Ligand Redox Noninnocence in [CoIII(TAML)]0/- Complexes Affects Nitrene Formation

van Leest, N.P.; Tepaske, M.A.; Oudsen, J.-P.H.; Venderbosch, B.; Rietdijk, N.R.; Siegler, M.A.; Tromp, M.; van der Vlugt, J.I.; de Bruin, B.

DOI
10.1021/jacs.9b11715

Publication date
2020

Document Version
Final published version

Published in
Journal of the American Chemical Society

License
CC BY-NC-ND

Citation for published version (APA):
van Leest, N. P., Tepaske, M. A., Oudsen, J-P.H., Venderbosch, B., Rietdijk, N. R., Siegler, M. A., Tromp, M., van der Vlugt, J. I., & de Bruin, B. (2020). Ligand Redox Noninnocence in [CoIII(TAML)]0/- Complexes Affects Nitrene Formation. Journal of the American Chemical Society, 142(1), 552-563. https://doi.org/10.1021/jacs.9b11715
Ligand Redox Noninnocence in [CoIII(TAML)]0/− Complexes Affects Nitrene Formation

Nicolaas P. van Leest,† Martijn A. Tepaske,† Jean-Pierre H. Oudsen,‡ Bas Venderbosch,‡ Niels R. Rietdijk,§ Maxime A. Siegler,*,‡ Moniek Tromp,*,§ Jarl Ivar van der Vlugt,*,‡ and Bas de Bruin*,‡

†Homogeneous, Supramolecular and Bio-Inspired Catalysis Group and ‡Sustainable Materials Characterization Group, van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
§Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States

Supporting Information

ABSTRACT: The redox noninnocence of the TAML scaffold in cobalt-TAML (tetra-amido macrocyclic ligand) complexes has been under debate since 2006. In this work, we demonstrate with a variety of spectroscopic measurements that the TAML backbone in the anionic complex [CoIII(TAMLred)]− is truly redox noninnocent and that one-electron oxidation affords [CoIII(TAMLaq)]. Multireference (CASSCF) calculations show that the electronic structure of [CoIII(TAMLaq)] is best described as an intermediate spin (S = 1) cobalt(III) center that is antiferromagnetically coupled to a ligand-centered radical, affording an overall doublet (S = 1/2) ground-state. Reaction of the cobalt(III)-TAML complexes with PhINNs as a nitrene precursor leads to TAML-centered oxidation and produces nitrene radical complexes without oxidation of the metal ion. The ligand redox state (TAMLred or TAMLaq) determines whether mono- or bis-nitrene radical complexes are formed. Reaction of [CoIII(TAMLaq)] or [CoIII(TAMLred)]− with PhINNs results in the formation of [CoIII(TAMLaq)(N−N−)] and [CoIII(TAMLaq)(N−N−)2−], respectively. Herein, ligand-to-substrate single-electron transfer results in one-electron-reduced Fischer-type nitrene radicals (N−N−) that are intermediates in catalytic nitrene transfer to styrene. These nitrene radical species were characterized by EPR, XANES, and UV-vis spectroscopy, high-resolution mass spectrometry, magnetic moment measurements, and supporting CASSCF calculations.

INTRODUCTION

The use of base metals and redox noninnocent (or redox-active) ligands in radical-type carbene, oxo, and nitrene transfer reactions has evolved as a powerful tool for the direct functionalization of (unactivated) C−H bonds and olefins.1 The functionalized products of these reactions are motifs in pharmaceuticals and agrochemicals and are therefore highly valued.2 N-group transfer reactivity is an efficient way to afford the direct synthesis of secondary amines and aziridines, of which the synthesis otherwise typically requires harsh reaction conditions or multiple steps.3 Generation of the essential catalytic metal-nitrene intermediates has been achieved with second- and third-row transition metals (Ru4, Rh5, Pd6, Ag7, and Au8) as well as more abundant base metals (Mn9, Fe10, Co11, Ni12, and Cu13).

Our group, in collaboration with the Zhang group, has studied the formation and reactivity of nitrene adducts of cobalt(II)-porphyrin complexes, which are competent catalysts for a range of (enantioselective) amination and aziridination reactions.11a−d,11c−f The mononitrene species generated on cobalt upon reaction with an organic azide is most accurately described as a one-electron-reduced Fischer-type nitrene radical.14 This interesting electronic structure is the result of metal-to-substrate single-electron transfer (SET), wherein cobalt is oxidized from CoII to CoIII and the nitrene is reduced by one electron to produce a nitrene radical (N−N−) complex with single-electron population of the π symmetric Co−N antibonding orbital. Interestingly, the reaction of cobalt(II)-porphyrins with iminoiodinanes (PhINNs, Ns = nosyl) led to the formation of bis-nitrene radical species with two one-electron-reduced Fischer-type nitrene radicals (N−N−) that are intermediates in catalytic nitrene transfer to styrene. These nitrene radical species were characterized by EPR, XANES, and UV−vis spectroscopy, high-resolution mass spectrometry, magnetic moment measurements, and supporting CASSCF calculations.

Received: October 30, 2019
Published: December 17, 2019

Cite This: J. Am. Chem. Soc. 2020, 142, 552−563
macroyclic ligand (TAML) platform designed by Collins’ group.16 The general structure of a TAML that met the aforementioned requirements is depicted in Scheme 1. Moreover, the potential redox noninnocence of TAML and related \(\sigma\)-phenylenedicarboxamido complexes has been proposed in the literature, and for clarity, we will follow the nomenclature as presented in Scheme 1 for the fully reduced tetra-anion (red), mono-oxidized trianionic ligand-centered radical (sq), and fully oxidized dianion (q).16,17

Iron complexes of these TAML activators have found widespread use in oxidation chemistry, and TAML complexes with Cr, Mn, Fe, Co, Ni and Cu have been reported with many variations of the TAML scaffold.16,18 Interestingly, ligand-centered oxidation of an \([\text{Fe}^\text{V}(\text{TAML}_{\text{red}})(\text{NTs})]^{\text{−}}\) complex was shown to afford \([\text{Fe}^\text{V}(\text{TAML}^{\text{sq}})(\text{NTs})]\), which is a more active nitrene transfer species toward activated C−H bonds (bond dissociation energy between 75 and 80 kcal mol−1) and thioanisole than the reduced analogue.19 A similar trend was observed for a manganese-imido complex, wherein \([\text{Mn}^\text{V}(\text{TAML}_{\text{red}})(\text{NMes})]^{\text{−}}\) (Mes = mesityl) proved to be unreactive and metal-centered oxidized complex \([\text{Mn}^\text{VI}(\text{TAML}_{\text{red}})(\text{NMes})]\) could be used for hydrogen atom transfer reactions and nitrene transfer to thioanisole.20

Apparently, the redox activity of the TAML ligand varies from complex to complex, depending on the metal and other ligands, and both metal- and ligand-centered redox processes can be used to influence the nitrene-transfer reactivity. Specific \([\text{Co}^\text{III}(\text{TAML}_{\text{red}})]^{\text{−}}\) complexes21 have been used for electrochemical water oxidation22,23 and oxygen reduction,24 cycloaddition of CO\textsubscript{2} to epoxides,25 electrochemical sensing of \(\text{H}_2\text{O}_2\),26 oxo transfer to C−H bonds,27 and electron-transfer reactions.28 However, to the best of our knowledge, no nitrene transfer reactions or stoichiometric reactions leading to the formation of Co(TAML)-based imido- or nitrene-complexes have been reported to date. Moreover, contrary to chemistry with iron, the existence of TAML-centered redox processes in cobalt complexes is still under debate (Figure 1).

Collins et al.21 reported the synthesis and characterization of an anionic \([\text{Co}^\text{III}(\text{TAML}_{\text{red}})]^{\text{−}}\) complex with a diamidophenyl backbone in 1991. The anionic parent complex was characterized as a triplet with an \(S = 1\) Co center and a fully reduced \(\sigma\)-phenylenedicarboxamido ligand. The oxidation of this complex afforded a neutral \(S = 1/2\) system for which crystallographic bond metrics indicated single-electron oxidation of the ligand and electron paramagnetic resonance (EPR) data hinted at a cobalt-centered radical (Figure 1). This data was interpreted in 1998 as corresponding to an \(S = 1\) cobalt(III) center antiferromagnetically coupled to a ligand-centered radical (\([\text{Co}^\text{III}(\text{TAML}^{\text{sq}})]\))28 Ghost et al.29 reported an elaborate density functional theory (DFT) study on the ligand noninnocence of multiple variations of the TAML backbone and suggested that the electronic structure of \([\text{Co}^\text{III}(\text{TAML}^{\text{sq}})]\) is better described as \([\text{Co}^\text{IV}(\text{TAML}_{\text{red}})]\) (Figure 1). Their assignment was based on the Mulliken spin density, which was solely localized on cobalt. Collins and co-workers18 critically reinterpreted these spin densities as being evidence of an \(S = 1\) CoIII center. It should be noted that multireference post-Hartree–Fock methods were not accessible at the time, and possible broken-symmetry solutions were apparently not explored. As such, optional antiferromagnetic coupling between an \(S = 1\) Co center and a ligand-centered

Figure 1. Interpretation of the ligand (non)innocence in cobalt-TAML complexes in chronological order. HFI = hyperfine interaction.
radical could have remained hidden in the applied DFT calculations.

Innocent behavior of the TAML scaffold was claimed in an electrochemical study reported in 2014 as well as in the characterization of Lewis acid-stabilized oxo-complex \(\text{[Co}^{IV}(\text{TAML}_{\text{red}})(\text{O})]^{-} \). The \(\text{[Co}^{IV}(\text{TAML}_{\text{red}})(\text{O})]^{-} \) complex was based on UV–vis, EPR, XANES (X-ray absorption near edge spectroscopy), and EXAFS (extended X-ray absorption fine structure) studies, in combination with DFT-calculated Mulliken spin densities. On the contrary, TAML-centered redox activity in \(\text{[Co}^{II}(\text{TAML}_{\text{q}})(\text{OH})] \) was claimed in 2018 on the basis of UV–vis, EPR, and XPS (X-ray photoelectron spectroscopy) studies.

Given (i) the contrasting descriptions of ligand and cobalt oxidation states in \(\text{[Co(TAML)]} \) complexes, (ii) our interest in generating cobalt-nitrene radical intermediates via ligand-to-substrate SET, and (iii) the previous characterization of \(\text{[Fe(TAML)(imidod)]}, \text{[Mn(TAML)(imidod)]}, \text{and [Co}^{IV-V}(\text{TAML}(\text{oxo})] \), we set out to answer the following research questions:

Is the ligand in \(\text{[Co(TAML)]} \) complexes redox noninnocent, and can the different assignments in the literature be reconciled? (See Figure 2A.)

Can the \(\text{[Co(TAML)]} \) platform be used to generate (catalytically competent) cobalt-nitrene (radical) species, and what is the influence of the (ligand) oxidation state on the (electronic) structure of the targeted nitrene (radical) species? (See Figure 2B.)

In case the TAML ligand platform is indeed redox-active, can we use this feature for ligand-to-substrate SET to produce nitrene radical species at square planar cobalt(III) species? (See Figure 2B.)

The main findings of the investigations presented in this article are summarized in Figure 2C.

RESULTS AND DISCUSSION

Ligand-Centered Oxidation of \(\text{[Co}^{II}(\text{TAML}_{\text{red}})]^{-} \). The parent \(\text{[Co}^{III}(\text{TAML}_{\text{red}})]^{-} \) complex was obtained according to an adapted literature procedure. After a five-step synthesis procedure to obtain the ligand (\(\text{TAMLH}_{4} \)), coordination of \(\text{Co}^{II} \) to the fully deprotonated ligand (generated using \(\text{n-BuLi} \)) and aerobic oxidation afforded \(\text{Li[Co}^{III}(\text{TAML}_{\text{red}})] \) or \(\text{PPh}_{4}[\text{Co}^{III}(\text{TAML}_{\text{red}})] \) after salt metathesis with \(\text{PPh}_{4}\text{Cl} \) (Scheme 2).

![Scheme 2](https://example.com/scheme2.png)

Crystals suitable for single crystal X-ray diffraction (XRD) analysis of \(\text{TAMLH}_{4} \) and \(\text{PPh}_{4}[\text{Co}^{III}(\text{TAML}_{\text{red}})] \) were grown by the vapor diffusion of pentane into concentrated THF solutions of the ligand or complex, respectively. The solid state structure of \(\text{PPh}_{4}[\text{Co}^{III}(\text{TAML}_{\text{red}})] \) displays a square planar geometry around cobalt and a noncoordinating THF molecule in the crystal lattice. As expected and in accordance with the literature, an analysis of the crystallographic bond metrics (Supporting Information) of the diaminophenyl ring in...
TAMLH$_4$ and PPh$_4$[CoIIITAMLred] supports the preservation of aromaticity upon coordination to cobalt, with the ligand being fully reduced (TAMLred) and the metal adopting the CoIII oxidation state. The effective magnetic moment of PPh$_4$[CoIIITAMLred], as determined via the Evans’ method, indicated a triplet ($S = 1$) ground state ($\mu_{eff} = 2.94\mu_{B}$). This is in accordance with the literature and is expected for an intermediate-spin CoIII center with two parallel metal-centered unpaired electrons. The DFT-optimized structure of [CoIII(TAMLred)]$^-$ in the triplet state at the BP86/def2-TZVP level of theory is consistent with these observations, and the calculated bond metrics closely match the experimental bond lengths. The electrochemical oxidation of PPh$_4$[CoIIITAMLred] in CH$_2$Cl$_2$ (Scheme 3A) using cyclic voltammetry displays three fully reversible redox events at $E_{1/2} = -1.18$, $+0.53$, and $+1.13$ V vs Fc$^{+/0}$, which are attributed to metal-centered reduction (CoIII/II) and two ligand-centered oxidations (TAMLred/sq and TAMLsq/red) respectively (vide infra). UV–vis–SEC titration gave data identical to that obtained from UV–vis–SEC monitoring of the oxidation event at $+0.53$ V vs Fc$^{+/0}$ (Scheme 3D). The effective magnetic moment of [CoIII(TAMLred)]$^-$ ($\mu_{eff} = 1.88\mu_{B}$, Evans’ method) was found to be consistent with an overall net doublet ($S = 1/2$) ground state. Room-temperature (r.t.) X-band EPR studies in CH$_2$Cl$_2$ or toluene reveal a signal characteristic of a net $S = 1/2$ system with unpaired electron density on cobalt ($g_{iso} = 2.22$) (Figure 3A). EPR measurements at 10 K in toluene glass showed a rhombic signal with $g_x = 2.03$, $g_y = 2.16$, $g_z = 2.54$, $A^{Co}_{z} = 5.0$ MHz, $A^{Co}_{x,y} = 0.0$ MHz, $A^{Co}_{z} = 20.0$ MHz, linear A strain -0.018 (g direction), and quadratic A strain -18 (g direction) and -2 (y direction). (C) Experimental (black) and simulated (blue) X-band EPR spectra of [CoIII(TAMLred)]$^-$ in MeCN and the DFT (BP86/def2-TZVP/disp3)-optimized structure. Microwave freq. 9.3886 GHz, mod. amp. 3 G, and power 2.000 mW. Simulated (calculated; B3LYP/def2-TZVP) parameters: $g_{iso} = 2.00$ (2.00) and $A^{Co}_{z} = 36.0$ (34.2) MHz.

Chemical oxidation of TAML complexes with ceric ammonium nitrate ($\left(\text{NH}_4\right)_2\text{[Ce(NO}_3)_6\right]$) typically requires excess oxidant and large volumes of solvent to extract the product. For purple-colored PPh$_4$[CoIIITAMLred] and Li[CoIIITAMLaq], oxidation with a stoichiometric amount of thianthrenium tetrafluoroborate ([(Thi)BF$_4$]) ($E^{1/2} = 0.86$ V vs Fc$^{+/0}$) cleanly afforded the blue-colored [CoIIITAMLaq] complex (Scheme 3C). A UV–vis titration gave data identical to that obtained from UV–vis–SEC monitoring of the oxidation event at $+0.53$ V vs Fc$^{+/0}$ (Scheme 3D).
to the erroneous description of multireference systems with DFT methods (vide infra). Interestingly, the isotropic X-band EPR spectrum measured in MeCN (Figure 3C) revealed an eight-line pattern at $g_{\text{iso}} = 2.00$ attributed to hyperfine coupling with cobalt ($A_{\text{Co iso}} = 36.0$ MHz) in $[\text{Co}^{\text{III}}(\text{TAML}^{\text{aq}})](\text{MeCN})$, which is in excellent agreement with the DFT-calculated parameters (B3LYP/def2-TZVP: $g_{\text{iso}} = 2.00$, $A_{\text{Co iso}} = 34.2$ MHz). Notably, this species has a single-reference doublet electronic structure with the unpaired electron residing in a cobalt-ligand π^* orbital (strongly delocalized over cobalt and the ligand; see the SI).

The cobalt oxidation state of the four-coordinate complexes was further investigated using Co K-edge X-ray absorption near edge spectroscopy analysis. The Co K-edge XANES spectra of $\text{PPh}_4[\text{Co}^{\text{III}}(\text{TAML}^{\text{red}})]$ and $[\text{Co}^{\text{III}}(\text{TAML}^{\text{aq}})]$ in toluene are compared in Figure 4. The edge position was 7721 eV for both complexes. Both spectra are identical, which is in line with the same oxidation state (+III) and similar coordination geometry of cobalt in the two complexes. The +III oxidation state of cobalt was already found in $\text{PPh}_4[\text{Co}^{\text{III}}(\text{TAML}^{\text{red}})]$ (according to XRD-derived bond metric analysis, vide supra), and the observed edge position is equal to a related $[\text{Co}^{\text{III}}(\text{TAML})]^{-}$ complex. The shoulder at approximately 7715 eV in the Co K-edge XANES spectra is typical for square planar Co complexes, including square planar Co-porphyrin complexes and a related cobalt-TAML complex. The main edge feature arises primarily from $1s \rightarrow 4p$ electron transitions, whereas the feature at 7715 eV is commonly assigned to $1s \rightarrow 4p_z$ and ligand-to-metal charge transfer (LMCT) shakedown transitions.

In agreement with previous studies, DFT calculations with various GGA and hybrid functionals (BP86, B3LYP, PBE, and OPBE; see the SI for details) gave unsatisfactory results for the Co(TAML)-type complexes under investigation. An illustrative example of the problem encountered with DFT is found in the challenging description of the net-doublet ground state of the $[\text{Co}^{\text{III}}(\text{TAML}^{\text{aq}})]$ complex. Distinguishing between a genuine Co^{IV} complex and a multireference electronic structure solution involving antiferromagnetic coupling between an $S = 1$ Co^{III} center and a TAML ligand-centered radical (as indicated by the B3LYP broken-symmetry DFT solution) is very difficult, if not impossible, when relying only on single-reference computational methods (such as DFT). We therefore decided to turn to multireference N-electron valence state perturbation theory (NEVPT2)-corrected complete active space self consistent field (CASSCF) calculations for a proper description of the electronic structures of the Co(TAML)-type complexes described in this article.

CASSCF calculations were initiated on the anionic $[\text{Co}^{\text{III}}(\text{TAML}^{\text{red}})]^{-}$ complex by the inclusion of all cobalt d orbitals and those ligand π orbitals (L_π) that could have an interaction with cobalt. In the final CASSCF(14,13) calculation, all initial orbitals were preserved in the active space, except for the d_{xy} orbital, which is uncorrelated (occupancy of 2.00). A selection of the most relevant active orbitals with their occupancies (in parentheses) is given in Figure 5A. Löwdin population analysis of the electronic configuration of the d shell gave $(d_{xy})^2.00, (d_{x^2-y^2})^1.99, (d_{z^2})^1.02, (d_{xz})^1.02$, consistent with the assigned +III oxidation state of cobalt. Notably, the L_π orbital at -0.268E_h has a weak bonding interaction with the d_{xy} orbital and is fully filled (occupancy 1.91), consistent with the fully reduced oxidation state of the ligand.

CASSCF(13,12) calculations on the neutral $[\text{Co}^{\text{III}}(\text{TAML}^{\text{aq}})]$ complex included a similar active space as for the parent anionic complex and revealed substantial...
multireference character. The uncorrelated d_{xz} and d_{xy} orbitals (occupancy 2.00) were not preserved in the active space. The reduced charge on the complex causes increased stabilization of the cobalt d orbitals compared to the parent anionic complex, reduced charge on the complex causes increased stabilization of the cobalt d orbitals compared to the parent anionic complex.

The addition of 1 equiv of the nitrene precursor PhINNs to PPh$_4$[CoIIITAMLred] in CH$_2$Cl$_2$ at r.t. led to the quantitative formation of only complexes. We were particularly interested in exploring the PPh$_4$[CoIIITAMLred] in CH$_2$Cl$_2$ at r.t., showing well-resolved 59Co ($A_{iso} = 89.5$ MHz) and poorly resolved (but necessary for accurate simulation) 14N ($A_{iso} = 18.9$ MHz) HFI. The anisotropic low-temperature (20 K) EPR spectrum of [CoIIITAMLred](NNs) recorded in toluene glass displays a slightly rhombic signal with small g anisotropy and multiple hyperfine coupling interactions, consistent with a net-doublet ground state (Figure 7B). The r.t. EPR spectrum of [CoIIITAMLred](NNs) proved to be similar to that of [CoIITAMLred](NNs)$_2$ (SI). The Co K-edge XANES spectra for PPh$_4$[CoIIITAMLred](NNs)$_2$ and [CoIIITAMLred](NNs) are shown in Figure 8. As was observed for the parent complexes PPh$_4$[CoIIITAMLred] and [CoIIITAMLred], the edge position for both cobalt-nitrene complexes is detected at 7721 eV, suggesting that the cobalt centers in all four complexes have the same overall +III oxidation state. Interestingly, the intense shoulder absorption at 7715 eV was achieved on the basis of ESI-HRMS as revealed by negative-mode electrospray ionization high-resolution mass spectrometry (ESI-HRMS) analysis. Upon addition of 10 equiv of PhINNs to PPh$_4$[CoIIITAMLred] in CH$_2$Cl$_2$ or toluene at r.t., quantitative formation on bis-nitrene adducts (Figure 8A) is indeed characteristic of the ligand-centered radical. The corresponding calculated excitation (at 625 nm) is composed of ligand-characteristic radical orbital being the acceptor in all cases.

The combined data from magnetic moment measurements, EPR, UV−vis, and XANES spectroscopy, and NEVPT2-CASSCF calculations reveal that the oxidation of $[^{3+}Co^{III}(TAML^{red})]^{−}$ is ligand-centered, giving rise to the formation of [CoIIITAMLred], wherein cobalt retains its +III oxidation state and its square planar coordination geometry.

The additions of 1 equiv of the nitrene precursor PhINNs to PPh$_4$[CoIIITAMLred] in CH$_2$Cl$_2$ at r.t. led to a mixture of (net) triplet ($S = 1$) and doublet ($S = 1/2$) systems, respectively. For clarity, we already included the assigned oxidation states of the ligand and cobalt for anionic bis-nitrene ([CoIIITAMLred](NNs)$_2$)$^{−}$ and neutral mononitrene ([CoIIITAMLred](NNs)) in Scheme 4 and Figure 6 and the following text. In the next sections, we will further elaborate on the measurements and calculations leading to these assignments.

As can be expected for an integer spin system, anionic bis-nitrene complex [CoIITAMLred](NNs)$_2$ is X-band EPR silent at both r.t. and at 10 K. Neutral mononitrene complex [CoIITAMLred](NNs) displays an isotropic EPR signal ($g_{iso} = 2.091$ at r.t., showing well-resolved 59Co ($A_{iso} = 89.5$ MHz) and poorly resolved (but necessary for accurate simulation) 14N ($A_{iso} = 18.9$ MHz) HFI. The anisotropic low-temperature (20 K) EPR spectrum of [CoIIITAMLred](NNs) recorded in toluene glass displays a slightly rhombic signal with small g anisotropy and multiple hyperfine coupling interactions, consistent with a net-doublet ground state (Figure 7B).

The Co K-edge XANES spectra for PPh$_4$[CoIIITAMLred](NNs)$_2$ and [CoIIITAMLred](NNs) are shown in Figure 8. As was observed for the parent complexes PPh$_4$[CoIIITAMLred] and [CoIIITAMLred], the edge position for both cobalt-nitrene complexes is detected at 7721 eV, suggesting that the cobalt centers in all four complexes have the same overall +III oxidation state. Interestingly, the intense shoulder absorption at 7715 eV observed in the spectra of PPh$_4$[CoIIITAMLred](NNs)$_2$ and [CoIIITAMLred](NNs) (corresponding to $1s \rightarrow 4p_z + LMCT$ shakedown transitions characteristic of square planar cobalt complexes) is no longer visible in the nitrene adducts, thus
suggesting that both complexes undergo changes in coordination number and/or geometry. This was also observed in related CoIII(porphyrin)-mono- and bis-nitrene complexes that displayed an octahedral coordination environment, with an axial coligand (NsNH₂, NsNH⁻, H₂O, or solvent) present in case of the mononitrene species. Moreover, an additional low-intensity pre-edge feature at 7711 eV is observed clearly for [CoIII(TAMLq)(NNs)]. The pre-edge feature in the XANES spectrum of PPh₄[CoIII(TAMLq)(NNs)] is not well-resolved because of moderate data quality caused by low solubility of the complex. These pre-edge features arise from 1s→3d transitions, and in centrosymmetric (i.e., square planar and octahedral) complexes, these transitions are weak because of quadrupole transitions. However, symmetry breaking enables 3d→4p hybridization of metal atomic orbitals, causing the pre-edge to gain intensity as a result of dipole-allowed transitions. It thus seems that [CoIII(TAMLq)(NNs)] bears an unidentified sixth coordinating coligand (octahedral coordination geometry) but is not fully centrosymmetric. However, similar low-intensity pre-edge features have been observed in a five-coordinate cobalt-TAML complex; therefore, square pyramidal coordination around cobalt cannot be fully excluded for [CoIII(TAMLq)(NNs)].

Consistent with the above-mentioned experimental results, DFT calculations (BP86, def2-TZVP, disp3, and m4 grid) indicate that the formation of neutral mononitrene complex [CoIII(TAMLq)(NNs)] (S = 1/2; ΔG°₂₉₈ K = −20.3 kcal mol⁻¹) from [CoIII(TAMLq)][S = 1/2] is energetically
more favorable than the formation of the neutral bis-nitrene adduct \([\text{Co(TAML)}(\text{NNs})_2]\) \((S = 1/2); \Delta G_{298}^{\circ} = -14.5 \text{ kcal mol}^{-1}\). However, the corresponding formation energies of the anionic mono- and bis-nitrene complexes \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) and \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})(\text{NNs})_2]^- (S = 1); \Delta G_{298}^{\circ} = -29.9 \text{ kcal mol}^{-1}\) from \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); reference point) are nearly equal \((\text{SI})\).

NEVPT2-corrected CASSCF calculations were performed to accurately describe the electronic structure of the nitrene species. All cobalt d orbitals, ligands \(L\), and nitrene-localized p orbitals were included in the active spaces. CASSCF(14,13) calculations on \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) showed that the d\(_{xz}\) orbital is not preserved in the active space (occupancy 2.00)\(^{46}\) and that the d\(_{yz}\) orbital forms bonding (nitrene-N\(_1\)- and -N\(_2\)- localized, occupancy 1.94) and antibonding (mostly d\(_{xz}\)- localized, occupancy 0.07) combinations with the nitrene N\(_p\) orbitals. The d\(_{xz}\) and d\(_{yz}\) orbitals are both filled (occupancies 1.97 and 1.95, respectively), and L\(_{x}\)–d\(_{xz}\) (occupancy 0.10) is virtually empty. Given that the L\(_{x}\) orbital was doubly filled in \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (\text{vide supra}); this implies that the formation of \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) from \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); reference point) is nearly equal \((\text{SI})\).

Interestingly, both nitrene nitrogen atoms bear a single unpaired electron in their N\(_p\)/N\(_s\) orbitals (both occupations 1.00). The electronic structure is thus best described as \((d_{yz})^{2.00}(d_{xz})^{1.97}(d_{xy})^{1.98}(N_{p1}^2 + N_{p2}^2 + d_L)^{1.94}(N_{p1}^2)^{1.00}(N_{p2}^2)^{1.00}\), consistent with a Co\(^{\text{III}}\) center, a fully oxidized TAML backbone (TAML\(^\text{red}\)), and two one-electron-reduced Fischer-type nitrene radical substrates \((\text{N}^+\text{Ns}^-)^2\).\(^{43}\) Moreover, the cobalt(III) center has undergone a spin transition from intermediate spin in \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (\text{vide supra}); this implies that the formation of \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) from \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); reference point) upon formation of the bis-nitrene radical species. As a result, the net total spin state does not change in the process and remains a triplet spin state \((S = 1)\). The most relevant active orbitals and their occupation numbers are shown in Figure 9A. In addition, excitation energies derived from the CASSCF(14,13) calculation revealed that no intense absorption bands are expected in the 400–850 nm region \((\text{SI})\), consistent with the experimental spectrum depicted in Figure 6A.

The complex bears some resemblance to the previously reported cobalt-porphyrin bis-nitrene \([\text{Co}^{\text{III}}(\text{TPP}^\text{••})^- (\text{N}^+\text{Ns}^-)^2]\)\(^{14}\) and ruthenium-porphyrin bis-imido \([\text{Ru}^{\text{VI}}(\text{TPP})(\text{NTs})_2]\)\(^{44}\) complexes \((\text{TPP} = \text{tetraphenylporphyrin}).\) The ruthenium bis-imido complex is formed exclusively via metal-centered oxidation processes. However, whereas in the cobalt-porphyrin complex double nitrene-radical formation is the result of combined metal-to-substrate and (porphyrin) ligand-to-substrate SET processes, the formation of \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) is an entirely (double) ligand-to-substrate single-electron-transfer process.

In a very similar fashion, CASSCF(13,12) calculations on \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) reveal \(\pi\) \((d_{yz} + N_{p1})\) and \(\sigma\) \((d_{xy} + N_{p2})\) bonding interactions between cobalt and the nitrene, with occupations of 1.93 and 1.86 electrons, respectively.\(^{45}\) The d\(_{yz}\) orbital is filled (occupancy 1.91), and the formerly half-filled L\(_{x}\)–d\(_{xz}\) orbital is now unoccupied (occupancy 0.12), indicating single-electron oxidation of the ligand \((\text{i.e., from TAML}^{\text{red}} \text{to TAML})\). The single unpaired electron of the complex is mainly localized on the nitrene moiety \((N_{p1} - d_L\) occupancy 1.06\)), again consistent with \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) being a Fischer-type nitrene radical complex with net \(\pi\)-bond order between cobalt and the nitrene of \(~0.5).\(^{33}\) As for the anionic bis-nitrene complex, the neutral mononitrene complex is generated via ligand-to-substrate SET. Once again, the cobalt(III) ion does not change its oxidation state in the process, but it does undergo a spin flip from intermediate spin in \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) to low spin in \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\). The most relevant active orbitals and their occupations are shown in Figure 9B. Notably, neither \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) nor \([\text{Co}^{\text{III}}(\text{TAML}^\text{red})]^- (S = 1); \Delta G_{298}^{\circ} = -27.9 \text{ kcal mol}^{-1}\) has significant multireference character.

![Figure 9](image-url)
Interestingly, ligand-to-substrate SET combined with a metal-based spin flip effectively leads to a shift in the spin density from the metal to the nitrene nitrogen(s) in both the neutral mononitrene and the anionic bis-nitrene complexes, without the oxidation of cobalt and without changing the net total spin state of the complex. The redox events clearly occur on the TAML backbone (electron donor) and the nitrene (electron acceptor), wherein the former undergoes one-electron or two-electron oxidation to accommodate one or two nitrene radicals on the CoIII center.

Intriguing by the influence of the ligand oxidation state on the structure of the nitrene species, the mono- and bis-nitrene species were probed for catalytic nitrene transfer reactivity in the benchmark aziridination of styrene (Scheme 5).

A remarkable difference in the yield of aziridine product 1 was observed when using PPh4[CoIII(TAMLred)] (64%) or [CoIII(TAMLsq)] (35%) as the catalyst in nitrene transfer reactions from PhINNs to styrene, suggesting that the anionic bis-nitrene and neutral mononitrene exhibit markedly different activity and/or stability properties. A thorough investigation of the applicability and mechanisms of PPh4[CoIII(TAMLred)] and [CoIII(TAMLsq)] as aziridination catalysts is the subject of current investigations, which will be reported in due time. At this point it is worth mentioning that for cobalt-TAML complexes the reduced (anionic) [CoIII(TAMLred)] species are apparently more effective nitrene-transfer catalysts than the corresponding oxidized (neutral) [CoIII(TAMLsq)] species, while for iron- and manganese-TAML complexes the reverse was observed.

CONCLUSIONS

In this work we have conclusively shown that the ligand in Co(TAML) complexes is redox-active. The oxidation of [CoIII(TAMLred)] using (Thi)BF4 cleanly affords [CoIII(TAMLsq)] via ligand-centered oxidation, with the electronic structure being best described as an intermediate spin (S = 1) cobalt(III) center that is antiferromagnetically coupled to a ligand-centered radical (S = 1/2).

Interestingly, cobalt-nitrene adducts of PPh4[CoIII(TAMLred)] and [CoIII(TAMLsq)] can be cleanly generated from PhINNs via ligand-to-substrate single-electron transfer to afford PPh4[CoIII(TAMLsq)(NNs)] and [CoIII(TAMLsq)(NNs)], respectively. CASSCF calculations revealed that both nitrene complexes are best described as one-electron-reduced Fischer-type nitrene radicals. The formation of a bis-nitrene adduct of PPh4[CoIII(TAMLred)] is attributed to the availability of two electrons within the reduced TAML framework for double ligand-to-substrate SET, whereas only one electron can be used for ligand-to-substrate SET on [CoIII(TAMLsq)], which therefore affords the mononitrene adduct. Intriguingly, in both cases the combination of ligand-to-substrate SET and a spin flip from intermediate spin (S = 1) to low spin (S = 0) at the cobalt(III) center effectively results in a shift of the spin density from the metal to the nitrene moieties, without the oxidation of cobalt and without changing the net total spin state of the complex.

Preliminary catalytic styrene aziridination reactions using PPh4[CoIII(TAMLred)] or [CoIII(TAMLsq)] as the catalyst reveal remarkable differences in activity/stability between the two systems. More elaborate studies on the underlying mechanisms, synthesis applicability, and differences between the two complexes in nitrene transfer catalysis will be reported in the near future.

ASSOCIATED CONTENT

3 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b11715.

X-ray structure of TAMLH4 (CIF)

X-ray structure of PPh4[CoIII(TAMLred)] (CIF)

Experimental details; synthesis procedures; relevant NMR, EPR, HRMS, XRD, UV–vis, electrochemical, and XANES data; geometries (xyz coordinates) of stationary points (DFT); and a description of the CASSCF calculations

REFERENCES

(1) (a) van Leest, N. P.; Epping, P. F. J.; van Vliet, K. M.; Lankelma, M.; van den Heuvel, E. J.; Heijbrink, N.; Broersen, R.; de Bruin, B. Single-Electron Elementary Steps in Homogeneous Organometallic Catalysis. *Advances in Organometallic Chemistry*; Elsevier: London, 2018; Vol. 70, pp 71–180. (b) Broere, D. L. J.; Plessius, R.; van der Vlugt, J. I. New avenues for ligand-mediated processes - expanding metal reactivity by the use of redox-active catechol, α-aminophenol and o-phenylenediamine ligands. *Chem. Soc. Rev.* 2015, 44, 6886–6915. (c) Chirila, A.; Das, B. G.; Kuipers, P. F.; Sinha, V.; de Bruin, B. Application of Stimuli-Responsive and “Non-Insensitive” Ligands in Base Metal Catalysis. In *Now-Noble Metal Catalysis Molecular Approaches and Reactions*; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp 1–31. (d) Lu, H.; Zhang, X. P. Catalytic C-H functionalization of metallophosphines: recent developments and future directions. *Chem. Soc. Rev.* 2011, 40, 1899–1909. (e) Lyaskov-
(sky, V. de Bruijn, B. Redox Non-innocent Ligands – Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270–279.

(2) Hill, R.; Yudin, A. K. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat. Chem. Biol. 2006, 2, 284–287.

(3) (a) Kuipers, P. F.; van der Vlugt, J. L.; Schneider, S.; de Bruijn, B. Nitrile Radical Intermediates in Catalytic Synthesis. Chem. - Eur. J. 2017, 23, 13819–13829. (b) Park, Y.; Kim, Y.; Chang, S. Transition-Metal-Catalyzed C=H Amination: Scope, Mechanism, and Applications. Chem. Rev. 2017, 117, 9247–9301. (c) Shin, K.; Kim, H.; Chang, S. Transition-Metal-Catalyzed C=N Bond Forming Reactions Using Organic Azides as the Nitrogen Source: A Journey for the Mild and Versatile C=H Amination. Acc. Chem. Res. 2015, 48, 1040–1052.

(4) (a) Intrieri, D.; Carminati, D. M.; Gallo, E. Recent advances in C=H bond aminations catalyzed by ruthenium porphyrin complexes. J. Porphyrins Phthalocyanines 2016, 20, 190–203. (b) Zardi, P.; Caselli, A.; Macchi, P.; Ferretti, F.; Gallo, E. Synthesis of Biologically Relevant Compounds by Ruthenium Porphyrin Catalyzed Amination of Benzylc C=H Bonds. Organometallics 2014, 33, 2210–2216. (c) Fantauzzi, S.; Gallo, E.; Caselli, A.; Ragani, F.; Cenini, S.; Cenini, S. The key intermediate in the amination of saturated C=H bonds: synthesis, X-ray characterization and catalytic activity of Ru(TPP)(NAr2) (Ar = 3,5-(CF3)2C6H3). Chem. Commun. 2009, 3952–3954.

(5) (a) Guthikonda, K.; When, P. M.; Caliando, B. J.; Du Bois, J. Rh-catalyzed alkene oxidation: a highly efficient and selective process for preparing N-alkoxysulfonyl aziridines. Tetrahedron 2006, 62, 11331–11342. (b) Liang, C.; Robert-Peillard, F.; Fruit, C.; Müller, P.; Dodt, R. H.; Dauban, P. Efficient Diastereoselective Intramolecular Rhodium-Catalyzed C=H Amination. Angew. Chem., Int. Ed. 2006, 45, 4641–4644. (c) Espino, C. G.; When, P. M.; Chow, J.; Da Bois, J. Synthesis of 1,3-Difunctionalized Amine Derivatives through Selective C=H Bond Oxidation. J. Am. Chem. Soc. 2001, 123, 6935–6936. (d) Roizen, L. N.; Zalatan, D. N.; De Bois, J. Selective Intramolecular Amination of C-H Bonds at Tertiary Carbon Centers. Angew. Chem., Int. Ed. 2013, 52, 11343–11346.

(6) (a) Broere, D. L. J.; de Bruijn, B.; Reek, J. N. H.; Lutz, M.; Dechert, S.; van der Vlugt, J. I. Intramolecular Redox-Active Ligand-to-Substrate Single-Electron Transfer: Radical Reactivity with a Palladium(II) Complex. J. Am. Chem. Soc. 2014, 136, 11574–11577. (b) Broere, D. L. J.; van Leest, N. P.; de Bruijn, B.; Siegler, M. A.; van der Vlugt, J. I. Reversible Redox Chemistry and Catalytic C(sp3)=H Amination Reactivity of a Paramagnetic Pd Complex Bearing a Redox-Active Ammonophenol-Derived NNO Pincer Ligand. Inorg. Chem. 2016, 55, 8603–8611. (c) Okamoto, K.; Oda, T.; Kohgishi, S.; Ohe, K. Palladium-Catalyzed Decarboxylative Intramolecular Amination from 4H-Isoxazol-5-ones Leading to 1-Azabicyclo[3.1.0]hex-2-enes. Angew. Chem., Int. Ed. 2011, 50, 11470–11473.

(7) (a) Llaveria, J.; Beltrán, A.; Díaz-Requejo, M. M.; Matheu, M. I.; Castilloón, S.; Pérez, P. J. Efficient Silver-Catalyzed Regio- and Stereosepecific Amination of Dienes. Angew. Chem. Int. Ed. 2010, 49, 7092–7095. (b) Rogil, J. W.; Weatherly, C. D.; Alderson, J. M.; Yi, B. T.; Schomaker, J. M. Tunable, Chemoselective Amination via Silver Catalysis. J. Am. Chem. Soc. 2013, 135, 17238–17241. (c) Dolan, N. S.; Somp, R. J.; Yang, T.; Berry, J. F.; Schomaker, J. M. Palladium-Containing and Tunable, Chemoselective Silver-Catalyzed Intramolecular Nitrene Transfer: Experimental and Computational Studies. J. Am. Chem. Soc. 2016, 138, 14658–14667. (d) Cui, Y.; He, C. Efficient Aziridination of Olefins Catalyzed by a Unique Disilver(I) Compound. J. Am. Chem. Soc. 2003, 125, 16022–16023.

(8) Li, Z.; Ding, X.; He, C. Nitrile Transfer Reactions Catalyzed by Gold Complexes. J. Org. Chem. 2006, 71, 5876–5880.

(9) (a) Minakata, S.; Ando, T.; Nishimura, M.; Ryu, I.; Komatsu, M. Novel Asymmetric and Stereosepecific Amination of Alkenes with a Chiral Nitridomanganese Complex. Angew. Chem., Int. Ed. 1998, 37, 3392–3394. (b) Nishikori, H.; Katsuki, T. Catalytic and highly enantioselective amination of styrene derivatives. Tetrahedron Lett. 1996, 37, 9245–9248. (c) Yang, J.; Weinberg, R.; Breslow, R. The hydroxylation and amidation of equilin acetate catalyzed by chloro[5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]-manganese(III). Chem. Commun. 2000, 531–532.
(12) (a) Wiese, S.; Aguilera, M. J. B.; Kogut, E.; Warren, T. H. β-Diketiminato Nickel Imides in Catalytic Nitrene Transfer to Isocyanides. *Organometallics* **2013**, *32*, 2300–2308. (b) Iluc, V. M.; Miller, A. J. M.; Anderson, J. S.; Monreal, M. J.; Mehn, M. P.; Hillhouse, G. L. Synthesis and Characterization of Three-Coordinate Ni(III)-Imide Complexes. *J. Am. Chem. Soc.* **2011**, *133*, 13055–13066. (c) Kogut, E.; Wiencko, H. L.; Zhang, L.; Cordeau, D. E.; Warren, T. H. A Terminal Ni(III)-Imide with Diverse Reactivity Pathways. *J. Am. Chem. Soc.* **2008**, *130*, 11246–11249.

(13) (a) van Vliet, K. M.; Polak, L. H.; Siegle, M. A.; van der Vlugt, J.; Fonseca Guerra, C.; de Bruin, B. Efficient Copper-Catalyzed Multicomponent Synthesis of N-Acyl Aminides via Acyl Nitrenes. *J. Am. Chem. Soc.* **2015**, *137*, 14372–14375.

(14) (f) Lebel, H.; Parmentier, M. Copper-Catalyzed Asymmetric Amination of Olefins. *J. Am. Chem. Soc.* **1993**, *115*, 5328–5329. (d) Li, Z.; Quan, R. W.; Jacobsen, E. N. Mechanism of the (Diimine)copper-Catalyzed Asymmetric Amination of Alkenes. Nitrene Transfer via Ligand-Aggregated Catalysis. *J. Am. Chem. Soc.* **1995**, *117*, 5889–5890. (e) Gephart, R. T.; III; Warren, T. H. Copper-Catalyzed sp3 C–H Amination. *Organometallics* **2012**, *31*, 7728–7752.

(15) van der Vlugt, J. I. Radical-Type Reactivity and Catalysis by Mononuclear Nonheme Iron(V)-Imido Complexes. *J. Am. Chem. Soc.* **1997**, *119*, 2003–2005. (a) Deutsch, J. L.; Poling, S. M. The Determination of Paramagnetic Susceptibility by NMR: A Physical Chemistry Experiment. *J. Inorg. Biochem.* **2003**, *97*, 2651–2653.

(16) Collins, T. J.; Powell, R. D.; Slebodnick, C.; Ueffelman, E. S. Stable highly oxidizing cobalt complexes of macrocyclic ligands. *J. Am. Chem. Soc.* **1991**, *113*, 8419–8425.

(17) Dutta, S. K.; Beckmann, U.; Bill, E.; Weyhermuller, T.; Wieghardt, K. 1,2-Bis(pyridine-2-carboxamido)benzenedi (2−), (bpy)2−: A Noninnocent Ligand. Syntheses, Structures, and Mechanisms of Formation of [μ-μ′-bpy]2[Fe3(μ-μ′-bpy)(2)(X)(2)] (X = CN, N3). *Inorg. Chem.* **2000**, *39*, 3355–3364.

(18) Pecosco, D.-L.; Chanda, A.; Stadler, M.; Tiago de Oliveira, F.; Ryabov, A. D.; Münch, E.; Bominaar, E. L.; Collins, T. J. High-valent first-row transition-metal complexes of tetraamido (4N) and diamidodialkoxido or diaminophenolato (2N/2O) ligands: Synthesis, structure, and magnetoochemistry. *Coord. Chem. Rev.***2008**, *252*, 2050–2071.

(19) (a) Hong, S.; Sutherlin, K. D.; Vardhaman, A. K.; Yan, J. J.; Park, S.; Lee, Y.-M.; Jang, S.; Lu, X.; Ohta, T.; Ogura, T.; Solomon, E. I.; Nam, W. A Mononuclear Nonheme Iron(V)-Imido Complex. *J. Am. Chem. Soc.* **2017**, *139*, 8800–8803. (b) Hong, S.; Lu, X.; Lee, Y.-M.; Seo, M. S.; Ohta, T.; Ogura, T.; Clemancy, M.; Maldini, P.; Latour, J.-M.; Sarangi, B.; Nam, W. Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex. *J. Am. Chem. Soc.* **2017**, *139*, 14372–14375.

(20) Shi, H.; Xie, J.; Lam, W. W. Y.; Mah, W.-L.; Mak, C.-K.; Yiu, S.-M.; Lee, H. K.; Lau, T.-C. Generation and Reactivity of a One-Electron Oxidized Manganese(V) Imido Complex with a Tetraamido Macro cyclic Ligand. *Chem. – Eur. J.* **2019**, *25*, 12895–12899.

(21) Collins, T. J.; Powell, R. D.; Slebodnick, C.; Ueffelman, E. S. Stable highly oxidizing cobalt complexes of macrocyclic ligands. *J. Am. Chem. Soc.* **1991**, *113*, 8419–8425.
fourier transform NMR spectroscopy. J. Magn. Reson. 1989, 82, 169–173. (e) Grant, D. H. Paramagnetic Susceptibility by NMR: The "Solvent Correction" Reexamined. J. Chem. Educ. 1995, 72, 39.

(f) Hoppe, J. I. Effective magnetic moment. J. Chem. Educ. 1972, 49, 505. (g) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. (33) Notably, a previous study (ref 23) on the electrochemical behavior of Na[Co III(TAMLred)] in MeCN displayed only one reversible oxidation event, whereas the second oxidation was found to be irreversible. (34) Mak, S.-T.; Wong, W.-T.; Yam, V. W.-W.; Li, T.-F.; Che, C.-M. Cobalt(III) alkyl complexes of 1,2-bis(2-pyridinecarboxamido)benzene (H2bpb) and 4,5-dichloro-1,2-bis(2-pyridinecarboxamido)benzene (H2bpc) and X-ray crystal structures of [Co(bpc)-\(\text{CH}_2\text{CH}_2\text{CMe} = \text{CH}_2\)]\(\text{H}_2\text{O}\) and [Co(bpb)\(\text{Et}\)]\(\text{H}_2\text{O}\). J. Chem. Soc., Dalton Trans. 1991, 1915–1922. (35) CASSCF calculations demonstrated that the absorption band at 623 nm is dominated by ligand-centered \(\pi \rightarrow \pi^*\) and metal-to-ligand charge-transfer excitations. See the CASSCF section on \([\text{Co}^{III}\text{TAMLsq}]\) for more details. (36) (a) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877–910. (b) Boduszek, B.; Shine, H. J. Preparation of solid thianthrene cation radical tetrafluoroborate. J. Org. Chem. 1988, 53, 5142–5143. (37) Lahanas, N.; Kucheryavy, P.; Lockard, J. V. Spectroscopic Evidence for Room Temperature Interaction of Molecular Oxygen with Cobalt Porphyrin Linker Sites within a Metal–Organic Framework. Inorg. Chem. 2016, 55, 10110–10113. (38) Cramer, C. J. Essentials of Computational Chemistry: Theories and Models, 2nd ed; John Wiley & Sons Ltd: West Sussex, U.K., 2004; pp 205–210. (39) (a) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.-P. Introduction of n-electron valence states for multi-reference perturbation theory. J. Chem. Phys. 2001, 114, 10252–10264. (b) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001, 350, 297–305. (c) Angeli, C.; Cimiraglia, R.; Malrieu, J.-P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variant. J. Chem. Phys. 2002, 117, 9138–9153. (40) We attempted to rotate the uncorrelated orbital(s) back into the active space. However, this was unsuccessful. Moreover, the inclusion of orbitals with occupancy 2.00 in the active space should be avoided. Aravena, D.; Atanasov, M.; Chilkuri, V. G.; Guo, Y.; Jung, J.; Maganas, D.; Mondal, B.; Schaprio, I.; Sivalingam, K.; Ye, S.; Neese, F. CASSCF Calculations in ORCA (4.2): A Tutorial Introduction. https://orcaforum.koto.mpdl.mpg.de/app.php/dlext/?cat=4 (accessed Sept 17, 2019). (41) CASSCF calculations demonstrated that no intense characteristic absorption bands are expected in the 400–850 nm region. See the CASSCF section on \([\text{Co}^{III}\text{TAMLsq}]\) for more details. (42) An accurate simulation of the experimental spectrum proved to be challenging and was unsuccessful. (43) Oliivas Suarez, A. I.; Lyaskovskyy, V.; Reek, J. N. H.; van der Vlugt, J. I.; de Bruin, B. Nitrogen-Centred Ligand Radical Complexes; Classification, Spectroscopic Features, Reactivity and Catalytic Applications. Angew. Chem., Int. Ed. 2013, 52, 12510–12529. (44) (a) Au, S.-M.; Fung, W.-H.; Cheng, M.-C.; Che, C.-M.; Peng, S.-M. Synthesis, characterisation and reactivity of novel bis/tosyl)-imidour ethen(VI) porphyrin complexes; X-ray crystal structure of a tosylimidour ethen(VI) porphyrin. Chem. Commun. 1997, 1655–1656. (b) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.; Che, C.-M. Aziridination of Alkenes and Amidation of Alkanes by Bis/tosylimido)-ruthenium(VI) Porphyrins. A Mechanistic Study. J. Am. Chem. Soc. 1999, 121, 9120–9132. (45) See the SI for a description of CASSCF-calculated UV–vis excitation energies and EPR g values.