Carcinosarcoma of gallbladder: A world review

Thomas Zheng Jie Teng, Branden Qi Yu Chua, Vishal G Shelat

ORCID number: Thomas Zheng Jie Teng 0000-0001-7355-9591; Branden Qi Yu Chua 0000-0003-4096-531X; Vishal G Shelat 0000-0003-3988-8142.

Author contributions: Teng TZJ, Chua BQY and Shelat VG contributed to the conception of the idea and writing of the paper.

Conflict-of-interest statement: There is no conflict of interest to declare.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Country/Territory of origin: Singapore

Specialty type: Surgery

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was

Abstract

BACKGROUND
Gallbladder carcinosarcoma is a rare hepatobiliary tumor comprising of both carcinomatous and sarcomatous components. Due to its rarity, the literature with regards to the topic is scarce and currently lacking, spanning less than 100 cases.

AIM
To summarize the current literature on gallbladder carcinosarcoma.

METHODS
A literature review was performed on the PubMed database using the keywords “Gallbladder” AND “Carcinosarcoma” from 1970 to 2021. Additionally, similar searches were performed on MEDLINE and Web of Science.

RESULTS
Risk factors noted include female gender, gallstones and chronic cholecystitis. In the absence of any diagnostic biochemical testing or tumor markers, imaging modality serves as the key initial impression tool, which can be histologically confirmed only post-resection. While surgery is the only curative option, the use of adjunctive chemotherapy has been considered on top of excision in recent years, with some success.

CONCLUSION
While this study has taken steps to bridge the gap in the literature, more cases should be reported to further ascertain the current associations and management potential for gallbladder carcinosarcoma.

Key Words: Carcinosarcoma; Gallbladder; Gallstone; Malignancy; Carcinoma; Sarcoma

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Gallbladder carcinosarcoma (GBCS) while rare, is an important histological subtype of gallbladder malignancy as it is associated with poor prognosis. Most GBCS patients tend to present late. As of now, the primary method of diagnosis is that of a pathological analysis with the main stay of treatment being surgical excision. Furthermore, the clinical diagnosis of GBCS remains extremely challenging given its seemingly nonspecific clinical features. We aim to provide an in-depth world review of the known cases of GBCS in order to identify unifying features of the disease and to assess effective management strategies that have been employed by clinicians.

INTRODUCTION
Gallbladder carcinosarcoma (GBCS) is defined by the presence of both carcinomatous and sarcomatous components in the tumor, making it a rarity even amongst the uncommon gallbladder cancer family[1]. While its history is deep-rooted, with the first case being reported by Karl[2] in 1907, less than 100 cases have been reported since. In 2008, Zhang et al[3] sought to collectively analyze the 70 cases in the literature at that time. However, Zhang et al[3] noted the need for a larger scale case series to provide more information on the neoplasm for better accuracy and reliability. Since then, there has been a gap in the literature for such an analysis (Figure 1). This study aims to fill this gap by providing a comprehensive overview of GBCS.

MATERIALS AND METHODS
A literature review was performed on the PubMed database using the keywords “Gallbladder” AND “Carcinosarcoma” from 1970 to 2021. Additionally, similar searches were performed on Medline and Web of Science. The last search was performed on January 31, 2021. After removing duplicate results from similar databases, the search yielded 105 articles: 16 non-English and non-Japanese studies and 12 unrelated topics (animal studies, gallbladder carcinoma and non-gallbladder pathology) were excluded. Out of the remaining 77 articles, seven were not case reports or case series on GBCS and thus excluded. The remaining 70 articles including 76 patients were included in the final analysis (Table 1)[1,4-72]. Article filtering and exclusion was done according to PRISMA guidelines (Figure 2). Data extracted included study year, age and gender of the patient, clinical presentation, risk factors, laboratory investigations, tumor markers, the ultrasound imaging findings, location of the lesion within the gallbladder, size of the lesion, initial diagnosis, method of confirming the diagnosis, immunohistochemical results (vimentin, cytokeratin, Ki-67), management and prognosis of the patient. Kaplan-Meier survival curves were compared between lesions larger than 5 cm and those smaller than 5 cm as data by Zhang et al[3] suggested that tumors smaller than 5 cm had better survival. For all statistical tests, a P value of 0.05 was used to determine statistical significance.

RESULTS
Seventy-eight patients with a mean age of 66.4 years (range: 40-91 years) were reported during the study period. The patients were predominantly female (n = 55, 72.4%) with a gender ratio of 2.62. Nine patients (11.8%) had chronic cholecystitis, and 1 patient each had hepatitis C and abnormal pancreaticobiliary maljunction (APBJ). Of those who reported the presence of gallstones, a majority noted the presence of gallstones (n = 35/42, 83.3%). The majority of patients complained of abdominal pain (n = 58, 76.3%), most of which was localized to the right upper quadrant. Twenty-two patients (28.9%) presented with constitutional symptoms (either unexplained loss of
No.	Year	Ref.	Age/sex	Risk factors for GB CA (stones)	Clinical presentation	Liver function tests	Position of CA	Tumor markers (CEA, AFP, CA 19-9)	Size (mm)	Initial diagnosis	Confirmatory diagnosis (mode)	Stage (UICC)	Survival (mo)	IHC positives	Further management
1	2020	Khurram et al [4]	64/F	No stones	RUQ pain, intermittent fever, abdominal distension	AST, GGT elevated	Fundus	Normal	132 × 97 × 110	Hepatic abscess	Cholecystectomy	NA	NIL mentioned	CK	NA
2	2020	Ayoub et al[5]	66/M	NA	RUQ pain	Normal	Body	Normal	150 × 80 × 60	Gallbladder malignancy	Cholecystectomy and lymphadenectomy	IVA	12+	Vimentin, CK	NA
3	2020	Kaneko et al[6]	70/F	NA	Obstructive jaundice	NA	NA	Normal	110 × 70 × 34	Gallbladder malignancy	Cholecystectomy	NA	44+	CK, Ki-67	NA
4	2020	Siddiqui et al[7]	57/M	NA	Abdominal pain, nausea, LOW, LOA	ALP, total bilirubin elevated	Fundus	NA	620	Gallbladder malignancy	ERCP (unsuccessful), PTC with internal-external biliary drainage catheter	NA	NA	Vimentin	NA
5	2020	Mochizuki et al [8]	88/F	Gallstones	Chills, tremors, vomiting	NA	Body	NA	60 × 25	Acute cholecystitis	Cholecystectomy	NA	10+	Ki-67	NA
6	2019	Varshney et al [9]	50/M	Gallstones	RUQ pain, obstructive jaundice	AST, ALT, bilirubin elevated	Fundus	Normal	65 × 55	Gallbladder malignancy	radical cholecystectomy with standard lymphadenectomy	NA	6+	Vimentin, CK	Adjuvant chemotherapy
7	2019	Aldossary et al [10]	40/M	Gallstones	RUQ pain	Normal	Entire gallbladder	Normal	115 × 92 × 50	Gallbladder malignancy	Open lap, radical cholecystectomy, extended R hemi w- JC anastomosis, liver resection	IVB	6	Vimentin, Adjuvant chemotherapy	
8	2019	Aldossary et al [10]	52/F	No stones	RUQ pain	ALT, AST elevated	Fundus	CA19-9 level of 154.3 IU/mL, with normal levels of AFP and CEA	136 × 120 × 95	Gallbladder Malignancy	Open lap, radical CCY, transverse chole, Roux en Y + distal gastrectomy	IVB	3	Vimentin, CK	NA
9	2019	Aldossary et al [10]	62/F	Gallstones	RUQ pain, nausea, anorexia	Normal	Body	Normal	27 × 9	Gallbladder malignancy	Lap CCY	II	86+	Vimentin, CK	Adjuvant chemotherapy
Year	Authors	Age	Gender	Symptoms	Test Results	Diagnosis	Treatment/Procedure	Procedure Details	Stage	Histology	Chemotherapy	Additional Notes			
------	---------	-----	--------	----------	--------------	-----------	---------------------	------------------	-------	-----------	--------------	----------------			
2019	Alratroot et al [11]	52/F	RUQ pain	Xanthogranulomatous cholecystitis	GGT elevated	Fundus CA 19-9 154.33 IU/mL	Gallbladder malignancy	Laparotomy with radical cholecystectomy, transverse colectomy, distal gastrectomy, omentectomy and liver bed resection	III	1.5+	Vimentin, CK	Adjuvant chemotherapy			
2019	Matsubayashi et al [12]	72/F	RUQ pain	Pancreaticobiliary maljunction	ALP, GGT elevated	Entire gallbladder	Gallbladder malignancy	Laparotomy and extended cholecystectomy	IIIA	73+	Vimentin, CK	NA			
2018	Doniparthi et al [13]	49/M	RUQ pain	Epigastric pain	AST, ALT, lipase elevated	NA	Acute cholecystitis	NA	NA	NA	NA				
2018	Koustav et al [14]	40/F	RUQ pain	Abdominal distension, constipation, vomiting, LOW	CA19-9 elevated	Gallbladder malignancy	Staging laparoscopy + extended cholecystectomy	NA	NA	NA	NA				
2018	Trautman et al [15]	73/F	RUQ pain	Chronic cholecystitis	AST, ALT, ALP elevated	Beta-HCG elevated	Gallbladder malignancy	Diagnostic laparoscopy	NA	0.5	Vimentin, Palliative (NM)	NA			
2017	Furuya et al [16]	61/F	RUQ pain	NA	Normal	Normal	Chronic cholecystitis with stone	Cholecystectomy	NA	NA	NA	NA			
2016	Hu et al [17]	68/F	RUQ pain, fever	Cholelithiasis	Body CA19-9 elevated	16 × 15 × 13	Gallbladder malignancy	Cholecystectomy	NA	1	NA	NA			
2016	Cruz et al [18]	52/F	RUQ pain	Gallstones	ALT AST elevated	Entire gallbladder	Gallbladder malignancy	Cholecystectomy	NA	1	Vimentin, CK	Palliative (NM)			
2016	Dong et al [19]	61/M	NA	Abdominal distension	NA	NA	Gallbladder malignancy	Resection (not specified)	NA	NIL mentioned	Ki-67	NA			
2016	Gupta et al [20]	46/F	RUQ pain	NA	Fundus All normal	350 × 250 × 200	Gallbladder malignancy	Radical cholecystectomy with hepato-duodenal ligament lymph node clearance and segment 4b/5 liver resection	NA	15 (still alive)	Vimentin, CK	Adjuvant chemotherapy			
2016	Wong et al [21]	52/F	NA	Abdominal pain	NA	Entire gallbladder	CA19-9 elevated	Autopsy	III	6	Vimentin, CK	Adjuvant chemotherapy			
2016	Ansari et al [22]	50/F	NA	RUQ pain	Normal	Entire gallbladder	Gallbladder malignancy	Radical cholecystectomy	II	13 mo (still alive)	Vimentin, CK, Ki-67	Adjuvant chemotherapy			
2015	Gao et al [23]	62/M	RUQ pain	Chronic cholecystitis	Normal	Entire gallbladder	Gallbladder malignancy	Simple cholecystectomy	II	0	Vimentin, CK	NA			
2015	Tonouchi et al [24]	87/M	No stones	Abdominal pain	NA	NA	Diffuse peritonitis	Cholecystectomy with partial transverse colectomy around the fistula	NA	Lost to follow-up	Vimentin, CK	NA			
Year	Reference	Age	Gender	Symptoms	Vital Signs	Radiological Findings	Histological Findings	Procedure	Follow-up	Other Treatments					
------	-----------	-----	--------	----------	-------------	-----------------------	----------------------	------------	-----------	----------------					
2015	Faujdar et al [25]	60/F	NA	RUQ pain, fever	Normal	Entire gallbladder	120×70×60	Gallbladder malignancy	Cholecystectomy	NA	60+	Vimentin, CK			
2014	Wada et al[26]	68/M	NA	Right flank pain	GGT elevated	NA	Normal	85×70	Gallbladder malignancy	Extended right hepatectomy with portal thrombectomy with hepato-duodenal ligament lymphadenectomy	NA	51+	Vimentin, CK, Ki-67, Adjuvant chemotherapy		
2014	Kishino et al [27]	70s/F	NA	Referred for suspected GB cancer	NA	Fundus	NA	68	Gallbladder malignancy	Cholecystectomy	NA	1.5+	Vimentin, CK		
2013	Wang et al[28]	68/F	NA	Chronic cholecystitis, cholecystolithiasis	RUQ pain, jaundice, fever	ALT, ALP elevated	NA	CEA, CA19-9, AFP elevated	100×70×50	Gallbladder malignancy	Cholecystectomy with liver segmentectomy (S4a+S5) and a lymph node dissection, followed by resection of the extrahepatic bile duct and a Roux-en-Y type hepatic cholango-jejunostomy	NA	6+	Vimentin, CK	
2013	Khanna[29]	45/F	NA	RUQ pain	Normal	Body	60×40	Gallbladder malignancy	Laparotomy and simple cholecystectomy with wedge resection	NA	3	Vimentin, CK, Ki-67			
2013	Li et al[30]	64/M	Chronic cholecystitis	RUQ pain	NA	NA	CEA, CA19-9 elevated	40×30×30	NA	Cholecystectomy, R hemicolectomy, resection of multiple hepatic metastases	NA	3+	Vimentin, CK, Ki-67		
2012	Kim et al[31]	72/F	Gallstones	Abdominal pain	Normal	Fundus	Normal	65×45×45	Gallbladder malignancy	Radical cholecystectomy with wedge resection of liver combined with hepatoduodenal ligament lymphadenectomy	NA	4	NA, Adjuvant chemotherapy		
2012	Kim et al[31]	81/M	NA	Epigastric pain	Normal	Fundus	Normal	Gallbladder malignancy	Cholecystectomy with liver segmentectomy (S4a,5) and lymph node dissection	NA	13	Vimentin, CK			
2012	Sadamori et al [32]	80/M	NA	RUQ pain, fever	Entire gallbladder	76×27	Gallbladder malignancy	Cholecystectomy with liver segmentectomy (S4a and S5) and lymph node dissection	NA	2+	Adjuvant chemotherapy				
2012	Kataria et al[33]	55/F	NA	RUQ pain	Normal	Fundus	Normal	70×50×30	NA	Cholecystectomy, wedge resection of liver with resection of transverse colon and paraduodenal lymph node	NA	6	Vimentin, CK		
2012	Parreira et al [34]	59/F	NA	RUQ pain	Normal	NA	NA	NA	NA	Conventional cholecystectomy	NA	2	NA		
Year	Authors et al	Age/Gender	Diagnosis	Signs	Imaging	Histology	Treatment	Stage	Additional Procedures						
------	--------------	------------	-----------	-------	---------	-----------	-----------	-------	-----------------------						
2012	Park et al	77/F	NA	RUQ	AST, ALT	CA19-9, CA-125	Laparotomy, followed by cholecystectomy and lymph node dissection	IIIB	10+						
2012	Ishida et al	62/F	NA	Incidental finding on radiograph for left calcaneal fracture	Normal	Entire gallbladder	Open cholecystectomy	NA	8						
2011	Lee et al	77/F	No stones	RUQ	Not mentioned	CA19-9, CA-125	Cholecystectomy	NA	1.5+ Vimentin, CK						
2011	Pu et al	59/F	Cholecystolithiasis	RUQ, fever	Normal	CA19-9	Exploratory laparotomy, followed by radical LN resection and hepatocholangiojejunostomy Roux-En-Y	II	0 CK Adjuvant chemotherapy						
2011	Krishnamurthy et al	85/M	No stones	Abdominal pain	NA	NA	Laparoscopic cholecystectomy	NA	48+ Vimentin, CK						
2009	Kohani et al	84/M	Chronic cholecystitis	RUQ pain, fever	Normal	Body	Open cholecystectomy	II	3+ Vimentin, CK, Ki-67 Adjuvant chemotherapy						
2009	Agarwal et al	60/F	NA	RUQ pain	Normal	Neck	Staging laparoscopy, laparotomy, simple cholecystectomy	NA	24+ Vimentin, CK						
2009	Magata et al	78/F	NA	RUQ	NA	CEA	Whole-layer cholecystectomy with regional lymph node dissection	NA	6+ Vimentin, CK						
2009	Shimada et al	69/M	Choledocholithiasis	Fever	Normal	Entire gallbladder	Laparotomy, cholecystectomy, lymph node dissection	NA	54+ Vimentin, CK, Ki-67						
2009	Uzun et al	70/M	NA	RUQ	Normal	Fundus	Radical cholecystectomy, wedge resection of liver-gallbladder bed with hepatoduodenal ligament lymphadenectomy	NA	8 CK, Ki-67						
2006	Kubota et al	72/M	NA	RUQ pain, fever	AST, ALT, ALP elevated	Normal	En bloc resection of the gallbladder and segments 4a and 5 of the liver, partial colectomy, and lymph node dissection	NA	6 NA NA						
2005	Akatsu et al	76/F	Gallstones	Incidental	Normal	Gallbladder	Extended cholecystectomy,	NA	2 Vimentin, NA						
Year	Authors	Gender	Age	Symptoms	Imaging	Pathology	Treatment	Additional Procedures							
------	---------	--------	-----	----------	---------	-----------	-----------	------------------------							
2002	Al-Sheneber et al [1]	68/F	Acute cholecystitis, gallstones	RUQ pain	Normal	NA	CEA elevated	CT guided needle biopsy of the upper abdominal mass							
2002	Hotta et al [51]	53/M	Chronic cholecystitis, gallstones	RUQ Pain	Normal	NA	Normal	Cholecystectomy with resection of subsegmentectomy of liver S5 and a resection of transverse colon at the second operation							
2002	Ajiši et al [52]	69/F	Gallstones, left renal tumor	Epigastric pain	Normal	NA	CA19-9 elevated	Left renal excision, cholecystectomy with liver segmentectomy (S4a, S5), and lymph node dissection							
2000	Yavuz et al [53]	50/F	RUQ pain	NA	Body	NA	80 × 60 × 60	Exploratory laparotomy -> cholecystectomy, liver wedge biopsy							

47 2005 | Huguet et al [47] | 64/F | Cholecystitis | RUQ pain, fever | Normal | Entire gallbladder | 120 × 100 × 70 | Gallbladder malignancy | A cholecystectomy with wedge resection of the gallbladder fossa (involving liver segments 4 and 5), extrahepatic bile duct excision, non-pylorus-preserving pancreaticoduodenectomy with excision of 15 cm of proximal jejunum, and right hemicolectomy |

48 2005 | Sodergren et al [48] | 64/F | Malaise and LOA | ALP Elevated | NA | NA | 20 × 12 × 12 | Gallbladder malignancy | Extrahepatic radical bile duct resection with hepatic and coeliac lymph node clearance followed by right hepaticocholedochojunostomy to a jejunal Roux loop |

49 2005 | Sodergren et al [48] | 60/F | Painless jaundice | NA | NA | NA | 90 | Gallbladder malignancy | Cholecystectomy and extrahepatic bile duct resection with lymph node clearance |

50 2004 | Takahashi et al [49] | 84/F | RUQ pain | NA | Body | CEA, CA19-9 elevated | 84 × 40 × 30 | Gallbladder malignancy | Cholecystectomy and transverse colon partial colectomy |

51 2003 | Kim et al [50] | 61/F | No stones | RUQ pain | Normal | Neck | Normal | 45 × 40 × 40 | Gallbladder malignancy | Cholecystectomy with common bile duct resection |

52 2002 | Ajiši et al [52] | 69/F | Gallstones, left renal tumor | Epigastric pain | Normal | NA | CA19-9 elevated | Double cancers of the left kidney and gallbladder |

53 2002 | Hotta et al [51] | 53/M | Chronic cholecystitis, gallstones | RUQ Pain | Normal | NA | Normal | Cholecystectomy with resection of subsegmentectomy of liver S5 and a resection of transverse colon at the second operation |

54 2002 | Ajiki et al [52] | 69/F | Gallstones, left renal tumor | Epigastric pain | Normal | NA | CA19-9 elevated | Double cancers of the left kidney and gallbladder |

55 2000 | Yavuz et al [53] | 50/F | RUQ pain | NA | Body | NA | 80 × 60 × 60 | Exploratory laparotomy -> cholecystectomy, liver wedge biopsy |
Year	Researchers	Gender	石头	主诉	体格检查	部位	肿瘤	治疗	20	12
1999	Eriguchi et al	65/F	壁	RUQ 疼痛	正常	整个胆囊	胆囊癌	胆囊切除术	I	16+
1997	Ryū et al	67/F	壁	腹部疼痛，LOW	NA	胆囊	胆囊癌	全脾切除术和胆囊切除术	NA	2
1996	Nakagawa et al	60/F	NA	腹部疼痛，发热	正常	胆囊	胆囊癌	全脾切除术	NA	NA
1994	Fagot et al	83/F	壁	呕吐，发热，右下腹痛	总胆红素升高	胆囊	胆囊癌	手术（未定义）	NA	12+
1992	Nakazawa et al	63/F	NA	呕吐	胆囊	胆囊癌	胆囊切除术	NA	NA	
1990	Ishihara et al	58/F	NA	腹痛	正常	胆囊	胆囊癌	全脾切除术	NA	11+
1996	Nakazawa et al	60/F	NA	胆囊癌	全脾切除术	胆囊癌	胆囊切除术	NA	12+	
1994	Fagot et al	83/F	壁	呕吐，发热，右下腹痛	总胆红素升高	胆囊	胆囊癌	全脾切除术	NA	12+
1992	Hasegawa et al	61/M	NA	RUQ 疼痛	正常	整个胆囊	胆囊癌	全脾切除术	NA	6
1997	Born et al	90/F	壁	呕吐, 低	Amylase 升高	胆囊	胆囊癌	全脾切除术	NA	3
1992	von Kuster et al	91/F	壁	RUQ 疼痛，发热	GOT, ALP 升高	胆囊	胆囊癌	全脾切除术	NA	0
1992	Aldovini et al	75/F	壁	腹部疼痛	ALP, SGT 升高	胆囊	胆囊癌	胆囊切除术	NA	8+
1992	Yamagiwa et al	78/F	NA	RUQ 疼痛	NA	NA	NA	NA	NA	NA
1990	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
1992	Lopez et al	78/F	No stones	RUQ 疼痛	症状	胆囊	胆囊癌	胆囊切除术	NA	17
1992	Von Kuster et al	91/F	壁	RUQ 疼痛	GOT 升高	胆囊	胆囊癌	胆囊切除术	NA	31+
GBCA: Gallbladder cancer; CEA: Carcinoembryonic antigen; AFP: Alpha-fetoprotein; CA 19-9: Carbohydrate antigen 19-9; UICC: Union for International Cancer Control; IHC: Immunohistochemistry; RUQ: Right upper quadrant; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; ALP: Alkaline phosphatase; GGT: Gamma-glutamyl transferase; ERCP: Endoscopic retrograde cholangiopancreatography; PTC: Percutaneous transhepatic cholangiogram; CCY: Cholecystectomy; NA: Not available; NM: Not mentioned; NIL: None; CR: Complete response; LOA: Loss of appetite; LOW: Loss of weight; RH: Right hepatectomy; M: Male; F: Female; Lap: Laparoscopic; Chole: Cholecystectomy; LN: Lymph node; CT: Computerized tomography; GI: Gastrointestinal; CBDE: Common bile duct exploration; HCG: Human chorionic gonadotropin; SGOT: Serum glutamic-oxaloacetic transaminase; SGPT: Serum glutamic-pyruvic transaminase.

weight, anorexia or lethargy). Nineteen patients (25.0%) had nausea and vomiting, and 13 patients (17.1%) were febrile. Two patients (2.6%) were asymptomatic when diagnosed.

Liver function test was the common serum biochemical test reported \((n = 57)\). Deranged liver function tests were reported in 25 (43.9%) patients. Tumor markers were variably reported. The following tumor markers were elevated: carbohydrate antigen 19-9 \((n = 9/27, 33.3\%)\), carcinoembryonic antigen \((n = 5/27, 18.5\%)\) and alpha-fetoprotein \((n = 2/12, 16.6\%)\) in some patients. Also, CA-125 was elevated in 2 patients.

Forty-three patients had the location of the gallbladder tumor reported. Fundus was the most common location \((n = 15, 34.9\%)\), followed by body \((n = 10, 23.3\%)\) and neck \((n = 5, 11.6\%)\). In 14 patients \((32.5\%)\), the tumor filled the entire gallbladder lumen, and thus exact position could not be determined. Fifty-nine patients had initial diagnosis reported. Out of these 59 patients, gallbladder malignancy was the primary diagnosis in the majority of patients \((n = 49, 83.1\%)\). Ten patients \((16.9\%)\) were initially diagnosed with other pathologies: cholelithiasis \((n = 1)\), cholecystitis \((n = 3)\), gallbladder empyema \((n = 2)\), diffuse peritonitis \((n = 1)\), pancreatic cancer \((n = 1)\), biliary neoplasm \((n = 1)\) and pyogenic liver abscess \((n = 1)\).

Confirmation of diagnosis was reported in all but 1 patient \((n = 75)\). It was mostly done via surgical resection, either diagnostic cholecystectomy or laparotomy \((n = 70, 93.3\%)\). In the remaining 5 patients, diagnosis was made by fluid analysis from percutaneous cholecystostomy \((n = 1, 1.3\%)\), computerized tomography (CT) scan guided needle biopsy \((n = 1, 1.3\%)\) and autopsy \((n = 3, 4.0\%)\). Staging of the cancer was
Teng TZJ et al. Carcinosarcoma of gallbladder

Figure 1 Paucity of gallbladder carcinosarcoma reports and trends by decade.

Figure 2 PRISMA diagram of articles searched on gallbladder carcinosarcoma. GB: Gallbladder

reported infrequently, with TNM system being the most common \(n = 15, 19.7\%\). The majority of patients had stage II \(n = 6, 40.0\%\) and stage III disease \(n = 5, 33.3\%\). Three patients had stage IV disease \(20.0\%\), and 1 patient had stage I disease \(6.67\%\). Immunohistochemical stains (vimentin for mesenchymal components and cytokeratin for epithelial components) were reported in 50 patients \(68.5\%\). Vimentin \(n = 42, 84.0\%\), cytokeratin \(n = 39, 78.0\%\) and Ki-67 staining \(n = 7, 14.0\%\) were variably positive.

Fourteen patients \(18.4\%\) received adjuvant chemotherapy. Various chemotherapy combinations included: gemcitabine and cisplatin, leucovorin and 5-fluorouracil \(5-FU\), cisplatin and doxorubicin, cisplatin and 5-FU, tegafur-uracil and gemcitabine and oxaliplatin and 5-FU. Palliative treatment was chosen in 4 patients \(5.26\%\). Amongst all those reported, 32 patients contained both survival and tumor size data. Kaplan-Meier survival analysis was performed (Figure 3), and there was no significant difference in survival times \(P = 0.301\) for patients with tumors less than 5 cm in diameter compared to those with larger tumors.
DISCUSSION

Gallbladder cancer is a rare neoplasm, accounting for about 0.5% of all gastrointestinal malignancies[73]. Most common gallbladder cancer is adenocarcinoma. GBCS is a rare form of gallbladder cancer, with only 78 cases reported. GBCS is characterized by carcinomatous and sarcomatous components and is made up of both epithelial and mesenchymal components. Commonly, the epithelial component consists of adenocarcinoma followed by the less common squamous cell carcinoma[74]. While there are multiple theories to justify the mixture of the epithelial and mesenchymal components, there is no consensus on the pathophysiology of the neoplasm. GBCS is considered the most aggressive biliary tract malignancy, usually discovered at late stages, and has poor prognosis[3].

Incidence

In terms of patient demographics, our results are consistent with the report of Zhang et al[3]. In a report including 68 GBCS patients, those authors reported a median age of 68 years (range: 45 to 91 years) with female predominance (female:male = 2.7:1), consistent with our results with a gender ratio of 2.32 and a mean age of 66.0 years (range: 40-91 years). Female preponderance is likely due to increased prevalence of gallstones in females. Zhang et al[3] noted gallstones in 66.7% of their patients. In our study, the incidence of gallstones was high (83%). However, gallstone presence was not specific nor sensitive in the diagnosis of GBCS, as not only are they a common finding in cancers of the gallbladder, only 1%-5% of patients with gallstones develop gallbladder malignancies. In our analysis of the literature, gallstone presence was only noted in 83.3% of patients where the presence of gallstones was assessed.

APBJ is also another risk factor of gallbladder malignancy[12]. Matsubayashi et al [12] reported a 72-year-old female patient with symptoms of abdominal pain. Laboratory investigations revealed raised alkaline phosphatase and gamma-glutamyl transpeptidase. CT scan confirmed a polypoid gallbladder mass. Magnetic resonance cholangiopancreatography scan showed APBJ, and this was confirmed at subsequent endoscopic retrograde cholangiopancreatography. While APBJ is a well-known risk factor for gallbladder cancers[75], this was the first case of APBJ in GBCS noted in the literature.

Other risk factors mentioned include chronic cholecystitis, which could be both a risk factor and the manifestation of gallbladder malignancy. Unique to the gallbladder is a cycle of gallbladder epithelium damage and repair, enabling a chronic inflammatory environment from chronic cholecystitis[76]. This cycle of inflammation, injury, repair and regeneration increases cell turnover and oxidative stress. Yildiz et al[77] stated biliary tract to be the "consummate example of inflammation-associated carcinoma". Chronic inflammation from gallstone disease can lead to protein damage,
genetic mutations, inhibition of apoptosis, promotion of angiogenesis, modulation of cell adhesion and motility as well as immunosuppression. Chronic cholecystitis leads to gallbladder wall thickening, and CT or magnetic resonance imaging (MRI) scans are sensitive to detect wall thickness. However, it is not possible to distinguish if thickening of the gallbladder wall is due to inflammation or malignancy[78]. Thus, multidisciplinary discussion involving experienced radiologists and hepatobiliary surgical team is essential to make management plans for patients with suspicious gallbladder lesions.

Signs and symptoms
Clinical manifestations of GBCS are nonspecific, with symptoms such as abdominal pain localized to the right upper quadrant, constitutional symptoms, nausea, vomiting and fever. The mechanism resulting in constitutional symptoms in patients with cancer is multifactorial and not yet fully understood. It is thought that multiple pathways involving pro-cachectic and pro-inflammatory signals from tumor cells along with systemic inflammation of the host combine with widespread metabolic changes contribute to the manifestations of symptoms like anorexia and cachexia[79]. In particular, cholecystokinin is an integral peptide involved in satiety and regulating diet intake[80]. Given its role in gallbladder contraction, dysregulation of cholecystokinin could be involved in the manifestation of constitutional symptoms of anorexia in patients with GBCS.

Similarly, the pathophysiology of febrile response in malignancies is complex. Released pyrogenic cytokines from tumor cells and tissue macrophages induces a chain of events that result in reset of hypothalamic thermostat due to prostaglandin E2 and related pathways[81]. On physical examination, the presence of a right hypochondrial tenderness or mass is not specific, and it does not rule out malignancy. Thus, if a patient is managed for suspected acute or chronic cholecystitis, a follow-up physical examination and imaging needs to be arranged to document resolution of inflammatory process. In this review, 2 asymptomatic patients were diagnosed with GBCS. From our analysis, Ishida et al[36] and Akatsu et al[46] reported incidental findings of GBCS on imaging findings for unrelated issues. Ishida et al[36] reported a 62-year-old female with unexpected calcification in the right upper abdomen in a CT meant for follow-up of percutaneous pinning of a left calcaneal fracture. Akatsu et al[46] reported a 76-year-old female who was on regular follow-up for cholelithiasis. Abdominal ultrasound revealed a heterogeneously hypoechoic mass around the gallbladder bed. In both patients, a preoperative diagnosis of possible gallbladder malignancy was made, and surgical exploration with subsequent cholecystectomy was performed.

Biochemical investigations
Biochemical abnormalities in GBCS are also mostly nonspecific. The most common derangements were transaminitis, hyperbilirubinemia and anemia. This was consistent with Ayoub et al[3] who reported that hepatic and inflammatory markers were often normal.

Presurgical diagnosis of gallbladder malignancies is difficult due to its varying presentations. Differentials to consider for such lesions when calcification is present include calcified gallstones, porcelain gallbladder and GBCS[78]. Our analysis noted cases where GBCS was initially diagnosed with cholelithiasis, acute cholecystitis, gallbladder empyema, diffuse peritonitis, pancreatic cancer and pyogenic liver abscess.

Imaging
As there are no radiological signs identified in the current literature that distinguishes GBCS from other gallbladder malignancies[50,51], the diagnosis is difficult even with imaging. For instance, Appelman et al[72] described a 91-year-old male presenting with yellow sclera, pale stools, dark urine and pruritus. His liver function tests were deranged with obstructive pattern, and a diagnosis of pancreatic cancer with biliary tract obstruction was made. The patient refused surgical intervention and died within 2 wk. Autopsy confirmed the diagnosis of metastatic disease with GBCS primary.

Khurram et al[4] reported a 64-year-old lady presented with right upper quadrant mass, intermittent fever and abdominal distension following a recent travel history to Ghana. CT scan revealed a hepatic lesion with coexisting gallbladder distension consistent with pyogenic liver abscess. Due to failure to respond to intravenous antibiotics, MRI scan was done. MRI scan showed a gallbladder fundus soft tissue lesion with local invasion into the liver[22]. Histopathological diagnosis of GBCS was
made after surgical excision. Hence, in the absence of a confirmatory preoperative diagnosis, all suspicious gallbladder lesions must be reviewed at multidisciplinary meetings.

Porcelain gallbladder, gallbladder tuberculosis and xanthogranulomatous cholecystitis are common benign conditions that can be confused with malignancy. Porcelain gallbladder is described as a hyperechoic focus with posterior acoustic shadowing on an ultrasound scan\[82]. Ultrasound scan is not sensitive for regional and distant spread of malignancy. CT and MRI scans are more sensitive to detect contiguous spread to liver, regional lymph node involvement and distant metastases. Diffuse nodular thickening without layering, early enhancement, low apparent diffusion coefficient and high lesion to spinal cord ratio are MRI features suggestive of gallbladder cancer\[83]. In addition, CT and MRI scans provide details that assist in surgical planning. 18-fluorodeoxyglucose-positron emission tomography-CT can aid in distinguishing between benign and malignant gallbladder lesions. Malignant lesions have high standardized uptake value. In a study reporting 30 patients with a mean age of 48.22 ± 31.33 years and gallbladder wall thickening (focal > 4 mm and diffuse > 7 mm), Gupta et al\[84] reported that 18-fluorodeoxyglucose-positron emission tomography had high overall sensitivity (91%), specificity (79%), positive predictive value (77%), negative predictive value (92%) and diagnostic accuracy (84%).

Histological diagnosis

Diagnosis of GBCS is usually made after pathological analysis of a surgical specimen. In patients with unresectable neoplasms, tissue diagnosis can be achieved by percutaneous biopsy. This is essential to plan definitive chemotherapy\[85]. In clearly resectable lesions, the role of percutaneous biopsy is debated due to risk of needle-tract seeding\[86]. Furthermore, as the gallbladder is a hollow organ, bile spill and peritonitis remain a risk too\[87]. As GBCS are rare tumors with poor prognostic outcomes, treatment options are not well defined, with little evidence supporting or refuting any postoperative adjuvant therapy. Okabayashi et al\[88] and Mochizuki et al\[89] both corroborate that surgical treatment remains the only cure for GBCS. While the histopathological features between GBCS and adenocarcinoma of the gallbladder are different, management is similar.

Surgical management

Currently, the consensus for treatment involves surgical excision of the gallbladder and extrahepatic bile duct, regional lymphadenectomy and even pancreaticoduodenectomy depending on the extent of the growth\[88]. Completion liver resection with or without lymphadenectomy and/or bile duct resection is an accepted standard for post simple cholecystectomy discovered gallbladder cancer with T1b, and higher stage. This approach not only involves two surgeries but also increases the risk of cutting through the tumor with potential for tumor seeding and dissemination. Yip et al\[90] in a series of 40 patients with incidental gallbladder cancer reported that the majority of patients were not amenable for further curative resection. A report from Memorial Sloan-Kettering Cancer Centre involving 116 patients showed that survival of patients with residual disease was not different than survival of patients with stage IV disease, and neither group of patients benefit from reoperation\[90]. Thus, single surgery may be better.

Radical cholecystectomy has higher morbidity as compared to simple cholecystectomy. Thus, the concept of something intermediate, i.e., extended cholecystectomy, is attractive. Fujisaki et al\[91] reported a case describing the concept of laparoscopic extended cholecystectomy with 1 cm liver margin; however, they proposed open conversion when intraoperative histology showed gallbladder cancer invading the subserosal layer. With current advancements, laparoscopic extended cholecystectomy was noted to have lesser intraoperative and postoperative complications than open extended cholecystectomy\[92].

The key differences between a ‘radical’ and ‘extended’ cholecystectomy are restricting the liver parenchyma transaction to the 2 cm wedge of liver tissue and performing regional lymphadenectomy and choledochoectomy only in selected patients. Radical cholecystectomy can be done by open, laparoscopic or robot assisted approach, with comparable short-term outcomes\[93]. Overall, more data is required to determine the safety and feasibility of minimal access techniques in gallbladder malignancies. Due to the absence of histological diagnosis, management of suspicious gallbladder lesions must be determined by local resources, surgeon experience and access to technology.
In a recent systematic review, Frountzas et al[94] reported that many patients with xanthogranulomatous cholecystitis were managed with complex procedures like wedge hepatic resection and bile duct excision with high open conversion rate (35.0%) at planned cholecystectomy. Intraoperative frozen section analysis is a useful adjunct in surgical planning. While intraoperative frozen tissue diagnosis is relatively reliable to determine whether lesions are benign or malignant, it does not reliably detail the depth of invasion of gallbladder malignancies[95]. Furthermore, the accuracy of intraoperative frozen tissue diagnosis for GBCS has yet to be determined due to paucity of scientific data.

Adjuvant treatment

The adjuvant treatment reduces recurrence risk and improves survival outcomes by eliminating or controlling the micrometastatic disease. A meta-analysis of retrospective studies including 6712 gallbladder cancer patients reported that lymph node positive patients enjoyed the survival benefit[96]. Few reported patients consider the use of UFT: tegafur/uracil, gemcitabine or a combination of tegafur/gimeracil/oteracil. The median survival of GBCS is 7.8 mo[10], and the addition of such regimes has not shown to improve survival[38]. There is a report by Pu et al[38] of using a combination of 5-FU (commonly used in gallbladder cancer) and oxaliplatin (commonly used in sarcomas). They reported a 59-year-old female coming in with right upper quadrant pain, fever and a raised CA19-9 level of 12000 U/mL, which was confirmed to be GBCS. The patient received oxaliplatin 150 mg and 5-FU 500 mg intravenously every 30 d for 6 cycles. At 6-mo follow-up, she did not reveal any signs of recurrence.

Adjuvant radiotherapy is shown to be of value in reducing local recurrence in selected patients with gallbladder cancer. In a study including 4180 patients with resected gallbladder cancer diagnosed from 1988 to 2003 from the Surveillance, Epidemiology, and End results database, Wang et al[97] reported that adjuvant radiotherapy provides survival benefit in node positive or T2 and higher stage disease. A single arm phase II study conducted by South West Oncology Group reported that gemcitabine plus capetitabine, followed by radiation (45 Gy to regional lymphatics, 54-59.4 Gy to tumor bed) and capetitabine resulted in 56% 2-year survival rate for patients with gallbladder cancer. Based on these results, the American Society of Clinical Oncology guidelines recommend chemotherapy plus radiation in gallbladder cancer patients with R1 resection[98]. There is no data to support neoadjuvant chemotherapy. Due to aggressive biological behavior, rapid progression or recurrence is common, and this is associated with a myriad of constitutional symptoms. For holistic care, management of the patients’ subjective symptoms of anorexia and lethargy needs to be considered. Testosterone replacement therapy helps alleviate such symptoms in male patients with advanced cancer[99].

Prognosis

Generally, the prognosis of GBCS is poor. The majority of patients presenting to the hospital are locally advanced, with liver metastasis and peritoneal dissemination. Other metastasis sites reported include adrenal gland, pancreas, diaphragm and the lower thoracic vertebrae. Zhang et al[3] reported a mean survival time of 17.5 mo, with 1-year and 5-year survival rates at (19 ± 5)% and (16 ± 5)%, respectively. While it was previously noted the longest survival time to be reported as 54 mo by Uzun et al[44], our review noted 86 mo to be the longest survival time[10]. Aldossary et al[10] reported a 62-year-old female patient who complained of severe intermittent right upper quadrant pain of 2 mo duration. Laboratory investigations were normal, and ultrasound suggested a gallbladder with large stones and a non-mobile echogenic mass. A stage II (pT2, pN0, M0) moderately differentiated GBCS was noted on histology after laparoscopic cholecystectomy. The patient underwent 14 cycles of adjuvant chemotherapy. She had local recurrence at 2 years. Wide local excision of the mass with wedge resection of the liver, lymphadenectomy and partial gastrectomy was done. The patient remained disease free for 86 mo. Zhang et al[3] also claim that tumors smaller than 5 cm had a more prolonged survival, however we did not observe this. More data is required to confirm this, as only 28 patients detailing both the survival data and size of tumor have been reported.

Role of tumor markers

GBCS is not noted to have association with any tumor markers. Consistent with the current literature, most of the patients did not note any raised tumor markers[5]. However, it is still common practice for physicians to perform tumor marker levels
such as CA19-9, carcinoembryonic antigen and alpha-fetoprotein when considering possible differentials for masses in the gallbladder as well as for prognostication. For instance, Hayashi et al[100] propose that alpha-fetoprotein-producing carcinomas of the gallbladder are more likely to metastasize to the liver and have poor prognosis. CA19-9 is typically associated with pancreatobiliary malignancies but has a limited role in clinical practice[101]. Thus, prognostication is relied typically on histological features, pathologic stage as well as immunohistochemistry. Immunohistochemistry for the mesenchymal and epithelial components yield positive staining for vimentin and cytokeratin[45]. Our review shows that the majority of the patients had positive staining for vimentin (81.2%) and cytokeratin (79.2%). Additionally, Ki-67 was suggested by Kubota et al[45] to have prognostic value, whereby its presence signifies a possibly higher malignant proliferative potential for GBCS. However, this claim needs to be further investigated as Kubota et al[45] examined this immunohistochemical marker in only 1 patient with CSGB.

Comparison to gallbladder adenocarcinoma

There is substantial overlap of risk factors, diagnosis and treatment of GBCS with gallbladder adenocarcinoma. Thus, the majority of authors extrapolate the clinical characteristics of gallbladder adenocarcinoma to determine the best approach to diagnosis and management of GBCS. From this review, we can determine three key differences between GBCS and gallbladder adenocarcinoma. First, tumor markers have limited utility in patients with GBCS. In a study of 55 cases by Shukla et al[102], it is noted that the combination of CA-125 and CA19-9 helped detect gallbladder malignancy in patients with gallstones (80.7%). Second, the prognosis of GBCS may be marginally better compared to carcinoma of the gallbladder. In the meta-analysis by Zhang et al[3], it was noted that the survival rate was slightly better (16% ± 5% 5-year survival) compared to carcinoma of the gallbladder (0-10% 5-year survival). Thus, the identification of GBCS will be useful to determine the prognosis for patients albeit with only a small variation between the two. Third, immunohistochemistry markers like vimentin and cytokeratin are associated with diagnosis of GBCS.

CONCLUSION

In conclusion, GBCS is more common in females. Gallstones and chronic cholecystitis are risk factors for GBCS. Serum biochemistry and tumor markers have a limited role in diagnosis. Typical imaging modalities can assist to establish a diagnosis in patients with suspicious gallbladder lesions. Multiple imaging modalities are complementary. Multidisciplinary oncology board discussions are essential to guide management plans. Surgery is currently the only curative option for GBCS, and size of the tumor does not impact prognosis. While most features of GBCS parallel that of carcinomas of the gallbladder clinically, identification of GBCS specifically allows clinicians to determine overall prognosis. Due to paucity of reported cases, more evidence is required before meaningful and valid evidence-based patient-centric recommendations can be made. This review serves to educate and raise awareness among the clinicians dealing with gallbladder malignancies. It is likely that there are more clinical differences between GBCS and common forms of gallbladder cancer; active reporting of cases will help enhance understanding of this rare cancer.

ARTICLE HIGHLIGHTS

Research background

Literature on gallbladder carcinosarcoma (GBCS) is currently scarce, with less than 100 cases reported since the first case by Karl Lansteiner.

Research motivation

While there has been efforts by Zhang et al in 2008 to consolidate the literature, there has not been a review of the current literature since.

Research objectives

This study aims to fill this gap by providing a comprehensive overview of GBCS.
Research methods
A literature review was performed on the PubMed database using the keywords “Gallbladder” AND “Carcinosarcoma” from 1970 to 2021, where relevant articles were included. Animal studies, gallbladder carcinoma and non-gallbladder pathology as well as articles that were not in English or Japanese were excluded.

Research results
GBCS is more common in females. Gallstones and chronic cholecystitis are risk factors for GBCS. Serum biochemistry and tumor markers have limited role in diagnosis. Typical imaging modalities can assist to establish a diagnosis in patients with suspicious gallbladder lesions. Multiple imaging modalities are complementary. Multidisciplinary oncology board discussions are essential to guide management plans. Surgery is currently the only curative option for GBCS, and size of the tumor does not impact prognosis.

Research conclusions
While most features of GBCS parallel that of carcinomas of the gallbladder clinically, identification of GBCS specifically allows clinicians to determine overall prognosis. Due to paucity of reported cases, more evidence is required before meaningful and valid evidence-based patient-centric recommendations can be made.

Research perspectives
Due to the paucity of the number of reported cases, more active reporting of such should be encouraged to further understand this malignancy.

REFERENCES

1. Al-Sheneiber IF, Jaber T, Hutttner I, Arseneau J, Loutfi A. Carcinosarcoma of the gallbladder: A case report and review of literature. Saudi J Gastroenterol 2002; 8: 22-24 [PMID: 19861787]
2. Karli L. Plattenepithelkarzinom und sarkom der galleblase in einem falle von cholelithiasis. Z Klin Med 1907; 62: 427-433
3. Zhang L, Chen Z, Fukuma M, Lee LY, Wu M. Prognostic significance of race and tumor size in carcinosarcoma of gallbladder: a meta-analysis of 68 cases. Int J Clin Exp Pathol 2008; 1: 75-83 [PMID: 18784825]
4. Khurraram R, Khamar R, Lunat R, Novelli D, Ozretic L, Chaudhary K. Gallbladder carcinosarcoma masquerading as a hepatic abscess. Radiol Case Rep 2016; 16: 152-156 [PMID: 33240458 DOI: 10.1016/j.radcr.2020.10.058]
5. Ayoub M, Jabri R, Achrafi M, Benani A, Soumia EA, Imane K, Mohamed B. Surgical management of gallbladder carcinosarcoma: A case report and review of the literature. Int J Surg Case Rep 2020; 75: 460-463 [PMID: 33076195 DOI: 10.1016/j.ijscr.2020.09.114]
6. Kaneko R, Kimura Y, Sakata H, Ikehara T, Mitomi H, Uekusa T, Ohbu M, Kubo S. A case of primary hepatic mixed neuroendocrine-non-neuroendocrine tumor (MiNEN) associated with gallbladder carcinosarcoma. Clin J Gastroenterol 2020; 13: 1280-1288 [PMID: 32779146 DOI: 10.1007/s13238-020-01202-8]
7. Siddiqui M, Hegde S, Nguyen T, DePaul S. Sarcomatoid carcinoma of the gallbladder: A rare form of gallbladder cancer. SAGE Open Med Case Rep 2020; 8: 2050313X20906739 [PMID: 32095246 DOI: 10.1177/2050313X20906739]
8. Mochizuki K, Hata H, Naitou K, Motosugi U, Kondo T. Carcinosarcoma (adenocarcinoma, neuroendocrine carcinoma, undifferentiated carcinoma and chondrosarcoma) of the gallbladder. Clin J Gastroenterol 2020; 13: 110-115 [PMID: 31264080 DOI: 10.1007/s13238-019-01012-7]
9. Varshney VK, Bhati JN, Sureka B, Soni SC. Gallbladder Carcinosarcoma with Mirizzi Syndrome: a Rare Presentation. J Gastrointest Cancer 2019; 50: 997-1000 [PMID: 30178399 DOI: 10.1007/s12328-018-0167-3]
10. Aldossary MY, AlQattan AS, Alghamdi YM, Aleyad AA, Alquarish F, AlAnzi OA, Alabdulrahim N, Alateeq A, Alqahtani MS. Surgical outcomes of primary carcinosarcoma of the gallbladder after curative resection: A rare case series. Int J Surg Case Rep 2019; 65: 32-39 [PMID: 31678697 DOI: 10.1016/j.ijscr.2019.10.056]
11. Alratroot JA, Joudeh AA, Amr SS. Carcinosarcoma of the Gallbladder with Chondrosarcomatous Differentiation and Intracytoplasmic Eosinophilic Hyaline Globules (Thanatosomes): A Report of a Case and Review of the Literature. Case Rep Pathol 2019; 2019: 9697235 [PMID: 30881717 DOI: 10.1155/2019/9697235]
12. Matsubayachi H, Matsui T, Sugiuira T, Makuuchi R, Kaneko J, Satoh J, Satoh T, Fujie S, Ishiwatari H, Sasaki K, Omo H. A Large Carcinosarcoma of the Gallbladder Accompanied by Pancreatobiliary Maljunction: A Case with a Six-year Survival. Intern Med 2019; 58: 2809-2817 [PMID: 31243200 DOI: 10.2169/internalmedicine.2783-19]
Teng TZJ et al. Carcinosarcoma of gallbladder

13 Doniparthi M, Omar H, Haider A, O'Riordan K. P0042 - Primary Gallbladder Carcinosarcoma: A Rare Biliary Malignancy. *JCAG* 2018; 113: S713-S714

14 Kousta B AKN, Suman Saha, Ranajoy Ghosh, Sukanta Ray. Carcinosarcoma Gallbladder: A Rare Variety of Gallbladder Malignancy. *J Clin Diag Res* 2018; 12: PD01-PD02 [DOI: 10.7863/jcdr.2018 november.11387]

15 Trautman J, Wood BE, Craig SJ. A rare case report of gallbladder carcinosarcoma. *J Surg Case Rep* 2018; 2018: ry9:167 [PMID: 30046436 DOI: 10.1093/scr/ry9167]

16 Furuya Y, Hiroshima K, Wakahara T, Akimoto H, Yanagie H, Harigaya K, Yasahara H. Undifferentiated carcinoma of the gallbladder with endothelial differentiation: A case report and literature review. *Mol Clin Oncol* 2016; 5: 773-776 [PMID: 28101355 DOI: 10.3892/mco.2016.1046]

17 Hu W, Zhou G, Gao S, Wu L, Bao H, Yu H, Zhang Q. Carcinosarcoma of the gallbladder accompanied with cholecystolithiasis: a case report. *Int J Exp Pathol* 2016; 9: 2583-2586

18 Cruz J, Matos AP, Neta JO, Ramalho M. Carcinosarcoma of the gallbladder—an exceedingly rare tumour. *BJR Case Rep* 2016; 2: 20160019 [PMID: 30460034 DOI: 10.1259/bjrcr.20160019]

19 Dong A, Dong H, Jig W, Zuo C. FDG PET/CT in Sarcomatoid Carcinoma of the Gallbladder With Chondroid Differentiation. *Clin Nucl Med* 2016; 41: 638-640 [PMID: 26859217 DOI: 10.1097/rnu.0000000000001160]

20 Gupta S, Kori C, Kumar V. Primary Carcinosarcoma of the Gall Bladder: A Rare Entity. *Indian J Surg Oncol* 2016; 7: 101-105 [PMID: 27065693 DOI: 10.1016/j.ijso.2015.04.020-1]

21 Wong MW, Chen MJ, Chen CJ, Hung CY, Wang HY, Chang CW. Gallbladder sarcomatoid carcinoma: A case report and review of current literature. *Adv Digest Med* 2016; 3: 61-64 [DOI: 10.1016/j.admj.2014.10.003]

22 Ansari FA, Bhatnagar M, Katiyar DC, Gaioleta M, Gupta V, Prince A. Carcinosarcoma of Gall Bladder. *Trop Gastroenterol* 2016; 37: 63-65 [PMID: 29668183 DOI: 10.7869/jg.325]

23 Gao S, Huang L, Dai S, Chen D, Dai R, Shan Y. Carcinosarcoma of the gallbladder: a case report and review of the literature. *Int J Exp Pathol* 2015; 8: 7464-7469 [PMID: 26261654]

24 Tonouchi A, Yokoyama N, Hashidate H, Matsuzawa N, Katayanagi N, Otani T. Education and Imaging. Gastroenterology: Carcinosarcoma of the gallbladder presenting as a cholecysto-colic fistula. *J Gastroenterol Hepatol* 2015; 30: 1112 [PMID: 26694660 DOI: 10.1111/jgh.12906]

25 Faujdar M, Gupta S, Jain R, Wadhwa D. Carcinosarcoma of the gallbladder with heterologous differentiation: a case report. *J Gastrointest Cancer* 2015; 46: 175-177 [PMID: 25698405 DOI: 10.1007/s12920-015-0692-5]

26 Wada Y, Takami Y, Tateishi M, Ryu T, Makigi K, Momosaki S, Saitos H. Carcinosarcoma of the gallbladder: report of a case. *Clin J Gastroenterol* 2014; 7: 455-459 [PMID: 26184028 DOI: 10.1007/s12328-014-0522-2]

27 Kishino T, Mori T, Kawai S, Mori H, Nishikawa K, Hirano K, Matsushima S, Ohtsuka K, Ohsahi H, Watanabe T. Carcinosarcoma, an atypical subset of gallbladder malignancies. *J Med Ultrasound (2001)* 2014; 41: 487-490 [PMID: 27278030 DOI: 10.1007/s10396-014-0534-z]

28 Wang Y, Gu X, Li Z, Xiang J, Chen Z. Gallbladder carcinosarcoma accompanied with bile duct tumor thrombi: A case report. *Oncol Lett* 2013; 5: 1809-1812 [PMID: 23833646 DOI: 10.3892/ol.2013.1289]

29 Khanna M, Khanna A, Manjari M. Carcinosarcoma of the gallbladder: a case report and review of the literature. *J Clin Diag Res* 2013; 7: 560-562 [PMID: 23634423 DOI: 10.7860/jcdr.2013/4924.2825]

30 Li BF, Li PW, Shi R, Liu LZ, Liu YF. Clinicopathologic analysis of gallbladder carcinosarcoma. *Am Surg* 2013; 79: E37-E39 [PMID: 23317603]

31 Kim HH, Hur YH, Jeong EH, Park EK, Koh YS, Kim JC, Kim HJ, Kim JW, Cho CK. Carcinosarcoma of the gallbladder: report of two cases. *Surg Today* 2012; 42: 670-675 [PMID: 22391981 DOI: 10.1007/s00595-012-1060-6]

32 Sadamori H, Fujihara H, Tanaka T, Yania H, Sato H, Yagi T, Fujihara T. Carcinosarcoma of the gallbladder manifesting as cholangitis due to hemobilia. *J Gastrointest Surg* 2012; 16: 1278-1281 [PMID: 22350725 DOI: 10.1007/s11617-012-1836-3]

33 Kataria K, Yadav R, Seenu V. Sarcomatoid carcinoma of the gallbladder. *J Surg Case Rep* 2012; 2012: 5 [PMID: 24960781 DOI: 10.1093/jscr/2012.2.5]

34 Parreira JM, Siqueira DE, Menacho AM, Pelizzari LI, Santos LC. Carcinosarcoma of the gallbladder: case report. *Arq Bras Cir Dig* 2012; 25: 65-66 [PMID: 22569983 DOI: 10.1590/s0102-67202012000100015]

35 Park SB, Kim YH, Rho HL, Chae GB, Hong SK. Primary carcinosarcoma of the gallbladder. *J Korane Surc Soc* 2012; 82: 54-58 [PMID: 22324048 DOI: 10.4174/jkss.2012.82.1.54]

36 Ishida J, Ajiki T, Hara S, Yu K. Gallbladder calcification leads to discovery of carcinosarcoma of the gallbladder. *Surgery 2012; 152: 934-935 [PMID: 21875736 DOI: 10.1016/s0039-6060(11)007033]

37 Lee S, Kim SY, Hong SK. Sarcomatoid Carcinoma of the Gallbladder with Pure Squamous Cell Carcinoma: A Brief Case Report. *J Pathol Transl Med 2011; 45(2): 209-211 [DOI: 10.4132/KJPTM.2011.45.2.209]*

38 Pu JJ, Wu W. Gallbladder carcinosarcoma. *BMJ Case Rep* 2011 [PMID: 22706610 DOI: 10.1136/bcr.05.2010.3009]

39 Krishnamurthy V, Shivalingiah SD, Ravishankar S, Manjunath GV. Morphologic heterogeneity in carcinosarcoma of the gallbladder: report of a rare cases. *Case Rep Pathol 2011; 2011: 929654*
Inoshita S, Herrera-Goepfert R. [PMID: 1690-1694]. A case of huge carcinosarcoma of the gallbladder: a poorly recognized gallbladder tumor. *J Hepatobiliary Pancreat Surg* 2009; 16: 874-877 [PMID: 19350196].

Shimada K, Iwase K, Aono T, Nakai S,akeda S, Fujii M, Koma M, Nishikawa K, Matsuda C, Hirota M, Fushimi H, Tanaka Y. Carcinosarcoma of the gallbladder producing alpha-fetoprotein and manifesting as leukocytosis with elevated serum granulocyte colony-stimulating factor: report of a case. *Surg Today* 2009; 39: 241-246 [PMID: 19280285].

Uzun MA, Koksal N, Gunerhan Y, Celik A, Guney P. Carcinosarcoma of the gallbladder: report of a case. *Surg Today* 2009; 39: 168-171 [PMID: 19198999].

Kubota K, Kakuta Y, Kawamura S, Abe Y, Inamori M, Kawamura H, Kikirishi K, Kobayashi N, Saito S, Nakajima A. Undifferentiated spindle-cell carcinoma of the gallbladder: an immunohistochemical study. *J Hepatobiliary Pancreat Surg* 2006; 13: 468-471 [PMID: 17013725].

Akatsu T, Ueda M, Shinazu M, Wakabayashi G, Aiura K, Tanabe M, Kawachi S, Kameyama K, Kitajima M. Primary undifferentiated spindle-cell carcinoma of the gallbladder presenting as a liver tumor. *J Gastroenterol* 2005; 40: 993-998 [PMID: 16261437].

Huguet KL, Hughes CB, Hewitt WR. Gallbladder carcinosarcoma: a case report and literature review. *J Gastrointest Surg* 2005; 9: 818-821 [PMID: 15985237].

Sodergren MH, Silva MA, Read-Jones SL, Hubserger SG, Mizra DF. Carcinosarcoma of the biliary tract: two case reports and a review of the literature. *Eur J Gastroenterol Hepatol* 2005; 17: 683-685 [PMID: 15870734].

Takahashi Y, Fukushima J, Fukusato T, Shiga J. Sarcomatoid carcinoma with components of small cell carcinoma and undifferentiated carcinoma of the gallbladder. *Pathol Int* 2004; 54: 866-871 [PMID: 15533231].

Kim MJ, Yu E, Ro JY. Sarcomatoid carcinoma of the gallbladder with a rhabdoid tumor component. *Arch Pathol Lab Med* 2003; 127: e406-e408 [PMID: 14521442].

Hotta T, Taninura H, Yokoyama S, Ura K, Yamaya H. So-called carcinosarcoma of the gallbladder: spindle cell carcinoma of the gallbladder: report of a case. *Surg Today* 2002; 32: 462-467 [PMID: 12061703].

Ajiiki T, Nakamura T, Fujino Y, Suzuki Y, Takeyama Y, Ku Y, Kuroda Y, Ohbayashi C. Carcinosarcoma of the gallbladder with chondroid differentiation. *J Gastroenterol* 2002; 37: 966-971 [PMID: 12483254].

Yavuz E, Bilgic B, Cevikbaci U, Demiryon M. Test and teach. Number Ninety Nine. Tumor. *J Gastroenterol* 2009; 48: 22937397 [PMID: 2009; 492-494].

Eriguchi N, Aoyagi S, Hara M, Hashino K, Imamura M, Yu E, Ro JY. Sarcomatoid carcinoma of the gallbladder with a rhabdoid tumor component. *Arch Pathol Lab Med* 2002; 126: 175-179 [PMID: 11605995].

Ryö J, Kruczak A, Iliško A, Bahnińska M, Wasiłewska A, Limon J, Niezabitowski A. Sarcomatoid carcinoma (carcinosarcoma) of the gallbladder. *Gen Diagn Pathol* 1998; 143: 321-325 [PMID: 9639315].

Nakagawa T, Yamakado K, Takeda K, Nakagawa T. An ossifying carcinosarcoma of the gallbladder: radiologic findings. *AJR Am J Roentgenol* 1996; 166: 1233-1234 [PMID: 8615287].

Fagot I, Fabre JM, Ramos J, Laffay V, Guillou F, Doremeug J, Baumel H. Carcinosarcoma of the gallbladder. A case report and review of the literature. *J Clin Gastroenterol* 1994; 18: 314-316 [PMID: 8071517].

Nakazawa T, Sotoyama K, Tsuichiya N, Naito Y, Honma J, Noto M, Nakazawa H, Takada I, Kanieyama M, Nasu Y. [A case of common bile duct neoplasm with carcinosarcoma of the gallbladder]. *Nihon Naika Gakkai Zasshi* 1992; 81: 908-910 [PMID: 1402245].

Ishihara T, Kawano H, Takahashi M, Yokota T, Uchino F, Matsumoto N, Fukuyama N. Carcinosarcoma of the gallbladder. A case report with immunohistochemical and ultrastructural studies. *Cancer* 1990; 66: 992-997 [PMID: 2386928].

Lumsden AB, Mitchell WE, Vohman MD. Carcinosarcoma of the gallbladder: a case report and review of the literature. *Am Surg* 1988; 54: 492-494 [PMID: 3395026].

Hasegawa H, Takada T, Yasuda H, Uchiuma K, Tsuichiya S, Misu Y, Saitoh Y, Shikata J, Suzuki H. [A case of huge carcinosarcoma of the gallbladder]. *Nihon Shokakibyo Gakkai Zasshi* 1987; 84: 1690-1694 [PMID: 3320418].

Herrera-Goepfert R, Manrique Ortega JJ, Rodriguez-Martínez HA. Carcinosarcoma of the gallbladder. *Histol Histopathol* 1987; 2: 273-275 [PMID: 2980729].

Inoshita S, Iwashita A, Enjoji M. Carcinosarcoma of the gallbladder. Report of a case and review of
the literature. *Acta Pathol Jpn* 1986; 36: 913-920 [PMID: 3766137 DOI: 10.1111/j.1440-1827.1986.tb03124.x]

64 Lopez GE, Strimmel W, Herrera-Ornelas L. Carcinosarcoma of the gallbladder: report of a case. *J Surg Oncol* 1985; 29: 224-226 [PMID: 3908822 DOI: 10.1002/jso.2930290405]

65 Born MW, Ramey WG, Ryan SF, Gordon PE. Carcinosarcoma and carcinoma of the gallbladder. *Cancer* 1984; 53: 2171-2177 [PMID: 6704004 DOI: 10.1002/1097-0142(19840515)53:10<2171::aid-cncr2820531027>3.0.co;2-n]

66 Von Kuster LC, Cohen C. Malignant mixed tumor of the gallbladder: report of two cases and a review of the literature. *Cancer* 1982; 50: 1166-1170 [PMID: 7109457 DOI: 10.1002/1097-0142(19820915)50:6<1166::aid-cncr2820500622>3.0.co;2-I]

67 Aldovini D, Piscili F, Togni R. Primary malignant mixed mesodermal tumor of the gallbladder. Report of a case and critical review of diagnostic criteria. *Virchows Arch A Pathol Anat Histol* 1982; 396: 225-230 [PMID: 6289513 DOI: 10.1007/BF00431243]

68 Yamagishi H, Yoshimura H, Tomiyama H, Kawahara S, Ito F. [So-called carcinosarcoma]. *Rinsho Byori* 1982; 30: 1096-1102 [PMID: 7182581]

69 Manzori KS, Cho SY. Malignant mixed tumor of the gallbladder. *Am J Clin Pathol* 1980; 73: 709-711 [PMID: 6246794 DOI: 10.1093/ajcp/73.5.709]

70 Higgs WR, Mocrega EE, Jordan PH Jr. Malignant mixed tumor of the gallbladder. *Cancer* 1973; 32: 471-475 [PMID: 4350108 DOI: 10.1002/1097-0142(197302)32:2<471::aid-cncr2820320227>3.0.co;2-o]

71 Mehrotra TN, Gupta SC, Naithani YP. Carcino-sarcoma of the gall bladder. *J Pathol* 1971; 104: 145-148 [PMID: 5286390 DOI: 10.1002/path.1711040209]

72 Appelman HD, Coopersmith N. Pleomorphic spindle-cell carcinoma of the gallbladder. Relation to carcinoma of the gallbladder. *Cancer* 1970; 25: 535-541 [PMID: 5416826 DOI: 10.1002/1097-0142(19700325:3<535::aid-cncr2820250307>3.0.co;2-1]

73 Pandey M. Risk factors for gallbladder cancer: a reappraisal. *Eur J Cancer Prev* 2003; 12: 15-24 [PMID: 12548106 DOI: 10.1097/00008469-200302000-00004]

74 Kuroki T, Tajima Y, Matsuo K, Kanematsu T. Genetic alterations in gallbladder carcinoma. *Surg Today* 2005; 35: 101-105 [PMID: 15674488 DOI: 10.1007/s00595-004-2906-2]

75 Kimura K, Ohto M, Saisho H, Unozawa T, Tsuchiya Y, Morita M, Ebara M, Matsutani S, Okuda K. Association of gallbladder carcinoma and anomalous pancreatico-biliary ductal union. *Gastroenterology* 1985; 89: 1258-1265 [PMID: 4054518 DOI: 10.1016/0016-5085(85)90641-9]

76 Espinoza JA, Bizama C, Garcia P, Ferreccio C, Javle M, Miquel JF, Koshol J, Roa JC. The inflammatory invasion of gallbladder cancer. *Biochim Biophys Acta* 2016; 1865: 245-254 [PMID: 26906225 DOI: 10.1016/j.bbacli.2016.03.004]

77 Yildiz I, Koca YS, Barut İ. Overlap of Acute Cholecystitis with Gallstones and Squamous Cell Carcinoma of the Gallbladder in an Elderly Patient. Case Reports in Surgery 2015; 2015: 767196 [DOI: 10.1155/2015/767196]

78 Mohan R, Shelat VG, Junnarkar SP. Large gallstone initially diagnosed as porcelain gallbladder with malignant change. *Postgrad Med J* 2021 [PMID: 33541934 DOI: 10.1136/postgradmedj-2020-139303]

79 Donohoe CL, Ryan AM, Reynolds JV. Cancer cachexia: mechanisms and clinical implications. *Gastroenterol Res Pract* 2011; 2011: 601434 [PMID: 21760776 DOI: 10.1155/2011/601434]

80 Dhanapal R, Saraswathi T, Govind RN. Cancer cachexia: mechanisms and clinical implications. *Gastroenterol Res Pract* 2011; 2011: 601434 [PMID: 21760776 DOI: 10.1155/2011/601434]

81 Moreggi V, Cavenagh J. Malignant causes of fever of unknown origin. *Clin Med (Lond)* 2015; 15: 292-294 [PMID: 26031983 DOI: 10.7861/cclinmedicine.15-3-292]

82 Machado NO. Porcelain Gallbladder: Decoding the malignant truth. *Sultan Qaboos Univ Med J* 2016; 16: 416-e421 [PMID: 28003886 DOI: 10.18295/squmj.2016.16.04.003]

83 Gupta P, Marodia Y, Bansal A, Kalra N, Kumar-M P, Sharma V, Dutta U, Sandhu MS. Imaging-based algorithmic approach to gallbladder wall thickening. *World J Gastroenterol* 2020; 26: 6163-6181 [PMID: 33177791 DOI: 10.3748/wjg.v26.i40.6163]

84 Gupta V, Vishnu KS, Yadav TD, Sakaray YR, Irrinki S, Mittal BR, Kalra N, Vaiphei K. Radiopathological Correlation of 18F- FDG PET in Characterizing Gallbladder Wall thickening. *J Gastrointest Cancer* 2019, 50: 901-906 [PMID: 30397856 DOI: 10.1007/s12029-018-0176-2]

85 Akosa AB, Barker F, Desa L, Benjamin I, Krausz T. Cytologic diagnosis in the management of gallbladder carcinoma. *Acta Cyto* 1995; 39: 494-498 [PMID: 7762339]

86 Berger-Richardson D, Chesney TR, Englesakis M, Govindarajan A, Cleary SP, Swallow CJ. Trends in port-site metastasis after laparoscopic resection of incidental gallbladder cancer: A systematic review. *Surgery* 2017; 161: 618-627 [PMID: 27743715 DOI: 10.1016/j.surg.2016.08.007]

87 Rana C, Krishnani N, Kumari N. Ultrasound-guided fine needle aspiration cytology of gallbladder lesions: a study of 596 cases. *Cytopathology* 2016; 27: 398-406 [PMID: 26990137 DOI: 10.1111/cyt.12296]

88 Okabayashi T, Sun ZL, Montgomery RA, Hanazaki K. Surgical outcome of carcinosarcoma of the gall bladder: a review. *World J Gastroenterol* 2009; 15: 4877-4882 [PMID: 19842216 DOI: 10.3748/wjg.v15.i47.4877]

89 Yip VS, Gomez D, Brown S, Byrne C, White D, Fenwick SW, Poston GJ, Malik HZ. Management of incidental and suspicious gallbladder cancer: focus on early referral to a tertiary centre. *HPB*
Butte JM, Kingham TP, Gönem M, D'Angelica MI, Allen PJ, Fong Y, DeMatteo RP, Jarnagin WR. Residual disease predicts outcomes after definitive resection for incidental gallbladder cancer. *J Am Coll Surg* 2014; 219: 416-429 [PMID: 25087941 DOI: 10.1016/j.jamcollsurg.2014.01.069]

Fujisaki S, Saitoh Y, Tomita R, Fukuzawa M. Laparoscopic extended cholecystectomy. *J Laparoendosc Adv Surg Tech A* 2001; 11: 219-222 [PMID: 1156951] DOI: 10.1089/109264201750539736

Zhao X, Li XY, Ji W. Laparoscopic versus open treatment of gallbladder cancer: A systematic review and meta-analysis. *J Minim Access Surg* 2018; 14: 185-191 [PMID: 28782743 DOI: 10.4103/jmas.JMAS_223_16]

Goel M, Khobragade K, Patkar S, Kanetkar A, Kurunkar S. Robotic surgery for gallbladder cancer: Operative technique and early outcomes. *J Surg Oncol* 2019; 119: 958-963 [PMID: 30802316 DOI: 10.1002/jso.25422]

Frountzas M, Schizas D, Liatsou E, Economopoulos KP, Nikolou C, Apostolou KG, Toutouzas KG, Felekouras E. Presentation and surgical management of xanthogranulomatous cholecystitis. *Hepatobiliary Pancreat Dis Int* 2021; 20: 117-127 [PMID: 33536138 DOI: 10.1016/j.hbpd.2021.01.002]

Yamaguchi K, Chijiwa K, Saiki S, Shimizu S, Tsuneyoshi M, Tanaka M. Reliability of frozen section diagnosis of gallbladder tumor for detecting carcinoma and depth of its invasion. *J Surg Oncol* 1997; 65: 132-136 [PMID: 9209526 DOI: 10.1002/(sici)1096-9098(199706)65:2<132::aid-jso11>3.0.co;2-7]

Horgan AM, Amir E, Walter T, Knox JJ. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. *J Clin Oncol* 2012; 30: 1934-1940 [PMID: 22529261 DOI: 10.1200/JCO.2011.40.5381]

Wang SJ, Fuller CD, Kim JS, Sittig DF, Thomas CR Jr, Ravdin PM. Prediction model for estimating the survival benefit of adjuvant radiotherapy for gallbladder cancer. *J Clin Oncol* 2008; 26: 2112-2117 [PMID: 18378567 DOI: 10.1200/JCO.2007.14.7934]

Ben-Josef E, Guthrie KA, El-Khoueiry AB, Corless CL, Zalupski MM, Lowy AM, Thomas CR Jr, Alberts SR, Dawson LA, Micetich KC, Thomas MB, Siegel AB, Blanke CD. SWOG S0809: A Phase II Intergroup Trial of Adjuvant Capecitabine and Gemcitabine Followed by Radiotherapy and Concurrent Capecitabine in Extrahepatic Cholangiocarcinoma and Gallbladder Carcinoma. *J Clin Oncol* 2015; 33: 2617-2622 [PMID: 25964250 DOI: 10.1200/JCO.2014.60.2219]

Teng TZJ, Shelat VG. Testosterone gel improves appetite and reduces tiredness in males with advanced cancer. *BMJ Support Palliat Care* 2021; 11: 145 [PMID: 33468510 DOI: 10.1136/bmjspcare-2020-002662]

Hayashi K, Hiraki M, Yamashita Y, Kurohiji T, Kimitsuki H, Watanabe J, Kakegawa T. A case of cancer of the gallbladder with a high level of Alpha-fetoprotein (AFIP). *Jap Pract Surg Soc* 1994; 55: 3161-3165 [DOI: 10.3919/ringe1963.55.3161]

Lee T, Teng TZJ, Shelat VG. Carbohydrate antigen 19-9 - tumor marker: Past, present, and future. *World J Gastrointest Test* 2020; 12: 468-490 [PMID: 33437400 DOI: 10.4240/wjgts.v12.i12.468]

Shukla VK, Gurubachan, Sharma D, Dixit VK, Usha. Diagnostic value of serum CA242, CA 19-9, CA 15-3 and CA 125 in patients with carcinoma of the gallbladder. *Trop Gastroenterol* 2006; 27: 160-165 [PMID: 17542293]
