REVIEW

Strategies for Utilizing Neuroimaging Biomarkers in CNS Drug Discovery and Development: CINP/JSNP Working Group Report

Tetsuya Suhara, MD, PhD; Shigeyuki Chaki, PhD; Haruhide Kimura, PhD; Makoto Furusawa, PhD; Mitsuyuki Matsumoto, PhD; Hiroo Ogura, PhD; Takaaki Negishi, PhD; Takeaki Saijo, PhD; Makoto Higuchi, MD, PhD; Tomohiro Omura, PhD; Rira Watanabe, DVM, PhD; Sosuke Miyoshi, PhD; Noriaki Nakatani, PhD; Noboru Yamamoto, PhD; Shyh-Yuh Liou, PhD; Yuhei Takado, MD, PhD; Jun Maeda, PhD; Yasumasa Okamoto, MD, PhD; Yoshiaki Okubo, MD, PhD; Makiko Yamada, PhD; Hiroshi Ito, MD, PhD; Noah M. Walton, PhD; Shigeto Yamawaki, MD, PhD

National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Dr Okubo); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito), Astellas Research Institute of America LLC, IL, USA (Dr Walton).

Correspondence: Tetsuya Suhara, MD, PhD, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan (suhara.tetsuya@qst.go.jp).

Abstract

Despite large unmet medical needs in the field for several decades, CNS drug discovery and development has been largely unsuccessful. Biomarkers, particularly those utilizing neuroimaging, have played important roles in aiding CNS drug development, including dosing determination of investigational new drugs (INDs). A recent working group was organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) to discuss the utility of biomarkers as tools to overcome issues of CNS drug development.

The consensus statement from the working group aimed at creating more nuanced criteria for employing biomarkers as tools to overcome issues surrounding CNS drug development. To accomplish this, a reverse engineering approach was adopted, in which criteria for the utilization of biomarkers were created in response to current challenges in the processes of...
drug discovery and development for CNS disorders. Based on this analysis, we propose a new paradigm containing 5 distinct tiers to further clarify the use of biomarkers and establish new strategies for decision-making in the context of CNS drug development. Specifically, we discuss more rational ways to incorporate biomarker data to determine optimal dosing for INDs with novel mechanisms and targets, and propose additional categorization criteria to further the use of biomarkers in patient stratification and clinical efficacy prediction. Finally, we propose validation and development of new neuroimaging biomarkers through public-private partnerships to further facilitate drug discovery and development for CNS disorders.

Keywords: CNS drug development, neuroimaging biomarkers, public-private-partnerships, patient stratification, clinical efficacy prediction

Significance Statement

Recent central nervous system (CNS) drug discovery and development has been largely unsuccessful. Biomarkers, particularly those utilizing neuroimaging, have played important roles in aiding CNS drug development, including dosing determination of investigational new drugs (INDs). The consensus statement from working group organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) propose a new paradigm containing five distinct tiers to further clarify the use of biomarkers in patient stratification and clinical efficacy prediction and establish new strategies to develop new neuroimaging biomarkers through public-private-partnerships (PPPs) that combine disease knowledge, cutting-edge technologies, chemical libraries, medicinal chemistry and funding to achieve novel breakthroughs.

Introduction

Most current medications for psychiatric disorders stem from mechanistic optimizations of agents serendipitously discovered approximately 60 years ago. While these discoveries have led to the development of next generation drugs, including the antidepressants and antipsychotics widely prescribed today, much remains to be desired in this arena; although newer drugs show fewer serious side effects than first-generation compounds, many current medications are plagued by lingering safety and efficacy issues (Becker et al., 2015). In an effort to overcome these, current drug discovery strategies have, by necessity, evolved to focus on novel molecular targets that influence neural systems not previously targeted by legacy drugs.

Although symptom-improving drugs have been developed for several intractable CNS disorders (e.g., acetylcholinesterase inhibitors for Alzheimer’s disease (AD)), current drug discovery efforts have shifted to the development of disease-modifying agents that interfere with the neurodegenerative processes that may underlie disorders whose etiologies are not fully understood (Becker et al., 2015).

However, despite the wide array of new drug targets, success rates in developing new CNS drugs have not increased for many years. Clinical trials of recently discovered agents frequently fail, mostly owing to a lack of efficacy (Griebel and Holsboer, 2012; Dunlop and Brandon, 2015). As a result, global pharmaceutical companies have ceased or reduced their efforts in this space.

To identify avenues to overcome these problems, the Collegium Internationale Neuro-Psychopharmacologicum (CINP) convened a summit meeting (CNS Drug Innovation Summit Meeting) in Tokyo in April, 2015 to discuss options for facilitating more efficacious drug discovery and clinical development activities for CNS disorders, activities ultimate aimed at increasing success rates in current and future clinical trials. Based on discussion during the meeting, 3 working groups including researchers in academia and industry were organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) to put forth potential solutions. At the following meetings, 2 factors were noted as major barriers to improving success rate of CNS drug development.

1. **Difficulties in designing appropriate clinical plans for clinical proof-of-concept (POC) studies:** To conduct successful clinical POC studies, appropriate setting of optimal dose(s) and patient stratification are critically important factors. Without control of these variables, one could not reasonably conclude that an on-target investigational new drug (IND) is ineffective or, worse, invalid. Moreover, both dosing and patient stratification should be determined based on the concept or mechanism the drug target stands on. While this is seemingly evident, methodologies to satisfy these issues have not been clearly established.

2. **Difficulties predicting clinical efficacy:** Development of biomarkers, which can substitute for clinical endpoints, is increasingly critical for predicting clinical efficacy. Considering, however, the limited biomarkers currently available for most CNS disorders, it is often difficult to confidently predict clinical outcomes in small-scale efforts preceding larger, more expensive trials. As an implicit corollary, the lack of reliable and objective biomarkers is an additional hurdle for pharmaceutical companies engaging in challenging clinical POC studies.

It has become increasingly evident that continued development and implementation of biomarkers will closely follow successes in overcoming the above-mentioned barriers. In attempting to improve and accelerate this process, we first analyzed the current challenges to (and utilization of) biomarkers in the current drug discovery landscape (section 2) and used this as a starting point a newly proposed process for clinical POC studies based on real-world observation (section 3). Then we propose the development and validation of new biomarkers to achieve successful clinical POC studies through public-private partnerships (PPPs) (section 4). In this CINP/JSNP working group report, we focus heavily on neuroimaging biomarkers due to their widely acknowledged utility as a noninvasive tool in CNS disorders (Wong et al., 2009).

Roles of Neuroimaging Biomarkers in Drug Discovery and Development of CNS Disorders

Morgan et al. (2012) previously described a 3-pillar model for biomarker utilization in successful clinical development, consisting of the following: (1) drug exposure at the site of action for the
desired length of time; (2) drug binding to the intended target; (3) evidence of functional modulation of the target organ resulting from the drug pharmacological activity (for example pharmacological functional magnetic resonance imaging (phMRI), a method for analysis of the drug-induced functional changes in the neural circuits (Wandschneider et al., 2016). In their review, it was mentioned that a clinical development candidate that satisfies all 3 pillars will (1) have increased likelihood of surviving through Phase II into Phase III, and (2) enable efficient and effective development through POC and Phase II.

The current state of biomarker usage (taking into account the 3 pillars concept) in recently conducted clinical trials for CNS disorders is listed in Table 1. Several issues emerging from meta-analyses of these trials are discussed below.

Psychiatric Disorders
The 3-pillar concept has gained widespread acceptance across pharmaceutical companies. For example, measurement of drug levels in the cerebrospinal fluid (CSF) (Lin, 2008; Caruso et al., 2013) and occupancy of target molecules using positron emission tomography (PET) has become commonplace, particularly for well-investigated targets like the dopamine D2 receptor (for antipsychotics) (Farde et al., 1988; Kapur et al., 2000; Arakawa et al., 2008) and serotonin transporter (for antidepressants) (Meyer et al., 2001; Suhara et al., 2003). Thus, while the implementation of pillar 2 depends on the availability of a PET tracer, the strategy for measuring occupancy has been established and the importance widely acknowledged.

However, a number of INDs employing new mechanisms of action (ex: positive allosteric modulators) (Conn et al., 2014) loom on the horizon. For some agents with new mechanisms or modes of action, the relationship between drug efficacy and target occupancy has not been well established or remains unclear. Therefore, there is an increasing need for dose selection rationales based on changes in neuronal circuitry (i.e., pillar 3) to confirm that target occupancy relates to changes in neural function. As for any new approach, significant issues require addressing, including: (1) the absence of consensus regarding methodology, (2) the absence of fully validated or standardized methods, and (3) variations in the definition of pillar 3, often owing to differing biomarker criteria that results in significant company-to-company variations in patient stratification, dosing, and efficacy endpoints.

In part because of these issues, we believe it is necessary to redefine the existing pillars to further clarify the use of biomarkers as well as to establish new strategies for decision-making in the context of CNS drug development.

Neurodegenerative Disorders
In the clinical development of disease modifiers for neurodegenerative diseases, AD in particular (Salloway et al., 2014; Siemens et al., 2016), there is no precedent for the application of biomarkers under pillar 2 (although use in enzyme inhibition mechanism like β-secretase inhibitors is theoretically possible) with biomarkers falling under pillar 3 being substituted to various ends. However, these parameters may be too broad to adequately categorize biomarkers with different and/or overlapping utilities.

To illustrate this point, consider the following: an amyloid-lowering strategy has long been the mainstream approach in AD-modifying drug development (Hardy and Selkoe, 2002; Golde, 2005; Tanzi, 2005). Amyloid PET imaging is a well-established method to investigate the accumulated amyloid in the brain (Klunk et al., 2004; Jagust et al., 2009; Clark et al., 2012), an approach that doubles as an effective screening tool for enrollment of appropriate patients into clinical trials. Recently, a small POC trial of an amyloid-targeting antibody showed promise as both a potential biomarker and therapeutic that offered cognitive benefits (Ratner, 2015; ALZFORUM). In the ensuing clinical trial, all of the enrolled subjects were confirmed amyloid positive by amyloid PET imaging. The concomitant use of brain imaging and fluidic biomarkers illustrates how pillar 3 biomarker may maintain dual roles in patient enrollment and efficacy prediction of targeted pharmacological action. As such, more detailed categorization of pillar 3 biomarkers into subclasses may be preferable for early and efficient decision-making during the drug development phase.

Redesign of Biomarker Classification to Improve the Success Rate of CNS Drugs
As discussed above, success rates of CNS drugs in clinical POC studies would almost certainly benefit from optimal dose selection, patient stratification, and efficacy prediction in a small-scale trial. Information derived from both target occupancy data and consequent functional change(s) in the brain can improve the accuracy of optimal dose selection to achieve maximal efficacy. Functional changes in the brain can be measured by multiple methods, including phMRI and electroencephalography (EEG); however, these methods can sometimes detect confounding and/or nonspecific reactions within the brain. Because of this, we propose a redefinition of pillar 3 to better clarify purpose.

Furthermore, while the 3 pillars paradigm remains a useful tool for estimating clinical success, a more precise use of biomarkers, including biomarkers for patient stratification and efficacy prediction, can further improve the success rates in CNS drugs development trials. In this report, we propose redesign and expansion of the existing classification system into one constituting 5 unique tiers relating to different aspects of biomarker utility (Figure 1a-b). In the proposed system, the increased specificity of additional tiers allows for improved estimation of drug action (and subsequent systemic reaction), resulting in an increasingly descriptive toolkit for ensuing clinical POC studies.

Tier 1: Brain Exposure over the Application Period
Sufficient drug exposure is a prerequisite for drug action; however, accurate measurement of CNS drug exposure to target sites in the brain can be quite challenging. The majority of CNS drugs penetrate into brain via blood circulation; thus, PK/PD modeling using plasma exposure has been afforded a certain level of significance. Similarly, microdosing of labeled drugs and intracerebral microdialysis of CSF or interstitial fluid have also been employed in assessing drug pharmacokinetics (Lin, 2008; Burt et al., 2016).

However, it should be noted that these methods have certain limitations; blood PK/PD modeling cannot infallibly predict precise CNS exposure of a given drug, and microdosing of a labeled drug does not measure its free fraction. In addition, there are ethical issues attached to sampling interstitial fluid from healthy volunteers, and CSF drug concentration can differ significantly from those at target brain regions due to route of administration and variance arising from circulation within the ventricular compartment.

Tier 2: Target Engagement Biomarkers
Measuring occupancy via target-specific PET probes is a well-established and accurate way to detect target engagement (Hargreaves, 2002). Occupancy data also provide some degree of confidence as to the brain exposure of a particular drug.

PET imaging has historically been successful in this regard, especially for orthosteric antagonists or enzyme inhibitors with...
Target Disease	Compound	Sponsor Collaborator	Mechanism of Action	Pillar 1	Pillar 2	Pillar 3	Nct#	References
Schizophrenia	TAK-063	Takeda	PDE10A inhibitor	PDE10A	occupancy	fMRI BOLD	NCT02370602	Takano et al., 2016
Schizophrenia	PF-02545920	Pfizer	PDE10A inhibitor	PDE10A	occupancy	Ketamine-induced fMRI BOLD	NCT01892189, NCT01918202, NCT01244880	
Schizophrenia	MK-0777 /TPA023	Merck & Co	GABA-Au2/3 receptor agonist	GABA-Au	occupancy	qEEG	NCT01116830	Atack et al., 2010, Lewis et al., 2008, Martin-Facklam et al., 2013
Schizophrenia	bitopertin /RG1678 /RO4917838	Roche	GlyT-1 inhibitor	GlyT-1	occupancy	CSF Glycine, Event-Related Potential	NCT00945503, NCT00527020, NCT00929370, NCT00929370	
Schizophrenia	GlaxoSmith Kline	GlyT-1 inhibitor	GlyT-1 occupancy	CSF Glycine, qEEG, mismatch negativity	NCT01359852, NCT01358006, NCT01101659, NCT01951053			
Schizophrenia	MK-2637 I2140023 /Pomaglumetad methionil	Merck & Co /Eli Lilly	GlyT-1 inhibitor mGlu2/3 agonist	GlyT-1	occupancy	Motor evoked potential, qEEG, Ketamine-Challenge fMRI Assay, CSF monoamine metabolites	NCT00934466, NCT01524237	
Schizophrenia	JNJ-40411813	J&J	mGlu2 PAM	mGlu2 receptor occupancy S-HT2A occupancy	NCT01359852, NCT01358006, NCT01101659, NCT01951053, NCT00985933, NCT00986531			
Schizophrenia	AZD8529	AstraZeneca	mGlu2 PAM	CSF PK	mGlu5 receptor occupancy	Ketamine-induced fMRI, EEG, Amyloid PET, CSF p-tau, vMRI, FDG PET, amyloid in blood & CSF, tau in CSF, CSF amyloid/tau PET, FDG PET, amyloid PET, vMRI, FDG PET, fluid biomarkers, amyloid PET, amyloid and tau in CSF, vMRI, FDG PET, CSF Aβ42 & sAPPβ, amyloid PET, CSF Aβ42 & sAPPβ, amyloid PET, tau in CSF, FDG PET	NCT01677572, NCT01241406, NCT01241406, NCT01760005, NCT01953601, NCT02245737	
Depression /FXS	RO4917523	Roche	mGlu5 antagonist	mGlu5 receptor occupancy	NCT0075055, NCT00574132, NCT00905372, NCT00949683, NCT01906655, NCT01677572			
Mild-to-moderate Alzheimer's disease	Bapineuzumab /Janssen /Pfizer	Solanezumab /Eli Lilly	anti-amyloid antibody anti-amyloid antibody	Amyloid PET, CSF p-tau, vMRI, FDG PET, amyloid in blood & CSF, tau in CSF, CSF amyloid/tau PET, FDG PET, amyloid PET, vMRI, FDG PET, fluid biomarkers, amyloid PET, amyloid and tau in CSF, vMRI, FDG PET, CSF Aβ42 & sAPPβ, amyloid PET, CSF Aβ42 & sAPPβ, amyloid PET	Liu et al., 2015, Salloway et al., 2014, Doody et al., 2014, Siemers et al., 2016			
Mild Alzheimer's disease	Aducanumab /BIIB037	Biogen	anti-amyloid antibody anti-amyloid antibody	Amyloid PET, CSF p-tau, vMRI, FDG PET, amyloid in blood & CSF, tau in CSF, CSF amyloid/tau PET, FDG PET, amyloid PET, vMRI, FDG PET, fluid biomarkers, amyloid PET, amyloid and tau in CSF, vMRI, FDG PET, CSF Aβ42 & sAPPβ, amyloid PET, CSF Aβ42 & sAPPβ, amyloid PET	NCT01206605, NCT01760005, NCT01953601, NCT02245737			
Early Alzheimer's disease	Aducanumab /BIIB037	Biogen	anti-amyloid antibody anti-amyloid antibody	Amyloid PET, CSF p-tau, vMRI, FDG PET, amyloid in blood & CSF, tau in CSF, CSF amyloid/tau PET, FDG PET, amyloid PET, vMRI, FDG PET, fluid biomarkers, amyloid PET, amyloid and tau in CSF, vMRI, FDG PET, CSF Aβ42 & sAPPβ, amyloid PET, CSF Aβ42 & sAPPβ, amyloid PET	NCT01206605, NCT01760005, NCT01953601, NCT02245737			
Prodromal Alzheimer's disease	Aducanumab /BIIB037	Biogen	anti-amyloid antibody anti-amyloid antibody	Amyloid PET, CSF p-tau, vMRI, FDG PET, amyloid in blood & CSF, tau in CSF, CSF amyloid/tau PET, FDG PET, amyloid PET, vMRI, FDG PET, fluid biomarkers, amyloid PET, amyloid and tau in CSF, vMRI, FDG PET, CSF Aβ42 & sAPPβ, amyloid PET, CSF Aβ42 & sAPPβ, amyloid PET	NCT01206605, NCT01760005, NCT01953601, NCT02245737			
Early Alzheimer's disease	Aducanumab /BIIB037	Biogen	anti-amyloid antibody anti-amyloid antibody	Amyloid PET, CSF p-tau, vMRI, FDG PET, amyloid in blood & CSF, tau in CSF, CSF amyloid/tau PET, FDG PET, amyloid PET, vMRI, FDG PET, fluid biomarkers, amyloid PET, amyloid and tau in CSF, vMRI, FDG PET, CSF Aβ42 & sAPPβ, amyloid PET, CSF Aβ42 & sAPPβ, amyloid PET	NCT01206605, NCT01760005, NCT01953601, NCT02245737			

Abbreviations: Aβ, amyloid beta; BACE, beta-secretase; BOLD, blood oxygenation level dependent; CSF, cerebrospinal fluid; fMRI, functional magnetic resonance imaging; FDG, fluorodeoxyglucose; FXS, fragile X syndrome; GABA, gamma-aminobutyric acid; GlyT-1, glycine transporter 1; 5-HT, 5-hydroxytryptamine; mGlu, metabotropic glutamate; PAM, positive allosteric modulator; PDE10A, phosphodiesterase 10A; PET, positron emission tomography; PK, pharmacokinetics; qEEG, quantitative electroencephalography; sAPP, soluble amyloid precursor protein; vMRI, volumetric MRI.
clear relationships between target occupancy and pharmacological efficacy (Hargreaves, 2002; Le et al., 2008). However, it is difficult to apply PET imaging studies to other types of drugs, such as agonists, partial agonists, and allosteric modulators, because of complicated binding modes and low occupancies required to produce pharmacological effects (Grimwood and Hartig, 2009; O’Brien and Conn, 2016). Therefore, alternative approaches to indirectly measure target engagement based on functional or pharmacodynamic changes are discussed under Tier 3.

Tier 3: Biomarkers Detecting Brain Functional Changes
Investigation of drug-induced brain functional changes remains important, especially when specific PET tracers are not available or when drugs such as agonists and allosteric modulators are evaluated. Fluorodeoxy glucose (FDG)-PET, phMRI, and EEG are commonly used to capture drug-induced changes in neural function and cerebral metabolism. Despite their ubiquity, these methods occasionally produce nonspecific signals unrelated to the modulatory effects of the drug. Drug-induced functional

Figure 1. Redefinition of “5-Tiers” for future CNS-drug development. Each Tier can provide different degrees of evidence of biomarkers (BMs) for appropriate clinical POC studies, the efficacy of a drug, and accumulating tier-specific evidence (receptor occupancy [RO], pharmacological functional MRI [phMRI]) portends drug action efficacy in a way that is comprehensive than previous paradigms and will lead to improved clinical POC (Fig 1a). Thus, each Tier can be considered as a milestone when climbing difficult-but-manageable peaks such as Mt. Fuji (Fig 1b).
changes to the brain can be divided into 2 segments: (1) func-
tional changes specific to brain regions where drug target mol-
ecules are highly expressed, and (2) alterations observed beyond
the normal distribution of a drug target molecule, both of which
can be considered a pharmacological effect of drug adminis-
tration. Because evidentiary weighting may differ between 1 and 2,
we propose that Tier 3 be further divided into Tier 3a and Tier 3b.

Tier 3a: Biomarkers detecting regional functional changes related to target

Signal specificity should be carefully considered by assessing,
among other factors, distribution of the drug target molecule and
the molecular mechanism of the drug. A region-specific func-
tional change exhibiting a direct correlation with the distribu-
tion of the drug target molecule would naturally provide higher
levels of confidence than alterations in other brain regions. For
example, TAK-063, a phosphodiesterase 10A (PDE10A) inhibitor,
has been reported to increase regional blood flow in only the brain
regions where PDE10A is abundantly expressed (Tomimatsu et
al., 2016), indicating that functional change induced by TAK-063
may be mediated through PDE10A inhibition.

**Tier 3b: Biomarkers detecting general functional changes associated
with pharmacological effect**

Functional changes in neural circuits may play a key role in
pathogenesis of various neuropsychiatric disorders. As such,
drug-mediated functional changes observed in obsfite through
neural circuitry may provide additional relevant information for
said drug's method of action. Indications of this subclass of bio-
marker can be detected in healthy volunteers at earlier stages
of clinical development and prove useful in bridging preclinical
and clinical studies. For example, perturbation of neural circuits
associated with some neuropsychiatric disorders by agents like
eketamine or scopolamine can be conducted in rodents, nonhu-
man primates, and healthy volunteers.

Tier 4: Patient Stratification Biomarkers

Current diagnosis of neuropsychiatric disorders is defined by
international guidelines and classification systems (ICD-11/DSM-
5) and is based primarily on patient symptoms. Accordingly, bi-
ological heterogeneity among patients can contribute significantly
to lack of efficacy in Phase II trials. To improve clinical success
rates, it is essential to select subsets of patients who share bio-
logical characteristics optimal for testing candidate compounds.
Empirical evidence supports this notion: a retrospective analysis of
AstraZeneca's R&D projects from 2005 to 2010 revealed that
projects with high confidence in patient selection demonstrated
a greater likelihood of success in Phase IIb (Cook et al., 2014).

Amyloid imaging for AD provides an example illustrating this
aspect of patient stratification. By imaging amyloid in patients, AD
and non-AD dementia can be discriminated (Weiner et al., 2015).
Therefore, it is reasonable to select patients displaying amyloid
deposits when evaluating potential AD-preventive drugs.

Patient stratification biomarkers may also play a role in
mechanism-based drug discovery. For example, α-synuclein
accumulation is observed in both Parkinson's disease and dementia with
lewy bodies (Barker and Williams-Gray, 2016), while TAR DNA-binding protein 43 kDa (TDP-43) accumulation is observed in some population of patients with both fronto-
temporal lobar degeneration and amyotrophic lateral sclerosis (Neumann et al., 2006). These overlapping molecular signatures may illuminate common pathophysiological pathways between
different disorders, facilitating drug development aimed at com-
mon biological components of differing diseases.

Tier 5: Clinical Efficacy Prediction Biomarkers

In addition to patient stratification, establishing biomarkers that
predict efficacy (i.e., exhibit a high degree of correlation with
clinical symptoms) is needed to make a clear go/no-go decision in
eyarly phases of clinical studies. Indeed, Cook et al. (2014) have
also reported that Phase IIa projects with an efficacy prediction
biomarker had twice as much likelihood of stage-up compared with
projects without such biomarkers.

Although amyloid imaging is highly useful as a diagnostic
marker for AD, correlation between amyloid accumulation and
clinical symptoms remains controversial (Liu et al., 2015). On
the other hand, signal density in tau imaging has been reported to
correlate with cognitive dysfunction and hippocampal atrophy in
patients (Maruyama et al., 2013; Ossenkoppele et al., 2016).
Thus, tau imaging may have the potential to be both a patient
stratification marker and an efficacy prediction biomarker.

Tier 5 biomarkers require both imaging and clinical data
derived from limited samples used for further decision-making.

Proposed Neuroimaging Biomarkers To Be Developed by PPPs

A number of biomarker candidates would benefit from develop-
ment within PPPs. These include validated, standardized biom-
arkers labeling subsets of neurons (e.g., parvalbumin-positive
GABA interneurons) or aggregated proteins (e.g., α-synuclein) as
well as markers aimed at gauging the activity within particular
neural circuits. In contrast, development of PET tracers for novel
drug target molecules may not always be suited for PPPs due
to conflicts of interest and confidentiality issues. Both the EU
and US have established some precompetitive PPPs to improve
CNS drug discovery and development, including the identifica-
tion and validation of biomarkers. For example, the Innovative
Medicines Initiative (Brady and Potter, 2014; Gottwald et al.,
2016) program Novel Methods Leading to New Medications in
Depression and Schizophrenia (NEWMEDS) has validated the
use of PET tracers to measure changes in extracellular concen-
trations of some neurotransmitters (Finnema et al., 2015).

Biomarkers Specifically Labeling Particular Cell Types or Molecules

Markers labeling glutamatergic and GABAergic systems

Disruption of the brain’s excitatory/inhibitory balance has
increasingly been implicated in the pathophysiology and etiology
of several neuropsychiatric disorders (including schizophrenia,
autistic spectrum disorders, and prodromal neurodegenera-
tive dementias) (Rubenstein and Merzenich, 2003; Lewis et al.,
2012). Given the broad cellular subtypes involved in maintain-
ing this balance (including NMDA receptor-positive cells and
certain types of GABA- and parvalbumin-positive interneurons),
imaging agents for glutametric and GABAergic transmissions,
including radioligands for NMDA, AMPA, and GABA receptors
and GABA transporters, could serve as early diagnostic markers
associated with neuromodulatory and neuroprotective treat-
ments in these disorders. Additionally, it would be important to
develop or validate a magnetic resonance spectroscopy method
to measure glutamate, glutamine, and GABA to comprehen-
sively understand the molecular underpinnings of this balance.

Neuroinflammatory markers

Growing evidence suggests a prominent role for neuroinflamma-
tion in the pathology of neuropsychiatric disorders. In particular,
several studies have implicated microglia, the resident immune
cells of the CNS, in the development and progression of schizophrenia, mood disorders, and neurodegenerative disorders (Réus et al., 2015). Translocator protein (TSPO) has been studied as a biomarker of reactive gliosis and inflammation in a variety of neuropathological conditions, and increased levels of this factor have been suggested as a marker for activated microglia (Sandiego et al., 2015). Therefore, TSPO PET imaging may be useful for investigating both the role of neuroinflammation in various diseases and for stratifying patients with diseases for which neuroinflammatory pathophysiology is suspected. Moreover, despite some controversy, accumulating evidence supports the existence of aggressive M1-like and protective M2-like phenotypes of microglia (Nakagawa and Chiba, 2015). TSPO is believed to be a marker for M1-like microgliosis, while other signaling molecules are linked to the establishment of other microglial phenotypes. Imaging of purinergic receptors via PET imaging could be a useful tool to monitor microglial activation, as both P2X7 and P2Y12 are evidently involved in M1-like and M2-like microgliosis (Moore et al., 2015; Iwata et al., 2016), respectively.

Oligodendrocyte markers

Dysfunction of oligodendrocytes or demyelination due to loss of oligodendrocytes has been observed in neuropsychiatric disorders such as schizophrenia and multiple sclerosis (Prineas et al., 1984; Hof et al., 2003). Status markers labeling oligodendrocytes or oligodendrocyte precursor cells are useful tools for understanding diseases in which oligodendrocyte abnormalities are involved and for stratifying these patients. Development of PET tracers that bind molecules specifically expressed in oligodendrocytes (S1P) or oligodendrocyte precursor cells (GPR17) would also be useful.

Markers for aggregated proteins

Among markers for aggregated proteins, amyloid imaging has been extensively explored for diagnostic purposes in AD, while tau imaging has been employed in studying tauopathies. Other examples being actively explored include PET tracers for α-synuclein (for α-synucleinopathies) and TDP-43 (for TDP-43 proteinopathies).

Validation and Standardization of Methods to Measure Brain Function

FDG-PET, functional MRI (fMRI) and EEG have all been used to measure brain function, via measurement of different biological signals. These approaches can distinguish neural network aberrations induced by psychotomimetic drugs such as ketamine and scopolamine. These changes may represent translatable biomarkers, as these alterations frequently resemble abnormalities observed in certain pathological conditions (Molchan et al., 1994; Jones et al., 2012; Hegedüs et al., 2015; Joules et al., 2015). However, the above-mentioned methods are not fully validated and standardized, introducing the potential for contradictory results. To avoid this, uniform guidelines to validate and standardize are necessary in a clinical setting.

Example of development of imaging biomarkers by PPPs

Given that the TSPO has been observed in higher density in activated microglia across various brain diseases, TSPO PET tracer can be used in a wide range of diseases in which neuroinflammation is implicated (Yasuno et al., 2008; Takano et al., 2010). To date, several TSPO PET tracers have been developed, but the use of existing radioligands has been complicated by the existence of low- and high-affinity binders (Kreisl et al., 2010) that has been ascribed to a single nucleotide polymorphism (rs6971) (Owen et al., 2012). The resulting heterogeneity has led to inconsistent results and has complicated interpretation of this data (Kreisl et al., 2013; Bloomfeld et al., 2016; Coughlin et al., 2016). The development of a novel PET tracer of TSPO that is unaffected by genetic variability would be of great use in determining drug intervention timing (e.g., illness phase specific pharmacotherapy) for neuropsychiatric disorders in which inflammatory processes are involved.

Summary and Future Directions

To improve the success rate of INDs in the CNS field, we have proposed the expansion and reorganization of existing biomarker utility measures into a 5-tiered indices covering the following functional facets: Tier 1 (brain exposure), Tier 2 (target binding), Tier 3 (brain functional changes), Tier 4 (patient stratification), and Tier 5 (clinical efficacy prediction).

Further rollout of biomarkers is imperative for improvement in clinical development, particularly in the field of psychiatry. Failures of INDs in the CNS field are largely due to small overall effect and/or failure to attain primary endpoints set for clinical trials. For patients diagnosed by the current ICD-10/DSM-5, the general assumption is that patients suffering from schizophrenia, bipolar disorder, and major depression can be composed of biologically distinct subpopulations with heterogeneous pathophysiology. Thus, INDs targeting a selective mechanism could be beneficial to only a fraction of the entire patient population. Currently available drugs for schizophrenia share one selective mechanism, the blockade of the dopamine D2 receptor (Farde et al., 1988). Although blocking D2 receptors is widely effective in schizophrenic populations, patient subgroups exhibit a wide range of responses to these drugs (Demjaha et al., 2012). If we apply neuroimaging data prospectively to exclude treatment-resistant patients (vis-à-vis Tier 4), the effect size for a given compound could increase. Because neuroimaging biomarkers that predict clinical efficacy might depend on biological pathways disturbed in patients, Tier 5 (clinical efficacy prediction) criteria could be tightly linked to Tier 4. As discussed above, neuroimaging biomarkers monitoring the status of excitatory/inhibitory balance, neuroinflammation, and oligodendrocytes also represent potential candidates to benefit from the use of Tier/5 biomarkers. It is important to remember that the cost and effort involved in neuroimaging biomarkers renders them unsuitable for large-scale clinical trials; therefore, biomarkers that are less costly and easier to measure than neuroimaging biomarkers may be needed in later trials.

Although it remains largely outside the scope of this working group’s report, PET may also be used to predict safety/tolerability; microdosing of labeled therapeutics could indicate drug predisposition for accumulation in certain organs, allowing advanced prediction of possible side effects (Roberts et al., 2015; Papadimitriou et al., 2016; Burt et al., 2016).

In summary, neuroimaging biomarkers are ever-more-powerful tools for evaluating the potential of INDs. To better support this mission, we propose redefinition of existing criteria to further the use of biomarkers as shepherds of clinical development, while implementing a fourth (patient stratification) and fifth (clinical efficacy prediction) tier to this index. Our ultimate objective is to improve the success rate of INDs and eventually to achieve true "precision medicine" in CNS disorders. This includes addressing emerging problems, including symptom- or mechanism-specific biomarkers used for diagnosis and stratification. We also propose to pursue generation and development of new neuroimaging biomarkers through PPPs that combine disease knowledge, cutting-edge technologies, chemical
libraries, medicinal chemistry, and funding to achieve novel breakthroughs. Considering their potential to accelerate drug discovery in the CNS field, PPPs should also include regulatory agencies, such as U.S. Food and Drug Administration, European Medicines Agency, and Pharmaceuticals and Medical Devices Agency so as to standardize application of neuroimaging biomarkers and their related general biomarkers in clinical trials of INDs and frame how they may be used to stratify target patients and reach primary and co-primary endpoints.

Acknowledgments

We acknowledge Dr. Maiko Ono for use of her artwork (Figure 1a).

Statement of Interest

Drs. Chaki and Omura are employees of Taisho Pharmaceutical Co., Ltd. Drs. Kimura and Furusawa are employees of Takeda Pharmaceutical Co., Ltd. Drs. Matsumoto and Miyoshi are employees of Astellas Pharmaco Inc. Drs. Ogura and Yamamoto are employees of Eisai Co., Ltd. Dr. Negishi is an employee of Mitsubishi Tanabe Pharma Co. Dr. Watanabe is an employee of Daiichi Sankyo Co., Ltd. Dr. Nakatani is an employee of Chugai Pharmaceutical Co., Ltd. Dr. Liou is an employee of Ono Pharmaceutical Co., Ltd. Dr. Walton is an employee of Astellas Research Institute of America LLC.

References

Aducanumab. Alzforum website. http://www.alzforum.org/therapeutics/aducanumab. Accessed July 22, 2016.

Ahnou A, de Boer P, LavreySEN H, Huysmans H, Sinha V, Raey-maekers L, Van De Castelee T, Cid JM, Van Nueten L, Mac-donald GJ, Kemp JA, Drinkenwen WH (2016) Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: sleep EEG correlates in rodents and healthy men. Neuropharmacology 103:290–305.

Arakawa R, Ito H, Takano A, Takahashi H, Morimoto T, Sassa T, Ohta K, Kato M, Okubo Y, Suhara T (2008) Dose-finding study of paliperidone ER based on striatal and extrastriatal dopamine D2 receptor occupancy in patients with schizophrenia. Psychopharmacology (Berl) 197:229–235.

Attack JR, Wong DF, Fryer TD, Ryan C, Sanabria S, Zhou Y, Dan-nals RF, Eng WS, Gibson RE, Burns HD, Vega JM, Vessy L, Scott-Stevens P, Beech JS, Baron JC, Sohal B, Schrag MI, Alg-birghio FI, McKernan RM, Hargreaves RJ (2010) Benzodiazepine binding site occupancy by the novel GABA receptor subtype-selective drug 7-(1,1-dimethylamyl)-6-(2-ethyl-2H-1,2,4-triazol-3-yl)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b] pyridazine (TPA023) in rats, primates, and humans. J Pharma-col Exp Ther 323:172–179.

Barker RA, Williams-Gray CH (2016) Review: the spectrum of clinical features seen with alpha synuclein pathology. Neuro-pathol Appl Neurobiol 42:6–19.

Becker RE, Seeman MV, Greig NH, Lahiri DK (2015) What can tri-umphs and tribulations from drug research in Alzheimer’s disease tell us about the development of psychotropic drugs in general? Lancet Psychiatry 2:756–764.

Bloomfield PS, Selvaraj S, Veronica M, Rizzo G, Bertoldo A, Owen DR, Bloomfield MA, Bonoldi I, Kalk N, Turkheimer F, McGuire P, de Paola V, Howes OD (2016) Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C] PBR28 PET brain imaging study. Am J Psychiatry 173:44–52.

Braus LS, Potter WZ (2014) Public-private partnerships to revitalize psychiatric drug discovery. Expert Opin Drug Discov 9:1–8.

Burt T, Yoshida K, Lappin C, Vuong L, John C, de Wildt SN, Sugiyama Y, Rowland M (2016) Microdosing and other phase 0 clinical trials: facilitating translation in drug development. Clin Transl Sci 9:74–88.

Caruso A, Alvareza-Sánchez R, Hillebrecht A, Poirier A, Schuler F, Lavé T, Funk C, Belli S (2013) PK/PD assessment in CNS drug discovery: prediction of CSF concentration in rodents for P-glycoprotein substrates and application to in vivo potency estimation. Biochem Pharmacol 85:1684–1699.

Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, Fleisher AS, Reiman EM, Sabbagh MN, Sadowsky CH, Schneider JA, Arora A, Carpenter AP, Flitter ML, Joshi AD, Krautkramer MJ, Lu M, Mintun MA, Skovronsky DM, AV-45-A16 Study Group (2012) Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol 11:669–678.

Conn PJ, Lindsley CW, Meiler J, Niswender CM (2014) Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 13:692–708.

Cook D, Brown D, Alexander R, March R, Morgan P, Sattterthwaite G, Pangalos MN (2014) Lessons learned from the fate of Astra Zeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13:419–431.

Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M, Kim PK, Ford CN, Higgs C, Hayes LN, Schretlen DJ, Dann-nals RF, Kassiou M, Sawa A, Pomper MG (2016) In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [11C]DJPA-713 PET and analysis of CSF and plasma. Transl Psychiatry 6:e777.

Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD (2012) Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry 169:1203–1210.

Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemens E, Liu-Seifert H, Mohs R; Alzheimer’s Disease Cooperative Study Steering Committee Solanezumab Study Group (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321.

Dunlop J, Brandon NJ (2015) Schizophrenia drug discovery and development in an evolving era: are new drug targets fulfilling expectations? J Psychopharmacol 29:230–238.

Farde L, Wiesel FA, Hallidin C, Sedvall G (1988) Central D2-dopa-mine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71–76.

Finnema S, Scheinin M, Shahid M, Alegre R, Enz AD, Uyesugi F, Orfeo G, Balling Andersen B, Sallinen J, Wong E, Farde L, Hallidin C, Grimwood S (2015) Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology 232:4129–4157.

Gottwald M, Becker A, Bahr I, Mueller-Fahrnow A (2016) Public-private partnerships in lead discovery: overview and case studies. Arch Pharm Chem Life Sci 349:692–697.

Golde TE (2005) The Abeta hypothesis: leading us to rationally-designed therapeutic strategies for the treatment or prevention of Alzheimer disease. Brain Pathol 15:84–87.

Hare MR, Robles E, Holsboer F (2012) Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov 11:462–478.
Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today 17:419–424.

Nakagawa Y, Chiba K (2015) Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 154:21–35.

Neumann M, Sampaugh DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133.

O’Brien DE, Conn PJ (2016) Neurobiological insights from mGlu receptor allosteric modulation. Int J Neuropsychopharmacol 19. pii: pyv133.

Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, O’Neill JP, Janabi M, Lazaris A, Cantwell A, Vogel J, Santos M, Miller ZA, Bettcher BM, Vossel KA, Kramer JH, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139:1551–1567.

Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, Rhodes C, Pulford DJ, Bennacerrf I, Parker CA, StJean PL, Cardon LR, Mooser VE, Matthews PM, Rabiner EA, Rubio JP (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5.

Papadimitriou L, Smith-Jones PM, Sarwar CMS, Marti CN, Yaddanapudi K, Skopicki HA, Gheorgiade M, Parsley R, Butler J (2016) Utility of positron emission tomography for drug discovery and development. Am Heart J 175:142–152.

Prineas JW, Kwon EE, Sternberger NR, Lennon VA (1984) The distribution of myelin-associated glycoprotein and myelin basic protein in actively demyelinating multiple sclerosis lesions. J Neuroimmunol 6:251–264.

Ratner M (2015) Biogen’s early Alzheimer’s data raise hopes, forward. Toxicol Sci 148:332–340.

Sandiego CM, Gallezot JD, Pittman B, Nabulsi N, Lim K, Lin SF, Matuskey D, Lee JY, O’Connor KC, Huang Y, Carson RE, Hannestad J, Cosgrove KP (2015) Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 112:12468–12473.

Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, Dowsett SA, Pontecorvo MJ, Dean RA, Demattos R (2016) Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s Dement 12:110–120.

Suhara T, Takano A, Sudo Y, Ichimiya T, Inoue M, Yasuno F, Ikoma Y, Okubo Y (2003) High levels of serotonin transporter occupance with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60:386–391.

Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]PBR28. J Neuroimaging 20:1–5.

Tanzini RE (2005) The synaptic Abeta hypothesis of Alzheimer disease. Nat Neurosci 8:977–979.

Tomimatsu Y, Cash D, Suzuki M, Suzuki K, Bernanos M, Simmons C, Williams SC, Kimura H (2016) TAK-063, a phosphodiesterase 10A inhibitor, modulates neuronal activity in various brain regions in phMRI and EEG studies with and without ketamine challenge. Neuroscience 339:180–190.

Wandschneider B, Koepp MJ (2016) Pharmacom FMRI: determining the functional anatomy of the effects of medication. Neuroimage Clin 12:691–697.

Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, Green RC, Harvey D, Jack CR, Jagust W, Lustrum J, Morris JC, Petersen RC, Saykin AJ, Shaw L, Shen L, Schwartz A, Toga AW, Trojanowski JQ; Alzheimer’s Disease Neuroimaging Initiative (2015) 2014 Update of the Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimer’s Dement 11:e1–e120.

Wong DF, Tauscher J, Gründer G (2009) The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 34:187–203.

Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, Nozaki S, Fujimura Y, Koeda M, Asada T, Suhara T (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s Disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiat 64:835–841.