Birkhoff billiards are insecure

Serge Tabachnikov

February 5, 2008

Abstract

We prove that every compact plane billiard, bounded by a smooth curve, is insecure: there exist pairs of points \(A, B \) such that no finite set of points can block all billiard trajectories from \(A \) to \(B \).

Two points \(A \) and \(B \) of a Riemannian manifold \(M \) are called secure if there exists a finite set of points \(S \subset M - \{A, B\} \) such that every geodesic connecting \(A \) and \(B \) passes through a point of \(S \). One says that the set \(S \) blocks \(A \) from \(B \). A manifold is called secure (or has the finite blocking property) if any pair of its points is secure. For example, every pair of non-antipodal points of the Euclidean sphere is secure, but a pair of antipodal points is not secure, so the sphere is insecure. A flat torus of any dimension is secure.

In the recent years, the notion of security has attracted a considerable attention, see [1, 2, 3, 4, 9, 10, 11, 12]. This notion extends naturally to Riemannian manifolds with boundary, in which case one considers billiard trajectories from \(A \) to \(B \) with the billiard reflection off the boundary.

In this note we consider a compact plane billiard domain \(M \) bounded by a smooth curve and prove that \(M \) is insecure. More specifically, one has the following local insecurity result. Consider a sufficiently short outward convex arc \(\gamma \subset \partial M \) with end-points \(A \) and \(B \) (such an arc always exists).

Theorem 1 The pair \((A, B)\) is insecure.
Proof. Denote by T_n the polygonal line $A = P_0, P_1, \ldots, P_{n-1}, P_n = B$, $P_i \in \gamma$, of minimal length; this is a billiard trajectory from A to B. If n is large then T_n lies in a small neighborhood of γ.

Working toward contradiction, assume that a finite set of points $S \subset M - \{A, B\}$ blocks every billiard trajectory from A to B. Decompose S as $S' \cup S''$ where the points of S' lie on the boundary and the points of S'' lie inside the billiard table. For n large enough, the trajectory T_n is disjoint from S''. We want to show that there is a sufficiently large n such that the set $P_n = \{P_1, \ldots, P_{n-1}\}$ is disjoint from S'.

Let s be the arc-length parameter and $k(s)$ the curvature of γ. Let σ be a new parameter on the arc γ such that $d\sigma = (1/2)k(s)^2/3 ds$. By rescaling the arc γ, we may assume that the range of σ is $[0, 1]$ with $\sigma(0) = A$ and $\sigma(1) = B$. Let $Q_0 = A, Q_1, \ldots, Q_{n-1}, Q_n = B$ be the points that divide the σ-measure of γ into n equal parts, that is, $Q_m = \sigma(m/n)$.

Proposition 2 One has: $|P_n - Q_n| = O(1/n^2)$.

Remark 3 This Claim is consistent with Theorem 6 (iii) of [6] which describes the limit distribution of the vertices of the inscribed polygons that best approximate a convex curve relative the deviation of the perimeter length.

To prove Proposition 2, we use the theory of interpolating Hamiltonians, see [7, 8] and especially [5]. Recall the relevant facts from this theory.

First, some generalities about plane billiards (see, e. g., [13, 14]). The phase space X of the billiard ball map consists of inward unit tangent vectors (x, v) to M with the foot point x on the boundary ∂M; x is the position of the billiard ball and v is its velocity. The billiard ball map F takes (x, v) to the vector obtained by moving x along v until it hits ∂M and then elastically reflecting v according to the law “angle of incidence equals angle of reflection”. Let ϕ be the angle made by v with the positive direction of ∂M. Then (s, ϕ) are coordinates in X. The area form $\omega = \sin \phi \, d\phi \wedge ds$ is F-invariant.

In a nutshell, the theory of interpolating Hamiltonians asserts that the billiard ball map equals an integrable symplectic map, modulo smooth symplectic maps that fix the boundary of the phase space X to all orders. More specifically, one can choose new symplectic coordinates H and Z near the boundary $\phi = 0$ such that $\omega = dH \wedge dZ$, H is an integral of the map F, up to all orders in ϕ, and

$$F^*(Z) = Z + H^{1/2}, \quad (1)$$
also up to all orders in ϕ. The function H is given by a series in even powers of ϕ, namely,

$$H = k^{-2/3} \phi^2 + O(\phi^4),$$

and this series is uniquely determined by the above conditions on H and Z.

Lemma 4 One may choose the coordinate Z in such a way that $Z = \sigma + O(\phi^2)$.

Proof. Let $Z = f(s) + g(s)\phi + O(\phi^2)$. We have: $\omega = dH \wedge dZ$. Equating the coefficients of $\phi \, d\phi \wedge ds$ and of $\phi^2 \, d\phi \wedge ds$ and using (2) we obtain the equations:

$$2k^{-2/3}(s)f'(s) = 1, \quad 2k^{-2/3}(s)g'(s) + \frac{2}{3}k^{-5/3}(s)k'(s)g(s) = 0.$$

The first equation implies that $df = d\sigma$ and the second that $g = Ck^{-1/3}$ where C is a constant. We can choose $f(0) = 0$. Since Z is defined up to summation with functions of H, it follows from (2) that the term $g(s)\phi$ can be eliminated by subtracting $CH^{1/2}$. \hfill \Box

Now we can prove Proposition 2. The billiard trajectory T_n corresponds to a phase orbit x_0, \ldots, x_n, $F(x_i) = x_{i+1}$. Since H is an integral of the map F, the orbit x_0, \ldots, x_n lies on a level curve $H = c_n$. Due to (1), we have: $n\sqrt{c_n} = O(1)$, and hence $c_n = O(1/n^2)$ which, in view of (2), implies that

$$\phi = O \left(\frac{1}{n} \right).$$

Consider σ and Z as functions on the phase space X. Since $\sigma(x_m) = P_m$ and the σ-coordinate of Q_m is m/n, we need to show that

$$\sigma(x_m) = \frac{m}{n} + O \left(\frac{1}{n^2} \right).$$

Since F is a shift in Z-coordinate, see (1), one has:

$$Z(x_m) = \frac{m}{n} (Z(x_n) - Z(x_0)) = \frac{m}{n} (\sigma(x_n) - \sigma(x_0)) + O \left(\frac{1}{n^2} \right) = \frac{m}{n} + O \left(\frac{1}{n^2} \right),$$

the second equality due to Lemma 4 and (3). This proves Proposition 2. \hfill \Box
From now on, we identify the arc γ with the segment $[0,1]$ using the parameter σ; the points P_1, \ldots, P_{n-1} are considered as reals between 0 and 1. Assume that a finite set $S' = \{t_1, \ldots, t_k\} \subset (0,1)$ is blocking, that is, for all sufficiently large n, one has $P_n \cap S' \neq \emptyset$.

Some of the numbers $t_i \in S'$ may be rational; denote them by p_i/q_i, $i = 1, \ldots, l$ (fractions in lowest terms), and let $Q = q_1 \cdot \cdots \cdot q_l$. Set $n_i = 1 + (N + i)Q$, $i = 0, \ldots, k$.

Proposition 5 For N sufficiently large, at least one of the sets P_{n_i} is disjoint from S'.

Proof. Assume not. Then, by the Pigeonhole Principle, there exist l, i, j such that $t_l \in P_{n_i} \cap P_{n_j}$. According to Proposition 2 there is a constant C (independent of n) such that, for $P_m \in P_n$, one has:

$$\left| P_m - \frac{m}{n} \right| < \frac{C}{n^2}.$$

Therefore

$$\left| t_l - \frac{m_1}{n_i} \right| < \frac{C}{n_i^2}, \quad \left| t_l - \frac{m_2}{n_j} \right| < \frac{C}{n_j^2} \quad (5)$$

for some m_1, m_2.

Lemma 6 If N sufficiently large then $t_i \notin \mathbb{Q}$.

Proof. First, we claim that, given a fraction p/q and a constant C, if

$$\left| \frac{p}{q} - \frac{m}{n} \right| < \frac{C}{n^2}$$

for all sufficiently large n then $m/n = p/q$.

Indeed, if $m/n \neq p/q$ then $1 \leq |pn - qm|$, hence

$$\frac{1}{qn} \leq \left| \frac{p}{q} - \frac{m}{n} \right| < \frac{C}{n^2},$$

which cannot hold for $n > Cq$.

Next, we claim that, for all $M, N \in \mathbb{Z}$ and each $i = 1, \ldots, l$,

$$\frac{M}{1 + NQ} \neq \frac{p_i}{q_i}.$$
Indeed, if the equality holds then $Mq_i = p_i(1 + NQ)$. The right hand side is divisible by q_i but $1 + NQ$ is coprime with q_i; this contradicts the assumption that q_i and p_i are coprime.

The two claims combined imply the lemma. \hfill \Box

Next, (5) and the triangle inequality imply that

$$\left| \frac{m_1}{n_i} - \frac{m_2}{n_j} \right| < C \left(\frac{1}{n_i^2} + \frac{1}{n_j^2} \right)$$

for some m_1, m_2. It follows that

$$|m_1n_j - m_2n_i| < C \left(\frac{n_j}{n_i} + \frac{n_i}{n_j} \right).$$

The expression in the parentheses on the right hand side has limit 2, as $N \to \infty$, hence one has, for sufficiently great N,

$$|m_1n_j - m_2n_i| < 3C. \quad (6)$$

Denote by \mathcal{M} the (finite) set of fractions with the denominators jQ, $j \in \{1, 2, \ldots, k\}$, and let $\delta > 0$ be the distance between the sets $S' - \mathbb{Q}$ and \mathcal{M}.

Lemma 7 For sufficiently large N, one has:

$$|m_1n_j - m_2n_i| > \delta Q^2 N/2.$$

Proof. For N large enough, it follows from (5) that

$$\left| t_l - \frac{m_1}{n_i} \right| < \frac{\delta}{2}.$$

Since $t_l \notin \mathbb{Q}$, it follows that the distance from m_1/n_i to \mathcal{M} is greater than $\delta/2$. One has:

$$|m_1n_j - m_2n_i| = |n_j - n_i| \ n_i \left| \frac{m_1}{n_i} - \frac{m_2 - m_1}{n_j - n_i} \right| > Q \cdot QN \cdot \frac{\delta}{2},$$

as claimed. \hfill \Box

Finally, for large N, Lemma 7 contradicts inequality (6), and Proposition 5 follows. \hfill \Box

This Proposition implies Theorem 1 and we are done. \hfill \Box
Remark 8. Theorem II along with its proof, can be extended to billiards in higher dimensional Euclidean spaces: the role of the curve γ is played by the shortest geodesic on the boundary of the billiard table connecting A and B.

Acknowledgments. Many thanks to K. Burns, R. Schwartz and L. Stojanov for their interest. The author was partially supported by an NSF grant DMS-0555803.

References

[1] K. Burns, E. Gutkin. Growth of the number of geodesics between points and insecurity for riemannian manifolds. Preprint arXiv:math/0701579

[2] E. Gutkin. Blocking of billiard orbits and security for polygons and flat surfaces. Geom. Funct. Anal. 15 (2005), 83–105.

[3] E. Gutkin, V. Schroeder. Connecting geodesics and security of configurations in compact locally symmetric spaces. Geom. Dedicata 118 (2006), 185–208.

[4] J.-F. Lafont, B. Schmidt. Blocking light in compact Riemannian manifolds. Geometry and Topology, to appear, arXiv:math/0607789

[5] S. Marvizi, R. Melrose. Spectral invariants of convex planar regions. J. Diff. Geom. 17 (1982), 475-502.

[6] D. McClure, R. Vitale. Polygongal approximation of plane convex bodies. J. Math. Anal. Appl. 51 (1975), 326–358.

[7] R. Melrose. Equivalence of glancing hypersurfaces. Invent. Math. 37 (1976), 165-192.

[8] R. Melrose. Equivalence of Glancing Hypersurfaces 2. Math. Ann. 255 (1981), 159-198.

[9] T. Monteil. A counter-example to the theorem of Hiemer and Snurnikov. J. Statist. Phys. 114 (2004), 1619–1623.
[10] T. Monteil. On the finite blocking property. Ann. Inst. Fourier 55 (2005), 1195–1217.

[11] T. Monteil. Finite blocking property versus pure periodicity. Preprint arXiv:math/0406506

[12] B. Schmidt, J. Souto. Chords, light, and another synthetic characterization of the round sphere. Preprint arXiv:0704.3642

[13] S. Tabachnikov. Billiards. Soc. Math. de France, Paris, 1995.

[14] S. Tabachnikov. Geometry and billiards. Amer. Math. Soc., Providence, RI, 2005.