Corresponding author(s): Double-blind peer review submissions: write DBPR and your manuscript number here instead of author names.

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

n/a	Confirmed
	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
	An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
	The statistical test(s) used AND whether they are one- or two-sided
	Only common tests should be described solely by name; describe more complex techniques in the Methods section.
	A description of all covariates tested
	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
	For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted. Give P values as exact values whenever suitable.
	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
	Clearly defined error bars
	State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection	Standard default instrument software for was used for raw data collection
Data analysis	Excel and GraphPad Prism6 were used for data analysis and plotting. FlowJo was used for flow cytometry analysis. Image Lab software were used for Native PAGE and SDS PAGE. Coreldraw was used to arrange figures.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All raw data are available upon request.
Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

We did not predetermine sample size using software. For in vivo studies, sample sizes are indicated in the methods and/or figures captions. For mouse immunization and functional assays, each group used n=10 mice, as this sample size was chosen based on previous papers. For example, reference: Sci Rep. 2016 Jan 8;6:18848 and Infect Immun. 2015 May;83(5):1799-808. For other studies, sample sizes are described in each figure legend.

From past experience, we expected the number of mice required for the local reactogenicity was n=3 and for adjuvant experiment, n=4. Because we assumed our liposomal adjuvant can induced higher titer and low local reactogenicity, and n=3-4 mice are effective size for these experiment.

Toxicity studies and draining lymph node studies (uptake, germinal center B cells, follicular helper T cells and cell recruitment), used n=5 mice and for antibody durability studies n=6 mice per group were used. From past experience, n=5-6 mice per group is an appropriate size for those experiments..

For rabbit immunization studies, each group contained n=3-4 rabbits. The sample size were chosen based on previous reference: BMC Biotechnol. 2015 Dec 1;15:108.

Data exclusions

No data were excluded.

Replication

Experiments were repeated in at least three independent experiments. Details are provided in the figure captions. Antigen/liposomes binding assays in this study correspond to separately setup experiments. Binding has been tested separately by two individuals in our lab according to standard protocol. Serum from immunized mice has been checked by two independent labs after shipping (NIAID and SUNY at Buffalo). ELISA results were consistent in two independent labs.

Randomization

There was no randomization in these experiments, beyond randomly grouping mice into varying groups without a formal protocol. The samples for injection were not randomized, each adjuvant has a different appearance. Rabbits were randomly separated into groups for vaccination.

Blinding

Blinding was not used in our experiments. ELISA and SMFA results were performed in the NIAID lab using shipped serum, with no or minimal knowledge of sample identification, however samples were not formally blinded.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a

Methods

n/a

Antibodies

Antibodies were purchased from BioLegend, and were diluted 400 times prior to use.

I. For flow cytometry

I-a. Immune cell recruitment in lymph nodes, Bioregion (Fig 3C, Fig S8)

CD11c_APC Cy7 (Clone: N418; Cat. 117323; Lot B237078)

CD3 PerCP/Cy5.5 (Clone: 17A2; Cat. 100217; Lot B233419)

I-A/I-E Alex Fluor 700 (Clone: M5/114.15.2; Cat. 107621; Lot B24168)

F4/80 Pacific Blue (Clone: BM8; Cat. 123123; Lot B217177)

Ly-6G PE (Clone: 1A8; Cat. 127607; Lot B235376)
Ly-6C (Clone: HK1.4; Cat. 128021; Lot B221000)
CD11b PE/Cy7 (Clone: M1/70; Cat. 101215; Lot B249267)
I-b. Antigen uptake into draining lymph node immune cells Biolegend (Fig 3F, Fig S11)
I-A/I-E Pacific Blue (Clone: M5/114.15.2; Cat. 107619; Lot: B252426)
CD11c APC (Clone: N418; Cat. 117310; Lot: B253461)
F4/80 PE (Clone: BMB; Cat. 123109; Lot: B251636)
I-c. GC B cells staining (Fig 3H, Fig S13)
GL7 Pacific Blue (Clone: M5/114.15.2; Cat. 107619; Lot: B252426)
CD11c APC (Clone: N418; Cat. 117310; Lot: B253461)
F4/80 PE (Clone: BM8; Cat. 123109; Lot: B251636)
I-d. Tfh cells, Biolegend (Fig 3I, Fig S14)
CXCR5 APC (Clone: L13D7 Cat. # 145505; Lot B243941)
PD-1 PE (Clone: 29F.1A12; Cat. 135205; Lot: B251877)
Alexa Fluor 488 CD4 (Clone: GK1.5; Cat # 100425; Lot: B238433)
I-e. Assessing long-lived plasma cells, Biolegend (Fig 4B, Fig S15)
B220 APC (Clone: RA3-68; Cat # 103211; Lot: B205878)
CD138 PE (Clone: 281-2; Cat # 142503; Lot: B246402)
I-f. BMDC activation (Fig 3G, Fig S12)
CD11c FITC (Clone: N418; Cat. 117313; Lot: B230157)
CD80 APC (Clone: 16-10A1; Cat. 104713; Lot: B248973)
CD40 Pacific Blue (Clone: 3/23; Cat. 124625; Lot: B242315)
I-A/I-E PE (Clone: M5/114.15.2; Cat. 107607; Lot: B221907)
II. For Immunoprecipitation clonal (Fig 1F)
II-a. Monoclonal Antibody 4B7 Anti-Plasmodium falciparum 25 kDa Gamete Surface Protein (Pfs25) (Cat MRA-28; Lot 60673339)
III. For Indirect immunofluorescence assay (IFA) (Fig 6F, Fig S19)
III-a. Goat anti-Mouse IgG (H&L) - Affinity Pure, DyLight®488 Conjugate (Cat. GtxMu-003-D488NHSX; Lot 61-69-031618)

Validation

The validation of the antibodies are provided on their manufacturer website (https://www.biolegend.com/)
I-a. Immune cell recruitment in lymph nodes, Biolegend (Fig 3C, Fig S8)
CD11c APC Cy7 https://www.biolegend.com/en-us/products/apc-cy7-anti-mouse-cd11c-antibody-3931
CD3 PerCP/Cy5.5 https://www.biolegend.com/en-us/products/percp-cy5-5-anti-mouse-cd3-antibody-5596
I-A/I-E Alex Fluor 700 https://www.biolegend.com/en-us/products/alexaf700-anti-mouse-i-a-i-e-antibody-3413
F4/80 Pacific Blue https://www.biolegend.com/en-us/products/pacific-blue-anti-mouse-f4-80-antibody-4075
Ly-6G PE https://www.biolegend.com/en-us/products/pe-anti-mouse-ly-6g-antibody-4777
Ly-6C https://www.biolegend.com/en-us/products/ly6c-anti-mouse-ly-6c-antibody-6756
CD11b PE/Cy7 https://www.biolegend.com/en-us/products/pe-cy7-anti-mouse-human-cd11b-antibody-1921
I-b. Antigen uptake into draining lymph node immune cells Biolegend (Fig 3F, Fig S11)
A/I-E Pacific Blue https://www.biolegend.com/en-us/products/pacific-blue-anti-mouse-i-a-i-e-antibody-3136
CD11c APC https://www.biolegend.com/en-us/products/apc-anti-mouse-cd11c-antibody-1813
F4/80 PE https://www.biolegend.com/en-us/products/pe-anti-mouse-f4-80-antibody-4068
I-c. GC B cells staining (Fig 3H, Fig S13)
GL7 Pacific Blue https://www.biolegend.com/en-us/products/pacific-blue-anti-mouse-human-gl7-antigen-t-and-b-cell-activation-marker-antibody-9580
CD138 PE https://www.biolegend.com/en-us/products/pe-anti-mouse-cd138-syndecan-1-antibody-7519
I-d. Tfh cells, Biolegend (Fig 3I, Fig S14)
CXCR5 APC https://www.biolegend.com/en-us/products/apc-anti-mouse-cxcr5-antibody-8456
PD-1 PE https://www.biolegend.com/en-us/products/pe-anti-mouse-pd-1-antibody-6170
Alexa Fluor 488 CD4 https://www.biolegend.com/en-us/products/alexaf488-anti-mouse-cd4-antibody-2695
I-e. Assessing long-lived plasma cells, Biolegend (Fig 4B, Fig S15)
B220 APC https://www.biolegend.com/en-us/products/pe-anti-mouse-human-cd45r-b220-antibody-442
I-f. BMDC activation (Fig 3G, Fig S12)
CD11c FITC https://www.biolegend.com/en-us/products/apc-anti-mouse-cd11c-antibody-442
CD80 APC https://www.biolegend.com/en-us/products/apc-anti-mouse-cd80-antibody-2340
CD40 Pacific Blue https://www.biolegend.com/en-us/products/apc-anti-mouse-cd40-antibody-8104
I-A/I-E PE https://www.biolegend.com/en-us/products/pe-anti-mouse-i-a-i-e-antibody-367
II. For Immunoprecipitation clonal (Fig 1F)
II-a. Monoclonal antibody 487 Anti-Plasmodium falciparum 25 kDa Gamete Surface Protein (Pfs25)
https://www.beiresources.org/Catalog/BEIMonoclonalAntibodies/MRA-28.aspx
III. For indirect immunofluorescence assay (IFA) (Fig 6F, Fig S19)
III-a. Goat anti-Mouse IgG (H&L) - Affinity Pure, DyLight®488 Conjugate https://www.immunoreagents.com/products/view/1018-goat-anti-mouse-igg-hl-affinity-pure

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)
RAW264.7 cells were from ATCC. Bone-marrow cells were collected fresh from ICR mice.
Authentication

No authentication was carried out. Cell morphology and adhesion was consistent with expectations.

Mycoplasma contamination

Cell lines were not tested for mycoplasma.

Commonly misidentified lines

(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

8-week-old female CD-1 mice, 10-12 week old female New Zealand white rabbits.

Wild animals

This study did not involve wild animals.

Field-collected samples

This study did not involve field-collected samples.

Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

For immune cell recruitment in lymph nodes, (Fig 3C, Fig S8)

Mice were injected intramuscularly with CoPoP/PHAD liposomes or Alum with 100 ng of Pfs25. 48 hr after injection, mice were sacrificed and lymph nodes were collected for cell extraction. Cells were fixed with 4 % PFA for 15 min at room temperature, and washed with PBS for 3 times. Cells were stained with combination antibodies against Ly6C, CD11b, Ly6G, CD11c, CD3, I-A/I-E and F4/80, for 1 hr on ice.

For antigen uptake into draining lymph node immune cells (Fig 3F, Fig S11)

Cells collected from the lymph node were from mice injected with Pfs25 oyster-488, after 2 days of injection the mice were sacrificed and lymph node were collected and pass through cell strainer. The cells were later fix with 4% PFA and stained with fluorescence-labeled antibodies. Cells (5X10^5 cells per tube) were aliquot into each tube for staining with specific antibodies, including I-A/I-E (MHCII), PE F4/80, APC CD11c, APC CD45R/B220. The cells were stained for 30 min at room temperature, and followed by 3 time washing with PBS.

For GC B cells staining (Fig 3H, Fig S13) and Tfh cells (Fig 3I , Fig S14)

For GC cells and Tfh cell populations, mice received 1 μg Pfs25 adjuvanted with CoPoP/PHAD or Alum. 14 days after immunization, mice were sacrificed and the inguinal LN were collected. Cells extracted from the lymph nodes were fixed with 4% paraformaldehyde for 15 min at room temperature, washed three times with 3 mL PBS with centrifugation at 500 rcf for 5 min. 5X10^5 cells per tube were than stained for 1 hr on ice with antibodies against B220, CD95, GL7. CD4, CXCR5 or PD-1 prior to flow cytometry.

For assessing long-lived plasma cells (Fig 4B, Fig S15)

Bone marrow cells collected from mice, the cells were collected and pass through cell strainer. Red blood cells were lysis using commercial lysis buffer. Later the cells were fix with 4% PFA and stained with fluorescence-labeled antibodies, followed by intracellular staining with intracellular marker. Cell (5X10^5 cells per tube) were then stained for 15 min at room temperature, and followed by 3 time washing with PBS. Cells were later permeabilized with 0.1 % Triton X-100 and stained with Pfs25-oyster488, followed by 3 times washing with 0.1% Triron X-100, and 3 time washing with PBS.

For BMDC activation (Fig 3G, Fig S12)

After cells incubated for 24 hr with CoPoP/PHAD, CoPoP, and PBS mixed at 1 μg/mL Pfs25, with a fixed 4:1 mass ratio of CoPoP to Pfs25. Cells were washed with PBS containing 0.1% BSA for 3 times, and stained with antibodies against CD11c, CD40, CD80 and MHC-II for 1 hr on ice prior to flow cytometry.

Instrument

The instrument we used for data collection is the BD LSFRFortessa X-20.

Software

The software we used for flow analysis is FlowJo V10.

Cell population abundance

For the lymph node, there are 7.5% of B220 positive cells, 4.5 % of MHCII cells, 1.5 % of CD 11c positive cells, and 2.5 % of F4/80 positive cells.

For Bone marrow cells, there are 0.8% of CD138 positive and B220 negative cells.

For GC B cells, ~10% of B220+ cells and 2.43% of CD95+GL7+ cells in CoPoP treated groups and 1% in control.

For Tfh cells, ~65% of CD4+ cells with 0.85% of CXCR5+PD1+ cells in CoPoP treated group and 0.065% in control.

For BMDC cells, there are 85% CD11c+ cells and ~18% MHCII+ cells for both control and CoPoP group. 88% of CD40+ cells in CoPoP group, and 42% of CD40+ cells in control: 82.2% of CD80+ cells in CoPoP group, and 51.1% of CD80+ cells in control.
Gating strategy

I. For immune cell recruitment in lymph nodes, (Fig 3C, Fig S8)
Cells were first gated with CD11c and CD11b (Fig S8A). Then immune cells were identified based on surface marker in CD11chigh and CD11blow, neutrophils (Ly6Ghigh)(Fig S8D), eosinophils (Ly6Gint, F4/80int, SSC)(Fig S8E), monocytes (Ly6C high)(Fig S8C) and macrophage (F4/80 high)(Fig S8B). Three types of DC cells were gated (Fig S8F), for myeloid DC, we first gate CD11chigh and CD11bhigh, then gated MHC-II positive cells.

II. For antigen uptake into draining lymph node immune cells (Fig 3F, Fig S11)
The cells were first gated with SSC/FSC, then compared to the unstained cells, the population of cells were gated with B220 positive, I-A/I-E positive, CD 11c positive and F4/80 positive. Later on, by comparing the groups of Pfs25-oyster 488 injected mice to the group of untreated mice, the Pfs25 positive cells were gated.

III. For GC B cells staining (Fig 3H, Fig S13) and Tfh cells (Fig 3I, Fig S14)
GC B cells: The cells were gated with SSC/FSC, then gated with B220 + cells, and finally gated with GL7+CD95+ cells.
Tfh cells: The cells were gated with SSC/FSC, then gated with CD4 + cells, and finally gated with CXCR5+PD-1+ cells.

For assessing long-lived plasma cells (Fig 4B, Fig S15)
The cells were first gated with SSC/FSC, then compared to the unstained cells, the population of cells were gated with CD138 positive and B220 negative. Pfs25 positive cells were gated by comparing control mice to immunized mice.

IV. For BMDC activation (Fig 3G, Fig S12)
The cells were first gate with SSC/FSC, then gated with CD40, CD80, MHCII or CD11c positive cells.

- Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.