Comparison of Odorants in Beef and Chicken Broth—Focus on Thiazoles and Thiazolines

Huiqi Yeo 1, Dimitrios P. Balagiannis 1, Jean H. Koek 2 and Jane K. Parker 1,*

1 Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, UK
2 Foods Innovation Centre Unilever, Bronland 14, 6708 WH Wageningen, The Netherlands
* Correspondence: j.k.parker@reading.ac.uk

Abstract: The shift in consumer landscape towards vegan, vegetarian and flexitarian diets has created an unprecedented challenge in creating meat aroma from plant-based alternatives. The search for potential vegan solutions has thus led to a renewed interest in authentic meat flavour profiles. To gain a better understanding of the qualitative odour differences between boiled beef and boiled chicken, aroma extracts were isolated using Likens-Nickerson simultaneous distillation-extraction (SDE), selected expressly because the in-situ heating of the sample facilitates the capture of aroma intermediates during the cooking process, thereby mimicking the cooking of meat in stocks and stews. The extracts were then analysed by Gas Chromatography-Mass Spectrometry (GC-MS) and GC-Olfactometry (GC-O). Most of the volatiles identified in this study were sulfur-containing compounds, such as sulfides, thiols, mercaptoaldehydes and mercaptoketones, which are derived from the Maillard reaction. Meanwhile, lipid oxidation results in the formation of unsaturated aldehydes, such as alkenals and alkadienals. Families of thiazoles and 3-thiazolines were found in the extracts. Two novel 3-thiazolines (5-ethyl-2,4-dimethyl-3-thiazoline and 2-ethyl-4,5-dimethyl-3-thiazoline) which may also contribute to the meaty aroma were identified in this work and synthesised from their respective aldehyde and mercaptoketone precursors.

Keywords: beef; chicken; GC-O; thiazole; thiazoline

1. Introduction

The rapid growth in vegan, vegetarian and flexitarian diets has led to renewed interest in the development of process flavourings with authentic flavour profiles of cooked meat, which is an important determinant of consumer acceptance [1]. Despite the advances in analytical techniques, recent studies were more interested in specific animal breeds [2–5], distinct animal parts [5,6] or special cooking techniques [7–9] rather than a comparison between species using the same cooking and extraction technique.

The characteristic aroma of cooked meat is generated from thermally induced reactions, principally the Maillard reaction and lipid oxidation, between non-volatile components of lean and adipose tissues during heating. These complex reaction pathways lead to the formation of a diverse range of products, accounting for the large number of volatile compounds found in cooked meat [2–9]. Aroma compounds produced during the Maillard reaction are typically responsible for the savoury, meaty (e.g., S-containing compounds such as 2-methyl-3-furanthiol), roast (e.g., pyrazines such as 2-ethyl-3,5/6-dimethylpyrazine) and boiled characters. Meanwhile, those derived from lipid oxidation (e.g., saturated and unsaturated aldehydes such as 2-alkenals and 2,4-alkadienals) impart fatty aromas to cooked meat and can contribute to species-specific notes [10].

In this study, the volatiles present in boiled chicken (BC) and boiled beef (BB) were isolated using Likens-Nickerson simultaneous distillation-extraction (LN–SDE), a technique which offers the advantage of in situ heating and extraction. This mimics the cooking of meat in stocks and stews in a kitchen setting and avoids the loss of aroma during sample
transfer inevitable in other methods. Equipped with more sensitive analytical techniques as compared to decades ago, the aim of this work is to gain a better understanding of the qualitative odour differences (i.e., odour activity, quality and intensity) between these species based on a fair comparison (i.e., same cooking and extraction technique), which will be useful in the creation and modification of process flavourings in products such as soups, stocks, and bouillons.

2. Results and Discussion
2.1. Similarities between Boiled Beef (BB) and Boiled Chicken (BC)

The aroma extracts of both BB and BC had an intense aroma characteristic of their respective species and the volatiles identified by GC-O and GC-MS for BB and BC extracts are listed in Table 1. A total of 58 and 64 odour-active volatiles were identified in BB and BC, respectively. The major classes of compounds in both extracts comprised S- and/or N-containing compounds, including heterocycles such as thiazoles, thiazolines and pyrazines, as well as straight chain saturated and unsaturated aldehydes, alcohols and ketones.

Many of the early-eluting odorants (LRI < 500 on DB-5 column) were highly volatile and potent S-containing compounds, namely hydrogen sulfide, methanethiol, ethanethiol and 2-propanethiol. Thus, some were not detected by GC-MS and only by GC-O as the human nose can be a more sensitive detector. Nevertheless, the majority of the compounds with the highest total odour intensity scores and detection frequencies in both the extracts were S-containing compounds, such as 2-methyl-3-furanthiol (cooked meat, roasted), 2-furylmethanethiol (roasted, burnt) and 3-(methylthio)propanal (potato), which were among the primary odorants identified in chicken broth [11]. As observed for these compounds, not all S-containing compounds impart meaty odours. Meanwhile, the N-containing compounds, tetramethylpyrazine and 2-ethyl-3,5-dimethylpyrazine, imparted carboard, earthy and medicinal notes. As for the N- and S-containing heterocycles, 3-thiazolines and thiazoles, odours ranging from savoury (meaty, fatty and onion) to sweet (popcorn, nutty and roasted rice) were detected and these will be discussed in greater detail in Section 2.3. The Strecker degradation products also contributed to the aroma of both the extracts: 3-methylbutanal (malty, cocoa, nutty), 2-methylbutanal (chocolate liquor, aldehydic) and phenylacetaldehyde (floral, rose, perfume, green) are derived from leucine, isoleucine [12] and phenylalanine [13], respectively.

Besides the Strecker aldehydes, carbonyl compounds derived from the oxidative degradation of unsaturated fatty acids were also identified in both extracts. (E,E)-2,4-Decadienal (fatty, fried), (E)-2-nonenal (fatty, aldehydic, waxy), 1-octen-3-one (cooked mushroom) and (E,E)-2,4-nonadienal (fatty) are formed from the autoxidation of n-6 fatty acids such as linoleate [14] and arachidonate [15,16]. Meanwhile, aldehydes such as octanal (fruity, sweet) and nonanal (fatty, citrus, leafy) originate from the autoxidation of n-9 fatty acids such as oleate. Although none of these carbonyl compounds identified possessed aroma characteristics resembling the complete spectrum of cooked chicken [17], it was reported that the removal of carbonyl compounds from the volatile fraction resulted in a loss of chicken odour and an intensification of meaty odour [18]. However, it was also demonstrated that the omission of (E,E)-2,4-decadienal alone did not result in a significant aroma change [19]. Thus, it is likely that it is the delicate balance of the group of carbonyl compounds which contribute to the overall aroma rather than a single aroma compound alone.
Table 1. Odour-active compounds in the boiled beef (BB) and boiled chicken (BC) extracts.

Compound	Description	BB	GC-O	GC-MS	LC-MS-MS	BC	GC-O	GC-MS	LC-MS-MS	ID	Ref
Hydrogen sulfide	Faecal, rotten-egg, sulfur	31 6 <500 <500 <800 n.d. 28 6 <500 <500 <800 n.d. O, ms, lri	[20,21]								
Acetaldehyde	Sweet solvent	9 3 <500 <500 <800 n.d. 15 3 <500 <500 <800 695 O, MS, LRI	[22,23]								
Methanethiol	Leftover chicken, faecal, rotten cabbage	35 6 <500 <500 <800 n.d. 24 5 <500 <500 <800 n.d. O, ms, lri	[22,23]								
Ethanol	Town gas, sulfur	18 4 <600 n.d. <800 n.d. 12 2 <500 n.d. <800 n.d. O, lri	[24]								
2-Propanethiol	Raw onion	27 4 <600 n.d. n.d. n.d. 43 6 <500 <500 <800 n.d. O, lri	[22,24]								
Formaldehyde	Mustard, brassica,	36 5 <500 n.d. n.d. n.d. n.d. n.d.	O, MS, LRI								
2,3-Butanedione	Buttery, cheesy, sweaty, creamy	35 6 574 n.d. 987 987 21 5 586 n.d. 985 980 O, MS, LRI									
1-Propanethiol	Raw onion, musty, meaty	13 4 603 608 n.d. n.d. 19 6 <600 n.d. <800 n.d. O, MS, LRI									
3-Methylbutanal	Malty, cocoa, nutty	36 6 646 644 921 919 29 6 644 646 925 931 O, MS, LRI									
2-Methylbutanal	Chocolate liquor, aldehydic	7 3 655 654 914 915 13 3 <800 n.d. O, MS, LRI									
Formic acid	Mustard, brassica,	36 5 574 n.d. 987 987 21 5 586 n.d. 985 980 O, MS, LRI									
2,3-Pentanedione	Creamy, buttery, cheesy, sweaty	31 6 696 696 1061 1068 16 5 695 697 1058 1080 O, MS, LRI									
1,3-Pentanediol	Unidentified	- - - - - - - - -	O, MS, LRI								
Methanethiol	Raw/rotting onion, catty, petroleum	38 6 737 n.d. n.d. n.d. n.d. n.d. n.d. O, lri	[25]								
Dimethyl disulfide	Raw/rotting onion, sulfur, bad egg	23 6 745 744 1080 1072 18 4 744 744 1081 1083 O, MS, LRI									
1-(Methylthio)propane	Onion, pungent, paint, petal	36 6 766 763 n.d. n.d. 43 6 765 764 1256 1259 O, MS									
Hexanal	Green, fatty, grassy	36 6 799 801 1097 1082 32 6 799 801 1070 1101 O, MS, LRI									
Mercaptopropanoic acid	Vegetable, sulfur, garlic, beer headspace	28 6 805 n.d. 1352 1352 22 4 805 n.d. 1353 1351 O, lri	[26,27]								
Unknown	Brothy, meaty	10 2 813 - - - n.d. n.d. n.d. O, MS, LRI									
Unknown	Vegetable, sulfur, pyrazine, cardboard	28 6 817 818 1270 n.d. 17 4 <800 n.d. O, MS, LRI									
3-Methyl-2-butanethiol	Sweded onion, garlic, meaty, beer headspace	26 6 823 n.d. n.d. n.d. n.d. n.d. O, MS, LRI									
1-(Methylthio)-ethanethiol	Rotting onions, sulfur, catty, petroleum	38 6 845 847 1221 n.d. 40 6 846 847 1222 1231 O, MS, LRI									
Ethyl methyl disulfide	2-Methyl-3-uranylan	41 6 866 872 1303 n.d. 32 5 869 874 1330 1320 O, MS, LRI									
Trimethylxazolone	Popcorn, nutty, vegetable	20 5 869 851 1150 n.d. n.d. n.d. O, MS, LRI									
2-Methyl-2-thiazoline	Boiled/rotting onion, catty, sulfur, medicinal	22 5 876 873 1275 n.d. 45 6 877 884 1278 1284 O, MS, LRI									
2,4-Dimethylxazolone	Meaty, brassica	11 3 890 889 1270 1283 14 4 883 889 1260 1276 O, MS, LRI									
(Z)-4-Heptenal	Lamb fat, potato, meaty, buttery	49 6 895 900 1234 n.d. 38 6 <800 n.d. 900 1240 O, MS, LRI									
Heptanal	Fruity	n.d. n.d. n.d. n.d. n.d. n.d. n.d. O, MS, LRI									
3-Methylcap-2-panone	Onion, catty	20 4 898 903 1346 n.d. 25 4 900 903 1353 1358 O, MS, LRI									
3-(Methylthio)propanal	Potato	46 6 901 909 1451 1467 33 5 905 909 1443 1448 O, MS, LRI									
Table 1. Cont.

Compound	Description	BB	Odour	LRI_{DB-5}	DC_{-(Z)-1,5-Octadien-3-one}	BC	Odour	LRI_{DB-5}	DC_{-(E)-2-Heptenal}	ID	Ref			
2-Furfurylmethanethiol + 2-Mercapto-3-pentanone	Stewed potato, meaty, beef, gravy	39	5	905	912	1340	1342	34	5	909	912	1438	1431	O, MS, LRI
2,4-Dimethyl-3-thiazoline	Meaty, brothly	n.d.	n.d.	n.d.	n.d.	n.d.	24	5	928	928	n.d.	n.d.	O, MS, LRI	
2-Acetyl-1-pyrroline	Basmati rice, pandan	42	6	918	924	1322	1327	39	6	920	924	1321	1323	O, MS, LRI
2-Acetylthiazole	Toasted, biscuit, basmati rice	20	5	1021	1024	1648	1657	24	5	1020	1023	n.d.	1637	O, MS, LRI
2,4-Dimethyl-5-ethyl-oxazole	Roasted/grilled meat	n.d.	n.d.	n.d.	n.d.	n.d.	24	5	928	928	n.d.	n.d.	O, ms, lri	
4-Mercapto-4-methyl-2-pentanone	Boiled chicken	n.d.	n.d.	n.d.	n.d.	n.d.	7	2	938	936	1385	n.d.	O, ms, lri	
(E)-2-Heptenal	Green, citrus, waxy	17	4	961	961	1318	1311	n.d.	n.d.	973	973	1455	1459	O, MS, LRI
Unknown	Fruity, cat’s pee, blackcurrant	9	2	963	-	-	-	-	-	-	-	-	-	
1-Heptanol	Mushroom, fuel	n.d.	n.d.	n.d.	n.d.	n.d.	17	3	973	973	1455	1459	O, MS, LRI	
Dimethyl trisulfide	Meaty, (picked) onion	11	2	967	976	1362	1360	9	2	977	976	1332	1351	O, MS, LRI
1-Octen-3-one + 1-Octen-3-ol	Raw mushroom, green, flower	15	6	976	982	1294	1292	11	2	976	983	1298	1295	O, MS, LRI
(Z)-1,5-Octadien-3-one	Geranium	21	4	978	n.d.	n.d.	19	4	981	n.d.	1361	n.d.	O, lri	
2-Methyl-3-octanone	Vegetable, earth, plastic, garlic	19	3	987	986	n.d.	O, ms, lri							
Trimethyl-3-thiazoline (I)	Pickled onion, cat’s pee	31	5	990	990	1367	1363	17	3	990	990	1364	1351	O, MS, LRI
Trimethyl-3-thiazoline (II)	Meaty, fried onion	16	3	994	992	1373	1380	27	5	993	999	1376	1367	O, MS, LRI
Octanal	Fruity, candy	25	4	999	1005	1279	1265	11	2	1003	1005	1286	1288	O, MS, LRI
Trimethylisothiazole	Odd sulfur, cardboard, earthy, green, savoury	32	6	1010	1008	1395	n.d.	n.d.	n.d.	993	999	1376	1367	O, MS, LRI
(E,E)-2,4-Heptadienal	Earthy, plastic	n.d.	n.d.	n.d.	n.d.	n.d.	5	2	1016	1016	1477	1482	O, MS, LRI	
2-Acetylthiazole	Toasted, biscuit, basmati rice	20	5	1021	1024	1648	1657	24	5	1020	1023	n.d.	1637	O, MS, LRI
3-Octen-2-one	Earthy, plastic	11	3	1039	1041	1376	n.d.	n.d.	n.d.	1047	1046	1429	1427	O, MS, LRI
4-Ethyl-2-methyl-thiazole	Popcorn, basmati, barley, biscuit, roasting skin	n.d.	n.d.	n.d.	n.d.	n.d.	16	3	1047	1046	n.d.	n.d.	O, MS, LRI	
Phenylacetaldehyde	Floral, rose, green, perfume	26	6	1047	1052	1644	1656	20	4	1051	1052	1650	1636	O, MS, LRI
2-Acetyl-1,4,5,6-tetrahydropyridine	Popcorn, roasted skin, fried rice, bread	13	3	1056	1053	n.d.	n.d.	17	3	1053	1053	n.d.	O, ms, lri	
Trimethyl-5-hydroxy-3-thiazoline	Roasted, fatty chicken skin	n.d.	n.d.	n.d.	n.d.	n.d.	14	2	1055	1060	n.d.	n.d.	ms	
2-Acetylpyrrole	Rice, popcorn, toasted	n.d.	n.d.	n.d.	n.d.	n.d.	17	3	1069	1069	1969	1970	O, MS, LRI	
2-Ethyl-3,5-dimethyl-pyrazine	Cardboard, pyrazine, cocoa, soil	24	5	1075	1076	n.d.	n.d.	19	4	1078	1081	1439	1446	O, MS, LRI
5-Ethyl-2,4-dimethyl-thiazole	Popcorn, nutty, sweet, roasted	n.d.	n.d.	n.d.	1080	1425	1442	11	2	1080	1079	1425	1424	O, MS, LRI
Table 1. Cont.

Compound	Description *	BB	Odour	LRI_{DB-5} d	LRI_{ZB-Wax} e	BC	Odour	LRI_{DB-5} d	LRI_{ZB-Wax} e	ID f	Ref g				
2-Ethyl-4,5-dimethyl-3-thiazoline (I)	Roasted onion, garlic	5	1083	n.d.	n.d.	10	1085	n.d.	n.d.	MS, LRI_i					
Tetramethylpyrazine	Cardboard, pyrazine, medicinal	n.d.	n.d.	n.d.	n.d.	26	5	1092	1088	n.d.	1458	O, MS, LRI_i			
5-Ethyl-2,4-dimethyl-3-thiazoline (II)	Fatty, beef fat, grilled meat, savoury	33	6	1095	1094	1441	1443	20	3	1098	1095	1453	1451	MS, LRI_i	
Nonanal	Floral, fruity, fatty, citrus, leafy	12	3	1103	1107	1387	1375	14	3	1108	1107	1396	1391	O, MS, LRI_i	
2-Acetyl-2-thiazoline	Toasted, popcorn	26	4	1109	1111	n.d.	n.d.	2	1	1110	n.d.	n.d.	n.d.	MS, LRI	
4-Methyl-2-isopropylthiazole	Roasting tin bits, pyrazine, seasoning, onions	22	4	1116	1120	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	O, MS			
Unknown	Earthy, soil	-	-	-	-	16	3	1120	-	-	-	-	-	[37]	
2-Acetyl-3,4,5,6-tetrahydropyridine	Popcorn, rice cracker, roasted	n.d.	n.d.	n.d.	n.d.	20	4	1142	1142	1583	n.d.	O, ms, lri			
(Z)-2-Nonenal	Fatty, waxy, fatty	24	6	1149	n.d.	1498	1489	n.d.	n.d.	n.d.	n.d.	n.d.	O, ms, lri	[33,38]	
(E,E)-2,6-Nonadienal	Violets, floral, waxy, fatty	29	6	1155	n.d.	1580	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	O, LRI		
2-Methyl-3-furyl methyl disulfide	Casserole, meaty, beefy, peppery	n.d.	n.d.	n.d.	n.d.	18	3	1158	1157	1582	1579	O, ms, lri	[35,39]		
Decanal	Orange	29	6	1162	1165	1528	1529	15	3	1161	1165	1511	1524	O, MS, LRI	
2,4,6-Trimethyl-1,3,5-trithiazoline	Black onion, soil	n.d.	n.d.	n.d.	n.d.	4	1	1185	1181	1630	1649	O, MS, LRI			
Furfuryl methyl disulfide	Chicken, fatty	n.d.	n.d.	n.d.	n.d.	5	1	1228	1226	n.d.	1799	O, MS, LRI			
Benzothiazole	Saffron, chicken fat, nutty	n.d.	n.d.	n.d.	n.d.	18	4	1244	1249	1944	1937	O, MS, LRI			
(E,Z)-3-Ethyl-5-methyl-1,2,4-trithiolane	Blackcurrant, cat’s pee, crispy chicken skin	n.d.	n.d.	n.d.	n.d.	10	2	1262	1267	1699	1687	ms, lri	[40]		
Nonanoic acid	Sweaty	n.d.	n.d.	n.d.	n.d.	9	2	1267	1268	n.d.	2179	O, MS, LRI			
(E,E)-2,4-Decadienal	McCains, fried, fatty, meaty	5	1	1337	1327	1812	1814	9	2	1331	1325	1814	1802	O, MS, LRI	
(E)-2-Undecenal	Herby, fatty, meaty	5	1	1547	1550	1715	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	O, MS, LRI		

* Odour descriptors provided by 3 trained panellists; b Sum of odour intensities of duplicate samples recorded by panellists on DB-5 column (maximum score = 60); c Number of times the odour was detected by panellists (maximum n = 6); d Linear retention indices determined on DB-5 column (n.d. = not detected); e Linear retention indices determined on ZB-WAX column (n.d. = not detected); f Confirmation of identity where O = odour description agrees with literature; MS = mass spectrum agrees with that of authentic compounds; ms = mass spectrum agrees with reference spectrum in NIST 14/Inramass MS database or in literature; LRI = linear retention indices on DB-5 and/or ZB-WAX columns (where applicable) agree with that of authentic compounds; LRI_S = linear retention indices on DB-5 and/or ZB-WAX columns (where applicable) agree with that of compounds synthesised in the laboratory; lri = linear retention indices on DB-5 and/or ZB-WAX columns (where applicable) agree with literature values; g Literature reference for LRI values.
2.2. Differences between BB and BC

Comparison of the two species showed that there were 21 volatiles identified in the BB extract which were not found in the BC extract and 14 volatiles vice versa. Although the majority of the volatiles were present in both the extracts, the odour intensities of these compounds varied, indicating their different levels of contribution to the aroma of each extract. Figure 1 depicts the difference in mean odour intensities between BB and BC, whereby positive values indicate that the compound was present at a stronger intensity in BB than BC and vice versa for the negative values. A few interesting observations could be made from this figure. The majority of the Maillard reaction products, such as the Strecker aldehydes and diketones, occurred at higher intensities in BB than BC. Meanwhile, among the lipid-derived aldehydes, the alkenals were more predominant in BC while alkenals were more prevalent in BB.

Some fatty odorants, such as \((E,E)-2,4\)-heptadienal and \((E,E)-2,4\)-nonadienal, were only found in the BC extract, while others such as \((E)-2\)-heptenal (green, citral, waxy), \((Z)-2\)-nonenal (fatty, plastic-like), \((E,Z)-2,6\)-nonadienal (violets, floral, waxy, fatty) were only found in the BB extract. However, the strength of fatty odours in the overall aroma is not a consequence of the quantity of identified aldehydes, and the odour activities of the volatiles ought to be considered (Table 2). Thus, it was possible that fatty odorants had a greater contribution to BC than BB aroma, as reported by Gasser and Grosch [11] who observed a stronger prevalence of fatty odorants such as \((E,E)-2,4\)-decadienal, \(\gamma\)-dodecalactone and \((E/Z)-2\)-undecenal in the aroma of BC as compared to BB as a result of the higher fat content in the former. Although \((E,E)-2,4\)-decadienal was present in both extracts, the total odour intensity was almost twice as strong in the BB extract as compared to the BC extract.

Table 2. Odour thresholds of selected alkenals and alkadienals.

Alkenal/Alkadienal	Odour Threshold (\(\mu g \text{ kg}^{-1}\) in Water)	Source
\((E)-2\)-Heptanal	13	[41]
\((E,E)-2,4\)-Heptadienal	0.032	[42]
\((E,E)-2,4\)-Nonadienal	0.06	[43]
\((E,Z)-2,6\)-Nonadienal	0.0045–0.02	[42,43]
\((E,E)-2,4\)-Decadienal	0.027–0.07	[41,42]

As for the Strecker degradation products, 3-methylbutanal, phenylacetaldehyde and 3-(methylthio)-propanal were present at higher intensities in BB than BC as seen in Figure 1. More notably, bis(2-methyl-3-furyl) disulfide (beef fat, meaty, fatty) were only found in the BB extract. This latter compound, with an extremely low odour threshold value of \(2.4 \times 10^{-5} \text{ \(\mu g \text{ kg}^{-1}\) in water}\) [44], is a dimer of 2-methyl-3-furanthiol [45] and was also found in several other studies [7,46,47]. These results corroborated the findings of Gasser and Grosch [11] that bis(2-methyl-3-furyl) disulfide and the Strecker aldehydes were more predominant in the aroma of boiled beef. Furthermore, these authors also reported 12-methyltridecanal to be a beef-specific odorant with tallowy, beef-like notes, which was proposed to be liberated from plasmalogens in ruminants after a long heating period [48,49]. However, this branched aldehyde was not found in our study, which could be attributed to the milder heating conditions and shorter duration impeding the release of the aldehyde from plasmalogens, as it was also not reported in several other studies with similar experimental conditions [8,11,50–52].
Figure 1. Difference in mean odour intensities of duplicate samples recorded by three panellists on DB-5 column between BB and BC extracts (positive values indicate that the compound was present at a stronger intensity in BB than BC and vice versa for the negative values).
2.3. 3-Thiazolines and Thiazoles

For the first time, 5-ethyl-2,4-dimethyl-3-thiazoline (fatty, grilled meat, savoury) and 2-ethyl-4,5-dimethyl-3-thiazoline (roasted onion, garlic) were reported in BB and BC extracts. Not only are these 3-thiazolines structural isomers, but each also exists as geometric isomers represented by distinct peaks of similar ratios (based on percentage of total ion chromatogram peak area). The mass spectra of these isomers are provided in Table 3 while their formation mechanisms and mass fragmentation patterns are proposed in Figures 2 and 3, respectively.

Table 3. Mass spectral data for 5-ethyl-2,4-dimethyl-3-thiazoline and 2-ethyl-4,5-dimethyl-3-thiazoline.

Compound	LRI	DB-5 a	Mass Spectral data, m/z (Relative Intensity) c
5-Ethyl-2,4-dimethyl-3-thiazoline (isomer I)	1080	1419	69, 42 (72), 102 (64), 73 (44), 143 (43), 41 (38), 68 (36), 45 (33), 60 (32), 114 (27)
5-Ethyl-2,4-dimethyl-3-thiazoline (isomer II)†	1099	1446	69, 42 (70), 102 (58), 73 (40), 143 (40), 41 (39), 68 (34), 45 (34), 60 (30), 114 (25)
2-Ethyl-4,5-dimethyl-3-thiazoline (isomer I)†	1089	1443	114, 68 (67), 102 (44), 143 (55), 87 (27), 69 (20), 42 (20), 60 (20), 55 (15), 56 (14)
2-Ethyl-4,5-dimethyl-3-thiazoline (isomer II)	1100	1465	114, 68 (68), 102 (47), 143 (40), 87 (35), 42 (35), 69 (30), 45 (25), 41 (23), 39 (23)

† Compound identified in boiled beef and boiled chicken aroma extracts; a Linear retention index on DB-5 column; b Linear retention index on ZB-Wax column; c First number is the base peak; molecular ion in bold type.

Figure 2. Proposed scheme for the formation of (a) 5-ethyl-2,4-dimethyl-3-thiazoline and (b) 2-ethyl-4,5-dimethyl-3-thiazoline.

Figure 3. Mass fragmentation pattern of 5-ethyl-2,4-dimethyl-3-thiazoline and 2-ethyl-4,5-dimethyl-3-thiazoline (Adapted with permission from Elmore et al. [53] and Bredie et al. [54]. Copyright 1997 and 2002 American Chemical Society).
Table 3. Mass spectral data for 5-ethyl-2,4-dimethyl-3-thiazoline and 2-ethyl-4,5-dimethyl-3-thiazoline.

Compound	LRI_{DB-5}^a	LRI_{ZB-Wax}^b	Mass Spectral data, m/z (Relative Intensity)^c
5-Ethyl-2,4-dimethyl-3-thiazoline (isomer I)	1080	1419	69, 42 (72), 102 (64), 73 (44), 143 (43), 41 (38), 68 (36), 45 (33), 60 (32), 114 (27)
5-Ethyl-2,4-dimethyl-3-thiazoline (isomer II)	1099	1446	69, 42 (70), 102 (58), 73 (40), 143 (40), 41 (39), 68 (34), 45 (34), 60 (30), 114 (25)
2-Ethyl-4,5-dimethyl-3-thiazoline (isomer I)	1089	1443	69 (20), 42 (20), 60 (20), 55 (15), 56 (14)
2-Ethyl-4,5-dimethyl-3-thiazoline (isomer II)	1100	1465	114, 68 (67), 102 (44), 143 (55), 87 (27), 42 (35), 69 (30), 45 (25), 41 (23), 39 (23)

† Compound identified in boiled beef and boiled chicken aroma extracts; ^a Linear retention index on DB-5 column; ^b Linear retention index on ZB-Wax column; ^c First number is the base peak; molecular ion in bold type.

The formation pathway was proposed to be the reaction of α-hydroxyketones or α-dicarboxyls and aliphatic aldehydes in the presence of hydrogen sulfide and ammonia, yielding 3-thiazolines which form thiazoles upon oxidation [53]. The nucleophilic addition of -SH to the carbonyl group of α-dicarboxyls, followed by reduction, resulted in the formation of mercaptoketones, which could react with the imine intermediate, formed between ammonia and the aldehyde, in a nucleophilic attack. The subsequent ring closure and water elimination resulted in the formation of 3-thiazolines. Thus, in addition to the α-hydroxyketones and α-dicarboxyls, the presence of mercaptoketones, which are intermediates in the mechanism, could also result in the formation of 3-thiazolines and thiazoles. Since these precursors were identified in the GC-MS and GC-O, the formation of 3-thiazolines and thiazoles in the BB and BC extracts is very likely. Given the high odour intensity scores of these compounds, they could also be important contributors to boiled meat aromas.

Other 3-thiazolines and several thiazoles were also identified in this study, among which 2,4-dimethyl-3-thiazoline (meaty, brothy, roasted), 2,4-dimethylthiazole (meaty, grilled chicken, roasted), trimethyl-3-thiazoline (pickled onion, cat’s pee; meaty, fried onion), and 5-ethyl-2,4-dimethylthiazole (popcorn, nutty, sweet and roasted) had been found in beef with odour thresholds of 0.02, 0.5, 0.1 and 0.002 mg kg$^{-1}$ in water, respectively [55]. The last two compounds were also found in fried chicken, along with 4-ethyl-2-methylthiazole (popcorn, basmati, biscuit, roasting skin) [56]. These authors also suggested that the lack of mention of 3-thiazolines in literature is due to their presence in trace quantities and susceptibility to oxidation. The presence of thiazolines also exists in other foods such as 2-ethyl-4,5-dimethyl-3-thiazoline in freeze-dried onion sprout [57], as well as trimethylisothiazole (odd sulfur, cardboard, earthy, green) in yeast extract paste [35] and sesame seed oil [58].

Among all the 3-thiazolines and thiazoles with confirmed identities (i.e., by odour description, GC-O and GC-MS LRIs), 2,4-dimethyl-3-thiazoline and 4-ethyl-2-methylthiazole were only identified in BC. These compounds share a common roast aroma, with the thiazoline possessing a meaty note and the thiazole bearing sweeter or more fragrant attributes such as popcorn, basmati and barley. The toasted and rice qualities could also be enhanced in BC by the higher odour intensity score of 2-acetylthiazole in BC than BB (24 vs. 20). Meanwhile, the 3-thiazolines present in BB were characterised by stronger savoury (onion and meaty) notes as manifested in the higher odour intensity scores for 5-ethyl-2,4-dimethyl-3-thiazoline (33 in BB vs. 20 in BC) and trimethyl-3-thiazoline isomer I (31 in BB vs. 17 in BC). Overall, 3-thiazolines and thiazoles contributed to the toast, nutty and rice notes in the BC aroma to create a more rounded profile, while the onion and meaty attributes could be enhanced in the BB aroma to produce a more intense savoury perception.
3. Materials and Methods

3.1. Reagents and Chemicals

Aroma chemicals were obtained from the following suppliers and were ≥95% in purity unless stated otherwise: acetaldehyde, hexanal, heptanal, octanal, nonanal, decanal, 3-(methylthio)propanal, 2-methylbutanal, (E)-2-nonenal, (E,E)-2,4-decadial (90%), (E,E)-2,4-nonadienal (≥89%), (E,E)-2,6-nonadienal, 1-heptanal, 1-octen-3-ol, Z)-4-heptenal, 1-octen-3-one, 2,3-butanediene, 2,3-pentanediene, 3-mercapto-2-butanalone, dimethyl disulfide, dimethyl trisulfide, benzothiazole, 2-methyl-3-furanyl methyl disulfide, 2-acetylpyrrole, 2-acetyl-2-thiazoline, tetramethylpyrazine and 2-isopropylpyrazine were from Sigma Aldrich (Gillingham, UK); 4-nonanone, 2-furylmethanethiol, 3-mercapto-2-pentanone, 2-methyl-2-thiazoline and 1-(methylthio)propane from TCI (Oxford, UK); (E,E)-2,4-decadial (90%) and trimethoxazole from Lancaster Synthesis (Heysham, UK); phenylacetaldehyde and 3-octen-2-one from Acros Organics (NJ, USA); 1-(methylthio)ethanethiol from Carbosynth (Newbury, UK); 1-propanethiol from Fisher Scientific (Loughborough, UK); furfuryl methyl disulfide, 2,4-dimethylthiazole and (E)-2-heptenal from Oxford Organics; 2-acetylthiazole from Fluorochem (Hadfield, UK); 3-methylbutanal from Alfa Aesar (Heysham, UK); 2-methyl-3-furanthiol from IFF (Haverhill, UK), 3-methyl-2-butene-1-thiol from AROXA (Surrey, UK), 2-acetyl-1-pyrroline (≥85%) from aromaLAB GmbH (Martinsried, Germany), nonanoic acid from Anitox (Wellingborough, UK). Pentane (≥98%), diethyl ether (≥99.5%), dichloromethane (≥99.8%), ammonium sulfide (20% wt. solution in H2O), propanal (97%) and 1-hydroxy-2-butanalone (Aldrich®; purity unknown) were from Sigma-Aldrich. 1-Hydroxy-2-propanone (97%) was from Fluka (Seelze, Germany). High purity water (18.2 MΩ) was obtained from a Select Fusion Ultrapure water deionisation unit (SUEZ, Peterborough, UK).

3.2. Likens-Nickerson Simultaneous Distillation-Extraction (LN-SDE)

Fresh beef silverside joint and fresh Class A chicken breast were purchased from a retail supermarket and used within the sell-by date. The meats were provided by one commercial supplier and from the same batch and farm. The chickens were a standard Ross 308 genotype and were reared, slaughtered and processed under commercial conditions. The meat was trimmed of extramuscular fat and minced using a food mincer with 4.5 mm screen (Kenwood, Hampshire, UK). The minced meat (500 g) and high purity water (500 g) were added to a round bottom flask. The sample was boiled at 100 °C in a heating mantle for 30 min. Likens-Nickerson SDE was performed using 30 mL of redistilled pentane/diethyl ether (9:1 v/v) for 2 h. The extract was concentrated to 0.5 mL using a Vigreux column and stored at −80 °C prior to analysis.

3.3. Gas-Chromatography Olfactometry (GC-O)

GC-O analyses were performed on a HP 5890 Series II GC equipped with a flame ionisation detector (Hewlett Packard, Waldbronn, BaWü, Germany) and an ODO II odour port (SGE, Ringwood, Victoria, Australia). The instrument was controlled with ChemStation (version A.06.03). An aliquot of sample (2 µL) was injected in splitless mode, with the injector at 250 °C. Chromatographic separation was achieved on two columns of different polarities. For the non-polar Rxi-5 Sil MS column (30 m × 0.25 mm × 1 µm; Restek, Bellefonte, PA, USA), the oven temperature was programmed from 35 °C to 200 °C at 6 °C min⁻¹ and finally to 320 °C at 15 °C min⁻¹. For the polar ZB-Wax column (30 m × 0.25 mm × 0.25 µm; Phenomenex, Torrance, CA, USA), the oven temperature was programmed from 35 °C to 200 °C at 6 °C min⁻¹ and finally to 250 °C at 15 °C min⁻¹. All initial and final temperatures were held for 10 min. Helium was used as the carrier gas at a constant flow rate of 2.0 mL min⁻¹. The column effluent was split equally between the FID and odour port, where the odours of the eluting components were evaluated. The samples were analysed in duplicates by 3 trained assessors who were screened for olfactory performance in terms of threshold, discrimination and identification using a Sniffin’ Sticks test (Burghardt®, Wedel,
Germany). Each has an olfactory score of ≥38 (out of a maximum of 48) and at least one year of GC-O experience. Assesors recorded the descriptions and intensity scores on a scale of 1–10 (where 3 = weak, 5 = medium and 7 = strong) for the odours detected.

3.4. Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS analyses were performed on an Agilent 7890A GC coupled to an Agilent 5975C inert XL EI/CI MSD triple axis MS (Agilent Technologies, Santa Clara, CA, USA) and controlled with Agilent MSD ChemStation (version E02.02). An aliquot of sample (2 µL) was injected in splitless mode, with the injector at 250 °C. Chromatographic separation was achieved on two columns of different polarities. For the non-polar HP-5 MS column (30 m × 0.25 mm × 1 µm; Agilent Technologies), the oven temperature was increased from 35 °C to 320 °C at 6 °C min⁻¹. For the polar ZB-Wax column (60 m × 0.25 mm × 0.25 µm; Phenomenex), the oven temperature was increased from 35 °C to 250 °C at 4 °C × min⁻¹. All initial and final temperatures were held for 10 min. The carrier gas was helium at a constant pressure of 124 kPa. The MS was operated in electron impact mode with a source temperature of 250 °C, ionisation energy of 70 eV and a scan range from m/z 29 to m/z 400.

3.5. Compound Identification and Quantification

The chromatograms were processed using Agilent MSD ChemStation (version F.01.03.2365; Agilent Technologies). A series of C₈–C₂₅ n-alkanes was analysed under the same conditions for the calculation of the linear retention index (LRI) of each compound. The identities of the compounds were confirmed based on a match of their mass spectra, LRI and odour descriptors with those of authentic compounds where available. Otherwise, a tentative identification was made by comparing their mass spectrum against the NIST 14 NIST/EPA/NIH EI MS Library (Gaithersburg, MD, USA) or INRAMASS MS library (INRA, France), as well as LRI and odour descriptors available in the literature.

3.6. 3-Thiazoline and Thiazole Synthesis

Synthesis was carried out using an adapted method from Elmore and Mottram [53]. Equimolar quantities (5 mmol) of an aldehyde and a mercaptoketone or α-hydroxyketone depending on availability (Table 4) were added to 50 mL of 0.1 M ammonium sulfide solution in a Duran bottle before heating in a 100 °C water bath for 30 min with constant stirring using a magnetic stirrer. The reaction mixtures were allowed to cool at room temperature before extraction with 30 mL dichloromethane. The extracts were flushed under nitrogen before storage at −20 °C until analysis by GC-MS as described in Section 3.4.

Table 4. Precursors for 3-thiazoline and thiazole synthesis.

Reactants	Aldehyde	α-Hydroxyketone/Mercaptoketone	Products	3-Thiazoline	Thiazole
Acetaldehyde	1-Hydroxy-2-propanone	2,4-Dimethyl-			
Acetaldehyde	1-Hydroxy-2-butanone	4-Ethyl-2-methyl-			
Table 4. Cont.

Reactants	Products		
Aldehyde	α-Hydroxyketone/ Mercaptoketone	3-Thiazoline	Thiazole
Acetaldehyde	3-Mercapto-2-pentanone	5-Ethyl-2,4-dimethyl-	
Propanal	3-Mercapto-2-butanone	2-Ethyl-4,5-dimethyl-	
Acetaldehyde	3-Mercapto-2-butanone	Trimethyl-	

4. Conclusions

This study has demonstrated the important contribution of 3-thiazolines in boiled meat aroma and their high aroma intensities could alter and/or enhance the meaty profile in BB and BC. The identification of 5-ethyl-2,4-dimethyl-3-thiazoline and 2-ethyl-4,5-dimethyl-3-thiazoline was also reported in BB and BC for the first time. Aroma extract dilution analysis and recombination studies could be carried out to further evaluate their importance. Nevertheless, the trends were that S-containing compounds and Strecker aldehydes were more prevalent in BB than BC, while fatty odorants, which were mainly lipid-derived aldehydes, were more predominant in BC than BB. This information would be useful for the creation of species-specific meat flavourings or those directed towards desired profiles.

Author Contributions: Investigation, Methodology, Formal analysis, Data curation, Writing—original draft, review and editing, H.Y.; Funding acquisition, Supervision, Conceptualization, Validation, Writing—review and editing, D.P.B.; Funding acquisition, Supervision, Conceptualization, Writing—review and editing, J.H.K.; Funding acquisition, Supervision, Conceptualization, Writing—review and editing, J.K.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Foods Innovation Centre Unilever and the University of Reading Graduate School (Project MA-2017-00632N).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples are not available due to sample instability and short shelf life.
References

1. Wang, Y.; Tuccillo, F.; Lampi, A.; Knaapila, A.; Pulkkinen, M.; Kariluoto, S.; Coda, R.; Edelmann, M.; Jouppila, K.; Sandell, M.; et al. Flavor challenges in extruded plant-based meat alternatives: A review. *Compr. Rev. Food Sci. Food Saf.* 2022, 21, 2898–2929. [CrossRef]

2. Fan, M.; Xiao, Q.; Xie, J.; Cheng, J.; Sun, B.; Du, W.; Wang, Y.; Wang, T. Aroma compounds in chicken broths of Beijing youji and commercial broilers. *J. Agric. Food Chem.* 2018, 66, 10242–10251. [CrossRef] [PubMed]

3. Frank, D.; Ball, A.; Hughes, J.; Krishnamurtthy, R.; Piyasiri, U.; Stark, J.; Watkins, P.; Warner, R. Sensory and flavor chemistry characteristics of Australian beef: Influence of intramuscular fat, feed, and breed. *J. Agric. Food Chem.* 2016, 64, 4299–4311. [CrossRef]

4. Inagaki, S.; Amano, Y.; Kumazawa, K. Identification and characterization of volatile components causing the characteristic flavor of wagyu beef (Japanese Black Cattle). *J. Agric. Food Chem.* 2009, 57, 9114–9122. [CrossRef] [PubMed]

5. Delort, E.; Velluz, A.; Frérot, E.; Rubin, M.; Jaquier, A.; Linder, S.; Eidman, K.F.; MacDougall, B.S. Identification and synthesis of new volatile molecules found in extracts obtained from distinct parts of cooked chicken. *J. Agric. Food Chem.* 2011, 59, 11752–11763. [CrossRef] [PubMed]

6. Straßer, S.; Schieberle, P. Characterization of the key aroma compounds in roasted duck liver by means of aroma extract dilution analysis: Comparison with beef and pork livers. *Eur. Food Res. Technol.* 2013, 238, 307–313. [CrossRef]

7. Christlbauer, M.; Schieberle, P. Characterization of the key aroma compounds in beef and pork vegetable gravies á la chef by application of the aroma extract dilution analysis. *J. Agric. Food Chem.* 2009, 57, 9114–9122. [CrossRef] [PubMed]

8. Schindler, S.; Kring, U.; Berger, R.G.; Ortien, V. Aroma development in high pressure treated beef and chicken meat compared to raw and heat treated. *Meat Sci.* 2010, 86, 317–323. [CrossRef]

9. Xu, S.; Liang, M.; Liu, B.; Zhang, Z.; Liu, Y.; Liu, Z.; Wang, Y. Investigation on key odorsants in braised chicken thigh meat and their changes during storage. *J. Food Compos. Anal.* 2022, 114, 104765. [CrossRef]

10. Mottram, D.S. Flavour formation in meat and meat products: A review. *Food Chem.* 1998, 62, 415–424. [CrossRef]

11. Gasser, U.; Grosch, W. Primary odorants of chicken broth. *Zeitschrift für Lebensmittel-Untersuchung und Forschung* 1990, 190, 3–8. [CrossRef]

12. Pripis-Nicolau, L.; de Revel, G.; Bertrand, A.; Maujean, A. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions. *J. Agric. Food Chem.* 2000, 48, 3761–3766. [CrossRef]

13. Hwang, H.-I.; Hartman, T.G.; Ho, C.-T. Relative reactivities of amino acids in pyrazine formation. *J. Agric. Food Chem.* 1995, 43, 179–184. [CrossRef]

14. Cossignani, G.; Giua, L.; Simonetti, M.S.; Blasi, F. Volatile compounds as indicators of conjugated and unconjugated linoleic acid thermal oxidation. *Eur. J. Lipid Sci. Technol.* 2013, 116, 407–412. [CrossRef]

15. Blank, I.; Lin, J.; Fay, L. Aroma impact compounds formed by autoxidation of arachidonic acid. In *Frontiers of Flavour Science*; Schieberle, P., Engel, K.H., Eds.; Deutsche Forschungsanstalt für Lebensmittelchemie: Freising, Germany, 2000; pp. 3–9, ISBN 3000055568.

16. Taylor, A.J.; Mottram, D.S. Composition and odour of volatiles from autoxidised methyl arachidonate. *J. Sci. Food Agric.* 1990, 50, 407–417. [CrossRef]

17. Pippen, E.L.; Nonaka, M. Volatile carbonyl compounds of cooked chicken. ii. compounds volatilized with steam during cooking. *J. Food Sci.* 1960, 25, 764–769. [CrossRef]

18. Minor, L.J.; Pearlson, A.M.; Dawson, L.E.; Schweigert, B.S. Chicken flavor and aroma, separation and identification of carbonyl and sulfur compounds in volatile fraction of cooked chicken. *J. Agric. Food Chem.* 1965, 13, 298–300. [CrossRef]

19. Feng, Y.; Cai, Y.; Fu, X.; Zheng, L.; Xiao, Z.; Zhao, M. Comparison of aroma-active compounds in broiler broth and native chicken broth by aroma extract dilution analysis (AEDA), odor activity value (OAV) and omission experiment. *Food Chem.* 2018, 265, 274–280. [CrossRef] [PubMed]

20. Cheng, Y.; Rousseff, R.; Li, G.; Wu, H. Methanethiol, an off-flavor produced from the thermal treatment of mandarin juices: A study of citrus sulfur volatiles. *J. Agric. Food Chem.* 2020, 68, 1030–1037. [CrossRef]

21. Lin, J.; Rousseff, R.L.; Barros, S.; Naim, M. Aroma composition changes in early season grapefruit juice produced from thermal concentration. *J. Agric. Food Chem.* 2002, 50, 813–819. [CrossRef]

22. Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T. Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system. *J. Agric. Food Chem.* 1995, 43, 2212–2218. [CrossRef]

23. Engel, E.; Baty, C.; le Corre, D.; Souchon, I.; Martin, N. Flavor-active compounds potentially implicated in cooked cauliflower acceptance. *J. Agric. Food Chem.* 2002, 50, 6459–6467. [CrossRef] [PubMed]

24. Miller, K.E.; Bruno, T.J. Isothermal Kovats retention indices of sulfur compounds on a poly(5% diphenyl–95% dimethylsiloxane) stationary phase. *J. Chromatogr. A* 2003, 1007, 117–125. [CrossRef]

25. Sinha, L.; Geyer, D.E.; Gaige, D.A.; Lira, C.T. Supercritical carbon dioxide extraction of onion flavors and their analysis by gas chromatography-mass spectrometry. *J. Agric. Food Chem.* 1992, 40, 842–845. [CrossRef]

26. Guentert, M.; Brueening, J.; Emberger, R.; Koepsel, M.; Kuhn, W.; Thielmann, T.; Werkhoff, P. Identification and formation of some selected sulfur-containing flavor compounds in various meat model systems. *J. Agric. Food Chem.* 1990, 38, 2027–2041. [CrossRef]

27. Collin, S.; Vermeulen, C. Combinatorial synthesis and screening of novel odorants such as polyfunctional thiols. *Comb. Chem. High Throughput Screen.* 2006, 9, 583–590. [CrossRef] [PubMed]
28. Cha, Y.J.; Cadwallader, K.R. Aroma-active compounds in skipjack tuna sauce. *J. Agric. Food Chem.* 1998, 46, 1123–1128. [CrossRef]

29. Mottram, D.S.; Madruga, M.S.; Whitfield, F.B. Some novel meatlike aroma compounds from the reactions of alkanediones with hydrogen sulfide and furan thiols. *J. Agric. Food Chem.* 1995, 43, 189–193. [CrossRef]

30. Beaulieu, J.C.; Grimm, C.C. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. *J. Agric. Food Chem.* 2001, 49, 1345–1352. [CrossRef] [PubMed]

31. Vitzthum, O.G.; Werkhoff, P. Oxazoles and thiazoles in coffee aroma. *J. Food Sci.* 1974, 39, 1210–1215. [CrossRef]

32. Kotseridis, Y.; Baumes, R. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. *J. Agric. Food Chem.* 2000, 48, 400–406. [CrossRef] [PubMed]

33. Karagül-Yüceer, Y.; Cadwallader, K.R.; Drake, M. Volatile flavor components of stored nonfat dry milk. *J. Agric. Food Chem.* 2001, 49, 305–312. [CrossRef]

34. Liu, Y.; Xu, X.-L.; Zhou, G.-H. Comparative study of volatile compounds in traditional Chinese Nanjing marinated duck by different extraction techniques. *Int. J. Food Sci. Technol.* 2007, 42, 543–550. [CrossRef]

35. Mahadevan, K.; Farmer, L. Key odor impact compounds in three yeast extract pastes. *J. Agric. Food Chem.* 2006, 54, 7242–7250. [CrossRef]

36. Hill, V.M.; Isaacs, N.S.; Ledward, D.A.; Ames, J.M. Effect of high hydrostatic pressure on the volatile components of a glucose–lysine model system. *J. Agric. Food Chem.* 1999, 47, 3675–3681. [CrossRef]

37. Buttery, R.G.; Orts, W.J.; Takeoka, G.R.; Nam, Y. Volatile flavor components of rice cakes. *J. Agric. Food Chem.* 1999, 47, 4353–4356. [CrossRef]

38. Schlüter, S.; Steinhart, H.; Schwarz, F.J.; Kirchgessner, M. Changes in the odorants of boiled carp fillet (*Cyprinus carpio L.*) as affected by increasing methionine levels in feed. *J. Agric. Food Chem.* 1999, 47, 5146–5150. [CrossRef]

39. Macku, C.; Shibamoto, T. Volatile sulfur-containing compounds generated from the thermal interaction of corn oil and cysteine. *J. Agric. Food Chem.* 1991, 39, 1987–1989. [CrossRef]

40. Whitfield, E.B.; Mottram, D.S. Heterocyclic volatiles formed by heating cysteine or hydrogen sulfide with 4-hydroxy-5-methyl-3(2H)-furanone at pH 6.5. *J. Agric. Food Chem.* 2001, 49, 816–822. [CrossRef]

41. Butterly, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of volatiles to rice aroma. *J. Agric. Food Chem.* 1988, 36, 1006–1009. [CrossRef]

42. Flait, M.; Qi, S.; Wei, G.; Yang, X.; Schieberle, P. Characterization of the key odorants in a high-grade Chinese green tea beverage (*Camellia sinensis; Jingshan cha*) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process. *J. Agric. Food Chem.* 2020, 68, 5168–5179. [CrossRef] [PubMed]

43. Milo, C.; Grosch, W. Changes in the odorants of boiled trout (*Salmo fario*) as affected by the storage of the raw material. *J. Agric. Food Chem.* 1993, 41, 2076–2081. [CrossRef]

44. Butterly, R.G.; Haddon, W.F.; Seifert, R.M.; Turnbaugh, J.G. Thiamin odor and bis(2-methyl-3-furyl) disulfide. *J. Agric. Food Chem.* 1984, 32, 674–676. [CrossRef]

45. Ruther, J.; Baltes, W. Sulfur-containing furans in commercial meat flavorings. *J. Agric. Food Chem.* 1994, 42, 2254–2259. [CrossRef]

46. El-Aleem, F.S.A.; Taher, M.S.; Lotfy, S.N.; El-Massry, K.F.; Fadel, H.H.M. Influence of extracted 5-nucleotides on aroma compounds and flavour acceptability of real beef soup. *Int. J. Food Prop.* 2017, 20, S1182–S1194. [CrossRef]

47. Kerscher, R.; Grosch, W. Comparative evaluation of potent odorants of boiled beef by aroma extract dilution and concentration analysis. *Z. Lebensm. Forsch.* 1991, 190, 204–3. [CrossRef]

48. Guth, H.; Grosch, W. 12-Methyltridecanal, a species-specific odorant of stewed beef. *J. Agric. Food Chem.* 1999, 47, 1271–1275. [CrossRef]

49. Guth, H.; Grosch, W. Odorants contributing to warmed-over flavor (WOF) of refrigerated cooked beef. *J. Food Sci.* 1996, 61, 1271–1275. [CrossRef]

50. Specht, K.; Baltes, W. Identification of volatile flavor compounds with high aroma values from shallow-fried beef. *J. Agric. Food Chem.* 1994, 42, 2246–2253. [CrossRef]

51. Elmore, J.S.; Mottram, D.S.; Guy, R.C.E. Effect of temperature and pH on the generation of flavor volatiles in extrusion cooking of wheat flour. *J. Agric. Food Chem.* 2002, 50, 1118–1125. [CrossRef] [PubMed]

52. Mussinan, C.J.; Wilson, R.A.; Katz, I.R.A.; Hruza, A.; Vock, M.H. Identification and flavor properties of some 3-oxazolines and 3-thiazolines isolated from cooked beef. In *Phenolic, Sulfur, and Nitrogen Compounds in Food Flavors*; ACS Symposium Series: Washington, DC, USA; Volume 26, 1976; pp. 133–145. [CrossRef]

53. Kerler, J.; Grosch, W. Odorants contributing to warmed-over flavor (WOF) of refrigerated cooked beef. *J. Agric. Food Chem.* 1999, 47, 3595–3602. [CrossRef]

54. Bredie, W.L.P.; Mottram, D.S.; Guy, R.C.E. Effect of temperature and pH on the generation of flavor volatiles in extrusion cooking of wheat flour. *J. Agric. Food Chem.* 2002, 50, 1118–1125. [CrossRef] [PubMed]

55. Tang, J.; Jin, Q.Z.; Shen, G.H.; Ho, C.T.; Chang, S.S. Isolation and identification of volatile compounds from fried chicken. *J. Agric. Food Chem.* 1983, 31, 1287–1292. [CrossRef]
57. Takahashi, M.; Shibamoto, T. Chemical compositions and antioxidant/anti-inflammatory activities of steam distillate from freeze-dried onion (Allium cepa L.) sprout. *J. Agric. Food Chem.* **2008**, *56*, 10462–10467. [CrossRef]

58. Agyemang, D.; Bardeley, K.; Brown, S.; Kraut, K.; Psota-Kelty, L.; Trinnaman, L. Identification of 2-ethyl-4-methyl-3-thiazoline and 2-isopropyl-4-methyl-3-thiazoline for the first time in nature by the comprehensive analysis of sesame seed oil. *J. Food Sci.* **2011**, *76*, C385–C391. [CrossRef]