ITS barcoding-based species identification for *Sanghuangporus* (Basidiomycota), a genus of medicinal mushrooms

CURRENT STATUS: Under Review

Shi-Liang Liu, Shan Shen, Ji-Hang Jiang, Li-Wei Zhou

Shi-Liang Liu
Institute of Microbiology Chinese Academy of Sciences

Shan Shen
Institute of Microbiology Chinese Academy of Sciences

Ji-Hang Jiang
Institute of Microbiology Chinese Academy of Sciences

Li-Wei Zhou
Institute of Microbiology Chinese Academy of Sciences

✉️ liwei_zhou1982@im.ac.cn **Corresponding Author**

ORCiD: https://orcid.org/0000-0002-2851-2839

Prescreen

10.21203/rs.3.rs-29428/v1

Subject Areas

Plant Physiology and Morphology *Plant Molecular Biology and Genetics*
Keywords

Hymenochaetaceae, phylogeny, species boundary, taxonomy, wood-inhabiting fungi
Abstract

“Sanghuang” is a kind of important medicinal mushrooms and taxonomically represented by members in the fungal genus *Sanghuangporus*. Species of *Sanghuangporus* referred to medicinal studies and industry are discriminated mainly by BLAST search of GenBank with ITS barcoding region as a query. However, the inappropriately labeled ITS sequences related to “Sanghuang” in GenBank restrict accurate species identification and, to some extent, the utilization of these medicinal resources. Here, we examined all available 271 ITS sequences related to “Sanghuang” from GenBank including 31 newly submitted sequences for this study. Of these sequences, more than half were mislabeled and the corresponding species names are corrected. The mislabeled sequences mainly came from strains by non-taxonomists. Based on the analyses of ITS sequences submitted by taxonomists, we treat *Sanghuangporus toxicodendri* as a later synonym of *S. quercicola*, and the intraspecific and interspecific differences are below 1.50% (but *S. weirianus*) and above 1.50%, respectively. Moreover, ten potential diagnostic sequences are provided for hyperbranched rolling circle amplification to rapidly detect three common commercial species, viz. *S.baumii*, *S.sanghuang* and *S. vaninii*. Generally, the current results provide a practical method for ITS barcoding-based species identification of *Sanghuangporus*, and will promote medicinal studies and industrial development from the taxonomic perspective.

Introduction

Macrofungi are a group of fungi producing fruiting bodies visible by naked eyes. Many macrofungi are famous medicinal mushrooms and possess diverse medicinal functions (Wu et al. 2019a). Of them, “Sanghuang”, a kind of important wood-inhabiting medicinal mushrooms, has been utilized as folk medicines for the past two thousand years in China and adjacent countries (Zhou et al. 2020). After that modern scientific studies did reveal some medicinal functions from “Sanghuang”, including antitumor, antioxidant, anti-inflammation, immunomodulation and so on (Zhou et al. 2020), this kind of fungal resources attracts the attentions from European fungal chemists and pharmacologists (Chepkirui et al. 2018; Cheng et al. 2019). Secondary metabolites, such as, polysaccharides, polyphenols, pyrones and terpenes are in charge of these medicinal functions of “Sanghuang” (Zhou et al. 2020). Nowadays, “Sanghuang” are mainly consumed in a tea form of chips and pieces of cultivated basidiocarps and occasionally in an oral form of mycelial powders. Like other precious wood-inhabiting medicinal mushrooms, such as “Lingzhi” (Cao et al. 2012; Wang et al. 2012; Yao et al. 2013, 2020; Dai et al. 2017), “Niuchangchih” (Wu et al. 2012b, c) and “Fuhling” (Redhead and Ginns 2006), there was a hot debate about what the taxonomic identity of “Sanghuang” is. For now, most of fungal taxonomists have agreed that “Sanghuang” is represented by species in *Sanghuangporus* Sheng H. Wu, L.W. Zhou & Y.C. Dai (Zhou et al. 2020). A total of 14 species have been described and accepted as members of *Sanghuangporus*: 11 species are distributed in Asia, one in Africa, one in North America and one in Europe (Zhou et al. 2020). In addition, more new species of *Sanghuangporus* await to be described from Africa (Chepkirui et al. 2018; Cheng et al. 2019) and maybe also from other parts of the world. Besides morphological and ecological characters, ITS barcoding region provides the most powerful evidence for discriminating species of *Sanghuangporus* (Zhou et al. 2020).

As a hot topic, transdisciplinary studies on *Sanghuangporus* have been performed to promote the utilization of these medicinal resources (Zhou et al. 2016; Cai et al. 2019; Zhu et al. 2019; Shao et al. 2020). Most of this kind of medicinal studies try to identify their materials via BLAST search of GenBank (https://www.ncbi.nlm.nih.gov/genbank/) with ITS barcoding region as a query. However, even though each of 14 species of *Sanghuangporus* was given a reliable accession number of ITS sequence (Zhou et al. 2020), sometimes it is not easy to determine which species a material represents by the simple ITS-based BLAST search. This is because some redundant and even incorrectly labeled ITS sequences are present in GenBank. With these obstacle sequences as references, it is undoubtful that certain collections will be inaccurately identified to a species level and the corresponding ITS sequences generated from these inaccurately identified collections will be submitted to GenBank as new obstacles for later species identification. In this situation, some
medicinal results will attribute to inappropriately identified species names. Meanwhile, before the erection of the genus *Sanghuangporus* published online in 2015 (Zhou et al. 2016), the ITS sequences generated from “Sanghuang” were labeled under other generic names, such as *Inonotus* P. Karst. and *Phellinus* Quél., even though with correct epithets. This phenomenon confuses certain fungal chemists and pharmacologists who are lack of taxonomic knowledge, and also results in a misapplication of species names to certain medicinal functions. This kind of misapplications has a negative effect on obtaining permissions from government for industrial development (Zhou 2020).

As stated by Zhou (2020), the use of correct Latin names for fungal species is crucial for the traditional Chinese medicinal studies and industry of macrofungi. To facilitate the medicinal utilization of *Sanghuangporus*, all ITS sequences related to “Sanghuang” in GenBank should be examined for assisting species identification. Given the above, the aim of the current study is to correct previously mislabeled ITS sequences for species of *Sanghuangporus* in GenBank, to re-delimit species boundary of *Sanghuangporus* on the basis of ITS barcoding region, and to provide candidates of diagnostic ITS sequences for rapid species identification of *Sanghuangporus* using Hyperbranched Rolling Circle Amplification (HRCA).

Materials And Methods

Molecular sequencing

A small piece of specimens or strains was taken for DNA extraction using CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd, Beijing). The crude DNA was used as templates for PCR amplifications of ITS region. The primer pairs ITS1F/ITS4 and ITS5/ITS4 (White et al. 1990; Gardes and Bruns 1993) were selected for amplification and subsequent sequencing at the Beijing Genomics Institute, Beijing, China. The PCR procedure was as follow: initial denaturation at 95 °C for 3 min, followed by 34 cycles at 94 °C for 40 s, 57.2 °C for 45 s and 72 °C for 1 min, and a final extension at 72 °C for 10 min. All newly generated sequences are deposited in GenBank (Table 1).

No.	Species name accepted here	Species name in GenBank
1.	*Sanghuangporus alpinus*	Cui 9646
2.	*Sanghuangporus alpinus*	Cui 9652
3.	*Sanghuangporus alpinus*	Cui 9658
4.	*Sanghuangporus alpinus*	Cui 9666
5.	*Sanghuangporus alpinus*	Cui 12444
6.	*Sanghuangporus alpinus*	Cui 12474

GenBank No.	Host plant	Geographic origin
JQ860313*	Angiosperm	Tibet, China
JQ860309*	Angiosperm	Tibet, China
JQ860310*	Angiosperm	Tibet, China
JQ860311*	Angiosperm	Tibet, China
MF772782*	Lonicera	Sichuan, China
MF772783*	Lonicera	Sichuan, China

Type of material	Identifier								
Specimen	Tian XM et al.								
Specimen	Zhu L & Cui BK								
Specimen	Zhu L & Cui BK								
	Species	Collection Code	GenBank Accession	Location	Source	Authors			
---	---------	-----------------	-------------------	----------	--------	---------			
7.	*Sanghuangporus alpinus*	Cui 12485	MF772781*	Sichuan, China	Specimen	Zhu L & Cui BK			
8.	*Inonotus alpinus*	Yu 35	JQ860312*	Tibet, China	Specimen	Tian XM et al.			
9.	*Inonotus alpinus*	Yuan 6396	MT348577*	Qinghai, China	Specimen	This study			
10.	*Inonotus alpinus*	Yuan 6405	MT348578*	Qinghai, China	Specimen	This study			
11.	*Inonotus alpinus*	Yuan 6438	MT343579*	Qinghai, China	Specimen	This study			
12.	*S. baumii*	Tropicoporus linteus	ASI 26030	South Korea	Strain	Han JG et al.			
13.	*Tropicoporus linteus*	ASI 26086	KT862157	Samchoek, South Korea	Strain	Han JG et al.			
14.	*Tropicoporus linteus*	ASI 26087	KT862158	Mokpo, South Korea	Strain	Han JG et al.			
15.	*Sanghuangporus baumii*	ASI 26108	KT862162	Inje, South Korea	Strain	Han JG et al.			
16.	*Inonotus baumii*	BZ-2029	JN642565	Purchased China	Strain	Wu SH et al.			
17.	*Inonotus baumii*	BZ-2030	JN642566	Purchased China	Strain	Wu SH et al.			
18.	*Inonotus baumii*	Cui 3573	JQ860307*	Jilin, China	Specimen	Tian XM et al.			
19.	*Sanghuangporus baumii*	Cui 11769	MF772784*	Heilongjiang, China	Specimen	Zhu L & Cui BK			
20.	*Sanghuangporus baumii*	Cui 11903	KY328305*	Heilongjiang, China	Specimen	Zhu L & Cui BK			
21.	*Phellinus baumii*	Dai 2340	AF534069		Strain	Lim YW et al.			
22.	*Inonotus baumii*	Dai 3683	JN642567*	Heilongjiang, China	Strain	Wu SH et al.			
23.	*Inonotus baumii*	Dai 3684	JN642568*	Heilongjiang, China	Strain	Wu SH et al.			
No.	Genus	Accession	Species	Location	Type	Reference			
-----	-------------------------------	-------------	---------	----------	------------	---------------			
24.	*Inonotus baumii*	Dai 3694	N642569*	Syringa	Heilongjiang, China	Strain Wu SH et al.			
25.	*Inonotus baumii*	Dai 13360	MT343580*	Prunus	Shanxi, China	Specimen This study			
26.	*Sanghuangporus baumii*	Dai 16900	MF772785*	Syringa	Heilongjiang, China	Specimen Zhu L & Cui BK			
27.	*Inonotus baumii*	FS 656165	HM584807			Strain Yu TW			
28.	*Inonotus baumii*	FS 656164	GU903007			Strain Yu TW			
29.	*Inonotus baumii*	HLJU	KC312696			Strain Liu Y et al.			
30.	*Sanghuangporus baumii*	KUC 10644	MH168100			Strain Heo YM et al.			
31.	*Inonotus baumii*	KUC 20130809-20	KJ668511		South Korea Specimen	Jiang Y & Kim JJ			
32.	*Inonotus baumii*	LWZ 20190722-18	MT348581*	Angiosper	Beijing, China Specimen	This study			
33.	*Inonotus baumii*	MDJCBS 84	DQ103887			Strain Jiang J et al.			
34.	*Inonotus baumii*	SFC 050511-32	AY972811			Strain Jung HS & Lee JS			
35.	*Inonotus baumii*	SFC 050527-67	AY972812			Strain Jung HS & Lee JS			
36.	*Phellinus baumii*	SFC 960405-4	AF534068			Strain Lim YW et al.			
37.	*Phellinus linteus*	SFC 970527-1	AF534073			Strain Lim YW et al.			
38.	*Sanghuangporus baumii*	SFCC 50029	AY558608			Strain Jeong WJ et al.			
39.	*Inonotus baumii*	SH 3	FJ190412			Strain Zou L et al.			
40.	*Inonotus baumii*	Wu 0910 – 54	N642570*	Syringa	Beijing, China	Strain Wu SH et al.			
		Inonotus baumii	Yuan 2444	**X069836**	Angiosperm	Shanxi, China	Specimen	Tian XM et al.	
---	---	---	---	---	---	---	---	---	
41.		Sanghuangpors baumii	Yuan 4909	**KY328310**	Angiosperm	Heilongjiang, China	Specimen	Zhu L & Cui BK	
42.		Sanghuangpors baumii	Yuan 4929	**KY328306**	Alnus	Heilongjiang, China	Specimen	Zhu L & Cui BK	
43.	S. ligneus	Sanghuangpors ligneus	MG 12	**KR073081**	Lonicera caucasica	Iran	Strain	Ghabbad-Nejhad M	
44.		Sanghuangpors ligneus	MG 13	**KR073082**	Lonicera caucasica	Iran	Strain	Ghabbad-Nejhad M	
45.	S. lonicericolap	Inonotus baumii	BM-3753	HQ845063	China	Strain	Hu W & Deng X		
46.		Inonotus baumii	BM-8335	HQ845064	China	Strain	Hu W & Deng X		
47.		Sanghuangpors lonicericolap	Cui 10994	MF772786	China	Specimen	Zhu L & Cui BK		
48.		Inonotus lonicericolap	Dai 8322	**N642571**	Lonicera	Heilongjiang, China	Specimen	Wu SH et al.	
49.		Inonotus lonicericolap	Dai 8335	**N642573**	Lonicera	Heilongjiang, China	Specimen	Wu SH et al.	
50.		Inonotus lonicericolap	Dai 8340	**N642574**	Lonicera	Heilongjiang, China	Specimen	Wu SH et al.	
51.		Inonotus lonicericolap	Dai 8376	**Q860308**	Lonicera	Heilongjiang, China	Specimen	Tian XM et al.	
52.		Sanghuangpors lonicericolap	Dai **17304**	**MT348582**	Lonicera	Liaoning, China	Strain	This study	
53.		**Phellinus** sp.	HN100K9	KF589300	South Korea	Strain	Kang HW & Kim JK		
54.		**Phellinus** ribis	SFCC 50032	AY558643		Strain	Jeong WJ et al.		
55.		Inonotus lonicericolap	TAA 105317	**N642572**	Lonicera ruprechtiana	Russian Far East	Specimen	Wu SH et al.	
56.	S. lonicerinus	Sanghuangpors lonicerinus	Dai 17093	**MF772788**	Lonicera	Uzbekistan	Specimen	Zhu L & Cui BK	
		Sanghuangporus lonicerinus	Dai 17095	MF772787*	Lonicera	Uzbekistan	Specimen	Zhu L & Cui BK	
---	---	-----------------------------	-----------	-----------	----------	-----------	----------	-----------	
58.		Sanghuangporus lonicerinus	MG 280	KU213573*			Specimen	Langer EJ & Ghobad-Nejhad M	
59.		Sanghuangporus lonicerinus	MG 281	KU213574*			Specimen	Langer EJ & Ghobad-Nejhad M	
60.		Inonotus sp.	TAA 55528	KU6452575*	Lonicera	Turkmenistan	Strain	Wu SH et al.	
61.		Inonotus lonicerinus	TAA 55696	MT348583*	Lonicera	Turkmenistan	Specimen	This study	
62.		Phellinus linteus	TAA-104264	AF534074			Strain	Lim YW et al.	
63.		S. microcystideus	Sanghuangporus microcystideus	O 915609	KP030787*	Olea africana	Tanzania	Specimen	Zhou LW et al.
64.		S. pilatii	Phellinus pilatii	BRNM 771989	KT428764*	Populus alba	Czech Republic	Specimen	Tomšovský M
65.		S. quercicola	Phellinus rhabarbarinus	CBS 282.77	AY558642		Strain	Jeong WJ et al.	
66.		Sanghuangporus quercicola	Dai 13947	KY328309*		Chongqing, China	Specimen	Zhu L & Cui BK	
67.		Sanghuangporus quercicola	Li 445	KY328311*	Angiosperm	Henan, China	Specimen	Zhu L & Cui BK	
68.		Sanghuangporus quercicola	Li 1149	KY328312*	Quercus	Henan, China	Specimen	Zhu L & Cui BK	
69.		Sanghuangporus quercicola	LWZ 20170821-13	MT348584*	Angiosperm	Hubei, China	Specimen	This study	
70.		Sanghuangporus quercicola	LWZ 20170821-14	MT348585*	Angiosperm	Hubei, China	Specimen	This study	
71.		Sanghuangporus quercicola	LWZ 20170821-15	MT348586*	Angiosperm	Hubei, China	Specimen	This study	
72.		Sanghuangporus	LWZ 20170821-16	MT348587*	Angiosperm	Hubei, China	Specimen	This study	
No.	Species	Accession	Country	Status	Author				
-----	--------------------------	-----------	------------------	--------------	----------------				
73.	*Sanghuangporus quercicola*	Wei 7575	Henan, China	Strain	This study				
74.	*Sanghuangporus sp.*	Wu 1805-2	Hubei, China	Specimen	Wu SH et al.				
75.	*Sanghuangporus sp.*	Wu 1805-3	Hubei, China	Specimen	Wu SH et al.				
76.	*Sanghuangporus sp.*	Wu 1805-5	Hubei, China	Specimen	Wu SH et al.				
77.	*Sanghuangporus sp.*	Wu 1807-2	Hubei, China	Specimen	Wu SH et al.				
78.	*Sanghuangporus sp.*	Wu 1807-3	Hubei, China	Specimen	Wu SH et al.				
79.	*Sanghuangporus sp.*	Wu 1807-4	Hubei, China	Specimen	Wu SH et al.				
80.	*Sanghuangporus sp.*	Wu 1807-5	Hubei, China	Specimen	Wu SH et al.				
81.	*S. sanghuang*	AH1	Cultivated	Anhui, China	This study				
82.	*S. sanghuang*	AH2	Cultivated	Anhui, China	This study				
83.	*S. sanghuang*	AH3	Cultivated	Anhui, China	This study				
84.	*S. sanghuang*	AH4	Cultivated	Anhui, China	This study				
85.	*S. sanghuang*	AH5	Cultivated	Anhui, China	This study				
86.	*Phellinus igniarius*	ASI 26010	Jeongseon, South Korea	Strain	Han JG et al.				
87.	*Tropicoporus linteus*	ASI 26011	India	Strain	Han JG et al.				
88.	*Tropicoporus linteus*	ASI 26016	South Korea	Strain	Han JG et al.				
	Species	Accession	Location	Strain Type	Authors				
---	------------------	-----------	----------------	-------------	----------------				
89.	Tropicoporus linteus	ASI 26021	KT862138	Hongcheon, South Korea	Strain Han JG et al.				
90.	Tropicoporus linteus	ASI 26022	KT862139	Hongcheon, South Korea	Strain Han JG et al.				
91.	Tropicoporus linteus	ASI 26025	KT862140	Wonju, South Korea	Strain Han JG et al.				
92.	Tropicoporus linteus	ASI 26026	KT862141	Wonju, South Korea	Strain Han JG et al.				
93.	Tropicoporus linteus	ASI 26039	KT862143	Pyeongchang, South Korea	Strain Han JG et al.				
94.	Tropicoporus linteus	ASI 26046	KT862144	Hongcheon, South Korea	Strain Han JG et al.				
95.	Tropicoporus linteus	ASI 26049	KT862145	Hongcheon, South Korea	Strain Han JG et al.				
96.	Tropicoporus linteus	ASI 26054	KT862147	Hongcheon, South Korea	Strain Han JG et al.				
97.	Tropicoporus linteus	ASI 26062	KT862148	Hwacheon, South Korea	Strain Han JG et al.				
98.	Tropicoporus linteus	ASI 26063	KT862149	Jeongseon, South Korea	Strain Han JG et al.				
99.	Tropicoporus linteus	ASI 26066	KT862150	Inje, South Korea	Strain Han JG et al.				
100.	Tropicoporus linteus	ASI 26067	KT862151	Inje, South Korea	Strain Han JG et al.				
101.	Tropicoporus linteus	ASI 26070	KT862152		Strain Han JG et al.				
102.	Tropicoporus linteus	ASI 26071	KT862153		Strain Han JG et al.				
103.	Tropicoporus linteus	ASI 26073	KT862154	South Korea	Strain Han JG et al.				
104.	Tropicoporus linteus	ASI 26074	KT862155	Seongnam, South Korea	Strain Han JG et al.				
105.	Tropicoporus linteus	ASI 26082	KT862156	Mokpo, South Korea	Strain Han JG et al.				
No.	Species	Accession	Country	Strain Type	Strain Name	Author(s)			
-----	---------	-----------	---------	-------------	-------------	-----------			
106.	Tropicoporus linteus	ASI 26088	South Korea	Strain	Sancheong, South Korea	Han JG et al.			
107.	Tropicoporus linteus	ASI 26114	South Korea	Strain		Han JG et al.			
108.	Tropicoporus linteus	ASI 26115	South Korea	Strain		Han JG et al.			
109.	Phellinus linteus	ATCC 26710	South Korea	Strain		Kim GY et al.			
110.	Sanghuangporus sanghuang	Batch 1-12192170-1	USA	Strain		Raja HA et al.			
111.	Sanghuangporus sanghuang	Batch 2-10221252-2	USA	Strain		Raja HA et al.			
112.	Sanghuangporus sanghuang	Batch 2-12192170-1	USA	Strain		Raja HA et al.			
113.	S. sanghuang	BJ	Cultivated	China		This study			
114.	Inonotus sp.	BZ-A	Morus	Hunan, China		Wu SH et al.			
115.	Inonotus sp.	BZ-C	Morus	Hunan, China		Wu SH et al.			
116.	Inonotus sp.	CA	Morus	Jiangxi, China		Wu SH et al.			
117.	Inonotus sp.	CB	Morus	Jiangxi, China		Wu SH et al.			
118.	Inonotus sp.	CC	Morus	Jiangxi, China		Wu SH et al.			
119.	Sanghuangporus sanghuang	Cui 14419	Morus	Shaanxi, China		Zhu L & Cui BK			
120.	Sanghuangporus sanghuang	Cui 14420	Morus	Shaanxi, China		Zhu L & Cui BK			
121.	Inonotus sanghuang	Dai 12723	Morus	Sichuan, China		Tian XM et al.			

Northeast
No.	Organism	Strain Code	Accession Code	Cultivated	Country	Strain Code	Authors			
122	*Phellinus* linteus	DB1	MT421905*	Cultivated	China	Strain	Chung JW et al.			
123	*Phellinus* linteus	DGUM25003	AF082102			Strain	Chung JW et al.			
124	*Phellinus* linteus	DGUM25004	AF080458			Strain	Chung JW et al.			
125	*Inonotus* linteus	FS 656160	GU903004			Strain	Yu TW			
126	*Inonotus* linteus	FS 656161	HM584806			Strain	Yu TW			
127	*Tropicoporus* linteus	FS 656179	KU867779			Strain	Yu TW			
128	*Tropicoporus* linteus	FS 656180	KU867780			Strain	Yu TW			
129	*S. sanghuang*	HB	MT421907*	Cultivated	Hubei, China	Strain	This study			
130	*Phellinus* linteus	IFO 6980	AF200226			Strain	Kim GY & Lee JD			
131	*Inonotus* linteus	IFO 6989	AY640937			Strain	Lee JS & Jung HS			
132	*Phellinus* linteus	IMSNU 31014	AF082101			Strain	Chung JW et al.			
133	*Sanghuangporus* sanghuang	JL-01	MG062789			Strain	Xu X			
134	*S. sanghuang*	JS1	MT421908*	Cultivated	Jiangsu, China	Strain	This study			
135	*Inonotus* linteus	KAB-PL-01	DQ462333		Taiwan, China	Strain	Chiou SJ & Yen JH			
136	*Phellinus* linteus	KCTC 6190	AF077678			Strain	Chung JW et al.			
137	*Phellinus* igniarius	KCTC 16890	AY189708			Strain	Nam BH et al.			
138	*Inonotus* linteus	KFDA 016	AY436626			Strain	Yun JC et al.			
139.	**Inonotus linteus**	KFDA P38	AY513234	Strain	Jin CY et al.					
140.	**Inonotus linteus**	KSSW01	EF506943	Strain	Park SY et al.					
141.	**Inonotus linteus**	LT-0802	HQ845059	South Korea	Hu W & Deng X					
142.	**Inonotus linteus**	LT-CBS83	HQ845060	South Korea	Hu W & Deng X					
143.	**Sanghuangporus sanghuang** LWZ 20180927-3	MT348588*	Morus Yunnan, China	Specimen	This study					
144.	**Phellinus linteus**	MPNU 7016	AF153009	Strain	Kim GY et al.					
145.	**Inonotus linteus**	MUCL 47139	GU461973	Cuba	Strain	Amalfi M et al.				
146.	**Inonotus linteus**	NAAS00002	JN043317	Strain	Seok SJ et al.					
147.	**Phellinus linteus**	Namsan No1	AF080457	Strain	Chung JW et al.					
148.	**Inonotus linteus**	PL 0801	FJ940906	Strain	Xie LY et al.					
149.	**Inonotus linteus**	PL 5	EF095712	Strain	Park BW et al.					
150.	**Inonotus sp.**	PL 10	JN642588*	China	Strain	Wu SH et al.				
151.	**Sanghuangporus sanghuang** S3	MN153568	Strain	Song JL et al.						
152.	**Phellinus sp.**	SA 01	EF694971	Strain	Zeng NK et al.					
153.	**Phellinus baumii** SFC 20001106-1	AF534064	Strain	Lim YW et al.						
154.	**Phellinus baumii** SFC 20010212-1	AF534062	Strain	Lim YW et al.						
155.	**Sanghuangporus sanghuang** SS	MG209821	Strain	Cai C & Zhao G						
156.	Inonotus sp.	T004	N642586*	Morus	Taiwan, China	Strain	Wu SH et al.			
157.	Inonotus sp.	TH	N642582*	Morus	Taiwan, China	Strain	Wu SH et al.			
158.	Inonotus sp.	TJ	N642585*	Morus	Taiwan, China	Strain	Wu SH et al.			
159.	Inonotus sp.	TM	N642583*	Morus	Taiwan, China	Strain	Wu SH et al.			
160.	Inonotus sp.	TN	N642584*	Morus	Taiwan, China	Strain	Wu SH et al.			
161.	Inonotus sp.	WD 1222	N642576*	Morus	Japan	Strain	Wu SH et al.			
162.	Inonotus sp.	WD 2261	N642577*	Morus	Japan	Strain	Wu SH et al.			
163.	Inonotus sp.	WD 2300	N642578*	Morus	Japan	Strain	Wu SH et al.			
164.	Inonotus sp.	Wu 0903-1	N794061*	Morus	Jilin, China	Strain	Wu SH et al.			
165.	Inonotus sp.	Zhangjiajie	MN242716	Cultivated		Strain	Wang Y			
166.	S. sanghuang	ZJ1	MT421910*	Cultivated	Zhejiang, China	Strain	This study			
167.	S. sanghuang	ZJ2	MT421911*	Cultivated	Zhejiang, China	Strain	This study			
168.	S. sanghuang	ZJ4	MT421913*	Cultivated	Zhejiang, China	Strain	This study			
169.	S. sanghuang	ZJ5	MT421914*	Cultivated	Zhejiang, China	Strain	This study			
170.	S. vaninii	Inonotus vaninii	HQ845058		China	Strain	Hu W & Deng X			
171.	Inonotus sp.	Beijing	MN242720	Cultivated	China	Strain	Wang Y			
172.	Inonotus vaninii	BZ-2031	N642593*	Populus	China	Strain	Wu SH et al.			
173.	Inonotus vaninii	CJC 01	N642592*	Cultivated	Taiwan, China	Strain	Wu SH et al.			
174.	Sanghuangporus vaninii	Cui 9939	MF772792*		Jilin, China	Specimen	Zhu L & Cui BK			
No.	Species	Code	Accession	Host	Location	Type	Source			
------	-----------------------------	-------	-------------	------------	-------------	------------	-------------------			
175.	Sanghuangporus vaninii	Cui 14082	MF772793*	Populus	Jilin, China	Specimen	Zhu L & Cui BK			
176.	Inonotus vaninii	Dai 3624	JN642590*	Populus	China	Strain	Wu SH et al.			
177.	Inonotus vaninii	Dai 7011	JN642591*	Populus davidiana	Jilin, China	Strain	Wu SH et al.			
178.	Sanghuangporus vaninii	Dai 8236	MF772791*	Populus	Jilin, China	Specimen	Zhu L & Cui BK			
179.	S. vaninii	DB2	MT421906*	Cultivated	Northeast China	Strain	This study			
180.	Inonotus baumii	FS 656170	GU903008			Strain	Yu TW			
181.	Fiscoporia gilva	FS 656175	HM584811			Strain	Yu TW			
182.	Sanghuangporus vaninii	HZ-01	MG062791			Strain	Xu X			
183.	Inonotus sp.	JinZhai	MN242717	Cultivated	China	Strain	Wang Y			
184.	S. vaninii	JS2	MT421909*	Cultivated	Jiangsu, China	Strain	This study			
185.	Inonotus sp.	KangNeng	MN242721	Cultivated	China	Strain	Wang Y			
186.	Inonotus baumii	KFDA 015	AY436623			Strain	Yun JC et al.			
187.	Inonotus baumii	KFDA 022	AY436624			Strain	Yun JC et al.			
188.	Inonotus linteus	KFDA 024	AY436627			Strain	Yun JC et al.			
189.	Inonotus baumii	KFDA 029	AY436625			Strain	Yun JC et al.			
190.	Inonotus baumii	KFDA P36	AY509198			Strain	Jin CY et al.			
191.	Inonotus baumii	KFDA P40	AY509199			Strain	Jin CY et al.			
192.	Inonotus baumii	KFDA P45	AY509201			Strain	Jin CY et al.			
193.	Inonotus sp.	Korea	MN242719	Cultivated	China	Strain	Wang Y			
---	---	---	---	---	---	---	---			
194.	Sanghuangporus baumii	LC 6686	MK818502	Strain	Li ZN					
195.	Inonotus linteus	LT-HG	HQ845061	Strain	Hu W & Deng X					
196.	Fuscoporia gilva	MDJCBS87	DQ103884	Strain	Jiang J et al.					
197.	Phellinus baumii	MPNU 7004	AF200229	Strain	Kim GY & Lee JD					
198.	Phellinus baumii	MPNU 7005	AF200230	Strain	Kim GY & Lee JD					
199.	Phellinus baumii	MPNU 7006	AF200231	Strain	Kim GY & Lee JD					
200.	Phellinus sp.	MPNU 7007	AF200235	Strain	Kim GY & Lee JD					
201.	Phellinus sp.	MPNU 7010	AF153007	South Korea	Strain	Kim GY et al.				
202.	Phellinus sp.	MPNU 7012	AF153008	South Korea	Strain	Kim GY et al.				
203.	Phellinus sp.	MPNU 7013	AF153011	South Korea	Strain	Kim GY et al.				
204.	Inonotus baumii	PB 0802	FJ940907	Strain	Xie LY et al.					
205.	Inonotus baumii	PB 0803	FJ940908	Strain	Xie LY et al.					
206.	Inonotus baumii	PB 0806	FJ940911	Strain	Xie LY et al.					
207.	Inonotus baumii	PB 0808	FJ940913	Strain	Xie LY et al.					
208.	Inonotus baumii	PB 0809	FJ940914	Strain	Xie LY et al.					
209.	Inonotus sp.	QianDaoHu	MN242718	Cultivated	China	Strain	Wang Y			
210.	Sanghuangporus vaninii	S1	MN153566	Strain	Song JL et al.					
211.	Sanghuangporus baumii	S2	MN153567	Strain	Song JL et al.					
	Genus	Strain								
---	---------------	--------	---------------	--------	---------------	--------	---------------	--------	---------------	--------
212.	Fuscoporia	S12	MT275660		Strain	Li Y & Huo J				
213.	Phellinus sp.	SA 02	EF694972		Strain	Zeng NK et al.				
214.	Phellinus sp.	SA 03	EF694973		Strain	Zeng NK et al.				
215.	Phellinus sp.	SA 04	EF694974		Strain	Zeng NK et al.				
216.	Inonotus baumii	SA 05	EF694975		Strain	Zeng NK et al.				
217.	Phellinus sp.	SA 06	EF694976		Strain	Zeng NK et al.				
218.	Phellinus sp.	SA 07	EF694977		Strain	Zeng NK et al.				
219.	Phellinus linteus	SFC 970605	AF534071		Strain	Lim YW et al.				
220.	Phellinus linteus	SFC 2001106-7	AF534070		Strain	Lim YW et al.				
221.	Phellinus baumii	SFC 20010212-2	AF534063		Strain	Lim YW et al.				
222.	Tropicoporus linteus	SFCC 10209	AY558628		Strain	Jeong WJ et al.				
223.	Fuscoporia	SH 1	FJ190410		Strain	Zou L et al.				
224.	Inonotus baumii	SJ	JN887691		Strain	Shin KS				
225.	Inonotus vaninii	Wei 3382	JN169788*	Jilin, China	Specimen	Zhou LW & Qin WM				
226.	Inonotus vaninii	WN 0801	HQ845054	China	Strain	Hu W & Deng X				
227.	Inonotus vaninii	WN-1	HQ845055	China	Strain	Hu W & Deng X				
228.	Inonotus vaninii	WN-2	HQ845056	China	Strain	Hu W & Deng X				

17
No.	Genus	Species	Accession Number	Country	Location	Genus	Species	Accession Number	Country	Location	Genus	Species	Accession Number	Country	Location
229	*Inonotus vaninii*		WN-4	China	Strain	Deng X									
230	*Inonotus vaninii*		WN 8213	China	Strain	Hu W & Deng X									
231	*Inonotus vaninii*		WN 8824	China	Strain	Hu W & Deng X									
232	*Inonotus vaninii*		WN 3624	China	Strain	Hu W & Deng X									
233	*Sanghuangporus baumii*		XZ-01	China	Strain	Xu X									
234	*Inonotus baumii*		YC	China	Strain	Shin KS									
235	*Sanghuangporus vaninii*		Yuan 2764	China	Specimen	Zhu L & Cui BK	Quercus	Shaanxi, China							
236	*Sanghuangporus vaninii*		Yuan 5604	China	Specimen	Zhu L & Cui BK	Quercus	Jilin, China							
237	*S. vaninii*		ZJ3	China	Strain	This study	Cultivated	Zhejiang, China							
238	*S. weigelae*	Sanghuangp	420526MF0201	China	Specimen	Wang R et al.	Quercus	Hubei, China							
239	*Inonotus weigelae*		Cui 6010	China	Specimen	Tian XM et al.	Lonicera	Jiangxi, China							
240	*Inonotus weigelae*		Cui 6012	China	Specimen	Tian XM et al.	Lonicera	Jiangxi, China							
241	*Inonotus weigelae*		Cui 7176	China	Specimen	Tian XM et al.	Syringa	Hebei, China							
242	*Inonotus weigelae*		Dai 6352	China	Specimen	Tian XM et al.		Zhejiang, China							
243	*Inonotus weigelae*		Dai 11694	China	Specimen	Tian XM et al.		Hunan, China							
244	*Sanghuangporus weigelae*		Dai 15770	China	Specimen	Zhu L & Cui BK	Weigela	Chongqing, China							
245	*Sanghuangporus weigelae*		Dai 16072	China	Specimen	This study	Weigela	Inner Mongolia, China							
246.	Sanghuangporus weigelae	Dai 16077	MF772794*	Weigela	Inner Mongolia, China	Specimen	Zhu L & Cui BK								
247.	Sanghuangporus weigelae	LWZ 20150802-3	MT348590*	Weigela	Jiangxi, China	Specimen	This study								
248.	Sanghuangporus weigelae	LWZ 20150802-5	MT348591*	Weigela	Jiangxi, China	Specimen	This study								
249.	Phellinus baumii	SFC 20000111-10	AF534067												
250.	Inonotus sp.	WD 1186	N642597*	Weigela	Japan	Strain	Tian XM et al.								
251.	Inonotus sp.	WD 1187	N642598*	Weigela	Japan	Strain	Tian XM et al.								
252.	Inonotus sp.	WD 1667	N642594*	Weigela cordeenis	Japan	Strain	Wu SH et al.								
253.	Inonotus sp.	WD 1837	N642595*	Weigela cordeenis	Japan	Strain	Wu SH et al.								
254.	Inonotus sp.	WD 1838	N642596*	Weigela cordeenis	Japan	Strain	Wu SH et al.								
255.	Inonotus weigelae	Wei 2120	JQ860314*	Coriaria	Hubei, China	Specimen	Tian XM et al.								
256.	Inonotus weigelae	Wei 2267	JX069835*	Angiosperm	Hubei, China	Specimen	Tian XM et al.								
257.	Inonotus tenuicontextus	Yuan 5526	N169786*	Angiosperm	Guizhou, China	Specimen	Zhou LW & Qin WM								
258.	S. weirianus	Sanghuangporus weirianus	CBS 618.89	AY558654*			Jeong WJ et al.								
259.	Phellinus weirianus	IMSNU 32021	AF110989*				Chung JW et al.								
260.	S. zonatus	Inonotus zonatus	Cui 6631	JQ860305*	Angiosperm	Hainan, China	Specimen	Tian XM et al.							
261.	Inonotus zonatus	Cui 8327	JX069837*	Angiosperm	Yunnan, China	Specimen	Tian XM et al.								
262.	Inonotus						Tian XM et al.								
262.		Inonotus	Dai 10841	Q860306*	Angiosperm	China	Specimen	al.							
263.	S. sp. 1	Inonotus sp.	AM-08	F895464	Ethiopia	Specimen	Assefa A et al.								
264.		Inonotus sp.	AM-19	F895465	Ethiopia	Specimen	Assefa A et al.								
265.		Inonotus linteus	F915611	JX985739	Ethiopia	Specimen	Assefa A et al.								
266.		Inonotus linteus	Teng 3279	JX985738	Xylosoma	China	Specimen	Assefa A et al.							
267.	S. sp. 2	Phellinus sp.	DLL 2010–102	JQ673184	Populus tremuloides	USA	Strain	Brazee NJ et al.							
268.		Sanghuangporus vaninii	DLL 2010–102	KU139197	Populus tremuloides	USA	Strain	Brazee NJ							
269.	S. sp. 3	Phellinus baumii	SFC 20001106-4	AF534066	South Korea	Strain	Lim YW et al.								
270.		not Sanghuangporus	DL 101	KP974834	China	Strain	Sun T et al.								
271.		not Sanghuangporus	WN-3	HQ845057	China	Strain	Hu W & Deng X								

New sequenced specimens and strains are in bold
* Sequences considered to be reliable for further analysis

Downloading sequences from GenBank

The genus name *Sanghuangporus* and the epithets of 14 *Sanghuangporus* species were firstly used as queries to search GenBank. Meanwhile, the reliable sequences of 14 *Sanghuangporus* species (Zhou et al. 2020) were used as queries to perform BLAST search in GenBank. The cut-off value of similarity for the resulting sequences was set as 95%. All these ITS sequences by April 30, 2020 were retrieved from GenBank (Table 1). In addition, the recently published papers related to the taxonomy of *Sanghuangporus* were checked for supplementing sequence information (Wu et al. 2012a, 2019b; Zhou and Qin 2012; Tian et al. 2013; Ghobad-Nejhad 2015; Tomšovský 2015; Han et al. 2016; Zhou et al. 2016; Zhu et al. 2019; Shao et al. 2020).

Phylogenetic analyses

The datasets of ITS sequences were separately aligned using MAFFT 7.110 (Katoh and Standley 2013) under the G-I-N-i option (Katoh et al. 2005). All resulting alignments are deposited in TreeBASE (http://www.treebase.org; accession number S26272; Reviewer access URL: http://purl.org/phylo/treebase/phylows/study/TB2:S26272?x-access-code=cb4ee00b60c33d03f7496ee08038e86d&format=html). jModelTest (Guindon and Gascuel 2003; Posada, 2008) was used to estimate the best-fit evolutionary model for each alignment with calculation under corrected Akaie information criterion. Following the estimated models, maximum likelihood (ML) and Bayesian inference (BI) algorithms were used to construct midpoint-rooted trees for the alignments. The ML algorithm was performed using raxmlGUI 2.0 (Stamatakis, 2014; Edler et al., 2019), and the bootstrap (BS) replicates were
calculated under the auto FC option (Pattengale et al. 2010). The BI algorithm was performed using MrBayes 3.2 (Ronquist et al. 2012), which employed two independent runs each with four chains and starting from random trees. Trees were sampled every 1000th generation, of which the first 25% were removed as burn-in and the other 75% were retained for constructing a 50% majority consensus tree and calculating Bayesian posterior probabilities (BPPs). Tracer 1.5 (http://tree.bio.ed.ac.uk/software/tracer/) was used to judge the convergence of chains.

Evaluation of genetic distances of ITS sequences

The genetic distances of an alignment of ITS sequences was estimated using MEGA X (Kumar et al. 2018; Stecher et al. 2020). For genetic distances between and within species of Sanghuangporus, the parameters were both set as follows: a BS method of variance estimation with 1000 BS replications, a p-distance substitution model including transitions and transversions, the uniform rates among sites, and a pairwise deletion treatment of gaps and missing data.

Identification of diagnostic ITS sequences

According to the alignment of ITS sequences generated using MAFFT 7.110 (Katoh and Standley 2013) under the G-Ini-i option (Katoh et al. 2005), if a more than one-nucleotide-long fragment was unique for one species and not variant within this species, this fragment was identified as a potential diagnostic sequence for this species.

Results

A total of 13 specimens and 18 strains were newly sequenced, and the resulting ITS sequences were submitted to GenBank (Table 1). According to our criterion, 240 ITS sequences were downloaded from GenBank, but two sequences (HQ845057 and KP974834) showed unexpectedly large differences from other sequences of Sanghuangporus by BLAST search and thus excluded from subsequent phylogenetic analyses (Table 1). Eventually, a dataset of all available 269 ITS sequences (31 newly sequenced and 238 downloaded from GenBank) from Sanghuangporus species was employed to construct a preliminary phylogenetic frame of this genus. An alignment of 941 characters was resulted from this dataset, and HKY + G was estimated as the best-fit evolutionary model for phylogenetic analysis. The ML search stopped after 850 bootstrap replicates. All chains in BI converged after ten million generations, which is indicated by the estimated sample sizes (ESSs) of all parameters above 500 and the potential scale reduction factors (PSRFs) close to 1.000. The ML and BI algorithms generated nearly congruent topology in main lineages (Additional file 1: Tree S1, Additional file 2: Tree S2). Therefore, only the topology from the ML algorithm is visualized in a circle form; the midpoint-rooted tree recovered 13 species and three undescribed lineages of Sanghuangporus (Fig. 1). The one species gap comparing with the 14 accepted species is caused by that collections previously identified as S. quercicola Lin Zhu & B.K. Cui and S. toxicodendri Sheng H. Wu, B.K. Cui & Guo Z. Jiang were nested within a single clade (Fig. 1). Of the 13 recovered species of Sanghuangporus, the clades of S. ionicericola (Parmasto) L.W. Zhou & Y.C. Dai and S. sanghuang (Sheng H. Wu, T. Hatt. & Y.C. Dai) Sheng H. Wu, L.W. Zhou & Y.C. Dai did not receive well statistical supports, and the clade of S. alpinus (Y.C. Dai & X.M. Tian) L.W. Zhou & Y.C. Dai was strongly supported just by the BI algorithm, while other species were all strongly supported by both the ML and the BI algorithms (Additional file 1: Tree S1, Additional file 2: Tree S2). Sanghuangporus microcystideus (Har. & Pat.) L.W. Zhou & Y.C. Dai was merged together with S. sp. 1 in the tree inferred from the ML algorithm (Fig. 1, Additional file 1: Tree S1), but was separated from S. sp. 1 in the BI tree (Additional file 2: Tree S2). The relationship between S. microcystideus and S. sp. 1 is still not clear, so we tentatively treat the specimen O 915609 as the single representative of S. microcystideus.

In GenBank, species names from nine out of 77 phylogenetically analyzed specimens were misapplied (tips labeled in green color in Fig. 1), while those from 131 out of 192 phylogenetically analyzed strains were wrongly identified to a species level (tips labeled in red color in Fig. 1). Besides, two ITS sequences of strains (HQ845057 and KP974834) labeled as members of Sanghuangporus were extremely deviated and maybe came from inappropriate readings of Sanger sequencing chromatograms (Table 1). Most of these errors came from submitters of non-taxonomists. Therefore, to delimit species boundary of Sanghuangporus, we selected the ITS
sequences submitted to GenBank by taxonomists for a new round of phylogenetic analysis (Table 1). The new dataset included 122 ITS sequences and resulted in an alignment of 871 characters with HKY + I + G as the best-fit evolutionary model. The ML search stopped after 450 bootstrap replicates. All chains in BI converged after four million generations, which is indicated by the ESSs of all parameters above 1000 and the PSRFs close to 1.000. The ML and BI algorithms generated nearly congruent topology in main lineages, and only the midpoint-rooted ML tree is presented along with the BPPs at the nodes (Fig. 2). Similar to Fig. 1, this tree also recovered 13 species of Sanghuangporus with S. quercicola and S. toxicodendri nested within a single clade (Fig. 2). Among these 13 species, S. lonicericola was still not strongly supported as a monophyletic lineage, and S. alpinus and S. sanghuang were moderately supported from the ML algorithm and fully supported from the BI algorithm, while all other species received strong statistical supports from both the ML and the BI algorithms (Fig. 2).

To further explore the species relationships among Sanghuangporus, the alignment with 122 selected ITS sequences was conducted a genetic distance analysis. In addition to Sanghuangporus microcystideus and S. pilatii (Černý) Tomšovský each referring to a single collection, the genetic distances of ITS sequences within species of Sanghuangporus was mostly below 1.00% (even 0.00% within S. ligneus Ghob.-Nejh.), whereas those within S. baumii (Pilát) L.W. Zhou & Y.C. Dai, S. weirianus (Bres.) L.W. Zhou & Y.C. Dai and S. zonatus (Y.C. Dai & X.M. Tian) L.W. Zhou & Y.C. Dai were 1.29%, 2.68% and 1.14%, respectively (Table 2). Regarding the genetic distances between species, all were above 2.00% (mostly above 4.00%) but those between Sanghuangporus alpinus, S. lonicerinus (Bondartsev) Sheng H. Wu, L.W. Zhou & Y.C. Dai and S. weigelae (T. Hatt. & Sheng H. Wu) Sheng H. Wu, L.W. Zhou & Y.C. Dai (1.56–1.83%); moreover, those between Sanghuangporus microcystideus and all other species were more than 10.00% (Table 2).

Table 2

Specie	1	2	3	4	5	6	7	8	9	10	11	12	13												
S. alpinus	0.0049 ± 0.0016																								
S. baumii	0.0445 ± 0.0073	0.0129 ± 0.0026																							
S. ligneus	0.0529 ± 0.0097	0.0439 ± 0.0084																							
S. lonicericola	0.0417 ± 0.0070	0.0315 ± 0.0059	0.0249 ± 0.0066	0.0045 ± 0.0016																					
S. lonicerinus	0.0156 ± 0.0042	0.0502 ± 0.0082	0.0600 ± 0.0102	0.0498 ± 0.0082	0.0046 ± 0.0017																				
S. microcystideus	0.1083 ± 0.0118	0.1166 ± 0.0119	0.1173 ± 0.0135	0.1104 ± 0.0121	0.1083 ± 0.0121	n.a.																			
S. pilatii	0.0476 ± 0.0079	0.0576 ± 0.0086	0.0532 ± 0.0097	0.0493 ± 0.0079	0.0508 ± 0.0085	0.1191 ± 0.0127	n.a.																		
	Species	Distance 1	Distance 2	Distance 3	Distance 4	Distance 5	Distance 6	Distance 7	Distance 8	Distance 9	Distance 10	Distance 11	Distance 12	Distance 13											
-----	------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------											
8	S. quercicola	0.0610	±0.0087	0.0654	±0.0087	0.0657	±0.0103	0.0662	±0.0090	0.0711	±0.0096	0.1313	±0.0126	0.0490	±0.0079	0.0044	±0.0014								
9	S. sanghuang	0.0390	±0.0069	0.0479	±0.0076	0.0581	±0.0100	0.0485	±0.0077	0.0391	±0.0074	0.1046	±0.0118	0.0370	±0.0071	0.0524	±0.0080	0.0010	±0.0003						
10	S. vaninii	0.0592	±0.0089	0.0686	±0.0096	0.0622	±0.0103	0.0628	±0.0092	0.0663	±0.0096	0.1210	±0.0126	0.0304	±0.0065	0.0590	±0.0084	0.0480	±0.0079	0.0049	±0.0012				
11	S. weigelae	0.0172	±0.0045	0.0474	±0.0078	0.0507	±0.0095	0.0438	±0.0075	0.0183	±0.0049	0.1064	±0.0119	0.0501	±0.0085	0.0696	±0.0094	0.0391	±0.0072	0.0667	±0.0095	0.0031	±0.0012		
12	S. weirianus	0.0605	±0.0086	0.0658	±0.0085	0.0631	±0.0102	0.0630	±0.0088	0.0622	±0.0090	0.1271	±0.0124	0.0540	±0.0081	0.0755	±0.0093	0.0416	±0.0069	0.0724	±0.0095	0.0585	±0.0086	0.0268	±0.0061
13	S. zonatus	0.0695	±0.0091	0.0629	±0.0088	0.0672	±0.0105	0.0495	±0.0078	0.0769	±0.0101	0.1333	±0.0131	0.0803	±0.0101	0.0902	±0.0097	0.0763	±0.0103	0.0836	±0.0094	0.0712	±0.0108	0.0114	±0.0032

The genetic distances between species are shown down the diagonal, and those within species are shown in italic along the diagonal.

Fifty-eight ITS sequences of *S. baumii*, *S. sanghuang* and *S. vaninii* (Ljub.) L.W. Zhou & Y.C. Dai that are the most common species in medicinal studies and products (Zhou et al., 2020) were further retrieved from the dataset with 122 selected sequences. These 58 ITS sequences were realigned and the alignment is presented with shadows (Fig. 3). From this alignment, 10 potential diagnostic sequences with two to six nucleotide differences were identified for HRCA to discriminate species: two for *S. baumii*, two for *S. sanghuang* and six for *S. vaninii* (Fig. 3, Table 3).
Table 3
Diagnostic sequences adopted from Fig. 3 potential for discriminating species of Sanghuangporus baumii, S. sanghuang and S. vaninii using hyperbranched rolling circle amplification

Label in Fig. 3	Differentiated species	Diagnostic sequence	Position in the alignment of Fig. 3	Length of differences (nt)
A	S. sanghuang	AWYTY	41–45	5
B	S. vaninii	TCA	85–87	3
C	S. vaninii	CTG	143–145	3
D	S. baumii	CGGTAGGAA	159–167	4
E	S. vaninii	GAGCGG	221–226	6
F	S. vaninii	CCCCC	266–270	4
G	S. vaninii	AG	561–562	2
H	S. baumii	AGG	655–657	2
I	S. vaninii	ACG	669–671	2
J	S. sanghuang	TT	695–696	2

Discussion

In this study, we summarized all available ITS barcoding sequences of “Sanghuang” from GenBank. A total of 271 ITS sequences related to “Sanghuang” including 31 newly generated sequences for this study were analyzed. More than half of these sequences, or say 142, were mislabeled. So many errors undoubtfully raised chaos when BLAST search, especially for non-taxonomists.

Comparing with specimens, much more mislabeled sequences came from strains. Most of these sequences were submitted by non-taxonomists. One typical case is a recently published paper on genome sequencing of “Sanghuang” that meanwhile submitted six ITS sequences to GenBank (Shao et al. 2020). In GenBank, all these six sequences were labeled as Inonotus sp. rather than certain species of Sanghuangporus (MN242716–MN242721), while the six strains generating these sequences were named as Sanghuangporus sanghuang in the paper submitting these sequences (Shao et al., 2020). However, five of the six strains including that subject to genome sequencing are actually Sanghuangporus vaninii (Fig. 1, Zhou et al., 2020). That is to say, five out of six strains were wrongly identified to a species level. Therefore, this incorrected species identification makes the whole genome sequence of “Sanghuang” misapplied to an inappropriate species. Even worse, Shao et al. (2020) stated that these six strains are commercially cultivated, which further results in the name chaos for commercial products of “Sanghuang”. Another case is a paper specially on the species identity of “Sanghuang” strains (Han et al. 2016). Thirty strains deposited in the Agricultural Sciences Institute culture collection (Mushroom Research Division, Rural Development Administration, Republic of Korea) were correctly identified as Sanghuangporus vaninii and S. sanghuang according to an ITS-based phylogenetic analysis; however, unfortunately, most of
these ITS sequences were mislabeled when being submitted to GenBank.

Nine mislabeled sequences came from specimens. These errors were caused mainly by the update of taxonomic recognition. Six sequences of specimens originally labeled as Sanghuangporus sp. are accepted to represent S. quercicola (Table 1). In the paper submitting these six sequences, the specimens generating them were newly described as Sanghuangporus toxicodendri (Wu et al. 2019b). However, in that paper the separation of S. toxicodendri and S. quercicola was actually not supported from a phylogenetic perspective, and moreover, the morphological differences between these two species are not on the basis of stable characters (Wu et al. 2019b). In the current phylogenetic analyses, the six specimens of S. toxicodendri, three specimens of S. quercicola and additional four collections merged together in a fully supported clade (Additional file 1: Tree S1, Additional file 2: Tree S2, Fig. 2). Therefore, S. toxicodendri and S. quercicola are considered to be conspecific, and S. quercicola has priority over S. toxicodendri. Another mislabeled sequence was generated from a specimen originally described as Inonotus tenuicontextus L.W. Zhou & W.M. Qin (Zhou and Qin 2012). Although this species was online published earlier than Inonotus weigelae T. Hatt. & Sheng H. Wu, the basionym of Sanghuangporus weigelae (Wu et al. 2012a), its online date is before January 1st, 2012 and thus not effective. Soon, I. tenuicontextus was treated as a later synonym of I. weigelae (Tian et al. 2013). Therefore, this mislabeled sequence is accepted to represent S. weigelae (Table 1).

The independence of Sanghuangporus lonicericola was not well supported in the current phylogenetic analyses (Additional file 1: Tree S1, Additional file 2: Tree S2, Fig. 2). Similarly, Sanghuangporus alpinus and S. sanghuang were not strongly supported as monophyletic species by the ML algorithm (Fig. 2). However, the intraspecific difference of ITS sequences in each of the three species was quite low (0.10–0.49%, Table 2). So, we still accept S. alpinus, S. lonicericola and S. sanghuang as three independent species. Maybe a phylogenetic analysis employing more loci will improve the resolution. On the contrary, Sanghuangporus baumii, S. weirianus and S. zonatus are the only three species with more than 1.00% of intraspecific ITS differences (Table 2). However, these three species all received strong supports as independent lineages (Additional file 1: Tree S1, Additional file 2: Tree S2, Fig. 2). Noteworthily, Chinese collections of Sanghuangporus baumii formed three strongly supported subclades corresponding to geographic origins, viz. nine from Northeast China, two from Beijing and two from Shanxi; regarding S. zonatus, two collections of from Hainan, China grouped together with full statistical support, and then formed a fully supported clade with the collection from Yunnan, China (Table 1, Fig. 2). Moreover, branch lengths of the only two available collections of S. weirianus were extremely different (Fig. 2). A more comprehensive sampling of these three species in phylogenetic analyses will further clarify their intraspecific relationships. For now, we tentatively accept them as monophyletic species.

Although intact mature specimens of “Sanghuang” are not difficult to be morphologically identified to a species level in a short time, most of commercial products are chips and pieces or even powders. Normally, it is impossible to rapidly determine which species such kind of commercial products really represents. Like other medicinal mushrooms (Raja et al. 2017), species names of Sanghuangporus are sometimes misapplied to certain products of “Sanghuang” (Shao et al. 2020). This confused situation to some extent restricts the industrial development of “Sanghuang” (Zhou 2020). Therefore, to standardize the industry of “Sanghuang”, ten candidate sequences were provided for HRCA based on the accurate boundaries among three commonly studied and cultivated species, viz. Sanghuangporus baumii, S. sanghuang and S. vaninii (Lin et al. 2017; Zhou et al. 2020). HRCA is an isothermal amplification approach and thus provides a rapid, simple and low-cost detection of specific nucleic acid sequences (Nilsson et al. 1994; Lizardi et al. 1998). This approach has been widely used for clinic detection of human-pathogenic microfungi (Zhou et al. 2008; Trilles et al. 2014; Rodrigues et al. 2015), and recently, was also reported for rapid detection of poisonous macrofungi (He et al. 2019a, 2019b). Regarding lethal Amanita species, a more than two-nucleotide-long difference was evidenced to be valid for identification of α-amanitin gene (He et al. 2019a). Here, to provide more candidates, two and more nucleotide differences are given, because it was reported that this approach could reveal single nucleotide differences (Nilsson et al. 1997). Hopefully, certain candidates will work well in future experiments.
Generally, to promote medicinal studies and industrial development, the ITS barcoding region of *Sanghuangporus* is comprehensively analyzed for accurate species identification. Firstly, the names of all available ITS sequences in GenBank related to “Sanghuang” are carefully corrected. Secondly, the intraspecific ITS difference for each species of *Sanghuangporus* but *S. weirianus* is evaluated to be below 1.50%, while the interspecific ITS difference is always above 1.50%. This provides a practical cut-off value for BLAST search-based species identification. Finally, ten potential diagnostic sequences are provided for HRCA assay to rapidly discriminate three commonly studied and cultivated species, viz. *Sanghuangporus baumii*, *S. sanghuang* and *S. vaninii*.

Abbreviations

BI: Bayesian inference; BPP: Bayesian posterior probability; CTAB: cetyltrimethylammonium bromide; ML: Maximum likelihood; ITS: nuclear ribosomal internal transcribed spacer; PCR: polymerase chain reaction.

Declarations

Acknowledgements

Drs. Yan Yang and He-Nan Zhang (Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, China) are thanked for kindly providing cultivated strains for sequencing. Profs. Yu-Cheng Dai (Beijing Forestry University) and Hai-Sheng Yuan (Institute of Applied Ecology, Chinese Academy of Sciences) are thanked for kindly forwarding specimens and strains as loans for sequencing.

Adherence to national and international regulations

Not applicable.

Authors’ contributions

S-LL, SS and L-WZ retrieved and analyzed all data. J-HJ prepared fungal samples and performed molecular sequencing. L-WZ conceived the work and wrote the manuscript. All authors approved the manuscript.

Funding

The research was financed by the National Natural Science Foundation of China (No. 31970012), Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2017240), and Biological Resources Programme, Chinese Academy of Sciences (KFJ-BRP-017-12).

Availability of data and materials

The materials are available as Additional files 1 and 2. All sequence data generated for this study can be accessed via GenBank: https://www.ncbi.nlm.nih.gov/genbank/. Alignments are available at TreeBase (ID: 26272).

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests
Author details

1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, 2 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China, 3 University of Chinese Academy of Sciences, Beijing, China

Supplementary Information

Additional file 1: Tree S1. The phylogenetic tree inferred from 269 ITS sequences. The topology was generated from the maximum likelihood algorithm and bootstrap values are presented at the nodes.

Additional file 2: Tree S2. The phylogenetic tree inferred from 269 ITS sequences. The topology was generated from the Bayesian inference algorithm and Bayesian posterior probabilities are presented at the nodes.

References

1. Cai C, Ma J, Han C, Jin Y, Zhao G, He X (2019) Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci Rep 9:7418. https://doi.org/10.1038/s41598-019-43886-0
2. Cao Y, Wu SH, Dai YC (2012) Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers 56:49–62. https://doi.org/10.1007/s13225-012-0178-5
3. 10.1016/j.phytol.2018.04.022 Chepkirui C, Cheng T, Matasyoh J, Decock C, Stadler M (2018) An unprecedented spiro [Furan-2,1’-indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp. (Hymenochaetaeaceae, Basidiomycota) collected in Kenya. Phytochem Lett 25:141–146. https://doi.org/10.1016/j.phytol.2018.04.022
4. Cheng T, Chepkirui C, Decock C, Matasyoh J, Stadler M (2019) Sesquiterpenes from an eastern African medicinal mushroom belonging to the genus Sanghuangporus. J Nat Prod 82:1283–1291. https://doi.org/10.1021/acs.jnatprod.8b01086
5. Dai YC, Zhou LW, Hattori T, Cao Y, Stalpers JA, Ryvarden L et al (2017) Ganoderma lingzhi (Polyporales, Basidiomycota): the scientific binomial for the widely cultivated medicinal fungus Lingzhi. Mycol Prog 16:1051–1055. https://doi.org/10.1007/s11557-017-1347-4
6. Edler D, Klein J, Antonelli A, Silvestro D (2019) raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv. https://doi.org/10.1101/800912
7. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes: application to identification of mycorrhizal and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
8. Ghobad-Nejhad M (2015) Collections on Lonicera in Northwest Iran represent an undescribed species in the Inonotus linteus complex (Hymenochaetales). Mycol Prog 14:90. https://doi.org/10.1007/s11557-015-1100-9
9. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520
10. Han JG, Hyun MW, Kim CS, Jo JW, Cho JH, Lee KH et al (2016) Species identity of Phellinus linteus (sanghuang) extensively used as a medicinal mushroom in Korea. J Microbiol 54:290–295. https://doi.org/10.1007/s12275-016-5520-2
11. He Z, Luo T, Fan F, Zhang P, Chen Z (2019a) Universal identification of lethal amanitas by using Hyperbranched rolling circle amplification based on α-amanitin gene sequences. Food Chem 298:125031. https://doi.org/10.1016/j.foodchem.2019.125031
12. He Z, Su Y, Li S, Long P, Zhang P, Chen Z (2019b) Development and evaluation of isothermal amplification methods for rapid detection of lethal Amanita species. Front Microbiol 10:1523.
13. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511-518. https://doi.org/10.1093/nar/gki198
14. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772-780. https://doi.org/10.1093/molbev/mst010
15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547-1549. https://doi.org/10.1093/molbev/msy096
16. Lin WC, Deng JS, Huang SS, Wu SH, Lin HY, Huang GJ (2017) Evaluation of antioxidant, anti-inflammatory and anti-proliferative activities of ethanol extracts from different varieties of Sanghuang species. RSC Adv 7:7780-7788. https://doi.org/10.1039/c6ra27198g
17. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225-232. https://doi.org/10.1038/898
18. Nilsson M, Krejci K, Koch J, Kwiatkowski M, Gustavsson P, Lane
deg U (1997) Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet 16:252-255. https://doi.org/10.1038/ng0797-252
19. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Lane
deg U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085-2088. https://doi.org/10.1126/science.7522346
20. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17:337-354. https://doi.org/10.1089/cmb.2009.0179
21. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253-1256. https://doi.org/10.1093/molbev/msn083
22. Raja HA, Baker TR, Little JG, Oberlies NH (2017) DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification? Food Chem 214:383-392. https://doi.org/10.1016/j.foodchem.2016.07.052
23. 10.2307/25065702 Redhead SA, Ginns J (2006) (1738) Proposal to conserve the name Poria cocos against Daedalea extensa (Basidiomycota). Taxon 55:1027-1028. https://doi.org/10.2307/25065702
24. Rodrigues AM, Najafzadeh MJ, de Hoog GS, Camargo ZP (2015) Rapid identification of emerging human-pathogenic Sporothrix species with rolling circle amplification. Front Microbiol 6:1385. https://doi.org/10.3389/fmicb.2015.01385
25. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029
26. Shao Y, Guo H, Zhang J, Liu H, Wang K, Zuo S et al (2020) The genome of the medicinal macrofungus Sanghuang provides insights into the synthesis of diverse secondary metabolites. Front Microbiol 10:3035. https://doi.org/10.3389/fmicb.2019.03035
27. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
28. Stecher G, Tamura K, Kumar S (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 37:1237–1239. https://doi.org/10.1093/molbev/msz312
29. Tian XM, Yu HY, Zhou LW, Decock C, Vlasák J, Dai YC (2013) Phylogeny and taxonomy of the Inonotus linteus complex. Fungal Divers 58:159–169. https://doi.org/10.1007/s13225-012-0202-9
30. Tomšovský M (2015) Sanghuangporus pilatii, a new combination, revealed as European relative of Asian medicinal fungi. Phytotaxa 239:82–88. https://doi.org/10.11646/phytotaxa.239.1.8
31. Trilles L, Wang B, Firacative C, Lazéra MS, Wanke B, Meyer W (2014) Identification of the major molecular types of Cryptococcus neoformans and C. gattii by Hyperbranched rolling circle amplification. PLoS ONE 9:e94648. https://doi.org/10.1371/journal.pone.0094648
32. Wang XC, Xi RJ, Li Y, Wang DM, Yao YJ (2012) The species identify of the widely cultivated Ganoderma, ‘G. lucidum’ (Ling-zhi), in China. PLoS ONE 7:e40857. https://doi.org/10.1371/journal.pone.0040857
33. White TJ, Bruns TD, Lee SB, Taylor JW (1990) “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) ” PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp 315–322
34. Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019a) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous. Fungal Divers 98:1–76. https://doi.org/10.1007/s13225-019-00432-7
35. Wu SH, Chang CC, Wei CL, Jiang GZ, Cui BK (2019b) Sanghuangporus toxicodendri sp. nov. (Hymenochaetales, Basidiomycota) from China MycoKeys 57:101–111. https://doi.org/10.3897/mycokeys.57.36376
36. Wu SH, Dai YC, Hattori T, Yu TW, Wang DM, Parmasto E et al (2012a) Species clarification for the medicinally valuable ‘sanghuang’ mushroom. Bot Stud 53:135-149
37. Wu SH, Kirk PM, Redhead SA, Stalpers JA, Dai YC, Norvell LL et al (2012b) Resolution of the nomenclature for niu-chang-chih (Taiwanofungus camphoratus), an important medicinal polypore. Taxon 61:1305-1310. https://doi.org/10.1002/tax.616011
38. 10.1002/tax.616015
Wu SH, Yao YJ, Wang XC, Kirk PM, Redhead SA, Stalpers JA et al (2012c) (2101) Proposal to conserve the name Ganoderma camphoratum (Taiwanofungus camphoratus) (Polyporales) with a conserved type. Taxon 61:1321-1322. https://doi.org/10.1002/tax.616015
39. Yao YJ, Li Y, Du Z, Wang K, Wang XC, Kirk PM et al (2020) On the typification of Ganoderma sichuanense (Agaricomycetes)-the widely cultivated Lingzhi medicinal mushroom. Int J Med Mushrooms 22:45-54. https://doi.org/10.1615/IntJMedMushrooms.2019033189
40. Yao YJ, Wang XC, Wang B (2013) Epitypification of Ganoderma sichuanense J.D. Zhao & X.Q. Zhang (Ganodermataceae) Taxon 62:1025–1031. https://doi.org/10.12705/625.10
41. Zhou LW (2020) Systematics is crucial for the traditional Chinese medicinal studies and industry of macrofungi. Fungal Biol Rev 34:10-12. https://doi.org/10.1016/j.fbr.2019.10.002
42. Zhou LW, Ghabad-Nejhad M, Tian XM, Wang YF, Wu F (2020) Current status of ‘Sanghuang’ as a group of medicinal mushrooms and their perspective in industry development. Food Rev Int. https://doi.org/10.1080/87559129.2020.1740245
43. 10.1007/s11557-011-0792-8
Zhou LW, Qin WM (2012) Inonotus tenuicontextus sp. nov. (Hymenochaetaeaceae) from Guizhou, southwest China with a preliminary discussion on the phylogeny of its kin. Mycol Prog 11:791-798. https://doi.org/10.1007/s11557-011-0792-8
44. 10.1007/s13225-015-0335-8
Zhou LW, Vlasák J, Decock C, Assefa A, Stenlid J, Abate D et al (2016) Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et sp. nov., and 17 new combinations. Fungal Divers 77:335–347. https://doi.org/10.1007/s13225-015-0335-8
45. 10.1128/JCM.00420-08
Zhou X, Kong F, Sorrell TC, Wang H, Duan Y, Chen SC (2008) Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling-circle amplification. J Clin Microbiol 46:2423–2427. https://doi.org/10.1128/JCM.00420-08
46. Zhu L, Song J, Zhou JL, Si J, Cui BK (2019) Species diversity, phylogeny, divergence time, and biogeography of the genus Sanghuangporus (Basidiomycota). Front Microbiol 10:812. https://doi.org/10.3389/fmicb.2019.00812
The phylogenetic tree inferred from 269 ITS sequences. The topology was generated from the maximum likelihood algorithm. The tips in blue color represent name-mislabeled specimens, while those in red color represent name-mislabeled strains.
Figure 2

The phylogenetic tree inferred from ITS sequences submitted by taxonomists. The topology was generated from the maximum likelihood algorithm, and bootstrap values and Bayesian posterior probabilities simultaneously above 50% and 0.8, respectively, are presented at the nodes.
Figure 3

The alignment of Sanghuangporus baumii, S. sanghuang and S. vaninii generated from ITS sequences submitted by taxonomists. Ten potential diagnostic sequences for hyperbranched rolling circle amplification are labeled in capital letters.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile1TreeS1.tre
- Additionalfile2TreeS2.tre