Bayesian network analysis of open, laparoscopic and Robot-assisted Radical cystectomy.

Lin Dong
affiliated hospital of north sichuan medical college

Chen Lin
affiliated hospital of chengdu university

Tinghui Hu
affiliated hospital of north medical college

Xiaoxi Mou
affiliated hospital of north sichuan medical college

Cui Shu (✉ l913487290@163.com)
North Sichuan Medical University

Tao Wu
affiliated hospital of north sichuan medical college

Research article

Keywords: open radical cystectomy, laparoscopic radical cystectomy, robot-assisted radical cystectomy, bayesian network analysis

Posted Date: February 14th, 2020

DOI: https://doi.org/10.21203/rs.2.23579/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

We performed the conventional meta-analysis and network meta-analysis to evaluate the safety and efficacy of Robot-assisted Radical cystectomy (RARC) versus laparoscopic radical cystectomy (LRC) versus open radical cystectomy (ORC) for bladder cancer (BCa).

Methods

A systematic search of PubMed, Cochrane Library and Embase was performed up to until Dec 20, 2019. Outcome indexes include: oncologic outcomes: the recurrence rate, mortality; pathologic outcomes: Lymph node yield (LNY), Positive lymph node (PLN), positive surgical margins (PSM); perioperative outcomes: operating time (OP), estimated blood loss (EBL), blood transfusion rate, the length of hospital stay, and the time to regular diet. And Postoperative 90-day complications.

Results

59 articles describing 8 RCTs, 25 Prospective study, 26 Retrospective study (6944 patients) were analyzed. No significant differences were found between RARC, LEC and ORC in two oncologic outcomes: the recurrence rate and mortality. However, for the recurrence rate, patients with LRC has the highest probability, ORC has the second highest probability, and RARC has the lowest probability. For the mortality, patients with ORC has the highest probability, LRC has the second probability, and RARC has the lowest probability. In three pathologic outcomes: direct meta-analysis indicates that ORC is more than RARC or LRC in PSM and RARC is more than ORC in LNY. On the other hand, network meta-analysis indicates that ORC is more than RARC in PSM. No significant differences were found between RARC, LEC and ORC in other pathologic outcomes: LNY and PLN. For LNY, patients with RARC has the highest probability, ORC has the second highest probability, and LRC has the lowest probability by our network meta-analysis. For PLN, patients with ORC has the highest probability, LRC has the second probability, and RARC has the lowest probability by our network meta-analysis. With respect to perioperative outcomes, direct meta-analysis indicates that RARC is shorter time than LRC or ORC in OP. On the other hand, network meta-analysis indicates that patients with ORC have significantly longer OP than LRC or RARC. Direct meta-analysis and network meta-analysis both indicate that ORC is more than RARC or LRC in EBL, ORC is longer than RARC or LRC.

Conclusion

The conventional meta-analysis and network meta-analysis suggest that RARC is a safest and most effective surgical approach in the treatment of BCa and LRC rankes second. However, large sample size and more high-quality studies are still needed to further improve and verify.

Introduction
In recent years, the incidence and mortality of bladder cancer have increased significantly[1], ORC is the gold standard for muscle or non-muscle invasive bladder cancer[2]. However, its bleeding volume, operating time, the length of hospital stay and complications are significantly higher than MIRC[3, 4]. With innovation of surgical techniques, the overall survival of RARC or LRC is comparable to ORC [5]. Its safety and feasibility have been widely recognized. LRC has a history of more than 20 years. However, with the application of the robot in the clinic, RARC has obvious advantages compared with LRC in terms of bleeding volume, operation time, the length of hospital stay and complications [6]. So far, no literature has used direct and indirect comparisons to expound outcome indexes between the three approaches. Therefore, this article aims to apply network meta-analysis to compare oncology-related indicators between the three surgical approaches.

Methods

Literature search and selection

The methodology involved in this meta-analysis was based on the Preferred Reporting Items for Systematic Reviews and meta-analysis (PRISMA) statement (Table 1). The systematic literature was searched by databases such as PubMed, Cochrane Library and Embase, in addition, relevant journals were manually searched. And the Population, Intervention, Comparator, Outcomes (PICO) methodology. PICO was defined as follows: population consisted of patients had biopsy-proven clinical stage T1–T4, N0–N1, M0 bladder cancer or refractory carcinoma in situ (P), RARC or LRC or ORC: (I) or (C). the recurrence rate, mortality, OP, EBL, LNY, PLN, PSM, blood transfusion rate, the length of hospital stay, the time to regular diet, Postoperative 90-day complications (O). Retrieval Strategy was in the Search Strategy. Search the database until Dec 20, 2019. Assistance strategy by manual search found as much detailed article information as possible. After reading the full text, the data were extracted. Data extraction includes: first author, publication year, age (If mentioned), study area, type, sample size, sampling method, main observation indicators, etc.

Data extraction and quality evaluation

Two researchers independently reviewed the retrieved literature according to the inclusion and exclusion criteria. When disagreements were encountered, the third researcher was required to participate in the discussion to determine whether to include. If the following inclusion criteria were met, the studies were included in the network analysis: (1) patients were diagnosed with bladder cancer based on their pathological data; (2) patients in group had a history of ORC, LRC and RARC. (3) Outcome indexes should include at least one of the following, operating time, estimated blood loss, length of hospital stay, blood transfusion rate, PSM, positive lymph node, lymph node yield, the time to regular diet, complications. (4) It was limited a randomized controlled trial or a retrospective case control or a prospective cohort design. (5) The studies were Limited to English. Any study that did not conform the above criteria was excluded.

Statistical analysis
Statistical analysis was performed using Stata 12.0 and GeMTC 0.14.3 software. For meta-analysis, the heterogeneity test was $P < 0.1, I^2 > 50\%$, the random effect model was used; the heterogeneity test was $P > 0.1, I^2 < 50\%$, the meta-analysis was performed using a fixed utility model. The combined r values and 95% CI of each study were calculated, and the characteristics of each study result were displayed by the forest map. The Begg's test and Egger's test were used to test the publication bias. The $P < 0.05$ was considered statistically significant. For network analysis, fill in the extracted data information in the Excel table, the multiple three-arm trials were Sorted out a two-arm trial format, and a net-like relationship diagram comparing multiple interventions was drawn by Stata 12.0 software. Calculate Relative Odds Ratio and implement inconsistency test to evaluate the closed-loop consistency in the network relationship. According to the Z test, if the lower limit of 95% Confidence Interval (CI) is 1, $P > 0.05$, it is considered that is no inconsistency, the consistency model is used for network meta-analysis, otherwise, it is inconsistency, the inconsistency model is used for network meta-analysis. Use GeMTC 0.14.3 software and 4 Markov chain simulations, set the number of tuning iterations to 20,000, the number of simulation iterations to 50,000, and the thinning interval to 10. A close to 1 indicates that the model is satisfied with convergence; draw a rank probability map and predict the possible rank probability.

Results

Literature search results

A total of 2324 articles were retrieved according to the customized search strategy and 16 additional articles. 735 articles that were repeatedly published and cross-published were deleted. After reading the text and abstract, 1339 articles were excluded. After the remaining 206 articles were searched for full text, reading and quality assessment, 59 articles (6944 participants)[2, 6-63] were eventually included (Table 2). The methodological quality evaluation of 59 articles included in this study can be found in Table 3.

Direct meta-analysis

The summary odds ratios (ORs) of the outcomes (two oncologic outcomes: the recurrence rate and mortality; three pathologic outcomes: LNY, PLN and PSM; perioperative outcomes: OP, EBL, blood transfusion rate, the length of hospital stay and the time to regular diet; Postoperative 90-day complications) for each two direct comparison were calculated. The network plot of the outcomes indexes included in this meta-analysis (Figure 1) and the results of direct meta-analysis were showed in Table 4. Patients with ORC exhibited increase of OP compared to those with LRC (OR = 0.68, 95% CI = 0.56,0.80, $P < 0.0001$); Patients with ORC or LRC exhibited increase of OP compared to those with RARC (OR = 0.39, 95% CI = 0.13-0.65, $P = 0.003$). Patients with RARC or LRC exhibited decrease of EBL compared to those with ORC (OR = -1.14, 95% CI = (-1.28, -1.00), $P < 0.0001$). Patients with RARC exhibited increase of LNY compared to those with LRC (OR = 0.58, 95% CI = 0.29-0.87, $P < 0.0001$). Patients with RARC or LRC exhibited decrease of the length of hospital stay compared to those with ORC (OR = -0.42, 95% CI (-0.54, -0.30), $P < 0.0001$). Patients with RARC or LRC exhibited decrease of PSM
compared to those with ORC (OR = 0.41, 95% CI = 0.28 - 0.60, \(P < 0.0001 \); OR = 0.41, 95% CI = 0.22-0.77, \(P = 0.006 \)). Patients with RARC exhibited decrease of the time to regular diet compared to those with ORC (OR = 0.82, 95% CI = 0.69 - 0.97, \(P = 0.018 \)). When \(I^2 > 50\% \), the random effects model is applied to these comparisons.

Network meta-analysis

Table 5 summarizes all the studies within the multiple networks and shows the results of the mixed network comparisons. Patients with ORC exhibited a significantly longer of operating time than those with LRC or RARC (OR = -46.28, 95% CrI = -66.92, -27.08; OR = -65.71, 95% CrI = -84.76, -46.51). Patients with ORC exhibited a significantly more of estimated blood loss than those with LRC or RARC (OR = 414.44, 95% CrI = 289.22, 538.67; OR = 556.12, 95% CrI = 428.74, 681.33). Patients with RARC exhibited a significantly less of estimated PSM than those with ORC (OR = 0.30, 95% CrI = 0.13, 0.68). Patients with LRC or RARC exhibited a significantly less of estimated the length of hospital stay than those with ORC (OR = -1.79, 95% CrI = -2.82, -0.76; OR = -1.65, 95% CrI = -2.67, -0.62). Patients with RARC exhibited a significantly less of estimated the time to regular diet than those with ORC (OR = 1.64, 95% CrI = 1.18, 2.27). However, the recurrence rate, mortality, LNY, PLN, blood transfusion rate and postoperative 90-day complications showed no statistical significance in Table 5. But the magnitude of the probability can be shown in Figure 2-7. For the recurrence rate, Figure 2 shows that the probability of LRC is the largest, ORC is the second, and RARC is the smallest. For the mortality, Figure 3 shows that the probability of ORC is the largest, LRC is the second, and RARC is the smallest. For LNY, Figure 4 shows that the probability of RARC is the largest, ORC is the second, and LRC is the smallest. For PLN, Figure 5 shows that the probability of ORC is the largest, LRC is the second, and RARC is the smallest. For the blood transfusion rate, Figure 6 shows that the probability of ORC is the largest, RARC is the second, and LRC is the smallest. For the postoperative 90-day complications, Figure 7 shows that the probability of LRC is the largest, ORC is the second, and RARC is the smallest. As suggested by Table 6-a, no significant inconsistency between indirect and direct evidence was presented with respect to the mortality, OP, EBL, LNY, PLN, PSM, blood transfusion rate, the length of hospital stay, the time to regular diet, and Postoperative 90-day complications and thereby a consistent model was used in our analysis. As suggested by Table 6-b, significant inconsistency between indirect and direct evidence was presented with respect to the recurrence rate (ORC VS RARC) and thereby a inconsistent model was used in our analysis.

Discussion

BCa is the second most common malignant tumor in the urinary system, behind prostate cancer[1]. With the development of science and technology, the application of minimally invasive surgery in radical bladder cancer surgery has become more and more mature. Compared with ORC, RARC and LRC have many advantages[64, 65]. Notably, Reports on RARC, LRC and ORC all are direct evidence from traditional meta-analysis, but network meta-analysis contains all the research and is more convincing. There is not
only direct evidence from traditional meta-analysis but also network meta-analysis about comparing the
three surgical approaches of RARC, LRC, and ORC.

One study showed that RARC, LRC and ORC have no difference for two oncologic outcomes: the
recurrence rate and mortality\[30\]. However, For the probability of network meta-analysis, patients with
LRC has the highest probability, ORC has the second highest probability, and RARC has the lowest
probability for the recurrence rate. patients with ORC has the highest probability, LRC has the second
probability, and RARC has the lowest probability for the mortality.

Menon et al \[66\] firstly reported RARC in 2003. Since then, the research results of many scholars \[67–69\]
have shown that compared with ORC and LRC, RARC can complete a more detailed anatomy, which can
cure tumors, preserve function and control urine to achieve better result. Reducing the operative time is
considered to be beneficial for surgeons to improve the efficiency of surgery, and for patients to reduce
estimated blood loss, accelerate postoperative recovery, and reduce complications. Direct evidence from
conventional meta-analysis indicates that RARC is shorter than LRC or ORC in OP. On the other hand, our
network meta-analysis indicates that ORC have significantly longer OP than LRC or RARC. Direct evidence
from conventional meta-analysis and our network meta-analysis both indicate that ORC is more than
RARC or LRC in EBL, ORC is longer than RARC or LRC in the time to regular diet, and ORC is longer than
RARC or LRC in the length of hospital stay. The possible reason is RARC has a wide three-dimensional
field of vision, a flexible wrist with 7 degrees of freedom, and an ergonomic operating console, the
operator is less prone to fatigue\[70\].

However, there are not statistically significant for blood transfusion rate and postoperative 90-day
complications between direct meta-analysis and our network meta-analysis. But for blood transfusion
rate, patients with ORC has the highest probability, RARC has the second highest probability, and LRC has
the lowest probability by our network meta-analysis. For the 90-day postoperative complication, the
probability of patients with LRC is the largest, ORC is the second, and RARC is the smallest by our
network meta-analysis.

On the other hand, we have to consider the outcome indexes of the three surgical approaches. At the
beginning of minimally invasive surgery, ORC's surgical effect is better than MIRC. However, as surgeons
become more proficient with MIRC, MIRC is even better than ORC at this stage\[6\].

Three pathologic outcomes include PSM, LNY and PLN. Direct evidence from conventional meta-analysis
indicates that ORC is more than RARC or LRC in PSM and RARC is more than ORC in LNY. On the other
hand, our network meta-analysis indicates that ORC is more than RARC in PSM. The possible reason is
that the advantages of RARC's 3D field of view and 7 degrees of freedom make the operation under the
microscope more refined, which is an improvement on the original traditional surgical technology, which
has broadened the scope of traditional surgery\[70\].

However, there both are not statistically significant for LNY and PLN in our network meta-analysis. But for
LNY, patients with RARC has the highest probability, ORC has the second highest probability, and LRC has
the lowest probability by our network meta-analysis. For PLN, patients with ORC has the highest probability, LRC has the second probability, and RARC has the lowest probability by our network meta-analysis.

Compared LRC and ORC, RARC can better perform some difficult operations such as adhesion decomposition, hemostasis and suture and so on. The deep lymph nodes of the pelvic cavity during the operation have the characteristics of clear vision, flexible operation, fine and stable. At the same time, RARC saves operation time, reduces patient pain, accelerates patient recovery, and reduces complications. Therefore, RARC is more worthy of clinical promotion in countries and regions with conditions.

Conclusion

The conventional meta-analysis and network meta-analysis suggest that RARC is a safest and most effective surgical approach in the treatment of BCa and LRC rankes second. However, large sample size and more high-quality studies are still needed to further improve and verify.

Abbreviations

LNY = Lymph node yield, PLN = Positive lymph node, PSM = positive surgical margins, OP = operating time, EBL = estimated blood loss, BCa = Bladder Cancer, MIRC = Minimally Invasive Radical cystectomy, ORs = odds ratios

Declarations

Ethics approval and consent to participate:

The authors declare that there is no involving Ethics.

Consent for publication:

Yes

Competing interests:

The authors declare that there is no conflict of interest.

Funding:

This work was supported by City of Nanchong Strategic Cooperation with Local Universities Foundation of technology (NSMC20170421, NSMC20170111, 18SXHZ0581, 18SXHZ0128).

Authors' contributions:

Lin Dong, Chen Lin: Project development,
Acknowledgements

Thanks to Dr. Liu Xun for writing guidance.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2018, 68:394-424.

2. Sung HH, Ahn JS, Seo SI, Jeon SS, Choi HY, Lee HM, Jeong BC: A comparison of early complications between open and robot-assisted radical cystectomy. J Endourol 2012, 26:670-675.

3. Soria F, Moschini M, D'Andrea D, Abufaraj M, Foerster B, Mathieu R, Gust KM, Gontero P, Simone G, Meraney A, et al: Comparative Effectiveness in Perioperative Outcomes of Robotic versus Open Radical Cystectomy: Results from a Multicenter Contemporary Retrospective Cohort Study. European urology focus 2018.

4. Subira-Rios D, Herranz-Amo F, Moralejo-Garate M, Cano-Velasco J, Renedo-Villar T, Barbas-Bernados G, Bueno-Chomon G, Rodriguez-Fernandez E, Hernandez-Fernandez C: Post-surgical complications in patients with bladder cancer treated with cystectomy: Differences between open and laparoscopic approach. Actas urologicas espanolas 2019, 43:305-313.

5. Faraj KS, Abdul-Muhsin HM, Rose KM, Navaratnam AK, Patton MW, Eversman S, Singh R, Eversman WG, Cheney SM, Tyson MD, Castle EP: Robot Assisted Radical Cystectomy vs Open Radical Cystectomy: Over 10 years of the Mayo Clinic Experience. Urologic oncology 2019, 37:862-869.

6. Su S, Gu L, Ma X, Li H, Wang B, Shi T, Zhang X: Comparison of Laparoscopic and Robot-assisted Radical Cystectomy for Bladder Cancer: Perioperative and Oncologic Outcomes. Clinical genitourinary cancer 2019, 17:e1048-e1053.

7. Agarwal AK, Javed A, Kalayarasan R, Sakhuja P: Minimally invasive versus the conventional open surgical approach of a radical cholecystectomy for gallbladder cancer: a retrospective comparative study. HPB : the official journal of the International Hepato Pancreato Biliary Association 2015, 17:536-541.

8. AK K, KA R, LS K, JA P, JJ S, AK H: Robot-assisted laparoscopic vs open radical cystectomy: comparison of complications and perioperative oncological outcomes in 200 patients. BJU international 2013, 112:E290-294.

9. Akin Y, Celik O, Ates M, Nuhoglu B, Erdogru T: Evaluation of open and laparoscopic radical cystoprostatectomy combined with orthotopic neobladder: a single-surgeon experience. Urologia internationalis 2013, 90:348-353.
10. Atmaca AF, Canda AE, Gok B, Akbulut Z, Altinova S, Balbay MD: **Open versus robotic radical cystectomy with intracorporeal Studer diversion.** *JSLS : Journal of the Society of Laparoendoscopic Surgeons* 2015, **19**:e2014.00193.

11. Basillote JB, Abdelshheid C, Ahlering TE, Shanberg AM: **Laparoscopic assisted radical cystectomy with ileal neobladder: a comparison with the open approach.** *The Journal of urology* 2004, **172**:489-493.

12. BH B, G D, KH M, DD S, J L, SM D, JA C, A V, HW H, VP L: **Randomized Trial Comparing Open Radical Cystectomy and Robot-assisted Laparoscopic Radical Cystectomy: Oncologic Outcomes.** *European urology* 2018, **74**:465-471.

13. Bochner BH, Dalbagni G, Sjoberg DD, Silberstein J, Keren Paz GE, Donat SM, Coleman JA, Mathew S, Vickers A, Schnorr GC, et al.: **Comparing Open Radical Cystectomy and Robot-assisted Laparoscopic Radical Cystectomy: a Randomized Clinical Trial.** *European urology* 2015, **67**:1042-1050.

14. Borghesi M, Schiavina R, Antonelli A, Buizza C, Celia A, Parma P, De Concilio B, Mengoni F, Romagnoli D, Saraceni G, et al: **Peri-Operative Outcomes after Open and Robot-Assisted Radical Cystectomy by Using an Advanced Bipolar Seal and Cut Technology (Caiman(R)): A Prospective, Comparative, and Multi-Institutional Study.** *Current urology* 2019, **12**:64-69.

15. Cusano A, Haddock P, Jr., Jackson M, Staff I, Wagner J, Meraney A: **A comparison of preliminary oncologic outcome and postoperative complications between patients undergoing either open or robotic radical cystectomy.** *International braz j urol : official journal of the Brazilian Society of Urology* 2016, **42**:663-670.

16. Dosis A, Dhliwayo B, Jones P, Kovacevic I, Yee J, Ali O, Javle P, Blades R: **Open cystectomy is still alive and well: outcomes from a single-centre 6-year review.** *Journal of clinical urology* 2018.

17. Flamiatos JF, Chen Y, Lambert WE, Martinez Acevedo A, Becker TM, Bash JC, Amling CL: **Open versus robot-assisted radical cystectomy: 30-day perioperative comparison and predictors for cost-to-patient, complication, and readmission.** *Journal of robotic surgery* 2019, **13**:129-140.

18. Galich A, Sterrett S, Nazemi T, Pohlman G, Smith L, Balaji KC: **Comparative analysis of early perioperative outcomes following radical cystectomy by either the robotic or open method.** *JSLS : Journal of the Society of Laparoendoscopic Surgeons* 2006, **10**:145-150.

19. Gan C, Ismail F, G C: **A pilot prospective single-centre 3-arm randomised controlled trial of open, robotic and laparoscopic (CORAL) radical cystectomy for bladder cancer.** *Eur Urol Suppl* 2013, **2013**:e1033-e1034.

20. Gandaglia G, Karl A, Novara G, de Groote R, Buchner A, D’Hondt F, Montorsi F, Stief C, Mottrie A, Gratzke C: **Perioperative and oncologic outcomes of robot-assisted vs. open radical cystectomy in bladder cancer patients: A comparison of two high-volume referral centers.** *Eur J Surg Oncol* 2016, **42**:1736-1743.

21. GD T, DA D, KS K: **Hand assisted laparoscopic cystectomy with minilaparotomy ileal conduit: series report and comparison with open cystectomy.** *The Journal of urology* 2004, **172**:1291-1296.
22. Gondo T, Yoshioka K, Nakagami Y, Okubo H, Hashimoto T, Satake N, Ozu C, Horiguchi Y, Namiki K, Tachibana M: Robotic versus open radical cystectomy: prospective comparison of perioperative and pathologic outcomes in Japan. *Japanese journal of clinical oncology* 2012, 42:625-631.

23. GP H, S C, IS G: Laparoscopic and robotic assisted radical cystectomy for bladder cancer: a critical analysis. *European urology* 2008, 54:54-62.

24. Guillotreau J, Game X, Mouzin M, Doumerc N, Mallet R, Sallusto F, Malavaud B, Rischmann P: Radical cystectomy for bladder cancer: morbidity of laparoscopic versus open surgery. *The Journal of urology* 2009, 181:554-559; discussion 559.

25. Ha US, Kim SI, Kim SJ, Cho HJ, Hong SH, Lee JY, Kim JC, Kim SW, Hwang TK: Laparoscopic versus open radical cystectomy for the management of bladder cancer: mid-term oncological outcome. *International journal of urology : official journal of the Japanese Urological Association* 2010, 17:55-61.

26. Hemal AK, Kolla SB: Comparison of laparoscopic and open radical cystoprostatectomy for localized bladder cancer with 3-year oncological followup: a single surgeon experience. *The Journal of urology* 2007, 178:2340-2343.

27. JB A, JL Y, GN B, HJ L, LA D, DK O: Comparative analysis of laparoscopic and robot-assisted radical cystectomy with ileal conduit urinary diversion. *Journal of endourology* 2007, 21:1473-1480.

28. JJ R, S L, M S, D T: Radical cystectomy with ileal conduit diversion: early prospective evaluation of the impact of robotic assistance. *BJU international* 2006, 98:1059-1063.

29. KA R, AK H, AK K, JA P: Robot assisted laparoscopic pelvic lymphadenectomy at the time of radical cystectomy rivals that of open surgery: single institution report. *Urology* 2010, 76:1400-1404.

30. Khan MS, Gan C, Ahmed K, Ismail AF, Watkins J, Summers JA, Peacock JL, Rimington P, Dasgupta P: A Single-centre Early Phase Randomised Controlled Three-arm Trial of Open, Robotic, and Laparoscopic Radical Cystectomy (CORAL). *European urology* 2016, 69:613-621.

31. Khan MS, Omar K, Ahmed K, Gan C, Van Hemelrijck M, Nair R, Thurairaja R, Rimington P, Dasgupta P: Long-term Oncological Outcomes from an Early Phase Randomised Controlled Three-arm Trial of Open, Robotic, and Laparoscopic Radical Cystectomy (CORAL). *European urology* 2019.

32. Kim TH, Sung HH, Jeon HG, Seo SI, Jeon SS, Lee HM, Choi HY, Jeong BC: Oncological Outcomes in Patients Treated with Radical Cystectomy for Bladder Cancer: Comparison Between Open, Laparoscopic, and Robot-Assisted Approaches. *J Endourol* 2016, 30:783-791.

33. Lenfant L, Campi R, Parra J, Graffeille V, Masson-Lecomte A, Vordos D, de La Taille A, Roumiguie M, Lesourd M, Taksin L, et al: Robotic versus open radical cystectomy throughout the learning phase: insights from a real-life multicenter study. *World journal of urology* 2019.

34. Lin T, Fan X, Zhang C, Xu K, Liu H, Zhang J, Jiang C, Huang H, Han J, Yao Y, et al: A prospective randomised controlled trial of laparoscopic vs open radical cystectomy for bladder cancer: perioperative and oncologic outcomes with 5-year follow-up*T Lin et al. *British journal of cancer* 2014, 110:842-849.
35. Martin AD, Nunez RN, Castle EP: Robot-assisted radical cystectomy versus open radical cystectomy: a complete cost analysis. *Urology* 2011, **77**:621-625.

36. Matsumoto K, Tabata KI, Hirayama T, Shimura S, Nishi M, Ishii D, Fujita T, Iwamura M: Robot-assisted laparoscopic radical cystectomy is a safe and effective procedure for patients with bladder cancer compared to laparoscopic and open surgery: Perioperative outcomes of a single-center experience. *Asian journal of surgery* 2019, **42**:189-196.

37. Messer JC, Punnen S, Fitzgerald J, Svatek R, Parekh DJ: Health-related quality of life from a prospective randomised clinical trial of robot-assisted laparoscopic vs open radical cystectomy. *BJU international* 2014, **114**:896-902.

38. ML K, R E-G, JE B: Robotic versus open radical cystectomy: identification of patients who benefit from the robotic approach. *Journal of endourology* 2013, **27**:40-44.

39. MS K, B C, O E, P R, B C, D M, A G, P D: A dual-centre, cohort comparison of open, laparoscopic and robotic-assisted radical cystectomy. *International journal of clinical practice* 2012, **66**:656-662.

40. Musch M, Janowski M, Steves A, Roggenbuck U, Boerger A, Davoudi Y, Loewen H, Groeben H, Kroepfl D: Comparison of early postoperative morbidity after robot-assisted and open radical cystectomy: results of a prospective observational study. *BJU international* 2014, **113**:458-467.

41. Nepple KG, Strope SA, Grubb RL, 3rd, Kibel AS: Early oncologic outcomes of robotic vs. open radical cystectomy for urothelial cancer. *Urologic oncology* 2013, **31**:894-898.

42. Ng CK, Kauffman EC, Lee MM, Otto BJ, Portnoff A, Ehrlich JR, Schwartz MJ, Wang GJ, Scherr DS: A comparison of postoperative complications in open versus robotic cystectomy. *European urology* 2010, **57**:274-281.

43. Nguyen DP, Al Hussein Al Awamlh B, Wu X, O'Malley P, Inoyatov IM, Ayangbesan A, Faltas BM, Christos PJ, Scherr DS: Recurrence patterns after open and robot-assisted radical cystectomy for bladder cancer. *European urology* 2015, **68**:399-405.

44. Niegisch G, Albers P, Rabenalt R: Perioperative complications and oncological safety of robot-assisted (RARC) vs. open radical cystectomy (ORC). *Urologic oncology* 2014, **32**:966-974.

45. Nix J, Smith A, Kurpad R, Nielsen ME, Wallen EM, Pruthi RS: Prospective randomized controlled trial of robotic versus open radical cystectomy for bladder cancer: perioperative and pathologic results. *European urology* 2010, **57**:196-201.

46. NR S, JS M, DP W, KS H, CT L, C T, C H, H C, BK H, AZ W: Matched comparison of robotic-assisted and open radical cystectomy. *Urology* 2012, **79**:1303-1308.

47. P P, RS M, UK M, S K, GS B, SK D, AK M, SK S, N K: Perioperative outcomes of minimally invasive versus open radical cystectomy: A single-center experience. *Indian journal of urology : IJU : journal of the Urological Society of India* 2018, **34**:115-121.

48. Pai A, Nair R, Ayres B, Tsoi H, Sooriakumaran P, Issa R, Perry M: Comparative outcomes of open and robotic-assisted radical cystectomy in an enhanced recovery programme era. *Journal of Clinical Urology* 2014, **8**:215-221.
49. Parekh DJ, Messer J, Fitzgerald J, Ercole B, Svatek R: Perioperative outcomes and oncologic efficacy from a pilot prospective randomized clinical trial of open versus robotic assisted radical cystectomy. *The Journal of urology* 2013, **189**:474-479.

50. Parekh DJ, Reis IM, Castle EP, Gonzalgo ML, Woods ME, Svatek RS, Weizer AZ, Konety BR, Tollefson M, Krupski TL, et al: Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): an open-label, randomised, phase 3, non-inferiority trial. *Lancet (London, England)* 2018, **391**:2525-2536.

51. Porpiglia F, Renard J, Billia M, Soffione C, Cracco C, Terrone C, Scarpa RM: Open versus laparoscopy-assisted radical cystectomy: results of a prospective study. *J Endourol* 2007, **21**:325-329.

52. R A, PP D, MC G, RR B, KS P: Quality of lymphadenectomy is equivalent with robotic and open cystectomy using an extended template. *The Journal of urology* 2012, **187**:1200-1204.

53. Ram D, Rajappa SK, Rawal S, Singh A, Singh PB, Dewan AK: Is robot-assisted radical cystectomy superior to standard open radical cystectomy? An Indian perspective. *Journal of minimal access surgery* 2018, **14**:298-303.

54. RS P, EM W: Robotic assisted laparoscopic radical cystoprostatectomy: operative and pathological outcomes. *The Journal of urology* 2007, **178**:814-818.

55. Sharma P, Zargar-Shoshtari K, Poch MA, Pow-Sang JM, Sexton WJ, Spiess PE, Gilbert SM: Surgical control and margin status after robotic and open cystectomy in high-risk cases: Caution or equivalence? *World journal of urology* 2017, **35**:657-663.

56. Tan WS, Sridhar A, Ellis G, Lamb B, Goldstraw M, Nathan S, Hines J, Cathcart P, Briggs T, Kelly J: Analysis of open and intracorporeal robotic assisted radical cystectomy shows no significant difference in recurrence patterns and oncological outcomes. *Urologic oncology* 2016, **34**:257.e251-259.

57. Wang SZ, Chen LW, Zhang YH, Wang WW, Chen W, Lin HY: Comparison of hand-assisted laparoscopic and open radical cystectomy for bladder cancer. *Urologia internationalis* 2010, **84**:28-33.

58. Wang SZ, Chen Y, Lin HY, Chen LW: Comparison of surgical stress response to laparoscopic and open radical cystectomy. *World journal of urology* 2010, **28**:451-455.

59. Winters BR, Bremjit PJ, Gore JL, Lin DW, Ellis WJ, Dalkin BL, Porter MP, Harper JD, Wright JL: Preliminary Comparative Effectiveness of Robotic Versus Open Radical Cystectomy in Elderly Patients. *J Endourol* 2016, **30**:212-217.

60. Yasui T, Tozawa K, Ando R, Hamakawa T, Iwatsuki S, Taguchi K, Kobayashi D, Naiki T, Mizuno K, Okada A, et al: Laparoscopic Versus Open Radical Cystectomy for Patients Older than 75 Years: a Single-Center Comparative Analysis. *Asian Pac J Cancer Prev* 2015, **16**:6353-6358.

61. Yong C, Daihui C, Bo Z: Laparoscopic versus open radical cystectomy for patients with bladder cancer over 75-year-old: a prospective randomized controlled trial. *Oncotarget* 2017, **8**:26565-26572.

62. Zeng S, Zhang Z, Yu X, Song R, Wei R, Zhao J, Wang L, Hou J, Sun Y, Xu C: Laparoscopic versus open radical cystectomy for elderly patients over 75-year-old: a single center comparative analysis. *PLoS
One 2014, 9:e98950.

63. Zhao J, Zeng S, Zhang Z, Zhou T, Yang B, Song R, Sun Y, Xu C: Laparoscopic Radical Cystectomy Versus Extraperitoneal Radical Cystectomy: Is the Extraperitoneal Technique Rewarding? Clinical genitourinary cancer 2015, 13:e271-e277.

64. Fergany AF, Gill IS: Laparoscopic radical cystectomy. The Urologic clinics of North America 2008, 35:455-466, viii-ix.

65. Novara G, Ficarra V: Robotic-assisted laparoscopic radical cystectomy: where do we stand? International journal of clinical practice 2009, 63:185-188.

66. Menon M, Hemal AK, Tewari A, Shrivastava A, Shoma AM, El-Tabey NA, Shaaban A, Abol-Enein H, Ghoneim MA: Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU international 2003, 92:232-236.

67. Fahmy O, Asri K, Schwestner C, Stenzl A, Gakis G: Current status of robotic assisted radical cystectomy with intracorporeal ileal neobladder for bladder cancer. Journal of surgical oncology 2015, 112:427-429.

68. Snow-Lisy DC, Campbell SC, Gill IS, Hernandez AV, Fergany A, Kaouk J, Haber GP: Robotic and laparoscopic radical cystectomy for bladder cancer: long-term oncologic outcomes. European urology 2014, 65:193-200.

69. Pruthi RS, Nielsen ME, Nix J, Smith A, Schultz H, Wallen EM: Robotic radical cystectomy for bladder cancer: surgical and pathological outcomes in 100 consecutive cases. The Journal of urology 2010, 183:510-514.

70. Challacombe BJ, Khan MS, Murphy D, Dasgupta P: The history of robotics in urology. World journal of urology 2006, 24:120-127.

Tables

Due to technical limitations, the tables are only available as a download in the supplemental files section.

Figures
Figure 1: The network plot of the three surgical approaches for BCa included in this meta-analysis.

RARC: Robot-assisted Radical cystectomy, LRC: laparoscopic radical cystectomy, ORC: open radical cystectomy, BCa: bladder cancer.
Figure 2

shows that the probability of LRC is the largest, ORC is the second, and RARC is the smallest.
Figure 3

For the mortality, Figure 3 shows that the probability of ORC is the largest, LRC is the second, and RARC is the smallest.
For LNY, Figure 4 shows that the probability of RARC is the largest, ORC is the second, and LRC is the smallest. For PLN,
Figure 5

Shows that the probability of ORC is the largest, LRC is the second, and RARC is the smallest.
Figure 6

Shows that the probability of ORC is the largest, RARC is the second, and LRC is the smallest.
For the postoperative 90-day complications, Figure 7 shows that the probability of LRC is the largest, ORC is the second, and RARC is the smallest.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SearchStrategy.docx
- Tables.pdf