Parabacteroides massiliensis sp. nov., a new bacterium isolated from a fresh human stool specimen

S. Bellali1,2, C. I. Lo2,3, S. Naud1,2, M. D. M. Fonkou1,2, N. Armstrong1,2, D. Raoult1,2, P.-E. Fournier2,3 and F. Fenollar2,3
1) Aix Marseille Université, IRD, AP-HM, MEVI, 2) IHU-Méditerranée Infection and 3) Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France

Abstract

Parabacteroides massiliensis sp. nov., strain Marseille-P2231T (= CSURP2231 = DSM 101860) is a new species within the family Tannerellaceae. It was isolated from a stool specimen of a 25-year-old healthy woman. Its genome was 5 013 798 bp long with a 45.7 mol% G+C content. The closest species based on 16S rRNA sequence was Parabacteroides merdae strain JCM 9497T with 98.19% sequence similarity. Considering phenotypic features and comparative genome studies, we proposed the strain Marseille-P2231T as the type strain of Parabacteroides massiliensis sp. nov., a new species within the genus Parabacteroides.

Keywords: Bacteria, culturomics, human gut, Parabacteroides massiliensis, taxono-genomics

Original Submission: 29 July 2019; Accepted: 30 August 2019
Article published online: 7 September 2019

Corresponding author: F. Fenollar, Institut Hospitalo-Universitaire Méditerranée-Infection, 19–21 Boulevard Jean Moulin, 13385, Marseille cedex 05, France.
E-mail: florence.fenollar@univ-amu.fr

Description and genome sequencing, to describe this strain [10,11]. Here we describe a new Parabacteroides massiliensis sp. nov., strain Marseille-P2231T (= CSURP2231 = DSM 101860) according the concept of taxono-genomics.

Isolation and growth conditions

In 2017, we isolated from a fresh stool sample of a 25-year-old healthy woman an unidentified bacterial strain. Screening was performed using MALDI-TOF MS on a Microflex LT spectrometer (Bruker Daltonics, Bremen, Germany) as previously described [12]. The obtained spectra (Fig. 1) were imported into MALDI BIO TyPER 3.0 software (Bruker Daltonics) and analysed against the main spectra of the bacteria included in two databases (Bruker and the constantly updated MEPHI databases). The study was validated by the ethics committee of the IHU Méditerranée Infection under number 2016-010. Initial growth was obtained after 72 hours of culture in a Colombia agar enriched with 5% sheep’s blood (bioMérieux, Marcy l’Etoile, France) in strict anaerobic conditions at 37°C and pH 7.5.
Strain identification

The 16S rRNA gene was sequenced to classify this bacterium. Amplification was carried out using the primer pair fD1 and rP2 (Eurogentec, Angers, France) and sequencing using the Big Dye® Terminator v1.1 Cycle Sequencing Kit and ABI Prism 3130xl Genetic Analyzer capillary3500xLGenetic Analyzer capillary sequencer (Thermo Fisher, Saint-Aubin, France), as previously described [13]. The 16S rRNA nucleotide sequences

FIG. 1. MALDI-TOF MS reference mass spectrum of Parabacteroides massiliensis sp. nov. Spectra from 12 individual colonies were compared and a reference spectrum was generated.

FIG. 2. Phylogenetic tree showing the position of Parabacteroides massiliensis strain Marseille-P2231T relative to other phylogenetically close neighbours. The respective GenBank accession numbers for 16S rRNA genes are indicated in parenthesis. Sequences were aligned using MUSCLE v3.8.31 with default parameters and phylogenetic inferences were obtained using the maximum likelihood method within MEGA 7 software. Numbers at the nodes are percentages of bootstrap values obtained by repeating the analysis 1000 times to generate a majority consensus tree. The scale bar indicates a 2% nucleotide sequence divergence.

© 2019 The Authors. Published by Elsevier Ltd. NMNI, 32, 100602.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
were assembled and corrected using CodonCode Aligner software (http://www.codoncode.com). Strain Marseille-P2231\(^T\) exhibited a 98.19% sequence identity with \textit{P. merdae} strain JCM 9497\(^T\) (GenBank accession number NR_041343), the phylogenetically closest species with standing in nomenclature (Fig. 2). We consequently classify this strain as a member of a new species within the family \textit{Tannerellaceae}, phylum Bacteroidetes.

Phenotypic characteristics

Colonies were circular and smooth with a mean diameter of 1.2 mm. Bacterial cells were Gram-negative, rod-shaped, ranging in length from 1.27 to 2.46 \(\mu\)m and in width from 0.45 to 0.73 \(\mu\)m (Fig. 3). Strain Marseille-P2231\(^T\) showed catalase-negative and oxidase-negative activities. Main phenotypic properties of strain Marseille-P2231\(^T\) were studied by using the API 50 CH strips (Table 1), API ZYM strips (Table 2) and API 20A strips (Table 3). The main characteristics of strain Marseille-P2231\(^T\) are summarized on digitalized protologue (www.imedea.uib.es/dprotologue) under the number TA00985. The biochemical and phenotypic features of strain Marseille-P2231\(^T\) were compared with those of other close representative strains in the \textit{Porphyromonadaceae} family (Table 4).

Cellular fatty acid methyl ester analysis was performed by gas chromatography/mass spectrometry. Two samples were prepared with approximately 5 mg of bacterial biomass per tube harvested from several culture plates. Fatty acid methyl esters were prepared as described by Sasser [14]. Gas chromatography/mass spectrometry analyses were performed as described elsewhere [15]. The most abundant fatty acid by far was 12-methyl-tetradecanoic acid (43%), followed by 3-hydroxy15-methyl-hexadecanoic acid (19%) and hexadecanoic acid (10%). Several branched structures and specific 3-hydroxy fatty acids were described. Minor amounts of unsaturated and other saturated fatty acids were also detected (Table 5).

TABLE 1. Biochemical tests of \textit{Parabacteroides massiliensis} (API 50 CH strips)

Tests	Results	Tests	Results
Control	–	Esaculin	+
Glycerol	–	Salicin	–
Erythrol	–	o-cellobiose	+
o-arinose	–	o-maltose	+
l-arabinose	–	o-lactose	+
o-ribose	–	o-melibiose	+
o-xylene	w	o-saccharose	+
l-xylene	+	o-trehalose	+
o-adonitol	–	Inulin	–
Methyl (l)-xylopyranoside	+	o-meleose	+
o-glucose	+	Starch	w
o-fructose	+	Glycogen	–
o-mannose	+	Xyitol	–
l-sorbose	–	Gentibiose	w
l-rhamnose	–	o-turanose	+
Dulcitol	–	o-trehalose	w
inositol	–	o-tagatose	w
o-mannitol	w	o-fucose	–
o-sorbitol	–	l-fucose	–
Methyl o-mannopyranoside	–	o-arabitol	–
Methyl (d)-glucopyranoside w	–	o-arabitol	–
N-acetylglucosamine	+	Potassium glucoside	–
Amygdalin	+	Potassium 5-ketoglucosate	–
Arbutin	–	Potassium 5-ketogluconate	+

\(^\star\), positive result; \(\sim\), negative result; \(w\), weakly positive.

TABLE 2. Biochemical tests of \textit{Parabacteroides massiliensis} (API ZYM strips)

Tests	Results
Alkaline phosphatase	+
Esterase (C4)	–
Esterase Lipase (C8)	–
Lipase (C14)	–
Leucine arylamidase	+
Valine arylamidase	–
Cystine arylamidase	–
Trypsin	–
α-chymotrypsin	–
Acid phosphatase	–
Naphthol-AS-B1-phosphohydrolase	–
α-glucosidase	+
β-glucosidase	+
β-glucuronidase	+
α-galactosidase	+
β-galactosidase	–
N-acetyl-β-glucosaminidase	+
a-mannosidase	–
a-fucosidase	–

\(^\star\), positive result; \(\sim\), negative result.
Genome sequencing

Genomic DNA was extracted using the EZ1 biorobot (Qia-gen, Courtaboeuf, France) with the EZ1 DNA tissue kit and then sequenced using MiSeq technology (Illumina, San Diego, CA, USA) with the Nextera Mate Pair sample prep kit (Illumina), as previously described [16]. The assembly was performed with a pipeline incorporating different software (VELVET [17], SPADES [18] and SOAP DENOVO [19]), and trimmed data (MISEQ and TRIMMOMATIC [20] software) or untrimmed data (only MISEQ software). GAPCLOSER was used to reduce assembly gaps. Scaffolds <800bp in length or scaffolds with a depth value <25% of the mean depth were removed. The best assembly was selected using different criteria (number of scaffolds, N50, number of N). The genome of strain Marseille-P2231 T is 5 013 798 bp long (23 scaffolds, 27 contigs, 762 401 N50) with a 45.7 mol% G+C content and contains 4 195 predicted genes. The degree of genomic similarity of Marseille-P2231 T with closely related species was estimated using the O RTHOANI software [21]. Values among closely related species (Fig. 4) range from 70.20% between Parabacteroides massiliensis and Parabacteroides chartae to 91.01% between P. merdae and P. johnsonii. When the isolate was compared with these closely related species, values ranged from 70.20% with P. chartae to 88.73% with P. merdae.

TABLE 3. Biochemical tests of Parabacteroides massiliensis (API 20A strips)

Tests	Results
L-cysteine	+
Urea	–
D-glucose	+
D-mannitol	+
D-lactate	+
D-saccharose	+
D-maltose	+
Salicin	+
D-xylene	+
l-arabinose	+
Gelatin (bovine origin)	+
Esculin ferric citrate	+
Glycerol	–
D-cellobiose	+
D-mannose	+
D-maltose	+
D-raffinose	–
L-rhamnose	+
D-sorbitol	+

•, positive result; –, negative result.

TABLE 4. Differential characteristics of 1, Parabacteroides massiliensis strain Marseille-P2231T, compared with other closely related Porphyromonadaceae species: 2, Parabacteroides merdae [2]; 3, Parabacteroides johnsonii [4]; 4, Parabacteroides gordonii [5]; 5, Parabacteroides faecis strain 157T [3]; 6, Parabacteroides chartae NS31-3T [22]

Properties	1	2	3	4	5	6
Cell diameter (μm)	0.4–0.7	0.8–1.6	0.8	0.8	1.0	0.7–1.0
Oxygen requirement	–	–	–	–	–	–
Gram stain	–	–	–	–	–	–
Motility	–	–	–	–	–	–
Endospore formation	–	–	–	–	–	–
Acid phosphatase	–	NA	NA	NA	NA	+
Cattase	–	–	+	variable	+	–
Indole	–	–	–	–	–	–
Urease	–	–	–	–	–	–
Alkaline phosphatase	+	+	+	+	+	+
β-galactosidase	+	+	+	+	+	+
Mannose	+	+	+	+	+	+
Raffinose	w	+	+	+	+	+
Sucrose	+	+	+	+	+	+
Glucose	+	+	+	+	+	+
D-xylene	+	+	+	+	+	+
Maltoolose	+	+	+	+	+	+
Glycerol	–	–	–	–	–	–
Lactose	–	–	–	–	–	–
G+C content (mol%)	45.7	44.0	47.6	44.6	41.8	37.2
Habitat	Human stool	Human faeces	Human faeces	Human blood	Human faeces	Wastewater

*, positive result; –, negative result; w, weakly positive; NA, data not available.
Conclusion

Strain Marseille-P2231T exhibiting a 16S rRNA sequence divergence <98.7% and an ORTHOANI value <95% with its phylogenetically closest species with standing in nomenclature, is consequently proposed as the type strain of the new species Parabacteroides massiliensis sp. nov.

Description of Parabacteroides massiliensis sp. nov.

Parabacteroides massiliensis (mas.si.li.en’sis, L. fem. adj., massi-liensis, ‘of Massilia’, the Latin name of Marseille, where this strain was isolated). Cells are obligate anaerobic, Gram-negative, non-motile and non-spore-forming. Catalase and oxidase activities are negative. Cells have a length of 1.27–2.46 μm and a width of 0.45–0.73 μm. Colonies grown at 37°C on 5% sheep-blood-enriched Columbia agar (bioMérieux), and were circular and smooth after 72 hours of incubation under anaerobic conditions. They had a mean diameter of 1.2 mm on agar. Strain Marseille-P2231 reacts positively with leucine arylamidase, alkaline phosphatase, α-galactosidase, β-galactosidase, β-glucuronidase, N-acetyl-β-D-glucosaminidase, D-glucose, D-fructose, D-mannose, esculin, salicin, lactose, melibiose, sucrose and potassium 5-ketogluconate. Negative reactions were observed with esterase, lipase, trypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, β-glucosidase, α-mannosidase, α-fucosidase, glycerol, ribose, D-adenitol, rhamnose, sorbitol, inulin, glycogen, xylitol, fucose, arabinol, arabinol and potassium 2-ketogluconate. The most abundant fatty acid by far was 12-methyl-tetradecanoic acid (43%) followed by 3-hydroxy 15-methyl-hexadecanoic acid (19%) and hexadecanoic acid (10%). The genome is 5 013 798 bp long and its G+C content is 45.7 mol%. Strain Marseille-P2231T, isolated from a fresh stool sample of a 26-year-old healthy woman, was deposited in the CSUR and DSMZ collections under accession numbers CSURP2231 and DSM 101860, respectively. The 16S rRNA and genome sequences are available in the GenBank database under accession numbers LN899828 and FTLH00000000, respectively.

Nucleotide sequence accession number

The 16S rRNA gene and genome sequences were deposited in GenBank under accession number LN899828, and FTLH00000000, respectively.

Deposit in culture collections

Strain Marseille-P2231T or strain SN4T was deposited in strain collection under number (= CSURP2231T = DSM 101860).

Acknowledgements

This work was also supported by Région Provence Alpes Côte d’Azur and European funding FEDER PRIMI. The authors thank...
the Hitachi Corporation for providing the TM4000Plus Tabletop microscope. They also thank Aurelia Caputo for submitting the genomic sequences to GenBank.

Conflict of interest

None to declare.

Funding sources

This work was funded by the IHU Méditerranée Infection (Marseille, France) and by the French Government under the Investissements d’avenir (Investments for the Future) programme managed by the Agence Nationale de la Recherche (reference: Méditerranée Infection 10-IAHU-03).

References

[1] Parte AC. LPSN—List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–9.
[2] Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 2006;56:1599–605.
[3] Sakamoto M, Tanaka Y, Benno Y, Ohkuma M. Parabacteroides faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015;65:1342–6.
[4] Sakamoto M, Kitahara M, Benno Y. Parabacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2007;57:293–6.
[5] Sakamoto M, Suzuki N, Matsunaga N, Koshihara K, Seki M, Komiyama H. Parabacteroides gordoni sp. nov., isolated from human blood cultures. Int J Syst Evol Microbiol 2009;59:2843–7.
[6] Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93.
[7] Lagier JC, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015;28:237–64.
[8] Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016;1:16203.
[9] Lagier JC, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015;28:208–36.
[10] Fournier PE, Lagier JC, Dubourg G, Raoult D. From culturomics to taxonomogenomics: a need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015;36:73–8.
[11] Ramasamy D, Mishra AK, Lagier JC, Padmanabhan R, Rossi M, Sentaula E, et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014;64:384–91.
[12] Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009;49:543–51.
[13] Morel AS, Dubourg G, Prudent E, Edouard S, Gouriet F, Casalta JP, et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 2015;34:561–70.
[14] Sasser M. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). MIDI. 2006. Technical Note 101. Newark, DE: MIDI.
[15] Dione N, Sankar SA, Lagier J-C, Khelaifia S, Michele C, Armstrong N, et al. Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbe. New Infect 2016;10:66–76.
[16] Lo CL, Sankar SA, Fall B, Ba BS, Diawara S, Gueye MW, et al. High-quality draft genome sequence and description of Haemophilus massiliensis sp. nov. Stand Genom Sci 2016;11:31.
[17] Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–9.
[18] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:55–77.
[19] Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2012;1:18.
[20] Bolger AM, Lohse M, Usadel B. Trimmmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
[21] Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–3.
[22] Tan HQ, Li TT, Zhu C, Zhang XQ, Wu M, Zhu XF. Parabacteroides chartae sp. nov., an obligately anaerobic species from wastewater of a paper mill. Int J Syst Evol Microbiol 2012;62:2613–7.