Effect of *Helicobacter pylori* infection on gastric mucosal pathologic change and level of nitric oxide and nitric oxide synthase

Yong-Fu Wang, Chun-Lin Guo, Li-Zhen Zhao, Guo-An Yang, Peng Chen, Hong-Kun Wang

INTRODUCTION

There is evidence that *Helicobacter pylori* (*H. pylori*) is closely related with gastric carcinoma, and is considered as the first grade oncogene of gastric carcinoma by World Health Organization (WHO). *H. pylori* infection correlates closely with gastric mucous pathology\[7-11\].

NO is a medium produced in vessel endothelial cells or smooth muscle cells by NOS\[12\]. As an inflammatory medium, NO plays an important role in the physical function and pathological process. Changes of NO in serum and tissue are related with damage to gastric mucosa and *H. pylori* infection\[10-11\].

This study aimed to investigate the changes of NO, NOS and the pathological transformation of gastric mucosa in patients infected with *H. pylori*.

MATERIALS AND METHODS

Patients

Two hundred and eighty-two patients with chronic gastric disease were enrolled in this study. *H. pylori* was detected by both rapid urease test and real-time fluorescent quantitative PCR in these patients. Anti-CagA-IgG was detected in the *H. pylori* positive patients, the serum samples were collected from 50 *H. pylori* positive patients and 35 *H. pylori* negative patients for detection of NO and NOS.

Real-time fluorescent quantitative PCR

Real-time fluorescent quantitative PCR was performed with PCR kit (Da’an Gene Diagnosis Center, Guangzhou). Fluorescence was detected with a type DA620 fluorescent detector.

CagA H pylori-IgG

CagA *H. pylori* IgG was detected according to the manufacturer’s instructions (Shanghai Jingying Biology Corporation).

Measurement of NO and NOS

Because NO could be converted into NO\(_2\) and NO\(_3\) in *vivo*, nitrate reductase was used to deoxidize NO\(_3\) into NO\(_2\), and to determine its concentration. NO and NOS were tested with the kits, (Nanjing Jiancheng Biology Corporation).

Statistical analysis

Data were presented as mean±SD and analyzed with SPSS software. Statistical analysis was performed using two-tailed Student’s *t* test and *χ*\(^2\) test. *P*<0.05 was considered statistically significant.
RESULTS

Relationship between H pylori infection and pathology
Among the 282 cases, H pylori was found in 150 cases, (53.19%), including 38.54% (37/96) in chronic superficial gastritis group, 51.26% (61/119) in atrophic gastritis group, 73.17% (30/41) in intestinal metaplasia group, and 84.62% (22/26) in dysplasia group. The H pylori positive rate in atrophic gastritis group was higher than that in chronic superficial gastritis group (P<0.05), and significantly higher in intestinal metaplasia group and dysplasia group than that in chronic superficial gastritis group (P<0.01, Table 1).

Group	n	H pylori positive	H pylori negative
CSG	16	80.0±14.6	60.0±16.4
CAG	25	95.4±18.4	74.6±19.2
IM	12	91.2±13.9	75.5±27.7
Dysplasia	9	95.3±10.3	71.5±19.6

(a)P<0.05 vs CSG.

Relationship between anti-CagA-IgG and pathology
The anti-CagA-IgG positive rate was 71.33% (107/150) in 150 H pylori positive patients, including 40.54% (15/37) in chronic superficial gastritis group, 75.41% (46/61) in atrophic gastritis group, 86.67% (26/30) in intestinal metaplasia group and 90.91% (20/22) in dysplasia group. The anti-CagA-IgG positive rate in chronic superficial gastritis group was significantly lower than that in the other three groups (Table 2).

Group	n	Concentration
CSG	16	80±14.6
CAG	25	95.4±18.4
IM	12	91.2±13.9
Dysplasia	9	95.3±10.3

(a)P<0.05 vs CSG.

Group	n	Concentration
CSG	16	80±14.6
CAG	25	95.4±18.4
IM	12	91.2±13.9
Dysplasia	9	95.3±10.3

(a)P<0.05 vs CSG.

Relationship between NO, NOS, and pathology
The serum concentration of NO and NOS was 87.6±16.1 µmol/L and 51.4±13.3 µmol/L respectively in H pylori positive group, and 69.8±19.4 µmol/L and 35.2±13.3 µmol/L respectively in H pylori negative group (Table 3).

Group	n	NO(µmol/L)	NOS(µmol/L)
H pylori positive	50	87.6±16.1	51.4±13.3
H pylori negative	35	69.8±19.4	35.2±13.3

(a)P<0.01 vs H pylori negative group.

DISCUSSION

H pylori infection plays a leading role in the pathogenesis of chronic gastritis. Furthermore, H pylori infection is also a high risk factor for the development of gastric cancer[12]. H pylori can destroy gastric mucosa, leading to inflammation of gastric mucosa and digestive symptoms.

Our study showed that the H pylori positive rate in chronic superficial gastritis group was 38.54%, suggesting that H pylori is related to inflammation of gastric mucosa. Other factors may be involved in inflammation of gastric mucosa, such as pH value, mucus, glycoprotein. But in atrophic gastritis group, intestinal metaplasia group, and dysplasia group, the H pylori positive rate was 51.26%, 73.17% and 84.62%, respectively, indicating that H pylori infection has a close relationship with gastric pre-neoplastic diseases, such as atrophy, intestinal metaplasia, and dysplasia.

It was reported that H pylori has two types. Type I H pylori possesses high virulence energy producing cytotoxin-associated protein A and vacuole toxin, which are responsible for inflammatory response of gastric epithelial cells, and promotes cell proliferation and apoptosis[13,14]. Therefore, type I H pylori has a close relationship with development of gastric pre-neoplastic diseases[15-18]. Our study showed that
the pathological change of gastric mucosa was parallel with the anti-CagA-IgG positive rate. These observations support the hypothesis that type I H. pylori infection is a high risk factor for the development of gastric pre-neoplastic diseases.

It has been proved that there are lots of NOS in smooth muscle cells and myenteric nerve plexus of stomach, which are induced to produce endogenic NO by cytotoxins of H. pylori. Moreover, a high pH value is beneficial for anaerobes to colonize in the stomach, and can degrade nitrate of food into nitrite. NO is regarded as an important inflammatory medium, related with acute and chronic inflammatory responses. But NO seems to have both beneficial and harmful effects on different stages of inflammation. In earlier period, NO can relieve mucosal inflammation and prevents cellular damage. However, it can prevent cellular apoptosis, induce mutation and contribute to the development of gastric pre-neoplastic diseases in later period.

In this study, the levels of NO and NOS in chronic superficial gastritis group were significantly lower than those in pre-neoplastic diseases groups, such as atrophic gastritis, superficial gastritis group. However, the levels of NO in pre-neoplastic diseases groups, such as atrophic gastritis, superficial gastritis group were significantly lower than those in other pathological groups, suggesting that the serum level of NO induced by H. pylori may be related with pre-neoplastic diseases. In H. pylori negative patients, the levels of NO in NO and NOS level in every pathological group, but the levels of NO were significantly higher in gastric pre-neoplastic disease groups, showing that other ways may stimulate the producing of NO besides H. pylori in pre-neoplastic diseases. However, we believe that NO plays an important role in the development of pre-neoplastic diseases.

REFERENCES

1 Sepulveda A, Peterson LE, Shelton J, Gutierrez O, Graham DY. Histological patterns of gastritis in H. pylori-infected individuals with a family history of gastric cancer. Am J Gastroenterol 2002; 97: 1365-1370
2 Nogueira C, Figueredo C, Carneiro F, Gomes AT, Barreira R, Figueira P, Salgado C, Belo L, Peixoto A, Bravo LE, Realpe JL, Plaisier AP, Quint WG, Ruiz B, Correa P, van Doorn LJ. Helicobacter pylori genotypes may determine gastric histopathology. Am J Pathol 2001; 158: 647-654
3 Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991; 325: 1127-1131
4 Takeuchi K, Ohno Y, Tsuchiya Y, Ando T, Sekihara M, Hara T, Kuwano H. Helicobacter pylori infection and early gastric cancer. J Clin Gastroenterol 2003; 36: 321-324
5 Antos D, Enders G, Rieder G, Stolle M, Bayerdorffer E, Hatz RA. Inducible nitric oxide synthase expression before and after eradication of Helicobacter pylori in different forms of gastritis. Immunol Med Microbiol 2001; 30: 127-131
6 Yanaka M, Muto H, Fukutomi H, Ito S, Silen W. Role of nitric oxide in restitution of injured guinea pig gastric mucosa in vitro. Am J Physiol 1995; 268 (6 Pt1): G933-942
7 Bredt DS, Hiwling PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351: 714-718
8 Lin HC, Yang MC, Hou MC, Lee FY, Huang YT, Lin LF, Li SM, Hiwling SJ, Wang SS, Tsai YT, Lee SD. Role of endotoxaemia in hyperdynamic circulation in rats with extrahepatic or intrahepatic portal hypertension. J Gastroenterol Hepatol 1996; 11: 422-428
9 Lin RS, Lee FY, Lee SD, Tsai YT, Lin HC, Lu RH, Hsu WC, Huang CC, Wang SS, Lo KJ. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol 1995; 22: 165-172
10 Albillos A, de la Hera A, Gonzalez M, Moya JL, Calleja JL, Monserrat J, Ruiz-del-Arbo L, Alvarez-Mon M. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 2003; 37: 208-217
11 Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet 1991; 337: 776-778
12 Yao YL, Zhang WD. The develop in research of nosogenetic factors of H. pylori. Shijie Huaren Xiaohua Zazhi 2002; 10: 455-458
13 Telford JL, Covacci A, Ghia P, Montecucco C, Rappuoli R. Unravelling the pathogenic role of Helicobacter pylori in peptic ulcer: potential new therapies and vaccines. Trends Biotechnol 1994; 12: 420-426
14 Marchetti M, Arico B, Burroni D, Figura N, Rappuoli R, Ghia P. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 1995; 267: 1655-1658
15 Xiao S, Liu W. More attention to the diversity of clinical outcome in Helicobacter pylori infection. 1thed. Beijing Technol Pub China 2002: 172-176
16 Hu FL, Zhou DY, Jia PQ. The basic and the clinical of Helicobacter pylori infection. 1thed. Beijing Technol Pub China 2000: 593-594
17 Zhang L, Zhang LX, Zhang NX, Liu YG, Yan XJ, Han FC, Huo Y. The case control study of the relationship of Helicobacter pylori CagA and gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2002; 10: 593-594
18 Yang WH, Lin SR, Jin Z. The relationship of Helicobacter pylori nosogenetic factors and gastric mucosa pathology. Zhonghua Xiaohua Zazhi 2000; 1: 56-57
19 Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mousse macrophages produce nitrate and nitrite in response to Escherichis coli lipopolysaccharide. Proc Natl Acad Sci USA 1985; 82: 7738-7742
20 Mannick EE, Bravo LE, Zarama G, Realiel JL, Zhang XJ, Ruiz B, Fontham ET, Mera R, Miller MJ, Correa P. Inducible nitric oxide synthase, nitrosine and apoptosis in helicobacter pylori gastritis. effect of a antibiotics and antioxidants. Cancer Res 1996; 56: 3238-3243
21 Akimoto M, Hashimoto H, Shigemoto M, Yamashita K, Yokoyama I. Changes of nitric oxide and growth factors during gastric ulcer healing. J Cardiovasc Pharmacol 2000; 36(5 Suppl 1): S282-S285
22 Zhang X, Ruiz B, Correa P, Miller MJ. Cellular dissociation of NF-kappaB and inducible nitric oxide synthase in Helicobacter pylori infection. Free Radic Biol Med 2000; 29: 730-735
23 Natanson C, Hoffman WD, Suffredini AF, Eichacker PQ, Danner RL. A therapeutic target in sepsis. Am Intern Med 1994; 120: 778-783