INTRODUCTION

Preeclampsia is systemically characterized by widespread vascular endothelial dysfunction and microangiopathy in the mother, but not in the fetus. At present it is believed that preeclampsia starts with abnormalities in the development of blood vessels in the placenta that cause an effect on the maternal endothelium [1, 4, 5]. Knowledge of cellular and molecular processes of human trophoblast invasion is based on in vitro research and animal models; there is evidence that decidual natural killer (dNK) cells are very important in successful placentation. They are key mediators of the interaction of the mother’s immune system with fetal cells. dNK cells are also involved in modulation of invasion of extravillous trophoblasts (EVT) and remodeling of the maternal spiral arteries. They express various surface receptors and signaling molecules, and their function in modulating EVT migration, invasion, and change from epithelial phenotype to endothelial are beginning to be revealed [6].

MATERIALS AND METHODS

This study is a comparative analytic study with a cross-sectional study. Sampling was done with a convenience method specifically by taking pregnant women with preeclampsia in severe stages and normal pregnancy (controls) at RSUD dr. Pirngadi Medan and Faculty of Medicine, University of North Sumatra Networking Hospital from November 2015 to April 2016. The sample of the study was 23 pregnant women suffering from severe preeclampsia and 33 pregnant women with a term gestational age that fulfilled the study criteria. The research subjects were pregnant women aged 18-35 years, singleton pregnancy, severe preeclampsia, and term and exclusion criteria ie damaged placenta samples; who came for pregnancy control to General Hospital H. Adam Malik Medan, RSUD dr. Pirngadi Medan, and Faculty of Medicine, University of North Sumatra Networking Hospital from November 2015 to April 2016. The sample of the study was 46 women, who met the inclusion criteria.

RESULTS

Characteristics of research subjects

Table 1: Distribution characteristics of research subjects in severe preeclampsia case group and normal pregnancy group

Characteristics	Research subjects	%	Normal pregnancy	%	Total	%	p value
Age (years old)	Severe preeclampsia		Normal pregnancy				
15-25	3	13	8	34.8	11	23.9	0.062**
26-35	16	69.6	15	65.2	31	67.4	
>35	4	17.4	0	0	4	8.7	
Parity	Primigravida	7	30.4	5	8.7		

© 2020 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Table 2: Differences in dNK cell expression between severe preeclampsia case group and normal pregnancy group

Research subjects	N	CD56 expressions	p value	
		Mean	Std. deviasi	
Severe Preeclampsia	23	2.55	2.31	0.031
Normal Pregnancy	23	8.66	3.16	

Table 3: Differences in dNK cell expression between severe preeclampsia case group and normal pregnancy group based on Normal birthweigth and low birth weight (LBW)

Birth weight	N	CD56 expressions	p value	
		Mean	Std. deviasi	
Normal	41	6.9451	5.20322	0.003
LBW	5	2.4000	2.00468	

Table 4: Differences in expression of dNK cells based on proteinuria

Proteinuria	N	CD56 expressions	p value	
		Mean	Std. deviasi	
Negative	23	9.6957	4.24997	
(+2)	9	3.8889	4.90075	0.001
(+3)	11	2.7045	2.93645	
(+4)	3	3.0000	3.46410	

Fig. 1: Boxplot showing mean number of dNK cells in placenta with severe preeclampsia and normal pregnancy
CONFLICT OF INTERESTS

All the authors have contributed equally. Nil

AUTHORS CONTRIBUTIONS

FUNDING

therapy in severe preeclampsia that in the future it can become a reference basis for immunological addition, researchers are aware of the need for further research so in this research. Beloved wife, Dr. Fithria Aldy, M. Ed (Oph), Sp. M, Alisha Hanifa Lubis, and M. Chairuddin Martua Lubis. May Allah

ACKNOWLEDGEMENT

CONCLUSION

Immunohistochemistry examination of dNK cell in severe preeclampsia case group generally gave a picture of expression with a mean of 2.55±2.31 while in the normal pregnancy control group had a higher mean with 8.66±3.16. Which showed significant

Immunohistochemistry examination results

The results of this study found that the results of immune-histochemistry dNK cells examination in the severe preeclampsia case group generally gave a description of expression with a mean of 2.55±2.31 while in the normal pregnancy control group had a higher mean with 8.66±3.16. Statistically obtained p value<0.05 which indicates there is a significant difference in the expression of immunohistochemistry dNK cells between severe preeclampsia case group and normal pregnancy group.

In another study by Charles et al. stated that dNK cells in women with preeclampsia were significantly less than controls (normotension). Closely related between dNK cells and blood vessels, dNK cells trigger angiogenic factors on the effects of IFN-γ to facilitate remodeling of normal blood vessels [57, 70, 71]. Rieger et al. in their study found that there was a significant relationship between CD56+/CD16+dNK cell counts that increased in the normal pregnancy group than in severe preeclampsia group (7.3% vs 5.3%, p<0.01) [58]. Williams et al. Observed that CD56+NK cells (p = 0.01) decreased in placental bearing biopsies in PB pregnancy women compared to normal third trimester pregnancy [59].

2. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet 2005;365:785–99.
3. Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol 2009;33:130–7.
4. Fischer SJ. The placental problem: linking abnormal cytotrophoblast proliferative activity to maternal symptoms of preeclampsia. Reprod Biol Endocrinol 2004;2:53.
5. Kopcow HD, Karumanchi SA. Angiogenic factors and natural killer (NK) cells in the pathogenesis of preeclampsia. J Reprod Immunol 2007;76:23–9.
6. Eastabrook G. The role of decidual natural killer cells in normal placentation and in the pathogenesis of preeclampsia. Obstet Gynaecol Can 2008;30:467–76.
7. Kumar V, Medhi B. Emerging role of uterine natural killer cells in establishing pregnancy. Iran J Immunol 2008;5:71–81.
8. Kopcow HD, Karumanchi SA. Angiogenic and natural killer (NK) cells in the pathogenesis of preeclampsia. J Reprod Immunol 2007;76:23–9.
9. Milne F, Redman C, Walker J. The pre-eclampsia community guideline (PRE CoG): how to screen for and detect onset of preeclampsia in the community. Br Med J 2005;330:576–80.
10. Steegers EAP. Pre-eclampsia. Lancet 2010;376:631–44.
11. Uzan Jennifer, Marie Carbonnel, Olivier Piconne. Pre-eclampsia: pathophysiology, diagnosis, and management. Vasc Health Risk Manage 2011;7:467–74.
12. Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. The role of endometrial and subendometrial vascularity measured by three-dimensional power Doppler ultrasound in the prediction of pregnancy during freeze-thawed embryo transfer cycles. Hum Reprod 2006;21:1612–7.
13. Burton GJ, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 2004;11:342–52.
14. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper RN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 2000;157:2111–22.
15. Placencia W, Maiz N, Bonino S, Kailura C, Nicolaides KH. Uterine artery Doppler at 11+0 to 13+6 wks in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol 2007;30:742–9.
16. Burton GJ, Oxygen, the Janus gas; its effects on human placental development and function. J Anat 2009;215:27–35.
17. Burton GJ, Yung HW, Cindrova Davies T, Charnock Jones DS. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 2009;30(Suppl A):43–8.
18. Jauniaux E, Poston L, Burton GJ. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum Reprod Update 2006;12:747–55.
19. Brosens JJ, Parker MG, Mcdooe A, Pijnenborg R, Brosens IA. A role for menstruation in pre-conditioning the uterus for successful pregnancy. Am J Obstet Gynecol 2009;200:615.
20. Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 2009;51:970–5.
21. Myers J, Mires G, Macleod M, Baker P. In preeclampsia, the circulating factors capable of altering in vitro endothelial function precede clinical disease. Hypertension 2005;45:258–63.
22. Irani RA, Xia Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta 2008;29:763–71.

REFERENCES

1. Karumanchi SA, Maynard SE, Stillman IE, Epstein FH, Sukhatme VP. Preeclampsia: a renal perspective. Kidney Int 2005;67:2101–13.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

There is no conflict of interest in this research.

ACKNOWLEDGEMENT

On this special joyful occasion, let me express my deepest gratitude to: Dr. dr. Makmur Sitepu, M. Kem (OG), SpOG. K, dr. Makmur Sitepu, M. Kem (OG), SpOG. K, dr. Jessy Chrestella, M. Kem (PA), SpPa, dr. Surya Darma who has helped a lot in this research. Beloved wife, Dr. Fithria Aldy, M. Ed (Oph), Sp. M, and our three children Gandisyah Khalisa Mahira Lubis, Gandira Alisha Hanifa Lubis, and M. Chauruddin Martua Lubis. May Allah Suhbanahu wa ta'ala bestow His mercy and guidance on us all. In addition, researchers are aware of the need for further research so that in the future it can become a reference basis for immunological therapy in severe preeclampsia

On this special joyful occasion, let me express my deepest gratitude to: Dr. dr. Makmur Sitepu, M. Kem (OG), SpOG. K, dr. Makmur Sitepu, M. Kem (OG), SpOG. K, dr. Jessy Chrestella, M. Kem (PA), SpPa, dr. Surya Darma who has helped a lot in this research. Beloved wife, Dr. Fithria Aldy, M. Ed (Oph), Sp. M, and our three children Gandisyah Khalisa Mahira Lubis, Gandira Alisha Hanifa Lubis, and M. Chauruddin Martua Lubis. May Allah Suhbanahu wa ta'ala bestow His mercy and guidance on us all. In addition, researchers are aware of the need for further research so that in the future it can become a reference basis for immunological therapy in severe preeclampsia