MULTIPLICATION OPERATORS ON WEIGHTED SPACES IN THE NON-LOCALLY CONVEX FRAMEWORK

L. A. KHAN
Department of Mathematics
Quaid-i-Azam University
Islamabad - 45320, PAKISTAN

A. B. THAHEEM
Department of Mathematical Sciences
King Fahd University of Petroleum and Minerals
Mail Box 469, Dhahran 31261, SAUDI ARABIA

(Received December 13, 1994 and in revised form June 21, 1995)

ABSTRACT. Let X be a completely regular Hausdorff space, E a topological vector space, V a Nachbin family of weights on X, and $CV_0(X, E)$ the weighted space of continuous E-valued functions on X. Let $\theta : X \to C$ be a mapping, $f \in CV_0(X, E)$ and define $M_\theta(f) = \theta f$ (pointwise). In case E is a topological algebra, $\psi : X \to E$ is a mapping then define $M_\psi(f) = \psi f$ (pointwise). The main purpose of this paper is to give necessary and sufficient conditions for M_θ and M_ψ to be the multiplication operators on $CV_0(X, E)$ where E is a general topological space (or a suitable topological algebra) which is not necessarily locally convex. These results generalize recent work of Singh and Manhas based on the assumption that E is locally convex.

KEY WORDS AND PHRASES: Nachbin family of weights, topological vector spaces, vector-valued continuous functions, weighted topology, multiplication operators, locally idempotent topological algebras.

1991 AMS SUBJECT CLASSIFICATION CODES: 47B38, 46E40, 46A16.

1. INTRODUCTION

The fundamental work on weighted spaces of continuous scalar-valued functions has been done mainly by Nachbin [9,10] in the 1960's. Since then it has been studied extensively for a variety of problems such as weighted approximation, characterization of the dual space, approximation property, description of inductive limit and of tensor-product, etc for both scalar- and vector-valued functions (for instance see [1-5,8-14]). Recently Singh and Summers [13] have studied the notion of composition operators on $CV_0(X, C)$. Later, Singh and Manhas [12] made an analogous study of multiplication operators on $CV_0(X, E)$, assuming E to be a locally convex space or a locally m-convex algebra. The purpose of this paper is to generalize the results of Singh and Manhas [12] to the case when E is a general topological vector space which is not necessarily locally convex. Section 3 contains our main results while section 2 is devoted to some technical preliminaries required for the development of our results

2. PRELIMINARIES

Throughout this paper we shall assume, unless stated otherwise, that X is a completely regular Hausdorff space and E is a non-trivial Hausdorff topological vector space. Let $S^+(X)$ denote the set of
all non-negative upper-semicontinuous functions on \(X \), and let \(S^+_\alpha(X) \) (respectively \(S^-_{\alpha}(X) \)), be the subset of \(S^+(X) \) consisting of those functions vanishing at infinity (respectively having compact support). A \textit{Nachbin family} on \(X \) is a subset \(V \) of \(S^+(X) \) such that, given \(u, v \in V \), there exist \(w \in V \) and \(t > 0 \) so that \(u, v \leq tw \) (pointwise), the elements of \(V \) are called \textit{weights}. Let \(C(X,E) \) (\(C_0(X,E) \)) be the vector space of all continuous (and bounded) \(E \)-valued functions on \(X \), and let \(CV_0(X,E) \) (\(CV(X,E) \)) denote the subspace of \(C(X,E) \) consisting of those \(f \) such that \(vf \) is bounded (vanishes at infinity) for each \(v \in V \). When \(E = C \) (or \(R \)), these spaces are denoted by \(C(X), C_0(X), CV(X), \) and \(CV_0(X) \).

If \(\phi \in C(X) \) and \(a \in E \), then \(\phi \otimes a \) is a function in \(C(X,E) \) defined by \((\phi \otimes a)(x) = \phi(x)a(x) \in X \). If \(U \) and \(V \) are two Nachbin families on \(X \) and, for each \(u \in U \), there is a \(v \in V \) such that \(u \leq v \), then we write \(U \leq V \). If, for each \(x \in X \), there is a \(v \in V \) with \(v(x) \neq 0 \), we write \(V > 0 \). For any function \(\theta : X \to C \), we let \(\theta|_V = \{ v|_V : v \in V \} \).

Given any Nachbin family \(V \) on \(X \), the \textit{weighted topology} \(w_\theta \) on \(CV_0(X,E) \) is defined as the linear topology which has a base of neighborhoods of \(0 \) consisting of all sets of the form

\[
N(v,G) = \{ f \in CV_0(X,E) : (vf)(X) \subseteq G \},
\]

where \(v \in V \) and \(G \) is a neighborhood of \(0 \) in \(E; CV_0(X,E) \) endowed with \(w_\theta \) is called a \textit{weighted space}. We mention that if \(V = S^+_\alpha(X) \), then \(CV_0(X,E) = CV(X,E) = C_\alpha(X,E) \) and \(w_\theta = \beta \), the strict topology and write as \((C_\alpha(X,E),\beta) \); if \(V = S^-_{\alpha}(X) \), then \(CV_0(X,E) = CV_0(X,E) = C(X,E) \) and \(w_\theta = k \), the compact-open topology and we write as \((C(X,E),k) \). For more information on weighted spaces, we refer to [1-2,9-14] when \(E \) is a scalar field or a locally convex space and to [1,3-5,8] in the general setting.

Let \(\theta : X \to C \) and \(\psi : X \to E \) be two mappings, and let \(L(X,E) \) be the vector space of all functions from \(X \) into \(E \). The scalar multiplication on \(E \) and, in case \(E \) is an algebra, multiplication on \(E \) give rise to two linear mappings \(M_\theta \) and \(M_\psi \) from \(CV_0(X,E) \) into \(L(X,E) \) defined by \(M_\theta(f) = \theta f \) and \(M_\psi(f) = \psi f \), where the product of functions is defined pointwise. If \(M_\theta \) and \(M_\psi \) map \(CV_0(X,E) \) into itself and are continuous, they are called \textit{multiplication operators} on \(CV_0(X,E) \) induced by \(\theta \) and \(\psi \) respectively.

A neighborhood \(G \) of \(0 \) in \(E \) is called \textit{shrinkable} if \(rG \subseteq int G \) for \(0 \leq r < 1 \). By ([6], Theorems 4 and 5), every Hausdorff topological vector space has a base of shrinkable neighborhoods of \(0 \) and also the Minkowski functional \(\rho_G \) of any such neighborhood \(G \) is continuous.

Now let \(E \) be a topological algebra with jointly continuous multiplication and having \(W \), a base of neighborhoods of \(0 \). Then, given any \(G \in W \), there exists an \(H \in W \) such that \(H^2 \subseteq G \). (Here \(H^2 = \{ ab : a, b \in H \} \).) A subset \(G \in W \) is called \textit{idempotent} (or multiplicative) if \(G^2 \subseteq G \). Following Zelazko ([16], p. 31), \(E \) is said to be a \textit{locally idempotent algebra} if it has a base of neighborhoods of \(0 \) consisting of idempotent sets. It is easily seen that if \(G \in W \) is idempotent, then \(\rho_G \) is submultiplicative \(\rho_G(ab) \leq \rho_G(a)\rho_G(b) \) for all \(a, b \in E \), further, if \(E \) has an identity \(e \), \(\rho_G(e) \geq 1 \). The notion of locally idempotent algebras is a strict generalization of the notion of locally \(m \)-convex algebras introduced by Michael [7] (see also [15, p. 348]).

3. \textbf{CHARACTERIZATION OF MULTIPLICATION OPERATORS}

In this section, we give necessary and sufficient conditions for \(M_\theta \) and \(M_\psi \) to be the multiplication operators on the weighted space \(CV_0(X,E) \). (These results hold also for the space \(CV(X,E) \) with slight modification in the proofs and are therefore omitted.) To avoid trivial cases we assume that the Nachbin family \(V \) on \(X \) satisfies the following conditions

\begin{itemize}
 \item[(*)] \(V > 0 \),
 \item[(**)] corresponding to each \(x \in X \), there exists an \(h_x \in CV_0(X) \) such that \(h_x(x) \neq 0 \) (This holds in particular, when each \(v \) in \(V \) vanishes at infinity or \(X \) is locally compact.)
\end{itemize}

\textbf{Theorem 3.1.} For a mapping \(\theta : X \to C \), the following are equivalent:
MULTIPLICATION OPERATORSON WEIGHTED SPACES

(a) θ is continuous and $V|\theta| \leq V$;

(b) M_θ is a multiplication operator on $CV_0(X, E)$.

PROOF. Let W be a base of closed, balanced, and shrinkable neighborhoods of 0 in E.

(a) \Rightarrow (b). We first show that M_θ maps $CV_0(X, E)$ into itself. Let $f \in CV_0(X, E)$, and let $\nu \in V$ and $G \in W$. Choose $u \in V$ such that $\nu|\theta| \leq u$. There exists a compact set $K \subseteq X$ such that $u(x)f(x) \in G$ for all $x \in X \setminus K$. Then, since G is balanced,

$$v(x)M_\theta(f)(x) = v(x)\theta(x)f(x) \in G$$

for all $x \in X \setminus K$. Hence $vM_\theta(f)$ vanishes at infinity; further, since θ is continuous, $M_\theta(f) \in CV_0(X, E)$. To prove the continuity of M_θ, let $\{f_\alpha\}$ be a net in $CV_0(X, E)$ with $f_\alpha \rightarrow 0$. Let v, G and u be chosen as above. Choose an index α_0 such that $f_\alpha \in N(u, G)$ for all $\alpha \geq \alpha_0$. Then it follows that $\theta f_\alpha \in N(v, G)$ for all $\alpha \geq \alpha_0$. Thus $M_\theta(f_\alpha) \rightarrow 0$. So M_θ is continuous at 0 and hence, by linearity, it is continuous on $CV_0(X, E)$.

(b) \Rightarrow (a). We first show that θ is continuous. Let $\{x_\alpha\}$ be a net in X with $x_\alpha \rightarrow x \in X$. By assumption (**), there exists an $h \in CV_0(X)$ such that $h(x) \neq 0$. Since M_θ is a self-map on $CV_0(X, E)$, it follows that the function θh from X into C is continuous. Hence $\theta(x_\alpha)h(x_\alpha) \rightarrow \theta(x)h(x)$ and consequently $\theta(x_\alpha) \rightarrow \theta(x)$. We next show that $V|\theta| \leq V$. Let $\nu \in V$. By continuity of M_θ, given $G \in W$, there exist $u \in V$ and $H \in W$ such that

$$M_\theta(N(u, H)) \subseteq (v, G).$$

Without loss of generality we may assume that $G \cup H$ is a proper subset of E. Choose $a \in X \setminus (G \cup H)$, and put $t = \rho_H(a)/\rho_G(a)$. We claim that $\nu|\theta| \leq 2tu$. Fix $x_0 \in X$. We shall consider two cases: $u(x_0) \neq 0$ and $u(x_0) = 0$.

Suppose that $u(x_0) \neq 0$, and let $\epsilon = u(x_0)$. Then $D = \{x \in X : u(x) < 2\epsilon\}$ is an open neighborhood of x_0. Using the complete regularity of X and the assumption (**), there is an $h \in CV_0(X, E)$ with $0 \leq h \leq 1$, $h(x_0) = 1$, and $h(X \setminus D) = 0$. Define $f = (h \otimes a)/2\epsilon \rho_H(a)$. Since ρ_H is homogeneous, for any $x \in X$,

$$\rho_H(u(x)f(x)) = u(x)h(x)/2\epsilon < 1,$$

by considering the cases $x \in D$ and $x \in X \setminus D$. Since $H = \{b \in E : \rho_H(b) \leq 1\}$, we have $f \in N(u, H)$. Hence, by (1), $\theta f \in N(v, G)$. This implies that, for any $x \in X$,

$$\rho_G(\theta(x)v(x)h(x)a/2\epsilon \rho_H(a)) \leq 1,$$

or $\nu(x)h(x)|\theta(x)| \leq 2\epsilon u(x_0)$. In particular, $\nu(x_0)|\theta(x_0)| \leq 2tu(x_0)$.

Now suppose that $u(x_0) = 0$ but $v(x_0)|\theta(x_0)| > 0$. Put $\epsilon = v(x_0)|\theta(x_0)|/2t$. Let $D = \{x \in X : u(x) < \epsilon\}$, and choose an $h \in CV_0(X)$ as above. Define $g = (h \otimes a)/\epsilon \rho_H(a)$. We easily have $g \in N(u, H)$ and hence $\theta g \in N(v, G)$. From this we obtain

$$v(x_0)|\theta(x_0)| \leq t \epsilon = v(x_0)|\theta(x_0)|/2,$$

which is impossible unless $u(x_0)|\theta(x_0)| = 0$. This completes the proof.

We next consider the case of the operator M_ψ.

THEOREM 3.2. Let E be a Hausdorff locally idempotent algebra with identity e and W a base of neighborhoods of 0. Then, for a mapping $\psi : X \rightarrow E$, the following are equivalent:

(a) ψ is continuous and $V \rho_G \circ \psi \leq V$ for every $G \in W$.

(b) M_ψ is a multiplication operator on $CV_0(X, E)$.

PROOF. We may assume that W consists of closed, balanced, shrinkable, and idempotent sets.
(a) ⇒ (b) We first show that M_ψ maps $CV_0(X, E)$ into itself. Let $f \in CV_0(X, E)$, and let $v \in V$ and $G \in W$. Choose $u \in V$ such that $V \rho_0 \circ \psi \leq u$. There exists a compact set $K \subseteq X$ such that $u(x)f(x) \in G$ for all $x \in X \setminus K$. Since ρ_0 is submultiplicative, for any $x \in X \setminus K$, we have

$$\rho_0(u(x)f(x)) \leq u(x)\rho_0(f(x)) \leq u(x) \rho_0(G(f(x))) \leq 1;$$

hence $M_\psi(f) \in CV_0(X, E)$. Using again the submultiplicativity of ρ_0, the continuity of M_ψ follows in the same way as in the proof of Theorem 1.

(b) ⇒ (a). Let $\{x_\alpha\}$ be a net in X such that $x_\alpha \to x \in X$. Choose an $h \in CV_0(X)$ with $h(x) \neq 0$ since M_ψ is a self-map on $CV_0(X, E)$, it follows that the function $\psi(h(x \otimes a))$ from X into E is continuous.

Hence $h(x_\alpha) \psi(x_\alpha) \to h(x) \psi(x)$ and consequently $\psi(x_\alpha) \to \psi(x)$. This proves the continuity of ψ. Next, let $v \in V$ and $G \in W$. There exist $u \in V$ and $H \in W$ such that

$$M_\psi(N(u, H)) \subseteq N(v, G). \hspace{1cm} (2)$$

Without loss of generality, we may assume that H is a proper subset of E. We claim that $\rho_0 \circ \psi \leq 2\rho_H(e)u$.

Fix $x_0 \in X$. First assume that $u(x_0) \neq 0$, and let $\epsilon = u(x_0)$. Then $D = \{x \in X : u(x) < 2\epsilon\}$ is an open neighborhood of x_0, so there exists an $h \in CV_0(X)$ such that $0 \leq h \leq 1, h(x_0) = 1$, and $h(X \setminus D) = 0$. Define $f = (h \otimes e)/2\rho_H(e)$. Then, for any $x \in X$,

$$\rho_H(u(x)f(x)) = \rho_H(u(x)h(x)e)/2\rho_H(e) \leq 1;$$

that is, $f \in N(u, H)$. Hence, by (2), $\psi f \in N(v, G)$. This implies that, for any $x \in X$,

$$v(x_0)h(x)\rho_0(\psi(x)) \leq 2\epsilon \rho_H(e).$$

In particular, $v(x_0)\rho_0(\psi(x_0)) \leq 2\rho_H(e)u(x_0)$. Next suppose that $u(x_0) = 0$, but $v(x_0)\rho_0(\psi(x_0)) > 0$. Put $\epsilon = v(x_0)\rho_0(\psi(x_0))/2\rho_H(e)$. Let $D = \{x \in X : u(x) < \epsilon\}$, and choose an $h \in CV_0(X)$ as above.

Define $g = (h \otimes e)/\epsilon \rho_H(e)$. Then $g \in N(u, H)$, so by (2), $\psi g \in N(v, G)$. From this we obtain

$$v(x_0)\rho_0(\psi(x_0)) \leq \rho_H(e)\epsilon = v(x_0)\rho_0(\psi(x_0))/2,$$

which is impossible unless $v(x_0)\rho_0(\psi(x_0)) = 0$. This completes the proof.

Finally, we apply the above results to the cases: $V = S^+_\infty(X)$ and $V = S^+_0(X)$ and obtain the following.

THEOREM 3.3.

(i) If $\theta : X \to C$ is a continuous mapping, then M_ψ is a multiplication operator on $(C(X, E), k)$.

(ii) If E is a Hausdorff locally idempotent algebra with identity e and $\psi : X \to E$ a continuous mapping, then M_ψ is a multiplication operator on $(C(X, E), k)$.

PROOF. (i) In view of Theorem 1, we only need to verify that $V|\theta| \leq V$, where $V = S^+_\infty(X)$. Let $v \in V$. Choose a compact set $K \subseteq X$ with $v(x) = 0$ for all $x \in X \setminus K$. Let $s = \sup\{|\theta(x)| : x \in K\}$ and $t = \sup\{v(x) : x \in K\}$, and let $u = st_{XK}$. Then $u \in V$ and clearly $v(x)|\theta(x)| \leq u(x)$ for all $x \in X$.

(ii) Let W be a base of neighborhoods of 0 in E consisting of closed, balanced, shrinkable, and idempotent sets. In view of Theorem 2, we only need to verify that $V \rho_0 \circ \psi \leq V$ for every $G \in W$, where $V = S^+_\infty(X)$. Let $v \in V$ and $G \in W$. Choose a compact set $K \subseteq X$ with $v(x) = 0$ for all $x \in X \setminus K$. Let $s = \sup\{\rho_0(\psi(x)) : x \in K\}$ and $t = \sup\{v(x) : x \in K\}$, and let $u = st_{XK}$. Then $u \in V$ and clearly $v(x)\rho_0(\psi(x)) \leq u(x)$ for all $x \in X$. This completes the proof of the theorem.

REMARK. The above result need not hold for the space $(C_0(X, E), \beta)$. To see this, consider $X = \mathbb{R}^+$, $E = C$, and $V = S^+_0(X)$. Let $\theta : \psi : X \to C$ be a mapping given by $\theta(x) = x^2(x \in X)$, and let $v \in V$ be given by $v(x) = \frac{1}{x}(x \in X)$. Then $v(x)|\theta(x)| = x$ for all $x \in X$. Since each $u \in V$ is a bounded function, $v|\theta| \leq u$ for every $u \in V$. Hence $V|\theta| \leq V$ does not hold and so, by Theorem 1, M_θ
is not a multiplication operator on \((C_b(X), \beta)\). The same is also true for the space \((C_b(X), u)\), where \(u\) is the uniform topology, since \(\beta \leq u\). However, if \(\theta\) and \(\psi\) are bounded continuous functions, then it is easily seen that \(M_\theta\) and \(M_\psi\) are always multiplication operators on \(CV_0(X, E)\) for any Nachbin family \(V\).

ACKNOWLEDGMENT. One of the authors (A. B. Thaheem) wishes to acknowledge the support provided by King Fahd University of Petroleum and Minerals during this research.

REFERENCES

[1] BIERSTEDT, K.D., Gewichtete Räume stetiger vektorwertiger funktionen und das injektive tensorprodukt, I, J. Reine Angew. Math. 259 (1973), 186-210, II, J. Reine Angew. Math., 260 (1973), 133-146.

[2] BIERSTEDT, K.D., MEISE, R. and SUMMERS, W.H., A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160.

[3] KHAN, L.A., The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1979), 35-41.

[4] KHAN, L.A., Weighted topology in the non-locally convex setting, Mat. Vesnik 37 (1985), 189-195.

[5] KHAN, L.A., On approximation in weighted spaces of continuous vector-valued functions, Glasgow Math. J. 29 (1987), 65-68.

[6] KLEE, V., Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281-285.

[7] MICHAEL, E.A., Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).

[8] NAWROCKI, M., On weak approximation and convexification in weighted spaces of vector-valued continuous functions, Glasgow Math. J. 31 (1989), 59-64.

[9] NACHBIN, L., Weighted approximation for algebras and modules of continuous functions: real and self-adjoint complex cases, Ann. of Math. 81 (1965), 289-302.

[10] NACHBIN, L., Elements of Approximation Theory, Math. Studies 14 (D. Van Nostrand, Princeton, 1967).

[11] PROLLA, J.B., Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura. Appl. 89 (1971), 145-158.

[12] SINGH, R.K. and MANHAS, J.B., Multiplication operators on weighted spaces of vector-valued continuous functions, J. Austral. Math. Soc. (Series A) 50 (1991), 98-107.

[13] SINGH, R.K. and SUMMERS, W.H., Composition operators on weighted spaces of continuous functions, J. Austral. Math. Soc. (Series A) 45 (1988), 303-319.

[14] SUMMERS, W.H., A representation theorem for biequicontinuous completed tensor products of weighted spaces, Trans. Amer. Math. Soc. 146 (1969), 121-131.

[15] ZELAZKO, W., On the locally bounded and \(m\)-convex topological algebras, Studia Math. 19 (1960), 333-358.

[16] ZELAZKO, W., Metric generalizations of Banach algebras, Rozprawy Matematyczne 47 (1965), Warszawa.
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation
http://www.hindawi.com