Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
12 Phytochemical and biological research of Polygoneae medicinal resources

12.1 Introduction

Polygonaceae plants have a worldwide distribution, most of which are in the temperate region of the Northern Hemisphere. There are 235 Polygonaceae species and 37 varieties in China. The use of medicinal species is listed in Table 12.1. In the tribe Polygoneae of the subfamily Polygonoideae, there are seven genera (http://frps.eflora.cn/frps/Trib.%20Polygoneae), namely, Antenoron, Fagopyrum, Fallopia, Koenigia, Polygonum, Pteroxygonum, and Reynoutria. Polygonum is the largest genus of the family Polygonaceae. This chapter summarizes the current knowledge of phytochemistry, bioactivity, phylogeny, and omics of Polygoneae medicinal plants.

12.2 Chemical components

12.2.1 Phenolics, flavonoids, and phenylpropanoids

Examples of Polygoneae compounds are shown in Figure 12.1 and Table 12.2. Gallic acid, rutin, coumaric acid, and quercetin were found in the leaves of P. minus (Vikram et al., 2014). Polyphenolic compounds, such as hydroxyanthraquinones, stilbenoids, and proanthocyanidins, are abundant in Polygoneae plants.

12.2.2 Essential oil, terpenoids, steroids, and benzoquinones

Nonane, heptane, octadecanal, β-caryophyllene, trans-α-bergamotene, β-farnesene, α-caryophyllene, p-benzoquinone, phenol, α-panasinsen, pentanoic acid, octane, heptane, undecane, 1,2 benzenedicarboxylic acid, and nonane were found in the roots of P. minus (Vikram et al., 2014). Many other components of essential oil are also present in P. minus (Vikram et al., 2014).

Twenty-one compounds were separated and determined from P. cuspidatum flower, which amounted to 99.29% of the total volatiles (Sun et al., 2012). (E)-2-hexenoic acid methyl ester, 1-phenyl-1-pentanone, (E)-4-hexenoic acid methyl ester, 3-hexenoic acid methyl ester, 2-methyl-6-methylene-1, and 7-octadien-3-one were the main constituents of P. cuspidatum flower, which amounted to 63.23% of the total volatiles. Organic ester compounds amounted to 52.09% of the total volatiles. Hexenoic acid methyl ester compounds were highly abundant, corresponding to
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
Antenoron filiforme (Polygonum filiforme)	Jin Xian Cao, Ren Zi Cao (Zhe Jiang), Hua Xue Gui (Hu Bei), Xue Jing Cao (Hu Nan)	Altitude 500–1200 m, hillside, forest, bushes, ditch, creek	Central south China, Shan Xi, Shaan Xi, Shan Dong, Jiang Su, Zhe Jiang, Jiang Xi, Fu Jian, Tai Wan, Si Chuan, Gui Zhou, Yun Nan	Root tuber/whole plant: pungent, cool; blood-cooling, hemostasis, stasis-removing and pain-relieving; rheumatism, stomachache, hemoptysis, hematemesis, postpartum abdominal pain due to blood stasis, traumatic injury	*A. neofiliforme* (Polygonum neofiliforme) has the same therapeutic use; east China, Shan Xi, Shaan Xi, Gan Su, He Nan, Hu Bei, Hu Nan, Guang Dong, Si Chuan, Gui Zhou, Yun Nan
Calligonum leucocladum	Bai Pi Sha Guai Zao	Desert	North Xin Jiang	Whole plant: astringing to stop diarrhea	
Calligonum mongolicum	Sha Guai Zao	Desert	Inner Mongolia, Gan Su, Ning Xia, Xin Jiang	Root/twig with fruit: bitter, astringent, lukewarm; cloudy urine, chapped skin	
Fagopyrum dibotrys (P. cymosum)	Jin Qiao Mai, Qiao Mai Dang Gui (Hu Bei), Qiao Mai San Qi (Zhe Jiang)	Altitude 600–1000 m, ditch, roadside	Central south China, southwest China, Shaan Xi, Gan Su, Jiang Su, Zhe Jiang, Jiang Xi, Fu Jian	Root/rhizome: slightly pungent, astringent, cool; heat-clearing and detoxification, blood-activating and stasis-dissipating, wind-expelling and dampness-removing; sore throat, ulcerative carbuncle, scrofula, hepatitis, lung abscess, wind syndrome of head, stomachache, dysentery, leukorrheal disease	
Fagopyrum esculentum					
(P. fagopyrum)	Qiao Mai, Hua Mai (Hu Nan), Qiao Zi (Gui Zhou)	Cultivated all over China; semiwild, roadside	Stem/leaf: acid, cold; antihypertension, hemostasis; choking, carbuncle; seed: sweet, cool; lower Qi and comfort intestine, stagnation-relieving, detumescence; dyspepsia, diarrhea, carbuncle back, burn		
Whole plant: heat-clearing and detoxification, blood-activating and stasis-dissipating, spleen-invigorating and diuresis-promoting; seed: appetizer, comfort intestine					
Root tuber/rhizome: sweet, bitter, flat; stomach-invigorating and comfort Qi, dehumidification and pain-relieving; stomachache, dyspepsia, dysentery, internal lesion caused by overexertion, pain in waist and lower extremities					
Fagopyrum gracilipes					
(P. gracilipes)	Xi Geng Qiao Mai	Altitude 300–2000 m, hillside, roadside, forest, riverside, crop field	Shaan Xi, Gan Su, Hu Bei, Si Chuan, Yun Nan		
Fagopyrum tataricum					
(P. tataricum)	Ku Qiao Mai, Qiao Ye Qi (Shaan Xi), Ku Qiao Tou (Gui Zhou)	Altitude 700–2000 m, hill, valley, riverside, in cultivation/semiwild	Northeast China, northwest China, southwest China		
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
-------------------------------	-----------------------------------	---	--------------------------	--	--
Muehlenbeckia platycladum	Zhu Jie Liao, Fei Tian Wu Gong (Guang Xi), Bai Zu Cao (Guang Zhou)	Native to south Pacific Solomon islands	Cultivated in garden and greenhouse throughout China	Stem/leaf: sweet, light, flat; stasis-removing, growth-promoting and itch-relieving, swell-relieving/pain killer; carbuncle, traumatic injury, snakebite, centipede bite	
Oxyria digyna	Shen Ye Shan Liao, Suan Jiang Cao (Shaan Xi)	Altitude 2000–3600 m, mountain grassland, hillside, valley	Ji Lin, Shaan Xi, Gan Su, Qing Hai, Si Chuan, Yun Nan, Tibet	Whole plant: acid, cool; heat-clearing and diuresis-promoting; depression of hepatic Qi, hepatitis, scurvy	
P. alatum	Tou Zhuang Liao, Nepal Liao, Mao Er Yan Jing (Si Chuan)	Altitude 800–2700 m, hillside, valley, wetland, roadside, crop field	All over China	Whole plant: bitter, cold; heat-clearing and detoxification, astringe and secure the intestine; sore throat, bloodshot eyes, painful swollen gums, bloody dysentery, joint pain, stomachache	
P. alopecuroides	Hu Wei Liao	Riverside, water meadow	Ji Lin, Inner Mongolia	Rhizome: heat-clearing and detoxification, blood-cooling and hemostasis; used as *Paris polyphylla* (Cao He Che) in Inner Mongolia	
Plant Name	Location Details	Therapeutic Properties	Distribution Area		
--------------------------------	--	--	--		
P. amphibium (Persicaria amphibia)	Low-altitude lake, shallow water, wetland	Whole plant: bitter, flat; heat-clearing and diuresis-promoting; dysentery; external use on furuncle	Used for hypertrophic spondylitis in Chang Wei, Shan Dong; *P. amphibium* var. *terrestre* has the same therapeutic efficacy and distribution area		
P. amplexicaule (Bistorta amplexicaule)	Altitude >1000 m, mountain woodside, bushes, valley, ditch	Rhizome: spasm-relieving, stasis-removing and hemostasis, myogenic/pain killer, antibacterial, anti-inflammatory	Not with the cockscomb and *Uncaria*		
P. amplexicaule var. *sinense*	Altitude 1300–1500 m, wet valley, bushes	Rhizome: slightly bitter, astringent, flat; slightly poisonous; heat-clearing and detoxification, astringing to stop diarrhea; blood-promoting and pain-relieving; dysentery, diarrhea, traumatic injury, bleeding			
P. attenuatum	Mountain bushes	Rhizome: heat-clearing and detoxification, blood-cooling, detumescence, and convulsion-relieving			

Continued
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. aubertii	Mu Teng Liao	Altitude 500–2000 m, hillside, ravine	southwest China, Inner Mongolia, Shaan Xi, Gan Su, Ning Xia	Root tuber: bitter, astringent, cool; heat-clearing and detoxification, regulate menstrual cycle and hemostasis; dysentery, dyspepsia, stomachache, irregular menstruation	
Fallopia aubertii		sunny shrubs, or in cultivation			
P. aviculare	Bian Xu, Niu Jin Cao	Open field, wetland	All over China	Aboveground part: bitter, cool; disinhibit urine and free strangury, insecticidal, anti-itching; urinary infection, oliguria with reddish urine, urine leaching/acerbity/painful, eczema, pruritus vulvae disease, leukorrheal disease	China Pharmacopoeia 1990 version; *P. aviculare* var. *rigidum* has similar efficacy, distributed in Helan Mountains, Ning Xia; *P. aviculare* var. *vegetum*, distributed in Jiang Su, An Hui, Zhe Jiang, He Nan, Si Chuan, Gui Zhou
	Cao (Shaan Xi), Tai				
	Yang Cao (Zhe Jiang)				
	Ban Jiu Tai (An Hui)				
	Di Liao				
P. barbatum	Mao Liao, Si Ji Qing	Altitude <1000 m, roadside, ditch,	Jiang Su, An Hui, Zhe Jiang, Fu Jian, Tai Wan, Hu Bei, Guang Dong, Guang Xi, Si Chuan, Gui Zhou, Yun Nan	Root: pungent, warm; astringent; whole plant: toxin-removing and myogenic, stranguria; seed: emetic, antidiarrheal	
		woodland			
P. barbatum var. gracile¹ (**P. barbatum** subsp. gracile)	Xi Mao Ci Liao, Xiao Mao Liao, Liao Zi Cao (Si Chuan)	Altitude 500–1000 m, hill, ditch, roadside	Jiang Su, Shang Hai, Guang Xi, Si Chuan, Gui Zhou	Whole plant/root: slightly pungent, warm; cold dispelling and blood-activating; measles, deficiency-cold after disease, abdominal pain, take a chill after traumatic injury, Yin coldness, stale coldness	
---	---	---	---	---	

| **P. bistorta**² (**Bistorta vulgaris**) | Quan Shen, Zi Shen (He Bei, Hu Nan, Gui Zhou), Dao Gen Cao (Xin Jiang), Xia Shen (Shan Dong), Ma Feng Qi (Guang Xi) | Hillside meadow, forest meadow | North China, northwest China, Ji Lin, Shan Dong, Jiang Su, An Hui, Zhe Jiang, He Nan, Hu Bei, Si Chuan, Gui Zhou; main producing area: He Bei, Shan Xi, Shan Dong, He Nan | Rhizome: bitter, astringent, cool; heat-clearing and detoxification, apocatastasis, hemostasis; bloody dysentery, heat diarrhea, cough with lung heat, scrofula, aphtha, hematemesis, epistaxis, hemorrhoidal bleeding, snakebite |

| **P. bungeanum** | Liu Ye Ci Liao | The edge of the field, roadside wetland | North China, Hei Long Jiang, Liao Ning, Shan Dong | Root: heat-clearing/detoxification, diuresis |

| **P. caespitosum**³ (**Persicaria caespitosa**) | Cong Zhi Liao, Tai Yang Cao (Si Chuan), Gu Zhi Lian (Gui Zhou) | Altitude 700–2000 m, hillside forest, roadside, ditch | Central south China, Shaan Xi, Gan Su, Jiang Su, Shang Hai, Jiang Xi, Fu Jian, Si Chuan, Gui Zhou, Yun Nan | Whole plant: heat-clearing/detoxification, blood-cooling and hemostasis; abdominal pain, diarrhea, dysentery |

¹ China Pharmacopoeia 1990

² China Pharmacopoeia 1990

³ China Pharmacopoeia 1990

Continued
Table 12.1 Continued

Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. campanulatum	Zhong Hua Liao	Altitude 1200 m, hillside shrubs	Si Chuan, Gui Zhou, Yun Nan	Whole plant: blood-activating/stasis-removing, swell-reducing; innominate toxic swelling, dorsal furuncle, scrofula, leukorrheal disease	
P. capitatum				Whole plant: acid, cold; detoxification/stasis-removing, disinhibit urine and free strangury; dysentery, stone strangury, edema, rheumatism, traumatic injury, skin and external disease, eczema	
(Persicaria capitata)	Tou Hua Liao, Yan Qiao Mai (Hu Bei), Shui Xiu Qiu (Gui Zhou), Shi Mang Cao (Guang Xi)	Altitude 250–500 m, hillside, roadside, rock seam	Jiang Xi, Hu Bei, Hu Nan, Guang Dong, Guang Xi, Si Chuan, Gui Zhou, Yun Nan	Whole plant: slightly acid, cool; heat-clearing/detoxification, diuresis-promoting and anti-dyspepsia; diarrhea, dysentery, jaundice, wind-heat sore throat, heat dizziness, leukorrheal disease, scabies, carbuncle; root: acid, sweet, flat; Qi-promoting; Qi deficiency and dizziness, tinnitus and deafness, traumatic injury	*P. chinense f. ovalifolium* has similar efficacy, distributed in Gui Zhou and Yun Nan
P. chinense	Huo Tan Mu, Chi Di Li (Zhe Jiang), Bai Fan Cao (Guang Dong), Lao Shu Zhe (Guang Xi), Yun Yao (Si Chuan)	Altitude 1200–2200 m, hillside, roadside, creek, beside the house	Southwest China, An Hui, Zhe Jiang, Jiang Xi, Fu Jian, Tai Wan, Hu Bei, Hu Nan, Guang Dong, Guang Xi	Whole plant: slightly acid, cool; heat-clearing/detoxification, diuresis-promoting and anti-dyspepsia; diarrhea, dysentery, jaundice, wind-heat sore throat, heat dizziness, leukorrheal disease, scabies, carbuncle; root: acid, sweet, flat; Qi-promoting; Qi deficiency and dizziness, tinnitus and deafness, traumatic injury	
P. chinense var. hispidum	**P. cilinerve** *(Pleuropterus ciliinervis; P. multiflorum var. cillinerve)*	**P. convolvulus** *(P. dumctorum)*	**P. coriaceum**		
---	---	---	---		
Cu Mao Huo Tan Mu, Xiao Hong Ren (Si Mao, Yun Nan)	**Valley, wetland, roadside**	**Gui Zhou, Yun Nan (Si Mao, Yun Nan)**	**Root tuber: acid, flat; collateral-dredging and blood-activating, hemostasis, detoxification; dysentery, diarrhea, irregular menses, metrorrhagia, postpartum bleeding**		
Gui Zhou, Yun Nan (Si Mao, Yun Nan)	**Mao Mai Liao, Zhu Sha Qi (Shaan Xi), Zhu Sha Lian (Hu Bei)**	**Altitude 800–1800 m, hillside forest, ditch, roadside, chaotic crevice**	**Root tuber: sweet, slightly astringent, cool; slightly poisonous; heat-clearing/detoxification, pain-relieving, hemostasis, regulate menstrual cycle; tonsillitis, vomiting and diarrhea, ulcer, dysentery**		
Northeast China, Shan Xi, Gan Su, Ning Xia, He Nan, Hu Bei, Si Chuan, Gui Zhou	**Juan Jing Liao, Qiao Mai Man (Gui Zhou)**	**Altitude 600–1600 m, hillside grassland, crop field**	**Whole plant: heat-clearing/detoxification, swell-reducing; root: strengthening the stomach, cough-relieving, analgesia, detoxification; tuberculosis hemoptysis, pertussis, peratodynia**		
Northeast China, north China, Shaan Xi, Gan Su, Xin Jiang, Shan Dong, north Jiang Su, He Nan, Gui Zhou	**Ge Ye Liao, Ban She Lian (Guang Xi)**	**Roadside wetland, ditch**	**Rhizome: bitter, cold; slightly poisonous; heat-clearing/detoxification; dysentery, oral ulceration, gingivitis, carbuncle, hemorrhoids, burn**		

Continued
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. cuspidatum (Pleuropterus cuspidatus)	Hu Zhang, Huo Xue Dan (Jiang Su), Suan Tong Gan (Hu Nan), Da Ye She Zong Guan (Guang Xi), Wo Gong Liao (Miao ethnic group)	Altitude <2500 m, hillside grassland, forest, ditch, roadside	East China, central south China, Liao Ning, Shaan Xi, Gan Su, Si Chuan, Gui Zhou, Yun Nan; in cultivation	Root/rhizome: slightly bitter, cool; wind-dispelling and diuresis-promoting, stasis-removing, analgesia, relieving cough and reducing sputum; joint pain, jaundice with damp-heat, amenorrhea, cough with abundance of phlegm, traumatic injury; leaf: slightly acidic, cool; wind-dispelling, blood-cooling, detoxification	China Pharmacopoeia 1990
P. cynanchoides	Niu Pi Xiao Liao, Mao Xue Teng (Gui Zhou)	Altitude 750–1200 m, riverbank, ravine	Shaan Xi, Gan Su, Hu Bei, Si Chuan, Gui Zhou, Yun Nan	Root: pungent, astringent, cool; astringing the lung to stop cough, spasm pain-relieving; tuberculosis hemoptysis, pertussis, peratodynia, overstrained cough, rheumatoid arthritis	
P. denticulatum	Xue Shao	Hillside sunny shrubs, winding from other plants	Gui Zhou	Root tuber: heat-clearing, detoxification, stasis-dissipating, hemostasis with astringents, relieving asthma; dysentery, tormina postpartum, traumatic swelling	
P. denta-alatum	Chi Chi Liao	Altitude 500–2000 m, hillside shrubs, riverbank, wasteland	Hei Long Jiang, Liao Ning, He Bei, Shaan Xi, Gan Su, He Nan	Whole plant: red eyes	
---------------------	-------------	---	---	---------------------	
P. dissitiflorum (Persicaria dissitiflorum)	Xi Hua Liao, Hong Xiang Long Cao (Hu Bei)	Altitude 750–1500 m, forest wetland, riverbank	Northeast China, north China, east China, central south China, Shaan Xi, Gan Su	Whole plant: detoxification, diuresis; snakebite, stranguria	
P. divaricatum (Persicaria divaricata)	Cha Fen Liao, Suan Bu Liu (northeast China), Suan Jiang (northeast China, desert)	Hillside grassland	North China, Ji Lin, Liao Ning, Qing Hai, Shan Dong, Hu Bei, Si Chuan, Tibet	Root: acid, sweet, warm; dispelling cold, warming the kidney; cold hernia, scrotal sweating	
P. emodi (Bistorta emodi)	Hong Teng Liao	Hillside grassland	Si Chuan, Yun Nan	Whole plant: light, lukewarm; muscle-relaxing and blood-activating; traumatic injury, rheumatalgia	
P. excurrens (Persicaria excurrens)	Zhong Zhou Liao	Altitude <1000 m, hillside bushes, valley	Northeast China, north China, An Hui, Jiang Xi, Hu Bei	Whole plant: relieve pain, insecticide	

Continued
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. flaccidum (*P. hydropiper* var. *flaccidum*, *Persicaria flaccida*)	La Liao, La Ma Liao (Jiang Xi), Liao Zi Cao (Si Chuan)	Waterfront, wetland	Northeast China, Jiang Xi, Fu Jian, Guang Dong, Si Chuan, Gui Zhou	Whole plant: pungent, warm; slightly poisonous; wind-dispelling and diuresis-promoting, stagnation-removing, stasis-dissipating, relieve pain, insecticide; dysentery, diarrhea, uterine bleeding, tonsillitis, rheumatalgia, traumatic swelling	
P. giraldii	Yi Liao	Altitude 600–1800 m, hillside, roadside, ditch, bushes	He Bei, Shan Xi, Shaan Xi, Gan Su, He Nan, Hu Bei, Si Chuan, Gui Zhou	Root tuber: acid, bitter, cool; heat-clearing, detoxification, hemostasis, pain-relieving; diarrhea, dysentery, pain in waist and lower extremities, hemafecia, uterine bleeding; external use for burn, sore and furuncle, dog bite	
P. griffithii	Chang Geng Liao	Altitude 3300–4400 m, hillside grassland, stone crevice	Cona and Zayü of Tibet	Rhizome: heat-clearing, detoxification	
P. heterophyllum	Yi Ye Liao	Roadside	Northeast China	Whole plant: heat-clearing, diuresis, insecticide	
---------------------	------------	----------	----------------	---	
P. hydropiper					
(Persicaria hydropiper)	Shui Liao, La Ren Cao (Zhe Jiang), Tong Gu Xiao (Guang Xi), Yao Liao (Si Chuan), Hu La Liao (northeast China)	Altitude			
<1500 m, hillside, roadside bushes, ditch, wetland	All over China	Whole plant: pungent, warm; slightly poisonous, wind-dispelling and diuresis-promoting, stagnation-reducing, stasis-dissipating, pain-relieving, insecticide; dysentery, diarrhea, indigestion, malnutrition, eczema, stubborn dermatitis, rheumatalgia, injuries from falls			
P. hydropiper var. hispidum	Mao Shui Liao	Wetland	Fu Jian, Gui Zhou	Whole plant: bitter, slightly pungent, cool; dysentery, diarrhea, heatstroke, abdominal pain	
P. japonicum					
(Persicaria japonia)	Can Jian Cao, Liao Cao (Zhe Jiang), Shui Liao (HuBei), Hong Liao Zi (Gui Zhou)	Hill, plain roadside, bushes, ditch, wetland	Jiang Su, An Hui, Zhe Jiang, Jiang Xi, Fu Jian, Tai Wan, He Nan, Hu Bei, Guang Dong, Guang Xi, Si Chuan, Gui Zhou	Whole plant: pungent, warm; stasis-dissipating and blood-activating; waist and knee pain, measles, dysentery	
P. jucundum					
(Persicaria jucunda) | Yu Yue Liao | Altitude
200–700 m, hillside bushes, valley, roadside, ditch, wetland | Yangtze River basin, southeast China | Whole plant: diarrhea |

P. hydropiper var. angustifolia and P. hydropiper var. diffusa of Hei Long Jiang have similar efficacy

P. minus (Persicaria minor) has the same efficacy, distributed in northeast, north, east, central south, and southwest China
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. lapathifolium (<i>Persicaria lapathifolia</i>)	Suan Mo Ye Liao, Liao Diao Zi (northeast China), Han Tian Liao (Si Chuan), Da Ma Liao	Altitude <1900 m, hillside, roadside, creek	Northeast China, north China, Shaan Xi, Gan Su, Ning Xia, Shan Dong, Jiang Su, An Hui, Zhe Jiang, He Nan, Hu Bei, Guang Dong, Guang Xi, Si Chuan, Gui Zhou	Whole plant: pungent, bitter, cool; heat-clearing, detoxification, diuresis-promoting, relieve itching; dysentery, diarrhea; external use for eczema, scrofula	
P. lapathifolium var. salicifolium	Mian Mao Suan Mo Ye Liao, Hong La Liao (Hu Bei), La Liao Cao (Jiang Su), Liu Ye Liao (Gui Zhou)	Low mountain ditch, waterfront, wet lowland	All over the country	Whole plant: wind-dispelling and diuresis-promoting, heat-clearing, detoxification, hemostasis, help digestion	
P. lapathifolium var. xanthophyllun	Huang Ban Suan Mo Ye Liao, Liao Zi Cao (Si Chuan)	Altitude 500–1500 m, hillside grassland Hillside, hayfield	Shaan Xi, Gan Su, Ning Xia, Hu Bei, Si Chuan Northeast China, He Bei	Whole plant: heat-clearing, diuresis	
P. lapidosum	Shi Sheng Liao	By the fountain valley, damp place	All over the country	Rhizome: bitter, slightly cold; slightly poisonous; heat-clearing, detoxification, blood-cooling, hemostasis	Used as *P. bistorta* in northeast China
P. longisetum (<i>Persicaria Longiseta</i>)	Chang Zong Liao, La Liao (Hu Bei), Shui Hong Hua (Si Chuan)	By the fountain valley, damp place	All over the country	Whole plant: blood-activating and stasis-dissipating, apocatastasis, pain-relieving	Used as *P. flaccidum* in some regions
Species	Common Names	Altitude/Location	Medicinal Uses	Local Standard	
-------------------------------	-------------------------------------	--	---	--	
P. macranthum (<i>P. japonicum</i> var. *conspicuum*; *Persicaria conspicua*)	Da Hua Liao, Da Chang Hua Liao (Gui Zhou)	Altitude <700 m, hillside, roadside, bushes, wetland	Shan Xi, Shaan Xi, Jiang Su, An Hui, Zhe Jiang, Tai Wan, Hu Bei, Si Chuan, Gui Zhou, Yun Nan		
P. macrophyllum (<i>Bistorta macrophylla</i>; *P. sphaerostachyum*)	Yuan Sui Liao, Xie Zi Qi (Shaan Xi), Ran Bo (Tibetan)	Hilly area	South West China, Shaan Xi, Gan Su, Qing Hai, Hu Bei		
P. mandshuriense	Er Ye Liao, Bei Chong Lou (Liao Ning)	Hillside, wet grassland	Northeast China, He Bei		
P. microcephalum	Xiao Tou Liao	Altitude 1500–1800 m, forest, roadside bushes	Southwest China, He Nan, Hu Bei, Hu Nan		
P. molle (<i>Ampelopgonum molle</i>; *Aconogonon molle*)	Juan Mao Liao	Waterfront, roadside wetland	Guang Xi		
			Whole plant: rheumatalgia, injuries from falls, dysentery, diarrhea		
			Rhizome: bitter, astringent, cool; astringent, hemostasis, blood-activating, stop diarrhea; dysentery, hematemesis, bleeding from five sense organs, uterine bleeding, leukorrheal disease, injuries from falls	Local standard of Liao Ning	
			Whole plant: hemostasis		
			Whole plant: antinflammation, hemostasis		
			Whole plant: sores		

Continued
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. muricatum (*P. strigosum* var. *muricatum*)	Fu Jing Liao	Low-altitude hillside, roadside bushes, wetland	Middle and lower reaches of the Yangtze River to the south	Whole plant: itch of skin, dysentery	China Pharmacopoeia 1990
P. multiflorum (*Pleuropterus multiflorus*; *Reynoutria multiflora*; *Tiniaria multiflora*; *Fallopia multiflora*)	He Shou Wu, Jin Shou Wu (Zhe Jiang), Ye Shao (Hu Bei), Wo Pu Weng (Miao ethnic group), Ma Gan Shi	Altitude 500–2200 m, hillside, roadside valley, waterfront, bushes	He Bei, Shan Xi, Shaan Xi, Gan Su, Xin Jiang, Shan Dong, Jiang Su, An Hui, Zhe Jiang, Jiang Xi, He Nan, Hu Bei, Guang Dong, Guang Xi, Si Chuan, Gui Zhou, Yun Nan; main producing area: He Nan, Hu Bei, Si Chuan	Root tuber: bitter, sweet, astringent, warm; detoxification, boils, relaxing bowel; scrofula, sore carbuncle, rubella itching, dry intestinal constipation, hyperlipemia; rattan: sweet, flat; nourishing the blood and tranquilization, wind-dispelling and collateral-dredging; insomnia and dreamful sleep, blood deficiency and body pain, rheumatalgia; external use for itch of skin	
P. nodosum (*Persicaria nodosa*)	Jie Liao, Qu La Liao (Hu Bei)	Altitude 600–1400 m, ravine waterfront, roadside wetland	Northeast China, north China, northwest China, southwest China	Whole plant with root: insecticide, detoxification, stasis-dissipating and resuscitation-inducing; sores, toxic heat	Aboveground part is used as *P. orientale*
P. ochotense	Dao Gen Liao	Alpine tundra	Changbai Mountain, Ji Lin	Rhizome: blood-cooling, detoxification	Used as *Paris polyphylla* in Ji Lin
P. orientale (*Persicaria orientalis*)	Hong Liao, Jia Liao (Xin Jiang), Jiu Yao Cao (Zhe Jiang), Ba Zi Liao (Fu Jian), Dong Fang Liao	Low mountain, hills, plain, ditch, roadside, grassland, wetland, often grow in plots, or in cultivation	All over the country; main producing area: Jiang Su, Liao Ning	Fruit: saline, cool; blood-scattering and bulk breakdown, stagnation-reducing and pain-relieving; lump in the abdomen, cancer pain, indigestion, epigastric pain; whole plant: pungent, cool; slightly poisonous; wind-dispelling and diuresis-promoting, blood-activating and pain-relieving; rheumatalgia, malaria, hernia, smelly feet	
P. pacificum (*Bistorta pacifica*)	Pacific Liao	High mountain bushes, forest, wet meadow	Hei Long Jiang	Rhizome: heat-clearing, detoxification, blood-cooling, hemostasis, astringent; bloody dysentery, hematemesis, burn, bleeding wound	
P. paleaceum (*Bistorta chinensis*)	Cao Xue Jie, Xia Zi Qi (Hu Bei), Zi Hua Gen (Yun Nan), Yi Kou Xue (Si Chuan)	Altitude 2000 m, alpine meadow	Qing Hai, Hu Bei, Si Chuan, Gui Zhou, Yun Nan	Rhizome: bitter, astringent, lukewarm; blood-activating and stasis-dissipating, pain-relieving, hemostasis; stomachache, indigestion, irregular menses, edema, injuries from falls	

Continued
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. perfoliatum	*Persicaria perfoliata*; *Ampelopygonum perfoliatum*; *Truellum perfoliatum*	Gang Ban Gui, Shui Ma Ling (Shang Hai), Lan Lu Hu (Fu Jian), Da Meng Tui (Guang Xi), She Dao Tui (Si Chuan)	Altitude <1700 m, valley shrubs, ditch	All over the country	Whole plant: acid, cool; heat-clearing, detoxification, diuresis, apocatastasis; edema, jaundice, diarrhea, malaria, pertussis, eczema, scabies
				Tibetan	Tibetan medicine
P. peregrinatoris	*Aconogonon peregrinatoris*	Ni A Luo (Tibetan)	Altitude 3800–4900 m, hillside meadow, flood land	Tibet	Root: pungent, warm; antidysernty with astringent; dysentery, diarrhea
P. persicaria	*Persicaria vulgaris*	Tao Ye Liao, Shan La Liao (Hu Bei)	Altitude <1000 m, ditch, roadside wetland	Ji Lin, He Bei, Shaan Xi, Gan Su, Xin Jiang, Shan Dong, Jiang Xi, Fu Jian, He Nan, Hu Bei, Si Chuan, Gui Zhou, Tibet	Whole plant: pungent, warm; sweating dehumidification, help digestion; dysentery, diarrhea, snakebite
				Shaan Xi, Gan Su, Hu Bei, Si Chuan	Whole plant: heat-clearing, detoxification, wind-dispelling and diuresis-promoting, reduce phlegm
P. pinetorum	*Persicaria pinetorum*	Song Lin Liao	Altitude 2000–2500 m, coniferous and broadleaved mixed forest, wet valley, roadside		
P. plebeium	Ye Hua Liao, Mi Zi Liao (Guang Xi), Xi Jian Liao (Gui Zhou)	Low mountain, hills, plain, hillside, roadside	Central south China, southwest China, He Bei, Shaan Xi, Jiang Su, An Hui, Jiang Xi, Fu Jian, Tai Wan	Whole plant: diuresis-promoting, stranguria, resolving turbidity, insecticide; malignant sore scabies, stranguria with turbid discharge, ascariasis	
P. polystachyum *(Aconogonon polystachyum; Persicaria polystachya)*	Duo Sui Liao, Zi Zi Sa Zeng (Tibetan)	Barren hills	Si Chuan, Tibet	Tibetan medicine; used as *P. flaccidum* in Tibet	
P. rude *(Persicaria rudia; Aconogonon molle var. nide)*	Jiu Gu Niu	Ditch	Gui Zhou	Whole plant: pungent, cool; wind-dispelling and damp-removing, heat-clearing, detoxification, insecticide; dysentery, diarrhea, infantile indigestion, injuries from falls, rheumatalgia	
P. runcinatum *(Persicria runcinata)*	Chi Jing San, Fei E Qi (Hu Bei), She Tou Liao (Guang Xi), Xue Dang Gui (Yun Nan), Ku Cha Tou Cao	Altitude 1000–2500 m, hillside bushes, ditch wetland	Tai Wan, He Nan, Hu Bei, Hu Nan, Guang Xi, Si Chuan, Gui Zhou, Yun Nan	Whole plant: acid, bitter, cool; heat-clearing, detoxification, blood-activating, swell-reducing; dysentery, stomachache, leukorrheal disease, amenorrhea	
				P. runcinatum var. *corymbosum* of Gui Zhou has similar efficacy	
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
--------------------	-------------------------------------	--------------------------------	---	--	--
P. runcinatum var. *sinense*	Hua Chi Jing San, San Xue Dan (Hu Bei), Hua Liao Zi Cao (Si Chuan)	Altitude 1300–2600 m, forest, roadside bushes, ditch	Shaan Xi, Gan Su, He Nan, Hu Bei, Hu Nan, Guang Xi, Si Chuan, Yun Nan	Root/whole plant: bitter, astringent, cold; swell-reducing and detoxicating, blood-activating and muscle-relaxing; overstrained cough, irregular menses, rheumatality, injuries from falls	
P. sagittifolium	Da Jian Ye Liao, She Zi Cao (Guang Xi), She Dao Tui (Hu Bei)	Altitude 800–1500 m, mountain roadside, ditch wetland	Shaan Xi, Hu Bei, Hu Nan, Si Chuan, Gui Zhou	Whole plant: heat-clearing, detoxification, dysentery, furunculosis, itch of skin, snakebite	
P. senticosum (*Persicaria senticosa*)	Ci Liao, Mao Er Ci (Zhe Jiang)	Altitude <1000 m, hillside, roadside bushes, forest, ditch, rock seam	East China, centralsouth China, Ji Lin, Liao Ning, He Bei, Bei Jing, Gui Zhou	Whole plant: acid, slightly pungent, flat; detoxification, apocatastasis, diuresis-promoting, itch-relieving; paronychia, refractory carbuncle furuncle, hurt, eczema, itching and pain, internal and external hemorrhoids	
P. sibiricum					
(Persicaria sibirica; Aconogonon sibiricum)	Siberia Liao, Jian Dao Gu (Si Chuan)	Altitude			
<1600 m, saline meadow, saline lowland, gravel saline alkali soil	Hei Long Jiang, Liao Ning, He Bei, Bei Jing, Inner Mongolia, Gan Su, Ning Xia, Qing Hai, Shan Dong, north Jiang Su, He Nan, Si Chuan, Yun Nan, Tibet	Root: edema; whole plant: heat-clearing, detoxification, wind-dispelling, and damp-removing			
P. sieboldii					
(Persicaaria sieboldii)	Jian Ye Liao, Ju Ju Cao (Hu Bei), Zou You Cao (Si Chuan), Que Chi	Altitude			
<1800 m, hillside, ditch, wet bushes	Northeast China, He Bei, Shan Dong, Jiang Su, An Hui, Fu Jian, Hu Bei, Hu Nan, Si Chuan, Gui Zhou	Whole plant: acid, astringent, flat; wind-dispelling and damp-removing, heat-clearing, detoxification; rheumatalgia, snakebite			
P. suffultum					
(Bistorta suffulta)	Zhi Zhu Liao, Xue San Qi (Zhe Jiang), Suan Pan Qi (Hu Bei), Niu Zi Qi (Si Chuan), Hong San Qi (Shaan Xi)	Altitude			
1200–2000 m, forest, wet bushes, creek, roadside	Southwest China, He Bei, Shan Xi, Shaan Xi, Gan Su, Ning Xia, Qing Hai, An Hui, Zhe Jiang, Jiang Xi, He Nan, Hu Bei, Hu Nan	Rhizome: bitter, astringent, cool; hemostasis with astringents, analgesia, myogenic; traumatic injury, overstrained hemoptysis, hemafecia, irregular menses			
P. taipaishanense	Tai Bai Liao	Altitude			
2800–3200 m, mountain meadow | Taibai Mountain, Shaan Xi | Rhizome: bitter, astringent, cool; heat-clearing, detoxification, stasis-removing, hemostasis |

P. suffultum var. *pergracile* has similar efficacy, distributed in Shaan Xi, Gan Su, Hu Bei, Si Chuan, Yun Nan

Endemic in Shaan Xi
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
P. thunbergii (*Persicaria thunbergii*)	Ji Ye Liao, Lu Ti Cao (Jiang Su), Shui Hu Die (Hu Bei), Shui Ma Liao	Altitude <1850 m, valley, forest, wet meadow	Northeast China, He Bei, Shaan Xi, Shan Dong, Jiang Su, An Hui, Zhe Jiang, Fu Jian, Tai Wan, Hu Bei, Hu Nan, Guang Xi, Si Chuan, Gui Zhou, Yun Nan	Rhizome/whole plant: acid, slightly pungent, flat; heat-clearing, detoxification, blood-cooling, hemostasis, wind-dispelling, analgesia, cough-relieving; acute filthy disease, snakebite, dysentery	China Pharmacopoeia 1990
P. tinctorium (*Persicaria tinctoria*)	Liao Lan, Da Qing Ye (northeast and northern China), Qing Ban Shui La Liao (Zhe Jiang), Lan Dian, Lan Liao (northeast China)	Native to China, in cultivation/ semiwild throughout the country	He Bei, Shan Xi	Leaf: bitter, cold; heat-clearing, detoxification, blood-cooling, removing ecchymoses; febrile fever, rash, dyspnea and cough due to lung heat, pharyngitis, mumps, erysipelas, carbuncle; processed (indigo naturalis): saline, cold; heat-clearing, detoxification, blood-cooling, arresting convulsion; febrile disease, hot blood and vomiting, chest pain, hemoptysis, aphtha, child’s epilepsy	
Plant Name	Common Name	Habitat	Distribution	Medicinal Properties	
------------	-------------	---------	--------------	----------------------	
P. viscosum					
(*Persicaria viscosa*)	Nian Mao Liao	Low-altitude, roadside wetland, frontline	Central south China, Ji Lin, Liao Ning, Shaan Xi, Jiang Su, Zhe Jiang, Jiang Xi, Fu Jian, Tai Wan, Si Chuan, Gui Zhou, Yun Nan	Rhizome: heat-clearing, detoxification, blood-cooling, hemostasis	
P. viviparum					
(*Bistorta vivipara*)	Zhu Ya Liao, Hong San Qi (Ning Xia), Hou Er Qi (Hu Bei), Ye Gao Liang (Si Chuan)	Altitude 1200–3000 m, alpine grassland, wetland, creek	North China, southwest China, Ji Lin, Shaan Xi, Gan Su, Qing Hai, Xin Jiang, He Nan	Rhizome: bitter, astringent, cool; heat-clearing, detoxification, stasis-removing, hemostasis; tonsillitis, sore throat, dysentery, diarrhea, leukorrheal disease, hemafecia	
Rheum altaicum	Altai Da Huang	Mountain rock seam, gravel	Xin Jiang	Root/rhizome: reducing excess heat, bowel-relaxing, break and remove stasis, swell-reducing	
Rheum delavayi	Sha Qi, Bai Xiao Huang (Yun Nan)	Mountainous region	Yun Nan	Root: bitter, cool; heat-clearing, detoxification, hemostasis, myogenic; lung heat and cough, sore throat, hemafecia, traumatic bleeding, fracture, traumatic sprain, rheumatic arthralgia	
R. compactum	has the same efficacy and distribution area				

Continued
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
Rheum emodi	Zang Bian Da Huang, Bai Niu Wei Qi	Altitude 3200–4300 m, hillside shrubs, boulders beach, cliff	Yun Nan, Tibet; cultivated in northwest China	Root: bitter, sweet, cold; heat-clearing, detoxification, hemostasis, myogenic; lung heat and cough, sore throat, hemafecia, carbuncle, traumatic bleeding	
Rheum forrestii	Niu Wei Qi, Hong Ma Ti Niao (Si Chuan), Xue San Qi (Yun Nan)	Altitude 3000 m, rock	Si Chuan, Yun Nan	Root: bitter, cool; muscle-relaxing and blood-activating, hemostasis, heat-clearing; sore throat, mumps, constipation, traumatic injury, and bleeding	
Rheum franzenbachii	Bo Ye Da Huang, Hua Bei Da Huang, Tang Da Huang	Hillside meadow	North China, Ji Lin, Liao Ning, Xin Jiang, Hu Bei; in cultivation	Rhizome: bitter, cold; purging heat, bowel-relaxing, break and remove stasis; heat constipation, jaundice with damp-heat, furuncle and carbuncle, traumatic stasis pain, aphthous ulcer, burn	*R. nanum* has similar efficacy, distributed in Inner Mongolia, Gan Su, Xin Jiang
Rheum nobile	Gao Shan Da Huang, Ta Huang (Tibet)	Altitude 4500–5200 m, mountainside, meadow	Tibet	Rhizome: bitter, cold; reducing excess heat, stagnation-breaking, stasis-removing; heat constipation, delirium, dyspeptic hysteresis, dysentery, abdominal pain, tenesmus, hygropyretic jaundice, edema, red eyes, headache, amenorrhea	
-----------------	-----------------------------------	---	-------	-----------------------------	
Rheum officinale	Da Huang, Nan Da Huang, Xi Da Huang, Chuan Jun, Jun (Tibetan)	Altitude 1300–1600 m, hilly area, rand, hillside	Southwest China, Shaan Xi, Gan Su, Qing Hai, He Nan, Hu Bei; main producing area: Gan Su, Qing Hai	Root/rhizome: bitter, cold; purgating heat and bowels, blood-cooling and detoxification, stasis-removing and collateral-dredging; heat constipation, stagnation of abdominal pain, uncomfortable diarrhea, hygropyretic jaundice, hot blood and vomiting, red eyes, sore throat, blood stasis/amenorrhea, traumatic injury	
Rheum palmatum	Zhang Ye Da Huang, Bei Da Huang, Jin Da Huang (Hu Bei)	Hilly area, forest, grass slope	Shaan Xi, Gan Su, Qing Hai, Hu Bei, Si Chuan, Tibet; in cultivation	Root/rhizome: same as *R. officinale*	

China Pharmacopoeia 1990; *R. tibeticum* of Qing Hai has similar efficacy; *R. wittrockii*, distributed in north and south Xin Jiang.
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
Rheum pumilum	Xiao Da Huang	Shady mountain slope, semishady slope, meadow	Qing Hai	Root: bitter, cold; purging stomach/bowel stagnation, reducing excess heat, blood stasis-discharging, subduing inflammation; stagnation, dyspepsia, abdominal pain, endoretenion of heat, constipation	
Rheum tanguticum	Tang Gu Te Da Huang, Ji Zhua Da Huang	Mountain shrubs, woodside, damp place	Gan Su, Qing Hai, Hu Bei, Si Chuan, Tibet; cultivated in Shaan Xi North China, northwest China, Ji Lin, Liao Ning, Jiang Su, An Hui, Zhe Jiang, Jiang Xi, He Nan, Hu Bei, Hu Nan, Si Chuan, Gui Zhou, Yun Nan	Root/rhizome: same as *R. officinale*	China Pharmacopoeia 1990; *R. tanguticum* has similar efficacy
Rumex acetosa	Suan Mo, Suan Jiang (northeast China), Shan Bo Cai (Hu Bei), Niu Er Da Huang (Hu Nan, Si Chuan, Gui Zhou)	Low-altitude to 3100 m, mountain, wet valley, woodside, meadow	North China, northwest China, Ji Lin, Liao Ning, Jiang Su, An Hui, Zhe Jiang, Jiang Xi, He Nan, Hu Bei, Hu Nan, Si Chuan, Gui Zhou, Yun Nan	Root/whole plant: acid, bitter, cold; blood-cooling, detoxification, bowel-relaxing, insecticide; heat dysentery, stranguria, hematemesis, malignant sore, scabies	
Rumex aquaticus	Shui Sheng Suan Mo	Altitude <2400 m, valley, ditch	North China, northeast China, northwest China, Hu Bei	Root: dyspepsia, acute hepatitis, eczema, stubborn dermatitis	
Species	Common Names	Habitats, Geographical Areas	Medicinal Properties		
-------------------------	-----------------------------------	---	--		
Rumex chalepensis	Zhong Ya Suan Mo	Open field, riverside, roadside, wasteland, grassland, Northeast China, He Bei, Shaan Xi, Shan Dong, Jiang Su, Jiang Xi, He Nan, Hu Bei	Root: bitter, acid, cold; blood-cooling, hemostasis, heat-clearing, detoxification, insecticide; uterine bleeding, hematemesis, hemoptysis, nasal bleeding, stomach bleeding, hemafecia, hemokelidosis, constipation, edema		
Rumex crispus	Zhou Ye Suan Mo, Niu She Tou (Ning Xia), Yang Ti Gen (Ji Lin), Si Ji Cai Gen (Si Chuan)	Roadside, damp place, waterfront, Northeast China, He Bei, Inner Mongolia, Shaan Xi, Ning Xia, Qing Hai, Jiang Su, An Hui, Zhe Jiang, Fu Jian, Tai Wan, He Nan, Hu Bei, Guang Xi, Si Chuan, Gui Zhou, Yun Nan	Root/whole plant: bitter, acid, cold; heat-clearing, blood-cooling, bowel-relaxing, insecticide, resolve phlegm and relieve cough; acute hepatitis, cough and phlegm, hematemesis, metrorrhagia, constipation, dysentery, scabies		
Rumex dentatus	Chi Guo Suan Mo, Niu Er Da Huang (Si Chuan), Niu She Cao (Jiang Su)	Altitude 400–1200 m, fringe wetland, He Bei, Shan Xi, Shaan Xi, Gan Su, Qing Hai, Jiang Su, An Hui, Zhe Jiang, He Nan, Hu Bei, Si Chuan, Gui Zhou, Yun Nan	Root/whole plant: similar to R. crispus; leaf: breast swelling		

R. crispus var. unicallosus of Ning Xia has similar efficacy
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
Rumex gmelini	Mao Mai Suan Mo	Waterfront, wet meadow	Northeast China, He Bei, Inner Mongolia	Root: hemostasis, laxative	
Rumex hastatus	Chuan Dian Tu Da Huang	Hillside meadow	Si Chuan, Yun Nan	Whole plant: acid, astringent, slightly pungent, warm; inducing sweat and dispelling exogenous evils, moistening lung to arrest cough; common cold, cough, edema, asthma due to excessive phlegm	
Rumex japonicus	Yang Ti, Yang She Tou (Zhe Jiang), Niu Li Cai (Guang Xi), Niu She Da Huang	Mountains and plains, roadside damp place	East China, central south China, Gui Zhou	Root: bitter, acid, cold; slightly poisonous; blood-cooling and hemostasis, loosen stools, detoxification, insecticide; constipation, stranguria with turbid discharge, jaundice, hematemesis, hemorrhoidal hemorrhage, favus of the scalp; leaf: sweet, cold; hemorrhoidal hemorrhage, constipation, infantile malnutrition; fruit: bitter, astringent, flat; mixed red and white dysentery	
				R.nepalensis has the same efficacy, distributed in southwest China, Shaan Xi, Gan Su, Qing Hai, Jiang Xi, He Nan, Hu Bei	
Species	Common Names	Distribution	Medicinal Uses		
----------------------	---	---	---		
Rumex maritimus	Chang Ci Suan Mo, Niu Shi Cao (Hu Bei), Xue Da Huang (Si Chuan), Zhou Ye Yang Ti (Guang Xi)	Roadside, ditch, damp place	Whole plant: slightly sweet, slightly bitter, cool; heat-clearing and blood-cooling, insecticide/ detoxification; tuberculosis hemoptysis, carbuncle, favus of the scalp itch, itch of skin, traumatic injury, hemorrhoidal bleeding		
		Northeast China, north China, Yangtze River basin, Fu Jian, Guang Xi, Gui Zhou			
Rumex obtusifolius	Dun Ye Suan Mo, Xue San Qi, Hua Xue Lian (Jiang Su)	Hillside, damp place, open forest	Root: bitter, cold; clearing away heat and loosing the bowels, killing parasites to relieve itching, hemostasis; lung abscess, hemoptysis, hepatitis, constipation; external use in traumatic injury, burn		
(R. madaio)					
		Yangtze River basin			
Rumex patientia	Ba Tian Suan Mo, Tu Da Huang (Shaan Xi), Niu Xi Xi (Jiang Xi)	Roadside, village wetland, ditch	Root: bitter, acid, cold; slightly poisonous; blood-cooling and hemostasis, heat-clearing and detoxification, laxative, insecticide; dysentery, diarrhea, hepatitis, traumatic injury, constipation, ulcerative carbuncle, scabies		
			R. patientia var. *callosus* of northeast China has the same efficacy		
Species	Chinese name	Habitat	Distribution	Therapeutic use	Note
-------------------------	-----------------	--------------------------	-----------------------------------	---	--
Rumex stenophyllus	Zhai Ye Suan Mo	Wet meadow, saline soil	Northeast China, north China, Xin Jiang	Root: bitter, acid, cold; blood-cooling and hemostasis, heat-clearing and detoxification, insecticidal; uterine bleeding, gastrorrhagia, hemafecia, hemokelidosis, edema	*R. stenophyllus* var. *ussuriensis* of Hei Long Jiang has the same efficacy
No.	R_1	R_2	R_3	R_4	R_5
-----	-------	-------	-------	---------	---------
1	H	H	H	H	H
2	H	H	H	H	Galloyl
3	H	H	Galloyl	H	H
4	H	H	H	$\alpha\text{-D-Glc}$	H
5	H	H	H	H	$\alpha\text{-D-Glc}$
6	H	$\alpha\text{-D-Glc}$	H	H	H
7	$\alpha\text{-D-Glc}$	H	H	H	H
8	H	H	$\beta\text{-D-Fru}$ (f)	H	H

Figure 12.1 Examples of compounds isolated from the *Polygonum* species. Refer to Table 12.2 for more details.

(Continued)
Figure 12.1 Continued.
No.	\(R_1 \)	\(R_2 \)	\(R_3 \)	\(R_4 \)	\(R_5 \)
15	OH	OH	OH	H	H
16	OH	OCH\(_3\)	OH	H	H
17	H	OH	OH	H	H
18	H	OH	OCH\(_3\)	H	H
19	H	OCH\(_3\)	H	H	H
20	H	OH	H	H	H
21	H	OH	H	COCH\(_3\)	H
22	H	OH	OCH\(_3\)	COCH\(_3\)	H
23	H	OH	OH	COCH\(_3\)	H
24	H	OH	OH	H	COCH\(_3\)
25	H	OH	H	H	COCH\(_3\)
26	OH	OH	H	H	H
27	OH	OH	H	\(\alpha\)-L-Rha	H
28	OH	OH	H	\(\alpha\)-L-Rha	H

No.	\(R_1 \)	\(R_2 \)	\(R_3 \)	\(R_4 \)
29	\(OR_x \)	H	H	OCH\(_3\)
30	\(OR_y \)	H	H	OCH\(_3\)
31	OH	H	OH	H

Figure 12.1 Continued.
No.	R	R1	R2
43	H		
44	OCH₃		
45	H	H	
46	H	OH	
47	OH	H	
Figure 12.1 Continued.			
Figure 12.1 Continued.			
Figure 12.1 Continued.			
No.	R₁	R₂	R₃
-----	------	------	------
90	OCH₃	OCH₃	H
91	H	H	α-L-Rha
92	OH		
93	H		

Figure 12.1 Continued.
No.	R	No.	R₁	R₂
97	Ac	100	H	CH₃
98	H	101	H	H
99	β-D-Glc	102	β-D-Glc	H
		103	β-D-Glc	CH₃

![Structural formulas](image1.png)

Glc: β-D-glucopyranosyl
Glc: α-D-glucopyranosyl
GlcA: β-D-glucuropyranosyl

Figure 12.1 Continued.
85.66% of the total organic ester compounds. 1-Phenyl-1-pentanone and acetophenone were 16.30% and 4.33% of the total volatiles, respectively.

The liverwort (Porella vernicosa) complex produces a very hot tasting polygodial, a drimane-type sesquiterpene dialdehyde. The same compound has been isolated from two ferns, Thelypteris hispidula and Blechnum fluviatile, as well as from the higher plants Polygonum hydropiper and P. hydropiper f. purpurascens (Polygonaceae); Cinnamosma, Caspicodendron, Canella, and Warburgia species (Canellaceae); and Pseudowintera colorata, Tasmannia lanceolata, Drimys, and Zygogynum species (Winteraceae) (Asakawa et al., 2012). In addition, the liverworts and higher plants that elaborate polygodial and its related pungent drimane diols contain a small amount of α-tocopherol, γ-tocopherol, or δ-tocotrienol. The drimane-type sesquiterpenoids and tocopherols might be useful chemotaxonomic markers in some lower and higher plants, including Polygonaceae.

12.2.3 Other compounds

2-Furanmethanol, 2 (5H)-furanone, 2-hydroxy-2-cyclopenten-1-one, 2, 4-dihydroxy-2,5-dimethyl-3(2H)-furan-3-one, 2H-pyran-2,6 (3H)-dione, 2-hydroxy-gamma-butyrolactone, 2,5-dimethyl-4-hydroxy-3 (2H)-furanone, 2,5-furandicarboxaldehyde, 2,3-dihydro-3,5-dihydroxy-6-methyl 4H-pyran-4-one, (S)-(−)-2′, 3′-dideoxyribonolactone, 5-(hydroxymethyl)-furancarboxaldehyde, 3-deoxy-α-mannoic lactone, etc. were found in the callus of P. minus (Vikram et al., 2014).
No.	Compounds	Types	Species	Tissues	References
1	2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucopyranoside	A	a	Tubers, roots	Cheung et al. (2014), Kim et al. (2008a,b), and Xu et al. (2006)
2	(E)-2,3,4’,5-Tetrahydroxystilbene-2-β-d-(6″-galloyl)-glucopyranoside	A	a	Roots	Kim et al. (2008a,b)
3	(E)-2,3,4’,5-Tetrahydroxystilbene-2-β-d-(2″-galloyl)-glucoside	A	a	Roots	Kim et al. (2008a,b)
4	(E)-2,3,5,4′-Tetrahydroxystilbene-2-O-(4″-O-α-d-glucopyranosyl)-β-d-glucopyranoside	A	a	Roots	Li et al. (2013a)
5	(E)-2,3,5,4′-Tetrahydroxystilbene-2-O-(6″-O-β-d-glucopyranosyl)-β-d-glucopyranoside	A	a	Roots	Li et al. (2013a)
6	(E)-2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucopyranosyl-4″-O-α-d-glucopyranoside	A	a	Roots	Li et al. (2013a)
7	(E)-2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucopyranosyl-5-O-α-d-glucopyranoside	A	a	Roots	Li et al. (2013a)
8	(E)-2,3,5,4′-Tetrahydroxystilbene-2-O-(2″-O-β-d-fructofuranosyl)-β-d-glucopyranoside	A	a	Roots	Li et al. (2013a)
9	Polygonoside A	A	a	Roots	Yan et al. (2014)
10	Polygonoside B	A	a	Roots	Yan et al. (2014)
11	Polygonoside C	A	a	Roots	Yan et al. (2014)
12	Polygonoside D	A	a	Roots	Yan et al. (2014)
13	Polyflavanostilbene A	A	b	Rhizomes	Li et al. (2013b)
14	(Z)-2,3,4’,5-Tetrahydroxystilbene-2-β-d-glucoside	A	a	Roots	Kim et al. (2008a,b) and Xu et al. (2006)
15	Myricetin 3-O-β-d-glucuronide	B	c	Herbs	Granica et al. (2013)
16	Mearsetin 3-O-β-d-glucuronide	B	c	Herbs	Granica et al. (2013)

Continued
No.	Compounds	Types	Species	Tissues	References
17	Quercetin 3-O-β-D-glucuronide	B	c	Herbs	Granica et al. (2013)
18	Isorhamnetin 3-O-β-D-glucuronide	B	c	Herbs	Granica et al. (2013)
19	Kaempferide 3-O-β-D-glucuronide	B	c	Herbs	Granica et al. (2013)
20	Kaempferol 3-O-β-D-glucuronide	B	c	Herbs	Granica et al. (2013)
21	Kaempferol 3-O-β-(2''-O-acetyl-β-D-glucuronide)	B	c	Herbs	Granica et al. (2013)
22	Isorhamnetin 3-O-β-(2''-O-acetyl-β-D-glucuronide)	B	c	Herbs	Granica et al. (2013)
23	Quercetin 3-O-β-(2''-O-acetyl-β-D-glucuronide)	B	c	Herbs	Granica et al. (2013)
24	Quercetin 3-O-β-(3''-O-acetyl-β-D-glucuronide)	B	c	Herbs	Granica et al. (2013)
25	Kaempferol 3-O-β-(3''-O-acetyl-β-D-glucuronide)	B	c	Herbs	Granica et al. (2013)
26	Quercetin-3-O-β-glucuronide	B	d	Herbs	Smolarz et al. (2008)
27	Quercetin-3-O-α-rhamnosyl-(1→2)-β-glucuronide	B	d	Herbs	Smolarz et al. (2008)
28	Kaempferol-3-O-α-rhamnosyl-(1→2)-β-glucuronide	B	d	Herbs	Smolarz et al. (2008)
29	3-O-senecioyl-isorhamnetin	B	e	Herbs	Lajter et al. (2013a)
30	3-O-angeloyl-isorhamnetin	B	e	Herbs	Lajter et al. (2013a)
31	Quercetin	B	f, i, h, b	Aerial parts (f), herbs (i,h), roots (b)	Moradi-Afrapoli et al. (2012a), Lin et al. (2009) and Zhang et al. (2012c)
32	Myricetin	B	f	Aerial parts	Moradi-Afrapoli et al. (2012a)
33	Myricetin 3-O-β-D-galactopyranoside	B	f	Aerial parts	Moradi-Afrapoli et al. (2012a)
34	Myricetin 3-O-α-L-rhamnopyranoside (myricitrin)	B	f, h	Aerial parts (f), herbs (h)	Moradi-Afrapoli et al. (2012a) and Zhang et al. (2012c)
35	Quercetin 3-O-β-D-galactopyranoside	B	f, g	Aerial parts	Moradi-Afrapoli et al. (2012a) and Tantry et al. (2012)
36	Rutin	B	g, h, b	Aerial parts (g), herbs (h), leaves (b)	Tantry et al. (2012) and Zhang et al. (2012c)
No.	Compound	Source	Tissues/Parts	Authors	
-----	---	-----------------	--------------------------------	--------------------------	
37	Quercetin-3’-O-β-D-galactopyranoside	B i	Herbs	Lin et al. (2009)	
38	8-Methoxyquercetin	B i	Herbs	Lin et al. (2009)	
39	Apigenin	B i,b	Herbs (i), roots (b)	Lin et al. (2009)	
40	Luteolin	B i	Herbs	Lin et al. (2009)	
41	Kaempferol	B h	Herbs	Zhang et al. (2012c)	
42	Quercetin 3-O-(6”-galloyl)-β-D-galactoside	B j	Whole plant	Datta et al. (2000)	
43	5, 3’,4’,5’-Tetramethoxy-6,7-methylenedioxyflavone	B e	Herbs	Lajter et al. (2013a)	
44	3,5,3’,4’,5’-Pentamethoxy-6,7-methylenedioxyflavone	B e	Herbs	Lajter et al. (2013a)	
45	(+) Catechin	B f,g,b	Aerial parts (f, g), roots (b)	Moradi-Afrapoli et al. (2012a) and Tantry et al. (2012)	
46	(−) Gallocatechin	B f	Aerial parts	Moradi-Afrapoli et al. (2012a)	
47	Amplexicine	B g	Aerial parts	Tantry et al. (2012)	
48	Quercetin 3-O-α-L-(3”’5”’-diacetyl-arabinofuranoside)	B f	Aerial parts	Moradi-Afrapoli et al. (2012a)	
49	Quercetin 3-O-α-L-(3”’-acetyl-arabinofuranoside)	B f	Aerial parts	Moradi-Afrapoli et al. (2012a)	
50	Quercetin 3-O-α-L-arabinofuranoside (avicularin)	B f	Aerial parts	Moradi-Afrapoli et al. (2012a)	
51	Myricetin 3-O-α-L-(3”’5”’-diacetyl-arabinofuranoside)	B f	Aerial parts	Moradi-Afrapoli et al. (2012a)	
52	Myricetin 3-O-α-L-arabinofuranoside	B f	Aerial parts	Moradi-Afrapoli et al. (2012a)	
53	Quercetin-3-O-(2”-O-galloyl)-β-D-glucopyranoside	B h	Herbs	Zhang et al. (2012c)	
54	Quercetin-3-O-(3”’-O-galloyl)-β-D-glucopyranoside	B h	Herbs	Zhang et al. (2012c)	
55	Quercetin-3-O-(2”-O-galloyl)-α-L-rhamnopyranoside	B h	Herbs	Zhang et al. (2012c)	
56	Quercetin-3-O-(3”’-O-galloyl)-α-L-rhamnopyranoside	B h	Herbs	Zhang et al. (2012c)	
57	Quercitrin	B h,b	Herbs (h), roots (b)	Zhang et al. (2012c)	
58	Kaempferol-3-O-α-L-rhamnopyranoside	B h	Herbs	Zhang et al. (2012c)	
59	Polygodial	C k,l,m,n	Whole plant (k, l), leaves, stem (m, n)	Asakawa et al. (2012)	
No.	Compounds	Types	Species	Tissues	References
-----	------------------------------------	-------	---------	--------------------------------------	-----------------------
60	Isopolygodial	C	k, l, m, n	Whole plant (k,l), leaves (m,n), stem (m)	Asakawa et al. (2012)
61	Drimenol	C	k1, k3, l, m, n	Whole plant (k1, k3, l), leaves (m, n)	Asakawa et al. (2012)
62	Warburganal	C	k3	Leaves	Asakawa et al. (2012)
63	Drimenin	C	k1, k3, l	Whole plant (k1, l), leaves (k3)	Asakawa et al. (2012)
64	Isodrimenin	C	k1, k3, l	Whole plant (k1, l), leaves (k3)	Asakawa et al. (2012)
65	Cinnamolide	C	k3, m, n	Leaves (k3, m, n), stem (m)	Asakawa et al. (2012)
66	Confertifolin	C	k3, l	Whole plant (l), leaves (k3)	Asakawa et al. (2012)
67	Isodrimeninol	C	k3	Leaves	Asakawa et al. (2012)
68	Poygonumate	C	k2	Whole plant	Asakawa et al. (2012)
69	7-Ketocosodrimenin	C	k2	Whole plant	Asakawa et al. (2012)
70	Futronolide	C	k2	Whole plant	Asakawa et al. (2012)
71	Winterin	C	k2	Whole plant	Asakawa et al. (2012)
72	Dendocarbin L	C	k2	Whole plant	Asakawa et al. (2012)
73	7β-Hydroxyiso-angeloyloxy-7-epi-futronolide	C	k2	Whole plant	Asakawa et al. (2012)
74	Changweikagnic acid A	C	k2	Whole plant	Asakawa et al. (2012)
75	Chlorogenic acid	D	g, b	Aerial parts (g), roots (b)	Tantry et al. (2012)
76	Caffeic acid	D	g	Aerial parts	Tantry et al. (2012)
No.	Compound	Location	Authors		
-----	---	----------------	--------------------------		
77	Gallic acid	D, g, b	Tantry et al. (2012)		
78	p-Hydroxybenzaldehyde	D, i	Lin et al. (2009)		
79	p-Hydroxybenzoic acid	D, g	Xiang et al. (2012)		
80	p-Hydroxybenzoic ethanol	D, g	Xiang et al. (2012)		
81	Vanillin	D, g	Xiang et al. (2012)		
82	Isovanillic acid	D, g	Xiang et al. (2012)		
83	3,4,5-Trihydroxy-benzoic acid-butyl ester	D, h	Zhang et al. (2012c)		
84	4-Hydroxy-3-methoxycinnamic acid	D, h	Zhang et al. (2012c)		
85	1-O-β-β-(6′-O-galloyl)-glucopyranosyl-3-methoxy-5-hydroxybenzene	D, h	Zhang et al. (2012c)		
86	Ellagic acid	E, k3	Asakawa et al. (2012)		
87	Polygonolide	E, g	Tantry et al. (2012)		
88	5, 6-Dihydroxy-4H-chromen-4-one	E, g	Tantry et al. (2012) and Xiang et al. (2012)		
89	Scopolin	E, g	Tantry et al. (2012)		
90	(+)-Lyoniresinol-3a-O-[α-L-rhamnopyranosyl-(1′′ → 6′′)]-β-D-glucopyranoside	F, o	Abd El-Kader et al. (2013a,b)		
91	(+)-Isolariciresinol-3a-O-[α-L-rhamnopyranosyl-(1′′ → 2′′)-α-L-rhamnopyranosyl-(1′′′ → 6′′′)]-β-D-glucopyranoside	F, o	Abd El-Kader et al. (2013a,b)		
92	3,5,7-Trihydroxychromone	G, i	Lin et al. (2009)		
93	5,7-Dihydroxy-4H-chromen-4-one	G, h	Zhang et al. (2012c)		
94	(S)-2-(2′-hydroxypropyl)-5-methyl-7-hydroxychromone-7-O-α-L-fucopyranosyl(1 → 2)-β-D-glucopyranoside	G, a	Zhao et al. (2014)		

Continued
No.	Compounds	Types	Species	Tissues	References
95	N-trans-caffeoyl-tyramine	H	f	Aerial parts	Moradi-Afrapoli et al. (2012b)
96	Hirsutine	H	h	Herbs	Zhang et al. (2012c)
97	β-Sitosterol-3-O-acetate	I	o	Aerial parts	Abd El-Kader et al. (2013a,b)
98	β-Sitosterol	I	i,a	Herbs (i), roots (a)	Lin et al. (2009) and Xu et al. (2006)
99	β-Sitosterol-3-β-d-glucoside	I	a	Roots	Xu et al. (2006)
100	Physcion	J	a	Roots	Kim et al. (2008a,b) and Xu et al. (2006)
101	Emodin	J	a	Roots	Kim et al. (2008a,b)
102	Emodin-8-β-d-glucoside	J	a	Roots	Kim et al. (2008a,b)
103	Physcion-8-0-β-d-glucoside	J	a	Roots	Kim et al. (2008a,b) and Xu et al. (2006)
104	1,8-Dihydroxy-3,6-dimethoxy-xanthone-5-O-[(2α,4β)-rhamnopyranosyl-(1''→2'')]-β-d-glucopyranoside	K	o	Aerial parts	Abd El-Kader et al. (2013a,b)
105	17-Hydroxypentacosanyl acetate	L	o	Aerial parts	Abd El-Kader et al. (2013a,b)
106	Torachrysone-8-0-β-d-glucoside	M	a	Roots	Kim et al. (2008a,b)
107	Diisobutyl phthalate	N	g	Rhizomes	Xiang et al. (2012)

A, stilbene type (No. 1–14); B, flavonoid type (No. 15–58); C, drimane sesquiterpenoid type (No. 59–74); D, phenol type (No. 75–86); E, coumarin and isocoumarin types (No. 87–89); F, lignan type (No. 90–91); G, chromone type (No. 92–94); H, alkaloid type (No. 95–96); I, sterol type (No. 97–99); J, anthraquinone type (No. 100–103); K, xanthone type (No. 104); L, fatty alcohol acetate type (No. 105); M, naphthalene type (No. 106); N, ester type (No. 107). a, P. multiflorum Thunb.; b, P. cuspidatum Sieb. et Zucc.; c, P. aviculare L.; d, P. amphibium L.; e, P. persicaria L. (syn. Persicaria maculosa Gray); f, P. hyrcanicum Rech. f.; g, P. amplexicaule D. Don; h, P. capitatum Burch. –Ham. ex D. Don; i, P. jucundum Meisn.; j, P. viscosum Burch. –Ham. ex D. Don; k, P. hydropiper (k1, French P. hydropiper; k2, Bangladesh P. hydropiper; k3 Japanese P. hydropiper); l, P. hydropiper f. purpurascens; m, P. minus Huds.; n, P. punctatum var. punctatum; o, P. bellardii.
12.3 Bioactivities and therapeutic uses

12.3.1 Effects on cardiovascular system

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in P. cuspidatum, grapes, peanuts, and berries, as well as their manufactured products. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risk parameters (Tang et al., 2014). Endothelial hyperpermeability induced by hyperglycemia is the initial step in the development of atherosclerosis, one of the most serious cardiovascular complications in diabetes. Resveratrol ameliorates high-glucose-induced hyperpermeability mediated by caveolae via VEGF/KDR pathway (Tian et al., 2013). Polydatin, a resveratrol glucoside extracted from P. cuspidatum, attenuates cardiac hypertrophy through modulation of cardiac Ca\(^{2+}\) handling and calcineurin-NFAT signaling pathway (Ding et al., 2014).

2,3,4′,5-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), extracted from the root of P. multiflorum (He Shou Wu), had inhibitory effects on angiotensin II-induced proliferation of vascular smooth muscle cells (Xu et al., 2014a). Its antiproliferative effect might be associated with the downregulation of intracellular reactive oxygen species (ROS), followed by the suppression of the Src-MEK1/2-ERK1/2 signaling pathway, hence blocking cell cycle progression. TSG could prevent cardiac remodeling induced by pressure overload in rats (Xu et al., 2014b), which may be related to a decreasing angiotensin II level, an antioxidant effect, suppression of transforming growth factor-β1 expression, and inhibition of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase activation. Proteomic analysis was used to investigate the molecular events occurring in the atherosclerotic rats after TSG treatment (Yao et al., 2013). TSG treatment suppresses atherosclerosis by altering the expression of different proteins. Calreticulin, vimentin, HSP 70, lipocortin 1, and Apo A-I are key proteins that may be novel molecular targets responsible for atherogenesis suppression induced by TSG treatment.

Dysregulated tonic tension and calcium sensitization in blood vessels have frequently been observed in many cardiovascular diseases. Emodin of P. multiflorum inhibits tonic tension through suppressing PKCδ-mediated inhibition of myosin phosphatase in rat isolated thoracic aorta (Lim et al., 2014).

P. viviparum (PV) is a perennial herb and widely distributed in high-elevation mountain regions, such as the Tibetan Plateau. In Tibetan traditional medicine, PV is usually used to boost the blood circulation to dissipate blood stasis. PV induces vasorelaxation in the rat thoracic aorta via activation of nitric oxide (NO) synthase in endothelial cells (Chang et al., 2014).

2,3,4′,5-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) of P. multiflorum could raise the content of CYP (cytochrome p450) 7A and then promote the lipolysis of cholesterol (Wang et al., 2014a). TSG also showed the best LDL-reducing effect. Emodin could inhibit HMG-CoA reductase and DGAT1, which were key enzymes in the synthesis of TC and TG. Physcion increased the content of HTGL and then could boost the lipolysis of triglyceride. Physcion showed the best VLDL-reducing effect. The lipid regulation activity might be due to an overall synergy of TSG, emodin, and...
physcion. TSG attenuates human platelet aggregation, secretion, and spreading in vitro (Xiang et al., 2014).

Antiatherosclerotic effects of *P. aviculare* L. ethanol extract in ApoE knockout mice fed a Western diet are mediated via the MAPK pathway (Haeng Park et al., 2014).

Extracts of *P. persicaria* inhibit G protein-activated inwardly rectifying K⁺ channels (Lajter et al., 2013a). The electrophysiologically active agents, not the new flavonoids from the chloroform extract, are among the minor compounds of HPLC eluates.

12.3.2 Anti-inflammatory activity

Resveratroloside and catechin-(4α→8)-catechin, the newly found constituents in the invasive variety, have similar NO inhibition potency as that of piceid (the major constituent of *P. cuspidatum*) (Fan et al., 2013b), but the newly found major constituent, that is, piceatannol glucoside, showed no apparent effect. The total content of resveratrol measured in the root extracts of the Swiss sample was about 2.5 times less than that of the Chinese one. When the invasive variety of *P. cuspidatum* is used in traditional medicine, the chemical difference should be kept in mind.

P. tinctorium, a traditional medicine used in China and Korea, improves 2, 4-dinitrofluorobenzene-induced atopic dermatitis-like lesional skin (Han et al., 2014). *P. tinctorium* inhibited IL-32 and TSLP production through the attenuation of caspase-1 activation in an animal model of allergic rhinitis (Jeong et al., 2014).

Flavonol glucuronides at physiologically achievable concentrations within the range of 0.5–10 μM significantly inhibited the production of ROS as well as elastase release in human neutrophils model and should be considered as responsible for the anti-inflammatory activity of the *P. aviculare* (Granica et al., 2013).

P. chinense aqueous leaf extract has gastroprotective activity on ethanol-induced hemorrhagic mucosal lesions in rats (Ismail et al., 2012). *P. viviparum* inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through heme oxygenase-1 induction and activation of the Nrf2 pathway (Cheng et al., 2013).

12.3.3 Antimicrobial, antiparasitic, and insecticidal activities

Guizhou Miao medicine *P. capitatum* has antibacterial activity and can be used in bladder infection (Hu et al., 2014). Methanolic crude extract of aerial parts of *P. maritimum* showed a high antibacterial activity against gram-positive bacterial strains: *Bacillus cereus*, *Bacillus subtilis*, and *Staphylococcus aureus* with a highest MIC of 120 μg/ml (El-Haci et al., 2013). *P. orientale* extracts had protective effect against *Clavibacter michiganense* subsp. *sepedonicum*, the causal agent of bacterial ring rot of potato (Cai et al., 2013).

Ethanol extracts of *P. cuspidatum*, resveratrol, (+)-catechin, and emodin 8-0-β-D-glucopyranoside inhibit HIV-1-induced syncytium formation (Zhang et al., 2013b). An ethyl acetate subfraction separated from *P. cuspidatum* root and its major component, emodin, inhibited Epstein-Barr virus lytic cycle (Yiu et al., 2014). *In vitro* and *in vivo* studies suggested the inhibitory effects of emodin isolated from *P. cuspidatum*
on Coxsackievirus B₄ (Liu et al., 2013). Resveratrol, (E)-3, 5, 12-trihydroxystilbene-3-O-beta-D-glucopyranoside-2’-(3″, 4″, 5″-trihydroxybenzoate), and catechin-3-O-gallate, isolated from P. cuspidatum, had inhibitory effect against neuraminidase (NA) activity (Chen et al., 2012), with IC50 values of 129.8, 44.8, and 21.3 μmol/l, respectively. (E)-3, 5, 12-trihydroxystilbene-3-O-beta-D-glucopyranoside-2’-(3″, 4″, 5″-trihydroxybenzoate) and catechin-3-O-gallate had significant inhibitory effect against H1N influenza virus (EC50 = 5.9, 0.9 μmol/l, respectively), with very low cytotoxicity to the host cells; their therapeutic selective index (SI) in MDCK cells ranged from 56 to 269. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction (Ho et al., 2007).

P. chinense had antidiarrheal activity (Xiao et al., 2013). Ellagic acid and corilagin are two components contributing to this effect. Cinnamoylphenethyl amides from P. hyrcanicum possess antitrypanosomal activity (Moradi-Afpalpi et al., 2012b).

The essential oil of P. hydropiper exhibited LC50 values of 194.63 and 199.65 and confertifolin isolated LC50 values of 2.02 and 3.16 against the second and fourth instar larvae of Aedes albopictus (dengue vector mosquito), respectively (Maheswaran and Ignacimuthu, 2014). The ovicidal activity of 100% on 0–6 h old eggs, repellent activity of 320.6 min, oviposition deterrent activity of 98.51%, and adulticidal activity of 100% at 10 ppm concentration of confertifolin were recorded.

12.3.4 Anticancer activity

Trans-piceid (T-Pc) is abundant in P. cuspidatum and in grapes and grape products such as wine. Piceid presents antiproliferative effects in intestinal epithelial Caco-2 cells, which is unrelated to resveratrol release (Storniolo et al., 2014). 2-Methoxystypandrone of P. cuspidatum inhibits signal transducer and activator of transcription 3 and nuclear factor-kB signaling by inhibiting Janus kinase 2 and IκB kinase (Kuang et al., 2014). Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1-mediated Wnt/β-catenin signal pathway (Ji et al., 2013). Constitutively activated STAT3 plays a pivotal role in oncogenesis and metastasis in many human cancers, and STAT3 has been validated as a novel anticancer drug target. 2-Methoxystypandrone of P. cuspidatum demonstrated a potent inhibitory effect on STAT3 activation and significantly inhibited cell proliferation of human breast cancer cells (Liu et al., 2012b), especially those with constitutively activated STAT3 (IC50 2.7–3.1 μM). The SAR analysis of quinone analogs suggested that the phenolic and carbonyl groups are the key structures contributing to their inhibitory activities against the STAT3 signaling.

Aqueous and organic extracts of 27 selected species from five genera (Fallopia, Oxyria, Persicaria, Polygonum, and Rumex) of the family Polygonaceae occurring in the Carpathian Basin were screened in vitro for antiproliferative activity against HeLa (cervix epithelial adenocarcinoma), A431 (skin epidermoid carcinoma), and MCF7 (breast epithelial adenocarcinoma) cells (Lajter et al., 2013b), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. A total of 196 n-hexane, chloroform, 50% methanol, and water extracts of different plant parts were investigated. Extracts of P. hydropiper, Rumex acetosa, R. alpinus, R. aquaticus,
R. scutatus, and R. thrysiflorus at 10 or 30 µg/ml demonstrated substantial cell growth inhibitory activity (at least 50% inhibition of cell proliferation) against one or more cell lines. R. acetosa and R. thrysiflorus proved to be the most active and are considered worthy of activity-guided phytochemical investigations.

3,5-Dihydroxybenzyl alcohol of Reynoutria japonica (P. cuspidatum) showed more potent inhibitory activity against topoisomerase I (IC50 4 μM) than camptothecin (Hwangbo et al., 2012), the positive control (IC50 18 μM). 3,5-Dihydroxybenzyl alcohol, citreoroisin, cis-resveratrol, trans-resveratrol, and trans-resveratrol-5-O-β-D-glucopyranoside showed stronger inhibitory activities toward DNA topoisomerase II (IC50 0.54, 14, 15, 0.77, and 3 μM, respectively) than the positive control, etoposide (IC50 44 μM). Emodin and citreoroisin displayed weak cytotoxicities against human lung cancer (A549), ovarian cancer (SK-OV-3), human liver hepatoblastoma (HepG2), and colon adenocarcinoma (HT-29) cell lines.

Flavonoid glucuronides of P. amphibium had antileukemic activity (Smolarz et al., 2008). A potential antitumor ellagitannin of P. capitatum, davidin, inhibited hepatocellular tumor growth by targeting EZH2 (Wang et al., 2014b). The n-butanol extract of P. bellardii has the highest cytotoxicity in HeLa, MCF-7, and HepG-2 cells, with IC50 values of 15.26, 50.66, and 30.09 µg/ml, respectively (Abd El-Kader et al., 2013b). Myricetin-3-O-(5"-acetyl-α-arabinofuranoside) exhibited a marked cytotoxicity in HeLa (IC50 75.04 µg/ml) and HepG-2 (41.03 µg/ml) cells.

(−)-Loliolide of P. aviculare exerted inhibitory activity against cellular senescence in human dermal fibroblasts (Yang et al., 2014a). Quercetin-3-O-β-D-glucuronide isolated from P. aviculare inhibits cellular senescence in human primary cells (Yang et al., 2014b).

Apoptosis induction by P. minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line (Mohd Ghazali et al., 2014). Resveratrol-4-O-β-(2'-galloyl)-glucopyranoside isolated from P. cuspidatum exhibits anti-hepatocellular carcinoma viability by inducing apoptosis via the JNK and ERK pathway (Xie et al., 2014). Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest (Zhang et al., 2014).

8-Methyltryptanthrin of P. tinctorium induced differentiation of P19CL6 embryonal carcinoma cells into spontaneously beating cardiomyocyte-like cells (Seya et al., 2014).

12.3.5 Antioxidant activity

Polydatin from P. cuspidatum exhibited protective effects against carbon tetrachloride-induced liver injury in mice (Zhang et al., 2012a). P. cuspidatum contained many more contributing antioxidants other than resveratrol (Kurita et al., 2014).

Tetrahydroxystilbene glucoside of P. multiflorum exhibited protective effect against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells (Zhang et al., 2012b). Compared with P. multiflorum polysaccharide PMP-1, PMP-2 exhibited a much stronger antioxidant capacity against free radicals, lipid oxidation, and protein glycation (Lv et al., 2014). The IC50 values of PMP-2 were 0.47, 0.6, and 0.93 mg/ml for superoxide anion scavenging, hydroxyl radical
scavenging, and hydroxyl peroxide scavenging, respectively. The inhibitory ability of PMP-2 on lipid oxidation marked in the rat liver, followed by the heart and kidney. PMP-2 also showed satisfactory suppression of AGEs formation.

The EtOAc fraction of *P. aviculare* displayed the highest content of flavonoids (sum, 208.9 mg/g) with the strongest peroxynitrite scavenging activity (IC50, 2.68 μg/ml) (Nugroho et al., 2014). The activities of the eight compounds (myricitrin, isoquercitrin, avicularin, quercitrin, myricetin, desmanthin-1, quercetin, and kaempferol) were comparable to that of the positive control (l-penicillamine; IC50: 1.03 μg/ml). The folkloric medicinal uses of *P. aviculare* are mainly attributed to flavonoids, such as particularly highly contained myricetin, myricitrin, and desmanthin-1.

Xanthone and lignan glycosides from the aerial parts of *P. bellardii* showed significant antioxidant potential by DPPH(·) scavenging activity test (Abd El-Kader et al., 2013a). 5, 6-Dihydropyranobenzopyrone, amplexicine, catechin, rutin, quercetin-3-O-β-d-galactopyranoside, chlorogenic acid, galloyl glucose, caffeic acid, gallic acid, and scopoletin, isolated from *P. amplexicaule*, exhibited considerable antioxidant activity in a DPPH radical scavenging assay (Tantry et al., 2012).

12.3.6 Effects on the nervous system

Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels, and BDNF expression in rats (Liu et al., 2014). Resveratrol attenuates oxidative damage and ameliorates cognitive impairment in the brain of senescence-accelerated mice (Liu et al., 2012a).

P. minus possesses antioxidant and anticholinesterase activity and demonstrated enhanced cognition in vivo (George et al., 2014). The data suggest neuroprotective properties of the extract. Hexane extracts of *P. multiflorum* improve tissue and functional outcome following focal cerebral ischemia in mice (Lee et al., 2014). Tetrahydroxystilbene glucoside of *P. multiflorum* attenuates neuroinflammation through the inhibition of microglia activation (Zhang et al., 2013a). 8-Hydroxycalamene of *Reynoutria elliptica* (*P. ellipticum*) attenuated the cell death of transformed RGC-5 cells (Jo et al., 2013).

Neurons rely on the release and subsequent cleavage of GSH to cysteinylglycine (Cys-Gly) by astrocytes in order to maintain optimal intracellular GSH levels. In neurodegenerative diseases characterized by oxidative stress, neurons need an optimal GSH supply to defend themselves against free radicals released from activated microglia and astroglia. The rate of GSH synthesis is controlled largely by the activity of γ-glutamyl cysteine ligase. Expression of γ-glutamyl cysteine ligase and of the Xc-system, which facilitates cystine uptake, is regulated by the redox-sensitive transcription factor, nuclear factor erythroid-2-related factor 2 (Nrf2). Resveratrol and *P. multiflorum* were all identified as potent Nrf2 activators and “GSH and Cys-Gly boosters” (Steele et al., 2013).

The antidepressant-like effects of resveratrol in the FST (forced swim test) and TST (tail suspension test) are mediated, at least in part, by modulating hypothalamic–pituitary–adrenal axis, BDNF expression, and ERK phosphorylation in the brain region of mice (Wang et al., 2013a).
12.3.7 Other activities

The antimelanogenic activity of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside, isolated from *P. multiflorum*, is likely mediated through a noncompetitive inhibition on tyrosinase, downregulation of the expression of melanogenic proteins, and reduction of tyrosinase/TRP-1 complex formation (Cheung et al., 2014).

Supplementation for 12 weeks with *P. minus* and the proprietary *Eurycoma longifolia* extract, Physta, was well tolerated and more effective than placebo in enhancing sexual performance in healthy volunteers (Udani et al., 2014). *P. cuspidatum* inhibits pancreatic lipase activity and adipogenesis via attenuation of lipid accumulation (Kim et al., 2013), thus having antiobesity effect.

Constituents from the root of *P. multiflorum* have promotion effect on hair growth (Sun et al., 2013).

The semialcoholic extract of *P. senegalensis* possesses α-glucosidase inhibitory activity and antioxidant potency (Bothon et al., 2013). Proanthocyanidins, isolated from stems of *P. multiflorum*, strongly inhibit α-amylase with an acarbose equivalence (AE) value of 1954.7 μmol AE/g and inhibit α-glucosidase with an AE value of 211.1 μmol AE/g (Wang et al., 2013b). They have potential as functional ingredients in reducing postprandial hyperglycemia. Phenolic constituents from aerial parts of *P. hycpanicum* had *in vitro* α-glucosidase inhibitory activity (Moradi-Afrapoli et al., 2012a).

12.3.8 Toxicity and safety

Adverse reactions induced by *P. multiflorum* are common, with patients developing drug-induced liver injury (DILI) and even liver failure (Ma et al., 2014). Although the mechanism is unknown, many studies have suggested that an idiosyncratic reaction occurs, which is related to genetic polymorphisms of CYP1A2. The influence of stilbene glucoside on the pharmacokinetics of emodin may be attributed to the inhibition of UGT1A8 mRNA expression (Ma et al., 2013). *P. cuspidatum* markedly increased the systemic exposure and brain concentration of carbamazepine (CBZ) and CBZE through inhibiting the activities of CYP 3A and MRP 2 (Chi et al., 2012).

12.4 Molecular biology and genomics

12.4.1 Molecular marker

Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. Genetic diversity, population structure, and colonization patterns in the invasive *P. cespitosum*, a highly selfing, tetraploid Asian annual introduced to North America, were examined using nine diploidized polymorphic microsatellite markers (SSR; Matesanz et al., 2014). Low heterozygosity was found in all 16 populations, consistent with the selfing mating system of *P. cespitosum*. Despite the high selfing levels, substantial genetic variation
within and among *P. cespitosum* populations was revealed, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of *P. cespitosum*. Population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. The high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources) in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further contribute to the invasive success of *P. cespitosum* in its introduced range.

Among 50 RAPD primers, only C29 primer had two specific bands, which could distinguish *P. capitatum* from *P. nepalense* (Zhou et al., 2013). Four pairs of specific primers were designed based on the two sequences of RAPD marker bands, and only one pair primer (Z1-2) was successfully converted into SCAR marker, which could be used as an effective SCAR mark to identify Z300 DNA for *P. capitatum*.

AFLP was used to identify the knotgrass (*P. aviculare*) population at the crime site as the most likely origin of the botanical evidence (Koopman et al., 2012). The genetic diversity of 48 representational populations of *P. capitatum* including 240 individuals was investigated by ISSR marker (Zhou et al., 2010). SRAP (sequence-related amplified polymorphism) was used to detect the polymorphisms of *Radix Polygoni Multiflori* in Chongqing (Cheng et al., 2013). SRAP might be superior to RAPD in genetic diversity studies.

Analysis of nuclear internal transcribed spacer (nrITS) sequences reveals polymorphism among five *P. barbata* populations belonging to five geographic locations in India (Choudhary et al., 2011). UPGMA analysis based on the ITS datasets shows that the sampled populations are grouped according to their geographic locations and are supposed to evolve under reproductive isolation, which most likely are due to the long-distance distribution and population fragmentation.

DNA bar codes are used to discriminate the Polygonaceae in China Pharmacopoeia and their adulterants (Song et al., 2009). The amplification efficiency of six candidate DNA bar codes (rbcL, trnH-psbA, ndhJ, rpoB, rpoC1, and accD) was 100%, while the efficiency of YCF5 and nrITS was 56% and 44%, respectively. The interspecific divergence was highest for the trnH-psbA (20.05%), followed by the nrITS (14.01%) across all species pairs, while intraspecific variation both within populations and between populations was absent. The trnH-psbA can not only distinguish 10 species of Polygonaceae in China Pharmacopoeia but also recognize eight other species of Polygonaceae including their adulterants.

P. multiflorum (*Fallopia multiflora*) is often confused and substituted with the roots of *Fallopia multiflora* var. *ciliinervis*, *Pteroxygonum giralddii*, *Cynanchum auriculatum*, and *Stephania cepharantha*. The nrITS regions of six *Fallopia* species were sequenced and analyzed (Zheng et al., 2009). The diagnostic primers PMITS28 and PMITS545, which amplified an expected 517 bp ITS fragment from *F. multiflora*, were designed. No amplified product was observed when other species was used. Based on
18S rRNA gene sequence analysis, *P. multiflorum* could be easily distinguished from adulterants and other herbs with similar medicinal components (Yan et al., 2008). All *P. multiflorum* samples were divided into four clades based on matK sequence. Permutations of matK were related to the geographic distributions of the samples. These markers can be used to authenticate the botanical origin of *P. multiflorum*. The best bar code of *P. multiflorum* is psbA-trnH, with significant interpopulation variability (Sun et al., 2013). The combination of loci gave better performance for distinguishing populations than a single locus. It could be good to use matK + rbcL + psbA-trnH + ITS2 or psbA-trnH alone for *P. multiflorum* in geoherbalism identification.

12.4.2 Transcriptome

cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of *P. minus* in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations (Ée et al., 2013). Two sets of genes were induced by SA and MeJA, respectively. Stress-related genes were proved to lead to the expression of genes involved in secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were upregulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging ROS, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1, and peroxidase. Of these stress-related genes, 15% of other annotated TDFs are involved mainly in secondary metabolic processes, and two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.

The leaf of an aromatic plant *P. minus* is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites such as flavonoid. A standard cDNA library of *P. minus* leaves was constructed, and two normalized full-length enriched cDNA libraries were constructed from stem and root in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis (Roslan et al., 2012). Large-scale sequencing of *P. minus* cDNA libraries identified 4196 expressed sequence tags (ESTs). From the three cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Three flavonoid biosynthetic pathway-related ESTs, namely, chalcone synthase, CHS (JG745304); flavonol synthase, FLS (JG705819; Figure 12.2); and leucoanthocyanidin dioxygenase, LDOX (JG745247), were selected for further examination by quantitative RT-PCR (qRT-PCR) in different *P. minus* organs. Expression was detected in leaf, stem, and root. Based on transcriptome data, gene expression studies can be initiated to better understand the underlying physiological processes.

Various active components have been extracted from the root of *P. cuspidatum*. However, the genetic basis for their activity is little known. 25,600,002 short reads (2.3 Gb) of *P. cuspidatum* root transcriptome were obtained via Illumina HiSeq 2000 sequencing (Hao et al., 2012). A total of 86,418 unigenes were assembled de novo and annotated. 12, 18, 60, and 54 unigenes were, respectively, mapped to the mevalonic acid (MVA), methyl- D-erythritol 4-phosphate (MEP), shikimate (Figure 12.3), and resveratrol biosynthesis pathways, suggesting that they are
Figure 12.2 Phylogenetic relationship of plant flavonol synthases. The evolutionary history was inferred by using the ML method and the JTT+I (13.26% sites)+G model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 29 amino acid sequences, including a *P. cuspidatum* sequence predicted from transcriptome Unigene 84276 (Hao et al., 2012) and a *P. minus* sequence predicted from EST (Roslan et al., 2012). There were a total of 365 positions in the final dataset. Evolutionary analyses were conducted in MEGA6.

Figure 12.3 Expression levels (RPKM value) of the *P. cuspidatum* unigene in shikimate metabolic pathway (Hao et al., 2012), which is responsible for biosynthesis of anthraquinone and stilbene. 1, 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase; 2, 3-dehydroquinate synthase; 3, shikimate 5-dehydrogenase; 4, shikimate: NADP oxidoreductase; 5, shikimate kinase; 6, EPSP synthase; 7, chorismate synthase; 8, isochorismate synthase; 9, chorismate mutase. Bars represent the standard error of the average.
involved in the biosynthesis of pharmaceutically important anthraquinone and resveratrol. Eighteen potential UDP-glycosyltransferase unigenes were identified as the candidates most likely to be involved in the biosynthesis of glycosides of secondary metabolites. Identification of relevant genes could be important in eventually increasing the yields of the medicinally useful constituents of the *P. cuspidatum* root. From the previously published transcriptome data of 19 nonmodel plant taxa, 1127 shared orthologs were identified and characterized. This information will be very useful for future functional, phylogenetic, and evolutionary studies of these plants.

12.5 Phylogeny

The buckwheat family Polygonaceae is a diverse group of plants and is a good model for investigating biogeography, breeding systems, coevolution with symbionts such as ants and fungi, functional trait evolution, hybridization, invasiveness, morphological plasticity, pollen morphology, and wood anatomy. Age estimates for Polygonaceae were obtained by calibrating a Bayesian phylogenetic analysis (Schuster et al., 2013), using a relaxed molecular clock with fossil data. Eighty-one species of Polygonaceae were analyzed with MrBayes to infer species relationships. One nuclear (nrITS) and three chloroplast (cp) markers (the trnL-F spacer region and matK and ndhF genes) were used. Seven calibration points including fossil pollen and a leaf fossil of *Muehlenbeckia* (a Southern Hemisphere group) were used to infer node ages. Results of the Beast analyses indicate an age of 110.9/118.7 million years (My) with an uncertainty interval of 90.7–125.0 My for the stem age of Polygonaceae. This age is older than previously thought (approximately 65.5–70.6 My). The estimated divergence time for *Muehlenbeckia* is 41.0/41.6 (39.6–47.8) My and its crown clade is 20.5/22.3 (14.2–33.5) My. Because the breakup of Gondwana occurred from 95 to 30 My ago, diversification of *Muehlenbeckia* is best explained by oceanic long-distance and maybe stepping-stone dispersal rather than vicariance.

Interspecific hybridization and the following polyploidization play a major role in plant diversification, but quantifying the contribution of this mechanism to diversification within taxonomically complex clades remains difficult. Incongruence among gene trees can provide critical insights, especially when combined with data on chromosome numbers, morphology, and geography. Molecular phylogenetic studies using three cpDNA regions and nrITS sequences were performed to explore the hybrid speciation in *Persicaria* (*Polygonum*, Polygonaceae; Figure 12.4) (Kim and Donoghue, 2008), with an emphasis on sampling within section *Eupersicaria*. There are major conflicts between the combined cpDNA tree and the nrITS tree; a variety of incongruence tests rejected stochastic error as the cause of incongruence in most cases. Both the tree incongruence results and information on chromosome numbers suggest that the origin of 10 polyploid species involved interspecific hybridization. The recognition of several previously named species that have been treated as belonging within other species was supported. Repeated allotetraploidy (as distinct from radiation at the
Figure 12.4 Phylogenetic relationship of *Polygonum* and related groups. A, ITS tree inferred from maximum likelihood (ML) method based on GTR+I (10.90% sites)+G model.

(Continued)
tetraploid level) might be the key mechanism governing the diversification of this taxonomically challenging group.

Multiple instances of allopolyploid speciation were also shown in Persicaria using a low-copy nuclear gene region (LEAFY second intron) (Kim et al., 2008b), which belong to Polygonum in Flora of China. Fifteen species seem to be allopolyploids, which is higher than the number found in previous comparisons of cp DNA and nrITS
phylogenies (Kim and Donoghue, 2008). This underestimation of the extent of allopolyploidy is due in at least three cases to homogenization of nrITS toward the maternal lineage. The diploid species, *P. lapathifolia*, has been involved in at least six cases of allopolyploid speciation. Of the diploids, this species is the most widespread geographically and ecologically and also bears more numerous and conspicuous flowers, illustrating ecological factors that may influence hybridization frequency. With a few exceptions, the allopolyploid species also are widespread, plastic, ecological generalists. Hybridization events fostered by human introductions may be fueling the production of new species that have the potential to become aggressive weeds.

ITS sequences from 44 Indian *Polygonum* taxa were examined to investigate relationships among various sections proposed previously (Choudhary et al., 2012). The maximum parsimony trees obtained from ITS sequences suggested eight major groups of the Indian *Polygonum* spp. The relationships among different sections were largely congruent with those inferred from morphological characters as described by Hooker. The treatment of the *Persicaria* suggested by Haraldson on the basis of anatomical characters proved to be nearly in line with that based on ITS data. A high resolution of phylogeny of the Himalayan *Polygonum* (e.g., *P. microcephalum*, *P. assamicum*, *P. recumbens*, and *P. effusum*) was provided and merger of the section Amblygonon in the section *Persicaria* was supported. Molecular differences were detected among *Persicaria barbata* collected from different geographic locations of India, although these were not differentiated at the morphological level.

To examine the phylogenetic relationships of *Koenigia* (Polygonaceae), 43 samples representing all species of *Koenigia* and closely related taxa (*Aconogonon*, *Bistorta*, and *Persicaria*) were sequenced for *nr* ITS and four cp regions (trnL-F, atpB-rbcL, rbcL, and rpl32-trnL(UAG); Fan et al., 2013a,b). Trib. Polygonaeae and trib. Rumiceae are recovered on both cp and ITS trees (Figure 12.4), while trib. Atraphaxideae is not. The placement of *P. bistorta* is uncertain due to conflict between cp and ITS trees (Figure 12.4). It was proposed that the genus *Koenigia* be circumscribed to include five species, that is, perennials (*K. forrestii* and *K. nummularifolia*) and annuals (*K. islandica*, *K. pilosa*, and *K. nepalensis*). However, on both cp and ITS trees, *K. nepalensis* (*P. nepalense*) is more closely related to *P. capitatum* and *P. chinense* (Figure 12.4), instead of *Koenigia*. *K. islandica* and *K. fertilis* (*P. fertile*, Figure 12.4a), both of which are from the Himalayan region, can be merged into a single species. *P. delicatulum* (*K. delicatula*), *P. campanulatum*, and *P. lichiangense* occupy an isolated position at the base of the Polygonaceae (Figure 12.4a), which might be reassigned to a new genus.

The tetraploid *P. minor* (*P. minus*), which is sister to the *P. hydropiperoides* complex in the nrITS tree (Kim and Donoghue, 2008), may have arisen through hybridization between an unknown diploid lineage or possibly a tetraploid in the *P. hydropiperoides* complex and the diploid *P. hydropiper*. It is not entirely clear that *P. hydropiper* served as the maternal parent, since the relationship between *P. hydropiper* and *P. minor* is weakly supported in the cpDNA tree (Figure 12.4b). Morphologically, *P. minor* is more similar to the diploid *P. foliosa* (*P. foliosum*), which should also be considered as a possible diploid maternal lineage for *P. minor* (Kim and Donoghue, 2008).
The pollen apertures likely evolved in parallel in the *Aconogonon-Koenigia-Bistorta* clade and *Persicaria* clade (Fan et al., 2013a,b), and tricolpate pollen is probably the ancestral one. Quincuncial aestivation likely evolved during the early evolution of *Koenigia* and its close relatives. The uplift of the Himalayas has played a vital role in promoting species diversification of *Koenigia*. *K. islandica* expanded its range during Pleistocene glacial cycles by tracking changes in newly available habitats.

12.6 Conclusion

There is little study addressing chemotaxonomy and metabolomics of Polygonum and related genera, although such studies can provide vital information for sustainable utilization of Polygonaceae medicinal resources. The family Polygonaceae has been supported as monophyletic, but the circumscription of some subgroups, especially *Polygonum* and related taxa, has been controversial. The use of population genetic approaches, sampling from multiple populations, would shed light on this issue. More extensive sampling inside and outside the Himalayas and Hengduan Mountains is indispensable to explore the phylogenetic hypothesis and facilitate species diversity conservation.

References

Abd El-Kader, A.M., Ahmed, A.S., Nafady, A.M., Ibraheim, Z.Z., 2013a. Xanthone and lignan glycosides from the aerial parts of *Polygonum bellardii* all growing in Egypt. Pharmacogn. Mag. 9 (34), 135–143.

Abd El-Kader, A.M., El-Readi, M.Z., Ahmed, A.S., et al., 2013b. Polyphenols from aerial parts of *Polygonum bellardii* and their biological activities. Pharm. Biol. 51 (8), 1026–1034.

Asakawa, Y., Ludwiczuk, A., Harinantenaina, L., et al., 2012. Distribution of drimane sesquiterpenoids and tocopherols in liverworts, ferns and higher plants: Polygonaceae, Canellaceae and Winteraceae species. Nat. Prod. Commun. 7 (6), 685–692.

Bothon, F.T., Debinton, E., Avlessi, F., et al., 2013. In vitro biological effects of two anti-diabetic medicinal plants used in Benin as folk medicine. BMC Complement. Altern. Med. 13, 51.

Cai, J., Xie, S., Feng, J., et al., 2013. Protective effect of *Polygonum orientale* L. extracts against *Clavibacter michiganense* subsp. *sepedonicum*, the causal agent of bacterial ring rot of potato. PLoS One 8 (7), e68480.

Chang, M.L., Chang, J.S., Yu, W.Y., et al., 2014. *Polygonum viviparum* L. induces vasorelaxation in the rat thoracic aorta via activation of nitric oxide synthase in endothelial cells. BMC Complement. Altern. Med. 14, 150.

Chen, K.T., Zhou, W.L., Liu, J.W., et al., 2012. Active neuraminidase constituents of *Polygonum cuspidatum* against influenza A(H1N1) influenza virus. Zhongguo Zhong Yao Za Zhi 37 (20), 3068–3073.

Cheng, H.W., Lee, K.C., Cheah, K.P., et al., 2013. *Polygonum viviparum* L. inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through haem oxygenase-1 induction and activation of the Nrf2 pathway. J. Sci. Food Agric. 93 (3), 491–497.
Cheung, F.W., Leung, A.W., Liu, W.K., Che, C.T., 2014. Tyrosinase inhibitory activity of a glucosylated hydroxystilbene in mouse melan-a melanocytes. J. Nat. Prod. 77 (6), 1270–1274.

Chi, Y.C., Lin, S.P., Hou, Y.C., 2012. A new herb-drug interaction of Polygonum cuspidatum, a resveratrol-rich nutraceutical, with carbamazepine in rats. Toxicol. Appl. Pharmacol. 263 (3), 315–322.

Choudhary, R.K., Ajmal Ali, M., Lee, J., 2011. Studies on genetic diversity among populations of Persicaria barbata (L.) H. Hara from India based on internal transcribed spacer sequences of nuclear ribosomal DNA. Saudi J. Biol. Sci. 18 (2), 123–127.

Choudhary, R.K., Park, S.H., Lee, J., 2012. Phylogeny and systematics of Indian Polygonum sensu lato in the subfamily Polygonoideae based on ITS sequences of nuclear ribosomal DNA. Genet. Mol. Res. 11 (4), 4370–4382.

Datta, B.K., Datta, S.K., Sarker, S.D., 2000. Quercetin 3-O-(6''-galloyl)-beta-D-galactoside from Polygonum viscosum (Polygonaceae). Biochem. Syst. Ecol. 28 (8), 805–807.

Ding, W., Dong, M., Deng, J., et al., 2014. Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca^{2+} handling and calcineurin-NFAT signaling pathway. Am. J. Physiol. Heart Circ. Physiol. 307 (5), H792–H802.

Ee, S.F., Oh, J.M., Mohd Noor, N., et al., 2013. Transcriptome profiling of genes induced by salicylic acid and methyl jasmonate in Polygonum minus. Mol. Biol. Rep. 40 (3), 2231–2241.

El-Haci, I.A., Bekkara, F.A., Mazari, W., et al., 2013. Screening of biological activities of Polygonum maritimum L. from Algerian coast. Asian Pac. J. Trop. Biomed. 3 (8), 611–616.

Fan, D.M., Chen, J.H., Meng, Y., et al., 2013a. Molecular phylogeny of Koenigia L. (Polygonaceae: Persicarieae): implications for classification, character evolution and biogeography. Mol. Phylogen. Evol. 69 (3), 1093–1100.

Fan, P., Zhang, T., Hostettmann, K., 2013b. Anti-inflammatory activity of the invasive neophyte Polygonum cuspidatum Sieb. and Zucc. (Polygonaceae) and the chemical comparison of the invasive and native varieties with regard to resveratrol. J. Tradit. Complement. Med. 3 (3), 182–187.

George, A., Ng, C.P., O’Callaghan, M., et al., 2014. In vitro and ex-vivo cellular antioxidant protection and cognitive enhancing effects of an extract of Polygonum minus Huds (Line-minus™) demonstrated in a Barnes Maze animal model for memory and learning. BMC Complement. Altern. Med. 14, 161.

Granica, S., Czerwińska, M.E., Zyżyńska–Granica, B., Kiss, A.K., 2013. Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. Fitoterapia 91, 180–188.

Haeng Park, S., Sung, Y.Y., Jin Nho, K., Kyoung Kim, H., 2014. Anti-atherosclerotic effects of Polygonum aviculare L. ethanol extract in ApoE knock-out mice fed a Western diet mediated via the MAPK pathway. J. Ethnopharmacol. 151 (3), 1109–1115.

Han, N.R., Kang, S.W., Moon, P.D., et al., 2014. Genuine traditional Korean medicine, Naju Jjok (Chung-Dae, Polygonum tinctorium) improves 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesional skin. Phytomedicine 21 (4), 453–460.

Hao, D.C., Ma, P., Mu, J., Chen, S., Xiao, P.G., et al., 2012. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum. Sci. China Life Sci. 55 (5), 452–466.

Ho, T.Y., Wu, S.L., Chen, J.C., et al., 2007. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 74 (2), 92–101.

Hu, N., Tang, S.H., Cheng, L., 2014. Prescription parsing of miao medicine Polygonum capitatum and kelintong capsule. Zhongguo Zhong Yao Za Zhi 39 (7), 1318–1320.
Hwangbo, K., Zheng, M.S., Kim, Y.J., et al., 2012. Inhibition of DNA topoisomerases I and II of compounds from Reynoutria japonica. Arch. Pharm. Res. 35 (9), 1583–1589.

Ismail, I.F., Golbabapour, S., Hassandarvish, P., et al., 2012. Gastroprotective activity of Polygonum chinense aqueous leaf extract on ethanol-induced hemorrhagic mucosal lesions in rats. Evid. Based Complement. Alternat. Med. 2012, 404012.

Jeong, H.J., Oh, H.A., Lee, B.J., Kim, H.M., 2014. Inhibition of IL-32 and TSLP production through the attenuation of caspase-1 activation in an animal model of allergic rhinitis by Naju Jjok (Polygonum tinctorium). Int. J. Mol. Med. 33 (1), 142–150.

Ji, Q., Liu, X., Fu, X., et al., 2013. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One 8 (11), e78700.

Jo, H., Lee, H.J., Kim, C.Y., et al., 2013. 8-Hydroxycalamenene isolated from the rhizomes of Reynoutria elliptica exerts neuroprotective effects both in vitro and in vivo. Food Chem. Toxicol. 51, 231–241.

Kim, S.T., Donoghue, M.J., 2008. Incongruence between cpDNA and nrITS trees indicates extensive hybridization within Eupersicaria (Polygonaceae). Am. J. Bot. 95 (9), 1122–1135.

Kim, H.K., Choi, Y.H., Choi, J.S., et al., 2008a. A new stilbene glucoside gallate from the roots of Polygonum multiflorum. Arch. Pharm. Res. 31 (10), 1225–1229.

Kim, S.T., Sultan, S.E., Donoghue, M.J., 2008b. Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. Proc. Natl. Acad. Sci. U. S. A. 105 (34), 12370–12375.

Kim, Y.S., Lee, Y.M., Kim, J.H., Kim, J.S., 2013. Polygonum cuspidatum inhibits pancreatic lipase activity and adipogenesis via attenuation of lipid accumulation. BMC Complement. Altern. Med. 13, 282.

Koopman, W.J., Kuiper, I., Klein-Geltink, D.J., et al., 2012. Botanical DNA evidence in criminal cases: knotgrass (Polygonum aviculare L.) as a model species. Forensic Sci. Int. Genet. 6 (3), 366–374.

Kuang, S., Qi, C., Liu, J., et al., 2014. 2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase. Cancer Sci. 105 (4), 473–480.

Kurita, S., Kashiwagi, T., Ebisu, T., et al., 2014. Content of resveratrol and glycoside and its contribution to the antioxidative capacity of Polygonum cuspidatum (Itadori) harvested in Kochi. Biosci. Biotechnol. Biochem. 78 (3), 499–502.

Lajter, I., Vasas, A., Orvos, P., et al., 2013a. Inhibition of G protein-activated inwardly rectifying K⁺ channels by extracts of Polygonum persicaria and isolation of new flavonoids from the chloroform extract of the herb. Planta Med. 79 (18), 1736–1741.

Lajter, I., Zupkó, I., Molnár, J., et al., 2013b. Antiproliferative activity of polygonaceae species from the Carpathian Basin against human cancer cell lines. Phytother. Res. 27 (1), 77–85.

Lee, S.V., Choi, K.H., Choi, Y.W., et al., 2014. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice. Mol. Med. Rep. 9 (4), 1415–1421.

Li, F., Zhan, Z., Liu, F., et al., 2013a. Polyflavanostilbene A, a new flavanol-fused stilbene glycoside from Polygonum cuspidatum. Org. Lett. 15 (3), 674–677.

Li, S.G., Chen, L.L., Huang, X.J., et al., 2013b. Five new stilbene glycosides from the roots of Polygonum multiflorum. J. Asian Nat. Prod. Res. 15 (11), 1145–1151.

Lim, K.M., Kwon, J.H., Kim, K., et al., 2014. Emolin inhibits tonic tension through suppressing PKCθ-mediated inhibition of myosin phosphatase in rat isolated thoracic aorta. Br. J. Pharmacol. 171 (18), 4300–4310.
Lin, Y., Zhang, C., Zhang, M., 2009. Chemical constituents in herbs of Polygonum jucundum. Zhongguo Zhong Yao Za Zhi 34 (13), 1690–1691.
Liu, G.S., Zhang, Z.S., Yang, B., He, W., 2012a. Resveratrol attenuates oxidative damage and ameliorates cognitive impairments in the brain of senescence-accelerated mice. Life Sci. 91 (17–18), 872–877.
Liu, J., Zhang, Q., Chen, K., et al., 2012b. Small-molecule STAT3 signaling pathway modulators from Polygonum cuspidatum. Planta Med. 78 (14), 1568–1570.
Liu, Z., Wei, F., Chen, L.J., et al., 2013. In vitro and in vivo studies of the inhibitory effects of emodin isolated from Polygonum cuspidatum on Coxsackievirus B4. Molecules 18 (10), 11842–11858.
Liu, D., Xie, K., Yang, X., et al., 2014. Resveratrol reverses the effects of chronic unpredictable mild stress on behavior, serum corticosterone levels and BDNF expression in rats. Behav. Brain Res. 264, 9–16.
Lv, L., Cheng, Y., Zheng, T., et al., 2014. Purification, antioxidant activity and antiglycation of polysaccharides from Polygonum multiflorum Thunb. Carbohydr. Polym. 99, 765–773.
Ma, J., Zheng, L., Deng, T., et al., 2013. Stilbene glucoside inhibits the glucuronidation of emodin in rats through the down-regulation of UDP-glucuronosyltransferases 1A8: application to a drug-drug interaction study in Radix Polygoni Multiflori. J. Ethnopharmacol. 147 (2), 335–340.
Ma, K.F., Zhang, X.G., Jia, H.Y., 2014. CYP1A2 polymorphism in Chinese patients with acute liver injury induced by Polygonum multiflorum. Genet. Mol. Res. 13 (3), 5637–5643.
Maheswaran, R., Ignacimuthu, S., 2014. Effect of Polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. Parasitol. Res. 113 (9), 3143–3150.
Matesanz, S., Theiss, K.E., Holsinger, K.E., Sultan, S.E., 2014. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion. PLoS One 9 (4), e93217.
Mohd Ghazali, M.A., Al-Naqeb, G., Krishnan Selvarajan, K., et al., 2014. Apoptosis induction by Polygonum minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line. Biomed. Res. Int. 2014, 539607.
Moradi-Afrapoli, F., Asghari, B., Saeidnia, S., et al., 2012a. In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. Daru 20 (1), 37.
Moradi-Afrapoli, F., Yassa, N., Zimmermann, S., et al., 2012b. Cinnamoylphenethyl amides from Polygonum hyrcanicum possess anti-trypanosomal activity. Nat. Prod. Commun. 7 (6), 753–755.
Nugroho, A., Kim, E.J., Choi, J.S., Park, H.J., 2014. Simultaneous quantification and peroxynitrite-scavenging activities of flavonoids in Polygonum aviculare L. herb. J. Pharm. Biomed. Anal. 89, 93–98.
Roslan, N.D., Yusop, J.M., Baharum, S.N., et al., 2012. Flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via expressed sequences tag (EST) analysis. Int. J. Mol. Sci. 13 (3), 2692–2706.
Schuster, T.M., Setaro, S.D., Kron, K.A., 2013. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amplid Pacific Muehlenbeckia. PLoS One 8 (4), e61261.
Seya, K., Yamaya, A., Kamachi, S., et al., 2014. 8-Methyltryptanthrin-induced differentiation of P19CL6 embryonal carcinoma cells into spontaneously beating cardiomyocyte-like cells. J. Nat. Prod. 77 (6), 1413–1419.
Smolarz, H.D., Budzianowski, J., Bogucka-Kocka, A., et al., 2008. Flavonoid glucuronidases with anti-leukaemic activity from Polygonum amphibium L. Phytochem. Anal. 19 (6), 506–513.
Song, J., Yao, H., Li, Y., et al., 2009. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J. Ethnopharmacol. 124 (3), 434–439.

Steele, M.L., Fuller, S., Patel, M., et al., 2013. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol. 1 (1), 441–445.

Storniolo, C.E., Quifer-Rada, P., Lamuela-Raventos, R.M., Moreno, J.J., 2014. Piceid presents antiproliferative effects in intestinal epithelial Caco-2 cells, effects unrelated to resveratrol release. Food Funct. 5 (9), 2137–2144.

Sun, Y.S., Yang, S.F., Wang, J.H., et al., 2012. Analysis of head volatile constituents of Polygonum cuspidatum flower by HS-GC/MS. Zhong Yao Cai 35 (2), 241–243.

Sun, Y.N., Cui, L., Li, W., et al., 2013. Promotion effect of constituents from the root of Polygonum multiflorum on hair growth. Bioorg. Med. Chem. Lett. 23 (17), 4801–4805.

Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

Tang, P.C., Ng, Y.F., Ho, S., et al., 2014. Resveratrol and cardiovascular health – promising therapeutic or hopeless illusion? Pharmacol. Res. 90, 88–115. http://dx.doi.org/10.1016/j.phrs.2014.08.001.

Tantry, M.A., Radwan, M.M., Akbar, S., Khan, I.A., 2012. 5, 6-Dihydropyranobenzopyrone: a previously undetermined antioxidant isolated from Polygonum amplexicaule. Chin. J. Nat. Med. 10 (1), 28–31.

Tian, C., Zhang, R., Ye, X., et al., 2013. Resveratrol ameliorates high-glucose-induced hyper-permeability mediated by caveolae via VEGF/KDR pathway. Genes Nutr. 8 (2), 231–239.

Udani, J.K., George, A.A., Musthapa, M., et al., 2014. Effects of a proprietary freeze-dried water extract of Eurycoma longifolia (Physta) and Polygonum minus on sexual performance and well-being in men: a randomized, double-blind, placebo-controlled study. Evid. Based Complement. Alternat. Med. 2014, 179529.

Vikram, P., Chiruvella, K.K., Ripain, I.H., Arifullah, M., 2014. A recent review on phytochemical constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian Pac. J. Trop. Biomed. 4 (6), 430–435.

Wang, H., Song, L., Feng, S., et al., 2013a. Characterization of proanthocyanidins in stems of Polygonum multiflorum Thunb as strong starch hydrolase inhibitors. Molecules 18 (2), 2255–2265.

Wang, Z., Gu, J., Wang, X., et al., 2013b. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK. Pharmacol. Biochem. Behav. 112, 104–110.

Wang, W., He, Y., Lin, P., et al., 2014a. In vitro effects of active components of Polygonum Multiflorum Radix on enzymes involved in the lipid metabolism. J. Ethnopharmacol. 153 (3), 763–770.

Wang, Y., Ma, J., Chow, S.C., et al., 2014b. A potential antitumor ellagitannin, davidin, inhibited hepatocellular tumor growth by targeting EZH2. Tumour Biol. 35 (1), 205–212.

Xiang, M.X., Hu, Y.J., Yan, Y., et al., 2012. Study on chemical composition of ethylacetate fraction from Polygonum amplexicaule var. sinense: Zhong Yao Cai 35 (10), 1610–1614.

Xiang, K., Liu, G., Zhou, Y.J., et al., 2014. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) attenuates human platelet aggregation, secretion and spreading in vitro. Thromb. Res. 133 (2), 211–217.

Xiao, H.T., Tsang, S.W., Qin, H.Y., et al., 2013. A bioactivity-guided study on the anti-diarrheal activity of Polygonum chinense Linn. J. Ethnopharmacol. 149 (2), 499–505.

Xie, Q., Yang, Y., Wang, Z., et al., 2014. Resveratrol-4-O-d-(2'-galloyl)-glucopyranoside isolated from Polygonum cuspidatum exhibits anti-hepatocellular carcinoma viability by inducing apoptosis via the JNK and ERK pathway. Molecules 19 (2), 1592–1602.
Xu, M.L., Zheng, M.S., Lee, Y.K., et al., 2006. A new stilbene glucoside from the roots of *Polygonum multiflorum* Thunb. Arch. Pharm. Res. 29 (11), 946–951.

Xu, X.L., Huang, Y.J., Ling, D.Y., Zhang, W., 2014a. Inhibitory effects of 2,3,4′,5-tetrahydroxystilbene-2-β-D-glucoside on angiotensin II-induced proliferation of vascular smooth muscle cells. Chin. J. Integr. Med. 21 (3), 204–210.

Xu, X.L., Zhu, Q.Y., Zhao, C., et al., 2014b. The effect of 2, 3, 4′, 5-tetrahydroxystilbene-2-β-D-glucoside on pressure overload-induced cardiac remodeling in rats and its possible mechanism. Planta Med. 80 (2–3), 130–138.

Yan, P., Pang, Q.H., Jiao, X.W., et al., 2008. Genetic variation and identification of cultivated *Fallopia multiflora* and its wild relatives by using chloroplast matK and 18S rRNA gene sequences. Planta Med. 74 (12), 1504–1509.

Yan, S.L., Su, Y.F., Chen, L., et al., 2014. Polygonumosides A-D, stilbene derivatives from processed roots of *Polygonum multiflorum*. J. Nat. Prod. 77 (2), 397–401.

Yang, H.H., Hwangbo, K., Zheng, M.S., et al., 2014a. Inhibitory effects of (−)-loliolide on cellular senescence in human dermal fibroblasts. Arch. Pharm. Res. http://dx.doi.org/10.1007/s12272-014-0435-0.

Yang, H.H., Hwangbo, K., Zheng, M.S., et al., 2014b. Quercetin-3-β-D-glucuronide isolated from *Polygonum aviculare* inhibits cellular senescence in human primary cells. Arch. Pharm. Res. 37 (9), 1219–1233.

Yao, W., Fan, W., Huang, C., et al., 2013. Proteomic analysis for anti-atherosclerotic effect of tetrahydroxystilbene glucoside in rats. Biomed. Pharmacother. 67 (2), 140–145.

Yiu, C.Y., Chen, S.Y., Yang, T.H., et al., 2014. Inhibition of Epstein-Barr virus lytic cycle by an ethyl acetate subfraction separated from *Polygonum cuspidatum* root and its major component, emodin. Molecules 19 (1), 1258–1272.

Zhang, H., Yu, C.H., Jiang, Y.P., et al., 2012a. Protective effects of polydatin from *Polygonum cuspidatum* against carbon tetrachloride-induced liver injury in mice. PLoS One 7 (9), e46574.

Zhang, J.K., Yang, L., Meng, G.L., et al., 2012b. Protective effect of tetrahydroxystilbene glucoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Eur. J. Pharmacol. 689 (1–3), 31–37.

Zhang, L.J., Wang, Y.L., Wang, Z., et al., 2012c. Study on the chemical constituents of the active fraction of *Polygonum capitatum*. Zhong Yao Cai 35 (9), 1425–1428.

Zhang, F., Wang, Y.Y., Yang, J., et al., 2013a. Tetrahydroxystilbene glucoside attenuates neuroinflammation through the inhibition of microglia activation. Oxid. Med. Cell. Longev. 2013, 680545.

Zhang, H., Li, C., Kwok, S.T., et al., 2013b. A review of the pharmacological effects of the dried root of *Polygonum cuspidatum* (Hu Zhang) and its constituents. Evid. Based Complement. Alternat. Med. 2013, 208349.

Zhang, Y., Zhuang, Z., Meng, Q., et al., 2014. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest. Oncol. Lett. 7 (1), 295–301.

Zhao, H.N., Chen, L.L., Huang, X.J., et al., 2014. A new chromone glycoside from roots of *Polygonum multiflorum*. Zhongguo Zhong Yao Za Zhi 39 (8), 1441–1444.

Zheng, C.J., Zhao, S.J., Zhao, Z.H., Guo, J., 2009. Molecular authentication of the traditional medicinal plant *Fallopia multiflora*. Planta Med. 75 (8), 870–872.

Zhou, T., Jin, Y., Wu, Y., et al., 2010. Genetic diversity of *Polygonum capitatum* from Guizhou populations by ISSR markers. Zhongguo Zhong Yao Za Zhi 35 (12), 1511–1517.

Zhou, T., Xie, Y., Zhang, L.Y., et al., 2013. Study on sequence characterized amplified region (SCAR) markers of *Polygonum capitatum*. Zhongguo Zhong Yao Za Zhi 38 (16), 2577–2580.