breakthrough COVID-19 infection observed here occurred very shortly after booster vaccination. Consequently, we can only speculate that an immune response of massively increased magnitude was the cause for the dramatic clinical picture observed in the present patient, possibly with a genetic predisposition for PRP.

The pathophysiologic link between psoriasis and PRP suggests that interleukin 23 (IL-23)-directed treatment regimens, which are very successfully used for psoriasis patients, might be beneficial for patients with PRP as well. Indeed, NF-κB signalling has been shown to be upregulated in the skin of patients with PRP and CARD14 mutations. Thus, elevated NF-κB activity leads to the production of IL-23 by dendritic cells which contribute to the maintenance of the chronic inflammatory loop in psoriasiform diseases such as PRP.\(^{9,10}\)

Conclusively, we report the first case of severe and recalcitrant PRP in close association with COVID-19 infection observed here occurred very shortly after booster vaccination. Consequently, we can only speculate that an immune response of massively increased magnitude was the cause for the dramatic clinical picture observed in the present patient, possibly with a genetic predisposition for PRP.

Acknowledgement

We thank the patient for providing informed consent for the publication of his case details and images.

Funding sources

None.

Conflict of interest

None declared.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Figure 2 Histological examination of a skin biopsy: hyperkeratosis alternating with parakeratosis and orthokeratosis, acanthosis with broad rete ridges, areas of hypergranulosis and mild paravascular inflammatory infiltrates in the dermis.

References

1. Lladó I, Butrón B, Sampedro-Ruíz R, Fraga J, de Argila D. Pityriasis rubra pilaris after Vaxzevria® COVID-19 vaccine. *Eur Acad Dermatol Venereol* 2021; 35: e833–e835.
2. Nagai H, Jimbo H, Matsuura S, Tatsuoka S, Shiraki E, Nishigori C. Successful treatment of pityriasis rubra pilaris with guselkumab: serum CCL20 as a potential marker for the disease activity. *Dermatol Ther* 2020; 33: e14403.
3. Craiglow BG, Boyden LM, Hu R, Vrantonen M et al. CARD14-associated papulosquamous eruption: a spectrum including features of psoriasis and pityriasis rubra pilaris. *Am J Dermatol* 2018; 79: 487–494.
4. Wang D, Chong VC, Chong WS, Oon HH. A review on pityriasis rubra pilaris. *Am J Clin Dermatol* 2018; 19: 377–390.
5. Hunjan MK, Roberts C, Karim S, Hague J. Pityriasis rubra pilaris-like eruption following administration of the BNT162b2 (Pfizer-BioNTech) mRNA COVID-19 vaccine. *Clin Exp Dermatol* 2022; 47: 188–190.
6. Aguilar-Gamboa FR, Cubas-Alarcon D, Villegas-Chiroque M, Failoc-Rojas VE. Pityriasis rubra pilaris post-infection due COVID-19: case report. *Colomb Med (Cali)* 2021; 52: e7014577.
7. Gambichler T, Boms S, Susok L et al. Cutaneous findings following COVID-19 vaccination: review of world literature and own experience. *Eur Acad Dermatol Venereol* 2022; 36:172–180.
8. Israel L, Mellett M. Clinical and genetic heterogeneity of CARD14 mutations in psoriatic skin disease. *Front Immunol* 2018; 9: 2239.
9. Tan SW, Tam YC, Oh CC. Skin manifestations of COVID-19: a worldwide review. *J Am Acad Dermatol* 2021; 84: 119–133.
10. Langley RG, Tsai TF, Flavin S et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: results of the randomized, double-blind, phase III NAVIGATE trial. *Br J Dermatol* 2018; 178: 114–123.

DOI: 10.1111/jdv.18214

Complete remission of primary cutaneous follicle centre cell lymphoma associated with COVID-19 vaccine

Editor,

Primary cutaneous B-cell lymphomas (PCBCL) are non-Hodgkin B-cell lymphomas that are present in the skin with no evidence of extracutaneous involvement at the time of the diagnosis.\(^1\) According to the current World Health Organization classification, primary cutaneous follicle centre cell lymphoma is a subgroup of PCBCL that has a favourable prognosis compared to the other variants.\(^2\) Its treatment depends on the extent of the disease and includes surgery, radiotherapy, and various immunotherapies, mainly introduced intralesionally.

JEADV 2022, 36, e661–e740

© 2022 European Academy of Dermatology and Venereology.
In this context, we report the case of a 63-year-old male with no previous medical history, who was presented with a large multi-nodular tumour extending to the forelock, mid-scalp, and vertex (Fig. 1a). The patient consulted a general surgeon who performed a skin biopsy. The histological (Fig. 1b-1, b-2) and immunohistochemical appearance (Fig. 1b-3, b-4, b-5 and b-6) were in favour of a primary cutaneous follicle centre B-cell lymphoma (a lymphoid proliferation in the dermis arranged in a follicular pattern with antibodies anti-CD20+, anti-CD10+, anti-Bcl6+, anti-CD30-, anti-CD38-, and anti-Bcl2– with weak labelling of tumour cells by anti-Ki67 antibodies). Then, the patient was referred to our department. Two months following the biopsy, he received his first dose of anti-SARS-Cov2 vaccine from Oxford-AstraZeneca, and had unexpectedly presented a spectacular tumour remission, with the persistence of non-infiltrated erythema in the mid-scalp (Fig. 1c). The patient’s follow-up after the second dose of the anti-SARS-COV2 vaccine showed a greater reduction of residual erythema. The second skin biopsy performed in the residual erythema area showed fibrous scar tissue without lymphomatous cells (Fig. 1d). The complete blood cell count, the lactate dehydrogenase, and the bone marrow biopsy were all normal, and the Borreliosis serology test was negative. However, no immunoglobulin heavy chain gene analysis was done, as it is not available in our country.

As part of the extension assessment and to exclude a secondary cutaneous localization of a lymph node lymphoma – a cervical, thoracoabdominal, and pelvic computed tomography scan was performed, showing lobar reticulo-micronodular infiltrate without other suspicious lesions. Bronchoscopy with biopsy was performed, but no neoplastic cells were found. Furthermore, a positron emission tomographyscan showed no sites of visceral or lymph node hypermetabolic activity. No tumour recurrence was detected after 6-month follow-up.

Complete remission of lymphoma has been reported following different factors, such as bacterial infections or surgical trauma. However, in our case, the chronology of the biopsy performance and the first dose of vaccine in relation to the tumour regression indicate that the vaccine is more likely to be incriminated.

During the COVID-19 outbreak, a few cases of remission of lymphomatous processes were recorded following COVID-19 infection. Federico Pasin et al. reported a case of a transient...
remission of natural killer (NK) lymphoma during COVID19 infection, with a relapse shortly after the patient’s recovery. This observation indicates the oncolytic effect of the virus, by inducing the release of a large amount of pro-inflammatory cytokines known as ‘Cytokinic storm’ that might exhibit an anti-tumour activity. Then, the second case of a 61-year-old man was reported by Sarah Challenor et al.6 show that he has diagnosed with stage IIIa Hodgkin Lymphoma. Yet, the presented clinical and scannographic tumour was decreased after 4 months following the COVID-19 infection.

Meanwhile, another case of a 61-year-old patient with follicular lymphoma showed complete remission after COVID-19 infection,7 supporting the hypothesis that SARS-COV2 infection triggers an immune response that induces a local flare phenomenon which was followed by the abscopal effect.

The AstraZeneca COVID-19 vaccine is understandably considered a replication-deficient simian adenovirus vector, and has a stimulating role in the immune system. It is used widely in several countries with rare adverse effects.8 It may stimulate an unspecific immune activation that induces tumour regression. This reaction is similar to the one induced by the BCG vaccine, particularly in the treatment of metastatic melanoma, as it activates the immune system and destroys the tumour cells.9

Finally, it is important to stress here that our case report is the first to describe a complete remission of follicular B-cell lymphoma after the COVID-19 vaccine, which is still maintained after a follow-up of 6 months. This report may lead to revolutionary advances in the pathophysiological understanding and treatment of lymphoma.

Conflicts of interest
None.

Funding sources
None.

Informed consent
The patients in this manuscript have given written informed consent to the publication of their case details.

Data availability statement
Data openly available in a public repository that issues datasets with DOIs.

S. Aouali,1,* M. Benkaraache,1 Y. Almheirat,1 N. Zizi,1,2 S. Dikhyae1,2

1Department of Dermatology, Mohammed the VIth University Hospital of Oujda, Oujda, Morocco, 2Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, Mohamed the First University of Oujda, Oujda, Morocco

*Correspondence: S. Aouali. E-mail: soraya.aouali@gmail.com

References
1 Willemze R, Jaffe ES, Burg G et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768–3785.
2 Vitello P, Sica A, Ronchi A, Caccavale S, Franco R, Argenziano G. Primar-rycutaneous B-celllymphomas: an update. Front Oncol 2020; 10: 651.
3 Buckner T, Dunphy C, Fedorow Y et al. Complete spontaneous remission of diffuse large B-cell lymphoma of the maxillary sinus after concurrent infections. Clin Lymphoma Myeloma Leuk 2012; 12: 455–458.
4 Aoki Y, Hasegawa S, Miyabe S, Nagao T. Spontaneous regression of malignant lymphoma of the maxillary gingiva following biopsy. Int J Oral Maxillofac Surg 2021.
5 Pasin F, Calveri MM, Pizzarelli G, et al. Oncolytic effect of SARS-CoV2 in a patient with NK lymphoma. Acta Bio Medica: Atenei Parmenisi 2020; 91: e2020047.
6 Challenor S, Tucker D. SARS-CoV-2-induced remission of Hodgkin lymphoma. Br J Haematol 2021; 192: 415.
7 Sollini M, Gelardi F, Carlo-Stella C, Chiti A. Complete remission of follicular lymphoma after SARS-CoV-2 infection: from the “flare phenomenon” to the “abscopal effect”. Eur J Nucl Med Mol Imaging 2021; 48: 1–3.
8 Knoll MD, Wonodi C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 2021; 397: 72–74.
9 Benitez MLR, Bender CR, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacteriumbovis BCG in metastatichemotherapy. Appliedmicrobiol Biotechnol 2019; 103: 7903–7916.

DOI: 10.1111/jdv.18246

Maskne prevalence and risk factors during the COVID-19 pandemic

Dear Editor,

From 2020 with the spreading of COVID-19 pandemic, mask usage has become mandatory for healthcare workers and patients in order to avoid virus transmission; maskne is a new coined term widely used to describe the form of mechanical acne resulting from the continuous adherence and friction of the mask to the face; to date, several dermatoses, including maskne, have already been reported in healthcare workers and patients.1 We read with great interest the article recently published by Kiely LF et al.2 who investigated the prevalence of acne related to prolonged mask wearing among the healthcare workers of three Irish university hospitals, and we also want to report our experience regarding the onset of maskne disease in patients attending our Department. A total of 384 patients (272 females and 112 males; median age 26.5) with a diagnosis of mechanical acne due to mask wearing attending our hospital from February 2021 to December 2021 were included in the study. Each patient was clinically evaluated and completed a questionnaire regarding the onset of acne, previous history of acne, the personal protective equipment (PPE) exposure, maskne development, and the use of contributing factors; most patients (70.8%) were females; 64 patients (16.6%) were aged 15–20 years, 232 (60.4%) were aged 21–30 years, 71 (18.5%) were...