Feigenbaum Cascade of Discrete Breathers in a Model of DNA

P. Maniadis, B. S. Alexandrov, A. R. Bishop, and K. O. Rasmussen

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.

(Dated: January 13, 2011)

We demonstrate that period-doubled discrete breathers appear from the anti-continuum limit of the driven Peyrard-Bishop-Dauxois model of DNA. These novel breathers result from a stability overlap between sub-harmonic solutions of the driven Morse oscillator. Sub-harmonic breathers exist whenever a stability overlap is present within the Feigenbaum cascade to chaos and therefore an entire cascade of such breathers exists. This phenomenon is present in any driven lattice where the on-site potential admits sub-harmonic solutions. In DNA these breathers may have ramifications for cellular gene expression.

Introduction.— Discrete breathers are spatially localized, temporally periodic excitations in nonlinear lattices [1]. While discrete breathers share many traits with solitons they stand out because of their localization brought about by a delicate sensitivity to lattice discreteness. Discrete breathers, have been ubiquitously studied in a wide variety of physical systems and have been the subject of intense theoretical and numerical scrutiny [1,2]. Although, dissipation and driving are typically key experimental features, most of the theoretical and numerical studies have excluded such effects. Only quite recently have the effects of dissipation and driving been explicitly considered in numerical studies of discrete breathers [3].

Biomolecules represent a striking example of systems where the localization of discrete breathers has long been considered important, and where dissipation and driving cannot be ignored. DNA represents a specific biomolecular system where localization of energy in terms of strand-separation dynamics is emerging as a governing regulatory factor [7]. The Peyrard-Bishop-Dauxois (PBD) model of double-stranded DNA [8,9] is arguably the most successful model for describing this local pairing/unpairing (breathing) dynamics, since it reproduces a wide variety of experiments related to strand-separation dynamics [10]. Of particular importance is the role this model has played in demonstrating strong correlations between regulatory activity, such as protein binding and transcription, and the equilibrium propensity of double-stranded DNA for local strand separation [11,12]. Recently, this model was augmented to include a monochromatic drive in the terahertz frequency range, and was suggested to represent a simplified model for DNA dynamics in the presence of terahertz radiation [13]. In this recent work [13] the existence of discrete breathers oscillating at half the frequency of the drive was numerically observed, and it was argued that the existence and spontaneous generation of such breathing states may have significant ramifications for cellular gene expression. This argument has received some experimental support [14,15].

Here, we investigate these period-doubled breather excitations further, and show that they appear naturally from the anti-continuum limit [18] in systems of nonlinear oscillators where multi-stability occurs between various stages of the Feigenbaum period doubling cascade. Although, our study focuses on the PBD model the observed phenomena are rather general and not limited to this specific system of nonlinear oscillators.

DNA model.— We consider the PBD model in the following form [18]:

\[m\ddot{y}_n = -U'(y_n) - W'(y_{n+1}, y_n) - W'(y_n, y_{n-1}) - m\gamma y_n + F_0 \cos \Omega t, \tag{1} \]

where the Morse potential

\[U(y_n) = D[\exp(-ay_n) - 1]^2 \]

represents the hydrogen bonding of the complementary bases. Similarly,

\[W(y_n, y_{n-1}) = \frac{k}{2} \left(1 + \rho e^{-\beta (y_n + y_{n-1})} \right) (y_n - y_{n-1})^2 \]

represents the stacking energy between consecutive base pairs. The parameters \(D, a, \) and \(k \) in principle depend on the type of the base pair (A-T or G-C), but for simplicity we will consider homogeneous DNA in this study. The term \(m\gamma y_n \) is the drag caused by the solvent, while \(F_0 \cos \Omega t \) is the (terahertz) drive [16]. In this system, Eq. (1), the linear resonance frequency is given as \(\Omega_0^2 = 2Da^2/m \).

In order to understand how period-doubled breathers oscillating at half the frequency, \(\Omega/2 \), of the drive can appear at the anti-continuum limit, we first study the nonlinear response of a single \((k = 0) \) oscillator. For periodic driving the single oscillator supports periodic solutions with the period \(T = 2\pi/\Omega \) of the drive, and, due to the softness of the Morse potential, this oscillator also supports solutions with period \(nT \), where \(n \) is any positive integer. These solutions are most simply studied at zero dissipation \((\gamma = 0) \); we will then examine the modifications resulting when \(\gamma \neq 0 \). A Newton method [2] was used to track the solutions with periods \(T \) and \(2T \). The Newton procedure was initiated for a very small driving amplitude \((F_0 \simeq 0) \). The response of the system, namely the amplitude of the period \(T \) and \(2T \) solutions, was followed as \(|F_0| \) was increased.
Soft period-doubled breathers: $\Omega < \Omega_0$. — In the above fashion we constructed the nonlinear response manifolds (NLRM) [2] depicted for $\Omega = 7$ rad/ps in Fig. 1. The NLRM for the oscillations with period T is shown by the solid black line, while the dashed red line represents the NLRM for the period-doubled ($2T$) solutions. Finally, the blue lines segments (connected to BP_4) represent parts of the NLRM for the period-$4T$ solutions. The stability of the solutions can be obtained by Floquet stability analysis [2] and is indicated by the letters placed in the vicinity of the lines (‘s’ for stable and ‘u’ for unstable). Important turning points (TP), bifurcation points (BP), and crossing points (CP) are shown by circles. Finally, the grey areas represent the chaotic regions that result from the Feigenbaum period-doubling cascades. The inset shows the behavior near CP_1 in the presence of dissipation. $\gamma = 0$ (dashed red line), $\gamma = 0.001$ps$^{-1}$, $\gamma = 0.01$ps$^{-1}$, and $\gamma = 0.1$ps$^{-1}$.

![Fig. 1: (Color online) Nonlinear response manifold of a single oscillator driven at $\Omega = 7.0$ rad/ps ($< \Omega_0$). The NLRM for the period-T solutions (solid black line) and the period-doubled solutions (dashed red line) are shown together with parts of the NLRM for the period-$4T$ (solid blue line segments connected to BP_4) solutions. The stability of the various solutions is indicated by the letters placed in the vicinity of the lines (‘s’ for stable and ‘u’ for unstable). Important turning points (TP), bifurcation points (BP), and crossing points (CP) are shown by circles. Finally, the grey areas represent the chaotic regions that result from the Feigenbaum period-doubling cascades. The inset shows the behavior near CP_1 in the presence of dissipation. $\gamma = 0$ (dashed red line), $\gamma = 0.001$ps$^{-1}$, $\gamma = 0.01$ps$^{-1}$, and $\gamma = 0.1$ps$^{-1}$](image1.png)

FIG. 2: Illustration of period-doubled breathers. Shown are the central site y_0 of the breather (solid red lines) together with the closest neighbor sites y_1 (dashed blue lines), and y_2 (dashed-dotted green lines). For clarity, panel a) shows $10y_1$ and $10y_2$, respectively. Panel a) shows the period-doubled breather corresponding to the stability overlap shown in Fig. 1 ($\Omega = 7$ rad/ps and $\gamma = 0$) for $F_0 = 7.06$ pN and $k = 0.02eV$Å$^{-2}$. Similarly, panel b) shows a period-doubled breather for $\Omega = 5.35$ rad/ps, $\gamma = 1$ps$^{-1}$, $F_0 = 115.6$ pN, and $k = 0.0065eV$Å$^{-2}$. The insets shows the full spatio-temporal evolution of the period-doubled breathers.

![Fig. 2: Illustration of period-doubled breathers. Shown are the central site y_0 of the breather (solid red lines) together with the closest neighbor sites y_1 (dashed blue lines), and y_2 (dashed-dotted green lines). For clarity, panel a) shows $10y_1$ and $10y_2$, respectively. Panel a) shows the period-doubled breather corresponding to the stability overlap shown in Fig. 1 ($\Omega = 7$ rad/ps and $\gamma = 0$) for $F_0 = 7.06$ pN and $k = 0.02eV$Å$^{-2}$. Similarly, panel b) shows a period-doubled breather for $\Omega = 5.35$ rad/ps, $\gamma = 1$ps$^{-1}$, $F_0 = 115.6$ pN, and $k = 0.0065eV$Å$^{-2}$. The insets shows the full spatio-temporal evolution of the period-doubled breathers.](image2.png)
breather, which extends over 5 lattice sites, performs oscillations at exactly half the frequency of the background. The background is frequency-locked to the drive at frequency Ω. Similarly, panel b) of Fig. 2 shows the period-doubled breather that exists in the stability overlap region for $F_0 < 0$. The breather is more localized and its dynamical behavior is more complex. This breather roughly follows the background period-T oscillations and the period-doubling occurs as a modulation of the breathing amplitude. For weak driving the dynamics must be very similar to the undriven case, as is seen in panel a). At stronger driving the dynamics is more dominated by the drive and become more intricate, as in the case of panel b).

It should be noted that, in the absence of a stability overlap, unstable period-doubled breathers can of course still be constructed. An interesting example of this occurs for $F_0 < 23.3$ nN where Fig. 1 shows that the period-doubled solution is stable while the period-T solution is unstable. Close to BP_2 the period-T solution is very weakly unstable (the Floquet exponent is ~ 1.04), so that a weakly unstable ‘dark’ breather can be constructed in this region by positioning $N-1$ of the oscillators in the period-doubled states while the remaining oscillator is in the period-T state. We have found that numerical continuation of this state produces a weakly unstable ‘dark’ breather that can be sustained for tens of periods.

The scenario described above generally holds also when dissipation is taken into account. The modifications to the NLRM caused by dissipation is thoroughly discussed for a different system of nonlinear equations in Ref. [6]. The main effect of dissipation occurs at the crossing points CP_1 and CP_2. For $\gamma = 0$ the period-T solutions are in phase with the drive when the response amplitude y_0 is below CP_1, but it is in anti-phase (π-phase shifted) when y_0 is above CP_1. Similarly, the period-doubled solutions experience a π-phase shift at CP_2. The introduction of dissipation creates an additional phase shift between the drive and the response everywhere along the NLRM. This additional phase shift is largest close to the crossing points and cause the solution to disappear close to the crossing points (small $|F_0|$). This effect is illustrated in the inset of Fig. 4 for the CP_2 crossing point. It is clear that for weak dissipation the described stability scenario persists. However, as the dissipation increases the stability overlap region is eventually lost and with it the stable period-doubled breathers.

Hard period-doubled breathers: $\Omega > \Omega_0$. — Figure 3 shows the NLRM when the frequency of the drive ($\Omega = 13.194$ rad/ps) is larger than the linear resonance frequency of the on-site potential. In this case only a single, but larger, stability overlap between the period-T solution and the period-doubled solution exists in the vicinity of $F_0 = 0$. Again, the period-doubled breathers can be generated in this overlap region. It is noteworthy that for soft potentials, such as the Morse potential, ordinary period-T breathers cannot exists above the linear Ω_0 resonance frequency: This frequency region can only be accessed for hard potentials.

Two examples of the period-doubled breathers for $\Omega = 13.194$ rad/ps are given in Fig. 4. Panel a) shows a period-doubled-breather in a dissipation-less ($\gamma = 0$) system, and it is clear that the breather sites oscillate at half the frequency of the background, which is frequency locked to the drive. Similarly, panel b) shows a period-doubled breather at strong dissipation $\gamma = 1 \text{ps}^{-1}$. The phase shift introduced by the dissipation is apparent.

Discussion and conclusions. — We have demonstrated the existence of a new kind of sub-harmonic discrete breathers in driven lattices of coupled nonlinear oscillators. The phenomenon was illustrated within the driven PBD model, which consists of a lattice of coupled Morse oscillators. Specifically, we have shown that these breathers appear naturally from the anti-continuum limit in a fashion similar to familiar discrete breathers. We show that the sub-harmonic breathers arise from a stability overlap between sub-harmonic solutions of the single oscillator. This new kind of breathers exist even when the frequency of the drive is above the linear resonance frequency of the soft on-site potential. Ordinary breather solutions do not exist in such cases for soft potentials.

Although, we focused here on the stability overlap between the frequency locked solution and the period-
double-stranded DNA, and thereby could lead to modification in cellular gene expression by affecting transcription and other processes. Such effects have recently been experimentally observed [16, 17]. Future extensions of our approach will include effects of gene sequence and other disorder, as well as temperature.

This research was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

[1] S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).
[2] S. Aubry, Physica D 103, 201 (1997).
[3] D. Chen, S. Aubry, and G.P. Tsironis, Phys. Rev. Lett., 77, 4776 (1996).
[4] M. Johansson, and S. Aubry, Nonlinearity 10, 1151 (1997).
[5] M. Johansson, S. Aubry, Phys. Rev. E 61, 5864 (2000).
[6] P. Maniadis, S. Flach, Europhys. Lett. 74, 452 (2006).
[7] B. S. Alexandrov, V. Gelev, S. W. Yoo, L. B. Alexandrov, Y. Fukuyo, A. R. Bishop, K. Ø. Rasmussen, and A. Usheva, Nucleic Acids Res. 6, 1790 (2010).
[8] M. Peyrard, and A.R. Bishop, Phys. Rev. Lett. 62, 2755, (1989).
[9] T. Dauxois, M. Peyrard, and A.R. Bishop, Phys. Rev. E 47, R44 (1993).
[10] B. S. Alexandrov, N. K. Voulgarakis, K. Ø. Rasmussen, A. Usheva, A. R. Bishop, J. Phys. Condens. Matter 21, 034107 (2009), and references therein.
[11] C.H. Choi, G. Kalosakas, K.Ø. Rasmussen, M. Hiromura, A. R. Bishop, A. Usheva, Nucleic Acids Res. 32, 1584 (2004).
[12] C.H. Chu, Z. Rapti, V. Gelev, B. S. Alexandrov, E. Park, J. Park, N. Horikoshi, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, and A. Usheva, Biophys. J., 95, 597 (2008).
[13] B. S. Alexandrov, V. Gelev, Y. Monisova Y, L. B. Alexandrov, A. R. Bishop, K. Ø. Rasmussen, and A. Usheva, Nucleic Acids Res. 37, 2405 (2009).
[14] B. S. Alexandrov, V. Gelev, S.W. Yoo, A.R. Bishop, K.O. Rasmussen, and A. Usheva, PLoS Comput Biol. 5(3), e1000313 (2009).
[15] B.S. Alexandrov, V. Gelev, A.R. Bishop, A. Usheva, and K. Ø. Rasmussen, Phys. Lett. A 374, 1214 (2010).
[16] R. Shiurba et al. Photoch. Photobiol. Sci. 5, 799 (2006).
[17] J. Bock, Y. Fukuyo, S. Kang, M. E. Phipps, L. B. Alexandrov, K. Ø. Rasmussen, A.R. Bishop, E.D. Rosen, J.S. Martinez, H.-T. Chen, G. Rodriguez, B.S. Alexandrov, and A. Usheva PLoS ONE 5, e15806 (2010).
[18] R.S. MacKay and S. Aubry, Nonlinearity 7, 1623 (1994).
[19] In order to be consistent with prior work on DNA we use the following parameters unless different values are explicitly given: \(D = 0.05 eV \), \(\alpha = 4.23^{-1} \), \(k = 0.025 eV \cdot \text{Å}^{-2} \), \(\beta = 0.35 A^{-1} \), \(m = 300 \text{amu} \), and \(\rho = 2 \). With these parameters the linear resonance frequency is \(\Omega_0 = \sqrt{2D\alpha m} = 7.54 \text{ rad/ps} \), \(i.e. \Omega_0/2\pi = 1.22 \text{ THz} \).
[20] G. Kopidakis and S. Aubry, Phys. Rev. Lett. 84 3236 (2000).
[21] J. L. Marin and S. Aubry, Nonlinearity 9, 1501 (1994).