In this provocative commentary, we consider several questions posed by the late chronic myeloid leukaemia (CML) expert Prof. Michele Baccarani, which he challenged us to address after his death. He noted only a small proportion of people with chronic phase CML receiving tyrosine kinase-inhibitor (TKI)-therapy are likely to achieve sustained therapy-free remission (TFR) and even fewer are likely to be cured. Persons most likely to fail TKI-therapy can be identified at diagnosis or soon after starting TKI-therapy. These persons are likely to need lifetime TKI-therapy with attendant risks of adverse events, cost and psychological consequences. Allogeneic transplants achieve much higher rates of leukaemia-free survival compared with TKI-therapy but are associated with transplant-related adverse events including an almost 20 percent risk of transplant-related deaths within 1 year post-transplant and a compromised quality-of-life because of complications such as chronic graft-versus-host disease. Subject-, disease- and transplant-related co-variates associated with transplant outcomes are known with reasonable accuracy. Not everyone likely to fail TKI-therapy is a transplant candidate. However, in those who candidates are physicians and patients need to weigh benefits and risks of TKI-therapy versus a transplant. We suggest transplants should be more often considered in the metric when counseling people with chronic phase CML unlikely to achieve TFR with TKI-therapy. We question whether we are discounting a possible important therapy intervention; we think so.

Leukemia (2022) 36:1227–1236; https://doi.org/10.1038/s41375-022-01522-3

Scientists who fall deeply in love with their hypothesis are proportionately unwilling to take no as an experimental answer.

Sir Peter Medawar

INTRODUCTION
Before the development of imatinib and other tyrosine kinase-inhibitors (TKIs) allogeneic haematopoietic cells transplants were a common intervention in chronic phase chronic myeloid leukaemia (CML) in appropriate persons and were the only approach to cure. With the remarkable success of TKI-therapy transplants for chronic phase CML became rare with less than 300 reported to the Centre for International Blood and Marrow Research (CIBMTR) in 2014–2016. However, it’s become clear that despite excellent survivals with TKI-therapy in many but not all countries only a small proportion of people are likely to achieve therapy-free remission (TFR) and even fewer cured. There is also considerable debate over the most appropriate target of TKI-therapy. Should it be population-adjusted survival, TFR or cure? When population-adjusted survival is the target transplants are unlikely to be better than TKI-therapy in most, but not all persons such as those failing to respond to TKI-therapy and those with some ABL1 mutations, high-risk additional cytogenetic abnormalities (ACAs) and/or with other signs of leukaemia progression. Also, when the goal of TKI-therapy is TFR or cure transplants may be appropriate for some persons. In this Perspective, we present 10 questions for future research on the roles of TKI-therapy and transplants in chronic phase CML, questions raised by the late CML expert Prof. Michele Baccarani.

WHAT IS THE APPROPRIATE GOAL OF CML THERAPY?
The optimal goal of CML therapy is cure resulting in normal sex- and age-adjusted survival with a normal quality-of-life (QoL) [1–3]. Unfortunately, cure is achieved in few people with CML [4, 5]. An intermediate goal is achieving near normal age- and sex-matched adjusted survival off tyrosine kinase inhibitor (TKIs)-therapy referred to as therapy-free remission (TFR) [2–10].

ARE TKI THERAPY GOALS CHANGING AND WHICH TKI IS BEST TO ACHIEVE WHICH GOAL?
Several TKIs are commercially available to treat CML in many but not all countries and at considerably different costs [11]. Imatinib,
nilotinib, dasatinib, bosutinib and, in Korea, radotinib are approved for initial therapy, and ponatinib and asciminib in the US for 2nd and 3rd-line therapies [2, 7–9, 12–14]. Imatinib is less potent and does not inhibit several BCR::ABL1 mutations many of which are sensitive to the other TKIs except BCR::ABLT315I which is inhibited only by ponatinib and asciminib [14–16]. All TKIs cause adverse events, with some clinically relevant differences particularly for cardio-vascular and pulmonary complications. Imatinib is the safest [17]. Safety profiles of TKIs are considered largely manageable with favourable benefit-to-risk ratios. Cost and compliance are also important considerations and often influence TKI choice, especially in resource-poor geospaces [6, 17–21].

The therapeutic strategy for CML when imatinib was the only approved TKI was simple. After nilotinib and dasatinib were approved for initial therapy and bosutinib and ponatinib for subsequent therapy, several different strategies were developed, followed by debate and competition [22–32]. This competition is mainly over which TKI is the best initial therapy in the context of faster, deeper molecular responses obtainable with 2nd-generation TKIs (2G-TKIs; nilotinib, dasatinib, bosutinib) and over the switch from imatinib to 2G-TKIs if there is a sub-optimal response to imatinib [2, 6–9, 19]. This is important because molecular response, particularly major molecular response (MMR; BCR::ABL1 ≤ 0.1% on the International Scale) is widely considered the best surrogate for survival [31, 32]. However, there are no convincing data supporting the initial use of a 2G-TKI being associated with better progression-free survival (PFS), probability of achieving TFR or survival [2, 7–9, 23]. Consequently, whether the advantage of 2G-TKIs over imatinib in achieving faster and deeper molecular responses translates into a higher rate of TFR and operational cures remains unproven and can only be tested in a randomized controlled trial [2, 7–9, 21]. Such a trial is unlikely to be done.

ARE CURRENT RECOMMENDATIONS FOR TKI-THERAPY APPROPRIATE?

CML therapy recommendations are continuously modified with success inviting to more ambitious goals. Five-year survival of persons with CML is now 80–90% in the European geospaces, with about one-half of deaths occurring from unrelated causes [1, 33]. Survival is like that of sex- and age-adjusted people without CML in Europe, but not in the US and certainly not in resource-poor countries [33]. Considerable data suggest people with CML achieving a stable deep molecular response (DMR; ≥MR4; 4-log BCR::ABL1 transcript decrease from the standardized baseline, corresponding to a transcript level ≤0.01% on the International Scale) can discontinue therapy, about one-half of whom achieving TFR [34–49]. The clinical advantage of TFR over lifelong TKI-therapy is obvious, but the road to achieving this goal is not simple, cheap or rewarding for everyone. Some people choose not to stop TKI therapy for diverse reasons, usually fear of leukaemia recurrence [50].

There is controversy on how to best use TKIs. Which are the best and most cost-effective strategies to achieve TFR, to optimize survival and improve QoL [2, 7–9, 35, 36, 38, 41–46]? Which strategy (ies) should be used when someone does not meet proposed TKI stopping criteria or fails because of molecular, cytogenetic and/or haematological leukaemia recurrence? How can we limit adverse events (AEs) associated with lifelong TKI-therapy and complications of more intensive therapies aimed at achieving TFR? Put otherwise, the main issues are: which TKI, at what dose and for how long, alone or with other drugs? But there is another important consideration.

Table 1. MR response rates (percentage) by or at 3-, 5- and 10-years from initial TKI therapy. Only studies with ≥ 3-year follow-up are displayed. All rates are ‘by’ except for those reported for Guilhot et al. [27].

Ref.	Study	Initial TKI	N	Median age (y)	3-y MR4 rate	5-y MR4 rate	10-y MR4 rate
De Lavalade et al. [88]	Hammersmith	IM 400	204	46	15	20	NR
Castagnetti et al. [89]	GIMEMA	IM 400/800	559	52	25	61	NR
O’Brien et al. [29]	UK SPIRIT 2	IM 400	407	53	NR	57	NA
Hochhaus et al. [24], Kantarjian et al. [26]	ENESTnd	IM 400	283	46	26	42	50
Zhang et al. [69]	Peking	IM 400	1379	40	NR	NR	54c
Guilhot et al. [27]	French SPIRIT	IM 400	223	50	36	37	40
Hehlmann et al. [30, 31]	German Study IV	IM 400	400	53	49	66	81
Guilhot et al. [27]	French SPIRIT	IM 400 + LDAC	172	51	35	41	48
Hehlmann et al. [30, 31]	German Study IV	IM 400 + LDAC	158	51	49	68	86
Guilhot et al. [27]	French SPIRIT	IM 400 + IFNα	221	55	44	48	40
Hehlmann et al. [30, 31]	German Study IV	IM 400 + IFNα	430	53	51	67	83
Guilhot et al. [27]	French SPIRIT	IM 600	171	51	36	49	50
Hehlmann et al. [30, 31]	German Study IV	IM 800	420	51	59	69	81
Geelen et al. [90]	Dutch	IM 400, NIL 600, DAS 100	434	58	41	69	NA
O’Brien et al. [29]	UK SPIRIT 2	DAS 100	407	52	NR	78	NA
Hochhaus et al. [24], Kantarjian et al. [26]	ENESTnd	NIL 600	282	47	50	66	70
Gugliotta et al. [91]	GIMEMA	NIL 600/800	472	52	76	NR	NA
Gugliotta et al. [92]	GIMEMA	NIL 800	73	51	70	76	83
Hochhaus et al. [24], Kantarjian et al. [26]	ENESTnd	NIL 800	281	47	44	63	68
Masarova et al. [93]	MDACC	NIL 800	122	51	66	73	82

TKI doses are in mg/d. Percentages are rounded.

MR4 BCR::ABL1 ≤ 0.01% IS, IM imatinib, NIL nilotinib, DAS dasatinib, IFNα interferon-α, LDAC low dose cytarabine, NR not reported, NA not available, GIMEMA Gruppo Italiano Malattie Ematologiche dell’Adulto, JALSG Japan Adult Leukemia Study Group, MDACC MD Anderson Cancer Center.

a2-y, b6-y, c7-y, d4-y.
TKI-therapy rarely cures CML, as we discussed elsewhere [5]. If so, should the only therapy of CML be TKIs?

HOW QUICKLY IS DEEP MOLECULAR RESPONSE ACHIEVED WITH TKI-THERAPY?

Achieving a stable DMR (BCR::ABL ≤ 0.01% on the International Scale) is widely considered to be necessary before stopping TKI-therapy [2, 7–9, 22, 26, 27, 34–37, 43–46]. DMR rates in 30 cohorts of newly-diagnosed subjects receiving different TKIs at different doses, alone or with other drugs such as interferon-alfa (IFNα) or low-dose cytarabine, are displayed in Table 1. These rates, typically reported as probability of achieving a DMR within a specified MR4.5 are 5–35% and 35–70% (Table 2). Interestingly, although achieving MR4 is universally considered as a critical target, reported DMR rates vary widely with the same therapy and doses, alone or with other drugs such as interferon-alfa (IFNα) or low-dose cytarabine, are displayed in Table 1. These rates, typically reported as probability of achieving a DMR within a specified interval rather than as proportion of subjects achieving a DMR, over-estimate the proportion of subjects eligible to discontinue TKI therapy. These studies report rates of 20–70% with imatinib-based regimes and 60–80% with 2G-TKIs. Comparably, 5-year rates of MR4.5 are 5–35% and 35–70% (Table 2). Interestingly, although achieving MR4 is universally considered as a critical target, reported DMR rates vary widely with the same therapy and despite of standardization of real-time quantitative polymerase chain reaction (RT-qPCR), used for response assessment.

HOW MANY PEOPLE CAN SUCCESSFULLY DISCONTINUE TKI THERAPY?

Expert consensus statements and clinical practice guidelines recommend >5 years of imatinib and >3 to 5 years of a 2G-TKI, with a response ≥ MR4 for ≥2 years [2, 7–9, 38, 44, 46, 48, 49].

Convincing data supporting these recommendations are lacking [10]. If applying these criteria, only about 45% of people receiving imatinib might achieve MR4 at 3 years. Assuming they remain in MR4 for other 2 years it can be estimated that about 45% would become eligible to stop TKI therapy at ≥ 5 years. In persons receiving 2G-TKIs alone or with other drugs, this estimate is only slightly higher, about 50%. Combining these data only 10–25% of people will be eligible to stop TKI-therapy, which can be estimated to be successful in about one-half of people or about 10% of everyone with chronic phase CML (see below).

Many studies have reported the rate of TFR on > 2000 subjects cumulatively, but the real rate of successful TKI-stopping in persons with newly-diagnosed chronic phase CML is rarely reported. We estimate this proportion in Table 3 along with the proportion still in TFR at last contact at only 10–25%.

ARE SURVIVAL RESULTS OF TKI-THERAPY ADEQUATE?

Survival from diagnosis is the most reliable study endpoint because it requires no further definition and time-to-event data are evaluable in almost all subjects. In contrast, definitions of other endpoints such as failure-free survival (FFS), progression-free survival (PFS) and CML-related survival differ between studies. For example, identifying the cause(s) of death may be subjective and difficult to accurately ascertain in retrospective analyses. Survival data of newly-diagnosed people initially treated with TKIs are reasonably consistent with 1- and 2-year survivals of >95% and 5-, 5- and 10-year survivals >80% in persons receiving imatinib or a 2G-TKI as initial therapy (Table 4).

Table 2. MR4.5 response rates (percentage) by or at 3-, 5- and 10-years. Only studies with ≥3 years follow-up. All rates are ‘by’ except for those reported for Guilhot et al. [27].

Ref.	Study	Initial TKI	N	Median age (y)	3-y MR4.5 rate	5-y MR4.5 rate	10-y MR4.5 rate
De Lavallade et al. [5]	Hammersmith	IM 400	204	46	0.01%	0.01%	NR
Branford et al. [22]	Adelaide	IM 400/600/800	423	NR	NR	NR	52%
Cortes et al. [25]	DASISION	IM 400	260	49	0.0%	0.0%	13
Hochhaus et al. [24], Kantarjian et al. [26]	ENESTnd	IM 400	283	46	0.0%	0.0%	15
Zhang et al. [69]	Peking	IM 400	1373	41	0.0%	0.0%	43%
Guilhot et al. [27]	French SPIRIT	IM 400	223	50	35	49	67
Hehlmann et al. [30, 31]	German Study IV	IM 400	401	53	35	49	67
Guilhot et al. [27]	French SPIRIT	IM 400	172	51	22	22	34
Hehlmann et al. [30, 31]	German Study IV	IM 400	158	51	31	50	70
Guilhot et al. [27]	French SPIRIT	IM 400	221	55	26	33	29
Hehlmann et al. [30, 31]	German Study IV	IM 400	430	53	38	54	74
Guilhot et al. [27]	French SPIRIT	IM 600	171	51	24	31	36
Hehlmann et al. [30, 31]	German Study IV	IM 800	399	52	43	58	71
Etienne et al. [43]	French SPIRIT	IM 400	398	62	31%	40%	52%
Geelen et al. [90]	Dutch	IM 400	434	58	30%	56%	57
Cortes et al. [25]	DASISION	DAS 100	259	46	20	42	NA
Matsumura et al. [28]	JALSG	DAS 100	227	53	45	NA	NA
Cornet et al. [26]	ENESTnd	NIL 600	282	47	32	54	61
Masarova et al. [93]	MDACC	NIL 800	281	47	28	52	61

TKI doses are in mg/d. Percentages are rounded. MR4.5 BCR::ABL ≤ 0.0032%. Other abbreviations as in Table 1.

*8-y; 7-y, 6-y, 5-y, 4-y, 3-y, 2-y, 1-y, 0-y, sustained (at least 24 months), rates of ‘complete molecular response (CMR)’ defined as two consecutive samples with no detectable transcripts.
Table 3. Percentage of newly-diagnosed CML patients meeting TKI discontinuation criteria and achieving stable TFR. Discontinuation and TFR criteria are arbitrarily defined, differ between studies and are often not pre-specified. Data are from retrospective analyses.

Ref	Study	Initial TKI	Median follow-up (y)	Met discontinuation criteria	Discontinued Achieved Stable TFR
Branford et al. [22]	Adelaide IM 400/600/800	423	8	37% NR NR	
Geelen et al. [90]	Dutch IM 400 (75%), 2GTKIs (25%)	382	10	31% 10% NR	
Flygt et al. [48]	Swedish Mainly IM 400	548	9	NR 23% 12%	
Etienne et al. [43]	French Mainly IM 400	398	7	10% –55% 46% 12%	
Kantarjian et al. [26]	ENESTnd IM 400	283	10	30% NR NR	
Guilhot et al. [27]	French SPIRIT IM 400 + LDAC or IFN or IM 600	787	13.5	44% 18%	
Kantarjian et al. [26]	NIL 600	281	10	49% 47%	

TKI doses are in mg/d. Percentages are rounded.

Abbreviations as in Table 1. 2GTKIs: second-generation TKIs.

WHAT ARE RESULTS OF ALLOGENEIC HAEMATOPOIETIC CELL TRANSPLANTS AND HAVE THEY IMPROVED?

CML transplants, once the most common transplant indication, are now uncommon. In 2020, <200 of >10,000 allotransplants reported to the CIBMTR were for CML, done mostly in persons in accelerated or blast phases. Outcomes from several transplant centres and registries of transplant outcomes in persons with chronic phase CML mostly done before 2012 are displayed in Table 5. A 5-year survival, not leukaemia-free survival (LFS), of about 60% is reported by the CIBMTR in 1,445 subjects with CML in chronic phase receiving transplants from HLA-identical siblings (Fig. 1). Goldman et al. [51] reported data from 2,221 persons in chronic phase CML receiving transplants from HLA-identical siblings (N = 1,692) or HLA-matched unrelated donors (N = 639) alive and leukaemia-free at 5 years posttransplant. Ten- and 15-year posttransplant LFS were 91% (95% Confidence Interval [CI], 90, 92%) and 83% (81, 85%). Comparable cumulative incidences of relapse (CIR) were 4% (3, 5%) and 7% (5, 8%). There was a slow but steady relapse risk after 5 years posttransplant with the latest relapse at 18 years. These data indicate a high cure in persons alive and without relapse at 5 years posttransplant.

Because these data are predominately from the pre-TKI era, we analyzed CIBMTR data from the 238 transplants done between 2014 and 2016 in persons with CML in 1st chronic phase from all donors. One-year non-relapse mortality (NRM) was 17% (12, 23%). Five-year CIR was 18% (13, 23%) with almost all relapses with the 1st year posttransplant. 5-year survival was 68% (61, 74%). These outcomes very likely reflect strong selection biases operating in both directions. First, persons responding poorly to TKI-therapy are more likely to receive a transplant than good responders. In contrast, transplants were likely done in young persons with a good performance score, well-matched donors and few comorbidities. Consequently, these summary outcomes data should be viewed cautiously.

There are several recent transplant advances including: (1) a donor such as an HLA-haplotype-matched relative for almost everyone; (2) increasing use of blood cells over bone marrow grafts; (3) development of less intensive pretransplant conditioning regimens (termed reduced-intensity condition [RIC]) applicable to older persons; (4) use of posttransplant cyclophosphamide as well as anti-lymphocyte globulin (ATG/ATLG) reducing risks of acute and chronic graft-versus-host disease (GvHD) seemingly without increasing relapse risk (although this has not been critically tested in CML) [52-54]; (5) better supportive care: and others. These advances have decreased transplant-related deaths by about 20% and increased survival by about 10% [55]. Whether these advances apply to transplants done for chronic phase CML is unknown.

As indicated, leukaemia recurrence is uncommon after allotransplants for chronic phase CML [51, 55–57]. Much of this anti-leukaemia efficacy results from an allogeneic effect [54, 58]. Transplants from genetically-identical twins, T-cell-depleted grafts and transplants in persons without GvHD have substantially higher CIRs, reflecting immune-mediated anti-leukaemia effect. Early relapses are often successfully treated by stopping posttransplant immunosuppression, giving donor lymphocyte infusions (DLIs) and/or giving TKIs [59]. Late relapses are rare, but relapse risk continues indefinitely [51]. Allotransplants done in chronic phase result in about 80% 15-year LFS [51]. However, some persons develop chronic GvHD or other complications which compromise QoL and are sometimes fatal. Other considerations which are incompletely resolved are the impact of pre- and posttransplant TKI-therapy on transplant outcomes.

WHO SHOULD BE CONSIDERED FOR A TRANSPLANT IN CHRONIC PHASE?

The question of who should receive a transplant in chronic phase is complex and controversial. Probably the clearest indication is in
drug compliant persons failing to respond to TKI-therapy and those with some **BCR::ABL1** mutations, high-risk additional cytogenetic abnormalities (ACAs) and/or with other signs of leukaemia progression [60]. There are persons who cannot tolerate TKI therapy, or who develop severe adverse events which cannot be managed by dose adjustment or switching to a different TKI. They are a minimal part of patients. But they are.

A more complicated question is whether a transplant is an appropriate option in a person likely to have good survival but unlikely to achieve TFR and who therefore require lifelong TKI-therapy. The first issue is whether such persons can be accurately identified and when. Several predictive models have been developed which predict failure of TKI-therapy but none have a Concordance (C)-statistic >0.80. The next issue is whether it’s possible to accurately predict transplant outcomes. Again, several predictive models have been developed with similar C-statistics. A third issue is suitability of someone to receive a transplant including age, co-morbidities, donor availability and fiscal resources.

There cannot be an uniform correct answer. For example, a younger person is more likely to accept the immediate survival disadvantage of transplants for a substantial probability of cure whereas an older person may not. Another consideration is a personal satisfaction/dis-ratification with remaining on lifelong TKI-therapy. There are also fiscal considerations. In some resource-poor geospaces there may be a substantial cost saving to receiving a transplant. And one should not ignore the important impact of patient and physician risk-taking attitude which we discuss below.

AREN’T MOST PEOPLE WITH CML TOO OLD TO RECEIVE A TRANSPLANT?

Most studies of CML therapy including transplants are in resource-rich geospaces where median age at diagnosis is about 60 years [61–64]. However, in some Asian and African countries median age at diagnosis is <50 years [65–67]. In an international review of

Table 4. Survival of subjects receiving TKI therapy.
Ref.
Castagnetti et al. [94]
Castagnetti et al. [89]
de Lavallade et al. [88]
Hochhaus et al. [32]
Guilhot et al. [27]
O’Brien et al. [29]
Hehlmann et al. [30, 31]
Hochhaus et al. [24], Kantarjian et al. [26]
Zhang et al. [69]
Cortes et al. [25]
Guilhot et al. [27]
Hehlmann et al. [30, 31]
Hehlmann et al. [30, 31]
Guilhot et al. [27]
Kalmanti et al. [95]
Kalmanti et al. [95]
Pfirrmann et al. [96]
Geelen et al. [90]
Etienne et al. [43]
Jain et al. [23]
O’Brien et al. [29]
Matsumura et al. [28]
Cortes et al. [25]
Hochhaus et al. [24], Kantarjian et al. [26]
Matsumura et al. [28]
Hochhaus et al. [24], Kantarjian et al. [26]
Masarova et al. [93]
Gugliotta et al. [92]

TKI dose in mg/d. Percentages rounded.
Some data are estimated from graphs (±1%). Abbreviations as in Table 1.
*Age intervals instead of median, ^{16-y}, ^{7-y}, ^{2-y}, ^{8-y}, ^{4-y}.
Table 5. Survival after an allotransplant for CML in 1st chronic phase.

Interval	Median age (y)	Conditioning	Donor	1-y	2-y	3-y	5-y	10-y
1998	42	MA	REL	87%	85%	77%	73%	73%
2001	156	MA	REL	78%	75%	75%	72%	70%
2003	3514	MA	REL	74%	65%	63%	63%	60%
2003	531	MA	UNR	70%	63%	58%	55%	50%
2004	148	MA	REL	97%	85%	77%	76%	76%
2008	19	MA	REL	79%	53%	95%	88%	88%
2007	37	MA	UNR	65%	70%	95%	95%	94%

aData are estimated from graphs (±1%).

SGFMC: St Gallen Group for Myeloid Cells.
EBMT: European Group for Marrow and Blood Transplantation.
CIBMTR: Blood and Marrow Transplantation, Center for International Blood and Marrow Transplant Research.

DO WE NEED TO RECONSIDER USE OF TRANSPLANT IN CHRONIC PHASE CML?

Despite recent progress, few persons with chronic phase CML receiving TKI therapy achieve TFR, and even fewer, if any, are cured [68]. Most persons failing to achieve arbitrarily specified TKI-response goals can be reasonably accurately identified at diagnosis or soon after starting TKI therapy [69]. Rates of remaining leukaemia-free are certainly lower and cure rates higher in persons receiving a transplant. However, there are important caveats when interpreting these data: (1) few transplants have been done for CML recently, limiting the certainty of estimating outcomes; (2) there are subject selection biases favouring transplants including younger age, better performance score and fewer co-morbidities in transplant recipients compared with persons receiving TKIs. For example, median age of the CIBMTR cohort we describe above is 46 years, substantially younger than the median age of persons with CML of predominately European descent; (3) selection biases against transplant recipients who are more likely to have had a worse prognosis at diagnosis or soon thereafter compared with those receiving only TKI therapy; and (4) the almost 20% 1-year mortality associated with transplants and risk of transplant-related complications such as chronic GVHD.

At diagnosis, most physicians and persons with chronic phase CML are understandably reluctant to accept a 1-year TRM of almost 20% without a trial of TKI-therapy to determine whether the person is amongst the small proportion of those likely to achieve TFR and possibly cure. However, there are several time-dependent predictive and prognostic models and scores which enable physicians to estimate the likelihood of success of TKI therapy in achieving TFR reasonably early after starting TKI therapy. At this point, in persons who are potential transplant candidates, physicians and patients must choose between probable lifetime TKI therapy with attendant medical, physical and psychological costs versus likelihood of success and risks of a transplant [11, 70–73]. On the TKI therapy side of the calculus are considerations such as estimating the likelihood of adverse events, costs and risk tolerance. On the transplants side of the calculus are co-variates correlated with outcomes such as age, co-morbidities, donor HLA-matching, graft-type, pretransplant conditioning and posttransplant immune suppression regimens and others [74–76]. Of note, subject-, disease- and transplant-related predictive and prognostic co-variates previously operating in persons receiving and possibly failing TKI-therapy need confirmation.

A critical comparison of LFS or survival between TKI-therapy and transplants in comparable persons can only come from randomized controlled trials. Such a trial has not and will not be done. Also, the issue is not whether one or the other therapy is better but which therapy is more appropriate for different persons at different times after CML diagnosis and after observing response to TKI therapy [22, 23, 26, 27, 43, 44, 49, 77]. Both therapies have worse outcomes in older people, people with a poor performance score and those with co-morbidities, but these gradients are steeper for transplant recipients compared with persons receiving TKIs. Also older persons receiving TKI therapy are less likely to be therapy compliant, achieve TFR and remain on lifelong TKI therapy with attendant impacts on QoL. This is especially true for 2G-TKIs [2, 5–8].

A transplant is an increasingly relevant consideration in persons with a non-optimal response to TKI-therapy. Many of these persons can be identified by cytogenetic and molecular analyses.
especially those with high-risk additional chromosome abnormalities (ACAs) and/or a 2nd BCR-ABL1 or mutations in TP53 and/or epigenetic modifier genes [78–84].

When the best therapy is controversial, physicians often rely on expert consensus statements and clinical practice guidelines. We discussed limitations of these tools elsewhere [85, 86]. However, our point is that panelists should consider adding transplants in persons with chronic phase CML during their deliberations [77, 87].

CONCLUSION
This series of questions awaits answers. They reflect questions Prof. Baccarani after a lifetime of CML research thought needed to be answered by the next generation of physicians interested in CML. Some of these questions can be answered by appropriately designed clinical trials. Others could theoretically be answered in clinical trials but for diverse reason such trials will not or cannot be done. Lastly, there are questions to which there is no one answer and certainly not one correct answer.

Medicine is an art, not a science. As the distinguished English, Canadian, American physician and medical educator Sir William Osler noted: Medicine is a science of uncertainty and an art of probability – Prof. Baccarani practiced a perfect blend of the science and art of medicine, of balancing uncertainty and probability. More mistakes are made by those who think they know the answer compared with those admitting uncertainty. Prof. Baccarani leaves us with these questions and challenges us to provide answers or at least to try. He was never afraid to challenge dogma or challenge answers to questions others thought answered. As Thomas Paine said: He who dares not to offend cannot be honest. Omnia munda mundis.

DATA AVAILABILITY
CIBMTR supports accessibility of research in accord with the National Institutes of Health (NIH) Data Sharing Policy and the National Cancer Institute (NCI) Cancer Moonshot Public Access and Data Sharing Policy. The CIBMTR only releases de-identified datasets that comply with all relevant global regulations regarding privacy and confidentiality.

REFERENCES
1. Bower H, Bjorkholm M, Dickman PW, Hoglund M, Lambert PC, Andersson TM. Life Expectancy of Patients With Chronic Myeloid Leukemia Approaches the Life Expectancy of the General Population. J Clin Oncol. 2016;34:2851–7. https://doi.org/10.1200/JCO.2015.66.2866.
2. Baccarani M, Abruzzese E, Accurso V, Albano F, Annunziata M, Barulli S. et al. Managing chronic myeloid leukemia for treatment-free remission: a proposal from the GIMEMA CML WP. Blood Adv. 2019;3:4280–90. https://doi.org/10.1182/bloodadvances.2019000865.
3. Radivoyevitch T, Weaver D, Hobbis B, Maciejewski JP, Hehlmann R, Jiang Q. et al. Do persons with chronic myeloid leukaemia have normal or near normal survival? Leukemia. 2020;34:333–5. https://doi.org/10.1038/s41375-019-0699-y.
4. Ross DM, Branford S, Seymour JF, Schwager AP, Arthur C, Bartley PA. et al. Patients with chronic myeloid leukaemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukaemia by DNA PCR. Leukemia. 2010;24:1719–24. https://doi.org/10.1038/leu.2010.185.
5. Baccarani M, Gale RP. Why chronic myeloid leukaemia cannot be cured by tyrosine kinase-inhibitors. Leukemia. 2021;35:2199–204. https://doi.org/10.1111/leu.14375-021-01272-8.
6. Malhotra H, Radich J, Garcia-Gonzalez P. Meeting the needs of CML patients in resource-poor countries. Hematol Am Soc Hematol Educ Program. 2019;2019:433–42. https://doi.org/10.1182/hematology.2019000005.
7. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F. et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukaemia. Leukemia. 2020;34:966–84. https://doi.org/10.1038/s41375-020-0776-2.
8. Smith G, Apperley J, Milojkovic D, Cross NCP, Foroni L, Byrne J. et al. A British Society for Haematology Guideline on the diagnosis and management of chronic myeloid leukaemia. Br J Haematol. 2020;191:171–93. https://doi.org/10.1111/bjh.16971.
9. Deininger MW, Shah NP, Altman JK, Berman E, Bhatia R, Bhatnagar B. et al. Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18:1385–415. https://doi.org/10.6004/jnccn.2020.0047.
10. Saglio G, Gale RP. Prospects for achieving treatment-free remission in chronic myeloid leukaemia. Br J Haematol. 2020;190:318–27. https://doi.org/10.1111/bjh.16506.
11. Jiang Q, Larson RA, Gale RP. Economics influences therapy decisions in chronic myeloid leukaemia: should it?. J Cancer Res Clin Oncol. 2021;147:3693–8. https://doi.org/10.1007/s00432-021-03607-5.
12. Kwak JY, Kim SH, Oh SJ, Zang DY, Kim H, Kim JA. et al. Phase III clinical trial (RERISE study) results of efficacy and safety of radotinib compared with imatinib in newly diagnosed chronic phase chronic myeloid leukemia. Clin Cancer Res. 2017;23:7180–8. https://doi.org/10.1158/1078-0432.CCR-17-0957.
13. Cortes JE, Gambacorti-Passerini C, Deininger MW, Mauro MJ, Chua C, Kim DW. et al. Bosutinib Versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia:
Results From the Randomized BFORE Trial. J Clin Oncol. 2018;36:231–7. https://doi.org/10.1200/JCO.2017.74.7162.

14. Hughes TP, Mauro MJ, Cortes JE, Minami H, Rea D, DeAngelio DJ, et al. Asparinib in chronic myeloid leukemia after ABL. N. Engl J Med. 2019;381:2315–26. https://doi.org/10.1056/NEJMoa1902328.

15. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor, from chronic myeloid leukemia, potently inhibits the T315I mutator and overcomes mutation-based resistance. Cancer Cell. 2009;16:401–12. https://doi.org/10.1016/j.ccr.2009.09.028.

16. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Finn I, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N. Engl J Med. 2012;367:2075–88. https://doi.org/10.1056/NEJMoa1205172.

17. Steegmaier JL, Baccarani M, Brescia M, Causio-Gutierrez V, Hochhaus A. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016;30:1648–71. https://doi.org/10.1038/leu.2016.104.

18. Jiang Q, Liu ZC, Zhang SX, Gale RP. Young age and high cost are associated with future preference for stopping tyrosine kinase inhibitor therapy in Chinese with chronic myeloid leukemia. J Cancer Res Clin Oncol. 2016;142:539–47. https://doi.org/10.1007/s00432-016-2159-7.

19. Padula VW, Larson RA, Dusetzina SB, Apperley JF, Hehlmann R, Baccarani M, et al. Cost-effectiveness of tyrosine kinase inhibitor treatment strategies for chronic myeloid leukemia in chronic phase after generic entry of imatinib in the United States. J Natl Cancer Inst. 2016;108. https://doi.org/10.1093/jnci/djw003.

20. Shih YT, Cortes JE, Kantarjian HM. Treatment value of second-generation BCR-ABL1 tyrosine kinase inhibitors compared with imatinib. Lancet Haematol. 2019;6:e398–e408. https://doi.org/10.1016/S2352-3026(19)30087-0.

21. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia. Blood. 2013;122:872–84. https://doi.org/10.1182/blood-2013-05-501569.

22. Branford S, Yeung DT, Ross DM, Prime JA, Field CR, Altamura HK, et al. Early molecular response and female sex strongly predict stable undetectable BCR-ABL1 transcript level: a modelling study. Lancet Haematol. 2019;6:398–408. https://doi.org/10.1016/S2352-3026(19)30080-7.

23. Hochhaus A, Sagglo G, Hughes TP, Larson RA, Kim DW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30:1044–54. https://doi.org/10.1038/leu.2016.5.

24. Cortes JE, Sagglo G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34:2333–40. https://doi.org/10.1200/JCO.2015.64.8899.

25. Kantarjian HM, Hughes TP, Larson RA, Kim DW, Issaragrisil S, le Coutre P, et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia patients: results from the French SPIRIT phase III randomized trial. Leukemia. 2021;35:440–53. https://doi.org/10.1038/s41375-020-01111-2.

26. Guhlot F, Rigal-Huguet F, Guhlot J, Guerci-Bresler AP, Maloisel F, Rea D, et al. Long-term outcome of imatinib 400 mg compared to imatinib 600 mg or imatinib 400 mg daily in combination with cytarabine or pegylated interferon alpha 2a for chronic myeloid leukemia: results from the French SPIRIT phase III randomized trial. Leukemia. 2021;35:2312–45. https://doi.org/10.1038/s41375-020-01117-w.

27. Matsumura I, Ohtake S, Atsuta Y, Kurata M, Minami Y, Takahashi N, et al. Nilotinib vs dasatinib in achieving MR4.5 for newly diagnosed chronic myeloid leukemia patients with undetectable BCR-ABL1 transcript level: a systematic review and a meta-analysis. Eur J Cancer. 2019;117:48–56. https://doi.org/10.1016/j.ejca.2019.07.028.

28. Etienne G, Faberes C, Bauduer F, Adikko D, Ufermann F, Dagada C, et al. Relevance of treatment-free remission recommendations in chronic phase chronic leukemia patients treated with frontline tyrosine kinase inhibitors. Cancer Med. 2021;10:6365–45. https://doi.org/10.1002/cam4.3921.

29. Shanmuganathan N, Pagani IS, Ross DM, Park S, Yong ASM, Braley JA, et al. Early evaluation of deep molecular responses and treatment-free remission in de novo cp-cml patients. Cancers (Basel). 2020;12. https://doi.org/10.3390/cancers12090521.

30. Dea R. Handling challenging questions in the management of chronic myeloid leukemia: when is it safe to stop tyrosine kinase inhibitors?. Blood Adv. 2020;4:5589–94. https://doi.org/10.1182/bloodadvances.2020002538.

31. Atallah E, Schiffer CA. Discontinuation of tyrosine kinase inhibitors in chronic myeloid leukemia: when and for whom?. Haematologica. 2020;105:2738–45. https://doi.org/10.3324/haematol.2019.242891.

32. Ross DM, Hughes TP. Counterpoint: There is a best duration of deep molecular response for treatment-free remission, but it is patient-specific, and that is the optimal duration of treatment-free remission. Br J Haematol. 2021;192:24–7. https://doi.org/10.1111/bjh.17111.

33. Shannunganathan N, Panagi IS, Ross DM, Park S, Yong AS, Bramley JA, et al. Early BCR-ABL1 kinetics are predictive of subsequent achievement of treatment-free remission in chronic myeloid leukemia. Blood. 2021;137:1196–207. https://doi.org/10.1182/bloodadvances.2020005514.

34. Pygø H, Sandin F, Dahlen T, Dremanne A, Lubbking A, Markerv B, et al. Successful tyrosine kinase inhibitor discontinuation outside clinical trials - data from the population-based Swedish chronic myeloid leukaemia registry. Br J Haematol. 2021;193:915–21. https://doi.org/10.1111/bjh.17392.

35. Kim DDH, Novitzky-Basso I, Kim TS, Atenau EG, Forrest D, Saviole L, et al. Optimal duration of imatinib treatment/deep molecular response for treatment-free remission after imatinib discontinuation from a Canadian tyrosine kinase inhibitor discontinuation trial. Br J Haematol. 2021;193:779–91. https://doi.org/10.1111/bjh.17447.

36. Jiang Q, Yu L, Gale RP. Patients’ and hematologists’ concerns regarding tyrosine kinase inhibitor therapy in chronic myeloid leukemia. J Cancer Res Clin Oncol. 2018;144:735–41. https://doi.org/10.1007/s00432-018-2594-8.

37. Goldman JM, Majhall NS, Klein JP, Wang Z, Sobocinski KA, Arora M, et al. Relapse and late mortality in 5-year survivors of myeloablative allogeneic hematopoietic cell transplantation for chronic myeloid leukemia in first chronic phase. J Clin Oncol. 2010;28:1888–95. https://doi.org/10.1200/JCO.2009.26.7757.

38. Finke J, Bethge WA, Schmoo C, Ottinger HD, Stelljes M, Zander AR, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a
92. Gugliotta G, Castagnetti F, Brecchia M, Levalo L, Intermesoli T, D’Adda M et al. Ten-year follow-up of patients with chronic myeloid leukemia treated with nilotinib in first-line: final results of the cimena GML 0307 trial. Blood 2019;134:14145.
93. Masarova L, Cortes JE, Patel KP, O’Brien S, Nogueras-Gonzalez GM, Konopleva M et al. Long-term results of a phase 2 trial of nilotinib 400 mg twice daily in newly diagnosed patients with chronic-phase chronic myeloid leukemia. Cancer. 2020;126:4158–69. https://doi.org/10.1002/cncr.32623.
94. Castagnetti F, Di Raimondo F, Vivo A, Spitaleri A, Gugliotta G, Fabbiani F et al. A population-based study of chronic myeloid leukemia patients treated with imatinib in first line. Am J Hematol. 2017;92:82–7. https://doi.org/10.1002/ajh.24591.
95. Kalmanti L, Saussele S, Lauseker M, Proetel U, Muller MC, Hanfstein B et al. Younger patients with chronic myeloid leukemia do well in spite of poor prognostic indicators: results from the randomized CML study IV. Ann Hematol. 2014;93:71–80. https://doi.org/10.1007/s00277-013-1937-4.
96. Pffrman M, Baccarani M, Saussele S, Guiltot J, Cervantes F, Ossenkoppele G et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30:48-56. https://doi.org/10.1038/leu.2015.261.
97. Millot F, Esperou H, Bordigoni P, Dalle JH, Michellet M, Michel G et al. Allogeneic bone marrow transplantation for chronic myeloid leukemia in childhood: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire (SFGM-TC). Bone Marrow Transpl. 2003;32:993–9. https://doi.org/10.1038/sj.bmt.1704255.
98. Cwynarski K, Roberts IA, Iacobelli S, Biezen A, Brand R, Devergie A et al. Stem cell transplantation for chronic myeloid leukemia in children. Blood. 2003;102:1224–31. https://doi.org/10.1182/blood-2002-12-3637.
99. Arora M, Weisford DJ, Spellman SR, Haagenson MD, Klein JP, Hurley CK et al. HLA-identical sibling compared with 8/8 matched and mismatched unrelated donor bone marrow transplant for chronic phase chronic myeloid leukemia. J Clin Oncol. 2009;27:1644–52. https://doi.org/10.1200/JCO.2008.18.7740.
100. Radich JP, Gooley T, Barnes J, Chauveyc T, Clift R, Flowers M et al. HLA-matched related hematopoietic cell transplantation for chronic-phase CML using a targeted busulfan and cyclophosphamide preparative regimen. Blood. 2003;102:31–2. https://doi.org/10.1182/blood-2002-08-2619.
101. Ohashi K, Nagamura-Inoue T, Nagamura F, Tojo A, Miyamura K, Mori T et al. Effect of graft sources on allogeneic hematopoietic stem cell transplantation outcome in adults with chronic myeloid leukemia in the era of tyrosine kinase inhibitors: a Japanese Society of Hematopoietic Cell Transplantation retrospective analysis. Int J Hematol. 2014;102:296–306. https://doi.org/10.1007/s12185-014-1632-9.
102. Chaudhury S, Saumnugra H, Biddle GIH, Michallet M, Cheng E, Abele-Horn M et al. Outcomes of allogeneic hematopoietic cell transplantation in children and young adults with chronic myeloid leukemia: A CIBMTR cohort analysis. Biol Blood Marrow Transpl. 2014;20:1449–59. https://doi.org/10.1016/j.bbmt.2014.03.007.
103. Lee SE, Choi SY, Kim SH, Kang EJ, Bang JH, Byeun JY et al. Prognostic factors for outcomes of allogeneic stem cell transplantation in chronic phase chronic myeloid leukemia in the era of tyrosine kinase inhibitors. Hematology. 2014;19:63–72. https://doi.org/10.1179/1607845413Y.00000000100.
104. Koenenke C, Heim D, van Biesen A, Heuser M, Aljurf M, Kyczcz-Kuziemien S et al. Outcome of patients with chronic myeloid leukemia and a low-risk score: allogeneic hematopoietic stem cell transplantation in the era of targeted therapy. A report from the EBMT. Bone Marrow Transpl. 2016;51:1259–61. https://doi.org/10.1038/bmt.2016.97.
105. Saussele S, Lauseker M, Gratzwohl A, Beelen DW, Bunjes D, Schwederfeyer R et al. Allogeneic hematopoietic stem cell transplantation (allo SCT) for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML Study IV. Blood. 2010;115:1880–5. https://doi.org/10.1182/blood-2009-08-237115.

ACKNOWLEDGEMENTS

Profs. Rudiger Hehlmann (Univ. Heidelberg) and Andreas Hochhaus (Univ. Jena) kindly reviewed the typescript. FB, FC, GG, SS, GR acknowledge support from AIL BOLOGNA ODV. FB acknowledges support from Ministero della Salute-Ricerca Corrente. RPG acknowledges support from the National Institute of Health Research (NIHR) Biomedical Research Centre funding scheme. The CIBMTR is supported primarily by Public Health Service U24CA076518 from the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI) and the National Institute of Allergy and Infectious Diseases (NIAID); HHSN250201700006C from the Health Resources and Services Administration (HRSA); and N00014–20–1–2705 and N00014–20–1–2832 from the Office of Naval Research; Support is also provided by Be the Match Foundation, the Medical College of Wisconsin, the National Marrow Donor Program, and from the following commercial entities: AbbVie; Accenture; Actinium Pharmaceuticals, Inc.; Adaptive Biotechnologies Corporation; Adienne SA; Allovir, Inc.; Amgen, Inc.; Astellas Pharma US; bluebird bio, inc.; Bristol Myers Squibb Co.; Celsion; CytoSen Therapeutics, Inc.; Daichi Sankyo Co., Ltd.; Eurofins Viracor, DBA Eurofins Transplant Diagnostics; Fate Therapeutics; Gamida-Cell, Ltd.; Gilead; GlaxoSmithKline; HistoGenetics; Incyte Corporation; Immucor; Janssen Research & Development, LLC; Janssen/Johnson & Johnson; Jaspere Therapeutics; Jazz Pharmaceuticals, Inc.; Kadmon; Karyopharm Therapeutics; Kiadis Pharma; Kite Pharma Inc; Kite, a Gilead Company; Kyowa Kirin International plc; Kyowa Kirin; Legend Biotech; Magenta Therapeutics; Medac GmbH; Medexus; Merck & Co.; Millennium; The Takeda Oncology Co.; Miltenyi Biotec, Inc.; MorphoSys; Novartis Pharmaceuticals Corporation; Omeros Corporation; Onconimmune, Inc.; Oncopetides, Inc.; OptumHealth; Orca Biosystems, Inc.; Osimum Health, Inc.; Pfizer, Inc.; Pharma- cics, LLC; Priothera; Sanofi Genzyme; Seagen, Inc.; Stemcyte; Takeda Pharmaceuticals; Talaris Therapeutics; Tenurem Blood and Cell Technologies; TG Therapeutics; Tscan; Vertex; Vor Biopharma; Xenikos BV.

AUTHOR CONTRIBUTIONS

MB conceived and designed the study but died shortly before the finalization of the typescript leaving us with these questions to pose on his behalf. The other authors contributed to the development of the study and typescript, take responsibility for the content and approved submitting the typescript for publication.

COMPETING INTERESTS

FB received speaker fees from NEOVII Biotech, JAZZ pharmaceuticals, Novartis, Celgene, MSD, Pfizer and Amgen. SS received speaker fees from Incyte Biosciences and Bio-Rad and is a consultant to Incyte Biosciences and Cepheid. FC received speaker fees and is a consultant to Novartis, Pfizer, Bristol-Myers Squibb and Incyte Biosciences. GG received speaker fees from Novartis and Incyte Biosciences. WS reports no conflict of interests, NEM reports no conflict of interests, GR received speaker fees from and is a consultant to Novartis, Pfizer, Bristol-Myers Squibb and Incyte Biosciences. RGP is a consultant to BeiGene Ltd., Fusion Pharma LLC, Laollola NanoMedical Inc., Mingsight Pharmaceuticals Inc. CStone Pharmaceuticals, Nexine mune Inc. and Procarta Biosciences; advisor to Antengene Biotech LLC, Medical Director, FFF Enterprises Inc.; partner, AZAC Inc.; Board of Directors, Russian Foundation for Cancer Research Support; and Scientific Advisory Board: StemRad Ltd.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Francesca Bonifazi.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.