A case of renal trauma successfully treated by close monitoring of intravesical pressure and subsequent intervention

Issei Suzuki a,1,*, Toshiki Kijima a, Koji Wake b, Hirotaka Fuchizawa a, Kazuyuki Ono b, Takao Kamai a,1

a Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
b Department of Emergency and Critical Care Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan

ARTICLE INFO

Keywords:
Renal trauma
Abdominal compartment syndrome (ACS)
Intra-abdominal pressure (IAP)
Transcatheter arterial embolization (TAE)

ABSTRACT

Management of abdominal compartment syndrome (ACS) due to renal injury is important. A 21-year-old man was taken to an emergent care unit with grade IV right kidney trauma and hypovolemic shock due to a road traffic injury. Despite twice targeted transcatheter arterial embolization of a renal artery, intravesical pressure increased and blood pressure was difficult to maintain. After right nephrectomy and ligated the bleeding lumbar arteries and veins to avoid ACS, the patient’s general condition improved, and he did not develop ACS. Monitoring of intravesical pressure may be useful for deciding treatment strategy.

2. Case presentation

A 21-year-old man with multiple trauma after a motorbike vs car accident arrived at our critical care center. Contrast-enhanced computed tomography (CT) showed the right kidney crushed into multiple parts with a large hematoma (AAST grade IV) and a smaller hematoma around the abdominal aorta and inferior vena cava, which had a clear boundary with Gerota’s fascia surrounding the right renal injuries (Fig. 1A–D). As the patient was in a state of hypovolemic shock, we administered noradrenaline at 0.2 μg/kg/min. We started to measure the intravesical pressure as a substitute for IAP and the intravesical pressure was 13 mmHg on admission. Despite the blood transfusion and noradrenaline administration, the patient remained hemodynamically unstable. Therefore, transcatheter arterial embolization (TAE) was performed immediately. Aortography (Fig. 2A) and selective right renal arteriography (Fig. 2B) revealed multiple bleeding sites from branches of the right renal artery and stop signs, which suggested temporal hemostasis by vasospasm (Fig. 2). After TAE with an absorbable gelatin sponge, blood pressure stabilized and the dose of noradrenaline could be reduced to 0.13 μg/kg/min. However, the patient became hemodynamically unstable again and we had to increase the dose of noradrenaline to 0.16 μg/kg/min. At this time, the intravesical pressure increased to 18 mmHg (Fig. 3A).

We suspected re-bleeding from the embolized artery or bleeding from another unidentified area and decided to repeat TAE. At the second...
TAE, the right renal artery was found to be bleeding again, so embolization was performed using a steel microcoil. Subsequently, blood pressure stabilized with mean blood pressure around 100 mmHg and the dose of noradrenaline could be reduced to 0.05 μg/kg/min. Although hemodynamics was stabilized, the intravesical pressure continued to increase up to 20 mmHg at 27 hours from admission (Fig. 3A), which strongly suggested that the patient started to develop ACS. To avoid multiple organ dysfunction due to ACS, we decided to perform surgical resection of large retroperitoneal hematoma with right nephrectomy.

We approached the retroperitoneal cavity via the peritoneum and found that the injured right kidney and hematoma were completely encapsulated in Gerota’s fascia. The removed kidney was crushed into many parts of various sizes and buried in hematoma in Gerota’s fascia, as shown on contrast-enhanced CT. This phenomenon might partially contribute to the increase in IAP. Additionally, contrast-enhanced CT confirmed a smaller hematoma around the inferior vena cava and the abdominal aorta in the retroperitoneum, which had a clear boundary with a right renal trauma and hematoma encapsulated in Gerota’s fascia.

During the surgical procedure, we observed bleeding from the right lumbar arteries and veins. It was unclear why the first and second angiographies did not detect bleeding from these vessels; we assume that the amount of bleeding was too small to be detected on angiography.

ACS is a complication of trauma or surgical conditions that involves increased IAP and subsequent organ hypoperfusion. Our case highlights the importance of two issues: (1) close monitoring of intravesical pressure in avoiding ACS and (2) predicting the possible existence of ACS.

3. Discussion

Retroperitoneal bleeding from renal trauma due to road traffic injury can be expected to stop because of the tamponade effect by Gerota’s fascia. Expectant/conservative management is currently the standard of care for LGRT and is also recommended for most cases of HGRT if patients are hemodynamically stable.\(^1\),\(^5\) However, any abdominal trauma can increase IAP and the risk of developing ACS.\(^3\) The World Society of the Abdominal Compartment Syndrome defines ACS as a sustained IAP greater than 20 mmHg associated with new organ dysfunction or failure.\(^3\) Close monitoring of IAP leads to rapid diagnosis of ACS, enabling targeted interventions to reduce IAP.\(^3\) In this case, although the hemodynamics of the patient was stabilized after two TAEs along with blood transfusions and noradrenaline administration, the intravesical pressure continued to increase and reached 20 mmHg, which led us to perform surgery to reduce IAP and avoid organ dysfunction by ACS.

The injured right kidney and hematoma were completely encapsulated in Gerota’s fascia, while the removed kidney was crushed into many parts of various sizes and buried in hematoma in Gerota’s fascia, as shown on contrast-enhanced CT. This phenomenon might partially contribute to the increase in IAP. Additionally, contrast-enhanced CT confirmed a smaller hematoma around the inferior vena cava and the abdominal aorta in the retroperitoneum, which had a clear boundary with a right renal trauma and hematoma encapsulated in Gerota’s fascia.

During the surgical procedure, we observed bleeding from the right lumbar arteries and veins. It was unclear why the first and second angiographies did not detect bleeding from these vessels; we assume that the amount of bleeding was too small to be detected on angiography.

The patient did not experience multiple organ failure and was discharged without any complications.
Fig. 2. Angiography images. A: Abdominal aortography revealed active bleeding from a branch of the right renal artery (yellow arrow). B: Selective right renal arteriography revealed multiple bleeding sites (yellow arrows) and stopping signs (blue arrows) from branches of the right renal artery. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Clinical course of the patient. A: Changes in mean blood pressure and intravesical pressure. Regardless of two transcatheter arterial embolization (TAE), intravesical pressure continued to increase. After surgery, intravesical pressure normalized. B: Macroscopic appearance of crushed right kidney and hematoma.

bleeding sources unidentified on angiography.

Approval of the research protocol by an institutional reviewer board

Not applicable.

Informed consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images.

Registry and the registration no. of the study/trial

Not applicable.

Declaration of competing interest

The authors declare no conflict of interest.

References

1. Kozar RA, Crandall M, Shanmuganathan K, et al. AAST Patient Assessment Committee. Organ injury scaling 2018 update: spleen, liver, and kidney. J Trauma Acute Care Surg. 2018;85:1119-1122.
2. Morey AF, Broghammer JA, Hollowell CMP, McKibben MJ, Souter L. Urotrauma: AUA guideline. J Urol. 2021;205:30–35.
3. Kirkpatrick AW, Roberts DJ, De Waele J, et al. Pediatric guidelines sub-committee for the World society of the abdominal compartment syndrome. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World society of the abdominal compartment syndrome. Intensive Care Med. 2013;39:1190–1206.
4. Keihani S, Xu Y, Presson AP, et al. Contemporary management of high-grade renal trauma: results from the American Association for the Surgery of Trauma Genitourinary Trauma study. J Trauma Acute Care Surg. 2018;84:418–425.
5. Muller A, Rouviere O. Renal artery embolization—indications, technical approaches and outcomes. Nat Rev Nephrol. 2015;11:288–301.