Coronavirus Disease 2019 (COVID-19) and Access to Abortion
Assessing Patient Sociodemographic and Travel Characteristics

Brandon J. Hill, PhD, Li Lock, PhD, Victoria Parks, LPN, Brie Anderson, MHA, and Janet Riley Cathey, MD

INTRODUCTION
Abortion access has become increasingly limited in the U.S. Midwest and South. Before the coronavirus disease 2019 (COVID-19) pandemic, several states, including Kentucky, Mississippi, and Missouri, had only one abortion facility. Contrary to the recommendations of the American College of Obstetricians and Gynecologists and other medical organizations during the pandemic (https://www.acog.org/news/news-releases/2020/03/joint-statement-on-abortion-access-during-the-covid-19-outbreak), governors in 11 states attempted or succeeded in prohibiting abortion using executive orders, including Alabama, Alaska, Arkansas, Iowa, Louisiana, Mississippi, Ohio, Oklahoma, Tennessee, Texas, and West Virginia. Although every executive order has expired, the effects of these orders on abortion access is relatively unknown. A recent study in Texas found that abortions declined in the state while executive orders were in effect but increased in neighboring states. Abortions at 12 weeks of gestation or more increased after the orders expired. Another study demonstrated that lack of abortion access in Texas disproportionately affected Latinx patients, who had to travel an increase of 100 or more miles to access abortion care. To assess the potential influence of the pandemic on abortion, this study compares the sociodemographic and travel characteristics of patients receiving abortion care at four abortion facilities in Arkansas, Kansas, and Oklahoma before and during the COVID-19 pandemic.

METHODS
De-identified electronic health record data were extracted from four nonprofit abortion facilities in Arkansas, Kansas, and Oklahoma. These facilities were among 10 abortion facilities open during the pandemic period and provided approximately 51.9% of all abortions in the region in 2019. We compared data from visits that took place between April 1, 2019, and December 31, 2019 (pre–COVID-19 period), with data from visits that took place between April 1, 2020, and December 31, 2020 (COVID-19 period). Chi-square and t tests were used to compare patient self-reported sociodemographic and travel variables. McNemar and Mann-Whitney U tests were used to compare nonparametric data. The same analytic approach was used to compare sociodemographic and travel characteristics for in-state and out-of-state patients during the COVID-19 period. Mean differences and percentage changes were also calculated. This study relied on a de-identified patient data with no link to patients’ medical records and was deemed exempt by the Solutions Institutional Review Board.

RESULTS
In total, 10,204 abortions occurred during the pre–COVID-19 (n=4,457) and COVID-19 (n=5,747) periods. During the COVID-19 period more patients had medication abortions, with a 35.2% year-over-year increase. Patients in the COVID-19 period traveled more miles and were residents of Texas, Louisiana, and Tennessee. Patients in the COVID-19 period were less likely to be monogamous and were more likely to choose long-acting
reversible contraception postabortion (Table 1). Additionally, patients in the COVID-19 period had lower educational attainment.

Table 1. Comparisons of Patient Characteristics and Travel in the Pre–Coronavirus Disease 2019 (COVID-19) and COVID-19 Periods (N=10,204)

Characteristic	Pre–COVID-19 (2019) (n=4,457)	COVID-19 (2020) (n=5,747)	P
Gestational age (total d)	54.7±20.2	54.1±19.9	.145
Induced abortion type			<.001
Medication	3,544 (79.5)	4,793 (83.4)	
Surgical	913 (20.5)	954 (16.6)	
Surgical abortion			.447
trimester			
1st	669 (73.3)	683 (71.6)	
2nd	244 (26.7)	271 (28.4)	
In monogamous relationship			<.001
Postabortion LARC uptake	4,180 (93.8)	4,024 (70.0)	
Miles traveled	50.2±87.1	59.1±98.5	<.001
Out-of-state resident	2,076 (44.5)	2,584 (55.5)	
State of residence			<.001
Arkansas	550 (12.3)	820 (14.3)	
Kansas	1,570 (35.2)	1,611 (28.0)	
Oklahoma	260 (5.8)	732 (12.7)	
Missouri	1,976 (44.3)	2,246 (39.1)	
Texas	44 (1.0)	244 (4.2)	
Tennessee	13 (0.3)	32 (0.6)	
Mississippi	11 (0.2)	17 (0.3)	
Louisiana	3 (0.1)	14 (0.2)	
Other states	29 (0.7)	31 (0.5)	
Sociodemographics			
Age (y)	26.6±6.1	26.4±6.1	.209
Race*			.103
Black or African American	960 (28.6)	1,554 (29.6)	
Asian, Multiracial, Native American, Pacific Islander	224 (6.7)	400 (7.6)	
White	2,174 (64.7)	3,294 (62.8)	
Hispanic or Latinx*	438 (16.8)	785 (17.6)	.368
Education*			<.001
High school or less	1,063 (37.2)	1,604 (45.0)	
Some college	1,017 (35.6)	1,201 (33.7)	
Associate’s or Bachelor’s degree	774 (27.1)	760 (21.3)	

Comparisons between in-state and out-of-state patients during the COVID-19 period (Table 2) revealed that out-of-state patients traveled more miles (mean difference 27.8 miles) and were more likely to have surgical abortions (48.4% increase). Out-of-state patients were also more likely to be in monogamous relationships. Sociodemographic data indicated that out-of-state patients were more likely to be Black and to have lower educational attainment. A greater number of in-state patients identified as Hispanic or Latinx.

Table 2. Comparisons of In-State and Out-Of-State Patient Characteristics and Travel During the Coronavirus Disease 2019 (COVID-19) Pandemic (n=5,747)

Characteristic	In-State Patients (n=3,163)	Out-Of-State Patients (n=2,584)	P	
Gestational age (total d)	53.1±18.7	55.2±21.1	<.001	
Induced abortion type	Medication 2,779 (87.9)	2,014 (77.9)	<.001	
Surgical	384 (12.1)	570 (22.1)		
Surgical abortion	trimester		.147	
1st	265 (69.0)	418 (73.3)		
2nd	119 (31.0)	152 (26.7)		
In a monogamous relationship	Postabortion LARC uptake		<.001	
Miles traveled	46.6±56.8	74.4±131.1	<.001	
Socio-demographic characteristics	Age (y)	26.2±6.0	26.7±6.1	.002
Race*	Black or African American	703 (24.8)	851 (35.3)	<.001
Asian, Multiracial, Native American, Pacific Islander	260 (9.2)	140 (5.8)		
White	1,871 (66.0)	1,432 (58.9)		
Hispanic or Latinx*	498 (16.8)	287 (13.4)	<.001	
Education*	High school or less	762 (43.5)	842 (46.5)	.021
High school or less	Some college	584 (33.3)	617 (34.1)	
Associate’s or Bachelor’s degree	407 (23.2)	353 (19.5)		

LARC, long-acting, reversible contraception.
Data are mean±SD or n (%) unless otherwise specified.
* Patient records with unknown or unreported race, ethnicity, or educational attainment were treated as missing and excluded from group comparisons.
DISCUSSION
Our findings suggest that the sociodemographic and travel characteristics among patients receiving abortion care differed during the COVID-19 pandemic and do not reflect previous state-level year-over-year abortion trends.6–8 Our findings underscore that restrictions, even when temporary, increase the need for travel, disproportionately affect patients who are Black and those with less education, result in delays in care, and ultimately lead to an increase in surgical procedures. Limitations include that our study relies on electronic health record data, does not include data from every abortion facility across the three states, and does not assess patient motivations for travel (eg, privacy, existing regulations).

REFERENCES
1. Brown BP, Hebert LE, Gilliam M, Kaestner R. Association of highly restrictive state abortion policies with abortion rates, 2000-2014. JAMA Netw Open 2020;3:e2024610. doi: 10.1001/jamanetworkopen.2020.24610
2. White K, Kumar B, Goyal V, Wallace R, Roberts SC, Grossman D. Changes in abortion in Texas following an executive order ban during the coronavirus pandemic. JAMA 2021;325:691–3. doi: 10.1001/jama.2020.24096
3. Jones RK, Witwer E, Jerman J. Abortion incidence and service availability in the United States, 2017. Accessed March 5, 2021.
4. Center for Health Statistics, Arkansas Department of Health. Induced abortion report. Accessed May 22, 2021. https://www.healthy.arkansas.gov/images/uploads/pdf/Induced_Abortion_final_2019-closed.pdf
5. Kansas Department of Health and Environment, Division of Public Health, Bureau of Epidemiology and Public Health Informatics. Abortions in Kansas, 2019: preliminary report. Accessed May 22, 2021. https://www.kdheks.gov/phi/abortion_sum/2019_Preliminary_Abortion_Report.pdf
6. Espinoza R. Oklahoma abortion surveillance in Oklahoma: 2002-2019 summary report. Accessed May 22, 2021. https://oklahoma.gov/content/dam/ok/en/health/health2/documents/2019-itop-report.pdf

(Obstet Gynecol 2021;138:475–477)
DOI: 10.1097/AOG.0000000000004516

PEER REVIEW HISTORY
Received April 15, 2021. Received in revised form May 27, 2021. Accepted June 3, 2021. Peer reviews and author correspondence are available at http://links.lww.com/AOG/C378.