THE q-LIDSTONE SERIES INVOLVING q-BERNOULLI AND q-EULER POLYNOMIALS GENERATED BY THE THIRD JACKSON q-BESSEL FUNCTION

Z. MANSOUR AND M. AL-TOWAILB

Abstract. In this paper, we present q-Bernoulli and q-Euler polynomials generated by the third Jackson q-Bessel function to construct new types of q-Lidstone expansion theorem. We prove that the entire function may be expanded in terms of q-Lidstone polynomials which are q-Bernoulli polynomials and the coefficients are the even powers of the q-derivative $\frac{\delta_q f(z)}{\delta_q z}$ at 0 and 1. The other forms expand the function in q-Lidstone polynomials based on q-Euler polynomials and the coefficients contain the even and odd powers of the q-derivative $\frac{\delta_q f(z)}{\delta_q z}$.

1. Introduction

A Lidstone series provides a generalization of Taylor series that approximates a given function in a neighborhood of two points instead of one [11]. Recently, Ismail and Mansour [8] introduced a q-analog of the Lidstone expansion theorem. They proved that, under certain conditions, an entire function $f(z)$ can be expanded in the form

$$f(z) = \sum_{n=0}^{\infty} \left[A_n(z) D_{q^{-1}}^{2n+1} f(1) - B_n(z) D_{q^{-1}}^{2n} f(0) \right],$$

where $A_n(z)$ and $B_n(z)$ are the q-Lidstone polynomials defined by

$$A_n(z) = \eta_{q^{-1}}^1 B_n(z) \text{ and } B_n(z) = \frac{q^{2n+1}}{[2n+1]_q!} B_{2n+1}(z/2; q).$$

Here $\eta_{q^{-1}}^y$ denotes the q-translation operator defined by

$$\eta_{q^{-1}}^y z^n = q^{\frac{n(n-1)}{2}} z^n (-y/z; q^{-1})_n = y^n (-z/y; q)_n,$$

and $B_n(z; q)$ is the q-analog of the Bernoulli polynomials which defined by the generating function

$$\frac{t E_q(zt)}{E_q(t/2) c_q(t/2)} - 1 = \sum_{n=0}^{\infty} B_n(z; q) \frac{t^n}{[n]_q!},$$

2010 Mathematics Subject Classification. 05A30, 11B68, 30B10, 30E20, 39A13.

Key words and phrases. q-Lidstone expansion theorem, q-Bernoulli polynomials, q-Euler polynomials.
where $E_q(z)$ and $e_q(z)$ are the q-exponential functions defined by

$$E_q(z) := \sum_{j=0}^{\infty} q^{j(j-1)/2} \frac{z^j}{[j]_q!}; \quad z \in \mathbb{C} \quad \text{and} \quad e_q(z) := \sum_{j=0}^{\infty} \frac{z^j}{[j]_q!}; \quad |z| < 1.$$

This paper aims to construct the q-Lidstone polynomials which are q-Bernoulli and q-Euler polynomials generated by the third Jackson q-Bessel function, and then to derive two formula of q-Lidstone expansion theorem. More precisely, we will prove that the entire function may be expanded in terms of q-Lidstone polynomials in two different forms. In the first form, the q-Lidstone polynomials are q-Bernoulli polynomials and the coefficients are the even powers of the q-derivative $\delta_q f(z)$ at 0 and 1. The other form expand the function in q-Lidstone polynomials based on q-Euler polynomials and the coefficients contain the even and odd powers of the q-derivative $\delta_q f(z)$. The publications [12, 13] are the most affiliated with this work.

This article is organized as follows: in Section 2, we state some definitions and present some background on q-analysis which we need in our investigations. In Section 3 and Section 4, we introduce q-Bernoulli and q-Euler polynomials generated by the third Jackson q-Bessel function. Section 5 contains a q-Lidstone expansion theorem involving q-Bernoulli polynomials while Section 6 contains a q-Lidstone series involving q-Euler polynomials.

2. Definitions and Preliminary results

Throughout this paper, unless otherwise is stated, q is a positive number less than one and we follow the notations and terminology in [1, 6].

The symmetric q-difference operator δ_q is defined by

$$\delta_q f(z) = f(q^{1/2} z) - f(q^{-1/2} z),$$

(see [4, 6]) and then

$$\frac{\delta_q f(z)}{\delta_q z} := \frac{f(q^{1/2} z) - f(q^{-1/2} z)}{z(q^{1/2} - q^{-1/2})} \quad z \neq 0. \quad (2.1)$$

We use a third q-exponential function $exp_q(z)$ which has the following series representation

$$exp_q(z) = \sum_{n=0}^{\infty} \frac{q^{n(n-1)/2}}{[n]_q!} z^n; \quad z \in \mathbb{C}. \quad (2.2)$$

This function has the property $\lim_{q \to 1} exp_q(z) = e^z$ for $z \in \mathbb{C}$, and it is an entire function of z of order zero (see [6]).

Remark 2.1. From the identity $[n]_{1/q}! = q^{n(1-n)/2} [n]_q!$, one can verify that

$$exp_q(z) = exp_{q^{-1}}(z); \quad z \in \mathbb{C}. \quad (2.3)$$
We consider the domain $\Omega := \{ z \in \mathbb{C} : |1 - \exp_q(z)| < 1 \}$.

Lemma 2.2. Let $z \in \Omega$. Then

\[
\frac{1}{\exp_q(z)} := 1 + \sum_{n=1}^{\infty} c_n z^n,
\]

where

\[
c_n = \sum_{k=1}^{n} (-1)^k \sum_{s_1 + s_2 + \ldots + s_k = n \atop s_j > 0 \ (j = 1, \ldots, k)} \frac{q^{\sum_{i=1}^{k} s_i (s_i - 1)/4}}{[s_1]_q [s_2]_q ! \ldots [s_k]_q !}.
\]

Proof. Observe that, for $z \in \Omega$ the function $\frac{1}{\exp_q(z)}$ can be represented as

\[
\frac{1}{\exp_q(z)} := \left[1 + (\exp_q(z) - 1) \right] = \sum_{k=0}^{\infty} (-1)^k \left[\exp_q(z) - 1 \right]^k.
\]

Using the series expansion (2.2) of $\exp_q(z)$, we get

\[
\frac{1}{\exp_q(z)} = \sum_{k=0}^{\infty} (-1)^k \left(\sum_{n=1}^{\infty} q^{n(n-1)/4} \frac{z^n}{[n]_q !} \right)^k
\]

\[
= 1 + \sum_{k=1}^{\infty} (-1)^k \left(\sum_{n=1}^{\infty} q^{n(n-1)/4} \frac{z^n}{[n]_q !} \right)^k
\]

\[
= 1 + \sum_{k=1}^{\infty} (-1)^k \sum_{n=k}^{\infty} z^n \sum_{s_1 + s_2 + \ldots + s_k = n \atop s_j > 0 \ (j = 1, \ldots, k)} \frac{q^{\sum_{i=1}^{k} s_i (s_i - 1)/4}}{[s_1]_q [s_2]_q ! \ldots [s_k]_q !}.
\]

Put $a_n(k) = \sum_{s_1 + s_2 + \ldots + s_k = n \atop s_j > 0 \ (j = 1, \ldots, k)} \frac{q^{\sum_{i=1}^{k} s_i (s_i - 1)/4}}{[s_1]_q [s_2]_q ! \ldots [s_k]_q !}$. Then, the power series of $\frac{1}{\exp_q(z)}$ takes the form

\[
\frac{1}{\exp_q(z)} = 1 + \sum_{n=1}^{\infty} z^n \sum_{k=1}^{n} (-1)^k a_n(k),
\]

and then we obtain the desired result. \qed

The q-sine and q-cosine, $S_q(z)$ and $C_q(z)$, are defined by

\[
\exp_q(iz) := C_q(z) + iS_q(z),
\]

where

\[
C_q(z) := \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n-1)/2}}{[2n]_q !} z^{2n},
\]

(2.5)

\[
S_q(z) := \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n+1)/2}}{[2n + 1]_q !} z^{2n+1}.
\]
These functions can be written in terms of the third Jackson q-Bessel function or (Hahn-Exton q-Bessel function [10]) as

$$C_q(z) := q^{-\frac{3}{8}} \frac{(q^2; q^2)_\infty}{(q; q^2)_\infty} (1 - q)^{\frac{1}{2}} J_{-\frac{3}{2}}^{(3)}(q^{-\frac{3}{4}}(1 - q)z; q^2),$$

$$S_q(z) := q^{\frac{1}{8}} \frac{(q^2; q^2)_\infty}{(q; q^2)_\infty} ((1 - q)^{\frac{1}{2}} J_{-\frac{1}{2}}^{(3)}(q^{-\frac{1}{4}}(1 - q)z; q^2),$$

and satisfy

$$\frac{\delta_q C_q(wz)}{\delta_q z} = -w S_q(wz), \quad \frac{\delta_q S_q(wz)}{\delta_q z} = w C_q(wz).$$

(see [4, 6]). Therefore,

$$\frac{\delta_q \exp_q(wz)}{\delta_q z} = w \exp_q(wz).$$

(2.7)

Note that since the third Jackson q-Bessel functions have only real roots and the roots are simple (see [10]), it follows that the roots of $C_q(z)$ and $S_q(z)$ are also real and simple as shown in Figure 1. Also, because $C_q(z)$ and $S_q(z)$ are respectively even and odd, the roots of these functions are symmetric. Throughout this paper we assume that S_1 and C_1 are the smallest positive zero of the functions $S_q(z)$ and C_1, respectively.

Here, the q-analog of the hyperbolic functions sinh z and cosh z are defined for $z \in \mathbb{C}$ by

$$\text{Sinh}_q(z) := -i S_q(iz) = \frac{\exp_q(z) - \exp_q(-z)}{2},$$

$$\text{Cosh}_q(z) := C_q(iz) = \frac{\exp_q(z) + \exp_q(-z)}{2}.$$

(2.8)
3. A \(q\)-Bernoulli polynomials generated by the third Jackson\n\(q\)-Bessel function

In this section, we use the third \(q\)-exponential function \(\exp_q(x)\) to define a \(q\)-analog of the Bernoulli polynomials which are suitable for our approach.

Definition 3.1. A \(q\)-Bernoulli polynomials \(\widetilde{B}_n(z; q)\) are defined by the generating function

\[
(3.1) \quad \frac{w \exp_q(z w) \exp_q(-\frac{w}{2})}{\exp_q(w/2) - \exp_q(-\frac{w}{2})} = \sum_{n=0}^{\infty} \widetilde{B}_n(z; q) \frac{w^n}{[n]_q!},
\]

and \(\widetilde{\beta}_n(q) := \widetilde{B}_n(0; q)\) are the \(q\)-Bernoulli numbers. Therefore,

\[
(3.2) \quad \frac{w \exp_q(-w/2)}{\exp_q(w/2) - \exp_q(-\frac{w}{2})} = \sum_{n=0}^{\infty} \frac{\widetilde{\beta}_n(q)}{[n]_q!} w^n.
\]

Remark 3.2. \(\widetilde{B}_{2n+1}(\frac{1}{2}; q) = 0\). Indeed, for \(z = \frac{1}{2}\), the left hand side of Equation (3.1) is an even function. Therefore, the odd powers of \(w\) on the left hand side vanish. Also, note that

\[
\widetilde{B}_0(z; q) = \frac{w \exp_q(z w) \exp_q(-\frac{w}{2})}{\exp_q(w/2) - \exp_q(-\frac{w}{2})} \big|_{w=0} = 1.
\]

Proposition 3.3. The \(q\)-Bernoulli polynomials \(\widetilde{B}_n(z; q)\) are given recursively by \(\widetilde{B}_0(z; q) = 1\), and for \(n \in \mathbb{N}\)

\[
\widetilde{B}_n(z; q) = \sum_{k=0}^{n} \binom{n}{k}_q q^{\frac{k(k-1)}{4}} \widetilde{\beta}_{n-k}(q) z^k.
\]

Proof. By substituting (3.2) into (3.1) and using the series representation of \(\exp_q(wz)\) we obtain

\[
\frac{w \exp_q(z w) \exp_q(-\frac{w}{2})}{\exp_q(w/2) - \exp_q(-\frac{w}{2})} = \sum_{n=0}^{\infty} \frac{\widetilde{\beta}_n(q)}{[n]_q!} \sum_{n=0}^{\infty} \frac{q^{n(n-1)/4}}{[n]_q!} (wz)^n
\]

\[
= \sum_{n=0}^{\infty} \frac{w^n}{[n]_q!} \sum_{k=0}^{n} \binom{n}{k}_q q^{\frac{k(k-1)}{4}} \tilde{\beta}_{n-k}(q) z^k.
\]

This implies

\[
(3.3) \quad \sum_{n=0}^{\infty} \frac{w^n}{[n]_q!} \sum_{k=0}^{n} \binom{n}{k}_q q^{\frac{k(k-1)}{4}} \tilde{\beta}_{n-k}(q) z^k = \sum_{n=0}^{\infty} \tilde{B}_n(z; q) \frac{w^n}{[n]_q!}.
\]

Comparing the coefficient of \(\frac{w^n}{[n]_q!}\), we obtain the required result. \(\square\)

Proposition 3.4. For \(n \in \mathbb{N}\) and \(z \in \mathbb{C}\), we have

\[
(3.4) \quad \tilde{B}_n(z; q) = q^{\frac{n(n-1)}{2}} \tilde{B}_n(z; 1/q),
\]

\[
(3.5) \quad \tilde{\beta}_n(q) = q^{\frac{n(n-1)}{2}} \tilde{\beta}_n(1/q).
\]
Proof. By replacing q by $1/q$ on the generating function in (3.1), and then using Equation (2.3) we obtain
\[\sum_{n=0}^{\infty} q \frac{n(n-1)}{2} \widetilde{B}_n(z; 1/q) \frac{w^n}{[n]_q!} = \sum_{n=0}^{\infty} \widetilde{B}_n(z; q) \frac{w^n}{[n]_q!}. \]
Equating the coefficients of w^n yields (3.4) and substituting with $z = 0$ in (3.4) yields directly (3.5).

Theorem 3.5. The q-Bernoulli polynomials satisfy the q-difference equation
\[\delta_q \widetilde{B}_n(z; q) \delta_q z = [n]_q \widetilde{B}_{n-1}(z; q) \quad (n \in \mathbb{N}). \]

Proof. Calculating the q-derivative δ_q of the two sides of (3.1) with respect to the variable z and using Equation (2.7), we obtain
\[\frac{w^2 \exp_q(zw) \exp_q(-\frac{w}{2})}{\exp_q(\frac{w}{2}) - \exp_q(-\frac{w}{2})} = \sum_{n=1}^{\infty} \delta_q \widetilde{B}_n(z; q) \frac{w^n}{[n]_q!}. \]
This implies
\[\sum_{n=1}^{\infty} \delta_q \widetilde{B}_n(z; q) \frac{w^n}{[n]_q!} = \sum_{n=1}^{\infty} \widetilde{B}_{n-1}(z; q) \frac{w^n}{[n-1]_q!}. \]
Equating the corresponding nth power of w in the two series of (3.7), we obtain the required result.

Corollary 3.6. For $k \geq 2$, we have
\[\frac{\delta^2_q \widetilde{B}_k(z; q)}{\delta_q z^2} = [k]_q [k-1]_q \widetilde{B}_{k-2}(z; q). \]

Proof. It follows directly by calculating the derivative δ_q of (3.6) for even and odd index of $\widetilde{B}_k(z; q)$. \hfill \Box

Proposition 3.7. The q-Bernoulli numbers of odd index satisfy
\[\widetilde{\beta}_1(q) = -\frac{1}{2}, \quad \widetilde{\beta}_{2n+1}(q) = 0; \quad n \in \mathbb{N}. \]

Proof. Observe that,
\[\frac{w \exp_q(-\frac{w}{2})}{\exp_q(\frac{w}{2}) - \exp_q(-\frac{w}{2})} = -w + \frac{w \exp_q(-\frac{w}{2})}{\exp_q(\frac{w}{2}) - \exp_q(-\frac{w}{2})}. \]
So, we can write Equation (3.2) in the form
\[\sum_{n=0}^{\infty} \frac{\widetilde{\beta}_n(q)}{[n]_q!} w^n = -w + \sum_{n=0}^{\infty} \frac{\widetilde{\beta}_n(q)}{[n]_q!} (-w)^n. \]
This implies
\[\sum_{n=0}^{\infty} \left(1 - (-1)^n \right) \tilde{\beta}_n(q) \frac{w^n}{[n]_q!} = -w. \]

Therefore, \(\tilde{\beta}_1(q) = -\frac{1}{2} \) and \(\tilde{\beta}_{2n+1}(q) = 0 \) for every \(n \in \mathbb{N} \). \(\square \)

Theorem 3.8. For \(z \in \mathbb{C} \) and \(n \in \mathbb{N} \), we have the identity
\[\frac{q^{n(n-1)}}{[n]_q!} \left(\frac{1}{2} \right)^n (2q^{\frac{1-n}{2}} z; q)_n = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{1}{2k} \frac{q^{k(2k+1)}}{[2k+1]_q!} \tilde{B}_{n-2k}(z; q). \]

Proof. By using (3.1), we have
(3.9) \(w \exp_q(zw) \exp_q \left(\frac{-w}{2} \right) = \left[\exp_q \left(\frac{w}{2} \right) - \exp_q \left(\frac{-w}{2} \right) \right] \sum_{n=0}^{\infty} \tilde{B}_n(z; q) \frac{w^n}{[n]_q!}. \)

Using the series representation of \(\exp_q(zw) \), we can prove that
(3.10) \(\exp_q(zw) \exp_q \left(\frac{-w}{2} \right) = \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{w^n}{[n]_q!} \left(-\frac{1}{2} \right)^n (2q^{\frac{1-n}{2}} z; q)_n. \)

Substituting (3.10) into (3.9) and using (2.2), we obtain
\[\sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{w^n}{[n]_q!} (\frac{1}{2})^n (2q^{\frac{1-n}{2}} z; q)_n \]
\[= \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{w^n}{[2n+1]_q!} (\frac{1}{2})^{2n} \sum_{n=0}^{\infty} \tilde{B}_n(z; q) \frac{w^n}{[n]_q!} \]
\[= \sum_{n=0}^{\infty} w^n \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{1}{2k} \frac{q^{k(2k+1)}}{[2k+1]_q!} \tilde{B}_{n-2k}(z; q). \]

Comparing the coefficient of \(w^n \) we obtain the required result. \(\square \)

Note that if we substitute with \(z = 0 \) in the identity of Theorem 3.8 we get the following recurrence relation:

Corollary 3.9. For \(n \in \mathbb{N} \), we have
\[\frac{q^{\frac{n(n-1)}{2}}}{[2n]_q!} (\frac{1}{2})^{2n} = \sum_{k=0}^{n} \frac{1}{2k} \frac{q^{k(2k+1)}}{[2k+1]_q!} \tilde{B}_{2n-2k}(q). \]
As a consequence of the above result, we have

\[\tilde{\beta}_0(q) = 1, \quad \tilde{\beta}_1(q) = -\frac{1}{2}, \quad \tilde{\beta}_2(q) = \frac{(1 - q^3)q^{\frac{1}{2}} - (1 - q)q^{\frac{3}{2}}}{4(1 - q^3)}, \]

\[\tilde{\beta}_3(q) = 0, \quad \tilde{\beta}_4 = \frac{q^3(q^3; q^2)_2 - [3]_q(q^5(1 - q)(1 - q^3)) - (1 + q)(1 - q^3)(1 - q^5)}{16(1 - q^3)^2(1 - q^5)}. \]

In the following result we prove that the function \(\text{Coth}_q(z) \) has a \(q \)-analog of Taylor series expression with only odd exponents for \(z \).

Proposition 3.10. Let \(w \) be a complex number such that \(0 < \frac{|w|}{2} < C_1 \). Then

\[\text{Coth}_q\left(\frac{w}{2}\right) = \left(\frac{w}{2}\right)^{-1} + \sum_{n=1}^{\infty} 2\tilde{\beta}_{2n}(q) \frac{w^{2n-1}}{[2n]_q!}. \]

Proof. By using Equation (3.2) and the identity

\[\text{Coth}_q\left(\frac{w}{2}\right) = \frac{\exp_q\left(\frac{w}{2}\right) + \exp_q\left(-\frac{w}{2}\right)}{\exp_q\left(\frac{w}{2}\right) - \exp_q\left(-\frac{w}{2}\right)}, \]

we obtain

\[\sum_{n=0}^{\infty} \tilde{\beta}_n(q) \frac{w^n}{[n]_q!} = w \text{Coth}_q\left(\frac{w}{2}\right) - \frac{w \exp_q\left(\frac{w}{2}\right)}{\exp_q\left(\frac{w}{2}\right) - \exp_q\left(-\frac{w}{2}\right)} = w \text{Coth}_q\left(\frac{w}{2}\right) - \sum_{n=0}^{\infty} \tilde{\beta}_n(q) \frac{(-w)^n}{[n]_q!}. \]

Therefore, \(w \text{Coth}_q\left(\frac{w}{2}\right) = 1 + \sum_{n=1}^{\infty} 2\tilde{\beta}_{2n}(q) \frac{w^{2n-1}}{[2n]_q!} \) and then the result follows.

\[\square \]

We define the polynomials \(\tilde{A}_n(z; q) \) by the generating function

\[\frac{\exp_q(zw)}{\exp_q\left(\frac{w}{2}\right) - \exp_q\left(-\frac{w}{2}\right)} = \sum_{n=0}^{\infty} \tilde{A}_n(z; q) \frac{w^n}{[n]_q!}. \]

Proposition 3.11. For \(n \in \mathbb{N} \), the \(q \)-Bernoulli polynomials \(\tilde{B}_n(z; q) \) can be represented in terms of \(\tilde{A}_n(z; q) \) as

\[\tilde{B}_n(z; q) = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right]_q \frac{(-1)^k q^{k(k+1)/2}}{n-k} \tilde{A}_{n-k}(z; q). \]
Proof. From (3.11), (2.2) and Definition 3.1 we get
\[
\sum_{n=0}^{\infty} \tilde{A}_n(z;q) \frac{w^n}{[n]_q!} = \frac{w \exp_q(zw) \exp_q(-w/2)}{\exp_q(w/2) - \exp_q(-w/2)}
\]
\[
= \sum_{n=0}^{\infty} \tilde{A}_n(z;q) \frac{w^n}{[n]_q!} \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} (-w)^n
\]
\[
= \sum_{n=0}^{\infty} \frac{w^n}{[n]_q!} \sum_{k=0}^{n} \left[\frac{n}{k} \right] (-\frac{1}{2})^k q^{\frac{k(k-1)}{4}} \tilde{A}_{n-k}(z;q).
\]
Comparing the coefficient of \(\frac{w^n}{[n]_q!}\) we obtain the required result. \(\square\)

Theorem 3.12. Let \(z \in \mathbb{C}\). Then, the polynomials \(\tilde{A}_n(z;q)\) can be represented in terms of the \(q\)-Bernoulli polynomials \(\tilde{B}_n(z;q)\) as

\[
\tilde{A}_n(z;q) = [n]_q! \sum_{j=0}^{n-1} (-\frac{1}{2})^{j+1} \frac{\tilde{a}_j}{[n-j-1]_q!} \tilde{B}_{n-j-1}(z;q),
\]

where

\[
\tilde{a}_j = \sum_{k=0}^{j} (-1)^k \sum_{\sum_{i=1}^{k} s_i = n, \ s_i > 0} q^{\sum_{i=0}^{k} s_i(s_i+1)/4} [s_1+1]_q! [s_2+1]_q! \cdots [s_k+1]_q!.
\]

Proof. We can write the generating function of the \(q\)-polynomials \(\tilde{A}_n(z;q)\) as

\[
\frac{w \exp_q(zw)}{\exp_q(w/2) - \exp_q(-w/2)} = \frac{1}{\exp_q(w/2) - \exp_q(-w/2)} \left[w \exp_q(zw) \exp_q(-w/2) \right].
\]
Putting \(a_n(k) = \sum_{\sum_{i=1}^{k} s_i = n, \ s_i > 0} q^{\sum_{i=0}^{k} s_i(s_i+1)/4} [s_1+1]_q! [s_2+1]_q! \cdots [s_k+1]_q!\), and then using Lemma 2.2 we obtain

\[
\sum_{n=0}^{\infty} \tilde{A}_n(z;q) \frac{w^n}{[n]_q!} = w \left(\sum_{n=0}^{\infty} (-\frac{1}{2})^{n+1} [n]_q! \frac{w^n}{[n]_q!} \sum_{k=0}^{n} (-1)^k a_n(k) \left(\sum_{n=0}^{\infty} \tilde{B}_n(z;q) \frac{w^n}{[n]_q!} \right) \right)
\]
\[
= w \sum_{n=0}^{\infty} \frac{w^n}{[n]_q!} \sum_{j=0}^{n} \left[\frac{n}{j} \right] q^j (-\frac{1}{2})^{j+1} \sum_{k=0}^{j} a_j(k)(-1)^k \tilde{B}_{n-j}(z;q)
\]
\[
= \sum_{n=0}^{\infty} \frac{w^{n+1}[n+1]_q}{[n+1]_q!} \sum_{j=0}^{n} \left[\frac{n}{j} \right] q^j (-\frac{1}{2})^{j+1} \sum_{k=0}^{j} a_j(k)(-1)^k \tilde{B}_{n-j}(z;q).
\]
This implies

\[
\tilde{A}_{n+1}(z; q) = [n+1]q \sum_{j=0}^{n} \left[\begin{array}{c} n \\ j \end{array} \right] [j]_q! \left(-\frac{1}{2} \right)^{j+1} \sum_{k=0}^{j} a_j(k)(-1)^k \tilde{B}_{n-j}(z; q),
\]

and then we obtain the required result. \(\square\)

Corollary 3.13. For \(n \in \mathbb{N}_0\) and \(z \in \mathbb{C}\), the power series of the polynomial \(\tilde{A}_n(z; q)\) takes the form

\[
\tilde{A}_n(z; q) = \frac{z^n}{n!} \sum_{m=0}^{n-1} \tilde{c}_m(n) \frac{z^m}{[m]_q!},
\]

where

\[
(3.15) \quad \tilde{c}_m(n) = [n]_q! \left(-\frac{1}{2} \right)^{n+1} \sum_{r=n-1}^{m} \frac{(-2)^r \tilde{a}_r \beta_r(q)}{[r]_q!} \beta_{r-m}(q).
\]

Proof. From Theorem 3.12 and Proposition 3.3 we get

\[
\tilde{A}_n(z; q) = [n]_q! \left(-\frac{1}{2} \right)^n \sum_{r=0}^{n-1} \frac{(-2)^r \tilde{a}_r \beta_r(q)}{[r]_q!} \tilde{B}_r(z; q)
\]

\[
= [n]_q! \left(-\frac{1}{2} \right)^n \sum_{r=0}^{n-1} \frac{(-2)^r \tilde{a}_r \beta_r(q)}{[r]_q!} \sum_{m=0}^{r} \left[\begin{array}{c} r \\ m \end{array} \right] q^{-\frac{m(m-1)}{2}} \frac{\beta_{r-m}(q)}{[r-m]_q!} z^m
\]

\[
= [n]_q! \left(-\frac{1}{2} \right)^n \sum_{m=0}^{n-1} \left(\sum_{r=n-1}^{m} q^{-\frac{m(m-1)}{2}} \frac{(-2)^r \tilde{a}_r \beta_r(q)}{[r]_q!} \beta_{r-m}(q) \right) \frac{z^m}{[m]_q!}.
\]

Corollary 3.14. Let \(w\) be a complex number such that \(|w| < S_1\). Then

\[
\frac{1}{\text{Sinh}_q(w)} = \sum_{n=0}^{\infty} d_n (2w)^n,
\]

where \(d_0 = 1\), \(d_n = [n+1]q \sum_{j=0}^{n} \left(-\frac{1}{2} \right)^{j+1} \frac{\tilde{a}_j}{[n-j]_q!} \beta_{n-j}(q)\) and \(\tilde{a}_j\) the constants defined in (3.14).

Proof. The proof follows immediately from (3.11), (3.13) and replacing \(w\) by \(2w\). \(\square\)

Remark 3.15. According to the definition of \(q\)-Bernoulli numbers (3.2), we have \(\beta_n(q) = \tilde{A}_n(-\frac{1}{2}; q)\). That is, for \(n \in \mathbb{N}_0\) we have

\[
\tilde{\beta}_{n+1}(q) = [n+1]q! \sum_{j=0}^{n} \left(-\frac{1}{2} \right)^{j+1} \frac{\tilde{a}_j}{[n-j]_q!} \tilde{B}_{n-j}(-\frac{1}{2}; q),
\]

where \(\tilde{a}_j\) is the constants which defined in (3.14).
4. A q-Euler polynomials generated by the third Jackson q-Bessel function

Definition 4.1. A q-Euler polynomials $\tilde{E}_n(z; q)$ are defined by the generating function

\[
2 \frac{\exp_q(zw) \exp_q(-w)}{\exp_q(w/2) + \exp_q(-w/2)} = \sum_{n=0}^{\infty} \tilde{E}_n(z; q) \frac{w^n}{[n]_q!},
\]

and the q-Euler numbers $\tilde{e}_n(q)$ are defined in terms of generating function

\[
\frac{2}{\exp_q(w) + \exp_q(-w)} = \sum_{n=0}^{\infty} \tilde{e}_n(q) \frac{w^n}{[n]_q!}.
\]

Clearly, $\tilde{e}_{2n+1}(q) = 0$ for all $n \in \mathbb{N}_0$. Consequently,

\[
\frac{1}{C_q(z)} = \sum_{n=0}^{\infty} (-1)^n \frac{\tilde{e}_{2n}(q)}{[2n]_q!} z^{2n}; \quad |z| < C_1,
\]

where C_1 is the first positive zeros of $C_q(z)$.

We use the notation \tilde{E}_n to denotes the first Euler number, i.e.,

$$\tilde{E}_n := \tilde{E}_n(0; q), \quad (n \in \mathbb{N}_0).$$

Proposition 4.2. The q-Euler polynomials $\tilde{E}_n(z; q)$ are given by

$$\tilde{E}_0(z; q) = 1,$$

and for $n \in \mathbb{N}$

$$\tilde{E}_n(z; q) = \sum_{k=0}^{n} \left[n \atop k \right]_q q^{\frac{k(k-1)}{2}} \tilde{e}_{n-k} z^k.$$

Proof. The proof is similar to the proof of Proposition 3.3 and is omitted. □

Proposition 4.3. For $n \in \mathbb{N}_0$, we have

\[
\tilde{E}_n\left(\frac{1}{2}; q\right) = \left(\frac{1}{2}\right)^n \sum_{n=0}^{\infty} \left[n \atop n \right]_q (-1)^n q^{\frac{k(k-1)}{4}} \left(q^{\frac{1-k}{2}} ; q \right)_k \tilde{e}_{n-k}(q).
\]

Proof. Since

\[
\exp_q(w^2) \exp_q(-w/2) = \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n q^{\frac{n(n-1)}{4}} \left(q^{\frac{1-k}{2}} ; q \right)_n \frac{w^n}{[n]_q!},
\]

then, by using (1.11) and (1.2) we get

\[
\sum_{k=0}^{\infty} \tilde{E}_n\left(\frac{1}{2}; q\right) \frac{w^n}{[n]_q!} = \sum_{k=0}^{\infty} \frac{w^n}{[n]_q!} \sum_{k=0}^{n} \left(-\frac{1}{2} \right)^n (-1)^k \left[n \atop k \right]_q q^{\frac{k(k-1)}{4}} \left(q^{\frac{1-k}{2}} ; q \right)_k \tilde{e}_{n-k}(q),
\]

which implies the result. □
Note that if $z = \frac{1}{2}$, then the left hand side of (4.1) is an even function. Hence,

\[E_{2n+1}(\frac{1}{2}; q) = 0. \]

Proposition 4.4. For $n \in \mathbb{N}_0$, we have $E_{2n} = \delta_{n,0}$, where $\delta_{n,0}$ is the Kronecker’s delta.

Proof. Observe that

\[2 \exp_q(-\frac{w}{2}) + \exp_q(\frac{w}{2}) - 1 = \exp_q(-\frac{w}{2}) - \exp_q(\frac{w}{2}). \]

So, we obtain

\[\sum_{n=0}^{\infty} \frac{E_n}{|n|q} w^n = 1 + \frac{\exp_q(-\frac{w}{2}) - \exp_q(\frac{w}{2})}{\exp_q(\frac{w}{2}) + \exp_q(-\frac{w}{2})}. \]

The right hand side of (4.7) is an odd function, therefore the even powers of w on the left hand side of this equation vanish. Hence $E_0 = 1$ and $E_{2n} = 0$ for every $n \in \mathbb{N}$. \qed

The following results can be proved by the same way of Proposition 3.4, Theorem 3.5 and Theorem 3.8.

Proposition 4.5. For $n \in \mathbb{N}$ and $z \in \mathbb{C}$, we have

1. $E_n(z; q) = q^{\frac{n(n-1)}{2}} E_n(z; 1/q)$;
2. $\delta_q E_n(z; q) = [n]_q E_{n-1}(z; q)$.

Theorem 4.6. For $z \in \mathbb{C}$, we have the identities

\[q^{\frac{n(n-1)}{2}} |n|_q \left(-\frac{1}{2} \right)^n (2q^{\frac{1-n}{2}} z)_q = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \left(\frac{1}{2} \right)^{k(2k-1)} q^{2k} \frac{E_{n-2k}(z; q)}{|n-2k|_q!}; \]

\[q^{\frac{n(n-1)}{2}} |n|_q \left(-\frac{1}{2} \right)^n = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \left(\frac{1}{2} \right)^{k(2k-1)} q^{2k} \frac{E_{n-2k}}{|n-2k|_q!}. \]

As a consequence of Theorem 4.6 we get

\[E_0 = 1, \quad E_1 = -\frac{1}{2}, \quad E_2 = 0, \quad E_3 = \frac{(q-1)q^{\frac{3}{2}} + (1-q^3)q^{\frac{1}{2}}}{8(1-q)}, \]

\[E_5 = \frac{(q^2-1)q^5 + (1-q^2)(5)q^3 + (q-1)q^\frac{3}{2} [4]_q [5]_q ([3]_q q^{\frac{1}{2}} - \frac{3}{2})}{32(1-q^2)}. \]

Proposition 4.7. We have the identity

\[\tanh_q(\frac{w}{2}) = \sum_{n=0}^{\infty} E_{2n+1}(\frac{w}{2}; q) = \frac{w^{2n+1}}{|2n+1|_q!}, \quad |\frac{w}{2}| < S_1. \]
Proof. The proof is similar to the proof of Proposition 3.10 and is omitted. □

Recall that the q-tangent and q-secant numbers defined by the series expansions of \tan_qz and \sec_qz by

\[
\tan_qz = \sum_{n=0}^{\infty} T_{2n+1}(q) \frac{z^{2n+1}}{[2n+1]_q!},
\]

\[
(4.9)
\]

\[
\sec_qz = \frac{1}{C_qu} = \sum_{n=0}^{\infty} S_{2n}(q) \frac{z^{2n}}{[2n]_q!},
\]

(for more details see [5, 7]).

Consider $S_q(z)$ and $C_q(z)$ which defined in (2.5). Then, from (4.3) and (4.8) we get

\[
T_{2n+1}(q) = (-1)^n \bar{E}_{2n+1} 2^{2n+1}, \quad S_{2n}(q) = (-1)^n \bar{e}_{2n}(q).
\]

Theorem 4.8. For $n \in \mathbb{N}_0$

\[
\sum_{n=0}^{\infty} \left(-1\right)^n 2^{2k} \beta_{2k}(q) \frac{T_{2n-2k+1}(q)}{[2k]_q! \ [2n-2k+1]_q!} = \delta_{n,0},
\]

where $\delta_{n,0}$ is the Kronecker’s delta.

Proof. From Equation (4.10), we have

\[
(4.11)
\]

\[
z \cot_q(z) = \sum_{n=0}^{\infty} \left(-1\right)^n 2^{2n} \beta_{2n}(q) \frac{z^{2n}}{[2n]_q!}.
\]

Observe that $z \tan_q(z) \cot_q(z) = z$. So, by using (4.9) and (4.11) we obtain

\[
z = \sum_{n=0}^{\infty} \left(-1\right)^n 2^{2n} \beta_{2n}(q) \frac{z^{2n}}{[2n]_q!} \sum_{n=0}^{\infty} T_{2n+1}(q) \frac{z^{2n+1}}{[2n+1]_q!}.
\]

Therefore,

\[
\sum_{n=0}^{\infty} z^{2n} \sum_{k=0}^{n} \left(-1\right)^k 2^{2k} \beta_{2k}(q) \frac{T_{2n-2k+1}(q)}{[2k]_q! \ [2n-2k+1]_q!} = 1.
\]

Comparing the coefficient of z^{2n}, we obtain the desired result. □

Corollary 4.9. Let $n \in \mathbb{N}_0$. Then, the q-tangent numbers $T_{2n+1}(q)$ are positive numbers.

Proof. From Equation (4.10), we get

\[
T_{2n+1}(q) = \sum_{k=1}^{n} \left(-1\right)^{k-1} (2k) \beta_{2k}(q) \frac{T_{2n-2k+1}(q)}{[2k]_q! \ [2n-2k+1]_q!}.
\]

Since $(-1)^{k-1} \beta_{2k} > 0$ for $k \in \mathbb{N}$ and $T_1(q) = 1 > 0$, then we can prove the result by induction on n for all $n \in \mathbb{N}_0$. □
We define a sequence of polynomials $\tilde{M}_n(z; q)$ by the generating function

\[(4.12) \quad \frac{\exp_q(zw)}{\exp_q(w/2) + \exp_q(-w/2)} = \sum_{n=0}^{\infty} \tilde{M}_n(z; q) [n]_q^w.\]

Similarly to Proposition 3.11, Theorem 3.12 and Corollary 3.14, we have the following results.

Proposition 4.10. For $n \in \mathbb{N}$, the q-Euler polynomials $\tilde{E}_n(z; q)$ can be represented in terms of $\tilde{M}_n(z; q)$ as

\[(4.13) \quad \tilde{E}_n(z; q) = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] q \left(\frac{1}{2} \right)^{k-1} \tilde{M}_{n-k}(z; q).\]

Theorem 4.11. For $n \in \mathbb{N}$ and $z \in \mathbb{C}$, $\tilde{M}_n(z; q)$ can be represented in terms of the q-Euler polynomials $\tilde{E}_n(z; q)$ as

\[(4.14) \quad \tilde{M}_n(z; q) = \frac{[n]_q!}{2} \sum_{j=0}^{n} (-1)^{j+1} \frac{\tilde{a}_j}{[n-j]_q!} \tilde{E}_{n-j}(z; q),\]

where

\[\tilde{a}_j = \sum_{k=0}^{j} (-1)^k \sum_{\substack{s_1 + s_2 + \ldots + s_k = n \\ s_i > 0, \forall i}} \frac{q^{\sum_{i=0}^{k} s_i (s_i + 1)/4}}{[s_1 + 1]_q! [s_2 + 1]_q! \ldots [s_k + 1]_q!}\]

Corollary 4.12. For $n \in \mathbb{N}_0$ and $z \in \mathbb{C}$, the power series of the polynomial $\tilde{M}_n(z; q)$ takes the form

\[\tilde{M}_n(z; q) = \sum_{m=0}^{n} c_m(n) \frac{z^m}{[m]_q!},\]

where

\[c_m(n) = \frac{[n]_q!}{2} \left(\frac{1}{2} \right)^{n+1} \sum_{r=n}^{m} q^{r(m-1)/4} \left(-2 \right)^r \tilde{a}_r \tilde{E}_{r-m}.\]

Proposition 4.13. For $z \in \mathbb{C}$, we have

\[\frac{1}{\cosh_q(w/2)} = \sum_{n=0}^{\infty} \tilde{d}_n w^n, \quad |\frac{w}{2}| < C_1,\]

where $\tilde{d}_n = \sum_{j=0}^{n} (-1)^{j+1} \frac{\tilde{a}_j}{[n-j]_q!} \tilde{E}_{n-j}$ and \tilde{a}_j the constants defined in (3.14).
5. A q-Lidstone series involving q-Bernoulli polynomials

Our aim of this section is to prove that an entire function f may be expanded in terms of q-Lidstone polynomials, where the coefficients of these polynomials are the even powers of the q-derivative $\delta_q f(z)$ at 0 and 1.

We begin by recalling some definitions and results from [16] which will be used in the proof of the main result.

Definition 5.1. Let k be a non zero real number, and let p be a real number with $|p| > 1$. An entire function f has a p-exponential growth of order k and a finite type, if there exist real numbers $K > 0$ and α, such that

$$|f(z)| < Kp^{\frac{k}{2}} \left(\frac{\log|z|}{\log p}\right)^2 |z|^{\alpha},$$

or equivalently,

$$|f(z)| \leq K e^{\frac{k}{2} \log p (\log |z|)^2 + \alpha \log |z|}.$$

Definition 5.2. Let k be a non zero real number and let p be a real number, with $|p| > 1$. A formal power series expansion $\hat{f} := \sum_{n=0}^{\infty} a_n z^n$ is p-Gevery of order $-k$ (or of level k), if there exists real numbers $C, A > 0$ such that

$$|a_n| < C p^{\frac{n(n+1)}{2k}} A^n.$$

Proposition 5.3. Let k be a non zero real number and p be a real number, with $p > 1$. The following statements are equivalent.

i. The series $\hat{f} := \sum_{n=0}^{\infty} a_n z^n$ is p-Gevery of order $-k$;

ii. The series \hat{f} is the power series expansion at the origin of an entire function f having a p-exponential growth of order k and a finite type α, where

$$|a_n| < Ke^{-\frac{(n-\alpha)^2}{2k}}, \quad K > 0.$$

Remark 5.4. The series $\sum_{n=0}^{\infty} \frac{n(n-1)}{[n]_q!} z^n$ which defines the function $exp_q(z)$ is q^{-1}-Gevery of order -2. Consequently, $exp_q(z)$ has q^{-1} exponential growth of order 2.

Proposition 5.5. Let z and w be complex numbers such that $|w| < S_1$. Then

$$\text{Sinh}_q(wz) \text{Csch}_q(w) = \sum_{n=0}^{\infty} \frac{2^{2n+1}}{[2n+1]_q!} \bar{A}_{2n+1}(z/2; q) w^{2n},$$

where $\bar{A}_n(z; q)$ are the q-polynomials defined in (5.11).
Proof. First, note that the function \(g_q(z, w) := \text{Sinh}_q(wz) \text{Csch}_q(w) \) is holomorphic for \(|w| < S_1 \). By using (2.8), we can write

\[
g_q(z, w) := \frac{\exp_q(zw) - \exp_q(-zw)}{\exp_q(w) - \exp_q(-w)}.
\]

Then, by using (3.11) we get

\[
g_q(z, w) := \frac{\exp_q(zw) - \exp_q(-zw)}{\exp_q(w) - \exp_q(-w)} = \frac{1}{2w} \sum_{n=0}^{\infty} \tilde{A}_n(z/2; q) \left(\frac{2w^n}{[n]_q} \right) - \frac{1}{2w} \sum_{n=0}^{\infty} \tilde{A}_n(z/2; q) \left(\frac{-2w^n}{[n]_q} \right).
\]

Henceforth, we will consider the notation

\[
(5.2) \quad \tilde{A}_n(z) = \frac{2^{2n+1}}{[2n+1]_q!} \tilde{A}_{2n+1}(z/2; q).
\]

So, the previous result can be restated in the following form:

\[
(5.3) \quad \frac{\exp_q(zw) - \exp_q(-zw)}{\exp_q(w) - \exp_q(-w)} = \sum_{n=0}^{\infty} \tilde{A}_n(z) w^{2n},
\]

Corollary 5.6. For \(n \in \mathbb{N} \), the \(q \)-polynomials \(\tilde{A}_n(z) \) satisfy the \(q \)-difference equation

\[
\frac{\delta_q^2 \tilde{A}_n(z)}{\delta_q z^2} = \tilde{A}_{n-1}(z),
\]

with the boundary conditions \(\tilde{A}_n(0) = \tilde{A}_n(1) = 0 \), and \(\tilde{A}_0(z) = z \).

Proof. By using (2.7) we obtain

\[
\frac{\delta_q^2 g(z, w)}{\delta_q z^2} = \sum_{n=0}^{\infty} \frac{\delta_q^2 \tilde{A}_n(z)}{\delta_q z^2} w^{2n} = w^2 \frac{\exp_q(zw) - \exp_q(-zw)}{\exp_q(w) - \exp_q(-w)} = \sum_{n} \tilde{A}_n(z) w^{2n+2}.
\]

Therefore, \(\frac{\delta_q^2 \tilde{A}_n(z)}{\delta_q z^2} = \tilde{A}_{n-1}(z) \) (\(n \in \mathbb{N} \)). Furthermore,

\[
\tilde{A}_0(z) = \lim_{w \to 0} \frac{\exp_q(zw) - \exp_q(-zw)}{\exp_q(w) - \exp_q(-w)} = z.
\]
Substitute with $z = 0$ and $z = 1$ in Equation (5.3), we obtain

$$\tilde{A}_n(0) = \tilde{A}_n(1) = 0$$

for all $n \in \mathbb{N}$. □

Proposition 5.7. Let z and w be complex numbers such that $|w| < S_1$. Then

$$\frac{\exp_q(zw)\exp_q(-w) - \exp_q(-zw)\exp_q(w)}{\exp_q(w) - \exp_q(-w)} = \sum_{n=0}^{\infty} \tilde{B}_n(z) w^{2n},$$

where

$$\tilde{B}_n(z) = \frac{2^{2n+1}}{[2n+1]!} \tilde{B}_{2n+1}(z/2; q).$$

Proof. If z and w are complex numbers such that $|w| < S_1$, then

$$\frac{\exp_q(zw)\exp_q(-w) - \exp_q(-zw)\exp_q(w)}{\exp_q(w) - \exp_q(-w)} = 1$$

$$= \frac{1}{2w} \left[\frac{2w \exp_q(zw)\exp_q(-w)}{\exp_q(w) - \exp_q(-w)} \right] - \frac{1}{2w} \left[\frac{2w \exp_q(-zw)\exp_q(w)}{\exp_q(w) - \exp_q(-w)} \right]$$

$$= \frac{1}{2w} \sum_{n=0}^{\infty} \frac{(2w)^n - (-2w)^n}{[n]!} \tilde{B}_n(z/2; q)$$

$$= \sum_{n=0}^{\infty} \frac{w^{2n}}{[2n+1]!} 2^{2n+1} \tilde{B}_{2n+1}(z/2; q).$$

□

As in Corollary 5.6 one can verify that $\tilde{B}_0(z) = z - 1$ and for $n \in \mathbb{N}$, the q-polynomials $\tilde{B}_n(z)$ satisfy the q-difference equation

$$\Delta_q^2 \tilde{B}_n(z) = \tilde{B}_{n-1}(z),$$

with the boundary conditions $\tilde{B}_n(0) = \tilde{B}_n(1) = 0$.

Now, observe that

$$\exp_q(zw) = \frac{\exp_q(zw)\exp_q(-w) - \exp_q(-zw)\exp_q(w)}{\exp_q(-w) - \exp_q(w)}$$

$$+ \exp_q(w) \frac{\exp_q(zw) - \exp_q(-zw)}{\exp_q(w) - \exp_q(-w)}.$$

So, from Proposition 5.5 and Proposition 5.7 we get immediately the following result.
Proposition 5.8. If \(z \) and \(w \) are complex numbers such that \(|w| < S_1 \), then
\[
\exp_q(zw) = \exp_q(w) \sum_{n=0}^{\infty} \tilde{A}_n(z)w^{2n} - \sum_{n=0}^{\infty} \tilde{B}_n(z)w^{2n}.
\]

In the following, we assume that \(\Psi \) is a comparison function, i.e. \(\Psi(t) = \sum_{n=0}^{\infty} \Psi_n t^n \) such that \(\Psi_n > 0 \) and \(\left(\Psi_{n+1}/\Psi_n \right) \downarrow 0 \) (see [2, 14]). We denote by \(\mathcal{R}_\Psi \) the class of all entire functions \(f \) such that, for some numbers \(\tau \),
\[
|f(re^{i\theta})| \leq M\Psi(\tau r),
\]
as \(r \to \infty \). Here, the complex variable \(z \) was written as \(z = re^{i\theta} \) to emphasize that the limit must hold in all directions \(\theta \). The infimum of numbers \(\tau \) for which (5.6) holds is the \(\Psi \)-type of the function \(f \). This type can be computed by applying Nachbin’s theorem [14] which states that a function \(f(z) = \sum_{n=0}^{\infty} f_n z^n \) is of \(\Psi \)-type \(\tau \) if and only if
\[
\tau = \limsup_{n \to \infty} \left| \frac{f_n}{\Psi_n} \right|^{\frac{1}{n}}.
\]

In [2], the authors applied Nachbin’s theorem for the generalized Borel transform
\[
F(w) = \sum_{n=0}^{\infty} \frac{f_n}{\Psi_n w^{\tau+1}},
\]
and they proved the following result.

Theorem 5.9. Let \(f(z) \) belong to the class \(\mathcal{R}_\Psi \), and let \(D(f) \) be the closed set consists of the union of the set of all singular points of \(F \) and the set of all points exterior to the domain of \(F \). Then
\[
f(z) = \frac{1}{2\pi i} \int_{\Gamma} \Psi(zw)F(w)dw
\]
where \(\Gamma \) encloses \(D(f) \).

According to the above arguments and results we will prove the main theorem.

Theorem 5.10. Let \(S_1 \) be the smallest positive zero of \(S_q(z) \). Assume that one of the following conditions hold:

(i) The function \(f(z) \) is an entire function of \(q^{-1} \)-exponential growth of order 2 and a finite type \(\alpha \), where
\[
\alpha < 2 \left(\frac{1}{4} - \frac{\log S_1}{\log q} \right).
\]

(ii) The function \(f(z) \) is an entire function of \(q^{-1} \)-exponential growth of order less than 2.
Then \(f(z) \) has a convergent \(q \)-Lidstone representation

\[
f(z) = \sum_{n=0}^{\infty} \left[A_n(z) \frac{\delta^{2n} f(1)}{\delta_q z^{2n}} - \tilde{B}_n(z) \frac{\delta^{2n} f(0)}{\delta_q z^{2n}} \right],
\]

where \(\tilde{A}_n(z) \) is the polynomial of degree \(2n + 1 \) defined in (5.2) and

\[
\tilde{B}_n(z) := \frac{2^{2n+1}}{(2n + 1)!} \tilde{B}_{2n+1}(z/2; q).
\]

Proof. We apply Theorem 5.9 when \(\Psi(z) \) chosen as \(\exp(qz) \) and

\[
\Psi_n = \frac{q^{n(n-1)/4}}{|n|_q^{1/2}}.
\]

Notice, the sequence

\[
\frac{\Psi_{n+1}}{\Psi_n} = \frac{q^{n/2}(1 - q)}{1 - q^{n+1}} = \frac{q^{n/2}}{|n+1|_q}
\]

is decreasing and vanishes at \(\infty \). By using Proposition 5.3, we have for any entire function \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) of \(q^{-1} \)-exponential growth of order \(k \) and a finite type \(\alpha \), there exists a real number \(K > 0 \) such that

\[
|a_n| \leq K q^{\frac{(n-\alpha)^2}{2k}}.
\]

According to the assumption, we have two cases:

Case 1. If \(k = 2 \), then \(|a_n| \leq K q^{\frac{(n-\alpha)^2}{4}} \). This implies (5.6) holds and \(f \in \mathcal{R}_\Psi \).

Here, the \(\Psi \)-type of the function \(f \) given by

\[
\tau := \limsup_{n \to \infty} \left| \frac{a_n}{\Psi_n} \right|^\frac{1}{n}
\]

\[
\leq \frac{q^{\frac{1}{4}-\alpha/2}}{(1 - q)} \limsup_{n \to \infty} \left(K (q; q)_n q^{\alpha^2/4} \right)^\frac{1}{n}
\]

\[
\leq q^{\frac{1}{4}-\alpha/2} < S_1.
\]

Case 2. If \(k < 2 \), then \(\tau = 0 \).

So, we can take \(D(f) \) lies in the closed disk \(|w| \leq \tau \leq q^{\frac{1}{4}-\alpha/2} < S_1 \) and take the curve \(\Gamma \) as the circle \(|w| = \tau + \epsilon < S_1, \epsilon > 0 \) which encloses \(D(f) \). Note that the inequality \(q^{\frac{1}{4}-\alpha/2} < S_1 \) satisfies the condition (5.7) on the type of the function \(f(z) \). We obtain

\[
f(z) = \frac{1}{2\pi i} \int_{\Gamma} \exp_q(zw) F(w) \, dw.
\]
Therefore,
\[
\frac{\delta_q^{2n} f(0)}{\delta_q z^{2n}} = \frac{1}{2\pi i} \int_{\Gamma} \frac{\delta_q^{2n} \exp_q(zw)|_{z=0}}{\delta_q z^{2n}} F(w) \, dw
\]
\[
= \frac{1}{2\pi i} \int_{\Gamma} w^{2n} F(w) \, dw,
\]
\[
\frac{\delta_q^{2n} f(1)}{\delta_q z^{2n}} = \frac{1}{2\pi i} \int_{\Gamma} w^{2n} \exp_q(w) F(w) \, dw
\]
Now, by using Proposition 5.8 we have
\[
f(z) = \frac{1}{2\pi i} \int_{\Gamma} \exp_q(zw) F(w) \, dw
\]
\[
= \frac{1}{2\pi i} \int_{\Gamma} \left\{ \exp_q(w) \sum_{n=0}^{\infty} \tilde{A}_n(z)w^{2n} - \sum_{n=0}^{\infty} \tilde{B}_n(z)w^{2n} \right\} F(w) \, dw
\]
\[
= \sum_{n=0}^{\infty} \left[\tilde{A}_n(z) \frac{\delta_q^{2n} f(1)}{\delta_q z^{2n}} - \tilde{B}_n(z) \frac{\delta_q^{2n} f(0)}{\delta_q z^{2n}} \right].
\]

Remark 5.11. In Theorem 5.10, it is obvious if
\[
\frac{\delta_q^{2n} f(0)}{\delta_q z^{2n}} = \frac{\delta_q^{2n} f(1)}{\delta_q z^{2n}} = 0, \quad (n \in \mathbb{N})
\]
then \(f(z)\) is identically zero.

The following example shows that the sign of equality can not be admitted in (5.7).

Example 5.12. Consider \(f(z) = S_q(S_1z)\). Then \(f\) is an entire function of \(q^{-1}\)-exponential growth of order 2 and a finite type \(\alpha = \frac{1}{2} - 2 \frac{\log_q S_1}{\log_q q}\). By using (2.6), one can verify that
\[
\frac{\delta_q^{2n} f(0)}{\delta_q z^{2n}} = \frac{\delta_q^{2n} f(1)}{\delta_q z^{2n}} = 0, \quad (n \in \mathbb{N}).
\]
This implies the \(q\)-Lidstone expansion of \(f(z)\) vanishes identically but the function does not.

We end this section by given the \(q\)-Lidstone series of the functions \((z; q)_n\).

Example 5.13. Consider the functions \(g_n(z) = (z; q)_n, \quad n \in \mathbb{N}\). Then, Condition (ii) of Theorem 5.10 is satisfied. So, these polynomials have a \(q\)-Lidstone representation
\[
g_n(z) = \sum_{m=0}^{n} \left[\tilde{A}_m(z) \frac{\delta_q^{2m} g_n(1)}{\delta_q z^{2m}} - \tilde{B}_m(z) \frac{\delta_q^{2m} g_n(0)}{\delta_q z^{2m}} \right].
\]
One can verify that
\[
\frac{\delta^2 m g_n(z)}{\delta q^{-2n}} = q^{-m(m+\frac{1}{2})} [n]_q [n-1]_q \ldots [n-2m+1]_q (q^m z; q)_{n-2m}.
\]

Therefore, \(g_n(z) \) have the convergent \(q \)-Lidstone representation
\[
g_n(z) = \sum_{m=0}^{n} q^{-m(m+\frac{1}{2})} [n]_q [n-1]_q \ldots [n-2m+1]_q \left[(q^m z; q)_{n-2m} \tilde{A}_m(z) - \tilde{B}_m(z) \right].
\]

6. A \(q \)-Lidstone series involving \(q \)-Euler polynomials

In this section, we introduce another \(q \)-extension of Lidstone theorem. We expand the function in \(q \)-Lidstone polynomials which are \(q \)-Euler polynomials \(\tilde{E}_n(z; q) \) defined by the generating function (4.1). All the results can be studied in the same manner of the results of the previous section.

Proposition 6.1. If \(z \) and \(w \) are complex numbers such that \(|w| < C_1\), then
\[
Cosh_q(wz) Sech_q(w) = \sum_{n=0}^{\infty} \tilde{M}_n(z) w^{2n},
\]
where
\[
\tilde{M}_n(z) := \frac{2^{2n}}{[2n]_q!} \tilde{M}_{2n}(z; q),
\]
and \(\tilde{M}_n(z; q) \) are the \(q \)-polynomials defined in (4.12).

Proposition 6.2. If \(z \) and \(w \) are complex numbers such that \(|w| < C_1\), then
\[
\frac{\exp_q(zw) \exp_q(-w) - \exp_q(-zw) \exp_q(w)}{\exp_q(w) + \exp_q(-w)} = \sum_{n=0}^{\infty} \frac{w^{2n+1}}{[2n+1]_q!} 2^{2n+1} \tilde{E}_{2n+1}(z/2; q).
\]

Proposition 6.3. If \(z \) and \(w \) are complex numbers such that \(|w| < C_1\), then
\[
\exp_q(zw) = \exp_q(w) \sum_{n=0}^{\infty} \tilde{M}_n(z) w^{2n} - \sum_{n=0}^{\infty} \tilde{N}_{n+1}(z) w^{2n+1},
\]
where
\[
\tilde{N}_{n+1}(z) = \frac{2^{2n+1}}{[2n+1]_q!} \tilde{E}_{2n+1}(z/2; q).
\]

Theorem 6.4. Assume that one of the following conditions hold:
(i) The function \(f(z) \) is an entire function of \(q^{-1} \)-exponential growth of order 2 and a finite type \(\alpha \), where

\[
\alpha < 2 \left(\frac{1}{4} - \frac{\log C_1}{\log q} \right) ;
\]

(ii) The function \(f(z) \) is an entire function of \(q^{-1} \)-exponential growth of order less than 2.

Then \(f(z) \) has the convergent representation

\[
f(z) = \sum_{n=0}^{\infty} \left[\bar{M}_n(z) \frac{\delta_q^{2n} f(1)}{\delta_q z^{2n}} - \bar{N}_{n+1}(z) \frac{\delta_q^{2n+1} f(0)}{\delta_q z^{2n+1}} \right],
\]

where \(\bar{M}_n \) is the polynomial defined in (6.2) and

\[
\bar{N}_{n+1}(z) := \frac{2^{2n+1}}{(2n+1)_q} \bar{E}_{2n+1}(z/2; q).
\]

As in Remark 5.11, the sign of equality can not be admitted in (6.5). For example, the function \(f(z) = C_q(C_1 z) \) is a function of type \(\left(\frac{1}{2} - 2 \frac{\log C_1}{\log q} \right) \) and one can verify that

\[
\frac{\delta_q^{2n} f(1)}{\delta_q z^{2n}} = 0 = \frac{\delta_q^{2n+1} f(0)}{\delta_q z^{2n+1}}.
\]

Hence, the \(q \)-Lidstone expansion of \(f(z) \) vanishes while the function does not.

7. Concluding Remarks

The \(q \)-Lidstone’s series approximates an entire function in a neighborhood of two points in terms of \(q \)-analog of Lidstone polynomials. In [8], the authors introduced these polynomials which were \(q \)-Bernoulli polynomials generated by second Jackson \(q \)-Bessel function.

In this paper, we presented \(q \)-Bernoulli and \(q \)-Euler polynomials generated by the third Jackson \(q \)-Bessel function to construct new types of \(q \)-Lidstone expansion theorem [8].

This work provides the basis for several applications that we can search in the future. Firstly, we are interested in studying the generalization of \(q \)-Lidstone’s series. The analogous problem for the classical case was studied in [17] by Whittaker. Secondly, we are interested in constructing the \(q \)-Fourier series for the \(q \)-Lidstone polynomials \(\bar{A}_n(z) \) and \(\bar{B}_n(z) \), and applying such expansions to a solution of certain \(q \)-boundary value problems as in [12] and [13].

References

[1] M. H. Annaby and Z. S. Mansour: \textit{q-Fractional Calculus and Equations}, Lecture Notes in Mathematics 2056, Springer-Verlag, Berlin (2012).
[2] R. P. Boas and R. C. Buck: *Polynomial expansions of analytic functions*. Springer-Verlag, Berlin, second edition (1964).

[3] J. Bustoz and J. L. Cardoso: Basic analog of Fourier series on a q-linear grid, *J. Approx. Theory*, **112**, 154-157 (2001).

[4] J. L. Cardoso: Basic Fourier series: convergence on and outside the q-linear grid, *J. Fourier Anal. Appl.*, **17**(1), 96-114 (2011).

[5] D. Foata and G. Han: The q-tangent and q-secant numbers via basic Eulerian polynomials, *Proc. Amer. Math. Soc.*, **138**, 385-393 (2010).

[6] G. Gasper and M. Rahman: *Basic Hypergeometric Series*. Cambridge University Press, second addition, Cambridge (2004).

[7] T. Huber and A.J. Yee: Combinatorics of generalized q-Euler numbers, *Journal of Combinatorial Theory*, 361-388 (2010).

[8] M. Ismail and Z. Mansour: q-analogs of Lidstone expansion theorem, two point Taylor expansion theorem, and Bernoulli polynomials, *J. Analysis and applications*, Doi.org/10.1142/S0219530518500264 (2018).

[9] F. Jackson: On q-functions and a certain difference operator, *Trans. Roy. Soc. Edinburgh*, **46**, 64-72 (1908).

[10] H.T. Koelink and R.F. Swarttouw: On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, *J. Math. Anal. Appl.*, **186**:690–710, (1994).

[11] G. Lidstone: Notes on the extension of Aitken’s theorem (for polynomial interpolation) to the Everett types, *Proc. Edinb. Math. Soc.*, **2**, 16-19 (1929).

[12] Z. Mansour and M. AL-Towailb: q-Lidstone polynomials and existence results for q-boundary value problems, *Boundary Value Problems* 2017:178, doi: 10.1186/s13661-017-0908-4 (2017).

[13] Z. Mansour and M. AL-Towailb: The Complementary q-Lidstone Interpolating Polynomials and Applications, *Math. Comput. Appl.*, **25**(2), 34; doi: 10.3390/mca25020034 (2020).

[14] L. Nachbin: An extension of the notion of integral functions of finite exponential type, *Anais Acad. Brasil. Ciencias* **16**: 143-147 (1944).

[15] S. Nalci and O. Pashaev: q-Bernoulli numbers and zeros of q-sine function. arXiv:1202.2265 [math.QA].

[16] J. P. Ramis: About the growth of entire functions solutions of linear algebraic q-difference equations, *Ann. Fac. Sci. Toulouse Math.*, **1**(6): 53-94 (1992).

[17] J. M. Whittaker: On Lidstone’s series and two-point expansion of analytic function, *Proc. London. Math. Soc.*, **36**(2): 451-469 (1934).

Z. Mansour, Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt.

Email address: zainab@sci.cu.edu.eg

M. AL-Towailb, Department of Computer Science and Engineering, King Saud University, Riyadh, KSA

Email address: mtowailb@ksu.edu.sa