Spectrum Analysis Signature Whistle of Bottlenose Dolphins (Tursiops aduncus) at Captive, Indonesia with Yule-Walker AR and Welch Power Spectral Density Method

Muhammad Zainuddin Lubis1, Pratiwi Dwiyulandari1, Sri Pujiyati1, Totok Hestirianoto1, Keni Sultan2 and Muhammad Mujahid2

1Department of Marine Science and Technology, Bogor Agricultural University Jin Agatis, Campus IPB Dramaga, Bogor 16680, Indonesia
2Research Laboratory of Safari Park, Cisarua Bogor 16750, Indonesia

Keywords: Bottlenose dolphins; Signature whistle; Yule-Walker AR; Welch; Frequency; Intensity

Abstract

Signal and spectrum analysis signature whistle of bottlenose dolphins using Wavelab, and Raven Pro 1.5 software. Analysis spectrum of bottlenose dolphin with software analysis Raven Pro 1.5 with wave data channels 1 with sample rates is 44100 Hz, encoding data 16-bit signed, length time duration is 0.7 second, and samples of data is 32386 and have 6 pattern of signature whistle bottlenose dolphins. Analysis of power spectral density used Power Spectral Density (PSD) Yule-Walker AR and Welch Power Spectral Density of signature whistles with location of research in safari park captivity, Indonesia. The pattern seen in the sound has six patterns of range is at 100-700 ms with frequency 6-22 kHz. Interval of whistale have range in pattern 1 is 100-200 ms, pattern 2 is 200-300 ms, pattern 3 is 320-370 ms, pattern 4 is 430-550 ms, pattern 5 is 550-600 and pattern 6 is 600-650 ms. Range intensity color -47 until -48 dB, range frequency 1-8 kHz, time duration 0-500 ms. Highest intensity value of signature whistle bottlenose dolphins (Tursiops aduncus) is -37.71 dB in frequency 18 kHz with time duration 100 ms. Yule-Walker AR methos have result in marker 1 (perpendicular line) with clay color have (x) value 5456 and (y) value -5.55 dB, and marker 2 with interrupted line have (x) value 2728 and (y) value -32.46 dB. Welch method have result in marker 1 (perpendicular line) with clay color have (x) 1365 and (y) -32.67 dB, and marker 2 with interrupted line have (x) value 2728 and (y) value -32.46 dB Welch power spectral density is a good method used for signal and spectrum analysis with object signature whistle of bottlenose dolphins.

In acoustics science, spectrogram is the frequency spectrum of sound was be representation in visual as a function of time or another the variable [3]. Function of the spectrum analyzer is an passive acoustic instrument which can be used to converting the sound wave from the source of the note of musical into visual display of the constituentual frequency [4]. Acoustic spectrogram was be generated by the analyzer of spectrum provides in acoustic signature sound from the source by passive acoustic intrumental. In addition fundamental frequency and its signature signal to revealing, the spectrogram is also useful for temporal attack analysis, broken, defended, and deleting of the signature signal note [5]. Sound source of a signal can have many different intensity and frequencies mixed. A siganture sounds is characterized by its spectrum of harmonic. In environment sound that we refer to as noise includes many different frequencies, intensity and sound press level (SPL). When the signal of sound contains a mixed of all audible from frequencies, distributed in equally over spectrum of audio, it is called to represented of white noise [3]. Individuals who have their signature whistles of dolphins acoustic environment is through the experience with them [6,7], resulting in a unique whistle contour results with a high level scale kekhasandari individual who is independent of voice features common [8]. Information on the identity of the signature whistles encoded in different frequency contour of this study to analyze the signature whistles of stereotypes [8,9] (Figure 2).

Figure 1: Bottlenose dolphins (Tursiops aduncus).
Figure 2: Set of acoustic instrumental.

They can be manufactured as a single signal, or berhuban or interrupted with a multi-looped form and they are often also produced in a fight which contains a repetition of the type of whistle same signature [9]. Signature whistles (Tursiops aduncus) we have documented in captivity (the safari park, Indonesia) and free from 2 animals [10,11]. However, with the exception of marine mammals dolphins (Tursiops sp) Exist in the area of Shark Bay, in Australia [12], little attention has been given to the species, whether using a signature whistle. In addition, learning about the production of the results of vocalization, the process by which a whistle signature species that thrive in T. truncatus [7,13], and they must be assured and demonstrated in Specific species of other marine mammals [14]. Here we study the signal and spectrum analysis of the signature whistles of dolphins (Tursiops aduncus) and Power Spectral Density (PSD) Yule-Walker AR and Welch Power Spectrum Meeting of signature whistle in the safari park, Cisarua, Bogor, Indonesia.

Methods

Data collection and acoustic data analysis

Data were collected in captivity, Indonesia on May 2015. Passive acoustic instruments for the retrieval of data collected using this type SQ3 hydrophone with built-in preamplifier, sensitivity than 165 dB return V / μPa, and that the frequency response of 5 Hz - 35 kHz (±3 dB). SQ 3 recorder with software Wavelab 6 Software, and store data with a form that is WAV files with 16-bit. All acoustic wave file, aural, and spectrograms checked using software Wavelab 6 and Raven Pro software (version 1.5; Cornell Laboratory of Ornithology, NY). It can be used as a connector in combination with Hanning window function, temporal network within 0.7s with an overlap of 50% from 100%, and 22 kHz frequency resolution grid with the size of the window and the Fast Fourier Transform (FFT) size both in 2048 (depending on the level samples of sound files of dolphins diperole), produces filter 3-dB bandwidth of 22 kHz. During the recording process by using a hydrophone in the treatment of swimming events at the safari park with a pool depth of 0.5 m below the water surface. In the event the pool there are two dolphins are used as research objects. Number two dolphins have the same size, without a name or designation given.

Dolphins bottle has a length of 2.6 meters, weighs 232 kg, and the age of 14 years (dolphins are classified as adults). The treatments were given in this study is a before and after meals with dolphins object 2 bottles. Figure one set of passive acoustics (Figures 3 and 4) and Sketch in research can be seen in Figure 4.

Recording whistle

Values in the propagation of the pressure wave away from the sound in a medium to have a component of particle velocity (v) and has a component of the pressure (p), as well as defining the product acoustic intensity (I), in equation is:

$$I = p .v$$

V is the velocity of pressure divided by the acoustic impedance of the medium. The acoustic impedance of the media that is (p) in equation is:

$$I=p^2/(ρc)$$

In decibel, the equation is:

$$10 \log_{10} \left(\frac{I}{I_0}\right)$$

I0 is the intensity of sound target of the sound pressure in scale is 1 mPa in seawater measured, quantify the sound pressure in equations is:

$$dB \text{ re } μPa = 20 \log_{10} \left(\frac{p}{p_0}\right)$$

Welch method will result in increased an estimation method consists of four steps (Welch 1967). Periodogram method used to determine the power density of the frequency components in the signal based on Fourier transform. Welch method of estimating the power spectral density with an average modified periodogram. With periodogram modifications are:

$$\hat{S}_x^2(f) = \frac{T_s}{M} \sum_{n=0}^{M-1} x(n) \times w(n) \times e^{j2πfn}$$

where \(f = f_s \) is the frequency variable normalized to have a unit of cycles per sample. The scale factor \(T_s \) adjust the amount of time discrete signal spectrum to be the same as the analog signal spectrum. \(M \) is the length of the signal \(x(n) \). Windowing function represented by the sample \(w(n) \), and \(C \) is a normalization constant defined as:

\[
\hat{S}_{xx}(f) = \frac{1}{M} \sum_{m=0}^{M-1} s_{xx}(f)
\]

Finally, the estimation of the power density spectrum is:

\[
C = \frac{1}{M} \sum_{n=0}^{M-1} w^2(n)
\]

Whistles are assigned to specific individuals when dolphins were alone near the hydrophone (passive acoustic instrument), near the sole (<0.5 m) from the hydrophone, or the bubble emissions showed that simultaneous and correlated with a whistle (Figure 5).

Results and Discussion

This study has demonstrated signal and spectrum analysis the whistle of bottlenose dolphins (\(Tursiops aduncus \)), clustering spectrum and power spectral density Yule-Walker AR and Welch Power Spectral Density using signature whistles (Figure 6). While this paper aims to describe whistles sound recorded in captivity, Indonesia, and the bottlenose dolphins have traine for behaviour in show pool. The pattern seen in the sound has six patterns of sound that is at 0-700 ms with frequency 0-2200 Hz.
A result obtained from the Figure 9 has a difference that allows the difference equations used. These results were obtained in the same voice and the same dolphins. It is apparent that the equation welch magnitude value (dB) at the highest frequency range of 500-1000 Hz and 7000 Hz -7500 with the same frequency difference is 5 kHz. Yule-Walker AR power spectral density have result in marker 1 (perpendicular line) with clay color have (x) 2728 and (y) value 5456 and (y) value -5.55 dB (Figure 9a). Welch power spectral density have result in marker 1 (perpendicular line) with clay color have (x) 1365 and (y) -32.67 dB, and marker 2 with interrupted line have (x) 2728 and (y) value -32.46 dB (Figure 9b). The results of x (frequency) and y (intensity) values obtained by the two equations differ very significantly towards the results of the frequency and intensity are produced, how it has been described by [19,20]. Total of data can be affect to result of spectral density estimates according in reference [21]. Result of welch spectral density have a difference in frequency and intensity with Yule-Walker AR power spectral density after described in previous studies [19,22-25].
Beacon purpose?. The J of the Acoustical Society of America 138: 1904-1904.

17. Ward R, Parnum I, Erbe C, Salgado-Kent C (2016) Whistle Characteristics of Indo-Pacific Bottlenose Dolphins (*Tursiops aduncus*) in the Fremantle Inner Harbour, Western Australia. Acoustics Australia 1-11.

18. Amorim TOS, Andriolo A, Reis SS, Dos Santos ME (2016) Vocalizations of Amazon river dolphins (*Inia geoffrensis*): Characterization, effect of physical environment and differences between populations. The Journal of the Acoustical Society of America 139: 1285-1293.

19. Alkan A, Yilmaz AS (2007) Frequency domain analysis of power system transients using Welch and Yule–Walker AR methods. Energy conversion and management 48: 2129-2135.

20. Roy M, Barman S (2016) Improved gene prediction by principal component analysis based autoregressive Yule-Walker method. Gene 575: 488-497.

21. Liu XD, Huang XY, Chen YP, Shi MH (2016) Analysis of Cycling Operation Characteristics of Oscillating Heat Pipe Based on AR Power Spectrum. J of engineering Thermophysics p: 37.

22. Posada-Quintero HF, Florjuela-Cañón AD, Aljama-Corrales T, Charleston-Villalobos S, et al. (2016) Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Annals of Biomedical Engineering pp: 1-12.

23. Renard N, Deck S, Sagaut P (2016) Spectral Assessment of the Turbulent Convection Velocity in a Spatially Developing Flat Plate Turbulent Boundary Layer at Reynolds Number Re = 13, 000. In Progress in Wall Turbulence, Springer 2: 379-389.

24. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics 15: 70-73.

25. Lubis MZ, Pujiyati S, Hestirianoto T (2016) Bioacoustic Characteristic of Male Dolphins Bottle Nose (*Tursiops aduncus*). Intern Journal of Scientific Engineering and Technology 5: 41-49.