In vitro activity of dolutegravir against wild-type and integrase inhibitor-resistant HIV-2

Smith et al.
In vitro activity of dolutegravir against wild-type and integrase inhibitor-resistant HIV-2

Robert A Smith1*, Dana N Raugi1, Charlotte Pan1, Papa Salif Sow2, Moussa Seydi2, James I Mullins3, Geoffrey S Gottlieb1,4 and the University of Washington-Dakar HIV-2 Study Group

Abstract

Background: Dolutegravir recently became the third integrase strand transfer inhibitor (INSTI) approved for use in HIV-1–infected individuals. In contrast to the extensive dataset for HIV-1, in vitro studies and clinical reports of dolutegravir for HIV-2 are limited. To evaluate the potential role of dolutegravir in HIV-2 treatment, we compared the susceptibilities of wild-type and INSTI-resistant HIV-1 and HIV-2 strains to the drug using single-cycle assays, spreading infections of immortalized T cells, and site-directed mutagenesis.

Findings: HIV-2 group A, HIV-2 group B, and HIV-1 isolates from INSTI-naïve individuals were comparably sensitive to dolutegravir in the single-cycle assay (mean EC50 values = 1.9, 2.6, and 1.3 nM, respectively). Integrase substitutions E92Q, Y143C, E92Q + Y143C, and Q148R conferred relatively low levels of resistance to dolutegravir in HIV-2 ROD9 (2- to 6-fold), but Q148K, E92Q + N155H, T97A + N155H and G140S + Q148R resulted in moderate resistance (10- to 46-fold), and the combination of T97A + Y143C in HIV-2 ROD9 conferred high-level resistance (>500-fold). In contrast, HIV-1 NL4-3 mutants E92Q + N155H, G140S + Q148R, and T97A + Y143C showed 2-fold, 4-fold, and no increase in EC50, respectively, relative to the parental strain. The resistance phenotypes for E92Q + N155H, and G140S + Q148R HIV-2 ROD9 were also confirmed in spreading infections of CEM-ss cells.

Conclusions: Our data support the use of dolutegravir in INSTI-naïve HIV-2 patients but suggest that, relative to HIV-1, a broader array of replacements in HIV-2 integrase may enable cross-resistance between dolutegravir and other INSTI. Clinical studies are needed to evaluate the efficacy of dolutegravir in HIV-2–infected individuals, including patients previously treated with raltegravir or elvitegravir.

Findings

Human immunodeficiency virus type 2 (HIV-2) infection is a significant public health problem in West Africa and has been reported in other countries with socioeconomic ties to the region [1]. Dual HIV-1/HIV-2 infection also occurs in areas where the viruses co-circulate [2-6]. Historically, clinical outcomes of antiretroviral therapy in HIV-2 and HIV-1/HIV-2 dually positive patients have been poor, with high rates of immuno-virologic failure and emergent multidrug resistance [7-11]. Newer classes of antiretrovirals (ARV) with anti–HIV-2 activity could represent substantial improvements to the current therapeutic picture [12,13].

A growing body of evidence suggests that integrase strand transfer inhibitors (INSTI) might be particularly useful for HIV-2 treatment. Raltegravir and elvitegravir are both potent inhibitors of HIV-2 replication in culture [14-18], and case reports and small case series (primarily involving ARV-experienced individuals) indicate that raltegravir and elvitegravir can reduce HIV-2 viral loads when combined with other suppressive ARV [19-32]. As with HIV-1, changes at integrase residues Y143, Q148 or N155, together with other secondary replacements in the integrase protein (i.e., E92Q, T97A, G140S, and possibly others), confer resistance to raltegravir and elvitegravir can reduce HIV-2 viral loads when combined with other suppressive ARV [19-32]. As with HIV-1, changes at integrase residues Y143, Q148 or N155, together with other secondary replacements in the integrase protein (i.e., E92Q, T97A, G140S, and possibly others), confer resistance to raltegravir and elvitegravir can reduce HIV-2 viral loads when combined with other suppressive ARV [19-32]. As with HIV-1, changes at integrase residues Y143, Q148 or N155, together with other secondary replacements in the integrase protein (i.e., E92Q, T97A, G140S, and possibly others), confer resistance to raltegravir and elvitegravir can reduce HIV-2 viral loads when combined with other suppressive ARV [19-32]. As with HIV-1, changes at integrase residues Y143, Q148 or N155, together with other secondary replacements in the integrase protein (i.e., E92Q, T97A, G140S, and possibly others), confer resistance to raltegravir and elvitegravir can reduce HIV-2 viral loads when combined with other suppressive ARV [19-32]. As with HIV-1, changes at integrase residues Y143, Q148 or N155, together with other secondary replacements in the integrase protein (i.e., E92Q, T97A, G140S, and possibly others), confer resistance to raltegravir and elvitegravir can reduce HIV-2 viral loads when combined with other suppressive ARV [19-32]. As with HIV-1, changes at integrase residues Y143, Q148 or N155, together with other secondary replacements in the integrase protein (i.e., E92Q, T97A, G140S, and possibly others), confer resistance to raltegravir and elvitegravir can reduce HIV-2 viral loads when combined with other suppressive ARV [19-32].
elvitegravir-containing regimens for first-line HIV-2 treatment are now underway and are expected to yield data within the next few years (NCT01605890, NCT02150993, NCT02180438).

A third strand transfer inhibitor, dolutegravir, was recently approved by the United States Food and Drug Administration (FDA) for use in both INSTI-naïve and INSTI-experienced HIV-1 patients. Although dolutegravir has been extensively evaluated for HIV-1 treatment, few studies have examined its potential use in HIV-2–infected individuals. Charpentier and colleagues reported that HIV-2_{ROD}, HIV-1_{BRU}, and eight HIV-2 isolates from INSTI-naïve patients were comparably susceptible to dolutegravir in spreading infections of peripheral blood mononuclear cells (PBMC) (<i>EC</i>₅₀ = 0.2–4 nM) and that three HIV-2 isolates from raltegravir-treated individuals with consensus integrase genotypes G140S + Q148R (group A), G140T + Q148R + N155H (group A), and T97A + Y143C (group H) were 63–9-, and 5-fold resistant to dolutegravir, respectively, in PBMC [51]. In addition, the manufacturer of dolutegravir (ViiV Healthcare) reported that <i>EC</i>₅₀ values against three clinical isolates of HIV-2 ranged from 0.09 nM to 0.61 nM in PBMC assays, and that combinations of substitutions A153G + N155H + S163G and E92Q + T97A + N155H + S163D in HIV-2 integrase conferred 4-fold decreases in dolutegravir susceptibility, while E92Q + N155H and G140S + Q148R resulted in 8.5-fold and 17-fold decreases, respectively [52].

The ability of dolutegravir to inhibit strains resistant to other INSTI is of particular importance—in HIV-1, mutations Q148H/K/R, together with secondary changes in the integrase protein, confer resistance to dolutegravir in cell culture [38,47,53-55], and other mutations associated with diminished in vitro susceptibility to dolutegravir have been reported [56-61]. In contrast, dolutegravir is fully active against HIV-1 variants bearing Y143 or N155 mutations (with or without secondary changes) in both single-cycle and spreading infection assays [38,47,53-55], although it should be noted that Y143 and N155 mutants have been observed in raltegravir-experienced patients who subsequently failed dolutegravir-based regimens [62,63]. In the VIKING-3 trial, dolutegravir response rates (<50 HIV-1 RNA copies/ml at week 24) declined from 79% (n = 100/126) for patients without Q148 mutations at baseline (including those with N155H, Y143C/H/R, T66A, E92Q, or historical evidence of INSTI resistance), to 58% (21/36) for patients with Q148 plus one additional secondary mutation, to 24% (5/21) for those with Q148 plus two or more secondary mutations [64]. Importantly, drug resistance testing is not widely available in West Africa, and thus, dolutegravir usage in many HIV-2–infected patients, including INSTI-experienced individuals, will depend on an algorithmic approach to treatment. To date, there are only two reports of dolutegravir treatment for HIV-2 infection ([65,66]; n = 2 and 13 patients, respectively), with limited duration of follow-up.

In the present study, we examined the activity of dolutegravir against wild-type and INSTI-resistant HIV-2 strains using an indicator cell assay that restricts viral replication to a single cycle [15]. This methodology enables a direct comparison of HIV-1 and HIV-2 drug susceptibility while avoiding potential confounders such as differences in replication rates, infectivity, cytopathic potential and cell-to-cell spread. We initially compared the dolutegravir sensitivities of viruses derived from two prototypic full-length molecular clones: pNL4-3 (HIV-1 group M, subtype B) and pROD9 (HIV-2 group A). In head-to-head single-cycle assays, these two strains showed nearly identical dose-response profiles (Figure 1A). Over multiple assays runs, the mean <i>EC</i>₅₀ values for dolutegravir (± standard deviation) were 1.5 ± 0.6 nM for HIV-1_{NL4-3} and 2.3 ± 0.7 nM for HIV-2_{ROD9} (n = 14 and 24 determinations, respectively). Dolutegravir was 3.6-fold more potent than raltegravir and 9.1-fold more potent than elvitegravir against HIV-2_{ROD9} (Figure 1B). Other isolates from ARV-naïve individuals displayed levels of dolutegravir sensitivity comparable to HIV-1_{NL4-3} and HIV-2_{ROD9} (Figure 1C). The aggregate <i>EC</i>₅₀ values for HIV-1, HIV-2 group A, and HIV-2 group B were 1.3 ± 0.2 nM, 1.9 ± 0.5 nM, and 2.6 ± 0.9 nM, respectively. When subjected to a one-way ANOVA, only the comparison between HIV-1 and HIV-2 group B reached statistical significance (p < 0.05); this modest difference was attributable to the slightly higher <i>EC</i>₅₀ for HIV-2_{EHO} (3.6 ± 1.9 nM) (Figure 1C). Notably, HIV-2_{EHO} integrase contains a glutamate at position 146, whereas other HIV-2 isolates (as well as HIV-1) encode glutamine at this site [67,68]. Substitutions at Q146 have been observed in HIV-1 following in vitro selections with elvitegravir and other, investigational INSTI [18,69,70]. To our knowledge, Q146 mutations have not been observed in HIV-2 variants selected in culture, nor have they been reported in HIV-2 patients treated with INSTI-based regimens.

To examine potential resistance pathways in HIV-2, we tested the activity of dolutegravir against a panel of site-directed mutants of HIV-2_{ROD9} using the single-cycle assay. These variants contained amino acid replacements in the integrase protein that are associated with raltegravir and elvitegravir treatment; their phenotypes with respect to raltegravir and elvitegravir susceptibility have been reported elsewhere [14,15]. Single amino acid changes T97A, G140S, Q148H and N155H had no significant effect on dolutegravir sensitivity (p > 0.05, ANOVA; Figure 2A). In contrast, mutants E92Q, Y143C, E92Q + Y143C, Q148K, and Q148R were resistant to dolutegravir, with <i>EC</i>₅₀ values 2.3–9.3-fold greater than that of the parental strain (Figure 2A), and variants
E92Q + N155H, T97A + N155H and G140S + Q148R exhibited 11–33-fold resistance to the drug (p < 0.005, ANOVA; Figure 2A and B). In experiments with T97A + Y143C HIV-2 ROD9, dolutegravir concentrations as high as 10 μM failed to reduce viral replication by 50% (Figure 2A and C; EC$_{50}$ > 10 μM), although modest dose-dependent inhibition was apparent at doses ≥100 nM (Figure 2C).

Altogether, nine of the 13 HIV-2 integrase mutants tested were resistant to dolutegravir in the single-cycle assay (Figure 2A).

We also evaluated the dolutegravir sensitivities of E92Q + N155H, T97A + Y143C, and G140S + Q148R HIV-2 ROD9 in three-day spreading infections of immortalized T cells (CEM-ss). These assays were performed as previously
Figure 2 (See legend on next page.)
described for the MT-2 T cell line [14]. The resultant EC_{50} values for the parental strain, E92Q + N155H, and G140S + Q148R were 0.24, 21 and 73 nM, respectively, indicating 8.8-fold resistance to dolutegravir for E92Q + N155H and 300-fold resistance for G140S + Q148R. Despite repeated attempts using high multiplicities of infection (≥0.1) and prolonged incubation times (up to seven days), CEM-ss cultures inoculated with T97A + Y143C HIV-2_{ROD9} failed to produce detectable levels of infectious virus, indicating a severe fitness defect. This result is consistent with the poor replication capacity previously reported for T97A + Y143C HIV-1 HIV-2_{ROD9} [15].

Lastly, we performed a head-to-head comparison of the phenotypes conferred by E92Q + N155H, G140S + Q148R, and T97A + Y143C in HIV-1NL4-3 and HIV-2_{ROD9} in the single-cycle assay. G140S + Q148R resulted in slight resistance to dolutegravir in HIV-1NL4-3 (3.5-fold; p <0.01, ANOVA), whereas E92Q + N155H and T97A + Y143C had no statistically significant effect in the HIV-1NL4-3 background (Figure 2D). These data are entirely consistent with previous studies of HIV-1 [38,47,53,54]. In contrast, HIV-2_{ROD9} mutants E92Q + N155H, G140S + Q148R, and T97A + Y143C were all resistant to dolutegravir (p <0.0001, ANOVA) and showed EC_{50} values ≥21- and >5000-fold greater than those seen for equivalent mutants of HIV-1NL4-3, respectively (Figure 2D). EC_{50} and fold change values for all HIV-1NL4-3 and HIV-2_{ROD9} integrase mutants tested in this study, together with the corresponding EC_{50} values for the parental wild-type clones, are compiled in Table 1. Taken together, our results indicate that prototypic HIV-1 and HIV-2 strains, as well as HIV-1 and HIV-2 isolates from INSTI-naïve individuals, are comparably sensitive to dolutegravir in a single cycle of viral replication in MAGIC-5A indicator cells (Figure 1). These findings complement previous data from spreading infections of PBMC [51]—using a different methodology and target cell type—and suggest that dolutegravir would be an appropriate treatment choice for INSTI-naïve HIV-2 patients when combined with other HIV-2-active ARV. We also report the effects of raltegravir-associated mutations on dolutegravir susceptibility using site-directed mutagenesis of genetically-defined HIV-1 and HIV-2 molecular clones (pNL4-3 and pROD9, respectively).

Our analysis shows that equivalent amino acid changes in the integrase proteins of HIV-1 and HIV-2 can have differing effects on dolutegravir susceptibility (Figure 2D) and that, in HIV-2_{ROD9}, integrase changes Q148K, T97A + Y143C, E92Q + N155H, T97A + N155H, and G140S + Q148R confer moderate to high levels of dolutegravir resistance (≥10-fold; Figure 2A–C and Table 1). We cannot exclude the possibility that the resistance levels observed in our site-directed HIV-2 mutants are specific to the ROD9 molecular clone, as the genetic context within integrase can have a substantial impact on the phenotypic expression of INSTI resistance [71,72]. For example, in the aforementioned study by Charpentier et al.

Table 1 Compilation of EC_{50} and fold change values for site-directed mutants of HIV-2_{ROD9} and HIV-1NL4-3 integrase

HIV Type	Strain	EC_{50} for DTG (nM)	n	Fold Change
HIV-2	Wild-type	2.3 ± 0.7	24	1
	E92Q	7.7 ± 1.2	3	3
	T97A	3.2 ± 0.8	3	1
	G140S	3.2 ± 0.8	3	1
	Y143C	7.7 ± 2.2	3	3
	Q148R	3.5 ± 1.4	4	1
	Q148K	23 ± 10	4	10
	Q148R	5.7 ± 2.1	4	2
	N155H	5.0 ± 2.4	3	2
	E92Q + Y143C	15 ± 10	5	6
	T97A + Y143C	>10000	13	>5000
	G140S + Q148R	108 ± 54	7	46
	E92Q + N155H	25 ± 17	7	10
	T97A + N155H	27 ± 13	3	12
HIV-1	Wild-type	1.5 ± 0.6	14	1
	T97A + Y143C	1.5 ± 0.4	4	1
	G140S + Q148R	6.8 ± 2.7	4	4
	E92Q + N155H	3.6 ± 0.7	4	2

*a*50% effective concentration of dolutegravir (DTG) as measured in the MAGIC-5A single-cycle assay. Values were compiled from the data used to generate Figures 2A and 2D and are expressed as means ± standard deviations. Numbers shown in bold type are significantly greater than the values for the corresponding wild-type strains (p < 0.05; ANOVA of log_{10}-transformed EC_{50} values with Tukey’s post-test; performed in Prism version 6.0, GraphPad Software, Inc.).

*b*Number of independent determinations for each strain.

*c*Fold change in EC_{50} relative to the corresponding wild-type strain.
[51], a group H HIV-2 isolate with T97A + Y143C was only 5-fold resistant to dolutegravir (this isolate differs from HIV-2 ROD9 at 24 of 293 amino acid sites in the integrase protein). In addition, the roles of novel INSTI-associated changes (i.e. H51Y, G118R, F121Y, E138A/K, and R263K; [26,34,57-61,63,73]) remain to be determined in HIV-2, and the level of dolutegravir resistance in vitro that correlates with virologic failure in HIV-2–infected patients is unknown. Nonetheless, our findings suggest that, relative to HIV-1, a broader array of amino acid changes in HIV-2 integrase might facilitate cross-resistance between dolutegravir and other INSTI.

Phenotypic drug resistance testing of HIV-2 isolates from raltegravir- and elvitegravir-treated patients should be performed as these drugs become more widely available in West Africa, and studies of dolutegravir-based regimens should be conducted in HIV-2–infected individuals, including patients previously treated with other INSTI.

Abbreviations
HIV-1: Human immunodeficiency virus type 1; HIV-2: Human immunodeficiency virus type 2; ARV: antiretroviral; INSTI: Integrase strand transfer inhibitor; EC50: 50% effective concentration; DTG: Dolutegravir; RAL: Raltegravir; EVG: Elvitegravir; FDA: Food and drug administration; ANOVA: Analysis of variance.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RS and GG conceived the study, designed the experiments and prepared the final version of the manuscript. RS performed the experiments, analyzed the data, and drafted the manuscript. DR and CP helped conduct the virologic assays. GG, PS, MS and JM provided intellectual input throughout the study and helped interpret the data. All authors read and approved the final manuscript.

Acknowledgements
These studies were supported by grants to GSG from the National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIAID; R281-A1060466), the UW Center For AIDS Research (CFAR, an NIH-funded program; P30 AI027757), and the UW Royalty Research Fund (A92723). We thank the NIH AIDS Research and Reference Reagent Program for providing notypic drug resistance testing of HIV-2 isolates from raltegravir- and elvitegravir-treated patients. Also, treatment outcomes among HIV-1 and HIV-2 infected children initiating antiretroviral therapy in a concentrated low prevalence setting in West Africa. BMC Pediatr. 2012;12:95.

Jallow S, Alabi A, Sarge-Njie R, Peterson K, Whithe H, Corsah T, et al. Virologic response to highly active antiretroviral therapy in patients infected with human immunodeficiency virus type 2 (HIV-2) and in patients dually infected with HIV-1 and HIV-2 in the Gambia and emergence of drug-resistant variants. J Clin Microbiol. 2009;47:2200–8.

Benard A, van Sijghem A, Taieb A, Valadas E, Ruelle J, Soriano V, et al. Immuno-virological response to triple nucleotide reverse-transcriptase inhibitors and ritonavir-boosted protease inhibitors in treatment-naive HIV-2–infected patients: The ACHIEVE Collaboration Study Group. Clin Infect Dis. 2011;52:1257–66.

Menendez-Arias L, Alvarez M. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Res. 2014;102:70–86.

Peterson K, Rowland-Jones S. Novel agents for the treatment of HIV-2 infection. Antivir Ther. 2012;17:435–8.

Smith RA, Raugi DN, Kiviat NB, Whithe H, Corsah T, et al. Mutational pathways in HIV-2 lead to high-level raltegravir and elvitegravir resistance: implications for emerging HIV-2 treatment regimens. PLoS One. 2012;7:e43572.

Roquebert B, Damond F, Collin G, Matheron J, Herrmann P, Benard A, et al. HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. J Antimicrob Chemother. 2008;62:914–20.

Andreatta K, Miller MD, White KL. HIV-2 antiviral potency and selection of drug resistance mutations by the integrase strand transfer inhibitor elvitegravir and NRTIs emtricitabine and tenofovir in vitro. J Acquir Immune Defic Syndr. 2009;52:1257–66.

References
1. de Silva TI, Cotten M, Rowland-Jones SL. HIV-2: the forgotten AIDS virus. Trends Microbiol. 2008;16:588–95.
2. Cot MC, Poulain M, Delagneau JF, Peeters M, Brun-Vézinet F. Dual HIV-1 and HIV-2 infection in West Africa supported by synthetic peptide analysis. AIDS Res Hum Retroviruses. 1988;4:239–41.
3. Evans LA, Moreau J, Odehouk K, Seto D, Thomson-Honnebeiger G, Legg H, et al. Simultaneous isolation of HIV-1 and HIV-2 from an AIDS patient. Lancet. 1988;2:1389–91.
4. Rayfield M, De Cock K, Heyward W, Goldstein L, Krebs J, Kwok S, et al. Mixed human immunodeficiency virus (HIV) infection in an individual: demonstration of both HIV type 1 and type 2 proviral sequences by using polymerase chain reaction. J Infect Dis. 1988;158:1170–6.
5. Hitzinger K, Sow PS, Dia Badiane NM, Gottlieb GS, N'Doye I, Toure M, et al. Trends of HIV-1, HIV-2 and dual infection in women attending outpatient clinics in Senegal, 1990-2009. Int J STD AIDS. 2012;23:710–6.
6. Raugi DN, Gottlieb GS, Sow PS, Toure M, Sall F, Gaye A, et al. HIV-1 outcompetes HIV-2 in dually infected Senegalese individuals with low CD4(+)-cell counts. AIDS. 2013;27:2441–50.
7. Gottlieb GS, Badiane NM, Hawes SE, Fortes L, Toure M, Ndirou CT, et al. Emergence of multiclass drug-resistance in HIV-2 in antiretroviral-treated individuals in Senegal: implications for HIV-2 treatment in resource-limited West Africa. Clin Infect Dis. 2009;48:476–83.
8. Charpentier C, Eholie S, Anglaert X, Bertine M, Rouzioux C, Avettand-Fenoel V, et al. Genotypic resistance profiles of HIV-2-treated patients in West Africa. AIDS. 2012;4:2161–9.
9. Okomo U, Togun T, Oko F, Peterson K, Townend J, Peterson I, et al. Treatment outcomes among HIV-1 and HIV-2 infected children initiating antiretroviral therapy in a concentrated low prevalence setting in West Africa. BMC Pediatr. 2012;12:95.
et al. Retrovirology 2015;12:10

30. Winters MA, Lloyd Jr RM, Shafer RW, Kozal MJ, Miller MD, Holodny M. Development of elvitegravir resistance and linkage of integrase inhibitor mutations with protease and reverse transcriptase resistance mutations. PLoS One. 2012;7:e40514.

31. Mesplede T, Quashie PK, Wainberg MA. Resistance to HIV integrase inhibitors. Curr Opin HIV AIDS. 2013;8:401–8.

32. Garrido C, Villacian J, Zahnener N, Pater T, Garcia F, Gutierrez F, et al. Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing raltegravir-containing regimens. Antimicrob Agents Chemother. 2012;56:2873–8.

33. Bianco JL, Varghese V, Rhee SY, Gatell JM, Shafer RW. HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis. 2011;203:1204–14.

34. Kobayashi M, Yoshinaga T, Seki T, Wakisaka-Morimoto C, Brown KW, Ferris R, et al. In vitro antivrotroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother. 2011;55:813–21.

35. da Silva D, Van Wesenbeeck L, Breilh D, Reigadas S, Aines G, Van Baelen K, et al. HIV-1 resistance patterns to integrase inhibitors in antiretroviral-experienced patients with virological failure on raltegravir-containing regimens. J Antimicrob Chemother. 2010;65:1262–9.

36. Goethals O, Clayton R, Van Ginderen M, Vrevenckx I, Wagemans E, Gelukens P, et al. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol. 2008;82:10366–74.

37. Mannello R, Marchand C, Mott BT, Ban A, Thomas CJ, Pommier Y. Comparison of raltegravir and elvitegravir on HIV-1 integrase catalytic reactions and on a series of drug-resistant integrase mutants. Biochemistry. 2008;47:3945–54.

38. Charpentier C, Larrouy L, Collin G, Diamand F, Matheron S, Chene G, et al. In-vitro phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors S/GSK1349572. AIDS. 2010;24:2753–6.

39. Tivicy Package Insert. [http://www.gsksource.com/gskprrm/htdocs/documents/TIVICAY-PI-PLIPDF.pdf]

40. Underwood MR, Johns BA, Sato A, Martin IN, Deeks SG, Fujivara T. The activity of the integrase backbone inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults. J Acquir Immune Defic Syndr. 2012;61:297–301.

41. Canducci F, Ceresola ER, Boeri E, Spagnuolo V, Cossarini F, Castagna A, et al. Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J Infect Dis. 2011;204:181–5.

42. Canducci F, Ceresola ER, Saita D, Castagna A, Gianotti N, Underwood M, et al. In vitro phenotypes to elvitegravir and dolutegravir in primary macrophages and lymphocytes of clonal recombinant viral variants selected in patients failing raltegravir. J Antimicrob Chemother. 2013;68:2525–32.

43. Mesplede T, Osman N, Wares M, Quashie PK, Hassounah S, Anstett K, et al. Addition of E138K to R263K in HIV integrase increases resistance to dolutegravir, but fails to restore activity of the HIV integrase enzyme and viral replication capacity. J Antimicrob Chemother. 2010;65:1262–7.

44. Carganico A, Dupke S, Ehret R, Berg T, Baumgartner A, Obermeier M, et al. New dolutegravir resistance pattern identified in a patient failing antiretroviral therapy. J Int AIDS Soc. 2014;17:19749.

45. Cutillas V, Mesplede T, Anstett K, Hassounah S, Wainberg MA. The addition of R262K to the H51Y mutation in HIV-1 subtype B confers low-level resistance against dolutegravir. Antimicrob Agents Chemother. 2014;59:310–6.

46. Mesplede T, Quashie PK, Osman N, Han Y, Singhroy DN, Lie Y, et al. Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure. Retrovirology. 2013;10:22.

47. Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujivara T, et al. Characterization of the R262K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol. 2012;86:7095–7095.

48. Wares M, Mesplede T, Quashie PK, Osman N, Han Y, Wainberg MA. The M50I polymorphic substitution in association with the R263K mutation in HIV-1 subtype B integrase decreases drug resistance but does not restore viral replicative fitness. Retrovirology. 2014;11:7.

49. Eron JJ, Claot B, Durant J, Katlama C, Kumar P, Lazzarin A, et al. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study. J Infect Dis. 2013;207:740–8.

50. Hardy I, Brenner B, Quashie P, Thomas R, Petoopoulos C, Huang W, et al. Evolution of a novel pathway leading to dolutegravir resistance in a patient harbouring N155H and multiclass drug resistance. J Antimicrob Chemother. 2014;70:405–11.
64. Castagna A, Maggiolo F, Penco G, Wright D, Mills A, Grossberg R, et al. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J Infect Dis. 2014;210:354–62.

65. Trevino A, Cabezas T, Lozano AB, García-Delgado R, Force L, Fernandez-Montero JM, et al. Dolutegravir for the treatment of HIV-2 infection. J Clin Virol. 2015;64:12–5.

66. Descamps D, Peytavin G, Damond F, Tubiana R, Campa P, Khuong MA, et al. Dolutegravir in the French Early Access Program in Integrase HIV-2-Resistant Infected Patients. 21st Conference on Retroviruses and Opportunistic Infections; 3–6 March 2014; Boston, MA.

67. Gottlieb GS, Smith RA, Dia Badiane NM, Ba S, Hawes SE, Toure M, et al. HIV-2 integrase variation in integrase inhibitor-naive adults in Senegal, West Africa. PLoS One. 2011;6:e22204.

68. Foley B, Leitner T, Apeetri C, Hahn B, Mrzachi I, Mullins J, et al. HIV Sequence Compendium 2013. Los Alamos, NM: Theoretical Biology and Biophysics Group, Los Alamos National Laboratory; 2013.

69. Fikkert V, Hombrouck A, Van Remoortel B, De Maeyer M, Pannecouque C, De Clercq E, et al. Multiple mutations in human immunodeficiency virus-1 integrase confer resistance to the clinical trial drug S-1360. AIDS. 2004;18:2019–28.

70. Kobayashi M, Nakahara K, Seki T, Miki S, Kawauchi S, Suyama A, et al. Selection of diverse and clinically relevant integrase inhibitor-resistant human immunodeficiency virus type 1 mutants. Antiviral Res. 2008;80:213–22.

71. Nguyen TT, Rato S, Molina JM, Clavel F, Delaure C, Mammano F. Impact of the HIV integrase genetic context on the phenotypic expression and in vivo emergence of raltegravir resistance mutations. J Antimicrob Chemother 2015. doi:10.1093/jac/dku424.

72. Quashie PK, Oliveira M, Veres T, Osman N, Han Y, Hassounah S, et al. Differential effects of the G118R, H51Y and E138K resistance substitutions in HIV integrase of different subtypes. J Virol 2014. doi:10.1128/JVI.00353-14

73. Malet I, Gimferrer Aniaga L, Antese A, Costa G, Parnotta L, Aklaro S, et al. New raltegravir resistance pathways induce broad cross-resistance to all currently used integrase inhibitors. J Antimicrob Chemother. 2014;69:2118–22.