Neutrino Mixing and Geometric \(CP \) Violation with \(\Delta(27) \) Symmetry

Ernest Ma

Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

Abstract

Predictive spontaneous \(CP \) violation is possible if it is obtained geometrically through a non-Abelian discrete symmetry. I propose such a model of neutrino mass and mixing based on \(\Delta(27) \).
Since the experimental determination of nonzero θ_{13} in neutrino oscillations, the next big question in neutrino physics is CP violation. Theoretically, this should be understood together with the mixing angles themselves. Whereas non-Abelian discrete symmetries (the first $[1, 2, 3, 4]$ of which was A_4) are useful in obtaining tribimaximal mixing $[5]$ which requires $\theta_{13} = 0$ and no CP violation, the data now require either a modification or a new approach. In the former, CP violation may be incorporated by allowing nonzero θ_{13} and complex Yukawa couplings. A simple example is a variation $[6]$ of the original A_4 model $[4]$ for tribimaximal mixing. In the latter, the discrete symmetry may be extended to include generalized CP transformations $[7]$, which in the case $[8]$ of S_4 could lead to maximal CP violation as well as maximal θ_{23}. Another possible approach in this category is spontaneous geometric CP violation $[9]$ using $\Delta(27)$, which has recently been applied $[10]$ successfully to the quark sector. This paper deals with the lepton sector $[11, 12, 13]$ and how it may be related $[14]$ to dark matter.

The non-Abelian discrete symmetry $\Delta(27)$ has 27 elements, with nine one-dimensional irreducible representations $\mathbf{1}_i$ ($i = 1, ..., 9$) and two three-dimensional ones $\mathbf{3}$ and $\mathbf{3}^*$. Its 11×11 character table as well as the 27 defining 3×3 matrices of its $\mathbf{3}$ representation are given in Ref. $[11]$. The group multiplication rules are

$$\mathbf{3} \times \mathbf{3} = \mathbf{3}^* + \mathbf{3}^* + \mathbf{3}^*,$$

$$\mathbf{3} \times \mathbf{3}^* = \sum_{i=1}^{9} \mathbf{1}_i.$$ \hfill (1)

The important property to notice is that $\mathbf{3} \times \mathbf{3} \times \mathbf{3}$ has three invariants: $123 + 231 + 312$ [which is also invariant under $SU(3)$], $123 + 231 + 312 + 213 + 321 + 132$ [which is also invariant under A_4], and $111 + 222 + 333$.

In this paper, the assignments of the lepton and Higgs fields are different from previous studies $[11, 12, 13]$, with the new requirement that CP be spontaneously broken geometri-
Using the decomposition of 3×3 and $\langle \phi_0^i \rangle = v_i$, the charged-lepton mass matrix is given by

$$M_l = \begin{pmatrix} f_e v_1^* & f_\mu v_1^* & f_\tau v_1^* \\ f_e v_2^* & f_\mu \omega v_2^* & f_\tau \omega v_2^* \\ f_e v_3^* & f_\mu \omega v_3^* & f_\tau \omega v_3^* \end{pmatrix} \begin{pmatrix} v_1 & 0 & 0 \\ 0 & v_2 & 0 \\ 0 & 0 & v_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} \begin{pmatrix} f_e & 0 & 0 \\ 0 & f_\mu & 0 \\ 0 & 0 & f_\tau \end{pmatrix}, \tag{3}$$

where $\omega = \exp(2\pi i/3) = -1/2 + i\sqrt{3}/2$. This M_l is identical in form to that of the original A_4 model of Ref. [11]. The new feature here is that CP conservation is imposed on the Lagrangian (so that all the Yukawa couplings are real) but it is spontaneously broken by the vacuum, i.e. [9, 10]

$$\langle v_1, v_2, v_3 \rangle = v(\omega, 1, 1). \tag{4}$$

Hence

$$M_l = \begin{pmatrix} \omega^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix}, \tag{5}$$

where $m_e = \sqrt{3}f_e v$, etc.

For the neutrino mass matrix, three Higgs doublets

$$\begin{pmatrix} \zeta^+ \\ \zeta^0 \end{pmatrix}_i \sim \{1, 2, 3\} \tag{6}$$

are added so that the dimension-five operator $\Lambda^{-1}(\nu \nu \phi^0)\zeta^0$ for the 3×3 Majorana neutrino mass matrix has six invariants, i.e.

$$M_\nu = \begin{pmatrix} \omega(f_1 + f_2 + f_3) & f_4 + \omega f_5 + \omega^2 f_6 & f_4 + \omega^2 f_5 + \omega f_6 \\ f_4 + \omega f_5 + \omega^2 f_6 & f_1 + \omega^2 f_2 + \omega f_3 & \omega(f_4 + f_5 + f_6) \\ f_4 + \omega^2 f_5 + \omega f_6 & \omega(f_4 + f_5 + f_6) & f_1 + \omega f_2 + \omega^2 f_3 \end{pmatrix}, \tag{7}$$

where $\Lambda^{-1}v\langle \zeta^0 \rangle$ have been absorbed into the definitions of the f parameters.

Using Eq. (5), the neutrino mass matrix in the tribimaximal basis is now given by

$$M_{\nu}^{(3,2,3)} = \begin{pmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ \omega & 0 & 0 \\ 0 & -i/\sqrt{2} & i/\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & \omega & 0 \\ 1/\sqrt{2} & 0 & -i/\sqrt{2} \\ 1/\sqrt{2} & 0 & i/\sqrt{2} \end{pmatrix}.$$

3
\[
\begin{pmatrix}
\omega d + b & \omega e & c \\
\omega e & a & \omega f \\
c & \omega f & \omega d - b
\end{pmatrix},
\]

where \(a = f_1 + f_2 + f_3\), \(b = f_1 - (f_2 + f_3)/2\), \(c = \sqrt{3}(f_3 - f_2)/2\), \(d = f_4 + f_5 + f_6\), \(e = \sqrt{2}f_4 - (f_5 + f_6)/\sqrt{2}\), \(f = \sqrt{3}(f_5 - f_6)/\sqrt{2}\). The tribimaximal limit, i.e.

\[
U_{\nu} = \begin{pmatrix}
\sqrt{2/3} & 1/\sqrt{3} & 0 \\
-1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\
-1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2}
\end{pmatrix}
\]

is reached for \(c = e = f = 0\). To lowest order, \(c \neq 0\) implies \(\tan^2 \theta_{12} > 0.5\) and \(\theta_{13} \neq 0\); \(e \neq 0\) implies \(\tan^2 \theta_{12}\) can be greater or less than \(1/2\) and \(\theta_{13} = 0\); \(f \neq 0\) implies \(\tan^2 \theta_{12} < 1/2\) and \(\theta_{13} \neq 0\). Given that data prefer the last choice, it will be assumed from now on that \(c\) and \(e\) are negligible and only nonzero \(f\) is considered. The immediate consequence of this is that \(\theta_{12}\) and \(\theta_{13}\) are related, and that given \(\theta_{13}\) and \(\theta_{23}\), \(|\tan \delta_{CP}|\) is determined.

Since \(c = e = 0\) has been assumed, \(M_{\nu}^{(1,2,3)}\) is diagonalized by

\[
\begin{pmatrix}
m_2 & 0 \\
0 & m_3
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta e^{i\phi} \\
-\sin \theta e^{-i\phi} & \cos \theta
\end{pmatrix} \begin{pmatrix}
a & \omega f \\
\omega f & \omega d - b
\end{pmatrix} \begin{pmatrix}
\cos \theta & -\sin \theta e^{-i\phi} \\
\sin \theta e^{i\phi} & \cos \theta
\end{pmatrix}.
\]

Since \(a, b, d, f\) are real, this implies

\[
\tan \phi = \frac{\sqrt{3}(a + b)}{a - b - 2d}, \quad \tan 2\theta = \frac{4f\sqrt{a^2 + b^2 + d^2 + ab - ad + bd}}{b^2 - 2a^2 + 2d^2 - ab}.
\]

With this structure, \(|\sin \theta_{13}| = |\sin \theta|/\sqrt{3}\), which implies

\[
\tan^2 \theta_{12} = \frac{1 - 3 \sin^2 \theta_{13}}{2},
\]

which agrees very well with data. As for the phase \(\phi\), it is given by the condition

\[
\tan^2 \theta_{23} = \frac{\left(1 - \frac{\sqrt{3} \sin \theta_{13} \cos \phi}{\sqrt{1 - 3 \sin^2 \theta_{13}}}\right)^2 + \frac{2 \sin^2 \theta_{13} \sin^2 \phi}{1 - 3 \sin^2 \theta_{13}}}{\left(1 + \frac{\sqrt{3} \sin \theta_{13} \cos \phi}{\sqrt{1 - 3 \sin^2 \theta_{13}}}\right)^2 + \frac{2 \sin^2 \theta_{13} \sin^2 \phi}{1 - 3 \sin^2 \theta_{13}}}. \tag{13}
\]
Since m_2^2 and m_3^2 are corrected by terms proportional to f^2 which are small, the following approximation for the neutrino masses is valid for the analysis below, i.e.

$$m_1 = \sqrt{b^2 - db + d^2}, \quad m_2 = |a|, \quad m_3 = \sqrt{b^2 + db + d^2}.$$ \hspace{1cm} (14)

Hence $2bd = \pm |\Delta m_{32}^2| \equiv \pm \Delta$ for normal (inverted) ordering of neutrino masses. Since $\Delta m_{21}^2 < \Delta$, $m_1 \simeq m_2$ will be also assumed below.

Let $\Delta = 2.35 \times 10^{-3}$ eV2, which is the central value from the 2012 PDG compilation, then using $d = \pm \Delta/2b$ and $a = \pm \sqrt{b^2 - bd + d^2}$, this model has the prediction

$$\sum m > (2 + \sqrt{3}) \sqrt{\frac{\Delta}{2}} = 0.13 \text{ eV for normal ordering},$$ \hspace{1cm} (15)

$$\sum m > (2\sqrt{3} + 1) \sqrt{\frac{\Delta}{2}} = 0.15 \text{ eV for inverted ordering.}$$ \hspace{1cm} (16)

Using the latest Planck result $[15]$ that $\sum m < 0.23$ eV, the range of values for b is also obtained:

$$0.015 < b < 0.078 \text{ eV for normal ordering,}$$ \hspace{1cm} (17)

$$0.016 < b < 0.073 \text{ eV for inverted ordering.}$$ \hspace{1cm} (18)

Using Eq. (13) for $\sin^2 2\theta_{23} > 0.92$ and $\sin^2 2\theta_{13} \simeq 0.1$, the constraint

$$|\tan \phi| > 1, \quad \text{or} \quad |\sin \phi| > 1/\sqrt{2}$$ \hspace{1cm} (19)

is obtained. Using Eq. (11), this restricts $a > 0$ for normal ordering, and $a > 0$ with $b > 0.02$ or $a < 0$ with $b < 0.04$ for inverted ordering of neutrino masses.

The invariant CP violating parameter $J_{CP} = Im(U_{\mu 3}U_{e 3}^*U_{e 2}U_{\mu 2}^*)$ is simply given in this model by

$$J_{CP} = \frac{\sin \theta_{13} \sqrt{1 - 3\sin^2 \theta_{13} \sin \phi}}{3\sqrt{2}}.$$ \hspace{1cm} (20)

Using $\sin \theta_{13} \simeq 0.16$ and $|\sin \phi| > 1/\sqrt{2}$, the allowed range

$$0.026 < |J_{CP}| < 0.036$$ \hspace{1cm} (21)
is thus obtained. As for the effective neutrino mass in neutrinoless double beta decay, its
allowed range is approximately given by

\[0.03 < m_{ee} < 0.07 \text{ eV}. \] \hspace{1cm} (22)

Thus this model has two very specific predictions: (1) \(|J_{CP}|\) is between 0.026 and 0.036, and
(2) \(m_{ee}\) is between 0.03 and 0.07 eV.

The dimension-five operator \([16]\) for Majorana neutrino mass considered in the above may
be implemented \([14]\) in one loop, with dark matter (\(Z_2\) odd) in the loop. This mechanism

\[
\begin{align*}
\langle \phi^0 \rangle & \quad \langle \phi^0 \rangle \\
\eta^0 & \quad \eta^0 \\
\nu & \quad N \times N \quad \nu
\end{align*}
\]

Figure 1: One-loop generation of scotogenic Majorana neutrino mass.

has been called “scotogenic”, from the Greek “scotos” meaning darkness. Because of the
allowed \((\lambda_5/2)(\Phi^\dagger \eta)^2 + H.c.\) interaction, \(\eta^0 = (\eta_R + i\eta_I)/\sqrt{2}\) is split so that \(m_R \neq m_I\). The
diagram of Fig. 1 can be computed exactly \([14]\), i.e.

\[
(M_\nu)_{ij} = \sum_k \frac{h_{ik} h_{jk} M_k}{16\pi^2} \left[\frac{m_R^2}{m_R^2 - M_k^2} \ln \frac{m_R^2}{M_k^2} - \frac{m_I^2}{m_I^2 - M_k^2} \ln \frac{m_I^2}{M_k^2} \right]. \] \hspace{1cm} (23)

A good dark-matter candidate is \(\eta_R\) as first pointed out in Ref. \([14]\), whereas its stability was
already anticipated in Ref. \([17]\). It was subsequently proposed by itself as dark matter in
Ref. \([18]\) (to render the standard-model Higgs boson very heavy, which is now ruled out by
data) and studied in detail in Ref. \([19]\). The \(\eta\) doublet has become known as the “inert”
Higgs doublet, but it does have gauge and scalar interactions even if it is the sole addition to
the standard model. In principle, the lightest N is also a possible dark-matter candidate [20], but its mass and couplings may be severely restricted by the experimental limit on $\mu \rightarrow e\gamma$ decay, unless a symmetry exists to suppress it, which is possible in this case.

To accommodate the $\Delta(27)$ symmetry, the external $\phi^0\phi^0$ lines are replaced by $\phi^0_1\phi^0_j$, and the internal $\eta^0 (N)$ lines are replaced by η^0_i, $N_i \sim \mathbf{3}$ on one side, and $\eta^0 \sim \mathbf{1}$, $N_i \sim \mathbf{3}^*$ on the other.

In conclusion, a special mechanism of CP violation has been implemented in a complete model of charged-lepton and neutrino masses and mixing, using the non-Abelian discrete symmetry $\Delta(27)$. The Lagrangian is required to conserve CP resulting in real Yukawa couplings, but the Higgs vacuum breaks CP spontaneously and geometrically. The resulting model has some very specific predictions, as given by Eqs. (12) to (22).

Acknowledgment: I thank the hospitality of the Institute of Advanced Studies, Nanyang Technological University, Singapore, and the Institute of Physics, Academia Sinica, Taipei, Taiwan. This work is supported in part by the U. S. Department of Energy under Grant No. DE-AC02-06CH11357.

References

[1] E. Ma and G. Rajasekaran, Phys. Rev. D64, 113012 (2001).

[2] E. Ma, Mod. Phys. Lett. A17, 2361 (2002).

[3] K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. B552, 207 (2003).

[4] E. Ma, Phys. Rev. D70, 031901 (2004).

[5] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B530, 167 (2002).

[6] H. Ishimori and E. Ma, Phys. Rev. D86, 045030 (2012).
[7] W. Grimus and L. Lavoura, Phys. Lett. B579, 113 (2004).

[8] R. N. Mohapatra and C. C. Nishi, Phys. Rev. D86, 073007 (2012).

[9] G. C. Branco, J. M. Gerard, and W. Grimus, Phys. Lett. B136, 383 (1984).

[10] G. Bhattacharyya, I. de Medeiros Varzielas, and P. Leser, Phys. Rev. Lett. 109, 241603 (2012).

[11] E. Ma, Mod. Phys. Lett. A21, 1917 (2006).

[12] I. de Medeiros Varzielas, S. F. King, and G. G. Ross, Phys. Lett. B648, 201 (2007).

[13] E. Ma, Phys. Lett. B660, 505 (2008).

[14] E. Ma, Phys. Rev. D73, 077301 (2006).

[15] Planck Collaboration, P. A. R. Ade et al., arXiv:1303.5076 [astro-ph/CO].

[16] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

[17] N. G. Deshpande and E. Ma, Phys. Rev. D18, 2574 (1978).

[18] R. Barbieri, L. J. Hall, and V. S. Rychkov, Phys. Rev. D74, 015007 (2006).

[19] L. Lopez Honorez, E. Nezri, J. F. Oliver, and M. H. G. Tytgat, JCAP 0702, 028 (2007).

[20] J. Kubo, E. Ma, and D. Suematsu, Phys. Lett. B642, 18 (2006).