Analysis of 8×8 and 9×9 optical flow patches by nudged elastic band

Qingli Yin 1,3 and Wen Wang 2

1School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101 P. R. China
2School of Science, Shandong Jianzhu University, Jinan 250101 P. R. China
3Email: yinql69@163.com

Abstract. We build a Morse function by a density estimator from optical flow sampled data, by using the Morse function and the nudged elastic band method we establish one-dimensional cell complexes, we study 8×8 and 9×9 optical flow patches to discover their topological features from the cell complexes. We discover that spaces of 8×8 and 9×9 patches have same topology as a circle, which spreads some known results to larger optical flow patches.

1. Introduction

Optical flow calculation is a main topic in computer vision, and it has a lot of applications, such as, in motion estimation and video compression ([1, 2, 3 and 4]). Nudged elastic band (NEB) is a valid technique to search the lowest energy path among a given two images, which arises from computational chemistry, and it is also efficient way for investigating nonlinear dimensional data. The authors of [5] analyzed 3×3 optical flow patches by nudged elastic band, they proved found that 3×3 optical flow patches has same topology as that of a circle. The authors of papers [6, 7] study optical flow 4×4, 5×5, 6×6, and 7×7-patches, and they show the same result as 3×3 optical flow patches.

Now, we make use of NEB method to optical flow 8×8 and 9×9-patches and investigate topological features of 8×8 and 9×9-patches. We apply the cell complexes constructed from the Morse function and the NEB to show that 8×8 and 9×9-patches have subspaces with the topology of a circle. Our spaces of 8×8 and 9×9-patches are very different topological spaces from $n\times n$-patches for $n = 3, 4, 5, 6, 7$, our results will be useful in the area of image compression [8].

2. Data sets of 8×8, 9×9 patches

Our spaces M_8 and M_9 of 8×8 and 9×9-patches are created from the database [2], one flow field sequence is displayed in figure 1. The spaces M_8 and M_9 are sets of optical flow 8×8 and 9×9 high contrast patches of as constructed in [8, 9 and 10].
An 8×8 optical flow patch is written as

$$(u_i, v_i) \quad (u_{i+1}, v_{i+1}) \quad (u_{i+2}, v_{i+2})$$

where μ represents horizontal orientation of optical flow, v represents the vertical orientation. A 8×8 patch is taken as a vector $x = (u_1, K, u_{64}, v_1, K, v_{64}) \in R^{128}$. Similarly, one 9×9 optical flow patch is denoted as

$$\begin{pmatrix}
(u_i, v_i) & (u_{i+1}, v_{i+1}) & (u_{i+2}, v_{i+2}) \\
(u_i, v_i) & (u_{i+1}, v_{i+1}) & (u_{i+2}, v_{i+2}) \\
(u_i, v_i) & (u_{i+1}, v_{i+1}) & (u_{i+2}, v_{i+2}) \\
(u_i, v_i) & (u_{i+1}, v_{i+1}) & (u_{i+2}, v_{i+2}) \\
\end{pmatrix}$$

every 9×9 patch of M_9 is considered as a vector $x = (u_1, K, u_{64}, v_1, K, v_{64}) \in R^{162}$. For a space X, $z \in X$ and a positive integer n, we let $\rho_n(z) = |z - z_n|$, here z_n being the n-th nearest neighbor of point z. Given n, we list points of X in descending density, and select points of X with top t percent densities denoted by $X(n, t)$. In this note, we study subsets $M_9(200, 30)$ and $M_9(200, 30)$.

![Figure 1](image-url)

Figure 1. One flow field sequence of the database. The left image is horizontal movement, the right is vertical movement.

3. Basic knowledge

We briefly describe several basic concepts used in this paper: nudged elastic band; CW-complexes; Morse theory.

3.1. Nudged elastic band

The NEB is a valid technique to search the lowest energy path among two images. An elastic band having $N + 1$ images is defined by $[W_0, W_1, ..., W_N]$, W_0 and W_N are first and last images. The other $N - 1$ images are revised according to an optimum algorithm [11]. The following formula is the total force on an image:

$$F_i = F_i^{S} \mathbf{v} - \nabla E(W_i).$$

The NEB uses a majorization algorithm to alter each image in light of the total force in the above formula for disclosing the lowest energy path. Readers may refer to [11, 12 and 13] for details of NEB.
3.2. CW-complexes
A k -dimension unite disk \(\{ x \in \mathbb{R}^k \mid \| x \| \leq 1 \} \) is called a k-cell. One defines a CW-complex using follows [14]. The points of X (i.e. 0-cell) is zero-skeleton $X^{(0)}$. One-skeleton $X^{(1)}$ is obtained via attaching the endpoints of one-cells to the zero-skeleton and so on.

3.3. Morse theory
A Morse function $g : M \rightarrow \mathbb{R}$ be smooth having non-degenerate critical points $t_1, \ldots, t_m \in M$ such that (here M being a compact d -dimension manifold):

\[
b_0 < g(t_1) < b_1 < g(t_2) < \ldots < b_{k-1} < g(t_m) < b_m.
\]

Each critical point t_i has index β_i. Hence a smallest point possess index 0, a greatest point possess index d, but a saddle point possess index from 1 to $d - 1 [15]$. Set $M_b = g^{-1}([-\infty, b])$, the sublevel set of $b \in \mathbb{R}$, then each M_{b_i} is homotopically identical to a CW-complex having one β_i-cell to critical point t_i.

4. Main computing steps
The following main steps of computing come from [5], please read the paper [5] for full details.

4.1. Denseness estimator
For $Y \subset \mathbb{R}^n$, suppose $\Phi_{x, \sigma} : \mathbb{R}^n \rightarrow [0, \infty)$ being the probability density of a normal distribution centered at $x \in Y$, we utilize the differential density estimator $g(y) = \| Y \|^{-1} \sum_{x \in Y} \Phi_{x, \sigma}(y)$ to approximate the unknown density.

4.2. 0-cells
We define mean shift function $p(y) : \mathbb{R}^n \rightarrow \mathbb{R}^n$,

\[
p(y) = \frac{\sum_{x \in Y} \Phi_{x, \sigma}(y) x}{\sum_{x \in Y} \Phi_{x, \sigma}(y)}.
\]

We arbitrarily pick first point $y_0 \in Y$, and iteratively generate a sequence \(\{ y_0, y_1, \ldots \} \) by $y_{n+1} = p(y_n)$. The sequence \(\{ y_n \} \) converges to a local maximum of g [16]. We apply single-link clustering to collect the limits points of \(\{ y_n \} \), and pick the densest point from every cluster to be a zero-cell.

4.3. 1-cells
Given two zero-cells, a 1-cell is formed between them if we discover a convergent band using NEB method. Supposed a set $Y \subset \mathbb{R}^n$ from unknowing probability density $f : \mathbb{R}^n \rightarrow [0, \infty)$. To super-level sets $Y^{\beta} = f^{-1}([\beta, \infty))$, we build CW-complex models Z^{β} to approach Y^{β}.

Firstly, we construct a differential density function to approximate the unconscious density from the sampled data. Secondly, we search local maxima of the estimation density function to find zero-cells. Finally, we look for the convergent bands by NEB from initial bands, and we receive 1-cells. Therefore, we could find the topological properties of the sampled data Y by making cell complexes Z^{β}.
5. Results

We choose two classes subsets in M_α ($n=8, 9$): (1) random subsets $M_\alpha(15000)$ of M_α having 15000 vectors; (2) core subsets $M_\alpha(200,30)$. To draw a pretty projected figure, we do DCT to these data. Such as, we do DCT for μ-part and ν-part of $M_\alpha(200,30)$ respectively, thus points of $M_\alpha(200,30)$ are changed into points of \mathbb{R}^{126}. Our results are not affected by DCT, because the topology of a space is not changed under DCT.

5.1. 8×8 optical flow patches

The sampled data information is illustrated as table 1. For $M_\alpha(15000)$, let the value of standard deviation $\sigma=0.33$, we compute by NEB to gain four 0-cells with densities $3.838\times10^8, 6.909\times10^8, 9.826\times10^8, 2.041\times10^8$ respectively (figure 2), and four 1-cells with densities $3.126\times10^8, 3.557\times10^8, 6.909\times10^8, 8.462\times10^8$, a loop is formed by these cells. Hence for $\beta=3.126\times10^8$, Z^β takes shape of a loop (figure 3). If we take $\sigma=0.28$ or 0.30, we get four 0-cells and four 1-cells with different densities, all these cells compose a loop, but when $\sigma=0.35$, we have three 0-cells and three 1-cells with different densities, all these cells also constitute a loop (figure 4). In figure 2-4, small brown dots, green thick dots, and solid lines correspond to $M_\alpha(15000)$ projected to a plane, 0-cells, and 1-cells. The symbols in figure 5-13 have similar meanings.

Table 1. Data set information.
$M_\alpha(15000)$
number of points in data
dimension n
standard deviation σ

Figure 2. $M_\alpha(15000)$ and the four 0-cells for $\sigma=0.33$, projected to a plane.

Figure 3. $M_\alpha(15000)$ and the loop for $\sigma=0.33$, projected to a plane.

Figure 4. $M_\alpha(15000)$ and the loop for $\sigma=0.35$, projected to a plane.

For $M_\alpha(200,30)$, we let $\sigma=0.32$, we have four 0-cells with densities in $[2.796\times10^8, 2.871\times10^8]$ (figure 5), four 1-cells involving densities from 1.143×10^8 to 6.658×10^8, a loop is made by these cells (figure 6). If $\sigma=0.33$, we find three 0-cells, and three 1-cells, that constitute a ring (figure 7).
5.2. 9×9 optical flow patches

The data information of 9×9 patches is explained in table 2. For $M_s(15000)$, let the value of $\sigma=0.32$, using NEB we obtain 0-cells and 1-cells, and get four 0-cells with densities 3.29×10^3, 5.872×10^3, 7.64×10^3, 1.606×10^4 respectively (figure 8), four 1-cells with densities 2.472×10^3, 2.75×10^3, 5.838×10^3, 6.251×10^3, a loop is comprised by these cells. Thus for $\beta=2.472 \times 10^3$, the cell complexes Z^β make up of a loop (figure 9). If we take $\sigma=0.28$ or 0.30, we get four 0-cells and four 1- cells, have the result same as for $\sigma=0.32$. When $\sigma=0.34, 0.35, 0.36$, we discover three 0-cells and three 1-cells for three cases and the three 0-cells, 1-cells of each case form a loop, one case is displayed in figure 10. If we take $\sigma=0.27$ or 0.37, we do not find $M_s(15000)$ has the topology of a circle.

Table 2. Data set information.

	$M_s(15000)$	$M_s(200,30)$
number of points in data	15000	15000
dimension n	160	160
standard deviation σ	0.32, 0.34	0.28, 0.30, 0.32

Figure 5. $M_s(200,30)$ and the four 0-cells for $\sigma=0.32$, projected to a plane.

Figure 6. $M_s(200,30)$ and the loop for $\sigma=0.32$, projected to a plane.

Figure 7. $M_s(200,30)$ and the loop for $\sigma=0.33$, projected to a plane.

Figure 8. $M_s(15000)$ and the four 0-cells for $\sigma=0.32$, projected to a plane.

Figure 9. $M_s(15000)$ and the loop for $\sigma=0.32$, projected to a plane.

Figure 10. $M_s(15000)$ and the loop for $\sigma=0.34$, projected to a plane.
For $M_s(200,30)$, suppose $\sigma = 0.28$, five 0-cells and five 1-cells are found their densities in $[5.66 \times 10^{22}, 8.217 \times 10^{22}]$ and $[2.448 \times 10^{23}, 1.537 \times 10^{23}]$ respectively (figure 11). When $\sigma = 0.30$ we have four 0-cells and four 1-cells of densities in $[1.58 \times 10^{28}, 1.448 \times 10^{29}]$ and $[5.572 \times 10^7, 3.081 \times 10^8]$ respectively (figure 12). If we pick $\sigma = 0.32$, three 0-cells and three 1-cells are found with densities $5.824 \times 10^{19}, 1.449 \times 10^{14}, 5.148 \times 10^{14}$ and $1.228 \times 10^{14}, 2.477 \times 10^{13}, 3.328 \times 10^{13}$ respectively (figure 13). In each of three cases, the 0-cells and 1-cells form a loop, which means $M_s(200,30)$ has same topology as a circle.

6. Conclusions
In this manuscript we exploit the NEB technique to investigate topological features of optical flow 8×8 and 9×9 patches. The fact of 8×8 and 9×9 optical flow patches being modelled as a loop is shown by numerical experiments. The biggest merit of cell complexes is its simpleness to analyze high dimensional data. Such as, we need merely utilize four cells to pattern $M_s(200,30)$ as a loop, we could demand thousands or more lazy witness complexes to model $M_s(200,30)$ for a similar result. Although, our results of 8×8 and 9×9 optical flow patches are proved same as that of $n \times n$-patches for $n = 3, 4, 5, 6, 7$, our spaces M_8, M_9 are very different from $n \times n$-patches ($n = 3, 4, 5, 6, 7$), for example, M_9 is a subspace of R^{162}, the space of 4×4-patches is a subspace of R^{32}, the results are more useful in image compression than that of $n \times n$-patches for $n = 3, 4, 5, 6, 7$. As the increasing of size of optical flow patches, the computation is getting bigger, hence the NEB method is only suitable for identifying low-dimensional topologies (0-dimension and 1-dimension) of a high-dimensional data set. In the NEB method, standard deviation σ is one of the most important parameters, its appropriate values should be carefully selected to get a stable result. This one more time shows that NEB is an efficacious tool for identifying topological properties of high-dimensional nonlinear data.

Acknowledgments
This project supported by the NNSF of China (No. 61471409).

References
[1] Barron J L, Fleet D J and Beauchemin S S 1994 Performance of optical flow techniques Int. J. Computer Vision 12 43-77
[2] Roth S and Black M J 2007 On the spatial statistics of optical flow International Journal of
Computer Vision 74 33-50

[3] Baker S, Scharstein D, Lewis J P, Roth S, Black M J and Szeliski R 2011 A database and evaluation methodology for optical flow Int. J. Computer Vision 92 1-31

[4] Jia K, Wang X and Tang X 2011 Optical flow estimation using learned sparse model Proc. IEEE International Conference on Computer Vision, Barcelona, Spain 2391-2398

[5] Adams H, Atanasov A and Carlsson G 2015 Nudged elastic band in topological data analysis Topological Methods in Nonlinear Analysis 45 247-272

[6] Xia S 2016 Use of a nudged elastic band method in analysis of optical flow Journal of Flow Visualization and Image Processing 23 157-169

[7] Xia S and Liang D 2017 NEB in analysis of optical flow 4 × 4 and 6 × 6-Patches Journal of Physics: Conf. Series 787 012002

[8] Carlsson G, Ishkhanov T, Silva V de and Zomorodian A 2008 On the local behavior of spaces of natural images International Journal Computer Vision 76 1-12

[9] Adams H and Carlsson G 2009 On the nonlinear statistics of range image patches SIAM J. Image Sci. 2 110-117

[10] Xia S 2016 A topological analysis on patches of optical flow J. Nonlinear Sci. Appl. 9 1609-1618

[11] Henkelman G, Uberuaga B and Jónsson H 2000 A climbing image nudged elastic band method for finding saddle points and minimum energy paths Journal Chemical Physics 112 9901-9904

[12] Henkelman G and Jónsson H 2000 Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points Journal Chemical Physics 113 9978-9985

[13] Jegou H, Douze M and Schmid C 2008 Hamming embedding and weak geometry consistency for large scale image search Proceedings of the 10th European conference on Computer vision, October 304-317

[14] May J P 1999 A concise course in algebraic topology University of Chicago Press, Chicago

[15] Milnor J 1965 Morse theory Princeton University Press, Princeton

[16] Cheng Y 1995 Mean shift, mode seeking, and clustering IEEE Trans. Pattern Anal. 17 790-799