Control of the \textit{C. albicans} Cell Wall Damage Response by Transcriptional Regulator Cas5

Vincent M. Bruno\textsuperscript{1}, Sergey Kalachikov\textsuperscript{2}, Ryan Subaran\textsuperscript{3}, Clarissa J. Nobile\textsuperscript{4}, Christos Kyrtasous\textsuperscript{3}, Aaron P. Mitchell\textsuperscript{1,3,4}\textsuperscript{*}

1 Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, New York, New York, United States of America, 2 Columbia Genome Center, Columbia University, New York, New York, United States of America, 3 Department of Microbiology, Columbia University, New York, New York, United States of America, 4 Biological Sciences Program, Columbia University, New York, New York, United States of America

The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast \textit{Saccharomyces cerevisiae}, where numerous cell wall integrity (CWI) genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen \textit{Candida albicans}. We have tested this hypothesis by using a new \textit{C. albicans} genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in \textit{S. cerevisiae}, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced \textit{C. albicans} genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in \textit{S. cerevisiae}, but promote its growth in caspofungin. We have used a new resource to identify a key \textit{C. albicans} transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.

Citation: Bruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyrtasous C, et al. (2006) Control of the \textit{C. albicans} cell wall damage response by transcriptional regulator Cas5. PLoS Pathog 2(3): e21.

Introduction

The cell wall is critical for the interaction of fungal cells with their environment. It provides a resilient framework that permits survival over a wide range of environmental conditions. It is also the point of contact between fungal cells and surfaces to which they may bind. As the determinant of fungal cell shape, it is modified during morphogenetic programs, including budding, mating, hypha production, sporulation, and host invasion by pathogens; genes specifying cell wall proteins and biogenesis enzymes are major targets of developmental regulatory pathways. As a distinguishing fungal structure, the cell wall is the target of natural antifungal metabolites and derivatives of growing therapeutic utility. Thus an understanding of the cell wall and its regulation is relevant to fungal ecology, development, and pathogenesis.

Our interest focuses on the cell wall of \textit{Candida albicans}, the major invasive fungal pathogen of humans. The \textit{C. albicans} cell wall is mainly composed of \(\beta\)-1,3-glucan and has significant content of \(\beta\)-1,6-glucan, chitin, and protein as well \cite{1,2}. Molecular studies have begun to dissect \textit{C. albicans} cell wall functions in adherence, nutrient acquisition, environmental adaptation, and morphogenetic programs. Such analyses have highlighted the role of cell wall functions in virulence \cite{3,4}. The \textit{C. albicans} cell wall is also of interest as the target of antifungal echinocandin drugs such as caspofungin. Caspofungin inhibits synthesis of \(\beta\)-1,3-glucan in both \textit{C. albicans} and in the budding yeast \textit{Saccharomyces cerevisiae} \cite{5}. As a consequence, it provokes a broad transcriptional response in both organisms \cite{6–8}. The response seems geared toward modification and repair of the cell wall, based primarily on the extensive study of gene function and regulatory relationships from \textit{S. cerevisiae}.

A major determinant of caspofungin sensitivity in \textit{S. cerevisiae} is the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway \cite{8–10}. This cascade receives numerous inputs from plasma membrane sensors and signaling molecules. These inputs converge upon G-protein ScRho1, which activates protein kinase ScPkc1. (We use the prefixes “Sc” and “Ca” to indicate \textit{S. cerevisiae} and \textit{C. albicans} gene products, respectively.) ScPkc1 in turn activates a MAPK cascade with both transcriptional and nontranscriptional outputs. The transcriptional output is mediated by two transcription factors, ScRlm1 and ScSwi4/6. ScRlm1 is a key activator of many cell wall protein genes and is required for resistance to numerous cell wall perturbing treatments and for activation of most known CWI pathway-responsive genes \cite{11,12}. ScSwi4/6 is known primarily as an activator of G1

Editor: Brendan Cormack, Johns Hopkins University, United States of America

Received September 2, 2005; Accepted January 31, 2006; Published March 17, 2006

DOI: 10.1371/journal.ppat.0020021

Copyright: © 2006 Bruno et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations: CWI, cell wall integrity; MAPK, mitogen-activated protein kinase

* To whom correspondence should be addressed. E-mail: apm4@columbia.edu
Synopsis

For microbial pathogens, the cell wall is critical for interaction with both host and environment. The major fungal pathogen, Candida albicans, has a cell wall that resembles that of the model yeast Saccharomyces cerevisiae, and much of what is known about C. albicans cell wall biogenesis and repair comes via extrapolation from S. cerevisiae. Here, Bruno and colleagues inquired directly into the mechanisms that C. albicans uses to respond to disruption of cell wall biogenesis by the antifungal drug caspofungin, using a genetic strategy newly developed for C. albicans. They found that the response itself has many similarities to that of S. cerevisiae, but the regulatory circuitry is distinct: the major C. albicans regulatory gene has no clear counterpart among S. cerevisiae genes. Their findings provide a new example of a unique C. albicans regulatory function and one that may prove useful in identifying new drugs and in understanding possible resistance mechanisms.

Results

Identification of Transcription Factor Mutants Hypersensitive to Cell Wall Perturbation

In order to identify C. albicans regulators of the cell wall damage response, we screened among mutants homozygous for insertions in 83 putative transcription factor genes [16] for altered growth on medium containing caspofungin. Mutants with insertions in any of five genes were hypersensitive to caspofungin, including CaCAS1, CaFGR15 (CaCAS2), CaADA2 (CaCAS3), CaCAS4, and CaCAS5. (The gene name CAS stands for caspofungin sensitivity.) We did not identify resistant mutants.

We took three steps to verify that these genes influence the sensitivity of C. albicans to caspofungin. First, we tested multiple isolates of each mutant where possible. These results confirmed the findings from the initial screen. Second, we created deletion mutants for each gene. We observed that CaCAS1Δ/Δ and CaGFR15Δ/Δ strains showed only marginal hypersensitivity to the drug. We were unable to create a CaCAS4Δ/Δ strain, nor were we able to create homozygous CaCas4::Tn7/CaCAS4::Tn7 insertion mutants with Tn7 insertions at codons 836, 842, 1163, and 1828. The viable CaCas4::Tn7/CaCas4::Tn7 mutant has an insertion near codon 2570, very close to the 3' end of the open reading frame (codon 2831). Thus we believe that CaCAS4 is an essential gene, as is its homolog ScTAO3 in some S. cerevisiae strains, and that the viable insertion mutant has a partial defect in CaCAS4 function. However, viable Caada2Δ/Δ and CaCas5Δ/Δ strains were constructed and showed significant hypersensitivity to caspofungin (Figure 1). The third verification step was to complement each hypersensitive deletion mutant by introduction of a wild-type copy of the corresponding gene. Complementation tests verified that Caada2Δ and CaCas5Δ mutations cause caspofungin hypersensitivity (Figure 1A, 1B, 1D, and 1E). Therefore, CaADA2 and CaCAS5 are required for normal growth of C. albicans in the presence of caspofungin, and the roles of CaCAS1, CaCAS2, and CaCAS4 may be minor or complex.

The transcription factor ScRlm1 plays a major role in the S. cerevisiae CWI pathway [9]. Thus we tested a C. albicans Carlm1Δ/Δ mutant and complemented derivative for sensitivity to caspofungin. We observed slight growth inhibition of the Carlm1Δ/Δ mutant on our typical caspofungin-containing medium (unpublished data) and a more severe growth defect at higher caspofungin concentrations (Figure 1C and 1F). Therefore, CaADA2 and CaCAS5 are required for normal growth of C. albicans in the presence of caspofungin. The mutants above may be hypersensitive only to caspofungin or may have a more global defect in cell wall structure or integrity. To distinguish between these explanations, we tested growth of the mutants on two additional cell wall perturbing compounds, Congo red and sodium dodecyl sulfate [17,18]. All three mutants were hypersensitive to Congo red (Figure 1G, 1H, and 1I), and the Caada2Δ/Δ and CaCas5Δ/Δ mutants were hypersensitive to sodium dodecyl sulfate (unpublished data). We conclude that Carlm1Δ, CaADA2, and CaCAS5 functions are not specific for interaction with caspofungin, but are required more generally for cell wall structure or integrity.

Transcriptional Response to Caspofungin

Carlm1Δ, CaADA2, and CaCAS5 specify putative transcription factors. Thus the mutant phenotypes arise as a consequence of altered gene expression. Because the mutant
phenotypes are apparent in the presence of caspofungin, we focused on caspofungin-responsive gene expression. Pilot microarray studies identified several caspofungin-induced genes, for which we then optimized induction conditions. We examined expression of six genes after an hour of drug treatment and found that 25 ng/ml caspofungin led to partial induction, whereas 125 and 625 ng/ml led to similar levels of induction (Figure 2). This analysis indicated that a 1 h incubation in 125 ng/ml caspofungin would be suitable to elicit some gene expression responses. As this concentration inhibits growth of all three mutants, it seemed reasonable for comparison of wild-type and mutant strains as well.

In order to identify caspofungin-responsive genes on a large scale, we conducted microarray comparisons of a wild-type reference strain (DAY185) with or without caspofungin treatment for 1 h (Figure 3; Dataset S1). Each mutant expressed several caspofungin-responsive genes at levels comparable to the reference strain (black rectangles in lanes of Figure 3), so that no mutant is completely defective in this gene expression response. This observation may indicate that the response to caspofungin integrates activities of several transcriptional regulatory pathways.

The Carlm1Δ/Δ mutant had a fairly mild gene expression alteration. It failed to fully express only four up-regulated genes (one of which was CaRLM1 itself) and overexpressed two additional up-regulated genes. Our dataset includes three
genes up-regulated by caspofungin whose S. cerevisiae homologs are activated by ScRlm1: CaCRH11, CaECM331, and CaDPFG5. CaECM331 and CaDPFG5 were expressed at similar levels in the wild-type reference strain and the Carlm1/Δ strain; CaCRH11 expression was reduced slightly in the mutant (Figure 3; Dataset S1). These observations suggest that a different transcription factor may have assumed the key functional role in CWI signaling in C. albicans.

The Caada2/Δ mutant had the most severe gene expression alteration. It failed to fully express 39 up-regulated genes; it overexpressed nine up-regulated genes; it failed to fully repress five down-regulated genes; and it hyperrepressed five down-regulated genes. The mutant also had altered expression of 180 genes that were not significantly responsive to caspofungin (Dataset S1). CaAda2 homologs in other eukaryotes have broad roles in gene expression as transcriptional coactivators [19]. The fact that the Caada2/Δ mutant has such a pleiotropic effect on gene expression fits well with the idea that C. albicans CaAda2 is a coactivator, functioning in diverse regulatory pathways.

The Casas5/Δ mutant also had severe gene expression defect. It failed to fully express 37 up-regulated genes and failed to repress nine down-regulated genes (Figure 3; Dataset S1). Noteworthy was its defect in expression of CaCRH11 and CaECM331, two caspofungin-induced homologs of ScRlm1-dependent genes, and seven other core caspofungin-inducible genes (Figure 3). Northern analysis confirmed its expression defect for core genes CaCRH11, CaECM331, and CaPGA13, as well as CaPGA23 and CaHAC1 (Figure 4). Because the mutant had altered expression of only 15 genes that were not significantly responsive to caspofungin (Dataset S1), Casas5 function seems to be substantially specific for cell wall damage-responsive gene expression.

### Discussion

#### Caspofungin-Responsive Gene Function in C. albicans

Our current understanding of fungal cell wall damage responses comes largely from studies in S. cerevisiae, an
essential point of comparison. We found 125 *C. albicans* caspofungin-responsive genes whose *S. cerevisiae* homologs were described in two studies of that organism’s response to caspofungin [6,8]. Only five homologs of genes up-regulated in our study were up-regulated in both *S. cerevisiae* studies: CaECM331/ScPST1, CaCRH11/ScCRH1, CaDFG5/ScDFG5, CaRLM1/ScRLM1, and CaGYP7/ScGYP7. The first three genes depend upon ScRlm1 for their expression in *S. cerevisiae* and encode inferred or proven GPI-linked cell surface proteins that have been implicated in cell wall biogenesis or repair [20–23]. CaRLM1/ScRLM1 governs cell wall functions in both organisms, as discussed below. Up-regulation of cell wall functions is also reflected in the core *C. albicans* responses (p = 7.95 × 10^{-11} for 9/25 *S. cerevisiae* homologs; http://db.yeastgenome.org/cgi-bin/GO/goTermFinder) and in our overall dataset. Thus both conserved and overall *C. albicans* caspofungin-induced genes have a close functional relationship to cell wall biogenesis or repair, as noted previously for *S. cerevisiae* [6,8].

The conserved up-regulation of CaGYP7/ScGYP7 may reflect the need for surface export functions during cell wall repair. ScGYP7 specifies the GTPase-activating protein for G-Protein ScYpt1, which promotes Golgi-to-vacuole transport [24]. Up-regulation of CaGyp7 may thus inhibit transport to the vacuole, perhaps favoring transport of material from the Golgi to the cell surface. Two prior findings with *S. cerevisiae* suggest that cell surface transport is limiting for cell wall repair: overexpression of Golgi-to-cell surface transport stimulator ScSBE2 confers resistance to caspofungin [25], and defects in secretion cause hypersensitivity to caspofungin [10]. Among our overall set of caspofungin-induced *C. albicans* genes, there is a clear representation of cytoplasmic vesicle or organelle lumen functions (p = 2.47 × 10^{-5} for 4/108 *S. cerevisiae* homologs or 0.01588 for 6/144 *C. albicans* genes; http://www.candidagenome.org/cgi-bin/GO/goTermFinder). Noteworthy also is up-regulation of CaHAC1 (Figure 4); its homolog ScHAC1 specifies the transcriptional activator of the unfolded protein response, an endoplasmic reticulum stress-response pathway [26,27]. However, secretion functions are not represented among caspofungin-induced *S. cerevisiae* genes [6,8]; instead, they are down-regulated in one set of experiments (p = 0.00791 for 3/135 genes [8]). The symmetry between the genes induced in *C. albicans* and those required in *S. cerevisiae* in the presence of caspofungin illustrates that divergent gene expression responses may highlight conserved functional relationships.

There is only one homolog pair whose down-regulation after caspofungin treatment is conserved: CaHAS1/ScHAS1. ScHas1 is a putative helicase required for tRNA processing and ribosome biogenesis, and its expression is down-regulated in response to numerous environmental stresses [28]. Down-regulation of ribosome biogenesis functions is also reflected in our overall dataset (p = 0.00576 for 6/42 *C. albicans* genes). This response to caspofungin may reflect a coupling between cell wall biogenesis and overall cell growth.

Role of CaRlm1 in CWI

Our analysis of CaRLM1 here was motivated by a candidate-gene approach, based on the central role of ScRlm1 in the *S. cerevisiae* CWI pathway. This role is emphasized by the fact that CaRLM1 expression is induced by caspofungin in both *C. albicans* and *S. cerevisiae*. The drug hypersensitivity of the *C. albicans* Carlm1ΔΔ mutant reported here implicates CaRlm1 in the *C. albicans* cell wall damage response, thus arguing that its biological function is conserved.

Although conservation of CaRlm1 biological function is expected, the fact that we found so few CaRlm1-dependent genes seems surprising. The major caspofungin-inducible Rlm1-dependent gene we detected was CaPGA13 (orf19.6420), a gene in the core set that specifies a predicted GPI-linked cell wall protein without close homologs. It is possible that CaPga13 is required for *C. albicans* cell wall repair. We also detected partial CaRlm1-dependence of CaCRH11, a result that has been confirmed by Northern analysis (unpublished results). Thus there may be only two cell wall-related targets of CaRlm1. A second possibility is that CaRlm1-dependent genes are induced only at earlier or later time points than we have examined here.

Role of CaAda2 in CWI

CaAda2 homologs are subunits of transcriptional coactivator complexes that are recruited by site-specific DNA binding proteins such as ScGcn4 and ScGal4 to activate transcription [29]. Our microarray results are consistent with the hypothesis that *C. albicans* CaAda2 functions in conjunction with many different regulators, because CaAda2-responsive genes are more numerous than CaRlm1- or CaCas5-responsive genes and extend well beyond the set of caspofungin-responsive genes.

There is a substantial effect of the Caada2ΔΔΔ mutation on caspofungin-responsive genes. These results may be explained by either indirect or direct roles of CaAda2 in this response. One hypothetical indirect role is that CaAda2 may be required for expression of genes that are in turn required for caspofungin-induced gene expression. The fact that CaAda2-responsive genes are so numerous makes this explanation difficult to test. A hypothetical direct role of CaAda2 is that it may be recruited to caspofungin-induced gene regulatory regions through interaction with a site-specific DNA binding protein, where it participates directly in their transcriptional activation. Given that 25 of the 30 most highly CaCas5-dependent genes are also CaAda2-dependent, this explanation predicts that CaCas5 may activate transcription through recruitment of CaAda2. One prediction of this hypothesis is that a double Caada2ΔΔΔ Caacas5ΔΔ mutant should have the same phenotype as one or the other single mutant. We have been unable to construct the double mutant with methods that are routinely successful in this lab, and it is possible that the two mutations are synthetically lethal. Thus a critical test of this hypothesis will require other strategies.

Role of CaCas5 in CWI

CaCas5 has a major role in the *C. albicans* cell wall damage response. Among the mutants we have screened, it is the most sensitive to both caspofungin and Congo red. It is required for full expression of 15 of the 30 genes most highly induced by caspofungin, and nine genes in the *C. albicans* core set. Noteworthy among these are CaECM331 and CaCRH11, whose *S. cerevisiae* homologs are ScRlm1-dependent. In general, the major class of caspofungin-induced CaCas5-dependent genes include cell wall functions (p = 1.75 × 10^{-5}
for \textit{S. cerevisiae} homologs; 5/22 genes). Thus \textit{C. albicans} CaCas5 may be the functional equivalent of \textit{S. cerevisiae} ScRlm1.

The closest \textit{S. cerevisiae} homolog of CaCas5 is ScMig2, a repressor of glucose-repressible genes. However, the \textit{C. albicans} orf19.5326 product, rather than CaCas5, appears to be the ScMig2 ortholog. There are now several examples of novel transcriptional regulators in \textit{C. albicans} with key biological functions, as well as conserved transcriptional regulators with divergent functions in \textit{C. albicans} and \textit{S. cerevisiae} [16,30–35]. These two considerations—functionally divergent homologs and unique key regulators—underscore the importance of analyzing \textit{C. albicans} gene function de novo, rather than relying solely upon inferences from \textit{S. cerevisiae}.

Similarity of CaCas5 and ScMig2 is confined to their two C-terminal zinc fingers, but the degree of similarity (51\% identity) does not provide confidence that Cas5 binds to the Mig2 consensus binding site. ATAAAATGCGGGGAA [36]. We have used MEME analysis (http://meme.sdsc.edu/meme/website/intro.html [37]) of CaCas5-responsive gene 5’ regions to look for motifs that may represent a CaCas5-responsive site or CaCas5 binding site. We focused on 999 base pairs of 5’ sequence from the 13 top CaCas5-dependent genes. One motif, WTGWTWGTWGTWKSARG (motif 1), was found in ten of the 13 promoter regions, including four core genes (Figure 3; Protocol S1; Figure S1). The site seems credible because its length is similar to that of the ScMig2 binding site (19 and 17 bp, respectively) and because the best matches are found among the more highly CaCas5-dependent genes. A second shorter motif, GTGGYSYKGKKG (motif 5), was found among nine promoter regions, including five core genes (Figure 3). Our working hypothesis is that one of these sequences may be a CaCas5 binding site.

Our findings provide some insight into the relationships among CaCas5, its target genes, and the role of CaCas5 in the cell wall damage response. They also raise the question of whether and how CaCas5 responds to cell wall damage. The simplest possibility is that CaCas5 is a target of the protein kinase C–MAPK pathway. The \textit{C. albicans} MAPK of this pathway, CaMkk1, clearly functions in cell wall damage responses [13,14]. Our preliminary results indicate that CaMkk1, the MAPKKK homolog CaBck1, and the MAPKK homolog CaMkk2 are required for growth in the presence of caspofungin, in keeping with this model. A second consideration is that CaCas5 is the target of a different pathway that responds to cell wall damage. There are several good candidates—the calcineurin or high-osmolality pathways, for example—based on studies in \textit{S. cerevisiae} [9]. It is also possible that CaCas5 functions in a novel \textit{C. albicans} pathway. We anticipate that these many possibilities may be addressed by screening \textit{C. albicans} mutants defective in other kinds of gene products, such as protein kinases or membrane proteins, for defects that might be expected from altered CaCas5 activity.

### Materials and Methods

\textbf{Media and chemicals.} \textit{C. albicans} strains were routinely passaged in YPD plus uridine (2% dextrose, 2% Bacto Peptone, 1% yeast extract, and 80 mg/l uridine) at 30 °C. Following transformation, selection was accomplished on synthetic medium (2% dextrose, 6.7% yeast nitrogen base (YNB) plus ammonium sulfate, and the necessary auxotrophic supplements). Caspofungin was a generous gift from Merck.

\textbf{Yeast strains and DNA manipulations.} All strains used in this study were derived from strain BWP17 (genotype: \textit{ura3Δ::λimm434 his1::hisG1Δ1his6 arg4::hisG1::hisG} [38]) through standard transformation methods [38]. Details of these manipulations and complete genotypes are given in Protocol S1, Table S1, and Table S2. The transcription factor mutant collection has been described [16].

\textbf{Caspofungin susceptibility tests.} Single colonies were inoculated into 3 ml of YPD and grown overnight at 30 °C. These overnight cultures were then diluted in YPD to an OD\textsubscript{600} of 3.0, which was used as a starting point for 5-fold serial dilutions in YPD. 3 μl of each serial dilution, beginning with the OD\textsubscript{600} = 3.0 dilution, was spotted onto the appropriate plates, allowed to dry, and incubated at 30 °C. The plates were photographed after 1 or 2 d of growth.

\textbf{Gene expression measurements and microarray data analysis.} Single colonies were inoculated into 3 ml of YPD and grown overnight at 30 °C. Each overnight culture was used to inoculate 200 ml of YPD to an OD\textsubscript{600} of 0.1, which was then incubated at 30 °C with shaking for 2-3 doublings. At this point the cultures were divided into two 100-ml cultures. To one of the cultures, caspofungin (diluted in dH\textsubscript{2}O) was added to a final concentration of 125 μg/ml. To the other culture an equal volume of dH\textsubscript{2}O was added. The cultures were then incubated with shaking at 30 °C for 1 h, at which point they were harvested by vacuum filtration and stored at −80 °C. RNA isolation, microarray analysis, and Northern analysis were performed as previously described [16]. Microarray slides were scanned using ScanArray Express microarray scanner (PerkinElmer, Wellesley, California, United States), and the signal intensities were extracted with GenePix Pro 4.1 software (Axon Instruments, Union City, California, United States). Raw signal intensities were corrected for dye labeling effects within and between all slides using the normalizloess R-function [39] implemented in an 	extit{affy} microarray analysis package [40]. The resulting data were imported into the Spotfire DecisionSite for Functional Genomics software suite (Spotfire, Somerville, Massachusetts, United States) and filtered according to the GenePix quality scores above 0 and signal-to-noise ratio above 2.

The \textit{p}-values for differentially expressed genes between the compared strains were subsequently calculated and further adjusted for type I error with Bonferroni’s transformation using BioConductor multtest R-package [41] (see http://cran.r-project.org/doc/packages/multtest.pdf). The results of this analysis with adjusted \textit{p}-values below 0.05 and absolute fold changes above 2 are listed in Dataset S1. All told, we compared three hybridizations with untreated wild-type cell samples and 12 hybridizations with drug-treated wild-type cell samples to identify caspofungin-responsive genes. We compared three hybridizations of drug-treated mutant cells to drug-treated wild-type cells to identify dependent genes for each mutant. RNA for each sample came from an independent culture.

### Supporting Information

\textbf{Dataset S1.} Microarray Analysis of Caspofungin-Responsive Gene Expression

These data compare the wild-type plus and minus treatment, the wild-type to each mutant, and our data to related published \textit{S. cerevisiae} and \textit{C. albicans} data. Found at DOI: 10.1371/journal.ppat.0020021.sd001 (6.1 MB XLS).

\textbf{Figure S1.} MEME Analysis Results

This figure shows the results of 5’ region MEME analysis. Found at DOI: 10.1371/journal.ppat.0020021.sg001 (515 KB DOC).

\textbf{Protocol S1.} Supplementary Methods

Found at DOI: 10.1371/journal.ppat.0020021.s002 (58 KB DOC).

\textbf{Table S1.} Oligonucleotide Sequences

Found at DOI: 10.1371/journal.ppat.0020021.s001 (48 KB DOC).

\textbf{Table S2.} Complete Genotypes of \textit{C. albicans} Strains

Found at DOI: 10.1371/journal.ppat.0020021.s002 (57 KB DOC).

\textbf{Accession Numbers}

Data for the following genes and mutant alleles (with systematic names in parentheses) are deposited in the \textit{Candida} Genome Database (http://www.candidagenome.org): \textit{CaCas1} (orf19.1115), \textit{CaFGR15} or \textit{CaCAS2} (orf19.2054), \textit{CaADA2} or \textit{CaCAS3} (orf19.2351), \textit{CaCAS4} (orf19.9261), \textit{CaCAS5} (orf19.4670), \textit{CaRLM1} (orf19.4662), and \textit{CaGA13} (orf19.6120).
Acknowledgments

We are grateful for the availability of the *C. albicans* genome sequence provided by the Stanford DNA Sequencing and Technology Center, as well as CandidaDB and the *Candida* Genome Database. We thank members of our laboratory for advice and discussions, Omar Antar for his help with initial aspects of this work, and Joe Heitman for providing glass slide arrays. We are especially grateful to Merck for the gift of caspofungin and to Cameron Douglas and Jennifer Nielsen Kahn for their interest and encouragement.

References

1. De Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42: 657–675.
2. Masuoka J (2004) Surface glycans of *Candida albicans* and other pathogenic fungi: Physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 17: 281–310.
3. Navarro-Garcia F, Sanchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast *Candida albicans*. FEMS Microbiol Rev 25: 245–268.
4. Sundstrom P (2002) Adhesion in *Candida* spp. Cell Microbiol 4: 461–469.
5. Letscher-Bru V, Herbrecht R (2003) Caspofungin: The first representative of a new antifungal class. J Antimicrob Chemother 51: 515–521.
6. Agarwal AK, Rodgers PD, Baeren SR, Jacob MR, Barker KS, et al. (2003) Genome-wide expression profiling of the response to polylene, pyrimidine, azole, and echinocandin antifungal agents in *Saccharomyces cerevisiae*. J Biol Chem 278: 34998–35013.
7. Liu TT, Lee RE, Barker KS, Lee RE, Wei L, et al. (2005) Genome-wide expression profiling of the response to azole, polylene, echinocandin, and pyrimidine antifungal agents in *Candida albicans*. Antimicrob Agents Chemother 49: 2226–2236.
8. Reinoso-Martin C, Schuller C, Schuetzer-Muehlbauer M, Kuchler K (2003) The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eur J Cell Biol 82: 1280–1291.
9. Levin DE (2005) Cell wall integrity signaling in *Saccharomyces cerevisiae*. Microbiol Mol Biol Rev 69: 262–291.
10. Lesage G, Sdicu AM, Menard P, Shapiro J, Hussen S, et al. (2004) Analysis of beta-1,3-glucan assembly in *Saccharomyces cerevisiae* using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167: 35–49.
11. Jung US, Levin DE (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34: 1049–1057.
12. Jung US, Soehring AK, Romeo MJ, Levin DE (2002) Regulation of the yeast Rhl1 transcription factor by the Mpk1 cell integrity MAP kinase. Mol Microbiol 46: 761–789.
13. Navarro-Garcia F, Alonso-Monge R, Rico H, Pla J, Sentandreu R, et al. (1998) A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in *Candida albicans*. Microbiology 144 (Pt 2): 411–424.
14. Navarro-Garcia F, Eisman B, Roman E, Nombela C, Pla J (2001) Signal transduction pathways and cell-wall construction in *Candida albicans*. Med Mycol 39 (Suppl 1): 87–100.
15. Paravici C, Mendoza A, Antonsson B, Cooper M, Losberger C, et al. (1996) The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism. Yeast 12: 741–756.
16. Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the *C. albicans* transcription factor Bcr1p. Curr Biol 15: 1150–1155.
17. Page N, Gerard-Vincent M, Menard P, Beaulieu M, Azuma M, et al. (2003) A *Saccharomyces cerevisiae* genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 163: 875–894.
18. Roncero C, Duran A (1985) Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: In vivo activation of chitin polymerization. J Bacteriol 163: 1180–1185.
19. Timmers HT, Terra L (2005) SAGA unveils. Trends Biochem Sci 30: 7–10.
20. Pardo M, Monteoliva L, Vazquez P, Martinez R, Molerio G, et al. (2004) PST1 and ECM35 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology 150: 4135–4147.
21. Spreghini E, Davis DA, Subaran R, Kim M, Mitchell AP (2003) Roles of *Candida albicans* Drg5p and Dwp1p cell surface proteins in growth and hypha formation. Eurakroy Cell 2: 746–755.

Author contributions. VMB, RS, and APC conceived and designed the experiments. VMB, RS, CJN, and CK performed the experiments. VMB, SK, CJN, and APM analyzed the data. VMB and CJN contributed reagents/materials/analysis tools. VMB, SK, RJ, CJN, and APM wrote the paper.

Funding. This study was supported by National Institutes of Health grants R01AI050951, R21AI053823, and T32AI07161.

Competing interests. The authors have received funds from Merck, the manufacturer of caspofungin.