Precision computation of the leptonic D_s-meson decay constant in quenched QCD

A Jüttner and J Rolf

Department of Physics, Humboldt-University Berlin

We summarize a computation of the leptonic decay constant F_{D_s} of the D_s-meson in quenched QCD on the lattice. We perform a direct simulation at the masses of the strange and the charm quarks at four different lattice spacings from approximately 0.1 fm to 0.05 fm. Fully non perturbative $O(a)$-improvement is employed. After taking the continuum limit we arrive at a value of $F_{D_s} = 252(9)$ MeV, when setting the scale with the Kaon decay constant $F_K = 160$ MeV. Setting the scale with the nucleon mass instead leads to a decrease of about 20 MeV of F_{D_s}.

1 Introduction

To get reliable estimates of weak decay constants like F_B lattice QCD has often to be supplemented by chiral extrapolations and/or heavy quark effective theory. These introduce substantial systematic errors [1]. In addition, the usual lattice errors like statistical errors, discretization errors, finite volume effects, contamination from excited states, perturbative renormalization and quenching [2] have to be understood or eliminated.

The D_s-meson however is special in this context. It consists of a strange and a charm quark. Both can be implemented precisely directly on the lattice as has been done recently by the ALPHA collaboration [3,4]. Thus neither a chiral extrapolation nor an extrapolation to heavy quarks (or similar strategies) have to be used. Still we expect the D_s-meson to be similar to other heavy light systems. Therefore it can be studied to understand all the other error sources mentioned above.

The goal of our work, which has been recently published in [5], is a precision computation of F_{D_s} in quenched QCD. We aim at a combined error of three percent. To eliminate the discretization errors, we perform fully non perturbative $O(a)$-improvement and simulate at four different lattice spacings. This allows us to take a reliable continuum limit. Finite volume effects have been shown to be negligible in [3]. At our masses they are expected to be even smaller. We define our plateaus such that the contamination by excited states stays below five per mille. Finally all the uncertainty due to perturbative renormalization has been eliminated by using the non perturbative renormalization techniques of the ALPHA collaboration [6,7]. The only systematic uncertainty we cannot deal with at present is the quenching error.

A precise value of F_{D_s} in quenched QCD is desirable since together with a computation of the decay constant in the static approximation it will enable us to see how far the heavy quark effective theory can be applied safely. In unquenched simulations we can then rely on this experience in the computation of F_B.

The D_s-meson is stable in QCD. It decays weakly by an emission of a W-boson into a lepton and a neutrino. The branching ratios can be measured experimentally. They are summarized in [8].

Recent experimental data are shown in table 1 [9]. The status of lattice computations was reviewed in [10].

Experiment	F_{D_s} [MeV]
ALEPH	285 ± 19 ± 40
DELPHI	330 ± 95
L3	309 ± 58 ± 50
CLEO	280 ± 17 ± 42
BEATRICE	323 ± 44 ± 36
E653	194 ± 35 ± 24

Table 1. Experimental data for F_{D_s}.
For unexplained notation we refer to [20]. We define conditions [18, 19] on a lattice QCD using Schrödinger functional boundary theorem [15]. Here boundary, respectively. From these we compute the physical conditions are constant to a sufficient precision.

Table 2. Lattice results for F_{D_s} in quenched QCD.
$F_{D_s}[\text{MeV}]$

UKQCD [11]
APE [12]
MILC [13]

2 Strategy

The decay constant F_{D_s} is defined by the QCD matrix element

$$\langle 0| A_\mu(0)| D_s(p) \rangle = i p_\mu F_{D_s}$$ \hspace{1cm} (2)

of the axial current $A_\mu = \bar{s}\gamma_\mu\gamma_5 c$. To formulate this problem on the lattice we eliminate the bare parameters of the QCD Lagragian in favour of physical observables in one chosen hadronic scheme. Our strategy [14, 3, 4] is to use the kaon decay constant F_K to set the scale, that means to compute the lattice spacing a in physical units as a function of the bare coupling g_0. The bare strange quark mass and the bare charm quark mass are eliminated by the masses m_K and m_D, of the kaon and the D_s-meson, respectively. We neglect isospin breaking and take the quark with flavour indices i.

The decay constant

$$\langle O \rangle = \frac{1}{Z_A (t)} A_\mu(x) A_\nu(x) \langle 0 \rangle$$

is defined by the QCD matrix elements. The contribution

$$f_A(x) = \frac{1}{2} \langle O A_0(x) \rangle$$

is expected to exhibit a plateau at intermediate times when the contribution $\eta_A^0 e^{-x_0 \Delta}$ of the first excited state and the contribution $\eta_A^0 e^{-(T-x_0) m_G}$ from the O^+ glueball both are small. A plateau average can then be performed to increase the signal and is understood in [21]. Further explanations for equation (7) and details can be found in [21].

4 Parameters

We discretize the space-time cylinder using four different lattice spacings a but keep L and $T = 2L$ approximately constant in physical units. To this end we use the same bare couplings that have been used in the determinations of the strange and the charm quark masses in [3, 4] by the ALPHA collaboration. From this work we also take the hopping parameters for the quarks. Our choice of parameters is shown in table 3. In table 4 we show that with this choice indeed the correlation functions

$$f_1(x_0) = -\frac{1}{2} \langle O A_0(x) \rangle$$

and

$$f_1 = -\frac{1}{3 L^5} \langle O' O \rangle.$$ \hspace{1cm} (6)

Here $A_\mu(x)$ denotes the improved axial current. It receives a scale independent multiplicative renormalization Z_A on the lattice. In terms of these correlation functions F_{D_s} can be written as

$$F_{D_s} = -2Z_A (1 + b_A (am_{q,i} + am_{q,j})) / 2$$

$$\times \frac{f_A^I (x_0)}{\sqrt{f_1}} (m_{D_s} L^3)^{-1/2} e^{-x_0 - T / 2} m_{D_s}$$

and

$$\times \left\{ 1 - \eta_A^1 e^{-x_0 \Delta} - \eta_A^0 e^{-(T-x_0) m_G} \right\}$$

$$+ O(a^2).$$ \hspace{1cm} (7)

Here the factor $(m_{D_s} L^3)^{-1/2}$ takes into account the normalization of one particle states. The contribution $f_1^{-1/2}$ cancels out the dependence on the meson sources. Because of the exponential decay of the correlation function f_A^I the product in (7) is expected to exhibit a plateau at intermediate times when the contribution $\eta_A^0 e^{-x_0 \Delta}$ of the first excited state and the contribution $\eta_A^0 e^{-(T-x_0) m_G}$ from the O^+ glueball both are small. A plateau average can then be performed to increase the signal and is understood in [21]. Further explanations for equation (7) and details can be found in [21].
5 Computation of the decay constant

To compute the decay constant F_{D_s} we use the combination of correlation functions. For all parameter choices we find plateaus as functions of x_0. These plateaus are shown in figure 1. Their extent is roughly from $4r_0$ to $5r_0$. At small respectively large times we fit to the functions $F_{D_s}(x_0)$ the expected contributions of the first excited state and the glueball. For details see [5]. We define the plateau such that their sum stays below 5 per mille.

Since we deal with heavy quark propagators on APE1000 in single precision we have to check that the rounding errors are small enough. Our check against runs with a double precision code [22] reveals that the rounding errors are smaller than one per mille.

After averaging F_{D_s} over the plateaus defined above we get the values shown in table 5. These data can be extrapolated to the continuum limit. Here we leave out the coarsest lattice. The extrapolation can be performed in $(a/r_0)^2$ since we employ non perturbative $O(a)$ improvement. Here we take b_A from the Los Alamos group [23]. Since this involves an extrapolation of their data we have also used 1-loop perturbation theory [24]. Then we get $r_0F_{D_s} = 0.631(24)$, which is in perfect agreement with our main result, $r_0F_{D_s} = 0.638(24)$, or, using $r_0 = 0.5$ fm, $F_{D_s} = 252(9)$ MeV. The continuum extrapolation is shown in figure 2.

Table 4. Demonstration of constant physical conditions.

β	L/r_0	$r_0m_{D_s}$
6.0	2.98	4.972(22)
6.1	3.79	4.981(23)
6.2	3.26	5.000(25)
6.45	3.06	5.042(29)

Table 5. Simulations results and continuum limit for F_{D_s}.

β	$r_0F_{D_s}$
6.0	0.540(14)
6.1	0.570(13)
6.2	0.598(16)
6.45	0.614(15)
c.l.	0.638(24)

Figure 1. Behaviour of $aF_{D_s}^{\text{bare}}$. The full symbols denote the plateau range.

Figure 2. Continuum extrapolation of F_{D_s}.

6 The quenched scale ambiguity

To estimate the quenched scale ambiguity of F_{D_s} under a scale shift of 10 percent, which is typical for the quenched approximation, we consider $r_0F_{D_s} = f(z)$ as a function of the meson mass $z = r_0m_{D_s}$. We expand $f(z)$ around the physical value $z_0 = 4.988$ up to first order. A 10 percent increase of r_0 corresponds to $z - z_0 = 0.5$. With an estimate of $f'(z_0)$ from a linear fit of $r_0F_{D_s}$ around m_{D_s} we get $f(z) - f(z_0) \approx 0.008(3)$. Converting back to physical units, now using $r_0 = 0.55$ fm we find that F_{D_s} decreases by 20 MeV, corresponding to eight percent. The estimate of $f'(z_0)$ is possible since in addition to the hopping parameters already discussed we have also performed simulations around the charm quark mass value.

7 Conclusion

The leptonic D_s-meson decays can be studied on the lattice without chiral extrapolations or heavy quark
effective theory. This has enabled us to perform a computation of F_{Ds} with a precision that matches the precision goals at future experiments, for example, CLEO. The precise value of F_{Ds} in quenched QCD, together with new precise data in the static approximation, will show how far heavy quark effective theory can be applied safely. This is of importance for the unquenched computation of F_B in the future.

We will supplement this analysis with more data around the charm mass. Part of this data has already been used to estimate the quenched scale ambiguity of F_{Ds} under a scale shift of 10 percent.

Acknowledgements

This work was supported by the European Community under the grant HPRN-CT-2000-00145 Hadrons/Lattice QCD and by the Deutsche Forschungsgemeinschaft in the SFB/TR 09 and the Graduiertenkolleg GK271. All the production runs were carried out on machines of the APE1000 series at DESY. The check of the rounding errors ran on the IBM p690 system of the HLRN (http://www.hlrn.de) and on the PC cluster at DESY. We thank the staff at the computer centres for their help and M. Della Morte, S. Sint, R. Sommer, H. Wittig and U. Wolff for useful discussions.

References

1. A. S. Kronfeld and S. M. Ryan, Phys. Lett. B 543 (2002) 59.
2. J. M. Flynn and C. T. Sachrajda, Adv. Ser. Direct. High Energy Phys. 15 (1998) 402.
3. J. Garden, J. Heitger, R. Sommer and H. Wittig [ALPHA and UKQCD Collaboration], Nucl. Phys. B 571 (2000) 237.
4. J. Rolf and S. Sint [ALPHA Collaboration], JHEP 12 (2002) 007.
5. A. Jüttner and J. Rolf [ALPHA Collaboration], Phys. Lett. B 560 (2003) 59.
6. K. Jansen et al., Phys. Lett. B 372 (1996) 275 [arXiv:hep-lat/9512009].
7. M. Lüscher, S. Sint, R. Sommer and H. Wittig, Nucl. Phys. B 491 (1997) 344.
8. K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D66 (2002) 010001.
9. S. Söldner-Rembold, JHEP Proceedings, HEP2001 [hep-ex/0109023].
10. S. M. Ryan, Nucl. Phys. Proc. Suppl. 106 (2002) 86.
11. C. M. Maynard [UKQCD Collaboration], Nucl. Phys. Proc. Suppl. 106 (2002) 388.
12. D. Becirevic, Nucl. Phys. Proc. Suppl. 94 (2001) 337.
13. C. W. Bernard et al., Nucl. Phys. Proc. Suppl. 94 (2001) 346.
14. S. Capitani, M. Lüscher, R. Sommer and H. Wittig [ALPHA Collaboration], Nucl. Phys. B 544 (1999) 669.
15. H. Leutwyler, Phys. Lett. B 378 (1996) 313.
16. M. Guagnelli, R. Sommer and H. Wittig, Nucl. Phys. B 535 (1998) 389.
17. S. Necco and R. Sommer, Nucl. Phys. B 622 (2002) 328.
18. M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, Nucl. Phys. B 384 (1992) 168.
19. S. Sint, Nucl. Phys. B 421 (1994) 135.
20. M. Lüscher, S. Sint, R. Sommer and P. Weisz, Nucl. Phys. B 478 (1996) 365.
21. M. Guagnelli, J. Heitger, R. Sommer and H. Wittig [ALPHA Collaboration], Nucl. Phys. B 560 (1999) 465.
22. We have used a modified version of the public lattice gauge theory code of the MILC collaboration. [http://www.physics.indiana.edu/~sg/milc.html]
23. T. Bhattacharya, R. Gupta, W. j. Lee and S. Sharpe, Nucl. Phys. Proc. Suppl. 106 (2002) 789.
24. S. Sint and P. Weisz, Nucl. Phys. B 502 (1997) 251.