Risk factors for perineal and vaginal tears in primiparous women – a prospective cohort study

CURRENT STATUS: Under Review

BMC Pregnancy and Childbirth BMC Series

Markus Harry Jansson, Karin Franzén, Ayako Hiyoshi, Gunilla Tegerstedt, Hedda Dahlgren, Kerstin Nilsson

Markus Harry Jansson
Örebro University Hospital
markus.jansson@oru.seCorresponding Author
ORCiD: https://orcid.org/0000-0002-1776-1338

Karin Franzén
Region Örebro lan

Ayako Hiyoshi
Örebro Universitet - Campus USO

Gunilla Tegerstedt
Karolinska Universitetssjukhuset

Hedda Dahlgren
Region Örebro lan

Kerstin Nilsson
Örebro Universitet Institutionen for Medicinska Vetenskaper

Prescreen

10.21203/rs.3.rs-28633/v1

Subject Areas
Keywords

high obstetric vaginal tear, obstetric anal sphincter injuries, perineal tears, risk factors, second-degree perineal tears.
Abstract

Background

The aim of this study was to estimate the incidence of second-degree perineal tears, obstetric anal sphincter injuries, and high vaginal tears in primiparous women, and to examine how sociodemographic and pregnancy characteristics, hereditary factors, obstetric management and the delivery process are associated with the incidence of these tears.

Methods

All nulliparous women registering at the maternity health care in Region Örebro County, Sweden, in early pregnancy between 1 October 2014 and 1 October 2017 were invited to participate in a prospective cohort study. Data on maternal and obstetric characteristics were extracted from questionnaires completed in early and late pregnancy, from a study-specific delivery protocol, and from the obstetric record system. These data were analyzed using unadjusted and adjusted multinomial and logistic regression models.

Results

A total of 644 women were included in the study sample. Fetal weight exceeding 4000 g and vacuum extraction were found to be independent risk factors for both second-degree perineal tears (adjusted odds ratio 2.26 (95% CI: 1.22, 4.19) and 3.28 (95% CI: 1.73, 6.21) respectively) and OASI (adjusted odds ratio 5.93 (95% CI: 2.29, 15.33) and 4.31 (95% CI: 1.49, 12.5) respectively), whereas age above 25 years only increased the risk of second-degree perineal tears (adjusted odds ratio 1.94 (95% CI: 1.10, 3.43)). Heredity of pelvic floor dysfunction and/or connective tissue deficiency, induced labor, and fetal head circumference exceeding 35 cm were independent risk factors for high vaginal tears (adjusted odds ratio 2.33 (95% CI: 1.09, 5.00), 3.64 (95% CI: 1.54, 8.59) and 2.86 (95% CI: 1.43, 5.75) respectively).

Conclusions

This prospective study showed that fetal weight exceeding 4000 g and vacuum extraction are independent risk factors for both second-degree perineal tears and OASI in primiparous women. Risk factors for high vaginal tears were heredity of pelvic floor dysfunction and/or connective tissue deficiency, induced labor, and fetal head circumference > 35 cm. These tears have been found to be common among primiparous women, and merit more attention.

Brief summary: This prospective cohort study showed that fetal birthweight exceeding 4000 g and vacuum extraction increased the risk of second-degree tear and anal sphincter injury.

Introduction

Perineal tears affect about 80% of women during childbirth, with primiparous women being affected more frequently than multiparous women [1, 2]. The rate of second-degree perineal tears, which involves the vagina and/or perineal muscle, has been reported in English and Swedish studies to be 35.1–78.3% among primiparous women and 34.8–39.6% among multiparous women [1-3], while third- and fourth-degree tears, which involve varying degrees of injury to the anal sphincters, occur in 5.1–6.6% of primiparous women and 1.8–2.7% of multiparous women [1, 2]. Between 1990 and 2016, the incidence of third- and fourth-degree perineal tears among primiparous women in Sweden rose from 2.9–5.1% [4].

Obstetric anal sphincter injuries (OASI) are the largest obstetric risk factor for developing anal incontinence in women [5], so these tears merit particular attention. However, although less attention has been paid, second-degree tears alone may impair sexual function [7] and increase the risk of future pelvic organ prolapse [8], and high vaginal tears have been associated with increased risk for levator muscle avulsion [9]. But the incidence
and risk factors of these tears have been poorly investigated.

Various interventions have been attempted to prevent perineal tears, but few have been proven to reduce the incidence of severe perineal tears. There is moderate-quality evidence that warm compresses applied to the perineum during delivery and perineal massage can reduce the risk of OASI [9]. Episiotomy has been shown to be protective against OASI in instrumental vaginal delivery [10, 11], but in spontaneous vaginal delivery the risk of severe perineal trauma is lower when episiotomy is used restrictively rather than routinely [12]. Randomized controlled studies have not shown any advantage of manual perineal support in reducing OASI [9]. An educational program developed in Finland including a specific technique of manual perineal support and mediolateral episiotomy on indication has been introduced in many obstetrics units in the Nordic countries, but the evidence for this intervention is extremely limited [13]. A non-randomized study from Sweden showed that a multifaceted intervention consisting of spontaneous pushing, birth positions with flexibility in the sacroiliac joints, and a two-step head-to-body delivery significantly reduced second degree tears, but these results have not yet been reproduced [3]. There is a need for new interventions to prevent severe perineal tears, and one way to approach such measures is epidemiologic research regarding risk factors for perineal tears.

Instrumental delivery [14, 15], protracted second stage of labor [14, 16], birth weight greater than 4 kg [16], and fetal occipito-posterior presentation [15, 16] have been shown to be independent risk factors for OASI in several retrospective studies. Retrospective studies have generally focused on OASI, whereas second-degree tears have almost exclusively been reserved for prospective observational studies. Only six articles based on prospective observation studies of OASI and/or other perineal tears were identified in an extensive PubMed search [1, 2, 17–20], and only two of these articles included second-degree perineal tears [1, 2].

The aim of this study was to estimate the incidence of second-degree perineal tears, OASI (defined as any third or fourth degree perineal tear), and high vaginal tears in primiparous women, and to examine how sociodemographic and pregnancy characteristics, hereditary factors, obstetric management and the delivery process are associated with the incidence of these tears.

Materials And Methods

Study design and population

We conducted a prospective cohort study in the Region Örebro County, Sweden, named the Pelvic Floor In Pregnancy And Childbirth (POPRACT) study. All eligible nulliparous women registering for maternity health care in early pregnancy between 1 October 2014 and 1 October 2017 were informed about the study and asked if they wanted to participate by the midwife in charge. Antenatal care is free of charge in Sweden, and almost all women attend maternity health care. Exclusion criteria were first visit at maternity health care after 15 weeks + 6 days of gestation or insufficient knowledge of the Swedish language to complete the questionnaires used in the study. Participants were asked to complete web-based questionnaires on four occasions: at entry into the study in early pregnancy, at 36 weeks of gestation, at 8 weeks postpartum, and at 1 year postpartum. Patient-reported data were managed in the cloud-based tool esMaker 3.0 (Entergate AB, Sweden) in accordance with the General Data Protection Regulation of the European Union. The questionnaires included items on general health, socioeconomic status, heredity of pelvic floor dysfunction and connective tissue deficiency, and self-reported pelvic floor dysfunction [21, 22] (see Additional file 1).

Study size

Given that the expected incidence of OASI was > 7% and the expected incidence of second-degree perineal tear was significantly higher, a study population of 1000 women was judged to be sufficient to identify risk factors of clinical importance.

Exposure measures

The following patient-reported data from the first and second questionnaires (i.e. before delivery) were analyzed
as potential risk factors for perineal tears and vaginal tear: level of education, heredity of pelvic floor disorders and/or connective tissue deficiency, symptoms of stress urinary incontinence, and symptoms of pelvic organ prolapse. Heredity of pelvic floor disease was defined as mother or sister having undergone surgery due to pelvic organ prolapse, urinary incontinence, inguinal hernia, or varicose veins. Stress urinary incontinence was defined as reporting urine leakage “often” or “sometimes” during physical strain. Symptoms of pelvic organ prolapse was defined as responding “often” or “sometimes” to the question about the sensation of vaginal bulging.

Participating women had their delivery at either of the two delivery wards in Region Örebro County, which are located at Örebro University Hospital and at Karlskoga Hospital. Delivery was assisted by a midwife under ordinary circumstances or by an obstetrician in case of instrumental delivery. Diagnosis of first- and second-degree perineal tears was made by a midwife. In cases of suspected third- or fourth-degree perineal tear or a high vaginal tears, an obstetrician was consulted for an assessment and suturing. After delivery, vaginal examination, and suturing if necessary, the midwife (in co-operation with the obstetrician when needed) completed a study protocol containing specific questions about delivery characteristics, perineal and vaginal tears, and suturing. The part of the protocol regarding perineal tears and suturing has been validated in a previous study [23]. The protocol uses the Royal College of Obstetricians and Gynaecologists classification of perineal tears [24] and the ICD-10 classification of high vaginal tear; that is, a vaginal tear extending above the distal third of the vagina [25]. Information regarding oxytocin augmentation during active second stage of labor, use of perineotomy, manual perineal protection, and application of fetal scalp electrode was retrieved from the mentioned study protocol. In case of perineotomy the perineal tear was classified as second-degree at minimum. In women who had both episiotomy and a perineal tear of third or fourth degree, the classification of perineal tear remained unchanged. Perineotomy was not studied as a risk factor, since second-degree tears were included as an outcome in the multinomial regression and so such an analysis would have been inappropriate. Data concerning BMI and smoking at maternity health care registration, maternal age at delivery, gestational age at birth, whether delivery started spontaneously or was induced, administration of epidural analgesia, duration of active second stage of labor, maternal position at birth, mode of delivery, fetal presentation, fetal birth weight, and fetal head circumference were extracted from the obstetric record system (Obstetrix version 2.16.0.200, Cerner Corporation, Sweden) using an accessory program (Obstetrix Förlossningsliggare version 2.16.0.200, Cerner Corporation, Sweden). Variables were categorized as follows: age was categorized into ≤ 25 years and > 25 years; BMI into ≤ 25 kg/m² and 25.1–30 kg/m²; gestational age at delivery into preterm (< 37 + 0), term (37 + 0–42 + 0), and postterm (> 42 + 0); duration of active second stage of labor into ≤ 15 min, 16–60 min, and > 60 min; mode of delivery into spontaneous and vacuum extraction; fetal presentation into occiput anterior and occiput posterior; fetal weight into ≤ 4000 g and > 4000 g; and fetal head circumference into ≤ 35 cm and > 35 cm. Maternal position at birth was categorized into lithotomy position and other positions, with the latter including squatting, kneeling, supine, lateral recumbent, sitting, standing, and undefined.

Outcome measures

The primary outcome measure was perineal tear, which was divided into three groups: 1) intact perineum or first degree tear (defined as the reference category), 2) second-degree tear, and 3) third- or fourth-degree tear, i.e. OASI. The secondary outcome measure was vaginal tear, which was categorized into two groups: 1) no or low vaginal tear (the reference category) and 2) high vaginal tear.

Statistical analyses

Relationships between potential risk factors and different degrees of perineal and vaginal tears were evaluated using unadjusted and adjusted multivariable regression models. Multinomial logistic regression was used for perineal tears, and logistic regression was used for vaginal tears. In the multivariate models for perineal tear, all potential risk factors were entered in the model and mutually adjusted for except heredity of pelvic floor dysfunction and/or connective tissue deficiency, stress urinary incontinence, perineotomy, whether hand or arm was the presenting part, and fetal head > 35 cm. In the case of vaginal tear, all risk factors except stress urinary incontinence and fetal weight > 4000 g were entered in the adjusted model. Assessment of potential multicollinearity among risk factors showed no collinearity issues; all variance inflation factors were < 1.6. An interaction between fetal weight and delivery mode on the risk of perineal tear was examined using interaction
tests. Differences between vaginally delivered women with and without a registered study-specific delivery protocol were compared using a t-test in the case of supposed parametric continuous variables, the Wilcoxon rank-sum test in the case of supposed non-parametric continuous variables, and a chi-squared test in the case of categorical variables. Data were analyzed using version Stata/SE V13 (StataCorp LP, College Station, TX).

Results

Figure 1 presents the inclusion of the study sample. A total of 1049 women were included in the POPRACT study. Of the study population remaining after exclusion, 809 women had a vaginal delivery. Delivery was documented in the dedicated study protocol for 644 of these women, who thus constituted the present study sample. For the analysis of risk factors in relation to perineal and vaginal tears included 489 and 426 women, respectively, after excluding women with missing data in relevant variables.

Insert Fig. 1 approximately here.

Baseline and obstetric and baseline characteristics of the study sample are shown in Table 1 and Table 2, respectively. The sample had a mean (± SD) age of 28.7 ± 3.7 years (range: 18–41 years), BMI of 24.5 ± 4.4 kg/m² (16.4–44.0 kg/m²), gestational age at birth of 40 weeks + 1 day ± 1 week + 3 days (34 weeks + 1 day - 42 weeks + 5 days), fetal birth weight of 3513 ± 472 g (1730–5140 g), and fetal head circumference of 34.8 ± 1.5 cm (28.0–38.5 cm). Smoking, symptoms of pelvic organ prolapse during late pregnancy, and lack of manual perineal protection were considered as potential risk factors but were excluded from the analysis of risk factors presented below due to too few exposed women. No statistically significant differences were found between the women whose data were collected according to study-specific delivery protocol registered (n = 644) and those excluded due to missing study protocol (n = 165), except regarding use of epidural analgesia and duration of active second stage of labor. In the excluded group, epidural use was lower (38.2%) and the mean duration of active second stage of labor was longer (48.7 ± 35.4 min; range: 1–189 min).

Table 1

Baseline characteristics of the study population.

	n (%)
Age	
≤25 years	114 (17.7)
26–30 years	346 (53.8)
31–35 years	155 (24.1)
>35 years	28 (4.4)
Missing	0
BMI	
≤25 kg/m²	405 (64.5)
>25 kg/m²	155 (24.7)
BMI Category	Count (Percentage)
--------------	--------------------
25.1-30 kg/m²	
>30 kg/m²	68 (10.8)
Missing	16

Smoking

Smoking Status	Count (Percentage)
Yes	19 (3.0)
No	605 (97.0)
Missing	20

Education

Education Level	Count (Percentage)
9-<12 years	8 (1.5)
12 years	181 (33.2)
University	357 (65.4)
Missing	98

Heredity

Heredity Status	Count (Percentage)
Yes	70 (14.4)
No	415 (85.6)
Missing	159

SUI during late pregnancy

SUI Status	Count (Percentage)
Yes	116 (22.2)
No	406 (77.8)
Missing	122

Symptoms of POP during late pregnancy

Symptoms Status	Count (Percentage)
Yes	22 (4.2)
No	501 (95.8)
Baseline characteristics of the study population. Heredity of pelvic floor dysfunction and/or connective tissue deficiency. BMI, body mass index; POP, pelvic organ prolapse; SUI, stress urinary incontinence.

Table 2
Obstetric characteristics of the study population.

	n (%)
Gestational age at birth	
Preterm (< 37w)	21 (3.3)
Term (37–42w)	552 (85.7)
Postterm (> 42w)	60 (9.3)
Missing	11
Delivery start	
Spontaneous	512 (79.6)
Induction	131 (20.4)
Missing	1
Epidural analgesia	
No	314 (48.8)
Yes	330 (51.2)
Missing	0
Oxytocin stimulation	
No	306 (48.5)
Yes	325 (51.5)
Missing	12
Duration of active 2nd stage	

Missing 121
Duration	Count (Percentage)
≤15 min	124 (19.9)
16-60 min	346 (55.5)
>60 min	154 (24.7)
Missing	20

Perineotomy

Type	Count (Percentage)
No	579 (91.3)
Yes	55 (8.7)
Missing	9

Maternal position at birth

Type	Count (Percentage)
Position other than lithotomy	282 (44.4)
Lithotomy	353 (55.6)
Missing	9

Mode of delivery

Type	Count (Percentage)
Spontaneous	527 (81.8)
Instrumental	117 (18.2)
Missing	0

Manual perineal protection

Type	Count (Percentage)
None	8 (1.3)
Fetal head support only	30 (4.8)
Perineal head support only	82 (13.0)
Combined support	409 (65.0)
Unspecified support	100 (15.9)
Obstetric characteristics of the study population. Women where information is missing are not included in the percentage.	
---	---
Fetal scalp electrode	
No	279 (44.2)
Yes	352 (55.8)
Missing	12
Fetal presentation	
Occiput anterior	611 (96.4)
Occiput posterior	23 (3.6)
Breech	0
Missing	10
Fetal birth weight	
≤4000 g	541 (84.1)
>4000 g	102 (15.9)
Missing	1
Fetal head circumference	
≤35 cm	278 (43.4)
>35 cm	363 (56.6)
Missing	3
Number of births	
Singleton	641 (99.7)
Twins	2 (0.3)
Missing	1
Incidence of perineal, vaginal, and other vulvar tears

Table 3 presents the incidence of vaginal, perineal, and other vulvar tears. Almost half of the women (47.6%) contracted any labial tear requiring suturing. Anterior tears close to the clitoris or urethra were less common than labial tears, affecting 15.3% of the sample. Only 14.9% of women avoided any vaginal tear. The vast majority (71.1%) of women with vaginal tear had a low tear, whereas 14.0% contracted a high vaginal tear. About one third (31.1%) of women had an intact perineum, while the remaining two thirds had some degree of perineal tear. Second-degree tears constituted the majority of tears (44.7%). The incidences of third-degree tears of class A, B, and C were 3.7%, 1.1%, and 2.2% respectively. Only two women (0.32%) contracted a fourth-degree perineal tear.

Table 3
Distribution of vaginal, perineal, and other vulvar tear.

Labial tears^a	Total n = 628
None	329 (52.4)
Yes	299 (47.6)
Missing	16

Anterior tears^b	Total n = 603
None	511 (84.7)
Yes	92 (15.3)
Missing	41

Vaginal tear	Total n = 609
None	91 (14.9)
Low^c	433 (71.1)
High^d	85 (14.0)
Missing	35

Degree of perineal tear	Total n = 626

None	195 (31.1)
First-degree	106 (16.9)
Second-degree	280 (44.7)
Third-degree (A)	23 (3.7)
Third-degree (B)	7 (1.1)
Third-degree (C)	14 (2.2)
Fourth-degree	2 (0.32)
Missing	17

Distribution of vaginal, perineal, and other vulvar tear. An individual woman may have labial, anterior, vaginal and perineal tear concomitantly and thus be part of several tear groups. Missing information is due to incomplete information in the delivery protocols. aLabial tears requiring suturing; banterior tears close to clitoris or urethra, not related to female genital mutilation; cvaginal tear where only the distal third of vagina is engaged; dvaginal tear more extensive than the distal third of vagina

Odds ratios for the risk factors of second-degree perineal tear and OASI

Table 4 presents the unadjusted and adjusted odds ratios for second-degree perineal tear and for OASI, respectively. Women with second-degree perineal tear were more likely to be older than 25 years, to have a post-term delivery, to be exposed to oxytocin augmentation, to give birth in the lithotomy position, to have delivery assisted by vacuum extraction, and to have a child heavier than 4000 g or with a head circumference exceeding 35 cm, compared to women who did not have tear or had a tear of first degree (the reference). After adjustment, age above 25 years, vacuum extraction, and fetal weight exceeding 4000 g remained as risk factors significantly increasing the risk of second-degree perineal tear. Women with OASI were more likely to use epidural analgesia, to be exposed to oxytocin augmentation, to have delivery assisted by vacuum extraction, to have a fetal heart beat monitored by scalp electrode, and to have a child heavier than 4000 g or with a head circumference exceeding 35 cm, compared to the reference. After adjustment, vacuum extraction and fetal weight > 4000 g remained as risk factors significantly increasing the risk of OASI.

	2nd degree	OASI		
	OR (95% CI)	aOR (95% CI)	OR (95% CI)	aOR (95% CI)
Age				
≤25 years	Reference	Reference	Reference	Reference
>25 years	2.01 (1.21, 3.35)*	1.94 (1.10, 3.43)*	1.56 (0.57, 4.25)	1.70 (0.52, 5.59)
BMI	≤25 kg/m²	25.1–30 kg/m²	>30 kg/m²	
-----	-----------	---------------	-----------	
	Reference	Reference	Reference	
	0.91 (0.58, 1.42)	0.99 (0.61, 1.60)	1.09 (0.47, 2.51)	
	0.98 (0.39, 2.49)			

Education	9to < 12 years	12 years	University
	0.24 (0.03, 2.20)	0.82 (0.55, 1.21)	Reference
	0.35 (0.04, 3.38)	0.92 (0.60, 1.42)	Reference
	3.22 (0.56, 18.58)	0.63 (0.27, 1.47)	Reference
	4.55 (0.60, 34.33)	0.61 (0.24, 1.60)	Reference

Heredity^a	No	Yes
	Reference	1.33 (0.76, 2.32)
	Reference	1.52 (0.53, 4.35)

SUI in late pregnancy	No	Yes
	Reference	0.66 (0.41, 1.05)
	Reference	1.65 (0.74, 3.66)

GA at birth	Preterm/term	Postterm
	Reference	2.11 (1.09, 4.06)*
	Reference	1.73 (0.77, 3.86)
	Reference	2.01 (0.63, 6.48)
	Reference	1.22 (0.28, 5.26)

Delivery start	Spontaneous	Induction
	Reference	1.38 (0.86, 2.21)
	Reference	0.96 (0.54, 1.74)
	Reference	1.6 (0.67, 3.81)
	Reference	1.33 (0.45, 3.91)

| Epidural analgesia | No | | | |
|--------------------|----|----|----|
Maternal position at birth	Reference	Reference	Reference	Reference
Position other than lithotomy	Reference	Reference	Reference	Reference
Lithotomy	1.46 (1.01, 2.11)*	0.87 (0.56, 1.35)	1.91 (0.90, 4.05)	1.16 (0.44, 3.03)
Mode of delivery	Reference	Reference	Reference	Reference
Spontaneous	Reference	Reference	Reference	Reference
Vacuum extraction	3.37 (1.92, 5.93)*	3.28 (1.73, 6.21)*	4.92 (2.04, 11.84)*	4.31 (1.49, 12.5)*
Fetal scalp electrode	Reference	Reference	Reference	Reference
No	Reference	Reference	Reference	Reference
Yes	1.44 (0.99, 2.08)	1.24 (0.81, 1.89)	2.76 (1.23, 6.19)*	2.31 (0.93, 5.70)
Fetal presentation	Reference	Reference	Reference	Reference
Occiput anterior	Reference	Reference	Reference	Reference
Occiput posterior	1.37 (0.50, 3.74)	1.44 (0.50, 4.16)	3.24 (0.80, 13.22)	3.98 (0.82, 19.20)
Hand or arm presenting fetal part	Reference	Reference	Reference	Reference

Oxytocin stimulation

Yes	1.76 (1.21, 2.55)*	1.19 (0.75, 1.88)	2.06 (0.98, 4.34)*	0.84 (0.33, 2.11)
No	Reference	Reference	Reference	Reference
Yes	1.76 (1.21, 2.55)*	1.19 (0.75, 1.88)	2.06 (0.98, 4.34)*	0.84 (0.33, 2.11)

Duration of active 2nd stage

≤15 min	0.74 (0.45, 1.23)	0.79 (0.47, 1.35)	1.2 (0.49, 2.92)	1.52 (0.57, 4.03)
16–60 min	Reference	Reference	Reference	Reference
>60 min	1.23 (0.80, 1.92)	1.07 (0.67, 1.71)	0.8 (0.30, 2.11)	0.55 (0.19, 1.57)

Maternal position at birth

Maternal position at birth	Reference	Reference	Reference	Reference
Position other than lithotomy	Reference	Reference	Reference	Reference
Lithotomy	1.46 (1.01, 2.11)*	0.87 (0.56, 1.35)	1.91 (0.90, 4.05)	1.16 (0.44, 3.03)

Mode of delivery

Mode of delivery	Reference	Reference	Reference	Reference
Spontaneous	Reference	Reference	Reference	Reference
Vacuum extraction	3.37 (1.92, 5.93)*	3.28 (1.73, 6.21)*	4.92 (2.04, 11.84)*	4.31 (1.49, 12.5)*

Fetal scalp electrode

Fetal scalp electrode	Reference	Reference	Reference	Reference
No	Reference	Reference	Reference	Reference
Yes	1.44 (0.99, 2.08)	1.24 (0.81, 1.89)	2.76 (1.23, 6.19)*	2.31 (0.93, 5.70)

Fetal presentation

Fetal presentation	Reference	Reference	Reference	Reference
Occiput anterior	Reference	Reference	Reference	Reference
Occiput posterior	1.37 (0.50, 3.74)	1.44 (0.50, 4.16)	3.24 (0.80, 13.22)	3.98 (0.82, 19.20)
Odds ratios for high vaginal tear

Table 5 shows the unadjusted and adjusted odds ratios for high vaginal tear. Women with a high vaginal tear were more likely to report heredity of pelvic floor dysfunction and/or connective tissue deficiency, to have induced labor, to deliver a baby whose hand or arm was the presenting fetal part, and to deliver a baby whose head circumference exceeded 35 cm, compared to referent women with no or low vaginal tear. After adjustment, heredity of pelvic floor dysfunction and/or connective tissue deficiency, induced labor, and fetal head circumference > 35 cm remained as risk factors significantly increasing the risk of high vaginal tear. In the adjusted model, augmentation of oxytocin significantly reduced the risk of high vaginal tear despite not being significant in the unadjusted model.

Table 5

Unadjusted and adjusted odds ratio for the risk of high vaginal tear

n = 426	OR (95% CI)	aOR (95% CI)	
Age			
≤25 years	Reference	Reference	
>25 years	2.26 (0.87, 5.87)	2.44 (0.80, 7.47)	
BMI			
≤25 kg/m²	Reference	Reference	
BMI Range	Low End	High End	Mean (CI)
-----------	---------	----------	-----------
25.1–30 kg/m²	1.08 (0.55, 2.14)	1.10 (0.52, 2.34)	
>30 kg/m²	0.93 (0.37, 2.34)	0.80 (0.29, 2.20)	

Education

Education Level	Mean (CI)	
9 to < 12 years	1.49 (0.16, 13.70)	6.18 (0.48, 78.82)
12 years	0.69 (0.36, 1.32)	0.88 (0.43, 1.79)
University	Reference	Reference

Hereditya

Heredity	Mean (CI)	
No	Reference	Reference
Yes	2.18 (1.11, 4.29)*	2.33 (1.09, 5.00)*

SUI in late pregnancy

SUI Status	Mean (CI)	
No	Reference	NE
Yes	0.79 (0.37, 1.69)	NE

GA at birth

GA Classification	Mean (CI)	
Preterm and term	Reference	Reference
Postterm	2.02 (0.91, 4.50)	0.63 (0.22, 1.82)

Delivery start

Delivery Method	Mean (CI)	
Spontaneous	Reference	Reference
Induction	2.82 (1.52, 5.25)*	3.64 (1.54, 8.59)*

Epidural analgesia

Epidural Status	Mean (CI)	
No	Reference	Reference
Yes	0.89 (0.50, 1.56)	0.73 (0.38, 1.39)

Oxytocin stimulation

Oxytocin Status	Mean (CI)	
Reference	Reference	
	Reference	Reference
--------------------------------	-----------	-----------
Yes	0.87 (0.49, 1.52)	0.44 (0.21, 0.90)*
Duration of active 2nd stage		
≤15 min	0.63 (0.27, 1.48)	0.67 (0.27, 1.64)
16–60 min	Reference	Reference
>60 min	1.03 (0.54, 1.99)	0.91 (0.44, 1.89)
Maternal position at birth		
Position other than lithotomy	Reference	Reference
Lithotomy	1.3 (0.74, 2.30)	1.10 (0.55, 2.19)
Mode of delivery		
Spontaneous	Reference	Reference
Vacuum extraction	1.53 (0.78, 3.02)	2.32 (0.97, 5.56)
Fetal scalp electrode		
No	Reference	Reference
Yes	1.62 (0.90, 2.90)	1.74 (0.87, 3.48)
Fetal presentation		
Occiput anterior	Reference	Reference
Occiput posterior	0.43 (0.06, 3.32)	0.48 (0.05, 5.06)
Hand or arm presenting fetal part		
No	Reference	Reference
Yes	2.14 (1.02, 4.48)*	2.20 (0.96, 5.05)
Fetal weight		
≤4000 g	Reference	NE
>4000 g	1.15 (0.63, 2.11)	NE
Fetal head circumference
---|---|---
≤35 cm | Reference | Reference
>35 cm | 2.55 (1.35, 4.83)* | 2.86 (1.43, 5.75)*

Unadjusted and adjusted odds ratio for the risk of high vaginal tear using logistic regression. The group of women with high vaginal tear was compared with women with none or low vaginal tear. *Heredity of pelvic floor dysfunction and/or connective tissue deficiency; *Significant at level \(p < 0.05 \). aOR, adjusted odds ratio; BMI, body mass index; CI, confidence interval; GA, gestational age; NE, not estimated; OR, odds ratio; SUI, stress urinary incontinence.

Insert Table 5 approximately here.

Odds ratios for the combined effect of delivery mode and fetal weight on the risk of perineal tear

Table 6 shows the odds ratios, before and after adjustment, for second-degree perineal tear and OASI, in four different combinations of two risk factors - vacuum extraction and fetal weight: 1) women with spontaneous delivery of a child weighing < 4000 g, 2) women with spontaneous delivery of a child weighing ≥ 4000 g, 3) women with vacuum-assisted delivery of a child weighing < 4000 g, and 4) women with vacuum-assisted delivery of a child weighing ≥ 4000 g. Subgroup 4, in which the two major risk factors were combined, had adjusted ORs for second-degree tear and OASI of 5.4 (95% CI: 1.4, 20.6) and 10.5 (95% CI: 1.4, 80.8), respectively, and the interaction terms for second-degree perineal tear and for OASI were 0.66 (95% CI: 0.14–3.2) and 0.2 (95% CI: 0.02–2.03) respectively, meaning that there was no significant interaction between vacuum extraction and fetal birthweight above 4000 g (data not shown).
Table 6

Unadjusted and adjusted odds ratios for the risk of second-degree perineal tear and obstetric anal sphincter injury by delivery mode and fetal weight.

n = 489	Second-degree perineal tear	Obstetric anal sphincter injury				
	Incidence (n)	OR (95% CI)	aOR (95% CI)	Incidence (n)	OR (95% CI)	aOR (95% CI)
		Reference	Reference	Reference	Reference	Reference
Spontaneous delivery and fetal weight < 4000 g (n = 355)	142	Reference	Reference	14	Reference	Reference
	29	2.54 (1.33, 4.85)	2.35 (1.20, 4.63)	9	6.00 (2.50, 14.0)	8.30 (2.90, 23.50)
Vacuum extraction and fetal weight < 4000 g (n = 63)	39	3.42 (1.84, 6.35)	3.44 (1.72, 6.88)	8	7.11 (2.60, 19.45)	6.30 (1.94, 20.41)
Vacuum extraction and fetal weight ≥ 4000 g (n = 17)	12	5.61 (1.55, 20.23)	5.40 (1.40, 20.60)	2	9.48 (1.46, 61.45)	10.50 (1.40, 80.80)

Unadjusted and adjusted odds ratios for the risk of second-degree perineal tear and obstetric anal sphincter injury by delivery mode (spontaneous or vacuum extraction) and fetal weight (< 4000 g or ≥ 4000 g). aOR, adjusted odds ratio; CI, confidence interval; OR, odds ratio.

Discussion

The incidences of second-degree perineal tear, OASI, and high vaginal tear were 44.7%, 7.3%, and 13.2% respectively. Vacuum extraction and fetal weight above 4000 g were independent risk factors for both second-degree perineal tear and OASI. Age above 25 years was an independent risk factor for second-degree perineal tear but not for OASI. Heredity of pelvic floor dysfunction and/or connective tissue deficiency, induced labor, and fetal head circumference > 35 cm were independent risk factors for high vaginal tear, whereas oxytocin augmentation appeared to reduce the risk of high vaginal tear.

To our knowledge, this is one of very few observational studies of perineal tears that include tears of second degree. An extensive PubMed search identified only two observational studies reporting the incidence of second-degree perineal tear [1, 2] and only one of these separately analyzed risk factors for second-degree tears [1] and OASI [17]. As in the present study, Samuelsson et al. found high infant weight to be an independent risk factor for both second-degree tears and OASI, but in their study vacuum extraction was not an independent risk factor for either degree of tear. We did not find that prolonged active phase of second stage of labor led to any increased risk for either OASI or second-degree tears, whereas Samuelsson et al. found that pushing time < 30 min decreased the risk of both [1, 17]. An imprecise definition of the active phase of second stage of labor in the present study might partly explain the difference in the results; in the obstetric record system, the midwife entered the time when the woman felt the urge to push, which might not be the same as active pushing. Age
above 25 years has been shown to increase the risk of OASI [26], but this is the first study to find an association between age and second-degree tears.

Obstetric risk factors for perineal tears are often interrelated, as is the case for the two largest risk factors identified in this study: birth weight > 4000 g and vacuum extraction. This was the rationale for the stratification of subgroups according to these risk factors (Table 6). The odds of OASI in the subgroup with the two major risk factors combined was markedly high; more than tenfold higher than the reference category, even though there was no evidence of positive effect modification and confidence intervals were wide.

The present finding that the incidence of second-degree tears was 44.7% can be contrasted with the incidence of 78.3% in the control group of an interventional study by Edqvist et al. [3]. Since the latter study was also conducted in a Swedish context and published as recently as 2017, explanations other than a true difference in the incidence due to diverging obstetric practice must be sought. Rather, diverging definitions of second-degree tears could explain the difference. Our delivery protocol used the RCOG definitions of perineal tears [24], whereas Edqvist et al. classified vaginal tears with a depth > 0.5 cm as second-degree tears [3].

High vaginal tear was fairly common in our study, affecting 13.2% of women, but to our knowledge no previous studies have specifically evaluated risk factors for high vaginal tears. Vaginal sidewall tears might be an independent risk factor for levator ani avulsion [8], and hence could be a marker for increased future risk of pelvic floor dysfunction. Interestingly enough, we found that heredity of pelvic floor dysfunction and/or connective tissue deficiency was a risk factor for high vaginal tear. One might speculate that a genetic connective tissue deficiency resulting in an increased risk of levator ani avulsion is the link which explains the finding above.

Strengths of this study is the prospective data collection and the assessment of a wide range of risk factors. In the present study we used a validated protocol for documentation of perineal tears, which we have previously shown to deliver more comprehensive information about perineal tears than the most common obstetric record system in Sweden [23].

The sample size of this prospective study (489 and 426 women included in the regression models of perineal tears and vaginal tears respectively) is smaller than in most retrospective studies in the field, which constitutes a limitation of the study. The limited sample size confers a risk of type II errors, and may partly explain why some previously described risk factors did not show the association.

Conclusions

This prospective study showed that fetal weight exceeding 4000 g and vacuum extraction are independent risk factors for both second-degree perineal tears and OASI in primiparous women. Risk factors for high vaginal tears were heredity of pelvic floor dysfunction and/or connective tissue deficiency, induced labor, and fetal head circumference > 35 cm. These tears have been found to be common among primiparous women, and merit more attention.

Abbreviations

OASI
Obstetric anal sphincter injury

POPRACT
Pelvic Floor In Pregnancy and Childbirth study
Ethical approval and consent to participate

Ethical approval was given by the Regional Ethical Review Board in Stockholm (registration number 2014/124-32). All participants gave written informed consent at inclusion into the study at maternity health care in early pregnancy.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by Region Örebro County Research Committee and Örebro University Hospital Research Foundation (Grant Nos. OLL-779831, OLL-839631, and OLL-930507).

Authors’ contributions

MH Jansson: Project development, data collection, data analysis, manuscript writing
K Franzén: Project development, data analysis, manuscript editing
A Hiyoshi: Data analysis, manuscript editing
G Tegerstedt: Data analysis, manuscript editing
H Dahlgren: Data collection
K Nilsson: Project development, data analysis, manuscript editing

Acknowledgements

We wish to thank research coordinators Anette Trygg and Carina Henriksson, who coordinated the data collection, and all the midwives and physicians involved in the inclusion of study participants and data collection.

References

1. Samuelsson E, Ladhors L, Lindblom BG, Hagberg H. A prospective observational study on tears during vaginal delivery: occurrences and risk factors. Acta Obstet Gynecol Scand. 2002;81(1):44–9.
2. Smith LA, Price N, Simonite V, Burns EE. Incidence of and risk factors for perineal trauma: a prospective observational study. BMC Pregnancy Childbirth. 2013;13:59.
3. Edqvist M, Hildingsson I, Mollberg M, Lundgren I, Lindgren H. Midwives’ Management during the Second Stage of Labor in Relation to Second-Degree Tears-An Experimental Study. Birth. 2017;44(1):86–94.
4. Statistics on Pregnancies, Deliveries and Newborn Infants 2016. Stockholm: The National Board of Health and Welfare; 2018.
5. Evers EC, Blomquist JL, McDermott KC, Handa VL. Obstetrical anal sphincter laceration and anal incontinence 5–10 years after childbirth. 2012, 207.
6. Radestad I, Olsson A, Nissen E, Rubertsson C. Tears in the vagina, perineum, sphincter ani, and rectum and first sexual intercourse after childbirth: a nationwide follow-up. Birth. 2008;35(2):98-106.
7. Tegerstedt G, Miedel A, Maehle-Schmidt M, Nyren O, Hammarstrom M. Obstetric risk factors for symptomatic prolapse: a population-based approach. Am J Obstet Gynecol. 2006;194(1):75-81.
8. Shek KL, Green K, Hall J, Guzman-Rojas R, Dietz HP. Perineal and vaginal tears are clinical markers for occult levator ani trauma: a retrospective observational study. Ultrasound Obstet Gynecol. 2016;47(2):224-7.
9. Aasheim V, Nilsen ABV, Reinar LM, Lukasse M. Perineal techniques during the second stage of labour for reducing perineal trauma. Cochrane Database Syst Rev. 2017;6:Cd006672.
10. de Leeuw JW, de Wit C, Kuijken JP, Bruinse HW. Mediolateral episiotomy reduces the risk for anal sphincter injury during operative vaginal delivery. BJOG. 2008;115(1):104-8.
11. Revicky V, Nirmal D, Mukhopadhyay S, Morris EP, Nieto JJ. Could a mediolateral episiotomy prevent obstetric anal sphincter injury? Eur J Obstet Gynecol Reprod Biol. 2010;150(2):142–6.
12. Jiang H, Qian X, Carrol G, Garner P. Selective versus routine use of episiotomy for vaginal birth. Cochrane Database Syst Rev. 2017;2:Cd000081.
13. Poulsen MO, Madsen ML, Skriver-Moller AC, Overgaard C. Does the Finnish intervention prevent obstetric anal sphincter injuries? A systematic review of the literature. BMJ open. 2015;5(9):e008346.
14. Ramm O, Woo VG, Hung YY, Chen H-C, Ritterman Weintraub ML. Risk Factors for the Development of Obstetric Anal Sphincter Injuries in Modern Obstetric Practice. Obstet Gynecol Annu. 2018;131(2):290-6.
15. Jango H, Langhoff-Roos J, Rosthoj S, Sakse A. Modifiable risk factors of obstetric anal sphincter injury in primiparous women: a population-based cohort study. Am J Obstet Gynecol. 2014;210(1):59.e51-56.
16. Elvander C, Ahlberg M, Thies-Lagergren L, Cnattingius S, Stephansson O. Birth position and obstetric anal sphincter injury: a population-based study of 113 000 spontaneous births. BMC Pregnancy Childbirth. 2015;15:252.
17. Samuelsson E, Ladfors L, Wennerholm UB, Gåreberg B, Nyberg K, Hagberg H. Anal sphincter tears: prospective study of obstetric risk factors. 2000, 107(7):926–931.
18. Zetterstrom J, Lopez A, Anzen B, Norman M, Holmstrom B, Mellgren A. Anal sphincter tears at vaginal delivery: risk factors and clinical outcome of primary repair. Obstet Gynecol. 1999;94(1):21-8.
19. Donnelly V, Fynes M, Campbell D, Johnson H, O'Connell PR, O'Herlihy C. Obstetric events leading to anal sphincter damage. Obstet Gynecol. 1998;92(6):955–61.
20. Andrews V, Sultan AH, Thakar R, Jones PW. Risk factors for obstetric anal sphincter injury: a prospective study. Birth. 2006;33(2):117–22.
21. Tegerstedt G, Miedel A, Maehle-Schmidt M, Nyren O, Hammarstrom M. A short-form questionnaire identified genital organ prolapse. J Clin Epidemiol. 2005;58(1):41-6.
22. Waldenström U, Ekéus CJBP, Childbirth. Risk of obstetric anal sphincter injury increases with maternal age irrespective of parity: a population-based register study. 2017, 17(1):306.
Figure 1
Flow chart. (see attached file) Flow chart illustrating the inclusion of the study sample. RÖC, Region Örebro
County; POPRACT study, Pelvic Floor In Pregnancy And Childbirth study.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile1.pdf