Diagnostic approaches for cholangiocarcinoma

Andreas Weber, Roland M Schmid, Christian Prinz

Abstract
Cholangiocarcinomas arise from the epithelial cells of the bile ducts and are associated with poor prognosis. Despite new diagnostic approaches, the definite diagnosis of this malignancy continues to be challenging. Cholangiocarcinomas often grow longitudinally along the bile duct rather than in a radial direction. Thus, large tumor masses are frequently absent and imaging techniques, including ultrasound, CT, and MRI have only limited sensitivity. Tissue collection during endoscopic (ERCP) and/or percutaneous transhepatic (PTC) procedures are usually used to confirm a definitive diagnosis of cholangiocarcinoma. However, forceps biopsy and brush cytology provide positive results for malignancy in about only 50% of patients. Percutaneous and peroral cholangioscopy using fiber-optic techniques were therefore developed for direct visualization of the biliary tree, yielding additional information about endoscopic appearance and tumor extension, as well as a guided biopsy acquisition. Finally, endoscopic ultrasonography (EUS) complements endoscopic and percutaneous approaches and may provide a tissue diagnosis of tumors in the biliary region through fine-needle aspiration. In the future, new techniques allowing for early detection, including molecular markers, should be developed to improve the diagnostic sensitivity in this increasing tumor entity.

INTRODUCTION
Cholangiocarcinomas are topographically categorized as intrahepatic or extrahepatic carcinomas. Extrahepatic cholangiocarcinomas are further subdivided into hilar, middle and distal carcinomas. The most common type of hilar cholangiocarcinoma is classified into 4 stages according to the bismuth classification[1]. Surgery is the only curative treatment in patients with cholangiocarcinoma. The results are more favourable for patients with early-stage disease. Therefore, a reliable diagnostic procedure is of great importance for these patients. However, confirmation of cholangiocarcinoma can be very difficult because of a wide spectrum of alternative diagnoses, including other carcinomas, metastasis and benign biliary strictures. Therefore, multidisciplinary investigative approaches are needed to overcome this problem. Cholangiocarcinomas often grow longitudinally along the bile duct rather than in a radial direction away from the bile duct. Consequently, imaging techniques including ultrasound, CT, and MRI are of limited sensitivity for the detection of cholangiocarcinoma[2]. Biliary tissue collection during endoscopic procedures is widely used for distinction between benign and malignant strictures and provides the only definitive diagnosis that can be used for establishing therapeutic strategies. To obtain tissue samples, brush cytology and/or forceps biopsy were routinely performed in patients with suspected malignant biliary strictures.

BIOCHEMICAL INVESTIGATIONS
Obstructive jaundice is typically associated with an increase of serum bilirubin, alkaline phosphatase and gamma-
glutamyl transpeptidase. These laboratory parameters are unspecific and do not allow a distinction between benign and malignant bile duct strictures. The most widely studied tumor markers are carbohydrate antigen (CA) 19-9 and carcinoembryonic antigen (CEA). Both tumor markers may be elevated in cholangiocarcinoma[3-5]. However, CA19-9 and CEA are not specific for cholangiocarcinoma. CA19-9 is also raised in pancreatic cancer, colorectal cancer, gastric cancer, and gynaecological malignancies[6]. Additionally, CA19-9 may be elevated in patients with acute cholangitis[7]. In a series of patients without primary sclerosing cholangitis, the sensitivity of a serum CA19-9 level of more than 100 U/mL in diagnosing cholangiocarcinoma was 53%[8]. Furthermore, the authors reported in patients with unresectable cholangiocarcinoma a significantly greater mean CA19-9 concentration compared to patients with resectable cholangiocarcinoma. Recently, John et al[9] reported that sensitivity and specificity were 67.5% and 86.8%, respectively, when using a cut-off value of 100 U/mL. In another report that included 37 patients with primary sclerosing cholangitis, a serum CA19-9 concentration above 100 U/mL sensitivity was 89% and specificity was 86% for the diagnosis of cholangiocarcinoma[9]. CEA also has unsatisfactory diagnostic specificity and sensitivity for cholangiocarcinoma[9]. In conclusion, the diagnostic value of tumor markers in cholangiocarcinoma is limited. However, CA19-9 is useful in following the effect of treatment and to detect disease recurrence.

IMAGING

Ultrasoundography

Patients suffering from jaundice usually undergo transabdominal ultrasonography to evaluate the bile duct diameter and hepatic parenchyma. Furthermore, gallstones can be excluded. In most patients cholangiocarcinomas are not directly detectable, but indirect signs are visible in the majority of patients. Distal lesions cause dilation of both intrahepatic and extrahepatic bile ducts, whereas proximal lesions only cause dilation of intrahepatic bile ducts. The localization of the bile duct lesion can be suggested if there is an abrupt change in ductal diameter. The diagnostic accuracy of ultrasonography was investigated in 429 patients with obstructive jaundice. In this series ultrasonography demonstrated ductal obstruction in 89%, and the sensitivity for localizing the site of obstruction was 94%[10]. The sensitivity and specificity of ultrasonography depends on tumor localization, the quality of the equipment and the experience of the investigator[10]. Ultrasound findings are limited in patients with liver cirrhosis and primary sclerosing cholangitis due to a lack of visible dilated bile ducts. Doppler ultrasonography provides information on hepatic and portal vessel patency. Recent studies reported that contrast enhanced ultrasonography provides sensitive and specific criteria for the differentiation between malignant and benign liver lesions[12-15]. Preliminary data for cholangiocarcinoma suggest a behavior that is not dissimilar to metastatic lesions[14,16]. However, the limited number of cases in the reported series does not allow conclusive considerations for cholangiocarcinoma. Therefore, further studies with appropriate numbers of patients are needed.

Computed tomography

Computed tomography (CT) is a commonly used approach for the detection and staging of cholangiocarcinoma. The radiological findings depend on localization and morphology of the tumor. CT scan permits identification of bile duct dilatation as well as assessment of lymph node, liver parenchyma, vascular encasement and metastasis[17]. Additionally, computed tomography is useful for detecting the presence of liver atrophy. Dilatation of bile ducts combined with atrophy suggests the obstruction of the portal vein[18]. However, conventional computed tomography is limited in the ability to estimate the extent of cholangiocarcinoma and resectability. Tillich et al[19] reported a series of 29 patients with hilar cholangiocarcinoma who underwent multiphasic helical CT, including arterial and portal venous phase. In these patients resectability was correctly predicted in only 60%. In another series, Yamashita et al[19] reported only 59% sensitivity in identifying a primary lesion by using contrast-enhanced computed tomography. Recently, the accuracy of preoperative high-resolution computed tomography to determine resectability in patients with hilar cholangiocarcinoma was evaluated[20]. In this series negative and positive predictive values of high-resolution computed tomography to determine resectability were 92% and 85%, respectively. Thus, only new CT scanning techniques should be taken into account since radiological procedures have had a considerable improvement in the last years.

Magnetic resonance imaging and magnetic resonance cholangiopancreatography

In recent years, magnetic resonance imaging (MRI), especially in combination with magnetic resonance cholangiopancreatography (MRCP) has improved diagnosing cholangiocarcinoma and determining resectability[21-23]. Magnetic resonance imaging can assess the local tumor extension, lymph nodes, metastasis and liver parenchyma. It is important to use sequences with thin-slice thickness (3-4 mm) that provide sufficient signal to obtain good quality images and are sufficiently thin to detect subtle abnormalities. At present, good quality MRI in the hands of experienced centers, can be an excellent imaging approach for the diagnosis and staging of cholangiocarcinoma[24]. Moreover, magnetic resonance angiography (MRA) provides good assessment for infiltration of blood vessels. Magnetic resonance cholangiography can provide a three-dimensional reconstruction of the biliary tree without injection of intravenous and biliary contrast fluid. Therefore, the risk for cholangitis is reduced[21], and additionally there is no
risk for contrast induced nephropathy. MRCP allows the assessment of bile ducts above and below a total obstruction. Therefore, MRCP should be considered for planning the treatment of patients suffering from cholangiocarcinoma. Zidi et al reported a correct malignant hilar tumor stage using MRCP in 78% of the investigated patients. Furthermore, in this series an underestimated tumor extension was reported in 22%.[25] Biliary stent placement and percutaneous drainage results in mild inflammation of bile duct walls, which appears as an increased gadolinium enhancement with an appearance indistinguishable from the superficial spread of cholangiocarcinoma. To avoid this problem MRI and MRCP should be performed before endoscopic stenting and percutaneous transhepatic drainage.[23]

Positron emission tomography (PET)
Several studies reported intensive accumulation of nucleotide tracer 18-fluorodeoxyglucose (FDG) in cholangiocarcinoma.[26–28] PET scanning with focal FDG accumulation permits visualization of cholangiocarcinomas. PET scan can detect cholangiocarcinomas as small as 1 cm.[29,30] FDG-PET is of value for staging of bile duct cancers, especially for discovering distant metastasis and malignant lymph nodes. In one series, PET led to a change of therapeutic management in 30% of patients suffering from cholangiocarcinoma because of detection of primary unsuspected metastases.[22] The limitation of FDG-PET is false positive results in patients with biliary tract infections, primary sclerosing cholangitis, and biliary stenting via endoscopic retrograde cholangiography (ERC) and PTBD.[26,31] The diagnostic sensitivity can be increased by using 18-fluorodeoxyglucose (FDG) in combination with CT scanning (FDG-PET/CT). Reinhardt et al.[32] evaluated the effectiveness of this new dual-modality technique for noninvasive differentiation of extrahepatic bile duct strictures. This series included 14 patients with histological proven cholangiocarcinoma and 8 patients with benign bile duct strictures. In this series, all patients with cholangiocarcinoma presented with focal increased tracer uptake compared to patients with benign bile duct stricture. Overall, our experience is that 18F-FDG PET/CT does not provide high accuracy for noninvasive detection of perihilar cholangiocarcinoma in extrahepatic bile duct strictures, which may be mainly due to the small size of the tumors.

ENDOSCOPIC APPROACHES

Endoscopic retrograde cholangiography
Retrograde injection of contrast fluid into the biliary tract allows the assessment of localization and morphology of bile duct strictures. Malignancy is suggested when there are findings of asymmetric, irregular strictures. Moreover, resectability can be evaluated. However, the differentiation in benign and malignant bile duct stricture may be difficult. Park et al[23] identified 20 out of 27 malignant bile duct strictures using ERC alone. In this series diagnostic sensitivity and specificity for endoscopic retrograde cholangiography was 74% and 70%, respectively. Other authors have reported similar results for detecting malignant bile duct strictures by direct cholangiography.[33] Compared to non-invasive imaging techniques, endoscopic retrograde cholangiography allows tissue collection for cytological and histological investigation. Additionally, ERC allows biliary stent implantation for palliative treatment in irresectable tumors.

Percutaneous transhepatic cholangiography (PTC)
In patients with difficult bile duct access percutaneous transhepatic approaches offer a valuable alternative for bile duct access. The effectiveness of this procedure in diagnostic and therapy of complex biliary obstruction has been well documented.[34,35] Because percutaneous transhepatic bile duct access is an invasive technique, potential complications including bleeding, cholangitis, biliary leakage, duodenal perforation and death can occur. In previous series, procedure related death ranging from 0.6% to 5.6% was reported.[36–39] Therefore, endoscopic retrograde cholangiography is usually favoured above percutaneous transhepatic cholangiography. Percutaneous transhepatic approaches also allow tissue collection and biliary drainage.

Cholangioscopy
Cholangioscopy using fiber-optic techniques provide direct visualization of the biliary tree. Differentiation between benign and malignant bile duct stricture using a cholangioscope has not been well defined. However, typical signs for malignancy including mucosal ulcerations, irregular mucosa and asymmetric stricture may be visible. Moreover, cholangioscopic guided forceps biopsy and brush cytology may enhance the diagnostic accuracy of tissue diagnosis. The most common approach is percutaneous transhepatic cholangioscopy. Another possibility is to perform peroral transpapillary cholangioscopy using a mother baby endoscope. Fukuda et al.[40] evaluated the utility of peroral cholangioscopy for distinguishing malignant from benign biliary disease. The authors identified 22 out of 38 malignant bile duct strictures using ERC in combination with tissue sampling. The addition of peroral cholangioscopy correctly identified all 38 malignant strictures in this series.

Intraductal ultrasonography
Intraductal ultrasonography (IDUS) is a promising imaging modality for the evaluation of a variety of biliary disorders.[41,42] Intraductal ultrasonography does not provide definite diagnoses. However, the characterization of biliary strictures provided by IDUS can be used in combination with other diagnostic approaches to develop appropriate therapeutic strategies. Intraductal ultrasonography can provide the local staging to select patients with cholangiocarcinoma who benefit from surgical resection.[43–46] Recently, Stavropoulos et al.[47] reported that intraductal ultrasonography increased the
In these published series, the sensitivity of Fluorescence EUS-FNA may. This advanced techniques for providing a definitive diagnosis of neous transhepatic procedures are the most common Tissue collection during endoscopic and/or percutaneous transhepatic procedures are the most common. Therefore, negative cytological results do not from bile duct strictures is the poor quality of cytologic samples. Therefore, negative cytological results do not permit reliable exclusion of malignancy.

Histology/cytology

Clinical signs of bile duct obstruction

Transabdominal ultrasonography

CT/MRI

ERCP/PTC including: brush cytology forceps biopsy

Histology/cytology positive

Histology/cytology negative

Repeated tissue sampling using a cholangioscope

Histology/cytology positive

Histology/cytology negative

Repeated tissue sampling:

US guided puncture

CT guided puncture

EUS guided puncture

Planning therapeutic strategy

Figure 1 The diagnostic algorithm in patients with suspected extrahepatic bile duct obstruction.

Fluorescence in situ hybridization (FISH)

Recently, investigators have attempted to improve diagnostic assessment with an advanced cytological technique for the detection of malignant pancreaticobiliary strictures. Fluorescence in situ hybridization (FISH) has been shown to increase the sensitivity for the diagnosis of malignant pancreaticobiliary strictures compared to conventional cytology. Kipp et al used a multitarget FISH probe set which has previously shown high impact in monitoring recurrent urothelial carcinoma. This advanced technique identifies malignant cells by detecting aneusomy and deletion of the locus 9p21. By applying this technique for brush cytology and bile aspirate specimens in 131 patients with bile duct strictures (including 71 with primary sclerosing cholangitis, FISH analysis showed sensitivity of 35% and specificity of 91%. When patients with primary sclerosing cholangitis were excluded, sensitivity for malignancy detection by FISH was 16%. This indicates that probe sets specific for biliary neoplasms will be required for higher sensitivity. However, not all malignant tumors present aneusomy or aneuploidy. In the biliary tract, the percentage of cancers displaying aneuploidy has been estimated to be approximately 80%.

CONCLUSION

Figure 1 demonstrates the diagnostic algorithm used in our hospital for patients with suspected extrahepatic bile duct obstruction. Cholangiocarcinomas are still difficult to diagnose. In the future we need better early detection methods including molecular markers and improved histological techniques. Furthermore, new imaging and endoscopic techniques should be
developed to improve the diagnostic accuracy and tumor extension.

REFERENCES

1. Bismuth H, Castaing D, Traynor O. Resection or palliation: priority of surgery in the treatment of hilar cancer. World J Surg 1988; 12: 39-47
2. Olner MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology 2004; 66: 167-179
3. Patel AH, Harnois DM, Klee GG, LaRusso NF, Gores GJ. The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 2000; 95: 204-207
4. Nichols JC, Gores GJ, LaRusso NF, Wisener RH, Nagorney DM, Ritts RE Jr. Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis. Mayo Clin Proc 1995; 68: 874-879
5. Nakeeb A, Lipsett PA, Lillelmo KD, Fox-Talbot MK, Coleman J, Cameron JL, Pitt HA. Biliary carcinobromyocyte antigen levels are a marker for cholangiocarcinoma. Am J Surg 1996; 171: 147-152, discussion 152-153
6. Lamerz R. Role of tumour markers, cytogenetics. Ann Oncol 1999; 10 Suppl 4: 145-149
7. Albert MB, Steinberg WM, Henry JP. Elevated serum levels of tumor marker CA19-9 in acute cholangitis. Dig Dis Sci 1988; 33: 1223-1225
8. John AR, Haggighi KS, Taniere P, Esmat ME, Tan YM, Bramhall SR. Is a raised CA 19-9 level diagnostic for a cholangiocarcinoma in patients with no history of sclerosing cholangitis? Dig Surg 2006; 23: 319-324
9. Nehls O, Gregor M, Klump B. Serum and bile markers for cholangiocarcinoma. Semin Liver Dis 2004; 24: 139-154
10. Sharma MP, Ahuja V. Aetiological spectrum of obstructive jaundice and diagnostic ability of ultrasonography: a clinician's perspective. Trop Gastroenterol 1999; 20: 167-169
11. Robledo R, Muro A, Prieto ML. Extrahepatic bile duct carcinoma: US characteristics and accuracy in demonstration of tumors. Radiology 1996; 198: 869-873
12. Nicolau C, Vilana R, Catala V, Bianchi L, Gilberlert R, Garcia A, Bru C. Importance of evaluating all vascular phases on contrast-enhanced sonography in the differentiation of benign from malignant focal liver lesions. AJR Am J Roentgenol 2006; 186: 158-167
13. Bartolotta TV, Taibbi A, Gaila M, Runza G, Matranga D, Midiri M, Lagalla R. Characterization of hypoechoic focal hepatic lesions in patients with fatty liver: diagnostic performance and confidence of contrast-enhanced ultrasound. Eur Radiol 2007; 17: 650-661
14. Celii N, Giainsi S, Piscaglia F, Zironi G, Camaggi V, Leoni S, Righini R, Bolondi L. Characterization of liver lesions on contrast-enhanced sonography in the differentiation of benign from malignant focal liver lesions. AJR Am J Roentgenol 2000; 174: 3-14
15. Xu HX, Liu GJ, Lu MD, Xie XY, Xu ZF, Zheng YL, Liang JY. Characterization of focal liver lesions using contrast-enhanced sonography with a low mechanical index mode and a sulfur hexafluoride-filled microbubble contrast agent. J Clin Ultrasound 2006; 34: 261-272
16. Xu HX, Lu MD, Liu GJ, Xie XY, Xu ZF, Zheng YL, Liang JY. Imaging of peripheral cholangiocarcinoma with low-mechanical index contrast-enhanced sonography and SonoVue: initial experience. J Ultrasound Med 2006; 25: 23-33
17. Tillich M, Mischinger HJ, Preissegger KH, Rabl H, SzoIar DH. Multiphasic helical CT in diagnosis and staging of hilar cholangiocarcinoma. AJR Am J Roentgenol 1998; 171: 651-658
18. Hann LE, Getradjman GI, Brown KT, bach AM, Teichber JF, Fong Y, Blumgart LH. Hepatic lobar atrophy: association with ipsilateral portal vein obstruction. AJR Am J Roentgenol 1996; 167: 1017-1021
19. Yamashita Y, Takahashi M, Kanazawa S, Charnsangavej C, Wallace S. Parenchymal changes of the liver in cholangiocarcinoma: CT evaluation. Gastrointest Radiol 1992; 17: 161-166
20. Aloia TA, Charnsangavej C, Faria S, Ribiero D, Abdalla EK, Vauthey JN, Curley SA. High-resolution computed tomography accurately predicts resectability in hilar cholangiocarcinoma. Am J Surg 2007; 193: 702-706
21. Mannired R, Barbaro B, Masselli G, Vecchioni A, Marano P. Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis 2004; 24: 155-164
22. Mannired R, Masselli G, Maresca G, Brizi MG, Vecchioni A, Marano P. MR imaging and MRCP of hilar cholangiocarcinoma. Abdom Imaging 2003; 28: 319-325
23. Masselli G, Gualdi G. Hilar cholangiocarcinoma: MRI/MRCP in staging and treatment planning. Abdom Imaging 2008; 33: 444-451
24. Khan SA, Davison BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, Thillainayagam AV, Thomas HC, Thursz MR, Wasan H. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut 2002; 51 Suppl 6: VI1-VI9
25. Zidi SH, Prat F, Le Guen O, Rendeau Y, Pelletier G. Performance characteristics of magnetic resonance cholangiography in the staging of malignant hilar strictures. Gut 2000; 46: 103-106
26. Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS, Delbeke D. Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 2004; 8: 90-97
27. Lee JD, Yang WJ, Park YN, Kim KS, Choi JS, Yun M, Ko D, Kim TS, Cho AE, Kim HM, Han KH, Im SS, Ahn YH, Choi CW, Park JH. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased (18)F-FDG uptake. J Nucl Med 2005; 46: 1753-1759
28. Reinhardt MJ, Strunk H, Gerhardt T, Roedel R, Jaeger U, Bucerius J, Sauerbruch T, Biersack HJ, Dumoulin FL. Detection of Klatskin's tumor in extrahepatic bile duct structures using delayed 18F-FDG PET/CT: preliminary results for 22 patient studies. J Nucl Med 2005; 46: 1158-1163
29. Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright JK Jr, Pinson CW. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg 1998; 133: 510-515; discussion 513-516
30. Kim YJ, Yun M, Lee WJ, Kim KS, Lee JD. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 2003; 30: 1467-1472
31. Wakabayashi H, Akamoto S, Yachida S, Okano K, Izuishi K, Nishiya Y, Maeta H. Significance of fluorodeoxyglucose PET imaging in the diagnosis of malignancies in patients with biliary stricture. Eur J Surg Oncol 2005; 31: 1175-1179
32. Park MS, Kim TK, Kim KW, Park SW, Lee JK, Kim JS, Lee JH, Kim KA, Kim AY, Kim PN, Lee MG, Ha HK. Differentiation of extrahepatic bile duct cholangiocarcinoma from benign stricture: findings at MRCP versus ERCP. Radiology 2004; 233: 234-240
33. Rosch T, Meining A, Fruhmorgen S, Zillinger C, Schudsziaa V, Hellerhoff K, Classen M, Helmerhorst H. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. Gastroint Endosc 2002; 55: 870-876
34. Zuiderha GD, Cameron JL, Sitzmann JV, Kadir S, Smith GW, Kaufman SL. White RJ Jr. Percutaneous transhepatic management of complex biliary problems. Am Surg 1983; 197: 584-593
35. Harrington DP, Barth HK, Maddrey WC, Kaufman SL, Cameron JL. Percutaneously placed biliary stents in the management of malignant biliary obstruction. Dig Dis Sci 1979; 24: 849-857
36. Mueller PR, van Sonnenberg E, Ferrucci JT Jr. Percutaneous biliary drainage: technical and catheter-related problems in 200 procedures. AJR Am J Roentgenol 1982; 138: 17-23
37. Yee AC, Ho CS. Complications of percutaneous biliary drainage.
drainage: benign vs malignant diseases. AJR Am J Roentgenol 1987; 148: 1207-1209

38 Clark RA, Mitchell SE, Colley DP, Alexander E. Percutaneous catheter biliary decompression. AJR Am J Roentgenol 1981; 137: 503-509

39 Carrasco CH, Zornoza J, Bechtel WJ. Malignant biliary obstruction: complications of percutaneous biliary drainage. Radiology 1984; 152: 343-346

40 Fukuda Y, Tsuyuguchi T, Sakai Y, Tsuchiya S, Saisyo H. Diagnostic utility of peroral cholangioscopy for various bile-duct lesions. Endoscopy 2005; 35: 574-582

41 Tamada K, Inui K, Menzel J. Intraductal ultrasonography of the bile duct system. Endoscopy 2001; 33: 879-885

42 Levy MJ, Vazquez-Sequeiros E, Wiersema MJ. Evaluation of the pancreaticobiliary ductal systems by intraductal US. Gastrointest Endosc 2002; 55: 397-408

43 Tamada K, Ido K, Ueno N, Kimura K, Ichiyama M, Tomiyama T. Preoperative staging of extrapancreatic bile duct cancer with intraductal ultrasonography. Am J Gastroenterol 1995; 90: 230-246

44 Tamada K, Ido K, Ueno N, Ichiyama M, Tomiyama T. Nishizono T, Wada S, Noda T, Tano S, Aizawa T. Assessment of portal vein invasion by biliary duct cancer using intraductal ultrasonography. Endoscopy 1995; 27: 573-578

45 Tamada K, Ido K, Ueno N, Ichiyama M, Tomiyama T, Nishizono T, Wada S, Noda T, Tano S, Aizawa T. Assessment of hepatic artery invasion by biliary duct cancer using intraductal ultrasonography. Endoscopy 1995; 27: 579-583

46 Tamada K, Nagai H, Yasuda Y, Tomiyama T, Ohashi A, Wada S, Kanai N, Satoh Y, Ido K, Sugano K. Transspipillary intraductal US prior to biliary drainage in the assessment of longitudinal spread of extrapancreatic bile duct carcinoma. Gastrointest Endosc 2001; 53: 300-307

47 Stavropoulos S, Larghi A, Verna E, Battezzati P, Stevens P. Intraductal ultrasound for the evaluation of patients with biliary strictures and no abdominal mass on computed tomography. Endoscopy 2005; 37: 715-721

48 Tamada K, Tomiyama T, Wada S, Ohashi A, Satoh Y, Ido K, Sugano K. Endoscopic transpapillary bile duct biopsy with the combination of intraductal ultrasonography in the diagnosis of biliary strictures. Gut 2002; 50: 326-331

49 Vazquez-Sequeiros E, Baron TH, Clain JE, Gostout CJ, Norton ID, Petersen BT, Levy MJ, Jondal ML, Wiersema MJ. Evaluation of indeterminate bile duct strictures by intraductal US. Gastrointest Endosc 2002; 56: 372-379

50 Eloubeidi MA, Chen VK, Jhala NC, Eltourn IE, Jhala D, Chhieng DC, Syed SA, Vickers SM, Mel Wilcox C. Endoscopic ultrasound-guided fine needle aspiration biopsy of suspected cholangiocarcinoma. Clin Gastroenterol Hepatol 2004; 2: 209-213

51 Byrne MF, Gerke H, Mitchell RM, Stiffler HL, McGrath K, Branch MS, Baillie J, Jawell PS. Yield of endoscopic ultrasound-guided fine-needle aspiration of bile duct lesions. Endoscopy 2004; 36: 715-719

52 Brugge WR. Endoscopic techniques to diagnose and manage biliary tumors. J Clin Oncol 2005; 23: 4561-4565

53 Osnes M, Serk-Hanssen A, Myren J. Endoscopic retrograde brush cytology (ERBC) of the biliary and pancreatic ducts. Scand J Gastroenterol 1975; 10: 829-831

54 Jailwala J, Fogel EL, Sherman S, Gottlieb K, Flueckiger J, Bucksoi LG, Lehman GA. Triple-tissue sampling at ERCP in malignant biliary obstruction. Gastrointest Endosc 2000; 51: 383-390

55 Mansfield JC, Griffin SM, Wadehra V, Matthewson K. A prospective evaluation of cytology from biliary strictures. Gut 1997; 40: 671-677

56 Macken E, Drijkoningen M, Van Aken E, Van Steenbergen W. Brush cytology of ductal strictures during ERCP. Acta Gastroenterol Belg 2000; 63: 254-259

57 Ponchon T, Gagnon P, Berger F, Labadie M, Liaras A, Chavaillon A, Bory R. Value of endobiliary brush cytology and biopsies for the diagnosis of malignant bile duct stenosis: results of a prospective study. Gastrointest Endosc 1995; 42: 565-572

58 Pugliese V, Conio M, Nicolò G, Saccomanno S, Gatteschi B. Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: a prospective study. Gastrointest Endosc 1995; 42: 520-526

59 Kubota Y, Yamaguchi T, Tani K, Takaoka M, Fujimura K, Ogura M, Yamamoto S, Mizuno T, Inoue K. Anatomical variation of pancreaticobiliary ducts in biliary stone diseases. Abdom Imaging 1993; 18: 145-149

60 Weber A, von Weyhern C, Fend F, Schneider J, Neu B, Meining A, Weidenbach H, Schmid RM, Prinz C. Endoscopic transpapillary brush cytology and forceps biopsy in patients with hilar cholangiocarcinoma. World J Gastroenterol 2008; 14: 1097-1101

61 Moreno Luna LE, Kipp B, Halling KC, Sebo TJ, Kremers WK, Roberts LR, Barr Fritcher EG, Levy MJ, Gores GJ. Advanced cytologic techniques for the detection of malignant pancreaticobiliary strictures. Gastroenterology 2006; 131: 1064-1072

62 Kipp BR, Stadhjem LM, Halling SA, Pochron NL, Harmsen S, Nagorney DM, Sebo TJ, Therneau TM, Gores GJ, de Groen PC, Baron TH, Levy MJ, Halling KC, Roberts LR. A comparison of routine cytology and fluorescence in situ hybridization for the detection of malignant bile duct strictures. Am J Gastroenterol 2004; 99: 1675-1681

63 Zellweger T, Benz G, Cathomas G, Mihaatsch MJ, Sulser T, Gasser TC, Babendur L. Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer 2006; 119: 1660-1665

64 Wamsteker EJ, Sjouwerman HMA. Fluorescence in situ hybridization for the detection of malignant bile duct strictures: has FISH found a new pond? Am J Gastroenterol 2004; 99: 1682-1683

65 Bergquist A, Tribukait B, Glaumann H, Broome U. Can DNA cytometry be used for evaluation of malignancy and premalignancy in bile duct strictures in primary sclerosing cholangitis? J Hepatol 2000; 33: 873-877

S-Editor Zhong XY L-Editor Roberts SE E-Editor Zhang WB

www.wjgnet.com