SPECIAL ISSUE ARTICLE

Radiomics in lung cancer for oncologists

Carolina de la Pinta1*, Nuria Barrios-Campo2, David Sevillano3

1Department of Radiation Oncology, Ramón y Cajal Hospital, Madrid, Spain, 2Department of Biomedical Engineering, Madrid Polytechnic University, Madrid, Spain, 3Department of Medical Physics, Ramón y Cajal Hospital, Madrid, Spain

ABSTRACT

Radiomics has revolutionized the world of medical imaging. The aim of this review is to guide oncologists in radiomics and its applications in diagnosis, prediction of response and damage, prediction of survival, and prognosis in lung cancer. In this review, we analyzed published literature on PubMed and MEDLINE with papers published in the last 10 years. We included papers in English language with information about radiomics features and diagnostic, predictive, and prognosis of radiomics in lung cancer. All citations were evaluated for relevant content and validation.

Relevance for patients: The evolution of technology allows the development of computer algorithms that facilitate the diagnosis and evaluation of response after different oncological treatments and their non-invasive follow-up.

1. Introduction

Lung cancer is the first cause of cancer in the world, constituting the first cause of cancer mortality [1]. There are two types of lung cancer, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC includes adenocarcinomas and epidermoid carcinomas.

The diagnosis of lung cancer must be histological, but sometimes it is not possible because the lesion is not accessible or the diagnostic procedure represents a high risk for the patient. Sometimes, the oncological treatment can be planned despite the lack of histological diagnosis. Surgery and radiotherapy are locoregional treatments that contribute, alone or in combination with other treatments, to the cure of early stages lung cancer. In more advanced stages, when metastases are present, chemotherapy and other systemic treatments are usually the treatment of choice. Stereotactic body radiotherapy, or SBRT, is a high precision irradiation technique, which allows very high doses to be delivered to the tumor in a limited number of fractions, with a highly cytotoxic biological ablative effect, and minimal doses to the organ at risk [2]. The use of SBRT to treat early-stage lung cancer has become increasingly due to proven efficacy, demonstrating local control at 3 years of up to 98% with limited relevant toxicity [3].

Radiomics was introduced by Lambin et al. [4] in 2012, but Kumar et al. [5] extended the definition. Radiomics allows the conversion of digital medical images into data to extract the underlying physiopathology. Radiomics was designed to decode the information and characteristics of lesion images to improve their interpretation. It is a product of digital imaging combined with various computer techniques. The use of this tool could provide information to improve medical decision-making and screening programs [6]. In addition, it could be an appropriate non-invasive tool to determine malignancy, tumor subtype, stage tumors, treatment, or predict response, relapses, and prognosis. For its development, radiologists, medical experts, mathematicians,
and computer scientists are necessary. Radiomics can be extracted from CT, MRI, and PET imaging [7].

2. Radiomic Features: Data Extraction and Analysis

Radiomics analysis allows the evaluation of medical images. The workflow includes image acquisition and reconstruction; definition of region of interest (ROI) and segmentation; extraction and quantification of characteristics; and finally, construction of predictive and prognostic models with the information identified [7,8].

2.1. Image acquisition and reconstruction

Image acquisition is important in the final results of the analysis. Standardization of image data can help to establish predictive models. Characteristics include kV, mAs, slice size, breath control method, configuration, and contrast. Variations in image acquisition and reconstruction parameters can affect the image value to compare and analyze radiomics studies. It is very important to maintain a homogeneous criterion [9]. Radiomics based on non-contrast CT images has shown in some studies a higher efficiency compared to contrast CT images. He et al. [10] suggested that biological heterogeneity within the tumor, represented by radiological features, may be confused with intravenous contrast agents, leading to inferior discrimination between benign and malignant tumors.

2.2. Segmentation of the area of interest

Once the image is obtained, the ROI, the area of the tumor, is delimited. This process is denominated segmentation. Segmentation can be manual, automatic, or semi-automatic. The gold standard includes manual segmentation by experts but is operator dependent. The automatic segmentation uses pre-selected parameters and is ideal for its accuracy, reproducibility, and consistency. However, manual intervention is necessary to validate the automatic segmentation. There is no universal method, the same algorithm can give variable results. The semiautomatic segmentation is able to combine two previous procedures being the most recommended. Segmentation is crucial, an error in this phase will modify the whole analysis [11-13].

2.3. Extraction and quantification of features

It allows to extract and evaluate large volumes of data obtained from the images. Radiomics includes four types of analysis: Morphological, statistical, regional, and model-based. The most basic radiomics analysis is morphological analysis. Statistical analysis includes first-order and highly-order features, histogram, and texture, respectively. Regional analysis includes intratumor heterogeneity and characteristics around the tumor. Model-based is analyzed with a mathematical approach.

Morphological analysis includes information about shape [14]. Shape allows to evaluate physical characteristics of the tumor and differentiates between malignant and benign nodules [15]. Shape parameters include diameter, volume, area under the curve (AUC), and wave [16]. To study the shape, the segmented lesions are constructed in 3D images. The most commonly used parameters are the maximum and minimum diameter and volume. The volume is defined by counting the number of voxels in the tumor and multiplying by the volume of the voxel. Volume is a key parameter, a short volume doubling time reflects high histological aggressiveness and suggests poor prognosis [17,18]. Indeed, volume is a tool for evaluating response to treatment [19,20].

Intensity is analyzed in histograms which are graphic representations of the intensity distribution in an image. Intensity analysis includes range, mean, median, standard deviation (SD), minimum, maximum, kurtosis, energy, entropy, uniformity, variance, and skewness and can be used to predict the nature of the lesion and prognosis. Intensity characteristics are dependent on the reconstruction and image acquisition parameters (cut size and voxel size) [19]. Texture describes the relationship between neighboring pixels and their distribution through the nodes. The texture determines the tumor’s heterogeneity, which is very important in the aggressiveness evaluation, allowing the differentiation between benign and malignant lesions. For texture extraction, the most used method includes second-order statistics and co-occurrence matrix characteristics constructed using number, distance, and angle of gray levels in the image. Texture parameter includes correlation, clustering, contrast, energy, and entropy. Entropy describes the randomness of the surrounding intensities within a grayscale image. Wavelet allows to decompose the image data into different frequency components and uses these data to extract characteristics related to the texture and intensity of the image. These are filters that transform an array of complex lines or radio waves. The most common is the Coiflet wave transformation [21]. They are used in the diagnosis and evaluation of response to treatment. It is necessary to standardize it.

The relationship between the tumor and the surrounding healthy surface is another element of the tumor microenvironment. The discrete compaction is related to its circularity and this to the invasion around the tumor [22]. The neighboring gray tone matrix is a parameter to differentiate gray tones, including busyness, complexity, and texture length. It is necessary to evaluate these data with statistical co-variance [7]. There are several calculation algorithms; one example is in neighborhood gray tone various matrices, which analyzes the intensity values around and within the pixels, and has been shown to be a predictor of survival in patients with NSCLC or the gray level co-occurrence matrix that uses the distance and angle of a combination of grays that occur in an image [19]. Aerts et al. [20] found a great correlation between gene expression and textures. Cook et al. [22] analyzed texture to predict survival after chemoradiotherapy (CRT) in lung cancer. Ganeshan et al. [23] found that tumor heterogeneity can be evaluated by non-contrast CT texture analysis and has the potential to provide an independent predictor of survival and prognosis for patients with NSCLC. In general, several studies have related texture with stage, metastasis, response, survival, and metagenesis in lung cancer [22,24]. This is a promising prognostic indicator.
2.4. Construction of predictive models and prognosis in a non-invasive method

Once the characteristics have been extracted, the next step is to establish relationships between radiomics parameters and clinical variables. This can be done from direct statistical analysis based on hypotheses on machine learning methods. Statistical analysis is the most commonly used in lung cancer. One of the predictive models developed combines size, concavity, contour, and speculation [25]. Bayanati et al. demonstrated that size can be a good predictor in itself and correlates with overall survival (OS) [26]. This model can be used to define not only the nature of the primary tumor but also the nodes [26,27].

3. Radiomics Applications in Lung Cancer

3.1. Diagnostic prediction: malignant versus benign histology

Images in oncology can be predictive and diagnostic. In lung cancer screening, correct diagnosis is essential. Some studies have reported that radiomics is useful for differentiating NSCLC from other benign tumors or pre-malignant lesions by extracting characteristics of solid nodules [28]. The differentiation between benign nodules from malignant, solid regions from sub-solids, or adenocarcinoma in situ from invasive is essential for the correct treatment of lung cancer. Previously, discrimination between invasive and non-invasive proportions of ground-glass opacity (GGO) nodules was limited to visual perception and subjective CT analysis. In the radiomic era, some studies have shown that entropy and a high attenuation value are factors of invasiveness in adenocarcinoma [29]. In addition, the 97.5 percentile and slope of CT attenuation have been defined as predictors of changes in attenuation and growth of the solid zone of the GGO node, providing additional information on invasiveness [30].

In lung adenocarcinoma, the increase in cellularity is important because it reflects the presence of invasiveness [29]. Coroller et al. have differentiated pre-invasive tumors from invasive adenocarcinomas using texture, high kurtosis, and small nodules [35]. Gradient characteristics extracted in various resolutions and orientations provide nodal information for detection and diagnosis [31]. Variability in nodule size and orientation relating to the lung adversely affects the gradient [32]. The study of tumor heterogeneity allows the differentiation of tumor aggressiveness [14].

Radiological analysis of the primary helps predict lymph node involvement. Yang et al. [33] built a model that correlated different characteristics with nodal involvement, with an AUC of 0.871 in the training group and an AUC of 0.856 in the validation cohort. Zhong et al. [34] studied 300 radiological characteristics in 492 patients with lung adenocarcinoma. The accuracy of the radiomic signature was 91.1%, suggesting that the radiomic signature of the primary tumor can be used for quantitative and non-invasive prediction of lymph node metastases in patients with lung cancer [21].

However, few studies have studied radiomic features of lymph nodes. Bayanati et al. [26] found that texture and shape identified malignant lymph nodes with a sensitivity of 81% and a specificity of 80%. Andersen et al. [27] demonstrated that texture analysis showed a significant difference between malignant and benign lymph nodes with an AUC of 83.4% and excellent reproducibility. Interestingly, Coroller et al. [35] performed analyses on both the primary tumor and the lymph nodes and demonstrated that the lymph node phenotype could present essential information in addition to that provided by the primary tumor alone.

We should note that the studies focus on only one primary ROI per subject. There are many cases in which a patient has multiple nodes, which may be primary or metastatic. Focusing on a single ROI facilitates statistical analysis, but does not include the interactions among the different nodules; this is currently under development [36].

3.2. Prediction of response: Non-invasive monitoring tool

After treatment, patients are monitored to assess the response to treatment and possible progressions and complications. This follow-up is usually done with imaging tests such as CT or PET. Response evaluation is through Response Evaluation Criteria in Solid Tumors (RECIST) criteria. RECIST allows for standardized evaluation of size differences in serial CT scans after treatment to define the response. It has been adapted to the new therapies with immune-related response criteria and modified RECIST; however, they are still not sufficient for the evaluation of the accurate response in certain scenarios. Sometimes, large inflammatory changes are described by treatments such as SBRT or immunotherapy. Radiomics has shown to be a promising tool in predicting response to treatment. There are several radiomic features related to this response such as tumor shape and textural patterns. It has been studied in the evaluation of early response and treatment effectiveness.

Some parameters studied in PET include standardized uptake value (SUV), metabolic tumor volume (MTV), and quantitative texture characteristics such as entropy, correlation, contrast and uniformity, and delta radiomics (volume, texture, and intensity-volume histogram). Of these, texture by coarseness, contrast, and busyness present a strong correlation with response to CRT with RECIST, while SUV does not. Dong et al. [37] demonstrate a correlation among the coefficient of variation, MTV, and contrast with the prediction of response to CRT.

In CT findings such as pre-treatment spherical shape, texture data, lymph node homogeneity, changes in primary tumor volume, and histogram characteristics are potential predictors of patients with NSCLC after CRT, Coroller et al. [35] demonstrated that radiomic wavelet features predicted pathological complete response in patients treated with CRT. Jain et al. [38] demonstrated that textured features predicted pathological complete response in patients treated with trimodal therapy. Fave et al. [39] demonstrated that changes in intensity and texture of serial CT scans of stage III patients before, during, and after radiation therapy were predictive of tumor response. Variability in intensity and size is predictive of response after tyrosine kinase inhibitors [40].

In predicting response after SBRT, the use of shape and tumor heterogeneity features has been shown to be predictive [41]. Mattonen et al. [42] found an increased gray-level co-occurrence and gray level features in patients who recurred after early-stage...
NSCLC radiotherapy.

3.3. Predicting radio-induced lung injury (RILI)

Distinguishing radio-induced damage from local recurrence is imperative. Mattonen et al. [42] demonstrated that, compared to RILI, recurrence showed higher Hounsfield units (HU) and higher SD in the texture of the GGO nodule. When comparing subjective study characteristics and quantitative changes, results showed that the key to distinguish RILI and early recurrence is time, 9 and 15 months after SBRT, respectively. Mattonen et al. [42] described that GGO texture analysis can predict recurrence within 5 months after SBRT. Moran et al. [43] extracted first-order and gray-level texture characteristics to distinguish the severity of RILI in three categories. They demonstrated that texture characteristics provide better performance than first-order characteristics. Cunliffe et al. [44] also combined radiomic characteristics with radiation dose and demonstrated that radiology can provide a quantitative and customized measure of radiation dose tolerance for each patient, which can be used to determine the likelihood of radiation-induced pneumonitis.

3.4. Predicting risk of recurrence

Takeda et al. [45], Essler et al. [46], and Zhang et al. [47] evaluated local recurrence in NSCLC after SBRT on PET images, with the SUV being a strong predictor with low variability. Pyka et al. [48] related the risk of recurrence to texture and entropy in CT in patients treated with radiotherapy. In addition, wavelet and textural features were overexpressed in patients with distant metastases who failed with SBRT. With respect to PET/CT scans, Li et al. [49] explored the SUV use of lymph nodes compared to primary tumor characteristics and reported that lymph node characteristics added value in predicting relapse.

3.5. Predicting prognosis and survival

Grove et al. [50] found measures of heterogeneity as speculation and entropy indicators of prognosis of OS. Ganeshan et al. [23] and Win et al. [51] found textural features correlated with OS, but Fried et al. [24] reported that texture is not correlated with OS, but it is correlated with locoregional control and disease-free survival (DFS); Song et al. [52] described wavelet correlated with OS, and Huang et al. [53], Raghunath et al. [54], and Depeursinge et al. [55] found a correlation between radiomic biomarkers in CT and progression-free survival (PFS). Parmar et al. [21] found the association of size, intensity, shape, texture, and wavelet with prognosis in lung cancer, stage, and histology and Coroller et al. [38] found a signature that correlated with distant metastasis.

The texture is correlated in studies with heterogeneity and aggressiveness.

Table 1. Radiomics for prediction survival and local control.

Study	n	Stage	Treatment	Image	Radiomic Features
Huang	282	I, II	-	CT	DFS: Texture
Parmar	50	NSCLC	Pre-treatment	CT	OS: Size, intensity, shape, texture, wavelet
Coroller	150	CRT	CT	DFS: First order statistics, texture, wavelet	
Song	200	CRT	CT	OS: Wavelet	
Fried	91	III	RT	CT/PET	OS, LC, DMFS: Texture+clinical parameters
Ganeshan	100	I-IV NSCLC	Pre-treatment	CT	OS: Texture
Depeuringse	100	I, AC, resected	Surgery	CT	DFS: Texture
Grove	108	Early	-	CT	OS: Shape, texture
Balagurunathan	50	NSCLC	-	CT	OS: Shape, texture
Carvalho	200	I-IIIB	CRT	PET	OS: Delta radiomics (volume, textintensity-volume histogram)
Li	92	I-IIA	SBRT	CT	OS: Morphology and clinical parameters
Aerts	647	CRT	CT	OS: Shape, intensity, texture	
Song	152	I-IV	TKI	CT	OS: Wavelet
Huynh	113	I, II	SBRT	CT	OS: First order statistics, shape Metastases: Wavelet

Local control

Study	n	Recurrence	SBRT	CT	Texture
Pyka	45	I-IIA	SBRT	PET	Entropy
Lovinvesse	63	I-II	SBRT	PET	Texture
Wu	101	I	SBRT	PET	Radiomics and histology
Cook	53	IB-III	CRT	PET	Coarseness, contrast, busyness
Kang	116	III	CRT	PET	SUVmax, AUC-CSH
Vaidya	27	IV	SBRT	CT/PET	IVH in PET, COV in CT

CT: computed tomography; DFS: disease free survival; NSCLC: non-small cell lung cancer; CRT: chemoradiotherapy; OS: overall survival; RT: radiotherapy; PET: positron emission tomography; LC: local control; DMFS: distant metastases free survival; AC: adenocarcinoma; SBRT: stereotactic body radiotherapy; TKI: tirosin kinasa inhibitors; SUV: standardized uptake value; AUC-CSH: area under curve of the cumulative SUV-volume histogram; IVH: intensity volume histogram; COV: coefficient of variation.

Distributed under creative commons license 4.0 DOI: http://dx.doi.org/10.18053/jctres.06.2020S4.002
Radiomics in PET is associated with survival, including OS, PFS, locoregional free survival, and distant metastases free survival [56]; and mean SUV max of 3.45 for DFS [50]. Delta radiomics of FDG PET correlates with OS in patients with NSCLC, as demonstrated by Carvalho et al. in their study [57].

CT seems to be better than PET for predicting OS. Some studies have demonstrated that the combination of shape, intensity, texture, and delta radiomics with clinical factors improves the predictive capacity.

Of all the studies in this review, only one showed a relationship between the intensity parameter and survival [15]. In addition, only one study used daily imaging of radiotherapy treatment and found that reduction in HU tumor correlated with cumulative dose and was associated with survival [58].

The most relevant studies in radiomics prediction of survival and local control are summarized in Table 1.

4. Radiogenomics

Genomics is central to targeted treatment of lung cancer. Radiogenomics is the relationship between radiomic phenotypes and genomic information. In general, studies have shown promising results using radiomics to identify radiographic tumor phenotypes that favor specific gene expressions. It is, therefore, essential to study the relationship between genomics and radiomics. Recent studies have studied the mutational state of tumors and radiomic signatures. Aerts et al. [9] applied this concept to lung cancer by studying how radiomic data in pre-treatment CT could non-invasively estimate mutations in EGFR, using volume, texture, and gradient. While some groups have found correlations between mutations and radiomic features, these results are not always consistent. Yipp et al. [59] scanned radiomic signatures on PET and found that they could detect mutations in EGFR, being unable to detect correlation with KRAS. ALK, ROS1, and RET were associated with kurtosis and inverse variance in combination with clinical radiology in another study [60,61]. Radiogenomics in lung cancer is in development. The scientific community needs large studies and the integration of medical imaging, genomics, and clinical data.

4.1. Limitations

Our review has limitations, including the analysis of retrospective studies and the heterogeneity of these studies. Indeed, another limitation was the number of articles reviewed and the criteria to choose which articles to analyze.

5. Conclusions

Radiomics is a promising non-invasive tool for the diagnosis and clinical management of lung cancer. Radiomics provides a more adequate and reproducible measurement of the tumor than other previously known methods to evaluate response. Furthermore, the combination of radiomics and genomics has a promising future. However, image acquisition protocols and radiomic analysis systems need to be standardized. More studies are needed to consolidate the data available.

Acknowledgments

Thanks to all the collaborators who actively participate in the development of research in this area of knowledge.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] Globocan. Globocan 2018: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2018. Available from: http://globocan.iarc.fr/Default.aspx; https://www. gco.iarc.fr. [Last accessed on 2020 Jan 01].
[2] Potten L, Kavanagh B, Galvin JM, Hevezi JM, Janjan NA, Larson DA, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2010;76:326-32.
[3] Prezzano KM, Ma SJ, Hermann GM, Rivers CI, Gomez-Suescun JA, Singh AK. Stereotactic Body Radiation Therapy for Non-small Cell Lung Cancer: A Review. World J Clin Oncol 2019;10:14-27.
[4] Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur J Cancer 2012;48:441-6.
[5] Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: The Process and the Challenges. Magn Reson Imaging 2012;30:1234-48.
[6] Aberle DR, DeMello S, Berg CD, Black WC, Brewer B, Church TR, et al. Results of the Two Incidence Screenings in the National Lung Screenings in the National Lung Screening Trial. N Engl J Med 2013;369:920-31.
[7] Chen B, Zhang R, Gan Y, Yang L, Li W. Development and clinical application of radiomics in lung cancer. Radiat Oncol 2017;12:154.
[8] Rizzo S, Botta F, Raimondi S, Origgio D, Fanciullo C, Morganti AG, et al. Radiomics: The Facts and the Challenges of Image Analysis. Eur Radiol Exp 2018;2:36.
[9] Aerts HJ, Grossmann P, Tan Y, Oxnard GR, Rizvi N, Schwartz LH, et al. Defining a Radiomic Response Phenotype: A Pilot Study Using Targeted Therapy in NSCLC. Sci Rep 2016;6:33860.
[10] He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z. Effects of Contrast-Enhancement, Reconstruction Slice Thickness and Convolution Kernel on the Diagnostic Performance of Radiomics Signature in Solitary Pulmonary Nodule. Sci Rep 2016;6:34921.
[11] Gillies RJ, Kinahan PE, Hedvig H. Radiomics: Images are more than Pictures, they are Data. Radiology 2015;278:563-77.
[12] Cao Y. The Promise of Dynamic Contrast-enhanced Imaging in Radiation Therapy. Semin Radiat Oncol
Evaluation of the Invasion Are Pretreatment 18F-FDG PET Tumor Textural Radiomics and Radiogenomics in Quantitative CT Texture and Radiomic-Based Pathological Response Prognostic Value and Reproducibility Decoding Predicting Malignant Nodules from Distributed under creative commons license 4.0 DOI: http://dx.doi.org/10.18053/jctres.06.2020S4.002

[13] Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, et al. Radiomics of Lung Nodules: A Multi-institutional Study of Robustness and Agreement of Quantitative Imaging Features. Tomography 2016;2:430-7.

[14] Lee G, Lee HY, Park H, Schiebler ML, van Beek EJ, Ohno Y, et al. Radiomics and its Emerging Role in Lung Cancer Research, Imaging Biomarkers and Clinical Management: State of Art. Eur J Radiol 2016;86:297-307.

[15] Kamiya A, Murayama S, Kamiya H, Yamashiro T, Oshiro Y, Tanaka N. Kurtosis and Skewness Assessments of Solid Lung Nodule Density Histograms: Differentiating Malignant from Benign Nodules on CT. Jpn J Radiol 2014;32:14-21.

[16] Labby ZE, Straus C, Caligiuri P, MacMahon H, Li P, Funaki A, et al. Variability of Tumor Area Measurements for Response Assessment in Malignant Pleural Mesothelioma. Med Phys 2013;40:081916.

[17] Lee JH, Lee HY, Ahn MJ, Park K, Ahn JS, Sun JM, et al. Volume-based Growth Tumor Kinetics as a Prognostic Biomarker for Patients with EGFR Mutant Lung Adenocarcinoma Undergoing EGFR Tyrosine Kinase Inhibitor Therapy: A Case Control Study. Cancer Imaging 2016;16:5.

[18] Einenkel J, Braumann UD, Horn LC, Pannicke N, Kuska JP, Schütz A, et al. Evaluation of the Invasion Front Pattern of Squamous Cell Cervical Carcinoma by Measuring Classical and Discrete Compactness. Comput Med Imaging Graph 2007;31:428-35.

[19] Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, et al. Radiomics and Radiogenomics in Lung Cancer: A Review for the Clinician. Lung Cancer 2018;115:34-1.

[20] Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nat Commun 2014;5:4006.

[21] Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine Learning Methods for Quantitative Radiomic Biomarkers. Sci Rep 2015;5:13087.

[22] Cook GI, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-small Cell Lung Cancer Associated with Response and Survival after Chemoradiotherapy? J Nucl Med 2013;54:19-26.

[23] Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour Heterogeneity in Non-small Cell Lung Carcinoma Assessed by CT Texture Analysis: A Potential Marker of Survival. Eur Radiol 2012;22:796-802.

[24] Fried DV, Tucker SL, Zhou S, Liao Z, Mawlawi O, Ibott G, et al. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III NON-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2014;90:834-42.

[25] Hu H, Wang Q, Tang H, Xiong L, Lin Q. Multi-slice Computed Tomography Characteristics of Solitary Pulmonary Ground-glass Nodules: Differences between Malignant and Benign. Thorac Cancer 2016;7:80-7.

[26] Bayanati H, Thornhill ET, Souza CA, Sethi-Virmani V, Gupta A, Maziar Di, et al. Quantitative CT Texture and Shape Analysis: Can it Differentiate Benign and Malignant Mediastinal Lymph Nodes in Patients with Primary Lung Cancer? Eur Radiol 2015;25:480-7.

[27] Andersen MB, Harders SW, Ganeshan B, Thygesen J, Madsen HH, Rasmussen F. CT Texture Analysis can Help Differentiate between Malignant and Benign Lymph Nodes in the Mediastinum in Patients Suspected for Lung Cancer. Acta Radiol 2016;57:669-76.

[28] Mao L, Chen H, Linag M, Li K, Gao J, Qin P, et al. Quantitative Radiomic Model for Predicting Malignancy of Small Solid Pulmonary Nodules Detected by Low-dose CT Screening. Quant Imaging Med Surg 2019;9:263-72.

[29] Lee HY, Lee KS. Ground Glass Opacity Nodules: Histopathology Imaging Evaluation, and Clinical Implications. J Thorac Imaging 2011;26:106-18.

[30] Bak SH, Lee JH, Kim JM, Um SW, Kwon OJ, Han J, et al. Quantitative CT Scanning Analysis of Pure Ground-glass Opacity Nodules Predicts Further CT Scanning Change. Chest 2016;149:180-91.

[31] Prasanna P, Tiwari P, Madabhushi A. Co-occurrence of Local Anisotropic Gradient Orientations (Coliage): A New Radiomics Descriptor. Sci Rep 2016;6:37241.

[32] Hawkins S, Wang H, Liu Y, Garcia A, Stringfield O, Krewer H, et al. Predicting Malignant Nodules from Screening CT Scans. J Thorac Oncol 2016;11:2120-8.

[33] Yang X, Pan X, Liu H, Gao D, He J, Liang W, et al. A New Approach to Predict Lymph Node Metastasis in Solid Lung Adenocarcinoma: A Radiomics Nomogram. J Thorac Dis 2018;10:S807-19.

[34] Zhong Y, Yuan M, Zhang T, Zhang YD, Li H, Yu TF. Radiomics Approach to Prediction of Occult Mediastinal Lymph Node Metastasis of Lung Adenocarcinoma. AJR Am J Roentgenol 2018;211:109-13.

[35] Coroller TP, Agrawal V, Huynh E, Narayan V, Lee SW, Mak RH, et al. Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC. J Thorac Oncol 2017;12:467-76.

[36] van der Maaten L. Accelerating t-SNE Using Tree-based Algorithms. J Mach Learn Res 2014;15:3221-45.

[37] Dong X, Sun X, Sun L, Maxim PG, Xing L, Huang Y, et al. Machine Learning Methods for Quantitative Radiomic Descriptors. Sci Rep 2016;6:37242.
Prediction of Response to
Textural Features in Pre-
Positron-emission
Quantitative Computed Tomographic
Delta-radiomics Features for the Prediction of
Noninvasive Risk
CT-based Radiomic Analysis of
Tumor Heterogeneity and Permeability
Quantitative CT Variables Enabling Response
Prediction in Neoadjuvant Therapy with EGFR-TKIs:
Are they Different from those in Neoadjuvant con-current
Chemoradiotherapy? PLoS One 2014;9:e88598.

Chong Y, Kim JH, Lee HY, Ahn YC, Lee KS, Ahn MJ,
et al. Quantitative CT Variables Enabling Response
Prediction in Neoadjuvant Therapy with EGFR-TKIs:
Are they Different from those in Neoadjuvant con-current
Chemoradiotherapy? PLoS One 2014;9:e88598.

Huynh E, Coroller TP, Narayan V, Agrawal V, Hou Y,
Romano J, et al. CT-based Radiomic Analysis of
Stereotactic Body Radiation Therapy Patients with Lung
Cancer. Radiother Oncol 2016;120:258-66.

Mattonen SA, Palma DA, Johnson C, Louie AV, Landis M,
Rodrigues G, et al. Detection of Local Cancer Recurrence
after Stereotactic Ablative Radiation Therapy for Lung
Cancer: Physician Performance Versus Radiomic
Assessment. Int J Radiat Oncol Biol Phys 2016;94:1121-8.

Moran A, Daly ME, Yip SS, Yamamoto T. Radiomics-
based Assessment of Radiation-induced Lung Injury
after Stereotactic Body Radiotherapy. Clin Lung Cancer
2017;18:e425-31.

Cunliffe A, Armato SG, Castillo R, Pham N, Guerrero T,
Al-Hallaq HA. Lung Texture in Serial Thoracic Computed
Tomography Scans: Correlation of Radiomics-based
Features with Radiation Therapy Dose and Radiation
Pneumonitis Development. Int J Radiat Oncol Biol Phys
2015;91:1048-56.

Takeda A, Kunieda E, Fujii H, Yokosuka N, Aoki Y,
Oooka Y, et al. Evaluation for Local Failure by 18F-FDG
PET/CT in Comparison with CT Findings after Stereotactic
Body Radiotherapy (SBRT) for Localized Non-small-cell
Lung Cancer. Lung cancer 2013;79:248-53.

Essler M, Wantke J, Mayer B, Scheidhauer K,
Bundschuh RA, Haller B, et al. Positron-emission
Tomography CT to Identify Local Recurrence in Stage
I Lung Cancer Patients 1 Year after Stereotactic Body
Radiation Therapy. Strahlenther Onko 2013;189:495-501.

Zhang X, Liu H, Balter P, Allen PK, Komaki R, Pan T,
et al. Positron Emission Tomography for Assessing Local
Failure after Stereotactic Body Radiotherapy for Non-
small-cell Lung Cancer. Int J Radiat Oncol Biol Phys
2012;83:1558-65.

Pyka T, Bundschuh RA, Andratschke N, Mayer B,
Specht HM, Papp L, et al. Textural Features in Pre-
treatment [F18]-FDG-PET/CT are Correlated with Risk of
Local Recurrence and Disease-specific Survival in Early
Stage NSCLC Patients Receiving Primary Stereotactic
Radiation Therapy. Radiat Oncol 2015;10:100.

Li H, Becker N, Raman S, Chan TC, Bissonnette JP. The
Value of Nodal Information in Predicting Lung Cancer
Relapse Using 4DPET/4DCT. Med Phys 2015;42:4727-33.

Grove O, Berglund AE, Schabath MB, Aerts HJ, Dekker A,
Wang H, et al. Quantitative Computed Tomographic
Descriptors Associate Tumor Shape Complexity and
Intratumor Heterogeneity with Prognosis in Lung
Adenocarcinoma. PLoS One 2015;10:e0118261.

Win T, Miles KA, Janes SM, Ganeshan B, Shastry M,
Endozo R, et al. Tumor Heterogeneity and Permeability as
Measured on the CT Component of PET/CT Predict
Survival in Patients with Non-small Cell Lung Cancer.
Clin Cancer Res 2013;19:3591-9.

Song J, Liu Z, Zhong W, Huang Y, Ma Z, Dong D, et al.
Non-small Cell Lung Cancer: Quantitative Phenotypic
Analysis of CT Images as a Potencial Marker of Prognosis.
Sci Rep 2016;6:38282.

Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al.
Radiomics Signature: A Potential Biomarker for the
Prediction of Disease-free Survival in Early Stage (I or II)
Non-small Cell Lung Cancer. Radiology 2016;281:47-57.

Raghunath S, Maldonado F, Rajagopalan S, Karwosiak RA,
DePew ZS, Bartholmai BJ, et al. Noninvasive Risk
Stratification of Lung Adenocarcinoma using Quantitative
Computed Tomography. J Thorac Onc 2014;9:1698-703.

Depeursinge A, Yanagawa M, Leung AN, Rubin DL.
Predicting Adenocarcinoma Recurrence Using
Computational Texture Models of Nodule Components in
Lung CT. Med Phys 2015;42:2054-63.

Kang SR, Song HC, Byun BH, Oh JR, Kim HS, Hong SP,
et al. Intratumoral Metabolic Heterogeneity for Prediction of
Disease Progression after Concurrent Chemoradiotherapy
in Patients with Inoperable Stage III Non-small-cell Lung
Cancer. Nucl Med Mol Imaging 2014;48:16-25.

Carvalho S, Leijenaar RT, Troost EG, van Elmp W,
et al. Early Variation of FDG-PET Radiomics Features
in NSCLC is Related to Overall Survival the “Delta
Radiomics” Concept. Radiat Oncol 2016;118:S20-1.

Paul J, Yang C, Wu H, Tai A, Dalah E, Zheng C, et al.
Early assessment of treatment responses during radiation
therapy for lung cancer using quantitative analysis of
daily computed tomography. Int J Radiat Oncol Biol Phys
2017;98:463-72.

Yipp SS, Kim J, Coroller TP, Parmar C, Velazquez ER,
Huynh E, et al. Associations between Somatic Mutations
and Metabolic Imaging Phenotypes in Non-small Cell
Lung Cancer. J Nucl Med 2017;58:569-76.

Yamamoto S, Korn RL, Oklu R, Migdal C, Gotway MB,
Velcheti V, et al. Radiomics-based Assessment of Radiation-induced Lung Injury after Stereotactic Body Radiotherapy. J Thorac Onc 2015;10:100.
[61] Yoon HJ, Sohn I, Cho JH, Lee HY, Kim JH, Choi YL, et al. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach. Medicine 2015;94:e1753.

[62] Coroller TP, Grossmann P, Hou Y, Velazquez ER, Leijenaar RT, Hermann G, et al. CT-Based Radiomic Signature Predicts Distant Metastases in Lung Adenocarcinoma. Radiother Oncol 2015;114:345-50.

[63] Balagurunathan Y, Gu Y, Wang H, Kumar V, Grove O, Hawkins S, Kim J, et al. Reproductibility and Prognosis of Quantitative Features Extracted from CT Images. Trans Oncol 2014;7:72-87.

[64] Carvalho S, Leijenaar RT, Velazquez ER, Oberije C, Parmar C, van Elmpt W, et al. Prognostic Value of Metabolic Metrics Extracted from Baseline Positron Emission Tomography Images in Non-small Cell Lung Cancer. Acta Oncol 2013;52:1398-404.

[65] Li Q, Kim J, Balagurunathan Y, Liu Y, Latifi K, Stringfield O, et al. Imaging Features from Pretreatment CT Scans are Associated with Clinical Outcomes in Nonsmall-cell Lung Cancer Patients Treated with Stereotactic Body Radiotherapy. Med Phys 2017;44:4341-9.

[66] Song J, Dong D, Huang Y, Zang Y, Liu Z, Tian J. Association between Tumor Heterogeneity and Progression-free Survival in Non-small Cell Lung Cancer Patients with EGFR Mutations Undergoing Tyrosine Kinase Inhibitors Therapy. Conf Proc IEEE ENg Med Biol Soc 2016;1:1268-71.

[67] Lovinfosse P, January ZL, Coucke P, Jodogne S, Bernard C, Hatt M, et al. FDG PET/CT Texture Analysis for Predicting the Outcome of Lung Cancer Treated by Stereotactic Body Radiation Therapy. Eur J Nucl Med Mol Imaging 2016;43:1453-60.

[68] Wu J, Aguilera T, Shultz D, Gudur M, Rubin DL, Loo BW Jr., et al. Early-Stage Non-small Cell Lung Cancer: Quantitative Imaging Characteristics of (18)F Fluorodeoxyglucose PET/CT Allow Prediction of Distant Metastasis. Radiology 2016;281:270-8.

[69] Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT Image Characteristics for Radiotherapy Tumor Response in Lung Cancer. Radiother Oncol 2012;102:239-45.