Synthesis and properties of four new two-photon polymerization initiators with expanded conjugated structures

S Zhang, X Y Wan, Y H Peng and Q Yin

Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China

1 E-mail: qyin839@163.com

Abstract. Four new two-photon polymerization initiators have successfully synthesized with D–π–A–π–D type structure in which the carbazole or phenothiazine moiety acts as a donor, phenylacetylenyl as a conjugate linker and the Fluorenone or thioxanthone as an acceptor. These four compounds exhibited low fluorescence quantum yields (Φ) of FT-CAA-C6 (1.65%), FT-PTAA-C6 (0.01%), TX-CAA-C6 (3.56%) and TX-PTAA-C6 (0.02%) in dichloromethane. And, the δTPA values of FT-PTAA-C6 reached a maximum value of 527 GM. In addition, three-dimensional woodpile microstructure was fabricated via two-photon polymerization using FT-CAA-C6 as an initiator which possessed potential applications due to simple preparation.

1. Introduction

In the past decade, microfabrication technology by two-photon polymerization (TPP) of photoresist resins has been intensively studied which has emerged as a promising technique for rapid and flexible fabrication of high-resolution three-dimensional (3D) structures [1-5]. Applications for this technology are numerous and include micro-electromechanical systems (MEMS), 3D optical integrated circuits, metamaterials and so on [6-7]. In TPP microfabrication technology, the spatial resolution is dominantly determined by laser power and exposure time, which largely depends on the efficiency of TPP initiators [8-9]. Thus, the crucial factor in TPP materials is photoinitiator which plays an important role in increasing TPP microfabrication lateral resolution. However, the commercial photoresist resins using conventional ultraviolet (UV) active initiators which have low two-photon absorption (TPA) cross-sections (δTPA). So, high excitation power and long exposure times are necessary to induce polymerization, which often result in burning to the materials. In order to realize the full potential of the two-photon polymerization microfabrication technology, highly active two-photon polymerization initiators (TPPI) with a large δTPA are desired [10-11].

In general, the molecules with large δTPA having a general structure of the types D–π–A, A–π–A, D–π–D (A: acceptor, D: donor, and π: conjugating moiety) [12-13]. In order to systematically increase the δTPA, the design of new materials must deliberate several essential parameters, such as increasing the strength of the donor and acceptor, increasing the planarity of the chromophores, and extending length of the conjugated bridge [14]. Carbazole and phenothiazine are well known donors with electron rich nitrogen or sulfer atoms, which are widely present in organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), dye-sensitized solar cells (DSSCs), and polymeric optical fibers (POFs) [15-19]. Fluorenone and thioxanthone are good acceptors with electron-withdraw carbonyl group, which are often present in commonly ultraviolet initiators [20-26]. Herein, we
designed and synthesized four new TPP initiators with D–π–A–π–D type structure which the carbazole or phenothiazine moiety acts as a donor, acetenyl as a conjugate linker and the fluorenone or thioxanthone as an acceptor (Figure 1). Furthermore, we studied their one- and two-photon optical properties, investigated their TPP initiating properties, studied the relationship between initiating efficiency and molecular structure.

Figure 1. Structures of the four target compounds.

2. Experimental

2.1. Materials

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification.

2.2. Physical measurements

NMR spectra were obtained on a Bruker AV II-400 MHz (\(^1\)H NMR at 400 MHz, and \(^13\)C NMR at 100 MHz). The \(^1\)H NMR chemical shifts were measured relative to CDCl\(_3\) (δ = 7.26 ppm) as the internal reference. The \(^13\)C NMR chemical shifts were given using CDCl\(_3\) (δ = 77.16 ppm) as the internal standard. UV-Visible spectra were recorded at the concentration of 1 \times 10^{-5} \text{M} on a UV 3600 Scanning Spectrophotometer (Shimadzu, Japan). Fluorescence spectra were recorded at the concentrations of 1 \times 10^{-5} \text{M} on a F-7000 spectrofluorophotometer (Hitachi, Japan). TPA spectra were obtained by the two-photon-induced excited fluorescence (TPEF) method reported by Xu and Webb \cite{27}, TPEF spectra were recorded on a SD2000 spectrometer (Ocean Optical) with the excitation by a mode-locked Ti-sapphire femtosecond laser (Tsunami, Spectra-Physics) for which the oscillating wavelength, pulse width and repetition rate were 780 nm, 80 fs and 82 MHz, respectively. It is assumed that the fluorescence quantum yield after two-photon excitation is the same as that after one-photon excitation. Then TPA cross-sections were obtained by calibration against Fluorescein in aqueous NaOH solution (pH = 11) for the femtosecond measurements \cite{9}. The Two-photon polymerization was finished by nanoscribe GT (Germany) with 780 nm laser wavelength, 200 fs lasing source, and 120mW average power.

2.3. Synthesis

The four target molecules were synthesized in sevaral steps which include Sonogashira coupling reactions from sample materials. General procedure for the synthesis of the four target molecules: A flame-dried sealable tube with a magnetic stir bar was charged with CuI (19.0 mg, 0.1 mmol), PdCl\(_2\)(PPh\(_3\))\(_2\) (35.1 mg, 0.05 mmol), PPh\(_3\) (26.2 mg, 0.1 mol), bromo-substituted ketone (0.5 mmol), terminal alkyne (1.5 mmol), and triethyl amine (10.0 mL), and DMF (5.0 mL) under an Ar atmosphere. The tube was sealed and the reaction mixture was stirred at 85 °C for 8 h. After being cooled to ambient temperature, the reaction solution was diluted with 100 mL of ethyl acetate and washed with brine (100 mL*3). The organic layer were dried over MgSO\(_4\), concentrated and purified by column
chromatography on silica gel to provide the desired product. The structure of the products were identified by 1H NMR and 13C NMR.

2,7-Bis(9-hexyl-9H-carbazol-3-yl)ethynyl)-9H-fluoren-9-one (FT-CAA-C6), dark red solid, 66% yield. 1H NMR (400 MHz, CDCl$_3$, δ (ppm)): 0.87 (t, $J = 7.2$ Hz, 6H), 1.26-1.41 (m, 12H), 1.83-1.91 (m, 4H), 4.29 (t, $J = 7.2$ Hz, 4H), 7.25-7.29 (m, 4H), 7.36-7.42 (m, 4H), 7.46-7.52 (m, 4H), 7.64 (dd, $J = 8.4$ Hz, $J = 1.6$ Hz, 2H), 7.67 (dd, $J = 8.4$ Hz, $J = 1.6$ Hz, 2H), 7.83 (s, 2H), 8.11 (d, $J = 7.6$ Hz, 2H), 8.30 (d, $J = 1.2$ Hz, 2H); 13C NMR (400 MHz, CDCl$_3$, δ (ppm)): 14.2, 22.7, 27.1, 29.1, 31.7, 43.4, 87.2, 93.3, 108.9, 109.1, 112.7, 119.5, 120.6, 120.7, 122.5, 123.0, 124.3, 125.1, 126.3, 127.3, 129.4, 134.6, 137.6, 140.4, 140.9, 142.9, 192.8.

2,7-bis(10-hexyl-10H-phenothiazin-3-yl)ethynyl)-9H-fluoren-9-one (FT-PTAA-C6), yellow solid, 54% yield. 1H NMR (400 MHz, CDCl$_3$, δ (ppm)): 0.85-0.89 (m, 6H), 1.28-1.33 (m, 8H), 1.39-1.44 (m, 4H), 1.75-1.82 (m, 4H), 3.82 (t, $J = 7.2$ Hz, 4H), 6.78 (d, $J = 8.4$ Hz, 2H), 6.84 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 2H), 6.92 (td, $J = 7.2$ Hz, $J = 1.2$ Hz, 2H), 7.10-7.16 (m, 4H), 7.25-7.26 (m, 2H), 7.29 (dd, $J = 8.4$ Hz, $J = 2.0$ Hz, 2H), 7.45 (dd, $J = 8.0$ Hz, $J = 0.8$ Hz, 2H), 7.58 (dd, $J = 7.6$ Hz, $J = 1.2$ Hz, 2H), 7.74 (dd, $J = 1.2$ Hz, $J = 0.8$ Hz, 2H); 13C NMR (400 MHz, CDCl$_3$, δ (ppm)): 14.1, 22.7, 26.7, 26.9, 31.6, 47.8, 88.7, 91.2, 115.2, 115.6, 116.5, 120.6, 122.9, 124.2, 124.8, 124.9, 124.9, 127.3, 127.5, 127.6, 130.3, 131.0, 134.6, 137.7, 143.1, 144.6, 145.8, 192.5.

2,7-bis(9-hexyl-9H-carbazol-3-yl)ethynyl)-9H-thioxanthen-9-one (TX-CAA-C6), yellow solid, 49% yield. 1H NMR (400 MHz, CDCl$_3$, δ (ppm)): 0.88 (t, $J = 7.2$ Hz, 6H), 1.26-1.41 (m, 12H), 1.83-1.91 (m, 4H), 4.29 (t, $J = 7.2$ Hz, 4H), 7.26-7.30 (m, 4H), 7.37-7.42 (m, 4H), 7.48-7.53 (m, 4H), 7.66 (dd, $J = 8.4$ Hz, $J = 1.2$ Hz, 2H), 7.57 (dd, $J = 8.0$ Hz, $J = 1.6$ Hz, 2H), 8.12 (d, $J = 7.6$ Hz, 2H), 8.32 (d, $J = 1.2$ Hz, 2H), 8.80 (d, $J = 2.0$ Hz, 2H); 13C NMR (400 MHz, CDCl$_3$, δ (ppm)): 14.2, 22.7, 27.1, 29.1, 31.7, 43.4, 86.7, 92.8, 108.9, 109.1, 112.8, 119.5, 120.7, 122.55, 122.63, 123.0, 124.3, 126.2, 126.3, 129.1, 129.5, 132.8, 134.7, 136.1, 140.4, 140.9, 178.8.

2,7-bis(10-hexyl-10H-phenothiazin-3-yl)ethynyl)-9H-thioxanthen-9-one (TX-PTAA-C6), yellow solid, 51% yield. 1H NMR (400 MHz, CDCl$_3$, δ (ppm)): 0.86-0.90 (m, 6H), 1.28-1.33 (m, 8H), 1.40-1.47 (m, 4H), 1.77-1.84 (m, 4H), 3.84 (t, $J = 7.2$ Hz, 4H), 6.80 (d, $J = 8.4$ Hz, 2H), 6.86 (d, $J = 8.0$ Hz, 2H), 7.11-7.18 (m, 4H), 7.28 (d, $J = 2.0$ Hz, 2H), 7.32 (dd, $J = 8.4$ Hz, $J = 2.0$ Hz, 2H), 7.49-7.51 (m, 2H), 7.65 (dd, $J = 8.0$ Hz, $J = 1.6$ Hz, 2H), 8.698-8.702 (m, 2H); 13C NMR (400 MHz, CDCl$_3$, δ (pppm)): 14.2, 22.7, 26.7, 26.9, 31.6, 47.8, 88.2, 90.7, 115.2, 115.6, 116.5, 122.2, 122.9, 124.2, 124.9, 126.3, 127.5, 127.6, 129.1, 130.3, 131.1, 132.9, 134.7, 136.4, 144.7, 145.8, 178.7.

3. Results and discussion

3.1. Photophysical properties

The one-photon absorption and fluorescence spectra were measured in CH$_2$Cl$_2$ (c = 1×10^{-5} mol·L$^{-1}$). The normalized one-photon absorption and fluorescence spectra for the four compounds are presented in Figure 2, these four compounds showed very similar absorption and emission spectra. As shown in Figure 2a, there was no obvious one-photon absorption in the spectral range of 550-800 nm for the four compounds, which indicate that there were no energy levels corresponding to an electron transition in this spectral range. And, the absorption spectrum of each compound exhibits strong absorption blow 400 nm. If wavelength of exciting laser appeared in this range, it should be attributed to multi-photon absorption mechanism. From Figure 2b, one can see that under identical experimental conditions, the one-photon excited fluorescence (SPEF) spectra showed a similar trend with the linear absorption spectra. The spectra exhibit a large red-shifted with changing donor group (D). The red shift of FT-CAA-C6 is obviously larger than others, the emission maximum of FT-CAA-C6 is 632 nm longer than that of FT-PTAA-C6 (525 nm), TX-CAA-C6 (523 nm) and TX-PTAA-C6 (505 nm).

The photophysical properties for the four compounds were summarized in Table 1. These four compounds exhibited low fluorescence quantum yields (Φ), which might contribute to improvement of non-irradiative decay and higher initiating efficiency.
TPA cross-sections (δ_{TPA}) were measured to understand their TPA behaviour using the two-photon fluorescence method and the normalized TPA spectra of FT-CAA-C6 and TX-CAA-C6 are presented in Figure 3. However, the two-photon-excited fluorescence spectra of FT-PTAA-C6 and TX-PTAA-C6 were not obtained, because of the low fluorescence quantum yields (Φ) of FT-PTAA-C6 (0.01%) and TX-PTAA-C6 (0.02%).

![Normalized UV-Vis and fluorescence spectra of FT-CAA-C6 (black line), FT-PTAA-C6 (red line), TX-CAA-C6 (blue line) and TX-PTAA-C6 (green line) in dichloromethane.](image)

Figure 2. Normalized UV-Vis and fluorescence spectra of FT-CAA-C6 (black line), FT-PTAA-C6 (red line), TX-CAA-C6 (blue line) and TX-PTAA-C6 (green line) in dichloromethane.

Molecule	λ_{max}^a	$\lambda_{SPEF,b}^{max}$	Φ^c	$\lambda_{TPEF,d}^{max}$	$\delta_{TPA,e}^{max}$/GM
FT-CAA-C6	300	632	1.65%	617	527
FT-PTAA-C6	295	525	0.01%	-	-
TX-CAA-C6	356	523	3.56%	511	72
TX-PTAA-C6	277	505	0.02%	-	-

*a λ_{max} of the absorption spectra in nm.

*b λ_{max} of the one-photon fluorescence spectra in nm.

*c Fluorescence quantum yield.

*d λ_{max} of the two-photon fluorescence spectra in nm.

*e The maximum of two-photon absorption cross-section. $1\text{ GM} = 10^{50}\text{ cm}^4\text{ s photon}^{-1}$.

![Normalized two-photon-excited fluorescence spectra of FT-CAA-C6 (black line) and TX-CAA-C6 (red line) in dichloromethane.](image)

Figure 3. Normalized two-photon-excited fluorescence spectra of FT-CAA-C6 (black line) and TX-CAA-C6 (red line) in dichloromethane.
The Figure 4 shows the linear squared dependence of LogI_F on LogI_{in} of Fluorescein, FT-CAA-C6 and TX-CAA-C6 versus excitation wavelengths of 780 nm. The scope values of Figure 4a-c were near by 2, which meant two-photon absorption had occurred. The maximum of δ_{TPA} values of FT-CAA-C6 (527 GM at 810 nm) and TX-CAA-C6 (72 GM at 750 nm) are also listed in Table 1. The wavelength range 780–820 nm laser light is often used for two-photon microfabrication. Therefore, FT-CAA-C6 should be promising candidates as photoinitiators.

![Figure 4](image)

Figure 4. The linear squared dependence of LogI_F on LogI_{in} of a) Fluorescein, b) FT-CAA-C6 and c) TX-CAA-C6 versus excitation wavelengths of 780 nm. d) TPA cross-sections of Fluorescein (black point), FT-CAA-C6 (red point) and TX-CAA-C6 (blue point) in range 740–910 nm. The solvent is dichloromethane.

3.2. Two-photon polymerization

The Two-photon polymerization was finished by nanoscribe GT (Germany) with 780 nm laser wavelength, 200 fs lasing source, and 120mW average power. Three-dimensional woodpile microstructures were fabricated with negative resins system, which contained oligomers (trimethylolpropane triacrylate and trimethylolpropane ethoxylate triacrylate, 1/1, w/w), FT-CAA-C6 ($c = 10 \, \text{μmol} \cdot \text{g}^{-1}$) as an initiator and a little N,N-dimethylacetamide (DMAc, increasing the compatibility). The laser was tightly focused via an oil immersion objective lens ($100 \times \text{NA} = 1.4$). The scan speed was 100 μm2·s$^{-1}$. The polymerization results were observed with a scanning electron microscop (zeiss, Germany). It shows a 20 μm \times 20μm polymerization region with a ten layer stereostructure (Figure 5).
4. Conclusions

In conclusion, we have successfully synthesized four new two-photon polymerization initiators with D–π–A–π–D type structure which the carbazole or phenothiazine moiety acts as a donor, phenylacetylenyl as a conjugate linker and the Fluorenone or thioxanthone as an acceptor. The δ_{TPA} values reach a maximum value of 527 GM for FT-PTAA-C6. In addition, FT-PTAA-C6 can be used for two-photon polymerization and possess potential applications due to simple preparation.

References

[1] Corredor C C, Huang Z-L, Belfield K D, Morales A R and Bondar M V 2007 Chem. Mater. 19 5165
[2] He G S, Tan L S, Zheng Q and Prasad P N 2008 Chem. Rev. 108 1245
[3] Pawlicki M, Collins H A, Denning R G and Anderson H L 2009 Angew. Chem., Int. Ed. 48 3244
[4] Kim H M and Cho B R 2015 Chem. Rev. 115 5014
[5] Zhou J, Liu Q, Feng W, Sun Y and Li F 2015 Chem. Rev. 115 395
[6] LaFratta C N, Fourkas J T, Baldacchini T and Farrer R A 2007 Angew. Chem. Int. Ed. 46 6238
[7] Li L and Fourkas J T 2007 Materials Today 10 30
[8] Hogan W, Moses E, Warner B, Sorem M, Soures J 2004 Opt. Eng. 443 2841
[9] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[10] Zhou X, Hou Y and Lin J 2015 AIP Advances 5 030701
[11] Xing J F, Zheng M L and Duan X M 2015 Chem. Soc. Rev. 44 5031
[12] Reinhardt B A, Brott L L, Clarson S J, Dillard A G, Bhatt J C, Kannan R, Yuan L, He G S and Prasad P N 1998 Chem. Mater. 10 1863
[13] Albota M et al. 1998 Science 281 1653.
[14] Cumpston et al. 1999 Nature 398 51
[15] Ren Y et. al. 2002 J. Mater. Chem. 12 3431
[16] Yan Y X et. al. 2005 Opt. Mater. 27 1787
[17] Zhang X, Yu X, Sun Y, Xu H, Feng Y, Huang B, Tao X and Jiang M 2006 Chem. Phys. 328 103
[18] Zhang X, Yu X, Sun Y, He W, Wu Y, Feng Y, Tao X and Jiang M 2006 Opt. Mater. 28 1366
[19] Li Z et. al. 2017 Polym. Chem. 8 6644
[20] Pucher N, Rosspeintner A, Satzinger V, Schmidt V, Gescheidt G, Stampfl J and Liska R 2009 Macromolecules 42 6519
[21] Li Z et. al. 2011 J. Polym. Sci., Polym. Chem. 49 3688
[22] Li Z et. al. 2013 Macromolecules 46 352
[23] Nazir R et. al. 2013 Macromolecules 46 7239
[24] Nazir R et. al. 2014 Chem. Mater. 26 3175
[25] Nazir R et al Macromolecules 48 2466
[26] Nazir R et. al. 2016 J. Mater. Chem. C 4 167
[27] Xu C and Webb W W 1996 J. Opt. Soc. Am. B 13 481