We investigated the effect of single-nucleotide polymorphisms (SNPs) spanning 10 methotrexate (MTX) pathway genes, namely AMPD1, ATIC, DHFR, FPGS, GGH, ITPA, MTHFD1, SHMT1, SLC19A1 (RFC) and TYMS on the outcome of MTX treatment in a UK rheumatoid arthritis (RA) patient cohort. Tagging SNPs were selected and genotyping was performed in 309 patients with predefined outcomes to MTX treatment. Of the 129 SNPs tested, 11 associations were detected with efficacy (P-trend ≤0.05) including four SNPs in the ATIC gene (rs12995526, rs3821353, rs7563206 and rs16853834), six SNPs in the SLC19A1 gene region (rs11702425, rs2838956, rs7499, rs2274808, rs9977268 and rs7279445) and a single SNP within the GGH gene (rs12681874). Five SNPs were significantly associated with adverse events; three in the DHFR gene (rs12517451, rs10072026, and rs1643657) and two of borderline significance in the FPGS gene. The results suggest that genetic variations in several key MTX pathway genes may influence response to MTX in the RA patients. Further studies will be required to validate these findings and if confirmed these results could contribute towards a better understanding of and ability to predict MTX response in RA.

The Pharmacogenomics Journal (2013) 13, 227–234; doi:10.1038/tpj.2012.7; published online 27 March 2012

Keywords: ATIC; methotrexate; pharmacogenetics; polymorphism; RFC; rheumatoid arthritis

Introduction

Rheumatoid arthritis (RA) is a chronic disabling disease, requiring long-term treatment. Drug therapy is a key component of the treatment pathway and disease-modifying anti-rheumatic drugs (DMARDs) provide the mainstay of therapy, with mounting evidence suggesting that earlier treatment with DMARDs offers benefits in the longer term.1,2 There are several DMARDs available, but in clinical practice methotrexate (MTX) is increasingly recognised as the anchor drug for the treatment of RA.3–6 This is because of substantial clinical experience, established efficacy, superior continuation rates, affordability and the fact that treatment with MTX not only reduces disease activity in the short term, but can also delay or stabilise the development of bone erosions in some patients over the longer term.7,8 Nevertheless, there is still significant variability in patient responses to treatment, with an estimated one-third of patients failing to respond to MTX either due to lack of efficacy or adverse events (AEs).9–13 As a result of this inter-patient variability in response and the fact that no predictive tests are available, routine blood and liver function testing are required in clinical practice that can be costly and inconvenient for the
patients. For these reasons, MTX represents an interesting target for pharmacogenetic testing, to identify response predictors that could maximise response and minimise toxicity.

Treatment response is a complex multi-factorial trait with various contributing factors, including individual patient factors (age, sex, ethnicity, co-morbidities), disease specific factors (disease duration, severity, activity) and genetic factors. A complex interplay of several genes encoding proteins involved in drug uptake and disposal, absorption, retention, distribution, metabolism and interaction with cellular targets can influence drug actions and thus these genes represent logical targets for pharmacogenetic testing. The actual mechanism of action of low-dose MTX, used in the treatment of RA, is still not fully understood, but it is thought that the anti-inflammatory effects, mediated by adenosine release, are more important than the anti-proliferative effects. In order to enter the cell, MTX is internalised by the reduced folate carrier (SLC19A1/RFC), with impaired transport correlated with MTX resistance. Once internalised, MTX requires intracellular polyglutamation, controlled by the polyglutamation-deconjugation cycle that is instigated by the enzymes γ-folypolyglutamate synthetase (FPGS) and glutamyl hydrolase (GGH), respectively. It is these active MTX-polyglutamates that determine MTX functional status and have an important role in directly suppressing various enzymes, such as dihydrofolate reductase (DHFR), thymidylate synthase (TYMS) and 5-aminomimidazole 4-carboximidine ribonucleotide (AICAR) transformylase (ATIC), and have an indirect effect on methylenetetrahydrofolate reductase.

The association of polymorphisms in these genes with MTX response have been described by various groups, although many of these studies have tested isolated polymorphisms within a few genes relevant to MTX metabolism. Our aim was to examine several important MTX pathway genes to determine whether single-nucleotide polymorphism (SNP) markers, selected to comprehensively cover the genes, were associated with MTX treatment response outcomes in a well-characterised group of patients with established RA.

Patients and methods

Study subjects and outcomes

Details of the patients included in this study and the methods by which they were recruited are outlined elsewhere. In brief, all subjects were considered eligible for inclusion if they had taken MTX monotherapy for RA for at least 3 months, aged over 18 years, were of white Caucasian ethnic origin and were classified as having RA according to the ACR 1987 criteria. The patient cohort was recruited retrospectively from two hospitals: The University Hospital of North Staffordshire (UHNS) and Central Manchester NHS Foundation Trust (CMFT). Patients were identified either via an electronic database (UHNS) or case note review (CMFT) (Table 1). Eligible patients had to fulfil one of three defined outcomes to MTX: (i) good responder (physician statement of good response plus a stable dose of MTX for at least 6 months, with an ESR <20 and/or normal CRP); (ii) inefficacy failure (physician statement of inefficacy plus failure to reduce ESR and/or CRP by at least 20% with MTX therapy for at least 3 months at a minimum dose of 15 mg per week) or (iii) AE failure (AEs had to be persistent or serious and lead to treatment cessation: verified by medical record review. Furthermore, the AEs had to resolve on treatment cessation and, in the case of GI AEs, recur after MTX re-challenge). Individuals that did not meet one of these defined outcomes were not included in the study.

Ethical approval for the study was obtained from the North Staffordshire LREC (Ref 03/20) and the Central Manchester

Number patients (%)	Responders	IE failure	AE failure
Age at diagnosis in years median (range)	147 (48)	101 (33)	61 (19)
Gender: female (%)	103 (70)	77 (76.2)	50 (82)
Age at MTX start in years median (range)	57.4 (49.6–64.6)	52.8 (46.3–59.3)	52.2 (46.5–60.7)
RF +ve status (%)	99 (67.4)	76 (75.3)	45 (73)
Erosions (%)	115 (78)	93 (92)	52 (87)

Abbreviations: AE, adverse event; DMARD, disease modifying anti-rheumatic drug; IE, inefficacy; MTX, methotrexate; RF, rheumatoid factor; SE, shared epitope.

Table 1 Patients demographics and baseline characteristics

Copies SE (%)	Responders	IE failure	AE failure
0	27 (19)	15 (15)	13 (22)
1	66 (47)	40 (41)	24 (41)
2	48 (34)	43 (44)	22 (37)

No previous DMARDs median (range)	Responders	IE failure	AE failure
MTX first DMARD (%)	2 (0–3)	2 (1–3)	2 (2–4)
	40 (27.2)	21 (18.1)	7 (11.5)

Abbreviations: AE, adverse event; DMARD, disease modifying anti-rheumatic drug; IE, inefficacy; MTX, methotrexate; RF, rheumatoid factor; SE, shared epitope.

\[n = 297 \text{ with information.}\]

\[n = 301 \text{ with information.}\]
LREC (Ref 03/CM/315), and written consent was obtained from subjects according to the Declaration of Helsinki.

Selection of SNPs and genotyping
Ten candidate genes were selected for study on the basis of putative involvement in the MTX metabolic pathway and previous evidence from the literature. They included genes involved in MTX cellular influx (SLC19A/RFC), polyglutamation (GGH, FPGS), folate pathway (DHFR, SHMT1, MTHFD1), purine synthesis (ATIC), pyrimidine synthesis (TYMS), adenosine pathway (AMPD1, ATIC) and ITPA (Supplementary Figure 1).

For each gene SNPs were selected based on a pair-wise tagging SNP approach, supplemented with other commonly investigated SNPs from the literature. Marker coverage of each gene was extended to include the 10-kb upstream and downstream flanking region. Tag SNPs for each gene were selected from the CEPH/CEU Hapmap dataset (release 22) (http://www.hapmap.org) and this downloaded SNP data was then filtered through the Haploview software (http://www.broad.mit.edu/haploview/) and pair-wise tagging SNPs (r^2 cut off >0.8 and MAF >5%) were selected for genotyping. In addition to the tag SNPs identified, we also included additional SNPs in each gene in case of SNP failure, seven duplicate SNPs for quality control purposes and one 28-base pair variable-number tandem repeat located in the 5'UTR of the TYMS gene.

Genotyping
SNP genotyping was performed using the Sequenom iPLEX MASS ARRAY platform according to the manufacturers' instructions (Sequenom, San Diego, CA, USA, http://www.sequenom.com). Genotyping for the variable-number tandem repeat was performed in a 5-m reaction volume, using primer sequences as described by Zhang et al. Amplicons were electrophoresed through a 3% agarose gel and visualised with ethidium bromide staining.

Quality control procedures before analysis were used such that 80% sample and polymorphism genotyping success rate was required, and any samples and polymorphisms failing to meet this threshold were removed from further analysis.

Statistical analysis
Each polymorphism was tested for association with MTX efficacy and AEs. Genotype and allele frequencies were compared between the groups and analysed as a nested case–control study with the responders as the referent. Genotype and allele frequencies were estimated from the samples, and compared between the groups and analysed as a nested case–control study with the responders as the referent.

Each polymorphism was tested for association with MTX efficacy and AEs. Genotype and allele frequencies were compared between the groups and analysed as a nested case–control study with the responders as the referent. Genotype and allele frequencies were estimated from the samples, and compared between the groups and analysed as a nested case–control study with the responders as the referent.

Table 1 shows the clinical characteristics of the subjects in the two study groups. The median age at MTX onset varied between 54.2 years in the efficacy group and 54.1 years in the inefficacy group. There were no significant differences in sex, disease duration, disease activity or current or previous use of MTX between the two groups.

Statistical analysis
Each polymorphism was tested for association with MTX efficacy and AEs. Genotype and allele frequencies were compared between the groups and analysed as a nested case–control study with the responders as the referent. Genotype and allele frequencies were estimated from the samples, and compared between the groups and analysed as a nested case–control study with the responders as the referent.

Each polymorphism was tested for association with MTX efficacy and AEs. Genotype and allele frequencies were compared between the groups and analysed as a nested case–control study with the responders as the referent. Genotype and allele frequencies were estimated from the samples, and compared between the groups and analysed as a nested case–control study with the responders as the referent.
determine whether the associations were independent of each other. The significantly associated markers were conditioned against the effect of the most significant marker in the gene, but there was no evidence of independence demonstrated in this sample (data not shown). Similarly, haplotype analysis did not reveal haplotypic effects (data not shown).

Association with MTX toxicity

With regard to MTX-related toxicity, two SNPs (rs10072026 and rs1643657) within the \(DHFR\) gene region were associated with a reduced risk of MTX-related AEs (OR 0.43, 95% CI 0.19–0.99; OR 0.60, 95% CI 0.39–0.99) and another (rs12517451) showed evidence of association with an increased risk of AEs (OR 1.68, 95% CI 1.03–2.75). In addition, two SNPs in high LD (\(r^2 = 0.96\)) within the \(FPGS\) gene showed borderline evidence of association with an increased risk of AEs (Table 3). Both SNPs in the \(FPGS\) gene (rs1054774 and rs44511422) were highly significant under a recessive model of inheritance (OR 3.03, 95% CI 1.14–7.99 and OR 3.60, 95% CI 1.39–9.33, respectively) (Table 3).

Replication of previous pharmacogenetic results

Twelve of the 145 SNPs were included in order to validate previously reported associations from the literature (Table 4). Of these, one SNP in the \(DHFR\) gene (rs1650697) for which a proxy SNP (rs12517451) (\(r^2 = 1.0\)) was genotyped provided evidence of association with AEs (OR 1.68, 95% CI 1.03–2.75) and two SNPs in the \(FPGS\) gene (rs1544105 and rs10106) for which proxies were genotyped showed borderline evidence of association (trend \(P = 0.06\)) with an increased risk of AEs, with a further increased risk with carriage of two copies of the minor allele under a recessive model (Table 4). No significant associations were revealed with any of the other previously reported SNPs (Table 4).

Discussion

The ability to individually tailor MTX treatment to meet individual patient’s needs remains an important goal and would be valuable if applied in clinical practice. Our study has identified 16 SNPs, some novel and others replicating previous findings, in five key MTX metabolic pathway genes, which show evidence for association with MTX efficacy or AEs in this cohort of RA patients. No significant associations or replications of previous associations of SNPs within the genes: \(SHMT1\), \(MTHFD1\), \(AMPD1\), \(ITPA\), and \(TYMS\) with MTX efficacy or AEs were found.

There have been a number of studies conducted to determine the MTX response in RA patients, with the majority adopting a candidate gene approach, genotyping isolated SNPs within the gene and testing for association. Our study also focused on candidate genes in the MTX metabolic pathway, partly because this approach has proven successful for a number of other common treatments. One of the best examples is the identification of polymorphisms within the genes: \(G6PD\), \(MTHFR\), \(AMPD\), \(ITPA\), and \(TYMS\) as important in determining the response to MTX treatment.

Abbreviations: CI, confidence interval; IE, inefficacy failure to MTX; MAF, minor allele frequency; R, responder; SNP, single-nucleotide polymorphism; 1_1, major allele homozygote; 1_2, heterozygote; 2_2, minor allele homozygote.

Table 2 SNPs significantly associated with MTX efficacy (\(P_{\text{trend}} \leq 0.05\))

Gene	SNP	Base pairs	SNP position	MAF (%)	Genotype frequencies (%)	Trend P	Allelic OR (95% CI)
					R 1_1 1_2 2_2 IE 1_1 1_2 2_2		
ATIC	rs7563206	C/T	Intron	42.4	45 (32.4) 70 (50.4) 24 (17.3) 20 (17%)	0.01	1.60 (1.10–2.33)
	rs3821353	G/T	Intron	24.4	83 (59.7) 44 (31.7) 12 (8.6) 67 (71.3) 27 (28.7) 0 (0.0)	0.009	0.51 (0.31–0.84)
	rs12995526	C/T	Exonic 5'UTR	42.4	45 (34.1) 62 (47.0) 25 (18.9) 20 (22.0) 42 (46.2) 29 (31.9)	0.01	1.65 (1.13–2.42)
	rs1863834	C/T	Exonic 5'UTR	13.9	96 (73.8) 32 (24.6) 2 (1.5) 68 (72.8) 27 (31.4) 5 (5.8)	0.04	1.70 (1.02–2.82)
GGH	rs2681874	C/T	Intron	16.9	104 (78.2) 25 (18.8) 4 (3.0) 77 (86.5) 9 (10.1) 3 (3.4)	0.04	0.54 (0.30–1.00)
SLC19A1	rs1702425b	T/C	Exon	26.9	75 (53.2) 56 (39.7) 10 (7.1) 34 (35.1) 45 (47.5) 16 (16.5)	0.001	1.86 (1.26–2.74)
	rs2838956	A/G	Exonic 5'UTR	38.3	52 (36.9) 70 (49.6) 19 (13.5) 24 (24.7) 54 (55.7) 19 (19.6)	0.04	1.45 (1.00–2.10)
	rs274808b	C/T	Intron	21.8	88 (62.9) 43 (30.7) 9 (6.4) 45 (46.4) 40 (41.2) 12 (12.4)	0.009	1.76 (1.17–2.67)
	rs9977268b	C/T	Intron	18.9	95 (67.9) 37 (26.4) 8 (5.7) 52 (54.2) 34 (35.4) 10 (10.4)	0.02	1.67 (1.08–2.58)
	rs279445b	C/T	Intron	45.0	43 (30.5) 69 (48.9) 29 (20.6) 18 (18.8) 52 (54.2) 26 (27.1)	0.05	1.44 (0.99–2.08)

Abbreviations: CI, confidence interval; IE, inefficacy failure to MTX; MAF, minor allele frequency; R, responder; SNP, single-nucleotide polymorphism; 1_1, major allele homozygote; 1_2, heterozygote; 2_2, minor allele homozygote.

aOn the basis of carriage of the minor (rare) allele.
bIn an overlapping gene COL18A1.
in the vitamin K (VKORC1) and cytochrome p450 (CYP2C9) genes, which influence response to warfarin where findings have since been validated in independent studies.27–30 Our study had an additional strength that, rather than testing single SNPs in specific genes, we systematically screened selected MTX pathway genes ensuring gene coverage following quality control measures exceeded 85% when compared with the HapMap data. In this way, we can confidently exclude association with a number of genes in our cohort for effect sizes > 1.5. This was a retrospective study and patients were recruited to the study based on phenotypes defined using the data available in the patients notes. We set out to define phenotypes for both inefficacy and AEs in order to minimise variation and maximise the power to detect significant genetic effects. Furthermore, all of the patients were recruited within a well-defined geographical area and comprised an ethnically homogenous patient population.

Despite these strengths, our study has several limitations: first, incomplete knowledge of the MTX metabolic pathway means that we may have failed to screen some important genes and that although we have found several SNPs to be associated with either efficacy or AEs in this study, it is likely that combinations of risk SNPs will be more predictive of response to MTX than individual SNP effects, as shown in previous studies.31–33 It would be interesting to look at combinations of risk SNPs because, due to the limited sample size, the fact that corrective procedures may unnecessarily reduce power and a proportion of our positive findings do support those from previous studies suggesting that the effects seen may be true. For example, we report borderline association with a SNP (rs1544105) within the FPGS gene with MTX AEs. Interestingly a SNP in high LD with our associated SNP, namely rs1544105, has been associated with response in a previous study.34,35 Also, a SNP mapping to the DHFR gene (rs1650697) and perfectly correlated ($r^2 = 1$) with rs12517451, which we report to be associated with AEs, specifically liver AEs (data not shown), was associated with the occurrence of hepatitis in RA patients in an independent study.36 Finally, a SNP mapping to the ATIC gene and tested in this RA cohort for the first time has been reported to be associated with MTX in a juvenile idiopathic arthritis cohort as described later. In terms of MTX efficacy, several studies have investigated the role of the SLC19A1 (RFC) gene, focusing on the RFC 80A/C non-synonymous SNP (rs1051266), which results in a substitution of arginine to histidine at codon 27 in the first transmembrane domain of the RFC protein.37–41 Our results did not replicate previous findings of association with this particular SNP in

Table 3: SNPs significantly associated with MTX related AE (P trend ≤ 0.05)

Gene	SNP	Base pairs	SNP position	MAF (%)	Genotype frequencies (%)	Trend P	Allelic OR (95% CI)*						
					R: Responders	AE: Adverse events							
					1,1	1,2	2,2	1,1	1,2	2,2			
DHFR	rs12517451	C/T	Intron	20.0	29.7	91 (65.0)	42 (30.0)	7 (5.0)	32 (54.2)	19 (32.2)	8 (13.6)	0.04	1.68 (1.03–2.75)
	rs1643657	A/G	Intron	31.0	21.2	66 (48.2)	57 (41.6)	14 (10.2)	36 (61.0)	21 (35.6)	2 (3.4)	0.04	0.60 (0.39–0.99)
	rs10072026	T/C	Exonic 3’UTR	12.7	5.9	107 (75.9)	32 (22.7)	2 (1.4)	53 (89.8)	5 (8.5)	1 (1.7)	0.04	0.43 (0.19–0.99)
FPGS	rs1054774	A/C	S’ gene	39.6	49.0	48 (35.8)	67 (50.0)	19 (14.2)	16 (30.8)	21 (40.4)	15 (28.8)	0.06	1.52 (0.98–2.34)
	rs4451422	T/A	Exonic 5’UTR	40.0	49.0	46 (34.3)	69 (51.5)	19 (14.2)	13 (28.8)	23 (44.2)	14 (26.9)	0.06	1.49 (0.97–2.30)

Abbreviations: AE, adverse events to methotrexate; CI, confidence interval; MAF, minor allele frequency; R, responders; SNP, single-nucleotide polymorphism; 1_1, major allele homozygote; 1_2, heterozygote; 2_2, minor allele homozygote.

On the basis of carriage of the minor (rare) allele.

The Pharmacogenomics Journal
Table 4 Results for SNPs previously found to show evidence of association with MTX response

| Gene (ref) | SNP from literature | Reported association | Position | Proxy SNP typed | MAF R | AE | IE | Trend P | R vs AE | R vs IE | Trend P | R vs AE | R vs IE | Trend P | R vs AE | R vs IE |
|-----------|---------------------|----------------------|----------|----------------|-------|----|----|---------|---------|--------|---------|---------|---------|--------|---------|--------|---------|
| ITPA | rs1127354 | Efficacy | 94 C/A | 9.6 9.3 8.8 | 0.93 | 0.97 | 0.47–2.02 | 0.76 | 0.90 | 0.48–1.71 |
| DMR | rs1650967 | AE/efficacy | –473 G/A | 20.0 29.7 23.7 | 0.94 | 1.68 | 1.03–2.75 | 0.35 | 1.24 | 0.80–1.93 |
| DHFR | rs11545078 | Efficacy | 452 C/T | 10.7 11.9 8.6 | 0.74 | 1.12 | 0.57–2.20 | 0.49 | 0.80 | 0.42–1.50 |
| AMPD1 | rs17602729 | Efficacy | 34 C/T | 13.2 19.6 12.1 | 0.13 | 1.61 | 0.88–2.94 | 0.72 | 0.91 | 0.51–1.61 |
| MTHFD1 | rs17850560 | AE/efficacy | 1958 G/A | 46.8 50.8 49.0 | 0.44 | 1.18 | 0.75–1.81 | 0.64 | 1.09 | 0.76–1.56 |
| SLC19A1 | rs1051266 | AE/efficacy | 80 G/A | 41.4 42.0 47.8 | 0.70 | 1.02 | 0.66–1.59 | 0.17 | 1.29 | 0.89–1.89 |
| FPGS | rs1544105 | Efficacy | 1994 A/G | 39.9 49.0 39.9 | 0.06 | 1.52 | 0.98–2.34 | 0.48 | 0.88 | 0.60–1.29 |
| TYMS | rs10106 | AE/efficacy | N/A | 45.0 46.5 47.9 | 0.80 | 1.06 | 0.69–1.64 | 0.53 | 1.12 | 0.78–1.62 |
| SHMT1 | rs1979277 | AE/efficacy | 1420 C/T | 31.9 29.7 35.6 | 0.67 | 0.89 | 0.56–1.43 | 0.41 | 1.17 | 0.80–1.73 |

Abbreviations: AE, Adverse event failure; CI, confidence interval; IE, Inefficacy failure; MAF, minor allele frequency; MTX, methotrexate; OR, odds ratio; R, responders; SNP, single-nucleotide polymorphism; VNTR, variable-number tandem repeat.

On the basis of carriage of the minor allele. Emboldened SNPs are significant or approaching statistical significance.

2R2R genotype.

Emboded SNPs are significant or approaching statistical significance.

Discussion

In summary, results from this study replicate some previous findings reported in the literature and at the same time we report associations between several MTX pathway genes and either efficacy or AEs in MTX-treated RA patients. In particular, there is growing evidence to support the role of the ATIC gene in the response to MTX treatment. Many of the SNPs reported in the literature have been associated with MTX response in different cohorts, suggesting that this gene may have a role in determining efficacy. The magnitude of effect of these SNPs varies across different studies, with some patients responding to MTX while others do not.

The ATIC gene is highly polymorphic in humans and shows strong LD across the gene encoding adenosine receptors and response to MTX. The ATIC gene contains several SNPs that are associated with MTX response in different cohorts, with a single causal variant suggested to explain the association with this SNP and MTX response. In keeping with the results from some studies, 34,36,39,42 we have found several other SNPs in the ATIC gene that are significantly associated with MTX response. These SNPs are located in non-coding regions of the gene and therefore may have a role in determining efficacy. The fact that these SNPs show significant association with MTX response suggests that they may have a role in the biology of MTX treatment. Further study is required to determine the actual causal variant responsible for these associations.

Abbreviations:
- AE: Adverse event failure
- CI: Confidence interval
- IE: Inefficacy failure
- MAF: Minor allele frequency
- MTX: Methotrexate
- OR: Odds ratio
- R: Responders
- SNP: Single-nucleotide polymorphism
- VNTR: Variable-number tandem repeat
Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

We thank the Arthritis Research UK for their support (grant reference no 17552). SH, PM, INB, AB, WT are funded by the Arthritis Research UK and SAO's salary is funded by Pfizer. We acknowledge the NIHR Manchester Biomedical Research Centre for their support.

References

1 Anderson JJ, Wells G, Verhoeven AC, Felson DT. Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum 2000; 43: 22–29.

2 Finckh A, Liang MH, van Heerkenrode CM, de Pablo P. Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: A meta-analysis. Arthritis Rheum 2006; 55: 864–872.

3 Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 1985; 312: 818–822.

4 Williams HJ, Willikens RF, Samuelson JR CO, Alarcon GS, Guttadauria M, Yarboro C et al. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum 1985; 28: 721–730.

5 Le Loet X, Berthelot JM, Cartagnel A, Combe B, De Bandt M, Fautrel B et al. Clinical practice decision tree for the choice of the first disease modifying antirheumatic drug for very early rheumatoid arthritis: a 2004 proposal of the French Society of Rheumatology. Ann Rheum Dis 2006; 65: 45–50.

6 Sokka T, Kautiainen H, Toloza S, Makinen H, Verstappen SM, Lund Hetland M et al. QUEST-RA: quantitative clinical assessment of patients with rheumatoid arthritis seen in standard rheumatology care in 15 countries. Ann Rheum Dis 2007; 66: 1491–1496.

7 Jones G, Halbert J, Crotty M, Shanahan EM, Battenham M, Ahern M. The effect of treatment on radiological progression in rheumatoid arthritis: a systematic review of randomized placebo-controlled trials. Rheumatology 2003; 42: 6–13.

8 Pincus T, Ferraccioli G, Sokka T, Larsen A, Sulli A, Rau R, Kushner I et al. Evidence from clinical trials and long-term observational studies that disease-modifying anti-rheumatic drugs slow radiographic progression in rheumatoid arthritis: updating a 1983 review. Rheumatology 2002; 41: 1346–1356.

9 Alarcon GS, Tracy IC, Blackburn Jr WD. Methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2001; 44: 1515–1524.

10 Gronstein BN. Going with the flow: methotrexate, adenosine, and blood flow. Ann Rheum Dis 2006; 65: 421–422.

11 Cortolo M, Sulli A, Fizzolin C, Seriolo B, Straub RH. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 2001; 60: 729–735.

12 Riksen NP, van der Broek PH, van Riel PL, Smits P, Rongen GA. Methotrexate modulates the kinetics of adenosine in humans in vivo. Ann Rheum Dis 2006; 65: 465–470.

13 Jansen G, Mauritz R, Droni S, Sprecher H, Kathmann I, Bunni M et al. A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 1998; 273: 30189–30198.

14 Vanderdiere C, Chiasson S, Costea I, Moghrabi A, Krajnovic M. Polypharmacology G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002; 100: 3832–3834.

15 McGuire JJ, Hsieh P, Bertino JR. Enzymatic synthesis of polyglutamate derivatives of 7-hydroxymethotrexate. Biochem Pharmacol 1984; 33: 1355–1361.

16 Hider SL, Thomson W, Mack LF, Armstrong DJ, Shadforth M, Bruce IN. Polypharmacologies within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX. Rheumatology 2008; 47: 1156–1159.

17 Arnett FC, Edworthy SM, Bloch DA, Mehang D, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

18 Barrett JC, Fy B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

19 Zhang Z, Shi Q, Sturgis EM, Spitz MR, Hong WK, Wei Q. Thymidylate synthase 5’- and 3’-untranslated region polymorphisms associated with risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res 2004; 10: 7903–7910.

20 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

21 Wadelius M, Chen LY, Downes K, Ghorj H, Hunt S, Eriksson N et al. Common VKORC1 and GGCG polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5: 262–270.

22 Ichibauehl M, Ingelman-Sundberg M, Evans WE. Pharmacogenetics and individualized drug therapy. Annu Rev Med 2006; 57: 119–137.

23 Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 2008; 112: 1022–1027.

24 Takeuchi F, McCinnis R, Bourgeois S, Barnes E, Eriksson N, Soranzo N et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP3A5 as principal genetic determinants of warfarin dose. PLoS Genetics 2009; 5: e1000433.

25 Dervieux T, Defur D, Lein DO, Capps R, Smith K, Walsh M et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 2004; 50: 2766–2774.

26 Weisman MH, Hurst DE, Park CS, Kremer JM, Smith KM, Wallace DJ et al. Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum 2006; 54: 607–612.

27 Dervieux T, Defur D, Lein DO, Capps R, Smith K, Caldwell J et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis 2005; 64: 1180–1185.

28 Sharma S, Das M, Kumar A, Marwaha V, Shankar S, Aneja R et al. Interaction of genes from influx-metabolism-efflux pathway and their structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 1998; 273: 30189–30198.

29 The Pharmacogenomics Journal
transformylase gene with response to methotrexate in juvenile idiopathic arthritis. Ann Rheum Dis 2011; 70: 1395–1400.

47 Wessels JA, van der Kooji SM, de Lassie S, Kievit W, Barella P, Allaart CF et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum 2007; 56: 1765–1775.

48 Dervieux T, Greenstein N, Kremer J. Pharmacogenomic and metabolic biomarkers in the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheum 2006; 54: 3095–3103.

49 van der Straaten R, Wessels JA, de Vries-Bouwstra JK, Goekoop-Ruiterman WP, Allaart CF, Bogaarts J et al. Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics 2007; 8: 141–150.

50 Kato T, Hamada A, Mori S, Saito H. Genetic polymorphisms in the metabolic and cellular transport pathway of methotrexate impact clinical outcome of methotrexate monotherapy in Japanese patients with rheumatoid arthritis. Drug Metab Pharmacokinet 2011; 22 November 2011 (e-pub ahead of print).

51 Stamp LK, Chapman PT, O’Donnell JL, Zhang M, James J, Frampton C et al. Polymorphisms within the folate pathway predict folate concentrations but are not associated with disease activity in rheumatoid arthritis patients on methotrexate. Pharmacogenet Genomics 2010; 20: 367–376.

52 Dervieux T, Kremer J, Lein DO, Capps R, Barham R, Meyer G et al. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrodolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenomics 2004; 14: 733–739.

53 Zeng QY, Wang YK, Xiao ZY, Chen SB. Pharmacogenetic study of 5,10-methylenetetrahydrofolate reductase C677T and thymidylate synthase 3R/2R gene polymorphisms and methotrexate-related toxicity in Chinese Han patients with inflammatory arthritis. Ann Rheum Dis 2008; 67: 1193–1194.

54 Ghodke Y, Chopra A, Joshi K, Patwardhan B. Are thymidylate synthase and methylenetetrahydrofolate reductase genes linked with methotrexate response (efficacy, toxicity) in Indian (Asian) rheumatoid arthritis patients? Clin Rheumatol 2008; 27: 787–789.

55 Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med 2003; 11: 593–600.

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)