Stability of generalized Turán number for linear forests

Yisai Xue, Yichong Liu, Liying Kang∗

Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China

Abstract

Given a graph T and a family of graphs \mathcal{F}, the generalized Turán number of \mathcal{F} is the maximum number of copies of T in an \mathcal{F}-free graph on n vertices, denoted by $ex(n, T, \mathcal{F})$. When $T = K_r$, $ex(n, K_r, \mathcal{F})$ is a function specifying the maximum possible number of r-cliques in an \mathcal{F}-free graph on n vertices. A linear forest is a forest whose connected components are all paths and isolated vertices. Let L_k be the family of all linear forests of size k without isolated vertices. In this paper, we obtained the maximum possible number of r-cliques in G, where G is L_k-free with minimum degree at least d. Furthermore, we give a stability version of the result. As an application of the stability version of the result, we obtain a clique version of the stability of the Erdős-Gallai Theorem on matchings.

Keywords: spanning linear forest, generalized Turán number, stability

AMS (2000) subject classification: 05C35

1 Introduction

Let \mathcal{F} be a family of graphs. The Turán number of \mathcal{F}, denoted by $ex(n, \mathcal{F})$, is the maximum number of edges in a graph with n vertices which does not contain any subgraph isomorphic to a graph in \mathcal{F}. When $\mathcal{F} = \{F\}$, we write $ex(n, F)$ instead of $ex(n, \{F\})$. The problem of determining Turán number for assorted graphs traces its history back to 1907, when Mantel showed that $ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$. In 1941, Turán [12] proved that if a graph does not contain a complete subgraph K_r, then the maximum number of edges it can contain is given by the Turán-graph, a complete balanced $(r - 1)$-partite graph.

∗Corresponding author. Email address: lykang@shu.edu.cn (L. Kang), xys16720018@163.com (Y. Xue), lyc328az@163.com (Y. Liu). This work is supported by the National Nature Science Foundation of China (grant numbers 11871329, 11971298).
For a graph G and $S, T \subseteq V(G)$, denote by $E_G(S, T)$ the set of edges between S and T in G, i.e., $E_G(S, T) = \{uv \in E(G): u \in S, v \in T\}$. Let $e_G(S, T) = |E_G(S, T)|$. If $S = T$, we use $e_G(S)$ instead of $e_G(S, S)$. For a vertex $v \in V(G)$, the degree of v, written as $d_G(v)$ or simply $d(v)$, is the number of edges incident with v. We use $d_T(v)$ instead of $e_G(S, T)$ when $S = \{v\}$. For any $U \subseteq V(G)$, let $G[U]$ be the subgraph induced by U whose edges are precisely the edges of G with both ends in U.

Let G be a graph of order n, P a property defined on G, and k a positive integer. A property P is said to be k-stable, if whenever $G + uv$ has the property P and $d_G(u) + d_G(v) \geq k$, then G itself has the property P. The k-closure of a graph G is the (unique) smallest graph G' of order n such that $E(G) \subseteq E(G')$ and $d_{G'}(u) + d_{G'}(v) < k$ for all $uv \notin E(G')$. The k-closure can be obtained from G by a recursive procedure of joining nonadjacent vertices with degree-sum at least k. In particular, if $G' = G$, we say that G is stable under taking k-closure. Thus, if P is k-stable and the k-closure of G has property P, then G itself has property P.

For a natural number α and a graph G, the α-disintegration of a graph G is the process of iteratively removing from G the vertices with degree at most α until the resulting graph has minimum degree at least $\alpha + 1$ or is empty. The resulting subgraph $H = H(G, \alpha)$ will be called the $(\alpha + 1)$-core of G. It is well known that $H(G, \alpha)$ is unique and does not depend on the order of vertex deletion (for instance, see [11]). The matching number $\nu(G)$ is the number of edges in a maximum matching of G.

The n-vertex graph $H(n, k, a)$ is defined as follows. The vertex set of $H(n, k, a)$ is partitioned into three sets A, B, C such that $|A| = a, |B| = k - 2a, |C| = n - k + a$, and the edge set of $H(n, k, a)$ consists of all edges between A and C together with all edges in $A \cup B$. Let $H^+(n, k, a)$ and $H^{++}(n, k, a)$ be the graph obtained by adding one edge and two independent edges in C of $H(n, k, a)$, respectively. The number of r-cliques in $H(n, k, a)$ is denoted by $h_r(n, k, a) := \binom{k-a}{r} + (n-k+a)\binom{a}{r-1}$, where $h_r(n, k, 0) = \binom{k}{r}$.

A linear forest is a forest whose connected components are all paths and isolated vertices. Let \mathcal{L}_k be the family of all linear forests of size k without isolated vertices. In [13], Wang and Yang proved that $\text{ex}(n; \mathcal{L}_{n-k}) = \binom{n-k}{2} + O(k^2)$ when $n \geq 3k$. Later, Ning and Wang [10] completely determined the Turán number $\text{ex}(n; \mathcal{L}_k)$ for all $n > k$.

Theorem 1.1 (Ning and Wang [10]). For any integers n and k with $1 \leq k \leq n - 1$, we have

$$
\text{ex}(n, \mathcal{L}_k) = \max \left\{ h_2(n, k, 0), h_2(n, k, \left\lfloor \frac{k-1}{2} \right\rfloor) \right\}.
$$

Given a graph T and a family of graphs \mathcal{F}, the generalized Turán number of \mathcal{F} is the maximum number of copies of T in an \mathcal{F}-free graph on n vertices, denoted by $ex(n, T, \mathcal{F})$. Note that $\text{ex}(n, K_2, \mathcal{F}) = \text{ex}(n, \mathcal{F})$. The problem to estimate generalized Turán number has received
a lot of attention. In 1962, Erdős [5] generalized the classical result of Turán by determining the exact value of $ex(n, K_r, K_t)$.

Figure 1: $H(n, k, a)$

Luo [9] determined the upper bounds on $ex(n, K_r, P_k)$ and $ex(n, K_r, C_{\geq k})$, where $C_{\geq k}$ is the family of all cycles with length at least k. In [8], Gerbner, Methuku and Vizer investigated the function $ex(n, T, F)$, where kF denotes k vertex disjoint copies of a fixed graph F. The systematic study of $ex(n, T, F)$ was initiated by Alon and Shikhelman [1]. Recently, Zhang, Wang and Zhou [14] determined the exact values of $ex(n, K_r, L_k)$ by using the shifting method.

Theorem 1.2 (Zhang, Wang and Zhou [14]). For any $r \geq 2$ and $n \geq k + 1$,

$$ex(n, K_r, L_k) = \max \left\{ h_r(n, k, 0), h_r(n, k, \lfloor \frac{k - 1}{2} \rfloor) \right\}.$$

Let $N_r(G)$ denote the number of r-cliques in G. When $T = K_r$, $ex(n, K_r, F)$ is a function specifying the maximum possible number of r-cliques in an F-free graph on n vertices. We extend Theorem 1.2 as follows.

Theorem 1.3. Let G be an L_k-free graph on n vertices with minimum degree d and $d \leq \lfloor \frac{k - 1}{2} \rfloor$. Then

$$N_r(G) \leq \max \left\{ h_r(n, k, d), h_r(n, k, \lfloor \frac{k - 1}{2} \rfloor) \right\}.$$

The graphs $H(n, k, d)$ and $H(n, k, \lfloor \frac{k - 1}{2} \rfloor)$ show that this bound is sharp.

Many extremal problems have the property that there is a unique extremal example, and moreover any construction of close to maximum size is structurally close to this extremal example. In [7], Füredi, Kostochka, and Luo studied the maximum number of cliques in non-ℓ-hamiltonian graphs, where the property non-ℓ-hamiltonian is $(n + \ell)$-stable. Actually, they not only asked to determine the maximum number of cliques in graphs having a stable property P, but also asked to prove a stability version of it. Motivated by the question proposed by Füredi, Kostochka, and Luo [7], we give the following result which is the stability version of Theorem 1.3.
Theorem 1.4. Let G be an L_k-free graph on n vertices with minimum degree at least d. If $n > k^5$, $r \leq \lfloor \frac{k-3}{2} \rfloor$ and

$$N_r(G) > \max \left\{ h_r(n,k,d), h_r\left(n, k, \left\lfloor \frac{k-5}{2} \right\rfloor \right) \right\},$$

then

(i) G is a subgraph of the graph $H(n,k,\lfloor \frac{k-1}{2} \rfloor)$, $H(n,k,\lfloor \frac{k-3}{2} \rfloor)$ or $H^+(n,k-1,\lfloor \frac{k-3}{2} \rfloor)$ if k is odd;

(ii) G is a subgraph of the graph $H(n,k,\lfloor \frac{k-1}{2} \rfloor)$, $H(n,k,\lfloor \frac{k-3}{2} \rfloor)$, $H^+(n,k-1,\lfloor \frac{k-3}{2} \rfloor)$ or $H^{++}(n,k-2,\lfloor \frac{k-3}{2} \rfloor)$ if k is even.

In 1959, Erdős and Gallai [6] determined the maximum number of edges in an n-vertex graph with $\nu(G) \leq k$.

Theorem 1.5 (Erdős-Gallai Theorem [6]). Let G be a graph on n vertices. If $\nu(G) \leq k$, then

$$e(G) \leq \max \{h_2(n,2k+1,0), h_2(n,2k+1,k)\}.$$

In [4], Duan et al. extended Erdős-Gallai Theorem as follows.

Theorem 1.6 (Duan et al. [4]). If G is a graph with $n \geq 2k+2$ vertices, minimum degree d, and $\nu(G) \leq k$, then

$$N_r(G) \leq \max \{h_r(n,2k+1,d), h_r(n,2k+1,k)\}.$$

As an application of our result, we give the stability version of Theorem 1.6 for $2 \leq r \leq k-1$.

Theorem 1.7. Let G be a graph on n vertices with $\delta(G) \geq d$ and $\nu(G) \leq k$. If $r \leq k-1$, $n > (2k+1)^5$ and

$$N_r(G) > \max \{h_r(n,2k+1,d), h_r(n,2k+1,k-2)\},$$

then G is a subgraph of $H(n,2k+1,k)$ or $H(n,2k+1,k-1)$.

2 The maximum number of cliques in L_k-free graphs with given minimum degree

The closure technique, which is initiated by Bondy and Chvátal [2] in 1976, played a crucial role in the proof of Theorem 1.3. In [10], Ning and Wang proved the property L_k-free is k-stable.
Lemma 2.1 (10). Let G be a graph on n vertices. Suppose that $u, v \in V(G)$ with $d(u) + d(v) \geq k$. Then G is \mathcal{L}_k-free if and only if $G + uv$ is \mathcal{L}_k-free.

Proof of Theorem 1.3. Suppose, by way of contradiction, that G is an \mathcal{L}_k-free graph with $N_r(G) > \max \{ h_r(n, k, d), h_r(n, k, \left\lceil \frac{k-1}{2} \right\rceil) \}$. Let G' be the k-closure of G. Then Lemma 2.1 implies that G' is \mathcal{L}_k-free. Obviously, $\delta(G') \geq \delta(G) = d$. Let H_1 denote the $\left\lceil \frac{k-1}{2} \right\rceil$-core of G', i.e., the resulting graph of applying $\left\lceil \frac{k-1}{2} \right\rceil$-disintegration to G'.

Claim 1. H_1 is nonempty.

Proof. Suppose H_1 is empty. Since one vertex is deleted at each step during the process of $\left\lceil \frac{k-1}{2} \right\rceil$-disintegration, that destroys at most $\binom{k-1}{r-1}$ cliques of size r. The number of K_r's contained in the last $\left\lceil \frac{k-1}{2} \right\rceil$ vertices is at most $\binom{k-1}{r}$. Therefore,

$$N_r(G') \leq \left(\left\lceil \frac{k+1}{r} \right\rceil \right) + \left(n - \left\lceil \frac{k+1}{2} \right\rceil \right) \binom{k+1}{r} \binom{k-1}{r-1}$$

$$= h_r\left(n, k, \left\lceil \frac{k-1}{2} \right\rceil \right)$$

$$\leq \max \left\{ h_r(n, k, d), h_r\left(n, k, \left\lceil \frac{k-1}{2} \right\rceil \right) \right\},$$

contradicting to the assumption of G', the claim follows. \square

Claim 2. H_1 is a clique.

Proof. Note that $d_{G'}(u) \geq \left\lceil \frac{k+1}{2} \right\rceil$ for any vertex u in H_1. Since G' is closed under taking k-closure, H_1 is a clique. \square

Let $t = |V(H_1)|$. Now we estimate the range of t.

Claim 3. $\left\lfloor \frac{k+3}{2} \right\rfloor \leq t \leq k - d$.

Proof. As H_1 is a clique and $d_{H_1}(u) \geq \left\lceil \frac{k+1}{2} \right\rceil$ for any vertex u in H_1, we get $t \geq \left\lfloor \frac{k+3}{2} \right\rfloor$. If $t \geq k - d + 1$, then $d_{G'}(u) \geq d_{H_1}(u) = t - 1 \geq k - d$ for any vertex u in H_1. Let v be any vertex in $V(G') \setminus V(H_1)$. Notice that $d_{G'}(v) \geq d_{G}(v) \geq d$ and $d_{G'}(u) + d_{G'}(v) \geq k - d + d = k$. Since G' is the k-closure of G, v is adjacent to u. Then G' contains a P_{k+1}, which is a contradiction. Thus $\left\lfloor \frac{k+3}{2} \right\rfloor \leq t \leq k - d$. \square

Let H_2 be the $(k+1-t)$-core of G'. Since $t \geq \left\lfloor \frac{k+3}{2} \right\rfloor$, we obtain $k+1-t \leq \left\lceil \frac{k+1}{2} \right\rceil$. Therefore, $H_1 \subseteq H_2$.

Claim 4. $H_1 \neq H_2$.

Proof. Suppose $H_1 = H_2$. Then $|V(H_2)| = t$. Since each step during the process of $(k-t)$-disintegration destroys at most $\binom{k-t}{r-1}$ cliques of size r, we have $N_r(G') \leq \binom{k-t}{r} + (n-t) \binom{k-t}{r-1} = h_r(n, k, k - t)$. Note that $d \leq k - t \leq \left\lfloor \frac{k-3}{2} \right\rfloor$ from Claim 3. By the convexity of $h_r(n, k, k - t)$,
we have $N_r(G') \leq \max \{ h_r(n, k, \lfloor \frac{k-3}{2} \rfloor) \} \leq \max \{ h_r(n, k, \lfloor \frac{k-1}{2} \rfloor) \}$, a contradiction. Thus the claim follows.

By Claim 4, H_1 is a proper subgraph of H_2. This implies that there are non-adjacent vertices u and v such that $u \in V(H_1)$ and $v \in V(H_2) \setminus V(H_1)$. We have $d_{G'}(u) + d_{G'}(v) \geq t - 1 + (k + 1 - t) = k$. As G' is stable under taking k-closure, u must be adjacent to v. We obtained a contradiction.

It is easy to see that graphs $H(n, k, d)$ and $H(n, k, \lfloor \frac{k-1}{2} \rfloor)$ are \mathcal{L}_k-free. Then either $H(n, k, d)$ or $H(n, k, \lfloor \frac{k-1}{2} \rfloor)$ obtains the bound. The theorem is proved.

3 Stability on \mathcal{L}_k-free graphs

3.1 Proof of Theorem 1.4

Let G be a graph on n vertices. If there are at least s vertices in $V(G)$ with degree at most q, then we say G has (s, q)-Pósa property. If G has (s, q)-Pósa property and $n \geq s + q$, then we can check that

$$N_v(G) \leq \binom{n-s}{r} + s \binom{q}{r-1}.$$

The following two lemmas show the relationship between the k-stable property and the Pósa property. With the help of these two lemmas, we can approximate the structure of k-closure of a graph.

Lemma 3.1. Let $n \geq k + 1$. Assume property P is k-stable and the complete graph K_n has the property P. Suppose G is a graph on n vertices with minimum degree at least d. If G does not have property P, then there exists an integer q with $d \leq q \leq \frac{k-1}{2}$ such that G has $(n - k + q, q)$-Pósa property.

Proof. Let G' be the k-closure of G and $d_{G'}(v_1), d_{G'}(v_2), \ldots, d_{G'}(v_n)$ be the degree sequence of G' such that $d_{G'}(v_1) \geq d_{G'}(v_2) \geq \cdots \geq d_{G'}(v_n)$. Clearly, G' is not a complete graph. Otherwise G' has property P, so does G, a contradiction.

Let v_i and v_j be two non-adjacent vertices in G' with $1 \leq i < j \leq n$ and $d_{G'}(v_i) + d_{G'}(v_j)$ as large as possible. Obviously, $d_{G'}(v_i) + d_{G'}(v_j) \leq k - 1$. Let S be the set of vertices in $V(G) \setminus \{v_i\}$ which are not adjacent to v_i in G. By the choice of v_j, we have $d_{G'}(v) \leq d_{G'}(v_j)$ for any $v \in S$. Then

$$|S| = n - 1 - d_{G'}(v_i) \geq n - k + d_{G'}(v_j).$$

There are at least $n - k + d_{G'}(v_j)$ vertices in $V(G')$ with degree at most $d_{G'}(v_j)$. Let $q = d_{G'}(v_j)$. Then G' has $(n - k + q, q)$-Pósa property. Moreover, since $d_{G'}(v_i) \geq d_{G'}(v_j)$ and
\[d_{G'}(v_i) + d_{G'}(v_j) \leq k - 1, \text{ it follows that } q = d_{G'}(v_j) \leq \frac{k-1}{2}. \] Since \(G \) is a subgraph of \(G' \) and
\[d_{G'}(v_j) \geq \delta(G') \geq \delta(G) \geq d, \]
we complete the proof. \qed

The following lemma gives a structural characterization of graphs with Pósa property.

Lemma 3.2. Suppose \(G \) has \(n \) vertices and is stable under taking \(k \)-closure. Let \(q \) be the minimum integer such that \(G \) has \((n-k+q,q)\)-Pósa property and \(q \leq \frac{k-1}{2} \). If \(T \) is the set of vertices in \(V(G) \) with degree at least \(k - q \) and \(T' = V(G) \setminus T \), then \(G[T,T'] \) is a complete bipartite graph.

Proof. Assume that \(G[T,T'] \) is not a complete bipartite graph. Choose two non-adjacent vertices \(u \in T \) and \(v \in T' \) such that \(d(u) + d(v) \) is as large as possible. Clearly, \(d(u) + d(v) \leq k - 1 \) and \(T \) forms a clique in \(G \) as \(G \) is stable under taking \(k \)-closure. Now denote by \(S \) the set of vertices in \(V \setminus \{u\} \) which are not adjacent to \(u \) in \(G \). Clearly, for any \(v' \in S \), \(d(v') \leq d(v) \) and
\[|S| = n - 1 - d(u) \geq n - k + d(v). \]

Since \(d(u) \geq k - q \) and \(d(u) + d(v) \leq k - 1 \), \(d(v) \leq q - 1 \). Let \(q' = d(v) \leq q - 1 \). We have at least \(n - k + q' \) vertices in \(V(G) \) with degree at most \(q' \). Then \(G \) has \((n-k+q',q')\)-Pósa property with \(q' < q \), which contradicts the minimality of \(q \). The lemma follows. \qed

Let \(g(k,\Delta) \) be the maximum number of edges in a graph such that the size of linear forests is at most \(k \) and the maximum degree is at most \(\Delta \). The following lemma estimates the upper bound of \(g(k,\Delta) \).

Lemma 3.3. For \(k \geq 1 \) and \(\Delta \geq 3 \),

(i) \(g(k,2) \leq \frac{3}{2}k \).

(ii) \(g(k,\Delta) \leq k(\Delta - 1) \).

Proof of (i). Let \(G \) be an \(L_{k+1} \)-free graph with \(e(G) = g(k,2) \) and \(\Delta(G) \leq 2 \). Clearly, \(g(1,2) = 1 \) and \(g(2,2) = 3 \). Now suppose that \(k \geq 3 \). Since the maximum degree is at most \(2 \), each nontrivial component is either a path or a cycle. We claim that each component with at least 3 vertices is a cycle. If not, we add an edge between the two ends of the path and the resulting graph is still \(L_{k+1} \)-free, which contradicts the maximality of \(G \). If there is a component consisting of exactly one edge, we replace this edge and a component \(C_\ell \) in \(G \) with \(C_{\ell+1} \). Then the resulting graph is still \(L_{k+1} \)-free and the number of edges is equal to \(g(k,2) \). Therefore, we can further assume that each nontrivial component of \(G \) is a cycle.

Let \(C_{k_1}, \ldots, C_{k_t} \) be the nontrivial components of \(G \). Then \(k = (k_1 - 1) + \cdots + (k_t - 1) \) and \(e(G) = k_1 + \cdots + k_t = k + t \). Note that \(k_i - 1 \geq 2 \), we have \(t \leq \frac{k}{2} \). Thus \(g(k,2) = e(G) \leq \frac{3}{2}k \). \qed
Proof of (ii). We use induction on k. It is easy to check that $g(1, \Delta) = 1$ and $g(2, \Delta) = \Delta$. Thus lemma holds for $k = 1, 2$. Suppose that the lemma holds for all $k' < k$. Let G be an \mathcal{L}_{k+1}-free graph with $\Delta(G) \leq \Delta$. Let $P = v_0v_1 \cdots v_t$ be the longest path in G and $B = V(G) \setminus V(P)$. Then $G[B]$ is \mathcal{L}_{k+1-t}-free and $e(G[B]) \leq (k-t)(\Delta - 1)$ by the induction hypothesis.

Since P is the longest path in G, $d_B(v_0) = d_B(v_t) = 0$ and $d_B(v_i) \leq \Delta - 2$ for $1 \leq i \leq t - 1$. Thus,

$$e(G[V(P)]) + e_G[V(P), B]) = \frac{1}{2} \left(\sum_{i=0}^{t} d_G(v_i) + \sum_{i=0}^{t} d_B(v_i) \right) \leq \frac{1}{2} \left((t+1)\Delta + (t-1)(\Delta - 2) \right) = t(\Delta - 1) + 1$$

The equality holds only if $d_G(v_0) = \cdots = d_G(v_t) = \Delta$, $d_B(v_1) = \cdots = d_B(v_{t-1}) = \Delta - 2$ and $d_B(v_0) = d_B(v_t) = 0$ hold simultaneously, which is impossible. Therefore, $e(G[V(P)]) + e_G[V(P), B]) \leq t(\Delta - 1)$. Moreover, we have

$$e(G) = e(G[B]) + e(G[V(P)]) + e_G[V(P), B]) \leq (k-t)(\Delta - 1) + t(\Delta - 1) \leq k(\Delta - 1).$$

\[\square \]

Remark. The graph consisting of $k/3$ pairwise disjoint K_4's shows the bound in Lemma 3.3 (ii) is sharp when 3 divides k and $\Delta = 3$.

For integers m, l, r, the following combinatorial identity is well-known.

$$\binom{m + l}{r} = \sum_{j=0}^{r} \binom{m}{j} \binom{l}{r-j} \quad (3.1)$$

The following lemma bounds the number of r-cliques by the number of edges.

Lemma 3.4 ([3]). Let $r \geq 3$ be an integer, and let $x \geq r$ be a real number. Then, every graph with exactly $\left(\frac{x}{2}\right)$ edges contains at most $\left(\frac{x}{r}\right)$ cliques of order r.

For two disjoint vertex sets T and T' of G, we use $N^i_r(T, T')$ and $\overline{N}^i_r(T, T')$ to denote the number of r-cliques in $G[T, T']$ that contain exactly i vertices and at least i vertices in T', respectively.

Proof of Theorem 1.4. Let G' be the k-closure of G. Then G' is \mathcal{L}_k-free from Lemma 2.1. By Lemma 3.1 there exists an integer q with $d \leq q \leq \left\lceil \frac{k-1}{2} \right\rceil$ such that G' has $(n-k+q, q)$-Pósa property. Furthermore, we assume q is as small as possible. Then either $q = \left\lfloor \frac{k-1}{2} \right\rfloor$ or
\(q = \left\lfloor \frac{k-3}{2} \right\rfloor \). Otherwise, \(d \leq q \leq \left\lfloor \frac{k-5}{2} \right\rfloor \) implies that \(N_r(G) \leq \binom{k-q}{r} + (n-k+1)\binom{q}{r-1} = h_r(n,k,q) \leq \max \left\{ h_r(n,k,d), h_r(n,k,\left\lfloor \frac{k-5}{2} \right\rfloor) \right\} \), a contradiction.

(i) \(k \) is odd.

Claim 1. \(|T| = q \). Let \(T_1 \) be the set of vertices in \(V(G') \) with degree at least \(\frac{k+1}{2} \), i.e.,

\[
T_1 = \left\{ u \in V(G') : d_{G'}(u) \geq \frac{k+1}{2} \right\}.
\]

Then \(T_1 \) is a clique in \(G' \). Let \(T'_1 = V(G') \setminus T_1 \). By Lemma 3.2, \(G'[T_1,T'_1] \) is a complete bipartite graph. We will show that \(|T_1| = \frac{k-1}{2} \) or \(|T_1| = \frac{k-3}{2} \).

Claim 1. \(|T_1| \leq \frac{k-1}{2} \).

Proof. Otherwise, \(|T_1| \geq \frac{k+1}{2} \). Since \(G'[T_1,T'_1] \) is a complete bipartite graph, all vertices in \(T' \) with degree at least \(\frac{k+1}{2} \). It implies that \(T_1' \) is an empty set. Thus \(G' \) is a complete graph. Since \(n \geq k+1 \), \(G' \) contains a linear forest of size \(k \), a contradiction.

Claim 2. \(|T_1| \geq \frac{k-3}{2} \).

Proof. Otherwise, \(|T_1| \leq \frac{k-5}{2} \). Suppose \(|T_1| = \frac{k-1}{2} - t \), then \(2 \leq t \leq \frac{k-1}{2} \). Since \(G'[T_1,T'_1] \) is a complete bipartite graph, the maximum degree of \(G'[T'_1] \) is at most \(t \). Moreover, \(G'[T'_1] \) is \(L_{2t+1} \)-free. Otherwise we will find a linear forest of size at least \(k \) in \(G' \). By Lemma 3.3, \(e(T') \leq g(2t, t) \leq 2t(t-1) \) when \(t \geq 3 \) and \(e(T') \leq g(2t, t) \leq 6 \) when \(t = 2 \). Suppose \(uv \in E(G'[T'_1]) \). Since the degrees of \(u \) and \(v \) are at most \(\frac{k-1}{2} \), \(u \) and \(v \) have at most \(\frac{k-3}{2} \) common neighbors. Thus the edge \(uv \) is contained in at most \(\binom{r}{r-2} \) \(r \)-cliques.

If \(t = 2 \), then

\[
N_r(G') = N_r(T_1) + N_r^1(T_1,T'_1) + N_r^\geq 2(T_1,T'_1)
\]

\[
\leq \binom{k-5}{r} + \left(n - \frac{k-5}{2} \right) \binom{k-5}{r-1} + 6 \binom{k-3}{r-2}
\]

\[
= \binom{k-5}{r} + \left(n - \frac{k+5}{2} \right) \binom{k-5}{r-1} + 5 \binom{k-5}{r-1} + 6 \binom{k-3}{r-2}
\]

\[
< \binom{k-5}{r} + \left(n - \frac{k+5}{2} \right) \binom{k-5}{r-1}
\]

\[
= h_r \left(n, k, \left\lfloor \frac{k-5}{2} \right\rfloor \right),
\]

where the last inequality follows from (3.1), a contradiction.
If \(3 \leq t \leq \frac{k-1}{2}\), then

\[
N_r \left(G' \right) = N_r(T_1) + N_r^1 \left(T_1, T'_1 \right) + N_r^{\geq 2} \left(T_1, T'_1 \right)
\]

\[
\leq \left(\frac{k-1}{2} - t \right) + \left(n - \frac{k-1}{2} + t \right) \left(\frac{k-1}{r-1} \right) + 2t(t-1) \left(\frac{k-3}{r-2} \right)
\]

\[
\leq \left(\frac{k-7}{2} \right) + \left(n - \frac{k-7}{2} \right) \left(\frac{k-7}{r-1} \right) + \frac{(k-1)(k-3)}{2} \left(\frac{k-3}{r-2} \right)
\]

\[
= \left(\frac{k-7}{2} \right) + \left(n - \frac{k+5}{2} \right) \left(\left(\frac{k-5}{r-1} \right) - \left(\frac{k-7}{r-2} \right) \right) + 6 \left(\frac{k-7}{r-1} \right) + \frac{(k-1)(k-3)}{2} \left(\frac{k-1}{r-2} \right)
\]

\[
< \left(\frac{k+5}{2} \right) + \left(n - \frac{k+5}{2} \right) \left(\frac{k-5}{r-1} \right)
\]

\[
= h_r \left(n, k, \left\lfloor \frac{k-5}{2} \right\rfloor \right),
\]

where the third inequality follows from (3.1), \(n > k^5\) and \(r \leq \left\lfloor \frac{k-3}{2} \right\rfloor\), a contradiction. \(\square\)

By Claim 1 and Claim 2, we have \(|T_1| = \frac{k-1}{2}\) or \(|T_1| = \frac{k-3}{2}\). When \(|T_1| = \frac{k-3}{2}\), since \(G' \left[T_1, T'_1 \right]\) is a complete bipartite graph and all the vertices in \(T'_1\) have degree at most \(\frac{k-1}{2}\), it follows that all vertices in \(T'_1\) have degree at most one in \(G' \left[T'_1 \right]\). Therefore, \(G' \left[T'_1 \right]\) consists of independent edges and isolated vertices. We claim there are at most two edges in \(G' \left[T'_1 \right]\). Otherwise, one can find \(P_{k-2} \cup 3P_2\) in \(G'\), a contradiction. Thus, \(G' \subseteq H^+ \left(n, k-1, \left\lfloor \frac{k-3}{2} \right\rfloor \right)\). When \(|T_1| = \frac{k-1}{2}\), since \(G' \left[T_1, T'_1 \right]\) is a complete bipartite graph and vertices in \(T'_1\) have degree at most \(\frac{k-1}{2}\), it follows that \(T'_1\) forms an independent set of \(G'\). Then \(G'\) is isomorphic to \(H(n, k, \left\lfloor \frac{k-3}{2} \right\rfloor)\).

Case 2. \(q = \frac{k-3}{2}\).

Let \(T_2\) be the set of vertices in \(V(G')\) with degree at least \(\frac{k+3}{2}\), i.e.,

\[
T_2 = \left\{ u \in V \left(G' \right) : d_{G'}(u) \geq \frac{k+3}{2} \right\}.
\]

Then \(T_2\) is a clique in \(G'\). Let \(T'_2 = V(G') \setminus T_2\). By Lemma 3.2, \(G' \left[T_2, T'_2 \right]\) is a complete bipartite graph. We will show that \(|T_2| = \frac{k-3}{2}|\).

Claim 3. \(|T_2| \leq \frac{k-3}{2}\).

Proof. Otherwise, \(|T_2| \geq \frac{k-1}{2}|\). The fact \(G' \left[T_2, T'_2 \right]\) is a complete bipartite graph implies that all vertices in \(T'_2\) have degree at least \(\frac{k-1}{2}\). Therefore \(G'\) has no vertex with degree less than or equal to \(\frac{k-3}{2}\), which contradicts to the fact that \(G'\) has \(n - k + \left(\frac{k-3}{2}, \frac{k-3}{2}\right)\)-Pósa property. \(\square\)

Claim 4. \(|T_2| \geq \frac{k-3}{2}|\).

Proof. Otherwise, \(|T_2| \leq \frac{k-5}{2}|\). Suppose \(|T_2| = \frac{k-1}{2} - t\), where \(2 \leq t \leq \frac{k-1}{2}\). Since \(G' \left[T_2, T'_2 \right]\) is a complete bipartite graph, the maximum degree of \(G' \left[T'_2 \right]\) is at most \(t + 1\). Moreover, \(G' \left[T'_2 \right]\) is \(L_{2t+1}\)-free. Otherwise we will find a linear forest of size at least \(k\) in \(G'\).
When $t = 2$, since $G'[T_2, T'_2]$ is a complete bipartite graph, $G'[T_2']$ is \mathcal{L}_5-free with maximum degree at most 3. By Lemma 3.3, $e(T') \leq g(4, 3) < 10 = \binom{5}{2}$. Then we have $N_r(G'[T_2']) \leq \binom{5}{2}$ from Lemma 3.4. Thus the following inequality holds:

$$N_r(G') = N_r(T_2) + N^1_r(T_2, T'_2) + \sum_{i=2}^{5} N^i_r(T_2, T'_2) \leq \binom{k-5}{2} + \left(n - \frac{k - 5}{2}\right) \binom{k-5}{r-1} + \sum_{i=2}^{5} \binom{5}{i} \binom{k-5}{r-i} \leq \binom{k+5}{2} + \left(n - \frac{k + 5}{2}\right) \binom{k-5}{r-1} = h_r\left(n, k, \left\lfloor \frac{k-5}{2}\right\rfloor\right),$$

where the second equality follows from (3.1), a contradiction.

When $3 \leq t \leq \frac{k-1}{2}$, by Lemma 3.3, $e(T') \leq g(2t, t + 1) \leq 2t^2$. Note each edge in $G'[T_2']$ is contained in at most $(\frac{k-t}{r-2})$-r-cliques. Thus we have

$$N_r(G') = N_r(T_2) + N^1_r(T_2, T'_2) + N^{\geq 2}_r(T_2, T'_2) \leq \binom{k-1}{2} - t + \left(n - \frac{k-1}{2} + t\right) \binom{k-1}{r-1} + 2t^2 \binom{k-1}{r-2} \leq \binom{k-7}{2} + \left(n - \frac{k - 7}{2}\right) \binom{k-7}{r-1} + \frac{(k-1)^2}{2} \binom{k-1}{r-2} = \binom{k-7}{2} + \left(n - \frac{k + 5}{2}\right) \left[\binom{k-5}{r-1} - \binom{k-7}{r-2}\right] + 6 \binom{k-7}{r-1} + \frac{(k-1)^2}{2} \binom{k-1}{r-2} < \binom{k+5}{2} + \left(n - \frac{k + 5}{2}\right) \binom{k-5}{r-1} = h_r\left(n, k, \left\lfloor \frac{k-5}{2}\right\rfloor\right),$$

where the third inequality follows from (3.1), $n > k^5$ and $r \leq \left\lceil \frac{k-3}{2}\right\rceil$, a contradiction.

By Claim 3 and Claim 4, we have $|T_2| = \frac{k-3}{2}$. Then $G'[T_2']$ must be \mathcal{L}_3-free. Otherwise we can find a linear forest of size k. Moreover, each vertex in $G'[T_2']$ has degree at most two. Thus $G'[T_2']$ is a subgraph of $C_3 \cup (n - 3)K_1$ or $2P_2 \cup (n - 4)K_1$. It follows that G' is a subgraph of $H\left(n, k, \left\lceil \frac{k-3}{2}\right\rceil\right)$ or $H^+\left(n, k - 1, \left\lceil \frac{k-3}{2}\right\rceil\right)$.

Combining the two cases above, we get that G is a subgraph of $H\left(n, k, \left\lceil \frac{k-1}{2}\right\rceil\right)$, $H\left(n, k, \left\lceil \frac{k-3}{2}\right\rceil\right)$ or $H^+\left(n, k - 1, \left\lceil \frac{k-3}{2}\right\rceil\right)$.

(ii) k is even.
Case 1. $q = \frac{k - 2}{2}$.

Let T_1 be the set of vertices in $V(G')$ with degree at least $\frac{k + 2}{2}$, i.e.,

$$T_1 = \left\{ u \in V(G') : d_{G'}(u) \geq \frac{k + 2}{2} \right\}.$$

Then T_1 is a clique in G'. Let $T'_1 = V(G') \setminus T_1$. By Lemma 3.2, $G'[T_1, T'_1]$ is a complete bipartite graph. We will show that $|T_1| = \frac{k - 2}{2}$ or $|T_1| = \frac{k - 4}{2}$.

Claim 5. $|T_1| \leq \frac{k - 2}{2}$.

Proof. Otherwise, $|T_1| \geq \frac{k}{2}$. The fact $G'[T_1, T'_1]$ is a complete bipartite graph implies that all vertices in T'_1 have degree at least $\frac{k}{2}$. Then G' has no vertex with degree less than or equal to $\frac{k - 2}{2}$, which is a contradiction to the fact that G' has $(n - k + \frac{k - 2}{2}, \frac{k - 2}{2})$-Pósa property.

Claim 6. $|T_1| \geq \frac{k - 4}{2}$.

Proof. Otherwise, $|T_1| \leq \frac{k - 6}{2}$. Suppose $|T_1| = \frac{k}{2} - t$, then $3 \leq t \leq \frac{k}{2}$. Since $G'[T_1, T'_1]$ is a complete bipartite graph, the maximum degree of $G'[T'_1]$ is at most t. Moreover, $G'[T'_1]$ is L_{2t}-free. Otherwise we will find a linear forest of size at least k in G'. By Lemma 3.3, $e(T'') \leq g(2t - 1, t) \leq (2t - 1)(t - 1)$.

If $t = 3$, then

$$N_r(G') = N_r(T_1) + N^1_r(T_1, T'_1) + N_{\geq 2}^2(T_1, T'_1)$$

$$\leq \left(\frac{k - 6}{2} \right) + \left(n - \frac{k - 6}{2} \right) \left(\frac{k - 6}{2} \right) + 10 \left(\frac{k - 2}{2} \right)$$

$$= \left(\frac{k - 6}{2} \right) + \left(n - \frac{k + 6}{2} \right) \left(\frac{k - 6}{2} \right) + 6 \left(\frac{k - 6}{2} \right) + 10 \left(\frac{k - 2}{2} \right)$$

$$< \left(\frac{k + 6}{2} \right) + \left(n - \frac{k + 6}{2} \right) \left(\frac{k - 6}{2} \right)$$

$$= h_r \left(n, k, \left\lfloor \frac{k - 5}{2} \right\rfloor \right),$$

where the last inequality follows from (3.1).
If $4 \leq t \leq \frac{k}{4}$, then

$$N_{r}(G') = N_{r}(T_{1}) + N_{r}^{1} (T_{1}, T_{1}') + N_{r}^{2} (T_{1}, T_{1}')$$

$$\leq \left(\frac{k}{2} - t \right) + \left(n - \frac{k}{2} + t \right) \left(\frac{k}{2} - t \right) + (2t - 1)(t - 1) \left(\frac{k}{r} - 2 \right)$$

$$\leq \left(\frac{k-8}{2} \right) + \left(n - \frac{k-8}{2} \right) \left(\frac{k-8}{2} \right) + \frac{(k-1)(k-2)}{2} \left(\frac{k}{r} - 2 \right)$$

$$= \left(\frac{k-8}{2} \right) + \left(n - \frac{k+6}{2} \right) \left(\frac{k-6}{2} \right) - \left(\frac{k-8}{2} \right) r - 1 \right) + \frac{(k-1)(k-2)}{2} \left(\frac{k}{r} - 2 \right)$$

$$< \left(\frac{k+6}{2} \right) + \left(n - \frac{k+6}{2} \right) \left(\frac{k-6}{2} \right)$$

$$= h_{r} \left(n, k, \left\lfloor \frac{k-5}{2} \right\rfloor \right),$$

where the third inequality holds since $\frac{k}{4} - t \leq \frac{k}{2}$, $n > k^{5}$ and $r \leq \left\lfloor \frac{k-3}{2} \right\rfloor$, a contradiction. □

By Claim 5 and Claim 6, we have $|T_{1}| = \frac{k-4}{2}$ or $|T_{1}| = \frac{k-2}{2}$. When $|T_{1}| = \frac{k-4}{2}$, since $G'[T_{1}, T_{1}']$ is a complete bipartite graph, the maximum degree of $G'[T_{1}']$ is at most two. Moreover, $G'[T_{1}']$ is L_{4}-free. Therefore, $G'[T_{1}']$ (without isolated vertices) is a subgraph of $\{C_{4}, C_{3} \cup P_{2}, 3P_{2}\}$. Thus G is a subgraph of $H(n, k, \left\lfloor \frac{k-3}{2} \right\rfloor)$, $H^{+}(n, k-1, \left\lfloor \frac{k-3}{2} \right\rfloor)$ or $H^{++}(n, k-2, \left\lfloor \frac{k-3}{2} \right\rfloor)$. When $|T_{1}| = \frac{k}{2} - 1$, since $G'[T_{1}, T_{1}']$ is a complete bipartite graph, $G'[T_{1}']$ is L_{2}-free, i.e. there is at most one edge in $G'[T_{1}']$. Thus, $G' \subseteq H(n, k, \left\lfloor \frac{k-1}{2} \right\rfloor)$.

Case 2. $q = \frac{k-4}{2}$.

Let T_{2} be the set of vertices in $V(G')$ with degree at least $\frac{k+4}{2}$, i.e.,

$$T_{2} = \left\{ u \in V(G') : d_{G'}(u) \geq \frac{k+4}{2} \right\}.$$

Then T_{2} is a clique in G'. Let $T_{2}' = V(G') \setminus T_{2}$. By Lemma 3.2, $G'[T_{2}, T_{2}']$ is a complete bipartite graph. We will show that $|T_{2}| = \frac{k-4}{2}$.

Claim 7. $|T_{2}| \leq \frac{k-4}{2}$.

Proof. Otherwise, $|T_{2}| \geq \frac{k-4}{2}$. The fact $G'[T_{2}, T_{2}']$ is a complete bipartite graph implies that all vertices in T_{2}' have degree at least $\frac{k-2}{2}$. Therefore G' has no vertex with degree less than or equal to $\frac{k-4}{2}$, which contradicts to the fact that G' has $(n - k + \frac{k-4}{2}, \frac{k-4}{2})$-Pósa property. □

Claim 8. $|T_{2}| \geq \frac{k-4}{2}$.

Proof. Otherwise, $|T_{2}| \leq \frac{k-6}{2}$. Suppose $|T_{2}| = \frac{k}{2} - t$, then $3 \leq t \leq \frac{k}{2}$. Since $G'[T_{2}, T_{2}']$ is a complete bipartite graph, the maximum degree of $G'[T_{2}']$ is at most $t + 1$. Moreover, $G'[T_{2}']$ is L_{2t}-free. Otherwise, we will find a linear forest of size at least k in G'.
When \(t = 3 \), since \(G'[T_2, T_2'] \) is a complete bipartite graph, \(G'[T_2] \) is \(L_6 \)-free with maximum degree at most 4. By Lemma 3.3 (ii), \(e(T_2') \leq 15 = \binom{6}{2} \). So \(N_r(G'[T_2]) \leq \binom{6}{r} \) from Lemma 3.4. Then we have

\[
N_r(G') = N_r(T_2) + N_r^1(T_2, T_2') + \sum_{i=2}^{6} N_r^i(T_2, T_2')
\]

\[
\leq \left(\frac{k-6}{r} \right) + \left(n - \frac{k-6}{2} \right) \left(\frac{k-6}{r-1} \right) + \sum_{i=2}^{6} \left(\frac{6}{i} \right) \left(\frac{k-3}{r-i} \right)
\]

\[
= \left(\frac{k+6}{2} \right) + \left(n - \frac{k+6}{2} \right) \left(\frac{k-6}{r-1} \right)
\]

\[
= h_r \left(n, k, \left\lfloor \frac{k-5}{2} \right\rfloor \right),
\]

where the second equality follows from (3.1), a contradiction.

When \(4 \leq t \leq \frac{k}{2} \), by Lemma 3.3, \(e(T') \leq g(2t-1, t+1) \leq (2t-1)t \). Thus we have

\[
N_r(G') = N_r(T_2) + N_r^1(T_2, T_2') + N_r^{\geq 2}(T_2, T_2')
\]

\[
\leq \left(\frac{k-t}{r} \right) + \left(n - \frac{k-t}{2} + t \right) \left(\frac{k-t}{r-1} \right) + (2t-1)t \left(\frac{k}{r-2} \right)
\]

\[
\leq \left(\frac{k-8}{2} \right) + \left(n - \frac{k-8}{2} \right) \left(\frac{k-8}{r-1} \right) + \frac{k(k-1)}{2} \left(\frac{k}{r-2} \right)
\]

\[
= \left(\frac{k-8}{2} \right) + \left(n - \frac{k+6}{2} \right) \left[\left(\frac{k-6}{r-1} - \frac{k-8}{r-2} \right) \right] + 7 \left(\frac{k-8}{r-1} \right) + \frac{k(k-1)}{2} \left(\frac{k}{r-2} \right)
\]

\[
< \left(\frac{k+6}{2} \right) + \left(n - \frac{k+6}{2} \right) \left(\frac{k-6}{r-1} \right)
\]

\[
= h_r \left(n, k, \left\lfloor \frac{k-5}{2} \right\rfloor \right),
\]

where the third inequality follows from (3.1), \(n > k^5 \) and \(r \leq \left\lfloor \frac{k-3}{2} \right\rfloor \), a contradiction.

By Claim 7 and Claim 8, we have \(|T_2| = \frac{k-4}{2} \). Since \(G'[T_2, T_2'] \) is a complete bipartite graph, all vertices in \(T_2' \) have degree at least \(\frac{k-4}{2} \). The \((n-k+\frac{k+4}{2}, \frac{k+4}{2}) \)-pósa property implies that there are at most 4 vertices in \(T_2' \) with degree great than 0. Thus \(G'[T_2'] \) is a subgraph of \(K_4 \cup (n-k+\frac{k+4}{2})K_1 \). Then \(G \subseteq H(n, k, \left\lfloor \frac{k+3}{2} \right\rfloor) \).

Combining the two cases above, we get that \(G \) is a subgraph of \(H(n, k, \left\lfloor \frac{k+4}{2} \right\rfloor), H(n, k, \left\lfloor \frac{k+3}{2} \right\rfloor), H^+(n, k-1, \left\lfloor \frac{k+3}{2} \right\rfloor) \) or \(H^{++}(n, k-2, \left\lfloor \frac{k+3}{2} \right\rfloor) \). The proof is finished.

\(\square \)
4 The clique version of the stability of Erdős-Gallai Theorem

Notice that a linear forest with at least $2k + 1$ edges has a matching of size at least $k + 1$. A graph G with $\nu(G) \leq k$ must be \mathcal{L}_{2k+1}-free. Combining Theorem 1.4 (i) and further discussions, we obtain Theorem 1.7.

Proof of Theorem 1.7. Let G be a graph satisfying the conditions of Theorem 1.7. Then G is \mathcal{L}_{2k+1}-free. By Theorem 1.4 (i), if $G \not\subseteq H^+(n, 2k, k-1)$, then G is a subgraph of $H(n, 2k + 1, k)$ or $H(n, 2k + 1, k-1)$. Next we will show that if $G \subseteq H^+(n, 2k, k-1)$, then $G \not\subseteq H(n, 2k + 1, k-1)$.

If $G \subseteq H^+(n, 2k, k-1)$ and $G \subseteq H(n, 2k + 1, k-1)$, then we are done. Now we suppose that $G \subseteq H^+(n, 2k, k-1)$ and $G \not\subseteq H(n, 2k + 1, k-1)$.

Note that $H^+(n, 2k, k-1)$ can be viewed as a graph obtained from $H(n, 2k - 1, k-1)$ by adding two independent edges, say x_1y_1 and x_2y_2. If $G \subseteq H^+(n, 2k, k-1)$ but $G \not\subseteq H(n, 2k + 1, k-1)$, then x_1y_1 and x_2y_2 must be in $E(G)$. Let $G_1 = G - \{x_1, y_1, x_2, y_2\}$. Then $G_1 \subseteq H(n - 4, 2k - 1, k - 1)$ and

\[
N_r(G_1) > h_r(n, 2k + 1, k - 2) - 4 \binom{k - 1}{r - 1} - 2 \binom{k - 1}{r - 2} \geq \binom{k - 1}{r} + (n - k - 3) \binom{k - 2}{r - 1} \tag{4.1}
\]

Since $G_1 \subseteq H(n - 4, 2k - 1, k - 1)$, there exists an independent set I satisfies $|I| = n - k - 3$ and $d_{G_1}(v) \leq k - 1$ for all $v \in I$. Suppose that there are t vertices in I with degree $k - 1$. Then $t \leq k - 2$. Otherwise, we can find a $(k - 1)$-matching M in G_1. The $(k - 1)$-matching M together with the edges x_1y_1 and x_2y_2 form a $(k + 1)$-matching in G, a contradiction.

Case 1. $t = 0$.

In this case, all vertices in I have degree at most $k - 2$. Thus

\[
N_r(G_1) \leq \binom{k - 1}{r} + (n - k - 3) \binom{k - 2}{r - 1},
\]

contradicting to (4.1).

Case 2. $1 \leq t \leq k - 2$.

There are at most $k - 2 - t$ vertices in I with degree $k - 2$. Otherwise, for any $S \subseteq V(G_1) \setminus I$, $|N(S)| \geq |S|$. By Hall’s Theorem, there exists a $(k - 1)$-matching M in G_1. The $(k - 1)$-matching
\(M \) together with the edges \(x_1y_1 \) and \(x_2y_2 \) form a \((k+1)\)-matching in \(G \), a contradiction. Thus

\[
N_r(G_1) \leq \binom{k-1}{r} + t \binom{k-1}{r-1} + (k-2-t) \binom{k-2}{r-1} + (n-k-2) \binom{k-3}{r-1}
\]

\[
< \binom{k-1}{r} + (k-1) \binom{k-1}{r-1} + (n-k-3) \binom{k-3}{r-1}
\]

\[
< \binom{k-1}{r} + (n-k-3) \binom{k-2}{r-1}
\]

where the last inequality follows from \(n > (2k+1)^5 \), which is a contradiction to (4.1).

Thus \(G \subseteq H^+(n, 2k, k-1) \) implies \(G \subseteq H(n, 2k+1, k-1) \). That is, \(G \) is a subgraph of \(H(n, 2k+1, k) \) or \(H(n, 2k+1, k-1) \), completing the proof.

\[\square\]

References

[1] N. Alon, C. Shikhelman, Many \(T \) copies in \(H \)-free graphs, J. Combin. Theory Ser. B 121 (2016) 146-172.

[2] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.

[3] D. Chakraborti, D. Chen, Many cliques with few edges and bounded maximum degree, J. Combin. Theory Ser. B 151 (2021) 1-20.

[4] X. Duan, B. Ning, X. Peng, et al., Maximizing the number of cliques in graphs with given matching number, Discrete Appl. Math., 287 (2020) 110-117.

[5] P. Erdős, On the number of complete subgraphs contained in certain graphs. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 7 (1962) 459-474.

[6] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356.

[7] Z. Füredi, A. Kostochka, R. Luo, A variation of a theorem by Pósa, Discrete Math. 342 (2019) 1919-1923.

[8] D. Gerbner, A. Methuku, M. Vizer, Generalized Turán problems for disjoint copies of graphs, Discrete Math. 342 (2019) 3130-3141.

[9] R. Luo, The maximum number of cliques in graphs without long cycles, J. Combin. Theory Ser. B 128 (2018) 219-226.
[10] B. Ning, J. Wang, The formula for Turán number of spanning linear forests, Discrete Math. 343 (2020) 111924.

[11] B. Pittel, J. Spencer, N. Wormald, Sudden emergence of a giant k-core in a random graph, J. Combin. Theory Ser. B 67 (1996) 111-151.

[12] P. Turán, On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok 48 (1941) 436-452.

[13] J. Wang, W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291-294.

[14] L. Zhang, L. Wang, J. Zhou, The generalized Turán number of spanning linear forests. Graphs Comb. 38 (2022) 40.