Comorbidities in multiple sclerosis

Choroby współistniejące w stwardnieniu rozsianym

Emilia J. Hercuń¹, Witold Tomaszewski², Jacek Juryńczyk²
¹The Medicall Health Institute in Piotrków Trybunalski
²The Hospital in Bełchatów

ABSTRACT

INTRODUCTION: Multiple Sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system, in which multifocal nerve tissue damage occurs.

MATERIAL AND METHODS: The study analyzed the documentation of 130 patients hospitalized for multiple sclerosis in the Neurological Department of the Hospital in Bełchatów between 1.2010 and V.2018. The control group were 177 patients from the Occupational Medicine Outpatient Clinic of the Medicall Health Institute in Piotrków Trybunalski consulted in 2018.

RESULTS: Among patients with MS 49.2% were diagnosed with other diseases. The highest rate of comorbidity occurred in the primary progressive form and the lowest in the relapsing-remitting form. The most common diseases among MS patients were: arterial hypertension (23.8%), depression (9.2%), benign prostatic hyperplasia (7.7%), type 2 diabetes (6.9%), spinal discopathy (5.4%), cancer in anamnesis (3.8%) – 2% were malignant tumors and 2% non-malignant tumors, ischemic heart disease (3.1%), hypothyroidism (3.1%), psoriasis (3.1%), bronchial asthma (3.1%), ulcerative colitis (3.1%). Hyperlipidemia, which occurred in 35% of the subjects, was an important problem in patients with MS consisted, in the majority of cases, of elevated total and LDL cholesterol values.

CONCLUSIONS: The most frequent comorbidities in MS patients are hyperlipidemia, hypertension, depression, benign prostatic hyperplasia, type 2 diabetes and spinal discopathy. The distribution of disease differed in individual forms of MS, however, this could be due to the age differences among patients. Researching the issue of comorbidity in MS is an important part of the integrated care as it can improve the treatment effectiveness in this group of patients.

KEY WORDS
multiple sclerosis, comorbidities, integrated care

STRESZCZENIE

WSTĘP: Stwardnienie rozsiane jest przewlekłą, zapalną, demielinizacyjną chorobą ośrodковego układu nerwowego, w której dochodzi do wieloogniskowego uszkodzenia tkanki nerwowej.

MATERIAL I METODY: W badaniu przeanalizowano dokumentację pacjentów hospitalizowanych z powodu stwardnienia rozsianego (130 osób) na Oddziale Neurologicznym Szpitala Wojewódzkiego im. Jana Pawła II w Bełchatowie w okresie od stycznia 2010 do maja 2018 r. Grupę kontrolną (177 osób) utworzono z pacjentów Poradni Medycyny Pracy Instytutu Zdrowia Medicall w Piotrkowie Trybunalskim, konsultowanych w 2018 r.

Received: 14.11.2018 Revised: 07.12.2018 Accepted: 13.03.2019 Published online: 31.12.2019

Address for correspondence: Emilia J. Hercuń, The Medicall Health Institute in Piotrków Trybunalski, ul. Wojska Polskiego 77, 97-300 Piotrków Trybunalski, tel. +48 694 962 941, e-mail: echoem@interia.pl
Copyright © Śląski Uniwersytet Medyczny w Katowicach www.annales.sum.edu.pl
Stwardnienie rozsiane, choroby współistniejące, opieka koordynowana

SŁOWA KLUCZOWE
stwardnienie rozsiane, choroby współistniejące, element opieki koordynowanej.

WNIOSKI: U 49,2% pacjentów z SM stwierdzono inne schorzenia. Największy wskaźnik współchorobowości występował w postaci pierwotnie postępującej, a najmniejszy w postaci rzutowo-remsyjnej. Najczęstszymi jednostkami chorobowymi wśród pacjentów z SM były: nadciśnienie tętnicze (23,8%), depresja (9,2%), łagodny rozrost gruczołu krokowego (7,7%), cukrzyca typu 2 (6,9%), dyskopatia kręgosłupa (5,4%), choroba nowotworowa w wywiadzie (3,8%), wśród tych chorych 2% stanowiły nowotwory złośliwe i 2% niezłośliwe, choroba niedokrwienna serca (3,1%), niedoczynność tarczycy (3,1%), hiperlipidemia (3,1%), astma oskrzelowa (3,1%), wrzodziejące zapalenie jelita grubego (3,1%). Istotnym problemem u chorych z SM była również hiperlipidemia, która występowała u 35% badanych, w zdecydowanej większości w postaci podwyższonych wartości cholesterolu całkowitego i LDL.

WSTĘP

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system in which multifocal nervous tissue damage occurs. In many developed countries it is the main cause of non-injury-related disability among young adults. The disease has a negative impact on the lives of patients and their families, leading to significant, long-term health and economic burdens [1].

As a result of an abnormal reaction, the immune system in MS patients attacks and damages the central nervous system. The axon myelin sheath is damaged. It is assumed that in genetically predisposed individuals, an unknown etiological factor activates the immune system and induces the appearance of activated T lymphocytes, which are at the same time autoreactive for nervous system antigens on the basis of molecular mimicry. Autoreactive T- and B-lymphocytes pass through the blood-brain barrier. Adhesion molecules, chemokines and metalloproteinases are involved in this process. This mechanism causes the formation of inflammatory foci located around blood vessels. This leads to changes that are areas of acute damage visible in imaging tests. Although the CNS is equipped with repair mechanisms, the return to the normal state is not complete, part of the nervous tissue is irreversibly damaged and the process of atrophy begins in the brain, which occurs much faster than in people who do not suffer from multiple sclerosis [2,3].

In about 85% of patients, MS begins with an acute episode of neurological symptoms, called CIS (clinically isolated syndrome), followed by a phase of the disease with relapses and remissions, which after several years may enter a phase of gradual deterioration of the patient’s condition. Approximately 15–20% of patients experience from the onset of the disease steady progressing neurological deterioration [2]. The most common symptoms reported during the first appointment include: sensory disorders (40%), motor disorders (39%), visual disorders (30%) and fatigue (30%) [4].

INTRODUCTION

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system in which multifocal nervous tissue damage occurs. In many developed countries it is the main cause of non-injury-related disability among young adults. The disease has a negative impact on the lives of patients and their families, leading to significant, long-term health and economic burdens [1].

As a result of an abnormal reaction, the immune system in MS patients attacks and damages the central nervous system. The axon myelin sheath is damaged. It is assumed that in genetically predisposed individuals, an unknown etiological factor activates the immune system and induces the appearance of activated T lymphocytes, which are at the same time autoreactive for nervous system antigens on the basis of molecular mimicry. Autoreactive T- and B-lymphocytes pass through the blood-brain barrier. Adhesion molecules, chemokines and metalloproteinases are involved in this process. This mechanism causes the formation of inflammatory foci located around blood vessels. This leads to changes that are areas of acute damage visible in imaging tests. Although the CNS is equipped with repair mechanisms, the return to the normal state is not complete, part of the nervous tissue is irreversibly damaged and the process of atrophy begins in the brain, which is much faster than in people who do not suffer from multiple sclerosis [2,3].

In about 85% of patients, MS begins with an acute episode of neurological symptoms, called CIS (clinically isolated syndrome), followed by a phase of the disease with relapses and remissions, which after several years may enter a phase of gradual deterioration of the patient’s condition. Approximately 15–20% of patients experience from the onset of the disease steady progressing neurological deterioration [2]. The most common symptoms reported during the first appointment include: sensory disorders (40%), motor disorders (39%), visual disorders (30%) and fatigue (30%) [4].

Stwardnienie rozsiane (SM) jest przewlekłą, zapalną, demielinizacyjną chorobą ośrodковego układu nerwowego, w której dochodzi do wieloogniskowego uszkodzenia tkanki nerwowej. W wielu rozwiniętych krajach stanowi główną przyczynę niepełnosprawności młodych dorosłych, niezwiązanej z urazami. Choroba ma niekorzystny wpływ na życie chorych oraz ich rodzin, prowadząc do znacznych, długotrwałych obciążeń zdrowotnych i ekonomicznych [1].

Wskautek nieprawidłowej reakcji układimmunologiczny u chorych na SM atakuje i uszkadza ośrodkovy układ nerwowy. Dochodzi do niszczenia osłonki mieliny, w częściornikowych aksonach. Przyjmuje się, że u osób z uwarunkowaną genetycznie predyspozycją nieznany czynnik etologiczny aktywuje układ immunologiczny i powoduje pojawienie się zakażonych limfocytów T, które na zasadzie mimikry molekularnej są jednocześnie autoreaktywne dla antygenów układu nerwowego. Autoreaktywne limfocyty T oraz limfocyty B przechodzą przez barierę krew-mózg. W tym procesie biorą udział molekuły adhezyjne, chemokiny i metaloproteinazy. Ten mechanizm powoduje powstawanie ognisk zapalnych zlokalizowanych wokół naczyń krwionośnych. Prowadzi to do zmian będących obszarami ostrego uszkodzenia, widocznych w badaniach obrazowych. Pomimo że OUN jest wyposażony w mechanizmy naprawczego, to powrót do stanu prawidłowego nie jest całkowity, część tkanki nerwowej ulega nieodwracalnemu uszkodzeniu, a w mózgu rozpoczyna się proces zaniku, który przebiega znacznie szybciej niż u osób niechorujących na stwardnienie rozsiane [2,3].

U około 85% chorych SM rozpoczyna się ostrym epi-

zodem objawów neurologicznych, nazywanym CIS (clinically isolated syndrome), po czym następuje faza choroby z rutami i remisjami, która po kilkunastu latach może przejść w fazę stopniowego pogarszania się stanu chorego. U około 15–20% pacjentów występuje od samego początku stałe postępujące pogarszanie sta-

nu neurologicznego [2]. Najczęstsze objawy zgłaszane
Multiple sclerosis is usually diagnosed in young, active people in the 3rd and 4th decade of life, and women constitute about two thirds of all patients. It should be stressed that MS affects patients who potentially have decades of professional activity ahead of them and may decide to start a family. As the disability increases, MS may result in the inability to work or the need for retraining, which in turn may lead to financial problems [1].

MATERIAL AND METHODS

The study analysed the records of patients hospitalized for multiple sclerosis in the Neurological Ward of the John Paul II Memorial Hospital in Belchatów from January 2010 to May 2018. Patients of the Occupational Medicine Outpatient Clinic of the Medical Health Institute in Piotrków Trybunalski, consulted in 2018, were qualified to the control group. The characteristics of the study groups are presented in Tables I and II. The study group consisted of 40% of patients treated with first line medications (interferon beta-1a, interferon beta-1b, dimethyl fumarate) in the Neurological Ward of the John Paul II Memorial Hospital in Belchatów. Among patients with secondary progression, about 32% of them were under systematic care of this hospital when the disease was still relapsing-remitting. Unfortunately, the age of MS diagnosis was not obtained in all the cases from the records, hence the reduced number of patients to calculate the age of diagnosis.

The nominal data are described as n (%) and the quantitative data as the mean ± standard deviation (x ± SD) for variables with normal distribution or as the median (first quartile Q1 – third quartile Q3) for variables without normal distribution. The normality of the distributions in the subgroups was checked using the Shapiro-Wilk test, equality of variances and Levene’s test when the number of groups prevented the use of the t-test. Due to the lack of normal distribution or wÒÀ õëÃ Võ cÔõ yu tõ yõ: zaburzenia czucia (40%), zaburzenia ruchowe (39%), zaburzenia wzroku (30%) oraz zmęczenie (30%) [4]. Zwykle stwardnienie rozsiane rozpoznaje się u młodych, aktywnych osób w 3 i 4 dekadzie życia, a około dwie trzecie chorych stanowią kobiety. Podkreślić należy, że SM dotyka chorych, którzy mają potencjalnie przed sobą dziesiątki lat aktywności zawodowej, mogą podejmować decyzję o założeniu rodziny. W miarę narastania niepełnosprawności SM może być przyczyną niedolności do pracy albo konieczności przekwalifikowania się, niosąc za sobą potencjalne problemy materialne [1].

MATERIAŁ I METODY

W badaniu przeanalizowano dokumentację pacjentów hospitalizowanych z powodu stwardnienia rozsianego na Oddziale Neurologicznym Szpitala Wojewódzkiego im. Jana Pawła II w Belchatowie od stycznia 2010 do maja 2018 r. Do grupy kontrolnej zakwalifikowano pacjentów Poradni Medycyny Pracy Instytutu Zdrowia Medycznego w Piotrkowie Trybunalskim, konsultowanych w 2018 r. Charakterystykę badanych grup przedstawiono w tabelach I i II. Grupa badana obejmowała 40% pacjentów leczonych lekami I linii (interferon beta-1a, interferon beta-1b, fumaran dimetylu) w Oddziale Neurologicznym Szpitala Wojewódzkiego im. Jana Pawła II w Belchatowie. Wśród chorych z postacią wtórnie postępującą około 32% chorych zostało objętych systematyczną opieką tego ośrodka, wówczas gdy postać choroby była jeszcze rzutowo-remittinga. Niemniej, nie we wszystkich przypadkach uzyskano z dokumentacji wiek rozpoznania SM, stąd zmniejszona liczba pacjentów do wyliczenia wieku rozpoznania. Dane nominalne zostały opisane jako n (%), zaś dane ilościowe jako średnia arytmetyczna ± odchylenie standardowe (x ± SD) w przypadku zmiennych normalnych lub jako mediana (pierwszy kwartyl Q1 – trzeci kwartyl Q3) dla zmiennych niemających rozkładu normalnego.

Table I. Groups characteristics

Characteristic/Cecha	n	Study group/Grupa badana	n	Control group/Grupa kontrolna	p
Gender, n (%)/Płeć, n (%)					
Female/Kobieta	130	91 (70.0%)*	177	114 (64.4%)*	0.365
Male/Mężczyzna	39	(30.0%)*	62	(35.6%)*	
Age/Wiek, lata	130	51.0 (39.3–59.0)	177	42.0 (35.0–52.0)	< 0.001
Patient’s age at time of MS diagnosis/Wiek rozpoznania SM, lata	118	38.5 (28.3–46.0)	n/a	n/a	n/a
MS Type, n (%)/Postać SM, n (%)					
Relapsing-Remitting Type/Postać rzutowo-remittinga	130	87 (66.9%)*	n/a	n/a	n/a
Secondary-Progressive Type/Postać wtórnie postępująca	32	(24.6%)*	n/a	n/a	n/a
Primary – Progressive Type/Postać pierwotnie postępująca	11	(8.5%)*	n/a	n/a	n/a

*If not otherwise stated, data are presented as median (Q1-Q3). Groups were compared using chi² test for nominal variables and Mann-Whitney U test for quantitative variables. MS – multiple sclerosis; * – data presented as n (%).
Dane przedstawiono jako mediane (Q1-Q3), o ile nie zaznaczono inaczej. Grupy porównano testem chi² dla zmiennych nominalnych oraz testem U Mannana-Whitneya dla zmiennych ilościowych. MS – stwardnienie rozsiane; * – dane przedstawione jako n (%).
the lack of meeting the assumption of equal variance, the comparison of median values for quantitative variables was performed with the Mann-Whitney U test or Kruskal-Wallis test. All the tests were bilateral, with a significance level of 0.05. Statistical calculations were performed in the statistical R package, version 3.5.1.

Because of the statistically significant difference in the mean age between the individual types of multiple sclerosis and the control group, the incidence of diseases within the individual types of multiple sclerosis was compared with an age-matched control group. Matching was performed for each of the multiple sclerosis types separately, selecting from the control group those patients whose age was within the interquartile range (Q1-Q3) of the mean age for the test group for each multiple sclerosis type. After such matching, the mean age comparison between the test and control groups was repeated for each of the multiple sclerosis types where significant differences were found.

RESULTS

The analysis of the multiple sclerosis patients’ medical records showed that 49.2% of them suffered from other diseases (Fig. 1).

Following the division of patients according to the type of multiple sclerosis, patients with comorbidities constituted:

• 40.2% among patients with the relapsing-remitting type,
• 59.4% among patients with the secondary-progressive type,
• 90.9% among patients with the primary-progressive type.

The most common diseases among the patients diagnosed with multiple sclerosis were: hypertension (n = 31, 23.8%), depression (n = 12, 9.2%), benign prostatic hyperplasia (n = 10, 7.7%), type 2 diabetes (n = 9, 6.9%), spinal discopathy (n = 7, 5.4%), and a history of cancer (n = 5, 3.8%), including 2% malignant tumors.

ANALYSIS

Analiza dokumentacji medycznej pacjentów ze SM wykazała, że 49,2% z nich chorowało na inne schorzenia (ryc. 1).

Po podziale pacjentów ze względu na postać SM chorzy ze schorzeniami współistniejącymi stanowili:

• 40,2% wśród pacjentów z postaciąrstwo-remisyjną,
• 59,4% wśród pacjentów z postacią wtórnie postępującą
• 90,9% wśród pacjentów z postacią pierwotnie postępującą.

Table II. Characteristics of multiple sclerosis forms

Characteristic	Relapsing-Remitting Type	Secondary-Progressive Type	Primary-Progressive Type	P				
Gender/Mężczyzna	Female/Kobieta	87	63 (72.4%)*	32	23 (71.9%)*	11	5 (45.5%)*	0.178
Age/Wiek, lata	Male/Mężczyzna	87	24 (27.6%)*	32	9 (28.1%)*	11	6 (54.5%)*	< 0.001
Patient’s age at time of diagnosis/Wiek rozpoznania, lata	84	35.0 (27.0–46.0)	24	40 (32.3–44.5)	10	45.5 (41.5–52.3)	0.032	
Period of time since diagnosis, in years/Czas od rozpoznania, lata	84	6.5 (3.0–11.0)	24	20.0 (14.0–20.3)	10	14.0 (7.5–18.8)	< 0.001	

1Data are presented as arithmetic mean (±SD) or median (Q1-Q3), unless otherwise stated. Groups were compared using chi2 test for nominal variables and Kruskal-Wallis test for quantitative variables; * - data presented as n (%).

2Dane przedstawiono jako średnią arytmetyczną (±SD) lub medianę (Q1-Q3), o ile nie zaznaczono inaczej. Grupy porównano testem chi2 dla zmiennych nominalnych oraz testem Kruskalla-Wallisa dla zmiennych ilościowych; * – dane przedstawione jako n (%).
mours and 2% non-malignant tumours, ischemic heart disease (n = 4, 3.1%), hypothyroidism (n = 4, 3.1%), psoriasis (n = 4, 3.1%), bronchial asthma (n = 4, 3.1%), and ulcerative colitis (n = 4, 3.1%). In the control group the most common diseases were: hypertension (n = 38, 21.5%), spinal discopathy (n = 15, 8.5%), hypothyroidism (n = 9, 5.1%), and type 2 diabetes (n = 8, 4.5%). The control group did not report such diseases as depression, psoriasis, ulcerative colitis, benign prostatic hyperplasia, rheumatoid arthritis, cancer, glaucoma, epilepsy, irritable bowel syndrome, arterial atherosclerosis of the lower limbs or renal failure. A statistically significant difference between the two groups, related to incidence, was observed for depression (p < 0.001), benign prostatic hyperplasia (p < 0.001), cancer (p = 0.013), psoriasis (p = 0.031) and ulcerative colitis (p = 0.031), which were significantly more frequent in the group of patients suffering from multiple sclerosis.

The incidences of individual disease entities following the division of patients with MS by disease type and in comparison with the age-matched control group are presented in Tables IV, V, VI. Depression (p = 0.005) and cancer (p = 0.049) were more frequent in the group of patients with the relapsing-remitting type than in the control group. In the group of patients with the secondary-progressive type, benign prostatic hyperplasia was observed more frequently in the control group (p = 0.044). In the group of patients with the primary-progressive type, no basis was found for statistically significant differences in the incidence of individual diseases between the control and study groups (p > 0.05). The obtained data show a high percentage of patients with hyperlipidaemia among persons suffering from multiple sclerosis (Fig. 2).

The obtained data show a high percentage of patients with hyperlipidaemia among persons suffering from multiple sclerosis (Fig. 2).
Condition	Patients with MS (n = 130)/Pacjenci z SM (n = 130)	Control group (n = 177)/Grupa kontrolna (n = 177)	P
Hypertension/Nadciśnienie tętnicze	23.8% (n = 31)	21.5% (n = 38)	0.723
Depression/Depresja	9.2% (n = 12)	0.0% (n = 0)	< 0.001
Benign prostatic hyperplasia/Lagodny rozrost gruczołu krokowego	7.7% (n = 10)	0.0% (n = 0)	< 0.001
Type 2 diabetes/Cukrzycy typu 2	6.9% (n = 9)	4.5% (n = 8)	0.511
Spinal discopathy/Dyskopatia kręgosłupa	5.4% (n = 7)	8.5% (n = 15)	0.416
History of cancer/Choroba nowotworowa w wywiadzie	3.8% (n = 5)	0.0% (n = 0)	0.013
Hypothyroidism/Niedoczynność tarczycy	3.1% (n = 4)	5.1% (n = 9)	0.568
Ischemic heart disease/Choroba nerekwieniwa serca	3.1% (n = 4)	0.6% (n = 1)	0.167
Psoriasis/Luszczycya	3.1% (n = 4)	0.0% (n = 0)	0.031
Bronchial asthma/Astma oskrzelowa	3.1% (n = 4)	1.1% (n = 2)	0.246
Ulcerative colitis/Wrzodziejące zapalenie jelita grubeego	3.1% (n = 4)	0.0% (n = 0)	0.031
Renal failure/Niewydolność nerek	2.3% (n = 3)	0.0% (n = 0)	0.075
Degenerative joint changes/Zmiany zwyrodnieniowe stawów	2.3% (n = 3)	0.6% (n = 1)	0.315
Arterial atherosclerosis of lower limbs/Miażdżyca tętnic kończyn dolnych	2.3% (n = 3)	0.0% (n = 0)	0.075
Rheumatoid arthritis/Reumatoidalne zapalenie stawów	0.8% (n = 1)	0.0% (n = 0)	0.424
Epilepsy/Padaczka	0.8% (n = 1)	0.0% (n = 0)	0.424
Irritable bowel syndrome/Zespół jelita drażliwego	0.8% (n = 1)	0.0% (n = 0)	0.424
Migraine/Migrena	0.8% (n = 1)	0.6% (n = 1)	> 0.999
Glaucoma/Jaskra	0.8% (n = 1)	0.0% (n = 0)	0.424
Polycystic ovary syndrome/Zespół policystycznych jajników	0.0% (n = 0)	0.6% (n = 1)	> 0.999
Endometriosis/Endometriocha	0.0% (n = 0)	0.6% (n = 1)	> 0.999
Sigmoid diverticula/Uchyłki esicy	0.0% (n = 0)	0.6% (n = 1)	> 0.999

Condition	Patients with MS (n = 87)/Pacjenci z SM (n = 87)	Control group (n = 96)/Grupa kontrolna (n = 96)	P
Hypertension/Nadciśnienie tętnicze	16.1% (n = 14)	18.8% (n = 18)	0.781
Depression/Depresja	8.0% (n = 7)	0.0% (n = 0)	0.005
History of cancer/Choroba nowotworowa w wywiadzie	4.6% (n = 4)	0.0% (n = 0)	0.049
Benign prostatic hyperplasia/Lagodny rozrost gruczołu krokowego	3.4% (n = 3)	0.0% (n = 0)	0.106
Type 2 diabetes/Cukrzycy typu 2	3.4% (n = 3)	3.1% (n = 3)	> 0.999
Hypothyroidism/Niedoczynność tarczycy	3.4% (n = 3)	3.1% (n = 3)	> 0.999
Spinal discopathy/Dyskopatia kręgosłupa	2.3% (n = 2)	7.3% (n = 7)	0.177
Psoriasis/Luszczycya	2.3% (n = 2)	0.0% (n = 0)	0.225
Bronchial asthma/Astma oskrzelowa	2.3% (n = 2)	1.0% (n = 1)	0.605
Arterial atherosclerosis of lower limbs/Miażdżyca tętnic kończyn dolnych	2.3% (n = 2)	0.0% (n = 0)	0.225
Ischemic heart disease/Choroba nerekwieniwa serca	1.1% (n = 1)	0.0% (n = 0)	0.475
Renal failure/Niewydolność nerek	1.1% (n = 1)	0.0% (n = 0)	0.475
	Patients with MS (n = 32)	Control group (n = 36)	P
--------------------------	----------------------------	------------------------	---------
Degenerative joint changes/Zmiany zwyrodnieniowe stawów	1.1% (n = 1)	0.0% (n = 0)	0.475
Rheumatoid arthritis/Reumatoidalne zapalenie stawów	1.1% (n = 1)	0.0% (n = 0)	0.475
Epilepsy/Padaczka	1.1% (n = 1)	0.0% (n = 0)	0.475
Irritable bowel syndrome/Zespół jelita drażliwego	1.1% (n = 1)	0.0% (n = 0)	0.475
Migraine/Migrena	1.1% (n = 1)	1.0% (n = 1)	> 0.999
Glaucoma/Jaskra	1.1% (n = 1)	0.0% (n = 0)	0.475
Ulcerative colitis/Wzrościejące zapalenie jelita grubego	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Polycystic ovary syndrome/Zespół policystycznych jajników	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Endometriosis/Endometrioza	0.0% (n = 0)	1.0% (n = 1)	> 0.999
Sigmoid diverticula/Uchyłki esicy	0.0% (n = 0)	0.0% (n = 0)	> 0.999

Table V. The frequency of diseases in patients with MS – secondary progressive form and control group, matched to the age group.
Table VI. The frequency of diseases in patients with MS – primary progressive form and control group, matched to the age group

Disease	Patients with MS (n = 11)	Control group (n = 30)	P
Hypertension	45.5% (n = 5)	53.3% (n = 16)	0.925
Type 2 diabetes	36.4% (n = 4)	13.3% (n = 4)	0.178
Spinal discopathy	27.3% (n = 3)	23.3% (n = 7)	> 0.999
Benign prostatic hyperplasia/Lagodny rozrost gruczołu krokowego	18.2% (n = 2)	0.0% (n = 0)	0.067
Depression/Depresja	9.1% (n = 1)	0.0% (n = 0)	0.268
Psoriasis/Psoriasis	9.1% (n = 1)	0.0% (n = 0)	0.268
Arterial atherosclerosis of lower limbs	9.1% (n = 1)	0.0% (n = 0)	0.268
Hyperthyroidism/Niedocznosć tarczycy	0.0% (n = 0)	16.7% (n = 5)	0.300
Ischemic heart disease/Choroba niedokrwienna serca	0.0% (n = 0)	3.3% (n = 1) or 3.3% (n = 1)	> 0.999
Bronchial asthma/Asthma oskrzeliowa	0.0% (n = 0)	3.3% (n = 1)	> 0.999
Degenerative joint changes/Zmiany zwrodnieniowe stawów	0.0% (n = 0)	3.3% (n = 1)	> 0.999
Sigmoid diverticula/Uchyłki esicy	0.0% (n = 0)	3.3% (n = 1)	> 0.999
History of cancer/Choroba nowotworowa w wywiadzie	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Ulcerative colitis/Wrzodziejące zapalenie jelita grubego	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Renal failure/Niewydolność nerek	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Rheumatoid arthritis/Reumatoidalne zapalenie stawów	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Epilepsy/Padaczka	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Irritable bowel syndrome/Zespół jelita drażiwego	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Migraine/Migrena	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Glaucoma/Jaskra	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Polycystic ovary syndrome/Zespół policystycznych jajników	0.0% (n = 0)	0.0% (n = 0)	> 0.999
Endometriosis/Endometrioza	0.0% (n = 0)	0.0% (n = 0)	> 0.999

It is also significant that 80% of patients with an abnormal lipid profile had elevated total cholesterol and LDL values. In other cases, only the LDL levels (16%) or all the cholesterol fractions (total, LDL) and triglycerides (4%) were elevated.

DISCUSSION

In our analysis, the most frequent concomitant diseases in patients with MS were: hyperlipidemia, hypertension, depression, type 2 diabetes, benign prostatic hyperplasia, spinal discopathy, cancer in medical history, coronary artery disease, hyperthyroidism, psoriasis, bronchial asthma, and ulcerative colitis. Data from various parts of the world regarding comorbidities in patients with multiple sclerosis can be found in many

W grupie pacjentów z postacią wtórnie postępującą istotnie częściej niż w grupie kontrolnej pojawiał się łagodny rozrost gruczołu krokowego (p = 0,044). W grupie chorych z postacią pierwotnie postępującą nie znaleziono podstaw do stwierdzenia istotnych statystycznie różnic w częstości poszczególnych jednostek chorobowych pomiędzy grupami kontrolną a badaną (p > 0,05). W uzyskanych danych zwraca uwagę duży odsetek pacjentów z hiperlipidemią wśród chorych ze stwardnieniem rozsianym (ryc. 2). Istotny jest również fakt, że wśród pacjentów z nieprawidłowym profiliem lipido-wym až 80% miało podwyższone wartości cholesterolu całkowitego i LDL. W pozostałych przypadkach był podwyższony tylko poziom LDL (16%) lub wszystkie frakcje cholesterolu (całkowity, LDL) oraz trójglicerydowy (4%).
In a study conducted in the United States on the basis of data from the years 2006–2014, where the average age of the patients was 46.7–47.8 years, and women constituted ¾ of the studied group, the following concomitant diseases were listed among the ones occurring most frequently: hyperlipidaemia (25.9%), hypertension (22.7%), gastrointestinal diseases (18.4–21.2%), thyroid diseases (12.9–17.1%), chronic pulmonary disease, arthritis, anxiety, diabetes, and depression (5–10%). In turn, in a study conducted in Asturias and Catalonia in Spain, where the average age of the patients was 45.5 ± 12.5 years, 64.4% of the studied patients were women, 62.2% of the patients suffered from relapsing-remitting multiple sclerosis, and the most frequent comorbidities were: depression (32.4%), dyslipidaemia (31.1%) and hypertension (23%).

Some studies suggest that concomitant diseases such as cardiovascular conditions may accelerate the progression of disability in MS patients [7]. Other publications draw attention to the fact that in patients with concomitant migraines, hyperlipidaemia or three or more comorbidities, the relapse rate within two years increases [8].

In some studies, the dependence between concomitant diseases and the frequency of mental disorders in patients with immune-mediated inflammatory diseases, among others, patients with MS, was researched. Scientists noticed that the risk of depression, anxiety disorders and bipolar affective disorders grew with an increase in the number of comorbidities [9]. In our study at least one concomitant disease apart from MS was found in the patients with concomitant depression.

A considerable percentage of patients with hyperlipidaemia, especially with an elevated total cholesterol and LDL fraction, were observed in the studied group. The literature on the subject contains information regarding the negative influence of high cholesterol and triglyceride concentrations and the positive influence of an elevated HDL fraction on acute inflammatory activity.
The results of published clinical trials of statins as an intervention in patients with MS are inconsistent and caution should be exercised when treating patients with multiple sclerosis. In our study we did not manage to find a correlation between elevated cholesterol and inflammatory activity in MRI examinations due to the scarcity of the data related to the matter in medical documentation [10]. In our analysis we observed the highest comorbidity in patients with primary-progressive MS. The correlation most probably resulted from the fact that the patients in this group were the oldest. In a NARCOMS multi-centre study, no significant differences were found between concomitant diseases for particular types of multiple sclerosis, listing cardiovascular diseases as first [11].

In the studied group of MS patients, the comorbidity of cancer in medical history, which concerns 3.8% of patients, also draws attention. In 3 cases it was breast cancer, and in the rest – thoracic spinal meningioma, cerebral meningioma, pituitary macroadenoma, and lateral ventricle subependymoma. In several studies presented in the literature on the subject, it was suggested that in patients with multiple sclerosis the risk of the occurrence of specific cancers, i.e. of the gastrointestinal tract, respiratory organs, prostate and ovaries may be decreased, while the risk of breast, brain and urinary bladder cancer is higher. It is currently uncertain whether the immunological profile of MS patients could be associated with an increased or decreased frequency of some cancers, hence further studies are legitimate [12]. It should be emphasised that there are reports on the possibility of cancer being caused by some medication applied in the treatment of MS. Some studies suggest that there is an increased risk of cancer in MS patients treated with drugs such as Mitoxantrone, Azathioprine and Cyclophosphamide. Due to its effect on the immune system and the lack of available long-term observations, the potential risk of cancer occurs while using such drugs as Cladribine, Fingolimod, Natalizumab, Alemtuzumab. Most of the listed works, however, do not take into account such factors as diet, smoking, solar radiation and hormonal therapy, which also influence cancer development [13]. In the studied group, 2 patients with breast cancer had been treated with beta-interferon. A similar situation took place in the case of cerebral and spinal meningioma, and the diagnosis of lateral ventricle subependymoma was made before implementation of the treatment, when the first MR examination of the head was performed. In the literature on the subject, reports on the correlation between treatment with beta-interferon and meningioma growth can be found. It is speculated that the medication may cause an increase in the mass of this type of lesions through enhancement of the receptors of the platelet-derived growth factor (PDGF) [14, 15]. In the studied group, the growth of cerebral meningioma in a female patient was so rapid during interferon treatment that the treatment was withdrawn. There are single reports which contradict the above observations; spontaneous regression of meningioma in a patient undergoing interferon-beta 1a afektywnych dwubiegunowych zwiększało wraz ze wzrostem liczby chorób współistniejących [9]. W naszym badaniu u większości pacjentów z towarzyszącą depresją rozpoznano przynajmniej jedno schorzenie współistniejące oprócz stwardnienia rozsianego. W badanej grupie chorych na SM zaobserwowano znaczną frekwencję osób ze stwardnieniem rozsianym. W naszym badaniu nie udało się uchwycić zależności pomiędzy podwyższonymi wartościami cholesterolu a aktywnością zapałą w badaniach rezonansu magnetycznego. Opublikowane wyniki badań klinicznych statyn, jako interwencji u pacjentów z SM, są sprzeczne i należy zachować ostrożność podczas stosowania ich w leczeniu osób ze stwardnieniem rozsianym. W naszym badaniu nie udało się uchwycić zależności pomiędzy podwyższonymi wartościami cholesterolu a aktywnością zapałą w badaniach rezonansu magnetycznego, ze względu na skąpe dane w dokumentacji medycznej w tym zakresie [10].

W naszej analizie zaobserwowaliśmy największą współchorobowość u pacjentów z postacią pierwotną MS, która dotyczyła 3,8% pacjentów. W 3 przypadkach był to rak piersi, z kolei w pozostałych oponiak kręgosłupa Th, oponiak mózgowia, makrogruczolak przysadki, alemtezumab. Most of the listed works, however, do not take into account such factors as diet, smoking, solar radiation and hormonal therapy, which also influence cancer development [13]. In the studied group, 2 patients with breast cancer had been treated with beta-interferon. A similar situation took place in the case of cerebral and spinal meningioma, and the diagnosis of lateral ventricle subependymoma was made before implementation of the treatment, when the first MR examination of the head was performed. In the literature on the subject, reports on the correlation between treatment with beta-interferon and meningioma growth can be found. It is speculated that the medication may cause an increase in the mass of this type of lesions through enhancement of the receptors of the platelet-derived growth factor (PDGF) [14, 15]. In the studied group, the growth of cerebral meningioma in a female patient was so rapid during interferon treatment that the treatment was withdrawn. There are single reports which contradict the above observations; spontaneous regression of meningioma in a patient undergoing interferon-beta 1a
treatment was observed in 2017 in Vienna [16]. Reports on the occurrence of chronic myelogenous leukaemia during interferon beta-1a treatment can also be found in publications [17]. Such cases were not observed in the studied group.

In the literature, there is information on a more frequent occurrence of restless leg syndrome (RLS) in patients with MS. One of the publications showed that in patients with MS the incidence of RLS was four times higher than in patients without multiple sclerosis [18]. Only one case of RLS was observed in the study group. The necessity to provide MS patients with coordinated care is mentioned increasingly more often. In 2014, the World Health Organisation (WHO) provided a new definition of person-focused care: Coordinated healthcare means medical services, managed and provided to people in a way which ensures the acquisition of a continuum of health promotion, disease prevention, diagnosis treatment, disease management, rehabilitation and palliative medical services at various levels and in various places of the healthcare system, in accordance with the needs, throughout their entire life and in the form of constant discussion with patients. Getting to know the health needs of MS patients is therefore necessary for effective treatment of this group of patients, thus, further research is needed [19].

CONCLUSIONS

1. In the studied group of patients with multiple sclerosis, the most common comorbidities were: hyperlipidaemia, hypertension, depression, benign prostatic hyperplasia, type 2 diabetes, and spinal discopathy.

2. The distribution of the incidence of particular diseases was different in various types of MS, but it is possible that it resulted from the age differences among the patients.

3. In the studied group, the levels of total cholesterol and LDL fraction in a vast majority of patients with hyperlipidaemia were elevated.

4. The studies on the matter of concomitance in MS patients may improve the effectiveness of treatment in this group of patients, and is an important element of coordinated care.

nalna, które również mają wpływ na zachorowanie na nowotwór [13]. W badanej grupie 2 pacjentki z rakiem piersi były leczone interferonem beta. Podobna sytuacja miała miejsce w przypadku oponiaków mózgowia i kręgosłupa, natomiast rozpoznanie podwyściółczaka komory bocznej postawiono przed włączeniem leczenia, w momencie wykonania pierwszego badania MR głowy. W piśmiennictwie można znaleźć doniesienia na temat zależności pomiędzy leczeniem interferonem beta a wzrostem oponiaka. Spekuluje się, że lek ten może powodować powiększenie masy tego typu zmian poprzez wzmacnienie receptorów płytkopochodnego czynnika wzrostu (PDGF) [14,15]. W badanej grupie u pacjentki z oponiakiem mózgowia wzrost tego guza w trakcie terapii interferonem był tak szybki, że zdecydowano o zaprzestaniu terapii. Istnieją również pojedyncze doniesienia przeczące powyższym obserwacjom, mianowicie w opisie przypadku z Wiednia z 2017 r. zaobserwowano spontaniczną regresję oponiaka u pacjenta poddawanego terapii interferonem beta-1a [16]. W publikacjach można również znaleźć obserwację wystąpienia przewlekłej białaczki szpikowej w trakcie leczenia interferonem beta-1a [17]. W grupie badanej nie odnotowano tego typu przypadków.

W piśmiennictwie pojawiają się informacje na temat częstszego występowania zespołu niespokojnych nóg (RLS) u chorych ze SM. W jednej z publikacji wykazało, że u pacjentów z SM częstość RLS była czterokrotnie wyższa niż u osób bez SM[18]. W grupie badanej odnotowano tylko jeden przypadek RLS.

Coraz powszechniej mówi się o konieczności opieki koordynowanej u pacjentów ze SM. W 2014 r. Światowa Organizacja Zdrowia (WHO) podała nową definicję opieki skoncentrowanej na osobie: Koordynowana opieka zdrowotna to usługi medyczne, zarządzane i dostarczane osobom w sposób zapewniający uzyskanie kontinuum promocji zdrowia, zapobiegania chorób, diagnozy, leczenia, zarządzania chorobami, rehabilitacji oraz paliatywnych usług medycznych, na różnych poziomach oraz w różnych miejscach systemu opieki zdrowotnej, zgodnie z zapotrzebowaniem, w okresie całego życia i w formie stałej dyskusji z pacjentami. Poznanie potrzeb zdrowotnych chorych z SM jest zatem niezbędne do efektywnego leczenia tej grupy pacjentów, w związku z czym konieczne są dalsze badania [19].
WNIOSKI

1. W badanej grupie pacjentów ze stwardnieniem rozsianym najczęstszymi chorobami współistniejącymi były: hiperlipidemia, nadciśnienie tętnicze, depresja, łagodny rozrost gruczołu krokowego, cukrzyca typu 2 i dyskopia kręgosłupa.

2. Rozkład częstości występowania poszczególnych jednostek chorobowych różnił się w poszczególnych postaciach SM, ale mogło to wynikać z różnic wiekowych pomiędzy chorymi.

3. W grupie badanej u chorych z hiperlipidemią zdecydowana większość pacjentów miała podwyższony poziom cholesterolu całkowitego i frakcji LDL.

4. Badanie kwestii współchorobowości u chorych z SM może poprawić efektywność leczenia tej grupy pacjentów, stanowiąc istotny element opieki koordynowanej.

REFERENCES

1. Giovannoni G., Butzkueven H., Dhib-Jalbirt S., Hobart J., Kobelte G., Perrett G., Sormanag M.P., Thalheimn C., Trabouisee A., Vollmeir T. Brain health: time matters in multiple sclerosis. Multiple Sclerosis and Related Disorders 2016; 9(Suppl. 1): S5–S48, doi: 10.1016/j.msard.2016.07.003.

2. Bartosik-Puszyk H. Stwardnienie rozsiane. Neurologia. Red. A. Stepien. Medical Tribune Polska. Warszawa 2015; s. 84–88.

3. Strandell A., Toma F., Petas N., Pantano P. DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult. Scler. Int. 2013; 2013: 671–730, doi: 10.1155/2013/671370.

4. Multiple Sclerosis International Federation. 2013a. Atlas of MS 2013: Mapping Multiple Sclerosis around the World. Multiple Sclerosis International Federation. [dostęp: http://www.msf.org/wp-content/uploads/2014/09/Atlas-of-MS.pdf]

5. Edwards N.C., Munsell M., Menzin J., Phillips A.L. Comorbidity in US patients with multiple sclerosis. Patient Relat Outcome Meas. 2011; 3(3): 121–132, doi: 10.2147/PROM.S148387.

6. Sicras-Mainar A., Ruiz-Beato E., Navarro-Artieda R., Maurino J. Comorbidity and metabolic syndrome in patients with multiple sclerosis from Asturias, Spain. BMC Neurol. 2017; 17(1): 134, doi: 10.1186/s12883-017-0914-2.

7. Puz P., Lasik-Bal A., Stepas A., Bartoszek K., Radecka P. Effect of comorbidity on the course of multiple sclerosis. Clin. Neurosurg. 2018; 167: 76–81, doi: 10.1016/j.clineuro.2018.02.014.

8. Kowalczik K., McKay K.A., Patten S.B., Fisk J.D., Evans C., Tremlett H., Merva R.A. Comorbidity increases the risk of relapse in multiple sclerosis: A prospective study. Neurology 2017; 89(24): 2455–2461, doi: 10.1212/WNL.00000000004716.

9. Marrie R.A., Walld R., Bolton J.M., Sareen J., Patten S.B., Singer A., Miller D.A., Collaborators. Meningoma in a multiple sclerosis patient being treated with interferon beta-1b treated multiple sclerosis: co-occurrence or relationship? Neuroradiology 2005; 47(7): 516–519, doi: 10.1007/s00234-005-1392-6.

10. Tettey P., Simpson S. Jr, Taylor B.V., van der Mei I.A. Vascular comorbidities in the onset and progression of multiple sclerosis. J. Neurol. Sci. 2014; 347(1–2): 23–33, doi: 10.1016/j.jns.2014.10.020.

11. Sailer A., Thomas NP., Tury T., Cutter GR., Marrie RA. A contemporary profile of primary progressive multiple sclerosis participants from the NARCOMS Registry. Mult. Scler. 2018; 24(7): 951–962, doi: 10.1177/1352458517711274.

12. Kyritsis A.P., Boussios S., Pavlidis N. Cancer specific risk in multiple sclerosis patients. Crit. Rev. Oncol. Hematol. 2016; 98: 29–34, doi: 10.1016/j.cri- revonc.2015.10.002.

13. Lebrun C., Roher F. Cancer Risk in Patients with Multiple Sclerosis: Potential Impact of Disease-Modifying Drugs. CNS Drugs. 2018; 32(10): 939–949, doi: 10.1007/s40263-018-0564-y.

14. Drevelegas A., Xinou E., Karacostas D., Parisidis D., Karkavelas G., Milonas I. Meningoma growth and interferon beta-1b treated multiple sclerosis: costs and quality of life. Acta Neurochir. (Wien). 2002; 144(4): 365–368, doi: 10.1007/s007010200050.

15. Batay F., Al-Mefty O. Growth dynamics of meningomas in patients with multiple sclerosis treated with interferon: report of two cases. Acta Neurochir. (Wien). 2016; 159(3): 469–471, doi: 10.1007/s00701-015-2476-0.

16. Galloway L., Vakili N., Spears J. Spontaneous regression of parafalcine meningoma in a multiple sclerosis patient being treated with interferon beta-1a. Acta Neurochir. (Wien). 2017; 159(3): 469–471, doi: 10.1007/s00701-016-3019-6.

17. Almeida L., Neves M., Cardoso E., Melo A. Chronic myeloid leukaemia and meningoma in a multiple sclerosis patient on interferon beta-1a. Acta Neurochir. (Wien). 2009; 151(12): 1257–1259, doi: 10.1007/s00701-009-1075-6.

18. Schürks M., Bussfeld P. Multiple sclerosis and restless legs syndrome: a systematic review and meta-analysis. Eur. J. Neurol. 2013; 20(4): 605–615, doi: 10.1111/j.1468-1331.2012.03873.x.

19. Guus Schrijvers. Integrated Care. Better and Cheaper. Reed Business Information. Amsterdam 2016, 27–28.