Search for Dark Matter Produced in Association with a Dark Higgs Boson Decaying into $W^\pm W^\mp$ or ZZ in Fully Hadronic Final States from $\sqrt{s}=13$ TeV pp Collisions Recorded with the ATLAS Detector

G. Aad et al. *

(ATLAS Collaboration)

(Received 15 October 2020; accepted 19 January 2021; published 26 March 2021)

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV = W^\pm W^\mp$ or ZZ pairs from a decay of a dark Higgs boson s is searched for using 139 fb$^{-1}$ of pp collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s \rightarrow V(q\bar{q})V(q\bar{q})$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted VV pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.

DOI: 10.1103/PhysRevLett.126.121802

Overwhelming astrophysical evidence [1–4] suggests the existence of dark matter (DM). DM cannot be accounted for within the Standard Model (SM) and its nature is one of the major questions in physics. Several extensions of the SM postulate stable, electrically neutral, weakly interacting massive particles (χ) [4] as DM candidates that can potentially be produced in high-energy collisions at the CERN LHC. Once produced, χ would escape detection, producing an imbalance in the measured transverse momentum [5], resulting in missing transverse momentum p_T^{miss} (with magnitude E_T^{miss}). A wide class of models probed at the LHC postulate processes where one or more SM particles X are produced recoiling against χ, resulting in an “$X + E_T^{\text{miss}}$” signature. Searches at the LHC have considered X to be a hadronic jet [6,7], top or bottom quarks [8–11], a photon [12,13], a W or Z boson [14–16], or a Higgs boson [17–19].

This Letter presents a pioneering search for DM using the $X + E_T^{\text{miss}}$ signature where X is a hypothetical particle that decays into a vector-boson pair $VV = W^\pm W^\mp$ or ZZ. This signature was not explored for large E_T^{miss} and resonant VV production with an invariant mass $m_{VV} > 160$ GeV. The signal region (SR) requires large E_T^{miss} from DM particles and targets the $VV \rightarrow q\bar{q}q\bar{q}$ decay, which has the largest branching ratio \mathcal{B}. The background is dominated by vector-boson production in association with jets, referred to as $V +$ jets. The analysis employs control regions (CRs) requiring either a single muon (μ) or a pair of leptons $\ell^+\ell^-$ ($\ell = e, \mu$) in the final state to improve background modeling in the SR.

The discovery of a new boson with SM Higgs properties [20–22] confirmed the mechanism for electroweak symmetry breaking [23–28] and the generation of mass for SM particles. This success motivates a similar mechanism in the dark sector that contains the DM particle, where χ obtains mass via its Yukawa interactions with a dark Higgs boson s [29]. Furthermore, s alleviates the strict constraints from the observed DM relic density [30] by opening up a new annihilation channel into SM particles, when s, rather than χ, is the lightest state in the dark sector.

A two-mediator-based DM model [31] containing a new $U(1)'$ gauge symmetry, which yields an additional massive spin-1 vector Z' boson via the new scalar boson s, is used for the optimization and interpretation of the search presented in this Letter. The relevant model parameters are the Majorana DM particle mass m_s, the Z' mass $m_{Z'}$, the dark Higgs mass m_s, and the Z' couplings g_q to quarks and g_{ℓ} to DM particles. The Born-level Feynman diagrams for the process are shown in Fig. 1. The $s + \chi\chi$ signal is produced through $q\bar{q} \rightarrow Z' \rightarrow s\chi\chi$, requiring an off-shell

![FIG. 1. Born-level Feynman diagrams for the $q\bar{q} \rightarrow Z' \rightarrow s\chi\chi$, $s \rightarrow V(q\bar{q})V(q\bar{q})$ process. The left diagram typically dominates.](image-url)
intermediate state such as a Z' or χ. The $s \rightarrow W^\pm W^\mp$ and $s \rightarrow ZZ$ processes become relevant for $m_s \gtrsim 160$ GeV and $m_s \gtrsim 180$ GeV, respectively [32]. The proposed framework shares similarities with previously explored spin-1 simplified DM models [33–37], with s being the only addition and χ being a Majorana rather than a Dirac fermion. Within this framework, searches for spin-1 mediators provide complementary sensitivity [38].

The search is performed using 139 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector [39,40] in 2015–2018. Events in the SR and the single-muon CR were collected by triggering on E_T^{miss} reconstructed from calorimeter information [41] above a threshold that varied from 90 to 110 GeV. Events in the dilepton CR were recorded using single-lepton triggers with transverse momentum (p_T) thresholds of 24 GeV and higher, depending on the data-taking period, for electrons and muons.

SM background processes and the $s + \chi \chi$ signal were simulated using Monte Carlo (MC) event generators, except the multijet background, which is found to be negligible using a data-driven method. A detailed simulation of the ATLAS detector [42] based on GEANT4 [43] was used to simulate the detector response for all MC event samples. Contributions from additional pp interactions (pileup) were simulated with PYTHIA 8.186 [44] using the NNPDF23 LO (leading order) parton distribution function (PDF) set [45] and corrected to match data. Parton shower simulations with PYTHIA use the A14 set of tuned parameters [46] with the NNPDF23 LO PDF set.

Signal samples for the $pp \rightarrow Z' \rightarrow s\chi\chi \rightarrow VV\chi\chi \rightarrow q\bar{q}q\bar{q}\chi\chi$ process were generated at LO in QCD with up to one additional parton in the event, using MadGraph5_aMC@NLO 2.6.2 [47] interfaced to PYTHIA 8.230, both using the NNPDF23 LO PDF set. Samples were generated in the (m_T, m_s) plane for $m_{T'} = 0.5, 1, 1.7, 2.5$ TeV and in steps of 25 GeV for $160 < m_s$ GeV < 360, with $m_s = 200$ GeV to avoid $s \rightarrow \chi\chi$ decays. Other parameters were chosen as $g_{\chi} = 1.0$, $g_{q} = 0.25$ [36,37], and $\sin \theta = 0.01$, where θ is the mixing angle between SM and dark Higgs bosons [29], set to a small value [48].

The $V +$ jets processes were simulated with SHERPA 2.2.1 [49], including mass effects for b- and c-quarks and using NNPDF3.0 PDFs [50]. The perturbative calculations for $V +$ jets were performed at next-to-leading order (NLO) in QCD for up to two partons and at LO for up to four partons [51,52], and matched to the parton shower [53] using the ME + PS@NLO prescription [54]. The $V +$ jets samples are normalized using calculations at next-to-next-to-leading order (NNLO) in QCD [55]. Backgrounds from top quark pair ($t\bar{t}$) production and single top quark production were generated at NLO in QCD with POWHEG-BOX [56–59] v2 using the NNPDF3.0 NLO PDF set, interfaced to PYTHIA 8.230 for parton showering and hadronization. The $t\bar{t}$ samples are normalized using calculations at NNLO in QCD including next-to-next-to-leading logarithmic corrections for soft-gluon radiation [60–66]. The single-top-quark processes are normalized to cross sections at NLO in QCD from Hather v2.1 [67,68]. Diboson (VV) samples were simulated with SHERPA 2.2.1 at NLO in QCD and normalized using calculations at NNLO in QCD using NNPDF3.0 NNLO PDFs. Backgrounds from associated VH production were generated at NLO in QCD with POWHEG-BOX interfaced to PYTHIA 8.186 using NNPDF3.0 NLO PDFs. The $qq \rightarrow VH$ and $gg \rightarrow VH$ processes were normalized using calculations at NNLO in QCD and at NLO in QCD combined with next-to-leading-logarithmic order corrections, respectively.

At least one pp collision vertex reconstructed from at least two inner detector (ID) tracks with $p_T^{\text{track}} > 0.5$ GeV is required in the event. The vertex with the highest $\sum(p_T^{\text{track}})^2$ in the event is designated the primary vertex (PV). The ID tracks must have at least seven hits and satisfy $p_T > 0.5$ GeV and $|\eta| < 2.5$ requirements [69,70]. Their transverse and longitudinal impact parameters relative to the PV must satisfy $|d_0| < 2$ mm and $|z_0 \sin(\theta)| < 3$ mm, respectively.

Muons are reconstructed by matching a track or track segment found in the muon spectrometer to an ID track. Muons must satisfy “medium” or “loose” requirements [71] such that medium (loose) muons must have $|\eta| < 2.5(2.7)$. Electrons are reconstructed by matching a cluster of energy in the calorimeter to an ID track. Electron candidates are identified using a likelihood-based method [72] and must satisfy the loose requirement and have $|\eta| < 2.47$. Electrons and muons must be isolated according to the track proximity criteria in Ref. [73]. Hadronic τ-lepton decays are identified by an algorithm based on a boosted decision tree [74].

Jets are formed from three-dimensional clusters of calorimeter cells with the anti-k_T algorithm [75,76]. Small-R jets use a radius parameter $R = 0.4$ and are referred to as “central” if they satisfy $|\eta| < 2.5$ and $p_T > 20$ GeV and “forward” if they fulfill $2.5 < |\eta| < 4.5$ and $p_T > 30$ GeV. Corrections for pileup [77] and the energy scale and resolution [78] are applied to small-R jets. In addition, central small-R jets with $20 < p_T/GeV < 60$ and $|\eta| < 2.4$ are identified as originating from the PV using associated tracks [79]. Small-R jets closer than $\Delta R = 0.2$ to an e, μ, or hadronic τ-decay candidate are rejected.

To better reconstruct the challenging multiprong $s \rightarrow V(q\bar{q})V(q\bar{q})$ decay, the novel track-assisted reclustering (TAR) algorithm [80] is used. This technique improves the resolution of jet substructure observables by considering both tracking and calorimeter information, combined with the flexibility of jet reclustering. The TAR jets are formed from small-R jets reclustered into larger jets with $R = 0.8$ using trimming parameters optimized for ATLAS [81]. The mass and other substructure observables of TAR jets are reconstructed using ID tracks. For this, ID tracks are first matched to the small-R jets that constitute the $R = 0.8$ jets.
Subsequently, the \(p_T \) of tracks matched to a given small-\(R \) jet are rescaled such that their sum equals the \(p_T \) of that jet, in order to compensate for the neutral jet components missed by the tracker [80]. The TAR algorithm is estimated to improve the sensitivity of the search by a factor of up to 2.5 in expected median discovery significance compared to the conventional large-\(R \) jet approach [82], neglecting systematic uncertainties.

In order to suppress contributions from background processes that involve top quarks, which decay almost exclusively to \(b \)-quarks, a multivariate algorithm is used to identify jets containing \(b \)-hadrons (\(b \)-tagging) with an efficiency of 77\% [83]. The algorithm is applied to variable-radius track jets with \(p_T > 10 \) GeV and \(|\eta| < 2.5\) formed from ID tracks using the anti-\(k_t \) algorithm [84] and a \(p_T \)-dependent radius parameter.

The \(\mathbf{p}_{\text{miss}} \) vector is computed as the negative vector sum of the transverse momenta of the \(e \), \(\mu \), and small-\(R \) jet candidates in the event. The transverse momenta not associated with any \(e \), \(\mu \), or jet candidates are accounted for using ID tracks [85]. In addition, an \(E_T^{\text{miss}} \) significance \(S \) is computed from the expected resolutions for all the objects used in the \(E_T^{\text{miss}} \) calculation [86] and is used to reject multijet background processes.

The signal is characterized by high \(E_T^{\text{miss}} \) from DM particles, and substantial hadronic activity from \(s \rightarrow V(q\bar{q})V(q\bar{q}) \) decays that results in an invariant mass consistent with \(m_t \). Thus, the SR requires \(E_T^{\text{miss}} > 200 \) GeV, no isolated \(e \) or \(\mu \), no \(\tau \) lepton decays, and two or more small-\(R \) jets. Events in the SR are rejected if a loose electron or muon with \(p_T > 7 \) GeV is present. In addition, events in the SR and CRs are not considered if they contain hadronic \(\tau \)-decay candidates with \(p_T > 20 \) GeV within \(|\eta| < 2.5\). The smallest azimuthal angle between the \(E_T^{\text{miss}} \) and any of the three highest-\(p_T \) (leading) small-\(R \) jets is required to be at least \(\pi/9 \) in order to reduce the multijet background arising from mismeasured jet momenta. This background is further suppressed by requiring \(S > 15 \).

The \(tt \) and diboson processes contribute 1\%–7\% and 2\%–8\% of the background in the SR, respectively, while the dominant SM \(Z(\nu \bar{\nu}) + j + W(\ell \nu) + j \) processes contribute 59\%–73\% and 15\%–32\%, respectively, depending on the topology. The modeling of \(V + j \) is improved using two CRs: the single-muon CR (1-\(\mu \)-CR) enriched in \(W+j \) and the two-lepton CR (2-\(\ell \)-CR) enriched in \(Z+j \). The 1-\(\mu \)-CR follows the same selection as the SR, except that events must contain exactly one medium muon with \(p_T > 27 \) GeV and no loose electrons with \(p_T > 7 \) GeV. Events in the 2-\(\ell \)-CR are selected using the same requirements as the SR, except that events must contain exactly two loose electrons or two oppositely charged medium muons and satisfy \(S < 15 \). The leading lepton must fulfill \(p_T > 27(25) \) GeV for electrons (muons), while for the subleading one \(p_T > 7 \) GeV is required. The dilepton system is required to be consistent with an energetic \(Z \) boson, i.e., \(p_T^{\ell\ell} > 200 \) GeV and \(83 < m_{\ell\ell}/\text{GeV} < 99 \).

In order to optimize the sensitivity over a broad \(VV \)-pair momentum range, two selection categories, merged and intermediate, are defined. For large \(s \) momenta, the dark Higgs boson’s decay products become collimated and are reconstructed inside a single TAR jet. These topologies are targeted in the merged category, defined as containing at least one TAR jet with \(p_T^{\text{TAR}} > 300 \) GeV, and mass \(m_{\text{TAR}} \) between 100 and 400 GeV. TAR jet substructure variables are employed to discriminate between the four-prong topology of \(s \rightarrow V(q\bar{q})V(q\bar{q}) \) decays and backgrounds with lower multiplicities. This is done using combinations of \(N \)-subjetness [87] variables \(\tau_N \) by requiring \(0 < \tau_1/\tau_2 < 0.3 \) and \(0 < \tau_1/\tau_3 < 0.6 \), which were also experimentally studied in Ref. [88]. The \(s \)-candidate mass is identified with \(m_{\text{TAR}} \). The merged category dominates the sensitivity, and the product of acceptance and selection efficiency for \(\sigma(pp \rightarrow s\chi\chi) \times B(s \rightarrow VV) \) lies around 1\%.

Moderate \(s \)-candidate momenta result in less-collimated decay products, which may not be captured by the nominal TAR jet. In such cases, events failing the merged-category requirements are considered in the intermediate category, where the \(s \) candidate is reconstructed from a TAR jet with \(m_{\text{TAR}} > 60 \) GeV that is supplemented by up to two additional small-\(R \) jets within \(\Delta R = 2.5 \) of the TAR jet. If the mass of the TAR jet is compatible with \(m_W \), i.e., \(60 < m_{\text{TAR}}/\text{GeV} < 100 \), the TAR jet is supplemented with the two small-\(R \) jets whose combined invariant mass is closest to \(m_W \). If \(m_{\text{TAR}} > 100 \) GeV, it is assumed that only one prong of the \(s \) decay was not reconstructed within the TAR jet, and thus it is supplemented with exactly one small-\(R \) jet. The \(s \)-candidate mass is required to lie between 100 and 400 GeV. The product of acceptance and selection efficiency for \(\sigma(pp \rightarrow s\chi\chi) \times B(s \rightarrow VV) \) ranges between 10\% and 20\%.

To account for changes in the background composition and benefit from increased signal sensitivity with higher \(E_T^{\text{miss}} \), events in the merged category are further classified into ranges in \(E_T^{\text{miss}}/\text{GeV} \): [300, 500] and [500, \(\infty \)]. The range [200, \(\infty \)] is used in the intermediate category. The same ranges are defined consistently in the 1-\(\mu \)-CR and the 2-\(\ell \)-CR. To ensure kinematic similarity to the \(p_T^{\text{miss}} \) arising from the \(V + j \) in the SR, \(p_T^{\text{miss},\text{noj}} = p_T^{\text{miss}} + p_T^j \), which corresponds to the \(p_T \) carried by the \(W \) boson, is used in the 1-\(\mu \)-CR. Similarly, \(p_T^{\ell\ell} \) in the 2-\(\ell \)-CR corresponds to \(p_T^{\text{miss}} \) in the SR.

The DM signal is extracted via a simultaneous maximum-likelihood fit [89,90] of signal and background simulations to the binned \(s \)-candidate mass distributions in the SR and to total yields in the CR categories. The normalizations of \(W + j \) and \(Z + j \) processes are free parameters in the fit and are constrained by the total event yields, summed over \(E_T^{\text{miss}} \)-bin and category, in the 1-\(\mu \)-CR and 2-\(\ell \)-CR. Experimental uncertainties related to the
TABLE I. Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with $m_{Z'} = 1$ TeV and m_h of (a) 160, (b) 235, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.

Source of uncertainty	(a)	(b)	(c)
Signal modeling	11	10	10
$W +$ jets modeling	9	21	14
$Z +$ jets modeling	7	12	13
MC statistics	11	14	23
Jet energy scale	8	17	24
Jet energy resolution	11	18	15
Lepton reconstruction	8	9	5
Track reconstruction	6	7	5
Systematic uncertainty	30	42	55
Statistical uncertainty	16	25	50
Total uncertainty	34	49	74

calibration of the scale and resolution of the jet energy [78] as well as to tracking efficiencies [70] affect the reconstruction of m_h using TAR jets. Other leading experimental systematic uncertainties arise from the finite number of MC events and the calibration of the lepton identification efficiencies [71,72]. Dominant theoretical systematic uncertainties originate from the modeling of the signal and the $W +$ jets and $Z +$ jets background processes. These encompass uncertainties from the choice of PDFs and factorization and normalization scales. In addition, to estimate the uncertainty from the choice of matrix element and parton shower generator for $W +$ jets and $Z +$ jets, alternative MC samples generated with MadGraph5_aMC@NLO 2.6.2 at LO in QCD with up to four parton emissions using the NNPDF23 LO PDF set and interfaced to PYTHIA 8.230 using a merging scale of $Q_{\text{cut}} = 30$ GeV are considered. All other systematic uncertainties are estimated similarly to Ref. [17], except for the $t\bar{t}$ normalization, for which theoretical uncertainties [65] are considered. The systematic uncertainties, parametrized as nuisance parameters with Gaussian or log-normal prior probabilities, are profiled and used to constrain the template shapes and the normalizations varied in the fit [91]. Dominant uncertainties after the fit to Asimov data for three representative dark Higgs scenarios are quantified in Table I.

A first fit to the SM backgrounds is performed using only data from the CRs. The observed and fitted yields in the CR categories obtained after this fit are shown in Fig. 2. Also shown are the background yields predicted in the SR when using the observed parameter values from the CR-only fit. The fit reduces the MC-predicted $V +$ jets contribution in the merged category. The overall yields in the CRs and the SR are found to be well described by SM simulations. The normalization and the p_T^{V} dependence of both $W +$ jets and $Z +$ jets are consistent within uncertainties with SM predictions in the SR and CRs. Figure 3 shows the mass distributions m_{VV} of the s candidate in two representative SR categories and the two corresponding categories in the 1μ-CR, obtained after a simultaneous fit to the SR and the CRs under the hypothesis that only SM predictions are present. The data distributions agree well with MC simulations in the CRs, indicating that $V +$ jets background processes reconstructed with the novel TAR algorithm are well modeled. The observed results in the SR indicate that the data are in general well described by SM predictions. A mild excess around $m_{VV} = 160$ GeV is observed, yielding a 2.3σ local significance and 1.3σ global significance when considering nine independent m_h hypotheses. The excess in the intermediate region is narrower than the experimental resolution for m_h.

Upper limits are set on the product of the $pp \to s \chi\chi$ production cross section and $B(s \to VV)$, using a modified frequentist approach (CL$_s$) [92] with a test statistic based on the profile likelihood in the asymptotic approximation [93]. Exclusion contours in the ($m_{Z'}$, m_h) plane for the dark Higgs model are presented in Fig. 4 and exclude $m_{Z'}$ up to 1.8 TeV for $m_h = 210$ GeV at 95% confidence level (C.L.). The observed exclusion range in $m_{Z'}$ becomes narrower than expected at low m_h, owing to the small excess in data near $m_{VV} = 160$ GeV discussed above. The merged SR provides the maximal sensitivity attained at low m_h and high $m_{Z'}$, while the intermediate SR provides complementary sensitivity.
FIG. 3. Distributions of the invariant mass of the dark Higgs boson candidates in the 1μ-CR and 2ℓ-CR (upper row) and in the SR (lower row) in two representative categories, after the fit to data. The upper panels compare the data with the SM expectation before and after the background-only fit. The lower panels display the ratio of data to SM expectations after the fit, with its systematic uncertainty. Also shown is the ratio of SM expectations before and after the fit. The expected signal, with a cross section of 214 fb, from a representative dark Higgs model with $g_{q} = 0.25$, $g_{t} = 1.0$, and $\sin\theta = 0.01$, is scaled for presentation purposes. No m_{VV} shape information in the CRs is considered in the fit. Prefit uncertainties cover differences between the data and prefit background prediction.

In conclusion, this Letter presents a novel search for DM in previously uncovered final states with large E_{miss} and hadronic decays of resonant $VV = W^{+}W^{-}$ or ZZ pairs, with $m_{VV} > 160$ GeV, using the ATLAS detector at the LHC. No significant excess over the predicted background is found in 139 fb$^{-1}$ of 13 TeV pp collision data. This search excludes previously uncharted parameter space of the dark Higgs model for $m_{t} > 160$ GeV and provides sensitivity complementary to other DM searches using $X + E_{\text{miss}}^{\text{miss}}$ signatures.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and
[1] J. Silk et al., Particle Dark Matter: Observations, Models and Searches, edited by G. Bertone (Cambridge University Press, Cambridge, United Kingdom, 2010), ISBN 978-1-107-65392-4.

[2] J. L. Feng, Dark matter candidates from particle physics and methods of detection, Annu. Rev. Astron. Astrophys. 48, 495 (2010).

[3] T. A. Porter, R. P. Johnson, and P. W. Graham, Dark matter searches with astroparticle data, Annu. Rev. Astron. Astrophys. 49, 155 (2011).

[4] G. Bertone, N. Bozorgnia, J. S. Kim, S. Liem, C. McCabe, S. Otten, and R. R. de Austri, Identifying WIMP dark matter from particle and astroparticle data, J. Cosmol. Astropart. Phys. 03 (2018) 026.

[5] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (ρ, φ) are used in the transverse plane, φ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as \(\eta = -\ln \tan(\theta/2) \). Angular distance is measured in units of \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \).

[6] ATLAS Collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, J. High Energy Phys. 01 (2018) 126.

[7] CMS Collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \(\sqrt{s} = 13 \) TeV, Phys. Rev. D 97, 092005 (2018).

[8] ATLAS Collaboration, Search for dark matter produced in association with bottom or top quarks in \(\sqrt{s} = 13 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78, 18 (2018).

[9] ATLAS Collaboration, Search for large missing transverse momentum in association with one top-quark in proton–proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, J. High Energy Phys. 05 (2019) 041.

[10] CMS Collaboration, Search for Dark Matter Particles Produced in Association with a Top Quark Pair at \(\sqrt{s} = 13 \) TeV, Phys. Rev. Lett. 122, 011803 (2019).

[11] CMS Collaboration, Search for dark matter produced in association with a single top quark or a top quark pair in proton–proton collisions at \(\sqrt{s} = 13 \) TeV, J. High Energy Phys. 03 (2019) 141.

[12] ATLAS Collaboration, Search for dark matter at \(\sqrt{s} = 13 \) TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector, Eur. Phys. J. C 77, 393 (2017).

[13] CMS Collaboration, Search for new physics in final states with a single photon and missing transverse momentum in proton–proton collisions at \(\sqrt{s} = 13 \) TeV, J. High Energy Phys. 02 (2019) 074.

[14] ATLAS Collaboration, Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, J. High Energy Phys. 10 (2018) 180.

[15] ATLAS Collaboration, Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, Phys. Lett. B 776, 318 (2018).

[16] CMS Collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at \(\sqrt{s} = 13 \) TeV, J. High Energy Phys. 07 (2017) 014.

[17] ATLAS Collaboration, Search for Dark Matter Produced in Association with a Higgs Boson Decaying to bb Using 36 fb\(^{-1}\) of pp Collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 119, 181804 (2017).

[18] CMS Collaboration, Search for dark matter produced in association with a Higgs boson decaying to γγ or τ\(^+\)τ\(^-\) at \(\sqrt{s} = 13 \) TeV, J. High Energy Phys. 09 (2018) 046.

[19] CMS Collaboration, Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton–proton collisions at \(\sqrt{s} = 13 \) TeV, Eur. Phys. J. C 79, 280 (2019).

[20] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012).
[21] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012).

[22] CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV, J. High Energy Phys. 06 (2013) 081.

[23] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13, 321 (1964).

[24] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12, 132 (1964).

[25] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13, 508 (1964).

[26] G. Guralnik, C. Hagen, and T. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13, 585 (1964).

[27] P. W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 122, 1324 (1964).

[28] M. Duerr, F. Kahlhöfer, K. Schmidt-Hoberg, and T. Schwetzer, and S. Vogl, How to save the WIMP: Global analysis of a dark matter model with two s-channel mediators, J. High Energy Phys. 09 (2016) 042.

[29] J.R. Andersen et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, edited by S. Heinemeyer, Sections: 3. Higgs Properties, edited by S. Heinemeyer, Phys. Rev. D 91, 055009 (2015).

[30] M. Duerr, A. Grohsjean, F. Kahlhöfer, B. Penning, K. Schmidt-Hoberg, and C. Schwanenberger. Hunting the dark Higgs, J. High Energy Phys. 04 (2017) 143.

[31] N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020).

[32] M. Duerr, F. Kahlhöfer, K. Schmidt-Hoberg, T. Schwetzer, and S. Vogl, How to save the WIMP: Global analysis of a dark matter model with two s-channel mediators, J. High Energy Phys. 09 (2016) 042.

[33] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.

[34] T. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155, 1554 (1967).

[35] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.

[36] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.
[62] P. Bärnreuther, M. Czakon, and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to $q\bar{q} \to t\bar{t} + X$, Phys. Rev. Lett. 109, 132001 (2012).

[63] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: The all-fermionic scattering channels, J. High Energy Phys. 12 (2012) 054.

[64] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: The quark-glue reaction, J. High Energy Phys. 01 (2013) 080.

[65] M. Czakon, P. Fiedler, and A. Mitov, The Total Top Quark Pair Production Cross Section at Hadron Colliders Through $O(\alpha_s^4)$, Phys. Rev. Lett. 110, 252004 (2013).

[66] M. Czakon and A. Mitov, Top++: A program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185, 2930 (2014).

[67] M. Cacciari, G. P. Salam, and G. Soyez, The catchment area clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[68] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 96, 072002 (2017).

[69] ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector, Report No. ATLAS-CONF-2014-018, 2014, https://cds.cern.ch/record/1700870.

[70] ATLAS Collaboration, Track assisted techniques for jet substructure, Report No. ATL-PHYS-PUB-2018-012, 2018, https://cds.cern.ch/record/2630864.

[71] ATLAS Collaboration, In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector, Eur. Phys. J. C 79, 135 (2019).

[72] ATLAS Collaboration, Jet mass reconstruction with the ATLAS Detector in early Run 2 data, Report No. ATLAS-CONF-2016-035, 2016, https://cds.cern.ch/record/2200211.

[73] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 79, 970 (2019).

[74] ATLAS Collaboration, Variable Radius, Exclusive-k_T, and Center-of-Mass Subjet Reconstruction for $H\rightarrow b\bar{b}$ Tagging in ATLAS, Report No. ATL-PHYS-PUB-2017-010, 2017, https://cds.cern.ch/record/2268678.

[75] ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 78, 903 (2018).

[76] ATLAS Collaboration, Object-based missing transverse momentum significance in the ATLAS Detector, Report No. ATLAS-CONF-2018-038, 2018, https://cds.cern.ch/record/2630948.

[77] J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, J. High Energy Phys. 03 (2011) 015.

[78] CMS Collaboration, Search for a massive resonance with $b\bar{b}$ production at hadron colliders: The quark-gluon reaction, Eur. Phys. J. C 76, 292 (2016).

[79] CMS Collaboration, Search for the Standard Model Higgs boson in associated $t\bar{t}$ production with the ATLAS detector, J. High Energy Phys. 02 (2016) 145.

[80] CMS Collaboration, Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at $\sqrt{s} = 8$ TeV, J. High Energy Phys. 01 (2016) 057.

[81] W. Verkerke and D. P. Kirkby, The RooFit toolkit for data modeling, arXiv:physics/0306116.

[82] ATLAS Collaboration, Search for the $b\bar{b}$ decay of the Standard Model Higgs boson in associated (W/Z)/H production with the ATLAS detector, J. High Energy Phys. 01 (2015) 069.

[83] A. L. Read, Presentation of search results: The CL_S technique, J. Phys. G 28, 2693 (2002).

[84] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554; Erratum, Eur. Phys. J. C 73, 2501 (2013).

[85] ATLAS Collaboration, ATLAS computing acknowledgements, Report No. ATL-SOFT-PUB-2020-001, https://cds.cern.ch/record/2717821.

G. Aad 102, B. Abbott 128, D. C. Abbott 103, A. Abed Abd 36, K. Abeling 53, D. K. Abhayasinghe 94, S. H. Abidi 166, O. S. AbouZeid 40, N. L. Abraham 155, H. Abramowicz 160, H. Abreu 159, Y. Abulaiti 5, B. S. Acharya 67a,67b, B. Achkar 53,
P. Zhao,49 Y. Zhao,145 Z. Zhao,60a A. Zhemchugov,80 Z. Zheng,106 D. Zhong,172 B. Zhou,106 C. Zhou,180 H. Zhou,7 M. Zhou,154 N. Zhou,60c Y. Zhou, C. G. Zhu,66 H. Zhu,15a J. Zhu,106 Y. Zhu,60a X. Zhuang, 15a K. Zhukov,111 V. Zhulanov,122b,122a D. Zieminska,66 N. I. Zimine,80 S. Zimmermann,52 Z. Zinonos,115 M. Ziolkowski,150 L. Živković,16 G. Zobernig,180 A. Zoccoli,23b,23a K. Zoch,53 T. G. Zorbas,148 R. Zou,37 and L. Zwalinski16

(ATLAS Collaboration)

11Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4Department of Physics, Ankara University, Ankara, Turkey
5Istanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul, Turkey
6Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
8High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9Department of Physics, University of Arizona, Tucson, Arizona, USA
10Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
11Department of Physics, University of Texas at Austin, Austin, Texas, USA
12Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
13Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
14Department of Physics, Bogazici University, Istanbul, Turkey
15Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
16Institut de Fisica d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
17Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;
18Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;
19Institute of Physics, University of Belgrade, Belgrade, Serbia
20Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
21School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, Colombia
23INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica;
24INFN Sezione di Bologna, Italy
25Department of Physics, Brandeis University, Waltham, Massachusetts, USA
26Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
27Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
28Department of Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30Physics Department, Universidad de Buenos Aires, Buenos Aires, Argentina
31California State University, California, USA
32Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33Department of Physics, University of Cape Town, Cape Town, South Africa
70b Dipartimento di Fisica, Università di Napoli, Napoli, Italy
71a INFN Sezione di Pavia;
71b Dipartimento di Fisica, Università di Pavia, Pavia, Italy
72a INFN Sezione di Pisa;
72b Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
73a INFN Sezione di Roma;
73b Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
74a INFN Sezione di Roma Tor Vergata;
74b Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
75a INFN Sezione di Roma Tre;
75b Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
76a INFN-TIFPA;
76b Università degli Studi di Trento, Trento, Italy
77 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
78 University of Iowa, Iowa City, Iowa, USA
79 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
80 Joint Institute for Nuclear Research, Dubna, Russia
81a Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora;
81b Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro;
81c Universidade Federal de São João del Rei (UFSJ), São João del Rei;
81d Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
82 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
83 Graduate School of Science, Kobe University, Kobe, Japan
84a AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow;
84b Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
85 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
86 Faculty of Science, Kyoto University, Kyoto, Japan
87 Kyoto University of Education, Kyoto, Japan
88 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
89 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
90 Physics Department, Lancaster University, Lancaster, United Kingdom
91 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
92 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
93 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
94 Department of Physics, Royal Holloway University of London, Egham, United Kingdom
95 Department of Physics and Astronomy, University College London, London, United Kingdom
96 Louisiana Tech University, Ruston, Louisiana, USA
97 Fysiška institutionen, Lunds universitet, Lund, Sweden
98 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France
99 Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
100 Institut für Physik, Universität Mainz, Mainz, Germany
101 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
102 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
103 Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
104 Department of Physics, McGill University, Montreal, Québec, Canada
105 School of Physics, University of Melbourne, Victoria, Australia
106 Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
107 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
108 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
109 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
110 Group of Particle Physics, University of Montreal, Montreal, Québec, Canada
111 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
112 National Research Nuclear University MEPhI, Moscow, Russia
113 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
114 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
115 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
116 Nagasaki Institute of Applied Science, Nagasaki, Japan
117 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
118 Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Deceased.

Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.

Also at Centro Studi e Ricerche Enrico Fermi, Italy.

Also at CERN, Geneva, Switzerland.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.

Also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain.

Also at Department of Physics and Astronomy, University of California, Irvine, Irvine, California, USA.

Also at Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden.

Also at Department of Physics, University of Illinois, Urbana, Illinois, USA.

Also at Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain.

Also at Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada.

Also at Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada.

Also at Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.

Also at Department of Physics, University of Warwick, Coventry, United Kingdom.

Also at Waseda University, Tokyo, Japan.

Also at Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel.

Also at Department of Physics, University of Wisconsin, Madison, Wisconsin, USA.

Also at Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany.

Also at Department of Physics, Yale University, New Haven, Connecticut, USA.