Summary:

Computer text processing is defined formally as an ordered set of sentences on which various interpretative functions operate to produce a transformed text. Semantic is here understood as the set of these functions and their ordering. A common language is suggested both for the sentences and the functions. A case study is presented.

1. Text interpretation

If a computer was to read and understand a sentence such as "Women love bachelors" how would we describe the semantic process going on? A first type of answer would bring us directly in the world denoted by such a sentence: To this sentence corresponds a world situation of which one can give a formal representation for instance in set theoretical terms: there exist a certain state of affair, and a set of human beings, in which there is a subset of women and a subset of man in which the subset bachelor is itself contained and there exist a specific relation between the individuals of the subset of women with the individuals of the subset of bachelors. Hence interpreting the first sentence is thus to know the state of the world in which such a complex relation exist or for which this sentence is true.

In another vocabulary, one could ask his data base to see if in the world representation or the frames, the scenarios, the templates, the nets, etc. there exist or can be inferred such a relation between these individuals?

In a second line of interpretation, one could stress the fact that it is impossible to set the state of affair in a world, before knowing what "love", "women", and "bachelor" means. Depending on what is contained in these expressions, one can not decide what state of affair is to be chosen. Do women love young postgraduates, students, seals without a mate, or simply young unmarried males?

Other types of interpretation will add that one cannot even decide which reading to give to the sentence if one cannot see what usage of the sentence is made. If the sentence is used in the descriptive-affirmative manner, then the preceding interpretation can be accepted, but if the sentence is used in a more rhetorical manner then the interpretation could be insulting for the feminist user and amusing for a male chauvinist!

Hence interpreting a sentence is not a simple thing to describe. Yet, theories for computer processing of natural language will often stress only but one aspect of this semantic process. For instance the recent trend of artificial intelligence, be it the frames paradigm (Winograd 1972, Schank Wilk 1973 or the more fregean-Montague (Schubert 1975, Cercone 1975, Lehmann 1978) insist on the necessity of a world representation for the interpretation of a sentence or a set of sentences. This is a computer variation of the tarskian semantic. In another tradition that of the lexical semanticists (Katz, Fillmore Miller) or the semantic net theorists (Quillian, Simmons, Woods) it is maintained that a semantic grammar should mainly include a clear relation, not only between an expression of a language and the objects to which they refer in a particular usage, but also between the sense of the expression and their references.

Hence one can see different types of relations can exist in this semantic world: that is, relations between the expressions, the senses, and the objects themselves. As for the use aspect or pragmatics of the problem goes, except for a few odd explorations here and there, one relagates the whole thing for future investigation.

From the point of view of text processing distinguishing the various aspects of the semantic problems is of the highest importance for many recent projects in this field have in one sense reverse the problem. What one encounters is in fact much more conversation in natural language with a formal data base than real text interpretation. That is, given a semi-formal world representation couched in a conceptual dependency or a frames representation one system will try to relate questions to pertinent states of the world (Lehmann 1978, 1979) another system will rewrite the text amplifying it with a set of new sentences said to be presupposed in the understanding of the original
(Schank, 1972). Another will try mainly to
disambiguate the original text and produce a
set of adequate inferences (Wilks, 1973). In
all these systems, a basic postulat is accepted
and stressed: understanding can not be realised
if there does not exist a minimal frame of refe-
rence on which the interpretation of the sen-
tences of a text can rely. But real text pro-
cessing at its limits although in part, has
to accept this postulat must also be seen as
a process of reading a text that is in itself
a world representation given in natural lan-
guage. A text not only describes, but also
creates a world, of object and events. In
other words new and old frames, world repre-
sentation, data base are in the text itself.
But in saying that, one becomes confused in the
various world representations that are at
work.

To add to the confusion the inference, the
desambiguation, the paraphrasing process all
rise up in the interpretation of the words and
sentences already stressed. Each one giving the
explanation in a new vocabulary.

It is the aim of the following research to
explore a more formal approach to the semantic
problem of computer text interpretation. The
main hypothesis could be summerize in the
following manner. Semantic interpretation of
text cannot lean on one unique type of reading
be it referential, lexical, syntactical or
pragmatical. Semantic interpretation for texts
is the establishement of a complex set of rela-
tions between the various aspects of what phi-
losophy, linguistic, logic artificial intel-
ligence has called reference sense, use,
lexicon etc. It is also possible to offer
for all these aspects a common formal des-
criptive language.

2. Semantic space

In order to render our explanation more
intelligible we shall proceed in two related
steps one non formal and the second formal.

For the first step, we shall use a metaphor.
Imagine a constellation of planets. Some of
these planets cannot be seen by the naked eye.
Yet each planet (seen or unseen) depends for
its mouvement on the existence or non exis-
tence of the other (gravity wise). What actually
constitutes the constellation space is not the
planets themselves but the gravity relation
and movement holding them together. Exploring
this metaphor we could underline various in-
teresting properties of this space. A first
dimension already stressed is the fact that a
space is essentially a set of relations between
planets. Without these relations there is no
space. Secondly the relation is multiple that
is, the path of one planet is the effect of mul-
tiple gravity relations among the planets.
Thirdly, the effect of the gravity forces on one
planet affects each planet itself. There is
a resonance relation from one to the other. In-
formation on all the system can be found by
analysis of the gravitutional force of one pla-
et. To put in other terms, what affects
one planet's gravity affects all others. Forthly
there exist a certain relativity of the depen-
dencies, that is: each constellation of planets
has its own pattern of dependencies which is
different form one constellation to another.

Let us now translate our metaphor into our
semantic problem. Imagine that a text is a
constellation of sentences, some of which are
written down on paper (the material text) others
not written down. Each sentence has a set of
material properties that is, they are sentences
of a language with their syntax and their se-
mantics. Some of these sentences describes the
syntactic structure of original sentences of a
written text others describe the sense of the
sentences, others describe the sense of affair, etc.
Our semantic space will be filled with
different sentences each of which will focus
on one or other aspect of a specific sentence
to be interpreted. That is each "world" in
this semantics space is actually a sentence or
a group of sentences of a language each of which
having a different role in the overall semantic
space. Hence we shall have a syntactic world,
a lexical-sense world, a referential world, a
natural world. Or to put in a less metaphoric
language, each sentences of a language will
have a specific relation to its sense its refer-
ce, its syntax etc. each of which can be
expressed in sentence of a formal language.

It follows from the metaphor that our se-
matic space is not the sentences themselves
but the relations between the sentence and
only the sentences. Secondly the relation
is multiple. Each sentence has many types
of relations with many other sentences. A
structural representation sentence can be
related to a sense representation sentence
and a referential representation sentence etc.
Thirdly, each sentence can be modified in its
own form by information comming from another
sentence. For instance a sentence with vari-
ables for ambiguous words could need many type
of decision before filling up the variables.
Forthly the set of relations is relative to
a user or a set of users. Each sub-constella-
tions of sentences can be dependent on a set
of possible users. There is a pragmatic rela-
tion between these semantic spaces and the users.

From this informal presentation we can see
that the semantic space for a text is more
than the constituent of the space itself
(i.e. the sentences). In other words
A semantic grammar should be understood as a set of relations over various information sentences of a language. Therefore, we shall define informally this stage of the research a semantic grammar as a set of decision rules (functions) mapping a structured list of symbolic expressions or sentences into another list of symbolic expressions or sentences of a language. For instance, a grammar could operate on a sentence such as "John has a dog" and deliver as output "John has ANIMAL" or "John POSSESS dog". Here, the grammar has strictly transformed one sentence into another according to a set of decision rules. A semantic grammar is thus, a rule decision process whose domain shall be sets of informations (or sentence of a language) that has been defined in the scientific literature as syntactic structure (e.g., being a Noun-Phrase), lexical contents (e.g., bachelor: an unmarried man etc.), world representation (e.g., to walk: Mouvement i: to put one's feet in the front one's body in x y z manner), conceptual dependency (e.g., to "give" implies the transferring of an object money, a receiver etc.), conceptual inference (e.g., to sell implies that somebody buys etc.)

Because of the ambiguity of the words transformation and translation, the first operating normally only on structures and the second operating between languages of various alphabets and rules, we have decided to talk of the functions that maps one sentence into another as a transmapping function.

What is here emerging, is the fact that the interpretation of a sentence of a language is the assignment to it a whole set of rules transmapping various sentences from it, that is a sentence of a language can be transmapped into one or many other sentences each of which focuses on different aspects of the original sentence and more important where each transmapping is dependant for its existence on the role and function of the others. In that view of things, semantics would be seen not as a representation of the meaning of a sentence but a space in which different sentences (from various or the same language) are related among themselves. The semantics of a language will thus be related among themselves. The semantics of a language will thus be related interpretations having the form of sentences of a language. Our semantic representation hence becomes a semantic space.

3. Formal definition of text semantics:

From a set theoretical point of view, a text is nothing more than a set of ordered information units (words) (sentences) that is a text could be defined as a doublet

TEXT: \(<W, R> \)

where \(W \) is a set of sentences with an ordering relation \(R \). Any analysis can then be thought as a transmapping function \(TF \) whose domain is a text or part of a text (a sentence) \(T_i \) and a range \(T_j \). Hence a textual analysis function is defined as

\[
TF(T_i) = T_j
\]

From a logical point of view, a text is hence considered as a language, that is a set of primitives with an ordering relation \(R \). And any textual analysis can be thought of as a type of translation process here called transmapping (for one can stay in the same language) that goes from a language to another language or a sentence in \(L_i \) to a sentence in \(L_j \) (where \(i \) can be \(j \)).

Each transmapping is realized by a set of rules that are sensitive to various contextual features. Each transmap itself becomes the entry for new rules of transmapping also sensitive to various contextual conditions. From a formal point of view, each sentence original or transmapped can hence be understood as the domain of an interpretation function whose range is another set of transmap sentence and so recursively. Semantic is the ordered set of these interpretation functions.

Hence if \(T \) is a set of transmapping functions \((TF_1, ..., TF_n) \) then a Semantic Interpretation \(SI \) defined as

\[
SI: <T, R, \cdot>
\]

where \(T \) is a set of functions and \(R \) an ordering relation on these functions.

As each transmap is logically considered a sentence of a language, it is possible to build for each one a specific grammar and vocabulary. But such a way to go about become highly cumbersome and lacks elegance. And in a processing perspective, a set of different formal grammar and vocabulary is not very economical. On theoretical grounds it would not also faithful to the highly recursive but coherent process of language functioning. Hence we shall try to give to all transmapped sentence a common set of primitives and rules such that there exist between each transmap a certain communality. Formally, each transmap will belong to a different sub set a common language and will have a set of common rules and lexems. Differentiation will come by the variation in this common stock.

This common language should apply also to the formulation of the transmapping functions themselves. In a sense, these functions are procedural, declarative sentences, having specific types of predicates and variables.

-361-
Hence they should be formalized in a language such that sometimes they will be taken at their face value. (i.e. as declarative) sometimes at their reported ("de dicto") value. Hence the transmapping function sentences can be taken as part of the text, meeting in this way the fundamental aspect of natural language recursion. In other words each transmapped sentence and transmapping function will be a sentence of a common language called TML (trans-mapping language). This language because of its high flexibility will includes an alphabet, a lexicon and rules of formation that allow the description of the various type of predicates, variables and constants that one encounters either in natural language or in the various semi-formal representations (semantic nets – templates – conceptual dependency theory etc). It will be in fact an intensional language (Montague 1974, Vanderveken 1980) so that first and second order predicate can be used as much as a formal relation between sense and reference.

As time and place does not permit do explicitate here this language we shall content ourselves with illustration of the semantic process and language.

4. Case study

Let us take the sentence given as example at the beginning of this paper. "Women love bachelors". This simple sentence can explode into a multitude of transmapped sentences S_1 to S_n

S_0: Women love bachelors

This is the rewriting of the original one.

S_1: $(\text{FNN}(\text{N(Women)}) (\text{Love}) (\text{N(Bachelors)})$)

The structured sentence S_0 in terms of a categorial grammar.

$S_{2.0}$: $(\text{All x All y} (\text{Women x & Bachelor y}) (\text{x Love y}))$ OR

$S_{2.1}$: $(\text{All x Ey} (\text{Women x & Bachelor y}) (\text{x Love y}))$ OR

$S_{2.2}$: $(\text{Ex Ey} (\text{Women x & Bachelor y}) (\text{x love y}))$

The quantified transmap of S_1 with the ambiguous structures.

nb. The number are only illustrative and not part of the transmap.

S_3: $(\text{All women love all bachelors})$ OR $(\text{all women love some bachelors})$ OR $(\text{some women love some bachelor})$

The transmap of S_2 in natural language expression

S_4: $(\text{Women love an (unmarried man})$ OR an (seal without a mate) OR an (young knight))

Transmap of S_0 & S_1 with non formalized desambiguation of bachelor.

S_5: $(\text{Women} (x \text{ ESSE POSIT (QL) y})$ $\&$ $(y \text{ ESSE POSIT (QL) x})$ some bachelors)

Transmap of S_0, S_1 with meaning representation of LOVE

S_6: $(\text{Louise is a woman})$ $\&$ (Kate is a woman) $\&$ (Jane is a woman) $\&$ $(\text{John is a bachelor})$ $\&$ (John is a man) $\&$ (Peter is a man) $\&$ $(\text{Peter is an unmarried man})$ $\&$ $(\text{Andrew is a bachelor})$ $\&$ (Andrew is a man) $\&$ $(\text{Louise loves Andrew})$ $\&$ $(\text{Jane loves Peter})$ $\&$ (Kate loves John)

This sentence describes the set of properties of all individuals of this small world.

As one can see the simple sentence of the original text has explodes in a multitude of new sentences. One should notice that the S_2 transmap is a purely syntactical representation; S_i to S_n are various transmapping for the desambiguation of the various lexical and sentential structures that sentence can have; S_0 is not directly a transmap of the original sentence but a description of the state of affair to which sentence S_0 to S_5 must relate in order to chose the right interpretation.

A better but longer description of the various interpretation would have included also the various inferences and presuppositions illocutionary forces and transmapping function that such a sentence carries. A conceptual dependency model or a semantic net representation would probably be more pedagogically adequate but still would be logically considered another complex sentence as Schubert (1975) have shown. Also a more homogeneous language than the one here chosen would shorten up the huge proliferation of
repetition. This is one aim the TLM language
presents (not illustrated here).

As one can see, the "semantics" of the ori-
ginal sentence is not a simple and unique
representation either of its formal lexical
or referential structure. All three here
are working in the interpretation on the ori-
ginal sentence. Hence for us "semantics"
will not be only the representation of the
meaning of a sentence in one or the other
language of formal, lexical or referential
structure but the set of relations established
in among them. To interpret a sentence is
here understood as a decision process that
establishes specific relations between sen-
tences. It is these semantic relations
that the research tries to explore in a sys-
tematic way.

Bibliographie

Cercone, N.J. (1975). Representing Natural
Language in Extended Semantic Network.
Techn. Report. TR75.11. Depart. of Comp.
Science University of Alberta, Edmonton,
Canada

Fillmore, C.J., (1968). The Cure, for Case
in Universal in Linguistic Theory, E. Bach,
R.T. Harms (eds) Holt. Rinehart and Wins-
ton Inc.

Katz, J.J., (1972). Semantic Theory, N.Y.
Harper & Row.

Lehmann, H., (1978). The USL project, its ob-
jectives and status. Proceedings of
the International Technical Conference,
IBM center, Bari, Italy.

Montague, R., (1974). Formal Philosophy,
Yale University Press, New Haven.

Quillian, M.R., (1968). Semantic Memory,
in Semantic Information processing,
M. Minsky (ed.) M.I.T. Press, Cam-
bridge, Mass. p. 227-270.

Schank, R.C., (1968). Conceptual dependency:
A theory of natural language understanding.
Cognitive Psychology, 3, 552-631.

Simmons, R., (1973). Semantic Network: Their
computation and use for understanding
English Sentences. In Computer Models of
Thought and Language: R. Schank, and K.
Colby (eds) Freeman, San Francisco,
California, pp. 66-113.

Vanderveken, D., (1980). Some Philosophical
remarks on the theory of types in inten-
sional logic. FORTH COMING.

Wilks, Y., (1973). Grammar, meaning and machi-
ne analysis of natural language. Boston,
Routledge and Kegan Paul, 1971.

Winograd, T., (1972). Understanding Natural
Language. New York, Academic Press.

Woods, W.A., (1975). What's in a link: Foundations for semantic Networks in
Representation and understanding
D. Bobrow, and A. Collins. (eds),
Academic Press, N. York, pp. 35-82.