A UNIFIED GENERATING FUNCTION OF THE q-GENOCCHI POLYNOMIALS WITH THEIR INTERPOLATION FUNCTIONS

SERKAN ARACI, MEHMET AÇIKGÖZ, HASSAN JOLANY, AND JONG JIN SEO

Abstract. The purpose of this paper is to construct of the unification q-extension Genocchi polynomials. We give some interesting relations of this type of polynomials. Finally, we derive the q-extensions of Hurwitz-zeta type functions from the Mellin transformation of this generating function which interpolates the unification of q-extension of Genocchi polynomials.

1. Introduction, Definitions and Notations

Recently, many mathematician have studied to unification Bernoulli, Genocchi, Euler and Bernstein polynomials (see [20,21]). Ozden [20] introduced p-adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials and derived some properties of this type of unification polynomials.

In [20], Ozden constructed the following generating function:

$$\sum_{n=0}^{\infty} y_{n,\beta}(x; k, a, b) \frac{t^n}{n!} = 2^{1-k} k e^{xt} \frac{\beta^b}{e^t - a^b}, \quad |t + b \ln \left(\frac{\beta}{a}\right)| < 2\pi$$

where $k \in \mathbb{N} = \{1, 2, 3, ...\}$, $a, b \in \mathbb{R}$ and $\beta \in \mathbb{C}$. The polynomials $y_{n,\beta}(x; k, a, b)$ are the unification of the Bernoulli, Euler and Genocchi polynomials.

Ozden showed, $\beta = b = 1$, $k = 0$ and $a = -1$ into (1.1), we have

$$y_{n,1}(x; 0, -1, 1) = E_n(x),$$

where $E_n(x)$ denotes classical Euler polynomials, which are defined by the following generating function:

$$\frac{2e^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}, \quad |t| < \pi,$$

In [5,20], classical Genocchi polynomials defined as follows:

$$\frac{2te^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} G_n(x) \frac{t^n}{n!}, \quad |t| < \pi,$$

From (1.2) and (1.3), we easily see,

$$G_n(x) = nE_{n-1}(x),$$

Date: April 18, 2011.

1991 Mathematics Subject Classification. 05A10, 11B65, 28B99, 11B68, 11B73.

Key words and phrases. Genocchi numbers and polynomials, q-Genocchi numbers and polynomials.
For a fixed real number $|q| < 1$, we use the notation of q-number as
\[[x]_q = \frac{1 - q^x}{1 - q}, \] (see [1-4,6-24]).

Thus, we note that $\lim_{q \to 1} [x]_q = x$.

In [1,7,8,10], q-extension of Genocchi polynomials are defined as follows:
\[G_{n+1,q} (x) = (n + 1) [2]_q \sum_{l=0}^{\infty} (-1)^l q^l [x + l]^n. \]

In [2], (h,q)-extension of Genocchi polynomials are defined as follows:
\[G_{n+1,q} (x) = (n + 1) [2]_q \sum_{l=0}^{\infty} (-1)^l q^{(h-1)l} [x + l]^n. \]

In this paper, we shall construct unification of q-extension of the Genocchi polynomials, however we shall give some interesting relationships. Moreover, we shall derive the q-extension of Hurwitz-zeta type functions from the Mellin transformation of this generating function which interpolates.

2. Novel Generating Functions of q-extension of Genocchi polynomials

Definition 1. Let $a, b \in \mathbb{R}$, $\beta \in \mathbb{C}$ and $k \in \mathbb{N} = \{1, 2, 3, \ldots \}$, Then the unification of q-extension of Genocchi polynomials defined as follows:

\begin{equation}
F_{\beta, q} (t, x | k, a, b) = \sum_{n=0}^{\infty} S_{n, \beta, q} (x | k, a, b) \frac{t^n}{n!},
\end{equation}

and

\begin{equation}
F_{\beta, q} (t, x | k, a, b) = - [2]_q^{1-k} \frac{t^k}{k} \sum_{m=0}^{\infty} \beta^m a^{-b m - b} e^{[m+x]_q t}.
\end{equation}

where into (2.1) substituting $x = 0$, $S_{n, \beta, q} (0 | k, a, b) = S_{n, \beta, q} (k, a, b)$ are called unification of q-extension of Genocchi numbers.

As well as, from (2.1) and (2.2) Ozden’s constructed the following generating function, namely, we obtain \(2.1\),

\[
\lim_{q \to 1} F_{\beta, q} (t, x | k, a, b) = \frac{2^{1-k} t e^{xt}}{\beta^b e^t - a^b}.
\]

By (2.2), we see readily,
\[
\sum_{n=0}^{\infty} S_{n, \beta, q} (x | k, a, b) \frac{t^n}{n!} = - [2]_q^{1-k} \frac{t^k}{k} \sum_{m=0}^{\infty} \beta^m a^{-b m - b} e^{[m+x]_q t}
\]
\[
= \frac{e^{[x]_q t}}{q^x} \left(- [2]_q^{1-k} (q^x t)^k \sum_{m=0}^{\infty} \beta^m a^{-b m - b} e^{(q^x t)[m]_q} \right)
\]
\[
= q^{-kx} \left(\sum_{n=0}^{\infty} [x]_q^n \frac{t^n}{n!} \right) \left(\sum_{n=0}^{\infty} q^n x^n S_{n, \beta, q} (k, a, b) \frac{t^n}{n!} \right)
\]

(2.3)
From \(23 \) by using Cauchy product we get
\[
\sum_{n=0}^{\infty} S_{n, \beta, q} (x | k, a, b) \frac{x^n}{n!} = q^{-kx} \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} \binom{n}{i} q^{ix} S_{i, \beta, q} (k, a, b) [x]_{q}^{n-i} \right) \frac{x^n}{n!}
\]

By comparing coefficients of \(\frac{x^n}{n!} \) in the both sides of the above equation, we arrive at the following theorem:

Theorem 1. For \(a, b \in \mathbb{R} \), \(\beta \in \mathbb{C} \) which \(k \) is positive integer. We obtain
\[
S_{n, \beta, q} (x | k, a, b) = \sum_{l=0}^{n} \binom{n}{l} q^{lx} S_{l, \beta, q} (k, a, b) [x]_{q}^{n-l}
\]

As well as, we obtain corollary 1:

Corollary 1. For \(a, b \in \mathbb{R} \), \(\beta \in \mathbb{C} \) which \(k \) is positive integer. We obtain,
\[
(2.4) \quad S_{n, \beta, q} (x | k, a, b) = \left(S_{\beta, q} (k, a, b) + [x]_{q} \right)^n
\]
with usual the convention about replacing \((S_{\beta, q} (x | k, a, b))^n \) by \(S_{n, \beta, q} (x | k, a, b) \).

By applying the definition of generating function of \(S_{n, \beta, q} (x | k, a, b) \), we have
\[
\sum_{n=0}^{\infty} S_{n, \beta, q} (x | k, a, b) \frac{x^n}{n!} = -[2]_{q}^{1-k} \sum_{m=0}^{\infty} \beta^{bm} a^{-bm} \left(\sum_{n=0}^{\infty} [m + x]_{q} \frac{x^n}{n!} \right) \frac{x^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left(-[2]_{q}^{1-k} \sum_{m=0}^{\infty} \beta^{bm} a^{-bm} [m + x]_{q} \right) \frac{x^n}{n!}
\]

So we derive the Theorem 2 which we state hear:

Theorem 2. For \(a, b \in \mathbb{R} \), \(\beta \in \mathbb{C} \) which \(k \) is positive integer. We obtain,
\[
(2.5) \quad S_{n, \beta, q} (x | k, a, b) = -\frac{n! [2]_{q}^{1-k}}{(n-k)!} \sum_{m=0}^{\infty} \beta^{bm} a^{-bm} [m + x]_{q}^{n-k}
\]

With regard to \(25 \), we see after some calculations
\[
S_{n, \beta, q} (x | k, a, b) = -\frac{n! [2]_{q}^{1-k}}{a^{b} (n-k)!} \left(\frac{1}{1-q} \right)^{n-k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^{l} q^{lx} \sum_{m=0}^{\infty} \binom{\beta^{b} q^m}{a^{b}} \frac{m!}{a^{b} (n-k)!} \left(\frac{1}{1-q} \right)^{n-k-n} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^{l} q^{lx} \frac{1}{\beta^{b} q^{l-k} - a^{b}}
\]
\[
(2.6) \quad = \frac{k! [2]_{q}^{1-k}}{a^{b}} \left(\frac{1}{1-q} \right)^{n-k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^{l} q^{lx} \frac{1}{\beta^{b} q^{l-k} - a^{b}}
\]

From \(26 \) and well known identity \(\binom{n}{l} \binom{n-k}{k-l} = \binom{n}{k} \binom{k+l}{k} \), we obtain the following theorem:

Theorem 3. For \(a, b \in \mathbb{R} \), \(\beta \in \mathbb{C} \) which \(k \) is positive integer. We obtain
\[
(2.7) \quad S_{n, \beta, q} (x | k, a, b) = \frac{k! [2]_{q}^{1-k}}{a^{b}} \left(\frac{1}{1-q} \right)^{n-k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^{l-k} q^{(l-k)x} \frac{1}{\beta^{b} q^{l-k} - a^{b}}
\]
We put \(x \to 1 - x, \beta \to \beta^{-1}, q \to q^{-1} \) and \(a \to a^{-1} \) into (2.7), namely,

\[
S_{n,\beta^{-1},q^{-1}}(1-x|k,a^{-1},b) = \frac{k! [2]_{q^{-1}}^{1-k}}{a^{-b}} \bigg(\frac{1}{1-q^{-1}} \bigg)^{n-k} \sum_{l=k}^{n} \binom{n}{l} \binom{l}{k} (-1)^{l-k} q^{-(l-k)(1-x)} \frac{1}{\beta^{-b} q^{-(l-k)} - a^{-b}}
\]

\[
= (-1)^{n-k} q^{k-1} q^{n-k} [2]_{a}^{1-k} \frac{(1-q)}{1-q} \sum_{l=k}^{n} \binom{n}{l} \binom{l}{k} (-1)^{l-k} q^{k-1} q^{(l-k)x} \frac{\beta^{b} q^{l-k} a^{b}}{a^{b} - \beta^{b} q^{l-k}}
\]

\[
= (-1)^{n-k} q^{-n-1} a^{3b} \beta^{b} \left(\frac{k! [2]_{a}^{1-k}}{a^{b}} \right) \left(\frac{1}{1-q} \right)^{n-k} \sum_{l=k}^{n} \binom{n}{l} \binom{l}{k} (-1)^{l-k} q^{x(l-k)} \frac{1}{\beta^{b} q^{l-k} - a^{b}}
\]

So, we obtain symmetric properties of \(S_{n,\beta,q}(x|k,a,b) \) as follows:

Theorem 4. For \(a, b \in \mathbb{R}, \beta \in \mathbb{C} \) which \(k \) is positive integer. We obtain

\[
S_{n,\beta^{-1},q^{-1}}(1-x|k,a^{-1},b) = (-1)^{n-k-1} q^{a^{-1}-1} a^{3b} \beta^{b} S_{n,\beta,q}(x|k,a,b).
\]

By (2.7), we see

\[
\frac{\beta}{a} F_{\beta,q}(t,1|k,a,b) - F_{\beta,q}(t,0|k,a,b) = \sum_{n=0}^{\infty} \left(\frac{\beta}{a} \right) S_{\beta,q}(1|k,a,b) - S_{n,\beta,q}(k,a,b) = \frac{t^{n}}{n!} = \frac{[2]_{q}^{1-k}}{a^{b}} t^{k}
\]

From (2.8), we obtain the following theorem:

Theorem 5. For \(a, b \in \mathbb{R}, \beta \in \mathbb{C} \) which \(k \) is positive integer. We obtain

\[
S_{n,\beta,q}(k,a,b) - \left(\frac{\beta}{a} \right) S_{\beta,q}(1|k,a,b) = \left\{ \begin{array}{ll} 0, & n \neq k \\ \frac{[2]_{q}^{1-k}}{a^{b}} k!, & n = k \end{array} \right.
\]

From (2.8) and (2.9), we obtain corollary as follows:

Corollary 2. For \(a, b \in \mathbb{R}, \beta \in \mathbb{C} \), which is \(k \) positive integer. We get

\[
S_{n,\beta,q}(k,a,b) - \left(\frac{\beta}{a q^{k}} \right) (q S_{\beta,q}(k,a,b) + 1)^{n} = \left\{ \begin{array}{ll} 0, & n \neq k \\ \frac{[2]_{q}^{1-k}}{a^{b}} k!, & n = k \end{array} \right.
\]

with the usual convention about replacing \((S_{\beta,q}(k,a,b))^{n}\) by \(S_{n,\beta,q}(k,a,b)\).
From (9), now, we shall obtain distribution relation for unification q-extension of Genocchi polynomials, after some calculations, namely,

\[
S_{n,\beta,q}(x|k,a,b) = -\frac{n!}{a^k(n-k)!} \sum_{m=0}^{\infty} \left(\frac{\beta}{a}\right)^{bm} \frac{q}{m + x}^{n-k}
\]

\[
= -\frac{n!}{a^k(n-k)!} \sum_{l=0}^{d-1} \sum_{m=0}^{\infty} \left(\frac{\beta}{a}\right)^{b(l+md)} \frac{q}{m + x}^{n-k}
\]

\[
= [d]_{q}^{n-k} \sum_{l=0}^{d-1} \left(\frac{\beta}{a}\right)^{bl} \frac{q}{m + x}^{n-k} S_{n,\beta^d,q^d} \left(\frac{x + l}{d}|k, a^d, b\right)
\]

Therefore, we obtain the following theorem:

Theorem 6. (Distribution formula for $S_{n,\beta,q}(x|k,a,b)$) For $a,b \in \mathbb{R}$, $\beta \in \mathbb{C}$ which k is positive integer. We obtain,

\[
S_{n,\beta,q}(x|k,a,b) = \frac{[2]_{q}^{1-k}}{[2]_{q^d}^{1-k}} [d]_{q}^{n-k} \sum_{l=0}^{d-1} \left(\frac{\beta}{a}\right)^{bl} S_{n,\beta^d,q^d} \left(\frac{x + l}{d}|k, a^d, b\right)
\]

3. Interpolation function of the polynomials $S_{n,\beta,q}(x|k,a,b)$

In this section, we give interpolation function of the generating functions of $S_{n,\beta,q}(x|k,a,b)$ however, this function is meromorphic function. This function interpolates $S_{n,\beta,q}(x|k,a,b)$ at negative integers.

For $s \in \mathbb{C}$, by applying the Mellin transformation to (2.2), we obtain

\[
\mathfrak{S}_{\beta,q}(s;x,a,b) = \frac{(-1)^{k+1}}{\Gamma(s)} \int_{t} t^{-k-1} F_{\beta,q}(-t, x|k,a,b) dt
\]

\[
= [2]_{q}^{1-k} \sum_{m=0}^{\infty} \beta^{bm} a^{-bm-b} \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t[m+x]} dt
\]

So, we have

\[
\mathfrak{S}_{\beta,q}(s;x,a,b) = [2]_{q}^{1-k} \sum_{m=0}^{\infty} \beta^{bm} a^{-bm-b} \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t[m+x]} dt
\]

We define q-extension Hurwitz-zeta type function as follows theorem:

Theorem 7. For $a,b \in \mathbb{R}$, $\beta,s \in \mathbb{C}$ which k is positive integer. We obtain,

\[
\mathfrak{S}_{\beta,q}(s;x,a,b) = [2]_{q}^{1-k} \sum_{m=0}^{\infty} \beta^{bm} a^{-bm-b} \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t[m+x]} dt
\]

for all $s \in \mathbb{C}$. We note that $\mathfrak{S}_{\beta,q}(s;x,a,b)$ is analytic function in the whole complex s-plane.

Theorem 8. For $a,b \in \mathbb{R}$, $\beta \in \mathbb{C}$ which k is positive integer. We obtain,

\[
\mathfrak{S}_{\beta,q}(-n;x,a,b) = \frac{(n-k)!}{n!} S_{n,\beta,q}(x|k,a,b).
\]
Proof. Let \(a, b \in \mathbb{R} \), \(\beta \in \mathbb{C} \) and \(k \in \mathbb{N} \) with \(k \in \mathbb{N} = \{1, 2, 3, \ldots\} \). \(\Gamma(s) \), has simple poles at \(z = -n = 0, -1, -2, -3, \ldots \). The residue of \(\Gamma(s) \) is
\[
\text{Re}s \left(\Gamma(s), -n \right) = \frac{(-1)^n}{n!}.
\]
We put \(s \to -n \) into (3.1) and using the above relations, the desired result can be obtained. \(\square \)

References

[1] Araci, S., Erdal, D., and Kang, D-J., Some New Properties on the q-Genocchi numbers and Polynomials associated with q-Bernstein polynomials, Honam Mathematical J. 33 (2011) no.2, pp. 261-270.

[2] Araci, S., Seo, J.J., Erdal, D., Different Approach On The (h, q) Genocchi Numbers and Polynomials Associated with q-Bernstein Polynomials, (Submitted)

[3] Araci, S., Seo, J.J., Erdal, D., New Construction weighted (h, q)-Genocchi numbers and Polynomials Related to Zeta Type Functions, Discrete Dynamics in Nature and Society(in press).

[4] Araci, S., Erdal D., and Seo, J-J., A study on the fermionic p-adic q-integral representation on \(\mathbb{Z}_q \) Associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis(in press).

[5] Jolany, H., and Sahrifi, H., Some Results for the Apostol-Genocchi polynomials of Higher Order, Accepted in Bulletin of the Malaysian Mathematical Sciences Society, arXiv:1104.1501v1 [math. NT].

[6] Ryoo. C-S., Kim, T., and Lee, B., q-Bernoulli numbers and polynomials revisited, Accepted in Advances in Difference Equations.

[7] Kim, T., On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465.

[8] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978v1 [math.NT]

[9] Kim, T., On the weighted q-Bernoulli numbers and polynomials, Advanced Studies in Contemporary Mathematics 21(2011), no.2, p. 207-215, [http://arxiv.org/abs/1011.5305]

[10] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8 pages.

[11] Kim, T., q-Volkenborn integration, Russ. J. Math. phys. 9(2002), 288-299.

[12] Kim, T., An invariant p-adic q-integrals on \(\mathbb{Z}_p \), Applied Mathematics Letters, vol. 21, pp. 105-108,2008.

[13] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15–27.

[14] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218–225.

[15] Kim, T., Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \(\mathbb{Z}_p \), Russ. J. Math. Phys., 16 (2009), no.4,484–491.

[16] Kim, T. and Rim, S.-H., On the twisted q-Euler numbers and polynomials associated with basic q-\(l \)-functions, Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 738–744, 2007.

[17] Kim, T., On p-adic q-\(l \)-functions and sums of powers, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.07.071.

[18] Jang, L.-C., On a q-analogue of the p-adic generalized twisted L-functions and p-adic q-integrals, Journal of the Korean Mathematical Society, vol. 44, no. 1, pp. 1–10, 2007.

[19] Ryoo. C. S., A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 21(2011), 47-54.

[20] Ozden, H., Unification of generating function of the Bernoulli, Euler and Genocchi polynomials, Numerical Analysis and Applied mathematics (2010), Amer. Inst. Phys. Conf. Proc., vol. 1281, 2010, pp.1125–1128.

[21] Simsek, Y., Construction a new generating function of Bernstein type polynomials, Applied Mathematics and Computation, arXiv:1010.3711v1 [math.CA].
[22] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Advan. Stud. Contemp. Math., 11(2005), 205-218.

[23] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted $(h, q)-$zeta function and L-function, J. Math. Anal. Appl., 324(2006), 790-804.

[24] Y. Simsek, On p-Adic Twisted q-L-Functions Related to Generalized Twisted Bernoulli Numbers, Russian J. Math. Phys., 13(3)(2006), 340-348.

UNIVERSITY OF GAZIANTEP, FACULTY OF SCIENCE AND ARTS, DEPARTMENT OF MATHEMATICS,
27310 GAZIANTEP, TURKEY
E-mail address: mtarkm@hotmail.com

UNIVERSITY OF GAZIANTEP, FACULTY OF SCIENCE AND ARTS, DEPARTMENT OF MATHEMATICS,
27310 GAZIANTEP, TURKEY
E-mail address: acikgoz@gantep.edu.tr

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF TEHRAN, IRAN
E-mail address: hassan.jolany@khayam.ut.ac.ir

DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, BUSAN, 608-737, KOREA
E-mail address: seo2011@pknu.ac.kr