grasping [3, 7, 24–27]. Most of such deep learning-based grasping models follow twofold architectures: first, the candidate grasp rectangles are sampled from the input image, and then, they are fed to the Convolutional Neural Network (CNN) to find the optimal grasp rectangle from the sampled grasp rectangles. This makes the computation exhaustive which leads the grasp execution process suitable only for an open loop grasping. Open loop grasping does not include feedback from the working environment causing grasp execution vulnerability to any changes of location and orientation of the objects causing grasp failure. Few works have also been directed towards regressing the optimal grasp rectangle with a single neural network as presented in [6, 7]. However, regressing an optimal grasp rectangle for the input image might be averaging all the possible grasp rectangles for the target object. Sometimes, it cannot be a relevant optimal grasp candidate because normal averaging may not include the spatial features of the targeted objects of an image.

In [9], authors introduce the Generative Grasp Convolution Neural Network (GGCNN) which predicts pixel-wise grasp patch in a dynamic environment. Moreover, in this research authors reduce grasp patch prediction time which is very appealing for the closed loop grasping. In closed loop grasping, if any changes occur in object pose after grasp patch prediction, it takes feedback from the environment and try to predict grasp patch again for the updated pose of the object. GGCNN architecture has been modified in [10] by introducing dilated convolutional layers in GGCNN architecture and presented as GGCNN2 for the improved performance. Somehow the results of such approaches with better generalization largely depend on availability of the huge labelled dataset which is extremely difficult to obtain. Although some labelled dataset like Cornell grasping dataset and few such [28, 29] are available, they are confined to some limited objects and able to generate optimal grasp detection with grasp patch only on those objects or some closely related objects which the network has seen during training. Grasp patch generation for the novel objects, we require huge labelled data for training which is in scarcity and the dream of accomplishing intelligent grasping, the way we grasp, remains unfulfilled. To overcome this limitation, in the present investigation a novel idea of introducing generative models to produce grasp patch generations even for novel objects has been proposed. To the best of our knowledge, using generative model for learning latent embeddings and generating grasp patch in a semi-supervised way using whatever labelled data available together with the learned latent embedding is a new concept. The details about the proposed approach have been discussed in the subsequent sections.

3 Proposed approach

In the proposed approach, complete robot grasping, from training to execution, is presented in Fig. 1. The grasp patch inference module takes images as an input and predicts the grasp patch with Width (W), Quality (Q) and Angle map using trained RGGCNN2 model. The detailed procedure of the training RGGCNN2 model is elaborated in Sect. 4.2. Subsequently, mapping between image grasp patch pose and End Effector (EE) pose has been done with the help of grasp patch mapping module. Mapping details are discussed in Sect. 4.3.1. Afterwards, robot grasp pose execution module calculates the joint angles and controls the arm movement with the help of inverse kinematics joint solutions and trajectory planning. Explanation for the robot grasp pose execution module is clearly described in Sect. 4.3.2.

With the help of the above mentioned modules, robot is able to grasp any object with the predicted grasp patch in isolated as well as cluttered environment. The developmental details of the proposed approaches have been discussed next in the Methodology section.

4 Methodology

4.1 Preliminaries

4.1.1 Representation learning models

Explicit modelling distribution for the unlabelled images or data exhibits the latent variables which help in supervised learning of grasp patches. The VAE approximates the density estimation for the training data where density function has been defined in (1) where z, x denote the set of latent variables and the set of observed variables, respectively.

\[
p_\theta(x) = \int_z p_\theta(z)p_\theta(x \mid z)dz
\] (1)
We can see that density function is intractable due to the intractability of the posterior distribution \[30\]. VAE uses two probabilistic models such as encoder model and decoder model. Encoder model is used for inference, whereas decoder model is used for generation. The objective function of VAE is to maximize the Evidence Lower BOund (ELBO). Basically, ELBO is a tractable lower bound, which can be optimized by calculating its gradient using reparameterization trick \[31\].

\[
ELBO = E_z\left[\log p_\theta(x | z) \right] - D_{KL}(q_\phi(z | x) \parallel p_\theta(z))
\]

In (2), the first part amplifies the log likelihood, whereas second part estimates the Kullback–Leibler (KL) divergence \[32\] between the approximate posterior and the true posterior. It has a closed form solution for the vanilla VAE model in which both the distributions are assumed to be Gaussian. Encoder model has the ability to infer the \(q_\phi(z | x)\) which can be used for representation-based learning.

VAE model consists discrete and continuous latent variables. In \[33\], the authors suggest that the images can be modelled better with the discrete latent variable only. The situation when VAE model’s output does not depend on the latent variables due to excessive training of the decoder is called as posterior collapse. To circumvent the posterior collapse, the authors presented a Vector Quantized Variational AutoEncoder (VQVAE) \[11\] which uses only discrete latent variable instead of continuous latent variable.

In VQVAE, encoder inputs an image and renders continuous-valued vector \(z_e(x)\) as an output. Subsequently, it has been utilized by the Vector Quantizer (VQ) for accomplishing a nearest neighbour search for embeddings in the dictionary. For all embedding \(e \in \mathbb{R}^{D \times K}\), with embedding dimensionality \(D, K\) represent the total count of embeddings in the embedding space. In essence, VQ, quantifies the encoder’s output and yields \(z_q(x)\), finally forwarded for attaining the reconstruction from the decoder. The objective of training is shown in (3) where, \(sg\) denotes the stop gradient operation:

\[
L = \log p(x | z_q(x)) + \|sg[z_e(x)] - e\|^2_2 + \beta \|z_e(x) - sg[e]\|^2_2
\]

\[3\]

Remember that a prior through the embeddings of dictionary follow a uniform distribution. The foremost term portrays the outcome of variational inference performed for acquiring the ELBO, the middle or dictionary-learning term, shifts the latent embeddings in close proximity with the encoder’s output, and the last term signifies the commitment loss, that shifts the encoder’s output towards the specified embedding selected from the dictionary.

4.1.2 Generative grasp patch generation models

Generative grasp patch generation models have been given by \[9, 10\], which is termed as GGCNN and GGCNN2. It abolishes the two-stage grasp detection pipeline and reduces the time complexity by minimizing the network parameters. Both the mentioned models predict pixel-wise grasp for each pixel in image \(I\). It takes depth image as an input and predicts grasp parameters \(g = [p, \phi, w, q]\) where \(p\) is for pixel coordinate \((u,v)\) which is being centre of the grasp patch, \(\phi\) is for the rotation angle or orientation, \(w\) is opening width of gripper and \(q\) is for quality measure of the grasp patch. To achieve the function \(M\) which has been approximated by network models with image \(I\), having dimension \(H\) as height and \(W\) as width.

\[
G^{3 \times H \times W} = M(I^{H \times W})
\]

\[4\]
G denotes the grasp map which defines the grasp set for all image pixels, with all three parameters \((\Phi, W, Q)\)\(^{3 \times H \times W}\) where optimal grasp is estimated by its maximum quality \((q)\) grasp parameters which ranges from 0 to 1.

The architecture of GGCNN contains only convolution and transposed convolution layers with distinct dimensions of filter and stride, whereas in GGCNN2 architecture some additional dilated convolutional layers are added to improve the performance. With the use of dilated convolutional layers, the field of view becomes wider at the same computational cost. The detailed architecture of GGCNN2 is shown in Fig. 2. Both the above-mentioned models use same RGB images as an input and predict the grasp patch in our experiments. Both the models have been trained using our Central computing facility where total estimated parameters have been shown to be 67,604 and 70,548 for GGCNN and GGCNN2, respectively.

4.2 Proposed model (RGGCNN2)

In this paper, semi-supervised grasp patch generation approach has been proposed. For training, dataset is distributed into two different parts such as labelled data (n1) and unlabelled data (n2). Labelled data contain corresponding grasp vectors for each RGB image. It is expressed as a pair, \((x, y)\), where \(x\) represents an RGB-image, while \(y\) represents grasp vectors corresponding to that RGB-image. Contrarily, unlabelled data solely contain RGB images. The proposed model embodies an encoder, a vector-quantizer, a decoder, accompanied by the GGCNN2 layers. Primarily, the encoder, the vector-quantizer, and the decoder layers are trained on all the RGB images of labelled and unlabelled training samples. Predominantly, the first phase of training indicates the training of a VQVAE. Subsequently, the encoder and the vector quantization layer weights are freezeed. Concretely, this fixes the output of the vector quantizer as the embedding choosen by the VQVAE trained earlier. Thereafter, we reinitialize the decoder weights. This can be procured as enhancing the GGCNN2 network with the decoder. The certainty of our conclusion is based on the fact that the decoder efficiently utilizes the embeddings generated by the vector-quantizer. The predicted GGCNN2 grasp value, \(\tilde{g}\), is expressed as \(\tilde{g} = (\tilde{p}, \tilde{w}, \tilde{\phi}, \tilde{q})\), where \(\tilde{p}, \tilde{w}, \) and \(\tilde{\phi}\) denote the position \((i, j)\) of pixel in an image corresponds to the centre of grasp patch/rectangle, opening width and rotation angle of the gripper, respectively. The GGCNN2 yields three maps for the identical dimension of the inputted image, that is, the output is in the form of \((W, \Phi, Q)\)\(^{3 \times H \times W}\), where \(W, \Phi\) and \(Q\) provide pixel-wise values for \(\tilde{w}, \tilde{\phi}\) and \(\tilde{q}\), respectively. The optimal grasp rectangle is realized using the pixel conforming to the highest \(\tilde{q}\) value. Finally, we train the thorough model on the labelled data only. The complete training procedure of our proposed model, RGGCNN2, is summarized in Fig. 3.

4.3 Grasp patch mapping and evaluation

4.3.1 Grasp patch mapping

After obtaining grasp patches in the image configuration space from the above mentioned trained model, it is mapped with the EE pose to execute the robotic grasp in a real-world environment. Entire grasp patch mapping is divided into two major parts. Primarily, image coordinates need to map/transform into camera coordinates using camera parameters. Secondly, camera coordinates have been mapped with the EE pose. The complete grasp patch mapping is represented in Fig. 4. As shown in the figure, from the graspable object centre \(\tilde{p}(i, j)\), obtained from RGGCNN2 in the image plane, we can directly get the position of the object with respect to the camera. Orientation of the same object as obtained from the same RGGCNN2 has also been calculated with respect to the camera using inverse Euler angle,
Roll–Pitch–Yaw, for which the obtained values are π, 0 and θ, respectively. For experiments, Anukul (Baxter) robot has been used. It has seven degrees of freedom (DoF) in each arm. In this research, left arm has been used; however, without loss of generality, the right arm can also be used. Robot arm EE pose consists seven parameters where three are for a position in X–Y–Z planes and four are for a orientation using the quaternion representation. For orientation transformation, we have used the Robot Operating System (ROS) transformation (tf) library to convert the Euler angle representation to quaternion angle representation. Robot mapping with the camera is represented in (5) where R is robot matrix and C is the Image matrix. For mapping, we have taken 10 object positions with their four different orientations. Positions have been considered within the defined robot workspace and for orientation, we have considered the object placing angles such as 0°, 45°, 90°, 135°. Here, we have assumed object orientation with Θ is same as $\Theta + \Pi$ because both make the object pose in the identical alignment. So object orientation has been restricted to only four Θ values. In our mapping, the total number of observations is 40 which is the product of 10 positions and 4 orientations for each position (as shown in Fig. 5).

\[R = T_m(C) \]

As evident, the dimensions of R matrix and the C matrix depend on the number of observations. For each observation, the dimension of R is 7×1 and that of C is also 7×1. For n number of observations, the dimension of C becomes $7 \times n$ and to obtain the mapping matrix T_m, we need to calculate the pseudoinverse of C and when this pseudoinverse is multiplied by R generates a 7×7 mapping matrix T_m. Hereafter, for any pose C, we will be able to get a corresponding R (robot EE pose) which is executed, as described in the following section.

4.3.2 Grasp patch evaluation

In the grasp patch evaluation, robot grasp pose execution module calculates the joint angles for the specified pose of the robot arm EE. Joint angles for a pose have been calculated using inverse kinematics [34], which has been shown by (6).

\[(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7) = IK(POSE) \]

To execute a grasp in the real world, we have designed a simple but elegant method of inverse kinematics solution and trajectory planning for the arm movement within its working envelope which has been shown as a robot grasp pose execution module in the schematic diagram. One complete cycle of grasp evaluation is shown in Fig. 6. There are four steps as described below:

- Firstly, the EE pose is initialized as neutral pose (home position of Anukul).
- Next, to avoid collision with the surrounding objects, the trajectory has been planned in such a way that during movement, the z component (in X–Y–Z plane) for the position of the gripper remains at a sufficient height (20 cm from the table top has been taken as a threshold, T value). The same height has been maintained till the gripper reaches to the targeted object.
- Subsequently, the robot gripper is allowed to come down by manipulating the movement in the negative z direction by an amount of $|z - (depth(gpc) + sd)|$ from the table top where gpc is the grasp patch centre and sd is a safe distance. Also, depending on the height of the object to be grasped, sometimes it is a good idea to provide a safe distance factor which is the $20\% (height(gpc))$ from the table top, to avoid gripper hitting on the table top. In our experiments, we have frequently used this safe distance factor.
- Finally, the gripper moves at a distance/height where $z = 0$ on the table top, which is defined to be its new home position to complete the execution cycle.
5 Experiments with the robot

To demonstrate the experimental part of our proposed approach, this section has been subdivided into three sub-sections. First, building the Robotic experimental setup has been described with hardware and software configurations followed by the description of experimental details using training and testing samples which include unseen/novel objects during testing. In the subsequent sections, we analysed the results obtained during training and testing.

5.1 Description of robotic experimental setup

For vision-based grasping, we have used external camera, Intel “RealSense” having model no. D435. It uses stereovision for depth estimation and consists of the paired RGB sensors together with depth sensors. For manipulation task, Anukul research robot, available at our laboratory, has been used. It has two arms with seven degrees of freedom. To map the robot arm with camera, left arm has been considered during experimentation which can be replaced with right arm without affecting performance. For viewing the working space, camera has been mounted over the torso of the Anukul research robot. The camera saves the image with $x \times y$ dimensions, and then, it has been cropped as per specified red corner mark on the table workspace. The complete robotic experimental setup is shown in Fig. 7. For running all the robot experiments, Baxter SDK workstation setup has been used along with the kinetic version of the Robot Operating System (ROS) on top of the Ubuntu 16.04 platform.

5.2 Description of the experiments

To evaluate the proposed approach, first we have trained our VQVAE and GGCNN2 based RGGCNN2 model with Cornell dataset which is ordinarily a labelled dataset. However, we have divided this dataset into labelled (n1) and unlabelled (n2) datasets with different ratios such as 0.1, 0.3, 0.5, 0.7 and 0.9. Ratio has been calculated as n1:(n1+n2) where VQVAE has been trained with all labelled and unlabelled data (n1+n2) by considering it as unlabelled data only since VQVAE is based on unsupervised learning and n1 defines the fraction of labelled data which have been used for supervised grasp patch learning. For model training, Central Computing Facility (CCF) has been used which provides GPU queue for each user with configuration, such as 40 cores and 384 GB RAM with CUDA core 10.240 in each NVIDIA Tesla-V100 cluster. The dataset consists of 885 images with 2909 negative and 5110 positive grasp patch/rectangle annotations.

To evaluate the performance of the trained model in real-time environment, different categories of objects have been used. During experiments with robot, objects have been divided into two groups such as seen and unseen. Both the groups include regular and irregular shaped objects which are shown in Fig. 8a and b. Each object has been tested for 10 dif-

![Fig. 6 Grasp evaluation phases](image)

![Fig. 7 Experimental setup](image)

![Fig. 8 Experimental objects](image)
different positions, with 4 different orientations. For seen object category, 20 objects have been used, whereas 10 objects have been used for unseen category. Throughout our experiments, it is observed that proposed approaches are largely effective for seen as well as unseen objects. Due to table top manipulation, we have considered small-to-medium-sized objects which are feasible to be grasped by the robotic arm along with electrically driven gripper. However, it should also work efficiently with the vacuum gripper for regular shaped objects.

5.3 Result analyses

Primarily, the performance of the trained models has been evaluated with varying labelled and unlabelled data set ratios. More specifically, during training we wanted to test our model about how much generalization it can achieve with unlabelled data. In the semi-supervised learning paradigm, if we can use more and more unlabelled data for our proposed model, RGGCNN2, it will be desirable and hence, its performance has been compared with the baseline architecture as proposed in [35, 41], which is termed as RGGCNN here, with different blend of labelled and unlabelled data sets. The preliminary idea being appreciated in CVPR, Women in Computer Vision Workshop (Poster) (2020) and SPCOM(2020) [35, 41], encouraged us to pursue full blown research in this area. Both the models have been tested for five different ratios, and their performance, in terms of Intersection Over Union (IOU), is presented in Fig. 9. From Fig. 9, it can infer that the RGGCNN2 outperforms RGGCNN when it has only sufficient labelled dataset to train a grasp prediction model. All the evaluated model’s performance are tabulated in Table 1 for clear visibility. The reported accuracy of RGGCNN is increased by 6% (approx.) in our proposed RGGCNN2. The performance of RGGCNN2 has been also compared with the state-of-the-art models as tabulated in Table 2, following the standard process of comparison on the basis of image-wise split like other state-of-the-art models used for comparison [3, 6, 7, 9, 35–40]. More specifically, during experiments, performance of our proposed model has been validated based on image-wise split to test the generalization capability of the model.

Further, the performance of our proposed trained model, RGGCNN2, has been tested with both seen and unseen objects. The predicted grasp results have been represented by a Quality map (Q map) and Angle map for each object where Q map and angle map uses colour gradients to represent the numerical values within a defined range. During the validation of the model, it has been observed that our approach works significantly better in representing the colour gradient values with the normal as well as dim lights. Due to the inherent strength of our proposed model of getting trained with both unsupervised (with unlabelled data for learning embedding by the vector quantizer) and supervised (with labelled data for grasp patch learning) way (which we are calling a semi supervised learning), it can predict optimal grasp patches for seen as well as unseen objects, due to better generalization which are visible from the results as shown in Figs. 10 and 11. In the summary, we can say that our proposed model can be very effective when we really do not have enough labelled data, sufficient for training a giant network like this, and can efficiently predict grasp patches both for seen and unseen objects and in an isolated as well as cluttered

| Table 1 Trained model’s performance evaluation |
|-----------------|-----------------|
| Ratio | RGGCNN [35] | RGGCNN2 (Ours) |
| 0.1 | 85.3933 | 83.1461 |
| 0.3 | 87.6404 | 94.3820 |
| 0.5 | 89.8876 | 92.1348 |
| 0.7 | 89.8876 | 95.5056 |
| 0.9 | 89.8876 | 95.5056 |

| Table 2 Performance comparison on Cornell dataset |
|----------------|----------------|
| Model | Accuracy (%) (image-wise split) |
| GGCNN [9] | 73.0 |
| SAE, struct. reg. [3] | 73.9 |
| Two-stage closed-loop [36] | 85.3 |
| AlexNet, MultiGrasp [7] | 88.0 |
| STEM-CaRFs [37] | 88.2 |
| GRPN [38] | 88.7 |
| ResNet-50 × 2 [6] | 89.2 |
| RGGCNN [35] | 89.8 |
| GraspNet [39] | 90.2 |
| ZF-net [40] | 93.2 |
| RGGCNN2 (Ours) | 95.5 |

Fig. 9 Performance comparison between RGGCNN and RGGCNN2 models
environments and can act as a benchmark procedure to train such networks.

6 Conclusion and recommendation

In the present investigation, we have addressed the problem of solving intelligent object grasping using lesser number of labelled data. It has been demonstrated that the representation-based grasp patch detection can help finding correct grasp patches using the semi-supervised learning technique. Our proposed approach, RGGCNN2, uses RGB images to generate grasp patch in the isolated as well as cluttered environment. However, while using RGB images, one should be aware that the RGB images are not illumination independent. Improper illumination may cause severe degradation to many computer vision algorithms in general including recognition algorithm. The reason being the illumination-sensitive brightness and illumination-insensitive chromaticity information is mixed together in all three components of an RGB image. To remove such interference of non-uniform illumination, Colour Space Conversion (CSC) is often used in the preprocessing stage to separate brightness from chromaticity information [42, 43]. More specifically, RGB images of single materials taken in a properly illuminated environment normally have colours which form straight lines in RGB space. However, in improper illumination/shadow cases, those lines do not intersect the origin. Some recent research [44, 45] tries to solve such problems by detecting and correcting the offsets between the intersections and origin via an optical imaging model which transforms the RGB images. The resulting images, which are called ORGB images, which have almost the same appearance as the original RGB images but are more illumination-robust due to such CSC. So if the robot camera is expected to encounter such an environment where illumination variations are evident, such as 6D pose estimation-based grasping in a large warehouse or other such applications, then it may be advisable to use ORGB images instead of RGB images. Although, in the present scenario as well as in many real robotic applications for the manipulation tasks (such as grasping, pick and place) robot camera is supposed to work in a controlled environ-
ment, where such severe illumination/shadowing problems are very unlikely, especially as in the case of table top grasping, the problem that the present research is concerned with. By virtue of using VQVAE for semi-supervised learning, our model could achieve the ability to predict and grasp not only the previously seen objects used for training, but also similar objects which robot has not seen so far. From the results (refer Tables 1 and 2), it can be seen that our RGGCNN2 model works significantly better in comparison with the other existing state of the art models. Moreover, predicted grasp patch for an object has been also evaluated with the physical robot.

Some of the limitations, which can be taken up for future research, include improper object grasp patch prediction due to imprecise depth estimation for reflective and transparent objects. Grasp patch prediction failure can also occur due to background colour similarity with the object or presence of multiple objects having similar colour. Future, research can also be directed towards refining the latent space for better posterior and to extend the model’s capability by including touch sensors which can include the grasp affordances, so that the robot can grasp soft and fragile objects.

Acknowledgements The present research is partially funded by the I-Hub foundation for Cobotics (Technology Innovation Hub of IIT-Delhi set up by the Department of Science and Technology, Govt. of India).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3d object grasp synthesis algorithms. Robot. Auton. Syst. 60, 326–336 (2012). https://doi.org/10.1016/j.robot.2011.07.016
2. Bohg, J., Morales, A., Asfour, T., Kräger, D.: Data-driven grasp synthesis-a survey. IEEE Trans. Robot. 30(2), 289–309 (2014)
3. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)
4. Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojeda, J.A., Goldberg, K.: Dex-net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. CoRR arXiv:1703.09312 (2017)
5. Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50k tries and 700 robot hours. CoRR arXiv:1509.06825 (2015)
6. Kumra, S., Kanan, C.: Robotic grasp detection using deep convolutional neural networks. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 769–776 (2017). IEEE
7. Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1316–1322 (2015). IEEE
8. Lu, L.Y., Learned-Miller, E.G., Grupen, R.A.: Associating grasping with convolutional neural network features. CoRR arXiv:1609.03947 (2016)
9. Morrison, D., Corke, P., Leitner, J.: Closing the loop for robotic grasping: a real-time, generative grasp synthesis approach. CoRR arXiv:1804.05172 (2018)
10. Morrison, D., Corke, P., Leitner, J.: Learning robust, real-time, reactive robotic grasping. Int. J. Robot. Res. 39(2–3), 183–201 (2020). https://doi.org/10.1177/0278364918859066
11. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. CoRR arXiv:1711.00937 (2017)
12. van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional image generation with pixelcnn decoders. CoRR arXiv:1606.05328 (2016)
13. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. NIPS’14, pp. 2672–2680. MIT Press, Cambridge, MA, USA (2014)
14. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.W., Kavukcuoglu, K.: Wavenet: a generative model for raw audio. CoRR arXiv:1609.03499 (2016)
15. Mehr, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A.C., Bengio, Y.: Samplernn: an unconditional end-to-end neural audio generation model. CoRR arXiv:1612.07837 (2016)
16. Kalchbrenner, N., van den Oord, A., Simonyan, K., Danihelka, I., Vinyals, O., Graves, A., Kavukcuoglu, K.: Video pixel networks. CoRR arXiv:1610.00527 (2016)
17. Finn, C., Goodfellow, I.J., Levine, S.: Unsupervised learning for physical interaction through video prediction. CoRR arXiv:1605.07157 (2016)
18. Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2308–2315 (2010)
19. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. CoRR arXiv:1506.02640 (2015)
20. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD: single shot multibox detector. CoRR arXiv:1512.02325 (2015)
21. Konidaris, G., Kuindersma, S., Grupen, R., Barto, A.: Robot learning from demonstration by constructing skill trees. Int. J. Robot. Res. 31(3), 360–375 (2012). https://doi.org/10.1177/0278364911428653
22. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. CoRR arXiv:1603.02199 (2016)
23. Viereck, U., ten Pas, A., Saenko, K., Jr., R.P.: Learning a visuomotor controller for real world robotic grasping using easily simulated depth images. CoRR arXiv:1706.04652 (2017)
24. Schmidt, P., Vahrenkamp, N., Wächter, M., Asfour, T.: Grasping of unknown objects using deep convolutional neural networks based on depth images. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6831–6838 (2018)
25. Zeng, A., Song, S., Yu, K., Donlon, E., Hogan, F.R., Bauzá, M., Ma, D., Taylor, O., Liu, M., Romo, E., Fazeli, N., Alet, F., Darle, N.C., Holladay, R., Morona, I., Nair, P.Q., Green, D., Taylor, I.J., Liu, W., Funkhouser, T.A., Rodriguez, A.: Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. CoRR arXiv:1710.01330 (2017)
26. Wei, J., Liu, H., Yan, G., Sun, F.: Robotic grasping recognition using multi-modal deep extreme learning machine. Multidimensional Syst. Signal Process. 28(3), 817–833 (2017)
27. Wang, J., Hu, Q., Jiang, D.: A Lagrangian network for kinematic control of redundant robot manipulators. IEEE Trans. Neural Netw. 10(5), 1123–1132 (1999)

28. University, C.: Robot learning lab: Learning to grasp. Available online: http://pr.cs.cornell.edu/grasping/rect_data/data.php

29. Depierre, A., Dellandrea, E., Chen, L.: Jacquard: a large scale dataset for robotic grasp detection. CoRR arXiv:1803.11469 (2018)

30. Tchuiev, V., Indelman, V.: Inference over distribution of posterior class probabilities for reliable Bayesian classification and object-level perception. IEEE Robot. Autom. Lett. 3(4), 4329–4336 (2018). https://doi.org/10.1109/LRA.2018.2852844

31. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2014)

32. University, C.: Robot learning lab: Learning to grasp. Available online: http://pr.cs.cornell.edu/grasping/rect_data/data.php

33. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. CoRR arXiv:1411.4555 (2014)

34. Ju, Z., Yang, C., Ma, H.: Kinematics modeling and experimental verification of baxter robot. In: Proceedings of the 33rd Chinese Control Conference, pp. 8518–8523 (2014). https://doi.org/10.1109/ChiCC.2014.6896430

35. Mahajan, M., Bhattacharjee, T., Krishnan, A., Shukla, P., Nandi, G.C.: Robotic grasp detection by learning representation in a vector quantized manifold. In: 2020 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5 (2020)

36. Wang, Z., Li, Z., Wang, B., Liu, H.: Robot grasp detection using multimodal deep convolutional neural networks. Adv. Mech. Eng. 8(9), 168781401668077 (2016)

37. Asif, U., Tang, J., Harrer, S.: Ensemblenet: improving grasp detection using an ensemble of convolutional neural networks. In: BMVC, p. 10 (2018)

38. Karaoguz, H., Jensfelt, P.: Object detection approach for robot grasp detection. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4953–4959 (2019). IEEE

39. Asif, U., Tang, J., Harrer, S.: Graspnet: an efficient convolutional neural network for real-time grasp detection for low-powered devices. In: IJCAI, vol. 7, pp. 4875–4882 (2018)

40. Guo, D., Sun, F., Liu, H., Kong, T., Fang, B., Xi, N.: A hybrid deep architecture for robotic grasp detection. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1609–1614 (2017). IEEE

41. Shukla, P., Mahajan, M., Bhattacharjee, T., Krishnan, A., Nandi, G.C.: Robotic grasp detection by learning representation in a vector quantized manifold. In: CVPR, Women in Computer Vision Workshop (Poster) (2020)

42. Ying, Z., Li, G., Zang, X., Wang, R., Wang, W.: A novel shadow-free feature extractor for real-time road detection. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 611–615 (2016). https://doi.org/10.1145/2964284.2967294

43. Huang, J.-B., Chen, C.-S.: Moving cast shadow detection using physics-based features. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2310–2317 (2009). https://doi.org/10.1109/CVPR.2009.5206629

44. Healey, G.: Segmenting images using normalized color. IEEE Trans. Syst. Man Cybern. 22(1), 64–73 (1992). https://doi.org/10.1109/21.141311

45. Ying, Z., Li, G., Wen, S., Tan, G.: ORGB: offset correction in RGB color space for illumination-robust image processing. CoRR arXiv:1708.00975 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Priya Shukla is working as a Machine Learning Engineer at Renishaw Metrology Systems Ltd., Pune. She has completed her M.Tech-Ph.D. (dual degree) from Indian Institute of Information Technology, Allahabad. She has completed her B.Tech in Computer Science and Engineering from Uttar Pradesh Technical University, Lucknow. She has worked as a software developer at MotherSumi Infotech & Designs, Noida. She has published more than 12 papers in refereed journals and international conferences. Her research interests include computer vision, machine learning, deep learning, reinforcement learning, and intelligent robot grasping.

Vandana Kushwaha is a senior research scholar pursuing a Ph.D. from the Center of Intelligent Robotics, Indian Institute of Information Technology, Allahabad. She obtained her B.Tech. degree in Information Technology from HBTI, Kanpur, in 2010. She received her M.Tech degree in Intelligent Systems from IIIT-Allahabad in 2015. Her research interests include machine learning, deep learning, computer vision, and intelligent robot grasping.
G. C. Nandi obtained his Bachelor of Engineering degree from the Indian Institute of Engineering Science & Technology (formerly known as Bengal Engineering College, Shibpur) in 1984 and obtained a Master’s Degree from the Jadavpur University, Calcutta, in 1986. He received his Ph.D degree from the Russian Academy of Sciences, Moscow, in 1992. He was a visiting research scientist at the Chinese University of Hong Kong in 1997 and visiting faculty at the Software Research Center of Computer Science Department of Carnegie Mellon University (CMU), USA, during 2010-2011. Currently, he is working as the senior-most Professor, Advisor, and Head of the Center of Intelligent Robotics of the premier Indian Institute of Information Technology, Allahabad. He is a Senior Member of the ACM and IEEE. He was the Founding Chairperson of IEEE-Robotics and Automation Society Chapter of UP Section. He has published more than 200 papers in refereed journals and international conferences. His recent research interests include robotics, especially humanoid and collaborative robotics, machine learning, and deep learning.