TQCAsim: An Accurate Design and Essential Simulation Tool for Ternary Logic Quantum-Dot Cellular Automata

Alireza Navidi*, Reza Sabbaghi-Nadooshan*b,c, Massoud Dousti*a

* Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
b Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
c School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract—Having a reliable simulation tool for evaluating the performance of each design is indispensable. Designing multiple-valued logic (MVL) systems help to overcome the limitations existing in binary systems. Quantum-dot cellular automata (QCA) is a technology that can be substituted for CMOS in MVL designs. This paper represents an exquisite software platform for designing and simulating circuits that are restricted to three-valued logic (Ternary) quantum-dot cellular automata (QCA). Working with TQCAsim is so convenient because it can run on both Windows or Linux-based computers. It has a tenacious simulation engine that can warranty precise results. This tool shows the results in graphical formats. As well, designers can easily layout their ternary QCA designs by using various sets of CAD tools. In this paper, the ternary model of QCA and its energy calculation will be demonstrated. The simulation Process will be explained step by step. MIN, MAX, NOT, and XOR gates had been simulated already by this software.

Keywords—Quantum-Dot Cellular Automata (QCA); Ternary logic; TQCAsim; TQCA; Simulator.

1. INTRODUCTION

The quantum-dot cellular automata (QCA) is one of the new developing technologies, which is a suitable candidate for CMOS replacement in the future [1, 2]. Logic circuit designers had been proposed their designs over the past two decades [3, 4]. QCA cells (semiconductor and metallic) have been fabricated and examined. The fabrication of molecular QCA was a remarkable achievement for developers because it can operate at room temperature [5, 6]. Plenty of creative designs has been proposed and published in the field of binary QCA logic [7-13] and ternary [14-17].

Compacting data in fewer bits will be achieved by modeling systems in multiple-valued logic (MVL). Much amount of data can be transferred in MVL systems compared with binary ones [18]. MVL designs can provide faster numerical analysis and arithmetic operations but, designing and simulating these types of systems is not so easy and needs its CAD tools [19].

Every innovative concept needs a particular way of determining its functionality. The ternary QCA had lacked simulation tools. This work represents a tool that is capable of simulating complex ternary QCA circuits. In this paper, the functionality of the software would be clarified step by step. TQCAsim uses a fast simulation engine that makes the computation performed in a fraction of time. In other published work, only the ternary QCA circuits have been proposed without explaining the software structure [20-22]. In section 2, the ternary QCA basics will be considered. Section 3 highlights the main functions of the simulator. In section 4, a benchmark has been brought for evaluating TQCAsim’s performance. Section 5 describes incoming plans that would make TQCAsim more thrive. At last, section 6 is allotted to the conclusion.

2. TERNARY QCA BASICS

The QCA is a flourishing technology that can carry out computations by Coulombic interaction, while CMOS is dependent on the electrical current [23, 24]. A QCA cell is a square nanostructure with some quantum wells confining free electrons [25]. A certain number of quantum-dots have been embedded in each cell so that the mobile pair of electrons can tunnel between them. The number of these quantum-dots in binary QCA (BQCA) is four, whereas in TQCA is eight.

According to the Coulombic law, the two electrons will not be distributed in precarious situations among the quantum-dots. i.e., they reside the furthest away from each other [25]. Fig. 1 shows different modes of electrons positioning in a TQCA cell.
A, B, C, D are stable modes (electrons are located at a far distance to each other due to the Coulomb repulsion effect), and the X modes are unstable.

TQCA has polarization states that can be related to the logic values. But there is a discrepancy between the number of polarization states in TQCA and the number of ternary logic values. There are four stable polarization states for TQCA cells (A, B, C, and D), which are equivalent to logic values -1, +1, 0, and 0, respectively (balanced ternary). So, there are two possible states (C and D) with an identic value (0). Fig. 2 exhibits all four possible configurations of a TQCA cell.

The similarity between binary QCA (BQCA) and TQCA is that state A and B in ternary mode is the same in binary. Also, the analogy between them in the clock issue is explicit. All four phases of the clock (switch, hold, release, and relax) in TQCA are the same in BQCA. These clocks are being used to push information from inputs to the outputs by modifying the cells’ tunneling energy. The whole circuit is segmented into zones. Each zone is associated with one of the four clocks in sequence [26].

2. 1 Utilized TQCA Cell

As it mentioned in section 1, QCA implementation has already divided into four categories: metal [27], semiconductor [28], molecular [29, 30] and magnetic [31]. The other advantage of molecular QCA rather than working at room temperature is that it can be fabricated at minute dimensions. Therefore, TQCAsim is based on this type of QCA implementation. Fig. 3 shows the utilized TQCA cells in this work. However, TQCAsim can scale the cell’s dimensions.

2. 2 Energy Calculation

TQCAsim is based on calculating external electrostatic energy between each neighbor cell. It computes the distance between the electron’s positions in adjacent cells. It is quite noticeable that two QCA cells could be adjacent in horizontal, vertical, or even diagonal directions. Fig. 4 shows the distances between electrons of two adjacent cells if both of them remain at the ‘B’ polarization state, i.e., it was assumed that both of the input (left one) and the output (right one) cells had +1 (+45) value.

Each cell affects beside cells by the mean of external electrostatic energy. This energy can be attained from Eq. 1,

\[
E_{\text{external}} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{q_i q_j}{d_{ij}}
\]

(1)

where \(\varepsilon_0\) and \(\varepsilon_r\) are vacuum and substance relative permittivity coefficients, respectively. The \(q_i\) and the \(q_j\) are the charges of dots in the cell, and \(d_{ij}\) is the distance between the two. The external electrostatic energy calculation between the electrons of two adjacent cells in Fig. 4 is as follows:

\[E_0 = E_{m-a} = 2.005e-20J\]

\[E_1 = E_{m-b} = 2.005e-20J\]

\[E_2 = E_{m-b} = 1.492e-20J\]

\[E_3 = E_{m-c} = 2.646e-20J\]

The ultimate energy quantity would be obtained by subtracting the summation of similar names energies from the dissimilar names’ energies. Eq. 3 demonstrates the conclusive energy quantity for Fig. 4.

\[E = (E_0 + E_1) - (E_2 + E_3) = 0.128e-20J\]

(3)

All the other possible states with their final energy quantities are shown in Fig. 5. The correct output’s state is the one with the minimum energy value among different states due to the final energy results in Fig. 5. E.g., if the input value is +1 (+45), the output value will be +1 (+45). Further investigations on diverse states with their energy calculation had been documented [20].

3. SIMULATION SETUP

This project has been written in C# under Microsoft Visual Studio. The GUI interface of TQCAsim was developed using Windows Forms. Linux users may also use this tool by installing the Windows application runtime (EXE) like Wine and .NET Framework runtime libraries. TQCAsim uses the .NET library to generate graphical models. The objective of this project is to create an easy using simulating and layout tool. The latest version of the software can be found at [32].

Innovative TQCA designs have been documented as proof-of-concept experiments [20-22]. The other authors have been proposed ternary architectures by using TQCAsim and had confirmed the correct operation of our CAD tool [33, 34].

Fig. 6 illustrates the flowchart of the program in a general schema. In the following, the functionality of each section has been explained.
3. 1 Modeling Scheme

A 16 × 32 cell matrix is considered to design logic circuits in the current version of the software layout’s environment. A TQCA circuit may consist of four different types of cells:

- Input/Output Cell
- Cell with fixed polarity
- Intermediate cell
- Interface Cell

Each type of cell is shown with a distinct color in the layout’s environment, i.e., the color of each one depends on the cell’s type.

At first, the kind of each cell must be determined by the user. The simulator employs the relevant icon for each cell due to its type. Then, the appropriate clocks should be assigned. The software would be entered in a simulating phase by pressing the simulation key. It will consider all different possible values for inputs and will display the truth-table.

3. 2 Simulation Process

The polarity of the intermediate and output cells will be specified according to the energy calculations among cells at the simulation stage. The sequence of the simulation steps is listed below.

- Calculating the number of input/output cells and saving their coordinates in an array of global type
- The circuit’s outputs should be computed and displayed in the truth-table with all possible combinations of inputs. Therefore, the number of input and output cells is counted and stored in a global type variable at the first step of the simulation.
- Entering into the initializing loop of the input cells

At this point, three values of ternary (0, -1, +1) would be replaced for each input cell. Subsequently, the output would be calculated for them. E.g., for a circuit with two input cells, the simulator will calculate the output cells for nine different combinations.

- Determining the priority of intermediate cells based on their positions and clock’s phases

One of the most important steps is to determine the order of fixed-polarity cells’ effect. As it was mentioned, the polarity of the middle cells is affected by the cells with fixed polarity under the Coulomb interaction force. This effect is inversely related to the distance between them, i.e., the longer the distance between the cells yields lower the effect on each other. Therefore, the simulator considers the number of fixed-polarity cells around the surrounded cell with their distance from each other. The coordinates of the surrounding cell with its clock’s phase are given as inputs to the calculator function. So, a number between 0 up to 280 will be produced as a distribution priority output. Cells with fixed polarity adjacent to the target cell with one neighborhood interspace have the highest priority as rank 5. Cells with fixed polarity adjacent to the target cell with two neighborhood interspaces have a lower priority at the second-ranking as rank 4. Priority determination will be calculated up to five neighborhood interspaces for each cell. Fig. 7 shows the priority values for one and two neighborhood interspaces. So, the maximum calculated priority for each cell is 280. 40+64+72+64+40 = 280

According to the QCA’s clock principle, only cells with the same phase or -90 degrees shifted phase affect their neighbors. Therefore, the priority would be determined separately for cells with diverse clocks. The point is that cells’ polarization with the same precedence will simultaneously be determined. As an example, Fig. 8 shows the calculated priority for a typical circuit. In this circuit, the highest priority is allotted to cell C. Cells A and B have lower priorities.

- Specifying the intermediate cell’s polarity according to its predefined priority

The next step is to specify the polarity for intermediate cells due to their priority from the highest one down to the lowest one. Cell C is the first cell that its polarity would be specified in Fig. 8. Then, the polarity of cells A and B individually and without considering the effect of each other would be. The polarity of cells D, E, and F are at further steps. Polarity will be assigned to the cells according to the energy calculation, which has been discussed in section 2.

3. 3 Results Display

The truth table of the circuit will be plotted right after the calculation hierarchy ends. Fig. 9 shows a sample circuit with its truth table. This software verifies the outputs for all possible input combinations. Fig. 10 shows a snapshot of the TQCA sim while displaying the result. As can be seen, the tool displays the inputs and outputs by four different clock signals. TQCA sim's team has been tried to bring a user interface similar to the QCADesigner [35]. So that designers who had previously worked on the binary field feel comfortable working with this software.

4. PERFORMANCE BENCHMARK

In this section, a benchmark has been brought for evaluating TQCA sim's performance. We have tested this software on two different systems. System 1 has an obsolete CPU and operating system. On the other hand, System 2 has an advanced CPU and an up-to-date operating system. In this benchmark, three primary ternary gates (NOT, AND, /OR, Majority) were simulated 10 times in a row at a specified run-time. Fig. 11 shows these gates’ schematic. Table 1 comprises the benchmark results.
The TQCAsim needs only 10.8 MB of free space on a drive. As can be seen from Table 1, TQCAsim consumes a very low CPU, even in an obsolete system. The amount of memory used is small enough.

5. FUTURE WORK

Our QCA-team is constantly striving to offer comprehensive software for TQCA-systems designers. For this purpose, we redesign the simulating-process and user interface for a faster and better startup in each version that seems necessary. The ability to customize layout size would have been in the next versions. Additionally, the ability to add more cell's structures is under consideration. These features will allow users to simulate more intricate designs. We are trying to bring an improved tool for TQCA enthusiasts in every version of this software.

6. CONCLUSION

Every innovative concept needs a particular way to determine its functionality. TQCAsim is an accurate CAD tool that has been designed exclusively for ternary QCA logic designs and simulations. This tool has the ability to layout and verifies any TQCA systems. The simulation results are shown in graphical formats. Although TQCAsim is currently in its infancy, great strides are being made to enhance its usability and functionality in every version of this tool.

ACKNOWLEDGMENT

We are grateful for all the work Milad Khani and Mohammad Amin Mianroodi had done for this tool.

REFERENCES

[1] Arulkarthick, V.J. Rathinaswamy, A. and Srihari, K. “Design of BCD adder with five input majority gate for QCA”, Journal of Microprocessors and Microsystems, 75, (2020).
[2] Cesar, T. F. Vieira, L. F.M. Vieira, M. A.M. et al. “Cellular automata-based byte error correction in QCA”, Nano Communication Networks, 23, (2020).
[3] Lent, C. S. Tougaw, P. D. Porod, W. et al. “Quantum cellular automata”, Nanotechnology, 4(1), pp. 49–57 (1993).
[4] Lent, C. S. and Tougaw, P. D. “A device architecture for computing with quantum dots”, in Proc. IEEE, 85(4), pp. 541-547 (1997).
[5] Lent, C. S. Isaksen, B. and Lieberman, M. “Molecular quantum-dot cellular automata”, Journal of American Chemical Society, 125, pp. 1056–1063 (2003).
[6] Lu, Y. and Lent, C. S. “Theoretical study of molecular quantum-dot cellular automata”, Journal of Computational Electronics, 4(1), pp. 115-118 (2005).
[7] Ahmed, S. and Naz, S. F. “Design of Cost Efficient Modular Digital QCA Circuits using Optimized XOR Gate”, in IEEE Transactions on Circuits and Systems II: Express Briefs, doi: 10.1109/TCSII.2020.3030180.
[8] Kianpour, M. and Sabbaghi-Nadooshan, R. “A Novel Quantum-Dot Cellular Automata X -bit ×32 -bit SRAM”, IEEE Trans. Very Large Scale Integration (VLSI) Systems, 24(3), pp. 827-836 (2016).
[9] Kianpour, M. and Sabbaghi-Nadooshan, R. “A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata”, Journal of Microprocessors and Microsystems, 38(8), pp. 1046-1062 (2014).
[10] Kianpour, M. and Sabbaghi-Nadooshan, R. “A novel QCA implementation of MUX-based universal shift register”, Journal of Computational Electronics, 13(1), pp. 198-210 (2014).
[11] Kianpour, M. and Sabbaghi-Nadooshan, R. “A novel design of 8-bit adder/subtractor by quantum-dot cellular automata”, Journal of Computer and System Sciences, 80(7), pp. 1404-1414 (2014).
[12] Babaee, S. Sadoghifar, A. and Bahar, A. N. “Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA)”, in IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), pp. 963-967 (2019).
[13] Wang, L. and Xie, G. “A Novel XOR/XNOR Structure for Modular Design of QCA Circuits”, in IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), pp. 3327-3331 (2020).
[14] Bajec, I. L. Zimic, N. and Mraz, M. “The ternary quantum-dot cell and ternary logic”, Nanotechnology, 17(8), pp. 1937–1942 (2006).
[15] Pecar, P. Mraz, Z. M. et al. “Solving the ternary QCA logic gate problem by means of adiabatic switching”, Journal of Applied Physics, 47(6), pp. 5000–5006 (2008).
[16] Tehrani, M. A. Bahrami, S. and Navi, K. “A novel ternary quantum-dot cell for solving majority voter gate problem”, Applied Nanoscience, 4(3), pp. 255–262 (2013).
[17] Arjmand, M. M. Soryani, M. and Navi, K. “Coplanar wire crossing in quantum cellular automata using a ternary cell”, IET Circuits, Devices & Systems, 7(5), pp. 263-272 (2013).
[18] Shahrom, E. and Hosseini, S. A. “A new low power multiplexer based ternary multiplier using CNTFETs”, AEU - International Journal of Electronics and Communications, 93, pp. 191-207 (2018).
[19] Daraei, A. and Hosseini, S. A. “Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics”, AEU - International Journal of Electronics and Communications, 105, pp. 145-162 (2019).
[20] Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Innovative model for ternary QCA gates”, IET Circuits, Devices & Systems, 12(2), pp. 189–195 (2018).
[21] Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model”, Computers & Electrical Engineering, 71, pp. 43–59 (2018).
[22] Mohaghegh, SM. Sabbaghi-Nadooshan, R. and Mohammadi, M. “Design of a ternary QCA multiplier and multiplexer: a model-based approach”, Analog Integr Circ Sig Proc, 101, pp. 23–29 (2019).
[23] Almatrood, A. F. and Singh, H. “Design of Generalized Pipeline Cellular Array in Quantum-Dot Cellular Automata”, IEEE Computer Architecture Letters, 17(1), pp. 29-32 (2018).
[24] Abedi, D. and Jaberipour, G. “Decimal Full Adders Specially Designed for Quantum-Dot Cellular Automata”, IEEE Trans. Circuits and Systems II: Express Briefs, 65(1), pp. 106-110 (2018).
Orlov, A. O. Amlani, I. Bernstein, G. H. et al. “Realization of a functional cell for quantum-dot cellular automata”, Science, 277(5328), pp. 928-930 (1997).

Lent, C. S. and Isaksen, B. “Clocked molecular quantum-dot cellular automata”, IEEE Transactions on Electron Devices, 50(9), pp. 1890-1896 (2003).

Amlani, I. Orlov, A. O. Kummamuru, R. K. et al. “Experimental demonstration of a leadless quantum-dot cellular automata cell”, Appl. Phys. Lett., 77(5), pp. 738-740 (2000).

Das, K. De, D. and De, M. “Realisation of leadless quantum-dot cellular automata”, IET Micro Nano Lett., 8(5), pp. 738-740 (2010).

Alam, M. T. Siddiq, M. J. Bernstein, G. H. et al. “On-Chip Clocking for Nanomagnet Logic Devices”, IEEE Trans. Nanotechnology, 9(3), pp. 348-351 (2010).

http://www.qcasim.com

Pain, P. Sadhu, A. Das, K. et al. “Physical Proof and Simulation of Ternary Logic Gate in Ternary Quantum Dot Cellular Automata”, Computational Advancement in Communication Circuits and Systems, Lecture Notes in Electrical Engineering, 575, pp. 375-385 (2020).

Bhoi, B. K. Misra, N. K. Dash, I. et al. “A Redundant Adder Architecture in Ternary Quantum-Dot Cellular Automata”, Smart Intelligent Computing and Applications, 159, pp. 375-384 (2020).

Walus, K. Dysart, T. J. Jullien, G. A. et al. “QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata”, IEEE Trans. Nanotechnology, 3(1), pp. 26-31 (2004).

LIST OF CAPTIONS

Fig. 1 Different modes of electrons positioning in a TQCA cell.
Fig. 2 Four possible configurations of a TQCA cell.
Fig. 3 Utilized TQCA cells.
Fig. 4 Distance between electrons of two adjacent cells at the ‘B’ polarization state.
Fig. 5 Energy calculation for two adjacent cells.
Fig. 6 General flowchart of the simulator.
Fig. 7 Priority values for a) one, b) two neighborhood interspaces.
Fig. 8 Calculating priority.
Fig. 9 A sample circuit with its truth table.
Fig. 10 Simulation result of the sample circuit.
Fig. 11 Primary ternary gates.
Table 1 Benchmark results.
Fig. 3. Utilized TQCA cells

Fig. 4. Distance between electrons of two adjacent cells at the ‘B’ polarization state

Fig. 5. Energy calculation for two adjacent cells

Input cell’s value = +45°

Output cell’s value	$E_{t}(d)$	Output cell’s value	
$-45°$	0.596×10^{-20}	$+45°$	0.128×10^{-20}
$0°$	0.563×10^{-20}	$90°$	0.274×10^{-20}
Fig. 6. General flowchart of the simulator

Fig. 7. Priority values for a) one, b) two neighborhood interspaces

A = (5+5+4+3) = 17
B = (5+5+4+3) = 17
C = (5+5+4+4) = 18
D = (4+4+4+4) = 16
E = (4+4+3+3) = 14
F = (3+3+2+2) = 10

Fig. 8. Calculating priority
Fig. 9. A sample circuit with its truth table

Fig. 10. Simulation result of the sample circuit

Fig. 11. Primary ternary gates

NOT OR AND Majority
Table 1
Benchmark results.

	CPU Threads	Avg CPU %	Memory Private (KB)	Run-time (Sec)
System 1	6	3.22	40904	60
Processor:				
Intel® Core™2 DUO T8300 @ 2.4GHz	7	3.13	42628	105
Installed Memory:	4.00 GB			
Operating System:	Windows 7			
System 2	4	0.6	40432	60
Processor:				
Intel® Core™ i7-9750H @ 2.6GHz	5	0.28	41480	105
Installed Memory:	32.00 GB			
Operating System:	Windows 10			

1) Threads: number of active threads
2) Avg: average percent of CPU consumption by the process (60 seconds)
3) Private: the amount of physical memory in use by the process that cannot be used by other processes in KB

BIOGRAPHY

Alireza Navidi was born in Tehran, Iran, in 1992. He received the B.S. degree in electrical and electronic engineering from the University of Science and Culture, Tehran, Iran, in 2015, and the M.Sc. degree in electrical and electronic engineering (with honors) from Islamic Azad University Central Tehran Branch, Tehran, Iran, in 2017. He is currently pursuing a Ph.D. degree, focusing on digital integrated circuits, logic gates, field-programmable gate array, quantum-dot cellular automata-based Nano-systems design, and quantum computing at the Islamic Azad University Science and Research Branch, Tehran, Iran.

Reza Sabbaghi-Nadooshan received the B.S. and M.S. degrees from the University of Science and Technology, Tehran, Iran, in 1991 and 1994, respectively, and the Ph.D. degree from Science and Research Branch, Islamic Azad University, Tehran, in 2010, all in electrical engineering. He has been a Faculty Member with the Department of Electronics, Islamic Azad University Central Tehran Branch, Tehran, since 1998. His current research interests include networks-on-chip, quantum-dot cellular automata, and Nano-computing.

Massoud Dousti received B.S. in Electrical Engineering from Orléans University, Orléans, France, and M.S. degrees in Electronics (Microwave and Optics) from Limoges University, Limoges, France, in 1991 and 1994 and Ph.D. in Electronics (Active Microwave Circuits) from University of Paris VI, Pierre et Marie Curie, in 1999 respectively. He served as a teaching assistant in the Department of Electrical Engineering at Ensea, Cergy Pontoise, France, from 1998 to 2000. In 2001 he joined the Department of Electrical and Computer Engineering of Science and Research Branch, Islamic Azad University, Tehran, IRAN, where he is now an Associate Professor. He is the author of eight books in the field of electronics and translated seven books from English to Farsi in the field of high-frequency, RF MEMS, and MMIC. He is the author and co-author of more than 105 published international journal and conference papers. His research interests are linear and non-linear RF/microwave/millimeter-wave circuits and systems design, high-frequency electronics (passive and active devices), RF MEMS, and MMIC technology.