Integral forms in vertex operator algebras, a survey
Lecture at Ischia Group Theory Meeting, 20 March, 2018

Robert L. Griess Jr.
Department of Mathematics,
University of Michigan,
Ann Arbor, MI 48109-1043 USA
rlg@umich.edu

Abstract
We give a brief survey of recent work on integral forms in vertex operator algebras (VOAs).

1 Introduction

The definition of VOA is too long to give here. We refer the reader to a standard reference for VOA theory: [7], definition p.244. Short version: $V = \bigoplus_{n \geq 0} V_n$, a graded vector space in characteristic 0 with each $\dim(V_n)$ finite; vacuum element $\mathbf{1} \in V_0$, Virasoro element $\varnothing \in V_2$; a linear monomorphism $Y : V \to \text{End}(V)[[z^{-1}, z]]$, written $Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}$.

For each $n \in \mathbb{Z}$, there is a product $a, b \mapsto a_n b$ (meaning the endomorphism a_n applied to b), giving a ring (V, n^{th}).

A vertex algebra (VA) is a generalization of VOA to graded modules over a commutative rings of scalars. It has a vacuum element but not necessarily a Virasoro element. Our examples will be over finite fields or the integers.

Definition 1.1. An integral form in an algebra in characteristic 0 is the \mathbb{Z}-span of a basis which is closed under the product.

Example 1.2. (1) $\text{Mat}_{n \times n}(\mathbb{Z}) \leq \text{Mat}_{n \times n}(\mathbb{C})$; (2) In a simple finite dimensional complex Lie algebra, the \mathbb{Z}-span of a Chevalley basis is an integral form.

Example 1.3. For an even integral lattice L, there is a lattice type VOA V_L which, as a graded vector space, has shape $SS(\hat{H}) \otimes \mathbb{C}[L]$. Here, SS means symmetric algebra of a vector space, $\hat{H} := \mathbb{C} \otimes \mathbb{Z} L$ and \hat{H} means $H_1 \oplus H_2 \oplus \ldots$ where H_k is a copy of H declared to have degree k. Finally $\mathbb{C}[L]$ is the group algebra of the abelian group L, with basis e^{α}, for $\alpha \in L$.

Example 1.4. The Moonshine VOA V^\natural is a twisted version of V_Λ, where Λ is the Leech lattice (rank 24, determinant 1, minimum norm 4). It has $\text{Aut}(V^\natural) \cong \mathbb{M}$, the Monster.

Definition 1.5. An integral form R in a vertex operator algebra $V = \bigoplus_{n \in \mathbb{Z}} V_n$ with a nondegenerate symmetric bilinear form is the \mathbb{Z}-span of a basis which is closed under all the VOA products and for all n, $R \cap V_n$ is an integral form of the vector space V_n; also R must contain the vacuum element and a positive integer multiple of the Virasoro element.

So, an integral form in a VOA is a vertex algebra over the ring of integers.

Chongying Dong and RLG [5, 6] studied the following question. Given a finite group G in $\text{Aut}(V)$, is there an integral form in V which is stable under G? We have some general sufficient conditions.

Our main applications: (1) for lattice type VOAs, $(L$ of rank r) there is a G-invariant integral form where G has the form $2^r.O(L)$. (One description: it is generated as a vertex algebra by the \mathbb{Z}-span of the components of $Y(e^\alpha, z)\mathbf{1}$ for $\alpha \in L$.)

(2) For the Moonshine VOA V^\natural, we proved that there is a Monster-invariant integral form. (This is created by a kind of averaging, and is not (yet) described explicitly.)

The recent preprint of Carnahan [2] proves existence of an integral form in which every graded component has determinant 1. This form is not given explicitly.
Remark 1.6. We learned after our proof was written, that in the 80s, Borcherds had asserted the existence of an integral form for lattice type VOAs. Borcherds also observed that there is a Monster-invariant \(\mathbb{Z}[\frac{1}{2}] \)-form in \(V^2 \) but claimed nothing about a form over \(\mathbb{Z} \).

If \(J \) is an integral form in a VOA, it inherits a symmetric bilinear form from the VOA. We say \(J \) is lattice integral if \(\langle x, y \rangle \in \mathbb{Z} \) for all \(x, y \in J \). It is unclear when the restriction of the form to \(J \) is integral-valued (or can be multiplied by a scalar to become integral valued).

Dong and RLG gave two sufficient conditions to prove lattice integrality. (1) We showed that it is integral valued whenever the integral form \(J \) is generated by quasi-primary vectors (in VOA theory, this means vectors annihilated by a certain operator \(L(1) \)). This criterion applies to the Monster-invariant form we built earlier. (2) We gave an averaging-type argument.

2 Classical lattice type VOAs

This section represents joint work with Ching Hung Lam [9, 10]. Consider the case of lattice type VOA where \(L \) is a root lattice of type ADE, and let \(V := V_L \). Then \((V_1, 0^{th}) \) is a copy of the Lie algebra associated to \(L \). If \(J \) is our integral form, \(J \cap V_1 \) is the \(\mathbb{Z} \)-lattice spanned by a Chevalley basis! So, this \(J \) is spanned as an abelian group by a set of elements which generalizes “Chevalley basis”. It turns out that a Chevalley group can be defined on \(V_L \) with the standard generators \(x_r(\pm 1) \) fixing the integral form.

We can also take any commutative associative ring \(R \) and form \(R \otimes J \), a vertex algebra over \(R \), called the classical VA of type \(L \) over \(R \). We also get an action of the Chevalley group of type \(L \) over \(R \) on \(R \otimes J \) as VA automorphisms.

When \(R \) is a field we get all Chevalley groups of types ADE (with graph outer automorphisms) as full automorphism groups of these VAs over \(R \). We also defined VA over \(R \) for types BCGF. This gives the Steinberg variations (twisted Chevalley groups) acting on VAs and being essentially the full automorphism groups.

We would like to find a series of VAs whose automorphism groups are essentially the Ree and Suzuki groups but have not (yet) done so.

Remark 2.1. Our construction gives infinite dimensional graded modules for each Chevalley group and Steinberg variation over its field of definition. These modules may be a good opportunity for study of representation theory (\(Ext \), indecomposables, etc.).

3 The degree 2 component of a VOA

Given a VOA \(V = \oplus_{i \geq 0} V_i \), the \(k \)-th product gives a bilinear mao \(V_i \times V_j \rightarrow V_{i+j-k-1} \). So, \(V_n \) under the \(n^{th} \) product is a finite dimensional algebra, denoted \((V_n, (n-1)^{th}) \).

In addition, (a) if \(\dim(V_0) = 1 \), \((V_1, 0^{th}) \) is a Lie algebra; (b) if \(\dim(V_0) = 1 \) and \(\dim(V_1) = 0 \), then \((V_2, 1^{st}) \) is a commutative algebra with a symmetric, associative form \((ab, c) = (a, bc) \). Algebras as in (b) are sometimes called Griess algebras.

There are many examples of algebras (b) with finite automorphism groups, e.g., [12, 13, 3, 4]. The 196884-dimension algebra used to construct the Monster occurs this way in the Moonshine VOA \(V^2 \).

Now suppose \(\dim(V_0) = 1 \) and that \(e \in V_2 \) is a conformal vector of central charge \(\frac{1}{2} \) and that the subVOA generated by \(e \) is simple. Miyamoto showed that \(e \) gives \(t_e \in Aut(V) \) of order 1 or 2 (called a Miyamoto involution).

In the special case of a dihedral VOA (generated by a pair of such conformal vectors \(e, f \)), the degree 2 algebra has integral forms. Those which are maximal integral forms and invariant under
the dihedral group \(\langle t_e, t_f \rangle\) were classified in the thesis of Greg Simon (U Michigan, 2016). For the nine types of dihedral VOAs (classified by Sakuma \[11\]; they correspond to nodes of the extended \(E_8\)-diagram, displayed below), there is just one maximal invariant form in all cases but 2A, in which case there are three.

\[
\begin{align*}
3C' \\
\circ \\
\hline
\hline
2B \quad 4B \quad 6A \quad 5A \quad 4A \quad 3A \quad 2A \quad 1A
\end{align*}
\]

This classification of maximal invariant forms in \(V_2\) does not (yet) extend to invariant forms in the entire dihedral VOA.

4 Modular Moonshine of Borcherds and Ryba

Borcherds and Ryba wrote several articles \[1\] \[14\] about Modular Moonshine (positive characteristic) which imitated the story of the Monster and the graded representation \(V^8\) and modular forms, but for smaller sporadic groups.

They discussed an interesting case. In \(M\), take \(g\) a 3C-element; then \(C(g) = \langle g \rangle \times S\), where \(S \cong F_3\) a sporadic simple group of order \(2^{15}3^{10}5^27^{13} \cdot 19 \cdot 31\) (Thompson’s group).

Borcherds and Ryba used \(K\), Borcherds’s \(\mathbb{Z}[\frac{1}{2}]\)-form in \(V^8\), then considered its 0th Tate cohomology group

\[
\hat{H}^0(\langle g \rangle, K) := K^g/(1 + g + g^2)K.
\]

This inherits structure to make a VA over \(\mathbb{F}_3\). It looked like the classical \(E_8\) type VA over \(\mathbb{F}_3\), but nonzero terms occur only in degrees 0, 3, 6, \ldots and have respective dimensions 1, 248, \ldots, just like for the genuine \(E_8\) VA in degrees 0, 1, 2, \ldots. There was no obvious isomorphism (which triples degree of the grading) between these two VAs over \(\mathbb{F}_3\).

To prove existence of an isomorphism, Lam and RLG adapted a covering idea of Frohardt-Griess \[8\], which is illustrated in the following example.

Example 4.1. \(F\) algebraically closed field of char.3. The Lie algebra \(a_2(F)\) has a 1-dimensional central ideal, \(Z\). While \(Aut(a_2(F)) \) is \(PGL(2,F)\):2, \(Aut(a_2(F)/Z) \cong G_2(F)\). Our proof takes the Lie algebra \(d := d_4(F)\) and graph automorphism \(\gamma\) of order 3, then considers

\[
0 < (1 + \gamma + \gamma^2)d < d^\gamma < d, \text{ dimensions 0, 7, 14, 28.}
\]

The group \(G_2(F)\) acts on each subobject and on the 7-dimensional quotient Lie algebra \(d^\gamma/(1 + \gamma + \gamma^2)d\). One can see inside \(d\) (look at the long roots) a copy of \(a_2(F)\) which maps onto \(d^\gamma/(1 + \gamma + \gamma^2)d\); the image is isomorphic to \(a_2(F)/Z\). Therefore \(Aut(a_2(F)/Z)\) contains a copy of \(G_2(F)\). This containment is equality.

Lam and RLG took \(M\), the standard integral form for \(V_{E_8}\), and a sublattice \(M'\) of \(K\) (integral form in \(V^8\)) which “covered” the Tate cohomology group \(K^g/(1 + g + g^2)K\). \(\text{(Roughly, } M'\text{ is the...} \)
\mathbb{Z}-span of the image of M under a map suggested by $x \mapsto x \otimes x \otimes x$ for $x \in EE_8 \cong \sqrt{2}E_8$; think of the containment of lattices $EE_8 \perp EE_8 \perp EE_8 \leq \Lambda$, the Leech lattice). This led to an isomorphism.

An application of the Borcherds-Ryba theory is a new proof that the group F_3 of Thompson embeds in $E_8(3)$ (first proof 1974, by Thompson and P. Smith, used a study of Dempwolff decompositions and computer work). This VA viewpoint gives a nontrivial homomorphism of $C(g)/\langle g \rangle \cong F_3$ into the group $E_8(3)$ without knowing much about the structure of $C(g)$.

My web site contains files of certain articles in the reference list.

References

[1] MR1390654 Reviewed Borcherds, Richard E.; Ryba, Alex J. E. Modular Moonshine. II. Duke Math. J. 83 (1996), no. 2, 435?459. (Reviewer: Koichiro Harada) 17B69 (11F22 20D08)

[2] Carnahan, Scott, Four self-dual integral forms of the moonshine module, arXiv:1710.00737v3 (14 Jun3, 2018), about 29 pages.

[3] MR1700522 Reviewed Dong, Chongying; Griess, Robert L., Jr.; Ryba, Alex Rank one lattice type vertex operator algebras and their automorphism groups. II. E-series. J. Algebra 217 (1999), no. 2, 701?710. (Reviewer: Hai Sheng Li) 17B69

[4] MR2207216 Reviewed Dong, Chongying; Griess, Robert L., Jr. The rank-2 lattice-type vertex operator algebras V+L and their automorphism groups. Michigan Math. J. 53 (2005), no. 3, 691?715. (Reviewer: Hai Sheng Li) 17B69

[5] MR2928458 Dong, Chongying; Griess, Robert L., Jr. Integral forms in vertex operator algebras which are invariant under finite groups. J. Algebra 365 (2012), 184198. 17B69;

[6] MR3595800 Reviewed Dong, Chongying(1-UCSC); Griess, Robert L., Jr.(1-MI) Lattice-integrality of certain group-invariant integral forms in vertex operator algebras. (English summary) J. Algebra 474 (2017), 505?516. 17B69 (17B68 20C10 20D05)

[7] MR0996026 (90h:17026) Reviewed Frenkel, Igor(1-YALE); Lepowsky, James(1-RTG); Meurman, Arne(S-STOC) Vertex operator algebras and the Monster. Pure and Applied Mathematics, 134. Academic Press, Inc., Boston, MA, 1988. liv+508 pp. ISBN: 0-12-267065-5 17B65 (17B67 20D08 81D15 81E40)

[8] MR1218358 (94d:17023) Reviewed Frohardt, Daniel E.(1-WYNS); Griess, Robert L., Jr.(1-MI) Automorphisms of modular Lie algebras. (English summary) Nova J. Algebra Geom. 1 (1992), no. 4, 339?345. 17B40 (17B50) (pdf is on my web site)

[9] MR3356595 Reviewed Griess, Robert L., Jr.; Lam, Ching Hung Groups of Lie type, vertex algebras, and modular moonshine. Electron. Res. Announc. Math. Sci. 21 (2014), 167?176. 20D05 (17B69)

[10] MR3456026 Reviewed Griess, Robert L., Jr.; Lam, Ching Hung Groups of Lie type, vertex algebras, and modular moonshine. Int. Math. Res. Not. IMRN 2015, no. 21, 10716?10755. (Reviewer: Robert Harold McRae) 17B69 (17B20 17B50 20D06 20D08)

[11] MR2347298 Reviewed Sakuma, Shinya 6-transposition property of ?-involutions of vertex operator algebras. Int. Math. Res. Not. IMRN 2007, no. 9, Art. ID rnm 030, 19 pp. (Reviewer: Ozren Pere) 17B69
[12] H. Shimakura, The automorphism group of the vertex operator algebra V^+L for an even lattice L without roots, J. Algebra 280 (2004), 29–57.

[13] H. Shimakura, The automorphism groups of the vertex operator algebras V^+L: general case, Math. Z. 252 (2006), 849–862.

[14] MR1372729 Reviewed Ryba, A. J. E. Modular Moonshine? Moonshine, the Monster, and related topics (South Hadley, MA, 1994), 307?336, Contemp. Math., 193, Amer. Math. Soc., Providence, RI, 1996. (Reviewer: A. S. Kondrat?ev) 20C34 (11F22 17B67 20D08)