Dielectric Enhancement of Atomic Layer-Deposited Al₂O₃/ZrO₂/Al₂O₃ MIM Capacitors by Microwave Annealing

Bao Zhu¹², Xiaohan Wu², Wen-Jun Liu², Shi-Jin Ding²*, David Wei Zhang² and Zhongyong Fan¹*

Abstract
For metal-insulator-metal (MIM) capacitors applicated in the fields of RF, DRAM, and analog/mixed-signal integrated circuits, a high capacitance density is imperative with the downscaling of the device feature size. In this work, the microwave annealing technique is investigated to enhance the dielectric characteristics of Al₂O₃/ZrO₂/Al₂O₃ based MIM capacitors. The results show that the permittivity of ZrO₂ is increased to 41.9 (~40% enhanced) with a microwave annealing at 1400 W for 5 min. The substrate temperature is lower than 400 °C, which is compatible with the back end of line process. The leakage current densities are 1.23 × 10⁻⁸ and 1.36 × 10⁻⁸ A/cm² for as-deposited sample and 1400 W sample, respectively, indicating that the leakage property is not deteriorated. The conduction mechanism is confirmed as field-assisted tunneling.

Keywords: Microwave annealing, Atomic layer deposition, Al₂O₃/ZrO₂/Al₂O₃, MIM capacitors

Background
Metal-insulator-metal (MIM) capacitors have been widely used in the fields of radio frequency (RF), dynamic random access memory (DRAM), and analog/mixed-signal integrated circuits. With the scaling down of the device feature size, it is desirable to obtain an ever higher capacitance density. For example, the capacitance density is required to be greater than 10 fF/μm² according to the 2020 node of the International Technology Roadmap for Semiconductors (ITRS) [1]. As a consequence, a large number of high-κ materials have been investigated, such as HfO₂ [2–6], ZrO₂ [7–14], Ta₂O₅ [15–18], and TiO₂ [19–24]. Among these high-κ materials, ZrO₂ has a dielectric constant (κ) of 16~25 (monoclinic phase) and a bandgap of 5.8 eV. However, the κ value of ZrO₂ can be enhanced to 36.8 and 46.6 when it is crystallized into cubic and tetragonal phase, respectively [25]. Hence, the capacitance density can be further increased. The microwave annealing (MWA) technique has been tremendously explored for the dopant activation in silicon [26–28] and the silicide formation [29, 30] due to its lower process temperature compared with conventional thermal processing techniques. In addition, Shih et al. [31] investigated the effect of MWA on electrical characteristics of TiN/Al/TiN/HfO₂/Si MOS capacitors. Some key parameters such as equivalent oxide thickness, interface state density, and leakage current density were all improved.

In this work, the effect of MWA on electrical properties of TaN/Al₂O₃/ZrO₂/Al₂O₃/TaN (TaN/A/Z/A/TaN) MIM capacitors is investigated. With the usage of MWA, the permittivity of ZrO₂ is remarkably enhanced and the leakage current density is slightly increased. Moreover, the underlying conduction mechanism is also studied.

Methods
Firstly, a 500-nm-thick SiO₂ film was grown onto Si substrate by PECVD, followed by deposition of TaN (20 nm)/Ta (100 nm) films, and TaN was grown by sputtering Ta target in N₂/Ar plasma. Subsequently, the Si wafer coated with the TaN/Ta films was transferred into the ALD chamber, and the nano-stack of Al₂O₃ (2 nm)/ZrO₂ (20 nm)/Al₂O₃ (2 nm) were deposited at 250 °C. Al₂O₃ and ZrO₂ films were grown from Al (CH₃)₃/H₂O and [(CH₃)₂N]₄Zr/H₂O, respectively. It is worth mentioning that an ultrathin Al₂O₃ layer between the bottom TaN...
electrode and the ZrO$_2$ layer was inserted to restrain the formation of interfacial layer during ALD and post-deposition annealing. Afterwards, the samples were subject to the microwave annealing. MWA was performed in a DSGI octagonal chamber at 5.8 GHz. During annealing, the samples were placed at the middle of the chamber, where the electromagnetic field is most uniform. The in situ temperature of the samples was monitored by a Raytek XR series infrared pyrometer facing the backside of the samples. The power was varied from 700 W to 1400 W with a fixed annealing time of 5 min. Finally, a 100-nm-thick TaN top electrode was formed in turn by reactive sputter, lithography, and reactive ion etching.

The ALD film thicknesses were measured with an ellipsometer (SOPRA GES 5E) and confirmed by transmission electron microscope (TEM). Capacitance-voltage (C-V) was measured by a precision impedance analyzer (Agilent 4294A) with a 50 mV AC amplitude. Current-voltage (I-V) measurements were performed with a semiconductor device analyzer (Agilent B1500) in a dark box. The bias was applied to the top electrode.

Results and Discussion

The schematic structures of the A/Z/A based MIM capacitor and the MWA chamber are shown in Fig. 1a and b, respectively. Figure 1c exhibits the cross-sectional TEM image of the A/Z/A-based MIM capacitor which is subject to the MWA at 1400 W for 5 min. It is observed that the ZrO$_2$ layer is fully crystallized and the stacked layers can be distinguished clearly, see the inset. Figure 2a shows the cumulative probability plot of the capacitance density at different annealing power. The results show that the capacitance densities of the MIM capacitors are 7.34, 8.87, 8.96, and 9.06 fF/μm2 respectively for 0, 700, 1050, and 1400 W at a 50% cumulative probability. Therefore, the capacitance density
density is increased under the effect of microwaves. The very narrow distribution of the capacitance density for the A/Z/A stack MIM capacitors with MWA indicates very good annealing uniformity. The inset in Fig. 2a exhibits the typical CV curves of all the samples. Excluding the effect of Al₂O₃ ($\kappa \approx 8$), the dielectric constants of the ZrO₂ films are extracted as 28.3, 40.1, 41, and 41.9 for 0, 700, 1050, and 1400 W, respectively, revealed by Fig. 2b. Regarding the microwave power of 1400 W, the dielectric constant of the ZrO₂ film increases by 40% compared with the as-deposited sample. The significant enhancement of the permittivity of ZrO₂ can be ascribed to the high-degree crystallization during the microwave annealing, shown in Fig. 1c. As mentioned above, the dielectric constant of ZrO₂ can be enhanced to 36.8 and 46.6 when it is crystallized into cubic and tetragonal phase, respectively [25]. Hence, the XRD measurement was performed to further investigate the mechanism of the dielectric constant enhancement. As exhibited in the inset of Fig. 2b, a peak existed at ~ 30.7° after the MWA processing at 1400 W, indicating the appearance of the tetragonal phase (111) in ZrO₂ [32, 33]. The presence of this tetragonal phase is responsible for the enhancement of the dielectric constant from 28.3 to over 40.

Since the MIM capacitors are fabricated in the back end of line (BEOL) of integrated circuits, the process temperature must be lower than 400 °C [34]. As shown in Fig. 3, the temperature curves of MWA indicate that the highest temperatures of the substrate are 260, 350, and 400 °C for 700, 1050, and 1400 W, respectively. Therefore, MWA is compatible with the CMOS process from the viewpoint of process temperature. Furthermore, in the previous work [13], Al₂O₃ (2 nm)/ZrO₂ (20 nm)-based MIM capacitors were subject to rapid thermal annealing (RTA) at 420 °C for 10 min in N₂/H₂ ambient and the resulting dielectric constant of ZrO₂ was evaluated as 40. For RTA, the annealing time was kept constant at 420 °C for 10 min, so the thermal budget was much larger compared with MWA. For MWA [35, 36], dipole polarization is thought to be the most important mechanism for energy transfer at the molecular level. When materials in contact have different dielectric properties, microwaves will selectively couple with the higher dielectric loss materials. In contrast, conventional RTA transfers heat most efficiently to materials with high conductivity.

Leakage current is another important parameter for MIM capacitors. As shown by Fig. 4a, the leakage current curve can be divided into two sections for all the samples since there is an obvious turning point, indicating different electron conduction mechanisms. For the samples with MWA processing, the voltage corresponding to the turning point is smaller compared with the as-deposited sample. Table 1 lists the leakage current density at ± 4 V for all the samples. Take 4 V for example, the leakage current density is increased from 1.06×10^{-7} to 1.92×10^{-5} A/cm², i.e., two orders of amplitude enhanced when the microwave power is augmented from 0 to 1400 W. Due to a high crystallization of the ZrO₂ film, a large number of grain boundaries will appear and serve as the leaky path, thus
enhancing the electron conduction under a high electric field. However, considering a working voltage of 2 V, the leakage current densities are 1.23×10^{-8} and 1.36×10^{-8} A/cm2 for as-deposited sample and 1400 W sample, respectively. Obviously, the microwave annealing has little effect on the leakage performance under a low electric field. Furthermore, the breakdown voltage was extracted from the $I-V$ test and plotted in Fig. 4b. For the as-deposited sample, the breakdown voltage is about 9.8 V at a 50% cumulative probability. With the application of MWA, the breakdown voltage is reduced to ~ 9 V. This reduction of breakdown voltage could be related to the change of ZrO$_2$ microstructure.

In order to further understand the effect of MWA on the leakage current, the conduction mechanisms of the MIM capacitors are investigated. Based on the previous research on Al$_2$O$_3$ (2 nm)/ZrO$_2$ (20 nm)-based MIM capacitor [13, 14], the dominant conduction mechanism in a high electric field was confirmed as field-assisted tunneling (FAT). For FAT which is trap-related tunneling, electrons are captured by the traps in the insulator firstly and then tunnel to the conduction band of the insulator directly [37]. In the current work, the Al$_2$O$_3$ and ZrO$_2$ films in the A/Z/A-based MIM capacitors were deposited by the same conditions, so the leakage current is probably predominant by FAT as well. The FAT model can be expressed by Eq. (1) [37]

$$J = AE^2 \exp \left(-\frac{8n \sqrt{2m^*q\phi t^3}}{3hE} \right)$$

where A is a constant, E is the electric field, q is the electronic charge, m^* represents the effective electron mass (about 0.25 m_0, where m_0 is the free electron mass), k is the Boltzmann constant, ϕt is the energy barrier separating traps from the conduction band, and h is the Planck’s constant.

In terms of the stacked dielectrics, the electric field applied to each layer differs from each other because of different permittivity and thickness. Hence, using the average electric field across the entire stack will bring about severe errors while discussing the conduction mechanism. As a consequence, the electric field across the ZrO$_2$ layer must be extracted accurately. The electric fields across ZrO$_2$ are $3.125 \times 10^7 \times V_{\text{stack}}$, $2.5 \times 10^7 \times V_{\text{stack}}$, $2.47 \times 10^7 \times V_{\text{stack}}$, and $2.44 \times 10^7 \times V_{\text{stack}}$ respectively for as-deposited, 700 W, 1050 W, and 1400 W sample according to the Gauss law and Kirchhoff voltage law [38, 39]:

$$k_A E_A = k_Z E_Z$$

$$d_A E_A + d_Z E_Z = V_{\text{stack}}$$

where k_A and k_Z represent the dielectric constants of Al$_2$O$_3$ and ZrO$_2$, respectively; E_A and E_Z denote the electric fields across Al$_2$O$_3$ and ZrO$_2$, respectively; d_A and d_Z equal the thicknesses of Al$_2$O$_3$ and ZrO$_2$, respectively; and V_{stack} is the voltage applied to the stack. Accordingly, $\ln (J/E^2)$ versus $1/E$ was arbitrarily plotted in Fig. 5, where a straight line fitting was achieved in the high field region for each sample under electron bottom-injection (see Fig. 5a) or electron top-injection (see Fig. 5b). This means that the FAT mechanism is dominated at high electric fields. The extracted ϕt is 0.73, 0.51, 0.38, and 0.35 eV respectively for as-deposited, 700 W, 1050 W, and 1400 W sample under electron bottom-injection. In terms of electron top-injection, the corresponding ϕt is 0.82, 0.53, 0.47, and 0.43 eV, respectively. Therefore, some shallow traps are induced by MWA. The shallow traps are reported to arise from the grain boundary defects that can introduce additional electronic states near the conduction band [40]. In addition, the conduction mechanism at low fields is most likely trap-assisted tunneling (TAT).

Table 1 The leakage current density (J) at ±4 V for all the samples

Sample	As-deposited	700 W	1050 W	1400 W
$J_{@4V}$ (A/cm2)	1.06 × 10^{-7}	6.68 × 10^{-7}	7.63 × 10^{-5}	1.92 × 10^{-5}
$J_{@-4V}$ (A/cm2)	3.41 × 10^{-8}	3.30 × 10^{-7}	1.20 × 10^{-5}	3.48 × 10^{-6}

![Fig. 5](image.png) The plot of $\ln (J/E^2)$ vs $1/E$ for different samples. a Electron bottom-injection and b electron top-injection
Conclusions

Atomic layer-deposited $\text{Al}_2\text{O}_3/\text{ZrO}_2/\text{Al}_2\text{O}_3$ nano-stack is used as the insulator of the MIM capacitors. With the effect of MWA at 1400 W for 5 min, the capacitance density is increased to 9.06 fF/μm², approximately 23.4% of capacitance enhanced. Decoupling the influence of Al_2O_3, the dielectric constant is deduced as 41.9 for 1400 W sample (~40% of permittivity increased). Such enhancement of the permittivity is originated from a high crystallization of the ZrO₂ film. In addition, the substrate temperature is lower than 400 °C, which enables MWA compatible with the BEOL process. This lower substrate temperature can be attributed to the selective heating on the materials of MWA. In terms of a working voltage of 2 V, the leakage current densities are 1.23×10^{-8} and 1.36×10^{-8} A/cm² for as-deposited sample and 1400 W sample, respectively. The dominated conduction mechanism in the high electric fields is confirmed as a FAT process. The leakage current in the low electric fields is likely dictated by TAT. Based on the above facts, the microwave annealing is a promising technique used in the CMOS process to enhance the dielectric performance of the MIM capacitors.

Abbreviations

A/Z/A: $\text{Al}_2\text{O}_3/\text{ZrO}_2/\text{Al}_2\text{O}_3$; ALD: Atomic layer deposition; BEOL: Back end of line; C-V: Capacitance-voltage; DRAM: Dynamic random access memory; FAT: Field assisted tunneling; ITRS: International Technology Roadmap for Semiconductors; I-V: Current-voltage; MIM: Metal-insulator-metal; MWA: Microwave annealing; PECVD: Plasma enhanced chemical vapor deposition; RF: Radio frequency; RTA: Rapid thermal annealing; TAT: Trap-assisted tunneling; TEM: Transmission electron microscope

Acknowledgements

There is no acknowledgement.

Funding

This work was supported by the National Key Technologies R&D Program of China (2015Z202102-003), the National Natural Science Foundation of China (1614740172) and the Project funded by China Postdoctoral Science Foundation.

Availability of Data and Materials

All datasets are presented in the main paper and freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

Authors’ Contributions

BZ carried out the main part of fabrication and analytical works. XW and WIL participated in the sequence alignment and drafted the manuscript. SJD, DWZ, and ZF conceived the study and participated in its design. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
24. Woo JC, Chun YS, Joo YH et al (2012) Low leakage current in metal-insulator-metal capacitors of structural Al$_2$O$_3$/TiO$_2$/Al$_2$O$_3$ dielectrics. Appl Phys Lett 100:081101
25. Zhao X, Vanderbilt D (2001) Phonons and lattice dielectric properties of zirconia. Phys Rev B 65:075105
26. Zhao Z, Theodore ND, Vemuri RNP et al (2013) Effective dopant activation via low temperature microwave annealing of ion implanted silicon. Appl Phys Lett 103:192103
27. Xu P, Fu C, Hu C et al (2013) Ultra-shallow junctions formed using microwave annealing. Appl Phys Lett 102:122114
28. Hou FJ, Sung PJ, Hsieh FK et al (2016) 32-nm multigate Si-nTFET with microwave-annealed abrupt junction. IEEE T Electron Dev 63:1808–1813
29. Hu C, Xu P, Fu C et al (2012) Characterization of Ni(Si,Ge) films on epitaxial SiGe(100) formed by microwave annealing. Appl Phys Lett 101:092101
30. Wu CT, Lee YJ, Hsieh FK et al (2014) Characterization of ultra-thin Ni silicide film by two-step low temperature microwave anneal. ECS J Solid State Sci 3:122–125
31. Shih TL, Su YH, Kuo TC et al (2017) Effect of microwave annealing on electrical characteristics of TiN/Al/TiN/HfO$_2$/Si MOS capacitors. Appl Phys Lett 111:012101
32. Tsai CY, Chiang KC, Lin SH (2010) Improved capacitance density and reliability of high-κ Ni/ZrO$_2$/TiN MIM capacitors using laser-annealing technique. IEEE Electr Device L 31:749–751
33. Monaghan S, Chenkaoui K, O’Connor E (2009) TiN/ZrO$_2$/Ti/Al metal-insulator-metal capacitors with subnanometer CET using ALD-deposited ZrO$_2$ for DRAM applications. IEEE Electr Device L 30:219–221
34. Farcy A, Carpentier JF, Thomas M et al (2008) Integration of high performance RF passive modules (MIM capacitors and inductors) in advanced BEOL. Microelectron Eng 85:1940–1946
35. Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Compos Part A-Appl S 30:1055–1071
36. Fu C, Wang Y, Xu P et al (2017) Understanding the microwave annealing of silicon. AIP Adv 7:033521
37. Lim KY, Park DG, Cho HU et al (2002) Electrical characteristics and thermal stability of n$^+$ polycrystalline-Si/ZrO$_2$/SiO$_2$/Si metal-oxide-semiconductor capacitors. J Appl Phys 91:414–419
38. Chaneliere C, Autran JL, Devine RAB (1999) Conduction mechanisms in Ta$_2$O$_5$/SiO$_2$ and Ta$_2$O$_5$/Si$_3$N$_4$ stacked structures on Si. J Appl Phys 86:480–486
39. Mahapatra R, Chakraborty AK, Poolamai N et al (2007) Leakage current and charge trapping behavior in TiO$_2$/SiO$_2$ high-κ gate dielectric stack on 4H-SiC substrate. J Vac Sci Technol B 25:217–223
40. McKenna K, Shluger A, Iglesias V et al (2011) Grain boundary mediated leakage current in polycrystalline HfO$_2$ films. Microelectron Eng 88:1272–1275