Robust eye centers localization with zero-crossing encoded image projections

Laura Florea 1 · Corneliu Florea 1 · Constantin Vertan 1

Abstract This paper proposes a new framework for the eye centers localization by the joint use of encoding of normalized image projections and a multi-layer perceptron (MLP) classifier. The encoding is novel and it consists in identifying the zero-crossings and extracting the relevant parameters from the resulting modes. The compressed normalized projections produce feature descriptors that are inputs to a properly trained MLP, for discriminating among various categories of image regions. The proposed framework forms a fast and reliable system for the eye centers localization, especially in the context of face expression analysis in unconstrained environments. We successfully test the proposed method on a wide variety of databases including BioID, Cohn–Kanade, Extended Yale B and Labeled faces in the wild databases.

Keywords Eye localization · Image projections · Zero-crossing encoding · Real time

1 Introduction

As noted by Hansen [19] in the review on the eye localization topic, “eye detection and tracking remains challenging due to the individuality of eyes, occlusion, variability in scale, location, and light conditions”. Eye data and details of eye movements have numerous applications in face detection, biometric identification, and particularly in human–computer interaction tasks. Among the various applications of the eye localization topic, we are particularly interested in face expression analysis. Thus, while any method is supposed to perform accurately enough on the real-life cases and be fast enough for real-time applications, we show an additional interest in the cases where eye centers are challenged by face expression. We will prove that the proposed method, which uses a MLP to discriminate among encoded normalized image projections from patches centered on the eye and, respectively, from patches shifted from the eye, is both accurate and fast.

1.1 Related work

The problem of eye localization was well investigated in literature, within a long history [19]. Methods for eye center (or iris or pupil) localization in passive, remote imaging may approach the problem either as a particular case of pattern recognition application, [2, 18] or using the physical particularities of the eye, like the high contrast to the neighboring skin [44] or the circular shape of the iris [38]. The proposed method combines a pattern recognition approach with features that make use of the eye’s high contrast.

One of the first eye localization attempts is in the work of Kanade [23], who used image projections for this purpose. Taking into account that our method also uses image projections for localization, in the next paragraphs we shall present state of the art methods by going from the conceptually closest to the wider categories. Namely, we shall start by presenting solutions based on projections, to follow with general eye localization methods and face fiducial points localization algorithms.
As a general observation, we note that while older solutions [21, 44], tried to estimate also the face position, since the appearance of the Viola–Jones face detection solution [42], eye center search is limited to a subarea within the upper face square.

Projections based methods The same image projections as in the work of Kanade are used to extract information for eye localization in a plethora of methods [14, 37, 45]. Feng and Yuen [14] start with a snake-based head localization followed by anthropometric reduction (relying on the measurements of Verjak and Stephancic [41]) to the so-called eye-images and introduce the variance projections for localization. The key points of the eye model are the projections particular values, while the conditions are manually crafted.

Zhou and Geng [45] describe convex combinations between integral image projections and variance projections that are named generalized projection functions. These are filtered and analyzed for determining the center of the eye. The analysis is also manually crafted and requires identification of minima and maxima on the computed projection functions. Yet in specific conditions, such as intense expression or side illumination, the eye center does not correspond to a minima or a maxima in the projection functions. Liu et al. [29] use similar conditions with the ones used by Zhou and Geng [45], but applied solely on the integral projections to detect if an eye is open or closed.

Turkan et al. [37] introduce the edge projections and use them to roughly determine the eye position. Given the eye region, a feature is computed by concatenation of the horizontal and vertical edge image projections. Subsequently, a SVM-based identification of the region with the highest probability is used for marking the eye. The method from [37] is, to our best knowledge, the only one, except ours which uses image projections coupled with machine learning. Yet, we differ using supplementary data coupled with the introduction of efficient computation techniques and elaborated pre- and post-processing steps to keep the accuracy high and the running time low.

General eye localization methods There are many other approaches to the problem of eye localization. Jesorsky et al. [21] propose a face-matching method based on the Hausdorff distance followed by an MLP eye finder. Wu and Zhou [44] even reversed the order of the typical procedure: they use eye contrast-specific measures to validate possible face candidates.

Cristinacce et al. [9] rely on the Pairwise Reinforcement of Feature Responses algorithm for feature localization. Campadelli et al. [6] use SVM on optimally selected Haar wavelet coefficients.

Hamouz et al. [18] refine with SVM the Gabor filtered faces, for locating 10 points of interest; yet, the overall approach is different from the face feature fiducial points approach that is discussed in the next paragraph. Niu et al. [33] use an iteratively bootstrapped boosted cascade of classifiers based on Haar wavelets. Kim et. al. [25] use multi-scale Gabor jets to construct an Eye Model Bunch. Asteriadis et al. [2] use the distance to the closest edge to describe the eye area. Valenti and Gevers [38, 39] use isophote’s properties to gain invariance and follow with subsequent filtering with mean shift (MS) or nearest neighbor on SIFT feature representation for higher accuracy. Asadifard [1] relies on thresholding the cumulative histogram for segmenting the eyes. Ding and Martinez [12] train a set of classifiers to detect multiple face landmarks, including explicitly the pupil center, using a sliding window approach and test in all possible locations and interconnect them to estimate the shape overall. Tirm and Barth [36] rely their eye localizer on gradient techniques and search for circular shapes. Gonzalez-Ortega et al. [17] use an exhaustive set of similarity measures over basic features such as histograms, projections or contours to extract the eye center location having in mind the specific scenario of driver assistance.

Face fiducial points localization More recently, motivated by the introduction by Cootes et al. [8] of the active appearance models (AAM), that simultaneously determine a multitude of face feature points, a new class of solutions, namely the localization of face fiducial points appeared. In this category, we include the algorithm of Vukadinovic and Pantic [43] who use a GentleBoost algorithm for combining Gabor filters extracted features; Milborrow and Nicolls [30], who extend the original active shape models with more landmark points and stacks two such models; Valstar et al. [40], who model shapes using the Markov Random Field and classify them using SVM in the so-called Borman algorithm; Belhumere et al. [4] who use Bayesian inference on SIFT extracted features and most recently Mostafa and Farag [31] who use a combination of regularized boosted classifiers and mixture of complex Bingham distributions over texture- and shape-related features.

1.2 Paper structure

In this paper, we propose a system for eye centers localization that starts with face detection and illumination type detection, followed by a novel feature extractor, a MLP classifier for discriminating among possible candidates and a post-processing step that determines the eye centers. We contribute by:

- Describing a procedure for fast image projections computation. This step is critical in having the solution run in real time.
2 Image projections

2.1 Integral image projections

The integral projections, also named integral projection functions (IPF) or amplitude projections, are tools that have been previously used in face analysis. They appeared as “amplitude projections” \[23\] or as “integral projections” \[3\] for face recognition. For a gray-level image sub-window \(I(i,j)\) with \(i = i_m \ldots i_M\) and \(j = j_n \ldots j_N\), the projection on the horizontal axis is the average gray-level along the columns \((1)\), while the vertical axis projection is the average gray-level along the rows \((2)\):

\[
P_H(j) = \frac{1}{i_M - i_m + 1} \sum_{i=i_m}^{i_M} I(i,j), \quad \forall j = j_n, \ldots, j_N \tag{1}
\]

\[
P_V(i) = \frac{1}{j_N - j_n + 1} \sum_{j=j_n}^{j_N} I(i,j), \quad \forall i = i_m, \ldots, i_M \tag{2}
\]

The integral projections reduce the dimensionality of data from 2D to 1D, describing it up to a certain level of details. Also, the projections can be computed on any orthogonal pair of axes, not necessarily rows and columns. This will be further discussed in Sect. 5.2.

2.2 Edge projections

Over time, several extensions of the integral projections have been introduced such as variance projection functions \[14\] or edge projection functions (EPF) \[37\].

Instead of determining edges with wavelet transform as in the case of \[37\], we use a different approach for computing the edge projections. First, the classical horizontal and vertical Sobel contour operators (for details see \[16\]) Sect. 3.7) are applied, resulting in \(S_H\) and \(S_V\) which are combined in the \(S(i,j)\) image used to extract edges:

\[
S(i,j) = S_H^j(i,j) + S_V^j(i,j)
\]

The edge projections are computed on the corresponding image rectangle \(I(i,j)\):

\[
E_H(j) = \frac{1}{i_M - i_m + 1} \sum_{i=i_m}^{i_M} S(i,j), \quad \forall j = j_n, \ldots, j_N \tag{4}
\]

\[
E_V(i) = \frac{1}{j_N - j_n + 1} \sum_{j=j_n}^{j_N} S(i,j), \quad \forall i = i_m, \ldots, i_M \tag{5}
\]

Equations \((4)\) and \((5)\) are simply Eqs. \((1)\) and \((2)\) applied on the Sobel edge image \(S(i,j)\).

As Sobel operator is invariant to additive changes, if compared to other types of projections, the edge projections are significantly more stable with respect to illumination changes.

2.3 Fast computation of projections

While sums over rectangular image sub-windows may be easily computed using the concept of summed area tables \[10\] or integral image \[42\], a fast computation of the integral image projections may be achieved using the prefix sums \[5\] on rows and, respectively, on columns. A prefix-sum is a cumulative array, where each element is the sum of all elements to the left of it, inclusive, in the original array. They are the 1D equivalent of the integral image, but they definitely precede it as recurrence \(x_i = a_i + x_{i-1}\) is known for many years.

For the fast computation of image projections, two tables are required: one will hold prefix sums on rows (a table which, for keeping the analogy with integral image, will be named horizontal 1D integral image) and, respectively, one vertical 1D integral image that will contain the prefix sums on columns. It should be noted that computation on each row/column is performed separately. Thus, if the image has \(M \times N\) pixels, the 1D horizontal integral image, on the column \(j\), \(I_H^j\), is:

\[
I_H^j(i) = \sum_{k=1}^{i} I(k,j), \quad \forall i = 1, \ldots, M \tag{6}
\]
Thus, the horizontal integral projection corresponding to the rectangle \(r = [i_m; i_M] \times [j_n; j_N] \) is:

\[
P_H(j) = \frac{1}{i_M - i_m + 1} \left(T_H(i_M) - T_H(i_m - 1) \right)
\]

(7)

The procedure is visually exemplified in Fig. 1.

Using the oriented integral images, the determination of the integral projections functions on all sub-windows of size \(K \times L \) in an image of \(M \times N \) pixels requires one pass through the image and \(2 \times M \times N \) additions, \(2 \times (M - K) \times (N - L) \) subtractions and two circular buffers of \((K + 1) \times (N + 1) \) locations, while the classical determination requires \(2 \times K \times L \times (M - K) \times (N - L) \) additions.

Hence, the time to extract the projections associated with a sub-window, where many sub-windows are considered in an image, is greatly reduced.

The edge projections require the computation of the oriented integral images over the Sobel edge image, \(S(i, j) \). This image needs to be computed on the areas of interest.

In conclusion, the fast computation of projections opens the direction of real-time feature localization on high-resolution images.

3 Encoding and ZEP feature

To reduce the complexity (and computation time), the projections are compressed using a zero-crossing-based encoding technique. After ensuring that the projections values are in a symmetrical range with respect to zero, we will describe, independently, each interval between two consecutive zero-crossings. Such an interval is called an epoch and for its description three parameters are considered (as presented in Fig. 2):

- **Duration** the number of samples in the epoch;
- **Amplitude** the maximal signed deviation of the signal with respect to 0;
- **Shape** the number of local extremes in the epoch.

The proposed encoding is similar with the time-encoded signal processing and recognition (TESPAR) technique [26] that is used in the representation and recognition of 1D, band-limited, speech signals. Depending on the problem specifics, additional parameters of the epochs may be considered (e.g., the difference between the highest and the lowest mode from the given epoch). Further extensions are at hand if an epoch is considered the approximation of a probability density function and the extracted parameters are the statistical moments of the said distribution.

In such a case, the **shape** parameter corresponds to the number of modes of the distribution.

The reason for choosing this specific encoding is two-fold. First, the determination of the zero-crossings and the computation of the parameters are doable in a single pass through the target 1D signal, and, secondly, the epochs have specific meaning when describing the eye region, as discussed in the next subsection.

Given an image sub-window, the ZEP feature is determined by the concatenation of four encoded projections as described in the following:

1. Compute both the integral and the edge projection functions \((P_H, P_V, E_H, E_V)\);
2. Independently **normalize** each projection within a symmetrical interval. For instance, in our application we normalized each of the projections to the \([-128; 127]\) interval. This will normalize the amplitude of the projection;
3. Encode each projection as described; allocate for each projection a maximum number of epochs;
4. Normalize all other (i.e., duration and shape) encoding parameters;

Fig. 1 Given the two 1D oriented integral images, \(T_H^j \) and \(T_V^j \), each element of the integral projections, \(P_H \) and \(P_V \) that describes the marked sub-window is found by a simple subtraction.

Fig. 2 Example of 1D signal (vertical projection of an eye crop) and the associated encoding. There are three epochs, each encoded with three parameters. The associated code is: [4, 114, 1; 18, −128, 3; 14, 127, 2]
5. Form the final Zero-crossing-based encoded image projections (ZEP) feature by concatenation of the encoded projections. Given an image rectangle, the ZEP feature consists of the epochs from all the four projections: \((P_H, P_V, E_H, E_V) \).

Image projections are simplified representations of the original image, each of them carrying specific information; the encoding simplifies even more the image representation. The normalization of the image projections, and thus of the epochs amplitudes, ensures independence of the ZEP feature with respect to uniform variation of the illumination. The normalization with respect to the number of elements in the image sub-window leads to partial scale invariance: horizontal projections are invariant to stretching on the vertical direction and vice versa. The scale invariance property of the ZEP feature is achieved by completely normalizing the encoded durations to a specific range (e.g., the encoded horizontal projection becomes invariant to horizontal stretching after duration normalization). We stress that when compared with previous methods based on projections, which lack the normalization steps, the hereby proposed algorithm increases the overall stability to various influences.

3.1 ZEP on eye localization

As noted, image projections have been used in multiple ways for the problem of eye localization. In an exploratory work, Kanade [23] determined the potential of image projections for face description. More recently, Feng and Yuen [14], Zhou and Geng [45] and Turkan et al. [37] presented the use of the integral projections and/or their extensions for the specific task of eye localization. Especially in [45], it was noted that image projections, in the eye region, have a specific sequence of relative minima and maxima assigned to skin (relative minimum), sclera (relative maximum), iris (relative minimum), etc.

Considering a rectangle from the eye region including the eyebrow (as showed in Fig. 3a), the associated integral projections have specific epochs, as showed in Fig. 3c, d. The particular succession of positive and negative modes is precisely encoded by the proposed technique. On the horizontal integral projection, there will be a large (one-mode) epoch that is assigned to skin, followed by an epoch for sclera, a triple mode, negative epoch corresponding to the eye center and another positive epoch for the sclera and skin. On the vertical integral projection, one expects a positive epoch above the eyebrow, followed by a negative epoch on the eyebrow, a positive epoch between the eyebrow and eye, a negative epoch (with three modes) on the eye and a positive epoch below the eye.

The ZEP feature, due to invariance properties already discussed, achieves consistent performance under various stresses and is able to discriminate among eyes (patches centered on pupil) and non-eyes (patches centered on locations at a distance from the pupil center). As explained in Sect. 4.2, on the validation set, using Fisher linear discriminant over 90% correct eye detection rate is achieved by selecting patches that are centered on the pupil with respect to the ones that are shifted.
4 Implementation

The block schematic of our eye center localization algorithm is summarized in Fig. 4. In the first step, a face detector (the cascade of Haar features [42] delivered with OpenCV) automatically determines the face square. Next, the regions of interest are set in the upper third of the detected face: from 26 to 50 % of the face square on rows, respectively, from 25 to 37 % on columns for the left eye and from 63 to 75 % on columns for the right eye.

Noting the susceptibility of the image projections to alter their shape due to lateral illumination, we introduced a simple method for detecting such a case and we adapt the algorithm to the type of illumination found. After a very simple preprocessing, the ZEP features for each possible location are computed and feed to a classifier to identify the possible eye locations. The possible eyes are then post-processed and the best positions are located as discussed in Sect. 4.3.

Regarding the face detection, the recent solutions use multiple cascades for not only identification of the face rectangle, but also for determination of the in-plane (roll) and yaw (frontal/profile) angles of head. Such procedure follows Viola and Jones extension of the initial face detector work [22, 35]. Thus, it is customary to limit the analysis of “frontal faces” to a maximum rotation of 30°.

4.1 Lateral illumination detection

To increase the solution robustness to lateral illumination, we automatically separate such cases. The motivation for the split lies in the fact that side illumination significantly alters the shape of the projections in the eye region, thus decreasing the performance of the classification part.

The lateral illumination detection relies on computing the average values on the eye patch previously selected. The following ratios are considered:

\[
L_{\text{ratio}} = \frac{L_{\text{top}}}{L_{\text{bot}}}; \quad R_{\text{ratio}} = \frac{R_{\text{top}}}{R_{\text{bot}}}; \quad H_{\text{ratio}} = \frac{L_{\text{top}} + L_{\text{bot}}}{R_{\text{top}} + R_{\text{bot}}};
\]

where \((L_{\text{top}})\) and \((L_{\text{bot}})\) are the average gray-levels on the upper and lower halves of the left eye and \((R_{\text{top}})\) and \((R_{\text{bot}})\) are their correspondents on the right eye.

The lateral illumination case is considered if any of the computed ratios, \(L_{\text{ratio}}, R_{\text{ratio}}, H_{\text{ratio}}\), is outside the \([0.5; 1.75]\) range.

We designed this block such that an illumination that does not produce significant shadows on the eye region is detected as frontal, and as lateral otherwise. In terms of illumination angle, the cases with shadows on the eye region imply an absolute value of azimuth angle higher than 40° or an elevation angle value higher than 10°. Negative elevation (light from below) with low azimuth value does not produce shadows on the eye region. The interval \([0.5; 1.75]\) mentioned above has been found by matching the mentioned cases with the ratios values on the training database.

Indeed, 98.54 % of the images from the BioID database are detected as frontal illuminated, while the results on Extended Yale B are presented in Table 1. Extended Yale B database has images with various illumination angles as it will be discussed in Sect. 5.5.

4.2 Training

Once the ZEP features are determined, the extracted data are feed into a multi-layer perceptron (MLP), having one input layer, one hidden layer and one output layer, trained with the back-propagation algorithm. In our implementation, the number of neurons from the hidden layer is chosen to be half the size of the ZEP feature as it was empirically determined as a reasonable trade-off between performance (higher number of hidden neurons) and speed.

In the preferred implementation, each projection is encoded with five epochs, leading to 60 elements in the ZEP feature (and 60 inputs to the MLP). If more epochs are provided by projections (which is very unlikely for eye localization—less than 0.1 % in the tested cases), the last ones are simply removed.

The training of the MLP is performed with crops of eyes and non-eyes of 71 × 71 pixels, as shown in Fig. 5, while the preferred face size is 300 × 300 pixels. The positive examples are taken near the eye ground truth: the eye rectangle overlaps more than 75 % with the true eye rectangle. The patches corresponding to the negative examples overlap with the true eye between 50 and 75 %, thus leading to a total of 25 positive examples and 100 negative

Table 1 Percentage of frontal illumination detected cases on the Extended Yale B database

Azimuth elevation	\(\pm[40^\circ ; 130^\circ]\) (%)	\(\pm[0^\circ ; 35^\circ]\) (%)
\(-40^\circ ; 0^\circ\)	26.11	88.28
\(10^\circ ; 90^\circ\)	17.26	36.35

The lateral illumination case is considered if any of the computed ratios, \(L_{\text{ratio}}, R_{\text{ratio}}, H_{\text{ratio}}\), is outside the \([0.5; 1.75]\) range.

We designed this block such that an illumination that does not produce significant shadows on the eye region is detected as frontal, and as lateral otherwise. In terms of illumination angle, the cases with shadows on the eye region imply an absolute value of azimuth angle higher than 40° or an elevation angle value higher than 10°. Negative elevation (light from below) with low azimuth value does not produce shadows on the eye region. The interval \([0.5; 1.75]\) mentioned above has been found by matching the mentioned cases with the ratios values on the training database.

Indeed, 98.54 % of the images from the BioID database are detected as frontal illuminated, while the results on Extended Yale B are presented in Table 1. Extended Yale B database has images with various illumination angles as it will be discussed in Sect. 5.5.
ones from each eye in a single face image. Positive and negative locations are showed in Fig. 6. This specific choice of positive and negative examples yields to high performance in localization.

In total, there were 10,000 positive examples and as much negative ones, taken from the authors’ Eye Chimera database, from the Georgia Tech database [32] and from the neutral poses selected from the Yale B database [15]. We have considered two training variants corresponding to the two types of illumination (frontal or lateral).

One training procedure uses images from our data set (40 %) and from Georgia Tech (60 %) and focuses on frontal illumination, eye expressions and occlusions. In this case, the MLP is trained to return the L2 distance from a specific patch center to the true eye center. Thus, the MLP performs regression.

The second training procedure (for lateral illumination) uses images only from the frontal pose of the Yale B database and it is used for improving performance against illumination. In this case, the training set was labeled with −1 (non-eye—between 50 and 75 % overlapping onto the centered eye patch) or 1 (eye—more than 75 % overlapping).

As many machine learning algorithms are available, we have performed a short study on examples extracted from the training databases. Given the number of images in the databases, 20,000 examples were used for training the networks and approximately 200,000 were used for classifier validation. For the classification problem, a support vector machine (SVM) produced 93.7 % correct detection rate, the used MLP 92.6 % and an ensemble of 50 bagged decision trees 91.5 % detection rate. For the regression case, a SVM for Regression lead to an approximation error of 0.090, the regression MLP 0.096 and bagged ensemble of regression trees only 0.115. Taking into account the achieved values, there is no significant performance difference among the various machine learning systems tested (conclusion which matches the findings from [13]), thus our decision on using the MLP was based more on speed issues.

4.3 Preprocessing and post-processing

The conceptual steps in both illumination cases of the actual eye localization procedure are the same: preprocessing, machine learning and post-processing.

A simple preprocessing is applied for each eye candidate region to accelerate the localization process. Following Wu and Zhou [44], we note that the eye center (associated with the pupil) is significantly darker than the surrounding; thus the pixels that are too bright with respect to the eye region (and are not plausible to be eye centers) are discarded. The “too bright” characteristic is encoded as gray-levels higher than a percentage (so-called darkness preprocessing threshold in Table 2) from the maximum value of the eye region. In the lateral illumination case, this threshold is higher due to the deep shadows that can be found on the skin area surrounding the eye.

In the area of interest, using a step of 2 over a sliding image patch of 71 × 71 pixels, we investigate by the proposed ZEP+MLP all the plausible locations. We consider as positive results the locations where the value given by the MLP is higher than an experimentally found threshold (see Table 2). These positive results are recorded in a separate image (the ZEP image, shown in Fig. 7) which is further post-processed for eye center extraction.

Since closed eyes (that were included in the training set) are similar with eyebrows, one may get false eye regions given by the eyebrow in the ZEP image. Thus, the ZEP image is segmented, labeled and the lowest and largest regions are associated with the eye. This step will discard, for instance, the regions given by the eyebrow in Fig. 7c.

For the frontal illumination case, due to training with L2 distance as objective, one expects a symmetrical
shape around the true eye center. Thus, the final eye location is taken as the weighted center of mass of the previously selected eye regions. For the lateral illumination, the binary trained MLP is supposed to localize the area surrounding the eye center and the final eye center is the geometrical center of the rectangle circumscribed to the selected region. We note that in both cases, the specific way of selecting the final eye center is able to deal with holes (caused by reflections or glasses) in the eye region.

An overview of how each step is implemented in the two illumination cases considered is shown in Table 2.

Case	Frontal illumination	Lateral illumination
Darkness preprocess. threshold	0.15	0.3
Training database	GeorgiaTech + Authors’	Yale B
Training scheme	Regression L2 dist	True/false
ZEP + MLP threshold	0	−0.5
Eye area selection	Largest lower region	Largest region
Eye center localization	Weighted center of mass	Geometrical center of the rectangle circumscribed to the eye region

Fig. 7 The ZEP image a, c resulting after processing with ZEP + MLP (so-called ZEP image) the original eye patch image (b, d) (under frontal illumination case). The first two images a, b shows a simple case a when only patches around eye center were selected by the MLP. The right-hand two images, c, d contain a more difficult case c where also the eyebrow was identified as possible eye region. Higher gray-levels in the ZEP image signal higher confidence, as estimated by MLP, having the eye center at that specific location.

We will discuss first the influence of various system parameters onto the overall results. For this purpose, we will use the BioID database.1 This database contains 1521 gray-scale, frontal facial images of size 384 × 286, acquired with frontal illumination conditions in a complex background. The database contains 16 tilted and rotated faces, people who wear eye-glasses and, in very few cases, people who have their eyes shut or pose various expressions. The database was released with annotations for iris centers. Being one of the first databases that provided facial annotations, BioID became the most used database for face landmarks localization accuracy tests, even that it provides limited variability and reduced resemblance with real-life cases. We will use BioID as a starting point in discussing the achieved results (for giving an inside on the system’s various parameters and selecting the most performing state of the art systems) so that later to continue the evaluation under other stresses like eye expression, illumination angle or pose. Yet, the most relevant test is on real-life cases, which are acquired in the Labeled Faces in Wild database that will be presented later on.

The localization performance is evaluated according to the stringent localization criterion [21]. The eyes are considered to be correctly determined if the specific localization error \(\epsilon \), defined in Eq. (9) is smaller than a predefined value.

\[
\epsilon = \frac{\max\{\epsilon_L, \epsilon_R\}}{D_{\text{eye}}} \quad (9)
\]

In the equation above, \(\epsilon_L \) is the Euclidean distance between the ground truth left eye center and determined left eye center, \(\epsilon_R \) is the corresponding value for the right eye, while \(D_{\text{eye}} \) is the distance between the ground truth eyes centers. Typical error thresholds are \(\epsilon = 0.05 \) corresponding to eyes centers found inside the true pupils, \(\epsilon = 0.1 \) corresponding to eyes centers found inside the true irises, and \(\epsilon = 0.25 \) corresponding to eyes centers found inside the true sclera. This criterion identifies the worst-case scenario.

We note that, while the BioID image size leads to approximately a 40 × 40 size for the eye patch, because our target is HD video frames (for which we will also provide duration), we upscale the face square to 300 × 300, thus having an eye square of 71 × 71.

The results on the BioID database are shown in Fig. 8a, where we represented the maximum (better localized eye), average and minimum (worst localized eye) accuracy with respect to various values of the \(\epsilon \) threshold.

1 http://www.bioid.com/downloads/software/bioid-face-database.html.
5.1 The influence of ZEP parameters

We investigated the performance of the proposed system when only one type of projection is used. The results are presented in Table 3. The computation time dropped to \(\frac{C_2}{C_3} \) 53\% of the full algorithm time if only one projection type is used. The performance drops with \(\frac{C_2}{C_3} \) 14\% in the case of integral projection and with \(\frac{C_2}{C_3} \) 17\% in the case of edge projections. Using the proposed encoding, it is possible to keep both the dimensionality of the feature and the time duration low enough to use more than one type of projection. This supplementary information helps to increase the results accuracy when compared with the method in [37].

Alternatives to the eye crop size and resulting values are presented in Table 4. The experiment was performed by re-training the MLP with eye crops of the target size. As one can notice, the results are similar, thus proving the scale invariance of the ZEP feature. Slight variation is due to the pre- and post-processing.

5.2 The dimensionality reduction

The main visible effect of the proposed encoding is the reduction of the size of the concatenated projections. Yet, as we have adapted the encoding technique to the specific projection functions applied on the eye area, its performance is higher than of other methods. To see the influence of this encoding technique, we compared the achieved results with the ones obtained by reducing the dimensionality with PCA (as being the most foreknown such technique) by the same amount as the proposed one. The rest of the algorithm remains the same. The comparative results may be seen in Table 5. We also report the results when no reduction was performed.

The results indicate that both methods are lossy compression techniques and lead to decreased accuracy. The proposed method is able to extract the specifics of the eye from the image projections, as discussed in Sect. 3.1, being marginally better then the PCA compression.

![Fig. 8](image-url) Maximum (best case red dotted line), average (blue dashed line) and minimum (worst eye black solid line) accuracy for eye localization on the BioID database (left a) and Cohn–Kanade database (right b)

Table 3
Percentage of correct eye localization of the proposed algorithm (integral—IPF and edge projection functions—EPF) compared with IPF-only and EPF-only implementations

Projection type	IPF + EPF	IPF	EPF
Accuracy, \(\epsilon < 0.05 \)	70.46	56.61	53.17
Accuracy, \(\epsilon < 0.10 \)	91.94	87.58	84.02
Accuracy, \(\epsilon < 0.25 \)	98.87	98.81	96.50

Bold values indicate the best result for each accuracy threshold

Table 4
The variation of the results with respect to the size of the eye analysis window

Crop size	36 \(\times \) 36	71 \(\times \) 71	100 \(\times \) 100
Accuracy, \(\epsilon < 0.05 \)	64.00	70.46	64.20
Accuracy, \(\epsilon < 0.10 \)	90.36	91.94	90.22
Accuracy, \(\epsilon < 0.25 \)	98.61	98.87	99.14

Bold values indicate the best result for each accuracy threshold

Table 5
Percentage of correct eye localization of the proposed algorithm (ZEP encoding) compared with dimensionality reduction with PCA

Encoding Type	Proposed	PCA	None
Accuracy, \(\epsilon < 0.05 \)	70.46	69.66	72.97
Accuracy, \(\epsilon < 0.10 \)	91.94	92.70	93.52
Accuracy, \(\epsilon < 0.25 \)	98.89	98.87	99.07

Bold values indicate the best result for each accuracy threshold
Furthermore, we take into account that the dimensionality reduction with PCA requires, for each considered location, a matrix multiplication to project the initial vector of size N_p ($N_p = 284$) onto the final space (with size $M_p = 60$), thus having the complexity $O(N_p M_p) = O(284 \times 60)$. In comparison, the determination of the epochs parameters is done in a single cross of the initial vector (i.e., with complexity $O(N_p) = O(284)$), thus we expect the proposed method to be significantly faster.

Indeed, the average value for computation time increases from 6 ms (using the proposed method) to 11 ms (almost double) using PCA on a 300×300 face square. The lack of compression increases the duration to 24 ms per face square.

5.3 Robustness to noise

An image projection represents a gray-scale average, hence it is reasonable to expect that the proposed method is very robust to noise. To study robustness to noise, we have artificially added Gaussian noise to the BioID images and we subsequently measured the localization performance for $\epsilon < 0.1$ accuracy. Indeed, while the noise variance increases from 0 to 30, the average accuracy decreases from 91.94 % to only 79.92 %. The variation of the accuracy with respect to the added noise standard deviation may be seen in Fig. 9. Examples of images degraded by noise may be seen in Fig. 10.

5.4 Results on the BioID

To give an initial overview of the problem in state of the art, we consider the results reported by other methods on the BioID database. Other solutions for eye localization are summarized in Table 6. The results of the methods for localization of face fiducial points are showed in Table 7.

![Fig. 9 Variation of the localization performance for $\epsilon < 0.1$ accuracy with respect to gaussian noise variance used for image degradation](image)

Fig. 9 Variation of the localization performance for $\epsilon < 0.1$ accuracy with respect to gaussian noise variance used for image degradation

Fig. 10 Image from the BioID database degraded by noise. For a human observer, it is quite difficult to determine the eye centers. Yet, the results showed in Fig. 9 prove that our method performs remarkably well.

Method	Accuracy		
$\epsilon < 0.05$	$\epsilon < 0.1$	$\epsilon < 0.25$	
Proposed	70.46	91.94	98.89
Jesorsky et al. [21]	40.0	79.00	91.80
Wu and Zhou [44]	10.0*	54.00*	93.00*
Zhou and Geng [45]	47.7	74.5	97.9
Cristinacce et al. [9]	55.00*	96.00	98.00
Campadalli et al. [6]	62.00	85.20	96.10
Hamouz et al. [18]	59.00	77.00	93.00
Turkan et al. [37]	19.0*	73.68	99.46
Kroon et al. [27]	65.0	87.0	98.8
Asteriadis et al. [2]	62.0*	89.42	96.0
Asadifard et al. [1]	47.0	86.0	96.0
Timm&Barth [36]	82.50	93.40	98.00
Val.&Gev. [39] + MS	81.89	87.05	98.00
Val.&Gev. [39] + SIFT	86.09	91.67	97.87

Bold values indicate the result of the method with the best accuracy for each criterion.

Table 6 Comparison with state of the art (listed in chronological appearance) in terms of localization accuracy on the BioID database.

Italic values indicate the performance of the proposed system.

The correct localization presents results reported by authors; values marked with "$*$" were inferred from authors plot. While Zhou [45] reports only the value for $\epsilon < 0.25$, the rest is reported by [7]. The method marked with \dagger relied on a 10-fold training/testing scheme, thus, at a step, using 9 parts of the BioID database for training.

Visual examples of images with localized eyes produced by our method are shown in Fig. 11.

Analyzing the performance, first we note that our method significantly outperforms in both time and accuracy, other methods relying on image projections [37, 45]. The explanation lies in the normalization procedure implied when constructing the ZEP feature.

Comparison with face feature fiducial points localization is not straightforward. While such methods localize significantly more points than simple eye centers localization, they also rely strongly on the inter-spatial relation among them to boost the overall performance. Furthermore, they often do not localize eye centers, but eye corners and the top/bottom of the eye, which in many cases are more stable.
than the eye center (i.e., not occluded or influenced by gaze). Yet, we note that, our method is comparable in terms of accuracy and significantly faster (if one normalizes the reported time by the number of detected points).

Regarding other methods for eye localization, the proposed method ranks as one of the top methods for all accuracy tests, being always close to the best solution. Furthermore, taking into account that on BioID database there are only $\frac{50}{25}$ images (3\%) with closed eyes, methods that search circular (symmetrical) shapes have better circumstances. Because we targeted images with expressions, we specifically included in our training data set closed eyes. To validate this assumption, we tested with very good results on the Cohn–Kanade database showing that our method is more robust in that case as showed in Fig. 8b.

Table 7 Comparison with methods that localize a multitude (≈ 20) of points on the face on the BioID database

Method	No. pts.	Accuracy $\epsilon<0.05$	Accuracy $\epsilon<0.1$	Time performance
Proposed	2	78.80	96.04	13 ms
Vukadinovic et al. [43]	20	15.0	78.0	n/a
Milborrow and Nicolls [30]	17	66.0	95.0	230 ms
Valstar et al. [40]	22	74.00	95.00	n/a
Belhumeur al. [4]	29	62.00	85.20	≈ 950 ms
Mostafa et al. [31]	17	74.00	96.00	470 ms

Bold values indicate the fastest method

All the results were extrapolated from authors graphs. We note that in these cases, eye localization was not the major objective and authors report an average error for the entire set of points; thus, we also used average achieved error. The reported time is for determination of the entire set of points using nine parts of the BioID database for training. Furthermore, taking into account that BioID database was used for more that 10 years and provides limited variation, it has been concluded [4, 11] that other tests are also required to validate a method.

Valenti and Gevers [39] provide results on other datasets and made public the associated code for their baseline system (Val.&Gev.+MS) which is not database dependent. Timm and Barth [36] do not provide results on any other database except BioID or source code, yet there is publicly available\(^2\) code developed with author involvement. Thus, in continuation, we will compare the hereby proposed method against these two on other datasets. In addition, we include the comparison against the eye detector developed by Ding and Martinez [12] which has also been trained and tested on other database, thus is not BioID dependent.

5.5 Robustness to eye expressions

As mentioned in the introduction, we are specifically interested in the performance of the eye localization with respect to facial expressions, as real-life cases with fully opened eyes looking straight are rare. We tested the performance of the proposed method on the Cohn–Kanade database [24]. This database was developed for the study of emotions, contains frontal illuminated portraits and it is challenging through the fact that eyes are in various poses (near-closed, half-open, wide-open). We tested only on the neutral pose and on the expression apex image from each example. The correct eye locations, with standard precisions, are shown in Table 8. Typical localization results are presented in Fig. 12, while the maximum, average and minimum errors are plotted in Fig. 8b.

\(^2\) At http://thume.ca/projects/2012/11/04/simple-accurate-eye-center-tracking-in-opencv/.
We note that solutions that try to fit a circular or a symmetrical shape over the iris, like \[39\] or \[36\], and thus, perform well on open eyes, do encounter significant problems when facing eyes in expressions (as it is shown in Table 8). Taking into account the achieved results, which are comparable on neutral pose and expression apex images, we show that our method performs very well under such complex conditions. Achieved results indicate approximately a doubled accuracy when compared with the foremost state of the art method.

5.6 Robustness to illumination and pose

We systematically evaluated the robustness of the proposed algorithm with respect to lighting and pose changes. This was tested onto the Extended Yale Face Database B (B+) [28]. We stress that part of the Yale B database [15] was used for training the MLP for lateral illumination, thus the training and testing sets are completely different.

The Extended Yale B database contains 16,128 gray-scale images of 28 subjects, each seen under 576 viewing conditions (9 poses \(\times\) 64 illuminations). The size of each image is \(640\times480\). The robustness with respect to pose and with respect to illumination was evaluated separately.

For evaluating the robustness to illumination, we tested the system on 28 faces, in neutral pose, under changing illumination (64 cases). The results are summarized in Table 9.

For larger illumination angles, due to the uneven distribution of the shadows, the shape of the projections is significantly altered and the accuracy decreases. Examples, with cases where the shades are too strong or inopportunistly placed and we reach lower results, are showed in Fig. 14.

We report results on the neutral poses, expression apex and overall and compare against method from [36, 39] and [12]. We marked with bold the best achieved performance for each accuracy criterion and, respectively, for each image type.

Table 8 Percentage of correct eye localization on the Cohn–Kanade database

Method	Type	\(\epsilon < 0.05\)	\(\epsilon < 0.1\)	\(\epsilon < 0.25\)
Proposed	Neutral	76.0	99.0	100
	Apex	71.9	95.7	100
	Total	73.9	97.3	100
Val. and Gevers [39]	Neutral	46.0	95.7	99.6
	Apex	35.1	92.4	98.8
	Total	40.6	94.0	99.2
Timm and Barth [36]	Neutral	66.0	95.4	99.0
	Apex	61.4	85.1	93.4
	Total	63.7	90.2	96.2
Ding and Mart. [12]	Neutral	14.3	75.9	100
	Apex	11.8	72.8	100
	Total	13.1	74.4	100

Bold values indicate the best result for each accuracy threshold and, respectively, CK image type

Table 9 Illumination variation studied on the Extended Yale B (B+) data set

Azimuth Elevation	\([110^\circ : 130^\circ]\)	\([70^\circ : 90^\circ]\)	\([50^\circ : 60^\circ]\)	\([20^\circ : 35^\circ]\)	\([5^\circ : 15^\circ]\)	\(0^\circ\)
\(-40^\circ : -35^\circ\)	n/a	73.21	58.93	60.71	n/a	92.86
\(-20^\circ : -10^\circ\)	71.43	76.79	83.93	84.82	91.96	96.43
\(0^\circ\)	42.86	75.00	65.50	94.64	91.07	92.86
\(10^\circ : 20^\circ\)	67.86	76.79	75.87	87.50	95.54	100
\(40^\circ : 45^\circ\)	75.00	76.79	n/a	75.00	n/a	89.29
\(65^\circ : 90^\circ\)	82.14	n/a	n/a	64.29	n/a	78.57

The numerical values have been obtained for accuracy \(\epsilon < 0.1\). If more cases were available in the given interval, the average is reported. If the specific case does not exist in the database, “n/a” is reported.
To evaluate the robustness of the algorithm with respect to the face pose, we consider each of the 28 persons with frontal illumination, but under varying poses (9 poses for each person). Pose angles are in the set \(\{0^\circ, 12^\circ, 24^\circ\} \), thus spanning the typical range for “frontal face”. The results are shown in Table 10 and visual examples in the Fig. 15. Taking into account that the maximum number of images that have the worst eye less accurate than 0.1 is 2, we may truthfully say that the proposed method is robust to face pose.

When compared with the method proposed in [39], our solution performs marginally better. If we consider the results reported in the mentioned paper, then the average result for accuracy at \(\epsilon < 0.1 \) is 88.07 % computed on the smaller Yale B database [15] while our method reaches 89.85 % on the same subset of azimuth and elevation illumination angles on the larger Extended Yale B database [28]. If we compare the full results on the entire Extended Yale B database (including extreme illumination cases) then our method outperforms with small margin for high accuracies as shown in Table 11. Our method performs significantly better than the ones proposed by Timm and Barth [36] and, respectively, Ding and Martinez [12].
5.7 Accuracy in real-life scenarios

While BioID, Cohn–Kanade and Extended Yale B databases include specific variations as they are acquired under controlled lighting conditions with only frontal faces, they cannot be considered too closely resembling real-life applications. In contrast, there are databases like the labeled face parts in the wild (LFPW) [4] and the labeled faces in the wild (LFW) [20], which are randomly gathered from the Internet, contain large variations in the imaging conditions. While LFPW is annotated with facial point locations, only a subset of about 1500 images is made available and contains high-resolution and rather qualitative images. In opposition, the LFW database contains more than 12,000 facial images, having the resolution 250×250 pixels, with 5700 individuals that have been collected “in the wild” and vary in pose, lighting conditions, resolution, quality, expression, gender, race, occlusion and make-up.

The images difficulty is certified by the performance of human evaluation error as reported in [11], which also provided annotations. While the ground truth is taken as the average of human markings for each point normalized to inter-ocular distance, human evaluation error is considered as the averaged displacement of the one marker.

Examples of the results achieved on the LFW database may be seen in Fig. 16. Numerical results, compared with the solution from [12, 36, 39] and with human evaluation error, are presented in Fig. 17.

Regarding the achieved results, we note that even that our method was designed to work on large resolution faces, it provides accurate results when applied on smaller ones. As one can see in Fig. 17 we significantly outperform the state of the art solutions [39] and from [36] by almost 50 % improvement at $\epsilon<0.05$ accuracy, on an over 12,000 image database that presents as close to real-life as possible cases and with more the method from [12].

5.8 Algorithm Complexity

The entire algorithm requires only four divisions for the projections normalization and two for determination of the region weighting center with variable denominator per eye crop, and no high-precision operations, therefore, need only limited fixed-point precision. The ZEP + MLP combination is linear with respect to the size of scan eye rectangle $O(\delta N^2)$. The

![Fig. 16](image1.png)

Fig. 16 Images from labeled face in the wild (LFW) database. The top row show images having accuracy higher than 0.05, medium row accuracy between 0.05 and 0.1 and bottom row accuracy lower than 0.1

![Fig. 17](image2.png)

Fig. 17 Results achieved on the LFW database: a average accuracy and b minimum accuracy as imposed by the stringent criterion—Eq. (9). With dashed blue line is the average error for human evaluation, black line proposed method, red line Valenti and Gevers [39], green line Timm and Barth [36] and with magenta line Ding and Martinez [12].
method was implemented in C around OpenCV functionality, on an Intel i7 at 2.7 GHz, on single thread and it takes 6 ms for both eyes on a face square of 300 × 300 pixels, which is a typical face size for HD-720p (1280 × 720 pixels) format. We note that, additional 7 ms is required for Face Detection. The code can run in real time while including face detection and further face expression analysis. Comparison with state of the art methods may be followed in the Table 12 when comparing with other eye localization methods; for some works the authors have not reported speed performance, but taking into account algorithm complexity, it is reasonable to presume that it is too large for real time.

Trying to overcome the difficulty of comparison while different platforms were used for implementation, we rely as a unifying factor on the single thread benchmarking score provided by [34] for specific CPU; this score will be denoted by CPU\textsubscript{s}. It must be noted that such numbers should be considered with precaution since there do exist several CPUs that correspond to the description provided by authors (and we always took the best case) and the benchmark test may not be very relevant for the specific processing required by a solution.

To aggregate the overall time performance of a method we used the following formula:

\[
T_p = \frac{fp\times \min\{M,N\}}{CPU_{power}} \tag{10}
\]

where \(M \times N\) is the frame size used for reported results. Note that, the formula uses only one of the two dimensions that describe an image to cope with different aspect ratios.

The results for eye localization aggregated with the measure in Eq. (10) are showed in the Table 12 when comparing with other eye localization methods. Our method rank second following the one proposed by Jesorsky et al. [21], but it gives consistently better results in terms of accuracy. It has to be noticed that while, initially only Valenti and Gevers [39] reported comparable computational time, after integrating the larger frame size with processing power, our method turns to be 1.5 times faster. Furthermore, to be able to directly compare our computation time, we have modified the size of input face to be 120 × 120 which corresponds to a 320 × 240 pixels image, letting everything else the same and we find out that our method requires 1.6 ms to localize both eyes; given the additional 7 ms for face detection, we get a total time of 8.6 ms, that is equivalent with a frame rate of 116 frames/s, proving that we clearly outperform the method from [39].

5.9 Discussion

The previous subsections within this “Results and discussions” part have guided through various experiments and measurements that present a through comparison of eye localization performance of the here proposed ZEP eye localization method, which is shown to perform remarkably well among a wide variety of conditions and datasets. Some of the presented numbers and experiments deserve yet a supplemental emphasis and clarification.

A first issue of discussion is related to the experimental setup, namely the databases that are currently used in the assessment of algorithms accuracy. BioID has gained...
through the years widespread recognition, as it was one of the earliest face image databases that contain facial landmark ground truth annotations. As such, BioID was intensively used for accuracy comparisons, with a clear tendency over time to concentrate the efforts in getting top results on BioID alone. As one may have noticed in Table 6, the here proposed method is outperformed on BioID by the algorithms proposed by Timm and Barth [36] and Valenti and Gevers [39].

We can notice that most the methods are overtrained in standard conditions, and thus perform very well within their over-learned domain. As such, we claim that these approaches are not relevant in a broader, real-life testing scenario. The approaches proposed by Valenti and Gevers [39] and Timm and Barth [36] are thus retained as a significant eye location methods and we further tested them; we also included the solution from [12] as being a high-profile method build outside the BioID database; the results showed that we outperform these methods by a gross margin.

As anyone knowledgeable in the field observes, the BioID database contains mostly frontal pose, frontal illumination and neutral expression faces, and catches only a small glimpse of the problems related to eye localization. As such, intensive performance comparison must be realized outside these standard conditions, as Valenti and Gevers [39] and Timm and Barth [36] do in the case of varying illumination and pose and we do in the case of noise, variable illumination, expression and pose variations. Several tests that are reviewed again here prove the superior performance of the proposed ZEP eye localization method in these extreme conditions.

The non-frontal illumination and the subject pose variations are key issues in real-life, unconstrained applications. Typically, these are tested within the Extended Yale B database, where ZEP performs marginally better (+2 %) than method in [39] and significantly better than [36] and [12], as shown in Table 11. Subject emotional expressions hugely affect eye shape and surroundings. The Cohn–Kanade database is the state of the art tested in emotion-related tasks; in this case, the ZEP eye localization outperforms [36] by 10 %, [39] by some 30 %, and [12] by 60 % as shown in Table 8.

Within all databases, closed eyes present an independent challenge. As noticed by the authors in [39], their method is prone to errors in detecting the closed eye center (which is confirmed by the experiments across all databases). The proposed ZEP method is much more robust to closed eyes, due to the way in which the eye profile is described within the proposed encoding of the luminance profiles.

Finally, we consider that the most relevant test is performed on the LFW database, taking into account the size (more than 12,000 images), image resolution (especially low) and especially the fact that images were acquired “in the wild”. Yet, on the LFW database, which is currently one of the most challenging tasks, we outperform the method in [36] by at least 5 % the one in [39] by a gross margin (+13 %) and, respectively, the method from [12] by near 30 %. Nonetheless, we much closer to human accuracy (as shown in Fig. 17a).

Regarding the computational complexity, the here proposed method requires a computational time which is inferior to the time required by the method from [21]; yet, the accuracy of the here proposed method is significantly higher. If we compare only the computation time, without considering the image size, one may consider the method from [39] to be faster. Yet, tests showed that the here proposed solution is still faster than the implementation from [39] at equal image resolution (namely 320 × 240). We thus claim that the here proposed method is the fastest solution from the select group of high accuracy methods.

6 Conclusions

In this paper, we proposed a new method to estimate the eye centers location using a combination of Zero-based encoded image Projections and a MLP. The eye location is determined by discriminating between eyes and non-eyes by analyzing of the normalized image projections encoded with the zero-crossing-based method. The extensive evaluation of the proposed approach showed that it can achieve real-time high accuracy. While the ZEP feature was used for eye description, we consider that it is general enough and may be used in numerous problems.

Acknowledgments This work has been co-funded by the Sectoral Operational Program Human Resources Development (SOP HRD) 2007-2013, financed from the European Social Fund and by the Romanian Government under the contract number and POSDRU/159/1.5/S/134398 (Knowledge).

References

1. Asadifard M, Shanbezadeh J (2010) Automatic adaptive center pupil detection using face detection and CDF analysis. In: IMECS, pp 130–133
2. Asteriadis S, Nikolaidis N, Pitas I (2009) Facial feature detection using distance vector fields. Pattern Recogn 42(7):1388–1398
3. Becker HC, Nettleton WJ, Meyers PH, Sweeney JW (1964) Nice CM (11) digital computer determination of a medical diagnostic index directly from chest X-ray images. IEEE Trans Biomed Eng 3:62–72
4. Bellhumeur P, Jacobs D, Kriegman D, Kumar N (2011) Localizing parts of faces using a consensus of exemplars. In: IEEE CVPR, pp 545–552
5. Blelloch GE (1990) Prefix sums and their applications. synthesis of parallel algorithms. Tech. rep., University of Massachusetts
6. Campadelli P, Lanzarotti R, Lipori G (2006) Precise eye localization through a general-to-specific model definition. In: BMVC, pp I–187
7. Ciesla M, Koziol P (2012) Eye pupil location using webcam. Human Comput Inter
8. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685
9. Cristinacce D, Cootes T, Scott I (2004) A multi-stage approach to facial feature detection. In: BMVC, pp 277–286
10. Crow F (1984) Summed-area tables for texture mapping. Proc SIGGRAPH 18(3):207–212
11. Dantone M, Gall J, Fanelli G, Gool LV (2012) Real-time facial feature detection using conditional regression forests. In: IEEE Conference on systems, man and cybernetics, pp 1692–1698
12. Ding L, Martínez AM (2010) Features versus context: an approach for precise and detailed detection and delineation of faces and facial features. IEEE Trans Pattern Anal Mach Intell 32(11):2022–2038
13. Everingham M, Zisserman A (2006) Regression and classification approaches to eye localization in face images. In: IEEE FG, pp 441–446
14. Feng GC, Yuen PC (1998) Variance projection function and its application to eye detection for human face recognition. Pattern Recog Lett 19(9):899–906
15. Georgiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660
16. Gonzalez R, Woods RE (2001) Digital image processing, 2nd edn. Prentice Hall, New Jersey
17. Gonzalez-Ortega D, Díaz-Pernas FJ, Anton-Rodríguez M, Martínez-Zarrueta M, Díez-Higuera JF (2013) Real-time vision-based eye state detection for driver alertness monitoring. Pattern Anal Appl 16(3):285–306
18. Hamouz M, Kittlerand J, Kemarainen JK, Paalanen P, Kalviainen H, Matas J (2005) Feature-based affine-invariant localization of faces. IEEE Trans Pattern Anal Mach Intell 27(9):643–660
19. Hansen DW, Ji Q (2010) In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans Pattern Anal Mach Intell 32(3):478–500
20. Huang G, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. University of Massachusetts, Tech. rep
21. Jesorsky O, Kirchberg K, Frischholz R (2000) Robust face detection using the Hausdorff distance. In: Bigun J, Smeraldi F (eds) AVBPA. Springer, Berlin, pp 90–95
22. Jones M, Viola P (2003) Fast multi-view face detection. Tech. Rep. 096, Mitsubishi Electric Research Laboratories
23. Kanade T (1973) Picture processing by computer complex and recognition of human faces. Technical Report, Kyoto University, Department of Information Science
24. Kanade T, Cohn JF, Tian Y (2000) Comprehensive database for facial expression analysis. In: IEEE FG, pp 46–53
25. Kim S, Chung ST, Jung S, Oh D, Kim J, Cho S (2007) Multi-scale Gabor feature based eye localization. WASET 21:483–487
26. King RA, Phipps TC (1999) Shannon, TESPAR and approximation strategies. Comput Secur 18(5):445–453
27. Kroon B, Hanjalic A, Maas SM (2008) Eye localization for face matching: is it always useful and under what conditions. In: CIVR, pp 379–387
28. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698
29. Liu W, Wang Y, Jia L (2010) An effective eye states detection method based on projection. In: ICSLP, pp 829–831
30. Milborrow S, Nicolls F (2008) Locating facial features with an extended active shape model. In: ECCV, pp 504–513
31. Mostafa E, Farag A (2012) Complex bingham distribution for facial feature detection. In: ECCV, Workshops and demonstrations, pp 330–339
32. Nefian AV, Hayes MH (2000) Maximum likelihood training of the embedded HMM for face detection and recognition. In: IEEE ICIP, pp 33–36
33. Niu Z, Shan S, Yan S, Chen X, Gao W (2006) 2D cascaded adaboost for eye localization. In: IEEE ICPR, pp 1216–1219
34. PassMark Software Pty Ltd (retrieved January 2015) CPU Mark-high-mid range. From http://www.cpubenchmark.net/single Thread.html
35. Ramirez G, Fuentes O (2008) Multi-pose face detection with asymmetric haar features. IEEE Workshop Appl Comput Vis WACV 2008:1–6
36. Timm F, Barth E (2011) Accurate eye centre localisation by means of gradients. In: VISAPP, pp 125–130
37. Turkan M, Pardas M, Cetin AE (2004) Edge projections for eye localization. Optic Eng 47(047):007
38. Valenti R, Gevers T (2008) Accurate eye center location and tracking using isophote curvature. In: IEEE CVPR, pp 1–8
39. Valenti R, Gevers T (2012) Accurate eye center location through invariant isocentric patterns. IEEE Trans Pattern Anal Mach Intell 34(9):1785–1798
40. Valstar M, Martinez B, Binefa X, Pantic M (2012) Facial point detection using boosted regression and graph models. In: IEEE CVPR, p 27292736
41. Verjak M, Stephancic M (1994) An anthropological model for automatic recognition of the male human face. Ann Hum Biol 21:363–380
42. Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154
43. Vukadinovic D, Pantic M (2005) Fully automatic facial feature point detection using gabor feature based boosted classifiers. In: IEEE Conference on systems, man and cybernetics, pp 1692–1698
44. Wu J, Zhou ZH (2003) Efficient face candidates selector for face detection. Pattern Recogn 36(5):1175–1186
45. Zhou ZH, Geng X (2004) Projection functions for eye detection. In: BMVC, pp I–187