SUPPLEMENTARY MATERIAL TO
“CAUSAL MODELLING OF HEAVY-TAILED VARIABLES AND
CONFOUNDERS WITH APPLICATION TO RIVER FLOW”

Olivier C. Pasche
Research Center for Statistics, University of Geneva, Switzerland,
Institute of Mathematics, EPFL, 1015 Lausanne, Switzerland,
olivier.pasche@unige.ch

Valérie Chavez-Demoulin
Faculty of Business and Economics, University of Lausanne, Switzerland,
valerie.chavez@unil.ch

Anthony C. Davison
Institute of Mathematics, EPFL, 1015 Lausanne, Switzerland,
anthony.davison@epfl.ch

S.1 Variables with Comparable Tails

S.1.1 Non-Parametric Causal Tail Coefficient Estimator

Figure S.1 shows the sample distributions of the non-parametric estimators $\hat{\Gamma}_{1,2}$ and $\hat{\Gamma}_{2,1}$ for all four causal structures, for the t_4, Pareto(1,2) and LogN(0,1) noise distributions, respectively. The true coefficient values $\Gamma_{1,2}$ and $\Gamma_{2,1}$ are obtained using (2). Figure S.2 shows the sample distribution of the coefficient difference estimator $\hat{\Delta}_{1,2} := \hat{\Gamma}_{1,2} - \hat{\Gamma}_{2,1}$ for the t_4 noise distribution.

S.1.2 LGPD Causal Tail Coefficient with Post-Fit and Constrained Fit Corrections

Figure S.3 shows the sample distribution of $\hat{\Gamma}_{1,2|H}^{GPD}$ and $\hat{\Gamma}_{2,1|H}^{GPD}$ with the constrained fit, for a comparable confounder tail. Figure S.4 shows the sample distribution of $\hat{\Gamma}_{1,2|H}^{GPD}$ and $\hat{\Gamma}_{2,1|H}^{GPD}$ with post-fit correction for all four causal configurations, for the t_4, Pareto(1,2) and LogN(0,1) noise distributions.

S.2 Application Results for Competitors

Table S.1 shows the causal coefficients between the discharge station pairs estimated using ICA-LiNGAM, with and without considering the average catchment precipitation variable.
Figure S.1: Histograms of $\hat{\Gamma}_{1,2}$ (turquoise) and $\hat{\Gamma}_{2,1}$ (blue) for t_4 (top four panels), Pareto(1, 2) (middle four panels) and LogN(0, 1) (bottom four panels) distributed noise variables, for the four causal configurations. Half-lines (black) indicate $\Gamma_{1,2}$ and $\Gamma_{2,1}$.
CAUSAL MODELLING OF HEAVY-TAILED VARIABLES AND CONFOUNDERS...

Figure S.2: Histogram of $\hat{\Delta}_{1,2}$ for t_4 distributed noise variables, for the four causal configurations. Lines indicate $\Delta_{1,2} = \Gamma_{1,2} - \Gamma_{2,1}$.

Figure S.3: Histograms of $\hat{\Gamma}_{1,2|H}^{\text{GPD}}$ (turquoise) and $\hat{\Gamma}_{2,1|H}^{\text{GPD}}$ (blue) with constrained fit for t_4 distributed noise variables, for the four causal configurations. Half-lines (black) indicate $\Gamma_{1,2}$ and $\Gamma_{2,1}$.
Figure S.4: Histograms of $\hat{\Gamma}_{1,2|H}^{\text{GPD}}$ (turquoise) and $\hat{\Gamma}_{2,1|H}^{\text{GPD}}$ (blue) with post-fit correction for t_4 (top four panels), Pareto(1, 2) (middle four panels) and LogN(0, 1) (bottom four panels) distributed noise variables, for the four causal configurations. Half-lines (black) indicate $\Gamma_{1,2}$ and $\Gamma_{2,1}$.
Table S.1: Linear causal coefficients for the discharge station pairs estimated with the ICA-LiNGAM algorithm using either the station pair only (LiNGAM, two variables) or the station pair and precipitation (LiNGAM-H, three variables). Non-null values indicate significant causal effects. The arrows indicate the estimated direct causal directions between the stations.

Stations	Pair type	LiNGAM	LiNGAM-H
43-62	causal	1.92↑	2.02↑
42-63	causal	2.08↑	2.21↑
36-63	causal	3.29↑	3.61↑
24-61	causal	2.96↑	3.03↑
44-61	causal	2.66↑	2.83↑
22-38	causal	2.35↑	2.35↑
22-35	causal	2.55↑	2.55↑
30-45	non-caus.	0.84↑	0.87↑
36-39	non-caus.	0.66↑	0.66↑
42-34	non-caus.	1.39↑	1.29↑
42-34*	non-caus.	1.39↑	1.39*
32-33	non-caus.	0.59↑	0.54*
62-63	non-caus.	1.02↑	1.05↑
57-60	non-caus.	0.68↑	0.67↑
13-14	non-caus.	0.50↑	1.10*
17-22	non-caus.	1.80↑	1.69↑
12-21	non-caus.	1.04↑	1.08↑
26-28	non-caus.	0.75↑	0.72↑
27-31	non-caus.	0.54↑	0.66↑
23-39	non-caus.	0.25↑	0.18↑
23-35	non-caus.	0.42↑	0.36↑