Abstract. We construct a connected graph H such that

1. $\chi(H) = \omega$;
2. K_{ω}, the complete graph on ω points, is not a minor of H.

Therefore Hadwiger’s conjecture does not hold for graphs with infinite coloring number.

1. Notation

In this note we are only concerned with simple undirected graphs $G = (V,E)$ where V is a set and $E \subseteq \mathcal{P}_2(V)$ where

$$\mathcal{P}_2(V) = \{\{x,y\} : x, y \in V \text{ and } x \neq y\}.$$

We also require that $V \cap E = \emptyset$ to avoid notational ambiguities. We denote the vertex set of a graph G by $V(G)$ and the edge set by $E(G)$. Moreover, for any cardinal α we denote the complete graph on α points by K_{α}.

For any graph G, disjoint subsets $S,T \subseteq V(G)$ are said to be connected to each other if there are $s \in S, t \in T$ with $\{s,t\} \in E(G)$. Note that K_{α} is a minor of a graph G if and only if there is a collection $\{S_{\beta} : \beta \in \alpha\}$ of nonempty, connected and pairwise disjoint subsets of $V(G)$ such that for all $\beta, \gamma \in \alpha$ with $\beta \neq \gamma$ the sets S_{β} and S_{γ} are connected to each other. We will need the following observation later on:

Fact 1.1. For any graph G, finite or infinite, the following are equivalent:

1. G is connected;
2. if $S,T \subseteq V(G)$ are nonempty and disjoint such that $S \cup T = V(G)$ then S,T are connected to each other.

2. The construction

In [1], Hadwiger formulated his well-known and deep conjecture, linking the chromatic number $\chi(G)$ of a graph G with clique minors. His conjecture can be formulated that $K_{\chi(G)}$ is a minor of G for every graph G. In the following we present a connected graph H with chromatic number ω such that K_{ω} is not a minor of H. Let \mathbb{N} be the set of positive integers. For any $n \in \mathbb{N}$ we let

$$C_n = \{1, \ldots, n\} \times \{n\}$$
and set \(V(H) = \bigcup_{n \in \mathbb{N}} C_n \). As for the edge set of \(H \), we define
\[
E(H) = \{(1, n), (1, n + 1) : n \in \mathbb{N}\} \cup \bigcup_{n \in \mathbb{N}} P_2(C_n).
\]

Proposition 2.1. \(\chi(H) = \omega \).

*Proof. Since we have \(\text{card}(V(H)) = \omega \) we get \(\chi(H) \leq \omega \). Moreover, each \(C_n \) is a complete subgraph of \(H \), so \(H \) cannot be colored with finitely many colors. \(\square \)

For the remainder of this note, we assume that \(\{S_n : n \in \omega\} \) is a collection of nonempty, connected, pairwise disjoint subsets of \(H \) such that for \(m \neq n \) the sets \(S_n, S_m \) are connected to each other. Our goal is to show that such a collection cannot exist.

First, we need a simple observation on what a connected subset of \(H \) looks like. If \(S \subseteq V(H) \) we define \(I(S) = \{n \in \mathbb{N} : C_n \cap S \neq \emptyset\} \).

Lemma 2.2. Suppose \(S \subseteq V(H) \) is connected and \(m < n \in I(S) \). Then for all \(x \in \mathbb{N} \) with \(m \leq x \leq n \) we have \((1, x) \in S \).

*Proof. If \((1, m) \notin S\) then \(T = S \cap C_m \) and \(S \setminus T \) are disjoint, nonempty and not connected to each other. By Fact 1.1, \(S \) is not connected, contradicting our assumption. A similar argument shows that \((1, n) \in S\). Suppose there is \(x \) with \(m < x < n \) and \((1, x) \notin S\). Then set \(T = \{(i, j) \in S : j < x\} \). Again, \(T \) and \(S \setminus T \) are nonempty and not connected to each other, so \(S \) is not connected, contradicting our assumption. \(\square \)

If \(\{S_n : n \in \omega\} \) is a collection of subsets of \(V(H) \) as described above, then for every \(k \in \mathbb{N} \) the set of neighbors of \(S_k \), which is denoted by \(N(S_k) \), must be infinite. As the next lemma shows, this implies that \(I(S_k) \) must be infinite for all \(k \in \mathbb{N} \).

Lemma 2.3. If \(S \subseteq V(H) \) is such that \(I(S) \) is finite, then \(N(S) \) is finite.

*Proof. Let \(m = \max(I_S) \). Then \(N(S) \subseteq \bigcup_{i=1}^{m+1} C_i \), which is a finite set. \(\square \)

Now we go back to our assumption that \(\{S_n : n \in \omega\} \) is a collection of nonempty, connected, pairwise disjoint subsets of \(H \) such that for \(m \neq n \) the sets \(S_n, S_m \) are connected to each other. We consider just two of these sets, say \(S_0, S_1 \). Because of lemma 2.3 the sets \(I(S_0) \) and \(I(S_1) \) are infinite. For \(k = 0, 1 \) let \(\mu_k = \min(I(S_i)) \). We may assume that \(\mu_0 \leq \mu_1 \). Since \(I(S_0) \) is infinite, there is \(n \in I(S_0) \) with \(n \geq \mu_1 \). So lemma 2.2 implies that \((1, \mu_1) \in S_0 \cap S_1\), contradicting the assumption that the \(S_k \) are pairwise disjoint. So we established:

Proposition 2.4. The complete graph \(K_\omega \) is not a minor of \(H \).

References

[1] Hadwiger, Hugo, *Über eine Klassifikation der Streckenkomplexe*, Vierteljschr. Naturforsch. Ges. Zürich, 88 (1943), 133–143.