RESEARCH ARTICLE

Structural features and phylogenetic implications of Cicadellidae subfamily and two new mitogenomes leafhoppers

Xiaoxiao Chen¹,², Zhouwei Yuan¹,², Can Li², Christopher H. Dietrich³, Yuehua Song¹*¹

¹ School of Karst Science, Guizhou Normal University/State Key Laboratory Cultivation Base for Guizhou Karst Mountain Ecology Environment of China, Guiyang, China, ² Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, China, ³ Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Illinois, Champaign, United States of America

* songyuehua@163.com

Abstract

Complete mitochondrial genome sequences facilitate species identification and analyses of phylogenetic relationships. However, the available data are limited to the diverse and widespread insect family Cicadellidae. This study analyzes and summarizes the complete mitochondrial genome structure characteristics of 11 leafhopper subfamilies and two newly sequenced Typhlocybinae species, Empoascana rawengangensis and E. gracilis. Moreover, using 13PCGs and rRNA data to analyze the nucleotide diversity, evolution rate, and the phylogenetic relationship between the subfamilies of 56 species, verifying the taxonomic status analysis of E. wengangensis and E. gracilis. The analysis results show that the genome structures of the subfamilies and the newly sequenced two species are very similar, and the size of the CR region is significantly related to the repeat unit. However, in the entire AT-skews and CG-skews, the AT-skews of other subfamilies are all positive, and CG-skews are negative, while Empoascini of Typhlocybinae and Ledrinae are the opposite. Furthermore, among 13PCGs, the AT-skews of 13 species are all negative while CG-skews are positive, which from Empoascini in Typhlocybinae, Idiocerinae, Cicadellinae, Ledrinae, and Evacanthinae. Phylogenetic analysis shows that ML and PB analysis produce almost consistent topologies between different data sets and models, and some relationships are highly supported and remain unchanged. Mileewinae is a monophyletic group and is a sister group with Typhlocybinae, and the sister group of Evacanthinae is Ledrinae + Cicadellinae. Phylogenetic analysis grouped the two newly sequenced species with other species of Typhlocybinae, which was separated from other subfamilies, and all Erythroneurini insects gathered together. However, E. gracilis grouped into a single group, not grouped with species of the same genus (Empoascana). This result does not match the traditional classification, and other nuclear genes or transcriptome genes may be needed to verify the result. Nucleotide diversity analysis shows that nad4 and nad5 may be evaluated as potential DNA markers defining the Cicadellidae insect species.
Introduction

The insect mitochondrial genome (mtDNA) is the only extranuclear genetic information carrier in insects. It is usually a closed double-stranded DNA molecule with a measured molecular weight of about 15–20 kb. Usually, it contains 37 genes, including 13 protein coding genes (PCGs), NADH dehydrogenase 1–6 and 4L (nad1-6 and nad4L), cytochrome c oxidase subunits 1–3 (cox1-3), ATPase subunit 6 and 8 (atp6 and atp8), cytochrome b (cytb), two ribosomal RNAs genes (16s and 12s) and 22 transfer RNA (tRNA) genes. A region rich in A + T, the control region, is also present [1, 2]. Due to the characteristics of simple structure, small molecular weight, stable composition, conservative arrangement, lack of recombination, maternal inheritance, relatively high evolutionary rate and easy detection, the mitochondrial genome has been widely used for species identification and population genetic research as well as in biogeography and phylogeny [3–5]. However, there are repetitive regions and AT-rich regions in mitochondrial genes, and the real mitochondrial sequence and nuclear copy mitochondrial sequence (pseudogene) have great similarities, making it difficult to assemble the mitochondrial gene correctly after sequencing. How to enrich mitochondrial DNA more effectively is worthy of our thinking. In addition, in the application of mitochondrial genes, whether it is a phylogenetic tree constructed or the study of population evolution based on the mitochondrial genome, a single protein coding gene and rRNA gene are commonly used. Compared with the complete mitochondrial genome, A single gene fragment can only reflect part of the effective biological information, and different researchers often get different results based on different genetic data, resulting in the phylogenetic relationship of many species of insects still unresolved. With the continuous development of sequencing technology, it is necessary to use the whole mitochondrial genome as much as possible for phylogenetic analysis., In order to get more accurate results.

The hemipteran insect family Cicadellidae (leafhoppers) includes >2,600 genera and >22,000 species worldwide, including >2,000 species in China [6, 7]. Erythroneurini, the larger tribe of the cicadellid subfamily Typhlocybinae, is widely distributed in the six major zoogeographic regions of the world and includes ~2,000 species worldwide and >300 species in China [8, 9]. All leafhoppers are phytophagous, different species feeding on a wide variety of plants, and the group includes critical agricultural pests and vectors of plant pathogens [10–12]. Simultaneously, because of its large number and small individuals, the taxonomic status and phylogenetic relationship between the subfamilies have been controversial, which has been discussed by related researchers. The study of the molecular phylogeny of Cicadellidae began in the 1990s. In 1993, Fang et al. sequenced and analyzed the 16S of 19 genera 21 species of Deltocephalinae, and made a reasonable attempt to study the molecular phylogeny of leafhopper insects [13]. Subsequently, in 1995, Fang et al. combined molecular data and morphological characteristics, and based on cytb to conducted a branch analysis of the Deltocephalinae genera in the New North Territory, and the results still verified the monophyletic of the group [14]. Dietrich et al. conducted a systematic study on the phylogeny of Cicadellidae. Since 1997, phylogenetic studies have been conducted on Flexamia, Dalbulus, Membracoidea, etc., based on mitochondrial and nuclear gene fragments, and the relationship between leafhopper subfamilies, tribes, and genera has been analyzed. Most of the results are similar to those based on morphological characteristics [15–17]. Hereafter, Dietrich combined morphology and molecule, divided Cicadellidae into 27 subfamilies, and revised the Cicadellidae classification system proposed by Oman [5, 18]. However, these studies have not clearly established the relationship between the subfamilies in the Cicadellidae, and the relationship between some subfamilies and their relative groups remains to be explored [19, 20].
Although in recent years, the phylogenetic relationship of the entire Cicadellidae and a few subfamilies within it has been studied based on morphological or molecular biological information [21–24], but the overall understanding of leafhopper phylogeny is preliminary. These recent studies have partially revised the Cicadellidae classification of high-level elements, but more data are still needed to reconstruct and verify its phylogenetic relationship. Therefore, in this study, we newly sequenced and annotated two species to increase the molecular data of the Cicadellidae, and combined with the mitochondrial gene data of 13 protein-coding genes and two ribosomal RNA genes of 56 Cicadellidae insects from 11 subfamilies (Table 1) to reconstruct the phylogenetic relationship between these subfamilies, and confirm the taxonomic status of *Empoasca canara wengangensis* (Chen & Song, 2020) and *E. gracilis* (Dworakowska, 1992) at the molecular level. Besides, we analyzed the mitochondrial structure of these two species and each subfamily, including genome size and nucleotide composition, codon usage, tRNA secondary structure, A + T control region repeat unit, nucleotide diversity and evolution rate, and compared the similarities and differences between the various subfamilies. It is hoped that this study can provide a reference for future research on leafhopper classification and phylogeny.

Material and methods

Sample collection and DNA extraction

Samples of *E. wengangensis* and *E. gracilis* were collected from Duyun (107˚07’01”-107˚46’26” E, 25˚51’26”-25˚39’00” N) and Anshun (105˚22’50”-105˚45’22” E, 25˚33’38”-25˚55’32” N), Guizhou province, China, on 17 September 2018 and 13 May 2019. And leafhopper insects are not protected animals and are collected in non-natural reserves. The whole body was preserved in absolute ethanol and then stored at -20˚C in the laboratory. After morphological identification, voucher specimens with male genitalia prepared were deposited in the insect specimen room of Guizhou Normal University. Total DNA was extracted from the entire body without the abdomen.

Genome sequencing, assembly, and annotation

The mitochondrial gene sequence was obtained by sequencing. Primers were designed to amplify the mtDNA sequence in PCR reactions. The PCR reaction was performed using the LA Taq polymerase. The PCR conditions were as follows: initial denaturation 94˚C for 2 min, then 35 cycles of denaturation at 94˚C for 30 s, annealing at 55˚C for 30 s, and extension at 72˚C for 1 min/kb, followed by the final extension at 72˚C for 10 min. The PCR products were sequenced directly, or if needed first cloned into a pMD18-T vector (Takara, JAP) and then sequenced, by the dideoxynucleotide procedure, ABI 3730 automatic sequencer (Sanger sequencing) using the same set of primers. After quality-proofing of the obtained fragments, the complete mt genome sequence was assembled manually using DNAStar [57], and the Blast function in NCBI performed homology search to verify the amplified sequence as the target sequence [58, 59]. The nucleotide base composition, codon usage and A + T content values were analyzed with MEGA 6.06 [60]. The secondary structure of tRNA genes was annotated using online tools tRNAscan-SE 1.21 [61] and ARWEN [62]. The tandem repeat sequence in the control area was determined by the online search tool Tandem Repeats Finder [63] and used Spss 22.0 software for correlation analysis. The base skew values for a given strand were calculated using the formulae [64]: AT-skew = [A-T]/[A+T] and GC-skew = [G-C]/[G+C]. The nucleotide diversity (Pi) and sliding window analysis (sliding window: 200 bp, step size: 20 bp) of 13 PCGs among 56 Cicadellidae species were conducted by DnaSP 5.0 software [65].
Table 1. List of the mitochondrial genomes analysed in the present study.

subFamily	Species	Length(bp)	GenBank No.	Reference
Typhlocybinae	Empoascanara wengangensis	14,830	MT445764	This study
	Empoascanara gracilis	14,627	MT576649	This study
	Empoascanara dwalata	15,271	MT350235.1	
	Empoascanara sipra	14,827	MN604278.1	
	Mitjaeia protuberanta	15,472	NC_047465.1	
	Limassolla lingchuanensis	15,716	NC_046037.1	
	Paraahimia luaodianensis	16,497	NC_047464.1	
	Typhlocyba sp.	15,223	KY039138.1	
	Parathailocyba orla	15,382	MN894531.1	
	Zyginella minuta	15,544	MT488436.1	
	Eupteryx minuscula	16,944	MN910279.1	
	Bolanussoides shaanxiensis	15,274	MN661136.1	Unpublished
	Empoasca vitis	15,154	NC_024838.1	
	Gharuaria sinensis	15,491	MN699874.1	
	Empoasca flavescens	15,152	MK211224.1	
Deltocephalina	Empoasca onukii	15,167	NC_037210.1	
	Pellucidus guizhouensis sp.	16,555	MF784429.1	Unpublished
	Phlogotettix sp.	15,136	KI039135.1	
	Yanoccephalus yononis	15,623	NC_036131.1	
	Scaphoideus maaii	15,188	KY817243.1	
	Scaphoideus nigirvalveus	15,235	KY817244.1	
	Scaphoideus varius	15,207	KY817245.1	
	Tambocerus sp.	15,955	KT827824.1	
	Maiestas dorsalis	15,352	KX786285.1	
	Japananus hyalinus	15,364	KY129954.1	
	Drabesoides nuchalis	15,309	NC_028154.1	
	Macrosteles quadrimaculatus	15,734	MG727894	
	Macrosteles quadrilinatus	16,626	KY645960.1	
	Nephotettix cincticeps	14,805	NC_026977.1	Unpublished
	Paralaevicephalus gracilipennis	16,114	MK450366.1	
	Watanabellia graminea	15,011	NC_045270.1	
Idiocerinae	Populicerus populi	16,494	MH492318.1	
	Idioscopus myrca	15,423	MH492317	
	Parocerus laurifoliae	16,811	NC_039741.1	
	Idioscopus chyalealis	15,393	NC_039642.1	Unpublished
	Idioscopus nitidulus	15,287	NC_029203.1	Unpublished
Iassinae	Baiattracmorpha lateprocessus	15,356	NC_045858.1	
	Krisna concava	14,304	NC_046067.1	
	Krisna rufomarginata	14,724	NC_046068.1	
	Gessius rugidorsus	14,634	MN577633.1	
	Trocanadella arisana	15,131	NC_036480.1	
	Iassus dorsalis	15,176	NC_046066.1	
Cicadellinae	Bothrogonia ferruginea	15,262	KU167500.1	Unpublished
	Homalodisca vitripennis	15,304	AY875213.1	Unpublished
	Cicadella viridis	15,891	MK335936	
Coelidiinae	Tahuranara fasciana	15,161	NC_036015.1	

(Continued)
Furthermore, the ratio between the non-synonymous (Ka) and the synonymous substitution rate (Ks) of 13 PCGs was also estimated in DnaSP 5.0.

Phylogenetic analysis

The phylogenetic analysis used the complete mitochondrial genomes of the two newly sequenced erythroneurine species plus 54 Cicadellidae species from our team and GenBank, and three outgroups of Cercopoidea (Table 1). The Gblocks Server online platform was used to eliminate poorly aligned positions and divergent regions of DNA protein alignment, and all alignments were checked and corrected in MEGA 6.06 [60] before phylogenetic analysis. Four datasets were generated: (1) 13 PCGs with 9262 nucleotides (PCGs); (2) the first and second codon positions of the 13 PCGs with 6174 nucleotides (PCG12); (3) 13 PCGs with 9262 nucleotides and two rRNA with 1219 nucleotides (PCGR); (4) and amino acid sequences of the 13 PCGs with 3289 amino acids (PCGAA).

The trimmed alignment was used to estimate the phylogeny by Bayesian inference (BI) using MrBayes 3.2.7 [66] and maximum likelihood (ML) using IQ-TREE [67]. BI selected GTR + I + G as the optimal model, running 10 million generations twice, sampling once every 1000 generations, after the average standard deviation of the segmentation frequency drops below 0.01, with the first 25% of the samples are discarded burn-in, and the remaining trees used to generate a consensus tree and calculate the posterior probability (PP) of each branch. ML constructed with the IQ-TREE used an ultrafast bootstrap approximation approach with 10,000 replicates and calculate bootstrap scores for each node (BP).

Results and discussion

Genome arrangement, organization and composition

In the Cicadellidae family, the structure and characteristics of the mitochondrial genomes of most leafhoppers are very similar, compared with the common gene rearrangements of Thysanoptera and Hymenoptera, the gene composition and arrangement of the mitochondrial genome of this family are relatively conservative. And the gene rearrangements are relatively rare, only three species have been reported from Deltocoephalinae, and all rearrangements occur on the three genes trnW, trnC, and trnY in tRNA. Gene order of other species is the
same as the putative ancestral insect (Drosophila yakuba) mitochondrial genome arrangement [1, 40, 42, 43, 68].

Among the 56 leafhoppers sequenced, the length of the mitochondrial genome ranges from 14 kbp to 17 kbp. The smallest is *Krisna concava* of Iassinae, while the largest is *Eupteryx minuscula* from Typhlocybinae, which is 14,304 bp and 16,944 bp in length, respectively. The average A+T content of the 11 subfamilies is 77.91% (A, 42.55%; T, 35.36%; C, 12.37%; G, 9.72%), of which Iassinae is the highest at 80.46%, while Ledrinae is the lowest at 75.94%. In all Cicadellidae species that have been sequenced, the content of base A > base T, base C > base G, except the six species from Ledrinae and Empoascini of Typhlocybinae, whose content is opposite. The range of AT-skews between subfamilies is -0.2246~0.1524, and the skew of GC-skews is -0.2179~0.1230. All species are positive for AT-skews and negative for GC-skews, except six species from Empoascini in Typhlocybinae and Ledrinae. Iassinae has the highest AT-skews, and Coelidiinae has the lowest GC-skews (Table 2 and S1 Table).

Genome organization and nucleotide composition of the two new mitogenomes sequenced in this study are similar to those of other Erythroneurini reported previously [25–27]. The complete mitogenomes of *E. wengangensis* and *E. gracilis* are double-stranded plasmids with 14,830 and 14,627 bp, respectively (Fig 1). Both contain the usual 13 PCGs, 22 tRNA genes, two rRNA genes, and a control region. Fourteen genes encode in the minority strand (L-strand) while the others encode in the majority strand (H-strand). *E. wengangensis* has a total of 45 bp intergenic space in 12 regions ranging from 1 to 8 bp. Eleven genes were found to overlap by a total of 47 bp. *E. gracilis* has a total of 84 bp intergenic space in 14 regions ranging from 2 to 15 bp, and 11 genes were found to overlap by a total of 32 bp (Table 3).

The AT contents and skew statistics are shown in Table 4. The mitochondrial genomes of *E. wengangensis* and *E. gracilis* exhibit heavy AT nucleotide bias, with A + T% for the whole sequence 76.6% and 77.0%, respectively. Similar patterns of nucleotide composition are also found in other leafhopper species [38, 47]. The control region (CR) has the strongest A + T% bias, while the PCGs shows the lowest A + T% among whole genes. The whole genome has positive AT-skews (0.015, 0.140) and negative GC-skews (-0.154, -0.157). Analysis of 37 individual genes of the two species shows that AT-skews are mostly positive, while for GC-skews, the genes of *E. wengangensis* are mostly negative, but *E. gracilis* are mostly positive (Fig 2 and S2 Table). Positive AT-skews indicates that the content of base A is higher than that of base T. However, although the AT-skews is negative in a few genes, the difference in absolute value

Table 2. Whole nucleotide compositions, AT-skews and GC-skews in 11 subfamilies of Cicadellidae.

Subfamily	A%	C%	G%	T%	A+T%	AT-skew	GC-skew
Typhlocybinae	42.20	12.15	9.88	35.77	77.97	0.0826	-0.1032
Empoascini (tribe)	38.27	10.98	10.38	40.38	78.64	-0.0268	-0.0282
Other tribes	43.52	12.54	9.71	34.23	77.75	0.1195	-0.1272
Deltocephalinae	42.45	13.40	9.75	34.39	76.84	0.1050	-0.1576
Idiocerinae	42.78	11.91	9.78	35.53	78.31	0.0925	-0.0983
Iassinae	46.36	11.20	8.34	34.10	80.46	0.1524	-0.1467
Cicadellinae	43.02	12.47	9.88	34.63	77.65	0.1081	-0.1156
Coelidiinae	44.89	13.44	8.63	33.04	77.93	0.1521	-0.2179
Megopalminae	44.39	13.24	9.02	33.30	77.70	0.1427	-0.1897
Milewinae	43.67	12.01	8.38	35.95	79.61	0.0970	-0.1783
Macropsininae	44.37	12.26	9.84	33.53	77.90	0.1392	-0.1096
Ledrinae	29.44	10.55	13.51	46.50	75.94	-0.2246	0.1230
Evacanthinae	40.39	10.92	9.73	38.96	79.35	0.0179	-0.0578

https://doi.org/10.1371/journal.pone.0251207.t002

Structural feature and phylogenetic implications of Cicadellidae subfamily and two new mitogenomes leafhoppers
was minimal. For GC-skews, a negative value indicates that the content of base G is lower than that of base C, while a positive value is an opposite. Overall, the base composition of these two species is skewed toward A and C.

Protein-coding genes and codon usage

Among the 13 PCGs of 56 species, the average AT content values of PCGs is 76.55%, Iassinae is the highest at 79.57%, and Ledrinae is the lowest at 74.36%. The third codon of 42 species is higher than the first codon. Moreover, 14 are the opposite. The range of AT-skews between subfamilies is -0.2745~0.1680, and the GC-skews is -0.2337~0.1589. Coelidiinae has the highest AT-skews and the lowest GC-skews, while Ledrinae is the opposite. The AT-skews of 13 species are all negative, which from Empoascini in Typhlocybinae, Idiocerinae, Cicadellinae, Ledrinae, and Evacanthinae. Furthermore, the other subfamilies and species are all positive. In GC-skews, only Ledrinae and six species have positive values, and the others are negative (Table 5 and S3 Table). All 62 available codons are used in 11 subfamilies. Synonymous codon usage bias was observed in 56 mitochondrial genomes, and UUA (Leu), UCG (Ser), AUU (Ile), AUA (Met), etc. are the most commonly used codons in many species.

Located on the major strand (H-strand), while the other four PCGs are located on the minor strand (L-strand). The average AT content values of PCGs are 75.4% and 75.6% in E. wengangensis and E. gracilis, respectively, and the third codon position (80.8%, 80.9%) has an AT content much higher than that of the first (72.0%, 71.6%) and second (73.4%, 74.5%) positions. AT-skews of all codon positions are positive, while GC-skews are negative. All 13 PCGs have the standard ATN as the start codon, while nad5 and atp8 genes have TTG, a pattern also observed in other leaffopper mitogenomes [25, 26]. Conventional stop codons (TAA or TAG) appear in 11 PCGs, except that cox2 and nad5 use an incomplete codon (a single T—) as the stop codon (Tables 3 and 4).

The relative synonymous codon usage (RSCU) was calculated and summarized, and All 62 available codons (excluding TAA and TAG) are used in E. wengangensis and E. gracilis. After excluding the stop codons, these two species have 3654 and 3658 PCG codons, respectively (Fig 3 and Table 6). Synonymous codon usage bias was observed in both mitochondrial genomes, and 22 codons are used more frequently than other codons. The four most abundant
codons are UUA (Leu), UCG (Ser), GUA (Val) and GAA (Glu), and the least used codons were CGC (Arg) and ACG (Thr). The preferred codons all end with A or U, thus resulting in a strong A + T bias at the third codon position.

Transfer RNA and ribosomal RNA genes

The predicted tRNA length of 56 species is between 60~75bp, all of which are the typical clover-leaf secondary structure while only trnS1 lacks the dihydrouridine (DHU) stem and forms

Table 3. Organization of the *E. wengangensis* and *E. gracilis* mitochondrial genome.

Gene	Position	Size(bp)	Intergenic	Start Codon	Stop Codon	Strand
tRNA-Ile	1–63	63	64	0	0	H
tRNA-Gln	61–129	69	70	-3		L
tRNA-Met	138–207	70	71	8	9	H
nad2	208–1179	972	975	0	0	ATT TAA H
tRNA-Trp	1178–1242	65	66	-2	2	L
tRNA-Cys	1235–1296	62	65	-8	-8	L
tRNA-Tyr	1302–1368	67	63	5	3	H
cox1	1370–2905	1536	1545	1	2	ATG ATT TAA H
tRNA-Leu	2906–2971	66	69	0	2	H
cox2	2972–3650	679	0	0	0	ATA T H
tRNA-Lys	3651–3721	71	0	0		L
tRNA-Asp	3721–3784	64		-1		L
atp8	3784–3936	153	-1	-2		H
atp6	3930–4580	651	654	-7		H
cox3	4583–5362	780	2	8		H
tRNA-Gly	5363–5424	62	0	0		H
nad3	5425–5778	354	0	0		ATA ATT TAA TAG H
tRNA-Ala	5783–5845	63	67	4	-2	H
tRNA-Arg	5848–5913	66	63	2	15	H
tRNA-Asn	5912–5976	65	67	-2		H
tRNA-Ser	5973–6032	60	68	-4	-1	H
tRNA-Glu	6041–6107	67	66	8	11	H
tRNA-Phe	6112–6177	66	67	4	2	H
nad5	6178–7849	1672	0	0		TTG T L
tRNA-His	7850–7912	63	69	0		L
nad4	7912–9237	1326	-7	-1		ATG TAA L
nad4L	9231–9509	279	1	-7		ATG TAA TAG L
tRNA-Thr	9512–9575	64	62	2		H
tRNA-Pro	9576–9639	64	68	0	7	L
nad6	9642–10124	483	486	2	5	ATT ATG TAA H
cytbc	10132–11268	1137	7		ATG TAG TAA H	
tRNA-Ser	11267–11329	63	67	-2	9	L
nad1	11320–12261	942	936	-1	-2	ATT TAA L
tRNA-Leu	12262–12326	65	67	0	0	L
16S	12327–13514	1188	1202	0	0	L
tRNA-Val	13515–13578	64	65	0	0	L
12S	13579–14305	727	735	0	0	L
D-loop	14306–14830	525	212			L

https://doi.org/10.1371/journal.pone.0251207.t003
a simple loop. Furthermore, mismatches such as GU, AA, etc. often occur in tRNA. The structures and characteristics of 16S and 12S are similar in each subfamily. The sizes are 1038~1426bp, 707~789bp, with an average of 1188bp and 740bp, respectively. The AT content of 16S is higher than that of 12S. Deltocephalinae and Coelidiinae are the largest of 16S and 12S, respectively. Whole nucleotide compositions, AT-skew and GC-skew in 11 subfamilies of Cicadellidae.

Table 4. Nucleotide compositions, AT-skew and GC-skew in different regions of E. wengangensis and E. gracilis mitochondrial genome.

Feature	A%	C%	G%	T%	A+T%	AT-skew	GC-skew	Length(bp)
E. wengangensis								
Whole	42.7	13.5	9.9	33.9	76.6	0.115	-0.154	14830
PCGs	42.2	14.2	10.5	33.2	75.4	0.119	-0.150	10964
1st codon position	42.5	14.8	13.3	29.5	72.0	0.181	-0.053	3655
2nd codon position	38.1	16.4	10.3	35.3	73.4	0.038	-0.228	3655
3rd codon position	46.0	11.3	7.8	34.8	80.8	0.139	-0.183	3654
tRNA	41.0	12.3	10.2	36.5	77.5	0.058	-0.093	1429
16S	47.5	11.2	6.9	34.4	81.9	0.159	-0.237	1188
12S	46.1	12.8	7.4	33.7	79.8	0.155	-0.265	727
CR	42.9	8.6	8.4	40.2	83.1	0.032	-0.012	525
E. gracilis								
Whole	43.9	13.3	9.7	33.1	77.0	0.140	-0.157	14627
PCGs	42.9	14.1	10.3	32.7	75.6	0.134	-0.144	10976
1st codon position	42.7	15.4	13.0	28.9	71.6	0.193	-0.085	3659
2nd codon position	40.3	15.6	10.0	34.2	74.5	0.082	-0.219	3659
3rd codon position	45.8	11.3	7.8	35.1	80.9	0.132	-0.183	3658
tRNA	41.6	11.3	10.0	37.1	78.7	0.057	-0.061	1461
16S	51.2	11.1	6.0	31.7	82.9	0.235	0.024	1202
12S	49.9	11.8	7.9	30.3	80.3	0.244	0.144	735
CR	43.9	5.7	3.3	47.2	91.1	-0.036	-0.267	212

Based on the secondary structure, a total of 20 and 21 G-U weak base pairs are found in 16S and 12S rRNAs respectively (Fig 4 and S1 Fig), forming weak bonds and located in AA stems (11bp), T stems (3 and 2bp) and DHU stems (6 and 8 bp). Most mismatched nucleotides are G-U pairs, which form weak bonds in tRNA and non-classical pairs in tRNA secondary structure, similar to other Cicadellidae [40, 46].

Leafhopper ribosomal RNA (rRNA) includes 16S RNA and 12S RNA. These two genes are highly conserved and are encoded on the minor strand (L-strand). Similar to other known insects, the content of A + T% in 16S is higher than that of 12S. The 16S genes of E. wengangensis and E. gracilis are 1188bp and 1202bp in length, with AT content of 81.90% and 82.90%, respectively, and located between trnL2 and trnV. The 12S rRNA genes of both are 727bp and 735bp in length, with AT contents of 79.80% and 80.30%, respectively, and located after trnV. The rRNA genes showed a positive AT-skew and GC-skew (Table 4). These features are similar to those observed in other insects [49, 69, 70].
Fig 2. AT and GC skews values for the 37 mitochondrial genome of *E. wengangensis* and *E. gracilis*. Each point indicates an individual gene.

https://doi.org/10.1371/journal.pone.0251207.g002

Table 5. 13PCGs nucleotide compositions, AT-skews and GC-skews in 11 subfamilies of Cicadellidae.

Subfamily	A+T%	AT-skew	GC-skew	Pos1	Pos2	Pos3
Typhlocybinae	76.22	0.0799	-0.0947	76.12	73.96	78.58
Empoascini (tribe)	77.38	-0.0625	0.0035	78.12	75.71	78.55
Other tribes	75.84	0.1274	-0.1275	75.46	73.38	78.69
Deltoccephalinae	75.55	0.1115	-0.1618	74.14	73.54	78.96
Idiocerinae	76.99	-0.0985	0.0056	76.09	75.60	79.28
Iassinae	79.57	0.1592	-0.1509	77.03	79.55	82.13
Cicadellinae	76.37	-0.0690	-0.0238	78.96	73.08	77.06
Coelidiinae	76.69	0.1680	-0.2337	77.56	74.30	78.19
Megophthalminae	76.26	0.1627	-0.1922	77.35	76.16	75.27
Mileevinae	78.56	0.1074	-0.1847	71.15	79.17	85.35
Macropsinae	75.93	0.1559	-0.1134	77.12	70.85	79.83
Ledrinae	74.36	-0.2745	0.1589	73.53	71.21	78.34
Evacanthinae	78.74	-0.0115	-0.0402	79.93	73.71	82.58

https://doi.org/10.1371/journal.pone.0251207.t005
Control region

The CR regions of 11 subfamilies range from 54 to 2662 bp, with an average of 1142 bp, the smallest in Iassinae and the largest in Typhlocybinae. The AT content is higher which ranging from 79.35% to 88.08%, with an average of 84.73%, and Mileewinae is the highest while Evacanthinae lowest. Among the 56 species, the repeat units range from 0 to 21. The smallest repeat unit from Typhlocybinae and Iassinae, and the largest repeat unit from Typhlocybinae. Spss 22.0 software was used to analyze the correlation between CR region size and repeat unit in 56 species. The results showed that there was a significant correlation between them.
Like the typical insect mitochondrial genome, the mt genomes of *E. wengangesis* and *E. gracilis* have a sizeable non-coding region identified as the control region and located downstream of 12S. Control regions of both species are rich in AT, their lengths are 525bp and 212bp, and the AT contents are 83.1% and 91.1%, respectively (Table 4). The control regions in the four available *Empoascanara* mitogenomes are various and not highly conserved, and their lengths range between 212 and 990 bp with variable numbers of repeat sequences (Fig 6). No tandem repeat units were found in *E. gracilis*; *E. sipra* includes one type of repeat unit (R); two kinds of repeats (R1, R2) are found in *E. dwalata* and *E. wengangesis* with various lengths and copy numbers.

Nucleotide diversity and evolutionary rate analysis

The sliding window analysis shows highly variable nucleotide diversity (Pi values) among 13 PCGs sequences of the 56 mitogenomes (Fig 7). The genes *nad2, nad4, nad4L* and *nad5* have

Table 6. Codon and relative synonymous codon usage (RSCU) of 13 PCGs in the mt genomes of *E. wengangesis* and *E. gracilis.*

Amino Acid	Codon	Count/RSCU	E. wengangesis	E. gracilis	Amino Acid	Codon	Count/RSCU	E. wengangesis	E. gracilis
Phe	UUU	161	1.5	141	1.5	Tyr	UAU	117	1.45
	UUC	53	0.5	47	0.5		UAC	44	0.55
Leu2	UUA	206*	3.07	196	2.94	His	CAU	53	1.41
	UUG	32	0.48	39	0.58		CAC	22	0.59
Leu1	CUU	54	0.8	68	1.02	Gln	CAA	90	1.64
	CUC	12	0.18	16	0.24		CAG	20	0.36
	CUA	79	1.18	66	0.99	Asn	AAU	240	1.54
	CUG	20	0.3	15	0.23		AAC	72	0.46
Ile	AUU	257	1.62	263	1.67	Lys	AAA	329	1.8
	AUC	61	0.38	52	0.33		AAG	36	0.2
Met	AUU	211	1.7	206	1.73	Asp	GAU	44	1.47
	AUG	37	0.3	32	0.27		GAC	16	0.53
	GUU	35	1.33	33	1.22		GAA	111	1.66
	GUC	9	0.34	11	0.41		GAG	23	0.34
	GUA	53	2.02	50	1.85		UGU	24	1.33
	GUG	8	0.3	14	0.52		UGC	12	0.67
Ser2	UCU	54	1.5	42	1.21	Trp	UGA	65	1.71
	UCC	14	0.39	23	0.66		UGG	11	0.29
	UCA	102	2.83	95	2.73	Arg	CGU	13	1.06
	UCG	6	0.17	8	0.23		CGC	1	0.08
Pro	CCU	61	1.73	48	1.41		CGA	31	2.53
	CCC	21	0.6	24	0.71		CGG	4	0.33
	CCA	53	1.5	57	1.68		AGU	29	0.81
	CCG	6	0.17	7	0.21		AGC	18	0.5
Thr	ACU	76	1.55	79	1.6		AGA	47	1.31
	ACC	43	0.88	31	0.63		AGG	18	0.5
	ACA	68	1.39	79	1.6		GGU	25	0.98
	ACG	9	0.18	9	0.18		GGC	4	0.16
Ala	GCC	12	0.56	11	0.64		GGG	27	1.06
	GCA	38	1.79	28	1.62	*	UAA	152	1.73
	GCG	5	0.24	4	0.23		UAG	24	0.27

The higher values of preferentially used codons are in bold.

https://doi.org/10.1371/journal.pone.0251207.t006

(R = 0.672, P < 0.05), and the repeat units of most Cicadellidae insects were positively correlated with the size of CR regions (Fig 5).

Like the typical insect mitochondrial genome, the mt genomes of *E. wengangesis* and *E. gracilis* have a sizeable non-coding region identified as the control region and located downstream of 12S. Control regions of both species are rich in AT, their lengths are 525bp and 212bp, and the AT contents are 83.1% and 91.1%, respectively (Table 4). The control regions in the four available *Empoascanara* mitogenomes are various and not highly conserved, and their lengths range between 212 and 990 bp with variable numbers of repeat sequences (Fig 6). No tandem repeat units were found in *E. gracilis; E. sipra* includes one type of repeat unit (R); two kinds of repeats (R1, R2) are found in *E. dwalata* and *E. wengangesis* with various lengths and copy numbers.
high nucleotide diversity of 0.397, 0.393, 0.382, and 0.380, respectively, while the genes \textit{cox3}, \textit{cox2}, \textit{cytb} and \textit{cox1} have comparatively low nucleotide diversity of 0.262, 0.261, 0.253 and 0.212 respectively. The pairwise \(\text{Ka}/\text{Ks} \) analysis shows that the average \(\text{Ka}/\text{Ks} \) ratios (\(\omega \)) of 13 PCGs ranged from 0.251 to 0.655 (0 < \(\omega \) < 1) (Fig 8), indicating that these genes are under purifying selection [71]. The genes \textit{nad4}, \textit{nad5}, \textit{nad1} and \textit{nad6} exhibit comparatively high \(\text{Ka}/\text{Ks} \) ratios of 0.655, 0.626, 0.625 and 0.606, while the values of \textit{cox3}, \textit{cox2}, \textit{cytb} and \textit{cox1} were relatively low, respectively 0.324, 0.323, 0.310 and 0.251.

Nucleotide diversity analysis are primary for identifying the regions with large nucleotide divergence, especially useful for designing species-specific markers [72, 73]. These are useful for taxa with highly variable morphological characteristics, especially Cicadellidae species. For a long time, gene \textit{cox1} has been considered as a universal barcode for identifying animal species [74], but in these 56 Cicadellidae species, it is the slowest evolving and least changing gene among 13 PCGs. If it is proved that the resolution of \textit{cox1} is very low in 13 PCGs, then other genes with sufficient large size, rapid evolution and high \(\text{Ka}/\text{Ks} \) ratio can be used as potential molecular markers in population genetics [73, 75]. However, Part of the value of \textit{cox1} as a marker is also the availability of conserved primer sites and relatively low AT\% bias. In this case, \textit{nad4} and \textit{nad5} may be evaluated as potential DNA markers that define the Cicadellidae insect species, but the result needs to be verified by multiple parties.

Phylogenetic relationships

Cicadellidae subfamilies’ relationship has always attracted related scholars’ attention because of the small size, and the morphological characteristics are difficult to distinguish. Early scholars made preliminary explorations of phylogenetic relationships based on morphological characteristics, and then analyzed them with molecular data. However, most studies are based on gene fragments, and data are relatively lacking, so the results do not reflect the relationship between subfamilies very well, and more data are needed for verification [24, 28, 46, 76, 77].
this study, the results are the same as other recent studies of the mitochondrial genome (Figs 9 and 10). Most currently recognized leafhopper subfamilies were recovered as monophyletic but relationships among some subfamilies are not well resolved. And compared with the phylogenetic tree constructed using nuclear genes (28S), the relationship between the subfamilies is partly different, for example, Cicadellinae and Coelidiinae are sister groups, but they are not grouped together in this study. This may be because the study used only one nuclear gene fragment and the amount of data was insufficient [17]. At present, the most researched based on the complete sequence data are the horned leafhoppers of Cicadellidae, and other groups are rarely reported or not. Many studies have shown that Deltocephalinae species constituted one clade and tended to be placed at the tree’s basal position as the sister group to the other leafhoppers, as in this study. The relationship between Mileewinae and its related subfamilies has

![Figure 6](https://doi.org/10.1371/journal.pone.0251207.g006)

Fig 6. Organization of the control region structure in the mitochondrial genomes of three *Empoasca*na species. R: repeat unit.

![Figure 7](https://doi.org/10.1371/journal.pone.0251207.g007)

Fig 7. Nucleotide diversities and sliding window analysis of 13 PCGs of the 56 Cicadellidae species. The blue curve shows the value of nucleotide diversity (Pi). Pi value of each PCG was shown above the arrows.

PLOS ONE | https://doi.org/10.1371/journal.pone.0251207.g007

May 14, 2021
also been studied. Young transferred Mileewanini from Cicadellinae to Typhlocybinae in 1965, thinking that Mileewanini has more similarities with Typhlocybinae. Mahmood questioned this view and moved the tribe back to Cicadellinae in related work. Later [78], Young suggested Mileewanini as a separate subfamily in 1968 [79], and it has been adopted by many scholars in recent years [6, 19, 21]. In 2019, He Hongli used PCGs data to conduct a preliminary phylogenetic study on this subfamily’s taxonomic status. The results show that Mileewinae is closer to Typhlocybinae than Cicadellinae and similar to Dietrich morphological phylogeny research [80]. Our research also shows that Mileewinae is a monophyletic group and is a sister group with Typhlocybinae. However, this result is only based on a species of Mileewinae, and more molecular data of this subfamily are needed to confirm this conclusion. Similarly, Evacanthinae’s kinship issue has yet to be resolved. Although Dietrich and Wang Yang (2017) combined morphological and molecular data to conduct phylogenetic analysis, their relationship with closely related groups has not been clearly reconstructed [6, 17, 81]. The sister group of Evacanthinae may be Coelidiinae + Neocoelidiinae, Mileewinae + Typhlocybinae, Coelidiinae + Mileewinae + Signoretiinae, or Cicadellinae + Mileewinae. This paper shows that the sister group of Evacanthinae is Ledrinae + Cicadellinae. And phylogenetic analysis grouped the two newly sequenced species (E. wengangensis and E. gracilis) with other species of Typhlocybinae, which was separated from other subfamilies, and all Erythroneurini insects gathered together. However, E. gracilis grouped into a single group, not grouped with species of the same genus (Empoascanara). This result does not match the traditional classification, and other nuclear genes or transcriptome genes may be needed to verify the result.
Based on the above research, although mitochondrial genes are now widely used in phylogenetic analysis, but the results obtained by different gene fragment combinations will have certain differences. The amount of data and the model have a great influence on the accuracy of the research results. Perhaps we need to combine other data to analyze the mitochondrial genome in a deeper level.

Conclusion

This paper analyzes and summarizes the complete mitochondrial genome structure characteristics of 11 leafhopper subfamilies and two newly sequenced Typhlocybinae species, *E. wengangensis* and *E. gracilis*, and analyzes the elemental composition, location, secondary structure and other characteristics of PCGs, tRNA genes, rRNA genes and control regions. Furthermore, using 13PCGs and rRNA data to analyzes the nucleotide diversity, evolution rate, and the phylogenetic relationship between the subfamilies of 56 species, verifying the taxonomic status analysis of *E. wengangensis* and *E. gracilis*. The analysis results show that the genome structures of the subfamilies and the newly sequenced two species are very similar, and the size of the CR region is significantly related to the repeat unit. However, in the entire AT-skew and CG-skew, the other subfamilies AT-skew are all positive, and CG-skew are negative, while Empoascini of Typhlocybinae and Ledrinae are the opposite. Moreover, among 13PCGs, the AT-skews of 13 species are all negative while CG-skews are positive, which from Empoascini in Typhlocybinae, Idiocerinae, Cicadellinae, Ledrinae, and Evacanthinae. This feature is consistent with the

Fig 9. Phylogenetic trees of Cicadellidae inferred by maximum likelihood (ML) and Bayesian (BI) methods based on protein-coding genes.

https://doi.org/10.1371/journal.pone.0251207.g009

Based on the above research, although mitochondrial genes are now widely used in phylogenetic analysis, but the results obtained by different gene fragment combinations will have certain differences. The amount of data and the model have a great influence on the accuracy of the research results. Perhaps we need to combine other data to analyze the mitochondrial genome in a deeper level.

Conclusion

This paper analyzes and summarizes the complete mitochondrial genome structure characteristics of 11 leafhopper subfamilies and two newly sequenced Typhlocybinae species, *E. wengangensis* and *E. gracilis*, and analyzes the elemental composition, location, secondary structure and other characteristics of PCGs, tRNA genes, rRNA genes and control regions. Furthermore, using 13PCGs and rRNA data to analyzes the nucleotide diversity, evolution rate, and the phylogenetic relationship between the subfamilies of 56 species, verifying the taxonomic status analysis of *E. wengangensis* and *E. gracilis*. The analysis results show that the genome structures of the subfamilies and the newly sequenced two species are very similar, and the size of the CR region is significantly related to the repeat unit. However, in the entire AT-skew and CG-skew, the other subfamilies AT-skew are all positive, and CG-skew are negative, while Empoascini of Typhlocybinae and Ledrinae are the opposite. Moreover, among 13PCGs, the AT-skews of 13 species are all negative while CG-skews are positive, which from Empoascini in Typhlocybinae, Idiocerinae, Cicadellinae, Ledrinae, and Evacanthinae. This feature is consistent with the

Fig 9. Phylogenetic trees of Cicadellidae inferred by maximum likelihood (ML) and Bayesian (BI) methods based on protein-coding genes.

https://doi.org/10.1371/journal.pone.0251207.g009

Based on the above research, although mitochondrial genes are now widely used in phylogenetic analysis, but the results obtained by different gene fragment combinations will have certain differences. The amount of data and the model have a great influence on the accuracy of the research results. Perhaps we need to combine other data to analyze the mitochondrial genome in a deeper level.

Conclusion

This paper analyzes and summarizes the complete mitochondrial genome structure characteristics of 11 leafhopper subfamilies and two newly sequenced Typhlocybinae species, *E. wengangensis* and *E. gracilis*, and analyzes the elemental composition, location, secondary structure and other characteristics of PCGs, tRNA genes, rRNA genes and control regions. Furthermore, using 13PCGs and rRNA data to analyzes the nucleotide diversity, evolution rate, and the phylogenetic relationship between the subfamilies of 56 species, verifying the taxonomic status analysis of *E. wengangensis* and *E. gracilis*. The analysis results show that the genome structures of the subfamilies and the newly sequenced two species are very similar, and the size of the CR region is significantly related to the repeat unit. However, in the entire AT-skew and CG-skew, the other subfamilies AT-skew are all positive, and CG-skew are negative, while Empoascini of Typhlocybinae and Ledrinae are the opposite. Moreover, among 13PCGs, the AT-skews of 13 species are all negative while CG-skews are positive, which from Empoascini in Typhlocybinae, Idiocerinae, Cicadellinae, Ledrinae, and Evacanthinae. This feature is consistent with the
phylogenetic relationship displayed by the phylogenetic tree. We speculate that AT-skew and CG-skew have specific indications for the phylogeny of Cicadellidae species.

Phylogenetic analysis shows that ML and PB analysis produce almost consistent topologies between different data sets and models, and some relationships are highly supported and remain unchanged. Mileewinae is a monophyletic group and is a sister group with Typhlocybinae, and the sister group of Evacanthinae is Ledrinae + Cicadellinae. And phylogenetic analysis grouped the two newly sequenced species (E. wengangensis and E. gracilis) with other species of Typhlocybinae, which was separated from other subfamilies, and all Erythroneurini insects gathered together. However, E. gracilis grouped into a single group, not grouped with species of the same genus (Empoascanara). This result does not match the traditional classification, and other nuclear genes or transcriptome genes may be needed to verify the result. Nucleotide diversity analysis shows that nad4 and nad5 may be evaluated as potential DNA markers defining the Cicadellidae insect species. This study confirms the results of previous studies indicating that mitochondrial genome sequences are informative of leafhopper phylogeny. The new data provided here will facilitate future comparative studies of leafhopper mitogenomes and

Fig 10. ML and BI Phylogenetic tree inferred from 13 PCGs of Cicadellidae. The first number at each node is bootstrap proportion (BP) of maximum likelihood (ML) analyses, and the second number is Bayesian (BI) posterior probability (PP).
accentuate the need for more comparative data. However, more data is still needed to verify the above research results, especially for the subfamilies, whose taxonomic status is disputed. At present, there are little or no sequencing data.

Supporting information

S1 Fig. Inferred secondary structures of 22 tRNAs from *E. gracilis*. Watson-Crick base pairings are illustrated by lines (-), whereas GU base pairings are illustrated by red dots. Structural elements in tRNA arms and loops are illustrated as for trnV.

S1 Table. Whole nucleotide compositions, AT-skews and GC-skews in 56 species of Cicadellidae.

S2 Table. Nucleotide composition, AT and GC skews calculated for the 37 mitochondrial genome of *E. wengangensis* and *E. gracilis*.

S3 Table. 13 PCGs nucleotide compositions, AT-skews and GC-skews in 56 species of Cicadellidae.

S4 Table. Codon and relative synonymous codon usage (RSCU) of 13 PCGs in the mt genomes of *E. wengangensis* and *E. gracilis*.

Acknowledgments

Thanks to all authors and editors who contributed to this article.

Author Contributions

Data curation: Xiaoxiao Chen.

Formal analysis: Xiaoxiao Chen, Christopher H. Dietrich.

Funding acquisition: Can Li, Yuehua Song.

Investigation: Zhouwei Yuan.

Methodology: Xiaoxiao Chen.

Project administration: Yuehua Song.

Resources: Can Li.

Software: Xiaoxiao Chen.

Writing – original draft: Xiaoxiao Chen.

Writing – review & editing: Christopher H. Dietrich, Yuehua Song.

References

1. Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999; 27:1767–1780. https://doi.org/10.1093/nar/27.8.1767 PMID: 10101183
2. Wang JJ, Yang MF, Dai RH, Li H, Wang XY. Characterization and phylogenetic implications of the complete mitochondrial genome of Idiocerinae (Hemiptera: Cicadellidae). Int. J. Biol. Macromol. 2018; 120: 2366–2372. https://doi.org/10.1016/j.ijbiomac.2018.08.191 PMID: 30179694

3. Kumazawa Y, Ota H, Nishida M, Ozawa T. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics. 1998; 150:313–329. https://doi.org/10.1046/j.1365-2443.1998.00217.x PMID: 9725849

4. Cook CE, Yue QY, Akam M. Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic. Proc. Biol. Sci. 2005; 272:1295–1304. https://doi.org/10.1098/rspb.2004.3042 PMID: 16024395

5. Wilson AC, Cann RL, Carr SM, Matthew G, Gyllensten UB, Helm-Bychowski KM, et al. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 2010; 26(4):375–400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x

6. Dietrich CH. Keys to the families of Cicadomorpha and subfamilies and tribes of Cicadidae (Hemiptera: Auchenorrhyncha). Flo. Entomo. 2005; 88:502–517. https://doi.org/10.1653/0015-4040(2005)[502:KTTFOC]2.0.CO;2

7. Oman PW, Knight WJ, Nielson MW. Leafhoppers (Cicadellidae): a bibliography, generic check-list and index to the world literature 1956–1985. Ann Entomol Soc Am. 1990; 51:53–89. https://doi.org/10.1016/0022-0965(91)90077-6

8. Wang XS, Huang M, Zhang YL. Cluster analysis of typhlocybinae (Hemiptera: Cicadellidae) distributional pattern in China. J. Northwest Sci-Tech. Univ. Agric. For. (Nat. Sci. Ed). 2012; 40:86–94+101. https://doi.org/10.13207/j.cnki.jnwafu.2012.04.004

9. Song YH, Li ZZ, Li C. Research progress of Erythroneurini tribe (Hemiptera: Cicadellidae: Typhlocybinae) in China. Guizhou Agric. Sci. 2006; 2:110–114.

10. Guo HF. Major tea pests- advances in research on pseudo-eye leafhopper. Jiangsu Agric. Sci. 2011; 1:132–134. https://doi.org/10.15889/j.issn.1002-1302.2011.01.093

11. Morris MG. Differences between the invertebrate faunas of grazed and ungrazed chalk grassland, IV. Abundance and diversity of Homoptera-Auchenorrhyncha. J. Appl. Ent. 1971; 8:37–52.

12. Roddee J, Kobori Y, Hanboonpong Y. Multiplication and distribution of sugarcane white leaf phytoplasma transmitted by the leafhopper, Matsumuratetix Hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae), in Infected Sugarcane. Suger Tech. 2017; 20:445–453. https://doi.org/10.1007/s12355-017-0559-x

13. Fang Q, William IV, Blocker HD, Whitcomb RF. Aphylogeny of new world Deltocephalus-like leafhopper genera based on mitochondrial 16S ribosomal DNA sequences. Mol. Phylogen. Evol. 1993; 2:119–131. https://doi.org/10.1006/mpev.1993.1012 PMID: 8025719

14. Fang Q, Blocker HD, Black WC. Cladistic analysis of neartic deltocephalus-like leafhoppers (homoptera: cicadellidae) using morphological and molecular data. Ann. Entomol. Ntomol. Soc. Am. 1995; 88: 316–323. https://doi.org/10.1093/aesa/88.3.316

15. Dietrich CH, Whitcomb RF, Black WC. Phylogeny of the Grassland Leafhopper Genus Flexamia (Homoptera: Cicadellidae) based on Mitochondrial DNA Sequences. Mol. Phylogen. Evol. 1997; 8:139–149. https://doi.org/10.1006/mpev.1997.0415 PMID: 9299220

16. Dietrich CH, Fitzgerald SJ, Holmes JL, Black WC, Nault LR. Reassessment of Dalbulus leafhopper (Homoptera: Cicadellidae) phylogeny based on mitochondrial DNA sequences. Ann. Entomol. Ntomol. Soc. Am. 1998; 91:590–597. https://doi.org/10.1093/aesa/91.5.590

17. Dietrich CH, Rakitov RA, Holmes JL. Phylogeny of the major lineages of membracoida (insecta: hemiptera: cicadomorpha) based on 28S rDNA sequences. Mol. Phylogen. Evol. 2001; 18:293. https://doi.org/10.1006/mpev.2000.0873 PMID: 11161763

18. Dai W, Dietrich CH. Phylogeny and biogeography of the leafhopper subfamily lassiniae. Entomological Society of America Meeting. 2009.

19. Dietrich CH, Tungurahualini, a new tribe of Neotropical leafhoppers, with notes on the subfamily Mileewinae (Hemiptera, Cicadellidae). Zoone. 2011; 124:19–39. https://doi.org/10.3897/zookeys.124.1561 PMID: 21998531

20. He HL. Molecular Systematics of the Leafhopper Subfamily Mileewinae from China (Insecta: Hemiptera: Cicadellidae). Master Degree Dissertation. 2019. Guiyang: Guizhou university.

21. Krishnakutty SM, Dietrich CH, Dai W, Siddappa MI. Phylogeny and historical biogeography of leafhopper subfamily lassiniae (Hemiptera: Cicadellidae) with a revised tribal classification based on morphological and molecular data. Syst. Entomols. 2016; 41:580–595. https://doi.org/10.1111/syen.12175

22. Zahniser JN, C.H. Dietrich CH. A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). Eur. J. Taxon. 2013; 45:1–211. https://doi.org/10.5852/ejt.2013.45
23. Zahniser JN, Dietrich CH. Phylogeny, evolution, and historical biogeography of the grassland leafhopper tribe Chiasmini (Hemiptera: Cicadellidae: Deltocephalinae). Zool. J. Linn. Soc. 2015; 175:473–495. https://doi.org/10.1111/zoj.12292

24. Dietrich CH, Allen JM, Lemmon AR, Moriarty LE, Takiya DM, Olivia E, et al. Anchored hybrid enrichment-based phylogenomics of leafhoppers and treehoppers (Hemiptera: Cicadomorpha: Membracoidea). Insect Syst and Diver. 2017; 1:57–72. https://doi.org/10.1093/isd/ixx003

25. Chen XX, Yuan ZW, Li C, Song YH. Complete mitochondrial genome sequence of Empoasca dawalata (Hemiptera: Cicadellidae: Typhlocybinae), Mitochondrial DNA B. 2020; 5:2260–2261. https://doi.org/10.1080/23802359.2020.1772141 PMID: 33366999

26. Tan C, Chen XX, Li C, Song YH. The complete mitochondrial genome of Empoasca sipra (Hemiptera: Cicadellidae: Typhlocybinae) with phylogenetic consideration. Mitochondrial DNA B. 2020; 5:260–261. https://doi.org/10.1080/23802359.2019.1698990 PMID: 33366512

27. Yuan XW, Li C, Song YH. Characterization of the complete mitochondrial genome of Mitjaevia protuberanta (Hemiptera: Cicadellidae: Typhlocybinae), Mitochondrial DNA B. 2020; 5:601–602. https://doi.org/10.1080/23802359.2019.1698354 PMID: 33366499

28. Yuan XW, Xiong KN, Li C, Song YH. The complete mitochondrial genome of Limassola lingchanensis (Hemiptera: Cicadellidae: Typhlocybinae), a new genus and species from China. Mitochondrial DNA B. 2020; 5:1351–1352. https://doi.org/10.1080/23802359.2020.1735280

29. Song N, Cai W, Li H. Deep-level phylogeny of Cicadomorpha inferred from mitochondrial genomes sequenced by NGS. Sci Rep. 2017; 7:10429. https://doi.org/10.1038/s41598-017-11132-0 PMID: 28874826

30. Jiang J, Yuan XW, Yuan ZW, Song YH. The complete mitochondrial genome of Parathalocycba orla (Hemiptera: Cicadellidae: Typhlocybinae). Mitochondrial DNA B. 2020; 5:1981–1982. https://doi.org/10.1080/23802359.2020.1756952

31. Han C, Yan B, Yu XF, Yang MF. Complete mitochondrial genome of Zyginella minuta (Cicadellidae: Typhlocybinae: Zyginellini) from China, with its phylogenetic analysis. Mitochondrial DNA B. 2020; 5:2795–2796. https://doi.org/10.1080/23802359.2020.1787274

32. Song YH, Yuan XW, Li C. The mitochondrial genome of Paraahimia luodianensis (Hemiptera: Cicadellidae: Typhlocybinae), a new genus and species from China. Mitochondrial DNA B. 2020; 5:1351–1352. https://doi.org/10.1080/23802359.2020.1735280

33. Han C, Yan B, Yu XF, Yang MF. Complete mitochondrial genome of Euperyx (Stacla) minusula (Hemiptera: Cicadellidae: Typhlocybinae) from China. Mitochondrial DNA B. 2020; 5:2375–2376. https://doi.org/10.1080/23802359.2020.1775146 PMID: 33457797

34. Zhou N, Wang M, Cui L, Chen XX, Han BY. Complete mitochondrial genome of Empoasca vitis (Hemiptera: Cicadellidae). Mitochondrial DNA A. 2016; 27:1052–1053. https://doi.org/10.3109/19401736.2014.928874 PMID: 25467719

35. Shi R, Yu XF, Yang MF. Complete mitochondrial genome of Ghauriana sinensis (Hemiptera: Cicadellidae: Typhlocybinae). Mitochondrial DNA B. 2020; 5:1367–1368. https://doi.org/10.1080/23802359.2020.1735952

36. Luo X, Chen Y, Chen C, Pu D, Mao J. Characterization of the complete mitochondrial genome of Empoasca sp. (Cicadellidae: Hemiptera). Mitochondrial DNA B. 2019; 4:1477–1478. https://doi.org/10.1080/23802359.2019.1579066

37. Liu JH, Sun CY, Long J, Guo JJ. Complete mitogenome of tea green leafhopper, Empoasca onukii (Hemiptera: Cicadellidae) from Anshun, Guizhou Province in China. Mitochondrial DNA B. 2017; 2:808–809. https://doi.org/10.1080/23802359.2017.1398616 PMID: 33473990

38. Du YM, Dai W, Dietrich CH. Mitochondrial Genomic Variation and Phylogenetic Relationships of Three Groups in the Genus Scaphoideus (Hemiptera: Cicadellidae: Deltocephalinae). Sci Rep. 2017; 7:16908. https://doi.org/10.1038/s41598-017-17145-z PMID: 29203807

39. Yu PF, Wang MX, Cui L, Chen XX, Han BY. the Complete Mitochondrial Genome of Tambocerus Sp. (Hemiptera: Cicadellidae). Mitochondrial DNA A. 2017; 28:133–134. https://doi.org/10.3109/19401736.2015.111357 PMID: 26710270

40. Du YM, Zhang CN, Dietrich CH, Zhang YL, Dai W. Characterization of the Complete Mitochondrial Genomes of Maiestas Dorsalis and Japananus Hyalinus (Hemiptera: Cicadellidae) and Comparison with Other Membracoidea. Sci Rep. 7:2017;14197. https://doi.org/10.1038/s41598-017-14703-3 PMID: 29079765

41. Wu YF, Dai RH, Zhan HP, Qu L. Complete Mitochondrial Genome of Drabesocides Nuchalis (Hemiptera: Cicadellidae). Mitochondrial DNA A. 2016; 27:3626–3627. https://doi.org/10.3109/19401736.2015.1079827 PMID: 26436567
42. Du YM, Dietrich CH, Dai W. Complete Mitochondrial Genome of *Macrosteles Quadriracmaculatus* (Matsumura) (Hemiptera: Cicadellidae: Deltocephalinae) with a Shared tRNA Rearrangement and its Phylogenetic Implications. Int. J. Biol. Macromol. 2019; 122:1027–1034. https://doi.org/10.1016/j.ijbiomac.2018.09.049 PMID: 30218730

43. Yang X, Mao M, Bennett G. The complete mitochondrial genome of *Macrosteles quadrilineatus* (Hemiptera: Cicadellidae). Mitochondrial DNA B. 2017; 2:173–175. https://doi.org/10.1080/23802359.2017.1303347 PMID: 33473757

44. Xing JC, Wang JJ. Complete mitochondrial genome of *Paralaevicellus gracilipenis* (Hemiptera: Cicadellidae: Deltocephalinae) from China. Mitochondrial DNA B. 2019; 4:1372–1373. https://doi.org/10.1080/23802359.2019.1598818

45. Yang WJ, Gao YR, Li C, Song YH. The complete mitochondrial genome of *Chlorotettix nigromaculatus* (Hemiptera: Cicadellidae: Deltocephalinae) with phylogenetic consideration. Mitochondrial DNA B. 2019; 4:624–625. https://doi.org/10.1080/23802359.2018.1564389

46. Wang JJ, Yang MF, Dai RH, Li H, Wang XY. Characterization and Phylogenetic Implications of the Complete Mitochondrial Genome of *Idiocerinae* (Hemiptera: Cicadellidae). Int. J. Biol. Macromol. 2018; 120:2366–2372. https://doi.org/10.1016/j.ijbiomac.2018.08.191 PMID: 30179694

47. Wang JJ, Wu YF, Dai RH, Yang MF. Comparative Mitogenomes of Six Species in the Subfamily Iassinae (Hemiptera: Cicadellidae) and Phylogenetic Analysis. Int. J. Biol. Macromol. 2020; 149:1294–1303. https://doi.org/10.1016/j.ijbiomac.2020.01.270 PMID: 32004599

48. Zhong LK, Li HX, Yu XF, Yang MF. Complete mitochondrial genome sequence of *Cicadella viridis* (Hemiptera: Cicadellidae: Cicadellinae). Mitochondrial DNA Part B. 2019; 4:1287–1288. https://doi.org/10.1080/23802359.2019.1591207

49. Wang JJ, Li H, Dai RH. Complete Mitochondrial Genome of *Taharana Fasciana* (Insecta, Hemiptera: Cicadellidae) and Comparison with Other Cicadellidae Insects. Genetica. 2017; 145:593–602. https://doi.org/10.1007/s10709-017-9984-8 PMID: 28913775

50. Wang XY, Wang JJ, Fan ZH, Dai RH. Complete Mitogenome of *Olidiana ritcheriina* (Hemiptera: Cicadellidae) and Phylogeny of Cicadellidae. PeerJ. 2019; 7:8072. https://doi.org/10.7717/peerj.8072 PMID: 31783556

51. He H, Li HX, Yang M. Complete mitochondrial genome sequence of *Mileewa albovittata* (Hemiptera: Cicadellidae: Mileewinae). Mitochondrial DNA B. 2019; 4:740–74. https://doi.org/10.1080/23802359.2019.1565930

52. Wang JJ, Li DF, Li H, Yang MF, Dai RH. Structural and Phylogenetic Implications of the Complete Mitochondrial Genome of *Ledra Auditura*. Sci Rep. 2019; 9:15746. https://doi.org/10.1038/s41598-019-52337-9 PMID: 31673057

53. Yuan ZW, Yang X, Li C, Song YH. The complete mitochondrial genome of the leafhopper *Evacanthus acuminatus* (Hemiptera: Cicadellidae: Evacanthinae). Mitochondrial DNA B. 2019; 4:3866–3867. https://doi.org/10.1080/23802359.2019.1687039 PMID: 33366225

54. Liu J, Bu C, Benjamin W, Liang A. Comparative analysis of the mitochondrial genomes of *Callittettixini Spittlebugs* (Hemiptera: Cercopidae) confirms the overall high evolutionary speed of the AT-rich region but reveals the presence of short conservative elements at the tribal level. PLoS ONE. 2014; 9(10):e109140. https://doi.org/10.1371/journal.pone.0109140 PMID: 25285442

55. Liu J, Liang A. The complete mitochondrial genome of spittlebug *Paphnutius ruficeps* (Insecta: Hemiptera: Cercopidae) with a fairly short putative control region. Acta Biochim. Biophys. Sin. 2013; 45:309–319. https://doi.org/10.1093/abbs/gm009 PMID: 23532251

56. Burland TG. DNASTAR’s Laser Gene sequence analysis software. Methods Mol Biol. 2000; 132:71–91. https://doi.org/10.1385/1-59259-192-7:71 PMID: 10547832

57. Meng ZH, Yang MF, Zhou YF, Lu ZY, Ni JQ. Molecular phylogenetic analysis of some species of Cicadellinae based on mitochondrial Cytb Gene. Guizhou Agric Sci. 2013; 41:–5.

58. Liu J, Liang A. The complete mitochondrial genome of spittlebug *Paphnutius ruficeps* (Insecta: Hemiptera: Cercopidae) with a fairly short putative control region. Acta Biochim. Biophys. Sin. 2013; 45:309–319. https://doi.org/10.1093/abbs/gm009 PMID: 23532251

59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013; 30:2725–2729. https://doi.org/10.1093/molbev/mst197 PMID: 24132122
61. Lowe TM, Eddy SR. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25:955–964. https://doi.org/10.1093/nar/25.5.955 PMID: 9023104

62. Laslett D, Canback AB. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008; 24:172–175. https://doi.org/10.1093/bioinformatics/btm573 PMID: 18033792

63. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1997; 25:573–580. https://doi.org/10.1093/nar/25.2.573 PMID: 9862989

64. Perna NT, Kocher TD. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995; 41:353–358. https://doi.org/10.1007/BF00186547 PMID: 7563121

65. Rozas J, Albert FM, Sánchez-DeBarrio JC, Sara GR, Pablo L, Ramos-Onsins SE, et al. DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017; 34:3299–3302. https://doi.org/10.1093/molbev/msx248 PMID: 29029172

66. Zhou J, Liu X, Stones DS, Xie Q, Wang G. McBayes on a graphics processing unit. Bioinformatics. 2011; 27:1255–1261. https://doi.org/10.1093/bioinformatics/btr140 PMID: 21414986

67. Nguyen LT, Schmidt HA, Von HA, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015; 32:268–274. https://doi.org/10.1093/molbev/msv030 PMID: 25371430

68. Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 2014; 59:95–117. https://doi.org/10.1146/annurev-ento-011613-162007 PMID: 24160435

69. Yuan ML, Zhang QL, Guo ZL, Wang J, Shen YY. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera) and phylogenetic implications. BMC Genomics. 2015; 16:460. https://doi.org/10.1186/s12864-015-1679-x PMID: 26076960

70. Que S, Yu L, Xin T, Zou Z, Xia B. Complete mitochondrial genome of Cacopsylla cocciniae (Hemiptera: Psylloidae). Mitochondrial DNA A. 2016; 27:3169–3170. https://doi.org/10.3109/19401736.2015.1007319 PMID: 25693718

71. Satoko Mori, Masatoshi Matsunami. Signature of positive selection in mitochondrial DNA in Cetartiocarida. Genes Genet Syst. 2013; 98:65–73. https://doi.org/10.1266/ggs.17-00015 PMID: 29643269

72. Jia WZ, Yan HB, Guo AJ, Zhu XQ, Wang YC, Shi WG, et al. Complete mitochondrial genomes of Taeenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics. 2010; 8:447. https://doi.org/10.1186/1471-2164-11-447 PMID: 20649981

73. Ma LY, Liu AP, Chiba B, Yuan AX. The mitochondrial genomes of three skippers: insights into the evolution of the family Hesperiidae (Lepidoptera). Genomics. 2019; 112:432–441. https://doi.org/10.1016/j.ygeno.2019.03.006 PMID: 30898470

74. Cooper JK, Sykes G, King S, Cottrill K, Ivanova NV, Hanner R, et al. Species identification in cell culture: a two-pronged molecular approach. In Vitro Cell. Dev. Biol.-An. 2007; 43:344–351. https://doi.org/10.1007/s11626-007-9060-2 PMID: 17934781

75. Bruna Demari-Silva, Peter G Foster, Tatiane MP, Oliveira D, et al. Mitochondrial genomes and comparative analyses of Culex camposi, Culex coronator, Culex usquatus and Culex usquattissimus (Diptera: Culicidae), members of the coronator group. BMC Genomics. 2015; 16:831. https://doi.org/10.1186/s12864-015-1951-0 PMID: 26489754

76. Skinner RK, Dietrich CH, Walden KKO, Gordon E. Phylogenomics of Auchenorrhyncha (Insecta: Hemiptera) using transcriptomes: examining controversial relationships via degeneracy coding and interrogation of gene conflict. Syst Entomol. 2019; 45:85–113. https://doi.org/10.1111/syen.12381

77. Xue Q, Dietrich CH, Zhang Y. Phylogeny and classification of the leafflower subfamily Euryelmelinae (Hemiptera: Cicadellidae) inferred from molecules and morphology. Syst Entomol. 2020; 45:687–702. https://doi.org/10.1111/syen.12425

78. Mahmood SH. A study of the Typhlocybine genera of the Oriental Region (Thailand, the Philippines and adjoining areas). Pacific Ins. Monogr. 1967; 12:1–52.

79. Young DA. Taxonomic study of the Cicadellinae (Homoptera, Cicadellidae). Part 1. Proconini. United States National Museum Technical Bulletin. 1968; 261:1–287. https://doi.org/10.1653/0015-4040(2005)088[0067:BOGTHM]2.0.CO;2

80. Dietrich CH. The role of grasslands in the diversification of leaffitters (Homoptera: Cicadellidae): A phylogenetic perspective. Proceedings of the Fifteenth North American Prairie Conference. 1999.

81. Wang Y. Phylogenetic study of Evacantheinae (Hemiptera: Cicadellidae). Dissertation for Doctor Degree. 2017. Yangling: Northwest A&F University.