Mycological and Molecular detection of some fungi causing diarrhea in sheep and goats

Ashraf A. Abd El Tawab, Fatma I. El Hefy, Eman M. Moustafa, Ramadan M. Tag Eldin, Enas A. Soliman and Khaled G. Gebril

1Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Benha University
2Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafr El-Sheikh University
3Animal Health Institute, Dokki, Giza

ABSTRACT

Sheep and goat are important production sources of meat and milk in Egypt. Diarrhea is very common and the chronic form of it may lead to deaths, so the accurate diagnosis of fungal diseases causing diarrhea is a priority. In the current study, the fungal infections causing diarrhea in sheep and goats were investigated. Out of 200 examined samples; 27 yeast isolates (13.5%) and 112 mold isolates (56.00%) were recovered from the mycological examinations of the collected samples from diarrheic animals, contact workers and feed stuffs. Aspergillus flavus and Rhodotorula sp. were the most prevalent mould and yeast isolated from the examined samples, respectively. Aspergillus flavus and Rhodotorula sp. were molecularly identified using PCR tests. They showed clear bands at 305 bp molecular weight for A. flavus and 560bp for Rhodotorula sp. PCR is a useful method for diagnosing fungi that cause diarrhoea in sheep and goats in a direct and timely manner.

Keywords
- diarrhea
- goat
- PCR
- mould
- sheep

1. INTRODUCTION

Small ruminants (sheep and goats) play a predominant role in the economy of million people (Thornton, 2010). Diarrhea is a common symptom in goats and sheep. It is caused by enteritis, an inflammation of the intestinal mucosa, characterized by abdominal pain, loose stools, increased stool mass and frequency of defecation, or stool fluidity (dehydration) containing 70-95 percent water, the chronic form of diarrhea may last for days or weeks and may culminate in death (Radostits et al., 2000). Fungal infections can occur in healthy animals but are more common as opportunistic infections in debilitated and immunocompromised hosts whose normal defense mechanisms are impaired. A fatal outcome is possible in these individuals, as fungal infection may remain undiagnosed (Randhawa, 2000). Traditional diagnostic procedures for fungi are culture and galactomannan assays but they are not advised since they lack sensitivity and specificity, as well as being time-consuming and labor-intensive (Denning, 1998 and Latge, 1999). Real-time PCR has recently been characterized as a rapid, accurate, and sensitive analytical approach for identifying and quantifying mould, even down to the species level (Costa et al., 2002). In order to diagnose invasive aspergillosis in immune-compromised patients, a PCR assay was devised. The entire nucleotide sequences of the genes encoding the 18S rRNA of A. nidulans, A. terreus, A. niger, and A. flavus were elucidated and aligned to A. fumigatus and other clinically important prokaryotic and eukaryotic microorganisms Melchers et al. (1994). Sardiñas et al. (2011) found that a QPCR assay could identify spore quantities equivalent to or greater than 10⁶ spores/g in samples without prior incubation. Fungal pathogens can be detected through sequence analysis of internal transcribed spacer n/5.8S ribosomal DNA (rDNA) Consuelo et al., (2001). Rapid yeast identification gives timely information for patient care, allowing for successful and early antifungal treatment. Traditional methods that rely on presumptive pathogen cultivation take a long time and need a lot of effort. The polymerase chain reaction is a modern, quick, and specific approach for detecting pathogenic yeast (Kurzai et al., 1999). In recent years, PCR-based approaches for detecting ribosomal RNA genes have become popular, and they are quite straightforward to use. Restriction analysis of variable internal transcribed spacer (ITS) sequences framing the more conservative 5.8S rRNA gene (rDNA) has proven to be the most useful, allowing for both species identification and isolate typing (Fernández et al., 1999). This method, which is based on a large database, has been presented for the rapid and routine detection of yeasts (Esteve-Zarzoso et al., 1999).

* Corresponding author: emantarek2002@yahoo.com
The current study was carried out to investigate most predominant fungi causing diarrhea in sheep and goats with special focus on molecular identification using PCR technique.

2. MATERIAL AND METHODS

2.1. Collection of samples:
Aggregate of one hundred (100) fecal swabs were gathered in sterile tubes; from 70 sheep and 30 goats (from different ages, sexes and/or breeds) experiencing diarrhea at Fayoum Governorate, Egypt. Buccal, skin and nasal samples were gotten from 40 contact workers as indicated by Axell et al., 1985 and Polzeih et al., 2005. A total number of 60 feed stuffs of the herd (Maize, Hay, Beets leaves and Grasses) were gathered in sterile, clean and dry plastic bags for mycological assessment (ISO 21527–2, 2008). The samples were inoculated onto sterile test tubes having 10 – 15 ml sterile saline. The samples were transported to the lab of Animal Health Research Institute, Dokki, Giza, Egypt under complete aseptic conditions.

2.2. Isolation of fungi:

Mycological examination was performed according to Cruickshank et al. (1975). The collected samples were inoculated into Sabouraud’s dextrose both tubes (SDB) for 24-48 hours, and afterward moved to duplicate plates of Sabouraud’s dextrose agar (SDA) with chloramphenicol (50 mg/mL); to stay away from bacterial staining; and incubated at 37°C for 2 days (for yeast isolation) and the other plates were incubated at 25°C for 5-7 days (for mould isolation). Negative plates were kept for at least two weeks before being discarded (Feingold & Baron, 1986). All positive mould cultures had their gross and microscopic morphological features assessed (Collins & Lyne, 1984).

2.3. Identification of the isolated fungi:
The morphological examination of the growing colonies as cultures growth appearance, rate of growth, color and texture of the colonies surface and reverse side were recorded as described previously (Lodder, 1970, Al- Dorry, 1980 and Finegold & Martin, 1982). Preliminary recognition was carried out using wet mount preparation by taking a small part of fungal colony between a glass slide with distilled water drop, then teased a part with two needles, then covered with a cover slide and examined microscopically. Cellophane tape technique was also used to identify fungi by removing a little piece of a young colony’s periphery and putting it to a clean glass slide with a drop of lactophenol cotton blue stain on it and microscopically examining it.

2.4. Genotypic identification of fungi

DNA extraction and purification:
DNA extraction was carried out using Qiagen extraction kit (Qiagen, Hilden, Germany) following the manufacturer’s guidelines.
DNA samples were evaluated in 50 μl reaction volume in a 0.2 ml. eppendorf tube, containing 25 μl PCR Master Mix, 1 μl of each primer, 3 μl target DNA, completed to a final volume of 50μl with sterile PCR water. DNA samples were evaluated in 50 μl reaction volume in a 0.2 ml. Eppendorf tube, containing 25 PCR Master Mix, 2 μl of each primer, 5 μl target DNA, completed to a final volume of 50 μl with sterile free DNase, RNase water.
Molecular examination of the growing colonies as cultures growth appearance, rate of growth, color and texture of the colonies surface and reverse side were recorded as described previously (Collins & Lyne, 1984).

3. RESULTS

In the current study, mycological analysis of the samples from diarrheic animals, contact workers and feed stuffs revealed the isolation of 27 fungal isolates out of 200 that were positive for yeast in a total percentage of (13.5%) and 112 fungal isolates out of 200 that were positive for mould in a total percentage of (56.00%) as shown in Table 3.

As shown in Table 4, based on the mycological culture shape; Rhodotorula sp. was the most commonly isolated yeast from all diarrheic animal faeces (10.00 %), followed by C. pseudotropicalis (4.00 %), and C. tropicalis and Torulopsis were the least isolated yeasts (2.00 % for each). From all faecal samples, Geotrichum candidum and Saccharomyces were identified at the same rate (3.00 % for each). However, A. flavus was the most common mould identified from the same faecal samples, accounting for 26.00 %, followed by A. niger (17.00 %), and A. fischeri, A. Carbonarius, Penicillium expansum and Fusarium chlamydosporum, each accounting for 1.00 %, as shown in Table 5.

Rhodotorula sp. was identified on SDA by the growth of carotenoid colors that ranged from orange to red (light pink flat colonies); nevertheless, when stained with Gram’s stain, it displayed budding of round, oval gigantic cells (Fig. 1). Aspergillus flavus (A. flavus) appeared smooth with various aerial developments; the shading progressed by maturing gigantic cells (Fig. 1).

Table 3 Incidence of fungi isolated from all examined samples
Mould species

A. flavus
A. fischeri
C. tropicalis
C. pseudotropicalis
Torulopsis
Geotrichum candidum
Rhodotorula sp
A. Carbonarius
Penicillium expansum
Fusarium chlamydosporum

3. PCR assay:
The PCR assay was highly specific and sensitive for the detection of A. flavus, it showed clear bands at 305 bp molecular weight (Fig. 3). While Rhodotorula sp. strains showed the bands at 560bp molecular weight (Fig. 4).
4. DISCUSSION

Fungi are one of the most common cause of diarrhea in sheep and goats; they may go unnoticed, causing economic losses and perhaps having zoonotic potential. Despite the numerous difficulties caused by fungal diseases in sheep and goats, little studies have been under-taken on them. In Egypt, sheep and goat are important production sources of meat and milk (Ayoub et al. 2020). Diarrhea in goat and sheep is very common and its chronic form may lead to death (Shabana et al., 2017). The accurate diagnosis of fungal diseases causing diarrhea is a priority.

Results of the current study revealed 27, 112 yeast and mould isolates in a total percentage of (13.5% & 56.00%), respectively from the mycological examinations of 200 samples from diabetic animals, contact workers and feed stuffs. Mould infections were more common (56%) than yeast infections in all analyzed samples (animals, personnel,
mould and yeast isolated from the diarrheic animals, contact workers and feed stuffs. PCR assays were used to molecularly identify A. flavus and rhodotorula sp. They showed clear bands at 305 bp molecular weight for A. flavus and 560bp for rhodotorula sp. PCR is a valuable tool for direct and rapid diagnosis of fungi associated with diarrhea in sheep and goats.

5. Conclusion

According to the current investigation, it could be concluded that A. flavus and rhodotorula sp. were the most prevalent

6. References

1. Abd El-Tawab, A. A., El-Hofy, F. I., Moustafa, E. M. and Halawa, M. R. (2020). Insight into Isolation,
Identification and Antimicrobial Sensitivity of some Moulds Isolated from Fresh Water Fishes. Adv. Anim. Vet. Sci. 9 (2):174-182.

2. Abou-Elmagd, S., Koth, H., Abdalla, Kh. and Refai, M. (2011). Prevalence of Candida albicans and Cryptococcus neoformans in Animals from Quena Governorate with Special Reference to RAPD-PCR Patterns. J. Am. Sci. 7(12): 20-31.

3. Al-Dorry, Y. (1980). Laboratory Medical Mycology. Lea and Feibiner, London.

4. Alcaino, J., Barahona, S., Carmona, M., Lozano, C., Marcorletta, A., Niklitschek, M., Sepúlveda, D., Baeza, M. and Cifuentes, V. (2008). Cloning of the cytochrome p450 reductase (crr) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrhorous. BMC Microbiology; 8:169-181.

5. Axell, T., Simonsson, T., Birkehd, H., Rosenborg, J. and Edwardsson, S. (1985). Evaluation of a simplified diagnostic aid (Oricul-N) for detection of oral candidoses. Scandinavian J. Dent. Res. 93(1):52-55.

6. Ayoub, M., Abo-Rawash, A. and Argan, A. (2020). Hygienic Studies on Microbial Causes of Abortion in Sheep. Damanhour Journal of Veterinary Sciences 5 (1): 11-13.

7. Collins, C. H. and Lyne, P. M. (1984). Microbiological Methods. Edn.5. Butterworth's & Co. Publishers, Ltd.

8. Consuelo, F., Francisca, C., Susana, F., Emilia, M., José, L.A. and Jorge, L.A. (2001). Pathogens by PCR and by ITS2 and 5.8S Ribosomal DNA Typing in Ocular Infections. J. Clin. Microbiol. 39(8): 2873-2879.

9. Costa, C., Costa, J. M., Desterke, F., Botterel, F., Cordonnier, C. and Bretagne, S. (2002). Real-time PCR coupled with automated DNA extraction and detection of galactomannan antigen in serum by enzyme-linked immunosorbent assay for diagnosis of invasive Aspergillus. J. Clin. Microbiol. 40: 2224-2227.

10. Cruickshank, R., Duguid, J. P., Marimion, B. P. and Swain, R. H. (1975). Medical Microbiology, the Practice of Medical Microbiology. 12th Edn, Vol. 11, Churchill Livingstone Limited, Edinburgh, London and New York.

11. Denning, D. W. (1998). Invasive aspergillosis. Clin. Inf. Dis: 26: 781-803.

12. Donskey, C. J. (2004). The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin. Infect. Dis: 39: 219-226.

13. Esteve-Zarzoso, B., Belloc, C., Uruburu, F. and Querol, A. (1999): Identification of yeasts by RFLP analysis of the 5.85 rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Sys. Bact. 49: 329-337.

14. Feingold, S. M. and Baron, E. J. (1986). Bailey and Scott's Diagnostic Microbiology. The Cv. Mosby co., St. Louis.

15. Fernández, M. R., Biosca, J. A., Torres, D., Crosas, D. and Parés, X. (1999). A double residue substitution in the tetramer-binding site accounts for the different kinetic properties between yeast and human formaldehyde dehydrogenases. J. Biol. Chem. 274(53):37869-75.

16. Finegold, S. M. and Martin, W. J. (1982). “Diagnostic Microbiology,” 6th Edition, C.V. Mosby Co. St. Louis, Toronto, London.

17. Hadrich, I., Mary, C., Makni, F., Elloumi, M., Dumon, H., Ayadi, A. and Ranque, S. (2011). Comparison of PCR-ELISA and RealTime PCR for invasive aspergillosis diagnosis in patients with hematological malignancies. Medical Mycology. 49: 489-494.

18. Hassan, A., Wael, A., Tawakkol, M. and Elbrawwy, A. M. (2010). The hepatoprotective effect of dimethyl 4,4-dimethoxy 5,6,5-6- dimethylene dioxy-biphenyl dicarboxylate (D.D.B.) against liver injury induced by aflatoxin B1 in rats. Int. J. Life Sci. 7(3): 148-153.

19. Hong, S.B., Kim, D.H. Park, I.C., Samson, R.A. and Shin, H.D. (2010). Isolation and identification of Aspergillus section Fumigati strains from arable soil in Korea. Mycobiology. 38: 1-6.

20. Hube, B. (1998). Possible role of secreted proteinases in Candida albicans infections. Revista Iberoamericana de Micología. 15: 65-68.

21. Ibrahim, A. S. F., Mirbod, S. G., Filler, Y., Banno, G. T., Cole, Y., Kitajima, J. E., Edwards, J. E. Y., Nozawa, Jr. and Ghannoum, M. A. (1995). Evidence implicating phospholipase as a virulence factor of Candida albicans. Inf. Immun. 63:1993-1998.

22. ISO 21527-2 (2008). Microbiology of food and animal feeding stuffs-- Horizontal method for the enumeration of yeasts and moulds - Part 2: Colony count technique in products with water activity less than or equal to 0.95 .

23. Jensen, H., Aalbaek, B., Basse, A. and Shoehnheyder, H. (1992). The occurrence of fungi in bovine tissues in relations to portals of entry and environmental factors. J. Comp. Path. 107:127140.

24. Kurzai, O., Heinz, W.J., Sullivan, D.J., Coleman, D.C., Coleman, M. and Mühlschlegel, F.A. (1999): Rapid PCR Test for Discriminating between Candida albicans and Candida dubliniensis Isolates Using Primers Derived from the pH-Regulated PHR1 and PHR2 Genes of C. albicans. J. Clin. Microbiol. 37(5): 1587-1590.

25. Latge, J. P. (1999). Aspergillus fumigatus and aspergillosis. Clinical Microbiology Reviews. 12:310-350.

26. Lodder, J. (1970). The Yeasts: a taxonomic study. 2nd edn Amsterdam: North-Holland Publishing.

27. Melchers, W.J., Verweij, P.E., Hurk, P.V., Belkum, A.V., De-Pauw, B.E., Hoogkamp-Korstanje, J.A. and Mei, J.F. (1994). General primer-mediated PCR for detection of Aspergillus species. J. Clin. Microbiol. 32(7): 1710-1717.

28. Polzelh, D., Wescosta, M., Podbielski, A., Reichelmann, H. and Rimke, D. (2005). Fungus culture and PCR in nasal lavage samples of patients with chronic rhinosinusitis. J. Med. Microbiol. 54: 1: 31-37.

29. Radostits, O.M., Gay, C.C., Blood, D.C. and Hinchcliff, K.W. (2000). Veterinary Medicine: A textbook of the diseases of cattle, sheep, pigs, goats and horses. 9th Edn. London, WB Saunders.

30. Randhawa, H.S. (2000). Respiratory and systemic mycoses: An overview. Indian J. Chest Dis. Allied Sci. 42: 207-219.

31. Refai, M.K., Laila, K., Amany, M. and Shimaa, E.S. (2011). The assessment of Mycotic settlement of Candida albicans in nasal lavage samples of patients with chronic rhinosinusitis. Revista Iberoamericana de Micología. 15: 65-68.

32. Sardiñas, N., Vázquez, C., Gil-Serna, J., González-Jasén, M.T. and Patiño, B. (2011). Specific detection and quantification of Aspergillus flavus and...
Aspergillus parasiticus in wheat flour by SYBR green quantitative PCR. Int. J. feed Microb. 145: 121-125
33. Sarfati, J., Jensen, H. and Latge, J. (1996). Route of infections in bovine aspergillosis. J. Med. Vet. Mycol. 34:379-383.
34. Shabana, I.I., Bouqellah, N.A. and Zaraket, H. (2017). Investigation of viral and bacterial enteropathogens of diarrheic sheep and goats in Medina, Saudi Arabia. Tropical Biomedicine. 34(4): 1-12.
35. Sugita, C., Makimura, K., Uchida, K., Yamaguchi, H. and Nagai, A. (2004). PCR identification system for the genus Aspergillus and three major pathogenic species: Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger. Med. Mycol. 42:433-437.
36. Tell, L. A. (2005). Aspergillosis in mammals and birds: impact on veterinary medicine. Medical Mycology. 43: 71-73.
37. Thornton, P.K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554): 2853-2867.
38. Udagawa, S., Tsubouchi, H. and Toyazaki, N. (1996). Isolation and identification of Neosartorya species from house dust as hazardous indoor pollutants. Mycoscience. 37: 217-222.
39. Van Der Linden, J.W., Snelders, E., Arends, J.P., Daenen, S.M., Melchers, W.J. and Verweij, P.E. (2010). Rapid diagnosis of azole-resistant aspergillosis by direct PCR using tissue specimens. J. Clin. Microb. 48: 1478-1480.
40. White, P. L., Bretagne, S., Klingspor, L., Melchers, W.J., McCulloch, E., Schulz, B., Finnstrom, N., Mengoli, C., Barnes, R.A., Donnelly, J.P. and Loeffler, J. (2010). Aspergillus PCR: One step closer to standardization. J. Clin. Microb. 48:1231-1240.