Phase transitions for non-singular Bernoulli actions

TEY BERENDSCHOT

Department of Mathematics, KU Leuven, Leuven, Belgium
(e-mail: tey.berendschot@kuleuven.be)

(Received 25 October 2022 and accepted in revised form 21 February 2023)

Abstract. Inspired by the phase transition results for non-singular Gaussian actions introduced in [AIM19], we prove several phase transition results for non-singular Bernoulli actions. For generalized Bernoulli actions arising from groups acting on trees, we are able to give a very precise description of their ergodic-theoretical properties in terms of the Poincaré exponent of the group.

Key words: non-singular Bernoulli action, phase transition, strong ergodicity, Krieger type 2020 Mathematics Subject Classification: 37A40 (Primary); 20E08 (Secondary)

1. Introduction

When G is a countable infinite group and (X_0, μ_0) is a non-trivial standard probability space, the probability measure-preserving (pmp) action

$$G \curvearrowright (X_0, \mu_0)^G : (g \cdot x)_h = x_{g^{-1}h}$$

is called a **Bernoulli action**. Probability measure-preserving Bernoulli actions are among the best-studied objects in ergodic theory and they play an important role in operator algebras [Ioa10, Pop03, Pop06]. When we consider a family of probability measures $(\mu_g)_{g \in G}$ on the base space X_0 that need not all be equal, the Bernoulli action

$$G \curvearrowright (X, \mu) = \prod_{g \in G} (X_0, \mu_g)$$

(1.1)

is in general no longer measure-preserving. Instead, we are interested in the case where $G \curvearrowright (X, \mu)$ is **non-singular**, that is, the group G preserves the **measure class** of μ. By Kakutani’s criterion for equivalence of infinite product measures the Bernoulli action (1.1) is non-singular if and only if $\mu_h \sim \mu_g$ for every $h, g \in G$ and

$$\sum_{h \in G} H^2(\mu_h, \mu_{gh}) < +\infty \quad \text{for every } g \in G. \quad (1.2)$$

Here $H^2(\mu_h, \mu_{gh})$ denotes the **Hellinger distance** between μ_h and μ_{gh} (see (2.2)).
It is well known that a pmp Bernoulli action $G \curvearrowright (X_0, \mu_0)^G$ is mixing. In particular, it is ergodic and conservative. However, for non-singular Bernoulli actions, determining conservativeness and ergodicity is much more difficult (see, for instance, [BKV19, Dan18, Kos18, VW17]).

Besides non-singular Bernoulli actions, another interesting class of non-singular group actions comes from the Gaussian construction, as introduced in [AIM19]. If $\pi: G \to O(H)$ is an orthogonal representation of a locally compact second countable (lcsc) group on a real Hilbert space H, and if $c: G \to H$ is a 1-cocycle for the representation π, then the assignment

$$\alpha_g(\xi) = \pi_g(\xi) + c(g) \quad (1.3)$$

defines an affine isometric action $\alpha: G \curvearrowright H$. To any affine isometric action $\alpha: G \curvearrowright H$, Arano, Isono and Marrakchi associated a non-singular group action $\hat{\alpha}: G \curvearrowright \hat{H}$, where \hat{H} is the Gaussian probability space associated to H. When $\alpha: G \curvearrowright H$ is actually an orthogonal representation, this construction is well established and the resulting Gaussian action is pmp. As explained below [BV20, Theorem D], if G is a countable infinite group and $\pi: G \to \ell^2(G)$ is the left regular representation, the affine isometric representation (1.3) gives rise to a non-singular action that is conjugate with the Bernoulli action $G \curvearrowright \prod_{g \in G} (\mathbb{R}, \nu_{F(g)})$, where $F: G \to \mathbb{R}$ is such that $c_g(h) = F(g^{-1}h) - F(h)$, and $\nu_{F(g)}$ denotes the Gaussian probability measure with mean $F(g)$ and variance 1.

By scaling the 1-cocycle $c: G \to H$ with a parameter $t \in [0, +\infty)$ we get a one-parameter family of non-singular actions $\hat{\alpha}_t: G \curvearrowright \hat{H}_t$ associated to the affine isometric actions $\alpha_t: G \curvearrowright H_t$, given by $\alpha_t(\xi) = \pi_t(\xi) + tc(g)$. Arano, Isono and Marrakchi showed that there exists a $t_{\text{diss}} \in [0, +\infty)$ such that $\hat{\alpha}_t$ is dissipative up to compact stabilizers for every $t > t_{\text{diss}}$ and infinitely recurrent for every $t < t_{\text{diss}}$ (see §2 for terminology).

Inspired by the results obtained in [AIM19], we study a similar phase transition framework, but in the setting of non-singular Bernoulli actions. Such a phase transition framework for non-singular Bernoulli actions was already considered by Kosloff and Soo in [KS20]. They showed the following phase transition result for the family of non-singular Bernoulli actions of $G = \mathbb{Z}$ with base space $X_0 = \{0, 1\}$ that was introduced in [VW17, Corollary 6.3]. For every $t \in [0, +\infty)$ consider the family of measures $(\mu^t_n)_{n \in \mathbb{Z}}$ given by

$$\mu^t_n(0) = \begin{cases}
1/2 & \text{if } n \leq 4t^2, \\
1/2 + t/\sqrt{n} & \text{if } n > 4t^2.
\end{cases}$$

Then $\mathbb{Z} \curvearrowright (X, \mu_t) = \prod_{n \in \mathbb{Z}}([0, 1], \mu^t_n)$ is non-singular for every $t \in [0, +\infty)$. Kosloff and Soo showed that there exists a $t_1 \in (1/6, +\infty)$ such that $\mathbb{Z} \curvearrowright (X, \mu_t)$ is conservative for every $t < t_1$ and dissipative for every $t > t_1$ [KS20, Theorem 3]. In [DKR20, Example D] the authors describe a family of non-singular Poisson suspensions for which a similar phase transition occurs. These examples arise from dissipative essentially free actions of \mathbb{Z}, and thus they are non-singular Bernoulli actions. We generalize the phase transition result from [KS20] to arbitrary non-singular Bernoulli actions as follows.
Suppose that G is a countable infinite group and let $(\mu_g)_{g \in G}$ be a family of equivalent probability measure on a standard Borel space X_0. Let ν also be a probability measure on X_0. For every $t \in [0, 1]$ we consider the family of equivalent probability measures $(\mu^t_g)_{g \in G}$ that are defined by
\[
\mu^t_g = (1-t)\nu + t\mu_g.
\]
(1.4)

Our first main result is that in this setting there is a phase transition phenomenon.

THEOREM A. Let G be a countable infinite group and assume that the Bernoulli action $G \curvearrowright (X, \mu_1) = \prod_{g \in G}(X_0, \mu_g)$ is non-singular. Let $\nu \sim \mu_e$ be a probability measure on X_0 and for every $t \in [0, 1]$ consider the family $(\mu^t_g)_{g \in G}$ of equivalent probability measures given by (1.4). Then the Bernoulli action $G \curvearrowright (X, \mu_t) = \prod_{g \in G}(X_0, \mu^t_g)$ is non-singular for every $t \in [0, 1]$ and there exists a $t_1 \in [0, 1]$ such that $G \curvearrowright (X, \mu_t)$ is weakly mixing for every $t < t_1$ and dissipative for every $t > t_1$.

Suppose that G is a non-amenable countable infinite group. Recall that for any standard probability space (X_0, μ_0), the pmp Bernoulli action $G \curvearrowright (X_0, \mu_0)^G$ is strongly ergodic. Consider again the family of probability measures $(\mu^t_g)_{g \in G}$ given by (1.4). In Theorem B below we prove that for t close enough to 0, the resulting non-singular Bernoulli action is strongly ergodic. This is inspired by [AIM19, Theorem 7.20] and [MV20, Theorem 5.1], which state similar results for non-singular Gaussian actions.

THEOREM B. Let G be a countable infinite non-amenable group and suppose that the Bernoulli action $G \curvearrowright (X, \mu_1) = \prod_{g \in G}(X_0, \mu_g)$ is non-singular. Let $\nu \sim \mu_e$ be a probability measure on X_0 and for every $t \in [0, 1]$ consider the family $(\mu^t_g)_{g \in G}$ of equivalent probability measures given by (1.4). Then there exists a $t_0 \in (0, 1]$ such that $G \curvearrowright (X, \mu_t) = \prod_{g \in G}(X_0, \mu^t_g)$ is strongly ergodic for every $t < t_0$.

Although we can prove a phase transition result in large generality, it remains very challenging to compute the critical value t_1. However, when $G \subset \text{Aut}(T)$, for some locally finite tree T, following [AIM19, §10], we can construct generalized Bernoulli actions of which we can determine the conservativeness behaviour very precisely. To put this result into perspective, let us first explain briefly the construction from [AIM19, §10].

For a locally finite tree T, let $\Omega(T)$ denote the set of orientations on T. Let $p \in (0, 1)$ and fix a root $\rho \in T$. Define a probability measure μ_p on $\Omega(T)$ by orienting an edge towards ρ with probability p and away from ρ with probability $1-p$. If $G \subset \text{Aut}(T)$ is a subgroup, then we naturally obtain a non-singular action $G \curvearrowright (\Omega(T), \mu_p)$. Up to equivalence of measures, the measure μ_p does not depend on the choice of root $\rho \in T$. The Poincaré exponent of $G \subset \text{Aut}(T)$ is defined as
\[
\delta(G \curvearrowright T) = \inf \left\{ s > 0 \text{ for which } \sum_{w \in G \cdot v} \exp(-sd(v, w)) < +\infty \right\}, \quad (1.5)
\]
where $v \in V(T)$ is any vertex of T. In [AIM19, Theorem 10.4] Arano, Isono and Marrakchi showed that if $G \subset \text{Aut}(T)$ is a closed non-elementary subgroup, the action $G \acts (\Omega(T), \mu_p)$ is dissipative up to compact stabilizers if $2\sqrt{p(1-p)} < \exp(-\delta)$ and weakly mixing if $2\sqrt{p(1-p)} > \exp(-\delta)$. This motivates the following similar construction.

Let $E(T) \subset V(T) \times V(T)$ denote the set of oriented edges, so that vertices v and w are adjacent if and only if $(v, w), (w, v) \in E(T)$. Suppose that X_0 is a standard Borel space and that μ_0, μ_1 are equivalent probability measures on X_0. Fix a root $\rho \in T$ and define a family of probability measures $(\mu_e)_{e \in E(T)}$ by

$$
\mu_e = \begin{cases}
\mu_0 & \text{if } e \text{ is oriented towards } \rho, \\
\mu_1 & \text{if } e \text{ is oriented away from } \rho.
\end{cases}
$$

Suppose that $G \subset \text{Aut}(T)$ is a subgroup. Then the generalized Bernoulli action

$$
G \acts \prod_{e \in E(T)} (X_0, \mu_e) : \ (g \cdot x)_e = x_{g \cdot e^{-1}}
$$

is non-singular and up to conjugacy it does not depend on the choice of root $\rho \in T$. In our next main result we generalize [AIM19, Theorem 10.4] to non-singular actions of the form (1.7).

Theorem C. Let T be a locally finite tree with root $\rho \in T$ and let $G \subset \text{Aut}(T)$ be a non-elementary closed subgroup with Poincaré exponent $\delta = \delta(G \acts T)$. Let μ_0 and μ_1 be equivalent probability measures on a standard Borel space X_0 and define a family of equivalent probability measures $(\mu_e)_{e \in E(T)}$ by (1.6). Then the generalized Bernoulli action (1.7) is dissipative up to compact stabilizers if $1 - H^2(\mu_0, \mu_1) < \exp(-\delta/2)$ and weakly mixing if $1 - H^2(\mu_0, \mu_1) > \exp(-\delta/2)$.

2. Preliminaries

2.1. Non-singular group actions. Let $(X, \mu), (Y, \nu)$ be standard measure spaces. A Borel map $\varphi : X \to Y$ is called non-singular if the pushforward measure $\varphi_*\mu$ is equivalent to ν. If in addition there exist conull Borel sets $X_0 \subset X$ and $Y_0 \subset Y$ such that $\varphi : X_0 \to Y_0$ is a bijection we say that φ is a non-singular isomorphism. We write $\text{Aut}(X, \mu)$ for the group of all non-singular automorphisms $\varphi : X \to X$, where we identify two elements if they agree almost everywhere. The group $\text{Aut}(X, \mu)$ carries a canonical Polish topology.

A non-singular group action $G \acts (X, \mu)$ of an lcsc group G on a standard measure space (X, μ) is a continuous group homomorphism $G \to \text{Aut}(X, \mu)$. A non-singular group action $G \acts (X, \mu)$ is called essentially free if the stabilizer subgroup $G_x = \{ g \in G : g \cdot x = x \}$ is trivial for almost every (a.e.) $x \in X$. When G is countable this is the same as the condition that $\mu((x \in X : g \cdot x = x)) = 0$ for every $g \in G \setminus \{e\}$. We say that $G \acts (X, \mu)$ is ergodic if every G-invariant Borel set $A \subset X$ satisfies $\mu(A) = 0$ or $\mu(X \setminus A) = 0$. A non-singular action $G \acts (X, \mu)$ is called weakly mixing if for any ergodic pmp action $G \acts (Y, \nu)$ the diagonal product action $G \acts X \times Y$ is ergodic. If G is not compact and $G \acts (X, \mu)$ is pmp, we say that $G \acts X$ is mixing if

$$
\lim_{g \to \infty} \mu(g \cdot A \cap B) = \mu(A)\mu(B) \quad \text{for every pair of Borel subsets } A, B \subset X.
$$
Suppose that $G \curvearrowright (X, \mu)$ is a non-singular action and that μ is a probability measure. A sequence of Borel subsets $A_n \subset X$ is called almost invariant if

$$\sup_{g \in K} \mu(g \cdot A_n \Delta A_n) \to 0$$

for every compact subset $K \subset G$.

The action $G \curvearrowright (X, \mu)$ is called strongly ergodic if every almost invariant sequence $A_n \subset X$ is trivial, that is, $\mu(A_n)(1 - \mu(A_n)) \to 0$. The strong ergodicity of $G \curvearrowright (X, \mu)$ only depends on the measure class of μ. When (Y, ν) is a standard measure space and ν is infinite, a non-singular action $G \curvearrowright (Y, \nu)$ is called strongly ergodic if $G \curvearrowright (Y, \nu')$ is strongly ergodic, where ν' is a probability measure that is equivalent to ν.

Following [AIM19, Definition A.16], we say that a non-singular action $G \curvearrowright (X, \mu)$ is dissipative up to compact stabilizers if each ergodic component is of the form $G \curvearrowright G/K$, for a compact subgroup $K \subset G$. By [AIM19, Theorem A.29] a non-singular action $G \curvearrowright (X, \mu)$, with $\mu(X) = 1$, is dissipative up to compact stabilizers if and only if

$$\int_G \frac{d g \mu}{d \mu}(x) d\lambda(g) < +\infty \quad \text{for a.e. } x \in X,$$

where λ denotes the left invariant Haar measure on G. We say that $G \curvearrowright (X, \mu)$ is infinitely recurrent if for every non-negligible subset $A \subset X$ and every compact subset $K \subset G$ there exists $g \in G \setminus K$ such that $\mu(g \cdot A \cap A) > 0$. By [AIM19, Proposition A.28] and Lemma 2.1 below, a non-singular action $G \curvearrowright (X, \mu)$, with $\mu(X) = 1$, is infinitely recurrent if and only if

$$\int_G \frac{d g \mu}{d \mu}(x) d\lambda(g) = +\infty \quad \text{for a.e. } x \in X.$$

A non-singular action $G \curvearrowright (X, \mu)$ is called dissipative if it is essentially free and dissipative up to compact stabilizers. In that case there exists a standard measure space (X_0, μ_0) such that $G \curvearrowright X$ is conjugate with the action $G \curvearrowright G \times X_0 : g \cdot (h, x) = (gh, x)$. A non-singular action $G \curvearrowright (X, \mu)$ decomposes, uniquely up to a null set, as $G \curvearrowright D \sqcup C$, where $G \curvearrowright D$ is dissipative up to compact stabilizers and $G \curvearrowright C$ is infinitely recurrent. When G is a countable group and $G \curvearrowright (X, \mu)$ is essentially free, we say that $G \curvearrowright X$ is conservative if it is infinitely recurrent.

Lemma 2.1. Suppose that G is an lcsc group with left invariant Haar measure λ and that (X, μ) is a standard probability space. Assume that $G \curvearrowright (X, \mu)$ is a non-singular action that is infinitely recurrent. Then we have that

$$\int_G \frac{d g \mu}{d \mu}(x) d\lambda(g) = +\infty \quad \text{for a.e. } x \in X.$$

Proof. Note that the set

$$D = \left\{ x \in X : \int_G \frac{d g \mu}{d \mu}(x) d\lambda(g) < +\infty \right\}$$

is G-invariant. Therefore, it suffices to show that $G \curvearrowright X$ is not infinitely recurrent under the assumption that D has full measure.
Let \(\pi : (X, \mu) \to (Y, \nu) \) be the projection onto the space of ergodic components of \(G \bowtie X \). Then there exist a conull Borel subset \(Y_0 \subset Y \) and a Borel map \(\theta : Y_0 \to X \) such that \((\pi \circ \theta)(y) = y \) for every \(y \in Y_0 \).

Write \(X_y = \pi^{-1}(y) \). By [AIM19, Theorem A.29], for a.e. \(y \in Y \) there exists a compact subgroup \(K_y \subset G \) such that \(G \bowtie X_y \) is conjugate with \(G \bowtie G/K_y \). Let \(G_n \subset G \) be an increasing sequence of compact subsets of \(G \) such that \(\bigcup_{n \geq 1} G_n = G \). For every \(x \in X \), write \(G_x = \{ g \in G : g \cdot x = x \} \) for the stabilizer subgroup of \(x \). Using an argument as in [MRV11, Lemma 10], one shows that for each \(n \geq 1 \) the set \(\{ x \in X : G_x \subset G_n \} \) is Borel. Thus, for every \(n \geq 1 \) the set

\[
U_n = \{ y \in Y_0 : K_y \subset G_n \} = \{ y \in Y_0 : G_{\theta(y)} \subset G_n \}
\]

is a Borel subset of \(Y \) and we have that \(\nu(\bigcup_{n \geq 1} U_n) = 1 \). Therefore, the sets

\[
A_n = \{ g \cdot \theta(y) : g \in G_n, y \in U_n \}
\]

are analytic and exhaust \(X \) up to a set of measure zero. So there exist an \(n_0 \in \mathbb{N} \) and a non-negligible Borel set \(B \subset A_{n_0} \). Suppose that \(h \in G \) is such that \(h \cdot B \cap B \neq \emptyset \). Then there exist \(y \in U_{n_0} \) and \(g_1, g_2 \in G_{n_0} \) such that \(h g_1 \cdot \theta(y) = g_2 \cdot \theta(y) \), and we get that \(h \in G_{n_0} K_y G_{n_0}^{-1} \subset G_{n_0} G_{n_0} G_{n_0}^{-1} \). In other words, for \(h \in G \) outside the compact set \(G_{n_0} G_{n_0} G_{n_0}^{-1} \) we have that \(\mu(h \cdot B \cap B) = 0 \), so that \(G \bowtie X \) is not infinitely recurrent. \(\square \)

We will frequently use the following result of Schmidt and Walters. Suppose that \(G \bowtie (X, \mu) \) is a non-singular action that is infinitely recurrent and suppose that \(G \bowtie (Y, \nu) \) is pmp and mixing. Then by [SW81, Theorem 2.3] we have that

\[
L^\infty(X \times Y)^G = L^\infty(X)^G \overline{\otimes} 1,
\]

where \(G \bowtie X \times Y \) acts diagonally. Although [SW81, Theorem 2.3] demands proper ergodicity of the action \(G \bowtie (X, \mu) \), the infinite recurrence assumption is sufficient as remarked in [AIM19, Remark 7.4].

2.2. The Maharam extension and crossed products. Let \((X, \mu) \) be a standard measure space. For any non-singular automorphism \(\varphi \in \text{Aut}(X, \mu) \), we define its Maharam extension by

\[
\varphi : X \times \mathbb{R} \to X \times \mathbb{R} : \quad \varphi(x, t) = (\varphi(x), t + \log(d \varphi^{-1}_t \mu/d \mu)(x)).
\]

Then \(\varphi \) preserves the infinite measure \(\mu \times \exp(-t)dt \). The assignment \(\varphi \mapsto \varphi \) is a continuous group homomorphism from \(\text{Aut}(X) \) to \(\text{Aut}(X \times \mathbb{R}) \). Thus, for each non-singular group action \(G \bowtie (X, \mu) \), by composing with this map, we obtain a non-singular group action \(G \bowtie X \times \mathbb{R} \), which we call the Maharam extension of \(G \bowtie X \). If \(G \bowtie X \) is a non-singular group action, the translation action \(\mathbb{R} \bowtie X \times \mathbb{R} \) in the second component commutes with the Maharam extension \(G \bowtie X \times \mathbb{R} \). Therefore, we get a well-defined action \(\mathbb{R} \bowtie L^\infty(X \times \mathbb{R})^G \), which is the Krieger flow associated to the action \(G \bowtie X \). The Krieger flow is given by \(\mathbb{R} \bowtie \mathbb{R} \) if and only if there exists a \(G \)-invariant \(\sigma \)-finite measure \(\nu \) on \(X \) that is equivalent to \(\mu \).
Suppose that $M \subset B(H)$ is a von Neumann algebra represented on the Hilbert space H and that $\alpha: G \curvearrowright M$ is a continuous action on M of an lcsc group G. Then the crossed product von Neumann algebra $M \rtimes_\alpha G \subset B(L^2(G, H))$ is the von Neumann algebra generated by the operators \{\pi(x)\}_{x \in M}$ and \{uh\}_{h \in G}$ acting on $\xi \in L^2(G, H)$ as
\[(\pi(x)\xi)(g) = \alpha_g^{-1}(x)\xi(g), \quad (uh\xi)(g) = \xi(h^{-1}g).
\]
In particular, if $G \curvearrowright (X, \mu)$ is a non-singular group action, the crossed product $L^\infty(X) \rtimes G \subset B(L^2(G \times X))$ is the von Neumann algebra generated by the operators
\[(\pi(H)\xi)(g, x) = H(g \cdot x)\xi(g, x), \quad (uh\xi)(g, x) = \xi(h^{-1}g, x),
\]
for $H \in L^\infty(X)$ and $h \in G$. If $G \curvearrowright X$ is non-singular essentially free and ergodic, then $L^\infty(X) \rtimes G$ is a factor. Moreover, when G is a unimodular group, the Krieger flow of $G \curvearrowright X$ equals the flow of weights of the crossed product von Neumann algebra $L^\infty(X) \rtimes G$. For non-unimodular groups this is not necessarily true, motivating the following definition.

Definition 2.2. Let G be an lcsc group with modular function $\Delta: G \rightarrow \mathbb{R}_{>0}$. Let λ denote the Lebesgue measure on \mathbb{R}. Suppose that $\alpha: G \curvearrowright (X, \mu)$ is a non-singular action. We define the modular Maharam extension of $G \curvearrowright X$ as the non-singular action

$$\beta: G \curvearrowright (X \times \mathbb{R}, \mu \times \lambda): \quad g \cdot (x, t) = (g \cdot x, t + \log(\Delta(g)) + \log(dg^{-1} \mu/d\mu)(x)).$$

Let $L^\infty(X \times \mathbb{R})^\beta$ denote the subalgebra of β-invariant elements. We define the flow of weights associated to $G \curvearrowright X$ as the translation action $\mathbb{R} \curvearrowright L^\infty(X \times \mathbb{R})^\beta: (t \cdot H)(x, s) = H(x, s - t)$.

As we explain below, the flow of weights associated to an essentially free ergodic non-singular action $G \curvearrowright X$ equals the flow of weights of the crossed product factor $L^\infty(X) \rtimes G$, justifying the terminology. See also [Sa74, Proposition 4.1].

Let $\alpha: G \curvearrowright X$ be an essentially free ergodic non-singular group action with modular Maharam extension $\beta: G \curvearrowright X \times \mathbb{R}$. By [Sa74, Proposition 1.1] there is a canonical normal semifinite faithful weight φ on $L^\infty(X) \rtimes_\alpha G$ such that the modular automorphism group σ^φ is given by

$$\sigma^\varphi_t(\pi(H)) = \pi(H), \quad \sigma^\varphi_t(u_h) = \Delta(g)^{it}u_h\pi((dg^{-1} \mu/d\mu)^{it}),$$

where $\Delta: G \rightarrow \mathbb{R}_{>0}$ denotes the modular function of G.

For an element $\xi \in L^2(\mathbb{R}, L^2(G \times X))$ and $(g, x) \in G \times X$, write $\xi_{g, x}$ for the map given by $\xi_{g, x}(s) = \xi(s, g, x)$. Then by Fubini’s theorem $\xi_{g, x} \in L^2(\mathbb{R})$ for a.e. $(g, x) \in G \times X$. Let $U: L^2(\mathbb{R}, L^2(G \times X)) \rightarrow L^2(G, L^2(X \times \mathbb{R}))$ be the unitary given on $\xi \in L^2(\mathbb{R}, L^2(G \times X))$ by

$$(U\xi)(g, x, t) = \mathcal{F}^{-1}(\xi_{g, x})(t + \log(\Delta(g)) + \log(dg^{-1} \mu/d\mu)(x)),$$

where $\mathcal{F}^{-1}: L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R})$ denotes the inverse Fourier transform. One can check that conjugation by U induces an isomorphism

$$\Psi: (L^\infty(X) \rtimes_\alpha G) \rtimes_{\sigma^\varphi} \mathbb{R} \rightarrow L^\infty(X \times \mathbb{R}) \rtimes_\beta G.$$
Let \(\kappa : L^\infty(X \times \mathbb{R}) \to L^\infty(X \times \mathbb{R}) \rtimes_\beta G \) be the inclusion map and let \(\gamma : \mathbb{R} \acts L^\infty(X \times \mathbb{R}) \rtimes_\beta G \) be the action given by

\[\gamma_t(\kappa(H))(x, s) = \kappa(H)(x, s - t), \quad \gamma_t(ug) = ug. \]

Then one can verify that \(\Psi \) conjugates the dual action \(\hat{\sigma}_\varphi : \mathbb{R} \acts (L^\infty(X) \rtimes_\alpha G) \rtimes_\sigma \mathbb{R} \) and \(\gamma \). Therefore, we can identify the flow of weights \(\mathbb{R} \acts Z((L^\infty(X) \rtimes_\alpha G) \rtimes_\sigma \mathbb{R}) \) with \(\mathbb{R} \acts Z((L^\infty(X \times \mathbb{R}) \rtimes_\beta G) \cong L^\infty(X \times \mathbb{R}) \beta : \) the flow of weights associated to \(G \acts X \).

Remark 2.3. It will be useful to speak about the Krieger type of a non-singular ergodic action \(G \acts X \). In light of the discussion above, we will only use this terminology for countable groups \(G \), so that no confusion arises with the type of the crossed product von Neumann algebra \(L^\infty(X) \rtimes G \). So assume that \(G \) is countable and that \(G \acts (X, \mu) \) is a non-singular ergodic action. Then the Krieger flow is ergodic and we distinguish several cases. If \(\nu \) is atomic, we say that \(G \acts X \) is of type I. If \(\nu \) is non-atomic and finite, we say that \(G \acts X \) is of type II_1. If \(\nu \) is non-atomic and infinite, we say that \(G \acts X \) is of type II\(\infty \). If the Krieger flow is properly ergodic (that is, every orbit has measure zero), we say that \(G \acts X \) is of type III_0.

2.3. **Non-singular Bernoulli actions.** Suppose that \(G \) is a countable infinite group and that \((\mu_g)_{g \in G} \) is a family of equivalent probability measures on a standard Borel space \(X_0 \). The action

\[G \acts (X, \mu) = \prod_{h \in G} (X_0, \mu_h) : (g \cdot x)_h = x_{g^{-1}h} \]

is called the Bernoulli action. For two probability measures \(\nu, \eta \) on a standard Borel space \(Y \), the Hellinger distance \(H^2(\nu, \eta) \) is defined by

\[H^2(\nu, \eta) = \frac{1}{2} \int_Y \left(\sqrt{d\nu/d\zeta} - \sqrt{d\eta/d\zeta} \right)^2 d\zeta, \]

where \(\zeta \) is any probability measure on \(Y \) such that \(\nu, \eta \prec \zeta \). By Kakutani’s criterion for equivalence of infinite product measures \([\text{Kak}48]\) the Bernoulli action (2.1) is non-singular if and only if

\[\sum_{h \in G} H^2(\mu_h, \mu_{gh}) < +\infty \quad \text{for every } g \in G. \]

If \((X, \mu) \) is non-atomic and the Bernoulli action (2.1) is non-singular, then it is essentially free by \([\text{BKV}19, \text{Lemma 2.2}]\).

Suppose that \(I \) is a countable infinite set and that \((\mu_i)_{i \in I} \) is a family of equivalent probability measures on a standard Borel space \(X_0 \). If \(G \) is an lcsc group that acts on \(I \), the action

\[G \acts (X, \mu) = \prod_{i \in I} (X_0, \mu_i) : (g \cdot x)_i = x_{g^{-1}i} \]

is called the Bernoulli action. For two probability measures \(\nu, \eta \) on a standard Borel space \(Y \), the Hellinger distance \(H^2(\nu, \eta) \) is defined by

\[H^2(\nu, \eta) = \frac{1}{2} \int_Y \left(\sqrt{d\nu/d\zeta} - \sqrt{d\eta/d\zeta} \right)^2 d\zeta, \]

where \(\zeta \) is any probability measure on \(Y \) such that \(\nu, \eta \prec \zeta \). By Kakutani’s criterion for equivalence of infinite product measures \([\text{Kak}48]\) the Bernoulli action (2.1) is non-singular if and only if

\[\sum_{h \in G} H^2(\mu_h, \mu_{gh}) < +\infty \quad \text{for every } g \in G. \]

If \((X, \mu) \) is non-atomic and the Bernoulli action (2.1) is non-singular, then it is essentially free by \([\text{BKV}19, \text{Lemma 2.2}]\).
is called the generalized Bernoulli action and it is non-singular if and only if
\[\sum_{i \in I} H^2(\mu_i, \mu_{g_i}) < +\infty \] for every \(g \in G \). When \(v \) is a probability measure on \(X_0 \) such that \(\mu_i = v \) for every \(i \in I \), the generalized Bernoulli action (2.3) is pmp and it is mixing if and only if the stabilizer subgroup \(G_i = \{g \in G : g \cdot i = i\} \) is compact for every \(i \in I \). In particular, if \(G \) is countable infinite, the pmp Bernoulli action \(G \acts (X_0, \mu_0)^G \) is mixing.

2.4. Groups acting on trees. Let \(T = (V(T), E(T)) \) be a locally finite tree, so that the edge set \(E(T) \) is a symmetric subset of \(V(T) \times V(T) \) with the property that vertices \(v, w \in V(T) \) are adjacent if and only if \((v, w), (w, v) \in E(T) \). When \(T \) is clear from the context, we will write \(E \) instead of \(E(T) \). Also we will often write \(T \) instead of \(V(T) \) for the vertex set. For any two vertices \(v, w \in T \) let \([v, w]\) denote the smallest subtree of \(T \) that contains \(v \) and \(w \). The distance between vertices \(v, w \in T \) is defined as \(d(v, w) = |V([v, w])| - 1 \). Fixing a root \(\rho \in T \), we define the boundary \(\partial T \) of \(T \) as the collection of all infinite line segments starting at \(\rho \). We equip \(\partial T \) with a metric \(d_\rho \) as follows. If \(\omega, \omega' \in \partial T \), let \(v \in T \) be the unique vertex such that \(d(\rho, v) = \sup_{\omega' \in \omega' \cap \partial T} d(\rho, v) \) and define \[d_\rho(\omega, \omega') = \exp(-d(\rho, v)). \]

Then, up to homeomorphism, the space \((\partial T, d_\rho)\) does not depend on the chosen root \(\rho \in T \). Furthermore, the Hausdorff dimension \(\dim_H \partial T \) of \((\partial T, d_\rho)\) is also independent of the choice of \(\rho \in T \).

Let \(\text{Aut}(T) \) denote the group of automorphisms of \(T \). By [Tit70, Proposition 3.2], if \(g \in \text{Aut}(T) \), then either:

- \(g \) fixes a vertex or interchanges a pair of vertices (in this case we say that \(g \) is elliptic);
- or there exists a bi-infinite line segment \(L \subset T \), called the axis of \(g \), such that \(g \) acts on \(L \) by non-trivial translation (in this case we say that \(g \) is hyperbolic).

We equip \(\text{Aut}(T) \) with the topology of pointwise convergence. A subgroup \(G \subset \text{Aut}(T) \) is closed with respect to this topology if and only if for every \(v \in T \) the stabilizer subgroup \(G_v = \{g \in G : g \cdot v = v\} \) is compact. An action of an lcsc group \(G \) on \(T \) is a continuous homomorphism \(G \to \text{Aut}(T) \). We say that the action \(G \acts T \) is cocompact if there is a finite set \(F \subset E(T) \) such that \(G \cdot F = E(T) \). A subgroup \(G \subset \text{Aut}(T) \) is called non-elementary if it does not fix any point in \(T \cup \partial T \) and does not interchange any pair of points in \(T \cup \partial T \). Equivalently, \(G \subset \text{Aut}(T) \) is non-elementary if there exist hyperbolic elements \(h, g \in G \) with axes \(L_h \) and \(L_g \) such that \(L_h \cap L_g \) is finite. If \(G \subset \text{Aut}(T) \) is a non-elementary closed subgroup, there exists a unique minimal \(G \)-invariant subtree \(S \subset T \) and \(G \) is compactly generated if and only if \(G \acts S \) is cocompact (see [CM11, §2]).

Recall from (1.5) the definition of the Poincaré exponent \(\delta(G \acts T) \) of a subgroup \(G \subset \text{Aut}(T) \). If \(G \subset \text{Aut}(T) \) is a closed subgroup such that \(G \acts T \) is cocompact, then we have that \(\delta(G \acts T) = \dim_H \partial T \).

3. Phase transitions for non-singular Bernoulli actions: proof of Theorems A and B

Let \(G \) be a countable infinite group and let \((\mu_g)_{g \in G} \) be a family of equivalent probability measures on a standard Borel space \(X_0 \). Let \(v \) also be a probability measure on \(X_0 \). For \(t \in [0, 1] \) we define the family of probability measures
\[\mu_t^g = (1-t)\nu + t\mu_g, \quad g \in G. \] (3.1)

We write \(\mu_t \) for the infinite product measure \(\mu_t = \prod_{g \in G} \mu_t^g \) on \(X = \prod_{g \in G} X_0 \). We prove Theorem 3.1 below, which is slightly more general than Theorem A.

Theorem 3.1. Let \(G \) be a countable infinite group and let \((\mu_g)_{g \in G} \) be a family of equivalent probability measures on a standard probability space \(X_0 \), which is not supported on a single atom. Assume that the Bernoulli action \(G \curvearrowright \prod_{g \in G}(X_0, \mu_g) \) is non-singular. Let \(\nu \) also be a probability measure on \(X_0 \). Then for every \(t \in [0, 1] \) the Bernoulli action

\[G \curvearrowright (X, \mu_t) = \prod_{g \in G}(X_0, (1-t)\nu + t\mu_g) \] (3.2)

is non-singular. Assume, in addition, that one of the following conditions holds.

1. \(\nu \sim \mu_e \).
2. \(\nu \prec \mu_e \) and \(\sup_{g \in G} | \log d\mu_g/d\mu_e(x) | < +\infty \) for a.e. \(x \in X_0 \).

Then there exists a \(t_1 \in [0, 1] \) such that \(G \curvearrowright (X, \mu_t) \) is dissipative for every \(t > t_1 \) and weakly mixing for every \(t < t_1 \).

Remark 3.2. One might hope to prove a completely general phase transition result that only requires \(\nu \prec \mu_e \), and not the additional assumption that \(\sup_{g \in G} | \log d\mu_g/d\mu_e(x) | < +\infty \) for a.e. \(x \in X_0 \). However, the following example shows that this is not possible.

Let \(G \) be any countable infinite group and let \(G \curvearrowright \prod_{g \in G}(C_0, \eta_g) \) be a conservative non-singular Bernoulli action. Note that Theorem 3.1 implies that \(G \curvearrowright \prod_{g \in G}(C_0, (1-t)\eta_e + t\eta_g) \) is conservative for every \(t < 1 \). Let \(X_0 = C_0 \cup C_1 \) such that \(0 < \sum_{g \in G} \mu_g(C_1) < +\infty \) and such that \(\mu_g|\{0\} = \mu_g(C_0)\eta_g \). Then the Bernoulli action \(G \curvearrowright (X, \mu) = \prod_{g \in G}(X_0, \mu_g) \) is non-singular with non-negligible conservative part \(C_0^G \subset G \) and dissipative part \(X \setminus C_0^G \). Taking \(\nu = \eta_e \prec \mu_e \), for each \(t < 1 \) the Bernoulli action \(G \curvearrowright (X, \mu_t) = \prod_{g \in G}(X_0, (1-t)\eta_e + t\mu_g) \) is constructed in the same way, by starting with the conservative Bernoulli action \(G \curvearrowright \prod_{g \in G}(C_0, (1-t)\eta_e + t\eta_g) \). So for every \(t \in (0, 1) \) the Bernoulli action \(G \curvearrowright (X, \mu_t) \) has non-negligible conservative part and non-negligible dissipative part.

We can also prove a version of Theorem B in the more general setting of Theorem 3.1.

Theorem 3.3. Let \(G \) be a countable infinite non-amenable group. Make the same assumptions as in Theorem 3.1 and consider the non-singular Bernoulli actions \(G \curvearrowright (X, \mu_t) \) given by (3.2). Assume, moreover, that:

1. \(\nu \sim \mu_e \), or
2. \(\nu \prec \mu_e \) and \(\sup_{g \in G} | \log d\mu_g/d\mu_e(x) | < +\infty \) for a.e. \(x \in X_0 \).

Then there exists a \(t_0 > 0 \) such that \(G \curvearrowright (X, \mu_t) \) is strongly ergodic for every \(t < t_0 \).
Proof of Theorem 3.1. Assume that $G \bowtie (X, \mu_1) = \prod_{g \in G} (X_0, \mu_g)$ is non-singular. For every $t \in [0, 1]$ we have that
\[
\sum_{h \in G} H^2(\mu^g_h, \mu^l_{gh}) \leq t \sum_{h \in G} H^2(\mu_h, \mu_{gh}) \quad \text{for every } g \in G,
\]
so that $G \bowtie (X, \mu_t)$ is non-singular for every $t \in [0, 1]$. The rest of the proof we divide into two steps.

Claim 1. If $G \bowtie (X, \mu_t)$ is conservative, then $G \bowtie (X, \mu_s)$ is weakly mixing for every $s < t$.

Proof of Claim 1. Note that for every $g \in G$ we have that
\[
(\mu^g_s)^r = (1 - r)v + r \mu^g_s = (1 - r)v + r(1 - s)v + rs \mu_g = \mu^g_{sr},
\]
so that $(\mu_s s) r = \mu_{sr}$. Therefore, it suffices to prove that $G \bowtie (X, \mu_s)$ is weakly mixing for every $s < 1$, assuming that $G \bowtie (X, \mu_1)$ is conservative.

The claim is trivially true for $s = 0$. So assume that $G \bowtie (X, \mu_1)$ is conservative and fix $s \in (0, 1)$. Let $G \bowtie (Y, \eta)$ be an ergodic pmp action. Define $Y_0 = X_0 \times X_0 \times [0, 1]$ and define the probability measures λ on $[0, 1]$ by $\lambda(0) = s$. Define the map $\theta : Y_0 \to X_0$ by
\[
\theta(x, x', j) = \begin{cases} x & \text{if } j = 0, \\ x' & \text{if } j = 1. \end{cases}
\]
Then for every $g \in G$ we have that $\theta_* (\mu^g_s \times \nu \times \lambda) = \mu^g_s$. Write $Z = [0, 1]^G$ and equip Z with the probability measure λ^G. We identify the Bernoulli action $G \bowtie (Y_0^G)$ with the diagonal action $G \bowtie X \times X \times Z$. By applying θ in each coordinate we obtain a G-equivariant factor map
\[
\Psi : X \times X \times Z \to X : \quad \Psi(x, x', z)_h = \theta(x_h, x'_h, z_h).
\]
Then the map $\text{id}_Y \times \Psi : Y \times X \times X \times Z \to Y \times X$ is G-equivariant and we have that $(\text{id}_Y \times \Psi)_* (\eta \times \mu_1 \times \mu_0 \times \lambda^G) = \eta \times \mu_s$. The construction above is similar to [KS20, §4].

Take $F \in L^\infty(Y \times X, \eta \times \mu_s)^G$. Note that the diagonal action $G \bowtie (Y \times X, \eta \times \mu_1)$ is conservative, since $G \bowtie (Y, \eta)$ is pmp. The action $G \bowtie (X \times Z, \mu_0 \times \lambda^G)$ can be identified with a pmp Bernoulli action with base space $(X_0 \times [0, 1], \nu \times \lambda)$, so that it is mixing. By [SW81, Theorem 2.3] we have that
\[
L^\infty(Y \times X \times X \times Z, \eta \times \mu_1 \times \mu_0 \times \lambda^G)^G = L^\infty(Y \times X, \eta \times \mu_1)^G \otimes 1 \otimes 1,
\]
which implies that the assignment $(y, x, x', z) \mapsto F(y, \Psi(x, x', z))$ is essentially independent of x' and z. Choosing a finite set of coordinates $F \subset G$ and changing, for $g \in F$, the value z_g between 0 and 1, we see that F is essentially independent of the x_g-coordinates for $g \in F$. As this is true for any finite set $F \subset G$, we have that $F \in L^\infty(Y)^G \otimes 1$. The action $G \bowtie (Y, \eta)$ is ergodic and therefore F is essentially constant. We conclude that $G \bowtie (X, \mu_s)$ is weakly mixing. \qed
CLAIM 2. If \(v \sim \mu_e \) and if \(G \curvearrowright (X, \mu_1) \) is not dissipative, then \(G \curvearrowright (X, \mu_s) \) is conservative for every \(s < 1 \).

Proof of Claim 2. Again it suffices to assume that \(G \curvearrowright (X, \mu_1) \) is not dissipative and to show that \(G \curvearrowright (X, \mu_s) \) is conservative for every \(s < 1 \).

When \(s = 0 \), the statement is trivial, so assume that \(G \curvearrowright (X, \mu_1) \) is not dissipative and fix \(s \in (0, 1) \). Let \(C \subseteq X \) denote the non-negligible conservative part of \(G \curvearrowright (X, \mu_1) \).

As in the proof of Claim 1, write \(Z = [0, 1]^G \) and let \(\lambda \) be the probability measure on \([0, 1]\) given by \(\lambda(0) = s \). Writing \(\Psi : X \times X \times Z \to X \) for the \(G \)-equivariant map (3.4).

We claim that \(\Psi_*((\mu_1 \times \mu_0 \times \lambda^G)|_{C \times X \times Z}) \sim \mu_s \), so that \(G \curvearrowright (X, \mu_s) \) is a factor of a conservative non-singular action, and therefore must be conservative itself.

As \(\Psi_*((\mu_1 \times \mu_0 \times \lambda^G)|_{C \times X \times Z}) \sim \mu_s \), we have that \(\Psi_*((\mu_1 \times \mu_0 \times \lambda^G)|_{C \times X \times Z}) \sim \mu_s \). Let \(U \subseteq X \) be the Borel set, uniquely determined up to a set of measure zero, such that \(\Psi_*((\mu_1 \times \mu_0 \times \lambda^G)|_{C \times X \times Z}) \sim \mu_s \). We have to show that \(\mu_s(X \setminus U) = 0 \). Fix a finite subset \(F \subseteq G \). For every \(t \in [0, 1] \) define

\[
(X_1, \gamma_1^t) = \prod_{g \in F} (X_0, (1-t)v + t\mu_g),
\]

\[
(X_2, \gamma_2^t) = \prod_{g \in G \setminus F} (X_0, (1-t)v + t\mu_g).
\]

We shall write \(\gamma_1 = \gamma_1^1, \gamma_2 = \gamma_2^1 \). Also define

\[
(Y_1, \xi_1) = \prod_{g \in F} (X_0 \times X_0 \times [0, 1], \mu_g \times v \times \lambda),
\]

\[
(Y_2, \xi_2) = \prod_{g \in G \setminus F} (X_0 \times X_0 \times [0, 1], \mu_g \times v \times \lambda).
\]

By applying the map (3.3) in every coordinate, we get factor maps \(\Psi_j : Y_j \to X_j \) that satisfy \((\Psi_j)_\ast(\xi_j) = \gamma_j \) for \(j = 1, 2 \). Identify \(X_1 \times X_2 \cong X \times (X_0 \times \{0, 1\})^G \) and define the subset \(C' \subseteq X_1 \times X_2 \) by \(C' = C \times (X_0 \times \{0, 1\})^G \). Let \(U' \subseteq X \) be Borel such that

\[
(id_{X_1} \times \Psi_2)_\ast((\gamma_1 \times \xi_2)|_{C'}) \sim (\gamma_1 \times \gamma_2)|_{U'}.
\]

Identify \(Y_1 \times Y_2 \cong X \times (X_0 \times \{0, 1\})^F \) and define \(V \subseteq Y_1 \times X_2 \) by \(V = U' \times (X_0 \times \{0, 1\})^F \). Then we have that

\[
(\Psi_1 \times id_{X_2})_\ast((\xi_1 \times \gamma_2)|_{V}) \sim (\Psi_1 \times id_{X_2})_\ast(id_{Y_1} \times \Psi_2)_\ast((\gamma_1 \times \xi_1)|_{C'} \times v^F \times \lambda^F) \]

\[
= \Psi_*((\xi_1 \times \xi_2)|_{C \times X \times Z}) \sim \mu_s|_{U'}.\]

Let \(\pi : X_1 \times X_2 \to X_2 \) and \(\pi' : Y_1 \times X_2 \to X_2 \) denote the coordinate projections. Note that by construction we have that

\[
\pi'_\ast((\xi_1 \times \gamma_2)|_{V}) \sim \pi'_\ast((\gamma_1 \times \gamma_2)|_{U'}) \sim \pi_\ast(\mu_s|_{U'}).
\]

(3.5) Let \(W \subseteq X_2 \) be Borel such that \(\pi_\ast(\mu_s|_{U'}) \sim \gamma_2|_{W} \). For every \(y \in X_2 \) define the Borel sets

\[
U_y = \{ x \in X_1 : (x, y) \in U \} \quad \text{and} \quad U'_y = \{ x \in X_1 : (x, y) \in U' \}.
\]
As $\pi_*((\gamma_1 \times \gamma_2^s)|_{\mathcal{U}}) \sim \gamma_2^s|_W$, we have that

$$\gamma_1(\mathcal{U}_y^s) > 0 \quad \text{for } \gamma_2^s\text{-a.e. } y \in W.$$

The disintegration of $(\gamma_1 \times \gamma_2^s)|_{\mathcal{U}}$ along π is given by $(\gamma_1|_{\mathcal{U}_y^s})_{y \in W}$. Therefore, the disintegration of $((\xi_1 \times \gamma_2^s)|_{\mathcal{V}}$ along π' is given by $(\gamma_1|_{\mathcal{U}_y') \times \nu^F \times \lambda^F)_{y \in W}$. We conclude that the disintegration of $(\Psi_1 \times \text{id}_{X_2})_*((\xi_1 \times \gamma_2^s)|_{\mathcal{V}})$ along π is given by $((\Psi_1)_*(\gamma_1|_{\mathcal{U}_y^s} \times \nu^F \times \lambda^F))_{y \in W}$. The disintegration of $\mu_s|_{\mathcal{U}}$ along π is given by $(\gamma_2^s|_{\mathcal{U}_y^s})_{y \in W}$. Since $\mu_s|_{\mathcal{U}} = (\Psi_1 \times \text{id}_{X_2})_*((\xi_1 \times \gamma_2^s)|_{\mathcal{V}})$, we conclude that

$$(\Psi_1)_*(\gamma_1|_{\mathcal{U}_y^s} \times \nu^F \times \lambda^F) \sim \gamma_1^s|_{\mathcal{U}_y^s} \quad \text{for } \gamma_2^s\text{-a.e. } y \in W.$$

As $\gamma_1(\mathcal{U}_y^s) > 0$ for $\gamma_2^s\text{-a.e. } y \in W$, and using that $\nu \sim \mu_e$, we see that

$$\gamma_1^s \sim \nu^F \sim (\Psi_1)_*(\gamma_1 \times \nu^F \times \lambda^F)|_{\mathcal{U}_y^s \times X_0^F \times \{1\}^F} \sim (\Psi_1)_*(\gamma_1|_{\mathcal{U}_y^s} \times \nu^F \times \lambda^F).$$

for $\gamma_2^s\text{-a.e. } y \in W$. It is clear that also $(\Psi_1)_*(\gamma_1|_{\mathcal{U}_y^s} \times \nu^F \times \lambda^F) < \gamma_1^s$, so that $\gamma_1^s|_{\mathcal{U}_y^s} \sim \gamma_1^s$ for $\gamma_2^s\text{-a.e. } y \in W$. Therefore, we have that $\gamma_1^s(\mathcal{X}_1 \setminus \mathcal{U}_y^s) = 0$ for $\gamma_2^s\text{-a.e. } y \in W$, so that

$$\mu_s(\mathcal{U}\Delta(\mathcal{X}_0^F \times W)) = 0.$$

Since this is true for every finite subset $\mathcal{F} \subset G$, we conclude that $\mu_s(\mathcal{X} \setminus \mathcal{U}) = 0$. \hfill \Box

The conclusion of the proof now follows by combining both claims. Assume that $G \actson (X, \mu_t)$ is not dissipative and fix $s < t$. Choose r such that $s < r < t$.

$v \sim \mu_e$. By Claim 2 we have that $G \actson (X, \mu_r)$ is conservative. Then by Claim 1 we see that $G \actson (X, \mu_s)$ is weakly mixing.

$v \prec \mu_e$. As $v \prec \mu_e$, the measures μ_e^l and μ_e^s are equivalent. We have that

$$\frac{d\mu_e^l}{d\mu_e^s} = \left(1 - t\right)\frac{d\nu}{d\mu_e} + t\frac{d\mu_g}{d\mu_e} \frac{d\mu_e}{d\mu_e^l}.$$

So if $\sup_{g \in G} |\log d\mu_g/d\mu_e(x)| < +\infty$ for a.e. $x \in X_0$, we also have that

$$\sup_{g \in G} |\log d\mu_g/d\mu_e(x)| < +\infty \quad \text{for a.e. } x \in X_0.$$

It follows from [BV20, Proposition 4.3] that $G \actson (X, \mu_t)$ is conservative. Then by Claim 1 we have that $G \actson (X, \mu_s)$ is weakly mixing. \hfill \Box

Remark 3.4. Let I be a countably infinite set and suppose that we are given a family of equivalent probability measures $(\mu_i)_{i \in I}$ on a standard Borel space X_0. Let v be a probability measure on X_0 that is equivalent to all the μ_i. If G is an lcsc group that acts
on \mathcal{I} such that for each $i \in \mathcal{I}$ the stabilizer subgroup $G_i = \{g \in G : g \cdot i = i\}$ is compact, then the pmp generalized Bernoulli action

$$G \curvearrowright \prod_{i \in \mathcal{I}} (X_0, \nu), \quad (g \cdot x)_i = x_{g^{-1} \cdot i}$$

is mixing. For $t \in [0, 1]$ write

$$(X, \mu_t) = \prod_{i \in \mathcal{I}} (X_0, (1-t)\nu + t\mu_i)$$

and assume that the generalized Bernoulli action $G \curvearrowright (X, \mu_1)$ is non-singular.

Since [SW81, Theorem 2.3] still applies to infinitely recurrent actions of lcsc groups (see [AIM19, Remark 7.4]), it is straightforward to adapt the proof of Claim 1 in the proof of Theorem 3.1 to prove that if $G \curvearrowright (X, \mu_t)$ is infinitely recurrent, then $G \curvearrowright (X, \mu_s)$ is weakly mixing for every $s < t$. Similarly, we can adapt the proof of Claim 2, using that a factor of an infinitely recurrent action is again infinitely recurrent. Together, this leads to the following phase transition result in the lcsc setting.

Assume that $G_i = \{g \in G : g \cdot i = i\}$ is compact for every $i \in \mathcal{I}$ and that $\nu \sim \mu_e$. Then there exists a $t_1 \in [0, 1]$ such that $G \curvearrowright (X, \mu_t)$ is dissipative up to compact stabilizers for every $t > t_1$ and weakly mixing for every $t < t_1$.

Recall the following definition from [BKV19, Definition 4.2]. When G is a countable infinite group and $G \curvearrowright (X, \mu)$ is a non-singular action on a standard probability space, a sequence (η_n) of probability measures on G is called strongly recurrent for the action $G \curvearrowright (X, \mu)$ if

$$\sum_{h \in G} \eta_n^2(h) \int_X \frac{d\mu(x)}{\sum_{k \in G} \eta_n(hk^{-1})dk^{-1}\mu/d\mu(x)} \quad n \to +\infty \quad 0.$$

We say that $G \curvearrowright (X, \mu)$ is strongly conservative if there exists a sequence (η_n) of probability measures on G that is strongly recurrent for $G \curvearrowright (X, \mu)$.

Lemma 3.5. Let $G \curvearrowright (X, \mu)$ and $G \curvearrowright (Y, \nu)$ be non-singular actions of a countable infinite group G on standard probability spaces (X, μ) and (Y, ν). Suppose that $\psi : (X, \mu) \to (Y, \nu)$ is a measure-preserving G-equivariant factor map and that η_n is a sequence of probability measures on G that is strongly recurrent for the action $G \curvearrowright (X, \mu)$. Then η_n is strongly recurrent for the action $G \curvearrowright (Y, \nu)$.

Proof. Let $E : L^0(X, [0, +\infty)) \to L^0(Y, [0, +\infty))$ denote the conditional expectation map that is uniquely determined by

$$\int_Y E(F)H \ d\nu = \int_X F(H \circ \psi) \ d\mu$$

for all positive measurable functions $F : X \to [0, +\infty)$ and $H : Y \to [0, +\infty)$. Since

$$\frac{dk^{-1}\nu}{dv} \quad \frac{dk^{-1}\mu}{d\psi_{*}\mu} = E\left(\frac{dk^{-1}\mu}{d\mu}\right)$$
for every $k \in G$, we have that
\[
\sum_{k \in G} \eta_n(hk^{-1}k^{-1}) \frac{d\nu}{dv}(y) = E\left(\sum_{k \in G} \eta_n(hk^{-1}k^{-1}) \frac{d\mu}{d\nu}(y) \right) \quad \text{for a.e. } y \in Y. \tag{3.6}
\]
By Jensen’s inequality for conditional expectations, applied to the convex function $t \mapsto 1/t$, we also have that
\[
\frac{1}{E(\sum_{k \in G} \eta_n(hk^{-1}k^{-1}) \frac{d\mu}{d\nu}(y))} \leq E\left(\frac{1}{\sum_{k \in G} \eta_n(hk^{-1}k^{-1}) \frac{d\mu}{d\nu}(y)} \right) \quad \text{for a.e. } y \in Y. \tag{3.7}
\]
Combining (3.6) and (3.7), we see that
\[
\sum_{h \in G} \eta_n^2(h) \int_Y \frac{dv(y)}{\sum_{k \in G} \eta_n(hk^{-1}k^{-1}) \frac{d\nu}{d\nu}(y)}
\]
\[
\leq \sum_{h \in G} \eta_n^2(h) \int_Y E\left(\frac{1}{\sum_{k \in G} \eta_n(hk^{-1}k^{-1}) \frac{d\mu}{d\nu}(y)} \right) dv(y)
\]
\[
= \sum_{h \in G} \eta_n^2(h) \int_X \frac{d\mu(x)}{\sum_{k \in G} \eta_n(hk^{-1}k^{-1}) \frac{d\mu}{d\mu}(x)},
\]
which converges to 0 as η_n is strongly recurrent for $G \curvearrowright (X, \mu)$. \hfill \Box

We say that a non-singular group action $G \curvearrowright (X, \mu)$ has an invariant mean if there exists a G-invariant linear functional $\varphi \in L^\infty(X)^*$. We say that $G \curvearrowright (X, \mu)$ is amenable (in the sense of Zimmer) if there exists a G-equivariant conditional expectation $E: L^\infty(G \times X) \to L^\infty(X)$, where the action $G \curvearrowright G \times X$ is given by $g \cdot (h, x) = (gh, g \cdot x)$.

Proposition 3.6. Let G be a countable infinite group and let $(\mu_t)_{t \in G}$ be a family of equivalent probability measures on a standard Borel space X_0 that is not supported on a single atom. Let ν be a probability measure on X_0 and for each $t \in [0, 1]$ consider the Bernoulli action (3.2). Assume that $G \curvearrowright (X, \mu_t)$ is non-singular.

1. If $G \curvearrowright (X, \mu_t)$ has an invariant mean, then $G \curvearrowright (X, \mu_s)$ has an invariant mean for every $s < t$.
2. If $G \curvearrowright (X, \mu_t)$ is amenable, then $G \curvearrowright (X, \mu_s)$ is amenable for every $s > t$.
3. If $G \curvearrowright (X, \mu_t)$ is strongly conservative, then $G \curvearrowright (X, \mu_s)$ is strongly conservative for every $s < t$.

Proof. (1) We may assume that $t = 1$. So suppose that $G \curvearrowright (X, \mu_1)$ has an invariant mean and fix $s < 1$. Let λ be the probability measure on $[0, 1]$ that is given by $\lambda(0) = s$. Then by [AIM19, Proposition A.9] the diagonal action $G \curvearrowright (X \times X \times [0, 1]^G, \mu_1 \times \mu_0 \times \lambda^G)$ has an invariant mean. Since $G \curvearrowright (X, \mu_s)$ is a factor of this diagonal action, it admits a G-invariant mean as well.

(2) It suffices to show that $G \curvearrowright (X, \mu_t)$ is amenable whenever there exists a $t \in (0, 1)$ such that $G \curvearrowright (X, \mu_t)$ is amenable. Write λ for the probability measure on $[0, 1]$ given by $\lambda(0) = t$. Then $G \curvearrowright (X, \mu_t)$ is a factor of the diagonal action $G \curvearrowright (X \times X \times$
(0, 1)^G, \mu_1 \times \mu_0 \times \lambda^G), so by [Zim78, Theorem 2.4] also the latter action is amenable. Since \(G \acts (X \times \{0, 1\}^G, \mu_0 \times \lambda^G) \) is pmp, we have that \(G \acts (X, \mu_1) \) is amenable.

(3) We may again assume that \(t = 1 \). Suppose that \((\eta_n) \) is a strongly recurrent sequence of probability measures on \(G \) for the action \(G \acts (X, \mu_1) \). Fix \(s < 1 \) and let \(\lambda \) be the probability measure on \(\{0, 1\} \) defined by \(\lambda(0) = s \). As the diagonal action \(G \acts (X \times X \times \{0, 1\}^G, \mu_1 \times \mu_0 \times \lambda^G) \) is pmp, the sequence \(\eta_n \) is also strongly recurrent for the diagonal action \(G \acts (X \times X \times \{0, 1\}^G, \mu_1 \times \mu_0 \times \lambda^G) \). Since \(G \acts (X, \mu_t) \) is a factor of \(G \acts (X \times X \times \{0, 1\}^G, \mu_1 \times \mu_0 \times \lambda^G) \), it follows from Lemma 3.5 that the sequence \(\eta_n \) is strongly recurrent for \(G \acts (X, \mu_t) \).

We finally prove Theorem 3.3. The proof relies heavily upon the techniques developed in [MV20, §5].

Proof of Theorem 3.3. For every \(t \in (0, 1] \) write \(\rho^t \) for the Koopman representation \(\rho^t : G \acts L^2(X, \mu_t) : (\rho^t_g(\xi))(x) = \left(\frac{dg \mu_t}{d \mu_t} (x) \right)^{1/2} \xi(g^{-1} \cdot x) \).

Fix \(s \in (0, 1) \) and let \(C > 0 \) be such that \(\log(1 - x) \geq -Cx \) for every \(x \in [0, s) \). Then for every \(t < s \) and every \(g \in G \) we have that
\[
\log(\langle \rho^t_g(1), 1 \rangle) = \sum_{h \in G} \log(1 - H^2(\mu^t_{gh}, \mu^t_h)) \\
\geq \sum_{h \in G} \log(1 - tH^2(\mu^t_{gh}, \mu^t_h)) \\
\geq -Ct \sum_{h \in G} H^2(\mu^t_{gh}, \mu^t_h).
\]

Because \(G \acts (X, \mu_1) \) is non-singular we get that
\[
\langle \rho^t_g(1), 1 \rangle \to 1 \quad \text{as } t \to 0, \quad \text{for every } g \in G. \tag{3.8}
\]

We claim that there exists a \(t' > 0 \) such that \(G \acts (X, \mu_t) \) is non-amenable for every \(t < t' \). Suppose, to the contrary, that \(t_n \) is a sequence that converges to zero such that \(G \acts (X, \mu_{t_n}) \) is amenable for every \(n \in \mathbb{N} \). Then it follows from [Nev03, Theorem 3.7] that \(\rho^{t_n} \) is weakly contained in the left regular representation \(\lambda_G \) for every \(n \in \mathbb{N} \). Write \(1_G \) for the trivial representation of \(G \). It follows from (3.8) that \(\bigoplus_{n \in \mathbb{N}} \rho^{t_n} \) has almost invariant vectors, so that
\[
1_G \prec \bigoplus_{n \in \mathbb{N}} \rho^{t_n} \prec \infty \lambda_G < \lambda_G,
\]
which is in contradiction to the non-amenability of \(G \). By Theorem 3.1 there exists a \(t_1 \in [0, 1] \) such that \(G \acts (X, \mu_t) \) is weakly mixing for every \(t < t_1 \). Since every dissipative action is amenable (see, for example, [AIM19, Theorem A.29]) it follows that \(t_1 \geq t' > 0 \).
Write $Z_0 = [0, 1)$ and let λ denote the Lebesgue probability measure on Z_0. Let ρ^0 denote the reduced Koopman representation
\[
\rho^0 : G \curvearrowright L^2(X \times Z_0^G, \mu_0 \times \lambda^G) \oplus C1 : \quad (\rho^0_g(\xi))(x) = \xi(g^{-1} \cdot x).
\]
As G is non-amenable, ρ^0 has stable spectral gap. Suppose that for every $s > 0$ we can find $0 < s' < s$ such that ρ^s is weakly contained in $\rho^{s'} \otimes \rho^0$. Then there exists a sequence s_n that converges to zero, such that ρ^{s_n} is weakly contained in $\rho^{s_n} \otimes \rho^0$ for every $n \in \mathbb{N}$. This implies that $\bigoplus_{n\in\mathbb{N}} \rho^{s_n}$ is weakly contained in $\bigoplus_{n\in\mathbb{N}} \rho^{s_n} \otimes \rho^0$. But by (3.8), the representation $\bigoplus_{n\in\mathbb{N}} \rho^{s_n}$ has almost invariant vectors, so that $\bigoplus_{n\in\mathbb{N}} \rho^{s_n}$ weakly contains the trivial representation. This is in contradiction to ρ^0 having stable spectral gap.

We conclude that there exists an $s > 0$ such that ρ^s is not weakly contained in $\rho^0 \otimes \rho^0$ for every $t < s$.

We prove that $G \curvearrowright (X, \mu_t)$ is strongly ergodic for every $t < \min\{t', s\}$, in which case we can apply [MV20, Lemma 5.2] to the non-singular action $G \curvearrowright (X, \mu_t)$ and the pmp action $G \curvearrowright (X \times Z_0^G, \mu_0 \times \lambda^G)$ by our choice of t' and s. After rescaling, we may assume that $G \curvearrowright (X, \mu_1)$ is ergodic and that ρ^t is not weakly contained in $\rho^t \otimes \rho^0$ for every $t \in (0, 1)$.

Let $t \in (0, 1)$ be arbitrary and define the map
\[
\Psi : X \times X \times Z_0^G \rightarrow X : \quad \Psi(x, y, z)_h = \begin{cases} x_h & \text{if } z_h \leq t, \\ y_h & \text{if } z_h > t. \end{cases}
\]
Then Ψ is G-equivariant and we have that $\Psi(\mu_1 \times \mu_0 \times \lambda^G) = \mu_t$. Suppose that $G \curvearrowright (X, \mu_t)$ is not strongly ergodic. Then we can find a bounded almost invariant sequence $f_n \in L^\infty(X, \mu_t)$ such that $\|f_n\|_2 = 1$ and $\mu_t(f_n) = 0$ for every $n \in \mathbb{N}$. Therefore, $\Psi^*_n(f_n)$ is a bounded almost invariant sequence for $G \curvearrowright (X \times X \times Z_0^G, \mu_1 \times \mu_0 \times \lambda^G)$. Let $E : L^\infty(X \times X \times Z_0^G) \rightarrow L^\infty(X)$ be the conditional expectation that is uniquely determined by $\mu_1 \circ E = \mu_1 \times \mu_0 \times \lambda^G$. By [MV20, Lemma 5.2] we have that $\lim_{n \rightarrow \infty} \|(E \circ \Psi^*_n)(f_n) - \Psi^*_n(f_n)\|_2 = 0$. As Ψ is measure-preserving we get, in particular, that
\[
\lim_{n \rightarrow \infty} \|(E \circ \Psi^*_n)(f_n)\|_2 = 1. \quad (3.9)
\]
Note that if $\mu_t(f) = 0$ for some $f \in L^2(X, \mu_t)$, we have that $\mu_1((E \circ \Psi^*_n)(f)) = 0$. So we can view $E \circ \Psi^*_n$ as a bounded operator
\[
E \circ \Psi^*_n : L^2(X, \mu_t) \oplus C1 \rightarrow L^2(X, \mu_1) \oplus C1.
\]
Claim. The bounded operator $E \circ \Psi^*_n : L^2(X, \mu_t) \oplus C1 \rightarrow L^2(X, \mu_1) \oplus C1$ has norm strictly less than 1.

The claim is in direct contradiction to (3.9), so we conclude that $G \curvearrowright (X, \mu_t)$ is strongly ergodic.

Proof of claim. For every $g \in G$, let φ_g be the map
\[
\varphi_g : L^2(X_0, \mu'_g) \rightarrow L^2(X_0, \mu_g) : \quad \varphi_g(F) = tF + (1 - t)\nu(F) \cdot 1.
\]
Then \(E \circ \Psi_e : L^2(X_0, \mu_t) \to L^2(X, \mu_1) \) is given by the infinite product \(\bigotimes_{g \in G} \varphi_g \). For every \(g \in G \) we have that
\[
\|F\|_{2, \mu_g} = \|(d\mu_g^t/d\mu_g)^{-1/2}F\|_{2, \mu_g^t} \leq t^{-1/2}\|F\|_{2, \mu_g},
\]
so that the inclusion map \(\iota_g : L^2(X_0, \mu_t^g) \to L^2(X_0, \mu_g) \) is given by the infinite product \(\bigotimes_{g \in G} \phi_g \).

For every \(g \in G \) we have that
\[
\|\iota_g F\|_{2, \mu_t^g} = \|(d\mu_t^g/d\mu_g)^{-1/2}F\|_{2, \mu_t^g} \leq t^{-1/2}\|F\|_{2, \mu_t^g},
\]
so that the inclusion map \(\iota_g : L^2(X_0, \mu_t^g) \to L^2(X_0, \mu_g) \) satisfies \(\|\iota_g\| \leq t^{-1/2} \) for every \(g \in G \).

We have that \(\varphi_g(F) = t(F - \mu_g(F) \cdot 1) + \mu_t(F) \cdot 1 \) for every \(F \in L^2(X_0, \mu_t^g) \).

So if we write \(P_t^g \) for the projection map onto \(L^2(X_0, \mu_t^g) \odot C1 \), and \(P_g \) for the projection map onto \(L^2(X_0, \mu_g) \odot C1 \), we have that
\[
\varphi_g \circ P_t^g = t(P_g \circ \iota_g) \quad \text{for every} \quad g \in G. \tag{3.10}
\]

For a non-empty finite subset \(F \subset G \) let \(V(F) \) be the linear subspace of \(L^2(X, \mu_t) \odot C1 \) spanned by
\[
\bigotimes_{g \in F} L^2(X_0, \mu_t^g) \odot C1 \otimes \bigotimes_{g \in G \setminus F} 1.
\]

Then, using (3.10), we see that
\[
\|(E \circ \Psi_e)(f)\|_2 \leq t|F|/2 \|f\|_2 \quad \text{for every} \quad f \in V(F).
\]

Since \(\bigoplus_{F \neq \emptyset} V(F) \) is dense inside \(L^2(X, \mu_t) \odot C1 \), we have that
\[
\|(E \circ \Psi_e)|_{L^2(X, \mu_t) \odot C1}\| \leq t^{1/2} < 1. \tag*{\Box}
\]

This also concludes the proof of Theorem 3.3. \(\tag*{\Box} \)

4. Non-singular Bernoulli actions arising from groups acting on trees: proof of Theorem C

Let \(T \) be a locally finite tree and choose a root \(\rho \in T \). Let \(\mu_0 \) and \(\mu_1 \) be equivalent probability measures on a standard Borel space \(X_0 \). Following [AIM19, §10], we define a family of equivalent probability measures \((\mu_e)^e \in E \) by
\[
\mu_e = \begin{cases}
\mu_0 & \text{if} \ e \text{ is oriented towards} \ \rho, \\
\mu_1 & \text{if} \ e \text{ is oriented away from} \ \rho.
\end{cases} \tag{4.1}
\]

Let \(G \subset \text{Aut}(T) \) be a subgroup. When \(g \in G \) and \(e \in E \), the edges \(e \) and \(g \cdot e \) are simultaneously oriented towards, or away from, \(\rho \), unless \(e \in E([\rho, g \cdot \rho]) \). As \(E([\rho, g \cdot \rho]) \) is finite for every \(g \in G \), the generalized Bernoulli action
\[
G \curvearrowright (X, \mu) = \prod_{e \in E} (X_0, \mu_e) : \quad (g \cdot x)_e = x_{g^{-1} \cdot e} \tag{4.2}
\]
is non-singular. If we start with a different root \(\rho' \in T \), let \((\mu'_e)^e \in E \) denote the corresponding family of probability measures on \(X_0 \). Then we have that \(\mu_e = \mu'_e \) for all but finitely many \(e \in E \), so that the measures \(\prod_{e \in E} \mu_e \) and \(\prod_{e \in E} \mu'_e \) are equivalent. Therefore, up to conjugacy, the action (4.2) is independent of the choice of root \(\rho \in T \).
Lemma 4.1. Let T be a locally finite tree such that each vertex $v \in V(T)$ has degree at least 2. Suppose that $G \subset \text{Aut}(T)$ is a countable subgroup. Let μ_0 and μ_1 be equivalent probability measures on a standard Borel space X_0 and fix a root $\rho \in T$. Then the action $\alpha : G \curvearrowright (X, \mu)$ given by (4.2) is essentially free.

Proof. Take $g \in G \setminus \{e\}$. It suffices to show that $\mu(\{x \in X : g \cdot x = x\}) = 0$. If g is elliptic, there exist disjoint infinite subtrees $T_1, T_2 \subset T$ such that $g \cdot T_1 = T_2$. Note that

$$(X_1, \mu_1) = \prod_{e \in E(T_1)} (X_0, \mu_e) \quad \text{and} \quad (X_2, \mu_2) = \prod_{e \in E(T_2)} (X_0, \mu_e)$$

are non-atomic and that g induces a non-singular isomorphism $\varphi : (X_1, \mu_1) \to (X_2, \mu_2) : \varphi(x)_e = x_g^{-1}$. We get that

$$\mu_1 \times \mu_2(\{(x, \varphi(x)) : x \in X_1\}) = 0.$$

A fortiori $\mu(\{x \in X : g \cdot x = x\}) = 0$. If g is hyperbolic, let $L_g \subset T$ denote its axis on which it acts by non-trivial translation. Then $\prod_{e \in E(L_g)} (X_0, \mu_e)$ is non-atomic and by [BKV19, Lemma 2.2] the action $g^\mathbb{Z} \rtimes \prod_{e \in E(L_g)} (X_0, \mu_e)$ is essentially free. This implies that also $\mu(\{x \in X : g \cdot x = x\}) = 0$. \qed

We prove Theorem 4.2 below, which implies Theorem C and also describes the stable type when the action is weakly mixing.

Theorem 4.2. Let T be a locally finite tree with root $\rho \in T$. Let $G \subset \text{Aut}(T)$ be a closed non-elementary subgroup with Poincaré exponent $\delta = \delta(G \curvearrowright T)$ given by (1.5). Let μ_0 and μ_1 be non-trivial equivalent probability measures on a standard Borel space X_0. Consider the generalized non-singular Bernoulli action $\alpha : G \curvearrowright (X, \mu)$ given by (4.2). Then α is:

- weakly mixing if $1 - H^2(\mu_0, \mu_1) > \exp(-\delta/2)$;
- dissipative up to compact stabilizers if $1 - H^2(\mu_0, \mu_1) < \exp(-\delta/2)$.

Let $G \curvearrowright (Y, \nu)$ be an ergodic pmp action and let $\Lambda \subset \mathbb{R}$ be the smallest closed subgroup that contains the essential range of the map

$$X_0 \times X_0 \to \mathbb{R} : (x, x') \mapsto \log(d\mu_0/d\mu_1)(x) - \log(d\mu_0/d\mu_1)(x').$$

Let $\Delta : G \to \mathbb{R}_{>0}$ denote the modular function and let Σ be the smallest subgroup generated by Λ and $\log(\Delta(G))$.

Suppose that $1 - H^2(\mu_0, \mu_1) > \exp(-\delta/2)$. Then the Krieger flow and the flow of weights of $\beta : G \curvearrowright X \times Y$ are determined by Λ and Σ as follows.

1. If Λ (respectively, Σ) is trivial, then the Krieger flow (respectively, flow of weights) is given by $\mathbb{R} \curvearrowright \mathbb{R}$.
2. If Λ (respectively, Σ) is dense, then the Krieger flow (respectively, flow of weights) is trivial.
3. If Λ (respectively, Σ) equals $a\mathbb{Z}$, with $a > 0$, then the Krieger flow (respectively, flow of weights) is given by $\mathbb{R} \curvearrowright \mathbb{R}/a\mathbb{Z}$.

Phase transitions for non-singular Bernoulli actions 371
In general, we do not know the behaviour of the action (4.2) in the critical situation $1 - H^2(\mu_0, \mu_1) = \exp(-\delta/2)$. However, if T is a regular tree and $G \acts T$ has full Poincaré exponent, we prove in Proposition 4.3 below that the action is dissipative up to compact stabilizers. This is similar to [AIM19, Theorems 8.4 and 9.10].

Proposition 4.3. Let T be a q-regular tree with root $\rho \in T$ and let $G \subset \text{Aut}(T)$ be a closed subgroup with Poincaré exponent $\delta = \delta(G \acts T) = \log(q - 1)$. Let μ_0 and μ_1 be equivalent probability measures on a standard Borel space X_0.

If $1 - H^2(\mu_0, \mu_1) = (q - 1)^{-1/2}$, then the action (4.2) is dissipative up to compact stabilizers.

Interesting examples of actions of the form (4.2) arise when $G \subset \text{Aut}(T)$ is the free group on a finite set of generators acting on its Cayley tree. In that case, following [AIM19, §6] and [MV20, Remark 5.3], we can also give a sufficient criterion for strong ergodicity.

Proposition 4.4. Let the free group F_d on $d \geq 2$ generators act on its Cayley tree T. Let μ_0 and μ_1 be equivalent probability measures on a standard Borel space X_0.

Then the action (4.2) is dissipative if $1 - H^2(\mu_0, \mu_1) \leq (2d - 1)^{-1/2}$ and weakly mixing and non-amenable if $1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/2}$. Furthermore, the action (4.2) is strongly ergodic when $1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/4}$.

The proof of Theorem 4.2 below is similar to that of [LP92, Theorem 4] and [AIM19, Theorems 10.3 and 10.4].

Proof of Theorem 4.2. Define a family $(X_e)_{e \in E}$ of independent random variables on $(X, \mu) = \prod_{e \in E}(X_0, \mu_e)$ by

$$X_e(x) = \begin{cases} \log(d\mu_1/d\mu_0)(x_e) & \text{if } e \text{ is oriented towards } \rho, \\ \log(d\mu_0/d\mu_1)(x_e) & \text{if } e \text{ is oriented away from } \rho. \end{cases}$$

(4.3)

For $v \in T$ we write

$$S_v = \sum_{e \in E([\rho, v])} X_e.$$

Then we have that

$$\frac{dg\mu}{d\mu} = \exp(S_{g\rho}) \quad \text{for every } g \in G.$$

Since $G \subset \text{Aut}(T)$ is a closed subgroup, for each $v \in T$ the stabilizer subgroup $G_v = \{g \in G : g \cdot v = v\}$ is a compact open subgroup of G.

Suppose that $1 - H^2(\mu_0, \mu_1) < \exp(-\delta/2)$. Then we have that

$$\int_X \sum_{v \in G_{\rho}} \exp(S_v(x)/2) \, d\mu(x) = \sum_{v \in G_{\rho}} (1 - H^2(\mu_0, \mu_1))^{2d(\rho, v)} < +\infty,$$

by definition of the Poincaré exponent. Therefore, we have that $\sum_{v \in G_{\rho}} \exp(S_v(x)/2) < +\infty$ for a.e. $x \in X$. Let λ denote the left invariant Haar measure on G and define $L = \lambda(G_{\rho})$, where $G_{\rho} = \{g \in G : g \cdot \rho = \rho\}$. Then we have that
\[
\int_G \frac{d\mu(x)}{d\mu}(g) \, d\lambda(g) = L \sum_{v \in G-p} \exp(S_v(x)) < +\infty \quad \text{for a.e. } x \in X.
\]

We conclude that \(G \cong (X, \mu) \) is dissipative up to compact stabilizers.

Now assume that \(1 - H^2(\mu_0, \mu_1) > \exp(-\delta/2) \). We start by proving that \(G \cong (X, \mu) \) is infinitely recurrent. By [AIM19, Theorem 8.17] we can find a non-elementary closed compactly generated subgroup \(G' \subset G \) such that \(1 - H^2(\mu_0, \mu_1) > \exp(-\delta(G')/2) \). Let \(T' \subset T \) be the unique minimal \(G' \)-invariant subtree. Then \(G' \) acts cocompactly on \(T' \) and we have that \(\delta(G') = \dim_H \partial T' \). Let \(X \) and \(Y \) be independent random variables with distributions \((\log d\mu_1/d\mu_0)_\ast \mu_0 \) and \((\log d\mu_0/d\mu_1)_\ast \mu_1 \), respectively. Set \(Z = X + Y \) and write
\[
\phi(t) = \mathbb{E}(\exp(tZ)).
\]

The assignment \(t \mapsto \phi(t) \) is convex, \(\phi(t) = \phi(1-t) \) for every \(t \) and \(\phi(1/2) = (1 - H^2(\mu_0, \mu_1))^2 \). We conclude that
\[
\inf_{t \geq 0} \phi(t) = (1 - H^2(\mu_0, \mu_1))^2.
\]

Write \(R_k \) for the sum of \(k \) independent copies of \(Z \). By the Chernoff–Cramér theorem, as stated in [LP92], there exists an \(M \in \mathbb{N} \) such that
\[
\mathbb{P}(R_M \geq 0) > \exp(-M\delta(G')). \tag{4.4}
\]

Below we define a new unoriented tree \(S \). This means that the edge set of \(S \) consists of subsets \(\{v, w\} \subset V(S) \). Fix a vertex \(\rho' \in T' \) and define the unoriented tree \(S \) as follows.

- \(S \) has vertices \(v \in T' \) so that \(d_{T'}(\rho', v) \) is divisible by \(M \).
- There is an edge \(\{v, w\} \in E(S) \) between two vertices \(v, w \in S \) if \(d_{T'}(v, w) = M \) and \([\rho', v]_{T'} \subset [\rho', w]_{T'} \).

Here the notation \([\rho', v]_{T'} \) means that we consider the line segment \([\rho', v] \) as a subgraph of \(T' \). We have that \(\dim_H \partial S = M \dim_H \partial T' = M\delta(G') \). Form a random subgraph \(S(x) \) of \(S \) by deleting those edges \(\{v, w\} \in E(S) \) where
\[
\sum_{e \in E([v, w]_{T'})} X_e(x_e) < 0.
\]

This is an edge percolation on \(S \), where each edge remains with probability \(p = \mathbb{P}(R_M \geq 0) \). So by (4.4) we have that \(p \exp(\dim_H S) > 1 \). Furthermore, if \(\{v, w\} \) and \(\{v', w'\} \) are edges of \(S \) so that \(E([v, w]_{T'}) \cap E([v', w']_{T'}) = \emptyset \), their presence in \(S(x) \) constitutes independent events. So the percolation process is a quasi-Bernoulli percolation as introduced in [Lyo89]. Taking \(w \in (1, p \exp(\dim_H S)) \) and setting \(w_n = w^{-n} \), it follows from [Lyo89, Theorem 3.1] that percolation occurs almost surely, that is, \(S(x) \) contains an infinite connected component for a.e. \(x \in X \). Writing
\[
S'(v)(x) = \sum_{e \in E([v', v]_{T'})} X_e(x_e),
\]
this means that for a.e. $x \in (X, \mu)$ we can find a constant $a_x > -\infty$ such that $S'_v(x) > a_x$ for infinitely many $v \in T'$. As T'/G' is finite, there exists a vertex $w \in T'$ such that

$$\sum_{v \in G' \cdot w} \exp(S'_v(x)) = +\infty$$

with positive probability. \hfill (4.5)

Therefore, by Kolmogorov’s zero–one law, we have that $\sum_{v \in G' \cdot w} \exp(S'_v(x)) = +\infty$ almost surely. Since a change of root results in a conjugate action, we may assume that $\rho = w$. Then (4.5) implies that $\sum_{v \in G \cdot \rho} \exp(S_v(x)) = +\infty$ for a.e. $x \in X$. Writing again L for the Haar measure of the stabilizer subgroup $G_\rho = \{ g \in G : g \cdot \rho = \rho \}$, we see that

$$\int_G \frac{dg\mu}{d\mu} \, d\lambda(g) = L \sum_{v \in G \cdot \rho} \exp(S_v) = +\infty$$

almost surely. We conclude that $G \curvearrowright (X, \mu)$ is infinitely recurrent. We prove that $G \curvearrowright (X, \mu)$ is weakly mixing using a phase transition result from the previous section. Define the measurable map

$$\psi : X_0 \to (0, 1] : \psi(x) = \min\{d\mu_1/d\mu_0(x), 1\}.$$

Let ν be the probability measure on X_0 determined by

$$\frac{d\nu}{d\mu_0}(x) = \rho^{-1} \psi(x) \quad \text{where} \quad \rho = \int_{X_0} \psi(x) \, d\mu_0(x).$$

Then we have that $\nu \sim \mu_0$ and for every $s > 1 - \rho$ the probability measures

$$\eta_0^s = s^{-1}(\mu_0 - (1 - s)\nu), \quad \eta_1^s = s^{-1}(\mu_1 - (1 - s)\nu)$$

are well defined. We consider the non-singular actions $G \curvearrowright (X, \eta_0^s) = \prod_{e \in E(X_0, \eta_0^s)}$, where

$$\eta_0^s = \begin{cases} \eta_0^s & \text{if } e \text{ is oriented towards } \rho, \\ \eta_1^s & \text{if } e \text{ is oriented away from } \rho. \end{cases}$$

By the dominated convergence theorem we have that $H^2(\eta_0^s, \eta_1^s) \to H^2(\mu_0, \mu_1)$ as $s \to 1$. So we can choose s close enough to 1, but not equal to 1, such that $1 - H^2(\eta_0^s, \eta_1^s) > \exp(-\delta/2)$. By the first part of the proof we have that $G \curvearrowright (X, \eta_0^s)$ is infinitely recurrent. Note that

$$\mu_j = (1 - s)\nu + s\eta_j^s \quad \text{for } j = 0, 1.$$

Since we assumed that $G \subseteq \text{Aut}(T)$ is closed, all the stabilizer subgroups $G_v = \{ g \in G : g \cdot v = v \}$ are compact. By Remark 3.4 we conclude that $G \curvearrowright (X, \mu)$ is weakly mixing.

Let $G \curvearrowright (Y, v)$ be an ergodic pmp action. To determine the Krieger flow and the flow of weights of $\beta : G \curvearrowright X \times Y$ we use a similar approach to [AIM19, Theorem 10.4] and [VW17, Proposition 7.3]. First we determine the Krieger flow and then we deal with the flow of weights.
As before, let $G' \subset G$ be a non-elementary compactly generated subgroup such that $1 - H^2(\mu_0, \mu_1) > \exp(-\delta(G')/2)$. By [AIM19, Theorem 8.7] we may assume that G/G' is not compact. Let $T' \subset T$ be the minimal G'-invariant subtree. Let $v \in T'$ be as in Lemma 4.5 below so that

$$\bigcap_{g \in G} \left(E(gT') \cup E([v, g^{-1} \cdot v])\right) = \emptyset. \quad (4.6)$$

Since changing the root yields a conjugate action, we may assume that $\rho = v$. Let (Z_0, ζ_0) be a standard probability space such that there exist measurable maps $\theta_0, \theta_1 : Z_0 \to X_0$ that satisfy $(\theta_0)_* \zeta_0 = \mu_0$ and $(\theta_1)_* \zeta_0 = \mu_1$. Write

$$(Z, \zeta) = \prod_{e \in E(T) \setminus E(T')} (Z_0, \zeta_0),$$

$$(X_1, \rho_1) = \prod_{e \in E(T) \setminus E(T')} (X_0, \mu_e),$$

$$(X_2, \rho_2) = \prod_{e \in E(T')} (X_0, \mu_e).$$

By the first part of the proof we have that $G' \curvearrowright (X_2, \rho_2)$ is infinitely recurrent. Define the pmp map

$$\Psi : (Z, \zeta) \to (X_1, \rho_1) : \quad (\Psi(z))_e = \begin{cases} \theta_0(ze) & \text{if } e \text{ is oriented towards } \rho, \\ \theta_1(ze) & \text{if } e \text{ is oriented away from } \rho. \end{cases}$$

Consider

$$U = \{e \in E(T) : e \text{ is oriented towards } \rho\}.$$

Since $gU \Delta U = E(T)([\rho, g \cdot \rho]) \subset E(T')$ for any $g \in G'$, the set $(E(T) \setminus E(T')) \cap U$ is G'-invariant. Therefore, Ψ is a G'-equivariant factor map. Consider the Maharam extensions

$$G' \curvearrowright Z \times X_2 \times Y \times \mathbb{R} \quad \text{and} \quad G \curvearrowright X \times Y \times \mathbb{R}$$

of the diagonal actions $G' \curvearrowright Z \times X_2 \times Y$ and $G' \curvearrowright X \times Y \times \mathbb{R}$, respectively. Identifying $(X, \mu) = (X_1, \rho_1) \times (X_2, \rho_2)$, we obtain a G'-equivariant factor map

$$\Phi : Z \times X_2 \times Y \times \mathbb{R} \to X_1 \times X_2 \times Y \times \mathbb{R} : \quad \Phi(z, x, y, t) = (\Psi(z), x, y, t).$$

Take $F \in L^\infty(X \times Y \times \mathbb{R})^G$. By [AIM19, Proposition A.33] the Maharam extension $G' \curvearrowright Z_2 \times Y \times \mathbb{R}$ is infinitely recurrent. Since $G' \curvearrowright Z$ is a mixing pmp generalized Bernoulli action we have that $F \circ \Phi \in L^\infty(Z \times X_2 \times Y \times \mathbb{R})^G \subset 1 \overline{\otimes} L^\infty(X_2 \times Y \times \mathbb{R})^G$ by [SW81, Theorem 2.3]. Therefore, F is essentially independent of the $E(T) \setminus E(T')$-coordinates. Thus, for any $g \in G$ the assignment

$$(x, y, t) \mapsto F(g \cdot x, y, t) = F(x, y, t - \log(dg^{-1}\mu/d\mu)(x))$$

is essentially independent of the $E(T) \setminus E(gT')$-coordinates. Since $\log(dg^{-1}\mu/d\mu)$ only depends on the $E([\rho, g^{-1} \cdot \rho])$-coordinates, we deduce that F is essentially independent of
the $E(T) \setminus (E(gT') \cup E([\rho, g^{-1} \cdot \rho]))$-coordinates, for every $g \in G$. Therefore, by (4.6), we have that $F \in 1 \mathcal{L} L^\infty(Y \times \mathbb{R})$.

So we have proven that any G-invariant function $F \in L^\infty(X \times Y \times \mathbb{R})$ is of the form $F(x, y, t) = H(y, t)$, for some $H \in L^\infty(Y \times \mathbb{R})$ that satisfies

$$H(y, t) = H(g \cdot y, t + \log(dg^{-1}_/\mu)/\mu)(x)) \quad \text{for a.e. } (x, y, t) \in X \times Y \times \mathbb{R}.$$

Since 0 is in the essential range of the maps $\log(dg_\mu/\mu)$, for every $g \in G$, we see that $H(g \cdot y, t) = H(y, t)$ for a.e. $(y, t) \in Y \times \mathbb{R}$. By ergodicity of $G \curvearrowright Y$, we conclude that H is of the form $H(y, t) = P(t)$, for some $P \in L^\infty(\mathbb{R})$ that satisfies

$$P(t) = P(t + \log(dg^{-1}_/\mu)/\mu)(x)) \quad \text{for a.e. } (x, t) \in X \times \mathbb{R}, \text{ for every } g \in G. \quad (4.7)$$

Let $\Gamma \subset \mathbb{R}$ be the subgroup generated by the essential ranges of the maps $\log(dg_\mu/\mu)$, for $g \in G$. If $\Gamma = \{0\}$ we can identify $L^\infty(X \times Y \times \mathbb{R})^G \cong L^\infty(\mathbb{R})$. If $\Gamma \subset \mathbb{R}$ is dense, then it follows that P is essentially constant so that the Maharam extension $G \curvearrowright X \times Y \times \mathbb{R}$ is ergodic, that is, the Krieger flow of $G \curvearrowright X \times Y$ is trivial. If $\Gamma = a\mathbb{Z}$, with $a > 0$, we conclude by (4.7) that we can identify $L^\infty(X \times Y \times \mathbb{R})^G \cong L^\infty(\mathbb{R}/a\mathbb{Z})$, so that the Krieger flow of $G \curvearrowright X \times Y$ is given by $\mathbb{R}/a\mathbb{Z}$. Finally, note that the closure of Γ equals the closure of the subgroup generated by the essential range of the map

$$X_0 \times X_0 \to \mathbb{R}: \quad (x, x') \mapsto \log(d\mu_0/d\mu_1)(x) - \log(d\mu_0/d\mu_1)(x').$$

So we have calculated the Krieger flow in every case, concluding the proof of the theorem in the case where G is unimodular.

When G is not unimodular, let $G_0 = \ker \Delta$ be the kernel of the modular function. Let $G \curvearrowright X \times Y \times \mathbb{R}$ be the modular Maharam extension and let $\alpha: G_0 \curvearrowright X \times Y \times \mathbb{R}$ be its restriction to the subgroup G_0. Then we have that

$$L^\infty(X \times Y \times \mathbb{R})^G \subset L^\infty(X \times Y \times \mathbb{R})^\alpha.$$

By [AIM19, Theorem 8.16] we have that $\delta(G_0) = \delta$, and we can apply the argument above to conclude that $L^\infty(X \times Y \times \mathbb{R})^\alpha \subset 1 \mathcal{L} 1 \mathcal{L} L^\infty(\mathbb{R})$. So for every $F \in L^\infty(X \times Y \times \mathbb{R})^G$ there exists a $P \in L^\infty(\mathbb{R})$ such that

$$P(t) = P(t + \log(dg^{-1}_/\mu)/\mu)(x) + \log(\Delta(g))) \quad \text{for a.e. } (x, t) \in X \times \mathbb{R}, \text{ for every } g \in G. \quad (4.8)$$

Let Π be the subgroup of \mathbb{R} generated by the essential range of the maps

$$x \mapsto \log(dg^{-1}_/\mu)/\mu)(x) + \log(\Delta(g)) \quad \text{with } g \in G.$$

As 0 is contained in the essential range of $\log(dg^{-1}_/\mu)/\mu)$, for every $g \in G$, we get that $\log(\Delta(G)) \subset \Pi$. Therefore, Π also contains the subgroup $\Gamma \subset \mathbb{R}$ defined above. Thus, the closure of Π equals the closure of Σ, where $\Sigma \subset \mathbb{R}$ is the subgroup as in the statement of the theorem. From (4.8) we conclude that we may identify $L^\infty(X \times Y \times \mathbb{R})^G \cong L^\infty(\mathbb{R})^\Sigma$, so that the flow of weights of $G \curvearrowright X \times Y$ is as stated in the theorem. \qed
LEMMA 4.5. Let T be a locally finite tree and let $G \subset \text{Aut}(T)$ be a closed subgroup. Suppose that $H \subset G$ is a closed compactly generated subgroup that contains a hyperbolic element and assume that G/H is not compact. Let $S \subset T$ be the unique minimal H-invariant subtree. Then there exists a vertex $v \in S$ such that

$$\bigcap_{g \in G} (gS \cup [v, g^{-1} \cdot v]) = \{v\}.$$ \hfill (4.9)

Proof. Let $k \in H$ be a hyperbolic element and let $L \subset T$ be its axis, on which k acts by a non-trivial translation. Then $L \subset S$, as one can show for instance as in the proof of [CM11, Proposition 3.8]. Pick any vertex $v \in L$. We claim that this vertex will satisfy (4.9). Take any $w \in V(T) \setminus \{v\}$. As G/H is not compact, one can show as in [AIM19, Theorem 9.7] that there exists a $g \in G$ such that $g \cdot w \not\in S$. Since k acts by translation on L, there exists an $n \in \mathbb{N}$ large enough such that

$$[v, k \cdot v] \subset [v, k^n g \cdot v] \quad \text{and} \quad [v, k^{-1} \cdot v] \subset [v, k^{-n} g \cdot v],$$

so that in particular we have that $w \not\in [v, k^n g \cdot v] \cap [v, k^{-n} g \cdot v] = \{v\}$. Since S is H-invariant, we also have that $k^n g \cdot w \not\in S$ and $k^{-n} g \cdot w \not\in S$ and we conclude that

$$w \not\in ((k^n g)^{-1}S \cup [v, k^n g \cdot v]) \cap ((k^{-n} g)^{-1}S \cup [v, k^{-n} g \cdot v]).$$

Proof of Proposition 4.3. Define the family $(X_e)_{e \in E}$ of independent random variables on (X, μ) by (4.3) and write

$$S_v = \sum_{e \in E(v, \rho)} X_e.$$

Claim. There exists a $\delta > 0$ such that

$$\mu(\{x \in X : S_v(x) \leq -\delta \text{ for every } v \in T \setminus \{\rho\}\}) > 0.$$

Proof of claim. Note that $\mathbb{E}(\exp(X_e/2)) = 1 - H^2(\mu_0, \mu_1)$ for every $e \in E$. Define a family of random variables $(W_n)_{n \geq 0}$ on (X, μ) by

$$W_n = \sum_{v \in T, d(v, \rho) = n} \exp(S_v/2).$$

Using that $1 - H^2(\mu_0, \mu_1) = (q - 1)^{-1/2}$, one computes that

$$\mathbb{E}(W_{n+1} \mid S_v, d(v, \rho) \leq n) = W_n \quad \text{for every } n \geq 1.$$

So the sequence $(W_n)_{n \geq 0}$ is a martingale, and since it is positive it converges almost surely to a finite limit when $n \to +\infty$. Write $\Sigma_n = \{v \in T : d(v, \rho) = n\}$. As $W_n \geq \max_{v \in \Sigma_n} \exp(S_v/2)$ we conclude that there exists a positive constant $C < +\infty$ such that

$$\mathbb{P}(S_v \leq C \text{ for every } v \in T) > 0.$$

For any vertex $w \in T$, write $T_w = \{v \in T : [\rho, w] \subset [\rho, v]\}$: the set of children of w, including w itself. Using the symmetry of the tree and changing the root from ρ to $w \in T$, we also have that
\[\mathbb{P}(S_v - S_w \leq C \text{ for every } v \in T_w) > 0 \text{ for every } w \in T. \quad (4.10) \]

Set \(v_0 = (\log d\mu_1/d\mu_0)_*\mu_0 \) and \(v_1 = (\log d\mu_0/d\mu_1)_*\mu_1 \). Because \(1 - H^2(\mu_0, \mu_1) \neq 0 \) we have that \(\mu_0 \neq \mu_1 \), so that there exists a \(\delta > 0 \) such that
\[v_0 * v_1((-\infty, -\delta)) > 0. \]

Here \(v_0 * v_1 \) denotes the convolution product of \(v_0 \) with \(v_1 \). Therefore, there exists \(N \in \mathbb{N} \) large enough such that
\[\mathbb{P}(S_w \leq -C - \delta \text{ for every } w \in \Sigma_N \text{ and } S_{w'} \leq -\delta \text{ for every } w' \in \Sigma_n \text{ with } n \leq N) > 0. \quad (4.11) \]

Since for any \(w \in \Sigma_N \) and \(w' \in \Sigma_n \) with \(n \leq N \), we have that \(S_v - S_w \) is independent of \(S_{w'} \) for every \(v \in T_w \), and since \(\Sigma_N \) is a finite set, it follows from (4.10) and (4.11) that
\[\mathbb{P}(S_v \leq -\delta \text{ for every } v \in T \setminus \{\rho\}) > 0. \]

This concludes the proof of the claim. \(\square \)

Let \(\delta > 0 \) be as in the claim and define
\[\mathcal{U} = \{ x \in X : S_v(x) \leq -\delta \text{ for every } v \in T \setminus \{\rho\} \}, \]
so that \(\mu(\mathcal{U}) > 0 \). Let \(G_\rho \) be the stabilizer subgroup of \(\rho \). Note that for every \(g, h \in G \) we have that \(S_{hg,\rho}(x) = S_{g,\rho}(h^{-1} \cdot x) + S_{h,\rho}(x) \) for a.e. \(x \in X \), so that for \(h \in G \) we have that
\[h \cdot \mathcal{U} \subset \{ x \in X : S_{h,\rho}(x) \leq -\delta + S_{h,\rho}(x) \text{ for every } g \notin G_\rho \}. \]

It follows that if \(h \notin G_\rho \), we have that
\[\mathcal{U} \cap h \cdot \mathcal{U} \subset \{ x \in X : S_{h,\rho}(x) \leq -\delta \text{ and } S_{h,\rho}(x) \geq \delta \} = \emptyset. \]

Since \(G \subset \text{Aut}(T) \) is closed, we have that \(G_\rho \) is compact. So the action \(G \curvearrowright (X, \mu) \) is not infinitely recurrent. Let \(\lambda \) denote the left invariant Haar measure on \(G \). By an adaptation of the proof of [BV20, Proposition 4.3], the set
\[D = \left\{ x \in X : \int_G \frac{dg\mu}{d\mu}(x) \, d\lambda(g) < +\infty \right\} = \left\{ x \in X : \int_G \exp(S_{g,\rho}(x)) \, d\lambda(g) < +\infty \right\} \]
satisfies \(\mu(D) \in (0, 1) \). Since \(G \curvearrowright (X, \mu) \) is not infinitely recurrent, it follows from [AIM19, Proposition A.28] that \(\mu(D) > 0 \), so that we must have that \(\mu(D) = 1 \). By [AIM19, Theorem A.29] the action \(G \curvearrowright (X, \mu) \) is dissipative up to compact stabilizers. \(\square \)

We use a similar approach to [MV20, §6] in the proof of Proposition 4.4.

Proof of Proposition 4.4. It follows from Theorem 4.2 and Proposition 4.3 that the action \(G \curvearrowright (X, \mu) \), given by (4.2), is dissipative when \(1 - H^2(\mu_0, \mu_1) \leq (2d - 1)^{-1/2} \) and weakly mixing when \(1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/2} \). So it remains to show that \(G \curvearrowright (X, \mu) \) is non-amenable when \(1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/2} \) and strongly ergodic when \(1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/4} \).
Phase transitions for non-singular Bernoulli actions

Assume first that $1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/2}$. By taking the kernel of a surjective homomorphism $\mathbb{F}_d \to \mathbb{Z}$ we find a normal subgroup $H_1 \subset \mathbb{F}_d$ that is free on infinitely many generators. By [RT13, Théorème 0.1] we have that $\delta(H_1) = (2d - 1)^{-1/2}$. Then, using [Sul79, Corollary 6], we can find a finitely generated free subgroup $H_2 \subset H_1$ such that $H_1 = H_2 * H_3$ for some free subgroup $H_3 \subset H_1$ and such that $1 - H^2(\mu_0, \mu_1) > \exp(-\delta(H_2)/2)$. Let $\psi: H_1 \to H_3$ be the surjective group homomorphism uniquely determined by

$$
\psi(h) = \begin{cases} e & \text{if } h \in H_2, \\
h & \text{if } h \in H_3.
\end{cases}
$$

We set $N = \ker \psi$, so that $H_2 \subset N$ and we get that $1 - H^2(\mu_0, \mu_1) > \exp(-\delta(N)/2)$. Therefore, $N \acts (X, \mu)$ is ergodic by Theorem 4.2. Also we have that $H_1/N \cong H_3$, which is a free group on infinitely many generators. Therefore, $H_1 \acts (X, \mu)$ is non-amenable by [MV20, Lemma 6.4]. A posteriori also $\mathbb{F}_d \acts (X, \mu)$ is non-amenable.

Let π be the Koopman representation of the action $\mathbb{F}_d \acts (X, \mu)$:

$$
\pi: G \acts L^2(X, \mu): \quad (\pi_g(\xi))(x) = \left(\frac{d \mu}{d \mu}(x)\right)^{1/2} \xi(g^{-1} \cdot x).
$$

Claim. If $1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/4}$, then π is not weakly contained in the left regular representation.

Proof of claim. Let η denote the canonical symmetric measure on the generator set of \mathbb{F}_d and define

$$
P = \sum_{g \in \mathbb{F}_d} \eta(g)\pi_g.
$$

The η-spectral radius of $\alpha: \mathbb{F}_d \acts (X, \mu)$, which we denote by $\rho_\eta(\alpha)$, is by definition the norm of P, as a bounded operator on $L^2(X, \mu)$. By [AIM19, Proposition A.11] we have that

$$
\rho_\eta(\alpha) = \lim_{n \to \infty} \langle P^n(1), 1 \rangle^{1/n}
= \lim_{n \to \infty} \left(\sum_{g \in \mathbb{F}_d} \eta^n(g)(1 - H^2(\mu_0, \mu_1))^{2|g|} \right)^{1/n},
$$

where $|g|$ denotes the word length of a group element $g \in \mathbb{F}_d$. By [AIM19, Theorem 6.10] we then have that

$$
\rho_\eta(\alpha) = \frac{(1 - H^2(\mu_0, \mu_1))^2}{2d} \left((2d - 1) + (1 - H^2(\mu_0, \mu_1))^{-4} \right)
$$

if $1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/4}$, and

$$
\rho_\eta(\alpha) = \frac{\sqrt{2d - 1}}{d}
$$

if $1 - H^2(\mu_0, \mu_1) \leq (2d - 1)^{-1/4}$. Therefore, if $1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/4}$, we have that $\rho_\eta(\alpha) > \rho_\eta(\mathbb{F}_d)$, where $\rho_\eta(\mathbb{F}_d)$ denotes the η-spectral radius of the left regular
representation. This implies that α is not weakly contained in the left regular representation (see, for instance, \cite{AD03}, §3.2).

Now assume that $1 - H^2(\mu_0, \mu_1) > (2d - 1)^{-1/4}$. As in the proof of Theorem 4.2 there exist probability measures ν, η_0 and η_1 on X_0 that are equivalent to μ_0 and a number $s \in (0, 1)$ such that

$$\mu_j = (1 - s)\nu + s\eta_j \quad \text{for } j = 0, 1,$$

and such that $1 - H^2(\eta_0, \eta_1) > (2d - 1)^{-1/4}$. Consider the non-singular action

$$\mathbb{F}_d \curvearrowright (X, \eta) = \prod_{e \in E(T)} (X_0, \eta_e) \quad \text{where } \eta_e = \begin{cases} \eta_0 & \text{if } e \text{ is oriented towards } \rho, \\ \eta_1 & \text{if } e \text{ is oriented away from } \rho. \end{cases}$$

By Theorem 4.2 the action $\mathbb{F}_d \curvearrowright (X, \eta)$ is ergodic. Write ρ for the Koopman representation associated to $\mathbb{F}_d \curvearrowright (X, \eta)$. By the claim, ρ is not weakly contained in the left regular representation. Let λ be the probability measure on $\{0, 1\}$ given by $\lambda(0) = s$. Let ρ^0 be the reduced Koopman representation of the pmp generalized Bernoulli action $\mathbb{F}_d \curvearrowright (X \times \{0, 1\}^{E(T)}, \nu^{E(T)} \times \lambda^{E(T)})$. Then ρ^0 is contained in a multiple of the left regular representation. Therefore, as ρ is not weakly contained in the left regular representation, ρ is not weakly contained in $\rho \otimes \rho^0$.

Define the map

$$\Psi: X \times X \times \{0, 1\}^{E(T)} \to X: \Psi(x, y, z)_e = \begin{cases} x_e & \text{if } z_e = 0, \\ y_e & \text{if } z_e = 1. \end{cases}$$

Then Ψ is \mathbb{F}_d-equivariant and we have that $\Psi_\ast(\eta \times \nu^{E(T)} \times \lambda^{E(T)}) = \mu$. Suppose that $\mathbb{F}_d \curvearrowright (X, \mu)$ is not strongly ergodic. Then there exists a bounded almost invariant sequence $f_n \in L^\infty(X, \mu)$ such that $\|f_n\|_2 = 1$ and $\mu(f_n) = 0$ for every $n \in \mathbb{N}$. Therefore, $\Psi_\ast(f_n)$ is a bounded almost invariant sequence for the diagonal action $\mathbb{F}_d \curvearrowright (X \times X \times \{0, 1\}^{E(T)}, \eta \times \nu^{E(T)} \times \lambda^{E(T)})$. Let $E: L^\infty(X \times X \times \{0, 1\}^{E(T)}) \to L^\infty(X)$ be the conditional expectation that is uniquely determined by $\mu \circ E = \eta \times \nu^{E(T)} \times \lambda^{E(T)}$. By \cite{MV20}, Lemma 5.2 we have that $\lim_{n \to \infty} \| (E \circ \Psi_\ast)(f_n) - \Psi_\ast(f_n) \|_2 = 0$, and in particular we get that

$$\lim_{n \to \infty} \| (E \circ \Psi_\ast)(f_n) \|_2 = 1. \quad (4.12)$$

But just as in the proof of Theorem 3.3 we have that

$$\left\| (E \circ \Psi_\ast)\big|_{L^2(X, \mu) \ominus C^1} \right\| < 1,$$

which is in contradiction with (4.12). We conclude that $\mathbb{F}_d \curvearrowright (X, \mu)$ is strongly ergodic.

Proposition 4.6 below complements Theorem 4.2 by considering groups $G \subset \text{Aut}(T)$ that are not closed. This is similar to \cite{AIM19}, Theorem 10.5.

Proposition 4.6. Let T be a locally finite tree with root $\rho \in T$. Let $G \subset \text{Aut}(T)$ be an lcsc group such that the inclusion map $G \to \text{Aut}(T)$ is continuous and such that
Phase transitions for non-singular Bernoulli actions

$G \subset \text{Aut}(T)$ is not closed. Write $\delta = \delta(G \acts T)$ for the Poincaré exponent given by (1.5). Let μ_0 and μ_1 be non-trivial equivalent probability measures on a standard Borel space X_0. Consider the generalized non-singular Bernoulli action $\alpha: G \acts (X, \mu)$ given by (4.2). Let $H \subset \text{Aut}(T)$ be the closure of G. Then the following assertions hold.

- If $1 - H^2(\mu_0, \mu_1) > \exp(-\delta/2)$, then α is ergodic and its Krieger flow is determined by the essential range of the map

 $$X_0 \times X_0 \rightarrow \mathbb{R}: (x, x') \mapsto \log(d\mu_0/d\mu_1)(x) - \log(d\mu_0/d\mu_1)(x') \quad (4.13)$$

 as in Theorem 4.2.

- If $1 - H^2(\mu_0, \mu_1) < \exp(-\delta/2)$, then each ergodic component of α is of the form $G \acts H/K$, where K is a compact subgroup of H. In particular, there exists a G-invariant σ-finite measure on X that is equivalent to μ.

Proof. Let $H \subset \text{Aut}(T)$ be the closure of G. Then $\delta(H) = \delta$ and we can apply Theorem 4.2 to the non-singular action $H \acts (X, \mu)$.

If $1 - H^2(\mu_0, \mu_1) > \exp(-\delta/2)$, then $H \acts X$ is ergodic. As $G \subset H$ is dense, we have that

$$L^\infty(X)^G = L^\infty(X)^H = \mathbb{C}1,$$

so that $G \acts X$ is ergodic. Let $H \acts X \times \mathbb{R}$ be the Maharam extension associated to $H \acts X$. Again, as $G \subset H$ is dense, we have that

$$L^\infty(X \times \mathbb{R})^G = L^\infty(X \times \mathbb{R})^H.$$

Note that the subgroup generated by the essential ranges of the maps $\log(dg^{-1}\mu/d\mu)$, with $g \in G$, is the same as the subgroup generated by the essential ranges of the maps $\log(dh^{-1}\mu/d\mu)$, with $h \in H$. Then one determines the Krieger flow of $G \acts X$ as in the proof of Theorem 4.2.

If $1 - H^2(\mu_0, \mu_1) < \exp(-\delta/2)$, the action $H \acts (X, \mu)$ is dissipative up to compact stabilizers. By [AIM19, Theorem A.29] each ergodic component is of the form $H \acts H/K$ for a compact subgroup $K \subset H$. Therefore, each ergodic component of $G \acts (X, \mu)$ is of the form $G \acts H/K$, for some compact subgroup $K \subset H$.

Acknowledgements. T.B. thanks Stefaan Vaes for his valuable feedback during the process of writing this paper. T.B. is supported by a PhD fellowship fundamental research of the Research Foundation Flanders.

REFERENCES

[AD03] C. Anantharaman-Delaroche. On spectral characterizations of amenability. *Israel J. Math.* 137 (2003), 1–33.

[AIM19] Y. Arano, Y. Isono and A. Marrakchi. Ergodic theory of affine isometric actions on Hilbert spaces. *Geom. Funct. Anal.* 31(5) (2021), 1013–1094.

[BKV19] M. Björklund, Z. Kosloff and S. Vaes. Ergodicity and type of nonsingular Bernoulli actions. *Invent. Math.* 224(2) (2021), 573–625.

[BV20] T. Berendschot and S. Vaes. Nonsingular Bernoulli actions of arbitrary Krieger type. *Anal. PDE* 15(5) (2022), 1313–1373.
P.-E. Caprace and T. de Medts. Simple locally compact groups acting on trees and their germs of automorphisms. *Transform. Groups* **16**(2) (2011), 375–411.

A. I. Danilenko. Weak mixing for nonsingular Bernoulli actions of countable amenable groups. *Proc. Amer. Math. Soc.* **147** (2019), 4439–4450.

A. I. Danilenko, Z. Kosloff and E. Roy. Generic nonsingular Poisson suspension is of type III_1. *Ergod. Th. & Dynam. Sys.* **42**(4) (2022), 1415–1445.

A. Ioana. W^*-superrigidity for Bernoulli actions of property (T) groups. *J. Amer. Math. Soc.* **24**(4) (2011), 1175–1226.

S. Kakutani. On equivalence of infinite product measures. *Ann. of Math. (2)* **49** (1948), 214–224.

Z. Kosloff. Proving ergodicity via divergence of ergodic sums. *Studia Math.* **248** (2019), 191–215.

Z. Kosloff and T. Soo. Some factors of nonsingular Bernoulli shifts. *Studia Math.* **262**(1) (2022), 23–43.

R. Lyons and R. Pemantle. Random walk in a random environment and first-passage percolation on trees. *Ann. Probab.* **20**(1) (1992), 125–136.

A. I. Danilenko. Weak mixing for nonsingular Bernoulli actions of countable amenable groups. *Proc. Amer. Math. Soc.* **147** (2019), 4439–4450.

A. I. Danilenko, Z. Kosloff and E. Roy. Generic nonsingular Poisson suspension is of type III_1. *Ergod. Th. & Dynam. Sys.* **42**(4) (2022), 1415–1445.

A. Ioana. W^*-superrigidity for Bernoulli actions of property (T) groups. *J. Amer. Math. Soc.* **24**(4) (2011), 1175–1226.

S. Kakutani. On equivalence of infinite product measures. *Ann. of Math. (2)* **49** (1948), 214–224.

Z. Kosloff. Proving ergodicity via divergence of ergodic sums. *Studia Math.* **248** (2019), 191–215.

Z. Kosloff and T. Soo. Some factors of nonsingular Bernoulli shifts. *Studia Math.* **262**(1) (2022), 23–43.

R. Lyons and R. Pemantle. Random walk in a random environment and first-passage percolation on trees. *Ann. Probab.* **20**(1) (1992), 125–136.