Flavor symmetry analysis of charmless $B \to VP$ decays

Cheng-Wei Chiang

Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Chungli, Taiwan 320, R.O.C. and Institute of Physics, Academia Sinica, Taipei, Taiwan 115, R.O.C.
E-mail: chengwei@phy.ncu.edu.tw

Yu-Feng Zhou

Korea Institute for Advanced Study, Seoul 130-722, Korea
E-mail: yfzhou@kias.re.kr

Abstract: Based upon flavor SU(3) symmetry, we perform global fits to charmless B decays into one pseudoscalar meson and one vector meson in the final states. We consider different symmetry breaking schemes and find that the one implied by naïve factorization is slightly favored over the exact symmetry case. The $(\bar{\rho}, \bar{\eta})$ vertex of the unitarity triangle (UT) constrained by our fits is consistent with other methods within errors. We have found large color-suppressed, electroweak penguin and singlet penguin amplitudes when the spectator quark ends up in the final-state vector meson. Nontrivial relative strong phases are also required to explain the data. The best-fit parameters are used to compute branching ratio and CP asymmetry observables in all of the decay modes, particularly those in the B_s decays to be measured at the Tevatron and LHC experiments.
1. Introduction

Thanks to the B-factories, a plethora of data on rare hadronic B meson decays have become available in recent years. Because they involve W-mediated charged-currents through mixing and/or decay, these decay modes provide particular useful information on the CP-violating weak phases and magnitudes of elements in the Cabibbo-Kobayashi-Maskawa (CKM) matrix for the quark sector of the standard model (SM). Advances in both experiment and theory have helped us narrow down these parameters to a high precision. Through such efforts, it therefore becomes possible for us to search for evidences of new physics, if any.

Due to the hadronic nature of particles involved in the decays, strong phases associated with the decay amplitudes that are derived from short-distance physics as well as final-state interactions are also important. Even though they cannot be computed from first principles, these phases play a crucial role in direct CP asymmetries. Determination of their pattern and magnitudes in B decays give a test to our knowledge of strong dynamics in the SM.

An approach utilizing the flavor symmetry to relate magnitudes and strong phases of amplitudes has been taken to analyze the rare B decay data. It has the advantage of reducing model dependence for computing matrix elements of hadronic transitions, in comparison with the usual perturbative approaches.

In Ref. [8], we have updated the analysis for B decays into two charmless pseudoscalar mesons in the final states, and further tested the flavor symmetry assumption by considering several different breaking schemes in the amplitudes. By performing global fits, we find that our results are robust against fluctuations of individual
data with large uncertainties, and different schemes have roughly the same predictions.

In this article, we concentrate on the rare \(B \to VP \) decays, where \(V \) and \(P \) denote charmless vector and pseudoscalar mesons, respectively. There have been some numerical works in the perturbation framework of quantum chromodynamics (QCD) to calculate the decay rates and CP asymmetries of these decays over the years. Na"ive and general factorization analyses were considered in Refs. [9, 10, 11]. The QCD factorization (QCDF) method was employed in Refs. [12, 13, 14, 15, 16, 17]. The calculations using the perturbative QCD approach are scattered in Refs. [18, 19, 20, 21, 22, 23]. Recently, the soft-collinear effective theory (SCET) was also used in Ref. [24]. In parallel, some attempts that apply the flavor symmetry to the \(VP \) decays are given in Refs. [25, 26, 27, 28, 24].

The \(B \to VP \) decay modes present a richer structure than the \(PP \) final states because the light spectator quark in \(B \) meson can end up in a spin-0 or spin-1 meson, even though the quark-level subprocess is exactly the same. Moreover, the number and precision of observables in these modes (particularly the strangeness-changing ones) have improved considerably in recent years. Totally, there are 52 observables in the \(VP \) decays. All the branching ratio and CP asymmetry observables in the strangeness-changing decays of \(B^0, + \) mesons have been measured. The branching ratio of \(\rho^+ K^0 \), in particular, provides valuable information on the magnitude of one type of QCD penguin amplitude. In contrast, the observables in the strangeness-conserving transitions are mostly measured in the \(B^+ \) decays. Moreover, some data points have shifted by noticeable amounts. For example, the central values of the branching ratios of \(B^+ \to \rho^+ \eta^{(t)}, B^+ \to K^{*+} \eta, \) and \(K^{*+} \pi^- \) have dropped by about 30% from five years ago. The branching ratios of \(B^0 \to \rho^+ \pi^\mp \) also move significantly upward and downward, respectively. Therefore, we consider it timely to re-analyze the data and, at the same time, relax some of the assumptions made in Ref. [28] in view of the better data pool, and make predictions for the \(B_s \) decay modes which are going to be measured at Tevatron and LHCb.

The structure of this paper is as follows. In section 2, we introduce the notation used in our approach and present both measured observables and amplitude decomposition for the decay modes. In section 3, we show our fitting results of the theory parameters in different schemes. Discussions and predictions based on our fits are given in section 4. Section 5 summarizes our findings in this work.

2. Formalism and Notation

For a two-body \(B \to VP \) decay process, the magnitude of its invariant decay amplitude \(M \) is related to the partial width in the following way:

\[
\Gamma(B \to VP) = \frac{|p|}{8\pi m_B^2} |M|^2 ,
\] (2.1)
where \(\mathbf{p} \) is the 3-momentum of the final state particles in the rest frame of the \(B \) meson of mass \(m_B \). To relate partial widths to branching ratios, we use the world-average lifetimes \(\tau^+ = (1.638 \pm 0.011) \text{ ps} \), \(\tau^0 = (1.530 \pm 0.009) \text{ ps} \), and \(\tau_s = (1.437 \pm 0.031) \text{ ps} \) computed by the Heavy Flavor Averaging Group (HFAG) \[29\]. Each branching ratio quoted in this paper has been \(C_{\text{P}} \)-averaged.

To perform the flavor amplitude decomposition, we use the following quark content and phase conventions for mesons:

- **Bottom mesons:** \(B^0 = \bar{d}b, \overline{B^0} = bd, B^+ = ub, B^- = -\bar{b}u, B_s = s\bar{b}, \overline{B_s} = b\bar{s}; \)

- **Pseudoscalar mesons:** \(\pi^+ = u\bar{d}, \pi^0 = (d\bar{d} - u\bar{u})/\sqrt{2}, \pi^- = -d\bar{u}, K^+ = u\bar{s}, K^0 = d\bar{s}, \overline{K^0} = s\bar{d}, K^- = -s\bar{u}, \eta = (s\bar{s} - u\bar{u} - d\bar{d})/\sqrt{3}, \eta' = (u\bar{u} + d\bar{d} + 2s\bar{s})/\sqrt{6}; \)

- **Vector mesons:** \(\rho^+ = u\bar{d}, \rho^0 = (d\bar{d} - u\bar{u})/\sqrt{2}, \rho^- = -d\bar{u}, \omega = (u\bar{u} + d\bar{d})/\sqrt{2}, K^{*+} = u\bar{s}, K^{*0} = d\bar{s}, \overline{K^{*0}} = s\bar{d}, K^{*-} = -s\bar{u}, \phi = s\bar{s}. \)

The \(\eta \) and \(\eta' \) mesons correspond to octet-singlet mixtures

\[
\eta = \eta_8 \cos \theta_0 - \eta_1 \sin \theta_0 , \tag{2.2}
\]
\[
\eta' = \eta_8 \sin \theta_0 + \eta_1 \cos \theta_0 . \tag{2.3}
\]

As shown in Ref. \[28\], varying the mixing angle \(\theta_0 \) does not improve the quality of fits. For convenience, we fix \(\theta_0 = \sin^{-1}(1/3) \approx 19.5^\circ \) according to the above-mentioned quark contents of \(\eta \) and \(\eta' \).

We list flavor amplitude decompositions and averaged experimental data for \(B \to VP \) decays in Tables 4 and \[4\]. Values of measured observables are obtained from the latest 2008 summer results of the HFAG \[29\].

In the present approximation, we consider only five dominant types of independent amplitudes: a “tree” contribution \(T \); a “color-suppressed” contribution \(C \); a “QCD penguin” contribution \(P \); a “flavor-singlet” contribution \(S \), and an “electroweak (EW) penguin” contribution \(P_{\text{EW}} \). The first four types are considered as the leading-order amplitudes, while the last one is higher-order in weak interactions. Depending upon which final state meson the spectator quark in the \(B \) meson ends up in, we further associate a subscript \(P \) or \(V \) to the above-mentioned amplitudes. For example, \(T_P \) and \(T_V \) denote a tree amplitude with the spectator quark of the \(B \) meson going into the pseudoscalar and vector meson in the final state, respectively. These two kinds of amplitudes are different in general. In the following, we will suppress the subscripts \(P, V \) when discussions apply to both classes of amplitudes of each type.

There are also other types of amplitudes, such as the “color-suppressed EW penguin” diagram \(P_{\text{EW}}^C \), “exchange” diagram \(E \), “annihilation” diagram \(A \), and “penguin annihilation” diagram \(PA \). Due to dynamical suppression, these amplitudes are ignored in the analysis.
Mode	Flavor Amplitude	BR ($\times 10^{-6}$)	A_{CP}
$B^+ \to \bar{K}^0 K^+$	pp	0.68 ± 0.19	-
$K^{*+} K^0$	$p\nu$	-	-
$\rho^0 \pi^+$	$-\sqrt{2} (t_\nu + c_\pi + p_\nu - p_\pi)$	$8.7^{+1.0}_{-1.1}$	$-0.07^{+0.12}_{-0.06}$
$\rho^+ \pi^0$	$-\sqrt{2} (t_\nu + c_\pi + p_\pi - p_\nu)$	$10.9^{+1.4}_{-1.5}$	0.02 ± 0.11
$\rho^+ \eta$	$-\frac{1}{\sqrt{3}} (t_\nu + c_\pi + p_\pi + p_\nu + s_\nu)$	6.9 ± 0.10	0.11 ± 0.11
$\omega \pi^+$	$\frac{1}{\sqrt{2}} (t_\nu + c_\pi + p_\pi + p_\nu + 2s_\nu)$	6.9 ± 0.5	-0.04 ± 0.06
$\phi \pi^+$	< 0.24	-	-
$B^0 \to \bar{K}^0 K^0$	pp	-	-
$K^{*0} K^0$	$p\nu$	< 1.9	-
$\rho^0 \pi^+$	$-(t_\nu + p_\nu)$	$16.42 ± 1.96^{a}$	$0.12 ± 0.06^{a}$
$\rho^+ \pi^0$	$-(t_\nu + p_\pi)$	$7.58 ± 1.25^{a}$	$-0.14 ± 0.12^{a}$
$\omega \pi^0$	< 0.28	-	-
$\phi \pi^0$	< 0.52	-	-
$B_s \to \bar{K}^0 \pi^0$	$-\frac{1}{\sqrt{2}} (c_\nu - p_\nu)$	-	-
$K^{*0} \pi^0$	$-(t_\nu + p_\nu)$	-	-
$\rho^0 K^0$	$-\frac{1}{\sqrt{2}} (c_\nu - p_\pi)$	-	-
$\bar{K}^0 \eta$	$-\frac{1}{\sqrt{3}} (c_\nu - p_\pi + p_\nu + s_\nu)$	-	-
$\bar{K}^0 \eta'$	$\frac{1}{\sqrt{6}} (c_\nu + 2p_\pi + p_\nu + 4s_\nu)$	-	-
$\omega \bar{K}^0$	$\frac{1}{\sqrt{2}} (c_\nu + p_\pi + 2s_\nu)$	-	-
$\phi \bar{K}^0$	$p_\nu + s_\pi$	-	-

*Values obtained using the method described in Ref. [28].

Table 1: Flavor amplitude decomposition and measured observables [30, 31, 32, 33] of strangeness-conserving $B \to VP$ decays. The time-dependent CP asymmetries A and S, if applicable, are listed in the first and second rows, respectively.

The QCD penguin amplitude contains three components (apart from the CKM factors): P_t, P_c, and P_u, with the subscript denoting which quark is running in the
Mode	Flavor Amplitude	BR ($\times 10^{-6}$)	A_{CP}
$B^+ \to K^{*0} \pi^+$	p_P'	10.0 ± 0.8	-0.202 $^{+0.057}_{-0.061}$
$K^{*+} \pi^0$	$-\frac{1}{\sqrt{2}}(t_P' + c_P' + p_P')$	6.9 ± 2.3	0.04 ± 0.29
$\rho^0 K^+$	$-\frac{1}{\sqrt{2}}(t_V' + c_P' + p_V')$	3.81 $^{+0.48}_{-0.46}$	0.417 $^{+0.081}_{-0.104}$
$\rho^+ K^0$	p_V'	8.0$^{+1.5}_{-1.4}$	-0.12 ± 0.17
$K^{*+} \eta$	$-\frac{1}{\sqrt{2}}(t_P' + c_P' + p_P' - p_V' + s_V')$	19.3 ± 1.6	0.02 ± 0.06
$K^{*+} \eta'$	$\frac{1}{\sqrt{6}}(t_P' + c_V' + p_P' + 2p_V' + 2s_V' + 4s_V')$	4.9$^{+2.1}_{-1.9}$	0.30$^{+0.33}_{-0.37}$
ωK^+	$\frac{1}{\sqrt{2}}(t_V' + c_P' + p_V' + 2s_V')$	6.7 ± 0.5	0.02 ± 0.05
ϕK^+	$p_P' + s_P'$	8.30 ± 0.65	0.034 ± 0.044
$B^0 \to K^{*0} \pi^-$	$-(t_P' + p_P')$	10.3 ± 1.1	-0.25 ± 0.11
$K^{*0} \pi^0$	$\frac{1}{\sqrt{2}}(c_V' - p_V')$	2.4 ± 0.7	-0.15 ± 0.12
$\rho^- K^+$	$-(t_P' + p_V')$	8.6$^{+0.9}_{-1.1}$	0.15 ± 0.06
$\rho^0 K^0$	$-\frac{1}{\sqrt{2}}(c_P' - p_V')$	5.4$^{+0.9}_{-1.0}$	-0.02 ± 0.29
$K^{*0} \eta$	$-\frac{1}{\sqrt{5}}(c_P' + p_P' - p_V' + s_V')$	15.9 ± 1.0	0.19 ± 0.05
$K^{*0} \eta'$	$\frac{1}{\sqrt{6}}(c_V' + p_P' + 2p_V' + 4s_V')$	3.8 ± 1.2	-0.08 ± 0.25
ωK^0	$\frac{1}{\sqrt{2}}(c_P' + p_V' + 2s_P')$	5.0 ± 0.6	0.32 ± 0.17
ϕK^0	$p_P' + s_P'$	8.3$^{+1.2}_{-1.0}$	0.23 ± 0.15

Table 2: Flavor amplitude decomposition and measured observables [30, 31, 32, 33] of strangeness-changing $B \to VP$ decays. The time-dependent CP asymmetries \mathcal{A} and \mathcal{S}, if applicable, are listed in the first and second rows, respectively.

loop. After imposing the unitarity condition, we can remove the explicit t-quark dependence and are left with two components: $P_{tc} = P_t - P_c$ and $P_{tu} = P_t - P_u$. For simplicity, we assume the t-penguin dominance, so that $P_{tc} = P_{tu} \equiv P$. The same comment applies to the EW penguin and singlet penguin amplitudes, too.

In physical processes, the above-mentioned flavor amplitudes always appear in
specific combinations. To simplify the notations, we therefore define the following unprimed and primed symbols for $\Delta S = 0$ and $|\Delta S| = 1$ transitions, respectively:

$$

t \equiv Y_{db}^u T - (Y_{db}^u + Y_{db}^c) P_{EW}^C , \quad t' \equiv Y_{sb}^u \xi^c T - (Y_{sb}^u + Y_{sb}^c) P_{EW}^C , \\

\xi \equiv Y_{db}^u C - (Y_{db}^u + Y_{db}^c) P_{EW} , \quad \xi' \equiv Y_{sb}^u \xi^c C - (Y_{sb}^u + Y_{sb}^c) P_{EW} , \\
p \equiv -(Y_{db}^u + Y_{db}^c) \left(P - \frac{1}{3} P_{EW}^C \right) , \quad p' \equiv -(Y_{sb}^u + Y_{sb}^c) \left(\xi^c P - \frac{1}{3} P_{EW}^C \right) , \\
s \equiv -(Y_{db}^u + Y_{db}^c) \left(S - \frac{1}{3} P_{EW} \right) , \quad s' \equiv -(Y_{sb}^u + Y_{sb}^c) \left(\xi^c S - \frac{1}{3} P_{EW} \right) ,
$$

where $Y_{qb}^{q'} \equiv V_{q'b}^* V_{q'b} (q \in \{d, s\}$ and $q' \in \{u, c\}$). Here we also keep the P_{EW}^C amplitude for completeness, though it is ignored in the subsequent analysis. Again, all the above amplitudes are to be associated with subscript P or V, depending on the process. Here we have explicitly factored out the CKM factors, but leave strong phases inside the amplitudes.

From $\Delta S = 0$ to $|\Delta S| = 1$ transitions, we put in SU(3) breaking factors $\xi_{T_{P,V}, \xi_{C_{P,V}}}$, and $\xi_{P_{P,V}}$ for $T_{P,V}, C_{P,V},$ and $P_{P,V}$, respectively. If some type of amplitudes is factorizable, the corresponding SU(3) breaking factor is either $f_K^*/f_\pi = 1.22$ or $f_K^*/f_\rho = 1.00 \{34\}$. For example, we have for the $B^0 \rightarrow K^{*+}\pi^-$ decay:

$$
A(K^{*+}\pi^-) = -Y_{sb}^u \xi^c T_P + (Y_{sb}^u + Y_{sb}^c) \xi^c p_P .
$$

This can be obtained from the complete set of flavor amplitude decomposition given in Table 2, Table 2, and appropriate forms of Eqs. (2.4).

In this analysis, the CKM factors are expressed in terms of the Wolfenstein parameterization $\{35\}$ to $O(\lambda^5)$. Since λ has been determined from kaon decays to a high accuracy, we will use the central value 0.2272 quoted by the CKMfitter group $\{36\}$ as a theory input, and leave A, $\bar{\rho} \equiv \rho(1 - \lambda^2/2)$, and $\bar{\eta} \equiv \eta(1 - \lambda^2/2)$ as fitting parameters to be determined by data.

For the B meson decaying into a CP eigenstate f_{CP}, the time-dependent CP asymmetry is written as

$$
A_{CP}(t) = \frac{\Gamma(B^0 \rightarrow f_{CP}) - \Gamma(B^0 \rightarrow \bar{f}_{CP})}{\Gamma(B^0 \rightarrow f_{CP}) + \Gamma(B^0 \rightarrow \bar{f}_{CP})} = S \sin(\Delta m_B \cdot t) + A \cos(\Delta m_B \cdot t) ,
$$

where Δm_B is the mass difference between the two mass eigenstates of B mesons and t is the decay time measured from the tagged B meson.

3. Fitting Analysis

In this section, we present the following two schemes in our fits:
1. exact flavor symmetry for all amplitudes \((i.e., \xi_{TP,V} = \xi_{CP,V} = \xi_{Pp,V} = 1)\);

2. imposing partial SU(3)-breaking factors on \(T\) and \(C\) amplitudes only \((i.e., \xi_{TP,Cp} = f_K/f_\rho\) and \(\xi_{TV,CV} = f_K/f_\pi\), while \(\xi_{Pp,PV} = 1\));

We have assumed exact flavor symmetry for the strong phases to reduce independent parameters in our fits. Besides, \(T_P\) is fixed to be real and positive in our phase convention \((i.e., \delta_{TP} = 0)\). All the other strong phases are measured with respect to it.

We further divide our fits into two classes: (A) the \(VP\) modes that do not involve singlet penguin contributions, and (B) all of the \(VP\) modes. As shown in Table 1 and Table 2, the modes that contain the singlet penguin amplitudes are those having \(\eta, \eta', \phi, \) or \(\omega\) in the final states.

It is appropriate to list some major differences between the current analysis and Ref.[28]. Throughout this analysis, we do not assume any strong phase relation between the EW penguin, singlet penguin, and the QCD penguin amplitudes. Neither do we assume any strong phase relation between the color-suppressed amplitudes and the tree amplitudes. The relative size and phase of \(P_P\) and \(P_V\) are always kept free. Moreover, we do not assume \(S_P\) to be small enough for omission. Instead, we keep and constrain its magnitude and phase.

In the following, we perform \(\chi^2\) fits to the observables in the \(B \to VP\) modes as well as \(|V_{ub}| = (4.26 \pm 0.36) \times 10^{-3}\) and \(|V_{cb}| = (41.63 \pm 0.65) \times 10^{-3}\) [36] for the above-mentioned two schemes. The inclusion of \(|V_{ub}|\) and \(|V_{cb}|\) helps fixing the values of \(A\) and \(\sqrt{\rho^2 + \eta^2}\). However, we drop the branching ratio and direct CP asymmetry of the \(B^0 \to K^{*0}\pi^0\) decay from the fits because currently the BABAR Collaboration and the Belle Collaboration have a large disagreement in the branching ratio, whose weighted average is \((2.42 \pm 1.16) \times 10^{-6}\) with a scale factor \(S = 1.77\). As we will see later, our predictions based on best fits deviate much from these two observables.

The fit results of theory parameters are summarized in Table 3. As given in the table, Scheme 1 of exact SU(3) symmetry is slightly worse than Scheme 2. As defined above, the main difference between these two schemes is in the scaling behavior of \(T_P\) and \(C_P\) between the strangeness-conserving and strangeness-changing modes. We have also tried other schemes, such as having additional symmetry breaking for amplitude sizes. However, either the fitting quality becomes worse or they involve too large SU(3) breaking (over 30%). We will present our plots and predictions mainly for Scheme 2.

Some general features are observed in these fits. The two types of tree amplitude have roughly the same strong phases, with \(T_V\) larger than \(T_P\) by about 50%, largely driven by the branching ratios of \(\rho^\pm \pi^\pm\). The \(C_V\) amplitude is 3 to 7 times larger than the \(C_P\) amplitude. Both of them have sizeable strong phases relative to the tree amplitudes. Moreover, the strong phases of \(C_P\) changes abruptly when we enlarge
in combination in the physical amplitudes. Our fitting set from Class (A) to Class (B). They are correlated because they appear due to the large errors coming from the uncertainty in \(\chi^2 \). The best fitted ratios between color-suppressed tree and tree amplitudes are

\[
C_V/T_V = 0.64 \pm 0.20 \quad 0.58 \pm 0.18 \quad 0.81 \pm 0.15 \quad 0.76 \pm 0.14 \quad (3.1)
\]

\[
C_P/T_P = 0.13 \pm 0.32 \quad 0.25 \pm 0.31 \quad 0.22 \pm 0.16 \quad 0.15 \pm 0.16
\]

In the four schemes, the central values of the ratio \(C_P/T_P \) range from 0.13 to 0.25, agreeing with our naïve expectation, even though one still cannot take them seriously due to the large errors coming from the uncertainty in \(C_P \). On the other hand, the

Parameter	Scheme			
\(T_P \)	0.721 ± 0.088	0.727 ± 0.089	0.785 ± 0.098	0.791 ± 0.100
\(T_V \)	1.069 ± 0.119	1.070 ± 0.119	1.168 ± 0.131	1.170 ± 0.133
\(\delta_T \)	1.9 ± 5.7	2.3 ± 5.7	0.4 ± 5.5	0.6 ± 5.4
\(C_P \)	0.093 ± 0.209	0.184 ± 0.223	0.173 ± 0.138	0.122 ± 0.125
\(\delta_C \)	-118.9 ± 77.4	-107.7 ± 31.0	133.0 ± 34.2	149.0 ± 72.4
\(C_V \)	0.688 ± 0.226	0.624 ± 0.209	0.945 ± 0.142	0.892 ± 0.139
\(\delta_C \)	-66.0 ± 30.3	-57.0 ± 31.3	-82.0 ± 12.0	-75.9 ± 12.6
\(P_P \)	0.084 ± 0.003	0.084 ± 0.003	0.085 ± 0.003	0.085 ± 0.003
\(\delta_P \)	-3.9 ± 10.2	-5.7 ± 10.0	-1.0 ± 8.0	-2.6 ± 7.8
\(P_V \)	0.065 ± 0.004	0.063 ± 0.004	0.068 ± 0.004	0.066 ± 0.004
\(\delta_P \)	171.7 ± 8.1	172.6 ± 7.7	172.2 ± 7.1	172.5 ± 6.9
\(P_{EW,P} \)	0.039 ± 0.009	0.039 ± 0.009	0.032 ± 0.010	0.031 ± 0.009
\(\delta_{P_{EW,P}} \)	56.4 ± 10.4	55.1 ± 10.4	60.9 ± 10.0	59.0 ± 10.5
\(P_{EW,V} \)	0.067 ± 0.049	0.052 ± 0.048	0.096 ± 0.027	0.087 ± 0.029
\(\delta_{P_{EW,V}} \)	-98.7 ± 52.0	-90.2 ± 82.0	-113.5 ± 9.6	-111.0 ± 10.4
\(S_P \)	fixed	fixed	0.015 ± 0.005	0.014 ± 0.004
\(\delta_{S_P} \)	fixed	fixed	-133.4 ± 16.0	-139.8 ± 16.9
\(S_V \)	fixed	fixed	0.049 ± 0.005	0.048 ± 0.005
\(\delta_{S_V} \)	fixed	fixed	-49.4 ± 22.2	-47.7 ± 21.5

| \(\chi^2/dof \) | 20.7/8 | 19.9/8 | 44.6/30 | 44.5/30 |

Table 3: Fit results (1-σ ranges) of the theory parameters for Classes (A) and (B) in the two schemes defined in the text. The minimal \(\chi^2 \) value and the number of degrees of freedom (dof) are also given. The amplitudes are given in units of \(10^4 \) eV, and the phases are in degrees.
central values for C_V/T_V are significantly larger with less uncertainties. The value of C_V increases by about 40% from Set (A) to Set (B) though. The four schemes favor C_V/T_V in the range of $0.58 \sim 0.76$. As a comparison, the default parameter set of the QCDF approach [16] gives

$$C_V/T_V = 0.158 \pm 0.109 \text{ and } C_P/T_P = 0.20 \pm 0.13,$$

(3.2)

The large C_V/T_V ratio is close to what we have found for $C/T \sim 0.65$ in the B decays to two pseudoscalars [37, 8, 39, 10, 11, 12, 8, 43]. Even though such values of C/T in the PP decays and C_V/T_V pose a challenge to perturbative calculations, they seem to follow the simple pattern of factorization in tree and color-suppressed tree amplitudes.

The best fitted ratios between the QCD penguin amplitudes and the tree amplitudes are pretty stable among different schemes considered in this work. The ratios for the four schemes are given by

$$
\begin{align*}
(1A) & \quad P_V/T_V = 0.06 \pm 0.01 \\
(2A) & \quad P_P/T_P = 0.12 \pm 0.01 \\
(1B) & \quad P_V/T_V = 0.06 \pm 0.01 \\
(2B) & \quad P_P/T_P = 0.11 \pm 0.01
\end{align*}
$$

(3.3)

In comparison, the ratio $P/T \sim 0.21$ in the PP modes [8]. The strong phase of P_P is the same as T_P within a few degrees, whereas that of P_V is about 180° different. This agrees the expectation of Refs. [13, 14, 15] and reassures our previous finding [28] using old data. However, it is worth noting that in this work this solution is found even without invoking the $B \to K^{*}\eta$ decays. The QCDF default values are

$$P_V/T_V = 0.035 \pm 0.017 \text{ and } P_P/T_P = 0.032 \pm 0.006 ,$$

(3.4)

and also favors an opposite phase between P_P and P_V amplitudes. Such a phase difference is due to the chiral enhancement that results in a sign flip in the effective coefficients for the QCD penguin amplitudes. Note, however, that the magnitudes of the QCD penguin amplitudes derived in QCDF are significantly smaller than what we find. It has been noticed that they cannot account for some large branching ratios in the QCD penguin-dominated modes [13].

The strong phase between P_P and P_V is about 180°, with the former roughly in phase with T_P. Such a phase difference produces maximal constructive or destructive interference effects in decay modes that involve both of them. Since the relative phases among the tree- and penguin-type amplitudes are trivial (i.e., $\sim 0°$ or $180°$), as will be seen later, we generally do not expect large direct CP asymmetries in the decay modes involving only them.

For the EW penguin amplitudes, the constraint on $P_{EW,P}$ is better than $P_{EW,V}$ in Set (A). Nevertheless, the constraint on $P_{EW,V}$ improves in Set (B). We note that
the strong phases of $P_{EW,P}$ and $P_{EW,V}$ are significantly different from those of P_P and P_V, unlike the assumption made in Ref. [28]. It is interesting to notice that $P_{EW,V}$ increases by about 50% from fits of Set (A) to fits of Set (B). At the same time, the uncertainty in the strong phase associated with $P_{EW,V}$ improves. In Set (B), $P_{EW,V}$ is about 3 times larger than $P_{EW,P}$. To one’s surprise, $P_{EW,V}$ is unexpectedly large, in line with C_V.

As to the singlet penguin amplitudes, we find that S_P is about 3 times smaller than S_V. This partly justifies the ignorance of the former made in Ref. [28], in view of the Okubo-Zweig-Iizuka (OZI) rule. Moreover, if one compares the central values, the S_P amplitude has a strong phase in roughly the opposite direction of P_P and subtends a nontrivial angle from C_P. The S_V amplitude has a $\sim 220^\circ$ phase shift from P_V and deviates from C_V by about 30°. It is interesting to note that the physical amplitude s_P has a completely constructive interference between S_P and $P_{EW,P}/3$. Also, both types of singlet penguin amplitudes are about half the sizes of the corresponding EW penguin amplitudes.

Here we describe qualitatively how some of the theory parameters are fixed by data, thereby explaining their associated uncertainties. For this, we temporarily concentrate on the modes without involving singlet penguin amplitudes. But the argument can be easily extended to all modes. In our fits, the determination of P_P and P_V is most precise because they can be directly extracted from the strangeness-changing $B^+ \to K^{*0}\pi^+$ and ρ^+K^0 modes. The next precise parameters are the magnitudes of tree amplitudes and their phase shifts relative to the QCD penguin amplitudes. They are fixed mainly by the strangeness-conserving $B^0 \to \rho^\pm\pi^\mp$ and to some extent by the strangeness-changing $B^0 \to \rho^-K^+$ and $K^{*+}\rho^-$ modes. Since no direct CP asymmetry is observed in these modes, the relative strong phases are seen to be trivial.

As the color-suppressed and EW penguin amplitudes of the same type (subscript P or V) always show up in pairs in the physical processes, the determination of their sizes and strong phases becomes trickier. This is because the color-suppressed amplitudes dominate in the $|\Delta S| = 0$ processes, whereas the EW penguin amplitudes play more role in the $|\Delta S| = 1$ decays. This explains why C_V is better determined whereas $P_{EW,V}$ is not, for $\mathcal{B}(B^+ \to \rho^+\pi^0)$ is more precise than $\mathcal{B}(K^{*+}\pi^0)$. Likewise, the precision on C_P is worse than $P_{EW,P}$ because the combination of $\mathcal{B}(B^+ \to \rho^0K^+)$ and $\mathcal{B}(B^0 \to \rho^0K^0)$ is better than $\mathcal{B}(\rho^0\pi^+)$. Since the singlet penguin amplitudes are loop-mediated, they are better constrained by the $|\Delta S| = 1$ decay modes. Currently, both charged and neutral ϕK modes have consistent branching ratios and direct CP asymmetries. This basically fixes the magnitude and phase of S_P. In contrast, S_V is constrained in a more involved manner through interference with other amplitudes.

We note in passing that in Class (A), we have also found other sets of parameters that render smaller χ^2_{min} in the fits. They are not listed in the tables because they
are not favored once the modes involving the singlet penguin amplitudes are taken into account. A distinctive feature of such solutions from the above-mentioned ones is that either the relative strong phase between P_P and P_V is close to zero or that between T_P and T_V is close to 180°. In the former case, an interesting feature is that the ratios $C_P/T_P = 0.57 \pm 0.43$ and $C_V/T_V = 0.49 \pm 0.12$ in Scheme 2. They become comparable to each other, but still much larger than the usual perturbative expectation. In the latter case, we obtain a somewhat small $\rho = 0.08$.

In Fig. [1] we show the contours of the $\left(\bar{\rho}, \bar{\eta}\right)$ vertex at the 1-σ and 95% confidence level (CL) obtained using Scheme 2. The left plot uses a fit to modes without involving the singlet penguin amplitudes. In this case, our favored region of the vertex is slightly higher than that given by the CKMfitter [36] and UTfit [17]. The right plot is a global fit to all the V_P modes. Comparing to the left plot, we see that the favored region shifts lower and to the left on the $\bar{\rho}$-$\bar{\eta}$ plane. In this case, the preferred value of β agrees with other methods, while the value of γ is slightly larger. The best fitted three angles in the UT are

$$\alpha = (83 \pm 8)^\circ \text{ or } 72^\circ < \alpha < 99^\circ (95\% \text{CL}),$$
$$\beta = (26 \pm 2)^\circ \text{ or } 18^\circ < \beta < 30^\circ (95\% \text{CL}),$$
$$\gamma = (71 \pm 5)^\circ \text{ or } 62^\circ < \gamma < 78^\circ (95\% \text{CL})$$ \hspace{1cm} (3.5)$$

for Scheme (2A), and

$$\alpha = (84 \pm 6)^\circ \text{ or } 77^\circ < \alpha < 95^\circ (95\% \text{CL}),$$
$$\beta = (23 \pm 2)^\circ \text{ or } 18^\circ < \beta < 23^\circ (95\% \text{CL}),$$
$$\gamma = (73 \pm 4)^\circ \text{ or } 67^\circ < \gamma < 81^\circ (95\% \text{CL})$$ \hspace{1cm} (3.6)$$

for Scheme (2B).

The best-fitted UT vertex from the V_P modes is highly consistent with the one from the PP modes. When the fits do not involve singlet penguin amplitudes, both V_P and PP data favor a slightly larger $\gamma \simeq 70^\circ$ and a larger $\beta \simeq 26^\circ$. After including the modes involving the singlet penguin amplitudes, the best fitted γ becomes even larger while β reduces to the value consistent with the $B \to (cc)K_S$ measurements.

4. Discussions

There are two sets of decay modes that can provide a good test for the SU(3) symmetry. One set contains the $B^+ \to K^{*0}\pi^+$, $B^+ \to K^{*0}K^+$, $B^0 \to K^{*0}K^0$, and $B_s \to K^{*0}\bar{K}^0$ modes. The other set contains the $B^+ \to \rho^+K^0$, $B^+ \to K^{*+}\bar{K}^0$, $B^0 \to K^{*0}\bar{K}^0$, and $B_s \to \bar{K}^{*0}K^0$ modes. They all involve only the P_P or P_V amplitude, where we have neglected the $P_{EW,P}^C$ or $P_{EW,V}^C$ amplitude in the analysis as said before. However, this argument still applies if the color-suppressed EW penguin amplitude is included because it scales in the same way as the QCD penguin amplitude.
Currently, only the $B^+ \rightarrow K^{*0}\pi^+$ and $B^+ \rightarrow \rho^+K^0$ modes are observed, and their branching ratios are measured at $\mathcal{O}(10^{-5})$ level. It is thus very helpful to measure any of the K^*K modes in this respect. Using the fit results in Scheme (2A) and in units of 10^{-6}, we predict the branching ratios for the first set to be 10.64 ± 0.82, 0.50 ± 0.05, 0.47 ± 0.05, and 9.11 ± 0.70, respectively. The branching ratios for the second set are 6.08 ± 0.79, 0.29 ± 0.04, 0.27 ± 0.04, and 5.21 ± 0.68 in units of 10^{-6}, respectively. These $B_{u,d} \rightarrow K^*K$ modes are somewhat difficult to measure due to the Cabibbo suppression. However, the $B_s \rightarrow K^+K$ modes should be within the reach of the LHCb and Tevatron Run-II experiments.

Although the $B^+ \rightarrow \phi\pi^+$ and $B^0 \rightarrow \phi\pi^0, \phi\eta, \phi\eta'$ modes directly constrain the size of s_P, their branching ratios are expected to be about $\mathcal{O}(10^{-8})$ or smaller. Therefore, they are beyond the current probes.

In the following, we would like to point out some persistent problems encountered in our fits to the current data. In Ref. [28], the rate difference relations [13]:

$$\Gamma(B^0 \rightarrow \rho^-\pi^+) - \Gamma(\bar{B}^0 \rightarrow \rho^+\pi^-) = \frac{f_\pi}{f_K} \left[\Gamma(B^0 \rightarrow \rho^+K^-) - \Gamma(B^0 \rightarrow \rho^-K^+) \right]$$ \hspace{1cm} (4.1)

$$\Gamma(B^0 \rightarrow \rho^+\pi^-) - \Gamma(\bar{B}^0 \rightarrow \rho^-\pi^+) = \frac{f_\rho}{f_{K^*}} \left[\Gamma(\bar{B}^0 \rightarrow K^{*-}\pi^+) - \Gamma(B^0 \rightarrow K^{*+}\pi^-) \right]$$ \hspace{1cm} (4.2)

have been found to be barely and loosely obeyed, respectively, by the data at that time. Using the current data and in terms of the branching ratios, Eqs. (4.1) and
The first one is still not obeyed at about 2.7σ level. This difference comes from the CP asymmetries of $B^0 \rightarrow \rho^- \pi^+$ and $\rho^- K^+$, both at about 2σ level. To further check the equality in the second equation relies on more precise determinations in the CP asymmetries of $B^0 \rightarrow K^{*+} \pi^-$ and $B^0 \rightarrow K^{*+} \pi^-$.

Another problem is $\mathcal{B}(B^+ \rightarrow \rho^+ \eta^*)/\mathcal{B}(B^+ \rightarrow \rho^+ \eta) \approx 1.3 \pm 0.5$, which is very different from our expectation of about 1/2 based upon the mixing angle we assume.

Table 4: Predicted $B_{u,d,s}$ decay observables in Scheme (2A). Numbers in the parentheses are the pulls of theory predictions from the current experimental data.

Mode	BR ($\times 10^{-6}$)	A_{CP}	S
$B_{u,d} \rightarrow \rho^- \pi^+$	16.59 ± 4.01 (-0.09)	-0.042 ± 0.041 (2.698)	0.010 ± 0.173 (-0.384)
$\rho^+ \pi^-$	7.52 ± 1.97 (0.05)	0.049 ± 0.086 (-1.576)	0.082 ± 0.166 (-0.171)
$\rho^0 \pi^0$	1.97 ± 0.94 (0.06)	0.035 ± 0.179 $(-)$	-0.064 ± 0.297 $(-)$
$\rho^+ \pi^0$	10.94 ± 3.87 (-0.03)	-0.011 ± 0.193 (0.277)	$-$
$\rho^0 \pi^+$	8.81 ± 2.61 (-0.11)	-0.121 ± 0.090 (0.407)	$-$
$K^{*0}K^0$	0.47 ± 0.05 $(-)$	0 $(-)$	$-$
$K^{*0}K^0$	0.27 ± 0.04 $(-)$	0 $(-)$	$-$
$K^{*0}K^+$	0.50 ± 0.05 (0.94)	0 $(-)$	$-$
$K^{*+}K^0$	0.29 ± 0.04 $(-)$	0 $(-)$	$-$
$\rho^- K^+$	8.89 ± 1.13 (-0.29)	0.094 ± 0.094 (0.926)	$-$
$\rho^0 K^0$	5.65 ± 1.21 (-0.26)	0.076 ± 0.031 (-0.331)	0.824 ± 0.047 (-0.822)
$\rho^+ K^0$	6.08 ± 0.79 (1.33)	0 (-0.706)	$-$
$\rho^0 K^+$	3.80 ± 0.96 (0.03)	0.382 ± 0.119 (0.401)	$-$
$K^{*0} \pi^0$	6.59 ± 3.85 (-5.99)	-0.330 ± 0.120 (1.500)	$-$
$K^{*+} \pi^-$	8.87 ± 0.76 (1.30)	-0.043 ± 0.075 (-1.882)	$-$
$K^{*0} \pi^+$	10.64 ± 0.82 (-0.80)	0 (-0.339)	$-$
$K^{*+} \pi^0$	7.00 ± 4.49 (-0.04)	-0.081 ± 0.272 (0.418)	$-$

$B_s \rightarrow \rho^- K^+$ give in units of 10^{-6}, respectively,

\[-3.9 \pm 2.0 \overset{\gamma}{=} 2.1 \pm 0.9 , \quad (4.3) \]
\[2.1 \pm 1.9 \overset{\gamma}{=} -4.9 \pm 2.2 . \quad (4.4) \]
for \(\eta \) and \(\eta' \) and assuming that \(s_V \) is negligible for \(\Delta S = 0 \) decays. The problem comes from the large branching ratio of \(B^+ \to \rho^+ \eta' \), as indicated by the pull in Table 4. A similar relation can be found for \(B(B^0 \to \rho^0 \eta)/B(B^0 \to \rho^0 \eta') \), \(B(B^0 \to \omega^0 \eta)/B(B^0 \to \omega^0 \eta') \), \(B(B_s \to \rho^0 \eta)/B(B_s \to \rho^0 \eta') \), and \(B(B_s \to \omega \eta)/B(B_s \to \omega \eta') \) too. However, these modes may be difficult to measure.

A new problem would occur between the \(B^+ \rightarrow \rho^0 K^+ \) and \(\omega K^+ \) modes that differ by \(\sqrt{2}s'_p \) if \(s'_p \) is vanishingly small. In that case, the ratio of their branching ratios should be close to 1 \(\pm 3 \). However, the current data comes down to \(0.57 \pm 0.08 \). With the fitted \(s_P \approx 140 \text{ eV} \), the predicted ratio is \(\approx 0.61 \). Consequently, a non-vanishing \(s_P \) is preferred.

Another puzzle comes from the CP asymmetry of \(B^0 \rightarrow K^{*0} \eta \) because it is measured at an almost \(4\sigma \) level. This is quite different from a closely related mode, \(B^+ \rightarrow K^{*+} \eta \), whose CP asymmetry is consistent with zero. Their values should not be so different because they only differ by a small tree amplitude.

We make predictions for the observables of all the \(B^+ \), \(B^0 \) and \(B_s \) decays using the extracted parameters given in Table 3. In Table 4, we only include modes without involving the singlet penguin amplitudes as they are based on Scheme (2A). Table 3 and Table 4 cover all the decay modes as they are based on Scheme (2B). The column of \(A_{CP} \) refers to either the direct CP asymmetry or \(A \) in Eq. (2.3) of the corresponding mode. The numbers in the parentheses are calculated pulls of the theory predictions from experimental observations. They indicate the \(\Delta \chi^2 \) contributions of individual quantities.

Several observables in Table 3 have pulls larger than, say 1.5. Most of them are in the CP asymmetries. It is less clear about their importance as current precision on these data points is not satisfactory. We are then left with two branching ratio predictions with large pulls. The problem with \(\rho^\pm \eta' \) has been mentioned above. As commented before, we do not include the branching ratio and CP asymmetry of the \(B^0 \rightarrow K^{*0} \pi^0 \) in the fits of this work. Its predicted branching ratios in Tables 4 and 3 based on the best fits are quite different from the current quotes of averages in Table 4, and need further experimental confirmation.

In Table 3, our predictions of \(B(B^0 \to \rho^0 \eta) = 1.87 \pm 0.64 \) and \(B(B^0 \to \omega \pi^0) = 2.82 \pm 0.99 \) are larger than the current upper bounds of 1.5 and 0.5, respectively, in units of \(10^{-6} \). The branching ratio predictions of the other yet-measured modes are all consistent with current 95% upper bounds.

For the \(B_s \) decays, we predict large direct CP asymmetries \(A_{CP}(K^0_\eta) \approx 0.73 \) and \(A_{CP}(K^0_\eta') \approx -0.79 \), a result of interference between the large color-suppressed amplitude \(C_V \) and the QCD penguin amplitudes. We also predict large branching ratios, in units of \(10^{-6} \), \(B(\phi \eta') \approx 8.47 \), \(B(K^{*-+} \pi^+) \approx 15.21 \), \(B(K^{*+} K^+) \approx 8 \), and \(B(K^{*0} K^0) \approx 9.54 \). In these modes, the branching ratios can reach \(\mathcal{O}(10^{-5}) \) or more, as they involve either \(T_V \) for \(\Delta S = 0 \) or \(P_P \) for \(|\Delta S| = 1 \) transitions.
5. Summary

We have updated the global analysis of charmless $B \to VP$ decays in the framework of flavor SU(3) symmetry using the latest experimental data. Moreover, we consider different SU(3) breaking schemes for the sizes of flavor amplitudes based upon factorization assumption. Our result shows that the symmetry-breaking scheme (Scheme 2 defined in the text) is favored by the χ^2 fits, but its difference from the exact symmetry scheme (Scheme 1) is small. The UT vertex $(\bar{\rho}, \bar{\eta})$ extracted using these modes is consistent with our previous analysis using the PP modes [8], and also agrees with other methods within errors [36, 47]. However, we note that a slightly larger weak phase γ is favored by our global analysis.

In the fits to modes without involving the singlet penguin amplitudes, we note that there are two sets of solutions with minimal χ^2 values. In one set, the P_P and P_V amplitudes have almost the same strong phases. In the other set, they have almost opposite strong phases. The latter is favored when one also includes modes involving the singlet penguin amplitudes. Moreover, we find in the latter case that the ratio C_V/T_V is about 0.6 - 0.7, similar to the C/T ratio in the PP modes. Correspondingly, the $P_{EW,V}$ and S_V amplitudes are unexpectedly large. These facts are seen to be a challenge to perturbative approaches.

We point out that a set of decay modes that involve only the QCD penguin amplitude can be used to test our flavor SU(3) assumption. Among those modes, the $B_s \to K^{*0}\bar{K}^0$ and $\bar{K}^{*0}K^0$ modes should be within the reach of the LHCb and Tevatron Run-II experiments.

We also mention the persistent problems that the CP rate differences in $B^0 \to \rho^-\pi^+$ and in $B^0 \to \rho^-K^+$ do not follow our expectation from factorization and that the observed branching ratio of $B^+ \to \rho^+\eta'$ is too large to be accommodated in our approach. Further investigations of $B(B^0 \to K^{*0}\pi^0)$ and $A_{CP}(B^0 \to K^{*0}\eta)$ are required.

Based on our best fits, we calculate all observables in the $B \to VP$ decays. The part for B_s decays is particularly useful because currently no such observables have been observed yet and our results serve as predictions to be compared with.

Acknowledgments

The authors would like to thank the hospitality of Kavli Institute of Theoretical Physics in Beijing where part of this work is done. We also appreciate useful discussions and comments from I. Bigi, X.-G. He, H.-n. Li, and C. Sachrajda and the information on the latest ICHEP data from P. Chang and J. Smith. C. C. would like to thank the hospitality of the National Center for Theoretical Sciences in Hsinchu, where part of this work is done. This research was supported in part by the National Science Council of Taiwan, R. O. C. under Grant No. NSC 96-2112-M-008-001.
References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[3] D. Zeppenfeld, Z. Phys. C 8, 77 (1981).

[4] M. J. Savage and M. B. Wise, Phys. Rev. D 39, 3346 (1989) [Erratum-ibid. D 40, 3127 (1989)].

[5] L. L. Chau, H. Y. Cheng, W. K. Sze, H. Yao and B. Tseng, Phys. Rev. D 43, 2176 (1991) [Erratum-ibid. D 58, 019902 (1998)].

[6] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994) [hep-ph/9404283].

[7] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 52, 6374 (1995) [hep-ph/9504327].

[8] C. W. Chiang and Y. F. Zhou, JHEP 0612, 027 (2006) [arXiv:hep-ph/0609128].

[9] G. Kramer, W. F. Palmer and H. Simma, Z. Phys. C 66, 429 (1995) [arXiv:hep-ph/9410406].

[10] N. G. Deshpande, B. Dutta and S. Oh, Phys. Lett. B 473, 141 (2000) [arXiv:hep-ph/9712445].

[11] A. Ali, G. Kramer and C. D. Lu, Phys. Rev. D 58, 094009 (1998) [arXiv:hep-ph/9804363].

[12] M. Z. Yang and Y. D. Yang, Phys. Rev. D 62, 114019 (2000) [arXiv:hep-ph/0007038].

[13] D. s. Du, H. j. Gong, J. f. Sun, D. s. Yang and G. h. Zhu, Phys. Rev. D 65, 094025 (2002) [Erratum-ibid. D 66, 079904 (2002)] [arXiv:hep-ph/0201253].

[14] J. f. Sun, G. h. Zhu and D. s. Du, Phys. Rev. D 68, 054003 (2003) [arXiv:hep-ph/0211154].

[15] R. Aleksan, P. F. Giraud, V. Morenas, O. Pene and A. S. Safir, Phys. Rev. D 67, 094019 (2003) [arXiv:hep-ph/0301165].

[16] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003) [arXiv:hep-ph/0308039].

[17] X. Q. Li and Y. D. Yang, Phys. Rev. D 73, 114027 (2006) [arXiv:hep-ph/0602224].

[18] C. D. Lu and M. Z. Yang, Eur. Phys. J. C 23, 275 (2002) [arXiv:hep-ph/0011238].

[19] C. H. Chen, Y. Y. Keum and H. n. Li, Phys. Rev. D 64, 112002 (2001) [arXiv:hep-ph/0107165].
[20] X. Liu, H. s. Wang, Z. j. Xiao, L. Guo and C. D. Lu, Phys. Rev. D 73, 074002 (2006) [arXiv:hep-ph/0509362].

[21] L. Guo, Q. g. Xu and Z. j. Xiao, Phys. Rev. D 75, 014019 (2007) [arXiv:hep-ph/0609005].

[22] D. Q. Guo, X. F. Chen and Z. J. Xiao, Phys. Rev. D 75, 054033 (2007) [arXiv:hep-ph/0702110].

[23] A. Ali, G. Kramer, Y. Li, C. D. Lu, Y. L. Shen, W. Wang and Y. M. Wang, Phys. Rev. D 76, 074018 (2007) [arXiv:hep-ph/0703162].

[24] W. Wang, Y. M. Wang, D. S. Yang and C. D. Lu, Phys. Rev. D 78, 034011 (2008) [arXiv:0801.3123 [hep-ph]].

[25] A. S. Dighe, M. Gronau and J. L. Rosner, Phys. Rev. D 57, 1783 (1998) [arXiv:hep-ph/9709223].

[26] M. Gronau and J. L. Rosner, Phys. Rev. D 61, 073008 (2000) [arXiv:hep-ph/9909478].

[27] M. Gronau, Phys. Rev. D 62, 014031 (2000).

[28] C. W. Chiang, M. Gronau, Z. Luo, J. L. Rosner and D. A. Suprun, Phys. Rev. D 69, 034001 (2004) [arXiv:hep-ph/0307395];

[29] Updated results and references are tabulated periodically by the Heavy Flavor Averaging Group:
http://www.slac.stanford.edu/xorg/hfag/rare.

[30] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 91, 201802 (2003) [arXiv:hep-ex/0306030].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 69, 011102 (2004) [arXiv:hep-ex/0309025].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 93, 051802 (2004) [arXiv:hep-ex/0311049].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 71, 111101 (2005) [arXiv:hep-ex/0504009].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 72, 052002 (2005) [arXiv:hep-ex/0507025].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 74, 032003 (2006) [arXiv:hep-ex/0605003].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 74, 011102 (2006) [arXiv:hep-ex/0605037].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 74, 072008 (2006) [arXiv:hep-ex/0606050].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 98, 051802 (2007) [arXiv:hep-ex/0607109].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 97, 201802 (2006) [arXiv:hep-ex/0608005].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 98, 051803 (2007) [arXiv:hep-ex/0608051].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 75, 091103 (2007) [arXiv:hep-ex/0701035].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 011103 (2007) [arXiv:hep-ex/0702043].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 75, 111102 (2007) [arXiv:hep-ex/0703038].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 071103 (2007) [arXiv:0706.1059 [hep-ex]].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 031103 (2007) [arXiv:0706.3893 [hep-ex]].
B. Aubert et al. [BABAR Collaboration], arXiv:0711.4417 [hep-ex].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 78, 012004 (2008) [arXiv:0803.4451 [hep-ex]].
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 78, 011107 (2008) [arXiv:0804.2422 [hep-ex]].
B. Aubert et al. [BABAR Collaboration], arXiv:0807.4567 [hep-ex].

[31] A. Gordon et al. [Belle Collaboration], Phys. Lett. B 542, 183 (2002) [arXiv:hep-ex/0207007].
K. F. Chen et al. [Belle Collaboration], Phys. Rev. Lett. 91, 201801 (2003) [arXiv:hep-ex/0307014].
J. Zhang et al. [Belle Collaboration], Phys. Rev. Lett. 94, 031801 (2005) [arXiv:hep-ex/0406006].
P. Chang et al. [Belle Collaboration], Phys. Lett. B 599, 148 (2004) [arXiv:hep-ex/0406075].
A. Garmash et al. [Belle Collaboration], Phys. Rev. D 71, 092003 (2005) [arXiv:hep-ex/0412066].
A. Garmash et al. [Belle Collaboration], Phys. Rev. D 75, 012006 (2007) [arXiv:hep-ex/0610081].
K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 95, 141801 (2005) [arXiv:hep-ex/0408102].
A. Garmash et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251803 (2006) [arXiv:hep-ex/0512066].
C. M. Jen et al. [Belle Collaboration], Phys. Rev. D 74, 111101 (2006) [arXiv:hep-ex/0609022].
C. H. Wang et al. [Belle Collaboration], Phys. Rev. D 75, 092005 (2007) [arXiv:hep-ex/0701057].
J. Schumann et al. [Belle Collaboration], Phys. Rev. D 75, 092002 (2007) [arXiv:hep-ex/0701046].
A. Kusaka et al. [Belle Collaboration], Phys. Rev. D 77, 072001 (2008)
I. Adachi et al. [Belle Collaboration], Belle BELLE-CONF-0827 (2008).

[32] D. E. Acosta et al. [CDF Collaboration], Phys. Rev. Lett. 95, 031801 (2005) [arXiv:hep-ex/0502044].

[33] D. M. Asner et al. [CLEO Collaboration], Phys. Rev. D 53, 1039 (1996) [arXiv:hep-ex/9508004].
R. A. Briere et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 3718 (2001) [arXiv:hep-ex/0101032].
T. Bergfeld et al. [CLEO Collaboration], Phys. Rev. Lett. 81, 272 (1998) [arXiv:hep-ex/9803018].
S. J. Richichi et al. [CLEO Collaboration], Phys. Rev. Lett. 85, 520 (2000) [arXiv:hep-ex/9912059].
S. Chen et al. [CLEO Collaboration], Phys. Rev. Lett. 85, 525 (2000) [arXiv:hep-ex/0001009].
C. P. Jessop et al. [CLEO Collaboration], Phys. Rev. Lett. 85, 2881 (2000) [arXiv:hep-ex/0006008].
E. Eckhart et al. [CLEO Collaboration], Phys. Rev. Lett. 89, 251801 (2002) [arXiv:hep-ex/0206024].
B. I. Eisenstein et al. [CLEO Collaboration], Phys. Rev. D 68, 017101 (2003).

[34] S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592, 1 (2004) and 2005 partial update for the 2006 edition available on the PDG WWW pages (http://pdg.lbl.gov/).

[35] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[36] J. Charles et al. [CKMfitter Group], Eur. Phys. J. C 41, 1 (2005) [arXiv:hep-ph/0406184]. Updated results may be found on the web site: http://ckmfitter.in2p3.fr/.

[37] C. W. Chiang, M. Gronau, J. L. Rosner and D. A. Suprun, Phys. Rev. D 70, 034020 (2004) [arXiv:hep-ph/0404073].

[38] S. Barshay, G. Kreyerhoff and L. M. Sehgal, Phys. Lett. B 595, 318 (2004) [arXiv:hep-ph/0405012].

[39] Y. L. Wu and Y. F. Zhou, Phys. Rev. D 71, 021701 (2005) [arXiv:hep-ph/0409221].

[40] Y. Y. Charng and H. n. Li, Phys. Rev. D 71, 014036 (2005) [arXiv:hep-ph/0410005].

[41] X. G. He and B. H. J. McKellar, arXiv:hep-ph/0410098.

[42] Y. L. Wu and Y. F. Zhou, Phys. Rev. D 72, 034037 (2005) [arXiv:hep-ph/0503077].

[43] Y. L. Wu, Y. F. Zhou and C. Zhuang, arXiv:0712.2889 [hep-ph].

[44] H. J. Lipkin, Phys. Lett. B 415, 186 (1997) [arXiv:hep-ph/9710342].
[45] H. J. Lipkin, Phys. Lett. B 433, 117 (1998).

[46] H. J. Lipkin, arXiv:0705.2557 [hep-ph].

[47] M. Bona et al. [UTfit Collaboration], JHEP 0507, 028 (2005) [arXiv:hep-ph/0501199]. Updated results may be found on the web site: http://utfit.roma1.infn.it/.

[48] N. G. Deshpande, X. G. He and J. Q. Shi, Phys. Rev. D 62, 034018 (2000) [arXiv:hep-ph/0002260].

[49] M. Iwasaki, talk presented at the ICHEP 2008 Conference, July 29 - August 5, 2008, Philadelphia, PA.
Mode	BR (×10⁻⁶)	A_{CP}	S
$\rho^-\pi^+$	16.57 ± 4.18 (−0.08)	−0.038 ± 0.041 (2.630)	0.070 ± 0.166 (−0.843)
$\rho^+\pi^-$	7.32 ± 1.98 (0.21)	0.024 ± 0.072 (−1.363)	0.084 ± 0.160 (−0.187)
$\rho^0\pi^0$	1.91 ± 0.79 (0.19)	0.259 ± 0.148 (−)	0.115 ± 0.249 (−)
$\rho^+\pi^0$	11.12 ± 2.99 (−0.15)	−0.026 ± 0.128 (0.415)	−
$\rho^0\pi^+$	8.27 ± 2.42 (0.41)	−0.192 ± 0.099 (0.977)	−
$\rho^0\eta'$	0.52 ± 0.15 (−)	0.109 ± 0.153 (−)	−0.336 ± 0.199 (−)
$\rho^+\eta'$	7.16 ± 2.03 (−0.26)	0.165 ± 0.103 (−0.502)	−
$\omega\pi^0$	2.82 ± 0.99 (−)	0.293 ± 0.132 (−)	−0.094 ± 0.216 (−)
$\omega\pi^+$	7.02 ± 2.23 (−0.25)	0.020 ± 0.075 (−0.993)	−
$\omega\eta$	1.27 ± 0.51 (−)	−0.016 ± 0.179 (−)	−0.360 ± 0.227 (−)
$\omega\eta'$	0.76 ± 0.25 (−)	−0.624 ± 0.285 (−)	−0.511 ± 0.302 (−)
$\phi\pi^0$	0.02 ± 0.01 (−)	0 (−)	0 (−)
$\phi\pi^+$	0.04 ± 0.02 (−)	0 (−)	−
$\phi\eta$	0.01 ± 0.01 (−)	0 (−)	0 (−)
$\phi\eta'$	0.01 ± 0.00 (−)	0 (−)	0 (−)
\bar{K}^0K^0	0.52 ± 0.05 (−)	0 (−)	−
$K^0\bar{K}^0$	0.31 ± 0.04 (−)	0 (−)	−
\bar{K}^0K^+	0.55 ± 0.05 (0.67)	0 (−)	−
$K^+\bar{K}^0$	0.33 ± 0.04 (−)	0 (−)	−
ρ^-K^+	9.21 ± 1.04 (−0.61)	0.082 ± 0.089 (1.128)	−
ρ^0K^0	5.06 ± 1.10 (0.36)	−0.041 ± 0.045 (0.072)	0.766 ± 0.052 (−0.598)
ρ^+K^0	6.70 ± 0.74 (0.90)	0 (−0.706)	−
ρ^0K^+	4.02 ± 0.82 (−0.44)	0.382 ± 0.126 (0.398)	−
$\omega\bar{K}^0$	4.62 ± 1.01 (0.63)	0.033 ± 0.048 (1.690)	0.700 ± 0.054 (−1.040)
ωK^+	6.64 ± 1.27 (0.13)	0.029 ± 0.092 (0.190)	−
$\phi\bar{K}^0$	7.43 ± 1.21 (0.79)	0 (1.533)	0.737 ± 0.043 (−1.699)
ϕK^+	7.96 ± 1.30 (0.53)	0 (0.773)	−
$\bar{K}^0\pi^0$	13.85 ± 4.76 (−16.36)	−0.294 ± 0.078 (1.201)	−
$K^+\pi^-$	9.57 ± 0.72 (0.66)	−0.019 ± 0.057 (−2.104)	−
$K^0\pi^+$	11.14 ± 0.77 (−1.43)	0 (−0.339)	−
$K^+\pi^0$	7.09 ± 3.11 (−0.08)	−0.151 ± 0.164 (0.660)	−
$K^0\eta$	16.72 ± 2.44 (−0.82)	0.162 ± 0.049 (0.560)	−
$K^0\eta'$	4.16 ± 1.56 (−0.30)	0.159 ± 0.150 (−0.954)	−
$K^+\eta$	17.30 ± 2.58 (1.25)	0.070 ± 0.064 (−0.837)	−
$K^+\eta'$	4.34 ± 1.64 (0.28)	−0.027 ± 0.228 (0.933)	−

Table 5: Predicted $B_{d,s}$ decay observables in Scheme (2B). Numbers in the parentheses are the pulls of theory predictions from the current experimental data.
Mode	BR ($\times 10^{-6}$)	A_{CP}	S
$\rho^0\eta$	0.21 ± 0.14 (−)	−0.156 ± 0.123 (−)	−0.731 ± 0.092 (−)
$\rho^0\eta'$	0.42 ± 0.26 (−)	−0.156 ± 0.123 (−)	−0.731 ± 0.092 (−)
$\rho^- K^+$	6.71 ± 1.81 (−)	0.024 ± 0.072 (−)	−
$\rho^0 K^0$	0.24 ± 0.10 (−)	−0.128 ± 0.773 (−)	0.926 ± 0.283 (−)
$\omega \eta$	0.07 ± 0.06 (−)	0.243 ± 0.234 (−)	−0.624 ± 0.195 (−)
$\omega \eta'$	0.13 ± 0.12 (−)	0.243 ± 0.234 (−)	−0.624 ± 0.195 (−)
ωK^0	0.27 ± 0.14 (−)	0.302 ± 0.629 (−)	−0.856 ± 0.331 (−)
$\phi \pi^0$	2.80 ± 1.80 (−)	−0.250 ± 0.121 (−)	−0.451 ± 0.131 (−)
$\phi \eta$	2.35 ± 1.53 (−)	−0.073 ± 0.142 (−)	−0.341 ± 0.174 (−)
$\phi \eta'$	8.47 ± 2.55 (−)	0.096 ± 0.061 (−)	−0.626 ± 0.054 (−)
ϕK^0	0.44 ± 0.07 (−)	0 (−)	0 (−)
$K^* \pi^+$	15.21 ± 3.83 (−)	−0.038 ± 0.041 (−)	−
$\bar{K}^* \pi^0$	4.27 ± 1.36 (−)	−0.064 ± 0.146 (−)	−
$\bar{K}^* \eta$	3.26 ± 0.93 (−)	0.730 ± 0.108 (−)	−
$\bar{K}^* \eta'$	1.99 ± 0.47 (−)	−0.794 ± 0.191 (−)	−
$K^* K^+$	7.79 ± 0.86 (−)	0.073 ± 0.079 (−)	−
$K^* K^-$	8.79 ± 0.66 (−)	−0.018 ± 0.054 (−)	−
$\bar{K}^* K^0$	5.74 ± 0.63 (−)	0 (−)	−
$\bar{K}^* K^0$	9.54 ± 0.66 (−)	0 (−)	−

Table 6: Predicted B_s decay observables in Scheme (2B). Numbers in the parentheses are the pulls of theory predictions from the current experimental data.