INCREASING OF THE EXPRESSION OF RECOMBINANT scFv-ANTIBODIES EFFICIENCY O.V. Galkin, T.O. Chudina, A.A. Siromolot, O.S. Oliynyk

Universal Decimal Classification: 577.27:616.097

"Biotechnologia Acta" V. 10, No 5, 2017
https://doi.org/10.15407/biotech10.05.019
P. 19-29, Bibliography 16, English
Universal Decimal Classification: 577.27:616.097

INCREASING OF THE EXPRESSION OF RECOMBINANT scFv-ANTIBODIES EFFICIENCY

O.V. Galkin 1, T.O. Chudina 1,2, A.A. Siromolot 1, O.S. Oliynyk 1

1 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine (NASU), Kyiv
Obtaining single-chain variable fragments (scFv) of recombinant antibodies in *E. coli* cells is often associated with numerous problems causing low yields or inactive conformation of the product.

The aim of this work was to study the influence of staphylococcal protein A fragment fused with scFv antibodies (SpA-tag) on the efficiency of expression of final product. Examination of scFv antibodies of different origin and specificity has shown that in similar expression systems fused scFv is synthesized in much higher quantities than free scFv. Furthermore, the scFv antibodies in fused form retained their antigen-binding properties and the SpA fragment the ability to bind other immunoglobulins.

Thus, the proposed strategy can be considered effective in improving the efficiency of scFv-antibodies production in *E. coli* cells.

Key words: scFv-antibodies, protein A *Staphylococcus aureus*, chimeric proteins, *E. coli*.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017

{spoiler title=References}

1. Backmann N., Zahnd C., Huber F., Bietsch A., Plückthun A., Lang H. P., Güntherodt H. J.,

 egner M., *Gerber C.*. A label-free immunosensor array using single-chain antibody fragments. *Proc. Natl. Acad. Sci. USA.*
 2005, V. 102, P. 14587–14592. doi: 10.1073/pnas.0504917102/
2. Shen Z., Stryker G.A., Mernaugh R.L., Yu L., Yan H., Zeng X.. Single chain fragment variable antibody piezoimmunosensors. *Anal. Chem*. 2005, 77(3), 797–805. doi: 10.1021/ac048655w

3. Miller K.D., Weaver-Feldhaus J., Gray S.A., Siegel R.W., Feldhaus M.J. Production, purification, and characterization of humanscFv antibodies expressed in *Saccharomyces cerevisiae*, *Pichia pastoris*, and *Escherichia coli*. *Protein Expr. Purif*. 2005, 42(2), 255–267. doi: 10.1016/j.pep.2005.04.015

4. Gu Z., Weidenhaupt M., Ivanova N., Pavlov M., Xu B., Su Z.G., Janson J.C.. Chromatographic Methods for the Isolation of, and Refolding of Proteins from, *Escherichia coli* Inclusion Bodies. *Protein Expres. Purif*. 2002, (25), 174–179. doi: 10.1006/prep.2002.1624

5. Heo M. A., Kim S. H., Kim S. Y., Kim Y. J., Chung J., Oh M. K., Lee S. G. Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of *Escherichia coli*. *Protein Expr. Purif*. 2006, 47(1), 203–209. doi: 10.1016/j.pep.2005.12.003

6. Jurado P., de Lorenzo V., Fernández L.A. Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of *Escherichia coli*: evidence that chaperone activity is the prime effect of thioredoxin. *J. Mol. Biol*. 2006, 357(1), 49–61. doi: 10.1016/j.jmb.2005.12.058
7. Oliinyk O. S., Kaberniuk A. A., Redchuk T. A., Kolibo D. V., Komisarenko S. V. Construction of bifunctional molecules specific to antigen and antibody’s Fc-fragment by fusion of cFv antibodies with staphylococcal protein A. Biopolymers and Cell. 2009, 25(3), 245–249. doi:10.7124/bc.0007E3

8. Unverdorben F., Färber-Schwarz A., Richter F., Hutt M., Kontermann R.E.. Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal protein A. Protein Eng Des Sel. 2012, 25(2), 81–87. doi: 10.1093/protein/gzr061

9. Oliinyk O.S., Kaberniuk A.A., Redchuk T.A., Kolibo D.V., Komisarenko S.V. Cloning and expression of a functionally active fragment DEAA* protein A S taphylococcus aureus. Biotekhnolohiia. 2009, 2(1), 59–68. (In Ukrainian).

10. Schägger H., von Jagow G. Anal. Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Biochem. 1987, (166), 368–379.

11. Oliinyk O. S., Kaberniuk A. A., Redchuk T. A., Korotkevich N. V., Labyntsev A. U., Romanyuk S. I., Kolibo D. V., Komisarenko S. V. Construction of immune library of murine immunoglobulin genes and screening of single chain Fv-antibodies to diphtheria toxin B subunit. Ukr Biochem J. 2009, 1 (2), 68–79. (In Ukrainian).

12. Avramopoulou V., Mamalaki A., Tzartos S. J. Soluble, oligomeric, and ligand-binding extracellular domain of the human alpha7 acetylcholine receptor expressed in yeast: replacement of the hydrophobic cysteine loop by the hydrophilic loop of the AChbinding protein enhances protein solubility. J. Biol. Chem. 2004, 10 (37), 38287–38293. doi: 10.1074/jbc.M402533200
13. Heel T., Paal M., Schneider R., Auer B. Dissection of an old protein reveals a novel application: domain D of Staphylococcus aureus Protein A (sSpAD) as a secretion—tag. *Microb Cell Fact.* 2010, 23(9), 92. doi: 10.1186/1475-2859-9-92

14. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., Winter G. Multisubunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. *Nucleic Acids Res.* 1991, 19(15), 4133–4137. doi:10.1093/nar/19.15.4133

15. Oliinyk O. S., Kaberniuk A. A., Kolibo D. V., Komisarenko S. V. Isolation and characterisation of recombinant single chain variable fragment antibodies (scfv) against human heparinbinding EGF-like growth factor (HBEGF). *Biotekhnolohiia.* 2012, 5(6), 47–56. (In Ukrainian).

16. Oliinyk O. S., Kaberniuk A. A., Burkaleva D. O., Romaniuk S. I., Kolibo D. V., Shepelyakovsky A. O., Laman A. G., Komisarenko S. V. Obtaining of recombinant scFv-antibodies against diphtheria toxin using phage display system. *Ukr. Biochem. J.* 2007, 79(5), 91–97. (In Ukrainian).