The Bohr Inequality for the Generalized Cesáro Averaging Operators

Ilgiz R. Kayumov, Diana M. Khammatova and Saminathan Ponnusamy

Abstract. The main aim of this paper is to prove a generalization of the classical Bohr theorem and as an application, we obtain a counterpart of Bohr theorem for the generalized Cesáro operator.

Mathematics Subject Classification. Primary 30A10, 30B10, 30C62, 30H05, 31A05, 41A58; Secondary 30C75, 40A30.

Keywords. Bohr inequality, Bohr radius, convolution, Gaussian hypergeometric functions, generalized Cesáro operators.

1. Introduction and Preliminaries

This work is connected with one of classical results known as Bohr’s theorem for the class \(B \) of analytic self mappings of the unit disk \(D := \{ z \in \mathbb{C} : |z| < 1 \} \). Harold Bohr’s initial result of 1914 has sharpened by several prominent mathematicians. Since then it has been a source of investigations in numerous other function spaces. The Bohr theorem in its final form says the following.

Theorem A [11, H. Bohr, 1914]. If \(f \in B \) and \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), then \(\sum_{n=0}^{\infty} |a_n| r^n \leq 1 \) for \(r \leq 1/3 \) and the constant \(1/3 \) cannot be improved.

The constant \(1/3 \) in this theorem is called the Bohr radius. Few other proofs of this result were also given (see [29]). It is also true [24] that \(\sum_{n=0}^{\infty} |a_n| (1/3)^n = 1 \) if and only if \(f \) is a constant function. However, there are a lot of generalizations and extensions of this theorem (cf. [12–14,29]). The interest on this topic was revived due to the discovery of extensions to domains in \(\mathbb{C}^n \) and to more general abstract setting in various contexts, due mainly to works of Aizenberg, Boas, Khavinson, and others (cf. [2–4,8,10,25]). In [2,4], multidimensional analogues of Bohr’s inequality in which the unit disk \(\mathbb{D} \) is replaced by a domain in \(\mathbb{C}^n \) were considered. One can also find some information about it, for example, in the survey by Abu-Muhanna et al. [6], [15, Chapter 8] and the monograph [21].
Another widely discussed problem is the investigation of the asymptotical behaviour of the Bohr sum. In this connection, a natural question is to ask for the best constant $C(r) \geq 1$ such that for $f \in \mathcal{B}$ we have

$$\sum_{n=0}^{\infty} |a_n| r^n \leq C(r).$$

Indeed, Bombieri [12] proved that

$$\sum_{n=0}^{\infty} |a_n| r^n \leq \frac{3 - \sqrt{8(1 - r^2)}}{r} \quad \text{for } 1/3 \leq r \leq 1/\sqrt{2}.$$

Later in [13], Bombieri and Bourgain proved that

$$\sum_{n=0}^{\infty} |a_n| r^n < \frac{1}{\sqrt{1 - r^2}} \quad \text{for } r > 1/\sqrt{2}$$

so that $C(r) \asymp (1 - r^2)^{-1/2}$ as $r \to 1$. In the same paper they also obtained a lower bound. Namely, they proved that for $\varepsilon > 0$ there exists a constant $c = c(\varepsilon)$ such that

$$\sum_{n=0}^{\infty} |a_n| r^n \geq (1 - r^2)^{-1/2} - \left(c \log \frac{1}{1 - r}\right)^{3/2+\varepsilon} \quad \text{as } r \to 1.$$

Some recent results on the topic can be found in [7,17–19,22,23,26,27].

The article is organized as follows. First, we consider a natural generalization of Theorem A and make it applicable to many situations (see Theorem 1). Secondly, in Sect. 3 as an application, we investigate a convolution counterpart of Bohr radius and also the operator counterpart of the so-called one parameter family of averaging Cesáro operator $C_1^\alpha f$, discussed for example in [1,28]. Finally, in Theorem 6, we discuss asymptotic Bohr radius for $C_1^1 f$.

2. Bohr Radius in General Form

Let $\{\varphi_k(r)\}_{k=0}^{\infty}$ be a sequence of nonnegative continuous functions in $[0,1)$ such that the series $\sum_{k=0}^{\infty} \varphi_k(r)$ converges locally uniformly with respect to $r \in [0,1)$.

Theorem 1. Let $f \in \mathcal{B}$, $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $p \in (0,2]$. If

$$\varphi_0(r) > \frac{2}{p} \sum_{k=1}^{\infty} \varphi_k(r) \quad \text{for } r \in [0,R),$$

where R is the minimal positive root of the equation

$$\varphi_0(x) = \frac{2}{p} \sum_{k=1}^{\infty} \varphi_k(x),$$

then the following sharp inequality holds:

$$B_f(\varphi,p,r) := |a_0|^p \varphi_0(r) + \sum_{k=1}^{\infty} |a_k| \varphi_k(r) \leq \varphi_0(r) \quad \text{for all } r \leq R.$$
In the case when \(\varphi_0(x) < \frac{2}{p} \sum_{k=1}^{\infty} \varphi_k(x) \) in some interval \((R, R + \varepsilon)\), the number \(R \) cannot be improved. If the functions \(\varphi_k(x) \) \((k \geq 0)\) are smooth functions then the last condition is equivalent to the inequality

\[
\varphi'_0(R) < \frac{2}{p} \sum_{k=1}^{\infty} \varphi'_k(R)
\]

Proof. For \(f \in \mathcal{B} \), an application of Schwarz–Pick lemma gives the inequality

\[
|a_k| \leq 1 - |a|^2
\]

for all \(k \geq 1 \) and thus, we get that

\[
\mathcal{B}_f(\varphi, p, r) \leq |a_0|^p \varphi_0(r) + (1 - |a_0|^2) \sum_{k=1}^{\infty} \varphi_k(r)
\]

\[
= \varphi_0(r) + (1 - |a_0|^2) \left[\sum_{k=1}^{\infty} \varphi_k(r) - \left(\frac{1 - |a_0|^p}{1 - |a_0|^2} \right) \varphi_0(r) \right]
\]

\[
\leq \varphi_0(r) + (1 - |a_0|^2) \left[\sum_{k=1}^{\infty} \varphi_k(r) - \frac{p}{2} \varphi_0(r) \right]
\]

\[
\leq \varphi_0(r), \quad \text{by Eq. (1),}
\]

for all \(r \leq R \), by the definition of \(R \). This proves the desired inequality (2). In the third inequality above, we have used the following fact:

\[
A(x) = \frac{1 - x^p}{1 - x^2} \geq \frac{p}{2} \quad \text{for all } x \in [0, 1)
\]

and there is nothing to prove for \(p = 2 \). This inequality is easy to verify. Indeed,

\[
A'(x) = -\frac{xM(x)}{(1 - x^2)^2}, \quad M(x) = (2 - p)x^p + px^{p-2} - 2,
\]

and, since \(M'(x) = -p(2 - p)x^{p-3}(1 - x^2) < 0 \) for \(x \in (0, 1) \) and for each \(p \in (0, 2) \), it follows that \(M(x) > M(1) = 0 \) and thus, \(A(x) \) is decreasing on \([0, 1)\). Hence \(A(x) \geq \lim_{x \to 1^-} A(x) = p/2 \), as desired.

Now let us prove that \(R \) is an optimal number. We consider the function

\[
f(z) = \frac{z - a}{1 - az}
\]

with \(a \in [0, 1) \). For this function we have
\[|a_0|^p \varphi_0(r) + \sum_{k=1}^{\infty} |a_k| \varphi_k(r) \]
\[= a^p \varphi_0(r) + (1 - a^2) \sum_{k=1}^{\infty} a^{k-1} \varphi_k(r) \]
\[= \varphi_0(r) + (1 - a) \left[2 \sum_{k=1}^{\infty} a^{k-1} \varphi_k(r) - p \varphi_0(r) \right] \]
\[- (1 - a) \left[(1 - a) \sum_{k=1}^{\infty} a^{k-1} \varphi_k(r) + \left(\frac{1 - a^p}{1 - a} - p \right) \varphi_0(r) \right] \]
\[= \varphi_0(r) + (1 - a) \left[2 \sum_{k=1}^{\infty} a^{k-1} \varphi_k(r) - p \varphi_0(r) \right] + O((1 - a)^2) \]
as \(a \to 1^- \). Now it is easy to see that the last number is \(> \varphi_0(r) \) when \(a \) is close to 1. The proof of the theorem is complete. □

Remark 1. Clearly for \(p > 2 \), we see that \(1 \leq A(x) < p/2 \) for \(x \in [0, 1) \), and thus, in this case, Theorem 1 holds by replacing the factor \(2/p \) in Eq. (1) by 1 and also at the other three places in the statement. The most important cases are at \(p = 1, 2 \).

Example 1. Suppose that \(f \in \mathcal{B} \), \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) and \(p \in (0, 2] \). Then Theorem 1 gives the following:

1. For \(\varphi_k(r) = r^k (k \geq 0) \), we easily have (see [9, Proposition 1.4] and [26, Remark 1])
\[|a_0|^p + \sum_{k=1}^{\infty} |a_k| r^k \leq 1 \quad \text{for} \quad r \leq R_1(p) = \frac{p}{2 + p} \]
and the constant \(R_1(p) \) cannot be improved. The case \(p = 1 \) is the classical Bohr inequality. The case \(p = 2 \) is due to [24] and the inequality in this case does play a special role. We remark that for \(p > 2 \), \(R_1(p) \) should be taken as 1/2.

2. For \(\varphi_k(r) = (k+1)r^k (k \geq 0) \), we easily have the sharp inequality
\[|a_0|^p + \sum_{k=1}^{\infty} (k+1)|a_k| r^k \leq 1 \quad \text{for} \quad r \leq R_2(p) = 1 - \sqrt{\frac{2}{2 + p}}. \]

3. For \(\varphi_0(r) = 1 \) and \(\varphi_k(r) = k^\alpha r^k (k \geq 1) \), the condition (1) reduces to \(p \geq 2 \sum_{k=1}^{\infty} k^{\alpha} r^k \). In particular, as
\[\sum_{k=1}^{\infty} k r^k = \frac{r}{(1 - r)^2} \quad \text{and} \quad \sum_{k=1}^{\infty} k^2 r^k = \frac{r(1 + r)}{(1 - r)^3}, \]
it can be easily seen that the following sharp inequalities (with \(\alpha = 1, 2 \)) hold:
\[|a_0|^p + \sum_{k=1}^{\infty} k|a_k| r^k \leq 1 \quad \text{for} \quad r \leq R_3(p) = \frac{p + 1 - \sqrt{2p + 1}}{p} \]
\[|a_0|^p + \sum_{k=1}^{\infty} k^2 |a_k|^r^k \leq 1 \quad \text{for } r \leq R_4(p), \]

where \(R_4(p) \) is the minimal positive root of the equation \(p(1-r)^3 - 2r(1+r) = 0 \).

3. Convolution Counterpart of Bohr Radius

For two analytic functions \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) and \(g(z) = \sum_{k=0}^{\infty} b_k z^k \) in \(\mathbb{D} \), we define the Hadamard product (or convolution) \(f \ast g \) of \(f \) and \(g \) by the power series

\[
(f \ast g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k, \quad z \in \mathbb{D}.
\]

Clearly, \(f \ast g = g \ast f \).

As an application of Theorem 1 we consider first the convolution operator of the form

\[
(F \ast f)(z) = \sum_{k=0}^{\infty} \gamma_k a_k z^k,
\]

where \(F(z) := 2F_1(a, b; c; z) = F(a, b; c; z) \) denotes the Gaussian hypergeometric function defined by the power series expansion

\[
F(z) = \sum_{k=0}^{\infty} \gamma_k z^k, \quad \gamma_k = \frac{(a)_k (b)_k}{(c)_k (1)_k}.
\]

Clearly, \(F(a, b; c; z) \) is analytic in \(\mathbb{D} \) and in particular, \(F(a, 1; 1; z) = (1-z)^{-a} \).

Here \(a, b, c \) are complex numbers such that \(c \neq -m, m = 0, 1, 2, \ldots \), and \((a)_k \) is the shifted factorial defined by Appel’s symbol

\[
(a)_k := a(a+1) \cdots (a+k-1) = \frac{\Gamma(a+k)}{\Gamma(a)}, \quad k \in \mathbb{N},
\]

and \((a)_0 = 1 \) for \(a \neq 0 \). In the exceptional case \(c = -m, m = 0, 1, 2, \ldots \), \(F(a, b; c; z) \) is defined if \(a = -j \) or \(b = -j \), where \(j = 0, 1, 2, \ldots \) and \(j \leq m \). It is clear that if \(a = -m \), a negative integer, then \(F(a, b; c; z) \) becomes a polynomial of degree \(m \) in \(z \).

Theorem 2. Let \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) belong to \(\mathcal{B} \) and \(p \in (0, 2] \). Assume that \(a, b, c > -1 \) such that all \(\gamma_k \) have the same sign for \(k \geq 1 \). Then

\[|a_0|^p + \sum_{k=1}^{\infty} |\gamma_k| |a_k|r^k \leq 1 \quad \text{for all } r \leq R, \]

where \(R \) is the minimal positive root of the equation \(|F(a, b; c; x) - 1| = p/2 \), and the number \(R \) cannot be improved.
Proof. We apply Theorem 1. Set \(\varphi_k(r) = |\gamma_k|r^k \) and remark that \(\gamma_0 = 1 \). Let us also note that all \(\gamma_k \) have the same sign. Therefore, we have

\[
|F(a, b; c; r) - 1| = \sum_{k=1}^{\infty} \varphi_k(r).
\]

Now the statement of Theorem 1 concludes the proof. \(\square \)

Sometimes the Bohr radius can be found explicitly. For instance, let us set \(b = c = 1 \). In this case, we have

\[
F(z) = (1 - z)^{-a} \quad \text{and hence,}
\]

\[
|F(a, b; c; r) - 1| = (1 - r)^{-a} - 1 = \frac{p}{2}, \quad \text{i.e., } R = 1 - \left(\frac{2}{2 + p} \right)^{1/a}
\]

which in the cases \(a = 1 \) and \(p = 1 \) coincide with the classical Bohr radius. Note that the case \(a = 2 \) is dealt also in Example 1(2).

4. \(\alpha \)-Cesáro Operators

For any \(\alpha \in \mathbb{C} \) with \(\Re \alpha > -1 \), we consider

\[
\frac{1}{(1 - z)^{\alpha + 1}} = \sum_{k=0}^{\infty} A_k^\alpha z^k, \quad A_k^\alpha = \frac{(\alpha + 1)_n}{(1)_n}.
\]

Next, by comparing the coefficient of \(z^n \) on both sides of the identity

\[
\frac{1}{(1 - z)^{\alpha + 1}} \cdot \frac{1}{1 - z} = \frac{1}{(1 - z)^{\alpha + 2}},
\]

it follows that

\[
A_{n+1}^\alpha = \sum_{k=0}^{n} A_k^\alpha, \quad \text{i.e., } \frac{1}{A_{n+1}^\alpha} \sum_{k=0}^{n} A_k^\alpha = 1. \quad (3)
\]

With this principle, the Cesáro operator of order \(\alpha \) or \(\alpha \)-Cesáro operator (see Stempak [28]) on the space of analytic functions \(f \) in the unit disk \(\mathbb{D} \) is therefore defined by

\[
\mathcal{C}^\alpha f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{A_{n+1}^\alpha} \sum_{k=0}^{n} A_k^\alpha a_k \right) z^n, \quad (4)
\]

where \(f(z) = \sum_{k=0}^{\infty} a_k z^k \). In terms of convolution, we can write this as

\[
\mathcal{C}^\alpha f(z) = \frac{f(z)}{(1 - z)^{\alpha + 1}} \ast F(1, 1; \alpha + 2; z)
\]

and thus, we have (cf. [1,28]) the following integral form

\[
\mathcal{C}^\alpha f(z) = (\alpha + 1) \int_{0}^{1} f(tz) \frac{(1 - t)^{\alpha}}{(1 - tz)^{\alpha + 1}} \, dt,
\]

where \(\Re \alpha > -1 \). This for \(\alpha = 0 \) gives

\[
\mathcal{C}^0 f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{n + 1} \sum_{k=0}^{n} a_k \right) z^n,
\]
which is simply the classical Cesáro operator considered by Hardy–Littlewood in 1932 [16]. Several authors have studied the boundedness property of these operators on different function spaces (see, for example, [5]). In [20], the present authors established a theorem giving an analog of Bohr theorem for the classical Cesáro operator $C^0 f$. It also considered the asymptotical behaviour of the Bohr sum in this case.

For $f \in B$, we define a counterpart of Bohr sum for $\alpha > -1$ as

$$C^\alpha_f(z) := \sum_{n=0}^{\infty} \left(\frac{1}{A_n^{\alpha+1}} \sum_{k=0}^{n} A_{n-k}^\alpha |a_k| \right) r^n.$$

Before writing a counterpart of Bohr theorem we need the following estimate.

Theorem 3. For $f \in B$ and $\alpha > -1$, we have

$$|C^\alpha_f(z)| \leq (\alpha + 1) \Phi(r, 1, \alpha + 1) = \frac{\alpha + 1}{r^{\alpha+1}} \int_0^r \frac{t^\alpha}{1-t} \, dt,$$

where $\Phi(z, s, a) = \sum_{n=0}^{\infty} z^n (n+a)^{-s}$ is the Lerch transcedent function.

Proof. We may represent $C^\alpha_f(z)$ as

$$C^\alpha_f(z) = (\alpha + 1) \int_0^1 \frac{1}{(t-1)z+1} f \left(\frac{tz}{(t-1)z+1} \right) (1-t)^\alpha \, dt$$

and thus,

$$|C^\alpha_f(z)| \leq (\alpha + 1) \int_0^1 \frac{(1-t)^\alpha}{(t-1)z+1} \left| f \left(\frac{tz}{(t-1)z+1} \right) \right| \, dt$$

$$\leq (\alpha + 1) \int_0^1 \frac{(1-t)^\alpha}{(t-1)r+1} \, dt = C^\alpha_{f_0}(r), \quad f_0(z) = 1.$$

This integral is not easy to calculate and therefore, we may return to the standard series representation and obtain

$$C^\alpha_{f_0}(r) = \sum_{n=0}^{\infty} \frac{A_n^\alpha}{A_n^{\alpha+1}} r^n = (\alpha + 1) \sum_{n=0}^{\infty} \frac{r^n}{\alpha + n + 1},$$

and the proof is complete. \qed

Now we are ready to prove the counterpart of Bohr theorem for the α-Cesáro operator.

Theorem 4. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ belong to B and $\alpha > -1$. Then

$$C^\alpha_f(r) \leq (\alpha + 1) \sum_{n=0}^{\infty} \frac{r^n}{n + \alpha + 1} = \frac{\alpha + 1}{r^{\alpha+1}} \int_0^r \frac{t^\alpha}{1-t} \, dt \text{ for all } r \leq R, \quad (5)$$
where $R = R(\alpha)$ is the minimal positive root of the equation
\[
3(1 + \alpha) \sum_0^\infty \frac{x^n}{n + \alpha + 1} = \frac{2}{1 - x}, \quad \text{i.e.,} \quad \sum_0^\infty \frac{\alpha + 1 - 2n}{n + \alpha + 1} x^n = 0.
\]

The number R cannot be replaced by a larger constant. Note that $R(0) = 0.5335$.

Proof. We apply Theorem 1 with $p = 1$. If we write
\[
C^\alpha(f)(z) = \sum_0^\infty a_n \phi_n(z),
\]
then collecting the terms involving only a_n in the right hand side of (4) we find that
\[
\phi_n(z) = \sum_k^\infty \frac{A_k^n}{A_k^\alpha} z^k,
\]
so that for the α-Cesáro operators $C^\alpha(f)$ we have
\[
\varphi_0(x) = \sum_k^\infty \frac{A_k^n}{A_k^\alpha} x^k = (\alpha + 1) \sum_k^\infty \frac{x^k}{k + \alpha + 1}, \quad x \in [0, 1),
\]
by the definition of A_k^n. Moreover, by setting $f(z) = 1/(1 - z)$ in (6), it is not difficult to find from (3) and (4) that
\[
\sum_0^\infty \phi_n(r) = C^\alpha \left(\frac{1}{1 - r} \right) = \frac{1}{1 - r}
\]
and thus, Eq. (1) for $p = 1$ takes the form
\[
3\varphi_0(r) > 2 \sum_0^\infty \phi_n(r), \quad \text{i.e.,} \quad 3(1 + \alpha) \sum_0^\infty \frac{r^n}{n + \alpha + 1} > \frac{2}{1 - r}.
\]
The desired inequality (5) follows from Theorem 1 and the sharpness part also follows. \[\square\]

In what follows pF_q represent the generalized hypergeometric function defined by
\[
pF_q(a_1, \ldots, a_p; c_1, \ldots, c_q; z) = \sum_0^\infty \frac{(a_1)_n \cdots (a_p)_n}{(c_1)_n \cdots (c_q)_n} \frac{z^n}{n!}.
\]
We remark that in the interesting case where $p = q + 1$, the series converges for $|z| < 1$. If $\text{Re} \left(\sum_{j=1}^q c_j - \sum_{j=1}^{q+1} a_j \right) > 0$, then $q+1F_q$ converges also at the point $z = 1$.
Theorem 5. For $f \in B$ and $\alpha > -1$, the inequality $C_f^\alpha(r) \leq S_\alpha(r)$ holds for all $r \in [0,1)$, where $S_\alpha(r)$ is equal to

\[
\begin{align*}
\frac{\alpha + 1}{1 - r^2} \sqrt{\frac{\Gamma''(1 + \alpha)}{\Gamma(1 + \alpha)} - \left(\frac{\Gamma'(1 + \alpha)}{\Gamma(1 + \alpha)}\right)^2} - r^2 \Phi(r^2, 2, 1 + \alpha) \\
\frac{1}{1 - r^2} \sqrt{3 F_2(1, 1, 1; 2 + \alpha, 2 + \alpha; 1) - r^2 3 F_2(1, 1, 1; 2 + \alpha, 2 + \alpha; r^2)} \\
\frac{1}{1 - r^2} \sqrt{3 F_2(1, 1, 1; 1.5, 1.5; r^2)}
\end{align*}
\]

for $\alpha \geq 0$, for $-\frac{1}{2} < \alpha < 0$, and for $\alpha = -\frac{1}{2}$, respectively. Here $\Phi(z, s, a)$ is the Lerch transcendent function.

Proof. First of all, we represent $C_f^\alpha(r)$ as

\[
C_f^\alpha(r) = \sum_{n=0}^{\infty} \frac{1}{A_{n+1}^{\alpha}} \left(\sum_{k=0}^{n} A_{n-k}^{\alpha} |a_k|\right) r^n = \sum_{n=0}^{\infty} |a_n| \phi_n(r),
\]

where $\phi_n(r)$ is defined by (7). Using the triangle inequality and the fact that $\sum_{n=0}^{\infty} |a_n|^2 \leq 1$ (for $f \in B$), we can estimate

\[
C_f^\alpha(r) \leq \sqrt{\sum_{n=0}^{\infty} |a_n|^2} \cdot \sqrt{\sum_{n=0}^{\infty} \phi_n^2(r)} \leq \sqrt{\sum_{n=0}^{\infty} \phi_n^2(r)}.
\]

For $\alpha > -1/2$, we use the triangle inequality one more time and obtain

\[
\phi_n^2(r) = \left(\sum_{k=n}^{\infty} \frac{A_{k-n}^{\alpha}}{A_{k+1}^{\alpha}} r^k\right)^2 \leq \sum_{k=n}^{\infty} \left(\frac{A_{k-n}^{\alpha}}{A_{k+1}^{\alpha}}\right)^2 \sum_{k=n}^{\infty} r^{2k} = \frac{r^{2n}}{1 - r^2} \sum_{k=n}^{\infty} \left(\frac{A_{k-n}^{\alpha}}{A_{k+1}^{\alpha}}\right)^2.
\]

To estimate the second term on the right, we first observe that

\[
A_k^{\alpha} = \left(\frac{k + 1}{\alpha + k + 1}\right) A_{k+1}^{\alpha} \quad \text{for all } \alpha > -1 \text{ and } k \geq 0.
\]

(8)

First we see that $A_k^{\alpha} \leq A_{k+1}^{\alpha}$ for all $\alpha \geq 0$ and $k \geq 0$. As a consequence, one can see that for $\alpha > 0$ and for $k \geq n$,

\[
\frac{A_{k-n}^{\alpha}}{A_k^{\alpha+1}} \leq \frac{A_{k-n}^{\alpha}}{A_{k}^{\alpha+1}} = \frac{1 + \alpha}{1 + k + \alpha}
\]

which gives

\[
\phi_n^2(r) \leq \frac{r^{2n}}{1 - r^2} \sum_{k=n}^{\infty} \frac{(\alpha + 1)^2}{(1 + k + \alpha)^2}
\]
so that
\[\sum_{n=0}^{\infty} \phi_n^2(r) \leq \frac{(\alpha + 1)^2}{1 - r^2} \sum_{n=0}^{\infty} r^{2n} \sum_{k=n}^{\infty} \frac{1}{(1 + k + \alpha)^2} \]
\[= \frac{(\alpha + 1)^2}{1 - r^2} \sum_{k=0}^{\infty} \frac{1}{(1 + k + \alpha)^2} \sum_{n=0}^{k} r^{2n} \]
\[= \frac{(\alpha + 1)^2}{(1 - r^2)^2} \sum_{k=0}^{\infty} \frac{1}{(1 + k + \alpha)^2} \sum_{n=0}^{k} r^{2n} \]
\[= \frac{(\alpha + 1)^2}{(1 - r^2)^2} \left(\frac{\Gamma''(1 + \alpha)}{\Gamma(1 + \alpha)} \left(\frac{\Gamma'(1 + \alpha)}{\Gamma(1 + \alpha)} \right)^2 - r^2 \Phi(r^2, 2, 1 + \alpha) \right). \quad (9) \]

Secondly, by (8), we find that
\[A_{\alpha}^k \leq A_{\alpha}^{k+1} \] for all \(-1 < \alpha < 0\) and \(k \geq 0\), and thus,
\[\frac{A_{\alpha}^{k-n}}{A_{\alpha}^{k+1}} \leq \frac{A_{\alpha}^0}{A_{\alpha}^{k+1}} = \frac{1}{A_{\alpha}^{k+1}} = \frac{(1)_k}{(\alpha + 2)_k} \quad (10) \]
which gives
\[\phi_n^2(r) \leq \frac{r^{2n}}{1 - r^2} \sum_{k=n}^{\infty} \left(\frac{(1)_k}{(\alpha + 2)_k} \right)^2. \]

Hence, as before, we can easily deduce that
\[\sum_{n=0}^{\infty} \phi_n^2(r) \leq \frac{1}{(1 - r^2)^2} \sum_{k=0}^{\infty} \left(\frac{(1)_k}{(\alpha + 2)_k} \right)^2 (1 - r^{2(k+1)}) \]
\[= \frac{1}{(1 - r^2)^2} \left(3 F_2 \left(1, 1, 2 + \alpha, 2 + \alpha; 1 \right) - r^2 3 F_2 \left(1, 1, 2 + \alpha, 2 + \alpha; r^2 \right) \right) \]
and the last expression converges for \(-0.5 < \alpha < 0\).

Thirdly, for \(\alpha = -0.5\) we use the inequality (10) and obtain
\[\frac{A_{-1/2}^{k-n}}{A_{1/2}^{k-1/2}} \leq \frac{A_{-1/2}^0}{A_{1/2}^{k-1/2}} = \frac{1}{A_{1/2}^{k-1/2}} = \frac{(1)_n}{(3/2)_n} - \frac{\sqrt{\pi} \Gamma(n + 1)}{2 \Gamma(n + 3/2)}. \]
In this case
\[\sum_{n=0}^{\infty} \phi_n^2(r) \leq \sum_{n=0}^{\infty} \frac{\pi \Gamma^2(n + 1)}{4 \Gamma^2(n + 1.5)} \left(\sum_{k=n}^{\infty} r^k \right)^2 = \frac{\pi}{4(1 - r^2)} \sum_{n=0}^{\infty} \frac{\Gamma^2(n + 1)}{\Gamma^2(n + 1.5)} r^{2n} \]
\[= \frac{1}{(1 - r^2)^2} 3 F_2 \left(1, 1, 1.5, 1.5; r^2 \right). \]

Finally, for \(\alpha < -0.5\), we write the quotient as
\[\frac{A_{\alpha}^{k-n}}{A_{\alpha}^{k+1}} = \frac{(\alpha + 1)_{k-n}}{(1)_{k-n}} \cdot \frac{(1)_k}{(\alpha + 2)_k} \]
and estimate $\phi_n^2(r)$ using the triangle inequality in the following way:

$$\phi_n^2(r) = \left(\sum_{k=n}^{\infty} \frac{(\alpha + 1)_{k-n}}{(1)_{k-n}} \cdot \frac{(1)_k}{(\alpha + 2)_k} r^k \right)^2 \leq \sum_{k=n}^{\infty} \left(\frac{(\alpha + 1)_{k-n}}{(1)_{k-n}} \right)^2 \sum_{k=n}^{\infty} \left(\frac{(1)_k}{(\alpha + 2)_k} \right)^2 r^{2k}$$

$$= 2F_1(\alpha + 1, \alpha + 1; 1; 1) \sum_{k=n}^{\infty} \left(\frac{(1)_k}{(\alpha + 2)_k} \right)^2 r^{2k},$$

where the first sum in the second step converges to

$$2F_1(\alpha + 1, \alpha + 1; 1; 1) = \frac{\Gamma(-1 - 2\alpha)}{\Gamma^2(-\alpha)}$$

for $-1 < \alpha < -0.5$.

Here we have used the well-known formula

$$2F_1(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} < \infty \quad \text{for } c > a + b.$$

To estimate the other series, we use the well-known inequality

$$\frac{(1)_n}{(s)_n} \leq \frac{\Gamma(s)}{(n + 1)^{s-1}},$$

which holds for any natural n and $0 \leq s \leq 1$. Therefore,

$$\frac{(1)_k}{(\alpha + 2)_k} = \left(\frac{\alpha + 1}{\alpha + k + 1} \right) \frac{(1)_k}{(\alpha + 1)_k} \leq \frac{\Gamma(\alpha + 2)}{(\alpha + k + 1)} \frac{1}{(k + 1)^\alpha}.$$

It follows that

$$\sum_{n=0}^{\infty} \phi_n^2(r) \leq 2F_1(\alpha + 1, \alpha + 1; 1; 1) \sum_{n=0}^{\infty} \sum_{k=n}^{\infty} \frac{(1)_{k-n}}{(k + \alpha + 1)^2} r^{2k}$$

$$\leq \frac{\Gamma(1 - 2\alpha)\Gamma^2(\alpha + 2)}{\Gamma^2(-\alpha)} \sum_{n=0}^{\infty} \frac{(n + 1)^{1-2\alpha}}{(n + \alpha + 1)^2} r^{2n}.$$

This finishes the proof. \qed

5. Asymptotic Bohr Radius for C^1_f

Let us study the order of the estimate for $\alpha = 1$. We recall the following equality:

$$Li_2(x) + Li_2(1 - x) = \frac{\pi^2}{6} - \log x \log(1 - x).$$
Then the estimate looks like

$$\frac{1}{1-r^2} \cdot 2\sqrt{\frac{\pi^2}{6} - \frac{\text{Li}_2(r^2)}{r^2}}$$

$$= 2\sqrt{\frac{\pi^2}{6} - \frac{1}{r^2} \left(\frac{\pi^2}{6} - 2 \log r \log(1 - r^2) - \text{Li}_2(1 - r^2) \right)} \frac{1}{1-r^2},$$

where $\text{Li}_2(z) = \sum_{k=1}^{\infty} (1/k^2)z^k$ is a polylogarithm function. Moreover,

$$\text{Li}_2(1 - r^2) \to 0 \quad \text{and} \quad \log(1 - r) = 1 \quad \text{as} \quad r \to 1,$$

and so we obtain

$$C_j^1(r) \leq 2\sqrt{2 \log r \log(1 - r^2) + o(1)} \sim \sqrt{2} \cdot \sqrt{\log \frac{1}{1-r^2}}.$$

We shall prove

Theorem 6. There exists an $f \in B$ such that

$$C_j^1(r) \sim \frac{4\sqrt{2q}}{(3 + q)\sqrt{1-r}} \approx \frac{1.47217}{\sqrt{1-r}},$$

where $q \approx 7.57736 \ldots$ is the root of the equation $3q = (3 + q) \log(1 + q)$.

Proof. Consider the function $\phi_n(r)$ defined by (7) with $\alpha = 1$ and calculate it using definition of A_k^α. This gives that

$$\phi_n(r) = \sum_{k=n}^{\infty} A_k^\alpha r^k = 2 \sum_{k=n}^{\infty} \frac{k - n + 1}{(k+2)(k+1)} r^k.$$

As

$$\frac{r^{k+2}}{(k+2)(k+1)} = \int_0^r \int_0^\rho s^k \, ds \, d\rho,$$

it follows that

$$\phi_n(r) = \frac{2}{r^2} \int_0^r \int_0^\rho s^n \sum_{k=n}^{\infty} (k - n + 1)s^{k-n} \, ds \, d\rho = \frac{2}{r^2} \int_0^r \int_0^\rho \frac{s^n}{(1-s)^2} \, ds \, d\rho. \quad (11)$$

In [13], Bombieri and Bourgain showed how one can build functions $h(z) = \sum_{k=0}^{\infty} h_k z^k$ and $f(z) = \sum_{k=0}^{\infty} a_k z^k$ in the family B such that
(i) \(|h_k| = t^k \sqrt{1 - t^2}\)

(ii) \(\|f - h\|_2 := \sqrt{\sum_{k=0}^{\infty} |h_k - a_k|^2} < \sqrt{1 - t^2} \sqrt{\log \frac{1}{1 - t}},\)

where \(0 \leq t \leq 1\) is some number.

Accordingly, using their idea, we obtain the following estimate

\[C_1^1(f) = \sum_{k=0}^{\infty} |h_k + a_k - h_k| \phi_k(r) \geq \sum_{k=0}^{\infty} |h_k| \phi_k(r) - \sum_{k=0}^{\infty} |h_k - a_k| \phi_k(r)\]

\[\geq \sqrt{1 - t^2} \sum_{k=0}^{\infty} t^k \phi_k(r) - \sqrt{1 - t^2} \sqrt{\log \frac{1}{1 - t}} \sqrt{\sum_{k=0}^{\infty} \phi_k^2(r)}. \quad (12)\]

Using (11) and the above consideration, the first term in (12) can be calculated directly. Note that

\[\sum_{k=0}^{\infty} t^k \phi_k(r) = \frac{2}{r^2} \sum_{k=0}^{\infty} \int_{0}^{\rho} \frac{t^k s^k}{(1 - s)^2} ds d\rho = \frac{2}{r^2} \int_{0}^{\rho} ds d\rho \int_{0}^{\frac{1}{1 - t}} \frac{ds}{(1 - s)^2 (1 - ts)}\]

and so to compute the integral on the right, we write

\[\frac{1}{(1 - s)^2 (1 - ts)} = \frac{1}{1 - t} \cdot \frac{1}{(1 - s)^2} - \frac{t}{(1 - t)^2} \cdot \frac{1}{1 - s} + \frac{t^2}{(1 - t)^2} \cdot \frac{1}{1 - ts},\]

which gives by integration

\[\int_{0}^{\rho} \frac{ds}{(1 - s)^2 (1 - ts)} = \frac{1}{1 - t} \cdot \frac{\rho}{1 - \rho} + \frac{t}{(1 - t)^2} \left[\log(1 - \rho) - \log(1 - t \rho)\right]\]

and hence we can easily obtain by integrating it again

\[\int_{0}^{\rho} \int_{0}^{\rho} \frac{ds d\rho}{(1 - s)^2 (1 - ts)} = \frac{2[\rho (1 - t) + (1 - rt) (\log(1 - rt) - \log(1 - r))]}{r^2 (1 - t)^2}.\]

The second term in (12) can be estimated using the result from the first part of Theorem 5, i.e., Eq. (9). For \(\alpha = 1\), we have

\[\sqrt{\sum_{k=0}^{\infty} \phi_k^2(r)} \leq \frac{2}{1 - r^2} \sqrt{\frac{\Gamma''(2)}{\Gamma(2)} - \left(\frac{\Gamma'(2)}{\Gamma(2)}\right)^2} - r^2 \Phi(r^2, 2, 2)\]

\[= \frac{2}{1 - r^2} \sqrt{\frac{\pi^2}{6} - \frac{\text{Li}_2(r^2)}{r^2}}.\]

Therefore, the above discussion shows that \(C_1^1(f)\) is not less than

\[\frac{1}{\sqrt{1 - r}} \left(\frac{2 \sqrt{1 - t^2} \sqrt{1 - r} [-r (1 - t) + (1 - rt) (\log(1 - rt) - \log(1 - r))]}{r^2 (1 - t)^2}\right)\]

\[- 2 \sqrt{1 - t^2} \sqrt{\log \frac{1}{1 - t}} \cdot \frac{1}{\sqrt{1 - r} (1 + r)} \sqrt{\frac{\pi^2}{6} - \frac{\text{Li}_2(r^2)}{r^2}}.\]
Let \(t = r^q \) for some \(q \). Since
\[
\lim_{r \to 1} \sqrt{1 - r^{2q}} \sqrt{\frac{\log \frac{1}{1 - r^q}}{1 - r^q} \cdot \frac{1}{\sqrt{1 - r^q}} \sqrt{\frac{\pi^2}{6} - \frac{\text{Li}_2(r^2)}{r^2}}} = 0,
\]
we have to consider only the first term and calculate the limit
\[
\lim_{r \to 1} \frac{2\sqrt{1 - r^{2q}}}{\sqrt{1 - r}} \left[-r(1 - r^q) + (1 - r^{q+1})(\log(1 - r^{q+1}) - \log(1 - r)) \right] \frac{r^2(1 - r^q)^2}{(q/2)^3} = -q + (q + 1) \log(q + 1).
\]
The point of maximum is the root of the equation \(3q = (3 + q) \log(1 + q) \). Calculation shows that \(q \approx 7.57736 \ldots \). Therefore,
\[
C_j^1(r) \sim \frac{4\sqrt{2q}}{(3 + q)\sqrt{1 - r}} \approx 1.47217 \frac{\sqrt{1 - r}}{\sqrt{1 - r}}.
\]
\(\square \)

Acknowledgements

The work of I. Kayumov and D. Khammatova is supported by the Russian Science Foundation under grant 18-11-00115

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Agrawal, M.R., Howlett, P., Lucas, S., Naik, S., Ponnusamy, S.: Boundedness of generalized Césaro averaging operators on certain function spaces. J. Comput. Appl. Math. 180, 333–344 (2005)
[2] Aizenberg, L.: Multidimensional analogues of Bohr’s theorem on power series. Proc. Am. Math. Soc. 128(4), 1147–1155 (2000)
[3] Aizenberg, L.: Generalization of Caratheodory’s inequality and the Bohr radius for multidimensional power series. Oper. Theory Adv. Appl. 158, 87–94 (2005)
[4] Aizenberg, L., Aytuna, A., Djakov, P.: Generalization of a theorem of Bohr for basis in spaces of holomorphic functions of several complex variables. J. Math. Anal. Appl. 258(2), 429–447 (2001)
[5] Albanese, A.A., Bonet, J., Ricker, J.W.: The Cesàro operator on power series spaces. Stud. Math. 240, 47–68 (2018)
[6] Ali, R.M., Abu-Muhanna, Y., Ponnusamy, S.: On the Bohr inequality. In: Govil, N.K., et al. (eds.) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol. 117, pp. 265–295. Springer, Berlin (2016)
[7] Ali, R.M., Barnard, R.W., Solynin, A.Yu.: A note on the Bohr’s phenomenon for power series. J. Math. Anal. Appl. 449(1), 154–167 (2017)
[8] Bénétateau, C., Dahmen, A., Khavinson, D.: Remarks on the Bohr phenomenon. Comput. Methods Funct. Theory 4(1), 1–19 (2004)
[9] Blasco, O.: The Bohr radius of a Banach space. In: Vector Measures, Integration and Related Topics, 5964, Oper. Theory Adv. Appl., vol. 201. Birkhäuser, Basel (2010)
[10] Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables. Proc. Am. Math. Soc. 125(10), 2975–2979 (1997)
[11] Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. 13(2), 1–5 (1914)
[12] Bombieri, E.: Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze. Boll. Unione Mat. Ital. 17, 276–282 (1962)
[13] Bombieri, E., Bourgain, J.: A remark on Bohr’s inequality. IMRN Int. Math. Res. Not. 80, 4307–4330 (2004)
[14] Djakov, P.B., Ramamujan, M.S.: A remark on Bohr’s theorems and its generalizations. J. Anal. 8, 65–77 (2000)
[15] Garcia, S.R., Mashreghi, J., Ross, W.T.: Finite Blaschke Products and Their Connections. Springer, Cham (2018)
[16] Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals II. Math. Z. 34, 403–439 (1932)
[17] Ismagilov, A., Kayumov, I., Ponnusamy, S.: Sharp Bohr type inequality. J. Math. Anal. Appl. 489(1), Article 124147 (2020)
[18] Kayumov, I.R., Ponnusamy, S.: Bohr inequality for odd analytic functions. Comput. Methods Funct. Theory 17, 679–688 (2017)
[19] Kayumov, I.R., Ponnusamy, S.: Improved version of Bohr’s inequality. C. R. Math. Acad. Sci. Paris 356(3), 272–277 (2018)
[20] Kayumov, I.R., Khannmutova, D.M., Ponnusamy, S.: On the Bohr inequality for the Cesaro operator. C. R. Math. Acad. Sci. Paris 358(5), 615–620 (2020)
[21] Kresin, G., Maz’ya, V.: Sharp real-part theorems. A unified approach, Translated from the Russian and edited by T. Shaposhnikova. Lecture Notes in Mathematics, vol. 1903. Springer, Berlin (2007)
[22] Liu, G., Liu, Z.H., Ponnusamy, S.: Refined Bohr inequality for bounded analytic functions. Bull. Sci. Math. 173, Paper No. 103054 (2021). https://doi.org/10.1016/j.bulsci.2021.103054
[23] Liu, M.S., Shang, Y.M., Xu, J.F.: Bohr-type inequalities of analytic functions. J. Inequal. Appl. 345 (2018)
[24] Paulsen, V.I., Popescu, G., Singh, D.: On Bohr’s inequality. Proc. Lond. Math. Soc. 85(2), 493–512 (2002)
[25] Paulsen, V.I., Singh, D.: Bohr inequality for uniform algebras. Proc. Am. Math. Soc. 132(12), 3577–3579 (2004)
[26] Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: Improved Bohr’s phenomenon in quasi–subordination classes. J. Math. Anal. Appl. 506(1), Article 125645 (2022). https://doi.org/10.1016/j.jmaa.2021.125645
[27] Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: New inequalities for the coefficients of unimodular bounded functions. Results Math. 75, 107 (2020). https://doi.org/10.1007/s00025-020-01240-1
[28] Stempak, K.: Cesáro averaging operators. Proc. R. Soc. Edinb. 124A, 121–126 (1994)
[29] Tomić, M.: Sur un théorème de H. Bohr. Math. Scand. 11, 103–106 (1962)
Ilgiz R. Kayumov and Diana M. Khammatova
Scientific and Educational Mathematical Center of the Volga Federal District
Kazan Federal University
420 008 Kazan
Russia
e-mail: ikayumov@gmail.com

Diana M. Khammatova
e-mail: dianalynx@rambler.ru

Saminathan Ponnusamy
Department of Mathematics
Indian Institute of Technology Madras
Chennai 600 036
India
e-mail: samy@iitm.ac.in

Received: September 8, 2020.
Revised: April 3, 2021.
Accepted: December 2, 2021.