Notch signaling in the regulation of skeletal muscle stem cells

Shin Fujimaki¹² and Yusuke Ono¹³*

¹Musculoskeletal Molecular Biology Research Group, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
²Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
³Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan

Received: May 11, 2018 / Accepted: May 17, 2018

Abstract
Resident muscle stem cells are satellite cells that are responsible for the postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In healthy adult muscle, satellite cells are mitotically quiescent, but are activated in response to stimulation such as muscle injury. Once activated, these cells then proliferate, with the majority of satellite cell progeny undergoing myogenic differentiation while the other cells return to a quiescent state and self-renew. Notch signaling is a highly conserved pathway that controls stem cell function in a variety of tissues including skeletal muscle. In this review, we discuss how Notch signaling acts as a regulator of the satellite cell pool and their fate decisions. Recent mouse genetic studies revealed that Notch signaling is essential for maintaining the satellite cell quiescent state in uninjured muscle, while it also allows for population expansion and promotes self-renewal when satellite cells are activated. Notably, diminished Notch activity in satellite cells is associated with muscle disorders such as age-related sarcopenia and muscular dystrophy. This review provides an overview of the multiple aspects of Notch signaling in muscle development and regeneration, and highlights recent studies that address its role in physiological and pathological conditions within muscle.

Keywords: satellite cells, skeletal muscle, Notch1, Notch2

Introduction
Skeletal muscle satellite cells are the residential stem cells that play pivotal roles in the postnatal maintenance, growth, repair, and regeneration of skeletal muscle. Normally, satellite cells are mitotically quiescent in healthy adult muscle. However, these cells are activated in response to stimulation such as exercise-induced muscle injury. Activated satellite cells become myoblasts and then proliferate extensively. The majority of proliferated myoblasts then undergo myogenic differentiation to form myofibers, while the other cells return to a quiescent state to self-renew and maintain the stem cell pool. The mechanism by which satellite cells self-renew is carefully controlled since the total number of satellite cells is relatively constant even after repeated muscle damage and regeneration.

Notch signaling is highly conserved and plays important roles in many biological events including survival, proliferation, and differentiation in various tissues in both development and regeneration. Four Notch receptors (Notch1, Notch2, Notch3, and Notch4) and five Notch ligands (Jagged1, Jagged2, delta-like 1 [Dll1], Dll3, and Dll4) have been identified in mammals. Notch receptors are transmembrane proteins comprised of an extracellular domain, a transmembrane domain, and an intracellular domain (NICD). Notch signaling is activated when Notch receptors bind to their ligands, which facilitates the subsequent proteolytic cleavage of the Notch receptors. The first cleavage is mediated by a disintegrin and metalloproteinase (ADAM) and the second cleavage is mediated by γ-secretase, resulting in the release of NICD. The NICD then translocates into the nucleus and interacts with the recombining binding protein-J (RBP-J), a DNA-binding protein that acts as a key mediator of Notch signaling. In the absence of Notch signals, RBP-J is associated with corepressors and inhibits the transcription of target genes including Hairy/enhancer of split (Hes) and Hes-related with YRPW motif protein (Hey) family genes, whereas NICD displaces the corepressors from RBP-J, leading to transcriptional activation. This review focuses on the diverse roles of Notch signaling in muscle stem cell function in development as well as regeneration in adults, and describes the relationship between Notch dysfunction and muscle disorders.

Notch signaling in muscle development
Notch signaling during muscle development has been studied extensively. The mutation of Notch signaling...
components leads to perturbed somitogenesis in mice and humans. In the absence of RBP-J, muscle progenitor cells in the limbs and branchial arches undergo precocious myogenic differentiation, resulting in a depletion of the progenitor pool and failed muscle growth during development. RBP-J null muscle progenitor cells are also mislocalized outside their niche in developing muscle. Constitutive activation of Notch signaling is sufficient to autonomously maintain muscle progenitor cells, but is abrogated to produce differentiating cells during muscle development. The Notch ligand Dll1 is required for maintaining the muscle progenitor pool during the development of muscles in the head and trunk. Intriguingly, during muscle development in chick embryos, Dll1 is expressed in a subpopulation of neural crest cells that transiently activates NOTCH signaling in muscle stem cells in somites to establish a balance between undergoing myogenic differentiation and maintaining the muscle progenitor pool, indicating that the Dll1-expressing neural crest cells control early muscle formation.

Notch signaling in adult muscle regeneration

Notch signaling is crucial for not only muscle development, but also for the functioning of satellite cells in adult muscle. Quiescent and activated satellite cells uniformly express the paired box protein Pax7, whereas only activated cells express MyoD, a key transcription factor for the progression of the myogenic lineage and differentiation. Although the majority of the Pax7+MyoD+ activated satellite cells proliferate, then downregulate Pax7, maintain MyoD, and undergo myogenic differentiation, others maintain their Pax7 expression, downregulate MyoD, and withdraw from the cell cycle to return to a quiescent state. Accumulating evidence suggests that the Notch signaling pathway is crucial to maintain the satellite cell pool in adult muscles. Forced activation of Notch1 in cultured satellite cells has been shown to promote proliferation and inhibit myogenic differentiation. Pharmacological inhibition of Notch activation with a γ-secretase inhibitor results in an increase in the Pax7 MyoD+ cell population committed myogenic differentiation and a decrease in the Pax7’MyoD’ self-renewed population in vitro. Double-gene ablation of the Notch effector genes Hey1 and HeyL leads to a gradual decrease in the number of Pax7’MyoD’ proliferative satellite cells, but a remarkable increase in Pax7 MyoD’ differentiating cells in limb.

Fig. 1 Notch signaling cascade

Notch signaling is highly conserved and plays important roles in many biological events including survival, proliferation, and differentiation in a variety of tissues in both development and regeneration. Notch receptors are transmembrane proteins comprised of an extracellular domain (NECD), a transmembrane domain, and an intracellular domain (NICD). Notch signaling is activated when Notch receptors bind to their ligands, which facilitates the subsequent proteolytic cleavage of the Notch receptors. This proteolytic cleavage is mediated by a disintegrin and metalloprotease (ADAM) and γ-secretase, resulting in the release of NICD. Released NICD then translocates into the nucleus and interacts with the recombining binding protein-J (RBP-J), a DNA-binding protein that acts as a key mediator of Notch signaling, leading to the transcription of target genes including Hairy/ enhancer of split (Hes) and Hes-related with YRPW motif protein (Hey) family genes.
muscle in vivo39. Furthermore, quiescent satellite cells lacking \textit{RBP-J} undergo premature differentiation without self-renewal, resulting in a subsequent depletion of the satellite cell pool40,41. Satellite cells express three Notch receptors: Notch1, Notch2, and Notch336,37,42,43. Of the three receptors, Notch1 and Notch2 are the most homologous, with Notch3 having a structural difference in that it lacks the transactivation domain44. Global disruption of either the \textit{Notch1} or \textit{Notch2} gene in mice resulted in early embryonic lethality24,45-47, while mice lacking \textit{Notch3} are viable and fertile, but exhibit a reduction in arteriogenesis of vascular smooth muscle cells in distal arteries48. In adult skeletal muscle, \textit{Notch1} and \textit{Notch2} genes were expressed in all satellite cells, while the \textit{Notch3} gene was only expressed in the Pax7+Myf5− subpopulation (named “satellite stem cell”)37. Thus, Notch3 was considered to play an important role in the self-renewal of the Pax7+Myf5 satellite cell population37. Interestingly, however, genetic disruption of \textit{Notch3} in mice enhanced satellite cell proliferative ability and increased muscle growth following repetitive muscle injuries16. This may be due to an increased number of satellite cells after repeated muscle injury in \textit{Notch3} null mice40, suggesting that Notch3 might negatively regulate satellite cell self-renewal. Conversely, a recent study has demonstrated that Notch3 knockdown by shRNA increased the Pax7 MyoD+ differentiating cell population, but decreased both Pax7 MyoD− proliferative and Pax7 MyoD self-renewed cell populations49. This discrepancy may be explained by the difference in experimental models. Further studies will be necessary to better understand the precise function of Notch3 in satellite cells in adult muscle. Indeed, additional experiments using conditional knockout mouse models for Notch3 may be particularly informative.

We have recently characterized the role of Notch1 and Notch2 in satellite cells in adult muscle50 by generating tamoxifen-inducible satellite cell-specific \textit{Notch1} and/or \textit{Notch2} knockout mice by crossing \textit{Notch1}-floxed51 or \textit{Notch2}-floxed47 mice with Pax7CreERT2 mice52. We showed that the number of satellite cells per myofiber was reduced in \textit{Notch2}-(N2-KO) but not \textit{Notch1}-inactivated (N1-KO) mice, while satellite cells with both \textit{Notch1} and \textit{Notch2} knocked out (DKO) led to an almost complete depletion of the quiescent satellite cell population50. This may be due to the premature activation of quiescent satellite cells as an abnormal upregulation of MyoD was detected in DKO satellite cells. Thus, our results revealed that Notch1 and Notch2 coordinately maintain the quiescent state of satellite cells by preventing their activation. We next examined the effect of Notch1 and/or Notch2 deletion in activated satellite cells. The proportion of cells positive for Ki67, a proliferation marker, decreased significantly following the inactivation of either \textit{Notch1} or \textit{Notch2}, with this number being the lowest in DKO satellite cells. Correspondingly, N1-KO, N2-KO, and DKO satellite cells all displayed an increase in the differentiating cell population and a reduction in the self-renewed cell population50. Our findings indicate that Notch1 and Notch2 prevent myogenic differentiation and promote self-renewal when satellite cells are activated in adult muscle (Fig. 2). These results are in line with the recent studies describing the loss of self-renewal ability in Hey1/HeyL double-inactivated satellite cells39 and the acceleration of satellite cell self-renewal by constitutive Notch1 activation53. Altogether, a “Notch1/Notch2-RBP-J-Hey1/HeyL” axis is likely to be a predominant Notch signaling pathway that maintains the stem cell pool in adult skeletal muscle.

Fig. 2 Roles of Notch1 and Notch2 in satellite cells during myogenic progression

In healthy adult muscle, satellite cells are mitotically quiescent, but are activated in response to stimulation, including muscle injury. Activated cells become myoblasts and then proliferate extensively, with the majority of the satellite cell progeny undergoing myogenic differentiation to provide myonuclei for newly formed myofibers. Satellite cells are able to return to a quiescent state to self-renew and maintain the stem-cell pool. Notch1 and Notch2 coordinately keep satellite cells quiescent in adult muscle. Once activated, Notch1 and Notch2 prevent premature myogenic differentiation and promote self-renewal to replenish the stem-cell pool.
Notch signaling in skeletal muscle disorders

Satellite cell dysfunction has been shown in muscle diseases such as age-related sarcopenia. The number of satellite cells and their function decline with age, which may be caused by decreased Notch activity with aging. For example, aged muscle loses the ability to regenerate following muscle injury due to an insufficient upregulation of Delta ligand in regenerating fibers and a subsequent reduction in Notch signaling in satellite cells. Importantly, Conboy et al. demonstrated that satellite cells in aged mice could be rejuvenated when exposed to serum from young mice by heterochronic parabiosis, which leads to an upregulation of Delta expression in the regenerative niche and restored Notch signaling. Aged muscle produces excessive amounts of transforming growth factor (TGF)-β, which activates Smad3 in satellite cells and results in failed population expansion and impaired muscle regeneration. Forced Notch activation restores muscle regeneration by inhibiting the TGF-β-Smad3-dependent up-regulation of the cyclin-dependent kinase inhibitors, p15, p16, p21, and p27 in aged satellite cells. This rejuvenation effect could be observed in human muscle stem cells, where NOTCH expression is downregulated. Indeed, the dysfunction of satellite cells with aging may be caused by an insufficiency in Notch signaling.

Recent studies have also shed light on the relationship between aberrant Notch signaling and the development of muscle diseases including muscular dystrophy, which is characterized by progressive muscle weakness and degeneration. A missense mutation in POGLUT1 (protein O-glucosyltransferase 1), which encodes an enzyme that posttranslationally modifies Notch, is responsible for muscular dystrophy with reduced Notch signaling and the subsequent loss of satellite cells. This mutation attenuates Notch signaling in satellite cells by reducing the activity of O-glucosyltransferase, and consequently, myoblasts isolated from patients exhibit a proliferation defect and precocious differentiation; these patients also have a decreased pool of reserve cells. Early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD) is a rare congenital muscle disease, caused by mutations in the multiple epidermal growth factor-like protein 10 (MEGF10), which is involved in satellite cell function. Remarkably, Notch1 interacts with Mefg10, but this interaction is impaired by the pathogenic mutation of MEGF10, indicating that Mefg10 regulates satellite cell function by mediating, at least in part, the Notch signaling pathway, thereby contributing to the pathogenesis of EMARDD. In mdx mice, a well-established model for Duchenne muscular dystrophy (DMD), the self-renewal ability of satellite cells seems to decline as the disease progresses. Notch signaling is also insufficient in mdx satellite cells, concomitant with the reduced expression of Notch1, Notch3, Jag1, Hey1, and HeyL, which may contribute to the depletion of satellite cells in DMD. Furthermore, whole-genome sequencing and transcriptome analyses identified that the Jagged1 ligand is expressed at relatively high levels in muscles of dogs with the mild DMD phenotype, as compared with severely affected DMD dogs. Moreover, the pathological phenotype of DMD is ameliorated by the overexpression of Jagged1 in a zebrafish model. Collectively, these findings suggest that dysfunction of Notch signaling in satellite cells is associated with the pathogenesis of muscle diseases, and therefore selective targeting for Notch signaling may be a therapeutic option to treat muscular diseases.

Concluding remarks

The present review described the roles of Notch signaling in the muscle stem cells in postnatal muscle growth and regeneration as well as in embryonic myogenesis. Notch signaling is crucial for maintaining the quiescent state of satellite cells in adult muscle, while it promotes self-renewal and inhibits myogenic differentiation when satellite cells are activated. Notch receptors may vary in their expression and their regulation of satellite cell function. The transcription factor forkhead box O-3 (FOXO3) promotes satellite cell self-renewal by directly regulating the expression of Notch1 and Notch3, but not Notch2. A transcription factor CCAAT/enhancer binding protein β (C/EBPβ) acts as a direct positive regulator for Notch2 expression, but not Notch1 and Notch3, and this controls satellite cell self-renewal during muscle regeneration. A recent report from Bi et al. described the stage-specific roles of Notch1 during myogenesis. Further studies are required for a better understanding of the molecular relationship and regulation between Notch1, Notch2, and Notch3 in satellite cells. More recently, Nandagopal et al. discriminated the dynamics of Notch signaling between Dll1 and Dll4 during embryonic myogenesis. Dll1 induces pulsatile activation of Notch1 that specifically upregulates Hes1 and promotes myogenesis, whereas, Dll4 induces sustained activation of Notch1 that predominantly upregulates Hey1 and HeyL, resulting in the inhibition of myogenesis. This mechanism might be involved in regulating satellite cell function during muscle regeneration in adults. Although recent conclusive works using genetically modified mouse lines have shown the importance of Notch signaling in satellite cell function, it will be important to more deeply elucidate how Notch signaling governs the stem cell-fate decision by striking a balance between quiescence, proliferation, differentiation, and self-renewal during muscle development, growth, and regeneration.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.
Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (AMED, 16km0704010h0001 and 18ek0109383h0001), and the Grant-in-Aid for Scientific Research KAKENHI (16K13046, 15H05368, 17K13224, and 18H03193).

References

1) Relaix F and Zammit PS. 2012. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139: 2845-2856.
2) Yin H, Price F and Rudnicki MA. 2013. Satellite cells and the muscle stem cell niche. Physiol Rev 93: 23-67.
3) Brack AS and Rando TA. 2012. Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10: 504-514.
4) Tierney MT and Sacco A. 2016. Satellite cell heterogeneity in skeletal muscle homeostasis. Trends Cell Biol 26: 434-444.
5) Motohashi N and Asakura A. 2014. Muscle satellite cell heterogeneity and hierarchy in skeletal muscle. J Phys Fitness Sports Med 3: 229-234.
6) Motohashi N and Asakura A. 2014. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2: 1.
7) Montarras D, L’Honore A and Buckingham M. 2013. Lying but ready for action: the quiescent muscle satellite cell. FEBS J 280: 4036-4050.
8) Olguin HC and Olwin BB. 2004. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275: 375-388.
9) Ono Y. 2014. Satellite cell heterogeneity and hierarchy in skeletal muscle. J Phys Sports Med 13: 2014026.
10) Zarnitz PS, Golding JP, Nagata Y, Hudon V, Partridge TA and Beauchamp JR. 2004. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166: 347-357.
11) Sacco A, Doyonnas R, Kraft P, Vitorovic S and Blau HM. 2008. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456: 502-506.
12) Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA and Morgan JE. 2005. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122: 289-301.
13) Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumanio A, Partridge T and Buckingham M. 2005. Direct isolation of muscle satellite cells for skeletal muscle regeneration. Science 309: 2064-2067.
14) Luz MA, Marques MJ and Santo Neto H. 2002. Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res 35: 691-695.
15) Sadeh M, Czyewski K and Stern LZ. 1985. Chronic myopathy induced by repeated bupivacaine injections. J Neurol Sci 67: 229-238.
16) Kitamoto T and Hanaoka K. 2010. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 28: 2205-2216.
17) Koch U, Lehal R and Radtke F. 2013. Stem cells living with a Notch. Development 140: 689-704.
18) Mourikis P and Tajbaksh S. 2014. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol 14: 2.
19) Andersson ER, Sandberg R and Lendahl U. 2011. Notch signaling: simplicity in design, versatility in function. Development 138: 3593-3612.
20) D’Souza B, Meloty-Kapella L and Weinmaster G. 2010. Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92: 73-129.
21) Kopan R and Ilagan MX. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137: 216-223.
22) Jirriault S, Brou C, Logeat F, Schroeter EH, Kopan R and Israel A. 1995. Signalling downstream of activated mammalian Notch. Nature 377: 355-358.
23) Kato H, Taniguchi Y, Kurooka H, Minoguchi S, Sakai T, Nomura-Okazaki S, Tamura K and Honjo T. 1997. Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development 124: 4133-4141.
24) Conlon RA, Beaum AE and Rossant J. 1995. Notch1 is required for the coordinate segmentation of somites. Development 121: 1533-1545.
25) Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S and Kageyama R. 2001. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 15: 2642-2647.
26) Evrard YA, Lun Y, Aulehla A, Gan L and Johnson RL. 1998. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394: 377-381.
27) Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN and Lander ES. 1998. The mouse pudgy mutation disrupts Delta homologue DIL3 and initiation of early somite boundaries. Nat Genet 19: 274-278.
28) Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, Krumlauf R, Hattersle AT, Eland S and Turner PD. 2000. Mutations in the human delta homologue, DIL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24: 438-441.
29) Sparrow DB, Guillén-Navarro E, Fatkin D and Dunwoodie SL. 2008. Mutation of Hairpin-Enhancer-of-Splitt-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17: 3761-3766.
30) Vasyutina E, Lenhard DC, Wende H, Erdmann B, Epstein JA and Birchmeier C. 2007. RBP-J (Rbpj) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc Natl Acad Sci USA 104: 4443-4448.
31) Bröhl D, Vasyutina E, Czajkowski MT, Griger J, Rassek C, Rahn HP, Purfurst B, Wende H and Birchmeier C. 2012. Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals. Dev Cell 23: 469-481.
32) Mourikis P, Gopalakrishnan S, Sambasivan R and Tajbaksh S. 2012. Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 139: 4536-4548.
33) Czajkowski MT, Rassek C, Lenhard DC, Braohl D and Birchmeier C. 2014. Divergent and conserved roles of Dll1 signaling in development of craniofacial and trunk muscle. Dev Biol 395: 307-316.
34) Rios AC, Serralbo O, Salgado D and Marcelle C. 2011. Neu-
ral crest regulates myogenesis through the transient activation of NOTCH. *Nature* 473: 532-535.

35) Zammit PS, Partridge TA and Yablonka-Reuveni Z. 2006. The skeletal muscle satellite cell: the stem cell that came in from the cold. *J Histochim Cytochem* 54: 1177-1191.

36) Conboy IM and Rando TA. 2002. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. *Dev Cell* 3: 397-409.

37) Kuang S, Kuroda K, Le Grand F and Rudnicki MA. 2007. Asymmetric self-renewal and commitment of satellite stem cells in muscle. *Cell* 129: 999-1010.

38) Ono Y, Gnocchi VF, Zammit PS and Nagatomi R. 2009. Presenlin-1 acts via Id1 to regulate the function of muscle satellite cells in a gamma-secretase-independent manner. *J Cell Sci* 122: 4427-4438.

39) Fukada S, Yamaguchi M, Kokubo H, Ogawa R, Uezumi A, Yoneda T, Matev MM, Motohashi N, Ito T, Zolkiewska A, Johnson RL, Saga Y, Miyagoe-Suzuki Y, Tsujikawa K, Take I, S and Yamamoto H. 2011. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. *Development* 138: 4609-4619.

40) Mourikis P, Sambasivan R, Castel D, Rochetteau P, Bizzarro V and Tajbakhs S. 2012. A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. *Stem Cells* 30: 243-252.

41) Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM and Rando TA. 2012. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. *Stem Cells* 30: 232-242.

42) Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y and Takeda S. 2007. Molecular signature of quiescent satellite cells in adult skeletal muscle. *Stem Cells* 25: 2448-2459.

43) Qin L, Xu J, Zhang Z, Li J, Wang C and Long Q. 2013. Notch1-mediated signaling regulates proliferation of porcine satellite cells (PSCs). *Cell Signal* 25: 561-569.

44) Bellavia D, Checquolo S, Campese AF, Felli MP, Gulino A and Screpanti I. 2008. Notch3 from subtle structural differences to functional diversity. *Oncogene* 27: 5092-5098.

45) Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G and Gridley T. 1994. Notch1 is essential for postimplantation development in mice. *Genes Dev* 8: 707-719.

46) Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR and Tsujimoto Y. 1999. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. *Development* 126: 3415-3424.

47) McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R and Gridley T. 2001. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. *Development* 128: 491-502.

48) Domenga V, Fardoux P, Lacombe P, Monet M, Maciezak J, Krebs LT, Klonjkowski B, Berrou E, Merciskay M, Li Z, Tournier-Lasserve E, Gridley T and Jouet A. 2004. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. *Genes Dev* 18: 2730-2735.

49) Low S, Barnes J, Zammit PS and Beauchamp JR. 2018. Delta-like 4 activates Notch3 to regulate self-renewal in skeletal muscle stem cells. *Stem Cells* 36: 458-466.

50) Fujimaki S, Seko D, Kitajima Y, Yoshioka K, Tsuchiya Y, Masuda S and Ono Y. 2018. Notch1 and Notch2 coordinately regulate stem cell function in the quiescent and activated states of muscle satellite cells. *Stem Cells* 36: 278-285.

51) Yang X, Klein R, Tian X, Cheng HT, Kopan R and Shen J. 2004. Notch activation induces apoptosis in neural progenitor cells through a p35-dependent pathway. *Dev Biol* 269: 81-94.

52) Lepper C and Fan CM. 2010. Inducible lineage tracing of Pax7-deficient cells reveals embryonic origin of adult satellite cells. *Genes* 48: 424-436.

53) Wen Y, Bi P, Liu W, Asakura A, Keller C and Kuang S. 2012. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. *Mol Cell Biol* 32: 2300-2311.

54) Fujimaki S, Hidaka R, Asashima M, Takemasa T and Kuwabara T. 2014. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. *J Biol Chem* 289: 7399-7412.

55) Conboy IM, Conboy MJ, Smythe GM and Rando TA. 2003. Notch-mediated restoration of regenerative potential to aged muscle. *Science* 302: 1575-1577.

56) Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL and Rando TA. 2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. *Nature* 433: 760-764.

57) Carlson ME, Hsu M and Conboy IM. 2008. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. *Nature* 454: 528-532.

58) Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A, Kjaer M and Conboy I. 2009. Molecular aging and rejuvenation of human muscle stem cells. *EMBO Mol Med* 1: 381-391.

59) Bigot A, Duddy WJ, Ouandaogo ZG, Negroni E, Mariot V, Ghimbovschi S, Harmon B, Wielgosik A, Loiseau C, Devaney J, Dumonceaux J, Butler-Browne G, Moul V and Dugue S. 2015. Age-associated methylation suppresses SPRY1, leading to a failure of re-quiescence and loss of the reserve stem cell pool in elderly muscle. *Cell Rep* 13: 1172-1182.

60) Wallace GQ and McNally EM. 2009. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. *Annu Rev Physiol* 71: 37-57.

61) Servián-Morilla E, Takeuchi H, Lee TV, Clarimon J, Mavilland F, Área-Gómez E, Rivas E, Nieto-González JL, Rivero MC, Cabrera-Serrano M, Gómez-Sánchez L, Martinez-López JA, Estrada B, Márquez C, Morgado Y, Suárez-Calvet X, Pita G, Bigot A, Gallardo E and Fernández-Chacón R et al. 2016. A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. *EMBO Mol Med* 8: 1289-1309.

62) Logan CV, Lucke B, Pottinger C, Abdelhamed ZA, Parry DA, Szymanska K, Diggle CP, van Riesen A, Morgan JE, Markham G, Ellis I, Manzur AY, Markham AF, Shires M, Helliswell T, Scoto M, Hubner C, Bonthron DT, Taylor GR and Sheridan E. et al. 2011. Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARRD). *Nat Genet* 43: 1189-1192.

63) Holterman CE, Le Grand F, Kuang S, Seale P and Rudnicki MA. 2007. Megf10 regulates the progression of the satellite cell myogenic program. *J Cell Biol* 179: 911-922.

64) Saha M, Mitsuhashi S, Jones MD, Manko K, Reddy HM,
Bruels CC, Cho KA, Pacak CA, Draper I and Kang PB. 2017. Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions. *Hum Mol Genet* 26: 2984-3000.

65) Jiang C, Wen Y, Kuroda K, Hannon K, Rudnicki MA and Kuang S. 2014. Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy. *Dis Model Mech* 7: 997-1004.

66) Vieira NM, Elvers I, Alexander MS, Moreira YB, Eran A, Gomes JP, Marshall JL, Karlsson EK, Verjovski-Almeida S, Lindblad-Toh K, Kunkel LM and Zatz M. 2015. Jagged 1 rescues the Duchenne muscular dystrophy phenotype. *Cell* 163: 1204-1213.

67) Gopinath SD, Webb AE, Brunet A and Rando TA. 2014. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. *Stem Cell Reports* 2: 414-426.

68) Lala-Tabbert N, AlSudais H, Marchildon F, Fu D and Wiper-Bergeron N. 2016. CCAAT/enhancer binding protein beta is required for satellite cell self-renewal. *Skelet Muscle* 6: 40.

69) Bi P, Yue F, Sato Y, Wirbisky S, Liu W, Shan T, Wen Y, Zhou D, Freeman J and Kuang S. 2016. Stage-specific effects of Notch activation during skeletal myogenesis. *Elife* 5: e17355.

70) Nandagopal N, Santat LA, LeBon L, Sprinzak D, Bronner ME and Elowitz MB. 2018. Dynamic ligand discrimination in the Notch signaling pathway. *Cell* 172: 869-880. e19.