The Pseudomonas aeruginosa PilSR Two-Component System Regulates Both Twitching and Swimming Motilities

Sara L. N. Kilmury,a,b @ Lori L. Burrowsa,b

aDepartment of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
bMichael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada

ABSTRACT Motility is an important virulence trait for many bacterial pathogens, allowing them to position themselves in appropriate locations at appropriate times. The motility structures type IV pili and flagella are also involved in sensing surface contact, which modulates pathogenicity. In Pseudomonas aeruginosa, the PilS-PilR two-component system (TCS) regulates expression of the type IV pilus (T4P) major subunit PilA, while biosynthesis of the single polar flagellum is regulated by a hierarchical system that includes the FleSR TCS. Previous studies of Geobacter sulfurreducens and Dichelobacter nodosus implicated PilR in regulation of non-T4P-related genes, including some involved in flagellar biosynthesis. Here we used transcriptome sequencing (RNA-seq) analysis to identify genes in addition to pilA with changes in expression in the absence of pilR. Among the genes identified were 10 genes whose transcription increased in the pilA mutant but decreased in the pilR mutant, despite both mutants lacking T4P and pilus-related phenotypes. The products of these inversely dysregulated genes, many of which were hypothetical, may be important for virulence and surface-associated behaviors, as mutants had altered swarming motility, biofilm formation, type VI secretion system expression, and pathogenicity in a nematode model. Further, the PilSR TCS positively regulated transcription of fleSR, and thus many genes in the FleSR regulon. As a result, pilSR deletion mutants had defects in swimming motility that were independent of the loss of PilA. Together, these data suggest that in addition to controlling T4P expression, PilSR could have a broader role in the regulation of P. aeruginosa motility and surface sensing behaviors.

IMPORTANCE Surface appendages such as type IV pili and flagella are important for establishing surface attachment and infection in a host in response to appropriate cues. The PilSR regulatory system that controls type IV pilus expression in Pseudomonas aeruginosa has an established role in expression of the major pilin PilA. Here we provide evidence supporting a new role for PilSR in regulating flagellum-dependent swimming motility in addition to pilus-dependent twitching motility. Further, even though both pilA and pilR mutants lack PilA and pili, we identified sets of genes downregulated in the pilR mutant and upregulated in a pilA mutant as well as genes downregulated only in a pilR mutant, independent of pilus expression. This finding suggests that change in the inner membrane levels of PilA is only one of the cues to which PilR responds to modulate gene expression. Identification of PilR as a regulator of multiple motility pathways may make it an interesting therapeutic target for antivirulence compounds.

KEYWORDS cell surface, cystic fibrosis, flagellar gene regulation, two-component regulatory systems, type IV pili

Prokaryotes rely on the use of two-component systems (TCSs) to control many of their cellular activities. Typically comprised of a membrane-bound histidine sensor kinase and a cytoplasmic response regulator, TCSs allow bacteria to respond rapidly to...
chemical and physical changes in their intra- or extracellular environments, altering expression of specific genes in response to a stimulus (1). The opportunistic pathogen *Pseudomonas aeruginosa* encodes a higher-than-average number of TCSs (2) that control diverse functions, including several motility phenotypes. Flagellum-dependent swimming motility, for example, is controlled through a regulatory cascade that includes the transcriptional regulator FleQ (3) and the FleS-FleR TCS, which like many TCSs also requires the alternate sigma factor RpoN (σ^54) (4). FleQ controls transcription of fleS-fleR in addition to other flagellar, adhesion, and biofilm-associated genes, in a c-di-GMP-dependent manner (3, 5). FleSR is implicated in the expression of 20 or more flagellar biosynthetic genes in *P. aeruginosa*, as well as additional genes not previously known to be involved in flagellar assembly or function (6).

The other major motility system in *P. aeruginosa* is the type IV pilus (T4P) system, which is used for twitching across solid and semisolid surfaces (7, 8) among other important functions. In contrast to the single polar flagellum that is used to propel the cell in low-viscosity media, the cell extends multiple pili that retract either independently or in a coordinated bundle, pulling it toward the point of attachment (9–11). Pili can be extended from either pole, but typically, a single pole is used at one time, allowing for directed movement (12). The majority of the pilus fiber is made of hundreds to thousands of subunits of the major pilin protein, PilA (13), the expression of which could be energetically costly to the cell if not tightly controlled.

pilA transcription is regulated by another TCS, PilS-PilR, in *P. aeruginosa* and many other T4P-expressing bacteria (14–18). PilS is an atypical sensor histidine kinase (SK) with six transmembrane segments (19–21) that allow PilS to interact directly with PilA for pilin autoregulation (22). PilR is the cytoplasmic response regulator (RR) that binds with σ^54 to the *pilA* promoter to activate transcription (23, 24). Neither *pilA* mutants nor *pilR* mutants express PilA or T4P, but they have opposite PilR activation states, in that *pilR* mutants have no activity, while *pilA* deletion results in PilR hyperactivity (22, 23). Activation of PilR upon transient decreases in intracellular PilA levels may be one way in which pilus attachment events are detected.

In contrast to the response regulator FleR, which has a well-defined regulon in *P. aeruginosa* (6), the suite of genes potentially controlled by PilR is poorly characterized. Genetic and in silico analyses of the PilR regulons of *Geobacter sulfurreducens* (16, 25) and *Dichelobacter nodosus* (17) have been performed, but comparable studies of *P. aeruginosa* are lacking. Screening of the *G. sulfurreducens* genome for putative PilR binding sites revealed 54 loci with predicted σ^54-dependent promoters, many of which were upstream of genes for T4P and flagellar biosynthesis or for cell wall biogenesis (25). Those data, in combination with work performed with *D. nodosus*, which identified several surface-exposed proteins whose expression was controlled by PilR (17), suggest that *P. aeruginosa* PilR likely has additional functions beyond control of *pilA* transcription. However, each of the studies cited focused mainly on identification of genes and characterization of their pilus-related functions without examining other phenotypic consequences of loss of *pilR*.

In this work, we used transcriptome sequencing (RNA-seq) analysis to identify genes that were dysregulated by loss of *pilR*. Because *pilR* mutants lack pili, which are important for surface sensing (26) and control of downstream events such as biofilm formation (27), we included a *pilA* mutant in our analysis to distinguish genes whose expression is specifically controlled by PilR from those that are affected by the loss of PilA. In addition to several genes that were coregulated with *pilA*, which we have termed “pilin-responsive” genes, we also identified multiple flagellar genes, including the FleSR TCS, as being downregulated only in the absence of *pilR*, in a pilin-unresponsive manner. We show that the consequence of this downregulation is a previously unreported defect in swimming motility in both *pilS* and *pilR* mutants, independent of the loss of PilA. This work defines the pilin-dependent and -independent regulons of PilR and provides evidence for a direct regulatory connection between the *P. aeruginosa* T4P and flagellar motility systems.
RESULTS

The expression of multiple genes is similarly altered in \textit{pilA} and \textit{pilR} mutants. We performed RNA-seq analysis to identify genes in addition to \textit{pilA} that might be controlled by the PilSR TCS. However, in designing this experiment, we considered the following. (i) \textit{pilR} mutants also lack expression of PilA. (ii) Loss of PilA contributes to a decrease in intracellular levels of the messenger molecule cyclic AMP (cAMP) (28). (iii) There are more than 200 genes in \textit{P. aeruginosa} that are at least partially cAMP dependent, including Vfr, a cAMP-binding virulence factor regulator (28). To separate genes that are affected by the loss of PilA that occurs in both \textit{pilA} and \textit{pilR} mutants from the genes that are truly regulated by PilR, we categorized genes as those whose expression was changed in only the \textit{pilA} or \textit{pilR} backgrounds, versus both backgrounds, compared to the wild-type (WT) PAK strain (see Fig. S1 in the supplemental material). The former group may also include genes that are cAMP dependent. We did not include a \textit{pilS} mutant in RNA-seq analysis, because PilS potentially interacts with alternate response regulators, making it more challenging to distinguish genes that are controlled by PilSR and those regulated by PilS and other unidentified RRs (29). Genes that were dysregulated similarly by at least twofold in both the \textit{pilA} and \textit{pilR} mutants from the genes that are truly regulated by PilR, we categorized genes as those whose expression was changed in only the \textit{pilA} or \textit{pilR} backgrounds, versus both backgrounds, compared to the wild-type (WT) PAK strain (see Table S1 in the supplemental material). The former group may also include genes that are cAMP dependent. We did not include a \textit{pilS} mutant in RNA-seq analysis, because PilS potentially interacts with alternate response regulators, making it more challenging to distinguish genes that are controlled by PilSR and those regulated by PilS and other unidentified RRs (29). Genes that were dysregulated similarly by at least twofold in both the \textit{pilA} and \textit{pilR} mutants are summarized in Table S1 and included several T4P-associated genes such as \textit{tsp} (30), and minor pilin genes \textit{fimU}, \textit{pilV}, \textit{pilW}, \textit{pilY1}, and \textit{pilE} (31), previously identified as being Vfr dependent (28). In total, 18 of 56 genes in this category (shown on a gray background in Table S1) are also Vfr and cAMP dependent (28). Since the expression of genes in this class was affected by the loss of PilA, suggesting PilR’s role is indirect, they were not examined further. No genes whose expression was dysregulated by loss of \textit{pilA} but not \textit{pilR} were identified.

Ten genes are inversely dysregulated by loss of \textit{pilA} versus \textit{pilR}. The expression of a subset of 10 genes was decreased in the \textit{pilR} mutant but markedly increased in the \textit{pilA} mutant, even though both mutants fail to express PilA (23) (Table 1 and Table S2). We categorized these genes as “pilin responsive,” because similar to PilA, their expression was dependent on PilR and increased when PilA levels were low. All but three of these genes encode hypothetical proteins or are unannotated in the \textit{P. aeruginosa}

Table 1: Genes inversely dysregulated by \textit{pilA} and \textit{pilR}^a

PA Number	PA14 Number	Gene Name	Product	Fold Change (\textit{pilA} vs WT)	Fold Change (\textit{pilR} vs WT)
PA0507	PA14_06620	acyl-CoA dehydrogenase		<5	
PA0951a	PA14_51950	unannotated		0	
PA0952	PA14_51940	hypothetical protein		>5	
PA0952a	PA14_51950	unannotated		0	
PA1512	PA14_44890	\textit{hcpA}	secreted protein (T6S)	>5	<5
PA4027	PA14_11740	hypothetical protein		0	
PA4683	PA14_61950	hypothetical protein		<5	
PA5228	PA14_69040	hypothetical protein		0	
PA5228a	PA14_69560	unannotated		0	
PA5267	PA14_69560	\textit{hcpB}	secreted protein (T6S)	>5	<5

Bolded genes had corresponding mutants available in the PA14 transposon mutant library.

^aBoldface genes are associated with the flagellar system.

July/August 2018 Volume 9 Issue 4 e01310-18 mbio.asm.org
PAO1 genome. The coregulation of these genes with pilA suggests that their products could be previously unidentified contributors to T4P biogenesis and/or function or to other forms of motility.

To test this hypothesis, we extracted mutants with insertions in homologs of those PAK genes from the ordered P. aeruginosa PA14 transposon (Tn) library (32). There were no transposon insertions in three of the ten genes, and one additional mutant failed to grow in liquid culture. The PAO1 and PA14 designations for the remaining six genes of interest for which mutants were available are listed in Table 1. We tested these mutants for twitching, swimming, and swarming motilities. While all had WT twitching motility (Fig. 1A), insertions in PA14_51940 (PA0952), PA14_44890 (PA4027), and PA14_695060 (hcpB) caused defects in swarming motility. PA14_44890 (PA1512) and PA14_69040 (PA5228) mutants had altered swarming motility, suggesting that coordinated motion is disrupted (Fig. 1B). Disruption of PA14_695060 (hcpB) also reduced swimming, alluding to a role in flagellar function or biosynthesis, in addition to its established function in type VI secretion (Fig. 1C). Together, these data indicate that genes coregulated with pilA are not necessarily required for T4P function. However, a subset of these genes are involved in other forms of motility, biofilm formation (Fig. 1D), and pathogenicity in Caenorhabditis elegans (Fig. 1E). The phenotypes of these mutants are interesting and the focus of ongoing studies.

A subset of genes are dysregulated only by loss of PilR. In the pilR mutant, 89 genes were dysregulated ≥2-fold (Table S3). To prioritize our follow-up studies, we...
focused on a shorter list of genes with ≥3-fold changes in expression. Of particular interest were 24 genes whose expression was ≥3-fold altered in pilR mutants but unaffected by the loss of pilA. These pilR-dependent but pilin-unresponsive genes are highlighted in Table 2. According to the Pseudomonas genome database (33), these genes include five putative chemotactic transducers, two biofilm-associated chemosensory proteins, six hypothetical proteins, and several metabolic enzymes. However, motility-associated genes were the most common class identified. The genes encoding the T4P assembly ATPase, PilB, and prepilin peptidase, PilD, which share a divergently oriented promoter with pilA, were downregulated in pilR mutant but unaffected by the loss of pilA (Table 2), even though previous studies suggested that they were controlled by σ54, not PilSR and σ54 (34).

Multiple flagellum biosynthetic genes are downregulated in a pilR mutant. In addition to the T4P-associated genes above, several flagellum biosynthetic genes had decreased expression only in the pilR background (Table 2, boldface text; Table S3). Among them were fleS-fleR encoding the FleSR TCS, part of a regulatory cascade that controls the expression of genes associated with flagellum biosynthesis and function, including two FleR-dependent genes that encode proteins of unknown function, PA1967 and PA4326 (4, 6). Each had approximately threefold-lower expression in the pilR mutant compared to the WT, while there was no difference in their expression in pilA mutant versus WT. This trend was verified using reverse transcription-PCR (RT-PCR), though the magnitude was closer to twofold by this method (Fig. S2). Of the flagellar genes in this category (Table 2), 10 of 12 (excluding fleS and fleR) are fleR dependent (6). The remaining two, fliE and fliF, are known to be FleQ dependent, but have also been shown to have decreased (≥2-fold) transcription in a fleR mutant in both this (Table S3) and a previous study (6). These data suggest that PilSR positively regulates fleSR

PA Number	Gene Name	Product	Fold Change (pilR vs WT)
PA0534	pauB1	FAD-Dependent oxidoreductase	
PA1077	flgB	flagellar basal body rod protein	
PA1078	flgC	flagellar basal body rod protein	
PA1079	flgD	flagellar basal body rod modification protein	
PA1081	flgF	flagellar basal body rod protein	
PA1082	flgG	flagellar basal body rod protein	
PA1083	flgH	flagellar L-ring protein precursor	
PA1092	flIC	flagellin	
PA1098	fleS	Sensor histidine kinase (flagellar regulator)	
PA1099	fleR	Response regulator (flagellar regulator)	
PA1422	gbuR	regulatory protein	
PA1423	bdiA	biofilm dispersion locus (chemosensor)	
PA1441	fliK	flagellar hook length control	
PA1697		hypothetical protein	
PA1967		hypothetical protein	
PA2274		hypothetical protein	
PA2654		chemotaxis transducer	
PA2867		chemotaxis transducer	
PA4310	pctB	chemotactic transducer	
PA4326		hypothetical protein	
PA4524	nadC	nicotinate-nucleotide pyrophosphorylase	
PA4526	pilB	T4P assembly ATPase	
PA4528	pilD	Type IV prepilin peptidase	
PA4547	pilR	response regulator (T4P regulator)	

Bolded genes are associated with the flagellar system
expression and that when PilR is absent, expression of FleSR-dependent genes is decreased accordingly.

Swimming motility is impaired by the loss of pilS-pilR. Because PilSR regulates fleSR and their regulon, we tested whether pilS and pilR had defects in swimming motility. A fliC mutant lacking the flagellin subunit was used as a negative control. pilA mutants swim comparably to WT PAK, while pilS and pilR mutants—which also lack surface pilE—exhibited significant swimming defects (P < 0.005), with uniform zones that reached about 53.7% ± 0.5% and 47% ± 1.4% of WT, respectively (standard error, n = 3) (Fig. 2, white dotted lines). Interestingly, both pilS and pilR mutants produced flares with increased motility extending beyond these uniform swimming zones. These flares were hypothesized to be the result of suppressor mutations that could overcome the effect of pilS or pilR deletion on swimming.

To test this idea, we isolated cells from the inner swimming zones of pilS and pilR plates (inside the white dotted lines in Fig. 2) and the putative suppressor mutants (flares outside the white dotted lines) and reassessed their ability to swim after culturing them overnight. For controls, we took samples from the WT zone close to the point of inoculation (“inner”) and from the outer edge of the swimming zone (“outer”). Repeating the swimming assays with these samples revealed no difference in swimming between inner and outer samples from WT. However, pilS and pilR cells taken from the inner swimming zones recapitulated the original swimming motility defects of the mutants and similarly produced highly motile suppressors. Meanwhile, cells taken from the outer flares had motility comparable to that of the WT (Fig. 2), indicating that they likely retained a suppressor mutation(s) that allows for full motility in the absence of pilSR.

To test whether other flagellum-dependent phenotypes were affected by the loss of pilSR, we measured swarming motility, using the original mutants and the suppressors isolated from the swimming experiments above. pilSR mutants of strain PAO1 were previously reported to be nonswarmers (35), but in our hands, the same mutants in the PAK background retain partial swarming motility, albeit with an altered morphology compared to WT. The PAK pilSR mutants swarmed similarly to a pilA mutant, with fewer and irregular tendrils (Fig. S3). Interestingly, pilSR mutants isolated from the outer flares of the swimming plates in Fig. 2 had swarming motility comparable to those isolated from the inner zones and the pilS and pilR parent strains. While flagella are required for swarming, the suppressor mutations that restored swimming motility in the pilS and pilR backgrounds did not restore swarming, suggesting that expression of distinct swarming-related genes remains dysregulated. Investigation of the contributions of

FIG 2 Swimming motility is impaired in pilS and pilR mutants. Loss of pilS or pilR results in decreased swimming motility (53.7% ± 0.5% and 47% ± 1.4% of WT, respectively; P < 0.005) in a plate-based assay. pilA mutants swim comparably to the WT, indicating that the swimming defect is not PilA dependent. pilS and pilR mutants appear to acquire suppressors that overcome these defects resulting in asymmetrical flares. Reinoculation of swimming plates with cells from the interior of swimming zones—inside the white dotted circles of pilSR (inner) recapitulate the original phenotype, while cells taken from the flares (outer; from flares outside the white dotted circles, except for WT) swim to WT levels. Black asterisks denote the locations where cells were taken for the reinoculated swimming plates.
pilSR suppressors to rhamnolipid production, flagellar localization, and other swarming-related phenotypes will be the focus of future work.

FleSR impact twitching motility and pilA expression. RNA-seq analyses revealed that PilR was required for WT expression of fleSR. We next tested whether this was a reciprocal regulatory pathway in which FleSR might contribute to regulation of pilS-pilR and the PilSR regulon. We tested whether loss of fleSR affected pilA expression and/or T4P function. A double deletion of fleSR was made in the PAK background, and twitching motility was measured. Loss of fleSR reduced twitching motility to a modest but significant extent ($P < 0.005$), with the double mutant reproducibly twitching to approximately 80% of WT (Fig. 3A). Interestingly, when pilA transcription was monitored using a lux-pilA reporter assay, fleS-fleR mutants had increased pilA transcription compared to the WT over a 5-h time course (Fig. 3B). Therefore, while FleS-FleR are involved in the modulation of twitching motility and pilA transcription, it is not yet clear whether this occurs directly through regulation of pilSR, as increased levels of PilA can inhibit PilSR activation (22).

DISCUSSION

Two-component systems control a multitude of phenotypes, allowing for quick responses to sudden changes in a bacterium’s intra- and extracellular environments. These systems can be important not only for survival but also for coordinating virulence programs. Most TCSs explored thus far control the transcription of multiple genes, but prior to this work *P. aeruginosa* PilR had only a single known target, *pilA* (23). Microarray and bioinformatic analyses of the *G. sulfurreducens* PilR regulon provided evidence that PilR regulates multiple genes, including those required for soluble Fe(III) uptake (a pilin-independent phenotype), flagellar assembly and function, and cell envelope biogenesis, though these predictions were not confirmed with phenotypic assays (16, 25). Here, we showed that PilR controls the expression of multiple genes, in pilin-responsive or -unresponsive modes. Dysregulating expression of select members of the *P. aeruginosa* PilR regulon resulted in changes in swimming, swarming, and/or twitching motility, all phenotypes associated with virulence in specific hosts (27, 36–38).

The *G. sulfurreducens* and *D. nodosus* studies cited above failed to account for the confounding variable that PilA is not expressed when pilR is deleted. This was an important consideration in designing our RNA-seq experiment (see Fig. S1 in the

![Fig 3](image-url)
supplemental material), as loss of PilA results in decreased cAMP levels and by extension, downregulation of cAMP-dependent genes in the Vfr regulon, which includes a number of T4P-associated genes (28). This design also enabled us to further classify genes in the PilR regulon based on their responsiveness to pilin levels. As predicted, many of the genes that were similarly dysregulated by loss of both pilA and pilR are Vfr dependent (28) (Table S1). Thus, we focused instead on those genes that were dysregulated in a PilR-dependent manner and further categorized them as pilin responsive or unresponsive.

We identified 10 pilin-responsive genes with increased transcription in a pilA mutant but significantly decreased transcription in the absence of pilR (Table 2). While this expression pattern initially seemed counterintuitive, we propose that these gene products are regulated by PilS phosphorylation or dephosphorylation of PilR in response to fluctuating PilA levels. When PilA is absent, PilS phosphorylates PilR and pilA promoter activity is significantly increased, presumably in an attempt to replenish intracellular PilA pools (39), and this PilR activation simultaneously increases expression of other pilin-responsive genes (Table 2 and Table S2). This signaling pathway may be one way in which adherence of a pilus to a surface is detected, through transient depletion of pilin pools in the inner membrane when attached pilus filaments fail to retract.

Many genes in this pilin-responsive category encoded hypothetical proteins or were unannotated in the P. aeruginosa PAO1 and PA14 genomes; the unannotated genes may encode regulatory RNAs. We used available mutants from the PA14 Tn library to determine whether the pilin-responsive genes were required for normal T4P function. While all mutants tested had WT twitching motility, some had decreased swarming, and one (PA14_69560) had decreased swimming motility. The only genes in this group that were characterized previously are hcpA and hcpB, paralogs which encode proteins associated with the type VI secretion system (33). This finding may represent a new link between T4P, flagellar function, and type VI secretion, as the hcpB mutant had defects in both swimming and swarming. This connection further explains the swimming defects of pilS and pilR mutants (Fig. 2).

We also identified genes that were affected only by the loss of pilR, independently of PilA levels. These genes might be modulated in response to cues detected by a different, pilin-insensitive sensor kinase that can activate PilR. While the swimming and swarming motility phenotypes of pilS and pilR mutants are comparable, implying contribution of PilS to these phenotypes, further work will be required to definitively determine the role of PilS or other putative SKs in this context. Alternatively, the pilin-unresponsive genes identified here may already be expressed in the WT at levels such that further activation upon loss of pilA did not meet our twofold cutoff. A third possibility is that they are indirectly upregulated as a result of PilR activity on adjacent promoters. For example, among these genes were the genes encoding the T4P assembly ATPase PilB and the prepilin peptidase, PilD, which are contiguous with pilC encoding the platform protein; however, there were insufficient reads in our RNA-seq analysis to accurately determine pilC expression levels (Table 2). On the basis of this and previous studies, pilBCD are not cotranscribed (33, 34). pilB was reported to be σ70 dependent (34), but our data suggest that PilR remodeling of the pilA promoter region for transcription by the σ88 holoenzyme also facilitates transcription from the divergent pilB promoter.

Of the pilin-unresponsive genes identified, the most abundant class were involved in biosynthesis, function, and regulation of the flagellum, including fleSR, which appear to be regulated by both PilS and PilR (Table 2, Fig. S2, and Table S3). Most of the other genes of this class are members of the FleSR regulon (6), which suggests that they are indirectly regulated by PilR via its control of fleSR levels. Future work will be directed at clarifying the exact mechanism of pilR-related regulation of fleSR expression. However, the presence upstream of fleSR of a NifA-like 5’-TGTN₇₋₁AGA-3’ sequence and nearby GTCT elements, hallmarks of PilR binding sites (24), suggest that PilR may directly regulate fleSR transcription. Swimming motility of pilS and pilR mutants was ~45 to 50%
of WT, supporting our transcriptomic data (Fig. 2). By carefully analyzing the swimming data, we hypothesized that suppressor mutations could overcome the defects imposed by pilS or pilR deletion, allowing the mutants to swim normally. Preliminary sequence analyses of these suppressors showed no mutations in fleSR, but it may be that mutations in fleQ, the promoter regions of fleSR, or as-yet unidentified genes could increase activity or expression of fleSR. The as-yet unidentified suppressors appear specific for swimming motility, as swarming motility (40) of the pilS and pilR mutants and the highly motile suppressors, all of which lack PilA, was comparable to that of a pilA mutant (Fig. S3).

Although pilSR were not considered members of the FleSR regulon (6), twitching motility was modestly but reproducibly reduced to ~80% of WT in the absence of fleSR (Fig. 3A), while pilA promoter activity was increased compared to WT (Fig. 3B). This phenotype is reminiscent of mutations that inhibit pilus retraction, impairing twitching but increasing pilA transcription due to depletion of PilA subunits from inner membrane pools (11, 39). During prior characterization of the FleSR regulon, two new genes (PA3713 and PA1096 or fleP) with motility phenotypes were identified. Strains with mutations in these genes were significantly impaired in swimming, and in the case of fleP, twitching motility (6). FleP was proposed to control pilus length, as when it was deleted, surface pili were significantly longer than those of WT, resulting in a form of hyperpiliation (6). Decreased fleP expression in our fleSR mutants could impair twitching motility and alter pilA expression.

Both the PilSR and FleSR TCSs are required for full virulence of P. aeruginosa (reviewed in reference 41), as each is involved in multiple virulence-associated phenotypes. Given the overlap in phenotypes controlled by these TCSs, it is perhaps not surprising that their expression is linked. Thus, we propose a model in which PilSR positively regulates fleSR transcription, independently of PilA depletion (Fig. 4). Transcription of fleSR is predominantly dependent on FleQ (6), but since fleQ was not differentially expressed in pilR, we infer that PilSR promotes fleSR transcription directly, rather than by modulating FleQ expression.

Why, and under what conditions, might this regulatory circuit be active? Twitching motility is normally deployed on solid or semisolid surfaces (8), while flagella are most effective in liquid and low-viscosity conditions. One might predict that the systems are differentially activated in response to relevant environmental conditions. Instead, the regulatory integration of these two systems may be an adaptation to life as an opportunistic pathogen. T4P and flagella are typically expressed during the acute phase of infection (4, 42), and during the transition to the chronic infection phase, motility systems are downregulated in favor of those promoting type VI secretion and biofilm formation (41, 43). Clinical isolates of P. aeruginosa from chronically colonized patients are often nonflagellated and nonpiliated (44). Lack of the immunogenic flagellum may help P. aeruginosa escape phagocytosis (44), and aflagellate bacteria are better able to evade the inflammatory response of the host (45). Placing fleSR under control of PilSR may facilitate a more rapid transition to the chronic disease state and more efficient evasion of the host immune system. Similarly, both T4P and flagella are required for surface sensing and surface-associated behaviors such as swarming motility and activation of virulence cascades (26, 40, 46, 47). Coregulation of their expression may allow P. aeruginosa and other motile bacteria to amplify their responses to surface detection.

We identified 34 genes in addition to pilA whose expression was altered ≥3-fold by loss of pilR, 24 of which were dysregulated in a pilin-unresponsive manner, supporting previous work in G. sulfurreducens that identified putative PilR binding sites upstream of multiple genes (25). Importantly, while pilA and pilR mutants look similar with respect to their T4P-related phenotypes, their transcription profiles and other phenotypic outputs are different. For example, expression of genes encoding proteins involved in flagellum biosynthesis, including fleSR, are downregulated in the absence of pilR but unaffected by the loss of pilA. This work reveals a previously unappreciated regulatory connection between two diverse motility systems, with implications in detection of surface attachment and the transition from acute to chronic disease states in a host.
MATERIALS AND METHODS

Bacterial strains and growth conditions. Unless otherwise specified, *Pseudomonas aeruginosa* PAK strains were grown in Lennox broth (LB) (Bioshop) or on LB 1.5% agar plates at 37°C. When the antibiotic kanamycin was used, it was introduced at a final concentration of 150 μg/ml. Mutants were generated by homologous recombination, using standard mating techniques described in reference 48. The strains and plasmids used in this study are shown in Table 3. Plasmids were prepared using standard cloning techniques and introduced into *P. aeruginosa* using electroporation.

FIG 4 Model for pilSR-dependent regulation of fleSR and the fleSR regulon. Under conditions in which pilSR expression is decreased (low cAMP) or when PilSR is low (high intracellular PilA), fleSR transcription is decreased as is expression of the the fleSR regulon. Genes on a red background are those that had decreased expression in a pilR mutant in RNA-seq. Genes on a gray background had insufficient reads assigned to them from RNA-seq to accurately report differential expression. FleQ (blue) was not differentially expressed between WT or pilR, indicating that pilSR fits into the flagellar regulatory hierarchy after FleQ but before fleSR, as fleQ itself and most FleQ-dependent genes were unaffected by loss of pilR.

TABLE 3 Strains and plasmids used in this study

Strain or plasmid	Description	Source or reference
Strains		
PAK (WT)	WT group II strain of *P. aeruginosa*	J. Boyd
pilA mutant	PAK with chromosomal deletion of pilA	This study
pilS mutant	PAK with chromosomal deletion of pilS	This study
pilR mutant	PAK with chromosomal deletion of pilR	This study
fliC mutant	PAK with FRT insertion in fliC	This study
fleSR mutant	PAK with a deletion of the full chromosomal fleS-fleR operon	This study
PA14 (WT)	WT group III strain of *P. aeruginosa*	32
PA14_51950	PA14 with a transposon insertion in gene PA14_51950	32
PA14_44890	PA14 with a transposon insertion in PA14_44890 (hcpA)	32
PA14_11740	PA14 with a transposon insertion in PA14_11740	32
PA14_61950	PA14 with a transposon insertion in PA14_61950	32
PA14_69040	PA14 with a transposon insertion in PA14_69040	32
PA14_69560	PA14 with a transposon insertion in PA14_69560 (hcpB)	32
Plasmid		
piLA promoter clonned into the BamHI site of pMS402, putting lux genes under control of the piLA promoter	22	

July/August 2018 Volume 9 Issue 4 e01310-18
RNA isolation, library preparation, cDNA sequencing, and analysis. To isolate RNA, cells from strains of interest were streaked in triplicate onto 10 ml of a LB 1.5% agar plate (100- by 75-mm petri dishes) and grown overnight at 37°C. Cells were scraped from the plates and resuspended in 1.5 ml RNAProtect bacteria reagent (Qiagen) to maintain the integrity of isolated RNA. Cells were lysed using 1 mg/ml lysozyme in 10 mM Tris-HCl and 1 mM EDTA (pH 8.0), and RNA was isolated using the RNeasy mini kit (Qiagen) according to the manufacturer’s instructions. An on-column DNase treatment was performed to minimize potential DNA contamination. Purified RNA was eluted into 50 μl nuclease-free water and quantified. Quantitative reverse transcription-PCR (qRT-PCR) was performed using rpsL as a housekeeping gene to standardize samples by RNA content.

The following steps were performed at the Farncombe Metagenomics Facility (McMaster University, Hamilton, ON, Canada). For transcriptome sequencing (RNA-seq) analysis, rRNA was depleted from nine RNA samples (three samples from WT PAK, three samples from pilA mutant, and three samples from pilR mutant) using the Ribo-zero rRNA depletion kit (Illumina), and cDNA libraries were prepared by the NEBNext Ultra Directional library kit. Libraries were sequenced using paired-end 75-bp reads on the Illumina MiSeq platform. Reads were aligned to the PAO1 reference genome with 98% of reads mapped, and normalization and differential gene expression were calculated using the Rockhopper software (49). q values for each identified gene are reported in Tables S1 to S3 in the supplemental material. The complete RNA-seq data set has been deposited in NCBI GEO (accession number GSE112597).

Twitching motility assays. Twitching motility assays were performed as described in reference 50. Briefly, strains of interest were stab inoculated to the bottom of an LB 1% agar plate with a P10 pipette tip, and plates were incubated upside down at 37°C for 16 to 24 h. Following incubation, agar was carefully removed, and the plastic petri dish was stained with 1% crystal violet for 20 min. Excess dye was washed away with water, and twitching zone diameters were quantified using ImageJ (NIH, Bethesda, MD) (51). A one-way analysis of variance (ANOVA) statistical test was used to determine significant differences in twitching compared to WT.

Swarming motility assays. Swarming motility assays were performed as described in reference 52. Briefly, strains of interest were grown overnight in 5-ml LB cultures at 37°C. On the day of the assay, 0.5% agar plates with M8 buffer, supplemented with 2 mM MgSO4, 0.2% glucose, 0.05% l-glutamic acid, and trace metals, were prepared and allowed to solidify at room temperature for 1.5 h. Then, 3.5-μl aliquots of culture were spotted onto the center of a single plate, and the plates were incubated upright in a humidity-controlled 30°C incubator for 48 h. The plates were imaged using a standard computer scanner. Figures shown are representative of three independent experiments.

Swimming motility assays. Swimming motility plate assays were performed similarly to the method in reference 53, with some modifications. Overnight 5-ml cultures of strains of interest were grown at 37°C in LB with shaking. On the day of inoculation, LB 0.25% agar plates were prepared and allowed to solidify at room temperature for 1.5 h. Cell cultures were standardized to an optical density at 600 nm (OD600) of 1.0, and 2-μl samples were spotted onto the center of each plate. The plates were incubated upright for 16 h at 37°C, and swimming zone diameters were quantified using ImageJ (51). Where applicable, swimming zone diameters were defined at the outermost part of the swimming zone that was still uniform in appearance. Images are representative of four independent experiments. To determine statistical significance, a one-way ANOVA analysis with Dunnett’s posttest was performed, using the WT as the control strain.

Biofilm assays. Biofilm assays were performed similarly to the method described in control 54, with some modifications. Briefly, *P. aeruginosa* strains of interest were grown in 5-ml liquid cultures of 50% LB-50% phosphate-buffered saline (PBS) (50/50 medium) overnight at 37°C with shaking. The following day, the strains were subcultured 1:25 into fresh 50/50 medium and grown to a standardized OD600 of 0.1. Standardized cultures were then diluted 1:500, and 150 μl of each strain of interest was plated in triplicate in a clear, 96-well plate (Nunc). The plate was closed with a 96-peg lid, providing a surface on which biofilms can form, sealed with Parafilm, and incubated with shaking for 18 h at 37°C. To quantify planktonic growth, peg lids were removed, and the 96-well plate was scanned at a wavelength of 600 nm. To quantify biofilms, peg lids were washed in PBS and stained with 0.1% crystal violet for 15 min. Following five 10-min washes in water, crystal violet was solubilized in 33% acetic acid in a fresh 96-well plate, which was scanned at 595 nm. Biofilm data were graphed as a percentage of the WT value, showing means and standard errors from three independent experiments.

C. elegans slow killing pathogenicity assays. Slow killing (SK) assays were performed as described previously (55). *C. elegans* strain N2 populations were propagated and maintained on nematode growth medium (NGM) plates inoculated with *Escherichia coli* OP50. The eggs were harvested to obtain a synchronized population by washing worms and eggs from NGM plates with M9 buffer. The worms were degraded by adding buffered bleach, leaving only the eggs intact. The eggs were washed with M9 buffer and resuspended in M9 buffer with rocking overnight to allow eggs to hatch into larval stage 1 (L1) larvae. Synchronized L1 worms were plated on NGM plates for 45 h to develop into L4 worms. During this process, slow killing plates supplemented with 100 μM 5-fluoro-2’-deoxyuridine (FUDR) were prepared and inoculated with 100 μl of a 5-ml LB overnight culture of bacterial strains of interest and incubated at 37°C for 16 to 18 h. Harvested and washed L4 worms (~30 to 40) were dropped over Pasteur pipette onto each SK plate. Using a dissecting microscope, plates were scored daily for dead worms, which were picked and removed. Survival curves were prepared using Graphpad Prism 5.01 (La Jolla, CA), and statistically significant differences in pathogenicity between strains were identified using Gehan-Breslow-Wilcoxon analysis.

pilA-lux reporter assay. Luminescent reporter assays were performed as described previously (22). Strains of interest were transformed by electroporation with the pMS402-ppilA plasmid, which contains
the luciferase genes under control of the pilA promoter. Strains were grown overnight in 5-ml LB cultures supplemented with 150 μg/ml kanamycin. The following day, a 1-ml aliquot of a 1:20 dilution of cultures was prepared, and 100-μl samples were plated in triplicate in a white-walled, clear-bottom 96-well plate (Costar 3632; Corning Inc.). Luminescence and OD600 were measured at 15-min intervals over 5 h using a Synergy 4 microtiter plate reader (BioTek) programmed to shake continuously and incubate the plate at 37°C. Luminescence was normalized to OD600 and relative luminescence was plotted against time. Means and standard errors for more than four biological replicates are shown.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio.01310-18.

FIG S1, TIF file, 2.8 MB.

FIG S2, TIF file, 2.6 MB.

FIG S3, TIF file, 5.5 MB.

TABLE S1, DOC file, 0.1 MB.

TABLE S2, DOC file, 0.1 MB.

TABLE S3, DOC file, 0.2 MB.

ACKNOWLEDGMENTS

We thank Stephanie Jones for assistance with the RNA-seq data analysis and Michael Surette for the PA14 transposon mutant library.

This work was funded by Canadian Institutes of Health Research grant MOP 86639 to L.L.B. S.L.N.K. held an Ontario Graduate Scholarship.

REFERENCES

1. West AH, Stock AM. 2001. Histidine kinases and response regulator proteins in two-component signalling systems. Trends Biochem Sci 26: 369–376. https://doi.org/10.1016/S0968-0004(01)01852-7

2. Surette G, Quintin Y, Lazdunski A, Méjean V, Foglino M. 2000. Two transcription systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8:498–504. https://doi.org/10.1016/S0969-0262(00)01833-3

3. Arora SK, Ritchings BW, Almira EC, Lory S, Rampal R. 1997. A transcriptional activator FleQ regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J Bacteriol 179:5574–5581. https://doi.org/10.1128/jb.179.17.5574-5581.1997

4. Ritchings BW, Almira EC, Lory S, Rampal R. 1995. Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect Immun 63:4868–4876.

5. Jiménez-Fernández A, López-Sánchez A, Jiménez-Díaz L, Navarrete B, Calero P, Platero AI, Góvantes F. 2016. Complex interplay between FleQ, cyclic diguanylate and multiple σ factors coordinately regulates flagellar motility and biofilm development in Pseudomonas putida. PLoS One 11:e0163142. https://doi.org/10.1371/journal.pone.0163142

6. Dasgupta N, Wolfgang MG, Goodman AL, Arora SK, Kytöjoki J, Lory S, Rampal R. 2003. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginos. Mol Microbiol 50: 809–824. https://doi.org/10.1046/j.1365-2958.2003.03740.x

7. Bradley DE. 1980. A function of Pseudomonas aeruginosa PAO pilin: twitching motility. Can J Microbiol 26:146–154. https://doi.org/10.1139/m80-022

8. Burrows LL. 2012. Pseudomonas aeruginosa twitching motility: type IV pilin in action. Annu Rev Microbiol 66:493–520. https://doi.org/10.1146/annurev-micro-092611-150055

9. Bradley DE. 1974. The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 58:149–163. https://doi.org/10.1016/0042-6822(74)90150-0

10. Blais N, ladoux B, Higashi D, So M, Sheetz M. 2008. Cooperative retraction of bundle type IV pilin enables nanonewton force generation. PLoS Biol 6:e87. https://doi.org/10.1371/journal.pbio.0060087

11. Merz AI, So M, Sheetz MP. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98–102. https://doi.org/10.1038/35024105

12. Cowles KN, Gitai Z. 2010. Surface association and the MreB cytoskeleton regulate pilus production, localization and function in Pseudomonas aeruginosa. Mol Microbiol 76:1411–1426. https://doi.org/10.1111/j.1365-2958.2010.07132.x

13. Paranchych W, Sastry PA, Frost LS, Carpenter M, Armstrong GD, Watts TH. 1979. Biochemical studies on pilus isolated from Pseudomonas aeruginosa strain PAO. Can J Microbiol 25:1175–1181. https://doi.org/10.1139/m79-182

14. Heinzen SM, Collie ES, Free PD, Livingston SP, Mattick JS. 1993. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 7:669–682. https://doi.org/10.1111/j.1365-2958.1993.tb01158.x

15. Kehl-Fie TE, Porsch EA, Miller SE, St Geme JW, III. 2009. Expression of Kingella kingae type IV pilus is regulated by sigma34, PilS, and PilR. J Bacteriol 191:4976–4986. https://doi.org/10.1128/JB.00123-09

16. Juárez K, Kim BC, Nevin K, Olvera L, Reguera G, Lovley DR, Methé BA. 2009. PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens. J Mol Microbiol Biotechnol 16:146–158. https://doi.org/10.1159/000115849

17. Parker D, Kennan RM, Myers GS, Paulsen IT, Songer JG, Rood JI. 2006. Regulation of type IV fimbrial biogenesis in Dichelobacter nodosus. J Bacteriol 188:4801–4811. https://doi.org/10.1128/JB.00255-06

18. Wu SS, Kaiser D. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 179:7748–7758. https://doi.org/10.1128/jb.179.24.7748-7758.1997

19. Boyd JM, Koga T, Lory S. 1994. Identification and characterization of PilS, an essential regulator of pilin expression in Pseudomonas aeruginosa. Mol Microbiol 16:831–839. https://doi.org/10.1111/j.1365-2958.1994.tb00904.x

20. Jin S, Ishimoto KS, Lory S. 1994. Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosa pilin subunit gene. J Bacteriol 178:831–839. https://doi.org/10.1128/jb.178.3.831-839.1996

21. Ethier J, Boyd JM. 2000. Topological analysis and role of the transmembrane domain in polar targeting of PilS, a Pseudomonas aeruginosa sensor kinase. Mol Microbiol 38:891–903. https://doi.org/10.1046/j.1365-2958.2000.01819.x

22. Kilmurry SLN, Burrows LL. 2016. Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS. Proc Natl Acad Sci USA 113:6017–6022. https://doi.org/10.1073/pnas.1512947113

23. Ishimoto KS, Lory S. 1992. Identification of pilR, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene. J Bacteriol 174:3514–3521. https://doi.org/10.1128/jb.174.11.3514-3521.1992

24. Jin S, Ishimoto KS, Lory S. 1994. PilR, a transcriptional regulator of pilin in Pseudomonas aeruginosa, binds to a cis-acting sequence 3′ of the pilin gene promoter. Mol Microbiol 14:1049–1057. https://doi.org/10.1111/j.1365-2958.1994.tb01338.x

25. Krushkal J, Juárez K, Barbe JF, Qu Y, Andrade A, Puljic M, Adkins RM, Kilmurry and Burrows
Pili-PilR Regulates FleSR Expression

Lovelley DR, Ueki T. 2010. Genome-wide survey for PilR recognition sites of the metal-prokaryote Geobacter sulfurreducens. Gene 469:31–44. https://doi.org/10.1016/j.gene.2010.08.005.

Ellison CK, Kan J, Dillard RS, Kysela DT, Ducet A, Berne C, Hampton CM, Ke Z, Wright ER, Bias N, Dalia AB, Brun YV. 2017. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358:535–538. https://doi.org/10.1126/science.aan5706.

O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304. https://doi.org/10.1046/j.1365-2958.1998.01062.x.

Wolfgang MC, Lee VT, Gilmore ME, Lory S. 2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 4:233–263. https://doi.org/10.1016/S1534-5807(03)00019-4.

Labae J, Qiu Q, Anumanthan A, Mar W, Zuo D, Murthy TV, Taycher H, Halleck A, Letoith B, Lory S, Brizuela L. 2004. The Pseudomonas aeruginosa PA01 gene collection. Genome Res 14:2190–2200. https://doi.org/10.1101/gr.12482804.

Siewering K, Jain S, Friedrich C, Webber-Birungi MT, Semchonok DA, Binzen I, Wagner A, Hutley S, Kahnt J, Klügling A, Boekema EJ, Segard-Andersen L, Van der Does C. 2014. Peptidoglycan-binding protein TsAp functions in surface assembly of type IV pili. Proc Natl Acad Sci U S A 111:E953–E961. https://doi.org/10.1073/pnas.1322881111.

Giltner CL, Habash M, Burrows LL. 2010. Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J Biol Mol 398:444–461. https://doi.org/10.1016/j.jmb.2010.03.028.

Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838. https://doi.org/10.1073/pnas.0511100103.

Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS. 2016. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:D646–D653. https://doi.org/10.1093/nar/gkv1227.

Koga T, Ishimoto K, Lory S. 1993. Genetic and functional characterization of the gene cluster specifying expression of Pseudomonas aeruginosa pil. Infect Immun 61:1371–1377.

Overhage J, Lewenza S, Marr AK, Hancock RE. 2007. Identification of genes involved in swimming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol 189:2164–2169. https://doi.org/10.1128/JB.01623-06.

Weller-Stuart T, Toth I, De Maayer P, Coutinho T. 2017. Swimming and twitching motility are essential for attachment and virulence of Pantoea ananatis in onion seedlings. Mol Plant Pathol 18:734–745. https://doi.org/10.1007/s11035-014-0242-3.

Han X, Kennam RM, Davies JK, Reddcliff LA, Dhungyel OP, Whittington RJ, Turnbull W, Whitchurch CB, Rood J. 2008. Twitching motility is essential for virulence in Dichelobacter nodosus. J Bacteriol 190: 3323–3335. https://doi.org/10.1128/JB.01807-07.

Zolfaghari J, Evans DJ, Fleischig SM. 2003. Twitching motility contributes to the role of pili in colorectal cancer caused by Pseudomonas aeruginosa. Infect Immun 71:5389–5393. https://doi.org/10.1128/IAI.71.9.5389-5393.2003.

Bertrand JJ, West JT, Engel JN. 2010. Genetic analysis of the regulation of type IV pili function by the Chp chemosensory system of Pseudomonas aeruginosa. J Bacteriol 192:994–1010. https://doi.org/10.1128/JB.01390-09.

Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. 2000. Swimming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996. https://doi.org/10.1128/JB.182.21.5990-5996.2000.

Francis VI, Stevenson EC, Porter SL. 2017. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 364:fnx104. https://doi.org/10.1093/femsle/fnx104.

Hahn HP. 1997. The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa—a review. Gene 192:99–108. https://doi.org/10.1016/S0378-1119(97)00016-9.

Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764. https://doi.org/10.1038/3507627.

Mahenthiralingam E, Campbell ME, Speert DP. 1994. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:656–659.

Hayashi N, Nishizawa H, Kitao S, Deguchi S, Nakamura T, Fujimoto A, Shikata M, Gotoh N. 2015. Pseudomonas aeruginosa injects type III effector ExoS into epithelial cells through the function of type IV pili. FEMS Lett 589:890–896. https://doi.org/10.1016/j.femslet.2015.02.031.

Luo Y, Zhao K, Kuchma SL, Coggan KA, Wolfgang MC, Wong GC, O’Toole GA. 2015. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 6:e02456-14. https://doi.org/10.1128/mBio.02456-14.

Siryaporn A, Kuchma SL, O’Toole GA, Gitai Z. 2014. Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci U S A 111:E1680–E1685. https://doi.org/10.1073/pnas.1415712111.

Hoang TT, Karkhoff-Schweizer RR, Kutchja AJ, Schweizer HP. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Genes 21:77–86. https://doi.org/10.1038/sj.gene.6501309-9.

McClure R, Balasubramanian D, Sun Y, Bobrovsky M, Sumby P, Genco CA, Vanderpool CK, Tjadan B. 2013. Computational analysis of bacterial RNA-seq data. Nucleic Acids Res 41:e140. https://doi.org/10.1093/nar/gkt444.

Kus JV, Tullis E, Cvitkovitch DG, Burrows LL. 2004. Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology 150: 1315–1326. https://doi.org/10.1099/mic.0.26822-0.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089.

Buensuceso RNC, Daniel-Ivad M, Kilmury SLN, Leighton TL, Harvey H, Howell PL, Burrows LL. 2017. Cyclic AMP-independent control of twitching motility in Pseudomonas aeruginosa. J Bacteriol 199:e00188-17. https://doi.org/10.1128/JB.01888-17.

Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O’Toole GA. 2007. BiA, a cyclic-di-GMP phosphodiesterase inversely regulates biofilm formation and swimming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165–8178. https://doi.org/10.1128/JB.00586-07.

Nguyen UT, Wenderska IB, Chong MA, Koteva K, Wright GD, Burrows LL. 2012. Small-molecule modulators of Listeria monocytogenes biofilm development. Appl Environ Microbiol 78:1454–1465. https://doi.org/10.1128/AEM.07227-11.

Powell JR, Ausubel FM. 2008. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol Biol 415:403–427. https://doi.org/10.1007/978-1-59745-570-1_24.