Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes

Hualin Liu1†, Vimalkumar Prajapati2‡*, Shobha Prajapati3, Harsh Bais4 and Jianguo Lu1,5

1 School of Marine Sciences, Sun Yat-sen University, Zhuhai, China, 2 Division of Microbiology and Environmental Biotechnology, Aspee Shiklam Biotechnology Institute, Navsari Agricultural University, Surat, India, 3 SVF-A School of Sardar Vallabhbhai National Institute of Technology, Surat, India, 4 Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States, 5 Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Bacillus amyloliquefaciens is a gram-positive, non-pathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches.

Keywords: B. amyloliquefaciens, phylogenomics, genome evaluation, comparative genomics, functional traits, antimicrobial resistance and virulence genes
INTRODUCTION

Since the 19th century, Bacilli is one of the most well-documented and preeminently characterized bacterial genera comprising classical microbiology, biochemistry, and advanced genomic and proteomic approaches (Alcaraz et al., 2010). Among the various species of bacilli, *Bacillus amyloliquefaciens* gains lots of research interest and has wide application in agriculture, pharmaceuticals, food industry, environmental industry, etc. (Sharma and Satyanarayana, 2013). Various strains of *B. amyloliquefaciens* are common habitants and frequently screened from various ecological niches, including soil, animal feces, human food, aquatic environments, and many more, reflecting its versatile metabolic capabilities (Earl et al., 2008). During evolution, the bacterial population acclimated to their respective ecological niches, which lead to the differentiation as evidenced by various genomic and physiological characteristics (De Wit et al., 2012).

Versatility of nature and metabolic competencies of different strains of *B. amyloliquefaciens* provoke to expedite the comparative genomic analysis to address more in detail the life style of bacteria, their adaptation to various niches and how they overcome contenders, as well as to catch clear revelation on their biochemistry, physiology, and genetics (Sharma and Satyanarayana, 2013; Owusu-Darko et al., 2020).

B. amyloliquefaciens have been known to promote plant growth via a variety of mechanisms (Baghæe Ravari and Heidarzadeh, 2014; Shao et al., 2015; Liu et al., 2016), act as biocontrol against numerous plant diseases caused by soil-borne microorganisms (Tan et al., 2016), be widely used as biofertilizers and biopesticides (Wu et al., 2015), antagonize plant pathogens by competing essential nutrient (Wu et al., 2016), produce antibiotic compounds (Srivastava et al., 2016), as well induce systemic acquired resistance (Ng et al., 2016). Moreover, it is well documented that *B. amyloliquefaciens* can be tailored for numerous environmental and industrial applications such as degradation of crude oil from oil-contaminated sites (Zhang J. et al., 2016) and feather degradation (Yang et al., 2016); can produce various enzymes like proteases (Wang et al., 2016), feruloyl esterase (Wang et al., 2017), phytase (Verma et al., 2016), and amylases (Prajapati et al., 2015); and can be employed as a biosorbent for the removal of pollutants (Sun et al., 2016) and their degradation (Zühlke et al., 2016), production of biosurfactant and AMPs, probiotics, etc. (Perez et al., 2017).

The number of bacterial genome sequences has almost doubled over the decades due to the decreasing cost of the sequencing with advancement in high-throughput sequencing technology. The generated sequences data are available freely in the public domain, which ultimately stimulate researchers to do more on genomic analysis. Comparative genome analysis always sharpens our understanding of the bacterial genome structure and its diversity at a particular niche. Moreover, the pan-genome of species includes analysis of all core genes, dispensable genes, and strain-specific genes, which need to be comprehensively investigated as they reveal the essential functions for the species or laterally transferred functions in specific strains (Vernikos et al., 2015). *Bacillus* is one of the most extensively studied species with prevalent sets of genome sequences to date; however, very few reports are available on core genes and strain-specific genes in the *Bacillus* species (Alcaraz et al., 2010). Kim et al. (2017) have reported the core gene data of multiple *Bacillus* species through pan-genome analysis to explore the *Bacillus* species in food microbiome.

In the present investigation, we have curated all the 96 genome sequences of *B. amyloliquefaciens* available in the NCBI database to carry out comparative genomic analysis. Based on contextual information, we were trying to understand the distribution of all strains of *B. amyloliquefaciens* with respect to their ecological niches and their source of isolation and location to get better insights into their phylogenetic position using the core genome. PAN genome analysis of all strains of *B. amyloliquefaciens* was conducted to acquire better impression on their functional difference, which affects their dynamic evolutionary processes. We were also interested in understanding the comparative account of various antimicrobial and virulence genes presented among all *B. amyloliquefaciens* strains. The consensus information and conclusion drawn from this presented comparative genomic study can be used as a benchmark for designing wet-lab experimentation and validation as well as to formulate new hypothesis.

MATERIALS AND METHODS

In total, 96 genome sequences of *B. amyloliquefaciens* having an N50 size greater than 50 k were downloaded from the NCBI database (detailed in Supplementary Table 1). Pan-genome analysis was conducted by Roary (Page et al., 2015) embedded in the “Pan” module of PGCGAP v1.0.21 (Liu et al., 2020). Single-copy core proteins calling, alignment of sequences, sequences concatenating, best model chosen, and phylogenetic tree constructing were performed with the “CoreTree” module of PGCGAP v1.0.21. The pairwise similarity of genomes was calculated by Mash (Ondov et al., 2016) embedded in the module “MASH” of PGCGAP v1.0.21. COG annotation was performed with the module “pCOG” of PGCGAP v1.0.21 (Liu et al., 2020). The antimicrobial resistance and virulence genes were mined against the databases of argannot (Gupta et al., 2014), card (Jia et al., 2017), NCBI (Feldgarden et al., 2019), resfinder (Zankari et al., 2012), vfdb (Chen et al., 2016), and EcOH (Ingle et al., 2016) by the module “AntiRes” of PGCGAP v1.0.21 (Liu et al., 2020).

RESULTS

A total of 16,198 gene clusters were found by pan-genome analysis, of which 1,448 (8.95%) are single-copy and code for core proteins. Shell genes, soft-core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that the genomes are very different in the gene content (Supplementary Table 2). The pan-genome curve shows that the number of total genes increased with the increase in the genome number; this indicates that *B. amyloliquefaciens* has an open pan-genome (Figure 1).

The evolutionary relationship between the 96 *B. amyloliquefaciens* strains was investigated by the construction
of a phylogenetic tree based on the alignment sequences of 1,154 concatenation core proteins (Figure 2). *Bacillus pumilus* SAFR-032 (Gioia et al., 2007) was used as the outgroup. The strains are divided into two clades, and clade 2 consists of two clusters. The location where the strain was isolated was mapped outside of the tree as the color strip. Strains from America are mainly located in cluster 2 of clade 2, while strains from Asia and Europe are scattered in all clades. The isolation source of the strain was also marked on the tree. According to known information, almost all the plant-associated strains are located in clade 2, and strains isolated from food are mainly located in clade 1. The above result implies that *B. amyloliquefaciens* has differentiated mainly into plant-associated and food-associated, as it clearly showed in the clades. However, some species of *B. amyloliquefaciens* isolated from water, soil, etc. are scattered in clade 2.

The similarity of genome pairs has been compared within and between clades and clusters (Figure 3). Genomes in clade 1 are found to be more similar than those that are observed in clade 2 (p < 0.001), while the similarity between genomes of the two clades is found to be very low, which indicates that strains in clade 2 undergone more differentiation, which may be related to their adaption to specific plants and other associated niches. When focusing on clade 2, genomes in cluster 1 are more similar than genomes in cluster 2 (p < 0.001), and the genome similarity between the two clusters is seen to be relatively low. Comparison of the genome size between both clades and its associated cluster has been carried out and depicted in Figure 3B. It has been observed that the genome size of clade 2 is slightly greater than that of clade 1, while the GC% content of clade 2 is significantly greater than that of clade 1 (p < 0.001; Figure 3C).

Compared with the genomes of clade 2, the genomes of clade 1 have a unique gene composition (Figure 4A). It was observed that all the species in clade I have lost 335 genes (Supplementary Table 2) lines 2,592–2,926), which exists in all the genomes of clade 2 and have 490 unique core genes (Supplementary Table 2 lines 3,969–4,458). To reveal the difference of gene contents between the two clades, the gene family analysis has been performed with module “OrthoF” of PGCGAP v1.0.21. A total of 9,245 orthogroups are found, out of which 4,872 orthogroups are observed to be common between the two clades, while 1,055 are unique to clade 1, and the remaining 3,363 are unique to clade 2. The functions of these unique orthogroups are revealed through COG annotation as shown in Figure 4B. The relative abundance of functional classes I (lipid transport and metabolism), G (carbohydrate transport and metabolism), and Q (secondary metabolites biosynthesis, transport, and catabolism) is found to be higher in clade 2 compared to that in clade 1, while the relative abundance of classes D (cell cycle control, cell division, chromosome partitioning), E (amino acid transport and metabolism), H (coenzyme transport and metabolism), L (replication, recombination, and repair), M (cell wall/membrane/envelope biogenesis), and X (Mobilome: prophages, transposons) is higher in clade 1 than that in clade 2 (Figure 4B).

It is well documented that antimicrobial resistance and virulence genes are disseminated in the environment according to the function of the respective ecological niche; therefore, we have investigated the distribution of these genes in *B. amyloliquefaciens*. The antimicrobial resistance and virulence genes from different databases have been mined and mapped on the phylogenetic tree (Figure 5). To demonstrate the topological structure of the tree more clearly, the outgroup strain has been removed and the tree presented on midpoint rooted. All strains of *B. amyloliquefaciens* including those from foods contain more than one virulence factor. It is observed that *tmrB* and *yuaB* are only existing in clade 2, while *clpP* is prevailing only in
clade 1. The gene tmrB is intending an ATP-binding tunicamycin resistance protein found in *B. subtilis* (Noda et al., 1995), while yuaB can form a highly hydrophobic coat around *B. subtilis* biofilms (Kobayashi and Iwano, 2012). The gene clpP codes for a serine protease involved in proteolysis and is required for growth under stress conditions (Gaillot et al., 2000, 2001). Interestingly, the *B. amyloliquefaciens* strain MBGJa9 has more virulence factors than other strains, and it is seen that *isdA*, *isdB*, *isdC*, *isdD*, *isdE*, *isdF*, *isdG*, and *srtB* form a gene cluster, whose productions participated in the uptake of iron and heme (Skaar and Schneewind, 2004; Skaar et al., 2004).

DISCUSSION

Pan-Genome Assessment of *Bacillus amyloliquefaciens*

Present investigation using the 96 strains of *B. amyloliquefaciens* revealed that it has an extensive pan-genome, and it represents an ample number of genes that were observed to be uniquely associated with each of the divergent species. Population size and respective ecological niche versatility of *B. amyloliquefaciens* are considered to be the most influential factors in determining the pan-genome size, and it can be seen that total genes against the total number of genome sequences are edified up so it is impossible to envisage the size of the full pan-genome. The resulted open pan-genome of *B. amyloliquefaciens* is unsurprising because of the source of isolation and its geographical location, which always adds up new genes to the entire gene pool of species. This species divergence could be an attribute of different mechanisms such as horizontal transfer, transposition, and transformation (Konstantinidis and Tiedje, 2005; Tettelin et al., 2005). On the contrary, observed few core genes in the investigation might be due to the higher number of genomes, the incorporation of genomes from other genera, as well as the inclusion of draft genomes in the data set (Lefebure et al., 2010; Inglin et al., 2018). It is well documented that incomplete, unfinished, or partially assembled genomes have a large impact on the occurrence of core genomes in the analysis as core genomes seem to be very sensitive to the heterogenous data set and poor quality sequences (Mendes-Soares et al., 2014).
FIGURE 3 | Genome feature of *B. amylobacteriaceae*. (A) Genome similarity between all pairs of strains in clade 1, between all pairs of strains in clade 2, between strains in clade 1 and those in clade 2, between strains in cluster 1, between strains in cluster 2, and between strains in cluster 1 and those in cluster 2. (B) Genome size of clade 1 and cluster 1 and cluster 2 of clade 2. Wilcoxon test was performed and marked on top of the box plot. (C) GC percent of clade 1, cluster 1, and cluster 2 of clade 2. Wilcoxon test was performed and the p-value was marked on top of the box plot.
The Alliance of *B. amyloliquefaciens* Strains Through Phylogenomics Using Single-Copy Core Proteins and Genomic Comparison: An Evolutionary Assessment

16s rRNA has been widely used for the taxonomy assessment of prokaryotes and has served as the broad context, though the better taxonomic resolution of the microbial species is achieved through “polyphasic approach” and is highly effective (Rosselló-Mora and Amann, 2001; Na et al., 2018). 16s rRNA has limitations as it hampers the phylogenetic resolution at the species or subspecies level. The application of genome sequences is highly recommended for the taxonomic understanding of microbial species instead of routinely used DNA–DNA hybridization and 16s rRNA phylogeny (Chun et al., 2018). Therefore, instead of a single gene, genome-based phylogeny called phylogenomics has set up better taxonomic positioning as it uses sets of core genes...
Comparison of gene families between clade 1 and clade 2. The plot shows the tree compared to a matrix with the presence and absence of core and accessory genes (A); the bars between the tree and the matrix show to which clade/cluster the strain belongs. The heat map shows the relative abundance of the function classes corresponding to the unique orthogroups of clade 1 and clade 2 (B).

Figure 4B

The genome sequences of all *B. amyloliquefaciens* strains are accessible in the Gene Bank NCBI database, which allows us to determine the degree of genome variability among all species as well as distinct out the taxonomic validity of all the isolates and reconstruct their phylogenetic relationship. Two distinct clades were observed when phylogeny was inferred using single copy core protein. Clade 1 comprises 23 strains of *B. amyloliquefaciens*, out of which 56% were food-associated, 17.39% were from soil, and 8.69% were rhizospheric. Clade 2 comprises 73 strains, and it is distinguished into two different clusters, where clusters 1 and 2 comprise 22 and 51 strains of *B. amyloliquefaciens*, respectively. Clade 2 was more enriched with the species of plant origin/host and comprised ~35.61%, while the strains of soil, food, indoor biome, and rhizosphere origin were 16.43, 10.95, 12.32, and 6.84%, respectively. Two distinct clades were demarcated, one of which was food-associated (clade 1) and the other one plant-associated (clade 2). The selection of core gene sets for accurate phylogeny analysis may vary with the availability of the genome sequences at the time of analysis.

Comparison of the genome similarity between the strains of both clades indicates that the strains grouped together in clade 1 are more similar than those of clade 2. The majority of the plant-associated strains of *B. amyloliquefaciens* are grouped under clade 2, while nonplant-associated strains are mainly found in clade 1, though some scattering is seen with respect to some other ecological niches. Plant-associated strains of *B. amyloliquefaciens* have adopted more modification in their genome, which is directly related to their adaption to the specific plant. Hence, it is believed that the genome size of the plant-associated strains of *B. amyloliquefaciens* is always greater than that of the nonplant-associated *B. amyloliquefaciens* and so the GC % content. Zhang N. et al. (2016) reported that the core genomes of the plant-associated strains of *B. amyloliquefaciens* have more gene contents related to the intermediary metabolism and secondary metabolite biosynthesis as compared to those of nonplant-associated strains. Plant-associated strains also possess specific genes for the synthesis of antibiotics as well as for the utilization of plant-derived substrates.

During the assessment of the core and accessory genes, it was observed that the strains of *B. amyloliquefaciens* grouped in clade 1 have lost many genes that are present in the strains of clade 2 (Figure 4A). Exopolysaccharides (EPSs) play very important role in bacteria, specifically those that are plant-associated and have a variety of functions. It helps microorganisms in adherence, pathogenesis, and symbiosis as well as protects from...
The glycosyltransferase gene region comprises the EPS gene cluster, i.e., epsF-2, epsD, epsI, epsM, epsL, and epsJ, which are involved in the biosynthesis of EPS, and has a profound role in plant-associated strains of B. amyloliquefaciens, while it was missing in the strains belonging to clade 1. Plant-associated B. amyloliquefaciens strains (clade 2) harbor a certain gene cluster absent in clade 1, which is involved in the biosynthesis of lipopeptides through nonribosomal peptide synthetases (NRPS) including fengycin (fen). Gene clusters involved in the synthesis of bacillaene (bae) are responsible for the profound antimicrobial activity and are lost in all strains of B. amyloliquefaciens in clade 1. The PKS gene cluster, which includes pksL_2, pksG_2, pksN_2, and pksS, was also found to be present in clade 2 but lost in clade 1 (Figure 4A). Some of the genes such as cystathionine beta-lyase (patB), putative multidrug resistance ABC transporter ATP-binding/permease protein (yheI), cold shock protein (cspC), spermidine/spermine N(1)-acetyltransferase (paiA), putative sugar phosphate isomerase (ywlF), 3-dehydroshikimate dehydratase (asbF), desiccation in some adverse condition (Stingele et al., 1999).
putative ABC transporter substrate-binding lipoprotein (yhfQ), sirohydrochlorin ferrochelatase (sirB), putative metallo-
hydrolase (yflN), dipeptidyl-peptidase 5 (ddp5), L-aspartate oxidase (nadB), putative sporulation hydrolase (cotR), stress response kinase A (srkA), sortase D (srtD), ATP-dependent
dethiobiotin synthetase (bioD 1), glycerophosphodiester
phosphodiesterase (glypQ), folylpolyglutamate synthase (fpgS), and putative ABC transporter permease (ytrC) were found
to be uniquely associated to the strain of *B. amyloliquefaciens*
that belongs to clade 1. Hence, the presence of certain gene
clusters in clade 2 and their absence in clade 1 conclude that
plant-associated strains of *B. amyloliquefaciens* have more
abundant gene clusters for intermediary metabolism as well as
for antibiotic production compared to the nonplant-associated
strains. Niiazi et al. (2014) have reported that *B. amyloliquefaciens*
subsp. *plantarum*, a rhizobacterium that tends plant growth
and stress management, also possesses the more abundant gene
cluster that is actively involved in the production of certain
hydrolytic enzymes as well as secondary metabolites. It is well
documented that the rhizosphere environment has a very
dynamic microbial community because of the effect of root
exudates and the constant interaction and competition among
microbes, as they need to contend with each other for various
resources such as nutrient supply, which ultimately leads them to
produce various metabolites such as antibiotic and extracellular
hydrolases (Bais et al., 2006).

Surveillance of Resistance and Virulence Genes Among all Strains of *B. amyloliquefaciens*

It is documented that bacteria have produced antibiotics for
millions of years, which results in the evolution and induction of
resistance genes. More precisely, the intensive nonmedical
use of antibiotics such as in agricultural and in some industrial
applications is not certain and has led to significant dissemination
to the microorganisms to sustain in varying environmental
conditions as well as stress conditions. ClpC and ClpP are heat
shock proteins and are subunits of ATP-dependent proteases
reported in *B. subtilis*. The transcription of genes *clpC* and
clpP is always negatively regulated under nonstressed condition
(Krüger et al., 2001). The virulence and infectivity of a number
of microorganisms/pathogens are affected due to the alteration of
the ClpP protein function. Clp proteins are highly conserved and
have played a very important role in the proteolysis of prokaryotic
cell and eukaryotic organelles, though only few reports are
available describing the importance of Clp-mediated proteolysis
in organisms (Krüger et al., 2001; Moreno-Cinos et al., 2019).
Tunicamycin, a nucleoside antibiotic, kills most of the gram-
positive bacteria, and it acts by inhibiting the important cell
wall component called teichoic acid, which drives the physiology
and pathogenesis of microorganisms. The exposure of bacteria
toward the sub-inhibitory concentration of tunicamycin leads to
the reduction in biofilm production, virulence protein, as
well bacterial adhesion and invasion (Zhu et al., 2018). The
presence of the *tmrB* gene leads to the production of the TmrB
protein, which imparts tunicamycin resistance to *B. subtilis*. The
TmrB protein is present in both cytoplasmic and membrane
fractions, though it is completely hydrophilic, and it attaches to
the membrane by its C-terminal amphiphilic alpha-helix (Noda et al., 1995). Many plant growth promoting bacteria reported to produce biofilm, which is their key strategy to survive successfully in some harsh conditions as well as in plant rhizosphere. Biofilm formation capability of microorganisms makes them a good biocontrol agent as it leads to the reduction in infection caused by fungal and bacterial pathogens (Hobley et al., 2013). The bsIA/yuaB gene present in many of the plant-associated strains of B. amyloliquefaciens codes for unique surface active protein BslA, which forms a hydrophobic surface layer called hydrophobins. The surface layer regulates the diffusion of various molecules, perception of signaling molecules from other microbial community, as well as nutrient uptake, in addition to imparting the protection to the bacterial cell. The contextual information of ecological and evolutionary facts as well as the application of comparative genomics and the dropping cost of genome sequencing collectively aid to understanding more precisely the structure of microbial diversity and its ecological distribution. Phylogenomics reveals the segregation of all 96 strains of B. amyloliquefaciens into two clades. Majority of the plant-associated B. amyloliquefaciens strains are grouped in clade 2, while clade 1 accomplishes mostly food-associated strains. The distribution of resistance and virulence genes among all the strains of B. amyloliquefaciens has been reported, and it will serve as a benchmark and resourceful information to deduce the hypothesis or conclusion as well as to exploit the potential of any strains through wet-lab experimentation. In future prospectus, we will try to dig out some temporal genes and their occurrence pattern in order to comprehend the significant role of microorganisms as well as the structure of the entire microbial community with its respective environmental niches.

REFERENCES

Alcaraz, L. D., Moreno-Hagelsieb, G., Eguix, I. E., Souza, V., Herrera-Estrella, L., and Olmedo, G. (2010). Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11:332. doi: 10.1186/1471-2164-11-332

Baghaei Ravari, S., and Heidarzadeh, N. (2014). Isolation and characterization of rhizosphere auxin producing Bacilli and evaluation of their potency on wheat growth improvement. Arch. Agron. Soil Sci. 60, 895–905. doi: 10.1080/03650340.2013.856003

Bais, H. P., Wein, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266. doi: 10.1146/annurev.arplant.57.032905.105198

Bai, Y., Huang, S., Li, Y., Yang, J., and Jin, Q. (2016). VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 44, D694–D697. doi: 10.1093/nar/gkv1239

Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahald, D. R., da Costa, M. S., et al. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461–466. doi: 10.1099/ijsem.0.025516

De Wit, P. J. G. M., Van Der Burgt, A., O’Brien, K., Beun, J., Beun, M., et al. (2012). The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 8:e1003088.

Earl, A. M., Losick, R., and Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16, 269–275.

Eisen, J. A., and Fraser, C. M. (2003). Phylogenomics: intersection of evolution and genomics. Science 300, 1706–1707. doi: 10.1126/science.1086292

Feldgarden, M., Brover, V., Haft, D. H., Prasad, A. R., Slotta, D. J., Tolstoy, L., et al. (2019). Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, e483–e419. doi: 10.1128/AAC.00483-19

Gaillot, O., Bregenholt, S., Jaubert, F., Di Santo, J. P., and Berche, P. (2001). Stress-induced ClpP serine protease of Listeria monocytogenes is essential for induction of listeriolysin O-dependent protective immunity. Infect. Immun. 69, 4938–4943. doi: 10.1128/iai.69.8.4938-4943.2001

Gaillot, O., Pellegrini, E., Bregenholt, S., Nair, S., and Berche, P. (2000). The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol. Microbiol. 35, 1286–1294. doi: 10.1046/j.1365-2958.2000.01773.x

Gioia, J., Yerrapragada, S., Qin, X., Jiang, H., Igboeli, O. C., Muzny, D., et al. (2007). Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. PLoS One 2:e928. doi: 10.1371/journal.pone.0000928

Gupta, S. K., Padmanabhan, B. R., Diene, S. M., Lopez-Rojas, R., Kempf, M., Landraud, L., et al. (2014). ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220. doi: 10.1128/AAC.01310-13

Hansen, L. H., Planellas, M. H., Long, K. S., and Vester, B. (2012). The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob. Agents Chemother. 56, 3563–3567. doi: 10.1128/AAC.0007-71-12

Hobley, L., Ostrowski, A., Rao, F. V., Bromley, K. M., Porter, M., Prescott, A. R., et al. (2013). BslA is a self-assembling bacterial hydrophobin that coats the

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

VP conceived and modeled the study. VP and HL analyzed the data and prepared the methods and results. VP and SP prepared the manuscript. HB and JlL corrected the manuscript and inputs. All authors contributed to the article and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.724217/full#supplementary-material

Supplementary Table 1 | Details of 96 B. amyloliquefaciens strains, including their genome size, GC%, scaffolds, CDS, its host and geographical location of the isolates, etc., retrieved from the NCBI database for comparative genome analysis.

Supplementary Table 2 | Data analysis of pan-genome segregation to identify single-copy core proteins, shell genes, soft-core genes, core genes, and cloud genes, including its annotation, genome fragment and order within fragments, accessory order, and accessory order with fragment.
Bacillus subtilis biofilm. *Proc. Natl. Acad. Sci. U.S.A.* 110:13600. doi: 10.1073/pnas.1306390110

Ingle, D. J., Valcanis, M., Kuzevski, A., Tauschek, M., Inouye, M., Stinear, T., et al. (2016). In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:Serotype combinations within and between pathogenic lineages. *Microbiol. Genomics* 2:000064. doi: 10.1099/mgen.0.000064

Inglis, R. C., Meile, I., and Stevens, M. J. A. (2018). Clustering of pan- and core-gene of Lactobacillus provides novel evolutionary insights for differentiation. *BMC Genomics* 19:284. doi: 10.1186/s12864-018-4601-5

Jia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., et al. (2017). CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. *Nucleic Acids Res.* 45, D566–D573. doi: 10.1093/nar/gkw1004

Kawashishi, M., Shiomohara, C., Oda, Y., Hisatomi, Y., Tsumenatsu, Y., Sato, M., et al. (2020). Genotyping of a gene cluster for production of colibactin and in vitro genotoxicity analysis of *Escherichia coli* strains obtained from the Japan Collection of Microorganisms. *Genes Environ.* 42:12. doi: 10.1186/s41021-020-00149-z

Kim, H. M., Kim, Y., Lee, M. S., and Lee, H. S. (2001). *Gene lmrB of* *Bacillus subtilis* biofilm. *J. Microbiol.*

Krause, K. M., Serio, A. W., Kane, T. R., and Connolly, L. E. (2016). *Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J.* 20, 852–863. doi: 10.1039/embj20/4.852

Lefebure, T., Pavinski Bitar, P. D., Suzuki, H., and Stanhope, M. J. (2018). UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. *J. Mol. Sci.*

Kobayashi, K., and Iwano, M. (2012). *BslA(YuaB) forms a hydrophobic layer on S. I., Kim, Y. O., Yoon, S. H., Ha, S. M., Baek, I., and Chun, Ng, L. C., Sariah, M., Sariam, O., Radziah, O., and Zainal Abidin, M. A. (2016). *Moreno-Cinos, C., Goossens, K., Salado, I. G., Van Der Veken, P., De Winter, H., Kobayashi, K., and Iwano, M. (2012). BslA(YuaB) forms a hydrophobic layer on Kim, H. J., Kim, Y., Lee, M. S., and Lee, H. S. (2001). *Gene lmrB of Bacillus subtilis biofilm*. *J. Microbiol.*

Krause, K. M., Serio, A. W., Kane, T. R., and Connolly, L. E. (2016). *Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J.* 20, 852–863. doi: 10.1039/embj2014.4.852

Lefebure, T., Pavinski Bitar, P. D., Suzuki, H., and Stanhope, M. J. (2018). UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. *J. Mol. Sci.*

Kobayashi, K., and Iwano, M. (2012). *BslA(YuaB) forms a hydrophobic layer on S. I., Kim, Y. O., Yoon, S. H., Ha, S. M., Baek, I., and Chun, Ng, L. C., Sariah, M., Sariam, O., Radziah, O., and Zainal Abidin, M. A. (2016). *Moreno-Cinos, C., Goossens, K., Salado, I. G., Van Der Veken, P., De Winter, H., Kobayashi, K., and Iwano, M. (2012). BslA(YuaB) forms a hydrophobic layer on Kim, H. J., Kim, Y., Lee, M. S., and Lee, H. S. (2001). *Gene lmrB of Bacillus subtilis biofilm*. *J. Microbiol.*

Krause, K. M., Serio, A. W., Kane, T. R., and Connolly, L. E. (2016). *Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J.* 20, 852–863. doi: 10.1039/embj2014.4.852

Lefebure, T., Pavinski Bitar, P. D., Suzuki, H., and Stanhope, M. J. (2018). UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. *J. Mol. Sci.*

Kobayashi, K., and Iwano, M. (2012). *BslA(YuaB) forms a hydrophobic layer on S. I., Kim, Y. O., Yoon, S. H., Ha, S. M., Baek, I., and Chun, Ng, L. C., Sariah, M., Sariam, O., Radziah, O., and Zainal Abidin, M. A. (2016). *Moreno-Cinos, C., Goossens, K., Salado, I. G., Van Der Veken, P., De Winter, H., Kobayashi, K., and Iwano, M. (2012). BslA(YuaB) forms a hydrophobic layer on Kim, H. J., Kim, Y., Lee, M. S., and Lee, H. S. (2001). *Gene lmrB of Bacillus subtilis biofilm*. *J. Microbiol.*

Krause, K. M., Serio, A. W., Kane, T. R., and Connolly, L. E. (2016). *Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J.* 20, 852–863. doi: 10.1039/embj2014.4.852

Lefebure, T., Pavinski Bitar, P. D., Suzuki, H., and Stanhope, M. J. (2018). UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. *J. Mol. Sci.*
agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. U.S.A. 102, 13950–13955. doi: 10.1073/pnas.0506758102

Toh, S.-M., Xiong, L., Arias, C. A., Villegas, M. V., Lolans, K., Quinn, J., et al. (2007). Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol. Microbiol. 64, 1506–1514. doi: 10.1111/j.1365-2958.2007.05744.x

Verma, A., Singh, V. K., and Gaur, S. (2016). Computational based functional analysis of Bacillus phytases. Comput. Biol. Chem. 60, 53–58. doi: 10.1016/j.compbiolchem.2015.11.001

Vernikos, G., Medini, D., Riley, D. R., and Tettelin, H. (2015). Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23, 148–154.

Wang, H., Yang, L., Ping, Y., Bai, Y., Luo, H., Huang, H., et al. (2016). Engineering of a Bacillus amyloliquefaciens strain with high neutral protease producing capacity and optimization of its fermentation conditions. PLoS One 11:e0146373. doi: 10.1371/journal.pone.0146373

Wang, X., Bai, Y., Cai, Y., and Zheng, X. (2017). Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process Biochem. 53, 109–115. doi: 10.1016/j.procbio.2016.12.012

Wu, B., Changjun, W., Dihong, X., Heng, Z., Huan, Y., Jinping, L., et al. (2016). Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 103, 1–12. doi: 10.1016/j.apsoil.2016.03.002

Wu, L., Wu, H.-J., Qiao, J., Gao, X., and Borriss, R. (2015). Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front. Microbiol. 6:1395.

Yang, L., Wang, H., Lv, Y., Bai, Y., Luo, H., Shi, P., et al. (2016). Construction of a rapid feather-degrading bacterium by overexpression of a highly efficient alkaline keratinase in its parent strain Bacillus amyloliquefaciens K11. J. Agric. Food Chem. 64, 78–84. doi: 10.1021/acs.jafc.5b04747

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., et al. (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644. doi: 10.1093/jac/dks261

Zhang, J., Xue, Q., Gao, H., Lai, H., and Wang, P. (2016). Bacterial degradation of crude oil using solid formulations of bacillus strains isolated from oil-contaminated soil towards microbial enhanced oil recovery application. RSC Adv. 6, 5566–5574. doi: 10.1039/C5RA23772F

Zhang, N., Yang, D., Kendall, J. R. A., Borris, R., Druzhinina, I. S., Kubicek, C. P., et al. (2016). Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutionary traits for adaptation to plant-associated habitats. Front. Microbiol. 7:2039. doi: 10.3389/fmicb.2016.02039

Zhu, X., Liu, D., Singh, A. K., Drolia, R., Bai, X., Tenguria, S., et al. (2018). Tunicamycin mediated inhibition of wall teichoic acid affects Staphylococcus aureus and listeria monocytogenes cell morphology, biofilm formation and virulence. Front. Microbiol. 9:1352.

Zühlke, M.-K., Schlüter, R., Henning, A.-K., Lipka, M., Nikolashch, A., Schumann, P., et al. (2016). A novel mechanism of conjugate formation of bisphenol A and its analogues by Bacillus amyloliquefaciens: Detoxification and reduction of estrogenicity of bisphenols. Int. Biodeterior. Biodegradation 109, 165–173. doi: 10.1016/j.ibiod.2016.01.019

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Liu, Prajapati, Prajapati, Bais and Lu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.