A novel triangle mapping technique to study the h-index based citation distribution

Chun-Ting Zhang

Department of Physics, Tianjin University, Tianjin 300072, China.

The h-index has received wide attention in recent years. The area under the citation function is divided by the h-index into three parts, representing h-squared, excess and h-tail citations. The h-index by itself does not carry information for excess and h-tail citations, which can play an even more dominant role than h-index in determining the citation curve, and therefore it is necessary to examine the relations among them. A triangle mapping technique is proposed here to map the three percentages of these citations onto a point within a regular triangle. By viewing the distribution of mapping points, shapes of the citation functions can be studied in a perceivable form. As an example, the distribution of the mapping points for 100 most prolific economists is studied by this technique.

Results

We here propose a novel triangle mapping technique to study the relations among h-squared, excess and h-tail citations. For a regular triangle, the sum of the distances from any interior point to the three sides is equal to a constant, the height of the triangle. Note that the sum of the percentages for h^2, e and t is also a constant, which equals to 1. Based on this characteristic, percentages for these 3 kinds of citations are mapped onto a point in a regular triangle (Fig. 2A). Refer to the Method section for details.

First of all, let us consider two concrete examples. According to the citation information provided by Dodson, $C_{\text{total}} = 1700$, $h^2 = 625$ ($h = 25$), $e = 477$ ($e = 21.84$), and we find $H = 0.37$, $E = 0.28$ and $T = 0.35$. Therefore, the mapping point corresponding to Dodson is situated at the region No. 4, where the h-index is applicable (Fig. 2B).
The second example is for the chemist Berni Alder, where \(h^2 = 2500 \) \((h = 50)\), \(e^2 = 12996 \) \((e = 114)\) and \(C_{\text{total}} = 18400\), and we find \(H = 0.14\), \(E = 0.71\) and \(T = 0.15\). Therefore, the mapping point corresponding to Alder is situated at the region No. 5, where the \(e\)-index is absolutely dominant (Fig. 2B). This example shows that Alder’s \(h\)-index severely underestimates his academic impact, and in this case, the \(e\)-index should be used together with the \(h\)-index for a fair evaluation. In what follows, let us apply the citation triangle method to study the cases of citations of the 100 most prolific economists. The data used to derive the corresponding \(h\)-index, \(e\)-index and \(t\)-index were kindly provided by Dr. Tol. As a consequence, we calculated the coordinates \(x \) and \(y \) of each mapping point corresponding to each economist. The distribution of the 100 points is shown in Fig. 3A. As we can see that only two points are situated at the region No. 3, i.e., an \(h\)-index dominant region. Meanwhile, only 11 points (11\%) are situated above the horizontal line \(H = 1/3 \) or \(y = 0\), where the \(h\)-index can be properly applicable. Accordingly, for the remaining cases (89\%), where \(H < 1/3 \) or \(y < 0\), the \(h\)-index should be used jointly with the \(e\)-index, even the \(t\)-index. The average \(h\)-index and \(e\)-index over the 100 points are \(19 \) and \(28.14\), respectively, corresponding to the average \(H \) and \(E \) being 0.26 and 0.48 (average \(x = -0.13\), \(y = -0.07\)). Overall, to have a fair and accurate evaluation, the \(h\)-index should be used together with the \(e\)-index even the \(t\)-index for most of the 100 most prolific economists.

The \(h\)-index captures only the information of the citation function partially. However, the above distribution of the 100 mapping points within the triangle provides more information about the shapes of the corresponding citation functions. For example, the mapping points within the small triangle No. 5 indicate that their citation distribution functions are peaked on the beginning part. On the contrary, the mapping points within the small triangle No. 9 indicate that their citation distribution functions are flat with a long tail. In both cases, the \(h\)-index seems not appropriate in capturing the main information of citation function. To complement the \(h\)-index, Bormann and co-workers introduced three parameters: the \(h^2\)-upper, \(h^2\)-center and \(h^2\)-lower, which correspond to \(E\), \(H\) and \(T\), respectively, in this paper. In other words, the triangle mapping technique provides an intuitive representation of the \(h^2\)-upper, \(h^2\)-center and \(h^2\)-lower. Bormann and co-workers studied the shapes of the citation distribution functions of three scientists, A, B and C, belonging to an isohindex group with \(h = 14\). For scientist A, \(E = 0.82\), \(H = 0.15\) and \(T = 0.03\), corresponding to \(x = -0.456\), \(y = -0.183\). Its mapping point is situated at the small triangle No. 5, an \(e\)-index absolutely dominated regions. According to Bornmann et al and Cole and Cole, Scientist A is called perfectionist-type scientist, who has rather few but very highly cited publications. For scientist B, \(E = 0.39\), \(H = 0.48\) and \(T = 0.13\), corresponding to \(x = -0.150\), \(y = 0.147\). Its mapping point is situated at the small triangle No. 2, a boundary region between \(h\)-index and \(e\)-index dominated regions. According to references, Scientist B is called a prolific-type scientist, who publishes a large number of high-impact papers. For scientist C, \(E = 0.10\), \(H = 0.33\) and \(T = 0.57\), corresponding to \(x = 0.271\), \(y = -0.003\). Its mapping point is situated at the small triangle No. 8, a \(t\)-index dominated region. Scientist C is called a mass producer, who publishes a larger number of papers that are lowly cited. It can be seen from the above analysis, the locations of the mapping points carry the information of the types of scientists. Therefore, the triangle mapping technique is particularly useful when the academic impact of a large number of scientists is studied. In that case, clustering analysis can be performed based on the mapping point locations, and therefore scientists can be classified according to their academic performance.

Recently, Baum introduced a new parameter, called Excess-Tail Ratio\(^{12}\), denoted by \(R \), where \(R = E/T = e^2/t^2\). Baum found that for most cases he studied, \(R < 1 \), even \(R < 1\). Only for few cases, \(R > 1\). The shapes of citation distribution functions for \(R > 1\) are peaked,
whereas for $R < 1$ the shapes of the citation functions are flat with a long tail. Therefore, the Excess-Tail ratio is an appropriate parameter to capture the overall shapes of the citation functions. According to eq. (12), $R > 1$ or $R < 1$ corresponds to $x < 0$, or $x > 0$, respectively.

Discussion

In what follows, we want to explore the key factors that determine the shape of the citation distribution function. As previously, we assume a simple mathematical model for the citation distribution curve $C(x)$:

$$C(x) = \frac{C_1}{x^r}, \quad C_1 = C(1) > 0, \quad x \geq 1, \quad r > 0.$$ \hspace{1cm} (1)

The total citations received by N papers, C_{total}, is

$$C_{total} = \int_{1}^{N} C(x)dx = \frac{C_1}{1-r} \left(N^{1-r} - 1 \right).$$ \hspace{1cm} (2)

Figure 3 | Distributions of mapping points in the citation triangle. (A) The distribution of the 100 mapping points for each of the 100 most prolific economists. Note that only 11 points (11%) are situated at the regions where the h-index can be applicable ($H > 1/3$), indicating that the h-index should be used jointly with the e-index, even the t-index, for the remaining 89 economists. (B) An example to demonstrate that the power parameter λ is one of the key factors, which determines the position of the mapping point. Given $C_1 = 512$ and $N = 100$, starting from the region No. 3 (the h-index dominated region) with $\lambda = 0.4$, the mapping point moves to the region No. 6 (the e-index dominated region) with $\lambda = 1.6$. Interestingly, the track of the mapping points forms a clockwise rotating curve.
Based on eq. (1), it was shown that

$$h^{2} + 1 = C_{1}. \quad (3)$$

However, we should have $h < N$, which leads to

$$\lambda > \lambda_{0} = \frac{\ln C_{1}}{\ln N} - 1. \quad (4)$$

Meanwhile, we have

$$e^{2} = \frac{1}{\lambda - 1} \left(C_{1} - \lambda C_{1}^{2/3} \right). \quad (5)$$

Using eqs. (1)–(5), we find

$$H = \frac{h^{2}}{C_{total}} = \frac{(1-\lambda) \times C_{1}^{2/3} - 1}{N^{1/3} - 1}, \lambda > \lambda_{0}, \lambda \neq 1. \quad (6)$$

$$E = \frac{e^{2}}{C_{total}} = \frac{\lambda \times C_{1}^{2/3} - 1}{N^{1/3} - 1}, \lambda > \lambda_{0}, \lambda \neq 1. \quad (7)$$

Therefore, the condition under which the h-index can be dominant should satisfy $H > 1/3$, or

$$\frac{(1-\lambda) \times C_{1}^{2/3} - 1}{N^{1/3} - 1} > \frac{1}{3}. \quad (8)$$

To have an intuitive picture, we consider some numerical examples as follows. Taking $C_{1} = 512$, $N = 100$ and letting $\lambda = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6$, respectively, we calculate the values of H and E for each case. Using eq. (12), we find 12 mapping points in the triangle, as shown in Fig. 3B. It is interesting to see that with the increase of the λ value, the track of the mapping points forms a clockwise rotating curve. This example shows that the power parameter λ is one of the key factors to determine the shape of the citation function. Given C_{1} and N, there is a threshold of λ, when λ is less than this threshold, the h-index can no longer be properly applicable. In fact, $\lambda \rightarrow \infty$, $h \rightarrow 1$.

The main contribution of this paper is to propose the citation triangle method, by which the shapes of citation distribution functions can be studied in a perceivable form. Based on the distribution of mapping points, applicability and limitation of the h-index can be studied. Generally, the h-index is not properly applicable in the e-index or t-index dominated regions. In those cases, the h-index should be jointly applied together with the e-index or t-index. The proposed mapping technique provides a platform to study the academic impact of a group of scientists, because some mathematical methods, such as clustering analysis, can be used to study the distribution of mapping points, and the academic impact of these scientists can then be classified and compared.

Methods

The h-index was proposed by Hirsch in 2005. The set of h papers of a scientist was called the h-core, in which at least h citations were received by each of the h papers. The e-index was proposed by Zhang, which was defined as the square root of excess citations over those used for calculating the h-index. Therefore, the total citations received by the papers in the h-core are equal to $h^{2} + e^{2}$. The h-index divides the total citations of a scientist into two parts: the first part is of the h-core, whereas the second one is of the h-tail. For convenience, we define the square root of citations received by all papers in the h-tail as the t-index. Therefore, the number of total citations received by all papers of a scientist, C_{total}, is composed of three parts: h^{2}, e^{2} and t^{2}, i.e.,

$$C_{total} = h^{2} + e^{2} + t^{2}. \quad (9)$$

where h, e and t are the h-, e- and t-index, respectively. Letting

$$H = h^{2} / C_{total}, E = e^{2} / C_{total}, T = t^{2} / C_{total}, \quad (10)$$

we have

$$H + E + T = 1. \quad (11)$$

For any regular triangle, the sum of the distances from any interior point to the three sides is equal to the height of the triangle. Consider a regular triangle ABC with its height equal to 1 (Fig. 2A). Let the center of the triangle be denoted by O, and an $x - y$ coordinate system is set up as shown in Fig. 2A. Based on eq. (11) and the feature of the regular triangle, the set of three real numbers H, E and T is mapped onto a point $P(x, y)$ within the triangle, as shown in Fig. 2A. Simple calculation shows that

$$\left \{ \begin{array}{l} x = (T-E)(\sqrt{3} - 1) - (1 - H - 2E) \sqrt{3}, \\ y = H - 1/3 \end{array} \right.$$

The triangle can be divided into 9 smaller triangles (regions) as shown in Fig. 2B. We denote them by $No. 1$ through $No. 9$, respectively. Each region is characterized by a special interval of the three real numbers H, E and T, respectively. For example, at the region $No. 1$, $H > 2/3$ and $E + T < 1/3$, indicating that h^{2} is absolutely dominant at this region as compared with e^{2} and t^{2}. Similarly, at the region $No. 5$, $E > 2/3$ and $H + T < 1/3$, indicating that e^{2} is absolutely dominant as compared with h^{2} and t^{2}. At the region $No. 9$, $T > 2/3$ and $H + E < 1/3$, indicating that t^{2} is absolutely dominant as compared with h^{2} and e^{2}. Furthermore, at the region $No. 3$, $H > 1/3$, $E < 1/3$, $T < 1/3$, so, it is called an e-index dominant region; at the region $No. 6$, $E > 1/3$, $H < 1/3$, $T < 1/3$, so, it is called an e-index dominant region; and at the region $No. 8$, $T > 1/3$, $H < 1/3$, $E < 1/3$, so, it is called a t-index dominant region. Finally, the region $No. 2$ is the boundary region between the h-index and e-index dominant regions, the region $No. 4$ is the boundary region between the h-index and t-index dominant regions, and the region $No. 7$ is the boundary region between the e-index and t-index dominant regions. The above description has symmetry of a regular triangle. The total description is summarized in Table 1.

No.	H	E	T	Feature remark
1	$H > 2/3$	$E + T < 1/3$	$E + T < 1/3$	The h-index absolutely dominated region
2	$H > 1/3$	$E > 1/3$	$T < 1/3$	Boundary between h-index and e-index dominated regions
3	$H = 1/3$	$E < 1/3$	$T < 1/3$	The h-index dominated region
4	$H > 1/3$	$E < 1/3$	$T > 1/3$	Boundary between h-index and t-index dominated regions
5	$H + T < 1/3$	$E > 2/3$	$H + T < 1/3$	The e-index absolutely dominated region
6	$H < 1/3$	$E > 1/3$	$T < 1/3$	The e-index dominated region
7	$H < 1/3$	$E < 1/3$	$T > 1/3$	Boundary between e-index and t-index dominated regions
8	$H < 1/3$	$E < 1/3$	$T > 1/3$	The t-index dominated region
9	$H + E < 1/3$	$H + E < 1/3$	$T > 2/3$	The t-index absolutely dominated region

1. Hirsch, J. E. An index to quantify an individual’s scientific research output. *P Natl Acad Sci USA* **102**, 16569–16572 (2005).
2. Rousseau, R. New developments related to the Hirsch index. *Science Focus* **1**, 23–25 (2006).
3. Ye, F. Y. & Rousseau, R. Probing the h-core: an investigation of the tail-core ratio for rank distributions. *Scientometrics* **84**, 431–439 (2010).
4. Zhang, C. T. The e-index, Complementing the h-Index for Excess Citations. *Plos One* **4**, e4249 (2009).
5. Bornmann, L., Mutz, R. & Daniel, H. D. The h index research output measurement: Two approaches to enhance its accuracy. *J Informetr* **4**, 407–414 (2010).
6. Dodson, M. V. Citation analysis: Maintenance of h-index and use of e-index. Biochem Bioph Res Co 387, 625–626 (2009).
7. Tol, R. S. J. The h-index and its alternatives: An application to the 100 most prolific economists. Scientometrics 80, 317–324 (2009).
8. Cole, S. & Cole, J. R. Scientific Output and Recognition - Study in Operation of Reward System in Science. Am Sociol Rev 32, 377–390 (1967).
9. Baum, J. The Excess-Tail Ratio: Correcting Journal Impact Factors for Citation Quality. SSRN, http://ssrn.com/abstract=2038102 (2012).
10. Egghe, L. & Rousseau, R. An informetric model for the Hirsch-index. Scientometrics 69, 121–129 (2006).

Acknowledgements
I thank Dr. F. Gao and Dr. K. Song and for helps in preparing Figures 2–3. I am grateful to Dr. Richard Tol for kindly providing the data used to calculate the e-index and t-index for each of the 100 most prolific economists.

Author contributions
CTZ designed the study, performed most of the experiments, analyzed data and wrote the manuscript. All authors reviewed the manuscript.

Additional information
Competing financial interests: The author declares no competing financial interests.
License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
How to cite this article: Zhang, C.T. A novel triangle mapping technique to study the h-index based citation distribution. Sci. Rep. 3, 1023; DOI:10.1038/srep01023 (2013).