Arc-transitive cubic abelian bi-Cayley graphs and BCI-graphs

Hiroki Koike, István Kovács*

IAM and FAMNIT, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia

Abstract

A finite simple graph is called a bi-Cayley graph over a group H if it has a semiregular automorphism group, isomorphic to H, which has two orbits on the vertex set. Cubic vertex-transitive bi-Cayley graphs over abelian groups have been classified recently by Feng and Zhou (Europ. J. Combin. 36 (2014), 679–693). In this paper we consider the latter class of graphs and select those in the class which are also arc-transitive. Furthermore, such a graph is called 0-type when it is bipartite, and the bipartition classes are equal to the two orbits of the respective semiregular automorphism group. A 0-type graph can be represented as the graph $\text{BiCay}(H, S)$, where S is a subset of H, the vertex set of which consists of two copies of H, say H_0 and H_1, and the edge set is $\{\{h_0, g_1\} : h, g \in H, gh^{-1} \in S\}$. A bi-Cayley graph $\text{BiCay}(H, S)$ is called a BCI-graph if for any bi-Cayley graph $\text{BiCay}(H, T)$, $\text{BiCay}(H, S) \cong \text{BiCay}(H, T)$ implies that $T = hS^\alpha$ for some $h \in H$ and $\alpha \in \text{Aut}(H)$. It is also shown that every cubic connected arc-transitive 0-type bi-Cayley graph over an abelian group is a BCI-graph.

Keywords: bi-Cayley graph, arc-transitive graph, BCI-graph.

MSC 2010: 20B25, 05C25.

1 Introduction

In this paper all graphs will be simple and finite and all groups will be finite. For a graph Γ, we let $V(\Gamma)$, $E(\Gamma)$, $A(\Gamma)$, and $\text{Aut}(\Gamma)$ denote the vertex set, the edge set, the arc set, and the full group of automorphisms of Γ, respectively. A graph Γ is called a bi-Cayley graph over a group H if it has a semiregular automorphism group, isomorphic to H, which has two orbits in the vertex set. Given such Γ, there exist subsets R, L, S of H such that $R^{-1} = R$, $L^{-1} = L$, $1 \notin R \cup L$, and $\Gamma \cong \text{BiCay}(H, R, L, S)$, where the

*Corresponding author.

Both authors were supported in part by ARRS - Agencija za raziskovanje Republike Slovenije, program no. P1-0285.

E-mail addresses: hiroki.koike@upr.si (Hiroki Koike), istvan.kovacs@upr.si (István Kovács).
Table 1: Cubic symmetric abelian 0-type bi-Cayley graphs.

no.	H	S	k-reg.	other name
1.	$\mathbb{Z}_{rm} \times \mathbb{Z}_m = \langle a, b \mid a^{rm} = b^{rm} = 1, b^m = a^{m(u+1)} \rangle, r = 3^p_1 \cdots p^e_t, r > 3$ and $r \geq 11$ if $m = 1, s \in \{0, 1\}$, every $p_i \equiv 1 \pmod{3}$, and $u^2 + u + 1 \equiv 0 \pmod{r}$	$\{1, a, b\}$	1	—
2.	$\mathbb{Z}_8 = \langle a \rangle$	$\{1, a^2, a^3\}$	2	Möbius-Kantor graph
3.	$\mathbb{Z}_m^2 = \langle a, b \rangle, m > 1, m \neq 3$	$\{1, a, b\}$	2	—
4.	$\mathbb{Z}_{3m} \times \mathbb{Z}_m = \langle a, b \mid a^{3m} = b^{3m} = 1, a^m = b^m \rangle, m > 1$	$\{1, a, b\}$	2	—
5.	$\mathbb{Z}_3 = \langle a \rangle$	$\{1, a, a^{-1}\}$	3	$K_{3,3}$
6.	$\mathbb{Z}_3^2 = \langle a, b \rangle$	$\{1, a, b\}$	3	Pappus graph
7.	$\mathbb{Z}_7 = \langle a \rangle$	$\{1, a, a^4\}$	4	Heawood graph

In what follows we will also refer to $\text{BiCay}(H, R, L, S)$ as a bi-Cayley representation of Γ. Regarding bi-Cayley graphs, our notation and terms will follow [11]. For the case when $|S| = 1$, the bi-Cayley graph $\text{BiCay}(H, R, L, S)$ is also called a one-matching bi-Cayley graph (see [20]). Also, if $|R| = |L| = s$, then $\text{BiCay}(H, R, L, S)$ is said to be an s-type bi-Cayley graph, and if H is abelian, then $\text{BiCay}(H, R, L, S)$ is simply called an abelian bi-Cayley graph. If $|L| = |R| = 0$, then $\text{BiCay}(H, S)$ will be written for $\text{BiCay}(H, \emptyset, \emptyset, S)$. Bi-Cayley graphs have been studied from various aspects [3, 11, 13, 14, 16, 17, 18, 20, 26, 32, 34], they have been used by constructions of strongly regular graphs [22, 28, 29, 30] and semisymmetric graphs [7, 8, 25]. The cubic vertex-transitive abelian bi-Cayley graphs have been classified recently by Feng and Zhou [11] (by a cubic graph we mean a regular graph of valency 3).

In this paper we turn to the class of cubic connected arc-transitive bi-Cayley graphs over abelian groups. Recall that a graph Γ is called arc-transitive when $\text{Aut}(\Gamma)$ is transitive on $A(\Gamma)$. From now on we say that Γ is symmetric when it is connected and arc-transitive. In the first part of our paper we are going to determine the cubic symmetric abelian bi-Cayley graphs. Clearly, such a graph is s-type for $s \in \{0, 1, 2\}$; and in fact, the classification in the case of 0-type and 2-type graphs follows from the results in [5, 10, 20, 21]. The respective graphs are listed in Tables 1 and 2.
Table 2: Cubic symmetric abelian 2-type bi-Cayley graphs.

H	R	L	S	k-trans	other name
⟨a, b⟩ = ℤ₂	⟨a, b⟩	{a, b}	{1}	2	GP(4, 1)
⟨a⟩ × ⟨b⟩ = ℤ₂ × ℤ₁₀	⟨a, b⟩	{a, b}	{1}	2	
⟨a⟩ = ℤₙ	⟨a⟩	{a}	{1}	2	GP(n, k), (n, k) = (4, 1), (8, 3), (10, 2), (12, 5), (24, 5)
⟨a⟩ = ℤₙ	⟨a⟩	{a}	{1}	3	GP(n, k), (n, k) = (5, 2), (10, 3)

Remark 1.1. In order to derive the 0-type graphs, the key observation is that each such graph is of girth 4 or 6. Namely, if \(S = \{a, b, c\} \), then we find in BiCay(\(H, S \)) the closed walk:
\[
(1, 0, a_1, (b^{-1}a)_0, (cb^{-1}a)_1, (b^{-1}c)_0, c_1, 1_0),
\]
here we use that \(cb^{-1}a = ab^{-1}c \) holds as \(H \) is abelian. It is a folklore result that the cubic symmetric graphs of girth at most 4 are \(K_4, K_{3,3}, Q_3 \), the graph of the cube. There are infinitely many cubic symmetric graphs of girth 6, but fortunately, all have been determined in [5, 10, 21]. A description of these graphs is given in Theorem 2.2, and using this theorem, it is not hard to deduce Table 1 (see Remark 2.3 for the details).

Remark 1.2. The 2-type bi-Cayley graphs BiCay(\(ℤ_n, \{1, -1\}, \{k, -k\}, \{0\} \)) are also known as the generalized Petersen graphs, denoted by \(GP(n, k) \). It was proved by Frucht et al. [12] that \(GP(n, k) \) is symmetric for exactly seven pairs: \((4, 1), (5, 2), (8, 3), (10, 2), (12, 5) \) and \((24, 5) \). Recall that, a bi-Cayley graph BiCay(\(H, R, L, S \)) is one-matching if \(|S| = 1 \). Symmetric one-matching abelian bi-Cayley graphs are classified in [20, Theorem 1.1], and since the 2-type cubic bi-Cayley graphs are one-matching, Table 2 can be read off directly from the latter theorem.

In this paper we complete the classification of cubic symmetric abelian bi-Cayley graphs by proving the following theorem:

Theorem A. There are exactly four cubic symmetric 1-type abelian bi-Cayley graphs: \(K_4, Q_3, GP(8, 3) \) and \(GP(12, 5) \).

In the second part of this paper we turn to the BCI-property of cubic symmetric abelian 0-type bi-Cayley graphs. Recall that, these are the graphs in the form BiCay(\(H, S \)), where \(H \) is a finite abelian group and \(S \) is a subset of \(H \). A bi-Cayley graph BiCay(\(H, S \)) is said to be a BCI-graph if for every BiCay(\(H, T \)), BiCay(\(H, T \)) \cong BiCay(\(H, S \)) implies that \(T = hS^\sigma \) for some \(h \in H \) and \(\sigma \in \text{Aut}(H) \); and the group \(H \) is called an \(m \)-BCI-group if every bi-Cayley graph over \(G \) of degree at most \(m \) is a BCI-graph. The study of \(m \)-BCI-groups was initiated in [34], where it was shown that every group is a 1-BCI-group, and a group is a 2-BCI-group if and only if it has the property that any two elements of the same order are either fused or inverse fused (these groups are described in [23]). The problem of classifying all 3-BCI-groups is still open,
partial results can be found in [16, 17, 18, 19, 33, 34]. It was proved by the present authors (see [19, Theorem 1.1]) that the nilpotent 3-BCI-groups are the groups $U \times V$, where U is homocyclic of odd order, and V is trivial, or \mathbb{Z}_{2^s}, or \mathbb{Z}_2^t, or the quaternion group Q_8 (homocyclic means that it is a direct product of cyclic groups of the same order). Consequently, the class of abelian 3-BCI groups is quite restricted. As our second main result, we prove that the situation changes completely when one considers only symmetric graphs.

Theorem B. Every cubic symmetric abelian 0-type bi-Cayley graph is a BCI-graph.

2 Preliminaries

Let G be a group acting on a finite set V. For $g \in G$ and $v \in V$, the image of v under g will be written as v^g. For a subset $U \subseteq V$, we will denote by G_U the point-wise stabilizer of U in G, while by $G_{[U]}$ the set-wise stabilizer of U in G. If $U = \{u\}$, then G_u will be written for $G_{\{u\}}$. If G is transitive on V and $\Delta \subseteq V$ is a block for G (see [3, page 12]), then the partition $\delta = \{\Delta^g : g \in G\}$ is called the system of blocks for G induced by Δ. The group G acts on δ naturally, the corresponding kernel will be denoted by G_δ, i.e., $G_\delta = \{g \in G : \Delta^g = \Delta'^g\}$ for all $\Delta' \in \delta$. For further definitions and results from permutation group theory that will appear later, we refer the reader to [6].

Below we collect the main ingredients of this paper.

2.1 Cubic symmetric graphs. For a positive integer k, a k-arc of a graph Γ is an ordered $(k + 1)$-tuple (v_0, v_1, \ldots, v_k) of vertices of Γ such that, for every $i \in \{1, \ldots, k\}$, v_{i-1} is adjacent to v_i, and for every $i \in \{1, \ldots, k-1\}$, $v_{i-1} \neq v_{i+1}$. The graph Γ is called (G, k)-arc-transitive ((G, k)-arc-regular) if G is transitive (regular) on the set of k-arcs of Γ. If $G = \text{Aut}(\Gamma)$, then a (G, k)-arc-transitive ((G, k)-arc-regular) graph is simply called k-transitive (k-regular). The following result is due to Tutte:

Theorem 2.1. [31] Every cubic symmetric graph is k-regular for some $k \leq 5$.

In this paper we will occasionally need information about cubic symmetric graphs of small order, and for this purpose use the catalog [4, Table]. We denote by FnA, FnB, \ldots etc. the cubic symmetric graphs on n points, and simply write Fn if the graph is uniquely determined by n. Given an abelian group G, the generalized dihedral group $\text{Dih}(G)$ is the group $\langle G, \eta \rangle \cong G \rtimes \langle \eta \rangle$, where η is an involution and it acts on G as $g^\eta = g^{-1}, g \in G$. We have the following description of cubic symmetric graphs of girth 6:

Theorem 2.2. Let Γ be a cubic symmetric graph of girth 6. Then one of the following holds:

(i) Γ is 1-regular, and $\text{Aut}(\Gamma)$ contains a regular normal subgroup isomorphic to $\text{Dih}(L)$, where $L \cong \mathbb{Z}_{rm} \times \mathbb{Z}_m$, $r = 3^sp_1^s \cdots p_t^s, r > 3$ and $r \geq 11$ if $m = 1, s \in \{0, 1\}$, and every $p_t \equiv 1 \pmod{3}$.
(ii) Γ is 2-regular, and $\Gamma \cong GP(8,3)$, or $\text{Aut}(\Gamma)$ contains a regular normal subgroup isomorphic to $\text{Dih}(L)$, where $L \cong \mathbb{Z}_{rm} \times \mathbb{Z}_m$, $r \in \{1,3\}$, $m > 1$, and if $r = 1$, then $m \neq 3$.

(iii) Γ is 3-regular, and $\Gamma \cong F18$ (the Pappus graph) or $GP(10,3)$ (the Desargues graph).

(iv) Γ is 4-regular, and $\Gamma \cong F14$ (the Heawood graph).

In fact, part (i) is deduced from [21, Theorem 1.2], part (ii) from [21, Theorem 1.1], and parts (iii)-(iv) from [10, Corollary 6.3] (see also [5, Theorem 2.3]).

Remark 2.3. Let Γ be a cubic symmetric 0-type abelian bi-Cayley graph. We are going to show below that Γ is isomorphic to a graph given in Table 1. As noted in Remark 1.1, Γ is of girth 4 or 6, and it follows that if the girth is equal to 4, then $\Gamma \cong K_{3,3}$ or Q_3. The graph $K_{3,3}$ is isomorphic to the bi-Cayley graph given in row no. 5 of Table 1, and Q_3 is isomorphic to the bi-Cayley graph given in row no. 3 of Table 1 with $m = 2$. Assume that Γ is of girth 6. Then by Theorem 2.2 Γ is k-regular for some $k \leq 4$. We consider each case of the theorem separately.

CASE 1. $k = 1$. In this case $\text{Aut}(\Gamma)$ contains a regular normal subgroup K isomorphic to $\text{Dih}(L)$, where $L \cong \mathbb{Z}_{rm} \times \mathbb{Z}_m$, $r = 3^s p_1^{e_1} \cdots p_i^{e_i}$, $r > 3$ and $r \geq 11$ if $m = 1$, $s \in \{0,1\}$, and every $p_i \equiv 1 \pmod{3}$. Consequently, the subgroup $H \leq K$ that $H \cong L$ is semiregular and has two orbits on $V(\Gamma)$. Notice that, the group L is characteristic in $\text{Dih}(L)$. Thus H is characteristic in K, and since $K \leq \text{Aut}(\Gamma)$ we conclude that $H \leq \text{Aut}(\Gamma)$. Using this and that Γ is symmetric, we find that Γ is bipartite, and the bipartition classes are equal to the orbits of H. Therefore, $\Gamma \cong \text{BiCay}(H,S)$ for a subset S of H. We may assume without loss of generality that $1 \in S$, here 1 denotes the identity element of H. Since Γ is arc-transitive and H is normal in $\text{Aut}(\Gamma)$, there exist $\sigma \in \text{Aut}(H)$ and $h \in H$ with the property that S is equal to the orbit of 1 under the mapping $\varphi : x \mapsto x^\sigma h$, $x \in H$. Thus we may write $S = \{a,b\}$ such that $a^2 = a$, $b^2 = b$ and $a^2 = 1$. It follows from this that $h = a$, $a^\sigma = a^{-1}b$ and $b^\sigma = a^{-1}$. This shows that both elements a and b are of the same order. On the other hand Γ is connected, hence $\langle a,b \rangle = H \cong \mathbb{Z}_{rm} \times \mathbb{Z}_m$, and thus a and b are of order rm, and $\langle a^m \rangle = \langle b^m \rangle$. Then we can write $\langle a^m \rangle^\sigma = \langle b^m \rangle^\sigma = \langle (b^\sigma)^m \rangle = \langle a^m \rangle$, and thus $\langle a^m \rangle = \langle a^m \rangle^u$ for some integer u, $\text{gcd}(u,r) = 1$. From this $(a^m)^u = (a^m)^\sigma = a^{-m}b^m$, hence $b^m = a^{m(u+1)}$. Also, $(a^m)^u = (a^m)^2 = (a^{-m}b^m)^\sigma = (a^m)^{-u-1}$, and this gives that $u^2 + u + 1 \equiv 0 \pmod{r}$. To sum up, $\text{BiCay}(H,\{a,b\})$ is one the graphs described in row no. 1 of Table 1. In fact, any graph in that row is symmetric, the proof of this claim we leave for the reader.

CASE 2. $k = 2$. In this case $\Gamma \cong GP(8,3)$, or $\text{Aut}(\Gamma)$ contains a regular normal subgroup isomorphic to $\text{Dih}(L)$, where $L \cong \mathbb{Z}_{rm} \times \mathbb{Z}_m$, $r \in \{1,3\}$, $m > 1$, and if $r = 1$, then $m \neq 3$. We have checked by Magma that $GP(8,3)$ admits a bi-Cayley representation given in row no. 2 of Table 1. Otherwise, copying the same argument as in CASE 1, we derive that $\Gamma \cong \text{BiCay}(H,S)$, where $S = \{a,b\}$, and either $H = \langle a,b \rangle \cong \mathbb{Z}_m \times \mathbb{Z}_m$, $m > 1$ and $m \neq 3$, or $H = \langle a,b \rangle a = \mathbb{Z}_{3m} \times \mathbb{Z}_m$, $m > 1$.
Therefore, BiCay\((H, \{1, a, b\})\) is one of the graphs described in row no. 3 of Table 1 in the former case, while it is one of the graphs described in row no. 4 of Table 1 in the latter case. In fact, any graph in these rows is symmetric, the proof is again left for the reader.

CASE 3. \(k = 3\). In this case \(\Gamma \cong F_{18}\) (the Pappus graph) or \(GP(10, 3)\) (the Desargues graph). The Pappus graph admits a bi-Cayley representation given in row no. 6 of Table 1, and we have checked by \texttt{Magma} that the Desargues graph cannot be represented as a 0-type abelian bi-Cayley graph.

CASE 4. \(k = 4\). In this case \(\Gamma \cong F_{14}\) (the Heawood graph), which admits a bi-Cayley representation given in row no. 7 of Table 1.

2.2 Quotient graphs. Let \(\Gamma\) be an arbitrary finite graph and \(G \leq \text{Aut}(\Gamma)\) which is transitive on \(V(\Gamma)\). For a normal subgroup \(N \triangleleft G\) which is not transitive on \(V(\Gamma)\), the quotient graph \(\Gamma_N\) is the graph whose vertices are the \(N\)-orbits on \(V(\Gamma)\), and two \(N\)-orbits \(\Delta_i, i = 1, 2\), are adjacent if and only if there exist \(v_i \in \Delta_i, i = 1, 2\), which are adjacent in \(\Gamma\). Now, let \(\Gamma = \text{BiCay}(H, R, L, S)\) be a bi-Cayley graph and let \(h \in H\). Following \([11]\), let \(R(h)\) denote the permutation of \(V(\Gamma) = H_0 \cup H_1\) defined by

\[(x_i)^{R(h)} = (xh)_i, \ x \in H \text{ and } i \in \{0, 1\}.
\]

We set \(R(H) = \{R(h) : h \in H\}\). Obviously, \(R(H) \leq \text{Aut}(\Gamma)\), and \(R(H)\) is semiregular with orbits \(H_0\) and \(H_1\). Notice that, if \(H\) is abelian, then the permutation \(\iota\) of \(V(\Gamma)\) defined by \((x_0)^{\iota} = (x^{-1})_1\) and \((x_1)^{\iota} = (x^{-1})_0, x \in H,\) is an automorphism of \(\Gamma\). Furthermore, the group \(\langle R(H) , \iota \rangle \leq \text{Aut}(\Gamma)\) is regular on \(V(\Gamma)\).

The proof of parts (i)-(ii) of the following lemma can be deduced from \([24, \text{Theorem 9}]\), and the proof of part (iii) is straightforward, hence it is omitted.

Lemma 2.4. Let \(\Gamma\) be a cubic symmetric graph and let \(N \leq \text{Aut}(\Gamma)\) be a normal subgroup which has more than 2 orbits on \(V(\Gamma)\). Then the following hold:

(i) \(\Gamma_N\) is a cubic symmetric graph.

(ii) \(N\) is equal to the kernel of \(\text{Aut}(\Gamma)\) acting on the system of blocks consisting of the orbits of \(N\). Moreover, \(N\) is regular on each of its orbits.

(iii) Suppose, in addition, that \(\Gamma = \text{BiCay}(H, R, L, S)\) where \(H\) is an abelian group, and that \(N = R(K)\) for some \(K < H\). Then \(\Gamma_N\) is isomorphic to the bi-Cayley graph \(\text{BiCay}(H/K, R/K, L/K, S/K)\).

In part (iii) of the above lemma, \(H/K\) denotes the factor group of \(H\) by \(K\). The elements of \(H/K\) are the cosets \(Kh\), and for a subset \(X \subseteq H\), let \(X/K\) denote the subset of \(H/K\) defined by \(X/K = \{Kx : x \in X\}\).
2.3 Voltage graphs. Let Γ be a finite simple graph and K be a finite group whose identity element is denoted by 1_K. For an arc $x = (w, w') \in A(\Gamma)$ we set $x^{-1} = (w', w)$. A K-voltage assignment of Γ is a mapping $\zeta : A(\Gamma) \to K$ with the property $\zeta(x^{-1}) = \zeta(x)^{-1}$ for every $x \in A(\Gamma)$. The values of ζ are called voltages and K is called the voltage group. Voltages are naturally extended to a directed walk $\bar{W} = (w_1, \ldots, w_n)$ by letting $\zeta(\bar{W}) = \prod_{i=1}^n \zeta((w_i, w_{i+1}))$. Fix a spanning tree T of Γ. Then every edge not in $E(T)$ together with the edges in $E(T)$ span a unique circuit of Γ, and we shall refer to the circuits obtained in this manner as the base circuits of Γ relative to T. The K-voltage assignment ζ is called T-reduced if $\zeta(x) = 1_K$ whenever x is an arc belonging to $A(T)$. The voltage graph $Γ ×_\zeta K$ is defined to have vertex set $V(\Gamma) × K$, and edge set

$$E(Γ ×_\zeta K) = \left\{ ((w, k), (w', \zeta(x)k)) : x = (w, w') ∈ A(Γ) and k ∈ K' \right\}. \quad (1)$$

The voltage group K induces an automorphism group of $Γ ×_\zeta K$ through the action

$$k_{right} : (w, l) \mapsto (w, lk), \quad w ∈ V(Γ) and k, l ∈ K.$$

We set $K_{right} = \{ k_{right} : k ∈ K \}$. Let $g ∈ Aut(Γ ×_\zeta K)$ such that it normalizes K_{right}. This implies that, if $(w, k) ∈ V(Γ ×_\zeta K)$ and $(w, k)^g = (w', k')$, then w' does not depend on the choice of $k ∈ K$, and the mapping $w → w'$ is a well-defined permutation of $V(Γ)$. The latter permutation will be called the projection of g, obviously, it belongs to $Aut(Γ)$.

On the other hand, an automorphism of $Aut(Γ)$ is said to lift to an automorphism of $Γ ×_\zeta K$ if it is the projection of some automorphism of $Γ ×_\zeta K$. The following “lifting lemma” is a special case of [27, Theorem 4.2]:

Theorem 2.5. Let $Γ ×_\zeta K$ be a connected voltage graph, where K is an abelian group, and ζ is a T-reduced K-voltage assignment. Then $σ ∈ Aut(Γ)$ lifts to an automorphism of $Γ ×_\zeta K$ if and only if there exists some $σ_σ ∈ Aut(K)$ such that for every directed base circuit C relative to T, $σ_σ(ζ(C)) = ζ(\bar{C}σ)$.

For more information on voltage graphs the reader is referred to [15, 27].

2.4 BCI-graphs. For a bi-Cayley graph $Γ = BiCay(H, S)$, we let $S(Aut(Γ))$ denote the set of all semiregular subgroups of $Aut(Γ)$ whose orbits are H_0 and H_5. Clearly, $R(H) ∈ S(Aut(Γ))$ always holds. Our main tool in the proof of Theorem B will be the following lemma proved by the present authors:

Lemma 2.6. [19, Lemma 2.1] The following are equivalent for every bi-Cayley graph $Γ = BiCay(H, S)$:

(i) $BiCay(H, S)$ is a BCI-graph.

(ii) The normalizer $N_{Aut(Γ)}(R(H))$ is transitive on $V(Γ)$, and every two subgroups in $S(Aut(Γ))$, isomorphic to H, are conjugate in $Aut(Γ)$.
3 Proof of Theorem A

Till the end of the section we keep the following notation:

\[\Gamma = \text{BiCay}(H, \{r\}, \{s\}, \{1, t\}) \]

is a cubic symmetric graph, \(H = \langle r, s, t \rangle \) is an abelian group, and \(r, s \) are involutions.

The core of a subgroup \(A \) in a group \(B \) is the largest normal subgroup of \(B \) contained in \(A \). In order to derive Theorem A we analyze the core of \(R(H) \) in \(\text{Aut}(\Gamma) \).

Lemma 3.1. If \(R(H) \) has trivial core in \(\text{Aut}(\Gamma) \), then one of the following holds:

(i) \(H \cong \mathbb{Z}_2, s = r = t, \text{ and } \Gamma \cong K_4 \).

(ii) \(H \cong \mathbb{Z}_2^2, s \neq r, t = sr \text{ and } \Gamma \cong Q_3 \).

Proof. If \(\Gamma \) is of girth at most 4, then it is isomorphic to \(K_4 \), or \(K_{3,3} \), or \(Q_3 \) (see Remark 1.1). In the first case we get at once (i), and it is not hard to see that \(K_{3,3} \) is impossible. Furthermore, we compute by Magma [1] that \(Q_3 \) is possible, \(H \cong \mathbb{Z}_2^2 \), and \(r, s, t \) must be as given in (ii).

For the rest of the proof we assume that the girth of \(\Gamma \) is larger than 4. Then \(r \neq s \), for otherwise, we find the 4-circuit \((1, 0, 1, 1, r, r_0)\). Then either \(\langle r, s \rangle \cap \langle t \rangle \) is trivial, and \(H = \langle r, s \rangle \times \langle t \rangle \cong \mathbb{Z}_2^2 \times \mathbb{Z}_m \); (2)

or \(t \) is of even order, say \(2n, t^n \in \langle r, s \rangle \), and

\[H = \langle r, s, t \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_{2n}. \] (3)

Note that, we have \(|H| = 4n|\).

By Tutte’s Theorem (Theorem 2.1), \(\Gamma \) is \(k \)-regular for some \(k \leq 5 \). The order \(|\text{Aut}(\Gamma)| = |V(\Gamma)| \cdot 3 \cdot 2^{k-1} = |H| \cdot 3 \cdot 2^k \), and thus \(|\text{Aut}(\Gamma) : R(H)| = 3 \cdot 2^k \). Consider the action of \(\text{Aut}(\Gamma) \) on the set of its right \(R(H) \)-cosets. Since \(R(H) \) has trivial core in \(\text{Aut}(\Gamma) \), this action is faithful. Using this and that \(R(H) \) acts as a point stabilizer, we have an embedding of \(R(H) \) into \(S_{3 \cdot 2^k - 1} \). We shall write below \(H \leq S_{3 \cdot 2^k - 1} \). It was proved in [2] Theorem 1] that, if \(n = 3m + 2 \) and \(A \leq S_n \) is an abelian subgroup, then

\[|A| \leq 2 \cdot 3^n, \] (4)

and equality holds if and only if \(A \cong \mathbb{Z}_2 \times \mathbb{Z}_3^m \).

CASE 1. \(k = 1 \). In this case \(\mathbb{Z}_2^2 \leq H \leq S_5 \). This implies that \(|H| = 4, \Gamma \cong Q_3 \) (see [1 Table]), which contradicts that the girth is larger than 4.

CASE 2. \(k = 2 \). In this case \(H \leq S_{11} \). Since \(|H| = 4n|\), we obtain by (4) that \(n \leq 13 \). We compute by Magma that, if \(H \) is given as in (2) and \(n \leq 13 \), then \(\Gamma \) is not edge-transitive. Furthermore, if \(H \) is given as in (3) and \(n \leq 13 \), then \(\Gamma \) is edge-transitive only if \(n = 2 \) or \(n = 3 \). Consequently, \(\Gamma \cong GP(8, 3) \) or \(GP(12, 5) \) (see [1]}.
Table]. However, we have checked by Magma that in both cases the possible semiregular subgroups have a non-trivial core in the full automorphism group, and thus this case is excluded.

CASE 3. $k \geq 3$. We may assume that $n > 13$, see the previous paragraph. We find in Γ the 8-cycle $(1, r_0, r_1, (rs)_1, (rs)_0, s_0, s_1, 1_1)$. Thus there must be an 8-cycle, say C, starting with the 3-arc $(1, t_1, t_0, (t_2^2))$, let this be written in the form:

$$C = (1, t_1, t_0, (t^2)^1, (\delta t^2)_x, (\gamma \delta t^2)_x', (\beta \gamma \delta t^2)_x'', (\alpha \beta \gamma \delta t^2)_x'''),$$

where $x, x', x'', x'''' \in \{0, 1\}$ and $\alpha, \beta, \gamma, \delta \in \{1, r, s, t, t^{-1}\}$. Put $\eta = \alpha \beta \gamma \delta t^2$. Observe that, $\eta = t^i r^j s^k$ for some integers $i, j, k \geq 0$. Moreover, $i \leq 4$ and $i = 0$ if and only if $C = (1, t_1, t_0, (t^2)^1, (t^2 s)_1, (ts)_0, (ts)_1, s_0)$, and so $\eta = s$. On the other hand, since $1_0 \sim \eta x''$ and $\eta x'' \neq t_1$, $\eta \in \{1, r\}$, and we conclude that $i > 0$ (recall that $r \neq s$). Now, $1 = \eta^2 = t^{2i} r^{2j} s^{2k} = t^{2i}$, which implies that the order of t is at most 8, and hence $n \leq 8$ (see (2) and (3)), which contradicts that $n > 13$. This completes the proof of the lemma. □

Lemma 3.2. Let $R(N)$ be the core of $R(H)$ in Aut(Γ). Then one of the following holds:

(i) $H = N \times \langle r \rangle$, and $N r = N s = N t$.

(ii) $H = N \times \langle r, s \rangle$, $r \neq s$, and $N t = N rs$.

Proof. By Lemma 2.3(iii), the quotient graph $\Gamma_{R(N)}$ can be written in the form

$$\Gamma_{R(N)} = BiCay(H/N, \{N r\}, \{N s\}, \{N, N t\}).$$

We claim that $R(H/N)$ has trivial core in Aut($\Gamma_{R(N)}$). This and Lemma 3.1 will yield (i) and (ii).

Let ρ be the permutation representation of Aut(Γ) derived from its action on the set of $R(N)$-orbits. By Lemma 2.3(ii), the kernel ker $\rho = R(N)$, $\rho(R(H)) = R(H/N)$, and any subgroup of $R(H/N)$ is in the form $\rho(R(K))$ for some $N \leq K \leq H$. Assume that $\rho(R(K)) \subseteq Aut(\Gamma_{R(N)})$. Then $\rho(R(K)) \subseteq \rho(Aut(\Gamma))$, and hence $R(K) \subseteq Aut(\Gamma)$. Thus $R(K) = R(N)$, because $R(N)$ is the core. We find that $\rho(R(K))$ is trivial, and the claim is proved. □

In the next lemma we deal with case (i) of Lemma 3.2.

Lemma 3.3. Let $R(N)$ be the core of $R(H)$ in Aut(Γ), and suppose that $N \neq 1$ and case (i) of Lemma 3.2 holds. Then one of the following holds:

(i) $H \cong \mathbb{Z}_2^2$, $r = s \neq t$, and $\Gamma \cong Q_3$.

(ii) $H = \langle r \rangle \times \langle t \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_4$, and $\Gamma \cong BiCay(G, \{r t^2\}, \{1, t\}) \cong GP(8, 3)$.

Proof. In this case $H = N \times \langle r \rangle$, and $N r = N s = N t$. Thus $s = n_1 r$, and $t = n_2 r$ for some $n_1, n_2 \in N$. Furthermore, n_1 is an involution, and since $H = \langle r, s, t \rangle$, $N = \langle n_1, n_2 \rangle$.

Assume for the moment that N is not a 2-group, and let p be an odd prime divisor of $|N|$. Then $M = \langle n_1, n_2^p \rangle$ is the unique subgroup in N of index p, hence it is characteristic
Lemma 3.4. Let $R(H)$ be the core of $R(H)$ in $\text{Aut}(\Gamma)$, and suppose that $N \neq 1$ and case (ii) of Lemma 3.2 holds. Then $H = \langle r \rangle \times \langle t \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_6$, and $\Gamma \cong \text{BiCay}(H, \{r\}, \{rt^3\}, \{1, t\}) \cong GP(12, 5)$.

Proof. In this case $H = N \times \langle r, s \rangle$, $r \neq s$, and $Nt = Nrs$. Thus $t = n_1rs$ for some $n_1 \in N$. Since $H = \langle r, s, t \rangle$, $N = \langle n_1 \rangle$. Now, by Lemma 2.4(iii) we may write

$$\Gamma_{R(N)} = \text{BiCay}(H/N, \{Nr\}, \{Ns\}, \{N, Nrs\}) \cong Q_3.$$

We proceed by defining an N-voltage assignment of the quotient graph $\Gamma_{R(N)}$. For this purpose we have depicted $\Gamma_{R(N)}$ in Fig. 1, where we have also fixed the spanning tree T specified by the dashed edges. Now, let $\zeta : A(\Gamma_{R(N)}) \to N$ be the T-reduced N-voltage assignment with its voltages being given in Fig. 1. To simplify notation we set $\widehat{\Gamma} = \Gamma_{R(N)} \times_\zeta N$. Recall that N_{right} is a subgroup of $\text{Aut}(\widehat{\Gamma})$ (see 2.3). Next, we prove the following properties:

$$\Gamma \cong \widehat{\Gamma}, \text{ and } N_{\text{right}} \trianglelefteq \text{Aut}(\widehat{\Gamma}).$$

(5)

Define the mapping $f : V(\widehat{\Gamma}) \to V(\Gamma)$ by

$$f : ((Nx)_0, n) \mapsto (nx)_0 \text{ and } ((Nx)_1, n) \mapsto (nx)_1, \text{ for } x \in \{1, r, s, rs\}, \text{ and } n \in N.$$

Notice that, f is well-defined because $\{1, r, s, rs\}$ is a complete set of coset representatives of N in H. We prove below that f is an isomorphism from $\widehat{\Gamma}$ to Γ. Let \widehat{v}_1 and \widehat{v}_2 be two adjacent vertices of $\widehat{\Gamma}$. This means that $\widehat{v}_1 = ((Nx)_i, n)$ and $\widehat{v}_2 = ((Ny)_j, \zeta(a)n)$, where $a = ((Nx)_i, (Ny)_j)$ is an arc of $\Gamma_{R(N)}$. Then $f(\widehat{v}_1) = (xn)_i$ and $f(\widehat{v}_2) = (y\zeta(a)n)_j$.

Let $i = j = 0$. Then it can be seen in Fig. 1 that $y = rx$ and $\zeta(a) = 1$. Thus in Γ we find $f(\widehat{v}_1) = (nx)_0 \sim (rx)_0 = (y\zeta(a)n)_0 = f(\widehat{v}_2)$. Let $i = j = 1$. Then $y = sz$, $\zeta(a) = 1$, and so $f(\widehat{v}_1) = (nx)_1 \sim (snx)_1 = (y\zeta(a)n)_1 = f(\widehat{v}_2)$. Finally, let $i = 0$ and $j = 1$. Then $y = x$ or $y = rsx$. In the former case $\zeta(a) = 1$, and $f(\widehat{v}_1) = (nx)_0 \sim (nx)_1 = (y\zeta(a)n)_1 = f(\widehat{v}_2)$. In the latter case $\zeta(a) = n_1$, and $f(\widehat{v}_1) = (nx)_0 \sim (tnx)_1 = (n_1rsnx)_1 = (y\zeta(a)n)_1 = f(\widehat{v}_2)$. In the latter case $\zeta(a) = n_1$, and
By these we have proved that f is indeed an isomorphism.

For the second part of (5), compute that $f R(m) f^{-1}$ maps $((N x)_i, n)$ to $((N x)_i, nm)$ for every $m \in N$. Thus $f R(m) f^{-1} = m \text{right}$, and so $f R(N) f^{-1} = N \text{right}$. Since $R(N) \leq \text{Aut}(\Gamma)$, $N \text{right} = f R(N) f^{-1} \leq f \text{Aut}(\Gamma) f^{-1} = \text{Aut}(\hat{\Gamma})$, as claimed.

Now, (5) holds, implying that $\text{Aut}(\hat{\Gamma})$ projects to an edge-transitive subgroup of $\text{Aut}(\Gamma_{R(N)})$. We obtain from this that the automorphism $\alpha \in \text{Aut}(\Gamma_{R(N)})$ lifts, where

$$\alpha = ((N x)_0, (N x)_1, (N r s)_0)(N x)_1, (N x)_0, (N s)_1).$$

Apply Theorem 2.5 to $\hat{\Gamma}$ with $\sigma = \alpha$ and the following directed base circuits relative to T:

$$\vec{C} = ((N s)_0, (N r s)_0, N_1, (N s)_1)$$

and $\vec{C}' = (N_0, (N r)_0, (N s)_1, N_1)$.

Let σ be the automorphism of N given in Theorem 2.5. Since $\zeta(\vec{C}) = \zeta(\vec{C}') = n_1$, $\zeta(\vec{C}^\alpha) = \sigma_1(n_1) = \zeta(\vec{C}'^\alpha)$, which gives $n_1^{-2} = n_1$. Thus $|N| = 3$, and this yields easily the statement of the lemma.

Proof of Theorem A. The theorem follows directly from Lemmas 3.1 - 3.4. □

4 Proof of Theorem B

Till the end of the section we keep the following notation:

$$\Gamma = \text{BiCay}(H, \{1, a, b\})$$

is a cubic symmetric graph, where $H = \langle a, b \rangle$ is an abelian group.

Recall that, $S(\text{Aut}(\Gamma))$ denotes the set of all semiregular subgroups of $\text{Aut}(\Gamma)$ whose orbits are H_0 and H_1.

![Figure 1: Voltage assignment ζ of $\Gamma_{R(N)}$.](image)
Lemma 4.1. For every abelian group $X \in S(\text{Aut}(\Gamma))$, there exists an involution $\tau_X \in \text{Aut}(\Gamma)$ which satisfies the following properties:

(i) Every subgroup $Y \leq X$ is normalized by τ_X.

(ii) The group (X, τ_X) is regular on $V(\Gamma)$.

Proof. Let $\text{BiCay}(X, U)$ be a bi-Cayley representation of Γ arising from X. Then as a permutation group of $V(\Gamma)$, X is permutation isomorphic to $R(X)$ acting on $V(\text{BiCay}(X, U))$. Therefore, it is sufficient to show the existence of an involution $\tau \in \text{Aut}(\text{BiCay}(X, U))$ such that

- τ normalizes every $R(Y) \leq R(X)$;
- the group $(R(X), \tau)$ is regular on $V(\text{BiCay}(X, U))$.

We claim that the permutation τ, defined by $\tau: x_0 \mapsto (x^{-1})_1$ and $x_1 \mapsto (x^{-1})_0$, satisfies both properties. The edge $\{x_0, (ux)_1\}$, $u \in U$, is mapped by τ to the pair $\{(x^{-1})_1, u^{-1}(x^{-1})_0\}$. This is an edge of $\text{BiCay}(X, U)$, and hence $\tau \in \text{Aut}(\text{BiCay}(X, U))$. Furthermore, a direct computation gives that for $y \in Y$, $\tau^{-1}R(y)\tau = R(y^{-1})$, hence τ normalizes $R(Y)$, and the lemma follows. □

Lemma 4.2. Let $N \leq \text{Aut}(\Gamma)$ be a normal subgroup such that there exists an N-orbit properly contained in H_0, and let X be an abelian group from $S(\text{Aut}(\Gamma))$. Then $N < X$.

Proof. Let Δ be an N-orbit such that $\Delta \subset H_0$, and let us consider $Y = X \cap \text{Aut}(\Gamma)_{\{\Delta\}}$. Since Δ is a block contained in an X-orbit, we obtain that Δ is an Y-orbit. We write $\Delta = \text{Orb}_Y(v)$. Moreover, as X is semiregular, Y is regular on Δ, and by this and Lemma 2.4.(ii) we have

$$|Y| = |\Delta| = |N|.$$ (6)

Let $\tau_X \in \text{Aut}(\Gamma)$ be the automorphism defined in Lemma 4.1 and set $L = \langle X, \tau_X \rangle$. According to Lemma 4.1 the group L is transitive on $V(\Gamma)$, and also $Y \leq L$. Denote by δ the system of blocks induced by Δ. Then we may write

$$\delta = \{\Delta^l : l \in L\} = \{\text{Orb}_Y(v^l) : l \in L\} = \{\text{Orb}_Y(v^l) : l \in L\}.$$

From this $Y \leq \text{Aut}(\Gamma)_{\delta}$, where $\text{Aut}(\Gamma)_{\delta}$ is the kernel of $\text{Aut}(\Gamma)$ acting on δ. Since $\text{Aut}(\Gamma)_{\delta} = N$, see lemma 2.3(ii), $Y \leq N$. This and (6) imply that $N = Y < X$. □

For a group G and a prime p dividing $|G|$, we let G_p denote a Sylow p-subgroup of G.

Proof of Theorem B. We have to show that Γ is a BCI-graph. Let $X \in S(\text{Aut}(\Gamma))$ such that $X \cong H$. By Lemma 2.3 and Lemma 4.1 it is sufficient to show the following

$$X \text{ and } R(H) \text{ are conjugate in } \text{Aut}(\Gamma).$$ (7)

Recall that the girth of Γ is 4 or 6, and if it is 4, then Γ is isomorphic to $K_{3,3}$ or Q_3 (see Remark 1.1). It is easy to see that (7) holds when $\Gamma \cong K_{3,3}$, and we have checked
by the help of Magma that it also holds when $\Gamma \cong Q_3$. Thus assume that Γ is of girth 6. By Theorem 2.2 Γ is k-regular for some $k \leq 4$.

CASE 1. $k = 1$. In this case $\text{Aut}(\Gamma)$ contains a regular normal subgroup K isomorphic to $\text{Dih}(L)$, where $L \cong \mathbb{Z}_{rm} \times \mathbb{Z}_m$, $r = 3^s p_1^{r_1} \cdots p_t^{r_t}$, $r > 3$ and $r \geq 11$ if $m = 1$, $s \in \{0, 1\}$, and every $p_i \equiv 1 \pmod{3}$. We have proved in CASE 1 of Remark 2.3 that $\text{Aut}(\Gamma)$ contains a semiregular normal subgroup N such that $N \cong L$, and the orbits of N are H_0 and H_1. Notice that, X contains every proper characteristic subgroup K of N. Indeed, since $N \trianglelefteq \text{Aut}(\Gamma)$, $K \trianglelefteq \text{Aut}(\Gamma)$, and Lemma 4.2 can be applied for N, implying that $K < X$. In particular, if N is not a p-group, then $N_p < X$ for every prime p dividing $|N|$, and thus $N = X$. Since this holds for every $X \in \mathcal{S}(\text{Aut}(\Gamma))$ with $X \cong H$, it holds also for $X = R(H)$, and we get $R(H) = N = X$. In this case (7) holds trivially. Let N be a p-group for a prime p. Then it follows from the fact that $N \cong L$ that $p > 3$, and thus both $R(H)$ and X are Sylow p-subgroups of $\text{Aut}(\Gamma)$. In this case (7) follows from Sylow’s Theorem.

CASE 2. $k = 2$. In this case $\Gamma \cong \text{GP}(8, 3)$, or $\text{Aut}(\Gamma)$ contains a regular normal subgroup isomorphic to $\text{Dih}(L)$, where $L \cong \mathbb{Z}_{rm} \times \mathbb{Z}_m$, $r \in \{1, 3\}$, $m > 1$, and if $r = 1$, then $m \neq 3$. If $\Gamma \cong \text{GP}(8, 3)$, then we have checked by Magma that $H \cong \mathbb{Z}_8$ and (7) holds. Assume that $\Gamma \not\cong \text{GP}(8, 3)$. We have proved in CASE 2 of Remark 2.3 that $\text{Aut}(\Gamma)$ contains a semiregular normal subgroup N such that $N \cong L$, and the orbits of N are H_0 and H_1. Now, repeating the argument in CASE 1 above, we obtain that $N = X = R(H)$ if N is not a p-group. Let N be a p-group for a prime p. If $p > 3$, then both $R(H)$ and X are Sylow p-subgroups of $\text{Aut}(\Gamma)$, and (7) follows from Sylow’s Theorem. We are left with the case that $p \in \{2, 3\}$.

Let $p = 2$. Since $N \cong L$, we find that $N \cong \mathbb{Z}_{2^e} \times \mathbb{Z}_{2^e}$, $e \geq 1$. Define $K = \{ x \in N : o(x) \leq 2^{e-1} \}$. Then K is characteristic in N and thus $K \trianglelefteq \text{Aut}(\Gamma)$. By Lemma 4.2 $K \leq X \cap R(H)$. By Lemma 2.3(iii), the quotient graph Γ_K is a 0-type Bi-Cayley graph over the group $N/K \cong \mathbb{Z}_2^3$. Then $\Gamma_K \cong Q_3$ and both N/K and $R(H)/K$ are semiregular on $V(\Gamma_K)$ having orbits the two bipartition classes of Γ_K. Since $X \cong R(H)$, $X/K \cong R(H)/K$. A direct computation, using Magma, gives that there are two possibilities: $X/K \cong R(H)/K \cong \mathbb{Z}_2^3$ or \mathbb{Z}_4. Furthermore, In the former case $X/K = R(H)/K$, which together with $K < X \cap R(H)$ yield that $X = R(H)$, and (7) holds trivially. Suppose that the latter case holds and consider $\text{Aut}(\Gamma)$ acting on the set of K-orbits. The kernel of this action is equal to K, see Lemma 2.4(ii), and thus the image $\text{Aut}(\Gamma)/K$ is a subgroup of $\text{Aut}(\Gamma_K)$ which is transitive on the set of 2-arcs of Γ_K. However, Γ_K is 2-regular (it is, in fact, isomorphic to Q_3), and we obtain that $\text{Aut}(\Gamma)/K = \text{Aut}(\Gamma_K)$. We compute by Magma that X/K and $R(H)/K$ are conjugate in $\text{Aut}(\Gamma_K) = \text{Aut}(\Gamma)/K$, and so (7) follows from this and the fact that $K < X \cap R(H)$.

Let $p = 3$. Observe first that $|N| > 3$. For otherwise, $\Gamma \cong K_{3,3}$, contradicting that the girth is 6. Since $N \cong L$, we find that $N \cong \mathbb{Z}_{3^e} \times \mathbb{Z}_{3^e}$, $e \geq 1$, $e \in \{0, 1\}$, and if $e = 0$, then $e \geq 2$. Let $e = 0$. Define $K = \{ x \in N : o(x) \leq 3^{-2} \}$. Then K is characteristic in N and thus $K \trianglelefteq \text{Aut}(\Gamma)$. By Lemma 4.2 $K \leq X \cap R(H)$. By Lemma 2.4(iii), the quotient graph Γ_K is a 0-type Bi-Cayley graph of the group $N/K \cong \mathbb{Z}_2\cdot \mathbb{Z}_6$. It follows that Γ_K is the unique cubic symmetric graph on 162 points of girth 6 (see
A direct computation, using Magma, gives that $X/K = R(H)/K = N/K$, which together with $K < X \cap R(H)$ yield that $X = R(H)$, and (7) holds trivially. Let $\varepsilon = 1$. Define $K = \{x \in N : o(x) \leq 3^{-1}\}$. Then K is characteristic in N and thus $K \leq Aut(\Gamma)$. By Lemma 4.2, $K \leq X \cap R(H)$. By Lemma 2.4 (iii), the quotient graph Γ_K is a 0-type Bi-Cayley graph of the group $N/K \cong \mathbb{Z}_9 \times \mathbb{Z}_3$. It follows that Γ_K is the unique cubic symmetric graph on 54 points (see [4, Table]). A direct computation, using Magma, gives that $X/K = R(H)/K = N/K$, which together with $K < X \cap R(H)$ yield that $X = R(H)$, and (7) holds also in this case.

CASE 3. $k = 3$. In this case $\Gamma \cong F18$ (the Pappus graph) or $GP(10, 3)$ (the Desargues graph). We have checked by Magma that in the former case $H \cong \mathbb{Z}_3^2$ and (7) holds, and the latter case cannot occur.

CASE 4. $k = 4$. In this case $\Gamma \cong F14$ (the Heawood graph), and (7) follows at once because X and $R(H)$ are Sylow 7-subgroups of $Aut(\Gamma)$.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput. 24 (1997), 235–265.

[2] J. M. Burns, B. Goldsmith, Maximal order abelian subgroups of symmetric groups, Bull. London Math. Soc. 21 (1989), 70–72.

[3] L. Cao, J. Meng, Super-connected and hyper-connected cubic bi-Cayley graphs, Chin. Quart. J. Math. 24 (2009), 53–57.

[4] M. D. E. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. & Combin. Comp. 40 (2002), 41–63.

[5] M. D. E. Conder, R. Nedela, Symmetric cubic graphs of small girth, J. Combin. Theory Ser. B 97 (2007), 757–768.

[6] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics 163, Springer-Verlag, New York, 1996.

[7] S. F. Du, D. Marušić, An infinite family of biprimitive semysymmetric graphs, J. Graph Theory 32 (1999), 217–228.

[8] S. F. Du, D. Marušić, Biprimitive graphs of smallest order, J. Algebraic Combin 9 (1999), 151–156.

[9] Y. Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number time a prime or a prime square, J. Combin. Theory Ser. B 97 (2007), 627–646.

[10] Y. Q. Feng, R. Nedela, Symmetric cubic graphs of girth at most 7, Acta Univ. M. Belii Math. 13 (2006), 33–55.
[11] Y-Q. Feng, J-X. Zhou, Cubic bi-Cayley graphs over abelian groups, *Europ. J. Combin.* 36 (2014), 679–693.

[12] R. Frucht, J. E. Graver, and M. E. Watkins, The groups of the generalized Petersen graphs, *Proc. Camb. Phil. Soc.*, 70 (1971), 211–218.

[13] X. Gao, Y. Luo, The spectrum of semi-Cayley graphs over abelian groups, *Linear Algebra Appl.* 432 (2010), 2974–2983.

[14] X. Gao, W. Liu, Y. Luo, On the extendability of certain semi-Cayley graphs of finite abelian groups, *Discrete Math.* 311 (2011), 1978–1987.

[15] J. L. Gross, T. W. Tucker, *Topological graph theory*, Wiley-Interscience, New York, 1987.

[16] W. Jin, W. Liu, Two results on BCI-subset of finite groups, *Ars Combin.* 93 (2009), 169–173.

[17] W. Jin, W. Liu, A classification of nonabelian simple 3-BCI-groups, *Europ. J. Combin.* 31 (2010), 1257–1264.

[18] W. Jin, W. Liu, On Sylow subgroups of BCI groups, *Util. Math.* 86 (2011), 313–320.

[19] H. Koike, I. Kovács, A classification of nilpotent 3-BCI groups, preprint arXiv: 1308.6812v1 [math.GR] 2013.

[20] I. Kovács, A. Malnič, D. Marušič and Š. Miklavič, One-matching bi-Cayley graph over abelian groups, *Europ. J. Combin.* 30 (2009), 602–616.

[21] K. Kutnar, D. Marušič, A complete classification of cubic symmetric graphs of girth 6, *J. Combin. Theory Ser. B* 99 (2009), 162–184.

[22] K. H. Leung, S. L. Ma, Partial difference triples, *J. Algebraic Combin.* 2 (1993), 397–409.

[23] C. H. Li, C. E. Praeger, Finite groups in which any two elements of the same order are either fused or inverse fused, *Comm. Algebra* 25 (10) (1997), 3081–3118.

[24] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, *J. Graph Theory* 8 (1984), 55–68.

[25] Z. P. Lu, C. Q. Wang, M. Y. Xu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of A_n, *Ars. Combin.* 80 (2006), 177–187.

[26] Y. Luo, X. Gao, On the extendability of bi-Cayley graphs of finite abelian groups, *Discrete Math.* 309 (2009), 5943–5949.

[27] A. Malnič, Group actions, coverings and lifts of automorphisms, *Discrete Math.* 182 (1998), 203–218.
[28] A. Malnič, D. Marušić, P. Šparl, On strongly regular bicirculants, *Europ. J. Combin.* **28** (2007), 891–900.

[29] D. Marušić, Strongly regular bicirculants and tricirculants, *Ars Combin.* **25** (1988), 11–15.

[30] M. J. de Resminin, D. Jungnickel, Strongly regular semi-Cayley graphs, *J. Algebraic Combin.* **1** (1992), 171–195.

[31] W. T. Tutte, A family of cubical graphs, *Proc. Cambr. Philosoph. Soc.* **43** (1947), 459–474.

[32] A. M. Wang, J. X. Meng, Hamiltonian cycles in bi-Cayley graphs of finite abelian groups, *J. Xinjiang Univ. Natur. Sci.* **23** (2006), 156–158 (in Chinese).

[33] D. Wiedemann, M. E. Zieve, Equivalence of sparse circulants: the bipartite Ádám problem, preprint [arXiv:0706.1567v1 [math. CO]] 2007.

[34] S. J. Xu, W. Jin, Q. Shi, J. J. Li, The BCI-property of the Bi-Cayley graphs, *J. Guangxi Norm. Univ.: Nat. Sci. Edition* **26** (2008), 33–36.