Management of Apple Maturity and Postharvest Storage Conditions to Increase Polyphenols in Cider

Brianna L. Ewing
Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 260 Duckpond Drive, Blacksburg, VA 24061

Gregory M. Peck
School of Integrative Plant Science, Horticulture Section, Cornell University, 121 Plant Science Building, Ithaca, NY 14850

Sihui Ma, Andrew P. Neilson, and Amanda C. Stewart
Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 260 Duckpond Drive, Blacksburg, VA 24061

Additional index words. Malus × domestica Borkh., tannin, procyanidin, flavanol, ‘Dabinett’, ‘Binet Rouge’, ‘York’, ‘GoldRush’

Abstract. Hard cider production in the United States has increased dramatically during the past decade, but there is little information on how harvest and postharvest practices affect the chemistry of the resulting cider, including concentrations of organoleptically important flavanols. For 2 years we assessed fruit, juice, and cider from a total of five apple (Malus × domestica Borkh.) cultivars in two experiments: sequential harvests and postharvest storage. Different cultivars were used in 2015 and 2016 with the exception of ‘Dabinett’, which was assessed in both years. There were no differences in polyphenol concentrations in cider made from fruit that was harvested on three separate occasions over a 4-week period in either 2015 or 2016. Fruit storage durations and temperatures had little influence on the chemistry when the experiment was conducted in 2015, but polyphenol concentration was greater after storage in the 2016 experiment. In 2016, total polyphenols in ‘Dabinett’ ciders were 51% greater after short-term storage at 10°C and 67% greater after long-term storage at 1°C than the control, which was not subjected to a storage treatment. In 2016, total polyphenols in ‘Binet Rouge’ ciders were 67% greater after short-term storage at 10°C and 94% greater after long-term storage at 1°C than the control. Although results varied among cultivars and harvest years, storing apples for longer periods of time and at warmer temperatures may be a strategy to increase polyphenol, particularly flavanol, concentrations in hard cider.

Hard cider, or simply “cider,” is the alcoholic beverage made from apple (Malus × domestica Borkh.) juice. In 2016, U.S. cider sales increased 3.3% per year, making it the fastest growing sector in the alcohol beverage market during that time frame (Brager and Crompton, 2017; Petrello, 2016).

Cider can be made from any apple cultivar, but cultivars vary greatly in terms of chemical components that contribute to the sensory characteristics of ciders (Thompson-Witrick et al., 2014; Valois et al., 2006). In the United Kingdom, apple cultivars are typically classified into four categories based on malic acid and tannin concentration (Barker and Ettle, 1910). These categories are sweet (low acid, low tannin), sharp (high acid, low tannin), bittersweet (low acid, high tannin), and bittersharp (high acid, high tannin). The high-tannin bittersweet and bittersharp apples are commonly referred to as cider apples. In European countries with a long tradition of cider production, there is a reliable and fairly inexpensive supply of high-tannin cider apples. In the United States, the availability of cider apples is limited, so many cider producers use a combination of low-tannin fruit and high-tannin apple juice concentrate or other tannin-rich adjuncts to meet the growing demand for cider in the marketplace. In addition, although it is common practice for cider producers to add exogenous sources of malic acid and sugar to create a desirable organoleptic balance in their ciders, cider makers are mostly limited to nonapple-derived exogenous tannin sources such as those derived from grapes, tree bark, or nuts (Lea and Piggott, 2012; Martin et al., 2017). Therefore, it is important to develop strategies, perhaps through harvest and storage management practices, that maximize the concentration of endogenous tannins in the fruit.

Polyphenols are a class of secondary plant metabolites derived through the phenylpropanoid pathway that perform a wide range of functions, including being structural building blocks and providing both biotic and abiotic protection to plants. A subset of polyphenols, informally referred to as tannins, also lend important sensory perceptions to foods and beverages, including hard cider (Spaans and Wrolstad, 1992). Apple polyphenols can be classified into five major groups: phenolic acids, flavanols, anthocyanins, flavonols, dihydrochalcones (Guyot et al., 2003; Nicolas et al., 1994; Spaans and Wrolstad, 1992). Chlorogenic acid (CLA) is the most abundant of the phenolic acids reported in apples (Guyot et al., 1998). The flavonols consist of the monomers (+)-catechin (CAT) and (-)-epicatechin (EPI), and procyanidins (also referred to as condensed tannins), which are the oligomers of monomers (Guyot et al., 2003; Verdu et al., 2014; Vidal et al., 2003). Anthocyanins are another group of polyphenols responsible for skin pigmentation in red cultivars (Nicolas et al., 1994). However, anthocyanins are a minor source of flavor or olfactory perception. Flavonols [mainly quercetin (QUE) derivatives] and dihydrochalcones [mostly phloretin (PHL) derivatives] are relatively minor contributors to pigmentation and are present in relatively much lower concentrations than flavanols and phenolic acids (Guyot et al., 1998; Renard et al., 2007; Sanoner et al., 1999). It has been reported that flavanols and phenolic acids are formed primarily during the cell division phase during the early development of the apple, then decrease in concentration during fruit growth and maturation (Mosel and Herrmann, 1974; Renard et al., 2007). In many regions where cider apples are grown, fruit are allowed to mature on the tree until they senesce and drop to the ground. Cider apples also have a greater potential for mechanical harvesting compared with fresh-market apples, because bruises and blemishes from the process are not detrimental to processing quality (Merwin et al., 2008; Miles and King, 2014). These apples are usually fully ripe—meaning, most, if not all, of the starch has hydrolyzed to sugars. In the United States, most apples used for cider are harvested by hand at a much earlier maturity stage, typically when 20% to 60% of starch hydrolysis has occurred. This allows for longer storage durations, which is desirable for providing fruit year-round for the fresh-market supply chain, but the extent to which harvesting apples at an earlier maturity affects polyphenols that are important for the sensory quality of ciders remains unknown.

Effects of fruit storage duration and temperature on polyphenol chemistry of cider apples, juice, and cider are also unknown.

Received for publication 7 Nov. 2018. Accepted for publication 15 Aug. 2018.

This work was supported by the Virginia Wine Board project titled “Managing Apple Maturity and Post-Harvest Regimes to Increase Quality of Virginia’s Ciders.”

We are thankful for the assistance provided by Abby Kowalski, Ken Hurley, and Ann Sandbrook.

Current address: School of Food Science, Washington State University, Northwestern Washington Research and Extension Center, 16650 State Route 536, Mount Vernon, WA 98273

Corresponding author. E-mail: amanda.stewart@vt.edu

https://doi.org/10.21273/HORTSCI13473-18
Studies on polyphenols in cold-stored apples have reported varied effects. A study by van der Sluis et al. (2001) measured glycosidic forms of polyphenols in apples and found that cold storage for 25 weeks did not induce significant changes in glucosides, chlorogenic, galactosides, or CLA concentrations. There was, however, a slight decrease in CAT concentrations during storage for some cultivars in some harvest years (van der Sluis et al., 2001). Burda et al. (1990) also found that polyphenol concentrations remained relatively constant during fruit storage, whereas other studies resulted in documented increases in total polyphenols or antioxidant capacity during fruit storage (Burda et al., 1990; Leja et al., 2003; Napolitano et al., 2004). It appears that both the apple genotype and the preharvest conditions that change each year (e.g., crop load, heat units, water or heat stress, nutrient status) are potentially interacting factors influencing the effects of postharvest storage on polyphenol content in apples.

Furthermore, some cider makers will ripen apples at ambient temperatures for 2 to 4 weeks after harvest (Lea and Piggott, 2012). This process is referred to colloquially as sweating. During this process, sugar levels and flavor volatiles may increase as acidity and water content decrease. For these reasons, it is important to examine how the storage of apples destined for cider production affects the concentration and composition of polyphenols.

The objectives of this study were to determine how harvest and postharvest practices affect cider chemistry—specifically, polyphenol and flavanol concentrations. In one experiment, fruit was harvested at three time points, starting when the fruit was preclimacteric (as measured by ethylene production) and at two additional sequential harvest dates at 2-week intervals. In a second experiment, fruit from a single harvest date was stored under different storage durations and temperatures. We hypothesized that later harvests and longer storage durations would maximize the concentration of organoleptically important polyphenols in fruit, juice, and cider.

Materials and Methods

Fruit selection. Two separate experiments were conducted in each of two years: 2015 and 2016. Within each year, both experiments used the same cultivars, but different trees within the same orchard. In 2015, the cultivars Dabinett, a British bittersweet cider cultivar, and York Imperial, a sharp culinary cultivar, were used. In 2016, Dabinett, Binet Rouge, a French bittersweet cider cultivar, and GoldRush, a sharp culinary cultivar, were used. These cultivars were chosen to compare the effects of harvest maturity and storage treatments on both high- and low-tannin cultivars. Different apple cultivars had to be used in 2015 and 2016 because of their biennial bearing habit. The ‘Dabinett’ and ‘Binet Rouge’ apples were grown on trees planted in 2003 and grafted on ‘Malling 9’ (‘M.9’) or ‘Geneva 9’ (‘G.30’) rootstocks, and the ‘GoldRush’ apples were grown on trees planted in 1996 and grafted on Malling 7 (‘M.7’) rootstock at the Cornell University Agricultural Experiment Station in Lansing, NY. The cultivar York Imperial (Ramey), referred to as “York” in this study, was grown on trees planted in 2000 and grafted on ‘M.9’ rootstocks at Virginia Tech’s Alson H. Smith, Jr. Agricultural Research and Extension Center in Winchester, VA.

Experimental design. For each experiment in each year, there were four single-tree replicates per treatment per cultivar. For the harvest maturity experiment, fruit was harvested in about 2-week intervals (H1, H2, and H3), with harvest dates listed in Table 1. For this experiment, about one-third of the total yield was harvested randomly but equally from all fruiting regions (top, each side of the row, and in the interior of the canopy) of the sample tree at each harvest. The effect of reducing the crop load through these sequential harvests on juice and cider chemistry was not examined.

For the storage experiment, all the fruit from each tree was harvested in a single pick (Table 1), brought into the laboratory, and then divided randomly into four groups—one for each postharvest treatment. The fruit from each tree was kept separate throughout the process, and the same treatment combination was repeated at each harvest. Each treatment was divided equally among the four groups. The fruit was then separated into various walk-in coolers for the storage treatments as follows: Control, “short-term” storage of 6 weeks at 1 °C (S-1C), “short-term” storage of 6 weeks at 10 °C (S-10C), and “long-term” storage of 4 months at 1 °C (L-1C). Harvest and processing dates are presented in Table 1. The S-10C treatment was meant to simulate a traditional sweating process. The L-1C treatment was chosen to replicate commercial long-term cold storage.

Fruit analysis. Fruit firmness, weight, starch, color, and ethylene concentration were measured on a 10- apple subsample per experimental unit (tree x harvest date treatment for Exp. 1 and tree x postharvest storage treatment for Exp. 2). Fruit analysis procedures followed those described in Thompson-Witrick et al. (2014). Briefly, apples were weighed and then a 1-mL gas sample was removed from the core cavity of each apple with a syringe and injected into an Agilent 7890 gas chromatograph equipped with a flame ion detector set at 250 °C (Agilent Technologies, Wilmington, DE). The inlet temperature was 220 °C, oven temperature was 50 °C, and we used a GS-Alumina 30 m x 0.252 mm GS-Alumina column (Agilent Technologies). Flesh firmness was measured at two points at the equator of the apple after the peel was removed using a Fruit Texture Analyzer penetrometer [Blip Manufacturing (Pty.) Ltd., Strand, S.A.] fitted with a cylindrical 11.1-mm-diameter tip. Starch pattern iodine index (SPI) was determined by staining the stem-side cross-section of an apple sliced equatorially with a 0.22% iodine and 0.88% potassium iodide (w/v) solution, and rating on the Cornell Starch-Iodine Index 1–8 scale, where 1 = 100% staining (minimal starch hydrolysis) and 8 = 0% staining (complete starch hydrolysis) (Blanpied and Silsby, 1992).

Juice analysis and preparation. The 10 subsamples were pooled together and the calyx half of each apple was juiced (The Champion Juicer, model G5-PG-710; Plastaket Mfg. Inc., Lodi, CA). Samples were stored at ~8 °C until analysis. Soluble solid content (SSC) was measured with a digital refractometer (PAL-1; Atago U.S.A., Inc., Bellevue, WA) and is reported in °Brix. The pH was measured using a pH probe (Thermo Scientific Versa Star Benchtop Meter, model VSTAR30; Thermo Scientific ROSS Ultra Triode Electrode, model 8107BNUMD; Thermo Scientific, Waltham, MA). Titratable acidity (TA) was measured by titrating against a 0.1 N NaOH solution to an endpoint of pH 8.2 and is reported as malic acid equivalents (Iland, 2004). Total polyphenol content was measured using the Folin-Ciocalteu method and is reported as gallic acid equivalents (Waterhouse, 2002). Primary amino nitrogen (PAN) was measured using the ultraviolet method with a Megazyme Primary Amino Nitrogen kit (Megazyme International, Ireland) (Dukes and Butzke, 1998). Yeast assimilable nitrogen refers to the nitrogenous compounds able to be used through yeast metabolism and is comprised of ammonium and PAN. PAN is a measure of the primary amino acid source of yeast assimilable nitrogen (Bell and Henschke, 2005). The juice chemistry parameters pH, TA, SSC, total polyphenols, and PAN are common measurements performed by cider producers.

Juice was prepared for fermentation using standard cider industry practices. Pectinase was added for prefermentation clarification (Pec5L, Scottzyme; Scott Laboratories, Petaluma, CA) at 1 μL/100 mL juice and allowed to settle overnight in an 18 °C temperature-controlled room. After settling, 750 mL of the clarified juice was racked into autoclaved 1000-mL erlenmeyer flasks for fermentation. Potassium metabisulfite (KMB; Presque Isle Wine Cellars, North East, PA) was added to the juice at 30 mg/L 3 h before inoculation with yeast.

Fermentation. Lalvin EC1118 yeast (Scott Laboratories) was rehydrated in 40 °C deionized water and added to juice according to the manufacturer’s recommended procedure at 250 mg/L. After inoculation, Fermaid® K posthydration nutrient (Scott Laboratories) was added to each flask at 24 g nutrient/L juice. Rubber bungs and airlocks, sanitized with a KMB and citric acid solution, were used to seal the flasks so that CO₂ gas could escape during the fermentation process, but oxygen and other contaminants could not enter the fermenting sample. The flasks were placed in a temperature-controlled incubation chamber at 18 °C for the duration of the fermentation process.

Fermentation rates were monitored by weighing the flasks daily. A decrease in mass is observed as a result of the production and expulsion of CO₂ gas (produced as a
hyproduct of fermentation by yeast) from the vessel. When the mass loss stabilized, a 0.10-mL sample was used for determination of residual sugar concentration by enzymatic reducing sugar analysis using the Megazyme D-Fructose/D-Glucose assay kit (Megazyme International). Fermentation was considered complete and stopped when the residual sugar concentration was between 0.2 and 0.5 g/L.

Sample collection and storage. Upon completion of the fermentation process, cider was collected in 50-mL and 15-mL centrifuge tubes. Additional samples for analysis of individual phenolic compounds were collected in 2-mL sample tubes with four parts sample and one part preservative (4.7% glacial acetic acid and 0.02% w/v ascorbic acid) to prevent oxidation of polyphenols (Thompson-Witrik et al., 2014). All samples were stored at –80°C until analysis, at which point they were thawed in a refrigerator and then brought to room temperature before analysis.

Cider analysis. Residual sugar, pH, TA, PAN, and total polyphenols were measured as described earlier. Cider individual polyphenols were analyzed using an ultra-high performance liquid chromatography/mass spectrometry (UPLC/MS) system with Empower software (UPLC-QDA; Waters Corporation, Milford, MA). The AQUITY UPLC HSS T3 column (2.1 mm × 100 mm, 1.7 μm; Waters Corporation) was used in combination with an AQUITY UPLC HSS T3 (2.1 × 5 mm, 1.7 μm) VanGuard precolumn (Waters Corporation). The initial mobile phase was prepared using 95% of Mobile Phase A and 5% Mobile Phase B. Mobile Phase A consisted of 0.1% formic acid (Macron Fine Chemicals, Avantor Performance Materials Inc., Center Valley, PA) in high-performance liquid chromatography-grade water (Synergy HPLC Water Purification System; EMD Millipore, Billerica, MA) and Mobile Phase B consisted of 0.1% formic acid in acetonitrile (J.T. Baker, Avantor Performance Materials Inc., Center Valley, PA). Once thawed, 1 mL of the cider–preservative solution was pipetted into 50-mL centrifuge tubes and flushed immediately with nitrogen gas for ≥5 s to limit oxidation of polyphenols further. Then, 1 μL of a single sample was pipetted onto pH paper to approximate the pH of the original sample. Because polyphenols in juice and cider are commonly found in their glycosidic forms, acid hydrolysis of glycosides was performed to allow the measurement of the total concentration of each polyphenol (including all glycosidic-bound forms present) using a single standard for the unbound compound to quantify all forms of a given polyphenol present in the sample. The pH of all samples was then adjusted to ~2.0 using 1 μL of 1 M HCl and then subsequently flushed with nitrogen. Samples were then hydrolyzed in an oven at 100°C for 10 min to render polyphenols from their glycosidic to aglycone forms. Samples were kept on ice until extraction.

After cooling samples on ice for several minutes, 2 mL ethyl acetate was added to the hydrolyzed sample to extract the polyphenols from the solution. Samples were vortex-mixed and the layers were then allowed to separate for 30 s. The top ethyl acetate layer was collected because this layer contained the polyphenols used for analysis. Extraction was repeated three times for each sample. The pooled ethyl acetate layer was dried under nitrogen gas (to avoid oxidation) at room temperature using the N-EVAP 111 Nitrogen Evaporator (Organomation, Berlin, MA) on low heat until the sample was dry. Dried samples were stored at –80°C until analysis. Samples were then reconstituted in 1 mL 95% Mobile Phase A and 5% Mobile Phase B, then filtered using 1-mL Luer-Lok Syringe Tips (BD, Franklin Lakes, NJ) and 0.22-μm polytetrafluoroethylene filters (Micro-Solv, Eatontown, NJ) into 12 × 33-mm UPLC/MS vials (Waters Corporation).

Standing standards and samples were incubated in the autosampler at 4°C and injected into the column in 10-μL volumes and eluted at 43°C. The flow rate was 0.6 μL/min. The probe temperature was 600°C, the capillary voltage was 0.8 kV, the ionization mode was ESI+, and each compound was identified by its retention time, molecular weight, and single ion recording (SIR) channel (Supplemental Table 1). Peaks were analyzed using the Apex Track function of Empower software and were smoothed using a mean smoothing level of nine.

The standards used were CAT, EPI, CLA, QUE, PHL (Sigma-Aldrich, St. Louis, MO); and procyanidin B1 (PCB1), procyanidin B2 (PCB2), procyanidin B5 (PCB5), procyanidin C1 (PCC1), and cinnamamin A2 (CA2) (Planta Analytica, Danbury, CT). These standards were chosen because of their known presence in apples as well as their importance in sensory and health studies (Lu and Foo, 1997; Vrhovec et al., 2004). Standards were prepared from a 0.1-mg/mL standard in methanol solution stored at ~80°C until analysis. A serial dilution using 95% Mobile Phase A and 5% Mobile Phase B was then completed to obtain a total of eight calibration standards.

Statistical analysis. One-way analysis of variance was used to determine the individual effects of treatment (harvest date or post-harvest storage condition) and cultivar using the software GraphPad Prism (version 6; La Jolla, CA), with significance defined as P < 0.05. Each replication (tree) was considered a random effect. Mean separation was by Tukey’s honestly significant difference test at P = 0.05. Differences were calculated within each cultivar and not between cultivars.

Results

Harvest maturity effects on fruit, juice, and cider. Fruit firmness, weight, starch, color, and ethylene concentrations were measured to determine whether changes in fruit characteristics resulted from the treatments (Supplemental Tables 2–6). For three of the five cultivars (2015 ‘York’, 2015 ‘Dabinett’, 2016 ‘GoldRush’) measured in the 2 years, ethylene concentration increased from the first to the third harvest. All measured cultivars increased in SPI from the first to the third harvest, but SSC increased only in one cultivar (2016 ‘GoldRush’). For three of five cultivars, fruit firmness decreased (2015 ‘York’, 2015 ‘Dabinett’, 2016 ‘GoldRush’), and for four of five cultivars (2015 ‘York’, 2015 ‘Dabinett’, 2016 ‘Dabinett’, 2016 ‘Binet Rouge’), fruit weight increased. Neither pH nor TA was greatly affected by harvest maturity date. When measured in juice at harvest, total polyphenol concentration showed inconsistent trends, with ‘York’ in 2015 and ‘Binet Rouge’ in 2016 decreasing in concentration from the first to third harvests, but ‘GoldRush’ in 2016 increasing, and ‘Dabinett’ in 2015 and 2016 not changing with harvest date. Similarly, the effect of harvest maturity on PAN concentration was inconsistent among the five cultivars.

Cider pH, TA, and total polyphenol concentration did not vary among treatments in any of the ciders from either harvest year. Ethanol concentration did not differ significantly among treatments in the 2015 ciders or the 2016 ‘Binet

Table 1. Harvest dates for the maturity study and storage durations for the storage study for each cultivar for each year of the study.

Cultivar	Harvest date	Storage date						
	H1	H2	H3	CON	S-1C	S-10C	L-1C	
YK/2015	11 Sept.	25 Sept.	9 Oct.	25 Sept.	6 Oct.	19 Nov.	19 Nov.	27 Jan.
DB/2015	9 Sept.	23 Sept.	6 Oct.	23 Sept.	6 Oct.	19 Nov.	19 Nov.	27 Jan.
GR/2016	19 Oct.	1 Nov.	16 Nov.	26 Oct.	27 Oct.	7 Dec.	7 Dec.	28 Feb.
DB/2016	15 Sept.	30 Sept.	12 Oct.	28 Sept.	28 Sept.	7 Nov.	8 Nov.	26 Jan.
BR/2016	15 Sept.	30 Sept.	12 Oct.	28 Sept.	28 Sept.	7 Nov.	8 Nov.	26 Jan.
Table 2. 2016 ‘Dabinett’ (DA) and ‘Binet Rouge’ (BR) fruit, juice, and cider results from the control (CON), storage for 6 weeks at 1 °C (S-1C), storage for six weeks at 10 °C (S-10C), and storage for 4 months at 1 °C (L-1C).

Cultivar	Parameter	Storage treatment			
		CON	S-1C	S-10C	L-1C
DA Fruit	Ethylene (ppm)	9 ± 6^a	147 ± 12^b	568 ± 55^c	668 ± 68^d
	SPI (1–8)	1.8 ± 0.2^a	4.8 ± 0.2^b	7.5 ± 0.1^c	8.0 ± 0.0^d
	Firmness (lbs)	96 ± 1^a	88 ± 1^b	67 ± 1^c	72 ± 1^d
	Weight (g)	55 ± 2^a	56 ± 2^b	55 ± 2^c	57 ± 2^d
DA Juice	SSC (%Brix)	6.3 ± 0.7^a	5.9 ± 0.4^b	8.5 ± 0.4^c	9.4 ± 1.2^d
	Polyphenols (mg/L GAE)	1,278 ± 104^a	1,710 ± 56^b	2,603 ± 134^c	2,645 ± 162^d
BR Fruit	Ethylene (ppm)	2 ± 2^a	15 ± 2^b	44 ± 1^c	24 ± 6^d
	SPI (1–8)	2.9 ± 0.2^a	4.3 ± 0.3^b	7.4 ± 0.1^c	7.7 ± 0.1^d
	Firmness (lbs)	86 ± 2^a	86 ± 2^b	73 ± 2^c	73 ± 2^d
	Weight (g)	52 ± 2^a	51 ± 2^b	46 ± 2^c	46 ± 2^d
BR Juice	SSC (%Brix)	5.7 ± 0.3^a	7.4 ± 1.1^b	9.9 ± 0.4^c	11.9 ± 1.2^d
	Polyphenols (mg/L GAE)	1,225 ± 211^a	1,286 ± 110^b	1,931 ± 204^c	1,973 ± 242^d
BR Cider	Ethanol (%v/v)	4.7 ± 0.2^a	4.7 ± 0.3^b	5.9 ± 0.2^c	6.2 ± 0.2^d
	Polyphenols (mg/L GAE)	1,120 ± 104^a	1,308 ± 173^b	1,688 ± 112^c	1,871 ± 77^d

Values are represented as mean ± se for 40 samples for fruit and four samples for juice and cider. Statistical differences are represented by superscripts and are only considered within each cultivar.

SPI = starch pattern iodine index; SSC = soluble solid content; GAE = gallic acid equivalent.

Cider pH was largely unaffected by the storage treatments, and in 2015, ‘York’ and ‘Dabinett’ cider TA did not differ as a result of the treatments (Supplemental Tables 7 and 8). However, in 2016, there was a general decrease in TA with increased storage time and temperature in the ‘GoldRush’, ‘Dabinett’, and ‘Binet Rouge’ ciders.

The 2015 ‘York’ and ‘Dabinett’ ciders did not differ significantly in ethanol concentration among treatments (Supplemental Tables 7 and 8). However, the 2016 ‘GoldRush’, ‘Dabinett’, and ‘Binet Rouge’ ciders increased in ethanol concentration as storage time and temperature of fruit increased (Supplemental Tables 9–11).

In 2016, total polyphenols in cider increased with storage time and temperature for ‘Dabinett’ and ‘Binet Rouge’ ciders. In 2015, ‘York’ and ‘Dabinett’ ciders exhibited no differences in individual polyphenol concentrations as a result of the fruit storage treatments (Supplemental Tables 7 and 8). In 2016, however, several individual polyphenols in ‘Dabinett’ and ‘Binet Rouge’ ciders decreased significantly with increased storage time and temperature (Fig. 2).

For both ‘Dabinett’ and ‘Binet Rouge’ ciders, CAT, EPI, PCB1, PCB2, PCB5, PCC1, CA2, and CLA tended to increase with increased storage time and temperature (Fig. 2). The flavanols represented a greater percentage of individual polyphenols with increased storage time and temperature in the 2016 ‘Dabinett’ and ‘Binet Rouge’ ciders. Flavanols in 2016 ‘Binet Rouge’ ciders were 59.3% of polyphenols measured in the harvest treatment, 64.1% in the S-1C treatment, and 66.6% in the S-10C treatment. Flavanols in the 2016 ‘Binet Rouge’ ciders constituted 18.5% of the individual polyphenols measured in the control treatment, 23.6% in the S-1C treatment, 43.4% in the S-10C treatment, and 39.1% in the L-1C treatment.

In ‘GoldRush’ ciders, PCB1 was at its greatest concentration in the S-10C treatment and at its least in the L-1C treatment (Supplemental Table 9). None of the other polyphenols measured exhibited statistically significant differences among the treatments.
In general, later harvest dates resulted in increased internal ethylene concentration in the fruit, fruit softening, increases in fruit weight, and decreases in starch content. However, harvest date had inconsistent effects on juice and cider chemistry across cultivars and harvest years, which has been observed previously (Alberti et al., 2016; Laaksonen et al., 2017). It would be expected that more mature fruit would result in a greater SSC in juice and a greater ethanol content in cider, but in our study, differences in sugar and ethanol concentrations were not as pronounced. Several studies have indicated a decrease in polyphenols during fruit development in some cultivars (Alberti et al., 2016; Laaksonen et al., 2017; Murata et al., 1995), which was observed in the 2015 ‘York’ juices from H2 to H3 and the 2016 ‘Binet Rouge’ juice from H1 to H3. A study by Alonso-Salces et al. (2005), however, revealed there were increases of some polyphenols with increased ripening in Basque cider apple cultivars (Alonso-Salces et al., 2005). Polyphenol concentration seems to vary among cultivars and harvest years and is difficult to predict solely on the maturity of the fruit. Therefore, maturity at harvest does not seem to be a reliable mechanism for manipulating the concentration of polyphenols.

The fruit storage treatments also affected fruit, juice, and cider characteristics. Increased time and temperature of fruit storage increased fruit ripening during storage and resulted in softer fruit, increased SSC in juice, and decreased TA in juice. A treatment-based increase of total polyphenols in juice did not always correlated directly with an increase of total polyphenols in cider, and the concentration of total polyphenols decreased from juice to cider. Total polyphenol concentration in juice also increased with fruit storage time and temperature, but this could also be the result of concentration by dehydration, as fruit weight was also decreasing with increased storage time and temperature. These results contradict those from a study by Laaksonen et al. (2017), in which increased fruit ripening in storage resulted in lower concentrations of polyphenols for ‘Antei’, ‘Melba’, and ‘Orovski simap’. It is certainly possible that different cultivars may respond differently to these treatments.

It is possible that the polyphenols increased by ethylene action, as mentioned in previous studies (Leja et al., 2003; Napolitano et al., 2004). Greater ethylene concentrations in fruit, as observed in the S-10C and L-1C treatments, were observed to correlate generally with an increase of total polyphenols in the 2015 ‘Dabinett’ and ‘Brown Snout’ juices and the 2016 ‘GoldRush’, ‘Dabinett’, and ‘Binet Rouge’ juices. If this was to be the mechanism by which polyphenol increases could occur, then applications of exogenous ethylene or at least containment of the gas could be used to manipulate polyphenol expression. Although these ethylene action hypotheses have been made in previous work (Leja et al., 2003; Napolitano et al., 2004), other research by Defilippi et al. (2004) using strict ethylene synthesis control and exposure methods has suggested that ethylene is likely not responsible for an increase in polyphenols during storage. Furthermore, the correlation of ethylene concentration and total polyphenols in cider only applies to the 2016 ‘Dabinett’ and ‘Binet Rouge’ ciders, with observed concentration increases in the flavanols and CLA. However, the flavanols in both cases had relatively greater concentration increases compared with other polyphenol classes, a greater fraction of the overall polyphenol composition in the S-10C and L-1C treatments. This was most noticeable in the 2016 ‘Binet Rouge’ ciders, in which CLA represented 81.5% and 76.4% of the individual polyphenols measured in the control and S-10C treatments, respectively, and 56.6% and 60.9% in the S-10C and L-1C treatments, respectively. Ultimately, an increase in flavanol concentrations, compared with other polyphenol classes, has a greater potential to contribute to the organoleptic qualities of bitterness and astringency desired by cider makers.
Although the S-10C and L-1C storage treatments increased polyphenol and flavanol concentrations in 2016 ‘Dabinett’ and ‘Binet Rouge’ ciders, it is unclear to what extent these variations in concentration would be detectable organoleptically. Increases in flavan monomers such as CAT and EPI would result in more bitter characteristics, whereas increases in oligomers and polymers would result in more astringent characteristics (Peleg et al., 1999). However, the sensory thresholds of each compound are largely unknown, especially in a complex matrix like cider. For example, CAT in water has been estimated to have a sensory threshold of 46.1 mg/L, which would be greater than most of the concentrations measured in this study, but a mixture of CAT, trimers, and tetramers in water has been reported to have a sensory threshold of only 3.6 mg/L (Delcur et al., 1984). Therefore, a mixture of different-size polyphenols may exhibit much lower sensory detection thresholds and thus sensory impact than a solution of monomers alone.

It is also important to consider that this fruit also decreased in weight and fruit firmness during storage, which could decrease yield and crushing efficiency during cider production, potentially affecting process economics negatively. Furthermore, variations in fruit ethylene concentration are also likely to result in differences in volatile aroma compositions and concentrations in juice and cider (Delfilippi et al., 2004). Although interesting, the effect of storage on volatile aromas is beyond the scope of our study. Last, it is important to acknowledge that variations in production locations and systems could influence the results of similar experiments performed under different conditions, and more research would be required to draw broader conclusions across regions and systems.

Conclusion

Although the sensory character of cider is complex and dependent on concentrations of several classes of compounds, the flavanol class of polyphenols is especially important to cider quality because it imparts bitterness and astringency characteristics provided by traditional cider apples. Our research indicates that for cultivars Dabinett and Binet Rouge, increases in fruit storage time and temperature may provide a mechanism by which to increase flavanol concentrations in cider made from this fruit. This information can help maximize the effect of cider apples that are in increasing demand while the fruit is still in supply in the United States.
Supplemental Table 1. Retention times, molecular weights, and SIR channels for polyphenols.

Compound	Retention time (min)	Molecular weight (g/mol)	SIR (m/z)
CAT	2.892	290.092	289.09
EPI	3.614	290.092	289.09
PC B1	2.476	578.07	577.13
PC B2	3.363	378.04	577.13
PC B5	4.762	578.136	577.13
PC C1	3.889	866.218	865.21
CA2	4.047	1154.808	576.4
QUE	6.673	302.23	301.01
PHL	7.440	274.26	273.05
CLA	2.992	354.31	353.06

Supplemental Table 2. Summary of 2015 York fruit, juice, and cider maturity data.

Parameter	H1	H2	H3
Fruit			
Ethylene (ppm)	1.71 ± 0.88^b	8.08 ± 0.07^{ab}	11.73 ± 3.66^a
SPI (1–8)	1.2 ± 0.1^a	1.9 ± 0.2^a	2.3 ± 0.2^a
Firmness (lbs)	99.2 ± 1.3^a	86.7 ± 1.3^a	87.2 ± 1.3^a
Weight (g)	148.7 ± 5.2^a	179.9 ± 6.6^a	185.3 ± 6.8^a
Red color (0–100%)	45.9 ± 3.5^b	75.3 ± 4.2^a	81.3 ± 2.1^a
Juice			
SSC (*Brix)	9.4 ± 0.5^{ab}	7.9 ± 0.3^a	9.5 ± 0.2^a
pH	3.5 ± 0.1^a	3.5 ± 0.1^a	3.4 ± 0.1^a
TA (g/L malic acid)	5.0 ± 0.1^a	5.2 ± 0.2^a	4.9 ± 0.4^a
SSC:TA	1.9 ± 0.1^a	1.5 ± 0.1^a	2.0 ± 0.2^a
PAN	44 ± 2^a	50 ± 3^a	38 ± 9^a
Polyphenols (mg/L GAE)	363 ± 9^a	424 ± 4^a	292 ± 19^c
Cider			
pH	3.6 ± 0.0^a	3.6 ± 0.0^a	3.6 ± 0.1^a
TA (g/mL malic acid)	4.7 ± 0.8^a	4.7 ± 0.8^a	4.7 ± 0.8^a
Ethanol (%v/v)	5.9 ± 0.3^a	6.6 ± 0.1^a	6.7 ± 0.3^a
Polyphenols (mg/L GAE)	226 ± 13^a	192 ± 10^a	244 ± 16^a
Individual Polyphenols			
CAT	13.7 ± 2.0^{ab}	8.4 ± 1.2^b	14.9 ± 1.4^a
EPI	44.7 ± 2.1^a	34.0 ± 4.6^a	45.2 ± 4.6^a
PCB1	24.5 ± 3.5^a	13.3 ± 2.5^a	22.0 ± 3.5^a
PCB2	39.5 ± 3.7^a	21.5 ± 3.4^a	36.1 ± 3.9^{ab}
PCB5	2.82 ± 0.26^a	1.82 ± 0.20^b	2.87 ± 0.29^{a}
PCC1	7.83 ± 1.33^{a}	3.39 ± 0.87^{a}	7.23 ± 1.47^{a}
CA2	3.05 ± 0.44^a	2.04 ± 0.23^{a}	7.38 ± 3.92^{a}
QUE	2.84 ± 0.30^{a}	1.40 ± 0.19^{a}	2.58 ± 0.19^{a}
PHL	0.62 ± 0.11^{a}	0.09 ± 0.09^{a}	0.32 ± 0.12^{ab}
CLA	136 ± 3^a	128 ± 7^a	138 ± 5^{a}
Supplemental Table 3. Summary of 2015 Dabinett fruit, juice, and cider maturity data.

Parameter	Harvest treatment		
	H1	H2	H3
Fruit			
Ethylene (ppm)	0.07 ± 0.07b	5.97 ± 5.59ab	22.96 ± 4.03a
SPI (1–8)	1.3 ± 0.1b	2.2 ± 0.1a	2.6 ± 0.2a
Firmness (lbs)	129.0 ± 1.3a	115.2 ± 1.8a	118.3 ± 1.8a
Weight (g)	49.2 ± 2.0b	59.93 ± 2.6a	57.2 ± 2.3a
Red color (0–100%)	30.5 ± 2.9b	57.6 ± 3.2a	57.3 ± 3.8a
Juice			
SSC (*Brix)	11.1 ± 0.4a	11.3 ± 0.0a	10.6 ± 0.4a
pH	4.5 ± 0.1a	4.4 ± 0.1a	4.3 ± 0.2a
TA (g/L malic acid)	1.3 ± 0.1a	1.3 ± 0.1a	1.3 ± 0.1a
SSC:TA	8.7 ± 0.8a	8.9 ± 0.4a	8.6 ± 0.8a
PAN	47 ± 4a	31 ± 5a	36 ± 9a
Polyphenols (mg/L GAE)	1718 ± 141a	1420 ± 125a	1190 ± 161a
Cider			
pH	4.2 ± 0.0a	4.2 ± 0.0a	4.2 ± 0.0a
TA (g/mL malic acid)	3.7 ± 0.4a	6.4 ± 1.4a	5.3 ± 0.4a
Ethanol (%v/v)	6.7 ± 0.3a	7.2 ± 0.1a	7.3 ± 0.4a
Polyphenols (mg/L GAE)	1594 ± 126a	1654 ± 69a	1294 ± 111a
Individual Polyphenols			
CAT	35.9 ± 2.4a	36.7 ± 5.4a	19.8 ± 5.6a
EPI	204 ± 9b	215 ± 15a	142 ± 23b
PCB1	119 ± 10b	132 ± 21a	59 ± 25a
PCB2	167 ± 11b	189 ± 18a	94 ± 27b
PCB5	19.0 ± 2.7b	24.0 ± 4.3b	6.7 ± 4.2b
PCC1	138 ± 12b	162 ± 25a	55 ± 32b
CA2	82 ± 10b	102 ± 21a	29 ± 21b
QUE	1.79 ± 0.17a	2.32 ± 0.72a	0.88 ± 0.06a
PHL	2.04 ± 1.20a	2.60 ± 0.94a	0.27 ± 0.11a
CLA	174 ± 3c	178 ± 1a	153 ± 6c

Supplemental Table 4. Summary of 2016 GoldRush fruit, juice, and cider maturity data.

Parameter	Harvest treatment		
	H1	H2	H3
Fruit			
Ethylene (ppm)	0.10 ± 0.01c	0.25 ± 0.02a	0.69 ± 0.08a
SPI (1–8)	2.2 ± 0.2a	3.7 ± 0.1b	5.0 ± 0.2a
Firmness (lbs)	83.5 ± 0.9a	78.7 ± 0.9b	77.7 ± 0.9b
Weight (g)	141.4 ± 4.5a	147.3 ± 4.4a	144.1 ± 5.3a
Green background color (1–4)	2.2 ± 0.1a	1.9 ± 0.1a	1.4 ± 0.1a
Juice			
SSC (*Brix)	6.5 ± 0.6b	8.7 ± 0.1b	12.4 ± 0.9b
pH	3.5 ± 0.0a	3.4 ± 0.0ab	3.4 ± 0.00a
TA (g/L malic acid)	8.6 ± 0.3a	10.4 ± 1.6a	12.2 ± 1.1a
SSC:TA	0.8 ± 0.0a	0.9 ± 0.2a	1.1 ± 0.2a
PAN	25 ± 6e	33 ± 5a	74 ± 4a
Polyphenols (mg/L GAE)	516 ± 17a	575 ± 28a	670 ± 17a
Cider			
pH	3.5 ± 0.0a	3.5 ± 0.0a	3.5 ± 0.0a
TA (g/mL malic acid)	9.2 ± 1.4a	10.6 ± 0.1a	11.0 ± 0.5a
Ethanol (%v/v)	5.2 ± 0.2a	7.5 ± 0.4a	7.7 ± 0.4a
Polyphenols (mg/L GAE)	439 ± 11a	454 ± 27a	520 ± 21a
Individual Polyphenols			
CAT	3.4 ± 0.4a	4.5 ± 0.5b	11.0 ± 0.4a
EPI	102 ± 7b	93 ± 4a	144 ± 3a
PCB1	9.8 ± 1.1b	12.9 ± 1.8b	30.5 ± 1.4a
PCB2	40.6 ± 4.0b	28.3 ± 2.0b	68.5 ± 2.3a
PCB5	2.88 ± 0.47b	2.60 ± 0.18b	6.94 ± 0.36b
PCC1	8.9 ± 1.0a	5.8 ± 0.4b	16.5 ± 1.1a
CA2	5.3 ± 0.8b	2.8 ± 0.2b	10.1 ± 1.1a
QUE	0 ± 0a	0 ± 0a	0 ± 0a
PHL	0 ± 0a	0 ± 0a	0 ± 0a
CLA	244 ± 8b	266 ± 2a	281 ± 4a
Supplemental Table 5. Summary of 2016 Dabinett fruit, juice, and cider maturity data.

Parameter	Harvest treatment		
	H1	H2	H3
Fruit			
Ethylene (ppm)	0.21 ± 0.07a	5.80 ± 3.94a	6.61 ± 4.15a
SPI (1–8)	1.4 ± 0.1b	1.8 ± 0.2b	2.5 ± 0.2a
Firmness (lbs)	-	97.4 ± 1.0a	89.2 ± 1.2a
Weight (g)	53.2 ± 2.1b	53.7 ± 2.0a	66.0 ± 2.3a
Red color (0–100%)	47.7 ± 3.5b	59.9 ± 4.2a	67.1 ± 2.8a
Juice			
SSC (*Brix)	9.6 ± 1.1a	6.9 ± 1.1a	8.7 ± 0.6a
pH	4.6 ± 0.0a	4.6 ± 0.0a	4.6 ± 0.0a
TA (g/L malic acid)	3.0 ± 1.4a	1.3 ± 0.1a	3.2 ± 1.8a
SSC:TA	5.2 ± 1.6a	5.6 ± 1.2a	5.2 ± 1.6a
PAN	36 ± 5a	78 ± 16a	51 ± 6a
Polyphenols (mg/L GAE)	1421 ± 122a	1306 ± 53a	1315 ± 89a
Cider			
pH	4.3 ± 0.0a	4.3 ± 0.1a	4.3 ± 0.1a
TA (g/mL malic acid)	2.4 ± 0.2a	2.8 ± 0.4a	2.9 ± 0.2a
Ethanol (%v/v)	3.7 ± 0.2b	4.5 ± 0.4ab	5.1 ± 0.1a
Polyphenols (mg/L GAE)	1164 ± 68a	1114 ± 93a	1108 ± 53a
Individual Polyphenols			
CAT	3.67 ± 0.79a	3.29 ± 1.32a	5.66 ± 3.07a
EPI	75.6 ± 15.8a	80.0 ± 22.2a	92.8 ± 32.9a
PCB1	9.5 ± 2.3a	11.3 ± 4.3a	10.8 ± 5.9a
PCB2	21.1 ± 6.5a	27.4 ± 11.6a	25.2 ± 14.1a
PCB5	1.62 ± 0.27a	1.77 ± 0.40a	1.79 ± 0.62a
PCC1	5.11 ± 1.28a	7.89 ± 3.27a	6.43 ± 3.48a
CA2	3.06 ± 0.71a	3.54 ± 1.14a	3.79 ± 2.17a
QUE	0.31 ± 0.10a	0 ± 0	0 ± 0
PHL	0 ± 0	0 ± 0	0 ± 0
CLA	181 ± 14a	174 ± 6a	188 ± 18a

Supplemental Table 6. Summary of 2016 Binet Rouge fruit, juice, and cider maturity data.

Parameter	Harvest treatment		
	H1	H2	H3
Fruit			
Ethylene (ppm)	3.65 ± 2.96a	3.12 ± 2.57a	10.01 ± 5.06a
SPI (1–8)	2.1 ± 0.2b	2.6 ± 0.2ab	3.2 ± 0.2a
Firmness (lbs)	-	87.9 ± 1.7a	82.2 ± 1.4a
Weight (g)	46.1 ± 1.7a	52.3 ± 1.8a	60.5 ± 2.0a
Red color (0–100%)	24.0 ± 2.9b	50.1 ± 3.7a	46.0 ± 3.4a
Juice			
SSC (*Brix)	8.7 ± 0.1a	10.9 ± 0.6a	9.3 ± 0.8a
pH	4.4 ± 0.0a	4.4 ± 0.0a	4.4 ± 0.0a
TA (g/L malic acid)	1.6 ± 0.2a	1.6 ± 0.2a	1.6 ± 0.2a
SSC:TA	5.6 ± 0.7a	6.8 ± 0.7a	5.8 ± 0.4a
PAN	53 ± 10a	43 ± 11a	26 ± 2a
Polyphenols (mg/L GAE)	1243 ± 47a	1029 ± 62ab	993 ± 71a
Cider			
pH	4.1 ± 0.0a	4.1 ± 0.0a	4.1 ± 0.0a
TA (g/mL malic acid)	3.0 ± 0.1a	2.8 ± 0.3a	3.3 ± 0.1a
Ethanol (%v/v)	4.5 ± 0.1a	5.2 ± 0.4a	5.3 ± 0.7a
Polyphenols (mg/L GAE)	1070 ± 49a	996 ± 60a	838 ± 101a
Individual Polyphenols			
CAT	2.95 ± 1.56a	4.04 ± 2.41a	0.99 ± 0.16a
EPI	28.0 ± 12.7a	32.3 ± 10.9a	5.60 ± 1.74a
PCB1	3.51 ± 1.77a	2.38 ± 0.69a	0.58 ± 0.28a
PCB2	3.46 ± 1.83a	3.89 ± 1.55a	1.32 ± 0.10a
PCB5	0.48 ± 0.29a	0.67 ± 0.23a	0 ± 0
PCC1	1.13 ± 0.59a	0.97 ± 0.28a	0.62 ± 0.09a
CA2	0.69 ± 0.43a	0.51 ± 0.20a	0.48 ± 0.16a
QUE	0 ± 0	0 ± 0	0 ± 0
PHL	0 ± 0	0 ± 0	0 ± 0
CLA	335 ± 17a	346 ± 22a	278 ± 10a
Supplemental Table 7. Summary of 2015 York fruit, juice, and cider storage data.

Parameter	CON	S-1C	S-10C	L-1C
Fruit				
Ethylene (ppm)	1.5 ± 0.2	98.5 ± 20.3	236.6 ± 36.0	71.6 ± 8.6
SPI (1–8)	2.1 ± 0.2	4.3 ± 0.2	6.9 ± 0.2	6.0 ± 0.6
Firmness (lbs)	89.4 ± 0.9	81.8 ± 1.3	70.3 ± 1.3	64.9 ± 1.3
Weight (g)	160 ± 6	150 ± 6	156 ± 6	144 ± 5
Red color (0–100%)	65.4 ± 3.2	89.1 ± 16.0	73.3 ± 3.0	77.4 ± 3.1
Juice				
SSC (°Brix)	9.7 ± 0.2	9.3 ± 0.5	10.2 ± 0.2	10.8 ± 0.3
pH	3.7 ± 0.0	3.4 ± 0.1	3.4 ± 0.2	3.4 ± 0.1
TA (g/L malic acid)	4.5 ± 0.2	4.8 ± 0.2	2.7 ± 0.2	3.3 ± 0.2
SSC:TA	2.2 ± 0.1	2.0 ± 0.2	3.9 ± 0.4	3.3 ± 0.2
PAN	60 ± 10	73 ± 21	51 ± 7	40 ± 7
Polyphenols (mg/L GAE)	455 ± 24	547 ± 18	447 ± 26	588 ± 32
Cider				
pH	3.6 ± 0.0	3.6 ± 0.0	3.6 ± 0.0	3.6 ± 0.0
TA (g/mL malic acid)	5.9 ± 0.3	5.1 ± 0.4	5.6 ± 0.4	6.4 ± 1.4
Ethanol (%v/v)	5.7 ± 0.4	5.9 ± 0.1	6.5 ± 0.4	6.8 ± 0.1
Polyphenols (mg/L GAE)	260 ± 15	363 ± 33	286 ± 22	315 ± 27
Individual Polyphenols				
CAT	14.6 ± 1.6	19.9 ± 1.7	13.5 ± 1.3	12.5 ± 1.6
EPI	86 ± 5	104 ± 4	76 ± 4	75 ± 7
PCB1	39.8 ± 5.1	68.1 ± 5.9	34.4 ± 3.8	37.7 ± 6.7
PCB2	62.0 ± 5.6	89.0 ± 5.5	49.9 ± 4.1	59.2 ± 9.1
PCB5	3.79 ± 0.76	6.23 ± 0.77	3.76 ± 0.34	3.58 ± 1.07
PCC1	18.1 ± 5.8	29.9 ± 4.7	3.8 ± 2.1	13.0 ± 4.9
CA2	2.4 ± 0.8	11.2 ± 1.3	2.4 ± 1.1	6.5 ± 1.3
QUE	2.99 ± 0.39	2.11 ± 0.11	1.58 ± 0.42	0.76 ± 0.30
PHL	0.34 ± 0.17	0.44 ± 0.04	0.31 ± 0.20	0.64 ± 0.08
CLA	150 ± 7	150 ± 3	142 ± 2	137 ± 4

Supplemental Table 8. Summary of 2015 Dabinett fruit, juice, and cider storage data.

Parameter	CON	S-1C	S-10C	L-1C
Fruit				
Ethylene (ppm)	19.6 ± 5.7	51.5 ± 16.0	304.0 ± 41.8	239.2 ± 28.1
SPI (1–8)	3.3 ± 0.2	5.2 ± 0.2	7.7 ± 0.1	8.0 ± 0.0
Firmness (lbs)	126.8 ± 1.3	100.1 ± 2.2	71.2 ± 1.8	74.3 ± 0.9
Weight (g)	43 ± 2.0	46 ± 2.0	51 ± 3.0	51 ± 2.0
Red color (0–100%)	47.3 ± 3.0	56.7 ± 3.9	59.9 ± 4.4	61.3 ± 3.7
Juice				
SSC (°Brix)	11.8 ± 0.4	11.5 ± 0.3	11.6 ± 0.7	14.3 ± 0.7
pH	4.7 ± 0.0	4.7 ± 0.0	4.5 ± 0.1	4.4 ± 0.0
TA (g/L malic acid)	1.1 ± 0.1	1.3 ± 0.1	1.1 ± 0.1	1.4 ± 0.1
SSC:TA	10.7 ± 0.6	9.1 ± 1.2	11.2 ± 1.0	10.5 ± 0.8
PAN	38 ± 8	34 ± 10	30 ± 9	29 ± 8
Polyphenols (mg/L GAE)	1760 ± 112	1698 ± 90	1800 ± 163	2493 ± 170
Cider				
pH	4.1 ± 0.0	4.0 ± 0.0	4.0 ± 0.1	4.0 ± 0.0
TA (g/mL malic acid)	3.7 ± 0.1	4.4 ± 0.8	3.9 ± 0.2	4.5 ± 0.1
Ethanol (%v/v)	7.1 ± 0.4	6.9 ± 0.2	7.5 ± 0.2	7.8 ± 0.3
Polyphenols (mg/L GAE)	2049 ± 125	2104 ± 96	1997 ± 91	2464 ± 207
Individual Polyphenols				
CAT	52.7 ± 2.2	55.1 ± 3.4	55.3 ± 2.4	56.2 ± 3.4
EPI	249 ± 13	248 ± 13	247 ± 12	250 ± 14
PCB1	202 ± 9	209 ± 15	216 ± 10	224 ± 9
PCB2	216 ± 9	224 ± 13	223 ± 11	233 ± 6
PCB5	38.0 ± 2.1	40.5 ± 3.4	43.1 ± 2.2	48.1 ± 3.0
PCC1	217 ± 14	237 ± 21	232 ± 13	251 ± 9
CA2	149 ± 15	159 ± 22	163 ± 16	172 ± 8
QUE	1.08 ± 0.44	0.92 ± 0.35	1.26 ± 0.32	1.21 ± 0.11
PHL	2.86 ± 0.19	1.38 ± 0.19	2.83 ± 0.75	2.54 ± 0.80
CLA	200 ± 5	205 ± 5	204 ± 7	222 ± 5
Supplemental Table 9. Summary of 2016 GoldRush fruit, juice, and cider storage data.

Parameter	CON	S-1C	S-10C	L-1C
Fruit				
Ethylene (ppm)	0.2 ± 0.0c	3.0 ± 0.9c	152.4 ± 15.0a	61.6 ± 4.8b
SPI (1–8)	3.2 ± 0.1d	4.6 ± 0.1c	7.5 ± 0.1b	7.8 ± 0.0a
Firmness (lbs)	79.8 ± 0.8b	76.3 ± 0.7b	72.8 ± 1.0a	68.2 ± 0.7b
Weight (g)	138 ± 4b	146 ± 4a	149 ± 5b	126 ± 4a
Green background color (1–4)	2.3 ± .1a	1.8 ± 0.1b	1.5 ± 0.1bc	1.2 ± 0.4c
Juice				
SSC (°Brix)	7.4 ± 0.4b	10.4 ± 0.9ab	13.1 ± 0.7a	12.0 ± 0.7a
pH	3.5 ± 0.0a	3.7 ± 0.2a	3.7 ± 0.0b	3.6 ± 0.0b
TA (g/L malic acid)	8.7 ± 0.6b	9.2 ± 0.6b	7.2 ± 0.2a	4.5 ± 0.9b
SSC:TA	0.9 ± 0.1b	1.2 ± 0.1b	1.8 ± 0.1ab	3.1 ± 0.7a
PAN	16 ± 1b	19 ± 1b	14 ± 1a	21 ± 2a
Polyphenols (mg/L GAE)	505 ± 32b	642 ± 29ab	624 ± 47ab	717 ± 27a
Cider				
pH	3.4 ± 0.0a	3.5 ± 0.0b	3.5 ± 0.0c	3.6 ± 0.0a
TA (g/mL malic acid)	11.0 ± 0.6a	9.4 ± 0.4ab	8.6 ± 0.4b	8.2 ± 0.5a
Ethanol (%v/v)	4.6 ± 0.2b	6.6 ± 0.3a	6.5 ± 0.4a	6.5 ± 0.6a
Polyphenols (mg/L GAE)	359 ± 30a	444 ± 29b	475 ± 38a	478 ± 47a
Individual Polyphenols				
CAT	3.53 ± 1.46a	5.62 ± 1.99a	9.52 ± 1.28a	5.85 ± 2.57b
EPI	76 ± 19c	99 ± 16a	124 ± 10b	76 ± 29a
PCB1	11.9 ± 3.8ab	16.1 ± 3.1ab	19.6 ± 2.3a	6.1 ± 2.2a
PCB2	28.4 ± 10.0b	38.0 ± 6.2a	46.7 ± 6.6a	24.0 ± 10.3a
PCC1	5.9 ± 1.9a	8.3 ± 1.4a	10.7 ± 1.6a	4.8 ± 2.2a
CA2	3.36 ± 1.41a	4.81 ± 1.27a	7.18 ± 1.29a	2.64 ± 1.10a
QUE	0 ± 0a	0 ± 0a	0 ± 0a	0 ± 0a
PHL	0 ± 0a	0 ± 0a	0 ± 0a	0 ± 0a
CLA	260 ± 7a	275 ± 16a	283 ± 9a	283 ± 6a

Supplemental Table 10. Summary of 2016 Dabinett fruit, juice, and cider storage treatment.

Parameter	CON	S-1C	S-10C	L-1C
Fruit				
Ethylene (ppm)	9 ± 6b	147 ± 12b	568 ± 55a	668 ± 68a
SPI (1–8)	1.8 ± 0.2c	4.8 ± 0.2b	7.5 ± 0.1a	8.0 ± 0.0a
Firmness (lbs)	96 ± 1b	88 ± 1b	67 ± 1c	72 ± 1d
Weight (g)	55 ± 2a	56 ± 2a	55 ± 2a	57 ± 2a
Red color (0–100%)	51.5 ± 4.4ab	57.7 ± 3.1a	58.3 ± 3.2a	42.2 ± 3.0b
Juice				
SSC (°Brix)	6.3 ± 0.7ab	5.9 ± 0.4b	8.5 ± 0.4ab	9.4 ± 1.2a
pH	4.7 ± 0.0b	4.5 ± 0.0b	4.5 ± 0.1b	4.5 ± 0.0b
TA (g/L malic acid)	1.5 ± 0.2a	1.5 ± 0.2a	1.4 ± 0.2a	2.0 ± 0.2a
SSC:TA	4.3 ± 0.4a	4.1 ± 0.7a	6.6 ± 1.2a	4.8 ± 0.4a
PAN	52 ± 9a	54 ± 12b	50 ± 17a	45 ± 7a
Polyphenols (mg/L GAE)	1278 ± 104b	1710 ± 56ab	2603 ± 134a	2645 ± 162a
Cider				
pH	4.3 ± 0.0a	4.1 ± 0.0a	4.1 ± 0.0a	4.1 ± 0.0a
TA (mg/L malic acid)	2.2 ± 0.1a	4.1 ± 0.1c	3.3 ± 0.2a	3.5 ± 0.1b
Ethanol (%v/v)	4.7 ± 0.2b	4.7 ± 0.5b	5.9 ± 0.2ab	6.2 ± 0.2a
Polyphenols (mg/L GAE)	1120 ± 104c	1308 ± 173a	1688 ± 112ab	1871 ± 77a
Individual Polyphenols				
CAT	22.3 ± 1.5b	37.0 ± 5.2ab	47.3 ± 3.3a	51.3 ± 3.8b
EPI	224 ± 7b	284 ± 25ab	325 ± 15b	344 ± 17b
PCB1	41.7 ± 4.6b	63.7 ± 10.8ab	60.4 ± 20.4ab	98.7 ± 11.8b
PCB2	88 ± 5b	121 ± 14ab	154 ± 9ab	163 ± 9b
PCB5	5.7 ± 0.8a	15.1 ± 3.0ab	24.9 ± 2.4ab	27.8 ± 2.6a
PCC1	23.4 ± 1.7a	40.8 ± 7.0b	52.7 ± 1.7a	57.6 ± 4.4a
CA2	20.6 ± 2.1b	42.6 ± 9.0ab	70.3 ± 8.2a	71.9 ± 8.7a
QUE	0 ± 0a	0 ± 0a	0 ± 0a	0 ± 0a
PHL	0.48 ± 0.16a	0.81 ± 0.62a	0.93 ± 0.37a	0.06 ± 0.06a
CLA	292 ± 10c	330 ± 10ab	270 ± 15a	370 ± 10a
Parameter	Storage treatment			
-------------------------	-------------------			
	CON	S-1C	S-10C	L-1C
Fruit				
Ethylene (ppm)	2 ± 2a	15 ± 2b	44 ± 11a	24 ± 6b
SII (1–8)	2.9 ± 0.2a	4.3 ± 0.3b	7.4 ± 0.1a	7.7 ± 0.1a
Firmness (lbs)	86 ± 2a	86 ± 2a	73 ± 2b	73 ± 2b
Weight (g)	52 ± 2a	51 ± 2a	46 ± 2a	46 ± 2a
Red color (0–100%)	38.5 ± 3.9ab	47.7 ± 3.9a	47.6 ± 5.0a	30.2 ± 3.6b
Juice				
SSC (°Brix)	5.7 ± 0.3b	7.4 ± 1.1bc	9.9 ± 0.4ab	11.9 ± 1.2a
pH	4.4 ± 0.0ab	4.3 ± 0.0b	4.4 ± 0.0ab	4.6 ± 0.0b
TA (g/L malic acid)	2.4 ± 0.3b	2.4 ± 0.5a	2.1 ± 0.1b	1.6 ± 0.2a
SSC:TA	2.5 ± 0.3b	3.4 ± 0.5a	4.7 ± 0.1a	7.5 ± 0.9a
PAN	51 ± 7a	54 ± 10a	27 ± 8a	34 ± 8a
Polyphenols (mg/L GAE)	1225 ± 211a	1286 ± 110a	1931 ± 204a	1973 ± 242a
Cider				
pH	4.1 ± 0.0a	4.1 ± 0.0a	4.0 ± 0.1a	4.1 ± 0.0a
TA (mg/L malic acid)	4.4 ± 0.1a	4.5 ± 0.1a	2.5 ± 0.4a	2.9 ± 0.2a
Ethanol (%v/v)	3.9 ± 0.1a	4.5 ± 0.3bc	6.4 ± 0.9ab	7.9 ± 0.4a
Polyphenols (mg/L GAE)	807 ± 42a	899 ± 43a	1344 ± 91a	1567 ± 65a
Individual Polyphenols				
CAT	7.7 ± 3.2b	11.2 ± 2.5b	33.8 ± 0.3a	29.1 ± 1.6a
EPI	62 ± 17b	78 ± 14b	170 ± 3a	155 ± 5b
PCB1	5.4 ± 2.6a	5.6 ± 1.4a	25.4 ± 1.5a	19.6 ± 1.6a
PCB2	10.6 ± 5.4a	11.7 ± 4.7a	60.9 ± 2.0a	54.0 ± 5.1a
PCB5	1.25 ± 0.33b	1.59 ± 0.23b	4.92 ± 0.50b	4.59 ± 0.41b
PCC1	2.4 ± 1.2a	3.3 ± 0.8a	17.3 ± 0.7a	14.7 ± 1.5a
CA2	1.4 ± 0.7b	1.7 ± 0.5a	14.3 ± 0.7a	10.7 ± 1.4a
QUE	0 ± 0a	0 ± 0a	0 ± 0a	0 ± 0a
PHL	1.21 ± 0.43a	0.53 ± 0.26a	1.56 ± 0.51a	0.16 ± 0.10a
CLA	372 ± 13a	357 ± 18a	428 ± 9a	447 ± 3a