Atypical antidepressants extend lifespan of *Caenorhabditis elegans* by activation of a non-cell-autonomous stress response

Sunitha Rangaraju,¹ ² ³ Gregory M. Solis,¹ ² ³ Sofia I. Andersson,¹ Rafael L. Gomez-Amaro,¹ ² ³ Rozina Kardakaris,¹ Caroline D. Broaddus,¹ ² ³ Alexander B. Niculescu III² and Michael Petrascheck¹ ² ³

¹Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
²Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
³Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
⁴Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA

Summary

Oxidative stress has long been associated with aging and has recently been linked to psychiatric disorders, including psychosis and depression. We identified multiple antipsychotics and antidepressants that extend *Caenorhabditis elegans* lifespan and protect the animal from oxidative stress. Here, we report that atypical antidepressants activate a neuronal mechanism that regulates the response to oxidative stress throughout the animal. While the activation of the oxidative stress response by atypical antidepressants depends on synaptic transmission, the activation by reactive oxygen species does not. Lifespan extension by atypical antidepressants depends on the neuronal oxidative stress response activation mechanism. Neuronal regulation of the oxidative stress response is likely to have evolved as a survival mechanism to protect the organism from oxidative stress, upon detection of adverse or dangerous conditions by the nervous system.

Key words: antidepressant; anti-aging; *Caenorhabditis elegans*; non-cell-autonomous; psychiatric disease; signal transduction; synaptic transmission; stress.

Introduction

In contrast to aging, where the role of oxidative stress has been de-emphasized in recent years, oxidative stress has been gaining increased attention as a pathogenic mechanism underlying several major psychiatric disorders, including psychosis and depression (Scapagnini et al., 2012; Pandya et al., 2013). Behavioral paradigms in rodents that are depressogenic (e.g., restraint stress, forced swim test) increase lipid peroxidation in several tissues (Sahin et al., 2004; Lucca et al., 2009; Runkel et al., 2013; Spiers et al., 2013). Similarly, tissue samples from psychiatric patients show increased levels of lipid peroxidation and depletion of antioxidant activities compared to samples from healthy controls (Do et al., 2000; Blicci et al., 2001; Gawryluk et al., 2011; Ditzen et al., 2012). These effects on oxidative defense systems may be more than just an indirect correlation, as suggested by experiments showing that certain antioxidants have antidepressant-like effects in rodents as well as in humans (Ferreira et al., 2008).

In a previous study, we screened for compounds that extend lifespan in the nematode *Caenorhabditis elegans* and identified 57 new compounds, 33 of which also increased resistance to oxidative stress. Among the compounds that increased both *C. elegans* lifespan and resistance to oxidative stress were 6 clinically approved antidepressants and antipsychotics. These drugs are used to treat mental disorders, which have been associated with stress in general and, as mentioned above, with oxidative stress in specific (Petrascheck et al., 2007; Ye et al., 2014).

In this study, we set out to investigate the mechanism by which different antidepressants modulate resistance to oxidative stress. As antidepressants exert their therapeutic effect by acting on the nervous system, we asked whether these drugs protect *C. elegans* by a similar mechanism from oxidative stress. To test this prediction, we studied how resistance to oxidative stress and lifespan changed in response to antidepressant treatment and how these changes are affected by mutations in oxidative stress response genes and genes controlling synaptic transmission.

Results

Atypical antidepressants protect *C. elegans* from oxidative stress

Based on the results of our previous study, we set out to investigate the ability of different antidepressant mechanisms to protect *C. elegans* from oxidative stress caused by the reactive oxygen species (ROS) generator paraquat. We chose to investigate the effects of the atypical antidepressants Mianserin and Mirtazapine, two structurally related antidepressants, and the typical antidepressant Fluoxetine (Fig. 1A). The typical antidepressant Fluoxetine, better known under its brand name Prozac, inhibits re-uptake of serotonin from the synaptic cleft into the presynaptic neuron, thereby enhancing serotonergic signaling. In contrast, atypical antidepressants like Mianserin and Mirtazapine antagonize serotonin and noradrenaline receptors, thereby inhibiting serotonergic signaling (Petrascheck et al., 2007). Despite their seemingly opposing effects on serotonergic signaling, all three drugs act as antidepressants in humans.

First, we assessed the effect of the atypical antidepressant Mianserin and typical antidepressant Fluoxetine on the *C. elegans* nervous system. We compared the effects of Mianserin and Fluoxetine on synaptic neurotransmitter release in *C. elegans* by determining the onset of paralysis induced by the acetylcholine esterase inhibitor aldicarb (Fig. 1B). Aldicarb paralyzes the animal through hypercontraction of body wall muscles, achieved by preventing the breakdown of acetylcholine at the neuromuscular junction, thereby enhancing cholinergic transduction; synaptic transmission; stress.
signaling. Mianserin treatment caused animals to become hypersensitive to aldicarb-induced paralysis implying enhanced synaptic release of acetylcholine, while Fluoxetine treatment caused animals to become resistant implying decreased synaptic release of acetylcholine (Fig. 1B, Table S1). These results confirm the opposing effects of Mianserin and Fluoxetine on synaptic release of neurotransmitters, with Mianserin increasing and Fluoxetine decreasing the release (Nurrish et al., 1999; Kullyev et al., 2010).

We next compared the ability of these three antidepressants to protect from oxidative stress by treating day 1 adults with increasing concentrations of each antidepressant (Fig. 1C). After 5 days of treatment, the animals were subjected to the ROS generator paraquat. Survival was determined 24 hours later. Mianserin and Mirtazapine markedly protected the animals from oxidative stress and hence increased survival in a dose-dependent manner (Fig. 1C, Table S2). In contrast, Fluoxetine did not protect from oxidative stress, and at higher concentrations, it decreased survival (Fig. 1C, Table S2). The protective effect of Mianserin was observed over a wide range of paraquat concentrations (Fig. 1D, Tables S3 and S4). We concluded that the atypical antidepressants Mianserin and Mirtazapine protect from oxidative stress, while the typical antidepressant Fluoxetine does not.

We next asked whether Mianserin and Mirtazapine protect from oxidative stress by scavenging ROS (Fig. 1E). Free radical-scavenging activity. Increasing concentrations of either the indicated antidepressants or the ROS scavenger Trolox were incubated with 90 µM of the free radical DPPH. Reduction of DPPH [%] was monitored by measuring absorption at 520 nm (y-axis) and plotted as the ratio of small molecule to DPPH (upper x-axis) or the concentration of small molecule in µM (lower x-axis). All error bars show SEM for multiple, independent experiments. For additional data, see Fig. S1 (Supporting information). For detailed statistics, see Tables S1–S3 (Supporting information).

Fig. 1 The atypical antidepressant Mianserin increases synaptic transmission and resistance to oxidative stress. (A) Structures of the atypical antidepressants Mianserin and Mirtazapine and the typical antidepressant Fluoxetine. (B) Mianserin increases and Fluoxetine decreases synaptic transmission as measured by aldicarb-induced paralysis. Wild-type L4-stage animals were pretreated with 50 µM Mianserin or 100 µM Fluoxetine for 2 h, followed by 4 mM of the acetylcholine esterase inhibitor aldicarb. Aldicarb-induced paralysis, a measure of synaptic transmission, was determined every 15 min and plotted in [%] (y-axis) as a function of time in minutes (x-axis). (C) Antidepressant treatment affects the survival of Caenorhabditis elegans under conditions of oxidative stress. Wild-type day 1 adults were treated with increasing concentrations of the indicated antidepressants, followed by 100 mM of the ROS generator paraquat on day 5. Survival of animals was determined 24 h later and plotted in [%] (y-axis) as a function of antidepressant concentration [µM] (x-axis). Dotted line shows the survival of untreated animals. (D) Mianserin treatment protects C. elegans from a range of paraquat concentrations. Wild-type day 1 adults were treated with water or 50 µM Mianserin, followed by increasing concentrations of paraquat on day 5. Survival of animals was determined 24 h later and plotted in [%] (y-axis) as a function of paraquat concentration [mM] (x-axis). (E) Antidepressants have no significant free radical-scavenging activity. Increasing concentrations of either the indicated antidepressants or the ROS scavenger Trolox were incubated with 90 µM of the free radical DPPH. Reduction of DPPH [%] was monitored by measuring absorption at 520 nm (y-axis) and plotted as the ratio of small molecule to DPPH (upper x-axis) or the concentration of small molecule in µM (lower x-axis). All error bars show SEM for multiple, independent experiments. For additional data, see Fig. S1 (Supporting information). For detailed statistics, see Tables S1–S3 (Supporting information).
activity of a compound in vitro can be monitored using the free radical
DPPH that absorbs light at 520 nm, while its reduced form does not
(Pisoschi et al., 2009). Neither Mirtazapine nor Mianserin showed a
DPPH-scavenging activity at any relevant concentration. Scavenging
activity of Mianserin was only observed at a ratio of 25:1 (Mia: DPPH),
which is 50,000 times higher than what was used in the in vivo stress
resistance assays (Mia: PO; 1:2000) (Fig. 1E). Therefore, we deemed ROS
scavenging to be an unlikely mechanism for these antidepressants to
protect C. elegans from oxidative stress.

Earlier studies have shown that paraquat blocks the development of
C. elegans L1 larvae by entering the body through a specialized channel,
formed by bundles of amphid dendrites, designed to sample fluids in
the environment. This channel is absent in dye-filling mutants (dyf), such as
osm-3(p802) that lack amphid neurons and, as a result, are resistant to the
inhibitory effect of paraquat on development (Fujii et al., 2004). We
confirmed the resistance of om-3(p802) larvae to the paraquat-induced
block in development (Fig. S1A). However, adult osm-3(p802) animals
showed no increase in paraquat resistance compared to wild-type N2
animals (Fig. S1B), suggesting that the regulation of resistance to
oxidative stress differs between larvae and adults.

Taken together, these results show that the atypical antidepressant
Mianserin increases synaptic transmission and protection from oxidative
stress, while the typical antidepressant Fluoxetine decreases synaptic
transmission and does not protect from oxidative stress.

Mianserin-induced protection from oxidative stress requires
SOD-1, CTL-1, and PRDX-2

Because Mianserin treatment protects C. elegans from the superoxide
generator paraquat (Fig. 1), we next focused on genes involved in the
superoxide defense mechanism (Fig. 2). Superoxides are converted to
hydrogen peroxide by superoxide dismutases (SOD) followed by a
conversion to water by catalases (CTL) or peroxiredoxins (PRDX) (Sies,
2014). The C. elegans genome encodes 5 different superoxide dismu-
tases (sod-1 to sod-5), three different catalases (ctl-1 to ctl-3), and three
peroxiredoxins that are named according to their homology to the
mammalian peroxiredoxins, prdx-2, prdx-3, and prdx-6 (Doonan et al.,
2008; Olahova et al., 2008; Kumsta et al., 2011).

Activation of the oxidative stress response by Mianserin was
confirmed through fluorescent imaging on day 2, as well as
immunoblotting on day 5 using a reporter strain in which GFP
transcription is driven by the glutathione s-transferase-4 promoter
(Pgst-4::GFP) (Leiers et al., 2003) (Fig. 2A). While a 2-h Mianserin
treatment increased synaptic transmission (Fig. 1B), it did not induce the
Pgst-4::GFP reporter (Fig. S2). To determine which genes are necessary
for Mianserin to protect from oxidative stress, we treated mutants
lacking individual sod, ctl, or prdx genes with Mianserin or water and
subjected them to increasing concentrations of paraquat (Fig. 2B). As
previously seen, mutations in many of the sod, ctl, or prdx genes
decreased the survival of water-treated animals (Fig. 2B, Table S3),
confirming the requirement of these genes for wild-type resistance to
oxidative stress (Van Raamsdonk & Hekimi, 2009). In contrast, Mianserin
protected most mutants from oxidative stress, except sod-1(tm776), sod-
1(tm783), ctl-1(ok1242), and prdx-2(gk169) animals (Fig. 2B, Table S3).

Surprisingly, sod-3 was not required for the induction of stress
resistance by Mianserin (Fig. 2B). sod-3 encodes a mitochondrial
superoxide dismutase that is widely used as an oxidative stress reporter
and that is activated by the FOXO transcription factor DAF-16 in
response to decreased insulin signaling and other aging pathways. The
observation that sod-3 is dispensable for the Mianserin-induced stress
response implies that the Mianserin-induced stress response is indepen-
dent of DAF-16. This prediction was confirmed as Mianserin increased
the stress resistance in daf-16(mu86) animals to the same extent as it did in
N2 animals (Fig. S3A). Mianserin did not further increase the stress
resistance in the gain-of-function mutant skn-1(fat188) (Paek et al.,
2012) that is already highly resistant to oxidative stress (Fig. S3B),
suggesting SKN-1 is involved in the protective mechanism. Taken
altogether, these results show that Mianserin activates a protective
mechanism by which SOD-1 converts superoxide radicals to hydrogen
peroxide and CTL-1 and PRDX-2 convert hydrogen peroxide to water
(Fig. 2C).

Mianserin-induced regulation of the oxidative stress
response is dependent on synaptic transmission

In humans, antidepressants such as Mianserin exert their therapeutic
effects by acting on the nervous system. We therefore asked whether
the stress-protective effect of Mianserin depends on the drug’s ability to
enhance synaptic transmission (Fig. 1B). To test this, we used strains
with impaired synaptic transmission caused by mutations in synaptic
genes such as unc-21/CACN1A1, unc-18/Munc18, snb-1/synaptotagmin,
snb-1/synaptobrevin, unc-26/synaptotagmin, unc-10/Rim1, and unc-11/
AP180 (Fig. 3A) (Barclay et al., 2012; Bargmann, 2012). We first focused
on the calcium sensor synaptotagmin (SNT-1), required for Ca2+-
induced vesicle exocytosis (Brose et al., 1992), and synaptotagmin (UNC-26),
required for vesicle recycling (Harris et al., 2000). Mutations in these
genes decrease synaptic transmission (Nonet et al., 1993; Harris et al.,
2000). In contrast, diacylglycerol kinase (DGK-1) represses synaptic
exocytosis, and therefore, mutations in dgk-1 enhance synaptic trans-
mision (Nurris et al., 1999). Mutations in unc-26 and dgk-1 have been
shown to exert opposing effects on size and spatial localization of
synaptic vesicles confirming their opposing roles for synaptic vesicle
function (Nurris et al., 1999; Ch’ng et al., 2008).

To monitor the effects of altered synaptic transmission on the
expression of oxidative stress genes (Fig. 3B), we crossed animals with
decreased (unc-26, snt-1) or enhanced (dgk-1) synaptic transmission with
the reporter strain carrying the Pgst-4::GFP transgene (Leiers et al., 2003).
In wild-type animals, a 24-h Mianserin treatment increased the expression
of the oxidative stress reporter Pgst-4::GFP in a dose-dependent manner
(Fig. 3B,C). Mutations that decrease synaptic transmission, such as
unc-26(e205) and snt-1(md290), blunted or abolished the Mianserin-induced
expression of Pgst-4::GFP. In contrast, mutations that enhance synaptic
transmission, like dgk-1(ok1462), enhanced the Mianserin-induced
expression of Pgst-4::GFP to an even greater extent than what was
observed in wild-type animals (Fig. 3B,C). Consistent with the idea of
synaptic transmission modulating the oxidative stress response, even in
the absence of Mianserin, baseline Pgst-4::GFP expression was slightly
higher in animals with enhanced synaptic transmission (dgk-1(ok1462))
and lower in the synaptic mutants with diminished synaptic transmission
(unc-26(e205) and snt-1(md290)) (Fig. 3B, C). We chose dgk-1 because it
showed an inverse correlation with unc-26 in synaptic vesicle dynamics
(Ch’ng et al., 2008), which is also reflected in our results using the Pgst-
4::GFP reporter (Fig. 3B). In addition, dgk-1 is involved in serotonergic
signaling, one of the major signaling pathways targeted by antidepres-
sants such as Mianserin (Nurris et al., 1999). However, dgk-1 is not
exclusively expressed in the nervous system but is also expressed in
excretory canals (Nurris et al., 1999). Thus, to exclude the involvement
of other tissues, testing additional mutants with enhanced synaptic
transmission such as cpx-1(ok1552) or tomo-1(nu468) is warranted
(Hobson et al., 2011; Chan et al., 2012).
Antidepressants modulate aging by NEUROX, S. Rangaraju et al.

Fig. 2 Mianserin activates a protective oxidative stress response. (A) Mianserin induces expression of the Pgst-4::GFP reporter. Images show GFP fluorescence of water- or Mianserin-treated (50 μM) reporter animals after 24-h treatment. Images were taken using identical exposure settings (upper panel). Merged image of bright-field and GFP fluorescence is shown (middle panel). Localization of GFP in water-treated worms and induced GFP in Mianserin-treated worms can be visualized. Verification of Pgst-4::GFP induction by immunoblotting on day 5 (lower panel). Immunoblot of water- or Mianserin-treated (50 μM) Pgst-4::GFP worm lysates, probed with GFP or actin (loading control) antibodies. (B) Mianserin-induced protection from oxidative stress requires specific oxidative stress response genes. Wild-type or mutant day 1 adults were treated with water or 50 μM Mianserin, followed by increasing concentrations of paraquat on day 5. Survival of animals was determined 24 h later and plotted in [%] (y-axis) as a function of paraquat concentration [μM] (x-axis). Parallel wild-type (N2) control experiments (dotted lines) are shown for each graph. Genotypes (indicated in each graph) for which Mianserin failed to increase resistance to oxidative stress are boxed. (C) Mianserin-induced superoxide detoxification pathway. Superoxides (O$_2^{-}$) are converted to H$_2$O$_2$ by SOD-1, followed by a conversion to water by PRDX-2 and CTL-1. All error bars show S.E.M. for 3 or more independent experiments. For additional data, see Figures S2 and S3 (Supporting information). For detailed statistics, see Table S3 (Supporting information).

Fig. 3 Mianserin-mediated activation of the oxidative stress response is dependent on synaptic transmission and chemosensation. (A) Cartoon of a presynaptic vesicle compartment and physical localization of synaptic components. Synaptic components are labeled using mammalian as well as Caenorhabditis elegans nomenclature. Synaptic components tested in this study, namely unc-26, snb-1, unc-18, unc-2, and unc-10, are highlighted in bold and marked with asterisks. Synaptotagmin (UNC-26, blue) and synaptojanin (SNT-1, red) are color-coded. (B) Mianserin induces expression of the Pgst-4::GFP reporter via synaptic transmission. Images show GFP fluorescence of reporter animals. Day 1 adult wild-type or synaptic mutant Pgst-4::GFP reporter animals were treated with increasing concentrations of Mianserin and fluorescent images were taken 24 h later. Reduced synaptic transmission (unc-26(e205) or snt-1(md290)) reduces the induction of the Pgst-4::GFP reporter by Mianserin. Enhanced synaptic transmission (dgk-1(ok1462)) (dark green) enhances the induction of the Pgst-4::GFP reporter by Mianserin. (C) Quantification of Mianserin-induced fluorescence of strains carrying Pgst-4::GFP (upper panel) and Pges-1::GFP reporters (lower panel). Images are not shown for ges-1::GFP. Fluorescent intensity arbitrary units [A.U.] (y-axis) is plotted as a function of Mianserin concentration [μM] (x-axis). (D) Immunoblot verification of Pgst-4::GFP induction by Mianserin on day 5 in wild-type or snt-1(md290) strains carrying the Pgst-4::GFP or Pges-1::GFP reporter. Animals were treated with water or Mianserin (50 μM) on day 1 and harvested on day 5, followed by lysate preparation and probing with GFP or actin (loading control) antibodies. (E) Mianserin fails to induce transcription of sod-1 and prdx-2 in animals with impaired synaptic transmission. Wild-type (N2) or mutant day 1 adults were treated with water or 50 μM Mianserin, and RNA was harvested on day 5. Gene expression levels were measured by qRT-PCR and plotted as fold induction (y-axis) over transcript levels of untreated, wild-type animals. (F) Mianserin-induced protection from oxidative stress requires synaptic transmission and chemosensory neuron function. Wild-type or mutant day 1 adults were treated with water or 50 μM Mianserin, followed by increasing concentrations of paraquat on day 5. Survival of animals was determined 24 h later and plotted in [%] (y-axis) as a function of paraquat concentration [μM] (x-axis). Parallel wild-type (N2) control experiments (dotted lines) are shown for each graph. Genotypes (indicated in each graph) for which Mianserin failed to increase resistance to oxidative stress are boxed. (G) Percent change in survival of Mianserin-treated compared to water-treated animals after 24-h PQ treatment (100 μM). Y-axis shows fold change in survival [%] (Mianserin-water). (H) Hierarchical clustering of fold change in paraquat protection of wt and mutant animals shows the degree of similarity between genotypes (top) or eight structurally distinct serotonin antagonists (left). (Dihydroergot stands for dihydroergotamine.) All error bars show SEM of 3–11 independent experiments. For detailed statistics, see Tables S4 and S5 (Supporting information). ***P < 0.001, n.s.: not significant, P > 0.05.
We further found that Mianserin activates the expression of the type B carboxylesterase ges-1 (Fig. 3C, lower panel), a gene exclusively expressed in the gut (Benedetti et al., 2006). As with the Pgst-4::GFP reporter, Mianserin dose-dependently induced the expression of Pges-1::GFP in a manner dependent on synaptic transmission. Similar to the case with Pgst-4::GFP, in animals with reduced synaptic transmission like snt-1(md290) and unc-26(e205) mutants, the Pges-1::GFP induction was blunted, while it was enhanced in dgk-1(ok1462) mutants (Fig. 3C). The sustained activation of Pgst-4::GFP on day 5 was confirmed using immunoblotting (Fig. 3D). Therefore, Mianserin non-cell-autonomously activates ges-1 expression in the gut via synaptic transmission. This result is all the more surprising because Mianserin is likely to enter the animal
through the gut and does not directly activate ges-1, but instead depends on synaptic transmission. These results suggest that Mianserin regulates the expression of oxidative stress response genes non-cell-autonomously by way of synaptic transmission.

Next, we asked which other redox genes are activated in response to Mianserin. In wild-type animals, Mianserin not only activated via synaptic transmission (Fig. 2A), but also activated the expression of sod-1 and prdx-2, both necessary for the protective effect of Mianserin (Fig. 2B), measured using quantitative real-time PCR (qRT-PCR) (Fig. 3E). Activation of sod-1 and prdx-2 by Mianserin was abolished in multiple synaptic transmission mutants, including unc-26(e2055), snt-1(md290), snb-1(md247), unc-18(e81), and unc-2(e55) (Fig. 3E), strains that have slowed or abolished synaptic transmission.

To determine whether synaptic transmission is necessary for Mianserin to protect from oxidative stress, we treated synaptic mutants with Mianserin and subjected them to increasing concentrations of paraquat (Fig. 3F). The resistance of untreated mutants to oxidative stress varied between the different synaptic mutants, with snb-1(md247) and unc-10(e102) showing a reduced resistance to oxidative stress and all other mutants showing a wild-type-like or increased resistance to oxidative stress (Fig. 3F, Table S4, see Discussion). However, the ability of Mianserin to protect from oxidative stress was strictly dependent on synaptic transmission. Mutations in all seven components of the synaptic transmission machinery abolished the ability of Mianserin to increase the survival of animals subjected to paraquat treatment (Fig. 3F,G, Table S4). In addition to these synaptic components, Mianserin required ceh-12 to increase resistance to oxidative stress (Fig. 3F, Table S4). ceh-12 is necessary for chemoosensation and is exclusively expressed in a subset of amphid and phasmid sensory neurons (Kaplan & Horvitz, 1993). The ceh-12(e1812) mutant was hypersensitive to paraquat (Fig. 3F), consistent with a role for chemoosensation in the oxidative stress response. While some of the synaptic mutants show expression in non-neuronal tissues, the requirement of ceh-12 and seven synaptic factors unequivocally links the protective effect to be of neuronal origin (Fig. 3F,G).

The dependence of Mianserin on redox and synaptic genes was not exclusive to Mianserin. We tested seven additional, structurally distinct serotonin antagonists, all of which protected from paraquat in a manner that depended on the redox genes prdx-2 and sod-1, as well as synaptic transmission genes unc-26 and snt-1 (Fig. 3H, Table S5). While ctl-1 and gst-4 were also required for the protective effect, they were required to a lesser extent than the genes mentioned above, as deduced from the hierarchical clustering (Fig. 3H, Table S5). Our results do not distinguish between sod-1 and prdx-2 to be required in the nervous system or in the periphery. However, given that sod-1 and prdx-2 are some of the most highly expressed genes (top 10% of all genes), we consider it more likely that they are involved in the detoxification of ROS in the peripheral tissues.

Taken together, these results show that Mianserin protects C. elegans from oxidative stress by activating a non-cell-autonomous mechanism that increases the expression of oxidative stress response genes in peripheral tissues via synaptic transmission.

ROS-induced activation of the oxidative stress response is independent of synaptic transmission

We next asked whether activation of the oxidative stress response strictly depends on synaptic transmission or whether there are nervous system-dependent and nervous system-independent activation mechanisms (Staab et al., 2014). To test whether ROS activates the oxidative stress response independently of synaptic transmission, we measured Pgst-4::GFP expression in wild-type animals and in animals with decreased synaptic transmission after an 8-h paraquat exposure (Fig. 4A). Paraquat activated Pgst-4::GFP expression in wild-type, unc-26(e2055), and snt-1(md290) mutants (Fig. 4A, Table S6), suggesting a synapse-independent activation of the oxidative stress response. To corroborate this result, we also measured the activation of sod genes by qRT-PCR. As with the Pgst-4::GFP reporter (Fig. 4A), activation of the sod genes by paraquat did not depend on synaptic transmission (Fig. 4B). To distinguish the two activation mechanisms, we henceforth will refer to them as ROX, for the ROS-activated response to oxidative stress (Fig. 4), and NEUROX for the neurally regulated response to oxidative stress (Fig. 3).

To test the ability of NEUROX to repress the oxidative stress response, we reduced synaptic transmission (Fig. 1B) by treating Pgst-4::GFP reporter animals with increasing concentrations of Fluoxetine (Fig. 4C). This resulted in a dose-dependent reduction of Pgst-4::GFP. However, due to the low basal levels in wild-type background, only a mild reduction was observed with Fluoxetine (Fig. 4C,D). We therefore combined increasing concentrations of Fluoxetine along with induction of Pgst-4::GFP reporter with 50 μM Mianserin. Fluoxetine effectively repressed Pgst-4::GFP induction by Mianserin (Fig. 4C,D) and similarly repressed the elevated Pgst-4::GFP expression seen in dgk-1(ok1462) mutants. These experiments confirm that, depending on the synaptic transmission activity, NEUROX can activate or repress the oxidative stress response in peripheral tissues (see Discussion).

Taken together, these results show that ROS generators such as paraquat and antidepressants modulate the oxidative stress response via two distinct mechanisms. Paraquat activates the oxidative stress response by a synapse-independent cell-autonomous mechanism (ROX) (Fig. 4), while antidepressants activate or repress the oxidative stress response by a mechanism dependent on synaptic transmission (NEUROX) (Figs 1–3).

Mianserin-induced extension of lifespan depends on NEUROX

The finding that prompted us to embark on this study was the observation that compounds targeting biogenic amines, such as the antidepressant Mianserin, increased resistance to oxidative stress as well as lifespan (Petrascheck et al., 2007; Ye et al., 2014). This made us ask whether, and how, the lifespan-extending effect of Mianserin is mechanistically related to the neuronal activation of the oxidative stress response NEUROX (Fig. 5).

To determine the relationship between lifespan and oxidative stress resistance, we treated mutants defective in NEUROX with Mianserin and conducted lifespan experiments (Fig. 5A). Mianserin showed reduced or no effect on lifespan for all three antioxidant mutants required for NEUROX. In sod-1(tm776) and ctl-1(ok1242) mutants, the lifespan-extending effect of Mianserin was reduced, while in prdx-2(gk169) mutants, the effect was abolished completely (Fig. 5A, boxes, Table S7), which was further confirmed using dose–response studies with Mianserin for lifespan extension in these three mutants (Fig. 5B). In contrast, Mianserin fully extended lifespan in all superoxide dismutase mutants not required for NEUROX, namely sod-2(gk257), sod-3(tm760), sod-4(gk101), sod-5(tm1146), ctl-1(ok1137), and prdx-3(gk529) (Fig. 5A, Table S7). Thus, only oxidative stress response genes that are required for NEUROX, namely sod-1, prdx-2, and ctl-1 (Fig. 2), were required by Mianserin to increase lifespan (Fig. 5A,B), while oxidative stress response genes that were specific for ROX, namely sod-4 and sod-5 (Figs 2B and 4B), were not (Fig. 5, Table S7).
Cell-autonomous versus non-cell-autonomous regulation of the oxidative stress response by ROX and NEUROX

The results presented in this study provide multiple lines of evidence for the existence of two very distinct modes of activation of the oxidative stress response: ROX, which stands for ROS-activated response to oxidative stress, and NEUROX, which stands for neuronally regulated oxidative stress resistance are only correlated with compounds targeting the oxidative stress response ROX, in that, it requires synaptic transmission (Figs 3, 4 and 6). The lifespan-extending effect of Mianserin (Petrascheck et al., 2007; Ye et al., 2014) (Fig. 5) functionally overlaps with NEUROX, as all the stress response genes required for NEUROX (Fig. 2) are also required for the lifespan-extending effect (Fig. 5), while genes dispensable for stress protection are dispensable for lifespan extension.

How does the Mianserin-induced oxidative stress resistance relate to longevity?

In this study, we set out to investigate the mechanistic basis by which antidepressants such as Mianserin increase resistance to oxidative stress, and how this activation relates to lifespan. We envisioned two different hypotheses to describe the relationship between oxidative stress and lifespan: (i) Mianserin increases lifespan and stress resistance by independent mechanisms; (ii) Mianserin increases resistance to oxidative stress and lifespan by an overlapping mechanism.

Our data are consistent with the latter hypothesis (ii), as Mianserin-induced lifespan extension and stress resistance require a common set of genes. The mutant strains sod-1(tm776), ctl-1(ok1242), and prdx-2 (gk169) show an impaired oxidative stress response and are required for the full lifespan extension by Mianserin. What is remarkable is that we have uncovered two independent activation mechanisms for the oxidative stress response, one of which (NEUROX) is required for lifespan extension by Mianserin and the other (ROX) is not. In accordance with the idea of correlating lifespan and functional improvement, it is also important to highlight that at least pharmacologically, longevity and oxidative stress resistance are only correlated with compounds targeting biogenic amines, and not with compounds of other pharmacological classes (e.g., kinase inhibitors) (Ye et al., 2014; Bansal et al., 2015).
response to oxidative stress. The main difference is that NEUROX is non-cell-autonomous and regulated by synaptic transmission (Fig. 3), while ROX is likely to be cell-autonomous (Fig. 4). The two mechanisms are genetically distinct, as established by the following results: (i) Enhancing synaptic transmission with Mianserin increases the expression of oxidative stress response genes (Figs 1–3); (ii) decreasing synaptic transmission with Fluoxetine decreases the oxidative stress response (Figs 1 and 4); (iii) the Mianserin-induced protection from oxidative stress is abolished in mutants with an impaired oxidative stress response (Fig. S5); and (iv) paraquat activates the oxidative stress response independently of synaptic transmission (Fig. 4). The ability of NEUROX to activate as well as inhibit the oxidative stress response (Figs 1, 3 and 4) may also explain how some synaptic mutants show an increased resistance to oxidative stress while others show a decreased resistance (Fig. 3). Another possibility is that these differences in stress resistance arise from pleiotropic effects. Whatever the reasons, none of the synaptic mutants were able to increase resistance in response to Mianserin.

Why would the organism need two different mechanisms? ROX is activated by the actual presence of ROS to limit oxidative stress-induced damage. In contrast, NEUROX is likely activated in anticipation of oxidative stress, yet to come. NEUROX thereby generates capacity to deal with impending stress and, hence, dramatically increases the animal’s resistance to oxidative stress. Capacity to deal with oxidative stress could be generated by a constitutive activation of the oxidative stress response, or by a homeostatic change that primes the oxidative stress response to be triggered by lower ROS concentrations. At this point, we consider priming for enhanced activation as the more likely model because of two reasons.

First, a 2-h Mianserin treatment increases synaptic transmission (Fig. 1B), but is not sufficient to induce the Pgst-4::GFP reporter, while a 2-h paraquat treatment is (Fig. S2). This delay in activation shows that Mianserin does not directly trigger the oxidative stress response and therefore induces a homeostatic change that takes time. Second, and most importantly, in animals with a prolonged increase in synaptic transmission (dgk-1(ok1462), Fig. 3B,C), the dose–response profile of Pgst-4::GFP activation is dramatically shifted to the left and the response amplitude is increased. Prolonged increase in synaptic transmission (dgk-1(ok1462), Fig. 3B,C) therefore results in a homeostatic change that tunes the oxidative stress response to be triggered at lower concentrations than observed in wild-type animals (wt, Fig. 3B,C). Thus, it is likely that NEUROX evolved as a preemptive mechanism that tunes the activation threshold necessary to trigger the oxidative stress response in response to adverse conditions, detected by sensory perception. The finding that chemosensation is required (che-12(e1812), Fig. 3F,G) for NEUROX supports this model. It will be interesting to see whether hormetic lifespan extensions trigger NEUROX, rather than ROX, thus extending lifespan, as the nervous system primes the stress response to be triggered at lower concentrations. If true, this model would predict that hormetic mechanisms would depend on synaptic transmission as well.

The ability of antidepressants to modulate NEUROX raises the possibility that NEUROX is part of a larger survival mechanism. The fight-or-flight response, for example, ensures survival by changing behavior in response to perceived dangers (Graeff, 1994). Interestingly, the fight-or-flight response is associated with anxiety and stress behaviors (Graeff, 1994), which are the very behaviors suppressed by antidepressants modulate aging by NEUROX, S. Rangaraju et al.

© 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Our finding that antidepressants modulate the oxidative stress response via NEUROX in C. elegans raises the exciting possibility that NEUROX may be part of the mechanistic basis of some clinically relevant antidepressants, and that some antidepressants induce physiological changes that may have therapeutic uses outside of depression.

Experimental procedures

Chemicals

Solvents used to prepare stock solutions are as follows: Mianserin, Fluoxetine, and paraquat were dissolved in water; Mirtazapine and serotonin antagonists were dissolved in DMSO; FUDR was dissolved in S-complete; and Aldicarb was dissolved in ethanol. For supplier, catalog, and CAS numbers for each chemical, see extended methods in the supplementary material.

Strains

Detailed descriptions of all strains used in this study are available in Appendix S1. Mutant strains were backcrossed at least four times with the N2 Bristol strain. All strains were maintained as described (Brenner 1974).

Lifespan assay

Lifespan assays were conducted in 96-well plates as described in Solis & Petrascheck (2011) and Rangaraju et al. (2015). When used, DMSO was kept to a final concentration of 0.33% v/v. Animals were scored three times a week, until 95% of animals were dead in all the tested conditions. Statistical analysis was performed using the Mantel–Haenszel version of the log-rank test.

Stress resistance assays

Resistance to oxidative stress was determined by measuring the survival of antidepressant-treated and untreated worms after a 24-h exposure to the ROS generator paraquat (methyl viologen). Experimental worm cultures were set up as described in lifespan assays. Solvent (water or DMSO) or antidepressants were added on day 1 of adulthood, unless otherwise indicated. Paraquat was added at increasing concentrations on day 5 of adulthood, unless otherwise indicated. For all experiments, the survival of worms was assessed 24 h after paraquat addition and expressed as the percentage of live versus total animals. For the serotonin antagonists experiment, heat map and hierarchical clustering analysis (dendrograms) were generated with R using the heatmap2 function of the gplots package. Dissimilarity between values and hierarchical clustering were calculated using the Euclidean distance measure and complete linkage method.

In vitro radical-scavenging assays

Free radical-scavenging activity of antidepressants was measured in a cell-free assay using DPPH as a free radical and Trolox as a positive control scavenger. The DPPH radical absorbs light at 520 nm, while its reduced form does not, allowing to monitor scavenging activity (Pisoschi et al., 2009). Mianserin, Mirtazapine, and Trolox stock solutions (10x) were prepared in ethanol (see Appendix S1 for catalog numbers and chemical information) and tested at increasing concentrations for their ability to scavenge DPPH (90 μM) using ethanol as a negative control. Averages between triplicates were calculated, subtracted from the
Antidepressants modulate aging by NEUROX, S. Rangaraju et al.

Real-time quantitative PCR (qRT-PCR) and data analysis
All qRT-PCR experiments were conducted according to the MIQE guidelines (Bustin et al., 2009), except that samples were not tested in a bio-analyzer. RNA was extracted on day 5 of adulthood, as described above, followed by DNase treatment and reverse transcription at 42 °C for 30 min. Five microliters of quantitative PCRs was set up in 384-well plates using the following thermocycler settings: [95 ºC, 3 min]; 40 × [95 ºC 10 s, 60 ºC 30 s]; and melting curve: 95 ºC 5 s, 60–95 ºC at 0.5 ºC increment, 10 s (see Appendix S1 for catalog numbers and reagent information). Gene expression was normalized to three reference genes, rco-5, crn-3, and rpl-6, using the QIAGEN SYBR Green PCR Master Mix (QIAGEN, Heracles, CA, USA). Statistical significance was determined using t-test.

Aldicarb assay
Synaptic transmission in response to the antidepressants Mianserin and Fluoxetine was measured by determining onset of paralysis by the acetylcholine esterase inhibitor aldicarb. For each condition, 60–80 L4-stage animals were treated with water, Mianserin (50 μM), or Fluoxetine (100 μM) followed by aldicarb addition (4 mM final conc.) 2 h later. Paralysis of animals was scored visually, every 15 min. Results were graphed as the paralyzed fraction of animals [%], as a function of time. The mean paralysis [%] from six independent experiments was calculated, and statistical significance was determined using Student’s t-test.

Immunoblotting
Immunoblotting was conducted to verify changes in GFP expression. Worms were cultured in 96-well plates, as described in lifespan analysis, treated with Mianserin (50 μM) or water on day 1 of adulthood, and harvested on day 5. Harvested worms (~500 worms) were washed and lysed in a Precellys lysing system. Protein concentrations were determined, equal amounts of protein (20 μg per lane) were separated by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were blocked and incubated overnight in rabbit anti-GFP primary antibody. After washing, goat anti-rabbit IR dye 800CW (LI-COR) was added for 1 h. After washing, bound antibodies were visualized and imaged using LI-COR IR dye detection system. For loading control, mouse anti-actin primary antibody was used, followed by goat anti-rabbit IRdye 800CW (LI-COR) secondary antibody. The GFP and actin band intensities were quantified using LI-COR Odyssey quantification software. Statistical significance was determined using t-test from three to five independent experiments.

Fluorescent microscopy, imaging, and quantification
Reporter strains were cultured in 96-well plates (Solis & Petrascheck, 2011; Rangaraju et al., 2015) and exposed to compounds on day 1 of adulthood. Concentrations varied dependent on compound: Mianserin was used at 0, 2, 10, 50, 100, or 200 μM; Fluoxetine was used at 0, 50, 100, 250, or 500 μM; and paraquat was used at 100 μM. Fluorescent images were taken 24 h after Mianserin or Fluoxetine treatment and 8 h after paraquat treatment. For imaging, animals were washed several times to remove eggs and bacteria using paralysis solution (0.3 mg ml⁻¹ levamisole, 0.005% Triton X-100 in M9), pooled (8–16 wells per condition ~100–150 worms), and transferred into a well of a black, clear-bottom imaging plate (Shore et al., 2012). Bright-field and fluorescent images were captured by a Molecular Devices ImageXpress (Molecular Devices, Sunnyvale, CA, USA) platform. Fluorescence for each worm was quantified by the Cell Profiler software (www.cellprofiler.org) using the bright-field image to create a mask for each worm, used to measure the mean fluorescence per area after median background subtraction. Statistical significance was determined using t-test.

Acknowledgments
This work was funded by grants to M.P., from the NIH (DP2 OD008398), a grant from the Ellison Medical Foundation (AG-NS-0928-12), an MDA Development Grant for S.R., and an NSF GRFP Fellowship for G.M.S. Some strains were provided by Shigen-Japan or the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). We thank Sarah LeBoeuf for technical assistance with preliminary experiments with the synaptic mutants. We thank Dr. Emalick Njie for helpful discussions. We thank Dr. Veena Prahlad, Dr. Leo Kurian, and Dr. Andrew Chisholm for critical reading of the manuscript.

Author contributions
M.P. and S.R. conceived, designed, and planned the studies. A.B.N. contributed intellectually to the study. S.R. outcrossed the strains and generated the reporter strains. S.R. performed the qRT-PCR, immunoblotting, and lifespan experiments. S.R., G.M.S., and M.P. performed the high-content imaging, aldicarb assays, and qRT-PCR sample collection. S.R., G.M.S., R.G.A., C.D.B., and M.P. performed the stress resistance assays. S.I.A. performed the DPPH assays. R.K. was involved in outcrossing strains and lifespan experiments. S.R. and M.P. performed data analyses. M.P. and S.R. interpreted the results, prepared the figures and tables, and wrote the manuscript.

Funding
No funding information provided.

Conflict of interest
The authors declare no conflict of interests.

References
Abdel-Wahab BA, Salama RH (2011) Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice. Pharmacol. Biochem. Behav. 100, 59–65.
Bansal A, Zhu L, Yen K, Tissenbaum HA (2015) Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc. Natl Acad. Sci. U. S. A. 112, E277–E286.
Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34, 458–465.
Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D (2006) Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229–239.
Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J. Affect. Disord. 64, 43–51.
Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.
Brose N, Petrenko AG, Sudhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025.

© 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The qMIE guidelines for the evaluation and use of qPCR for gene expression studies. \textit{Clin. Chem.} 55, 611–622.

Chan JP, Hu Z, Sieburth D (2012) Recruitment of sphingosine kinase to presynaptic terminals by a conserved muscarinic signaling pathway promotes neurotransmitter release. \textit{Genes Dev.} 26, 1070–1085.

Ch’ng Q, Sieburth D, Kaplan JM (2008) Profiling synaptic proteins identifies neuromodulatory and plasticity mechanisms. \textit{J. Biol. Chem.} 283, 3721–3728.

Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski D, Leiers B, Kampkotter A, Grevelding CG, Link CD, Johnson TE, Henkle-Duhrsen K, Kumsta C, Thamsen M, Jakob U (2011) Effects of oxidative stress on behavior, learning and memory in the primed state in \textit{Caenorhabditis elegans}. \textit{Neuropsychopharmacol. Biol. Psychiatry} 37, 1013–1025.

Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dyda U, Hell D, Holsto F, Boegeier P, Cuenod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. \textit{J. Neuropsychol.} 12, 3721–3728.

Doonan R, Rijkers JT, Jansen FR, Ter Meulen V, Buysse J, Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase 3 gene blocks the ROS-induced mitochondrial unfolded protein response. \textit{PLoS Genet.} 5, e1000341.

Erickson K, Taylor AE, Lohmann M, Lin J, Shen L, Parker SC, Cudmore GL, Swanson RH, Liston S, Hansford LR (2013) Neuropharmacological screening in \textit{Caenorhabditis elegans} to identify compounds that block the ROS-induced mitochondrial unfolded protein response. \textit{PLoS Genet.} 9, e1003914.

Fujii M, Matsumoto Y, Tanaka N, Miki K, Suzuki T, Ishii N, Ayusawa D (2004) Mitochondrial superoxide dismutases protect against oxidative stress but have little or no effect on life span in \textit{Caenorhabditis elegans}. \textit{Antioxid. Redox Signal.} 14, 1023–1037.

Gawrylik N, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. \textit{Int. J. Neuropsychopharmacol.} 14, 123–130.

Graeff FG (1994) Neuroanatomy and neurotransmitter regulation of defensive behaviors and related emotions in mammals. \textit{Brain. Res. Rev.} 21, 811–829.

Gulec M, Oral E, Dursun OB, Yucel A, Hacimuftuoglu A, Akcay F, Suleyman H, Karaman B (2009) Antioxidants as potential therapeutics for neuropsychiatric disorders. \textit{Prog. Neuropsychopharmacol. Biol. Psychiatry} 33, 186–195.

Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM (2000) Mutations in synaptojanin cause synaptic defects. \textit{Neuron} 24, 1089–1101.

Hobson RJ, Liu Q, Watanabe S, Jorgensen EM (2011) Complexin maintains vesicles in the primed state in \textit{Caenorhabditis elegans}. \textit{Proc. Natl Acad. Sci. U. S. A.} 108, 2231–2236.

Holston RJ, Liu Q, Watanabe S, Jorgensen EM (2011) Complexin maintains vesicles in the primed state in \textit{C. elegans}. \textit{Curr. Biol.} 21, 106–113.

Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in \textit{Caenorhabditis elegans}. \textit{J. Biol. Chem.} 278, 20277–20282.

Kumsta C, Thamsen M, Jakob U (2011) Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of \textit{Caenorhabditis elegans}. \textit{Antioxid. Redox Signal.} 14, 1023–1037.

Leiers B, Kampkotter A, Greweilding CG, Link CD, Johnson TE, Henkle-Duhrsen K (2003) A stress-responsive glutathione S-transferase confers resistance to oxidative stress in \textit{Caenorhabditis elegans}. \textit{Free Radic. Biol. Med.} 34, 1405–1415.

Levnett A, Comin CM, Valvasorius SS, Reus GZ, Vuolo F, Petronilho F, Dal-Pizzol F, Gavioli EC, Quevedo J (2009) Effects of chronic mild stress on the oxidative parameters in the rat brain. \textit{Neurochem. Int.} 54, 358–362.

Lutter M, Krishnan V, Russo SJ, Jung S, Mcclung CA, Nestler EJ (2008) Orexin signaling mediates the antidepressant-like effect of calorie restriction. \textit{J. Neurosci.} 28, 3071–3075.

Maes M, Galecki P, ChangYS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. \textit{Prog. Neuropsychopharmacol. Biol. Psychiatry} 35, 676–692.

Nonet ML, Grundahl M, Meyer BJ, Rand JB (1993) Synaptic function is impaired but not eliminated in \textit{C. elegans} mutants lacking synaptotagmin. \textit{Cell} 73, 1291–1305.

Nurmi S, Segalat L, Kaplan JM (1999) Serotonin inhibition of synaptic transmission:�

Pandya CD, Howell KR, Piliali A (2013) Antioxidants as potential therapeutic agents for neurocardiogenic disorders. \textit{Prog. Neuropsychopharmacol. Biol. Psychiatry} 46, 169–177.