Quantitative Assay for Genus-Specific Leptospiral Antigen and Antibody

L. A. BAKER AND C. D. COX

Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01002

Received for publication 13 February 1973

Hemagglutination and hemagglutination inhibition techniques have been developed as quantitative assays for the genus-specific antigen of Leptospira and for its antibody.

A genus-specific leptospiral antigen (HL) and corresponding antibody, and their assays by passive hemolysis of sheep erythrocytes (RBC), have been previously described (1-3). Although exceedingly sensitive, these assays required complement and were tedious to perform, and current studies on this antigen required a more convenient but reproducible technique for detection and quantitation. This has been accomplished by modifying the previously described hemolytic assay to one of passive hemagglutination (HA) for quantitating antiserum and passive hemagglutination inhibition (HAI) for quantitating antigen.

Preparation of the HL (or HA) antigen, sensitization of sheep RBC, and assay procedures have been described (1) and were followed, with few modifications. Optimal sensitization of sheep RBC in the HA assay resulted from the use of 64 units of HL antigen, rather than 16 previously reported for the HA procedure. More than 64 units did not result in higher antibody titters. Sensitized sheep RBC were preserved by adding glutaraldehyde in a 1.0% final concentration to a 1.0% suspension of sensitized RBC with slow mixing at room temperature for 3 h. Fixed RBC were then washed three times in Kent triethanolamine buffer (5) containing 1.0 mg of bovine albumin (Pentex fraction V powder) per liter as stabilizer and suspended to 10%, and Merthiolate was added to a final concentration of 1:10,000. This HA antigen was stored in small vials at 4 C and diluted 1:10 for use. Preserved nonsensitized RBC were prepared in the same manner for a control.

The procedure for HA titration is given in Table 1. Sera were inactivated and diluted in the same buffer described above. Occasional heterophilic antibodies were indicated by reaction in tube 9 and were removed by adsorption with nonsensitized RBC. Although four times the amount of antigen used in the HL procedure (1) is used to sensitize RBC for the HA test, antigen may be titrated by a block HA assay using RBC sensitized with double dilutions of antigen and appropriate dilutions of a reference antiserum. The dilution of antigen used in the HA test was the highest one not showing a decrease in antiserum titer, which regularly matched 64 units by the HL assay (1). Although the assay in Table 1 was performed in 13- by

Determination	Tubes*
	1 2 3 4 5 6 7 8 9 10
Antiserum, ml	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Dilution (reciprocal)	10 20 40 80 160 320 640 1,280 10
Sensitized RBC, ml	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Nonsensitized RBC, ml	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.9
Buffer, ml	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.9

* Titer of antiserum is the highest dilution giving a definite positive pattern (flat sediment), compared to negative control tube no. 10 (smooth button).

* Tubes were shaken and patterns were read after 4 h at room temperature.

Table 1. Procedure for HA titration of antiserum*
Table 2. Comparative HA and HL titrations

HL titers (reciprocals)	HA titers (reciprocals)	Mean					
<10	10	40	100	400	1,000		
<100	13a	2	1	2	10		
100		400	2	7	6	60	
4,000		4,000	1	5	4	214	
10,000		10,000	1	9	6	4	367
40,000		40,000	1	3	1	500	
Mean		550	2,140	5,310	15,100	16,000	

* Titrations performed on 68 rabbit sera, including 13 from nonimmunized rabbits and 55 from rabbits immunized with pathogenic *Leptospira* and water isolates.

* Numbers of sera. All 13 sera were from nonimmunized rabbits.

Table 3. Procedure for HAI titration of antigen

Antigen (ml)
1*
2
3
4
5
6
7
8
9
10

Determination	1*	2	3	4	5	6	7	8	9	10
Diluted antiserum	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Antigen	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Dilution (reciprocal)*	8	16	32	64	128	256	512	1,024	2,048	0.4
Sensitized RBC	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Buffer	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

* Numbers 1 through 10 across are tube numbers. Tubes were shaken and patterns were read after 4 h at room temperature. Titer of antigen is the highest dilution showing complete inhibition (negative pattern, smooth button), compared to positive control tube no. 10 (flat sediment).

* After dilution, mix and incubate for 30 min at room temperature.

* Used in the highest dilution which gave a definite positive pattern in the HA titration, Table 1.

100-mm tubes, reducing all volumes by 0.2 permitted an equally sensitive and reproducible assay in disposable trays (Linbro IS-MRC-96).

Comparison of HA with HL titers on 68 rabbit sera is shown in Table 2. Sera included 13 from nonimmunized rabbits, 17 from rabbits immunized with pathogenic *Leptospira* (1, 2) (serotypes bataviae, hyos, ballum, pyrogenes, grippotyphosa, autumnalis, hebdomadis, sejroe, hardjo, pomona Pomona and Wickard, canicola Hond Utrecht and Mouton, icterohemorrhagiae M-20 and RGA, andaman, and semarang), and 31 from rabbits immunized with *Leptospira* isolated from water (1, 2) (serotypes Patoc, WaZ, Lt430, WaReiden, Sao-Paulo, Ghent, CDC, and 24 antigenically different strains isolated in this laboratory) (4). HA titers were consistently lower than HL titers, but the HA assay would seem to be as qualitatively capable of detecting antibodies.

Quantitation of HA antigen by the HAI assay is shown in Table 3. Sensitivity of the HAI is at least as great as that of the HL assay in quantitation antigen (1). Greatest sensitivity in the HAI is obtained when the antiserum is diluted as close as possible to the exact end point in the HA titration and may require lower than double dilutions near the end point.

Preserved, sensitized RBC have remained stable in appearance and reactivity at 4 C for over 2 years. The HA procedure would seem to offer possibilities for use in serodiagnosis of leptospirosis, because of its genus-specificity, ease of performance, and stability of the antigen. The antigen may be prepared from a wide range of leptospiral serotypes, including non-pathogenic ones. The HAI technique also offers

This investigation was supported by Public Health Service training grant GM-02168 from the National Institute of General Medical Science.

LITERATURE CITED

1. Cox, C. D. 1957. Standardization and stabilization of an extract from *Leptospira biflexa* and its use in the hemolytic test for leptospirosis. Infect. Dis. 101:203–209.

2. Cox, C. D., A. D. Alexander, and L. C. Murphy. 1957. Evaluation of the hemolytic test in the serodiagnosis of human leptospirosis. Infect. Dis. 101:210–218.

3. Cox, C. D., R. C. Stover, and R. W. Treicke. 1958. Serological studies on hemolytic antigen from *Leptospira* Proc. Soc. Exp. Biol. Med. 98:265–269.

4. Henneberry, R. C., and C. D. Cox. 1968. Antigenic analysis of water forms of *Leptospira*. J. Bacteriol. 96:1419–1420.

5. Williams, C. A., and M. W. Chase. 1968. Methods in immunology and immunochrometry. In C. A. Williams and M. W. Chase (ed.), vol. 2. Academic Press Inc., New York.