Preconditioning for continuation model predictive control

Andrew Knyazev * Alexander Malyshev **

* Mitsubishi Electric Research Labs (MERL) 201 Broadway, 8th floor, Cambridge, MA 02139, USA. (e-mail: knyazev@merl.com), (http://www.merl.com/people/knyazev).
** Mitsubishi Electric Research Labs (MERL) 201 Broadway, 8th floor, Cambridge, MA 02139, USA. (e-mail: malyshev@merl.com)

Abstract: Model predictive control (MPC) anticipates future events to take appropriate control actions. Nonlinear MPC (NMPC) deals with nonlinear models and/or constraints. A Continuation/GMRES Method for NMPC, suggested by T. Ohtsuka in 2004, uses the GMRES iterative algorithm to solve a forward difference approximation \(Ax = b \) of the original NMPC equations on every time step. We have previously proposed accelerating the GMRES and MINRES convergence by preconditioning the coefficient matrix \(A \). We now suggest simplifying the construction of the preconditioner, by approximately solving a forward recursion for the state and a backward recursion for the costate, or simply reusing previously computed solutions.

Keywords: model predictive control, Continuation/GMRES method, preconditioning.

1. INTRODUCTION

Model Predictive Control (MPC) is an optimal control technology, which is capable to cope with constrained systems and widely used in industry and academia; see, e.g., Qin et al. (2003), Camacho et al. (2004), and Grune et al. (2011). Nonlinear MPC (NMPC) deals with nonlinear models and/or constraints. Main numerical methods applied in NMPC are surveyed by Diehl et al. (2009). The Continuation/GMRES by Ohtsuka (2004) is one of the real-time numerical methods for NMPC. Ohtsuka’s method combines several techniques including replacement of inequality constraints by equality constraints, numerical elimination of the state, by the forward recursion, and the costate, by the backward recursion, and the Krylov subspace iterations for solving nonlinear equations via parameter continuation. Tanida et al. (2004) have introduced a preconditioned C/GMRES method, however, their preconditioner is inefficient.

Our previous work in Knyazev et al. (2015a) extends Ohtsuka’s approach in various ways. The Continuation NMPC (CNPMC) method is formulated for a more general optimal control model with additional parameters and terminal constraints, which allows us solving minimal time problems. We also use preprocessors for CNMPC, based on an explicit construction of the Jacobian matrices at some time steps, improving convergence of the Krylov iterations. We propose substituting the MINRES iterative solver for GMRES in CNMPC, reducing the memory requirements and the arithmetic costs per iteration.

The present note shows how to reduce the cost of the preconditioning setup, by approximating the Jacobian matrix in the Newton iterations. The idea of such an approximation relies on the observation that most entries of the Jacobian weakly depend on small perturbations of the state and costate. Most columns of the Jacobian can be built from a single instance of the state and costate variables computed, e.g., during generation of the right-hand side of the system solved by the Newton method. Only a small number of columns of the Jacobian, specifically, responsible for treating the terminal constraints and the parameter, is sensitive to changes of the state and costate. We recalculate the state and costate corresponding just to these sensitive columns. Moreover, for the purpose of the preconditioner setup, we can, in addition, compute the state and costate on a coarser grid on the horizon with subsequent linear interpolation of them at the intermediate points. We can also use other general techniques for fast preconditioner setup, e.g., computation of the state and costate variables, as well as the preconditioner and its factorization, in a reduced computer precision. Our numerical results demonstrate that the preconditioned GMRES and MINRES, where the preconditioner is constructed using the approximate state and costate variables, converge faster, compared to their analogs without preconditioning. The paper discusses basic principles of preconditioning, and detailed algorithms of computation of the preconditioning schemes are to be reported in our extended paper.

The rest of the note is as follows. In Section 2, we derive the nonlinear equations, which are solved by the continuation Newton-Krylov method. Section 3 describes how GMRES or MINRES iterations are applied to numerical solution of these nonlinear equations. Section 4 presents our main contribution by giving details of the preconditioner construction, which is based on reusing the previously computed and approximated state and costate variables. Section 5 defines a representative test example; and Section 6 gives numerical results illustrating the quality of the method with the suggested preconditioner.
2. DERIVATION OF THE OPTIMALITY CONDITIONS

The MPC approach is based on the prediction by means of a finite horizon optimal control problem along a fictitious time \(\tau \in [t, t + T] \). Our model finite horizon problem consists in choosing the control \(u(\tau) \) and parameter vector \(p \), which minimize the performance index \(J \) as follows:

\[
\min_{u, p} J,
\]

where

\[
J = \phi(x(t + T), p) + \int_{t}^{t+T} L(\tau, x(\tau), u(\tau), p) d\tau
\]

subject to the equation for the state dynamics

\[
\frac{dx}{d\tau} = f(\tau, x(\tau), u(\tau), p), \quad (1)
\]

and the equality constraints for the state \(x \) and control \(u \)

\[
C(\tau, x(\tau), u(\tau), p) = 0, \quad (2)
\]

\[
\psi(x(t + T), p) = 0.
\]

The initial value \(x(\tau)|_{\tau=t} \) for (1) is the state vector \(x(t) \) of the dynamic system. The control vector \(u = u(\tau) \), solving the problem over the prediction horizon, is used afterwards as an input to control the system at time \(t \). The components of the vector \(p(t) \) are parameters of the system and do not depend on \(\tau \). In our minimum-time example in Section 5, the scalar parameter \(p(t) \) denotes the time to destination, and the horizon length is \(T = p(t) \).

The prediction problem stated above is discretized on a uniform, for simplicity of presentation, time grid over the horizon \([t, t + T] \) partitioned into \(N \) time steps of size \(\Delta \tau \), and the time-continuous vector functions \(x(\tau) \) and \(u(\tau) \) are replaced by their sampled values \(x_i \) and \(u_i \) at the grid points \(\tau_i \), \(i = 0, 1, \ldots, N \). The integral of the performance cost \(J \) over the horizon is approximated by the rectangular quadrature rule. Equation (1) is integrated by the explicit Euler scheme, which is the simplest possible method. We note that more sophisticated one-step adaptive schemes can be used as well. The discretized optimal control problem is formulated as follows:

\[
\min_{u, p} \left[\phi(x_N, p) + \sum_{i=0}^{N-1} L(\tau_i, x_i, u_i, p) \Delta \tau \right],
\]

subject to

\[
x_{i+1} = x_i + f(\tau_i, x_i, u_i, p) \Delta \tau, \quad i = 0, 1, \ldots, N - 1, \quad (4)
\]

\[
C(\tau_i, x_i, u_i, p) = 0, \quad i = 0, 1, \ldots, N - 1, \quad (5)
\]

\[
\psi(x_N, p) = 0. \quad (6)
\]

The necessary optimality conditions for the discretized finite horizon problem are the stationarity conditions for the discrete Lagrangian function

\[
\mathcal{L}(X, U) = \phi(x_N, p) + \sum_{i=0}^{N-1} L(\tau_i, x_i, u_i, p) \Delta \tau + \lambda_0^T [x(t) - x_0] + \sum_{i=0}^{N-1} \lambda_{i+1}^T [x_i - x_{i+1} + f(\tau_i, x_i, u_i, p) \Delta \tau] + \mu^T C(\tau_i, x_i, u_i, p) \Delta \tau + u^T \psi(x_N, p),
\]

where \(X = [x_i, \lambda_i]^T, i = 0, 1, \ldots, N \), and \(U = [u_i, \mu_i, \nu]^T, i = 0, 1, \ldots, N - 1 \). Here, \(\lambda \) is the costate vector, \(\mu \) is the Lagrange multiplier vector associated with the constraint (5). The terminal constraint (6) is relaxed by the aid of the Lagrange multiplier \(\nu \).

The necessary optimality conditions are the system of nonlinear equations \(\mathcal{L}_\lambda = 0, \mathcal{L}_x = 0, i = 0, 1, \ldots, N, \mathcal{L}_u = 0, \mathcal{L}_\mu = 0, i = 0, 1, \ldots, N - 1, \mathcal{L}_\nu = 0, \mathcal{L}_p = 0 \).

For further convenience, we introduce the Hamiltonian function \(H(t, x, \lambda, u, \mu, p) = L(t, x, u, p) + \lambda^T f(t, x, u, p) + \mu^T C(t, x, u, p) \).

The optimality conditions are reformulated in terms of a mapping \(F[U, x, t] \), where the vector \(U \) combines the control input \(u \), the Lagrange multiplier \(\mu \), the Lagrange multiplier \(\nu \), and the parameter \(p \), all in one vector:

\[
U(t) = [u_0^T, \ldots, u_{N-1}^T, \mu_0^T, \ldots, \mu_{N-1}^T, \nu^T, p^T]^T.
\]

The vector argument \(x \) in \(F[U, x, t] \) denotes the state vector at time \(t \), which serves as the initial vector \(x_0 \) in the following procedure.

1. Starting from the current measured or estimated state \(x_0 \), compute all \(x_i \), \(i = 0, 1, \ldots, N \), by the forward recursion

\[
x_{i+1} = x_i + f(\tau_i, x_i, u_i, p) \Delta \tau.
\]

Then starting from

\[
\lambda_N = \frac{\partial \phi^T}{\partial x}(x_N, p) + \frac{\partial \psi^T}{\partial x}(x_N, p) \nu,
\]

compute all costates \(\lambda_i, \) \(i = N, \ldots, 1, 0 \), by the backward recursion

\[
\lambda_i = \lambda_{i+1} + \frac{\partial H^T}{\partial x}(\tau_i, x_i, \lambda_{i+1}, u_i, \mu_i, p) \Delta \tau.
\]

2. Using just obtained \(x_i \) and \(\lambda_i \), calculate the vector

\[
F[U, x, t] = \left[\begin{array}{c}
\frac{\partial H^T}{\partial u}(\tau_0, x_0, \lambda_0, u_0, \mu_0, p) \Delta \tau \\
\vdots \\
\frac{\partial H^T}{\partial u}(\tau_N-1, x_{N-1}, \lambda_N, u_{N-1}, \mu_{N-1}, p) \Delta \tau \\
\end{array} \right]
\]

The equation with respect to the unknown vector \(U(t) \)

\[
F[U(t), x(t), t] = 0
\]

gives the required necessary optimality conditions.
The controlled system is sampled on a uniform time grid $t_j = j \Delta t$, $j = 0, 1, \ldots$. Solution of equation (7) must be found at each time step t_j in real time, which is a challenging part of implementation of NMPC.

Let us denote $x_j = x(t_j)$, $U_j = U(t_j)$, and rewrite the equation $F[U_j, x_j, t_j] = 0$ equivalently in the form
\[F[U_j, x_j, t_j] = b_j, \]
where
\[b_j = -F[U_{j-1}, x_j, t_j]. \tag{8} \]

Using a small h, which may be different from Δt and Δr, we introduce the operator
\[a_j(V) = (F[U_{j-1} + hV, x_j, t_j] - F[U_{j-1}, x_j, t_j])/h. \tag{9} \]

We note that the equation $F[U_j, x_j, t_j] = 0$ is equivalent to the equation $a_j(\Delta U_j/h) = b_j/h$, where $\Delta U_j = U_j - U_{j-1}$.

Let us denote the k-th column of the $m \times m$ identity matrix by e_k, where m is the dimension of the vector U, and define an $m \times m$ matrix A_j with the columns $A_j e_k = a_j(e_k)$, $k = 1, \ldots, m$. The matrix A_j is an $O(h)$ approximation of the Jacobian matrix $F[U_{j-1}, x_j, t_j]$, which is symmetric.

Suppose that an approximate solution U_0 to the initial equation $F[U_0, x_0, \lambda_0] = 0$ is available. The first block entry of U_0 is taken as the control u_0 at the state x_0. The next state $x_1 = x(t_1)$ is either sensor estimated or computed by the formula $x_1 = x_0 + f(t_0, x_0, u_0) \Delta t$; cf. (1).

At the time t_j, $j > 1$, we have the state x_j and the vector U_{j-1} from the previous time t_{j-1}. Our goal is to solve the following equation with respect to V:
\[a_j(V) = b_j/h. \tag{10} \]

Then we can set $U_j = U_{j-1} + hV$ and choose the first block component of U_j as the control u_j. The next state system $x_{j+1} = x(t_{j+1})$ is either sensor estimated or computed by the formula $x_{j+1} = x_j + f(t_j, x_j, u_j) \Delta t$.

A direct way to solve (10) is generating the matrix A_j and then solving the system of linear equations $A_j \Delta U_j = b_j$; e.g., by the Gaussian elimination.

A less expensive alternative is solving (10) by the GMRES method, where the operator $a_j(V)$ is used without explicit construction of the matrix A_j (cf. Kelly (1995); Ohtsuka (2004)). Some results on convergence of GMRES in the nonlinear case can be found in Brown et al. (2008).

We recall that, for a given system of linear equations $Ax = b$ and initial approximation x_0, GMRES constructs orthonormal bases of the Krylov subspaces $K_n = \text{span}\{r_0, Ar_0, \ldots, A^{n-1}r_0\}$, $n = 1, 2, \ldots$, given by the columns of matrices Q_n, such that $AQ_n = Q_{n+1}H_n$ with the upper Hessenberg matrices H_n and then searches for approximations to the solution x in the form $x_n = Q_n y_n$, where $y_n = \text{argmin} ||AQ_n y_n - b||_2$.

A more efficient variant of GMRES, called MINRES, may be applied when the matrix A is symmetric, and the preconditioner is symmetric positive definite. Using the MINRES iteration in Ohtsuka’s approach is mentioned in Knyazev et al. (2015a).
The preconditioner M_j is obtained from A_j by neglecting the derivatives $\partial x_i / \partial u_j$, $\partial \lambda_i / \partial u_j$, $\partial x_i / \partial u_j$ and $\partial \lambda_i / \partial u_j$. Therefore, the difference $A_j - M_j$ is of order $O(\Delta \tau)$ since $\partial x_i / \partial u_j = O(\Delta \tau)$, $\partial \lambda_i / \partial u_j = O(\Delta \tau)$, $\partial x_i / \partial u_j = O(\Delta \tau)$, and $\partial \lambda_i / \partial u_j = O(\Delta \tau)$. The preconditioner application $M^{-1}r$ requires the LU factorization $M = LU$, which is computed by the Gaussian elimination. Then the vector $M^{-1}r = U^{-1}(L^{-1}r)$ is obtained by performing back-substitutions for the triangular factors L and U. Further acceleration of the preconditioner setup is possible by faster computation of the LU factorization. For example, when computation with lower number of bits is cheaper than computation with the standard precision, the preconditioner M_j and its LU factorization may be computed in lower precision.

Another way of reduction of the arithmetical work in the preconditioner setup is the computation of the states x and costates λ with the double step $2\Delta \tau$ thus halving the arithmetical cost and memory storage. The intermediate values of x and λ are then obtained from the computed values by simple linear interpolation.

5. EXAMPLE

We consider a test nonlinear problem, which describes the minimum-time motion from a state (x_0, y_0) to a state (x_f, y_f) with an inequality constrained control:

- State vector $x = \begin{bmatrix} x \\ y \end{bmatrix}$ and input control $u = \begin{bmatrix} u \\ u_d \end{bmatrix}$.
- Parameter variable $p = t_f - t$, where t_f denotes the arrival time at the terminal state (x_f, y_f).
- Nonlinear dynamics is governed by the system of ordinary differential equations
 \[
 \dot{x} = f(x, u, p) = \begin{bmatrix} (Ax + B) \cos u \\ (Ax + B) \sin u \end{bmatrix}.
 \]
- Constraint: $C(x, u, p) = (u - c_u)^2 + u_x^2 - r_a^2 = 0$, where $c_u = c_0 + c_1 \sin(\omega t)$ and u_x is a slack variable, i.e., the control u always stays within the sinusoidal band $c_u - r_a \leq u \leq c_u + r_a$.
- Terminal constraints: $\psi(x, p) = \begin{bmatrix} x - x_f \\ y - y_f \end{bmatrix} = 0$ (the state should pass through the point (x_f, y_f) at $t = t_f$)
- Objective function on the horizon interval $[t, t_f]$:
 \[
 J = \phi(x, p) + \int_t^{t_f + p} L(x, u, p) dt,
 \]
 where
 \[
 \phi(x, p) = p, \quad L(x, u, p) = -w_d u_d
 \]
 (the state should arrive at (x_f, y_f) in the shortest time; the function L serves to stabilize the slack variable u_d)
- Constants: $A = B = 1$, $x_0 = y_0 = 0$, $x_f = y_f = 1$, $c_0 = 0.8$, $c_1 = 0.3$, $\omega = 10$, $r_a = 0.2$, $w_d = 0.005$.

The horizon interval $[t, t_f]$ is parametrized by the affine mapping $\tau \rightarrow t + t_p \tau$ with $\tau \in [0, 1]$.

The components of the corresponding discretized problem on the horizon are given below:

- the participating variables are the state $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$, the costate $\begin{bmatrix} \lambda_{1,i} \\ \lambda_{2,i} \end{bmatrix}$, the control $\begin{bmatrix} u_i \\ u_{di} \end{bmatrix}$, the Lagrange multiplier p_i and $\begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix}$, the parameter p
- the state is governed by the backward recursion
 \[
 \begin{bmatrix} \lambda_{1,i} \\ \lambda_{2,i} \end{bmatrix} = \begin{bmatrix} \lambda_{1,i+1} \\ \lambda_{2,i+1} \end{bmatrix} + \Delta \tau \begin{bmatrix} pA(\cos u_i \lambda_{1,i+1} + \sin u_i \lambda_{2,i+1}) \\ \lambda_{1,i+1} \end{bmatrix},
 \]
 where $i = 0, 1, \ldots, N - 1$;
- the costate is determined by the backward recursion
 \[
 \begin{bmatrix} \lambda_{1,N} \\ \lambda_{2,N} \end{bmatrix} = \begin{bmatrix} \lambda_{1,1} \\ \lambda_{2,1} \end{bmatrix}
 \]
 \[
 \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} = \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix},
 \]
 where $N = 1, 2, \ldots, 0$;
- the equation $F(U, x_0, y_0, t) = 0$, where
 \[
 U = [u_0, u_{d,0}, \ldots, u_{N-1}, u_{d,N-1}, \mu_0, \ldots, \mu_{N-1}, \nu_1, \nu_2, p],
 \]
 has the following rows from the top to bottom:
 \[
 \begin{align*}
 &\Delta \tau \begin{bmatrix} p(Ax + B)(-\sin u_i \lambda_{1,i} + \cos u_i \lambda_{2,i}) \\ 2(u_i - c_u) \mu_i \end{bmatrix} \mu_i = 0, \\
 &\Delta \tau \begin{bmatrix} 2u_i u_{di} - u\mu_d \end{bmatrix} = 0, \\
 &\Delta \tau \begin{bmatrix} (u_{di} - c_{di})^2 + u_{di}^2 - r_{di}^2 \end{bmatrix} = 0, \\
 &x_N - x_r = 0, \\
 &y_N - y_r = 0, \\
 &\Delta \tau \begin{bmatrix} \sum_{i=0}^{N-1} (Ax_i + B)(\cos u_i \lambda_{1,i+1} + \sin u_i \lambda_{2,i+1}) \\ -2(u_i - c_u)u_c \sin(\omega(t + \tau_\ell)) \omega \tau_i - w_{di} u_{di} \end{bmatrix} + 1 = 0.
 \end{align*}
 \]

Let us compare the computation costs of the matrices A_j and M_j for this example. We do not take into account the computation of the right-hand side $b_j = -F(U_{j-1}, x_j, t_j)$ because it is a necessary cost. Computation of the matrix A_j requires $3N + 3$ evaluations of the vector $F(U_{j-1} + hV, x_j, t_j)$, where N is the number of grid points on the prediction horizon. Setup of M_j requires only 3 evaluations of $F(U_{j-1} + hV, x_j, t_j)$, which is N times faster.

6. NUMERICAL RESULTS

In our numerical experiments, the weakly nonlinear system (10) for the test problem from Section 5 is solved by the GMRES and MINRES iterations. The number of evaluations of the vector $a(V)$ at each time t_j does not exceed an a priori chosen constant $k_{\text{max}} = 20$. In other words, the maximum number of GMRES or MINRES iterations is less or equal k_{max}. The error tolerance in GMRES and MINRES is $\text{tol} = 10^{-5}$. The number of grid points on the horizon is $N = 50$, the sampling time of simulation is $\Delta t = 1/500$, and $h = 10^{-8}$.

The preconditioners are set up at the time instances t_p, where $t_p = 0.2$ is the period, and $l = 0, 1, \ldots$. After each setup, the same preconditioner is applied until next setup. Preconditioners for MINRES must be symmetric positive definite and are built here as the absolute value of M_j, i.e.,
if $M_j = U \Sigma V^T$ is the singular value decomposition, then $|M_j| = U \Sigma U^T$; see Vecharynski et al. (2013).

Figure 1 shows the computed trajectory for the test example. Figure 2 shows the optimal control by the MPC approach using the preconditioned GMRES. Figure 3 displays $\|F\|_2$ and the GMRES residuals.

The number of iterations of preconditioned GMRES is displayed in Figure 4. For comparison, we show the number of iterations of the preconditioned MINRES in Figure 5.

Figure 6 displays $\|F\|_2$ and the 2-norm of the residual after iterations of GMRES without preconditioning. The corresponding number of iterations of GMRES without preconditioning is shown in Figure 7. The number of iterations of MINRES without preconditioning is shown in Figure 8.

Effect of preconditioning is seen when comparing Figures 4 and 7 for GMRES and Figures 5 and 8 for MINRES. Preconditioning of GMRES reduces the number of iterations by factor 1.2. Preconditioning of MINRES reduces the number of iterations by factor 1.4.

The number of iterations does not necessarily account for the additional complexity that preconditioning brings to the on-line algorithm. However, the computation time is machine and implementation dependent, while our tests are done in MATLAB on a generic computer. Specific implementations on dedicated computer chips for on-line controllers is a topic of future work.

CONCLUSIONS

We have found a new efficient preconditioner M_j, which approximates the Jacobian matrix A_j of the mapping F defining equation (7). Computation of M_j is $O(N)$ times faster than that of A_j, where N is the number of grid points on the prediction horizon.

The preconditioner M_j can be very efficient for the NMPC problems, where dimension of the state space is large, for example, in the control of dynamic systems described by partial differential equations.

Other useful techniques for accelerating the preconditioner setup include computation of the matrices M_j and their LU factorizations in lower precision, computation of the state and costate on a coarse grid over the horizon and linear interpolation of the computed values on the fine grid.

REFERENCES

P. N. Brown, H. F. Walker, R. Wasyk, and C. S. Woodward. On using approximate finite difference in matrix-free Newton-Krylov methods. SIAM J. Numer. Anal., 46:1892–1911, 2008.

E. F. Camacho and C. Bordons. Model Predictive Control, 2nd ed. Springer, Heidelberg, 2004.

M. Diehl, H. J. Ferreau, and N. Haverbeke. Efficient numerical methods for nonlinear MPC and moving horizon estimation. L. Magni et al. (Eds.): Nonlinear Model Predictive Control, LNCIS 384, pp. 391–417, Springer, Heidelberg, 2009.

L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Theory and Algorithms. Springer, London, 2011.

C. T. Kelly. Iterative methods for linear and nonlinear equations. SIAM, Philadelphia, 1995.

A. Knyazev, Y. Fuji, and A. Malyshev. Preconditioned Continuation Model Predictive Control. SIAM Conf. Control. Appl., July 8–10, 2015, Paris, France, pp. 1–8, 2015.

T. Ohtsuka. A Continuation/GMRES method for fast computation of nonlinear receding horizon control. Automatica, 40:563–574, 2004.

S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control technology. Control Eng. Practice, 11: 733–764, 2003.

T. Tanida and T. Ohtsuka. Preconditioned C/GMRES algorithm for nonlinear receding horizon control of hoverscrafts connected by a string. Proc. IEEE Int. Conf. Control Applic., Taipei, Taiwan, September 2-4, 2004, pp. 1609–1614, 2004.

E. Vecharynski and A. Knyazev. Absolute value preconditioning for symmetric indefinite linear systems. SIAM J. Sci. Comput., 35:A696–A718, 2013.
Fig. 3. Preconditioned GMRES, $k_{\text{max}} = 20$

Fig. 4. Preconditioned GMRES, $k_{\text{max}} = 20$

Fig. 5. Preconditioned MINRES, $k_{\text{max}} = 20$

Fig. 6. GMRES without preconditioning, $k_{\text{max}} = 20$

Fig. 7. GMRES without preconditioning, $k_{\text{max}} = 20$

Fig. 8. MINRES without preconditioning, $k_{\text{max}} = 20$