Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness

Tsai-Tsen Liao¹ and Muh-Hwa Yang¹,²,³

¹ Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
² Genome Research Center, National Yang-Ming University, Taipei, Taiwan
³ Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taiwan

Keywords
epithelial-mesenchymal transition; metastasis; plasticity; stemness

Correspondence
M.-H. Yang, Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei 112, Taiwan
Fax: +886 228235870
Tel.: +886 228267000 ext. 7911
E-mail: mhyang2@vghtpe.gov.tw

(Received 23 May 2017, revised 6 June 2017, accepted 8 June 2017, available online 26 June 2017)
doi:10.1002/1878-0261.12096

Epithelial-mesenchymal transition (EMT) is an important process in embryonic development, fibrosis, and cancer metastasis. During cancer progression, the activation of EMT permits cancer cells to acquire migratory, invasive, and stem-like properties. A growing body of evidence supports the critical link between EMT and cancer stemness. However, contradictory results have indicated that the inhibition of EMT also promotes cancer stemness, and that mesenchymal-epithelial transition, the reverse process of EMT, is associated with the tumor-initiating ability required for metastatic colonization. The concept of ‘intermediate-state EMT’ provides a possible explanation for this conflicting evidence. In addition, recent studies have indicated that the appearance of ‘hybrid’ epithelial-mesenchymal cells is favorable for the establishment of metastasis. In summary, dynamic changes or plasticity between the epithelial and the mesenchymal states rather than a fixed phenotype is more likely to occur in tumors in the clinical setting. Further studies aimed at validating and consolidating the concept of intermediate-state EMT and hybrid tumors are needed for the establishment of a comprehensive profile of cancer metastasis.

1. General overview of EMT

During embryonic development, epithelial cells lose their polarity and are converted into a mesenchymal phenotype. This process is referred to as epithelial-mesenchymal transition (EMT) (Nieto et al., 2016). The classic view of EMT is that epithelial cells transform into mesenchymal cells. Morphological changes in cells have been considered the characteristic feature of EMT (Hay, 1995; Nieto, 2013). EMT presents certain features that are considered as its hallmarks, including disruption of intercellular junctions, loss of cell polarity, reorganization of the cytoskeleton, and increased cell motility. Therefore, in most experimental models, epithelial (E-cadherin) and mesenchymal (N-cadherin and vimentin) markers and morphological changes are examined as indicators to confirm the occurrence of EMT. In cancers, EMT is triggered by

Abbreviations
CBP, CREB binding protein; CSCs, cancer stem cells; CtBP1, C-terminal binding protein 1; EMT, epithelial-mesenchymal transition; EMT-TF, epithelial-mesenchymal transition transcription factor; ERCC1, ERCC excision repair 1, endonuclease noncatalytic subunit; HDAC, histone deacetylase; HIF-1α, hypoxia-inducible factor 1 alpha; Id1, inhibitor of differentiation 1; IL-8, interleukin-8; LSD1, lysine-specific demethylase; MET, mesenchymal-epithelial transition; OVOL2, ovo-like zinc finger 2; PRC2, polycomb repressive complex 2; Snail1, Snail family zinc finger 1; TGF-β, transforming growth factor beta; Twist1, twist family bHLH transcription factor 1; ZEB1, zinc finger E-box binding homeobox 1; ZEB2, zinc finger E-box binding homeobox 2.
diverse signaling pathways through the regulation of EMT transcription factors (EMT-TFs) and/or micro-RNAs (miRNAs) (Nieto et al., 2016). EMT not only enhances cancer motility and dissemination through the disruption of intercellular junctions but also allows cells to acquire stem-like properties (Nieto et al., 2016). However, the reverse process of EMT, that is, mesenchymal-epithelial transition (MET), is an important process for cancer cell re-differentiation and metastatic colonization (Bonnomet et al., 2012). Therefore, the association between EMT-MET and stemness is controversial and debated. The major factors and signaling pathways that trigger the changes in EMT/MET are summarized in Fig. 1. In this review, we summarize and discuss the connection between epithelial and mesenchymal states and the acquisition of stemness in cancer cells.

1.1. EMT transcription factors

One of the major events contributing to EMT is the activation of EMT-TFs, such as Snail1, Twist1, ZEB1, and ZEB2. These EMT-TFs often control the expression of each other and cooperate with other TFs to regulate the expression of target genes, and EMT-TFs often function as repressors for epithelial genes and activators for mesenchymal genes (De Craene and Berx, 2013; Peinado et al., 2007).

1.1.1. Snail1

Snail1 (also known as Snail) functions as a suppressor by binding to the E-box in the promoters of the junction proteins E-cadherin, claudin, and occludin and recruiting histone modifiers, including SIN3A-histone deacetylase 1 and 2 (HDAC1 and HDAC2) complex, polycomb repressive complex 2 (PRC2), and lysine-specific demethylase 1, to repress the transcription of target genes (Batlle et al., 2000; Cano et al., 2000; Herranz et al., 2008; Ikenouchi et al., 2003; Lin et al., 2010a,b; Peinado et al., 2004). However, Snail1 also acts as an activator that increases the expression of mesenchymal genes such as fibronectin 1, an extracellular matrix protein (Stanisavljevic et al., 2011); excision repair 1 endonuclease noncatalytic subunit (ERCC1), an endonuclease noncatalytic subunit that is required for the repair of DNA lesions (Hsu et al., 2010); and interleukin-8 (Hwang et al., 2011) to contribute to the mesenchymal phenotype. Moreover, Snail1 acts as an activator by interacting with CREB binding protein, which prevents repressor complex
formation and remodels the tumor microenvironment (Hsu et al., 2014).

1.1.2. Slug

Slug (also known as Snail2) belongs to the Snail superfamily of zinc finger transcriptional factors (Nieto, 2002). Slug interacts with the corepressor nuclear receptor coreceptor and recruits C-terminal binding protein 1 (CtBP1) for repressing E-cadherin and triggering EMT (Hajra et al., 2002; Molina-Ortiz et al., 2012; Nieto, 2002). Slug also binds to E2-box sequence of the target genes promoter (et al. gering EMT (Hajra et al., 2002; Molina-Ortiz et al., 2012; Nieto, 2002). Slug also binds to E2-box sequence of the target genes promoter (et al. 2002; Molina-Ortiz et al., 2012; Tripathi et al., 2005). Overexpression of VDR upregulates E-cadherin, downregulates SNAI1, TWIST1, and MMP9, and reduces the ability to form mammospheres, an attribute of breast normal and cancer stem cells (CSGs; Larriba et al., 2016; Pervin et al., 2013). Degradation of Slug consequently enhances E-cadherin expression and represses cancer cell invasion (Mittal et al., 2008; Shih and Yang, 2011; Wang et al., 2009).

1.1.3. ZEB1

Zinc finger E-box binding homeobox 1 (ZEB1) binds to E-boxes and represses the expression of E-cadherin to induce EMT (Eger et al., 2005; Spoelstra et al., 2006; Witta et al., 2006). ZEB1 can function as an activator by interacting with Smads, signaling mediators of the transforming growth factor beta (TGF-β) pathway, and the transcriptional coactivator p300 (Pena et al., 2006; Postigo et al., 2003). The EMT-inhibiting transcription factor ovolike zinc finger 2 restricts EMT by directly inhibiting EMT-inducing factor ZEB1 and induces MET (Hong et al., 2015; Kitazawa et al., 2016; Roca et al., 2013; Watanabe et al., 2014). ZEB1 is indicated as a key factor for pancreatic cancer progression. Depletion of ZEB1 suppresses stemness and colonization capacity of tumor cells in Pdx1-cre-mediated activation of mutant Kras and p53 (KPC) model of pancreatic cancer. In this model, EMT-TFs Snaill and Twist1 had no such effect (Krebs et al., 2017; Zheng et al., 2015). Krebs et al. (2017) also suggested that there are considerable functional variabilities and tissue specificities among different EMT-TFs. With regard to the interplay between ZEB1 and other EMT-TFs, Snaill acts cooperatively with Twist1 to control the expression of ZEB1 (Dave et al., 2011).

1.1.4. ZEB2

Zinc finger E-box binding homeobox 2 (ZEB2) acts as a transcriptional repressor and regulates downstream targets either dependent or independent of the CtBP1 corepressor complex (van Grunsven et al., 2003; Shi et al., 2003). ZEB2 induces EMT by binding to the E-cadherin promoter and repressing the transcription of E-cadherin (Comijn et al., 2001). Moreover, ZEB2 has been shown to repress the expression of several genes encoding junctional proteins, including desmosomal proteins desmoplakin and plakophilin 2 and tight junction protein claudin 4 (Vandewalle et al., 2005). ZEB2 is regulated by sumoylation, which attenuates gene repression by the disruption of CtBP1 recruitment (Long et al., 2005).

1.1.5. Twist1

Twist1, a basic helix-loop-helix transcriptional factor, is a master regulator of gastrulation and mesoderm specification (Castanon and Baylies, 2002; Furlong et al., 2001) and is recently demonstrated to be essential to mediate cancer metastasis (Yang et al., 2004). Ectopic expression of Twist1 upregulates mesenchymal cell markers (fibronectin, vimentin, smooth muscle actin, and N-cadherin) and a loss of epithelial markers (E-cadherin, and α- and γ-catenin), and induces EMT (Kang and Massague, 2004; Yang et al., 2004). Twist1 has been shown to play a vital role in the intravasation step of metastasis, angiogenesis, and chromosomal instability (Mironchik et al., 2005; Yang et al., 2004). Under hypoxic condition, a principal feature of malignancies, HIF-1α promotes EMT through the induction of Twist1 (Yang et al., 2008). Twist1 in turn activates Bmi1, and both of them are essential for promoting EMT and tumor-initiating capacity (Yang et al., 2008, 2010). A report by Tsai et al. (2012) also indicated that turning off Twist1 reversed the EMT process, leading to the subsequent occurrence of MET for colonization and the formation of metastases, indicating that Twist1 is an important regulator of epithelial plasticity during cancer metastasis.

1.2. Signaling pathways for EMT induction

EMT transcription factors can be activated through different pathways, which strongly suggest the convergence of diverse pathways on common targets during EMT (Lamouille et al., 2014). TGF-β deposited in the surrounding stroma or secreted from tumor cells induces the expression of both ZEB1 and Snaill, thereby triggering EMT to promote tumor progression.
and metastasis (Korpal et al., 2008; Zavadil and Bottinger, 2005). Notch signaling pathway plays an important role in physiological and pathologic conditions through the induction of EMT (Niessen et al., 2008; Timmerman et al., 2004; Wang et al., 2010; Zavadil et al., 2004). WNT family proteins and growth factors that act through receptor tyrosine kinases have also been shown to induce EMT (Lamouille et al., 2014). Hypoxia induces the expression of Twist1 or Snail to promote EMT during cancer progression (Peinado and Cano, 2008).

1.3. miRNAs for regulation of EMT

miRNA that selectively target mRNA for the degradation of mRNA or translational repression also participate in the regulation of the EMT process (Ambros, 2004; Lamouille et al., 2013). For example, the miR-200 family miRNAs have been shown to repress the expression of ZEB1 and ZEB2, thereby maintaining cancer cells in the epithelial phenotype (Gregory et al., 2008; Korpal et al., 2008; Park et al., 2008). ZEB1/2 and miR-200 family members have a double-negative feedback loop that controls the balance between epithelial and mesenchymal states (Bracken et al., 2008; Gregory et al., 2011). miR-103/107 induces EMT by targeting Dicer, a key component of the miRNA processing machinery, to downregulate the level of miR-200 in breast cancer cells (Martello et al., 2010). Inhibition of the let-7d causes EMT (Huleihel et al., 2014; Pandit et al., 2010). miR-181a mediates TGF-β-induced EMT (Brockhausen et al., 2015). miR-9 directly targets the E-cadherin-encoding mRNA CDH1, leading to an EMT-like conversion (Ma et al., 2010). In summary, signaling within the microenvironment triggers the activation of EMT-TFs, resulting in the occurrence of EMT in cancer cells. miRNAs also function as major mediators of EMT by regulating the expression of EMT-TFs.

2. EMT and cancer stemness

In the past decade, accumulating evidence has shown that EMT permits cancer cells to acquire stem cell properties for metastasis and dissemination. Here, we will focus on the association between EMT and cancer stemness.

2.1. Cancer stem cells

Intratumoral heterogeneity contributes to therapeutic resistance and results in disease recurrence (Hanahan and Weinberg, 2011). CSCs are a small population of cancer cells with the characteristics of self-renewal, tumor initiation, and chemotherapy resistance (O’Brien et al., 2007; Ricci-Vitiani et al., 2007; Todaro et al., 2007, 2014). The existence of CSCs was initially intensively debated; however, the concept of CSCs has been strongly supported by the application of spontaneous tumor mouse models and genetic tracing (Chen et al., 2012; Driessens et al., 2012; Schepers et al., 2012). Moreover, the term ‘stemness’, which was initially used to describe the properties of normal stem cells, has been expanded to illustrate the feature of CSCs with reference to the molecular signatures that control and maintain the stem cell state. In experimental models, stemness is generally defined as an increase in cancer type-specific stem cell markers. The reported markers for CSCs in different types of cancers are illustrated in Table 1. Furthermore, serial repopulating of tumorspheres and in vivo serial repopulation assays have been applied as the standard procedures for testing the self-renewal ability of cancer cells.

2.2. Correlation between EMT and stemness

Exposing human mammary epithelial cells to TGF-β or the ectopic expression of Snail1/Twist1 induces a cell population with stem cell characteristics, including enhanced expression of CD44 (CD44high) and low expression of CD24 (CD24low) and the ability to form mammospheres (Mani et al., 2008). Prostate cancer cells with the mesenchymal phenotype display stem-like properties, including increased expression of the pluripotency genes Sox2, Nanog, and Oct4, enhanced clonogenic and sphere-forming ability, and tumorigenicity in vivo (Kong et al., 2010). In pancreatic cancer, ZEB1 is the critical link between the activation of EMT and the acquisition of stem-like properties and functions by suppressing miR-200 family members, which are strong inducers of epithelial differentiation. Activation of ZEB1 promotes EMT and the expression of stem cell factors such as Sox2 and Klf4 (Wellner et al., 2009). Bmi1, a polycomb-group protein that maintains self-renewal, is directly regulated by Twist1, which links EMT to tumor-initiating ability (Wu and Yang, 2011; Wu et al., 2012; Yang et al., 2010). The EMT process can also confer resistance to senescence. Twist1/2 and ZEB1/2 override oncogene-induced premature senescence by inhibiting p53- and Rb-dependent pathways (Ansieau et al., 2008; Morel et al., 2012; Ohashi et al., 2010). Furthermore, Twist1 acts together with Bmi1 to suppress the expression of let-7, a microRNA expressed during stem cell differentiation, leading to cancer stemness (Yang et al., 2012). Downregulation of let-7 activates the chromatin modifier
ARID3B to promote expression of stemness genes through histone modification (Liao et al., 2016). In colon CSCs, Snail1 mediates the switch from asymmetric to symmetric cell division, indicating a role for EMT in increasing the size of the CSC pool (Hwang et al., 2014). Slug-driven EMT program is important for inducing the entrance into adult stem cell state; however, it is not sufficient to induce this change in ‘differentiated’ luminal cells. Instead, activation of an additional genetic program through expression of Sox9 is required to work in concert with the EMT program to induce stem cells (Guo et al., 2012).

Intriguingly, EMT has also been shown to inhibit the development of stem-like traits in certain studies (Celia-Terrassa et al., 2012; Korpal et al., 2011; Sarrio et al., 2012), a finding that contradicts the concept of EMT-induced stemness. Further evidence has shown that, in human breast cancer cells, knockdown of paired-related homeobox transcription factor 1 (Prrx1), a recently identified EMT inducer, increased mammosphere formation, self-renewal capacity, and the proportion of enhanced expression of CD44 (CD44high) and low expression of CD24 (CD24low) CSCs (Ocana et al., 2012). Moreover, another study showed that Twist1 is essential for the acquisition of CSC properties; however, cancer stemness is independent of EMT or tumor invasion, implying that EMT and stemness are an independent function of the same EMT-TFs. This correlation between EMT and cancer stemness is more complicated than expected and deserves intensive investigation in the future.

Table 1. CSC markers for different tumor types

Cancer types	CSC markers	Features/Reference
Breast	ALDH1	Tumor initiation in xenograft, poor prognostic factor, metastasis (Ginestier et al., 2007)
	CD44	Mammophore formation, tumor initiation in xenograft, poor prognostic factor, metastasis (Al-Hajj et al., 2003; Leth-Larsen et al., 2012; Ponti et al., 2005)
	Sox2	Mammophore formation, tumor initiation in xenograft (Leis et al., 2012)
Colon	LGR5	Increase pluripotency and self-renewal (lineage tracing); induces clonogenicity and tumorigenicty (Barker et al., 2007; Kemper et al., 2012)
	CD24	Increase carcinogenesis; express in spheroid cultures (Sagiv et al., 2006; Vermeulen et al., 2008)
	CD29	Increase colony formation; express in spheroid cultures (Fujimoto et al., 2002; Vermeulen et al., 2008)
	CD133	Tumor initiation in xenograft, metastasis (Ginestier et al., 2007)
Head and neck	Oct4	Sphere formation, chemotherapy, invasion, migration, tumor initiation in xenograft, poor prognostic factor (Koo et al., 2015; Liao et al., 2016)
	CD44	Tumor initiation in xenograft, colony formation, sphere formation (Ricci-Vitiani et al., 2007)
	ALDH1	Tumor initiation in xenograft, colony formation, sphere formation, radioreistance (Krishnamurthy et al., 2010; Prince et al., 2007)
Liver	CD133	Tumor initiation in xenograft, colony formation, sphere formation (Krishnamurthy et al., 2010; Major et al., 2013)
	SALL4	Poor prognostic factor, tumor proliferation, chemotherapy, tumor initiation in xenograft (Oikawa et al., 2013)
Pancreas	CD133	Tumor initiation in xenograft (Li et al., 2009)
	CD24/CD44/EpCAM	Metastasis, poor prognostic factor (Hermann et al., 2007; Li et al., 2015)
	CKCR4	Metastasis, poor prognostic factor (Hermann et al., 2007; Merechal et al., 2009; Wang et al., 2015)
Prostate	CD133	Proliferation, invasion, clonogenicity, glandular regeneration (Collins et al., 2005; Vander Griend et al., 2008)
	CD44	Tumor initiation in xenograft, proliferation, clonogenicity, metastasis, poor prognostic factor (Hurt et al., 2008; Li et al., 2007; Patrawala et al., 2006)
	EpCAM	Tumor initiation in xenograft, metastasis (Deng et al., 2015; Li et al., 2007)
3. Cell plasticity and cancer stemness

Studies in induced pluripotent stem cells (iPSCs) showed that MET, the reverse process of EMT, is a prerequisite for the reprogramming of fibroblasts to iPSCs (Li et al., 2010; Samavarchi-Tehrani et al., 2010). During the reprogramming process, Oct4/Sox2 represses the expression of Snail1, c-Myc reduces the expression of TGF-β1 and TGF-β receptor II, and Klf4 activates the expression of E-cadherin. All these events result in MET (Li et al., 2010). During tumor progression, MET is considered an essential process for metastatic colonization (Nieto, 2013). Evidence of EMT in clinical specimen is the fact that the histology of metastatic tumors exhibits the epithelial phenotype rather than the mesenchymal-like phenotype, suggesting that the reversion of EMT occurs during metastatic colonization (Yao et al., 2011). Moreover, miR-200 family miRNAs were shown to promote MET, which was also found to increase metastatic colonization (Dykxhoorn et al., 2009; Perdigao-Henriques et al., 2016). In addition to metastatic colonization, MET has also been noted to promote the stemness of cancer cells. For example, inhibitor of differentiation 1 (Id1) induces MET and the stem-like phenotype by antagonizing Twist1 (Stankic et al., 2013). Connective tissue growth factor has been noted to enhance stem-like properties and trigger MET in head and neck cancer cells (Chang et al., 2013). Furthermore, transient expression of Twist1 induces long-term invasiveness and colonization capability by promoting the coexistence of the features of epithelial and mesenchymal cells (Schmidt et al., 2015). This result suggests that an ‘intermediate state’ of cancer cells may be more flexible in terms of cell invasion and the regulation of stem-like properties.

A concern of previous studies is that most instances of EMT or MET were achieved by the forced expression of certain factors, which fixed cells in a terminal epithelial or mesenchymal state and may not reflect the dynamic process of transition between epithelial and mesenchymal status in vivo. For example, circulating tumor cells (CTCs) have been shown to express both epithelial and mesenchymal markers (Bonnomet et al., 2012; Lecharpentier et al., 2011; Paterlini-Brechot and Benali, 2007; Raimondi et al., 2011; Yu et al., 2013). In patients with advanced metastatic cancer, a high frequency of ‘hybrid’ CTC populations expresses CSC markers (Armstrong et al., 2011; Theodoropoulos et al., 2010). A recent study that used intravital microscopy to observe epithelial-mesenchymal plasticity without artificially modifying the expression of EMT regulators showed that epithelial-mesenchymal plasticity occurs during the migration process but not when cells enter the circulation. This study also observed that mesenchymal cells adopt the epithelial state after several rounds of cell division upon reaching metastatic sites (Beerling et al., 2016). Furthermore, the hybrid epithelial/mesenchymal (E/M) cells in primary ovarian cancer cells and prostate cancer cells showed higher self-renewal and tumor-initiating ability (Ruscetti et al., 2015; Strauss et al., 2011). The concept of hybrid E/M cells in metastatic colonization is shown in Fig. 2. Therefore, stemness properties are no longer a feature of a fixed state, but follow the changes in the cells as a flexible feature.

Fig. 2. A model for depicting cellular plasticity for cancer metastasis. In primary tumors, most cancer cells have an epithelial type. In metastatic cancer, hybrid epithelial/mesenchymal (E/M) cells or partial EMT is favorable for cancer dissemination. When the hybrid E/M cells reach the metastatic site, they will revert back to epithelial cells to form metastatic colonies, possibly via rapid kinetics. Therefore, the epithelial/mesenchymal features and stem-like properties are no longer a fixed state. A dynamic or a flexible feature of E/M phenotype is a better description for the plasticity of cancer cells.
Further studies are necessary to clarify the mechanism and significance of epithelial plasticity and stemness in tumor cells.

4. Conclusions

Experimental models of EMT have been used for decades and have established a foundation for us to elucidate the mechanisms underlying EMT, metastasis, and tumor initiation. However, this dichotomy between the epithelial and the mesenchymal states may be oversimplified and may not precisely reflect the situation in vivo. The concept of an ‘intermediate-state’, or so-called partial EMT, provides a possible explanation for this controversy. The phenomenon of partial EMT has been found to occur during the process of embryo development and in wound healing, and a growing body of evidence indicates the existence of partial EMT in cancer biology. Hence, the development of an in vivo model will be important for providing a research tool for us to use in elucidating the dynamic changes in the epithelial-mesenchymal phenotype and the regulation of stemness properties in pathophysiological microenvironments. Considering a process of plastic change between the epithelial and the mesenchymal states is more useful than considering the process of a fixed transition for our understanding of cancer progression and metastasis.

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology (104-2321-B-010-005, 104-0210-01-09-02, and 103-2633-H-010-001 to M-HY); Taipei Veterans General Hospital (V106C-090 and VTA106-V1-3-3 to M-HY); the Ministry of Education, Aim for the Top University Plan (to M-HY); and the Ministry of Health and Welfare, Center of Excellence for Cancer Research (MOHW106-TDU-B-211-144-003 to M-HY).

References

Al-Hajj M, Wiicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983–3988.
Ambros V (2004) The functions of animal microRNAs. Nature 431, 350–355.
Anseau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puiseux I, Doglioni C, Piccinin S et al. (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89.
Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ and Garcia-Blanco MA (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9, 997–1007.
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegemar A, Kortving J, Begthel H, Peters PJ et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007.
Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J and Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2, 84–89.
Beck B, Lapouge G, Rorive S, Drogat B, Desaodaereka E, Delafaille S, Dubois C, Salmon I, Willemens K, Marine JC et al. (2015) Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16, 67–79.
Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C, Schafer R, van Diest P, Voest E, van Oudenaarden A et al. (2016) Plasticity between epithelial and mesenchymal states links EMT from metastasis-enhancing stem cell capacity. Cell Rep 14, 2281–2288.
Bonnomet A, Syne L, Brysae A, Feyeuereisen E, Thompson EW, Noel A, Foidart JM, Birembaut P, Polette M and Gilles C (2012) A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene 31, 3741–3753.
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF and Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68, 7846–7854.
Brockhausen J, Tay SS, Grzelak CA, Bertolino P, Bowen DG, d’Avigdor WM, Teoh N, Pok S, Shacklel N, Gamble JR et al. (2015) miR-181a mediates TGF-beta-induced hepatocyte EMT and is dysregulated in cirrhosis and hepatocellular cancer. Liver Int 35, 240–253.
Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F and Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2, 76–83.
Castanon I and Baylies MK (2002) A Twist in fate: evolutionary comparison of Twist structure and function. Gene 287, 11–22.
Celia-Terrassa T, Meca-Cortes O, Mateo F, Martinez de Paz A, Rubio N, Arnaic-Estape A, Ell BJ, Bermuda R,
Diaz A, Guerra-Rebollo M et al. (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 122, 1849–1868.
Chang CC, Hsu WH, Wang CC, Chou CH, Kuo MY, Lin BR, Chen ST, Tai SK, Kuo ML and Yang MH (2013) Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res 73, 4147–4157.
Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG and Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526.
Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65, 10946–10951.
Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D and van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7, 1267–1278.
Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567.
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10, 593–601.
Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY et al. (2011) An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22, 1686–1698.
van Grunsven LA, Michiels C, Van de Putte T, Nelles L, Wuytens G, Verschueren K and Huybrechts D (2003) Interaction between Smad-interacting protein-1 and the corepressor C-terminal binding protein is dispensable for transcriptional repression of E-cadherin. J Biol Chem 278, 26135–26145.
Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zurrer-Hardi U, Bell G et al. (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028.
Hajra KM, Chen DY and Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62, 1613–1618.
Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646–674.
Hay ED (1995) An overview of epithelial-mesenchymal transformation. Acta Anat 154, 8–20.
Hemavathy K, Gurusamy SC, Harris J, Chen JD and Ip YT (2000) Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol 20, 5087–5095.
Herrmann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ and Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323.
Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A, Dave N, Escriva M, Hernandez-Munoz I, Di Croce L, Helin K et al. (2008) Polycomb complex 2 is required for transcriptional repression of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24, 2375–2385.
Fujimoto K, Beauchamp RD and Whitehead RH (2002) Identification and isolation of candidate human colonic clonogenic cells based on cell surface integrin expression. Gastroenterology 123, 1941–1948.
Furlong EE, Andersen EC, Null B, White KP and Scott MP (2001) Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633.
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567.
for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28, 4772–4781.

Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q and Dai X (2015) An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Comput Biol 11, e1004569.

Hsu DS, Lan HY, Huang CH, Tai SK, Chang SY, Tsai TL, Chang CC, Tseng CH, Wu KJ, Kao JY et al. (2010) Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res 16, 4561–4571.

Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, Chen NJ and Yang MH (2014) Acetylation of snail modulates the cytokoine of cancer cells to enhance the recruitment of macrophages. Cancer Cell 26, 534–548.

Huh JW, Kim HR, Kim YJ, Lee JH, Park YS, Cho SH and Joo JK (2009) Expression of standard CD44 in cisplatin resistance in head and neck cancer. Clin Cancer Res 15, 5346–5356.

Hurezel L, Ben-Yehudah A, Milosevic J, Yu G, Pandit K, Sakamoto K, Yousef H, LeJeune M, Coon TA, Redinger CJ et al. (2014) Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 306, L534–L542.

Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB and Farrar WL (2008) CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98, 756–765.

Hwang WL, Yang MH, Tsai ML, Lan HY, Su SH, Chang SC, Teng HW, Yang SH, Lan YT, Chiong SH et al. (2011) SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology 141, 279–291, 291.e271–275.

Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW et al. (2014) MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol 16, 268–280.

Ikenouchi J, Matsuda M, Furuse M and Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116, 1959–1967.

Kang Y and Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279.

Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H and Medema JP (2012) Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30, 2378–2386.

Kitazawa K, Hikichi T, Nakamura T, Mitsunaga K, Tanaka A, Nakamura M, Yamakawa T, Furukawa S, Takasaka M, Goshima N et al. (2016) OVOL2 maintains the transcriptional program of human corneal epithelium by suppressing epithelial-to-mesenchymal transition. Cell Rep 15, 1359–1368.

Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S and Sarkar FH (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5, e12445.

Koo BS, Lee SH, Kim JM, Huang S, Kim SH, Rho YS, Bae WJ, Kang HJ, Kim YS, Moon JH et al. (2015) Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene 34, 2317–2324.

Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y et al. (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17, 1101–1108.

Korpal M, Lee ES, Hu G and Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283, 14910–14914.

Krebse AM, Mitschke J, Lasierah Lusoad M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P et al. (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19, 518–529.

Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, Wicha MS and Nor JE (2010) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70, 9969–9978.

Lamouille S, Subramanyam D, Blclloch R and Derynk R (2013) Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol 25, 200–207.

Lamouille S, Xu J and Derynick R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178–196.

Larriba MJ, Garcia de Herreros A and Munoz A (2016) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 76, 13418–13428.

Lechappertier A, Viehl P, Perez-Moreno P, Planchar D, Soria JC and Farace F (2011) Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer 105, 1338–1341.

Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, Pandiella A, Rezola R and Martin AG (2012) Sox2 expression in breast...
tumours and activation in breast cancer stem cells. *Oncogene* **31**, 1354–1365.

Leth-Larsen R, Terp MG, Christensen AG, Elias D, Kuhlwein T, Jensen ON, Petersen OW and Ditzel HJ (2012) Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis. *Mol Med* **18**, 1109–1121.

Li C, Heidt DG, Dulerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM (2007) Identification of pancreatic cancer stem cells. *Oncogene* **26**, 6712–6721.

Li X, Zhao H, Gu J and Zheng L (2015) Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. *Int J Clin Exp Pathol* **8**, 12084–12092.

Liao TT, Hsu WH, Ho CH, Hwang WL, Lan HY, Lo T, Chang CC, Tai SK and Yang MH (2016) Let-7 modulates chromatin configuration and target gene repression through regulation of the ARID3B complex. *Cell Rep* **14**, 520–533.

Lin T, Ponn A, Hu X, Law BK and Lu J (2010a) Requirement of the histone demethylase LSD1 in Snail-mediated transcriptional repression during epithelial-mesenchymal transition. *Oncogene* **29**, 4896–4904.

Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YJ, Evers BM and Zhou BP (2010b) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. *EMBO J* **29**, 1803–1816.

Long J, Zuo D and Park M (2005) Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. *J Biol Chem* **280**, 35477–35489.

Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ and Guan XY (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. *Mol Cancer Res* **6**, 1146–1153.

Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S et al. (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. *Nat Cell Biol* **12**, 247–256.

Major AG, Pitty LP and Farah CS (2013) Cancer stem cell markers in head and neck squamous cell carcinoma. *Stem Cells Int* **2013**, 319489.
EMT and cancer stemness

T.-T. Liao and M.-H. Yang

repression of the epithelial-mesenchymal transition inducer Prx1. Cancer Cell 22, 709–724.

Ohashi S, Natsuizaka M, Wong GS, Michaylira CZ, Grugan KD, Stairs DB, Kalabis J, Vega ME, Kalman RA, Nakagawa M et al. (2010) Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res 70, 4174–4184.

Okawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y, Wauthier E, Tajiri H, Miller LD, Wang XW et al. (2013) Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 57, 1469–1483.

Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousef SA, Singh M, Handley D et al. (2010) Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182, 220–229.

Park SM, Gaur AB, Lengyel E and Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22, 894–907.

Paterlini-Brechot P and Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253, 180–204.

Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K et al. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25, 1696–1708.

Peinado H, Ballestar E, Esteller M and Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24, 306–319.

Peinado H, Olmeda D and Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415–428.

Peinado H and Cano A (2008) A hypoxic twist in metastasis. Nat Cell Biol 10, 253–254.

Pena C, Garcia JM, Garcia V, Silva J, Dominguez G, Rodriguez R, Maximino C, Garcia de Herreros A, Munoz A and Bonilla F (2006) The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon canceromas. Int J Cancer 119, 2098–2104.

Perdigao-Henriques R, Petrocca F, Altschuler G, Thomas MP, Le MT, Tan SM, Hide W and Lieberman J (2016) miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snai1 transcriptional repressor complexes. Oncogene 35, 158–172.

Pervin S, Hewison M, Braga M, Tran L, Chun R, Karam A, Chaudhuri G, Norris K and Singh R (2013) Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy. PLoS One 8, e53287.

Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangelo G, Coradini D, Piloti S, Pierotti MA and Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65, 5506–5511.

Postigo AA, Depp JL, Taylor JI and Kroll KL (2003) Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 22, 2453–2462.

Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF and Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104, 973–978.

Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E et al. (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130, 449–455.

Ricci-Vitiani L, Lombardi DG, Pilotz E, Biffoni M, Todaro M, Peschle C and De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115.

Roca H, Hernandez J, Weidner S, McEachin RC, Fuller D, Sud S, Schumann T, Wilkinson JE, Zaslavsky A, Li H et al. (2013) Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS One 8, e76773.

Ruscetti M, Quach B, Dadashian EL, Mulholland DJ and Wu H (2015) Tracking and functional characterization of epithelial-mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis. Cancer Res 75, 2749–2759.

Sagiv E, Memeo L, Karin A, Kazanov D, Jacob-Hirsch J, Mansukhani M, Rechavi G, Hibshoosh H and Arber N (2006) CD24 is a new oncogene, early at the multistep process of colorectal cancer carcinogenesis. Gastroenterology 131, 630–639.

Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A and Wrana JL (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77.

Sarrio D, Franklin CK, Mackay A, Reis-Filho JS and Isacke CM (2012) Epithelial and mesenchymal subpopulations within normal basal breast cell lines
exhibit distinct stem cell/progenitor properties. *Stem Cells* **30**, 292–303.

Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M and Clevers H (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. *Science* **337**, 730–735.

Schmidt JM, Panzilius E, Bartsch HS, Irmler M, Beckers J, Kari V, Linnemann JR, Dragoi D, Hirschi B, Kloos UJ et al. (2015) Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. *Cell Rep* **10**, 131–139.

Shi Y, Sawada J, Sui G, el Affar B, Whetstone JR, Lan F, Ogawa H, Luke MP, Nakatani Y and Shi Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. *Nature* **422**, 735–738.

Shih JY and Yang PC (2011) The EMT regulator slug and Stanisavljevic J, Porta-de-la-Riva M, Batlle R, de Herreros M, Stankic M, Pavlovic S, Chin Y, Brogi E, Padua D, Norton T, Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino T, Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Aranda S, Altmann P, de la Iglesia FL, Ozkaynak K, Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G and Medema JP (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. *Proc Natl Acad Sci U S A* **105**, 13427–13432.

Wang X, Ding X, Nan L, Wang Y, Wang J, Yan Z, Zhang W, Sun J, Zhu W, Ni B et al. (2015) Investigation of the roles of exosomes in colorectal cancer liver metastasis. *Oncol Rep* **33**, 2445–2453.

Wang Z, Li Y, Kong D and Sarkar FH (2010) The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. *Curr Drug Targets* **11**, 745–751.

Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan DC, Chan WK et al. (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. *Nat Cell Biol* **11**, 694–704.

Watanabe K, Villarreal-Ponce A, Sun P, Salmons ML, Fullahi M, Andersen B and Dai X (2014) Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. *Dev Cell* **29**, 59–74.

Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. *Nat Cell Biol* **11**, 1487–1495.

Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, Helfrich B, Dziedziszko R, Chan DC, Sugita M et al. (2006) Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. *Cancer Res* **66**, 944–950.
Wu CY, Hung JJ and Wu KJ (2012) Linkage between Twist1 and Bmi1: molecular mechanism of cancer metastasis/stemness and clinical implications. *Clin Exp Pharmacol Physiol* **39**, 668–673.

Wu KJ and Yang MH (2011) Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection. *Biosci Rep* **31**, 449–455.

Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK et al. (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. *Nat Cell Biol* **12**, 982–992.

Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, Wu KJ, Hung MC and Yang MH (2012) RAC1 activation mediates Twist1-induced cancer cell migration. *Nat Cell Biol* **14**, 366–374.

Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Itzykson I, Richardson A and Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. *Cell* **117**, 927–939.

Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. *Nat Cell Biol* **10**, 295–305.

Yao D, Dai C and Peng S (2011) Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. *Mol Cancer Res* **9**, 1608–1620.

Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D et al. (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. *Int J Cancer* **120**, 1444–1450.

Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM et al. (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. *Science* **339**, 580–584.

Zavadil J and Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. *Oncogene* **24**, 5764–5774.

Zavadil J, Cermak L, Soto-Nieves N and Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. *EMBO J* **23**, 1155–1165.

Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS and Kalluri R (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. *Nature* **527**, 525–530.