Medium modification of dihadron fragmentation functions due to gluon bremsstrahlung induced by multiple partonic scattering is studied in both deep-inelastic scattering (DIS) off large nuclei and high-energy heavy-ion collisions within the same framework of twist expansion. The modified fragmentation functions for dihadrons are found to follow closely that of single hadrons leading to a weak nuclear suppression of their ratios as measured by HERMES in DIS experiments. Meanwhile, a moderate medium enhancement of the near-side correlation of two high transverse momentum hadrons with increasing centrality is found in heavy-ion collisions because of the trigger bias and the increase in parton energy loss with centrality. Successful comparisons between theory and experiment for multi-hadron observables in both confining and deconfined environments offers comprehensive evidence for partonic energy loss as the mechanism of jet modification in dense matter.

PACS numbers: 12.38.Mh, 11.10.Wx, 25.75.Dw
parameterization \([13]\) will be used; which also agrees well with JETSET results.

Applying factorization to dihadron production in single jet events in DIS off a nucleus, \(e(L_1) + A(p) \rightarrow e(L_2) + h_1(p_1) + h_2(p_2) + X\), one can obtain the dihadron semi-inclusive cross section,

\[
E_{L_2} \frac{d^2 \sigma_{\text{DIS}}}{d^4 L_2 dz_1 dz_2} = \frac{\alpha^2}{2\pi^2} \frac{1}{Q^2} L_{\mu \nu} \frac{dW^{\mu \nu}}{dz_1 dz_2} ,
\]

in terms of the semi-inclusive tensor at leading twist,

\[
dW^{\mu \nu} = \sum_q \int dx f_q^A(x, Q^2) H^{\mu \nu}(x, p, q) \times D_{q_1}^{h_1, h_2}(z_1, z_2, Q^2).\]

In the above, \(L_{\mu \nu} = (1/2) \text{Tr}(\xi_1 \gamma_\mu L_2 \gamma_\nu)\), the factor \(H^{\mu \nu}\) represents the hard part of quark scattering with a virtual photon which carries a four-momentum \(q = [-Q^2/2q^\perp, q^\perp, 0, 0]\) and \(f_q^A(x, Q^2)\) is the quark distribution in the nucleus which has a total momentum \(A[p^+, 0, 0, 1]\). The hadron momentum fractions, \(z_1 = p_1^\perp/q^\perp\) and \(z_2 = p_2^\perp/q^\perp\), are defined with respect to the initial momentum \(q^\perp\) of the fragmenting quark.

At next-to-leading twist \([9, 10]\), the dihadron semi-inclusive tensor receives contributions from multiple scattering of the struck quark off soft gluons inside the nucleus with induced gluon radiation. One can reorganize the total contribution (leading and next-to-leading twist) into a product of effective quark distribution in a nucleus, the hard part of photon-quark scattering \(H^{\mu \nu}\) and a modified DFF: \(\tilde{D}^{h_1, h_2}(z_1, z_2)\) (which includes, within it, the effect of subsequent scattering and gluon radiation). The calculation of the modified DFF at the next-to-leading twist in a nucleus proceeds \([14]\) similarly as that for the modified SFFs \([10]\) and yields,

\[
\tilde{D}^{h_1, h_2}(z_1, z_2) = D^{h_1, h_2}(z_1, z_2) + \int_0^{Q^2} \frac{dy}{2\pi} \alpha_s \times \left[\int_{z_1 + z_2}^{1-y} \frac{dy}{y^2} \left(\Delta P_{q-gg}(y, x_B, x_L, t_{\perp}^2) D^{h_1, h_2}_{q_1}(z_1, z_2, y) \right) \right. \\
+ \Delta P_{q-gg}(y, x_B, x_L, t_{\perp}^2) D^{h_1, h_2}_{g_1}(z_1, z_2, y) \\
+ \int_{z_1}^{1-z_2} \frac{dy}{y(1-y)} \Delta \tilde{P}_{q-gq}(y, x_B, x_L, t_{\perp}^2) \\
\times \left. D^{h_1}_{q_1}(z_1, y) D^{h_2}_{g_1}(z_2, 1/y) + (h_1 \rightarrow h_2) \right].
\]

In the above, \(x_B = -Q^2/2p^\perp q^\perp\), \(x_L = t_{\perp}^2/2p^\perp q^\perp y(1-y)\), \(t_{\perp}\) is the transverse momentum of the radiated gluon, \(\Delta P_{q-gg}\) and \(\Delta P_{q-gq}\) are the modified splitting functions with momentum fraction \(y\), whose forms are identical to that in the modified SFF \([10]\). The switch \((h_1 \rightarrow h_2)\) is only meant for the last term, which represents independent fragmentation of the quark and radiated gluon. The corresponding modified splitting function,

\[
\Delta \tilde{P}_{q-gq} = \frac{1 + y^2}{1 - y} C_A \alpha_s \langle T_{qg}^{A}(x_B, x_L) \rangle \frac{1}{1 - (k_{\perp}^2 / Q^2)}.
\]

is similar to \(\Delta P_{q-gq}\) but does not contain contributions from virtual corrections. In the above, \(C_A = N_c = 3\), and \(\langle k_{\perp}^2 \rangle\) is the average intrinsic parton transverse momentum inside the nucleus.

Note that both modified splitting functions depend on the quark-gluon correlation function \(T_{qg}^{A}\) in the nucleus that also determines the modification of SFFs \([10]\). For a Gaussian nuclear distribution, it can be estimated as,

\[
T_{qg}^{A}(x_B, x_L) = \tilde{C}(Q^2) m_N R_A f_{A}^q(x_B, (1 - e^{-x^2_z/z^2_A}))(6)
\]

where, \(x_A = 1/m_N R_A, m_N\) is the nucleon mass and \(R_A = 1.12 A^{1/3}\) is the nuclear radius. The small variation of the gluon correlation function is neglected; its average value is absorbed into the overall constant \(\tilde{C}\). This is the only parameter in the modified DFF which might depend on the kinematics of the process but is identical to the parameter in the modified SFF. In the phenomenological study of the SFFs in DIS off nuclei, \(\tilde{C} = 0.006 \text{ GeV}^2\) was determined within the kinematics of the HERMES experiment \([3]\). The predicted dependence of nuclear modification of the SFF on the momentum fraction \(z\), initial quark energy \(\nu = q^\perp\) and the nuclear size \(R_A\) agrees very well with the HERMES experimental data \([11]\).

With no additional parameters in Eq. \([4]\), one can predict the nuclear modification of DFFs within the same kinematics. Since the DFFs are connected to SFFs via sum rules \([4]\), it is more illustrative to study the modification of the distribution for the second rank hadrons normalized by the number of leading hadrons \((i.e.,\) hadrons with \(z > 0.5\)),

\[
N_{2h}(z_2) = \frac{1}{\int_{0.5}^{1} dz_1 D^{h_1, h_2}(z_1, z_2)} \int_{0.5}^{1} dz_1 D^{h_1, h_2}_q(z_1, z_2).
\]

where \(z_1\) and \(z_2 < z_1\) are the momentum fractions of the triggered (leading) and associated (secondary) hadrons, respectively. Shown in Fig. \([1]\) is the predicted ratio of the normalized associated hadron distribution in DIS off a Nitrogen \((A = 14)\) and Krypton \((A = 84)\) target to that off a proton \((A = 1)\), i.e., \(R_{2h}(z_2) = N_{2h}(z_2)/N_{1h}(z_2)\), as compared to the HERMES experimental data \([2]\).

The agreement between the prediction and the data is remarkable given that no free parameters are used. The suppression of \(R_{2h}(z_2)\) at large \(z_2\) is due to the suppression of the SFFs \([3, 11]\). Since \(N_{2h}(z_2)\) is the ratio of double and single hadron fragmentation functions, the effect of induced gluon radiation or quark energy loss is mainly borne by the single spectra of the leading hadrons. At small values of \(z_2\), the modified DFF rises above its vacuum counterpart more than the modified SFF. This is due to the
new contribution where each of the detected hadrons emanates from the independent fragmentation of the quark and the radiated gluon. In the experiment, the measured ν and Q^2 vary with z_1 and z_2; this has been incorporated in the calculation.

where, $G^A_i(x_a, Q^2)\{G^B_i(x_b, Q^2)\}$ represents the nuclear parton distribution function for a parton $a(b)$ with momentum fractions $x_a(x_b)$ in a nucleus $A(B)$, $t_A (t_B)$ represents the nuclear thickness function and $\frac{d\sigma_{ab\rightarrow cd}}{dt}$ represents the hard parton cross section with Mandelstam variable t. The final state momentum fractions z_1, z_2 represent the the momentum fractions of the two detected hadrons with respect to the initial jet energy. The factor $K \approx 2$ accounts for higher order corrections (identical to that used in the case of the single inclusive spectra). The medium modified DFF may be expressed as in Eq. (4), with the modified splitting functions generalized from Eq. (3) as,

$$\Delta P_{y\rightarrow i} = P_{y\rightarrow i}(y)2\pi\alpha_s C_A T^M(b, \vec{r}, x_a, x_b, y, l_\perp)$$

$$\times \left[l^2 N_c t_A(\vec{r} + \vec{b}/2) t_B(\vec{r} - \vec{b}/2) \right]$$

$$\times G^A_i(x_a) G^B_i(x_b) \frac{d\sigma}{dt}^{-1} + v.c. \quad (9)$$

As in the case of DIS, l_\perp represents the transverse momentum of the radiated gluon and T^M replaces the factor T^{q_0} in DIS and represents the parton-gluon correlation function in a quark-gluon plasma. The primary difference between the denominators of Eqs. (4) and (9) lies in the weighting of a particular jet like parton by the initial production process (see Ref. [18] for the evaluation of T^M in single inclusive observables).

At present, there exists no measurement of high momentum hadrons associated with a high p_T^{trig} (> 8 GeV) hadron in the case of $p+p$ collisions. Therefore, we will compare the associated yields in $d+Au$ and $Au+Au$ collisions as a function of centrality as well as the associated p_T. These yields are very sensitive to the number of flavors detected. In Fig. (2) the yield of charged hadrons with associate transverse momentum in two ranges ($6\text{GeV} < p_T^{\text{assoc}} < p_T^{\text{trig}}$ and $4\text{GeV} < p_T^{\text{assoc}} < 6\text{GeV}$), associated with a hadron with $p_T^{\text{trig}} > 8\text{GeV}$, as measured in Ref. [19], are presented along with three different calculations using Eqs. (5) and (6). The dashed lines correspond to the case of all charged hadrons where as the dot-dashed lines corresponds to the case of charged pions only. In both cases, the vacuum DFFs are estimated from JETSET Monte Carlo simulations (see Ref. [20]). Unlike in the case of the experimental measurements, no decay corrections have been introduced in these calculations: the number of pairs measured, includes not only those produced directly from the fragmentation of a jet but also decay products of particles from fragmentation. As a result, such fragmentation functions tend to be somewhat larger at lower momentum fractions than fragmentation functions with such corrections. The integrated (over transverse momentum) associated yield being dominated by lower momentum fractions shows a larger effect as lower momentum ranges in p_T^{assoc} are chosen.
A decay corrected DFF \(\langle D(z_1, z_2) \rangle \) may be constructed, phenomenologically, by comparing with the differential spectrum of associated particles in \(d + \text{Au} \) collisions (as a function of \(z_T = p_{T, \text{trig}}/p_{T, \text{assoc}} \), in Ref. [19]):

\[
\langle D(z_1, z_2) \rangle = 0.55 \times D(z_1, z_2)[1 + 1.4(z_1/z_2 - 1)].
\]

Using the above DFF, we obtain a very good agreement with the data (solid lines). All estimates show a mild rise with centrality which originates solely from the increased trigger bias as the centrality of the collision is increased. We have focused on large \(p_{T, \text{trig}} \) and \(p_{T, \text{assoc}} \), as large momenta ensure the validity of the independent fragmentation picture. Otherwise, other non-perturbative and higher twist effects such as recombination [20] and the influence of radial and longitudinal flow can become important and may lead to further modification of the associated yield [21]. As may be noted from Fig. 2 lowering the \(p_{T, \text{assoc}} \) results in a systematic departure between prediction and data with increasing centrality.

In summary, we have studied the modification of the DFFs in both confining and hot deconfined matter due to multiple parton scattering and induced gluon radiation. The modification, follows closely that of SFFs so that the associated hadron distributions or the ratios of DFFs to SFFs are only slightly suppressed in DIS off nuclei but enhanced in central heavy-ion collisions due to trigger bias. With no extra parameters, our calculations agree very well with experimental data. Such calculations, combined with previous successful comparisons in the single inclusive sector [11] in both cold nuclear and hot deconfined matter constitutes a very important test of the partonic jet modification formalism and testifies to the applicability of perturbatively calculable jet observables as probes of the dense matter created in heavy-ion collisions.

We thank F. Wang for discussions. This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, under grant DE-FG02-05ER41367, NSFC under project Nos. 10475031 and 10135030 and NSERC of Canada.

![Image](image.png)

FIG. 2: (Color online) Yields of different flavors of hadrons with 6 GeV < \(p_{T, \text{assoc}} < p_{T, \text{trig}} \) and 4 GeV < \(p_{T, \text{assoc}} < 6 \text{GeV} \), associated with a trigger hadron with \(p_{T, \text{trig}} > 8 \text{ GeV} \) versus the centrality of

\[\text{Au+Au collisions at } \sqrt{s} = 200 \text{ GeV as compared to experimental data [10], see text for details.} \]

1. M. Gyulessy et al., arXiv:nucl-th/0302077
2. A. Airapetian et al., Phys. Rev. Lett. 96, 162301 (2006).
3. C. Adler et al., Phys. Rev. Lett. 90, 082302 (2003).
4. S. S. Adler et al., Phys. Rev. C 71, 051902 (2005).
5. A. Airapetian et al., Eur. Phys. J. C 20, 479 (2001); Phys. Lett. B 577, 37 (2000).
6. K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002); C. Adler et al., Phys. Rev. Lett. 89, 202301 (2002).
7. A. Majumder and X. N. Wang, Phys. Rev. D 70, 014007 (2004); Phys. Rev. D 72, 034007 (2005); U. P. Sukhatme, and K. E. Lassila, Phys. Rev. D 22, 1184 (1980).
8. J. C. Collins, D. E. Soper and G. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988).
9. M. Luo, J. W. Qiu and G. Sterman, Phys. Rev. D 50, 1951 (1994).
10. X. F. Guo and X. N. Wang, Phys. Rev. Lett. 85, 3591 (2000); X. N. Wang and X. F. Guo, Nucl. Phys. A 696, 788 (2001); J. Osborne and X. N. Wang, Nucl. Phys. A 710, 281 (2002); B. W. Zhang and X. N. Wang, Nucl. Phys. A 720, 429 (2003).
11. E. Wang and X. N. Wang, Phys. Rev. Lett. 89, 162301 (2002); ibid., 87, 142301 (2001).
12. B. Andersson et al., Phys. Rept. 97, 31 (1983); T. Sjostrand, arXiv:hep-ph/9508391.
13. J. Binnewies, B. A. Kniehl and G. Kramer, Phys. Rev. D 52, 4947 (1995).
14. A. Majumder and X. N. Wang, to be published.
15. F. Wang, J. Phys. G 30, S1299 (2004).
16. Jet structure in \(p + p \) collisions is known to have correlated background due to multiplicity bias and coherence in hadronization. This develops a non-trivial centrality and azimuthal angle dependence in \(p + A \) and \(A + A \) collisions. Ref. [3] uses the two-hadron correlation in \(p + p \) collisions, including background, as the baseline, while Ref. [13] subtracts out the background both in \(p + p \) and \(A + A \) collisions. Such different methods of background subtraction affect the extracted dihadron correlations introducing systematic differences.
17. X. N. Wang, Phys. Lett. B 595, 165 (2004).
18. A. Majumder, Phys. Rev. C 75, 021901 (2007).
19. J. Adams et al., Phys. Rev. Lett. 97, 162301 (2006).
20. R. C. Hwa and C. B. Yang, Phys. Rev. C 67, 034902 (2003); R. J. Fries et al., Phys. Rev. Lett. 90, 202303 (2003); V. Greco, C. M. Ko and F. Levai, Phys. Rev. Lett. 90, 202302 (2003).
21. R. C. Hwa and C. B. Yang, Phys. Rev. C 70, 054902 (2004); R. J. Fries, S. A. Bass and B. Muller, Phys. Rev. Lett. 94, 122301 (2005).