ROBUST 3D LOCALIZATION AND TRACKING OF SOUND SOURCES USING BEAMFORMING AND PARTICLE FILTERING

Jean-Marc Valin*,†, François Michaud† and Jean Rouat†

*CSIRO ICT Centre, Australia †Université de Sherbrooke, Canada
jmvalin@jmvalin.ca, {francois.michaud, jean.rouat}@usherbrooke.ca

ABSTRACT

In this paper we present a new robust sound source localization and tracking method using an array of eight microphones (US patent pending). The method uses a steered beamformer based on the reliability-weighted phase transform (RWPHAT) along with a particle filter-based tracking algorithm. The proposed system is able to estimate both the direction and the distance of the sources. In a videoconferencing context, the direction was estimated with an accuracy better than one degree while the distance was accurate within 10% RMS. Tracking of up to three simultaneous moving speakers is demonstrated in a noisy environment.

1. INTRODUCTION

Sound source localization is defined as the determination of the coordinates of sound sources in relation to a point in space. This can be very useful in videoconference application, either for directing the camera toward the person speaking, or as an input to a sound source separation algorithm [1] to improve sound quality. Sound source tracking has been demonstrated before by using Kalman filtering [2] and can estimate not only the direction, but the distance of sound sources. Localization accuracy and tracking capabilities of a separation algorithm [1] to improve sound quality. Sound source separation algorithm [1] to improve sound quality. Sound source

Localization accuracy and tracking capabilities of the proposed system are reported in a videoconferencing context. In that context, the direction was estimated with an accuracy better than one degree while the distance was accurate within 10% RMS. Tracking of up to three simultaneous moving speakers is demonstrated in a noisy environment.

2. BEAMFORMER-BASED SOUND LOCALIZATION

The basic idea behind the steered beamformer approach to source localization is to steer a beamformer in all possible locations and look for maximal output. This can be done by maximizing the output energy of a simple delay-and-sum beamformer.

2.1. Reliability-Weighted Phase Transform

It was shown in [4] that the output energy of an M-microphone delay-and-sum beamformer can be computed as a sum of microphone pair cross-correlations $R_{x_{m1},x_{m2}}(\tau_{m1} - \tau_{m2})$, plus a constant microphone energy term K:

$$E = K + 2 \sum_{m1=0}^{M-1} \sum_{m2=0}^{M-1} R_{x_{m1},x_{m2}}(\tau_{m1} - \tau_{m2})$$

where $x_{m}(n)$ is the signal from the m^{th} microphone and τ_{m} is the delay of arrival (in samples) for that microphone. Assuming that only one sound source is present, we can see that E will be maximal when the delays τ_{m} are such that the microphone signals are in phase, and therefore add constructively.

The cross-correlation function can be approximated in the frequency domain. A popular variation on the cross-correlation is the phase transform (PHAT). Some of its advantages include sharper cross-correlation peaks and a certain level of robustness to reverberation. However, its main drawback is that all frequency bins of the spectrum have the contribution to the final correlation, even if the signal at some frequencies is dominated by noise or reverberation. As an improvement over the PHAT, we introduce the reliability-weighted phase transform (RWPHAT) defined as:

$$R^{RWPHAT}_{x_{i},x_{j}}(\tau) = \sum_{k=0}^{K-1} \zeta(k) X_{i}(k) \zeta(k) X_{j}(k)^* e^{j2\pi k \tau / L}$$

where the weights $\zeta(k)$ reflect the reliability of each frequency component. It is defined as the Wiener filter gain:

$$\zeta(k) = \frac{\xi(k)}{\xi(k) + 1}$$

Part of this research was funded by the Natural Sciences and Engineering Research Council, the Canada Research Chair Program and the Canadian Foundation for Innovation.

©2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
where $\xi^n_u(k)$ is an estimate of the a priori SNR at the i^{th} microphone, at time frame n, for frequency k, computed using the decision-directed approach proposed by Ephraim and Malah [5].

The noise term considered for the a priori SNR estimation is composed of a background noise term $\sigma^2(k)$ and a reverberation term $\lambda^n_u(k)$. Background noise is estimated using the Minimax-Controlled Recursive Average (MCRA) technique [6], which adapts the noise estimate during periods of low energy. We use a simple exponential decay model for the reverberation:

$$\lambda^n_u(k) = \gamma \lambda^{n-1}_u(k) + (1 - \gamma)\delta^{-1} \left[\xi^n_u(k) X^{n-1}(k)\right]^2$$

where γ is the reverberation decay (derived from the reverberation time) of the room, δ is the signal-to-reverberant ratio (SRR) and $R^{-1}_u(k) = 0$. Equation 4 can be seen as modeling the precedence effect [7], ignoring frequency bins where a loud sound was recently produced. Background noise is estimated using the Minima-Maxima principle.

2.2. Search Procedure

Unlike previous work using spherical mesh composed of triangular [8], we now use a square grid folded onto a hemisphere. The square grid makes it easier to do refining steps and only a hemisphere is needed because of the ambiguity introduced by having all microphones in the same plane. For grid parameters u and v in the $[-1, 1]$ range, the unit vector u defining the direction is expressed as:

$$u = \left[\frac{v}{\sqrt{u^2 + v^2}}, \frac{u}{\sqrt{u^2 + v^2}}, \sin \phi, \cos \phi\right]^T$$

where $\phi = \pi \max \left(u^2, v^2\right)/2$. The complete search grid is defined as the space covered by dx, where d is the distance to the center of the array.

The search for the location maximizing beamformer energy is performed using a coarse/fine strategy. Unlike work presented by [8], even the coarse search can proceed with a high resolution, with a $41x41$ grid (4-degree interval) for direction and 5 possible distances. The fine search is then used to obtain an even more accurate estimation, with a $201x201$ grid (0.9-degree interval) for direction and 25 possible distances ranging from 30 cm to 3 meters.

The cross-correlations $R^n_{u,j}(\tau)$ are computed by averaging the cross-power spectra $X_i(k) X_j(k)^*$ over a time period of 4 frames (40 ms) for overlapping windows of 1024 samples at 48 kHz. Once the cross-correlations $R^n_{u,j}(\tau)$ are computed, the search for the best location on the grid is performed using a lookup-and-sum algorithm where the time delay of arrival τ for each microphone pair and for each source location is obtained from a lookup table. For an array of 28 microphones, this means only 28 lookup-and-sum operations for each position searched, much less than would be required by a time-domain implementation. In the proposed configuration ($N = 8405, M = 8$), the lookup table for the coarse grid fits entirely in a modern processor’s L2 cache, so that the algorithm is not limited by memory access time.

After finding the loudest source by maximizing the energy of a steered beamformer, other sources can be localized by removing the contribution of the first source from the cross-correlations and repeating the process. In order to remove the contribution of a source, all values of $R^n_{u,j}(\tau)$ that have been used in the sum that produced the maximal energy are reset to zero. The process is summarized in Algorithm 1. Since the beamformer does not know how many sources are present, it always looks for two sources. This situation leads to a high rate of false detection, even when two or more sources are present. This problem is handled by the particle filter described in the next section.

Algorithm 1: Steered beamformer location search

```
for q = 1 to assumed number of sources do
  for all grid index k do
    $E_k \leftarrow \sum_{i,j} R^n_{u,j}(\text{lookups}(k, i, j))$
  end for
  $D_q \leftarrow \arg \max_k (E_k)$
  for all microphone pair i, j do
    $R^n_{u,j}(\text{lookups}(D_q, i, j)) \leftarrow 0$
  end for
end for
```

3. PARTICLE-BASED TRACKING

To remove false detection produced by the steered beamformer and track each sound source, we use a probabilistic temporal integration based on all measurements available up to the current time. It has been shown in [3] that particle filters are an effective way of tracking sound sources. Using this approach, the pdf representing the location of each source is represented as a set of particles to which different weights (probabilities) are assigned. The choice of particle filtering over Kalman filtering is further justified by the non-gaussian probabilities arising from false detections and multiple sources.

At time t, we consider the case of N_s sources (j index) being tracked, each modeled using N_p particles $(i \text{ index})$ of location $x^{t}_{j,i}$ and weights $w^{t}_{j,i}$. The state vector for the particles is composed of six dimensions, three for position and three for its derivative:

$$s^{t}_{j,i} = \left[x^{t}_{j,i}, \dot{x}^{t}_{j,i}\right]^T$$

We implement the sampling importance resampling (SIR) algorithm. The steps are described in the following subsections and generalize sound source tracking to an arbitrary and non-constant number of sources.

Prediction

As a predictor, we use the excitation-damping model as proposed in [3]:

$$\ddot{x}^{t}_{j,i} = a\dot{x}^{t-1}_{j,i} + bF_x$$

$$\dot{x}^{t}_{j,i} = \dot{x}^{t-1}_{j,i} + \Delta T \ddot{x}^{t}_{j,i}$$

where $a = e^{-\alpha \Delta T}$ controls the damping term, $b = \beta \sqrt{1 - a^2}$ controls the excitation term, F_x is a Gaussian random variable of unit variance and ΔT is the time interval between updates.

Instantaneous Location Probabilities

The steered beamformer described in Section 2 produces an observation $O^{t}(q)$ for each time t that is composed of Q potential source locations y_l. We also denote $O^{t}(q)$, the set of all observations up to time t. We introduce the probability P_q that the potential source q is a true source (not a false detection) that can be interpreted as our confidence in the steered beamformer output. We know that the higher the steered beamformer energy, the more likely a potential source is to be true, so

$$P_q = \begin{cases} \frac{\nu^2}{2}, & \nu \leq 1 \\ 1 - \frac{\nu^2}{2}, & \nu > 1 \end{cases}$$

$$\nu = E/E_T$$

where E is the energy of the source and E_T is the threshold energy.
Fig. 1. Assignment example where one of the tracked sources is observed and one potential source is a false detection. The assignment can be described as \(f\{0,1\} = \{1, -2\} \).

where \(E^\tau \) is the empirical threshold energy for 50% probability. Assuming that \(y_\mathbf{q} \) is not a false detection, the probability density of observing \(O^\tau_\mathbf{q} \) for a source located at particle position \(x^{(t)}_{j,i} \) is given by a normal distribution centered at \(x^{(t)}_{j,i} \) with a standard deviation of 3 degrees for direction and a distance-dependent standard deviation for the distance.

Probabilities for Multiple Sources

Before we can derive the update rule for the particle weights \(w^{(t)}_{j,i} \), we must first introduce the concept of source-observation assignment. For each potential source \(q \) detected by the steered beamformer, we must compute \(P_{q,j} \), the probability that the detection is caused by the tracked source \(j \), \(P_{q}(H_0) \), the probability that the detection is a false alarm, and \(P_{q}(H_2) \), the probability that observation \(q \) corresponds to a new source.

Let \(f : \{0, 1, \ldots, Q - 1\} \rightarrow \{-2, -1, 0, 1, \ldots, M - 1\} \) be a function assigning observations \(q \) to the tracked sources \(j \) (values -2 is used for false detection and -1 is used for a new source). Figure 1 illustrates a hypothetical case with the two potential sources detected by the steered beamformer and their assignment to the three tracked sources. Knowing \(P\left(f \big| O^{(t)}\right) \) (the probability that \(f \) is the correct assignment given observation \(O^{(t)} \)) for all possible \(f \), we can compute \(P_{q,j} \) as the sum of the probabilities of all \(f \) that assign potential source \(q \) to tracked source \(j \). The probabilities for new sources and false detections are obtained similarly.

Omitting \(t \) for clarity, and assuming conditional independence of the observations given the mapping function, the probability \(P(f|O) \) is given by:

\[
P(f|O) = \frac{P(f) \prod_q P(O_q|f(q))}{P(\mathbf{O})} = \frac{P(f) \prod_q P(O_q|f(q))}{\sum_f P(f) \prod_q P(O_q|f(q))} \tag{10}
\]

We assume that the distribution of the false detections (\(H_0 \)) and the new sources (\(H_2 \)) are uniform, while the distribution for tracked sources (\(H_1 \)) is the pdf approximated by the particle distribution convolved with the steered beamformer error pdf:

\[
p(O_q|f(q)) = \sum_i w^{(t)}_{j,i} \cdot p(O_q|x^{(t)}_{j,i}) \tag{11}
\]

The \(a \text{ priori} \) probability of \(f \) being the correct assignment is also assumed to come from independent individual components: \(P(f) = \prod_q P(f(q)) \),

\[
P(f(q)) = \begin{cases}
(1 - P_q) P_{\text{false}} & f(q) = -2 \\
P_q P_{\text{new}} & f(q) = -1 \\
P_q P\left(O^{(t)}_j \big| O^{(t-1)}\right) & f(q) \geq 0
\end{cases} \tag{12}
\]

where \(P_{\text{new}} \) is the \(a \text{ priori} \) probability that a new source appears and \(P_{\text{false}} \) is the \(a \text{ priori} \) probability of false detection and

\[
P\left(O^{(t)}_j \big| O^{(t-1)}\right) = P\left(E_j \big| O^{(t-1)}\right) P\left(A^{(t)}_j \big| O^{(t-1)}\right)
\]

is the probability that source \(j \) is observable, i.e., that it exists \((E_j) \) and it is active \((A^{(t)}_j) \) at time \(t \).

The probability that the source exists is computed using Bayes law over multiple time frames and considering the instantaneous probability of the source being observed \(P\left(A^{(t)}_j\right) \), as well as the \(a \text{ priori} \) probability that the source exists despite not being observed.

The probability that a source is active (non-zero signal) is computed by considering a first order Markov process with two states (active, inactive). The probability that an active source remains active is set to 0.95, and the probability that an inactive source becomes active again is set to 0.05. We assuming that the active and inactive states are \(a \text{ priori} \) equiprobable.

Weight Update

At times \(t \), assuming that the observations are conditionally independent given the source position, and knowing that for a given source \(j \), \(\sum_{i=1}^{N} w^{(t)}_{j,i} = 1 \), the new particle weights for source \(j \) are defined as:

\[
w^{(t)}_{j,i} = p\left(x^{(t)}_{j,i} \big| O^{(t)}\right) = \frac{P\left(x^{(t)}_{j,i} \big| O^{(t)}\right) w^{(t-1)}_{j,i}}{\sum_{i=1}^{N} P\left(x^{(t)}_{j,i} \big| O^{(t)}\right) w^{(t-1)}_{j,i}} \tag{13}
\]

The probability \(p\left(x^{(t)}_{j,i} \big| O^{(t)}\right) \) is given by:

\[
p\left(x^{(t)}_{j,i} \big| O^{(t)}\right) = \frac{(1 - P^{'(t)}_j)}{N} + P_j \frac{\sum_q P_{q,j} P\left(O^{(t)}_q \big| x^{(t)}_{j,i}\right)}{\sum_q \sum_q P_{q,j} P\left(O^{(t)}_q \big| x^{(t)}_{j,i}\right)} \tag{14}
\]

Adding or Removing Sources

In a real environment, sources may appear or disappear at any moment. If, at any time, \(P_q(H_2) \) is higher than a threshold equal to 0.3, we consider that a new source is present, in which case a set of particles is created for source \(q \). Similarly, we set a time limit on sources so that if the source has not been observed for a certain amount of time, we consider that it no longer exists. In that case, the corresponding particle filter is no longer updated nor considered in future calculations.

Parameter Estimation

The estimated position of each source is the mean of the pdf and can be obtained as a weighted average of its particles position:

\[
x^{(t)}_{j} = \frac{\sum_{i=1}^{N} w^{(t)}_{j,i} x^{(t)}_{j,i}}{\sum_{i=1}^{N} w^{(t)}_{j,i}} \tag{15}
\]

Resampling

Resampling is performed only when \(N_{\text{eff}} \approx \left(\sum_{i=1}^{N} w^2_{j,i} \right)^{-1} < N_{\text{min}} \). That criterion ensures that resampling only occurs when new data is available for a certain source. Otherwise, this would cause unnecessary reduction in particle diversity, due to some particles randomly disappearing.
Fig. 2. Tracking results in the horizontal plane (time and elevation now shown). Left: one moving speaker (going from left to right), center: two moving speakers (speaker 1 going from right to left, speaker 2 going from left to right), right: three moving speakers going back and forth on each side.

4. RESULTS AND DISCUSSION

The proposed localization system was tested using real recordings with a 60 cm circular array of eight omni-directional microphones resting on top of a table. The shape of the array is chosen for its symmetry and convenience in a videoconferencing setup, although the proposed algorithm would allow other positions. The testing environment is a noisy conference room resulting in an average SNR of 7 dB (assuming one speaker) and with moderate reverberation. Running the localization system in real-time required 30% of a 2.13 GHz Pentium-M CPU. For a stationary source at 1.5 meter distance, the angular accuracy was found to be better than one degree (below our measurement accuracy) while the distance estimate was found to have an RMS error of 10%. It is clear from these results that angular accuracy is much better than distance accuracy. This is a fundamental aspect that can be explained by the fact that distance only has a very small impact on the time delays perceived between the microphones.

Three tracking experiments were conducted. The results in Figure 2 show that the system is able to simultaneously track one, two or three moving sound sources. For the case of two moving sources, the particle filter is able to keep track of both sources even when they are crossing in front of the array. Because we lack the “ground truth” position for moving sources, only the distance error was computed\(^1\) (using the information about the height of the speakers) and found to be around 10% for all three experiments.

5. CONCLUSION

We have implemented a system that is able to localize and track simultaneous moving sound sources in the presence of noise and reverberation. The system uses an array of eight microphones and combines an RWPHAT-based steered beamformer with a particle filter tracking algorithm capable of following multiple sources.

An angular accuracy better than one degree was achieved with a distance measurement error of 10%, even for multiple moving speakers. To our knowledge, no other work has demonstrated tracking of direction and distance for multiple moving sound sources. The capability to track distance is important as it will allow a camera to follow a speaker even if it is not located at the center of the microphone array (parallax problem).

6. REFERENCES

[1] J.-M. Valin, J. Rouat, and F. Michaud, “Microphone array post-filter for separation of simultaneous non-stationary sources,” in Proc. ICASSP, 2004, pp. 221–224.
[2] D. Bechler, M.S. Schlosser, and K. Kroshel, “System for robust 3D speaker tracking using microphone array measurements,” in Proc. IROS, 2004, pp. 2117–2122.
[3] D. B. Ward, E. A. Lehmann, and R. C. Williamson, “Particle filtering algorithms for tracking an acoustic source in a reverberant environment,” IEEE Trans. SAP, vol. 11, no. 6, pp. 826–836, 2003.
[4] J.-M. Valin, F. Michaud, B. Hadjou, and J. Rouat, “Localization of simultaneous moving sound sources for mobile robot using a frequency-domain steered beamformer approach,” in Proc. ICRA, 2004, vol. 1, pp. 1033–1038.
[5] Y. Ephraim and D. Malah, “Speech enhancement using minimum mean-square error short-time spectral amplitude estimator,” IEEE Trans. ASSP, vol. ASSP-32, no. 6, pp. 1109–1121, 1984.
[6] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise environments,” Signal Processing, vol. 81, no. 2, pp. 2403–2418, 2001.
[7] J. Huang, N. Ognishi, X. Guo, and N. Sugie, “Echo avoidance in a computational model of the precedence effect,” Speech Communication, vol. 27, no. 3-4, pp. 223–233, 1999.
[8] R. Duraiswami, D. Zotkin, and L. Davis, “Active speech source localization by a dual coarse-to-fine search,” in Proc. ICASSP, 2001, pp. 3309–3312.
[9] H. Asoh, F. Asano, K. Yamamoto, T. Yoshimura, Y. Motomura, N. Ichimura, I. Haru, and J. Ogata, “An application of a particle filter to bayesian multiple sound source tracking with audio and video information fusion,” in Proc. Fusion, 2004, pp. 805–812.
[10] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for bayesian filtering,” Statistics and Computing, vol. 10, pp. 197–208, 2000.

\(^1\) Computation uses knowledge of the height of the speakers and assumes that the angular error is very small.