Analysis of regional development imbalances quadrant has a very important meaning in order to see the extent of achievement of the development of certain areas as well as the difference. Factors that could be used as a tool to measure the inequality of development is to look at the average growth and development contribution of each sector of Gross Regional Domestic Product (GRDP) based on the analyzed region and the reference region. This study discusses the development of a model to determine the regional development imbalances using fuzzy approach system, and the rules of typology Klassen. The model is then called fuzzy-Klassen. Implications Product Mamdani fuzzy system is used in the model as an inference engine to generate output after defuzzyfication process. Application of MATLAB is used as a tool of analysis in this study. The test a result of Kota Cilegon is shows that there are significant differences between traditional Klassen typology analyses with the results of the model developed. Fuzzy model-Klassen shows GRDP sector inequality Cilegon City is dominated by Quadrant I (K4), where status is the sector forward and grows exponentially. While the traditional Klassen typology, half of GRDP sector is dominated by Quadrant IV (K4) with a
sector that is lagging relative status.

References

1. Fachrurrazy, 2009, Analisis Penentuan Sektor Unggulan Perekonomian Wilayah Kabupaten Aceh Utara Dengan Pendekatan Sektor Pembentuk PDRB. Tesis, Sekolah Pascasarjana - Universitas Sumatera Utara. In bahasa.
2. Sudarti, 2009. Penentuan Leading Sektor Pembangunan Daerah Kabupaten/Kota Di Jawa Timur, Jurnal HUMANITY, Volume V, Nomor 1, September 2009: 68 – 79. In bahasa.
3. Firmansyah, Iman dan Silvia Firda Utami, 2013. Tsukamoto Fuzzy Logic Application in Production Planning at PT. Kimia Farma (Persero) Tbk. Plant Bandung Indonesia, Proceedings The 2nd International Conference On Global Optimization and Its Applications 2013 (ICoGOIA2013)
4. Vasant, I. Elamvazuthi, P. and J. Webb, 2009. The Application of Mamdani Fuzzy Model for Auto Zoom Function of a Digital Camera, (IJCSIS) International Journal of Computer Science and Information Security, Vol. 6, No. 3, 2009, pp. 244 – 249
5. Nasr, A. Saberi., M. Rezaei and M. Dashti Barmaki, 2012. Analysis of Groundwater Quality using Mamdani Fuzzy Inference System (MFIS) in Yazd Province, Iran, International Journal of Computer Applications (0975 – 8887), Volume 59– No.7, December 2012, pp. 45 – 53
6. Alavi, N, 2012. Date Grading Using Rule-Based Fuzzy Inference System, Journal of Agricultural Technology 2012 Vol. 8(4), pp. 1243-1254
7. Revathi,P., M. M. Sahana and Vydeki Dharmar, 2013. Cross Layer Detection of Wormhole In MANET Using FIS, Journal of ITSI Transactions on Electrical and Electronics Engineering (ITSI-TEEE), Volume -1, Issue -3, 2013, pp. 75 – 79
8. Harikishan, ANVBS., and P.Srinivasulu, 2013. Intrusion Detection System Using Fuzzy Inference System, International Journal of Computer & Organization Trends –Volume 3 Issue 8 – Sep 2013, pp. 345 - 352
9. Yadav, Meenakshi and Kalpna Kashyap, 2013. Edge Detection Through Fuzzy Inference System, International Journal Of Engineering And Computer Science, Volume 2 Issue 6 June, 2013, pp. 1855-1860
10. Fallah-Ghalhary, G.A., Mousavi-Baygi, M and Nokhandan, M.H, 2009. Annual Rainfall Forecasting by Using Mamdani Fuzy Inference System, Research Journal of Environmental Sciences 3 (4) : 400-413
11. Das, Tarun Kumar and Das, Y, 2013. Design of A Room Temperature And Humidity Controller Using Fuzzy Logic, American Journal of Engineering Research (AJER), Volume-02, Issue-11, pp-86-97
12. Tan, Kok Khiang., Khalid, N and Yusof, R, 1996. Intelligent Traffic Lights Control By Fuzzy Logic, Malaysian Journal of Computer Science, Vol. 9 No. 2, December 1996, pp. 29-35.
13. Wang, Li-Xin, 1995, A Course in Fuzzy Systems and Control, Prentice-Hall International, Inc

Index Terms
Computer Science Fuzzy Systems
Keywords

Inequality of regional development, GDP, Klassen typology, fuzzy systems, Mamdani product