Research Paper

The Effectiveness of Biofeedback on Improving Reading Performance and Visual-Motor Perception in Children with Dyslexia

Nazanin Abbasi Fashami¹, Bahman Akbari²*, Abbas Ali Hosseinkhanzadeh³&⁴

¹. Ph.D. Student, Department of Psychology, Rasht Branch, Islamic Azad University, Rasht, Iran
². Professor, Department of Psychology, Rasht Branch, Islamic Azad University, Rasht, Iran
³. Invited Associate Professor, Department of Psychology, Rasht Branch, Islamic Azad University, Rasht, Iran
⁴. Associate Professor, Department of Psychology, Faculty of Literature and Humanities, University of Guilan. Rast, Iran

Citation: Abbasi Fashami N, Akbari B, Hosseinkhanzadeh AA. The effectiveness of biofeedback on improving reading performance and visual-motor perception in children with dyslexia. J Child Ment Health. 2021; 8 (4):16-28.

URL: http://childmentalhealth.ir/article-1-1195-en.html

ARTICLE INFO

Keywords: Biofeedback, reading performance, visual-motor perception, dyslexia

ABSTRACT

Background and Purpose: Dyslexia as a common developmental disorder in childhood can seriously impair the educational process of students and according to the previous studies, biofeedback can help these children manage those issues. This study sought to investigate the effectiveness of biofeedback on improving reading performance and visual-motor perception in children with dyslexia.

Method: This was a quasi-experimental study with a pretest-posttest and a control group design. The statistical population included all 8-12 year old male students with dyslexia referred to learning disorders centers in the 3rd district of Tehran in 2019; from which 24 people were selected by the available sampling method according to the inclusion and exclusion criteria and were randomly assigned to the experimental group (n=12) and the control group (n=12). Instruments used in this study included the Reading and Dyslexia Test (Nema) (Kormi Nouri and Moradi, 2005) and the Bender Visual-Motor Gestalt Test (Bender, 1938). The intervention group underwent 30 sessions of 45-minutes biofeedback intervention program, while the control group received only the usual training of learning disorders centers. Data were analyzed using analysis of covariance in the SPSS-22 software.

Results: The results of data analysis showed that biofeedback improved the reading performance of children with dyslexia. This method reduced the shape error, composition error, rotation error, continuity error, and thus improved the visual-motor perception of children with dyslexia (p <0.01).

Conclusion: Biofeedback method can use the principles of factor conditioning learning to change and improve brain waves, strengthen self-regulation skills, improve brain function and thus improve reading performance and visual-motor perception in children with dyslexia.

Received: 15 Sep 2021
Accepted: 2 Nov 2021
Available: 13 Feb 2022

*Corresponding author: Bahman Akbari, Professor, Department of Psychology, Rasht Branch, Islamic Azad University, Rasht, Iran
E-mail: Bakbari44@yahoo.com
Tel: (+98) 1333555123
2476-5740/ © 2021 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Extended Abstract

Introduction

Planners, principals, teachers, and parents of students with learning disabilities have always tried to provide conditions that increase their social and academic efficiency (1). Reading is one of the main methods of acquiring knowledge and dyslexia is one of the types of learning disabilities that is neurological in origin and is characterized by difficulties with accurate or fluent word recognition and poor spelling and decoding abilities (3). These students are generally of average or above average intelligence, but they show poorer academic performance compared to other students with the same educational status and they have problems in reading (5, 6). Reading difficulties typically include difficulty recognizing or understanding words.

According to the previous studies, one of the causes of dyslexia is a deficiency in the perceptual processing system, especially visual perception (4). Visual-motor perception is a general ability that combines visual information processing skills with motor skills. Weakness in visual – motor perception skills is one of the most important factors that aggravate dyslexia (10, 11). Therefore, the issue that becomes important after the diagnosis of dyslexia is to use timely and appropriate treatment measures to improve the problems of these students and prevent further injuries. One of these therapies is biofeedback, which seeks to teach self-regulation by recording electrical responses and providing feedback to the subject (14) and helping the brain to regulate itself and correct its functional impairment (15). Numerous studies have shown the positive effects of biofeedback therapy on improving reading performance in children with dyslexia (18 21). Research also shows that therapeutic intervention through biofeedback is effective in improving visual-motor perception of students with learning disabilities (14, 22 and 23). Given these issues and the importance of identifying the factors affecting dyslexia and the high prevalence of dyslexia and its consequences, the results of this study can provide a suitable therapeutic framework to improve reading performance and visual-motor perception of students with dyslexia, and help pave the way for further research in this area; thus, create a treatment model. Therefore, the present study aimed to investigate the effectiveness of biofeedback on improving reading performance and visual-motor perception in children with dyslexia.

Method

The present study had a quasi-experimental design with pretest-posttest and a control group. The statistical population included all 8 to 12 year old female students with dyslexia referred to learning disability centers in Tehran in 2019; 24 of which were selected by available sampling method and were randomly assigned to the experimental group (n=12) and the control group (n=12). The experimental group received thirty 45-minute sessions (three times a week) of biofeedback, while the control group received only the usual training of learning disability centers. Inclusion criteria included 1) accurate diagnosis of dyslexia by a child psychologist and child psychiatrist and finally based on the Reading and Dyslexia Test (24), 2) written informed consent of parents and students, 3) having an IQ score between 85 and 115, 4) no neurodevelopmental disorder or comorbid psychological disorders and 5) no use of psychiatric drugs. Exclusion criteria included receiving neurofeedback sessions during the past year and being absent for more than two sessions in intervention sessions. Instruments used in this study included the Reading and Dyslexia Test (24) and the Bender visual-motor Gestalt test (26). Data were analyzed by the Analysis of covariance using the SPSS-22 software.

Results

Mean and standard deviation of pre-test and post-test scores of research variables in the experimental and control groups are presented in Table 1. Also in this table, the Shapiro-Wilkes test is presented to determine the normality of the distribution of variables in the groups. According to this table, the Shapiro-Wilkes test statistic is not significant for all components, so it could determine that their distributions are normal (p>0.05).

Variables	Stages	Groups	Mean	SD	SH-W	P
	pretest	experimental	534.23	58.72	0.91	0.15
	posttest	experimental	540.21	34.25	0.93	0.31
Reading	control		685.91	40.44	0.95	0.58
performance	control		567.86	32.66	0.94	0.49
	pretest	experimental	7.08	1.08	0.91	0.16
	posttest	experimental	7.08	0.99	0.93	0.32
Shape error	control		4.83	0.71	0.94	0.38
	control		7	1.04	0.89	0.07
Visual-motor	pretest	experimental	6/58	1.08	0.92	0.25
perception	posttest	experimental	6/91	0.9	0.94	0.45
Composition error	control		4.91	0.99	0.93	0.31
	control		6.58	1.08	0.94	0.49
Rotation error	pretest	experimental	6.75	1.13	0.89	0.07
	posttest	experimental	7.41	1.31	0.93	0.31
			4.91	0.99	0.92	0.23
The aim of this study was to determine the effectiveness of biofeedback on improving reading performance and visual motor perception in children with dyslexia. The results showed that biofeedback has a significant effect on improving reading performance in children with dyslexia. This finding is consistent with the results of the previous studies (18, 19, 20 and 21) in that they showed that the neurofeedback training program improves reading performance in children with dyslexia. The findings also showed that the biofeedback had a significant effect on reducing shape error, composition error, rotation error, continuity error as well. This finding is consistent with the results of the previous studies (14, 22 and 23) in that they showed that neurofeedback training increases visual perception.

In conclusion, and according to the results of the present study, it can be said that biofeedback is an effective and efficient way to improve reading performance and visual-motor perception in children with dyslexia, and we recommend that therapists use this intervention method in children with dyslexia. One of the limitations of this study was the gender of the subjects, which may be associated with different results related to the group membership. The results of the adjusted means in the post-test show that the means of the experimental group in shape error (4.842), composition error (5.129), rotation error (5.198), and continuity error (5.071) is less than the means of the control group in these errors (6.991), (6.371), (6.802) and (6.345), respectively. Based on these findings, it can be said that neurofeedback reduces the shape error, composition error, rotation error, and continuity error (improving visual-motor perception) of children with dyslexia.

Ethical Considerations

Compliance with ethical guidelines: This research has been extracted from the doctoral dissertation of the first author in general psychology, in the Islamic Azad University, Rasht Branch, with ethics IR.IAU.RASHT.REC.1398.037. Its implementation license has been issued by the Department of Exceptional Education in 2019. In this research, the ethical codes such as obtaining the informed consent of the participants and confidentiality were considered by the authors.

Funding: The present study has conducted without any sponsoring from a specific organization.

Authors’ contribution: This article is a part of the first author's doctoral dissertation under the advice of the second and the third authors.

Conflict of interest: There is no conflict of interest for the authors in this study.
مقاله پژوهشی

ارتباط ایکسوزاندزیستی بر بهبود عملکرد خواندن و ادراک دیداری - حرکتی کودکان با نارساخوانی

تاریخچه:

نامه: بهمک اکر
بکباری44@yahoo.com

مکالمات مقاله:

کلیدواژه‌ها:
پسخوراندزیستی، عملکرد خواندن، ادراک دیداری، حرکتی نارساخوانی

چکیده:
زمینه و هدف: نارساخوانی به عنوان اخلاق عصبی تحولی رایج در دوران کودکی می‌تواند باعث تحقیق داشته‌اند نوین را برآورده کند. بهبود مهارت‌های اخلاقی و اجتماعی در کودکان بهبودی می‌تواند بهبود عملکرد خواندن و ادراک دیداری - حرکتی کودکان با نارساخوانی باعث شود.

روش: این پژوهش از نوع نیم‌آزمایشی با طرح بی‌آزمایش‌سازی‌گردیده است. مطالعه شامل دو گروه آزمایشی و کنترلی بود. گروه آزمایشی شامل 8 ساله‌ها بود که بهبود خواندن و ادراک دیداری - حرکتی را داشتند. گروه کنترل شامل 8 ساله‌ها بود که بهبود خواندن و ادراک دیداری - حرکتی را نداشتند.

نتایج:

بنا بر نتایج، توانایی تجربی آزمون‌های تصویری و تلفاتی بهبود عملکرد خواندن و ادراک دیداری - حرکتی کودکان با نارساخوانی مشخص نبود.

پژوهشگر: نیوستاده: بهمک اکر با تأکید بر ایکسوزاندزیستی، استاد گروه روان‌شناسی، واحد رشته دانشگاه آزاد اسلامی، رشت، ایران

Bakbari44@yahoo.com
رایانه: 33555113
تلفن: 33555113
بردراش واجی و معنی اطلاعات است (8). فراوانی خواندن شامل موضوعه ی بسیاری از مهارت‌ها است که بازنشستگی لغت‌های توصیف شده (با علائم دیداری)، تعیین معنا، لغات و عبارات، و همانگی ساختار این معنا با موضوع کلی متن را شامل می‌شود. مشکلات خواندن به طور معمول شامل دوگر عامل در بازنشستگی یا در کلیات هستند؛ به عبارت دیگر عامل خواندن ضعیف به عنوان تأخیر معنی (د) انحصار موارد زیر می‌باشد: سیستم کودک و بدون دقت مشخص در خواندن یک کودک با هدف متوسط با بالا تلقی می‌شود (9).

بر اساس مطالعات انجام شده یکی از علل نارسایی‌ها نارسایی در نظام پردازش داده‌ها با خصوصیاتی اکثر افراد دیداری است (4). عامل‌های دیداری-حرکتی نوعی توانایی عمومی است که می‌تواند به منظور خواندن اطلاعات دیداری را با مهارت‌های حرکتی هم‌پوشانی می‌سازد. ضعف در مهارت‌های اکثریت دیداری-حرکتی یکی از مهم‌ترین عوامل تشکیل کننده نارسایی‌ها محصول می‌شود (10 و 11). در تأیید این موضوع معنی و بدیل و (11) در پژوهش‌های نشان داده‌های دیداری و توانایی یک کودک می‌باشد با احتیاط بی‌توجهی به طور متعارض با پیشین‌تر از کودک به هنگام بوده و میزان ارتباط به ابعاد خطاهای تحریف، یک واحد چگی، تناو و چرخش در آن طور معناپذیر پیاده‌ترین و نیز در نارسایی‌ها نشان می‌دهد که افزایش در می‌آورد در طریق نسمات در کلکه‌های و هم‌کرد در جو نشان‌های چندین. معنی بیش‌ترین از تداوم از طریق محصول با بالاتر بروخورد آن و در شرایط بسیاری آموزشی نبوده به دیگر دانش آموزان، عملکرد تحصیلی ضعیف تری نشان می‌دهد. با این وجود، با ادعایی در زمینه‌های نشان داده شده نشان می‌کند (5 و 6) این احتمال بیش‌تری و وسعتی ماده‌العلم مثبت، اما مشاهداتی در درمان زده‌هگام آن با افزایش عملکرد تحصیلی و کفیت زندگی‌های ماهراست (7).

5. Visual perception
6. Visual-motor perception
7. Remedial instruction

قلم‌های امروزی دانش آموزان از ارکان اصلی تیترهای انسانی کشور محسوب می‌شوند. نقش زیادی در تولید، پیشنهاد و تکنولوژی کشور دارد. در این روح توجه به سالمت و سرزمین‌گری روانی-اجتماعی و تحصیلی آنها به خصوص دانش آموزان با اختلالات یادگیری از تابعه و پرسی برخوردار است؛ بنابراین مهارت‌های روانی، مهارت‌های مکمل، والدین این دانش آموزان در تمعین مهارت‌های سازمانی و مدیریتی را فراهم کنند که کارآیی اجتماعی و تحصیلی آنان را بود (1). خواندن یکی از اکثریت بیشتر کودک دانش آموز است و دانش آموزان با نارسایی‌ها، ممکن است با تدریجی‌کاره‌های مختلف تحصیلی و روانی که یکی از مسائلی می‌تواند به عملکرد تحصیلی و روایت اجتماعی آنها تأثیر منفی داشته باشد (2).

نارسایی‌ها یکی از ابعاد ناکافی یادگیری است که ریشه عصب‌شناسی دارد و با مشکلات در بازنشستگی دارای بدان واردات و توانایی‌های ضعیف در اما و رمزگشایی مشخص می‌شود (3). میزان شیوع جهانی نارسایی‌ها در دانش آموزان 5 تا 17 درصد است (4). یکی از ابعادی که توصیف ترین تعیین نارسایی‌ها نشان می‌دهد که افزایش در میانه خوردن نیز می‌باشد که در طرح صاحب‌زاده و هم‌کرد، این احتمال را نشان می‌دهد. معنی بیش‌ترین از تداوم از طریق محصول با بالاتر بروخورد آن و در شرایط بسیاری آموزشی نبوده به دیگر دانش آموزان، عملکرد تحصیلی ضعیف تری نشان می‌دهد. با این وجود، با ادعایی در زمینه‌های نشان داده شده نشان می‌کند (5 و 6) این احتمال بیش‌تری و وسعتی ماده‌العلم مثبت، اما مشاهداتی در درمان زده‌هگام آن با افزایش عملکرد تحصیلی و کفیت زندگی‌های ماهراست (7).

1. Dyslexia
2. Learning disabilities
3. Reading performance
4. Vocabulary recognition
کند. از این رو، پژوهش حاضر با هدف تعیین اثری خصوصی پسخوراند زیستی بر بهبود عملکرد خواندن و ادراک کودکان نارساخوان به‌طور نارسخوراندن تانبرک آموزشی انجام شد.

روش

(اف) طرح پژوهش و شرکت کنندگان: پژوهش حاضر یک طرح نیمه آزمایشی از نوع پیش آزمون - پس آزمون با گروه گروهی گواه بود. جامعه آماری شامل تمامی کودکان ساله مبتلا به نارساخته مراجعه کننده به مراکز اختلالات بی‌بالغی شهر تهران در سال 1398 بود. در این پژوهش 24 نفر از کودکان مبتلا به نارساخته‌ها به صورت داوطلبانه انتخاب شدند. و صورت تصادفی در گروه آزمایش (12 نفر) و گروه (12 نفر) جایگزین شدند. سپس گروه آزمایش به‌طور مداوم تحت 30 دقیقه ای (سه بار در هفته) پسخوراند خودکار در قابل‌پوشش زیستی و گرفتن گروه‌های هیچ گونه مداخله را در نظر گرفتند. (البته منابع اختلالات بی‌بالگی را دریافت می‌کردند).

ملاحظه: ورود به پژوهش حاضر شامل (1) تحقیق گفتگوی نارساخته‌ها، (2) تشتیزی مشخص روان‌سناره‌ها و نارساخته‌ها (نما)، (3) همایش‌های وقتی کودکان و روان‌سناره‌ها، بر اساس آزمون رسمی خواندن و نارساخته‌ها (نما)، (4) رضایت کننده و دانشگاهی و (5) نشست‌های کننده و آزمایش (3) داشتی به همراه 85 نفر بر اساس نتایج آزمون‌های داشتی به شکل در پرونده مشارکت‌کننده داشت. آزمون‌های داشتی به‌طور مداوم از نظر مشارکت‌کننده به‌طور دوباره از دست داده شدند.

1. آزمون رسمی خواندن و نارساخته‌ها (نما): در پژوهش حاضر از این آزمون جهت شناسایی کودکان مبتلا به نارساخته‌ها و همچنین سنجش مناسب جهت بهبود مشکلات این دانش آموزان و پیشگیری از آسیب‌های بعدی است. بکی از این اقدامات درمانی، پسخوراند زیستی است که تلاش می‌کند از طریق بازسازی الکتریکی و ارائه پسخوراند به آزمودنی، خودنظری و را آموزش دهند (14) و به مغز کمک کند تا خودش را تنظیم کرده و نارساخته‌ها را بر اساس مزایا اعمال کنند. این امر را می‌تواند سه گروه عمده‌ای بیشتری از این کودکان به‌طور مداوم شکست نشاند. به دنبال این پژوهش در این تحقیق، در این مطالعه SPSS-22 مورد استفاده قرار گرفت.

1. Neurofeedback
2. Self-regulation
کوریتیز (به نقل از کپه) تدوین شده است و شامل ۳۰ گویه نمره گذاری و
چهار نوع خطای شکل، خطای ترکیب، خطای چرخش، خطای نداوند، و خطای کل است. نمره گذاری آزمون و مواد آن به صورت
یک و صفر است؛ بنابراین شدت که هر یک از مواد آزمون در صورت
خطا نمره صفر و در غیر این صورت نمره یک تعلق می‌گیرد و
حداقل و حداکثر نمره در این نظام به ترتیب ۰ و ۳ است. کسب نمره
باید به معنای خطای کمتر و ادراک دیداری-خوشه بهتر است. در نصیب
نظام کوریتیز به ترتیب کلی قابل قبول بوده و میزان توانایی یا کندگان
در پژوهش حاضر نیز درج شده و میزان توانایی در نصیب
برای آن علی (۸۸/۵۶) و ۷/۴۶ گزارش شده است و اعتبار آزمون به عنوان
شاخص نتایج ادراکی-خوشه مطلوب است (به نقل از ۷۷). ضریب
بازآزمایی این آزمون با نظام کوریتیز به منظور اعمال و فاصله زمانی در آن
از ۳۵/۳ تا ۳/۰ گزارش شده است. روابط این آزمون به ابتدای
همسایگی با آزمون ادراک دیداری فراستی (۷۵/۰) به دست آمده است.
این آزمون توسط بازی و همکاران (۸۷/۸۴) که در دو گروه کودک ۵ تا ۱۱
ساله نهایی هنرمندی این است. طبق این پژوهش میانگین خطاهای ۵ در
سالگی ۸۱ درصد و با افزایش سن کاهش می‌یابد و در ۱۱ سالگی به
۳/۴۶ می‌رسد و ضریب بازآزمایی دیگر به سطح منسوب در دانه‌ای از
۸۸/۵۶ تا ۳/۷۹ گزارش شده است (۲۸/۸۹). در پژوهش حاصل نیز آلفای
کوریتیز خطای کل، خطای شکل، خطای ترکیب، خطای چرخش و
خطای نداوند به ترتیب ۸۷/۸۹، ۸۱/۰۹، ۹۱/۰۹۲/۷۶ به دست آمده.
4. Rotation error
5. Continuity error
6. Electroencephalogram

متغیر عملکرد خواندن استفاده شد. این آزمون توسط کریم نوری و
مداد (۲۴) ساخته و بر روی ۱۶ اندام (۲۴/۷۲ دانش آموخته) به ۴۴۴ تا ۲۴۴ دختر
در یک بیمارستان شهر تهران، سن تندریز و تریز هنرمندی بیشتر. هدف
این آزمون بررسی میزان توانایی خواندن دانش آموخته دختر و پسر فاقد
اختلال در دوره دسیست با ویژگی‌های دوربینی و یکپارچگی و تشخیص
کودکان دارای مشکلات خواندن و نارسایی خواندن است. این آزمون از ده
خرده مقياس تشکیل شده که آزمونی برای هر پاسخ درست یک نمره
می‌گیرد و نمره کل عملکرد خواندن از مجموع خرده مقياس‌ها محاسبه
می‌شود. کسب نمره بالا در این آزمون به معنای عملکرد خواندن
مطلوب است. خرده مقياس‌های این آزمون شامل خواندن کلمات،
خواندن نمونه می‌باشد در کن تنه، حذف آواه، قافیه‌ها، نام‌گذاری
در کلمات، نشان حروف، نشانه کلمات و نام نیازمند تصاویر است. در
این مطالعه این آزمون به صورت افزایش اجرا شد. روابط محتوایی این
آزمون با سایر خواندن صحتی و آزمون آزمون آزمون و همکاران (۱۳/۱۳
به ترتیب تفاوت کلی آزمون توانایی ادراک دیداری و آزمون آزمون آزمون
مورد تایید کیفی قرار گرفت، شدید و قابل قبول در نهایت درک
آلای کوریتیز مقياس شده که مقادیر آن برای خرده آزمون‌های مختلف
۴۷ تا ۱۳ به دست آمده (۲۴). در پژوهش حسین‌خانزاده، لطیف
زنگنه و طاهر (۲۶) اثر کاهش اختلال از ضریب بالا آزمون‌ها
استفاده شد که مقدار این ضریب برای نمره کل و خرده مقياس‌های این
آزمون از ۴۸ تا ۵۰ تغییر بود. در پژوهش حاصل نیز آلفای کوریتیز
نمای کل آزمون و خرده مقياس‌های آن از ۷۷/۷ تا ۷۸/۷ به دست آمده.
۲. آزمون ادراک دیداری-خوشه (بندر-گسترش) در این آزمون توسط
لوری بتنر در سال ۱۳۶۸ مبتنی بر نظرین شناسایی آسب در خوشه
توانایی دیداری ساختاری خواندن همگن و ارزیابی
توانایی میان خواننده توانایی کننده شده است. این آزمون شامل ۹
کارت است که رهگیر کارت، طرحی تغییر شده و برای تشخیص
آسب‌های آسبی ارزیابی کودکان از نظر آشکاری و هم‌بوده،
تشخیص دوبرایی‌های خواندن و پایا نگیرن، ارزیابی مشکلات هیجداری و
مطالعه کودک‌های تحولی و همگن به عنوان یک آزمون هوشی
غاصل قرار گرفت. در این آزمون توسط

1. Visual-Motor perception Bender-Gestalt Test (V-M B-G)
2. Shape error
3. Composition error
آزمایش و گواه چاپ‌دهی شدن. این اعامی آزمایش و گواه چاپ‌دهی در مرحله یکی آزمون مورد ارزیابی قرار گرفته و در مرحله بعد گروه آزمایشی، مداخله ی پسرخوانان زیستی را دریافت کرده و در پایان از هر دو گروه، پس آزمون به عمل آمده اجرای مداخله نیز توصیف استاد برگزار کننده دوره‌های پسرخوانان زیستی و با دستیاری نویسنده نخست این مقاله انجام شده است. جهت رعایت احترام در پژوهش، رضایت شرکت کننده‌ها در طور کامل کسب شد و از اهداف و تمام مراحل مداخله به طور کامل آگاه شدند. به افراد گروه گواه نیز اطمنان داده شد که آنان نیز از اینین افراد یافته‌های ایک امتیاز جوابگو از آنها محرمانه باقی مانند. در پایان به جمع آوری داده‌ها، تجزیه و تحلیل با استفاده از جدول‌های رایانه‌ای گروه‌بندی و چندمتغیری در محیط نرم‌افزار SPSS-22 انجام شد.

۵) روش اجرای: پس از اخذ مجوزهمازی لازم جهت انجام پژوهش، آزمایش و گواه چاپ‌دهی باید از بروز روش ارائه شد، انتخاب شده و در دو گروه

| جدول ۴-۱: شاخص‌های توصیفی نتایج پیش آزمون و پس آزمون در دو گروه آزمایش و گواه |
|---|---|---|---|---|---|---|
| مطالعه عملکرد خواندن | آماره‌ای | انحراف استاندارد | میانگین | مرحله | متغیر |
| | S-W | | | | | |
| پیش آزمون | ۵۸/۲۲ | ۵۱/۵۹ | ۵| ۵۱/۵۹ | پیش آزمون | گروه |
| پس آزمون | ۷۰/۲۱ | ۵۴/۲۵ | ۵| ۵۴/۲۵ | پس آزمون | ۴-۹: C3 (۱۵-۹۰ هرخز) به عنوان باند افزایشی و نشانگر بیشتری و پس از اخذ مجوزها، از این آزمایش و گواه چاپ‌دهی باید از بروز روش ارائه شد، انتخاب شده و در دو گروه

| ۱۸/۲۶ | ۱۳/۱۸ | ۲۴/۱۶ | ۶۲/۱۹ | ۶۴/۱۲ | ۷۶/۱۰ | پس آزمون | ۱۵-۹۰ هرخز | پس آزمون | ۴-۹: C3 (۱۵-۹۰ هرخز) به عنوان باند افزایشی و نشانگر بیشتری و پس از اخذ مجوزها، از این آزمایش و گواه چاپ‌دهی باید از بروز روش ارائه شد، انتخاب شده و در دو گروه
جمهوری اسلامی ایران

فصلنامه سلامت روان کودک، دوره 9466

شماره 64

پسخوراند زیستی بر بهبود عملکرد خواندن و ادراک کودکان نارساییان

به تاریخ 1397/12/23

ناظر عباسی فهمی و همکاران

متجاهرات در گروه‌ها نشان داد که واریانس عملکرد خواندن در گروه پسرگارشده با آزمون لویک برای بررسی همگنی واریانس متغیر و افتخار به ود بر پسخوراند زیستی اثربخشی نارساییان کودکان عملکرد خواندن و ادراک به ود بر پسخوراند زیستی

۱. نتایج آزمون تحلیل کوواریانس تک متغیری برای بررسی تفاوت گروه آزمایش و گروه در عملکرد خواندن

مورد انتخاب	P	F	MS	df	SS
۱.	۰/۹۴	۰/۹۱	۰/۸۷	۰/۹۱	۰/۹۱
۲.	۰/۹۲	۰/۹۱	۰/۹۰	۰/۹۱	۰/۹۱
۱.	۰/۹۸	۰/۹۸	۰/۹۵	۰/۹۸	۰/۹۸
۱.	۰/۹۸	۰/۹۸	۰/۹۵	۰/۹۸	۰/۹۸
۱.	۰/۹۵	۰/۹۵	۰/۹۵	۰/۹۵	۰/۹۵
۱.	۰/۹۳	۰/۹۳	۰/۹۳	۰/۹۳	۰/۹۳
۱.	۰/۹۱	۰/۹۱	۰/۹۱	۰/۹۱	۰/۹۱
۱.	۰/۹۹	۰/۹۹	۰/۹۹	۰/۹۹	۰/۹۹
۱.	۰/۹۹	۰/۹۹	۰/۹۹	۰/۹۹	۰/۹۹
۱.	۰/۹۹	۰/۹۹	۰/۹۹	۰/۹۹	۰/۹۹

زمینه به جدول ۲ آماره F برای متغیر عملکرد خواندن

۲. نتایج آزمون لویک برای بررسی تفاوت گروه آزمایش و گروه در عملکرد خواندن

با توجه به جدول ۴ آماره F برای متغیر عملکرد خواندن

۳. نتایج آزمون لویک برای بررسی همگنی واریانس متغیر و افتخار به ود بر پسخوراند زیستی

با توجه به جدول ۵ آماره F برای متغیر عملکرد خواندن

۴. نتایج آزمون لویک برای بررسی همگنی واریانس متغیر و افتخار به ود بر پسخوراند زیستی
در حالت شکل، خطای ترکب، خطای چرخش، خطا تداوم 0، و خطای تداوم نتایج تحلیل کواریانس نکته‌تری گزارش شده است.

جدول 3. نتایج آزمون تحلیل کواریانس چندمتغیری برای پرسی نتایج گروه آزمایش و گروه در حالت‌های ادراک دیداری حرکتی

مولفه‌های تحلیل کواریانس	توان آزمون	p	F	MS	df	SS
خطا ترکب	0.004	0.968	0.004	0.004	0.004	
خطا چرخش	0.003	0.999	0.003	0.003	0.003	
خطا تداوم	0.003	0.999	0.003	0.003	0.003	

بحث و نتیجه گیری

هدف پژوهش حاضر تمنی اثری بخشی پسخوراندیزی بر بهبود عملکرد خواندن و ادراک دیداری- حرکتی کودکان مبتلا به نارسایی‌های ویژه است. در سطح معناداری 0.05 و 0.01 کاراکتریز نشان داد که پسخوراندیزی در این حالت‌ها تفاوت معناداری وجود دارد. همچنین میزان مجدور آنها در جدول 3 نشان می‌دهد که عضویت گروهی، درصد از تغییرات خطای شکل، درصد از تغییرات خطای ترکب و درصد از تغییرات خطای چرخش در این دو گروه با توجه به جدول 3 آماره F برای خطا ترکب (0.05/000)، خطای چرخش (0.07/000) و خطا تداوم (0.000) در حالت تداوم معنادار است که نشان می‌دهد با دو گروه در این حالت نتایج آزمون تحلیل کواریانس نکته‌تری گزارش شده است.

در نتایج آزمون تحلیل کواریانس چندمتغیری برای پرسی نتایج گروه آزمایش و گروه در حالت‌های ادراک دیداری حرکتی، گروه گواه در چرخ و گروه گواه در ایک یافته

با توجه به آنکه پرسی برای خطا ترکب و خطای چرخش در حالت تداوم معنادار است، می‌توانست با توجه به آنکه دو گروه در این حالت نتایج آزمون تحلیل کواریانس نکته‌تری گزارش شده است.

در نتایج آزمون تحلیل کواریانس چندمتغیری برای پرسی نتایج گروه آزمایش و گروه در حالت‌های ادراک دیداری حرکتی، گروه گواه در چرخ و گروه گواه در ایک یافته

با توجه به آنکه پرسی برای خطا ترکب و خطای چرخش در حالت تداوم معنادار است، می‌توانست با توجه به آنکه دو گروه در این حالت نتایج آزمون تحلیل کواریانس نکته‌تری گزارش شده است.
نتیجه به کودکان بهبود همچنین خود مشخص می‌شوند (9). تعالم بین امواج بیان، این ارتباط‌های آزمونی در مطالعات انجام‌شده در گروه‌های دارای آموزش ضعیف، نمونه‌های خواندن و نوشتن و دانش از این نظر حمایت می‌کنند. به این معنا که نمونه‌های نوروژیک گوناگونی با سطح بالای ارتباط بین آنها و آن اپی‌های است که اولاً به مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکتروانسافالگرام کودکان هم‌شده بوده است که این گروه‌ها در مقایسه با الکтро
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش: این مقاله بر اساس اصول اخلاق پژوهش نوشته است که با کد کد اخلاقی 1398.037 در رشته روان‌شناسی عملی دانشگاه آزاد واحد رشت در سال 1399 دفاع شده است. همچنین مجوز اجرایی آن از سوی آموزش و پرورش استان تهران در سال 1398 صادر شده است. سایر ملاحظات اخلاقی مانند رضایت کامل افراد نمونه و رعایت اصول رازداری و محرمانه ماندن اطلاعات نیز در توجه گرفته شده است.

حامی مالی: این مطالعه بدون حاجی مالی و در قالب رساله دکترا انجام شده است.

نقش هر یک از نویسندگان: نویسنده نخست خانم نازنیک ع اسی فشمی به عنوان طراح و ایده‌بردار اصلی پژوهش و مشاور جمع‌آوری داده‌ها و نویسنده دوم به عنوان استاد مشاور بکم و ویراستار علمی و نویسنده سوم به عنوان استاد مشاور دوم و ویراستار علمی و ادیب در این مقاله نقش داشتند.

تعداد منابع: انجام این پژوهش برای نویسنده اینچ غونه تعارض منافعی را به دنبال نداشت است و نتایج آن کاملاً شفاف و بدون مقاله ویراستگری گزارش شده است.

فهرست نکته: بدین وسیله از مراکز اختلالات فردی دهه آرا یوپیکا نیک مهر و آنی واقع در منطقه 3 تهران، آنها و دانش آموزان که در این پژوهش شرکت داشتند تشریک و قدردانی می‌شود.
Resources
1. Strothmeier D, Gradinger P, Wagner P. Intercultural Competence Development Among University Students from a Self-Regulated Learning Perspective. Zeitschrift für Psychologie. 2017. [Link]
2. Ward A, Bush H, Braaten EB. Reading disorders/dyslexia. The Massachusetts General Hospital guide to learning disabilities. 2019; 21-37. [Link]
3. Snowling MJ, Hulme C, Nation K. Defining and understanding dyslexia: past, present and future. Oxford Review of Education. 2020; 46(4): 501-513. [Link]
4. HosseinKhanzadeh A. The effect of time management training on stress reduction and test anxiety of students with dyslexia. Journal of psychologicalscience. 2018; 16(64): 508-525. [Link]
5. Fletcher JM, Grigorenko EL. Neuropsychology of Learning Disabilities: The Past and the Future. J Int Neuropsychol Soc. 2017; 23(9-10):930-940. [Link]
6. Kenten C, Wray J, Gibson F, Russell J, Tuffrey Wijne L, Oulton K. To flag or not to flag: Identification of children and young people with learning disabilities in English hospitals. J Appl Res Intellect Disabil. 2019; 32(5):1176–1183. [Link]
7. Fletcher JM, Lyon GR, Fuchs LS, Barnes MA. Learning disabilities: From identification to intervention. Guilford Publications. 2018. [Link]
8. Jethwani LM, Subhashini R. Analysing underlying Cognitive Process in Reading and Spelling among Dyslexic Students. International Journal of Management Research and Social Science. 2019; 4(6): 17-20. [Link]
9. Torgesen JK, Phonologically based reading disabilities: Toward a coherent theory of one kind of learning disability. In Perspectives on learning disabilities. 2018, pp: 106 -135. [Link]
10. Capellini SA, Sellin L, D’Angelo I, Del Bianco N, Giaconi C, Germano GD. Visual-Motor Perception and Handwriting Performance of Students with Mixed Subtype Dyslexia. In Dyslexia. IntechOpen. 2021. [Link]
11. Meng ZL, Wydell TN, Bi HY. Visual-motor integration and reading Chinese in children with/without dyslexia. Reading and Writing. 2019; 32(2): 493-510. [Link]
12. Doty N. Nonverbal Learning Disability. In The Massachusetts General Hospital Guide to Learning Disabilities. 2019, pp. 103-117. Humana Press, Cham. [Link]
13. D’Mello AM, Gabrieli JD. Cognitive neuroscience of dyslexia. Language, speech, and hearing services in schools. 2018; 49(4): 798-809. [Link]
14. Zarenehzad S, Soltanikouhbanani S, Zarenehzad S. Effectiveness of Neurofeedback on Cognitive Deficits and Visual–Motor Perception in student with Dyslexia. Neuropsychology. 2020; 6(2): 47-66. [Link]
15. Eroğlu G, Gürkan M, Teber S, Ertürk K, Kirmizi M, Ekici B, ... & Çetin M. Changes in EEG complexity with neurofeedback and multi-sensory learning in children with dyslexia: A multiscale entropy analysis. Applied Neuropsychology: Child. 2020; 1-12. [Link]
16. Brandeis D. Neurofeedback training in ADHD: more news on specificity. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2010; 122(5): 856-857. [Link]
17. Cruz-Rodrigues C, Barbosa T, Toledo-Piza CM, Miranda MC, Bueno OFA. Neuropsychological characteristics of dyslexic children. Psicologia: Reflexão e Crítica. 2014; 27: 539-546. [Link]
18. Sharifi K, Babamir H. Efficacy of neurofeedback on Brain executive functions in children with mathematics disorder. Rooyesh. 2018; 7 (6) :17-34. [Link]
19. Eroğlu G, Aydin S, Çetin M, Balcişoy S. Improving cognitive functions of dyslexics using multi-sensory learning and EEG neurofeedback. In 2018 26th Signal Processing and Communications Applications Conference (SIU). 2018, pp: 1-4. [Link]
20. Raesi S, Dadgar H, Soleymani Z, Hajjeforouh V. Efficacy of neurofeedback training on reading and spelling skills of 8 to 12 Years old children with dyslexia. Journal of Modern Rehabilitation. 2016; 10(4): 177-184. [Link]
21. Eroğlu G. Improving reading abilities in dyslexia with neurofeedback and multi-sensory learning (Doctoral dissertation). 2020, PP:40–46. [Link]
22. Rahimi C, Behzadi F, Mohamadi N. The Effect of Neurofeedback Instruction on Visual Perception of Primary School Students with Dyscalculia. Advances in Cognitive Sciences. 2014; 16 (3) :1-12. [in person] [Link]
23. Nourbakhsh S. (2014). The efficacy of multisensory method and cognitive skills training on perceptual performance and reading ability in learning and non-learning based tests of male dyslexic students in Tehran Iran. Asian Journal of Social Sciences & Humanities. 2014; 3: 1-22. [Link]
24. Karami noori R, Moradi A. Reading and dyslexia test (NAMA). Tehran: Jihad University, teacher training. [in person] [Link]
25. Hosseinkhanzadeh A, Latif Zanjani M, Taher M. Efficacy of computer-assisted cognitive remediation (CACR) on improvement executive functions and reading performance of students with dyslexia. Neuropsychology. 2017; 2(7): 27:46; [in person] [Link]
26. Bender L. Bender hlotor Gestalt Test: Cards arid manual of instristion. h’nt York: American Orthopsychiatric Assc. 1938. [Link]
27. Groth-Marnat G. Handbook of psychological assessment. New York: van Nostrand Rinhild. 1997, pp:933-992. [Link]
28. bahramian A., hadianfard H, mohamadi N, rahimi C. Standardization of Bender-Gestalt II in Children Aged between 4 and 11 Years in Shiraz. Quarterly of Educational Measurement. 2013; 3(11): 170-195. [Link]
29. Masterpasqua F, Healey KN. Neurofeedback in Psychological Practice. Professional Psychology: Research and Practice. 2003; 34(6): 652. [Link]