OWA aggregation of multi-criteria with mixed uncertain fuzzy satisfactions

Yunjuan Wang
School of Computer Science
Xi’an Jiaotong University
email: wangyunjuanxjtu@163.com

Yong Deng
Institute of Fundamental and Frontier Science
University of Electronic Science and Technology of China
email: dengentropy@uestc.edu.cn; prof.deng@hotmail.com

June 2018

Abstract

We apply the Ordered Weighted Averaging (OWA) operator in multi-criteria decision-making. To satisfy different kinds of uncertainty, measure based dominance has been presented to gain the order of different criterion. However, this idea has not been applied in fuzzy system until now. In this paper, we focus on the situation where the linguistic satisfactions are fuzzy measures instead of the exact values. We review the concept of OWA operator and discuss the order mechanism of fuzzy number. Then we combine with measure-based dominance to give an overall score of each alternatives. An example is illustrated to show the whole procedure.

Keywords— OWA operator; Multi-criteria; Triangular fuzzy numbers; Measure-based dominance; Decision-making

1 Introduction

How to make a proper decision to satisfy multi-criteria has attracted much attention over the last few years [1–6]. Using OWA operator is always considered to be an efficient approach to aggregate the degree of satisfactory in individual criteria, thus offering a measure to order a collection of alternatives and choose the most satisfactory of it [7–16]. OWA operator has been widely used in many applications such as decision analysis [17–19], fuzzy logical control [20, 21], expert system [22] and so on. A lot of research has been done on combining OWA operator with decision making. Yager has presented a measure based dominance which can order the uncertain criteria satisfactions and thus utilizing OWA operator to make the best
There are decision situations where the information cannot be evaluated precisely in a quantitative measure but may be in a qualitative one. For example, we may assess some criteria of the alternatives in linguistic terms such as "perfect" or "bad". It is inappropriate to set "perfect" as 1 and "bad" as 0 precisely. As a result, we transform the linguistic terms to fuzzy numbers due to the flexible framework which allows us to represent the information in a more adequate way. Since linguistic fuzzy satisfactions can be integrated into the expert system, and the generalization ability is not largely affected by the data, our proposed method is more universal and more consistent with the real world.

1.1 Literature review
In this subsection, we review some related work about decision making.

Many approaches has been applied to make decision for alternative suppliers’ evaluation and selection [23]. Data envelopment analysis is often used in industry to measure the efficiencies the performance of alternative suppliers [24–27], sometimes from both quantitative and qualitative aspects. Mathematical programming is also formulated to evaluate criteria, such as linear programming [2, 28, 29], goal programming [3] and multi-objective programming [4, 30]. Analytic hierarchy process is a popular method to deal with the selection problem [31–35]. Besides, there are a few applications building the model based on fuzzy set theory to deal with the problem [36–40]. Lots of other mechanisms which have the similar function will not be listed here [41–54]. All of these methods can be integrated to help decision maker select the best supplier.

Typically, for multi-criteria decision making, many novel thoughts are emerged, which are either evaluating the performance of the alternatives with respect to the criteria or finding the importance (weight) of the criteria. Ye and Jun took into account the unknown degree of interval-valued intuitionistic fuzzy sets to overcome the difficult decision of existing accuracy functions to the alternatives [55]. Triantaphyllou and Sanchez tried to perform sensitivity analysis on the weights of the decision criteria [56]. Liu and Wang defined an evaluation function to measure the satisfactory degree to decision maker in intuitionistic fuzzy environment [57]. Yu et al. proposed two hesitant fuzzy linguistic harmonic averaging operators to solve the fuzzy linguistic decision making problem [58]. Tan and Chen applied fuzzy Choquet integral to aggregate criteria [59], which is also discussed by Yager [60]. Yager also put forward possibilistic exceedance function and measure-based dominance to give a dominance relationship in uncertain decision making [61]. Bordogna et al. used OWA operator to consider multi-person decision problem in a linguistic context [62]. Jiang and Wei proposed an intuitionistic fuzzy evidential power average aggregation operator, which both considers the uncertainty and aggregates the original intuitionistic fuzzy numbers to make a more reasonable decision [63].

1.2 Organisation
The paper is organized as follows. We first review the concept and properties of OWA operator in Section 2. How to make a proper order for fuzzy number has been discussed
in Section 3. Section 4 presents the dominance ordering method in multi-criteria decision making with uncertain satisfaction for OWA aggregation. An example is illustrated in section 5. Finally, this paper is concluded in section 6.

2 OWA aggregation

Ordered Weighted Averaging (OWA) operator, first introduced by Yager in 1988, is focus on aggregating multi-criteria to form an overall decision function.

Definition: OWA operator. Assume a mapping OWA from \(R^n \rightarrow R \), we say that OWA is an OWA operator of dimension \(n \) if it satisfies the following properties.

1. \(OWA(a_1, a_2, \ldots, a_n) = \sum_{j=1}^{n} w_j b_j \), where \(w = (w_1, w_2, \ldots, w_n)^T \) is a correlated weighed vector.
2. \(w_j \in [0, 1] \).
3. \(\sum_{j=1}^{n} w_j = 1 \).
4. \(b_j \) is the \(j \)th largest elements in \((a_1, a_2, \ldots, a_n) \).

We can easily see that OWA operator has the following characteristics.

Theorem 1: Monotonicity. Suppose there are any two of vectors \((a_1, a_2, \ldots, a_n) \) and \((b_1, b_2, \ldots, b_n) \), if \(a_i \leq b_i \) for all \(i \), then \(OWA(a_1, a_2, \ldots, a_n) \leq OWA(b_1, b_2, \ldots, b_n) \).

Theorem 2: Commutativity. If \((b_1, b_2, \ldots, b_n) \) is an any substitute of \((a_1, a_2, \ldots, a_n) \), then \(OWA(a_1, a_2, \ldots, a_n) = OWA(b_1, b_2, \ldots, b_n) \).

Theorem 3: Idempotency. Suppose there is any vector \((a_1, a_2, \ldots, a_n) \), we can get \(OWA(a_1, a_2, \ldots, a_n) = a \) if \(a_i = a \) for all \(i \). Particularly, if \(W = W^* = (1, 0, \ldots, 0)^T \), then \(OWA(a_1, a_2, \ldots, a_n) = \max_i(a_i) \). If \(W = W_\ast = (0, 0, \ldots, 1)^T \), then \(OWA(a_1, a_2, \ldots, a_n) = \min_i(a_i) \). If \(W = W_{\text{ave}} = (\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n})^T \), then \(OWA(a_1, a_2, \ldots, a_n) = \frac{1}{n} \sum_{j=1}^{n} a_j \).

Theorem 4: Extremum. \(\min_i(a_i) \leq OWA(a_1, a_2, \ldots, a_n) \leq \max_i(a_i) \).

One of the advantages of OWA operator is that it provide a parameterized procedure for combining weight with criteria. All we need to consider is a rational ordering of the arguments. There are mainly three kinds of ways to calculate the weights, which are decision maker’s non-subjective preference algorithm, decision maker’s subjective preference algorithm and fuzzy semantic quantization algorithm.

Here we mainly focus on the third algorithm [64]. Drawing upon Zadeh’s concept of linguistic quantifiers [65], Yager came up with monotonic type quantifier \(Q \) as function \([0, 1] \rightarrow [0, 1] \) where \(Q(0) = 0, Q(1) = 1 \), and \(Q(a) \leq Q(b) \) if all \(a, b \in R \) where \(a \leq b \) [64]. Furthermore he presented that the weights can be gained from \(w_j = Q(\frac{j}{q}) - Q(\frac{j-1}{q}) \) for \(j = 1 - q \). Function \(Q \) can be related to linguistic terms, which is crucially important when it comes to fuzzy system. In this case all of the arguments have equal importance. If every arguments \(a_i \) have different importance weights \(\lambda_i \), then we can get the weights for \(j = 1 - q \) as \(w_j = Q(S_j) - Q(S_{j-1}) \) where \(S_j = \sum_{k=1}^{j} \lambda_i \rho(k) \) [66].

3 Ordering of triangular fuzzy number

Fuzzy number, first introduced by Zadeh in 1965, has applied in many domains to solve the uncertain circumstances problem [67]. There are many kinds of fuzzy number, such as triangular fuzzy number, trapezoidal fuzzy number and other generalized fuzzy number.
Definition: Generalized fuzzy number

In general, let \(\tilde{A} = (a, b, c, d; \omega) \) be a fuzzy number, whose membership function can be defined as follows.

\[
f_{\tilde{A}}(x) = \begin{cases}
 f_{L,\tilde{A}}(x) & a \leq x \leq b \\
 \omega & b \leq x \leq c \\
 f_{R,\tilde{A}}(x) & c \leq x \leq d \\
 0 & \text{otherwise}
\end{cases}
\]

where \(0 < \omega \leq 1 \) is a constant, \(f_{L,\tilde{A}}(x) : [a, b] \rightarrow [0, \omega] \) and \(f_{R,\tilde{A}}(x) : [c, d] \rightarrow [0, \omega] \) are two strictly monotonic and continuous mappings from \(\mathbb{R} \) to the closed interval \([0, \omega]\).

Here we mainly focus on triangular fuzzy number, which is shown in figure 1. We call \(\tilde{A} = (a, b, c) \) a triangular fuzzy number whose membership function is

\[
f_{\tilde{A}}(x) = \begin{cases}
 0 & x \leq a \\
 \frac{x-a}{b-a} & a < x \leq b \\
 \frac{x-c}{b-c} & b < x \leq c \\
 0 & x > c
\end{cases}
\]

![Figure 1: Triangular fuzzy number according to the membership function](image)

Since the real sets are linearly ordered, which is not the case for fuzzy set, how to compare two fuzzy number has always been debated. There are several approaches to give an order of fuzzy number, which generally fall under two main categories of either building a fuzzy-real sets mapping or defining a dominance relation of one fuzzy set over another. In the following subsections, we discuss 2 popular methods for ranking fuzzy numbers from different categories separately.

3.1 A fuzzy-real sets mapping: Centroid-based distance method

Here we only consider positive fuzzy numbers. Cheng suggested a centroid-based distance method for ranking fuzzy number, which utilizes the Euclidean distances from the origin to the centroid point of each fuzzy number to compare and rank the fuzzy numbers.
In [68], Wang et al. proposed that the correct centroid formulae should be as follows:

\[
x_0(\tilde{A}) = \frac{\int_{-\infty}^{+\infty} x f_A(x)dx}{\int_{-\infty}^{+\infty} f_A(x)dx} = \frac{\int_{a}^{b} x f_L^A(x)dx + \int_{b}^{c} x f_R^A(x)dx}{\int_{a}^{b} f_A(x)dx + \int_{b}^{c} f_A(x)dx} (1)
\]

\[
y_0(\tilde{A}) = \frac{\int_{0}^{\omega} y (g_R^A(y) - g_L^A(y))dy}{\int_{0}^{\omega} (g_R^A(y) - g_L^A(y))dy} (2)
\]

where \(g_L^{(A)} : [0, \omega] \rightarrow [a, b] \) and \(g_R^{(A)} : [0, \omega] \rightarrow [c, b] \) are the inverse functions of \(f_L^A(x) \) and \(f_R^A(x) \), respectively.

Since triangular fuzzy numbers are special cases of fuzzy numbers, for any triangular fuzzy number \(\tilde{A} = (a, b, c) \) with a piecewise linear membership function, its centroid can be determined by

\[
x_0(\tilde{A}) = \frac{1}{3}(a + b + c) (3)
\]

\[
y_0(\tilde{A}) = \frac{1}{3} (4)
\]

Therefore, ranking fuzzy numbers can be transformed into ordering the centroid of fuzzy numbers.

3.2 A dominance relation of one fuzzy set over another: Lattice operators and inclusion index

Definition: The fuzzy lattices. In [69], Klir and Yuan propose that we can order the fuzzy numbers by extending the real numbers lattice operations \(min \) and \(max \) to corresponding fuzzy lattice operation \(MIN \) and \(MAX \), which is defined as follows.

\[
MIN(A, B)(z) = \sup_{z = \min(x, y)} \text{min}[A(x), B(y)] (5)
\]

\[
MAX(A, B)(z) = \sup_{z = \max(x, y)} \text{min}[A(x), B(y)] (6)
\]

where \(x, y, z \in R \).

Theorem 1 (Chiu-Wang-2002). For any triangular fuzzy numbers A and B, defined on the universal set R, with continuous membership function and \((A \cap B)(x_m) \geq (A \cap B)(x)\) for all \(x \in R \) and \(A(x_m) = B(x_m) \), moreover, \(x_m \) is between two mean values of \(A \) and \(B \) (if the number of \(x_m \) is not unique, any one point of those \(x_m \) is suitable). Then the operation \(MIN \) can be implemented as

\[
MIN(A, B)(z) = \begin{cases}
(A \cup B)(z) & \text{as } z < x_m \\
(A \cap B)(z) & \text{as } z \geq x_m
\end{cases}
\]
where \(x \in \mathbb{Z} = \mathbb{R} \), and \(\cup, \cap \) denote the standard fuzzy intersection and union, respectively.

Definition: Inclusion index (InI). For a discrete and finite set \(A \) and its membership function \(\mu_A \in [0,1] \), the absolute cardinality can be formulated as \(\text{Card}(A) = |A| = \sum_{x \in X} \mu_A(x) \) with \(A \subseteq X \). The inclusion index of discrete sets is

\[
\partial(E \subseteq F) = \frac{\sum \| E \cap F \|}{\sum \| E \|} = \frac{\sum_{x \in X} T(\mu_E(x), \mu_F(x))}{\sum_{x \in X} \mu_E(x)} \quad (7)
\]

Similarly, for a continuous and finite set \(B \) and its membership function \(\mu_B \in [0,1] \), the absolute cardinality can be formulated as \(\text{Card}(B) = |B| = \int_{x \in X} \mu_B(x) dx \) with \(B \subseteq X \). The inclusion index of continuous sets is

\[
\partial(E \subseteq F) = \frac{\int \| E \cap F \|}{\int \| E \|} = \frac{\int_{x \in X} T(\mu_E(x), \mu_F(x))}{\int_{x \in X} \mu_E(x)} \quad (8)
\]

where \(T \) is a triangular norm and \(\| \) denote the standard fuzzy cardinal operator \(\text{Card} \), \(\mu_E \) and \(\mu_F \) are the membership function of \(E \) and \(F \), respectively.

In [70], Boulmakoul et al. introduced a novel ranking operator ”\(\prec \)”, ”\(\succ \)” and ”\(\simeq \)” for every fuzzy sets \(A \) and \(B \) by the following implications:

If \(\text{MIN} \in \{ A, B \} \)

\[
\begin{align*}
A \prec B & \iff \text{MIN} = A \\
A \succ B & \iff \text{MIN} = B \\
A \simeq B & \iff \text{MIN} = A \text{ and } \text{MIN} = B
\end{align*}
\quad (9)
\]

Else

\[
\begin{align*}
A \prec B & \iff \partial(\text{MIN} \subseteq A) > \partial(\text{MIN} \subseteq B) \\
A \succ B & \iff \partial(\text{MIN} \subseteq A) < \partial(\text{MIN} \subseteq B) \\
A \simeq B & \iff \partial(\text{MIN} \subseteq A) = \partial(\text{MIN} \subseteq B)
\end{align*}
\quad (10)
\]

Such operator can provide a reasonable order of fuzzy numbers, which is a broad level of dominance relation.

4 Dominance ordering in multi-criteria decision making with uncertain satisfaction

Assume that there is a collection of criteria \(C = \{ C_1, C_2, \ldots, C_q \} \) which need to be considered for decision maker. For a specific alternative \(x \), using OWA operator we can calculate the whole satisfaction that \(D(x) = \text{OWA}(C_1(x), C_2(x), \ldots, C_q(x)) = \sum_{i=1}^{q} w_i C_{p(i)}(x) \), where \(C_k(x) \) is the satisfaction degree for criteria \(C_k \) and \(C_{p(i)} \) is the \(i \)-th largest in \(C_k(x) \).

In the following, we assume that \(Y = \{ y_1, y_2, \ldots, y_n \} \) is the set of the criteria satisfaction values to decision maker. Each \(y_i \) is a fuzzy number \((a, b, c) \) with \(0 \leq a \leq b \leq c \leq 1 \) and \(y_j > y_{j-1} \). Since criteria has some uncertainty, and there are numerous methods to assess the uncertainty information, in [8] Yager took into account three common cases: probability distribution, possibility distribution and interval values. Different cases has different types of uncertainty that need specific formulations to model the uncertainty information.
(1) The uncertain value $C_k(x)$ is a probability distribution $P_k = [p_{k1}, \ldots, p_{kj}, \ldots, p_{kn}]$ on Y, where p_{kj} is the probability distribution of satisfaction of C_k by x is fuzzy number y_j, $p_{kj} \in [0, 1]$ and $\sum_{j=1}^{n} p_{kj} = 1$.

(2) The uncertain value $C_k(x)$ is a possibility distribution $\Pi_k = [\tau_{k1}, \ldots, \tau_{kj}, \ldots, \tau_{kn}]$ on Y, where τ_{kj} is the possibility distribution of satisfaction of C_k by x is fuzzy number y_j, $\tau_{kj} \in [0, 1]$ and $Max_{y_j}[\tau_{kj}] = 1$.

(3) The uncertain value $C_k(x)$ is an interval value $C_k(x) = [a_k, b_k]$, then the possibility distribution is that $\tau_{kj} = 1$ for each $y_j \in [a_k, b_k]$ and $\tau_{kj} = 0$ for all $y_j \notin [a_k, b_k]$. Then monotonic set measures are implemented to provided a unified framework for corresponding the uncertain value to our knowledge of $C_k(x)$.

Definition: Monotonic set measures (fuzzy measures). A monotonic set measure μ is a mapping: $\mu : 2^Y \rightarrow [0, 1]$ with $\mu(\emptyset) = 0$, $\mu(Y) = 1$ and $\mu(A) \geq \mu(B)$ for $A \supseteq B$. For any subset A of Y, we denote $\mu_k(A) = C_k(A)$ as the anticipation of finding $C_k(x)$ in A. It is clear that the cardinality of subset A has a positive correlation with $\mu_k(A)$ [8].

(1) If $C_k(x)$ is a probability distribution $P_k = [p_{k1}, \ldots, p_{kj}, \ldots, p_{kn}]$ on Y, then $\mu_k(y_j) = p_{kj}$ and $\mu_k(A) = \sum_{y_j \in A} \mu_k(y_j) = \sum_{y_j \in A} p_{kj}$.

(2) If $C_k(x)$ is a possibility distribution $\Pi_k = [\tau_{k1}, \ldots, \tau_{kj}, \ldots, \tau_{kn}]$ on Y, then $\mu_k(y_j) = \tau_{kj}$ and $\mu_k(A) = Max_{y_j \in A} [\mu_k(y_j)] = Max_{y_j \in A} [\tau_{kj}]$.

(3) If $C_k(x)$ is an interval value $C_k(x) = [a_k, b_k]$, then $\mu_k(y_j) = 1$ for $y_j \in [a_k, b_k]$, $\mu_k(y_j) = 0$ for $y_j \notin [a_k, b_k]$ and $\mu_k(A) = Max_{y_j \in A} [\mu_k(y_j)]$.

For any alternative x, in order to rank $C_{\rho(i)}$, Yager introduced the concept of measure-based dominance[71].

Definition: Measure-based dominance. If $H_j = \{y_1, \ldots, y_j\}$ is the subset of j largest elements in Y, then $C_{k1}(x)$ dominates $C_{k2}(x)$ if $\mu_{k1}(H_j) \geq \mu_{k2}(H_j)$ for all j and $\mu_{k1}(H_j) > \mu_{k2}(H_j)$ for at least one H_j. We denote that $C_{k1}(x) >_{\mu_D} C_{k2}(x)$, meaning that $C_{k1}(x)$ seems bigger than $C_{k2}(x)$.

Since $>_{\mu_D}$ is a pairwise relationship, it has the properties of transitivity and completeness. As a result, the ordering of $C_k(x)$ can be obtained based on the relationship $>_{\mu_D}$. Thus we can calculate the OWA aggregation of the $C_k(x)$ that

$$OWA(C_1, \ldots, C_k(x), \ldots, C_q(x)) = \sum_{i=1}^{q} w_i C_{\rho(i)}(x) = \sum_{i=1}^{q} w_i \mu_{\rho(i)}$$

(11)

In this case, μ is defined as a measure that aggregation $\mu_{\rho(j)}$ for all j such that $\mu = OWA(C_1, \ldots, C_k(x), \ldots, C_q(x))$. For all $H_j = \{y_i\} for i = 1 \ldots j$ where $H_j \subseteq Y$ we have $\mu(H_j) = \sum_{j=1}^{q} w_j \mu_{\rho(j)}(A)$.

However, there are situations such as μ_1 is the biggest in $\mu(H_1)$ and μ_2 is the biggest in $\mu(H_2)$ and μ_3 is the biggest in $\mu(H_3)$, thus we cannot find the complete dominance relationship for all distributions. To overcome this difficulty, in [71] Yager proposed a surrogate for dominance ordering based on the Choquet integral. $M(\mu_k)$ is defined as a surrogate for μ_k such that $M(\mu_k) = \sum_{j=1}^{n} (\mu_k(H_j) - \mu_k(H_{j-1}))y_j$, where $\mu_k(H_j) - \mu_k(H_{j-1})$ can be seen as a set of weights of the y_j. $M(\mu_k)$ contains two desirable properties:

(1) Certainty. $M(\mu_k) = y_k$ if μ_k is a certain measure focused at y_k.

(2) Consistency with dominance. $M(\mu_1) > M(\mu_2)$ if $\mu_1 >_{\mu_D} \mu_2$.

7
Since $\mu_k(H_j) - \mu_k(H_{j-1})$ is a certain measure, $M(\mu_k)$ is a fuzzy number due to y_i. We have been discussed how to give a reasonable ordering of the fuzzy number in section 3, therefore we can get the dominance ordering of $C_{\rho(i)}$.

For each alternative, we can get an overall score from the whole procedure of multi-criteria decision making with uncertain fuzzy satisfaction, which is shown in figure 2. Our final option is to choose the best alternative based on the scores.

For one alternative x

1. Input the number of criteria (N), the quantifier $Q(z)$
2. Calculate the weights $w_i = Q(i/3) - Q((i-1)/3)$
3. Define fuzzy linguistic satisfaction $\{y_1, \cdot \cdot \cdot, y_n\}$
 - $y_1 = ((n-2)/(n-1), 1, 1)$
 - $y_i = ((n-i-1)/(n-1), (n-i)/(n-1), (n-i+1)/(n-1))$
 - $y_n = (0, 0, 1/(n-1))$
4. Obtain the distribution of criteria 1
5. Obtain the distribution of criteria 2
6. Obtain the distribution of criteria N
7. Obtain the fuzzy measure μ of criteria 1
8. Obtain the fuzzy measure μ of criteria 2
9. Obtain the fuzzy measure μ of criteria N

Step 5: Get a complete dominance relationship among these criteria
- Yes
- No
- Use a surrogate for dominance to order these criteria

Step 6: Use OWA operator to aggregate the criteria
$D(x) = \text{OWA}(C_1(x), C_2(x), \cdot \cdot \cdot, C_n(x)) = \mu_x$

Figure 2: The whole procedure of multi-criteria decision making with uncertain fuzzy satisfaction
5 Example

An example is shown to illustrate our approach. Assume there are three criteria \(C = \{C_1, C_2, C_3\} \). Assume that there exists some uncertainty about our knowledge of the \(C_k(x) \)'s. To be more specific, let’s suppose that \(C_1 \) is a probability distribution \(P \) where

\[
p_1 = 0.5, p_2 = 0.3, p_3 = 0.2, p_4 = 0, p_5 = 0
\]

\(C_2 \) is a possibility distribution \(T \) where

\[
\tau_1 = 0.2, \tau_2 = 1, \tau_3 = 0.8, \tau_4 = 0.1, \tau_5 = 0
\]

\(C_3 \) is a precise knowledge where \(C_3(x) = y_4 = 0.6 \)

Since our target is to satisfy "most" of the criteria, for alternative \(x \), we have

\[
D(x) = OWA(C_1(x), C_2(x), C_3(x)) = \sum_{i=1}^{3} w_i C_{\rho(i)}
\]

where \(w_i = Q(\frac{i}{3}) - Q(\frac{i-1}{3}) \) for \(i = 1, 2, 3 \). \(Q(z) = z^2 \) is defined as quantifier \(Q \) to represent the degree of "most".

Then, we can get \(w_1 = (\frac{1}{3})^2 - 0 = 0.11, w_1 = (\frac{2}{3})^2 - (\frac{1}{3})^2 = 0.33, w_1 = 1 - (\frac{2}{3})^2 = 0.56 \)

Let \(Y = \{y_1, y_2, y_3, y_4, y_5\} \). Here we correspond linguistic satisfactions \{perfect, large, moderate, small, none\} to triangular fuzzy numbers. To be more specific, we define the correlation as follows.

- Perfect: \(y_1 = \{0.75, 1, 1\} \).
- Large: \(y_2 = \{0.5, 0.75, 1\} \).
- Moderate: \(y_3 = \{0.25, 0.5, 0.75\} \).
- Small: \(y_4 = \{0, 0.25, 0.5\} \).
- None: \(y_5 = \{0, 0, 0.25\} \).

For \(C_1(x) \), we have a probability measure \(\mu_1 \):

\[
\mu_1(\{y_1\}) = 0, \mu_1(\{y_2\}) = 0.2, \mu_1(\{y_3\}) = 0.5, \mu_1(\{y_4\}) = 0.2, \mu_1(\{y_5\}) = 0.1.
\]

For \(C_2(x) \), we have a possibility measure \(\mu_2 \):

\[
\mu_2(\{y_1\}) = 0.4, \mu_2(\{y_2\}) = 0.2, \mu_2(\{y_3\}) = 0.6, \mu_2(\{y_4\}) = 0.8, \mu_2(\{y_5\}) = 1.
\]

For \(C_3(x) \), we have a certain measure \(\mu_3 \) with \(\mu_3(A) = 1 \) if \(y_3 \in A \) and \(\mu_3(A) = 0 \) if \(y_3 \notin A \).

Define \(H_j = \{y_1, y_2, \ldots, y_3\} \) and we can obtain Table 1.

| Table 1: Values of \(\mu_k(H_j) \) |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(\mu_k(H_1) \) | \(\mu_k(H_2) \) | \(\mu_k(H_3) \) | \(\mu_k(H_4) \) | \(\mu_k(H_5) \) |
| \(\mu_1 \) | 0.0 | 0.2 | 0.7 | 0.9 | 1.0 |
| \(\mu_2 \) | 0.4 | 0.4 | 0.6 | 0.8 | 1.0 |
| \(\mu_3 \) | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 |

The first step is to decide whether an ordering of \(\mu_k(H_j) \) can satisfy dominance, meaning that for each \(j \) the ordering of \(\mu_k(H_j) \) has to be the same. It turns out that our situation does not fit dominance, because \(\mu_2 \) is bigger for \(j=1 \), \(\mu_1 \) is bigger for \(j=3 \) and \(\mu_3 \) is bigger for \(j=4 \). To order the \(C_k(x) \), we need to use surrogate formulas

\[
M(\mu_k) = \sum_{j=1}^{5}(\mu_k(H_j) - \mu_k(H_{j-1}))y_j.
\]
To aggregate the multi-criteria, we utilize measure-based dominance and a surrogate for mixed uncertain satisfactions. This paper promotes the OWA aggregation of multi-criteria with mixed uncertain satisfactions.

Table 2: \(V_{kj} = \mu_k(H_j) - \mu_k(H_{j-1}) \)

\(V_{k1} \)	\(V_{k2} \)	\(V_{k3} \)	\(V_{k4} \)	\(V_{k5} \)	
\(\mu_1 \)	0.0	0.2	0.5	0.2	0.1
\(\mu_2 \)	0.4	0.0	0.2	0.2	0.2
\(\mu_3 \)	0.0	0.0	0.0	1.0	0.0

Denoting that \(\mu_k(H_0) = 0 \), we calculate \(V_{kj} = \mu_k(H_j) - \mu_k(H_{j-1}) \) and the result is shown in Table 2.

Here then \(M_1(\mu_k) = \sum_{j=1}^{5} V_{kj} y_j = V_{k1} \times (0.75, 1, 1) + V_{k2} \times (0.5, 0.75, 1) + V_{k3} \times (0.25, 0.5, 0.75) + V_{k4} \times (0, 0.25, 0.5) + V_{k5} \times (0, 0, 0.25) \). In this case, \(M(\mu_1) = (0.225, 0.45, 0.7) \), \(M(\mu_2) = (0.35, 0.55, 0.7) \), \(M(\mu_3) = (0, 0.25, 0.5) \).

There are lots of methods to order the fuzzy number. Here we calculate the fuzzy centroid to order the fuzzy numbers. The fuzzy centroid is defined as \(\pi_0(\tilde{A}) = \frac{a+b+c}{3} \), where the fuzzy number is \(\tilde{A} = (a, b, c) \). Thus, the fuzzy centroid for \(k=1-3 \) is that \(\pi_0(\mu_1) = 0.458 \), \(\pi_0(\mu_2) = 0.533 \), \(\pi_0(\mu_3) = 0.25 \). Since \(\pi_0(\mu_2) > \pi_0(\mu_1) > \pi_0(\mu_3) \), our ordering is \(M(\mu_2) > M(\mu_1) > M(\mu_3) \) and thus we obtain

\[D(x) = w_1 C_2(x) + w_2 C_1(x) + w_3 C_3(x) \]

We define \(\mu_x \) as a measure of each \(D(x) \) on \(Y \), where \(\mu_A = w_1 \mu_2(A) + w_2 \mu_1(A) + w_3 \mu_3(A) \) for all \(A \subseteq Y \). According to the previously gained OWA weighing factors \(w_i \), we obtain

\[\mu_x(A) = 0.11 \mu_2(A) + 0.33 \mu_1(A) + 0.56 \mu_3(A) \]

It is the same as \(H_0 \). For \(H_i \subseteq Y \), we obtain

\[\mu_x(H_i) = 0.11 \mu_2(H_i) + 0.33 \mu_1(H_i) + 0.56 \mu_3(H_i) \] \((13) \)

Therefore, for \(j=1-5 \), we can get \(\mu_x(H_j) \) based on Table 1 and formula 13.

\(\mu_x(H_1) = 0.044 \), \(\mu_x(H_2) = 0.066 \), \(\mu_x(H_3) = 0.187 \), \(\mu_x(H_4) = 0.648 \), \(\mu_x(H_5) = 0.055 \)

Here the \(D(x) = \mu_x \) is an OWA aggregation where \(\mu_x \) is a measure on \(Y \), representing the aggregation of multi-criteria with fuzzy satisfaction of alternative \(x \). In a real world, we will have to select the most satisfactory choice from a collection of possible alternatives \(X = \{x_1, \ldots, x_i, \ldots, x_N\} \). Using the previous procedure we can gain \(D(x_i) = \mu_{x_i} \) for each \(\mu_{x_i} \). Then our final choice \(x^* \) has the largest \(D(x^*) \). We still need to use dominance relationship to order \(\mu_{x_i} \), trying to find whether there is one \(\mu_{x_i} \) dominating all the others. If so, such \(x_i \) is our final alternative. If not, we need to use the surrogate method and calculate

\[M(\mu_{x_i}) = \sum_{j=1}^{n} (\mu_{x_i}(H_j) - \mu_{x_i}(H_{j-1})) y_j \] for each \(\mu_{x_i} \). Then we can order \(x_i \) using \(M(\mu_{x_i}) \) and thus choosing the best alternative.

6 Conclusion

This paper promotes the OWA aggregation of multi-criteria with mixed uncertain satisfactions in linguistic fuzzy measures. We first review the Ordered Weighed Averaging (OWA) operator and the fuzzy number. Then we discuss the mechanisms to rank the fuzzy numbers rationally. To aggregate the multi-criteria, we utilize measure-based dominance and a surrogate for dominance to gain the order of the uncertain arguments. Finally, we provide the whole procedure of the approach and present an example to illustrate it.
Acknowledgment

The work is partially supported by National Natural Science Foundation of China (Grant Nos. 61573290, 61503237).

7 Reference

References

[1] Hongbin Liu, Le Jiang, and Luis Martínez. A dynamic multi-criteria decision making model with bipolar linguistic term sets. *Expert Systems with Applications*, 95:104–112, 2018.

[2] Wan Lung Ng. An efficient and simple model for multiple criteria supplier selection problem. *European journal of operational research*, 186(3):1059–1067, 2008.

[3] Birsen Karpak, Erdoğan Kumcu, and Rammohan R Kasuganti. Purchasing materials in the supply chain: managing a multi-objective task. *European Journal of Purchasing & Supply Management*, 7(3):209–216, 2001.

[4] Ram Narasimhan, Srinivas Talluri, and Santosh K Mahapatra. Multiproduct, multicriteria model for supplier selection with product life-cycle considerations. *Decision Sciences*, 37(4):577–603, 2006.

[5] Juan-juan Peng, Jian-qiang Wang, Hong-yu Zhang, Teng Sun, and Xiao-hong Chen. Owa aggregation over a continuous fuzzy argument with applications in fuzzy multi-criteria decision-making. *Journal of Intelligent & Fuzzy Systems*, 27(3):1407–1417, 2014.

[6] Ronald R Yager. Generalized regret based decision making. *Engineering Applications of Artificial Intelligence*, 65:400–405, 2017.

[7] Sait Gül, Özgür Kabak, and Y İlker Topcu. An owa operator-based cumulative belief degrees approach for credit rating. *International Journal of Intelligent Systems*, 33(5):998–1026, 2018.

[8] Ronald R Yager. Owa aggregation of multi-criteria with mixed uncertain satisfactions. *Information Sciences*, 417:88–95, 2017.

[9] Radko Mesiar, Ladislav Šipeky, Pankaj Gupta, and Jin LeSheng. Aggregation of owa operators. *IEEE Transactions on Fuzzy Systems*, 26(1):284–291, 2018.

[10] GONG Yan-bing and Liang Xue-chun. Fuzzy multi-attribute decision making method based on fuzzy c-owa operator. *Systems Engineering and Electronics*, 8:022, 2008.

[11] XW Liu. Preference representation with geometric owa operator. *System Engineering*, 22(9):82–86, 2004.
[12] Benjamin Fonooni. Rational-emotional agent decision making algorithm design with owa. In *Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on*, volume 2, pages 63–66. IEEE, 2007.

[13] Na Zhao, Cuiping Wei, and Zeshui Xu. Sensitivity analysis of multiple criteria decision making method based on the owa operator. *International Journal of Intelligent Systems*, 28(11):1124–1139, 2013.

[14] Yong-Jie Xu, Tao Sun, and Deng-Feng Li. Intuitionistic fuzzy prioritized owa operator and its application in multi-criteria decision-making problem. *Control and Decision*, 26(1):129–132, 2011.

[15] MAHDI ZARGHAMI and FERENC SZIDAROVSZKY. New approach in obtaining owa weights for multi criteria decision making. In *Computational Intelligence In Decision And Control*, pages 501–506. World Scientific, 2008.

[16] Mahdi Zarghami, Ferenc Szidarovszky, and Reza Ardakanian. A fuzzy-stochastic owa model for robust multi-criteria decision making. *Fuzzy Optimization and Decision Making*, 7(1):1–15, 2008.

[17] Claus Rinner and Jacek Malczewski. Web-enabled spatial decision analysis using ordered weighted averaging (owa). *Journal of Geographical Systems*, 4(4):385–403, 2002.

[18] Binyamin Yusoff, José M Merigó, and David Ceballos Hornero. Analysis on extensions of multi-expert decision making model with respect to owa-based aggregation processes. In *International Forum for Interdisciplinary Mathematics*, pages 179–196. Springer, 2015.

[19] José Ignacio Peláez, Jesús M Doña, and José Antonio Gómez-Ruiz. Analysis of owa operators in decision making for modelling the majority concept. *Applied Mathematics and Computation*, 186(2):1263–1275, 2007.

[20] Patrik Eklund and Frank Klawonn. Neural fuzzy logic programming. *IEEE transactions on Neural Networks*, 3(5):815–818, 1992.

[21] Ronald R Yager, Dimitar P Filev, and Tom Sadeghi. Analysis of flexible structured fuzzy logic controllers. *IEEE transactions on systems, man, and cybernetics*, 24(7):1035–1043, 1994.

[22] M Victoria Ibáñez, G Vinué, Sandra Alemany, Amelia Simó, Irene Epifanio, Juan Domingo, and Guillermo Ayala. Apparel sizing using trimmed pam and owa operators. *Expert Systems with Applications*, 39(12):10512–10520, 2012.

[23] William Ho, Xiaowei Xu, and Prasanta K. Dey. Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. *European Journal of Operational Research*, 202(1):16–24, 2010.

[24] RC Baker and Srinivas Talluri. A closer look at the use of data envelopment analysis for technology selection. *Computers & Industrial Engineering*, 32(1):101–108, 1997.
[25] Jian Liu, Fong-Yuen Ding, and Vinod Lall. Using data envelopment analysis to compare suppliers for supplier selection and performance improvement. *Supply Chain Management: An International Journal*, 5(3):143–150, 2000.

[26] Laura B. Forker and David Mendez. An analytical method for benchmarking best peer suppliers. *International Journal of Operations & Production Management*, 21(1/2):195–209, 2001.

[27] Ram Narasimhan, Srinivas Talluri, and David Mendez. Supplier evaluation and rationalization via data envelopment analysis: an empirical examination. *Journal of supply chain management*, 37(2):28–37, 2001.

[28] Srinivas Talluri and Ram Narasimhan. A note on “a methodology for supply base optimization”. *IEEE Transactions on Engineering Management*, 52(1):130–139, 2005.

[29] Srinivas Talluri and Ram Narasimhan. Vendor evaluation with performance variability: A max–min approach. *European journal of operational research*, 146(3):543–552, 2003.

[30] Vijay Wadhwa and A Ravi Ravindran. Vendor selection in outsourcing. *Computers & operations research*, 34(12):3725–3737, 2007.

[31] MM Akarte, NV Surendra, B Ravi, and N Rangaraj. Web based casting supplier evaluation using analytical hierarchy process. *Journal of the Operational Research Society*, 52(5):511–522, 2001.

[32] FT S Chan. Interactive selection model for supplier selection process: an analytical hierarchy process approach. *International Journal of Production Research*, 41(15):3549–3579, 2003.

[33] C Muralidharan, N Anantharaman, and SG Deshmukh. A multi-criteria group decision-making model for supplier rating. *Journal of supply chain management*, 38(3):22–33, 2002.

[34] Felix TS Chan and HK Chan. Development of the supplier selection modelâ€”a case study in the advanced technology industry. *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture*, 218(12):1807–1824, 2004.

[35] Luyuan Chen and Xinyang Deng. A modified method for evaluating sustainable transport solutions based on ahp and dempsterâ€”shafer evidence theory. *Applied Sciences*, 8(4):Article ID 563, 2018.

[36] Chen-Tung Chen, Ching-Torng Lin, and Sue-Fn Huang. A fuzzy approach for supplier evaluation and selection in supply chain management. *International journal of production economics*, 102(2):289–301, 2006.

[37] Ashutosh Sarkar and Pratap KJ Mohapatra. Evaluation of supplier capability and performance: A method for supply base reduction. *Journal of Purchasing and Supply Management*, 12(3):148–163, 2006.
[38] R Florez-Lopez. Strategic supplier selection in the added-value perspective: A ci approach. *Information Sciences*, 177(5):1169–1179, 2007.

[39] Wen Jiang, Chunhe Xie, Miaoyan Zhuang, and Yongchuan Tang. Failure mode and effects analysis based on a novel fuzzy evidential method. *Applied Soft Computing*, 57:672–683, 2017.

[40] Fuyuan Xiao. A hybrid fuzzy soft sets decision making method in medical diagnosis. *IEEE Access*, page DOI: 10.1109/ACCESS.2018.2820099, 2018.

[41] Yee-Ming Chen and Pei-Ni Huang. Bi-negotiation integrated ahp in suppliers selection. *Benchmarking: An International Journal*, 14(5):575–593, 2007.

[42] Ramakrishnan Ramanathan. Supplier selection problem: integrating dea with the approaches of total cost of ownership and ahp. *Supply Chain Management: an international journal*, 12(4):258–261, 2007.

[43] Reza Farzipoor Saen. A new mathematical approach for suppliers selection: Accounting for non-homogeneity is important. *Applied mathematics and computation*, 185(1):84–95, 2007.

[44] Mehmet Sevkli, SC Lenny Koh, Selim Zaim, Mehmet Demirbag, and Ekrem Tatoglu. An application of data envelopment analytic hierarchy process for supplier selection: a case study of beko in turkey. *International Journal of Production Research*, 45(9):1973–2003, 2007.

[45] Sung Ho Ha and Ramayya Krishnan. A hybrid approach to supplier selection for the maintenance of a competitive supply chain. *Expert systems with applications*, 34(2):1303–1311, 2008.

[46] Ching-Chow Yang and Bai-Sheng Chen. Supplier selection using combined analytical hierarchy process and grey relational analysis. *Journal of Manufacturing Technology Management*, 17(7):926–941, 2006.

[47] Abraham Mendoza and Jose A Ventura. An effective method to supplier selection and order quantity allocation. *International Journal of Business and Systems Research*, 2(1):1–15, 2008.

[48] Cengiz Kahraman, Ufuk Cebeci, and Ziya Ulukan. Multi-criteria supplier selection using fuzzy ahp. *Logistics information management*, 16(6):382–394, 2003.

[49] Felix TS Chan and Niraj Kumar. Global supplier development considering risk factors using fuzzy extended ahp-based approach. *Omega*, 35(4):417–431, 2007.

[50] Xinyang Deng and Wen Jiang. Dependence assessment in human reliability analysis using an evidential network approach extended by belief rules and uncertainty measures. *Annals of Nuclear Energy*, 117:183–193, 2018.
[51] Fuyuan Xiao. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. *Information Fusion*, page DOI: 10.1016/j.inffus.2018.04.003, 2018.

[52] Fuyuan Xiao. An improved method for combining conflicting evidences based on the similarity measure and belief function entropy. *International Journal of Fuzzy Systems*, 20(4):1256–1266, 2018.

[53] Kajal Chatterjee, Edmundas Kazimieras Zavadskas, Jolanta Tamaitien?, Krishnendu Adhikary, and Samarjit Kar. A hybrid mcdm technique for risk management in construction projects. *Symmetry*, 10(2), 2018.

[54] Kajal Chatterjee, Dragan Pamucar, and Edmundas Kazimieras Zavadskas. Evaluating the performance of suppliers based on using the r’amatel-mairca method for green supply chain implementation in electronics industry. *Journal of Cleaner Production*, 184:101–129, 2018.

[55] Jun Ye. Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment. *Expert Systems with Applications*, 36(3):6899–6902, 2009.

[56] Evangelos Triantaphyllou and Alfonso Sánchez. A sensitivity analysis approach for some deterministic multi-criteria decision-making methods. *Decision Sciences*, 28(1):151–194, 1997.

[57] Hua-Wen Liu and Guo-Jun Wang. Multi-criteria decision-making methods based on intuitionistic fuzzy sets. *European Journal of Operational Research*, 179(1):220–233, 2007.

[58] Su-Min Yu, Hong-yu Zhang, and Jian-qiang Wang. Hesitant fuzzy linguistic maclaurin symmetric mean operators and their applications to multi-criteria decision-making problem. *International Journal of Intelligent Systems*, 33(5):953–982, 2018.

[59] Chunqiao Tan and Xiaohong Chen. Induced intuitionistic fuzzy choquet integral operator for multicriteria decision making. *International Journal of Intelligent Systems*, 26(7):659–686, 2011.

[60] Ronald R Yager and Naif Alajlan. Multi-criteria formulations with uncertain satisfactions. *Engineering Applications of Artificial Intelligence*, 69:104–111, 2018.

[61] Ronald R Yager. Bidirectional possibilistic dominance in uncertain decision making. *Knowledge-Based Systems*, 133:269–277, 2017.

[62] Gloria Bordogna, Mario Fedrizzi, and Gabriella Pasi. A linguistic modeling of consensus in group decision making based on owa operators. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans*, 27(1):126–133, 1997.

[63] Wen Jiang and Boya Wei. Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making. *International Journal of Systems Science*, 49(3):582–594, 2018.
[64] Ronald R Yager. Quantifier guided aggregation using owa operators. *International Journal of Intelligent Systems*, 11(1):49–73, 1996.

[65] Lotfi Asker Zadeh. The concept of a linguistic variable and its application to approximate reasoning. *Information sciences*, 8(3):199–249, 1975.

[66] Ronald R Yager. On the inclusion of importances in owa aggregations. In *The ordered weighted averaging operators*, pages 41–59. Springer, 1997.

[67] Lotfi A Zadeh. Fuzzy logic and its application to approximate reasoning. In *IFIP Congress*, volume 591, 1974.

[68] Ying-Ming Wang, Jian-Bo Yang, Dong-Ling Xu, and Kwai-Sang Chin. On the centroids of fuzzy numbers. *Fuzzy sets and systems*, 157(7):919–926, 2006.

[69] George J Klir and Bo Yuan. Fuzzy sets and fuzzy logic: theory and applications. *Possibility Theory versus Probab. Theory*, 32(2), 1996.

[70] Azedine Boulmakoul, Mohamed Haitam Laarabi, Roberto Sacile, and Emmanuel Garbolino. Ranking triangular fuzzy numbers using fuzzy set inclusion index. In *International Workshop on Fuzzy Logic and Applications*, pages 100–108. Springer, 2013.

[71] Ronald R Yager. Stochastic dominance for measure based uncertain decision making. *International Journal of Intelligent Systems*, 29(10):881–905, 2014.