Research Article

On a Dual Direct Cosine Simplex Type Algorithm and Its Computational Behavior

Elsayed Badr and Sultan Almotairi

1Scientific Computing Department, Faculty of Computers & Artificial Intelligence, Benha University, Benha, Egypt
2Higher Technological Institute, 10th of Ramadan City, Egypt
3Department of Natural and Applied Sciences, Community College Majmaah University, Al-Majmaah 11952, Saudi Arabia

Correspondence should be addressed to Sultan Almotairi; almotairi@mu.edu.sa

Received 1 February 2020; Revised 4 April 2020; Accepted 6 April 2020; Published 11 May 2020

Academic Editor: Giuseppe D’Aniello

Copyright © 2020 Elsayed Badr and Sultan Almotairi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The goal of this paper is to propose a dual version of the direct cosine simplex algorithm (DDCA) for general linear problems. The proposed method has no artificial variables, so it is different from both the two-phase method and big-M method. Our technique solves the dual Klee–Minty problem via two iterations and solves the dual Clausen problem via four iterations. The power of the proposed algorithm is evident from the extensive experimental results on benchmark problems adapted from NETLIB. Preliminary results indicate that this dual direct cosine simplex algorithm (DDCA) reduces the number of iterations of the two-phase method.

1. Introduction

Linear programming plays an important role in the optimization theory. Many real-world problems can be formulated as linear or nonlinear mathematical models. The simplex method is the common tool for solving linear programs. It is an iterative method that was developed by Dantzig [1–3].

There are many pivot rules for the simplex-type algorithm such as the exterior point simplex algorithm [4–6], primal-dual exterior point algorithm [7], and max-out-in pivot rule [8]. It is known that the application of the simplex algorithm requires at least one basic feasible solution. On the other hand, the common techniques that are used for determining an initial feasible basis are the two-phase and big-M methods. The main drawback of these techniques lies in requiring the introduction of artificial variables and increasing the dimension of the problem. Corley et al. [9] introduced the cosine simplex algorithm for solving linear programs. Yeh and Corley [10] proposed a simple direct cosine simplex algorithm (DCA) which solves the Klee–Minty Problem [11] via two iterations. They deduced that their algorithm reduced the number of iterations of simplex in most cases in their experimental results. Li and Li [12] explained the relationship between the cosine pivot rule and the most-obtuse-angle pivot rule, proposed by Pan [13]. In this paper, we propose a dual version of a simple direct cosine simplex algorithm (DDCA) which solves the dual Klee–Minty class of problems via two iterations while the two-phase method solves this class in $n+1$ iterations where n is the size of the problem. Our technique also solves Clausen class of problems via four iterations, but the two-phase method solves this class in $2n-1$ iterations where n is the size of the problem. Our technique does not require the introduction of artificial variables.

The rest of the paper is organized as follows. Section 2 describes the proposed DDCA algorithm and its characteristics. Benchmark problems “Klee–Minty and Clausen problems” are presented in Section 3. In Section 4, we introduce illustrations of the proposed method with two examples. Computational experiments are proposed in Section 5. Finally, conclusions and future work are proposed in Section 6.

2. Dual Cosine Simplex Algorithm (DDCA)

We consider the linear programming (LP) problem in standard form:

\[(P) \max \{b^T y : A^T y = c; y \geq 0\} \] where \(A\) is an \(m \times n\) matrix, \(x\) and \(c\) are \(n\)-dimensional vectors, and \(T\) denotes transposition. The dual of \((P)\) is the problem.

\[(D) \min \{c^T x : Ax \leq b\}, \] where \(y\) is an \(m\)-dimensional vector.

For constraint \(i\) of \((D)\), define \(\cos \theta_i = (\sum_{j \in N} (a_{ij} c_j)^2) / \sum_{j \in N} (a_{ij})^2\) as the cosine of angle \(\theta_i\) between the constraints \(i\) and the objective function where \(b_i < 0\) and \(N\) is the index set of the nonbasic variables (Algorithm 1).

Remark 1. There is no proof for the correctness of the above cosine criteria. Hence, it is not true for ever.

3. Benchmark Problems

In this section, we present two well-known classes of linear programming problems, Klee-Minty class of problems [11] is the first problem and the other is Clausen class of problems [14] as illustrated in the following models:

\[
\text{max } \sum_{j=1}^{n} 10^{n-j} x_j \\
\text{subject to } 2 \sum_{j=1}^{i-1} 10^{n-j} x_j + x_j \leq 100^{i-1} \\
x_j \geq 0, \quad i = 1, 2, \ldots n, \\
\text{Klee-Minty problem,}
\]

\[
\text{max } \sum_{j=1}^{n} \left(\frac{4}{5}\right)^j x_j, \quad x_1 \leq 1 \\
\text{subject to } 2 \sum_{j=1}^{i-1} \left(\frac{4}{5}\right)^{i-j} x_j + x_j \leq 5^{i-1} \\
x_j \geq 0, \quad i = 2, \ldots n, \\
\text{Clausen problem.}
\]

\[
\cos \theta_1 = \#, \\
\cos \theta_2 = \frac{\left[(-3) \times (-4) + (-1)(-1)\right]^2}{(-3)^2 + (-1)^2} = \frac{169}{10} = 16.9, \\
\cos \theta_3 = \frac{\left[(-4) \times (-4) + (-3)(-1)\right]^2}{(-4)^2 + (-3)^2} = \frac{361}{25} = 14.44, \\
\cos \theta_4 = \#.
\]

The value of \(\cos \theta_2\) is bigger than the value of \(\cos \theta_1\). Therefore, the variable \(x_4\) is the leaving variable. From STEP 2, the entering variable is calculated as follows.

\[
\min \left[\frac{|b_i|}{a_{ij}} : a_{ij} \right] < 0 \text{ and } j \in N \right] = \left\{|-3/(-3)|, |-3/(-1)|\right\} = 1, \text{ and therefore, the element } x_3 \text{ is the entering variable. We can construct a new simplex table by the pivoting operations (i.e., Step 3) as shown in Iteration 1 in Table 1. We repeat all above operations until all coefficients in Row 0 are nonpositive in Iteration 3, and } x_3 = 0, x_4 = 2/5, x_5 = 9/5, \text{ and } x_6 = 1 \text{ are optimal with } z = 17/5 \text{ in the original problem.}
\]

Furthermore, the two-phase method requires 6 iterations, as shown in Table 2, without including the initial one.

4. Illustrative Examples

Example 1. Consider the following Random Linear Programming Problem:

\[
\min w = 4x_1 + x_2 \\
3x_1 + x_2 \leq 3; \quad 3x_1 + x_2 \geq 3; \quad 4x_1 + 3x_2 \geq 6; \quad x_1 \\
+2x_2 \leq 4x_1, \quad x_2 \geq 0.
\]

The variables \(x_3\) and \(x_6\) are slack variables, but the variables \(x_4\) and \(x_5\) are the surplus variables for the corresponding constraints. We calculate \(\cos \theta_i\) for every \(i = 2, 3\) in the first iteration (as follows):

Example 2. Dual Klee-Minty problem.

Consider the following dual Klee-Minty problem of size \(n = 3\):
Require: infeasible basis
While \(b_i < 0 \)

Step 1 (dual feasibility condition): let \(N \) is the index set of the nonbasic variables. The leaving variable, \(x_i \), is the basic variable having the maximum \(\cos \theta_i \) for minimization problem, where \(\cos \theta_i = \left(\sum_{j \in N} (a_{ij} c_j)^2 / \sum_{j \in N} (a_{ij})^2 \right) \) is the angle between the constraint \(i \) and the objective function. The tie is broken by choosing the most negative value in the right hand side.

Step 2 (dual optimality condition): given that \(x_i \) is the leaving variable, the entering variable is the nonbasic variable \(a_{ij} < 0 \) that corresponds to \(\min \left(b_i / a_{ij} \right): \quad a_{ij} < 0 \quad \text{and} \quad j \in N \). The ties are broken arbitrarily. If \(a_{ij} \geq 0 \) for all nonbasic variables, then the problem has no feasible solution.

Step 3: apply a pivoting

End while
The current basis is feasible
Apply the simplex algorithm.

Algorithm 1: Dual cosine simplex method (DCSM).

Table 1: The solution of Example 1 by the proposed DCSM.

Iteration	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x_6 \)	R.H.S
0	Z	-4	-1	0	0	0	0
	\(x_3 \)	3	1	1	0	0	3
	\(x_4 \)	-3	-1	0	0	0	-3
	\(x_5 \)	-4	0	0	0	0	0
	\(x_6 \)	1	2	0	0	0	1
1	Z	0	2	0	0	0	-1
	\(x_3 \)	0	0	1	1	0	-6
	\(x_4 \)	1	1/3	0	-1/3	0	0
	\(x_5 \)	0	-5/3	0	-4/3	0	-2
	\(x_6 \)	0	5/3	0	1/3	0	3
2	Z	0	0	0	-8/3	1/5	0
	\(x_3 \)	0	0	1	0	0	0
	\(x_4 \)	1	0	0	-3/5	1/5	0
	\(x_5 \)	0	1	0	4/5	-3/5	0
	\(x_6 \)	0	0	0	-1	1	3
3	Z	0	0	0	-7/5	0	-1/5
	\(x_3 \)	0	0	1	1	0	0
	\(x_4 \)	1	0	0	-2/5	0	-1/5
	\(x_5 \)	0	1	0	1/3	0	-3/5
	\(x_6 \)	0	0	0	-1	1	1

Table 2: The solution of Example 1 by the two-phase method.

Iteration	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x_6 \)	R.H.S
0 Phase1	Z'	0	0	0	0	-1	-1
	\(x_3 \)	3	1	0	0	1	0
	\(R_1 \)	3	1	-1	0	0	1
	\(R_2 \)	4	3	0	-1	0	0
	\(x_6 \)	1	2	0	0	0	1
1 Phase1	Z'	7	4	-1	-1	0	0
	\(x_5 \)	3	1	0	0	1	0
	\(R_1 \)	3	1	-1	0	0	1
	\(R_2 \)	4	3	0	-1	0	0
	\(x_6 \)	1	2	0	0	0	1
2 Phase1	Z'	0	1.67	-1	-1	-2.33	0
	\(x_1 \)	1	0.33	0	0	0.33	0
	\(R_1 \)	0	0	0	-1	0	-1
	\(R_2 \)	0	1.67	0	-1	-1.33	0
	\(x_6 \)	0	0	0	0	-0.33	0
\[
\text{subject to: } \begin{align*}
& x_1 + 20x_2 + 200x_3 \geq 100; \quad x_2 + 20x_3 \geq 10; \quad 4x_3 \\
& x_1, x_2, x_3 \geq 0.
\end{align*}
\] (4)

The variables \(x_4, x_5, \) and \(x_6 \) are the surplus variables for the corresponding constraints. We calculate the corresponding \(\cos \theta_i \) in the Iteration 0 for every \(i = 1, 2, 3 \) as follows:

\[
\begin{align*}
\cos \theta_1 &= \frac{[(-1) \times (-1) + (-20) \times (-100) + (-200) \times (-10000)]^2}{(-1)^2 + (-20)^2 + (-200)^2} = \frac{4.0008 \times 10^{12}}{40401} = 99027351.81, \\
\cos \theta_2 &= \frac{[(0) \times (-1) + (-1) \times (-100) + (-20) \times (-10000)]^2}{(0)^2 + (-1)^2 + (-20)^2} = \frac{4.004001 \times 10^{10}}{401} = 99850399, \\
\cos \theta_3 &= \frac{[(0) \times (-1) + (0) \times (-100) + (-1) \times (-10000)]^2}{(0)^2 + (0)^2 + (-1)^2} = \frac{10^8}{1} = 10^8.
\end{align*}
\]

The value of \(\cos \theta_3 \) is bigger than the values of \(\cos \theta_1 \) and \(\cos \theta_2 \). We choose \(x_6 \) as the leaving variable. The entering variable is calculated as follows (STEP 2):

\[
\min \left\{ \frac{b_j}{a_{ij}} : a_{ij} < 0 \text{ and } j \in N \right\} = \left\{ \begin{array}{c}
|\begin{array}{c}
-100 \\
-100 \\
-100
\end{array}\end{array} \right\} = \frac{1}{2}
\]

\text{(6)}
Table 4: The solution of Example 2 by the two-phase method.

Iteration	x_1	x_2	x_3	x_4	x_5	x_6	R_1	R_2	R_3	R.H.S
0 Phase 1										
	0	0	0	0	0	0	-1	-1	-1	0
	1	20	200	-1	0	0	1	0	0	100
	0	-1	-20	0	-1	0	0	1	0	10
	0	0	-1	0	0	-1	0	0	1	1

1 Phase 1										
	1	21	221	-1	-1	-1	0	0	0	111
	0	1	20	0	-1	0	0	1	0	10
	0	0	1	0	0	-1	0	0	1	1

2 Phase 1										
	-0.11	-1.10	0	0.11	-1	-1	-1.11	0	0	0.50
	0	0.05	0	0.05	-1	-1	-1.05	0	0	0.50
	-1	-10	0	-10	0	-1	10	0	0	0
	0	0.05	0	0.05	-1	-1	0	-0.05	1	0.50

| 3 Phase 1 | | | | | | | | | | |
| | | | | | | | | | | |

| 4 Phase 1 | | | | | | | | | | |
| | | | | | | | | | | |

| 5 Phase 2 | | | | | | | | | | |
| | | | | | | | | | | |

Table 5: The Tableau obtained from the dual cosine and two-phases.

Size	Dual Klee–Minty problem	Dual Clausen problem		
	Dual cosine DDCA	Two-phase method	Dual cosine DDCA	Two-phase method
1	2	1	4	3
2	2	3	4	4
3	2	4	4	5
4	2	5	4	7
5	2	6	4	9
6	2	7	4	11
7	2	8	4	13
8	2	9	4	15
9	2	10	4	17
10	2	11	4	19

Table 6: Properties of 33 NETLIB problems.

Problem name	No. of nonzeros	Density	New number of constraints	New number of variables	Number of variables	Number of “<” constrains	Number of “>” constrains	Number of “=” constrains
adlittle	465	0.0856	56	97	97	40	1	15
afiro	88	0.10185	27	32	32	19	0	8
bandm	2659	0.01847	305	472	472	0	0	305
beaconfd	3476	0.07669	173	262	262	33	0	140
brandy	2150	0.03925	220	249	249	54	0	166
etamacro	2489	0.00547	400	688	688	183	125	354
fit1d	14,430	0.0134	24	1026	1026	1038	11	1
fit1p	10,894	0.00633	627	1677	1677	399	0	627
grow15	5665	0.00976	300	645	645	600	0	300
grow22	8318	0.00666	440	946	946	880	0	440
grow7	2633	0.02083	140	301	301	280	0	140
kb2	291	0.13649	43	41	41	21	15	16
lotfi	1086	0.02305	153	308	308	42	16	95
Problem name	No. of nonzeros	Density	New number of constraints	New number of variables	Number of variables	Number of "≤" constrains	Number of "≥" constrains	Number of "≠" constrains
--------------	----------------	---------	---------------------------	------------------------	------------------	------------------------	------------------------	------------------------
recipelp	752	0.0198	91	180	180	77	43	91
sc105	281	0.02598	105	103	103	60	0	45
sc205	552	0.01326	205	203	203	114	0	91
sc50a	131	0.05458	50	48	48	30	0	20
sc50b	119	0.04958	50	48	48	30	0	20
scagr25	2029	0.00862	471	500	500	146	25	300
scagr7	553	0.03062	129	140	140	38	7	84
scfxm1	2612	0.01732	330	457	457	143	0	187
scfxm2	5229	0.00867	129	140	140	38	7	374
scfxm3	7846	0.00578	990	1371	1371	429	0	561
scsd1	3148	0.05379	77	760	760	0	0	77
scsd6	5666	0.02855	147	1350	1350	0	0	147
sctap1	2052	0.01425	300	480	480	0	180	120
share1b	1182	0.0449	117	225	225	28	0	89
share2b	730	0.09626	96	79	79	83	0	13
shell	4900	0.00303	536	1775	1775	119	9	784
ship041	8450	0.00992	402	2118	2118	40	8	354
ship04s	5810	0.00991	402	1458	1458	40	8	354
stair	3857	0.0186	356	467	467	153	0	698
stocfor1	474	0.0365	117	111	111	48	6	63
Sum	111,017	1.09377	8539	19,531	19,531	5453	454	7079
Average	3364.152	0.03315	258.758	591.849	591.849	165.242	13.7576	214.515
Max	14,430	0.13649	990	2118	2118	1038	180	784
Min	88	0.00303	24	32	32	0	0	1

| Table 7: The classification of the benchmark problems according to the variable number range. |
Variable number range	30–99	100–500	501–99	1000–1500	1501–1999	Over 2000
Number of problems	6	15	5	4	2	1

| Table 8: A comparison between the two-phase method and the proposed DDCA. |
Problem name	Iteration number	Simplex	DCA	Difference in iteration number
adlittle	21	99	120	100
afro	6	7	13	10
bandm	828	323	1151	1042
beaconfd	132	17	149	154
brandy	731	82	813	521
etamacro	940	355	1295	944
fit1d	52	1664	1716	94
fit1p	820	2288	3108	1441
grow15	285	205	490	303
grow22	425	245	670	443
grow7	131	78	209	143
kb2	74	25	99	397
lotfi	208	164	372	126
recipelp	300	6	306	299
sc105	54	46	100	64
sc205	118	110	228	128
sc50a	24	20	44	29
sc50b	32	14	46	37
scagr25	503	869	1372	639
scagr7	126	85	211	159
scfxm1	753	252	1005	802
scfxm2	1592	322	1914	1478
scfxm3	1947	490	2437	2324
Therefore, the element x_3 is the entering variable. We can construct a new simplex table by the pivoting operations (i.e., STEP 3) as shown in Iteration 1 in Table 3. We repeat all above operations until all coefficients in Row 0 are non-positive in Iteration 3, and $x_1 \leq 1$ and $x_2 = x_3 = 0$ are optimal with $z = 104$ in the original problem.

On the other hand, the two-phase method requires 5 iterations, as shown in Table 4, without including the initial one.

5. Computational Experiments

In this section, we present the computational results of the dual cosine simplex algorithm (DDCA) and two-phase method for dual Klee–Minty and dual Clausen classes of problems. We compare the number of iterations of the dual cosine simplex algorithm (DDCA) with the two-phase method. We used different tolerances to reduce the number of iterations for each benchmark problem. We used the two-phase method [3, 15–18] to evaluate the effectiveness of the proposed method. On the other hand, the two-phase method was used for the problems contain "$\geq\$" constraints and/or equality constraints.

The programming language used was MATLAB v7.01 SP2 with default options. All codes were run under 64-bit Window 8.1 Operating System having Core (TM)i5 CPU M 460 @2.53 GHz, 4.00 GB of memory.

It is clear that the basic difference between the dual cosine simplex method (DCSM) and the two-phase method is that our technique does not involve artificial variables. From Table 5, the contribution of the proposed algorithm is to solve the Klee–Minty problem and Clausen problem with 2 and 4 iterations, respectively. On the other hand, the simplex method with two-phase method spends $O(n)$ iterations for these problems.

Table 6 characterizes 33 NETLIB test problems [19] were used in comparison to evaluate the effectiveness of the proposed methods. For simplicity, we converted the bounded variables and free variables into constraints. The accuracy rates of the solution obtained from the proposed algorithms were tested by LINGO software.

Table 6 contains 6 categories of the problems according to the range of variable numbers as shown in Table 7.

Table 6 contains the largest nonzero number, density, number of variables (after transferring sign constraints), number of constraints (after transferring sign constraints), "$\leq\$" constraint number, "$\geq\$" constraint number, and "$=\$" constraint number.

In general, from Table 8, the contribution of the proposed algorithm is that DDCA is generally better than the two-phase method (22 problems vs. 11 problems). The details of our results are as follows:

(a) Six problems with the variable numbers 30–99: DDCA is better than the two-phase method (5 problems vs. one problem)

(b) Fifteen problems with the variable numbers 100–500: DDCA is better than the two-phase method (10 problems vs. 5 problems)

(c) Five problems with the variable numbers 501–999: DDCA is better than the two-phase method (4 problems vs. one problem)

(d) Four problems with the variable numbers 1000–1500: DDCA and two-phase methods are equal (2 problems vs. 2 problems)

(e) Two problems with the variable numbers 1501–1999: the two-phase method is better than DDCA (0 problems vs. 2 problems)

(f) One problem with the variable numbers over 2000: the two-phase method is better than DDCA (0 problems vs. 1 problem)

6. Conclusions

We proposed a dual version of the direct cosine simplex algorithm (DDCA) for general linear problems. The proposed method has no artificial variables, so it is different
from both the two-phase method and big-M method. Our technique solved the dual Klee–Minty problem via two iterations and solved the dual Clausen problem via four iterations. The power of the proposed algorithm is evident from the extensive experimental results on benchmark problems adapted from NETLIB. Preliminary results indicate that this dual direct cosine simplex algorithm (DDCA) reduces the number of iterations of the two-phase method. In future work, we can improve this work by using different algorithms [20–24] with other combinations between them.

Data Availability

All data and methods generated or used during the study are available within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at Majmaah University for funding this work under the project number RGP-2019-29.

References

[1] G. B. Dantzig, “Maximization of a linear function of variables subject to linear inequalities,” in Activity Analysis of Production and Allocation, T. C. Koopmans, Ed., pp. 339–347, John Wiley, Hoboken, NJ, USA, 1951.
[2] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, USA, 1963.
[3] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network Flows, John Wiley, Hoboken, NJ, USA, 3rd edition, 2004.
[4] K. Paparrizos, “An exterior point simplex algorithm for (general) linear programming problems,” Annals of Operations Research, vol. 46-47, no. 2, pp. 497–508, 1993.
[5] E. S. Badr, K. Paparrizos, N. Samaras, and A. Sifaleras, “On the basis inverse of the exterior point simplex algorithm,” in Proceedings of the 17th National Conference of Hellenic Operational Research Society (HELORS), pp. 677–687, Rio, Greece, June 2005.
[6] E. S. Badr, K. Paparrizos, B. Thanasis, and G. Varkas, “Some computational results on the efficiency of an exterior point algorithm,” in Proceedings of the 18th National Conference of Hellenic Operational Research Society (HELORS), pp. 1103–1115, Rio, Greece, June 2006.
[7] N. Samaras, A. Sifaleras, and C. Triantafyllidis, “A primal-dual exterior point algorithm for linear programming problems,” Yugoslav Journal of Operations Research, vol. 19, no. 1, pp. 123–132, 2009.
[8] M. Tipawanna and K. Sinapiromsaran, “Max-out-in pivot rule with Dantzig’s safeguarding rule for the simplex method,” in Proceedings of the 2nd International Conference on Mathematical Modeling in Physical Sciences, Prague, Czech Republic, September 2013.
[9] H. W. Corley, I. Rosenberger, W. C. Yeh, and T. K. Sung, “The cosine simplex algorithm,” The International Journal of Advanced Manufacturing Technology, vol. 27, no. 9-10, pp. 1047–1050, 2006.
[10] W.-C. Yeh and H. W. Corley, ”A simple direct cosine simplex algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 178–186, 2009.
[11] V. Klee and G. Minty, “How good is the simplex algorithm?,” in Inequalities—III, O. Shisha, Ed., pp. 159–175, Academic Press, Cambridge, MA, USA, 1972.
[12] W. Li and H. Li, “On simplex method with most-obtuse-angle rule and cosine rule,” Applied Mathematics and Computation, vol. 217, no. 20, pp. 7867–7873, 2011.
[13] P.-Q. Pan, “Practical finite pivoting rules for the simplex method,” OR Spektrum, vol. 12, no. 4, pp. 219–225, 1990.
[14] J. Clausen, “A tutorial note on the complexity of the simplex algorithm,” Technica Report NR79/16, DIKU, Copenhagen, Denmark, 1979.
[15] K. G. Murty, Linear Programming, John Wiley & Sons, Hoboken, NJ, USA, 1983.
[16] R. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer Academic Publishers, Boston, MA, USA, 2nd edition, 2001.
[17] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, Cambridge, MA, USA, 1981.
[18] F. S. Hiller and G. J. Lieberman, Introduction to Operations Research, McGraw-Hill, New York, NY, USA, 6th edition, 1995.
[19] http://www.netlib.org/lp/data.
[20] E. M. Badr and M. I. Moussa, “An upper bound of radio k-coloring problem and its integer linear programming model,” Wireless Networks, 2019.
[21] E. Badr and K. Aloufi, “A robot’s response acceleration using the metric dimension problem,” 2019, https://www.preprints.org/manuscript/201911.0194/v1.
[22] M. A. Fahmy, “Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM,” Journal of Thermal Stresses, vol. 41, no. 1, pp. 119–138, 2018.
[23] M. A. Fahmy, “Shape design sensitivity and optimization of anisotropic functionally graded smart structures using bicubic B-splines DRBEM,” Engineering Analysis with Boundary Elements, vol. 87, pp. 27–35, 2018.
[24] E. M. Badr and H. elgendy, “A Hybrid water cycle - particle swarm optimization for solving the fuzzy underground water confined steady flow,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, 2020.