Resumo

Fundamento: A classificação ou índice de gravidade de insuficiência cardíaca em pacientes com infarto agudo do miocárdio (IAM) foi proposta por Killip e Kimball com o objetivo de avaliar o risco de mortalidade hospitalar e o potencial benefício do tratamento especializado em unidades coronárias (UCO) na década de 1960.

Objetivos: Validar a classificação de Killip para mortalidade total em longo prazo e comparar o valor prognóstico em pacientes com IAM sem elevação do segmento ST (IAMSEST) em relação àqueles com elevação do segmento ST (IAMCEST), na era pós-reperfusão e de terapia antitrombótica moderna.

Métodos: Foram avaliados 1906 pacientes com IAM confirmado, admitidos em UCO entre 1995 e 2011, com seguimento médio de cinco anos, para avaliação da mortalidade total. Curvas de Kaplan-Meier foram construídas para comparação da sobrevida pela classe Killip e IAMSEST versus IAMCEST. Modelos de regressão de risco proporcional de Cox foram construídos para determinar a associação independente entre a classe Killip e a mortalidade, com análises de sensibilidade por tipo de IAM.

Resultados: As proporções de óbitos e as distribuições das curvas de sobrevida foram diferentes conforme a classe Killip >1 (p <0,001) e similares entre IAMSEST e IAMCEST. Os modelos de risco identificaram a classificação de Killip como preditor significante, sustentado, consistente e independente de covariables relevantes (Wald χ² 16,5 [p = 0,001], IAMSEST) e (Wald χ² 11,9 [p = 0,008], IAMCEST).

Conclusão: A classificação de Killip e Kimball desempenha papel prognóstico relevante na mortalidade em seguimento médio de cinco anos pós-IAM e, de modo similar, entre pacientes com IAMSEST e IAMCEST. (Arq Bras Cardiol. 2014; 103(2):107-117)

Palavras-chave: Índice de Gravidade de Doenças; Insuficiência Cardiaca / mortalidade; Infarto do Miocárdio / mortalidade; Prognóstico.

Abstract

Background: The classification or index of heart failure severity in patients with acute myocardial infarction (AMI) was proposed by Killip and Kimball aiming at assessing the risk of in-hospital death and the potential benefit of specific management of care provided in Coronary Care Units (CCU) during the decade of 60.

Objective: To validate the risk stratification of Killip classification in the long-term mortality and compare the prognostic value in patients with non-ST-segment elevation MI (NSTEMI) relative to patients with ST-segment elevation MI (STEMI), in the era of reperfusion and modern antithrombotic therapies.

Methods: We evaluated 1906 patients with documented AMI and admitted to the CCU, from 1995 to 2011, with a mean follow-up of 5 years, to assess total mortality. Kaplan-Meier (KM) curves were developed for comparison between survival distributions according to Killip class and NSTEMI versus STEMI. Cox proportional regression models were developed to determine the independent association between Killip class and mortality, with sensitivity analyses based on type of AMI.

Results: The proportions of deaths and the KM survival distributions were significantly different across Killip class >1 (p <0,001) and with a similar pattern between patients with NSTEMI and STEMI. Cox models identified the Killip classification as a significant, sustained, consistent predictor and independent of relevant covariables (Wald χ² 16,5 [p = 0,001], NSTEMI) and (Wald χ² 11,9 [p = 0,008], STEMI).

Conclusion: The Killip and Kimball classification performs relevant prognostic role in mortality at mean follow-up of 05 years post-AMI, with a similar pattern between NSTEMI and STEMI patients. (Arq Bras Cardiol. 2014; 103(2):107-117)

Keywords: Severity of Illness Index; Heart failure / mortality; Myocardial Infarction / mortality; Prognosis.

Correspondência: Gustavo Bernardes de Figueiredo Oliveira • Rua Padre Machado, 844, apt.º 72, Bosque da Saúde. CEP 04127-001, São Paulo, SP - Brasil
E-mail: goliveira@cardiol.br
Artigo recebido em 19/12/13; revisado em 14/03/14; aceito em 19/03/14.

DOI: 10.5935/abc.20140091
Introdução

Classificação da gravidade da insuficiência cardíaca no infarto agudo do miocárdio

A classificação proposta por Thomas Killip III e John T. Kimball, em 1967, foi originalmente uma estratificação à beira do leito, baseada no exame físico de pacientes com provável infarto agudo do miocárdio (IAM), para identificar aqueles com maior risco de morte e potencial benefício com o manejo especializado em unidades coronárias (UCO). O estudo clássico representou uma série de 250 casos suspeitos de IAM, admitidos na UCO de um hospital universitário dos Estados Unidos, com desfechos clínicos não objetivos, sem coleta sistemática ou ajuste para fatores de confusão e não validado em uma série independente de pacientes. Os casos foram estratificados em:

• Killip I: 81 (33%) sem sinais de descompensação cardíaca;
• Killip II: 96 (38%) com estertores crepitantes pulmonares, terceira bulha e pressão venosa jugular elevada;
• Killip III: 26 (10%) com edema pulmonar agudo (EAP);
• Killip IV: 47 (19%) com choque cardiógeno ou hipotensão arterial (medida como PAS < 90 mmHg) e evidência de vasoconstrição periférica (oligúria, cianose ou diaforese), com mortalidade de 6%, 17%, 38% e 81%, respectivamente.

Apesar da proposta original na era pré-reperfusão, alguns estudos posteriores avaliaram a classificação no IAM com elevação persistente do segmento ST (IAMCEST) na era pós-reperfusão2,3. Em contrapartida, o valor prognóstico da utilização dessa classificação no cenário do IAM sem elevação persistente do segmento ST (IAMSEST) não é bem estabelecido, sobretudo pela não validação em pacientes do mundo real, portanto não selecionados de bancos de dados de ensaios clínicos randomizados4, além da ausência de dados no seguimento tardio do IAM.

De fato, embora recomendada como parte da estratificação de risco inicial na IV Diretriz da Sociedade Brasileira de Cardiologia (SBC)5 para o maneuseio do IAMCEST, a classificação de Killip e Kimball não é citada na última diretirz da SBC para o maneuseio do IAMSEST6.

Portanto, este estudo teve os objetivos de validar a classificação de Killip e Kimball para mortalidade total no seguimento clínico de longo prazo e comparar o valor prognóstico em pacientes com IAMSEST em relação aos pacientes com IAMCEST, na era pós-reperfusão e de terapêutica antitrombótica moderna.

Método

Desenho do estudo

Este estudo apresenta duas formas de delineamento7,4: 1) estudo transversal e analítico, para determinação das características clínicas, incluindo a classificação de Killip e Kimball baseada no primeiro exame físico na admissão hospitalar, história e tratamentos prévios, além dos procedimentos diagnósticos e terapêuticos na fase hospitalar, em pacientes com diagnóstico confirmado de IAM, com ou sem elevação persistente do segmento ST, admitidos em UCO do Instituto Dante Pazzanese de Cardiologia (IDPC); 2) após a admissão hospitalar, os pacientes foram seguidos e recrutados, prospectivamente, em um banco de dados entre 1995 e 2011, com coleta sistemática de informações por ficha eletrônica de dados, incluindo eventos clínicos intra-hospitalares (coorte prospectiva).

Coleta de dados

As informações sobre a data da última evolução de cada paciente registrado como vivo, os medicamentos usados previamente, nas 48 h da admissão e de volta, e sobre os óbitos ocorridos na fase hospitalar ou no seguimento clínico de muito longo prazo foram coletadas por busca ativa pelos seguintes meios: ficha eletrônica de dados do paciente, sistema eletrônico de gestão de dados do instituto, contato telefônico e prontuário médico.

Amostragem

Ressaltamos que, pela ausência de estudos que validam a classificação de Killip e Kimball para estimativa do risco de mortalidade em pacientes com IAM na população brasileira até o momento, utilizamos amostragem não probabilística, salientando o tamanho amostral significativamente maior do que os 250 pacientes com suspeita diagnóstica de IAM publicados em 1967.

Critérios de elegibilidade e variáveis analisadas

Foram incluídos pacientes com diagnóstico de IAM com ou sem elevação do segmento ST de ambos os gêneros, idade >18 anos, com admissão na UCO do IDPC entre 1995 e 2011; portanto, o presente estudo exclui os pacientes com angina instável. Os critérios utilizados para diagnóstico de IAM foram baseados nas recomendações das diretrizes contempladas no período referido, que compreendeu os anos de 1995 a 2011. Além dos critérios clínicos clássicos, a presença de elevação persistente do segmento ST ≥ 1,0 mm em derivações do plano frontal ou de V4 a V6, ou ≥ 2,0 mm nas derivações V1 a V3, ou com bloqueio de ramo esquerdo novo ou presumivelmente novo, recebeu o diagnóstico de IAM com elevação persistente do segmento ST, confirmado pela elevação de biomarcadores de necrose miocárdica disponíveis à época do IAM: 1995 até 2000, atividade de CKMB e CK total, pelo menos duas vezes o limite superior do normal; a partir de 2001, também com disponibilidade da dosagem da massa da CKMB e da troponina cardíaca I (Tnl), também seguindo as recomendações para níveis de corte conforme valores de referência para cada kit de biomarcador utilizado em cada instituição, baseado no percentil 99. Quando o traçado do ECG demonstrava depressão do segmento ST, inversão de ondas T ou achados inespecíficos em traçados seriados, na presença da elevação de biomarcadores de necrose o diagnóstico de IAM com elevação persistente do segmento ST foi confirmado.

Neste estudo de mortalidade, analisamos as variáveis demográficas (idade, gênero, etnia), fatores de risco cardiovascular e comorbidades, informações do exame físico para classificação de Killip e Kimball, variáveis hemodinâmicas simples (frequência cardíaca, pressão arterial sistólica e diastólica, pressão venosa jugular) e medidas de extensão do IAM (presença de elevação persistente do segmento ST, descritas acima).
pressão arterial diastólica), procedimentos e tratamentos prévios, aspectos angiográficos (artéria acometida, fluxo TIMI, extensão e gravidade da doença arterial coronária (DAC) naqueles submetidos a angiografia coronária). Definimos como desfecho clínico de interesse a mortalidade total, com Landmark analysis aos 30 dias e na data final de seguimento do paciente. As distribuições das variáveis contínuas foram expressas como média (± desvio-padrão) ou mediana (com intervalo interquartil – IIQ), conforme apropriado, e as comparações entre os grupos calculadas por teste t de Student ou não paramétrico (testes de Kruskall-Wallis para significância e de Jonckheere-Terpstra para tendência), conforme apropriado. As distribuições das variáveis discretas (ou categóricas) foram expressas como frequências e porcentagens, e as comparações foram calculadas por teste do qui-quadrado ou teste exato de Fisher, conforme apropriado. A análise do desfecho clínico foi baseada no tempo para ocorrência de óbito segundo método de Kaplan-Meier por meio de curvas de sobrevida acumulada de acordo com a classe Killip. A análise de regressão univariada de Cox reuniu todas as variáveis demográficas, clínicas e angiográficas, mas somente os preditores univariados com p < 0,10 e variáveis com significado clínico foram incluídos em modelos de regressão de risco proporcional de Cox para determinar se a classe Killip seria um preditor de risco independente, tanto no grupo sem elevação do segmento ST quanto no grupo com elevação do segmento ST. O processo Backward Stepwise para os modelos possibilitou a identificação das variáveis independentes de risco para ocorrência de óbito de acordo com o diagnóstico do tipo de IAM. Os resultados foram expressos como razão de risco (Hazard Ratio) com intervalos de confiança de 95% (IC 95%), e a capacidade discriminatória dos modelos expresso pelo c-statistic (ou índice c). Utilizamos testes bicaudais com nível de significância em α = 0,05. Os dados foram analisados em conjunto com o Laboratório de Estatística e Epidemiologia do IDPC pelo pacote estatístico IBM SPSS Statistics 19.0.

Resultados

Características dos pacientes

As principais características gerais dos 1906 pacientes com IAM são descritas a seguir e, conforme a classe Killip, mostradas na Tabela 1. No global, a mediana (IIQ) da idade foi 64 (55,73) anos, variando de 19-94 anos, com 71,3% do gênero masculino, mediana de peso corporal de 71,5 kg e 81,4% de etnia caucasiana. A prevalência de fatores de risco cardiovascular foi significante, com 70% de hipertensão arterial, 36,4% de diabéticos, 78% com dislipidemia, 7,0% de AVE, 7,7% de doença arterial obstrutiva periférica (DAOP) e 34% de tabagistas atuais. Com relação aos achados do ECG, 4,5% apresentaram bloqueio de ramo à admissão, 61,9% com elevação persistente do segmento ST, 13,8% com depressão do segmento ST, 3,8% com ondas Q, 8,4% com inversão de ondas T, 3,5% com traçado considerado normal e 4,1% com achados incaracterísticos.

Tabela 1 – Características clínicas de acordo com a classificação de Killip-Kimball

Característica	Killip I	Killip II	Killip III	Killip IV	p
Idade	62 (53,70)	66 (58,77)	65 (54,73)	63 (54,74)	< 0,0001
Gênero feminino	27,6%	34%	39,1%	32,6%	0,031
Etnia caucasiana	80,9%	84,2%	84,8%	79,1%	0,63
Peso, kg	73 (65,82)	72 (64,80)	71 (62,77)	70 (65,80)	0,54
PAS, mmHg	132 (120,160)	130 (110,150)	137 (122,154)	93 (62,122)	< 0,0001
PAD, mmHg	80 (70,100)	80 (70,93)	80 (70,100)	60 (32,77)	< 0,0001
FC, bpm	76 (67,88)	84 (70,96)	91 (80,105)	84 (57,105)	< 0,0001
DAOP	4,6%	6,2%	10,9%	9,3%	0,06
Diabetes melito	28,2%	32,5%	47,8%	37,2%	0,01
IAM prévio	31,2%	24%	37%	37,2%	0,09
ICP prévia	19,4%	14,8%	8,7%	16,3%	0,12
Cirurgia RM prévia	16,1%	12%	19,6%	14%	0,13
AVE prévio	5,2%	9,6%	8,7%	4,7%	0,05
Tabagismo atual	36,8%	33%	32,6%	34,9%	0,70
Angina prévia	26,9%	29,7%	26,1%	37,2%	0,41
HAS	72,3%	74,6%	60,9%	72,1%	0,31
IC	4%	14,4%	19,6%	14%	< 0,001

AVE: acidente vascular encefálico; DAOP: doença arterial obstrutiva periférica; FC: frequência cardíaca; HAS: hipertensão arterial sistêmica; IC: insuficiência cardíaca; ICP: intervenção coronária percutânea; PAD: pressão arterial diastólica; PAS: pressão arterial sistólica; RM: revascularização do miocárdio; IAM: infarto agudo do miocárdio.
Em relação aos pacientes em classe Killip I, aqueles em classes Killip ≥ 2 apresentaram maior mediana de idade, maiores proporções do gênero feminino, doença arterial obstrutiva periférica, história de insuficiência cardíaca (IC), acidente vascular encefálico (AVE), diabetes melito, ECG com desnívelamento do segmento ST ou bloqueios de ramo, FC mais elevada e pressões arteriais sistólica e diastólica menores.

Tratamento farmacológico e estratificação invasiva

Em relação ao uso de fármacos nas primeiras 48 h da fase hospitalar, destacamos AAS em 96%, outro antiplaquetário em 68%, betablockeadores em 61%, IECA em 60%, estatinas em 40% e anticoagulação com antitrombínicos, isto é, heparina não fracionada ou heparina de baixo peso molecular em 83% (dados não mostrados). Inibidores da glicoproteína IIb/IIIa por via intravenosa foram utilizados em 7,3% dos casos. Quanto ao uso de fármacos na fase hospitalar até a alta, destacamos AAS em 98%, clopidogrel em 75%, betablockeadores em 89,5%, IECA em 88,5% e estatinas em 98,2%, com taxas de utilização similares entre os pacientes com ou sem elevação do segmento ST.

Estratégia invasiva foi realizada em 85% dos pacientes. A DAC foi considerada significativa com estenose luminal ≥50%, sendo documentada em pelo menos um vaso em 83% dos pacientes. Houve realização de intervenção coronária percutânea em 54% dos pacientes submetidos a angiofibrinolise, com 77% de implante de um stent coronário e 23% com >1 stent, sendo 91% de stents convencionais (não farmacológicos). Cirurgia de revascularização miocárdica foi empregada em 15% dos casos, com 98,4% de utilização da artéria torácica interna esquerda.

Estratégias de reperfusão e suporte adjuvante

Dentre os 1219 pacientes com IAM e elevação persistente do segmento ST, 69% receberam alguma terapia de reperfusão, sendo que os restantes não receberam devido a retardo prolongado entre o início dos sintomas e a admissão hospitalar (>12 h) ou por serem referidos de outros hospitais nos quais não se administrou fibrinolítico, ou encaminhados para o IDPC após esse intervalo de tempo. Dos 845 pacientes tratados com terapia de reperfusão, 70% foram submetidos a reperfusão mecânica com angioplastia coronária primária (90% com implante de pelo menos um stent), sendo os 30% restantes tratados com fibrinólise em outros hospitais antes da transferência.

Com relação aos pacientes em choque cardiogênico (Killip IV), 70% receberam suporte circulatório mecânico através de balão intra-aórtico, além do uso de fármacos inotrópicos habituais, predominantemente dobutamina.

Seguimento clínico e mortalidade total

Os pacientes foram seguidos desde a admissão hospitalar, durante o manuseio na UCO, até a última data de evolução clínica na instituição para determinação do estado vital e data da ocorrência do óbito, se aplicável. O seguimento máximo foi de 6699 dias e o médio de cinco anos, completo em 99,6% dos pacientes. O desfecho primário de mortalidade total foi observado em 378 pacientes (19,8% de 1.906). As frequências de ocorrência de óbito por classe Killip no seguimento total de longo prazo foram as seguintes: Killip I, 17,7%; Killip II, 27,3%; Killip III, 30,4%; Killip IV, 48,8%, p < 0,0001. Na análise de acordo com o tipo de IAM, observamos um padrão consistente entre os grupos de IAMSEST e IAMCEST, assim como no período até 30 dias (Figura 1).

![Mortalidade por classe Killip e tipo de IAM aos 30 dias e global](image)

**Figura 1 – Mortalidade (%) por tipo de IAM e classe Killip aos 30 dias e seguimento clínico global. **p=0,0001; *p=0,001; IAMSEST: IAM sem elevação do segmento ST; IAMCEST: IAM com elevação do segmento ST
Quando analisamos separadamente, como parte da análise pré-especificada, as distribuições de sobrevida aos 30 dias foram semelhantes entre os pacientes sem elevação

versus com elevação do segmento ST e com aumentos progressivos conforme piora da classe Killip, p < 0,0001 pelo teste de log-rank (Figuras 2a e 2b). De modo consistente, no tempo total de seguimento observamos um padrão similar entre os pacientes sem elevação versus com elevação de ST e aumentos progressivos conforme a classe Killip, p < 0,0001 pelo teste de log-rank (Figuras 3a e 3b).

Modelos de risco proporcional de Cox

Para a construção dos modelos de risco foram incluídas características clínicas como idade, gênero, fatores de risco cardiovascular, dados hemodinâmicos de exame físico, história prévia, tratamentos e procedimentos realizados previamente e durante a hospitalização, classificação de Killip e Kimball, e tipo de IAM, e selecionamos as variáveis que mostraram significância para a associação com o desfecho mortalidade. Quatro modelos foram calculados para explorar a associação entre a classe Killip, o tipo de IAM e o risco para óbito, utilizando variáveis clínicas da admissão e da fase hospitalar, de modo pré-especificado (Tabelas 2-5). De modo consistente, a classificação de Killip e Kimball foi preditor independente de risco elevado para mortalidade.

Discussão

Nessa coorte brasileira de pacientes hospitalizados com IAM e seguimento em longo prazo pós-IAM, a determinação da presença e da gravidade da IC à admissão hospitalar pela classificação de Killip e Kimball foi fator prognóstico independente para a mortalidade, com impacto significativo nos pacientes com IAMSEST de modo similar àquele observado nos pacientes com IAMCEST. Até o presente momento, pelo nosso conhecimento, esta investigação apresenta três aspectos relevantes: 1) primeira validação do índice de gravidade de IC proposta por Killip e Kimball em uma coorte brasileira de IAM, particularmente na era contemporânea de reperfusão e tratamento anti-trombótico adjunto; 2) primeira validação desse índice em pacientes com IAMCEST e IAMSEST na população brasileira; 3) primeira análise exploratória do impacto prognóstico dessa classificação em seguimento muito tardio pós-IAM.

Ressaltamos que a classificação de Killip apresentou-se como importante preditor independente para óbito, mesmo após ajuste para importantes covariáveis, como características clínicas, laboratoriais, eletrocardiográficas e angiográficas relacionadas com risco de mortalidade em pacientes com IAM, assim como para ocorrência de complicações relevantes e associadas de modo independente ao risco de óbito, incluindo parada cardiorespiratória durante a hospitalização e insuficiência renal aguda.

De modo relevante, esta análise ressalta a utilidade clínica do exame físico como ferramenta simples, de fácil aplicabilidade e sem requerimentos tecnológicos sofisticados na identificação de sinais e sintomas de IC logo à admissão hospitalar, fornecendo informações relevantes na estratificação precoce do risco de mortalidade em pacientes com IAMSEST, de modo similar aos casos de IAMCEST. Em associação com a idade, a classificação de Killip e Kimball representou, respectivamente, cerca de 67% e 80% do valor prognóstico total na admissão hospitalar para os pacientes com IAMCEST e IAMSEST (dados não mostrados). Em todos os modelos de risco proporcional de Cox, as variáveis e associações independentes com o risco de mortalidade foram consistentemente mantidas ao final do processo Stepwise, particularmente com a idade, o que ressalta a classificação de Killip como robusto preditor de mortalidade.

Detectamos uma associação direta, significativa e independente entre a classificação de Killip e o risco para ocorrência de óbito no tempo de seguimento muito tardio. De fato, houve uma consistente estratificação de risco aos 30 dias, cinco anos e tempo de seguimento total pós-IAM. Khot e cols. avaliaram pacientes com angina instável e IAMSEST de um banco de dados dos estudos randomizados GUSTO I, IIb, PURSUIT, PARAGON-A e PARAGON-B para determinar o valor prognóstico da classificação de Killip. A mortalidade foi avaliada aos 30 dias e aos seis meses. Os autores identificaram associação independente com a mortalidade total nesses intervalos de tempo, mas utilizaram somente as variáveis da admissão, não ajustaram para tratamentos da fase hospitalar, e os dados foram derivados de pacientes mais selecionados por terem sido incluídos em estudos clínicos randomizados. Nosso estudo, entretanto, apresenta algumas diferenças importantes. Incluímos pacientes recrutados na prática diária e não de estudos randomizados, portanto com características de maior gravidade, como maior prevalência de comorbidades e idade mais avançada, de mais provável representatividade e aplicabilidade no mundo real. De modo contrário ao outro estudo, nossos modelos de Cox foram ajustados para a utilização de terapias farmacológicas e procedimentos intra-hospitalares notoriamente com impacto na sobrevida. Essa potencial interação foi avaliada nos modelos e, apesar da eventual atenuação da associação com o risco pelo motivo descrito, a classificação de Killip permaneceu significativamente e de modo independente associada com mortalidade.

O padrão de distribuição das curvas de sobrevida aos 30 dias e no seguimento de longo prazo, de acordo com a classe Killip, provavelmente refletiu o elevado risco intrínseco do evento coronário agudo, particularmente naqueles que desenvolveram choque cardiogênico, principalmente no IAMCEST, com nítida separação entre as curvas. No grupo de IAMSEST, as curvas referentes às classes Killip III e IV tiveram padrão semelhante. Ressaltamos que os números proporcionais menores de pacientes nessas classes de pior prognóstico não permitem afirmar que o comportamento realmente difere ou é similar apenas pelo aspecto visual. Ressaltamos também que há relevante significância estatística para as diferenças entre as distribuições de sobrevida, tanto para 30 dias quanto para o seguimento de longo prazo, e de modo similar para os dois grupos de IAM. Mais ainda, como o número de óbitos cumulativo aumenta com o seguimento de longo prazo, as curvas de Kaplan-Meier refletem as distribuições conforme o risco inerente à classe Killip. Os pacientes em Killip I têm
Figura 2a, 2b – Curvas de Kaplan-Meier para sobrevida acumulada a classe Killip em pacientes com diagnóstico de IAMCEST (a) versus IAMSEST (b) até 30 dias de seguimento.
Figura 3a, 3b – Curvas de Kaplan-Meier para sobrevida acumulada conforme a classe Killip em pacientes com diagnóstico de IAMCEST (a) versus IAMSEST (b) no seguimento de longo prazo.
Tabela 2 – Modelo de Cox com dados iniciais à admissão hospitalar com preditores de mortalidade no seguimento global em pacientes com IAMCEST

	B	SE	Wald	p	HR	IC 95%
Idade	0.032	0.006	24,986	0.000	1,032	1,019
RM prévia	0.390	0.173	5,088	0.024	1,477	1,052
IC	0.496	0.246	4,049	0.044	1,641	1,013
DM	0.315	0.146	4,686	0.030	1,370	1,030
FC	0.008	0.003	5,366	0.021	1,008	1,001
Peso	-0.012	0.006	4,251	0.039	0.988	0.977
Killip I	 	 	 	 	 	10,424
Killip II	0.386	0.200	3,728	0.054	1,472	0,994
Killip III	0.658	0.379	3,007	0.083	1,930	0,918
Killip IV	0.843	0.338	6,220	0.013	2,323	1,198

B: coeficiente B; DM: diabetes melito; FC: frequência cardíaca; HR: Hazard Ratio; IC: insuficiência cardiaca prévia; RM: cirurgia de revascularização do miocárdio; SE: Standard Error. * Idade, FC e peso em incrementos de uma unidade.

Em termos de plausibilidade biológica enfatizando o impacto negativo na sobrevida, as associações da classificação de Killip e Kimball com o risco aumentado de óbito foram consistentes com variáveis do exame físico à admissão hospitalar representativas do estado hemodinâmico dos pacientes, isto é, com níveis de PAS, PAD e FC em repouso, e características clínicas relacionadas a maior fragilidade orgânica e capacidade atenuada de resposta ao evento agudo isquêmico miocárdico, isto é, maior faixa etária, menor peso corporal, comorbidades como DM e cirurgia de RM prévia, denotando aterosclerose coronariana avançada. De fato, a classificação de Killip e Kimball manteve associação significativa com o risco de óbito, mesmo após ajuste para essas variáveis de impacto biológico e estatístico. De modo relevante, os resultados deste estudo identificaram esses aspectos da fisiologia cardiovascular no impacto prognóstico, tanto nos pacientes com IAMSEST quanto naqueles com IAMCEST.

excelente prognóstico, tanto em curto quanto em longo prazo, sendo que aqueles em Killip III ou IV denotam maiores áreas de necrose, remodelamento e disfunção sistólica ventricular esquerda, além de provavelmente maior extensão de DAC. Assim, os pacientes com IAMCEST que evoluem nessas classes mais avançadas de gravidade de IC que sobreviveram à fase inicial, provavelmente por terem a artéria relacionada ao IAM tratada com alguma estratégia de reperfusão, podem ter apresentado menor risco de novos eventos devido à DAC mais frequentemente uniarterial ou idade mais jovem. Por outro lado, os pacientes com IAMSEST, com DAC mais extensa e idade talvez mais avançada, que sobreviveram à fase mais precoce, podem ter sido mais suscetíveis a novos eventos trombóticos recorrentes, incluindo novos IAM e miocardiopatia isquêmica com potencial letalidade, o que poderia explicar o maior risco observado para esse grupo específico.
Tabela 4 – Modelo de Cox com dados da fase hospitalar com preditores de mortalidade no seguimento global em pacientes com IAMCEST

	B	SE	Wald	p	HR	IC 95%	
Idade	0,034	0,006	27,812	0,000	1,034	1,022	1,048
RM	0,498	0,174	8,159	0,004	1,646	1,169	2,317
IC	0,552	0,246	5,024	0,025	1,737	1,072	2,814
DM	0,254	0,149	2,914	0,088	1,289	0,963	1,725
FC	0,008	0,003	5,866	0,015	1,008	1,001	1,014
Peso	−0,016	0,006	7,270	0,007	0,984	0,973	0,996
Killip I	11,939						
Killip II	0,295	0,201	2,153	0,142	1,343	0,906	1,992
Killip III	0,622	0,380	2,676	0,102	1,683	0,884	3,928
Killip IV	1,046	0,342	9,362	0,002	2,847	1,457	5,566
Estatinha	0,335	0,150	4,996	0,025	1,398	1,042	1,876
PCR	0,852	0,351	5,888	0,015	2,344	1,178	4,633
Choque	1,025	0,207	24,444	0,000	2,787	1,856	4,184
IRA	0,922	0,232	15,792	0,000	2,514	1,596	3,962
AAS	−0,360	0,177	4,137	0,042	0,697	0,493	0,987

AAS: ácido acetilsalicílico; **B**: coeficiente B; **DM**: diabetes melito; **FC**: frequência cardíaca; **HR**: Hazard Ratio; **IC**: insuficiência cardíaca prévia; **IRA**: insuficiência renal aguda; **PCR**: parada cardiorrespiratória; **RM**: cirurgia de revascularização do miocárdio; **SE**: Standard Error; *Idade, FC e peso em incrementos de uma unidade.

Tabela 5 – Modelo de Cox com dados da fase hospitalar com preditores de mortalidade no seguimento global em pacientes com IAMSEST

	B	SE	Wald	p	HR	IC 95%	
Idade	0,044	0,008	28,213	0,000	1,045	1,028	1,062
RM	0,095	0,244	0,151	0,697	1,100	0,881	1,774
IC	0,436	0,371	1,382	0,240	1,546	0,748	3,198
DM	0,196	0,193	1,033	0,309	1,216	0,834	1,775
FC	0,011	0,004	7,410	0,006	1,011	1,003	1,020
Peso	−0,008	0,008	1,029	0,310	0,992	0,977	1,007
Killip I	16,558						
Killip II	0,147	0,261	0,315	0,574	1,158	0,694	1,932
Killip III	1,265	0,477	7,041	0,008	3,544	1,392	9,023
Killip IV	1,608	0,487	10,890	0,001	4,993	1,921	12,974
Estatinha	0,176	0,197	0,797	0,372	1,192	0,811	1,753
PCR	0,033	0,002	9,646	0,003	1,033	0,247	4,316
Choque	0,694	0,336	4,268	0,039	2,001	1,036	3,864
IRA	0,634	0,278	5,177	0,023	1,884	1,092	3,252
AAS	−0,545	0,259	4,427	0,035	0,580	0,349	0,963

AAS: ácido acetilsalicílico; **B**: coeficiente B; **DM**: diabetes melito; **FC**: frequência cardíaca; **HR**: Hazard Ratio; **IC**: insuficiência cardíaca prévia; **IRA**: insuficiência renal aguda; **PCR**: parada cardiorrespiratória; **RM**: cirurgia de revascularização do miocárdio; **SE**: Standard Error; *Idade, FC e peso em incrementos de uma unidade.
Como efeito de comparação com séries de casos ou dados retirados de estudos clínicos, as taxas de mortalidade em seis meses no estudo de Khot e cols. foram: Killip I, 5%; Killip II, 14,7%; Killip III/IV, 23%. Salientamos que esses dados referem-se somente à população de IAMSEST que foi analisada pelos autores, e apenas por seis meses de seguimento. Confrontando os dados da nossa coorte (Killip I, 17,7%; Killip II, 27,3%; Killip III, 30,4%; Killip IV, 48,8%) com os números anteriormente citados e também com os dados iniciais dos próprios Killip e Kimball, observamos que a implementação de terapias fármaco-invasivas e de reperfusão disponíveis nas últimas décadas, conforme os tipos de IAM, notadamente contribuiu para a redução das proporções de óbitos e de insuficiência cardíaca grave pós-IAM.

Algumas limitações podem ser mencionadas neste estudo. A acurácia, a concordância e a variabilidade inter/intraobservador quanto aos sinais de IC detectáveis ao exame físico da admissão não puderam ser determinadas por questões óbvias de temporalidade e praticalidade. Por outro lado, como os critérios da classificação de Killip e Kimball foram propostos para serem aplicados de modo simples, e as fichas de dados dos pacientes foram revisadas para verificar coerência, mesmo que houvesse alguma discordância, a associação com risco teria sido atenuada e a hipótese não seria comprovada, fato que não observamos. Outro aspecto é a comparação com outros testes diagnósticos de disfunção ventricular esquerda (VE), como o ecocardiograma transtorácico, da fração de ejeção do VE e a dosagem do NT-pro-BNP. Entretanto, o ponto de vista de aplicabilidade clínica e generalização dos resultados, a utilização desses exames complementares acrescentaria custos adicionais e dificuldades logísticas aos objetivos e hipóteses desta investigação clínica. Outras limitações são esperadas, como em outros estudos observacionais, como possíveis viéses de seleção e fatores de confusão não elucidados, portanto sem ajuste ideal nos modelos de risco proporcional de Cox. Contudo, esforços sistemáticos foram implementados para minimizar esses aspectos, incluindo a coleta padronizada de dados dos pacientes com diagnóstico de IAM, a inserção dessas informações clínicas de modo prospectivo, padronizado e auditado sob a condição cega ao desfecho mortalidade, e a contabilização por seguimento de praticamente 100% dos pacientes, além do ajuste nos modelos de Cox para importantes covariáveis.

Conclusões

Este estudo enfatiza a importância prognóstica da determinação da presença e gravidade de insuficiência cardíaca em pacientes com IAM e, especificamente, valida sua relevância e aplicabilidade no cenário de IAM sem elevação de ST de modo similar ao do IAM com elevação de ST. De modo adicional, em termos de relevância científica e clínica, o presente estudo agrega informação à evidência disponível sobre a classificação de Killip e Kimball em termos do valor prognóstico para mortalidade no seguimento muito tardio pós-IAM. A classificação de Killip e Kimball demonstra capacidade discriminatória do risco de mortalidade total, mesmo após ajuste para covariáveis clínicas relevantes na era contemporânea.

Agradecimentos

Este estudo recebeu suporte estatístico de João Ítalo Dias França, do Laboratório de Estatística e Epidemiologia (IDPC).

Construção dos autores

Concepção e desenho da pesquisa: Oliveira GBF; Obtenção de dados: Mello BHG, Oliveira GBF, Ramos RF; Lopes BBC, Barros CBS, Carvalho EO, Teixeira FBP, Arruda GDS, Revelo MSC, Piegas LS; Análise e interpretação dos dados e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Oliveira GBF, Ramos RF, Piegas LS; Análise estatística: Oliveira GBF, Arruda GDS, Revelo MSC; Redação do manuscrito: Mello BHG, Oliveira GBF, Lopes BBC, Barros CBS, Carvalho EO, Teixeira FBP, Arruda GDS, Revelo MSC.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Referências

1. Killip T 3º, Kimball JT. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am J Cardiol. 1967;20(4):457-64.
2. Lee KL, Wooddell LH, Topol EJ, Weaver WD, Betriu A, Col J, et al. Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. GUSTO-I Investigators. Circulation. 1995;91(6):1659-68.
3. DeGeare VS, Boura JA, Grines LL, O’Neill WW, Grines CL. Predictive value of the Killip classification in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Am J Cardiol. 2001;87(9):1035-8.
4. Khot UN, Jia G, Moliterno DJ, Lincoff AM, Khot MB, Harrington RA, et al. Prognostic importance of physical examination for heart failure in non-ST-elevation acute coronary syndromes: the enduring value of Killip classification. JAMA. 2003;290(16):2174-81.
5. Piegas LS, Feitosa G, Mattos LA, Nicolau JC, Rossi Neto JM, Timerman Revelo MSC. Arq Bras Cardiol. 2014; 103(2):107-117.
6. Nicolau JC, Timerman A, Piegas LS, Marin-Neto JA, Rassi Jr A. Guidelines for Unstable Angina and Non-ST-Segment Elevation Myocardial Infarction of the Brazilian Society of Cardiology (II Edition, 2007). Arq Bras Cardiol. 2007;89(4):e89-e131.

7. Haddad N. Metodologia de estudos em ciências da saúde. São Paulo: Roca; 2004.

8. Hennekens CH, Julie E. Epidemiology in medicine. Philadelphia: Lippincott Williams & Wilkins; 1987.

9. Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al; Global Registry of Acute Coronary Events Investigators. Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med. 2003;163(19):2345-53.

10. Fox KA, Dabbous OH, Goldberg RJ, Pieper KS, Eagle KA, Van de Werf F, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndromes: prospective multinational observational study (GRACE). BMJ. 2006;333(7578):1091-4.

11. Mangione S, Nieman LZ. Cardiac auscultatory skills of internal medicine and family practice trainees: a comparison of diagnostic proficiency. JAMA. 1997;278(9):717-22. Erratum in JAMA. 1998;279(18):1444.

12. Tavel ME. Cardiac auscultation: a glorious past – but does it have a future? Circulation. 1996;93(6):1250-3.

13. Schneiderman H. Cardiac auscultation and teaching rounds: how can auscultation be resuscitated? Am J Med. 2001;110(3):233-5.

14. Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574-81.

15. Fuster V. 50th anniversary historical article: myocardial Infarction and coronary care units. J Am Coll Cardiol. 1999;34(7):1851-3.