Generalized Darcy–Oseen resolvent problem
Medková, Dagmar; Ptashnyk, Mariya; Varnhorn, Werner

Published in:
Mathematical Models and Methods in Applied Sciences

DOI:
10.1002/mma.3872

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Medková, D., Ptashnyk, M., & Varnhorn, W. (2016). Generalized Darcy–Oseen resolvent problem. Mathematical Models and Methods in Applied Sciences, 39(6), 1621-1630. DOI: 10.1002/mma.3872

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In this paper, we study the well-posedness of a coupled Darcy–Oseen resolvent problem, describing the fluid flow between free-fluid domains and porous media separated by a semipermeable membrane. The influence of osmotic effects, induced by the presence of a semipermeable membrane, on the flow velocity is reflected in the transmission conditions on the surface between the free-fluid domain and the porous medium. To prove the existence of a weak solution of the generalized Darcy–Oseen resolvent system, we consider two auxiliary problems: a mixed Navier–Dirichlet problem for the generalized Oseen resolvent system and Robin problem for an elliptic equation related to the general Darcy equations. © 2016 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.

© 2016 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.

Keywords: Darcy–Oseen resolvent problem; semipermeable membrane; Brinkman–Darcy equations; fluid flow between free-fluid domains and porous media; compact perturbations

1. Introduction

The transport of macromolecules from a free-fluid domain to a porous medium separated by a semipermeable membrane is an important biological question as well as an interesting and challenging problem for the mathematical modelling and analysis. As examples for selective transport of macromolecules between free-fluid and porous medium, we can consider transport of macromolecules by water in plant tissues or by blood in arteries. Water flow in plant tissues takes place in two different physical domains separated by semipermeable membranes, denoted as symplast and apoplast [1]. The apoplast is composed of cell walls and intercellular spaces, while the symplast is constituted by cell insides, which can be connected by plasmodesmata. The complex microstructure of the apoplast, composed of polymers and microfibrils, can be represented as a porous medium, and the water flow in the cell walls and intercellular space is modelled by Darcy’s law. The Stokes and/or Brinkmann equations can be used to define the flow velocity in the cell inside (cytoplasm) and plasmodesmata. Similar situation is found in models of early atherosclerotic lesions [2] or low-density lipoproteins transfer through arterial walls, for example, [3–5]. Here, the blood velocity in artery lumen is described by Stokes or Navier–Stokes equations, while arterial walls are modelled as porous media and Darcy equations are considered.

The aim of this article is to study the well-posedness of a general coupled free-fluid and porous-medium model for transport processes in biological tissues. The main difference of our problem to coupled Stokes–Darcy, Brinkman–Darcy and Navier–Stokes–Darcy problems studied before (see, for example, [6–9] and references therein) is that the free-fluid and the porous media domains do not interact directly. A semipermeable membrane separates there two domains and controls actively and passively the fluxes of the water (or blood) and the solutes [1, 2]. Thus, the appropriate transmission conditions on the boundary between free-fluid domain and porous media need to be considered to represent the regulation of the water (or blood) flow from the cell inside (or artery lumen) into the intercellular space (or arterial walls), [1, 2].

In contrast to previous work on transport of macromolecules from artery lumen to arterial walls [2], where the dependence of fluid flow across the membrane on the oncotic pressure difference was neglected (to simplify the analysis), we consider the influence of the osmotic effect on the flow velocity. This is reflected in the transmission conditions on the boundary between cell insides and cell walls, comprising the normal component of the Darcy velocity $v^D \cdot n$ and a given function $g \cdot n$. The function $g \cdot n$ corresponds to the difference between the solute concentrations in the cell insides and the intercellular space (or in the artery lumen and arterial walls), respectively (for example [1, 2]). Our model includes also the situation when only a part of the boundary between the cell insides and the intercellular space (cell walls) is semipermeable.

The analysis presented here is a generalization of the results obtained in [10], where a coupled Stokes–Darcy system with a constant permeability in the Darcy equations was analysed. For the flow velocity in the domain with free fluid, we consider generalized Oseen...
resolvent equations, while the fluid flow in the porous medium is modelled by the Darcy equations with a general space-dependent permeability tensor. Although, there are many results on existence of solutions of Oseen system [11–16], coupled generalized Darcy–Oseen problem was not considered before.

To prove the existence of a weak solution of the generalized Darcy–Oseen resolvent problem, we consider two auxiliary problems: a mixed Navier–Dirichlet problem for the generalized Oseen resolvent system and a Robin problem for an elliptic equation related to the general Darcy equations. The Riesz representation theorem for a continuous linear functional on the Hilbert space $H^1(\Omega)$ and the fact that $H^{-1/2}(\partial \Omega)$ is a closed subspace of the dual space $[H^1(\Omega)]^*$ are used to prove the existence of a weak solution of the Robin-type problem. To show the existence of a solution of a mixed Navier–Dirichlet problem for the generalized Oseen resolvent system, we combine the existence results for a mixed Navier–Dirichlet problem for Stokes system, obtained in [10], and a compact perturbation argument.

Notice that considering some of the parameters in the generalized Oseen resolvent equations to be 0, we recover Stokes, Oseen or Darcy systems. Thus, modelling the fluid flow in the symplast of plant tissues by generalized Oseen resolved equations allows us to consider the situation when the water flow inside plant cells is modelled by Stokes equations and Brinkmann equations describe the water velocity in plasmodesmata.

The paper is organized as follows. In Section 2, we formulate mathematical model for transport processes in a domain composed of free-fluid domain and a porous medium separated by a semipermeable membrane. In Sections 3 and 4, two auxiliary problems: the mixed Navier–Dirichlet problem for an Oseen resolvent system and the Robin-type problem are analysed. The main result of the paper, that is, the existence and uniqueness (up to a constant for pressures) of a weak solution of the generalized Darcy–Oseen resolvent problem, is proved in Section 5.

2. Formulation of the mathematical model

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain, that is, a bounded open connected set, with Lipschitz boundary $\partial \Omega$, and suppose that Ω_3 is a nonempty subdomain of Ω with Lipschitz boundary $\partial \Omega_3$ such that $\Omega_3 \neq \emptyset$. Then $\Omega_2 := \Omega \setminus \overline{\Omega_3}$ is a bounded open set, not necessarily connected. We suppose that Ω_2 has a Lipschitz boundary, too. Note that $\partial \Omega_3 \cap \partial \Omega_2 \cap \Omega$ is always nonempty, and it is locally the graph of a Lipschitz function. Let Γ denote a nonempty closed subset of $\partial \Omega_3 \cap \partial \Omega_2$. Then Γ might reach the boundary $\partial \Omega$ or not. If G is a component of $\partial \Omega_2$, we suppose that $\Gamma \cap \partial G$ has positive surface measure.

In Ω we consider the following coupled boundary value transmission problem

\begin{equation}
-\eta \Delta \mathbf{v}^s + \lambda \mathbf{v}^s + \mathbf{k} \cdot \nabla \mathbf{v}^s + \nabla p^s = 0, \quad \text{div} \mathbf{v}^s = 0 \quad \text{in } \Omega_3, \tag{1}
\end{equation}

\begin{equation}
\mathbf{v}^D + \mathbf{k} \nabla p^D = 0, \quad \text{div} \mathbf{v}^D = 0 \quad \text{in } \Omega_2, \tag{2}
\end{equation}

\begin{equation}
\mathbf{v}^s = \mathbf{f} \quad \text{on } \partial \Omega_3 \setminus \Gamma, \tag{3}
\end{equation}

\begin{equation}
\mathbf{v}^D \cdot \mathbf{n} = h \quad \text{on } \partial \Omega_2 \setminus \Gamma, \tag{4}
\end{equation}

\begin{equation}
\mathbf{v}^D \cdot \mathbf{n} - \mathbf{v}^s \cdot \mathbf{n} = h, \quad \mathbf{v}^s_{\tau} = \mathbf{f}_\tau \quad \text{on } \Gamma, \tag{5}
\end{equation}

\begin{equation}
\begin{bmatrix}
-\mathbf{T}_\eta(\mathbf{v}^s, p^s) - \alpha \mathbf{v}^s + \frac{1}{2}(\mathbf{k} \cdot \mathbf{n})\mathbf{v}^s \\
\mathbf{n} = \beta p^D + \gamma \mathbf{v}^D \cdot \mathbf{n} - \mathbf{g} \cdot \mathbf{n}
\end{bmatrix} \quad \text{on } \Gamma, \tag{6}
\end{equation}

Here, $\mathbf{k} \in \mathbb{R}^3$, and $\eta, \beta > 0$, $\alpha, \gamma \geq 0$ are constants, $K = (K_{ij})$ is a symmetric 3×3-matrix function with entries $K_{ij} \in L^\infty(\Omega_2)$ and $\lambda = (\lambda_{ij})$ is a measurable 3×3-matrix function with entries $\lambda_{ij} \in L^\infty(\Omega_2)$. Notice that $\mathbf{k} \cdot \nabla \mathbf{v} = (\mathbf{k} \cdot \nabla v_1, \mathbf{k} \cdot \nabla v_2, \mathbf{k} \cdot \nabla v_3)$.

The vector $\mathbf{v}^s = (v_1^s, v_2^s, v_3^s)$ denotes the generalized Darcy velocity vector in Ω_3, and $\mathbf{v}^D = (v_1^D, v_2^D, v_3^D)$ represents the generalized Oseen resolvent velocity in Ω_3. In the transmission condition (6),

\begin{equation}
\mathbf{T}_\eta(\mathbf{v}^s, p^s) = 2\eta \mathbf{D}v^s - p^s I
\end{equation}

means the stress tensor, where

\begin{equation}
\mathbf{D} \mathbf{v} = \frac{1}{2} \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right]
\end{equation}

is the symmetric 3×3-gradient of \mathbf{v} and I the 3×3-unity matrix. We denote by \mathbf{n}^s and by \mathbf{n}^D the exterior unit normal vectors of Ω_3 and Ω_2, respectively. By \mathbf{n}, we mean $\mathbf{n} = \mathbf{n}^s$ on $\partial \Omega_3$ and $\mathbf{n} = -\mathbf{n}^D$ on $\partial \Omega_2$. Moreover, we use $\mathbf{v}_n = (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$ for the normal part of \mathbf{v}, and $\mathbf{v}_{\tau} = \mathbf{v} - \mathbf{v}_n$ for the tangential part of \mathbf{v}. Finally, we suppose that the matrix function K satisfies a uniform ellipticity condition, that is, there exists a constant $\alpha > 0$ such that for all $\mathbf{x} \in \Omega_2$ we have

\begin{equation}
\sum_{i,j=1}^3 K_{ij}(\mathbf{x}) \xi_i \xi_j \geq \alpha |\xi|^2 \quad \forall \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3,
\end{equation}
and that the matrix λ is nonnegative, that is, for a.a. $x \in \Omega_3$ we have

$$\sum_{j=1}^{3} \lambda_{ij}(x) \xi_j \xi_i \geq 0 \quad \forall \, \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3.$$

The Equation (2) represents a generalization of the standard Darcy equations where $K = I$. For $\lambda = 0$ and $k = 0$ the system (1) coincides with the Stokes system, for $\lambda = 0$ and $k \neq 0$ with the Oseen system, and for $\lambda \neq cI$ with $c > 0$ and $k \neq 0$ with the Oseen resolvent system. Finally, if $k = 0$ and $\xi \cdot (\lambda(x) \xi) > 0$ for a.a. $x \in \Omega_3$ and $\xi \in \mathbb{R}^3$, with $\xi \neq 0$, then (1) is called the Brinkman system.

In the next, we suppose that there exists some $\Theta \in [H^1(\Omega_3)]^3$ with $\Theta = 0$ on $\partial \Omega \setminus \Gamma$, with $\Theta_{\Gamma} = 0$ on Γ, and with

$$\int_{\Gamma} \Theta \cdot n \, d\sigma_{\Gamma} = 1. \tag{9}$$

Note that the latter condition is certainly satisfied if the surface Γ contains a nontrivial sufficiently smooth part (of class C^2).

Notice that the situations when $\partial \Omega_3 \setminus \Gamma = \emptyset$ or $\partial \Omega_2 \setminus \Gamma = \emptyset$ are included in the analysis presented here. If $\Omega_3 \subset \Omega$ and $\partial \Omega_3 = \Gamma$, then the condition (3) disappears. As examples, we can consider a domain $\Omega = \{x \in \mathbb{R}^3; |x| < 2, j = 1, 2, 3\}$, $\Omega_1 = \{x \in \mathbb{R}^3; |x| < 1\}$, $\Omega_2 = \Omega \setminus \Omega_1$, and $\Gamma = \{x \in \mathbb{R}^3; |x| = 1\}$ to see that the boundary condition (4) disappears. Such a structure is characteristic for plant cells that are connected with each other via plasmodesmata. Then the domain Ω_3 represents cell inside and plasmodesmata, and the domain Ω_5 describes a cell wall and intercellular space.

The interface Γ might reach the boundary, for example, $\Omega = \{x \in \mathbb{R}^3; |x| < 3\}$, $\Omega_1 = \{x \in \mathbb{R}^3; x_1 > 0\}$, $\Omega_2 = \{x \in \mathbb{R}^3; |x| < 1\}$, $\Omega_3 = \{x \in \mathbb{R}^3; 2 < |x| < 3\}$, $\Omega_4 = \{x \in \mathbb{R}^3; 1 < |x| < 2\}$, $\Omega_5 = \{x \in \mathbb{R}^3; |x| = 2\}$, $\partial \Omega_4 \setminus \Gamma = \{x \in \mathbb{R}^3; |x| = 1\}$, $\partial \Omega_5 \setminus \Gamma = \{x \in \mathbb{R}^3; |x| = 3\}$.

3. A mixed Navier–Dirichlet problem for the Oseen resolvent system

To prove the main result of the paper, that is, the existence of a unique (up to a constant for pressures) weak solution of the model (1)–(6), we shall use two auxiliary problems.

As a first auxiliary problem, in this section, we consider a mixed Navier–Dirichlet problem for the generalized Oseen resolvent system: For a given $f \in [H^{1/2}(\partial \Omega_3)]^3$ and $g \in [H^{-1/2}(\partial \Omega_3)]^3$, find a weak solution $v \in [H^1(\partial \Omega_3)]^3$ and $p \in L^2(\Omega_5)$ of the problem

$$-\eta \Delta v + \lambda v + k \cdot \nabla v + \nabla p = 0, \quad \text{div} \, v = 0 \quad \text{in} \, \Omega_3,$$
$$v = f \quad \text{on} \, \partial \Omega_3 \setminus \Gamma,$$
$$v_{\Gamma} = f_{\Gamma} \quad \text{on} \, \Gamma,$$
$$T_{\eta}(v, p) n + b v - \frac{1}{2} (k \cdot n) v = g_n \quad \text{on} \, \Gamma,$$

where $k \in \mathbb{R}^3$ and $\eta, b > 0$ are constants.
Definition 3.1
We say that \((v, p) \in [H^1(\Omega_3)]^3 \times L^2(\Omega_3)\) is a weak solution of the problem (10) if the boundary conditions \(v = f\) on \(\partial \Omega \setminus \Gamma\) and \(v_\tau = f_\tau\) on \(\Gamma\) are fulfilled in the sense of traces, and if it holds

\[
\int_{\Omega_3} \left\{ 2\eta Dv : D\phi + \lambda v \cdot \phi - p \, \text{div} \phi + \frac{1}{2} [\phi \cdot (k \cdot \nabla v) - v \cdot (k \cdot \nabla \phi)] \right\} \, dy
+ \int_{\partial \Omega_3} b \, v \cdot \phi \, d\sigma = (g, \phi)_{W^{-1/2, H^{1/2}}}
\]

for all \(\phi \in V_\Gamma\), where

\[V_\Gamma = \{ v \in [H^1(\Omega_3)]^3; \ v = 0 \text{ on } \partial \Omega \setminus \Gamma, \ v_\tau = 0 \text{ on } \Gamma \}.\]

The integral relation (11) follows from (10) with the help of Green's formula, which also implies that a weak solution of the problem (10) is contained in the space

\[W_{n,\lambda,k}(\Omega_3) = \{ (v, p) \in H^1(\Omega_3)^3 \times L^2(\Omega_3); \ -\eta \Delta v + \lambda v + k \cdot \nabla v + \nabla p = 0, \ \text{div} v = 0 \}.
\]

Moreover, if \(v \in H^2(\Omega_3)^3\) and \(p \in H^1(\Omega_3)\), then all boundary conditions are satisfied in the sense of traces.

For the following, we need some special Sobolev trace spaces on the boundary \(\partial \Omega\), that is, the space

\[V' = \{ v \in [H^{1/2}(\partial \Omega)]^3; \ v = 0 \text{ on } \partial \Omega \setminus \Gamma, \ v_\tau = 0 \text{ on } \Gamma \}
\]

of traces of the space \(V_\Gamma\) and the space of restrictions

\[W' = \left\{ (v|_{\partial \Omega \setminus \Gamma}, v_\tau|_{\Gamma}); \ v \in [H^{1/2}(\partial \Omega)]^3 \right\},
\]

the latter equipped with the norm

\[\|v\|_{W'} = \inf \left\{ \|u\|_{[H^{1/2}(\partial \Omega)]^3}; \ u \in [H^{1/2}(\partial \Omega)]^3, u = v \text{ on } \partial \Omega \setminus \Gamma, u_\tau = v_\tau \text{ on } \Gamma \right\}.
\]

Because \(W' = V_\Gamma\), coincides with the factor-space \([H^{1/2}(\partial \Omega)]^3\)/\(V_\Gamma\), it is a Banach space. By \(V'_\Gamma\) we denote the dual space of \(V_\Gamma\). According to the theorem of Hahn–Banach this dual space can be represented by

\[V'_\Gamma = \left\{ g_\|_{\Gamma}; \ g \in [H^{-1/2}(\partial \Omega)]^3 \right\}.
\]

According to [23, Theorem 6.9.2], there exists a bounded linear extension operator \(E : H^{1/2}(\partial \Omega) \to H^1(\Omega)\) such that \(\psi\) is the trace of \(E\).

For \((v, p) \in W_{n,\lambda,k}(\Omega_3)\), we define \([T_n(v, p)n - \frac{1}{2} (k \cdot n)v]_n|_\Gamma \in V'_\Gamma\) by

\[
\left[T_n(v, p)n - \frac{1}{2} (k \cdot n)v \right]_n|_\Gamma = \frac{1}{2} \int_{\Omega_3} \left\{ 2\eta Dv : D(\phi - \hat{\phi}) + (\lambda v - \hat{\phi}) \cdot (\phi - \hat{\phi}) \right\} \, dy
+ \frac{1}{2} [((\phi - \hat{\phi}) \cdot (k \cdot \nabla v) - v \cdot (k \cdot \nabla \phi))] - p \, \text{div} (\phi - \hat{\phi}) \right\} \, dy
\]

for all \(\phi \in V_\Gamma\).

In order for \([T_n(v, p)n - \frac{1}{2} (k \cdot n)v]_n|_\Gamma\) to be well defined, we shall show that its definition does not depend on the choice of the extension operator \(E\).

Proposition 3.2

If \((v, p) \in W_{n,\lambda,k}(\Omega_3)\), then \([T_n(v, p)n - \frac{1}{2} (k \cdot n)v]_n|_\Gamma\) does not depend on the choice of the extension operator \(E\).

Proof

Consider \(\phi \in V_\Gamma\) and \(\phi = \hat{\phi} \in [H^3(\Omega_3)]^3\) with \(\hat{\phi} = \Phi\) on \(\partial \Omega\). Then \(\Phi - \hat{\Phi} \in [H^2_0(\Omega_3)]^3\). If \((v, p) \in W_{n,\lambda,k}(\Omega_3)\), then Green's formula implies

\[
\int_{\Omega_3} \left\{ 2\eta Dv : D(\Phi - \hat{\Phi}) + (\lambda v) \cdot (\Phi - \hat{\Phi}) \right\} \, dy
+ \frac{1}{2} [(\Phi - \hat{\Phi}) \cdot (k \cdot \nabla v) - v \cdot (k \cdot \nabla (\Phi - \hat{\Phi}))] - p \, \text{div} (\Phi - \hat{\Phi}) \right\} \, dy = 0.
\]

Hence, \([T_n(v, p)n - \frac{1}{2} (k \cdot n)v]_n|_\Gamma\) does not depend on the choice of the extension operator \(E\).
Moreover, the definition of \hat{D}. MEDKOVÁ, M. PTASHNYK AND W. VARNHORN

The following proposition ensures the unique solvability of the mixed Navier–Dirichlet problem (10) for the Oseen resolvent system.

Proposition 3.3

For a constant $b > 0$ define

$$U^{b,n,k}(v^*,p^*) = \left(v^*|_{\partial \Omega \setminus \Gamma'}, \nu^*|_{\Gamma'} \left[T_n(v,p)n - \frac{1}{2}(k \cdot n)v \right]_n \right)_{\Gamma} + bv_n_{\Gamma}.$$

Then $U^{b,n,k} : W_{n,k}(\Omega) \rightarrow W_1 \times V'_1$ is an isomorphism.

Hence, for $f \in [H^{1/2}(\partial \Omega)]^3$, $g \in [H^{-1/2}(\partial \Omega)]^3$, there exists a unique solution of the problem (10), and (v^*, p^*) is a solution of the problem (10) if and only if $(v^*, p^*) \in W_{n,k}(\Omega)$ and

$$U^{b,n,k}(v^*,p^*) = \left(f|_{\partial \Omega \setminus \Gamma'}, f_r|_{\Gamma'}, g_n|_{\Gamma'} \right).$$

Proof

Using the Green formula, we obtain that (v^*, p^*) is a solution of problem (10) if and only if

$$(v^*, p^*) \in W_{n,k}(\Omega) \quad \text{and} \quad U^{b,n,k}(v^*,p^*) = (f|_{\partial \Omega \setminus \Gamma'}, f_r|_{\Gamma'}, g_n|_{\Gamma'}).$$

Moreover, the definition of $U^{b,n,k}$ implies that

$$U^{b,n,k} : W_{n,k}(\Omega) \rightarrow W_1 \times V'_1$$

is a bounded linear operator.

As next, we have to show that $U^{b,n,k} : W_{n,k}(\Omega) \rightarrow W_1 \times V'_1$ is an isomorphism.

We suppose first that $\lambda = 0$ and $k = 0$. In this case, it is shown in [10] that the problem (10) is uniquely solvable and

$$U^{b,n,0} : W_{n,0}(\Omega) \rightarrow W_1 \times V'_1$$

is an isomorphism.

We prove the proposition for arbitrary λ and k using a compact perturbation argument. One of the problem in the analysis of the system (10) is that the operator $U^{b,n,k}$ is defined on the space $W_{n,k}(\Omega)$ that depends on η, λ, and k. To overcome this problem, we extend these operators on some common space. Denote

$$H(\Omega_5, \text{div}) = \{ v \in [H^1(\Omega_5)]^3; \text{div} v = 0 \}.$$

Define the operator $T_{1}^{b,n,k} : H(\Omega_5, \text{div}) \times L^2(\Omega_5) \rightarrow \nu'_1$ by

$$<T_{1}^{b,n,k}(v,p), \Phi> = \int_{\Omega_5} \left[2(\nabla v : \mathbf{D} \Phi + \lambda v \cdot \Phi - p \Phi + \frac{1}{2}(\Phi \cdot (k \cdot \nabla v) - (k \cdot v \cdot \Phi)) \right] dy + \int_{\partial \Omega_5} b v \cdot \Phi d\sigma$$

for $\Phi \in \nu_1$, and the operator $T_{2}^{b,n,k} : H(\Omega_5, \text{div}) \times L^2(\Omega_5) \rightarrow W_1 \times \nu'_1$ by

$$T_{2}^{b,n,k}(v,p) = \left(v|_{\partial \Omega \setminus \Gamma'}, v_r|_{\Gamma'}, T_{1}^{b,n,k}(v,p) \right).$$

Notice that

$$T_{2}^{b,n,k}(v,p) = (f, g)$$

for $f \in W_1$ and $g \in \nu'_1$, means that

$$- \eta \Delta v + \lambda v + k \cdot \nabla v + \nabla p = g, \quad \text{div} v = 0 \quad \text{in} \; \Omega_5,$$

$$v = f \quad \text{on} \; \partial \Omega_5 \setminus \Gamma,$$

$$v_r = f_r, \quad \left[T_n(v,p)n + \frac{1}{2}(k \cdot n)v \right]_n = g_n \quad \text{on} \; \Gamma.$$

In the following, we show that

$$T_{2}^{b,n,k} : H(\Omega_5, \text{div}) \times L^2(\Omega_5) \rightarrow W_1 \times \nu'_1$$

is an isomorphism.

To do so, first suppose that $\lambda = 0$, $k = 0$. If $T_{2}^{b,n,0}(v,p) = 0$ then (v,p) is a solution of the problem (10) with $\lambda = 0$, $k = 0$ and with homogeneous boundary conditions. For this case, we have proved in [10] that $(v,p) = 0$.

© 2016 The Authors Mathematical Methods in the Applied Sciences
Published by John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. **2016**, 39 1621–1630
Let now \((f, g) \in W_T \times V'_T\) be given. Then \(g \in [H^1(\Omega_S)]'\) and according to [22, Chapter IV, Theorem 1.1] there exists \((\bar{v}, \bar{p}) \in [H^1(\Omega_S)]^2 \times L^2(\Omega_S)\) such that

\[
-\eta \Delta \bar{v} + \nabla \bar{p} = g, \quad \text{div} \bar{v} = 0 \quad \text{in } \Omega_S, \\
\bar{v} = 0 \quad \text{on } \partial \Omega_S.
\]

This means that \(D^{b,0,0}(\bar{v}, \bar{p}) - g\) is supported on \(\partial \Omega_S\), and hence \(g = D^{b,0,0}(\bar{v}, \bar{p}) \in V'_T\). Moreover, in [10] we have proved that there exists \((u, \pi) \in W_{n,0}(\Omega_S)\) such that

\[
\left(u|_{\partial \Omega_S \setminus \Gamma}, u_T \right) = \left(f|_{\partial \Omega_S \setminus \Gamma}, f_T \right) \quad \text{and} \quad D^{b,0,0}(u, \pi) = g = D^{b,0,0}(\bar{v}, \bar{p}).
\]

Consider \(v = \bar{v} + u\) and \(p = \bar{p} + \pi\). Then from the definition of \(v\) and \(u\) we obtain \(\text{div} v = 0\) and

\[
D^{b,0,0}(v, p) = \left(f|_{\partial \Omega_S \setminus \Gamma}, f_T \right),
\]

This implies that

\[
D^{b,0,0} : H(\Omega_S, \text{div}) \times L^2(\Omega_S) \to W_T \times V'_T
\]

is an isomorphism.

Next, we consider a general matrix function \(A\) with bounded entries and \(k \in \mathbb{R}^3\), such that \(A\) satisfies the assumption (8). Then, Sobolev's imbedding theorem ensures that

\[
D^{b,0,0,\lambda} - D^{b,0,0} : H(\Omega_S, \text{div}) \times L^2(\Omega_S) \to W_T \times V'_T
\]

is a compact operator. Because \(D^{b,0,0} : H(\Omega_S, \text{div}) \times L^2(\Omega_S) \to W_T \times V'_T\) is an isomorphism, the operator \(D^{b,0,0,\lambda} : H(\Omega_S, \text{div}) \times L^2(\Omega_S) \to W_T \times V'_T\) is Fredholm with index 0.

Consider now \((v, p) \in H(\Omega_S, \text{div}) \times L^2(\Omega_S)\) such that \(D^{b,0,0,\lambda}(v, p) = 0\). Then \((v, p) \in W_{n,0}(\Omega_S), v = 0\) on \(\partial \Omega_S \setminus \Gamma\), and \(v_T = 0\) on \(\Gamma\). Because \(\text{div} v = 0\), we have

\[
0 = \langle D^{b,0,0,\lambda}(v, p), v \rangle = \int_{\Omega_S} \left[2\eta |Dv|^2 + (\lambda \nabla v) \cdot \nabla v \right] \, dy + \int_{\partial \Omega_S} b|v|^2 \, d\sigma_y.
\]

Thus, \(Dv = 0\) and \(v = 0\) on \(\partial \Omega_S\). Because \(Dv = 0\), we have that \(v\) is linear by [24, Lemma 3.1]. Because \(\Delta v = 0\) in \(\Omega\) and \(v = 0\) on \(\partial \Omega\), we infer that \(v = 0\). So, \((v, p)\) is a solution of the problem (10) with \(\lambda = 0, k = 0, f = 0, g = 0\). Therefore, \(p = 0\). Hence, the operator \(D^{b,0,0,\lambda} : H(\Omega_S, \text{div}) \times L^2(\Omega_S) \to W_T \times V'_T\) is a Fredholm operator with index 0 and with trivial kernel, so it is an isomorphism.

From the definition of \(D^{b,0,0,\lambda}(v, p)\), we have that \(D^{b,0,0,\lambda}(v, p) \) is supported on \(\partial \Omega_S\) if and only if \((v, p) \in W_{n,0}(\Omega_S)\). Hence, \(D^{b,0,0,\lambda}(v, p) \in V'_T\) if and only if \((v, p) \in W_{n,0}(\Omega_S)\). Then, because \(D^{b,0,0,\lambda} : H(\Omega_S, \text{div}) \times L^2(\Omega_S) \to W_T \times V'_T\) is an isomorphism, we have that

\[
D^{b,0,0,\lambda} = D^{b,0,0}(\Omega_S) \to W_T \times V'_T
\]

is also an isomorphism.

4. Robin-type problem

The second auxiliary problem is the following Robin problem, related to the generalized Darcy equations,

\[
\text{div} (K \nabla p) = 0 \quad \text{in } \Omega_D, \tag{12}
\]

\[
n^D \cdot K \nabla p + p = f \quad \text{on } \partial \Omega_D. \tag{13}
\]

Here, \(n^D\) is the unit exterior normal of \(\Omega_D\) and \(f \in H^{-1/2}(\partial \Omega_D)\). For \(\rho \in H^1(\Omega_D)\), we define

\[
\langle \partial^D_{\rho} p, \psi \rangle = \int_{\Omega_D} (K \nabla p) \cdot \nabla \psi \, dy, \quad \psi \in H^1(\Omega_D). \tag{14}
\]

We remark that \(\partial^D_{\rho} p\) is supported on \(\partial \Omega_D\), that is, \(\partial^D_{\rho} p \in H^{-1/2}(\partial \Omega_D)\), if and only if \(p\) is a solution of (12) in the sense of distributions (a weak solution). If this is true then \(\partial^D_{\rho} p\) has a meaning of the conormal derivative \(n^D \cdot K(x) \nabla p\) from (13), that is, \(\partial^D_{\rho} p = n^D \cdot K \nabla p\).

Definition 4.1

We say that \(p \in H^1(\Omega_D)\) is a solution of the Robin problem (12)–(13) if

\[
\langle U_{\rho} p, \psi \rangle := \langle \partial^D_{\rho} p, \psi \rangle + \int_{\partial \Omega_D} p \psi \, d\sigma_y = \langle f, \psi \rangle \quad \forall \psi \in H^1(\Omega_D). \tag{15}
\]
Definition 5.1

Proposition 5.2
The operator

\[U_K : H^1(\Omega_D; K) \to H^{-1/2}(\partial \Omega_D) \]

is an isomorphism, where

\[H^1(\Omega_D; K) = \{ p \in H^1(\Omega_D) ; \ \text{div}(K \nabla p) = 0 \} . \]

Hence, if \(f \in H^{-1/2}(\partial \Omega_D) \), then there exists a unique solution of the Robin problem (12)–(13), and \(u \in H^1(\Omega_D) \) is a solution of this problem if and only if \(u \in H^1(\Omega_D; K) \) and \(U_K u = f \).

Proof
From (14) and (15), and the assumption on \(K \), we have that \(\langle u_K, \phi \rangle \) defines an inner product on \(H^1(\Omega_D) \), and the corresponding norm is equivalent to the original norm in \(H^1(\Omega_D) \). According to the Riesz representation theorem, \(U_K : H^1(\Omega_D) \to [H^1(\Omega_D)]' \) is an isomorphism. The space \(H^{-1/2}(\partial \Omega_D) \) is a closed subspace of the dual space \([H^1(\Omega_D)]'\) formed by distributions. Hence, because \(H^1(\Omega_D; K) = U_K^{-1}([H^1(\Omega_D)]') \), we obtain the assertion stated in the proposition.

\[\square \]

5. Generalized Oseen–Darcy problem

In this section, we shall study the original coupled problem (1)–(6). Because \(v^D \cdot n = v^r \cdot n + h \) on \(\Gamma \), we can rewrite (6) as

\[T_R(v^r, p^D) = -\frac{1}{2}(k \cdot n)v^r \cdot n + \beta p^D + (\alpha + \gamma)v^r \cdot n = \tilde{g} \cdot n \]

or in the vector form

\[T_R(v^r, p^D) n = -\frac{1}{2}(k \cdot n)v^r \cdot n + \beta \rho^D + (\alpha + \gamma)v^r \cdot n = \tilde{g}_n, \]

where \(g_n = g_n - h n \). Instead of this transmission condition, we can consider a bit more general condition

\[T_R(v^r, p^D) n = -\frac{1}{2}(k \cdot n)v^r \cdot n + \beta \rho^D + (A v^r)_n = \tilde{g}_n \quad \text{on} \quad \Gamma, \tag{16} \]

where \(A \) is a matrix function of the type \(3 \times 3 \) with \(A_{ij} \in L^\infty(\partial \Omega_S) \), which is nonnegative on \(\Gamma \), that is,

\[(A(x)\xi) \cdot \xi \geq 0 \quad \forall \ x \in \Gamma, \quad \forall \ \xi \in \mathbb{R}^3. \tag{17} \]

We shall study the transmission problem (1)–(5), (16) under assumption \(\tilde{g} \in [H^{-1/2}(\partial \Omega_S)]^3 \), \(h \in H^{-1/2}(\partial \Omega_D) \), and \(f \in [H^{1/2}(\Omega_S)]^3 \).

Definition 5.1

We say that \((v^r, p^D) \in [H^1(\Omega_D)]^3 \times L^2(\Omega_D) \) and \((v^D, p^D) \in [L^2(\Omega_D)]^3 \times H^1(\Omega_D) \) is a solution of the problem (1)–(5), (16) if

(i) \((v^r, p^D) \) is a solution of the system (1) in the sense of distributions, that is, \((v^r, p^D) \in W_{\eta, \lambda, \chi}(\Omega_S) \),

(ii) \((v^D, p^D) \) is a solution of the system (2) in the sense of distributions, that is, \(p^D \in H^1(\Omega_D; K) \) and \(v^D = -K \nabla p^D \) in \(\Omega_D \),

(iii) the boundary conditions \(v^r = f \) on \(\partial \Omega_S \setminus \Gamma \) and \(v^r \big|_{\Gamma} = f_r \) on \(\Gamma \) are satisfied in the sense of traces,

(iv) \[\left[T_R(v^r, p^D) \right] n - \frac{1}{2}(k \cdot n)v^r \cdot n \big|_{\Gamma} + \beta \rho^D \left[n \chi \right]_{\Gamma} + [A v^r]_n \big|_{\Gamma} = \tilde{g}_n \big|_{\Gamma} \quad \text{and} \quad \frac{1}{S} \rho^D = h + v^r \cdot n \chi. \]

Here, \(\chi \) is the characteristic function of \(\Gamma \).

First, we show the uniqueness of a solution

\[(v^r, p^D) \in [H^1(\Omega_S)]^3 \times L^2(\Omega_S)/\mathbb{R} \quad \text{and} \quad (v^D, p^D) \in [L^2(\Omega_D)]^3 \times H^1(\Omega_D)/\mathbb{R} \]

of the problem (1)–(5), (16).

Proposition 5.2
Let \((v^r, p^D) \in [H^1(\Omega_S)]^3 \times L^2(\Omega_S) \) and \((v^D, p^D) \in [L^2(\Omega_D)]^3 \times H^1(\Omega_D) \) be a solution of the problem (1)–(5), (16) with \(f = 0, h = 0 \) and \(\tilde{g} = 0 \). Then, there exists a constant \(c \) such that \(p^D = \beta c, v^r = 0, v^D = 0 \) and \(p^D = c \).

On the other hand, if \(p^D = \beta c, v^r = 0, v^D = 0, p^D = c \) for some constant \(c \), then \((v^r, p^D, v^D, p^D) \) is a solution of the problem (1)–(5), (16) with \(f = 0, h = 0 \) and \(\tilde{g} = 0 \).
Proof

Because \(\mathbf{v}^s = 0 \) on \(\partial \Omega_3 \setminus \Gamma \) and \(\mathbf{v}^s \) = 0 on \(\Gamma \), we have \(\mathbf{v}^s \in \mathcal{V}_\Gamma \). Because \(\mathbf{v}^s \) = 0 on \(\Gamma \), we have \(\mathbf{v}^s \cdot (A\mathbf{v}^s)_n = \mathbf{v}^s \cdot (A\mathbf{v}^s) \) on \(\Gamma \). Using the fact that

\[
\partial^2_{\mathbf{n}} \mathbf{v}^D = \mathbf{v}^s \cdot \mathbf{n} \chi \Gamma
\]

and

\[
\left[T_n(\mathbf{v}^s, p^s) n - \frac{1}{2} (\mathbf{k} \cdot \mathbf{n}) \mathbf{v}^s \right] \big|_{\Gamma} + \beta p^s \mathbf{n} \chi \Gamma \big|_{\Gamma} + (A\mathbf{v}^s)_n \big|_{\Gamma} = 0,
\]

we obtain

\[
0 = \left[T_n(\mathbf{v}^s, p^s) n - \frac{1}{2} (\mathbf{k} \cdot \mathbf{n}) \mathbf{v}^s \right] \big|_{\Gamma} + \beta p^s \mathbf{n} \chi \Gamma \big|_{\Gamma} + (A\mathbf{v}^s)_n \big|_{\Gamma} = 0,
\]

\[
= \int_{\Omega_2} \left[2\eta \left[\nabla \mathbf{v}^s \right]^2 + (\lambda \mathbf{v}^s) \cdot \mathbf{v}^s \right] dy + \beta \int_{\Omega_2} (A\mathbf{v}^s)_n \cdot \mathbf{n} dy + \int_{\Gamma} \mathbf{v}^s \cdot (A\mathbf{v}^s)_n dy
\]

\[
\geq \int_{\Omega_2} 2\eta \left[\nabla \mathbf{v}^s \right]^2 dy
\]

From the last inequality, we deduce that \(\nabla p^D = 0 \) in \(\Omega_2 \) and \(\mathbf{D} \mathbf{v}^S = 0 \) in \(\Omega_3 \). Hence, \(p^D \) is constant on each component of \(\Omega \) and \(\mathbf{v}^D = \lambda \mathbf{v}^s - \mathbf{k} \cdot \mathbf{n} \mathbf{v}^s \) in \(\Omega_3 \). Therefore, \(\mathbf{D} \mathbf{v}^s = 0 \) and \(\mathbf{v}^s \) = 0 on \(\partial \Omega_3 \). Using the fact that \(\mathbf{D} \mathbf{v}^s = 0 \), we obtain the functions \(\mathbf{v}^s \), for \(j = 1, 2, 3 \), are affine (\([25, \text{Lemma 6}]\)) and therefore harmonic. The maximum principle for harmonic functions yields that \(\mathbf{v}^s = 0 \), for \(j = 1, 2, 3 \). Using the Equation (1) and the fact that \(\mathbf{v}^s = 0 \), we obtain

\[
\nabla p^D = \eta \Delta \mathbf{v}^s - \lambda \mathbf{v}^s - \mathbf{k} \cdot \mathbf{n} \mathbf{v}^s = 0.
\]

Thus, there exists a constant \(c \) such that \(p^D = c \).

We have proved that \(p^D \) is constant on each component of \(\Omega_2 \), \(p^D = 0 \), \(\mathbf{v}^s = 0 \) and \(\mathbf{v}^s \) = 0 on \(\partial \Omega_3 \). Then, using the boundary conditions

\[
0 = \left[T_n(\mathbf{v}^s, p^s)n - \frac{1}{2} (\mathbf{k} \cdot \mathbf{n}) \mathbf{v}^s \right] \cdot \mathbf{n} + \beta p^D + (A\mathbf{v}^s)_n \cdot \mathbf{n} = -\epsilon + \beta p^s \text{ on } \Gamma,
\]

we conclude that \(p^D = \epsilon / \beta \). Considering \(\epsilon = \beta \epsilon \), we obtain the first statement of the proposition.

Substituting \(p^D = \beta \epsilon, \mathbf{v}^s = 0, \mathbf{v}^D = 0, p^D = c \), with some constant \(c \), into (1)–(5), (16), we obtain that the equations are satisfied for \(f = 0, h = 0 \) and \(g = 0 \).

\[\Box \]

Lemma 5.3

Let \(\mathbf{g} \in [H^{-1/2}(\partial \Omega_3)]^3, f \in [H^{1/2}(\partial \Omega_3)]^3, h \in H^{-1/2}(\partial \Omega_2) \). If there exists a solution of the problem (1)–(5), (16), then

\[
\langle h, 1 \rangle = \int_{\Omega_2 \setminus \Gamma} f \cdot n^s \, d\sigma_y.
\]

Proof

Let \((\mathbf{v}^s, p^s) \in [H^1(\Omega_3)]^3 \times L^2(\Omega_2) \) and \((\mathbf{v}^D, p^D) \in [L^2(\Omega_2)]^3 \times H^1(\Omega_2) \) be a solution of the problem (1)–(5), (16). For \(\varphi = 1 \), we have

\[
\langle \partial^2_{\mathbf{n}} p^D, 1 \rangle = \int_{\Omega_2} (K \nabla p^D) \cdot \nabla \varphi \, dy = 0.
\]

Because \(\text{div} \mathbf{v}^s = 0 \), Green's theorem yields

\[
\int_{\Omega_2} \mathbf{v}^s \cdot n^s \, d\sigma_y = 0,
\]

(for example [22, Chapter 4]). Using the fact that \(\partial^2_{\mathbf{n}} p^D = \mathbf{v}^D \cdot \mathbf{n} \) and the equality (19), we obtain

\[
0 = \langle \partial^2_{\mathbf{n}} p^D, 1 \rangle = \langle h, 1 \rangle + \int_{\Gamma} \mathbf{v}^s \cdot n^s \, d\sigma_y - \int_{\partial \Omega_3} \mathbf{v}^s \cdot n^s \, d\sigma_y
\]

\[
= \langle h, 1 \rangle - \int_{\partial \Omega_2 \setminus \Gamma} f \cdot n^s \, d\sigma_y.
\]

\[\Box \]

Theorem 5.4

Consider \(\mathbf{g} \in [H^{-1/2}(\partial \Omega_3)]^3, f \in [H^{1/2}(\partial \Omega_3)]^3, h \in H^{-1/2}(\partial \Omega_2) \). Then there exists a solution of the problem (1)–(5), (16) if and only if the compatibility condition (18) is satisfied.

Proof

We notice that \((\mathbf{v}^s, p^s) \) and \((\mathbf{v}^D, p^D) \) is a solution of the problem (1)–(5), (16) if and only if \((\mathbf{v}^s, p^s) \in W_{0,\lambda,K}(\Omega_3), p^D \in H^1(\Omega_2; K) \) and \(\mathbf{v}^D = -K \nabla p^D \) together with

\[
U(\mathbf{v}^s, p^s, p^D) = \left(f, \mathbf{g} \big|_{\Gamma} \right) \chi_{\Gamma} \chi_{\Gamma}.
\]
where the operator \(U : W_{n,k}(\Omega_2) \times H^1(\Omega_D; K) \to W_T \times V_T' \times H^{-1/2}(\partial \Omega_D) \) is given by

\[
U(v^\beta, p^\beta, p^D) = \left(v^\beta|_{\Omega_2 \setminus \Gamma}, v^\beta|_{\Gamma}, \left[T_n(v^\beta, p^\beta) n - \frac{1}{2} (k \cdot n) v^\beta \right]|_\Gamma + \beta p^D n|_\Gamma + [Av^\beta]|_\Gamma, \partial_n^2 p^D - v^\beta \cdot n \chi_T \right).
\]

We also define the operator \(\bar{U} : W_{n,k}(\Omega_2) \times H^1(\Omega_D; K) \to W_T \times V_T' \times H^{-1/2}(\partial \Omega_D) \) as

\[
\bar{U}(v^\beta, p^\beta, p^D) = \left(v^\beta|_{\Omega_2 \setminus \Gamma}, v^\beta|_{\Gamma}, \left[T_n(v^\beta, p^\beta) n - \frac{1}{2} (k \cdot n) v^\beta \right]|_\Gamma + [v^\beta + \beta p^D n]|_\Gamma, \partial_n^2 p^D + p^D \right).
\]

Notice that

\[
(\bar{U} - U)(v^\beta, p^\beta, p^D) = (0, 0, v^\beta|_{\Gamma}, [v^\beta + \beta p^D n]|_\Gamma - [Av^\beta]|_\Gamma).
\]

Consider fixed \([F, G] \in W_T \times V_T' \), and \(h \in H^{-1/2}(\partial \Omega_D) \). According to Proposition 4.2, there exists a unique \(p^D \in H^1(\Omega_D; K) \) such that \(\partial_n^2 p^D + p^D = h \). Proposition 3.3 ensures the existence of a unique \((v^\beta, p^\beta) \in W_{n,k}(\Omega_2) \) such that

\[
\left(v^\beta|_{\Omega_2 \setminus \Gamma}, v^\beta|_{\Gamma}, \left[T_n(v^\beta, p^\beta) n - \frac{1}{2} (k \cdot n) v^\beta \right]|_\Gamma + [v^\beta + \beta p^D n]|_\Gamma, \partial_n^2 p^D + p^D \right) = (F, G).
\]

Hence, \(\bar{U} : W_{n,k}(\Omega_2) \times H^1(\Omega_D; K) \to W_T \times V_T' \times H^{-1/2}(\partial \Omega_D) \) is an isomorphism.

The operator \(U - \bar{U} : W_{n,k}(\Omega_2) \times H^1(\Omega_D; K) \to W_T \times V_T' \times H^{-1/2}(\partial \Omega_D) \) is compact by the Sobolev imbedding theorem. Thus, the operator \(U \) is a Fredholm operator with index 0. By Proposition 5.2, we have that the dimension of the kernel of \(U \) is equal to 1. Therefore, the range of \(U \) is a subspace of \(W_T \times V_T' \times H^{-1/2}(\partial \Omega_D) \) of the codimension 1. Hence, using Lemma 5.3, we deduce that there exists a solution of the problem (1)–(5), (16) if and only if (18) holds true.

\[\square \]

Acknowledgements

The research of D. M. was supported by RVO: 67985840. The research of M. P. was supported by EPSRC First Grant EP/K036521/1.

References

1. Chavarría-Krauser A, Ptashnyk M. Homogenization approach to water transport in plant tissues with periodic microstructures. *Mathematical Modelling of Natural Phenomena* 2013; 8:80–111.

2. Calvez V, Huet SG, Meunier N, Raoul A, Rusanov K. Mathematical and numerical modeling of early atherosclerotic lesions. *ESAIM Proceedings*, Vol. 30, Marseille, France, 2010, 1–18.

3. Olga UC, Kurtcuoglu V, Poulikakos D. Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. *Am Journal Physical Heart Circ Physiol*. 2008; 294:H909–H919.

4. Prosi M, Zunino P, Perktold K, Quarteroni A. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. *Journal of Biomechanics* 2005; 38:903–917.

5. Sun N, Wood NB, Hughes AD, Thom S, Xu XY. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. *American Journal of Physiol. Heart. Circ. Physiol*. 2007; 292:H1348–H1357.

6. Layton WJ, Schieweck F, Yotov I. Coupling fluid flow with porous media flows. *SIAM Journal on Numerical Analysis* 2003; 40:2195–2218.

7. Lipnikov K, Vassilev D, Yotov I. Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes–Darcy flows on polygonal and polyhedral grids. *Numerische Mathematik* 2014; 126:321–360.

8. Lesnigo M, D’Angelo C, Quarteroni A. A multiscale Darcy Brinkman model for fluid flow in fractured porous media. *Numerische Mathematik* 2011; 117:717–752.

9. Quarteroni A, Discacciati M. Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. *Revista Matemática Complutense* 2009; 22:315–426.

10. Medková D, Ptashnyk M, Varnhorn W. Integral representation of the solution to a Stokes–Darcy problem. *Mathematical Methods in Applied Sciences* 2015; 38:3968–3979.

11. Amrouche A, Rodríguez-Bellido MA. Stationary Stokes, Oseen and Navier–Stokes equations with singular data. *Archive for Rational Mechanics and Analysis* 2011; 199:597–651.

12. Amrouche A, Rodríguez-Bellido MA. The Oseen and Navier–Stokes equations in a non-solenoidal framework. *Mathematical Methods in the Applied Sciences* 2014.

13. Boumézouad TZ, Razafison U. On the steady Oseen problem in the whole space. *Hiroshima Mathematical Journal* 2005; 35:371–401.

14. Deuring P. A potential-theory approach to the time-dependent Oseen system. In *Advances in Mathematical Fluid Mechanics*, Rannacher R, Sequeira A (eds). Springer-Verlag: Berlin Heidelberg, 2010; 191–214.

15. Russo R, Simader CG. A note on the existence of solutions to the Oseen system in Lipschitz domains. *Journal of Mathematical Fluid Mechanics* 2006; 8:64–76.

16. Russo A, Tartaglione A. On the Oseen and Navier–Stokes systems with a slip boundary condition. *Applied Mathematics Letters* 2009; 22:674–678.

17. Brinkman HC. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. *Applied Scientific Research* 1947; A 1:27–34.

18. Brinkman HC. On the permeability of media consisting of closely packed porous particles. *Applied Scientific Research* 1947; A 1:81–86.
19. Rajagopal KR. On a hierarchy of approximate models for flows of incompressible fluids through porous solids. *Mathematical Models & Methods in Applied Sciences* 2007; **17**:215–252.

20. Chen N, Gunzburger M, Wang X. Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system. *Journal of Mathematical Analysis and Applications* 2010; **368**:658–676.

21. Allaire G. Homogenization of the Navier–Stokes equations with a slip boundary condition. *Communications on Pure and Applied Mathematics* 1991; **XLIV**:605–641.

22. Galdi GP. *An Introduction to the Mathematical Theory of the Navier–Stokes Equations I, Linearised Steady Problem*. Springer: Berlin Heidelberg New York, 1998.

23. Kufner A, John O, Fučík S. *Function Spaces*. Academia: Prague, 1977.

24. Medková D. Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. *Acta Applicandae Mathematicae* 2011; **116**:281–304.

25. Medková D. Integral representation of a solution of the Neumann problem for the Stokes system. *Numerical Algorithms* 2010; **54**:459–484.