Recent Results from BESIII

Guangshun Huang
(For BESIII Collaboration)
USTC, Hefei, China
Outline

- Status of BEPCII/BESIII
- Selected Results from BESIII
 - Light Hadron Spectroscopy
 - Charmonium Transitions
 - Charm Decays
 - τ Mass Scan
- Summary
Bird View of BEPCII /BESIII

Linac

Storage ring

Beijing electron positron collider BEPCII

Beam energy 1.0-2.3 GeV
Energy spread: 5.16×10^{-4}

Design luminosity
$1 \times 10^{33}/\text{cm}^2/\text{s} @ \psi(3770)$

Achieved luminosity
$\sim 0.65 \times 10^{33}/\text{cm}^2/\text{s}$

2004: start BEPCII construction
2008: test run of BEPCII
2009-now: BEPCII/BESIII data taking

IHEP, Beijing

BESIII detector

BSRF
BEPC II: Large Crossing Angle, Double-ring

Compton back-scattering for high precision beam energy measurement

Beam energy: 1-2.3 GeV
Luminosity: 1×10^{33} cm$^{-2}$s$^{-1}$
Optimum energy: 1.89 GeV
Energy spread: 5.16×10^{-4}
No. of bunches: 93
Bunch length: 1.5 cm
Total current: 0.91 A
SR mode: 0.25A@2.5GeV
The BESIII Detector

Drift Chamber (MDC)
\[\sigma_{p/p}(0/0) = 0.5\% (1\text{GeV}) \]
\[\sigma_{dE/dx}(0/0) = 6\% \]

Time Of Flight (TOF)
\[\sigma_T : 90\text{ ps Barrel} \]
\[110\text{ ps endcap} \]

Super-conducting magnet (1.0 Tesla)

μ Counter
8- 9 layers RPC
\[\delta R\Phi=1.4\text{ cm} \sim 1.7\text{ cm} \]

EMC:
\[\sigma_E/E(0/0) = 2.5\% (1\text{ GeV}) \]
\[(\text{CsI}) \sigma_{z,\phi}(cm) = 0.5 - 0.7\text{ cm}/\sqrt{E} \]
BESIII Commissioning

- July 19, 2008: first e^+e^- collision event in BESIII
- Nov. 2008: \(\sim 14 \text{M } \psi(2S) \) events for detector calibration
- 2009: \(106 \text{M } \psi(2S) \) \(4 \times \text{CLEO-c} \)
 \(225 \text{M J/\psi} \) \(4 \times \text{BESII} \)
- 2010: \(\sim 0.9 \text{ fb}^{-1} \psi(3770) \) \(3.5 \times \text{CLEO-c} \)
- 2011: \(\sim 2.0 \text{ fb}^{-1} \psi(3770) \)
 \(\sim 0.5 \text{ fb}^{-1} @ 4.01 \text{ GeV} \)
- 2012: tau mass scan: \(\sim 5.0 \text{ pb}^{-1} \)
 \(\psi(2S): 0.4 \text{ billion}; J/\psi: 1 \text{ billion (May 22!)} \)

Tentative future running plans:

- 2013: \(D_s \) physics (\(E_{cm}=4170 \text{ MeV} \)) + R scan (\(E_{cm} > 4 \text{ GeV} \))
- 2014: \(\psi(2S) / \tau / \text{R scan} (E_{cm} > 4 \text{ GeV}) \)
- 2015: \(\psi(3770): 5-10 \text{ fb}^{-1} \) for DD physics
The BESIII Collaboration

http://bes3.ihep.ac.cn

>300 physicists
50 institutions from 10 countries
Physics Programs @ BESIII

Light hardron physics
- meson & baryon spectroscopy
- threshold effects
- multiquark states
- glueballs & hybrids
- two-photon physics
- form-factors

Charmonium physics:
- precision spectroscopy
- transitions and decays

Charm physics:
- (semi-)leptonic decays
- f_D & f_{Ds} decay constants
- CKM matrix: V_{cd}, V_{cs}
- D^0-D^0 mixing and CPV
- strong phases

QCD & τ-physics:
- precision R-measurement
- τ mass / τ decays

XYZ meson physics:
- $Y(4260) \rightarrow \pi\pi\eta_c$ decays

...
Recent Results on Light Hadron Physics

- $p\bar{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\bar{p}$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of J/ψ and $\psi(2S)$
- $\omega\phi$ threshold enhancement in $J/\psi \rightarrow \gamma \omega\phi$
- $\eta\eta$ system in $J/\psi \rightarrow \gamma \eta\eta$
Enhancement at $p\bar{p}$ threshold in $J/\psi \rightarrow \gamma p\bar{p}$

Observed at BESII in 2003 (PRL,022001) agree with spin zero expectation $M = 1860^{+3}_{-10}^{+5}_{-25}$ MeV, $\Gamma < 38$ MeV (90% CL)

Confirmed at BESIII in 2010 (CPC 34,421 (2010)) $M = 1859^{+6}_{-13}^{+6}_{-25}$ MeV, $\Gamma < 30$ MeV (90% CL)

Many possibilities:
normal meson/ $p\bar{p}$ bound state/multiquark/glueball/Final state interaction effect (FSI)......

Spin-parity analysis
is essential for determining place in the spectrum and possible nature.
Spin-Parity analysis of $J/\psi \rightarrow \gamma \eta \bar{p}p$ ($M_{\eta \bar{p}p} < 2.2\text{GeV}$)

Four components:
- $X(\eta \bar{p}p)$, $f_2(1910)$, $f_0(2100)$,
- and 0^{++} phase space

Include the FSI effect

Fit features:
- The fit with BW and S-wave FSI($I=0$) factor can well describe $\eta \bar{p}p$ mass threshold structure.
- It is much better than that Without FSI effect (7.1σ)

Spin-parity, mass, width and Br. of $X(\eta \bar{p}p)$:

$J^{PC} = 0^{-+}$

$M = 1832^{+19}_{-5}(\text{stat})^{+18}_{-17}(\text{syst}) \pm 19(\text{model}) \text{ MeV}/c^2$

$\Gamma = 13 \pm 39(\text{stat})^{+10}_{-13}(\text{syst}) \pm 4(\text{model}) \text{ MeV}/c^2$ or $\Gamma < 76 \text{ MeV}/c^2$ @ 90% C.L.

$Br(J/\psi \rightarrow \gamma X(\eta \bar{p}p))Br(X(\eta \bar{p}p) \rightarrow \eta \bar{p}p) = (9.0^{+0.4}_{-1.1}(\text{stat})^{+1.5}_{-5.0}(\text{syst}) \pm 2.3(\text{model})) \times 10^{-5}$

model: Model dependent uncertainty (Different FSI models)
$\psi(2S) \rightarrow \gamma p\bar{p}$ \hspace{1cm} (M_{p\bar{p}} < 2.2\text{GeV})

\mathcal{M}, Γ and \mathcal{J}^{PC} of $X(p\bar{p})$ are fixed to the results obtained from J/ψ decays.

\[
Br(\psi(2S) \rightarrow \gamma X(p\bar{p})) Br(X(p\bar{p}) \rightarrow p\bar{p}) \\
= (4.57 \pm 0.36(\text{stat})^{+1.23}_{-4.07}(\text{syst}) \pm 1.28(\text{model})) \times 10^{-6}
\]

The production ratio R:

\[
R = \frac{Br(\psi(2S) \rightarrow \gamma X(p\bar{p}))}{Br(J/\psi \rightarrow \gamma X(p\bar{p})} = \left(5.08^{+0.71}_{-0.45}(\text{stat})^{+0.67}_{-3.58}(\text{syst}) \pm 0.12(\text{model}) \right)\%
\]

It is suppressed compared with 12% rule.
Recent Results on Light Hadron Physics

- $p\bar{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\bar{p}$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of J/ψ and $\psi(2S)$
- $\omega\phi$ threshold enhancement in $J/\psi \rightarrow \gamma\omega\phi$
- $\eta\eta$ system in $J/\psi \rightarrow \gamma\eta\eta$
$\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$

First observed: $\eta(1405) \rightarrow f_0(980)\pi^0$ (isospin breaking)

- Helicity analysis indicates the peak at 1400MeV is from $\eta(1405)$, not from $f_1(1420)$
 \[
 Br(J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0 \rightarrow \gamma \pi^0 \pi^\pm \pi^\mp) = (1.50 \pm 0.11(stat.) \pm 0.11(syst.) \times 10^{-5}
 \]
 \[
 Br(J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0 \rightarrow \gamma \pi^0 \pi^0 \pi^0) = (7.10 \pm 0.82(stat.) \pm 0.72(syst.) \times 10^{-6}
 \]

- Large Isospin-violating decay rate:
 \[
 \frac{BR(\eta(1405) \rightarrow f_0(980)\pi^0 \rightarrow \pi^+ \pi^- \pi^0)}{BR(\eta(1405) \rightarrow a_0(980)\pi^0 \rightarrow \pi^0 \pi^0 \eta)} \approx (17.9 \pm 4.2) \%
 \]

In general, magnitude of isospin violation in strong decay should be <1%.
$a_0 - f_0$ mixing alone can not explain the branching ratio of $\eta(1405) \rightarrow f_0(980)\pi^0$.
Anomalous Lineshape of $f_0(980)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$

Surprising result:
very narrow $f_0(980)$ width: <11.8 MeV/c^2 @90% C.L.
much narrower than the world average (PDG 2010: 40-100 MeV/c^2)

A possible explanation is KK^* loop, Triangle Singularity (TS) (J.J. Wu et al, PRL 108, 081803(2012))
Recent Results on Light Hadron Physics

• $\bar{p}p$ mass threshold structure in $J/\psi \rightarrow \gamma \bar{p}p$
• $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
• 3π Decays of J/ψ and $\psi(2S)$
• $\omega\phi$ threshold enhancement in $J/\psi \rightarrow \gamma \omega\phi$
• $\eta\eta$ system in $J/\psi \rightarrow \gamma \eta\eta$
3π Decays of J/ψ and $\psi(2S)$

$J/\psi \rightarrow \pi^+\pi^-\pi^0$ decays are dramatically different from $\psi(2S) \rightarrow \pi^+\pi^-\pi^0$ decays:

- J/ψ is dominated by ρ
- $\psi(2S)$ is strongly populated by higher mass state absent in J/ψ decay

Precision measurement of branching fractions:

$$Br(J/\psi \rightarrow \pi^+\pi^-\pi^0) = (2.137 \pm 0.004_{stat}^{+0.058}(-0.056_{syst}^{+0.027}(-0.026_{norm})) \times 10^{-2}$$

$$Br(\psi(2S) \rightarrow \pi^+\pi^-\pi^0) = (2.14 \pm 0.03_{stat}^{+0.08}(-0.07_{syst}^{+0.09}(-0.08_{norm})) \times 10^{-4}$$

The ratio of these two branching fractions:

$$\frac{Br(\psi(2S) \rightarrow \pi^+\pi^-\pi^0)}{Br(J/\psi \rightarrow \pi^+\pi^-\pi^0)} = \left(1.00 \pm 0.01_{stat}^{+0.06}(-0.05_{syst}) \right)\%$$

$\rho\pi$ puzzle: $Q_h = \frac{Br(\psi(2S) \rightarrow \text{hadrons})}{Br(J/\psi \rightarrow \text{hadrons})} \approx \frac{Br(\psi(2S) \rightarrow e^+e^-)}{Br(J/\psi \rightarrow e^+e^-)} \approx 12\%$
Recent Results on Light Hadron Physics

- $p\bar{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\bar{p}$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of J/ψ and $\psi(2S)$
- $\omega\phi$ threshold enhancement in $J/\psi \rightarrow \gamma\omega\phi$
- $\eta\eta$ system in $J/\psi \rightarrow \gamma\eta\eta$
ωφ threshold enhancement in J/ψ → γωφ

\[J/ψ \rightarrow γφφ, \ φ \rightarrow K^+ K^- \quad (OZI) \quad J/ψ \rightarrow γωφ \quad (DOZI) \]

\[M = 1812^{+19}_{-26} \pm 18 \text{ MeV}/c^2 \]
\[Γ = 105 \pm 20 \pm 28 \text{ MeV}/c^2 \]

\(J^{PC} \) favors 0++ over 0− and 2++

G.S. Huang

FPCP2012, May 21-25

Phys. Rev. Lett. 96(2006)162002
$J/\psi \rightarrow \gamma \omega \phi$ at BESIII

Backgrounds estimated from ω and ϕ sidebands

Backgrounds estimated from inclusive MC -- mainly from ωK^*K
Preliminary PWA Results at BESIII

Is $X(1810)$ the $f_0(1710)/f_0(1790)$ or new state?
Recent Results on Light Hadron Physics

- $p\bar{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\bar{p}$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of J/ψ and $\psi(2S)$
- $\omega\phi$ threshold enhancement in $J/\psi \rightarrow \gamma \omega\phi$
- $\eta\eta$ system in $J/\psi \rightarrow \gamma \eta\eta$
Study of $\eta\eta$ System

- First observed $f_0(1710)$ from J/ψ radiative decays to $\eta\eta$ by Crystal Ball in 1982.

- Crystal Barrel Collaboration (2002) analyzed the three final states $\pi^0\pi^0\pi^0$, $\eta\pi^0\pi^0$ and $\pi^0\eta\eta$ with K matrix formalism. Found a 2^{++} (~ 1870), but no $f_0(1710)$.

- E835 (2006): $p\bar{p} \rightarrow \pi^0\eta\eta$, found $f_0(1500)$ and $f_0(1710)$.

- WA102 and GAMS all identified $f_0(1710)$ in $\eta\eta$.

G.S. Huang

FPCP2012, May 21-25
J/ψ → γηη at BESIII: Preliminary PWA results

- $f_0(1710)$ and $f_0(2100)$ are dominant scalars
- $f_0(1500)$ exists (8.2σ)
- $f_2'(1525)$ is the dominant tensor

Resonance	Mass (MeV/c^2)	Width (MeV/c^2)	$B(J/ψ \rightarrow γX \rightarrow γηη)$	Significance
$f_0(1500)$	1468$^{+14+20}_{-15-74}$	136$^{+41+8}_{-26-100}$	(1.61$^{+0.29+0.41}_{-0.32-1.28}$) $\times 10^{-5}$	8.2 σ
$f_0(1710)$	1759$^{+6+14}_{-6-25}$	172$^{+10+31}_{-10-15}$	(2.35$^{+0.07+1.23}_{-0.07-0.72}$) $\times 10^{-4}$	25.0 σ
$f_0(2100)$	2081$^{+13+23}_{-13-34}$	273$^{+27+65}_{-24-18}$	(9.6$^{+0.57+5.52}_{-0.52-2.21}$) $\times 10^{-5}$	13.9 σ
$f_2'(1525)$	1513$^{+5+3}_{-5-10}$	75$^{+12+15}_{-10-7}$	(5.41$^{+0.43+1.22}_{-0.50-1.23}$) $\times 10^{-5}$	11.0 σ
$f_2(1810)$	1822$^{+29+61}_{-24-54}$	229$^{+52+64}_{-42-26}$	(5.38$^{+0.60+3.31}_{-0.67-2.24}$) $\times 10^{-5}$	6.4 σ
$f_2(2340)$	2362$^{+31+139}_{-30-59}$	334$^{+63+140}_{-65-181}$	(5.58$^{+0.61+1.93}_{-0.65-1.81}$) $\times 10^{-5}$	7.6 σ
Recent Results on Charmonium Physics

- Properties of h_c
- Mass and width of η_c
- Observation of $\psi(2S) \rightarrow \gamma \eta_c(2S)$
- First evidence of $\psi(2S) \rightarrow \gamma \gamma J/\psi$
Property of h_c (1p1)

- First evidence: E835 in pp → h_c → γ_c (PRD72,092004(2005))

- CLEO-c observed h_c in ee → $\psi(2S)$ → $\pi^0 h_c$, h_c → γ_c
 $\Delta M_{hf}(1P) = 0.08 \pm 0.18 \pm 0.12$ MeV/c² (PRL104,132002(2010))

- Study isospin forbidden transition:
 $\psi(2S) \rightarrow \pi^0 h_c$

- Measure as well the E1 transition:
 $h_c \rightarrow \gamma_c$

- $M(h_c)$ gives access to hyperfine splitting of 1P states:
 $\Delta M_{hf}(1P) = M(h_c) - 1/9(M(\chi_{c0}) + 3M(\chi_{c1}) + 5M(\chi_{c2}))$
Observation of h_c at BESIII (inclusive)

- Select inclusive $\pi^0(\psi(2S) \to \pi^0 h_c)$

- Select E1-photon in $h_c \to \gamma \eta_c$ (E1 tagged) or not (E1 untagged)

- E1-tagged selection gives
 $M(h_c) = 3525.40 \pm 0.13 \pm 0.18$ MeV
 ($\Delta M_{hf}(1P) = 0.10 \pm 0.13 \pm 0.18$ MeV/c2)
 $\Gamma(h_c) = 0.73 \pm 0.45 \pm 0.28$ MeV (first measurement)
 (<1.44 MeV at 90% CL)
 $\text{Br}(\psi(2S) \to \pi^0 h_c) \times \text{Br}(h_c \to \gamma \eta_c) = (4.58 \pm 0.40 \pm 0.50) \times 10^{-4}$

- E1-untagged selection gives
 $\text{Br}(\psi(2S) \to \pi^0 h_c) = (8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$

- Combining branching fractions leads to
 $\text{Br}(h_c \to \gamma \eta_c) = (54.3 \pm 6.7 \pm 5.2)\%$ (first measurement)
Measurements of the h_c properties at BESIII (exclusive)

Simultaneous fit to π^0 recoiling mass:

$M(h_c) = 3525.31 \pm 0.11 \pm 0.15$ MeV

$\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25$ MeV

$N = 832 \pm 35$

χ^2/d.o.f. = 32/46

Consistent with BESIII inclusive results

PRL104, 132002(2010)

CLEOc exclusive results

$M(h_c) = 3525.21 \pm 0.27 \pm 0.14$ MeV/c2

$N = 136 \pm 14$

PRL101, 182003(2008)
The η_c lineshape is not distorted in the $h_c \rightarrow \gamma \eta_c$, non-resonant bkg is small. This channel will be best suited to determine the η_c resonance parameters.
Recent Results on Charmonium Physics

- Properties of \(h_c \)
- Mass and width of \(\eta_c \)
- Observation of \(\psi(2S) \rightarrow \gamma \eta_c(2S) \)
- First evidence of \(\psi(2S) \rightarrow \gamma \gamma J/\psi \)
\(\eta_c(1S) \)

- Ground state of \(c\bar{c} \) system, but its properties are not well known:
 - \(J/\psi \) radiative transition: \(M \sim 2978.0 \text{MeV}/c^2, \quad \Gamma \sim 10 \text{MeV} \)
 - \(\gamma\gamma \) process: \(M = 2983.1 \pm 1.0 \text{MeV}/c^2, \quad \Gamma = 31.3 \pm 1.9 \text{MeV} \)
 - CLEO-c found the distortion of the \(\eta_c \) lineshape in \(\psi(2S) \) decays
 - \(c\bar{c} \) hyperfine splitting: \(M(J/\psi) - M(\eta_c) \) is important experimental input to test the lattice QCD, but is dominated by error on \(M(\eta_c) \)
$\psi(2S) \rightarrow \gamma \eta_c, \eta_c$ exclusive decays

Interference with non-resonant is significant!

Relative phase ϕ values from each mode are consistent within 3σ,
\Rightarrow use a common phase value in the simultaneous fit.

- **Mass:** $2984.3 \pm 0.6 \pm 0.6$ MeV/c^2
- **Width:** $32.0 \pm 1.2 \pm 1.0$ MeV
- **ϕ:** $2.40 \pm 0.07 \pm 0.08$ rad or $4.19 \pm 0.03 \pm 0.09$ rad
Comparison of the mass and width for η_c

The world average in PDG2010 was using earlier measurements

Hyperfine splitting: $\Delta M(1S) = 112.6 \pm 0.8$ MeV

Consistent with B factory results in other production mechanisms. Agree with lattice QCD calculations of the charmonium hyperfine splitting.
Recently Results on Charmonium Physics

- Properties of h_c
- Mass and width of η_c
- **Observation of $\psi(2S) \rightarrow \gamma \eta_c(2S)$**
- First evidence of $\psi(2S) \rightarrow \gamma \gamma J/\psi$
First “observation” by Crystal Ball in 1982 (M=3.592, B=0.2%-1.3% from $\psi(2S)\rightarrow\gamma X$, never confirmed by other experiments.)

Published results about $\eta_c(2S)$ observation:

Experiment	M [MeV]	Γ [MeV]	Process
Belle [1]	3654 ± 6 ± 8	—	$B^\pm \rightarrow K^\pm \eta_c(2S), \eta_c(2S) \rightarrow K_s K^\pm \pi^\mp$
CLEO [2]	3642.9 ± 3.1 ± 1.5	6.3 ± 12.4 ± 4.0	$\gamma \gamma \rightarrow \eta_c(2S) \rightarrow K_s K^\pm \pi^\mp$
BaBar [3]	3630.8 ± 3.4 ± 1.0	17.0 ± 8.3 ± 2.5	$\gamma \gamma \rightarrow \eta_c(2S) \rightarrow K_s K^\pm \pi^\mp$
BaBar [4]	3645.0 + 5.5 +4.9	—	$e^+ e^- \rightarrow J/\psi \bar{e}e$
PDG [5]	3638 ± 4	14 ± 7	—

Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12 \pm 3$ MeV

The M1 transition $\psi(2S)\rightarrow\gamma \eta_c(2S)$ has not been observed.
(experimental challenge: search for real photons ~50 MeV,)

Better chance to observe $\eta_c(2S)$ in $\psi(2S)$ radiative transition with ~106M $\psi(2S)$ data at BESIII.

Decay mode studied: $\psi(2S) \rightarrow \gamma \eta_c(2S) \rightarrow \gamma Ks\pi / \gamma K^+K^-\pi^0$.

G.S. Huang
FPCP2012, May 21-25
Observation of $\psi(2S) \rightarrow \gamma \eta_c(2S)$

- Simultaneous fit with:
 - $\eta_c(2S)$ signal: modified BW (M1) with fixed width (Resolution extrapolated from χ_{cJ})
 - χ_{cJ} signal: MC shape smeared with Gaussian
 - BG from $e^+ e^- \rightarrow KK\pi$ (ISR), $\psi(2S) \rightarrow KK\pi$ (FSR), $\psi(2S) \rightarrow \pi^0 KK\pi$: measured from data

BESIII preliminary

Statistical significance $> 10\sigma$
Preliminary results on $\psi(2S) \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KK\pi$

BESIII preliminary

- $M(\eta_c(2S)) = 3637.6 \pm 2.9 \pm 1.6$ MeV/c^2
- $\Gamma(\eta_c(2S)) = 16.9 \pm 6.4 \pm 4.8$ MeV

- $\text{Br}(\psi(2S) \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KK\pi) = (1.30 \pm 0.20 \pm 0.30) \times 10^{-5}$

$\text{Br}(\eta_c(2S) \rightarrow KK\pi) = (1.9 \pm 0.4 \pm 1.1)\%$ from BaBar

$\text{Br}(\psi(2S) \rightarrow \gamma \eta_c(2S)) = (6.8 \pm 1.1_{\text{stat}} \pm 4.5_{\text{sys}}) \times 10^{-4}$

CLEO-c: $< 7.6 \times 10^{-4}$ PRD81,052002(2010)

Potential model: $(0.1-6.2) \times 10^{-4}$ PRL89,162002(2002)
Recent Results on Charmonium Physics

- Properties of h_c
- Mass and width of η_c
- Observation of $\psi(2S) \rightarrow \gamma \eta_c(2S)$
- First evidence of $\psi(2S) \rightarrow \gamma\gamma J/\psi$
\[\psi(2S) \rightarrow \gamma\gamma J/\psi \]

- Two photon transitions are well known in excitations of molecules, atomic hydrogen, and positronium.

 \[[F. Bassani et al, PRL 39, 1070 (1977); A. Quattropani et al, PRL 50, 1258 (1983)] \]

- Never been observed in the quarkonium system.

 CLEO-c: upper limit of \(Br(\psi(2S) \rightarrow \gamma\gamma J/\psi) \) is \(1 \times 10^{-3} \) (PRD 78, 011102(2008))

- Observation helpful to understand heavy quarkonium spectrum & strong interaction

Theoretically:

- Potential models give discrete spectra

 \((\psi(2S) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi) \)

- Possibility of testing the hadron-loop effect

- **Coupled channel:** the hadron-loop effect also may play an important role in the continuous spectra
First evidence of $\psi(2S) \to \gamma\gamma \ J/\psi$

- Select $\psi(2S) \to \gamma\gamma J/\psi$, $J/\psi \to e^+e^-$ and $\mu^+\mu^-$ events

- γ_{sm} - low energy gamma

- The χ_{cl} components: double E1 scaling
- Yields of the two-photon events
- Continuum(green) + $\psi(2S)$ decay BG(yellow)

- Global fit of the two-photon process and cascade χ_{cl} processes
- See clear excess over BG + continuum

- $Br(\psi(2S) \to \gamma\gamma J/\psi) = (3.3 \pm 0.6^{+0.8}_{-1.1}) \times 10^{-4}$ (both ee and $\mu\mu$)

- Significance: 3.8σ including systematics

- $Br(\psi(2S) \to \gamma\chi_{cl}, \chi_{cl} \to \gamma J/\psi)$ are also measured

- $3.44 < \text{RM}(\gamma_{sm}) < 3.48 \text{ GeV}$
Charm Physics (all preliminary)

- $D^+ \rightarrow \mu^+ \nu$
- $D^0 \rightarrow K^-/\pi^- e^+ \nu$
- Search for $D^0 \rightarrow \gamma \gamma$
- D_s tagging
D⁻ Tagging

Resolution: 1.3 MeV for pure charged modes; 1.9 MeV for modes with one π⁰.

9 singly tagged modes

\[N_{D^-} = (1.57 \pm 0.2) \times 10^6 \]
$D^+ \rightarrow \mu^+ \nu$

- In the system recoiling against the tagged D^-, select leptonic decay for $D^+ \rightarrow \mu^+ \nu$

Signal selection:

- One charged track only
- Positively identified μ
- No isolate photon
$D^+ \rightarrow \mu^+ \nu$

There are still some backgrounds

The K^0_L escape from the detector.
Backgrounds for $D^+ \to \mu^+ \nu$

Estimated with Monte Carlo events

Source mode	Number of events
$D^+ \to K_L^0 \pi^+$	7.9 ± 0.8
$D^+ \to \pi^+ \pi^0$	3.8 ± 0.5
$D^+ \to \tau^+ \nu_\tau$	6.9 ± 0.7
Other decays of D mesons	17.9 ± 1.1
$e^+ e^- \to \gamma \psi(3686)$	0.2 ± 0.2
$e^+ e^- \to \gamma J/\psi$	0.0 ± 0.0
$e^+ e^- \to \text{light hadron (continuum)}$	8.2 ± 1.4
$e^+ e^- \to \tau^+ \tau^-$	1.9 ± 0.5
$\psi(3770) \to \text{non-D} \bar{D}$	0.9 ± 0.4
Total	**47.7 \pm 2.3**

G.S. Huang

FPCP2012, May 21-25
D^+ \rightarrow \mu^+ \nu: Preliminary Results

\[N(D^+ \rightarrow \mu^+ \nu) = 377.3 \pm 20.6 \]

\[B(D^+ \rightarrow \mu^+ \nu) = (3.74 \pm 0.21^{\text{stat}} \pm 0.06^{\text{sys}}) \times 10^{-4} \]

\[f_{D^+} = (203.91 \pm 5.72^{\text{stat}} \pm 1.97^{\text{sys}}) \text{ MeV} \]
Charm Physics (all preliminary)

- $D^+ \rightarrow \mu^+ \nu$
- $D^0 \rightarrow K^-/\pi^- e^+ \nu$
- Search for $D^0 \rightarrow \gamma\gamma$
- Ds tagging
D⁰ Tagging

Mode	Data Yield
\(D^0 \rightarrow K^-\pi^+ \)	159,929 ± 413
\(D^0 \rightarrow K^-\pi^+\pi^0 \)	323,348 ± 667
\(D^0 \rightarrow K^-\pi^+\pi^0\pi^0 \)	78,467 ± 480
\(D^0 \rightarrow K^-\pi^+\pi^-\pi^+ \)	211,910 ± 550
D⁰ → K/π e ν

BESIII Preliminary

N_{sig} = 18460+/−143

D⁰ → K e ν

D⁰ → π e ν

Mode	measured branching fraction(%)	PDG	CLEOc
$\bar{D}^0 \to K^+ e^- \bar{\nu}$	3.542 ±0.030±0.067	3.55 ±0.04	3.50 ±0.03 ±0.04
$\bar{D}^0 \to \pi^+ e^- \bar{\nu}$	0.288 ±0.008±0.005	0.289 ±0.008	0.288 ±0.008±0.003

BESIII preliminary, with 0.92 fb⁻¹ data, will improve with full 2.9 fb⁻¹ soon. Form factor measurement ongoing.
Charm Physics (all preliminary)

- $D^+ \rightarrow \mu^+ \nu$
- $D^0 \rightarrow K^-/\pi^- e^+ \nu$
- **Search for $D^0 \rightarrow \gamma \gamma$**
- D_s tagging
Search for $D^0 \rightarrow \gamma \gamma$

- Forbidden FCNC transition ($c \rightarrow u + \gamma$);
- SM prediction: $B(D^0 \rightarrow \gamma \gamma) \sim 10^{-8}$ or less;
- Results presented in $B(D^0 \rightarrow \gamma \gamma)/B(D^0 \rightarrow \pi^0 \pi^0) < 5.8 \times 10^{-3}$ UL @ 90% CL, or $B(D^0 \rightarrow \gamma \gamma) < 4.6 \times 10^{-6}$ UL @ 90% CL (preliminary, to be improved);
- PDG 2.7×10^{-5}, CLEO-c preli. 8.63×10^{-6}, BaBar 2.2×10^{-6}.

$D^0 \rightarrow \gamma \gamma$: -2.9 ± 7.1 events

$D^0 \rightarrow \pi^0 \pi^0$: 4081 ± 117 events
Charm Physics (all preliminary)

- $D^+ \rightarrow \mu^+\nu$
- $D^0 \rightarrow K^-/\pi^- e^+\nu$
- Search for $D^0 \rightarrow \gamma\gamma$
- Ds tagging
D_s Tag
(part of data @ 4010 MeV)

f_{D_s} (both \mu and \tau modes) measurement underway

Note: this data is at 4010 MeV: \sim 0.3 nb of D_s^+ D_s^-

We plan to run at 4170 MeV: \sim 0.9 nb of D_s^{*+} D_s^-

pro: higher cross-section; con: need D_s^* transition photon (D_s^{*+} \rightarrow \gamma D_s^+)
τ Mass Scan
τ Mass measurement

$M_\tau = 1776.96^{+0.18+0.25}_{-0.21-0.17}$ MeV

$\sigma M_\tau / M_\tau = 1.7 \times 10^{-4}$

BES results: stat. err. (0.18 / 0.21)
is compatible with syst. (0.25 / 0.17)

12 points, Lum.: 5 pb$^{-1}$
τ Mass measurement in 2012

New beam energy measurement system with a precision of 5×10^{-5};
Data at 4 energy points were taken, $\sim 5 \text{ pb}^{-1}$ at the τ threshold;
Expect statistical precision is $\pm 0.3 \text{ MeV}$, systematic error $< 0.1 \text{ MeV}$;
More data expected later this year to reduce statistical precision to 0.1 MeV.
BESIII is successfully operating since 2008:
- World largest data samples at J/ψ, ψ(2S), ψ(3770), ψ(4040), still growing...

Light quark states:
- Confirmation the enhancement at p̅p threshold in J/ψ→γp̅p, J^{PC}=0^{-+}.
- First observation: η(1405)→f_0(980)π^0 (isospin breaking).
- ωφ threshold enhancement in J/ψ→γωφ.
- ηη system in J/ψ→γηη.

Charmonium transitions and decays:
- Precision measurements of h_c and η_c(1S) properties.
- First observation of η_c(2S) in ψ(2S)→γη_c(2S) decay.
- First evidence of ψ(2S)→γγJ/ψ.

Charm decays:
- D^+ → μ^+ν, D^0 → K/π e ν, D^0 → γγ.

τ mass measurement.

Lots of results published, more to come!