Appendix to:
EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance zoxamide. EFSA Journal 2017;15(9):4980, 79 pp. doi:10.2903/j.efsa.2017.4980
© European Food Safety Authority, 2017

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Zoxamide
Function (e.g. fungicide)	Fungicide
Rapporteur Member State	Latvia
Co-rapporteur Member State	France

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	(RS)-3,5-dichloro-N-(3-chloro-1-ethyl-1-methyl-2-oxopropyl)-p-toluidine
Chemical name (CA)	3,5-dichloro-N-(3-chloro-1-ethyl-1-methyl-2-oxopropyl)-4-methylbenzamide
CIPAC No	640
CAS No	156052-68-5
EC No (EINECS or ELINCS)	Not allocated
FAO Specification (including year of publication)	A FAO specification has not yet been established.
Minimum purity of the active substance as manufactured	953 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	Open
Molecular formula	C_{14}H_{16}NO_{2}Cl_{3}
Molar mass	336.65 g/mol
Structural formula	![Structural formula image]
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value/Description
Melting point (state purity)	159.5 – 161 °C (97.7%)
Boiling point (state purity)	Not determined, as decomposition begins at the melting point.
Temperature of decomposition (state purity)	Irreversible chemical decomposition occurs at the melting point. (97.7%)
Appearance (state purity)	Lumpy white powder (98.8%)
Vapour pressure (state temperature, state purity)	<1.3 x 10^{-5} Pa at 25, 35 and 45 °C (98.8%)
Henry’s law constant (state temperature)	<6.59 x 10^{-3} Pa m^3 mol^{-1} (20 to 25 °C)
Solubility in water (state temperature, state purity and pH)	0.681 ± 0.017 mg/L at 20 °C (98.7%)
Zoxamide does not protonate or ionise at pH values between 3 and 11.	
Solubility in organic solvents (state temperature, state purity)	ethyl acetate: 20.0 g/L at 20°C (97.7%)
acetone: 55.7 g/L at 20°C (97.7%)	
xylene: 1.56 g/L at 20°C (97.7%)	
1-octanol: 6.49 g/L at 20°C (97.7%)	
heptane: 0.038 g/L at 20°C (97.7%)	
1,2-dichloroethane: 12.5 g/L at 20°C (97.7%)	
Surface tension (state concentration and temperature, state purity)	Not determined, as solubility in water is < 1 mg/L.
Partition coefficient (state temperature, pH and purity)	log Pow = 3.76 ± 0.04 (98.7%)
Zoxamide contains no acid or base functionality - Kow is not dependent on pH.	
Dissociation constant (state purity)	Does not dissociate. (98.8%)
UV/VIS absorption (max.) incl. \(\varepsilon \) (state purity, pH)	
pH	Absorbance \(\lambda \) (nm)
-----	-----------------------------
neutral	241.2
acid	241.4
alkaline	244.8
neutral	212.0
acid	212.4
alkaline	218.2
Flammability (state purity)	Not flammable or auto-flammable. (97.7%)
Explosive properties (state purity)	Not explosive (97.7%)
Oxidising properties (state purity)	Not oxidising (97.7%)
Summary of representative uses evaluated, for which all risk assessments needed to be completed
(Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country (b)	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days)	Remarks
Grapes (Wine, Table)	CEU, SEU	Zoxium 240 SC	F	grape downy mildew *Plasmodara viticola*	SC 240 g/L	BBCH 15-79	0.018 kg a.s./ha	28	
Potato	NEU, CEU, SEU	Zoxium 240 SC	F	potato late blight *Phytophthora infestans*	SC 240 g/L	BBCH 20-80	0.018 kg a.s./ha	7	

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide

(f) All abbreviations used must be explained

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench

(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated

(i) kg/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).

(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of applications possible under practical conditions of use

(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha

(m) PHI - minimum pre-harvest interval
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment

Regulation (EC) N° 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F or G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
					Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s. /L.min-max (l)	Water L/ha min-max (l)	kg a.s./ha min-max (l)	
MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)	Not Applicable													

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

The active ingredient acts against fungus from the class of Oomycetes, especially against downy mildews (e.g. *Phytophtora infestans*). It works protective and needs to be applied before the disease attack.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

No adverse effects on treated crops have been observed. Zoxamide based products have been registered in many EU countries based on detailed national assessments of the efficacy package. More detailed consideration will be fully assessed in the context of subsequent applications for products authorisation.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

No undesirable or unintended side-effects have ever been reported or observed. Zoxamide based products have been registered in many EU countries based on detailed national assessments of the efficacy package. More detailed consideration will be fully assessed in the context of subsequent applications for products authorisation.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism
RH -141455
No
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Method Type	Technique Details
Technical a.s. (analytical technique)	Reversed-phase HPLC with UV detection
Impurities in technical a.s. (analytical technique)	Reversed-phase HPLC with UV detection, For some more volatile impurities GC with FID detection.
Plant protection product (analytical technique)	Reversed-phase HPLC with UV detection

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food Type	Residue Details
Food of plant origin	Zoxamide (fruit crops and pulses and oilseed) sum of metabolites RH-141455 and RH-141452 (root crops)
Food of animal origin	Open
Soil	At least zoxamide but open regarding metabolites RH-163353 and RH-141455
Sediment	At least zoxamide but open regarding metabolites RH-127450 and RH-163353
Water surface	At least zoxamide but open regarding RH-127450, RH-24549, RH-163353 & RH-141455
drinking/ground	At least zoxamide but open regarding RH -141455
Air	Zoxamide
Body fluids and tissues	Zoxamide

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	Zoxamide in potato (tuber, chips and flakes), grapes (berries, juice, wine and raisins), lettuce, dry bean and oilseed rape seed: QuEChERS multi-residue method, LC-MS/MS. LOQ: 0.01 mg/kg ILV: Potato tuber, grape vine and lettuce – LOQ 0.01 mg/kg RH-141455 and RH-141452 in potato: LC-MS/MS LOQ: 0.01 mg/kg in potato tubers and 0.05 mg/kg in potato chips and flakes for both metabolites ILV: data gap
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	Pending, data gaps identified
Soil (analytical technique and LOQ)	LC-MS/MS, LOQ: 0.05 mg/kg determining zoxamide
Water (analytical technique and LOQ)

- Drinking and surface water: LC-MS/MS, LOQ: 0.1 µg/L determining zoxamide
- ILV: Drinking water, LOQ: 0.1 µg/L for determining zoxamide

Air (analytical technique and LOQ)

- LC-MS/MS, LOQ: 90 µg/m³

Body fluids and tissues (analytical technique and LOQ)

- Data gap

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance	Zoxamide
-	-

Peer review proposal 2 for harmonised classification according to Regulation (EC) No 1272/2008:

- -

1 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

2 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) No 283/2013, Annex Part A, point 5.1)

Parameter	Description
Rate and extent of oral absorption/systemic	60% based on the recovery of radioactivity from the bile, blood, urine, tissues and carcasses, of the administered oral dose (rat, single dose, 10 mg/kg bw per day)
bioavailability	
Toxicokinetics	The maximum concentrations of radioactivity in plasma were observed at 8 hours postdose (Cmax in plasma = 8 hrs; ½ Cmax = 22 hrs).
Distribution	Wide distribution. The highest concentrations of residues were observed in liver, intestinal tract and carcass.
Potential for bioaccumulation	No evidence for accumulation.
Rate and extent of excretion	Rapid and almost completely eliminated (over 85% of the administered radioactivity was excreted during the first 24 - 48 hours after dosing) via the bile.
Metabolism in animals	Extensive, 32 metabolites identified (mainly by hydrolysis, oxidation, reductive dehalogenation and conjugation).
In vitro metabolism	No unique human metabolite expected.
Toxicologically relevant compounds	Parent compound
(animals and plants)	
Toxicologically relevant compounds	Parent compound
(environment)	

Acute toxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.2)

Parameter	Description
Rat LD₅₀ oral	> 5000 mg/kg bw (rat)
	> 5000 mg/kg bw (mouse)
Rat LD₅₀ dermal	> 2000 mg/kg bw
Rat LC₅₀ inhalation	> 5.3 mg/L air /4h (nose only)
Skin irritation	Non-irritant
Eye irritation	Irritant
	H319
Skin sensitisation	Sensitising (M&K and Buehler)
	H317 cat 1
Phototoxicity	Not phototoxic

Short-term toxicity (Regulation (EU) No 283/2013, Annex Part A, point 5.3)

Parameter	Description
Target organ / critical effect	Dog: liver (increased weight). Reduction in body weight gain at higher dose levels. Rat: none. Mouse: reduction in body weight gain and in overall body weight in female mice
Relevant oral NOAEL

- **Dog**: 50 mg/kg bw/ per day (90-day & 1-year dog)
- **Rat**: 1509 mg/kg bw per day (highest dose) (90-day rat)
- **Mouse**: 574 mg/kg bw per day (90-day mouse)

Relevant dermal NOAEL

- **28-day rat**:
 - NOAEL for systemic effects: 1000 mg/kg bw per day
 - LOAEL for local effects: 150 mg/kg bw per day
 - Due to the dose-related increase in skin scabbing and reddening as well as histopathological changes in dermis.

Relevant inhalation NOAEL

- No data - not required

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies

- Bacterial mutation assay (Ames): **negative**
- Mammalian chromosome aberration test in Chinese hamster ovary cells: **positive (aneugenic)**
- Gene mutation at the HGPT locus in cultured CHO cells: **negative**

In vivo studies

- Micronucleus assay in CD-1 mouse bone marrow cells: **negative**
- Mammalian erythrocyte test with the kinetochore analyses: **negative**

Photomutagenicity

- Not provided. Absorption was <1000 L/mol/cm, hence photomutagenicity studies are not required.

Potential for genotoxicity

- Zoxamide is genotoxic *in vitro* (i.e. aneugenic) and not *in vivo*.

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)

- **Rat**: Liver (increased relative liver weight)
- **Mice**: None.

Relevant long-term NOAEL

- 2-year, rat: 50 mg/kg bw/ per day,
- 18-month, mouse: 1021 mg/kg bw/ per day (highest dose)

Carcinogenicity (target organ, tumour type)

- Not carcinogenic in rat and in mouse.

Relevant NOAEL for carcinogenicity

- 2-year, rat: 1058 mg/kg bw per day (highest dose),
- 18-month, mouse: 1021 mg/kg bw per day (highest dose)
Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

| Reproduction target / critical effect | Parental toxicity: reduced bodyweight and liver toxicity effects
Reproductive toxicity: no adverse effects on reproduction.
Offspring’s toxicity: reduced body weight gain |
|--------------------------------------|--|
| Relevant parental NOAEL | 360 mg/kg bw per day |
| Relevant reproductive NOAEL | 1474 mg/kg bw per day (highest dose) |
| Relevant offspring NOAEL | 360 mg/kg bw per day |

Developmental toxicity

Developmental target / critical effect	Rat and rabbit: no evidence of maternal nor developmental toxicity in developmental toxicity studies.
Relevant maternal NOAEL	Rat: 1000 mg/kg bw per day (highest dose)
Rabbit: 1000 mg/kg bw per day (highest dose)	
Relevant developmental NOAEL	Rat: 1000 mg/kg bw per day (highest dose)
Rabbit: 1000 mg/kg bw per day (highest dose) |

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Neurotoxicity	Rat: 2000 mg/kg bw
Acute neurotoxicity	Rat: 1509 mg/kg bw per day
Repeated neurotoxicity	No data – not required.
Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)	No data – not required.

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

| Supplementary studies on the active substance | Mechanism of action on Phytophthora capsici, tobacco, mouse lymphoma cells and isolated bovine tubulin:
Zoxamide was comparable in potency to carbendazim in inhibiting microtubule assembly and the growth of mouse lymphoma cells, and was considerably less active than colchicine and vinblastine.
Immunotoxicity:
zoxamide has no immunotoxic potential based on the available standard toxicity studies. |
|---|--|
| Endocrine disrupting properties | Zoxamide is unlikely to have endocrine disrupting properties. |
Studies performed on metabolites or impurities

| RH-141455: | Rat metabolism study: Greater than 96 % radioactivity excreted from faeces and urine was identified to be unchanged RH-141455. |
| Acute oral toxicity in mice: LD₅₀: > 5000 mg/kg bw |
| In vitro micronucleus test in human lymphocytes: negative |
| In vitro mutation test in mouse lymphoma L5178Y cells: negative |
| Ames test: negative |

| RH-150721: |
| Ames test: negative |

| RH-141452: |
| Rat metabolism study: Majority was eliminated unchanged through urine. |
| Acute oral toxicity: > 5000 mg/kg bw |
| Ames test: negative |

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

Value (mg/kg bw (per day))	Study	Uncertainty factor
0.5	dog, 1-year	100
Not allocated - not necessary		
0.3	dog, 90-day	100
Not allocated - not necessary		

* same as in the first peer review (European Commission, 2004)

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Zoxium 240 SC: suspension concentrate (SC) formulation containing a nominal 240 g/L of zoxamide

| Concentrate: 4 % |
| Spray dilution (0.15 g/l): 10 % |
| Based on an in vitro human study with Zoxium 240SC |

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

| Zoxium 240 SC |
| Use: potatoes, tractor mounted equipment, application rate, 0.18 kg a.s./ha |
| Exposure estimates (model): % of AOEL |
UK POEM
Without PPE: 15
German model
Without PPE: 5

Zoxium 240 SC

Use: grapevines, tractor mounted equipment broadcast air-assisted sprayer, application rate 0.18 kg a.s./ha
Exposure estimates (model): % of AOEL

Scenario	Exposure % of AOEL
UK POEM Without PPE	18
German model	9

Zoxium 240 SC

Use: Hand-held sprayer application outdoors to low crops, application rate 0.18 kg a.s./ha
Exposure estimates (model): % of AOEL

Scenario	Exposure % of AOEL
UK POEM Without PPE	82

Zoxium 240 SC

Use: Hand-held sprayer application outdoors to low crops, application rate 0.18 kg a.s./ha
Exposure estimates (model): % of AOEL

Scenario	Exposure % of AOEL
German model Without PPE	37

Workers

Zoxium 240 SC
Exposure estimates (model): % of AOEL
Use: potatoes - 7.5% (scouting), 30% (hand harvesting)
Use: grapevines - 54%

Bystanders and residents

Zoxium 240 SC
Exposure estimates (model): % of AOEL
Bystander:
1.1% of AOEL (EUROPOEM II)
Adult 0.13% of AOEL (Martin et al., 2008)
Child 0.10% of AOEL (Martin et al., 2008)
Residents:
Adult 0.1% of AOEL (Martin et al., 2008)
Child 0.3% of AOEL (Martin et al., 2008)
Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance: Zoxamide
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]:
Skin Sens.1 H317 “May cause an allergic skin reaction”
Eye Irrit. 2 H319 “Causes serious eye irritation”
EUH066: “Repeated exposure may cause skin dryness or cracking”

3 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

4 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) No 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
OECD Guideline 501	Fruit crops	Grapes	Foliar application, outdoor, 3 x 1867 g as/ha	1
			Foliar application, outdoor, 3 x 500 g as/ha	28
		Tomato	Foliar application, greenhouse 3 x 860 g as/ha	1
		Cucumber	Foliar application, greenhouse 3 x 1344 g as/ha	1
	Root crops	Potato	Foliar application, outdoor, 3 x 900 g as/ha	14
	Leafy crops	-	-	-
	Cereals/grass crops	-	-	-
	Pulses/Oilseeds	Peas	Foliar application, outdoor, 2 x 145 g as/ha	7/13/30
	Miscellaneous	-	-	-

Following foliar application to crops, most of the applied material remains on the surface of the plants. In the metabolism studies conducted in grapes, tomato, cucumber and peas, the major component of the residue is unchanged zoxamide (RH-7281). No parent zoxamide was found in potato tubers. The main components of the residue in potato tubers were the metabolites RH-141452 and RH-141455.

Rotational crops (metabolic pattern)	Crop groups	Crop(s)	PBI (days)	Comments
OECD Guideline 502	Root/tuber crops	Radish, turnip	30;137;210;365	
	Leafy crops	Mustard	30;145;210;365	
	Cereal (small grain)	Sorghum	30;137;210;365	
	Other	Soybean	30;137;210;365	

Rotational crop and primary crop metabolism similar?

Yes. Very little uptake of residues from soil. Parent zoxamide not detected in following crops. The crop metabolite RH-141452 was found at trace levels in following crops. No detectable residues of zoxamide or related metabolites are expected in rotational crops.

Processed commodities (standard hydrolysis)

Conditions
20 min, 90°C, pH 4
study)

OECD Guideline 507

Residue pattern in processed commodities similar to residue pattern in raw commodities?
Stability of zoxamide under standard hydrolytical conditions is not addressed, studies are not submitted (data gap). Radiolabelled vinification study showed that the major residue in wine is metabolite RH-150721.

| Plant residue definition for monitoring (RD-Mo) OECD Guidance, series on pesticides No 31 | Zoxamide (fruit, pulses and oilseeds) Metabolites RH-141455 and RH-141452 (root crops) pending data gap for RH-141455 and RH-141452 |
|---|
| Plant residue definition for risk assessment (RD-RA) | Zoxamide and RH 141452 (fruit) pending data gap on RH-141452 Zoxamide (Pulses and oilseeds) Metabolites RH-141455 and RH-141452 (root crops) pending data gap for RH-141455 and RH-141452 |

Conversion factor (monitoring to risk assessment)

1

Metabolism in livestock (Regulation (EU) No 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	-	-	-
	Goat	2.82	7	-
	Pig	-	-	-
	Fish	-	-	-

Goat metabolism study was submitted. Poultry metabolism study is required according to provisional dietary burdain calculation (for turkey expected exposure level 0.008 mg/kg bw/day).

Time needed to reach a plateau concentration in milk and eggs (days)	4 days in milk
Animal residue definition for monitoring (RD-Mo) OECD Guidance, series on pesticides No 31	Pending (data gap)
Animal residue definition for risk assessment (RD-RA)	Pending (data gap)
Conversion factor (monitoring to risk assessment)	-

Metabolism in rat and ruminant similar (Yes/No)

Yes

Fat soluble residues (Yes/No) (FAO, 2009)

Yes, log P_{ow} 3.76 for zoxamide (data gap for for RH-141288 and RH-127450)
Residues in succeeding crops (Regulation (EU) No 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study (Quantitative aspect)	In the confined rotational crop metabolism study, the only crops to contain total radioactive residues greater than 0.1 mg/kg were immature radish (0.127 mg/kg) and soybean hay (0.189 mg/kg). Both crops were planted 30 days after bare soil was treated (4 applications at 18 day intervals) at a rate of 500 g/ha.
OECD Guideline 502	

Field rotational crop study	Low residues were found in the rotational crop metabolism study using an exaggerated application rate. Residues are not expected to exceed the LOQ in practice.
OECD Guideline 504	
Stability of residues (Regulation (EU) No 283/2013, Annex Part A, point 6.1)

OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Month)			
High water content						
High oil content						
High protein content						
High starch content	Potato	Frozen /-20°C	24	-	24	24
High acid content	Grapes	-20°C	18	18	-	-
	Wine		24	24	-	-
	Grape juice		24	-	-	-
	Raisins		24	-	-	-

Animal	Animal commodity	T (°C)	Stability (Month/Year)
-	Muscle	-	-
-	Liver	-	-
-	Kidney	-	-
-	Milk	-	-
-	Egg	-	-

No data provided. Open
Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
	NEU		Insufficient number of valid field trials (data gap)			
	SEU					
Potato	NEU		Insufficient number of valid field trials (data gap)			
	SEU					
Grapes	NEU		Insufficient number of valid field trials (data gap)			
	SEU					

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}).

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Potato	0.04	STMR (<0.04mg/kg)	0.11	HR 0.11mg/kg

Provisional calculation, residue definition for root crops sum of RH-141452 and RH-141455
Residues from livestock feeding studies (Regulation (EU) No 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations

Highest expected intake (mg/kg bw/d)	Ruminant	Pig/Swine	Poultry	Fish		
Beef cattle	0.004	0.006	Breeding	0.006	Broiler	0.004
Dairy cattle	0.006	0.005	Finishing	0.008	Layer	0.004
Intake >0.004 mg/kg bw	Yes	Yes	Yes	Yes	No	
Feeding study submitted	No	No	No	No		

Highest expected intake (mg/kg DM for fish)	Ruminant	Pig/Swine	Poultry	Fish		
Beef cattle	0.004	0.006	Breeding	0.006	Broiler	0.004
Dairy cattle	0.006	0.005	Finishing	0.008	Layer	0.004
Intake >0.1 mg/kg DM	Turkey	0.008				

Representative feeding level (mg/kg/bw, mg/kg DM for fish)	Ruminant	Pig/Swine	Poultry	Fish						
Level Beef: N Dairy: N	MRL proposals	Estimated HR\(^{(a)}\) at 1N	Level Lamb: N Ewe: N	MRL proposals	Estimated HR\(^{(a)}\) at 1N	Level N rate Breed/Finish	Level B or T: N Layer: N	MRL proposals	Estimated HR\(^{(a)}\) at 1N	MRL proposals
Muscle										
Fat										
Meat\(^{(b)}\)										
Liver										
Kidney										
Milk\(^{(a)}\)										
Eggs										

Method of calculation\(^{(c)}\)

\(^{(a)}\): Estimated HR calculated at 1N level (estimated mean level for milk).

\(^{(b)}\): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

\(^{(c)}\): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

Not relevant (RD-Mo = RD-RA)

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies\(^{(a)}\)	Processing Factor (PF)	Conversion Factor (CF\(_P\)) for RA\(^{(b)}\)
	Individual values	Median PF	
Representative uses			
Potato	-	-	-
Grapes/unclarified juice	-	-	-
Grapes/raisins	-	-	-
Grapes/aged wine	-	-	-

\(^{(a)}\): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)
\(^{(b)}\): When the residue definition for risk assessment differs from the residue definition for monitoring

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)

Including all uses (representative uses and uses related to an MRL application).

ADI

TMDI according to EFSA PRIMo

0.5 mg/kg bw per day

Highest TMDI:

Since the toxicity profile of metabolites RH 141452 and RH 141455 is not known and considering the outstanding data on the nature of residues in processed commodities, the consumer risk assessment cannot be finalised.

NTMDI, according to (to be specified)

Not applicable; see representative uses below

IEDI (% ADI), according to EFSA PRIMo

Not applicable; see representative uses below

NEDI (% ADI), according to (to be specified)

Not applicable; see representative uses below

Factors included in the calculations

ARfD

IESTI (% ARfD), according to EFSA PRIMo

No ARfD

NESTI (% ARfD), according to (to be specified)

Not applicable;

Factors included in IESTI and NESTI

Consumer risk assessment limited to the representative uses

TMDI (% ADI), according to EFSA PRIMo

Highest TMDI:

Since the toxicity profile of metabolites RH 141452 and RH 141455 is not known and considering the outstanding data on the nature of residues in processed commodities, the consumer risk assessment cannot be finalised.

NTMDI (% ADI), according to (to be specified)

Not required.

IEDI (% ADI), according to EFSA PRIMo

Not required.
Factor	Calculation
NEDI (% ADI, according to (to be specified))	Not required.
Factors included in the calculations	-
IESTI (% ARfD, according to EFSA PRIMo)	Not applicable.
NESTI (% ARfD, according to (to be specified))	Not applicable.
Factors included in IESTI and NESTI	-
Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code\(^{(a)}\)	Commodity/Group	MRL/Import tolerance\(^{(b)}\) (mg/kg) and Comments
	Plant commodities	
	Representative uses	
0151010	Table grapes	MRL could not be proposed as trials are missing.
0151020	Wine grapes	MRL could not be proposed as trials are missing.
0211000	Potatoes	MRL could not be proposed as trials are missing.

\(^{(a)}\): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

\(^{(b)}\): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.
Environmental fate and behaviour

Route of degradation (aerobic) in soil
(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralization after 100 days	34.4-57.8% by days 120-122, [\(^{14}\text{C}\)-phenyl-U]-zoxamide (n=4 at 20°C, n=2 at 25°C and n=1 at 10°C)
Non-extractable residues after 100 days	23.8-38.43% by days 120-122, [\(^{14}\text{C}\)-phenyl-U]-zoxamide (n=4 at 20°C, n=2 at 25°C and n=1 at 10°C).
Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)	RH-127450 (de-chlorinated product, Max of 15.1% AR after 7 days)
RH-24549 (benzoic acid derivative, Max of 33.8% AR after 7 days)
RH-163353 (acid, Max of 15% AR after 3 days).
RH-141455 (Max of 8.4% AR after 14 days) |

Route of degradation (anaerobic and photolysis) in soil
(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2 and 7.1.1.3)

Anaerobic degradation

Mineralization after 100 days	Mineralisation: <0.1% throughout study (n=1).
Non-extractable residues after 100 days	Non-extractable residues: 26.4%, day 120, (n=1).
Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)	RH-127450: Maximum of 30.2% AR (day 28), declining slowly to 23.7% AR by day 120.
RH-24549: Maximum of 23.7% AR (day 120).
RH-141288: Maximum of 5.5% AR (day 14).
M25: Maximum of 6.3% AR (day 7).
M15: Maximum of 6.6% AR (day 120). |

Soil photolysis

Irradiation does not affect the route and rate of degradation of zoxamide.
Mineralisation: 0.32% AR after 30 days.
Similar levels evolved in dark control samples.
Non-extractable residues: 30.8% AR after 30 days. Similar levels in dark control samples.
Metabolites:
RH-127450: Maximum of 10.9% AR, day 14
RH-24549: Maximum of 22.2% AR, day 30.
Levels of metabolites in control samples were similar
Rate of degradation in soil (aerobic) (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1, 7.1.2.1.2, 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1 and 9.1.1.2.1)

Method of calculation

Laboratory studies (range or median, with n value, with r² value)

FOCUS (2006, 2011)

DT₅₀ for zoxamide and its metabolites are given below. Geometric mean modelling DT₅₀ were calculated for the soils incubated at 20/25°C; DT₅₀ values at three different incubation conditions are presented for German sandy loam, however only the DT₅₀ value derived from soil with standard incubation conditions (20°C, 100%FC) were used for calculation of geometric mean.

Zoxamide

Soil	DT₅₀ (days)	DT₉₀ (days)	Temp	Model	Kinetic parameters	Moist Corr.	T-Corr.	DT₅₀ normalised to 20°C & pF2
England silt loam 20°C 50%MWHC	3.9	13	20°C	SFO	k: 0.1779	5.68	1.00	0.84
France loam 20°C 50%MWHC	1.99	6.62	20°C	SFO	k: 0.3479	7.02	1.00	0.94
Italy clay loam 20°C 50%MWHC	2.37	7.87	20°C	SFO	k: 0.2927	6.06	1.00	0.83
Germany sandy loam 20°C 50%MWHC	2.71	9.01	20°C	SFO	k: 0.2556	4.65	1.00	0.99
Germany sandy loam 20°C 100%FC	2.22	7.38	20°C	SFO	k: 0.3119	6.72	1.00	1.00
Germany sandy loam 10°C 50%MWHC	7.29	24.2	10°C	SFO	k: 0.0951	6.78	0.39	0.99
Pennsylvania silt loam 25°C 75%FC	7.75	98.1	25°C	DFOP (persistence)	k1:0.635	9.2	1.57	0.74
	29.5²			DFOP (modelling)	k2:0.01774	13.5	1.57	0.71
				SFO (modelling)	g:0.4299	28.4	1.57	0.71
Ohio loamy sand 25°C 75%FC	13.6	115	25°C	DFOP (persistence)	k1:0.1581	31.66	13.5	1.57
	28.4			SFO (modelling)	k2:0.01477			
					g:0.4531			

Geometric mean

5.5

¹ values which were not used for calculation of geometric mean DT₅₀ ² DT₉₀/3.32
RH-127450

Soil	DT$_{50}$ (days)	Temp	Model	χ^2 error (%)	T-Corr.	Moist Corr.	DT$_{50}$ normalised to 20°C & pF2	FF*
England silt loam 20°C 50%MWHC	14.9	20°C	SFO-SFO	9.61	1.00	0.84	12.52	0.22
France loam 20°C 50%MWHC	3.8	20°C	SFO-SFO	8.63	1.00	0.94	3.57	0.21
Italy clay loam 20°C 50%MWHC	1.99	20°C	SFO-SFO	20.1	1.00	0.83	1.65	0.21
Germany sandy loam 20°C 50%MWHC	6.66	20°C	SFO-SFO	19.3	1.00	0.99	6.593	0.183
Germany sandy loam 20°C 100%FC	5.79	20°C	SFO-SFO	23.9	1.00	1.00	5.79	0.19
Germany sandy loam 10°C 50%MWHC	18.7	10°C	SFO-SFO	16.9	0.39	0.99	7.223	0.173
Ohio loam sand 25°C 75%FC	8.27	25°C	SFO-SFO	17.7	1.57	0.71	9.22	0.38
Geometric mean							5.2	
Arithmetic mean							-	0.24

* formation fraction from zoxamide; 1 values which were not used for calculation of geometric/arithmetic mean values

RH-24549

Soil	DT$_{50}$ (days)	Temp	Model	χ^2 error (%)	T-Corr.	Moist Corr.	DT$_{50}$ normalised to 20°C & pF2	FF*
France loam 20°C 50%MWHC	6.32	20°C	SFO-SFO	23.2	1.00	0.94	5.94	0.19
Italy clay loam 20°C 50%MWHC	8.45	20°C	SFO-SFO	24.2	1.00	0.83	7.01	0.47
Germany sandy loam 20°C 50%MWHC	5.78	20°C	SFO-SFO	30.7	1.00	0.99	5.723	0.173
Germany sandy loam 20°C 100%FC	3.07	20°C	SFO-SFO	16	1.00	1.00	3.07	0.27
Ohio loamy sand 25°C 75%FC	6.13	25°C	SFO-SFO	16.1	1.57	0.71	6.83	0.57
Geometric mean							5.4	
Arithmetic mean							-	0.38

* formation fraction from zoxamide; 1 values which were not used for calculation of geometric/arithmetic mean values
RH-163353

Soil	DT₅₀ (days)	Temp	Model	χ² error (%)	T-Corr.	Moist Corr.	DT₅₀ normalised to 20°C & pF2	FF*
England silt loam 20°C 50%MWHC	49.7	20°C	SFO-SFO	7.38	1.00	0.84	41.75	0.10
France loam 20°C 50%MWHC	6.65	20°C	SFO-SFO	25.2	1.00	0.94	6.25	0.20
Italy clay loam 20°C 50%MWHC	6.4	20°C	SFO-SFO	7.2	1.00	0.83	5.31	0.23
Germany sandy loam 20°C 50%MWHC	5.62	20°C	SFO-SFO	17.2	1.00	0.99	5.56*	0.29
Germany sandy loam 20°C 100%FC	9.96	20°C	SFO-SFO	13.8	1.00	1.00	9.96	0.18
Germany sandy loam 10°C 50%MWHC	55.6	10°C	SFO-SFO	17.5	0.39	0.99	21.47*	0.15
Geometric mean								10.8
Arithmetic mean								-

* formation fraction from zoxamide; ¹ values which were not used for calculation of geometric/arithmetic mean values

RH-141455

Soil	DT₅₀ (days)	Temp	Model	χ² error (%)	T-Corr.	Moist Corr.	DT₅₀ normalised to 20°C & pF2	FF
Germany sandy loam 20°C 50%MWHC	88.5	20°C	SFO-SFO	18.2	1.00	0.99	87.62	¹
Speyer 2.2	12	20°C	SFO	6.95	1.00	1.00	12.00	²
Speyer 2.3	11.1	20°C	SFO	5.77	1.00	0.86	9.54	²
Speyer 6S	31.7	20°C	SFO	6.8	1.00	0.46	14.72	²
Geometric mean								19.6

¹ from RH-24549 ² study conducted with metabolite (RH-141455)

Field studies (state location, range or median with n value)

- DT₅₀:
- DT₅₀ of zoxamide and metabolites are <60 days therefore field studies are not necessary

Soil accumulation and plateau concentration

- DT₉₀:
- DT₉₀ of zoxamide is 6<365 days, therefore risk of accumulation is negligible and soil accumulation and plateau concentrations are not required

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)
Soil adsorption/desorption

(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1, 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil	% oc	pH	K_F	$1/n$	K_{Foc}	Kom
Loam, Huntsburg, Ohio, USA	1.27	7.2	10.35	0.896	815	473
Silty clay loam, Concord, Ohio, USA	1.77	4.8	25.33	0.963	1431	830
Sandy loam, Madison, Ohio, USA	1.1	6.7	15.23	0.953	1385	803
Silty loam, Newtown, Pennsylvania, USA	1.04	6.8	12.44	1.067	1196	694
Mean / Geometric mean	0.97				1207 / 1179	700 / 684

RH-127450

Soil	% oc	pH	K_F	$1/n$	K_{Foc}	Kom
Loamy sand, Borstel/Germany	1.05	6.1	12.14	-	1156	671
Clay, Egerkingen/ Switzerland	2.82	5.0	11.4	0.603	404	234
Silt loam, Vetroz/Switzerland	4.05	7.3	18.12	0.448	447	259
Mean / Geometric mean	0.9*				669 / 593	388 / 344

* no reliable mean value of $1/n$ could be achieved therefore a value of 0.9 is considered appropriate for the modelling

RH-24549

Soil	% oc	pH	K_F	$1/n$	K_{Foc}	Kom
Sandy loam, Iowa/USA	1.3	5.2	4.0	0.791	307.43	178
Silty clay loam, Illinois/USA	2.4	7.3	3.6	0.833	150.16	87
Silt loam, Ohio/USA	2.0	7.6	1.8	0.811	90.55**	53
Mean / Geometric mean	*				*	*

*a desorption of RH-24549 is pH dependent **the worst case K_{foc} is considered appropriate for modelling
RH-163353

Soil	%oc	pH	KF	1/n	Koc	Kom
Loamy sand, Borstel/Germany	1.22	6.1	0.6	1.0*	50*	29
Clay, Egerkingen/ Switzerland	3.17	5.4	2.4	0.833	75	44
Silt loam, Vetroz/Switzerland	4.79	7.2	3.8	0.844	79	46
Mean / Geometric mean				**0.892**	**68 / 67**	**39 / 39**

*Koc derived from a Kd from the screening study therefore a default 1/n value of 1.0 is assumed.

RH-141455

Soil	%oc	pH	Kd	1/n	Koc	Kom
Speyer 2.2, loamy sand	1.87	5.5	0.06	1.0*	3.1*	1.8
Speyer 2.3, sandy loam	0.94	6.8	0.03	1.0*	3.3*	1.9
Speyer 6S, clay	1.64	7.1	0.03	1.0*	2.1*	1.2
Mean / Geometric mean				**1.0**	**2.8 / 2.8**	**1.6 / 1.6**

*Koc derived from a Kd from the screening study therefore a default 1/n value of 1.0 is assumed.

Mobility in soil

(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1, 7.1.4.1.2, 7.1.4.2, 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1, 9.1.2.2 and 9.1.2.3)

Aged residues leaching

Guideline ‘SETAC’	Aged for 3 days	Study time period 2 days	Leachate: 1.8-2.3% AR

Lysimeter/field leaching studies

RH-127450: 6.9-11.9 %AR in 0-5 cm, ≤0.3 %AR in 5 - 10 cm, undetectable in 10-20 cm layer

RH-24549: 5.6-8.8% AR in 0-5 cm layer, 0.3-1.9% AR in 15-20 cm layer

RH-163353: 4-6.7% AR in 0-5 cm layer, 0.5-0.7% AR in 15-20 cm layer

No studies required
Peer review of the pesticide risk assessment of the active substance zoxamide

Route and rate of degradation in water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1 to 7.2.1.3 and 7.2.2.1)

Hydrolysis of active substance and relevant metabolites > 10% (DT₅₀) (state pH and temperature)

pH 4: Parent	25°C DT₅₀ 16 days (1ˢᵗ order, r² 1.0)
RH-129151	0.67% AR, day 3
RH-150721	25°C DT₅₀ 18.3 days * (37.6% AR, day 21)
RH-24549	stable (30.9% AR, day 30)
RH 141288	0.6% AR, day 30

* kinetics: linear and non-linear compartmental regression analysis (SAS JMP Version 3.2).

pH 7: Parent	25°C DT₅₀ 16 days (1ˢᵗ order, r² 1.0)
RH-129151	25°C DT₅₀ 9.1 days * (24.5% AR, day 21)
RH-150721	1.5% AR, day 30
RH-24549	stable (20.75% AR, day 30)
RH 141288	stable (21.9% AR, day 30)

* kinetics: linear and non-linear compartmental regression analysis (SAS JMP Version 3.2).

pH 9: Parent	25°C DT₅₀ 8 days (1ˢᵗ order, r² 1.0)
RH-129151	25°C DT₅₀ 2.4 days * (16.4% AR, day 7)
RH-150721	(0.13% AR, day 30)
RH-24549	stable (11.5% AR, day 30)
RH 141288	stable (50.2% AR, day 30)

* kinetics: linear and non-linear compartmental regression analysis (SAS JMP Version 3.2).

Photolytic degradation of active substance and relevant metabolite above 10%

pH 4: Xenon lamp (equivalent to light intensity of New Jersey summer sunlight, 42° N)	DT₅₀ 8 days (12-hour photo-period) and 22 days in dark control (1ˢᵗ order, r² 0.99 – 1.0).
Metabolites >10% AR: RH-24549 (27.69% AR, day 30), RH-150721 (15.10% AR, day 10) not photoproducts, similar levels in dark controls & RH-139432, stable (42.4% AR day 30, also a minor hydrolysis product).	

Readily biodegradable (yes/no) No
Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Method of study

Metabolites

\[^{14}\text{C}-\text{zoxamide was incubated at two test concentrations (10 \mu g/L and 50 \mu g/L) in surface water at 20 \pm 2 ^{\circ} \text{C in the dark for 58 days.}\]

RH-141455, RH-139432, RH-141288, RH-163353 and RH-24549 were detected at >5% on two consecutive occasions at respective maximums of 10.5% AR (day 44), 21.4% AR (day 28), 22.1% AR (day 58), 47.9% AR (day 28) and 22.7% AR (day 58).

M-7 was detected at a maximum of 9.1% AR (day 58) but was multicomponent, consisting of 2-3 different substances which individually did not exceed 5% AR.

Rates of degradation of zoxamide in the systems

System	pH (water phase)	T. °C	Model	Parameter estimates	DT\(_{50}\)/ DT\(_{90}\) water (pelagic test)	\(\chi^2, \%\) error	P- value
High dose	7.1\(^1\)/8.2-8.4\(^2\)	20\(^2\)	SFO	\(M_0 = 97.6 \pm 4.7\) k = 0.09078 ± 0.0117 \(\text{d}^{-1}\)	7.6/25.4 24.9/83.1 16.1/54	12.1 <0.05	
Low dose			SFO	\(M_0 = 111.2 \pm 8.5\) k = 0.0823 ± 0.0171 \(\text{d}^{-1}\)	8.4/28.0 27.5/91.6 17.8/59.5	21.9 <0.05	

\(^1\) pH and temperature at sampling \(^2\) pH and temperature during incubation. Q10 used for normalisation 2.58 days.
Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Zoxamide

Parent	Max in sediment 30.2% AR at day 7 (pond, 10°C). At 20°C max in sediment 23.1% AR at day 7 (pond).									
Water / sediment system	pH water phase	pH sed	T. °C	DT₅₀-DT₉₀ whole sys.	x² err	DT₅₀-DT₉₀ water	x² err	DT₅₀-DT₉₀ sed	x² err	Method of calculation
River	8.39	7.4	20	6.4/21.1	5.921	FOCUS SFO				
Pond	8.09	7.0	20	6.3/20.9	6.044	FOCUS SFO				
River	8.34	7.4	10	10.4/34.7	2.59	FOCUS SFO				
Pond	8.12	7.0	10	19.4/64.6	3.424	FOCUS SFO				
Mean (of 20°C systems)						6.4/-				

RH-127450

RH-127450	Max in water 17.1% AR at day 28 (river, 10°C), max in sediment 23.1 % AR at day 56 (river, 10°C) and max in total system 39.3% AR at day 56 (river, 10°C). At 20°C max in water 12.8% AR at day 14 (river), max in sediment 22.1% AR at day 56 (pond) and max in total system 30.0% AR at day 28 (river).									
Water / sediment system	pH water phase	pH sed	T. °C	DT₅₀-DT₉₀ whole sys.	x² err	DT₅₀-DT₉₀ water	x² err	DT₅₀-DT₉₀ sed	x² err	Method of calculation
River	8.39	7.4	20	148.4/493.1	16.271	FOCUS SFO				
Pond	8.09	7.0	20	326.1/1083	7.265	FOCUS SFO				
River	8.34	7.4	10	-	-	FOCUS SFO				
Pond	8.12	7.0	10	123/408.7	20.12	FOCUS SFO				
Mean (of 20°C systems)						237/-	Formation fraction 0.24 to 0.33 from parent			

Other metabolites detected at >10% AR:
RH-163353 – max in water 15.8% AR at day 28 (river, 20°C), max in sediment 13.8% AR at day 106 (pond, 10°C) and max in total system 28.0% AR at day 106 (river, 10°C). At 20°C max in sediment 7.4% AR at day 106 (river) and max in total system 20.6% AR at day 56 (river).
Mineralisation and non-extractable residues

Water / sediment system	pH water phase	pH sed	Mineralisation at end of study	Non-extractable residues in sed. (Max)	Non-extractable residues in sed. (end of the study)
River (20°C)	8.39	7.4	21.9	36.6	36.6
Pond (20°C)	8.09	7.0	19.7	39.9	39.0
River (10°C)	8.34	7.4	6.5	33.5	33.5
Pond (10°C)	8.12	7.0	4.0	37.3	37.3

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air

Quantum yield of direct phototransformation

\(\Phi = 0.0225 \) (\(\lambda > 290 \text{ nm} \))

Photochemical oxidative degradation in air

DT\(_{50}\) of 7.5 hours (Atkinson method), assuming hydroxyl radical concentration of \(1.5 \times 10^6 \text{ OH/cm}^3 \) and a 12 hour day. Rate constant for reaction with hydroxyl radicals: \(17.1 \times 10^{-12} \text{ cm}^3/\text{molecule-sec.} \).

Volatilization

From plant surfaces: 5.1% AR after 24 hours.
From soil: 3.9% AR after 24 hours.

Metabolites

Not applicable

PEC (air)

Method of calculation

Not applicable

PEC\((a)\)

Maximum concentration

Not applicable
Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure

Component	Soil	Surface water	Sediment	Ground water	Air
	Zoxamide, RH-127450, RH-24549, RH-163353, RH-141455, RH-141288*, unknown M25* and unknown M15*	Zoxamide, RH-127450, RH-163353, RH-24549, RH-141455 and RH-139432	Zoxamide, RH-127450, RH-163353	Zoxamide, RH-127450, RH-24549, RH-163353 and RH-141455	Zoxamide
	*- metabolites formed under anaerobic conditions				

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Component	Soil (indicate location and type of study)	Surface water (indicate location and type of study)	Ground water (indicate location and type of study)	Air (indicate location and type of study)
	No data submitted	No data submitted	No data submitted	No data submitted

PEC (soil) (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent
Method of calculation

FOCUS (1997), Crop interception as defined by FOCUS (2012).
Maximum laboratory DT$_{50}$ in soil of 13.6 days (DFOP, $k_1 = 0.1581$, $k_2 = 0.01477$, $g = 0.4531$) was used.
Soil density: 1.5 kg/L Soil depth: 5 cm

Application rate

5 x 180 g a.s./ha to grapevines and potatoes, 8 day interval.
Potatoes crop interception of 50% assumed.
Grapevines crop interception of 60% assumed.

PEC$_{soil}$	Potatoes	Potatoes	Grapevines	Grapevines	
	Multiple application	Multiple application	Actual	Multiple application	Actual
	Actual	Time weighted average		Actual	Time weighted average
Initial	0.3825	-	0.3060	-	
Short term	24h	0.3707	0.3766	0.2966	0.3013
	2d	0.3598	0.3710	0.2879	0.2968
	4d	0.3404	0.3604	0.2723	0.2884
Long term	7d	0.3160	0.3473	0.2528	0.2779
	21d	0.2471	0.3150	0.1977	0.2520
	28d	0.2263	0.3031	0.1810	0.2425
	50d	0.1805	0.2731	0.1444	0.2185
	100d	0.1135	0.2242	0.0908	0.1794

RH-127450

FOCUS (1997), Crop interception as defined by FOCUS (2012).
Maximum laboratory DT$_{50}$ in soil of 14.9 days (SFO) was used.*
Formation at maximum of 15.1% assumed.
PEC$_{soil}$ also corrected for molecular weight.
Method of calculation

| Soil density: 1.5 kg/L Soil depth: 5 cm |

Application rate

| 5 x 24.5 g a.s./ha to grapevines and potatoes, 8 day interval. |
| Potatoes crop interception of 50% assumed. |
| Grapevines crop interception of 60% assumed. |

*longer DT$_{so}$ – 18.7 days was obtained at 10°C

PEC$_{(s)}$

	Potatoes Multiple application Actual	Potatoes Multiple application Time weighted average	Grapevines Multiple application Actual	Grapevines Multiple application Time weighted average
Initial	0.0542	-	0.0433	-
Short term	24h	0.0526	0.0534	0.0421
	2d	0.0511	0.0526	0.0409
	4d	0.0483	0.0512	0.0386
Long term	7d	0.0442	0.0493	0.0354
	21d	0.0295	0.0447	0.0236
	28d	0.0241	0.0425	0.0193
	50d	0.0127	0.0369	0.0102
	100d	0.0030	0.0259	0.0024

FOCUS (1997), Crop interception as defined by FOCUS (2012). Maximum laboratory DT$_{so}$ in soil of 8.45 days (SFO) was used. Formation at maximum of 33.8% assumed. PEC$_{soil}$ also corrected for molecular weight.
RH-24549

Method of calculation

5 x 37.1 g a.s./ha to grapevines and potatoes, 8 day interval.
Potatoes crop interception of 50% assumed.
Grapevines crop interception of 60% assumed.

PEC_c	Potatoes Multiple application	Potatoes Multiple application	Grapevines Multiple application	Grapevines Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	0.0642	-	0.0513	-
Short term				
24h	0.0610	0.0626	0.0488	0.0501
2d	0.0580	0.0610	0.0464	0.0488
4d	0.0523	0.0581	0.0419	0.0465
Long term				
7d	0.0449	0.0549	0.0359	0.0440
21d	0.0220	0.0495	0.0176	0.0396
28d	0.0154	0.0478	0.0123	0.0382
50d	0.0050	0.0395	0.0040	0.0316
100d	0.0004	0.0243	0.0003	0.0195

FOCUS (1997), Crop interception as defined by FOCUS (2012).
Maximum laboratory DT₅₀ in soil of 49.7 days (SFO) was used.*
Formation at maximum of 15% assumed.
PEC_{soil} also corrected for molecular weight.
Soil density: 1.5 kg/L Soil depth: 5 cm
Method of calculation

Application rate

* longer DT₅₀ - 55.6 days was obtained at 10°C

PEC₅₀	Potatoes Multiple application	Potatoes Multiple application	Grapevines Multiple application	Grapevines Multiple application	
	Actual	Time weighted average	Actual	Time weighted average	
Initial	0.0775	-	0.0620	-	
Short term	24h	0.0769	0.0772	0.0615	0.0618
	2d	0.0762	0.0769	0.0610	0.0615
	4d	0.0749	0.0762	0.0599	0.0610
Long term	7d	0.0730	0.0752	0.0584	0.0602
	21d	0.0646	0.0711	0.0517	0.0569
	28d	0.0608	0.0691	0.0486	0.0553
	50d	0.0502	0.0647	0.0402	0.0518
	100d	0.0325	0.0552	0.0260	0.0442
Method of calculation

FOCUS (1997), Crop interception as defined by FOCUS (2012).
Maximum laboratory DT_{50} in soil of 88.5 days (SFO) was used.
Formation at maximum of 8.4% assumed.
PEC_{soil} also corrected for molecular weight.
Soil density: 1.5 kg/L Soil depth: 5 cm

Application rate

5 x 10.6 g a.s./ha to grapevines and potatoes, 8 day interval.
Potatoes crop interception of 50% assumed.
Grapevines crop interception of 60% assumed.

PEC\((s)\)	Potatoes Multiple application Actual	Potatoes Multiple application Time weighted average	Grapevines Multiple application Actual	Grapevines Multiple application Time weighted average	
Initial	0.0327	-	0.0262	-	
Short term	24h	0.0326	0.0327	0.0261	0.0261
	2d	0.0324	0.0326	0.0259	0.0261
	4d	0.0321	0.0324	0.0257	0.0257
Long term	7d	0.0316	0.0322	0.0253	0.0257
	21d	0.0295	0.0311	0.0236	0.0249
	28d	0.0286	0.0306	0.0228	0.0245
	50d	0.0256	0.0291	0.0205	0.0233
	100d	0.0201	0.0264	0.0161	0.0211

PEC (ground water) (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (eg. modelling, monitoring, lysimeter)

FOCUS (2000, 2014)
FOCUS PELMO 5.5.3 and FOCUS PEARL 4.4.4
Input parameters used for zoxamide and its metabolites are given below:

Input parameters used in the FOCUS groundwater modelling
End-Point

End-Point	Zoxamide	RH-127450	RH-24549	RH-163353	RH-141455
Molecular Weight (g/mol)	336.65	302.15	205	332.15	235.02
Water Solubility, 20°C (mg/L)	0.681	1000	1000	1000	1000
Vapour pressure, 20°C (Pa)	1.3×10^{-5}	0	0	0	0
K_{oc} / K_{om} (L/kg) – arith. mean	1207/700	669/388	90.5/52.5*	68/39	2.8/1.6
Freundlich exponent, $1/n$ – arith. mean	0.969	0.9†	0.811	0.892	1.0**
DT$_{soil}$ in Soil (days) – geom. mean	5.5	5.2	5.4	10.8	19.6
Crop uptake factor	0	0	0	0	0
Formation fraction – arith. mean	-	0.24 (from zoxamide)	0.38 (from zoxamide)	0.18 (from zoxamide)	1 (from RH-24549)

* worst case as adsorption is pH dependent
** Adsorption of RH-141455 on soil was very low and therefore no desorption kinetics and desorption/desorption isotherms were determined; hence a Freundlich exponent of 1 was used.
† The measured Freundlich exponent of 0.523 was considered unreliable so the default value was used.

Application rate

- **Crop**: Potato
 - FOCUS Crop: Potato
 - Application Rate: 5 x 180 g a.s./ha (8 days interval)
 - Application timing: First application 28 days after emergence
 - Crop Interception: First/Second/Third application: 60%
 Fourth/Fifth application: 85%
 - Application every year and every three years were simulated.

- **Crop**: Vines
 - FOCUS Crop: Vines
 - Application Rate: 5 x 180 g a.s./ha (8 days interval)
 - Application timing: First application 28 days after emergence
 - Crop Interception: All application: 60%

PEC$_{(pw)}$

Crop	Potatoes	Vines				
Model	PEARL [µg/l]	PELMO [µg/l]	PEARL [µg/l]	PELMO [µg/l]		
Application Scenario	every year	every 3 years	every year	every 3 years	every year	
Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001	-	-
Kremsmünster	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Crop	RH-24549	RH-163353				
-----------	-----------	-----------				
	PEARL [µg/l]	PELMO [µg/l]	PEARL [µg/l]	PELMO [µg/l]	PEARL [µg/l]	PELMO [µg/l]
Model						
Application Scenario	every year	every 3 years	every year	every 3 years	every year	every year
Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001	-	-
Kremsmünster	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton	< 0.001	< 0.001	< 0.001	< 0.001	-	-
Piacenza	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Porto	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sevilla	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Thiva	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Crop						
Potatoes	PEARL [µg/l]	PELMO [µg/l]				
Model						
Application Scenario	every year	every 3 years	every year	every 3 years	every year	every year
Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001	-	-
Kremsmünster	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton	< 0.001	< 0.001	< 0.001	< 0.001	-	-
Piacenza	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Porto	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sevilla	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
RH-127450

Crop	Potatoes	Vines				
	PEARL [µg/l]	PELMO [µg/l]	PEARL [µg/l]	PELMO [µg/l]		
Model						
Application Scenario	every year	every 3 years	every year	every 3 years	every year	
Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Hamburg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001	-	-
Kremsmünster	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Okehampton	< 0.001	< 0.001	< 0.001	< 0.001	-	-
Piacenza	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Porto	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sevilla	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Thiva	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

RH-141455

Crop	Potatoes	Vines				
	PEARL [µg/l]	PELMO [µg/l]	PEARL [µg/l]	PELMO [µg/l]		
Model						
Application Scenario	every year	every 3 years	every year	every 3 years	every year	
Châteaudun	1.469	0.594	1.159	0.416	3.033	2.420
Hamburg	5.489	1.727	3.092	1.114	5.493	4.753
Jokioinen	8.369	2.803	7.531	2.457	-	-
Kremsmünster	2.338	0.897	2.322	0.892	2.819	3.559
Okehampton	2.204	0.828	1.897	0.741	-	-
Piacenza	0.668	0.247	0.669	0.204	1.189	1.483
Porto	0.206	0.072	0.449	0.153	0.552	0.977
Sevilla	0.046	0.022	0.088	0.041	1.162	0.516
Thiva	0.359	0.142	0.280	0.111	0.659	0.583

PEC (surface water and sediment) (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 and 9.3.1)

Parameters used in FOCUS_{sw} step 1 and 2. FOCUS Step 1 &2 version 2.1 used for calculations
### End-Point	Zoxamide	RH-127450	RH-24549	RH-163353	RH-141455	RH-139432
Molecular Weight (g/mol) | 336.65 | 302.15 | 205 | 332.15 | 235.02 | 204.06
Water Solubility, 20°C (mg/L) | 0.681 | 1000⁺ | 1000⁺ | 1000⁺ | 1000⁺ | 1000⁺
Koc / Kom (L/kg) – arith. mean | 1207/700 | 669/388 | 90.55/53 | 68/39 | 2.8/1.6 | 10⁺
DT50 in Soil (days) – geom. mean | 5.5 | 5.2 | 5.4 | 10.8 | 19.6 | 1000⁺
DT50 whole system (days) – arithmetic. mean* | 6.4 | 237 | 1000⁺ | 1000⁺ | 1000⁺ | 1000⁺
DT50 water (days) | 6.4⁻⁻ | 237⁻⁻ | 1000⁺ | 1000⁺ | 1000⁺ | 1000⁺
DT50 sed (days) | 6.4⁻⁻ | 237⁻⁻ | 1000⁺ | 1000⁺ | 1000⁺ | 1000⁺
Max. occurrence in soil (%) | - | 15.1 | 33.8 | 15 | 8.4 | 4.9
Max. occurrence in water/sed system or aqueous photolysis(%) | - | 39.3*** | 22.7**** | 47.9**** | 10.5**** | 42.4

* Arithmetic mean is used as is more conservative than the respective geometric mean
** Following the Generic guidance for FOCUS surface water Scenarios (2012) and SANCO/10058/2005, DT₅₀ whole system must be assigned to both compartments in STEP 2
*** As worst case scenario, the higher value obtained when the system was incubated at 10°C is used for the simulations
**** Value from OECD 309 study erroneously used correct water sediment values are RH24549 5%, RH-163353 20.6%, RH-141455 2.1%
+ worst case default in absence of measured value

Parent

Parameters used in FOCUS_{sw} step 3 (if performed)

Step 3-4 simulations were performed for zoxamide alone.

In addition to the parameters above, the following parameters were used in the FOCUS Step 3-4 simulations for zoxamide using FOCUS SWASH v3.1 MACROv5.5.4 PRZMs w v3.1.1 and TOXSWAv3.3.1:

- Vapour Pressure (Pa, 25°C) < 1.3x10⁻³
- 1/n – arith. mean 0.973
- DT₅₀ in water(days) at 20°C* 1000 (default) / 6.4
- DT₅₀ in sediment (days) at 20°C* 6.4 / 1000 (default)
- Plant Uptake Factor 0 (conservative value)
- Exponent for the effect of water content 0.49(MACRO) 0.7 (PRZM)

* Two combinations of DT₅₀s were assumed:
 - combination # 1: DT₅₀water 1000 d & DT₅₀sed 6.4 d
 - combination # 2: DT₅₀water 6.4 d & DT₅₀sed 1000 d
Step 1-2 assumptions:
5 applications of 180 g a.s./ha to potatoes and grapevines at an interval of 8 days

Crop type	Potatoes, Grapevines (early application), Grapevines (late application)
Crop interception	Potatoes – average crop cover for both crops
	Grapevines (early application) – minimal crop cover
	Grapevines (late application) – full crop cover
Region and season of application	Potatoes - N & S EU June-Sept
	Grapevines (early application) – N & S EU Mar-May
	Grapevines (late application) – N & S EU June-Sept

Step 3-4 assumptions:

FOCUS Crop: Potato
- **Application Rate:** 1 x 180 g a.s./ha
- **Application Rate:** 5 x 180 g a.s./ha (8 days interval)

Application timing:
- 37 days before harvest to 7 days before harvest for single application and 69 days before harvest to 7 days before harvest for multiple application (Actual dates set by PAT)

Crop Interception: Calculated internally by MACRO or PRZM (foliar application defined in SWASH)

Appropriate Scenarios: D3, D4, D6, R1, R2 and R3

FOCUS Crop: Vines (early application)
- **Application Rate:** 1 x 180 g a.s./ha
- **Application Rate:** 5 x 180 g a.s./ha (8 days interval)

Application timing:
- 28 days after emergence to 58 days after emergence for single application and 28 days after emergence to 90 days after emergence for multiple application (Actual dates set by PAT)

Crop Interception: Calculated internally by MACRO or PRZM (foliar application defined in SWASH)

Appropriate Scenarios: D6, R1, R2, R3 and R4

FOCUS Crop: Vines (late application)
- **Application Rate:** 1 x 180 g a.s./ha
- **Application Rate:** 5 x 180 g a.s./ha (8 days interval)

Application timing:
- 58 days before harvest to 28 days before harvest for single application and 90 days before harvest to 28 days before harvest for multiple application (Actual dates set by PAT)

Crop Interception: Calculated internally by MACRO or PRZM (foliar application defined in SWASH)

Appropriate Scenarios: D6, R1, R2, R3 and R4

Drift, run-off
Main routes of entry
Summary of FOCUS Step 1 and 2 PECsw and PECsed for zoxamide and its metabolites

Crop	Step	Region	Zoxamide	RH-127450	RH-24549	RH-163353	RH-141455	RH-139432
PECsw								
Potatoes	Step 1	-	123.2489	24.4087	56.2390	44.6193	18.1338	10.92
	Step 2	N EU	2.7467	1.5062	1.7003	3.8136	1.3229	2.22
		S EU	3.8331	1.6975	2.2110	4.5376	1.7903	2.65
Vines - early	Step 1	-	123.0689	24.3453	56.2141	44.5343	18.1206	10.87
	Step 2	N EU	3.3745	1.9610	2.1332	4.8997	1.6405	2.85
		S EU	5.9819	2.4202	3.3587	6.6373	2.7623	3.89
Vines - late	Step 1	-	139.0559	29.9843	58.4240	52.0897	19.2924	14.98
	Step 2	N EU	5.3315	4.7282	3.1246	9.6191	1.9965	5.52
		S EU	5.3315	4.7282	3.4310	10.0535	2.2770	5.78
PECsed								
Potatoes	Step 1	-	1.39E+03	153.6362	50.7776	30.0992	0.5073	0.88
	Step 2	N EU	30.8338	8.8688	1.5165	2.5469	0.0370	0.22
		S EU	43.9464	10.1452	1.9786	3.0389	0.0501	0.26
Vines - early	Step 1	-	1.39E+03	153.4124	50.7575	30.0462	0.5070	0.88
	Step 2	N EU	37.6305	11.5059	1.9008	3.2699	0.0459	0.28
		S EU	69.1007	14.5691	3.0097	4.4507	0.0773	0.39
Vines - late	Step 1	-	1.39E+03	173.2934	52.5417	34.7535	0.5396	0.88
	Step 2	N EU	32.7826	24.8949	2.7458	6.3717	0.0558	0.55
		S EU	40.6502	25.6607	3.0230	6.6669	0.0637	0.58

Initial FOCUS Step 3 and 4 PECsw and PECsed for zoxamide, potatoes (single application)

Scenario	PECsw [µg/L]	PECsed [µg/kg]	Main

www.efsa.europa.eu/efsajournal | 45 | EFSA Journal 2017;15(9):4980
Peer review of the pesticide risk assessment of the active substance zoxamide

www.efsa.europa.eu/efsajournal

46

EFSA Journal 2017;15(9):4980

Initial FOCUS Step 3 and 4 PECsw and PECsed for zoxamide, potatoes (multiple application)

Scenario	PECsw [µg/L]	PECsed [µg/kg]	Main route of entry		
Step 3	Step 4	Step 3	Step 4		
D3 Ditch	0.943	0.164	0.487	0.093	Drift
D4 Pond	0.038	-	0.086	-	Drift
D4 Stream	0.709	0.159	0.018	0.004	Drift
D6 Ditch (1st)	0.937	0.163	0.311	0.058	Drift
D6 Ditch (2nd)	0.938	0.380	0.353	0.062	Drift
R1 Pond	0.038	-	0.081	-	Drift
R1 Stream	0.654	0.146	0.095	0.045	Drift
R2 Stream	0.877	0.312	0.385	0.379	Drift
R3 Stream	0.922	0.618†	0.282	0.967	Drift

* Mitigation: 10 m spray drift; ** Mitigation: 10 m spray drift and 10 m vegetative strip (manual); † Run-off is the main route of entry when this mitigation is considered; Figures in bold are those obtained for the simulations using a DT_{50water} of 1000 days and a DT_{50sed} of 6.4 days.
Peer review of the pesticide risk assessment of the active substance zoxamide

Initial FOCUS Step 3 and 4 PECsw and PECsed for zoxamide, vines (early application, single application)

Scenario	PECsw [µg/L]	PECsed [µg/kg]	Main route of entry into water body at Step 3	
	Step 3	Step 4	Step 3	Step 4
	10 m*	10 m**	10 m*	10 m**

* Spray drift and run-off mitigation was considered for the run-off scenarios (manual); † No mitigation can be performed for drainage within the programme
Initial FOCUS Step 3 and 4 PECsw and PECsed for zoxamide, vines (early application, multiple application)

Scenario	**PEC_{SW} [µg/L]**	**PEC_{SED} [µg/kg]**	Main route of entry into water body at Step 3
	Step 3	**Step 4**	
	Step 3	Step 4	
	10 m*	10 m**	10 m*
	10 m**	20 m**	10 m**
	20 m**		20 m**
Initial FOCUS Step 3 and 4 PEC_{sw} and PEC_{sed} for zoxamide, vines (late application, single application)

Scenario	PEC_{SW} [µg/L]	PEC_{SED} [µg/kg]	Main route of entry into water body at Step 3				
	Step 3	Step 4	Step 3	Step 4			
	10 m*	20 m**	10 m*	20 m**			
D6 Ditch	3.086	0.676	0.237	3.819	0.890	0.326	Drift
R1 Pond	0.110	-	-	0.265	-	-	Drift
R1 Stream	2.264	0.597	0.209	0.327	0.087	0.0305	Drift

* Mitigation: 10 m spray drift; ** Spray drift and run-off mitigation was considered (manual); † Run-off is the main route of entry when this mitigation is considered; ‡ Spray drift is the main route of entry when this mitigation is considered.
Initial FOCUS Step 3 PECsw and PECsed for zoxamide, vines (late application, multiple application)

Scenario	PECsw [µg/L]	PECsed [µg/kg]	Main route of entry into water body at Step 3
	Step 3	Step 3	
D6 Ditch	3.546	8.442	Drift
R1 Pond	0.308	0.600	Drift
R1 Stream	1.857	0.421	Drift
R2 Stream	2.489	0.315	Drift
R3 Stream	2.622	1.823	Drift
R4 Stream	2.128	1.485	Run-off

* Mitigation: 10 m spray drift; ** Mitigation: 20 m spray drift

Initial FOCUS 4 PECsw for zoxamide, vines (late application, multiple application)

Scenario	PECsw [µg/L]			
	Step 4			
	10 m (drift)	10 m*	20 m (drift)	20 m*
D6 Ditch	0.776	-	0.272	-
R1 Pond	-	-	-	-
R1 Stream	0.482	-	0.167	-
R2 Stream	0.647	-	0.224	-
R3 Stream	1.579†	0.707†	1.579†	0.368†
R4 Stream	-	0.950†	-	0.494†

* Spray drift and run-off mitigation was considered (manual); † Run-off is the main route of entry when this mitigation is considered; ‡ Spray drift is the main route of entry when this mitigation is considered

Initial FOCUS Step 4 PECsed for zoxamide, vines (late application, multiple application)
Table 1: PEC_{SED} [µg/kg]

Scenario	10 m (drift)	10 m*	20 m (drift)	20 m*
D6 Ditch	2.005	-	0.738	-
R1 Pond	-	-	-	-
R1 Stream	0.114	-	0.063	-
R2 Stream	0.085	-	0.030	-
R3 Stream	1.504	0.711	1.423	0.348
R4 Stream	-	0.605	-	0.304

* Spray drift and run-off mitigation was considered (manual);
Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Bobwhite quail	a.s.	Acute	LD₅₀	>2000
Colinus virginianus				
Bobwhite quail	a.s.	Short-term	LD₅₀	1889.3
Colinus virginianus				
Mallard duck	a.s.	Short-term	LD₅₀	1597.7
Anas plathyrrhynchos				
Mallard duck	a.s.	Reproduction	NOEC	122.8
Anas plathyrrhynchos				
Bobwhite quail	a.s.	Reproduction	NOEC	170.9
Colinus virginianus				
Mammals				
Rat	a.s.	Acute	LD₅₀	>5000
Rat	a.s.	Long term	NOAEL	360
(parental)				
Rat	a.s.	Reproductive	NOAEL	1474
Rat	a.s.	Long term	NOAEL	360
(offspring)				
Rabbit	a.s.	Long term	NOAEL	1000
(development)				
Rat	a.s.	Long term	NOAEL	1000
(development)				
Rat	a.s.			71*

Endocrine disrupting properties (Annex Part A, points 8.1.5)

With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that zoxamide is an endocrine disruptor for mammals. No firm conclusion could be drawn regarding fish and birds.

Additional higher tier studies (Annex Part A, points 10.1.1.2)

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):

* Value agreed in the Peer review meeting 160 by experts
Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) No 284/2013, Part A, Annex point 10.1)

Zoxium 240 SC: Potatoes at 180 g a.s./ha [5 applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	48.59	41.2	10
All	Small omnivorous bird	Long-term	13.60	9.0	5
Tier 1 (Birds):					
Higher tier (birds):					
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	36.23	138.0	10
All	Small herbivorous mammal	Long-term	10.14	7.00	5
Tier 1 (Mammals)					
Higher tier (Mammals):					

Zoxium 240 SC: grapevines at 180 g a.s./ha [5 applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	29.16	68.6	10
All	Small omnivorous bird	Long-term	8.16	15.0	5
Tier 1 (Birds):					
Higher tier (birds):					
Screening Step (Mammals)					
All	Small herbivorous mammal	Acute	41.74	119.8	10
All	Small herbivorous mammal	Long-term	15.17	4.68	5
Tier 1 (Mammals)					

BBCH 10-19 Large herbivorous mammal "lagomorph" Long-term 1.4 50.7 5
BBCH 20 - 39 Large herbivorous mammal "lagomorph" Long-term 1.1 61.8 5
BBCH ≥ 40 Large herbivorous mammal "lagomorph" Long-term 0.7 103.0 5
BBCH 10 - 19 Small insectivorous mammal "shrew" Long-term 0.9 80.9 5
BBCH ≥ 20 Small insectivorous mammal "shrew" Long-term 0.4 178.9 5
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
BBCH ≥ 40	Small herbivorous mammal “voles”	Long-term	4.5	15.7	5
BBCH ≥ 40	Small omnivorous mammal “mouse”	Long-term	0.5	147.8	5

Higher tier (Mammals):

Not required.

Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
zoxamide				
Earthworm-eating birds	Long-term	1.15	107.1	5
Earthworm-eating mammals	Long-term	1.40	257.54	5
Fish-eating birds	Long-term	0.15	787.44	5
Fish-eating mammals	Long-term	0.13	2777.05	5

RH-127450*

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	1.36	8.38	5
Earthworm-eating mammals	Long-term	1.36	3.67	5
Earthworm-eating mammals (use on grapes)	Long-term	0.11	46	5
Fish-eating birds	Long-term	0.12	20.84	5
Fish-eating mammals	Long-term	0.48	10.4	5

RH-24549*

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	2.35	4.84	5
Earthworm-eating birds (use on grapes)	Long-term	1.88	6.05	5
Earthworm-eating mammals	Long-term	2.9	12.55	5
Fish-eating birds	Long-term	1.2	9.14	5
Fish-eating mammals	Long-term	1.2	28.88	5

Higher tier:

Not required.

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	Not required for the intended uses		5	

Puddle scenario, Screening step

Application rate (180 g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed

* In the absence of toxicity data the metabolites were considered as 10 times more toxic than the parent compound.

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

* This section does not yet reflect the new EFSA Guidance Document on aquatic organisms which has been noted in the meeting of the Standing Committee on Plants, Animals, Food and Feed on 11 July 2014.
| Group | Test substance | Time-scale (Test type) | End point | Toxicity^1 |
|---------------------------|----------------|------------------------|-----------|------------|
| Laboratory tests | | | | |
| Fish | | | | |
| *Oncorhynchus mykiss* | a.s. | Acute 96 hr (flow-through) | Mortality, LC$_{50}$ | 0.16 mg a.s./L (mm) |
| *Lepomis macrochirus* | a.s. | Acute 96 hr (flow-through) | Mortality, LC$_{50}$ | >0.79 mg a.s./L (mm) |
| *Pimephales promelas* | a.s. | Acute 96 hr (flow-through) | Mortality, LC$_{50}$ | >208 mg a.s./L (mm) |
| *Brachydanio rerio* | a.s. | Acute 96 hr (flow-through) | Mortality, LC$_{50}$ | >0.73 mg a.s./L (mm) |
| *Cyprinodon variegatus* | a.s. | Acute 96 hr (flow-through) | Mortality, LC$_{50}$ | >0.85 mg a.s./L (mm) |
| *Danio rerio* | Preparation | Acute 96 hr (static) | Mortality, LC$_{50}$ | 0.865 mg prep./L (0.184 mg a.s./L) |
| *Oncorhynchus mykiss* | RH-139 432 | Acute 96 hr (flow-through) | Mortality, LC$_{50}$ | 2 mg/L (nom) (mm) |
| *Oncorhynchus mykiss* | RH-24549 | 48h-semi static | Mortality, LC$_{50}$ | 23 mg/L (mm) |
| *Oncorhynchus mykiss* | a.s. | 95 d (flow-through, ELS) | NOEC | 0.00348 mg a.s./L (mm) |
| *Pimephales promelas* | a.s. | 202 d (flow-through, FLC) | NOEC | 0.06 mg a.s./L (mm) |
| *Lepomis macrochirus* | a.s. | 28 day (flow-through, bioaccumulation) | BCF | 95-136 mg a.s./L |
| *Danio rerio* | a.s. | 30 days - post-hatch under flow-through conditions, ELS | NOEC | ≥0.12 mg a.s./L (mm) |
| Aquatic invertebrates | | | | |
| *Daphnia magna* | a.s. | 48 h (flow-through) | Mortality, EC$_{50}$ | >0.78 mg a.s./L (mm) |
| Group | Test substance | Time-scale (Test type) | End point | Toxicity |
|------------------------|--------------------|------------------------|----------------------|---|
| *Mysisidopsis bahia* | a.s. | 96h (flow-through) | Mortality, LC₅₀ | 0.076 mg a.s./L (mm) |
| *Daphnia magna* | Preparation | 48 h (static) | Mortality, EC₅₀ | >3.0 mg prep./L (>0.69 mg a.s./L) |
| *Daphnia magna* | a.s. | 21d (flow-through) | NOEC | 0.039 mg a.s./L (mm) |
| *Chironomus riparius* | a.s. | 28d (flow-through) | NOEC | 0.45 mg a.s./L (nom) |
| | | | EC₁₀ (development rate) | 0.38 mg a.s./L (geomean) |
| | | | EC₁₀ (emergence rate) | 0.223 mg a.s./L |
| *Mysisidopsis bahia* | a.s. | 27 d (flow-through) | NOEC | 0.0072 mg a.s./L (mm) |
| *Daphnia magna* | RH-139432 | 48h (semi-static) | Mortality, EC₅₀ | 17 mg/L (mm) |
| *Daphnia magna* | RH-24549 | 48h - static | Mortality, EC₅₀ | 40 mg/L (mm) |
| **Algae** | | | | |
| *Selenastrum capricornutum* | Preparation | 96h (static) | Growth rate: E_iC₅₀ (NOEC) | 0.274 mg prep./L (0.0582 mg a.s./L) * |
| | | | | |
| | | | Biomass: E_iC₅₀ (NOEC) | 0.24 mg prep./L (0.0514 mg a.s./L) * |
| *Desmodesmus subspicatus* | RH-24549 | 72h static | E_iC₅₀ | >60 mg/L (nom) |
| | | | Growth rate: E_iC₅₀ | >60 mg/L (nom) |
| *Pseudokirchneriella subcapitata* | RH-141455 | 72 static | EC₅₀ | >100 mg/L (nom) |
| | | | EC₁₀ yield | 96.3 mg/L (nom) |
| | | | EC₁₀ growth rate | >100 mg/L (nom) |
| Group | Test substance | Time-scale (Test type) | End point | Toxicity 1 |
|---------------|----------------|------------------------|-----------|-----------------|
| Aquatic plant | | | | |
| *Lemna gibba* | a.s. | 14 d (static renewal) | 7 d-EC$_{50}$ | >0.018 mg a.s./L(mm) |
| | | | 14 d-EC$_{50}$ | 0.017 mg a.s./L(mm) |
| | | | NOEC | 0.009 mg a.s/L |

Further testing on aquatic organisms

-

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that zoxamide has endocrine disrupting properties in mammals. No firm conclusion could be drawn regarding fish and birds.

1 (nom) nominal concentration; (mm) mean measured concentration; prep.: preparation; a.s.: active substance

*Endpoints expressed as mg formulation/L are converted to mg a.s./L considering the purity of the formulation (21.24%)

** Study was performed with RH-117,281 2F, a very similar formulation to Zoxium 240 SC. Refer to Document J-CP for details of both formulations.

Values in bold are used for TER calculation

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

Log Pow	3.76 ± 0.04 (98.7%)
Bioconcentration factor (BCF)	95-136 mg a.s./L
Risk assessment trigger for the bioconcentration factor	-
Clearance time (CT50)	-
(CT90)	-
Level of residues (%) in organisms after the 14 day depuration phase	-
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

FOCUS_n step 1-3 - TERs for zoxamide – Zoxium 240 SC at potatoes at 180 g a.s./ha [5 applications]

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Higher plant	Sed. dweller prolonged
		Oncorhynchus mykiss	Oncorhynchus mykiss	Mysisopsis bahia	Mysisopsis bahia	Lemma sp.	Chironomus riparius
		LC₅₀	NOEC	EC₅₀	NOEC	EC₅₀	NOEC
FOCUS Step 1	160 µg/L	3.48 µg/L	76 µg/L	7.2 µg/L	9µg/L	380 µg/L	
FOCUS Step 2	123.2489	1.29	0.028	0.62	0.058	0.07	3.08
North Europe	2.7467	58.25	1.27	27.67	2.62	3.28	138.3
South Europe	3.8331	41.75	0.91	19.83	1.88	2.35	99.1
FOCUS Step 3							
D3 / ditch	0.943¹	170	3.69	80.6	7.64	9.5	Not required
D4 / pond	0.047²	3404	74.0	1617	153	190.7	Not required
D4 / stream	0.709¹	226	4.91	107	10.1	12.7	Not required
D6 / ditch (1st)	0.937¹	171	3.71	81.1	7.68	9.6	Not required
D6 / ditch (2nd)	1.370¹	116.8	2.54	55.5	5.26	6.6	Not required
R1 / pond	0.534²	300	6.52	142	13.5	16.8	Not required
R1 / stream	2.415²	66.3	1.44	31.5	2.98	3.7	Not required
R2 / stream	0.877¹	182	3.97	86.7	8.21	10.3	Not required
R3 / stream	0.961²	166	3.62	79.1	7.49	9.4	Not required
Trigger[#]	100	10	100	10	10	10	

¹ single application
² multiple application
[#][Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]
^{**}[If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Values are in bold when an high risk could not be excluded
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)
FOCUS_{sw} step 1-3 - TERs for zoxamide – Zoxium 240 SC at grapevines (late application) at 180 g a.s./ha [5 applications]

Scenario	PEC global max (µg L⁻¹)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Higher plant	Sed. dweller prolonged	
		Oncorhynchus mykiss	Oncorhynchus mykiss	Mysisopsis bahia	Mysisopsis bahia	Lemma sp.	Chironomus riparius	
		LC₅₀	NOEC	EC₃₀	NOEC	EC₅₀	NOEC	
FOCUS Step 1	160 µg/L	3.48 µg/L	76 µg/L	7.2 µg/L	9µg/L	380 µg/L		
FOCUS Step 2		139.0559	1.15	0.025	0.55	0.052	0.06	2.73
North Europe	5.3315	30.01	0.65	14.25	1.35	1.69	71.3	
South Europe	5.3315	30.01	0.65	14.25	1.35	1.69	71.3	
FOCUS Step 3		3.546²	45.1	0.98	21.4	2.03	2.5	Not required
D6 / ditch	3.08²	5.19	11.3	247	23.4	29.2	Not required	
R1 / pond	2.264¹	70.7	1.54	33.6	3.18	4	Not required	
R1 / stream	3.034¹	52.7	1.15	25.0	2.37	3	Not required	
R2 / stream	3.190¹	50.1	1.09	23.8	2.26	2.8	Not required	
R3 / stream	2.263¹	70.7	1.54	33.6	3.18	4	Not required	
R4 / stream	100	10	100	10	10	10	Not required	
Trigger^{**}	100	10	10	10	10	10	10	

1^{single application}
2^{multiple application}
3^[Only scenarios where the trigger is not met at FOCUS_{sw} step 1-2 should be included in step 3.]
4^[If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]
Values are in bold when an high risk could not be excluded

FOCUS_{sw} step 4 - TERs zoxamide – Zoxium 240 SC at 180 g a.s./ha [5 applications]
Organisms
Oncorhynchus mykiss

Toxicity endpoint:
160 µg/L

Mitigation options	10 m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	10 m non-spray buffer zone and 10 m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	TER	Trigger
FOCUS Step 4				
Potatoes				
R1 / stream	1.028	0.368	156	100
Grapevines (late application)				
D6 / ditch	0.776	-	206	100
R1 / stream	0.597	-	268	100
R2 / stream	0.801	-	200	100
R3 / stream	1.564	-	102	100
R4 / stream	0.950	0.950	168	100

*Only scenarios where the trigger is not met at FOCUS sw step 3 should be included in step 4.
Values are in bold when an high risk could not be excluded
FOCUS\textsubscript{sw} step 4 - TERs zoxamide – Zoxium 240 SC at 180 g a.s./ha [5 applications]

Organisms
Oncorhynchus mykiss

Toxicity endpoint:
3.48 µg/L

Mitigation options	10 m non-spray buffer zone	10 m non-spray buffer zone and 10m vegetated buffer strip	20 m non-spray buffer zone	20 m non-spray buffer zone and 20m vegetated buffer strip	TER	Trigger
FOCUS Step 4*						
Potatoes						
D3 / ditch	0.164	-	-	-	21.2	10
D4 / stream	0.159	-	-	-	21.9	10
D6 / ditch (1**)	0.163	-	-	-	21.3	10
D6 / ditch (2**)	1.370	-	-	-	2.54	10
R1 / pond	0.235	-	-	-	14.81	10
R1 / stream	1.028	0.368	0.539	0.0477	6.47	10
R2 / stream	0.312	-	-	-	11.1	10
R3 / stream	0.618	0.282	-	-	12.3	10

Grapevines (late application)						
D6 / ditch	0.776	-	0.272	-	12.8	10
R1 / stream	0.597	-	-	0.209	16.6	10
R2 / stream	0.801	-	-	0.281	12.4	10
R3 / stream	1.579	0.707	1.579	0.368	9.46	10
R4 / stream	-	0.950	-	0.494	7.04	10

*Only scenarios where the trigger is not met at FOCUS\textsubscript{sw} step 3 should be included in step 4.

Values are in bold when an high risk could not be excluded

FOCUS\textsubscript{sw} step 4 - TERs zoxamide – Zoxium 240 SC at 180 g a.s./ha [5 applications]

Organisms
Mysidopsis bahia
Toxicity endpoint: 76 µg/L

Mitigation options

Mitigation options	10 m non-spray buffer zone	10 m non-spray buffer zone and 10m vegetated buffer strip	20 m non-spray buffer zone and 20m vegetated buffer strip	TER	Trigger
FOCUS Step 4*					
Potatoes					
D3 / ditch	0.164	-	-	463	100
D6 / ditch (1ˢᵗ)	0.163	-	-	466	100
D6 / ditch (2ⁿᵈ)	1.370	-	-	55.5	100
R1 / stream	-	1.027	0.539	141	100
R2 / stream	0.312	-	-	243	100
R3 / stream	0.618	-	-	123	100
Grapevines (late application)					
D6 / ditch	0.776	-	0.272	279	100
R1 / stream	0.597	-	-	127	100
R2 / stream	0.801	-	0.281	270	100
R3 / stream	1.579	0.707	-	108	100
R4 / stream	-	0.950	0.494	154	100

* [Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].
Values are in bold when a high risk could not be excluded

FOCUSsw step 3 - TERs zoxamide – Zoxium 240 SC at 180 g a.s./ha [5 applications] using refined LC₅₀ value for aquatic invertebrates

Scenario	Main route of entry into water body at Step 3	Maximum initial Step 3 PECsw (µg a.s./L)	Acute endpoint (µg a.s./L)	TER	Trigger value
Potatoes:					
D3 Ditch	Drift	0.943¹	229	242.8	100
D4 Pond	Drift	0.047²	4.872		
Peer review of the pesticide risk assessment of the active substance zoxamide

www.efsa.europa.eu/efsajournal

Scenario

Scenario	Main route of entry into water body at Step 3	Maximum initial Step 3 PEC\textsubscript{sw} (µg a.s./L)	Acute endpoint (µg a.s./L)	TER	Trigger value
D4 Stream	Drift	0.7091		323	
D6 Ditch (1st)	Drift	0.9371		244.3	
D6 Ditch (2nd)	Drainage	1.3702		167.2	
R1 Pond	Run-off	0.5342		428.8	
R1 Stream	Run-off	2.4152		94.8	
R2 Stream	Drift	0.8771		261.1	
R3 Stream	Run-off	0.9612		238.3	
Grapevines (early application):					
D6 Ditch	Drift	1.4712		155.7	
R1 Pond	Drift	0.1262		1.817	
R1 Stream	Drift	1.6662		137.5	
R2 Stream	Drift	0.9841		232.7	
R3 Stream	Drift	1.0431		219.6	
R4 Stream	Run-off	3.1452		72.8	
Grapevines (late application):					
D6 Ditch	Drift	3.5462		64.6	
R1 Pond	Drift	0.3082		743.5	
R1 Stream	Drift	2.2641		101.1	
R2 Stream	Drift	3.0341		75.5	
R3 Stream	Drift	3.1901		71.8	
R4 Stream	Run-off	2.2631		101.2	

Values are in bold when an high risk could not be excluded

FOCUS\textsubscript{sw} step 4 - TERs zoxamide – Zoxium 240 SC at 180 g a.s./ha [5 applications] using refined LC\textsubscript{50} value

Organisms

Aquatic invertebrates

Toxicity endpoint: 229 µg/L

Mitigation options

Mitigation options	10 m non-spray buffer zone	10 m non-spray buffer zone and 20 m non-spray buffer zone	TER	Trigger

www.efsa.europa.eu/efsajournal
Peer review of the pesticide risk assessment of the active substance zoxamide

FOCUS Step 4*	10m vegetated buffer strip	and 20m vegetated buffer strip
Potatoes		
R1 / stream	-	1.027
		0.539
		223
		100
Grapevines (late application)		
D6 / ditch	0.776	-
		0.272
		295
		100
R2 / stream	0.801	0.281
		0.281
		285
		100
R3 / stream	1.579	0.707
		-
		145
		100

Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4.

Values are in bold when an high risk could not be excluded

FOCUSsw step 4 - TERs zoxamide – Zoxium 240 SC at 180 g a.s./ha [5 applications]

Organisms	Mysidopsis bahia
Toxicity endpoint:	7.2 µg/L

Mitigation options	10 m non-spray buffer zone	10 m non-spray buffer zone and 10m vegetated buffer strip	20 m non-spray buffer zone	20 m non-spray buffer zone and 20m vegetated buffer strip	TER	Trigger
FOCUS Step 4*						
Potatoes						
D3 / ditch	0.164	-	-	-	43.9	10
D6 / ditch (1st)	0.163	-	-	-	44.1	10
D6 / ditch (2nd)	1.370	-	0.539		5.26	10
R1 / stream	-	1.028	-	0.539	13.4	10
R2 / stream	0.312	-	-	-	23.1	10
R3 / stream	0.618	-	-	-	11.7	10
Grapevines (late application)						
D6 / ditch	0.776	-	0.272	-	26.8	10
R1 / stream	0.597	-	-	-	12.1	10
R2 / stream	0.801	-	0.281	-	26.6	10
R3 / stream	1.579	0.707	1.579	-	10.2	10
Peer review of the pesticide risk assessment of the active substance zoxamide

![Table]()

R4 / stream	0.950	-	0.494	14.6	10

Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4.

Values are in bold when an high risk could not be excluded
FOCUS_{sw} step 4 - TERs zoxamide – Zoxium 240 SC at 180 g a.s./ha [5 applications]

Organisms

Lemna sp.

Toxicity endpoint: 9µg/L

Mitigation options	10 m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	10 m non-spray buffer zone and 10 m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	TER	Trigger
FOCUS Step 4*				
Potatoes				
D3/ ditch	0.164	-	54.9	10
D6 Ditch (1st)	0.163	-	55.2	10
D6 Ditch (2nd)	0.380	-	23.7	10
R1 / stream	-	1.028	8.8	10
R3 / stream	0.618	-	14.7	10

| **Grapevines (late application)** |
D6 / ditch	0.776	-	11.6	10
R1 / stream	0.597	-	15.1	10
R2 / stream	0.801	-	11.2	10
R3 / stream	1.579	-	5.7	10
R4 / stream	-	0.950	9.5	10

*Only scenarios where the trigger is not met at FOCUS_{sw} step 3 should be included in step 4."

Values are in bold when an high risk could not be excluded
FOCUS\textsubscript{sw} Step 1-2 - TERs for zoxamide metabolite RH-127450 – Zoxium 240 SC at 180 g a.s./ha [5 applications]\#

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates
		Oncorhynchus mykiss	Mysis bahia
		LC\textsubscript{50}	EC\textsubscript{50}
		16***µg/L	7.6***µg/L
		TER	TER

Potatoes	FOCUS Step 1	24.4087	0.66	0.31	
	FOCUS Step 2	North Europe	1.5062	10.6	5.0
	South Europe	1.6975	9.4	4.5	

Grapevines (late applications)	FOCUS Step 1	29.9843	0.53	0.25	
	FOCUS Step 2	North Europe	4.7282	3.4	1.6
	South Europe	4.7282	3.4	1.6	
Trigger**	100	100			

Only scenarios where the trigger is not met at FOCUS\textsubscript{sw} step 1-2 should be included in step 3.

**If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.*

***Risk assessment of the metabolite done assuming a toxicity ten times higher than the active substance.*

Values are in bold when an high risk could not be excluded

FOCUS\textsubscript{sw} Step 1-2 - TERs for zoxamide metabolite RH-139432 – Zoxium 240 SC at 180 g a.s./ha [5 applications]\#

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates
		Oncorhynchus mykiss	Daphnia magna

www.efsa.europa.eu/efsajournal

EFSA Journal 2017;15(9):4980
LC₅₀	EC₅₀
2000 µg/L | 7.6*** µg/L

TER	TER

Potatoes

FOCUS Step 1

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
Onchorhynchus mykiss	Oncorhynchus mykiss	Mysispora bahia	Desmodesmus subspicatus	
LC₅₀	EC₅₀	EC₅₀		
---	---	---		
10.92	183.2	0.7		

FOCUS Step 2

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
North Europe	2.22	not required	3.4	
South Europe	2.65	not required	2.9	

Grapevines (late applications)

FOCUS Step 1

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
Onchorhynchus mykiss	Oncorhynchus mykiss	Mysispora bahia	Desmodesmus subspicatus	
LC₅₀	EC₅₀	EC₅₀		
---	---	---		
14.98	133.5	0.5		

FOCUS Step 2

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
North Europe	5.52	not required	1.4	
South Europe	5.78	not required	1.3	

Trigger

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
Onchorhynchus mykiss	Oncorhynchus mykiss	Mysispora bahia	Desmodesmus subspicatus	
LC₅₀	EC₅₀	EC₅₀		
---	---	---		
100	100			

*Only scenarios where the trigger is not met at FOCUS sw step 1-2 should be included in step 3.
**If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.
***Risk assessment of the metabolite done assuming a toxicity ten times higher than the active substance.
Values are in bold when an high risk was identified
FOCUS sw Step 1-2 - TERs for zoxamide metabolite RH-163353 – Zoxium 240 SC at 180 g a.s./ha [5 applications]#

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates
		Oncorhynchus mykiss	Mysidopsis bahia
		LC₅₀	EC₅₀
		16*** µg/L	7.6*** µg/L
		TER	TER

Potatoes	FOCUS Step 1	56.2390	408	0.14	>1066	
	FOCUS Step 2	North Europe	1.7003	not required	4.5	not required
		South Europe	2.2110	not required	3.4	not required

Grapevines (late applications)	FOCUS Step 1	58.4240	393	0.13	>1026	
	FOCUS Step 2	North Europe	3.1246	not required	2.4	not required
		South Europe	3.4310	not required	2.2	not required

Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.

**If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.*

***Risk assessment of the metabolite done assuming a toxicity ten times higher than the active substance.*

Values are in bold when an high risk was identified.
FOCUS\textsubscript{sw} Step 1 - TERs for zoxamide metabolite RH-141455 – Zoxium 240 SC at 180 g a.s./ha [5 applications]#

Scenario	PEC global max (µg L)	fish acute	Aquatic invertebrates	Algae
		Oncorhynchus mykiss	Mysisopsis bahia	Pseudokirchneriella subspicata
		LC\textsubscript{50}	EC\textsubscript{50}	EC\textsubscript{10}
		16*** µg/L	7.6*** µg/L	> 100 000 µg/L

	FOCUS Step 1	FOCUS Step 2		
Potatoes				
	18.1338	0.88	0.42	>5 514
North Europe	1.3229	12.1	5.7	not required
South Europe	1.7903	8.9	4.2	not required
Grapevines (late)	19.2924	0.83	0.39	>5183

Only scenarios where the trigger is not met at FOCUS\textsubscript{sw} step 1-2 should be included in step 3.

If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.

Risk assessment of the metabolite done assuming a toxicity ten times higher than the active substance.

Values are in bold when an high risk was identified.
applications) | FOCUS Step 2 | | | |
| --- | --- | --- | --- |
| North Europe | 1.9965 | 8.0 | 3.8 | not required |
| South Europe | 2.2770 | 7.0 | 3.3 | not required |

Trigger

| | 100 | 100 | 10 |

* [Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

** [If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

*** [Risk assessment of the metabolite done assuming a toxicity ten times higher than the active substance.]

Values are in bold when an high risk was identified
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis mellifera	RH-117,281 2F	Acute	Oral toxicity (LD_{50})	>147 µg formulation/bee (corresponding to >33 µg a.s./bee)
Apis mellifera	a.s.	Acute	Contact toxicity (LD_{50})	> 100 µg a.s./bee¹
Apis mellifera	RH-117,281 2F	Acute	Contact toxicity (LD_{50})	>200 µg formulation/bee (corresponding to >43.2 µg a.s./bee)
Apis mellifera	Zoxium 240 SC	Chronic	10 d-LC_{50}	>5000 mg a.s./kg feed 174.8 µg a.s./bee/day
Apis mellifera	Zoxium 240 SC	Semi-field bee brood test	-	No effects on bee brood development up to 3.47 g Zoxium 240 SC/L feeding solution corresponding to 0.75 g a.s./L feeding solution

¹endpoint derived from a study not providing a toxicity standard, the study was considered valid as the endpoint was in the toxicity range of similar studies.

Potential for accumulative toxicity: yes/no

Semi-field test (Cage and tunnel test)	-
Field tests	-

Risk assessment for – Zoxium 240 SC at 180 g a.s./ha [5 applications]

First tier contact risk assessment for honey bees

scenario	BBCH	Honeybee	
		HQ	trigger
treated crop	< 40	0.0	42
treated crop	≥ 40	0.0	42
treated crop	< 10	0.0	85
treated crop	10 - 19	0.0	85
treated crop	20 - 39	0.0	85
treated crop	≥ 40	0.0	85
weeds	< 40	4.2	42
weeds	≥ 40	1.3	42
weeds	< 10	4.2	42
First tier oral risk assessment for honey bees

Crop	Category	Scenario	BBCH	ETR	Trigger
Potatoes	acute	treated crop	< 10	0.00	0.2
	acute	treated crop	10 - 39	0.01	0.2
	acute	treated crop	40 - 69	0.01	0.2
	acute	weeds	< 10	0.02	0.2
	acute	weeds	10 - 39	0.02	0.2
	acute	weeds	≥ 70	0.00	0.2
	acute	field margin	< 10	0.00	0.2
	acute	field margin	10 - 39	0.00	0.2
	acute	field margin	40 - 69	0.00	0.2
	acute	field margin	≥ 70	0.00	0.2
	acute	adjacent crop	< 10	0.00	0.2
	acute	adjacent crop	10 - 39	0.00	0.2
	acute	adjacent crop	40 - 69	0.00	0.2
	acute	next crop	< 10	0.00	0.2
	acute	next crop	10 - 39	0.00	0.2
	acute	next crop	40 - 69	0.00	0.2
	acute	next crop	≥ 70	0.00	0.2
	chronic	treated crop	< 10	0.00	0.03
	chronic	treated crop	10 - 39	0.00	0.03
	chronic	treated crop	40 - 69	0.00	0.03
	chronic	treated crop	≥ 70	0.00	0.03
	chronic	weeds	< 10	0.00	0.03
	chronic	weeds	10 - 39	0.00	0.03
	chronic	weeds	40 - 69	0.00	0.03
	chronic	field margin	< 10	0.00	0.03
	chronic	field margin	10 - 39	0.00	0.03
	chronic	field margin	40 - 69	0.00	0.03
	chronic	field margin	≥ 70	0.00	0.03
	chronic	adjacent crop	< 10	0.00	0.03
	chronic	adjacent crop	10 - 39	0.00	0.03
	chronic	adjacent crop	40 - 69	0.00	0.03
Wine grapes					
---	---	---			
chronic	adjacent crop	≥ 70	0.00	0.03	
chronic	next crop	< 10	0.00	0.03	
chronic	next crop	10 - 39	0.00	0.03	
chronic	next crop	40 - 69	0.00	0.03	
chronic	next crop	≥ 70	0.00	0.03	
acute	treated crop	< 10	0.00	0.2	
acute	treated crop	10 - 19	0.06	0.2	
acute	treated crop	20 - 39	0.06	0.2	
acute	treated crop	40 - 69	0.06	0.2	
acute	treated crop	≥ 70	0.00	0.2	
acute	weeds	< 10	0.02	0.2	
acute	weeds	10 - 19	0.01	0.2	
acute	weeds	20 - 39	0.01	0.2	
acute	weeds	40 - 69	0.01	0.2	
acute	weeds	≥ 70	0.01	0.2	
acute	field margin	< 10	0.00	0.2	
acute	field margin	10 - 19	0.00	0.2	
acute	field margin	20 - 39	0.00	0.2	
acute	field margin	40 - 69	0.00	0.2	
acute	field margin	≥ 70	0.00	0.2	
acute	adjacent crop	< 10	0.00	0.2	
acute	adjacent crop	10 - 19	0.00	0.2	
acute	adjacent crop	20 - 39	0.00	0.2	
acute	adjacent crop	40 - 69	0.00	0.2	
acute	adjacent crop	≥ 70	0.00	0.2	
acute	next crop	< 10	0.00	0.2	
acute	next crop	10 - 19	0.00	0.2	
acute	next crop	20 - 39	0.00	0.2	
acute	next crop	40 - 69	0.00	0.2	
acute	next crop	≥ 70	0.00	0.2	
chronic	treated crop	< 10	0.00	0.03	
chronic	treated crop	10 - 19	0.01	0.03	
chronic	treated crop	20 - 39	0.01	0.03	
chronic	treated crop	40 - 69	0.01	0.03	
chronic	treated crop	≥ 70	0.00	0.03	
chronic	weeds	< 10	0.00	0.03	
chronic	weeds	10 - 19	0.00	0.03	
chronic	weeds	20 - 39	0.00	0.03	
chronic	weeds	40 - 69	0.00	0.03	
chronic	weeds	≥ 70	0.00	0.03	
chronic	field margin	< 10	0.00	0.03	
chronic	field margin	10 - 19	0.00	0.03	
chronic	field margin	20 - 39	0.00	0.03	
chronic	field margin	40 - 69	0.00	0.03	
chronic	field margin	≥ 70	0.00	0.03	
chronic	adjacent crop	< 10	0.00	0.03	
chronic	adjacent crop	10 - 19	0.00	0.03	
chronic	adjacent crop	20 - 39	0.00	0.03	
chronic	adjacent crop	40 - 69	0.00	0.03	
chronic	adjacent crop	≥ 70	0.00	0.03	
Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

laboratory tests with standard sensitive species
Species
Typhlodromus pyri
Aphidius rhopalosiphi
Additional species
Amblyseius andersoni
Pardosa sp.
Chrysoperla carnea
Orius insidiosus

First tier risk assessment for potatoes at 180 g a.s./ha [5 applications]

Test substance	Species	Effect (LR₅₀ g/ha)	HQ in-field	HQ off-field¹	Trigger
Zoxium 240 SC	Typhlodromus pyri	>300 g a.s./ha	<1.8	<0.0315	2
Zoxium 240 SC	Aphidius rhopalosiphi	>300 g a.s./ha	<1.8	<0.0315	2

¹indicate distance assumed to calculate the drift rate

First tier risk assessment for grapevines at 180 g a.s./ha [5 applications]
Test substance, Species, Effect

Test substance	Species	Effect (LR₅₀ g/ha)	HQ in-field	HQ off-field¹	Trigger
Zoxium 240 SC	*Typhlodromus pyri*	>300 g a.s./ha	<1.8	<0.119	2
Zoxium 240 SC	*Aphidius rhopalosiphi*	>300 g a.s./ha	<1.8	<0.119	2

¹Indicate distance assumed to calculate the drift rate

Extended laboratory tests, aged residue tests

- Not performed

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)¹,²	End point	% effect³	ER₅₀
					Mortality, reproduction		

¹Indicate whether initial or aged residues

²For preparations indicate whether dose is expressed in units of a.s. or preparation

³Indicate if positive percentages relate to adverse effects or not

Risk assessment

Based on extended lab test or aged residue tests

- Not performed

Species	ER₅₀ (g/ha)	In-field rate	Off-field rate¹

¹Indicate distance assumed to calculate the drift rate and if 3D or 2D.

Semi-field tests

- Field studies

- Additional specific test

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Test system	End point
Eisenia fetida	a.s.	14d – artificial soil	14d-LC₅₀: >1070 mg a.s./kg soil dw 14d-NOEC (mortality): 66.7 mg a.s./kg soil dw
	RH-127450	14d – artificial soil	14d-LC₅₀: >1000 mg a.s./kg soil dw 14d-NOEC (mortality): 1000 mg a.s./kg soil dw
	RH-141455	56d – artificial soil	NOEC = 5 mg/kg soil dw LOEC = 10 mg/kg soil dw. The EC₅₀ > 10 mg/kg soil dw

¹To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).
Higher tier testing (e.g. modelling or field studies) -

Nitrogen transformation	a.s.	<25% after 42 days at 2 mg a.s./kg soil
Carbon transformation	a.s.	<25% after 28 days at 2 mg a.s./kg soil
Nitrogen transformation	RH-141455	<25% after 28 days at 0.2-1 mg a.s./kg soil

Toxicity/exposure ratios for earthworms
Zoxium 240 SC at 180 g a.s./ha [5 applications]

Test organism	Test substance	Time scale	Soil PEC***	TER	Trigger
	a.s.	Acute	LD$_{50}$, corr. >535*	0.3825	1146
RH-127450	Acute			0.0542	9225
RH-24549**	Acute			0.0642	833
RH-163353**	Acute			0.0775	690
RH-141455**	Acute			0.0327	1636

Test organism	Test substance	Time scale	Soil PEC***	TER	Trigger
	RH-141455	PEC soil accumulation (mg/kg soil dw)			
	>53.5**	no tillage – potatoe 0.0902		593	
	>53.5**	no tillage – vineyard 0.0722		741	
	>53.5**	tillage – potatoe 0.0799		670	
	>53.5**	tillage – vineyard 0.0639		837	

Eisenia fetida

Test organism	Test substance	Time scale	Soil PEC***	TER	Trigger
	Chronic NOEC corr. 2.5*	no tillage – potatoe 0.0902		27.7	
	Chronic NOEC corr. 2.5*	no tillage – vineyard 0.0722		34.6	
	Chronic NOEC corr. 2.5*	tillage – potatoe 0.0799		31.3	
Test organism | Test substance | Time scale | Soil PEC***¹ | TER | Trigger
---|---|---|---|---|---
RH-141455**² | Chronic NOEC corr. 2.5* | tillage – vineyard 0.0639 | 39.1 |

¹indicate which PEC soil was used (e.g. plateau PEC)
² Since zoxamide has a log P_{ow} of 3.76 (>2) it is necessary to reduce the LC₅₀ and NOEC values by a factor of 2 for the studies conducted using artificial soil in line with EU Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002 of October 2002). A correction factor of 2 is used for endpoints from study with natural soil.
³ Acute and chronic toxicity endpoints used for metabolites assuming that each metabolite is 10 fold more toxic than the parent to earthworms
^{***} All maximum initial PEC_{soil} values were calculated for application in potatoes

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Given the nature of the proposed uses, it is unlikely that zoxamide will reach sewage treatment plants.

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

Ecotoxicologically relevant compounds¹

Compartment	Ecotoxicologically relevant compounds
soil	zoxamide, RH-163353 (pending), RH-141455 (pending)
water	zoxamide, RH-127450 (pending), RH-24549 (pending), RH-163353 (pending), RH-141455 (pending)
sediment	zoxamide, RH-127450 (pending), RH-163353 (pending)
groundwater	At least zoxamide but open regarding RH -141455

¹ metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent
Classification and labelling with regard to ecotoxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance	Zoxamide
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁵:	Aquatic acute 1, H400: Very toxic to aquatic life Aquatic chronic 1, H410: Very toxic to aquatic life with long lasting effects
Peer review proposal⁶ for harmonised classification according to Regulation (EC) No 1272/2008:	Aquatic acute 1, H400: Very toxic to aquatic life Aquatic chronic 1, H410: Very toxic to aquatic life with long lasting effects

⁵ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁶ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.