Effects of total glucosides of peony on immunological hepatic fibrosis in rats

Hua Wang, Wei Wei, Ni-Ping Wang, Cheng-Yi Wu, Shang-Xue Yan, Li Yue, Ling-Ling Zhang, Shu-Yun Xu

Abstract

AIM: To study the effects of total glucosides of peony (TGP) on immunological hepatic fibrosis induced by human albumin in rats.

METHODS: Sixty adult male Sprague-Dawley rats were randomly divided into: Normal group, model group, TGP (60 and 120 mg/kg) treatment groups and colchicines (0.1 mg/kg) treatment group. On the day before the rats were killed, those in TGP or colchicine groups received TGP or colchicine as above from the first day of tail vein injection of human albumin. The rats in normal and model groups were only administered with the same volume of vehicle. At the end of the 16th wk, rats in each group were killed. Blood and tissue specimens were taken. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), nitric oxide (NO), content of malondialdehyde (MDA), activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px), were measured by biochemical methods. Serum procollagen type III (PC III) and laminin (LN) were determined by radioimmunoassay. Liver collagen level was determined by measuring hydroxyproline content in fresh liver samples. Hepatic tissue sections were stained with hematoxylin-eosin and examined under a light microscope.

RESULTS: Histological results showed that TGP improved the human albumin-induced alterations in the liver structure, alleviated lobular necrosis and significantly lowered collagen content. The antifibrotic effect of TGP was also confirmed by decreased serum content of LN and PCIII in TGP-treated group. Moreover, the treatment with TGP effectively reduced the hydroxyproline content in liver homogenates. However, the level of ALT and AST increased in fibrotic rat but had no significance compared with normal control, whereas the ratio of A/G decreased without significance. TGP had no effect on level of ALT, AST and the ratio of A/G. Furthermore, TGP treatment significantly blocked the increase in MDA and NO, associated with a partial elevation in liver total antioxidant capacity including SOD and GSH-px.

CONCLUSION: TGP has beneficial effects on hepatic fibrosis in rats by inhibition of collagen synthesis and decreasing oxidative stress.

Key words: Total glucosides of peony; Hepatic fibrosis; Rat; Oxidative stress

INTRODUCTION

Hepatic fibrosis is traditionally defined as a progressive pathologic process involving multiple cellular and molecular events that lead ultimately to deposition of excess matrix proteins in the extracellular space[1-3]. Chronic injury leading to fibrosis in liver occurs in response to a variety of insults, including viral hepatitis (especially hepatitis B in China), alcohol abuse, drugs, metabolic diseases, etc. When this injury process is combined with ineffective regeneration and repair, there is increasing distortion of the normal liver architecture, and the end result is cirrhosis. Current evidence indicates that hepatic fibrosis even cirrhosis is dynamic and can be bidirectional (involving phases of progression and regression)[4,5]. Thus, efforts to understand fibrosis focus primarily on events that lead to the early accumulation of scar in hopes of identifying therapeutic targets to slow its progression. Unfortunately, no effective hepatic antifibrotic therapies are available. Antifibrotic strategies might therefore be usefully targeting either reducing matrix synthesis or increasing matrix degradation[6,7].

Paeonia lactiflora pall root, a traditional Chinese herb, has been used to relieve the pain and been a component of effective prescriptions for treatment of liver disease[8]. The total glucosides of peony (TGP), a powder substance extracted from Paeonia lactiflora pall root, were composed of peoniflorin, hydroxypeoniflorin, peonin, albiflorin, benzoylpeoniflorin, etc. Peoniflorin, accounting for some 90%, is a main effective component of TGP. TGP have been recognized as the valuable traditional herbs used in the treatment of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and...
hepatitis with a long history in traditional Chinese medicine\cite{9-11}. The anti-inflammatory, anti-oxidative, anti-hepatic injury and immunoregulatory activities without evident toxic or side-effects of TGP have been extensively proved in our laboratory for many years\cite{12-16}. These observations have led to an interest in the potential role of TGP as an antifibrotic agent.

The present study was designed to evaluate whether treatment with TGP exerts any beneficial effect on liver histopathology and liver function in an experimental model of immunological hepatic fibrosis, and the mechanism of its part were also investigated.

**MATERIALS AND METHODS**

**Animal experiments and drug treatment**

Sixty adult male Sprague-Dawley rats, weighing 120-150 g [provided by Shanghai BK Experimental Animal Center (Grade II, Certificate No D-65)] were employed in the study. The rats were randomly divided into five groups. A rat model of hepatic fibrosis was produced by immunologically attacking with human albumin, using the method introduced by Wang et al\cite{17}. Ten male Sprague-Dawley rats were regarded as normal group. The other fifty healthy rats were randomly divided into four groups including model group, TGP (60 and 120 mg/kg) treated group and colchicines (0.1 mg/kg) treatment group with the experimental attacking as follows.

All rats were injected with 0.5 mL human albumin diluted with normal saline (0.5 mL equals 4 mg human albumin) and the same quantity of an incomplete Freund's adjuvant, once every 14 d for the first two times, then once every 10 d, twice. Ten days after the last injection, serum antibody was measured. Rats with positive serum antibody were chosen for experiment through tail vein injection of human albumin, twice a week, 2.5 mg each in the first week, with a gradual increase of 0.5 mg once each to 4.5 mg eventually, and this dose was maintained for 2 mo. All animals were killed under anesthesia with ether. Blood sample was collected and this dose was maintained for 2 mo. All animals were killed under anesthesia with ether. Blood sample was collected from femoral arteries and veins, centrifuged (3 000 r/min, 10 min, 4 °C), and the supernatant was used immediately for the assays of MDA,GSH-px and SOD. They were determined following the kit instructions. Liver samples were homogenized (1 000 r/min, 10 min, 4 °C) and the supernatant was added to a final concentration of 2.5 mmol/L containing 2 mmol/L EDTA, pH 7.4. Homogenates were centrifuged (5 mmol/L containing 2 mmol/L EDTA, pH 7.4). The operations were performed according to the manufacturer’s instructions.

**Measurement of NO, LN and PC III in serum**

Nitric oxide (NO) content in serum was measured by a microplate assay using Griess reagent, which produces a chromophore with the nitrite\cite{20}. The serum levels of procollagen type III (PC III) and laminin(LN) were determined by radioimmunoassays (Shanghai Navy Medical Institute, China). The operations were performed according to the manufacturer’s instructions.

**Measurement of MDA, SOD and GSH-px level in liver homogenates**

Livers were thawed, weighed and homogenized with Tris-HCl (5 mmol/L containing 2 mmol/L EDTA, pH 7.4). Homogenates were centrifuged (1 000 r/min, 10 min, 4 °C) and the supernatant was used immediately for the assays of MDA,GSH-px and SOD. They were determined following the kit instructions. In brief, MDA in liver tissue was determined by the thiobarbituric acid method\cite{21}. The assays for total SOD and GSH-px were based on their ability to inhibit the oxid-ation of oxyamine by the xanthine-xanthine oxidase system.

**Measurement of hydroxyproline content in liver**

Liver collagen concentration was determined by measuring hydroxyproline content in fresh liver samples using a modification of the method of Jamall et al\cite{22,23}, after digestion with acid, as previously reported. Briefly, liver samples were homogenized and hydrolyzed in 6 N HCl at 110 °C for 18 h. After filtration of the hydrolysate through a 0.45-mm milli-pore filter, chloramidine T was added to a final concentration of 2.5 mmol/L. The mixture was then treated with 410 mmol/L hydroxyproline, as previously reported. Briefly, liver samples were homogenized and hydrolyzed in 6 N HCl at 110 °C for 18 h. After filtration of the hydrolysate through a 0.45-mm milli-pore filter, chloramidine T was added to a final concentration of 2.5 mmol/L. The mixture was then treated with 410 mmol/L hydroxyproline, as previously reported.
**Statistical analysis**

Mean±SD were calculated for quantitative data. Significant differences between means were evaluated by analyses of variance and in the case of significance, frequency data were compared using Ridit procedure. A difference was considered significant at $P<0.05$.

**RESULTS**

**Effect of TGP on liver function of immunological hepatic fibrosis**

In model group, the level of ALT and AST increased but had no significant difference compared with normal group, whereas the ratio of A/G decreased also with no significant difference. Transaminase activities in TGP or colchicine treated group tended to decrease, whereas the ratio of A/G had an increasing tendency and both had no significance compared with model group (Table 1).

**Effect of TGP on hydroxyproline content in liver homogenates**

Hepatic fibrosis was quantified by the measurement of hepatic hydroxyproline. It was found that the hydroxyproline content of the model group was significantly higher than that of the normal group. Treatment with TGP or colchicine effectively prevented the immunological hepatic fibrosis induced by human albumin by reducing the hydroxyproline content in liver homogenates (Figure 1).

**Histological results**

From Table 2, we can see the significant difference of pathologic grading between the normal and model groups. The pathologic grading was significantly decreased in TGP or colchicine treated group.

As shown in Figure 2, the structure of liver tissues was normal in control group (Figure 2A). In liver tissues from rats with immunological hepatic fibrosis, hyperplasia of the lattice fibers and collagenous fibers was observed in portal area and extended outwards. Hyperplasia surrounding the central vein observed was distributed along hepatic sinuses and associated with each other. The hepatic lobules were encysted and separated by collagen bundles. The normal structure of lobules was destroyed and pseudolobules formed. Infiltration of small numbers of inflammatory cells was found around the portal area and central vein (Figure 2B). TGP alleviated lobular necrosis and significantly lowered collagen content. The structure of liver tissues was almost normal (Figure 2C). In colchicine-treated group, hyperplasia of the lattice fibers and collagenous fibers was also observed in portal area, but they were alleviated compared with model group (Figure 2D).
Effect of TGP on serum LN and PC III

As expected, serum levels of LN and PC III, the surrogate markers of liver fibrogenesis, increased significantly in hepatic fibrotic rats in model group. However, in TGP-treated group they were lower compared with model group. These data confirmed the histological findings that TGP could inhibit hepatic fibrogenesis (Table 3).

Effect of TGP on MDA content and SOD, GSH-px activities in liver homogenates

Hepatic lipid peroxidation, measured as thiobarbituric acid reactive substance (MDA), was significantly increased in fibrotic rats while liver SOD and GSH-px activities decreased. TGP treatment significantly blocked the increase in MDA and was associated with a partial elevation in liver total antioxidant capacity including SOD and GSH-px (Table 4). In colchicine-treated group, only MDA content was lower than model group.

Effect of TGP on NO production in serum

As shown in Figure 3, when the rats were challenged with human albumin, the level of NO was elevated significantly. TGP obviously decreased the NO level while colchicine had no effect.

DISCUSSION

Hepatic fibrosis is the common consequence of chronic liver injury of any etiology. Advanced hepatic fibrosis disrupts the normal liver architecture, causing hepatocellular dysfunction and portal hypertension. It is of great significance to search for effective ways to inhibit fibrogenesis and prevent the development of cirrhosis[24]. Unfortunately, no effective hepatic antifibrotic therapies are available. Colchicine has been commonly used for anti-fibrosis, but its side effect is severe and its clinical application is limited. Medicinally useful plants including traditional Chinese herbs are well known for their cheap prices and negligible side effects and have particular potential in the treatment of hepatic fibrosis[25,26]. In this study we firstly established the animal model of immunological hepatic fibrosis. The histological results showed that the normal structure of lobules was destroyed and pseudolobules formed, which were similar to the pathology of chemical hepatic fibrosis induced by long-term administration of carbon tetrachloride. Moreover, LN and PC III are known to be good serum markers of hepatic fibrogenesis, thus the increased hydroxyproline content in liver and serum LN and PC III also confirmed the hepatic fibrogenesis in rats. Unlike the severe hepatocyte necrosis and inflammation induced by CCl4 toxicity, the ALT or AST released from hepatocytes did not increase and less immigration of inflammatory cells in liver indicated the mild inflammation in rat with immunological hepatic fibrogenesis induced by human albumin. Those results are in accordance with the findings of immunological hepatic fibrogenesis[19]. The present study demonstrated that administration of TGP was effective in

Table 1 Effect of TGP on serum ALT, AST activities and A/G value in immunological hepatic fibrosis rat induced by human albumin. (n = 8, means±SD)

| Groups    | Doses (mg/kg) | ALT (U/L) | AST (U/L) | A/G  |
|-----------|---------------|-----------|-----------|------|
| Normal    | ---           | 54.6±16.1 | 61.4±27.8 | 1.17±0.31 | a |
| Model     | ---           | 78.7±15.0 | 94.5±37.3 | 0.90±0.19 | b |
| TGP       | 60            | 75.6±22.5 | 82.6±17.3 | 0.92±0.21 | a |
|           | 120           | 70.6±24.6 | 75.4±26.9 | 0.96±0.17 | c |
| Colchicine| 0.1           | 77.7±27.6 | 78.9±22.4 | 0.93±0.18 | b |

Table 2 Effect of TGP on the pathologic grading of immunological hepatic fibrosis rat induced by human albumin. (n = 10, means±SD)

| Group    | Dose (mg/kg) | Pathologic grading of hepatic fibrosis | P   |
|----------|--------------|--------------------------------------|-----|
|          |              | 0 | I | II | III | IV |
| Normal   | -            | 10| 0 | 0 | 0 | 0  | -  |
| Model    | -            | 0 | 3 | 3 | 4 | 0  | 0.000  |
| TGP      | 60           | 0 | 2 | 5 | 2 | 1  | 0.043  |
|          | 120          | 0 | 4 | 4 | 2 | 0  | 0.006  |
| Colchicine| 0.1         | 0 | 3 | 4 | 3 | 0  | 0.018  |

Table 3 Effect of TGP on plasma LN and PC III level in immunological hepatic fibrosis rat induced by human albumin. (n = 8, means±SD)

| Groups    | Doses (mg/kg) | LN (μg/L) | PC III (μg/L) |
|-----------|---------------|-----------|--------------|
| Normal    | ---           | 108.9±25.4| 74.4±25.9    |
| Model     | ---           | 228.0±76.2| 294.1±99.2   |
| TGP       | 60            | 142.1±39.8| 174.2±69.5   |
|           | 120           | 127.1±26.8| 148.5±68.6   |
| Colchicine| 0.1           | 112.6±27.7| 121.6±32.6   |

*P<0.05, **P<0.01 vs model group; ^P<0.01 vs normal control group.

Table 4 Effects of TGP on MDA levels, SOD and GSH-px activities liver homogenates in of immunological hepatic fibrotic rats (n = 10, means±SD)

| Groups    | Doses (mg/kg) | MDA (nmol/mg pr) | SOD (U/mg pr) | GSH-px (U/mg pr) |
|-----------|---------------|------------------|---------------|-----------------|
| Normal    | ---           | 1.88±0.73        | 142.3±41.00   | 101.0±28.70     |
| Model     | ---           | 4.34±1.24        | 81.9±26.48    | 50.6±15.28      |
| TGP       | 60            | 2.41±1.83        | 116.9±32.18   | 73.7±16.60      |
|           | 120           | 2.21±1.89        | 136.5±36.15   | 83.6±26.16      |
| Colchicine| 0.1           | 3.02±0.68        | 101.19±44.47  | 69.8±23.65      |

*P<0.05, **P<0.01 vs model group; ^P<0.01 vs normal control group.

Figure 3 Effects of TGP on NO level in immunological hepatic fibrotic rats (n = 8, means±SD). *P<0.05 vs model group; ^P<0.01 vs normal control group.
treating hepatic fibrosis in rats based on both histological examination and functional analysis. The results obtained provide a basis for further studies on the potentially protective effect of TGP on liver function in cirrhotic patients.

Increasing experimental evidence suggests that reactive oxygen species (ROS) such as H$_2$O$_2$, O$_2^-$, and OH$^*$, are implicated in the development and pathological progress of hepatic fibrosis$^{[7-10]}$. Under normal conditions, low amounts of ROS are produced as by-products of the aerobic respiration. At high doses, ROS are noxious to the cells leading to impaired metabolic functions, growth inhibition, and ultimately cell death. Cells therefore employ several antioxidant enzyme systems to maintain low levels of ROS, which plays a key role in hepatic fibrosis$^{[20]}$. Increased ROS and resulting oxidative stress are commonly detected in livers from patients with alcohol abuse, hepatitis C virus infection, iron overload, or chronic cholestasis, as well as in most types of experimental liver fibrogenesis$^{[31]}$. Oxidative stress, in particular, lipid peroxidation, induces collagen synthesis. It also acts as a signaling mediator for transforming growth factor (TGF)-ß, and plays a major role in hepatic fibrosis. Hepatic stellate cells produce and respond to TGF-ß in an autocrine manner with increased collagen expression. Consequently, antioxidants, particularly those of plant origin, have emerged as potent antifibrotic agents. Previous and recent findings on the antifibrotic potential of plant-derived antioxidants could attenuate hepatic fibrosis in rodents and may exert beneficial effects in patients with chronic liver diseases.

Our previous study showed that TGP attenuated inflammation and ROS and TGP inhibited hydrogen peroxide (H$_2$O$_2$) were released from peritoneal macrophages in adjuvant arthritis (AA) rats$^{[18]}$. It was also found that treatment of AA rats with TGP (50 mg/kg) ig (14-28 d) could counteract the elevated level of MDA and NO and the lowered activities of SOD and GSH-px. The hemolytic action of H$_2$O$_2$ is related to the induction of lipid peroxidation and glutathione depletion in human erythrocytes. TGP (0.5-2.5 mg/L) could significantly inhibit hemolysis, lipid peroxidation, and glutathione depletion induced by H$_2$O$_2$. In vitro, TGP could scavenge OH$^*$ and O$_2^-$.$^{[19-22]}$. In the experimental model of human albumin-induced fibrosis, hepatic injury occurs with an increased generation of ROS that causes lipid peroxidation. In addition to being a product of lipid peroxidation, oxidative stress may result from degr-ament of antioxidant defenses including SOD and decreased GSH-px activities. Inverse correlations between antioxidant enzymes and pathology scores and/or lipid peroxidation have been found in rats with CCl$_4$-induced cirrhosis, biliary obstruction, or alcoholic liver disease$^{[30,33]}$. Beneficial effects and diminished hepatic fibrosis by TGP may be partially related to the preservation of antioxidant enzymes defenses and reduction of lipid peroxidation, but colchicine treatment only significantly inhibited malondialdehyde$^{[30]}$. Changes in nitric oxide (NO) production may also play a role in the TGP-induced prevention of liver damage in cirrhotic rats. NO has been shown to react with superoxide generating the strong oxidant peroxynitrite, which can initiate lipid peroxidation or cause a direct inhibition of the mitoch-ondrial respiratory chain$^{[34]}$. TGP was found to inhibit prod-uction of NO in this human albumin induced immuno-logical hepatic fibrosis.

In conclusion, TGP could greatly retard the progression of experimental immunological hepatic fibrosis through inhibition of collagen synthesis and decreasing oxidative stress. Therefore, it is a potentially new antifibrotic drug for clinical application.

REFERENCES

1. Dai WJ, Jiang HC. Advances in gene therapy of liver cirrhosis: a review. World J Gastroenterol 2003; 7: 1-8
2. Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 1993; 328: 1828-1835
3. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247-2250
4. Mann DA, Smart DE. Transcriptional regulation of hepatic stellate cell activation. Gut 2002; 50: 891-896
5. Bonis PA, Friedman SL, Kaplan MM. Is liver fibrosis reversible? N Engl J Med 2001; 344: 452-454
6. Albanis E, Friedman SL. Hepatic fibrosis. Pathogenesis and principles of therapy. Clin Liver Dis 2001; 5: 315-334, v-vi
7. Yang XB, Huang ZM, Wang JH. The drug therapy of liver fibrosis. Shihe Jiaonan Xiaohao Zazhi 2002; 10: 956-957
8. Dai LM, Chen MZ, Xu SY. Protective effects of total glucides of paonly on experimental hepatisis. Zhonggguo Yaolixue Tongbao 1993; 9: 449-453
9. Wang B, Yao YY, Zhou AW, Ge ZD, Chen MZ, Xu SY. Protective effect of total glucides of paonly on joint damage in adjuvant arthritis rats. Zhonggguo Yaolixue Yu Dulixue Zazhi 1996; 10: 211-214
10. Wang B, Yao YY, Zhou AW, Chen MZ, Xu SY. Study on immunomodulatory effect of total glucides of paonly and its relationship with nitric oxide in adjuvant arthritis rats. Zhonggguo Manquyxue Zazhi 1996; 12: 104-106
11. Zhou LL, Wei W, Shen YX, Xu SY. The effects of TGP on CJ-S131-induced systemic lupus erythematous-like model in mice. Zhonggguo Yaolixue Tongbao 2002; 18: 175-177
12. Xu SY, Shen YX, Xu DJ, Wei W, Liang JS. Effects of total glucides of paonly and mouton cortex on the function of pineal gland in inflammatory-immune regulation in rats. Zhonggguo Yaolixue Yu Dulixue Zazhi 1994; 8: 161-165
13. Wei W, Liang JS, Zhou AW, Chen MZ, Xu SY. Effects of total glucides of paonly on interluekin 2 production. Zhonggguo Yaolixue Tongbao 1989; 5: 176-179
14. Ge ZD, Wei W, Shen YX, Wang B, Ding CH, Zhou AW, Zhang AP, Xu SY. Effects of paeonilin, total glucides of paonly removed paeonilin on interluekin 2 production by splenic lymphocytes form adjuvant arthritis rats. Anhui Yike Daxue Xuebao 1996; 51: 4-6
15. Gao BB, Dai LM, Xu SY. The scavenging activities of TGM and TGP on free radicals. Suifang Yixueyuan Xuebao 1996; 18: 43-46
16. Wang B, Chen MZ, Xu SY. Regulatory mechanism of total glucides of paonly on tumor necrosis factor production by peritoneal macrophages in rats. Zhonggguo Yaolixue Tongbao 1997; 13: 255-257
17. Wang BE, Wang ZF, Yin WY, Huang SF, Li JJ. Study on experimen-tal immunity model of hepatic fibrosis. Zhonghua Yiye Zazhi 1998; 69: 503-505
18. Desmet VJ, Gerber M, Hoofnagle JH, Manns M, Scheuer PJ. Classification of chronic hepatitides: diagnosis, grading and staging. Hepatology 1994; 19: 1513-1520
19. Chevallier M, Guerret S, Chossegros P, Gerard F, Grimaud JA. A histological semi-quantitative scoring system for evalu-ation of hepatic fibrosis in needle liver biopsy specimens: comparison with morphometric studies. Hepatology 1994; 19: 349-355
20. Kiechle FL, Malinski T. Nitric oxide. Biochemistry, pathophysiology, and detection. Am J Clin Pathol 1993; 100:
21 Gavino VC, Miller JS, Ikharebha SO, Milo GE, Cornwell DG. Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J Lipid Res 1981; 22: 763-769

22 Jamall IS, Finelli VN, Que Hee SS. A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal Biochem 1981; 112: 70-75

23 Fort J, Pilette C, Veal N, Oberti F, Gallois Y, Douay O, Rosenbaum J, Cales P. Effects of long-term administration of interferon alpha in two models of liver fibrosis in rats. J Hepatol 1998; 29: 263-270

24 Friedman SL. Liver fibrosis–from bench to bedside. J Hepatol 2003; 38 Suppl 1: S38-S53

25 Shimizu I, Ma YR, Mizobuchi Y, Liu F, Miura T, Nakai Y, Yasuda M, Shiha M, Horie T, Amagaya S, Kawada N, Hori H, Ito S. Effects of Sho-sai-ko-to, a Japanese herbal medicine, on hepatic fibrosis in rats. Hepatology 1999; 29: 149-160

26 Li BS, Wang J, Zhen YJ, Liu JX, Wei MX, Sun SQ, Wang SQ. Experimental study on serum fibrosis markers and liver tissue pathology and hepatic fibrosis in immuno-damaged rats. Shijie Huaren Xiaohua Zazhi 1999; 7: 1031-1034

27 Apte M. Oxidative stress: does it initiate hepatic stellate cell activation or only ‘perpetuate’ the process? J Gastroenterol Hepatol 2002; 17: 1045-1048

28 Serviddio G, Pereda J, Pallardo FV, Carretero J, Borras C, Cetrin J, Vendemiale G, Poli G, Vina J, Sastre J. Ursodeoxycholic acid protects against secondary biliary cirrhosis in rats by preventing mitochondrial oxidative stress. Hepatology 2004; 39: 711-720

29 Muriel P, Moreno MG. Effects of silymarin and vitamins E and C on liver damage induced by prolonged biliary obstruction in the rat. Basic Clin Pharmacol Toxicol 2004; 94: 99-104

30 Lu G, Shimizu I, Cui X, Itanaga M, Tamaki K, Fukuno H, Inoue H, Honda H, Ito S. Antioxidant and antiapoptotic activities of idoxifene and estradiol in hepatic fibrosis in rats. Life Sci 2004; 74: 897-907

31 Pietrangelo A. Iron-induced oxidant stress in alcoholic liver fibrogenesis. Alcohol 2003; 30: 121-129

32 Gebhardt R. Oxidative stress, plant-derived antioxidants and liver fibrosis. Planta Med 2002; 68: 289-296

33 Das D, Pemberton PW, Burrows PC, Gordon C, Smith A, McMahon RF, Warnes TW. Antioxidant properties of colchicine in acute carbon tetrachloride induced rat liver injury and its role in the resolution of established cirrhosis. Biochim Biophys Acta 2000; 1502: 351-362

34 Koruk M, Aksoy H, Akcay F, Onuk MD. Antioxidant capacity and nitric oxide in patients with hepatic cirrhosis. Ann Clin Lab Sci 2002; 32: 252-256

Science Editor Zhu LH and Li WZ Language Editor Elsevier HK