INTRODUCTION

The regulatory roles of long noncoding RNAs (lncRNAs) have been well described in animals, plants, and fungi, where they serve as crucial regulators of transcription in a wide range of biological processes (Ponting et al., 2009; Rinn et al., 2007; Swiezewski et al., 2009; Yamashita et al., 2016). lncRNAs can participate in controlling gene expression via various molecular mechanisms. For example, the DHFR (human dihydrofolate reductase) gene contains two promoters. The minor promoter upstream of DHFR encodes an lncRNA that forms a triplex structure with the sequences of the major promoter and interacts directly with transcription factor IIB (TFIIB), resulting in the dissociation of the transcription initiation complex from the major promoter and inhibitor of DHFR (Martianov et al., 2007; Quan...
et al., 2015). COLDAIR, an *Arabidopsis* intronic IncRNA induced by cold treatment, has been shown to recruit Polycomb Repressive Complex 2 (PRC2) to suppress the FLOWER LOCUS C (FLC) after vernalization (Heo & Sung, 2011). Saccharomyces cerevisiae SER3 is involved in serine biosynthesis, the 3’ end of IncRNA SRG1 overlaps with the promoter of SER3, and the elongation of SRG1 inhibits the initiation of SER3 transcription by transcription interference under serine-rich conditions (Martens et al., 2004). In recent years, several studies have identified or predicted the IncRNAs involved in the growth and development of filamentous fungi such as *Neurospora crassa* (Arthanari et al., 2014; Cemel et al., 2017), *Ustilago maydis* (Donaldson & Saville, 2013; Ostrowski & Saville, 2017), *Fusarium graminearum* (Kim et al., 2018; Wang et al., 2021), *Trichoderma reesei* (Till, Pucher, et al., 2018), and *Ustilaginoidea virens* (Tang et al., 2021). However, there are only a few surveys regarding the functional identification of IncRNAs in filamentous fungi. One of the best known IncRNAs is *qrf* in *N. crassa*. *qrf* is a long noncoding antisense RNA of the circadian clock core regulatory *frq* gene and inhibits the expression of *frq* by mediating chromatin modification (Belden et al., 2011; Li et al., 2015; Xue et al., 2014). The IncRNA *HAX1* interacts with a transcriptional activator Xylanase regulator 1 (*Yxr1*), interferes with the negative feedback regulatory loop of *Yxr1*, and ultimately promotes cellulase expression and activity in *T. reesei* (Till, Mach, et al., 2018; Till, Pucher, et al., 2018). Our recent studies suggest that a novel antisense IncRNA, *GzmEt-AS*, is involved in asexual and sexual reproduction by regulating its antisense gene *GzmEt* through the RNAi pathway in *F. graminearum* (Wang et al., 2021). These data reveal that IncRNAs also play important regulatory roles in filamentous fungi.

F. graminearum (teleomorph *Gibberella zeae*) is a globally distributed causal agent of Fusarium head blight (FHB) of cereal crops worldwide, especially of wheat (Goswami & Kistler, 2004; Leslie & Summerell, 2006). In addition to the yield losses caused by the infection of cereal spikelets, *F. graminearum* can also produce harmful mycotoxins, including deoxynivalenol (DON) and zearalenone (ZEA), which are extremely toxic to humans and livestock (Audenaert et al., 2014; Desjardins, 1996; Zhang et al., 2016). In the disease cycle of FHB, ascospores (sexual spores) and conidia (asexual spores) play a critical role in primary and secondary infection, respectively (Guenthner & Trail, 2005; Trail, 2007). Under favourable environmental conditions, *F. graminearum* spreads rapidly and causes severe grain yield losses. Thus, peritheciogenesis, ascospore production, and ascospore discharge play crucial roles in the infection cycle of *F. graminearum*. Several genes are involved in the process of sexual reproduction, including conserved signal transduction pathways, protein kinases, transcription factors, and other genes with diverse functions (Geng et al., 2014; Hou et al., 2002; Hu et al., 2014; Son et al., 2011, 2013; Wang et al., 2011; Yun et al., 2015). In most cases, the disruption of these genes causes sexual development to be stopped or delayed at certain specific stages. For instance, *mgv1* and *Gpmk1* deletion mutants are female sterile and fail to reproduce perithecia, whereas *GEA1* and *MID1* are known to be important for ascospore release in *F. graminearum* (Cavinder et al., 2011; Hou et al., 2002; Jenczmionka et al., 2003; Son et al., 2013). However, IncRNAs involved in the regulation of sexual reproduction have rarely been studied. The identification and functional characterization of IncRNA mutants would provide comprehensive insight into the regulatory mechanisms underlying the sexual development of filamentous fungi.

The major facilitator superfamily (MFS) transport proteins are a large protein family with diverse physiological functions in all living organisms (Yen et al., 2010). The sugar porter (SP) family is the largest branch of the MFS (Pao et al., 1998). In phytopathogenic fungi, MFS proteins have been demonstrated to be involved in the regulation of multidrug resistance and toxin accumulation (Alexander et al., 1999; Choquer et al., 2007; Coleman & Mylonakis, 2009; Kretschmer et al., 2009). In the present study, we discovered an IncRNA, *lncRsp1*, located +99 bp upstream of a putative sugar porter gene, *Fgsp1*. Functional studies showed that the disruption of *Fgsp1* and *lncRsp1* had pleiotropic defects, including on sexual development, virulence, and DON production. Subsequently, silencing and overexpression assays of *lncRsp1* were performed to explore their biological functions. Our results suggest that *lncRsp1* plays an important role in sexual reproduction and regulates the expression of *Fgsp1*.

2 | RESULTS

2.1 | Identification of *lncRsp1* and *Fgsp1*

Based on the sequence analysis of the full-length FGSG_05042 mRNA, the open reading frame (ORF) was determined to encode a protein of 534 amino acids (GenBank accession no. XP_011323525). NCBI domain analysis indicated that the protein contains a sugar transport domain and two MFS conserved domains. Therefore, FGSG_05042 was designated as *Fgsp1* (Figure 1a). Transmembrane domain prediction (http://www.cbs.dtu.dk/services/TMHMM/) indicated that *Fgsp1* possesses 12 transmembrane helixes (TM) (Figure 1a), suggesting that *Fgsp1* is a member of the 12-TM group of MFS transporters. An IncRNA, referred to as *lncRsp1* here, was detected in the RNA sequencing (RNA-Seq) data. It was located +99 bp upstream of *Fgsp1* and had the same direction as the *Fgsp1* gene. The full-length sequences of *Fgsp1* and *lncRsp1* were determined by performing the rapid amplification of cDNA ends (RACE) and directional sequencing (Figure S1a–c). The results indicated that *Fgsp1* had two transcription isoforms, *Fgsp1*-1 and *Fgsp1*-2, which were transcribed from different transcription initiation sites (TISs) and shared the same 3′ ends with poly(A) tails (Figure 1c). The *Fgsp1*-1 transcript isoform was 1975 nucleotides (nt) in length, overlapping with *lncRsp1*-2 by 338 bases, while the *Fgsp1*-2 transcript isoform was 2798 nt in length. The TIS of *Fgsp1*-2 was located upstream of *Fgsp1*-1 and overlapped with the entire sequence of *Fgsp1*-1 (Figure 1b). The *Fgsp1*-2 TIS was only 72 nt apart from that of *lncRsp1*. The 3′ RACE
sequences included IncRsp1-1, 1089 nt in length, whose transcription termination site (TTS) was adjacent to the second exon of Fgsp1-1. IncRsp1-2, another 607 nt-ncRNA transcript isoform sharing the same TIS as IncRsp1-1, was also located upstream of Fgsp1-1 (Figure 1b). Although 5′ RACE results indicated that Fgsp1 has two transcript isoforms, Fgsp1-1 and Fgsp1-2, according to our previous RNA-Seq data of the wild-type strain PH-1, few reads could be mapped onto the 5′ end of the Fgsp1-2 transcript isoform.
in IGV Sashimi plots at different developmental stages, including sexual development stages (0, 7, and 10 days postfertilization [dpf]), conidial stages (3 [mycelial stage] and 12 h after incubation in CMC liquid medium [sporulation stage]) (Figure S2). This suggested that the Fgsp1 gene was mainly transcribed as the Fgsp1-1 transcript isoform at all the different stages. Therefore, we did not consider the effect of Fgsp1-2 transcript on the other transcript isoforms. Using the reverse transcription quantitative PCR (RT-qPCR) method, the expression levels of the two isoforms of Fgsp1 and lncRsp1 were analysed at different developmental stages. The results showed that the expression levels of Fgsp1 and lncRsp1 during sporulation were both higher than those during vegetative growth (Figure 1c). During sexual development, both Fgsp1 and lncRsp1 were significantly up-regulated at 7 dpf compared with their expression at 0 dpf (Figure 1d).

To determine their biological functions, Fgsp1 and lncRsp1 deletion mutants (ΔFgsp1 and ΔlncRsp1) were generated using a homology recombination strategy. The entire lncRsp1 transcriptional region (~977,720 to ~978,636 of chromosome 3) was deleted in the ΔlncRsp1 mutant, while the ΔFgsp1 mutant was generated by deletion of the Fgsp1 transcriptional region (~978,706 to ~980,551 of chromosome 3). The mutants were confirmed by PCR amplification and Southern blotting analysis (Figure S3a–c). Meanwhile, the complementary strains of Fgsp1, ΔFgsp1-C, were constructed to confirm that the defects observed in ΔFgsp1 were derived from the deletion of Fgsp1. In the asexual stage, no obvious differences in hyphal growth, conidiation, or conidial morphology were observed (Figure S4a–c, Table S1). Therefore, neither Fgsp1 nor lncRsp1 is essential for asexual reproduction and hyphal growth in *F. graminearum*.

2.2 Fgsp1 and lncRsp1 are involved in sexual reproduction

When we assayed sexual reproduction on carrot agar medium, normal-shaped perithecia and ascospore cirri were produced from all mutants at 7 and 14 dpf, respectively (Figure 2a). However, compared to that of PH-1, the number of discharged ascospores of the ΔlncRsp1 mutant was significantly decreased. Additionally, a more pronounced defect in ascospore discharge was observed in the ΔFgsp1 mutant (Figure 2b). Subsequently, we examined the ascospores and asci in perithecia sampled at 6, 7, and 10 dpf. At 7 dpf, less than 20% and 40% of asci produced by ΔFgsp1 and ΔlncRsp1 were type I asci, which contain eight spindle-shaped ascospores, while 65% of asci were type I in PH-1 (Figure 2c,d). In ΔFgsp1 and ΔlncRsp1, most of the asci were defective, such as abnormal asci with fewer ascospores (type II) or failed to form asci (type III) (Figure 2c,d). Moreover, ΔFgsp1 and ΔlncRsp1 asci showed significantly reduced glycoside accumulation in comparison with those of the wild type after KI-I$_2$ staining (Figure 2c). These results indicate that Fgsp1 and lncRsp1 are involved in glycoside accumulation, ascus development, and ascospore discharge in *F. graminearum*.

2.3 Fgsp1 and lncRsp1 play crucial roles in the pathogenicity of *F. graminearum*

To investigate the roles of Fgsp1 and lncRsp1 in fungal virulence, pathogenicity assays on flowering wheat heads and wheat coleoptiles were conducted. At 14 days postinoculation (dpi), spikes infected with the ΔFgsp1 and ΔlncRsp1 strains displayed similar symptoms to spikes infected by the wild-type strain (Figure 3a,b). However, when a pathogenicity assay was performed on wheat coleoptiles, the average lengths of the brown lesions caused by the ΔFgsp1 and ΔlncRsp1 mutants were 0.59 ± 0.26 and 0.54 ± 0.26 cm, respectively, whereas those infected by the wild-type strain showed an average lesion length of 1.03 ± 0.09 cm (Figure 3c,d), indicating a significant reduction in the virulence of the ΔFgsp1 and ΔlncRsp1 mutants. Thus, Fgsp1 and lncRsp1 are required for the virulence of *F. graminearum* to wheat coleoptiles.

2.4 Fgsp1 and lncRsp1 negatively regulate DON production

To detect the production of DON, the mycotoxin produced in infected wheat kernels with scab symptoms at 14 dpi was measured in this study. The DON production (over 1200 ng/kernel) was increased significantly in the ΔFgsp1 and ΔlncRsp1 mutants compared with the 435 ng/kernel DON produced by the wild-type PH-1 strain (Figure 4a). We further assayed the DON production in rice medium, as described by Seo et al. (1996). Similar to the results of the wheat grain inoculation assay, more DON production was synthesized in rice medium by ΔFgsp1 and ΔlncRsp1 mutants than by the wild-type strain PH-1 (Figure 4a). These results indicate that Fgsp1 and lncRsp1 negatively regulate DON biosynthesis. To further confirm the results, the expression levels of the DON synthesis genes TRI4, TRI5, TRI6, TRI13, TRI101, and TRI12 were measured in DON-inducing cultures by a RT-qPCR assay. The results demonstrated that the expression levels of TRI4, TRI5, TRI6, and TRI13 were significantly up-regulated in the ΔFgsp1 and ΔlncRsp1 mutants compared to those in the wild type (Figure 4b), which is consistent with the fact that the deletion of Fgsp1 and lncRsp1 produced more DON than the wild-type strain in both wheat kernels and rice medium (Figure 4a). Interestingly, the expression levels of TRI101 and TRI12 were reduced in the Fgsp1 mutant (Figure 4c). As these two genes are not located in the same TRI cluster, Fgsp1 probably modulates them through different pathways. Previous research has suggested that hyphal bulbous structures at the toxigenic stage are related to DON production (Jiang et al., 2016). After being incubated in trichothecene biosynthesis induction (TBI) cultures for 5 days, abundant bulbous hyphal structures were observed in PH-1 and the ΔlncRsp1 mutant. However, bulbous structures were rarely observed in the ΔFgsp1 mutant under the same conditions (Figure 4d). Together, these results showed that Fgsp1 and lncRsp1 function as negative regulators in DON biosynthesis by suppressing the expression of four genes relevant to DON synthesis, TRI4,
TRI5, TRI6, and TRI13. Furthermore, Fgsp1 is also required for DON production-related cellular differentiation.

2.5 | IncRsp1 positively regulates Fgsp1 transcript levels

The above results indicate that the expression patterns of Fgsp1 and IncRsp1 are similar. Their deletion caused similar defects in ascospore discharge, virulence, and DON biosynthesis. Previous studies have shown that IncRNAs could affect the expression of their neighbouring genes (Mercer et al., 2009; Rinn & Chang, 2012). To investigate the regulatory relationship between IncRsp1 and Fgsp1, the Fgsp1 and IncRsp1 transcript level in the wild type, the ΔIncRsp1 mutant, and the ΔFgsp1 mutant were measured during sexual stages (cultures grown on carrot agar at 0 and 7 dpf). The Fgsp1 expression level in the wild-type strain was 105 times higher at 7 dpf than that at 0 dpf, and only six times higher in the ΔIncRsp1 mutant.
Thus, the deletion of IncRsp1 significantly decreased the expression level of Fgsp1 at 7 dpf. Similarly, the expression level of IncRsp1 was also significantly down-regulated by the deletion of Fgsp1 at 7 dpf (Figure 5a). However, the physical location of IncRsp1 raised the concern that the IncRsp1 transcript could be part of the Fgsp1 transcript and the deletion of IncRsp1 could cause the disruption of Fgsp1 itself. To address this concern, IncRsp1 silencing and overexpression vectors were randomly integrated into the wild-type strain to generate IncRsp1-silenced (Si) and -overexpressing (OE) mutant strains, respectively (Figure S5a–d). The expression levels of both IncRsp1 and Fgsp1 were significantly up-regulated in the IncRsp1- overexpressing strains IncRsp1OE-1 and IncRsp1OE-3 (Figure 5b). In contrast, the expression levels of both IncRsp1 and Fgsp1 in the IncRsp1-silenced mutants IncRsp1Si-1, IncRsp1Si-2, and IncRsp1Si-5, were significantly down-regulated compared with the wild-type strain PH-1 (Figure 5c). These results demonstrate that IncRsp1 is a positive regulator of the Fgsp1 gene.

To further analyse the function of IncRsp1 in sexual reproduction, the perithecia and discharged ascopores of IncRsp1-silenced and -overexpressing strains were investigated. During sexual differentiation, normal perithecium development and perithecia with cirri were observed at 7 or 14 dpf, respectively (Figure 5d). However, compared with the wild type, the number of discharged ascopores was significantly decreased in IncRsp1-silenced strains (Figure 5e,f). In contrast, strains with IncRsp1 overexpression exhibited a significantly increased ascopore discharge under the same conditions (Figure 5e,f). These results indicate that IncRsp1 could enhance ascopore discharge by promoting the expression of Fgsp1.

Finally, to confirm that IncRsp1 indeed plays a direct role in sexual reproduction, the complementary strains of ΔIncRsp1, ΔIncRsp1LC (IncRsp1-LC-1 and IncRsp1-LC-2), were constructed in situ (Figure S6a). The two complementary strains, IncRsp1-LC-1 and IncRsp1-LC-2, had a similar sexual reproduction ability to that of the wild-type strain (Figure S6b–d). These results further indicate that IncRsp1 can affect ascopore discharge via regulating the expression of Fgsp1.

3 | DISCUSSION

lncRNAs play crucial regulatory roles in many biological processes in several eukaryotes (Quinn & Chang, 2016; Rinn & Chang, 2012; Sun et al., 2018; Till, Mach, et al., 2018). In filamentous fungi, studies of lncRNAs have been reported in N. crassa (Arthanari et al., 2014; Cemel et al., 2017; Donaldson et al., 2017; Kim et al., 2018). However, to date the biological functions and molecular basis of lncRNA-mediated gene regulation have rarely been studied. Transcriptomes studies have shown a surprising complexity of lncRNAs that are often overlapping with, or interspersed within, multiple coding and noncoding transcripts (Carninci et al., 2005; Ding et al., 2012; Kapranov, 2005). In this study, we discovered and functionally characterized the IncRsp1 located immediately upstream of Fgsp1 and transcribed in the same direction as
Fgsp1. RACE was performed to determine the transcription start and end sites of IncRsp1 and Fgsp1. Transcriptional analysis revealed two transcripts of IncRsp1 (IncRsp1-1 and IncRsp1-2) that were transcribed from the same strand and overlapped with each other (Figure 1b). They were defined as lncRNAs because none of them was predicted to encode a protein. The Fgsp1 gene exhibited two different transcripts of varying lengths (Fgsp1-1 and Fgsp1-2), of which Fgsp1-2 transcription initiated 72 nt upstream of the IncRsp1 TIS (Figure 1b). According to our RNA-Seq data of the wild-type strain PH-1, the expression of Fgsp1-2 was almost undetectable at all stages (Figure S2). Therefore, we thought the main transcript of the gene Fgsp1 was Fgsp1-1 isoform. The expression level of IncRsp1 and Fgsp1 was up-regulated during sexual reproduction, implying that they were involved in sexual development processes (Figure 1d). Indeed, the number of discharged ascospores of ΔIncRsp1 and ΔFgsp1 mutants was less than that of the wild-type strain (Figure 2b). In addition, IncRsp1 and Fgsp1 were also found to be involved in regulating the virulence and DON production of F. graminearum.

The deletion of IncRsp1 also disrupted the expression of Fgsp1-2. However, because the expression level of Fgsp1-2 isoform was almost undetectable at sexual and asexual stages, we did not consider the effect of IncRsp1 deletion on the expression of Fgsp1. In the IncRsp1
FIGURE 5 *IncRsp1* positively regulates the expression of *Fgsp1*. (a) Relative expression levels of *IncRsp1* and *Fgsp1* in different strains were measured by reverse transcription quantitative PCR (RT-qPCR) during the sexual stage. The expression of *Fgsp1* in the wild-type strain PH-1 at 0 days postfertilization (dpf) was set as the control. (b) Relative expression levels of *Fgsp1* and *IncRsp1* in PH-1 and *IncRsp1*-overexpressing (OE) strains were measured by RT-qPCR. (c) Relative expression levels of *Fgsp1* and *IncRsp1* in PH-1 and *IncRsp1*-silenced (Si) strains. In all panels, the results shown represent means ± SD. Bars indicate the SD of three replicates. The expression of *Fgsp1* in the wild-type strain PH-1 at 7 dpf was set as the control. (d) Perithecia and cirrhi of *IncRsp1* Si and *IncRsp1* OE transformants. Bar = 500 μm. (e) The ascospores discharged from 7-day-old mature perithecia. Pictures were taken 18 h after the experiment was initiated. (f) The number of the discharged ascospores. Error bars represent the standard deviations of three repeated experiments. Different letters on the bars indicate statistically significant differences (*p* = 0.01).
deletion mutant only the transcriptional region of IncRsp1 excluding the transcription start site of Fgsp1 was deleted. To further clarify whether deletion of IncRsp1 disrupted the promoter of Fgsp1, the complementary mutant strains of IncRsp1 were constructed in situ, as shown in Figure S6a. The complementary mutants IncRsp1-LC1/LC2 fully restored the ascospore discharge defects of ∆IncRsp1 mutants (Figure S6c), indicating that deletion of IncRsp1 did not disrupt the function of the promoter of Fgsp1-1. Given the modest effect on the Fgsp1-1 transcript level by the disruption of IncRsp1, we also constructed the IncRsp1-silenced strains IncRsp1Si and overexpression strains IncRsp1OE by random integration of the vectors into the wild-type strain (Figure S6a.c). The expression of Fgsp1 was significantly reduced in the IncRsp1Si strains, while it was increased dramatically in the IncRsp1OE strains at the sexual stage (Figure 5b,c). In terms of sexual reproduction, the number of discharged ascospores in IncRsp1Si strains was slightly lower than that of the wild-type strain PH-1 (Figure 5d,f). Consistent with expectations, IncRsp1OE strains enhanced the ability of the ascospore discharge (Figure 5e,f). Although silencing of IncRsp1 might also result in the silence of Fgsp1-2, considering that the expression level of Fgsp1-2 isoform was very low at both sexual and sporulation stages, we did not analyse the effect of the IncRsp1 silencing on Fgsp1-2 expression. At the same time, random integration of the IncRsp1 overexpression vector also avoids affecting the promoter of Fgsp1 due to the close distance between IncRsp1 and Fgsp1. Therefore, the above results suggest that IncRsp1 can affect the sexual development of F. graminearum by regulating the expression of Fgsp1. Lots of studies have confirmed that lncRNAs can regulate the expression of their neighbouring coding genes via trans or cis regulation (Engreitz et al., 2016; Yin et al., 2015). In our study, considering exogenous IncRsp1 was randomly integrated into the F. graminearum genome, we concluded that IncRsp1 is a crucial trans-acting regulator of Fgsp1 transcription.

In F. graminearum, DON was wildly considered as an important virulence effector (Chen et al., 2019). In this study, the deletion of Fgsp1 and IncRsp1 caused a significant increase in DON production, which indicated that Fgsp1 and IncRsp1 negatively regulate DON production (Figure 4a). Previous work has found that the expression level of TRI genes was associated with DON production (Chen et al., 2019). In this study, the expression level of four TRI genes (TRI4, TRI5, TRI6, and TRI13) was significantly up-regulated in ∆Fgsp1 and ∆IncRsp1 mutants, which was consistent with the results of the DON production assay. However, TRI12 and TRI101, known as self-defence genes for mycotoxin in Fusarium spp. (Alexander et al., 1999; Garvey et al., 2008; Menke et al., 2012), reduced expression levels in ∆Fgsp1 mutant (Figure 4c). This result indicated that Fgsp1 might play divergent roles in the DON synthesis pathway. Furthermore, the deletion of Fgsp1 affected the normal hyphal bulbous structure formation in DON-inducing medium, but no obvious difference was observed between the ∆IncRsp1 mutant and wild-type strains (Figure 4d), suggesting that the functional relationship between Fgsp1 and IncRsp1 varies in regulating DON biosynthesis. It is worth noting that although DON biosynthesis was increased in the Fgsp1 deletion mutant, it rarely formed the hyphal bulbous structures associated with DON production. Previous research has found that, unlike Fgsp1, the tri6 pde2 mutant fails to produce DON but has increased bulbous structures (Jiang et al., 2016). As the hyphal bulbous structures formed before TRI gene transcription are closely related to DON production in F. graminearum (Jonkers et al., 2012), the absence of bulbous structures caused by the deletion of Fgsp1 seemed to be independent of TRI genes. However, further studies are needed to identify the underlying regulatory mechanisms.

Sexual reproduction is an important developmental process in the disease cycle of FHB. Ascospores, which are forcibly discharged into air from perithecia, play a crucial role in fungal survival and disease propagation (Guenther & Trail, 2005; Trail et al., 2002). Our data showed that the ∆IncRsp1 and ∆Fgsp1 mutants produced more abnormal asci and significantly reduced ascospore discharge and glycogen accumulation (Figure 2b,c), indicating that IncRsp1 and Fgsp1 are essential for sexual reproduction in F. graminearum. Previous work has demonstrated that the turgor pressure within the extended asci is necessary for the forcible discharge of ascospores (Trail, 2007). The build-up of ion fluxes, especially in K+, Na+, Cl−, and Ca2+ ion channels and glycogen accumulation, is tightly related to the generation of turgor pressure (Min et al., 2010; Trail et al., 2002, 2005). Thus, it is likely that the reduced number of discharged ascospores observed in IncRsp1 and Fgsp1 deletion mutants is due to the developmental defects of asci and the decrease in glycogen accumulation.

In conclusion, our results indicate that IncRsp1 and Fgsp1 are important for the sexual reproduction, DON production, and pathogenesis of F. graminearum, while IncRsp1 plays a crucial regulatory role in the expression of Fgsp1. Although the underlying mechanism remains undefined, our findings not only help to further understand the molecular mechanism of the sexual reproduction of F. graminearum but also promote the understanding of the role of lncRNA in plant pathogenic fungi.

4 | EXPERIMENTAL PROCEDURES

4.1 | Fungal strains and culture conditions

The F. graminearum strain PH-1 (NRRL 31084) (Trail & Common, 2000) and all mutant strains were cultured on potato dextrose agar (PDA) plates at 25°C in the dark. The colony morphology, growth rate, and conidial germination were measured on PDA, minimum medium (MM), and complete medium (CM) plates incubated at 25°C for 3 days. For conidiation tests, the conidia were induced in carboxymethylcellulose (CMC) liquid culture medium (1 g NH43, 1 g KH4PO4, 0.5 g MgSO4.7H2O, 1 g yeast extract, 15 g CMC, and 1 L water). The 5-mm mycelial agar blocks were incubated in 4 ml of CMC medium at 25°C for 5 days in a rotary shaker (200 rpm). Conidia were collected in distilled water by filtration. The conidial morphology was observed under a fluorescence microscope. The number of conidia produced by each strain was counted using a haemocytometer (Cappellini & Peterson, 1965). Conidial germination rates were assayed as described previously (Zhou et al., 2010).
The conidial suspension (10^6 conidia/ml) was harvested and then inoculated into yeast extract peptone dextrose (YPED) (0.3% yeast extract, 1% peptone, 2% dextrose) liquid medium at 25°C in a shaker (200 rpm). The conidial germination was observed after 6 h of incubation. The sexual development, including perithecia formation, cirrus production, ascus development, and ascospore discharge, was performed as previously described (Wang et al., 2021; Zeng et al., 2018). All strains were grown on carrot agar plates under near-ultraviolet light at 25°C for 7 days. Perithecia formation and cirrus production were observed 1–2 weeks after fertilization. Perithecia and cirri samples were observed with an Olympus IX71 microscope and Olympus cellsens standard camera software. The glycogen staining of asc was performed as described previously (da Rocha Campos & Costa, 2010). Ascospores discharge assays were also performed as previously described (Trail et al., 2002). Carrot agar (10 mm in diameter) covered with mature perithecia cultures was cut in half and placed inverted on a coverslip in a humidity box for 18 h, and the images were captured using a camera. The number of discharged ascospores was counted as follows. Ascospores were collected by placing the carrot agar upside down for 10 h and allowing the mature perithecia to discharge ascospores on Petri dish covers. Ascospores were completely harvested from the Petri dish lids in distilled water and the number of ascospores was counted under a microscope.

4.2 Plant infection, DON production assays, and expression levels of TRI genes

Pathogenicity assays on wheat spikes and coleoptiles were conducted as described previously (Hou et al., 2002; Seong et al., 2005; Wu et al., 2005). A 2-µl aliquot of conidial suspension (5 x 10^5 conidia/ml in sterile distilled water) of each strain was used to inoculate each of 20 coleoptiles of 3-day-old wheat seedlings with three replicates in a growth chamber. Two microlitres of 0.01% Tween 20 solution was inoculated at 7 dpi. Virulence assays on flowering wheat heads were performed as previously described (Hou et al., 2002). To this end, 10 µl of 10^5 conidia/ml in sterile distilled water) of each strain was used to inoculate each of 20 coleoptiles of 3-day-old wheat seedlings with three replicates in a growth chamber. Two microlitres of 0.01% Tween 20 solution was inoculated as a control. The lesion size of each strain was counted and analysed at 7 dpi. Virulence assays on flowering wheat heads were performed as previously described (Hou et al., 2002). To this end, 10 µl of 10^5 conidia/ml suspension, collected from 5-day-old CMC cultures, was inoculated onto the fifth flowering spikelet of wheat variety Zhengmai 9023. The experiment was carried out with three independent replicates. The disease index for each strain was calculated as described by Luo et al. (2014). The number of symptomatic spikelets was counted and images were captured 14 days after inoculation.

To measure the DON production, the infected wheat kernels with typical FHB symptoms were harvested for DON assays as previously described (Tian et al., 2020). DON production in rice cultures was assayed as described (Bluhm et al., 2007; Seo et al., 1996). To determine the expression levels of TRI genes (TRI4, TRI5, TRI6, TRI12, TRI13, TRI101), conidia of each strain were inoculated into TBI medium (Gardiner et al., 2009) and cultured for 3 days at 25°C in a shaker (200 rpm). Mycelia of each sample were harvested and total RNA was extracted. The expression levels of TRI genes were determined by RT-qPCR assays with the primers listed in Table S2. The experiment was repeated three times independently.

4.3 RT-qPCR detection of IncRsp1 and Fgsp1

Total RNA was isolated using the TRIzol reagent (Invitrogen) and the first-strand cDNA synthesis was carried out by the EasyScript One-step gDNA removal and cDNA Synthesis SuperMix (Transgen Biotech), according to the manufacturer’s instructions. qPCR was performed on a CFX96 Real-Time PCR Detection System (Bio-Rad) with the iTaq Universal SYBR Green Supermix (Bio-Rad). In the conidia stage, the total RNA samples of the wild type were extracted at 3 h (mycelial stage) and 24 h (sporulation stage) after incubation in CMC liquid medium. During sexual development, the RNA samples were isolated from 7-day-old carrot agar plate hyphae (0 dpf) and 7-day-old perithecia (7 dpf). The F. graminearum β-tubulin gene (FGSG_09530) was used as an endogenous reference and gene-specific primers (GSP) were used to detect mRNA and lncRNA, respectively. The relative expression of each gene was calculated with the 2^-ΔΔCT method. RT-qPCR data from three biological replicates for each sample were calculated from the mean ± SD (Livak & Schmittgen, 2001). All the primer sequences are provided in Table S2.

4.4 RACE-PCR assays

Using 5′- and 3′-RACE experiments analysing the transcriptional start and end sites of IncRsp1 and Fgsp1, the sequence was determined by RACE-PCR using the SMARTer RACE 5′/3′ Kit (Clontech). All the RACE primers are provided in Table S2.

4.5 Construction of the Fgsp1 and IncRsp1 deletion mutants and complementation strains

The strategy for Fgsp1 and IncRsp1 deletion is illustrated in Figure S3. We used a split-marker system, replacing the two genes with the hygromycin resistance gene (hph) and the gentamicin resistance cassette (gen), respectively (Catlett et al., 2003; Zeng et al., 2018). Transformants were selected using the PDA plates amended with 225 µg/ml hygromycin B (Sigma-Aldrich) or 300 µg/ml gentamicin (Sigma-Aldrich). The Fgsp1 and IncRsp1 deletion mutants were identified by PCR with the relevant primers listed in Table S2 and further confirmed by Southern blot analysis (Leslie & Summerell, 2006).

For Southern blotting, the genomic DNA of PH-1 and mutants was extracted according to the Fusarium laboratory manual and then digested with XhOl. Southern blotting was performed using the Amersham AlkPhos Direct Labeling and Detection System (GE Healthcare). The probe primers are listed in Table S2 and the probes were labelled with alkaline phosphatase.

For complementation assays, the Fgsp1 fragment including its promoter region was amplified with primers Fgsp1-CF and Fgsp1-CR,
and cloned into the same sites of vector neoP3300 to generate the Fgps1 complementary vector (Yang et al., 2016). The vector was transformed into the ΔFgps1 mutant by random integration, and the resultant strain was designated as ΔFgps1-C. The complementation strategy of IncRsp1 is illustrated in Figure S6a. The complementary fragments were constructed by fusing the hygromycin resistance gene and full-length IncRsp1 by double-joint PCR according to a previously described method (Liu et al., 2020). The fusion constructs were transformed into the ΔIncRsp1 mutant, as described above, except that hygromycin was used as screening agent.

4.6 | Generation of the IncRsp1Si and IncRsp1OE transformants

The IncRsp1 RNAi vector construction was carried out as described previously (Yu et al., 2012; Zhu et al., 2013). To amplify the sense and antisense fragments of IncRsp1, the primers IncRsp1Si1F/IncRsp1Si1R (sense fragment) and IncRsp1Si2F/IncRsp1Si2R (antisense fragment) were used. The amplified IncRsp1 sense and antisense fragments were subsequently ligated into pCIT to generate a new vector. The newly constructed vector was then digested with XhoI and SacI to obtain the repeat fragment, then subsequently ligated with the pCH vector to construct pSi IncRsp1 silencing vector, which was then transformed into the wild-type strain PH-1 by random integration, as previously reported (Yu et al., 2012). IncRsp1-overexpressing strains were generated using the pcETH2 vector. The PCR amplification and ligation of the full-length IncRsp1 into the pcETH2 vector was carried out. Then, the vector was transformed into the wild-type strain PH-1 using the Agrobacterium-mediated transformation system by random integration, as described by Yu et al. (2012). The IncRsp1 transcript level in silenced strains and overexpressing strains was determined by RT-qPCR.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foundation of China (31301614 and 31901840).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Jiasen Cheng https://orcid.org/0000-0003-0040-2360
Yang Lin https://orcid.org/0000-0003-3942-7063

REFERENCES

Alexander, N.J., McCormick, S.P. & Hohn, T.M. (1999) TR112, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Molecular and General Genetics, 261, 977–984.

Arthanari, Y., Heintzen, C., Griffiths-Jones, S. & Crosthwaite, S.K. (2014) Natural antisense transcripts and long non-coding RNA in Neurospora crassa. PLoS One, 9, e91353.

Audenaert, K., Vanheule, A., Hofte, M. & Haesaert, G. (2014) Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins, 6, 1–19.

Belden, W.J., Lewis, Z.A., Selker, E.U., Larios, J.I. & Dunlap, J.C. (2011) CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genetics, 7, e1002166.

Bluhm, B.H., Zhao, X., Flaherty, J.E., Xu, J.R. & Dunkle, L.D. (2007) RAS2 regulates growth and pathogenesis in Fusarium graminearum. Molecular Plant-Microbe Interactions, 20, 627–636.

Cappellini, R.A. & Peterson, J.L. (1965) Macroconidium formation in Neurospora crassa: gene isolation and recombination for efficient targeted deletion of fungal genes. Fungal Genetics Reports, 50, 9–11.

Catlett, N.L., Lee, B.-N., Yoder, O.C. & Turgeon, B.G. (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Annual Review of Phytopathology, 57, 35–39.

Cavender, B., Hamam, A., Lew, R.R. & Trail, F. (2011) Mid1, a mechano-sensitive calcium ion channel, affects growth, development, and ascospore discharge in the filamentous fungus Gibberella zeae. Eukaryotic Cell, 10, 832–841.

Cemel, I.A., Ha, N., Schermann, G., Yonekawa, S. & Brunner, M. (2017) The coding and noncoding transcriptome of Neurospora crassa. BMC Genomics, 18, 978.

Chen, Y., Kistler, H.C. & Ma, Z. (2019) Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annual Review of Phytopathology, 57, 15–39.

Choquer, M., Lee, M.H., Bau, H.J. & Chung, K.R. (2007) Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Letters, 581, 489–494.

Coleman, J.J. & Mylonakis, E. (2009) Efflux in fungi: la piece de resistance. PLoS Pathogens, 5, e1000486.

Desjardins, A.E. (1996) Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Molecular Plant-Microbe Interactions, 9, 775–781.

Ding, J., Lu, Q., Ouyang, Y., Mao, H., Zhang, P., Yao, J. et al. (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences of the United States of America, 109, 2654–2659.

Donaldson, M.E., Ostrowski, L.A., Goulet, K.M. & Saville, B.J. (2017) Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression. BMC Genomics, 18, 340.

Donaldson, M.E. & Saville, B.J. (2013) Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis. Molecular Microbiology, 89, 29–51.

Engreitz, J.M., Haines, J.E., Perez, E.M., Munson, G., Chen, J., Kane, M. et al. (2016) Local regulation of gene expression by IncRNA promoters, transcription and splicing. Nature, 539, 452–455.

Gardiner, D.M., Kazan, K. & Manners, J.M. (2009) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genetics and Biology, 46, 604–613.

Garvey, G.S., McCormick, S.P. & Rayment, I. (2008) Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating Fusarium head blight. Journal of Biological Chemistry, 283, 1660–1669.

Geng, Z., Zhu, W., Su, H., Zhao, Y., Zhang, K.Q. & Yang, J. (2014) Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in...
Trail, F., Gaffoor, I. & Vogel, S. (2005) Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology, 42, 528–533.

Trail, F., Xu, H., Loranger, R. & Gadoury, D. (2002) Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia, 94, 181–189.

Wang, C., Zhang, S., Hou, R., Zhao, Z., Zheng, Q., Xu, Q. et al. (2011) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathogens, 7, e1002460.

Wang, J., Zeng, W., Xie, J., Fu, Y., Jiang, D., Lin, Y. et al. (2021) A novel antisense long noncoding RNA participates in asexual and sexual reproduction by regulating the expression of GzmE1 in Fusarium graminearum. Environmental Microbiology, 23, 4939–4955.

Wu, A.B., Li, H.P., Zhao, C.S. & Liao, Y.C. (2005) Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia, 160, 75–83.

Xue, Z., Ye, Q., Anson, S.R., Yang, J., Xiao, G., Kowbel, D. et al. (2014) Transcriptional interference by antisense RNA is required for circadian clock function. Nature, 514, 650–653.

Yamashita, A., Shichino, Y. & Yamamoto, M. (2016) The long non-coding RNA world in yeasts. Biochimica et Biophysica Acta, 1859, 147–154.

Yang, X., Cui, H., Cheng, J., Xie, J., Jiang, D., Hsiang, T. et al. (2016) A HOPS protein, CmVps39, is required for vacuolar morphology, autophagy, growth, conidigenesis and mycoparasitic functions of Coniothyrium minitans. Environmental Microbiology, 18, 3785–3797.

Yen, M.R., Chen, J.S., Marquez, J.L., Sun, E.I. & Saier, M.H. (2010) Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. Methods in Molecular Biology, 637, 47–64.

Yin, Y., Yan, P., Lu, J., Song, G., Zhu, Y., Li, Z. et al. (2015) Opposing roles for the IncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell, 16, 504–516.

Yu, Y., Jiang, D., Xie, J., Cheng, J., Li, G., Yi, X. et al. (2012) Ss-Si2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum. PLoS One, 7, e34962.

Yun, Y., Liu, Z., Yin, Y., Jiang, J., Chen, Y., Xu, J.R. et al. (2015) Functional analysis of the Fusarium graminearum phosphatome. New Phytologist, 207, 119–134.

Zeng, W., Wang, J., Wang, Y., Lin, J., Fu, Y., Xie, J. et al. (2018) Dicer-like proteins regulate sexual development via the biogenesis of perithecium-specific microRNAs in a plant pathogenic fungus Fusarium graminearum. Frontiers in Microbiology, 9, 818.

Zhang, L., Li, B., Zhang, Y., Jia, X. & Zhou, M. (2016) Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. Molecular Plant Pathology, 17, 16–28.

Zhou, X., Heyer, C., Choi, Y.E., Mehrabi, R. & Xu, J.R. (2010) The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genetics and Biology, 47, 143–151.

Zhu, W., Wei, W., Fu, Y., Cheng, J., Xie, J., Li, G. et al. (2013) A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One, 8, e53901.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Wang, J., Zeng, W., Cheng, J., Xie, J., Fu, Y., Jiang, D. & et al (2022) IncRsp1, a long noncoding RNA, influences FgsP1 expression and sexual reproduction in Fusarium graminearum. Molecular Plant Pathology, 23, 265–277. https://doi.org/10.1111/mpp.13160