Population-based study of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ

K. B. I. M. Keymeulen1, S. M. E. Geurts2, M. B. I. Lobbes3, E. M. Heuts1, L. E. M. Duijm8,9, L. F. S. Kooiman4, A. C. Voogd2,5,6,10 and V. C. G. Tjan-Heijnen2,6

Departments of 1Surgery, 2Medical Oncology, 3Radiology and Nuclear Medicine, 4Pathology and 5Epidemiology, and 6GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, 7Department of Radiology, Zuyderland Medical Center, Sittard-Geleen, 8Department of Radiology, Canisius Wilhelmina Hospital and 9Dutch Expert Centre for Screening, Nijmegen, and 10Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, The Netherlands

Correspondence to: Ms K. B. I. M. Keymeulen, Department of Surgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, the Netherlands (e-mail: k.keymeulen@mumc.nl)

Background: Determinants of the use of breast MRI in patients with ductal carcinoma in situ (DCIS) in the Netherlands were studied, and whether using MRI influenced the rates of positive resection margins and mastectomies.

Methods: All women aged less than 75 years, and diagnosed with DCIS between 2011 and 2015, were identified from the Netherlands Cancer Registry. Multivariable logistic regression analyses were performed, adjusting for incidence year, age, hospital type, DCIS grade and multifocality.

Results: Breast MRI was performed in 2382 of 10415 DCIS cases (22.9 per cent). In multivariable analysis, patients aged less than 50 years, those with high- or intermediate-grade DCIS and patients with multifocal disease were significantly more likely to have preoperative MRI. Patients undergoing MRI were more likely to have a mastectomy, either as first surgical treatment or following breast-conserving surgery (BCS) in the event of positive margins (odds ratio (OR) 2.11, 95 per cent c.i. 1.91 to 2.33). The risk of positive surgical margins after BCS was similar for those with versus without MRI. The secondary mastectomy rate after BCS was higher in patients who had MRI, especially in women aged less than 50 years (OR 1.94, 1.31 to 2.89). All findings were similar for low- and intermediate/high-grade DCIS.

Conclusion: Adding MRI to conventional breast imaging did not improve surgical outcome in patients diagnosed with primary DCIS. The likelihood of undergoing a mastectomy was twice as high in the MRI group, and no reduction in the risk of margin involvement was observed after BCS.

Paper accepted 2 June 2019
Published online 6 August 2019 in Wiley Online Library (www.bjs.co.uk). DOI: 10.1002/bjs.11299

Introduction

In the past 25 years, the incidence of ductal carcinoma in situ (DCIS) has increased rapidly, especially among women aged 50–74 years, owing to the introduction of the breast cancer screening programmes and the widespread implementation of full-field digital mammography (FFDM). In the Netherlands, DCIS incidence has increased from six per 100000 women in 1989 to 30 per 100000 women in 20151,2.

In most patients, DCIS is not palpable and presents as morphologically suspicious calcifications on FFDM. However, because FFDM often underestimates DCIS size, resection margins are frequently positive after breast-conserving surgery (BCS)3,4. Figures collected by the Dutch Institute for Clinical Auditing on patients treated with BCS in 2015 showed positive resection margins in 19-4 per cent of those with DCIS versus 3 per cent of patients with invasive breast cancer5. Involved resection margins are associated with a twofold increased risk of ipsilateral breast recurrences, of which half are invasive, compared with negative margins6,7. Although positive resection margins can be treated by secondary surgery, re-excisions are a source of physical burden, anxiety and worse cosmesis for the patient.

Previous studies8–10 have shown that adding breast MRI to FFDM leads to a more accurate assessment of the extent of DCIS compared with FFDM alone. MRI might therefore reduce the rate of margin involvement and limit the need for additional surgery after BCS. A meta-analysis11
including patients with biopsy-proven DCIS from two RCTs and seven observational cohort studies, however, found no effect of MRI on margin involvement, need for re-excision or mastectomy rate. Sample sizes of individual studies were generally small and not all relevant surgical outcomes were determined in these nine studies, limiting the interpretation of the overall effect. Moreover, the estimated impact on positive margins was dominated by the largest study, whereas all other surgical outcomes were based on the smaller studies.

The aim of this study was to analyse determinants of the preoperative use of breast MRI in patients with pure DCIS, and its impact on the type of primary surgery, surgical resection margins and need for re-excision after BCS in a large population-based cohort.

Methods

This was a population-based study including all women aged less than 75 years and treated with surgery for pure DCIS of the breast diagnosed in the Netherlands between 2011 and 2015. DCIS was diagnosed using stereotactic, ultrasound- or MRI-guided core needle or vacuum-assisted biopsies, with a preference for the latter.

According to Dutch guidelines at that time, preoperative imaging comprised FFDM and ultrasonography in all patients, with breast MRI being considered in patients with high-grade DCIS preferring BCS, unclear tumour size, or if there was suspicion of microinvasion based on the preoperative biopsy. The presence of positive margins after primary surgery was, and still is, an indication for re-excision. To assess the use and impact of breast MRI, the study population was categorized into an MRI and a no-MRI group.

Data collection

Patients were identified from the database of the Netherlands Cancer Registry (NCR). Patients are included in the NCR database after notification by the nationwide Dutch Pathology Archive of Histo- and Cytopathology. Specially trained data managers collect the data from the patients’ files in all Dutch hospitals. Only patients with pure DCIS in the resection specimen were included in this study.

The following variables were used in the present analysis: age at diagnosis, hospital type (university, teaching, general), histological grade (low, intermediate, high, unknown), multifocality (yes, no), use of preoperative breast MRI (yes, no), type of primary surgery (BCS, mastectomy), surgical margin involvement after BCS (none, focal (4 mm or less), more than focal (more than 4 mm)) and use of secondary surgery after BCS (none, re-excision, mastectomy).

Study endpoints

The study endpoints were more than focal margin involvement after BCS for DCIS, the combination of focal and more than focal margin involvement after BCS, primary and overall mastectomy rates, and secondary surgery (re-excision or mastectomy) after BCS.

Statistical analysis

Multivariable logistic regression analyses were undertaken to determine the association between the use of MRI and the following co-variables: year of incidence, hospital type, age at diagnosis, tumour grade and multifocality. The associations between MRI and primary and final mastectomy were established for all patients, and adjusted for year of incidence, age group, hospital type, tumour grade and multifocality. In patients who underwent initial BCS, multivariable logistic regression analyses were performed to examine the association between MRI and surgical outcomes, including margin involvement, secondary surgery (re-excision or mastectomy) and secondary mastectomy. Analyses were stratified by age at diagnosis (less than 50 versus 50–74 years) because younger women tend to have more dense glandular tissue with a higher chance of background enhancement on MRI. This may influence the diagnostic accuracy of MRI in detecting DCIS. Analyses were furthermore stratified by histological grade (low versus intermediate/high) because this factor is also known to affect the accuracy of MRI.

Results

Patient characteristics associated with use of breast MRI

In the interval 2011–2015, a total of 10 173 patients were diagnosed with 10 415 DCIS lesions. The majority of the lesions were diagnosed at age 50–74 years (84.7 per cent), were of intermediate or high grade (79.0 per cent) and were primarily treated with BCS (70.8 per cent) (Table 1). MRI was used in 2382 lesions (22.9 per cent); this varied between 20.4 per cent in 2013 and 25.6 per cent in 2015. MRI was used in 38.8 per cent of women aged less than 50 years and 20.0 per cent of those aged 50–74 years (Table 2). In multivariable analyses, age at diagnosis, DCIS grade and multifocality remained independent factors associated with use of MRI (Table 2).

Mastectomy

Mastectomy as the first surgical procedure was performed in 29.2 per cent of patients, and more often in women
who had undergone breast MRI (odds ratio (OR) 2.22, 95 per cent c.i. 2.00 to 2.45) (Table 3). Findings were similar by age and DCIS grade. MRI was also associated with a significantly increased risk of final mastectomy (OR 2.11, 1.91 to 2.33).

Margin involvement

Of patients who underwent BCS as first surgical procedure and with known margin status, 19.5 per cent had margin involvement (Table 4). MRI use was not associated with a lower risk of margin involvement overall (OR 0.99, 95 per cent c.i. 0.85 to 1.16), or with a lower risk of more than focal margin involvement (OR 1.13, 0.90 to 1.40). Findings with respect to margin involvement were similar in women aged less than 50 years and those aged 50–74 years, and for low- and intermediate-high-grade DCIS.

Secondary surgery

Secondary surgery and mastectomy were performed in 17.5 and 8.1 per cent respectively of patients who were primarily treated with BCS. The likelihood of secondary surgery after BCS was slightly higher in the MRI group (OR 1.17, 95 per cent c.i. 1.00 to 1.37), irrespective of age or DCIS grade (Table 4). The risk of secondary mastectomy after BCS was also slightly higher in the MRI group (OR 1.32, 1.07 to 1.63), irrespective of DCIS grade (Table 4). The risk of secondary mastectomy in the MRI group was increased in women aged less than 50 years (OR 1.94, 1.31 to 2.89), but not among those aged 50–74 years (OR 1.12, 0.87 to 1.44).

Table 1 Patients with ductal carcinoma in situ diagnosed in the Netherlands, 2011–2015, according to use of MRI

Year of diagnosis	Total (n = 10 415)	MRI (n = 2382)	No MRI (n = 8033)
2011	1900 (18-2)	419 (17-6)	1481 (18-4)
2012	2016 (19-4)	450 (18-9)	1566 (19-5)
2013	2265 (21-7)	462 (19-4)	1803 (22-4)
2014	2046 (19-6)	491 (20-6)	1555 (19-4)
2015	2188 (21-0)	560 (23-5)	1628 (20-2)

Table 2 Multivariable analysis of predictors for the use of MRI in patients with ductal carcinoma in situ

Year of diagnosis	No. who had MRI*	Odds ratio†‡
2011	419 (22-1)	1.00 (reference)
2012	450 (22-3)	1.02 (0.87, 1.19)
2013	462 (20-4)	0.91 (0.78, 1.06)
2014	491 (24-0)	1.13 (0.97, 1.31)
2015	560 (25-6)	1.24 (1.07, 1.44)

Values in parentheses are *percentages and 95 per cent confidence intervals. †Some 230 patients with unknown hospital type and/or unknown multifocality were excluded from the multivariable analysis. DCIS, ductal carcinoma in situ. §P < 0.050 (multivariable logistic regression analysis).

Values in parentheses are percentages. DCIS, ductal carcinoma in situ; BCS, breast-conserving surgery.
Table 3 Effect of preoperative breast MRI on primary and final mastectomy in all patients with ductal carcinoma in situ, by age and tumour grade

	Primary mastectomy	Final mastectomy		
	% of women	Odds ratio	% of women	Odds ratio
All women*	29-2	34-9	No MRI	1-00 (reference)
No MRI	24-4	1-00 (reference)		
MRI used	45-3	2-22 (2-00, 2-45)		
Age < 50 years†	43-8	52-5	No MRI	1-00 (reference)
No MRI	35-6	43-4	MRI used	2-14 (1-72, 2-67)
Age 50–74 years†	26-6	31-7	No MRI	1-00 (reference)
No MRI	22-9	28-1	MRI used	2-23 (1-99, 2-50)
Low-grade DCIS§	17-0	21-1	No MRI	1-00 (reference)
No MRI	14-3	18-0	MRI used	2-59 (1-88, 3-57)
Intermediate/high-grade DCIS§	32-0	38-2	No MRI	1-00 (reference)
No MRI	27-0	33-2	MRI used	2-18 (1-96, 2-43)

Values in parentheses are 95% confidence intervals. Analyses were adjusted for: *incidence year, age group, hospital type, ductal carcinoma in situ (DCIS) grade and multifocality; †incidence year, age group, hospital type, DCIS grade and multifocality; §incidence year, age group, hospital type and multifocality. §P < 0-05 (multivariable logistic regression analysis).

Table 4 Effect of preoperative breast MRI on surgical outcomes after primary breast-conserving surgery for ductal carcinoma in situ, by age and grade

	Margin involvement focal or more than focal*	Margin involvement more than focal*	Secondary surgery	Secondary mastectomy		
	% of women	Odds ratio				
All women†	19-5	7-6	17-5	8-1	16-7	1-00 (reference)
No MRI	19-3	1-00 (reference)	11-1	1-00 (reference)		
MRI used	20-6	9-2	21-0	1-17 (1-00, 1-37)		
Age < 50 years‡	24-0	12-3	26-1	15-4	24-6	1-00 (reference)
No MRI	24-0	1-00 (reference)	15-0	1-41 (0-91, 2-20)		
MRI used	24-0	1-00 (0-70, 1-42)	29-6	1-19 (0-85, 1-67)		
Age 50–74 years‡	18-9	7-0	16-3	7-1	18-7	1-00 (reference)
No MRI	18-7	1-00 (reference)	7-7	1-04 (0-81, 1-35)		
MRI used	19-7	7-7	18-8	1-16 (0-97, 1-38)		
Low-grade DCIS§	11-7	4-3	10-5	5-0	11-5	1-00 (reference)
No MRI	11-5	4-1	9-9	1-00 (reference)		
MRI used	13-1	6-3	14-3	1-20 (0-73, 1-97)		
Intermediate/high-grade DCIS§	22-1	8-6	19-7	9-1	22-0	1-00 (reference)
No MRI	22-0	8-3	19-0	1-00 (reference)		
MRI used	22-7	9-9	22-9	1-21 (1-02, 1-43)		

Values in parentheses are 95% confidence intervals. *Patients with unknown margin status were excluded from the analyses. Analyses were adjusted for: †incidence year, age group, hospital type, ductal carcinoma in situ (DCIS) grade and multifocality; §incidence year, hospital type, DCIS grade and multifocality; ¶incidence year, age group, hospital type and multifocality. §P < 0-05 (multivariable logistic regression analysis).
Discussion

This population-based study included 10 173 women diagnosed with primary DCIS in the Netherlands between 2011 and 2015. Preoperative breast MRI, in addition to conventional breast imaging, in patients with DCIS did not reduce the risk of positive resection margins, but increased the overall mastectomy rate.

An important finding of this study is that preoperative MRI increased the odds of having mastectomy as primary surgery in all age groups (fully adjusted OR 2.22, 95 per cent c.i. 2.00 to 2.45). A similar effect was found in the meta-analysis by Fancellu and colleagues11, in which the age-adjusted OR was 1.8 (1.2 to 2.7), based on five studies including 598 patients. This result can partly be explained by the fact that, in some patients, extensive, multifocal and multicentric disease can be detected more accurately by MRI15,17, and so patients unsuitable for BCS can be identified. MRI, however, also tends to overestimate the size of the lesion in 17–47 per cent of patients14,18, increasing the likelihood of unnecessary mastectomies. Another explanation may be that more patients choose to undergo mastectomy in the event of involved margins than those who did not have MRI. The reason for this is not clear. A possible explanation is that a larger amount of DCIS was expected when diagnosed27,28. This, together with a higher risk of local recurrence among younger patients treated with BCS in comparison with older patients27,29, and increasing possibilities and improved techniques for immediate breast reconstruction, may explain the higher mastectomy rate in this age group, irrespective of the use of MRI. In the present study, women aged less 50 years who underwent MRI had the highest primary mastectomy rate and the lowest BCS rate, which might suggest better selection by use of MRI. However, this did not result in a lower risk of positive resection margins after BCS, indicating that MRI also has no additional value in these younger patients. Among younger patients, those who had MRI during the diagnostic process were more likely to undergo secondary mastectomy in the event of involved margins than those who did not have MRI. The reason for this is not clear. A possible explanation is that a larger amount of DCIS was expected to be left in the breast when MRI was not able to predict...
the extent or growth pattern of the DCIS in this subgroup more accurately in comparison with conventional imaging. A strength of the present study, besides the large patient population, is the use of data from the NCR, which is known to have high-quality data. However, like most retrospective studies, this study also has some limitations. An important limitation is that the reasons for performing MRI were unavailable, neither was information on radiological and pathological size of DCIS. As more patients with high-grade DCIS underwent MRI, it is possible that there was selection of larger tumours in the MRI group. With larger DCIS comes a higher risk of positive resection margins and a higher risk of primary mastectomy. This can mimic the effect of MRI in this patient group. In addition, information about MRI sequence protocols used, experience of the radiologists and localization procedures employed were not available in this study. Furthermore, it was not possible to determine whether MRI use changed surgical treatment decisions and, if it did, whether this was appropriate. In the meta-analysis by Fancellu and colleagues, 16 (95 per cent c.i. 6 to 35) per cent of 298 patients had a change in initial surgical treatment based on preoperative MRI findings. In the COMICE trial, MRI led to an accurate treatment decision in 79 per cent of patients compared with histopathological findings. The ratio between appropriate and inappropriate mastectomy was 1:1. It is also unknown how other factors, such as patient or surgeon preference, or how patients were informed about adjuvant radiotherapy or about safety of BCS in comparison with mastectomy, influenced the surgical decision-making.

At present, there is no convincing indication for the use of preoperative MRI in patients diagnosed with DCIS. MRI increases costs, causes stress and anxiety for patients owing to additional uncertain or false-positive findings, and does not lead to a better surgical outcome. For a definitive conclusion, it is advised to wait for the results of studies with large patient numbers investigating the long-term impact of MRI on local recurrence and survival, for example using follow-up data from this cohort. If preoperative breast MRI is being considered, the European Society of Breast Cancer Specialists guidelines state that women should be informed about the uncertainties, and possible advantages and disadvantages, of MRI before being scheduled for this examination.

Acknowledgements

The authors thank the registration team of the Netherlands Comprehensive Cancer Organization (IKNL) for the collection of data for the Netherlands Cancer Registry, and IKNL staff for scientific advice. No preregistration exists for the study reported in this article. The project plan was, however, submitted to, and supported by a grant from, the Dutch Cancer Society (project number 2013-6486).

References

1. Virnig BA, Tuttle TM, Shamliyan T, Kane RL. Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst 2010; 102: 170–178.
2. Comprehensive Cancer Centre the Netherlands. Incidence Breast Cancer; 2016. https://www.cijfersoverkanker.nl [accessed 2 February 2017].
3. Heelan Gladden AA, Sams S, Gleisner A, Finlayson C, Kounalakis N, Hosokawa P et al. Re-excision rates after breast conserving surgery following the 2014 SSO-ASTRO guidelines. Ann J Surg 2017; 214: 1104–1109.
4. Langhans L, Jensen MB, Talman MM, Vejborg I, Kromann N, Tvedskov TF. Reoperation rates in ductal carcinoma in situ vs invasive breast cancer after wire-guided breast-conserving surgery. JAMA Surg 2017; 152: 378–384.
5. Dutch Institute for Clinical Auditing. Annual Report 2017 NBCA. https://dica.nl/jaarrapportage-2017/nbca [accessed 6 December 2018].
6. Morrow M, Van Zee KJ, Solin LJ, Houssami N, Chavez-MacGregor M, Harris JR et al. Society of Surgical Oncology – American Society for Radiation Oncology – American Society of Clinical Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ. Ann Surg Oncol 2016; 23: 3801–3810.
7. Dunne C, Burke JP, Morrow M, Kell MR. Effect of margin status on local recurrence after breast conservation and radiation therapy for ductal carcinoma in situ. J Clin Oncol 2009; 27: 1615–1620.
8. Doyle AJ, Prakash S, Wang K, Cranshaw I, Taylor E, Oldfield R. DCIS of the breast: the value of preoperative MRI. J Med Imaging Radiat Oncol 2016; 60: 194–198.
9. Greenwood HI, Heller SL, Kim S, Sigmund EE, Shaylor SD, Moy L. Ductal carcinoma in situ of the breasts: review of MR imaging features. Radiographics 2013; 33: 1569–1588.
10. Santamaria G, Velasco M, Farrús B, Zanón G, Fernández PL. Preoperative MRI of pure intraductal breast carcinoma – a valuable adjunct to mammography in assessing cancer extent. Breast 2008; 17: 186–194.
11. Fancellu A, Turner RM, Dixon JM, Pinna A, Cottu P, Houssami N. Meta-analysis of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg 2015; 102: 883–893.
12. National Breast Cancer Organization of the Netherlands (NABON). Breast Cancer; 2012. richtlijnendatabase.nl [accessed 28 April 2017].
13. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications
for breast cancer screening. *AJR Am J Roentgenol* 2012; 198: W292–W295.
14 Kropcho LC, Steen ST, Chung AP, Sim MS, Kirsch DL, Giuliano AE. Preoperative breast MRI in the surgical treatment of ductal carcinoma *in situ*. *Breast J* 2012; 18: 151–156.
15 Estevez LG, Alvarez I, Seguí MÁ, Muñoz M, Margeli M, Miró C *et al.* Current perspectives of treatment of ductal carcinoma *in situ*. *Cancer Treat Rev* 2010; 36: 507–517.
16 Kuhl CK, Schrading S, Bieling HB, Wardelmann E, Leutner CC, Koenig R *et al.* MRI for diagnosis of pure ductal carcinoma *in situ*: a prospective observational study. *Lancet* 2007; 370: 485–492.
17 Hwang ES, Kinkel K, Esserman LJ, Lu Y, Weidner N, Hylton NM. Magnetic resonance imaging in patients diagnosed with ductal carcinoma-*in situ*: value in the diagnosis of residual disease, occult invasion, and multicentricity. *Ann Surg Oncol* 2003; 10: 381–388.
18 Allen LR, Lago-Toro CE, Hughes JH, Careaga E, Brown AT, Chernick M *et al.* Is there a role for MRI in the preoperative assessment of patients with DCIS? *Ann Surg Oncol* 2010; 17: 2395–2400.
19 Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS *et al.* Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. *Radiology* 2004; 233: 830–849.
20 Kim JA, Son EJ, Youk JH, Kim EK, Kim MJ, Kwak JY *et al.* MRI findings of pure ductal carcinoma *in situ*: kinetic characteristics compared according to lesion type and histopathologic factors. *AJR Am J Roentgenol* 2011; 196: 1450–1456.
21 Jansen SA, Newstead GM, Abe H, Shimauchi A, Schmidt RA, Karczmar GS. Pure ductal carcinoma *in situ*: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. *Radiology* 2007; 245: 684–691.
22 Jansen SA, Paunesku T, Fan X, Woloschak GE, Vogt S, Conzen SD *et al.* Ductal carcinoma *in situ*: x-ray fluorescence microscopy and dynamic contrast-enhanced MR imaging reveals gadolinium uptake within neoplastic mammary ducts in a murine model. *Radiology* 2009; 253: 399–406.
23 Kuhl CK. Why do purely intraductal cancers enhance on breast MR images? *Radiology* 2009; 253: 281–283.
24 Kuhl CK. MRI of breast tumors. *Eur Radiol* 2000; 10: 46–58.
25 Gombos EC, Jayender J, Richman DM, Caragacianu DL, Mallory MA, Jolesz FA *et al.* Intraoperative supine breast MR imaging to quantify tumor deformation and detection of residual breast cancer: preliminary results. *Radiology* 2016; 281: 720–729.
26 Sakakibara M, Nagashima T, Sangai T, Nakamura R, Fujimoto H, Arai M *et al.* Breast-conserving surgery using projection and reproduction techniques of surgical-position breast MRI in patients with ductal carcinoma *in situ* of the breast. *J Am Coll Surg* 2008; 207: 62–68.
27 Pilewskie M, Olcese C, Eaton A, Patil S, Morris E, Morrow M *et al.* Perioperative breast MRI is not associated with lower locoregional recurrence rates in DCIS patients treated with or without radiation. *Ann Surg Oncol* 2014; 21: 1552–1560.
28 Shin HC, Han W, Moon HG, Yom CK, Ahn SK, You JM *et al.* Limited value and utility of breast MRI in patients undergoing breast-conserving cancer surgery. *Ann Surg Oncol* 2012; 19: 2572–2579.
29 Cronin PA, Olcese C, Patil S, Morrow M, Van Zee KJ. Impact of age on risk of recurrence of ductal carcinoma in situ: outcomes of 2996 women treated with breast-conserving surgery over 30 years. *Ann Surg Oncol* 2016; 23: 2816–2824.
30 Kricker A, Goumas C, Armstrong B. Ductal carcinoma *in situ* of the breast, a population-based study of epidemiology and pathology. *Br J Cancer* 2004; 90: 1382–1385.
31 Cheng L, Al-Kaisi NK, Gordon NH, Liu AY, Gebrail F, Shenk RR. Relationship between the size and margin status of ductal carcinoma *in situ* of the breast and residual disease. *J Natl Cancer Inst* 1997; 89: 1356–1360.
32 Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V *et al.* Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. *Lancet* 2010; 375: 563–571.
33 Turnbull LW, Brown SR, Olivier C, Harvey I, Brown J, Drew P *et al.* Multicentre randomised controlled trial examining the cost-effectiveness of contrast-enhanced high field magnetic resonance imaging in women with primary breast cancer scheduled for wide local excision (COMICE). *Health Technol Assess* 2010; 14: 1–182.
34 Lallemand M, Barron M, Bingham J, Mosier A, Hardin M, Sohn V. The true impact of breast magnetic resonance imaging on the management of *in situ* disease: more is not better. *Am J Surg* 2017; 213: 127–131.
35 Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert FJ *et al.* Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. *Eur J Cancer* 2010; 46: 1296–1316.