Triglyceride Glucose Index Predicts Risk of Adverse Cardio-metabolic and Mortality Outcomes Among Chinese Adults: A Territory-Wide Longitudinal Study

Jiandong Zhou *, Sharen Lee *, Jeremy Hui, Wing Tak Wong PhD, Keith SK Leung BSc, Abraham KC Wai MBChB FRCP FRCEM, Tong Liu MD PhD, Bernard Man Yung Cheung PhD FRCP, Gary Tse PhD FRCP #, Qingpeng Zhang PhD #

1 School of Data Science, City University of Hong Kong, Hong Kong, Hong Kong, China
2 Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Hong Kong, China
3 Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
4 School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
5 Emergency Medicine Unit, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
6 Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
7 Division of Clinical Pharmacology and Therapeutics, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China

Correspondence to:
Prof. Gary Tse PhD FRCP
Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, United Kingdom
Email: gary.tse@doctors.org.uk

Prof. Qingpeng Zhang PhD
School of Data Science, City University of Hong Kong,
Hong Kong, China
Email: qingpeng.zhang@cityu.edu.hk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: The triglyceride glucose (TyG) index has been proposed to be a surrogate of insulin resistance. In the study, we aimed to examine the relationship between TyG index and the risk of new onset DM and secondary outcomes included atrial fibrillation (AF), heart failure (HF), acute myocardial infarction (AMI), ventricular tachycardia/fibrillation (VTF), cardiovascular mortality (CAD) and all-cause mortality.

Methods: The retrospective observational study analyzed patients recruited from 1st January 2000 to 31st December 2003 and followed up until 31st December 2019. Demographics, past comorbidities, medications and laboratory tests were extracted. At baseline and follow-up, DM was defined as 1) any occasion Hb1Ac ≥14 g/dL, 2) fasting glucose≥7 mmol/L on two occasions, or 3) with DM diagnosis. We excluded 1) patients with prior DM or with the use of antidiabetic medications; 2) patients with prior AMI/HF/AF or with the use of diuretic/beta blockers for HF were excluded. Univariate analysis and multivariate Cox analysis with adjustments on demographics, past comorbidities and medications were conducted to identify the significant risk predictors of primary and secondary outcomes. Optimal cutoffs of TyG index for the primary and secondary outcomes were found with maximally selected rank statistics approach.

Result: Larger TyG index is significantly associated with new onset DM (HR: 1.51, 95% CI: [1.47, 1.55], P value<0.0001), new onset HF (HR: 1.27, 95% CI: [1.2, 1.34], P value<0.0001), new onset AF (HR: 2.36, 95% CI: [2.26, 2.46], P value<0.0001), new onset AMI (HR: 1.51, 95% CI: [1.42, 1.6], P value<0.0001), new onset VTF (HR: 1.22, 95% CI: [1.13, 1.31], P value<0.0001), new onset CAD (HR: 1.56, 95% CI: [1.45, 1.69], P value<0.0001) and all-cause mortality (HR: 1.21, 95% CI: [1.18, 1.25], P value<0.0001). TyG index and its 3rd tertile remained significant after being adjusted
with significant demographics, past comorbidities and medications in multivariate cox models (HR>1, P value<0.05). Optimal cut-off values of baseline TyG index and adjusted multivariate restricted cubic spline models further uncovered detailed associations of larger baseline TyG index with the primary and secondary outcome.

Conclusion:
Higher TyG index remained significantly associated with the elevated risk of new onset DM, AF, HF, AMI, VTF, CAD and all-cause mortality after adjustments on demographics, past comorbidities, and medications.
Introduction

The triglyceride glucose (TyG) index has been proposed to be a surrogate of insulin resistance. It has been shown to predict adverse cardiovascular events in patients with diabetes alone, or with acute coronary syndrome (1), poor prognosis in ischaemic stroke patients (2) and incident diabetes in the general population (3). In the study, we aimed to examine the relationship between TyG index and new onset DM, atrial fibrillation (AF), heart failure (HF), acute myocardial infarction (AMI), ventricular tachycardia/fibrillation (VTF), cardiovascular mortality (CAD) and all-cause mortality.

Methods

Study Population

The crude inclusion criteria were as follows: 29944 patients with complete triglyceride and fast glucose tests were recruited from January 1st, 2000 to December 31st, 2003 and were followed up until Dec 31st, 2019 (Figure 1). In total 5595 patients being excluded with the criteria were as follows: 1) with baseline DM diagnosis (N=1769); 2) With any prior HbA1c occasion ≥ 14 gd/L (N=1195); 3) With any two occasions of fast glucose ≥ 7 mmol/L (N=1037); 4) With prior use of antidiabetic medications (N=971); 5) With prior AMI (N=31); 6) With prior HF (N=54); 7) With prior AF (N=105); 8) With prior HF (or use of diuretics/beta blockers for HF) (N=434) before the initial date of fast glucose or triglyceride tests (baseline). A total of 24349 patients fulfilled the eligibility criteria and were included in the study cohort.

Clinical and biochemical data were extracted for the present study. Patients’ demographics include male gender and baseline age. Prior comorbidities were extracted, including liver diseases, endocrine, hypertension, ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), gastrointestinal, peripheral vascular disease (PVD), transient ischemic attack...
(TIA)/ischemic stroke, gastrointestinal bleeding, and cancer. Standard Charlson comorbidity index was also calculated. Mortality was recorded using the International Classification of Diseases Tenth Edition (ICD-10) coding, whilst the outcome of DM diagnosis and comorbidities were documented in CDARS under ICD-9 codes. ICD-10 codes I00-I78 were used to identify cardiovascular mortality.

Supplementary Table 1 displays the ICD-9 codes used to search for patient comorbidities.

Medications histories were also extracted, including angiotensinogen converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB), calcium channel blockers, beta blockers, diuretics for HF, diuretics for hypertension, nitrates, antihypertensive drugs, anti-diabetic drugs, statins and fibrates, lipid-lowering drugs, anticoagulants, and antiplatelets. In addition, baseline biochemical data, defined as complete cell count, renal and liver function tests, and glycemic and lipid profile measured from January 1st, 2000 to December 31st, 2003 were extracted. Complete cell count include mean corpuscular volume (MCV), lymphocyte, metamyelocyte, monocyte, neutrophil, white cell count, mean corpuscular hemoglobin (MCH), myelocyte, platelet, reticulocyte, red cell count, and hematocrit (HCT). Liver and renal function tests include potassium, albumin, sodium, urea, protein, creatinine, alkaline phosphatase (ALP), aspartate transaminase, alanine aminotransferase (ALT), and bilirubin. Lipid and glycemic profile tests include low-density lipoprotein, high-density lipoprotein, HbA1c, cholesterol, fast glucose, and triglycerides. The TyG index was calculated as the ln(18×triglyceride level [mmol/L] × 18×fast glucose level [mmol/L]/2). Deciles and tertiles of TyG index were calculated.

Primary outcomes and statistical Analysis
The primary outcome was new onset DM and the secondary outcomes included new onset AF/HF/AMI/VTF/CAD and all-cause mortality. The endpoint date of interest for all eligible patients was event presentation date, mortality, or study end (December 31, 2019). There are no records with follow-up loss. Descriptive statistics were used to summarize patients’ characteristics of the primary outcome and secondary outcomes. Continuous variables were presented as median (95% confidence interval [CI] or interquartile range [IQR]) and categorical variables were presented as count (%). The Mann-Whitney U test was used to compare two continuous variables. The Kruskal-Wallis test was used to determine whether more than two continuous variables have a different distribution. The χ² test with Yates’ correction was used for 2×2 contingency data. The study cohort was compared according to the tertile subgroups of TyG index (Table 1) and those with/without event presentation (Supplementary Tables 2-4).

Univariate Cox hazard proportional analysis models were used to identify the significant risk predictors of primary and secondary outcomes. Hazard ratios (HRs) with corresponding 95% CIs and P values were reported accordingly. Kaplan-Meier curves were plotted against the time-to-event for primary and secondary outcomes stratified by deciles of TyG index (Figure 2). Adjusted cubic spline models of the associations between TyG index and the risk of primary and secondary outcomes were presented (Figure 3). Hazard ratios (HRs) of primary and secondary outcomes according to tertiles of TyG index were summarized (Table 4). Optimal cut-offs of baseline TyG index for primary and secondary outcomes were derived with maximal survival rank statistics approach after adjusting for significant demographics, past comorbidities, and medications with multivariate Cox model, and compared with 1st tertile subgroup as reference (Table 5). Adjusted cubic spline model of the associations between TyG index and risk of new-onset DM and all-cause mortality was performed.
mortality were presented (Figure 4). All significance tests were two-tailed and considered statistically significant if P values were 0.05. Data analyses were performed using RStudio software (Version: 1.1.456) and Python (Version: 3.6).

Results

Clinical and Biochemical Characteristics

The present cohort consists of 24,349 patients (40.2% males, median age of initial triglyceride test: 62.5 years old, IQR: 51.3-71.4, max: 100.97 years old). In total 9,103 patients (37.38%) passed away due to all-cause mortality after a median follow-up of 6,451 days (IQR: 5,142-6,911, max: 7,517 days), among them 1,113 patients (4.57%) died from cardiovascular diseases. Overall 8,324 patients (34.18%) developed new onset DM after a median follow up of 6,149 days (IQR: 1,854-6,727, max: 7,479 days), 2,404 patients (9.87%) developed new onset HF after a median follow up of 6,431 days (IQR: 4,871-6,902, max: 7,517 days), 2,855 patients (11.72%) developed new onset AF after a median follow up of 6,399 days (IQR: 4,567-6,887, max: 7,517 days), 1,862 patients (7.64%) developed new onset AMI after a median follow up of 6,420 days (IQR: 4,808-6,895, max: 7,517 days), 1,275 patients (5.23%) developed new onset VTF after a median follow up of 6,445 days (IQR: 5,049-6,908, max: 7,517 days).

The crude incidence rates were 33.11% (N=8,062), 33.53% (N=8,166) and 33.35% (N=8,121) for baseline TyG index in the 1st, 2nd, and 3rd tertiles, respectively, as shown in Table 1 for the baseline characteristics according to the tertile subgroups of baseline TyG index. There exist significant differences among the three tertiles of TyG index in incidence rates of all-cause mortality (32.69% v.s. 37.68% v.s. 41.74%, P value<0.0001), CAD (3.15% v.s. 4.38% v.s. 6.16%, P
value<0.0001), new DM (24.64% v.s. 33.85% v.s. 43.98%, P value<0.0001), new onset HF (7.98% v.s. 10.39% v.s. 11.21%, P value<0.0001), new onset AF (3.80% v.s. 9.57% v.s. 21.74%, P value<0.0001), new onset AMI (5.49% v.s. 7.17% v.s. 10.25%, P value<0.0001) and new onset VTF (4.50% v.s. 5.31% v.s. 5.88%, P value=0.0008).

Significant differences among the three tertile subgroups of patients were also observed in male gender (37.78% v.s. 40.87% v.s. 41.92%, P value=0.0012), baseline age (median: 60.49 years old, IQR: 49.33-70.94 years old; max: 100.97 years old v.s. median: 63.05 years old, IQR: 52.14-71.81; max: 96.23 years old v.s. median: 63.48 years old, IQR: 52.14-71.44; max: 98.94 years old, P value<0.0001), Charlson score (median: 2.0, IQR: 0.0-3.0; max: 11.0 v.s. median: 2.0, IQR: 1.0-3.0; max: 9.0 v.s. median: 2.0, IQR: 1.0-3.0; max: 9.0, P value<0.0001), COPD (0.23% v.s. 0.07% v.s. 0.07%, P value=0.0039), and medication use of ACEI (5.43% v.s. 7.43% v.s. 9.59%, P value<0.0001), calcium channel blockers (9.36% v.s. 11.84% v.s. 12.88%, P value<0.0001), beta blockers (8.71% v.s. 11.36% v.s. 12.17%, P value<0.0001), nitrates (3.88% v.s. 4.65% v.s. 5.27%, P value=0.0003), anti-diabetic drugs (2.70% v.s. 4.83% v.s. 8.81%, P value<0.0001), statins and fibrates (5.80% v.s. 7.46% v.s. 9.77%, P value<0.0001), diuretics for hypertension (4.44% v.s. 6.00% v.s. 6.09%, P value<0.0001), anticoagulants (0.11% v.s. 0.22% v.s. 0.34%, P value=0.0077), antiplatelets (4.70% v.s. 5.55% v.s. 6.44%, P value<0.0001) and lipid-lowering drugs (4.66% v.s. 6.38% v.s. 7.38%, P value<0.0001).

Patients in the 3rd tertile subgroup had significantly lower levels of mean corpuscular volume, mean corpuscular haemoglobin, platelet, reticulocyte, red cell count, hematocrit, urate, albumin, sodium, urea, protein, creatinine, bilirubin and high-density lipoprotein, while had higher levels of
lymphocyte, monocyte, neutrophil, white cell count, ALP, aspartate transaminase, ALT, triglyceride, low-density lipoprotein, cholesterol, HbA1c and fast glucose (P value<0.05).

In addition, the baseline characteristics of patients with/without event presentation of new onset DM/AF/HF/AMI/VTF/CAD and all-cause mortality were presented in Supplementary Tables 2-4. Patients in the third tertile had a significant larger value of TyG index (median: 6.7, IQR: 6.45-6.88; max: 7.03 v.s. median: 7.31, IQR: 7.17-7.46; max: 7.63 v.s. median: 8.04, IQR: 7.17-8.4; max: 11.61, P value<0.0001). Kaplan-Meier survival curves of the primary and secondary outcomes stratified by deciles of baseline TyG index were presented in Figure 2.

Significant univariate risk factors of primary and secondary outcomes

Cox-proportional hazard model analysis identified the significant risk factors of primary and secondary outcomes as shown in Table 2 and Table 3. Important predictors of new onset DM include male gender, older patient age, larger Charlson score, comorbidities of liver diseases, IHD, COPD, and PVD (HR>1, P value<0.05); higher levels of mean corpuscular volume, monocyte, neutrophil, white cell count, mean corpuscular haemoglobin, platelet, reticulocyte, hematocrit, potassium, urea, creatinine, alkaline phosphatase, aspartate transaminase, alanine transaminase, bilirubin, triglyceride, HbA1c, fast glucose (HR>1, P value<0.05), and lower levels of lymphocyte, albumin, sodium, protein, low-density lipoprotein, high-density lipoprotein, and cholesterol (HR<1, P value<0.05). Lager TyG index is significantly associated with new onset DM (HR: 1.51, 95% CI: [1.47, 1.55], P value<0.0001). Significances of the stratified deciles and tertiles of TyG index with new onset DM were also presented in Table 2. Medication prescriptions of all the mentioned drugs were associated with new onset DM (HR>1, P value<0.05).
Significant risk predictors of new onset HF include male gender, older patient age, larger Charlson score, comorbidities of hypertension, IHD, COPD, PVD, TIA/Ischemic stroke and cancer (HR>1, P value<0.05); higher levels of mean corpuscular volume, monocyte, neutrophil, white cell count, mean corpuscular haemoglobin, platelet, urea, creatinine, alkaline phosphatase, HbA1c, fast glucose (HR>1, P value<0.05), and lower levels of lymphocyte, red cell count, albumin, sodium, protein, alanine transaminase, high-density lipoprotein, and cholesterol (HR<1, P value<0.05). Larger TyG index is significantly associated with new onset HF (HR: 1.27, 95% CI: [1.2, 1.34], P value<0.0001). Significances of the stratified deciles and tertiles of TyG index with new onset DM were also presented. Medication prescriptions of all the mentioned drugs were associated with new onset HF (HR>1, P value<0.05).

Significant predictors of new onset AF included older patient age, larger Chalson score, past comorbidities of hypertension, IHD, COPD, and gastrointestinal bleeding (HR<1, P value<0.05); higher levels of mean corpuscular volume, monocyte, neutrophil, white cell count, mean corpuscular haemoglobin, urea, creatinine, alkaline phosphatase, bilirubin, triglyceride, HbA1c, fast glucose (HR>1, P value<0.05), and lower levels of lymphocyte, platelet, red cell count, potassium, albumin, protein, low-density lipoprotein, and cholesterol (HR<1, P value<0.05). Larger TyG index is significantly associated with new onset AF (HR: 2.36, 95% CI: [2.26, 2.46], P value<0.0001). Significances of the stratified deciles and tertiles of TyG index with new onset AF were also presented. Medication prescriptions of ACEI, ARB, calcium channel blockers, beta blockers, nitrates, antihypertensive drugs, diuretics for hypertension, anticoagulants and antiplatelets were associated with new onset AF (HR>1, P value<0.05).
Significant univariate risk predictors of new onset AMI included male gender, older baseline age, larger Charlson score, past comorbidities of hypertension, IHD, COPD, gastrointestinal diseases, PVD, TIA/Ischemic stroke (HR>1, P value<0.05); higher levels of mean corpuscular volume, monocyte, neutrophil, white cell count, mean corpuscular haemoglobin, platelet, reticulocyte, urea, creatinine, alkaline phosphatase, HbA1c, fast glucose (HR>1, P value<0.05), and lower levels of lymphocyte, platelet, red cell count, sodium, protein and high-density lipoprotein (HR<1, P value<0.05). Larger TyG index is significantly associated with new onset AMI (HR: 1.51, 95% CI: [1.42, 1.6], P value<0.0001). Significances of the stratified deciles and tertiles of TyG index with new onset AMI were also presented. Medication prescriptions of all the mentioned drugs were associated with new onset AMI (HR>1, P value<0.05).

Significant risk predictors of new osnet VTF included male gender, older patient age, larger Charlson score, past comorbidities of hypertension, IHD, PVD, TIA/Ischemic stroke (HR>1, P value<0.05); higher levels of mean corpuscular volume, neutrophil, white cell count, mean corpuscular haemoglobin, urea, creatinine, HbA1c, fast glucose (HR>1, P value<0.05), and lower levels of lymphocyte, platelet, red cell count, sodium, protein and high-density lipoprotein (HR<1, P value<0.05). Larger TyG index is significantly associated with new onset VTF (HR: 1.22, 95% CI: [1.13, 1.31], P value<0.0001). Significances of the stratified deciles and tertiles of TyG index with new onset VTF were also presented. Medication prescriptions of all the mentioned drugs were associated with new onset VTF (HR>1, P value<0.05).

Adjusted associations of baseline TyG index with primary and secondary outcomes
With 1st tertile subgroups of baseline TyG index as a reference, it has been found that the 3rd tertile subgroup were more likely to developed new onset DM/AF/HF/AMI/VTF and meet the outcomes of CAD and all-cause mortality (HR>1, P value<0.05) (Table 4), after being adjusted for significant demographics, past comorbidities, and medications in different multivariate Cox analysis models. The optimal cut-off values of baseline TyG index with primary and secondary outcomes were identified with the maximal survival rank statistics approach (Table 5). Adjusted multivariate restricted cubic spline models identified the associations between baseline TyG index and HR of primary and secondary outcomes were presented in Figure 3.

It has been further confirmed that TyG index above the optimal cut-offs was associated with elevated adverse risk of both the primary and secondary outcomes. Analyses of the associations between baseline TyG index and primary and secondary outcomes with maximal survival rank statistics approach were presented in Figure 4. Subgroup characteristics of triglyceride cut-offs with new onset DM and all-cause mortality were presented in Supplementary Table 2 and Table 3, respectively. Basic characteristics of TyG index cut-offs with primary and secondary outcomes were compared in Supplementary Tables 5-7.

Discussion

The major findings of the present study are summarized as follows:

1). Lager TyG index is significantly associated with new onset DM (HR: 1.51, 95% CI: [1.47, 1.55], P value<0.0001), new onset HF (HR: 1.27, 95% CI: [1.2, 1.34], P value<0.0001), new onset AF (HR: 2.36, 95% CI: [2.26, 2.46], P value<0.0001), new onset AMI (HR: 1.51, 95% CI: [1.42, 1.6], P value<0.0001), new onset VTF (HR: 1.22, 95% CI: [1.13, 1.31], P value<0.0001), new onset
CAD (HR: 1.56, 95% CI: [1.45, 1.69], P value<0.0001) and all-cause mortality (HR: 1.21, 95% CI: [1.18, 1.25], P value<0.0001);

2). 3rd tertile subgroup (TyG>7.63) were more likely to developed new onset DM/AF/HF/AMI/VTF and meet the outcomes of CAD and all-cause mortality (HR>1, P value<0.05);

3). TyG index and its 3rd tertile remained significant after being adjusted with significant demographics, past comorbidities and medicactions in multivariate cox models (HR>1, P value<0.05);

4). Optimal cut-off values of baseline TyG index were identified and subgroups with TyG index larger than the cut-offs were significantly associated with the primary and secondary outcome (HR>1, P value<0.05);

5). Adjusted multivariate restricted cubic spline models further uncovered the detailed associations between baseline TyG index and HRs of primary and secondary outcomes.

Limitations

As in other observational studies, this study is limited by potential under-coding of comorbidities, missing data, and coding errors. Additionally, the duration of the complications and the prescribed treatments were not accounted for, which could affect the interpretation of blood pressure value and variability measurements. In addition, this study is conducted based on a Hong Kong cohort, and it is
expected that external validity through comparisons with studies from other countries reporting the
association between blood pressure variability and adverse outcomes could be conducted for further
confirmation. Finally, all patients were older Chinese people, caution should be made when
interpreting our findings in younger individuals and other ethnic populations.

Conclusion

Higher TyG index remained significantly associated with the elevated risk of new onset DM, AF, HF,
AMI, VTF, CAD and all-cause mortality after adjustments on demographics, past comorbidities, and
medications.

Funding

None.

References

1. Wang L, Cong H-l, Zhang J-x, Hu Y-c, Wei A, Zhang Y-y, Yang H, Ren L-b, Qi W, Li W-y, Zhang
R, Xu J-h. Triglyceride-glucose index predicts adverse cardiovascular events in patients with
diabetes and acute coronary syndrome. *Cardiovascular Diabetology*. 2020 2020/06/13;19(1):80.
2. Zhou Y, Pan Y, Yan H, Wang Y, Li Z, Zhao X, Li H, Meng X, Wang C, Liu L, Wang Y.
Triglyceride Glucose Index and Prognosis of Patients With Ischemic Stroke. *Front Neurol.*
2020;11:456.
3. Chen C-l, Liu L, Lo K, Huang J-y, Yu Y-l, Huang Y-q, Feng Y-q. Association Between Triglyceride
Glucose Index and Risk of New-Onset Diabetes Among Chinese Adults: Findings From the China
Health and Retirement Longitudinal Study. *Frontiers in Cardiovascular Medicine.* [Original
Research]. 2020 2020-November-27;7(287).
Table 1. Baseline characteristics of patients according to tertile subgroups of TyG index.

* for p≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001; # indicates the difference among three tertile subgroups

Characteristics	Overall (N=24349) Median (IQR);Max;N or Count(%)	Tertile1 TyG <6.98 (N=8062) Median (IQR);Max;N or Count(%)	Tertile2 TyG[6.98, 7.63] (N=8166) Median (IQR);Max;N or Count(%)	Tertile3 TyG >7.63 (N=8121) Median (IQR);Max;N or Count(%)	P value#
Outcomes					
All-cause mortality	9103(37.38%)	2636(32.69%)	3077(37.68%)	3390(41.74%)	<0.0001**
Cardiovascular mortality	1113(4.57%)	254(3.15%)	358(4.38%)	501(6.16%)	<0.0001**
New onset DM	8324(34.18%)	1987(24.64%)	2765(33.85%)	3572(43.98%)	<0.0001**
New onset HF	2404(9.87%)	644(7.98%)	849(10.39%)	911(11.21%)	<0.0001**
New onset AF	2855(11.72%)	307(3.80%)	782(9.57%)	1766(21.74%)	<0.0001**
New onset AMI	1862(7.64%)	443(5.49%)	586(7.17%)	833(10.25%)	<0.0001**
New onset VTF	1275(5.23%)	363(4.50%)	434(5.31%)	478(5.88%)	0.0008**
Demographics					
Male gender	9789(40.20%)	3046(37.78%)	3338(40.87%)	3405(41.92%)	0.0012*
Baseline age, year	62.51(51.31-71.37);100.97;n=24360.49(49.33-70.94);100.97;n=80630.35(52.14-71.81);96.23;n=81663.48(52.71-71.44);98.94;n=81	62	6	21	<0.0001**
Past comorbidities					
Charlson score	2.0(1.0-3.0);11.0;n=24349	2.0(0.0-3.0);11.0;n=8062	2.0(1.0-3.0);9.0;n=8166	2.0(1.0-3.0);9.0;n=8121	<0.0001**
Liver diseases	7(0.02%)	3(0.03%)	2(0.02%)	2(0.02%)	0.8606
Endocrine	31(0.12%)	10(0.12%)	12(0.14%)	9(0.11%)	0.8077
Condition	Count 1	Count 2	Count 3	Count 4	p-value
-------------------------------	---------	---------	---------	---------	-------------
Hypertension	1042(4.27%)	326(4.04%)	380(4.65%)	336(4.13%)	0.1405
IHD	241(0.98%)	82(1.01%)	77(0.94%)	82(1.00%)	0.8729
COPD	31(0.12%)	19(0.23%)	6(0.07%)	6(0.07%)	0.0039**
Gastrointestinal	586(2.40%)	219(2.71%)	185(2.26%)	182(2.24%)	0.0956
PVD	13(0.05%)	3(0.03%)	7(0.08%)	3(0.03%)	0.3006
TIA/Ischemic stroke	98(0.40%)	27(0.33%)	39(0.47%)	32(0.39%)	0.3561
Gastrointestinal bleeding	114(0.46%)	35(0.43%)	42(0.51%)	37(0.45%)	0.7425
Cancer	161(0.66%)	59(0.73%)	49(0.60%)	53(0.65%)	0.5851

Medications

Medication	Count 1	Count 2	Count 3	Count 4	p-value
ACEI	1824(7.49%)	438(5.43%)	607(7.43%)	779(9.59%)	<0.0001**
ARB	89(0.36%)	21(0.26%)	33(0.40%)	35(0.43%)	0.1567
Calcium channel blockers	2768(11.36%)	755(9.36%)	967(11.84%)	1046(12.88%)	<0.0001**
Beta blockers	2620(10.76%)	703(8.71%)	928(11.36%)	989(12.17%)	<0.0001**
Nitrates	1121(4.60%)	313(3.88%)	380(4.65%)	428(5.27%)	0.0003**
Antihypertensive drugs	1056(4.33%)	329(4.08%)	379(4.64%)	348(4.28%)	0.2363
Anti-diabetic drugs	1329(5.45%)	218(2.70%)	395(4.83%)	716(8.81%)	<0.0001**
Statins and fibrates	1872(7.68%)	468(5.80%)	610(7.46%)	794(9.77%)	<0.0001**
Diuretics for hypertension	1343(5.51%)	358(4.44%)	490(6.00%)	495(6.09%)	<0.0001**
Anticoagulants	55(0.22%)	9(0.11%)	18(0.22%)	28(0.34%)	0.0077**
Antiplatelets	1356(5.56%)	379(4.70%)	454(5.55%)	523(6.44%)	<0.0001**
Lipid-lowering drugs	1497 (6.14%)	376 (4.66%)	521 (6.38%)	600 (7.38%)	<0.0001**
----------------------	--------------	-------------	-------------	-------------	------------

Complete cell count

Mean corpuscular volume, fL	89.7 (86.3-92.6); 132.3; n=9866	90.3 (86.9-93.1); 119.5; n=3237	89.7 (86.6-92.6); 132.3; n=3282	89.1 (85.7-92.1); 108.0; n=3347	<0.0001**
Lymphocyte, x10^9/L	1.8 (1.4-2.3); 85.28; n=5602	1.7 (1.3-2.2); 5.4; n=1858	1.9 (1.4-2.3); 85.28; n=1825	1.9 (1.5-2.5); 5.5; n=1919	<0.0001**
Metamyelocyte, x10^9/L	0.19 (0.09-0.62); 2.0; n=45	0.12 (0.04-0.4); 1.1; n=11	0.23 (0.1-0.58); 1.47; n=8	0.2 (0.12-0.62); 2.0; n=26	0.3784
Monocyte, x10^9/L	0.5 (0.4-0.6); 3.22; n=5592	0.41 (0.3-0.6); 3.18; n=1854	0.5 (0.4-0.6); 2.3; n=1823	0.5 (0.4-0.6); 3.22; n=1915	<0.0001**
Neutrophil, x10^9/L	4.3 (3.3-5.9); 39.48; n=5590	3.9 (3.0-5.5); 36.67; n=1825	4.3 (3.3-5.8); 39.48; n=1823	4.5 (3.6-6.3); 28.2; n=1915	<0.0001**
White cell count, x10^9/L	7.1 (5.9-8.7); 91.7; n=9924	6.5 (5.4-8.03); 40.3; n=3250	7.1 (5.9-8.69); 91.7; n=3304	7.61 (6.3-9.39); 30.8; n=3370	<0.0001**
Mean corpuscular haemoglobin, pg	30.5 (29.3-31.7); 44.1; n=9866	30.7 (29.4-31.8); 41.5; n=3237	30.5 (29.3-31.6); 44.1; n=3282	30.5 (29.2-31.6); 38.0; n=3347	0.0016**
Myelocyte, x10^9/L	0.22 (0.11-0.52); 2.87; n=30	0.18 (0.11-0.52); 0.81; n=8	0.11 (0.08-0.24); 0.94; n=7	0.34 (0.14-0.8); 2.87; n=15	0.4122
Platelet, x10^9/L	237.0 (198.0-282.0); 1250.0; n=9922320.0 (192.0-275.0); 957.0; n=325237.0 (200.0-283.0); 1250.0; n=33241.0 (203.0-285.0); 952.0; n=33	237.0 (198.0-282.0); 1250.0; n=325237.0 (200.0-283.0); 1250.0; n=33241.0 (203.0-285.0); 952.0; n=33	237.0 (198.0-282.0); 1250.0; n=325237.0 (200.0-283.0); 1250.0; n=33241.0 (203.0-285.0); 952.0; n=33	237.0 (198.0-282.0); 1250.0; n=325237.0 (200.0-283.0); 1250.0; n=33241.0 (203.0-285.0); 952.0; n=33	<0.0001**
Reticulocyte, x10^9/L	58.65 (40.69-87.04); 324.0; n=368	49.11 (33.77-80.31); 165.9; n=11652.64 (37.53-80.9); 324.0; n=1237.05 (46.2-91.77); 307.58; n=12	70.05 (46.2-91.77); 307.58; n=129	70.05 (46.2-91.77); 307.58; n=129	0.0009***
Red cell count, x10^12/L	4.43 (4.11-4.8); 7.62; n=9863	4.35 (4.06-4.69); 7.37; n=3236	4.45 (4.12-4.8); 7.61; n=3280	4.49 (4.15-4.88); 7.62; n=3347	<0.0001**
	Median (IQR); n=	Median (IQR); n=	Median (IQR); n=	Median (IQR); n=	Significance
------------------	-----------------	-----------------	-----------------	-----------------	--------------
Hematocrit, L/L	0.39(0.37-0.42);0.551	0.39(0.36-0.42);0.52	0.4(0.37-0.42);0.52	0.4(0.37-0.43);0.55	0.0022**
Liver and renal function tests					
Potassium, mmol/L	4.2(3.9-4.5);13.3	4.2(3.9-4.5);9.3	4.2(3.9-4.5);13.3	4.2(3.87-4.51);8.1	0.3551
Albumin, g/L	42.0(39.9-44.0);58.0	42.0(39.2-44.0);56.0	42.0(40.0-44.0);58.0	42.0(40.0-44.0);56.0	<0.0001**
Sodium, mmol/L	140.2(139.0-142.0);168.0	141.0(139.0-142.0);152.0	141.0(139.0-142.0);158.0	140.0(138.0-142.0);168.0	<0.0001**
Urea, mmol/L	5.5(4.6-6.7);72.3	5.5(4.6-6.7);47.3	5.6(4.6-6.7);34.8	5.6(4.6-6.8);46.4	<0.0001**
Protein, g/L	75.0(71.4-78.0);109.0	74.0(71.0-77.0);100.0	75.0(72.0-78.0);109.0	75.0(72.0-79.0);109.0	<0.0001**
Creatinine, umol/L	83.0(72.0-98.0);1509.0	81.0(70.0-95.0);629.0	84.0(72.0-98.0);807.0	85.0(73.0-100.0);1509.0	<0.0001**
Alkaline phosphatase, U/L	77.0(63.0-94.0);885.0	73.0(60.0-90.0);531.0	78.0(64.0-95.0);827.0	81.0(66.5-98.0);885.0	<0.0001**
Aspartate transaminase, U/L	22.0(18.0-29.0);2640.0	22.0(18.0-28.0);1516.0	22.0(18.0-28.0);1787.0	23.0(18.0-30.5);2640.0	0.0041**
Alanine transaminase, U/L	21.0(15.0-30.0);918.0	18.0(14.0-26.0);494.0	21.0(15.0-30.0);700.0	23.0(17.0-34.0);918.0	<0.0001**
Bilirubin, umol/L	9.9(7.1-13.0);216.0	10.0(7.5-13.0);60.0	10.0(7.4-13.0);216.0	9.2(7.0-12.3);107.0	<0.0001**

Lipid and glycemic profile

	Median (IQR); n=	Median (IQR); n=	Median (IQR); n=	Median (IQR); n=	Significance
Potassium, mmol/L	4.2(3.9-4.5);13.3	4.2(3.9-4.5);9.3	4.2(3.9-4.5);13.3	4.2(3.87-4.51);8.1	0.3551
Albumin, g/L	42.0(39.9-44.0);58.0	42.0(39.2-44.0);56.0	42.0(40.0-44.0);58.0	42.0(40.0-44.0);56.0	<0.0001**
Sodium, mmol/L	140.2(139.0-142.0);168.0	141.0(139.0-142.0);152.0	141.0(139.0-142.0);158.0	140.0(138.0-142.0);168.0	<0.0001**
Urea, mmol/L	5.5(4.6-6.7);72.3	5.5(4.6-6.7);47.3	5.6(4.6-6.7);34.8	5.6(4.6-6.8);46.4	<0.0001**
Protein, g/L	75.0(71.4-78.0);109.0	74.0(71.0-77.0);100.0	75.0(72.0-78.0);109.0	75.0(72.0-79.0);109.0	<0.0001**
Creatinine, umol/L	83.0(72.0-98.0);1509.0	81.0(70.0-95.0);629.0	84.0(72.0-98.0);807.0	85.0(73.0-100.0);1509.0	<0.0001**
Alkaline phosphatase, U/L	77.0(63.0-94.0);885.0	73.0(60.0-90.0);531.0	78.0(64.0-95.0);827.0	81.0(66.5-98.0);885.0	<0.0001**
Aspartate transaminase, U/L	22.0(18.0-29.0);2640.0	22.0(18.0-28.0);1516.0	22.0(18.0-28.0);1787.0	23.0(18.0-30.5);2640.0	0.0041**
Alanine transaminase, U/L	21.0(15.0-30.0);918.0	18.0(14.0-26.0);494.0	21.0(15.0-30.0);700.0	23.0(17.0-34.0);918.0	<0.0001**
Bilirubin, umol/L	9.9(7.1-13.0);216.0	10.0(7.5-13.0);60.0	10.0(7.4-13.0);216.0	9.2(7.0-12.3);107.0	<0.0001**
Parameter	Value 1	Value 2	Value 3	Value 4	p-value
---------------------------------	--------------------------	--------------------------	--------------------------	--------------------------	---------
Triglyceride, mmol/L	1.4 (0.99-2.04); 38.3; n=24349	0.9 (0.72-1.09); 3.0; n=8062	1.5 (1.25-1.78); 3.34; n=8166	2.39 (1.74-3.14); 38.3; n=8121	<0.0001**
Low-density lipoprotein, mmol/L	3.17 (2.55-3.82); 9.3127; n=20739	3.06 (2.5-3.69); 9.01; n=6760	3.29 (2.65-3.94); 9.31; n=7104	3.16 (2.52-3.83); 8.01; n=6875	<0.0001**
High-density lipoprotein, mmol/L	1.3 (1.09-1.56); 4.14; n=21184	1.5 (1.26-1.78); 4.14; n=6794	1.29 (1.1-1.52); 3.11; n=7125	1.15 (0.99-1.36); 3.38; n=7265	<0.0001**
Cholesterol, mmol/L	5.31 (4.64-6.04); 19.04; n=24305	5.06 (4.45-5.72); 11.3; n=8047	5.36 (4.69-6.1); 12.21; n=8155	5.55 (4.86-6.29); 19.04; n=8103	<0.0001**
HbA1c, g/dL	13.3 (12.4-14.3); 20.0; n=9285	13.1 (12.2-14.0); 19.5; n=3051	13.4 (12.4-14.3); 20.0; n=3083	13.5 (12.5-14.5); 19.5; n=3151	<0.0001**
Fast glucose, mmol/L	5.77 (5.1-7.2); 70.6; n=24349	5.2 (4.8-5.8); 20.2; n=8062	5.8 (5.2-6.8); 23.1; n=8166	7.1 (5.7-9.9); 70.6; n=8121	<0.0001**
TyG index	7.32 (6.88-7.81); 11.61; n=24349	6.7 (6.45-6.88); 7.03; n=8062	7.31 (7.17-7.46); 7.63; n=8166	8.04 (7.81-8.4); 11.61; n=8121	<0.0001**

HR: Hazard ratio; CI: confidence interval; DM: diabetes mellitus; HF: heart failure; AF: atrial fibrillation; AMI: acute myocardial infarction; VTF: ventricular tachycardia/fibrillation; IHD: ischemic heart disease; COPD: chronic obstructive pulmonary disease; PVD: peripheral vascular disease; TIA: transient ischemic attack; ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; TyG: triglyceride-glucose
Table 2. Cox-proportional hazard model analysis for all-cause mortality, cardiovascular mortality, new onset DM and new onset HF.

* for $p \leq 0.05$, ** for $p \leq 0.01$, *** for $p \leq 0.001$

Characteristics	All-cause mortality HR [95% CI]	P value	Cardiovascular mortality HR [95% CI]	P value	New onset DM HR [95% CI]	P value	New onset HF HR [95% CI]	P value		
Demographics										
Male gender	1.44[1.38, 1.50]	<0.0001***	1.16[1.03, 1.31]	0.0137*	1.24[1.19, 1.30]	<0.0001***	1.28[1.18, 1.38]	<0.0001***		
Baseline age, year	1.11[1.11, 1.11]	<0.0001***	1.10[1.09, 1.11]	<0.0001***	1.02[1.02, 1.02]	<0.0001***	1.08[1.08, 1.08]	<0.0001***		
Past comorbidities										
Charlson score	2.11[2.08, 2.13]	<0.0001***	2.07[2.00, 2.16]	<0.0001***	1.20[1.18, 1.22]	<0.0001***	1.88[1.82, 1.93]	<0.0001***		
Liver diseases	5.09[2.29, 11.33]	0.001***	-	-	2.90[1.09, 7.74]	0.0331*	-	-		
Endocrine	1.48[0.89, 2.46]	0.127	-	-	1.38[0.80, 2.37]	0.25	1.09[0.35, 3.37]	0.885		
Hypertension	1.57[1.43, 1.71]	<0.0001***	1.64[1.28, 2.10]	0.0001***	0.94[0.84, 1.05]	0.267	1.64[1.39, 1.94]	<0.0001***		
IHD	1.88[1.59, 2.22]	<0.0001***	2.78[1.87, 4.13]	<0.0001***	1.30[1.06, 1.59]	0.0116*	2.53[1.90, 3.35]	<0.0001***		
COPD	5.52[3.83, 7.94]	<0.0001***	1.55[0.22, 11.00]	0.663	1.92[1.12, 3.32]	0.0184*	3.47[1.44, 8.34]	0.0055**		
Gastrointestinal	1.23[1.08, 1.39]	0.0019**	0.87[0.57, 1.34]	0.529	0.95[0.82, 1.11]	0.527	1.13[0.87, 1.46]	0.351		
PVD	4.57[2.60, 8.05]	<0.0001***	-	-	2.78[1.39, 5.55]	0.0039**	4.06[1.31, 12.60]	0.0153*		
TIA/Ischemic stroke	1.91[1.47, 2.48]	<0.0001***	2.51[1.30, 4.84]	0.0059**	1.14[0.81, 1.60]	0.469	2.02[1.24, 3.31]	0.0050**		
Gastrointestinal bleeding	1.28[0.96, 1.70]	0.0895.	0.43[0.11, 1.74]	0.239	0.96[0.69, 1.34]	0.808	1.29[0.75, 2.23]	0.354		
Cancer	1.90[1.54, 2.34]	<0.0001***	1.04[0.47, 2.31]	0.928	1.09[0.84, 1.43]	0.515	1.59[1.02, 2.46]	0.0402*		
Medications										
ACEI	1.79[1.67, 1.91]	<0.0001***	1.92[1.60, 2.30]	<0.0001***	2.10[1.97, 2.25]	<0.0001***	2.09[1.85, 2.35]	<0.0001***		
ARB	1.56[1.18, 2.06]	0.0017**	2.06[1.03, 4.12]	0.0424*	2.38[1.83, 3.09]	<0.0001***	2.35[1.50, 3.69]	0.0002***		
Calcium channel blockers	1.55[1.46, 1.64]	<0.0001***	1.58[1.35, 1.86]	<0.0001***	1.54[1.45, 1.63]	<0.0001***	1.58[1.42, 1.77]	<0.0001***		
Beta blockers	1.09[1.02, 1.16]	0.0113*	1.20[1.01, 1.43]	0.0407*	1.25[1.18, 1.34]	<0.0001***	1.21[1.07, 1.36]	0.0019**		
Nitrates	1.83[1.69, 1.98]	<0.0001***	2.52[2.06, 3.08]	<0.0001***	1.85[1.70, 2.01]	<0.0001***	2.28[1.97, 2.63]	<0.0001***		
Category	Reference	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	p-value		
--------------------------------	-----------	---------	-----------	---------	---------	---------	---------	-------------		
Antihypertensive drugs		1.91	[1.76, 2.07]	<0.0001***	1.58	[1.43, 1.75]	<0.0001***	2.00	[1.71, 2.34]	<0.0001***
Anti-diabetic drugs		1.45	[1.34, 1.56]	<0.0001***	1.43	[1.27, 1.60]	<0.0001***	1.51	[1.39, 1.63]	<0.0001***
Diuretics for hypertension		1.60	[1.45, 1.75]	<0.0001***	1.58	[1.47, 1.69]	<0.0001***	1.51	[1.39, 1.63]	<0.0001***
Statins and fibrates		2.00	[1.71, 2.34]	<0.0001***	1.71	[1.49, 1.94]	<0.0001***	2.00	[1.71, 2.34]	<0.0001***
Anti-diabetic drugs		1.45	[1.34, 1.56]	<0.0001***	1.34	[1.27, 1.51]	<0.0001***	1.51	[1.39, 1.63]	<0.0001***
Anti-diabetic drugs		1.71	[1.55, 1.90]	<0.0001***	1.69	[1.54, 1.85]	<0.0001***	1.71	[1.55, 1.90]	<0.0001***
Diuretics for hypertension		1.51	[1.40, 1.63]	<0.0001***	1.49	[1.39, 1.60]	<0.0001***	1.51	[1.40, 1.63]	<0.0001***

Complete cell count

Parameter	Reference	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	p-value		
Mean corpuscular volume, fL		1.02	[1.01, 1.02]	<0.0001***	1.01	[0.99, 1.02]	0.368	1.01	[1.00, 1.02]	0.0140***
Lymphocyte, x10^9/L		0.72	[0.68, 0.76]	<0.0001***	0.88	[0.74, 1.04]	0.142	0.95	[0.90, 1.00]	0.0343***
Metamyelocyte, x10^9/L		1.29	[0.68, 2.42]	0.437	-	-	-	0.48	[0.18, 2.98]	0.712
Monocyte, x10^9/L		2.49	[2.23, 2.79]	<0.0001***	2.74	[1.97, 3.80]	<0.0001***	1.61	[1.42, 1.83]	<0.0001***
Neutrophil, x10^9/L		1.09	[1.08, 1.09]	<0.0001***	1.08	[1.05, 1.11]	0.142	0.95	[0.90, 1.00]	0.0343***
White cell count, x10^9/L		1.06	[1.05, 1.06]	<0.0001***	1.07	[1.05, 1.08]	<0.0001***	1.05	[1.04, 1.07]	<0.0001***
Mean corpuscular haemoglobin, pg		1.04	[1.03, 1.05]	<0.0001***	1.02	[0.99, 1.05]	0.283	1.05	[1.03, 1.06]	<0.0001***
Myelocyte, x10^9/L		1.63	[0.75, 3.55]	0.218	-	-	-	0.49	[0.11, 2.12]	0.341
Platelet, x10^9/L		1.00	[1.00, 1.00]	<0.0001***	1.00	[1.00, 1.00]	0.142	1.01	[1.00, 1.00]	0.0001***
Reticulocyte, x10^9/L		1.00	[1.00, 1.00]	0.545	1.00	[0.99, 1.01]	0.171	1.00	[1.00, 1.01]	0.0001***
Red cell count, x10^12/L		0.62	[0.58, 0.65]	<0.0001***	0.69	[0.59, 0.82]	<0.0001***	1.03	[0.98, 1.09]	0.183
Hematocrit, L/L		0.01	[0.00, 0.03]	<0.0001***	0.02	[0.00, 3.95]	0.149	36.01	[5.5, 236.1]	0.0001***

Liver and renal function tests

Parameter	Reference	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	p-value		
Potassium, mmol/L		0.98	[0.94, 1.02]	0.253	0.91	[0.81, 1.02]	0.114	1.13	[1.08, 1.17]	<0.0001***
Albumin, g/L		0.90	[0.89, 0.91]	<0.0001***	0.93	[0.91, 0.95]	<0.0001***	0.97	[0.97, 0.98]	<0.0001***
Sodium, mmol/L		0.97	[0.96, 0.97]	<0.0001***	0.97	[0.95, 0.98]	0.0003**	0.98	[0.97, 0.98]	<0.0001***
Urea, mmol/L		1.12	[1.11, 1.12]	<0.0001***	1.12	[1.11, 1.14]	<0.0001***	1.05	[1.04, 1.06]	<0.0001***
Protein, g/L		0.96	[0.96, 0.97]	<0.0001***	0.98	[0.96, 0.99]	0.0087**	0.99	[0.98, 0.99]	<0.0001***
Creatinine, umol/L		1.00	[1.00, 1.00]	<0.0001***	1.00	[1.00, 1.00]	<0.0001***	1.02	[1.00, 1.01]	<0.0001***
Lipid and gracile profile										
-----------------------------	--									
Triglyceride, mmol/L	0.98 [0.96, 1.00] 0.0134* 1.05 [1.01, 1.08] 0.0078** 1.07 [1.06, 1.08] <0.0001*** 0.97 [0.94, 1.01] 0.0940.									
Low-density lipoprotein, mmol/L	0.97 [0.94, 0.99] 0.0071** 0.98 [0.92, 1.05] 0.643 0.94 [0.92, 0.96] <0.0001*** 0.97 [0.92, 1.01] 0.135									
High-density lipoprotein, mmol/L	0.80 [0.76, 0.86] <0.0001*** 0.57 [0.48, 0.68] <0.0001*** 0.62 [0.58, 0.66] <0.0001*** 0.80 [0.71, 0.90] 0.0003***									
Cholesterol, mmol/L	0.93 [0.91, 0.95] <0.0001*** 0.99 [0.94, 1.05] 0.778 0.95 [0.94, 0.97] <0.0001*** 0.96 [0.92, 1.00] 0.0289*									
HbA1c, g/dL	0.88 [0.86, 0.89] <0.0001*** 0.88 [0.83, 0.93] <0.0001*** 1.09 [1.06, 1.11] <0.0001*** 1.02 [1.01, 1.12] <0.0001***									
Fast glucose, mmol/L	1.04 [1.04, 1.05] <0.0001*** 1.05 [1.04, 1.07] <0.0001*** 1.07 [1.07, 1.08] <0.0001*** 1.04 [1.03, 1.05] <0.0001***									
TyG index	1.21 [1.18, 1.25] <0.0001*** 1.56 [1.45, 1.69] <0.0001*** 1.51 [1.47, 1.55] <0.0001*** 1.27 [1.20, 1.34] <0.0001***									
Decile1	0.70 [0.65, 0.76] <0.0001*** 0.48 [0.37, 0.63] <0.0001*** 0.55 [0.50, 0.60] <0.0001*** 0.66 [0.56, 0.77] <0.0001***									
Decile2	0.88 [0.82, 0.95] 0.0008*** 0.61 [0.48, 0.78] 0.0001*** 0.67 [0.61, 0.72] <0.0001*** 0.77 [0.66, 0.89] 0.0004***									
Decile3	0.95 [0.88, 1.02] 0.136 0.84 [0.68, 1.04] 0.103 0.69 [0.63, 0.75] <0.0001*** 0.92 [0.80, 1.06] 0.25									
Decile4	0.99 [0.92, 1.06] 0.748 0.92 [0.75, 1.13] 0.444 0.84 [0.78, 0.90] <0.0001*** 0.97 [0.85, 1.11] 0.666									
Decile5	1.03 [0.97, 1.11] 0.334 0.85 [0.69, 1.05] 0.128 1.01 [0.94, 1.08] 0.811 0.96 [0.84, 1.10] 0.525									
Decile6	0.93 [0.86, 0.99] 0.0324* 0.83 [0.67, 1.03] 0.0902 1.02 [0.95, 1.10] 0.533 1.05 [0.92, 1.20] 0.469									
Decile7	1.06 [0.99, 1.13] 0.112 1.15 [0.96, 1.38] 0.133 1.03 [0.96, 1.10] 0.414 1.11 [0.98, 1.26] 0.0977.									
Decile8	1.00 [0.93, 1.07] 0.898 1.19 [0.99, 1.42] 0.0675 1.30 [1.22, 1.39] <0.0001*** 0.99 [0.87, 1.14] 0.929									
Decile9	1.15 [1.08, 1.23] <0.0001*** 1.44 [1.21, 1.71] <0.0001*** 1.44 [1.35, 1.53] <0.0001*** 1.19 [1.05, 1.35] 0.0059**									
Decile10	1.36 [1.28, 1.45] <0.0001*** 1.87 [1.60, 2.19] <0.0001*** 1.76 [1.66, 1.87] <0.0001*** 1.44 [1.28, 1.62] <0.0001***									
Tertile1	0.81 [0.77, 0.84] <0.0001*** 0.59 [0.51, 0.67] <0.0001*** 0.57 [0.55, 0.60] <0.0001*** 0.72 [0.66, 0.79] <0.0001***									
Table 3. Cox-proportional hazard model analysis for new onset AF, AMI, and VTF

* for \(p \leq 0.05\), ** for \(p \leq 0.01\), *** for \(p \leq 0.001\)

Characteristics	New onset AF HR [95% CI]	\(P\) value	New onset AMI HR [95% CI]	\(P\) value	New onset VTF HR [95% CI]	\(P\) value
Demographics						
Male gender	1.05[0.97, 1.13]	0.2170	1.51[1.37, 1.65]	<0.0001***	1.75[1.57, 1.95]	<0.0001***
Baseline age, year	1.09[1.09, 1.09]	<0.0001***	1.07[1.07, 1.08]	<0.0001***	1.09[1.08, 1.10]	<0.0001***
Past comorbidities						
Charlson score	1.94[1.89, 1.99]	<0.0001***	1.82[1.76, 1.88]	<0.0001***	1.97[1.90, 2.05]	<0.0001***
Endocrine	-	-	-	-	-	-
Hypertension	1.48[1.26, 1.74]	<0.0001***	1.37[1.12, 1.69]	0.0026**	1.59[1.26, 2.01]	0.0001***
IHD	2.09[1.57, 2.78]	<0.0001***	2.69[1.97, 3.68]	<0.0001***	1.72[1.08, 2.74]	0.0224*
COPD	3.16[1.42, 7.04]	0.0049**	3.61[1.35, 9.64]	0.0103*	-	-
Gastrointestinal	1.13[0.90, 1.43]	0.2920	1.62[1.42, 1.91]	0.0141*	1.14[0.80, 1.62]	0.4610
PVD	2.33[0.58, 9.32]	0.2320	5.82[1.87, 18.06]	0.0023**	8.09[2.61, 25.13]	0.0003***
TIA/Ischemic stroke	1.61[0.97, 2.67]	0.0664.	2.13[1.23, 3.67]	0.0068**	2.68[1.48, 4.86]	0.0011**
Gastrointestinal bleeding	1.98[1.31, 2.98]	0.0011**	0.62[0.26, 1.49]	0.2870	1.49[0.75, 2.99]	0.2580
Cancer	1.23[0.78, 1.93]	0.3710	1.01[0.54, 1.87]	0.9890	0.60[0.22, 1.59]	0.3020
Medications						
ACEI	1.71[1.52, 1.93]	<0.0001***	2.04[1.78, 2.35]	<0.0001***	2.26[1.92, 2.65]	<0.0001***
ARB	2.21[1.44, 3.39]	0.0003***	2.07[1.20, 3.57]	0.0090**	2.05[1.06, 3.94]	0.0323*

HR: Hazard ratio; CI: confidence interval; DM: diabetes mellitus; HF: heart failure; AF: atrial fibrillation; AMI: acute myocardial infarction; VTF: ventricular tachycardia/fibrillation; IHD: ischemic heart disease; COPD: chronic obstructive pulmonary disease; PVD: peripheral vascular disease; TIA: transient ischemic attack; ACEI: angiotensinogen converting enzyme inhibitor; ARB: angiotensin receptor blocker; TyG: triglyceride-glucose
Drug Category	Lower Limit	Upper Limit	P-Value	Lower Limit	Upper Limit	P-Value
Calcium channel blockers	1.66	1.84	<0.0001***	1.67	1.89	<0.0001***
Beta blockers	1.42	1.58	<0.0001***	1.42	1.62	<0.0001***
Nitrates	2.76	3.13	<0.0001***	2.77	3.22	<0.0001***
Antihypertensive drugs	1.84	2.13	<0.0001***	1.74	2.10	<0.0001***
Anti-diabetic drugs	1.01	1.19	<0.0001***	1.71	2.01	<0.0001***
Statins and fibrates	1.04	1.19	<0.0001***	1.36	1.58	<0.0001***
Diuretics for hypertension	1.48	1.70	<0.0001***	1.29	1.55	<0.0001***
Anticoagulants	11.84	16.53	<0.0001***	2.25	4.72	0.0324
Antiplatelets	2.69	3.02	<0.0001***	2.64	3.05	<0.0001***
Lipid-lowering drugs	1.10	1.27	0.0190	1.24	1.47	0.0141
Mean corpuscular volume, fL	1.014	1.022	0.0008	1.01	1.02	0.0054
Lymphocyte, x10^9/L	0.79	0.88	<0.0001***	0.87	0.98	0.0263
Metamyelocyte, x10^9/L	1.03	4.49	0.9670	0.67	1.99	0.7640
Monocyte, x10^9/L	2.15	2.68	<0.0001***	2.41	3.11	<0.0001***
Neutrophil, x10^9/L	1.06	1.08	<0.0001***	1.09	1.11	<0.0001***
White cell count, x10^9/L	1.04	1.05	<0.0001***	1.06	1.07	<0.0001***
Mean cell haemoglobin, pg	1.04	1.06	<0.0001***	1.03	1.06	<0.0001***
Myelocyte, x10^9/L	0.15	12.13	0.4000	1.73	96.26	0.7890
Platelet, x10^9/L	0.996	0.997	<0.0001***	1.00	1.00	0.0014
Reticulocyte, x10^9/L	1.003	1.009	0.3430	1.01	1.01	0.0287*
Red cell count, x10^12/L	0.79	0.87	<0.0001***	0.76	0.86	<0.0001***
Hematocrit, L/L	0.04	1.01	0.0508	0.03	1.19	0.0612
K/Potassium, mmol/L	0.83	0.90	<0.0001***	0.98	1.07	0.7020
Albumin, g/L	0.93	0.94	<0.0001***	0.93	0.95	0.94
Na/Sodium, mmol/L	0.99	1.01	0.3890	0.97	0.99	0.001
Urea, mmol/L	1.10	1.11	<0.0001***	1.12	1.13	<0.0001***
Protein, g/L	0.97	0.98	<0.0001***	0.97	0.98	<0.0001***

Complete cell count

Parameter	Lower Limit	Upper Limit	P-Value	Lower Limit	Upper Limit	P-Value
Mean corpuscular volume, fL	1.014	1.022	0.0008	1.01	1.02	0.0054
Lymphocyte, x10^9/L	0.79	0.88	<0.0001***	0.87	0.98	0.0263
Metamyelocyte, x10^9/L	1.03	4.49	0.9670	0.67	1.99	0.7640
Monocyte, x10^9/L	2.15	2.68	<0.0001***	2.41	3.11	<0.0001***
Neutrophil, x10^9/L	1.06	1.08	<0.0001***	1.09	1.11	<0.0001***
White cell count, x10^9/L	1.04	1.05	<0.0001***	1.06	1.07	<0.0001***
Mean cell haemoglobin, pg	1.04	1.06	<0.0001***	1.03	1.06	<0.0001***
Myelocyte, x10^9/L	0.15	12.13	0.4000	1.73	96.26	0.7890
Platelet, x10^9/L	0.996	0.997	<0.0001***	1.00	1.00	0.0014
Reticulocyte, x10^9/L	1.003	1.009	0.3430	1.01	1.01	0.0287*
Red cell count, x10^12/L	0.79	0.87	<0.0001***	0.76	0.86	<0.0001***
Hematocrit, L/L	0.04	1.01	0.0508	0.03	1.19	0.0612

Liver and renal tests

Parameter	Lower Limit	Upper Limit	P-Value	Lower Limit	Upper Limit	P-Value
K/Potassium, mmol/L	0.83	0.90	<0.0001***	0.98	1.07	0.7020
Albumin, g/L	0.93	0.94	<0.0001***	0.93	0.95	0.94
Na/Sodium, mmol/L	0.99	1.01	0.3890	0.97	0.99	0.001
Urea, mmol/L	1.10	1.11	<0.0001***	1.12	1.13	<0.0001***
Protein, g/L	0.97	0.98	<0.0001***	0.97	0.98	<0.0001***
Test	Value	CI	P-value			
-------------------------------------	----------------	-----------------	------------------			
Creatinine, umol/L	1.003[1.002, 1.003]	<0.0001***	1.003[1.003, 1.004]	<0.0001***		
Alkaline phosphatase, U/L	1.004[1.003, 1.005]	<0.0001***	1.003[1.002, 1.005]	<0.0001***		
Aspartate transaminase, U/L	0.998[0.995, 1.001]	0.6740	0.998[0.995, 1.001]	0.1990		
Alanine transaminase, U/L	1.02[1.01, 1.02]	<0.0001***	0.998[0.986, 1.009]	0.6780		
Bilirubin, umol/L	1.02[1.01, 1.03]	0.0008***	1.06[1.05, 1.07]	<0.0001***		
Triglyceride, mmol/L	2.36[2.26, 2.46]	<0.0001***	1.51[1.42, 1.60]	<0.0001***		
Low-density lipoprotein, mmol/L	0.91[0.87, 0.95]	<0.0001***	0.40[0.32, 0.50]	<0.0001***		
High-density lipoprotein, mmol/L	1.00[0.89, 1.11]	0.9340	0.49[0.42, 0.56]	<0.0001***		
Cholesterol, mmol/L	0.90[0.87, 0.93]	<0.0001***	1.01[0.97, 1.06]	0.5240		
HbA1c, g/dL	1.03[1.01, 1.05]	0.0001***	1.05[1.01, 1.09]	0.0131*		
Fast glucose, mmol/L	1.02[1.01, 1.03]	0.0008***	1.06[1.05, 1.07]	<0.0001***		
TyG index	0.17[0.13, 0.22]	<0.0001***	0.40[0.32, 0.50]	<0.0001***		
Decile1	0.41[0.35, 0.49]	<0.0001***	0.83[0.70, 0.97]	0.0216*		
Decile2	0.75[0.66, 0.87]	0.0001***	0.96[0.82, 1.12]	0.6250		
Decile3	1.19[1.07, 1.34]	0.0020**	1.05[0.91, 1.22]	0.0500		
Decile4	1.49[1.34, 1.66]	<0.0001***	1.34[1.17, 1.53]	<0.0001***		
Decile5	2.22[2.02, 2.44]	<0.0001***	1.40[1.22, 1.60]	<0.0001***		
Decile6	3.41[3.13, 3.71]	<0.0001***	1.78[1.57, 2.02]	<0.0001***		
Decile7	3.51[3.25, 3.78]	<0.0001***	1.68[1.54, 1.84]	<0.0001***		

Lipid and gracile profile

Test	Value	CI	P-value	
Triglyceride, mmol/L	1.01[1.00, 1.04]	<0.0001***	1.03[1.00, 1.06]	0.0636
Low-density lipoprotein, mmol/L	0.91[0.87, 0.95]	<0.0001***	1.02[0.97, 1.08]	0.4070
High-density lipoprotein, mmol/L	1.00[0.89, 1.11]	0.9340	0.49[0.42, 0.56]	<0.0001***
Cholesterol, mmol/L	0.90[0.87, 0.93]	<0.0001***	1.01[0.97, 1.06]	0.5240
HbA1c, g/dL	1.03[1.01, 1.05]	0.0001***	1.05[1.01, 1.09]	0.0131*
Fast glucose, mmol/L	1.02[1.01, 1.03]	0.0008***	1.06[1.05, 1.07]	<0.0001***
TyG index	0.17[0.13, 0.22]	<0.0001***	0.40[0.32, 0.50]	<0.0001***
Decile1	0.41[0.35, 0.49]	<0.0001***	0.83[0.70, 0.97]	0.0216*
Decile2	0.75[0.66, 0.87]	0.0001***	0.96[0.82, 1.12]	0.6250
Decile3	1.19[1.07, 1.34]	0.0020**	1.05[0.91, 1.22]	0.5000
Decile4	1.49[1.34, 1.66]	<0.0001***	1.34[1.17, 1.53]	<0.0001***
Decile5	2.22[2.02, 2.44]	<0.0001***	1.40[1.22, 1.60]	<0.0001***
Decile6	3.41[3.13, 3.71]	<0.0001***	1.78[1.57, 2.02]	<0.0001***
Tertile1	0.23[0.20, 0.26]	<0.0001***	0.61[0.55, 0.68]	<0.0001***
Tertile2	0.73[0.68, 1.01]	0.0512	0.91[0.82, 1.01]	0.0582
Tertile3	3.51[3.25, 3.78]	<0.0001***	1.68[1.54, 1.84]	<0.0001***

HR: Hazard ratio; CI: confidence interval; DM: diabetes mellitus; HF: heart failure; AF: atrial fibrillation; AMI: acute myocardial infarction; VTF: ventricular tachycardia/fibrillation; IHD: ischemic heart disease; COPD: chronic obstructive pulmonary disease; PVD: peripheral vascular disease; TIA: transient ischemic attack; ACEI: angiotensinogen converting enzyme inhibitor; ARB: angiotensin receptor blocker; TyG: triglyceride-glucose
Table 4. The hazard ratios (HRs) of primary and secondary outcomes according to tertiles of TyG index.

* for p≤0.05, ** for p≤0.01, *** for p≤0.001

HR: hazard ratio; IR: incidence rate.

Model 1 adjusted for none.
Model 2 adjusted for significant demographics.
Model 3 adjusted for significant demographics and past comorbidities.
Model 4 adjusted for significant demographics, past comorbidities and medications.

Outcomes	Model 1	Model 2	Model 3	Model 4					
	TyG <6.98	TyG [6.98, 7.63]	TyG >7.63	TyG <6.98	TyG [6.98, 7.63]	TyG >7.63	TyG <6.98	TyG [6.98, 7.63]	TyG >7.63
All-cause mortality	1.00 (reference)	1.01 [0.97, 1.06]	1.21 [1.16, 1.27]***	1.00 (reference)	0.96 [0.92, 1.01]	1.19 [1.14, 1.24]***			
CAD mortality	1.00 (reference)	0.94 [0.83, 1.06]	1.68 [1.49, 1.88]***	1.00 (reference)	0.89 [0.78, 1.01]	1.62 [1.44, 1.82]***			
New onset DM	1.00 (reference)	0.98 [0.94, 1.03]	1.67 [1.60, 1.75]***	1.00 (reference)	0.96 [0.92, 1.01]	1.63 [1.56, 1.70]***			
New onset HF	1.00 (reference)	1.08 [0.99, 1.17]	1.25 [1.16, 1.36]***	1.00 (reference)	1.03 [0.95, 1.12]	1.21 [1.11, 1.31]***			
New onset AF	1.00 (reference)	0.73 [0.68, 1.01]	3.51 [3.25, 3.78]***	1.00 (reference)	0.7 [0.64, 1.01]	3.48 [3.23, 3.76]***			
New onset AMI	1.00 (reference)	0.91 [0.82, 1.01]	1.68 [1.54, 1.84]***	1.00 (reference)	0.87 [0.79, 1.01]	1.62 [1.48, 1.78]***			
New onset VTF	1.00 (reference)	1.02 [0.91, 1.14]	1.23 [1.10, 1.38]***	1.00 (reference)	0.97 [0.87, 1.09]	1.2 [1.07, 1.35]***			

HR: Hazard ratio; CI: confidence interval; DM: diabetes mellitus; HF: heart failure; AF: atrial fibrillation; AMI: acute myocardial infarction; VTF: ventricular tachycardia/fibrillation; TyG: triglyceride-glucose
Table 5. Optimal cut-offs between triglyceride level and primary and secondary outcomes with maximal survival rank statistics approach

* for \(p \leq 0.05 \), ** for \(p \leq 0.01 \), *** for \(p \leq 0.001 \)

TyG cutoff value	<Cut-off value	\(\geq \)Cut-off value	P for log ratio test	
	HR [95% CI]	HR [95% CI]		
All-cause mortality	8.05	1.0 (reference)	1.34[1.28, 1.42]***	<0.0001
Cardiovascular mortality	7.43	1.0 (reference)	1.79[1.59, 2.02]***	<0.0001
New onset DM	7.68	1.0 (reference)	1.71[1.64, 1.79]***	<0.0001
New onset HF	7.24	1.0 (reference)	1.35[1.24, 1.47]***	<0.0001
New onset AF	7.75	1.0 (reference)	3.58[3.33, 3.86]***	<0.0001
New onset AMI	7.66	1.0 (reference)	1.75[1.6, 1.92]***	<0.0001
New onset VTF	7.79	1.0 (reference)	1.33[1.18, 1.5]***	<0.0001

HR: Hazard ratio; CI: confidence interval; DM: diabetes mellitus; HF: heart failure; AF: atrial fibrillation; AMI: acute myocardial infarction; VTF: ventricular tachycardia/fibrillation; TyG: triglyceride-glucose

Multivariate Cox regression was performed to examine the association between triglyceride levels and primary and secondary outcomes; Effects include significant demographics, past comorbidities, and medications.
29944 patients with complete fasting glucose and triglyceride tests
(recruited from Jan 1st, 2000 to Dec 31st, 2003, and followed up until Dec 31st, 2019)

5595 patients being excluded:
With baseline DM diagnosis (N=1769);
With any prior HbA1c occasion ≥ 14 gd/L (N=1195)
With any two occasions of fast glucose ≥ 7 mmol/L (N=1037)
With prior use of antidiabetic medications (N=971)
With prior AMI (N=31)
With prior CHF (N=54)
With prior AF (N=105)
With prior HF (or use of diuretics/beta blockers for HF) (N=434)

Enrolled 24349 eligible patients:
8324 (34.18\%) developed new onset diabetes mellitus
2404 (9.87\%) developed new onset HF
2855 (11.72\%) developed new onset AF
1862 (7.64\%) developed new onset AMI
1275 (5.23\%) developed MD
9103 (37.38\%) met all-cause mortality
1113 (4.57\%) met cardiovascular mortality

Figure 1. Flow chart of data processing for the study cohort.
Figure 2. Kaplan-Meier survival curves for primary and secondary outcomes stratified by TyG index deciles. TyG: triglyceride glucose.
Figure 3. Adjusted cubic spline model of the associations between TyG index and risk of primary and secondary outcomes. TyG: triglyceride glucose.
Figure 4. Optimal cutoffs of TyG index to predict primary and secondary outcomes with maximally selected rank statistics approach.