ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES
IN FUZZY NORMED SPACES

Sungsik Yuna, Jung Rye Leeb and Dong Yun Shinc,*

Abstract. Let
\[M_1 f(x, y) := \frac{3}{4} f(x + y) - \frac{1}{4} f(-x - y) + \frac{1}{4} f(x - y) + \frac{1}{4} f(y - x) - f(x) - f(y), \]
\[M_2 f(x, y) := 2 f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) + f\left(\frac{y - x}{2}\right) - f(x) - f(y). \]

Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities
\[N(M_1 f(x, y), t) \geq N(\rho M_2 f(x, y), t) \tag{0.1} \]
where ρ is a fixed real number with $|\rho| < 1$, and
\[N(M_2 f(x, y), t) \geq N(\rho M_1 f(x, y), t) \tag{0.2} \]
where ρ is a fixed real number with $|\rho| < \frac{1}{2}$.

1. Introduction and Preliminaries

Katsaras [14] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view [11, 16, 38]. In particular, Bag and Samanta [3], following Cheng and Mordeson [8], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [15]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [4].

We use the definition of fuzzy normed spaces given in [3, 19, 20] to investigate the Hyers-Ulam stability of additive ρ-functional inequalities in fuzzy Banach spaces.
Definition 1.1 ([3, 19, 20, 21]). Let X be a real vector space. A function $N : X \times \mathbb{R} \to [0, 1]$ is called a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,

1. $N(x, t) = 0$ for $t \leq 0$;
2. $x = 0$ if and only if $N(x, t) = 1$ for all $t > 0$;
3. $N(cx, t) = N(x, \frac{t}{|c|})$ if $c \neq 0$;
4. $N(x + y, s + t) \geq \min\{N(x, s), N(y, t)\}$;
5. $N(x, \cdot)$ is a non-decreasing function of \mathbb{R} and $\lim_{t \to \infty} N(x, t) = 1$.
6. for $x \neq 0$, $N(x, \cdot)$ is continuous on \mathbb{R}.

The pair (X, N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in [15, 19].

Definition 1.2 ([3, 19, 20, 21]). Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is said to be convergent or converge if there exists an $x \in X$ such that $\lim_{n \to \infty} N(x_n - x, t) = 1$ for all $t > 0$. In this case, x is called the limit of the sequence $\{x_n\}$ and we denote it by $N\text{-}\lim_{n \to \infty} x_n = x$.

Definition 1.3 ([3, 19, 20, 21]). Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is called Cauchy if for each $\varepsilon > 0$ and each $t > 0$ there exists an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ and all $p > 0$, we have $N(x_{n+p} - x_n, t) > 1 - \varepsilon$.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping $f : X \to Y$ between fuzzy normed vector spaces X and Y is continuous at a point $x_0 \in X$ if for each sequence $\{x_n\}$ converging to x_0 in X, then the sequence $\{f(x_n)\}$ converges to $f(x_0)$. If $f : X \to Y$ is continuous at each $x \in X$, then $f : X \to Y$ is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of Ulam [37] concerning the stability of group homomorphisms.

The functional equation $f(x + y) = f(x) + f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [13] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Rassias [29] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [12] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The functional equation \(f(x + y) + f(x - y) = 2f(x) + 2f(y) \) is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a \textit{quadratic mapping}. The stability of quadratic functional equation was proved by Skof [36] for mappings \(f : E_1 \to E_2 \), where \(E_1 \) is a normed space and \(E_2 \) is a Banach space. Cholewa [9] noticed that the theorem of Skof is still true if the relevant domain \(E_1 \) is replaced by an Abelian group. The stability problems of various functional equations have been extensively investigated by a number of authors (see [1, 5, 6, 7, 10, 17, 18, 22, 25, 26, 27, 30, 31, 32, 33, 34, 35, 39, 40]).

Park [23, 24] defined additive \(\rho \)-functional inequalities and proved the Hyers-Ulam stability of the additive \(\rho \)-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

In Section 2, we prove the Hyers-Ulam stability of the additive-quadratic \(\rho \)-functional inequality (0.1) in fuzzy Banach spaces by using the direct method.

In Section 3, we prove the Hyers-Ulam stability of the additive-quadratic \(\rho \)-functional inequality (0.2) in fuzzy Banach spaces by using the direct method.

Throughout this paper, assume that \(X \) is a real vector space and \((Y, N) \) is a fuzzy Banach space.

2. ADDITVE-QUADRATIC \(\rho \)-FUNCTIONAL INEQUALITY (0.1)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic \(\rho \)-functional inequality (0.1) in fuzzy Banach spaces. Let \(\rho \) be a real number with \(|\rho| \leq 1\).

We need the following lemma to prove the main results.

\textbf{Lemma 2.1.}

(i) If an odd mapping \(f : X \to Y \) satisfies

\begin{equation}
N(M_1 f(x, y), t) \geq N(\rho M_2 f(x, y), t)
\end{equation}

for all \(x, y \in X \) and all \(t > 0 \), then \(f \) is the Cauchy additive mapping.

(ii) If an even mapping \(f : X \to Y \) satisfies \(f(0) = 0 \) and (2.1), then \(f \) is the quadratic mapping.

\textit{Proof.} (i) Letting \(y = x \) in (2.1), we get \(N(f(2x) - 2f(x), t) = 1 \) for all \(t > 0 \) and so
\(f(2x) = 2f(x) \) for all \(x \in X \). Thus

\[
\frac{f(x)}{2} = \frac{1}{2}f(x)
\]

for all \(x \in X \).

It follows from (2.1) and (2.2) that

\[
N(f(x + y) - f(x) - f(y), t) = N(\rho \left(2f \left(\frac{x + y}{2} \right) - f(x) - f(y) \right), t)
\]

for all \(t > 0 \) and so

\[
f(x + y) = f(x) + f(y)
\]

for all \(x, y \in X \) by \((N_3) \).

(ii) Letting \(y = x \) in (2.1), we get \(N \left(\frac{1}{2}f(2x) - 2f(x), t \right) = 1 \) for all \(t > 0 \) and so \(f(2x) = 4f(x) \) for all \(x \in X \). Thus

\[
\frac{f(x)}{4} = \frac{1}{4}f(x)
\]

for all \(x \in X \).

It follows from (2.1) and (2.3) that

\[
N \left(\frac{1}{2}f(x + y) + \frac{1}{2}f(x - y) - f(x) - f(y), t \right)
\]

\[
= N \left(\rho \left(2f \left(\frac{x + y}{2} \right) + 2f \left(\frac{x - y}{2} \right) - f(x) - f(y) \right), t \right)
\]

\[
= N \left(\rho \left(\frac{1}{2}f(x + y) + \frac{1}{2}f(x - y) - f(x) - f(y) \right), t \right)
\]

for all \(t > 0 \) and so

\[
f(x + y) + f(x - y) = 2f(x) + 2f(y)
\]

for all \(x, y \in X \) by \((N_3) \). \(\square \)

Theorem 2.2. Let \(\varphi : \mathbb{X}^2 \to [0, \infty) \) be a function such that

\[
\sum_{j=1}^{\infty} 4^j \varphi \left(\frac{x}{2^j}, \frac{y}{2^j} \right) < \infty
\]

for all \(x, y \in \mathbb{X} \).

(i) Let \(f : \mathbb{X} \to \mathbb{Y} \) be an odd mapping satisfying

\[
N(M_1 f(x, y), t) \geq \min \left\{ N(\rho M_2 f(x, y), t), \frac{t}{t + \varphi(x, y)} \right\}
\]

for all \(x, y \in \mathbb{X} \).
for all \(x, y \in X \) and all \(t > 0 \). Then \(A(x) := N \lim_{n \to \infty} 2^n f \left(\frac{x}{2^n} \right) \) exists for each \(x \in X \) and defines an additive mapping \(A : X \to Y \) such that

\[
N \left(f(x) - A(x), t \right) \geq \frac{t}{t + \frac{1}{2} \Psi(x, x)}
\]

for all \(x \in X \) and all \(t > 0 \), where \(\Psi(x, y) := \sum_{j=1}^{\infty} 2^j \varphi \left(\frac{x}{2^j}, \frac{y}{2^j} \right) \).

(ii) Let \(f : X \to Y \) be an even mapping satisfying \(f(0) = 0 \) and (2.5). Then \(Q(x) := N \lim_{n \to \infty} 4^n f \left(\frac{x}{2^n} \right) \) exists for each \(x \in X \) and defines a quadratic mapping \(Q : X \to Y \) such that

\[
N \left(f(x) - Q(x), t \right) \geq \frac{t}{t + \frac{1}{2} \Phi(x, x)}
\]

for all \(x \in X \) and all \(t > 0 \), where \(\Phi(x, y) := \sum_{j=1}^{\infty} 4^j \varphi \left(\frac{x}{2^j}, \frac{y}{2^j} \right) \) for all \(x, y \in X \).

Proof. (i) Letting \(y = x \) in (2.5), we get

\[
N \left(f(2x) - 2f(x), t \right) \geq \frac{t}{t + \varphi(x, x)}
\]

and so

\[
N \left(f \left(\frac{x}{2} \right) - 2f(x), t \right) \geq \frac{t}{t + \varphi \left(\frac{x}{2}, \frac{x}{2} \right)}
\]

for all \(x \in X \). Hence

\[\tag{2.9} \]

\[
N \left(2^l f \left(\frac{x}{2^l} \right) - 2^m f \left(\frac{x}{2^m} \right), t \right) \geq \min \left\{ N \left(2^l f \left(\frac{x}{2^l} \right) - 2^{l+1} f \left(\frac{x}{2^{l+1}} \right), t \right), \ldots, \right.
\]

\[
\cdots, N \left(2^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 2^m f \left(\frac{x}{2^m} \right), t \right) \left. \right\}
\]

\[
= \min \left\{ N \left(f \left(\frac{x}{2^l} \right) - 2f \left(\frac{x}{2^{l+1}} \right), t \right), \ldots, N \left(f \left(\frac{x}{2^m} \right) - 2f \left(\frac{x}{2^{m-1}} \right), \frac{t}{2^{m-1}} \right) \right\}
\]

\[
\geq \min \left\{ \frac{t}{2^l + \varphi \left(\frac{x}{2^l+1}, \frac{x}{2^{l+1}} \right)}, \ldots, \frac{t}{2^m + \varphi \left(\frac{x}{2^m}, \frac{x}{2^m} \right)} \right\}
\]

\[
= \min \left\{ \frac{t}{t + 2^l \varphi \left(\frac{x}{2^l+1}, \frac{x}{2^{l+1}} \right)}, \ldots, \frac{t}{t + 2^m - \varphi \left(\frac{x}{2^m}, \frac{x}{2^m} \right)} \right\}
\]

\[
\geq \frac{t}{t + \frac{1}{2} \sum_{j=l+1}^{m} 2^j \varphi \left(\frac{x}{2^j}, \frac{x}{2^j} \right)}
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \) and all \(t > 0 \). It follows from (2.4) and (2.9) that the sequence \(\{2^n f \left(\frac{x}{2^n} \right)\} \) is a Cauchy sequence for all
Let $x \in X$. Since Y is complete, the sequence $\{2^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $A : X \to Y$ by

$$A(x) := N \lim_{n \to \infty} 2^n f(\frac{x}{2^n})$$

for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (2.9), we get (2.6).

By (2.5),

$$N \left(2^n \left(f \left(\frac{x+y}{2^n} \right) - f \left(\frac{x}{2^n} \right) - f \left(\frac{y}{2^n} \right) \right) \right) - \rho \left(2^{n+1} f \left(\frac{x+y}{2^{n+1}} \right) - 2^n f \left(\frac{x}{2^n} \right) - 2^n f \left(\frac{y}{2^n} \right) \right), 2^n t) \geq \frac{t}{t + \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right)}$$

for all $x, y \in X$, all $t > 0$ and all $n \in \mathbb{N}$. So

$$N \left(2^n \left(f \left(\frac{x+y}{2^n} \right) - f \left(\frac{x}{2^n} \right) - f \left(\frac{y}{2^n} \right) \right) \right) - \rho \left(2^{n+1} f \left(\frac{x+y}{2^{n+1}} \right) - 2^n f \left(\frac{x}{2^n} \right) - 2^n f \left(\frac{y}{2^n} \right) \right), t) \geq \frac{t}{\frac{t}{2^n} + \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) = \frac{t}{t + 2^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right)}$$

for all $x, y \in X$, all $t > 0$ and all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \frac{t}{t + 2^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right)} = 1$ for all $x, y \in X$ and all $t > 0$,

$$A(x+y) - A(x) - A(y) = \rho \left(2A \left(\frac{x+y}{2} \right) - A(x) - A(y) \right)$$

for all $x, y \in X$. By Lemma 2.1, the mapping $A : X \to Y$ is Cauchy additive.

(ii) Letting $y = x$ in (2.5), we get

$$N \left(\frac{1}{2} f(2x) - 2f(x), t \right) \geq \frac{t}{t + \varphi(x,x)} \tag{2.10}$$

and so

$$N \left(f(x) - 4f \left(\frac{x}{2} \right), t \right) \geq \frac{t}{\frac{t}{2} + \varphi \left(\frac{x}{2}, \frac{x}{2} \right)} = \frac{t}{t + 2 \varphi \left(\frac{x}{2}, \frac{x}{2} \right)}$$

for all $x \in X$. Hence
ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES

\[
N \left(4^l f \left(\frac{x}{2^l} \right) - 4^m f \left(\frac{x}{2^m} \right), t \right) \geq \min \left\{ \begin{array}{c}
N \left(4^l f \left(\frac{x}{2^l} \right) - 4^{l+1} f \left(\frac{x}{2^{l+1}} \right), t \right), \\
\cdots, N \left(4^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 4^m f \left(\frac{x}{2^m} \right), t \right) \end{array} \right\}
\]

\[
= \min \left\{ N \left(f \left(\frac{x}{2^l} \right) - 4f \left(\frac{x}{2^{l+1}} \right), \frac{t}{4^l} \right), \cdots, N \left(f \left(\frac{x}{2^{m-1}} \right) - 4f \left(\frac{x}{2^m} \right), \frac{t}{4^{m-1}} \right) \right\}
\]

\[
\geq \min \left\{ \frac{t}{4^l + 2\varphi \left(\frac{x}{2^l}, \frac{x}{2^{l+1}} \right)}, \cdots, \frac{t}{4^{m-1} + 2\varphi \left(\frac{x}{2^{m-1}}, \frac{x}{2^m} \right)} \right\}
\]

\[
= \min \left\{ \frac{t}{t + 2 \cdot 4^l \varphi \left(\frac{x}{2^l}, \frac{x}{2^{l+1}} \right)}, \cdots, \frac{t}{t + 2 \cdot 4^{m-1} \varphi \left(\frac{x}{2^{m-1}}, \frac{x}{2^m} \right)} \right\}
\]

\[
\geq \frac{t}{t + \frac{1}{2} \sum_{j=l+1}^{m} 4^j \varphi \left(\frac{x}{2^j}, \frac{x}{2^{j+1}} \right)}
\]

for all nonnegative integers m and l with $m > l$ and all $x \in X$ and all $t > 0$. It follows from (2.4) and (2.11) that the sequence $\{4^n f \left(\frac{x}{2^n} \right)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{4^n f \left(\frac{x}{2^n} \right)\}$ converges. So one can define the mapping $Q : X \rightarrow Y$ by

\[
Q(x) := N-\lim_{n \rightarrow \infty} 4^n f \left(\frac{x}{2^n} \right)
\]

for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \rightarrow \infty$ in (2.11), we get (2.7).

The rest of the proof is similar to the above additive case. \hfill \Box

Corollary 2.3. Let $\theta \geq 0$ and let p be a real number with $p > 2$. Let X be a normed vector space with norm $\| \cdot \|$.

(i) Let $f : X \rightarrow Y$ be an odd mapping satisfying

\[
(2.12) \quad N \left(M_1 f(x, y), t \right) \geq \min \left\{ N \left(\rho M_2 f(x, y), t \right), \frac{t}{t + \theta \left(\| x \|^{p} + \| y \|^{p} \right)} \right\}
\]

for all $x, y \in X$ and all $t > 0$. Then $A(x) := N-\lim_{n \rightarrow \infty} 2^n f \left(\frac{x}{2^n} \right)$ exists for each $x \in X$ and defines an additive mapping $A : X \rightarrow Y$ such that

\[
N \left(f(x) - A(x), t \right) \geq \frac{(2^p - 2)t}{(2^p - 2)t + 2\theta \| x \|^{p}}
\]

for all $x \in X$ and all $t > 0$.

(ii) Let \(f : X \to Y \) be an even mapping satisfying \(f(0) = 0 \) and \((2.12)\). Then \(Q(x) := N\lim_{n \to \infty} A^n f \left(\frac{x}{2^n} \right) \) exists for each \(x \in X \) and defines a quadratic mapping \(Q : X \to Y \) such that

\[
N \left(f(x) - Q(x), t \right) \geq \frac{(2^p - 4)t}{(2^p - 4)t + 4\theta \|x\|^p}
\]

for all \(x \in X \) and all \(t > 0 \).

Proof. The proof follows from Theorem 2.2 by taking \(\varphi(x, y) := \theta(\|x\|^p + \|y\|^p) \) for all \(x, y \in X \), as desired. \(\square \)

Theorem 2.4. Let \(\varphi : X^2 \to [0, \infty) \) be a function such that

\[
\sum_{j=0}^{\infty} \frac{1}{2^j} \varphi \left(2^j x, 2^j y \right) < \infty
\]

for all \(x, y \in X \).

(i) Let \(f : X \to Y \) be an odd mapping satisfying \((2.5)\). Then

\[
A(x) := N - \lim_{n \to \infty} \frac{1}{2^n} f \left(2^n x \right)
\]

exists for each \(x \in X \) and defines an additive mapping \(A : X \to Y \) such that

\[
N \left(f(x) - A(x), t \right) \geq \frac{t}{t + \frac{1}{2} \Phi(x, x)}
\]

for all \(x \in X \) and all \(t > 0 \), where \(\Phi(x, y) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi \left(2^j x, 2^j y \right) \) for all \(x, y \in X \).

(ii) Let \(f : X \to Y \) be an even mapping satisfying \(f(0) = 0 \) and \((2.5)\). Then \(Q(x) := N\lim_{n \to \infty} \frac{1}{2^n} f \left(2^n x \right) \) exists for each \(x \in X \) and defines a quadratic mapping \(Q : X \to Y \) such that

\[
N \left(f(x) - Q(x), t \right) \geq \frac{t}{t + \frac{1}{2} \Psi(x, x)}
\]

for all \(x \in X \) and all \(t > 0 \), where \(\Psi(x, y) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi \left(2^j x, 2^j y \right) \) for all \(x, y \in X \).

Proof. (i) It follows from \((2.8)\) that

\[
N \left(f(x) - \frac{1}{2} f(2x), \frac{1}{2} t \right) \geq \frac{t}{t + \varphi(x, x)}
\]

and so

\[
N \left(f(x) - \frac{1}{2} f(2x), t \right) \geq \frac{2t}{2t + \varphi(x, x)} = \frac{t}{t + \frac{1}{2} \varphi(x, x)}
\]

for all \(x \in X \) and all \(t > 0 \).
(ii) It follows from (2.10) that
\[N\left(f(x) - \frac{1}{4}f(2x), \frac{1}{2}t\right) \geq \frac{t}{t + \varphi(x,x)} \]
and so
\[N\left(f(x) - \frac{1}{4}f(2x), t\right) \geq \frac{2t}{2t + \varphi(x,x)} = \frac{t}{t + \frac{1}{2}\varphi(x,x)} \]
for all \(x \in X \) and all \(t > 0 \).

The rest of the proof is similar to the proof of Theorem 2.2. \(\square \)

Corollary 2.5. Let \(\theta \geq 0 \) and let \(p \) be a real number with \(0 < p < 1 \). Let \(X \) be a normed vector space with norm \(\| \cdot \| \).

(i) Let \(f : X \to Y \) be an odd mapping satisfying (2.12). Then \(A(x) := N\lim_{n \to \infty} \frac{1}{2^n}f(2^n x) \) exists for each \(x \in X \) and defines an additive mapping \(A : X \to Y \) such that
\[N\left(f(x) - A(x), t\right) \geq \frac{(2 - 2^p)t}{(2 - 2^p)t + 2\theta\|x\|^p} \]
for all \(x \in X \) and all \(t > 0 \).

(ii) Let \(f : X \to Y \) be an even mapping satisfying \(f(0) = 0 \) and (2.12). Then \(Q(x) := N\lim_{n \to \infty} \frac{1}{2^n}f(2^n x) \) exists for each \(x \in X \) and defines a quadratic mapping \(Q : X \to Y \) such that
\[N\left(f(x) - Q(x), t\right) \geq \frac{(4 - 2^p)t}{(4 - 2^p)t + 4\theta\|x\|^p} \]
for all \(x \in X \) and all \(t > 0 \).

Proof. The proof follows from Theorem 2.4 by taking \(\varphi(x,y) := \theta(\|x\|^p + \|y\|^p) \) for all \(x, y \in X \), as desired. \(\square \)

3. Additive-Quadratic \(\rho \)-functional Inequality (0.2)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic \(\rho \)-functional inequality (0.2) in fuzzy Banach spaces. Let \(\rho \) be a real number with \(|\rho| \leq \frac{1}{2} \).

Lemma 3.1.
(i) If an odd mapping \(f : X \to Y \) satisfies
\[N(M_2 f(x,y), t) \geq N(\rho M_1 f(x,y), t) \]
for all \(x, y \in X \) and all \(t > 0 \), then \(f \) is the Cauchy additive mapping.
(ii) If an even mapping \(f : X \to Y \) satisfies \(f(0) = 0 \) and (3.1), then \(f \) is the quadratic mapping.

Proof. (i) Letting \(y = 0 \) in (3.1), we get \(N \left(2f \left(\frac{x}{2} \right) - f(x), t \right) = 1 \) for all \(t > 0 \). So

\[
f \left(\frac{x}{2} \right) = \frac{1}{2} f(x)
\]

for all \(x \in X \).

It follows from (3.1) and (3.2) that

\[
N(f(x + y) - f(x) - f(y), t) = N \left(2f \left(\frac{x + y}{2} \right) - f(x) - f(y), t \right)
\]

\[
= N(\rho(f(x + y) - f(x) - f(y)), t)
\]

for all \(t > 0 \) and so

\[
f(x + y) = f(x) + f(y)
\]

for all \(x, y \in X \) by \((N_5)\).

(ii) Letting \(y = 0 \) in (3.1), we get \(N(4f \left(\frac{x}{2} \right) - f(x), t) \) for all \(t > 0 \). So

\[
f \left(\frac{x}{2} \right) = \frac{1}{4} f(x)
\]

for all \(x \in X \).

It follows from (3.1) and (3.3) that

\[
N \left(\frac{1}{2} f(x + y) + \frac{1}{2} f(x - y) - f(x) - f(y), t \right)
\]

\[
= N \left(2f \left(\frac{x + y}{2} \right) + 2f \left(\frac{x - y}{2} \right) - f(x) - f(y), t \right)
\]

\[
= N \left(\rho \left(\frac{1}{2} f(x + y) + \frac{1}{2} f(x - y) - f(x) - f(y) \right), t \right)
\]

for all \(t > 0 \) and so

\[
f(x + y) + f(x - y) = 2f(x) + 2f(y)
\]

for all \(x, y \in X \) by \((N_5)\). \(\square\)

Theorem 3.2. Let \(\varphi : X^2 \to [0, \infty) \) be a function such that

\[
\sum_{j=0}^{\infty} 4^j \varphi \left(\frac{x}{2^j}, \frac{y}{2^j} \right) < \infty
\]

(3.4)

for all \(x, y \in X \).
(i) Let $f : X \to Y$ be an odd mapping satisfying

\[
N(M_2 f(x, y), t) \geq \min \left\{ N(\rho M_1 f(x, y), t), \frac{t}{t + \varphi(x, y)} \right\}
\]

for all $x, y \in X$ and all $t > 0$. Then $A(x) := N \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$ exists for each $x \in X$ and defines an additive mapping $A : X \to Y$ such that

\[
N(f(x) - A(x), t) \geq \frac{t}{t + \Phi(x, 0)}
\]

for all $x \in X$ and all $t > 0$, where $\Phi(x, y) := \sum_{j=0}^{\infty} 2^j \varphi\left(\frac{x}{2^j}, \frac{y}{2^j}\right)$ for all $x, y \in X$.

(ii) Let $f : X \to Y$ be an even mapping satisfying $f(0) = 0$ and (3.5). Then $Q(x) := N \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right)$ exists for each $x \in X$ and defines a quadratic mapping $Q : X \to Y$ such that

\[
N(f(x) - Q(x), t) \geq \frac{t}{t + \Psi(x, 0)}
\]

for all $x \in X$ and all $t > 0$, where $\Psi(x, y) := \sum_{j=0}^{\infty} 4^j \varphi\left(\frac{x}{2^j}, \frac{y}{2^j}\right)$ for all $x, y \in X$.

Proof. (i) Letting $y = 0$ in (3.5), we get

\[
N\left(f(x) - 2f\left(\frac{x}{2}\right), t\right) = N\left(2f\left(\frac{x}{2}\right) - f(x), t\right) \geq \frac{t}{t + \varphi(x, 0)}
\]

for all $x \in X$. Hence

\[
N\left(2^l f\left(\frac{x}{2^l}\right) - 2^m f\left(\frac{x}{2^m}\right), t\right)
\]

\[
\geq \min \left\{ N\left(2^l f\left(\frac{x}{2^l}\right) - 2^{l+1} f\left(\frac{x}{2^{l+1}}\right), t\right), \ldots, \right. \right.
\]

\[
\left. \left. \ldots, N\left(2^{m-1} f\left(\frac{x}{2^{m-1}}\right) - 2^m f\left(\frac{x}{2^m}\right), t\right) \right\}
\]

\[
= \min \left\{ N\left(f\left(\frac{x}{2^l}\right) - 2 f\left(\frac{x}{2^{l+1}}\right), \frac{t}{2^l}\right), \ldots, N\left(f\left(\frac{x}{2^{m-1}}\right) - 2 f\left(\frac{x}{2^m}\right), \frac{t}{2^{m-1}}\right) \right\}
\]

\[
\geq \min \left\{ \frac{t}{\frac{t}{2^l} + \varphi\left(\frac{x}{2^l}, 0\right)}, \ldots, \frac{t}{\frac{t}{2^{m-1}} + \varphi\left(\frac{x}{2^{m-1}}, 0\right)} \right\}
\]

\[
= \min \left\{ \frac{t}{t + 2^l \varphi\left(\frac{x}{2^l}, 0\right)}, \ldots, \frac{t}{t + 2^{m-1} \varphi\left(\frac{x}{2^{m-1}}, 0\right)} \right\}
\]

\[
\geq \frac{t}{t + \sum_{j=1}^{m-1} 2^j \varphi\left(\frac{x}{2^j}, 0\right)}
\]

for all nonnegative integers m and l with $m > l$ and all $x \in X$ and all $t > 0$. It follows from (3.4) and (3.9) that the sequence $\{2^n f\left(\frac{x}{2^n}\right)\}$ is a Cauchy sequence for all
Since \(x \in X \). Since \(Y \) is complete, the sequence \(\{2^n f(x/2^n)\} \) converges. So one can define the mapping \(A : X \to Y \) by

\[
A(x) := \lim_{n \to \infty} 2^n f(x/2^n)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.9), we get (3.6).

By (3.5),

\[
N \left(2^{n+1} f \left(\frac{x+y}{2^{n+1}} \right) - 2^n f \left(\frac{x}{2^n} \right) - 2^n f \left(\frac{y}{2^n} \right) - \rho \left(2^n \left(f \left(\frac{x+y}{2^n} \right) - f \left(\frac{x}{2^n} \right) - f \left(\frac{y}{2^n} \right) \right) \right), t \right) \geq \frac{t}{t + \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right)}
\]

for all \(x, y \in X \), all \(t > 0 \) and all \(n \in \mathbb{N} \). So

\[
N \left(2^{n+1} f \left(\frac{x+y}{2^{n+1}} \right) - 2^n f \left(\frac{x}{2^n} \right) - 2^n f \left(\frac{y}{2^n} \right) - \rho \left(2^n \left(f \left(\frac{x+y}{2^n} \right) - f \left(\frac{x}{2^n} \right) - f \left(\frac{y}{2^n} \right) \right) \right), t \right) \geq \frac{t}{t + \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right)}\]

for all \(x, y \in X \), all \(t > 0 \) and all \(n \in \mathbb{N} \). Since \(\lim_{n \to \infty} \frac{t}{t + 2^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right)} = 1 \) for all \(x, y \in X \) and all \(t > 0 \),

\[
2A \left(\frac{x+y}{2} \right) - A(x) - A(y) = \rho \left(A(x+y) - A(x) - A(y) \right)
\]

for all \(x, y \in X \). By Lemma 3.1, the mapping \(A : X \to Y \) is Cauchy additive.

(ii) Letting \(y = 0 \) in (3.1), we get

\[
(3.10) \quad N \left(f(x) - 4f \left(\frac{x}{2} \right), t \right) = N \left(4f \left(\frac{x}{2} \right) - f(x), t \right) \geq \frac{t}{t + \varphi(x,0)}
\]

for all \(x \in X \). Hence

\[
(3.11) \quad N \left(4^i f \left(\frac{x}{2^i} \right) - 4^i f \left(\frac{x}{2^i} \right), t \right)
\]
\[
\geq \min \left\{ N \left(4^l f \left(\frac{x}{2^l} \right) - 4^{l+1} f \left(\frac{x}{2^{l+1}} \right) ; t \right), \ldots , N \left(4^{m-1} f \left(\frac{x}{2^{m-1}} \right) - 4^m f \left(\frac{x}{2^m} \right) ; t \right) \right\}
\]

\[
= \min \left\{ N \left(f \left(\frac{x}{2^l} \right) - 4 f \left(\frac{x}{2^{l+1}} \right) ; \frac{t}{4^l} \right), \ldots , N \left(f \left(\frac{x}{2^{m-1}} \right) - 4 f \left(\frac{x}{2^m} \right) ; \frac{t}{4^{m-1}} \right) \right\}
\]

\[
\geq \min \left\{ \frac{t}{4^l + \varphi \left(\frac{x}{2^l}, 0 \right)}, \ldots , \frac{t}{4^{m-1} + \varphi \left(\frac{x}{2^{m-1}}, 0 \right)} \right\}
\]

\[
= \min \left\{ \frac{t}{t + 4^l \varphi \left(\frac{x}{2^l}, 0 \right)}, \ldots , \frac{t}{t + 4^{m-1} \varphi \left(\frac{x}{2^{m-1}}, 0 \right)} \right\}
\]

\[
\geq \frac{t}{t + \sum_{j=l}^{m-1} 4^j \varphi \left(\frac{x}{2^j}, 0 \right)}
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \) and all \(t > 0 \). It follows from (3.4) and (3.11) that the sequence \(\left\{ 4^n f \left(\frac{x}{2^n} \right) \right\} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\left\{ 4^n f \left(\frac{x}{2^n} \right) \right\} \) converges. So one can define the mapping \(Q : X \to Y \) by

\[
Q(x) := N_{\lim_{n \to \infty}} 4^n f \left(\frac{x}{2^n} \right)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.11), we get (3.7).

The rest of the proof is similar to the above additive case. \(\square \)

Corollary 3.3. Let \(\theta \geq 0 \) and let \(p \) be a real number with \(p > 2 \). Let \(X \) be a normed vector space with norm \(\| \cdot \| \).

(i) Let \(f : X \to Y \) be an odd mapping satisfying

\[
(3.12) \quad N \left(M_2 f(x, y), t \right) \geq \min \left\{ N \left(\rho M_1 f(x, y), t \right), \frac{t}{t + \theta \left(\| x \|^p + \| y \|^p \right)} \right\}
\]

for all \(x, y \in X \) and all \(t > 0 \). Then \(A(x) := N_{\lim_{n \to \infty}} 2^n f \left(\frac{x}{2^n} \right) \) exists for each \(x \in X \) and defines an additive mapping \(A : X \to Y \) such that

\[
N \left(f(x) - A(x), t \right) \geq \frac{(2^p - 2)t}{(2^p - 2)t + 2^p \theta \| x \|^p}
\]

for all \(x \in X \) and all \(t > 0 \).

(ii) Let \(f : X \to Y \) be an even mapping satisfying \(f(0) = 0 \) and (3.12). Then \(Q(x) := N_{\lim_{n \to \infty}} 4^n f \left(\frac{x}{2^n} \right) \) exists for each \(x \in X \) and defines a quadratic mapping.
Q : X → Y such that

\[N(f(x) - Q(x), t) \geq \frac{(2^p - 4)t}{(2^p - 4)t + 2^p \theta \|x\|^p} \]

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) := θ(∥x∥^p + ∥y∥^p) for all x, y ∈ X, as desired. □

Theorem 3.4. Let ϕ : X^2 → [0, ∞) be a function such that

\[\sum_{j=1}^{∞} \frac{1}{2^j} ϕ (2^j x, 2^j y) < ∞ \]

for all x, y ∈ X.

(i) Let f : X → Y be an odd mapping satisfying (3.5). Then A(x) := N-lim_n→∞ (1/2^p) f (2^n x) exists for each x ∈ X and defines an additive mapping A : X → Y such that

\[N(f(x) - A(x), t) \geq \frac{t}{t + Φ(x, 0)} \]

for all x ∈ X and all t > 0, where Φ(x, y) := ∑_{j=1}^{∞} \frac{1}{2^j} ϕ (2^j x, 2^j y) for all x, y ∈ X.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then Q(x) := N-lim_n→∞ (1/4^p) f (2^n x) exists for each x ∈ X and defines a quadratic mapping Q : X → Y such that

\[N(f(x) - Q(x), t) \geq \frac{t}{t + Ψ(x, 0)} \]

for all x ∈ X and all t > 0, where Ψ(x, y) := ∑_{j=1}^{∞} \frac{1}{4^j} ϕ (2^j x, 2^j y) for all x, y ∈ X.

Proof. (i) It follows from (3.8) that

\[N\left(f(x) - \frac{1}{2} f(2x), \frac{t}{2}\right) \geq \frac{t}{t + ϕ(2x, 0)} \]

and so

\[N\left(f(x) - \frac{1}{2} f(2x), t\right) \geq \frac{2t}{2t + ϕ(2x, 0)} = \frac{t}{t + \frac{1}{2} ϕ(2x, 0)} \]

for all x ∈ X and all t > 0.

(ii) It follows from (3.10) that

\[N\left(f(x) - \frac{1}{4} f(2x), \frac{t}{4}\right) \geq \frac{t}{t + ϕ(2x, 0)} \]

and so

\[N\left(f(x) - \frac{1}{4} f(2x), t\right) \geq \frac{4t}{4t + ϕ(2x, 0)} = \frac{t}{t + \frac{1}{4} ϕ(2x, 0)} \]
for all $x \in X$ and all $t > 0$.

The rest of the proof is similar to the proof of Theorem 3.2. □

Corollary 3.5. Let $\theta \geq 0$ and let p be a real number with $0 < p < 1$. Let X be a normed vector space with norm $\| \cdot \|$.

(i) Let $f : X \to Y$ be an odd mapping satisfying (3.12). Then $A(x) := N \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$ exists for each $x \in X$ and defines an additive mapping $A : X \to Y$ such that

$$N (f(x) - A(x), t) \geq \frac{(2 - 2^p)t}{(2 - 2^p)t + 2^p \theta \|x\|^p}$$

for all $x \in X$.

(ii) Let $f : X \to Y$ be an even mapping satisfying $f(0) = 0$ and (3.12). Then $Q(x) := N \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$ exists for each $x \in X$ and defines a quadratic mapping $Q : X \to Y$ such that

$$N (f(x) - Q(x), t) \geq \frac{(4 - 2^p)t}{(4 - 2^p)t + 2^p \theta \|x\|^p}$$

for all $x \in X$.

Proof. The proof follows from Theorem 3.4 by taking $\varphi(x, y) := \theta(\|x\|^p + \|y\|^p)$ for all $x, y \in X$, as desired. □

ACKNOWLEDGMENTS

S. Yun was supported by Hanshin University Research Grant.

REFERENCES

1. M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59.
2. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
3. T. Bag & S.K. Samanta: Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 11 (2003), 687-705.
4. _____: Fuzzy bounded linear operators. Fuzzy Sets and Systems 151 (2005), 513-547.
5. L. Cădariu, L. Găvruta & P. Găvruta: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.
6. A. Chahbi & N. Boumader: On the generalized stability of d’Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
7. I. Chang & Y. Lee: Additive and quadratic type functional equation and its fuzzy stability. *Results Math.* **63** (2013), 717-730.
8. S.C. Cheng & J.M. Mordeson: Fuzzy linear operators and fuzzy normed linear spaces. *Bull. Calcutta Math. Soc.* **86** (1994), 429-436.
9. P.W. Cholewa: Remarks on the stability of functional equations. *Aequationes Math.* **27** (1984), 76-86.
10. G.Z. Eskandani & P. Găvruţa: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. *J. Nonlinear Sci. Appl.* **5** (2012), 459-465.
11. C. Felbin: Finite dimensional fuzzy normed linear spaces. *Fuzzy Sets and Systems* **48** (1992), 239-248.
12. P. Găvruţa: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. *J. Math. Anal. Appl.* **184** (1994), 431-436.
13. D.H. Hyers: On the stability of the linear functional equation. *Proc. Nat. Acad. Sci. U.S.A.* **27** (1941), 222-224.
14. A.K. Katsaras: Fuzzy topological vector spaces II. *Fuzzy Sets and Systems* **12** (1984), 143-154.
15. I. Kramosil & J. Michalek: Fuzzy metric and statistical metric spaces. *Kybernetica* **11** (1975), 326-334.
16. S.V. Krishna & K.K.M. Sarma: Separation of fuzzy normed linear spaces. *Fuzzy Sets and Systems* **63** (1994), 207-217.
17. G. Lu, Y. Wang & P. Ye: n-Jordan ∗-derivations on induced fuzzy C∗-algebras. *J. Comput. Anal. Appl.* **20** (2016), 266-276.
18. D. Mihet & R. Saadati: On the stability of the additive Cauchy functional equation in random normed spaces. *Appl. Math. Lett.* **24** (2011), 2005-2009.
19. A.K. Mirmostafaee, M. Mirzavaziri & M.S. Moslehian: Fuzzy stability of the Jensen functional equation. *Fuzzy Sets and Systems* **159** (2008), 730-738.
20. A.K. Mirmostafaee & M.S. Moslehian: Fuzzy versions of Hyers-Ulam-Rassias theorem, *Fuzzy Sets and Systems* **159** (2008), 720-729.
21. ______: Fuzzy approximately cubic mappings. *Inform. Sci.* **178** (2008), 3791-3798.
22. E. Movahednia, S.M.S.M. Mosadegh, C. Park & D. Shin: Stability of a lattice preserving functional equation on Riesz space: fixed point alternative. *J. Comput. Anal. Appl.* **21** (2016), 83-89.
23. C. Park: Additive ρ-functional inequalities and equations. *J. Math. Inequal.* **9** (2015), 17-26.
24. ______: Additive ρ-functional inequalities in non-Archimedean normed spaces. *J. Math. Inequal.* **9** (2015), 397-407.
25. ______: Stability of ternary quadratic derivation on ternary Banach algebras: revisited. *J. Comput. Anal. Appl.* **20** (2016), 21-23.
26. C. Park, K. Ghasemi, S.G. Ghaleh & S. Jang: Approximate \(n \)-Jordan \(\ast \)-homomorphisms in \(C^\ast \)-algebras. *J. Comput. Anal. Appl.* **15** (2013), 365-368.

27. C. Park, A. Najati & S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. *J. Comput. Anal. Appl.* **15** (2013), 452-462.

28. W. Park & J. Bae: Approximate quadratic forms on restricted domains. *J. Comput. Anal. Appl.* **20** (2016), 388-410.

29. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. *Proc. Amer. Math. Soc.* **72** (1978), 297-300.

30. K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. *J. Nonlinear Sci. Appl.* **7** (2014), 18-27.

31. S. Schin, D. Ki, J. Chang & M. Kim: Random stability of quadratic functional equations: a fixed point approach. *J. Nonlinear Sci. Appl.* **4** (2011), 37-49.

32. S. Shagholi, M. Bavand Savadkouhi & M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras. *J. Comput. Anal. Appl.* **13** (2011), 1106-1114.

33. S. Shagholi, M. Eshaghi Gordji & M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. *J. Comput. Anal. Appl.* **13** (2011), 1097-1105.

34. D. Shin, C. Park & Sh. Farhadabadi: On the superstability of ternary Jordan \(C^\ast \)-homomorphisms. *J. Comput. Anal. Appl.* **16** (2014), 964-973.

35. ______: Stability and superstability of \(J^\ast \)-homomorphisms and \(J^\ast \)-derivations for a generalized Cauchy-Jensen equation. *J. Comput. Anal. Appl.* **17** (2014), 125-134.

36. F. Skof: Propriet locali e approssimazione di operatori. *Rend. Sem. Mat. Fis. Milano* **53** (1983), 113-129.

37. S.M. Ulam: *A Collection of the Mathematical Problems*. Interscience Publ. New York, 1960.

38. J.Z. Xiao & X.H. Zhu: Fuzzy normed spaces of operators and its completeness. *Fuzzy Sets and Systems* **133** (2003), 389-399.

39. C. Zaharia: On the probabilistic stability of the monomial functional equation. *J. Nonlinear Sci. Appl.* **6** (2013), 51-59.

40. S. Zolfaghari: Approximation of mixed type functional equations in \(p \)-Banach spaces. *J. Nonlinear Sci. Appl.* **3** (2010), 110-122.

\(^{a} \)Department of Financial Mathematics, Hanshin University, Gyeonggi-do 18101, Korea

\(^{b} \)Department of Mathematics, Daejin University, Kyeonggi 11159, Korea

\(^{c} \)Department of Mathematics, University of Seoul, Seoul 02504, Republic of Korea

Email address: ssyun@hs.ac.kr

Email address: jrlee@daejin.ac.kr

Email address: dyshin@uos.ac.kr