Isolation and identification of Cordyceps cateniobliqua Bm1 and its pathogenicity on the silkworm, Bombyx mori

Guanyu Zhu\textsuperscript{a,†, b}, Ping He\textsuperscript{a,†, b}, Yu Li\textsuperscript{a}, Mingzhen Ma\textsuperscript{a}, Ying Chen\textsuperscript{b}, Yong Chen\textsuperscript{a}, Fuzhen Sun\textsuperscript{a}, Yiling Zhang\textsuperscript{a, b}, Qiang Wang\textsuperscript{a, b}, Zhongyuan Shen\textsuperscript{a, b, *}

\textsuperscript{a} Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
\textsuperscript{b} Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu, China

\textsuperscript{†} Corresponding author, e-mail: szysri@163.com
\textsuperscript{*} These authors are co-first authors.

ABSTRACT: Silkworm's fungal infection is a kind of communicable diseases caused by parasitic fungi. In this study, a rare fungal Bm1 strain was isolated from infected silkworms in cocoon production in Zhenjiang city, China. The result from morphological investigation showed that the conidiogenous cells of the isolated fungal strain had flask-like phialides with slightly swollen or columnar bases. Most of the conidia were oval and arranged in a broadly ‘V’-like manner that resulted in irregularly curved chains. The color of the fungal colony was white at the initial growing stage and gradually became pink. The average hyphal growth rate of the strain was 3.42 ± 1.18 mm/d. The mortality rates of the silkworm caused by infection of C. cateniobliqua Bm1 positively increased with the concentration of inoculated conidial suspension. The estimated LC\textsubscript{50} value was 1.18 × 10\textsuperscript{3} conidia/ml, a low pathogenicity to the silkworm compared with the Beauveria bassiana.

KEYWORDS: Cordyceps cateniobliqua, morphological analysis, pathogenicity, rRNA-ITS sequence, silkworm

INTRODUCTION

As a model organism of the lepidopteran insects, the silkworm can be used as the research objects in medicine and the control of lepidopteran pests [1]. The fungi are one kind of pathogens that can cause silkworm diseases. There are many kinds of silkworm fungal diseases that were caused by different entomopathogenic fungi such as Beauveria bassiana, Metarhizium rileyi; and the diseases were called white muscardine, green muscardine, and so on, according to the color of conidial colony on the body surface of the dead silkworm. The conidia of fungal pathogens attach on the surface of silkworms through air, mulberry leaves, and tools. Then, the attached conidia germinate and penetrate the cuticle under an appropriate condition, followed by the fungal growth and proliferation in the hemocoele of the silkworm [2].

The Isaria genus was established by basing on I. terrestris Fr. in the 19th century; however, most species of Isaria genus were classified in the genus Paecilomyces in the 20th century [3]. Combining the result of morphological technique with the phylogenetic analyses based on the ITS and β-tubulin sequences, Hodge thought that the Isaria was an effective generic name; so, the Isaria was reclassified as a genus in 2005 [4, 5]. Recently (in 2017), the Isaria and the Evlachovaeae were classified in the genus Cordyceps [6]. The entomopathogenic fungus genus Cordyceps includes many species, such as C. amoenoserosea, C. cateniobliqua, C. catenianullata, C. farinose, C. fumosorosea, and C. javanica. The Cordyceps on the medium is displayed in bright colours: yellow, red, white, green, etc [7, 8]. C. farinose has highly insecticidal activity and can infect Myzus persicae, Apocheima cinerarius Ershoff, and larvae of Cnidocampa flavescens. C. fumosorosea can parasitize many pest insects, such as Bemisia argentifolii Bellow & Perrings and Plutella xylostella. Up to now, three Cordyceps fungi, C. farinose, C. fumosorosea and C. javanica were reported to respectively cause the silkworm infections of yellow muscardine, red muscardine, and grey muscardine [9]. In this study, one rare fungal strain was isolated from infected silkworms; and through the morphological and ITS sequence analysis, the strain was identified as C. cateniobliqua Bm1. The morphology of this newly isolated fungal strain and the growth of its vegetative hypha were recorded. In addition, the pathogenicity of the strain to silkworms was analyzed.

MATERIALS AND METHODS

Silkworms and the fungal strain

The fungal C. cateniobliqua Bm1 (Bm1) strain was isolated from infected silkworms and stored on the PDA inclined medium at 4 °C. The silkworm race used
in this study was “Jingsong Haoyue”.

Medium

Potato dextrose agar (PDA) medium, prepared by conventional method, contained 3% (w/v) fresh peeled potatoes, 2% (w/v) glucose, and 2% agar. Czapek-Dox medium was prepared by dissolving chemicals (NaNO₃ 2 g, KCl 0.5 g, Fe₂(SO₄)₃ 0.02 g, MgSO₄ 0.5 g, sucrose 30 g, and K₃HPO₄ · 3 H₂O 1.31 g) in sterilized water, then made to a final volume of 1 l.

Collection and isolation of the fungal strain

Conidia of the strain were collected from the surface of the dead silkworm and inoculated on the PDA solid medium. After cultured at 25 °C for 7 days, fungal colonies showing the same colour and shape were transferred to a new PDA solid medium at 25 °C to be cultured for 10 days. Then, the conidia were collected and inoculated on the PDA inclined medium; the isolated fungal strain was stored at 4 °C.

Morphological observation and growth detection of vegetative hypha

After the 10 day culture at 25 °C on the PDA solid medium, a fungal colony with a diameter of 5 mm was taken with a hole-puncher to a petri dish and, then, inoculated on a new PDA medium and cultured at 25 °C. The diameter of the growing fungal colony was measured every day for 10 days from the day after the inoculation in 3 repetitive groups. The growth of vegetative hypha and the change of colony morphology and colour on the PDA solid medium were recorded. Additionally, the growth of the fungal strain was observed on Czapek-Dox medium. The morphology of conidiogenous cells and conidia were observed under a light microscopy.

Gene cloning and phylogenetic analysis of the fungal isolate

After the 10 day culture at 25 °C on the PDA solid medium, about 20 mg hyphae was collected from the medium and milled by liquid nitrogen, then, the powder was put into a 1.5 ml centrifuge tube. The genomic DNA of the strain was extracted using Rapid Fungi Genomic DNA Isolation Kit (Sangon Biotech (Shanghai) Co., Ltd.), and the DNA concentration was determined. Then, the genomic DNA was stored at −20 °C. rRNA-ITS was amplified using the extracted genome DNA obtained above as the template and the universal fungal primers ITS1 (5′-TCCGTAAGGTAACCTGGGG-3′) and ITS4 (5′-TCTTCGGTTATGGATATGC-3′). PCR amplification was performed with an initial denaturation at 98 °C for 5 min followed by 35 cycles of 10 s at 98 °C, 50 s at 50 °C, 1 min at 72 °C, then at 72 °C for 10 min. PCR reaction system was 50 µl: 2 µl each of ITS1, ITS4, and DNA template; 25 µl primeSTAR HS DNA polymerase; and 19 µl ddH₂O.

PCR products were identified by 1% agarose gel electrophoresis, purified using the MiniBEST DNA Fragment Purification Kit (Takara, Japan) according to the manufacturer’s instruction, and then cloned into pMD19-T vector by conventional molecular cloning methods. The recombinant vector plasmid was sequenced by Sangon Biotech (Shanghai) Co., Ltd., China.

Full-length sequences of the rRNA-ITS genes which included the full-length ITS and the partial 18S and 28S rRNA sequences were obtained and subjected to sequence alignments in the GenBank Database of National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/). The maximum likelihood (ML) tree was constructed using MEGA 7.0 software, and the bootstrap analyses were performed employing JTT model-based distance matrices generated from 1000 samplings of the alignments.

The pathogenicity of the fungal isolate on silkworms

After the 10 day culture at 25 °C on the PDA solid medium, the conidia of the strain were collected, counted, and suspended in sterile water with 0.1% Tween-80. Using a hemocytometer, the detected concentration of the conidia was 5 × 10⁴ conidia/ml. The conidia suspension was then diluted by 10⁻¹, 10⁻², 10⁻³, 10⁻⁴, 10⁻⁵ with sterile water. Twenty silkworm larvae of the fourth instar were immersed in the conidia suspensions of different concentrations each for 10 s. Meanwhile, a control suspension was prepared with twenty silkworm larvae of fourth instar immersed in sterile water with 0.1% Tween-80. All the silkworms were fed on fresh mulberry leaves in closed boxes with a piece of wet paper in every box to keep it moist during the first 24 h. Then, they were fed on clean mulberry leaves in normal environment and observed every day. We checked the pupae in cocoons to make sure they were not infected during the larval stage, and so to determine whether they were infected during the pupal stage. The dead silkworms were kept in 90% relative humidity and at 25 °C to ensure if the dead silkworms were infected by the isolated strain.

All the aforementioned experiments were repeated at least three times independently. The mortality was statistically analyzed using SPSS 20.0, and the statistical significance was assessed using t-test.

RESULTS

Phylogenetic analysis based on rRNA-ITS gene sequences

PCR product was identified by 1% agarose gel electrophoresis, and the rRNA-ITS of the strain was about 600 bp in size (Fig. 1), which includes the full-length ITS and the partial 18S and 28S rRNA, were sequenced and submitted to GenBank Database of NCBI (Accession number MW167069). The homologous sequences
from fungal strains were chosen to construct the phylogenetic tree using the Beauveria bassiana as outgroup (Fig. 2). Four fungal strains: I. cateniobliqua (ARSEF6283), Cordyceps cateniobliqua (CBS153.83), Evlachovaea kintrischica (ARSEF8058), and E. kintrischica (ARSEF7218), were clustered in the same clade with the Bm1 strain (MW167069). The Bm1 strain conidia were smooth, colourless, oval, oblong oval or irregularly cylindrical, and (2.93 ± 0.31) µm × (1.84 ± 0.21) µm in size (Fig. 5C). They were arranged in a broadly 'V'-like manner that resulted in irregularly curved and flat chains (Fig. 5D,E). Although the rRNA-ITS gene sequences of the C. amoenerosea and the C. fumosorosea were similar to the C. cateniobliqua’s, the sizes and shapes of their conidia and the colours of their colonies were different [7]. The characteristic difference between these species was the arrangement mode of conidia. The arrangement of conidia of the C. cateniobliqua was irregularly curved and flat chains and in a broadly ‘V’-like manner, whereas the arrangement of conidia of the C. amoenerosea and the C. fumosorosea were linear chains. Consequently, the strain isolated from the silkworm in this study was identified as a strain of Cordyceps cateniobliqua and named as Cordyceps cateniobliqua Bm1 by combining the result of phylogenetic analysis and the morphological evaluations.

Symptoms of silkworms infected with Cordyceps cateniobliqua Bm1
In the early stage of silkworms infected by C. cateniobliqua Bm1, the feeding behaviour and the characteristic of cuticle were the same as healthy silkworms. 5 days after infection, several silkworms showed in appetent and molted difficulty. Some black-brown spot appeared on the body surface and mostly around the body segments (Fig. 6A). The infected silkworms spit out the intestinal juice before death. In the early stage of death, the silkworm body was soft, while the colour of the body did not change. Blastospores were
observed in the blood of infected silkworms under the optical microscope (Fig. 5F). At 2 or 3 days after death, the silkworm body was rigid, and the cadaveric colour was reddish (Fig. 6B). At 5 to 6 days after death, white conidia appeared on the cadaveric surface (Fig. 6C), and white aerial mycelia subsequently grew out of the silkworm somite (Fig. 6D). In the humid environment, the aerial mycelia grew longer and were digitate; and they gradually became reddish. At 8 to 10 days after death, the cadaveric surfaces were fully covered with white conidia (Fig. 6E). The course of disease was long; some silkworms had no symptoms during the larval phase, but they died during the pupal stage. The dead pupae would become rigid, and the symptoms of the infected pupae were the same as the infected silkworms (Fig. 6F).

The pathogenicity of *Cordyceps cateniobliqua* Bm1 on silkworms

The silkworm larvae were immersed in the conidia suspension of five different concentrations. The mortality rates of the silkworm infected by *C. cateniobliqua* Bm1 increased with the increases of concentration of conidial suspension (Fig. 7). None of the silkworms got infected after being immersed in the conidia suspensions of $5 \times 10^5$ and $5 \times 10^6$ conidia/ml; whereas the silkworms immersed in the higher concentrations of conidia suspension began to die on the fifth day, and the mortality rates increased with the increases of concentration of conidial suspension. On the tenth
Fig. 5 Optical microscope (OM) images of *C. cateniobliqua* Bm1. A: Hyphae of *C. cateniobliqua* Bm1. B: The structure that produces conidia. Black arrow: the conidiogenous cells. C: Conidia of *C. cateniobliqua* Bm1. D-E: The arrangement of conidia. F: The blastospores in the blood of infected silkworms.

Fig. 6 Symptoms of silkworms infected by fungal strain *C. cateniobliqua* Bm1 at different stages. A: The early stage of silkworm infected by *C. cateniobliqua* Bm1, some black-brown spot appeared on the cuticle. B: At 2–3 days after dead, the cadaveric color became reddish. C: At 5–6 days after dead, white aerial mycelia grew out of the silkworm somite. D: At 8–10 days after dead, the aerial mycelia grew longer, and some white conidia appeared. E: In the humid environment, the aerial mycelia grew longer and gradually became reddish. F: The symptom of infected pupa.
Table 1 Pathogenicity of *C. cateniobliqua* Bm1 on the silkworm.

| Strain          | Concentration of fungi (10^9 conidia/ml) | Corrected Mortality (%) | Regression equation | LC50 (10^9 conidia/ml) | 95% confidence interval |
|-----------------|-----------------------------------------|--------------------------|---------------------|-------------------------|-------------------------|
| *C. cateniobliqua* Bm1 | 0.005                                   | 0                        | $y = 0.0934 \ln(x) + 0.4847$ | 1.1780                  | 0.5365–2.5864            |
|                 | 0.05                                    | 25                       |                     |                         |                         |
|                 | 0.5                                     | 30                       |                     |                         |                         |
|                 | 5                                       | 70                       |                     |                         |                         |

Fig. 7 The mortality of *C. cateniobliqua* Bm1 to the silkworm. 1–12 days, the larval phase; 12–19 days, the pupal stage.

day after infection, the mortality rates of the silkworms were the highest during the larval phase. The mortality rates of the silkworms treated with $5 \times 10^7$, $5 \times 10^8$, and $5 \times 10^9$ conidia/ml were 20%, 25%, and 50%, respectively during the larval stage. On the seventeenth day after infection, we checked the silkworm cocoons to confirm whether any silkworm got sick during the pupal stage; and on the nineteenth day, the mortality rates of the silkworms treated with the three concentrations reached ultimately to 25%, 30%, and 70%, respectively (Fig. 7). The mortality rates were analyzed by SPSS 20.0 with the method of logarithmic curve estimation to calculate the regression equation, which was $y = 0.0934 \ln(x) + 0.4847$. The LC50 was $1.1780 \times 10^9$ conidia/ml ($p < 0.05$) as showed in Table 1.

**DISCUSSION**

In this study, a fungal pathogen was isolated from infected silkworms. The ITS region was used as a universal DNA barcode marker for Fungi [11]. The morphological and the ITS sequence analysis technique were used to identify the newly isolated fungal strain. We found that the newly isolated Bm1 was clustered in the same clade with *C. cateniobliqua* and *E. kintrischica* based on rRNA-ITS gene sequence, and that the morphological characteristics of the Bm1 are similar to the *C. cateniobliqua*’s the most. By the results of the phylogenetic analyses and the morphological evaluations, the strain isolated from silkworms was identified as *C. cateniobliqua*.

Entomogenous fungi such as *Beauveria*, *Metarhizium* and *Verticillium lecanii* can be used as biological insecticide [12], while *Cordyceps militaris*, *Ophiocordyceps sinensis*, and *C. cicadae* can be used as medicinal fungi [13]. As a kind of entomogenous fungi, the *Cordyceps* genus not only has been used in biological control, but also plays an important role in the fields of medicine and functional food. The *C. farrisone* has extensive pharmacological action, such as cough expectorant and anticancer [7,14]. *C. tenuiipes* can enhance immunity and has antibacterial activity [15,16]. *C. fumosorosea* can be used as a kind of biological agents; i.e., the highly pathogenic *C. fumosorosea* strain can infect whitefly and aphid and has already been used for greenhouse pest control [17–19]. The white muscardine is a common fungal silkworm disease. When silkworms were infected by *Beauveria bassiana*, the cadavers of dead larvae would be mummified. These mummified cadavers could be processed into a traditional Chinese medicine; for example, *Bombyx batryticatus* has been used for the treatment of epilepsy, headaches, cough, tonsillitis, convulsions, thyroid adenoma, and asthma [20–22]. A research showed that the *C. cateniobliqua* can infect *Ephesia lutella* [23], and the fermentation broth of *C. cateniobliqua* can inhibit *Candida albicans*. Our study was the first to isolate *C. cateniobliqua* strain from silkworms. The LC50 of the white muscardine pathogen was about $10^5$ conidia/ml, and the LT50 was 4–5 days [24]. Although the pathogenicity of *Cordyceps cateniobliqua* Bm1 to the silkworm was low and the disease course was long, the complex of entomogenous fungi and silkworms probably has some medicinal substance. So, it is worthwhile to study if the *C. cateniobliqua* Bm1 has potential medicinal value.

**Acknowledgements:** This work was supported by the earmarked fund for the China Agriculture Research System. We are grateful to all who provided the means for us to access free software, which we have used and cited in this article. We thank all partners and lab members for kindly help and criticism.

**REFERENCES**

1. Qin J, He N, Xiang Z (2010) Advances in silkworm modeling research. Acta Sericol Sin 36, 645–649.
2. Hu S, Luo C, Yang S, Yue X, Liu J (2008) Disease regulation of fungus diseases and its comprehensive control in silkworm. *Guizhou Agric Sci* 36, 121–122.

3. Sampson RA (1974) *Stud Mycol* (No.6), British Mycological Society, Baarn, NL.

4. Gams W, Hodge KT, Samson RA, Korf RP, Seifert KA (2005) Proposal to conserve the name *Isaria* (anamorphic fungi) with a conserved type. *TAXON* 54, 537.

5. Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA (2005) On the relationships of *Paecilomyces* sect, *Isarioidea* species. *Mycol Res* 109, 581–589.

6. Kepler RM, Luangsa-ard JJ, Hywel-Jones NL, Quandt CA, Sung G-H, Rehner SA, Aime MC, Henkel TW, et al (2017) A phylogenetically-based nomenclature for *Cordycipitaceae* (Hypocreales). *IMA Fungus* 8, 335–353.

7. Liang Z (2013) *Flora Fungorum Sinicorum* (Vol.43), Beijing:Science Press, Beijing, China.

8. Wingfield LK (2020) Morphological study, production and cryopreservation of blastospores of entomopathogenic fungi. *ScienceAsia* 46, 557–567.

9. Huang B, Wang S, Jin W, Fan M, Li Z (2008) Pathogen identification of grey muscardine of the silkworm, *Bombyx mori*. *Sci Seric* 34, 257–261.

10. Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu J-K, Bhat DJ, Jones EBG, McKenze EHC, et al (2017) Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers* 83, 1–261.

11. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proc Natl Acad Sci USA* 109, 6241–6246.

12. Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. *Appl Microbiol Biotechnol* 61, 413–423.

13. Zheng R, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, et al (2011) Genome sequence of the insect pathogenic fungus *Cordyceps militaris*, a valued traditional Chinese medicine. * Genome Biol* 12, ID R116.

14. Zhang C, Xu H, Xie S, Gong X, Li Y, Fan M (2012) Response of glutathione peroxidase to oxidative stress in *Isaria farinose*. *Chin J Biol Control* 28, 444–447.

15. Shin KH, Lim SS, Lee SH, Lee YS, Cho SY (2001) Antioxidant and immunostimulating activities of the fruiting bodies of *Paecilomyces japonica*, a new type of *Cordyceps* sp. *Ann NY Acad Sci* 928, 261–273.

16. Yanfeng H, Jiandong L, Xiao Z, Xuan D, Zongqi L (2011) Research on *Cordyceps takaomontana* and its anamorph, *Isaria tenuipes*. *Acta Edulis Fungii* 18, 89–94.

17. Faria MRd, Wraith SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. *Biol Control* 43, 237–256.

18. Roland WS (2003) Fungi as biocontrol agents progress problems & potential. *Fungal Biol Rev* 17, 70–71.

19. Kabaluk T, Gazdik K (2002) Directory of Microbial Pesticides for Agricultural Crops in OECD Countries, Agriculture and Agri-Food, Canada.

20. Jin-Yi W, Almutamad S, He M, Tian-Ci L, Ya-Qi Z, Ya-Lin Z, Dun W (2017) Molecular mechanisms of *Bombyx batryticatus* ethanol extract inducing gastric cancer SGC-7901 cells apoptosis. *Cytotechnology* 69, 875–883.

21. Kikuchi H, Takahashi N, Oshima Y (2003) Novel aromatics bearing 4-O-methylglucose unit isolated from the oriental crude drug *Bombyx batryticatus* ethanol extract inducing cancer SGC-7901 cells apoptosis. *J Ethnopharmacol* 65, 207–216.

22. Pemberton RW (1999) Insects and other arthropods used as drugs in Korean traditional medicine. *J Ethnopharmacol* 65, 207–216.

23. Aiying L, Li L, Xiao Z, Hai-yan H, Xiaomin Z, Hui Y, Rangxin W, Yuping W (2008) Screening of entomogenous fungi to control *Ephesia elutella* in tobacco storehouses. *Guizhou Agric Sci* 36, 64–66.

24. Huang C, Wang P, Chen X, Yang X, Zhang D, Li Z (2014) Pathogenicity to silkworms of *Beauveria bassiana* isolates from *Pine Caterpillar*. *Chin J Biol Control* 30, 199–209.