Sketch of trees and shrubs host to epiphytoid parasites (Loranthaceae) in cocoa based agrosystems in the department of Daloa, in the Central-West of Côte d'Ivoire

AMON Anoh Denis-Esdras, KOUAME Kouassi Thiègba, KOUADIO N'dah Kouamé Cyrilac, SAKO Hamed El Amine, KOULIBALY Annick Victoire and Mrankpa Agnero Stephane

DOI: https://doi.org/10.33545/27068919.2021.v3.i2b.539

Abstract
The parasitism of parasitic vascular plants of the Loranthaceae family is an ecological problem due to the high number of woody host and fruit species that they parasitize. The aim of this study is to contribute to knowledge of the woody plants which host epiphytoid parasites (Loranthaceae) in agrosystems based on cocoa trees. The inventories by surface survey and itinerant methods, completed with direct observations were carried out. In total, 73 host species of Loranthaceae were inventoried in cocoa trees in the department of Daloa. This taxonomic diversity of hosts, distributed in 55 genera and 22 families is infested by 4 parasitics (Globimetula dinklagei subsp. assiana, Phragmanthera capitata, Tapinanthus bangwensis and T. globiferus) Among these parasitics, T. bangwensis is the most frequent and abundant on the hosts. The infestation rate of the inventoried host trees and shrubs is of the order of 29.46% and the infestation intensity is 2.98 tufts/tree. Among the host cohort, 21.92% of fruit species economically important to farmers are heavily parasitized.

Keywords: Loranthaceae, cocoa trees, woody species, rate, intensity of infestation, Côte d'Ivoire

Introductions
Côte d'Ivoire is a predominantly agricultural country where cultivated trees and shrubs such as coffee and cocoa trees occupy a prominent place in the economy (Aguiar et al., 2003) [1]. In cocoa plantations particularly, the presence of phytopathogenic plants of the Loranthaceae family living on other woody plants is observed (Amon, 2006) [2]. These parasitic plants, once developed on the trunk or branches of the host, establish functional links with the latter's tissues through a system called a sucker (Boussim, 2002) [3]. Through this system, they take from the infected subject, the water and the necessary mineral salts they need for their own development. Through this mode of infestation, the parasitic Loranthaceae cause enormous damage to the cultivated and non-cultivated host, sometimes ranging from total invasion to total loss of yield in infested crops (Salle, 2004) [19]. In West Africa, the parasitism of these plant parasites has become an ecological problem due to the high number of woody species they infest (Houenon et al., 2015) [15]. Indeed, these parasitic plants constitute a real nightmare for the farmers who lead, against them, a battle of uncertain fate (Boussim, 2002) [5]. According to the literature, several studies are carried out in order to find means of effectively combating these parasitic plants (Boussim et al., 1995; Traoré et al., 2003; Soro, 2006; Dibong et al., 2008; Houenon et al., 2015) [4, 9, 15, 21, 23]. The present work, which aims to contribute to a better knowledge of the parasitic Loranthaceae encountered in Côte d'Ivoire, is part of this commitment of the research community around the world to reduce the growing expansion of these epiphytoid parasites on the trees and shrubs. However, despite the inventories carried out in Côte d'Ivoire, at the current state of knowledge, the exhaustive list of economically important or non-economically important woody host species of Loranthaceae within agrosystems is still poorly known and poorly documented. This study aims to find out which trees and shrubs are victims of the Loranthaceae infestation in cocoa-based agroecosystems in the department of Daloa, in the Central-West of Côte d'Ivoire.
Material and methods

Material
The biological material consisted of Loranthaceae and woody plants. The technical material includes a geographic positioning device (GPS), a digital camera, a tape measure, sisal wire, stakes and survey sheets.

Methods

Study area
The study was carried out in cocoa plantations in the region of Daloa, in the Central-West of Côte d’Ivoire (Figure 1), with geographical coordinates 6°27′00″ North latitude and 5°56′00″ West longitude. The Daloa study area is located 141 km from Yamoussoukro, the political capital of Côte d’Ivoire. It is located in the Guinean area characterized by an equatorial type climate with two rainy seasons and two dry seasons (Eldin, 1971) [12]. Annual precipitation varies between 1300 mm and 1800 mm. It belongs to the mesophilic sector with vegetation formerly made up of dense humid semi-deciduous forests, cleared forests and mesophilic savannas (Guillaumet and Adjano, 1971) [13]. But today, these plant formations are experiencing gradual degradation in favor of cocoa, coffee, rubber trees plantations, etc. (Mrapka, 2018) [16].

Data collection
For the present study, the surface survey method which consists of counting the feet of cocoa trees found on square or rectangular areas, supplemented by direct observations in order to note the presence or absence of the parasite on trees and shrubs (Soro, 2010) [22] were adopted in eight (8) agrosystems based on cocoa trees in four villages: Zépréguéhé (06°54′09.27″N and 06°21′28.84″W), Toroguéhé (06°56′41.01″N and 06°27′49.77″W), Zakoua (06°48′06.24″N and 06°27′07.58″W) and Bribouo (06°52′09.88″N and 0630′20.45″W) in the Daloa region. The inventory consisted of counting the non-parasitized trees and shrubs and those parasitized, the Loranthaceae species in question and their number of tufts in two plots of 50m × 50m (2500 m²) delimited and arranged alternately at different places in each selected plantation per village to make an inventory of trees and shrubs that may or may not be parasitized. For a careful inventory, the unit plot was subdivided into 5 strips 10 meters wide and 50 meters long.

The data collected made it possible to determine the degree of infestation of host trees and shrubs by rate and intensity according to the formulas (Amon, 2006) [2]:

- **Infestation rate** (T_xi):

 $T_xi = \frac{N_{ip}}{N_{ti}} \times 100$

 with T_xi - Infestation rate; N_{ip} - Number of parasitized individuals; N_{ti} - Total number of individuals identified;

- **Intensity of infestation** (I_i):

 $I_i = \frac{N_t}{N_{ti}}$

 with I_i - Intensity of infestation; N_t - Total number of Loranthaceae tufts; N_{ti} - Total number of infected individuals identified.

Statistical analyzes
Microsoft Excel 2016 software was used to classify the numerical data and to construct the various illustrative graphs. One-way analysis of variance (ANOVA) was performed using STATISTICA version 7.1 software to compare the rate and intensity of infestation of parasitic...
Loranthaceae on trees and shrubs. When the differences were significant, the means were separated by Duncan’s test at the 5% significance level (α < 0.05).

Results and discussion

Results

Woody species hosts of Loranthaceae recorded

In total, 73 woody host species of Loranthaceae belonging to 55 genera and 22 families were inventoried in cocoa plantations in the department of Dalao (Table 1). The Fabaceae constitute the richest family in host species with 15 species, either 20.55% of the total number of hosts inventoried. Next come the Malvaceae with 8 species (either 9.58% each), followed by Apocynaceae and Moraceae with 7 species each (either 9.72% each), Meliaceae, Myrtaceae, Rubiaceae and Rutaceae with 4 taxa each (either 5.47% each). The remaining families, three of them have 2 species (2.73% each) and 8 grouped together under the term “others” with 1 species each (1.37%, each). Among others are Bignoniaceae and Urticaceae (Figure 2).

Of this cohort of host plants identified, 16 species are fruit-bearing, either 21.92%.

Among these 73 host species, 49 species were found in cocoa farms in Bribou, 37 species in Zépréguéh, 28 species in Zakoua and 24 species in Toroguhé (Table 1).

In terms of numbers of species, the richest genera are *Albizia* (5 species, or 9.09% of the total genera). Then come *Citrus* and *Ficus* with 4 species each, either 7.27% of the total genera). *Acacia*, *Afezia*, *Bombax*, *Coffee*, *Eugenia*, *Milicia*, *Rauwolfia* and *Terminalia* with 2 species each, especially 3.63% of the total genus. The other genera each contain one species (either 2.43% of the total genera).

These are among others *Alstonia*, *Cecropia*, *Bridelia*, *Parkia* and *Persea*. These 73 host species are parasitized by 4 species of Loranthaceae, *Globimetula dinklagei* subsp. *assiana* (Engl.) (Figure 3A), *Phragmanthera capitata* (Spreng.) Ballé, *Tapinanthus bangwensis* (Engl. and K. Krause Danser (Figure 3B) and *T. globiferus* (A. Rich.). They are divided into 3 genera (*Globimetula*, *Phragmanthera* and *Tapinanthus*).

Among these parasitic species, *T. bangwensis* is more frequent and infesting with 59 taxa infested, either 80.82% of host spectrum within the cocoa tree based agrosystems studied. *P. capitata* infested 34 taxa (46.54% of host spectrum), *G. dinklagei* with 15 infested taxa (20.55% of host) and *T. globiferus* with only 6 infested taxa (8.21% host).

Table 1: Lists of host species and infestation status in cocoa agrosystems

No	Species & genera	Families	Localities	Parasitic species	Parameters	Inf rate (%)	Inf intensity
1	*Anacardium occidentale* L.	Anacardiaceae	+ + + +	+ + + +	25.33	2	
2	*Spondias mombin* L.	Anacardiaceae	+ + + +	+ + + +	75	13	
3	*Annona muricata* L.	Annonaceae	+ +	+	48.28	3.50	
4	*Xylopi aethiopica* (Dal.] A. Rich.	Annonaceae	+ +	+	21.33	2.25	
5	*Alstonia boomer De Wild.*	Apocynaceae	+ + + +	+ + + +	36.67	3.73	
6	*Fontania elastica* (Preuss.)斯塔布	Apocynaceae	+ + + +	+ + + +	13.80	1.25	
7	*Holarrhena floribunda* (G. Don) Dur. & Schinz var. *floribunda*	Apocynaceae	+ + + +	+ + + +	9.84	1.20	
8	*Pierallina nitida* (斯塔布) T. Durand & H. Durand	Apocynaceae	+ + + +	+ + + +	17.14	2	
9	*Rauwolfia macrophylla* Ruiz et Pav.	Apocynaceae	+ + + +	+ + + +	3.33	1.18	
10	*Rauwolfia vomitoria* A. Zel.	Apocynaceae	+ + + +	+	+	6.67	2
11	*Vouacanga africana* Stapf ex. Scott-Elliot	Apocynaceae	+ + + +	+ + + +	33.33	3	
12	*Neoboulia laevig* (P. Beauv.) Seemann ex Bureau	Bignoniaceae	+ + + +	+ + + +	18	1.34	
13	*Cordia platythyrs* Bak.	Boraginaceae	+ + + +	+ + + +	2.58	1	
14	*Cecropia peltata* L.	Cecropiaceae	+ + + +	+ + + +	31.85	2.47	
15	*Garcinia kola* Heckel	Clusiaceae	+ + + +	+ + + +	33.33	7	
16	*Terminalia catappa* L.	Combretaceae	+ + + +	+ + + +	47.5	5.67	
17	*Terminalia mentalis* H. Perrier	Combretaceae	+ + + +	+ + + +	18.27	2	
18	*Cnests ferrugineus* DC.	Connaraceae	+ + + +	+	+	14.75	1.58
19	*Bridelia grandis* Pierre ex Hutch.	Euphorbiaceae	+ + + +	9.35	1.25		
20	*Hevea brasiliensis* (Willd. ex. A. Juss.) Müll. Arg.	Euphorbiaceae	+ + + +	+ + + +	58.38	10.53	
21	*Acacia axatatana* DC.	Fabaceae	+ + + +	+ + + +	48.75	3.16	
22	*Acacia auriculiformis* A. Cunn. ex. Bentham.	Fabaceae	+ + + +	+ + + +	44.4	2.75	
23	*Afzelia africana* sm. & Pers.	Fabaceae	+ + + +	+	+	30.5	2.35
24	*Afezia bipindensis* Harms	Fabaceae	+ + + +	+ + + +	42.85	3	
25	*Albizia adianthifolia* (Schumach.) W. Wigh	Fabaceae	+ + + +	+ + + +	50	5.50	
26	*Albizia gauchipele* (Kunth.) Dugand	Fabaceae	+ + + +	+ + + +	49.18	3.55	
27	*Albizia glabriflora* (Schum. & Thom.) Bentham.	Fabaceae	+ + + +	+ + + +	43	3.45	
28	*Albizia lebeck* (Linn.) Bentham.	Fabaceae	+ + + +	+ + + +	55	4.80	
29	*Albizia zygia* (DC.) J. F. Machor	Fabaceae	+ + + +	+ + + +	50	4	
30	*Amphimas pterocarpoides* Harms	Fabaceae	+ + + +	+ + + +	15.17	1.25	
31	*Anthonotha macrophylla* P. Beauv.	Fabaceae	+ + + +	+ + + +	9.21	1.45	
32	*Baphia bancoensis* Aubrev.	Fabaceae	+ + + +	+ + + +	7.14	1	
33	*Parkia biglobosa* (Jacq.) Bentham.	Fabaceae	+ + + +	+ + + +	26.67	2.15	
34	*Pentaclethra macrophylla* Bentham.	Fabaceae	+ + + +	+ + + +	16.25	2	
35	*Tamarindus indica* L.	Fabaceae	+ + + +	+ + + +	12.89	1.19	
36	*Persea americana* Mill.	Lauraceae	+ + + +	+ + + +	71.43	11.27	
Plant Name	Family	Number of Species					
-------------------------------	------------------	-------------------					
Adansonia digitata L.	Malvaceae	37					
Bombax buenopozense P. Beauv.	Malvaceae	35					
Bombax costatum Pellegr. & Vullet	Malvaceae	14					
Ceiba pentandra (L.) Gaertn.	Malvaceae	50					
Cola nitida (Vent.) Schott & Endl.	Malvaceae	60					
Ceratonia siliqua (Sprague) Sprague	Malvaceae	29					
Thebroma cacao L.	Malvaceae	45					
Sterculia tragacantha Lindl.	Malvaceae	29					
Azadirachta indica A. Juss.	Meliaceae	13					
Carapa procera DC.	Meliaceae	9					
Treculia africana Decne	Meliaceae	11					
Trichilia djalonesis A. Chev.	Meliaceae	25					
Pentaclethra macrophylla Benth.	Mimosaceae	14					
Antiaris toxicaria var. africana (Engl.) C.C. Berg	Moraceae	16					
Ficus exasperata Vahl	Moraceae	18					
Ficus lutea Vahl	Moraceae	6					
Ficus sur Forsk.	Moraceae	18					
Milicia excelsa (Welw.) CC. Berg	Moraceae	7					
Milicia regia (A. Chev.) C. C. Berg	Moraceae	18					
Eugenia malaccensis L.	Myrtaceae	37					
Eugenia miegeana Ake Assi	Myrtaceae	13					
Psidium guajava L.	Myrtaceae	47					
Psilanthus angolensis (Welw.) Warb.	Myrtaceae	57					
Coffea arabusta Capot et Aké Assi	Rubiaceae	7					
Coffea canephora A. Froehner	Rubiaceae	15					
Morinda lucida Bentham	Rubiaceae	17					
Sabicea africana (P. Beauv.) Hepper	Rubiaceae	7					
Citrus aurantium L.	Rutaceae	22					
Citrus grandis (L.) Osb.	Rutaceae	35					
Citrus limon (L.)	Rutaceae	37					
Citrus sinensis (L.) Osb.	Rutaceae	50					
Chrysophyllum cainito L.	Sapotaceae	17					
Myrianthus aboreus P. Beauv.	Urticaceae	25					
Gmelina arborea Roxb.	Verbenaceae	26					
Tectona grandis L. f.	Verbenaceae	35					

Total: 49, 28, 11, 59, 6. 29.46, 2.98

NB: Br - Bribou, To - Toroguhé, Za - Zakoua, Ze - Zépreguhé, + - Presence, * - Fruit species, Gd - Globimetula dinklagei subsp. assiana, Pe - Phragmanthera capitata var. capitata, Tb - Tapinanthus bangwensis and Tg - Tapinanthus glaber, infn - infestation

Fig 2: Host families by number of species
Infestation of trees and shrubs registered in cocoa trees

The infection rate varies between 2.58% in Cordia platythyrsa and 75% in Spondias mombin (Table 1). Rate values greater than or equal to 50 are obtained for 10 host species: Albizia adianthifolia, A. lebbeck (Figure 14A), A. zygia, Afzelia africana, Ceiba pentandra (Figure 14B), Citrus sinensis, Cola nitida, Hevea brasiliensis, Persea americana (Figure 14C) and Spondias mombin. Among these species, Spondias mombin (75%) and Persea americana (71.43%) register the strong attacks. Likewise, in the cohort of 53 host taxa, the weakest attacks were registered at Cordia platythyrsa (2.58%) and Rauwolfia macrophylla (3.33%). Next are Tamarindus indica (6.89%), Baphia bancosensis, Ficus maccoso and Xylopia aethiopica with a rate value of 7.14% each.

Regarding the intensity of the infestation, the averages obtained vary between 1 clump/tree in Baphia bancosensis and 13 clumps/tree in Spondias mombin (Table 1). Spondias mombin (13 tufts/tree), Cola nitida (11.75 tufts/tree), P. americana (11.27) and Hevea brasiliensis (10.53%) show high infestation intensities. Additionally, the lower less infestation intensities (2%) were registered in 21 host species. Mention may be made among others: Bombax costatum, Rauwolfia vomitoria, Sterculia tragacantha and Tarrieta utilis.

Overall, the Loranthaceae infestation rate on the inventoried host species of cocoa plantations in Daloa department is around 29.48% and the infestation intensity is 2.98 tufts/tree.

Discussion

The study on trees and shrubs host to epiphytoid parasites (Loranthaceae) in cocoa tree based agrosystems in Daloa department have allowed to inventory 73 host species of Loranthaceae belonging to 55 genera to 22 families. This taxonomic diversity of 55 genera and 73 species is significantly lower than that of the 77 genera and 116 species obtained in agrosystems in the South-east of Côte d’Ivoire (Amon, 2014) and that of 81 genera and 99 species registered by Soro (2010) in Oumé, Gagnoa and Soubré, in the Central-West and in the South-West of the country. On the other hand, it is clearly higher than the 34 genera and 41 species recorded in the agrosystems of the riparian areas of the University of Lorougnon Guédé, in the Central-West of Côte d’Ivoire (Sako, 2019). The differences obtained would be linked to the extent of the environments explored but also to climatic zones.

Among the 22 host species families recorded, the Fabaceae family is the prolific in terms of infested species with 15 taxa, followed by Malvaceae (9 host species), Apocynaceae (7 host species), Myrtaceae, Rubiaceae and Rutaceae with 4 each distinct host taxa. This result corroborates those of Houenon et al. (2012), in Benin, de Soro (2010) and de Amon (2006) in Côte d’Ivoire who underlined the significant attack of Fabaceae, Apocynaceae and Rutaceae by parasitic Loranthaceae.

The evaluation of the infestation of host trees and shrubs showed that they are strongly attacked, in particular the well-known fruit trees such as Persea americana (71.43%), Cola nitida (60%), Citrus sinensis (50%), Terminalia catappa (47.5%) and Psidium guajava (47.05%). Similar observations have been reported elsewhere in Africa, in particular in Ghana by Cleck (1978) on Cola nitida, in Cameroon by Dibong et al. (2009) on Persea americana and in Benin on Citrus sinensis by Houenon et al. (2012).

Of these fruit trees mentioned, Persea americana (71.43%) is the most infested species of Loranthaceae. Sonké et al. (2000) in Cameroon obtained a rate of 69.44% on P. americana and reported the polyphagous character of Loranthaceae on this fruit species in which they found a privileged target in sub-Saharan Africa. The presence of this species in cocoa trees under the influence of these phytopathogenic plants should be monitored and controlled.
The overall infestation rate of trees and shrubs, hosts of Loranthaceae in agroecosystems, is around 29.48%. This rate is lower than that of 37.94 recorded by Amon et al. (2015) in agrosystems in the Sud-Comoé region. The difference noted would be due to the extent of the environments explored.

The cohort of 73 host species inventoried in the various cocoa plantations of the department of Daloa is infested with 4 species of Loranthaceae (Globimetula dinklagei subsp. assiana, Phragmanthera capitata, Tapananthus bangwensis and T. globiferus). All these species have already been collected in the agrosystems of Central-west Côte d'Ivoire (Soro, 2010, Mrapka, 2018, Amon et al., 2020). Of the 4 species mentioned, T. bangwensis is more frequent and abundant in cocoa farms in the Central-West of Côte d'Ivoire. This result confirms the work of Sako (2019).

Conclusion

The trees and shrubs of cocoa-based agroecosystems in the department of Daloa, in the center-west of Côte d'Ivoire are parasitized by 4 species of Loranthaceae (Globimetula dinklagei subsp. assiana, Phragmanthera capitata, Tapananthus bangwensis and T. globiferus). One of these species, namely T. bangwensis is more frequent and abundant on hosts within cocoa trees. The taxonomic diversity of the identified host species is 73 species belonging to 55 genera and 22 families. The infestation rate of woody species is around 29.48% and the infestation intensity is 2.89 tufts/tree. Among the host cohort, the rates and intensities of infestation of fruit species that are economically important to farmers are high.

Acknowledgement

Thankfulness to all the peasants for their precious collaboration.

References

1. Aguilar P, Paulin D, Keho Y, N’Kamleu G, Raillard A, Deheuvels O et Petithuguenin P. L’évolution des vergers de cacaoyers en Côte d’Ivoire entre 1995 et 2002. In : 14ème Conférence Internationale sur la Recherche Cacaoyère, Accra, Ghana, 13-18 Octobre 2003, 9.

2. Amon ADE. Les plantes vasculaires parasites de la famille des Loranthaceae rencontrées dans le Département de Grand-Bassam, au Sud de la Côte d’Ivoire. Mémoire de D.E.A. de Botanique, Université de Cocody, UFR Biosciences. Abidjan, Côte d’Ivoire 2006, 57.

3. Amon ADE. Les Loranthaceae (gui) hémiparasites vasculaires des arbres et arbustes des agroécosystèmes de la région du Sud-Comoé, en zone de forêt dense sempervirente de la Côte d’Ivoire. Mémoire de Thèse de l’Université Félix Houphouët-Boigny, option Agroforesterie 2014, 213.

4. Boussim JJ, Raynal-Roques A, Sallé G, Guinko S. Impact of 4 Loranthacées parasites sur les espèces ligneuses hôtes du Burkina Faso: Tapananthus dodoneifolius (DC.) Danser, T. globiferus (Rich.) Danser, T. ophioïdes (Sprague) Danser et T. bangwensis (DC.) Van Tiegh.. Annales de l’Université de Ouagadougou, série B, vol. III. Sciences exactes et sciences de la nature 1995, 203-216.

5. Boussim JJ. Les phanérogames parasites du Burkina Faso: inventaire, taxonomie, écologie et quelques aspects de leur biologie. Cas particulier des Loranthaceae parasites du karité.

6. Thèse de Doctorat d’Etat ès Sciences Naturelles, FA.S.T. Université de Ouagadougou 2002, 285.

7. Clerk G. Tapananthus bangwensis in a Cola plantation in Ghana. PANS 1978;24:57-62.

8. Denis-Èsdras Anoh AMON, Didiomomn Soro, Dossahoua TRAORE. Évaluation de l’infestation des Loranthaceae sur les ligneux des agroécosystèmes de la région du Sud-Comoé (Côte d’Ivoire). Int. J. Biol. Sci 2015;9(4):1822-1834.

9. Denis-Èsdras Anoh Amón, Victoire Annick Koulbalay, El Amine Hamed Sako. Parasitism of Loranthaceae on crops: case of plantations in rural area on the periphery of Jean Lorougnon Guédé University of Daloa, Central-West Côte d’Ivoire. World Journal of Advanced Research and Reviews 2020;07(02):155-167.

10. Dibong SD, Din N, Priso RJ, Taffouo VD, Fankem H, Salle G et al. Parasitism of host trees by the Loranthaceae in the region of Douala (Cameroon). African Journal of Environmental Science and Technology 2008;2(11):371-378.

11. Dibong SD, Engon E Obiang NL, Din N, Priso RJ, Taffouo VD, Fankem H et al. Niveau d’infestation des arbres fruitiers des groupements végétaux par Phragmanthera capitata (Sprengel) S. Balle (Loranthaceae) dans la région littorale du Cameroun. International Journal of Biological and Chemical Sciences 2009;3(2):347-354.

12. Edagbo DE, Ighere DA, Michael C. Mistletoe (Tapinanthus bangwensis) on the Conservation Status and Productivity of Irvingia gabonensis in Moor Plantation Area of Ibadan, Nigeria, The Journal Agricultural Science 2013;3(10):743-747.

13. Eldin M. Le climat in : Avenard J. M., Girard G., Siroloun J., Ouichebeuf P., Guillaumet J. L., Adjanohoun E., Perraud A., (eds). Le Milieu naturel de Côte d’Ivoire, ORSTOM, Paris 1971, 77-108.

14. Guillaumet JL, Adjanohoun E. La Végétation de la Côte d’Ivoire. In: Le Milieu naturel de Côte d’Ivoire. Édition ORSTOM, Paris 1971, 157-266.

15. Houenou GJ, Yedomonhan H, Adomou AC, Tossou GM, Akoëgninou A, Traoré D. Diversité Spécifique des Loranthaceae Parasites des Agrumes et Leurs Impacts Sur la Production Agrumicole au Sud du Bénin. European Journal of Scientific Research 2012, 527-538.

16. Janvier G Houènon, Houmankpon Yédomonhan, Aristide Cossi AdOmom, Monique G Tossou, Madjidou Oumorou et Akpovi Akoëgninou. Les Loranthaceae des zones guinéennes et soudano-guinéenne au Bénin et leurs hôtes. Int. J. Biol. Chem. Sci. 2015;6(4):1669-1686.

17. Mankpa AS. Diversité des Loranthaceae (gui) et des plantes hôtes du site de l’Université Jean Lorougnon Guédé, Côte d’Ivoire. Mémoire de Master de Bioressources et Agronomie, Option: Forêsterie, Université Jean Lorougnon Guédé, Dalo 2018, 60.

18. Ondoua Joseph Marie, Dibong Siegfried Didier, Taffouo Victor Désiré, Ngotta Biyon Jacques Bruno. Parasitisme des champs semenciers de cacaoyers par les Loranthaceae dans la localité de Nkoemvone (sud
19. Sako H. Parasitisme des Loranthaceae sur les cultures : Cas des plantations des zones riveraines de l'Université Jean Lorougnon Guédé (Côte d'Ivoire). Mémoire de Master de Bioressources et Agronomie, option: Forsterie, Université Jean Lorougnon Guédé, Daloa 2019, 58

20. Salle G. Les plantes parasites 2004; 14p. http://www.futura-sciences.com/magazines/botanique-plantesparasites. [Consulté le 17/05/2020].

21. Sonké B, Kenfack D, Tindo M. Parasitisme de l'avocatier (*Persea americana*, Lauraceae) par les Loranthaceae dans la région de Yaoundé (Cameroun). Fruits 2000;(55):325-331.

22. Soro D. Le karité, *Vitellaria paradoxa* Gaertn. f. (Sapotaceae). Variabilité de quelques caractères morphologiques, production en fruits et moyen de lutte par émondage contre les Loranthaceae parasites. Le cas du parc naturel à karité de Tengrela, Nord de la Côte d'Ivoire. Thèse de doctorat de troisième cycle, Université de Cocody, UFR Biosciences, Abidjan 2006, 139.

23. Soro K. Les Loranthaceae (guis) des agroécosystèmes dans l'Ouest de la Côte d'Ivoire: flore, parasitisme et usages dans les départements d'Oumé, de Gagnoa et de Soubre. Mémoire de Thèse de l'Université de Cocody-Abidjan, option Agroforesterie 2010, 183.

24. Traoré D, Da KP, Soro D. Lutte contre les plantes vasculaires parasites du karité, dans le Nord de la Côte d'Ivoire. Cas du parc naturel à karités de Tengrela, Universités de Cocody, Laboratoire de Botanique, Rapport de PEP/AISA-CI 2003, 116.