Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Effects of Coronavirus Disease 2019 on Solid Organ Transplantation
Hassan Aziz, Nassim Lashkari, Young Chul Yoon, Jim Kim, Linda S. Sher, Yuri Genyk, and Yong K. Kwon

ABSTRACT

Background. As the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a viral pandemic, data on the clinical characteristics and outcomes of patients with SARS-CoV-2 infection undergoing solid organ transplant are emerging. The objective of this systematic review was to assess currently published literature relating to the management, clinical course, and outcome of SARS-CoV-2 infection in liver, kidney, and heart solid organ transplant recipients.

Methods. We conducted a systematic review to assess currently published literature relating to the management, clinical course, and outcome of SARS-CoV-2 infection in liver, kidney, and heart solid organ transplant recipients. Articles published through June 2020 were searched in the MEDLINE, ClinicalTrials.gov, and PubMed databases. We identified 49 eligible studies comprising a total of 403 solid organ transplant recipients.

Results. Older age, male sex, and preexisting comorbidities, including hypertension and/or diabetes, were the most common prevailing characteristics among the solid organ transplant recipients. Clinical presentation ranged from mild to severe disease, including multiorgan failure and death. We found an overall mortality rate of 21%.

Conclusion. Our analysis suggests no increase in overall mortality or worse outcome in solid organ transplant recipients receiving immunosuppressive therapy compared with mortality in the general surgical population with SARS-CoV-2. Our findings suggest that transplant surgery and its immunosuppressive effects should not be a deterrent to proper surgical care for patients in the SARS-CoV-2 era.
Table 1. Summary of Clinical Outcomes of Severe Acute Respiratory Syndrome Coronavirus 2-positive Solid Organ Transplant Recipients, by Study

SOT	Author [reference]	Location	No. of Cases (n)	Age and Sex	Comorbidities	Immunosuppressive Regimen	Time From Transplant	Presentation (Symptoms)	Treatment	Clinical Course	Outcomes
Multiple	Tschopp et al [18]	Switzerland	21	Median 56 years, 71% male	HTN (87%), DM (45%), Obesity (24%), TAC (86%)	TAC (96%); Prednisone (93%); MMF (77%); CSA (70%); Azathioprine (70%); mTOR (5%)	Median 47 months	Fever (76%), dry cough (51%), nausea (23%), diarrrhea (23%)	Immunosuppressant modified in 14 pts (87%); HCQ, azithromycin, lopinavir/ritonavir	20 pts (95%) hospitalized, 5 pts (25%) ICU admission	16 pts (80%) discharged, 3 pts (15%) remain hospitalized, 2 pts (10%) died
SOT types											
Multiple	Fernández-Ruiz et al [11]	Spain	18	Median 71 years, 59% male	HTN (92%), DM (50%), Cerebro (20%), TAC (56%); EVE (22%); CSA (71%)	Prednisone (87%); MMF/MPA (81%); Azathioprine (81%); Lopinavir/ritonavir (81%); HCQ monotherapy (28%); Interferon-β (17%)	Median 9.3 years	Fever (83%), gastrointestinal symptoms (28%), respiratory failure (28%)	Lopinavir/ritonavir + HCQ (50%); 4 pts (22%) developed progressive respiratory failure	2 pts (11%) required ICU and invasive mechanical ventilation, 5 pts (28%) hospitalized, 8 pts (44%) discharged	5 pts (28%) died, 2 pts (11%) required ICU and invasive mechanical ventilation
Multiple	Pereira et al [8]	United States	90	Median 57 years, 59% male	HTN (84%), DM (46%), Chronic lung disease (19%), Diabetes (6%), Obesity (6%)	Calcineurin inhibitor modified (84%); MMF (72%); Steroid (6%); MMF (72%); EVE (22%)	Median 6.04 years	Fever (70%), cough (45%), dysorexia (45%), fatigue (28%), myalgia (24%), diarrhea (21%)	Immunosuppressant held or reduced in majority of hospitalized pts (91%); Asthmophen (86%); Remdesivir (17%); Tocilizumab (31%); Botul steroid (24%)	22 (24%) patients were discharged, 10 pts (28%) died, 37 pts (54%) discharged	15 pts (38%) died, 37 pts (54%) discharged
Multiple	Pietri et al [10]	Italy	13	Median 55 years, 59% male	HTN (54%), DM (37%)	TAC (54%); CSA (38%); MMF (38%); Steroid (46%); Belatacept (8%)	Median 5.3 years	Respiratory symptoms	Immunosuppressant medication HCQ (67%); HCQ + lopinavir/ritonavir (23%); Remdesivir (9%); High-dose steroids (23%); Tocilizumab (9%); Immunosuppressive medications decreased in 8 of 9 pts (20% enrolled in RCT 3 (30%) with either HCQ, azithromycin, lopinavir/ritonavir, 7 (70%) abx	62% had reduction or change in condition; 69% developed respiratory failure	1 pt died
Multiple	Fung et al [20]	United States	10	Median 56.5 years, 60% male	HTN, DM, cardiovascular disease	Triple immunosuppression (70%); CNI + MMF (61%); 19, DM (95%); 10, diabete (22%); 5	Median 6.1 years	Fever (80%), cough (80%), dysorexia (65%), myalgia (60%), fatigue (50%)	Immunosuppressant medication HCQ (65%); HCQ + lopinavir/ritonavir (23%); Remdesivir (9%); High-dose steroids (23%); Tocilizumab (9%); Immunosuppressive medications decreased in 8 of 9 pts (20% enrolled in RCT 3 (30%) with either HCQ, azithromycin, lopinavir/ritonavir, 7 (70%) abx	70% hospitalized 30% required ICU admission; all developed ARDS and shock	5 pts (50%) discharged, 2 pts (20%) remain hospitalized
Multiple	Hsu et al [22]	Los Angeles, CA	1	Median 59 years, 78% male	HTN (93%), DM (43%), CNI + MMF (14%); CM, MIF - steroid (39%); Steroid (4%); EVE (4%); 1	<1 year (4%); >1 year (98%) Complete	Fever (81%) 19, cough (71%); diarrrhea (16%);	57% remained on immunosuppressive medications 13; All hospitalized pts received abx HCQ (73%); 3	83% required hospitalization 19; 13 monitored at home without additional treatment	5 (22%) died, 14 (65%) recovered and discharged, 4 (17%) with clinical improvement	
Multiple	Hoek et al [21]	Netherlands	23	Mean 59 years, 78% male	HTN (93%); 19, DM (43%); 10, diabete (22%); 5	CNI + MMF (14%); CM, MIF - steroid (39%); Steroid (4%); EVE (4%); 1	Fever (81%) 19, cough (71%); diarrrhea (16%);	57% remained on immunosuppressive medications 13; All hospitalized pts received abx HCQ (73%); 3	83% required hospitalization 19; 13 monitored at home without additional treatment	5 (22%) died, 14 (65%) recovered and discharged, 4 (17%) with clinical improvement	
Multiple	Hsu et al [22]	Los Angeles, CA	1	38 years, male	DM, HTN, obesity, chronic foot ulcer, TAC, MMF, prednisone	Fever, headache, sore throat, dry cough, dysorexia, fatigue, myalgia	Fever, headache, sore throat, dry cough, dysorexia, fatigue, myalgia	HCQ Enrolled in clinical trial	Toc; prednisone, continued for entirety of illness course, MMF held starting SD 2; Presented to ED on SD 2; Home quarantine SD 3; worsening symptoms and hospitalization SD 4; discharge SD 5; readmission SD 6; worsening hypoxia and transfer to ICU SD 9; transferred out of ICU, discharged SD 15	Alive, discharged	
SOT	Author [reference]	Location	No. of Cases (n)	Age and Sex	Comorbidities	Immunosuppressive Regimen	Time From Transplant	Initial Presentation (Symptoms)	Treatment	Clinical Course	Outcomes
-------------	-------------------	----------	------------------	-------------	---------------	--------------------------	---------------------	--------------------------------	------------	-----------------	----------
Kidney	Yi et al [23]	Houston, TX	21	Mean 54.8 years, 62% male/13% female	30% with other HTN, DM, obesity, chronic lung disease, CVD	Triple immunosuppression	Median of 5.58 years	95% with fever, cough, SOB	Immunosuppressive medications adjusted daily based on organ type	33% treated as outpatients	1 pt (5%) died (heart-lung)
Heart	Holzhauser et al [25]	United States	2	Pt 1: 59 years/female, 62% male/38% female	Kidney (57%)	Tac, MMF	Pt 1: H1N2, DM, CKD	Pt 2: Fever, cough, fatigue, anorexia	Path: Csf, leukocytosis, respiratory failure, meningitis, pneumonia	Path:	Died Pt 2: Alive, discharged
	Li et al [26]	China	2	Pt 1: 51 years/male, Pt 2: 43 years/male	Hyperlipidemia, IGT	Tac, MMF	Pt 1: H1N2	Pt 2: Tac, MPA	Path: Csf, leukocytosis, respiratory failure, meningitis, pneumonia	Path:	Died Pt 2: Alive, discharged
	Russell et al [30]	United States	1	3 years/female	EBV	Tac	25 months	Productive cough, rhinorrhea, nasal congestion	Path: Csf, leukocytosis, respiratory failure, meningitis, pneumonia	Path:	Alive, discharged
	Latif et al [27]	United States	28	Median age 64 years, 79% male	H1N2 (31%), DM (31%), CAV (37%), Obesity (25%)	Tac, MMF	Pt 1: H1N2, DM, CKD	Pt 2: Fever	Path: Csf, leukocytosis, respiratory failure, meningitis, pneumonia	Path:	Died 7 pts (25%) managed outpatient, 11 pts (35%) discharged
	Alberici et al [31]	Italy	20	Not reported	Path: Csf, leukocytosis, respiratory failure, meningitis, pneumonia	Path:	Died 5 pts (25%) discharged, 3 pts (15%) discharged				
	Banerjee et al [32]	England	7	Median age 54 years, 65-68	PT: 1: 48/50, MP: 5: 65/54, Ph: 7: 45/54	Tac, MMF	Pt 1: H1N2, DM, CKD	Pt 2: Tac, MPA	Path: Csf, leukocytosis, respiratory failure, meningitis, pneumonia	Path:	Died 12 days after hospitalization

Table 1: (continued)
Author et al.	Location	Age/Gender	Dose	Symptoms	Course
Arpali et al.	Turkey	1	28	female	Tac and prednisone 6 months
Guillén et al.	Spain	1	50	male	Tac, EVE, prednisone 4 years
Zhu et al.	China	1	52	male	Tac, MMF, prednisone 12 years
Mars et al.	France	1	58	male	Belatacept, MMF, prednisone 3 years
Gandolfi et al.	Italy	2			Pt 1: COPD, heart disease, HTN, obeity Pt 2: HTN
Akalin et al.	United States	36	Median of 60 years 72% males	Tac (97%) Prednisone (94%) MMF (86%)	
Chen et al.	China	1	49	male	HTN
Fontana et al.	Italy	1	61	male	CKD, malignancy, coagulopathy, Parkinson disease

Fever, malaise, sore throat, rhinorrhea continued on Tac and prednisone; oseltamivir given at second ED visit. Initially presented to ED, treated with amoxicillin, no SARS-CoV-2 testing done; presented following day to ED with high fever, sepsis, tested positive for SARS-CoV-2, admitted to hospital; 6 days after discharge required ventilatory support. Presented to ED with productive cough, diagnosed with CAP, tested positive for SARS-CoV-2, admitted to hospital; 6 days later, discharged to home. Presently at home, reports no symptoms. Alive, discharged to home. Alive, at home, reports no symptoms. Alive, discharged from hospital. Alive, resolution of fever and respiratory symptoms 5 days after discharge. Alive, discharged to home. Alive, died 5 days after admission. Alive, remained on noninvasive ventilation and discharged from hospital. Alive, remained on noninvasive ventilation and discharged from hospital. Alive, died 3 days after admission. Alive, died 3 days after admission. Alive, discharged to home. Alive, died 5 days after admission. Alive, died. Alive, died. Alive, died 5 days after admission. Alive, died 5 days after admission.
SOT	Author [reference]	Location	No. of Cases (n)	Age and Sex	Comorbidities	Immunosuppressive Regimen	Time From Transplant	Initial Presentation (Symptoms)	Treatment	Clinical Course	Outcomes	
2	Zhang et al [38]	China	5	Mean 45 years 80%; male 4	HTN (40%); 2 DM (40%); 2 Malignancy (20%); 1	MMF, CM, and steroid (80%); 4	Range of 2 months to 4 years	Fewer (100%), cough (100%), myalgia/ fatigue (80%), 3 Spurium (90%); 3 Oseltamivir or artibol (100%)	Azithromycin (70%), lopinavir/ritonavir (70%), abs (100%); IFV given if pt hypoxic	Immunosuppressant modified after symptom onset None required intubation or ICU admission	2 (40%) discharged 3 (60%) remain hospitalized	
2	Abirshami et al [39]	Iran	12	Mean 47.66 years 75%; male 10	HTN (17%); All on triple therapy (steroid, CNI/sirolimus, MMF/Aza)	HCQ, lopinavir/ritonavir, abx	Not reported	Fewer (75%), cough (80%), dyspepsia (42%)	Azithromycin (100%); HCQ, methylprednisolone (100%)	Immunosuppressant modified for all 100% pts hospitalized; 10 (83%) admitted to ICU; 90% in ICU were intubated	8 (87%) died 4 (33%) discharged	
2	Columbia University Kidney Transplant Program [10]	United States	15	Median 51 years 80%; male 10	HTN, CAD, COPD, abx (80%); 10	Tac (20%); 13 MMF/MPA (80%); 12 Prednisone (80%); 10 Belatacept (70%); 2 Leflunomide (70%); 1	Median 49 months	Fewer (87%), cough (85%), dyspepsia (30%); 9 Myalgia (20%); 3	Azithromycin (87%); HCQ (70%); Remicade (7%);	93% had immunosuppressant regimen changed 14 4 (27%) required intubation 8 (46%) developed ARDS	2 (15%) died 6 (40%) remain hospitalized	
2	Nair et al [41]	United States	10	Median 57 years 80%; male 6	HTN (100%), majority also with DM	Tac (70%); 9 MMF/MPA (80%); 7 Steroid (70%); 7	Median 7.7 years	Fewer, cough, myalgia, fatigue, diarrhea	Hospitalized patients had antimalarial agent stopped	90% hospitalized 5 (50%) admitted to ICU 5 (50%) developed acute kidney injury; Mild symptoms in 20% Severe symptoms in 50% Critical symptoms in 30% 30% required noninvasive mechanical ventilation	3 (30%) died 7 (72%) discharged	
2	Zhu et al [32]	China	10	Age between 24 and 65 years 80%; male 6	HTN, CAD, COPD, abx (80%); 10	Tac (90%); 14 MMF (70%); Steroid (70%); 10 Methylprednisolone (10%)	6 mo to 12 years	Fewer (90%), cough (80%), shortness of breath (90%), fatigue (90%), diaphoresis (30%)	Methylprednisolone (80%); IVIG (70%); Azithromycin (70%); Methylprednisolone (10%)	None underwent intubation Developed mild ARF and severe metabolic acidosis; did not require supplemental oxygen; improved over course of hospitalization	80% recovered 1 (10%) remained hospitalized 1 (10%) died	
2	Machado et al [42]	Brazil	1	69 years/male 80%	HCQ, DM, HTN	Tac, MMF, prednisone	6 years	Fewer, fatigue, confusion, diarrhea, decreased urine output	MMF held; Tac decreased, prednisone increased on hospitalization HCQ, ribavirine, ceftriaxone, azithromycin	None underwent intubation Developed mild ARF and severe metabolic acidosis; did not require supplemental oxygen; improved over course of hospitalization	Alive, discharged	
2	Kim et al [43]	Korea	2	Pt 1: 37 years/male; Pt 2: 56 years/male	Not reported	Pt 1: Tac, MMF, prednisone; Pt 2: Tac, MMF, prednisone	Pt 1: 4 years Pt 2: 8 years	Fewer (90%), cough (90%), shortness of breath (90%), fatigue (90%), diaphoresis (30%)	Azithromycin (80%); HCQ; IFV	Immunosuppressant medication modified in 80%; Methylprednisolone (80%); IVIG (70%); Azathioprine (100%)	Pt 1: Recovered Pt 2: Recovered	
2	Seminari et al [44]	Italy	1	50 years/male 49 years/male	HTN, DM	Tac, MMF	4 years	Fewer, cough, respiratory symptoms Caffeine?	Immunosuppressant medications continued Lopinavir/ritonavir, ribavirin, interferon-2b, methylprednisolone	Immunosuppressant medications continued Lopinavir/ritonavir	Alive, discharged Recovered	
2	Wang et al [45]	China	1	49 years/male 49 years/female	HTN, DM	Tac, MMF	2 years	Fewer, cough, chest tightness, myalgia	Caffeine?	Improvement in clinical course Required supplemental oxygen; respiratory status improved over course of admission	Alive, discharged Recovered	
2	Bilal et al [44]	United States	1	44 years/M	Not reported	Tac, MMF, prednisone	7 years	Dyspnea	Methylprednisolone	Developed ARF requiring dialysis; Intubated for respiratory failure	Alive, discharged	
2	Cheng et al [46]	China	2	Pt 1: 48 years/male; Pt 2: 65 years/male	Not reported	Pt 1: Tac, MMF, prednisone; Pt 2: Tac, MMF, prednisone	Pt 1: 11 years Pt 2: 9 years	Fewer, cough, chest tightness, myalgia	Lopinavir/ritonavir, ribavirin, methylprednisolone	Immunosuppressant medications held; methylprednisolone	2 (10%) died 8 (46%) developed ARDS	2 (15%) died 6 (40%) remain hospitalized
Study	Country	Age/sex	Diagnosis/Indicators	Survival/Outcome								
------------------------	---------	-----------	-------------------------------------	--								
Crespo et al [10]	Spain	Median 73.5 years, 75% male 12	HTN (86%), 14, DM (55%), heart disease (50%), obesity (44%), T, malignancy (31%), lung disease (19%), 3 HFN	15 pts (94%) hospitalised, 8 pts (60%) required ICU admission, 8 pts (53%) died								
Ning et al [11]	China	29 years/male	MMF, CSA, methylprednisolone 2 years Fever/chills, fatigue	Developed oliguria and hyponatremia; clinical course improved over course of admission, Required NC, remained hemodynamically stable								
Bush et al [12]	United States	13 years/male	Sirolimus, MMF 6 years Rheumato, cough, fever	Alive, discharged to home								
Kumar et al [13]	United States	50 years/male	Tac, MMF 14 months Fever/chills, nasal congestion, cough	Not reported								
Liver SOT	Italy	61 years/male	Basiliximab, prednisolone, and Tac Pl 1: Not reported	Not admitted, enrolled in COVID-19 monitoring program, Health improved to baseline								
Maggi et al [14]	Italy	85 years/male	HTN, hypothyroidism, DM (100%) Tac, MMF 10 years Respiratory symptoms similar to CAP	100% died between 3 and 12 days after the onset of pneumonia, Authors report 3 recently (within last 2 years) transplanted patients with positive test result for SARS-CoV-2 (on full immunosuppression); all experienced uneventful course of disease (no further details about this cohort provided)								
D'Antiga et al [15]	Italy	37 years/male	Tac, glucocorticoid PI developed SARS-CoV-2 infection during hospitalization for transplant	Presented with fever following hepatic arterial chemoembolization, continued to have persistent fever 2 days following embolization; RT-PCR confirmed infection; fever subsided on day 35 of hospitalization, Alive, discharged to home								
Qin et al [16]	China	6 months/female	Not reported	None developed clinical pulmonary disease								
Lagana et al [17]	United States	6 months/female	Not reported	Alive, discharged to home								
Huang et al [18]	China	59 years/male	Tac, MMF 3 years Fever, cough, chills, fatigue, diarrhea, jaundice, anorexia, splenomegaly Respiratory failure on day 4 of hospitalization, placed on NC; hypoxemia worsened requiring intubation; on day 12, bilirubin ox positive for Candida, pleural fluid positive for Pseudomonas; ECCHO on day 15 due to worsened respiratory status; condition deteriorated to multigorgan failure	Alive, discharged on day 45 of admission								
SOT	Author [reference]	Location	No. of Cases (n)	Age and Sex	Comorbidities	Immunosuppressive Regimen	Time From Transplant	Initial Presentation (Symptoms)	Treatment	Clinical Course	Outcomes	
-----	-------------------	----------	----------------	-------------	--------------	--------------------------	-------------------	-------------------------------	-----------	--------------	----------	
Bin et al [58]	China	1	50 years/male	Not reported	Tac	3 years	Fever	Immunosuppression was increased to full dose on discharge	Pt became progressively dyspnic requiring NC on day 5 of hospitalization; symptoms resolved on day 21; discharged after 4 weeks of hospitalization	Alive, at home		
Lee et al [59]	United States	38	Median 60 years	For hospitalized pts (n = 24)	Tac (96%) CSA (4%) MPA (54%) Steroid (42%) 10 obesity (42%),10	Not reported	Gastrointestinal symptoms (42%)	Hospitalized patients 7 (29%) died 63% hospitalized 8 (33%) required mechanical ventilation	Died (unrelated to SARS-CoV-2)	7 (29%) died 3 (13%) remained hospitalized 14 (54%) discharged		
Patrono et al [60]	Italy	10	Pt 1: 69 years/male	ESRD, DM, HTN, HF, PVD	Tac, prednisone	5 days	Fever, diarrhea, dyspnea	Patients were administered HCQ, 3 high-dose steroids, and 2 antimalarials	Alive	Pt 1: Alive Pt 2: Alive Pt 3: Alive Pt 4: Alive Pt 5: Alive Pt 6: Alive Pt 7: Alive Pt 8: Died (unrelated to SARS-CoV-2) Pt 9: Died Pt 10: Alive		
Hammami et al [61]	United States	1	63 years/male	ESRD, DM, HTN, HF, PVD	Tac	10 years	Fever, dry cough, fatigue, headache	HCQ, ceftriaxone, azithromycin, ceftriaxone, vancomycin, tocilizumab	Alive	Pt 1: Alive Pt 2: Alive Pt 3: Alive Pt 4: Alive Pt 5: Alive		
Modi et al [62]	United States	1	32 years/male	HIV	Tac, MMF, prednisone	7 years	Fatigue, fever, headache, dry cough	MMF held, Tac reduced, prednisone continued	Discharged home	Admitted with mild symptoms which gradually improved over course of hospitalization		
Morand et al [63]	France	1	4 years/female	EBV	Tac	5 months	Rheitis, fever, cough	Tac dose reduced Antipyretics	Improvement in clinical symptoms during hospitalization	Recovered		

Abbreviations: Abx, antibiotics; AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; AzA, azathioprine; CAD, coronary artery disease; CAP, community-acquired pneumonia; CAV, cardiac allograft vasculopathy; CNI, calcineurin inhibitor; CMV, cytomegalovirus; CPAP, continuous positive airway pressure; CSA, cyclosporine; Cx, culture; CVV, cytomegalovirus; CVD, cardiovascular disease; Dx, diagnosis; d/c, discontinued; DDi, drug–drug interaction; DM, diabetes mellitus; EBV, Epstein-Barr virus; ED, emergency department; ESRD, end-stage renal disease; EVE, everolimus; HCQ, hydroxychloroquine; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HTN, hypertension; IGT, impaired glucose tolerance; IL-6, interleukin 6 receptor antagonist; IVIG, intravenous immunoglobulin; MMF, mycophenolate mofetil; MPA, mycophenolate acid; mTOR, mammalian target of rapamycin; NC, nasal cannula; Pt(s), patient(s); POD, postoperative day; PVD, peripheral vascular disease; RCT, randomized controlled trial; rh-GCSF, recombinant human granulocyte colony-stimulating factor; SD, symptom day; SMZ-TMP; sulfamethoxazole-trimethoprim; Tac, tacrolimus; TCDA, T-cell-depleting agents; Tx, treatment.
concomitant medical conditions [7,8]. The surgical management and outcomes of SARS-CoV-2 in SOT recipients remain unclear [9], because published reports on SARS-CoV-2 positive SOT recipients and their outcomes are limited and largely unknown [9-11]. Case reports from Asia, Europe, and the United States suggest a wide range in severity of clinical symptoms from mild and nonspecific to severe respiratory distress and pneumonia [11-13]. Furthermore, reports of atypical presentations with an absence of respiratory symptoms may confound the diagnosis [12-14].

Although the American Society of Transplant Surgeons has recommended best practice guidelines for transplantation in the SARS-CoV-2 era, regional and institutional variation in transplant practice persists [15,16]. In addition, limitation and regional variance in testing pose a significant difficulty in the early identification of suspected SARS-CoV-2 cases in SOT recipients. A recent survey of 111 transplant centers in the United States found a marked reduction in transplant activity despite the tier 3b designation, a wide variation in SARS-CoV-2 testing practices, and substantial differences in the use of off-label and investigational therapies for treatment [17].

There is an urgent need to better understand the effects of SARS-CoV-2 on SOT recipients. We reviewed published literature in this rapidly evolving field to examine the current management practice; the clinical course of the disease; and the outcomes of SARS-CoV-2 infection in liver, kidney, and heart SOT recipients.

MATERIALS AND METHODS

We conducted a review of SARS-CoV-2 infection in SOT recipients according to the recommended Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines.

Study Search

Articles published through June 6, 2020, were searched in the MEDLINE, ClinicalTrials.gov, and PubMed databases. A combination of the following Medical Subject Heading terms was used to identify articles discussing SARS-CoV-2 infection in solid organ transplant recipients: “coronavirus,” “SarsCov,” “SarsCov2,” “SARS-CoV-2,” “Severe Acute Respiratory Syndrome,” “COVID,” “COVID-19,” “kidney,” “heart,” “liver,” “solid organ transplant,” “transplant,” “transplantation,” “outcome,” and “immunosuppressant.”

Inclusion and Exclusion Criteria

Only case reports, case series, and prospective and retrospective cohort studies published between 2019 and 2020 were included for final analysis and discussion. No restriction was placed on the publication status of the article. All non-English, investigational, animal, in vitro, and cadaveric studies were excluded. In addition, book chapters, conference abstracts, review articles, management guidelines, and any article that did not include discussion of clinical course, treatment, or outcomes of SARS-CoV-2 infection in SOT recipients were also excluded.

Data Collection and Analysis

Articles were screened independently by the authors. Any disagreements were reconciled through discussion between reviewers. Data extracted from each article included study type, year and month of publication, study country, number of patient cases, SOT type (heart, kidney, liver, or multiple), patient demographics, presence of comorbidities, immunosuppressant medications, time from transplant to initial presentation, initial presenting symptoms, treatment, clinical course, and outcomes (Table 1). Reporting of all of the above variables was not a requirement for article inclusion, and any unavailable variables were documented as “not reported.” Data were reported using the median and interquartile range (IQR) for non-normally distributed continuous variables and absolute counts and percentages for categorical variables.

RESULTS

Study Selection

A total of 1455 citations were identified in the initial search. After removing 211 duplicates, a total of 1244 studies were screened by title and abstract (Fig 1). Studies were excluded if they did not mention SOT, SARS-CoV-2 infection, or associated clinical course and outcomes or did not fulfill the inclusion criteria. After excluding 1164 studies, we completed a full-text assessment of the remaining 80 studies. Forty-nine studies were included in our final analysis after the exclusion of 31 studies after a full-text screen. Exclusion of these 31 studies at the full-text review included the following reasons: discussed management and recommendations (n = 10), review
Overall mortality was reported as 21% (Table 3). The median time from transplant was 48 months (IQR, 12-108). The median age was 54 years (IQR, 45-64), and the majority were men (n = 252; 58.2%). Seventeen individuals (3.9%) received more than one SOT. A majority were men (n = 264; 61.0%). The most common SOT type, including those reporting lung, pancreas, and multiple SOT, whereas death for kidney, heart, and liver SOT recipients was determined solely from studies discussing each individual organ separately. Additional immunosuppressant regimens included unspecified calcineurin inhibitors (CNIs) (12%), mTOR inhibitors (4.6%), and belatacept (2%). Fever was the most common presenting symptom (71.3%), followed by cough (39.3%) and dyspnea (26%). Ninety-three individuals (62%) were hospitalized, and 10.7% developed acute kidney injury. Mechanical ventilation, supplemental oxygen, and transfer to an intensive care unit (ICU) for a higher level of care were required in 20%, 11.3%, and 19.3% of the individuals, respectively. Nearly half (46.7%) of those reported had their maintenance immunosuppressant reduced when the infection was suspected or confirmed. The most commonly used treatments were hydroxychloroquine (HCQ) (65.3%), antibiotics (43.3%), steroids (20.7%), and lopinavir/ritonavir (15.3%). Thirty-three patients were reported as alive (22%), discharged to home (n = 45; 30%), or remaining hospitalized (non-ICU, n = 27 [18%]; ICU, n = 3 [2%]), and 26% of individuals died (n = 39).

Liver. Fifty-three liver SOT recipients were identified from 12 studies reporting liver SOT, and males comprised 28.3% of the population (n = 15). Hypertension, chronic kidney disease, and diabetes were the most common comorbidities (39.6%, 32.1%, and 30.2%, respectively). Tacrolimus (79.2%), MMF/mycophenolic acid (MPA) and 26% of individuals died (n = 39).

Table 2. Characteristics of Total Solid Organ Transplant Recipients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection

Location	No.	%
United States	249	57.51%
Italy	55	12.7%
China	26	6%

Organ transplanted	No.	%
Kidney	252	58.2%
Liver	89	20.6%
Heart	51	11.8%
Other organ*	42	9.6%

Sex	No.	%
Male	264	61.0%

Comorbidity	No.	%
HTN	249	57.5%
DM	159	36.7%
Obesity	44	10.2%
CKD	77	17.8%

Immunosuppressive	No.	%
Tac	160	37.0%
CNI	122	28.2%
Prednisone or other steroid	217	50.1%
MMF/MPA	214	49.4%
Other immunosuppressive*	125	28.8%

| Abbreviations: CKD, chronic kidney disease; CNI, calcineurin inhibitor; DM, diabetes mellitus; HTN, hypertension; MMF, mycophenolate mofetil; MPA, mycophenolic acid; Tac, tacrolimus. *Includes lung, pancreas, and multiple solid organ transplant.

Table 3. Presentation, Clinical Course, and Outcome of Total Solid Organ Transplant Recipients

No.	%
Initial presentation	
Fever	291
Cough	220
Gastrointestinal symptoms	120
Dyspnea	169
Asymptomatic	3

| Treatment |
Immunosuppressant modified	235	54.3%
Antibiotics	178	41.1%
HCQ	242	55.9%
Methylprednisolone or other steroid	78	18.0%

| Clinical course |
Hospitalized	283	65.4%
Outpatient	50	11.5%
Respiratory failure	18	4.2%
Transfer to ICU	78	18.0%

| Outcome* |
Death (all studies)	91	21.0%
Kidney	39	26.0%
Heart	8	24.2%
Liver	14	26.4%

Abbreviations: HCQ, hydroxychloroquine; ICU, intensive care unit. *Death for all studies includes studies for multiple solid organ transplant (SOT) type, including those reporting lung, pancreas, and multiple SOT, whereas death for kidney, heart, and liver SOT recipients was determined solely from studies discussing each individual organ separately.

Study Characteristics

Of the 49 studies included, 22 were case reports, 8 were case series, and 19 were cohort studies. Four studies discussed heart SOT, 25 discussed kidney SOT, 12 discussed liver SOT, and 8 included multiple SOTs. A total of 433 SOTs were reported among all studies (Table 2). The most common SOT was the kidney with 252 (58.2%), followed by liver with 89 (20.6%), heart with 51 (11.8%), lung with 24 (5.5%), and pancreas with 1 (0.2%). Seventeen individuals (3.9%) received more than one SOT. A majority were men (n = 264; 61%). The median age was 54 years (IQR, 45-64), and the median time from transplant was 48 months (IQR, 12-108). Overall mortality was reported as 21% (Table 3).

Characteristics, Clinical Course, and Outcomes by SOT Type

Kidney. Among the 25 studies reporting solely kidney SOT, 150 recipients with SARS-CoV-2 infection were identified. Ninety-five (63.3%) were male. The most common comorbidities were hypertension (55.3%) and diabetes mellitus (26.7%). Tacrolimus (52%), mycophenolate mofetil (MMF) (56%), and prednisone/steroid (64.7%) were the most commonly used maintenance immunosuppressants.
COVID-19 EFFECTS ON SOT

(39.6%), and steroids (35.8%) were the most commonly used maintenance immunotherapies. Fever and gastrointestinal symptoms were the 2 most common initial presenting symptoms, followed by cough (28.3%, 28.3%, and 18.9%, respectively). Thirty-four individuals (64.2%) were hospitalized, and 45.3% subsequently had their maintenance immunosuppressant medication reduced. HCO and antibiotics were used in 39.6% and 39.6%, respectively, for treatment of SARS-CoV-2 infection. In addition, 47.2% of individuals required supplemental oxygen during hospitalization, and 14 (26.4%) individuals died after the onset of illness.

Heart. Thirty-three individuals who underwent heart SOT were reported in 4 studies; 25 (75.8%) were male. The most common comorbidities were hypertension (69.7%), diabetes (57.6%), and cardiac allograft vasculopathy (48.5%). The most commonly used maintenance immunotherapies were CNI (81.8%) and MMF/MPA (69.7%). Fever (81.8%), cough (94.8%), dyspnea (75.8%), and gastrointestinal symptoms (48.5%) were the most common initial presenting symptoms. Twenty-seven (81.8%) patients were hospitalized, and intubation/mechanical ventilation was required in 24.2% of those individuals. Twenty-four (72.7%) patients received HCO, and high-dose steroids were administered to 15 patients (45.5%). Maintenance immunotherapy was modified in 75.8% of the cases. Fifteen (45.5%) were reported as discharged, and 24.2% of the individuals died during their illness.

DISCUSSION

As the number of SARS-CoV-2 infections continues to grow worldwide, clinical data in SOT recipients are emerging, and our study showed overall mortality of 21% with no substantial variations among the different types of SOT (Table 3). The mortality rate is in concordance with published data in terms of outcomes reported in patients undergoing acute care surgery and cancer surgery: Lei et al, Liang et al, and the COVIDSurg Collaborative group reported mortality in the general surgical population of 20.5%, 39%, and 23.8%, respectively [4,64,65].

Older age, male sex, and preexisting conditions such as hypertension and diabetes were the most common characteristics among the SOT recipients. As predicted, we saw a broad spectrum of clinical courses ranging from having only a few mild symptoms to multiorgan failure leading to death. Despite the concerns of atypical disease presentation in immunocompromised patients, the most common presenting symptoms were similar to general population symptoms [7,66,67]; however, there were some variations in the incidence of the initial presenting symptoms among the different SOT types (Table 1).

Modification of immunosuppressant therapy at confirmation or suspicion of SARS-CoV-2 infection was reported in 54.3% of the patients, reflecting individualized adjustment based on the severity of the disease, type of transplanted organ, interval time since transplant, and risk of rejection [8]. On a similar note, the American Association for the Study of Liver Diseases recently published management guidelines for liver transplant recipients in the COVID era [68]: continuing the routine immunosuppressive regimen in nonsymptomatic recipients and reducing the immunosuppression regimen, including prednisone, azathioprine, or MMF and CNI in symptomatic patients with COVID-19. Our study suggests that the current practice of reducing immunosuppression upon the diagnosis of SARS-CoV-2 infection appears to be an appropriate measure without causing significant short-term adverse effects on graft function while maintaining patient survival comparable to that of the general population.

The median time from transplant to infection was 48 months in our study; the majority of the studies focused on patients who had received SOTs many years ago. Although it is a small number, we identified 4 cases in which the SOT recipient contracted SARS-CoV-2 infection during the transplant perioperative period, and we found no significant difference in their initial presentation, clinical course, and outcome when compared with a cohort of patients who received a transplant more than 1 year ago.

Although our study provides a general overview of SOT recipients’ clinical course and outcomes with SARS-CoV-2 infection, we recognize several limitations of the study. First, the inclusion of early case reports may be biased toward those with increased severity of disease and worse outcome, leading to publication bias with overinterpretation. Second, the inclusion of a mixed transplant population and a wide heterogeneity in study inclusion criteria may not be a true representation of the study samples and therefore precluded the ability to derive causality. Furthermore, data were based on absolute counts and therefore can be used only for descriptive purposes. Last, a certain degree of reporting bias inevitably played a role because SOT recipients are trained to be more vigilant with their health conditions and have a low threshold for seeking medical attention. This reporting bias could have led to more disease diagnosis in our study group than in the general population.

In conclusion, SARS-CoV-2 infection in SOT recipients in general appears to have similar presentation, clinical course, and outcome as in the general non-SOT surgical population. We found that the patient demographics, preexisting risk factors, and outcomes were similar within each SOT type, and we saw no substantial differences in mortality rate among the different SOT types. Although our data show that the overall short-term survival is about the same, long-term patient survival and graft function data are needed to fully understand the impact of COVID in SOT patients.

REFERENCES

[1] WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://web.archive.org/web/20200418151429/https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020; 2020 [accessed 29.06.20].
organ transplant recipients in the United States. Am J Transplant 2020;20(7):1911–5.

[4] Lei S, Jiang F, Su W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. eClinicalMedicine 2020;21:100331.

[5] Besnier E, Tuech JJ, Schwarz L. We asked the experts: Covid-19 outbreak: is there still a place for scheduled surgery? “Reflection from pathophysiological data. World J Surg 2020;44(6): 1695–8.

[6] Aziz H, James T, Remulla D, et al. Effect of COVID-19 on surgical training across the United States: a national survey of general surgery residents [e-pub ahead of print]. J Surg Educ https://doi.org/10.1016/j.jsurg.2020.07.037, accessed May 6, 2020.

[7] Fishman JA. Infection in organ transplantation. Am J Transplant 2017;17(4):856–79.

[8] Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: initial report from the US epicenter. Am J Transplant 2020;20(7):1800–8.

[9] Huang J, Lin H, Wu Y, et al. COVID-19 in posttransplant patients-report of 4 cases. Am J Transplant 2020;20(7):1879–81.

[10] Michaels MG, La Hoz RM, Danziger-Iakov L, et al. Coronavirus disease 2019: implications of emerging infections for transplantation. Am J Transplant 2020;20(7):1768–72.

[11] Fernández-Ruiz M, Andrés A, Loinaz C, et al. COVID-19 in solid organ transplant recipients: a single-center case series from Spain. Am J Transplant 2020;20(7):1849–50.

[12] Kates OK, Fisher CE, Stankiewicz-Karita HC, et al. Earliest cases of coronavirus disease 2019 (COVID-19) identified in solid organ transplant recipients in the United States. Am J Transplant 2020;20(7):1885–90.

[13] Zhong Z, Zhang Q, Xia H, et al. Clinical characteristics and immunosuppressants management of coronavirus disease 2019 in solid organ transplant recipients. Am J Transplant 2020;20(7):1916–21.

[14] Fishman JA, Grossi PA. Novel coronavirus-19 (COVID-19) in the immunocompromised transplant recipient: #Flatteningthecurve. Am J Transplant 2020;20(7):1765–7.

[15] Romanelli A, Mascolo S. Crucial aspects of the management of solid organ transplant patient with COVID-19: a narrative review. J Biomed Res Rev 2020;3(1):32–6.

[16] Michel D, Fisher BI, Dimitrov I, Barbosa AS. Organ donation during the coronavirus pandemic: an evolving saga in uncharted waters. Transpl Int 2020;33(7):826–7.

[17] Boyarsky BJ, Chiang TPY, Werbel WA, et al. Early impact of COVID-19 on transplant center practices and policies in the United States. Am J Transplant 2020;20(7):1809–18.

[18] Tschopp J, L’Huillier AG, Mombelli M, et al. First experience of SARS-CoV-2 infections in solid organ transplant recipients in the Swiss Transplant Cohort Study [e-pub ahead of print]. Am J Transplant https://doi.org/10.1111/ajt.16062, accessed May 6, 2020.

[19] Travi G, Rossotti R, Merli M, et al. Clinical outcome in solid organ transplant recipients with COVID-19: a single-center experience. Am J Transplant 2020;20(9):2628–9.

[20] Fung M, Chiu CY, DeVoe C, et al. Clinical outcomes and serologic response in solid organ transplant recipients with COVID-19: a case series from the United States [e-pub ahead of print]. Am J Transplant https://doi.org/10.1111/ajt.16079, accessed May 6, 2020.

[21] Hoek RAS, Manintveld OC, Betjes MGH, et al. COVID-19 in solid organ transplant recipients: a single-center experience [e-pub ahead of print]. Transpl Int https://doi.org/10.1111/tri.13662, accessed May 6, 2020.

[22] Hsu JJ, Gaynor P, Kamath M, et al. COVID-19 in a high-risk dual heart and kidney transplant recipient. Am J Transplant 2020;20(7):1915–7.

[23] Yi SG, Rogers AW, Saharia A, et al. Early experience with COVID-19 and solid organ transplantation at a US high-volume transplant center [e-pub ahead of print]. Transplantation https://doi.org/10.1097/TP.0000000000003339, accessed May 6, 2020.

[24] Holzhauser L, Lourencio L, Saraswat N, Kim G, Chung B, Nguyen AB. Early experience of COVID-19 in 2 heart transplant recipients: case reports and review of treatment options [e-pub ahead of print]. Am J Transplant https://doi.org/10.1111/ajt.15982, accessed May 6, 2020.

[25] Li F, Cai J, Dong N. First cases of COVID-19 in heart transplantation from China. J Heart Lung Transplant 2020;39(5): 496–7.

[26] Russell MR, Halnon NJ, Alejos JC, Salem MM, Reardon LC. COVID-19 in a pediatric heart transplant recipient: emergence of donor-specific antibodies. J Heart Lung Transplant 2020;39(7):732–7.

[27] Latif F, Farr MA, Clerkin KJ, et al. Characteristics and outcomes of recipients of heart transplant with coronavirus disease 2019 [e-pub ahead of print]. JAMA Cardiol https://doi.org/10.1001/jamacardio.2020.2159, accessed May 6, 2020.

[28] Alberici F, Delbarba E, Manenti C, et al. Management of patients on dialysis and with kidney transplant during SARS-COV-2 (COVID-19) pandemic in Brescia. Italy. Kidney Int Rep 2020;5(5):580–5.

[29] Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M. COVID-19 infection in kidney transplant recipients. Kidney Int 2020;97(6):1076–82.

[30] Arpalı E, Akylou B, Yelken B, Teken S, Turkmen A, Kocer B. Case report: a kidney transplant patient with mild COVID-19. Transpl Infect Dis 2020;22(4):e13296.

[31] Guillein E, Pineiro GJ, Revuelta I, et al. Case report of COVID-19 in a kidney transplant recipient: does immunosuppression alter the clinical presentation? Am J Transplant 2020;20(7):1875–8.

[32] Zhu L, Xu X, Ma K, et al. Successful recovery of COVID-19 pneumonia in a renal transplant recipient with long-term immunosuppression. Am J Transplant 2020;20(7):1859–63.

[33] Marx D, Moulin B, Fafi-Kremer S, et al. First case of COVID-19 in a kidney transplant recipient treated with belatacept. Am J Transplant 2020;20(7):1944–6.

[34] Gandolfi I, Delsante M, Fiaccadori E, et al. COVID-19 in kidney transplant recipients. Am J Transplant 2020;20(7):1941–3.

[35] Akalin E, Azzi Y, Bartash R, et al. COVID-19 and kidney transplantation. N Engl J Med 2020;382(25):2475–7.

[36] Chen S, Yin Q, Shi H, et al. A familial cluster, including a kidney transplant recipient, of coronavirus disease 2019 (COVID-19) in Wuhan, China. Am J Transplant 2020;20(7):1869–74.

[37] Fontana F, Alfano G, Mori G, et al. COVID-19 pneumonia in a kidney transplant recipient successfully treated with tocilizumab and hydroxychloroquine. Am J Transplant 2020;20(7):1902–6.

[38] Zhang H, Chen Y, Yuan Q, et al. Identification of kidney transplant recipients with coronavirus disease 2019. Eur Urol 2020;77(6):742–7.

[39] Abrishami A, Samavat S, Behnam B, Arab-Ahmadi M, Nafar M, Sanei Taheri M. Clinical course, imaging features, and outcomes of COVID-19 in kidney transplant recipients. Eur Urol 2020;78(2):251–6.

[40] Columbia University Kidney Transplant Program. Early description of coronavirus 2019 disease in kidney transplant recipients in New York. J Am Soc Nephrol 2020;31(6):1150–6.

[41] Nair V, Jandovitz N, Hirsch JS, et al. COVID-19 in kidney transplant recipients. Am J Transplant 2020;20(7):1819–25.

[42] Machado DJB, Ianhez LE. COVID-19 pneumonia in kidney transplant recipients – where we are? [e-pub ahead of print]. Transpl Infect Dis https://doi.org/10.1111/tid.13306, accessed May 6, 2020.
Kim Y, Kwon O, Pack JH, et al. Two distinct cases with COVID-19 in kidney transplant recipients. Am J Transplant 2020;20(8):2269–75.

Seminari E, Colaneri M, Sambo M, et al. SARS CoV-2 infection in a renal-transplanted patient: a case report. Am J Transplant 2020;20(7):1882–4.

Wang J, Li X, Cao G, Wu X, Wang Z, Yan T. COVID-19 in a kidney transplant patient. Eur Urol 2020;77(6):769–70.

Billah M, Santusiano A, Delaney V, Cravedi V, Farouk SS. A catabolic state in a kidney transplant recipient with COVID-19 [e-pub ahead of print]. Transpl Int https://doi.org/10.1111/tri.13635, accessed May 6, 2020.

Cheng DR, Wen JQ, Liu ZZ, Lv TF, Chen JS. Coronavirus disease 2019 in renal transplant recipients: report of two cases [e-pub ahead of print]. Transpl Infect Dis https://doi.org/10.1111/tid.13329, accessed May 6, 2020.

Crespo M, José Pérez-Sáez M, Redondo-Pachón D, et al. COVID-19 in elderly kidney transplant recipients [e-pub ahead of print]. Am J Transplant https://doi.org/10.1111/ajt.16096, accessed May 6, 2020.

Bush R, Johns F, Acharya R, Upadhyay K. Mild COVID-19 in a pediatric renal transplant recipient [e-pub ahead of print]. Am J Transplant https://doi.org/10.1111/ajt.16003, accessed May 6, 2020.

Kumar RN, Tanna SD, Shetty AA, Stosor V. COVID-19 in an HIV-positive kidney transplant recipient [e-pub ahead of print]. Transpl Infect Dis https://doi.org/10.1111/tid.13338, accessed May 6, 2020.

Lagana SM, De Michele S, Lee MJ, et al. COVID-19 associated hepatitis complicating recent living donor liver transplantation [e-pub ahead of print]. Arch Pathol Lab Med https://doi.org/10.5858/arpa.2020-0186-SA, accessed May 6, 2020.

Huang J-F, Zheng KI, George J, et al. Fatal outcome in a liver transplant recipient with COVID-19. Am J Transplant 2020;20(7):1907–10.

Bin L, Yangzhong W, Yuanyuan Z, Huibo S, Fanjun Z, Zhishui C. Successful treatment of severe COVID-19 pneumonia in a liver transplant recipient. Am J Transplant 2020;20(7):1891–5.

Lee BT, Perumalswami PV, Im GY, Florman S, Schiano TD. COVID-19 in liver transplant recipients: an initial experience from the U.S. epicenter. Gastroenterology 2020;159(3). 1176-8.e2.

Patrono D, Lupo F, Canta F, et al. Outcome of COVID-19 in liver transplant recipients: a preliminary report from northwestern Italy [e-pub ahead of print]. Transpl Infect Dis https://doi.org/10.1111/tid.13353, accessed May 6, 2020.

Bin L, Yangzhong W, Yuanyuan Z, Huibo S, Fanjun Z, Zhishui C. Successful treatment of severe COVID-19 pneumonia in a liver transplant recipient. Am J Transplant 2020;20(7):1891–5.

Romero FA, Razonable RR. Infections in liver transplant recipients. World J Hepatol 2011;3(4):83–92.