Stability and Leptogenesis in Left-Right Symmetric Seesaw Models

Tom as Hallgrena, b

Department of Theoretical Physics, School of Engineering Sciences
Royal Institute of Technology (KTH)
A BaaNova University Center
Roslagstullsbacken 21, 106 91 Stockholm, Sweden

Abstract. In left-right symmetric seesaw models an eight-fold degeneracy among the right-handed neutrino mass matrices is known to exist. We use stability and viability of leptogenesis as criteria in order to discriminate among the degenerate solutions and to partially lift the eight-fold degeneracy.

PACS. 98.80.Cq Particle-theory and ekl-theory models of the early Universe (14.60.Pq Neutrino mass and mixing (14.60.St Non-standard-m apted neutrinos, right-handed neutrinos

1 Introduction

It has become an established fact that neutrinos are massive, although very light. The Standard Model (SM) of particle physics is insufficient in explaining in a natural way why the neutrinos are so much lighter than the charged leptons. One attractive and elegant solution to this problem is provided by the seesaw mechanism2, where the small masses of the neutrinos are induced by the presence of heavy particles, such as right-handed Majorana neutrinos or Higgs triplets. The seesaw mechanism has in addition the attractive feature of a built-in mechanism for generating the baryon asymmetry of the Universe (BAU) through the baryogenesis via leptogenesis mechanism3, whereby the decays of the right-handed neutrinos produce a lepton asymmetry, which is then partly converted into a baryon asymmetry by sphaleron processes.

Recently, it was demonstrated4,5 that in a certain class of left-right symmetric seesaw models, the seesaw mass formula can be inverted to yield eight (in the three-avor case) possible mass matrices for the right-handed Majorana neutrinos, for a given light neutrino mass matrix and Dirac Yukawa couplings as input. Since the right-handed neutrino sector is not directly accessible by laboratory experiments, it is important to nd ways of discriminating among the eight seesaw solutions. This was the objective of Refs.4,6, where leptogenesis and stability of the solutions were used as selection criteria and it was shown that it is possible to partially lift the degeneracy in the right-handed neutrino sector.

2 The left-right symmetric seesaw model

We will consider the left-right symmetric seesaw model with gauge group $G = SU(2)_L \times SU(2)_R \times U(1)_B$. The SM ekl content is extended to include three heavy right-handed Majorana neutrinos N_i and the Higgs sector contains an $SU(2)_L \times SU(2)_R$ bidoublet as well as $SU(2)_R$ triplets L_R. When the neutral components of the Higgs ekl acquire vacuum expectation values (VEVs) we obtain the type I + II seesaw mass formula

$$m = f_{V_L} \frac{v^2}{v_R} y f^T y^T;$$ (1)

where v, v_R and v_R denote the VEVs of the neutral components of and L_R, y denotes the Dirac Yukawa coupling matrix and f the triplet Yukawa coupling matrix. In general, the triplet Yukawa couplings for L_R could be different, but we will restrict to the case where there is a discrete left-right symmetric such that $f_L = f_R$ and y is symmetric. This case has much fewer parameters and is more predictive. We will assume that the Dirac Yukawa coupling matrix y equals the up-type quark Yukawa coupling matrix v_L, which is motivated by grand unified theories (GUTs). Many of the results depend mostly on the fact that y has hierarchical eigenvalues. The free parameters will then be the absolute neutrino mass scale M_0, the ratio of the triplet VEVs, and the light neutrino mass hierarchy. The seesaw formula Eq. (1) can now be inverted to yield 2^{th} solutions for f, and hence 2^{th} possible right-handed Majorana mass matrices, which are given by $M_R = f_{V_R}$. In the one-generation case, the two solutions admit a simple analytical form

$$f = \frac{m}{2v_{V_L}} \left[\begin{array}{c} 1 \frac{m^2}{4 v_{V_L}} + \frac{y^2 v_{V_L}}{v_R} \end{array} \right].$$ (2)
Analytical solutions exist also in the three-avor case and we label the eight solutions as ’ ’ where ’ ’ denotes that the corresponding mass eigenvalue is type I (II) dominated in the large \(m_N = v_L \) regime. The labeling starts with the largest eigenvalue in the small \(m_N = v_{VL} \) regime. Thus, there will be two solutions which are either pure type I or type II dominated for large \(m_N = v_L \) and six mixed solutions.

In Fig. 1 we show the eigenvalues and mixing for the solution ’ ’ for \(m_0 = 0.1 \text{ eV} \) and inverted light neutrino mass hierarchy. As a measure of mixing, we have introduced the parameters \(u_i \) which are related to the off-diagonal elements of the unitary matrix \(U \) which diagonalize \(f \) as:

\[
\begin{align*}
 u_1^2 &= \frac{1}{2} (y_{12} f + y_{21} \bar{f}); \\
 u_2^2 &= \frac{1}{2} (y_{13} f + y_{31} \bar{f}); \\
 u_3^2 &= \frac{1}{2} (y_{23} f + y_{32} \bar{f});
\end{align*}
\]

(3)

In the next section, we will consider ways of selecting among the eight solutions.

3 Discriminating Among the Degenerate Solutions

3.1 Stability

First we will introduce a notion of naturalness, or stability, in order to select among the degenerate solutions. We pose the question if, for a given light neutrino mass matrix, the triplet Yukawa coupling matrix \(f \) has to be very special or not tuned in the sense that a marginally different \(f \) would give very different low-energy neutrino phenomenology. We consider such a situation unnatural. In order to quantify the stability of the solutions we introduce the following stability measure

\[
Q = \frac{\det m_i}{\det m} \prod_{k=1}^{3} \frac{v_i}{v_L} \prod_{i=1}^{8} \frac{m_i}{f_k};
\]

(4)

The matrices \(f \) and \(m \) are determined by the real coefficients \(f_k \) and \(m_1 \) according to

\[
f = (f_k + i f_{kN}) \Gamma_k \Rightarrow m = (m_k + i m_{kN}) \Gamma_k;
\]

(5)

where \(\Gamma_k, k=2 \ldots 6 \), form a normalized basis of complex symmetric 3 \times 3 matrices. This stability measure can be shown to be basis independent [1]. Fig. 2 shows the stability measure \(Q \) for the eight solutions, for \(m_0 = 0.1 \text{ eV} \) and an inverted light neutrino mass hierarchy. First we note that all solutions are unstable for small \(m_N = v_L \), which is due to the fact that in this regime there must be very precise cancellation between the type I and type II contributions to the light neutrino mass matrix in Eq. (4). In addition, most of the solutions also become unstable for large \(m_N = v_L \). This happens when there is a large spread in the eigenvalues, which imply suppressed mixing and no-tuning between \(f \) and \(\bar{f} \) (for a detailed discussion see Ref. [2]). The most stable solution is the purely type II dominated ’ ’ solution. If one allows for a no-tuning at the percent level \(Q \approx 10^{3} \), then the two solutions ’ ’ for \(m_N = v_L \) and the solutions ’ ’ with \(m_N = v_L \) are favored. The stability results do not change qualitatively when changing \(m_0 \) or the light neutrino mass hierarchy. Additional CP violating phases only change the results marginally.

3.2 Leptogenesis

The second selection criteria we use is viability of leptogenesis for a given solution. Thus, we ask whether a solution can reproduce the observed B/AU, \(B = (6.1 \pm 0.2) \times 10^{-10} \) [9]. The baryon asymmetry can be parametrized as

\[
\frac{n_B}{n} = \left(\frac{N}{n} \right); \quad n = N_1;
\]

(6)

where is the so-called efficiency factor that takes into account washout effects, the initial density of the right-handed neutrinos and the deviation from equilibrium.
The CP-asymmetry parameter is defined in the framework, but instead of the decay of leptons as asymmetry. In Ref. [10] we study leptogenesis such that it gives the dominating contribution to the lepton asymmetry. In Ref. [11] we study leptogenesis in the same framework, but where instead of the decay of the triplet right-handed neutrino is the source of the lepton asymmetry. The CP-asymmetry parameter is defined as

$$N_i = \frac{(N_i^1 | 1H)}{(N_i^1 | 1H)} + \frac{(N_i^1 | 1H)}{(N_i^1 | 1H)}.$$

(7)

From a numerical solution of the Boltzmann equations, it is possible to derive the following expression for the efficiency parameter

$$Q = \frac{1.45 \times 10^{-3} \text{ eV}}{m_1};$$

(8)

assuming a mass hierarchy in the right-handed neutrino sector. Here we have also introduced the effective neutrino mass

$$m_1 = \frac{\nu^2 (\phi^0 \gamma)_{11}}{2m_{N_i}}.$$

(9)

The notation with a hat indicates that all matrices are evaluated in the basis where f is real and diagonal. The CP-asymmetry parameter receives contributions of type I (from the right-handed neutrinos) and type II (from the triplets). In the limit where the lightest right-handed neutrino is considerably lighter than the heavier neutrinos as well as the triplets, the CP-asymmetry can be written as

$$N_i = \frac{1}{N_i} + \frac{1}{N_i} \cdot \frac{3}{16} \frac{\ell_1 V_{\text{R}}}{\nu^2} \ln \left(\frac{\phi^0 \gamma}{\gamma} \right)_{11};$$

(10)

Our numerical results indicate that the upper bound on the CP asymmetry found in Ref. [11] can be saturated. An important feature of the left-right symmetric model is the presence of additional physical Majorana phases, which can increase the CP asymmetry and improve the prospects for leptogenesis. As demonstrated in Ref. [11], this allows for leptogenesis even with only one right-handed neutrino. In the case of three generations there are more sources of CP violation, although mass mixing can increase the effective neutrino mass, thereby increasing the washout. Fig. 3 shows that baryon-to-photon ratio g for the solution $'++'$, when a Majorana phase is attributed to the electron neutrino. We have chosen $\gamma = \theta$. For the lightest right-handed neutrino required to reproduce the observed BAU is $m_1 \approx 10^3$ GeV $(m_1 \approx 2.5 \times 10^3 \text{ GeV})$. We end that leptogenesis is possible for four out of the eight solutions. For the other solutions, leptogenesis is not possible, since for these cases the mass of the lightest right-handed neutrino never exceeds 10^2 GeV. It should be noted that the results depend on the assumption that $y = \theta$. For a different choice of Yukawa couplings it is possible to relax the mass bounds. However, the choice $y = \theta$, as discussed before, is motivated by GUTs. Our results complement the results of the leptogenesis analysis in Ref. [6], since the washout is less severe for our specific choice of parameters.

4 Summar y

We have studied the left-right symmetric type I + II seesaw mechanism with a hierarchical D-mass Yukawa coupling matrix motivated by GUTs. It has been shown previously that it is possible to invert the seesaw mass formula to obtain eight possible triplet Yukawa coupling matrices for a light neutrino mass matrix and D-mass Yukawa coupling matrix as input. Our goal was to discriminate among these degenerate solutions using stability properties and viability of leptogenesis as criteria. As a measure of stability we have introduced the parameter Q (see Eq. (4)) which quantifies the amount of re-tuning.

Our results are summarized in Table I. The stability criterion favors the four solutions of the type $'++'$, and favors the solutions $'++'$ provided that $v_R = v_L$, 10^{18}. The remaining two solutions are stable, for $v_R = v_L$ & 10^{18}. In addition, we find that successful leptogenesis is possible for the four solution of the
Table 1. The allowed regions of the parameter $v_R = v_L$ for the eight different types of solutions. Table from Ref. [1].

Type	$v_R = v_L$	$v_R > 10^{18}$	$v_R > 10^{20}$
Stability	$v_R = v_L$	$v_R > 10^{18}$	$v_R > 10^{20}$
Leptogenesis	$v_R = v_L$	$v_R > 10^{18}$	$v_R > 10^{20}$
Gravitinos	$v_R = v_L$	$v_R < 10^{21}$	unconstrained

Thus, within the chosen framework, we can partially lift the eight-fold degeneracy among the right-handed neutrino mass matrices in the left-right symmetric seesaw model.

References

1. E. K. Akhmadov, M. Blennow, T. Hallgren, T. Konstandin, and T. Ohlsson, JHEP 0704 (2007) 022
2. P. Minkowski, Phys. Lett. B 67, (1977) 421-428
3. M. Fukugita and T. Yanagida, Phys. Lett. B 174, (1986) 45-47
4. E. K. Akhmadov and M. Frigerio, Phys. Rev. Lett. 96, (2006) 061802
5. E. K. Akhmadov and M. Frigerio, JHEP 0701, (2007) 043
6. P. Hosteins, S. Lavignac, and C. A. Savoy, Nucl. Phys. B 755, (2006) 137-163
7. J. C. Pati and A. Salam, Phys. Rev. D 10, (1974) 275-289
8. R. E. Marshak and R. N. Mohapatra, Phys. Lett. B 91, (1980) 222
9. WMAP Collaboration, D. N. Spergel et al, Astrophys. J. Suppl. 148, (2003) 175
10. T. Hallgren, T. Konstandin and T. Ohlsson, [arXiv:0710.2408 [hep-ph]]
11. S. Antusch and S. King, Phys. Lett. B 597, (2004) 199-207