Pilot study on the microbial contamination of conventional vs. silver-impregnated uniforms worn by ambulance personnel during one week of emergency medical service

Abstract

The antimicrobial impregnation of products used everyday, such as surfaces, textiles and clothing – including those used in hospitals – is increasing. In view of potential toxic and environmental risks for users and patients, a careful risk-benefit assessment must be conducted for each newly developed product impregnated or coated with antimicrobial agents, prior to marketing and manufacture.

It has been proposed that incorporation of silver threads into the clothing of emergency service workers could reduce microbial contamination over time. As clothing in the emergency services is often not adequately changed, and it is plausible that microbial contamination increases with time in use, a study was conducted in the emergency medical setting in order to test this hypothesis. We compared the contamination rates of newly developed silver-hybrid clothing with that of standard textile clothing. Samples were taken from jackets and pants of 10 emergency workers at day 0 (pre-service), day 3 and day 7 after use over a divided 4-week period to examine this hypothesis. No significant difference in the extent of microbial contamination was detected between these two materials. A larger sample size is required to further verify this result.

Keywords: silver textile, environmental contamination, antibacterial impregnation, emergency rescue service

Introduction

The incorporation of antimicrobials into everyday products, such as the coating or impregnation of surfaces in refrigerators and food-storage containers to prevent mold infestation or bacterial decay, the antibacterial impregnation of sport socks to avoid odor, or weaving silver threads into textiles as a supportive treatment of atopic dermatitis [1], is increasing. Similarly, antimicrobial impregnation of surfaces, textiles, and clothing in the hospital is increasingly advertised as being able to prevent infection through their antibacterial properties. Using antimicrobial compounds, however, is not only associated with the potential antimicrobial effect, but is also associated with potential risks, such as selection of microorganisms, environmental issues, and potential toxicological and allergic side effects. Therefore, a careful risk-benefit assessment for every product, including assessment of the users’ practical needs for antimicrobial impregnation or coating, is required, just as it is routinely performed for example for Class III medical devices [2]. A positive example for a beneficial antimicrobial medical device is the impregnation of surgical sutures with triclosan, the effectiveness of which has been demonstrated in not only in-vitro and animal studies, but in clinical use by measurable reduction in the rate of surgical site infection [3], [4].

The German Federal Institute for Risk Assessment (Bundesinstitut für Risikobewertung, BfR) has published the following recommendation for the use of nano-silver antimicrobial finishing: “The BfR recommends that manufacturers should not use nano-scale silver or nano-scale silver compounds in food and everyday products until adequate data is available, allowing a final health risk assessment to be performed, thus ensuring the safety of products. In order to adequately complete a scientific risk assessment, a study on the effects of silver cation and nano-silver material on antimicrobial resistance is urgently needed” [5].

Regardless of the potential health risk and the risk of developing bacterial resistance, the use of biocides should generally be avoided, especially if the same effect can be achieved using common hygienic or non-antimicrobial based measures [6]. This principle is important because biocides specifically for use in textiles may have side effects through direct body contact, such as sensitization with induction of allergies, change in the microbiology of the skin, development of resistance with possible cross-resistance to antibiotics, toxic long-term risks, and the development of eco-toxicological effects over time due to absent or poor biodegradability [3], [6].
risk of microbial resistance development is of particular importance – a slow steady release of small amounts of silver ions may cause bacterial resistance. A transferable resistance to copper ions also used as an impregnated antimicrobial and cross-resistance to antibiotics has already been shown [6], [7]. A serious hazard has also been observed with the use of impregnated antimicrobial products, when the user disregards the usual proven measures of hygiene, such as washing textiles or cleaning surfaces, due to the ‘antimicrobial’ nature of the product. A general principle applies in the use of biocides for antimicrobial impregnation: because of their antimicrobial efficacy, all biocides must undergo a risk-benefit analysis in terms of potential toxic effects on humans and the environment. The benefits of impregnation for the intended indication should be weighed against the potential risks [6]. This is valid not only for the consumer sector, but more importantly in the antimicrobial impregnation of medical devices as well as furniture and equipment in hospitals. The trust of staff in the antimicrobial properties of these products can lead to neglect in the primary prevention of nosocomial infections, that is, not conscientiously performing the multi-barrier strategies and concerted use of measures to prevent infection, such as personal hygiene practices. This is dangerous in light of the unproven efficacy of some antimicrobial materials for infection prophylaxis.

The example of impregnation of doorknobs with nanocrystalline oligodynamically acting metal ions illustrates the possible consequences of providing false security awareness. The ability of the impregnated doorknob to prevent infection is not documented, and the microbicidal action is largely unknown. Although there is a decrease of the number of microbes by the oligodynamic effect of released silver or copper ions on the surface, the significant effectiveness depends on the particular bacterial species, the present humidity, and the time of action. A significant microbicidal effect is occasionally exhibited at 3 hours, but typically takes between 6 and 9 hours. For doorknobs, clearly the time required to kill microbes is too long. For other products, time may play a different role, if, for instance, the contact times are far longer. This is the case for nano-silver impregnated vascular catheter material, as pathogens were no longer detected after 12 hours [7]. In sharp contrast to antimicrobial impregnation, decontamination of a doorknob is easily and immediately achievable through surface disinfection. If door handles are routinely disinfected, for example, twice a day with an alcohol-impregnated wipe, there is no doubt this will achieve a higher level of safety compared to decontamination through surface impregnation. Even more effective than disinfection, however, is non-contamination of surfaces such as doorknobs. Not the impregnated doorknob, the impregnated bed or even the impregnated hand basin will protect patients or staff from pathogens of nosocomial infections, but rather hand disinfection before each patient contact. This is the best evidence-based measure of infection prevention, which is supported by disinfection of the new patient’s surfaces, correct preparation of beds and medical devices, the rational use of antibiotics, compliance with hygiene standards in the daily routine of nurses and doctors, including the monitoring of pathogen spread through screening and surveillance. In other words, not the antimicrobial impregnation of surfaces in hospital is essential but the quality management of hygiene to protect patients from hospital infections. The antimicrobial nano-technological impregnation of frequently used surfaces in hospitals is not only unnecessary in some indications and associated with high costs, but is also potentially dangerous. Besides the risks listed above, there are other reasons against antimicrobial coating or impregnation:

- In case of protein impurities, the efficacy of silver and copper ions is completely negated [8].
- Used on surfaces subject to mechanical stress, a reduction of the effective surface by abrasive removal of nano-particles is expected, i.e., the effect will literally wear off.
- It is unclear whether nano-particles are released into the air through abrasion of the surfaces, a possibility which much be viewed critically in terms of toxicology. As long as this risk cannot be excluded, antimicrobial impregnation with nano-particles should be opposed for toxicological reasons.

In a nationwide analysis of health status in the emergency services in Germany [9], it was found that almost 10% of the staff of the sample in North Rhine-Westphalia changed their jacket only annually. In addition, 10% of the staff received only one or two personal work outfits (trousers, shirt, sweater, etc.), and only 75% of the ambulance stations had a general policy regarding the change of uniforms. Of these ambulance stations, 91% require daily change, and 80% request a change of clothing after contamination [9]. Based on these data, we decided to perform a study to determine the number of pathogens on these emergency workers’ uniforms. Five employees of the ambulance and patient transport company HKS Greifswald were asked to wear their uniforms for 5 d in service. Before the first shift and after the end of each working day, a sample from each of them was taken from the outside of the trousers’ left thigh and the polo shirt in the area of the breast pocket using Rodac blood agar plate (Rodac: Replicate organisms detecting and counting; heipha Dr. Müller GmbH, Eppelheim). These samples were subsequently incubated for 48 h and identified. For this study, the plates were placed obliquely and pressed for about 3 s to the respective surface. After 1 day, the pathogen load of trousers and shirt increased significantly and reached its maximum after 2 days (Figure 1). Chiefly, representatives of the physiological skin flora (coagulase-negative staphylococci, M. luteus) were found, as well as S. aureus, Streptococcus spp. and ubiquitous spores which were not further differentiated. Based on this, we strongly recommend that the uniforms should be changed at least every two days (Figure 1).
Instead of changing conventional uniforms every two days, an option would be wearing clothing incorporating silver threads, where a longer changing interval could potentially be considered. To compare these clothing types with respect to hygiene, an exploratory study was developed.

Methods

During the period from 11/01/2010 to 08/02/2010, the contamination of conventional ambulance service clothes (Güstrower Konfektions GmBH, Güstrow) was compared with that of SEE IT SAFE® Clothing (Niemoller and Abel, Gütersloh, Germany) in a cross-over study design.

Ten employees of an ambulance and patient transport company were selected to wear this clothing in daily service. In the first and third week, the conventional clothing was worn, with the staff wearing the SEE IT SAFE® clothing in the second and fourth weeks. The clothing was always worn by the same staff members. Before the start of the study and at the beginning of the week, the clothes were washed by the laundry of HKS with the same washing procedure. Afterwards, the clothing was sealed in plastic foil to prevent recontamination.

Before each first shift (pre-test value), and after completion of the third and seventh working day, contact samples were taken from each worker with Rodac blood-agar plate (size: 23 cm²) and incubated for 48 h at 37 °C (98.6 °F). The grown colonies were then counted and identified. The samples in each case were taken from the bottom of the right sleeve and the right and left front of the jacket as well as from the right thigh of the trousers, i.e., 4 samples per employee per day. The samples were taken after an interval of 1 hour after removal of the uniforms. The number of colony forming units (CFU) found on the jackets was averaged for each day, separated into weekly results for the two weeks and then summarized. During the 4 weeks of this study, the average number of rescue operations done in one week only differed marginally. The average number of rescue operations of these 10 employees per day is summarized in Table 1.

clothing item	1st part	2nd part
conventional	13.73	12.23
silver textile	14.44	12.65

Results

The first part of the study (weeks 1 and 2) showed that the concentration of the bacteria on the SEE IT SAFE®
Clothing was higher than on the conventional clothing, especially after the third working day (Figure 2, Figure 3). Between the 3rd and 7th day, the CFU count was clearly reduced on the SEE IT SAFE® jacket and trousers, while...
the CFU count increased on the conventional trousers. The number of CFU on the conventional jacket did not differ after 3 d and 7 d (Figure 2, Figure 3). An example of a sample of the SEE IT SAFE® jacket after 3 days of wear is shown in Figure 4.

Figure 4: Contact culture on Rodac blood-agar from a SEE IT SAFE® jacket after 3 days of wear

The second part of the study (weeks 3 and 4) showed results similar to those of the first part with respect to the jackets, i.e., a significant increase in the number of CFU at the 3rd day, again with a larger number of CFU seen in SEE IT SAFE® jackets, but this time with a gradually increasing CFU until the 7th day (Figure 5). Concerning the trousers, the course differs from the first part of the study. After 3 days, as in the first part, there was a significantly increased number of CFU in both conventional and SEE IT SAFE® trousers, but this time, a less pronounced difference in the SEE IT SAFE® clothing was observed. After 7 days, there was no difference between the two materials (Figure 5, Figure 6).

Overall, after concluding both parts of the study, it was shown that the number of CFU on the SEE IT SAFE® jackets, with the exception of day 0, was 3.8 times higher on day 3 and 2.3 times higher on the 7th day compared to conventional clothing (Figure 7). Concerning SEE IT SAFE® trousers, the number of CFU at days 0 and 7 was lower than on conventional clothing. However, after 3 days, the number of CFU on SEE IT SAFE® trousers was nearly twice that on conventional clothing (Figure 8). The contamination of the sampling sites on the conventional clothing at days 3 and 7 was found to be significantly lower (p<0.001 and p<0.001, respectively) than on the silver textile (Table 2). In contrast, there was no difference found in the contamination of the sample sites on the trousers (Table 2).

Discussion

Considering only the investigated endpoints of the study after 7 days of wearing both types of textiles, the contamination of the SEE IT SAFE® jackets was higher. While this difference was considerable for jackets, there was no difference in trousers. The reason for this difference is unknown. The phenomenon, that over the course of 1 week the number of microorganisms on the trousers decreases again after an initial increase has been previously shown [9]. Since the sampling point on the trousers was twice as contaminated as the jacket (average of all values, Figure 7, Figure 8), it might be possible that the effect of silver is only shown at a higher contamination level. Although for jackets the microbial counts were higher and there was no difference for trousers, fundamentally, there was no hygienic advantage to SEE IT SAFE® clothing. Yet, the obtained results are not entirely surprising. In the analysis of atopic dermatitis patients wearing silver undergarments, we found a reduction of *S. aureus* of only 0.5 log, and determined a total colony count reduction of 0.4 log during the time of wearing. It should be noted that because of skin transpiration – in contrast to the relatively dry outside of the uniforms (winter without snow) – a better development of the effect of released silver ions is expected. After 2 days of wearing the placebo textile, the inside yielded 385.6±63.5 CFU and 236.5±49.9 CFU *S. aureus*, and 279.9±78.7 CFU and 119.3±39.4 CFU *S. aureus* were detectable on the silver textile. By daily washing at 60 °C with conventional laundry detergent, contamination in both cases was almost completely eliminated [1]. When interpreting the results, it is important to note that the sample size of this study was not representative for a final assessment. Therefore, increasing the sample size should be considered for further evaluations.
Figure 5: Average number of CFU on the jackets in the second part (n=15/d/kind of clothing) of the study

Figure 6: Average number of CFU on the trousers in the second part (n=5/d/kind of clothing) of the study
Figure 7: Average number of CFU on the jackets in the whole study (n=30/d/kind of clothing)

Figure 8: Average number of CFU on the trousers in the whole study (n=10/d/kind of clothing)
Table 2: Results of the significance testing at conclusion of both parts of the study (Mann-Whitney U-test (2-sided))

Clothing item	Wearing time	Conventional clothing	See it SAFE® clothing	p								
	N	AV	SD	Min	Max	N	AV	SD	Min	Max		
Jacket	Day 0	20	15.8	16.7	0.3	61.7	20	20.8	31.4	2.7	146.7	0.542
	Day 3	19	60.1	41.6	27.0	202.0	15	193.8	108.1	58.7	422.3	<0.001
	Day 7	20	73.2	99.7	25.0	485.0	19	162.5	67.4	83.7	344.3	<0.002
Trousers	Day 0	20	40.5	115.9	0.0	511.0	20	3.3	2.4	0.0	8.0	0.613
	Day 3	17	219.2	224.6	22.0	867.0	16	429.4	550.3	63.0	2138.0	0.127
	Day 7	20	237.1	370.0	30.0	1618.0	19	173.7	72.4	74.0	352.0	0.111

References

1. Daeschlein G, Assadian O, Arnold A, Haase H, Kramer A, Jünger M. Bacterial burden of worn therapeutic silver textiles for neurodermitis patients and evaluation of efficacy of washing. Skin Pharmacol Physiol. 2010;23(2):86-90. DOI: 10.1159/000265679

2. Kramer A, Kremer J, Assadian O, Schneider I, Dähne H, Schwemmer J, Müller G, Siegmund W, Jäkel C. The classification of antiseptic products to be administered to wounds – another borderline case between medicinal products and medical devices? Int J Clin Pharmacol Ther. 2006;44(12): 677-92.

3. Kramer A, Schauer F, Assadian O, Heldt P, Tricozan, In: Kramer A, Assadian O, editors. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung. Stuttgart: Thieme; 2008. p. 760-7.

4. Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, Brown KR, Towne JB. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg. 2006;203(4):481-9. DOI: 10.1016/j.jamcollsurg.2006.06.026

5. Bundesinstitut für Risikobewertung. BfR rät von Nanosilber in Lebensmitteln und Produkten des täglichen Bedarfs ab. Stellungnahme Nr. 024/2010 des BfR vom 28. Dezember 2009. Berlin: BfR 2009. Available from: http://www.bfr.bund.de/cm/216/bfr_raet_von_nanosilber_in_lebensmitteln_undprodukten_des_taelglichen_bedarfs_ab.pdf

6. Kramer A, Guggenbichler P, Heldt P, Jünger M, Ludwig A, Thierbach H, Weber U, Daeschlein G. Hygienic relevance and risk assessment of antimicrobial-impregnated textiles. Curr Probl Dermatol. 2006;33:78-109. DOI: 10.1159/000093938

7. Guggenbichler JP, Kramer A, Reichwagen S. Metalle und Metallverbindingen. In: Kramer A, Assadian O, editors. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung. Stuttgart: Thieme; 2008. p. 841-52.

8. Müller G, Kramer A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother. 2008;61(6):1281-7. DOI: 10.1093/jac/dkn125

9. Groß R. Analyse des Hygienestatus und des Personalschutzes im deutschen Rettungsdienst und Krankentransport (Dissertation). Greifswald: Universität; 2010.

Corresponding author:
Raoul Groß
Institute of Hygiene and Environmental Medicine, Ernst Moritz Arndt University, Walther-Rathenau-Str. 49 a, 17489 Greifswald, Germany
raoul.gross@google.mail.com

Please cite as
Groß R, Hübner N, Assadian O, Jibson B, Kramer A: Working Section for Clinical Antiseptic of the German Society for Hospital Hygiene. Pilot study on the microbial contamination of conventional vs. silver-impregnated uniforms worn by ambulance personnel during one week of emergency medical service. GMS Krankenhaushyg Interdisziplinär 2010;5(2):Doc09.

This article is freely available from http://www.gms.de/en/journals/dgkh/2010-5/dgkh000152.shtml

Published: 2010-09-21

Copyright ©2010 Groß et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.
Pilotstudie zur mikrobiellen Kontamination herkömmlicher und mit Silberfäden durchwirkter Rettungsdienstbekleidung während einwöchigen Tragens im Krankentransport

Zusammenfassung

Die antimikrobielle Imprägnierung von Gegenständen des täglichen Bedarfs sowie von Oberflächen, Textilien und Berufskleidung im Krankenhaus ist im Anwachsen begriffen. In Anbetracht der damit verbundenen Risiken ist für jede Produktgruppe eine sorgfältige Nutzen-Risikobewertung einschließlich der anwendungsbezogenen Notwendigkeit der antimikrobiellen Imprägnierung zu verlangen.

Unter dem Gesichtspunkt, dass Dienstbekleidung im Rettungsdienst häufig zu selten gewechselt wird und mit zunehmender Tragedauer die Kontamination ansteigt, wurde der Verlauf der mikrobiellen Kontamination auf Jacke und Hose der Dienstbekleidung bei 10 Mitarbeitern im Deutschen Rettungsdienst dargestellt. Dabei wurde Bekleidung, in die Silberfäden für Krankenhaus-hygiene eingewebt waren, in einem cross-over-design vor dem ersten Dienst sowie nach 3 d und 7 d Tragens mit herkömmlichem Textil verglichen. Zwischen beiden Materialien ließ sich kein signifikanter Unterschied im Ausmaß der Kontamination feststellen. Zur weiteren Absicherung des Ergebnisses ist die Erhöhung des Stichprobenumfangs erforderlich.

Schlüsselwörter: Silbertextilien, Umgebungskontamination, antimikrobielle Imprägnierung, Krankentransport, Rettungsdienst

Einleitung

Die antimikrobielle Ausrüstung von Gegenständen des täglichen Bedarfs, z.B. die Beschichtung von Oberflächen in Kühlräumen, von Behältnissen zur Aufbewahrung von Lebensmitteln mit dem Ziel der Vorbeugung von Schimmelviktbefall, zur Imprägnierung von Sportsocken zur Vermeidung der Geruchsbildung oder durch Einweben von Silberfäden in Textilien zur unterstützenden Behandlung der atopic Dermatitis [1] ist im Anwachsen begriffen. Gleiches betrifft die Imprägnierung von Oberflächen, Textilien und Berufskleidung im Krankenhaus, die unter dem Gesichtspunkt der Infektionsprävention bewerben wird. In Hinblick auf die damit verbundenen Risiken ist für jede Produktgruppe eine sorgfältige Nutzen-Risikobewertung einschließlich der Überprüfung der anwendungsbezogenen Notwendigkeit der Imprägnierung unerlässlich, wie es z.B. für Medizinprodukte der Klasse III stattfindet [2]. Ein positives Beispiel hierfür ist die Imprägnierung von chirurgischem Nahtmaterial mit Triclosan, für das die Effektivität sowohl in vitro und tierexperimentell als auch bei klinischem Einsatz anhand der Reduzierung der Rate postoperativer Wundinfektionen nachgewiesen wurde [3], [4].

Das Bundesinstitut für Risikobewertung (BfR) hat für den Einsatz von Nanosilber zur antimikrobiellen Ausrüstung folgende Empfehlung veröffentlicht. „Das BfR empfiehlt Herstellern, auf die Verwendung von nanoskaligem Silber oder nanoskaligen Silberverbindungen in Lebensmitteln und Produkten des täglichen Bedarfs zu verzichten, bis die Datenlage eine abschließende gesundheitliche Risikobewertung zulässt und die gesundheitliche Unbedenklichkeit von Produkten sichergestellt werden kann. Ergänzend wird darauf hingewiesen, dass bezüglich der Resistenzausbreitung bei Anwendung von Silberkationen und Nanosilbermaterialien angesichts der lückenhaften Datenlage für eine wissenschaftliche Risikobewertung dringender Forschungsbedarf besteht“ [5].

Unabhängig vom potentiellen Gesundheitsrisiko und dem Risiko der bakteriellen Resistenzentwicklung sollte nach unserer Auffassung nicht nur in Bezug auf Silberkationen und Nanosilbermaterialien angesichts der lückenhaften Datenlage für eine wissenschaftliche Risikobewertung dringender Forschungsbedarf besteht*

* [5].
verzichtet werden, wenn die Wirkung mit üblichen hygienischen Maßnahmen ohne Einsatz antimikrobieller Wirkstoffe erzielt werden kann [6]. Dieser Grundsatz ist bedeutungsvoll, weil Biozide speziell beim Einsatz in Textilien durch den direkten Körperkontakt Nebenwirkungen wie Sensibilisierung mit Auslösung von Allergien, Veränderung der Mikroökologie der Haut, Resistenzentwicklung ggf. mit Kreuzresistenz zu Antibiotika, toxische Langzeitrisiken und im Fall fehlender oder schlechter biologischer Abbaubarkeit kumulative ökotoxische Auswirkungen entfalten können [3], [6]. Das Risiko der Resistenzentwicklung ist besonders zu beachten, da eine langsame stetige Freisetzung geringer Mengen von Silberionen zur Ausbildung bakterieller Resistenzen führen kann. Bei Kupferionen sind übertragbare Resistenzentwicklungen mit Kreuzresistenz gegenüber Antibiotika nachgewiesen [6], [7]. Hinzu kommt als ein weiterer gravierender Nachteil, dass die Anwender im Vertrauen auf die antimikrobielle Wirkung der imprägnierten Materialien die üblichen und wirksamen Maßnahmen der Hygiene wie das Waschen von Textilien oder die Reinigung von Oberflächen vernachlässigen.

Generell gilt folgender Grundsatz beim Einsatz von Bioziden zur antimikrobiellen Imprägnierung: Jedes Biozid muss aufgrund seiner antimikrobiellen Wirksamkeit einer Risikoanalyse in Bezug auf Nebenwirkungen für Mensch und Umwelt unterzogen werden. Gleichmaß muss der Nutzen der Imprägnierung für den vorgesehenen Anwendungsbereich gegen mögliche Risiken abgewogen werden [6]. Das gilt nicht nur für den Consumerbereich, sondern noch mehr für die Imprägnierung von Medizinprodukten sowie von Mobiliar und Ausstattung im Krankenhausbereich, weil das Vertrauen auf die antimikrobielle Wirkung dazu verleiten kann, die Primärprävention von Krankenhausbefall, die aufgrund von Multibakterienstrategie, d.h. des aufeinander abgestimmten Einsatzes infektabwehrender Maßnahmen, zu vernachlässigen und sich statt dessen vom Einsatz antimikrobiell ausgerüsteter Materialien einen bisher nicht nachgewiesenen Präventionserfolg zu erhoffen.

Das Beispiel der Imprägnierung von Türklinken mit nanokristallinen oligodynamisch wirksamen Metallen sollen die möglichen Folgen falschen Sicherheitsempfindens verdeutlichen. Die infektabwehrende Wirkung derartig behandelter Türklinken ist nicht belegt und ist auf Grund der Wirkungsweise auch nicht zu erwarten. Der Grund hierfür ist, dass zwar eine Keimzahlinnung infektabwehrende Maßnahmen, zu vernachlässigen und sich statt dessen vom Einsatz antimikrobiell ausgerüsteter Materialien einen bisher nicht nachgewiesenen Präventionserfolg zu erhoffen. In einer deutschsprachigen Analyse des Hygienestatus im Rettungsdienst und Krankentransport [9] ergab sich in Bezug auf Dienstkleidung, dass knapp 10% der Personals der Stichprobe in Nordrhein-Westfalen die Jacke nur jährlich wechselten. Ebenfalls 10% des Personals bekannten nur ein oder zwei Monturen (Hose, Hemd, Pullover) zur Verfügung gestellt und nur in ¾ der Wachen existierte eine Dienstanweisung zum regelmäßigen Wechsel der Dienstkleidung, d.h. die Wirkung wird allmählich nachlassen. Bisher ungeklärt ist, ob mit zunehmender Nutzungsduer durch Abrieb von den Oberflächen Nanopartikel in die Raumluft freigesetzt werden, was toxikologisch höchst kritisch zu beurteilen wäre. Solange dieses Risiko nicht ausgeschlossen ist, kann die antimikrobielle Imprägnierung mit Nanopartikeln aus toxikologischen Gründen nicht befürwortet werden; andernfalls ist eine vergleichbare Situation wie nach dem Bekanntwerden der Risiken durch Asbestfaserfreisetzung nicht auszuschließen.

In Deutschland wurden die Übertemperaturen als Ursache für die Zunahme der Krankheiten und die daraus resultierenden Kosten diskutiert [8]. Der Anteil der Übertemperaturen an der Gesamtdauer der Krankenhausbehandlungen liegt bei 10–20%. Die Übertemperaturen können die Infektionsrate erhöhen, da sie die Wachstumsgeschwindigkeit von Bakterien und Viren beschleunigen [9]. Um die Infektionsrate zu reduzieren, wurden verschiedene Maßnahmen ergriffen, wie regelmäßige Desinfektion der Türklinken, das imprägnierte Bett oder gar die imprägnierte Sanitäranlage. Die Wirkung von antimikrobiellen Imprägnierungen wird durch die primäre Desinfektion der Türklinken und Oberflächen verbessert, da sie die Kontamination sofort eliminiert. Werden Türklinken routinemäßig präventiv z.B. 2×/d einer Wischdesinfektion unterzogen, wird zweifellos eine höhere Sicherheit als durch Oberflächenimprägnierung erreicht. Nicht die imprägnierte Türklinke, das imprägnierte Bett oder gar die imprägnierte Sanitäranlage schützen vor Erregern nosokomialer Infektionen, sondern der Händedesinfektionspflichtigkeitsmäßigkeit vor jedem Patientenkontakt steht im Mittelpunkt der Infektiionsprävention. Das wird unterstützt durch die patientennahe Flächendesinfektion, die korrekte Aufbereitung von Bettten und Medizinprodukten, den rationalen Antibiotikaressssatz, die Einhaltung der Hygienestandards bei allen pflegerischen und ärztlichen Maßnahmen einschließlich der Überwachung der Erregerausbreitung durch Screening und Surveillance. Mit anderen Worten, das Qualitätsmanagement der Hygiene ist für den Schutz des Patienten vor Krankenhausinfektionen entscheidend und nicht die antimikrobielle Ausrüstung von Oberflächen im Krankenhaus.

Die antimikrobielle Imprägnierung häufig kontaktierter Krankenhausoberflächen mittels Nanotechnologie ist nicht nur entbehrlich und mit unnötigen Kosten verbunden, sondern zusätzlich zu den oben aufgeführten Risiken aus weiteren Gründen kritisch einzuschätzen:

- Bei Anwesenheit von Eiweißverunreinigungen wird die Wirksamkeit von Silber- und Kupferionen komplett aufgehoben [8].
- Bei Einsatz auf mechanisch beanspruchten Oberflächen muss mit einer Verringerung der wirksamen Oberfläche der Nanopartikel durch Abrieb gerechnet werden, d.h. die Wirkung wird allmählich nachlassen.
- Bisher ungeklärt ist, ob mit zunehmender Nutzungsduer durch Abrieb von den Oberflächen Nanopartikel in die Raumluft freigesetzt werden, was toxikologisch höchst kritisch zu beurteilen wäre. Solange dieses Risiko nicht ausgeschlossen ist, kann die antimikrobielle Imprägnierung mit Nanopartikeln aus toxikologischen Gründen nicht befürwortet werden; andernfalls ist eine vergleichbare Situation wie nach dem Bekanntwerden der Risiken durch Asbestfaserfreisetzung nicht auszuschließen.
Abbildung 1: Kontamination (Mittelwert Koloniebildender Einheiten bei 5 Teilnehmern) der Dienstkleidung innerhalb von 4 d Tragens im Rettungsdienst

Polohemd im Bereich der Brusttasche Kontaktproben mittels Rodac-Blutagar-Platte (Replicate organisms detecting and counting; heipha Dr. Müller GmbH, Eppelheim) entnommen, 48 h bebrütet und differenziert. Zur Kontaktuntersuchung wurden die Platten schräg aufgesetzt und für ca. 3 s auf die jeweilige Fläche aufgedrückt. Bereits nach 1 d erhöhte sich die Erregerbeladung von Hose und Hemd deutlich und erreichte nach 2 d ihr Maximum (Abbildung 1). Es wurden überwiegend Vertreter der physiologischen Hautflora (Koagulase-negative Staphylokokken, M. luteus), ferner S. aureus, Streptococcus spp. und ubiquitär vorkommende Sporenbildner gefunden, die nicht weiter differenziert wurden. Aus diesem Ergebnis wurde abgeleitet, dass die Möglichkeit des mindestens 2-tägigen Wechsels der Dienstkleidung gegeben sein muss.

Da statt eines zweitägigen Wechsels konventioneller Dienstbekleidung alternativ ggf. mit Silberfäden durchwebte Rettungsbekleidung mit längerem Wechselintervall in Betracht kommt, sollte hierzu eine orientierende Untersuchung durchgeführt werden.

Methode

Im Zeitraum vom 11.01.2010–08.02.2010 wurde die Kontamination herkömmlicher Rettungsdienstkleidung (Güstrower Konfektions GmbH, Güstrow) mit der von SEE IT SAFE®-Rettungsbekleidung (Niemöller u. Abel, Gütersloh) in Form einer Cross-Over-Studie verglichen. Es wurden 10 Mitarbeiter eines Rettungsdienst- und Krankentransportunternehmens ausgewählt, die jeweilige Bekleidung im täglichen Dienst zu tragen. In der 1. und 3. Woche wurde herkömmliche, in der 2. und 4. Woche SEE IT SAFE®-Bekleidung stets von denselben Mitarbeitern getragen. An dem Ende der Woche einschließlich zum Beginn der Studie wurden die Kleidungsstücke von der Wäscherei des Unternehmens jeweils dem gleichen Waschverfahren unterzogen. Die Bekleidung wurde anschließend zu Verhinderung einer Rekontamination in Folie eingeschweißt.

Vor dem jeweils ersten Dienst (Nullwert), nach Beendigung des dritten und des siebten Arbeitstages wurden Kontaktproben mit Rodac-Blutagar-Platten (Größe: 23 cm²) entnommen, für 48 h bei 37°C inkubiert und die gewachsenen Kolonien gezählt und differenziert. Als Orte der Probenentnahme wurden jeweils die Unterseite des rechten Ärmels und die rechte und linke Vorderseite der Rettungsdienstjacke sowie der Bereich des rechten Oberschenkels der Hose gewählt, d.h. 4 Proben/Mitarbeiter. Die Proben wurden grundsätzlich nach einem Intervall von 1 h nach dem Ablegen der Dienstkleidung entnommen.

Die Anzahl der Kolonie bildenden Einheiten (KbE) wurde für den jeweiligen Tag für die Jacken gemittelt, anfangs für die beiden Wochen getrennt analysiert und im An-
schluss als Mittelwert beider Wochen zusammengefasst. Die durchschnittliche Anzahl der pro Woche durchgeführten Transporte unterschied sich innerhalb der 4 Wochen zwischen den beiden Gruppen nur wenig (Tabelle 1).

Textilart	1. Durchgang	2. Durchgang
konventionell	13,7	12,2
Silbertextil	14,4	12,7

Ergebnisse

Der erste Studiendurchgang (Woche 1 und 2) ergab, dass die Erregerkonzentration auf der SEE IT SAFE®-Bekleidung vor allem nach dem 3. Arbeitstag höher als auf der herkömmlichen Bekleidung ausfiel (Abbildung 2, Abbildung 3). Während sich die KbE-Anzahl bei SEE IT SAFE®-Bekleidung bei Jacke und Hose vom 3. zum 7. Tag deutlich verringerte, kam es bei der normalen Dienstbekleidung auf der Hose nach 3 d und 7 d nicht unterschiedlich (Abbildung 2, Abbildung 3). Exemplarisch soll ein Foto die KbE-Belastung auf einer Jacke aus SEE IT SAFE®-Material nach 3-tägigem Tragen verdeutlichen (Abbildung 4).

Im zweiten Studiendurchgang (Woche 3 und 4) zeigte sich bei den Jacken ein ähnliches Bild wie im ersten Studiendurchgang, d.h. deutlicher Anstieg der KbE am 3. Tag, wieder stärker ausgeprägt bei SEE IT SAFE®, dieses Mal allerdings mit weiterem Anstieg bis zum 7. Tag (Abbildung 5). Auf der Hose unterschied sich der Verlauf vom ersten Studiendurchgang. Nach 3 d war zwar wie im ersten Durchgang eine deutliche Zuname der KbE feststellbar, aber dieses Mal geringer ausgeprägt bei der SEE IT SAFE®-Bekleidung. Nach 7 d gab es keinen Unterschied zwischen beiden Materialien (Abbildung 5, Abbildung 6). Bei Zusammenfassung beider Studiendurchgänge zeigte sich, dass Anzahl der KbE auf den Jacken des SEE IT SAFE®-Textils mit Ausnahme von Tag 0 am Ende von Tag 3 durchschnittlich 3,8-fach und nach 7 d durchschnittlich 2,3-fach höher als auf der herkömmlichen Dienstbekleidung war (Abbildung 7). Auf den Hosen war die Anzahl der KbE auf dem SEE IT SAFE®-Textil am Tag 0 und Tag 7 geringer als auf der herkömmlichen Dienstbekleidung. Nach 3 d war die Anzahl der KbE jedoch auf dem SEE IT SAFE®-Textil fast doppelt so hoch wie auf der herkömmlichen Dienstbekleidung (Abbildung 8).

Im Ergebnis der Signifikanztestung war die Kontamination der Probenahmestellen auf den Jacken des herkömmlichen Textils am 3. und am 7. Tag nachsignifikant niedriger (p<0,001 bzw. p<0,001) als auf dem silbergewirkten Textil (Tabelle 2). Dagegen unterschied sich die Kontamination nicht auf der Probenahmestelle der Hose (Tabelle 2).

Diskussion

Betrachtet man nur den gewählten Endpunkt der Untersuchung nach 7-tägigem Tragen beider Textilarten, ergibt sich eine höhere Kontamination auf den SEE IT SAFE®-Jacken. Das trifft jedoch nicht auf die Hose zu (kein Unterschied). Die Ursache hierfür bleibt offen. Da die Probenahmestelle auf der Hose etwa doppelt so hoch kontaminiert war wie die auf der Jacke (Mittel aller Werte, Abbildung 7, Abbildung 8), könnte es möglich sein, dass die Silberwirkung erst bei höherer Kontamination zur Auswirkung kommt. Als Fazit ergibt sich für das SEE IT SAFE®-Textil kein hygienischer Vorteil.

Das Phänomen, dass die Erregerzahl auf der Hose im Laufe einer Woche nach anfänglichen Anstieg wieder abnimmt, zeigte sich bereits bei den im Einleitungsteil aufgeführten Befunden. Bei der Interpretation der Ergebnisse ist zu berücksichtigen, dass die Stichprobengröße nicht repräsentativ für eine endgültige Bewertung ist. Aus dem Grund ist es als erforderlich anzusehen, zur weiteren Absicherung den Stichprobenumfang deutlich zu erhöhen. Andererseits ist das Ergebnis nicht vollkommen überraschend. So konnten wir bei der Untersuchung silberimprägnierter Unterwäsche bei Patienten mit Neurodermitis während des Trageprozesses auf der Haut eine Verminderung von S. aureus nur um 0,5 log und der Gesamtkoloniezahl um 0,4 log ermitteln. Hierbei ist zu berücksichtigen, dass durch die Transpiration der Haut im Unterschied zur vergleichsweise trockenen Außenseite der Dienstkleidung (Winter ohne Schneefall) eine bessere Wirkungsentfaltung freigesetzter Silberionen zu erwarten ist. Nach 2-tägigem Tragen der Unterwäsche waren auf der Innenseite auf dem Placebotextil 385,6±63,5 KbE und 236,5±49,9 KbE S. aureus und auf dem Silbertextil 279,9±78,7 KbE und 119,3±39,4 KbE S. aureus nachweisbar. Durch tägliches Waschen bei 60°C mit üblichem Waschpulver war die Kontamination in beiden Fällen nahezu komplett eliminierbar [1].
Abbildung 2: Gemittelte Anzahl der KbE auf der Jacke im 1. Durchgang (n=15/d/Textilart)

Abbildung 3: Gemittelte Anzahl der KbE auf der Hose im 1. Durchgang (n=5/d/Textilart)
Abbildung 5: Gemittelte Anzahl der KbE auf der Jacke im 2. Durchgang (n=15/d/Textilart)

Abbildung 6: Gemittelte Anzahl der KbE auf der Hose im 2. Durchgang (n=5/d/Textilart)
Abbildung 7: Gemittelte Anzahl der KbE auf den gesamten Jacken (n=30/d/Textilart)

Abbildung 8: Gemittelte Anzahl der KbE auf den gesamten Hosen (n=10/d/Textilart)
Tabelle 2: Ergebnisse der Signifikanztestung bei Zusammenfassung beider Tragedurchgänge (Mann-Whitney U-Test (2-seitig))

Textilart	Tragedauer	Konventionelles Textil	Silbertextil	p												
	N	MW	SD	Min	Max	N	MW	SD	Min	Max						
Jacke						20	15,8	16,7	0,3	61,7	20	20,8	31,4	2,7	146,7	0,542
	Tag 3	19	60,1	41,6	27,0	202,0	15	193,8	108,1	58,7	422,3	<0,001				
	Tag 7	20	73,2	99,7	25,0	485,0	19	162,5	67,4	83,7	344,3	<0,002				
Hose						20	40,5	115,9	0,0	511,0	20	3,3	2,4	0,0	8,0	0,613
	Tag 3	17	219,2	224,6	22,0	867,0	16	429,4	550,3	63,0	2,138,0	0,127				
	Tag 7	20	237,1	370,0	30,0	1,618,0	19	173,7	72,4	74,0	352,0	0,111				

Literatur

1. Daeschlein G, Assadian O, Arnold A, Haase H, Kramer A, Jünger M. Bacterial burden of worn therapeutic silver textiles for neurodermitis patients and evaluation of efficacy of washing. Skin Pharmacol Physiol. 2010;23(2):86-90. DOI: 10.1159/000265679
2. Kramer A, Kremer J, Assadian O, Schneider I, Dähne H, Schwemmer J, Müller G, Siegmund W, Jäkel C. The classification of antiseptic products to be administered to wounds – another borderline case between medicinal products and medical devices? Int J Clin Pharmacol Ther. 2006;44(12): 677-92.
3. Kramer A, Schauer F, Assadian O, Heldt P. Triclosan. In: Kramer A, Assadian O, editors. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung. Stuttgart: Thieme; 2008. p. 760-7.
4. Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, Brown KR, Towne JB. Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg. 2006;203(4):481-9. DOI: 10.1016/j.jamcollsurg.2006.06.026
5. Bundesinstitut für Risikobewertung. BfR rät von Nanosilber in Lebensmitteln und Produkten des täglichen Bedarfs ab. Stellungnahme Nr. 024/2010 des BfR vom 28. Dezember 2009. Berlin: BfR; 2009. Available from: http://www.bfr.bund.de/cm/216/bfr_raet_von_nanosilber_in_lebensmitteln_undprodukten_des_taeuglichen_bedarfs_ab.pdf
6. Kramer A, Guggenbichler P, Heldt P, Jünger M, Ludwig A, Thiernbach H, Weber U, Daeschlein G. Hygienic relevance and risk assessment of antimicrobial-impregnated textiles. Curr Probl Dermatol. 2006;33:78-109. DOI: 10.1053/jac.dkn125
7. Guggenbichler JP, Kramer A, Reichswagen S. Metalle und Metallverbindungen. In: Kramer A, Assadian O, editors. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung. Stuttgart: Thieme; 2008. p. 841-52.
8. Müller G, Kramer A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother. 2006;61(6):1281-7. DOI: 10.1093/jac/dkn125
9. Groß R. Analyse des Hygienestatus und des Personalschutzes im deutschen Rettungsdienst und Krankentransport [Dissertation]. Greifswald: Universität; 2010.

Korrespondenzadresse:
Raoul Groß
Institut für Hygiene und Umweltmedizin der Ernst-Moritz-Arndt-Universität Greifswald, Walther-Rathenau-Str. 49 a, 17489 Greifswald, Deutschland
raoul.gross@google.mail.com

Bitte zitieren als
Groß R, Hübner N, Assadian O, Jibson B, Kramer A; Working Section for Clinical Antiseptic of the German Society for Hospital Hygiene. Pilot study on the microbial contamination of conventional vs. silver-impregnated uniforms worn by ambulance personnel during one week of emergency medical service. GMS Krankenhaushyg Interdiszip. 2010;5(2):Doc09. DOI: 10.3205/dgkh000152, URN: urn:nbn:de:0183-dgkh0001527

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/dgkh/2010-5/dgkh000152.shtml

Veröffentlicht: 21.09.2010

Copyright
©2010 Groß et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.