Objective. To study the regional cerebral blood flow (rCBF) in important brain functional areas and the metabolic levels of these brain functional areas in patients with primary hypothyroidism by using arterial spin labeling (ASL) and magnetic resonance spectroscopy (MRS) techniques to explain the possible causes of brain dysfunction in patients with primary hypothyroidism.

Methods. Twenty-five patients with primary hypothyroidism (newly diagnosed and not treated) who were treated in the endocrinology department of our hospital were selected as the research group, and 25 healthy patients with normal thyroid function who came to our hospital during the same period with matched gender and age were selected as the control group. ASL and MRS techniques were used to detect and calculate regional cerebral blood flow (rCBF) in the frontal lobe, hippocampus, and posterior cingulate gyrus, as well as N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho) in the brain/Cr, and inositol/creatine (mI/Cr) ratio. The correlations between metabolite ratios measured by rCBF, MRS, and serum TSH, FT3, and FT4 levels were analyzed.

Results. Compared with the control group, the rCBF in the frontal lobe, hippocampus, and posterior cingulate gyrus of the dominant hemisphere of the hypothyroid patients in the study group decreased significantly \((P<0.05)\). The comparison of metabolite ratios showed that compared with the control group, the NAA/Cr ratio of the frontal lobe and posterior cingulate gyrus of the study group was significantly decreased, and the Cho/Cr ratio of the posterior cingulate gyrus of the study group was significantly increased. The MI/Cr ratio of the hippocampus was significantly decreased (all \(P\) values < 0.05). Correlation analysis showed that rCBF and NAA/Cr in posterior cingulate gyrus were significantly negatively correlated with serum TSH levels \((P<0.05)\).

Conclusion. The changes of rCBF and metabolite ratio and their negative correlation with serum TSH level are helpful to explain the causes of brain dysfunction in patients with primary hypothyroidism.
patients with hypothyroidism is nearly 2.5 times higher than that in the normal population, especially in elderly patients [5]. Therefore, it is very necessary to study the underlying causes of brain dysfunction in patients with primary hypothyroidism. Magnetic resonance spectroscopy (MRS) is currently the only functional magnetic resonance imaging technology that can noninvasively detect the metabolism of living tissue. Some studies have found that using it to measure the metabolic level of important brain functional areas in patients with hypothyroidism is beneficial to explain the hypothyroidism brain, possible causes of dysfunction [6].

Arterial spin labeling (ASL) is a noninvasive MRI technique for measuring regional cerebral blood flow (rCBF) that uses endogenous arterial blood as a dynamic tracer to quantify tissue perfusion in organs, and the application of it to measure the important brain functional area rCBF also has a positive effect on exploring the potential causes of hypothyroidism brain dysfunction [7]. However, studies using ASL technology and MRS technology jointly to explore the regional cerebral blood flow and metabolism of important brain functional areas in patients with primary hypothyroidism are still scant. Therefore, this study applies ASL and MRS technology to study the important brain functional area rCBF and its metabolic level in patients with primary hypothyroidism, with an aim to provide potential causes of brain dysfunction in patients with primary hypothyroidism.

2. Materials and Methods

2.1. Clinical Data. A total of 25 patients with primary hypothyroidism (newly diagnosed and untreated) who came to the Endocrinology Department of our hospital from May 2018 to August 2019 were selected as the research group, including 2 males and 23 females, with an age range of 18-55 years old. The inclusion and exclusion criteria were as follows:

(a) Inclusion Criteria. (1) Clinical manifestations consistent with hypothyroidism; (2) serological indicators: patients with elevated TSH and decreased FT3 and FT4; (3) thyroid iodine uptake rate showed a flat curve; (4) right-handed patients; (5) complete clinical imaging data

(b) Exclusion Criteria. (1) Those who are taking or have been taking antihyperthyroidism drugs; (2) those who have a history of brain trauma, cerebrovascular disease, or nervous system diseases; (3) Sporadic painless thyroiditis; (4) poorly controlled diabetes; (5) patients with secondary hypothyroidism; (6) patients with a history of psychiatric disease (e.g., depression, schizophrenia, and autism); (7) serious heart, liver, and kidney insufficiency. Twenty-five gender- and age-matched patients with normal thyroid function who came to our hospital during the same period were selected as the control group, including 4 males and 21 females, aged 20-54 years. This study was approved by the ethics committee of our hospital (no. 2018001), and all participants signed the informed consent.

2.2. Inspection Method. All subjects underwent image acquisition with Philips Ingenia 3.0T MRI. The subjects were in a supine position, their head was fixed with a foam pad, earplugs were worn to reduce noise, and eyes were closed, breathed evenly, and kept in a relaxed state. A 32-channel phased array head coil is used. All subjects underwent routine MRI scans of the head to exclude organic lesions in the brain. (1) ASL: FOV 24 cm × 24 cm, slice thickness 4 mm, TR 4000 ms, TE 15 ms, acquisition times 3, and post-marking delay time 1500 ms. (2) MRS: the posterior cingulate gyrus, frontal white matter, and other brain regions are located by three planes; the posterior cingulate gyrus is located above the parieto-occipital sulcus and posterior to the corpus callosum, with a voxel size of 20 mm × 20 mm × 20 mm; the frontal white matter is located at the center of the semioval, and the voxel size is 10 mm × 10 mm × 10 mm. Single pixel point-resolved spectroscopy (PRESS), TR = 2000 ms, TE = 35 ms, FOV = 22 × 22 cm, matrix 1024 × 1024, NSA = 128, flip = 90°; automatic shimming, water suppression.

2.3. Image Postprocessing and Analysis. All the images that meet the standards were sent to the postprocessing workstation for data measurement by two radiologists, and the average value was taken for three times. ASL: the frontal lobe, hippocampus, and posterior cingulate gyrus of the dominant hemisphere were used as regions of interest (ROI) to measure rCBF. MRS: the curve area under each metabolite peak is automatically calculated by the equipment supporting workstation. After data conversion, the relative ratios of N-acetylaspartate/creatinine (NAA/Cr), choline/creatinine (Cho/Cr), and myo-inositol/creatinine (mI/Cr) were calculated and then compared between the two groups of ROIs in the dominant hemisphere.

2.4. Statistical Analysis. The measured data were analyzed using SPSS 25.0 software. The independent samples t test was used to compare the measured values of ASL and MRS between the two groups. Measurement data are expressed as mean ± standard deviation and were subjected to Person correlation analysis using R v.4.2.0. P < 0.05 was considered to be statistically significant.

We estimated that with a sample size of 25 patients assigned to each group, the study would have more than 99% power to detect a between-group difference in the relevant indicators for this study.

3. Results

3.1. Comparison of Serum TSH, FT3, and FT4 Levels between the Two Groups of Patients. As shown in Table 1, there were 25 cases in the observation group and the control group, and there were significant differences in serum TSH, FT3, and FT4 levels between the two groups (P < 0.05).

3.2. Comparison of rCBF of the ROI on the Dominant Hemisphere between the Two Groups. According to
The posterior cingulate gyrus was significantly correlated with serum TSH levels (Figure 2, \(\rho < 0.05 \)). It suggests that there are abnormal changes in rCBF in patients with primary hypothyroidism and brain dysfunction. This study combined these two techniques to study the important brain functional area rCBF and its metabolic level in patients with primary hypothyroidism, which is of significance to explore the possible causes of brain dysfunction in patients with primary hypothyroidism.

The frontal lobe is a functional area of the brain closely related to working memory and cognitive function. The hippocampus is widely present in the limbic system that controls human emotion and consciousness. The posterior cingulate cortex also plays an important role in emotional and cognitive regulation [13–16]. In this study, we explored the rCBF and metabolic levels of these three important brain functional regions. We found that compared with healthy controls, patients with primary hypothyroidism had significantly decreased rCBF in the frontal lobe, hippocampus, and posterior cingulate gyrus of the dominant hemisphere, which is similar to the results of prior studies [12, 17, 18]. This suggests that there are abnormal changes in rCBF in these three brain functional areas in patients with primary hypothyroidism. We speculated that it might be related to the levels of serum TSH, FT3, and FT4 in patients with hypothyroidism. Our subsequent analysis found a significant negative correlation between rCBF in the posterior cingulate and serum TSH levels (elevated TSH), which partially validated our hypothesis. In addition, Schraml et al. suggested that decreased regional cerebral blood flow in relevant brain regions may be associated with elevated TSH levels during hypothyroidism and the severity of psychomotor disorders [19]. All of these indicate that the elevated serum TSH level in patients with hypothyroidism may cause the decline of important brain functional areas such as the posterior cingulate gyrus rCBF and cause brain dysfunction. As a common brain metabolite, NAA mainly exists in mature neurons, and its decrease can indicate neuron damage. Cho is a precursor...
of acetylcholine, which is involved in cell metabolism, and its level is related to cell membrane stability. MI is also involved in cell metabolism. Cr plays an important role in the transport of energy in brain tissue, and its stable content can be used as a reference value to determine changes in the levels of other metabolites [20–23]. In this study, we explored the metabolism of ROI in patients with primary hypothyroidism by calculating the metabolite ratios NAA/Cr, Cho/Cr, and MI/Cr. We found significantly lower NAA/Cr in the frontal lobe and posterior cingulate gyrus in patients with

Table 3: Comparison of metabolite ratios in the ROI of the dominant hemisphere between the two groups (x ± s).

Ratios	Group	Frontal lobe	Hippocampus	Posterior cingulate gyrus
NAA/Cr	Study group (n = 25)	1.75 ± 1.07*	1.69 ± 1.35	1.73 ± 0.76*
	Control group (n = 25)	2.4 ± 1.09	2.12 ± 1.18	2.34 ± 1.13
Cho/Cr	Study group (n = 25)	1.86 ± 1.45	0.73 ± 0.32	1.03 ± 0.34*
	Control group (n = 25)	1.93 ± 0.94	0.77 ± 0.41	0.81 ± 0.21
MI/Cr	Study group (n = 25)	0.39 ± 0.19	0.34 ± 0.18*	0.59 ± 0.28
	Control group (n = 25)	0.40 ± 0.17	0.52 ± 0.33	0.62 ± 0.10

Note: * represents P < 0.05.

Figure 1: Correlation between rCBF in ROI and serum TSH, FT3, and FT4 levels. FL/rC, HC/rC, and PCG/rC represent rCBF in the frontal lobe, rCBF in the hippocampus, and rCBF in the posterior cingulate, respectively. * represents P < 0.05.

Figure 2: Correlation between significantly different metabolite ratios and serum TSH, FT3, and FT4 levels for ROI. FL/N/C, HC/M/C, PCG/N/C, and PCG/Ch/C represent NAA/Cr in the frontal lobe, MI/Cr in the hippocampus, NAA/Cr in the posterior cingulate, and Cho/Cr in posterior cingulate, respectively. * represents P < 0.05.
hypothyroidism, partially similar to a study of Hashimoto’s thyroiditis, which often results in hypothyroidism [23]. The results suggest that there is neuronal damage in the frontal lobe and posterior cingulate gyrus. Our subsequent correlation analysis results showed that NAA/Cr in the posterior cingulate gyrus was significantly negatively correlated with serum TSH levels, suggesting that elevated serum TSH levels may lead to decreased NAA/Cr resulting in neuronal damage.

Based on the above negative correlation between rCBF and TSH in the posterior cingulate gyrus, we believe that elevated serum TSH levels can simultaneously reduce rCBF and NAA/Cr in the posterior cingulate gyrus, and the corresponding brain dysfunction is caused by the combined decrease of both. We also observed a significant decrease in the ml/Cr ratio in the hippocampus of patients with hypothyroidism, which may be related to the decreased rCBF in the hippocampus. In addition, Cho/Cr in the posterior cingulate gyrus was found to be significantly elevated in patients with hypothyroidism. The possible explanation is that hypothyroidism leads to the degradation of brain cell membranes resulting in increased Cho release. Brain damage is known to cause brain dysfunction. Studies have shown that Cho/Cr is significantly elevated in the brains of patients with traumatic brain injury [24–26]. This may suggest that the elevation of Cho/Cr is correlated with brain dysfunction in patients with hypothyroidism.

In summary, ASL and MRS techniques can be used to detect the changes of rCBF and metabolite ratio in important brain functional areas of patients with primary hypothyroidism, and these changes and their correlation with serum TSH levels help to explain the causes of brain dysfunction in patients with primary hypothyroidism.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by 2018 Medical Science Research Youth Science and Technology Project of Hebei Provincial Health and Family Planning Commission (no. 20180837).

References

[1] C. Ding, J. Xiang, X. Cui et al., “Abnormal dynamic community structure of patients with attention-deficit/hyperactivity disorder in the resting state,” Journal of Attention Disorders, vol. 26, no. 1, pp. 34–47, 2022.
[2] B. Biondi and D. S. Cooper, “Thyroid hormone therapy for hypothyroidism,” Endocrine, vol. 66, no. 1, pp. 18–26, 2019.
[3] C. Redford and B. Vaidya, “Subclinical hypothyroidism: should we treat,” Post Reproductive Health, vol. 23, no. 2, pp. 55–62, 2017.
[4] M. Udovcic, R. H. Pena, B. Patham, L. Tabatabai, and A. Kansara, “Hypothyroidism and the heart,” Methodist DeBakey Cardiovascular Journal, vol. 13, no. 2, pp. 55–59, 2021.
[5] H. H. Loh, L. L. Lim, A. Yee, and H. S. Loh, “Association between subclinical hypothyroidism and depression: an updated systematic review and meta-analysis,” BMC Psychiatry, vol. 19, no. 1, p. 12, 2019.
[6] Q. Zhang, Z. Bai, Y. Gong et al., “Monitoring glutamate levels in the posterior cingulate cortex of thyroid dysfunction patients with TE-averaged PRESS at 3 T,” Magnetic Resonance Imaging, vol. 33, no. 6, pp. 774–778, 2015.
[7] Y. Kaichi, M. Kenjo, T. Higaki et al., “Cerebral blood flow in transient hypothyroidism after thyroidectomy: arterial spin labeling magnetic resonance study,” Neuro Endocrinology Letters, vol. 36, no. 6, pp. 545–551, 2015.
[8] J. D. Davis and G. Tremont, “Neuropsychiatric aspects of hypothyroidism and treatment reversibility,” Minerva Endocrinologica, vol. 32, no. 1, pp. 49–65, 2007.
[9] M. E. Bégin, M. F. Langlois, D. Lorrain, and S. C. Cunnane, “Thyroid function and cognition during aging,” Current Gerontology and Geriatrics Research, vol. 2008, Article ID 474868, 11 pages, 2008.
[10] N. Sawicka-Gutaj, N. Zawalna, P. Gut, and M. Ruchala, “Relation between thyroid hormones and central nervous system metabolism in physiological and pathological conditions,” Pharmacological Reports, 2022.
[11] C. D. Smith, R. Grondin, W. LeMaster, B. Martin, B. T. Gold, and K. B. Ain, “Reversible cognitive, motor, and driving impairments in severe hypothyroidism,” Thyroid, vol. 25, no. 1, pp. 28–36, 2015.
[12] S. Nagamachi, S. Jinnouchi, R. Nishii et al., “Cerebral blood flow abnormalities induced by transient hypothyroidism after thyroidectomy: analysis by tc-99m-HMPAO and SPM96,” Annals of Nuclear Medicine, vol. 18, no. 6, pp. 469–477, 2004.
[13] S. Singh, P. Rana, P. Kumar, L. R. Shankar, and S. Khushu, “Hippocampal neurometabolite changes in hypothyroidism: an in vivo 1H magnetic resonance spectroscopy study before and after thyroxine treatment,” Journal of Neuroendocrinology, vol. 28, no. 9, 2016.
[14] F. G. Metzger, A. C. Ehlis, F. B. Haueßinger et al., “Functional brain imaging of walking while talking - an fNIRS study,” Neuroscience, vol. 343, pp. 85–93, 2017.
[15] N. R. Nissim, A. M. O’Shea, V. Bryant, E. C. Porges, R. Cohen, and A. J. Woods, "Frontal structural neural correlates of working memory performance in older adults," Frontiers in Aging Neuroscience, vol. 8, p. 328, 2017.
[16] L. Caciagli, C. Paquola, X. He et al., “Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy,” Brain, 2022.
[17] Y. Krausz, N. Freedman, H. Lester et al., "Regional cerebral blood flow in patients with mild hypothyroidism," Journal of Nuclear Medicine, vol. 45, no. 10, pp. 1712–1715, 2004.
[18] M. Kaya, T. F. Cermik, D. Bedel, Y. Kutucu, C. Tuglu, and O. N. Yigitbasi, “Assessment of alterations in regional cerebral blood flow in patients with hypothyroidism due to Hashimoto’s thyroiditis,” Journal of Endocrinological Investigation, vol. 30, no. 6, pp. 491–496, 2007.
[19] F. V. Schraml and L. L. Beason-Held, “Technetium-99m ethyl cysteinate dimer (ECD) cerebral accumulation and symptom and sign severity during hypothyroidism,” Neuro Endocrinology Letters, vol. 31, no. 1, pp. 161–167, 2010.
[20] S. M. Strakowski, M. P. Delbello, and C. M. Adler, “The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings,” *Molecular Psychiatry*, vol. 10, no. 1, pp. 105–116, 2005.

[21] A. Nitta, H. Noike, K. Sumi et al., “Shati/Nat8l and N-acetylaspartate (NAA) have important roles in regulating nicotinic acetylcholine receptors in neuronal and psychiatric diseases in animal models and humans,” in *Nicotinic acetylcholine receptor signaling in neuroprotection*, pp. 89–111, Singapore, 2018.

[22] Q. Chen, J. Abrigo, W. Liu et al., “Lower posterior cingulate N-acetylaspartate to creatine level in early detection of biologically defined Alzheimer’s disease,” *Brain Sciences*, vol. 12, no. 6, p. 722, 2022.

[23] J. Bladowska, M. Waliszewska-Prośoł, M. Ejma, and M. Sasiadek, “The metabolic alterations within the normal appearing brain in patients with Hashimoto’s thyroiditis are correlated with hormonal changes,” *Metabolic Brain Disease*, vol. 34, no. 1, pp. 53–60, 2019.

[24] S. Xu, J. Zhuo, J. Racz et al., “Early microstructural and metabolic changes following controlled cortical impact injury in rat: a magnetic resonance imaging and spectroscopy study,” *Journal of Neurotrauma*, vol. 28, no. 10, pp. 2091–2102, 2011.

[25] J. Zhuo, S. Xu, J. L. Proctor et al., “Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury,” *Neuroimage*, vol. 59, no. 1, pp. 467–477, 2012.

[26] S. Umesh Rudrapatna, T. Wieloch, K. Beirup et al., “Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology,” *NeuroImage*, vol. 15, no. 97, pp. 363–373, 2014.