A survey of *Lasioderma serricorne* (Fabricius) in Japanese Dental Clinics

AKARI WATANABE¹*, SATORU TAKAKU², KENJI YOKOTA³, SHUNJI HAYASHI⁴, NAOFUMI TAMAKI⁵, AND SUSUMU KOKEGUCHI⁶

¹Department of Oral Health Care and Rehabilitation, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan

²Department of Health Sciences School of Health and Social Services Saitama Prefectural University, Saitama 343-8540, Japan

³Graduate School of Health Sciences, Okayama University, Okayama 700-8525, Japan

⁴Kitasato University Graduate School of Medical Sciences, Kanagawa 252-0373, Japan

⁵Department of Preventive Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan

⁶Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan

Received 6 June, 2018/Accepted 31 October, 2018

This study was to survey the capturing rate in Japanese dental clinics of the *Lasioderma serricorne* (cigarette beetles), and to evaluate the beetle’s potential as a carrier for transmission of nosocomial pathogens. *L. serricorne* imagoes were captured in pheromone traps in 14 Japanese dental clinics in August and September 2012 and 2013, and their numbers recorded. Polymerase chain reaction (PCR) for the bacterial antibiotic-resistant genes *mecA*, *vanA*, *vanB*, *blaIMP*, and *blaVIM* was performed on the captured *L. serricorne* imagoes. Bacterial species in the captured specimens were identified by 16S rRNA PCR and sequencing analysis. The *L. serricorne* imagoes were captured from 10 dental clinics (71.4%). We failed to detect the presence of nosocomial antibiotic-resistant pathogens in *L. serricorne* imagoes. The bacterial species detected most commonly in the imagoes was *Wolbachia* sp., an intracellular proteobacterium infecting certain insect species. Monitoring of insects including *L. serricorne* should be incorporated into regiment of the infection control.

Key words : The cigarette beetle *Lasioderma serricorne* (Fabricius) / Dental clinic / Survey the incidence / Environmental hygiene monitoring.

Insects carrying pathogenic bacteria are found worldwide. In recent years, some insects and mites in Japan have been found to carry dangerous pathogenic bacteria, and deaths in people bitten by ticks and mosquitoes have become a problem (Ministry of Health, Labour and Welfare, 2016; Sajjo, 2014).

Lasioderma serricorne (Fabricius) commonly known as the cigarette beetle, is a very small, pale brown beetle (about 2 to 3 mm long). It is distributed worldwide and is a pest of stored tobacco and cigarettes. It often causes serious insect damage, because it is a ubiquitous and destructive pest that feeds on dried foods, including vegetables, cereals, dried fruit, flour, seeds, and some animal products such as dried bonito (Matsuda et al., 2002; Verma, 2011). *L. serricorne* prefers to live in dense urban areas such as schools, hospitals, and shops than in pre-urban and semi-rural areas such as forests (Kawakami and Kase, 1998).

Not only *Aspergillus ochraceus*, which has the ability to produce high toxic ochratoxin, but also *Staphylococcus epidermidis* and *Peptostreptococcus octavius* have been isolated from the abdominal surface of *L. serricorne* imagoes (Kawakami et al., 2002; Kawakami et
The isolation of several bacteria and fungi which can be carried by *L. serricorne* imagos indicates that the beetle is capable of carrying pathogenic bacteria. Accordingly, it may pose serious problems in regard to the transmission and prevalence of infectious diseases.

The aim of this study was to survey the capturing rate of *L. serricorne* imagos in Japanese dental clinics and to evaluate its potential as a carrier for the transmission of nosocomial pathogens.

L. serricorne imagos were captured in pheromone traps (New Serrico: Fuji Flavor Co., Ltd.) in fourteen Japanese dental clinics in August and September, 2012 and 2013. Three pheromone traps were set on the wall at height of 1.5 m from the floor around the dental unit in each dental clinic for a month. The every pheromone traps were collected after setting for a month and replaced with new ones. And, the numbers of *L. serricorne* imagos collected every month were recorded.

L. serricorne imagos in a pheromone trap are shown in Figure 1, and the numbers of *L. serricorne* imagos captured are shown in Table 1.

The *L. serricorne* imagos were captured from ten of fourteen dental clinics (71.4%). The average number of *L. serricorne* imagos captured in Japanese dental clinics during August and September was 20 (range, 0 to 69) in 2012 and 37 (range, 0 to 150) in 2013.

Further, eight of *L. serricorne* imagos randomly selected from three traps which were set at each dental clinic, collected every month. All eight selected were mixed, and grinded down using a disposable homogenizer with 200 µL InstaGene Matrix (Bio-Rad Laboratories, Hercules, CA, USA). Bacterial DNA was extracted in accordance with the manufacturer’s instructions and used for polymerase chain reaction (PCR).

The antibiotic-resistant bacteria, methicillin-resistant *Staphylococcus aureus* (MRSA), multi-drug resistant *Pseudomonas* (MDRP), extended-spectrum beta-lactamase (ESBL)-producing bacteria, and VRE, were detected by PCR by amplification of the *mecA*, *bla*IMP, *bla*VIM, *bla*TEM, *vanA*, and *vanB* genes, as previously described (Henriques et al., 2006; Kariyama et al., 2000; Murakami et al., 1991).

After being stained with ethidium bromide, the amplified bands were observed under UV transillumination.

The InstaGene Matrix (Bio-Rad, Hercules, CA, USA) was used for DNA extraction from the homogenate of *L. serricorne* imagos.

A 16S rRNA fragment of approximately 600 bp was amplified by PCR using the primers 341f (5’-CCTACGGGA GGC AGC AG-3’) and 907r (5’-CCG TCA ATT CMT TTR AGT TT-3’) (Tsuneishi et al., 2006). The amplified DNA fragments were cloned by using a TOPO TA Cloning Kit (Invitrogen, Carlsbad, CA, USA) in accordance with the manufacturer’s instructions. DNA sequencing was performed with a BigDye cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) and an automated DNA sequencer (3130xl Genetic Analyzer; Applied Biosystems). The sequence data were analyzed by using the BLAST sequence homology search program of GenBank. Bacterial species were identified at identity values above 99%.

The results were bacterial antibiotic-resistance genes were not detected in the *L. serricorne* imagos samples. Also, the bacterial species detected most commonly by
In this study, *Wolbachia* sp., *B. cereus* and *B. subtilis* could be detected from the extracts of the captured *L. serricorne* imagoes. However, it was difficult to distinguish their distribution within or on the surface of the insects by these methods. It is necessary to improve the methods for bacterial identification in order to solve this problem.

L. serricorne is an urban insect adapted to human life, and it is regarded as a food insect pest because of its predilection for dry foods. In 2012 we collected a total of 285 *L. serricorne* imagoes from Japanese dental clinics, whereas in 2013 we collected 508. Therefore, these clinics are viable habitats of *L. serricorne*.

However, the reason for differences of the captured number of *L. serricorne* imagoes among tested Japanese dental clinics are complex and uncertain, even though it might be dependent on their architectural styles or the cleanliness in dental clinics. In addition, *L. serricorne* may be also due to the airtightness of the building, because it also lives outdoors. In this study, the possible reason that four dental clinic (3~6 in Table 1) had no captured *L. serricorne* imagoes appears 16S rDNA sequence analysis in the imagoes was *Wolbachia* sp., an intracellular proteobacterium known to infect certain insect species. The sequence data were analyzed using the BLAST sequence homology search program at GenBank, and the organism was confirmed to have 100% homology with the published sequence of the *Wolbachia endosymbiont* strain AL01 16S ribosomal RNA gene (Gen-Bank Accession No.KX385013.1) and 100% homology with the *Wolbachia pipiens* strain a.alb6-Marseille 16S ribosomal RNA gene (GenBank Accession KX155506.1). *Wolbachia* sp. was detected in all dental clinics (100%), whereas *Bacillus cereus* and *Bacillus subtilis* were also detected in six clinics (60%) and eight clinics (80%) of the tested ten dental clinics, respectively.

Eight *L. serricorne* imagoes were randomly selected from the captured samples and grinded down all in one piece for the bacterial identification. So, the results of this study could not mention which *L. serricorne* imagoes possessed *Wolbachia* sp., *B. cereus* or *B. subtilis*, but might indicate only bacterial distributions in dental clinics by the *L. serricorne* imagoes.

Table 1

No.	Location of Dental Clinic	Architectural styles of Dental Clinic	2012	2013				
1	Okayama Prefecture, Okayama City	A: Steel-framed reinforced concrete building	Aug 17	Sep 14	Aug 52	Sep 14		
2	Okayama Prefecture, Shoja City	B: Wooden mortar wall building	B: Detached house type clinic	Sep 15	Aug 1	Sep 27	Aug 15	
3	Okayama Prefecture, Tomata County	C: Reinforced concrete building	C: Building tenant type clinic	C: Dedicated building type clinic	Sep 0	Aug 0	Sep 0	Aug 0
4	Okayama Prefecture, Tomata County	B: Wooden mortar wall building	B: Detached house type clinic	B: Dedicated building type clinic	Sep 0	Aug 0	Sep 0	Aug 0
5	Okayama Prefecture, Maniwa County	C: Reinforced concrete building	C: Dedicated building type clinic	C: Dedicated building type clinic	Sep 0	Aug 0	Sep 0	Aug 0
6	Okayama Prefecture, Tomata County	C: Reinforced concrete building	C: Dedicated building type clinic	C: Dedicated building type clinic	Sep 0	Aug 0	Sep 0	Aug 0
7	Okayama Prefecture, Okayama City	B: Wooden mortar wall building	B: Detached house type clinic	B: Dedicated building type clinic	Sep 9	Aug 1	Sep 9	Aug 5
8	Okayama Prefecture, Okayama City	B: Wooden mortar wall building	B: Detached house type clinic	B: Dedicated building type clinic	Sep 0	Aug 2	Sep 1	Aug 4
9	Kagawa Prefecture, Ayauta Country	A: Steel-framed reinforced concrete building	A: Dedicated building type clinic	A: Dedicated building type clinic	Sep 11	Aug 10	Sep 12	Aug 16
10	Hiroshima Prefecture, Mihara City	B: Wooden mortar wall building	B: Detached house type clinic	B: Dedicated building type clinic	Sep 30	Aug 34	Sep 49	Aug 47
11	Hyogo Prefecture, Kobe City	C: Reinforced concrete building	C: Dedicated building type clinic	C: Dedicated building type clinic	Sep 16	Aug 28	Sep 33	Aug 31
12	Hyogo Prefecture, Amagasaki City	C: Reinforced concrete building	C: Dedicated building type clinic	C: Dedicated building type clinic	Sep 27	Aug 42	Sep 60	Aug 90
13	Hyogo Prefecture, Mita City	B: Wooden mortar wall building	B: Dedicated building type clinic	B: Dedicated building type clinic	Sep 11	Aug 4	Sep 25	Aug 8
14	Hyogo Prefecture, Kakogawa City	D: Light gauge steel framed building	D: Dedicated building type clinic	D: Dedicated building type clinic	Sep 10	Aug 3	Sep 7	Aug 3

The numbers of *L. serricorne* imagoes represent total captured value of the three pheromone traps.
to be due to their location, where are located at highlands in the northern part of Okayama Prefecture. The temperatures are low around there in the summer season when compared to the area in other dental clinics.

Dental treatments often involve surgical procedures using dental instruments (air/water syringes, high-speed turbines, micromotors). They produce sprays containing patient-derived infectious agents such as blood, saliva, and oral microorganisms (Cristina et al., 2008; Perdelli et al., 2008; Rautemaa et al., 2006). Patient blood, saliva and oral microorganisms can be spread as aerosols and droplets during dental treatment; these media are potentially infectious and are sources of cross-contamination (Watanabe et al., 2018). Therefore, it is conceivable that there are many highly pathogenic microorganisms in the dental treatment environment.

In recent years, several fungi and bacteria have been detected on the body surface and in the alimentary canal of *L. serricorne* imagoes, which has therefore attracted attention as a sanitary pest. Therefore, it is assumed the risk that the pathogenic microorganisms of the dental clinics are carried by *L. serricorne* imagoes.

For example, Moth flies *Clogmia albipunctata* (Diptera: Psychodidae) inhabiting hospitals play a role as vectors of pathogenic bacteria (Faulde and Spiesberger, 2013). In addition, antibiotic-resistant bacteria such as MRSA have been isolated from bedbugs and cockroaches (Lowe and Romney, 2011; Soureshjani and Doosti, 2013). In view of nosocomial infection control, the survey of the antibiotic-resistant bacteria is important. In this study, the antibiotic-resistant genes mecA, blalMP, blavIM, blavTEM, vanA, and vanB were not detected in *L. serricorne* imagoes samples. However, it is a concern that *L. serricorne* present in dental treatment environments with high contamination status could still carry a wide range of pathogenic microorganisms. A case of *L. serricorne* spawning and growth in the room has been reported (Miyanoshi et al., 2004). There are dental materials also include dry powders such as those made from seaweed. Therefore, it is likely that *L. serricorne* may feed them, and propagate itself in dental clinics. We therefore consider it necessary to pay full attention to the life cycle of *L. serricorne*. Growth is related to temperature: in Japan, the population of *L. serricorne* is highest in summer, when it is warmest (Nakan, 2000). In addition, *L. serricorne* is tolerant of otherwise-lethal high temperatures of 50°C; high temperatures are sublethal to all stages of its life cycle (egg, pupa, larva, adult) (Li et al., 2018). In areas or countries with high ambient temperatures it is therefore possible that *L. serricorne* will survive and grow. Furthermore, changes in temperature and precipitation due to abnormal weather conditions can affect the abundance and distribution of bacterial carriers such as *L. serricorne* and thus have serious implications for the transmission and prevalence of infectious diseases.

In this study, it was revealed that *L. serricorne* imagoes invaded many Japanese dental clinics. There are many places in the medical environment where there is insufficient hygiene maintenance by visual confirmation. Therefore, we would like to propose that surveys of monitoring of insects including *L. serricorne* should be incorporated into infection control regimens.

ACKNOWLEDGMENT

This work was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (KAKENHI Grant Number 17K12008). We thank the staff of the Dental clinic for their continued enthusiasm and commitment to the intervention described here.

REFERENCES

Cristina, M. L., Spagnolo, A. M., Sartini, M., Dallera, M., Ottria, G., Lombardi, R., and Perdelli, F. (2008) Evaluation of the risk of infection through exposure to aerosols and splatters in dentistry, *Am J Infect Control*, 36, 304-307.

Faulde, M., and Spiesberger, M. (2013) Role of the moth fly *Clogmia albipunctata* (Diptera: Psychodidae) as a mechanical vector of bacterial pathogens in German hospitals. *J Hosp Infect*, 83, 51-60.

Henriques, I. S., Fonseca, F., Alves, A., Saavedra, M. J., and Correia, A. (2006) Occurrence and diversity of integrons and beta-lactamase genes among ampicillin-resistant isolates from estuarine waters. *Res. Microbiol.*, 157, 938-947.

Kariyama, R., Mitsuhata, R., Chow, J. W., Clewell, D. B., and Kuman, H. (2000) Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. *J. Clin. Microbiol.*, 38, 3092-3095.

Kawakami, Y. and Kase, Y. (1998) Investigation of Habitat of Cigarette Beetles in Residential Houses and Forest Areas. *House and Household Insect Pests.*, 20, 1-9 (In Japanese).

Kawakami, Y., Shimizu, I., and Takahashi, H. (2002) Some fungi isolated from the cigarette beetles, *Lasioderma serricorne* Fabricius (Coleoptera: Anobiidae) in Japan. *Med. Entomol. Zool.*, 53, 249-256 (In Japanese).

Kawakami, Y., Hondo, T., Yoned, A., Shoji, K., Shimizu, I., and Inoue, T. (2004) Some Bacteria and Yeasts isolated from the Cigarette Beetles, *Lasioderma serricorne* Fabricius (Coleoptera: Anobiidae) in Japan. *House and Household Insect Pests.*, 26, 135-143 (In Japanese).

Li, M., Li, X. J., Lü, J. H., and Huo, M. F. (2018) The effect of acclimation on heat tolerance of *Lasioderma serricorne* (Fabricius) (Coleoptera: Anobiidae). *J Therm Biol.*, 71, 153-157.

Lowe, C. F., and Romney, M. G. (2011) Bedbugs as vectors for drug-resistant bacteria. *Emerg Infect Dis.*, 17, 1132-1134.

Matsuda, A., Kawakami, Y., and Iwano, H. (2002) Effects of foodstuffs on the growth of the cigarette beetle, *Lasioderma serricorne* Fabricius (Coleoptera: Anobiidae). *House and
A SURVEY OF LASIODERMA SERRICORNE

Orlando, P. (2008) Evaluation of contamination by blood aerosols produced during various healthcare procedures. J Hosp Infect., 70, 174-179.

Rautemaa, R., Nordberg, A., Wuolijoki-Saaristo, K., and Meurman, J.H. (2006) Bacterial aerosols in dental practice - a potential hospital infection problem?. J Hosp Infect., 64, 76-81.

Saijyo, M. (2014) Severe Fever with Thrombocytopenia Syndrome in Japan: Challenges for the Future. The Japanese Society of Internal Medicine., 103, 2581-2586 (In Japanese).

Soureshjani, E. H., and Doosti, A. (2013) Examination methicillin-resistant Staphylococcus aureus (MRSA) prevalence in cockroaches from hospital in Chaharmahal-va-Bakhtiari province, Iran by polymerase chain reaction (PCR). Int J Med Med Sci., 5, 324-329.

Tsuneishi, M., Yamamoto, T., Kokeguchi, S., Tamaki, N., Fukui, K., and Watanabe, T. (2006) Composition of the bacterial flora in tonsilloliths. Microbes Infect., 8, 2384-2389.

Verma, S. C. (2011) Record of cigarette beetle Lasioderma serricorne F (coleoptera: Anobiidae) on onion seeds. J. Farm Sc., 1, 59-60.

Watanabe, A., Tamaki, N., Yokota, K., Matsuyama, M., and Kokeguchi, S. (2018) Use of ATP Bioluminescence to Survey the Spread of Aerosol and Splatter during Dental Treatment. J Hosp Infect., 99, 303-305.