Cyclotron Resonance Energies and Orbital Elements of Accretion Pulsar 4U 0115+63 During the Giant Outburst in 2008

Jun Li1, 2, 3\star, Wei Wang1† and Yongheng Zhao1, 3

1National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
2Graduate University of Chinese Academy of Sciences, Beijing 100012, China
3Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

ABSTRACT
In this paper, we present both timing and spectral analysis of the outburst of 4U 0115+63 in April – May 2008 with INTEGRAL and RXTE observations. We have determined the spin period of the neutron star at $\sim 3.61430 \pm 0.00003$ s, and a spin up rate during the outburst of $\dot{P} = (-7.24 \pm 0.03) \times 10^{-8}$ s d-1, the angle of periapsis $\omega = 48.67^\circ \pm 0.04^\circ$ in 2008 and its variation (apsidal motion) $\dot{\omega} = 0.048^\circ \pm 0.003^\circ$ yr-1 when comparing with previous measured values of ω. We also confirm the relation of spin-up torque versus luminosity in this source during the giant outburst. The hard X-ray spectral properties of 4U 0115+63 during the outburst are studied with INTEGRAL and RXTE. Four cyclotron absorption lines (fundamental at ~ 10 – 15 keV, 2nd harmonic at ~ 22 keV, 3rd at ~ 34 keV and 4th at ~ 45 keV) are detected using the spectra from combined data of IBIS and JEM-X aboard INTEGRAL in the energy range of 3 – 100 keV. Two cyclotron absorption lines are measured from the spectra combining PCA and HEXTE data in the energy band of 4 – 50 keV. The 5 – 50 keV luminosities at an assumed distance of 7 kpc are determined to be in the range of $(1.5 - 12) \times 10^{37}$ ergs s-1 during the outburst. The fundamental absorption line energy varies during the outburst: around 15 keV during the rising phase, and transiting to ~ 10 keV during the peak of the outburst, and further coming back to ~ 15 keV during the decreasing phase. The variations of photon index show the correlation with the fundamental line energy changes; the source becomes harder around the peak of the outburst and softer in both rising and decreasing phases. This correlation and transition processes during the outburst need further studies in both observations and theoretical work. The known relation of the fundamental line energy and X-ray luminosity is confirmed by our results, however, our discoveries suggest that some other factors besides luminosity play the important role in fundamental line energy variations and spectral transitions.

Key words: pulsars: individual (4U 0115+63) – stars: neutron – stars: binaries: close – X-rays: binaries.

1 INTRODUCTION
The X-ray transient 4U 0115+63 is one of the best studied X-ray sources with different instruments. It is a high mass X-ray binary composed of a neutron star and a Be star. Ever since it was first observed in the Uhuru satellite survey (Giacconi et al. 1972, Forman et al. 1978), series of observations have been done to study its different kinds of features. With the precise positional determinations by the satellites SAS-3, Ariel V and HEAO-1, the companion star was identified as a heavily reddened O9e star, V635 Cas, with visual magnitude $V \approx 15.5$ (see Cominsky et al. 1978, Johnston et al. 1987, Johns et al. 1978, Hutchings & Crampton 1981). The Be star is an early type, non-supergiant star which some times exhibits Balmer series lines. The distance of the star is suggested to be ~ 7 kpc (Negueruela & Okazaki 2001). The spin period of neutron star in 4U 0115+63 was discovered at ~ 3.6 s (Cominsky et al. 1978). The binary’s orbital elements were first determined by Cominsky et al.

* E-mail:JunLi.leon@gmail.com
\† E-mail:wangweibao.ac.cn
fundamental energy line moves to the outburst exhibited a single deep and wide absorption at the familiar double absorption features at than the typical luminosity of the outburst peaks, instead of in 1991, when the X-ray luminosity is about 7 times lower. The report from Ginga (Mihara line energy were detected when we observed the source in Type II outbursts. But the variations of the fundamental cyclotron line harmonics were detected, making it as one of 4U 0115+63 is the only object in the spectrum of which five reported by RTXE observations (Ferrigno et al. 2009). So that, fifth harmonic resonance absorption line at Santangelo et al. (2007) at 44.93 keV with INTEGRAL. Recently the double harmonic absorption features at 20 keV in fact was ∼ 11.5 keV and 23 keV were detected. The double harmonic absorption features were confirmed using Ginga data (Nagase et al. 1991; Tamura et al. 1992). Heindl et al. (1999) discovered a third absorption line at ∼ 33.56 keV in 1999 with RXTE. Moreover, a fourth absorption line was detected by Santangelo et al. (1999) at 49.5 keV with BeppoSAX and Tsygankov et al. (2007) at 44.93 keV with INTEGRAL. Recently the fifth harmonic resonance absorption line at ∼ 53 keV was reported by RTXE observations (Ferrigno et al. 2009). So that, 4U 0115+63 is the only object in the spectrum of which five cyclotron line harmonics were detected, making it as one of the best objects for studying the physics of cyclotron resonance in the polar cap regions of X-ray pulsars in binaries.

4U 0115+63 was observed at different X-ray luminosity levels, and the fundamental energy of CRSFs was repeatedly measured around 11 keV around the peak of the Type II outbursts. But the variations of the fundamental energy line were detected when we observed the source in the lower X-ray luminosity. The report from Ginga (Mihara 1995; Mihara et al. 1998) found that during the outburst in 1991, when the X-ray luminosity is about 7 times lower than the typical luminosity of the outburst peaks, instead of the familiar double absorption features at ∼ 11 and 22 keV, the outburst exhibited a single deep and wide absorption at ∼ 16 keV. The further studies suggested that the 11 keV fundamental energy line moves to ∼ 16 keV in lower luminosity ranges instead of that the 22 keV second harmonic decreasing to 16 keV (Nakajima et al. 2006). Detailed studies showed a luminosity-dependent change of the fundamental absorption line energy (Burnard et al. 1991; Nakajima et al. 2006; Tsygankov et al. 2007).

4U 0115+63 undergone the giant Type II outbursts frequently about every 3–5 years. The latest giant outbursts occurred in April – May 2008. During this giant outburst, both INTEGRAL and RXTE have carried out pointing observations on the source frequently. In this paper, we analyzed both INTEGRAL and RXTE data of 4U 0115+63 obtained during giant outbursts and studied the temporal and spectral properties and variations during the outbursts. We will concentrate on the spin properties of the neutron star, deriving the orbital elements of the binary and the resonance absorption energy variations during the outburst.

2 OBSERVATIONS

The giant outburst of 4U 0115+63 occurring in 2008 was observed by INTEGRAL(INTErnational Gamma-Ray Astrophysics Laboratory, Winkler et al. 2003) and RXTE(Rossi X-ray Timing Explorer, Bradt et al. 1993).

INTEGRAL is ESA’s currently operational space-based hard X-ray/soft gamma-ray telescope. We mainly use the data collected with the softer gamma-ray imager (IBIS/ISGRI; Lebrun et al. 2003) and the small X-ray telescope JEM-X (Lund et al. 2003). IBIS has a 12’ (FWHM) angular resolution and arcmin source location accuracy in range of energy at 18 – 200 keV, JEM-X obtains a lower energy band at 3 – 35 keV. Two instruments are co-aligned, allowing simultaneous observations in a wide energy range.

RXTE is a space X-ray telescope run by NASA. The pointing observations are performed mainly by two instruments: Proportional Counter Array (PCA) and High Energy X-ray Timing Experiment (HEXTE). PCA is a spectrometer with an effective area of 6400 cm², with energy range of 2–60 keV and time resolution of 1 microsec. HEXTE covers a higher energy range of 15 – 200 keV with a timing resolution of 8 microsec. The two instruments aboard RXTE are very effective for timing analysis on fast variability of X-ray sources.

In Table 1, we summarize the archival data of 4U 0115+63 during the outburst in 2008 with both INTEGRAL and RXTE observations, and the instrument, date and exposure time are listed in details.

The used INTEGRAL data are available from the INTEGRAL Science Data Center (ISDC). The analysis was done with the standard INTEGRAL off-line scientific analysis (OSA, Goldwurm et al. 2003) software, ver. 9.0. INTEGRAL observed the outburst in seven revolutions (one INTEGRAL orbit, 3 days). Each revolution includes several individual pointing observations (one science window) lasting from about 3000 s to 10000 s. Individual pointings in each satellite revolution processed with OSA 9.0 were mosaic to create sky images for the source detection. For each revolution, we got one spectrum from 3 – 100 keV using the combined spectra of JEM-X and IBIS. IBIS has a poor time resolution which is larger than 1 second, not suitable for timing analysis of the 3.6 sec X-ray pulsar in 4U 0115+63. In timing analysis, only JEM-X data are used to
search for spin period of the neutron star in 4U 0115+63. The light curves of JEM-X have a time resolution of 0.5 s.

Data of RXTE are available from the standard products of the RXTE data are available on the RXTE archive, which are used for the light curve extractions with a time resolution of 0.125 s from both of PCA and HXTE. Each science window records data with the durations of several thousand seconds (see Table 1). The spectrum for each science window is extracted using the combined data of PCA and HXTE.

Table 1. Observations of 4U 0115+63 during the outburst in 2008 with INTEGRAL and RXTE, the instrument, observed date, exposure time are shown.

Instrument	MJD (Rev.)	Exposure time (s)
JEM-X	54546.526(604)	99599.68
JEM-X	54555.466(667)	49200.63
JEM-X	54563.420(668)	39747.02
JEM-X	54563.386(669)	50285.74
JEM-X	54566.410(670)	46669.91
JEM-X	54573.900(673)	52292.43
JEM-X	54586.620(675)	110950.75
IBIS	54546.526(604)	99599.68
IBIS	54555.466(667)	50067.22
IBIS	54558.456(668)	51651.26
IBIS	54563.386(669)	53860.74
IBIS	54566.410(670)	49267.91
IBIS	54573.900(673)	52293.74
IBIS	54580.620(675)	110952.9

3 DATA ANALYSIS AND RESULTS

3.1 TIMING ANALYSIS AND ORBITAL ELEMENTS OF 4U 0115+63

The spin properties of the accretion pulsars are crucial for us to understand the accretion physics and giant outburst mechanisms. The determination of spin period and period derivatives of the X-ray pulsars in binaries will sensitively depend on the orbital parameters. In addition pulse profile variations of X-ray pulsars during the outburst is not well understood and requires more analysis. In this subsection, we will study the temporal properties of 4U 0115+63 during the outburst of 2008 using the INTEGRAL and RXTE data. We will try to derive the spin period of the X-ray pulsar combined with the orbital parameters. Study the apsidal motion of X-ray binaries is one of the important features to understand the nature of the X-ray binaries’ properties, so we also try to search for the apsidal motion of 4U 0115+63 by comparing the results in different time intervals.

X-ray light curves of 4U 0115+63 during the 2008 outburst by JEM-X are extracted in two energy bands: 3–10 keV and 10–35 keV, with a time-resolution of 0.5 s. The light curves of PCA are used in the energy band of 2–40 keV.

A general way to perform timing analysis in determining the pulse period of X-ray pulsars in binaries is to find the pulse arrival time (see Rappaport et al. 1978, Tamura et al. 1992). The pulse arrival time for each data set was determined by comparing the folded pulse profile with a reference profile. This method can get the exact arrival time of each pulse of each data set. However, since the pulse profile of X-ray pulsar would change during the outburst, the determined arrival time of the position of pulse profile (e.g., peak) may have large uncertainties, it needs additional statistical test to ensure the results. In this paper, we have carried out another way to do the timing analysis on pulse period studies (see Raichur & Paul 2010). It would not be affected by the variation of the pulse profile.

This method is mainly based on the HEAsoft, published by NASA which aims to handle the high energy data set obtained from the space satellite, such as INTEGRAL, RXTE. First of all, we corrected the times of each photon to the barycenter of the solar system, then we used EFSEARCH (a build-in function in HEAsoft) to calculate the estimated spin period of the source in each data set with best value based on Chi-Square estimation. The EFSEARCH might depend on the epoch we used, so we could correct it as follows: calculate the χ^2 with different epochs, $T(\text{epoch}) = t_0 + 0.1 i P/N$, where $i = 0, 1, 2, ..., 9$, and N is the number of phase bins in pulse profile. Then we average ten sets of χ^2 versus period, fit the peak with quadratic and find the maximum which should be the estimated period. The 1σ error could be given when the quadratic is lowered by 1.0.

As we get all the pulse periods of data sets during the outburst, we fit the data according to the doppler motion of this source. The observed pulse period is given as below:
\[P_{\text{spin}}^{\text{obs}}(t) = (P_{\text{spin}}(t_0) + \dot{P}_{\text{spin}}(t - t_0)) \sqrt{\frac{1 + \nu_r/c}{1 - \nu_r/c}} \]
\[\nu_r = \frac{2 \pi a_e \sin i}{(1 - e^2)^{1/2} P_{\text{orb}}} (\cos(\nu + \omega) + e \cos \omega), \]
\[\tan \frac{\nu}{2} = \tan \frac{E}{2} \frac{1 + e}{1 - e}. \]
\[E - e \sin E = \frac{2 \pi}{P_{\text{orb}}} (t - T_\omega). \]

Here, \(P_{\text{spin}} \) denotes the derivative of spin period, \(P_{\text{spin}}^{\text{obs}} \) is the spin period values observed at time \(t \) and \(t_0 \) is the reference time of the outburst. \(\nu_r \) is the component of velocity along the sight of neutron star which depends on the orbital elements:

\[\nu_r = \frac{2 \pi a_e \sin i}{(1 - e^2)^{1/2} P_{\text{orb}}} (\cos(\nu + \omega) + e \cos \omega), \]

the \(a_e \sin i \) denotes for the projected semi-major axis, \(P_{\text{orb}} \) is the orbital period, \(\omega \) is the angle of periastron and \(e \) is the eccentricity of the neutron star's orbit. \(\nu \) is the true anomaly and is closely related to the periastron passage time \(T_\omega \), the relationship could be given as follows:

\[\tan \frac{\nu}{2} = \tan \frac{E}{2} \frac{1 + e}{1 - e}. \]
\[E - e \sin E = \frac{2 \pi}{P_{\text{orb}}} (t - T_\omega). \]

Here \(E \) stands for the eccentric anomaly. Combining all those equations, we could get the doppler motion of the neutron star in the different orbital phases by fitting the observed spin period values in different time intervals.

Using the ESEARCH tool, we derive the observed values of spin period by INTEGRAL/JEM-X and RXTE/PCA from MJD 54455 – 54580 in the 2008 outburst. The observed data points of the spin period during the outburst are presented in Fig. 1. These data points are fitted by the function described by Eq. (1). The fitting is based on Levenberg-Marquardt algorithm for nonlinear least square method, weighted by error of each point. The parameters’ errors are calculated from the covariance matrix of the parameter estimates. We adopted some orbital parameters from Bildsten et al. (1997), i.e., the orbital period \(P_{\text{orb}} = 24.317037 \pm 0.000062 \) day, \(a_e \sin i = 140.13 \pm 0.08 \) lt-sec. Then, we finally get the spin period, the derivative and other orbital elements of 4U 0115+63 as shown in Table 2.

The spin period of the neutron star is determined at \(\sim 3.61430 \pm 0.00003 \) s at the day MJD 54566, with the derivative of \(P \sim (7.24 \pm 0.03) \times 10^{-6} \) s day\(^{-1}\), and \(T_\omega = \) MJD 54531.7709 \pm 0.0603. The neutron star in 4U 0115+63 still undergo the spin-up process during the 2008 giant outburst, which is consistent with the previous results on the history outbursts. Here we summarize previous results on the spin period and period derivative of 4U 0115+63 in Table 3 for a comparison. From 1981 – 2008, the derived spin period values show the long-term spin-up trend. During the history outbursts, during the outburst in 2008, \(P/\dot{P} \sim 7.31 \times 10^{-4} \) yr\(^{-1}\), which is considerably larger than before.

We also try to measure the apsidal motion of the binary system. Using the INTEGRAL and RXTE data in the 2008 outburst, we have derived the angle of periastron \(\omega \sim 48.67^\circ \pm 0.04^\circ \) in 2008. We collected the previous measurements of the angle of periastron of 4U 0115+63 in different epochs in Table 4. In Fig. 2, the angle of periastron \(\omega \) versus the observed date is plotted. The angle of periastron seems to change in the last 30 years, suggesting existence of the apsidal motion. A linear function is used to fit the data points, also using Levenberg-Marquardt method and derive a apsidal motion rate \(\omega = 0.0488 \pm 0.0033 \) yr\(^{-1}\), error is calculated from the covariance matrix of the linear fit, \(R^2 \) of this fit is 0.86.

In addition, we also have studied the evolution of pulse profile of 4U 0115+63 during this giant outburst. In Figure 3, we displayed the pulse profiles with the outburst time in two energy bands of JEM-X: 3 – 10 keV and 10 – 35 keV. There exist obvious different features in pulse profiles of the high energy band and low energy band. In the lower band, pulse profiles show secondary peaks in most time of the giant outburst, and may disappear near the end of the outburst (MJD 54458.1). As the flux arrives at its peak, the secondary peak’s amplitude also increases, so that we would see the secondary peak clearly (see the upper panel of Figure 3, MJD 54558.6). As the outburst flux decreases, the secondary peak also starts to merge with the main peak. While at high energy band, the second peak is not so obvious. After the outburst reaches its peak, the secondary peak could be seen (see lower panel of Figure 3, MJD 54574.0). This difference may be due to the different mechanisms of pulsation at different energy levels.

In Fig. 4, we also presented the pulse profiles with the
Figure 3. The evolution of pulse profiles of 4U 0115+63 during the outbursts observed by INTEGRAL/JEM-X in two energy bands: 3–10 keV and 10–35 keV, respectively.
Figure 4. The evolution of pulse profiles of 4U 0115+63 observed by RXTE/PCA during the outburst in the energy band of 2 – 40 keV.
outburst evolution by RXTE/PCA in the energy band of 2 – 40 keV. PCA has a better time resolution (0.125 s) and wider energy band, that could show us a vivid picture of the evolution of pulse profile during the outburst. The second peak was detected in all time intervals, and it gradually grows up, and becomes more obvious around the peak of the outburst, then it begins to fade, which is consistent with the pulse profile evolution detected by INTEGRAL/JEM-X. The last pulse profile in MJD 54578.4 (Figure 4) almost merges with the main peak.

3.2 Spectral Analysis and Cyclotron Absorption Features

In this section we performed the spectral analysis of the hard X-ray spectra from several keV up to 100 keV with RXTE and INTEGRAL respectively. We ignored spectral data with poor signal to noise ratio in several energy channels, and used the spectral data as follows: (a) JEM-X: 3–31 keV; (b) IBIS: 28–100 keV; (c) PCA: 4–30 keV; and (d) HEXTE: 17 – 50 keV.

We fit the data using the XSPEC package. All the spectra have been fitted with a power-law type spectra modified by a high energy cut off structure (the powerlaw*highecut model in XSPEC package; White et al. 1983), additionally modified by cyclotron absorption lines in Lorenz profile (see Mihara et al. 1990); \[\exp \left[-D_f \frac{(W_f/E_{\text{cycl}})^2}{(E-E_{\text{cycl}})^2+W_f^2} \right] \] with a fixed iron line (gaussian profile) at 6.4 keV (see Tsygankov et al. 2007). Besides, photo-electric absorption (see Morrison and McCammon 1983) was added when fitting the INTEGRAL spectral data. Hard X-ray flux is measured in the range of 4–50 keV for both satellites.

For the spectra combined with JEM-X and IBIS, around the peak of the outburst, the lower band (3–4 keV) of spectrum is a little lower than the continuum model spectrum if we only use the power law model with high energy cut off to fit the continuum spectra. Hence, we add the column absorption component in the fittings. But for the PCA’s data, because we ignore the energy channels below 4 keV, where photo-electric absorption is not prominent in the low energy band, therefore column density absorption is not included.

The spectra of 4U 0115+63 during the outburst obtained by JEM-X and IBIS are shown in Figure 5. The fitted spectral parameters are presented in Table 5. For Rev 675, the detection significance level of the source by JEM-X and IBIS is low (< 7σ), no line features could be found in the spectrum, so we do not include it in the following analysis. For the spectrum in the range of 3 – 100 keV by INTEGRAL, we observed cyclotron resonance absorption features up to the 5th harmonic resonance energy. The fundamental line energy is determined at 10 – 15 keV in different epochs of the outburst. The second harmonic energy is around 22 keV, and the third harmonic energy is about 34 keV, and the fourth harmonic energy is around 42 keV. The fifth harmonic energy has a large uncertainty which varies from 49 keV to 55.5 keV, but the F-test shows this component might not be so significant (probabilities are much higher than 0.01), so we do not include the 5th absorption line in the spectral fittings. We also listed the probability of F-test, The result obtained through PCA and HEXTE are presented in Table 6 & Fig. 6, only the first and second harmonic lines are detected. During our fitting, we found that the uncertainties of third cyclotron lines are very large. So we fixed the width at what we got when this parameter is freely fitted, which is 1.0, in order to increase the confidence of the fitting. The position of the third line is always around 35 keV, which is not influenced by the fixed width.

In addition, in some spectra obtained by IBIS and JEM-X, the iron line at 6.4 keV is too weak to convince us to add this feature into the spectra. Previous authors have found that the iron emission line at 6.4 keV is not neglectable in the spectral fittings (Tammura et al. 1992, Nakajima et al. 2006; Mihara et al. 2004 and Tsygankov et al. 2007). Here we have adopt the iron line at 6.4 keV with fixed width at 0.2 keV just as Tsygankov et al. (2007) have done. It doesn’t matter whether we initially add this additive component into our model, because if the iron line is not obvious, then it would be too weak to significantly affect the fitting result.

In Figure 6, the hard X-ray spectra of 4U 0115+63 from 4 – 50 keV with RXTE/PCA and RXTE/HEXTE are presented. Here, we select 6 spectra from the well fitted spectra of all observational pointings. Indeed all of the spectra obtained by RXTE have shown prominent iron emission line at 6.4 keV. Since data of RXTE only covers the energy range below 50 keV and spectral data points are not so significantly above 30 keV, we only detected the cyclotron absorption line features at fundamental line energy around 10 – 15 keV and the second harmonic energy at 22 keV.

4 DISCUSSION

4.1 Spin-up Torque Versus Luminosity

This source is observed continuously during the giant outburst in 2008, which enable us to study the spin properties and accretion physics in details. In § 3.1, we have fitted the data points to derive the spin period, and its derivative and orbital parameters. We found that the neutron star still undergone the spin-up process during the 2008 outburst.
fittings, we have assume a constant spin-up torque P. However, in the standard accretion model, the spin-up torque should correlate to its accretion luminosity. If we could build a simplest picture of the disk accretion, material is captured to magnetic field lines at r_m and transported to the magnetic poles. We assume all the angular momentum carried by the material is transferred to the neutron star, for a Keplerian disk, the neutron star would have a spin-up torque as

$$N = \dot{M} \sqrt{G M_x r_m}. \quad (5)$$

A neutron star with moment of inertia I_x would subject to the torque in Equation (5), when enduring outburst with high luminosity, its spin up rate is given by

$$2\pi I_x \dot{\nu} = (GM_x)^{3/7} \nu^{6/7} \dot{M}^{6/7}. \quad (6)$$

Assuming the exhibited energy is from accretion, then all the gravitational potential energy of the accreted material would transport to the neutron star’s surface, with luminosity

$$L_x \approx G \dot{M} M_x / r_x. \quad (7)$$

Here r_x is the radius of neutron star. Hence we could deduce

$$\dot{\nu} = \alpha \nu^{6/7}, \quad \alpha = \frac{\mu^{2/7} r_x^{6/7}}{2 \pi I_x (GM_x)^{3/7}}. \quad (8)$$

If we adopt the parameter of neutron star as follows, radius $r_x = 10 \text{ km}$, mass $M_x = 1.4 \text{M}_\odot$, moment inertia $I_x = 2M_x r_x^2 / 5$. The magnetic field of the neutron star could be estimated through cyclotron absorption energy we’ve observed. The difference between the first and second harmonic cyclotron energy is 10 keV, if we adopt
ΔE ≈ 10 keV B_{12} (1.2/1 + z), z = G_s M_s / r_s c^2, hence z ~ 0.2 and B ~ 10^{12} G. Then we could get the value of \(\alpha \sim 3.348 \times 10^{-44} \).

Additionally, we could estimate the value of \(\alpha \) using the observed data during the outburst in 2008. We can integrate Equation (5) into Equation (1), here the \(\dot{P} = -\frac{\dot{\nu}}{\nu^2} = -P^2 \dot{\nu} = \alpha P^2 L_6^{8/7} \), then we fit the function with the data when the luminosity is declining from the peak. The measured \(\alpha = (1.918 \pm 0.339) \times 10^{-44} \) is still similar to though is a little lower than the theoretical value, suggesting that the accretion model described above could well predict the spin-up processes of this neutron star system. It should also be pointed out that there still exist some uncertainties in estimating \(\alpha \). In observations, the distance of the source and the surface magnetic field of the neutron star still have uncertainties. In theory, the Eq. (7) assumes that the whole accretion power has been transported to X-ray luminosity, but in reality only part of the accretion power could transport to X-ray luminosity. Anyway, using the observed data during the giant burst of 4U 0115+63, we have firstly confirmed the relation of spin-up torque versus luminosity in this source.

Figure 5. The hard X-ray spectra of 4U 0115+63 obtained by INTEGRAL/JEM-X (the red line) and INTEGRAL/IBIS (the black line) during the observation in revolution 664, 667, 668, 669, 670, 673, the parameters are listed in Table 5.
4.2 Apsidal Motion

In this paper, we derived the apsidal motion of the binary system by comparing different measurements. The apsidal motion can probe the gravitational field and the internal structure of the companion star. The methods and equations (9 ~ 11) follow other authors, e.g. Kelley et al. (1981) who discussed the apsidal motion in details, and Raichur & Paul (2010) measured three sources’ apsidal motion. They assume the spin angular momentum of the companion star is parallel to the orbital angular momentum. \(\dot{\omega} \) is related to the apsidal motion constant and the rotational velocity of the companion star as (Kelley et al. 1981)

\[
\dot{\omega} = \frac{2\pi k}{P_{\text{orb}}} \left(\frac{R_c}{a}\right)^5 [15 f(e) + \Omega^2 (1 + q) g(e)],
\]

with

\[
f(e) = (1 + \frac{3}{2} e^2 + \frac{1}{8} e^4)(1 - e^2)^{-5},
\]

\[
g(e) = (1 - e^2)^{-2}
\]

Here \(q \) is the ratio of the mass of neutron star to the mass of its companion, \(R_c \) is the radius of the companion star, \(\Omega \) is the ratio of rotational angular velocity of the companion to the orbital frequency \((2\pi/P_{\text{orb}})\), \(a \) is the full semi-major axis of the orbit. The apsidal motion constant \(k \) describes the companion’s internal matter density distribution. We adopt the parameter suggested by Vacca et al (1996) and Negueruela & Okazaki (2001). The companion, mass of V635 Cas is about \(19 M_\odot \), with radius at \(8 R_\odot \), \(i = 43^\circ \), rotational velocity \(\nu \sin i = 290 \pm 50 \text{ km s}^{-1} \), hence we could deduce \(k = 0.0025 \pm 0.0003 \). However, there are 70% uncertainty in mass and 30% uncertainty in radius of the companion.
star. If we include these uncertainties, it would lead to a larger error bar of 0.0041. Anyway the apsidal motion of the binary can put the constraint on the mass-radius relation of the companion star. We derive $\dot{\omega} \sim 0.048^\circ \pm 0.003^\circ yr^{-1}$ which is consistent with the value by Tamura et al (1992) and Raichur & Paul (2010).

4.3 The Resonance Energy and Other Spectral Parameters

In §3, we have obtained all the fitted spectral parameters of the X-ray binary 4U 0115+63 from both INTEGRAL and RXTE’s data sets covering the outburst of 4U 0115+63 in 2008 April – May, when this source’s X-ray luminosity changed from $(1.28 - 10.90) \times 10^{37}$ ergs s$^{-1}$ in the range of $5 - 50$ keV, assuming the distance is 7 kpc. In this section, the possible correlations between cyclotron absorption line parameters and continuum spectral parameters will be approached. Specially, the variations of the fundamental line energy during the giant outburst and the possible physical origins will be briefly discussed.

It is still hard to tell which factors could determine the cyclotron feature or the continuous spectra. In order to get an overview of all the related parameters in spectral fittings, we first present some parameters’ variations with observed time during this giant outburst.

In Figure 7 we showed the variations of the fundamental line energy E_a and the photo index Γ with observed time. The luminosity changes during the outburst are also displayed (bottom panel of Fig. 7), where we can clearly see the rising phase, the peak phase and decreasing phase of the whole outburst. In the plots, we have shown both the spectral results by INTEGRAL and RXTE. The mean photon index Γ is different for the two instruments during the rising and decreasing phases: $\Gamma \sim 0.6$ for INTEGRAL data and $\Gamma \sim 0.4$ for RXTE. This effect may be due to the possible different observing off-angle of the two satellite when observing the outburst and there are more absorption lines detected in INTEGRAL’s spectrum than RXTE, which would also make INTEGRAL’s luminosity a little lower than RXTE’s.

Anyway, the interesting correlation and transition are discovered in our observed results. Γ and E_a vary nearly simultaneously, larger values (softer spectrum) of Γ at $E_a \sim 15$ keV while lower values (harder spectrum) of Γ at $E_a \sim 10$ keV. This correlation is valid for both INTEGRAL and RXTE data sets (also see Fig. 8). More importantly, the sudden changes of both parameters occurred during the peak phase of the outburst, indicating that there would be a transition of this process in the rising phase to the peak phase and in the peak to decreasing phase. In the rising phase and decreasing phase, $E_a \sim 15$ keV with a softer spectrum; and in the peak phase, $E_a \sim 10$ keV with a harder spectrum. We also noticed that in the spectral fitting of INTEGRAL data from 3 – 100 keV, only during the peak phase, the significant column density absorption is detected (see Table 5).

This sudden changes of spectral property and fundamental line energy suggest that some physics results in this transition. The possible correlation between X-ray luminosity and E_a have been pointed out before. We also display the possible relation between X-ray luminosity and E_a in Fig. 9. As we mentioned previously, the derived X-ray luminosity from INTEGRAL data is generally lower than that from RXTE data (by $\sim 20\%$). For each instrument’s results, we can see the possible correlation: higher luminosity with lower values of E_a. But the sudden transition of the E_a changes are clearly found rather than a real correlation function. For INTEGRAL’s data sets, when $L_x > 6.76 \times 10^{37}$ ergs s$^{-1}$, we detect the familiar fundamental CRSF at $E_a \approx 10$ keV, below this luminosity level, the fundamental line energy changes to be $E_a \approx 15$ keV; while as for RXTE’s data sets, the criterion is around $L_x > 8.5 \times 10^{37}$ ergs s$^{-1}$. For RXTE data points, we also noticed that for the similar X-ray luminosity ranges (from $(8.4 - 9) \times 10^{37}$ ergs s$^{-1}$), both two fundamental line energies at ~ 10 keV and ~ 15 keV are detected, suggesting that the X-ray luminosity may be not the unique factor in determining the fundamental line energy variations. This transition is not complete yet because we do not get enough data points when the fundamental line energy distributes from $E_a \sim 12 - 14$ keV during the sudden transition phases.

Burnard et al. (1991) studied this luminosity dependent relationship, and assumed that the CRSF is formed above the surface of neutron star at height h_r in the accretion column. Based on the dipole law of the magnetic field, the fundamental cyclotron absorption should follow the equation given below:

![Figure 7. The evolution of the fundamental resonance energy and photo index with time by both INTEGRAL (blank squares) and RXTE (solid squares) observations. The sudden changes of both parameters are observed from the transition in the rising phase to the peak phase and in the peak to decreasing phase.](image-url)
where R is the Eddington luminosity along the magnetic field, L_{Edd} is the Eddington luminosity along the magnetic field, identical to the conventional Eddington luminosity for a neutron star with a mass of $1.4M_\odot$, $L_{\text{Edd}}^a = 2.0 \times 10^{38}\text{ergs s}^{-1}$. H_\perp is the ratio of the Thomson cross section to the Rosseland-averaged electron scattering cross section for radiation flows across the magnetic fields. Here we adopt $H_\perp = 1.23$ deduced by Mihara et al. (2004).

So we could employ the E_{a1} into the above equations, then estimate h_τ/R_{NS} as a function of X-ray luminosity from our observations by INTEGRAL and RXTE. The results are shown in Figure 10. Here we assume $E_0 = 18\text{ keV}$, which is the fundamental resonance energy at the surface of the neutron star, taken to be the possible maximum value of our observations. We deduce all the h_τ/R_{NS} according to equation (13). However we did not find the similar results done by Mihara et al. (2004). Even we have treated data sets from INTEGRAL and RXTE respectively, our results could not confirm this theoretical model.

Instead of this linear relationship suggested as equation (14), we find a phase transition similar to Γ and E_{a1}. The trigger of the sudden transition may closely related to the luminosity of the source. As the luminosity increases above a certain level, condition might change suddenly instead of what equation (14) has suggested. Besides, as shown in Figure 10, the h_τ/R_{NS} ratio drops suddenly when it decreases to under 0.1 level, this trend could also be seen in the work done by Nakajima et al. (2006). So the mechanism of the fundamental cyclotron absorption may be affected by other unknown physical factors, or the magnetic field at the surface of neutron star might not be consistent with the dipole assumption.

We also study the ratios E_{a1}/E_{a2} and h_τ/R_{NS} versus time of the outburst, as shown in Figure 11. Since E_{a1} changes significantly during the outburst, while E_{a2} is relatively stable around 22 keV in the whole outburst, the variation of the ratio E_{a1}/E_{a2} shows the similar behavior to the evolution of E_{a1}: in the rising phase, the ratio is about 1.3, in peak phase the ratio switches to be around 2, and in decreasing phase, the ratio returns to be near 1.3. The transition may be related to the X-ray luminosity level, deserved more detailed studies.

Coburn et al. (2002) found that there exists a positive correlation between absorption depth and W/E_a in phase averaged spectra of the X-ray pulsar. This indicates that this source has a tall cylindrical shape accretion column rather than a flat coin shape, suggested by Kreykenbohm et al. (2004). In Figure 12 we presented the ratio of the width to energy of both E_{a1} and E_{a2} versus the depth. The positive correlation between W/E_a and depth is found for both two lines, though large scattering and uncertainties still exist. This result, along with what Kreykenbohm et al. (2004)
ranges up to 100 keV. The wider energy range by INTEGRAL which covers higher

Figure 11. The evolution of $E_{\text{cut}}/E_{\text{p}}$ and h_{π}/R_{NS} with time of the outburst. The circles represent the luminosity of the outburst. We could see the sudden changes at the transition from rising phase to peak phase in MJD 54554, and transition from peak phase to decreasing phase in MJD 54562.

and Nakajima et al. (2006) have obtained, strengthens the cylindrical column geometry assumption.

We have fitted all the continuum spectra with a power-law model plus a high energy cutoff. The photon index variations have been plotted before. Finally, we presented the variations of other two spectral parameters E_{cut} and E_{fold} with time during the outbursts in Fig. 13. Most values of E_{cut} do not change too much during the whole outburst, it stays around 8.5 keV for both RXTE and INTEGRAL observations, which is consistent with the results by Tsygankov et al (2007) and Makishima et al (1999). For E_{fold}, INTEGRAL results show a higher values (~ 12 keV) than that (~ 8 keV) obtained by RXTE, which would be due to the wider energy range by INTEGRAL which covers higher ranges up to 100 keV.

Figure 12. W/E_{a} of fundamental and second harmonic resonance energy of 4U0115+63, varies with their energy values, respectively.

5 SUMMARY AND CONCLUSION

The giant outburst in neutron star high mass X-ray binaries provides us a good chance to study the accretion physics and interaction between magnetosphere and accretion materials. We observed the giant outburst of 4U 0115+63 during April – May 2008 using both INTEGRAL and RXTE data, performing both timing and spectral analysis in details. The spin period is determined to be 3.61430 ± 0.00003 s at MJD 54566, and we confirm that this source is enduring spin up state at rate of $\dot{P}_{\text{spin}} = (\sim 7.24 \pm 0.03) \times 10^{-6}$ s d$^{-1}$ during the outburst. In addition, we determined the angle of periapsis of the orbit $\omega = 48.67^\circ \pm 0.04^\circ$ during the 2008 outburst, as we compare with previous works done by other authors, we get $\omega = 0.048^\circ \pm 0.003^\circ$ yr$^{-1}$. We also noticed the pulse profile’s merging behavior during the outburst.

Furthermore, spectral properties of 4U 0115+63 during the different phases of the outburst are studied. All spectra from both INTEGRAL and RXTE are fitted with the power-law model plus a high energy cutoff and added by two components, cyclotron resonant absorption features and a gaussian line at 6.4 keV. We have searched for the cyclotron resonant absorption features up to 5th harmonic cyclotron line with INTEGRAL data. The fundamental line energy varies during the outburst at 10 keV or 15 keV respectively; the second harmonic energy at 22 keV; the third at ~ 34 keV; 4th at ~ 45 keV. The fifth harmonic energy
is not significantly detected. Hence we have confirmed that 4U 0115+63 shows the four significant cyclotron absorption lines features.

The present observations with INTEGRAL and RTXE provide us an opportunity to study variations of all spectral parameters in this source with time and resonance energy during the 2008 giant outburst. A positive relationship between photo index and fundamental cyclotron energy is found (see Figure 8). The evolutions of fundamental cyclotron energy and spectral properties with time during the outburst show the sudden transitions: at the rising phase, the source shows the soft spectrum with $E_{a1} \sim 15$ keV; in the peak phase, $E_{a1} \sim 10$ keV with a harder spectrum, and high column density; then into the decreasing phase, returning to the soft spectrum with $E_{a1} \sim 15$ keV. The luminosity dependence of resonance fundamental energy is also indicated in our observations, but in the similar luminosity range of $\sim (8.4 - 9) \times 10^{37}$ ergs s$^{-1}$, both two fundamental energies at ~ 10 and 15 keV are detected. So the physical parameters other than the single X-ray luminosity may play a role in determining the spectral properties during the outburst. Instead of a positive relationship of h_γ/R_{NS} and luminosity as expected, we also found a transition which makes a sudden change for the ratio (below ~ 0.1 or around 0.2), similar to fundamental line energy, which indicates that the environment near the surface of neutron star is much more complicated than we originally thought. This transition process during the outburst may require further studies both in observational and theoretical work. The X-ray luminosity should be an important parameter, when it reaches a certain critical value, sudden changes of accretion and radiation could occur or other physical conditions would change. Another positive correlation between depth and W/E_a ratio is consistent with previous work, which supported the tall cylindrical geometry assumption of the accretion column. The distinct spectral properties (different photon indices and fundamental line energies) between the peak phase and the rising/decreasing phases suggested different accretion physics and environments in the peak luminosity ranges.

ACKNOWLEDGMENTS

We are grateful to the referee for the fruitful comments and suggestions to improve the manuscript. This paper is based on observations of INTEGRAL, an ESA’s project with instrument and science data center funded by ESA member states (principle investigator countries: Denmark, France, Germany, Italy, Switzerland and Spain), the Czech Republic and Poland, and with participation of Russia and US. Data of RXTE obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center. The work is supported by the National Natural Science Foundation of China under grants 10803009, 10833003, 11073030.

REFERENCES

Bildsten, L. et al, 1997, ApJSS, 113, 367
Burnard, D.J., Arons, J., Klein, R., 1991, ApJ, 367, 575
Campana, S. et al. 2001, ApJ 561, 924
Cominsky L., Clark G. W., Li F., Mayer W., Rappaport S., 1978, Nature, 273, 367
Ferrigno, C., Becker, P.A., Segreto, A., Mineo, T., & Santangelo A., 2009, A&A, 498, 825
Finger, M. H., Scott, M., Hagedon, K., et al. 1995, IAUC, 6266
Giacconi R., Murray S., Gursky H. et al., 1972, ApJ, 178, 281
Goldwurm, A. et al., 2003, A&A, 411, L223
Hutchings J. B., Crampton D., 1981, ApJ, 247, 222
Johns M., Koski A., Canizaeres C., McClintock J., Rappaport S., Clark G., Cominski L., Li F., 1978, IAU Circular, 3171
Johnston M., Bradt H., Doysey R., Gursky H., Schwartz D., Schwartz J., 1978, ApJ, 223, 71
Kelley, R.L., Rappaport, S., Brodheim, M.J., Cominsky, L., 1981, ApJ, 251, 630
Kreykenbohm, I., Wilms, J., Coburn, W., Kuster, M., Rothschild, R. E., Heindl, W. A., Kretschmar, P., & Straubert, R. 2004, A&A, 427, 975
Lebrun F., Leray J. P., Lavocat P. et al., 2003, A&A, 411, L141
Lund N., Brandt S., Budtz-Joergesen C. et al., 2003, A&A, 411, L231
Makishima, K., Mihara, T., Nagase, F., & Tanaka, T., 1999, ApJ, 525, 978
Mihara, T., Makishima, K., Ohashi, T., Sako, T., & Tashiro, M. 1990, Nature, 346, 250
Mihara, T., Makishima, K., & Nagase, F., 2004, ApJ, 610, 390
Morrison, R.; McCammon, D., 1983, ApJ, 270, 119
Nakajima, M., Mihara, T., Makishima, K., & Niko, H., 2006, ApJ, 646, 1125
Negueruela, I. & Okazaki, A.T., 2001, A&A, 369, 108
Negueruela, I., Okazaki, A.T., Fabregat, J., Coe, M.J., Munari, U., Tomov, T., 2001, A&A, 369, 117
Okazaki, A.T. & Negueruela, I., 2001, A&A, 369, 161
Raichur, H., Paul, B., 2010, MNras, 406, 2663
Rappaport, S., Clark, G.W., Cominsky, L., Joss, P.C., & Li, F., 1978, ApJ, 224, L1
Ricketts, M. J., Hall, R., Page, C. G., & Pounds, K. A. 1981, SSRv, 30, 399
Scott, D. M., Finger, M. H., Wilson, R. B., Prince, & T. A. 1994, IAU Circ., 5990
Tamura, K., Tsunemi, H., Kitamoto, S., Hayashida, K., & Nagase, F., 1992, ApJ, 389, 676
Vacca, W. D., Garmany, C. D., & Shull, J. M. 1996, ApJ, 460, 914
Wheaton, W. A., Doty, J. P., & Primini, F. A., et al. 1979, Nature, 282, 240
White, N., Swank, J., & Holt, S. S. 1983, ApJ, 270, 711
Whitlock, L., Roussel-Dupre, D., & Friedhorsky, W. 1989, ApJ, 338, 381
Wilson, R. B., Harmon, B. A., & Finger, M. H. 1999, ATel, 40

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.