Impurity effects on nano-structured dirty superconductors: violation of Anderson’s Theorem

Masaki Umeda and Masaru Kato
Department of Mathematical Sciences, Osaka Prefecture University 1-1, Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
© 2019 The Author(s). Published by IOP Publishing Ltd

Abstract
It is shown that in nano-structured s-wave superconductor, transition temperature \(T_c \) depends on random impurity potentials. This means violation of the Anderson’s theorem, which states that non-magnetic impurity does not affect the \(T_c \) of s-wave superconductor. We determine the impurity effects on \(T_c \) for nano-structured superconductor, using the finite element method to solve the Bogoliubov-de Gennes equations under spatially a random impurity potential. We show that some impurity potentials increase \(T_c \), but other impurity potentials decrease \(T_c \). We find that the superconductor with localized order parameter shows increased \(T_c \), which is contrary to expectation. Our results show that a dirty superconductor does not always mean weak superconductivity.

1. Introduction: file preparation and submission

Superconducting transition temperature \(T_c \) is important for applications of superconductors. Bulk superconductors have their own \(T_c \). However, for a nano-structured superconductor, \(T_c \) depends on the size of the superconductor. Recently, Nishizaki et al found that a bulk nano-structured Nb, which is made by high-pressure torsion and contains ultrafine grains [1–4], shows enhanced \(T_c \) [5]. However, a bulk nano-structured V shows decrease of \(T_c \) [6]. They discussed that Oxygen, which is included in V, decreases \(T_c \).

There are two mechanisms for size dependences of \(T_c \). The first mechanism is due to surface effects. Surface effects come from phonon softening [7, 8]. This mechanism can explain enhancement of \(T_c \) for some nano-size superconductors, such as Al [9, 10].

The second mechanism comes from quantum size effects. Anderson showed that superconductivity ceases when the size of superconductor becomes small and the electron discrete energy gap becomes larger than a superconducting energy gap [11]. However, Parmenter found that smaller granular superconductor shows higher \(T_c \) [12]. Also, investigating parity effects on \(T_c \) for superconducting particles, von Delft showed that \(T_c \) is enhanced just before superconductivity ceases with increasing the electron discrete energy gap [13]. Shanenko et al showed that \(T_c \)’s of atomic scale nano-films oscillate with decreasing thickness, and found that the oscillation has a relation with the Fermi level and the Debye energy of phonons, using the Bogoliubov-de Gennes (BdG) equations [14]. Also, Suematsu et al showed that \(T_c \)’s of nano-scaled superconducting square plates become higher than those of bulk superconductors, using the BdG equations [15]. In these two studies [14, 15], the spatial dependence of superconducting order parameter is taken into account, and therefore \(T_c \) is much enhanced than that of previous study [13]. In our previous study [16], we investigated that smaller superconductor shows higher \(T_c \), because density of superconducting order parameter increases with decreasing superconductor size.

Effects of impurities on nano-structured superconductors have not been well investigated. For a bulk superconductor, Anderson [11], and Abrikosov and Gor’kov [17] showed that non-magnetic impurities do not affect on s-wave superconductivity, because time-reversal pairing in the s-wave superconductivity is not affected by non-magnetic impurities. Also, Abrikosov and Gor’kov [18] showed that magnetic impurities decrease \(T_c \), because magnetic impurities lift degeneracy of energy levels of electron pairs, which have up and
down spins, and break Cooper pairs. Xiang et al [19] showed that a weak impurity potential that is concentrated at the center of a square s-wave superconductor weakly decreases superconducting energy gap, using the BdG equations on a tight binding model. Therefore, how impurities affect \(T_c \) enhancement in the nano-structured superconductor is still unclear. This is important for searching high \(T_c \) superconductor in nano-size.

In this paper, we numerically investigate non-magnetic impurity effects on \(T_c \) for a nano-structured superconductor. In order to take into account spatial variation of the superconducting order parameter, we use the BdG equations, with the finite element method (FEM) [15]. We introduce a random potential as non-magnetic impurities.

2. Method

The BdG equations are given as follows,

\[
H_0 u_\alpha(r) + \Delta(r) v_\alpha(r) = E_n u_\alpha(r),
\]

\[
-H_0^* v_\alpha(r) + \Delta^*(r) u_\alpha(r) = E_n v_\alpha(r).
\]

Here \(u \) and \(v \) are wave functions of particle and hole components of a quasi-particle of the superconductivity, respectively. And Hamiltonian is

\[
H_0 \equiv \frac{1}{2m} \left(\frac{\hbar}{i} \nabla - \frac{eA}{c} \right)^2 + V_{\text{imp}}(r) - \mu,
\]

where \(\mu \) is the chemical potential and \(V_{\text{imp}}(r) \) is a random potential from impurities. The order parameter \(\Delta \) is determined by following the self-consistent equation,

\[
\Delta \equiv V \sum_{n} v_n^*(r) u_n(r)(1 - 2f(E_n)),
\]

where \(E_c \) is the cut-off energy of the BCS theory. \(\mu \) is determined by the electron number conservation law as follows.

\[
N_e = \int \sum_{n} |f(E_n)| u_n(r)|^2 + (1 - f(E_n)) |v_n(r)|^2 |dr.
\]

In the FEM, we divide a system into triangular elements, and we define area coordinates \(\zeta_i^e(r) \) in \(e \)-th element [15]. We expand \(u, v, V_{\text{imp}} \) and \(\Delta \) using the area coordinates.

\[
u(r) = \sum_{i,e} u_{i}^e \zeta_i^e(r),
\]

\[
v(r) = \sum_{i,e} v_{i}^e \zeta_i^e(r),
\]

\[
\Delta(r) = \sum_{i,e} \Delta_{i}^e \zeta_i^e(r),
\]

\[
V_{\text{imp}}(r) = \sum_{i,e} V_{\text{imp},i}^e \zeta_i^e(r),
\]

where \(i \) is a node number and \(e \) is an element number. Then the BdG equations and the self-consistent equation become

\[
\sum_{i} P_{i}^e u_i^e + \sum_{i} Q_{i}^e v_i^e = E \sum_{i} I_{i}^e u_i^e,
\]

\[
-\sum_{i} P_{i}^e v_i^e + \sum_{i} Q_{i}^e u_i^e = E \sum_{i} I_{i}^e v_i^e,
\]

\[
\sum_{i} \Delta_{i}^e I_{i}^e = g \sum_{n} \sum_{i,j} u_{i}^e v_{j}^e u_{n,i}^e (1 - 2f(E_n)) I_{i,j}^e,
\]

where

\[
I_{i,j}^e = \int \zeta_i^e(x) \zeta_j^e(x),
\]

\[
I_{i,j}^e = \int \zeta_i^e(x) \zeta_j^e(x) \zeta_i^e(x),
\]

\[
K_{i,j}^{\alpha} = \int \frac{\partial \zeta_i^e(x)}{\partial x_i} \frac{\partial \zeta_j^e(x)}{\partial x_j},
\]
In order to determine T_c, we set temperature T tends to T_c, and $\Delta \to 0$. So we get the equation to determine T_c,

$$
\det \left[I_{ij}^\epsilon - g \sum_{i_2, i_3} I_{i_2 i_3}^\epsilon \left[\sum_{n} u_{n,i_2}^{\epsilon} v_{n,i_3}^{\epsilon \ast} (1 - 2f(E_n)) \right] \right] = 0
$$

We investigate impurity potentials dependences of T_c and mechanism of the impurity dependencies.

3. Results and discussions

We consider a superconducting rectangular $(3.2\xi_0 \times 6.4\xi_0)$ plate, where ξ_0 is the coherence length at $T = 0$. Figure 1 shows the FEM model of the superconductor. We set boundary conditions that wave functions, u and v, become zero at edges of the superconductor. Therefore, the order parameter becomes zero at edges of the superconducting plate. We set $k_F\xi_0 = 3.0, \Delta_0/E_c = 0.2$, where k_F is the Fermi wave number and Δ_0 is an amplitude of the order parameter for a bulk superconductor at $T = 0$. And total number of electrons N_e and the interaction constant g are fixed. We consider twenty patterns of impurity random potential named $(V1)$–$(V20)$. Examples of impurity potentials $(V1), (V3), (V4)$ and $(V5)$ are shown in figures 2. In the simulation on each
random potential, we change an upper bound of the impurity potential V_{impMax}. Figure 3 shows V_{impMax} dependences of T_c for impurity potentials (V_1)–(V_{20}). From this figure, we can see that some impurity potentials increase T_c, and other impurity potentials decrease T_c. To clarify origins of this variation of impurity potential dependence of T_c, we investigate $V_{\text{imp}}(r)$ dependence of eigen-energies E_n.

Figure 4 shows V_{impMax} dependences of eigen-energies E_n for impurity potentials, which increase T_c, the most (V_4), the second (V_5), the second worst (V_1) and the worst (V_3).

Figure 5 (figure 6) shows ΔE_n for each eigen-energy for the four impurity potentials, for which T_c increases (decreases) the most, respectively. In order to clarify the effects of ΔE_n on T_c, we focus on the eigen-energies close to the Fermi energy ($-0.2 \leq E_n/E_c \leq 0.2$), which have strong effects on T_c. From figure 6, we can see that the electron eigen-energies of the superconductor, which shows lower T_c, become apart from the Fermi energy.

In the BCS theory, there is a relation between eigen-energies $E_k = \epsilon_k - \mu$ and T_c as follows [20],

$$
\frac{1}{g} = \frac{1}{2} \sum_k \frac{1}{|\xi_{\epsilon_k}|} \tanh \left(\frac{|\xi_{\epsilon_k}|}{2T_c} \right),
$$

Figure 3. V_{impMax} dependences of T_c for impurity potentials (V_1)–(V_{20}).

Figure 4. V_{impMax} dependences of eigen-energies E_n for impurity potentials, which increase T_c the most (V_4), the second (V_5), the second worst (V_1) and the worst (V_3).
where g is an interaction constant, $\xi_k = \epsilon_k - \mu$, and μ is a chemical potential. Then, we see that smaller ξ_k has higher contribution to the superconductor. Therefore T_c increases, when $|\xi_k|$ becomes smaller. However, in above cases, relation between T_c and eigen-energies is opposite.
In order to understand these behaviors, we investigate distributions of the order parameter. Figure 7 shows distributions of the order parameter at \(V_{\text{impMax}} = 0.00\) (0) and 0.50 (for V1, V3, V4 and V5). From this result, each impurity potential distorts the distribution of the order parameter. In previous study [16], we discussed that the smaller superconductor shows higher \(T_c\) because of the confinement of the order parameter. So, the distortion of distribution of order parameter may lead to enhancement of \(T_c\). In order to evaluate the distortion, we calculate degree of the localization of the order parameter \(\alpha\) as follows,

\[\alpha = \frac{\langle \Delta^2 \rangle}{\langle \Delta \rangle^2},\]

where \(\langle \rangle\) is the average over all nodes in the FEM. Figure 8 shows \(V_{\text{impMax}}\) dependences of \(\alpha\), for four impurity potentials, which increase \(T_c\) the best (1) and the worst (2). From this result, we can see that the order parameter distribution for the impurity potential that shows higher \(T_c\), is more localized. This is because localized order parameter shows larger order parameter density, and leads to higher \(T_c\).

4. Conclusion

In summary, in order to investigate the impurity effects on \(T_c\), we have solved the Bogoliubov-de Gennes equations for superconducting rectangular \((3.2\xi_0 \times 6.4\xi_0)\) plates, with the FEM. We have introduced a random potential as non-magnetic impurities. We have obtained \(T_c\) for twenty random impurity potentials. We have found that some impurity potentials increase \(T_c\), but other impurity potentials decrease \(T_c\). To investigate this difference, we have determined eigen-energies and distribution of order parameters. We have found that some of eigen-energies become apart from the Fermi energy for impurity potentials that show higher \(T_c\). However, we have found that the distribution of the order parameter is distorted by the impurity potential and the localization of the order parameter leads to higher \(T_c\). We may expect impurities or localization of the order parameter lead to weakening of the superconductivity and lowering \(T_c\). Our results are contrary to this expectation. Therefore, a dirty superconductor does not always mean weak superconductivity.

Acknowledgments

We appreciate T Nishizaki, T Ishida, T Tamegai, S Ooi and K Hirata for useful comments. We also thank Y Higashi, S Fukui, N Fujita and T Tamai for discussions. This work was partly supported by a JSPS KAKENHI (Grant Number JP16K05460).

ORCID iDs

Masaki Umeda @ https://orcid.org/0000-0002-9004-7210

References

[1] Bridgman P W 1935 Phys. Rev. 48 825
[2] Hirai Y E A 2018 Scripta Mater. 58 469
[3] Edalati K and Horita Z 2011 Acta Mater. 59 6831
[4] Edalati K and Horita Z 2011 Scripta Mater. 64 161
[5] Nishizaki T, Lee S, Horita Z, Sasaki T and Kobayashi N 2013 Physica C 493 132
[6] Nishizaki T 2013 The 21st Vortex matter Physics Workshop in Japan 14A 2–4
[7] Dickey J M and Paskin A 1968 Phys. Rev. Lett. 21 1441
[8] McMillan W L 1968 Phys. Rev. 167 331
[9] Black C T, Ralph D C and Tinkham M 1996 Phys. Rev. Lett. 76 688–91
[10] Ralph D C, Black C T and Tinkham M 1995 Phys. Rev. Lett. 74 3241–4
[11] Anderson P W 1959 J. Phys. Chem. Solids 11 26
[12] Parmenter R H 1968 Phys. Rev. 166 392
[13] von Delft J and Ralph D C 2001 Phys. Rep. 345 61
[14] Shanenko A A, Croitoru M D and Peeters F M 2007 Physical Review B, Condens Matter Mater. Phys. 75 014519
[15] Suematsu H, Kato M and Ishida T 2005 J. Phys.: Conf. Ser. 150 052250
[16] Umeda M, Kato M and Sato O 2016 IEEE Trans. Appl. Supercond. 26 8600104
[17] Abrikosov A A and Gor’kov L P 1959 JETP 8 1090
[18] Abrikosov A A and Gor’kov L P 1961 JETP 12 1243
[19] Xiang T and Wheatley J M 1995 Phys. Rev. B 51 11721
[20] Tinkham M 1996 Introduction to Superconductivity Second Edition 2nd edn (New York: Dover Books on Physics)