Intraoperative vascular Doppler ultrasound blood flow and peak systolic velocity predict early patency in hemodialysis arteriovenous fistula

O volume de fluxo e a velocidade de pico sistólico ao ultrassom vascular com Doppler intraoperatório são preditores de perviedade precoce na fistula arteriovenosa autógena para hemodiálise

Guilherme de Castro-Santos1, Gabriella Yuka Shiomiatsu1, Rafaela Martins dos Santos Oliveira1, Ricardo Jayme Procópio1, Túlio Pinho Navarro1

Abstract

Background: Chronic kidney disease is a major public health problem. Hemodialysis is the most common renal replacement therapy. Arteriovenous fistulas (AVF) are a possible access option, but early failure rates remain high.

Objectives: to investigate the value of intraoperative vascular Doppler ultrasound for predicting early AVF patency.

Methods: Prospective observational study. Consecutive patients undergoing AVF were assessed with vascular Doppler ultrasonography intraoperatively and on days 1, 7, 30, and 60. Patients were divided into groups according to presence or absence of primary and secondary patency. Blood flow (BF) and peak systolic velocity (PSV) were compared. ROC curves were plotted and used to define the PSV and BF values that yielded greatest sensitivity (Sens) and specificity (Spec).

Results: 47 patients met the inclusion criteria and were analyzed. Higher intraoperative PSV and BF values were observed in patients who had primary and secondary patency than in patients with access failure. The values with greatest sensitivity and specificity for predicting 30-day primary patency were 106 cm/s for venous PSV (Sens: 75% and Spec: 71.4%) and 290.5 mL/min for arterial blood flow (Sens: 80.6% and Spec 85.7%). Values for 30-day secondary patency were 106 cm/s for arterial PSV (Sens: 72.7%, Spec: 100%) and 230 mL/min for venous blood flow (Sens: 86.4%, Spec:100%). Values for 60-day primary patency were 106 cm/s for venous PSV (Sens: 74.4%, Spec: 62.5%) and 290.5 mL/min for arterial blood flow (Sens: 80%, Spec: 75%).

Conclusions: Peak systolic velocity and blood flow measured using intraoperative vascular Doppler ultrasound can predict early patency of hemodialysis arteriovenous fistulas.

Keywords: arteriovenous fistula; patency; intraoperative ultrasound; blood flow; peak systolic velocity.

Resumo

Contexto: A insuficiência renal crônica é um problema de saúde pública mundial. A hemodiálise é a principal terapia renal substitutiva. As fístulas arteriovenosas (FAV) são uma possível escolha, mas apresentam altas taxas de falência.

Objetivos: Estudar a relação entre as variáveis hemodinâmicas ao ultrassom vascular com Doppler no intraoperatório e a perviedade precoce da FAV para hemodiálise.

Métodos: Estudo prospectivo observacional. Os pacientes consecutivos foram submetidos a FAV com ultrassonografia vascular com Doppler em intraoperatório nos dias 1, 7, 30 e 60. Eles foram divididos em grupos quanto à presença ou não de perviedade primária e secundária, e o volume de fluxo (VF) e a velocidade de pico sistólico (VPS) foram comparados. Foram realizadas curvas receiver operating characteristic (ROC), com definição de valores de VPS e VF com sensibilidade (S) e especificidade (E).

Resultados: Foram analisados 47 pacientes, os quais preencheram os critérios de inclusão. Os valores de VPS e VF em intraoperatório foram maiores nos pacientes com perviedade primária e secundária comparados com aqueles com falência. Os seguintes valores apresentaram maiores sensibilidade e especificidade para predizer perviedade primária: 106 cm/s para VPS venosa, S: 75%; E: 71.4%; e 290,5 mL/min para VF arterial, S: 80,6%; E: 85,7%. Para perviedade secundária aos 30 dias, foram observadas: 106 cm/s para VF arterial, S: 72,7%; E: 100%; e 230 mL/min para VF venoso, com S: 86,4%; E: 100%. Para a perviedade primária no 60º dia, foram observados: 106 cm/s para VPS venosa, S: 74,4%; E: 62,5%; e 290,5 mL/min para VF arterial, S: 80%; E: 75%.

Conclusões: A velocidade de pico sistólico e o VF ao ultrassom vascular com Doppler intraoperatório são preditores de perviedade precoce na FAV para hemodiálise.

Palavras-chave: fístula arteriovenosa; perviedade; ultrassom intraoperatório; volume de fluxo; velocidade sistólica de pico.

How to cite: Castro-Santos G, Shiomiatsu G, Oliveira RMS, Procópio RJ, Navarro TP. Intraoperative vascular Doppler ultrasound blood flow and peak systolic velocity predict early patency in hemodialysis arteriovenous fistula. J Vasc Bras. 2021;20:e20210098. https://doi.org/10.1590/1677-5449.210098
INTRODUCTION

Chronic kidney disease (CKD) is a global public health problem. It is estimated that in 2017 there were 697.5 million cases of CKD in the global population, 16.7 million of which were in Brazil. The principal renal replacement therapy method is hemodialysis. It is predicted that the demand for hemodialysis will have more than doubled from 2010 to 2030.3

The preferred type of hemodialysis access is an autogenous arteriovenous fistula (AVF). Compared to prostheses and catheters, AVF offers better long-term patency and lower rates of complications, infections, and mortality. However, it is known that patency rates are not ideal and the early failure rate has a major impact, compromising around 20% of AVFs.

Intraoperative vascular Doppler ultrasonography is a very important tool because it can be used to monitor hemodynamic variables in patients undergoing AVF creation. The objective of this study is to evaluate the relationship between hemodynamic variables measured with intraoperative vascular Doppler ultrasonography and early patency of hemodialysis AVFs.

METHODS

The study was authorized by the Ethics Committee at the Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais (MG), Brazil, with CAAE: 03241718.6.0000.5149, decision number: 3.257.774, Brazilian Clinical Trials Registration (Rebec) number: UTN: U1111-1247-880. All patients signed free and informed consent forms, and the confidentiality of participants’ data was fully preserved throughout the process.

The design is an observational, prospective, cohort study. Patients over the age of 18 who underwent elective hemodialysis AVF creation were selected consecutively at the Hospital das Clínicas da UFMG, Belo Horizonte, MG, Brazil, from May 2019 through December 2020. Patients whose access was created using a prosthetic arteriovenous loop were excluded.

In order to reduce the risk of selection bias, all patients who underwent creation of a definitive hemodialysis anastomosis with optimization in ultrasound B-mode. The pulsed wave Doppler ultrasound mode was then set to 3 mm. The angle of insonation (defined as the angle between the ultrasound beam and the direction of blood flow) was then adjusted and maintained at 60 degrees or less. The pulsed Doppler spectral wave form trace was then activated and its scale adjusted.

Intraoperative Doppler ultrasound to predict arteriovenous fistula success performed by the same vascular surgeon, following the hospital’s protocols.

Surgical procedure

Radial-cephalic, brachial-cephalic, brachial-basilic, and ulnar-basilic fistulas were created according to the hospital’s protocols with brachial plexus block or local anesthesia and local intra-arterial and intravenous administration of heparin solution at 1:100. Brachial-basilic fistulas were created in a single intervention with superficial and anterior displacement of the vein. Brachial-brachial fistulas were created in a single operation or in two stages. Single-step surgery was performed using the technique described by Bazan and Schanzer. Two-step procedures consisted of side-to-side anastomosis of the brachial vessels and later superficialization of the most appropriate vein, according to maturation criteria.

Assessment with vascular Doppler ultrasonography

Vascular Doppler ultrasonography was conducted using a Philips CX 50 US (Philips Medical Systems, Andover, MA, United States) with a L9-3 linear transducer (frequency: 9-3 MHz) for intraoperative examinations and a Toshiba Aplio 300 US (Toshiba Medical Systems, Tokyo, Japan) with a L9-3 linear matrix transducer (frequency: 9-3 MHz) for postoperative examinations. There was therefore no direct comparison of variables from the two different systems.

For the intraoperative examination, the values analyzed were those obtained immediately after arteriovenous anastomosis. The diameters of target arteries and veins were measured as the vertical distance between the external walls of the artery and vein, using the electronic measurement tool on the vascular Doppler ultrasonography machine. Hemodynamic parameters were measured with a sagittal scan of the target artery and vein, approximately 3 cm proximal to the anastomosis with optimization in ultrasound B-mode. The pulsed wave Doppler ultrasound mode was then activated and the gate was placed on the center of the arterial or venous lumen and its sample volume set to 3 mm. The angle of insonation (defined as the angle between the ultrasound beam and the direction of blood flow) was then adjusted and maintained at 60 degrees or less. The pulsed Doppler spectral wave form trace was then activated and its scale adjusted.

Assuming that an ideal pulsed Doppler spectral wave form was obtained, it was traced automatically and the vessel hemodynamic parameters displayed and saved. These parameters include the peak systolic velocity (PSV, cm/s) and mean velocity (Vm, cm/s). The values shown are the mean of three consecutive
cardiac cycles. The cross-sectional area of the vessel was calculated assuming that the artery and the vein had a circular cross-section. Blood flow (BF) was subsequently calculated as the product of Vm and cross-sectional area, using the Doppler vascular ultrasound machine’s software.

Patency assessment

Patency was defined as presence of intravascular flow through the recipient vein and assessed using Doppler vascular ultrasound intraoperatively and on postoperative days 1, 7, 30, and 60. Primary patency was defined as a patent fistula with no need for any type of intervention. Secondary patency was defined as a patent fistula with or without intervention.

Sample size calculation

Sample size was calculated using measures of asymmetrical sampling between groups (4:1), considering patency on day 30 vs. arterial BF, with alpha of 0.05 and beta of 0.2, and using data from Saucy et al., in which mean 1 = 230 (194) and mean 2 = 98 (65), achieving sufficiency with 25+6 patients, the sample size for this study.

Statistical analysis

Patients were allocated to groups according to presence or absence of primary and secondary patency on postoperative days 1, 7, 30, and 60. Individual, demographic, and hemodynamic intraoperative vascular Doppler ultrasound (PSV and arterial and venous BF) variables were compared between groups. Normality was assessed with the Shapiro-Wilk test. Comparisons between groups were made using the Welch t test, the Mann-Whitney test, and Fisher’s exact test, as appropriate, and patency prediction models were analyzed using receiver operating characteristic (ROC) curves. Patency rates were illustrated using Kaplan-Meier plots. All analyses were performed using Prism GraphPad 9.00 (GraphPad Software, San Diego, CA, United States) for iOS.

RESULTS

Fifty-one patients were selected for the study. Four of them underwent creation of polytetrafluoroethylene (PTFE) prosthetic arteriovenous accesses and were excluded from the sample (Figure 1). Demographic and individual data are shown in Tables 1 and 2. No participants were lost to the sample during the period.

Primary and secondary patency rates were, respectively, 89.4% and 93.6% on postoperative day 1; 87.2% and 93.6% on day 7; 86.96% and 96.62% on day 30; and 82.98% and 91.49% on day 60 (Figure 2). Five patients had thrombosis on day 1, two of whom underwent thromboembolectomy with a Fogarty catheter followed by reconstruction of the anastomosis and systemic anticoagulation with unfractionated heparin and warfarin; one of whom underwent creation of a...
more proximal substitute anastomosis; and two of whom were not reoperated. One patient suffered an occlusion on the 4th postoperative day and underwent thromboembolectomy with a Fogarty catheter followed by reconstruction of the anastomosis and systemic anticoagulation with unfractionated heparin and warfarin. This patient had two episodes of hematoma of the surgical wound, needing for surgical drainage and prompt suspension of systemic anticoagulation. On the 17th postoperative day, another patient exhibited thrombosis of the AVF, requiring thromboembolectomy with a Fogarty catheter, followed by reconstruction of the anastomosis and systemic anticoagulation with unfractionated heparin and warfarin. On the 60th postoperative day, another patient exhibited occlusion of the AVF after a puncture accident and was not reoperated (Figure 1).

Comparison of intraoperative arterial and venous PSV and BF showed that values were higher for functional fistulas than non-functional fistulas, both when evaluated according to primary patency and according to secondary patency (Figure 3). Comparison of intraoperative arterial and venous PSV and BF between groups with and without patent AVF at 60 days revealed that values were higher for the primary patency group, but not for the secondary patency group (Table 3).

These results were used to construct predictive models of primary and secondary patency on the 30th day after creation of the AVF and primary patency on the 60th day, according to hemodynamic variables. Among the several ROC curves plotted for 30-day primary patency, arterial BF proved to be the variable with greatest predictive value (area under the curve

Table 1. Individual variables, comorbidities, preoperative laboratory tests, and imaging exams.

Variable	Mean (± SD)
Age (mean ± SD)	56±15.8
Male (%)	22 (46)
BMI (mean ± SD)	26.4±5.9
Diabetes (%)	19 (40)
Hypertension (%)	40 (85)
Pre-dialysis (%)	33 (70)
Brachial plexus block (%)	38 (81)
Hemoglobin (mean ± SD)	11.3±1.75
Urea (mean ± SD)	120±37
Median creatinine (interquartile range)	4.43 (3.2-6.7)
Platelets – mean (minimum-maximum)	225,000 (187,000-272,000)
INR (mean ± SD)	0.96±0.05
Diameter of donor artery (mean ± SD)	3.88±1.40
Diameter of recipient vein (mean ± SD)	3.57±1.36

SD = standard deviation; BMI = body mass index; INR = international normalized ratio.

Table 2. Types of arteriovenous fistula and number of prior surgeries.

AVF types (%)	Number (%)
Radial-cephalic	17 (36.17)
Brachial-basilic	9 (19.15)
Brachial-brachial	2 (4.25)
Brachial-cephalic	16 (34.04)
Ulnar-basilic	1 (2.13)
Ulnar-ulnar	1 (2.13)
Radial-basilic	1 (2.13)

Previous fistulas (%)	Number (%)
0	66 (31)
1	17 (8)
2	15 (7)
3	2 (1)

Figure 2. Primary and secondary patency of hemodialysis arteriovenous fistulas up to the 60th postoperative day.

Figure 3. Intraoperative spectral analysis of the recipient vein soon after creation of the anastomosis. 2A) Fistula non-functional on 1st postoperative day. Peak systolic velocity (PSV) = 56 cm/s and blood flow = 142 mL/min. 2B) Fistula functional on 1st postoperative day. PSV = 192 cm/s and blood flow = 463 mL/min. TAMV = Time-average maximum velocity.
Intraoperative Doppler ultrasound to predict arteriovenous fistula success

Castro-Santos et al. J Vasc Bras. 2021;20:e20210098. https://doi.org/10.1590/1677-5449.210098

Figure 4. Receiver operating characteristic (ROC) curves comparing intraoperative vascular Doppler ultrasound variables and primary patency at 30 days. PSV = peak systolic velocity; BF = blood flow; AUC = area under the curve.

Table 3. Comparison of arterial and venous peak systolic velocity (PSV) and blood flow volume (BF) measured with intraoperative vascular Doppler ultrasound for patent and non-patent AVF at 30 and 60 postoperative days.

| Primary patency on 30th postoperative day. Values expressed as means and standard deviations |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Yes (n = 40) | No (n = 7) | p |
| PSV artery cm/s | 150 (70.08) | 82.93 (33.66) | 0.0082 |
| PSV vein cm/s | 170 (80.72) | 93.66 (46.86) | 0.0038 |
| BF artery mL/min | 634 (444) | 266 (261) | 0.0084 |
| BF vein mL/min | 602 (462) | 432 (272) | 0.4451 |

| Secondary patency on 30th postoperative day. Values expressed as means and standard deviations |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Yes (n = 44) | No (n = 3) | p |
| PSV artery cm/s | 144.4 (69.47) | 72.3 (37.26) | 0.0498 |
| PSV vein cm/s | 165.5 (78.8) | 58.47 (37.69) | 0.0104 |
| BF artery mL/min | 605.7 (439) | 156.3 (100.1) | 0.0132 |
| BF vein mL/min | 557.6 (330.8) | 147.3 (78.14) | 0.0028 |

| Primary patency on 60th postoperative day. Values expressed as means and standard deviations |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Yes (n = 39) | No (n = 8) | p |
| PSV artery cm/s | 150.2 (70.92) | 88.79 (35.30) | 0.0157 |
| PSV vein cm/s | 170.3 (81.76) | 102.49 (49.49) | 0.0065 |
| BF artery mL/min | 629.5 (449.6) | 333.3 (308.1) | 0.042 |
| BF vein mL/min | 552.5 (323.7) | 428.5 (397.9) | 0.1185 |

| Secondary patency on 60th postoperative day. Values expressed as means and standard deviations |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Yes (n = 43) | No (n = 4) | p |
| PSV artery cm/s | 144.7 (70.26) | 86.68 (41.86) | 0.1058 |
| PSV vein cm/s | 165.6 (79.73) | 84.10 (59.8) | 0.0508 |
| BF artery mL/min | 600.6 (443.8) | 318.3 (334.0) | 0.1411 |
| BF vein mL/min | 394.8 (498.9) | 544.1 (322.3) | 0.146 |

[AUC] = 0.8095) (Figure 4). The cutoff points with greatest sensitivity and specificity for predicting functional AVFs with primary patency on the 30th postoperative day were 105.5 cm/s for arterial PSV, with sensitivity of 72.5% (95% confidence interval [95%CI]: 57.17-83.89%) and specificity of 71.4% (95%CI: 35.89-94.92%); 106 cm/s for venous PSV, with sensitivity of 75% (95%CI: 59.81-85.81%) and specificity of 71.4% (95%CI: 35.89-94.92%); and 290.5 mL/min for arterial BF, with sensitivity of 80.6% (95%CI: 64.97-90.25%) and specificity of 85.7% (95%CI: 48.69-99.27%) (Table 4).

The variable with greatest predictive value for secondary patency 30 days after creation of the AVF was venous BF (AUC = 0.9545) (Figure 5). The cutoff points with greatest sensitivity and specificity to predict this outcome were 106 cm/s for arterial PSV, with sensitivity of 72.7% (95%CI: 58.15-83.65%) and specificity of 100% (95%CI: 43.85-100%); 230 mL/min for venous BF, with sensitivity of 86.4% (95%CI: 52.5-99.9%).
Intraoperative Doppler ultrasound to predict arteriovenous fistula success

For primary patency on the 60th postoperative day, arterial PSV, venous PSV, and arterial BF had AUC of 0.7692, 0.7356, and 0.7321, respectively (Figure 6). The cutoff points yielding the greatest values for sensitivity and specificity for this outcome were 105.5 cm/s for arterial PSV, with sensitivity of 71.8% (95%CI: 56.22-83.46%) and specificity of 62.5% (95%CI: 53.58-81.43%), 106 cm/s for venous PSV, with sensitivity of 74.4% (95%CI: 58.92-85.43%) and specificity of 62.5% (95%CI: 50.0 to 83.46%), and 290.5 mL/min for arterial BF, with sensitivity of 80% (95%CI: 64.11-89.96%) and specificity of 75% (95%CI: 40.93-95.56%).

Table 4: Sensitivity and specificity of a selection of cutoff points for arterial and venous peak systolic velocity (PSV) and blood flow (BF) measured with intraoperative vascular Doppler ultrasound for detection of primary and secondary patency at 30 postoperative days and primary patency at 60 postoperative days.

30-day primary patency

Value	Sensitivity	95%CI	Specificity	95%CI	
PSV artery cm/s	> 99.40	72.5	57.17% to 83.89%	57.1	25.05% to 84.18%
	> 105.5	72.5	57.17% to 83.89%	71.4	35.89% to 94.92%
	> 108.5	70.0	54.57% to 81.93%	71.4	35.89% to 94.92%
PSV vein cm/s	> 93.85	80.0	65.24% to 89.50%	57.1	25.05% to 84.18%
	> 99.15	77.5	62.50% to 87.68%	57.1	25.05% to 84.18%
	> 106.0	75.0	59.81% to 85.81%	71.4	35.89% to 94.92%
BF artery mL/min	> 262.5	80.6	64.97% to 90.25%	85.7	48.69% to 99.27%
	> 290.5	80.6	64.97% to 90.25%	85.7	48.69% to 99.27%
	> 318.5	77.8	61.92% to 88.28%	85.7	48.69% to 99.27%

30-day secondary patency

Value	Sensitivity	95%CI	Specificity	95%CI	
PSV artery cm/s	> 93.85	77.3	63.01% to 87.16%	66.7	11.85% to 98.29%
	> 99.15	75.0	60.56% to 85.43%	66.7	11.85% to 98.29%
	> 106.0	72.7	58.15% to 83.65%	100.0	43.85% to 100.0%
BF vein mL/min	> 219.0	88.6	76.02% to 95.05%	66.7	11.85% to 98.29%
	> 225.0	86.4	73.29% to 93.60%	66.7	11.85% to 98.29%
	> 230.0	86.4	73.29% to 93.60%	100.0	43.85% to 100.0%
BF artery cm/s	> 238.5	80.0	65.24% to 89.50%	66.7	11.85% to 98.29%
	> 251.5	77.5	62.50% to 87.68%	66.7	11.85% to 98.29%
	> 262.5	77.5	62.50% to 87.68%	100.0	43.85% to 100.0%

60-day primary patency

Value	Sensitivity	95%CI	Specificity	95%CI	
PSV artery cm/s	> 99.40	71.8	56.22% to 83.46%	50.0	21.52% to 78.48%
	> 105.5	71.8	56.22% to 83.46%	62.5	30.57% to 86.32%
	> 108.5	69.2	53.58% to 81.43%	62.5	30.57% to 86.32%
PSV vein cm/s	> 106.0	74.4	58.92% to 85.43%	62.5	30.57% to 86.32%
	> 111.1	71.8	56.22% to 83.46%	62.5	30.57% to 86.32%
	> 114.6	69.2	53.58% to 81.43%	62.5	30.57% to 86.32%
BF artery mL/min	> 262.5	80.0	64.11% to 89.96%	62.5	30.57% to 86.32%
	> 290.5	80.0	64.11% to 89.96%	75.0	40.93% to 95.56%
	> 318.5	77.1	60.98% to 87.93%	75.0	40.93% to 95.56%

95%CI = 95% confidence interval.

For primary patency on the 60th postoperative day, arterial PSV, venous PSV, and arterial BF had AUC of 0.7692, 0.7356, and 0.7321, respectively (Figure 6). The cutoff points yielding the greatest values for sensitivity and specificity for this outcome were 105.5 cm/s for arterial PSV, with sensitivity of 71.8% (95%CI: 56.22-83.46%) and specificity of 62.5% (95%CI: 50.0 to 83.46%), 106 cm/s for venous PSV, with sensitivity of 74.4% (95%CI: 58.92-85.43%) and specificity of 62.5% (95%CI: 50.0 to 83.46%), and 290.5 mL/min for arterial BF, with sensitivity of 80% (95%CI: 64.11-89.96%) and specificity of 75% (95%CI: 40.93-95.56%).

DISCUSSION

Intraoperative hemodynamic parameters proved to be potential predictors of hemodialysis AVF patency. Arterial BF exhibited the greatest predictive value for primary patency on the 30th day, with sensitivity exceeding 80% with a cutoff point of 290.5 mL/min. In turn, venous BF was the variable with greatest predictive value for secondary patency on the 30th day, with sensitivity exceeding 85% and specificity...
of failure to mature within 30 days of creation of radial-cephalic AVFs, identifying an intraoperative BF cutoff point of 120 mL/min, but with a lower patency rate (77.58%). Cyrek et al.14 compared radial-cephalic AVFs with high (> 200 mL/min) and low intraoperative BF (< 200 mL/min), observing significantly higher primary and secondary 1-year patency rates in high-flow AVFs (100% and 93.15%, respectively) when compared with low-flow AVFs (81.25% and 75%, respectively). Other observational studies have reiterated this same relationship between postoperative BF and AVF failure, identifying cutoff points ranging from 160 mL/min to 300 mL/min.15,16

With regard to PSV values, several studies have confirmed the association observed. Karanan et al.17 analyzed AVF outcomes according to the arterial PSV value on postoperative days 1 and 8, confirming that PSV was a significant predictor of AVF outcome. Similarly, Abreu et al.18 conducted a 5-year follow-up study that demonstrated that PSV in ulnar and radial arteries had predictive value for secondary patency.

We observe certain limitations of this study. It is a single-center study with a single observer, so interobserver variations and biases were neither assessed nor validated. The sample was highly heterogeneous, with a wide variety of AVF types. Two different ultrasonography systems were employed. A Philips CX 50 was used for intraoperative examinations and a Toshiba Aplio 300 was used for postoperative examinations. There may be a minor variation in PSV and BF values measured by the two machines. The study also had a small patient sample, so univariate analysis was employed, which can lead to certain limitations, primarily related to the possibility of predicting a given outcome. Another important limitation was the small number of primary patency failure events by day 30, which could have contributed to the very wide CIs.

The subject investigated in this study still constitutes an open question and one that has been studied little. Since intraoperative vascular Doppler ultrasonography is an investigative method that is widely available and has no side effects or risks for patients, it is an important tool for vascular surgeons. This examination provides important variables in real time, which can correlate with short-term success of the surgery and may provoke changes to the surgical strategy during the procedure, leading to re-creation of an access or even to a change of anastomosis site, depending on the PSV and BF values observed. Although PSV has lower sensitivity and specificity than BF, it is a variable that is easy to obtain and analyze and is available on almost all vascular ultrasonography systems.
CONCLUSIONS

Peak systolic velocity and BF measured with intraoperative vascular Doppler ultrasound are predictors of early patency after AVF hemodialysis surgery. They are both reliable assessment parameters for predicting early AVF failure and offer the opportunity to change the surgical strategy intraoperatively in order to achieve better outcomes during the postoperative period.

REFERENCES

1. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease. 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709-33. PMid:32061315.
2. Carney EF. The impact of chronic kidney disease on global health. Nat Rev Nephrol. 2020;16(5):251. http://dx.doi.org/10.1038/s41581-020-0268-7. PMid:32144399.
3. Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975-82. http://dx.doi.org/10.1016/S0140-6736(14)61601-9. PMid:25777665.
4. Lok CE, Huber TS, Lee T, et al. KDOQI clinical practice guideline for vascular access: 2019 update. Am J Kidney Dis. 2020;75(4,Suppl 2):S1-S164. http://dx.doi.org/10.1053/j.ajkd.2019.12.001. PMid:32778223.
5. Huijbregts HJT, Bots ML, Wittens CHA, Schrama YC, Moll FL, Blankestein PJ. Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clin J Am Soc Nephrol. 2008;3(3):714-9. http://dx.doi.org/10.2215/CJN.02950707. PMid:18256379.
6. Lok CE, Sontrop JM, Tomlinson G, et al. Cumulative patency of arteriovenous fistulas for haemodialysis: a systematic review and meta-analysis of efficacy and safety outcomes. Eur J Vasc Endovasc Surg. 2017;54(4):513-22. http://dx.doi.org/10.1016/j.ejvs.2017.06.024. PMid:28843984.
7. Hui SH, Folsom R, Killewich LA, Michalek JE, Davies MG, Pounds LL. A comparison of preoperative and intraoperative vein mapping sizes for arteriovenous fistula creation. J Vasc Surg. 2018;67(6):1813-20. http://dx.doi.org/10.1016/j.vrs.2017.06.067. PMid:29452835.
8. Bylsma LC, Gage SM, Reichert H, Dahl SL, Lawson JH. Arteriovenous fistulae for haemodialysis: a systematic review and meta-analysis of efficacy and safety outcomes. Eur J Vasc Endovasc Surg. 2017;55(4):513-22. http://dx.doi.org/10.1016/j.ejvs.2017.06.024. PMid:28843984.
9. Hui SH, Folsom R, Killewich LA, Michalek JE, Davies MG, Pounds LL. A comparison of preoperative and intraoperative vein mapping sizes for arteriovenous fistula creation. J Vasc Surg. 2018;67(6):1813-20. http://dx.doi.org/10.1016/j.vrs.2017.06.067. PMid:29452835.
10. Farber A, Imney PB, Huber TS, et al. Multiple preoperative and intraoperative factors predict early fistula thrombosis in the Hemodialysis Fistula Maturation Study. J Vasc Surg. 2016;63(1):161-70.E6. http://dx.doi.org/10.1016/j.vrs.2015.07.086. PMid:26718822.
11. de Castro-Santos G, Salles AG, Dos Anjos GS, Procópio RJ, Navarro TP. Brachial vein transposition: an alternative to hemodialysis arteriovenous graft. J Vasc Bras. 2019;18:e20190077. PMid:31807129.
12. Bazan HA, Schanzer H. Transposition of the brachial vein: a new source for autologous arteriovenous fistulas. J Vasc Surg. 2004;40(1):184-6. http://dx.doi.org/10.1016/j.jvs.2004.03.044. PMid:15218484.
13. Saucy F, Haesler E, Haller C, Déglise S, Teta D, Corpataux J. Is intraoperative blood flow predictive for early failure of radiocephalic arteriovenous fistula? Nephrol Dial Transplant. 2010;25(3):862-7. http://dx.doi.org/10.1093/ndt/gfp577. PMid:19892754.
14. Cyrek AE, Bernheim J, Juntermanns B, Huyen P, Pacha A, Hoffmann JN. Intraoperative use of transit time flow measurement improves patency of newly created radiocephalic arteriovenous fistulas in patients requiring hemodialysis. J Vasc Access. 2020;21(6):990-6. http://dx.doi.org/10.1177/1129798209201661. PMid:32375582.
15. Benaragama KS, Barwell J, Lord C, et al. Post-operative arteriovenous fistula blood flow influences primary and secondary patency following access surgery. J Ren Care. 2018;44(3):134-41. http://dx.doi.org/10.1011/jorc.2012.12238. PMid:29520968.
16. Usta E, Elkinawi R, Salehi-Gilani S, et al. Risk factors predicting the successful function and use of autogenous arteriovenous fistulae for hemodialysis. Thorac Cardiovasc Surg. 2013;61(5):438-44. PMid:23169107.
17. Karanam S, Dasari R, Kumar A, Tyagi A, Kumar S, Lakshmi AY. Hemodialysis arteriovenous fistula maturation and role of perioperative vascular mapping. J Dr NTR Univ Health Sci. 2019;8(4):257-60. http://dx.doi.org/10.4103/ JDRNTRUS/JDRNTRUS_55_19. PMid:31807129.
18. Abreu R, Rooja S, Vallespin J, Vinuesa X, Iglesias R, Ibeas J. Predictors of early failure and secondary patency in native arteriovenous fistulae for hemodialysis. Int Angiol. 2018;37(4):310-4. http:// dx.doi.org/10.2215/CJN.00730112. PMid:29520968.

Correspondence
Guilherme de Castro Santos
Universidade Federal de Minas Gerais - UFMG
Rua Professor Arduíno Bolivar, 276, apartamento 500, Bairro Santo Antônio
CEP: 30350-140 – Belo Horizonte (MG), Brazil
Tel.: +55 (31) 3409-9759
E-mail: gcsc2000@gmail.com

Author information
GCS - Vascular surgeon, full member of Sociedade Brasileira de Angiologia e Cirurgia Vasculares (SBACV); assistant professor at Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG); MSc in Cirurgia; PhD candidate in Cirurgia, UFMG.
GYS - Medical student; volunteer at Programa de Iniciação Cientifica, Universidade Federal de Minas Gerais (UFMG).
RMSO - Medical student, scholarholder at junior scientific initiation program from ADRC Program, Pró-reitoria de Pesquisa da Universidade Federal de Minas Gerais (UFMG).
RJP - Vascular and endovascular surgeon, full member of Sociedade Brasileira de Angiologia e Cirurgia Vasculares (SBACV); Serviço de Cirurgia Endovascular; Hospital das Clínicas, Universidade Federal de Minas Gerais (UFMG).
TPN - Vascular and endovascular surgeon, full member of Sociedade Brasileira de Angiologia e Cirurgia Vasculares (SBACV); associate professor, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG); PhD in Cirurgia from UFMG; Serviço de Vascular Cirurgia coordinador; Hospital das Clínicas, UFMG.

Author contributions
Conception and design: GCS, TPN
Analysis and interpretation: GCS
Data collection: GCS, GYS, RMSO
Writing the article: GCS, GYS, RMSO
CRITICAL REVIEW OF THE ARTICLE: RJP, TPN
Final approval of the article*: GCS, GYS, RMSO, RJP, TPN
Statistical analysis: GCS
Overall responsibility: GCS, TPN

*All authors have read and approved of the final version of the article submitted to J Vasc Bras.
O volume de fluxo e a velocidade de pico sistólico ao ultrassom vascular com Doppler intraoperatório como preditores de perviedade precoce na fístula arteriovenosa autógena para hemodiálise

Intraoperative vascular Doppler ultrasound blood flow and peak systolic velocity predict early patency in hemodialysis arteriovenous fistula

Guilherme de Castro-Santos, Gabriella Yuka Shiomatsu, Rafaela Martins dos Santos Oliveira, Ricardo Jayme Procópio, Túlio Pinho Navarro

Resumo

Contexto: A insuficiência renal crônica é um problema de saúde pública mundial. A hemodiálise é a principal terapia renal substitutiva. As fístulas arteriovenosas (FAV) são uma possível escolha, mas apresentam altas taxas de falência.

Objetivos: Este estudo tem como objetivo avaliar a relação entre as variáveis hemodinâmicas ao ultrassom vascular com Doppler no intraoperatório e a perviedade precoce da FAV para hemodiálise. Métodos: Tratou-se de um estudo prospectivo observacional. Os pacientes consecutivos foram submetidos a FAV com ultrassonografia vascular com Doppler em intraoperatório nos dias 1, 7, 30 e 60. Eles foram divididos em grupos quanto à presença ou não de perviedade primária e secundária, e o volume de fluxo (VF) e a velocidade de pico sistólico (VPS) foram comparados. Foram realizadas curvas receiver operating characteristic (ROC), com definição de valores de VPS e VF com sensibilidade (S) e especificidade (E). Resultados: Foram analisados 47 pacientes, os quais preencheram os critérios de inclusão. Os valores de VPS e VF intraoperatório foram maiores nos pacientes com perviedade primária e secundária comparados àqueles com falência. Os seguintes valores apresentaram maiores sensibilidade e especificidade para predizer perviedade primária aos 30 dias: 106 cm/s para VF venoso, S: 75%; E: 71,4% e 290,5 ml/min para VF arterial, S: 80,6%; E: 85,7%. Para perviedade secundária aos 30 dias, foram observados: 106 cm/s para VF arterial, S: 72,7%; E: 100%; e 230 ml/min para VF venoso, com S: 86,4%; E: 100%. Para a perviedade primária no 60º dia, foram observados: 106 cm/s para VF venoso, S: 74,4%; E: 62,5% e 290,5 ml/min para VF arterial, S: 80%; E: 75%. Conclusões: A velocidade de pico sistólico e o VF ao ultrassom vascular com Doppler intraoperatório são preditores de perviedade precoce na FAV para hemodiálise.

Palavras-chave: fístula arteriovenosa; perviedade; ultrassom intraoperatório; volume de fluxo; velocidade sistólica de pico.

Abstract

Background: Chronic kidney disease is a major public health problem. Hemodialysis is the most common renal replacement therapy. Arteriovenous fistulas (AVF) are a possible access option, but early failure rates remain high. Objectives: To investigate the value of intraoperative vascular Doppler ultrasound for predicting early AVF patency. Methods: Prospective observational study. Consecutive patients undergoing AVF were assessed with vascular Doppler ultrasonography intraoperatively and on days 1, 7, 30, and 60. Patients were divided into groups according to presence or absence of primary and secondary patency. Blood flow (BF) and peak systolic velocity (PSV) were compared. ROC curves were plotted and used to define the PSV and BF values that yielded greatest sensitivity (Sens) and specificity (Spec). Results: 47 patients met the inclusion criteria and were analyzed. Higher intraoperative PSV and BF values were observed in patients who had primary and secondary patency than in patients with access failure. The values with greatest sensitivity and specificity for predicting 30-day primary patency were 106 cm/s for venous PSV (Sens: 75% and Spec: 71.4%) and 290.5 ml/min for arterial blood flow (Sens: 80.6% and Spec 85.7%). Values for 30-day secondary patency were 106 cm/s for arterial PSV (Sens: 72.7%, Spec: 100%) and 230 ml/min for venous blood flow (Sens: 86.4%, Spec 100%). Values for 60-day primary patency were 106 cm/s for venous PSV (Sens: 74.4%, Spec: 62.5%) and 290.5 ml/min for arterial blood flow (Sens: 80%, Spec: 75%). Conclusions: Peak systolic velocity and blood flow measured using intraoperative vascular Doppler ultrasound can predict early patency of hemodialysis arteriovenous fistulas.

Keywords: arteriovenous fistula; patency; intraoperative ultrasound; blood flow; peak systolic velocity.

Como citar: Castro-Santos G, Shiomatsu GY, Oliveira RMS, Procópio RJ, Navarro TP. O volume de fluxo e a velocidade de pico sistólico ao ultrassom vascular com Doppler intraoperatório como preditores de perviedade precoce na fístula arteriovenosa autógena para hemodiálise. J Vasc Bras. 2021;20:e20210098. https://doi.org/10.1590/1677-5449.210098
INTRODUÇÃO

A doença renal crônica (DRC) é um problema de saúde pública mundial1. Em 2017, estimou-se 697,5 milhões de casos de DRC na população global, sendo 16,7 milhões apenas no Brasil1,2. A principal modalidade de terapia renal substitutiva é a hemodiálise. Projetá-se que a demanda pela hemodiálise aumente em mais do que o dobro entre 2010 e 20303.

Entre os diferentes tipos de acesso para hemodiálise, há preferência pela fistula arteriovenosa autógena (FAV)4. Se comparada às próteses e aos cateteres, a FAV possui maior perviedade a longo prazo e menores taxas de complicações, infecções e mortalidade5,6. Entretanto, sabe-se que as taxas de perviedade não são ideais, e a falência precoce é um fator de grande impacto, atingindo cerca de 20% das FAVs7,8.

A ultrassonografia vascular com Doppler intraoperatória mostra-se como ferramenta de grande importância, uma vez que torna possível acompanhar variáveis hemodinâmicas nos pacientes submetidos à confecção da FAV9,10. Este estudo teve como objetivo avaliar a relação entre as variáveis hemodinâmicas ao ultrassom vascular com Doppler no intraoperatório e a perviedade precoce da FAV para hemodiálise.

MÉTODOS

O estudo foi autorizado pelo comitê de ética da Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais (MG), Brasil, CAAE: 03241718.0.0000.5149, número do parecer: 3.257.774, registrado no Registro Brasileiro de Ensaios Clínicos (Rebec), número do UTN: U1111-1247-880. Todos os pacientes assinaram o Termo de Consentimento Livre e Esclarecido, e a confidencialidade dos dados dos participantes foi plenamente respeitada em todos os processos.

Tratou-se de um estudo observacional do tipo coorte prospectivo. Foram selecionados pacientes consecutivos, maiores de 18 anos submetidos à confecção eletiva de FAV para hemodiálise no Hospital das Clínicas da UFMG, Belo Horizonte, MG, Brasil, entre maio de 2019 e dezembro de 2020. Pacientes submetidos a confecção do acesso com prótese arteriovenosa foram excluídos. Para reduzir o risco de viés de seleção, todos os pacientes submetidos à confecção de acesso definitivo para hemodiálise no período estudado foram convidados a participar do estudo. Todos os pacientes convidados aceitaram a participação.

A avaliação pré-operatória incluiu exame clínico e mapeamento ao ultrassom vascular com Doppler. Foi dada preferência para a anastomose arteriovenosa o mais distal possível, com diâmetro mínimo para a artéria doadora de 2 mm e para a veia receptora de 3 mm. Durante o intraoperatório, foi realizado exame de ultrassonografia vascular com Doppler. As fistulas e os exames de ultrassonografia vascular com Doppler foram realizados de acordo com os protocolos do hospital e pelo mesmo cirurgião vascular.

Procedimento cirúrgico

As fistulas radiocefálica, braquiocefálica, braquiobasílica e ulnar-basílica foram confeccionadas de acordo com os protocolos do hospital, com bloqueio do plexo braquial ou anestesia local e administração local intra-arterial e intravenosa de solução de heparina na proporção de 1:100. As fistulas braquiobasílicas foram confeccionadas em uma única intervenção com deslocamento superficial e anterior da veia. As fistulas braquiobraquiais foram realizadas em tempo único ou em dois tempos. A cirurgia em dois tempos foi realizada utilizando a técnica descrita por Bazan e Schanzer12. A cirurgia em dois tempos foi realizada com anastomose laterolateral entre os vasos braquiais com posterior superficialização da veia mais adequada conforme os critérios de maturação.

Avaliação com ultrassonografia vascular com Doppler

A ultrassonografia vascular com Doppler foi realizada usando os aparelhos Philips CX 50 US (Philips Medical Systems, Andover, MA, EUA) e um transdutor linear L9-3 (frequência 9-3 MHz), para os exames intraoperatórios, e Toshiba Aplio 300 US (Toshiba Medical Systems, Tóquio, Japão) e um transdutor de matriz linear L9-3 (frequência 9-3 MHz) para os exames pós-operatórios. Dessa forma, não houve comparação direta de variáveis entre aparelhos diferentes.

Para o exame intraoperatório, considerou-se os valores obtidos no momento imediatamente após a anastomose arteriovenosa. Os diâmetros da artéria e da veia-alvo foram medidos como a distância vertical entre as paredes externas da artéria e da veia, usando o paquímetro eletrônico na máquina de ultrassonografia vascular com Doppler. Os parâmetros hemodinâmicos foram realizados com uma varredura sagital da artéria e da veia-alvo, aproximadamente 3 cm proximamente à anastomose, e a imagem de ultrassom modo B foi otimizada. O modo de ultrassom Doppler de onda pulsada foi, então, ativado, o gate size foi localizado no centro do lúmen arterial ou venoso e o tamanho da amostra foi ajustado para 3 mm. Em seguida, o ângulo de insonação, definido como o ângulo entre o feixe de ultrassom e a direção do fluxo sanguíneo, foi ajustado e mantido em 60 graus ou menos. O traçado da forma de onda espectral Doppler de onda pulsada foi, então, ativado, e a escala, ajustada. Uma vez que uma forma de onda espectral Doppler de onda pulsada ideal foi alcançada, ela foi automaticamente traçada, e os parâmetros hemodinâmicos vasculares foram exibidos e registrados. Os parâmetros incluíram velocidade sistólica de pico (VPS, cm/s) e velocidade...
média (Vm, cm/s). Os valores exibidos eram de uma média de três ciclos cardíacos consecutivos. A área da seção transversal do vaso foi calculada assumindo que a artéria e a veia tinham uma seção transversal circular. O volume de fluxo (VF) foi subseqüentemente calculado como um produto da Vm e da área transversal, utilizando o software da máquina de ultrassom vascular com Doppler.

Avaliação da perviedade

A perviedade foi considerada como a presença de fluxo intravascular em veia receptora e avaliada através do ultrassom vascular com Doppler em intraoperatório e nos dias 1, 7, 30 e 60 do pós-operatório. A perviedade primária foi considerada como fistulas pérvias sem nenhum tipo de intervenção. A perviedade secundária foi considerada como fistulas pérvias com e sem intervenções.

Cálculo do tamanho da amostra

Foram utilizadas medidas assimétricas de amostragem entre os grupos (4:1), considerando a perviedade no D30 vs. o VF da artéria, com alfa 0,05 e beta 0,2, e, utilizando os dados de Saucy et al.\(^\text{13}\), em que média 1 = 230 (194) e média 2 = 98 (65), haveria suficiência para 25+6 pacientes, contemplando a amostra deste estudo.

Análise estatística

Os pacientes foram divididos em grupos quanto à presença ou não de perviedade primária e secundária nos dias 1, 7, 30 e 60 após a cirurgia. Variáveis individuais, demográficas e hemodinâmicas ao ultrassom vascular com Doppler em intraoperatório – VPS e VF arteriais e venosos – foram comparadas entre os grupos. Para avaliação da normalidade, foi utilizado o teste de Shapiro-Wilk. A comparação entre grupos foi feita por meio dos testes t de Welch, de Mann-Whitney e exato de Fisher, quando adequados, e os modelos de previsão de perviedade foram analysados por meio da curva receiver operating characteristic (ROC). As taxas de perviedade foram demonstradas por meio de curvas de Kaplan-Meier. Todas as análises foram realizadas no software Prism GraphPad 9.0.0 (GraphPad Software, San Diego, CA, EUA) para iOS.

RESULTADOS

Cinquenta e um pacientes foram selecionados para o estudo. Destes, quatro foram submetidos à confecção do acesso por meio de prótese arteriovenosa de polietileno (PTFE) e excluídos da amostra (Figura 1). Os dados demográficos e individuais estão demonstrados nas Tabelas 1 e 2. Não houve perda de participantes no período.

As taxas de perviedade primária e secundária foram, respectivamente, 89,4% e 93,6% no dia 1; 87,2% e 93,6% no dia 7; 86,96% e 96,62% no 30; e 82,98% e 91,49% no dia 60 do pós-operatório (Figura 2). Dos cinco pacientes que trombosaram no dia 1 do pós-operatório, dois foram submetidos a tromboembolectomia com cateter de Fogarty, seguido por reconfecção da anastomose e anticoagulação sistêmica com heparina não fracionada e varfarina; um paciente foi submetido a confecção de nova anastomose mais
proximal; e dois pacientes não foram reabordados. Um paciente apresentou oclusão no 4º dia do pós-operatório e foi submetido a tromboembolectomia com cateter de Fogarty, seguido por reconfeção da anastomose e anticoagulação sistêmica com heparina não fracionada e varfarina. Esse paciente apresentou dois episódios de hematomas de ferida cirúrgica, sendo optado por suspensão da anticoagulação sistêmica. No 17º dia do pós-operatório, outro paciente apresentou trombose da FAV, necessitando de tromboembolectomia com cateter de Fogarty, seguido por reconfeção da anastomose e anticoagulação sistêmica com heparina não fracionada e varfarina. No 60º dia do pós-operatório, outro paciente apresentou oclusão da FAV após acidente de punção e não foi reabordado (Figura 1).

Ao comparar a VPS e o VF arterial e venoso no intraoperatório, observa-se um maior valor para as fístulas funcionantes tanto para perviedade primária quanto secundária comparadas às fístulas não funcionantes (Figura 3). Ao comparar a VPS e o VF arterial e venoso no intraoperatório entre os grupos que apresentaram FAV pérvia e não aos 60 dias, observa-se um maior valor para perviedade primária, mas não para secundária (Tabela 3).

A partir desses resultados, foram construídos modelos de predição das perviedades primária e secundária no 30º dia após a confecção da FAV e da perviedade primária no 60º dia, de acordo com as variáveis hemodinâmicas. Entre as curvas ROC para perviedade primária no 30º dia do pós-operatorário, o VF arterial mostrou-se como a variável com maior valor preditor para esse desfecho (area under the curve [AUC] = 0,8095) (Figura 4). Os pontos de corte com maior sensibilidade e especificidade para detectar FAVs funcionantes com perviedade primária no 30º dia do pós-operatório foram: 105,5 cm/s para VPS arterial, com sensibilidade de 72,5% (intervalo de confiança de 95% [IC95%]: 57,17-83,89%) e especificidade de 71,4% (IC95%: 35,89-94,92%); 106 cm/s para VPS venosa, com sensibilidade de 75% (IC95%: 59,81-85,81%) e especificidade de 71,4% (IC95%: 35,89-94,92%);

![Figura 2. Perviedade primária e secundária das fístulas arteriovenosas para hemodiálise até os 60 dias de pós-operatório.](image)

![Figura 3. Análise espectral da veia receptora em intraoperatorio logo após a confecção da anastomose. 2A) Fístula não funcionante no 1º dia de pós-operatorio. Velocidade sistólica de pico (VPS) 56 cm/s, volume de fluxo de 142 mL/min. 2B) Fístula funcionante no 1º dia de pós-operatorio. VPS 192 cm/s, volume de fluxo de 463 mL/min.](image)
Ultrassom Doppler intraoperatório como preditor de sucesso na fístula arteriovenosa

Castro-Santos et al. J Vasc Bras. 2021;20:e20210098. https://doi.org/10.1590/1677-5449.210098

5/8

e 290,5 mL/min para VF arterial, com sensibilidade de 80,6% (IC95%: 64,97-90,25%) e especificidade de 85,7% (IC95%: 48,69-99,27%) (Tabela 4).

Quanto à perviedade secundária 30 dias após a confecção da FA V, a variável com maior valor preditivo foi o VF venoso (AUC = 0,9545) (Figura 5). Para prever esse desfecho, os pontos de corte com maior sensibilidade e especificidade foram: 106 cm/s para VPS arterial, com sensibilidade de 72,7% (IC95%: 58,15-83,65%) e especificidade de 100% (IC95%: 43,85-100%); 230 mL/min para VF venoso, com sensibilidade de 86,4% (IC95%: 73,29-93,60%) e especificidade de 100% (IC95%: 43,85-100%); e 262,5 mL/min para VF arterial, com sensibilidade de 77,5% (IC95%: 62,5-87,68%) e especificidade de 100% (IC95%: 43,85-100%) (Tabela 4).

Para a perviedade primária no 60º dia do pós-operatório, o VPS arterial, o VPS venoso e o VF arterial apresentaram AUC de 0,7692, 0,7356 e 0,7321, respectivamente (Figura 6). Os pontos de corte para os maiores valores de sensibilidade e especificidade para esse desfecho foram: 105,5 cm/s e 290,5 mL/min para VF arterial, com sensibilidade de 80,6% (IC95%: 64,97-90,25%) e especificidade de 85,7% (IC95%: 48,69-99,27%) (Tabela 4).

Tabela 3. Comparação entre as velocidades de pico sistólico (VPS) e os volumes de fluxo (VF) arteriais e venosos ao ultrassom vascular com Doppler intraoperatório entre as FAV pérvias e não pérvias aos 30 e 60 dias pós-operatórios.

| Perviedade primária ao 30º dia pós-operatório. Valores apresentados em média e desvio padrão |
|---|------------------|-----------------|-----------------|
| Sim (n = 40) | Não (n = 7) | p |
| VPS artéria cm/s | 150 (70,08) | 82,93 (33,66) | 0,0082 |
| VPS veia cm/s | 170 (80,72) | 93,66 (46,86) | 0,0038 |
| VF artéria mL/min | 634 (444) | 266 (261) | 0,0084 |
| VF veia mL/min | 602 (462) | 432 (272) | 0,4451 |

| Perviedade secundária ao 30º dia pós-operatório. Valores apresentados em média e desvio padrão |
|---|------------------|-----------------|
| Sim (n = 44) | Não (n = 3) | p |
| VPS artéria cm/s | 144,4 (69,47) | 72,3 (37,26) | 0,0498 |
| VPS veia cm/s | 165,5 (78,8) | 58,47 (37,69) | 0,0104 |
| VF artéria mL/min | 605,7 (439) | 156,3 (100,1) | 0,0132 |
| VF veia mL/min | 557,6 (330,8) | 147,3 (78,14) | 0,0028 |

| Perviedade primária ao 60º dia pós-operatório. Valores apresentados em média e desvio padrão |
|---|------------------|-----------------|
| Sim (n = 39) | Não (n = 8) | p |
| VPS artéria cm/s | 150,2 (70,92) | 88,79 (35,30) | 0,0157 |
| VPS veia cm/s | 170,3 (81,76) | 102, (49,49) | 0,0065 |
| VF artéria mL/min | 632,5 (449,6) | 333,3 (308,1) | 0,042 |
| VF veia mL/min | 552,5 (323,7) | 428,5 (397,9) | 0,1185 |

| Perviedade secundária ao 60º dia pós-operatório. Valores apresentados em média e desvio padrão |
|---|------------------|-----------------|
| Sim (n = 43) | Não (n = 4) | p |
| VPS artéria cm/s | 144,7 (70,26) | 86,68 (41,86) | 0,1058 |
| VPS veia cm/s | 165,6 (79,73) | 84,10 (59,8) | 0,0508 |
| VF artéria mL/min | 600,6 (443,8) | 318,3 (334,0) | 0,1411 |
| VF veia mL/min | 394,8 (498,9) | 544,1 (322,3) | 0,146 |

Figura 4. Curvas receiver operating characteristic (ROC) comparando as variáveis ao ultrassom vascular com Doppler em intraoperatório e a perviedade primária aos 30 dias. VPS = velocidade sistólica de pico; VF = volume de fluxo; AUC = area under the curve.
Tabela 4. Sensibilidade e especificidade de diversos pontos de corte para velocidade de pico sistólico (VPS) e volume de fluxo (VF) arterial e venoso ao ultrassom vascular com Doppler intraoperatório para detectar perviedade primária e secundária aos 30 dias do pós-operatório e perviedade primária aos 60 dias do pós-operatório.

Perviedade primária 30 dias	Valor	Sensibilidade	IC95%	Especificidade	IC95%
VPS artéria cm/s	> 99,40	72,5	57,17% a 83,89%	57,1	25,05% a 84,18%
	> 105,5	72,5	57,17% a 83,89%	71,4	35,89% a 94,92%
	> 108,5	70,0	54,57% a 81,93%	71,4	35,89% a 94,92%
VPS veia cm/s	> 93,85	80,0	65,24% a 89,50%	57,1	25,05% a 84,18%
	> 99,15	77,5	62,50% a 87,68%	57,1	25,05% a 84,18%
	> 106,0	75,0	59,81% a 85,81%	71,4	35,89% a 94,92%
VF artéria mL/min	> 262,5	80,6	64,97% a 90,25%	71,4	35,89% a 94,92%
	> 290,5	80,6	64,97% a 90,25%	85,7	48,69% a 99,27%
	> 318,5	77,8	61,92% a 88,28%	85,7	48,69% a 99,27%

Perviedade secundária 30 dias	Valor	Sensibilidade	IC95%	Especificidade	IC95%
VPS artéria cm/s	> 93,85	77,3	63,01% a 87,16%	66,7	11,85% a 98,29%
	> 99,15	75,0	60,56% a 85,43%	66,7	11,85% a 98,29%
	> 106,0	72,7	58,15% a 83,65%	100,0	43,85% a 100,0%
VF veia cm/s	> 219,0	88,6	76,02% a 95,05%	66,7	11,85% a 98,29%
	> 225,0	86,4	73,29% a 93,60%	66,7	11,85% a 98,29%
	> 230,0	86,4	73,29% a 93,60%	100,0	43,85% a 100,0%
VF artéria mL/min	> 238,5	80,0	65,24% a 89,50%	66,7	11,85% a 98,29%
	> 251,5	77,5	62,50% a 87,68%	66,7	11,85% a 98,29%
	> 262,5	77,5	62,50% a 87,68%	100,0	43,85% a 100,0%

Perviedade primária 60 dias	Valor	Sensibilidade	IC95%	Especificidade	IC95%
VPS artéria cm/s	> 99,40	71,8	56,22% a 83,46%	50,0	21,52% a 74,48%
	> 105,5	71,8	56,22% a 83,46%	62,5	30,57% a 86,32%
	> 108,5	69,2	53,58% a 81,43%	62,5	30,57% a 86,32%
VPS veia cm/s	> 106,0	74,4	58,92% a 85,43%	62,5	30,57% a 86,32%
	> 111,1	71,8	56,22% a 83,46%	62,5	30,57% a 86,32%
	> 114,6	69,2	53,58% a 81,43%	62,5	30,57% a 86,32%
VF artéria mL/min	> 262,5	80,0	64,11% a 89,96%	62,5	30,57% a 86,32%
	> 290,5	80,0	64,11% a 89,96%	75,0	40,93% a 95,56%
	> 318,5	77,1	60,98% a 87,93%	75,0	40,93% a 95,56%

1IC95% = intervalo de confiança de 95%.

DISCUSSÃO

Os parâmetros hemodinâmicos no intraoperatório mostraram-se potenciais preditores da perviedade das FAVs para hemodiálise. O VF arterial apresentou o maior valor preditor para a perviedade primária no 30º dia, com sensibilidade maior que 80% para o ponto de corte de 290,5 mL/min. Já para a perviedade secundária no 30º dia, o VF venoso foi a variável com maior valor preditor, com sensibilidade maior que 85% e especificidade de 100% para o ponto de corte de 230 mL/min. As VPS arterial e venosa demonstraram poder preditivo na perviedade primária do 60º dia, com pontos de corte de 105,5 cm/s e de 106 cm/s, respectivamente, e com sensibilidade maior que 70%.

Diversos estudos já demonstraram uma associação entre o VF intraoperatório e os principais desfechos das FAVs. Saucy et al.13 avaliaram preditores para a falha na maturação das FAVs radiocefálicas nos primeiros 30 dias após sua confecção, encontrando o VF intraoperatório de 120 mL/min como ponto de corte, mas com menor taxa de perviedade (77,58%). Cyrek et al.14 compararam FAVs radiocefálicas de...
Ultrassom Doppler intraoperatório como preditor de sucesso na fístula arteriovenosa

Castro-Santos et al. J Vasc Bras. 2021;20:e20210098. https://doi.org/10.1590/1677-5449.210098

Alto (> 200 mL/min) e baixo VF (< 200 mL/min) no intraoperatório e observaram taxas de perviedade primária e secundária significativamente mais altas nas FAVs de alto fluxo (100% e 93,15%, respectivamente) quando comparadas às de baixo fluxo (81,25% e 75%, respectivamente) em 1 ano. Outros estudos observacionais reiteram essa mesma relação entre o VF pós-operatório e a falha da FAV, encontrando pontos de corte que variam entre 160 mL/min e 300 mL/min.

Em relação aos valores de VPS, diversos estudos corroboram com a associação encontrada. Karanan et al. analisaram o desfecho das FAVs de acordo com o valor da VPS arterial nos dias 1 e 8 do pós-operatório, confirmando a VPS como preditor do desfecho da FAV de forma significativa. Em concomitância, Abreu et al. conduziram um estudo com acompanhamento de 5 anos que demonstrou VPS em artérias ulnar e radial como valor preditor para perviedade secundária.

Observamos algumas limitações neste estudo. Tratou-se de estudo em centro único, com único observador, não sendo validadas ou avaliadas as variações e viéses interobservadores. A amostra foi bastante heterogênea, com uma grande variedade de tipos de FAVs. Foram utilizados dois tipos diferentes de aparelhos de ultrassonomografia. O aparelho Philips CX 50 foi utilizado para o exame intraoperatório, e o Toshiba Aplio 300, para os exames pós-operatórios. Pode haver uma pequena variação nos valores de VPS e VF entre os aparelhos. Neste estudo, apresentou-se um reduzido número de pacientes; dessa forma, optou-se pela análise univariada, a qual pode apresentar algumas limitações, sobretudo quanto à possibilidade de predição de determinado desfecho. Outra limitação importante foi pequeno número de eventos de não perviedade primária no dia 30, o que pode ter contribuído para ICs muito amplos.

O tema abordado nesta pesquisa permanece em aberto e ainda pouco estudado. Por se tratar de propedêutica não invasiva, de ampla distribuição e acesso, com ausência de efeitos colaterais e de riscos para o paciente, a ultrassonografia vascular com Doppler realizada em intraoperatório é uma importante ferramenta para o cirurgião vascular. Esse exame fornece variáveis importantes e em tempo real, as quais podem se correlacionar com o sucesso a curto prazo da cirurgia e modificar a estratégia cirúrgica no intraoperatório – como uma reconfecção do acesso ou até mesmo mudança de local da anastomose – a depender dos valores de VPS e VF. A VPS, apesar de apresentar menor sensibilidade e especificidade quando comparada ao VF, é uma variável de fácil execução e análise, disponível em quase todos os aparelhos de ultrassonomografia vascular.

CONCLUSÕES

A VPS e o VF ao ultrassom vascular com Doppler intraoperatório são previsores de perviedade precoce na cirurgia de FAV para hemodiálise. Ambos representam parâmetros de avaliação confiáveis para predição da falência precoce da FAV e oferecem a possibilidade de mudança da estratégia cirúrgica no intraoperatório para atingir melhores desfechos no pós-operatório.

REFERÊNCIAS

1. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a
systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709-33. PMid:32051315.

2. Carney EF. The impact of chronic kidney disease on global health. Nat. Rev. Nephrol. 2020;16(5):251. http://dx.doi.org/10.1038/s41581-020-0268-7. PMid:32144399.

3. Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):1975-82. http://dx.doi.org/10.1016/S0140-6736(14)61601-9. PMid:25777665.

4. Lok CE, Huber TS, Lee T, et al. KDOQI clinical practice guideline for vascular access. Am. J Kidney Dis. 2020;75(4 Suppl 2):S51-S164. http://dx.doi.org/10.1053.j.ajkd.2019.12.001. PMid:32778223.

5. Huijbregts HJT, Bots ML, Wittens CHA, Schrama YC, Moll FL, Blankestijn PJ. Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clin Am Soc Nephrol. 2008;3(3):714-9. http://dx.doi.org/10.2215/CJN.0221J0708. PMid:18256379.

6. Lok CE, Sontrup JM, Tomlinson G, et al. Cumulative patency of contemporary fistulas versus grafts (2000–2010). Clin J Am Soc Nephrol. 2013;8(5):810-8. http://dx.doi.org/10.2215/CJN.00730112. PMid:23371955.

7. Franco RP. Arteriovenous fistulas in hemodialysis: factors of success and the role of nephrologists. J Bras Nefrol. 2018;40(4):309-11. http://dx.doi.org/10.1590/2175-8239-jbn-2018-0161. PMid:30625232.

8. Bylsma LC, Gage SM, Reichert D, Dahl SLM, Lawson JH. Arteriovenous fistulae for haemodialysis: a systematic review and meta-analysis of efficacy and safety outcomes. Eur J Vasc Endovasc Surg. 2017;55(4):513-22. http://dx.doi.org/10.1016/j.ejvs.2017.06.024. PMid:28843984.

9. Hui SH, Folsom R, Killewich LA, Michalek JE, Davies MG, Pounds LL. A comparison of preoperative and intraoperative vein mapping sizes for arteriovenous fistula creation. J Vasc Surg. 2018;67(6):1813-20. http://dx.doi.org/10.1016/j.jvs.2017.10.067. PMid:29452835.

10. Farber A, Imrey PB, Huber TS, et al. Multiple preoperative and intraoperative factors predict early fistula thrombosis in the Hemodialysis Fistula Maturation Study. J Vasc Surg. 2016;63(1):163-70. E6. http://dx.doi.org/10.1016/j.jvs.2015.07.086. PMid:26718822.

11. Castro-Santos C, Salles AG, Dos Anjos GS, Procópio RJ, Navarro TR. Brachial vein transposition: an alternative to hemodialysis arteriovenous graft. J Vasc Bras. 2019;18:e20190077. http://dx.doi.org/10.1590/2175-823920190077. PMid:32755582.

12. Bazan HA, Scharner H. Transposition of the brachial vein: a new source for autologous arteriovenous fistulas. J Vasc Surg. 2004;40(1):184-6. http://dx.doi.org/10.1016/j.jvs.2004.03.044. PMid:15218484.

13. Saucy F, Haesler E, Haller C, Dégèrse S, Teta D, Corpatuah J. M. Is intraoperative blood flow predictive for early failure of radiofocal arteriovenous fistula? Nephrol Dial Transplant. 2010;25(3):3862-7. http://dx.doi.org/10.1093/ndt/gfp577. PMid:19892754.

14. Cyrek AE, Berneath J, Juntermanns B, Hesen P, Pacha A, Hoffmann JN. Intraoperative use of transit time flow measurement improves patency of newly created radiofocal arteriovenous fistulas in patients requiring hemodialysis. J Vasc Access. 2020;20(6):990-6. http://dx.doi.org/10.1177/1129792820916661. PMid:32375582.

15. Benaragama KS, Barwell J, Lord C, et al. Post-operative arterial fistula blood flow influences primary and secondary patency following access surgery. J Ren Care. 2018;44(3):134-41. http://dx.doi.org/10.1111/jorc.12238. PMid:29520968.

16. Usta E, Elkrinawi R, Salebi-Gilani S, et al. Risk factors predicting the successful function and use of autogenous arteriovenous fistulae for hemodialysis. Thorac Cardiovasc Surg. 2013;61(5):438-44. PMid:23169107.

17. Karaman S, Dasari R, Kumar A, Tyagi A, Kumar S, Lakshmi AY. Hemodialysis arteriovenous fistula maturation and role of perioperative vascular mapping. J Dr NTR Univ Health Sci. 2019;8(4):257-60. http://dx.doi.org/10.4103/JDRNTRUHS.JDRNTRUHS_45_19.

18. Abreu R, Rioja S, Vallespin J, Vinuesa X, Iglesias R, Ibeas J. Predictors of early failure and secondary patency in native arteriovenous fistulas for hemodialysis. Int Angiol. 2018;37(4):310-4. http://dx.doi.org/10.2215/CJN.02950707. PMid:18256379.

Correspondência
Guilherme de Castro Santos
Universidade Federal de Minas Gerais - UFMG
Rua Professor Arduíno Bolivar, 276, aptos 500, Bairro Santo Antônio
CEP: 30350-140 – Belo Horizonte (MG), Brasil
Tel.: (31) 3409-9759
E-mail: gcs2000@gmail.com

Informações sobre os autores
GCS - Cirurgião Vascular, Sócio Efetivo da Sociedade Brasileira de Angiologia e Cirurgia Vasculares (SBACV), Professor Assistente, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Mestrando, Professor Doutorando em Cirurgia, UFMG.

GYS - Acadêmica de Medicina, Voluntária do Programa de Iniciação Científica, Universidade Federal de Minas Gerais (UFMG).

RMSO - Acadêmica de Medicina, Bolsista de Iniciação Científica pelo Programa de ADRC, Pró-reitoria de Pesquisa da Universidade Federal de Minas Gerais (UFMG).

RJP - Cirurgião Vascular e Endovascular, Sócio Efetivo da Sociedade Brasileira de Angiologia e Cirurgia Vasculares (SBACV), Coordenador do Serviço de Cirurgia Endovascular, Hospital das Clínicas, Universidade Federal de Minas Gerais (UFMG).

TPN - Cirurgião Vascular e Endovascular, Sócio Titular da Sociedade Brasileira de Angiologia e Cirurgia Vasculares (SBACV), Professor Associado, Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Doutor em Cirurgia pela UFMG, Coordenador do Serviço de Cirurgia Vasculares, Hospital das Clínicas, UFMG.

Contribuição dos autores
Concepção e desenho do estudo: GCS, TPN
Análise e interpretação dos dados: GCS, TPN
Coleta de dados: GCS, GYS, RMSO
Redação do artigo: GCS, RMSO, GYS
Revisão crítica do texto: TPN
Aprovação final do artigo*: GCS, GYS, RMSO

*Todos os autores leram e aprovaram a versão final submetida ao J Vasc Bras.