В ряде стран Южной Америки, Африки и Азии эпидемические осложнения в природных очагах чумы провоцируются употреблением в пищу мяса грызунов: крыс, бандикутов, сусликов и др. Люди заболевают бубонной формой чумы при разглаживании тушек добытых зверьков.

Объектом исследования являлись правила картографической дифференциации и эпидемиологического районирования природных очагов чумы, используемые при проведении эпидемиологического надзора противочумными учреждениями страны.

Цель исследования — унитифицировать правила дифференциации для рациональной организации эпидемиологического надзора в природных очагах опасных инфекционных болезней на значительной территории (регион, группа регионов, страны).

Предлагается использовать общепринятую разработку картографических карт, а в качестве минимальной формализованной единицы пространственного анализа принять лист карты масштаба 1:25 000 («сектор»). Эпидемиологическое районирование рекомендуется проводить по уровню потенциальной эпидемической опасности, характеризующему отдельные секторы. Для определения этого уровня учитывались распространенность и частота потенциальных источников заражения на данном участке местности. Оценивают характер развития эпизоотического процесса в популяции носителей и (или) переносчиков возбудителя инфекции, частоту выявления эпизоотий, плотность населения, проживающего или временно находящегося на этой территории, а также регистрацию заболеваемости там в последние 25 лет.

Наличие заболеваемости, эпизоотическая активность и точная локализация мест заражения являются значительными аргументами при проведении такими особенностями наиболее высокого ранга эпидемической опасности. В природных очагах чумы на территории России, к примеру, на фоне роста численности сурков и сусликов, являющихся объектами промысла местного населения, употребляющих этих грызунов в пищу, возраст риск инфицирования людей. В Горно-Алтайском высокогорном очаге в 2014—2016 гг. были зарегистрированы единичные случаи заболевания человека бубонной формой чумы, что послужило основанием для включения участка заражения в категорию самой высокой эпидемической опасности. Аналогичная ситуация складывается в очагах чумы на территории республики Тыва и Калмыкии. Детальное эпидемиологическое районирование природных очагов чумы на основе картографической дифференциации используют для обоснованного планирования и проведения обследовательских и профилактических работ в каждом из очагов для задач минимизации рисков здоровья населения.

Ключевые слова: природные очаги чумы, картографирование, эпидемиологический надзор, опасные инфекционные болезни, профилактическая работа.

© Кузнецов А.А., Матросов А.Н., Поршаков А.М., Слудский А.А., Ковалевская А.А., Топорков В.П., 2018

Кузнецов Александр Александрович — доктор биологических наук, главный научный сотрудник лаборатории эпизоотологического мониторинга отдела эпидемиологии (e-mail: sansaruchs-50@mail.ru; тел.: 8 (8452) 73-46-48; ORCID: https://orcid.org/0000-0002-0677-4846).

Матросов Александр Николаевич — доктор биологических наук, ведущий научный сотрудник лаборатории эпизоотологического мониторинга отдела эпидемиологии (e-mail: annamatrosov@mail.ru; тел.: 8 (8452) 73-46-48; ORCID: https://orcid.org/0000-0003-4893-7188).

Поршаков Алексей Михайлович — кандидат биологических наук, старший научный сотрудник лаборатории эпизоотологического мониторинга отдела эпидемиологии (e-mail: rusrapi@microbe.ru; тел.: 8 (8452) 73-46-48; ORCID iD: https://orcid.org/0000-0003-3363-765X).

Слудский Александр Аркадьевич — доктор биологических наук, ведущий научный сотрудник лаборатории эпизоотологического мониторинга отдела эпидемиологии (e-mail: rusrapi@microbe.ru; тел.: 8 (8452) 73-46-48; ORCID iD: https://orcid.org/0000-0003-4705-6151).

Ковалевская Анастасия Александровна — врач-эпидемиолог эпизоотологического отдела (e-mail: antichum@astranet.ru; тел.: 8 (8512) 33-37-00).

Топорков Владимир Петрович — доктор медицинских наук, главный научный сотрудник лаборатории эпиданализа и прогнозирования (e-mail: rusrapi@microbe.ru; тел.: 8 (8452) 73-46-48).
В ряде стран Южной Америки, Африки и Азии эпидемические осложнения в природных очагах чумы провоцируются употреблением в пищу мяса грызунов: крыс, бандикутов, свинок и др. Люди заболевают бубонной формой чумы при разлете тушек добытых зверьков [1–3]. На территории России и сопредельных стран большая часть случаев чумы была связана с трансмиссионным механизмом передачи возбудителя через укус инфицированной блуждающей слюны [4]. В настоящее время в связи с восстановлением численности промысловых видов сурков, выходом из депрессии популяций малого и ростом численности длиннохвостого суслика местное население активизировало промысел этих животных, употребляя мясо как деликатес, используя полостной жир в лекарственных целях, заготавливая шкурки. В 2013–2016 гг. в сурочных очагах Кыргызстана и России регистрировались случаи заболеваний людей бубонной формой чумы, в том числе детей, зарождавшихся контактным путем через повреждения кожного покрова при разлете тушек добытых больных чумой зверьков [5–8]. В связи с этим практический интерес к изучению современной обстановки по этой и другим возвращающимся инфекциям возрастает [9]. Эпидемиологический надзор в ее очагах теперь осуществляется с привлечением новых методов, в том числе геоинформационных систем (ГИС) и технологий, позволяющих систематизировать большие объемы ретроспективной и оперативной информации о динамике пространственной и биоценотической структуры очагов [10–12].

Эпидемиологический надзор за чумой обеспечивает достижение основной цели – эпидемиологического благополучия населения. Одним из основных его мероприятий является эпизоотологический мониторинг в природных очагах этой особо опасной инфекции, осуществляемый противовзумными учреждениями страны на основе их дифференциации по форме-территориальному принципу [13, 14]. Стандартизация и систематизация минимальных структурных единиц дифференциации обеспечивается использованием обобщенной разграфки государственных топографических карт, единой для всей территории страны. В качестве единицы приняты лист топографической карты масштаба 1:25 000, получивший ведомственное наименование «сектор». Необходимость использования такой формализованной единицы заключается в следующем: в границах очагов чумы располагаются различные администривно-хозяйственные образования (области, районы и т.д.), которые важны для площади, разнообразны по конфигурации и построены по хозяйственно-экономическим, национальным и другим общественно-политическим критериям без учета природного районирования. Например, территория всего Горно-Алтайского высокогорного природного очага чумы расположена в одном административном районе – Кош-Агачском. Подобная административная дифференциация (или идентификация) очаговых территорий, безусловно, необходима, но недостаточна для более подробной и целенаправленной оценки эпидемиологического статуса конкретных участков. Расчленение обширных административных территорий на относительно небольшие стандартные фрагменты резко повышает возможности выявления и обозначения на карте опасных зон, что особенно актуально в случаях отсутствия у них выраженных природных границ. Аналогичное отсутствие детализации характерно и для биогеографического районирования на основе карт природных зон, ландшафтных или геоботанических провинций. Дополнительным аргументом введения небольших формализованных единиц дифференциации является необходимость упорядочивания накапливаемой в процессе эпизоотологического обследования информации, что весьма актуально при использовании географических информационных технологий [13, 14].

Материалы и методы. В работе использовали преимущественно картографические методы исследования. В системе противоочумных учреждений, так же, как и в других учреждениях противовзумнического профиля, существует потребность в картах двух категорий. В качестве основной используют векторную интерактивную карту общего характера с охватом обширных территорий, предназначенную для нанесения, обобщения и демонстрации ведомственной информации, ее оценки и разностороннего анализа. В свободном доступе имеются карты масштаба 1:1 000 000, на основе которых можно создавать тематические картосхемы медицинского содержания, используемые в отчетной и обзорной документации. Для общего планирования и организации обследовательских и профилактических работ необходимо иметь топографические карты масштабов 1:100 000 или 1:200 000. Для проведения эпизоотологического мониторинга непосредственно в условиях природного очага, а также научно-исследовательских работ нужны многолистные топографические карты масштаба 1:25 000 (как векторные, так и растровые), пригодные для загрузки в мобильные устройства или ноутбук.

В настоящее время для широкого круга пользователей выпускаются открытое цифровые топографические карты (ЦТК) различных масштабов, вплоть до масштаба 1:25 000. Существуют электронные карты как в векторных форматах, так и их стандартизированные растровые копии (тейлы), которые могут быть распечатаны на широкоформатном принтере, что обеспечивает дополнительные удобства работы с ними в полевых условиях.

Заслуживает внимания система кодирования формально-территориальных единиц – секторов, разработанная для паспортизации природных очагов чумы Российской Федерации [13–16], в соответствии с которой каждому сектору присваивается цифровой код (шифр), образованный из номенклатуры соответствующего листа топографической карты 25-тысячного масштаба и двухзначного номера при-
родного очага чумы. Наличие секторов с уникальными шифрами обеспечивает дополнительные возможности пространственной идентификации материалов эпизоотологического содержания. Кроме того, как показала практика оконтуривания природных очагов чумы, четкие геодезические рамки секторов (листов топографических карт) во многих случаях служат единственной возможностью провести внешнюю границу очага, если в данной местности отсутствуют линейные элементы ландшафта, способные играть роль такой границы. При этом необходимо иметь достоверные сведения о наличии или отсутствии признаков эпизоотии по данной конкретной инфекции по разные стороны от этой формальной границы.

Одним из важнейших требований современности является обязательное геокодирование любой информации, получаемой в процессе мониторинга с использованием систем глобального позиционирования ГЛОНАСС/GPS, то есть указание долготы и широты мест сбора полевого материала, учета численности носителей и переносчиков возбудителей инфекций, а также проведения других работ на территории природных очагов. Указание точных географических координат обеспечивает пригодность данных обследования для использования в географических информационных системах с возможностью их быстрой визуализации и пространственного анализа [14]. Кроме того, координаты каждого места сбора материала автоматически указывают, в каком секторе оно находится, поскольку рамки листов топографических карт являются конкретными параллелями и меридианами.

Важной особенностью четкой регламентации правил дифференциации эпизоотических территорий является удобство ее использования для целей паспортизации природных очагов, построенной на принципах ГИС. Приведенные в данной работе правила географической дифференциации природных очагов чумы могут быть использованы учреждениями санитарно-эпизоотологического профиля для картографирования, систематизации и паспортизации природных очагов других опасных и особо опасных инфекций. Это положение и послужило основной целью нашего исследования.

Природные очаги чумы Российской Федерации и стран ближнего зарубежья имеют двухзначную нумерацию (от 01 до 46), унаследованную от нумерации очагов СССР, которая указывается в правой части шифра в круглых скобках [14–16]. Для регистрации природных очагов других инфекций может потребоваться увеличение количества знаков, обеспечивающее идентификацию очагов по инфекции и их конкретному наименованию регионального, ландшафтного или иного характера.

Картографическая модель всей территории Российской Федерации представлена на государственных топографических картах, выполняемых в попечительно-цилиндрической проекции Гаусса – Крёгера, имеющих стандартную разграфку на основе международной карты миллионного масштаба. Наиболее крупный масштаб карт открытого пользования – 1:25 000. Размеры и дислокация (координаты) секторов строго регламентированы нормативно-методическими документами картографо-геодезической службы страны и изменению другими ведомствами не подлежат. Это обстоятельство обеспечивает унификацию и стандартизацию используемых в противоэпидемической практике единиц дифференциации и препятствует возникновению любых разногласий в адресации пунктов сбора полевого материала при эпизоотологическом обследовании. В целях синхронизации обозначений единиц дифференциации с картографическими аналогами и для удобства ведения документации порядков шифрования секторов согласуется с правилами государственной картографической и топографо-геодезической службы по составлению номенклатуры топографических карт различных масштабов, подробно изложенными в учебной и справочной литературе по геодезии, топографии и картографии, касающимися как буквенных обозначений листов, так и цифровых аналогов (шифров номенклатуры).

Согласно этим правилам, латинские буквенные обозначения широтных рядов карт миллионного («10-километрового») масштаба заменяют порядковыми номерами рядов, начиная с экваториального (первого) ряда А, последовательно двигаясь к северному полюсу. Ряды К, Л и М, в пределах которых размещены природные очаги чумы Российской Федерации, имеют номера 11, 12 и 13. Лист карты миллионного масштаба разделен на 144 листа 100-тысячного («10-километрового») масштаба (от 001 до 144), внутри каждого из которых содержится 16 листов 25-тысячного («250-метрового») масштаба.

В общем виде нумерация листов карт указаны масштабов и, соответственно, секторов представлена на рис. 1, на котором показан один из секторов Прикаспийского песчаного очага чумы, получивший шифр 123807224 (43) – подчеркнутая часть шифра, соответствующая номенклатуре листа Международной топографической карты масштаба 1:1 000 000. Сектор соответствует листу карты 25-тысячного масштаба L-38-72-Б-г, в очаге № 43 (буквы а, в, г – не зависимо от регистра – заменяются цифрами 1, 2, 3, 4). Порядок нумерации листов очередного более крупного масштаба ведется слева направо и сверху вниз, начиная с левого верхнего (северо-западного) угла. Номенклатура отпечатанного в типографии листа указывается в зарамочном

1 Руководство по картографическим и картографо-издательским работам. Ч. 1. Составление и подготовка к изданию топографических карт масштабов 1:25000, 1:50000, 1:100000. ГКИП-05-050-77. – М., 1978. – 78 с.
формулировки сверху спраху или посередине (цифровой вариант в синем цвете – 12-38-072-2-4, буквенный вариант в черном цвете – L-38-72-Б г). В тех случаях, когда на территории сектора располагаются фрагменты разных очагов, четко разделенные ландшафтными границами, каждому из них (соответствующий полигон на карте сектора) присваивается шифр с собственным номером очага в скобках. Согласно этому правилу на краю эпизоотической территории шифр сектора с номером очага присваивается только очаговой его части (полигону), если граница очага проведена по ландшафтному элементу (например, берегу реки или моря), а не по рамке данного сектора.

Листы топографических карт (как и соответствующие им секторы) ограничены рамками, являющимися конкретными параллелями и меридианами. Следовательно, географические координаты любой точки на поверхности земного шара автоматически указывают, в пределах какого листа (сектора) расположена эта точка (в данном случае – в пределах восточной полусферы северного полушария). В случае утери записи шифра сектора его легко можно восстановить по координатам точки, где был взят материал, учитывая, что меридианы, ограничивающие «ширину» сектора, отстоят друг от друга на 7° 30′, начиная с Гринвичского (нулевого) меридиана, а параллели, ограничивающие его «высоту», отстоят друг от друга на 5° 00′, начиная с экватора.

Таким образом, информация о дислокации пунктов эпизоотологического обследования на той или иной территории позволяет группировать получаемые сведения по достаточно мелким стандартным формально-территориным единицам – секторам (приблизительно 10 × 10 км). Такая дополнительная группировка не препятствует объединению материала по административным районам и любым другим подразделениям обследуемой территории. Дифференциация по секторам позволяет также проводить более детальный анализ пространственно-временной организации природных очагов инфекций, поскольку

Рис. 1. Порядок нумерации и размещения: A – листов карт масштаба 1:100 000 в пределах одного листа масштаба 1:1 000 000; B – листов карт масштаба 1:25 000 (секторов) в пределах одного листа масштаба 1:100 000; В – номенклатура листа карты масштаба 1:25 000 и шифр соответствующего сектора

Оформление сверху справа или посередине (цифровой вариант в синем цвете – 12-38-072-2-4, буквенный вариант в черном цвете – L-38-72-Б г). В тех случаях, когда на территории сектора располагаются фрагменты разных очагов, четко разделенные ландшафтными границами, каждому из них (соответствующий полигон на карте сектора) присваивается шифр с собственным номером очага в скобках. Согласно этому правилу на краю эпизоотической территории шифр сектора с номером очага присваивается только очаговой его части (полигону), если граница очага проведена по ландшафтному элементу (например, берегу реки или моря), а не по рамке данного сектора.

Листы топографических карт (как и соответствующие им секторы) ограничены рамками, являющимися конкретными параллелями и меридианами. Следовательно, географические координаты любой точки на поверхности земного шара автоматически указывают, в пределах какого листа (сектора) расположена эта точка (в нашем случае – в пределах восточной полусферы северного полушария). В случае утери записи шифра сектора его легко можно восстановить по координатам точки, где был взят материал, учитывая, что меридианы, ограничивающие «ширину» сектора, отстоят друг от друга на 7° 30′, начиная с Гринвичского (нулевого) меридиана, а параллели, ограничивающие его «высоту», отстоят друг от друга на 5° 00′, начиная с экватора.

Таким образом, информация о дислокации пунктов эпизоотологического обследования на той или иной территории позволяет группировать получаемые сведения по достаточно мелким стандартным формально-территориальным единицам – секторам (приблизительно 10 × 10 км). Такая дополнительная группировка не препятствует объединению материала по административным районам и любым другим подразделениям обследуемой территории. Дифференциация по секторам позволяет также проводить более детальный анализ пространственно-временной организации природных очагов инфекций, поскольку

ку конфигурации и размеры административных районов весьма различны и многократно превосходят размеры секторов, что делает анализ по районам чрезмерно грубым. Визуализация рамок секторов на векторной карте, выведенной на экран монитора, обеспечивается включением градусной сетки с необходиым для этого дробностью.

Картографический метод в изучении распространения болезней, базирующийся на современных достижениях геоинформатики, широко используется мировым сообществом [17, 18]. Большой практический интерес представляет эпидемиологическое районирование энзootических территорий по уровню потенциальной эпидемической опасности (УПЭО) того или иного участка. Дробление территории на стандартные формализованные участки (секторы) служит весьма удобной и наглядной основой районирования. К настоящему моменту учреждениями Роспотребнадзора накоплен достаточно большой объем информации об энзootических и эпидемических проявлениях различных природно-очаговых инфекций, позволяющий осуществить дифференциацию обширных энзотических территорий по эпидемиологическому критерию [19, 20]. Важно правильно выбрать параметры, используемые для оценки опасности конкретного участка для заражения человека. Главным показателем следует считать наличие, особенности распределения и количество (численность, плотность) источников заражения. В качестве источников выступают теплокровные носители и (или) членоверетеницы переносчики (при наличии таковых по характеру энзотичности данной инфекции). Играют роль также факты регистрации возбудителя инфекции в популяциях животных на данной территории независимо от их частоты.
при регистрации здесь эпизоотического процесса в прошлом или в настоящее время.

В основу современного усовершенствованного эпидемиологического районирования положены эпизоотологический и эпидемиологический статусы, а также плотность населения на территории отдельных секторов. Ретроспективная характеристика эпизоотических проявлений в пределах каждого сектора имеет две позиции: эпизоотии чумы отмечались хотя бы раз (по меньшей мере в течение последних 50 лет) или не отмечались никогда. Третья позиция – эпидемиологическая – касается случаев заражения человека в течение последних 25 лет. Характеристика плотности проживающего в секторе населения представлена также двумя позициями: до одного человека на 1 км² и более одного. Обе характеристики сведены в таблицу, в которой то или иное сочетание позиций определяет уровень потенциальной эпидемической опасности в условных числовых баллах, которым присвоены характеристики: 1 – низкий; 2 – средний; 3 – высокий; 4 – очень высокий (таблица).

Уровень потенциальной эпидемической опасности (в баллах) на территории сектора в зависимости от характера проявлений чумы и плотности населения

Характер проявлений чумы в секторе	Плотность населения (чел. на 1 км²)	
	до одного	более одного
Проявлений не было	1	2
Были эпизоотии чумы (за 50 лет и более)	2	3
Были заражения человека (за 25 лет)	4	4

События последних лет в Горно-Алтайском высокогорном природном очаге чумы [21] обусловили необходимость использования градации очень высокого уровня, которая установлена всего лишь для трех секторов в горах Алтай. Однако активное проведение специфических и неспецифических профилактических мероприятий в этом очаге обеспечивает высокую вероятность того, что количество таких секторов не будет увеличиваться. Тем не менее в природных очагах других опасных инфекций регистрируется ежегодная или почти ежегодная заболеваемость населения, поэтому использование четвертой градации там будет вполне оправданным. В целом опыт эпизоотологического районирования природных очагов чумы может быть применен для районирования очагов других инфекций, согласно которому используют три или четыре градации уровня потенциальной эпидемической опасности.

В целях рационального и эффективного осуществления эпизоотологического мониторинга необходима эпизоотологическая дифференциация эпизоотической территории, которая также проводится в рамках отдельных секторов. Основными критериями оценки эпизоотологического статуса территории сектора являются наличие, интенсивность и продолжительность эпизоотического процесса в популяциях носителей и переносчиков возбудителя инфекции. Простым, но достаточно объективным показателем служит частота (краткость) регистрируемых эпизоотий в многолетнем аспекте, которая может учитываться как в рамках секторов, так и с использованием повышенной детализации. Информацию о наличии потенциальных источников заражения или зараженных животных используют, применяя экстраполяцию и интерполяцию данных, получаемых из ограниченного числа мест и разными способами. Основной источник – учетные и обследовательские работы, проводимые периодически в регламентируемых объемах. Экстраполяцию проводят в основном на ландшафтных критериях с использованием крупномасштабных топографических карт и космических снимков или круговым методом [13]. Интерполяция предусматривает усреднение показателей из соседних ячеек в случае отсутствия данных по какому-либо сектору.

На рис. 2 в качестве примера эпидемиологического районирования приведены картосхемы Прикаспийского песчаного (а) и Горно-Алтайского высокогорного (б) очагов чумы, привлекающих к себе пристальное внимание в связи с активными проявлениями эпизоотологического и эпидемиологического характера [21]. Результат районирования очагов получен при анализе истории эпизоотических проявлений за весь период их обследования, нынешнего распределения населения по территории и единичных случаев заболевания человека в Республике Алтай в 2014–2016 гг. [21]. Эти единичные случаи заболевания человека бубонной формой чумы послужили основанием для включения участков заражения (три сектора) в категорию самой высокой эпидемической опасности. Важным обстоятельством явилось то, что местные жители употребляли в пищу мясо серых сурков – основных носителей возбудителя чумы, добытых в процессе браконьерской охоты. Разделка тушек зверей в домашних условиях послужила причиной заражения.

Результаты и их обсуждение. Необходимо подчеркнуть, что скорость, достоверность и правильность эпизоотологической оценки напрямую зависят от обеспеченности противоэпидемической службы современными средствами и материалами для сбора и анализа информации. Оснащение полевых групп специальным автомобильным транспортом – диагностическими автолабораториями и передвижными жилыми комплексами – повышает мобильность, комфортность и качество экспедиционной работы. Использование компьютерной техники, оборудованной интернет-связью, спутниковых навигаторов,
крупномасштабных топографических карт, космических снимков высокого разрешения позволяет осуществлять привязку участков стойких проявлений инфекционных болезней к ландшафтным структурам различного ранга или антропогенным элементам. Перспективным методом обследования может выступить видеоосмотр и фотофиксация местности с помощью беспилотных летательных аппаратов или даже вертолетов.

Выводы. Таким образом, картографическая систематизация и дифференциация природных очагов инфекций различной этиологии в границах всей страны может существенно повысить наши представления об их дислокации, размерах и эпидемиологической опасности. Целенаправленная работа с картами обеспечивает правильное пространственное восприятие обширных энзоотических территорий и позволяет получить объективную оценку реального распространения источников заражения человека. Унификация принципов дифференциации природных очагов чумы, реализуемая в настоящее время, позволяет рекомендовать эти принципы в качестве образца для районирования природных очагов других опасных инфекционных болезней, а само районирование необходимо для обоснованного планирования и проведения обследовательских и профилактических работ в каждом из очагов.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Список литературы

1. Лапшов В.А., Бокштейн Ф.М., Инапоги А.П. Мелкие млекопитающие селений Гвинеи // Бюллетень Московского общества испытателей природы. Отдел биологический. – 1992. – № 1. – С. 33–43.
2. Malekani V., Paulus J. Quelques aspects de la cystommatation du cricétome, Cricetomys (Rongeur) par des populations zairoises // Tropicart. – 1989. – Vol. 7, № 4. – P. 141–144.
3. Whitaker R., Murafi M. Rodent control by Irura tribes // Bombay Natur. Hist. Soc. – 1988. – Vol. 85, № 2. – P. 263–270.
4. Эпидемическая активность природных очагов чумы в России и других странах Содружества Независимых Государств за 120 лет / А.М. Кокушкин, А.В. Наумов, А.И. Кологоров, В.Б. Марьясев // Проблемы особо опасных инфекций. – 1994. – Т. 47, № 4. – С. 3–28.
5. Актуальные аспекты обеспечения эпидемиологического благополучия по чуме населения Республики Алтай / С.В. Балахонов, В.М. Корзун, С.А. Косилко, Е.П. Михайлов, Л.В. Щучинов, А.И. Мищенко, И.В. Зарубин, Е.Н. Рождественский, А.В. Денисов // Эпидемиология и вакцинопрофилактика. – 2016. – Т. 89, № 4. – С. 42–48.
6. Barnes S., Peck A. Mapping the future of health care: GIS applications in Health care analysis // Geographic Information systems. – 1994. – № 4. – P. 31–33.
7. Modeling the Geographic Distribution of Bacillus anthracis, the Causative Agent of Anthrax Disease, for the Contiguous United States using Predictive Ecologic Niche Modeling / J.K. Blackburn, K.M. McNyset, A. Curtis, M.E. Hugh-Jones // Am. J. Trop. Med. Hyg. – 2007. – Vol. 77, № 6. – P. 1103–1110.
8. The use of remote sensing and geographic information systems in UNICEF’s dracunculiasis (Guinea worm) eradication effort / K.C. Clarke, J.R. Osleeb, J.M. Sherry, J.P. Meert, R.W. Larsson // Prew. Vet. Med. – 1991. – № 11. – P. 229–235.
In some South American, African, and Asian countries epidemiologic complications in natural plague foci occur due to people consuming meat of rodents, namely rats, bandicoot rats, guinea pigs, etc. People catch bubonic plague when splicing rodents’ carcasses.

Our research objects were rules for cartographic differentiation and epidemiologic zoning of natural plague foci that are applied in epidemiologic surveillance performed by plague control authorities in the country.

Our research goal was to unify differentiation rules as it will help to more rationally organize epidemiologic surveillance in natural foci of dangerous infections on a large territory (a region, some regions, the country as a whole).

We suggest to apply a conventional topographic mapping and to take a list of a map scaled 1:25 000 ("a sector") as a minimum formalized unit for spatial analysis. We recommend to perform epidemiologic zoning as per potential epidemi-
ologic hazards that are characteristic for specific sectors. To determine these hazards, we should take into account prevalence and number of potential infection sources in this or that sector. We should also assess a character or a possible course of epizootic processes in populations of infection carriers and (or) carriers of infectious agents, frequency of epizooties detection, density of population who live in this or that area permanently or stay there temporarily, as well as data on morbidity registered there over the last 25 years.

Morbidty, epizootic activity, and precise localization of contagion points are significant arguments for ranking such zones as the most epidemiologically hazardous. A risk of catching plague by people has become higher in natural plague foci on the RF territory due to, for example, an increase in quantity of marmots and gophers that are caught and consumed by local population. In 2014–2016 there were some single cases of people catching bubonic plague in Gorno-Altaisk highland focus; it substantiated assigning of contagion areas into the most epidemiologically hazardous category. The same situation is observed in plague foci in Tyva Republic and Kalmykia Republic.

Detailed epidemiologic zoning of natural plague foci based on cartographic differentiation is applied to perform well-grounded planning and carrying out examinations and prevention activities in each focus in order to minimize population health risks.

Key words: natural plague foci, cartography, epidemiologic surveillance, hazardous infections, prevention activities.

References

1. Lapshov V.A., Bokshtein F.M., Inapogi A.P. Melkie mlekopitayushchie selennii Gvinei [Small mammals of Guinean villages]. Byulleten' Moskovskogo obshchestva ispytatelei prirody, Otdel biologicheskii, 1992, no. 1, pp. 33–43 (in Russian).
2. Malekani V., Paulus J. Quelques aspects du censoumation du cricetome, Cricetomys (Rongeur) par des populations zairoises. Tropicaliculture, 1989, vol. 7, no. 4, pp. 141–144.
3. Whitaker R., Muriță M. Rodent control by Iurua tribals. Bombay Natur. Hist. Soc., 1988, vol. 85, no. 2, pp. 263–270.
4. Kokushkin A.M., Naumov A.V., Kologorov I.V., Marysaev V.B. Epidemiicheskaya aktivnost' prirodnym ochagov chumy v Rossii i drugih stranakh sudruzhestva nezavisimykh gosudarstva za 120 let [Epidemic activity of natural plague foci in Russia and other countries of the Commonwealth of Independent States for 120 years]. Problemy osobo opasnnykh infektsii, 1994, vol. 47, no. 4, pp. 3–28 (in Russian).
5. Balakhonov S.V., Korzun V.M., Kosilko S.A., Mikhailov E.P., Shchuchinov L.V., Mishchenko A.I., Zarubin I.V., Rozhdestvenskii E.N., Denisov A.V. Actual Aspects of Epidemiological Well-Being Support Anti-PLAgue for Population in Altai Republic. Epidemiologiya i vaktinoprofilaktika, 2016, vol. 89, no. 4, pp. 42–48 (in Russian).
6. Barnes S., Peck A. Mapping the future of health care: GIS applications in Health care analysis. Geographic Information systems, 1994, no. 4, pp. 31–33.
7. Blackburn J.K., McNyset K.M., Curtis A., Hugh-Jones M.E. Modeling the Geographic Distribution of Bacillus anthracis, the Causative Agent of Anthrax Disease, for the Contiguous United States using Predictive Ecologic Niche Modeling. Am. J. Trop. Med. Hyg., 2007, vol. 77, no. 6, pp. 1103–1110.
8. Clarke K.C., Osleeb J.R., Sherry J.M., Meert J.P., Larson R.W. The use of remote sensing and geographic information systems in UNICEF’s dracunculiasis (Guinea worm) eradication effort. Prew Vet. Med., 1991, no. 11, pp. 229–235.
9. Cliff A.D., Haggett P., Smallman-Raynor M. World Atlas of Epidemic Diseases. London, 2004, 212 p.
10. Dangendorf F., Herbst S., Reintjes R., Kistemann T. Spatial patterns of diarrhoeal illnesses with regard to water supply structures – a GIS analysis. International Journal of Hygiene and Environmental Health, 2002, vol. 205, no. 3, pp. 183–191.
11. Glass G.E., Schwartz B.S., Morgan J.M., Johnson D.T., Noy P.V., Israel E. Environmental Risk-Factors for Lyme-Disease Identified with Geographic Information-Systems. American Journal of Public Health, 1995, no. 85, pp. 944–948.
12. Tempalski B.J. The case of Guinea worm: GIS as a tool for the analysis of disease control policy. Geographic Information Systems, 1994, no. 4, pp. 8–32.
13. Kuznetsov A.A., Kutyrev V.V., Matrosov A.N., Toporkov V.P. Improvement of Monitoring of Natural Plague Foci Based on the Analysis of Ecologic and Epizootiologic Regularities of their Functioning. Problemy osobo opasnnykh infektsii, 2004, vol. 88, no. 2, pp. 12–16 (in Russian).
14. Kuznetsov A.A., Porshakov A.M., Matrosov A.N., Kuklev E.V., Korotkov V.B., Mezentsev V.M., Popov N.V., Toporkov V.P., Toporkov A.V., Kutyrev V.V. Prospects of GIS-Passportization of Natural Plague Foci in the Territory of the Russian Federation. Problemьy osobyh opanasykh infektsii, 2012, vol. 111, no. 1, 48–53 (in Russian).

15. Prirodnye ochagi chumy Kavkaza, Prikaspiya, Srednei Azii i Sibiri [Natural foci of the plague of the Caucasus, Caspian, Central Asia and Siberia]. In: G.G. Onishchenko, V.V. Kutyrev eds. Moscow, Meditsina Publ., 2004, 192 p. (in Russian).

16. Soldatkin I.S., Rudenchik Yu.V., Popov N.V., Kuklev E.V., Kuznetsov A.A., Matrosov A.N. Pasportizaciya prirodnyh ochagov chumy na territorii stran SNG (kartograficheskie materialy) [Certification of natural plague foci in the territory of the CIS countries (cartographic materials)]. Saratov, 2000, 65 p. (in Russian).

17. Malkhazova S.M. Mediko-geograficheskii analiz territorii: kartografirovanie, otsenka, prognoz [Medical geographical analysis of territories: mapping, assessment, forecast]. Moscow, 2001, 240 p. (in Russian).

18. Koch T. Cartographies of Diseases. Maps, Mapping, and Medicine. Redlands, 2005, 388 p.

19. Kuklev E.V., Soldatkin I.S., Khot'ko N.I. Epidemicheskii potentsial prirodnykh ochagov chumy i ego otsenka. Epidemiologiya i profilaktika prirodno-ochagovykh infektsii [Epidemic potential of natural plague foci and its assessment. Epidemiology and prevention of natural focal infections]. Saratov, 1981, pp. 3–8 (in Russian).

20. Cadastre of epidemic and epizootic manifestations of the plague in the territory of the Russian Federation and neighboring countries (from 1876 to 2016) [Cadastre of epidemic and epizootic manifestations of plague in the territory of the Russian Federation and neighboring countries (from 1876 to 2016)]. In: V.V. Kutyrev, A.Yu. Popova. Saratov, Amirit LLC Publ., 2016, 248 p. (in Russian).

21. Korzun V.M., Balakhonov S.V., Kosilko S.A. Mikhailov E.P., Mishchenko A.I., Denisov A.V., Rozhdestvensky E.N., Chipanin E.V. Bazarova G.H., Yarygina M.B., Abibulaev D.E., Shefer V.V. Gorno-Altai Natural Plague Focus Epizootical and Epidemiical Activity in 2012–2016. Epidemiologiya i vaktsinoprofilaktika, 2017, vol. 92, no. 1, pp. 36–38. DOI: 10.31631/2073-3046-2017-16-1-36-38 (in Russian).

Kuznetsov A.A., Matrosov A.N., Porshakov A.M., Sludsky A.A., Kovalevskaia A.A., Toporkov V.P. Principles of cartographic differentiation and epidemiologic zoning of natural plague foci applied to assess and minimize population health risks. Health Risk Analysis, 2018, no. 4, pp. 96–104. DOI: 10.21668/health.risk/2018.4.01.eng

Получена: 10.11.2018
Принята: 14.12.2018
Опубликована: 30.12.2018