Shared Parking Behavioral Analysis Based on SEM

Han Xue1,*, Zhang Dongdong2, Wang Di3, Li Chen4

1School of Civil Engineering, Wanjiang University of Technology, Ma’anshan, Anhui, 243031, China
2Engineering Training Center, Nanjing Forestry University, Jiangsu, Nanjing, 210037, China
3School of Civil Engineering, Wanjiang University of Technology, Ma’anshan, Anhui, 243031, China
4Nanjing Citypost Institute of City & Transport Planning Co., Ltd. Nanjing, 210000, China
*a-mail: hanxue_echo@163.com

Abstract—Shared parking has become a widely studied topic among researchers due to a rise in urban expansion. Over the past years, several studies have been conducted to investigate the relationship between the choices of shared parking spaces by urban residents and the different factors influencing these choices. This paper analyzes the different factors that can possibly affect parking choice behavior and builds a structural equation model to determine the most influencing attributes.

1. INTRODUCTION

With the high ownership of private cars in big cities, it is a problem to find a parking spot in urban center areas. According to previous studies, more than 30% of traffic congestion is caused by searching for vacant parking spots aimlessly, and over 8 extra minutes are wasted when drivers cruise to park. However, it is impracticable to solve parking problems in large cities simply by construction of new parking facilities. Instead, shared parking has become a hot topic recently.

Shared parking was firstly proposed by Smith [1], it means that parking spaces are shared by more than one user, which allows parking facilities to be used more efficiently. Since, private parking slots are generally under the pattern of ‘go out early and come back at dusk’ [2], which makes it possible for drivers whose destination near residential areas are able to park their cars in the vacant private parking slots.

The current researches about shared parking mainly focus on the feasibility analysis [3-4], implementation strategy [5-8], and the prediction of shared parking space [9-11]. However, research on shared parking behavior is still in its infancy and the existing literature is very limited.

Compared with regular parking tariffs, the individual’s shared parking behavior is more sensitive to the performance of distance between the parking lot and destination. At present, modeling shared parking-related behavior has primarily been done using various forms of discrete choice models such as Binary Logit (BL) Model, Multinomial Logit (MNL) Model. He Peng [12] developed a BL Model to study commute parking and non-commute parking, the distance between parking lot and workplace is the primary influencing factor for commute parking, and non-commute parking is more sensitive to the parking price. Han Xue [13] made a quantitative analysis of the influencing factors of shared
parking choice behavior by building MNL model. Although these studies have assessed the effects of various factors on the choice of shared parking behavior, however, the cross-correlation between the shared parking decisions was ignored.

In this study, a Structural Equation Model is constructed to describe the relationship between influence factors and shared parking choice. Through adopting analysis and results in this study, the government can implement parking policies more accurately and effectively, adjust the contradiction between the supply and demand of parking, balance the choice of parking behaviors, and promote the harmonious development of urban transportation.

2. DATA DESCRIPTION
In this paper we collected individuals’ shared parking intention data in Nanjing, 248 interviewees and 5952 data were investigated through the online and offline survey. We collected interviewees’ traveler characteristics (gender, income, driving years), parking information (travel purpose, parking duration, walking distance after parking, etc.), and shared parking intention (willing to rent parking slot, most concerned about shared parking). The variables in the study and their basic statistics are shown in Table 1.

Variable Level	Sample size	Percentage	Variable Level	Sample size	Percentage	
Gender			Parking duration (hours)	> 6	54	21.77%
male	124	50%		4-6	40	16.13%
female	124	50%		2-4	81	32.66%
Monthly income (RMB yuan)				0.5-2	64	25.81%
> 10000	36	14.52%		< 0.5	9	3.63%
8000-10000	59	23.79%		15-20	9	3.63%
5000-8000	84	33.87%		10-15	44	17.74%
2000-5000	49	19.76%	Parking fee (yuan/hour)	> 20	11	4.44%
< 2000	20	8.06%		< 5-10	86	34.68%
Driving years (years)				2-5	78	31.45%
1-5	156	62.90%		< 2	31	12.50%
5-10	69	27.82%	Walking distance after parking (minutes)	0-5	60	24.19%
more than 10	23	9.27%		5-10	142	57.26%
Travel purpose				15-20	35	14.11%
commuting	125	50.40%		> 20	11	4.44%
shopping	34	13.71%		yes	201	81.05%
sight-seeing	54	21.77%		no	29	11.69%
picking up friends and relatives	28	11.29%		not sure	18	7.26%
others	7	2.82%				
Most concerned about shared parking			parking time limit	51	20.56%	
parking information	95	38.31%				
safety	102	41.13%				

3. METHODOLOGY
Structural equation modeling (SEM) is a multivariate statistical analysis technique that is used to analyze structural relationships. This technique is the combination of factor analysis and multiple regression analysis, and it is used to analyze the structural relationship between measured variables and latent constructs. SEM is widely used because it estimates the multiple and interrelated dependence in a single analysis.

According to shared parking intention data, two types of variables are used in the SEM. Endogenous variables are the variables to be determined by the model, and exogenous variables are known variables determined by factors other than the model, which are external conditions on which the model is based. The SEM can be described as (1).

\[\eta = \beta \eta + \Gamma \xi + \zeta \] (1)
Where η is endogenous variable, B is the interactions between endogenous variables, ζ is exogenous variable, and Γ is a direct random effect matrix expressing the impact of the exogenous variables on the endogenous variables. ζ is the residual error.

The construction process of SEM is: firstly, define the construction theoretically. Secondly, develop the overall measurement model by the use of an arrow, draw the arrow from the measured variable to the constructs. The third step is designing a study to minimize the likelihood of an identification problem. Fourthly, compare theoretical measurements against reality models. Then, draw the structural paths between constructs. And finally, examine the structural model validity. A model is considered a good fit if the value of the chi-square test is insignificant, and at least one incremental fit index (like CFI, GFI, TLI, AGFI, etc.) and one bad fit index (like RMR, RMSEA, SRMR, etc.) meet the predetermined criteria.

4. RESULTS & DISCUSSION

4.1 Correlation Analysis of Attributes

We collect 11 attributes of single individual in the shared parking intention survey, which includes: gender, income, driving years, purpose, duration, parking fee, walking distance, willing to rent the slot, parking time limitation, parking information and safety. The Pearson covariance matrix of each two attributes can be shown in Fig.1.

![Fig.1 Pearson covariance matrix heat map](image)

Since the absolute values of all Pearson correlation coefficient are less than 0.4. The correlation between the attributes is not significant.

4.2 Shared parking SEM

Based on the shared parking behavior analysis with the survey data, the variables are defined in Table 1. By calibrating the relationship between endogenous variables and exogenous variables, a shared parking SEM was established. According to the attributes of endogenous variables and exogenous variables, the category and names of these variables are shown in Table 2.

Shared parking behavior SEM model is built with AMOS. The path diagram of the model is created and the set of relationships between exogenous variables and the endogenous variables are defined with the help of the arrows. The path diagram for the model is shown in Fig.2.
After creating the path diagram and assigning the data labels, the analysis is conducted with maximum likelihood method which shows in Table 3. The results show that some of the variables are positive (travel purpose, parking fee, walking distance etc.) correlated with choice whereas others are negatively correlated (gender, income, duration etc.).

Table 2. Variables in SEM

Variable	Category	Name of variable	Variable	Category	Name of variable
Gender	Exogenous variable	ξ_1	Walking distance after parking	Endogenous variable	η_1
Monthly income	Exogenous variable	ξ_2	Willing to rent parking slot	Endogenous variable	η_4
Driving years	Exogenous variable	ξ_3	Parking time limitation	Endogenous variable	η_5
Travel purpose	Exogenous variable	ξ_4	Parking information	Endogenous variable	η_6
Parking duration	Endogenous variable	η_1	Safety	Endogenous variable	η_7
Parking fee	Endogenous variable	η_2			

Table 4 shows the reliability test of the shared parking SEM. RMR is the root mean square of residual error. The smaller RMR is, the better the model fitting is. CFI is the goodness of fit index, and its range is 0-1. AGFI is used to adjust the goodness of fit index, and CFI is adjusted by using the number ratio of degrees of freedom and variables, which should be greater than 0.9. PGFI is the goodness of fit index of simplicity. Based on the absolute estimate values of the variables, the following top 5 variables are selected as the mean factor of individuals’ shared parking behavior, which are ranked in order of their estimate values in Table 5.

Table 3. Interactions between variables

Variable	Estimate	S.E.	C.R.	P	Variable	Estimate	S.E.	C.R.	P
Gender	-0.029	0.049	-0.599	0.549	Walking distance	0.089	0.033	2.739	0.006
Monthly income	-0.008	0.021	-0.372	0.710	Willing to rent	0.017	0.042	0.396	0.692
Driving years	-0.018	0.037	-0.499	0.618	Parking time	0.030	0.032	0.936	0.349
Travel purpose	0.015	0.020	0.724	0.469	Parking info.	0.010	0.028	0.340	0.734
Parking duration	-0.028	0.021	1.343	0.179	Safety	-0.024	0.027	-0.916	0.359
Parking fee	0.003	0.024	0.114	0.909					
Table 4. SEM reliability test

	RMR	GFI	AGFI	PGFI
Default model	0.274	0.957	0.911	0.274

Table 5. Standardized Regression Weights

Variable	Walking distance	Parking duration	Parking time limitation	Safety	Travel purpose
Estimate	0.017	-0.083	0.058	-0.057	0.045

5. CONCLUSIONS

In this study, a structural equation model was established to analyze the impacts of individuals’ attributes on shared parking behavior. Among the total 11 attributes, walking distance after parking, parking duration, parking time limitation, safety and travel purpose are the most effective factors. These findings can be used to help develop measures to regulate shared parking behavior by controlling relevant factors.

ACKNOWLEDGMENT

This research is supported by Anhui Provincial Natural Science Foundation of China (1908085QE240) and by Anhui Provincial Department of Education Outstanding Young Talents Support Program (gxyq2019152), Anhui University Quality Engineering Teaching and Research Major Project (2018JYXM0238), Anhui University Quality Engineering Teaching and Research Project (2018JYXM0239).

REFERENCES

[1] Smith M S. Shared Parking [M]. 2nd ed. Washington DC: Urban Land Institute, 2005.
[2] Xiao H, Xu M, Gao Z. Shared parking problem: A novel truthful double auction mechanism approach [J]. Transportation research, 2018, 109(MAR.):40-69.
[3] Qingsheng G, Xiaoxiong W, Minglei S. The Utility of Shared Parking in Small Towns of Mixed Use Lands[C]// International Conference on Intelligent Computation Technology & Automation. IEEE, 2016.
[4] WANG Ying-yu. A Study of Shared Parking for Urban Complex [J]. Journal of Transport Information and Safety, 2016, 34(02):123-128.
[5] Shao C, Yang H, Zhang Y, et al. A simple reservation and allocation model of shared parking lots [J]. Transportation Research Part C Emerging Technologies, 2016, 71(OCT.):303-312.
[6] Xiao H, Xu M. How to restrain participants opt out in shared parking market? A fair recurrent double auction approach [J]. Transportation Research Part C: Emerging Technologies, 2018, 93(AUG.):36-61.
[7] Xu Su Xi, Cheng Meng, Kong Xiang T.R., Yang Hai & Huang, George Q. Private parking slot sharing, Transportation Research Part B: Methodological, 2016, 93(PA):596-617.
[8] Xiao H, Xu M. How to restrain participants opt out in shared parking market? A fair recurrent double auction approach [J]. Transportation Research Part C: Emerging Technologies, 2018, 93(AUG.):36-61.
[9] Wen-Hui Z, Yong-Min S U, Jing D, et al. Distributing Model For Shared Parking in the Residential Zones[J]. Journal of Transportation Systems Engineering and Information Technology, 2019.
[10] Yao E J, Zhang Z C, Zhang J L, et al. A Model and Algorithm for Optimization of the Utilization of Residential Shared Parking Slots [J]. Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/ Journal of Transportation Systems Engineering & Information Technology, 2017.
17(2):160-167.

[11] CHEN Jun, WANG Bin, ZHANG Chu. Parking Resource Sharing and Matching Methods for Appertaining Parking Facilities Based on Space-time Capacity [J]. China Journal of Highway and Transport, 018, 31(03):96-104+115.

[12] He P, Chen J, Zhen J H, et al. Parking Choice Behavior for Shared Parking Based on Parking Purposes [J]. Applied Mechanics and Materials, 2015, 743:439-444.

[13] HAN Xue, WANG Di. Behavior Analysis on Choices of Urban Residents on Shared Parking [J]. Journal of Hebei University of Water Resources and Electric Engineering, 2019 (03):57-60.