FEJÉR MEANS OF VILENKIN-FOURIER SERIES

GEORGE TEPHNADZE

ABSTRACT. The main aim of this paper is to prove that there exist a martingale \(f \in H_{1/2} \) such that Fejér means of Vilenkin-Fourier series of the martingale \(f \) is not uniformly bounded in the space \(L_{1/2} \).

2000 Mathematics Subject Classification. 42C10.

Key words and phrases: Vilenkin system, Fejér means, martingale Hardy space.

1. INTRODUCTION

In one-dimensional case the weak type inequality

\[
\mu (\sigma^* f > \lambda) \leq \frac{c}{\lambda} \|f\|_1, \quad (\lambda > 0)
\]

can be found in Zygmund [14] for the trigonometric series, in Schipp [7] for Walsh series and in Pál, Simon [6] for bounded Vilenkin series. Again in one-dimensional, Fujii [5] and Simon [9] verified that \(\sigma^* \) is bounded from \(H_1 \) to \(L_1 \). Weisz [12] generalized this result and proved the boundedness of \(\sigma^* \) from the martingale space \(H_p \) to the space \(L_p \) for \(p > 1/2 \). Simon [8] gave a counterexample, which shows that boundedness does not hold for \(0 < p < 1/2 \). The counterexample for \(p = 1/2 \) due to Goginava ([4], see also [3]).

In [3] the following is proved:

For any bounded Vilenkin system the maximal operator of the Fejér means is not bounded from the martingale Hardy space \(H_{1/2} \) to the space \(L_{1/2} \).

In this paper we shall prove a stronger result than the unboundedness of the maximal operator from the Hardy space \(H_{1/2} \) to the space \(L_{1/2} \), in particular, we shall prove that there exists a martingale \(f \in H_{1/2} \) such that Fejér means of Vilenkin-Fourier series of the martingale \(f \) is not uniformly bounded in the the space \(L_{1/2} \).

2. DEFINITIONS AND NOTATIONS

Let \(N_+ \) denote the set of the positive integers, \(N := N_+ \cup \{0\} \). Let \(m := (m_0, m_1, \ldots) \) denote a sequence of the positive integers, not less than 2. Denote by \(Z_{m_k} := \{0, 1, \ldots, m_k - 1\} \) the addition group of integers modulo \(m_k \).

Define the group \(G_m \) as the complete direct product of the groups \(Z_{m_i} \), with the product of the discrete topologies of \(Z_{m_i} \).

The direct product \(\mu \) of the measures

\[
\mu_k (\{j\}) := 1/m_k, \quad (j \in Z_{m_k})
\]

is the Haar measure on \(G_{m_k} \) with \(\mu (G_m) = 1 \).
If \(\sup m_n < \infty \), then we call \(G_m \) a bounded Vilenkin group. If the generating sequence \(m \) is not bounded, then \(G_m \) is said to be an unbounded Vilenkin group. In this paper we discuss bounded Vilenkin groups only.

The elements of \(G_m \) represented by sequences

\[x := (x_0, x_1, \ldots, x_j, \ldots), \quad (x_i \in \mathbb{Z}_{m_j}). \]

It is easy to give a base for the neighborhood of \(G_m \):

\[I_0(x) := G_m, \]

\[I_n(x) := \{ y \in G_m \mid y_0 = x_0, \ldots y_{n-1} = x_{n-1}\}, \quad (x \in G_m, n \in \mathbb{N}). \]

Denote \(I_n := I_n(0) \), for \(n \in \mathbb{N}_+ \).

If we define the so-called generalized number system based on \(m \) in the following way:

\[M_0 := 1, \quad M_{k+1} := m_k M_k, \quad (k \in \mathbb{N}), \]

then every \(n \in \mathbb{N} \) can be uniquely expressed as \(n = \sum_{j=0}^{\infty} n_j M_j \), where \(n_j \in \mathbb{Z}_{m_j}, \quad (j \in \mathbb{N}_+) \) and only a finite number of \(n_j \)'s differ from zero.

Next, we introduce on \(G_m \) an orthonormal system, which is called the Vilenkin system. At first define the complex valued function \(r_k(x) : G_m \to \mathbb{C} \), the generalized Rademacher functions as

\[r_k(x) := \exp(2\pi i x/m_k), \quad (i^2 = -1, \quad x \in G_m, k \in \mathbb{N}). \]

Now define the Vilenkin system \(\psi := (\psi_n : n \in \mathbb{N}) \) on \(G_m \) as:

\[\psi_n(x) := \prod_{k=0}^{\infty} r_k^{n_k}(x), \quad (n \in \mathbb{N}). \]

Specifically, we call this system the Walsh-Paley one if \(m \equiv 2 \).

The Vilenkin system is orthonormal and complete in \(L_2(G_m) \) \([11][10]\).

Now we introduce analogues of the usual definitions in Fourier-analysis. If \(f \in L_1(G_m) \) we can establish the Fourier coefficients, the partial sums of the Fourier series, the Fejér means, the Dirichlet kernels with respect to the Vilenkin system \(\psi \) in the usual manner:
\(\hat{f}(k) := \int_{G_m} f \overline{\psi_k} \, d\mu, \quad (k \in \mathbb{N}), \)

\(S_n f := \sum_{k=0}^{n-1} \hat{f}(k) \psi_k, \quad (n \in \mathbb{N}_+, \ S_0 f := 0), \)

\(\sigma_n f := \frac{1}{n} \sum_{k=0}^{n-1} S_k f, \quad (n \in \mathbb{N}_+), \)

\(D_n := \sum_{k=0}^{n-1} \psi_k, \quad (n \in \mathbb{N}_+). \)

Recall that

\(D_{M_n}(x) = \begin{cases}
M_n, & \text{if } x \in I_n, \\
0, & \text{if } x \notin I_n.
\end{cases} \)

The norm (or quasinorm) of the space \(L_p(G_m) \) is defined by

\[\|f\|_p := \left(\int_{G_m} |f(x)|^p \, d\mu(x) \right)^{\frac{1}{p}}, \quad (0 < p < \infty). \]

The σ-algebra generated by the intervals \(\{I_n(x) : x \in G_m\} \) will be denoted by \(F_n \ (n \in \mathbb{N}). \)

Denote by \(f = (f^{(n)}, n \in \mathbb{N}) \) a martingale with respect to \(F_n \ (n \in \mathbb{N}) \). (for details see e.g. [11].)

The maximal function of a martingale \(f \) is defined by

\[f^* = \sup_{n \in \mathbb{N}} |f^{(n)}|. \]

In case \(f \in L_1(G_m) \), the maximal functions are also be given by

\[f^*(x) = \sup_{n \in \mathbb{N}} \frac{1}{\mu(I_n(x))} \left| \int_{I_n(x)} f(u) \, d\mu(u) \right|. \]

For \(0 < p < \infty \), the Hardy martingale spaces \(H_p(G_m) \) consist of all martingale, for which

\[\|f\|_{H_p} := \|f^*\|_{L_p} < \infty. \]

If \(f \in L_1(G_m) \), then it is easy to show that the sequence \((S_{M_n} f : n \in \mathbb{N}) \) is a martingale.

If \(f = (f^{(n)}, n \in \mathbb{N}) \) is martingale then the Vilenkin-Fourier coefficients must be defined in a slightly different manner:

\[\hat{f}(i) := \lim_{k \to \infty} \int_{G_m} f^{(k)}(x) \overline{\Psi_i}(x) \, d\mu(x). \]

The Vilenkin-Fourier coefficients of \(f \in L_1(G_m) \) are the same as those of the martingale \((S_{M_n} f : n \in \mathbb{N}) \) obtained from \(f \).
For a martingale f the maximal operators of the Fejér means are defined by

$$\sigma^* f(x) = \sup_{n \in \mathbb{N}} |\sigma_n f(x)|.$$

A bounded measurable function a is p-atom, if there exists an interval I, such that

$$\begin{cases}
 a) & \int_I ad\mu = 0, \\
 b) & \|a\|_\infty \leq \mu(I)^{1/p}, \\
 c) & \text{supp}(a) \subset I.
\end{cases}$$

3. FORMULATION OF MAIN RESULT

Theorem 1. There exist a martingale $f \in H_{1/2}$ such that

$$\sup_n \|\sigma_n f\|_{1/2} = +\infty.$$

Corollary 1. There exist a martingale $f \in H_{1/2}$ such that

$$\|\sigma^* f\|_{1/2} = +\infty.$$

4. AUXILIARY PROPOSITIONS

Lemma 1. [13] A martingale $f = (f^{(n)}, n \in \mathbb{N})$ is in $H_p \ (0 < p \leq 1)$ if and only if there exist a sequence $(a_k, k \in \mathbb{N})$ of p-atoms and a sequence $(\mu_k, k \in \mathbb{N})$, of a real numbers, such that for every $n \in \mathbb{N}$:

$$(1) \quad \sum_{k=0}^\infty \mu_k S_{M_n} a_k = f^{(n)},$$

Moreover, $\|f\|_{H_p} \sim \inf (\sum_{k=0}^\infty |\mu_k|^p)^{1/p}$, where the infimum is taken over all decomposition of f of the form (1).

Lemma 2. [2] Let $2 < A \in \mathbb{N}_+, \ k \leq s < A$ and $q_A = M_{2A} + M_{2A-2} + \ldots + M_2 + M_0$, then

$$q_{A-1} |K_{q_{A-1}}(x)| \geq \frac{M_{2k} M_{2s}}{4}.$$

for $x \in I_{2A} (0, \ldots, x_{2k} \neq 0, 0, \ldots, 0, x_{2s} \neq 0, x_{2s+1}, \ldots x_{2A-1})$

$$k = 0, 1, \ldots, A - 3, \quad s = k + 2, k + 3, \ldots, A - 1.$$
5. PROOF OF THE THEOREM

Let \(\{ \alpha_k : k \in N \} \) be an increasing sequence of the positive integers such that:

\[
(2) \quad \sum_{k=0}^{\infty} \alpha_k^{-1/2} < \infty,
\]

\[
(3) \quad \sum_{\eta=0}^{k-1} \frac{(M_{2\alpha_\eta})^2}{\alpha_\eta} < \frac{(M_{2\alpha_k})^2}{\alpha_k},
\]

\[
(4) \quad \frac{32M(M_{2\alpha_{k-1}})^2}{\alpha_{k-1}} < \frac{M_{\alpha_k}}{\alpha_k},
\]

where \(M = \sup \{ m_0, m_1 \ldots \} , \ (2 \leq M < \infty) \).

We note that such an increasing sequence \(\{ \alpha_k : k \in N \} \) which satisfies conditions (2-4) can be constructed.

Let

\[
f^{(A)}(x) = \sum_{\{k; 2\alpha_k < A\}} \lambda_k a_k,
\]

where

\[
\lambda_k = \frac{1}{\alpha_k},
\]

and

\[
a_k(x) = \frac{M_{2\alpha_k}}{M} \left(D_{M(2\alpha_{k+1})}(x) - D_{M_{2\alpha_k}}(x) \right).
\]

It is easy to show that the martingale \(f = (f^{(1)}, f^{(2)}, \ldots, f^{(A)}, \ldots) \in H_{1/2}. \)

Indeed, since

\[
S_{M_A}a_k(x) = \begin{cases} a_k(x), & 2\alpha_k < A, \\ 0, & 2\alpha_k \geq A, \end{cases}
\]

\[
\text{supp}(a_k) = I_{2\alpha_k},
\]

\[
\int_{I_{2\alpha_k}} a_k d\mu = 0
\]

and

\[
\|a_k\|_\infty \leq \frac{M_{2\alpha_k}M_{2\alpha_k+1}}{M} \leq (M_{2\alpha_k})^2 = (\text{supp } a_k)^{-2}.
\]

if we apply lemma 1 and (2) we conclude that \(f \in H_{1/2}. \)

It is easy to show that
\[
\hat{f}(j) = \begin{cases}
\frac{1}{M^{2\alpha_k}}, & \text{if } j \in \{M^{2\alpha_k}, \ldots, M^{2\alpha_k}+1 \}, \ k = 0, 1, 2, \ldots, \\
0, & \text{if } j \notin \bigcup_{k=1}^{\infty} \{M^{2\alpha_k}, \ldots, M^{2\alpha_k+1} - 1 \}.
\end{cases}
\]

We can write
\[
\sigma_{q_{\alpha_k}} f(x) = \frac{1}{q_{\alpha_k}} \sum_{j=0}^{M^{2\alpha_k} - 1} S_j f(x) + \frac{1}{q_{\alpha_k}} \sum_{j=M^{2\alpha_k}}^{q_{\alpha_k} - 1} S_j f(x) = I + II.
\]

Let \(M^{2\alpha_k} \leq j < q_{\alpha_k}\). Then applying (6) we have
\[
S_j f(x) = \sum_{v=0}^{M^{2\alpha_k} - 1} \hat{f}(v) \psi_v(x) + \sum_{v=M^{2\alpha_k}}^{q_{\alpha_k} - 1} \hat{f}(v) \psi_v(x)
= \sum_{\eta=0}^{k-1} \sum_{v=M^{2\alpha_k}}^{M^{2\alpha_{\eta+1}} - 1} \hat{f}(v) \psi_v(x) + \sum_{v=M^{2\alpha_k}}^{q_{\alpha_k} - 1} \hat{f}(v) \psi_v(x)
= \frac{1}{M} \sum_{\eta=0}^{k-1} \sum_{v=M^{2\alpha_k}}^{M^{2\alpha_{\eta+1}} - 1} M^{2\alpha_{\eta}} \alpha_{\eta} \psi_v(x) + \frac{1}{M} \sum_{\eta=0}^{k-1} \sum_{v=M^{2\alpha_k}}^{q_{\alpha_k} - 1} \alpha_{\eta} \psi_v(x)
= \frac{1}{M} \sum_{\eta=0}^{k-1} \frac{M^{2\alpha_{\eta}}}{\alpha_{\eta}} \left(D_{M^{2\alpha_{\eta+1}}} - D_{M^{2\alpha_{\eta}}} \right)
+ \frac{1}{M} \frac{M^{2\alpha_k}}{\alpha_k} \left(D_j - D_{M^{2\alpha_k}} \right).
\]

Applying (8) in II we have
\[
II = \frac{1}{M} \frac{q_{\alpha_k} - M^{2\alpha_k}}{q_{\alpha_k}} \sum_{\eta=0}^{k-1} \frac{M^{2\alpha_{\eta}}}{\alpha_{\eta}} \left(D_{M^{2\alpha_{\eta+1}}} - D_{M^{2\alpha_{\eta}}} \right)
+ \frac{1}{M} \frac{M^{2\alpha_k}}{\alpha_k q_{\alpha_k}} \sum_{j=M^{2\alpha_k}}^{q_{\alpha_k} - 1} \left(D_j - D_{M^{2\alpha_k}} \right)
= II_1 + II_2.
\]

It is evident
\[
\left| \frac{q_{\alpha_k} - M^{2\alpha_k}}{q_{\alpha_k}} \right| < 1
\]
and
\[
\left| \left(D_{M_{2^{\alpha q+1}}} (x) - D_{M_{2^{\alpha q}}} (x) \right) \right| \\
\leq M_{2^{\alpha q+1}} = M_{2^{\alpha q}} M_{2^{\alpha q}} \leq M \cdot M_{2^{\alpha q}}.
\]

Applying (3) we have

(9) \[|II_1| \leq \sum_{\eta=0}^{k-1} \frac{M_{2^{\alpha q}}}{\alpha q} \frac{1}{M} M \cdot M_{2^{\alpha q}} \leq \frac{2 (M_{2^{\alpha k-1}})^2}{\alpha k-1}. \]

Since

\[D_{j+M_{2^{\alpha k}}} (x) = D_{M_{2^{\alpha k}}} (x) + \psi_{M_{2^{\alpha k}}} (x) D_j (x), \quad \text{when } j < M_{2^{\alpha k}}, \]

for \(II_2\) we have:

\[
|II_2| = \frac{1}{M} \frac{M_{2^{\alpha k}}}{\alpha_k} q_{\alpha_k-1} \left| \sum_{j=0}^{q_{\alpha_k-1}-1} D_{j+M_{2^{\alpha k}}} (x) - D_{M_{2^{\alpha k}}} (x) \right| \\
= \frac{1}{M} \frac{M_{2^{\alpha k}}}{\alpha_k} q_{\alpha_k-1} \left| \psi_{M_{2^{\alpha k}}} (x) \sum_{j=0}^{q_{\alpha_k-1}-1} D_j (x) \right| \\
= \frac{1}{M} \frac{M_{2^{\alpha k}}}{\alpha_k} q_{\alpha_k-1} \left| K_{q_{\alpha_k-1}} (x) \right| \\
\geq \frac{1}{2M} \frac{q_{\alpha_k-1}}{\alpha_k} \left| K_{q_{\alpha_k-1}} (x) \right|.
\]

Since

\[q_{\alpha_k} \leq M_{2^{\alpha_k}} \left(1 + \frac{1}{4} + \ldots + \frac{1}{4^n} \right) \leq 2M_{2^{\alpha_k}}, \]

for \(II_2\) we obtain

\[|II_2| \geq \frac{1}{2M} \frac{q_{\alpha_k-1}}{\alpha_k} \left| K_{q_{\alpha_k-1}} (x) \right|. \]

Let \(M_{2^{\alpha_{k-1}+1}} - 1 \leq j < M_{2^{\alpha_k}} \). Then from (8) we have
\[
|S_j f(x)| = \left| \sum_{v=0}^{j-1} \hat{f}(v) \psi_v(x) \right|
\]

\[
= \left| \sum_{v=M_{2\alpha_{k-1}+1}}^{M_{2\alpha_{k-1}+1}-1} \hat{f}(v) \psi_v(x) \right|
\]

\[
= \left| \sum_{\eta=0}^{k-1} \sum_{v=M_{2\alpha_{\eta}}}^{M_{2\alpha_{\eta}+1}-1} \frac{M_{2\alpha_{\eta}} \psi_v(x)}{M \cdot \alpha_{\eta}} \right|
\]

\[
= \left| \sum_{\eta=0}^{k-1} \frac{M_{2\alpha_{\eta}}}{M \cdot \alpha_{\eta}} \left(D_{M_{2\alpha_{\eta}+1}}(x) - D_{M_{2\alpha_{\eta}}}(x) \right) \right|
\]

\[
\leq \frac{2 \left(M_{2\alpha_{k-1}} \right)^2}{\alpha_{k-1}}.
\]

Hence

\[(10) \quad |I| \leq \frac{1}{q_{\alpha_k}} \sum_{j=0}^{M_{2\alpha_k}-1} |S_j f(x)|
\]

\[
\leq \frac{2M_{2\alpha_k} \left(M_{2\alpha_{k-1}} \right)^2}{q_{\alpha_k}} \frac{1}{\alpha_{k-1}}
\]

\[
\leq \frac{2 \left(M_{2\alpha_{k-1}} \right)^2}{\alpha_{k-1}}.
\]

Applying (11) we have

\[
|I|, |II_1| \leq \frac{2 \left(M_{2\alpha_{k-1}} \right)^2}{\alpha_{k-1}} \leq \frac{1}{16M} M_{\alpha_k}.
\]

Consequently,

\[(11) \quad |\sigma_{q_{\alpha_k}} f(x)| \geq |II_2| - (|I| + |II_1|)
\]

\[
\geq \frac{1}{8M \cdot \alpha_k} \left(4q_{\alpha_k-1} \left| K_{q_{\alpha_k-1}}(x) \right| - M_{\alpha_k} \right).
\]

Denote

\[
I_{2\alpha_k}(0, ..., x_{2\eta} \neq 0, 0, ..., 0, x_{2s} \neq 0, x_{2s+1}, ..., x_{2\alpha_k-1}) = I_{2\alpha_k}^{\eta,s}.
\]

Let

\[
x \in I_{2\alpha_k}^{\eta,s}, \quad \eta = \left[\frac{\alpha_k}{2} \right], \left[\frac{\alpha_k}{2} \right] + 1, ..., \alpha_k - 3, \ s = \eta + 2, \eta + 3, \alpha_k - 1.
\]

Applying lemma 2 we have:
\[4q_{\alpha_k-1} \left| K_{q_{\alpha_k-1}} (x) \right| \geq M_{2\eta}M_2. \]

Since
\[2s \geq 2 \left\lceil \frac{\alpha_k}{2} \right\rceil + 4 > \alpha_k + 1, \]
we have
\[M_{2s} > M_{\alpha_k+1} \geq m_{\alpha_k}M_{\alpha_k} \geq 2M_{\alpha_k}. \]

Hence
\[(12) \quad M_{2s}M_{2\eta} - M_{\alpha_k} \geq \frac{1}{M}M_{2s}M_{2\eta}. \]

From (11-12) we have
\[\left| \sigma_{q_{\alpha_k}} f (x) \right| \geq \frac{1}{8M^2 \cdot \alpha_k} M_{2s}M_{2\eta}, \quad x \in I_{2\alpha_k}^{\eta,s}, \]

where
\[\eta = \left\lceil \frac{\alpha_k}{2} \right\rceil, \left\lceil \frac{\alpha_k}{2} \right\rceil + 1, ..., \alpha_k - 3, \quad s = \eta + 2, \eta + 3, \alpha_k - 1. \]

Hence we can write
\[
\int_{G_m} \left| \sigma_{q_{\alpha_k}} f (x) \right|^{\frac{1}{2}} d\mu (x) \\
\geq \sum_{s=\eta+2}^{\alpha_k-1} \sum_{s=\eta+2}^{m_{2\alpha_k}-1} \sum_{x=0}^{m_{2\alpha_k}-1} \int_{I_{2\alpha_k}^{\eta,s}} \left| \sigma_{q_{\alpha_k}} f (x) \right|^{\frac{1}{2}} d\mu (x) \\
\geq \frac{1}{8M^2 \cdot \alpha_k} \sum_{s=\eta+2}^{\alpha_k-3} \sum_{s=\eta+2}^{\alpha_k-1} \frac{M_{2s+1} \cdot M_{2\alpha_k-1}}{M_{2\alpha_k}} \sqrt{M_{2s}M_{2\eta}} \\
\geq \frac{1}{8 \sqrt{M_k} \cdot \alpha_k} \sum_{s=\eta+2}^{\alpha_k-3} \sum_{s=\eta+2}^{\alpha_k-1} \sqrt{M_{2s}M_{2\eta}} \cdot \sqrt{M_{2s+1}} \\
\geq \frac{1}{8M^2 \sqrt{\alpha_k}} \sum_{s=\eta+2}^{\alpha_k-3} \sum_{s=\eta+2}^{\alpha_k-1} \frac{M_{2\eta}}{M_{2s}}. \]

It is easy to show that
\[\sum_{s=\eta+2}^{\alpha_k-3} \sqrt{\frac{M_{2\eta}}{M_{2s}}} \geq \sqrt{\frac{M_{2\eta}}{M_{2\eta+4}}} \geq \frac{1}{M^2}. \]

Consequently,
\[\int_G \left| \sigma_{q_k} f(x) \right|^{\frac{1}{2}} \, d\mu(x) \geq \frac{1}{8M^2/\sqrt{\alpha_k}} \sum_{\eta=[\alpha_k/2]}^{\alpha_k-3} \left(\sum_{s=\eta+2}^{\alpha_k-1} \sqrt{\frac{M_{2s}}{M_{2\eta}}} \right) \]
\[\geq \frac{1}{8M^4/\sqrt{\alpha_k}} \sum_{\eta=[\alpha_k/2]}^{\alpha_k-3} 1 \]
\[\geq c\sqrt{\alpha_k} \rightarrow \infty, \quad \text{as } k \rightarrow \infty. \]

Theorem 1 is proved.

References

[1] G. N. AGAEV, N. Ya. VILENKIN, G. M. DZHAFA RLY and A. I. RUBINSHTEIN, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Ehim, 1981 (in Russian).

[2] I. BLAHO T A, G. GÁT and U. GOGINAV A, maximal operators of Fejér means of double Vilenkin-Fourier series, Colloq. Math. 107 (2007), no. 2, 287–296.

[3] I. BLAHO T A, G. GÁT and U. GOGINAV A, Maximal operators of Fejér means of Vilenkin-Fourier series. JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), 1-7.

[4] U. GOGINAVA, The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series. East J. Approx. 12 (2006), no. 3, 295–302.

[5] N. J. FUJII, A maximal inequality for H_1 functions on the generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116.

[6] J. PÁL and P. SIMON, On a generalization of the concept of derivative, Acta Math. Hung., 29 (1977), 155-164.

[7] F. SCHIPP, Certain rearrangements of series in the Walsh series, Mat. Zametki, 18 (1975), 193-201.

[8] P. SIMON, Cesáro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131 (2000), 321-334.

[9] P. SIMON, Investigations with respect to the Vilenkin sistem, Annales Univ. Sci. Budapest Eotv., Sect. Mat., 28 (1985), 87-101.

[10] N. Ya. VILENKIN, Aclass of complete orthonormal systems, Izv. Akad. Nauk. U.S.S.R., Ser. Mat., 11 (1947), 363-400.

[11] F. WEISZ, Martingale Hardy spaces and their applications in Fourier Analysis, Springer, Berlin-Heidelberg-New York, 1994.

[12] F. WEISZ, Cesáro summability of one and two-dimensional Fourier series, Anal. Math. Studies, 5 (1996), 353-367.

[13] F. WEISZ, Hardy spaces and Cesáro means of two-dimensional Fourier series, Bolyai Soc. math. Studies, (1996), 353-367.

[14] A. ZYGMUND, Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.

G. TEPHNADZE, DEPARTMENT OF MATHEMATICS, FACULTY OF EXACT AND NATURAL SCIENCES, TBILISI STATE UNIVERSITY, CHAVCHAVADZE STR. 1, TBILISI 0128, GEORGIA

E-mail address: giorgitephnadze@gmail.com