Definition of Availability Index of Deformed Building Constructions Using the Finite – Element Analysis Package

M N Shutova, G M Skibin, S I Evtushenko

Department of Industrial, Civil Engineering, Geotechnics and Foundation Engineering, Platov South-Russian State Polytechnic University (NPI), 132, St. Prosvescheniya, Rostov region, Novocherkassk 346428, Russia

E-mail: Pretty_marry@mail.ru

Abstract. The paper is devoted to the problem of definition of availability index of deforming building construction in atypical cases. The authors revealed a real applicability of the finite-elements analyses package, such as ANSYS, for engineering testing calculations of building constructions and determination of the sites of increased stresses. It was determined that stresses increased up to 7.75 times in the sites with mechanical defects (for steel crane girder); also, the authors revealed the convergence of the calculation results between the finite element method and a usual decision using the strength of materials (in the limits 2-14% for steel truss frame). The equivalent stresses don't exceed the maximum permissible tension for this type of steel. The building constructions have a limited availability index.

1. Introduction

The determination of the availability index of deformed building constructions is a primal problem of the technical condition inspection. Most cases are typical and described in the Russian normative documents: federal laws, federal rules [1] and recommendations for the estimation of the availability index of building construction based on the exterior signs [2,3].

Widespread defects are connected with the degradation of material properties and misuse. Mechanical collisions with the equipment occur in the industrial buildings. Buildings and constructions suffer loss and metal constructions get curvatures.

This problem can be solved using the finite element method and a specialized software.

The authors E. Markova, O. Chegya [4] analyzed the opportunity of using the ANSYS software to estimate the structural strength of buildings elements. Two methods applied for creating of a finite elements model: geometric modeling and generation of nodes and elements. Nekrasova N., Burkovsky V. and Flavianov V. analyzed the results of the base plates mathematical modeling on the elastic basis and instrumental data [5]. In his paper [6] Volynin A. made a comparison of the software “Obolochka” and ANSYS to research the strength of shells. The estimated manhours of calculation of two methods: manual and using ANSYS were defined in the article of Molchanov A. and Molchanova E. [7].

The authors Tarasenko A., Chepur P., Chirkov S., Tarasenko D. [8] considered the issue of modeling the designs of a vertical steel tank for the storage of commodity oil with a capacity of 20,000 m3.
The authors Shirko A., Kamluk A., Polevoda I., Zainudinova N. in the article [9] consider the environment of strength calculation of reinforced concrete plates in ANSYS. The behavior of the resulting models at the fire is investigated.

The pilot research of a crack in reinforced concrete as a structural member was made Yadrov V. [10].

An international team of Min Chan and D. Dmitrieva considered a problem of optimization of metal framework as nonlinear mathematical programming using ANSYS [11].

The paper of the authors Lihacheva S. and Kozhanov D. was devoted to the deformation of masonry due to the influence of dynamic loading [12].

The authors from Platov South-Russian State Polytechnic University (NPI) Busalo N.A, Alekseev S., Tsaritova N. [13] designed and calculated a modern node spatially rod of building construction using ANSYS.

The calculation optimization using ANSYS for the reduction of labor input and formalization was the task of the article [14] by Karpenko T., Ivanina N. and Golovchenko V.

The use of finite element models in ANSYS program is widespread in design of steel elements S. I. Yevtushenko, M. N. Shutova et al. calculated the axle beam [15].

Shutova M. and Skibin G. made an attempt to formalize the relation between the availability index of deformed building constructions and residual life of buildings [16].

The authors T. Abdo, R. Mabrouk investigated the beam work angle of rotation at the ultimate load for further understanding of the beam behavior under torsion [17].

In the paper [18] of J. T. Zhonk et al. T conveniently assess the performance of the disturbed region of concrete structures using different strut-and-tie models, an evaluation system is proposed. The numerical procedure of the evaluation system is developed based on the ANSYS parametric design language.

In the paper [19] from Vodiannikov M.A. et al. the results of the statistical analysis of corrosion processes and moisture saturation of glued laminated timber structures and their joints in corrosive environment are shown. The study of the relation between the effects of fatigue material data and residual life assessments under high cycle fatigue was made by Y. Gorash, T. Comlekei, D. MacKenzie [20].

2. Analysis of convergence of calculation results using two methods

The research is conducted for a truss frame of the industrial building which was damaged from mechanical influence. To evaluate the convergence of the calculation results between the finite element method and the usual decision using strength of materials, a finite element model of such truss frame of the industrial building was built. The model is a geometrically difficult rod system consisting of the steel angle section (Figure 1).

![Figure 1. A finite-element model of a truss frame with mechanical defects.](image)

The technical condition inspection determined the mechanical damage of truss frame elements (Figure 2a, b, c), these defects were simulated into the truss frame finite element model (Figure 3 a, b, c).
Figure 2. Defects from mechanical influence in the truss frame elements.

Figure 3. The fragments of the finite-element model of the truss frame with mechanical defects.

The settlement scheme of such truss frame includes sole weight, snow weight as a concentrated load. ANSYS calculation is shown in Figure 4.

Figure 4. Equivalent (von-Mises) stresses of truss frame with mechanical defects.

The calculations results are provided in the Table 1.

Point	Stresses, MPa	Use factor		
	Maximum	Minimum	Maximum	Minimum
1	29.85	6.16	0.16	0.02
2	205.26	60.9	0.92	0.28
3	102.4	18.8	0.46	0.09
4	27.2	7.10	0.14	0.06

The truss frame flat model was created and calculated using the StructureCad program (Figure 5a, b).

The truss frame calculation in SCad determines internal forces in the main elements of frame. In the points with the defects the authors defined the section geometrical characteristics (moment of inertia and section modulus) as well as the stresses in the defect elements.
3. Analysis of a stress raiser value in the parts with mechanical damage
For evaluating the stress raiser value in the parts with mechanical damage of a crane girder the authors created a finite element model of such crane girder before and after deformation. The crane girder is a pivotal support from a welded double tee. The settlement scheme of the crane girder includes a sole weight and two versions of load moving from the crane: load corresponds to the maximum moment (Figure 6a) and maximum share force (Figure 6b).

The technical condition inspection determined the mechanical damage (curvatures) of crane girder elements (Figure 7a, b). These defects were imitated in the crane girder finite element model (Figure 8a, b).
Figure 8. A finite-element model of the crane girder with mechanical defects.

ANSYS calculation is shown in Figure 9.

Figure 9. Equivalent (von-Mises) stresses of the crane girder with mechanical defects.

The calculation results are shown in the Table 2.

Load	Stresses, MPa	Points			
	Before deformation	1	2	3	4
Load 1	17.69	54.69	28.56	56.97	
	After deformation	97.72	95.8	85.75	112.69
	Exceeding	5.52	1.75	3.0	1.98
Load 2	18.61	26.99	17.41	14.21	
	After deformation	47.88	75.18	28.21	41.31
	Exceeding	2.57	2.78	1.62	2.92

4. Conclusion
The convergence of the calculation results between the finite element method and usual decision using the strength of materials are from 2 to 14% for equivalent (von-Mises) stresses and 12% for a total deformation. This value of stresses corresponds to the limited availability index. ANSYS calculation provided an opportunity to find the sections with increased stresses (the value of stresses in the elements with defects exceed stresses of the not deformed constructions by 1.98…7.75 times).

This approach allows for the optimization of strengthening of the disabled elements of buildings construction.

References
[1] 2002 Regulations on the procedure of extending the safe operation of technical devices and structures at hazardous production facilities Russian newspaper pp 149–50
[2] Dobromyslov A N 2007 Diagnosis of damage to buildings and engineering structures Right. Benefit, ASV (Moscow)
[3] Dobromyslov A N 2008 Evaluation reliability of buildings and structures by their appearance A Reference Guide (Moscow: Publishing House of the DIA)
[4] Markova E V and Chechuga E V 2016 Use of the ANSYS program for the analysis of operability of designs News of the Tula State university. Technical science 8 pp 45–54
[5] Nekrasova N N, Burkovsky V L and Flavianov V M 2010 The analysis of adequacy of mathematical model of a bend of base plates on the basis of the tool ANSYS system Bulletin of the Voronezh State technical university 6 pp 15–7
[6] Volynin A L 2010 Comparative calculation of durability and stability of the supported covers in the program Cover complexes and the ANSYS Messenger of civil engineers St. Petersburg state architectural and construction university 2 pp 38–43
[7] Molchanov A I and Molchanova E A 2009 Solution of technical tasks means of ANSYS Bulletin of the Volga state academy of the water transport 11 pp 12–6
[8] Tarasenko A A, Chepur P V, Teals S V and Tarasenko D 2013 A Model of the tank in the environment of ANSYS Basic researches-Academy of Natural Sciences Publishing house (Penza) 10 pp 3404–8
[9] Shirko A V, Kamlyuk A N, Agriculturist I I and Zaynudinov N V 2014 Calculation of reinforced concrete plates at the fire with use of the program ANSYS environment the Bulletin of the university of civil protection of the Ministry of Emergency Situations of Belarus, Minsk 1(19) pp 48–58
[10] Yadrov V I 2014 Modeling of growth of a superficial crack under the influence of cyclic loading in the ANSYS program Omsk scientific bulletin 3 (133) pp 152–6
[11] Dmitriyev T L and Le Chan Min Dat 2014 Optimum design of a spatial metal design with use of the ANSYS International journal for computational civil and structural engineering personal computer DIA Publishing house (Moscow) 10 pp 79–84
[12] Likhacheva S Yu and Kozhanov D A 2015 Simulation of the chart of deforming of a stone laying using the ANSYS system Fundamental and application-oriented problems of mechanics, mathematics, informatics pp 58–62
[13] Buzzalo N A, Alekseev S A and Tsaritova N G 2014 Numerical research of hinged knot of a spatial rod design Online magazine Naukovodeniye 2(21) pp 97–104
[14] Karpenko T N, Ivanina N L and Golovchenko V I 2015 Visualization of results of calculation of rod and frame designs in the final and element program complex ANSYS Messenger state higher educational institution “Azov State Technical University” (Mariupol) 30-2 pp 37–45
[15] Evtushenko S I, Petrov I A, Shutova M N and Alekseeva A S 2017 The comparative analysis of different computations methods of strength of materials by the example of calculations of the axle beam IOP Conf Series: Materials Science and Engineering 177(1) 012023
[16] Skibin G M, Shutova M N and Subbotin A I 2016 Approaches for development of a universal method for calculating the residual life of buildings and structures Procedia Engineering 150 pp 1715–20
[17] Abdo T and Mabrouk R 2017 Effect of web openings on the structural behavior of RC beams subjected to pure torsion Int Conf on Advances in Sustainable Construction Materials and Civil Engineering Systems, ASCMCES 120 010071
[18] Zhong J T, Wang L and Deng P Zhou 2017 A new evaluation procedure for the strut-and-tie models of the disturbed regions of reinforced concrete structures Eng. Struct. 148 pp 660–72
[19] Vodiannikov M A and Kashevarova G G 2017 Analysis of Wood Structure Connections Using Cylindrical Steel and Carbon Fiber Dowel Pins IOP Conf Series: Materials Science and Engineering 205 012031
[20] Gorash Y, Comlekci T and MacKenzie D 2015 Investigation of fatigue assessments accuracy for beam weldments considering material data input and FE-mode type Journal of Physics: Conf Series 843 012025