ψ-Poisson, q-Cigler, ψ-Dobinski, ψ-Rota and ψ-coherent states- with Cigler’s Remark on simplicity

A.K.Kwaśniewski

Higher School of Mathematics and Applied Informatics
PL - 15-021 Bialystok, ul.Kamienna 17, Poland
e-mail: kwandr@uwb.edu.pl

February 8, 2008

Abstract

The Cigler simple derivation of the q-Carlitz- Dobinski formula is recalled and it is noticed that the formula may be interpreted as the average of powers of random variable X_q with the q-Poisson distribution. In parallel new q-Cigler-Dobinski and psi-Carlitz-Dobinski formulas are introduced.

At first let us anticipate with ψ-remark. ψ denotes an extension of $\langle \frac{1}{n!} \rangle_{n \geq 0}$ sequence to quite arbitrary one ("admissible") and the specific choices are for example: Fibononially -extended ($\langle F_n \rangle$ - Fibonacci sequence) $\langle \frac{1}{F_n} \rangle_{n \geq 0}$ or just "the usual" $\langle \frac{1}{n!} \rangle_{n \geq 0}$ or Gauss q-extended $\langle \frac{1}{n!} \rangle_{n \geq 0}$ admissible sequences of extended umbral operator calculus - see more below. With such an extension we may ψ-mnemonic repeat with exactly the same simplicity and beauty what was done by Rota forty years ago. Forty years ago Gian-Carlo Rota proved the exponential generating function for Bell numbers B_n to be of the form

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}(B_n) = \exp(e^x - 1) \quad (1)$$

using the linear functional L such that

$$L(X^n) = 1, \quad n \geq 0 \quad (2)$$
Then Bell numbers (see: formula (4) in [1]) are defined by

\[L(X^n) = B_n, \quad n \geq 0 \] (3)

The above formula is exactly the Dobinski formula [2] if \(L \) is interpreted as the average functional for the random variable \(X \) with the Poisson distribution with \(L(X) = 1 \). It is Blissard calculus inspired umbral formula [1]. Recently an interest to Stirling numbers and consequently to Bell numbers was revived among "q-coherent states physicists" [3, 4, 5]. Namely the expectation value with respect to coherent state \(|\gamma > \) with \(|\gamma| = 1 \) of the \(n \)-th power of the number of quanta operator is "just" the \(n \)-th Bell number \(B_n \) and the explicit formula for this expectation number of quanta is "just" Dobinski formula [3],(4). The same is with the \(q \)-coherent states case [3] i.e. the expectation value with respect to \(q \)-coherent state \(|\gamma > \) with \(|\gamma| = 1 \) of the \(n \)-th power of the number operator is the \(n \)-th \(q \)-Bell number defined as the sum of \(q \)-Stirling numbers \(\{ \binom{n}{k} \}_q \) due to Carlitz as in [6, 3, 4, 5]. Note there then that for standard Gauss \(q \)-extension \(x_q \) of number \(x \) we have

\[x_q^n = \sum_{k=0}^{n} \binom{n}{k}_q x_q^k \] (4)

Hence the expectation value with respect to \(q \)-coherent state \(|\gamma > \) with \(|\gamma| = 1 \) of the \(n \)-th power of the number operator is exactly the popular \(q \)-Dobinski formula. It can be given via (3) Blissard calculus inspired umbral formula form and may be treated as definition of \(B_n(q) \)

\[L_q(X^n_q) = B_n(q), \quad n \geq 0. \] (5)

due to the fact that linear functional \(L_q \) interpreted as the average functional for the random variable \(X_q \) with the \(q \)-Poisson distribution with \(L_q(X_q) = 1 \) satisfies

\[L_q(X^n_q) = 1, \quad n \geq 0. \] (6)

We arrive to this simple conclusion using Jackson derivative difference operator in place of \(D = d/dx \) in \(q \) =1 case and the power series generating function \(G(t) \) for \(q \)-Poisson probability distribution:

\[p_n = [\exp_q \lambda]^{-1} \frac{\lambda^k}{k_q!}, G(t) = \sum_{n \geq 0} p_n t^k, \] (7)

\[p_n = [\partial_q^n G(t)_{q}]_{t=0}, [\partial_q G(t)]_{t=1} = 1 \text{ for } \lambda = 1. \] (8)
There are many q-extensions of Stirling numbers according to their weighted counting interpretation. For example $w(\pi) = q^{\text{cross}(\pi)}$, $w(\pi) = q^{\text{inv}(\pi)}$ from \cite{7} gives after being summed over the set of k-block partitions the Carlitz q-Stirling numbers or $w(\pi) = q^{\text{nin}(\pi)}$ from \cite{8} gives rise to Carlitz-Gould q-Stirling numbers after being summed over the set of k-block partitions or with $w(\pi) = q^{i(\pi)}$ in \cite{9} - we arrive at another combinatorial interpretation of q-extended Stirling numbers. q-Stirling numbers much different from Carlitz q-ones were introduced in the reference \cite{10} from where one infers the cigl-analog of (5). Let Π denotes the lattice of all partitions of the set $\{0, 1, \ldots, n-1\}$. Let $\pi \in \Pi$ be represented by blocks $\pi = \{B_0, B_1, \ldots, B_i, \ldots\}$, where B_0 is the block containing zero: $0 \in B_0$. The weight adapted by Cigler defines weighted partitions’ counting according to the content of B_0. Namely $w(\pi) = q^{\text{cigl}(\pi)}$, $\text{cigl}(\pi) = \sum_{l \in B_0} l$, $\sum_{\pi \in A_{n,k}} q^{\text{cigl}(\pi)} \equiv \left\{ \begin{array}{c} n \\ k \end{array} \right\}_q$ therefore $\sum_{\pi \in \Pi} q^{\text{cigl}(\pi)} \equiv B_{n}(q)$. Here $A_{n,k}$ stays for subfamily of all k-block partitions. With the above relations one has defined the cigl-q-Stirling and the cigl-q-Bell numbers. The cigl-q-Stirling numbers of the second kind are expressed in terms of q-binomial coefficients and $q = 1$ Stirling numbers of the second kind \cite{10}. These are new q-Stirling numbers. The corresponding cigl-q-Bell numbers recently have been equivalently defined via cigl-q-Dobinski formula \cite{11} $L(X_n^q) = B_n(q), \quad n \geq 0, \quad X_n^q \equiv X(X + q - 1)(X - 1 + q^{n-1})$ interpreted as the average of this specific $n-th$ cigl-q-power random variable X_n^q with the $q = 1$ Poisson distribution such that $L(X) = 1$. To this end note that in \cite{12}, \cite{13} a family of the so called ψ-Poisson processes was introduced. The corresponding choice of the function sequence ψ leads to the q-Poisson process. Accordingly the extension of Dobinski formula with its elementary essential content and context to general case of ψ- umbral instead q-umbral calculi case only - is automatic in view of an experience from \cite{12}, \cite{13} (see corresponding earlier references there and necessary definitions). At first what you do is to replace index q by ψ in formulas (3), (4),..., (8). Then you have got started problems with not easy combinatorial interpretation if at all and... etc. ψ-Stirling numbers and ψ-Bell numbers are being then defined by (4) and (3) correspondingly with q replaced by ψ. We get used to write these extensions in mnemonic convenient upside down notation \cite{12}, \cite{13}

\begin{align}
\psi_n &\equiv n_{\psi}, x_{\psi} \equiv \psi(x) \equiv \psi_{x}, n_{\psi}! = n_{\psi}(n-1)_{\psi}!, n > 0, \quad (9) \\
k_{\psi} x_{\psi} = x_{\psi}(x-1)_{\psi}(x-2)_{\psi}(x-k+1)_{\psi} \quad (10)
\end{align}
\[x_\psi(x-1)_\psi \cdots (x-k+1)_\psi = \psi(x)\psi(x-1)\cdots \psi(x-k-1). \]
(11)

You may consult for further development and use of this notation [12], [13] and references therein.

(*) Remark based on the remark of Professor Cigler (in private).

The Katriel’s claim [3] that his derivation of the Dobinski formula is the simplest possible may be confronted with the extremely simple derivation by Cigler (see p.104 in [14]). Note on the way that this derivation is ready for \(\psi \)-extensions [12] [13] as it as a matter of fact based on elementary properties of GHW (Graves-Heisenberg-Weyl) algebra: see [12] [13] and references therein.

Namely, let \(\hat{x} \) denotes the multiplication by \(x \) operator while \(D \) denotes differentiation - both acting on the prehilbert space \(P \) of polynomials. Then from recursion for Stirling numbers of the second kind and the identification (operators in \(P \)):

\[\hat{x}(D+1) \equiv \frac{1}{\exp(x)}(\hat{x}D)\exp(x) \]

one gets for exponential polynomials

\[\varphi_n(x) = \sum_{k=0}^{n} \binom{n}{k} x^k \]

the formula which becomes Dobinski one for \(x = 1 \)

\[\varphi_n(x) = \frac{1}{\exp(x)}(\hat{x}D)^n \exp(x) \]

i.e.

\[\varphi_n(x) = \frac{1}{\exp(x)} \sum_{0 \leq k} \frac{k^n x^k}{k!}. \]

The \(q \)-case as well as \(\psi \)-case is automatically retained with the mnemonics from [12] [13].

As perfectly properly indicated to the present author by Professor Cigler - the derivation of Dobinski or \(q \)-Dobinski formulas does not require an introduction of a completion of prehilbert space \(P \) and coherent states in order to derive the formulas. - Well. Anyhow, the extremely simple and umbral-beautiful Cigler’s derivation above [14] is immediately represented and then fruitfully interpreted via expectation values on broader grounds of combinatorics applications.
References

[1] Rota G. C. The number of partitions of a set Amer. Math. Monthly 71 (1964) : 498-504
[2] G. Dobinski Summierung der Reihe S fr m = 1, 2, 3, 4, 5, Grunert Archiv (Arch. Math. Phys) 61, 333-336, (1877)
[3] J. Katriel Bell numbers and coherent states Physics Letters A, 273 (3) (2000): 159-161
[4] M. Schork On the combinatorics of normal ordering bosonic operators and deformations of it J. Phys. A: Math. Gen. 36 (2003) 4651-4665
[5] J.Katriel, M. Kibler Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers J. Phys. A: Math. Gen.(25) (1992): 2683-26-91
[6] S.C. Milne A q-analog of restricted growth functions, Dobinski’s equality, and Charlier polynomials ,Trans. Amer. Math. Soc. 245 (1978) 89-118
[7] R.Ehrenborg Determinants involving q-Stirling numbers, Advances in Applied Mathematics (31)(2003): 630-642
[8] Bennett Curtis, Dempsey Kathy J. , Sagan Bruce E. Partition Lattice q-Analogs Related to q-Stirling Numbers Journal of Algebraic Combinatorics (03)(3) p.261-283 July 1994
[9] Rajendra S. Deodhar, Murali K. Srinivasan An inversion number static on set partitions preprint submited to Elsevier Science 12 September 2003
[10] J. Cigler A new q-Analogue of Stirling Numbers Sitzunber. Abt. II 201(1992) : 97-109
[11] A.K.Kwasiewski q-Poisson,q-Dobinski, q-Rota and q-coherent states ArXiv: math.CO/0402254 vol 1 16 Feb 2004
[12] A.K.Kwasiewski Main theorems of extended finite operator calculusIntegral Transforms and Special Functions, 14 No 6 (2003): 499-516
[13] A.K.Kwasiewski On Simple Characterizations of Sheffer psi-polynomials and Related Propositions of the Calculus of Sequences ,Bulletin de la Soc. des Sciences et de Lettres de Lodz, 52 Ser. Rech. Deform. 36 (2002):45-65, ArXiv: math.CO/0312397.
[14] J. Cigler *Operatormethoden für q-Identitäten* Monatsh. Math. 88 (1979): 87-105.