Fast Regression for Structured Inputs

Raphael A. Meyer∗ Cameron Musco† Christopher Musco‡
David P. Woodruff§ Samson Zhou▽

March 16, 2022

Abstract

We study the ℓ_p regression problem, which requires finding x ∈ R^d that minimizes ∥Ax − b∥_p for a matrix A ∈ R^{n×d} and response vector b ∈ R^n. There has been recent interest in developing subsampling methods for this problem that can outperform standard techniques when n is very large. However, all known subsampling approaches have run time that depends exponentially on p, typically, d^{O(p)}, which can be prohibitively expensive. We improve on this work by showing that for a large class of common structured matrices, such as combinations of low-rank matrices, sparse matrices, and Vandermonde matrices, there are subsampling based methods for ℓ_p regression that depend polynomially on p. For example, we give an algorithm for ℓ_p regression on Vandermonde matrices that runs in time O(n log^3 n + (dp^2)^{0.5+ω}.polylog n), where ω is the exponent of matrix multiplication. The polynomial dependence on p crucially allows our algorithms to extend naturally to efficient algorithms for ℓ_∞ regression, via approximation of ℓ_∞ by ℓ_{O(log n)}. Of practical interest, we also develop a new subsampling algorithm for ℓ_p regression for arbitrary matrices, which is simpler than previous approaches for p ≥ 4.

1 Introduction

Given a matrix A ∈ R^{n×d} and a vector b ∈ R^n, the goal of linear regression is to find a vector x ∈ R^d such that Ax is as close as possible to b. In approximate ℓ_p linear regression in particular, we seek to find x̂ ∈ R^d such that, for some approximation parameter ε > 0,

∥A x̂ − b∥_p ≤ (1 + ε) ∥Ax − b∥_p.

Here for a vector y ∈ R^n, ∥y∥_p = (∑_{i=1}^n |y_i|^p)^{1/p}. ℓ_p regression is central in statistical data analysis, and has numerous applications in machine learning, data science, and applied mathematics [FHT+01, CH06]. There are a number of algorithmic approaches to solving ℓ_p regression. For example, we can directly apply iterative methods like gradient descent or stochastic gradient descent. Alternatively, we can use iteratively reweighted least squares, which reduces the regression problem to solving poly(d) linear systems [APS19, AKPS19].

∗New York University. E-mail: ram900@nyu.edu
†University of Massachusetts Amherst. E-mail: cmusco@cs.umass.edu
‡New York University. E-mail: cmusco@nyu.edu
§Carnegie Mellon University. E-mail: dwoodruf@cs.cmu.edu
▽Carnegie Mellon University. E-mail: samsonzhou@gmail.com
Both the above approaches require repeated passes over the matrix A, so while their runtimes are typically linear in nd, or more generally on the time to multiply the matrix A by a vector, that factor is multiplied by other parameters, such as the number of iterations to convergence. An alternative approach, which can lead to faster running time when n is large, is to apply “sketch-and-solve” methods. This approaches begins with an inexpensive subsampling step, which selects a subset of rows in A to produce a smaller matrix M with poly $(d, \frac{1}{\varepsilon}, \log n) \ll n$ rows. M can be written as $M = SA$ where S is a row sampling and rescaling matrix. The goal is for $\|SAx - Sb\|_p$ to be a good approximation to $\|Ax - b\|_p$ for all $x \in \mathbb{R}^d$. If this the case, then an approximate solution to the original ℓ_p regression problem can be obtained by solving the subsampled problem, which has smaller size, thus allowing for more efficient computation.

The standard approach to subsampling for ℓ_p regression is to sample rows with probability proportional to their so-called ℓ_p, Lewis weights [CP15]. Unfortunately, for general inputs A, ℓ_p Lewis weight sampling requires $O(d^{\max(1,p/2)})$ rows, and it can be shown that no subsampling method can take fewer than $d^{O(p)}$ [LWW21]. This means that sampling is only helpful in the limited regime where $n \gg d^{p/2}$. However, there are many applications in which the matrix A has additional structure, which can be leveraged to design more efficient algorithms. For example, Vandermonde matrices are used in the polynomial regression problem, which has been studied for over 200 years [Ger74] and has applications to machine learning [KKMS08], applied statistics [Mac78], and computer graphics [Pra87]. The goal is to fit a signal, which is measured at time points in the range $[1, \ldots, 200$ years] [Ger74] and has applications to machine learning [KKMS08], applied statistics [Mac78], and computer graphics [Pra87]. The goal is to fit a signal, which is measured at time points t_1, \ldots, t_n using a degree d polynomial. This problem can be formulated as ℓ_p regression with a Vandermonde feature matrix A, whose i^{th} row a_i is of the form $[1, t_i, (t_i)^2, \ldots, (t_i)^{d-1}]$. Regression problems with Vandermonde matrices also arise in the settings of Fourier-constrained function fitting [AKM+19] and Toeplitz covariance estimation [ELMM20].

Notably, [SW19] leverages the structure of Vandermonde matrices to more quickly build a subsampled matrix M given any Vandermonde matrix A than would be possible for a general input. Their method does not change how many rows are in the matrix M, so the overall algorithm still incurs an exponential dependence in p. So while the approach is a helpful improvement for Vandermonde regression where p is small, this leaves an infeasible runtime for important problems like ℓ_∞ regression, which can be approximated by ℓ_p regression for $p = O(\log n)$.

1.1 Our Contributions

We first show that for ℓ_p regression on Vandermonde matrices, it is possible to reduce the size of the subsampled matrix M to depend polynomially instead of exponentially on p.

Theorem 1.1. Given $\varepsilon \in (0,1)$ and $p \geq 1$, a Vandermonde matrix $A \in \mathbb{R}^{n \times d}$, and $b \in \mathbb{R}^n$, there exists an algorithm that uses $O\left(n \log^3 n + d^{0.5+\omega} \text{poly}\left(\frac{1}{\varepsilon}, p, \log n\right)\right)$ time to compute a sampling matrix $S \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{p^2 d}{\varepsilon^2} \log^2 n\right)$ rows so that with high probability, for all $x \in \mathbb{R}^d$,

$$(1 - \varepsilon)\|Ax - b\|_p \leq \|SAx - Sb\|_p \leq (1 + \varepsilon)\|Ax - b\|_p,$$

and then to return a vector $\hat{x} \in \mathbb{R}^d$ such that $\|A\hat{x} - b\|_p \leq (1 + \varepsilon)\min_{x \in \mathbb{R}^d} \|Ax - b\|_p$.

The best known previous work required at least $\Omega(n \log^2 n + d^{p/2} \cdot \text{poly}(1/\varepsilon))$ time [SW19]. This has an exponential dependence in p, while our algorithm has just a polynomial dependence.

Building on Theorem 1.1, we observe that to obtain a $(1+\varepsilon)$-approximation to the fundamental problem of ℓ_∞ polynomial regression, it suffices to consider ℓ_p regression for $p = O\left(\frac{\log n}{\varepsilon}\right)$. Since
our results have polynomial dependence on p rather than exponential, we thus obtain the first subsampling guarantees for Vandermonde ℓ_∞ regression.

Theorem 1.2. Given $\varepsilon \in (0, 1)$, a Vandermonde matrix $A \in \mathbb{R}^{n \times d}$, and $b \in \mathbb{R}^d$, there exists an algorithm that uses $O\left(n \log^3 n + d^{0.5 + \omega}\right)$ time to compute a sampling matrix $S \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{d}{\varepsilon^2} \log^4 n\right)$ such that with high probability, for all $x \in \mathbb{R}^d$,

$$(1 - \varepsilon)\|Ax - b\|_\infty \leq \|SAx - Sb\|_\infty \leq (1 + \varepsilon)\|Ax - b\|_\infty,$$

and then to return a vector $\hat{x} \in \mathbb{R}^d$ such that $\|A\hat{x} - b\|_\infty \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \|Ax - b\|_\infty$.

To the best of our knowledge, this is the first known dimensionality reduction for ℓ_∞ regression with provable guarantees for any (nontrivial) input matrix. We summarize these results in Table 1.

Our second contribution is to show that improved sampling bounds for ℓ_p regression can be extended to a broad class of inputs, beyond Vandermonde matrices. We introduce the following definition to capture the “true dimension” of regression problems for structured input matrices.

Definition 1.3 (Rank of Regression Problem). Given an integer $p \geq 1$ and a matrix $A \in \mathbb{R}^{n \times d}$, suppose there exists a matrix $M \in \mathbb{R}^{n \times t}$ and a fixed function $f : \mathbb{R}^d \to \mathbb{R}^t$ so that for all $x \in \mathbb{R}^d$,

$$|\langle a_i, x \rangle|^p = |\langle m_i, f(x) \rangle|.$$

Then we call the minimal such t the rank of the ℓ_p regression problem.

Theorems 1.1 and 1.2 rely on the following key structural property that we prove about the p-fold tensor product of rows of the Vandermonde matrix.

Lemma 1.4. For integer $p \geq 1$, the rank of the ℓ_p regression problem on a Vandermonde matrix $A \in \mathbb{R}^{n \times d}$ is $O(dp)$.

Lemma 1.4 implies that the ℓ_p loss function for a row of a Vandermonde matrix can potentially be expressed as a linear combination of $O(dp)$ variables even though the entries of the measurement vector b can be arbitrary. By comparison, the ℓ_p loss function for a row a_i of a general matrix A is $|\langle a_i, x \rangle - b_i|^p$ can only be expressed as a linear combination of $O(pd^p)$ variables, corresponding to each of the d^k k-wise products of coordinates of x, for each $k \in [p]$. As a corollary of Lemma 1.4, Theorems 1.1 and 1.2 obtain a small coreset for ℓ_p regression (as well as ℓ_∞ regression) on a Vandermonde matrix, which can thus be used as a preconditioner for ℓ_p regression.

We generalize Lemma 1.4 to similar guarantees for ℓ_p regression on a matrix A that is the sum of a low-rank matrix K and an s-sparse matrix S that has at most s non-zero entries per row. Thus using the notion of the rank of the regression problem for such a matrix A, we obtain the following guarantee:

Table 1: Sample complexity for regression on Vandermonde matrices

Rows Sampled, ℓ_p Regression	Rows Sampled, ℓ_∞ Regression	Reference
$dp\text{poly}\left(\log n, \frac{1}{\varepsilon}\right)$	n	[ASW13]
$dp\text{poly}\left(\log n, \frac{1}{\varepsilon}\right)$	n	[SW19]
$dp^2\text{poly}\left(\log n, \frac{1}{\varepsilon}\right)$ (Theorem 1.1)	$dp\text{poly}\left(\log n, \frac{1}{\varepsilon}\right)$ (Theorem 1.2)	Our Results
Theorem 1.5. Given $\varepsilon \in (0, 1)$ and $p \geq 1$, a rank k matrix $K \in \mathbb{R}^{n \times d}$ and a s-sparse matrix $S \in \mathbb{R}^{n \times d}$ so that $A := K + S$, and $b \in \mathbb{R}^n$, there exists an algorithm that uses $O(nk^{\omega-1}) + n\text{poly}(2^p, d^s, k^p, s^p, \frac{1}{\varepsilon}, \log n)$ time to compute a sampling matrix $T \in \mathbb{R}^{m \times n}$ containing $m = O\left(\frac{pd^p(k+s)^p(s+p)}{\varepsilon^3} \log^2 (pm)\right)$ rows so that with high probability, for all $x \in \mathbb{R}^d$,

$$(1 - \varepsilon)\|Ax - b\|_p \leq \|TAx - Tb\|_p \leq (1 + \varepsilon)\|Ax - b\|_p,$$

and then to return a vector $\hat{x} \in \mathbb{R}^d$ such that $\|A\hat{x} - b\|_p \leq (1 + \varepsilon)\min_{x \in \mathbb{R}^d} \|Ax - b\|_p$. Further, if the low-rank factorization of K is given explicitly, then this runtime can be improved to $n\text{poly}(2^p, d^s, k^p, s^p, \frac{1}{\varepsilon}, \log n)$.

Similarly, we obtain efficient guarantees for ℓ_p regression on a matrix A that is the sum of a Vandermonde matrix V and a sparse matrix S that has at most s non-zero entries per row.

Theorem 1.6. Given $\varepsilon \in (0, 1)$ and $p \geq 1$, a Vandermonde matrix $V \in \mathbb{R}^{n \times d}$ and an s-sparse matrix $S \in \mathbb{R}^{n \times d}$ such that $A := V + S$, and $b \in \mathbb{R}^n$, there exists an algorithm that uses $O\left(n \log^3 n + \text{poly}\left(p^2d^s, d^p, s^p, \log n, \frac{1}{\varepsilon}\right)\right)$ time to compute a sampling matrix $T \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{pd^p(k+s)^p(s+p)}{\varepsilon^3} \log^2 (pm)\right)$ rows, so that with high probability for all $x \in \mathbb{R}^d$,

$$(1 - \varepsilon)\|Ax - b\|_p \leq \|TAx - Tb\|_p \leq (1 + \varepsilon)\|Ax - b\|_p,$$

and then to return a vector $\hat{x} \in \mathbb{R}^d$ such that $\|A\hat{x} - b\|_p \leq (1 + \varepsilon)\min_{x \in \mathbb{R}^d} \|Ax - b\|_p$.

Surprisingly, our methods even yield practical algorithms for general matrices with absolutely no structure. Although the rank of the ℓ_p regression problem for general matrices is $O(d^p)$, we still obtain the optimal sample complexity (see [LWW21] for a lower bound) of roughly $O\left(d^{p/2}\right)$. Furthermore, an advantage of our approach is that we only need to perform ℓ_q Lewis weight sampling for $q \in [1, 4]$ and there are known efficient iterative methods for computing the ℓ_q Lewis weights for $q \in [1, 4]$, e.g., see Section 1.4 of this paper or Section 3 in [CP15]. By contrast, previous methods relied on computing general ℓ_p weights for $p > 4$, which, prior to the recent work of [FLPS21], required solving a large convex program, e.g., through semidefinite programming, see Section 4 in [CP15].

Finally, we experimentally validate our theory on synthetic data. In particular, we consider matrices and response vectors that are motivated by existing lower bounds for subsampling and sketching methods. For Vandermonde regression, our experiments demonstrate that the number of rows needed is polynomial in p, reinforcing how structured matrices outperform the worst-case bound. For unstructured matrix ℓ_p regression, we demonstrate that our ℓ_q Lewis Weight subsampling scheme is effective and accurate.

1.2 Overview of our Techniques

Our algorithmic contributions rely on two key observations, which we describe below. For the sake of presentation, we assume p is an integer in this overview, though we handle arbitrary real values of p in the subsequent algorithms and analyses.
Reduced rank of the ℓ_p regression problem on structured inputs. The first main ingredient is the simple yet powerful observation that the rank of the ℓ_p regression problem on structured inputs such as Vandermonde matrices $A \in \mathbb{R}^{n \times d}$ does not need to be the $O(dp)$ rank of the ℓ_p regression problem on general matrices. For a general matrix, $(a_i, x)^p$ for an integer p can be rewritten as a linear combination $\sum \alpha_i y_i$ of $O(dp)$ terms, where each coefficient α_i is a p-wise product of entries of the row vector $a_i \in \mathbb{R}^d$ and similarly each y_i is a p-wise product of entries of the vector $x \in \mathbb{R}^d$.

However, when A is a Vandermonde matrix, then the j-th entry of a_i is simply $A_{i,j}^{j-1}$. Thus each coefficient in $(a_i, x)^p$ can be written as a linear combination of $1, A_{i,2}, (A_{i,2})^2, \ldots, (A_{i,2})^{p(d-1)}$ and so we can express $(a_i, x)^p$ as a linear combination of $O(dp)$ variables rather than $O(dp)$ variables.

We can similarly show that the rank of the ℓ_p regression problem on rank k-matrix A is $O(k^p)$ by writing each row a_i as a linear combination of basis vectors v_1, \ldots, v_k. Then, using the Hadamard Product-Kronecker Product mixed-product property, we can rewrite $(a_i, x)^p$ as a linear combination of p-wise products of the variables $(v_1, x), \ldots, (v_k, x)$, i.e., a linear combination of $O(k^p)$ variables rather than $O(dp)$ variables. It follows that the rank of the ℓ_p regression problem on a matrix A whose rows have at most s non-zero entries is $O(d^s k^p)$ by noting that (1) there are $\binom{d}{s} = O(d^s)$ sparsity patterns and that (2) for a fixed sparsity pattern, the rank of the induced matrix is at most s, which induces a linear combination of $O(s^p)$ variables for the ℓ_p regression problem. These decomposition techniques can also be generalized to show that the rank of the ℓ_p regression problem is low on matrices A such that $A = K + V$, $A = K + S$ or $A = V + S$, where K is a low-rank matrix, V is a Vandermonde matrix, and S is a sparse matrix.

However, we remark that although the observation that the rank of the ℓ_p regression problem on structured inputs can be low, this itself does not yield an algorithm for ℓ_p regression. This is because the loss function is $\| (a_i, x) - b_i \|^p$ rather than $(a_i, x)^p$ and there can be n possible different values of b_i across all $i \in [n]$.

Rounding and truncating the measurement vector: a novel algorithmic technique.

Thus, the second main ingredient is manipulating the measurement vector $b \in \mathbb{R}^n$ so that the loss function can utilize the low-rank property of the ℓ_p regression problem on structured inputs. A natural approach would be to round the entries of b, say to the nearest power of $(1 + \varepsilon)$. Unfortunately, such a rounding approach would roughly preserve $\| b \|_p$ up to a multiplicative $(1 + \varepsilon)$ factor, but it would not preserve $\| Ax - b \|_p$. For example, suppose $(a_i, x) = b_i = N$ for some arbitrarily large value N. Then $\| (a_i, x) - b_i \|^p = 0$, but if b_i were rounded to $(1 + \varepsilon)N$, we would have $\| (a_i, x) - b_i \|^p = \varepsilon^p N^p$, which can be arbitrarily large.

The lesson from this counterexample is that when b_i is significantly larger than $\langle a_i, x \rangle - b_i$, any rounding technique can be arbitrarily bad because $\| b \|_p$ can be significantly larger than $\text{OPT} := \min_{x \in \mathbb{R}^d} \| Ax - b \|_p$. On the other hand, if $\| b \|_p$ is a constant factor approximation to OPT, then the previous counterexample cannot happen because either (1) b_i is large relative to $\| b \|_p$ and $\langle a_i, x \rangle$ cannot be too close to b_i so that rounding b_i will not significantly affect the difference $\langle a_i, x \rangle - b_i$ or (2) b_i is small relative to $\| b \|_p$ and so any rounding of b_i will not affect the contribution of the i-th row of A in the overall loss. Thus our task is reduced to manipulating the input so that $\| b \|_p = O(\text{OPT})$.

To that end, we note that if $\| A \hat{x} - b \|_p = O(\text{OPT})$ for a vector $\hat{x} \in \mathbb{R}^d$, then by a triangle inequality argument, we have that the residual vector $b' = b - A \hat{x} \in \mathbb{R}^d$ satisfies $\| b' \|_p = O(\text{OPT})$. Namely, we show that to find such a vector \hat{x}, it suffices by triangle inequality to find a subspace
embedding for A, i.e., a matrix $M \in \mathbb{R}^{m \times d}$ with $m \ll n$ such that

$$(1 - C)\|Ax\|_p \leq \|Mx\|_p \leq (1 + C)\|Ax\|_p$$

for some constant $C \in (0, 1)$. Typically, such a matrix M can be found by sampling the rows of A according to their ℓ_p Lewis weights to generate a matrix with $m = O\left(d^{\max(1,p/2)}\right)$ rows. However, using our observation that the rank of the ℓ_p regression problem on structured inputs can be low, we can sample $O(dp)$ rows of A with probabilities proportional to their ℓ_q Lewis weights, where $q = \frac{p}{2r}$ for an integer r such that $2^r \leq p < 2^{r+1}$. Crucially, we can find such a vector \tilde{x} without reading the coordinates of b since we only require to read the rows of A to perform Lewis weight sampling in this phase. Thus we can efficiently find a residual vector b' such that $\|b'\|_p = O\left(\text{OPT}\right)$.

Partitioning the matrix into groups. We then round the entries of b' to obtain a vector b'' with at most $\ell := O\left(\frac{\log n}{\varepsilon}\right)$ unique values, truncating all entries that are less in magnitude than $\frac{1}{\poly(\|n\|)}$ to zero instead. We now solve the ℓ_p regression problem $\min_{x \in \mathbb{R}^d} \|Ax - b''\|_p$ by partitioning the rows of A into ℓ groups G_1, \ldots, G_ℓ based on their corresponding values of b''. The main point is that all rows in each group G_k have the same entry t_k in b''. Thus we can again observe that $|\langle a_i, x \rangle - t_k|^p$ can be written as a linear combination of $O\left(p^2d\right)$ variables and therefore use ℓ_p Lewis weight sampling (for the same q) to reduce each group G_k down to $O\left(\frac{p^2d}{\varepsilon \ell} \log d\right)$ rows. Since there are $\ell = O\left(\frac{\log n}{\varepsilon}\right)$ groups, then there are roughly $O\left(p^2d\right)$ total rows that have been sampled across all the groups. It follows from the decomposition of the ℓ_p loss function across each group that the matrix T formed by these rows is a coreset for the ℓ_p regression problem. Therefore, by solving the ℓ_p regression problem on T, which has significantly smaller dimension than the original input matrix A, we obtain a vector \hat{x} with the desired property that

$$\|A\hat{x} - b\|_p \leq (1 + O\left(\varepsilon\right)) \min_{x \in \mathbb{R}^d} \|Ax - b\|_p.$$

Practical ℓ_p regression for arbitrary matrices. We now describe a practical procedure for ℓ_p regression on general matrices that avoids the necessity for convex programing to approximate the ℓ_p Lewis weights for $p > 4$. We first pick an integer r such that $\frac{p}{2r} \in [2,4)$. By the same structural argument as in Lemma 1.4, we can tensor product each row a_i of A with itself 2^r times, thus obtaining an extended matrix of size $n \times d'$, where $d' = d^{2^r}$, independent of the entries in b. We then $\ell_{p/2r}$ Lewis weight sample on the extended matrix, using the iterative method in Figure 1 since $\frac{p}{2r} < 4$ rather than solving a convex program for ℓ_p Lewis weight sampling for $p > 4$. Since $\frac{p}{2r} \in [2,4)$, it follows from Theorem 1.9 that Lewis weight sampling requires roughly $(d')^{p/2}$ rows. Thus we obtain a matrix with $O\left((d'^{p/2})^{2^{r+1}}\right) = O\left(d^{p/2}\right)$ rows, from which we can compute a residual vector b' such that $\|b'\|_p = O\left(\text{OPT}\right)$, where $\text{OPT} := \min_{x \in \mathbb{R}^d} \|Ax - b\|_p$.

We then round and truncate the entries of b' using the subroutine RoundTrunc to obtain a vector b'', which allows us to partition the rows of A and the entries of b'' into $O\left(\frac{\log n}{\varepsilon}\right)$ groups. Due to the constant values of b'' in each group, we can again $\ell_{p/2r}$ Lewis weight sample on an extended matrix using an iterative method and finally solve the ℓ_p regression problem on the subsequent rows that have been sampled. We give our algorithm in full in Algorithm 4.
1.3 Related Work

As previously mentioned, subspace embeddings are common tools used to approximately solve \(\ell_p \) regression. Given an input matrix \(A \in \mathbb{R}^{n \times d} \), a subspace embedding is a matrix \(M \in \mathbb{R}^{m \times d} \) with \(m \ll n \) such that

\[
(1 - \varepsilon) \|Ax\|_p \leq \|Mx\|_p \leq (1 + \varepsilon) \|Ax\|_p,
\]

for all \(x \in \mathbb{R}^d \). Thus given an instance of \(\ell_p \) regression, where the goal is to minimize \(\|Ax - b\|_p \), we can set \(B = [A; b] \), compute a subspace embedding for \(B \), and then solve a constrained \(\ell_p \) regression problem on the smaller matrix \(B \).

A subspace embedding of a matrix \(A \in \mathbb{R}^{n \times d} \) can be formed by sampling rows of \(A \) with probabilities proportional to their \(\ell_p \) leverage scores, e.g., [CDW18, DDH+08] their \(\ell_p \) sensitivities, e.g., [CWW19, BDM+20, BHM+21, MMWY21]; or their \(\ell_p \) Lewis weights, e.g., [CP15, DLS18, CCDS20, CD21, PPP21, MM+21]. In any of these cases, the resulting matrix \(M \) will contain a subset of rows of \(A \) that are rescaled by a function of their sampling probability, as to give an unbiased estimate of the actual \(\ell_p \) mass.

In addition to sampling methods, sketching is a common approach for subspace embeddings. In these cases, the subspace embedding \(M \) is formed by setting \(M = RA \) for some (often random) matrix \(R \in \mathbb{R}^{m \times n} \). The advantage of sketching over sampling is that sometimes \(R \) can be computed oblivious to the structure of \(A \), whereas the sampling probabilities for each of the above distributions (\(\ell_p \) leverage scores, \(\ell_p \) sensitivities, and \(\ell_p \) Lewis weights) are data dependent and thus require a pass over the matrix \(A \). The sketching matrix can be generated from a family of random matrices whose entries are Cauchy random variables for \(p = 1 \), e.g., [SW11, MM13, CDM+16], or sub-Gaussian random variables for \(p = 2 \), e.g., [Sar06, NN13, CW13]. More generally, exponential random variables can be used for \(p \geq 2 \), though the number of rows \(m \) in the resulting sketch matrix now has a polynomial dependency in \(n \) [WZ13]. A line of recent works has studied the tradeoffs between oblivious linear sketches, sampling-based algorithms, and other sketches for \(\ell_p \) subspace embeddings [WW19, LWW21]. In this paper, we focus on sampling-based algorithms for \(\ell_p \) regression due to preservation of structure when the input matrix \(A \) itself has structure.

1.4 Preliminaries on Lewis Weight Sampling

There are a number of known sampling distributions for dimensionality reduction for the \(\ell_p \) regression problem, such as the \(\ell_p \) leverage scores, e.g., [CDW18, DDH+08] and the \(\ell_p \) sensitivities, e.g., [CWW19, BDM+20, BHM+21, MMWY21]; in this paper we focus on the \(\ell_p \) Lewis weights, e.g., [CP15, DLS18, CD21, PPP21].

Definition 1.7 (\(\ell_p \) Lewis Weights, [CP15]). Given a matrix \(A \in \mathbb{R}^{n \times d} \) and \(p \geq 1 \), the \(\ell_p \) Lewis weights \(w_1(A), \ldots, w_n(A) \) are the unique quantities that satisfy

\[
(w_i(A))^{2/p} = a_i^\top (A^\top W^{1-2/p} A)^{-1} a_i
\]

for all \(i \in [n] \), where \(W \in \mathbb{R}^{n \times n} \) is the diagonal matrix with \(W_{i,i} = w_i(A) \) for all \(i \in [n] \).

Definition 1.8 (Lewis Weight Sampling). For an input matrix \(A \in \mathbb{R}^{n \times d} \) and \(m \) samples, let the sampling matrix \(S \in \mathbb{R}^{m \times n} \) be generated by independently setting each row of \(S \) to be the \(i \)-th standard basis vector multiplied by \(\left(\frac{d}{m w_i^2(A)} \right)^{1/p} \) with probability \(\frac{w_i^2(A)}{d} \).
Theorem 1.9 (ℓ_p Subspace Embedding from Lewis Weight Sampling, [CP15]). For any $A \in \mathbb{R}^{n \times d}$, let the matrix $S \in \mathbb{R}^{m \times n}$ be generated from Lewis weight sampling with $m = O\left(\max(1, p/2) \log(d/\delta) \log(1/\varepsilon)\right)$, where $\gamma = 2$ for $p \in [1, 2]$ and $\gamma = 5$ for $p > 2$. Then with probability at least $1 - \delta$, we have that simultaneously for all $x \in \mathbb{R}^d$,

$$(1 - \varepsilon)\|Ax\|_p \leq \|SAx\|_p \leq (1 + \varepsilon)\|Ax\|_p.$$

Since the Lewis weights are implicitly defined, it may not be clear how to compute them exactly. In fact, it suffices to compute constant factor approximations to the Lewis weights. [CP15] show that for $p \leq 4$, there exists a simple iterative approach to compute a constant factor approximation to the ℓ_p Lewis weights in input sparsity time, which we present in Figure 1.

```
\w = \text{LewisIterate}(A, p, \beta, \w)
(1) For $i = 1, \ldots, n$
    (a) Let $\tau_i$ be a constant factor approximation to $a_i^T(A^T W^{1-2/p} A)^{-1} a_i$
    (b) $w_i \leftarrow (\tau_i)^{p/2}$
    (c) Return $w$

\w = \text{ApproxLewisWeights}(A, p, \beta, T)
(1) Intialize $w_i = 1$ for all $i \in [n]$.
(2) For $t = 1, \ldots, T$
    (a) $w \leftarrow \text{LewisIterate}(A, p, \beta, w)$
(3) Return $w$
```

Fig. 1: Iterative algorithm for approximate ℓ_p Lewis weights with $p < 4$.

At a high level, the correctness of Figure 1 follows from Banach’s fixed point theorem and the fact that the subroutine LewisIterate is a contraction mapping, because $|2/p - 1| < 1$ for $p < 4$ [CP15]. However, for $p \geq 4$, Figure 1 no longer works. Instead, prior to the recent work of [FLPS21], approximating ℓ_p Lewis weights for $p > 4$ seems to require solving the convex program

$$Q = \arg \max_M \det(M), \quad \text{subject to } \sum_i (a_i^T M a_i)^{p/2} \leq d, \quad M \succeq 0,$$

and setting $w_i = (a_i^T Q a_i)^{p/2}$. Unfortunately, this is often infeasible in practice, and we could not obtain empirical results using it. Therefore, a nice advantage of our algorithms, both for structured and unstructured matrices, is that we only use ℓ_q Lewis weight sampling for $q \leq [1, 4)$, even if $p \geq 4$, whereas previous algorithms required using ℓ_p Lewis weight sampling for $p > 4$.

8
2 ℓ_p Regression on Vandermonde Matrices

We first describe the general framework of our algorithm for efficient ℓ_p regression, so that given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$, the goal is to approximately compute $\text{OPT} := \min_{x \in \mathbb{R}^d} \|Ax - b\|_p$. Recall that in order to apply our structural results, we first require a measurement vector b'' with a small number of distinct entries. We obtain b'' by first finding a constant factor approximation, i.e., $\tilde{x} \in \mathbb{R}^d$ such that $\|A\tilde{x} - b\|_p \leq O(\text{OPT})$. We can ℓ_p Lewis weight sample the rows of A to do this, but the time to solve the subsequent polynomial regression problem would have exponential dependence on p, due to Theorem 1.9. Instead, we use our structural properties to implicitly create a matrix M from A with fewer than d^p columns and then $\ell_{p/2}$. Lewis weight sample the rows of A, where r is the integer that satisfies $2^r \leq p < 2^{r+1}$, and then we solve the ℓ_p regression problem on the sampled rows of A and entries of b to obtain \tilde{x}. We set b' to be the residual vector $b - A\tilde{x}$ so that $\|b\|_p = O(\text{OPT})$. We then use the procedure RoundTrunc, i.e., as in Algorithm 1, which sets the entries of b' that are the smallest in magnitude to zero, and rounds the remaining entries of b' to the nearest power of $(1 + \varepsilon)$.

Algorithm 1 RoundTrunc: Round and truncate coordinates of input vector b

Input: Vector $b \in \mathbb{R}^n$, accuracy parameter $\varepsilon > 0$

Output: Vector $x \in \mathbb{R}^n$ that is a rounded and truncated version of b

1. $M \leftarrow \max_{i \in n} |b_i|$
2. for $i = 1$ to $i = n$ do
3. \hspace{1em} $p_i \leftarrow \lfloor \log_{1+\varepsilon} |b_i| \rfloor$
4. \hspace{1em} $x_i \leftarrow (1 + \varepsilon)^{p_i} \cdot \text{sign}(b_i)$
5. \hspace{1em} if $|x_i| \leq \frac{M}{p_i}$ then
6. \hspace{2em} $x_i \leftarrow 0$
7. return x

Since $\|b\|_p = O(\text{OPT})$, it then follows by triangle inequality that it suffices to approximately solve the ℓ_p regression problem on the vector b'' instead. We partition the rows of A into groups G_1, \ldots, G_t based on the values of b'' and perform $\ell_{p/2}$ regression on each group. Here we leverage our theory about the rank of the ℓ_p regression problem for structured inputs. It then suffices to solve the ℓ_p regression problem on the matrix formed by the sampled rows across all the groups.

We first prove a simple statement that shows a “good” solution to the ℓ_p regression problem on a subspace embedding SA is also a “good” solution to the original input matrix A.

Lemma 2.1. Let S be a sampling and rescaling matrix such that

$$\frac{11}{12} \|SAx\|_p \leq \|Ax\|_p \leq \frac{13}{12} \|SAx\|_p, \quad \mathbb{E} \left[\|SAx\|_p^p \right] = \|Ax\|_p^p$$

for all $x \in \mathbb{R}^d$. Let $\text{OPT} = \min_{x \in \mathbb{R}^d} \|Ax - b\|_p$ and let $x \in \mathbb{R}^d$ be any vector for which $\|SAx - Sb\|_p \leq 5\text{OPT}$. Then with probability at least 0.79,

$$\|Ax - b\|_p \leq 12\text{OPT}.$$

Proof. Let x^* be a minimizer of $\|Ax - b\|_p$ so that $\text{OPT} = \|Ax^* - b\|_p$. We will prove the claim by contrapositive, so we first suppose that $\|Ax - b\|_p \leq 12\text{OPT}$. Then by the triangle inequality,

$$\|SAx - Sb\|_p \geq \|SA(x - x^*)\|_p - \|SA^* - Sb\|_p.$$
Thus if \(\|\ell\| \) efficient as desired.

Thus with probability at least 0.

Note that by Jensen’s inequality,

\[
E[11] \leq \min_{x \in R^d} \|Ax - b\|_p
\]

Since \(11 \leq \|Ax - b\|_p \leq \|SAx\|_p \) for all \(x \in R^d \), then

\[
\|SAx - b\|_p \geq \frac{11}{12} \|Ax - x^*\|_p - \|SAx - Sb\|_p.
\]

By the triangle inequality,

\[
\|SAx - b\|_p \geq \frac{11}{12} (\|Ax - b\|_p - \|Ax^* - b\|_p) - \|SAx - Sb\|_p.
\]

Note that by Jensen’s inequality, \(E[\|SAx^* - Sb\|_p] \leq \text{OPT} \), so that by Markov’s inequality,

\[
Pr[\|SAx^* - Sb\|_p \geq 5\text{OPT}] \leq \frac{1}{5}.
\]

Thus with probability at least 0.8,

\[
\|SAx - b\|_p \geq \frac{11}{12} (\|Ax - b\|_p - \|Ax^* - b\|_p) - 5\text{OPT}.
\]

Thus if \(\|Ax - b\|_p \leq 12\text{OPT} \), then

\[
\|SAx - b\|_p \geq \frac{11}{12} (12\text{OPT} - \text{OPT}) - 5\text{OPT} > 5\text{OPT},
\]

as desired.

Before justifying the correctness of Algorithm 2, we first recall the following algorithm for efficient \(\ell_p \) subspace embeddings.
Theorem 2.2. [SW19] Given $\varepsilon \in (0, 1)$ and $p \in [1, 2]$, a Vandermonde matrix $A \in \mathbb{R}^{n \times d}$, and $b \in \mathbb{R}^d$, let $T(A)$ be the time it takes to perform matrix-vector multiplication, i.e., compute Av for an arbitrary $v \in \mathbb{R}^d$. There exists an algorithm that uses $O(T(A) \log n + d^q \cdot \text{poly}(1/\varepsilon))$ time, where $q = \omega$ for $p \in [1, 4]$ and $q = p/2 + C$ for some fixed constant $C > 0$ for $p > 4$, and with high probability, returns $\hat{x} \in \mathbb{R}^d$ such that

$$\|A\hat{x} - b\|_p \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \|Ax - b\|_p.$$

We now justify the correctness of Algorithm 2.

Lemma 2.3. Given $\varepsilon \in (0, 1)$ and $p \geq 1$, a Vandermonde matrix $A \in \mathbb{R}^{n \times d}$, and $b \in \mathbb{R}^d$, then with high probability, Algorithm 2 returns a vector $\hat{x} \in \mathbb{R}^d$ such that

$$\|A\hat{x} - b\|_p \leq (1 + O(\varepsilon)) \min_{x \in \mathbb{R}^d} \|Ax - b\|_p.$$

Proof. Consider Algorithm 2 and let r be an integer so that $2^r \leq p < 2^{r+1}$. Note that

$$\sum_{i \in [n]} |\langle a_i, x \rangle|^p = \sum_{i \in [n]} |\langle a_i, x \rangle|^{2^r} |p/2^r|.$$

Since A is Vandermonde, then

$$\langle a_i, x \rangle = \left(\sum_{j=1}^d a_{i,j} x_j \right)^{2^r} = \left(\sum_{j=1}^d a_{i,j}^2 y_j \right)^{2^r} = \sum_{j=1}^{2r(d-1)+1} a_{i,j}^{2^r} y_j,$$

where each y_j is a fixed function of the coordinates of x. Notably, the fixed function is the same across all $i \in [n]$. Hence, the l_{2^r} subspace embedding problem on an input Vandermonde matrix $A \in \mathbb{R}^{n \times d}$ can be reshaped as a constrained l_1 subspace embedding problem on an input Vandermonde matrix of size $n \times (2^r(d-1)+1)$. Thus, for l_p regression with $p \in [2^r, 2^{r+1})$, we have

$$\sum_{i \in [n]} |\langle a_i, x \rangle|^p = \sum_{i \in [n]} \left|\sum_{j=1}^{2r(d-1)+1} a_{i,j}^{2^r} y_j \right|^{p/2^r},$$

which is a constrained $l_{p/2^r}$ regression problem on an input Vandermonde matrix M of size $n \times (2^r(d-1)+1)$.

By Theorem 2.2, we can use $l_{p/2^r}$ Lewis weight sampling to find a matrix M' such that

$$\frac{1}{5} \|My\|_{p/2^r} \leq \|M'y\|_{p/2^r} \leq 5\|My\|_{p/2^r}$$

for all $y \in \mathbb{R}^{2^r(d-1)+1}$ with high probability. Note that by the above argument, if we take the matrix A' corresponding to the scaled rows of A that are sampled by M', then we also have

$$\frac{11}{12} \|Ax\|_p \leq \|A'x\|_p \leq \frac{13}{12} \|Ax\|_p$$

and thus

$$\frac{11}{12} \|Ax\|_p \leq \|A'x\|_p \leq \frac{13}{12} \|Ax\|_p.$$
for all \(x \in \mathbb{R}^{d+1} \) with high probability. Thus by Lemma 2.1, we can find a vector \(\tilde{x} \) such that
\[
\|A \tilde{x} - b\|_p \leq 12 \min_{x \in \mathbb{R}^d} \|Ax - b\|_p.
\]
We use the subroutine \texttt{RoundTrunc} to create the vector \(b'' \) which is the vector with all entries of \(b' \) rounded to the nearest power of \((1 + \varepsilon) \), starting at the maximum entry of \(b' \) in absolute value, and stopping after we are \(\frac{1}{\text{poly}(n)} \) times that, and replacing all remaining entries with 0. By the triangle inequality, we have
\[
\|Ax - b''\|_p \leq \|Ax - b'\|_p + \|b' - b''\|_p \leq \|Ax - b'\|_p + 12\varepsilon \text{OPT} \leq (1 + 12\varepsilon)\|Ax - b''\|_p,
\]
for any \(x \in \mathbb{R}^{d+1} \).

Note that \(b'' \) has discretized the values of \(b' \) into \(\ell = \mathcal{O}\left(\frac{\log n}{\varepsilon}\right) \) possible values. We partition the rows of \(A \) into \(\ell \) groups \(G_1, \ldots, G_\ell \), based on the corresponding values of \(b'' \). Suppose that for a group \(G_k \), the corresponding values of \(b'' \) are all \(t_k \). Then we have
\[
\|Ax - b''\|_p^2 = \sum_{k} \sum_{i \in G_k} |\langle a_i, x \rangle - t_k|^2.
\]

Since \(A \) is Vandermonde, for each \(i \in G_k \),
\[
(\langle a_i, x \rangle - t_k)^{2^r} = \left(-t_k + \sum_{j=1}^{d} a_{i,j}x_j\right)^{2^r} = \left(-t_k + \sum_{j=1}^{d} a_{i,2,j}x_j\right) = \sum_{j=1}^{2^r(d-1)+1} a_{i,2,j}^{j-1}t_ky_j,
\]
for some fixed values \(t_{k,1}, t_{k,2}, \ldots \) that can be computed from \(t_k \), where again each \(y_j \) can be a different function of the coordinates of \(x \). In particular, there can be \(2^r \) choices for the exponent of \(t_k \). For a fixed choice of the exponent of \(t_k \), the exponent of \(a_{i,2} \) can range from 0 to \(2^{r}(d-1) \).

Hence, the \(\ell_2 \) regression problem on a submatrix of an input Vandermonde matrix \(A \in \mathbb{R}^{n \times d} \) with the same fixed measurement values, i.e., the corresponding coordinates of \(x \) can be reshaped to a constrained \(\ell_2 \) regression problem on an input Vandermonde matrix with \(2^{2r}(d-1) + 1 \) columns times a \((2^{2r}(d-1) + 1) \times (2^{2r}(d-1) + 1) \) diagonal matrix.

Hence, by invoking Theorem 2.2 to sample rows of \(M \) corresponding to their \(\ell_{p/2^r} \) Lewis weights in the submatrix induced by the rows of \(G_k \), we obtain a sampling matrix \(T_k \) such that with high probability,
\[
(1 - \varepsilon)\|T_kMy - T_kv_k\|_{p/2^r}^{p/2^r} \leq \sum_{i \in G_k} \left(\sum_{j=1}^{2^r(d-1)+1} a_{i,2,j}^{j-1}t_ky_j \right)^{p/2^r} \leq (1 + \varepsilon)\|T_kMy - T_kv_k\|_{p/2^r}^{p/2^r},
\]
where \(v_k \) corresponds to the vector \(b'' \) that is set to zero outside of coordinates whose values are \(t_k \). Note that by the above argument, then we also have
\[
(1 - \varepsilon)\|T_kAx - T_kv_k\|_p \leq \sum_{i \in G_k} |\langle a_i, x \rangle - t_k|^p \leq (1 + \varepsilon)\|T_kAx - T_kv_k\|_p,
\]
with high probability. Summing over all \(k \), we have
\[
(1 - \varepsilon)\sum_k \|T_kAx - T_kv_k\|_p \leq \sum_{i \in G_k} |\langle a_i, x \rangle - t_k|^p \leq (1 + \varepsilon)\sum_k \|T_kAx - T_kv_k\|_p,
\]
12
with high probability.

Let \(T \) be the sampling matrix so that \(T = T_1 \circ \ldots \circ T_\ell \), so that \(\sum_k \| T_kAx - T_kv_k \|_p^p = \| TAx - Tb'' \|_p^p \). Observe that \(\| Ax - b'' \|_p^p = \sum_k \sum_{i \in G_k} |(a_i, x) - t_k|^p \). Hence,

\[
(1 - \varepsilon)\| TAx - Tb'' \|_p^p \leq \| Ax - b'' \|_p^p \leq (1 + \varepsilon)\| TAx - Tb'' \|_p^p
\]

and thus

\[
(1 - \varepsilon)\| TAx - Tb'' \|_p \leq \| Ax - b'' \|_p \leq (1 + \varepsilon)\| TAx - Tb'' \|_p.
\]

Thus we can compute a vector \(\hat{x} \in \mathbb{R}^d \) such that

\[
\| A\hat{x} - b \|_p \leq (1 + O(\varepsilon)) \min_{x \in \mathbb{R}^d} \| Ax - b \|_p.
\]

Before analyzing the time complexity of Algorithm 2, we first recall the following algorithms for Vandermonde matrix-vector multiplication and approximate \(\ell_p \) regression.

Theorem 2.4 (Vandermonde Matrix-Vector Multiplication Runtime, e.g., Table 1 in [GO94]). The runtime of computing \(Ax \) for a Vandermonde matrix \(A \in \mathbb{R}^{n \times d} \) and a vector \(x \in \mathbb{R}^d \) for \(d \leq n \) is \(O(n \log^2 n) \).

Theorem 2.5 (Approximate \(\ell_p \) Regression Runtime). [APS19] Given \(A \in \mathbb{R}^{n \times d} \) and \(p \geq 2, \infty \), there exists an algorithm that makes \(O(\sqrt{n} \log \frac{n}{\varepsilon}) \) calls to a linear system solver and computes a vector \(\hat{x} \) such that

\[
\| A\hat{x} - b \|_p \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \| Ax - b \|_p.
\]

We now analyze the runtime of Algorithm 2.

Lemma 2.6. Algorithm 2 runs in \(O(n \log^3 n) + d^{0.5+\omega} \text{ poly}(\frac{1}{\varepsilon}, p, \log n) \) time.

Proof. Observe that Algorithm 2 has three main bottlenecks for runtime. Since we only need to Lewis weight sample from the extended matrices, we do not need to explicitly form them, which would otherwise require \(\Omega(ndp^2) \) time just to list to entries. Hence the first bottleneck is performing the Lewis weight sampling procedure on the extended matrices. The second bottleneck is solving the \(\ell_p \) regression problem on the final subsampled matrix. The only remaining procedure is rounding and truncating the coordinates of \(b \in \mathbb{R}^n \) to form a vector \(b'' \in \mathbb{R}^n \) using the procedure RoundTrunc and then forming the groups \(G_1, \ldots, G_\ell \), which clearly takes \(O(n) \) arithmetic operations combined. We thus analyze each of the three main runtime bottlenecks.

First observe that the extended matrix \(M \) is a Vandermonde matrix with \(O(dp^2) \) columns. [CP15] show that \(O(\log n) \) matrix-vector multiplication operations can be done to compute approximate Lewis weights for the purposes of \(\ell_p \) Lewis weight sampling. By Theorem 2.4, each matrix-vector multiplication uses time \(O(n \log^2 n) \). Hence computing the extended matrix \(M \) uses \(O(n \log^3 n) \) time. Similarly, the extended matrix for each group \(G_k \) is the product of a Vandermonde matrix with \(O(dp^2) \) columns and a diagonal matrix. Thus by Theorem 2.4, the extended matrices for all the groups \(G_k \) can be formed using \(O(n \log^3 n) \) time in total.

Since each Vandermonde matrix has \(O(dp^2) \) rows, then observe that each group \(G_k \) samples \(O\left(\frac{dp^2 \log d}{\varepsilon^2}\right) \) rows and there are \(\ell = O\left(\frac{1}{\varepsilon} \log n\right) \) such groups \(k \in [\ell] \). Thus the resulting subsampled matrix has \(O\left(\frac{dp^2 \log^2 n}{\varepsilon^2}\right) \) rows for \(d \leq n \). To approximately solve the \(\ell_p \) regression
problem, Theorem 2.5 notes that for $p \geq 2$ and a subsampled matrix of size $O\left(\frac{dp^2}{\varepsilon^2} \log^2 d\right)$, we require only $O\left(\frac{dp^2}{\varepsilon^2} \log n \log \frac{1}{\varepsilon}
ight)$ calls to a linear system solver. Moreover, on an iteration t of the ℓ_p regression algorithm of [AKPS19] used in Theorem 2.5, the linear system solves the equation $x_t \leftarrow (A^\top R T A)^{-1} A^\top R_t b$ for a diagonal matrix R_T. Each linear system solve can be done in $d^\omega \text{poly} \left(\frac{1}{\varepsilon}, p, \log n\right)$ time. Hence, the total time to approximately solve the ℓ_p regression problem is $d^{0.5+\omega} \text{poly} \left(\frac{1}{\varepsilon}, p, \log n\right)$. Therefore, the total runtime is $O\left(n \log^3 n + d^{0.5+\omega} \text{poly} \left(\frac{1}{\varepsilon}, p, \log n\right)\right)$.

Moreover, because Theorem 1.1 has polynomial dependence on p rather than exponential dependence, we obtain the first known sublinear size coreset for the important problem of ℓ_∞ regression. We use the following structural property.

Lemma 2.7. Let $x \in \mathbb{R}^n$ and $p = \Omega\left(\frac{\log n}{\varepsilon}\right)$. Then $\|x\|_\infty \leq \|x\|_p \leq (1 + \varepsilon)\|x\|_\infty$.

Proof. For any vector $x \in \mathbb{R}^d$, we have

$$\|x\|_\infty = \max_{i \in \mathbb{N}} |x_i| \leq \left(\sum_{i \in \mathbb{N}} |x_i|^p\right)^{1/p} \leq n^{1/p} \max_{i \in \mathbb{N}} |x_i|.$$

Since $(1 + \varepsilon)^{3/\varepsilon^3} > e$ for all $\varepsilon > 0$, then $(1 + \varepsilon)^p > n$ for $p = \Omega\left(\frac{\log n}{\varepsilon}\right)$. Therefore,

$$n^{1/p} \max_{i \in \mathbb{N}} |x_i| \leq (1 + \varepsilon) \max_{i \in \mathbb{N}} |x_i| = (1 + \varepsilon)\|x\|_\infty.$$

Lemma 2.7 implies that to solve ℓ_∞ regression, we can instead solve ℓ_p regression for $p = \Omega\left(\frac{\log n}{\varepsilon}\right)$. Then Theorem 1.2 follows from the fact that even for $p = \Omega\left(\frac{\log n}{\varepsilon}\right)$, the matrix T in Algorithm 2 satisfies

$$(1 - \varepsilon)\|TAx - Tb''\|_p \leq \|Ax - b''\|_p \leq (1 + \varepsilon)\|TAx - Tb''\|_p$$

for all $x \in \mathbb{R}^d$. Hence, we can solve the ℓ_p regression problem on the smaller matrix T to solve the ℓ_∞ regression on A.

The results of Theorem 1.1 can be further extended to matrices with block Vandermonde structure.

Corollary 2.8. Given $\varepsilon \in (0, 1)$ and $p \geq 1$, $A \in \mathbb{R}^{n \times dq}$, and $b \in \mathbb{R}^d$, suppose $A = [A_1|\ldots|A_q]$ for Vandermonde matrices $A_1, \ldots, A_q \in \mathbb{R}^{n \times d}$. Then there exists an algorithm that, with high probability, returns a vector $\hat{x} \in \mathbb{R}^d$ such that

$$\|A\hat{x} - b\|_p \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \|Ax - b\|_p,$$

using $O\left(T(A)(dp)^{q-1} \log n + \text{poly}(dp^q \log n, 1/\varepsilon)\right)$ time, where $T(A)$ is the runtime of multiplying the matrix A by an arbitrary vector. For $q = 2$, this can be further optimized to time

$$O\left(nd^{\omega_2^2}/2^1 + \text{poly}(dp^2, \log n, 1/\varepsilon)\right),$$

where $O(n^{\omega_2})$ is the time to multiply an $n \times n$ matrix with an $n \times n^2$ matrix, so that $\omega_2 \in [3, 4]$.

14
Proof. Recall that a key part in the proof of Theorem 1.1 was to first the \(\ell_2\) regression on a Vandermonde matrix with dimension \(\mathbb{R}^{n \times d}\) to \(\ell_1\) regression on a Vandermonde matrix with dimension \(\mathbb{R}^{n \times (2^r(d-1)+1)}\), where \(2^r \leq p < 2^{r+1}\). For a matrix \(A\) with block Vandermonde structure, we can similarly write

\[
((a_i, x))^{2^r} = \left(\sum_{j=1}^{dq} a_{i,j} x_j \right)^{2^r} = \left(\sum_{k=1}^{q} \sum_{j=1}^{d} a_{i,2+(k-1)d} x_j^{2+(k-1)d} \right)^{2^r}
\]

where again each \(y_j\) is a fixed function of the coordinates of \(x\). Thus we can reshape the \(\ell_2\) regression problem on a matrix \(A\) with dimension \(\mathbb{R}^{n \times dq}\) with block Vandermonde structure to an \(\ell_1\) regression problem on a matrix \(\tilde{A}\) with dimension \(\mathbb{R}^{n \times (2^r(d-1)+1)}\). Moreover, we can further reshape \(\tilde{A}\) into the concatenation of \((dp)^{q-1}\) Vandermonde matrices, where each Vandermonde matrix has columns that are geometrically growing in \(a_{i,2}\) but are multiplied by all \((dp)^{q-1}\) products \(\prod_{k=1}^{q} a_{i,2+kd}\) where \(p_k \in [dp]\).

We can now use matrix-vector multiplication on each of the \((dp)^{q-1}\) Vandermonde matrices. Thus by Theorem 2.2, we can \(\ell_1\) Lewis weight sample from the rows of the reshaped \(\tilde{A}\), using \(O(T(A)(dp)^{q-1} \log n + (dp)^{\omega_2})\) time. We can similarly write \(((a_i, x - t_k))^2\) for each \(t_k\) among the discretized values of the updated \(b\) vector as a sum of \((2^r(d-1)+1) + 1\) terms that are all products of powers of the bases \(a_{i,2}, a_{i,2+d}, \ldots\) and a variables \(y_j\), as in the proof of Theorem 1.1. Thus we can partition the \(\ell_2\) regression problem into \(\ell = O(\log n)\) instances of a constrained \(\ell_1\) regression problem on \((dp)^{q-1}\) Vandermonde matrices, each with at most \(2^r(d-1)+1\) columns. To approximately solve the \(\ell_p\) regression problem, we can thus sample rows by their \(\ell_p^{2^r}\) Lewis weights, as in Theorem 1.1. Since there are up to \((dp)^{q-1}\) Vandermonde matrices, each with at most \(2^r(d-1)+1\) columns, then by Theorem 2.2, the total time required is

\[
O(T(A)(dp)^{q-1} \log n + (dp)^{\omega_2} \cdot \text{poly}(\log n, 1/\epsilon)).
\]

We remark that for the special case of \(q = 2\), [SGP+18] noted an efficient bivariate matrix multiplication algorithm of [NZ04, KU11].

Theorem 2.9. [NZ04, KU11, SGP+18] Given a \(q\)-variate polynomial \(f(X_1, \ldots, X_q)\) such that each variable has degree at most \(d - 1\) and \(N = d^q\) distinct points \(x(i) = (x(i)_1, \ldots, x(i)_q)\) for \(i \in [N]\), there exists an algorithm that uses \(O(d^{\omega_2(q-1)/2+1})\) time to output the vector \((f(x(1)), \ldots, f(x(N)))\), where \(O(n^{\omega_2})\) is the time to multiply an \(n \times n\) matrix with an \(n \times n^2\) matrix, so that \(\omega_2 \in [3, 4]\).

The case of a matrix-vector product for \(q = 2\) corresponds to the evaluation of \(d^2\) points in Theorem 2.9. Thus we need to repeat the algorithm in Theorem 2.9 a total of \(\frac{n}{d^2}\) times to handle all \(n\) rows in the input matrix. Since each instance of the algorithm uses \(O(d^{\omega_2/2+1})\) time, the total time for the matrix-vector product is \(O(n d^{\omega_2/2-1})\), rather than the naïve \(O(nd)\) time (recall that \(\omega_2 \in [3, 4]\)).

Corollary 2.10. Given \(\epsilon \in (0, 1)\) and \(p \geq 1\), \(A \in \mathbb{R}^{n \times 2d}\), and \(b \in \mathbb{R}^d\), suppose \(A = [A_1 | A_2]\) for Vandermonde matrices \(A_1, A_2 \in \mathbb{R}^{n \times d}\). Then there exists an algorithm that with high probability
returns a vector \(\hat{x} \in \mathbb{R}^d \) such that
\[
\| A\hat{x} - b \|_p \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \| Ax - b \|_p,
\]
using \(\mathcal{O}(nd^{p/2 - 1} + \text{poly}((dp)^2, \log n, 1/\varepsilon)) \), where \(\mathcal{O}(n^{p/2}) \) is the time to multiply an \(n \times n \) matrix with an \(n \times n^2 \) matrix.

3 \(\ell_p \) Regression for Noisy Structured and General Matrices

In this section, we obtain similar algorithms for noisy low-rank matrices and noisy Vandermonde matrices, i.e., Theorem 1.5 and Theorem 1.6. Our algorithm for noisy-low rank matrices appears in Algorithm 3 and generalizes Algorithm 2.

Algorithm 3 Faster regression for noisy low-rank matrices

Input: Rank \(k \) matrix \(K \in \mathbb{R}^{n \times d} \), matrix \(S \in \mathbb{R}^{n \times d} \) with at most \(s \) non-zero entries per row, such that \(A = K + S \), measurement vector \(b \), accuracy parameter \(\varepsilon > 0 \)

Output: \(\hat{x} \in \mathbb{R}^d \) such that \(\| A\hat{x} - b \|_p \leq (1 + O(\varepsilon)) \min_{x \in \mathbb{R}^d} \| Ax - b \|_p \)

1. \(r \leftarrow \lfloor \log p \rfloor \)
2. Extend \(A \) to a matrix \(M \) with dimension \(n \times \mathcal{O}(d^s(k + s)^2) \) so that each entry \(M_{i,j} \) is the coefficient of the \(j \)-th term in the tensor decomposition of \(a_i \).
3. Use \(\ell_{p/2'} \)-Lewis weight sampling on \(M \) to find a set \(S \) of \(\mathcal{O}(d' \log d') \) indices in \([n]\) and rescaling factors, for \(d' = \mathcal{O}(d^s(k + s)^2) \).
4. Let \(A' \) be the corresponding submatrix of \(A \) with indices in \(S \) and scaled accordingly.
5. Compute \(\hat{x} \leftarrow \min_{x \in \mathbb{R}^d} \| A'x - b \|_p \).
6. \(b' \leftarrow b - A\hat{x}, b'' \leftarrow \text{RoundTrunc}(b'), \ell \leftarrow \mathcal{O}\left(\frac{\log n}{\varepsilon}\right) \)
7. Partition the rows of \(A \) into groups \(G_1, \ldots, G_{\ell} \), each containing all rows with the same value of \(b'' \).
8. Let \(G_k \) be the corresponding submatrix and \(t_k \) be the coordinate of \(b'' \) corresponding to \(G_k \) for each \(k \in [\ell] \).
9. Use \(\ell_{p/2'} \)-Lewis weight sampling on \([G_k; t_k] \) to find a set \(S_k' \) of \(\mathcal{O}\left(\frac{d''}{\varepsilon^2} \log d''\right) \) indices in \([n]\) and rescaling factors, where \(d'' = \mathcal{O}(pd^s(k + s)^2) \).
10. Let \(T_k \) be the corresponding sampling and rescaling matrix for \(S_k' \).
11. \(T \leftarrow [T_1; \ldots; T_\ell]^\top \)
12. Compute \(\hat{x} \leftarrow (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \| TAx - Tb \|_p \).
13. \(\text{return } \hat{x} \)

We first show correctness of Algorithm 3.

Lemma 3.1. Given \(\varepsilon \in (0, 1) \) and \(p \geq 1 \), a matrix \(A \in \mathbb{R}^{n \times d} \) such that \(A = K + S \) for a rank \(k \) matrix \(K \) and an \(s \)-sparse matrix \(S \), and \(b \in \mathbb{R}^d \), there exists an algorithm that with high probability, returns a vector \(\hat{x} \in \mathbb{R}^d \) such that
\[
\| A\hat{x} - b \|_p \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \| Ax - b \|_p.
\]
Proof. The proof is similar to Lemma 2.3. We once again let \(r \) be an integer so that \(2^r \leq p < 2^{r+1} \) and observe that

\[
\sum_{i \in [n]} |\langle a_i, x \rangle|^p = \sum_{i \in [n]} \left| \langle a_i, x \rangle \right|^{2^r} = \sum_{i \in [n]} \left| \langle k_i + s_i, x \rangle \right|^{2^r}.
\]

Since \(K \) is a low-rank matrix, then for all \(k_i \), we can write

\[
k_i = \sum_{j=1}^{k} \alpha_{i,j} v_j,
\]

for a fixed set of basis vectors \(v_1, \ldots, v_k \in \mathbb{R}^d \). Hence we have

\[
\sum_{i \in [n]} |\langle a_i, x \rangle|^p = \sum_{i \in [n]} \left| \sum_{j=1}^{k} \alpha_{i,j} v_j + s_i \right|^{2^r}.
\]

Since \(S \) has sparsity \(s \), then we can further write

\[
\sum_{i \in [n]} |\langle a_i, x \rangle|^p = \sum_{i \in [n]} \left| \sum_{j=1}^{s} \beta_{i,j} e_{i,j} + \sum_{j=1}^{k} \alpha_{i,j} v_j, x \right|^{2^r}.
\]

where \(e_1, \ldots, e_d \) denote the elementary vectors. By the Hadamard Product-Kronecker Product mixed-product property, we have

\[
\sum_{i \in [n]} |\langle a_i, x \rangle|^p = \sum_{i \in [n]} \left| (y_1 \otimes \ldots y_{2^r}) \otimes x \otimes (2^r) \right|^{2^r},
\]

where each \(y_k \in \{ \alpha_{i,k} v_1, \ldots, \alpha_{i,k} v_k, \beta_{i,k} e_{i,k} \} \) for \(i \in [2^r] \). Thus for a fixed set of elementary vectors \(e_{i_1}, \ldots, e_{i_s} \), there are \((k+s)^{2^r}\) possible values for the tensor product \((y_1 \otimes \ldots y_{2^r}) \). Since there are \(\binom{d}{s} \) choices for the elementary vectors \(e_{i_1}, \ldots, e_{i_s} \), then there are at most \((Cd^s(k+s)^{2^r})\) possible values for the tensor product for an absolute constant \(C > 0 \). Therefore, the \(\ell_p \) subspace embedding problem on \(A \in \mathbb{R}^{n \times d} \) can be reshaped as a constrained \(\ell_{p/2^r} \) subspace embedding problem on an input matrix of size \(n \times (Cd^s(k+s)^{2^r}) \). Hence for \(\ell_p \) regression with \(p \in [2^r, 2^{r+1}) \), we have

\[
\sum_{i \in [n]} |\langle a_i, x \rangle|^p = \sum_{i \in [n]} \left| \sum_{j=1}^{2^r(d-1)+1} M_{i,j} y_j \right|^{p/2^r},
\]

which is a constrained \(\ell_{p/2^r} \) regression problem on a matrix \(M \) of size \(n \times (Cd^s(k+s)^{2^r}) \) whose entries can be determined from the decomposition of each row of \(A \).

Using \(\ell_{p/2^r} \) Lewis weight sampling, Theorem 2.2 implies that we can find a matrix \(M' \) such that

\[
\frac{11}{12} \left\| M' y \right\|_{p/2^r}^{p/2^r} \leq \left\| M y \right\|_{p/2^r}^{p/2^r} \leq \frac{13}{12} \left\| M' y \right\|_{p/2^r}^{p/2^r}
\]

for all \(y \in \mathbb{R}^{(Cd^s(k+s)^{2^r})} \) with high probability. By Lemma 2.1, we can thus compute a vector \(\hat{x} \) such that

\[
\left\| A \hat{x} - b \right\|_p \leq 12 \min_{x \in \mathbb{R}^d} \left\| A x - b \right\|_p.
\]
We again set \(\mathbf{b}' = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}} \) and define \(\text{OPT} = \min_{\mathbf{x}\in\mathbb{R}^d} \|\mathbf{Ax} - \mathbf{b}\|_p \), so that
\[
\|\mathbf{b}'\|_p = \|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\|_p \leq 12\text{OPT}.
\]
Let \(\mathbf{b}' = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}} \) and \(\text{OPT} = \min_{\mathbf{x}\in\mathbb{R}^d} \|\mathbf{Ax} - \mathbf{b}\|_p \), so that
\[
\|\mathbf{b}'\|_p = \|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\|_p \leq 12\text{OPT}.
\]
Let \(\mathbf{b}'' \) be the vector with all entries of \(\mathbf{b}' \) rounded to the nearest power of \((1 + \varepsilon)\), starting at the maximum entry of \(\mathbf{b}' \) in absolute value, and stopping after we are \(\frac{1}{\text{poly}(n)} \) of that and replacing all remaining entries with 0. By the triangle inequality, we have
\[
\|\mathbf{Ax} - \mathbf{b}''\|_p \leq \|\mathbf{Ax} - \mathbf{b}'\|_p + \|\mathbf{b}' - \mathbf{b}''\|_p \leq \|\mathbf{Ax} - \mathbf{b}'\|_p + 12\varepsilon\text{OPT} \leq (1 + 12\varepsilon)\|\mathbf{Ax} - \mathbf{b}''\|_p,
\]
for any \(\mathbf{x} \in \mathbb{R}^{d+1} \).

Since the coordinates of \(\mathbf{b}'' \) can have \(\ell = \mathcal{O}\left(\frac{\log n}{\varepsilon}\right) \) possible distinct values, we can partition the rows of \(\mathbf{A} \) into \(\ell \) groups, \(G_1, \ldots, G_\ell \), based on the corresponding values of \(\mathbf{b}'' \). Let \(t_m \) be the corresponding value of \(\mathbf{b}'' \) for all rows in a group \(G_m \), so that
\[
\|\mathbf{Ax} - \mathbf{b}''\|_p = \sum_{m} \sum_{i\in G_k} |\langle \mathbf{a}_i, \mathbf{x} \rangle - t_m|^p.
\]
By the above argument, we have for each \(i \in G_k \),
\[
|\langle \mathbf{a}_i, \mathbf{x} \rangle - t_m|^p = -t_m + \left(\sum_{j=1}^s \beta_{i,j} \mathbf{e}_{i,j} + \sum_{j=1}^k \alpha_{i,j} \mathbf{v}_j, \mathbf{x} \right)^{2^r} = \sum_{j=1}^{2^r} B_{i,j} t_m y_jj,
\]
where (1) \(B_{i,j} \) are entries of a matrix \(\mathbf{B} \) with \(2^r Cd^8(k+s)^2^r \) columns that can be computed from \(\mathbf{A} \), (2) \(t_{m,1}, t_{m,2}, \ldots \) are fixed values that can be computed from \(m_k \), and (3) each \(y_j \) is a fixed function of the coordinates of \(\mathbf{x} \). Notably, \(\mathbf{B} \) is the matrix formed by the concatenation of the coefficients of the decomposition of the \(\alpha \)-fold tensor product of the row into the \(\alpha \)-fold tensor products of the low-rank and sparse basis elements, for each \(\alpha = 0, \ldots, p \). By comparison, the matrix \(\mathbf{M} \) previously defined in this proof is only the decomposition for \(\alpha = p \). Hence, the \(\ell_2^r \) regression problem on a submatrix of \(\mathbf{A} \in \mathbb{R}^{n \times d} \) the same coordinate of \(\mathbf{b}'' \), can be reshaped as a constrained \(\ell_1 \) regression problem on a matrix with \(2^r Cd^8(k+s)^2^r \) columns.

The remainder of the proof follows from the same grouping argument as Theorem 1.1. We apply Theorem 2.2 by sampling rows of \(\mathbf{B} \) corresponding to their \(\ell_{2^r} \) Lewis weights in the submatrix induced by the rows of \(G_m \), we obtain a matrix \(\mathbf{T}_m \) such that with high probability,
\[
(1 - \varepsilon)\|\mathbf{T}_m \mathbf{By} - \mathbf{T}_m \mathbf{v}_m\|_{p/2^r} \leq \sum_{i\in G_m} \left(\sum_{j=1}^{2^r} B_{i,j} t_m y_j \right)^{p/2^r} \leq (1 + \varepsilon)\|\mathbf{T}_m \mathbf{By} - \mathbf{T}_m \mathbf{v}_m\|_{p/2^r},
\]
where \(\mathbf{v}_m \) is the vector restricted to the coordinates of \(\mathbf{b}'' \) that are equal to \(t_m \). Conditioning on the above inequality holding, it follows that
\[
(1 - \varepsilon)\|\mathbf{T}_m \mathbf{Ax} - \mathbf{T}_m \mathbf{v}_m\|_p \leq \sum_{i\in G_m} |\langle \mathbf{a}_i, \mathbf{x} \rangle - t_m|^p \leq (1 + \varepsilon)\|\mathbf{T}_m \mathbf{Ax} - \mathbf{T}_m \mathbf{v}_m\|_p.
\]
Therefore by summing over all $m \in [\ell]$, we have that with high probability,

\[(1 - \varepsilon) \sum_{m} \|T_{m}Ax - T_{m}v_{m}\|_{p}^{p} \leq \sum_{m} \sum_{i \in G_{m}} |(a_{i}, x) - t_{m}|^{p} \leq (1 + \varepsilon) \sum_{m} \|T_{m}Ax - T_{m}v_{m}\|_{p}^{p}.
\]

For $T = T_{1} \circ \ldots \circ T_{\ell}$, we have $\sum_{m} \|T_{m}Ax - T_{m}v_{m}\|_{p}^{p} = \|Tx - b''\|_{p}^{p}$. Since $\|Ax - b''\|_{p}^{p} = \sum_{m} \sum_{i \in G_{m}} |(a_{i}, x) - t_{m}|^{p}$, then

\[(1 - \varepsilon)\|TAx - Tb''\|_{p}^{p} \leq \|Ax - b''\|_{p}^{p} \leq (1 + \varepsilon)\|TAx - Tb''\|_{p}^{p}.
\]

Therefore for $p \geq 1$,

\[(1 - \varepsilon)\|TAx - Tb''\|_{p} \leq \|Ax - b''\|_{p} \leq (1 + \varepsilon)\|TAx - Tb''\|_{p}.
\]

Because $\ell = \mathcal{O}\left(\frac{\log n}{\varepsilon}\right)$ and $\sum O(T(G_{k})) = O(T(A))$, we can compute a vector $\hat{x} \in \mathbb{R}^{d}$ such that

\[\|A\hat{x} - b\|_{p} \leq (1 + O(\varepsilon)) \min_{x \in \mathbb{R}^{d}} \|Ax - b\|_{p}.\]

We now justify the runtime of Algorithm 3.

Lemma 3.2. Given the low-rank factorization of K, Algorithm 3 uses $n \text{ poly } (2^{p}, d^{s}, k^{p}, s^{p}, \frac{1}{\varepsilon}, \log n)$ runtime.

Proof. We analyze the runtime of Algorithm 3. First note that we can compute the extended matrix in time $\mathcal{O}(n((k + 1)d^{s}s^{p}))$ to perform the $\ell_{p/2}$ Lewis weight sampling, where we recall that r is the unique integer such that $2^{r} \leq p < 2^{r+1}$. To perform Lewis weight sampling on the extended matrix, we require matrix-vector multiplication, which requires time $\mathcal{O}(nk)$ for a low-rank matrix and time $\mathcal{O}(ns)$ for a matrix whose rows have at most s nonzero entries.

After the first iteration of Lewis weight sampling, we can round and truncate the coordinates of $b \in \mathbb{R}^{n}$ to form a vector $b'' \in \mathbb{R}^{n}$ using the procedure RoundTrunc and then forming the groups G_{1}, \ldots, G_{ℓ}, which clearly takes $\mathcal{O}(n)$ arithmetic operations combined. Once the groups are formed, we can compute the extended matrix in time $\mathcal{O}(n((k + 1)d^{s}s^{p}))$ and perform $\ell_{p/2}$ Lewis weight sampling on each group, which takes $\mathcal{O}(nk + ns)$ total time across all groups. To approximately solve the resulting ℓ_{p} regression problem formed by the subsampled rows, we require poly $(d^{s}, k^{p}, s^{p}, \frac{1}{\varepsilon})$ time. Therefore, the total runtime is $n \text{ poly } (2^{p}, d^{s}, k^{p}, s^{p}, \frac{1}{\varepsilon}, \log n)$.

Theorem 1.5 then follows from Lemma 3.1 and Lemma 3.2. Theorem 1.6 is achieved through similar analysis for a noisy Vandermonde matrix. In particular, it follows from the same proof structure as Lemma 2.3 by showing for $2^{r} \leq p < 2^{r+1}$, the ℓ_{2r} subspace embedding problem on $A = V + S$ for a given Vandermonde matrix $V \in \mathbb{R}^{n \times d}$ and a sparse matrix $S \in \mathbb{R}^{n \times d}$ can be reshaped as a constrained ℓ_{1} subspace embedding problem on an input Vandermonde matrix of size $n \times d'$, where $d' = (d^{s})(s^{p})(pd)$.

Finally, we describe in Algorithm 4 a practical approach for ℓ_{p} regression for arbitrary matrices without requiring any structural assumptions.

Theorem 3.3. Algorithm 4 outputs a vector \hat{x} such that $\|A\hat{x} - b\|_{p} \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^{d}} \|Ax - b\|_{p}$. The runtime of Algorithm 4 is $T(n, d^{p/2}) + \text{poly } (d^{p/2}, \log n, \frac{1}{\varepsilon})$, where $T(n, d^{p/2})$ is the time to multiply a matrix of size $n \times d^{p/2}$ by a vector of length $d^{p/2}$.
Algorithm 4 Faster ℓ_p regression for general matrices

Input: Matrix $A \in \mathbb{R}^{n \times d}$, measurement vector b, accuracy parameter $\varepsilon > 0$

Output: $\hat{x} \in \mathbb{R}$ with $\|A\hat{x} - b\|_p \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \|Ax - b\|_p$, parameter $p \geq 4$

1. $r \leftarrow \lfloor \log p \rfloor - 1 > 2^{r+1} \leq p < 2^{r+2}$.
2. Extend A to a matrix M with dimension $n \times \mathcal{O}(d^{2r})$ so that each row in M_i is the 2^r-fold tensor product of a_i reshaped into a d^{2^r} length vector.
3. Use $\ell_{p/2^r}$-Lewis weight sampling on M to find a set S of $\mathcal{O}(d^{p/2} \log d)$ indices in $[n]$ and rescaling factors.
4. Let A' be the corresponding submatrix of A with indices in S and scaled accordingly.
5. Compute $\hat{x} \leq 5 \min_{x \in \mathbb{R}^d} \|A'x - b\|_p$.
6. $b' \leftarrow b - A\hat{x}$, $b'' \leftarrow \text{RoundTrunc}(b')$, $\ell \leftarrow \mathcal{O}\left(\frac{\log n}{\varepsilon}\right)$
7. Partition the rows of A into groups G_1, \ldots, G_{ℓ}, each containing all rows with the same value of b''.
8. Let G_k be the corresponding submatrix and t_k be the coordinate of b'' corresponding to G_k for each $k \in [\ell]$.
9. Use $\ell_{p/2^r}$-Lewis weight sampling on $[G_k; t_k]$ to find a set S'_k of $\mathcal{O}\left(\frac{1}{\varepsilon^2} d^{p/2} \log d\right)$ indices in $[n]$ and rescaling factors.
10. Let T_k be the corresponding rows with indices in S'_k and scaled accordingly.
11. $T \leftarrow [T_1; \ldots; T_{\ell}]^\top$
12. Compute $\hat{x} \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^d} \|Tx - Tb\|_p$.
13. **return** \hat{x}

Theorem 3.3 achieves the same optimal sample complexity as previous ℓ_p Lewis weight algorithms of roughly $d^{p/2}$. However, the main advantage of Algorithm 4 is that it performs ℓ_q Lewis weight sampling for some $q \in [2, 4)$, which is quite efficient because we can use an iterative method rather than solving a convex program.

4 Applications to Polynomial Regression

In the polynomial regression problem, the goal is to find a degree d polynomial \hat{q} such that

$$\|\hat{q}(t) - f(t)\|_p^p \leq (1 + \varepsilon) \cdot \min_{q: \text{deg}(q) \leq d} \|q(t) - f(t)\|_p^p,$$

where $\varepsilon > 0$ is an accuracy parameter given as input and $\|\cdot\|_p^p$ is the ℓ_p norm to the p^{th} power, $\|g\|_p^p = \int_{-1}^{1} |g(t)|^p dt$. The polynomial regression problem is a fundamental problem in statistics, computational mathematics, machine learning, and more. The problem has been studied as early as the 19th century with the work of Legendre and Gauss on least squares polynomial regression and has applications in learning half-spaces [KKMS08], solving parametric PDEs [HD15], and surface reconstruction [Pra87].

Given the flexibility to choose query locations x_1, \ldots, x_s, we can consider the polynomial regression problem as an active learning or experimental design problem. Thus we would like to minimize the number of queries s, as a function of the approximation degree d, the norm p, and the accuracy parameter ε, to find \hat{q}. Observe that $d + 1$ queries are obviously necessary, but also that $d + 1$ queries suffice when f can be exactly fit by a degree d polynomial, by using direct interpolation. In
general, however, in the case when \(\min_{q: \deg(q) \leq d} \| q(t) - f(t) \|_p^p \neq 0 \) we require \(s > d + 1 \) queries. Our Vandermonde \(\ell_p \) regression results can be used to give the first result showing that for all \(p \geq 1, \) \(d \exp(O(p)) \cdot \poly\left(\frac{1}{\varepsilon}\right) \) queries suffice to obtain a \((1 + \varepsilon)\)-approximation to the best polynomial fit.

We require the following structural theorem reducing the \(\ell_p \) polynomial regression problem to a problem of solving \(\ell_p \) regression on Vandermonde matrices:

Theorem 4.1. [KKP17, MMM+21] Suppose \(s_1, \ldots, s_n \) are drawn uniformly from \([-1, 1] \). Let \(A \in \mathbb{R}^{n_0 \times (d+1)} \) be the associated Vandermonde matrix, so that \(A_{i,j} = s_i^{j-1} \). Let \(n_0 = \exp(O(p))\tilde{O}\left(\frac{1}{\varepsilon^{2+2p}} d^5\right) \) and let \(b \in \mathbb{R}^{n_0} \) be the evaluations of \(f \), so that \(b_i = f(s_i) \). Then with probability \(1/12 \), the sketched solution \(\hat{x} = \arg\min_{x} \| Ax - b \|_p \) satisfies

\[
\| P x - f \|_p \leq (1 + \varepsilon) \min_{x \in \mathbb{R}^{d+1}} \| P x - f \|_p.
\]

Theorem 4.1 states that we can uniformly sample \(\exp(O(p)) \cdot \poly\left(d, \frac{1}{\varepsilon}\right) \) points from \([-1, 1] \). We can then form an \(\ell_p \) regression problem by using the evaluation of each of the polynomial bases at the sampled points to form the measurement vector \(b \) and querying the underlying signal \(f \) at the sampled points to form the measurement \(b \). **Theorem 4.1** says that the optimal solution \(\hat{x} = \arg\min_{x} \| Ax - b \|_p \) is a \((1 + \varepsilon)\)-approximation to the best fit degree \(d \) polynomial. We can naïvely approximately solve the \(\ell_p \) regression on the Vandermonde matrix \(A \) and the measurement vector \(b \) by standard \(\ell_p \) regression techniques such as Lewis weight sampling, which would result in total query complexity \(\exp(O(p))\tilde{O}\left(\frac{1}{\varepsilon^{2+2p}} d^5\right) \). However, we can instead note that **Lemma 1.4** implies we can instead solve an \(\ell_q \) regression problem on a Vandermonde matrix with \(O(dp) \) columns for \(q \in [1, 2] \). Crucially for \(q \in [1, 2] \), there exist active \(\ell_q \) regression algorithms that only require reading \(\tilde{O}(d) \cdot \poly\left(\frac{1}{\varepsilon}\right) \) entries of \(b \):

Theorem 4.2. [MMWY21] Given \(p \in [1, 2] \) and an input matrix \(A \in \mathbb{R}^{n \times d} \), there exists an algorithm that reads \(\tilde{O}(d) \cdot \poly\left(\frac{1}{\varepsilon}\right) \) entries of \(b \) and with probability at least 0.99, outputs \(\tilde{x} \) such that

\[
\| Ax - b \|_p \leq (1 + \varepsilon) \min_{x} \| Ax - b \|_p.
\]

Hence by **Theorem 4.2**, we can approximately solve the \(\ell_q \) regression on a Vandermonde matrix with \(dp \) rows by reading \(\tilde{O}(dp) \cdot \poly\left(\frac{1}{\varepsilon}\right) \) entries of \(b \). By **Lemma 1.4**, the approximate solution will also be a \((1 + \varepsilon)\)-approximation to the optimal \(\ell_p \) regression on the Vandermonde matrix \(A \). By **Theorem 4.1**, the approximate solution will also form the coefficient vector of a polynomial that is a \((1 + \varepsilon)\)-approximation to the polynomial \(\ell_p \) regression problem. Therefore, we obtain the following guarantees for the polynomial regression problem:

Theorem 4.3. For any degree \(d \) and norm \(p \geq 1 \), there exists an algorithm that queries \(f \) at \(s = dp \cdot \poly\left(\log(dp), \frac{1}{\varepsilon}\right) \) points and outputs a degree \(d \) polynomial \(\hat{q}(t) \) such that

\[
\| \hat{q}(t) - f(t) \|_p^p \leq (1 + \varepsilon) \cdot \min_{q: \deg(q) \leq d} \| q(t) - f(t) \|_p^p,
\]

with probability at least \(\frac{2}{3} \).

The previous-best algorithm [KKP17, MMM+21] for \(\ell_p \) polynomial regression sampled \(O\left(d^5\right) \) points uniform from \([-1, 1] \) and then used standard \(\ell_p \) regression algorithms that required reading the signal at all \(O\left(d^5\right) \) sampled points, for a total query complexity of \(O\left(d^5\right) \). By comparison, **Theorem 4.3** only has linear dependency in \(d \) due to the structural property of **Lemma 1.4**. Since \(\Omega(d) \) queries are clearly necessary, our result settles the dependency of \(d \) in the query complexity for \(\ell_p \) polynomial regression for all \(d \) and all \(p \geq 1 \).
5 Empirical Verification

We provide empirical evidence to validate our core statistical claim about Vandermonde regression: that the relative error ε achieved by $\ell_{p/2}$ Lewis Weight subsampling is polynomial in p, and not exponential in p. More precisely, we compute the gap between the error achieved from exact ℓ_p Vandermonde regression and the error achieved from the subsampled regression:

$$\varepsilon_{\text{empirical}} = \frac{\|\hat{V}\hat{x} - b\|_p - \|Vx^* - b\|_p}{\|Vx^* - b\|_p}$$

Our theory tells us that $(\varepsilon_{\text{empirical}})^3 \leq \tilde{O}\left(\frac{dp^2}{m}\right)$, where m is the total number of subsampled rows. The prior work on unstructured matrices instead suggests $(\varepsilon_{\text{empirical}})^c \leq \tilde{O}\left(\frac{d^{O(p)}}{m}\right)$ [SW19]. So, to visually distinguish these two settings, we look at the logarithm of both sides:

$$\log(\varepsilon_{\text{empirical}}) \leq O\left(\ln(p) + \ln\left(\frac{d}{m}\right)\right) \quad \text{OR} \quad \log(\varepsilon_{\text{empirical}}) \leq O\left(p \ln(d) + \ln\left(\frac{1}{m}\right)\right)$$

In particular, our work suggests a logarithmic dependence on p, while the prior work suggests a linear dependence on p.

To validate our theory, we plot $\log(\varepsilon_{\text{empirical}})$ versus p and m on synthetic data. Specifically, we generate $n = 25,000$ i.i.d. $N(0, 1)$ times samples to form a Vandermonde matrix V with $d = 20$ columns, then compute the polynomial $q(t) = t^{10}$ at each time sample, add $N(0, 10^{10})$ additive noise, and save the corresponding values in b. We then compute $\varepsilon_{\text{empirical}}$ for this ℓ_p regression problem.

Notably, in order to compute \hat{x}, we omit the rounding procedure in our code, since the rounding is designed for worst-case inputs. Instead, we simply compute \hat{x} by solving $\min_x \|\hat{V}\hat{x} - \hat{b}\|_p$ where \hat{V} and \hat{b} are computed by sampling and rescaling V and b with the $\ell_{p/2}$ Lewis Weights.

Figure 2 shows the result of these experiments, which were run in Julia 1.6.1, on Windows 10 with an Intel i7-7700K CPU and 16Gb RAM. In Figure 2a, we fix $m = 1000$ and vary $p \in [2, 25]$.
The trendline of Lewis Weight sampling clearly better fits a logarithmic model, as opposed to a linear model. This reinforces our analysis by showing that the dependence on p is notably sub-exponential, beating the known bounds for ℓ_p subsampling on unstructured matrices.

As a benchmark, we first compare our Lewis Weight sampling method to uniform sampling. The noise in b is large enough that most rows of A have little information about the underlying polynomial $q(t)$. Lewis weight sampling takes avoids these rows, while uniform sampling does not, explaining why uniform sampling is much weaker in Figure 2a. Further, in Figure 2b, we fix $p = 6$ and vary $m \in [100, 3000]$, showing that Lewis Weight sampling outperforms uniform sampling across both m and p.

We also experimentally demonstrate similar results for unstructured matrix regression, verifying that $\ell_{p/2}$ Lewis Weight sampling works for unstructured matrices, thereby validating the analysis of Theorem 3.3. We take a similar approach as before to verify that $\ell_{p/2}$ Lewis Weight sampling is correct for ℓ_p regression on unstructured matrices. For this test, we fix $n = 25,000$, $d = 10$, and $p = 6$, while varying $m \in [1, 1000]$. We let $A = \begin{bmatrix} G_1 & 0 \\ 0 & G_2 \end{bmatrix}$ where $G_1 \in \mathbb{R}^{100 \times 6}$ and $G_2 \in \mathbb{R}^{24,900 \times 4}$ are i.i.d. $N(0, 1)$ matrices. To generate b, we sample a vector $x \in \mathbb{R}^{10}$ whose first 6 entries are $N(0, 100^2)$ and remaining 4 entries are $N(0, 1)$, and let $b = Ax + z$ where $z \in \mathbb{R}^{25,000}$ is a $N(0, 1)$ iid vector.

We generate this matrix A and response vector b just once and run $\ell_{p/2}$ Lewis Weight sampling many times, so the variance in the plot comes only from the random sampling algorithms. Note that we again omit the rounding procedure on b. Figure 3 shows the result of this test, and we clearly see that the error shrinks quickly in m for our algorithm. This approach is much more practical than the prior Lewis Weight approximation method for unstructured matrices when $p > 4$. That approach required solving a non-linearly constrained SDP $O(\log n)$ times [CP15], while our method requires only a Gaussian sketch matrix and the standard Lewis Weight Iteration, which converges very quickly.

Since b is so large on its first 100 entries, it is important for any subsampling algorithm to sample at least 6 of the first 100 rows. Uniform sampling picks none of these rows until $m \approx \frac{25000}{100} = 250$, which is why uniform sampling fails to converge to a good solution for small m. Lewis weight sampling instead gives much higher priority to the first 100 rows, avoiding any issue. This is why the the gap between Lewis Weight sampling and uniform sampling is so large for this experiment.

Acknowledgements

Cameron Musco was supported by NSF grants 2046235 and 1763618, and an Adobe Research grant. David P. Woodruff and Samson Zhou were supported by National Institute of Health grant 5401 HG 10798-2 and a Simons Investigator Award. Christopher Musco and Raphael Meyer were supported by NSF grant 2045590 and DOE Award DE-SC0022266.

References

[AKM+19] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir Zandieh. A universal sampling method for reconstructing signals with simple fourier transforms. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 1051–1063, 2019.
Fig. 3: Empirical Relative Error ($\epsilon_{\text{empirical}}$) versus subsample complexity m. We ran the experiment 50 times and plot the median, 25th quartile, and 75th quartile for each value of m.

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement for l_p-norm regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1405–1424, 2019. 1, 14

[APS19] Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent IRLS algorithm for p-norm linear regression. In Advances in Neural Information Processing Systems 32, NeurIPS, pages 14166–14177, 2019. 1, 13

[ASW13] Haim Avron, Vikas Sindhwani, and David P. Woodruff. Sketching structured matrices for faster nonlinear regression. In 27th Annual Conference on Neural Information Processing Systems. Proceedings, pages 2994–3002, 2013. 3

[BDM+20] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding window models. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 517–528, 2020. 7

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and Samson Zhou. Adversarial robustness of streaming algorithms through importance sampling. CoRR, abs/2106.14952, 2021. 7

[CCDS20] Rachit Chhaya, Jayesh Choudhari, Anirban Dasgupta, and Supratim Shit. Streaming coresets for symmetric tensor factorization. In Proceedings of the 37th International Conference on Machine Learning, ICML, pages 1855–1865, 2020. 7

[CD21] Xue Chen and Michal Derezinski. Query complexity of least absolute deviation regression via robust uniform convergence. In Conference on Learning Theory, COLT, pages 1144–1179, 2021. 7

[CDM+16] Kenneth L. Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, Xiangrui Meng, and David P. Woodruff. The fast cauchy transform and faster robust linear regression. SIAM J. Comput., 45(3):763–810, 2016. 7

24
[CDW18] Graham Cormode, Charlie Dickens, and David P. Woodruff. Leveraging well-conditioned bases: Streaming and distributed summaries in minkowski p-norms. In Proceedings of the 35th International Conference on Machine Learning, ICML, pages 1048–1056, 2018.

[CH06] Samprit Chatterjee and Ali S Hadi. Regression analysis by example, volume 607. John Wiley and Sons, 2006.

[CP15] Michael B. Cohen and Richard Peng. l_p row sampling by lewis weights. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC, pages 183–192, 2015.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity time. In Symposium on Theory of Computing Conference, STOC, pages 81–90, 2013.

[CWW19] Kenneth L. Clarkson, Ruosong Wang, and David P. Woodruff. Dimensionality reduction for tukey regression. In Proceedings of the 36th International Conference on Machine Learning, ICML, pages 1262–1271, 2019.

[DDH+08] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney. Sampling algorithms and coresets for l_p regression. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 932–941, 2008.

[DLS18] David Durfee, Kevin A. Lai, and Saurabh Sawlani. l_1 regression using lewis weights preconditioning and stochastic gradient descent. In Conference On Learning Theory, COLT, pages 1626–1656, 2018.

[ELMM20] Yonina C. Eldar, Jerry Li, Cameron Musco, and Christopher Musco. Sample efficient toeplitz covariance estimation. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 378–397, 2020.

[FHT+01] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of statistical learning. Springer series in statistics New York, 2001.

[FLPS21] Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing lewis weights to high precision. CoRR, abs/2110.15563, 2021.

[Ger74] JD Gergonne. The application of the method of least squares to the interpolation of sequences. Historia Mathematica, 1(4):439–447, 1974.

[GO94] I Gohberg and V Olshevsky. Complexity of multiplication with vectors for structured matrices. Linear Algebra and Its Applications, 202:163–192, 1994.

[HD15] Jerrad Hampton and Alireza Doostan. Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Computer Methods in Applied Mechanics and Engineering, 290:73–97, 2015.
[KKMS08] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio.
Agnostically learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, 2008.
2, 20

[KKP17] Daniel Kane, Sushrut Karmalkar, and Eric Price. Robust polynomial regression up to
the information theoretic limit. In 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pages 391–402, 2017. 21

[KU11] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM J. Comput., 40(6):1767–1802, 2011. 15

[LWW21] Yi Li, Ruosong Wang, and David P. Woodruff. Tight bounds for the subspace sketch
problem with applications. SIAM J. Comput., 50(4):1287–1335, 2021. 2, 4, 7

[Mac78] Ian B MacNeill. Properties of sequences of partial sums of polynomial regression
residuals with applications to tests for change of regression at unknown times. The
Annals of Statistics, pages 422–433, 1978. 2

[MM13] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Symposium on
Theory of Computing Conference, STOC, pages 91–100. ACM, 2013. 7

[MMM+21] Raphael Meyer, Cameron Musco, Christopher Musco, David Woodruff, and Samson
Zhou. Chebyshev sampling is universal for \(l_p\) polynomial regression, 2021. 7, 21

[MMWY21] Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active
sampling for linear regression beyond the \(l_2\) norm. CoRR, abs/2111.04888, 2021. 7,
21

[NN13] Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra algorithms
via sparser subspace embeddings. In 54th Annual IEEE Symposium on Foundations
of Computer Science, FOCS, pages 117–126, 2013. 7

[NZ04] Michael Nüsken and Martin Ziegler. Fast multipoint evaluation of bivariate polynomials.
In Algorithms - ESA, 12th Annual European Symposium, Proceedings, pages
544–555, 2004. 15

[PPP21] Aditya Parulekar, Advait Parulekar, and Eric Price. \(l_1\) regression with lewis weights
subsampling. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 49:1–49:21, 2021. 7

[Pra87] Vaughan Pratt. Direct least-squares fitting of algebraic surfaces. ACM SIGGRAPH
computer graphics, 21(4):145–152, 1987. 2, 20

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), Proceedings, pages 143–152. IEEE Computer Society, 2006. 7

[SGP+18] Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A
two-pronged progress in structured dense matrix vector multiplication. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1060–1079, 2018. 15

[SW11] Christian Sohler and David P. Woodruff. Subspace embeddings for the l_1-norm with applications. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pages 755–764, 2011. 7

[SW19] Xiaofei Shi and David P. Woodruff. Sublinear time numerical linear algebra for structured matrices. In The Thirty-Third AAAI Conference on Artificial Intelligence, pages 4918–4925, 2019. 2, 3, 11, 22

[WW19] Ruosong Wang and David P. Woodruff. Tight bounds for l_p oblivious subspace embeddings. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1825–1843, 2019. 7

[WZ13] David P. Woodruff and Qin Zhang. Subspace embeddings and l_p-regression using exponential random variables. In COLT 2013 - The 26th Annual Conference on Learning Theory, pages 546–567, 2013. 7