Collagen Remodeling Biomarkers in Lupus Nephritis

Dawn J. Caster and Michael L. Merchant

The extracellular matrix (ECM) is a complex network of collagens, elastin, and interconnecting glycoproteins and proteoglycans that surround cells and provide structural support. The ECM is a dynamic structure, undergoing constant remodeling, and providing services beyond a simple barrier or scaffold (1). Recent studies have demonstrated that the ECM and the broad complement of interacting proteins (e.g. the matrisome) play significant roles in inflammation and cell-to-cell interactions (2). Low-grade inflammation, a common feature of many kidney diseases, often contributes to aberrant ECM deposition and fibrosis. Significantly, renal fibrosis is a hallmark of renal dysfunction progression and CKD, leading to end-organ failure.

Many of the proteins making up the renal ECM are spatially resolved into the glomerular (glomerular basement membrane, the mesangial matrix, and Bowman’s capsule) and tubulointerstitial (tubular basement membrane capillaries, and interstitial space) compartments. The most abundant proteins in the ECM are collagens, accounting for almost one third of ECM proteins (3). Type IV collagen is the most well described ECM protein in terms of kidney disease. Type IV collagen has six alpha chains that form three different trimer combinations, and the α3α4α5 heterotrimer is the most predominant in the glomerular basement membrane (3). Mutations in COL4A3, COL4A4, or COL4A5 genes are associated with Alport Syndrome, thin basement membrane disease, and familial FSGS (4,5). Proteomic analysis has identified collagens I, III, VI, VII, XII, XV, and XVIII within the glomerular ECM (6,7). Collagens I, II, III, V, VI, VII, and XV are normally expressed in the tubulointerstitium and increased expression have been associated with fibrosis (3). A recent proteomic analysis of kidneys across different age groups demonstrated consistent increases in collagen VI with aging kidneys (8).

Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE), leading to increased morbidity and mortality. LN is classified on the basis of the location of immune complex deposition and is associated with inflammation and chronic changes to the kidney. Inflammatory lesions (endocapillary hypercellularity, neutrophil infiltration, fibrinoid necrosis, hyaline deposits, cellular/fibrocellular crescents, interstitial inflammation) contribute to the activity index, whereas chronic lesions (global and segmental sclerosis, fibrous crescents, tubular atrophy, interstitial fibrosis) contribute to the chronicity index (9). Current noninvasive clinical markers for LN include proteinuria, hematuria, serum creatinine, complement levels, and antibodies to dsDNA and C1Q (10). However, these markers do not reliably predict the degree of active versus chronic lesions, and kidney biopsy remains the gold standard for diagnosis and assessment of disease activity.

There is a growing body of literature on novel biomarkers in LN, but lack of standardization and validation have limited their clinical use (10,11). The ideal LN biomarker would prognostically identify those at risk for developing disease, distinguish between active and chronic lesions, determine risk of progression, and help stratify therapeutic choice and duration of therapy (10). No single biomarker has been able to achieve this, and a much more likely scenario will be the use of multiple biomarkers, which may include panels of genomic, serum, urine, and tissue biomarkers (10). One proposed biomarker panel is the Renal Activity Index for Lupus (RAIL) score, which combined six urinary biomarkers (Neutrophil gelatinase-associated lipocalin [NGAL], Monocyte Chemoattractant Protein-1 [MCP-1], ceruloplasmin, adiponectin, hemopexin, and Kidney Injury Molecule-1 [KIM-1]) and predicted LN activity (12). The RAIL score highly correlated with renal histology (National Institutes of Health [NIH] LN activity index) with an area under the curve (AUC) of 0.92 in a pediatric cohort (12). The results were not as robust, when the same algorithm was applied adult patients with LN (AUC 0.62) (13). By adjusting the weight of the individual biomarkers within the pediatric RAIL score, researchers were able to improve the adult RAIL AUC to 0.88, but this needs external validation and the adjustment of the original score risks overfitting (13). Thus, there is a great potential for biomarkers to predict LN activity, but also a great need to optimize and validate biomarkers in different cohorts.

In this issue, Genovese et al. evaluated markers of collagen metabolism as markers of disease activity in LN. Targeted analyses for type III and VI formation, PRO-C3 and PRO-C6, were used as profibrotic disease activity markers in a large, single-center, LN cohort. To ascertain a net aspect of collagen metabolism they also evaluated C3M, a marker of collagen type III degradation. For controls, they evaluated patients with SLE without LN, patients with other glomerular diseases (biopsy controls), and normal subjects.
Differences were detected in PRO-C3 (serum) and PRO-C6 (urine and serum) levels between healthy controls and LN, but not between SLE with and without LN. Additionally, biopsy controls also had elevated levels of PRO-C3 (serum) and PRO-C6 (serum and urine). PRO-C3 urine levels were even higher in SLE and biopsy controls than in LN subjects. Given prior studies correlating increased collagen III and VI levels in CKD, it is not surprising to see elevated levels in biopsy controls. However, the elevated levels in patients with SLE without nephritis requires further exploration. It would be helpful to follow these patients longitudinally and see if any go on to develop nephritis or CKD. Recent studies suggest that ECM remodeling may occur before histologic or clinical evidence of disease (8,14).

Serum and urine PRO-C6 inversely correlated with eGFR, which is consistent with prior findings correlating PRO-C6 to CKD (15). Serum PRO-C6 was increased in patients with LN with high NIH Activity Index on kidney biopsy, whereas urine PRO-C6 was decreased in this cohort. There was no difference in biomarker levels comparing high versus low NIH Chronicity Index, but there were correlations with interstitial fibrosis and tubular atrophy, which are components of the chronicity index. Urine C3M inversely correlated with interstitial fibrosis and tubular atrophy. Serum PRO-C6 was associated with interstitial fibrosis and interstitial mononuclear cell infiltration.

This study highlights the potential for markers of collagen turnover to predict disease activity and chronicity in LN. This study supports PRO-C6 and PRO-C3 levels as markers of disease activity and fibrosis in LN. However, these findings do not appear to be specific to LN because similar elevations were observed in glomerular disease controls. The lack of specificity to LN is not surprising, given multiple prior studies linking markers of collagen III and collagen VI to fibrosis and CKD in a spectrum of kidney diseases, including GN (summarized in Table 1). These include a study by Genovese et al. evaluating type III collagen turnover in immunoglobulin A nephropathy (IgAN), which showed PRO-C3 levels increasing and C3M levels decreasing as CKD became more advanced (16). Sparding et al. (17) found urine and serum PRO-C6 levels correlated with interstitial fibrosis and decreased kidney function in patients with IgAN and antineutrophil cytoplasmic antibody–associated vasculitis.

Multiple LN guidelines have been suggested by governing organizations including Kidney Disease: Improving Global Outcomes, American College of Rheumatology, and the European League Against Rheumatism/European Renal Association–European Dialysis and Transplant Association. These guidelines all use end-point assessments on the basis of changes in proteinuria and eGFR to define response to treatment (18). Proteinuria at 12 months is currently the single best predictor of long-term kidney outcome (19,20). If validated as markers of fibrosis, PRO-C3 and PRO-C6 levels may help predict CKD in LN. Further, interventions that can decrease collagen III and collagen VI production may be important targets in CKD prevention, including LN.

Attenuation of interstitial fibrosis has been achieved in LN models. A recent study demonstrated the administration of neutralizing antibodies to tumor necrosis factor (TNF)-like weak inducer of apoptosis in the MRL/lpr LN mouse model diminished interstitial fibrosis through reductions in type 1 collagen and fibronectin expression (21). Biomarkers for fibrosis are attractive, given potential emerging therapies, which include neutralizing antibodies to inhibit fibrotic signaling pathways. Ongoing trials focusing either on interferon (IFN) or interleukin (IL) include: the Safety and Efficacy of Two Doses of Anifrolumab Compared to Placebo in Adult Subjects With Active Proliferative Lupus

Biomarker	Serum Biomarker	Urine Biomarker
Collagen III-related proteins	Positively associated with CKD and tubulointerstitial fibrosis (25).	Increased in IgAN (16)
PRO-C3	Associated with microinflammation in IgAN (16)	Positively associated with CKD and tubulointerstitial fibrosis Decreased in IgAN (16)
	Negatively associated with eGFR in T1DN (26)	Positively associated with eGFR in T1DN (26)
C3m		Negatively associated with CKD and tubulointerstitial fibrosis (25)
Collagen VI-related proteins	Negatively associated with eGFR in T1DN (26)	
PRO-C6	Increased with CKD status and degree of tubulointerstitial fibrosis in IgAN and ANCA-associated vasculitis (17)	Increased with CKD status and degree of tubulointerstitial fibrosis in IgAN and ANCA-associated vasculitis (17)
	Positively correlated with Banff interstitial fibrosis/tubular atrophy score at 6 and 24 months post-transplant; positively correlated with tubulointerstitial inflammation score at 24 months (27)	

IgAN, IgA nephropathy; T1DN, type-1 diabetic nephropathy; ANCA, antineutrophil cytoplasmic antibodies.
Nephritis (TULIP-LN) trial (AstraZeneca, anifrolumab, NCT02547922) using an IFN-α receptor blocker, the Study of Safety, Efficacy and Tolerability of Secukinumab Versus Placebo, in Combination With SoC Therapy, in Patients With Active Lupus Nephritis (SELUNE) trial (Novartis, secukinumab, NCT04181762) targeting IL-17A, and the A Study of Guselkumab in Participants With Active Lupus Nephritis (ORCHID-LN) trial (Janssen, guselkumab, NCT04376827) targeting IL-23. In this study, hydroxychloroquine was the only concomitant treatment that was associated with lower PRO-C3 and PRO-C6 levels. Hydroxychloroquine use is associated with improved long-term outcomes in patients with LN (22). Hydroxychloroquine is also a potential therapeutic for IgAN (23). Hydroxychloroquine may have anti-inflammatory effects and tubular atrophy. They also found a positive correlation of kidney diseases. However, C3M, a marker of collagen III and collagen VI production may predict single-center clinical application.

Disclosures

D.J. Caster reports having consultancy agreements with Aurinia, Calliditas, Chinoik, GlaxoSmithKline (GSK), and Traverce (previously Retrophin); reports receiving honoraria from Aurinia, Calliditas, Chinoik, GSK, and Traverce (previously Retrophin); reports being a scientific advisor or member of the Lupus Foundation of America Medical Scientific Advisory Counsel, *Glomerular Diseases* (a Karger journal) Editorial Board; and reports speakers bureau from Aurinia and GSK. The remaining author has nothing to disclose.

Funding

This work was supported by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases grants K08DK102542 (to D.J. Caster).

Acknowledgments

The content of this article reflects the personal experience and views of the author(s) and should not be considered medical advice or recommendations. The content does not reflect the views or opinions of the American Society of Nephrology (ASN) or *Kidney360*. Responsibility for the information and views expressed herein lies entirely with the author(s).

Author Contributions

D.J. Caster and M.L. Merchant wrote the original draft, and reviewed and edited the manuscript.

References

1. Bölow RD, Boor P: Extracellular matrix in kidney fibrosis: More than just a scaffold. *Histochim Cytochem* 67: 643–661, 2019
2. Karamanos NK, Theocharis AD, Piperiogkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troebel L, Franchi M, Masola V, Onisto M: A guide to the composition and functions of the extracellular matrix. *FEBS J* 2021
3. Genovese F, Mannresa AA, Leeming DJ, Karsdal MA, Boor P: The extracellular matrix in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis. *Fibrogenesis Tissue Repair* 7: 4, 2014
4. Deltas C, Savva I, Voskarides K, Papazachariou L, Pierides A: Carriers of autosomal recessive alport syndrome with thin basement membrane nephropathy presenting as focal segmental glomerulosclerosis in later life. *Nephron* 130: 271–280, 2015
5. Naylor RW, Morais MRPT, Lennon R: Complexities of the glomerular basement membrane. *Nat Rev Nephrol* 17: 112–127, 2021
6. Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, Knight D, Brenchley PE, Zent R, Humphries M: Global analysis reveals the complexity of the human glomerular extracellular matrix. *JASN* 25: 939–951, 2014
7. Hobeika L, Barati MT, Caster DJ, McLeish KR, Merchant ML: Characterization of glomerular extracellular matrix by proteomic analysis of laser-captured microdissected glomeruli. *Kidney Int* 91: 501–511, 2017
8. Randles M, Lausecker F, Kong Q, Suleiman H, Reid G, Kolatsi-Joannou M, Tian P, Falcone S, Davenport B, Potter P, Van Agtmael T, Norman J, Long D, Humphries M, Miner J, Lennon R: Identification of an altered matrix signature in kidney aging and disease. *J Am Soc Nephrol* 32: 1713–1732, 2021
9. Bajema IM, Wilhelmsus S, Alpers CE, Bruijn JA, Colvin RB, Cook HT, D’Agaï TD, Ferrario F, Haas M, Jennette JC, Joh K, Nast CC, Noël LH, Rijnink EC, Roberts ISD, Seshan SV, Sethi S, Fogo AB: Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. *Kidney Int* 93: 789–796, 2018
10. Caster DJ, Powell DW: Utilization of biomarkers in lupus nephritis. *Adv Chronic Kidney Dis* 26: 351–359, 2019
11. Birmingham DJ, Merchant M, Walkar SS, Nagaraja H, Klein JB, Rovin BH: Biomarkers of lupus nephritis histology and flare: Deciphering the relevant amidst the noise. *Nephrol Dial Transplant* 32: 171–179, 2017
12. Brunner HI, Bennett MR, Abulaban K, Klein-Gitelman MS, O’Neil KM, Tucker L, Ardoïn SP, Rouster-Stevens KA, Onel KB, Singer NG, Anne Eberhard B, Jung K, Imundo L, Wright TB, Witte D, Rovin BH, Ying J, Devarajan P: Development of a novel renal activity index of lupus nephritis in children and young adults. *Arthritis Care Res (Hoboken)* 68: 1003–1011, 2016
13. Gulati G, Bennett MR, Abulaban K, Song H, Zhang X, Ma Q, Brodsky SV, Nadasdy T, Haifner C, Wiley K, Ardoïn SP, Devarajan P, Ying J, Rovin BH, Brunner HI: Prospective validation of a novel renal activity index of lupus nephritis. *Lupus* 26: 927–936, 2017
14. Clotet-Freixas S, McEvoy CM, Batruch I, Pastrello C, Kotlyar M, Van JAD, Arambewela M, Boshart A, Farkona S, Niou Y, Li Y, Famure O, Mozavic A, Kulaevingam V, Chen P, Kim SJ, Chan E, Moshkelgosha S, Rahman SA, Das J, Martinu T, Juvert L, Surisca J, Chruscinski A, John R, Konvalinka A: Extracellular matrix injury of kidney allografts in antibody-mediated rejection: A proteomics study. *JASN* 31: 2705–2724, 2020
15. Rasmussen GCK, Fenton A, Jesky M, Ferro C, Boor P, Tepel M, Karsdal MA, Genovese F, Cockwell P: Urinary endotrophin predicts disease progression in patients with chronic kidney disease. *Sci Rep* 7: 17328, 2017
16. Genovese F, Boor P, Papasotiriou M, Leeming DJ, Karsdal MA, Floege J: Turnover of type III collagen reflects disease severity and is associated with progression and microinflammation in
patients with IgA nephropathy. Nephrol Dial Transplant 31: 472–479, 2016
17. Sparding N, Genovese F, Rasmussen DGK, Karsdal MA, Nepra-sova M, Maixnerova D, Satrapova V, Frausova D, Hornum M, Bartonova L, Honsova E, Kollar M, Koprivova H, Hruskova Z, Tesar V: Endotrophin, a collagen type VI-derived matrikine, reflects the degree of renal fibrosis in patients with IgA nephropathy and in patients with ANCA-associated vasculitis. Nephrol Dial Transplant: gfab163, 2021
18. Parikh SV, Almaani S, Brodsky S, Rovin BH: Update on lupus nephritis: Core curriculum 2020. Am J Kidney Dis 76: 265–281, 2020
19. Dall’Era M, Cisternas MG, Smilek DE, Straub L, Houssiau FA, Cervera R, Rovin BH, Mackay M: Predictors of long-term renal outcome in lupus nephritis trials: Lessons learned from the Euro-Lupus Nephritis cohort. Arthritis Rheumatol 67: 1305–1313, 2015
20. Tamirou F, D’Cruz D, Sangle S, Remy P, Vasconcelos C, Fiehn C, Ayala Gutierrez M. d M, Gilhoe I-M, Tektonidou M, Blockmans D, Ravelingien I, Le Guern V, Depresseux G, Guillemin L, Cervera R, Houssiau FA; MAINTAIN Nephritis Trial Group: Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann Rheum Dis 75: 526–531, 2016
21. Xue L, Zhang Y, Xu J, Lu W, Wang Q, Fu J, Liu Z: Anti-TWEAK antibody alleviates renal interstitial fibrosis by increasing PGC-1a expression in lupus nephritis. JIR 14: 1173–1184, 2021
22. Fessler BJ, Alarcón GS, McGwin G, Jr, Roseman J, Bastian HM, Friedman AW, Baethge BA, Vilá I, Reveille JD; LUMINA Study Group: Systemic lupus erythematosus in three ethnic groups: XVI. Association of hydroxychloroquine use with reduced risk of damage accrual. Arthritis Rheum 52: 1473–1480, 2005
23. Liu LJ, Yang YZ, Shi SF, Bao YF, Yang C, Zhu SN, Sui GL, Chen YQ, Lv JC, Zhang H: Effects of hydroxychloroquine on proteinuria in IgA nephropathy: A randomized controlled trial. Am J Kidney Dis 74: 15–22, 2019
24. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, Luo Z, Ye Y, Sun Q: Hydroxychloroquine inhibits macrophage activation and attenuates renal fibrosis after ischemia-reperfusion injury. Front Immunol 12: 645100, 2021
25. Genovese F, Rasmussen DGK, Karsdal MA, Jesky M, Ferro C, Fenton A, Cockwell P: Imbalanced turnover of collagen type III is associated with disease progression and mortality in high-risk chronic kidney disease patients. Clin Kidney J 14: 593–601, 2021
26. Pilemann-Lyberg S, Rasmussen DGK, Hansen TW, Tofte N, Winther SA, Holm Nielsen S, Theilade S, Karsdal MA, Geno- vese F, Rosing P: Markers of collagen formation and degrada- tion reflect renal function and predict adverse outcomes in patients with type 1 diabetes. Diabetes Care 42: 1760–1768, 2019
27. Yepes-Calderón M, Sotomayor CG, Rasmussen DGK, Hijmans RS, Te Velde-Keyzer CA, van Londen M, van Dijk M, Dijkstra A, Berger SP, Karsdal MA, Benelmann FJ, de Fijter JW, Kers J, Florquin S, Genovese F, Bakker SJL, Sanders JS, Van Den Born J: Biopsy-controlled non-invasive quantification of collagen type VI in kidney transplant recipients: A post-hoc analysis of the MECANO trial. JCM 9: 3216, 2020

Received: July 19, 2021 Accepted: August 18, 2021

See related article, “Collagen Type III and VI Remodeling Biomarkers Are Associated with Kidney Fibrosis in Lupus Nephritis,” on pages 1473–1481.