Can 129I track 135Cs, 236U, 239Pu, and 240Pu apart from 131I in soil samples from Fukushima Prefecture, Japan?

Guosheng Yang, Hirofumi Tazoe & Masatoshi Yamada

In the present study, 129I activities and 129I/127I atom ratios were measured in 60 soil samples contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. The 127I concentrations, 129I activities, and 129I/127I atom ratios in dry-weight were observed to be $0.121–23.6$ mg kg$^{-1}$, $0.962–275$ mBq kg$^{-1}$, and $(0.215–79.3) \times 10^{-7}$, respectively. The maximum values of both 129I activities and 129I/127I atom ratios in Japanese soil increased about three orders of magnitude due to this accident. The equation $\log y = 0.877 \log x + 0.173$ (Pearson’s $r = 0.936; x$, 129I concentration; y, 131I concentration; decay-corrected to March 11, 2011) instead of a simple constant may be a better way to express the relationship between 129I and 131I in Japanese soil affected by both global fallout and FDNPP accident fallout. In addition, a moderate correlation was observed between 129I and 135Cs ($\log y = 0.624 \log x + 1.01$, Pearson’s $r = 0.627; x$, 129I activity; y, 135Cs activity). However, 129I presented larger fractionations with less volatile radionuclides, such as 236U, 239Pu, and 240Pu. These findings indicated 135Cs could be roughly estimated from 129I or 131I; this is advantageous as fewer 137Cs data are available and 135Cs/137Cs is being considered a promising tracer during radiocesium source identification.

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 released massive amounts of radionuclides into the terrestrial environment, including both short-lived radionuclides (e.g. 133Xe, 5.2 d; 131I, 8.0 d; 133I, 20.8 h; 134Cs, 2.1 y) and long-lived radionuclides (e.g. 129I, 1.57×10^6 y; 135Cs, 2.3×10^6 y; 236U, 2.342×10^9 y; 239Pu, 2.4110 y and 240Pu, 6.564 y)\cite{1,2}. The radionuclides with shorter half-lives have higher specific radioactivities, making them suitable for conventional radiometric methods\cite{3}. Furthermore, conventional radiometric methods, such as γ-spectrometry, are easier to apply as they do not have complicated procedures for sample treatment, chemical separation, and purification. Therefore, those short-lived radionuclides with high radiation exposure risk, such as 131I and 134Cs, were extensively studied in the initial stage of the FDNPP accident. On the other hand, the data for long-lived radionuclides, such as 129I, 131I, 236U, 239Pu, and 240Pu related to the FDNPP accident are limited.\cite{1}

Investigation of the distributions and their relevance of 129I, 135Cs, 236U, 239Pu, and 240Pu in Japanese soil is highly required for three major reasons. First, 129I, 135Cs, 236U, and 239Pu were indeed released from the FDNPP accident, and their amounts were estimated to be $(0.66–5.5) \times 10^9$, 6.74×10^9, 1.2×10^9, and 2.3×10^9 Bq, respectively\cite{1}. Second, these long-lived radionuclides can be determined in environmental samples for a long time after a nuclear accident; therefore, they have great potential to act as proxies for short-lived radionuclides that are of greater radiological concern. Initial reconstructions of the distribution of 131I deposition through the measurement of 127I were obtained, as it was known that there were strong correlations between 131I and 127I activities in the contaminated surface soil samples affected by both the Chernobyl accident\cite{4} and the FDNPP accident\cite{5–11}. Third, they are well-suited tracers with great potential for source identification. 135Cs/137Cs has been proved to be a powerful alternative tracer of 134Cs/137Cs for radiocesium source identification to overcome the drawback of the short half-life of 134Cs in studies of the FDNPP accident\cite{12–14}. Significant work has been done that revealed the release of trace amounts of Pu during the FDNPP accident and proved 239Pu/240Pu is a good tracer for Pu source identification\cite{15,16}. At the same time, many scientists have been trying to find evidence of 236U release during the FDNPP accident\cite{17,18–21}. Finally, Shinonaga et al.\cite{19} and Yang et al.\cite{18} were able to present evidence of 236U release from this accident in aerosol samples and soil samples, respectively.

1Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Honcho, Hirosaki, Aomori, 036-8564, Japan. 2Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. 3Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China. Correspondence and requests for materials should be addressed to M.Y. (email: myamada@hirosaki-u.ac.jp)
Different elements have distinct physicochemical properties, which will result in different dispersal and deposition processes from reactor cores to the environment at the initial stage of their emissions and different post-depositional redistributions (vertical diffusion or migration) in soil samples. For example, evidence was observed that 129I migrated downward more rapidly in soil than 131I did after both the Chernobyl accident and the FDNPP accident. Therefore, it is better to apply a long-lived isotope to act as a proxy for a short-lived isotope of the same element, such as 129I for 131I, and 134Cs for 137Cs. However, it should be noted that only trace amounts of 129I, 135Cs, 236U, 239Pu and 240Pu were released from the FDNPP accident, and background activities before this accident account for the major fraction of these radionuclides, as revealed by previous studies and mentioned above. For example, before the FDNPP accident, 129I was already present in Japanese soil owing to natural generation (cosmic ray reactions with Xe, spontaneous fission of 238U, thermal neutron induced fission of 235U and Te) and human nuclear activities (atmospheric nuclear test since 1945, discharge from spent-nuclear-fuel reprocessing plants, fallout from the Chernobyl accident). Multiple sources and long-term redistributions make their relationships complicated. However, most reports only focused on one or two long-lived radionuclides in each study. Therefore, it is necessary to build a database to show data for as many as possible long-lived radionuclides in the same samples to establish their signatures and illustrate the differences and relevance among them in soil samples affected by the FDNPP accident fallout and global fallout.

Unfortunately, there are still not sufficient data related to the FDNPP accident for environmental samples from Fukushima Prefecture to provide regional information on the deposition of multiple long-lived radionuclides, such as 129I, 135Cs, 236U, 239Pu and 240Pu. The major reason for the limited numbers of data of long-lived radionuclides is the challenge in their measurement. Since mass spectrometric methods are more sensitive for longer-lived radionuclides, inductively coupled plasma - mass spectrometry (ICP-MS) is the most widely applied method to measure Pu isotopes. For 129I and 236U in environmental samples, accelerator mass spectrometry (AMS) is the most widely applied and it offers the highest sensitivities. However, due to the high instrument cost, there are only about 110 AMS facilities worldwide, and most of them are mainly applied to the routine analysis of 14C for dating purposes; only about ten can be used to study 236U and 238U in environmental samples with high throughput that are compatible with the advanced triple-quadrupole ICP-MS (ICP-QQQ). Compared with AMS, ICP-QQQ instruments are relatively inexpensive and can be afforded by ordinary laboratories, giving ICP-QQQ bright prospects in the field of long-lived 134Cs, 129I and 236U applications in the future.

Here, we report data for 127I, 129I, and 131I in 60 soil samples, with heavy 134Cs contamination due to the FDNPP accident, that were collected immediately after this accident. For those soil samples without 131I activity data, 131I activities were reconstructed via deduced 129I-131I equation and measured 129I activities. In addition, other radionuclides (major long-lived ones), such as 129I, 135Cs, 236U, 239Pu, 240Pu, were also considered with regard to the differences and relevance among them in soil samples affected by the FDNPP accident fallout and global fallout, in order to see whether 129I can track other radionuclides (135Cs, 236U, 239Pu, and 240Pu) derived from the FDNPP accident fallout and global fallout.

Results

These 60 soil samples were collected in Fukushima Prefecture and were heavily contaminated with 134Cs (12.9–1.10 × 10^6 Bq kg^{-1}). Since 134Cs (t_{1/2} = 2.06 y) in the environment before the FDNPP accident has decayed out to an undetectable level, these high values indicated significant radiocesium contamination due to the FDNPP accident. As shown in Supplementary Table S1, the 127I concentrations, 129I activities, and 129I/127I atom ratios in dry-weight were observed to be 0.121–23.6 mg kg^{-1}, 0.962–275 mBq kg^{-1}, and (0.215–79.3) × 10^{-7}, respectively. In addition, the activities of 135Cs, 236U, 239Pu, and 240Pu in soil were in the ranges of 4.55–376, 0.005–0.244, 4.26–227, and 2.76–144 mBq kg^{-1}, respectively.

Discussion

Presently, no reliable value is available for 129I/127I atom ratio in the terrestrial environment prior to the start of the nuclear era. Before the FDNPP accident, surface soil and atmospheric fallout collected far from the Tokai Reprocessing Plant (TRP) in Japan had 127I concentrations in somewhat over lapping ranges of 0.4–55.3 (30–32) and 2.79–110 (33,34) mg kg^{-1}, respectively; the 129I activities were in the ranges of <0.06–4.55 (30–32) and 0.157–65.7 (33,34) mBq kg^{-1}, respectively; and the 129I/127I atom ratios were relatively low, being in the ranges of (<0.1–2.18) × 10^{-4} (32) and (0.008–2.43) × 10^{-7} (33,34), respectively. For two surface soil samples collected in 2008 and 2009 within 10 km to the west of the FDNPP, their 129I activities and 129I/127I atom ratios were observed to be low, being 0.339–0.422 mBq kg^{-1} and (1.40–1.57) × 10^{-8}, respectively. However, after the FDNPP accident, the 129I activities and 129I/127I atom ratios in soil increased sharply and presented values of 0.109–160 mBq kg^{-1} and 3.39–10^{-9}, 1.01 × 10^{-5}, respectively. In other words, as shown in Fig. 1, after the FDNPP accident, the maximum values of both 129I activities and 129I/127I atom ratios in Japanese soil samples increased about three orders of magnitude relative to the results of the present study and previous studies as mentioned above. These indicated that the amount of radioiode released in the FDNPP accident was significant. Owing to the short half-life of 131I, it has a high specific radioactivity. Therefore, apart from 129I, it is also vital to obtain 131I activity values to study the radiation exposure risk from 131I to the local population and the environment in this accident.

Due to the short half-life of 131I, it could only determine its activities (decay-corrected to collection dates, dry weight) in 22 soil samples, and they were in the range of 1.36–81.3 kBq kg^{-1}. Since 129I and 131I have the same chemical and environmental behaviours, and similar production routes in a nuclear reactor, 129I could be an ideal proxy for 131I. In soil samples contaminated by the Chernobyl accident, a strong linear correlation was found between 131I and 129I activities with a 129I/131I atom ratio of 15.2 ± 4.7 (decay-corrected to April 26, 1986). Simple slope constants of linearity regressions were also used to reconstruct the 131I level and distribution pattern.
The data were from our study and previous studies8–11,29,30,35,36 (the data from Miyake et al.8 and Muramatsu et al.11 did not show errors, other data were shown with errors of 1σ).

by long-lived 129I during the FDNPP accident8–11. However, to date, limited 129I/131I data have been obtained and large errors (most >20%) were observed in previous studies. Four reasons may explain this phenomenon: 1) decreased 131I activities by the time of measurement, 2) the time-consuming sample treatment needed for 129I analysis by AMS, 3) the limited numbers of AMS systems available, and 4) the light contamination of most regions by the FDNPP accident fallout, but with a large background contribution from multiple sources8–31. For example, Miyake et al.30 reported a relative deviation of 22.1% for 129I/131I atom ratios in 50 soil samples; Muramatsu et al.11 even reported a relative deviation of 48.4% for 129I/131I atom ratios in 82 soil samples. In addition, a higher relative deviation (49.7%) was also observed in the present study. It is vital to compile as many 129I/131I data as possible to obtain a comprehensive relationship between 129I and 131I in soil affected by the FDNPP accident fallout and global fallout. However, if more samples with strong background (global fallout) contribution are added, the relative deviation of 129I/131I atom ratios will increase sharply as mentioned above. Therefore, only using simple slope constants of linearity regressions is not an ideal way to express the relationship between 129I and 131I, since the region heavily contaminated by the FDNPP accident is restricted to a narrow strip.

We used the available 129I and 131I data in soil samples, affected by the FDNPP accident fallout and global fallout, in previous studies together with the data in the present study to illustrate a more comprehensive relationship between 129I and 131I. After a linear regression analysis, the slope of the line indicates the 129I/131I atom ratio is 26.1 ± 15.5 (decay-corrected to March 11, 2011) and there is no drop in the uncertainties. This indicates again that a simple slope constant of linearity regression cannot explain the relationship between 129I and 131I comprehensively. After linear regression of all data in Fig. 2 expressed as common logarithms, the equation of logy = 0.877logx + 0.173 (Pearson’s r = 0.936; x, 129I concentration (atoms kg−1); y, 131I concentration (atoms kg−1); decay-corrected to March 11, 2011) could be obtained corresponding to the linear regression line. The standard errors for slope and intercept of this equation were low, being 0.030 and 0.33, respectively. The slope <1 in the log-log plot clearly points out systematically varying isotope ratios. Fujiwara et al.8 reported that the contributions of background 129I in five topsoil samples collected in Tsukuba, Japan, about 170 km southwest of the FDNPP, ranged from 38.9% to 41.4%. However, Matsunaka et al.29,30 observed smaller contributions of background 129I in two topsoil samples collected within 10 km to the west of the FDNPP (<5%) due to the heavy contamination from the FDNPP accident. All these indicated the complicated relationships of the sources and contributions for iodine isotopes in the studied soil samples. In addition, Nishihara et al.37 carried out a model calculation for the radionuclides in the three FDNPP reactors using the ORIGEN2 code, and they estimated significantly distinct 129I/131I atom ratios at the time of this accident which were 31.4, 21.9, and 20.8 for reactor Units 1, 2, and 3, respectively. Therefore, a larger error in more samples for the 129I/131I atom ratio may indicate the significant influence by background 129I in some soil samples and a complicated situation of radioiodine release from the three reactor units during the FDNPP accident. Anyway, presently, using 129I as a proxy for 131I offers the best way to estimate the radiation exposure risk from 131I to the local population and the environment. Therefore, at present, the equation of logy = 0.877logx + 0.173 (Pearson’s r = 0.936; x, 129I concentration (atoms kg−1); y, 131I concentration (atoms kg−1); decay-corrected to March 11, 2011) instead of a simple slope constant of linearity regression with large uncertainty may be a better way to express the relationship between 129I and 131I in the soil samples in Fukushima Prefecture affected by both global fallout and the FDNPP accident fallout.

As shown in Fig. 3 (decay-corrected to March 11, 2011, to facilitate comparison with other studies), the reconstructed 131I activities were 0.023–60.3 kBq kg−1 (decay-corrected to collection dates, dry weight); and, higher 131I activities were observed in the northwest direction from the FDNPP, in agreement with the observation that the radionuclides were predominately deposited northwest of the facility in a band approximately 40 km in length11.
It should be noted that only a few samples were collected in the southwest direction from the FDNPP; therefore, in the future more samples from this area are required to show the distribution of 131I and correlation between 129I and 131I more exactly.

After the FDNPP accident, more than 99% of the released activity was due to radionuclides of the elements Kr, Te, I, Xe, and Cs; however, little work had been done on monitoring of radionuclides other than the short-lived 131I, 132Te, 134Cs, 136Cs, and 137Cs. Radionuclides such as those of less volatile elements (e.g., Pu) and radionuclides with very long half-lives (e.g., 135Cs, 129I, and some actinides such as 236U) have been understudied by comparison. Therefore, in the present study, we combined the data for 135Cs, 236U, 239Pu, and 240Pu in the same samples with the data of the radioiodine isotopes, trying to see whether 129I or 131I could trace other radionuclides in soil samples. To the best of our knowledge, this is the first time these long-lived radioisotopes have been simultaneously compared in the same samples. As shown in Fig. 4, 135Cs and 137I activities had a moderate linear correlation (logy = 0.877logx + 0.173, Pearson’s r = 0.936).

Very recent studies have proved that 135Cs/137Cs is a potential tracer of radiocesium in environmental science, however, the data of 135Cs in soil samples are few in number and no 135Cs data in the Japanese environmental samples before the FDNPP accident are available. Although in the course of the FDNPP accident, Matsunaka et al. did not show errors, and the data in pink with errors of 1σ were from Fujiwara et al.9). The dotted line was obtained by linear regression corresponding to the equation in the figure.

Figure 2. Atom ratio of radioiodine isotopes in Japanese topsoil samples collected after the FDNPP accident. 131I activities were decay-corrected to March 11, 2011. The data were from our study (dark blue, errors of 1σ) and previous studies (the data in violet from Miyake et al.10 and the data in purple from Muramatsu et al.11 did not show errors, and the data in pink with errors of 1σ were from Fujiwara et al.). The dotted line was obtained by linear regression corresponding to the equation in the figure.

Figure 3. The distribution of 131I activity (decay-corrected to March 11, 2011) in the soil samples contaminated by the FDNPP accident fallout and global fallout. This map was prepared with Arc GIS 10.3 software.
found that the $^{129}\text{I}/^{137}\text{Cs}$ ratios were varying by several orders of magnitude, we consider it feasible to roughly estimate ^{135}Cs activities in soil samples using published ^{129}I activities, under the special conditions that significantly fewer numbers of ^{135}Cs data in soil are available compared with ^{129}I data at present and most fractions of ^{135}Cs in the soil are from global fallout rather than the FDNPP accident fallout. In addition, the $^{236}\text{U}/^{129}\text{I}$, $^{239}\text{Pu}/^{129}\text{I}$, and $^{240}\text{Pu}/^{129}\text{I}$ activity ratios varied largely from 7.84×10^{-5} to 1.23×10^{-1}, from 0.144 to 72.9, and from 0.102 to 49.7, respectively. ^{129}I did not show significant correlations with ^{236}U, ^{239}Pu, and ^{240}Pu. The major reason may be that 1) the releases of ^{236}U, ^{239}Pu, and ^{240}Pu from the FDNPP accident were trace amounts compared with the previous depositions of the radioiodine isotopes; 2) most of the ^{236}U, ^{239}Pu, and ^{240}Pu present in Japanese soil samples are from global fallout; 3) ^{129}I and ^{135}Cs are volatile radionuclides, while ^{236}U, ^{239}Pu, and ^{240}Pu are less volatile radionuclides. Therefore, the differences between ^{129}I and ^{236}U, ^{239}Pu, or ^{240}Pu become larger than that with ^{135}Cs after release. From the present study, we have confirmed that ^{129}I in Japanese soil could roughly track ^{135}Cs, rather than ^{236}U, ^{239}Pu, and ^{240}Pu derived from the FDNPP accident fallout and global fallout.

It should be noted that the uncertainty of ICP-QQQ is somewhat larger than that of AMS at present. However, the amount of ^{129}I in the unprocessed spent nuclear reactor fuel is 10 times more than that released to the environment and more ^{129}I will be produced with the increasing number of nuclear power reactors being built. If most of the spent fuel is going to be reprocessed and ^{129}I is released to the environment, it may increase the ratio of $^{129}\text{I}/^{127}\text{I}$ to 10^{-3}. Then, the ICP-QQQ method will become a more feasible method to investigate ^{129}I in the environment with smaller uncertainties.

Methods

Soil Sampling. The procedure details for soil sampling and pre-treatment have been described elsewhere during four sampling expeditions conducted in 2011, from April 12 to 16, April 26 to 28, June 6 to 10, and June 15 to 16. The collection sites were mainly restricted to the heavily contaminated region where the radioactive plume due to the FDNPP accident was washed out by rainfall. Fukushima Prefecture is divided by mountain ranges into three regions (from west to east) showing large temperature and weather contrasts. On average, annually, central Fukushima receives 1166 mm of precipitation and 189 cm of snow, respectively.

After large particles and plant roots were removed by handpicking, soil samples were transferred into 100-mL polystyrene containers, and then, only the fine fraction of soil particles (diameter below 2 mm) was analyzed.

Reagents and Materials. Ultrapure grade 25% TMAH (TAMAPURE-AA) was obtained from Tama Chemicals (Kawasaki, Japan). Analytical grade (NH$_4$)$_2$SO$_4$ solution (0.6–1%), 0.1 mol L$^{-1}$ KI solution, CCl$_4$, and NaNO$_2$ were obtained from Kanto Chemical Co. Inc. (Tokyo, Japan). Single-element standard solutions (1000 mg L$^{-1}$) of Cs, Mo, Cd, In, Li, Mg, Y, Ce, Tl, and Co were also purchased from Kanto Chemical Co. Inc. K$_2$S$_2$O$_8$ was obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). High purity O$_2$ (>99.999%) and Ar (>99.999%) were supplied by Taiyo Nippon Sanso Corp. (Tokyo, Japan). IAEA reference material (soil, IAEA-375), NIST standard reference materials (marine sediment, NIST SRM 4357), and GSI Geochemical reference materials (rock, JB-2 and JB-3; stream sediment, JSd-3) were used for iodine method validation, as shown in Supplementary Tables S2 and S3.

Analysis of Radionuclides. An Agilent 8800 (ICP-QQQ, Agilent Technologies, Santa Clara, CA, USA), featuring an octopole collision/reaction cell situated between two quadrupole mass filters (first, Q1; second, Q2), was employed for $^{129}\text{I}/^{127}\text{I}$ atom ratio analysis. Pure O$_2$ (>99.999%) was introduced into the collision/reaction cell via the No. 4 cell gas line. A high efficiency sample introduction system (APEX-Q, Elemental Scientific, Omaha, NE, USA) equipped with a PFA MicroFlow nebulizer was used as the sample introduction system. The ICP-QQQ was optimized on a daily basis using 1 ng mL$^{-1}$ of standard solution containing Ce, Co, Li, Mg, Tl, and Y in 0.01%
The optimized operation parameters are summarized in Supplementary Table S4. 133Cs was measured as internal standard by ICP-QQQ single MS mode for 137Cs concentration measurement. In addition, 56Mo, 113Cd, and 115In were monitored to check the contributions of their polyatomic interferences at m/z 129 during the analysis of 129I by ICP-QQQ. Activity of 131I was determined by γ-ray spectroscopy (ORTEC GEM-40190, Seiko-EG&G, Tokyo, Japan) at an energy of 636 keV from 1000 to 80,000 s. Mixed gamma standard sources with different sample heights were used for efficiency correction; they were obtained from the Japan Radioisotope Association. Because the measurements were started in the middle of May 2011, 131I could only be determined in 22 soil samples.

TMAH Extraction and Purification of Iodine for ICP-QQQ Analysis. The procedures for iodine extraction from solid environmental samples and purification (solvent extraction and back-extraction) for ICP-QQQ analysis are summarized in Supplementary Fig. S1. Six steps are shown here briefly. (1) **TMAH extraction:** eighteen of soil samples (1 g) were weighted into 50 mL centrifuge tubes, and then incubated for iodine extraction by 10% TMAH solution (25 mL). Incubation was done in an aluminium block bath (DryThermoUnit DTU–2CN, TAITEC Corp., Koshigaya, Japan) at 90 °C for 2 h. (2) **Iodine release from organic matter:** after centrifugation at 1000 rpm for 5 min (these same parameters for centrifugation were used in the following sections), the aqueous phase and the bottom CCl₄ phase were transferred to another 50 mL centrifuge tube, and the black organic matter was added to avoid element iodine release during the following chemical reaction. After adding 1% (NH₄)₂SO₃ (1.5 mL) and then adding 6 M HNO₃ (9 mL) to adjust pH < 3, IO₃⁻ was reduced to iodide (I⁻) by (NH₄)₂SO₃ in aqueous solution (IO₃⁻ + 3SO₄²⁻ → I⁻ + 3SO₄²⁻). (4) **Organic layer removal:** after mechanical shaking for 2 min and then centrifuging, the aqueous phase became a thin layer between the TMAH phase and the CCl₄ phase. The upper TMAH phase and the bottom CCl₄ phase were transferred to another 50 mL centrifuge tube, and the black organic matter was discarded. (5) **I⁻ transformation:** I⁻ was oxidized to elemental iodine (I₂) by addition of 5% NaNO₃ (0.4 mL) under acidic conditions (NO₃⁻ → 2I⁻ + 4H⁺ → I₂ + 2NO₂⁻ + 2H₂O). At the same time, Cs was added to extract CCl₄ (5 mL) by mechanical shaking for 2 min. After centrifugation, the organic phase was separated from the aqueous phase for the next procedure. Elemental iodine was extracted again with CCl₄ (3 mL). (6) I⁻ transformation and extraction: I⁻ in the organic phase was reduced and extracted back into 0.01% (NH₄)₂SO₃ solution (1.5 mL) as I⁻ (I₂ + H₂O + SO₄²⁻ → 2H⁺ + 2I⁻ + SO₄²⁻) (back-extraction). Since the shaking during back-extraction was not done strongly, no emulsion appeared in the bottom phase; this helped to increase iodine recovery. Finally, the $^{129I}/^{127I}$ atom ratio was analyzed by ICP-QQQ MS/MS mode. For 1 g soil samples, the method detection limits for 127I and 129I in ICP-QQQ MS-MS mode were 3.80 ng kg⁻¹ and 2.62 × 10⁻⁴ Bq kg⁻¹, respectively. This method could measure 129I/127I > 10⁻⁴ accurately, as shown in Supplementary Tables S2 and S3.

In addition, the data of 133Cs, 230U, 239Pu and 240Pu obtained in our previous studies, were combined with the present data of 129I and 131I as a means to illustrate the differences and relevance among them in soil samples affected by the FDNPP accident fallout and global fallout, in order to see whether 129I can track other radionuclides (133Cs, 230U, 239Pu and 240Pu) derived from the FDNPP accident fallout and global fallout. Details about the analysis of 133Cs, 230U, 239Pu and 240Pu can be found in the Supplementary Information.

References

1. Povinec, P. P., Hirose, K. & Aoyama, M. Fukushima Accident: Radioactivity Impact on the Environment (Elsevier, 2013).
2. Povinec, P. P. et al. Impact of the Fukushima accident on tritium, radiocarbon and radiocesium levels in seawater of the western North Pacific Ocean: A comparison with pre-Fukushima situation. *J. Environ. Radioact.* **166**, 56–66 (2016).
3. Hou, X.-L. & Roos, P. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. *Anal. Chim. Acta.* **608**, 103–139 (2008).
4. Casacuberta, J. et al. Potential releases of 129I, 230U, and Pu isotopes from the Fukushima Dai-ichi Nuclear Power Plants to the ocean from 2013 to 2015. *Environ. Sci. Technol.* **51**, 9826–9835 (2017).
5. Yang, G., Tazoe, H. & Yamada, M. 137Cs activity and 137Cs/134Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident. *Sci. Rep.* [https://doi.org/10.1038/srep24119] (2016).
6. Sakaguchi, A., Steier, P., Takahashi, Y. & Yamamoto, M. Isotopic compositions of 238Pu and Pu isotopes in “black substances” collected from roadsides in Fukushima Prefecture: fallout from the Fukushima Dai-ichi Nuclear Power Plant accident. *Environ. Sci. Technol.* **48**, 3691–3697 (2014).
7. Mironov, V., Kudryashov, V., You, F. & Raisbeck, G. M. Use of 137Cs and 134Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. *J. Environ. Radioact.* **59**, 2938–307 (2002).
8. Fujinawa, H. Observation of radioactive iodine (I¹¹, I¹³) in cropland soil after the Fukushima nuclear accident. *Sci. Total Environ.* **566–567**, 1432–1439 (2016).
9. Miyaake, Y. et al. Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. *Geochem. J.* **46**, 327–333 (2012).
10. Miyaake, Y., Matsuzaki, H., Sasa, K. & Takahashi, T. Measurement of long-lived radionuclides in surface soil around F1NPP accident site by accelerator mass spectrometry. *Nucl. Instrum. Methods Phys. Res. B* **361**, 627–631 (2015).
11. Muramatsu, Y., Matsuzaki, H., Toyama, C. & Ohno, T. Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP). *J. Environ. Radioact.* **139**, 344–350 (2015).
12. Zheng, J. et al. 134Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima Nuclear Accident. *Environ. Sci. Technol.* **48**, 5433–5438 (2014).
13. Yang, G., Kato, Y., Tazoe, H. & Yamada, M. Applying an improved method to measure 134Cs, 137Cs, and 137Cs activities and their atom ratios in marine sediments collected close to the Fukushima Daiichi Nuclear Power Plant. *Geochem. J.* **51**, [https://doi.org/10.2343/geochemj.2.0484] (2017).
14. Yang, G., Tazoe, H. & Yamada, M. Rapid determination of 137Cs and precise 134Cs/137Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry. *Anal. Chim. Acta* **908**, 177–184 (2016).

15. Hirose, K. & Povinec, P. P. Sources of plutonium in the atmosphere and stratosphere-troposphere mixing. *Sci. Rep.* [https://doi.org/10.1038/srep15707] (2015).

16. Bu, W. et al. Release of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant accident to the marine environment was negligible. *Environ. Sci. Technol.* **48**, 9070–9078 (2014).

17. Yang, G., Zheng, J., Tagami, K. & Uchida, S. Plutonium concentration and isotopic ratio in soil samples from central-eastern Japan collected around the 1970s. *Sci. Rep.* [https://doi.org/10.1038/srep09636] (2015).

18. Sakaguchi, A. et al. Isotopic determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident. *Geochim. Cosmochim. Acta* **76**, 355–360 (2012).

19. Shironaga, T., Steier, F., Lagos, M. & Ohkura, T. Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. *Environ. Sci. Technol.* **48**, 3808–3814 (2014).

20. Yang, G., Tazoe, H. & Yamada, M. Determination of 238U in environmental samples by single extraction chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry. *Anal. Chim. Acta* **944**, 44–50 (2016).

21. Yang, G., Tazoe, H., Hayano, K., Okayama, K. & Yamada, M. Isotopic compositions of 239Pu, 240Pu and 241Pu in soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident. *Sci. Rep.* [doi:10.1038/s41598-017-13998-6] (2017).

22. Hou, X. et al. Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation. *Sci. Total Environ.* **308**, 97–109 (2003).

23. Honda, M. et al. Depth profile and mobility of 129I and 137Cs in soil originating from the Fukushima Dai-ichi Nuclear Power Plant accident. *Environ. Radiat. Sci.* **46**, 35–43 (2015).

24. Fan, Y., Hou, X. & Zhou, W. Progress on 129I analysis and its application in environmental and geological researches. *Desalination* **321**, 32–46 (2013).

25. Kutschesi, W. [https://vera2.rad.univie.ac.at/share/WWW_Exchange/Miscellaneaous/AMS%20facilities%20of%20the%20world.pdf].

26. Povinec, P. P. et al. Development of the accelerator mass spectrometry technology at the Comenius University in Bratislava. *Nucl. Instrum. Methods Phys. Res. B* **361**, 87–94 (2015).

27. Tazoe, H. et al. Radioactive pollution from Fukushima Daiichi Nuclear Power Plant in the terrestrial environment. *Radiat. Prot. Dosim.* **152**, 198–203 (2012).

28. Matsuzaki, H. et al. Development of 129I-AMS system at MALT and measurements of 129I concentrations in several Japanese soils. *Nucl. Instrum. Methods Phys. Res. B* **259**, 721–726 (2007).

29. Matsunaka, T. et al. Post-accident response of near-surface 131I levels and 133I/131I ratios in areas close to the Fukushima Dai-ichi Nuclear Power Plant. *J. Radioanal. Nucl. Chem.* **361**, 569–573 (2015).

30. Matsunaka, T. et al. Pre- and post-accident 129I and 137Cs levels, and 129I/127I and 137Cs ratios in soil near the Fukushima Dai-ichi Nuclear Power Plant, Japan. *J. Environ. Radiat. Sci.* **151**, 209–217 (2016).

31. Muramatsu, Y., Ohmomo, Y. & Sumiya, M. Determination of iodine-129 and iodine-127 in environmental samples collected in Japan. *J. Radioanul. Nucl. Chem.* **123**, 181–189 (1988).

32. Muramatsu, Y., Takada, Y., Matsuzaki, H. & Yoshida, S. AMS analysis of 129I in Japanese soil samples collected from background areas far from nuclear facilities. *Quat. Geochronol.* **3**, 291–297 (2008).

33. Toyama, C. et al. Variations of 129I in the atmospheric fallout of Tokyo, Japan: 1963–2003. *J. Environ. Radiat. Sci.* **113**, 116–122 (2012).

34. Toyama, C. et al. Atmospheric fallout of 129I in Japan before the Fukushima Accident: regional and global contributions (1963–2005). *Environ. Sci. Technol.* **47**, 8383–8390 (2013).

35. Ohno, T. et al. Determination of ultratrace 129I in soil samples by Triple Quadrupole ICP-MS and its application to Fukushima soil samples. *J. Anal. At. Spectrom.* **28**, 1283–1287 (2013).

36. Ohno, T. et al. Determination of 129I in Fukushima soil samples by ICP-MS with an octopole reaction system. *Anal. Sci.* **29**, 271–274 (2013).

37. Nishihara, K., Iwamoto, H. & Suyama, K. Estimation of fuel compositions in Fukushima-Daiichi Nuclear Power Plant. *JAEA-Data/Code 2012–018* (2012).

38. Hou, X. et al. A review on speciation of iodine-129 in the environmental and biological samples. *Anal. Chim. Acta* **632**, 181–196 (2009).

Acknowledgements

We wish to express our gratitude to Drs Tokonami, Hosoda, Sorimachi, Nakata, and Kasai for their cooperation in the sampling. This work was supported by JSPS KAKENHI (Grant Numbers: 21407149, 11435002). G.Y. thanks Hirosaki University for a grant for Exploratory Research by Young Scientists and Newly-appointed Scientists.

Author Contributions

M.Y. and G.Y. designed the study. G.Y. conducted the 135Cs and 131I isotopes analysis. H.T. conducted the 134Cs and 137Cs analysis. M.Y. conducted the Pu isotopes analysis. G.Y. and M.Y. wrote this manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-15714-w.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017