Ultradwarf hybrid bermudagrass cultivars [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] are frequently used on golf course putting greens (Reasor et al., 2016). Plant growth regulators (PGRs) are commonly applied to bermudagrass putting greens to reduce vertical shoot growth and maintain consistent playing surfaces (Fagerness et al., 2000; McCullough et al., 2007). Two commonly used PGRs in turfgrass are trinexapac-ethyl (TE) and prohexadione-Ca (PH). These active ingredients are absorbed by turf foliage and inhibit the production of active gibberellic acid by blocking the late 3β-hydroxylation reaction of GA$_{20}$ to GA$_{1}$ (Watschke and DiPaola, 1995; Fagerness et al., 2000; Rademaker, 2000; Beam and Askew, 2007).

Strategies for using TE on bermudagrass putting greens have been explored for many years; however, research on PH use in turfgrass is limited (Beam and Askew, 2007; Beam, 2004; Marchi...
et al., 2015). The impact of TE on bermudagrass putting greens varies by application regime and cultivar differences (McCullough et al., 2005, 2006, 2007; Baldwin et al., 2009; McCarty et al., 2011). McCullough et al. (2007) evaluated three different TE application rates and frequencies (0.017 kg a.i. ha\(^{-1}\) wk\(^{-1}\), 0.033 kg a.i. ha\(^{-1}\) 2 wk\(^{-1}\), and 0.05 kg a.i. ha\(^{-1}\) 3 wk\(^{-1}\)) on ‘TifEagle’. Clipping yield reduction among the TE regimes was not significantly different, although there was a 49 to 59% reduction in clipping yield compared with nontreated TifEagle (McCullough et al., 2007). McCarty et al. (2011) and McCullough et al. (2006) reported a 32 to 46 and 67% clipping yield reduction compared with nontreated plots of TifEagle with 0.0175 kg a.i. ha\(^{-1}\) 2 wk\(^{-1}\) and 0.05 kg a.i. ha\(^{-1}\) 3 wk\(^{-1}\) of TE, respectively. Similarly, applications of TE at 0.02 kg a.i. ha\(^{-1}\) 2 wk\(^{-1}\) on ‘Champion’ bermudagrass reduced clipping yield by 48% compared with non-TE-treated Champion 2 wk after the final application (Baldwin et al., 2009). The aforementioned studies were conducted on a single cultivar established in field conditions; however, McCullough et al. (2005) examined the response of six bermudagrass cultivars to applications of TE at 0.0125 kg a.i. ha\(^{-1}\) 10 d\(^{-1}\). Applications of TE significantly reduced clipping yield on Champion, MiniVerde, and TifEagle bermudagrasses compared with nontreated plots, with MiniVerde having the most reduction (69%) and TifEagle having the least (46%) (McCullough et al., 2005). Ultradwarf cultivars have varied responses to TE likely due to the different rates, application frequencies, and environmental conditions when applied.

Temperature has been reported to affect TE efficacy on hybrid bermudagrass and Kentucky bluegrass (Poa pratensis L.) (Lickfeldt et al., 2001; Fagerness et al., 2002; Beasley and Branham, 2007; Beasley et al., 2007). Fagerness et al. (2002) showed that TE provided greater growth suppression duration and magnitude of ‘Tifway’ bermudagrass at 20/10°C day/night air temperatures as opposed to 35/25°C. Beasley and Branham (2007) found similar trends after TE application on Kentucky bluegrass (Poa pratensis L.) at 23/18°C day/night air temperatures or 30/25°C. The previous two studies explored TE efficacy at different air temperatures controlled within growth chamber experiments. Beasley et al. (2007) and Lickfeldt et al. (2001) showed TE applications were more effective on Kentucky bluegrass (i.e., greater magnitude and duration of growth suppression) during cooler air temperatures of the spring and fall compared with applications during summer months.

The effect of temperature on TE efficacy can be explained by the half-life of trinexapac acid, the plant-active form of TE, in plant residues (Beasley and Branham, 2005; Beasley et al., 2007). Beasley and Branham (2005) reported that the half-life of trinexapac acid at 18°C was 5.3 d in Kentucky bluegrass and 6.4 d in creeping bentgrass (Agrostis stolonifera L.), whereas the half-life at 30°C was 3.4 and 3.1 d for Kentucky bluegrass and creeping bentgrass, respectively. Beasley et al. (2007) found a similar temperature effect on TE metabolism in a Kentucky bluegrass sward where the half-life of trinexapac acid was 5.8 d after a spring TE application and 4.2 d after a summer application. However, the initial concentrations of trinexapac acid in Kentucky bluegrass were greater in summer than spring.

Air temperatures have been reliable for determining optimal TE application intervals on creeping bentgrass putting greens using a cumulative growing degree day (GDD) model (Kreuser and Soldat, 2011; Kreuser et al., 2017). The GDD model subtracted a base temperature from the daily mean air temperature and then added the remainder to the previous day’s temperature. The cumulative GDD was then correlated to creeping bentgrass clipping yield after a TE application. Kreuser and Soldat (2011) stated that TE applications every 200 GDD (base 0°C) sustained season-long yield suppression and consistently provided the greatest turfgrass quality on creeping bentgrass greens (Agrostis stolonifera L.). Development of a GDD model to determine PGR application frequencies on ultradwarf hybrid bermudagrass putting greens would be beneficial to achieve season-long yield suppression in an array of environmental conditions. The objective of this research was to develop a GDD model to determine optimal TE and PH application frequencies on Champion, MiniVerde, and TifEagle ultradwarf hybrid bermudagrass putting greens.

**MATERIALS AND METHODS**

The methods for development of a GDD model for TE applications on bermudagrass putting greens were similar to those outlined by Kreuser and Soldat (2011) and Kreuser et al. (2017). Experiments were conducted June to October 2017 on three ultradwarf hybrid bermudagrass cultivars at three separate locations in the southeastern United States: MiniVerde at the East Tennessee Research and Education Center in Knoxville, TN; Champion at the Hope Valley Country Club in Durham, NC; and TifEagle at the R.R. Foil Plant Science Research Center in Starkville, MS. Putting greens were constructed following US Golf Association root zone specifications (USGA, 2004), and N was applied at 10 kg ha\(^{-1}\) 14 d\(^{-1}\). Experimental areas were irrigated to ~70% of the evapotranspiration rate, and pesticides were applied on a preventative basis. Onsite weather stations at each location measured daily air temperatures that were used to calculate cumulative GDD (McMaster and Wilhelm, 1997). First, the daily mean air temperature was calculated from the maximum and minimum daily air temperature. Next, the base temperature (10°C) was subtracted from the daily mean air temperature, and the difference was the daily GDD value. Consecutive daily GDD values were then added to calculate cumulative GDD. The base temperature of 10°C was selected as that is the temperature where photosynthesis becomes minimal for C\(_4\) plants (Berry and Björkman, 1980; McMaster and Wilhelm, 1997) and has been used as the base temperature in
previous GDD studies with C. dactylon (Cross and Zuber, 1972; Elmore et al., 2013). Research predicting the base temperatures of warm-season turfgrasses has been limited to that of Unruh et al. (1996), who reported that base temperatures ranged from −0.1 to 12.3°C across warm-season turfgrass species.

Plots measured 3 by 1.5 m (Tennessee and Mississippi) or 3 by 1 m (North Carolina), and the experiment was a randomized complete block design with three replications. Treatments included a single application of TE (Primo MAXX, Syngenta) at 0.034 kg a.i. ha⁻¹, PH (Anuew, NuFarm) at 0.154 kg a.i. ha⁻¹, and two sets of nontreated controls. The two sets of nontreated controls were included to increase the accuracy of calculating relative clipping yield (Kreuser et al., 2017). Repeated PGR applications were made monthly in June, July, and August on areas with no previous PGR applications. Applications on MiniVerde in Tennessee were made on 12 June, 17 July, and 14 Aug. 2017; Champion in North Carolina on 1 June, 30 June, and 1 Aug. 2017; and TifEagle in Mississippi on 19 June, 10 July, and 14 Aug. 2017. Applications were made with CO₂−pressurized broadcast sprayers calibrated to deliver a spray volume of 374 L ha⁻¹. Application dates at each location are summarized in Table 1.

### Clipping Collection

In Tennessee and Mississippi, clippings were harvested three times per week beginning 2 d after each PGR application and continued until ~600 GDD. At that point, clippings were harvested once per week until effects of PGR application subsided (>900 GDD). However, in North Carolina, clippings were harvested twice per week until effects of PGR application subsided. Plots were mowed at 3.2 mm with a 0.54-m-wide greens mower (Toro Greensmaster 2100, Toro Company). Plot areas between clipping collection events were mowed with either the Toro Greensmaster 2100 or a Toro riding greens mower (Toro Greensmaster 2100, Toro Company). Plot areas between clipping collection events were mowed with either the Toro Greensmaster 2100 or a Toro riding greens mower with the same effective height of cut. Clippings were harvested using the following procedure: 0.27-m-wide perpendicular buffer alleys were mowed at the top and bottom of each plot to define the clipping collection area, and then a 2.73-m-long strip was moved down the middle of the plot for a clipping collection area of 1.47 m². Harvested clippings were dried in a forced-air oven at a minimum temperature of 60°C for 36 h and then weighed. Prior to weighing, sand and debris were separated from turfgrass clippings via the vibrating pan method of Kreuser et al. (2011).

### Statistical Analysis

Data from all locations were statistically analyzed with sinewave regression models. Daily mean clipping yields were plotted relative to GDD after PGR application. Data from June, July, and August applications for each PGR treatment at each location were pooled to elucidate potential differences among experimental locations. Four parameter, amplitude-dampened, sinewave models were fit to the data with nonlinear regression in SigmaPlot 14 (Systat Software, 2018) (Kreuser et al., 2017). The following equation from Kreuser et al. (2017) was used to calculate relative growth suppression:

\[
\text{Relative growth suppression} \left( \frac{\text{g g}^{-1}}{} \right) = Y_{\text{int}} + \text{Amplitude} \times e^{\left( -\frac{\text{GDD}}{\text{Decay}} \right)} \times \sin \left( 2\pi \frac{\text{GDD}}{\text{Period}} + \pi \right)
\]

where \(Y_{\text{int}}\) is the \(\gamma\) intercept, Amplitude is the magnitude of the suppression and rebound growth stages, Decay is the amplitude decay coefficient, and GDD is the cumulative GDD since the last PGR application. The resulting model graphs were normalized with the resulting \(Y_{\text{int}}\) coefficient equal to 1.0 g g⁻¹ for easier visual interpretation.

### RESULTS AND DISCUSSION

Normalized relative clipping yield (g g⁻¹) data at each location are presented in Fig. 1 and 2 for TE and PH, respectively. Table 2 lists the sinewave equation for each PGR treatment at each location. These models accurately predicted relative growth suppression with SEs ≤0.172 g g⁻¹ and \(R^2\) values ranging from 0.53 to 0.83 (Fig. 1 and 2).

Peak suppression values after a TE application at 0.034 kg a.i. ha⁻¹ in this study ranged from 49 to 62% and are similar to those previously reported by Baldwin et al. (2009), McCullough et al. (2005), McCullough et al. (2006), and McCullough et al. (2007). Herein we report greater peak suppression with TE than McCarty et al. (2011), likely because of the lower TE rate used in that study (0.0175 kg a.i. ha⁻¹). Peak suppression values after a PH application at 0.154 kg a.i. ha⁻¹ in this study ranged 50 to 54%, similar to previous reports (Beam, 2004; Marchi et al., 2015). Beam (2004) measured 10 to 70% reductions in common bermudagrass (C. dactylon cultivar Vamont) clipping yield after two PH applications at 0.14 to 0.67 kg a.i. ha⁻¹ on a 3-wk interval. Additionally, Marchi et al. (2015) reported 57 and 65% reductions in clipping yield of St. Augustinegrass [Stenotaphrum secundatum (Walter) Kuntze] after applications of PH at 0.1 and 0.2 kg a.i. ha⁻¹, respectively.

Peak suppression of ultradwarf hybrid bermudagrass clipping yield after TE application was similar to that of PH on TifEagle in Mississippi and Champion in North Carolina, but PH on TifEagle in Mississippi and Champion in North Carolina were separated from turfgrass clippings via the vibrating pan method of Kreuser et al. (2011).

### Table 1. Location, location coordinates, ultradwarf hybrid bermudagrass cultivar, and application dates of trinexapac-ethyl (Primo MAXX) or prohexadione-Ca (Anuew)

| Location† | Coordinates | Cultivar | Application date‡ |
|-----------|-------------|---------|------------------|
| Knoxville, TN | 35.9606° N 83.9207° W | MiniVerde | 12 June |
| | 35.9940° N 88.8184° W | TifEagle | 19 June |
| Durham, NC | 35.9940° N 78.8986° W | Champion | 1 June |
| | 8 Aug. | 30 June |
| Starkville, MS | 33.4505° N 88.8184° W | TifEagle | 19 June |

†Research was conducted in Knoxville, TN, at the East Tennessee Research and Education Center, in Durham, NC, at Hope Valley Country Club, and in Starkville, MS, at the R.R. Foil Plant Science Research Center.

‡ Each plant growth regulator application was made on areas of the putting greens with no previous plant growth regulator use in 2017.
Carolina (Fig. 1 and 2). However, peak suppression after TE application exceeded PH by 0.12 g g\(^{-1}\) on MiniVerde in Tennessee. Previous research by Marchi et al. (2015) on St. Augustinegrass showed that applications of PH at 0.1 and 0.2 kg a.i. ha\(^{-1}\) reduced clipping yield 57 and 65%, respectively, whereas 0.113 kg TE ha\(^{-1}\) reduced clipping yield 59%. In rice (*Oryza sativa* L.), Na et al. (2011) found that PH significantly reduced plant height and internode length compared with applications of TE at the same concentrations. The observed difference in peak suppression between the two PGRs in Tennessee is not well understood; however, our GDD model is more accurate for predicting PGR application frequencies rather than the magnitude of growth suppression.

Fig. 1. Normalized relative clipping yield (g g\(^{-1}\)) of ‘TifEagle’, ‘MiniVerde’, and ‘Champion’ ultradwarf hybrid bermudagrass putting greens in Mississippi, Tennessee, and North Carolina, respectively, after trinexapac-ethyl application. The estimated standard error and \(R^2\) values of the sine wave model equations used to calculate relative growth suppression are included along with percent peak yield suppression and the growing degree days (GDD) at peak suppression.
Peak suppression occurred between 166 and 177 GDD calculated using 10°C as the base temperature (GDD_{10C}) and was similar across all locations after TE application, compared with 92 to 97 GDD_{10C} for PH (Table 3). The mean GDD_{10C} to TE peak suppression (170 GDD_{10C}) would occur 34 and 9 d after application at a mean air temperatures of 15 and 30°C, respectively. The mean GDD_{10C} to PH peak suppression (95 GDD_{10C}) would occur 19 d after application at 15°C and 5 d at 30°C. Weekly PGR applications to ultradwarf putting greens are typical throughout the southern United States, but these indicate that it takes longer to reach peak growth suppression after a single application.
Table 2. Sinewave model equations used to calculate relative growth suppression (y, g m⁻²) of ultradwarf hybrid bermudagrass putting green clipping yield in response to plant growth regulators (PGR) trinexapac-ethyl (TE) or prohexadione-Ca (PH) at three separate locations.

| PGR Location | Cultivar  | Peak suppression % | Peak suppression | Reapplication interval<sup>†</sup> | Cumulative GDD<sub>10C</sub> |
|--------------|-----------|--------------------|------------------|----------------------------------|--------------------------|
| TE TN        | MiniVerde | 62                 | 177              | 230                              |
|              | Champion  | 56                 | 166              | 216                              |
|              | TifEagle  | 49                 | 166              | 216                              |
| NC TN        | MiniVerde | 50                 | 92               | 120                              |
|              | Champion  | 54                 | 94               | 122                              |
| MS           | TifEagle  | 51                 | 97               | 126                              |
| PH TN        | MiniVerde | 50                 | 92               | 120                              |
|              | Champion  | 54                 | 94               | 122                              |
| MS           | TifEagle  | 51                 | 97               | 126                              |

<sup>†</sup> Reapplication interval of TE and PH calculated by multiplying the cumulative GDD<sub>10C</sub> at peak suppression by 1.3.

The difference in time to peak suppression between TE and PH is likely due to their biological activity (Rademacher, 2014). Similar to TE, PH is biologically active in its acid form, but unlike TE, the acid prohexadione is present once the Ca salt is dissolved in water and is primarily acropetally translocated. Conversely, the ester TE is translocated systemically with significant quantities reaching the root and then transported acropetally once metabolized into its acid form. This process for TE is time consuming, but PH can act almost immediately after application (Rademacher, 2014). The biological activity of TE and PH within plants was supported by an immediate reduction in shoot elongation of wheat (Triticum aestivum L.) after an application of PH, whereas TE activity on shoot elongation was observed 10 d after application (Rademacher, 2014). Peak suppression after TE application required more GDD<sub>10C</sub> than PH due to the biological activity once the PGR is absorbed into the plant.

Knowledge of the cumulative GDD to reach peak suppression was important to determine application intervals of PGRs that maximize growth suppression and minimize rebound growth (Kreuser and Soldat, 2011). Kreuser and Soldat (2011) suggested that PGRs are to be reapplied at 1.3 x the GDD value at peak suppression to minimize rebound growth and maximize PGR benefits. Ervin and Zhang (2008) described rebound growth after complete metabolism of TE as enhanced growth rate relative to nontreated turfgrass. Rebound growth has been documented in creeping bentgrass (Kreuser and Soldat, 2011), but minimal rebound growth was observed after peak suppression, regardless of PGR, in this study (Fig. 1 and 2). Turfgrass quality assessed 7 d after PGR treatment was significantly lower than nontreated controls at all locations (data not presented). Conversely, creeping bentgrass quality either improved or remained consistent after TE application (Fagerness et al., 2000). Ultradwarf cultivar phototoxicity after PGR application likely caused the absence of rebound growth because it did not exceed that of nontreated controls. Our models indicate that TE should be reapplied to ultradwarf hybrid bermudagrass putting greens between 216 and 230 GDD<sub>10C</sub>, compared with 120 to 126 GDD<sub>10C</sub> for PH (Table 3). The 1.3 x multiplier used to calculate these reapplication intervals may be increased for ultradwarf cultivars due to the lack of rebound growth, but field confirmation of this is warranted.

CONCLUSIONS

A sinewave equation successfully calculated and predicted ultradwarf hybrid bermudagrass clipping yield in response to TE and PH treatment and GDD<sub>10C</sub> accumulation. In Mississippi and North Carolina, peak growth suppression was similar after TE and PH applications. However, peak growth suppression after TE application was greater than PH in Tennessee. The GDD<sub>10C</sub> to peak growth suppression differed between PGRs with TE requiring 72 to 85 more GDD<sub>10C</sub> than PH to achieve peak growth suppression. The GDD<sub>10C</sub> to peak suppression is important for the calculation of optimal PGR reapplication intervals; however, the multiplier used for reapplication on creeping bentgrass may require adjustment to accurately fit ultradwarf hybrid bermudagrass due to the observed lack of rebound growth. Future research should focus on...
season-long implementation of this GDD model compared with current PGR programs used on ultradwarf putting surfaces. The use of a GDD model to determine PGR applications on creeping bentgrass putting greens has been successful and will likely be equally useful on ultradwarf hybrid bermudagrass.

**Conflict of Interest**
The authors declare that there is no conflict of interest.

**Acknowledgments**
The authors would like to thank Rodrigo Rocha, Tristan Orman, Zach Dulaney, Wayne Philley, Jason Burris, Wayne Langford, Greg Breeden, Sydney Duncan, Javier Vargas, David Lee, Daniel Freund, the Kerns laboratory at North Carolina State University, the golf course maintenance staff at Hope Valley Country Club, the Mississippi Agriculture and Forestry Experiment Station, and the Tennessee Agricultural Experiment Station for their assistance in this project.

**References**

Baldwin, C.M., H. Liu, L.B. McCarty, H. Luo, and J.E. Toler. 2009. Nitrogen and plant growth regulator influence on ‘Champion’ bermudagrass putting green under reduced sunlight. Agron. J. 101:75–81. doi:10.2134/agronj2008.0004x

Beam, J.B. 2004. Prohexadione calcium for turfgrass management and *Poa annua* control and molecular assessment of the aceto-lactate synthase gene in *Poa annua*. Ph.D. diss., Virginia Tech, Blacksburg.

Beam, J.B., and S.D. Askew. 2007. Fate of prohexadione calcium in annual bluegrass (*Poa annua*) and three turfgrasses. Weed Sci. 55:541–545. doi:10.1614/WS-07-041.1

Beasley, J.S., and B.E. Branham. 2005. Analysis of paclobutrazol and trinexapac acid in turfgrass clippings. Int. Turfgrass Soc. Res. J. 10:1170–1175.

Beasley, J.S., and B.E. Branham. 2007. Trinexapac-ethyl and paclobutrazol affect Kentucky bluegrass single-leaf carbon exchange rates and plant growth. Crop Sci. 47:132–138. doi:10.2135/cropsci2005.12.0453

Beasley, J.S., B.E. Branham, and L.A. Spomer. 2007. Plant growth regulators alter Kentucky bluegrass canopy leaf area and carbon exchange. Crop Sci. 47:757–766. doi:10.2135/cropsci2005.11.0432

Berry, J., and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

Cross, H.Z., and M.S. Zuber. 1972. Prediction of flowering dates in crop science, vol. 35:755–759.

Elmore, M.T., J.T. Brosnan, T.C. Mueller, B.J. Horvath, D.A. Kopsell, and G.K. Breeden. 2013. Seasonal application timings affect dallisgrass (*Paspalum dilatatum*) control in tall fescue. Weed Technol. 27:557–564. doi:10.1614/WT-D-13-00007.1

Ervin, E.H., and X. Zhang. 2008. Applied physiology of natural and synthetic plant growth regulators on turfgrasses. In: M. Pessarakili, editor, Handbook of turfgrass management and physiology. CRC Press, Boca Raton, FL. p. 171–200.

Fagerness, M.J., F.H. Yelverton, J. Isgriig, III, and R.J. Cooper. 2000. Plant growth regulators and mowing height affect ball roll and quality of creeping bentgrass putting greens. HortScience 35:755–759.

Fagerness, M.J., F.H. Yelverton, D.P. Livingston, III, and T.W. Rufy, Jr. 2002. Temperature and trinexapac-ethyl effects on bermudagrass growth, dormancy, and freezing tolerance. Crop Sci. 42:853–858. doi:10.2135/cropssci2002.0853

Kreuser, W.C., M.P. Fish, D.J. Soldat, and S. Bauer. 2011. Removing sand from putting green clipping samples substantially reduces clipping weight measurement error. Crop Sci. 51:1268–1273. doi:10.2135/cropssci2010.10.0592

Kreuser, W.C., and D.J. Soldat. 2011. A growing degree day model to schedule trinexapac-ethyl applications on *Agrostis stolonifera* golf putting greens. Crop Sci. 51:2228–2236. doi:10.2135/cropssci2011.01.0034

Kreuser, W.C., J.R. Young, and M.D. Richardson. 2017. Modeling performance of plant growth regulators. Agric. Environ. Lett. 2:170001. doi:10.2134/ae2017.01.0001

Lickfeldt, D.W., D.S. Gardner, B.E. Branham, and T.B. Voigt. 2001. Turfgrass management: Implications of repeated trinexapac-ethyl applications on Kentucky bluegrass. Agron. J. 93:1164–1168. doi:10.2134/agronj2001.9351164x

Marchi, S.R., D. Martins, and N.V. Costa. 2015. Effects of plant regulators on the growth and flowering of saint Augustine grass plants. Biosci. J. 31:785–793. doi:10.14393/BJ-v3i3N3a2015-26093

McCarty, L.B., T.G. Willis, J.E. Toler, and T. Whitwell. 2011. ‘TifEagle’ bermudagrass response to plant growth regulators and mowing height. Agron. J. 103:988–994. doi:10.2134/agronj2010.0467

McCullough, P.E., H. Liu, and L.B. McCarty. 2005. Response of six dwarf-type bermudagrasses to trinexapac-ethyl. HortScience 40:460–462.

McCullough, P.E., H. Liu, L.B. McCarty, and J.E. Toler. 2007. Trinexapac-ethyl application regimens influence growth, quality, and performance of bermudagrass and creeping bentgrass putting greens. Crop Sci. 47:2138–2144. doi:10.2135/cropssci2006.04.0256

McCullough, P.E., H. Liu, L.B. McCarty, T. Whitwell, and J.E. Toler. 2006. Bermudagrass putting green growth, color, and nutrient partitioning influenced by nitrogen and trinexapac-ethyl. Crop Sci. 46:1515–1525. doi:10.2135/cropssci2005.08.0286

McMaster, G.S., and W.W. Wilhelm. 1997. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 87:291–300. doi:10.1016/S0168-1923(97)00027-0

Na, C.I., M. Hamayun, A.L. Khan, Y.H. Kim, K.I. Choi, S.M. Kang, et al. 2011. Influence of prohexadione-calcium, trinexapac-ethyl, and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (*Oryza sativa* L.). Afr. J. Biotechnol. 10:13097–13106.

Rademacher, W. 2000. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:501–531. doi:10.1146/annurev.arplant.51.1.501

Rademacher, W. 2014. Prohexadione-Ca and Trinexapac-ethyl: Similarities in structure but differences in biological action. Acta Hort. 1042:33–41. doi:10.17660/ActaHortic.2014.1042.3

Reasor, E.H., J.T. Brosnan, R.N. Trigiano, J.E. Elsner, G.M. Henry, and B.M. Schwartz. 2016. The genetic and phenotypic variability of interspecific hybrid bermudagrasses (*Gynododium dactylon* L.) *Pers.* × *C. transvaalensis* Burtt-Davy) used on golf course putting greens. Planta 244:761–773. doi:10.1007/s00425-016-2573-8

Systat Software. 2018. SigmaPlot for Windows. Release 14.0. Systat Softw., San Jose, CA.

USGA. 2004. USGA recommendations for a method of putting green construction. US Golf Assoc., Far Hills, NJ.

Watschke, T.L., and J.M. DiPaola. 1995. Plant growth regulators. In: M. Pesara-raki, editor, Handbook of turfgrass management and physiology. CRC Press, Boca Raton, FL. p. 171–200.

Unruh, J.B., R.E. Gaussen, and S.C. Wiest. 1996. Basal growth temperatures and growth rate constants of warm-season turfgrass species. Crop Sci. 36:997–999. doi:10.2135/cropssci1996.0011183X0003600400030x