Direct Sparse Mapping

Jon Zubizarreta, Iker Aguinaga, and J. M. M. Montiel

Abstract—Photometric bundle adjustment, PBA, accurately estimates geometry from video. However, current PBA systems have a temporary map that cannot manage scene reobservations. We present, DSM, a full monocular visual SLAM based on PBA. Its persistent map handles reobservations, yielding the most accurate results up to date on EuRoC for a direct method.

Index Terms—SLAM, navigation, 3D reconstruction, monocular.

I. INTRODUCTION

Photometric bundle adjustment has proven to be an effective method for estimating scene geometry and camera motion in Visual Odometry (VO) [1]. PBA minimizes the photometric error of map point observations over a local sliding-window of active keyframes. The number of active keyframes is usually limited to avoid large computations. As a direct optimization problem, it avoids all intermediate steps of feature detection and matching still producing accurate geometry estimates even in poorly textured scenes.

Current PBA based methods are only able to do VO, which builds a temporary map to precisely estimate the camera pose. They use a sliding-window that selects close in time active keyframes, marginalizing map points that leave the field of view. The marginalization strategy reduces the computation complexity by removing old cameras and points while maintaining the system consistent to unobservable degrees of freedom, i.e. absolute pose and scale. As a consequence, if the camera revisits already mapped areas, the PBA cannot reuse marginalized map points and it is forced to duplicate them. This is a severe limitation: the system cannot benefit from the highly informative reobservations of map points, and this causes motion drift and structure inconsistencies.

In contrast, VSLAM (Simultaneous Localization And Mapping with Visual sensors) methods build a persistent map of the scene, and continuously process map point reobservations. Instead of using a sliding-window and marginalization, they retain keyframes and map points with a fixed location in the model and select the active keyframes and map points according to covisibility criteria, i.e. they observe several map points in common. This results in a network of keyframes where the connectivity is based on whether they observe the same scene region even if they are far in time. The fixation strategy maintains the system consistent to unobservable degrees of freedom and it enables the reuse of map points. Thus, VSLAM approaches can extract the rich information of map point reobservations reducing the drift in the estimates.

Transforming PBA based direct VO systems into VSLAM is not straightforward because there are several open challenges to solve. First, when the camera revisits already mapped areas, the system has to select active keyframes that include map point reobservations. At the same time, we have to guarantee accurate map expansion during exploration. Therefore, we propose to select the active keyframes according to a combination of temporal and covisibility criteria. In this way, the PBA includes in the optimization keyframes that observe the active scene region with high parallax even if they are far in time. Second, the PBA optimization includes map points and keyframes distant in time and, hence, affected by the estimation drift. Normally, the photometric convergence radius is around 1-2 pixels due to image linearization and, thus, a standard PBA cannot compensate the drift. Thus, we propose a multiscale PBA optimization to handle successfully these convergence difficulties. Third, we have to ensure the PBA robustness against spurious observations. They mainly result from the widely separated active keyframes –in contrast with the close keyframes of VO– which render occlusions and scene reflections that violate the photo-consistency assumption. We incorporate a robust influence function based on the t-distribution into the PBA that neutralizes the adverse effect of the spurious observations.

We present a new direct VSLAM system, DSM (Direct Sparse Mapping). Up to our knowledge, this is the first fully direct monocular VSLAM method that is able not only to detected point reobservations but also to extract the rich information they provide (see Fig. 1). In summary, we make the following contributions:

- A persistent map which allows to reuse existing map information directly with the photometric formulation.
- The Local Map Covisibility Window (LMCW) criteria to select the active keyframes that observe the same scene region, even if they are not close in time, and the map point reobservations.
- A coarse-to-fine optimization scheme that increases the convergence radius of PBA. This strategy allows to exploit the rich geometrical information provided by point reobservations.
- A robust influence function together with an outlier management strategy based on the t-distribution. It ensures the PBA consistency against spurious observations derived from the activation of distant keyframes.
- An experimental validation of DSM in the publicly available EuRoC MAV dataset [2]. For the first time, we report quantitative results of both the camera trajectory and reconstruction map. The latter is usually not reported in VO/VSLAM methods. We obtain the most accurate results among direct monocular methods so far.
- We make our implementation publicly available [3].

II. RELATED WORK

The first real-time VSLAM methods were designed using monocular indirect approaches. Davison in [3] presents MonoSLAM, which matches sparse keypoints and recovers the scene geometry in an EKF-based framework, later extended in Civera et al. in [4] to include a

![Fig. 1: Estimated map by DSM with (bottom) and without (top) point reobservations in the V2_01_easy sequence of the EuRoC MAV dataset. DSM can produce consistent maps without duplicates.](https://github.com/jzubizarreta/dsm)
parametrization in inverse depth. Klein and Murray in PTAM [5] propose for the first time to parallelize the tracking and mapping tasks, demonstrating the viability of using a BA scheme to maintain a persistent map in small workspaces. Later, [6] proposes a double window optimization to extend the potential of feature-based VSLAM to long-term applications. It combines a local BA with a global pose-graph optimization using covisibility constraints. Following these works, ORB-SLAM [7] present which is the reference solution among indirect VSLAM approaches. It is a full VSLAM approach that includes: a traditional BA with map reuse capabilities, loop closure correction and relocalization. Up to date, it is the most accurate monocular VSLAM method in many scenarios. The key aspects of its precision come from the management of map point reobservations in the BA. Similarly, DSM transfers the main ideas of feature-based VSLAM techniques, except loop closure, to direct systems significantly increasing the accuracy of their estimates.

Recently, VO approaches have shown impressive performance. SVO [8] proposes an hybrid approach to build a semi-direct odometry system. They use direct techniques to track and triangulate points but they ultimately optimize the reprojection error of those points in the background. OKVIS [9] features a feature-based Visual-Inertial Odometry (VIO) system that continuously optimizes the geometry of a local map marginalizing the rest. More recently, Engel et al. [10] made a breakthrough with their DSO, the first fully direct VO approach that jointly optimizes motion and structure formulating a PBA and including a photometric calibration into the model. Inspired by OKVIS, DSO performs the optimization over a sliding-window, where old keyframes as well as points that leave the field of view of the camera are marginalized. It has shown impressive odometry performance and it is the reference among direct VO methods. However, as a pure VO approach DSO cannot reuse map points once they are marginalized which causes camera localization drift and map inconsistencies. DSM uses the same photometric model of DSO and goes one step further to build the first fully direct VSLAM solution with a persistent map. The experiments report that using a VSLAM scheme achieves a significant accuracy increase of the camera trajectory when compared to the VO of DSO.

Many VO systems have been extended to cope with loop closures. Most propose to include a feature-based Bag of Binary Words (DBoW) to detect loop closures and estimate pose constraints between keyframes, following [10]. Then, a pose-graph optimization finds a correction for the keyframe trajectory. VINS-mono [11] uses a similar front-end to OKVIS but includes additional BRIEF features to perform loop closure. LSD-SLAM [12] was the first direct monocular VO for large-scale environments. The method recovers semi-dense depth maps using small-baseline stereo comparisons and reduces accumulated drift with a pose-graph optimization. Loop closures are detected using FAB-MAP [13], an appearance loop detection algorithm, which uses different features to those of the direct odometry. LDSO [14] extends DSO with a conventional ORB-DBoW to detect loop closures and reduce the trajectory drift by pose-graph optimization. All these methods have the next drawbacks: (1) they use a different objective function and points to those of the odometry; (2) loop closure detection relies on feature repeatability, missing many corrections; (3) the error correction is distributed equally over keyframes, which may not be the optimal solution; (4) although the trajectory is spatially corrected, existing information from map points is not reused and, thus, ignored during the optimization. In contrast, full VSLAM systems like ORB-SLAM and DSM reuse the map information thanks to its persistent map. The reobservations are processed with their standard BA (either geometric or photometric), resulting in more accurate estimates. Thanks to the improvement in accuracy the need of loop closure detection and correction is postponed to trajectories longer than in their VO counterparts.

Moreover, DVO [15] proposes a probabilistic formulation for direct image alignment techniques. Inspired by [16], they show the robustness of using a t-distribution to manage the influence of noise and outliers. Furthermore, [17] demonstrate that the t-distribution represents well photometric errors while not geometric errors. We incorporate these ideas into the sparse photometric model together with a novel outlier management strategy. In this way, we make the non-linear PBA optimization robust to spurious point observations. They normally appear as a result of widely separated active keyframes and lack of explicit point matches.

III. Direct Mapping

The proposed VSLAM system consists of a tracking front-end (Sec. V) and an optimization back-end (Sec. III-B). The front-end tracks frames and points, and also provides the coarse initialization for the optimization. The back-end determines which keyframes form the local window (Sec. IV) and jointly optimizes all the active keyframes and map point parameters. Similarly to most VSLAM systems [1], [5], [7], the front-end and the back-end run in two parallel threads:

1) The tracking thread obtains the camera pose at frame rate. It also decides when the map needs to grow by marking tracked frames as keyframes.
2) The mapping thread processes all new frames to track points from active keyframes. Besides, if the new frame is marked as a keyframe, the local window is recalculated, new points are activated and the PBA optimizes motion (keyframes) and structure (points) together using active keyframes. Finally, it maintains the model globally consistent, i.e. removes outliers, detects occlusions and avoids point duplications (Sec. V-B).

The persistent map is composed of keyframes that are activated or deactivated according to covisibility criteria with the latest keyframe. The relative pose between a keyframe i and a keyframe j is represented by the transformation matrix \(T_{i,j} \in SE(3) \). Each map point \(p \) is associated to a host keyframe, in which it was spawn. Its location is represented relative to its host using its inverse depth \(\rho = p_z^{-1} \). We assume all images to be undistorted. We use the pinhole model to project a point from 3D space to the image plane,

\[
I(p, \mathbf{u}) = \pi(p) = K(p_x/p_z, p_y/p_z, 1)^T, \text{ where } K \text{ is the camera matrix.}
\]

Its inverse is also defined when the inverse depth of the point is known \(p = \rho^{-1}(u_x, u_y, 1)^T \).

The LMCW (Sec. IV) selects which keyframes are active and form the local window. Once a keyframe is active, all its parameters (pose and affine light model) and points (inverse depth) are optimized by the PBA. Otherwise, they remain fixed to maintain the system consistent to unobservable degrees of freedom. During optimization, we will use \(\xi \in SE(3)^n \times \mathbb{R}^{2n+m} \) to represent the set of optimized parameters (n keyframes and m points) and \(\delta \xi \in se(3)^n \times \mathbb{R}^{2n+m} \) to denote the increments. Moreover, we use the left-compositional convention for all optimization increments, i.e. \(\xi^{(t+1)} = \delta \xi^{(t)} \odot \xi^{(t)} \). This direct VSLAM framework enables to build a persistent map and reuse existing map information from old keyframes directly in the photometric bundle adjustment.

A. Photometric Model

The same photometric function, the one proposed in [1], is used in the whole system, i.e. geometry initialization (camera and point tracking), local windowed PBA and map reuse. For each point \(p \), we evaluate the sum of square intensity differences \(r_j \) over a small patch \(N_j \) around it between the host \(I_h \) and target \(I_t \) images. We include an affine brightness transfer model to handle the camera automatic
gain control and changes in scene illumination. The observation of a point p in the keyframe I_j is coded by:

$$E_p = \sum_{u_k \in N_p} w_k \left((I_j[u_k] - b_k) - \frac{c^{\rho_k}}{c^{\rho_k}} (I_j[u_k'] - b_j) \right)^2,$$

(1)

where u_k is each of the pixels in the patch; u_k' is the projection of u_k in the target frame with its inverse depth ρ_k, given by $u_k' = \pi(T_j) \cdot \pi^{-1}(u_k, \rho_k)$; a_i, b_i, a_j, b_j the affine brightness functions for each frame; and $w_k = w_{rg} w_{nk}$ a combination of the robust influence function w_{rg} and a gradient dependent weight w_{nk}:

$$w_{nk} = \frac{e^2}{c^2 + \| \nabla I \|^2},$$

(2)

which works as a heuristic covariance in the Maximum Likelihood (ML) estimation, reducing the influence of high gradient pixels due to noise. To sum up, the photometric cost function (1) depends on geometric (T_i, T_j, ρ) and photometric parameters (a_i, b_i, a_j, b_j).

B. Photometric Bundle Adjustment (PBA)

Every time a new keyframe is created, all model parameters are optimized by minimizing the error from Eq. (1) over the LMCW of active keyframes K. The total error is given by:

$$E = \sum_{I_i \in K} \sum_{p \in P_i} \sum_{j \in \text{obs}(p)} \sum_{u_k \in N_p} w_k r_k^2(\xi),$$

(3)

where P_i is the set of points in I_i and $\text{obs}(p)$ the set of observations for p. Note that the LMCW reuses map point observations for which the initial solution is not inside the convergence radius and, thus, the PBA is not able to correct. Hence, we propose to use a coarse-to-fine optimization scheme over all active keyframes. In each level, we iterate until convergence and use the estimated geometry as an initialization for the next level. In this way, we are able to handle larger camera and point increments for the photometric model.

We minimize Eq. (3) using the iteratively re-weighted Levenberg-Marquardt algorithm. From an initial estimate $\xi^{(0)}$, each iteration t computes weights w_k and photometric errors r_k to estimate an increment $\delta \xi^{(t)}$ by solving for the minimum of a second order approximation of Eq. (3), with fixed weights:

$$\delta \xi^{(t)} = -H^{-1}b,$$

(4)

with $H = J^T W J + \text{diag}(J^T W J)$, $b = J^T W r$ and $W \in \mathbb{R}^{m \times m}$ is a diagonal matrix with the weights w_k, r is the error vector and $J \in \mathbb{R}^{m \times d}$ is the Jacobian of the error vector with respect to a left-composed increment given by:

$$J_k = \left. \frac{\partial r_k(\delta \xi \oplus \xi^{(t)})}{\partial \delta \xi} \right|_{\delta \xi = 0}$$

(5)

The PBA is implemented using Ceres optimization library [18] with analytic derivatives. Image gradients are computed using central pixel differences at integer values. For subpixel intensity and gradient evaluation, bilinear interpolation is applied. We take advantage of the so-called primary structure and use the Schur complement trick to solve the reduced problem [19].

IV. LMCW: LOCAL MAP COVISIBILITY WINDOW

This section presents the LMCW and the strategy to select its active keyframes and active map points. It is a combination of temporal and covisible criteria with respect to the latest keyframe being created. The LMCW is composed of two main parts: the temporal and the covisible. Fig. 2 shows the LMCW selection strategy.

The first part is composed of N_t temporally connected keyframes that form a sliding-window like in [1]. This part is critical during exploration because it initializes new points (Sec. VII) and maintains the accuracy in odometry. Whenever a new keyframe is created, we insert it into the temporal part and remove another one. Thus, we maintain fixed size temporal keyframes. The strategy that selects the removed keyframe from the temporal part is summarized as:

1) Always keep the last two keyframes (I_1 and I_2). This ensures the odometry accuracy during challenging exploratory motions, such as rotations. It avoids premature fixation of keyframes location, guaranteeing that keyframes are well optimized before fixing them.

2) The remaining keyframes are evenly distributed in space. We drop the keyframe I_i that maximizes:

$$s(I_i) = \sqrt{d(I_i, I_j)} \sum_{j=3}^N (d(I_i, I_j))^{-1}$$

(6)

where $d(I_i, I_j)$ is the L_2 distance between keyframes I_i and I_j. This strategy favors observations rendering high parallax into the PBA, which increases the accuracy.

The second part is composed of N_c covisible keyframes. We aim to select keyframes covisible with those in the temporal part. Additionally, we seek to fill the latest keyframe I_0 with reobserved map points, favoring map points imaged in depleted areas (image areas where no other map points are imaged). Our strategy to achieve this goal is summarized as:

1) Compute the distance map to identify the depleted areas. All the map points from the temporal part are projected into the latest keyframe, then the distance map registers, for every pixel, the L_2 distance to its closest map point projection.

2) Select a keyframe among the list of old keyframes, the one that maximizes the number of projected points in the depleted areas using the distance map. We discard points that form a viewing angle above a threshold to detect and remove potential occluded points as early as possible.

3) Update the distance map to identify the new depleted areas.

4) Iterate from (2) until N_c covisible keyframes are selected or no more suitable keyframes are found.

The covisible part incorporates already mapped areas in the LMCW before activating new map points. The proposed strategy avoids map point duplication ensuring the map consistency. The values of N_t and N_c are tuned experimentally in Sec. VII.

V. ROBUST NON-LINEAR PBA

The LMCW selects widely separated active keyframes according to geometric criteria without any consideration about the actual photo-
consistency between the images of the map points in the selected keyframes. Hence, it is possible that some of the points do not render photo-consistent images, because they suffer, for example, from occlusions or scene reflections.

To make our PBA robust with respect to this lack of photo-consistency, we propose an outliers management strategy based on the photometric error distribution, from which we derive the appropriate weights for Eq. 3. According to the probabilistic approach, optimizing the Eq. 3 is equivalent to minimizing the negative log-likelihood of model parameters ξ given independent and equally distributed errors r_k.

$$\xi^* = \operatorname{argmin}_\xi - \sum_k \log p(r_k \mid \xi)$$

The minimum of Eq. 7 is computed equating their derivatives to zero. This is equivalent to minimizing the re-weighted least-squares Eq. 3 with the following weights:

$$w(r_k) = -\frac{\partial \log p(r_k)}{\partial r_k} \frac{1}{r_k}$$

Therefore, the solution is directly affected by the photometric error distribution $p(r_k)$ (see [15] for further details). Next we consider different distributions.

Gaussian distribution: If errors are assumed to be normally distributed around zero $N(0, \sigma^2)$, the model of error distribution is $p(r_k) \propto \exp\left(\frac{r_k^2}{2\sigma^2}\right)$. This model leads to a constant distribution of weights which is a standard least squares minimization. Thus, it treats all points equally and outliers cannot be neutralized:

$$w_n(r_k) = \frac{1}{\sigma^2}$$

Student’s t-distribution: Recently, [15] has analyzed the distribution of dense photometric errors for RGB-D odometry. It showed that the t-distribution explains dense photometric errors better than a normal distribution, providing a suitable weight function:

$$w_t(r_k) = \frac{\nu + 1}{\nu + (r_k^2/\sigma_t^2)}, \text{ when } \nu = 0$$

We have studied the sparse photometric errors and we conclude that the t-distribution also explains the sparse model parameters properly (Fig. 3). In contrast to the normal distribution, the t-distribution quickly drops the weights as errors move to the tails, assigning a lower weight to outliers. Besides, instead of fixing the value of the degrees of freedom $\nu = 5$ as in [15], we study the behavior of the model when ν is fitted together with the scale σ_t (see Sec. VII). To fit the t-distribution, we minimize the negative log-likelihood of the probability density function with respect to ν and σ_t using the gradient free iterative Nelder-Mead method [20]. Besides, we filter out the gross outliers before fitting the t-distribution. We approximate the scale value σ_t using the Median Absolute Deviation (MAD) as $\sigma_t = 1.4826$ MAD and reject errors that $r_k > 3\sigma_t$.

M-estimators: Huber: Whether the distribution of errors is hard to know or it is assumed to be normally distributed, using M-estimators is a popular solution. One of the most popular ones is the Huber estimator, since it does not totally remove high error measurements but it decreases their influence, which is crucial for reobservation processing. The Huber weighting function is defined as:

$$w_h(r_k) = \begin{cases} \frac{1}{\sigma^2} & \text{if } |r_k| < \lambda \\ \frac{\lambda}{\sigma^2 |r_k|} & \text{otherwise} \end{cases}$$

where λ is usually fixed or dynamically changed each time step with the value $\lambda = 1.345\sigma_n$ for $N(0, \sigma_n^2)$. In this case, Huber gives linear influence to the outliers.

We also detect and remove outlier points from the map. We propose to control the number of observations in each point to decide if it is relevant to discard them. The minimum of Eq. 7 is computed equating their derivatives to zero. This is equivalent to minimizing the re-weighted least-squares Eq. 3 with the following weights:

$$w_h(r_k) = \begin{cases} \frac{1}{\sigma^2} & \text{if } |r_k| < \lambda \\ \frac{\lambda}{\sigma^2 |r_k|} & \text{otherwise} \end{cases}$$

where λ is usually fixed or dynamically changed each time step with the value $\lambda = 1.345\sigma_n$ for $N(0, \sigma_n^2)$. In this case, Huber gives linear influence to the outliers.

$$w_h(r_k) = \begin{cases} \frac{1}{\sigma^2} & \text{if } |r_k| < \lambda \\ \frac{\lambda}{\sigma^2 |r_k|} & \text{otherwise} \end{cases}.$$
is retained. To retain a new point, it must be observed in all the new keyframes after its creation, when it has been observed in three keyframes it is considered a mature point. Mature points are removed if the number of observations falls below three.

VI. FRONT-END

Frame Tracking: Each new frame is tracked against a local map, which is updated after every new keyframe decision. The local map is formed with active points from the LMCW referenced to the latest keyframe. The frame pose and its affine brightness transfer model are computed by minimizing Eq. (1) in which the map points and the latest keyframe remain fixed. The initial estimation is provided by a velocity model. We use a coarse-to-fine optimization, as proposed in the PBA, to handle initial guesses with large errors. We use the same robust influence function of Sec. V to reduce the impact of high photometric errors. In addition, we use the inverse compositional approach [21] to avoid re-evaluating Jacobians each iteration and reduce the computational cost.

New Keyframe Decision: Whenever we move towards unexplored areas, the map is expanded with a new keyframe. We use three different criteria with respect to the latest keyframe to decide if the tracked frame becomes a keyframe:

1) The map point visibility ratio between the latest keyframe and the tracked frame, i.e. $s_v = N^{-1} \sum \min(p_i, p_i', 1)$, where N is the total number of visible points in the latest keyframe, p_i the point inverse depth in the latest keyframe and p_i' the point inverse depth in the tracked frame. The score is formulated to create more keyframes if the camera moves closer.

2) The tracked frame parallax with respect to the latest keyframe, defined as the ratio between the frame translation t and the mean inverse depth of the tracking local map $\bar{\rho}$. $s_\pi = \|t\| / \|\bar{\rho}\|$.

3) The illumination change, measured as the relative brightness transfer function between the tracked frame and the latest keyframe, i.e. $s_\nu = |a_k - a_i|$.

A heuristic score based on the weighted combination of these criteria determines if the tracked frame is selected as a new keyframe:

$$w_u s_u + w_p s_\pi + w_a s_\nu > 1.$$

New Map Point Tracking: During exploration, the system requires to create new map points. Each keyframe contains a list of candidate points that are initialized and activated if so decided. For each new keyframe, we select spatially distributed and locally salient points candidates. Then, we initialize the inverse depth of these candidate points using consecutive new tracked frames. To do so, we search along the epipolar line to find the correspondence with minimum photometric error (Eq. 1). Only distinctive points with low uncertainty will be activated and inserted into the PBA.

Note that this delayed strategy requires several correspondences to obtain a good initialization as we are working with small baselines that render low parallax. To guarantee that we have enough initialized candidates to activate, we maintain candidate points from a keyframe until this is dropped from the temporal part of the LMCW. We only activate points that belong to image areas depleted from points (Sec. IV). Thus, when revisiting already mapped scene regions, only a few new points will be activated, as we will reuse existing map points.

VII. RESULTS

The experimental validation of the proposed system uses the publicly available EuRoC MAV dataset [2]. This dataset presents two main advantages: first, it has three scenarios, two rooms (V1, V2) and a machine hall (MH), with very challenging motions and changes in illumination; second, it includes the 3D reconstruction ground-truth, which we also evaluate. We study the benefits of the VSLAM scheme of DSM with a version, DSM-SW (sliding-window), which only uses temporally connected keyframes as in DSM. We compare our approach against state-of-the-art algorithms such as ORB-SLAM [7], DSO [1] and LDSO [14]. We evaluate the RMS Absolute Trajectory Error (ATE) and the Point to Surface Error (PSE). The ATE is computed using the keyframe trajectory for each sequence after Sim(3) alignment with the ground-truth. The PSE is estimated measuring the distance of the reconstructed model to the ground-truth surface after the trajectory alignment. The results are shown using normalized cumulative error plots, which provide the percentage of runs/points with an error below a certain threshold. These graphics provide both information about the accuracy and robustness of the evaluated method. All experiments are executed using a standard PC with an Intel Core i7-7700K CPU and 32 GB of RAM.

A. Parameter analysis and tuning

This section presents an experimental analysis of the main parameters and options defining the DSM performance. We also propose the tuning for the final system. To cover more cases, we run different experiments for left and the right cameras of the stereo rig, and both in the forward and in the backward direction. We run each experiment 5 times. In total we have made 220 experiments.

1) Coarse-to-fine PBA: We evaluate the effect of changing the number of pyramid levels N_p during the PBA. Fig. 3 shows the results for DSM-SW and DSM. Without the coarse-to-fine scheme DSM-SW performs better than DSM. Here, DSM is not able to benefit from point reobservations due to the accumulated drift. However, DSM is able to reuse map points for higher number of pyramid levels and it clearly achieves better accuracy. While a coarse-to-fine strategy certainly increases the accuracy of DSM, there is significantly less improvement for DSM-SW. This is the expected behavior since DSM requires larger convergence radius to process reobservations while DSM-SW does not. Note how DSM is able to process approximately the 80% of runs with a RMS ATE bellow 0.1m while DSM-SW only gets 40% of runs. Moreover, we see that using $N_p = 1$ with a sliding-window increases the performance. We also observe that increasing the number of levels after $N_p = 2$ for DSM does not increase accuracy but increases the runtime significantly.

Including reobservations in the PBA has little effect on the processing time. In contrast, the number of pyramids approximately increases the runtime by 50% for each level. Thus, we use $N_p = 2$ as default which achieves the best balance between efficiency and accuracy.

2) Robust Influence Function: We study the effect of the selected model of weight distribution. Fig. 5 shows the results for the t-distribution and Huber models. In contrast to [15], we evaluate the influence of the model when the degrees of freedom ν are estimated together with the scale σ. For Huber, we study when the constant is
fixed to $\lambda = 9$ and when it is dynamically changed with the MAD value. Interestingly, there is not significant difference between using fixed or dynamic values on both distribution models. However, the t-distribution performs better in challenging situations providing higher robustness than Huber. This comes from the fact that the t-distribution quickly drops the weights as errors move to the tails while the Huber model does not. We use the complete t-distribution model as default settings due to its flexibility handling challenging situations.

3) Number of covisible keyframes in the LMCW: We observe that increasing the number of covisible keyframes N_c increases the trajectory accuracy (Fig. 6). With those covisible keyframes the PBA is able to handle point reobservations and to reduce the drift. However, the system requires temporally connected keyframes N_t to guarantee the odometry robustness. Taking few temporal keyframes drastically reduces the accuracy. This is due to the fact that the temporal part ensures that new keyframes are well optimized and that enough new points are initialized during exploration. Thus, we use the combination of $N_t = 4$ and $N_c = 3$ as default settings, which achieves the best balance between precision and robustness.

B. Quantitative results

This section presents a comparison of DSM against ORB-SLAM [7], DSO [1] and LDSO [14]. We report the results published in [22] for ORB-SLAM, in [1] for DSO and we use the open-source implementation for LDSO. All results are obtained using a sequential implementation without enforcing real-time operation using $N_w = 7$ active keyframes for all direct methods. We run on default settings all sequences both forward and backward, 10 times each, using left and right videos separately for a total of 440 runs.

1) Trajectory error: Table I reports the median errors for each forward sequence. Overall, we see that DSM-SW performs similarly to DSO. This is expected since both methods are based on the same sliding-window approach without a multiscale PBA. However, DSM-SW successfully executes all MH sequence, while DSO fails in MH_03_medium. This is probably due to the use of a more robust influence function in DSM-SW. DSM achieves higher accuracy in almost all sequences compared to the rest of direct approaches, DSO, LDSO and DSM-SW. DSO and LDSO only achieve slightly higher accuracy in a few sequences. In addition, ORB-SLAM obtains better results in V1 and V2, but DSM achieves the best performance for the MH sequences. Note that in contrast to ORB-SLAM, we do not incorporate any place recognition, pose-graph or relocalization modules. This shows the high precision of DSM due to point reobservations. In the sequence V1_03_difficult, DSM achieves an RMS ATE of only 7.1cm, which is by far the best performance among all the approaches tested. This sequence contains very rapid motions and illumination changes, which demonstrates the robustness of the proposed method. In addition, we successfully manage to complete almost all sequences and obtain an RMS ATE below 0.1m for all of them, except V2_03_difficult, where all of the compared approaches fail.

2) Mapping vs Pose-Graph: Comparing LDSO and DSM shows the differences in using a VO scheme with a pose-graph in contrast to a VSLAM scheme. Fig. 7 shows the RMS ATE for all the evaluated sequences for LDSO and DSM. Overall, we observe that DSM achieves better accuracy. We also see that reusing existing map points...
allows completing successfully a higher percentage of sequences. We build a persistent map and reuse map points to support the odometry estimation instead of permanently marginalizing all points that leave the local window. This can also be observed in Fig. 8. While DSM is able to process 80% of sequences with an RMS ATE below 0.1m, LDSO can only handle 50% of runs under this limit.

Moreover, we have observed that in some sequences LDSO misses many available loop closures due to lack of feature matches. This makes the odometry drift until a larger correction loop is detected, causing a temporally inconsistent trajectory and structure estimations. Fig. 9 shows the evolution of the RMS ATE along the trajectory. It can be seen the effect of missing loop closures with a feature-based pose-graph strategy. In contrast, building a persistent map enables reusing existing map information continuously, which maintains the trajectory accuracy stable in time. Although the final RMS ATE is similar in both systems, the navigation estimation using a VSLAM approach is more accurate and, thus, more reliable. This clearly shows that using a VSLAM scheme provides better accuracy performance compared to a VO scheme with a pose-graph.

3) Map error: Fig. 10 shows the distance between the reconstructed points and the ground-truth surface. We compare all the sequences against LDSO except in V2_03_difficult where LDSO fails. Clearly, incorporating map point reobservations into the PBA increases not only the trajectory accuracy but the reconstruction precision too. Although the final trajectory RMS ATE is similar in some sequences, such as in V1_01_easy, the map is without a doubt more accurate in DSM. Besides, we have observed that LDSO creates ten times more points than DSM for these sequences, due to the fact that DSM reuses existing map points avoiding duplications.

4) Processing time: Table II reports the processing time required for each part of the method, as well as the used keyframe period time. In our current initial implementation, PBA is the bottleneck of the method, as well as the used keyframe period time. We observe that it should be twice faster to obtain the required keyframe creation rate. It is possible to improve the runtime significantly using SIMD instructions to process each patch. Besides, many of the operations can be parallelized as they are independent for each point. We believe using these upgrades could make DSM run in real-time applications since the mapping thread is not required to run at frame rate but at keyframe rate.

C. Qualitative results

Fig. 11 and Fig. 12 show some 3D maps obtained with DSM. In contrast to sliding-window based approaches incorporating covisibility constraints avoid duplicating points and builds a consistent map. DSM estimates a precise camera trajectory and 3D reconstruction even in the most difficult sequences such as V1_03_difficult and MH_05_difficult (see accompanying video). Fig. 12 shows examples of estimated trajectories compared to the ground-truth.

VIII. DISCUSSION & FUTURE WORK

We have demonstrated the benefits of building a persistent map instead of just estimating the camera odometry with a temporary map. Both the accuracy of the trajectory and the reconstructed map improve by reusing map information in the photometric model. Besides, DSM manages to process scene reobservations and successfully completes 10 out of 11 sequences with an RMS ATE below 0.1m in the challenging EuRoC dataset without requiring any loop closure detection and correction modules. Thus, this work clearly shows that for many scenarios, point reobservations provide sufficient and more valuable information to accurately estimate camera trajectory and scene reconstruction.

Even with a persistent map, we know that it is not possible to handle all the reobservations in all situations. In large trajectory scenarios, the accumulated drift makes it impossible to detect map point reobservations with geometric techniques alone. Sometimes map point reobservations do not even fall in the camera field of view due to the large drift, e.g. in a highway loop. In these cases, a place recognition module, which exploits the image appearance, would be useful to detect loop closures. Then, a pose-graph optimization will serve as an initialization for the PBA. Therefore, we believe that combining map reuse capabilities with a place recognition module, such as previously done with indirect techniques in [6], [7], is the best alternative. In any case, we think that a pose-graph should only be used as a coarse initialization technique for the PBA, which is the optimization technique that actually exploits all the available geometric information in a VSLAM system.
difficult (right) sequences. The trajectory is displayed in red. The trajectory is displayed in red.

Fig. 11: Qualitative examples. V1_03_difficult (left) and MH_05_difficult (right) sequences. The trajectory is displayed in red.

Fig. 12: Trajectory examples by DSM (red) and ground-truth (black).

IX. Conclusion

In this work, we have presented a novel fully direct VSLAM method which is capable of building a persistent map by reusing map points from already visited scene regions. To obtain this, we have presented a new local window selection strategy using covisibility criteria, which enables to include map point reobservations into the PBA. We have demonstrated that a coarse-to-fine strategy is required to process point reobservations with the photometric model. In addition, we have incorporated a robust influence function based on the t-distribution which increases the robustness of the whole system against spurious observation. As a result, we use the same objective function and map points for all the operations in the system. We demonstrate in the EuRoC MAV dataset that the proposed method reduces both the estimated trajectory and map error while avoiding inconsistent map point duplications at the same time.

Acknowledgments

We would like to express our gratitude to Prof. J.D. Tardós for the fruitful discussions and sensible advice.

References

[1] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.
[2] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. Achtelik, and R. Siegwart, “The EuRoC MAV Datasets,” Int. J. of Robotics Research, 2015.
[3] A. J. Davison, L. D. Reid, N. D. Molton, and O. Stasse, “MonoSlam: Real-Time Single Camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, p. 16, 2007.
[4] J. Civera, A. J. Davison, and J. M. M. Montiel, “Inverse depth parametrization for monocular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 932–945, 2008.
[5] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR Workspaces,” in ISMAR - IEEE International Symposium on Mixed and Augmented Reality, 2007.
[6] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, “Double window optimisation for constant time visual SLAM,” in Proceedings of the IEEE International Conference on Computer Vision, 2011, pp. 2352–2359.
[7] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.
[8] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 15–22, 2014.
[9] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual-inertial odometry using nonlinear optimization,” International Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.
[10] D. Galvez-López and J. D. Tardos, “Bags of Binary Words for Fast Place Recognition in Image Sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197, oct 2012.
[11] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator,” IEEE Transactions on Robotics, pp. 1–17, 2018.
[12] J. Engel, T. Sch, and D. Cremers, “LSD-SLAM: Large-Scale Direct Monocular SLAM,” in European Conference on Computer Vision, 2014, pp. 834–849.
[13] M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization and mapping in the space of appearance,” International Journal of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.
[14] X. Gao, R. Wang, N. Demmel, and D. Cremers, “LDSO: Direct Sparse Odometry with Loop Closure,” in International Conference on Intelligent Robots and Systems, 2018.
[15] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for RGB-D cameras,” in Proceedings - IEEE International Conference on Robotics and Automation, 2013, pp. 3748–3754.
[16] K. L. Lange, R. J. Little, and J. M. Taylor, “Robust statistical modeling using the t distribution,” Journal of the American Statistical Association, vol. 84, no. 408, pp. 881–896, 1989.
[17] B. W. Babu, S. Kim, Z. Yan, and L. Ren, “σ-DVO: Sensor Noise Model Meets Dense Visual Odometry,” in Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2016, 2016, pp. 18–26.
[18] S. Agarwal, K. Mierle, and Others, “Ceres Solver.”
[19] B. Triggs, P. F. P. McLauchlan, R. I. Hartley, and A. W. A. Fitzgibbon, “Bundle AdjustmentA Modern Synthesis,” in International Workshop on Vision Algorithms, vol. 34099, 2000, pp. 298–372.
[20] C. Lagarias, Jeffrey, A. Reeds, James, H. Wright, Margaret, and E. Wright, Paul, “Convergence properties of the neldermead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998.
[21] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying framework,” International Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.
[22] R. Mur-Artal and J. D. Tardos, “Visual-Inertial Monocular SLAM with Map Reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, 2016.