Spectral Problems of a Class of Non-self-adjoint One-dimensional Schrödinger Operators

O. A. Veliev
Depart. of Math., Dogus University, Acıbadem, Kadıköy, Istanbul, Turkey. e-mail: oveliev@dogus.edu.tr

Abstract
In this paper we investigate the one-dimensional Schrödinger operator $L(q)$ with complex-valued periodic potential q when $q \in L_1[0,1]$ and $q_n = 0$ for $n = 0, -1, -2, ...$, where q_n are the Fourier coefficients of q with respect to the system $\{e^{i2\pi nx}\}$. We prove that the Bloch eigenvalues are $(2\pi n + t)^2$ for $n \in \mathbb{Z}$, $t \in \mathbb{C}$ and find explicit formulas for the Bloch functions. Then we consider the inverse problem for this operator.

Key Words: Hill operator, Spectrum, Inverse problems.
AMS Mathematics Subject Classification: 34L05, 34L20.

1 Introduction and Preliminary Facts
Let $L(q)$ be the operator generated in $L_2(-\infty, \infty)$ by the expression

$$-y''(x) + q(x)y(x)$$

with a complex-valued periodic potential q. In 1980, Gasymov [4] proved the following remarkable results for the operator $L(q)$ with the potential q of the form

$$q(x) = \sum_{n=1}^{\infty} q_n e^{i nx},$$

where

$$\sum_n |q_n| < \infty.$$

Result 1: The spectrum $S(L(q))$ of the operator $L(q)$ is purely continuous and

$$S(L(q)) = [0, \infty).$$

There may be second order spectral singularity on the continuous spectrum which must coincide with numbers of the form $(\frac{\pi}{2})^2$.

Result 2: The equation

$$-y''(x) + q(x)y(x) = \mu^2 y(x)$$

has a solution of the form

$$f(x, \mu) = e^{i \mu x} \left(1 + \sum_{n=1}^{\infty} \frac{1}{n + 2\mu} \sum_{\alpha} v_{n,\alpha} e^{i \alpha x}\right),$$

1
where the following series converge
\[
\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\alpha=-n+1}^{n} \alpha(\alpha - n) |v_{n,\alpha}|, \quad \sum_{n=1}^{\infty} n |v_{n,\alpha}|.
\]

Result 3: By the Floquet solutions (5) a spectral expansion was constructed.

Result 4: It was shown that the Wronskian of the Floquet solutions
\[
f_n(x) = \lim_{\mu \to \pi} (n - 2\mu)f(x, -\mu)
\]
and \(f(x, \pi) \) is equal to zero and therefore they are linearly dependent:
\[
f_n(x) = s_n f(x, \frac{n}{2}). \tag{6}
\]

It was proved that from the generalized norming numbers \(\{s_n\} \) one can effectively reconstruct \(\{q_n\} \). That is, the inverse spectral problem was considered.

Guillemin and Uribe [6] investigated the boundary value problem (bvp) generated on \([0, 2\pi]\) by (1) and the periodic boundary conditions when \(q \in Q_{\pi}^+ \), that is, \(q \in L_2[0, 2\pi] \) and has the form (2). It was proved that the eigenvalues of this bvp are \(n^2 \) for \(n \in \mathbb{Z} \) and the corresponding root functions were studied. For the operator \(L(q) \) with the potential \(q \in Q_{\pi}^+ \) the inverse spectral problem was investigated in detail by Pastur and Tkachenko [9] and the alternative proofs of (3) were provided by Shin [10], Carlson [1] and Christiansen [2].

In this paper, we first prove that if \(q \in L_1[0, 1], q(x + 1) = q(x) \) and
\[
q_n = 0, \quad \forall n = 0, -1, -2, \ldots, \tag{7}
\]
where \(q_n = (q(x), e^{i2\pi nx}) \) and \((\ldots)\) is the inner product in \(L_2[0, 1] \), then
\[
S(L(q)) = [0, \infty), \quad S(L_t(q)) = \{(2\pi n + t)^2 : n \in \mathbb{Z}\} \tag{8}
\]
for all \(t \in \mathbb{C} \), where \(L_t(q) \) is the operator generated in \(L_2[0, 1] \) by (1) and the conditions
\[
y(1) = e^{it}y(0), \quad y'(1) = e^{it}y'(0). \tag{9}
\]

It is well-known that (see [3, 8]) the spectrum \(S(L(q)) \) of the operator \(L(q) \) is the union of the spectra \(S(L_t(q)) \) of the operators \(L_t(q) \) for \(t \in (-\pi, \pi) \). Thus we prove (8) for more general case and as one can see from Theorem 1 that in a simple way. Moreover, we find explicit formulas for the Bloch functions and consider the inverse problem for this general case. The method of this paper is based on the following statements of my paper [12]:

The large eigenvalues \(\lambda_n(t) \) and the corresponding normalized eigenfunctions \(\Psi_{n,t}(x) \) of the operator \(L_t(q) \) for \(q \in L_1[0, 1] \) and \(t \neq 0, \pi \), satisfy the following asymptotic formulas
\[
\lambda_n(t) = (2\pi n + t)^2 + O\left(\frac{\ln |n|}{n}\right), \quad \Psi_{n,t}(x) = e^{i(2\pi n + t)x} + O\left(\frac{1}{n}\right). \tag{10}
\]

These asymptotic formulas are uniform with respect to \(t \) in \([\rho, \pi - \rho]\), where \(\rho \in (0, \frac{\pi}{2}) \) (see Theorem 2 of [9]). Furthermore, the following formulas hold (see (22) and (28) in [12]):
\[
(\lambda_n(t) - (2\pi n + t)^2)(\Psi_{n,t}, e^{i(2\pi n + t)x}) = A_m(\lambda_n(t))(\Psi_{n,t}, e^{i(2\pi n + t)x}) + R_{m+1}(\lambda_n(t)), \tag{11}
\]
where
\[
A_m(\lambda) = \sum_{k=1,2,\ldots,m} a_k(\lambda), \tag{12}
\]
Thus the entire functions F_m where $F \in \mathbb{C}$ are identically equal in the complex plane and hence the eigenvalues of ρ, π are the squares of the roots of the equation $\cos \left(\lambda (2\pi(n-n(s))+t)\right) = 0$. Therefore, $\lambda_n(t) = (2\pi n + t)^2$ for $t \in [\rho, \pi - \rho]$ and $n > N(\rho) \gg 1$. On the other hand $\lambda_n(t)$ are the squares of the roots of the functions $F(\mu) = 2 \cos t$, $\forall t \in [\rho, \pi - \rho]$, where $F(\mu) = \varphi'(1, \mu) + \theta(1, \mu)$ and $\varphi(x, \mu), \theta(x, \mu)$ are the solutions of the equation (4) satisfying the initial conditions $\theta(0, \mu) = \varphi(0, \mu) = 1, \quad \theta(0, \mu) = \varphi(0, \mu) = 0$ (see [3]).

Thus the entire functions $F(\mu)$ and $2 \cos \mu$ coincide on $\{(2\pi n + t) : t \in [\rho, \pi - \rho]\}$. Therefore these functions are identically equal on the complex plane and hence the eigenvalues of $L_1(q)$ are the squares of the roots of the equation $\cos \mu = \cos t$ for all $t \in \mathbb{C}$. That is, in the case $q \in L_1^+[0,1]$ the theorem is proved. The case $q \in L_1^-[0,1]$ can be proved in the same way.

Corollary 1 Suppose $q \in L_1^+[0,1] \cup L_1^-[0,1]$. Let E_{2n} and E_{2n+1} be the subspaces corresponding to the eigenvalues $(2\pi n)^2$ and $(2\pi n + \pi)^2$ of the operators $L_0(q)$ and $L_n(q)$ respectively. Then any sequence obtained as the union of orthonormal bases of all the subspaces E_{2n} (E_{2n+1}) for $n = 0, 1, \ldots$ is a Reisz basis of $L_2[0,1]$.

Proof. Since the periodic (antiperiodic) boundary conditions are regular by [11] the sequence of subspaces $(E_{2n})_0^\infty$ ($\{E_{2n+1}\}_0^\infty$) is a Riesz basis of the space $L_2[0,1]$. Therefore the proof follows from the following well-known statement: If the sequence of subspaces $\{H_n\}_0^\infty$ is a Riesz basis of the Hilbert spaces H, then any sequence obtained as the union of orthonormal bases of all the subspaces H_n for $n = 0, 1, \ldots$ form a Reisz basis in H (see [5] p. 344).

Note that the operators $L_0(q)$ and $L_n(q)$ in the case $q(x) = A e^{\pi i r x}$, where $A \in \mathbb{C}$ and $r \in \mathbb{Z}$, was investigated in detail by N. B. Kerimov [7]. He found a necessary and sufficient condition for a system of root functions of these operators to be a basis in $L_p[0,1]$ for arbitrary $p \in (1, \infty)$. Moreover he determined whether the eigenvalue $(\pi n)^2$ corresponds to the 2 linearly independent eigenfunctions or eigenfunction and associated function and wrote explicit formulas for all root functions.

\[
a_k(\lambda) = \sum_{n_1, n_2, \ldots, n_k} \frac{q_{n_1} q_{n_2} \cdots q_{n_k} q_{n-k}}{\prod_{s=1,2,\ldots,k} [\lambda - (2\pi(n-n(s))+t)^2]}, \quad (13)
\]

\[
R_m(\lambda) = \sum_{n_1, n_2, \ldots, n_m} \frac{q_{n_1} q_{n_2} \cdots q_{n_m} (q \Psi_{n,t}, e^{i(2\pi(n-n(m))+t)x})}{\prod_{s=1,2,\ldots,m} [\lambda - (2\pi(n-n(s))+t)^2]} = O\left(\frac{\ln |n|}{n}\right)^m, \quad (14)
\]

and the summations in (13) and (14) are taken with the conditions $n(s) \neq 0$ for $s = 1, 2, \ldots$.

2 On the Bloch Eigenvalues and Bloch Functions

Denote by $L_1^+[0,1]$ and $L_1^-[0,1]$ the set of all $q \in L_1[0,1]$ satisfying (7) and $q_n = 0$ for $n = 0, 1, 2, \ldots$ respectively. The formula (11) immediately give us the following.

Theorem 1 If $q \in L_1^+[0,1]$ then the eigenvalues of $L_1(q)$ for $t \in \mathbb{C}$ are $(2\pi n + t)^2$, where $n \in \mathbb{Z}$. These eigenvalues for $t \neq \pi k$, where $k \in \mathbb{Z}$, are simple. The eigenvalues $(2\pi n)^2$ for $n \in \mathbb{Z}\{0\}$ and $(2\pi n + \pi)^2$ for $n \in \mathbb{Z}$ are double eigenvalues of $L_0(q)$ and $L_n(q)$ respectively. The theorem continues to hold if $L_1^+[0,1]$ is replaced by $L_1^-[0,1]$.

Proof. Since at least one of the indices $n_1, n_2, \ldots, n_k, -n(k)$ (see (15)) is not positive number, by (7), (13) and (12) $a_k(\lambda_n(t)) = 0, A_m(\lambda_n(t)) = 0$ for all k, m. Therefore in (11) letting m tend to infinity and then using (14) and (10) we obtain $\lambda_n(t) = (2\pi n + t)^2$ for $t \in [\rho, \pi - \rho]$ and $n > N(\rho) \gg 1$. On the other hand $\lambda_n(t)$ are the squares of the roots of the equation $F(\mu) = 2 \cos t,$ $\forall t \in [\rho, \pi - \rho],$

where $F(\mu) = \varphi'(1, \mu) + \theta(1, \mu)$ and $\varphi(x, \mu), \theta(x, \mu)$ are the solutions of the equation (4) satisfying the initial conditions $\theta(0, \mu) = \varphi(0, \mu) = 1, \quad \theta(0, \mu) = \varphi(0, \mu) = 0$ (see [3]).

Thus the entire functions $F(\mu)$ and $2 \cos \mu$ coincide on $\{(2\pi n + t) : t \in [\rho, \pi - \rho]\}$. Therefore these functions are identically equal on the complex plane and hence the eigenvalues of $L_1(q)$ are the squares of the roots of the equation $\cos \mu = \cos t$ for all $t \in \mathbb{C}$. That is, in the case $q \in L_1^+[0,1]$ the theorem is proved. The case $q \in L_1^-[0,1]$ can be proved in the same way.

Corollary 1 Suppose $q \in L_1^+[0,1] \cup L_1^-[0,1]$. Let E_{2n} and E_{2n+1} be the subspaces corresponding to the eigenvalues $(2\pi n)^2$ and $(2\pi n + \pi)^2$ of the operators $L_0(q)$ and $L_n(q)$ respectively. Then any sequence obtained as the union of orthonormal bases of all the subspaces E_{2n} (E_{2n+1}) for $n = 0, 1, \ldots$ is a Reisz basis of $L_2[0,1]$.
Now to consider the Bloch functions \(\Psi_{n,t}(x) \) corresponding to the eigenvalue \((2\pi n + t)^2\)
we use the equality
\[
((2\pi n + t)^2 - (2\pi(n + p) + t)^2)(\Psi_{n,t}, e^{i(2\pi(n+p)+\pi)x}) = (q\Psi_{n,t}, e^{i(2\pi(n+p)+\pi)x})
\]
(16)
obtained from \(-\Psi_{n,t}^* + q\Psi_{n,t} = (2\pi n + t)^2\Psi_{n,t} \) by multiplying \(e^{i(2\pi(n+p)+\pi)x}\).

Theorem 2 Suppose \(q \in L_1^+[0,1] \). Let \(\Psi_{n,t}(x) \) be the eigenfunction of the operator \(L_t(q) \)
corresponding to the eigenvalue \((2\pi n + t)^2\) and normalized as
\[
(\Psi_{n,t}, e^{i(2\pi n + t)x}) = 1,
\]
(17)
where \(t \neq \pi k \) for \(k \in \mathbb{Z} \). Then
\[
\Psi_{n,t}(x) = e^{i(2\pi n + t)x} + \sum_{p \in \mathbb{N}} c_{p,n}(t)e^{i(2\pi(n+p)+t)x},
\]
(18)
where
\[
c_{p,n}(t) = d_{p,n}(t)(q_p + \sum_{k=1}^{p-1} \sum_{n_1,n_2,...,n_k} n_1 n_2 ... n_k \prod_{s=1}^{k} (2\pi(2n + p - n(s)) + 2t)2\pi(n(s) - p))^{-1},
\]
(19)
d\(p,n(t) = -(2\pi p(2\pi(n + p) + 2t))^{-1} \) for \(p = 1, 2, ... \) and
\[
\{n_1, n_2, ..., n_s, p - n_1 - n_2 - ... - n_s \} \subset \mathbb{N} =: \{1, 2, ..., \}
\]
(20)
for \(s = 1, 2, ..., p - 1 \). The theorem continues to hold if \(L_1^+[0,1] \) is replaced by \(L_1^-[0,1] \) and \(\mathbb{N} \) in (18) and (20) is replaced by \(-\mathbb{N}\).

Proof. Let \(\Psi_{n,t}(x) \) be the normalized eigenfunction of the operator \(L_t(q) \) corresponding to the eigenvalue \((2\pi n + t)^2\) and \(t \neq \pi k \) for \(k \in \mathbb{Z} \). (In the end we prove that there exists an eigenfunction of the operator \(L_t(q) \) satisfying (17). For simplicity of notation we denote it also by \(\Psi_{n,t} \).) Since the systems \(\{e^{i(2\pi n + t)x} : n \in \mathbb{Z}\} \) and \(\{e^{i(2\pi n + T)x} : n \in \mathbb{Z}\} \) are biorthogonal in \(L_2[0,1] \) we have
\[
\Psi_{n,t}(x) - (\Psi_{n,t}, e^{i(2\pi n + t)x})e^{i(2\pi n + t)x} = \sum_{p \in \mathbb{Z} \setminus \{0\}} (\Psi_{n,t}, e^{i(2\pi(n+p)+\pi)x})e^{i(2\pi(n+p)+t)x}.
\]
(21)
To find \((\Psi_{n,t}, e^{i(2\pi(n+p)+T)x}) \) we iterate (16) by using
\[
(q\Psi_{n,t}, e^{i(2\pi(n+p)+\pi)x}) = \sum_{n_1} q_{n_1}(\Psi_{n,t}(x), e^{i(2\pi(n+p-n_1)+\pi)x})
\]
(22)
(see (14) of [12]). Namely, using (22) and (16) we get
\[
(\Psi_{n,t}, e^{i(2\pi(n+p)+\pi)x}) = d_{p,n}(t) \sum_{n_1} q_{n_1}(\Psi_{n,t}, e^{i(2\pi(n+p-n_1)+\pi)x}).
\]
(23)
Now isolate the terms in the right-hand side of (23) containing the multiplicand
Repeating this process \(m \) times, that is, isolating again the terms containing the multiplicand \((\Psi_{n,t}, e^{i(2\pi n+\bar{t})x})\) which occurs in the case \(n_1 + n_2 = p \) and using again (23) for the other terms and doing this iteration \(m \) times, we obtain

\[
(\Psi_{n,t}, e^{i(2\pi(n+p)+\bar{t})x}) = d_{p,n}(t)(\Psi_{n,t}, e^{i(2\pi n+\bar{t})x}) + \sum_{n_1, n_2} q_{n_1} q_{n_2} (\Psi_{n,t}, e^{i(2\pi(n+p-n_1-n_2)+\bar{t})x}) \left(\frac{1}{2\pi(2n+p-n_1+2t)2\pi(n_1-p)} \right).
\]

Now using (26)-(28) we obtain

\[
(\Psi_{n,t}, e^{i(2\pi(n+p)+\bar{t})x}) = c_{p,n}(t)(\Psi_{n,t}, e^{i(2\pi n+\bar{t})x}) + r_m,
\]

where \(m > p, p - n(s) \neq 0 \) for \(s = 1, 2, \ldots, m \).

Now we prove that \(r_m \to 0 \) as \(m \to \infty \). By (20), \(n_k \geq 1 \) for \(k = 1, 2, \ldots, m \) and hence \(n(s) \geq s \). Using this and taking into account that \((q_{\Psi_{n,t}}, e^{i(2\pi(n+p-n(m))+\bar{t})x}) \to 0 \) as \(m \to \infty \) from (25) we obtain

\[
| r_m | \leq \frac{M}{(2\pi(2n+p-j)+2t)2\pi(j-p)} \prod_{s=1}^{m} (\Psi_{n,t})
\]

for \(m \gg 1 \), where \(M = \sup | q_n | \). Clearly, there exists \(K(t) \) such that

\[
\sum_{j \geq s, j \neq p} \frac{M}{(2\pi(2n+p-j)+2t)2\pi(j-p)} \leq K(t).
\]

(27)

for \(s = 1, 2, \ldots, m \). Moreover, if \(s > 4(|n| + |p|) \) then

\[
\sum_{j \geq s} \frac{M}{(2\pi(2n+p-j)+2t)2\pi(j-p)} \leq \sum_{j \geq s} \frac{M}{j^2} < \frac{M}{s-1}.
\]

(28)

Now using (26)-(28) we obtain

\[
| r_m | \leq \frac{d_{p,n}(t) | M^{m-4(|n|+|p|)}(K(t))^{4(|n|+|p|)} |}{4(|n| + |p|)(4(|n| + |p|) + 1)...(m-1)}
\]

which implies that \(r_m \to 0 \) as \(m \to \infty \). Therefore in (24) letting \(m \) tend to infinity we get

\[
(\Psi_{n,t}, e^{i(2\pi n+\bar{t})x}) = c_{p,n}(t)(\Psi_{n,t}, e^{i(2\pi n+\bar{t})x}).
\]

(29)

This with (21) shows that \((\Psi_{n,t}, e^{i(2\pi n+\bar{t})x}) \neq 0 \). Therefore, there exists eigenfunction, denoted again by \(\Psi_{n,t} \), satisfying (17) and for this eigenfunction, by (29), we have

\[
(\Psi_{n,t}, e^{i(2\pi n+\bar{t})x}) = c_{p,n}(t).
\]

(30)

The indices \(n_1, n_2, \ldots, n_k, p - n(k) \) taking part in the expression of \(c_{p,n}(t) \) (see (19)) satisfy (20). Therefore if \(p < 0 \), then the set of these indices is empty, that is, the first term on the right-hand side of (24) does not appear at all. Hence, from (24) using the relation \(r_m \to 0 \)
as $m \to \infty$ we obtain
\[(\Psi_{n,t} e^{i(2\pi(n+p)+t)x}) = 0, \forall p < 0. \] (31)

Thus (18) for $q \in L^+[0,1]$ follows from (21), (17), (30) and (31). The case $q \in L^-[0,1]$ can be considered in the same way.

3 On the Inverse Problem

First consider the Floquet solutions of the equation (4) defined by
\[\Psi(x,\mu) = \Psi_{n,t}(x) \] (32)
for $\mu = (2\pi n + t)$, where $n \in \mathbb{Z}$, $\text{Re} t \in (-\pi, \pi]$ and $\Psi_{n,t}(x)$ is studied in Theorem 2. Since $\Psi_{n,t}(x)$ satisfies (9), we have
\[\Psi_{n,t}(x + m) = e^{itm}\Psi_{n,t}(x) \]
for all $x \in (-\infty, \infty)$ and $m \in \mathbb{Z}$. This with the equality $\text{Im} \mu = \text{Im} t$ implies that $\Psi(x,\mu) \in L_2(a,\infty)$, $\Psi(x,-\mu) \in L_2(-\infty,a)$ for $\text{Im} \mu > 0$ and $a \in (-\infty, \infty)$. Therefore repeating the arguments of [4] one can obtain the spectral expansion. Note that we construct the Floquet solution for more general case and by the other method (see Result 2 in introduction).

Now we consider the inverse problem as follows. We write the Fourier decomposition of $\Psi_{n,t}(x)$ and $\Psi_{-n,-t}(x)$ in the form
\[\Psi_{n,t}(x) = \sum_{p \in \mathbb{Z}} c_{p,n}(t) e^{i(2\pi(n+p)+t)x}, \quad \Psi_{-n,-t}(x) = \sum_{p \in \mathbb{Z}} c_{p,-n}(-t) e^{i(2\pi(-n+p)-t)x}, \] (33)
where, by Theorem 2, $c_{p,n}(t)$ for $p > 0$ is defined by (19) and
\[c_{0,n}(t) = 1, \quad c_{p,n}(t) = 0, \forall p < 0. \] (34)

First we show that
\[\lim_{t \to 0} 8nt\pi c_{2n+p,-n}(-t) = c_{p,n}(0)s_{2n}, \forall p \geq -2n, \] (35)
\[\lim_{t \to \pi} 4(2n + 1)(t - \pi)\pi c_{2n+p+1,-n}(-t) = c_{p,n}(\pi)s_{2n+1}, \forall p \geq -2n - 1, \] (36)
where
\[s_n = q_n + \sum_{k=1}^{n-1} S_k(n), \quad S_k(n) = \sum_{n_1,n_2,...,n_k} \frac{q_{n_1}q_{n_2}...q_{n_k}q_{n-n(k)}}{\prod_{s=1}^{k}(2\pi n(s)2\pi(n - n(s)))}, \quad n = 1, 2, ... \] (37)
(see Lemma 1). Then using these equalities we prove that
\[\lim_{t \to 0} 8nt\pi \Psi_{-n,-t}(x) = s_{2n}\Psi_{n,0}(x), \forall n \geq 1, \] (38)
\[\lim_{t \to \pi} 4(2n + 1)(t - \pi)\pi \Psi_{-n,-t}(x) = s_{2n+1}\Psi_{n,\pi}(x), \forall n \geq 0 \] (39)
(see Lemma 2 and Theorem 3). Due to (32) and (6) $\{s_n\}$ is the sequence of the norming numbers. Finally, we investigate the property of the norming numbers and consider the question when $\{s_n\}$ may be a sequence of the norming number for the operator $L(q)$ with
potential \(q \in L^+_1[0, 1] \) (see Theorem 4, Proposition 1 and Corollary 2).

Lemma 1 The equalities (35) and (36) hold for all \(n \geq 1 \) and \(n \geq 0 \) respectively.

Proof. The proof of (35) for \(p = -2n \) follows from (34). From the definition of \(d_{p,n}(t) \) (see Theorem 2) we see that

\[
d_{2n+p,-n}(0) = d_{p,n}(0), \quad \lim_{t \to 0} 8n\pi t d_{2n,-n}(-t) = 1, \tag{40}
\]

\[
\lim_{t \to 0} 8n\pi t d_{2n+p,-n}(-t) = 0, \quad \forall p \neq 0, -2n. \tag{41}
\]

Therefore by (19) and (37) we have

\[
\lim_{t \to 0} 8n\pi t c_{2n,-n}(-t) = s_{2n}.
\]

Thus the proof of (35) for \(p = 0 \) also follows from (34).

To prove (35) in the more complicated cases \(p \neq 0, -2n \) we rewrite \(c_{2n+p,-n}(-t), c_{p,n}(0) \) and \(s_{2n} \) in the following form

\[
c_{2n+p,-n}(-t) = \sum_{k=0}^{2n+p-1} D_k(-t), \quad D_0(-t) = d_{2n+p,-n}(-t) q_{2n+p}, \tag{42}
\]

\[
D_k(-t) = \sum_{n_1,n_2,\ldots,n_k} D_k(-t, n_1, n_2, \ldots, n_k), \quad \forall k > 0, \tag{43}
\]

\[
D_k(-t, n_1, n_2, \ldots, n_k) = \frac{d_{2n+p,-n}(-t) q_{n_1} q_{n_2} \cdots q_{n_k} q_{2n+p-n(k)}}{\prod_{s=1}^k (2\pi(p-n(s)) - 2t)2\pi(n(s) - 2n - p)}, \tag{44}
\]

\[
c_{p,n}(0) = \sum_{j=0}^{p-1} F_j, \quad F_0 = d_{p,n}(0) q_p, \tag{45}
\]

\[
F_j = d_{p,n}(0) \sum_{n_1,n_2,\ldots,n_j} \frac{q_{n_1} q_{n_2} \cdots q_{n_j} q_{p-n(j)}}{\prod_{s=1}^j (2\pi(p-n(s))2\pi(n(s) - 2n - p)} \tag{46}
\]

\[
s_{2n} = \sum_{i=0}^{2n-1} E_i, \quad E_0 = q_{2n}, \quad E_i = \sum_{m_1,m_2,\ldots,m_i} E(m_1,m_2,\ldots,m_i), \tag{47}
\]

\[
E(m_1,m_2,\ldots,m_i) = \frac{q_{m_1} q_{m_2} \cdots q_{m_i} q_{2n-m(i)}}{\prod_{s=1}^i (2\pi m(s)2\pi(2n - m(s))}. \tag{48}
\]

By (41)

\[
\lim_{t \to 0} 8n\pi t D_0(-t) = 0. \tag{49}
\]

Now let us investigate \(D_k(-t) \) for \(1 \leq k \leq 2n + p - 1 \) and \(p \neq 0, -2n \). By (44), (7) and by (15) and (20) we have \(2n + p - n(k) > 0 \) and \(n(s) < n(k) \) for \(s < k \). Therefore the multiplicand \(n(s) - 2n - p \) of the denominator of the fraction in (44) is a negative integer:

\[
n(s) - 2n - p < 0 \tag{50}
\]

for \(s = 1, 2, \ldots, k \). To investigate the other multiplicand \(p - n(s) \) consider the cases:
Case 1: $-2n < p < 0$. Since $n(s) > 0$, we have $p - n(s) \neq 0$. This with (50) gives

$$\lim_{t \to 0} 8n\pi t D_k(-t) = 0.$$

Therefore (35) follows from (34), (42) and (49).

Case 2: $p > 0$. One can readily see that $D_k(-t)$ can be written in the form

$$D_k(-t) = \sum_{j=-1}^{p-1} D_{k,j}(-t),$$

(51)

where $D_{k,-1}(-t)$ and $D_{k,j}(-t)$ for $j \geq 0$ are the right-hand side of (43) when the summation is taken under conditions

$$p - n(s) \neq 0, \forall s = 1, 2, ... k$$

(52)

and

$$n_1 + n_2 + ... + n_{j+1} = p.$$

(53)

respectively. By (52), (50) and (44) we have

$$\lim_{t \to 0} 8n\pi t D_{k,-1}(-t) = 0.$$

(54)

Now consider $D_{k,j}(-t)$ for $j \geq 0$, i.e., assume that (53) holds. The indices $n_1, n_2, ..., n_{j+1}$ satisfying (53) take part in $D_{k,j}(-t)$ if and only if $j + 1 \leq k \leq 2n + j$, since $n_s > 0$ for all $s = 1, 2, ...$ and $2n + p - n(k) > 0$ (see (44)). Therefore

$$D_{k,j}(-t) = 0$$

(55)

for $k \leq j$ and for $k > 2n + j$. Thus it remains to consider $D_{k,j}(-t)$ for $j \geq 0$ and $j + 1 \leq k \leq 2n + j$. If (53) holds then $n_{j+1} = p - n(j)$ and by (44) the expression $D_k(-t, n_1, n_2, ..., n_k)$ can be written as product of

$$\frac{d_{2n+p-n}(-t)q_{n_1}q_{n_2}...q_{n_j}q_p-n(j)}{\left(\prod_{s=1}^{j} (2\pi(p-n(s))-2t)2\pi(n(s)-2n-p)\right)8n\pi t}$$

and

$$\frac{q_{n_{j+2}}q_{n_{j+3}}...q_{n_k}q_{2n-n_{j+2}-n_{j+3}-...-n_k}}{\prod_{s=j+2}^{k} (2\pi(n_{k+2}+n_{k+3}+...+n_s))2\pi(2n-n_{k+2}-n_{k+3}-...-n_s)}.$$

The last expression is $E(m_1, m_2, ..., m_{k-j-1})$ for $m_1 = n_{j+2}$, $m_2 = n_{j+3}, ..., m_{k-j-1} = n_k$ (see (48)). Using this and (40) and taking into account that $p - n(s) \neq 0$ for all $s \neq j + 1$ (see (53) and use the inequality $n_s > 0$ for all $s = 1, 2, ...$) we obtain

$$\lim_{t \to 0} 8n\pi t D_{k,j}(-t) = F_j \sum_{m_1,m_2,...,m_{k-j-1}} E(m_1, m_2, ..., m_{k-j-1}).$$

This with (55), (47) and (45) implies that

$$\lim_{t \to 0} 8n\pi t \sum_{k=0}^{2n+p-1} D_{k,j}(-t) = F_j \sum_{k=j+1}^{2n+j} E_{k-j-1} = F_j s_{2n},$$

$$\lim_{t \to 0} 8n\pi t \sum_{k=0}^{2n+p-1} D_{k,j}(-t) = F_j \sum_{k=j+1}^{2n+j} E_{k-j-1} = F_j s_{2n},$$
Thus (35) follows from (42), (51) and (54). In the same way one can prove (36).

Lemma 2 For any $n \geq 1$ and $n \geq 0$ there exist constants K and L such that the inequalities
\[
8n\pi t \left| (q^t \Psi - n, -t, e^{i(2\pi m - t)x}) \right| < K, \; \forall m \in \mathbb{Z}
\]
and
\[
4(2n + 1)\pi (\pi - t) \left| (q^t \Psi - n, -t, e^{i(2\pi m - t)x}) \right| < L, \; \forall m \in \mathbb{Z}
\]
hold for $t \in (0, \frac{\pi}{2})$ and for $t \in (\frac{\pi}{2}, \pi)$ respectively.

Proof. Let us prove (56) for $t \in (0, \frac{\pi}{2})$. Since $(q^t \Psi - n, -t, e^{i(2\pi m - t)x})$ tends to zero as $|m| \to \infty$, there exists a constant $C(t)$ and integer $k_0(t)$ such that
\[
max_{m \in \mathbb{Z}} \left| (q^t \Psi - n, -t, e^{i(2\pi m - t)x}) \right| = \left| (q^t \Psi - n, -t, e^{i(2\pi k_0 - t)x}) \right| = C(t).
\]
Let l be an integer such that
\[
\sum_{k \geq l} \frac{1}{k^2} < \frac{1}{2M},
\]
where M is defined in (26). Using (58), (22) and then (30), (59) we obtain
\[
C(t) = \left| (q^t \Psi - n, -t, e^{i(2\pi k_0 - t)x}) \right| \leq \left| \sum_{m : |k_0 - m| \leq |n| + l} q_m (\Psi - n, -t, e^{i(2\pi (k_0 - m - t)x)}) \right|
\]
\[
+ \left| \sum_{m : |k_0 - m| > |n| + l} \frac{q_m (q^t \Psi - n, -t, e^{i(2\pi (k_0 - m + t)x)})}{(-2\pi n - t)^2 - (2\pi (k_0 - m) - t)^2} \right| < S + \frac{C(t)}{2},
\]
where
\[
S = M \sum_{|p| : |p| \leq 2|n| + 1} | c_{n,p}(t) |.
\]
On the other hand, from (19) and (20) one can readily see that there exists a constant c such that $8n\pi t | c_{n,p}(t) | < c$ for all p with $|p| \leq 2|n| + 1$. Moreover the number of the summands in (61) is less that $2(2|n| + 1 + 1)$. Therefore $8n\pi t | S | < 2M(2|n| + 1 + 1)c$. This inequality with (60) implies that
\[
8n\pi t C(t) < 2M(2|n| + 1 + 1)c + \frac{8n\pi t C(t)}{2},
\]
that is, (56) holds for $K = 4M(2|n| + 1 + 1)c$. In the same way we prove (57).

Theorem 3 If $q \in L^1(0, 1]$ then (38) and (39) hold for $n \geq 1$ and $n \geq 0$ respectively.

Proof. From (30), (16) and Lemma 2 it follows that
\[
8n\pi t | c_{n,p}(t) | = | 8n\pi t d_{p,n}(t)(q^t \Psi - n, -t, e^{i(2\pi (-n + p - t)x)}) | < K \left| d_{p,n}(t) \right|
\]
for $t \in (0, \frac{\pi}{2})$. Therefore the series
\[
8n\pi t \Psi - n, -t(x) = 8n\pi t e^{i(-2\pi n - t)x} + \sum_{p \in \mathbb{N}} 8n\pi t c_{p,n}(t) e^{i(2\pi (-n + p - t)x)}
\]
(see (18)) converges uniformly with respect to \(x \in [0, 1] \) and \(t \in (0, \frac{\pi}{2}] \). Thus, in (63) letting \(t \) tend to zero and using equality (35) we get the proof of (38). To prove (39) instead of (35) and (56) we use (36) and (57) and repeat the proof of (38). ■

From (38) and (39) we define the norming numbers \(s_n \) for \(n = 1, 2, ... \) by (37)

\[
s_1 = q_1, \ s_2 = q_2 + \frac{q_1^2}{(2\pi)^2}, \ s_3 = q_3 + \frac{q_1q_2}{(2\pi)^2} + \frac{q_1^3}{4(2\pi)^4}, \ldots
\]

(64)

Thus if the norming numbers \(s_n \) for \(n = 1, 2, ... \) are given then one can define recurrently

\[
q_1 = s_1, \ q_2 = s_2 - \frac{s_1^2}{(2\pi)^2}, \ q_3 = s_3 - \frac{s_1s_2}{(2\pi)^2} + \frac{3s_1^3}{4(2\pi)^4}, \ldots
\]

(65)

Now we are ready to prove the main result of this section. Let \(S \) be the set of all sequences \(\{s_n\} \) for which there exists \(s \in L_1[0, 1] \) with \((s(x), e^{i2\pi nx}) = s_n \) for all \(n = 1, 2, ... \).

Theorem 4 For every \(q \in L_1^+[0, 1] \) the sequence \(\{s_n\} \) of norming numbers is an element of \(S \). Conversely, for any sequence \(\{s_n\} \) from \(S \) there exists unique \(q \in L_1^+[0, 1] \) such that the sequence of the norming numbers of \(L(q) \) coincides with \(\{s_n\} \) if and only if the solutions \(q_1, q_2, ... \) of (37) is a bounded sequence.

Proof. Since \(|q_n| \leq M\) for all \(n \), where \(M \) is defined in (26), from (37) we obtain

\[
|S_1(n)| \leq \frac{M^2}{(2\pi)^2} \sum_{k=1}^{n-1} \frac{1}{k(n-k)}.
\]

(66)

In the same way we get

\[
|S_k(n)| \leq \frac{M^{k+1}}{(2\pi)^{2k}} \left(\sum_{k=1}^{n-1} \frac{1}{k(n-k)} \right)^k.
\]

(67)

Now using the obvious inequality

\[
\sum_{k=1}^{n-1} \frac{1}{k(n-k)} < \frac{2(1 + \ln n)}{n}, \ \forall n \geq 4
\]

(68)

from (37) we obtain that

\[
s_n - q_n = O(n^{-1} \ln n).
\]

(69)

Therefore there exists \(p \in L_2[0, 1] \) such that \((p(x), e^{i2\pi nx}) = s_n - q_n \) for all \(n = 1, 2, ... \). Then the function \(s(x) = p(x) + q(x) \) belongs to \(L_1[0, 1] \) and \((s(x), e^{i2\pi nx}) = s_n \) for all \(n = 1, 2, ... \), that is, \(\{s_n\} \in S \).

Now suppose that \(\{s_n\} \in S \) and the solutions \(q_1, q_2, ... \) of (37) is a bounded sequence. Then there exists a constant \(C \) such that \(|q_n| \leq C\) for \(n = 1, 2, ... \). Instead of \(M \) using \(C \) and repeating the proof of (69) we see that \(\{q_n\} \in S \). Therefore there exists unique \(q \in L_1^+[0, 1] \) such that the sequence of the norming numbers of \(L(q) \) coincides with \(\{s_n\} \). ■

It remains to find the conditions on the sequence \(\{s_n\} \) of norming numbers such that the sequence \(\{q_n\} \) defined from (37) is bounded. Below we present an example by using the following obvious inequality

\[
\sum_{k=1}^{n-1} \frac{1}{k(n-k)} \leq 1, \ \forall n > 1.
\]

(70)
which follows from (68) for \(n > 5 \) and can be verified by calculations for \(n \leq 5 \).

Proposition 1 If the sequence \(\{ s_n \} \) of norming numbers satisfies the inequality

\[
| s_n | \leq 2\pi - \frac{2\pi}{2\pi - 1}, \quad \forall n = 1, 2, ...
\] (71)

then for the sequence \(\{ q_n \} \) defined from (37) the following estimations hold

\[
| q_m | \leq 2\pi, \quad \forall m = 1, 2, ...
\] (72)

Proof. Let us prove (72) by induction. It follows from (65) that (72) holds for \(m = 1, 2 \). Assume that (72) holds for \(m < n \), where \(n > 2 \). Then \(| q_m | \leq 2\pi \) for \(m < n \). The indices \(n_1, n_2, ..., n_k, n - n_k \) taking part in the expressions of \(S_k(n) \) for \(k = 1, 2, ..., n - 1 \) (see (37)) less than \(n \), since they are positive numbers and their total sum is \(n \). Therefore by assumption of the induction the Fourier coefficients taking part in those expressions satisfy (72). Thus in (67) instead of \(M \) taking \(2\pi \) and then using (70) we get

\[
\sum_{k=1}^{n-1} | S_k(n) | \leq \sum_{k=1}^{n-1} \frac{(2\pi)^{k+1}}{(2\pi)^{2k}} < \frac{2\pi}{2\pi - 1}.
\]

This with (37) and (71) implies that \(| q_n | \leq | s_n | + \frac{2\pi}{2\pi - 1} \leq 2\pi \). □

Theorem 4 with Proposition 1 implies

Corollary 2 For any sequence \(\{ s_n \} \in S \) satisfying (71) there exists unique \(q \in L^+_{1}[0,1] \) such that the sequence of the norming numbers of \(L(q) \) coincides with \(\{ s_n \} \).

References

[1] R. Carlson, A note on analyticity and Floquet isospectrality. Proc. Amer. Math. Soc. 134, 5, 1447–1449 (2006)

[2] T. Christiansen, Isophasal, isopolar, and isospectral Schrödinger operators and elementary complex analysis. Amer. J. Math. 130, 1, 49–58 (2008).

[3] M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations. Edinburg. Scottish Academic Press 1973.

[4] M. G. Gasymov, Spectral analysis of a class of second-order non-self-adjoint differential operators, Funktsional Anal. i Prilozhen 14, 14-19 (1980).

[5] I. T. Goghberg and M. G. Krein, Introduction to the Theory of Linear Nonself-adjoint Operators , AMS, Providence, 1969.

[6] V. Guillemin and A. Uribe, Hardy functions and the inverse spectral method, Comm. Partial Differential Equations, 8, 1455-1474 (1983).

[7] N. B. Kerimov, On a Boundary value problem of N. I. Ionkin type, Differential Equations, 49, 10, 1233–1245 (2013).

[8] D. McGarvey, Operators commuting with translations by one. Part II. Differential operators with periodic coefficients in \(L_p(-\infty, \infty) \), J. Math. Anal. Appl. 11, 564–596 (1965).
[9] L. A. Pastur and V. A. Tkachenko, An inverse problem for a class of one-dimensional Schrödinger operators with complex periodic potential. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 54, 6, 1252–1269 (1990).

[10] K. C. Shin, On half-line spectra for a class of non-self-adjoint Hill operators. Math. Nachr. 261/262, 171–175 (2003).

[11] A. A. Shkalikov, On the Riesz basis property of the root vectors of ordinary differential operators, Russian Math. Surveys 34, 5, 249-250 (1979).

[12] O. A. Veliev and M. Toppamuk Duman, The spectral expansion for a nonself-adjoint Hill operators with a locally integrable potential, Journal of Math. Analysis and Appl. 265, 76-90 (2002).