An Asymptotically Optimal Algorithm for Maximum Matching in Dynamic Streams

Vihan Shah

Department of Computer Science
Rutgers University

February 1, 2022

Joint work with Sepehr Assadi
Matching Problem

- Graph $G = (V, E)$
- Matching: $M \subseteq E$, (V, M) has max degree 1
- Maximum matching: Matching M^* of the largest size
Streaming Setting

Continuous Data Streams → Memory
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

![Graph Diagram]
Streaming Setting

- \(G = (V, E) \)
- Edges of \(G \) appear in a stream
- Dynamic Stream: Insertions or Deletions

\[
\begin{align*}
\text{\circle{}} - \text{\circle{}} \\
\text{\circle{}} - \text{\circle{}} \\
\text{\circle{}} - \text{\circle{}}
\end{align*}
\]
Streaming Setting

- \(G = (V, E) \)
- Edges of \(G \) appear in a stream
- Dynamic Stream: Insertions or Deletions

Diagram:

```
  O---O
 |
 O---O
 |
 O   O
```
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- \(G = (V, E) \)
- Edges of \(G \) appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- \(G = (V, E) \)
- Edges of \(G \) appear in a stream
- Dynamic Stream: Insertions or Deletions

![Diagram of a graph with edges]

Vihan Shah
Dynamic Streaming Matching
February 1, 2022
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
- Output a solution at the end of the stream
- Goal: Minimize Memory
Introduction

Lower Bound

- Maximum Matching Lower bound: $\Omega(n^2)$ bits [FKM+05]
- Store the input: $O(n^2)$ bits
- No non-trivial solution
Approximation

- Question: What about an α approximation?
- Return a matching M of size at least $\frac{|M^*|}{\alpha}$
- Can we get $o(n^2)$ space?
- What is the trade off between α and the space?
Previous Work

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/\alpha^4)$

Space-Approximation Tradeoff

Gap: $\alpha^2 \cdot n^{0.5}$
Previous Work

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/\alpha^4)$
[AKLY16]	$\tilde{O}(n^2/\alpha^3)$	$\Omega(n^{2-o(1)}/\alpha^3)$

Space-Approximation Tradeoff

[AKLY16] $\tilde{O}(n^2/\alpha^3)$

Gap: $n^{o(1)}$
Previous Work

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/\alpha^4)$
[AKLY16]	$\tilde{O}(n^2/\alpha^3)$	$\Omega(n^{2-o(1)}/\alpha^3)$
[CCE+16]	$\tilde{O}(n^2/\alpha^3)$	

Gap: $n^{o(1)}$

Space-Approximation Tradeoff

1. ![Diagram showing the tradeoff between space and approximation error](diagram.png)
Previous Work

Result	Upper Bound	Lower Bound
[Kon15]	$O(n^2/\alpha^2)$	$\Omega(n^{1.5}/\alpha^4)$
[AKLY16]	$\tilde{O}(n^2/\alpha^3)$	$\Omega(n^{2-o(1)}/\alpha^3)$
[CCE+16]	$\tilde{O}(n^2/\alpha^3)$	
[DK20]	$\Omega(n^2/\alpha^3)$	$\tilde{O}(n^2/\alpha^3)$

Space-Approximation Tradeoff

[DK20]: $\Omega(n^2/\alpha^3) \rightarrow \tilde{O}(n^2/\alpha^3)$

[AKLY16]: $\tilde{O}(n^2/\alpha^3) \rightarrow \Omega(n^{2-o(1)}/\alpha^3)$

Gap: polylog(n)
Previous work

- Best known upper bound: $\tilde{O}(n^2/\alpha^3)$ bits ([AKLY16])
- Best known lower bound: $\Omega(n^2/\alpha^3)$ bits ([DK20])
- Gap of $\text{polylog}(n)$ bits
- These types of $\text{polylog}(n)$ gaps appear frequently in dynamic streams
- One key reason is a main technique for finding edges in a dynamic streams
Previous work

L_0-Samplers:

- It is **non-trivial** to find even one edge in a dynamic stream

- L_0-Samplers are a **key tool** to solve this problem

- They can sample an edge uniformly at random from a set of pairs of vertices undergoing edge insertions and deletions
Previous work

- L_0-Samplers can be implemented in $O(\log^3 n)$ bits of space (\cite{JST11})
- $\Omega(\log^3 n)$ bits are also necessary (\cite{Kap+17})
- Many problems in streaming have the polylog(n) overhead because of the use of L_0-samplers
- Connectivity has a lower bound of $\Omega(n \log^3 n)$ (\cite{NY19})
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

There is a dynamic streaming algorithm that with high probability outputs an \(\alpha \)-approximation to maximum matching using \(O\left(\frac{n^2}{\alpha^3}\right) \) bits of space for any \(\alpha \ll n^{1/2} \).

This closes the gap up to constant factors.

Some problems do not need the \(\text{polylog}(n) \) overhead:

If \(\alpha > n^{1/2} \) then there is not enough space to output the answer:

\[n^\alpha > n^{2/3} \]
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$.
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors

Some problems do not need the $\text{polylog}(n)$ overhead
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O(\frac{n^2}{\alpha^3})$ bits of space for any $\alpha \ll n^{1/2}$.

This closes the gap up to constant factors.

Some problems do not need the polylog(n) overhead.

If $\alpha > n^{1/2}$ then there is not enough space to output the answer:

$$\frac{n}{\alpha} > \frac{n^2}{\alpha^3}$$
We will now give a proof sketch
Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough
Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

All these assumptions can be lifted!
Approach

1. Match or Sparsify:
 - Either find a large matching
 - Or identify hard instances

2. Solve the hard instances

Note: We run these algorithms in parallel
Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:

- Either $|M_{\text{easy}}| = \Omega(n/\alpha)$
Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:

- Either $|M_{\text{easy}}| = \Omega(n/\alpha)$
- Or Subgraph induced on unmatched vertices has $\tilde{O}(n)$ edges and a matching of size $\Omega(n)$
Match Or Sparsify

Idea:

- Sample $O(n^2/\alpha^3 \text{polylog}(n))$ random edges

- L_0-samplers take space $\text{polylog}(n)$

- M_{easy} is a greedy matching over the sampled edges

- Similar to residual greedy property of matching (used in [Ahn+18, Kon18])

- Different proof but along the same lines
We know the partition at the end of the stream from Match Or Sparsify step

\[|M_{\text{easy}}| < \frac{n}{\alpha} \]

\[\tilde{O}(n) \text{ edges} \]
Consider the bipartite graph

\[n \quad \bigcirc \quad \bigcirc \quad n \]

\[\bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \]

\[\bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \]

\[|M_{\text{easy}}| < \frac{n}{\alpha} \]

\[O(n) \text{ edges} \]
Grouping

Random grouping on both sides

\[\frac{n}{\alpha} \quad \text{or} \quad \frac{n}{\alpha} \]

\[\begin{array}{c}
\text{\(\tilde{O}(n)\) edges} \\
|M_{\text{easy}}| < \frac{n}{\alpha}
\end{array} \]
Grouping

$\frac{1}{\alpha}$ fraction of groups on right are in the neighborhood of V_i

Done to reduce the neighbors of V_i
Recovery

- There are $\Omega(n/\alpha)$ pairs of groups with exactly one edge between them.

- V_i, V_j do not contain any vertices of M_{easy}.
Recovery

Want to recover the edge between V_i and V_j

$|M_{easy}| < n/\alpha$

$\tilde{O}(n)$ edges
Recovery

- V_i does not contain any vertices of M_{easy}
- Neighbors of V_i: $O(n/\alpha^2)$
- Trivial solution: $O((n/\alpha^2) \cdot \log n)$ bits
Recovery

- Goal: $O(n/\alpha^2)$ bits
- So n/α groups will imply space of $O(n^2/\alpha^3)$ bits
- V_j does not contain any vertices of M_{easy}
- Recover $N(V_i) - M_{\text{easy}}$

$V_i \overset{\text{edges}}{\longrightarrow} V_j$

$|M_{\text{easy}}| < n/\alpha$

$\tilde{O}(n)$ edges
Sparse neighborhood recovery sketch

- Given V_i at the beginning
- Given M_{easy} at the end
- Output: $N(V_i) - M_{\text{easy}}$
- Space: $O(n/\alpha^2)$ bits
Grouping

V_j lies completely within $N(V_i) - M_{easy}$
Recovery

- We know \(u \) is a neighbor of \(V_i \) (from Neighborhood sketch of \(V_i \))
- We know \(v \) is a neighbor of \(V_j \) (from Neighborhood sketch of \(V_j \))
- Thus, \((u, v)\) must be an edge
Summary

Concluding Remarks
Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.

[DK20] refers to a specific paper, and [NY19] is another paper. The overhead of L_0-samplers is not always necessary, unlike [NY19].
Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.

- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal.
Summary

- There is a dynamic streaming algorithm that w.h.p outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.

- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal.

- $\text{polylog}(n)$ overhead of L_0-samplers is not always necessary (Unlike [NY19]).
Open Problems

- These $\text{polylog}(n)$ overheads due to use of L_0-samplers are prevalent in dynamic stream literature.

- Can our techniques be used to bypass $\text{polylog}(n)$ overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity
Open Problems

- These $\text{polylog}(n)$ overheads due to use of L_0-samplers are prevalent in dynamic stream literature.

- Can our techniques be used to bypass $\text{polylog}(n)$ overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Thank you!