Patient preference for and satisfaction with inhaler devices

P. Anderson

ABSTRACT: Preference for and satisfaction with inhaler devices may be associated with improved clinical outcomes, but this has not been proven to date.

A screened Medline search for papers on preference for inhaler devices produced 29 studies on a variety of devices, with Advair Diskus® and Turbuhaler™ featuring prominently. Of the 23 studies sponsored by the pharmaceutical industry, the sponsor’s device was preferred in 19. Interpretation of results was made more difficult because only two studies used robust instruments for measuring preference and satisfaction. Patients with unstable disease or who were unable to use inhalers were usually excluded, and the extent of instruction and coaching given in the studies was greater than that seen in everyday practice. Studies found no significant differences in clinical outcomes between devices (where measured).

Although inhaler preference is a valid patient-reported outcome deserving of scientific study, assessment and reporting of preference outcomes should follow the same regulatory standards as other patient-reported outcomes.

KEYWORDS: Asthma, chronic obstructive pulmonary disease, inhaler, preference, satisfaction

Patient preference for a particular inhaler device is a legitimate outcome for inclusion in studies of aerosolised drugs. However, this type of outcome is studied less frequently than other patient-reported outcomes, such as health-related quality of life (HRQL). There has been increased interest in the area of patient preference and satisfaction over the past decade, as preference for a particular medication or inhaler device may be associated with improved adherence with therapeutic regimens. Recent evidence-based guidelines for device selection and outcomes of aerosol therapy found that all of the devices studied worked equally well in patients who could use them appropriately [1]. The guidelines pointed out the importance of tailoring the device to the patient and recommended considering the following questions when selecting an inhaler device. 1) In what device is the drug available? 2) What device is the patient likely to be able to use properly, given their age and the clinical setting? 3) For which device and drug combination is reimbursement available? 4) Which are the cheapest devices? 5) Can all types of prescribed inhaled drugs be delivered with the same type of device? 6) Which are the most convenient devices for the patient, family or medical staff to use? 7) Does the patient or clinician have any specific device preferences? Preference for a device may be highly influenced by the clinical benefit (drug), economics, ease of use, dosing schedule, portability, taste, adverse effects and sociocultural factors, such as beliefs, knowledge and education.

THE LINK BETWEEN DEVICE PREFERENCE AND PATIENT SATISFACTION

Why measure inhaler preference? It is suggested that patients who use their preferred inhaler may obtain a greater degree of satisfaction with therapy, which should be an important advantage for both patients and caregivers. In addition, with the current emphasis on the patient as consumer, pharmaceutical and medical device manufacturers are increasingly interested in obtaining feedback about their product from patients. Showing greater satisfaction with one device compared with another provides a marketing advantage and the feedback can also be used to improve products. There is also the inference that increased satisfaction will lead to increased adherence, better clinical outcomes and reduced healthcare expenditures, but data for these associations are lacking. It is increasingly common for pharmaceutical companies to add a preference assessment to multicentre clinical trials of inhaled drugs, using another drug-device combination as a comparator.

SELECTION OF STUDIES FOR REVIEW

The literature on inhaler device preference was reviewed by performing a Medline search using
the terms “inhaler”, “preference”, “satisfaction” and “acceptability”, then searching specific device names. All studies in patients with asthma, chronic obstructive pulmonary disease (COPD) or obstructive lung disease (OLD) were included; review articles were excluded, as were studies on nebuliser therapy, those that involved only paediatric patients and those published in a language other than English. This screening process resulted in 29 papers being reviewed for the following elements: disease type, number of patients, duration and design of trial, comparator device, assessment tools, clinical outcomes measured, preferred device and presence of industry sponsorship. The trials were grouped according to type of device comparisons and industry sponsorship.

SUMMARY OF RESULTS

Two trials involved multiple device comparisons (table 1) [2, 3]. They both involved subjects with OLD and tested seven devices on a single occasion with instruction and handling, after which patients’ preferences were ranked and their technique assessed. Neither of these trials had industry sponsorship.

A second group of 10 trials were sponsored by GlaxoSmithKline in subjects with asthma and/or COPD, and involved comparison of the Diskus® (GlaxoSmithKline, Brentford, UK) dry powder device with other inhalers (table 2) [4–13]. Four of the 10 Diskus® trials were conducted as a single interview and device demonstration, and in two of these, there was no actual inhalation from the device. The remainder of the trials were of several weeks’ duration and a short questionnaire was used to assess preference. In two Diskus® trials, a long-acting β2-agonist in the Diskus® was compared with a short-acting β2-agonist in a pressurised metered-dose inhaler (pMDI) [9, 12]. In nine of the 10 trials, the Diskus® was the preferred device when overall preference was assessed.

The next large group of trials involved comparisons with the dry powder inhaler, Turbuhaler™ (AstraZeneca, Lund, Sweden; table 3) [14–24]. This group included 11 trials, all in asthma patients; nine of them were sponsored by AstraZeneca. The Turbuhaler™ trials were 2–8 weeks in duration and all but one employed a randomised, cross-over design. Various drugs were used in the devices, including terbutaline, budesonide, formoterol, salbutamol, flunisolide, fluticasone and beclometasone. Only four of the 11 trials used the same drug in the two devices being compared; the others compared different drugs of the same class, such as inhaled corticosteroids, or short- or long-acting bronchodilators. The assessments were primarily made by questionnaire and one study used a 25-item questionnaire developed according to standards of psychometric testing (Patient Device Experience Assessment (PDEA)) by an independent outcomes research organisation [20]. In seven of the nine trials sponsored by AstraZeneca, the Turbuhaler™ was the preferred device when overall preference was assessed.

A final group of six trials involved a variety of other devices (table 4) [25–30]. One trial, sponsored by Boehringer Ingelheim GmbH, compared the Respimat® Soft Mist™ Inhaler (Boehringer Ingelheim GmbH & Co. KG, Ingelheim, Germany) with a pMDI, using a validated questionnaire (the Patient Satisfaction and Preference Questionnaire (PASAPQ)) in patients with asthma and COPD [25]. Another trial in this group compared Autohaler™ (3M Pharmaceuticals, St Paul, MN, USA) with a pMDI in asthma and measured whether patient opinion about a device affected compliance with medication (as measured by canister weight) [29]. In this trial, patients preferred the Autohaler™, but this preference did not translate into better compliance compared with the pMDI. Greater treatment frequency did, however, have a negative influence on compliance.

In general, for all 29 studies described, there were no significant differences in clinical outcomes between devices (when these were measured). In addition, patients with unstable disease or those unable to use the inhalers were usually excluded from the studies. Inhaler technique was instructed and observed but variably scored, and the majority of the preference assessments were short questionnaires with open-answer questions that were administered at the end of each study period in cross-over studies and then at study conclusion. Of the 29 studies, 23 were sponsored by the pharmaceutical industry, and 83% of the sponsored trials favoured the device manufactured by the sponsoring company.

INTERPRETATION AND DISCUSSION

The science of studying “preference” for and “satisfaction” with medication or a device is relatively new. The approach and techniques, however, should be the same as when measuring other patient-reported outcomes, such as HRQL. Treatment satisfaction can be defined as the patient’s

TABLE 1	Studies comparing multiple devices								
Ref.	Disease	Subjects	Duration	Design	Devices compared	Assessments	Clinical outcomes	Which preferred?	Sponsor
[2]	OLD	100	1	Instruction and handling	7 devices. All placebos (?)	Technique; 3-category scoring	None	1) Easibreathe™*	None
[3]	COPD	20	1	Instruction and handling	7 devices. All placebos (?)	Technique score × 2, device preference ranked	Spirometry	1) Diskus®, 2) pMDI	None

OLD: obstructive lung disease; COPD: chronic obstructive pulmonary disease; pMDI: pressurised metered-dose inhaler. ?: not clear from published paper; *: manufactured by Ivax, Miami, FL, USA; #: 3M Pharmaceuticals, St Paul, MN, USA; #: GlaxoSmithKline, Brentford, UK.
Ref.	Disease	Subjects	Design and treatment duration	Comparator and drugs used	Assessments	Clinical outcome	Diskus*: preferred?
[4]	COPD	156	Single visit, interview and handling, never inhaled	HandiHaler*	Questionnaire (17 items), technique	None	Yes (67%)
[5]	Asthma	159	Single visit, interview and demonstration, never inhaled	TurbuhalerTM*	Asked about preference and inhaler attributes	None	Yes (65%)
[6]	Asthma and COPD	169	Single visit, interview and demonstration, inhaled	TurbuhalerTM*, placebo (?)	Rating (10-point scale) + preference questions, technique score	None	Yes (60%)
[7]	Asthma	145	Cross-over, 3 weeks	pMDI, FP	Questionnaire (5 items), technique	Diary, PEF, rescue medications (compliance better with Diskus*)	Yes (60%)
[8]	Asthma and COPD	50	Single visit, sequential comparison, 1 puff only	TurbuhalerTM*, placebo (?)	Questionnaire (17 items; Likert scale, overall preference), technique score	None (fewer crucial technique errors with Diskus*)	No (34% versus 50% for TurbuhalerTM*)
[9]	OLD	263	Parallel group, double dummy, 4 weeks	TurbuhalerTM* (TER) versus Diskus*: (SLM)	Questionnaire (9 items)	PEF, rescue medications, symptoms, technique	Yes (98% versus 72% TurbuhalerTM*)
[10]	Asthma	364	Parallel group, 12 weeks	DiskhalerTM*, FP	Questionnaire (3 items), technique	FEV1, PEF, symptoms	Yes (64%; performance better with DiskhalerTM*)
[11]	Asthma	213	Parallel group, double dummy (and placebo arm), 12 weeks	DiskhalerTM*, FP	Questionnaire (Likert scale)	Not described	Yes (61% versus 25% DiskhalerTM*)
[12]	Asthma	48	Treatment switch, 4 weeks (pMDI for 3 previous months)	pMDI (SLB) versus Diskus*: (SLM)	Questionnaire (14 items), technique score	None	Yes (71%)
[13]	Asthma	380	Parallel group, double dummy, 4 weeks	DiskhalerTM*, SLM	Technique, preference choice	PEF, rescue medications, symptoms	Yes (73%)

Studies were sponsored by GlaxoSmithKline. COPD: chronic obstructive pulmonary disease; OLD: obstructive lung disease; pMDI: pressurised metered-dose inhaler; FP: fluticasone propionate; PEF: peak expiratory flow; TER: terbutaline; SLM: salmeterol; FEV1: forced expiratory volume in one second; SLB: salbutamol. ?: not clear from published paper; *: manufactured by GlaxoSmithKline, Brentford, UK; #: manufactured by Boehringer Ingelheim GmbH & Co. KG, Ingelheim, Germany; +: manufactured by AstraZeneca, Lund, Sweden; : manufactured by GlaxoSmithKline.
Ref.	Disease	Subjects	Design and treatment duration	Comparator and drugs used	Assessments	Clinical outcome	Turbuhaler™ preferred?
[14]	Asthma	123	Cross-over, 2 weeks	pMDI + spacer (BUD), pMDI (TER)	Questionnaire (20 items, VAS)	AE, PEF, rescue medication	Yes for both drugs
[15]	Asthma	258	Parallel group, 6 weeks (2-week run-in on pMDI)	pMDI, TER	Questionnaire administered to Turbuhaler™ group (not well described)	PEF, rescue medication, symptoms	Yes (50% versus 26% pMDI)
[16]	Asthma	19	Cross-over, 2 weeks	pMDI, TER	Questionnaire (Yes/No choices)	Diary card, PEF	No
[17]	Asthma	28	Cross-over, 4 weeks	pMDI + spacer, BUD	Questionnaire (7 items)	Cough, PEF, rescue medication, symptoms	Yes
[18]	Asthma	469	Cross-over, 8 or 4 weeks	pMDI and Diskus™ (SLM) versus Turbuhaler™ (FOR)	Questionnaire (not described in paper)	FEV1, PEF, symptoms	Yes, but only versus pMDI
[19]	Asthma	46 (19 juveniles, age 11 ± 2 yrs)	Cross-over, 4 weeks (in hot and humid climate)	pMDI (SLB) versus Turbuhaler™ (TER)	Technique, overall preference	FEV1, PEF, symptoms	Yes (44% versus 39%)
[20]	Asthma	99	Cross-over, 4 weeks	pMDI + spacer (FLU, FP, BDP) versus Turbuhaler™ (BUD)	PDEA questionnaire (25 items), technique, ease of learning	None	Yes, versus all 3 pMDIs
[21]	Asthma	159	Cross-over, 2 weeks	pMDI (SLB) versus Turbuhaler™ (TER)	Questionnaire (8 items, VAS)	FEV1, PEF, rescue medication	Yes
[22]	Asthma	12	Cross-over, 8 weeks	Rotahaler™ (BDP) versus Turbuhaler™ (BUD)	Questionnaire (2 items)	Diary card, FEV1, PEF, symptoms	Yes (92%)
[23]	Asthma	36	Cross-over, 4 weeks	Diskhaler™ (SLB) versus Turbuhaler™ (TER)	Questionnaire (not described in paper), technique	PEF, rescue medication	No difference
[24]	Asthma	32	Cross-over, 3 weeks	Rotahaler™ (SLB) versus Turbuhaler™ (TER)	Technique score, preference choice	PEF, symptoms	No difference (40% with no preference)

All except [22] and [24] were sponsored by AstraZeneca. pMDI: pressurised metered-dose inhaler; BUD: budesonide; TER: terbutaline; VAS: visual analogue score; AE: adverse events; PEF: peak expiratory flow; SLM: salmeterol; FOR: formoterol; FEV1: forced expiratory volume in one second; SLB: salbutamol; FLU: flunisolide; FP: fluticasone propionate; BDP: beclomethasone dipropionate; PDEA: Patient Device Experience Assessment. *: manufactured by AstraZeneca, Lund, Sweden; #: manufactured by GlaxoSmithKline, Brentford, UK; *: manufactured by GlaxoSmithKline; #: manufactured by GlaxoSmithKline.
TABLE 4 Studies with other devices

Ref.	Disease	Subjects	Design and treatment duration	Devices and drugs compared	Assessment	Clinical outcome	Which preferred?	Sponsor
[25]	Asthma and COPD	224	Cross-over, 7 weeks	Respimat® versus Soft Mist™ Inhaler® (BB/FEN)	Validated questionnaire (PASAPQ, Likert scales), technique efficacy and acceptability (VAS)	PEF, rescue medications, symptoms	Respimat® Soft Mist™ Inhaler® (80% of 201 patients)	Boehringer Ingelheim GmbH
[26]	Asthma	79	Cross-over, 8 weeks	Easyhaler® (BDP) versus Turbohaler™ (BUD)	Questionnaire (10 items), technique efficacy and acceptability (VAS)	FEV₁, PEF, rescue medications, symptoms	Respimat® (59%)	Orion
[27]	Asthma	171	Parallel group, 12 weeks	MAGhaler® versus pMDI (BDP)	Questionnaire (3 items, all VAS)	FEV₁, rescue medications, symptoms	Equally acceptable	Schwabe and Wolff
[28]	Asthma	25	Cross-over, 4 weeks	Airmax® versus Turbohaler™ (BUD)	Overall preference, ease of use	Respimat® (80% of 201 patients)	Boehringer Ingelheim GmbH	
[29]	Asthma	34	Open (patients used both devices together), 12 weeks	pMDI and Autohaler™ (drug not specified)	Single question ("preference"), canister weight	Respimat® (80% of 201 patients)	Boehringer Ingelheim GmbH	
[30]	OLD	52	Cross-over (non-randomised), 2 weeks	Diskhaler™** (BDP and SLB) versus pMDI (BDP + FEN)	Single question (preference), technique score	Compliance not related to patient opinion (related to treatment and adherence)	None	

COPD: chronic obstructive pulmonary disease; pMDI: pressurised metered-dose inhaler; IB: ipratropium bromide; FEN: fenoterol; PASAPQ: Patient Satisfaction and Preference Questionnaire; PEF: peak expiratory flow; BDP: beclomethasone dipropionate; BUD: budesonide; VAS: visual analogue score; FEV₁: forced expiratory volume in one second; OLD: obstructive lung disease; SLB: salbutamol. *: manufactured by Boehringer Ingelheim GmbH & Co. KG, Ingleheim, Germany; **: made by GlaxoSmithKline, Brentford, UK.

FIGURE 1: Diagram illustrating factors that can influence the patient's satisfaction with their medication (inhaled device or other treatments). Major factors, indicated by solid lines, are the medication itself, previous patient experience, the physician's communication, and the disease history. Minor factors, indicated by dotted lines, are the treatment history, the device, and patient-related factors. The diagram also shows that satisfaction can be influenced by other factors not directly related to the medication, such as disease severity and treatment adherence. The diagram was adapted from a previous study [31]. DTC: direct-to-consumer advertising; HRQL: health-related quality of life; DTC: direct-to-consumer advertising. Reproduced from [31] with permission from the publisher.
different types of medications. Significant differences were found between the routes of administration of the medications (fig. 2) [32]. Overall satisfaction with inhalers was higher than with topical medications, but lower than with oral and injectable medications. For inhalers, the scores for convenience and lack of side-effects were slightly better than for effectiveness. Comparisons of two measuring scales (visual analogue scale and Likert scale) in these assessments, showed the Likert to have better predictive performance [32].

Development of an instrument to assess inhaler preference should be performed with the same scientific rigour as with other patient-reported outcomes. SHIKIAR and RENTZ [31] describe the following domains of satisfaction: symptom relief and efficacy, side-effects, ease and convenience, impact on HRQL and overall satisfaction. Other domains could be added to address factors specific to the disease, drug and device. In developing and validating an instrument, questions should be generated by collecting information from different sources, including patients, physicians and medical literature. The questions should be framed so as to avoid bias and should undergo psychometric analyses to establish reliability, validity and sensitivity. Pilot testing should be performed with the draft instrument in a group of representative patients. The types of instruments used in inhaler satisfaction studies to date have ranged widely, from a simple preference question to a psychometrically developed and validated questionnaire. Response scales range from open-ended questions, through unclear response scales, to visual analogue scales and Likert scales. Most of the questionnaires in the reviewed studies were developed without input from patients or experts in psychological testing. Only two questionnaires were developed by outcomes experts and then tested in the field: the PDEA and the PASAPQ [20, 25]. Only the PASAPQ has a published validation, which includes a determination of minimally important difference, a very important feature for discriminating the degree of difference that is clinically significant [33].

There are regulatory considerations for reporting patient preference claims concerning medications or inhaler devices. In product labelling and promotion, the same amount of scrutiny should be applied to preference claims as has been required for other patient-reported claims, such as HRQL, but to date this has not been required. Recommended requirements for quality-of-life claims have been described by LEIDY et al. [34], and specify that all relevant domains be included in an instrument and that there be a well-documented rationale for including domains. There should be evidence of reliability and validity of the instrument, with clear objectives and hypotheses (no “fishing expeditions”). The sample size should be adequate and there should be careful implementation of the study with full disclosure of results.

Besides using a validated instrument, studies comparing preference for two devices should ideally follow a randomised cross-over design, use the same drug in the devices being compared and have a treatment period of ≥2 weeks for each device. Only six of the studies found by the search performed for this article met these criteria [7, 14, 16, 17, 25, 28]. A further problem with the preference studies reviewed in this article is that patients with unstable disease and those unable to use inhalers correctly were often excluded. It is also very difficult to do this type of study without industry support, but the results of this review may provoke the concern that negative industry-sponsored studies are not published. Patients in everyday practice may not get the type of inhaler instruction and coaching that is typical of the studies reviewed here, and these studies make no consideration of economics as a factor in choice. For these reasons, it may be somewhat difficult to extrapolate published preference data to usual clinical care.

CONCLUSION

In summary, inhaler preference is a valid patient-reported outcome worthy of scientific study. Search of the medical literature, however, shows only one rigorously developed and validated inhaler preference instrument to date. It is important that preference outcomes be subjected to the same regulatory standards as other patient-reported outcomes, but this is not the current standard. Taking device preference and satisfaction into account when choosing an inhaler device may be associated with improved clinical outcomes, but this has not been proven to date. Future research should seek to relate patient-expressed device preference to adherence, quality of life and other clinical outcomes.

SUMMARY

- Inhaler preference is a valid patient-reported outcome worthy of scientific study.
- Preference for and satisfaction with inhaler devices may be associated with improved clinical outcomes, but this has not been proven to date.
- Patients who have unstable disease or are unable to use inhalers are usually excluded from preference and
satisfaction studies, and in everyday practice, patients rarely receive the degree of instruction and coaching given in such studies.

- Of the 29 studies found in the search performed for this article, only two used robust instruments for measuring preference and satisfaction.
- Assessment and reporting of preference and satisfaction should be subject to the same rigorous regulatory standards as other patient-reported outcomes.

REFERENCES

1. Dolovich MB, Ahrens RC, Hess DR, et al. Device selection and outcomes of aerosol therapy: Evidence-based guidelines: American College of Chest Physicians/American College of Asthma, Allergy, and Immunology. Chest 2005; 127: 335–371.

2. Lenney J, Innes JA, Crompton GK. Inappropriate inhaler use: assessment of use and patient preference of seven inhalation devices. EDICI. Respir Med 2000; 94: 496–500.

3. Oliver S, Rees PJ. Inhaler use in chronic obstructive pulmonary disease. Int J Clin Pract 1997; 51: 443–445.

4. Moore AC, Stone S. Meeting the needs of patients with COPD: patients’ preference for the Diskus inhaler compared with the Handihaler. Int J Clin Pract 2004; 58: 444–450.

5. Schlaeppi M, Edwards K, Fuller RW, Sharma R. Patient perception of the Diskus inhaler: a comparison with the Turbuhaler inhaler. Br J Clin Pract 1996; 50: 14–19.

6. Serra-Batlles J, Plaza V, Badiola C, Morejon E. Patient perception and acceptability of multidose dry powder inhalers: a randomized crossover comparison of Diskus/Accuhaler with Turbuhaler. J Aerosol Med 2002; 15: 59–64.

7. Sheth K, Bernstein JA, Lincourt WR, et al. Patient perceptions of an inhaled asthma medication administered as an inhalation powder via the Diskus or as an inhalation aerosol via a metered-dose inhaler. Ann Allergy Asthma Immunol 2003; 91: 55–60.

8. van der Palen J, Klein JJ, Schildkamp AM. Comparison of a new multidose powder inhaler (Diskus/Accuhaler) and the Turbuhaler regarding preference and ease of use. J Asthma 1998; 35: 147–152.

9. Burdon J, Droszcz W, Jones R, Johnston PR, Trowell SJ. Comparison of efficacy and ease of handling of salmeterol and terbutaline powder inhalers. Int J Clin Pract 1998; 52: 85–88.

10. Pieters WR, Stallaert RA, Prins J, et al. A study on the clinical equivalence and patient preference of fluticasone propionate 250 microg twice daily via the Diskus/Accuhaler inhaler or the Diskhaler inhaler in adult asthmatic patients. J Asthma 1998; 35: 337–345.

11. Mahajan P, Okamoto L. Patient satisfaction with the Diskhaler and the Diskus inhaler, a new multidose powder delivery system for the treatment of asthma. Clin Ther 1997; 19: 1126–1134.

12. Liam CK, Lim KH, Wong CM. Acceptance of the Accuhaler, a multi-dose powder inhaler, among asthmatic patients: a comparison with the pressurized metered-dose inhaler. Asian Pac J Allergy Immunol 2000; 18: 135–140.

13. Boulet LP, Cowie R, Johnston P, Krakovsky D, Mark S. Comparison of Diskus inhaler, a new multidose powder inhaler, with Diskhaler inhaler for the delivery of salmeterol to asthmatic patients. Canadian Study Group. J Asthma 1995; 32: 429–436.

14. Boe J, Stiksa G, Svensson K, Asbrink E. New method of evaluating patient preference for different inhalation delivery systems. Ann Allergy 1992; 68: 255–260.

15. Osterman K, Stahl E, Kallen A. Bricanyl Turbuhaler in the treatment of asthma: a six week multi-centre study carried out in Sweden, the United Kingdom, Denmark, Norway and Finland. Eur Respir J 1991; 4: 175–179.

16. Osterman K, Norborg AM, Stahl E. A multiple dose powder inhaler (Turbuhaler) compared with a conventional aerosol. An acceptance study in asthmatics. Allergy 1989; 44: 294–297.

17. Engel T, Heinig JH, Malling HJ, et al. Clinical comparison of inhaled budesonide delivered either via pressurized metered dose inhaler or Turbuhaler. Allergy 1989; 44: 220–225.

18. Campbell LM, Anderson TJ, Parashchak MR, et al. A comparison of the efficacy of long-acting beta 2-agonists: eformoterol via Turbuhaler and salmeterol via pressurized metered dose inhaler or Accuhaler, in mild to moderate asthmatics. Force Research Group. Respir Med 1999; 93: 236–244.

19. Lindsay DA, Russell NL, Thompson JE, et al. A multicentre comparison of the efficacy of terbutaline Turbuhaler and salbutamol pressurized metered dose inhaler in hot, humid regions. Eur Respir J 1994; 7: 342–345.

20. Welch MJ, Nelson HS, Shapiro G, et al. Comparison of patient preference and ease of teaching inhaler technique for Pulmicort Turbuhaler versus pressurized metered-dose inhalers. J Aerosol Med 2004; 17: 129–139.

21. Vilsvik JS, Ringdal N, Albrektsen T, Holthe S. Comparison of the acceptability of the Ventolin metered-dose inhaler and the Bricanyl Turbuhaler. Ann Allergy 1993; 70: 300–304.

22. Tjwa MK. Budesonide inhaled via Turbuhaler: a more effective treatment for asthma than beclomethasone dipropionate via Rotahaler. Ann Allergy Asthma Immunol 1995; 75: 107–111.

23. Brown PH, Lenney J, Armstrong S, Ning AC, Crompton GK. Breath-actuated inhalers in chronic asthma: comparison of Diskhaler and Turbuhaler for delivery of beta-agonists. Eur Respir J 1992; 5: 1143–1145.

24. Gioulekas D, Papakosta D, Vordoyianni P, Baloti H, Aiolou S. Patient satisfaction with metered-dose inhalers: a clinical comparison of Diskhaler and Accuhaler in patients with asthma. Respir Med 1996; 90: 205–209.

25. Schurmann W, Schmiedtmann S, Moroni P, Massey D, Qidan M. Respimat Soft Mist inhaler versus hydrofluorocarbon metered dose inhaler: patient preference and satisfaction. Treat Respir Med 2005; 4: 53–61.

26. Jager L, Laurikainen K, Leinonen M, Silvasti M. Beclomethasone dipropionate Easyhaler is as effective as budesonide Turbuhaler in the control of asthma and is preferred by patients. German Study Group. Int J Clin Pract 2000; 54: 368–372.

27. Kunkel G, Schaper C, Noga O, et al. Efficacy, safety, and acceptance of beclomethasone dipropionate administered via a new dry powder Inhaler or a standard CFC.
metered-dose inhaler in asthma patients. *Respiration* 2003; 70: 399–406.

28 Frew AJ, Langley SJ, Perrin V, Hertog MG. Effects of 4-week treatment with low-dose budesonide (100 micrograms BID) from a novel inhaler Airmax and from a conventional inhaler on bronchial hyper-responsiveness, lung function and symptoms in patients with mild asthma. *Respir Med* 2002; 96: 542–547.

29 van Schayck CP, Bijl-Hofland ID, Folgering H, et al. Influence of two different inhalation devices on therapy compliance in asthmatic patients. *Scand J Prim Health Care* 2002; 20: 126–128.

30 Shieh WB. Preference for the Diskhaler rather than the metered dose inhaler in patients with airway obstruction. *Changgeng Yi Xue Za Zhi* 1994; 17: 20–27.

31 Shikiar R, Rentz AM. Satisfaction with medication: an overview of conceptual, methodologic, and regulatory issues. *Value Health* 2004; 7: 204–215.

32 Atkinson MJ, Sinha A, Hass SL, et al. Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. *Health Qual Life Outcomes* 2004; 2: 12.

33 Kozma CM, Slaton TL, Monz BU, Hodder R, Reese PR. Development and validation of a patient satisfaction and preference questionnaire for inhalation devices. *Treat Respir Med* 2005; 4: 41–52.

34 Leidy N, Revicki D, Geneste B. Recommendations for evaluating the validity of quality of life claims for labeling and promotion. *Value in Health* 1999; 2: 113–127.