Systematic approach in petroleum personnel competence assessment

Vera Romanyuk¹, Evgeniya Nekhoda², Andrey Dmitriev³, Dmitriy Khudyakov⁴, Galina Pozdeeva⁵

¹,³,⁴,⁵Institute of Natural Resources, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia
²Institute of Natural Resources, National Research Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
E-mail: ¹romavb@tpu.ru, ²dom-hors@mail.ru, ³dmitrievau@hw.tpu.ru, ⁴KhudyakovDV@hw.tpu.ru, ⁵galyunya-tom@yandex.ru

Abstract. The article is devoted to professional competence improvement of personnel in the petroleum industry. The technique for competence assessment optimization in oil and gas well drilling is developed. The specification for the oil and gas industry competence profiles has been provided.

Introduction
Research in the systematic approach has been conducted for several decades in Russia. The systematic theoretical foundation description and analysis of the most significant fundamental management schools include human relations, modern organizational theories, industrial sociology, as well as classical management theory which have been represented in the works of D. M. Gvishiani, S. Popkov, V. N. Sadowski [1]. Systematic approach involves planning, engineering design, evaluation, etc. Considering the professional competence assessment within the organization management system, the assessment of both a separate system element and a subsystem itself with its relationships, elements and principles are defined.

1. Materials and Methods
A. A. Damadaran, leading scientist in assessment field (as a philosophical category) identifies three important rules for any assessment [2]. Developed by high-qualified and experienced experts this system is influenced to a certain degree by bias of the resulting assessment itself. That can be explained by high availability level of different information in our modern world. It is possible to reduce bias influence on the assessment in two ways:
- before assessment, radical public opinion should be excluded which could possibly lead to its undervaluation or revaluation;
- before assessment, personal convictions should be minimized concerning how overvalued or undervalued the object is.

Systematic approach characterizes organization activities and identifies patterns and relationships with a view to more effective use. Fundamentally, this approach is a problem-solving method, as well as a goal setting method. It is more objective than subjective.

Today, the systematic approach is used widely in economic research. For instance, the academician K. A. Bagrinovsky School developed a systematic approach methodology in strategic business
development planning. Systematic studies are absolutely specific where general systems theory is associated with the work objectives and the nature of the object being studied. To optimize the assessment system, the test item numbers for each competence was correlated to the competence matrix. This was based on:

- the number of \(i \)-th questions to the complexity level of the \(j \)-th competence issues;
- the percentage of the \(j \)-th competence complexity level.

Within the assessment system, the maximum number of tests was given to the competencies having the largest testing percentage. For instance, practically all the organization office and service specialists have been tested for such competencies as “Drilling”, “Oil and gas well drilling technology”, “Oil and gas well installation and operation”. Consequently, the number of these competence tests was the largest in the assessment system. In other words, the assessment system is optimized on the basis of the competence importance.

The competence percentage depended on the \(j \)-x competences number of \(i \)-th complexity level, according to the assessment system specifications and codifiers and total number of test items.

The number of questions for each competency was determined by the following formula:

\[
m_{ij} = \left(\frac{d_{ij}}{\sum_{i=1}^{m} m_{ij}} \right) \cdot 100,
\]

where, the number of questions the \(i \)-th level of complexity for the \(j \)-th competence;
\(d_{ij} \) - the proportion of the \(j \)-th competence of the \(i \)-th level of complexity.

The competence percentage was defined as:

\[
d_{ij} = \left(\frac{k_{ij}}{\sum_{i=1}^{n} k_{ij}} \right) \cdot 100,
\]

where, \(k_{ij} \) - the \(j \)-th competence number of \(i \)-th complexity level.

2. Results and Discussion

Individual specialist specifications include a set of competencies, taking into account the complexity level, the number of questions based on their complexity level, the maximum number of points, and the test time. The higher a specialist position in the enterprise structure, the greater range of competencies is included in his /her specification (Table 1).

Table 1. Specification of department supervisor “Capital workover management”
Capital workover management

Department supervisor
Fundamental Management
1. Fundamentals of Management
2. Fundamentals of Oil and Gas-Field Engineering
3. Fundamentals of legal studies
Business organization
4. Documents, policies and procedures
5. Institutional environment
After tests, codifiers and specifications, the trial testing was conducted according to the proposed competencies modules [3].

Due to the final personnel testing results, the career development program was established. Based on these techniques, in some oil and gas companies personnel effectiveness analysis was launched and established - for primary and after career development training testing. Table 2 shows the assessment system of drilling engineers in the petroleum industry.

The results of this study can be summarized as follows:
- based on the competence model and accounting and economic services structure, the general competencies profile was formed;
- codifiers and specifications were designed;
- the test items bank were examined;
- the strengths and weaknesses in specialist training were analyzed;
- recommendations on the advanced training programs were formulated.

Table 2. Test questions specification on competence profiles petroleum specialists (Oil and gas well drilling)
Fundamentals of Oil and Gas-Field Engineering	30	25	20	5	80	4.0	40
Fundamentals of legal studies	15	10	10	5	40	2.0	20
Knowledge of business organization							
Incorporation documents, policies and procedures	25	15	5	5	50	2.5	25
Institutional environment	40	25	15	5	85	4.2	42
Business trends	15	15	10	5	45	2.2	22
Oil and gas well drilling							
Geology	25	15	15	0	55	2.7	27
Field development	50	25	25	10	110	5.5	55
Well drilling	50	40	30	5	125	6.2	62
Oil and gas recovery	60	50	15	6	131	6.5	65
Production operations metrology support	20	15	10	5	50	2.5	25
Field gathering system and preparation of production fluid	20	15	15	5	55	2.7	27
Repair operations	50	25	15	10	100	5.0	50
Oilfield chemistry	25	15	10	5	55	2.7	27
Petrophysics	25	10	10	5	50	2.5	25
Pipeline engineering, construction and operation and oil and gas storage	35	15	10	5	65	3.2	32
Mechanics of solid rock	20	15	10	5	50	2.5	25
Oil and gas well drilling technology	35	30	15	5	85	4.2	42
Drilling equipment installation and maintenance	50	30	15	5	100	5.0	50
Geophysical well logging	25	10	10	5	50	2.5	25
Horizontal drilling	45	25	15	5	90	4.5	45
IT skills							
SAP Logistics	15	10	5	5	35	1.7	17
SAP Repairs and maintenance of fixed assets	15	10	5	5	35	1.7	17
Well drilling production process automation	22	15	5	5	47	2.3	23
Lotus Notes	14	38	7	5	64	3.2	32
This assessment algorithm of professional competence has been successfully tested to motivate personal and career growth of its employees, in such Russian oil and gas companies as: JSC “Gazprom”, OJSC “Rosneft”, OJSC “Surgutneftegas”, OJSC “GazpromNeft”, “Lukoil West Siberia”, OJSC “NOVATEK”, LLC “TomskNIPIneft”. The system is targeted for Chief Geologist services (geology; field development, oil production, drilling, workover); Chief Engineer services (oil production, production, refining, power generation, automated control system, mechanics).

After the analysis of the personnel effectiveness of primary and after advanced training testing, the dynamics of growth was revealed. The system is constantly being improved: new directions are being developed due to the customer requests an the latest methods of personnel assessment are being applied, etc. Moreover, thanks to the system of competence assessment a number of new short-term courses were developed and more than 400 corporate employees attend them annually.

The study has solved the following tasks:
- perspective systematic approach, methodology questions and personnel competence assessment methods;
- different theories and personnel professional competence assessment models;
- assessment model (codifiers and specifications, personnel competency matrix);
- professional competence assessment method for oil and gas company specialists;
- professional competence assessment system of oil and gas service companies specialists and
- professional competence assessment system of oil and gas companies specialists via developed test programs [4].

3. Conclusion

The professional competence assessment improvement requires a systematic approach - firstly, from the standpoint of the methodology application, equipment and technology applied; secondly, taking into account the testing methods and further assessment examination. The assessment system examination should be conducted by the organization leading experts and external auditors, experienced in knowledge and skills of assessment examination and implementation.

References
[1] Zlotnikova L G, Kolyadov L V, Tarasenko P F 2005 Neft’ i gaz. M. Publishing house. Financial management in oil and gas industries. pp. 456.
[2] Annual reports of OJSC “Surgutneftegas” for 2014 and 2015. [Electronic resource] URL: http://www.surgutneftegas.ru/ru/investors/reports/, free, reference date 01.02.2016
[3] Sharf I V, Kuznetsova L P, Chukhareva N V 2014 IOP Conference Series: Earth and Environmental Science. Financial and tax risks at implementation of “Chayanda-Lensk” section of “Sil’ Sibiri” gas transportation system construction project. Vol. 21 (1) pp. 1-6.
[4] Tsibulnikova M R, Pogharitskaya O V, Strelnikova A B 2015 IOP Conference Series: Earth and Environmental Science. Designing economic and legal mechanism of land management in oil and gas companies. Vol. 24 pp. 012032.