Developmental stage specificity of the lymphoid \(V(D)J\) recombination activity

Michael R. Lieber, Joanne E. Hesse, Kiyoshi Mizuuchi, and Martin Gellert

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 USA

We have examined the level of immunoglobulin gene \(V(D)J\) recombination activity in a number of cell lines derived from lymphoid or nonlymphoid lineages. The assay we employed uses extrachromosomal DNA as substrate and thereby avoids difficulties associated with the use of chromosomally integrated substrates. The recombination activity decreases during B-lymphoid development. It is highest at the earliest stages of committed B-cell differentiation and then falls progressively, reaching undetectable levels at the mature B-cell stage. The activity is also present in multipotential progenitors of myeloid cells and in pre-T cells but not mature T cells. No activity was found in several nonhematopoietic cell lines. Recombination was seen only among substrate molecules which had replicated in the eukaryotic cells. Several possible interpretations of this result are discussed.

[Key Words: Recombination; immunoglobulin; T-cell receptor; lymphoid development]

Received July 1, 1987; revised version accepted August 4, 1987.

The diversity in antigen recognition by immunoglobulins (Ig) and T-cell receptors (TCR) is due primarily to site-specific recombination of genomic DNA sequences called \(V\) (variable), \(D\) (diversity), and \(J\) (joining) segments to form the mature genes encoding these proteins. Recombination is directed by joining signals, sequences in the noncoding DNA adjacent to each of these coding segments. Each joining signal sequence consists of a highly conserved palindromic heptamer whose consensus sequence is CACAGTG and an A/T-rich nonamer (reviewed by Alt et al. 1986; Kronenberg et al. 1986).

The overall temporal order of immunoglobulin rearrangement has been inferred from studies on transformed lymphoid cell lines (for review, see Yancopoulos and Alt 1986). Heavy-chain \(D_\alpha\) and \(J_\alpha\) segments join on both chromosomes, followed by \(V_\alpha\)-to-\(D_\alpha\)+\(J_\alpha\) joining. A productive \(VD_\alpha\) joining, though it does not necessarily shut off further rearrangement at the heavy-chain locus (Kleinfield et al. 1986), appears to signal the onset of light-chain gene rearrangement (Reth et al. 1985).

In previous studies of this gene rearrangement reaction, rearrangements of either endogenous or exogenous but chromosomally integrated segments were monitored (Blackwell and Alt 1984; Lewis et al. 1984, 1985). From these studies two factors appear important: the presence of the recombination activity and the accessibility of the recombination substrate. A previous study (Yancopoulos et al. 1986) of an integrated exogenous substrate has suggested that eligibility for recombination correlates with transcription of the surrounding DNA.

To assess the activity of the recombination enzyme system in various cell lines without effects due to the chromosomal context of the substrate DNA, we have employed an assay that utilizes an extrachromosomal circular DNA substrate containing the joining signal sequences (Hesse et al. 1987). Because the assay can be shown to detect recombination only among extrachromosomal DNA molecules that have replicated, it is possible to measure recombination frequency rather accurately and to disregard DNA that is merely absorbed to the cells.

We report a survey of \(V(D)J\) recombination activity present in transformed cells that represent various tissues and various developmental stages, with particular attention to the successive stages of B- and T-cell development. The results strongly suggest that the \(V(D)J\) recombination activity is regulated during B- and T-cell differentiation in a stage-specific manner.

Results

The strategy used here to measure levels of recombination activity employs a plasmid, \(p\text{H}200\) (Fig. 1), which contains the heptamer—nonamer joining signals as well as genes conferring antibiotic resistance. This substrate DNA is transfected into the eukaryotic cells to be tested, recovered 48 hr later, and introduced into \(E.\ coli\) by transformation. All plasmid DNA confers ampicillin resistance [\(\text{Amp}^r\)]. Because recombination excises a transcription stop signal upstream of the chloramphenicol acetyl transferase (CAT) gene in \(p\text{H}200\), recombinant molecules also confer chloramphenicol resistance [\(\text{Cam}^r\)]. Thus, the ratio of doubly resistant [\(\text{Amp}^r\text{Cam}^r\)] colonies to \(\text{Amp}^r\) colonies reflects the fraction of DNA that is rearranged at the heptamer—nonamer joining signals. \(Hgi\text{AI}\) restriction analysis of plasmids recovered
Figure 1. Outline of recombination reaction. Plasmid pH200 contains two heptamer–nonamer immunoglobulin joining-signal sequences flanking a prokaryotic transcription terminator (labeled ‘stop’). The signals, in turn, are flanked by the E. coli plac promoter on one side and the gene for CAT on the other. The terminator prevents expression of the cat gene when the plasmid is in E. coli. After V(D)J recombination in lymphoid cells (lower part of figure), the terminator has been deleted, allowing cat expression in E. coli, and the joining signals have been fused, heptamer to heptamer. The signal joint contains a novel HgiAI restriction site. Plasmid pH200 is identical to pH201, previously described (Hesse et al. 1987), except that pH200 lacks the κ transcription enhancer.

from doubly resistant colonies [Hesse et al. 1987] confirmed that a precise signal junction [heptamer-to-heptamer fusion] was formed in the large majority of recombinants. The exceptional cases will be the subject of a separate publication.

The quantitative interpretation of the experimental data is complicated by the variable fraction of exogenously added DNA that can remain stuck to the outside of the eukaryotic cells. This can lead to spuriously low estimates of the frequency of recombination. Therefore, we took advantage of the fact that plasmid pH200 can replicate autonomously in murine cells because it contains the early region of the polyoma genome. Unreplicated molecules, which retain a prokaryotic methylation pattern, can be eliminated by digestion of the recovered DNA with the restriction enzyme DpnI prior to transformation of the bacteria. Because we find V(D)J recombination only among replicated DNA molecules [as described below], digestion with DpnI preferentially removes DNA molecules that have had no opportunity to recombine. Because it gives a more reliable measure of recombination, the ratio of Amp'/Cam' to Amp' among replicated molecules, which we call R, is our preferred way of presenting recombination frequencies.

V(D)J recombination activity in the B-lymphoid lineage

To assess the variation in V(D)J recombination activity during B-lymphoid differentiation, we measured the activity in a number of transformed cell lines that are thought to represent B cells at various stages of development. The cell lines used are listed in Table 1, grouped by lineage and developmental stage. The progenitor B- and pre-B-cell lines are further classified according to the stage of rearrangement of their Ig genes [heavy chain, κ or λ light chain] and according to the designations given in the original descriptions of the cell lines.

All 18 cell lines representing pre-B or earlier stages contain V(D)J joining activity, except for the relatively mature 70Z/3 cell line. Among these lines, the recombination activity varies in a systematic way. The least differentiated cell lines, BAMC1 and HAFTL1, have detectable but quite low recombination activity. These cells have been designated pro-granulocyte-monocyte-B lymphocyte [pro-GMB], because subclones can follow either the monocytic or lymphoid pathway [Holmes et al. 1986]. Thus, they represent a developmental stage before commitment to the B-lymphoid lineage has occurred.

The cell lines at the next stage [pro-B], BASC6 and NFS70, have much higher recombination activity. In fact, these cells had the highest levels of recombination among those we tested, with 43% and 100% of replicated molecules being rearranged, respectively. These cells express some but not all surface markers characteristic of pre-B cells [Davidson et al. 1984; Holmes et al. 1986; Mushinski et al. 1987]; on the other hand, their subclones have not been observed to differentiate along any other than the B-cell pathway. They thus represent very early committed B cells.
At later stages of B-cell development, recombination activity generally appears to decrease; however, we observed large variations from one cell line to another. Among seven pre-B cell lines at the stage of heavy-chain rearrangement, there is a 20-fold range of activity (from 1.3% to 27%). These cell lines include some derived from fetal liver and others derived from 2- to 3-week-old or adult murine bone marrow; there is no obvious correlation of recombination activity with the original source of the cells. Two of these lines, 38B7 and 1-8, are of particular interest. Both heavy-chain alleles of 38B7 have undergone nonproductive VDJH rearrangement and have exhausted their D segments. In the 1-8 line, there has been a nonproductive VDJH rearrangement at one heavy-chain allele and a DIH rearrangement at the other. Neither line shows continuing rearrangement of its endogenous light- or heavy-chain Ig genes (Alt et al. 1984), even though our assay detects an active recombination system in both lines. Therefore, the failure of the endogenous genes to rearrange appears to reflect the state of those loci rather than the absence of activity.

Among five cell lines that are active at rearranging the κ locus (Lewis 1985), the recombination activity is still lower. Three of these lines make cytoplasmic μ-chains whereas two do not, but this property is not correlated with their recombination activity. A similar lack of correlation is seen among subclones of the κ-rearranging cell line PD, some of which make cytoplasmic μ-chains whereas others do not (see below; Table 2).

The ABC-1 cell line, which is active in rearranging both the κ and λ loci (Lewis 1985; Persiani et al. 1987) has considerably higher activity than those that rearrange only κ.

Among three cell lines at the late pre-B- or mature B-cell stage, two were recombination negative and one was positive. The 70Z/3 cell line, which was negative, is classified as pre-B because it is not surface Ig positive, though it does make cytoplasmic μ and a low level of cytoplasmic κ chains (Wall et al. 1986). This relatively mature pre-B line has never been demonstrated to rearrange its already productively rearranged endogenous Ig heavy and κ loci any further; it did not have detectable activity in our assay. The mature B-cell line, WEHI-279 (Harris 1978), which is surface Ig μ+κ+, also failed to show any recombination activity. In contrast, the mature B-cell line BALB 1427 (Mushinski et al. 1987) did have recombination activity, although 100% of the cell population is surface Ig μ+κ+. Thus, expression of surface Ig does not by itself seem to be sufficient to shut off VDJ recombination activity.

Four cell lines representing the latest stages of B-cell differentiation were all recombination negative (Table 1). All of these bear, in addition to surface Ig, high levels of the surface marker PC-1, a characteristic of the plasma cell stage. At this stage, the recombination activity appears to be conclusively absent.

The recombination-positive cell lines described above were derived by neoplastic transformation with a number of different viruses [see Table 1 legend]. There was no obvious correlation between recombination activity and the method used to obtain the cell line.

V(D)J recombination activity in pre-T and early myeloid cells

Two pre-T cell lines (Risser et al. 1985) are recombination positive. One of these, 2052C, has been shown to rearrange its γ and β loci in culture, whereas the other, 2002, is already rearranged at γ and β (R. Spolski, R. Risser, and T. Mak, pers. comm.). Since the mature T-cell line B6Mo3 (Risser et al. 1978) has no recombination activity in this assay, the VDJJ recombination activity may also be developmentally regulated in the T-cell lineage.

The M1 cell line (Ichikawa 1969) had recombination activity in our assay (Table 1). These cells lack several markers characteristic of monocytic differentiation, but gain Mac-1, Mac-3, lysozyme production, and phagocytic capability upon stimulation with lipopolysaccharide (Ralph et al. 1983). They can thus be induced to differentiate along the monocyte–macrophage pathway. M1 also retains the ability to be induced to differentiate along the granulocytic pathway (Tsuda et al. 1986); however, it has never been observed to differentiate along the lymphoid pathway. Detection of VDJJ recombination activity in this line may indicate persistence of the activity early after the divergence of myelo-monocytic cells from the lymphoid pathway. Two terminally differentiated myeloid cell lines, RAW309 Cr.1 and P815, were recombination negative. The erythroid precursor Friend erythroleukemia line F-MEL was negative for VDJJ recombination activity.

Absence of VDJ recombination in other tissues

None of a variety of cell lines representing nonhematopoietic lineages showed detectable recombination. The cells tested include fibroblast, neuroblastoma, smooth muscle, embryonic hepatocyte, and epithelial cell lines (Table 1).

Variation in recombination among subclones

Do different subclones of the same transformed cell line vary markedly in recombination activity? Some variation among subclones of the PD cell line was found; the overall range was about fivefold (Table 2). These subclones vary in the length of time they have been cultured since viral transformation, in the status of their κ alleles, and in μ-chain synthesis (Lewis 1985), but there was no apparent correlation of recombination activity with any of these parameters. Moderate variations in recombination were also found in subclones of the 18-8 (Clark and Rosenberg 1980) and ABC-1 cell lines (Table 2). These differences have to be calibrated against the variability in repeated assays of the same cell line, which is typically twofold from top to bottom of the range.

Recombination is detected only among replicated DNA molecules

Plasmid pJH200 and the closely related plasmid pJH201 (Hesse et al. 1987), which differs in containing the κ enhancer region, are capable of replicating autonomously
Table 1. Developmental stage and tissue specificity of the V(D)J recombination activity

| Tissue and stage description | Literature designation of transformant | Cell line name | Genotypic and phenotypic parameters | \(\text{Ig Loci} \) | \(\mu \) | \(\text{Ly5} \) | \(\text{Rep} \) | \(\text{Rep}^{\text{Amp}} \) | \(\text{Rep}^{\text{Amp}^{\text{Cam}}} \) | \(R \times 100 \) | References |
|-----------------------------|--|----------------|-------------------------------------|----------------|---|------|-----|------|------|----------|-----------|----------|
| Nonhematopoietic Neural cell | Neuroblastoma | Neuro-2A | 114,000 100,000 0 <.001 | 1 | | | 150 | 0.2 | 4(5) | | |
| Embryonic liver | -- | BNL CL.2 | 4,000 4,400 0 <.02 | 1 | | | 150 | 0.2 | 4(5) | | |
| Embryonic liver | -- | CMT-93 | 800 630 0 .2 | 1 | | | 150 | 0.2 | 4(5) | | |
| Fibroblast | L Cell | 31,000 31,000 0 <.003 | 1 | | | 150 | 0.2 | 4(5) | | |
| Fibroblast | Psi 2 | 5,600 0 <.02 | 2(3) | | | 150 | 0.2 | 4(5) | | |
| Smooth muscle | BC3H1 | 400 240 0 <.4 | 1 | | | 150 | 0.2 | 4(5) | | |
| Hematopoietic B-lymphoid lineage | Pro-GMB | BAMC1 R G 3,000 680 1 <.02 | 4(5) | | | 150 | 0.2 | 4(5) | | |
| and Pre-B (stage of heavy-chain locus rearrangement) | Pro-GMB | HAFTL1 G,R G 15,000 600 6 1.0 | 4(5) | | | 150 | 0.2 | 4(5) | | |
| Pro-B | BASC6 C2 | 15,000 24 24 100 | 4(5) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | N59 70 | 19,000 7 3 43 | 16| | | 150 | 0.2 | 4(5) | | |
| Pre-B | HS1C5 | 1,100 150 6 4.0 | 4(5) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | BAC14 | 1,500 860 149 17 | 9(8,10) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | 38B7 | 3,500 930 255 27 | 9(8,10) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | 1-8 | 1,200 250 14 5.7 | 9(8,10) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | 22D6 | 14,000 1,800 24 | 1.3 | 9(8) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | 40E4 | 6,500 970 8 0.8 | 7(8,10) | | | 150 | 0.2 | 4(5) | | |
| Pre-B (stage of kappa locus rearrangement) | Pre-B | PD31 R R 13,000 6,150 28 0.5 11(10,12) | 4(5) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | 196-313 | 43,000 2,100 31 1.5 | 11(13) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | 143-2M3 | 7,800 8,100 358 4.4 | 7(13) | | | 150 | 0.2 | 4(5) | | |
| Pre-B | 204-1-7 | 12,400 3,300 52 1.6 | 7(8,13) | | | 150 | 0.2 | 4(5) | | |
| Pre B | 70Z/3 | 2,000 630 0 <.02 | 1(8) | | | 150 | 0.2 | 4(5) | | |
| Pre-B (stage of lambda locus rearrangement) | Pre-B | ABC-1 R R R 19,000 67 | 13 | 19 | 11(13) | | |
| Mature B cell | B Cell | BALB-1427 R R 30,000 560 8 1.4 | 15(14)| | | 150 | 0.2 | 4(5) | | |
| Immunoarblast | B Cell | WEHI-279 R R 175,000 880 0 <.1 | 1 | | | 150 | 0.2 | 4(5) | | |
| Plasma cell | Immunoarblast | SJL-4 R R 4,100 1,750 0 <.06 | 15(14)| | | 150 | 0.2 | 4(5) | | |
| Plasmacytoma | PLA14/5.XKO-1 | R + + | 2,500 1,360 0 <.07 | 1 | | | 150 | 0.2 | 4(5) | | |
| Plasmacytoma | MOPC460D | R + + | 4,300 2,100 0 <.05 | 16(17) | | | 150 | 0.2 | 4(5) | | |
| Plasmacytoma | MPC 11 | R + + | 15,000 1,100 0 <.09 | 11(18) | | | 150 | 0.2 | 4(5) | | |
| T-lymphoid lineage | TCR loci | | | | | | 150 | 0.2 | 4(5) | | |
| Pre-T | Pre-T | 2052C \(\gamma \) 8,700 240 2 0.8 | 19(20) | | | 150 | 0.2 | 4(5) | | |
| Pre-T | 2017 | \(\beta \) 32,000 6,700 17 0.3 | 19(20) | | | 150 | 0.2 | 4(5) | | |
| Mature T | T Cell | B6Mo3 \(\alpha \) 24,000 5,100 0 <.02 | 19 | | | 150 | 0.2 | 4(5) | | |
| Monocytic lineage | Monoblast | Myeloblast M1 | 110,000 1,900 5 0.3 | 1(21) | | | 150 | 0.2 | 4(5) | | |
| Monocyte | RAW309 | 11,000 1,800 0 <.06 | 1 | | | 150 | 0.2 | 4(5) | | |
| Granulocytic lineage | Mastocytoma | P815 77,000 1,600 0 <.06 | 1 | | | 150 | 0.2 | 4(5) | | |
| Erythroid lineage | Early precursor | F-MEL 4,300 1,200 0 <.08 | 22 | | | 150 | 0.2 | 4(5) | | |
Lymphoid development and V(D)J recombination activity

Table 2. Comparison of V(D)J recombination activity in clonally related cell lines

Subclone or subline	Approximate days in culture since viral transformation	IgH	κ	λ	μ-Chain expression	Amp⁺	Rep⁺	Rep⁺Cam⁺	R × 100
PD	58	RR	G	G	+	13,000	2,050	44	2.1
PD 31	76	RR	G	G	-	14,000	8,600	68	0.8
PD 31	190	RR	G	G	-	13,000	6,150	28	0.5
PD 34-4	124	RR	R	G	+	5,800	4,500	85	1.9
PD 34-14	124	RR	D	R	+	2,700	2,250	10	0.4
PD 34-28	118	RR	D	G	+	11,000	2,000	7	0.4
ABC 1		RR	D	D	+	19,000	67	13	19
AT 2		RR	D	D	+	16,000	1,500	297	20
18-81		RR	R	G	+	6,500	970	8	0.8
18-82		RR	R	G	+	8,200	1,950	47	2.4
18-84		RR	R	G	+	1,100	130	2	1.5

Subclones were transfected with pH200, plasmid DNA was recovered 48 hr later and analyzed using the E. coli transformation assay (see Methods). R is the fraction of replicated substrate which underwent V(D)J recombination. PD and its subclones and ABC-1 and its subline (AT-2) have been characterized by Lewis (1985) for endogenous Ig locus status, μ-chain expression, and time in culture after viral transformation. Subclones of 18-8 (18-81, 18-82, and 18-84) were characterized and described by Clark and Rosenberg [1980]. (RR) Rearranged at both alleles; (RG) rearranged at one allele and germ line at the other; (DR) deleted at one allele and rearranged at the other; (GG) germ line at both alleles.

in mouse cells because they contain the early region of the polyoma virus genome. The following series of experiments was carried out with pH201. To assess the fraction of transfected molecules that had replicated, plasmid DNA recovered from the cells was digested with the restriction endonucleases DpnI or MboI. These enzymes both cleave at the sequence GATC, but have complementary specificities in that DpnI cuts only if the A in GATC is methylated on both strands whereas MboI cuts only if both As are unmethylated. Neither enzyme cuts at hemimethylated sites. The transfecting plasmid DNA was grown in dam⁺ strains of E. coli and thus was initially methylated at these sites. Because methylation of As is not propagated during replication in eukaryotic cells, molecules that have undergone one or more rounds of replication in these cells are hemimethylated or unmethylated and are resistant to DpnI. The sequence GATC occurs over 20 times in pH200 and pH201, so that sensitive molecules will be extensively fragmented and unable to give rise to transformants after introduction into bacterial hosts.

In the experiments summarized in Table 3, cells were transfected with pH201, and the DNA was recovered and digested with DpnI or MboI or with both enzymes. A fraction of each digestion mix was transformed into E. coli and Amp⁺ or Amp⁺Cam⁺ transformants were scored.

The fraction of DpnI-resistant DNA molecules varied from 1% at 24 hr to as much as 66% at later times (Table 3). For each cell line, the MboI-resistant fraction represented nearly all of the remainder; the sum of Amp⁺ transformants obtained with DNA that was digested with DpnI or MboI was approximately equal to that obtained with undigested DNA. The results, which suggest that few hemimethylated molecules were recovered, was confirmed by double digestion with DpnI and MboI (Table 3).

It is to be noted that recombinated molecules (Amp⁺Cam⁺) are detected in the replicated pool but not in the

Table 1. (continued)

Cell lines were transfected with pH200, and plasmid DNA was recovered 48 hr later. The recovered plasmid was analyzed using the E. coli transformation assay. R is the fraction of replicated plasmid that underwent V(D)J recombination. The prefix Rep, as in Rep^{Amp} or Amp⁺Cam⁺, designates the number of DpnI-resistant plasmids. Results are summations of 2–4 transfections per cell line. Staining for LyS(B220) that is positive but lower than for normal cells is designated + (Davidson et al. 1984; Holmes et al. 1986). Abbreviations used in referring to Ig and TCR endogenous gene status: (G) germ line, (R) rearranged, (G,R) retention of germ line configuration at one allele and rearrangement at the other. The source of each cell line is given by the number in the references column. References for the phenotypic and genotypic characterization of each cell line are given by the numbers in parentheses. The numbers are keyed to the following: [1] American Type Culture Collection (ATCC) [originators of each cell line from ATGC are given in the ATCC volume Cell Lines and Hybridomas, 5th edition], [2] Richard Mulligan, MIT, [3] Mann et al. 1983, [4] Jaclyn Pierce, NIH, Hoelzer and Aaronson 1982, Pierce and Aaronson 1985, [5] Holmes et al. 1986, [6] Davidson et al. 1984, [7] Naomi Rosenberg, Tufts, Baltimore et al. 1979, [8] Alt et al. 1984, [9] David Baltimore, MIT, [10] McCearn and Rosenberg 1985, [11] Susanna Lewis, NIH, [12] Lewis et al. 1982, [13] Lewis 1985, [14] Mushinski et al. 1987, [15] Kevin Holmes and Herbert Morse, NIH, [16] Rick Norden and Michael Potter, NIH, [17] Jaffe et al. 1969, [18] Laskov and Scharff 1970, [19] Rex Risser, U. Wisconsin, [20] R. Spolsk; R. Risser, and T. Mak [pers. comm.], [21] Ralph et al. 1983, [22] Arthur Nienhuis, NIH. The method of growth transformation of the hematopoietic cells is given in the original description cited for each line. Abelson murine leukemia virus was used in all the following cases: HAFTL-1 and HS1C5, Harvey sarcoma virus; BAMC1 and BASC 6, BALB sarcoma virus; NFS-70, Cas-NS-7, BAC 14, 2017 and B6Mo3, Moloney murine leukemia virus; 70Z/3, methyl nitrosourea, BALB 1427 and SJL-4, retroviral constructions [Rapp et al. 1986], S194/5.XXO-1 and MOPC460D, mineral oil, MPC 11, solid plastic-induced; M1, spontaneous leukemia; P815, DBA/2 mouse tumor; and F-MEL, Friend virus.
Table 3. Recombination among replicated DNA molecules

Cell line	Time after transfection (hr)	Amp⁺	Percent DNA replicated	Amp⁺Cam⁺	Percent undigested DNA recombined
		Rep Nonrep Hemimethylated Undigested	Rep Nonrep Hemimethylated Undigested		
22D6	48	900 2,400 0 3,200	28	87 0 0 80	3 10
1-8	24	900 78,000 0 80,000	1	34 0 0 36	0.05 4
	36	2,500 2,400 470 4,700	55	209 0 0 200	4 8
	48	1600 840 0 2,400	67	183 0 0 169	7 11

22D6 or 1-8 cells were transfected with pJH201, and plasmid DNA was recovered at the indicated times. An aliquot of each recovered plasmid was digested with DpnI or with MboI. In each experiment, equivalent amounts of undigested and digested DNA were transformed into E. coli. (Rep) Number of colonies resulting from transformation of E. coli with DpnI-digested DNA. (Nonrep) Number of colonies resulting from transformation with MboI-digested DNA.

unreplicated pool. Some molecules undoubtedly fail to replicate and recombine because they are merely adsorbed to the cells. There may be additional reasons why replication is required for recombination [see Discussion], but as a practical matter it is reasonable to exclude from the calculation of recombination frequency those DNA molecules that are ineligible for recombination. Thus, the fraction of recombined among replicated molecules [R] is a better measure of recombination proficiency than the overall recombination frequency. In cases where no recombination occurs, replication documents that the DNA did enter the nucleus.

The results above show that accessibility of DNA to replication and recombination enzymes goes in parallel. Could DNA undergo V(D)J recombination if it fails to replicate for reasons other than its location? We addressed this question by constructing a plasmid (pJH205) identical to pJH201 but having a linker insertion mutation at the polyoma origin (Kern et al. 1986) which markedly depresses initiation of DNA replication. As expected, plasmid pJH205 does indeed replicate to a much smaller extent than pJH201 in 1-8 cells. After 40 hr, replication of pJH205 was only 2% of that of pJH201 (Table 4). Nevertheless, R was similar for both plasmids, as is also shown in Table 4.

As a further test of the need for replication, we constructed a plasmid (pJH100) that is generally similar to pJH201 except that it lacks the polyoma early region altogether. At 40 hr after transfection into 1-8 cells, there was no detectable replication of pJH100, and no recombination. Parallel transfections of pRSV_{cat} (Gorman et al. 1982) resulted in CAT expression, documenting that DNA entered the lymphoid cells. No Amp⁺Cam⁺ colonies were recovered from a transformation with an amount of DNA corresponding to 2 x 10⁵ Amp⁺ transformants, whereas a parallel transfection with pJH201 resulted in 4000 Amp⁺Cam⁺ colonies among 50,000 replicated molecules.

Time course of replication and rearrangement in pre-B cell lines

Replication of the plasmid was first seen at 18 hr after transfection, and the fraction of recovered molecules that had replicated increased for several hours thereafter [Fig. 2A]. The peak for maximal recovery of replicated plasmid was between 35 and 45 hr. The time course of the absolute number of replicated molecules (not shown) was similar to that of polyoma DNA after infection of cultured cells (Dubbelco et al. 1965). Cotransfection of rearranged and unrearranged molecules into cells has shown that there is no detectable difference in the replication or degradation of these two forms of the plasmid (data not shown).

Recombination was typically detectable at 24 hr after transfection and increased for some time. R increased roughly linearly out to 60 hr here [Fig. 2B] and out to 72–48 hr in other experiments. This time course has been repeatable with separate cultures of the cell line 1-8 over a 1-year period.

To test the effect of the ` enhancer, we transfected 1-8 cells with pJH201, which contains the enhancer, and pJH200, which does not. There was no difference in the time course of recombination or replication [data not shown]. The same was true when both plasmids were tested in PD31. Furthermore, R values determined at 48 hr were essentially the same for both substrates in each cell line of Table 1. It should be noted that both plasmids already contain the polyoma enhancer adjacent to the replication origin.

Discussion

Our results show that V(D)J recombination is confined to cell lines from the lymphoid and myeloid lineages. Cells derived from other hematopoietic lineages [Fig. 3]...
Figure 2. Time course of replication and recombination. 1-8 cells were transfected with pJH201 as described in Methods, but on a 10-fold larger scale. Samples were aliquoted immediately after transfection; one was taken at each indicated time, and plasmid DNA was recovered. [A] Percentage of DNA that has been replicated (scored as Amp' colonies in DNA resistant to DpnI digestion per total Amp' colonies) or recombined (scored as Amp'Cm' colonies in DNA resistant to DpnI digestion per total Amp' colonies). [B] Ratio R of recombined to replicated DNA is presented as a function of time.

Figure 3. Distribution of V(D)J recombination activity among hematopoietic cell types. The pathway of hematopoietic differentiation is summarized. Known lineage relationships are indicated by solid lines, more tenuous relationships by dashed lines. Specific cell lines representing each stage are named below it. A circled (+) or (−) above the cell stage indicates the presence or absence of detectable V(D)J recombination activity in the corresponding cell lines. See text and Table 1 for details.
and from nonhematopoietic lineages (Table 1) did not rearrange the extrachromosomal substrates, at least at the level of sensitivity used here (generally below 0.1%, except in cell lines where poor replication or low transfection efficiency render the assay less sensitive). Within the B-lymphoid lineage (Fig. 4), recombination is low at the earliest stage tested (pro-GMB), higher in pro-B cells, but lower in cell lines representing successive later stages. The λ-rearranging line ABC-1 falls outside this apparent progression, if one accepts the conventional view that λ chain rearrangement follows unsuccessful κ rearrangement (see, e.g., Hieter et al. 1981; Tonegawa 1983). However, more recent data suggest that some λ-rearranging cells may form a distinct B-lymphoid sublineage (Hardy et al. 1986), in which case models based on a single sequence of rearrangements would need to be modified. One mature B-cell line that is surface Ig positive retains the activity, implying that the presence of tetrameric surface Ig is not by itself sufficient to shut off V(D)J recombination activity. Activity is undetectable in immunoblast and plasma cell lines. Recombination is also seen in pre-T cell lines but not in a mature T cell line.

Prior to this study, V(D)J recombination activity had not been directly demonstrated in cell lines capable of differentiation along both the myeloid and the B-lymphoid pathways. The finding of occasional DJH rearrangements in monocytic leukemias (Bauer et al. 1986) and the occurrence of lymphoid blast crises in monocytic leukemias (Bakhshi et al. 1983) have suggested that the recombination activity might be present in a common precursor. Our finding of activity in such cells is in accord with these observations. The persistence of V(D)J recombinase in the myelo-monocytic precursor line M1, which is not known to differentiate along the lymphoid lineage, indicates that the activity appears to persist even beyond the divergence of myeloid precursors from the lymphoid pathway.

How is recombination activity distributed among the cells in a population? When a large fraction of the plasmid DNA is recombinated, the majority of transfected cells evidently must participate. However, when the activity is low, as it is at the very early and very late stages of B-cell differentiation, we do not know whether it is equally low in all cells or whether a small fraction of cells accounts for most of the recombination.

Earlier work has suggested that V(D)J recombination is regulated, at least in part, at the level of substrate accessibility (Yancopoulos and Alt 1986). The ordering of endogenous rearrangements (TCR or Ig, joining of D to J before V to DJ, IgH before κ or λ) is best rationalized by assuming that there is a common recombinase, which is granted access to a locus only at certain developmental stages. Our data are consistent with this suggestion, because the same extrachromosomal substrate DNA can be recombinated in many cell lines, regardless of the stage of rearrangement that the endogenous genes are undergoing. Indeed, we find high recombination activity in some cell lines whose endogenous gene rearrangement has been arrested. Recombination of the same substrate in pre-T cells and in monocytic precursors as well as pre-B cells is most easily understood if a common recombination activity is present in all these cell types.

The role of replication

We detect V(D)J recombination only among those DNA molecules that have been replicated in the eukaryotic cells. No recombinants have been found that are resistant to digestion by MboI and are thus unreplicated. The reason why replication is necessary to detect a signal in our system is still unclear. In a plasmid with a defective polyoma origin (pJH205), replication and recombination are depressed in parallel (Table 4). However, there is no necessary correlation between the rates of recombination and replication. In some cell lines, such as BASC6, where replication of the plasmid DNA is poor, there are high levels of recombination; the opposite situation is also found, as in PD31 cells. Furthermore, once some replication has occurred, additional replication can be inhibited with aphidicolin or by shifting to a nonpermissive temperature when a plasmid with a ts mutation

Figure 4. Recombination frequency in cell lines of the B lineage. R values taken from Table 1 are plotted as a function of developmental stage of the cell lines; each point represents one cell line. The boxes enclose the range of R in that category of cells. For each stage, the current or most recent locus of Ig rearrangement is indicated: [H] heavy-chain locus; [λ] λ locus; [κ] κ locus.
in the polyoma large T antigen is used, without blocking later recombination [unpubl.]. However, it is not certain that replication was entirely blocked in these two situations.

Why should replication, either prior or concurrent, be needed to observe recombination in our assay? A simple possibility is that multiplication of the input DNA or the recombined product is needed to give a large enough signal to be scored. However, other explanations are also conceivable. At one extreme, one could imagine that replication is an active part of the recombination process, for instance, the passage of a replication fork could be a necessary triggering event. On the other hand, it is possible that prior replication is only needed to convert the DNA to a state where recombination is allowed, by altering its methylation pattern, or state of chromatin coverage or some other persistent property.

We have not specifically sought to examine the association of transcription and recombination. Our replication-competent substrates should be transcriptionally active [Chou et al. 1974; Kern et al. 1986]. However, several variants of pH200 in which polyoma replication is fully blocked but transcriptional controls are unaltered fail to recombine at a measurable level. Therefore, transcription without replication does not permit detectable recombination in our assay. Further, we have performed experiments using a-amanitin to block RNA polymerase II transcription, and the drug had no effect on further rearrangement of pH200 when added after the onset of recombination [data not shown].

Methods

Plasmid constructions

The V(D)J recombination substrate pH201 has been described [Hesse et al. 1987]. Plasmid pH200 was constructed identically to pH201, except that the Ig λ enhancer was not included.

The construct pH100 is similar to pH201, except that the trp promoter [purchased from P-L Pharmacia] was positioned in the place of the lac promoter and the early region of polyoma is absent.

The plasmid pH205 is similar to pH200, except that the early region of polyoma comes from p4819 [a gift from S. Lipton, A. Cowie, and R. Kamen], which has an XhoI linker inserted in the polyoma origin of replication between polyoma bases 36 and 38 [Soeda numbering].

Osmotic transfection of cells

Based upon an osmotic transfection procedure that we had previously devised for erythroid cells [Hesse et al. 1986; Lieber et al. 1987], we varied the osmotic conditions during DEAE-dextran transfection of lymphocytes. The osmotic rupture of the lymphocytes was monitored by following lactate dehydrogenase (LDH) release. CAT expression and recombination substrate replication during the 48 hr after transfection were optimal when the LDH release in the hypotonic DEAE-dextran solution described above for suspension cells. The cells were washed once in Dulbecco's PBS at 22°C and incubated in medium at 37°C for designated times, typically 48 hr.

Recovery of the plasmid DNA from transfected cells and transformation into E. coli were as described previously [Hesse et al. 1987].

Digestion with DpnI or MboI was carried out under the conditions described by the manufacturer [New England Biolabs]. A reaction volume of 5 μl, containing 2 U of enzyme and 0.02–2 ng of recovered plasmid DNA, was incubated for 6–14 hr at 37°C. The fraction of unreplicated DNA able to transform E. coli after DpnI digestion was less than 10^{-5}.

Acknowledgments

We thank S. Lewis, A. Cowie, A. Szabo, R. Martin, J. De Villiers, and R. Deans for valuable discussions. We are indebted to A. Cowie, M. Israel, and J. Bolan for polyoma DNA and antibodies to T antigens and to R. Risser, S. Lewis, N. Rosenberg, J. Pierce, F. Alt, D. Baltimore, R. Holmes, H. Morse, W. Davidson, R. Norden, and M. Potter for cell lines.

We thank S. Lewis, R. Craigie, R. Martin, and G. Selzer for critical reading of the manuscript. M.L. acknowledges the support of the Laboratory of Pathology, NCI, National Institutes of Health and the Council for Tobacco Research [Grant 1867] during portions of this work.

References

Alt, F.W., G.D. Yancopoulos, T.K. Blackwell, C. Wood, E. Thomas, M. Boss, R. Coffman, N. Rosenberg, S. Tonegawa, and D. Baltimore. 1984. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 3: 1209–1219.

Alt, F.W., T.K. Blackwell, R.A. DePinho, M.G. Reth, and G.D. Yancopoulos. 1986. Regulation of genome rearrangement events during lymphocyte differentiation. Immunol. Rev. 89: 5–30.

Bakhshi, A., J. Minowada, A. Arnold, J. Cossman, J. Jensen, J. Whang-Peng, T.A. Waldmann, and S. Korsmeyer. 1983. Lymphoid blast crises of chronic myelogenous leukemia represent stages in development of B-cell precursors. New Engl. J. Med. 309: 826–831.

Baltimore, D., N. Rosenberg, and O.N. Witte. 1979. Transfor-
Lieber et al.

mation of immature lymphoid cells by A-MuLV. *Immunol. Rev.* 48: 3–22.

Bauer, S., K. Holmes, H. Morse, and M. Potter. 1986. Clonal relationship of the lymphoblastic cell line P388 to the macrophage cell line P388D1 as evidenced by immunoglobulin gene rearrangements and expression of cell surface antigens. *J. Immunol.* 136: 4695–4699.

Blackwell, T.K. and F.W. Alt. 1984. Site-specific recombination between immunoglobulin D and

Chou, J., A. Avila, and R.G. Martin. 1974. Viral DNA synthesis in cells infected by temperature sensitive mutants of SV40. *J. Virol.* 14: 116–124.

Clark, D. and N. Rosenberg. 1980. Immunoglobulin synthesis in LPS-stimulated lymphoid cells transformed by Abelson murine leukemia virus. In *In vivo and In vitro erythropoiesis: The Friend system* (ed. G. Rossi), pp. 527–536. North-Holland Biomedical Press, Elsevier.

Davidson, W., T. Fredrickson, E. Rudikoff, R. Coffman, J. Hartley, and H. Morse. 1984. A unique series of lymphomas related to the Ly-1 + lineage of B lymphocytic differentiation. *J. Immunol.* 133: 744–753.

Dulbecco, R., L. Hartwell, and M. Vogt. 1965. Induction of cellular DNA synthesis by polyoma virus. Proc. Natl. Acad. Sci. 53: 403–410.

Gorman, C., G. Merlino, M. Willingham, I. Pastan, and B. Howard. 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. 79: 6777–6781.

Hardy, R., J. Dangl, K. Hayakawa, G. Jager, L. Herzenberg, and L. Herzenberg. 1986. Frequent K light chain gene rearrangement and expression in a Ly-1 B lymphoma with a productive K chain allele. Proc. Natl. Acad. Sci. 83: 1438–1442.

Harris, A. 1978. Lymphoid properties expressed by cultured mouse T and B tumour cells: Fe receptor and cellular sensitivity to hydrocortisone and thymidine. In *Protides of the biological fluids* (ed. A. Peters), vol. 25, p. 601. Pergamon Press, Oxford.

Hesse, J.E., J.M. Nickol, M.R. Lieber, and G. Felsenfeld. 1986. Regulated gene expression in transfected primary chicken erythrocytes. Proc. Natl. Acad. Sci. 83: 4312–4316.

Hesse, J.E., M.R. Lieber, M. Gellert, and K. Mizuuchi. 1987. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V(D)/J joining signals. *Cell* 49: 775–783.

Hieter, P.A., S.J. Korsmeyer, T.A. Waldman, and P. Leder. 1981. Human immunoglobulin K light-chain genes are deleted or rearranged in lambda-producing B cells. Nature 290: 368–372.

Hoezler, J.H. and S.A. Aaronson. 1982. Balb-Harvey-murine sarcoma virus transformation of a novel lymphoid progenitor cell. *J. Exp. Med.* 156: 873–887.

Holmes, K.L., J.H. Pierce, W.F. Davidson, and H.C. Morse. 1986. Murine hematopoietic cells with pre-B or pre-B/myeloid characteristics are generated by in vitro transformation with retroviruses containing *murine leukemia virus*. Mol. Cell. Biol. 5: 345–368.

Ichikawa, Y. 1969. Differentiation of a cell line of myeloid leukemia. *J. Cell. Physiol.* 74: 233–244.

Jaffe, B., H. Eisen, E. Sims, and M. Potter. 1969. Myeloma protein with anthahpen antibody activity: e2,4-dinitrophenyl lysine binding by the protein produced by plasmacytoma MOPC 412. *J. Immunol.* 103: 872–874.

Kern, F., S. Pellegrini, A. Cowie, and C. Basilico. 1986. Regulation of polyomavirus late promoter activity by viral early proteins. *J. Virol.* 60: 275–285.

Kleinfield, R., R. Hardy, D. Tarlinton, J. Dangl, L.A. Herzenberg, and M. Weigert. 1986. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly-1 + B-cell lymphoma. *Nature* 322: 843–845.

Kronenberg, M., G. Siu, L.E. Hood, and N. Shastri. 1986. The molecular genetics of the T-cell antigen receptor and T-cell antigen recognition. *Ann. Rev. Immunol.* 4: 529–591.

Laskov, R. and M.D. Scharff. 1970. Synthesis, assembly, and secretion of gamma globulin by mouse myeloma cells. I: Adaptation of the murine plasma cell tumor 11 to culture, cloning, and characterization of gamma-globulin synthesis. *J. Exp. Med.* 131: 515–541.

Lewis, S. 1985. “Recombination of endogenous and introduced kappa immunoglobulin gene sequences in the A-MuLV transformant PD.” Ph.D. thesis, Massachusetts Institute of Technology.

Lewis, S., N. Rosenberg, F. Alt, and D. Baltimore. 1982. Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus. *Cell* 30: 807–813.

Lewis, S., A. Gifford, and D. Baltimore. 1984. Joining of Vk to Jk gene segments in a retroviral vector introduced into lymphoid cells. *Nature* 308: 425–428.

—. 1985. DNA elements are asymmetrically joined during the site-specific recombination of kappa immunoglobulin genes. *Science* 228: 677–685.

Lieber, M.R., J.E. Hesse, J. Nickol, and G. Felsenfeld. 1987. The mechanism of osmotic transfection of avian embryonic erythrocytes: Analysis of a system for studying developmental gene expression. *J. Cell Biol.* 105: 1055–1065.

Mann, R., R. Mulligan, and D. Baltimore. 1983. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. *Cell* 33: 153–159.

McKearn, J.P., and N. Rosenberg. 1985. Mapping cell surface antigens on mouse pre-B cell lines. *Eur. J. Immunol.* 15: 295–298.

Musshinsky, J.F., W.F. Davidson, and H.C. Morse. 1987. The activation of cellular oncogenes in human and mouse leukemia-lymphomas. *Cancer Invest.* 5: 345–368.

Persiani, D.M., J. Durdik, and E. Selsing. 1987. Active lambda and kappa light chain gene recombination in Abelson murine leukemia virus transformed pre-B cell lines. *J. Exp. Med.* 165: 1655–1674.

Pierce, J.H. and S.A. Aaronson. 1985. Myeloid cell transformation by ras-containing murine sarcoma viruses. *Mol. Cell. Biol.* 5: 667–674.

Ralph, P., M. Ho, P. Litcofsky, and T. Springer. 1983. Expression and induction in vitro of macrophage differentiation antigens of murine cell lines. *J. Immunol.* 130: 108–114.

Rapp, U.R., J.L. Cleveland, T.N. Fredrickson, K.L. Holmes, H.C. Morse III, H.W. Jansen, T. Piatigorsky, and K. Bister. 1985. Rapid induction of hemopoietic neoplasms in newborn mice by a *raf1/mil/myc* recombinant murine retrovirus. *J. Virol.* 55: 23–33.

Reth, M., P. Ammirati, S. Jackson, and F. Alt. 1985. Regulated progression of a cultured pre-B cell line to the B-cell stage. *Nature* 317: 353–355.

Risser, R., E. Stockert, and L. Old. 1978. Abelson antigen: A viral tumor antigen that is also a differentiation antigen of BALB/c mice. *Proc. Natl. Acad. Sci.* 75: 3918–3922.

Tonegawa, S. 1983. Somatic generation of antibody diversity. *Nature* 302: 575–581.

Risser, R., D. Kaehler, and W. Lamph. 1985. Different genes
control the susceptibility of mice to Moloney or Abelson murine leukemia viruses. J. Virol. 55: 547–553.
Tsuda, H., L. Neckers, and D. Pluznik. 1986. Colony stimulating factor-induced differentiation of murine M1 myeloid leukemia cells is permissive in early G1 phase. Proc. Natl. Acad. Sci. 83: 4317–4321.
Wall, R., M. Briskin, C. Carter, H. Govan, A. Taylor, and P. Kincade. 1986. A labile inhibitor blocks immunoglobulin κ light-chain gene transcription in a pre-B leukemic cell line. Proc. Natl. Acad. Sci. 83: 295–298.
Yancopoulos, G.D. and F.W. Alt. 1986. Regulation of the assembly and expression of variable-region genes. Annu. Rev. Immunol. 4: 339–368.
Yancopoulos, G.D., T.K. Blackwell, H. Suh, L. Hood, and F.W. Alt. 1986. Introduced T cell receptor variable region gene segments recombine in pre-B cells: Evidence that B and T cells use a common recombinase. Cell 44: 251–259.
Developmental stage specificity of the lymphoid V(D)J recombination activity.

M R Lieber, J E Hesse, K Mizuuchi, et al.

Genes Dev. 1987, 1:
Access the most recent version at doi:10.1101/gad.1.8.751