Extracting the unitarity angle γ in $B_s \to D^0 h^0, \bar{D}^0 h^0$ Decays

Chun-Khiang Chua

Institute of Physics, Academia Sinica,
Taipei, Taiwan 115, Republic of China

Abstract

The recently observed color-suppressed $B^0 \to D^0 \pi^0, D^0 \eta^0, D^0 K^- \pi^0 K^0, D^0 \rho^0$ and $D^0 \omega$ decay modes all have rates larger than expected. The color-suppressed $B_s \to D^0 \phi, \bar{D}^0 \phi$ modes, which were suggested for the extraction of the unitarity angle γ in the Gronau-London method, could be larger than the previous estimation by one order of magnitude. Several new theoretical clean modes in B_s decays are suggested for the extraction of γ. The proposed $B_s \to D^0 h^0, \bar{D}^0 h^0$ decay modes with $h^0 = \pi^0, \eta, \eta', \rho^0, \omega$ in addition to $h^0 = \phi$ are free from penguin contributions. Their decay rates can be estimated from the observed color-suppressed $B^0 \to D^0 h^0$ rates through SU(3) symmetry. A combined study of these $D^0 h^0, \bar{D}^0 h^0$ modes in addition to the $D^0 \phi, \bar{D}^0 \phi$ modes is useful in the extraction of γ in the B_s system without involving $B_s - \bar{B}_s$ mixing. Since the $b \to u$ and $b \to c$ transitions belong to the same topological diagram, the relative strong phase is likely to be small. In this case, the CP asymmetries are suppressed and the untagged rates are very useful in the γ extraction.

PACS numbers: 11.30.Hv, 13.25.Hw, 14.40.Nd
The extraction of the unitarity angle $\gamma \equiv \arg V_{ub}^*$, where V is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, is important in completing or testing the Standard Model (SM). Several theoretical clean ways of the weak phase extraction were proposed using interference effects. At B factories, the extraction is performed in the DK system, using the interference effect of $B \to D^0K$ and \bar{D}^0K decays in $D_{CP}K$ final states, where D_{CP} are the CP eigenstates of D^0 and \bar{D}^0 mesons, or to some common $f_{CP}K$, f_{CP} states [1, 2, 3, 4, 5, 6].

Similarly, the color-suppressed $D_{CP}\phi$ mode was also proposed in the extraction of γ in the B_s system [7]. An alternative method made use of the B_s–\bar{B}_s mixing was proposed using color-allowed $B_s \to D_s^\pm K^\mp$ decays with time-dependent tagging [7]. Due to the large rate (10^{-4}) in the color-allowed decays, this scenario has been seriously considered at LHCb [8].

It is well known that in the SM, the Δm_{B_s} in the B_s system is much larger than the one in the B_d system. Experimental searches give $\Delta m_{B_s} > 14.5$ ps$^{-1}$ [9]. The measurement of the time-dependent asymmetry in the B_s system is challenging. Furthermore, the deviation of the recently measured $\sin 2\beta_{\text{eff}}$ in penguin-dominated modes from the $\sin 2\beta$ ($\beta \equiv \arg V_{td}^*$) extracted from charmonium modes may hint at New Physics contributions in the $b \to s$ transitions [10, 11]. In this case, the Δm_{B_s} can easily be much larger than the SM expectation (see, for example [12]). Therefore, an extraction of γ without relaying on the B_s–\bar{B}_s mixing is complementary to the $D_s^\pm K^\mp$ program and is indispensable to the γ program in the B_s system.

Although the Gronau-London $D_{CP}\phi$ method [1] does not need time-dependent tagging, its usefulness is questioned by the smallness of the color-suppressed decay rate, which is estimated to be as small as 10^{-6} [1]. However, color-suppressed $\bar{B}^0 \to D^{(*)0}\pi^0$, $D^0\eta^{(')}$, $D^0\omega$, $D^0\rho^0$, $D_s^+K^-$, $D^0\bar{K}^0$ decay modes were observed with branching ratios significantly larger than earlier theoretical expectations based on naive factorization [13].

The large color-suppressed decay rates have attracted much attention [14, 15, 16, 17, 18]. Similar enhancement in the color-suppressed decay rates in the B_s system is expected. In particular, the $D^0\phi$ rate is expected to be larger than the previous estimation. In addition to the $D\phi$ mode, several other theoretical clean modes are suggested in this work. The proposed tree D^0h^0, \bar{D}^0h^0 decay modes, where $h^0 = \pi^0$, η, η', ρ^0, ω, in addition to the $D^0\phi$, $\bar{D}^0\phi$ modes are useful to extract γ without time-dependent tagging. As we shall see later, the extraction done only with untagged rates can also be useful.

In this study, the γ extraction method is similar to the $B_d \to DK$ and $B_s \to D\phi$ method.
FIG. 1: Color-allowed and color-suppressed amplitudes for $B^- \to D^0 K^-$ decay, and color-suppressed amplitude for the $B^- (B_s) \to D^0 K^-(\phi, \eta, \eta')$ decay.

It will be useful to briefly review the DK method and the present experimental status at B factories. To be specific, the amplitude ratio r_B and the strong phase difference δ_B for the color-allowed $B^- \to D^0 K^-$ and color-suppressed $D^0 K^-$ decays, which are governed by different CKM matrices as depicted in Fig. 1 are defined as

$$r_B = \frac{|A(B^- \to D^0 K^-)|}{|A(B^- \to D^0 K^-)|}, \quad \delta_B = \text{arg} \left[\frac{e^{i\gamma} A(B^- \to D^0 K^-)}{A(B^- \to D^0 K^-)} \right]. \quad (1)$$

The weak phase γ is removed from $A(B^- \to D^0 K^-)$ in the δ_B definition. Since the strong phase difference arises from that in the color-suppressed and color-allowed amplitudes, it is expected to be non-vanishing. The r_B and δ_B parameters are common to the γ determination methods of Gronau-London-Wyler (GLW) \cite{1, 2}, Atwood-Dunietz-Soni (ADS) \cite{3} and “DK Dalitz plot” \cite{4, 5}, where one exploits the interference effects of $B^- \to D^0 K^- \to f_{CP} K^-$ and $B^- \to D^0 K^- \to f_{CP} K^-$ amplitudes. Note that the r_B parameter, which governs the strength of interference, is both color and CKM suppressed, hence hard to measure directly.

Through the DK Dalitz plot method, BaBar and Belle experiments already find $\gamma = \ldots$
In addition to the color-suppressed diagram the $B^0 \rightarrow K_S \pi^+ \pi^-$, and the BaBar measurement includes the DK^* analysis. Although similar results on γ are obtained, the corresponding r_B values are quite different for BaBar and Belle. Belle reports $r_B = 0.21 \pm 0.08 \pm 0.03 \pm 0.04$ and $\delta_B = (157 \pm 19 \pm 11 \pm 21)^\circ$, while BaBar gives $r_B = 0.118 \pm 0.079 \pm 0.034^{+0.036}_{-0.034}$ and $\delta_B = (104 \pm 45^{+17+16}_{-21-24})^\circ$. Note that an average of $r_B = 0.10 \pm 0.04$ is found by the UT$_{fit}$ group, by combining analyses using all three methods [20]. As the strength of interference is governed by the size of the ratio r_B, the larger error in the γ value of BaBar reflects the smallness of their r_B. Given the present experimental situation that Belle and BaBar have quite different r_B values and that the critical role it plays in the γ extraction, it is important to compare with a theoretical or phenomenological prediction of r_B. In a recent work, we obtained $r_B = 0.09 \pm 0.02$ [18]. The predicted r_B agrees with the UT$_{fit}$ extraction [20] and does not differ much from the naive factorization expectation. Furthermore, the r_B value prefers the lower value of the BaBar experiment and disfavors the Belle result. A similar r_B was found experimentally in the DK^* analysis [10, 19].

The smallness of the ratio r_B would demand larger statistics of data for the γ program in the $DK^{(*)}$ system. In fact, the smallness of r_B is precisely the reason that ADS and DK Dalitz methods are needed in addition to the original GLW method. However, these methods usually bring in additional uncertainties, such as the fourth uncertainties in the extracted γ value quoted above.

We now return to the B_s system. By replacing the spectator quark in the previous case, we have $\overline{B}_s \rightarrow D \phi$ decays replacing the role of $\overline{B} \rightarrow D K^{(*)}$ decays, as depicted in Fig. 1 in the γ program [1]. Unlike the \overline{B} case, both $\overline{B}_s \rightarrow D^0 \phi$ and $\overline{B}^0 \phi$ modes are color suppressed decays. Consequently, the corresponding $b \rightarrow u$ and $b \rightarrow c$ amplitude ratio is estimated as $r_{B_s} \simeq R_b \equiv \sqrt{\rho^2+\eta^2} \simeq 0.4$ [9, 10], which is several times greater than r_B, giving a much prominent interference effect [1]. The $\overline{B}_s \rightarrow D^0 \phi$ decay can be related to other decays by using the topological approach [21], which is closely related to SU(3) symmetry. Indeed the $\overline{B}_s \rightarrow D^0 \phi$ decay is similar to other color-suppressed modes, such as $\overline{B}^0 \rightarrow D^0 \rho^0$, $D^0 \omega$, as one can see by replacing $s\bar{s}$ and V_{us} in the second diagram of Fig. 1 by $d\bar{d}$ and V_{ud}, respectively. These modes were observed with $\mathcal{B}(\overline{B}^0 \rightarrow D^0 \rho^0) = (2.9 \pm 1.1) \times 10^{-4}$ and $\mathcal{B}(\overline{B}^0 \rightarrow D^0 \omega) = (2.5 \pm 0.6) \times 10^{-4}$ [22], which are larger than naive factorization expectations. In addition to the color-suppressed diagram the $\overline{B}^0 \rightarrow D^0 \rho^0$ and $D^0 \omega$ amplitudes receive
annihilation diagram contributions (similar to the second diagram shown in Fig. 2), but with different relative signs. The measured rates roughly satisfy $\mathcal{B}(\bar{B}^0 \to D^0 \rho^0) \simeq \mathcal{B}(\bar{B}^0 \to D^0 \omega)$ and, consequently, imply the sub-dominant role of the annihilation contribution plays in these modes. Assuming SU(3) symmetry and neglecting the annihilation contribution, the $\bar{B}_s \to D^0 \phi$ rate can be estimated from these decay rates by using

$$\mathcal{B}(\bar{B}_s \to D^0 \phi) \simeq \frac{\tau_{B_d}}{\tau_{B_s}} \left(\frac{V_{us}}{V_{ud}} \right)^2 \mathcal{B}(\bar{B}^0 \to D^0 \rho^0) + \mathcal{B}(\bar{B}^0 \to D^0 \omega) \right] \simeq 3 \times 10^{-5}, \quad (2)$$

where τ_{B_d,B_s} are the lifetime of $B_{d,s}$ mesons with $\tau_{B_s}/\tau_{B_d} \simeq 0.95 [9]$. Our estimation of the $\bar{B}_s \to D^0 \phi$ rate is one order of magnitude larger than the previous one [7]. The Gronau-London method should be useful in the extraction of γ in the B_s system.

After realizing the applicability of the Gronau-London method in the B_s system, we propose several additional theoretical clean modes adding to the γ program. The tree $B_s \to D^0 h^0$, $\bar{B}^0 h^0$ decays with $h^0 = \pi^0, \eta, \eta', \rho^0, \omega$, do not contain any penguin contribution. The $B_s \to D^0 \eta$, $\bar{B}^0 \eta'$ modes receive contributions from color-suppress tree and W-exchange diagrams as depicted in Fig. 1 and 2 while others are pure weak annihilation modes.

The $B_s \to D^0 h^0$ rates can be estimated by using the $\bar{B}^0 \to D^0 h^0$ rates in the topological amplitude approach [21]. We have

$$A(\bar{B}^0 \to D^0 \pi^0) = \frac{V_{cb}V_{ud}^*}{\sqrt{2}}(E - C),$$

$$A(\bar{B}^0 \to D^0 \eta) = \frac{V_{cb}V_{ud}^*}{\sqrt{2}} \cos \psi(E + C),$$

$$A(\bar{B}^0 \to D^0 \eta') = \frac{V_{cb}V_{ud}^*}{\sqrt{2}} \sin \psi(E + C),$$

$$A(\bar{B}^0 \to D_s^+ K^-) = V_{cb}V_{ud}^*E, \quad (3)$$

1 In the right-hand-side of the equation, the annihilation amplitude only enters quadratically. Its contribution can be safely neglected. Also note that the $\bar{B}^0 \to D^0 \rho^0(\omega)$ amplitude has an additional factor of $1/\sqrt{2}$ due to the $\rho^0(\omega)$ wave function.
and

\[A(B_s \to D^0 \pi^0) = \frac{V_{ub} V_{ub}^*}{\sqrt{2}} E', \]
\[A(B_s \to D^0 \eta) = \frac{V_{ub} V_{ub}^*}{\sqrt{2}} (-\sin \psi \sqrt{2} C' + \cos \psi E'), \]
\[A(B_s \to D^0 \eta') = \frac{V_{ub} V_{ub}^*}{\sqrt{2}} (\cos \psi \sqrt{2} C' + \sin \psi E'), \]
\[A(B_s \to D^0 \eta^0) = \frac{V_{ub} V_{ub}^*}{\sqrt{2}} E'', \]
\[A(B_s \to D^0 \eta') = \frac{V_{ub} V_{ub}^*}{\sqrt{2}} (\cos \psi \sqrt{2} C'' + \sin \psi E''), \]

where \(C, C', C'' \) and \(E, E', E'' \) are (complex) color-suppressed and \(W \)-exchange amplitudes, respectively, containing possible final-state-interaction (FSI) effects, and \(\psi = 39.3^\circ \) is the mixing angle of the \(\eta \) and \(\eta' \) non-strange and strange contents \(22 \).

\[
\begin{pmatrix}
\eta \\
\eta'
\end{pmatrix} = \begin{pmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \end{pmatrix}
\]

(5)

with \(\eta_q = (u\bar{u} + d\bar{d})/\sqrt{2} \) and \(\eta_s = s\bar{s} \). The color suppressed rates are measured to be \(B(B^0 \to D^0 \pi^0) = (2.53 \pm 0.20) \times 10^{-4}, B(B^0 \to D^0 \eta) = (2.11 \pm 0.33) \times 10^{-4}, B(B^0 \to D^0 \eta') = (1.26 \pm 0.23) \times 10^{-4} \) and \(B(B^0 \to D_s^+ K^-) = (3.8 \pm 1.3) \times 10^{-5} \) \([9,13]\). These decay rates are much larger than the naive factorization expectations. There are some theoretical efforts in understanding the largeness of these decay modes \([14,15,16,18]\). Considering, for example, the \(B^0 \to D_s^+ K^- \) decay, in the rescattering approach \([18]\). Its large rate is feed from the color-allowed \(D^+ \pi^- \) one, through the rescattering process \(D^+(c\bar{u})\pi^-(u\bar{d}) \to D_s^+(c\bar{s})K^-(s\bar{u}) \) with the annihilation (creation) of \(u\bar{u} \) (\(s\bar{s} \)) quark pair in the initial (final) state.

The measured \(B^0 \to D^0 h^0 \) rates are useful in estimating \(B_s \to D^0 h^0 \) rates. In the SU(3) limit, we have \(C = C' \) and \(E = E' \). For \(B_s \to D^0 \eta, D^0 \eta' \) modes, we have

\[
B(B_s \to D^0 \eta, D^0 \eta') \equiv B(B_s \to D^0 \eta) + B(B_s \to D^0 \eta')
\]
\[
\simeq \frac{\tau_{B_s}}{\tau_{B_d}} \left| \frac{V_{us}}{V_{ud}} \right|^2 \left[B(B^0 \to D^0 \pi^0) + B(B^0 \to D^0 \eta)
+ B(B^0 \to D^0 \eta') - \frac{1}{2} B(B^0 \to D_s^+ K^-) \right]
\simeq 3 \times 10^{-5}.
\]

(6)
FIG. 2: W-exchanged amplitudes for $B^0 \rightarrow D^+_s K^-$ and $B_s \rightarrow D^0 h^0$ decays.

To further estimate $D^0 \eta$ and $D^0 \eta'$ rates, we need information on $R \equiv E'/C'$. Using the measured color-suppressed B^0 decay rates and Eq. (3), it is straightforward to obtain the best fitted value of $E/C = 0.26 e^{\pm i72^\circ}$. By assuming $R(\equiv E'/C') \simeq E/C$ under SU(3), we estimate

$$\mathcal{B}(B_s \rightarrow D^0 \eta) \simeq \mathcal{B}(B_s \rightarrow D^0 \eta, D^0 \eta') \left| \frac{-\sqrt{2} \sin \psi + \cos \psi R}{2 + |R|^2} \right|^2 \simeq 1 \times 10^{-5},$$

$$\mathcal{B}(B_s \rightarrow D^0 \eta') \simeq \mathcal{B}(B_s \rightarrow D^0 \eta, D^0 \eta') \left| \frac{\sqrt{2} \cos \psi + \sin \psi R}{2 + |R|^2} \right|^2 \simeq 2 \times 10^{-5}, \quad (7)$$

which are of the same order as $\mathcal{B}(\bar{B}_s \rightarrow D^0 \phi)$.

The pure W-exchange $\bar{B}_s \rightarrow D^0 \pi^0$ decay rate can be estimated in a similar manner as

$$\mathcal{B}(\bar{B}_s \rightarrow D^0 \pi^0) \simeq \frac{\tau_{B_s}}{\tau_{B_d}} \left| \frac{V_{us}}{\sqrt{2} V_{ud}} \right|^2 \mathcal{B}(\bar{B}^0 \rightarrow D^+_s K^-) \simeq 1 \times 10^{-6}. \quad (8)$$

In fact, when take into account the SU(3) breaking effects, the $\bar{B}_s \rightarrow D^0 \pi^0$ decay rate could be larger than the above estimation, since unlike the $\bar{B}^0 \rightarrow D_s K$ decay no creation of the $s\bar{s}$ pair is needed in the final state (see Fig. 2).
Note that our estimation of the $\overline{B}_s \to D^0\pi^0$ rate is similar to a recent one \cite{23}, while our predicted $\overline{B}_s \to D^0\eta, D^0\eta$ rates are smaller than theirs by a factor of 20. This is because, the CKM factor V_{ud} instead of V_{us} was used in \cite{23} for the $\overline{B}_s \to D^0\eta(0)$ amplitudes.

The extraction of γ in $\overline{B}_s \to D^0h^0$ modes can be performed by employing the GLW method. It should be clear that other methods, such as ADS \cite{3} and DK Dalitz \cite{4, 5} can also be used. However, as r_{B_s} is several times greater than r_B, the GLW method should be more favorable in reducing additional uncertainties. By the standard construction, we have

$$A(\overline{B}_s \to D^0h^0) = a,$$

$$A(\overline{B}_s \to D^0h^0) = be^{-i\gamma}e^{i\delta},$$

$$\sqrt{2}A(\overline{B}_s \to D_{CP\pm}h^0) = (a \pm be^{-i\gamma}e^{i\delta}),$$

$$\sqrt{2}A(B_s \to D_{CP\pm}h^0) = \mp(a \pm be^{i\gamma}e^{i\delta}),$$

where $D_{CP\pm}$ are defined as $(D^0 \pm \overline{D}^0)/\sqrt{2}$, a, b are real numbers with suitable phase convention and δ is the strong phase difference. All four unknowns γ, a, b, δ can be obtained by measuring the four tagged $\overline{B}_s \to D_{CP\pm}h^0$ and $B_s \to D_{CP\pm}h^0$ decay rates. It is useful to define \cite{1}

$$A_\pm \equiv \frac{\Gamma(\overline{B}_s \to D_{CP\pm}h^0) - \Gamma(B_s \to D_{CP\pm}h^0)}{\Gamma(\overline{B}_s \to D_{CP\pm}h^0) + \Gamma(B_s \to D_{CP\pm}h^0)} = \frac{\pm 2r_{B_s} \sin \gamma \sin \delta}{1 + r_{B_s}^2 \pm 2r_{B_s} \cos \gamma \cos \delta},$$

$$R_\pm \equiv \frac{\Gamma(\overline{B}_s \to D_{CP\pm}h^0) + \Gamma(B_s \to D_{CP\pm}h^0)}{\Gamma(\overline{B}_s \to D^0h^0) + \Gamma(B_s \to D^0h^0)} = \frac{1 + r_{B_s}^2 \pm 2r_{B_s} \cos \gamma \cos \delta}{1 + r_{B_s}^2},$$

where $r_{B_s} \simeq R_b \simeq 0.4$. It should be noted that the measurement of the asymmetry A_\pm requires tagging, while the measurement of R_\pm is untagged. In \cite{24}, weak annihilation modes of $B_s \to D^\pm\pi^\mp$ having rate similar to $\mathcal{B}(B_s \to D^0\pi^0, \overline{D}^0\pi^0)$ were proposed for extracting γ. However, contrary to our case, time-dependent tagged rates are necessary \cite{24}.

As a result of the same topological amplitudes for $b \to u$ and $b \to c$ transitions, the strong phase difference δ is likely to be small. In this case, a large r_{B_s} value does not necessary lead to a large CP-asymmetry A_\pm, but it is still very useful in producing the interference effects in the $D_{CP\pm}h^0$ rates. For illustration, using $\delta = 0$, $r_{B_s} = 0.4$ and $\gamma = 60^\circ$, we obtain \cite{24},

$$R_+ = 1.34, \quad R_- = 0.66.$$

\footnote{Note that an additional negative sign in the last equation is due to the CP quantum number of h^0 and a $(-)^L$ factor, where L is the orbital angular momentum.}
The measurements of R_\pm provide γ and r_{B_s} values. The vanishing strong phase approximation is useful in extracting or constraining γ using less data. It can be verified by measuring A_\pm, when more data is available. Since the $b \to u$ and $b \to c$ amplitudes are of similar size, the direct CP asymmetry will be very sensitive to the strong phase difference. In fact, similar arguments also apply to $B^0 \to D^0 K^0, \bar{D}^0 K^0$ decays. The measurement of direct CP violation in $B^0 \to D_{CP} K^0$ decays, will provide the information of the usefulness of the vanishing strong phase approximation.

It is interesting to give the $\delta = 0$ argument in the rescattering picture. For example, as in the $\bar{B}^0 \to D_s^+ K^-$ case, the $\bar{B}_s \to D_s^0 \pi^0 (\bar{D}^0 \pi^0)$ rate is mainly feed from the color-allowed $D_s^+ K^- (D^- K^+)$ one, through the rescattering $D_s^+ (\bar{c}s) K^- (\bar{s}u) \to D^0 (\bar{c}u) \pi^0 (u\bar{u}) [D_s^- (\bar{c}s) K^+ (\bar{s}u) \to \bar{D}^0 (\bar{c}u) \pi^0 (u\bar{u})]$ with the annihilation and creation of $s\bar{s}$ and $u\bar{u}$ quark pair in the initial and final states, respectively [18]. The tree-allowed $D_s^\pm K^\mp$ amplitudes do not have any strong phase difference, while the $D_s^+ (\bar{c}s) K^- (\bar{s}u) \to D^0 (\bar{c}u) \pi^0 (u\bar{u})$ and $D_s^- (\bar{c}s) K^+ (\bar{s}u) \to \bar{D}^0 (\bar{c}u) \pi^0 (u\bar{u})$ annihilation rescattering amplitudes are related by charge conjugation, which is respected by strong interactions. Consequently, the strong phase difference in $\bar{B}_s \to D^0 \pi^0$ and $\bar{D}^0 \pi^0$ amplitudes should be small. The above consideration also applies to other modes, including those with C', C'', as long as they are long distant dominated (as hinted by the $\bar{B}^0 \to D^0 h^0$ data). For the case of $D_{CP}V$, the amplitudes C' and C'', E' and E'' can be different in signs [25], but we do not expect a large strong phase difference.

In conclusion, we point out that the large enhancement in color-suppress decay rates observed in \bar{B} decays suggest similar enhancement in the color-suppress B_s decay rates. The GLW method in extracting γ using $B_s \to D^0 \phi, \bar{D}^0 \phi$ is not limited to the color suppressed decay modes as previously believed. We also suggest several new theoretical clean modes in the extraction of γ in B_s decays. These modes are color-suppressed $B_s \to D^0 h^0, \bar{D}^0 h^0$ decays, with $h^0 = \pi^0, \eta, \eta', \rho^0, \omega$, in addition to the $h^0 = \phi$ case. They are free of penguin contributions. The extraction of γ can be performed as in the $D_{CP} \phi$ case. These $D^0 h^0$ rates are of order $10^{-6} \sim 10^{-5}$. A combined analysis could be useful in reducing the statistical uncertainties in the γ extraction. No information on the $B_s-\bar{B}_s$ mixing is required. While the mixing is sensitive to New Physics, the γ extraction in this case is expected to be insensitive to NP and does not require a Δm_{B_s} value as predicted by the standard model. It can be considered as a complementary to the $D_s^\pm K^\mp$ method. The r_{B_s} value is expected to
be $R_b \approx 0.4$, while the strong phase difference between $b \to u$ and $b \to c$ amplitudes, both are of the same topological types, are likely to be small. In this case, the CP asymmetries are suppressed and the untagged measurements will provide very useful information in the extraction of γ.

Acknowledgments

The author would like to thank Hsiang-nan Li, Cai-Dian Lu and Hai-Yang Cheng for useful discussions. This work is supported by the National Science Council of R.O.C. under Grants NSC-94-2811-M-001-059 and NSC-93-2112-M-001-016.

[1] M. Gronau and D. London, Phys. Lett. B 253, 483 (1991).
[2] M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991).
[3] I. Dunietz, Phys. Lett. B 270, 75 (1991); I. Dunietz, Z. Phys. C 56, 129 (1992); D. Atwood, G. Eilam, M. Gronau and A. Soni, Phys. Lett. B 341, 372 (1995); D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78, 3257 (1997).
[4] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).
[5] A. Poluektov et al. [Belle Collab.], Phys. Rev. D 70, 072003 (2004).
[6] M. Gronau, Y. Grossman, N. Shuhmaher, A. Soffer and J. Zupan, Phys. Rev. D 69, 113003 (2004).
[7] R. Aleksan, I. Dunietz and B. Kayser, Z. Phys. C 54, 653 (1992).
[8] P. Ball et al., arXiv:hep-ph/0003238; G. Wilkinson, CERN-LHCB-2005-036 Prepared for 3rd Workshop on the Unitarity Triangle: CKM 2005, San Diego, California, 15-18 Mar 2005.
[9] S. Eidelman et al. [Particle Data Group Collaboration], Phys. Lett. B 592, 1 (2004); http://pdg.lbl.gov/.
[10] Heavy Flavor Average Group, http://www.slac.stanford.edu/xorg/hfag/.
[11] D. London and A. Soni, Phys. Lett. B 407, 61 (1997); Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); Y. Grossman, G. Isidori and M. P. Worah, Phys. Rev. D 58, 057504 (1998); Y. Grossman, Z. Ligeti, Y. Nir and H. Quinn, Phys. Rev. D 68, 015004 (2003); M. Gronau, Y. Grossman and J. L. Rosner, Phys. Lett. B 579, 331 (2004); M. Gronau,
M. Gronau, O.F. Hernandez, D. London and J.L. Rosner, Phys. Rev. D 50, 4529 (1994).

[22] T. Feldmann, P. Kroll and B. Stech, Phys. Rev. D 58, 114006 (1998); Phys. Lett. B449, 339 (1999).

[23] P. Colangelo and R. Ferrandes, Phys. Lett. B 627, 77 (2005).

[24] B. H. Hong and C. D. Lu, Phys. Rev. D 71, 117301 (2005).

[25] C. W. Chiang, M. Gronau, Z. Luo, J. L. Rosner and D. A. Suprun, Phys. Rev. D 69, 034001 (2004).