Addressing the welfare needs of farmed lumpfish: Knowledge gaps, challenges and solutions

Carlos Garcia de Leaniz1 © | Carolina Gutierrez Rabadan1 © | Sara I. Barrento1 © | Rebecca Stringwell1 © | Paul N. Howes1 | Ben A. Whittaker1,2 © | Jessica F. Minett1 © | Robert G. Smith1 | Craig L. Pooley1 | Ben J. Overland1 | Leigh Biddiscombe1,3 © | Richard Lloyd1 | Sofia Consuegra1 © | Jake K. Maddocks1 | Paul T. J. Deacon1 | Ben T. Jennings1 | Sonia Rey Planellas4 © | Amanda Deakin5 © | Amber I. Moore6 | Daniel. Phillips7 | Guillermo Bardera8 © | Maria F. Castanheira9 © | Maria Scolamacchia10 © | Nancy Clarke11 © | Ollie Parker1,3 © | John Avizienius12 | Malcolm Johnstone12 | Michalis Pavlidis13 ©

1Centre for Sustainable Aquatic Research, Swansea University, Swansea, UK
2Department of Integrative Biology, University of Guelph, Canada
3Three-sixty Aquaculture, Swansea, UK
4Institute of Aquaculture, Stirling University, Stirling, UK
5FAI Farms, Oxford, UK
6MOWI Ireland, Cloghmore, Ireland
7Ocean Matters, Penmon, UK
8Moredun Scientific, Penicuik, UK
9University of Algarve, Faro, Portugal
10National Research Council, Torre Grande, Italy
11World Animal Protection, London, UK
12Royal Society for the Prevention of Cruelty to Animals, Horsham, UK
13Department of Biology, University of Crete, Greece

Abstract
Lumpfish (Cyclopterus lumpus L.) are increasingly being used as cleaner fish to control parasitic sea lice, one of the most important threats to salmon farming. However, lumpfish cannot survive feeding solely on sea lice, and their mortality in salmon nets can be high, which has welfare, ethical and economic implications. The industry is under increasing pressure to improve the welfare of lumpfish, but little guidance
exists on how this can be achieved. We undertook a knowledge gap and prioritisation exercise using a Delphi approach with participants from the fish farming sector, animal welfare, academia and regulators to assess consensus on the main challenges and potential solutions for improving lumpfish welfare. Consensus among participants on the utility of 5 behavioural and 12 physical welfare indicators was high (87–89%), reliable (Cronbach’s alpha = 0.79, 95CI = 0.69–0.92) and independent of participant background. Participants highlighted fin erosion and body damage as the most useful and practical operational welfare indicators, and blood parameters and behavioural indicators as the least practical. Species profiling revealed profound differences between Atlantic salmon and lumpfish in relation to behaviour, habitat preferences, nutritional needs and response to stress, suggesting that applying a common set of welfare standards to both species cohabiting in salmon net-pens may not work well for lumpfish. Our study offers 16 practical solutions for improving the welfare of lumpfish and illustrates the merits of the Delphi approach for achieving consensus among stakeholders on welfare needs, targeting research where is most needed and generating workable solutions.

KEYWORDS

cleaner fish, Delphi expert assessment, feeding rations, habitat preferences, operational welfare indicators, Salmon farming

1 | INTRODUCTION: THE NEED FOR WELFARE INDICATORS FOR LUMPFISH

There are ~250 species of fish farmed globally¹ which account for 52% of fish used for human consumption.² Yet, despite the scale of the fish farming industry—and evidence that fish are sentient, very little is known about the welfare needs of most farmed fish.³⁻⁵ Specific welfare standards and Animal Health Codes have been developed for some intensively farmed species such as the Atlantic salmon (Salmo salar)⁶⁻⁸ and the rainbow trout (Oncorhynchus mykiss),⁹¹⁰ but only generic guidelines exist for most farmed fish.¹¹⁻¹² For most farmed fish, knowledge on their welfare needs typically lags behind advances on production.

The Atlantic lumpfish (Cyclopterus lumpus L.) is a case in point. Lumpfish are a novel species to marine aquaculture whose farming has increased exponentially over the last 10 years and represents one of the fastest-growing aquaculture sectors in Europe.¹³ Unlike most farmed fish, lumpfish are not farmed for human consumption, but are used (along with some temperate wrasse) as cleaner fish to control parasitic sea lice (Lepeophtheirus salmonis).¹³⁻¹⁵ Sea lice are one of the major threats to salmon farming¹⁶ as it causes huge economic losses¹⁷ and compromises the welfare of wild and farmed salmon alike,¹⁸⁻¹⁹ tarnishing public’s perception of salmon farming.²⁰⁻²¹ Sea lice have developed resistance to most anti-parasitic chemical compounds,²² prompting an interest in the use of cleaner fish as a ‘green’ alternative to chemotherapeutics.²³ However, lumpfish survival in salmon net-pens is often poor, and there is increasing concern regarding their welfare.²³⁻²⁴ Studies have shown that lumpfish mortalities can reach 27% or more shortly after deployment in salmon net-pens²⁵⁻³¹ although the reasons for this are not clear.²⁰ Emaciation, stress, diseases and poor knowledge of the specific nutritional and habitat requirements have been flagged as some of the main welfare challenges for the species.³²⁻³⁴ Many of these problems stem from the fact that salmon farming has evolved to suit the needs of Atlantic salmon, not those of cleaner fish. For example, exposed sites that may be appropriate for salmon may have currents that are too strong for lumpfish.³⁵

The soundness of using cleaner fish to control sea lice is also being questioned on efficacy grounds,³⁶⁻³⁷ as delousing efficacy varies enormously among studies, from 9% to 97% in lumpfish.³⁷⁻³⁸ Yet, until more powerful preventive methods are developed, ie vaccines, artificial selection,³⁹ the judicious use of cleaner fish will continue to offer the industry an attractive and cost-effective means of controlling sea lice,³⁸⁻⁴⁰ but only if cleaner fish welfare is not compromised.¹³

Most Europeans (79%) want better welfare in the salmon farming industry⁴¹ and are willing to pay more for the salmon they eat,⁴² but it is essential that solving one problem for salmon farming (sea lice control) does not create a welfare problem for lumpfish. The cost of poor fish welfare in salmon farms has recently been estimated at $4.6 billion,⁴³ but sacrificing one species for another species’ welfare cannot be the way forward.⁴⁴

The welfare of lumpfish cannot be improved without welfare indicators. These need to be practical and easy to use, or they will not be used by fish farmers.⁴⁵⁻⁴⁶ Operational welfare indicators (OWIs) are designed to address this practical need (as opposed to laboratory-based indicators) and should provide an objective assessment of the welfare of the fish that can easily be scored at the farm,⁴⁷ can be used to benchmark farming operations and can serve to identify areas in need of improvement and develop best
practices, as done for Atlantic salmon,6 ballan wrasse48 and rainbow trout.9 However, assessing the welfare of lumpfish poses particular challenges, caused mostly by the lack of agreed guidelines. Some welfare indicators have recently been developed for lumpfish,27,49,50 but only a few have been validated and can easily be used by fish farmers.49,51

The benefits of having agreed welfare standards and guidance for improving the welfare of lumpfish are multiple. For example, operational welfare indicators are now stipulated in quality assurance schemes, without which certification cannot be made. Achieving high welfare makes economic sense, as fish with deformities and low welfare do not survive as well.51,52 Reducing the incidence of lumpfish with deformed suckers, and skeletal deformities,53 may improve delousing efficacy and consequently reduce the number of cleaner fish required by industry. Higher welfare should also result in less stressed lumpfish which might reduce the risk of pathogen cross-transmission from one species to the other.13,54 Ultimately, improving the welfare of lumpfish will help increase the sustainability, social acceptance and reputation of the salmon farming industry, but only if agreed, evidenced-based welfare standards are used to demonstrate improvements.

2 | AIMS

The aims of this study were threefold: (1) to identify the main challenges and knowledge gaps surrounding lumpfish welfare, (2) to offer potential solutions and identify opportunities for improving lumpfish welfare and (3) to assess the degree of consensus among different stakeholders on the value of different welfare metrics.

3 | USING THE DELPHI APPROACH TO IDENTIFY CHALLENGES AND PRIORITISE SOLUTIONS

We hosted a workshop dedicated to Lumpfish Welfare (Swansea, 14 May 2019- https://www.welfareaquaculture.com/1st-symposium) with the participation of 53 experts from three main stakeholder groups: fish farming, academia and animal welfare. We employed a Delphi approach to identify the main challenges, opportunities and potential solutions for improving lumpfish welfare and for making their use in salmon farming more sustainable. The Delphi approach seeks to harness the value of expert judgment through consultation rounds and is based on the tenet that the views of a group are more authoritative (and thus more likely to gain support and become adopted) than the views of individuals. This approach is increasingly being used to prioritise knowledge needs in fields where opinions may differ among knowledge users, such as aquaculture55 and animal welfare.56 The classic Delphi approach is entirely anonymous, but we used a ‘modified Delphi approach’ that benefitted from group discussions, as in other applications to animal welfare.54-58 Consultation followed by open discussion does not guarantee consensus, or can be a substitute for research, but it can help identify what experts consider important and reduce the risk that key issues are not being missed.

A three-step process was implemented (Figure S1), similar to that described in other prioritisation assessments.55 In the first step, participants were divided into 10 pre-allocated tables consisting of 4-5 people representative of the three stakeholder groups, and a facilitator. Each participant was asked to write (in coloured notes and independently of each other) a list of the main knowledge gaps, opportunities and solutions for improving the welfare and sustainability of lumpfish. In the second step, each table was asked to find common answers and to reach a consensus on the three most common answers. In the third step, each table reported their answers to the whole group, using a colour coding system. The most popular answers were identified and compiled. Steps 2 to 3 were repeated for the three aspects pertinent to lumpfish welfare (knowledge gaps, main challenges and potential solutions), lasting 90 min in total.

We classified each challenge, solution and opportunity proposed by the expert group into broad semantic types (e.g. knowledge gap, husbandry, nutrition, health and disease, training, monitoring, etc.) and used their relative frequencies as measures of their relative importance. We then calculated the joint probability of occurrence for each challenge and solution identified by the focus group and used the circlize R Package59 to visualise the relation between the most important challenges and solutions via a flow (chord) diagram.

4 | PERCEIVED UTILITY OF DIFFERENT WELFARE INDICATORS

To assess the perceived utility of different welfare indicators for lumpfish (i.e. their usefulness under farm conditions), a close-ended questionnaire was given to participants (Table S1) who were asked to (1) identify their background, (2) rank the utility of 5 behavioural and 12 physical welfare indicators for lumpfish and (3) specify which of the indicators (if any) were used at their facilities to assess the welfare of lumpfish. Participants were given five minutes to complete the form independently of each other. To estimate the perceived utility of each welfare indicator, we converted the responses to a 4-point Likert scale and used the clmm2 cumulative link mixed model in the ordinal R package60 to assess the degree of consensus among participants. We used the psych package61 to calculate Cronbach’s alpha as an indicator of the reliability of each welfare indicator separately, as well as globally.

5 | DIFFERENCES IN THE NICHE OF LUMPFISH AND ATLANTIC SALMON

Lumpfish are deployed with Atlantic salmon but conditions that may be suitable for one species may not be adequate for the other. We, therefore, compiled data on 23 traits that define the habitat
TABLE 1 Challenges (C), solutions (S) and opportunities (O) for improving the sustainability and welfare of farmed lumpfish identified by a focus group, weighted by their relative frequency (LF = lumpfish).

Challenges (n = 40)	Weight
Knowledge gaps—0.35	
C1. Unusual species, general biology	0.32
C2. Behaviour	0.23
C3. Extent and reasons for mortality	0.16
C4. Thermal preferences and maximum currents	0.13
C5. Welfare needs	0.10
C6. Genetics	0.06
Husbandry and Logistics—0.17	
C7. Grading	0.13
C8. Shelters and enrichment	0.13
C9. Breeding programme and domestication	0.13
C10. Separating LF from salmon and removal prior to cage treatment	0.13
C11. Appropriate light levels	0.07
C12. Anaesthetic	0.07
C13. Water quality (RAS, microbial loads)	0.07
C14. Better facilities for LF	0.07
C15. Working on remote sites	0.07
C16. Balance between welfare and efficiency/output	0.07
C17. Focus on salmon needs—little on LF needs	0.07
Nutrition—0.12	
C18. Poorly known nutrition requirements (including weaning on Artemia)	0.45
C19. Criteria for supplemental feeding in cages	0.36
C20. Lack of useful probiotics	0.09
C21. Limited knowledge on diet in sea cages	0.09
Health and Disease Management—0.12	
C22. Uncertainty on vaccine efficiency or need	0.27
C23. Transport stress	0.18
C24. High incidence of deformities	0.09
C25. Handling stress	0.09
C26. Lack of information on diseases and transmission	0.09
C27. Unknown stress basal values	0.09
C28. Disease screening for live broodstock	0.09
C29. Bacterial infectious diseases	0.09
Training and Staffing—0.08	
C30. Lack of SOPS and guidance for sampling	0.57
C31. Training, staff skills and dedication	0.43
Monitoring and Screening—0.07	
C32. Difficult to collect data, particularly in sea cages (morts., sea lice)	0.83
C33. Assessing body condition (Fulton’s condition factor is unreliable)	0.17
Environment—0.06	
C34. Impact of noise pollution	0.20

(Continues)
niche and life history of the two species and calculated the specific absolute difference for each trait (%), on the assumption that the more different two cohabiting species are the more likely it is that conditions may become unfavourable for one of them. Information was compiled from FishBase62 and the primary literature. We then examined the main differentiating traits of lumpfish, the potential welfare implications and the consequences for commercial production.
6 | WELFARE GAP ANALYSIS

6.1 | Challenges

The 53 participants in the welfare workshop originated from four distinct backgrounds: animal welfare \((n = 20; 38\%)\), fish farming \((n = 16; 30\%)\), academia \((n = 14; 26\%)\) and other \((n = 3; 6\%)\). They identified 40 different challenges in relation to lumpfish welfare, spanning knowledge gaps, husbandry and logistics, nutrition, health and disease management, training and staffing, monitoring and screening, environment, knowledge exchange and communication, and economics (Table 1).

The most important knowledge gaps were thought to be in relation to general biology, motivated by its unusual morphology and clinging habits, the little information available on many aspects of its behavior, the extent and causes of mortality, the preferences of the species in relation to temperature and current velocity, as well as its genetic structure and specific welfare needs. In terms of husbandry and logistics, participants highlighted problems surrounding the optimal timing and frequency of grading, the development of a breeding program and the practical difficulties of separating lumpfish from salmon prior to cage treatment. Other, less pervasive challenges related to optimal light levels which are poorly known in lumpfish, the choice and use of anaesthetics, poor water quality and permissible bacteria loads, lack of specific facilities for the rearing of the species, and the logistic constraints caused by working at remote sites. The challenge of balancing the welfare needs of lumpfish with efficiency in salmon production and a tendency to prioritise the needs of Atlantic salmon over those of lumpfish were also flagged as particular issues.

The main challenges related to the nutrition of lumpfish were thought to be caused by limited knowledge on their nutritional requirements at all life stages, from uncertainties on the weaning of Artemia to the specific dietary needs during the deployment stage, lack of agreed criteria for supplemental feeding in cages (including specific diets for net-pens, feeding regime and mode of delivery) and limited availability of useful probiotics (but see).

The main problems related to health and disease management included vaccine efficacy and needs, uncertainty on basal cortisol stress values—which vary widely among studies and makes it difficult to properly manage stress during handling and transport, a
high incidence of sucker deformities in some egg batches, uncertainties on the incidence and transmission routes of infectious diseases, and disease screening of broodstock. Selective breeding using novel genomics approaches has improved disease resistance and adaptation to captivity in Atlantic salmon and other farmed fish, and the same approach can be developed for lumpfish.

Other challenges highlighted by the focus group included lack of standard operating procedures (SOPs) and guidance for collecting data, particularly in sea cages (including data on mortalities and delousing efficacy), the need for staff training and guidance on monitoring and assessing body condition and optimal weight as condition factor is unreliable for this species owing to its round shape. Lumpfish are often injured or stressed unnecessarily when salmon are treated and harvested at sea, and these, along with their humane slaughter, are the aspects that would also benefit from having clear SOPs.

The impacts of noise pollution, potential water quality issues due to high microbial loads, and the risk posed by escapees through genetic introgression were flagged as environmental issues, along with biosecurity risks derived from using wild broodstock. Poor communication between hatchery plants and sea farms and the high costs of producing and caring for lumpfish were also highlighted as minor challenges in relation to economics. Accurate figures on the cost of cleaner fish in relation to salmon production costs are not readily available, but a recent study of 11 sea-lice control measures estimated that cleaner fish had an efficacy of 0.72 (range 0.60–0.90) and were the third most cost-effective control measure (£0.14 per fish per unit of effectiveness), after in-feed medication and use of skirts as physical barriers (£0.10 cost-effectiveness).

6.2 | Solutions

The focus group identified 40 potential solutions to the challenges highlighted above (Table 1). Most of the solutions proposed by the expert group referred to husbandry and logistics, training and staffing, knowledge exchange and communication, and research and development. Other, less popular, solutions addressed challenges in relation to monitoring and screening, nutrition and economics.

The main solutions in relation to husbandry and logistics include acclimatising lumpfish to live in net-pens before cage deployment (including feeding on sea lice), closing the breeding cycle of the species in captivity, using tanks and facilities specifically suited for the needs of this species, using clinging devices to retrieve lumpfish from cages without damaging them, using surviving lumpfish as broodstock, setting a sperm bank and collecting sperm from live males non-destructively, lowering rearing densities, selectively breeding fish for high delousing efficacy and robustness.
growing fish to a larger size before deployment to reduce escapes and increase salmon-cleaner fish interactions. Other solutions included using tank enrichment and freshwater baths for specific diseases, using sterile fish to reduce the impact of escapes, deploying lumpfish with other cleaner fish, determining habitat preferences from choice tests, and developing disease challenges to advance the production of vaccines.

In terms of training, experts highlighted the benefits (and need for) specific guidelines and welfare indicators for lumpfish, particularly in relation to cage deployment and transport. Greater effort in marketing, in raising public awareness, extending knowledge and forging new collaborations, as well as better internal communication between hatcheries and sea farms, were noted under knowledge exchange and communication. The main areas of research and development that the group recommended should be targeted included the consequence of variation in morphology, vaccine development, nutrition, impacts on wild stocks, sucker deformities and reuse of farmed lumpfish at the end of the salmon production cycle. Better and more frequent monitoring was seen as beneficial for improving welfare, particularly in relation to disease, broodstock management and delousing efficacy. To address nutritional deficits, improvement in feeding management and use of feed blocks were recommended. Perhaps surprisingly,
TABLE 2 Habitat and niche preferences of lumpfish.

Trait	Optimal or Reference value	Reference
Water quality		
Dissolved oxygen (%)	>80% (>7.3 mg/L @ 10°C) 110% at high temp or density 110 = 115% up to 150 dph 100% (9.2 mg/L @ 10°C)	84,85,106,115
Hypoxia tolerance	27% saturation @ 9°C (same as A. salmon)	115
Water temperature (°C)	7–16; 2–17 for egg development	63,68,69,103,104
Critical thermal max (°C)	22	116
Onset of mortality (°C)	18	70
pH	7.3 – 8.5	34,63
Free Ammonia (NH₃, mg/L)	<0.005 (<0.5 TAN @ pH7.8, 10°C, 35ppt) <0.015 (<1.6 TAN @ pH7.8, 10°C, 30ppt) <0.005 (<0.5 TAN @ pH7.9, 9°C, 35ppt)	34,106,117
Nitrite (NO₂, mg/L)	<0.2; <0.125; <1.00	
Nitrate (NO₃, mg/L)	<50; <100	
Salinity (ppt)	30–35	63,104
Osmolarity (mOsm/kg)	350–360	83
Magnesium (mmol/L)	<1.5	83
Chloride (mmol/L)	<150	
Habitat preferences		
Substrate	Adults: Benthopelagic, rocky bottoms	118-120
Juveniles: Floating seaweed		
Water depth	50–150 m	102,121
Flow (L/min)	20	70,102-104
Water velocity (cm/s)	80 Flow through 100–400%/h not exceeding 150% when <3 g	27,74
Light intensity	Low intensity; 420 nm (blue) (eggs/juveniles)	
Husbandry		
Photoperiod (hrs. L:D)	24:0, 18:6, 12:12	104,105
Fish density (kg/m³)	<40, <60	27,106
Feeding ration (% BW)	5% larvae, 3–4% @ 10 g, 1.5–2% @ 50 g; 10% @ <0.5 g, 3–4% @ 0.5–10 g	104,106
SGR (%/day)	1.5–3.5	103
Tank cover	Not needed; Light shut out during egg incubation	104,106
Nutritional requirements	Larvae: 56.3–58.3% protein 12.9–15.9% fat, 1.6–2.6 fibre Ongrowing: 50–54.3% protein 15.1–20.1% fat, 6–9% starch Vit. C 372–1000 mg/kg, astaxanthin 2 mg/kg	13,73,80,122-124
Shelter type	Smooth, flat surfaces to attach Kelp like structures	24,106,125
Grading	Yes, with several benefits: (1) Reduces fin damage (2) Disrupts hierarchies (3) Maximises growth	104,106,126
Weaning	From week 3 (28 dph) to week 8 Artemia from week 1 Fine dry feed from week 4 0–30 dph enriched Artemia 7–14 dph marine microdiets	13,24,106
Tank colour	Dark; Aversion to white or bright colours	104,106

Abbreviation: dph, days post-hatch.
economics was not ranked high, and more funding came last in the list of potential solutions.

6.3 Opportunities

Participants identified 43 opportunities to improve the welfare of lumpfish and to make their use as cleaner fish more sustainable, mostly through research and development and through technological improvements (Table 1). The main opportunities lay in reusing lumpfish at the end of the salmon cycle, although this may be limited by size constraints and concerns about transmitting diseases from one salmon cycle to the next, closing the breeding cycle of the species in captivity and optimising rearing conditions. Other opportunities lay in increasing survival, welfare and delousing efficacy through selective breeding, the development of improved diets and food delivery systems, as well as better disease management strategies. In this sense, recent advances in non-destructive tissue sampling through laparoscopy and real-time PCR assays for rapid disease screening should improve disease management.

Opportunities were also identified to improve knowledge exchange and communication (e.g., enhancing networking between industry and academia, developing welfare certification schemes and improving marketing and openness), in husbandry and logistics (e.g., improving adaptation to cages), in nutrition (e.g., better diets and food delivery systems), as well as in monitoring and screening (e.g., particularly of mortalities in sea cages), training (e.g., improved recruitment) and economics (e.g., funding for innovative applied research).

A flow analysis (Figure 1) identified that the most useful solutions to address the top knowledge gaps and challenges identified by the group were selective breeding and investment in R&D, better monitoring and specialised training, collaborations to improve the

TABLE 3 Main differentiating traits of lumpfish, welfare implications and potential consequences for commercial production

Trait/characteristic	Welfare implications	Potential consequences for production
Production derived from wild caught broodstock	Wild fish are more prone to stress in captivity	Higher risk of stress-related conditions
Used as cleaner fish to graze on sea lice	Cannot rely on sea lice alone as source of food	Supplemental feeding in salmon net-pens is required
Nutritional requirements poorly known	Risk of malnutrition or lack of essential dietary nutrients	Specialised diets needed
Lack swim bladder	May have difficulty maintaining buoyancy and adjusting position in water column	Stratification may confine fish to some parts of the net-pens
Sit and wait visual feeders	Require eyes in good condition for feeding	May not be able to feed at low light levels
Testicles deep inside body cavity	Difficult to strip males non-destructively	Risk of wastage of males, males only used once in captive breeding
Lacks scales	Skin is particularly sensitive to infection	Careful handling required
Weak swimmers	Prone to suffer from exhaustion	Need shelters and protection from strong currents
Pronounced round shape	Limited swimming ability	More difficult to grade
Clumping behaviour	High level of intra-specific contacts Aggression can develop	Difficult to count and establish suitable densities
Low cortisol response	Reduced ability to deal with acute stress	Difficult to establish stress levels
High fecundity	Deformities common in captivity, high larval mortality	Need to screen out maladapted phenotypes
Lack Mauther neurons	Low stress response Long startle response latency	Difficult to establish stress levels Need to provide shelters
Suction disk	Deformities common and may affect ability to cling and rest	Rearing tanks need structures to cling
Prefer cold temperatures	Risk of thermal stress during the summer	Chillers needed during hatchery production Net-pens need to avoid hotspots
Aggressive behaviour	May increase stress levels, fin nipping and eye damage	Tank enrichment needed to provide shelters and increase visual isolation
Cannibalism common in juveniles (1–5 g)	May increase stress levels	Frequent grading necessary
skill sets of fish farmers, developing specific welfare guidelines and acclimatising lumpfish before deployment in the sea.

7 | UTILITY AND USE OF WELFARE INDICATORS FOR FARmed LUMPfish

Participants ranked the utility of the 5 behavioural and 12 physical welfare indicators for lumpfish differently (Figure 2; Likelihood-Ratio Test (LRT) = 81.97, df = 16, p < 0.001). Skin damage and fin erosion were considered to be the most useful, perhaps because these are more time consuming and cannot be easily scored on site, although new developments in sensor and tag technology may make it easier to monitor behaviour under farm conditions. 99,100 The perceived utility was independent of participant background (LRT = 2.88, df = 2, p = 0.236), and consensus among participants was high, consensus being 89% for behavioural indicators, 87% for physical indicators and 68% overall (Figure 3). This was corroborated by a reliability analysis, which yielded Cronbach’s alpha estimates >0.75 for all welfare indicators (Figure 4), and an overall Cronbach’s alpha of 0.79 (95 CI = 0.69–0.92) indicating good reliability.

Not all welfare indicators were used to the same extent by fish farmers (Figure 5; χ² = 72.74, df = 16, p < 0.001). Fin erosion, loss of appetite, deformities of the suction cup, increases in mortality and lesions in the skin and eyes were used frequently (>75%), while erratic swimming, body and eye darkening and blood parameters were not commonly used (<50%).

8 | SPECIES PROFILING: HOW UNIQUE ARE LUMPfish?

A search of the literature was undertaken to bridge some of the knowledge gaps highlighted by the focus group (Table 2) and to explore the potential welfare implications and consequences for production (Table 3). This revealed that while some traits, like water quality requirements, are generally well known and do not appear to be markedly different from those of many other farmed marine fish, others are very uncertain. For example, adult lumpfish are naturally found in deeper waters than most farmed fish but the implications of this for farming are largely unknown.

The species has a relatively low swimming ability 70,101 and has difficulty withstanding fast currents, 102-104 and it is, therefore, likely
to struggle to both swim and cling to surfaces in salmon net-pens which are often situated in areas with strong currents.35 Lumpfish prefer low-intensity blue lighting27,74 and cling to dark structures,104 but there is very little practical guidance that can be used to inform best practices. For example, while some producers cover eggs during incubation, most leave the rearing tanks open during the rest of the cycle. Likewise, some farmers use a 12:12 photoperiod regime, while others use continuous lighting.104,105

Gaps in knowledge relevant to welfare are also evident with regards to optimal densities, tank flows, nutritional requirements and recommended feeding rations. Some studies suggest that densities of <60 kg/m3 or even <40 kg/m3 should be maintained,27,106 but other studies indicate that juveniles can survive well at densities of up to 85 kg/m3 in small (150 L) experimental tanks.107 However, as lumpfish prefer to cling during parts of their life cycle, biomass per surface area is perhaps a more informative metric for this species than biomass per unit volume. Guidance on timing and frequency of grading is conspicuously absent, despite the fact that cannibalism appears widespread during the larval stages.106

Similarly, there is uncertainty about optimal feeding rations. Larvae (<0.5 g) are being fed at 5–10\% body weight, 10 g juveniles at 3–4\% and juveniles just before deployment at 1.5–2\%.13,104 This level of feeding should result in specific growth rates of 1.5–3.5\% per day in hatcheries.103 However, traditional ways to detect underweight fish in fish farming, like the use of Fulton’s condition, do not work well in lumpfish owing to their round shape and different growth stanzas, and there is little information on feed conversion ratios. It is suspected that current feeding rations may be too high and lead to wastage. Overfeeding has been associated with a higher incidence of cataracts in lumpfish,13,108 so more precise information on appropriate feeding levels is obviously needed. Feeding in lumpfish depends on prey density and metabolic rate109, but how this translates into guidance on feeding management merits further investigation.

Ensuring lumpfish are fed adequately is particularly important in sea cages, as the species is at risk of malnutrition51,110 and cannot survive grazing solely on sea lice. The lack of agreed standards for feeding lumpfish in sea cages was highlighted as one of the main knowledge gaps and is made worse by the difficulty of obtaining accurate data on the number of lumpfish actually present in sea cages. In this sense, advances in tracking methods and in fish image recognition may help to obtain more accurate estimates of fish biomass, both in hatchery tanks and in sea cages.100,111

9 | DIFFERENCES BETWEEN ATLANTIC SALMON AND COHABITING LUMPFISH

One of the problems highlighted by the focus group was the tendency by farmers to prioritise the welfare needs of Atlantic salmon over those of lumpfish. We, therefore, asked whether conditions that favour salmon might also benefit lumpfish. Although uncertainties exist, our comparative analysis reveals profound differences between the two species that will likely have welfare implications (Table 4). Compared with salmon, lumpfish have a lower cortisol response and metabolic rate, are solitary, have a weaker swimming ability and a reactive response to threat; they also prefer colder

 FIGURE 6 Species differences in habitat preferences and selected life-history traits between lumpfish and Atlantic salmon (% difference in log\textsubscript{10} scale)
and deeper waters, are much less domesticated, live longer, feed lower in the food web, grow more slowly, and are generally closer to the end of the r-K life-history continuum (sensu Pianka112) than salmon, that is they have a life strategy characterised by high fecundity, rapid development, broad niche and density-independent mortality, better suited to living in highly variable and unpredictable habitats. Some of these differences vary by over three orders of magnitude (Figure 6). This means that a common ‘one-size-fits-all’ approach to ensuring high welfare in salmon net-pens will not work for lumpfish, particularly in relation to habitat preferences (water current, depth), feeding and the response to stress. Yet, we trust that the approach shown in our study can be used to prioritise the welfare needs of other cleaner fish species and identify workable solutions.

10 | 16 PRACTICAL WAYS TO IMPROVE THE WELFARE OF LUMPFISH

Based on the advice of the expert group, and our comparative analysis, we suggest the following practical ways of improving the welfare of lumpfish used as cleaner fish to control sea lice in salmon farming:

1. Adopt welfare guidelines specifically developed for this species
 49,51,67,113
2. Train staff in their use and implementation
3. Monitor fish often and look for early signs of poor welfare
4. Watch for underweight fish and adjust feeding rations, feed frequency and feed delivery accordingly
5. Monitor mortality rates regularly and investigate whether mortality exceeds the norm (defined by the median and the 10th-90th percentile historical benchmark 114
6. Keep densities within optimal values for the species, typically <60 kg/m³
7. Screen-out lumpfish with deformed suckers at the earliest opportunity
8. Reduce potential disturbance and handling as much as possible
9. Provide shelters and cover in tanks
10. Check water quality regularly
11. Grade frequently, as adequate for the size and condition of the fish
12. Vaccinate against infectious diseases
13. Avoid areas with strong currents or outside the optimal thermal niche
14. Avoid prolonged transport whenever possible and check water quality during transport
15. Be prepared to cull fish with suboptimal welfare under veterinary advice
16. Slaughter lumpfish humanely

Many of the recommendations listed above will also apply to cleaner wrasse used to control sea lice in salmon farming, but it must be remembered that cleaner fish differ in their behaviour and habitat requirements,45 and likely also in their welfare needs. The approach shown in our study can be used to prioritise such needs and propose workable solutions.

ACKNOWLEDGEMENTS

We wish to thank all the speakers and participants in the First Symposium on Welfare in Aquaculture and the Welfare of Lumpfish Workshop. The financial support of the ERDF SMARTAQUA Operation, INTERREG Atlantic Area Access2sea, the Animal Welfare Research Network, BBESRC ARCH-UK, BioMar, Swansea University Animal Welfare and Ethical Review Body (AWERB), The Scottish Salmon Company and Ocean Matters is gratefully acknowledged.

ORCID
Carlos García de Leaniz https://orcid.org/0000-0003-1650-2729
Carolina Gutiérrez Rabadan https://orcid.org/0000-0002-5517-9808
Sara I. Barrento https://orcid.org/0000-0003-2986-5422
Rebecca Stringwell https://orcid.org/0000-0002-3663-6487
Ben A. Whittaker https://orcid.org/0000-0001-9316-6285
Jessica F. Minett https://orcid.org/0000-0001-6449-0801
Sofía Consuegra https://orcid.org/0000-0003-4403-2509
Sonia Rey Planellas https://orcid.org/0000-0002-3406-3291
Amanda Deakin https://orcid.org/0000-0001-7934-6984
Guillermo Bardera https://orcid.org/0000-0003-3559-4075
Maria F. Castanheira https://orcid.org/0000-0001-5901-4077
Maria Scolamacchia https://orcid.org/0000-0002-2117-9535
Nancy Clarke https://orcid.org/0000-0002-6259-011X
Michalis Pavlidis https://orcid.org/0000-0001-9135-2340

REFERENCES

1. Teletchea F, Fontaine P. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish. 2014;15(2):181-195. https://doi.org/10.1111/faf.12006.
2. FAO. The State of World Fisheries and Aquaculture, vol. 2020:224. Rome, Italy: FAO; 2020.
3. Branson EJ, ed. Fish Welfare. Blackwell Publishing Ltd; 2008.
4. Kristiansen TS, Fernö A, Pavlidis MA, Van de Vis H, eds. The Welfare of Fish. Springer; 2020.
5. Kiessling A, van de Vis H, Flik G, Mackenzie S. Welfare of farmed Atlantic salmon: tools for assessing fish welfare. Nofima; 2014;6(3):162-179. https://doi.org/10.1111/raq.12039.
6. Noble C, Gismervik K, Iversen MH, et al, Welfare Indicators for farmed Atlantic salmon: tools for assessing fish welfare. Nofima; 2018. FHF project 901157 «FISHWELL: Kunnskappssammenstilling om fiskevelferd for laks og regnbueørret i oppdrett»
7. RSPCA. RSPCA Standards for Farmed Atlantic Salmon. 2018:89.
8. Pettersen JM, Bracke MBM, Midtlyng PJ, et al. Salmon welfare index model 2.0: an extended model for overall welfare assessment of caged Atlantic salmon, based on a review of selected welfare indicators and intended for fish health professionals. Reviews in Aquaculture. 2014;6(3):162-179. https://doi.org/10.1111/raq.12039.
9. Noble C, Gismervik K, Iversen MH, et al. Welfare Indicators for farmed rainbow trout: tools for assessing fish welfare. Nofima; 2020. FHF project 901157 «FISHWELL: Kunnskappssammenstilling om fiskevelferd for laks og regnbueørret i oppdrett»
46. North BP, Ellis T, Knowles T, Bron J, Turnbull JF. The Use of Stakeholder Focus Groups to Identify Indicators for the On-Farm Assessment of Trout Welfare. Oxford: Fish welfare Blackwell; 2008:243-267.

47. Folkedal O, Pettersen JM, Brække MBM, et al. On-farm evaluation of the Salmon Welfare Index Model (SWIM 1.0): theoretical and practical considerations. Anim Welf. 2016;25(1):135-149. https://doi.org/10.7120/09627286.25.1.135.

48. Noble C, Iversen MH, Lein I, et al. An introduction to Operational and Laboratory based Welfare Indicators for ballan wrasse (Labrus bergylta); 2019:43. RENSVEL OWI FACT SHEET SERIES.

49. Imsland AKD, Reynolds P, Hangstad TA, et al. Quantification of grazing efficacy, growth and health score of different lumpfish (Cyclopterus lumpus L.) families: Possible size and gender effects. Aquaculture. 2021;530. https://doi.org/10.1016/j.aquaculture.2020.735925.

50. Eliasen K, Patursson EJ, McAdam BJ, et al. Liver colour scoring index, carotenoids and lipid content assessment as a proxy for lumpfish (Cyclopterus lumpus L.) health and welfare condition. Sci Rep. 2020;10(1):1-12.

51. Gutierrez Rabadan C, Spreadbury C, Consuegra S, Garcia de Leaniz C. Development, validation and testing of an Operational Welfare Score Index for farmed lumpfish Cyclopterus lumpus L. Aquaculture. 2021;531:735777. https://doi.org/10.1016/j.aquaculture.2020.735777.

52. Hustad A. Effects of crude oil contaminated sediment on the early life stages of lump sucker (Cyclopterus lumpus L.). University of Tromsø; 2008.

53. Fjelldal PG, Madaro A, Hvas M, Stien LH, Oppedal F, Fraser TW. Skeletal deformities in wild and farmed cleaner fish species used in Atlantic salmon Salmo salar aquaculture. J Fish Biol. 2021;98(4):1049-1058. https://doi.org/10.1111/jfb.14337.

54. Murray AG. A model of the process of spillover and adaption leading to potential emergence of disease in salmon held with cleaner fish used to control lice. Aquaculture. 2017;473:283-290. https://doi.org/10.1016/j.aquaculture.2017.02.028.

55. Jones AC, Mead A, Kaiser MJ, et al. Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish Fish. 2015;16(4):668-683. https://doi.org/10.1111/faf.12086.

56. Rioja-Lang F, Bacon H, Connor M, Dwyer CM. Prioritisation of animal welfare issues in the UK using expert consensus. Vet Rec. 2020;187(12):490-490. https://doi.org/10.1136/vetrec-2019-105594.

57. Rioja-Lang F, Bacon H, Connor M, Dwyer CM. Rabbit welfare: determining priority welfare issues for pet rabbits using a modified Delphi method. Vet Rec Open. 2019;6(1):e000363.

58. Rioja-Lang FC, Connor M, Bacon HJ, Lawrence AB, Dwyer CM. Prioritization of farm animal welfare issues using expert consensus. Front Vet Sci. 2020;6:495.

59. Wu Z, Gu L, Eills R, Schlesner M, Brors B. circize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811-2812.

60. “ordinal—Regression Models for Ordinal Data.” R package Version 2019.12-10. https://CRAN.R-project.org/package=ordinal.

61. Office for Research Development and Education. Cronbach Alpha - Free Statistics Software (Calculator) Version 1.2.1. Free Statistics Software; 2021. https://www.wessa.net/fstat/.

62. Froese R, Pauly D. FishBase World Wide Web electronic publication; 2019; www.fishbase.org

63. Davenport J. Synopsis of biological data on the lump sucker, Cyclopterus lumpus (Linnaeus, 1758). Food & Agriculture Org; 1985.

64. Leclercq E, Zerafa B, Brooker AJ, Davie A, Migaud H. Application of passive-acoustic telemetry to explore the behaviour of ballan wrasse (Labrus bergylta) and lumpfish (Cyclopterus lumpus) in commercial Scottish salmon sea-pens. Aquaculture. 2018;495:1-12. https://doi.org/10.1016/j.aquaculture.2018.05.024.

65. Imsland AK, Reynolds P, Eliassen G, et al. Investigation of behavioural interactions between lumpfish (Cyclopterus lumpus) and goldsinny wrasse (Ctenolabrus rupestris) under controlled conditions. Aquac Int. 2016;24(5):1509-1521. https://doi.org/10.1007/s10499-016-0008-y.

66. Imsland AK, Reynolds P, Eliassen G, et al. Notes on the behaviour of lumpfish in sea pens with and without Atlantic salmon present. J Ethol. 2014;32(2):117-122. https://doi.org/10.1007/s10164-014-0397-1.

67. Imsland AKD, Reynolds P, Lorentzen M, Eilertsen RA, Micallef G, Tvenning R. Improving survival and health of lumpfish (Cyclopterus lumpus L.) by the use of feed blocks and operational welfare indicators (OWIs) in commercial Atlantic salmon cages. Aquaculture. 2020;527. https://doi.org/10.1016/j.aquaculture.2020.735476.

68. Pountney SM, Lein I, Migaud H, Davie A. High temperature is detrimental to captive lumpfish (Cyclopterus lumpus, L) reproductive performance. Aquaculture. 2020;522:75121. 75121.

69. Mortensen A, Johansen RB, Hansen ØJ, Puvanendran V. Temperature preference of juvenile lumpfish (Cyclopterus lumpus) originating from the southern and northern parts of Norway. J Therm Biol. 2020;89: 102562.

70. Hvas M, Folkedal O, Imsland A, Oppedal F. Metabolic rates, swimming capabilities, thermal niche and stress response of the lumpfish, Cyclopterus lumpus. Biol Open. 2018;7(9). https://doi.org/10.1242/bio.036079.

71. Whittaker BA, Consuegra S, Garcia de Leaniz C. Genetic and phenotypic differentiation of lumpfish (Cyclopterus lumpus) across the North Atlantic: implications for conservation and aquaculture. PeerJ. 2018;6:e5974. https://doi.org/10.7717/peerj.5974.

72. Maduna SN, Vivian-Smith A, Jonsdottir ODB, et al. Genome- transcriptome-derived microsatellite loci in lumpfish Cyclopterus lumpus: molecular tools for aquaculture, conservation and fisheries management. Sci Rep. 2020;10(1):559. https://doi.org/10.1038/s41598-019-57071-w.

73. Johannesen A, Joensen NE, Magnussen E. Shelters can negatively affect growth and welfare in lumpfish if feed is delivered continuously. PeerJ. 2018;6:e4837. https://doi.org/10.7717/peerj.4837.

74. Skiftesvik AB, Bjelland RM, Durif C, et al. Program rensefisk: Kunstig lys og rensefisk. Rapport fra havforskningen. Vol. 16/2017; 73. Tvenning R. Improving survival and health of lumpfish (Cyclopterus lumpus) in RAS with distinct water treatments: Effects on fish survival, growth, gill health and microbial communities in rearing water and biofilm. Aquaculture. 2020;522. https://doi.org/10.1016/j.aquaculture.2020.735097.

75. Roalkvam I, Dronen K, Dahle H, Wergeland HI. Microbial communities in a flow-through fish farm for lumpfish (Cyclopterus lumpus L.) during healthy rearing conditions. Front Microbiol. 2019;10:1594. https://doi.org/10.3389/fmicb.2019.01594.

76. Rian ST. Start-feeding of lumpfish (Cyclopterus lumpus L.) larvae with Artemia and copepods, focusing on growth effects, survival, live prey selection and larval robustness. Norwegian University of Science and Technology; 2019.

77. Willora FP, Nadanasabes N, Knutsen HR, Liu C, Sørensen M, Hagen Ø. Growth performance, fast muscle development and chemical composition of juvenile lumpfish (Cyclopterus lumpus) fed diets incorporating soy and pea protein concentrates. Aquaculture
80. Imsland AKD, Reynolds P, Jonassen TM, et al. Effects of three commercial diets on growth, cataract development and histopathology of lumpfish (Cyclopterus lumpus L.). Aquac Res. 2018;49(9):3131-3141. https://doi.org/10.1111/are.13776.

81. Klakegg Ø, Myhren S, Juell RA, Aase M, Salonius K, Serum H. Improved health and better survival of farmed lumpfish (Cyclopterus lumpus) after a probiotic bath with two probiotic strains of Alivibrio. Aquaculture. 2020;518:734810. https://doi.org/10.1016/j.aquaculture.2019.734810.

82. Erkinharju T, Lundberg MR, Isdal E, Hordvik I, Dalmo RA, Seternes T. Studies on the antibody response and side effects after intramuscular and intraperitoneal injection of Atlantic lumpfish (Cyclopterus lumpus L.) with different oil-based vaccines. J Fish Dis. 2017;40(12):1805-1813. https://doi.org/10.1111/jfd.12649.

83. Sällébrant JB. Chronic allostatic overload on the hypothalamic-pituitary-interrenal axis of lumpfish (Cyclopterus lumpus). Effect of size. Nord University; 2018.

84. Jørgensen EH, Haatuft A, Puvanendran V, Mortensen A. Effects of reduced water exchange rate and oxygen saturation on growth and stress indicators of juvenile lumpfish (Cyclopterus lumpus L.) in aquaculture. Aquaculture. 2017;474:26-33. https://doi.org/10.1016/j.aquaculture.2017.03.019.

85. Haatuft AC. Effects of reduced water oxygen saturation on growth and plasma cortisol levels in juvenile lumpfish (Cyclopterus lumpus L.) in aquaculture. UIT The Arctic University of Norway; 2015.

86. Naung M, Uren Webster TM, Lloyd R, García de Leaniz C, Consuegra S. A novel qPCR assay for the rapid detection and quantification of the lumpfish (Cyclopterus lumpus) microsporidian parasite Nucleospora cyclopteri. Aquaculture. 2021;531:735779. https://doi.org/10.1016/j.aquaculture.2021.735779.

87. Lloyd R, García de Leaniz C. The use of laparoscopy for non-destructive disease screening of broodstock Atlantic lumpfish, Cyclopterus lumpus Linnaeus. J Fish Dis. 2020;43(9):1107-1110. https://doi.org/10.1111/jfd.13218.

88. Herrmann B, Sistiaga M, Jorgensen T. Size-dependent escape risk of lumpfish (Cyclopterus lumpus) from salmonid farm nets. Mar Pollut Bull. 2021;162:111904. https://doi.org/10.1016/j.marpolbul.2020.111904.

89. Imsland AKD, Frogg N, Stefansson SO, Reynolds P. Improving sea lice grazing of lumpfish (Cyclopterus lumpus L.) by feeding live feeds prior to transfer to Atlantic salmon (Salmo salar L.) net-pens. Aquaculture. 2019;517:734224. https://doi.org/10.1016/j.aquaculture.2019.734224.

90. Opeifa BT. Large volume cryopreservation of lumpfish (Cyclopterus lumpus L.) sperm for commercial hatchery production. UIT The Arctic University of Norway; 2019.

91. Nordberg G, Johannesen A, Arge R. Cryopreservation of lumpfish Cyclopterus lumpus (Linnaeus, 1758) milt. PeerJ. 2015;3:e1003.

92. Whittaker BA, Consuegra S, García de Leaniz C. Personality profiling may help select better cleaner fish for sea-lice control in salmon farming. bioRxiv; 2021. https://doi.org/10.1101/2021.05.21.444956.

93. Whittaker BA, Maeda S, Boulding EG. Strike a pose: Does communication by a facultative cleaner fish, the cunner wrasse (Tautogolabrus adspersus), facilitate interaction with Atlantic salmon (Salmo salar)? Appl Anim Behav Sci. 2021;236:105275.

94. Treasurer J, Turnbull T. Tolerance of lumpfish, Cyclopterus lumpus, to freshwater bath treatment for amoebic gill disease, Neoparamoeba perurans, infection and efficacy of different treatment regimens. J World Aquaculture Soc. 2019;50(1):42-53.

95. Jonassen T, Remen M, Lekva A, Steinåsronn Å, Årnason T. Transport of lumpfish and wrasse. In: Treasurer J ed. Cleaner Fish Biology and Aquaculture Applications. 5M Publishing; 2018:319-335.

96. Imsland AKD, Reynolds P, Jonassen TM, et al. Comparison of diet composition, feeding, growth and health of lumpfish (Cyclopterus lumpus L.) fed either feed blocks or pelleted commercial feed. Aquac Res. 2019;50(7):1952-1963. https://doi.org/10.1111/are.14083.

97. Imsland AK, Reynolds P, Hangstad TA, et al. Feeding behaviour and growth of lumpfish (Cyclopterus lumpus L.) fed with feed blocks. Aquac Res. 2018;49(5):2006-2012. https://doi.org/10.1111/are.13657.

98. Murray AG, Peeler EJ. A framework for understanding the potential for emerging diseases in aquaculture. Prev Vet Med. 2005;67(2-3):223-235. https://doi.org/10.1016/j.prevetmed.2004.10.012.

99. Martins CI, Galhardo L, Noble C, et al. Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem. 2012;38(1):17-41. https://doi.org/10.1007/s10695-011-9518-8.

100. Macaulay G, Warren-Myers F, Barrett LT, Oppedal F, Fare M, Dempster T. Tag use to monitor fish behaviour in aquaculture: a review of benefits, problems and solutions. Reviews in Aquaculture. 2021;13(3):1565-1582. https://doi.org/10.1111/raq.12534.

101. Hvas M, Folkedal O, Oppedal F. Fish welfare in offshore salmon aquaculture. Rev Aquicult. 2021;13:836-852. https://doi.org/10.1111/raq.12501.

102. Powell A, Pooley C, Scolamacchia M, García de Leaniz C. Review of lumpfish biology. In: Treasurer JW ed. Cleaner Fish Biology and Aquaculture Applications. 5M Publishing Ltd; 2018:98-121; chap 6.

103. Nytrø AV, Vikingstad E, Foss A, et al. The effect of temperature and fish size on growth of juvenile lumpfish (Cyclopterus lumpus L.). Aquaculture. 2014;434:296-302. https://doi.org/10.1016/j.aquaculture.2014.07.028.

104. Jonassen TM, Lein I, Nytrø AV. Hatchery management of lumpfish. In: Treasurer JW ed. Cleaner Fish Biology and Aquaculture Applications. 5M Publishing Ltd.; 2018:114-136; chap 7.

105. Mortensen, A., et al., Photoperiod and temperature change on the gonadal development and maturation of lumpfish Cyclopterus lumpus L. Bull. Aquac. Assoc. Canada 2016. 2016-2: p. 59-64.

106. CSAR. Personal Observation. Centre for Sustainable Aquatic Research (CSAR); 2020.

107. Hosteland LTS. Lumpfish Happy in a Crowd, Study Reveals. FishFarmingExpert.com2017.

108. Imsland AK, Reynolds P, Jonassen TM, et al. Effects of different feeding frequencies on growth, cataract development and histopathology of lumpfish (Cyclopterus lumpus L.). Aquaculture. 2019;501:161-168.

109. Killen SS, Brown JA, Gamperl AK. The effect of prey density on foraging mode selection in juvenile lumpfish: balancing food intake with the metabolic cost of foraging. J Anim Ecol. 2007;76(4):814-825. https://doi.org/10.1111/j.1365-2656.2007.01237.x.

110. Elaisen K, Danielsen E, Johannesen Å, Joensen LL, Patursson EJ. The cleaning efficacy of lumpfish (Cyclopterus lumpus L.) in Faroese salmon (Salmo salar L.) farming pens in relation to lumpfish size and seasonality. Aquaculture. 2018;488:61-65. https://doi.org/10.1016/j.aquaculture.2018.01.026.

111. Li D, Wang Z, Wu S, Miao Z, Du L, Duan Y. Automatic recognition methods of fish feeding behavior in aquaculture: a review. Aquaculture. 2020;528:735508.

112. Pianka ER. On r- and K-selection. Am Nat. 1970;104(940):592-597.

113. Elaisen K, Patursson EJ, McAdam BJ, et al. Liver colour scoring index, carotenoids and lipid content assessment as a proxy for lumpfish (Cyclopterus lumpus L.) health and welfare condition. Sci Rep. 2020;10(1):8927. https://doi.org/10.1038/s41598-020-65535-7.

114. Soares S, Green DM, Turnbull JF, Crumlish M, Murray AG. A baseline method for benchmarking mortality losses in Atlantic salmon (Salmo salar) production. Aquaculture. 2011;314(1):7-12. https://doi.org/10.1016/j.aquaculture.2011.01.029.
