Neural Model for the Prediction of Volume Losses in the Aging Process of Rums

Beatriz García-Castellanos; Osney Pérez-Ones; Lourdes Zumalacárregui-de-Cárdenas; Idania Blanco-Carvajal; Luis-Eduardo López-de-la-Maza

Citación: B. García-Castellanos, O. Pérez-Ones, L. Zumalacárregui-de-Cárdenas, I. Blanco-Carvajal, L.-E. López-de-la-Maza, “Neural Model for the Prediction of Volume Losses in the Aging Process of Rums,” Revista Facultad de Ingeniería, vol. 29 (54), e10514, 2020. https://doi.org/10.19053/01211129.v29.n54.2020.10514

Recibido: Noviembre 03, 2019; Aceptado: Enero 31, 2020; Publicado: Febrero 22, 2020

Derechos de reproducción: Este es un artículo en acceso abierto distribuido bajo la licencia CC BY

Conflicto de intereses: Los autores declaran no tener conflicto de intereses.
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums

Beatriz García-Castellanos
Osney Pérez-Ones
Lourdes Zumalacárregui-de-Cárdenas
Idania Blanco-Carvajal
Luis-Eduardo López-de-la-Maza

Abstract
The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB 2017 software was used to estimate volume losses. In the modeling of the rum aging process, the multilayer perceptron neuronal network with one and two hidden layers was used, varying the number of neurons in these between 4 and 10. The Levenberg-Marquadt (LM) and Bayesian training algorithms were compared (Bay). The increase in 6 consecutive iterations of the validation error and 1000 as the maximum number of training cycles were the criteria used to stop the training. The input variables to the network were: numerical month, volume, temperature, humidity, initial alcoholic degree and aging time, while the output variable was...
wastage. 546 pairs of input / output data were processed. The statistical Friedman and Wilcoxon tests were performed to select the best neural architecture according to the mean square error (ECM) criterion. The selected topology has a 6-4-4-1 structure, with an ECM of $2.1 \cdot 10^{-3}$ and a correlation factor (R) with experimental data of 0.9898. The neural network obtained was used to simulate thirteen initial aging conditions that were not used for training and validation, detecting a coefficient of determination (R^2) of 0.9961.

Keywords: aging; artificial neural networks; modeling; rums; volume losses.

Modelo neuronal para la predicción de mermas en el proceso de añejamiento de rones

Resumen

El proceso de añejamiento de ron experimenta pérdidas de volumen, denominadas mermas. Las variables numéricas de operación, registradas en bases de datos: producto, rambla, posiciones (horizontal y vertical), fecha, volumen, grado alcohólico, temperatura, humedad y tiempo de añejamiento, contienen información valiosa para estudiar el proceso. Se utilizó el software MATLAB 2017 para estimar las pérdidas en volumen. En la modelación del proceso de añejamiento de ron se utilizó la red neuronal perceptrón multicapa, con una y dos capas ocultas, variándose el número de neuronas en estas entre cuatro y 10. Se compararon los algoritmos de entrenamiento Levenberg-Marquadt (L-M) y Bayesiano (Bay). El incremento en seis iteraciones consecutivas del error de validación y 1000, como número máximo de ciclo de entrenamiento, fueron los criterios utilizados para detener el entrenamiento. Las variables de entrada a la red fueron mes numérico, volumen, temperatura, humedad, grado alcohólico inicial y tiempo de añejamiento, mientras que la variable de salida fue mermas. Se procesaron 546 pares de datos de entrada/salida. Se realizaron las pruebas estadísticas de Friedman y Wilcoxon para la selección de la arquitectura neuronal de mejor comportamiento, de acuerdo con el criterio del error cuadrático medio (ECM). La topología seleccionada presenta la estructura 6-4-4-1, con un ECM de $2.1 \cdot 10^{-3}$ y un factor de correlación (R) con los datos experimentales de 0.9981. La red neuronal obtenida se empleó para la
simulación de trece condiciones iniciales de añejamiento que no fueron empleadas para el entrenamiento y la validación, detectándose un coeficiente de determinación (R^2) de 0.9961.

Palabras clave: añejamiento; merma; modelación; redes neuronales artificiales; rones.

Modelo neuronal para a predição de mermas no processo de envelhecimento de runs

Resumo

O processo de envelhecimento de rum experimenta perdas de volume, denominadas mermas. As variáveis numéricas de operação: produto, rambla, posições horizontal e vertical, data, volume, grau alcoólico, temperatura, humidade e tempo de envelhecimento, registradas em bases de dados, contêm informação valiosa para estudar o processo. Utilizou-se o software MATLAB 2017 para estimar as perdas em volume. Na modelação do processo de envelhecimento de rum utilizou-se a rede neuronal perceptron multicamada com uma e duas camadas ocultas, variando-se o número de neurônios nestas entre 4 e 10. Compararam-se os algoritmos de treinamento Levenberg-Marquadt (L-M) e Bayesiano (Bay). O incremento em 6 iterações consecutivas do erro de validação e 1 000 como número máximo de ciclo de treinamento foram os critérios utilizados para deter o treinamento. As variáveis de entrada à rede foram: mês numérico, volume, temperatura, humidade, grau alcoólico inicial e tempo de envelhecimento, enquanto que a variável de saída foi mermas. Processaram-se 546 pares de dados de entrada/saída. Realizaram-se as provas estatísticas de Friedman e Wilcoxon para a seleção da arquitetura neuronal de melhor comportamento de acordo ao critério do erro quadrático médio (ECM). A topologia selecionada apresenta a estrutura 6-4-4-1, com um ECM de $2.1 \cdot 10^{-3}$ e um fator de correlação (R) com os dados experimentais de 0.9981. A rede neuronal obtida empregou-se para a simulação de treze condições iniciais de envelhecimento que não foram empregadas para o treinamento e a validação, detectando-se um coeficiente de determinação (R^2) de 0.9961.
Palavras chave: envelhecimento; mermas; modelação; redes neuronais artificiais; runs.
I. INTRODUCCIÓN

En el ron fresco, como en la mayoría de las bebidas alcohólicas destiladas, el aroma remite a la materia prima utilizada, el cual varía cuando se deja en reposo en recipientes de roble por un tiempo determinado, lo que se conoce comúnmente como “envejecimiento” o tiempo de añejamiento. Durante este tiempo, se desarrollan naturalmente reacciones que provocan una transformación de las propiedades organolépticas originales de los destilados. [1]

El proceso tecnológico de producción del ron añejo se lleva a cabo en el Centro de Referencia de Alcoholes y Bebidas (CERALBE), perteneciente al Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar (ICIDCA), comprende varias etapas. Durante el proceso de añejamiento del ron se producen pérdidas de producto, popularmente conocidas como “la porción del Ángel”.

El añejamiento del ron no cambia ni transforma la bebida, sino que desarrolla y sublima sus cualidades latentes [2]. Es por ello que, en el contexto de excelencia en que compiten estas bebidas, surge el interés de estudiar la merma en el volumen de ron durante su añejamiento en relación con las condiciones ambientales existentes en la solera, aspecto que no ha sido actualizado en CERALBE recientemente, a pesar de que se sabe que el volumen de mermas es elevado.

La tecnología existente en las bodegas permitió llevar a cabo un estudio del comportamiento de las mermas durante 13 meses de añejamiento; de tal modo que se realizaron mediciones del nivel del líquido de los toneles, grado alcohólico, temperatura y humedad. Toda esta memoria almacenada constituye una valiosa fuente de información que puede ser útil en la comprensión del presente y en la predicción del futuro.

La minería de datos (MD) es el proceso de extraer conocimiento útil y comprensible, previamente desconocido, desde grandes cantidades de datos almacenados en distintos formatos [3]. Permite realizar tareas de predicción, clasificación, asociación, agrupamiento y correlación apoyándose de técnicas estadísticas como el análisis de componentes principales y computacionales como las redes neuronales artificiales [4]. Actualmente la MD se ha popularizado debido al incremento en la capacidad de cálculo de los ordenadores y su abaratamiento,
aparejado al incremento en la capacidad de almacenamiento de datos y en la calidad de los mismos [5].

Las redes neuronales artificiales constituyen una herramienta computacional que imita el funcionamiento del cerebro humano, pues tiene la capacidad de aprender patrones o comportamientos de una base de datos [6-7]. La obtención de modelos predictivos a partir del entrenamiento, que se desarrolla presentándole una matriz de entrada y su correspondiente salida, ha permitido la modelación de diferentes procesos.

Los modelos predictivos obtenidos por técnicas de minería de datos constituyen una alternativa a los modelos matemáticos y a la vez una herramienta para el análisis de la información almacenada de los procesos de añejamiento de rones para predecir el porcentaje de mermas en volumen en función de las variables que se registran.

II. MATERIALES Y MÉTODOS

A. Creación y entrenamiento de la red neuronal

Para el modelado del proceso de añejamiento de ron se utilizó la red neuronal perceptrón multicapa, con una y dos capas ocultas, del tipo alimentación hacia adelante y entrenamiento por propagación hacia atrás (feed-forward network, backpropagation training algorithm). Esta elección está sustentada sobre la base de que este tipo de redes neuronales es fácil de utilizar y permite la modelación de funciones complejas [7-8].

El número de neuronas de las capas ocultas se varió desde cuatro hasta 10 con cada uno de los algoritmos de entrenamiento utilizados: Levenberg-Marquadt (L-M) y Bayesiano (Bay). Las variables de entrada a la red fueron mes numérico, volumen, temperatura, humedad, grado alcohólico inicial y tiempo de añejamiento, mientras que la variable de salida fue mermas. En la Tabla 1 se presentan los valores mínimos y máximos para cada variable. Se procesaron 546 pares de datos de entrada/salida. Los datos originales se normalizaron entre 0.0 y 1.0, dadas las diferencias entre sus magnitudes. Para la partición de los datos de entrenamiento,
se empleó la función "dividerand", con la división por defecto de 70% para el entrenamiento, 15% de prueba y 15%, para la validación. El incremento en seis iteraciones consecutivas del error de validación y 1000, como número máximo de ciclo de entrenamiento, fueron los criterios utilizados para detener el entrenamiento. Tanto la creación de la red neuronal como su entrenamiento se realizaron en Matlab 2017.

Para la selección de la cantidad de neuronas óptima en la capa oculta se tomaron en cuenta tres criterios: el error cuadrático medio en la validación del modelo (ECM), el error absoluto medio (EAM) y el coeficiente de correlación (R) entre los valores de mermas estimados por el modelo neuronal y los valores reales. [9-10].

1) **Prueba de Friedman.** La prueba de Friedman permite la comparación de varias muestras; se utiliza para la selección de la arquitectura neuronal de mejor comportamiento de acuerdo con el criterio del error cuadrático medio, en el caso de que los resultados fuesen muy similares y la decisión se dificulte. Esta prueba tiene dos hipótesis: h_0 (hipótesis nula), que plantea la igualdad entre todas las medianas de un grupo, y h_1 (hipótesis alternativa), que plantea la no igualdad entre todas las medianas del grupo. Es una prueba no paramétrica. La selección de la arquitectura neuronal está basada en el valor P; si este es menor que 0.05 se rechaza la hipótesis nula.

2) **Prueba de Wilcoxon.** Cuando la prueba de Friedman revela que existen diferencias estadísticamente significativas entre las medianas del grupo es necesario realizar la prueba de Wilcoxon para seleccionar la arquitectura neuronal de mejor comportamiento. La prueba de Wilcoxon (no paramétrica) permite la comparación de pares de muestras. Tiene dos hipótesis: h_0 (hipótesis nula), que plantea la igualdad entre dos medianas, y h_1 (hipótesis alternativa), que plantea la
III. RESULTADOS Y DISCUSIÓN

A. Determinación de ruido, limpieza y selección de los datos a utilizar

Se obtuvo una data de 900 instancias y 10 variables, de estas, cinco cualitativas: producto, rambla, fecha y posiciones horizontal y vertical; mientras que las restantes: tiempo de añejamiento, volumen, temperatura, humedad y grado alcohólico inicial tienen carácter cuantitativo. La matriz inicial de datos fue reducida a 546 valores, ya que presentaba mediciones incompletas con respecto a tres toneles (19, 21 y 159) y al periodo que comprende de febrero a septiembre de 2014.

B. Topología de la red neuronal

El número de neuronas en la capa oculta se varió de cuatro a 10, con cada uno de los algoritmos de entrenamiento utilizados (Levenberg-Marquadt y Bayesiano) y se comparó el comportamiento de todas las topologías. El coeficiente de determinación (R^2) de las mermas para cada una de las topologías, así como el error cuadrático medio (ECM) y el error absoluto medio (EAM) se muestran en la Tabla 2.

Neuronas en la capa oculta	Levenberg-Marquadt	Bayesiano				
	R^2	ECM	EAM	R^2	ECM	EAM
4	0.9271	0.0978	0.2734	0.9926	0.0092	0.0702
5	0.9325	0.0660	0.1864	0.9933	0.0230	0.1295
6	0.9890	0.0177	0.1080	0.9870	0.0361	0.1604
7	0.9885	0.0336	0.1415	0.9966	0.0080	0.0712
8	0.9567	0.0968	0.2478	0.9651	0.0824	0.2452
9	0.9779	0.0375	0.1611	0.9856	0.0277	0.1196
10	0.9684	0.0465	0.1664	0.9797	0.0403	0.1619

A partir del análisis de la Tabla 2 se muestra que los valores de coeficiente de determinación están en el intervalo de 0.9271 a 0.9966; los valores del error cuadrático medio se encuentran entre 0.0080 y 0.0978; mientras que el error
absoluto está en el intervalo de 0.0702 a 0.2734. De acuerdo con los criterios del mayor coeficiente de determinación y menor valor de error, las redes neuronales con mejor comportamiento tienen la estructura 6-6-1 y 6-7-1, al emplear el algoritmo y L-M y 6-7-1 y 6-4-1 al utilizar el algoritmo Bayesiano.

De acuerdo con el resultado anterior y con la similitud en el orden del error cuadrático medio para cada topología se concluye que era necesario realizar la prueba de Friedman para determinar si existían diferencias estadísticamente significativas con respecto a cada configuración.

El resultado del valor-P para la prueba de Friedman fue de 0.0926 para el algoritmo de entrenamiento L-M, mientras que en el caso del bayesiano fue 0.0580 (ambos mayores que 0.05). Por tanto, había igualdad entre todas las medianas y no existían diferencias estadísticamente significativas entre los comportamientos de las diferentes topologías para cada algoritmo de entrenamiento empleado.

Posteriormente, se modelaron redes con dos capas ocultas y con las mejores configuraciones de neuronas obtenidas, alternando de igual manera entre los algoritmos de entrenamiento mencionados. Los estadígrafos, para la selección del mejor modelo con dos capas ocultas, se muestran en las Tablas 3 y 4 para cada algoritmo.

Tabla 3. Comparación de topologías con dos capas ocultas para el algoritmo L-M.

Neuronas en la capa oculta	R^2	ECM	EAM
7-6	0.9651	0.0357	0.1516
6-7	0.9771	0.0250	0.1167
10-7	0.9401	0.2852	0.3099
7-10	0.9625	0.0577	0.1994
10-6	0.9755	0.0896	0.2479
6-10	0.9464	0.0833	0.2544
6-6	0.9428	0.0553	0.1874
7-7	0.9773	0.0370	0.1622
6-4	0.9753	0.0345	0.1420
4-6	0.8516	0.2213	0.3652
4-7	0.9833	0.0190	0.0933
7-4	0.9570	0.0782	0.2295

Tabla 4. Comparación de topologías con dos capas ocultas para el algoritmo Bay.

Neuronas en la capa oculta	R^2	ECM	EAM
7-4	0.9630	0.2167	0.3704
4-7	0.9957	0.0118	0.0936
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums

Neuronas en la capa oculta	R²	ECM	EAM
10-7	0.9757	0.0936	0.2333
7-10	0.9887	0.0323	0.1410
10-4	0.9888	0.0284	0.1318
4-10	0.9955	0.0046	0.0432
7-7	0.9905	0.0525	0.1860
4-4	0.9981	0.0021	0.0389

A las topologías mostradas en las Tablas 3 y 4, se les realizó la prueba de Friedman para determinar si existían diferencias estadísticamente significativas con respecto a cada configuración. En el primer caso (algoritmo L-M) el resultado del valor-P para la prueba de Friedman fue de 0.6959, mayor que 0.05, por lo que no existen diferencias significativas entre los comportamientos de las diferentes topologías. En el segundo caso (algoritmo Bayesiano) sí se evidenció diferencia entre las medianas de las topologías, presentando un valor-P para la prueba de Friedman de 0.0005, por lo que se realizó la prueba de Wilcoxon para definir la mejor topología neuronal, atendiendo al criterio del error cuadrático medio. Esta prueba se realizó entre la mejor topología de este grupo (6-4-4-1) y las restantes; con base en los criterios: error cuadrático medio, coeficiente de correlación y error absoluto. Los resultados de la prueba de Wilcoxon se muestran en la Tabla 5.

Tabla 5. Comparación de pares de topologías mediante prueba de Wilcoxon.
Topologías comparadas

6-4-4-1 y 6-7-4-1
6-4-4-1 y 6-4-7-1
6-4-4-1 y 6-10-7-1
6-4-4-1 y 6-7-10-1
6-4-4-1 y 6-10-4-1
6-4-4-1 y 6-4-10-1
6-4-4-1 y 6-7-7-1

Existen diferencias estadísticamente significativas respecto al error cuadrático medio entre la topología (6-4-4-1) y todas las restantes con excepción de la que presenta configuración (6-4-10-1). Por tanto, solo pudieran considerarse seleccionables esas dos en este grupo, teniendo en cuenta el criterio del menor error cuadrático medio.
En la Tabla 6 se muestra una selección de las mejores topologías con base en los criterios mencionados, además del coeficiente de determinación calculado para cada una de ellas.

Algoritmo/Topologías	R	ECM	EAM	R^2
L-M/6-6-1	0.9890	0.0177	0.1080	0.9780
L-M/6-7-1	0.9885	0.0336	0.1415	0.9772
Bay/6-4-1	0.9926	0.0092	0.0702	0.9853
Bay/6-7-1	0.9966	0.0080	0.0712	0.9931
L-M/6-4-7-1	0.9833	0.0190	0.0933	0.9669
Bay/6-4-10-1	0.9955	0.0046	0.0432	0.9909
Bay/6-4-4-1	0.9981	0.0021	0.0389	0.9961

Las topologías subrayadas en la Tabla 6 constituyen las mejores combinaciones de estadígrafos. Las cuatro seleccionadas corresponden al algoritmo de entrenamiento Bayesiano, dos de ellas presentan una capa oculta, y las otras dos fueron sometidas a la prueba de Friedman para determinar si existían diferencias estadísticamente significativas. El valor-P obtenido fue de 0.0153, menor que 0.05, evidenciando que existían diferencias con la topología (6-7-1) y se realizó la prueba de Wilcoxon para definir si existían diferencias entre la mejor topología (6-4-4-1) con la configurada (6-4-1), ya que se había determinado, con anterioridad, que no existía diferencia con la (6-4-10-1). El valor-P obtenido fue de 0.0513, por lo que no hay diferencias. De estas últimas cuatro topologías seleccionadas, se puede escoger cualquiera con excepción de la (6-7-1).

Tomando como base los resultados del mejor modelo de acuerdo con la topología de la red neuronal, según los criterios del error cuadrático medio y el coeficiente de correlación por separado, se decidió que el modelo neuronal que mejor predice las mermas en el proceso de añejamiento de ron es el (6-4-4-1). El mayor coeficiente de correlación entre todas las topologías, una moderada complejidad estructural que permite un ahorro en cálculos al software Matlab y bajos valores de error cuadrático medio, son razones que justifican la decisión anterior.
C. Simulación

Con el objetivo de comprobar la capacidad predictiva de la red neuronal, ya entrenada y validada, se utilizó la topología (6-4-4-1) para simular 13 condiciones iniciales de añejamiento; determinadas como la media para cada variable analizada, en los trece meses de investigación; de manera que se asegurara el carácter interpolador de la red. La calidad del modelo se puede observar en la Figura 1, donde se muestran los valores reales y los estimados por el modelo neuronal para las diferentes condiciones iniciales. El error promedio en la estimación es de 3.03%, siendo el error máximo de 7.4%.

![Fig. 1. Comparación entre los valores reales y predichos para el modelo de red neuronal (6-4-4-1).](image)

La línea de regresión entre los valores estimados por el modelo neuronal y los valores de mermas reales, así como el coeficiente de determinación se muestran en la Figura 2.

![Fig. 2. Línea de regresión entre los valores predichos y reales para el modelo de red neuronal (6-4-4-1).](image)
IV. CONCLUSIONES

La red neuronal obtenida con la topología 6-4-4-1 se utilizó para la modelación del añejamiento y demostró su capacidad de estimar satisfactoriamente las mermas en este proceso. El alto valor del coeficiente de determinación (0.9961) entre los valores simulados y los valores reales, y los bajos valores de error cuadrático medio en la validación del modelo indican la conveniencia de la utilización de redes neuronales en la modelación del proceso de añejamiento. Como promedio, el error que la red entrenada comete en la estimación es de un 3.03 %.

CONTRIBUCIÓN DE LOS AUTORES

La recopilación y análisis de la información, así como la escritura del documento, fueron realizadas por Beatriz García Castellanos. La coordinación y organización del trabajo estuvo a cargo de Osney Pérez Ones y Lourdes Zumalacárregui de Cárdenas. Luis López de la Maza apoyó el análisis de la información. Idania Blanco Carvajal apoyó en la interpretación del proceso de añejamiento. Así mismo, todos los autores realizaron aportes significativos al documento y están de acuerdo con su publicación y manifiestan que no existen conflictos de interés en este estudio.

REFERENCIAS

[1] Ministerio de la industria alimentaria. Resolución No. 12/19. La Habana, Cuba, 2019.
[2] J. Marcano, “El ron. Tradición en Las Antillas,” 2019. https://mipais.jmarcano.com/economia/ron.html
[3] I. Witten, and E. Frank. Data Mining. Amsterdam: Morgan Kaufmann Publishers, 2005.
[4] M. Servente, “Algoritmos TDIDT aplicados a la minería de datos inteligente”. Tesis de grado, Universidad de Buenos Aires, Buenos Aires, Feb. 2002.
[5] L. Zumalacárregui, O. Pérez, F. Hernández, G. Cruz, G. “Modelación del equilibrio líquido-vapor a presión constante de mezclas etanol-agua utilizando redes neuronales artificiales,” Tecnología Química, vol. 38 (3), pp. 527-548, Jul. 2018.
[6] H. Abdi, and L. J. Williams “Principal component analysis,” Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2 (4), pp. 433-59, Jul.-Aug.2010. https://doi.org/10.1002/wics.101
[7] E. F. Caicedo, and J. A. López, Una aproximación práctica a las redes neuronales artificiales Santiago de Cali: Programa Editorial Universidad del Valle, Edición digital, Jul. 2017.
[8] J. D. Terán-Villanueva, S. Ibarra-Martínez, J. Laria-Menchaca, J. A. Castán-Rocha, M. G. Treviño-Berrones, A. H. García-Ruiz, and J. E. Martínez-Infante, “Estudio de redes neuronales para el pronóstico
Neural Model for the Prediction of Volume Losses in the Aging Process of Rums

[9] M. A Korany, H. Mahgoub, O. Fahmy, and H. Maher, “Application of artificial neural networks for response surface modelling in HPLC method development,” Journal of Advanced Research, vol. 3 (1), pp. 53-63, Jan. 2012. https://doi.org/10.1016/j.jare.2011.04.001

[10] L. E. López, L. Zumalacárregui, O. Pérez, and O. Llanes, “Obtención de un modelo neuronal para la estimación de la concentración de etanol en la destilería Héctor Molina,” Tecnología Química, vol. 38 (2), pp. 315-325, May. 2018.