A comparative study of angiographic severity of coronary artery disease in diabetic and non-diabetic patients with acute coronary syndrome by Gensini scoring system

Ishwar S Hasabi¹ and Gurusangappa S Mudagall¹²

¹Professor & HOD, Department of Medicine, Karnataka Institute of Medical Sciences, Hubli, India
²Senior Resident, Shri B.M. Patil Medical College, BLDE Deemed to be University, Vijayapura, India

Abstract

Background: There is enough evidence that the presence of diabetes increases the risk of clinical atherosclerotic disease from twofold to threefold, with coronary artery disease (CAD) as its chief sequelae. So the present study is conducted in order to compare the severity of CAD between diabetic and non-diabetic group of patients with acute coronary syndrome by using Gensini scoring system.

Aim of the study: To study the Type of vessels, Number of vessels, severity of lesions involving coronary artery and its branches in patients with ACS and to compare the involvement in diabetic and non-diabetic patients with ACS by Gensini scoring system.

Materials and methods: 144 Patients (72 diabetics and 72 non diabetics) with acute Coronary Syndrome diagnosed on Clinical, ECG and or/ Cardiac enzyme levels and admitted in ICCU of KIMS Hospital, Hubli, and undergoing coronary angiography during the study period were taken in the study considering the inclusion and exclusion criteria. Each patient was evaluated with History, clinical examination, and lab investigations which included: Electrocardiogram, 2D-ECHO, Coronary angiography, HbA1c, Lipid profile and Renal function test. Based on angiographic findings, coronary artery disease severity was calculated using Gensini, and the data obtained was analysed by different statistical methods.

Results: Out of 144 patients, ACS was commoner among males than females (72.9% vs 27.1%) and age of presentation was earlier in males compared to females (53yrs vs 58yrs). Multi vessel disease was commoner in diabetics compared to non diabetics (52.8% vs 15.3%) and also means Gensini score was higher in diabetics (45.2 vs 19.2).

Conclusion: From this study we can conclude that diabetic patients with ACS have more severe coronary disease with respect to higher number of vessels involved, more severe of occlusion and higher Gensini score and also severity increases with the duration of diabetes and poorglycemic control.

Keywords: ACS, Type 2 DM, Cad Severity, Gensini Score.

1. Introduction

Diabetes is a complex, chronic illness requiring continuous medical care with multifactorial risk reduction strategies beyond glycemic control [1]. In 1936, the distinction between type 1 and type 2 DM was clearly made [2]. Diabetes is fast gaining the status of a potential epidemic in India with more than 62 million diabetic individuals currently diagnosed with the disease.

In 2000, India (31.7 million) topped the world with the highest number of people with Diabetes mellitus followed by China (20.8million) with the United States (17.7 million) in second and third place respectively [3].

The prevalence of Coronary Heart Disease rises from 2% to 4% in the general population to as high as 55% among adult diabetic patients. The overall mortality from heart disease is twice as great in men and is 4 to 5 times higher in women with DM than without DM. Cardiovascular disease represents over one-half of all deaths in both type 1 and type 2 DM [4].
1.1 Aims and objectives
To study the
1) Type of vessels
2) Number of vessels
3) Severity of lesions involving coronary artery and its branches in patients with ACS
4) To compare the involvement in diabetic and non-diabetic patients with ACS by Gensini scoring system.

2. Materials and methods
2.1 Source of data
Patients with acute coronary syndrome diagnosed based on Clinical, ECG and/or cardiac enzymes levels and admitted in ICCU of KIMS Hospital, Hubli, and undergoing coronary angiography.

2.2 Methods of collection of data
The study will be conducted on 2 groups of patients.
Group A: Patients of acute coronary syndrome with type 2 DM
Group B: Patients of acute coronary syndrome without type 2 DM

2.3 Type of study: Prospective Observational study

2.4 Inclusion Criteria
Patients admitted to ICCU of KIMS hospital, Hubli with a diagnosis of acute Coronary Syndrome based on clinical, ECG and/or Cardiac enzyme levels, with and without type 2 Diabetes mellitus, who undergo coronary angiography in a duration extending from December 2016 to October 2018 were included in the study. A total of 144 cases of acute coronary syndrome were included in the study, of which 72 were diabetic patients admitted during a period extending between December 2016 to October 2018.

2.5 Exclusion criteria:
• Patients with previous revascularization
• Patients with valvular heart disease
• Cardiomyopathy

Patients admitted with above inclusion criteria were divided into two groups (Diabetics & Non Diabetics) based on History of DM (who are on oral hypoglycemics or insulin & Duration of diabetes) and/or satisfying ADA guidelines 51 for diagnosis of Diabetes mellitus. Each patient was evaluated with history, clinical examination, and lab investigations.

3. Results
In the Diabetes group, the mean age of subjects was 55.86±11.08 years and in non diabetic group, the mean age was 53.19±11.11 years. In diabetic and non diabetic group, majority of subjects were in the age group 51 to 60 years (31.9% and 38.9% respectively).

Figure 1: Bar diagram showing Age distribution comparison between two groups

In the DM group, 30.6% were females and 69.4% were males and in non diabetic group 23.6% were females and 76.4% were males. There was no significant association between age and gender distribution between the two groups. In the DM group, 41.7% had HTN and in Non diabetic group 27.8% had HTN. There was no significant difference in prevalence of HTN between two groups.

| Killip Class | Count | % |
|-------------|-------|---|
| 1           | 110   | 76.4%|
| 2           | 22    | 15.3%|
| 3           | 6     | 4.2% |
| 4           | 6     | 4.2% |

$\chi^2 = 10.2$, df = 3, p = 0.017*

In the diabetic group, 65.3% were in Killip Class 1, 22.2% were in Class 2, 6.9% were in Class 3 and 5.6% were in Class 4. In the non diabetic group, 87.5% were in Killip Class 1, 8.3% were in Class 2, 1.4% were in Class 3 and 2.8% were in Class 4. There was a significant difference in the Killip class between the two groups, i.e. diabetics belonged to higher Killip class at presentation.

Table 2: Comparison of various laboratory parameters between two groups

| Parameter | DM Present | DM Absent | P value |
|-----------|------------|-----------|---------|
| BMI       | 22.8 ± 2.8 | 22.5 ± 2.8| 0.447   |
| FBS       | 150.1 ± 42.7| 83.2 ± 11.2| <0.001* |
| PPBS      | 261.2 ± 73.1| 133.0 ± 21.2| <0.001* |
| HbA1c     | 8.4 ± 1.52 | 5.28 ± 0.6 | <0.001* |
| TC        | 162.9 ± 41.7| 150.6 ± 38.7| 0.068   |
| TG        | 185.5 ± 70.0| 177.9 ± 64.9| 0.503   |
| HDL       | 40.2 ± 8.5  | 39.4 ± 11.6| 0.639   |
| LDL       | 96.7 ± 31.6 | 90.1 ± 30.7| 0.210   |
| ECHO      | 44.4 ± 9.3 | 47.2 ± 8.5 | 0.06    |
| GENSINI   | 45.2 ± 33.8| 19.2 ± 18.2| <0.001* |
In the study, there was a significant difference in mean FBS, PPBS, HbA1c and GENsini score between diabetics and non diabetics. Mean values of above said parameters were significantly higher in DM group compared to Non diabetic group.

Table 3: Type of ACS comparison between two groups

| Group               | DM Present | Count | %   | DM Absent | Count | %   |
|---------------------|------------|-------|-----|-----------|-------|-----|
| STE/NSTE-ACS        | 16         | 44.4% | 20  | 55.6%     | 56    | 51.9%|
| NSTEMI-ACS          | 56         | 51.9% | 52  | 48.1%     | 16    | 44.4%|

χ² = 0.593, df = 1, p = 0.441

Among the diabetics, 44.4% had NSTE – ACS and 51.9% had STE – ACS. Among the non diabetics, 55.6% NSTE – ACS and 48.1% had STE – ACS. There was no significant difference in the type of ACS between the two groups.

Among diabetics, 51.6% underwent Thrombolysis and among Non Diabetics, 48.4% underwent Thrombolysis. There was no significant difference in Thrombolysis between two groups. In the DM group, 25.0% had DVD, 38.9% had SVD, 27.8% had TVD, 4.2% were insignificant, 2.8% were normal and 1.4% had Recanalized CAD. In the non DM group, 13.9% had DVD, 54.2% had SVD, 1.4% had TVD, 11.1% were insignificant, 16.7% were normal and 2.8% had Recanalized CAD. There was significant difference in CAG findings between the DM group and non DM group, i.e. diabetics had a higher incidence of multivessel disease compared to non diabetics.

Table 4: Correlation between HBA1C & GENsini score

| Correlations       | HBA1C  | GENsini |
|--------------------|--------|---------|
| Pearson Correlation| 1      | 0.633 **|
| P value            | <0.001*|         |
| N                  | 144    | 144     |

**. Correlation is significant at the 0.01 level (2-tailed).

In the study, there was a significant positive correlation between HbA1c and GENsini score. i.e. with increase in HbA1c, there was an increase in GENsini score and vice versa. This suggests that there is a linear relationship between HbA1c and GENsini score.

Table 5: Correlation between HBA1c & Number of vessel involvement

| Correlations       | HBA1C  | No of Vessel |
|--------------------|--------|--------------|
| Pearson Correlation| 1      | 0.563        |
| P value            | <0.001*|              |
| N                  | 144    | 116          |

**. Correlation is significant at the 0.01 level (2-tailed).

In the study, there was a significant positive correlation between HbA1c and number of vessels involved. i.e. with increase in HbA1c, there was an increase in number of vessels involved and vice versa.

Table 6: Correlation between duration of DM & GENsini score

| Correlations       | GENsini | DM Years |
|--------------------|---------|----------|
| Pearson Correlation| 1       | 0.493 **|
| P value            | <0.001* |          |
| N                  | 144     | 73       |

**. Correlation is significant at the 0.01 level (2-tailed).

Gensini score. i.e. with increase in Duration of DM, there was increase in Gensini score and vice versa. Among the diabetics, 9.7% underwent a medical line of treatment, 54.2% underwent PTCA and 36.1% underwent CABG. Among non diabetics, 31.9% underwent a medical line of treatment, 68.1% underwent PTCA and 0% underwent CABG. There was significant difference in treatment between the two groups i.e. CABG was advised in more number of diabetics than non diabetics.
4. Discussion

Our study analysed 144 patients admitted to KIMS, Hubballi with Acute coronary syndrome, of which 50% were with T2DM and the remaining 50% were non diabetics. Mean age of subjects was 55.86±11.08 years in diabetic group, and in non diabetic group the mean age was 53.19±11.11 years. Majority of patients were in age group of 50-60 years of age.

The age of presentation was similar to other studies conducted in Karnataka [5-7]. In our study, it was noted that 23-30% were females; in other studies it was between 5-23% [8,9]. The lower incidence of ACS in females can be explained by the protective effect of oestrogen on cardiovascular effect in premenopausal women. However, this protective effect ceases to exist in post-menopausal age group. In our study, females presented at a later age when compared to males; this bore similarities to other studies like Sharma et al [10] and Iyengar et al [11].

In our study, Occurrence of HTN was higher in diabetic patients compared to non diabetics; which is similar to the study conducted by Shah et al[12]. However, in our study it was not statistically significant.

Cardiogenic shock continues to be the most common cause of death in patients with acute myocardial infarction (MI), occurring in 5–10% of ST-elevation MIs (STEMI) and 2–3% of non- ST-elevation acute coronary syndromes (ACS)[13]. In our study occurrence of cardiogenic shock was 4.16%, which is similar to other studies conducted in India [15,16].

In our study, occurrence of STEMI was higher compared to NSTEMI and USA; this is similar to other studies conducted in India [15,17]. However, Padinhare et al[6] study shows an almost similar incidence.

### Table 7: Comparison of number of vessels involved in different studies

|          | SVD | DVD | TVD | Normal | Insignificant | Recanalised |
|----------|-----|-----|-----|--------|-------------|------------|
| Chowdhary et al[7] | 24%  | 54%  | 40%  | 30%    | 36%         | 14%        |
| Srinidhi et al[18] | 30%  | 64%  | 26%  | 20%    | 44%         | 16%        |
| Girdhar et al[19]  | 25%  | 31%  | 40%  | 39%    | 31%         | 26%        |
| Our study         | 38.9%| 54.2%| 25.0%| 13.9%  | 27.8        | 1.4%       |

In our study, the severity of CAD as calculated by Gensini score was higher in diabetics compared to the non diabetics. These findings are similar to other studies conducted [8,18,20].

In our study, LMCA involvement was similar between both diabetics and non diabetics, however severity of occlusion was higher in diabetics compared to non diabetics (25-90% vs<25%). Among the vessels involved, LAD was the most common artery involved, followed by RCA & LCx, which is similar to other studies conducted [18,21].

In our study, it was shown that increase in HbA1c & GENSINI score correlates with the number of vessels involved. This is found to be similar to studies conducted in Karnataka [19,20].

In our study, it was found that duration of Diabetes directly correlates with the increase in GENSINI score, which was similar to other studies [20].

In our study, a higher percentage of patients with DM were advised to undergo CABG compared to non diabetics. In Non diabetics with CAD, PTCA was the most commonly advised treatment, followed by medical management, which is similar to other studies. [2,18]

5. Conclusion

- Diabetic patients with acute coronary syndrome have more severe coronary artery disease with respect to the number of vessels involved. They also have high Gensini score as compared to non-diabetics.
- Diabetic patients with ACS have higher mortality compared to non-diabetics, which is depicted in this study by a higher KILLIP class at presentation in diabetics.
- CABG as a treatment modality was advised in a higher percentage of diabetic patients with ACS when compared to non-diabetics.

Conflict of Interest: none

References

[1]. American Diabetes association. Introduction: Standards of Medical Care in Diabetes-2018. Diabetes Care. January 2018; Volume 41(Supplement 1): 51.

[2]. Baynes HW. Classification, pathophysiology, diagnosis and management of Diabetes mellitus. J Diabetes Metab. 2015 May 1; 6(5):1-9.

[3]. Kaveeshwar SA, Cornwall J. The current state of Diabetes mellitus in India. The Australasian Medical Journal. 2014; 7(1):45.

[4]. Berry C, Tardif JC, Bourassa MG. Coronary heart disease in patients with Diabetes: part I: recent advances in prevention and noninvasive management. Journal of the American College of Cardiology. 2007 Feb 13; 49(6):631-42.

[5]. Swamy BC M, D’Souza SC, Kamath P. Comparison of Severity of Coronary Artery Disease in Diabetic and Non- Diabetic Subjects using Gensini Score in...
Indian Subjects. J Diabetes Metab [Internet]. 2014; 5(12).

[6]. Mohanan PP, Mathew R, Harikrishnan S, Krishnan MN, Zachariah G, Joseph J, Eappen K, Abraham M, Menon J, Thomas M, Jacob S. Presentation, management, and outcomes of 25 748 acute coronary syndrome admissions in Kerala, India: results from the Kerala ACS Registry. European Heart Journal. 2012 Sep 7; 34(2):121-9.

[7]. Chowdhary I, Sambyal V. Study of Extent of Involvement of Various Coronary Arteries in Diabetic and Non-diabetic Patients Diagnosed with Acute Myocardial Infarction. JK Science. 2016 Jul 1; 18(3): 132.

[8]. Parvin T, Haque KS, Siddique MA, Habib SMA, Rahman M, Rahman MH, et al. Angiographic Severity of Coronary Artery Disease in Diabetic and Non-Diabetic Patients in a Tertiary Care Centre. Univ Hear J. 2015; 10(1):13–7.

[9]. Dubey L, Guruprasad S, Subramanyam G. Relationship between type 2 Diabetes mellitus and coronary artery lesion characteristics: a single center study. Nepalese Heart Journal. 2013; 10(1):20-2.

[10]. Sharma R, Bhaireappa S, Prasad SR, Manjunath CN. Clinical characteristics, angiographic profile and in hospital mortality in acute coronary syndrome patients in south Indian population. Heart India. 2014 Jul 1; 2(3):65.

[11]. Iyengar SS, Gupta R, Ravi S, Thangam S, Alexander T, Manjunath CN, Keshava R, Patil CB, Sheela A, Sawhney JP. Premature coronary artery disease in India: coronary artery disease in the young (CADY) registry. Indian Heart Journal. 2017 Mar 1; 69(2): 211-6.

[12]. Misiriya KJ, Sudhayakumar N, Khadar SA, George R, Jayaprakasht VL, Pappachan JM. The clinical spectrum of acute coronary syndromes: experience from a major center in Kerala. J Assoc Physicians India. 2009 May; 57:377-83.

[13]. Salahuddin S, Bhargava B. Cardiogenic shock in acute coronary syndromes-miles to go?. Indian Heart Journal. 2012 Mar 1; 64(2):159-61.

[14]. Balakrishnan VK, Chopra A, Muralidharan TR, Thanikachalam S. Clinical Profile of Acute Coronary Syndrome among Young Adults. 2018; 4(1):52–9.

[15]. Krishnagowda C, Swamy MH. Clinical, echocardiographic and angiographic correlation of acute coronary syndrome in women at a tertiary care centre. International Journal of Research in Medical Sciences. 2017 Jan 3; 4(7): 2684-91.

[16]. Vijay Sancheti P, Konappa Mangulikar S. Epidemiological study of ischemic heart disease in patients admitted in intensive care unit in the tertiary care hospital. Int J Community Med Public Heal [Internet]. 2017; 4(9):3191–5.

[17]. Mahalle NP, Garg MK, Kulkarni MV, Naik SS. Differences in traditional and nontraditional risk factors with special reference to nutritional factors in patients with coronary artery disease with or without Diabetes mellitus. Indian Journal of Endocrinology and Metabolism. 2013 Sep; 17(5):844.

[18]. Hegde SS, Mallesh P, Yeli SM, Gadad VM. Comparitive angiographic profile in diabetic and non-diabetic patients with acute coronary syndrome. Journal of Clinical and Diagnostic Research 2014 Sep;8(9): MC07.125

[19]. Girdhar R, Kothari Y, Kamat AS, Raj RA. Coronary Angiographic (CAG) Findings between Diabetic and non diabetic Patients in Coronary artery disease: A Comparative Study. 2018; 06(08):753–9.

[20]. Mahdi Moosavi MD, Nematipour E, Mehrpooya M. Comparison of Extent of Coronary Artery Disease in Angiography of Diabetics and Non-Diabetics. Official publication of the iranian heart association.

[21]. Parvin T, Haque KS, Siddique MA, Habib SMA, Rahman M, Rahman MH, et al. Angiographic Severity of Coronary Artery Disease in Diabetic and Non-Diabetic Patients in a Tertiary Care Centre. Univ Hear J. 2015; 10(1):13–7.

[22]. Saleem T, Mohammad KH, Abdel-Fattah MM, Abbasi AH. Association of glycosylated haemoglobin level and Diabetes mellitus duration with the severity of coronary artery disease. Diabetes and Vascular Disease Research. 2008 Sep; 5(3):184-9.

[23]. Mahajan M, G SP. A case study of coronary artery involvement in diabetic and nondiabetic patients with acute coronary syndrome. J Assoc Physicians India [Internet]. 2016; 64(1):82–3.

[24]. Association of glycosylatedhaemoglobin level and Diabetes mellitus duration with the severity of coronary artery disease. Diabetes and Vascular Disease Research. 2008 Sep; 5(3):184-9.