ON GENERALIZATIONS OF LUKASIEWICZ RINGS

1. Preliminaries

Given any ring R satisfying: for every $x \in R$, there exists $r, r' \in R$ such that $xr = r'x = x$, the lattice of ideals of R form a pseudo residuated lattice $A(R) := (\text{Id}(R), \land, \lor, \bowtie, \rightarrow, \sim, \{0\}, R)$, where $I \land J = I \cap J$, $I \lor J = I + J$, $I \bowtie J := \{x \in R :Ix \subseteq J\}$, $I \rightarrow J := \{x \in R :xI \subseteq J\}$.

The authors of [1] investigated the rings R for which $A(R)$ is an MV-algebra. Recall that MV-algebras, which constitute the algebraic counterpart of Lukasiewicz many value logic are equivalent to ℓ-groups with strong units [?]. Several commutative and noncommutative generalizations of MV-algebras, among which pseudo MV-algebras and BL-algebras have been introduced and studied thoroughly (see for e.g., []).

The main goal of this work is to investigate two generalizations of Lukasiewicz rings: noncommutative Lukasiewicz rings which will be refer to as GLR, which are rings for which $A(R)$ is a pseudo MV-algebra, and BL-rings which are rings R for which $A(R)$ is a BL-algebra. It turns that the class of BL-rings coincides with that of multiplication rings as studied in [5].

A (pseudo) residuated lattice is a nonempty set L with five binary operations $\land, \lor, \bowtie, \rightarrow, \sim$, and two constants $0, 1$ satisfying:

L-1: $\mathbb{L}(L) := (L, \land, \lor, 0, 1)$ is a bounded lattice;

L-2: $(L, \bowtie, 1)$ is a monoid;

L-3: $x \bowtie y \leq z$ iff $x \leq y \rightarrow z$ iff $y \leq x \sim z$ (pseudo-Residuation);

A pseudo-RL monoid is a pseudo-residuated lattice L which satisfies the following condition:

L-4: $y \bowtie (y \sim x) = x \land y = (x \rightarrow y) \bowtie x$ (pseudo-Divisibility).

A pseudo-MTL algebra is a pseudo-residuated lattice L which satisfies the following condition:

L-5: $(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \sim y) \lor (y \sim x)$ (pseudo-Prelinearity);

A pseudo BL-algebra is a pseudo-MTL-algebra L which satisfies the pseudo-Divisibility.

A pseudo MV-algebra is a pseudo BL-algebra L which satisfies the following condition:

L-7: $\overline{\overline{x}} = x = \overline{\overline{x}}$.

1
In the literature, as for example in \cite{3}, pseudo-MV algebras are also defined as algebras $A = (A, \oplus, \odot, -, \sim, 0, 1)$ of type $(2, 2, 1, 1, 0, 0)$ satisfying the following for all $x, y, z \in A$:

\begin{itemize}
 \item psMV-1 $$(x \oplus y) \oplus z = x \oplus (y \oplus z);$$
 \item psMV-2 $x \oplus 0 = 0 \oplus x = x$;
 \item psMV-3 $x \oplus 1 = 1 \oplus x = 1$;
 \item psMV-4 $1^\sim = 0, 1^\sim = 0$;
 \item psMV-5 $(x^\sim \oplus y^\sim)^\sim = (x^\sim \oplus y^\sim)^\sim$;
 \item psMV-6 $x \oplus (x^\sim \odot y) = y \oplus (y^\sim \odot x) = (x \odot y^\sim) \oplus y = (y \odot x^\sim) \oplus x$;
 \item psMV-7 $x \odot (x^\sim \oplus y) = (x \oplus y^\sim) \odot y$;
 \item psMV-8 $(x^\sim)^\sim = x$;
\end{itemize}

Every pseudo MV-algebra has an underline distributive lattice structure defined by $x \leq y$ if and only if $x \oplus z = y$ for some $z \in A$. Moreover, the infimum and supremum are given by

(i) $x \lor y = x \oplus (x^\sim \odot y) = y \oplus (y^\sim \odot x) = (x \odot y^\sim) \oplus y = (y \odot x^\sim) \oplus x$,

(ii) $x \land y = x \odot (x^\sim \oplus y) = y \odot (y^\sim \oplus x) = (x \oplus y^\sim) \odot y = (y \oplus x^\sim) \odot x$.

Pseudo MV-algebras have a wealth of properties that will be used repeatedly with any explicit citation.

We will need the following properties of Pseudo MV-algebras that we could not find in the literature.

Proposition 1.1. Let A be a pseudo MV-algebra and $x, y, z \in A$.

(i) If $x \leq y$, then $(z \odot y^\sim) \oplus (y \odot x^\sim) = (y \lor z) \odot x^\sim$;

(ii) If $x \leq y, z$, then $z \oplus (x^\sim \odot y) = (z \odot x^\sim) \oplus y$.

Proof. (i) Suppose that $x \leq y$, then

\[
(y \lor z) \odot x^\sim = (y \odot x^\sim) \lor (z \odot x^\sim) \\
= [(z \odot x^\sim) \odot (y \odot x^\sim)] \oplus (y \odot x^\sim) \\
= [(x \odot z^\sim) \odot (y \odot x^\sim)] \oplus (y \odot x^\sim) \\
= [(y \odot x^\sim) \odot (x \odot z^\sim)] \oplus (y \odot x^\sim) \\
= [(y \lor x) \odot (y \odot x^\sim) \oplus (y \odot x^\sim) \\
= (y \lor z^\sim) \oplus (y \odot x^\sim) \quad \text{since } x \leq y \\
= (z \odot y^\sim) \oplus (y \odot x^\sim)
\]

(ii) Since $x \leq y, z$, there exists $a \in A$ such that $y = x \oplus a$ and $z \odot x^\sim = 1$.

Now, $z \oplus (x^\sim \odot y) = z \oplus (x^\sim \odot (x \oplus a)) = z \oplus (x^\sim \land a) = (z \oplus x^\sim) \land (z \oplus a) = z \oplus a$.
On the other hand,
\[(z \otimes x^{-}) \oplus y = (z \otimes x^{-}) \oplus (x \oplus a) = ((z \otimes x^{-}) \oplus x) \oplus a = (z \vee x) \oplus a = z \oplus a.\]
Hence, \(z \oplus (x^{-} \otimes y) = (z \otimes x^{-}) \oplus y = z \oplus a.\)

\[\square\]

2. Semi-rings and pseudo MV-algebras

Proposition 2.1. Let \(A = \langle A, \oplus, \odot, -, \sim, 0, 1 \rangle\) be a pseudo MV-algebra and \(S(A) := \langle A, +, \cdot, 0, 1 \rangle\). Then \(S(A)\) is an additively idempotent semi-ring satisfying:

(i) \(x \odot y = 0\) iff \(y \leq x^{-}\) iff \(x \leq y^{-}\);
(ii) \(x \vee y = ((x^{\sim} \cdot y)^{\sim} \cdot x^{\sim})^{-} = (x^{\sim} \cdot (y \cdot x^{-})^{\sim})^{-}\);
(iii) \((y^{\sim} \cdot x^{\sim})^{-} = (y^{-} \cdot x^{-})^{\sim}\)

where \(x + y = x \vee y\), \(x \cdot y = x \odot y\), and \(x \leq y\) iff \(x^{-} \oplus y = 1\).

Proof. Follows easily from the main properties of pseudo MV-algebras. \(\square\)

The construction above can be reversed.

Let \(S = \langle S, +, \cdot, 0, 1 \rangle\) be an additively idempotent semi-ring, define \(x \leq y\) iff \(x + y = y\). \(S\) is called a generalized Lukasiewicz (GL) semi-ring if there exists maps \(-: S \to S\) and \(\sim: S \to S\) satisfying for all \(x, y \in S\):

(i) \(x \odot y = 0\) iff \(y \leq x^{-}\) iff \(x \leq y^{-}\);
(ii) \(x \vee y = ((x^{\sim} \cdot y)^{\sim} \cdot x^{\sim})^{-} = (x^{\sim} \cdot (y \cdot x^{-})^{\sim})^{-}\).
(iii) \((y^{\sim} \cdot x^{\sim})^{-} = (y^{-} \cdot x^{-})^{\sim}\)

Lemma 2.2. Let \(S = \langle S, +, \cdot, -, \sim, 0, 1 \rangle\) be a GL semi-ring and \(\leq\) the relation defined above. Then each of the following properties holds for every \(x, y \in S\).

(i) The relation \(\leq\) is an order relation on \(S\) that is compatible with + and \(\cdot\),
(ii) \(x^{\sim} \cdot x = x \cdot x^{\sim} = 0\), \(0^{\sim} = 0^{-} = 1\) and \(1^{\sim} = 1^{-} = 0\),
(iii) \(x \leq y\) implies \(y^{\sim} \leq x^{\sim}\) and \(y^{-} \leq x^{-}\),
(iv) \(x^{\sim^{-}} = x^{\sim} = x\),
(v) \(S\) is a lattice-ordered ring, where \(x \vee y = x + y\) and \(x \wedge y = (x^{-} + y^{-})^{-} = (x^{\sim} + y^{\sim})^{-}\),
(vi) \((x^{-} + y^{-})^{-} = (x^{\sim} + y^{\sim})^{-}\)

Proof. (i) \(\leq\) is clearly reflexive and anti-symmetric. In addition, if \(x + y = y\)
and \(y + z = z\), then \(x + z = x + y + z = y + z = z\). Thus \(\leq\) is transitive. The compatibility of \(\leq\) with + and \(\cdot\) is also easy to verify.

For the rest of the properties, note that combining (ii) and (iii), the following property holds in any GL semi-ring.

(ii)' \(x + y = ((x^{\sim} \cdot y)^{\sim} \cdot x^{-})^{-} = (x^{\sim} \cdot (y \cdot x^{-})^{\sim})^{-}\).

(ii) Since \(x^{\sim} \leq x^{-}\) and \(x^{-} \leq x^{-}\), then the result follows from (i) of the
Proposition 2.3. For every generalized Lukasiewicz semi-ring \(S = \langle S, +, \cdot, ^\sim, \sim, 0, 1 \rangle \), define \(x \oplus y = (y^\sim \cdot x^\sim)^\sim = (y^\sim \cdot x^\sim)^\sim \) and \(x \odot y = x \cdot y \).

Then, \(A(S) := \langle S, \oplus, \odot, ^\sim, \sim, 0, 1 \rangle \) is a pseudo MV-algebra.

Proof. Observe from Lemma that \(x \oplus y = (y^\sim \cdot x^\sim)^\sim = (y^\sim \cdot x^\sim)^\sim \).

psMV-1. \(x \oplus (y \oplus z) = x \oplus ((z^\sim \cdot y^\sim)^\sim) = ((z^\sim \cdot y^\sim)^\sim \cdot x^\sim)^\sim = (z^\sim \cdot (y^\sim \cdot x^\sim))^\sim = (y^\sim \cdot x^\sim)^\sim \oplus z = (x \oplus y) \oplus z \).

psMV-2, psMV-3, psMV-4: follow straight from the lemma.

psMV-5: Since \(x \oplus y = (y^\sim \cdot x^\sim)^\sim = (y^\sim \cdot x^\sim)^\sim \), it follows that \((x^\sim \oplus y^\sim)^\sim = (x^\sim \oplus y^\sim)^\sim = y \cdot x \).

psMV-6: Note that from (ii) of the definition of GL semi-ring, \(x + y = x \bigoplus (x^\sim \odot y) = (y \odot x^\sim) \oplus x \). The equalities to the remaining expressions follow from the fact that + is commutative.

psMV-7: Note that \((x + y)^\sim = (x^\sim \cdot y^\sim)^\sim \cdot x^\sim \) and by (ii)’ of the proof of lemma, we also have \((x + y)^\sim = x^\sim \cdot (y \cdot x^\sim)^\sim \). Thus, \(x \odot (x^\sim \oplus y) = x \odot (y^\sim \cdot x^\sim) = (x^\sim + y^\sim)^\sim = (x^\sim + y^\sim)^\sim = (y^\sim + x^\sim)^\sim = (y \cdot x^\sim)^\sim \cdot y = (x \oplus y^\sim) \cdot y \).

psMV-8: Clear from lemma (iv).
Proposition 2.4. In a generalized Lukasiewicz semi-ring S, the following are equivalent:

a) I is an ideal of S

b) I is a non-empty subset, closed under $+$ and whenever $x \in I$ and $y \leq x$, then $y \in I$.

Proof. Assume that I is an ideal of S and let $x \in I$ and $y \in S$ with $y \leq x$. Then $x \cdot (y^\sim \cdot x)^\sim \in I$. But $x \cdot (y^\sim \cdot x)^\sim = (x^\sim + y^\sim)^\sim = y^\sim = y$. Thus, we obtain that $y \in I$.

Conversely, let $x \in I$ and $y \in S$, we have to show that $xy \in I$ and $yx \in I$. Since $1 = y + 1$, we have $x = xy + x = yx + x$. So $xy \leq x$ and $yx \leq x$ and we obtain that $xy \in I$ and $yx \in I$. \qed

Proposition 2.5. There is a natural duality between pseudo MV-algebras and generalized Lukasiewicz semi-rings.

Proof. One needs to prove that $S(A(S))$ and S are equal as GL semi-rings; and $A(S(A))$ and A are equal as pseudo MV-algebras. Since the underline sets remain unchanged and so do the operations: multiplication, \cdot, and \sim, one only needs to check that the additions coincide. Starting with a GL semi-ring $S = (S, +, \cdot, \sim, 0, 1)$, define $x \oplus y = (y^\sim \cdot x^\sim)^\sim$ and $x \circ y = x \cdot y$. One obtains a pseudo MV-algebra $A(S) := (S, \oplus, \circ, \sim, 0, 1)$, which has a supremum given by $x \lor y = x \oplus (x^\sim \circ y) = y \oplus (y^\sim \circ x) = (x \circ y^\sim) \oplus y = (y \circ x^\sim) \oplus x$. Now, from this pseudo MV-algebra, one constructs the GL semi-ring $S(A(S))$ whose addition is defined as the supremum. Therefore, one only needs to verify that $x \lor y = x + y$, which is clear from (ii) of the definition of a GL semi-ring. Now, starting with a pseudo MV-algebra $A = (A, \oplus, \circ, \sim, 0, 1)$, one constructs a GL semi-ring $S(A) := (A, +, \cdot, 0, 1)$, where $x + y = x \lor y$, the supremum of the pseudo MV-algebra and $x \cdot y = x \circ y$. From this GL semi-ring, one gets a pseudo MV-algebra $A(S(A))$, with $x \oplus' y = (y^\sim \circ x^\sim)^\sim = (y^\sim \circ x^\sim)^\sim$. Therefore, one needs to check that $x \oplus' y = x \oplus y$, that is $x \oplus y = (y^\sim \circ x^\sim)^\sim$, which is a known property of pseudo MV-algebras. \qed

Let R be a ring which satisfies

(*) for every $x \in R$, there exist $r, r' \in R$ such that $xr = r'x = x$

Let $Sem(R) = \langle Id(R), +, \cdot, 0, R \rangle$, where $Id(R)$ denotes the set of (two-sided) ideals of R. Define $\sim, \sim : Id(R) \to Id(R)$ by:

$I^- = \{x \in R :Ix = 0\}$ and $I^\sim = \{x \in R :Ix = 0\}$

It is easily verified that $Sem(R) = \langle Id(R), +, \cdot, 0, R \rangle$ is a semi-ring.
Proposition 2.6. Given any ring R and I, J ideals of R,

(i). $I \subseteq J$ iff $I + J = J$

(ii). $I \cdot J = 0$ iff $I \subseteq I^-$

(iii). $I \subseteq J$ implies $J^- \subseteq I^-$ and $J^- \subseteq I^-$

(iv). $(I + J)^- = I^- \cap J^-$; $(I + J)^+ = I^+ \cap J^+$; $I \subseteq I^-$, $I \subseteq I^-$

(v). $I + J \subseteq ((I^- \cdot J^-) \cdot I^-)^-$ and $I + J \subseteq (I^- \cdot (J^- \cdot I^-)^-)^-$

(vi). If R satisfies (\ast), then $R^- = R^+$.

Proof. Let I, J be ideals of R.

(i). $I \subseteq J$ iff $I + J = J + J = J$

(ii). Follows clearly from the definitions of \cdot, \cdot, \cdot.

(iii). Straightforward.

(iv). Since $I, J \subseteq I + J$, it follows that $Ix, Jx \subseteq (I + J)x$. Thus, $(I + J)x = 0$ implies $Ix, Jx = 0$ and $(I + J)^- \subseteq I^- \cap J^-$. In addition, if $Ix = Jx = 0$, then $(I + J)x = 0$, so $(I + J)^- \subseteq I^- \cap J^-$. Hence, $(I + J)^- = I^- \cap J^-$. Similarly, we show that $(I + J)^+ = I^+ \cap J^-$. The inclusions $I \subseteq (I^-)^-$ and $I \subseteq I^- \subseteq I^-$ follow from the definitions.

(v). Let $u \in I^-$, $v \in (I^- \cdot J^-)$ and $y \in J$, we have $uv \in I^- \cdot J$ and $0 = v(uy) = (vu)y$ and we obtain that $vu \in J^-$. So $vu \subseteq I^+ \cap J^- = (I + J)^-$. Since a typical element in $(I^+ \cdot J^-)^+ \cdot I^-$ is a sum of elements of the type vu, we obtain that $(I^+ \cdot J^-)^+ \cdot I^- \subseteq (I^+ + J)^-$ and conclude that $I + J \subseteq (I + J)^- \subseteq ((I^+ \cdot J^-)^+ \cdot I^-)^-$. The proof that $I + J \subseteq (I^- \cdot (J^- \cdot I^-)^-)^-$ is similar to the above.

(vi). Let $x \in R^-$, then $Rx = 0$. But, by (\ast), there exists $r \in R$ such that $rx = x$. Thus $x \in Rx = 0$ and $x = 0$. □

Definition 2.7. A ring R is called a generalized Lukasiewicz ring (GLR) if it satisfies (\ast) and for all ideals I, J of R,

(GLR-1) $I + J = ((I^- \cdot J^-) \cdot I^-)^- = (I^- \cdot (J^- \cdot I^-)^-)^-$

(GLR-2) $(J^- \cdot I^-)^- = (J^- \cdot I^-)^-$

It is clear that every Lukasiewicz ring as treated in [1] is a GLR.

Example 2.8. 1. Let F be a field and $R = M_n(F)$ $(n \geq 1)$ be the ring of $n \times n$ matrices over F. Then R satisfies (\ast) as a unitary ring, and also GLR-1, and GLR-2 as it has only two ideals: $0, R$. Thus, R is a GLR.

2. **Proposition 2.9.** A ring R is a generalized Lukasiewicz ring if and only if $A(Sem(R))$ is a pseudo MV-algebra.

Proof. Suppose that R is a generalized Lukasiewicz ring. Then $Sem(R)$ is clearly a GL semi-ring, and it follows from Proposition[2.3] that $A(Sem(R))$ is
a pseudo MV-algebra. Conversely, if $A(Sem(R))$ is a pseudo MV-algebra, it is clear that R is a GLR.

From the above proposition, we have the following result.

Proposition 2.10. In a generalized Lukasiewicz ring R, we have $I^{\sim \sim} = I = I^{\sim}$.

We would like to describe the relationship between ideals of R and those of $Sem(R)$, when R is a GLR. For the remainder of this section, R will denote a GLR and S its associated semi-ring, that is $S = Sem(R)$. Note that since R satisfies (\ast), for every $x \in R$, $RxR := \{\sum_{i=1}^{n} r_i x_i : n \geq 1, r_i, s_i \in R\}$ is the ideal of R generated by x.

For every ideal I of S, we define

$$S(I) := \{J \in Id(R) : J \subseteq Rx_1R + Rx_2R + \ldots + Rx_nR, \text{ for some } x_1, \ldots, x_n \in I\}$$

Then, by Proposition 2.11, it is straightforward that $S(I)$ is an ideal of S and

$$S(I) = \left\{ \sum_{i=1}^{n} J_i x_i L_i : n \geq 1, J_i, L_i \in Id(R), x_i \in I \right\}$$

Indeed, $S(I)$ is the ideal of S generated by $X := \{RxR \in Id(R) : x \in I\}$. One should also observe that if I is proper, so is $S(I)$. Indeed, if $R \in S(I)$, then there are $x_1, x_2, \ldots, x_n \in I$ such that $R \subseteq Rx_1R + Rx_2R + \ldots + Rx_nR \subseteq I$ and so $I = R$.

To reverse the construction above, we define $S^{-1}(I) := \{x \in R : RxR \in I\}$, for each ideal I of S.

Proposition 2.11. (i) For each ideal I of S, $S^{-1}(I)$ is an ideal of R;

(ii) For each ideal I of S, $S(S^{-1}(I)) \subseteq I$;

(iii) If $I \subseteq J$, then $S^{-1}(I) \subseteq S^{-1}(J)$.

Proof. (i) Assume that I is an ideal of S and let $I = S^{-1}(I)$. Let $x, y \in I$, we have $RxR \in I$ and $RyR \in I$. Since $I \subseteq Id(S)$, we have $RxR + RyR \in I$. From the fact that $R(x + y)R \subseteq RxR + RyR$, we deduce that $R(x + y)R \in I$ and $x + y \in I$.

In addition, let $x \in I$ and $y \in R$. Since $I \subseteq Id(S)$, $RxR \in I$ and $RyR \in Id(R)$, it follows that $RxR \cdot RyR \in I$. From this and the fact that $RxR \subseteq RxR \cdot RyR$, we have $RxR \cdot RyR \in I$ as I is an ideal of S. That is $xy \in I$. A similar argument shows that $yx \in I$. Thus, $S^{-1}(I)$ is an ideal of R.

(ii) Let $J \in S(S^{-1}(I))$, then $J \subseteq Rx_1R + Rx_2R + \ldots + Rx_nR$, for some $x_1, \ldots, x_n \in S^{-1}(I)$. But $x_i \in S^{-1}(I)$ means that $Rx_iR \in I$ and then, $J \subseteq$
\[Rx_1 R + Rx_2 R + \ldots + Rx_n R \in I. \] Hence \(J \in I. \)

(iii) Clear. \(\square \)

Proposition 2.12. For every ideal \(I \) of \(R, \) \(I = S^{-1}(S(I)). \)

Proof. Assume that \(I \) is an ideal of \(R \) and \(x \in I. \) It is clear that \(RxR \in S(I) \) and then \(x \in S^{-1}(S(I)). \) Conversely, let \(x \in S^{-1}(S(I)). \) Thus \(RxR \subseteq Rx_1 R + Rx_2 R + \ldots + Rx_n R, \) for some \(x_1, \ldots, x_n \in I. \) In particular, since each \(Rx_i R \subseteq I, \) then \(x \in RxR \subseteq I, \) and \(x \in I. \) Thus, \(I = S^{-1}(S(I)). \) \(\square \)

For the next result, \(\text{FG}(R) \) denotes the set of finitely generated ideals of \(R. \)

Proposition 2.13. For each ideal \(I \) of \(S, \)

(i) \(I \cap \text{FG}(R) \subseteq S(S^{-1}(I)); \)

(ii) If every ideal of \(I \) is finitely generated, then \(I = S(S^{-1}(I)). \)

Proof. (i) Suppose \(J \in I \) and \(J = Rx_1 R + Rx_2 R + \ldots + Rx_n R, \) for some \(x_1, \ldots, x_n \in J. \) Since \(Rx_i R \subseteq J \) for all \(i, \) and \(J \in I, \) which is an ideal of \(S, \) then \(Rx_i R \in I \) for all \(i. \) That is \(x_i \in S^{-1}(I) \) for all \(i, \) and \(J \in S(S^{-1}(I)). \) Hence, \(I \cap \text{FG}(R) \subseteq S(S^{-1}(I)) \) as needed.

(ii) By assumption, \(I \subseteq \text{FG}(R), \) hence \(I = I \cap \text{FG}(R) \subseteq S(S^{-1}(I)). \) The equality is obtained by combining the above with Proposition 2.12(ii). \(\square \)

Note all ideals of Noetherian rings are finitely generated. Therefore, if \(R \) is Noetherian, then \(I = S(S^{-1}(I)). \) Thus, there is a one-to-one correspondence between the ideals of \(R \) of those of \(S. \)

3. THE CATEGORY OF GLRs

It turns out that the category of GLRs is closed under several important algebraic constructions. We start with finite direct products.

Proposition 3.1. Any finite direct product of GLRs is a GLR. Conversely, if a product of rings is a GLR, then so is each factor.

Proof. Let \(R = \prod_{i=1}^n R_i \) denote the finite product of the rings \(R_i. \) Since the operations of \(R \) are component-wise, then \(R \) satisfies \((\ast)\) if and only if each \(R_i \) does.

Suppose that each \(R_i \) is a GLR and let \(I \) be an ideal of \(R, \) then \(I = \prod_{i=1}^n I_i, \) where \(I_i \subseteq R_i. \) Note that if \(J = \prod_{i=1}^n J_i, \) with \(J_i \subseteq R_i, \) then \(I + J = \prod_{i=1}^n (I_i + J_i). \)

\[I^\sim = \prod_{i=1}^n I_i^\sim, \quad I^\sim = \prod_{i=1}^n I_i, \quad I \cdot J = \prod_{i=1}^n (I_i \cdot J_i). \] From these identities, and the fact that each \(R_i \) satisfies \((\text{GL-1})\) and \((\text{GL-2}),\) it follows that \(R \) satisfies \((\text{GL-1})\) and \((\text{GL-2}). \) Thus, \(R \) is a GLR.
Conversely, suppose that $R := \prod_{i=1}^n R_i$ is a GLR. Let I_k, J_k be ideals of R_k. Then $I = I_k \times \prod_{i \neq k} R_i$ and $J = J_k \times \prod_{i \neq k} R_i$ are ideals of R. Note that $R_i^\sim = 0_i = R_i^-$, where 0_i is the zero ideal of R_i. We have $I^\sim = I_k^\sim \times \prod_{i \neq k} 0_i, I^- = I_k^\sim \times \prod_{i \neq k} 0_i, J^\sim = J_k^\sim \times \prod_{i \neq k} 0_i, J^- = J_k^\sim \times \prod_{i \neq k} 0_i$. Now $I + J = (I_k + J_k) \times \prod_{i \neq k} R_i$ and $J^\sim \cdot I^\sim = (J_k^\sim \cdot I_k^\sim) \times \prod_{i \neq k} 0_i$. So, $(J^\sim \cdot I^\sim)^\sim = ((J_k^\sim \cdot I_k^\sim))^- \times \prod_{i \neq k} R_i$.

Similarly, we show that $(J^- \cdot I^-)^\sim = (J_k^- \cdot I_k^-)^\sim \times \prod_{i \neq k} R_i$. From this and the fact that R is a GLR, it follows that $(J_k^- \cdot I_k^-)^\sim \times \prod_{i \neq k} R_i = (J_k^- \cdot I_k^-)^\sim \times \prod_{i \neq k} R_i$. Thus, $(J_k^\sim \cdot I_k^\sim)^\sim = (J_k^- \cdot I_k^-)^\sim$.

On the other hand, $I^\sim \cdot J = (I_k^\sim \cdot J_k) \times \prod_{i \neq k} 0_i$ and $(I^\sim \cdot J)^\sim = (I_k^\sim \cdot J_k)^\sim \times \prod_{i \neq k} R_i$. So, $(I^\sim \cdot J)^\sim \cdot I^\sim = (I_k^\sim \cdot J_k)^\sim \cdot I_k^\sim \times \prod_{i \neq k} 0_i$ and $(I_k + J_k) \times \prod_{i \neq k} R_i = I + J = ((I^\sim \cdot J)^\sim \cdot I^\sim)^\sim = ((I_k^\sim \cdot J_k)^\sim \cdot I_k^\sim)^\sim \times \prod_{i \neq k} R_i$.

It follows that $I_k + J_k = ((I_k^\sim \cdot J_k^\sim \cdot I_k^\sim)^\sim \cdot I_k^\sim)^\sim$. A similar argument shows that $I_k + J_k = (I_k^\sim \cdot (J_k \cdot I_k^\sim))^\sim$. Therefore, R_k is a GLR as needed. □

Remark 3.2. An infinite (direct) product of GLRs needs not be a GLR.

Indeed, consider $R = \prod_{i=1}^\infty F$, where F is a field. We claim that R is not a GLR. To see this, consider $I = \{(x_n) : x_{2n} = 0\}, J = \oplus_{i=1}^\infty F$ and $K = \{(x_n) : x_{2n+1} = 0\}$, which are all ideals of R. One can verify that

$$I^- = I^\sim = K, (I + J)^\sim = 0, (I^\sim \cdot J)^\sim \cdot I^\sim = K$$

Thus, $(I + J)^\sim \neq (I^\sim \cdot J)^\sim \cdot I^\sim$ and GLR-1 fails.

Let R be a GLR, $A(Sem(R))$ be the pseudo MV-algebra associated to R. For simplicity, $A(Sem(R))$ will be denoted throughout the rest of the paper by $A(R)$. Recall that $A(R) = (\text{Id}(R), \oplus, \odot, \neg, \neg, 0, 1)$ is the pseudo MV-algebra, where:

$$I \oplus J = (J^\sim \cdot I^\sim)^\sim = (J^- \cdot I^-)^\sim,$$

$$I \odot J = I \cdot J = \{\sum a_ib_i : a_i \in I, b_i \in J\},$$

$$I^\sim = \{x \in R : Ix = 0\}, I^- = \{x \in R : xI = 0\},$$

$$0 = \{0\}, 1 = R.$$

We know that $A(R)$ has an underline distributive lattice $(\text{Id}(R), \lor, \land, 0, 1)$, where:

$$I \lor J = ((I^\sim \cdot J)^\sim \cdot I^\sim)^\sim = (I^\sim \cdot (J \lor I^-)^\sim)^\sim = I + J, I \land J = I \cap J.$$ Indeed, $(\text{Id}(R), \lor, \land, 0, 1)$ is a complete lattice.

Since the identity \oplus distributes over \lor in any pseudo MV-algebra, then in $A(R)$ the following identity holds.

$$I \oplus (J + K) = I \oplus J + I \oplus K$$

Our next task is to show that GLRs are closed under epimorphic images.

Given an ideal I of R, we consider the ring R/I. Then ideals of R/I are of
the form $J/I := \{x/I : x \in J\}$ where J is an ideal of R such that $I \subseteq J$. For ideals J, K of R such that $I \subseteq J$ and $I \subseteq K$, we have $J/I + K/I = (J + K)/I$ and $(J/I) \cdot (K/I) = (J \cdot K)/I$.

Proposition 3.3. Let R be a GLR, and I, J be ideals of R such that $I \subseteq J$. Then:

(i) $I \subseteq (I^\sim \cdot J)^\sim$ and $I \subseteq (J \cdot I^\sim)^\sim$.

(ii) $(J/I)^\sim = (I^\sim \cdot J)^\sim/I$ and $(J/I)^\sim = (J \cdot I^\sim)^\sim/I$.

Proof.

(i) We have $I^\sim \cdot J \subseteq I^\sim$ and then $I = I^\sim \subseteq (I^\sim \cdot J)^\sim$.

Similarly, $(J \cdot I^\sim)^\sim \subseteq I^\sim$ and then $I = I^\sim \subseteq (J \cdot I^\sim)^\sim$.

(ii) $(J/I)^\sim = \{x/I \in R/I : (y/I)(x/I) = 0 \text{ for all } y \in J\}$ = \{x/I \in R/I : yx \in I \text{ for all } y \in J\} = \{x/I \in R/I : Jx \subseteq I\} = \{x/I \in R/I : (I^\sim \cdot Jx) \subseteq I^\sim \cdot I = 0\} = \{x/I \in R/I : I^\sim \cdot Jx = 0\} = \{x/I \in R/I : x \in (I^\sim \cdot J)^\sim\} = (I^\sim \cdot J)^\sim/I.

A similar argument shows that $(J/I)^\sim = (J \cdot I^\sim)^\sim/I$. □

Proposition 3.4. (i) For all $I, J, K \in \text{Id}(R)$, $I \cap (J + K) = I \cap J + I \cap K$.

(ii) If $\{J_i\}_i$ is a family of ideals of R, then $I + \bigcap_i J_i = \bigcap_i (I + J_i)$.

Proof.

(i) Since $\langle \text{Id}(R), \wedge, \vee, 0, R \rangle$ is a distributive lattice and $\wedge = \cap, \vee = +$, we have $I \cap (J + K) = I \wedge (J \vee K) = (I \wedge J) \vee (I \wedge K) = (I \cap J) + (I \cap K)$.

(ii) Let $\{J_i\}_i$ be a family of ideals of R, since $A(R) = \langle \text{Id}(R), \oplus, \circ, ^\sim, ^\wedge, 0, 1 \rangle$ is a complete pseudo MV-algebra, we have $I + \bigcap_i J_i = I \vee \bigcap_i J_i = \bigcap_i (I \vee J_i) = \bigcap_i (I + J_i)$. □

Proposition 3.5. The quotient of a GLR by a proper ideal is again a GLR.

Proof. Let I be a proper ideal of a GLR R.

It is clear that R/I satisfies (\ast) since R does.

GLR-1: Let J, K be ideals of R both containing I. We need to prove the following two identities:

$$(1) \quad ((J/I)^\sim \cdot K/I)^\sim \cdot (J/I)^\sim = (J/I + K/I)^\sim$$

$$(2) \quad (J/I)^\sim \cdot (K/I \cdot (J/I)^\sim)^\sim = (J/I + K/I)^\sim$$

To prove (1), note that by Proposition 3.3, (1) is equivalent to

$$(1') \quad [((J \cdot I^\sim)^\sim \cdot K \cdot I^\sim)^\sim \cdot (J \cdot I^\sim)^\sim]/I = ((J + K) \cdot I^\sim)^\sim/I$$
But,
\[
(J \cdot I^-) \sim \cdot (K \cdot I^-) \sim \cdot (J \cdot I^-) \sim = [(J \cdot I^-) \oplus ((J \cdot I^-) \sim \cdot K \cdot I^-)] \sim \\
= (J \cdot I^-) \lor (K \cdot I^-) \\
= (J + K) \cdot I^-
\]

To prove (2), note that by Proposition 3.3, (2) is equivalent to
\[
(2') \quad [(J \cdot I^-) \sim \cdot (K \cdot (I^- \cdot J^-) \sim \cdot I^-) \sim] / I = ((J + K) \cdot I^-) \sim / I
\]

But,
\[
(J \cdot I^-) \sim \cdot (K \cdot (I^- \cdot J^-) \sim \cdot I^-) \sim = (J \cdot I^-) \sim \cdot (K \cdot (J^- \oplus I) \cdot I^-) \sim \\
= (J \cdot I^-) \sim \cdot (K \cdot (J^- \cap I^-)) \sim \\
= (J \cdot I^-) \sim \cdot (K \cdot J^-) \sim \quad \text{since } I \subseteq J \\
= [(K \cdot J^-) \oplus (J \cdot I^-)] \sim \\
= [(J \lor K) \cdot I^-] \sim \quad \text{(Prop. 3.3)} \\
= [(J + K) \cdot I^-] \sim
\]

This completes the proof of GLR-1.

GLR-2: Let \(J, K \) be ideals of \(R \) both containing \(I \). We need to show that
\[
((J/I)^- \cdot (K/I)^-) \sim = ((J/I)^- \cdot (K/I)^-) \sim , \quad \text{or equivalently by Proposition 3.3 that}
\]
\[
((I^- \cdot J^-) \sim \cdot (I^- \cdot K^-) \sim \cdot I^-) \sim / I = (I^- \cdot (J \cdot I^-) \sim \cdot (K \cdot I^-) \sim) / I
\]

We have
\[
((I^- \cdot J^-) \sim \cdot (I^- \cdot K^-) \sim \cdot I^-) \sim = I \oplus (I^- \cdot K \oplus I^- \cdot J) \\
= (I \oplus I^- \cdot K) \oplus I^- \cdot J \\
= (I + K) \oplus I^- \cdot J \\
= K \oplus I^- \cdot J
\]

Similarly,
\[
(I^- \cdot (J \cdot I^-) \sim \cdot (K \cdot I^-) \sim) \sim = (K \cdot I^- \oplus J \cdot I^-) \oplus I \\
= K \cdot I^- \oplus (J \cdot I^- \oplus I) \\
= K \cdot I^- \oplus (I + J) \\
= K \cdot I^- \oplus J \\
= K \oplus I^- \oplus J
\]
Now, the conclusion follows from Proposition 1.1(ii).

Thus, \(R/I \) is a GLR. \(\square \)

The following result provides examples of non-unitary GLRs.

Proposition 3.6. The direct sum of GLRs is again a GLR.

Proof. Let \((R_\lambda)_{\lambda \in \Lambda} \) be a family of GLRs, and let \(R := \bigoplus_{\lambda \in \Lambda} R_\lambda \). For each \(\lambda \in \Lambda \), let \(p_\lambda \) denotes the natural projection from \(\prod_{\lambda \in \Lambda} R_\lambda \) onto \(R_\lambda \). For every subset \(S \) of \(\prod_{\lambda \in \Lambda} R_\lambda \), and \(\bigoplus_{\lambda \in \Lambda} R_\lambda \), \(p_\lambda(S) \) will be denoted by \(S_\lambda \).

As in the proof of the commutative case [1, Prop. 3.12], one shows that every ideal \(I \) of \(R \) is of the form \(I = \bigoplus_{\lambda \in \Lambda} I_\lambda \), where \(I_\lambda \subseteq R_\lambda \). Moreover, one verifies that \(I^- = \bigoplus_{\lambda \in \Lambda} I^-_\lambda \) and \(I^- = \bigoplus_{\lambda \in \Lambda} I^-_\lambda \).

Since each \(R_\lambda \) satisfies \((\star)\), it follows that \(R \) does as well. It remains to show that \(R \) satisfies GLR-1 and GLR-2.

Let \(I, J \) be two ideals of \(R \).

GLR-1: This is easily adaptable from the proof from [1, Prop. 3.12].

GLR-2: Observe that \(R_\mu \cdot R_\lambda = 0 \) whenever \(\mu \neq \lambda \). Hence,

\[
(J^- \cdot I^-)^- = \bigoplus_{\mu, \lambda \in \Lambda} J^-_\mu \cdot I^-_\lambda = \bigoplus_{\mu, \lambda \in \Lambda} (J^-_\mu \cdot I^-_\lambda)^-
\].

A similar calculation shows that \((J^- \cdot I^-)^- = \bigoplus_{\lambda \in \Lambda} (J^-_\lambda \cdot I^-_\lambda)^- \). Therefore, since \((J^- \cdot I^-)^- = (J^- \cdot I^-)^- \) for all \(\lambda \), then we obtained \((J^- \cdot I^-)^- = (J^- \cdot I^-)^- \).

Thus, \(R \) is a GLR as claimed. \(\square \)

4. **Subrings of generalized Łukasiewicz rings**

Let \(R \) be a GLR and \(M \) a subring (with or without a unity). For every ideal \(I \) of \(R \), let

\[
I^- M = \{ x \in M : Ix = 0 \} \text{ and } I^- M = \{ x \in M : xI = 0 \}
\]

Observe that \(I^- M = M \cap I^- \) and \(I^- M = M \cap I^- \).

Recall that \(A(R) = \langle \text{Id}(R), \oplus, \odot, -, \sim, 0, 1 \rangle \) is a pseudo MV-algebra with underline lattice \(\langle \text{Id}(R), +, \cap, 0, 1 \rangle \).

Proposition 4.1. Let \(R \) be a GLR and \(M \) an ideal of \(R \) such that \(M \cap M^- = 0 \) and \(M \cap M^- = 0 \). Then \(M \) is a GLR.
Proof. First, observe that since $M \cap M^– = 0$ and $M \cap M^– = 0$, then $M + M^– = M \vee M^– = M \oplus M^– = R$ and $M + M^– = R$. It follows that any ideal of M is an ideal of R, i.e., $\text{Id}(M) \subseteq \text{Id}(R)$.

Let $x \in M$, then as R satisfies (\star), there are $r, r' \in R$ such that $xr = r'x = x$. Since $M + M^– = R$ and $M + M^– = R$, there are $m_1, m_2 \in M$, $x_1 \in M^–, x_2 \in M^–$ such that $m_1 + x_1 = r$ and $m_2 + x_2 = r'$. It follows that $xm_1 = m_2x = x$.

It remains to prove GLR-1 and GLR-2.

GLR-1: Let I, J be ideals of M.

$((I^\sim \cdot J)^\sim \cdot (I^\sim \cdot J^\sim)^\sim)^\sim = (((I^\sim \cap M) \cdot J)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (((((I^\sim \cap M) \cdot J)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (((I^\sim \cap M)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (((((I^\sim \cap M)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (((I^\sim \cap M)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (I + M^–) \cap (I + M^–) \cap M$,

$= I + (I + M^–) \cap M$,

$= I + J$.

A similar calculation shows that $(I^\sim \cdot J \cdot (I^\sim M)^\sim)^\sim = I + J$.

GLR-2: Let I, J be ideals of M, then $(I^\sim \cdot J^\sim)^\sim = ((I^\sim \cap M) \cdot (J^\sim \cap M)) \cap M$,

$= (((((I^\sim \cap M) \cdot J)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (((((I^\sim \cap M)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (((((I^\sim \cap M)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (((((I^\sim \cap M)^\sim \cap (I^\sim \cap M)) \cap (M \cdot (I^\sim \cap M)) \cap M$,

$= (I + M^–) \cap (I + M^–) \cap M$,

$= I + J$.

A similar computation shows that $(I^\sim \cdot J^\sim \cdot (J^\sim M)^\sim)^\sim = J \oplus I$.

Thus, $(I^\sim \cdot J^\sim \cdot (J^\sim M)^\sim)^\sim = (I^\sim \cdot J^\sim \cdot (J^\sim M)^\sim)^\sim = J \oplus I$, and GLR-2 is proved.

Hence, M is a GLR as claimed.

One should observe that since $\text{Id}(M) \subseteq \text{Id}(R)$, the preceding proof (GLR-2) shows that in $A(M), I \oplus_M J = I \oplus J$.

5. BL-rings

In the previous sections, we treated a noncommutative generalization of Lukasiewicz rings. In this section we introduce a commutative generalization of Lukasiewicz rings.
Definition 5.1. A commutative ring R is called a BL-ring if for all ideals I, J of R, BLR-1: $I \cap J = I \cdot (I \to J)$ and
BLR-2: $(I \to J) + (J \to I) = R$

Note that BLR-1 is equivalent to $I \cap J \subseteq I \cdot (I \to J)$ since the inclusion $I \cdot (I \to J) \subseteq I \cap J$ holds in any ring.

Example 5.2. 1. \mathbb{Z} is a BL-ring.
2. Every DVR is a BL-ring. Indeed, the ideals of a DVR form a chain, and the axioms BLR-1 and BLR-2 are straightforward.
3. Every Łukasiewicz ring is a BL-ring. Indeed, if R is a Łukasiewicz ring, then $A(R)$ is an MV-algebra. Thus $A(R)$ is a BL-algebra, and the axioms BLR-1 and BLR-2 follow.

Recall [5] that a commutative ring is called a multiplication ring if every ideals I, J of R such that $I \subseteq J$, there exists an ideal K of R such that $I = J \cdot K$.

Theorem 5.3. A commutative ring is a BL-ring if and only if it is a multiplication ring.

Proof. Suppose that R is a BL-ring and let I, J be ideals of R such that $I \subseteq J$. Then by BLR-1, $I = I \cap J = I \cdot (I \to J)$. Take $K = I \to J$.

Conversely, suppose that R is a multiplication ring.

BLR-1: Let I, J be ideals of R. Then since $I \cap J \subseteq I$, there exists an ideal K of R such that $I \cap J = I \cdot K$. Hence, $I \cdot K \subseteq J$ and it follows that $K \subseteq I \to J$. Thus, $I \cap J \subseteq I \cdot (I \to J)$. As observed above, the inclusion $I \cdot (I \to J) \subseteq I \cap J$ holds in any ring.

BLR-2: Need to prove or disprove. \square

Corollary 5.4. 1. Every BL-ring satisfies

(\star') for every $x \in R$, there exist $e = e^2 \in R$ such that $xe = x$

2. A commutative ring is a BL-ring if and only if $L(R) := (\text{Id}(R), \wedge, \vee, \ominus, \to, \sim, \{0\}, R)$ is a BL-algebra.

Proof. 1. BLR-1 implies that R is a multiplication ring, and it is known that every multiplication ring satisfies (\star') [5, Cor. 7].

2. Follows from 1. and the axioms BLR-1/2. \square

References

[1] L. P. Belluce, A. Di Nola, Commutative rings whose ideals form an MV-algebra, Math. Log. Quart. 55(5) 468-486(2009)
[2] I. Chajda, J. Kühr GMV-algebras and meet-semilattices with sectionally antitone permutations, Math. Slovaca, 56(2006)275-288

[3] A. Dvurečenskij, Pseudo MV-algebras are intervals in ℓ-groups. J. Aust. Math. Soc. 72 (2002), 427-445.

[4] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras. I. Mult.-Valued Log. 6 (2001), 95-135.

[5] M. Griffin, Multiplication rings via their total quotient rings, Can. J. Math. 26(1974)430-449.