Combined antiplatelet therapy reduces the pro-inflammatory properties of activated platelets

Alexandra Heinzmann, Daniëlle Coenen, Tanja Vajen, Judith Cosemans, Rory R Koenen.

Affiliations below.

DOI: 10.1055/a-1682-3415

Please cite this article as: Heinzmann A, Coenen D, Vajen T et al. Combined antiplatelet therapy reduces the pro-inflammatory properties of activated platelets. TH Open 2021. doi: 10.1055/a-1682-3415

Conflict of Interest: The authors declare that they have no conflict of interest.

This study was supported by ZonMw (http://dx.doi.org/10.13039/501100001826), VIDI 016.126.358, VIDI 91716421, Landsteiner Foundation for Blood Transfusion Research (http://dx.doi.org/10.13039/10.1007/s40042-018-0134-7), Hartstichting (http://dx.doi.org/10.13039/501100002996), 2015T79

Abstract:

The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, e.g. chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in haemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using ELISA and on the chemotaxis of THP-1 cells towards platelet releasates.

The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, e.g. chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in haemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using ELISA and on the chemotaxis of THP-1 cells towards platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C-X-C motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, αIIbβ3- and P2Y12-inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y12 inhibitor or a phosphodiesterase inhibitor did not lead to an additive reduction on CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y12 or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.

Corresponding Author:
Rory R Koenen, Maastricht University, CARIM-Biochemistry, PO Box 616, 6200MD Maastricht, Netherlands, r.koenen@maastrichtuniversity.nl

Affiliations:
Alexandra Heinzmann, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maas-
This is an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Antiplatelet therapy reduces platelet pro-inflammatory properties

1Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.

2Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA

3Cardiovascular Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.

Address for correspondence: Rory R. Koenen, PhD, CARIM, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands (e-mail: r.koenen@maastrichtuniversity.nl).

Abstract

The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk on myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, e.g. chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in haemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this
study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using ELISA and on the chemotaxis of THP-1 cells towards platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C-X-C motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, \(\alpha_{\text{IIb}}\beta_{3} \) and P2Y\(_{12}\)-inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y\(_{12}\) inhibitor or a phosphodiesterase inhibitor did not lead to an additive reduction on CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y\(_{12}\) or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.

Keywords: platelets, chemokines, inflammation, monocytes, atherosclerosis, acute myocardial infarction, antiplatelet agents.

Introduction

Atherothrombosis, a result of atherosclerotic plaque rupture or erosion, can lead to acute coronary syndromes (ACS), ischemic strokes and cardiovascular deaths and contributes to the global burden of premature mortality and morbidity [1]. Platelet activation plays a central role in atherothrombosis, which in turn leads to the release of prothrombotic and pro-inflammatory factors and amplifies activation of the coagulation cascade [2, 3]. Although the importance of platelets in the acute phase of cardiovascular disease (CVD) is undisputed, their relevance for the development of atherosclerosis is incompletely understood. Many studies have highlighted functions of platelets beyond haemostasis [4]. For example, platelets can bridge leukocytes to the inflamed vessel wall [5-7], they release extracellular vesicles with pro-inflammatory activ-
Antiplatelet therapy reduces platelet pro-inflammatory properties and they can induce the release of neutrophil extracellular traps [10, 11]. In addition, platelets also release chemokines from a-granules upon activation [12, 13].

Chemokines are a group of small chemotactic cytokines that orchestrate cell trafficking and play important roles in immune responses, inflammation, angiogenesis, and cell differentiation [14]. The CC- and CXC-chemokines are the largest subfamilies. The CXC-chemokine CXCL4 (platelet factor 4) is almost exclusively expressed in platelets and the fourth most abundant platelet protein (355,000 copies per platelet) [15]. Proteomic analysis suggests that CCL5 (RANTES) is the only CC-chemokine expressed in relevant amounts in platelets (approx. 4,500 copies per platelet) [15]. Platelet activation leads to CCL5 and CXCL4 release from the a-granules and both chemokines can also be deposited on inflamed endothelium and leading to subsequent monocyte arrest [16]. In addition, binding of CCL5 to CXCL4 increases monocyte arrest to endothelial cells under flow [17, 18]. Besides facilitating CCL5-induced monocyte arrest, CXCL4 has several reported physiologic functions, e.g. modifying differentiation of T-cells and macrophages, activation of smooth muscle cells, inhibition of apoptosis of neutrophils and monocytes, and increasing oxLDL uptake [19].

Control of platelet reactivity is essential for the secondary prevention of adverse cardiovascular events [20, 21]. After myocardial infarction, "dual antiplatelet therapy", i.e. combined treatment with the cyclooxygenase inhibitor acetylsalicylic acid (aspirin) and with purinergic receptor P2Y12 antagonists, e.g. clopidogrel, prasugrel or ticagrelor is recommended. For immediate platelet effects, the intravenous P2Y12 antagonist cangrelor or abciximab antagonists are available. Finally, cilostazol is a phosphodiesterase 3 (PDE3) inhibitor and is implemented as a treatment for patients with peripheral arterial disease (PAD) [22]. Of note, most platelet inhibition strategies bear a non-negligible risk of severe bleeding complications. In addition, a substantial number of patients does not optimally respond to antiplatelet therapy [23].
During antiplatelet therapy, a reduction of inflammation was observed in patients [24]. However, it is unclear whether this is due to direct effects of antiplatelet therapy on platelets or indirect, non-platelet dependent effects [24]. The aim of this study is to investigate the influence of common antiplatelet drugs on inflammatory functions of platelets and whether this influence is distinct from their established anti-haemostatic effects. Serving as a model for the inflammatory function of platelets, the release of chemokines by platelets from healthy donors and on the chemotactic properties of platelets towards monocytic THP-1 cells were determined, after treatment with antiplatelet drugs. This study provides additional evidence that the anti-inflammatory effects seen in clinical trials might originate from platelets, depending on the pathway of platelet activation.

Materials and methods

Evasin-4 was expressed in E. coli, purified by HPLC and refolded as described [25]. All other reagents were at the highest purity available and obtained from Merck (Darmstadt, Germany), unless indicated.

Platelet isolation and activation

Blood was collected from healthy volunteers and two patients with Glanzmann thrombasthenia, with established deficiency in integrin αIIβ3 [26], with a 21 Gauge needle (vacutainer precision glide, BD) into citrate tubes (9 ml coagulation sodium citrate 3.2% vacuette®, Greiner Bio-One, Kremsmünster, Austria). For the condition in the presence of aspirin, donors were given aspirin orally (100 mg Bayer, Leverkusen, Germany) the evening before blood donation. Platelet-rich plasma (PRP) was obtained by centrifugation of blood at 350 g for 15 min. Washed platelets were obtained by centrifugation of PRP at 1240 g for 15 min, and a wash step with platelet buffer pH 6.6 (10 mM HEPES buffer, 2 mM CaCl₂, 136
Antiplatelet therapy reduces platelet pro-inflammatory properties

mM NaCl, 2.7 mM KCl, 2 mM MgCl₂ supplemented with 0.5% BSA and 0.2% glucose). All centrifugation steps were performed in presence of anticoagulant acid citrate buffer (80 mM trisodium citrate, 52 mM citric acid and 183 mM glucose), to prevent platelet activation during isolation procedure. After pelleting, platelets were resuspended in platelet buffer pH 7.45 (10 mM HEPES buffer, 2 mM CaCl₂, 136 mM NaCl, 2.7 mM KCl, 2 mM MgCl₂ supplemented with 0.5% BSA and 0.2% glucose) at a concentration of 2x10⁸ platelets/ml. The inclusion of human subjects was approved after full informed consent by the local Maastricht ethics committee (METC), and studies were performed accordance with the declaration of Helsinki.

Washed platelets (2x10⁸/ml) were activated with different agonists, 100 ng/ml convulxin (CVX, Enzo Life Sciences, Lausen, Switzerland), 50 µM TRAP-6 (AnaSpec Inc. California, USA), or 5 nM thrombin (Haematologic Technologies New Hampshire, USA) for 30 min at 37°C. Platelets were pre-incubated for 5 min at 37°C with inhibitors prior to activation, except cilostazol (10 min). Integrin αIIbβ₃ ligand binding was blocked with 10 µM tirofiban (CAS 144494-65-5, Correvio Int. Geneve, Switzerland) or 10 µM eptifibatide (Integrilin, CAS 188627-80-7, GlaxoSmithKline, Brentford, UK). P2Y₁₂ was inhibited with 1 µM cangrelor (CAS 163706-06-7, Novartis, Basel, Switzerland), PDE3 with 5 µM cilostazol (CAS 73963-72-1, Tebu Bio, Le Perray-en-Yvelines, France) and inhibition of thromboxane A₂ generation with 100 mg aspirin (ASA, CAS 50-78-2, Bayer, Leverkusen, Germany) ingested by donors the evening before blood donation. Activated platelets were spun down by centrifugation at 300 g for 5 min, after which the supernatant was filtered with PK50 MiniSart sterile 0.8 µm filters (Sartorius, Göttingen, Germany) and centrifugated for 1 hr at 20 000 g. Samples were collected and snap frozen into liquid nitrogen and stored at -80°C until analyses.

Chemokine and serotonin determination
Washed platelets (2x10^8/mL) were activated as described and after time points (5, 15, 30 and 60 min) chemokine samples were collected. Secretion of chemokine CCL5 was determined by an in-house Enzyme-Linked Immune Sorbent Assay (ELISA), CXCL4 and serotonin secretion were determined by an ELISA kit from R&D Systems (Minneapolis, MN, USA) or Abnova (Taipeh, Taiwan) according to manufacturer’s instructions, respectively. For CCL5, samples were diluted into PBS with 1% BSA, and incubated for 2 h at room temperature in a Maxisorb 96 wells plate (Nunc), coated with CCL5 capture antibody (R&D Systems, Minnesota, USA). After washing with PBS buffer containing 0.05% Tween-20, a second antibody (biotin-labelled goat anti-human CCL5 mAb, home-made) was added, and incubated for 2 hours at room temperature. For detection, incubation with HRP-labelled streptavidin (R&D Systems) was performed in the dark for 20 min at room temperature. A TMB substrate kit (KPL Inc. Massachusetts, USA) was used and colour development was measured at 450 nm and 550 nm wavelength. Data analysis was performed with a 4-parameter logistic fit calculation.

Cell migration assay

Assessment of THP-1 cell migration towards a chemoattractant, a 12-well Boyden chemotaxis chamber (NeuroProbe, Gaithersburg, Germany) with a 5 µm pore polycarbonate membrane (NeuroProbe, Gaithersburg, Germany) was used. The chemoattractant are the supernatants after platelet activation. Donor samples were pooled per condition and diluted 4 times in RPMI 1% FBS medium (Thermo Fisher Scientific, Massachusetts, USA). Chemoattractants were added to the lower compartment of the chamber. In some experiments, the tick-derived CC-chemokine inhibitor Evasin-4 was added at 1 µg/mL. THP-1 cells in a concentration of 1 x 10^6/mL cells were added to the upper compartment of the chamber. After incubation of 1.5 hours at 37°C, the membrane was cleared of non-migrated cells and the membrane was stained with Diff-Quick stain (Eberhard Lehmann GmbH, Berlin, Germany). Stained
membrane was imaged with light microscopy (Leica), and cells were counted manually in 5 fields per well and expressed as cells/mm². The migration assay was done at least 4 times per condition.

Statistical analysis

Independent and unpaired experiments were performed using platelets from a total of 38 different healthy blood donors to investigate the effects of antiplatelet drugs. The donor platelets were used for the (buffer) controls and for the treatment with the different compounds. Control groups contain all untreated platelets and were thus higher in number than the treatment groups. Experimental data were represented as median with interquartile range or as mean ± standard deviation. Statistical analysis was performed with one way ANOVA or with Kruskal-Wallis test with Sidak or Dunn’s post hoc analysis, were applicable. Significance of differences of a P-value <0.05 were considered significant. Statistical analysis was performed with Graphpad Prism software version 9.2.

Results

Release of chemokines from activated platelets is not dependent on activation pathway

Platelet activation leads to release of their content e.g. coagulation and growth factors, chemokines, and of extracellular vesicles. In this study, a focus lies on the release of the chemokines CXCL4 and CCL5. Platelet activation by convulxin (GPVI agonist), thrombin (PAR-1 / -4 agonist), and TRAP-6 (PAR-1 agonist) led to comparable levels of released chemokine (Figure 1A,B). Intriguingly, there was a notable donor-to-donor difference regarding chemokine release by activated platelets (Figure 1A,B). Already after 5 min of platelet activation, maximum levels of CCL5 and CXCL4 were observed with both convulxin- and thrombin- stimulation (Figure 1C,D). These findings indicate that activated platelets release chemokines rapidly upon stimulation of GPVI or PAR1/4 receptors.
Impact of platelet aggregation inhibitors on CCL5 and CXCL4 release by platelets

Some clinical studies suggested that inhibition of α\textsubscript{IIb}β\textsubscript{3} integrin, responsible for platelet aggregation, reduces the inflammatory response in patients [24]. To investigate whether platelet aggregation inhibitors can also inhibit chemokine release, washed platelets were incubated with eptifibatide or tirofiban for 5 min prior to platelet activation with convulxin or thrombin. The release of CCL5 was not significantly reduced after antiplatelet treatment (Figure 2A,B). Interestingly, whereas eptifibatide hardly showed an effect, the release of chemokine CXCL4 was decreased by over 50% after treatment with tirofiban (Figure 2C,D). This difference in CCL5 and CXCL4 release was also observed in platelets isolated from two patients with Glanzmann thrombasthenia, who have defective α\textsubscript{IIb}β\textsubscript{3} integrins (Figure S1). These data suggest that the chemokines CCL5 and CXCL4 are released by differential pathways. Taken together, these findings imply that inhibition of integrin α\textsubscript{IIb}β\textsubscript{3} only has minor effects on chemokine release from activated platelets.

Single or dual antiplatelet therapy influences CCL5 and CXCL4 release

ASA and P2Y\textsubscript{12} inhibitors are commonly prescribed antiplatelet drugs for the secondary prevention of major adverse cardiovascular events [27, 28]. Platelet inhibition with ASA did not show a significant effect on CCL5 release from convulxin-activated platelets, whereas CCL5 release after thrombin activation was reduced (Figure 3A). Interestingly, unlike CCL5, CXCL4 chemokine was reduced after stimulation of convulxin or thrombin (Figure 3B). Similar to ASA, the release of CCL5 was not affected by cangrelor after stimulation of the GPVI pathway using convulxin (Figure 4A). However, CCL5 release was reduced by cangrelor after
Antiplatelet therapy reduces platelet pro-inflammatory properties

stimulation of the PAR1/PAR4 pathway with thrombin (Figure 4B). The release of CXCL4 was reduced by cangrelor after stimulation with thrombin and a downward trend (P=0.1) was observed upon stimulation with convulxin (Figure 4C and D). Combined treatment of platelets with both ASA and cangrelor did not further increase the overall inhibition of chemokine release (Figure 4A-D).

Impact of combined cilostazol and ASA treatment on CCL5 and CXCL4 release from activated platelets

In accordance with our recent observations [29], inhibition of platelet cAMP via PDE3 with cilostazol was shown to have an inhibiting effect on chemokine CCL5 release upon stimulation with both convulxin or thrombin (Figure 5A,B and 6A,B), while CXCL4 release was significantly inhibited by cilostazol only after stimulation with thrombin (Figure 5C,D and 6C,D). To investigate whether cilostazol has an additional effect on CCL5 and CXCL4 release from ASA-treated platelets, these platelets were incubated with cilostazol for 10 min prior to platelet activation. This only resulted in a minimal decrease of chemokine release compared to ASA alone (Figure 5), except when CCL5 release was measured after triggering with convulxin (Figure 5A). Here addition of cilostazol resulted in a stronger decrease of CCL5 release than ASA alone (Figure 5A), but this effect was not statistically significant. The combination of cilostazol with cangrelor had no additional effect on the release of CCL5 and CXCL4 (Figure 6). These data suggest that combined treatment of platelets with ASA and cilostazol does not potentiate the inhibition of chemokine release after platelet activation.

Platelet-derived serotonin was found to mediate pro-inflammatory roles during myocardial infarction and during systemic shock [30, 31]. To investigate effects of antiplatelet drugs on the release of serotonin from platelets after activation with convulxin or throm-
bin, serotonin was determined in platelet releasates after treatment. Interestingly, only the presence of cangrelor inhibited serotonin release induced by either agonist (Figure S2).

Combined treatment of platelets with aspirin and cangrelor or cilostazol inhibits chemotaxis of monocytic cells.

Chemokines CCL5 and CXCL4 are involved in various immune pathways, for example migration and adhesion of leukocytes. To investigate possible effects of antiplatelet drugs on platelet-induced leukocyte migration, a Boyden chemotaxis chamber was used to assess migration of monocytic THP1 cells towards platelet supernatants. Releasates of platelets activated with convulxin induced a more pronounced chemotactic response than those induced after activation with thrombin (Figure 7). Platelet activation after exposure to ASA or tirofiban did not lead to a reduced migration with both agonists (Figure 7A). Interestingly, the chemotactic potential of platelets releasate was reduced after inhibition with cangrelor, but only when activated with convulxin (Figure 7B). This inhibition was more pronounced when cangrelor was combined with ASA (Figure 7B). Inhibition of platelets with cilostazol alone led to a slight decrease of migration, which could be further reduced by a combination with ASA (Figure 7C). The combination of cangrelor and cilostazol had no effect of monocytic cell migration (Figure 7D). Furthermore, the inhibitors themselves have no influence on migration of monocytic cells, both in the absence or presence of CCL5 as chemoattractant (Figure S3).

To further investigate whether the reduction of chemotaxis could be due to a reduced release of CCL5, chemotaxis experiments were performed in the presence of the broad-spectrum C-C chemokine tick-derived antagonist Evasin-4. Indeed, Evasin-4 abolished chemotaxis towards CCL5, and THP-1 migration towards the supernatants of both convulxin- and thrombin-activated platelets was strongly reduced in the presence of Evasin-4 (Figure 7E).
Antiplatelet therapy reduces platelet pro-inflammatory properties

Taken together, this data suggests that combined therapy of ASA and P2Y_{12} or PDE3-inhibitors can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets, possibly by inhibiting the release of CCL5.

Discussion

In this study, we investigated the effect of antiplatelet medication on platelet-chemokine release and platelet releasate-induced chemotaxis. We focused on convulxin and thrombin as these agonists potently trigger protein kinase C activation, which is critical for platelet granule secretion [32] as chemokines CCL5 and CXCL4 reside in a-granules [16]. We could confirm previous observations that chemokine release is a rapid response after platelet activation and occurs nearly instantaneously within 5 min after activation [16, 33]. Interestingly, although activation with convulxin and thrombin led to similar amounts of CCL5 and CXCL4 released along with a similar time course, release of CCL5 induced by convulxin alone appeared to be more resistant to antiplatelet compounds than the release of CXCL4. A clear reduction of CXCL4 release was observed after treatment of platelets with tirofiban. This effect was less pronounced when eptifibatide was used. Interestingly, there was no reduction of CCL5 release after incubation with any α_{IIbβ3} inhibitor, neither was CCL5 or CXCL4 release reduced in platelets from the two Glanzmann patients. However, tirofiban appeared to not interfere with other chemoattractants released by platelets, as it did not influence migration of monocytic cells. It should be taken into account that α_{IIbβ3} antagonists on the market are both structurally and functionally different, which leads to different outcomes in different studies. For example, abciximab is a humanized fab fragment of the monoclonal 7e3, the cyclic peptide eptifibatide is not specific to α_{IIbβ3} integrin, but also binds to α_{Mβ2} and to α_{4β3}, and tirofiban is considered to be specific for α_{IIbβ3} integrin and binds to the RGD binding site on the integrin, which might lead to neoepitopes [24, 34, 35]. In animal models, blockade
Antiplatelet therapy reduces platelet pro-inflammatory properties

or genetic deletion of $\alpha_{\text{IIb}}\beta_3$ reduced platelet interactions with the endothelium and with leukocytes [36, 37]. This was also observed in models with human platelets and endothelial cells [38] and in patients with acute coronary syndrome [39, 40]. In our study, we investigated platelet releasate-induced leukocyte migration but did not study direct interaction of platelet (chemokines) with leukocytes and/or the endothelium. Regarding the findings in this study, it can be stated that depending on which platelet-derived chemokines are investigated, there is an anti-inflammatory effect of these drugs.

ASA is well known for its anti-platelet and anti-inflammatory effects. ASA irreversibly acetylates cyclooxygenases (COX) -1 and -2, thereby inhibiting the production of thromboxane A2 (TXA2) via COX-1, leading to inhibition of platelet aggregation and decreased vasoconstriction [41]. A low dose (81-100 mg [24]) of ASA has anti-inflammatory effects, by triggering the synthesis of arachidonic acid metabolites leading to blockade of the expression of CXCL8 in macrophages and endothelial cells [24, 42]). In this study, we have observed that ASA significantly decreased chemokine release through the thrombin-induced pathway (PAR1/PAR4), and to a lesser extent after activation with convulxin. Despite the observed reduction of chemokine release, the anti-inflammatory response of ASA was not reflected in the migration of monocytes in this study, which was unaffected by ASA. This may suggest that ASA mediates its anti-inflammatory response mainly in a platelet-independent manner.

A resistance of patients towards ASA leads to suboptimal antiplatelet therapy [23]. This issue is addressed e.g. by combining ASA with a second antiplatelet drug, e.g. P2Y$_{12}$ receptor inhibitors (clopidogrel, ticagrelor, prasugrel). Unlike for clopidogrel, ticagrelor and cangrelor have less data available on their influence on circulating markers of inflammation in patients, although ticagrelor more efficiently reduced CXCL8 levels in healthy volunteers than clopidogrel [43]. Clopidogrel was shown to reduce inflammatory markers in CVD patients, and it can interfere with leukocyte-platelet interactions, although it is unclear whether
Antiplatelet therapy reduces platelet pro-inflammatory properties

...this is due to vascular or antiplatelet effects [43-46]. Furthermore, clopidogrel reduced CCL5 plasma levels both in animals and in patients [47-49]. All P2Y_{12} antagonists appear to interfere with the interaction of platelets with monocytes and with neutrophils [43, 45, 50], although all may have platelet independent effects, as stated above. We have observed that treatment of platelets with cangrelor showed a similar effect as with ASA. The chemokine release induced by thrombin is inhibited by cangrelor, whereas chemokine release induced by convulxin was less well inhibited by cangrelor. Interestingly, cangrelor was the only compound that blocked the release of serotonin. Inhibition of platelets with cangrelor alone did not lead to a reduced migration of monocytic cells. Although cangrelor in combination with ASA did not lead to a further reduction of chemokine release compared with ASA or cangrelor alone, combination of both compounds almost eliminated attraction of monocytic cells by platelet supernatant. A possible explanation for this observation might be that the combination of ASA and cangrelor can inhibit the release of several chemoattractants from platelets, other than CCL5. One possible chemoattractant is ADP, released from dense granules by activated platelets, and was shown to attract monocytes and macrophages through the action of the P2Y_{12} receptor in recent studies [50-52]. Although our results indicated that CCL5 was mainly responsible for the chemotactic effect of platelet supernatants, an involvement of ADP appears feasible since remnant levels of cangrelor in the platelet supernatants might be sufficient to reduce chemotaxis. In addition, cangrelor inhibited the release of serotonin, which is likewise stored in dense granules, and this could explain why a strong inhibition of monocyte chemotaxis towards supernatants of cangrelor + ASA-treated platelets was observed, while CCL5 secretion was poorly affected by this combined treatment. Thus, besides chemokines, antiplatelet drugs can also affect the release of other compounds that mediate monocyte and macrophage migration. For future studies, it would be interesting to compare the chemotactic effects of platelet supernatants treated without or with apyrase, an enzyme that hydrolyzes...
Antiplatelet therapy reduces platelet pro-inflammatory properties

ADP. Outside the context of platelets and their supernatants, no direct effects of the antiplatelet drugs cangrelor, tirofiban and cilostazol was found on the chemotaxis of THP1 cells, both in the presence or absence of CCL5 indicating that the observed effects in this study can be attributed to the actions of these drugs on platelets.

So far, this study has focussed on the effect of antiplatelet medications and combinations on the inflammatory properties of platelets. Interestingly, we have observed differential protein and extracellular vesicle secretion patterns after platelet activation throughout this, and in other studies [19, 29, 53, 54]. In this study, we have observed differential CCL5 and CXCL4 release under the influence of different antiplatelet medications. This would suggest that these chemokines are differently packaged inside the α-granule of platelets and that their differential release is governed by autocrine feedback activation mechanisms. Although differential packaging and release of granule content has been described previously in literature, it remains controversial whether this is a physiologic regulatory principle [55, 56] or a stochastically occurring process [57, 58]. Support for the latter comes from studies that show that platelet secretion depends on several factors, e.g. cargo solubility, granule shape, and/or granule-plasma membrane fusion routes [57]. In addition, a-granule proteins were found to be stochastically stored in the granules into subdomains [58]. Others did find evidence for a functional separation of a-granule content and of their release depending on the context of platelet activation [55, 56]. Unlike the previous studies, this study also took the effects of inhibitors of platelet activation and activation into account, thereby revealing a differential release of a-granule content.

The PDEs -3 and -5 regulate the cAMP- and cGMP-dependent signalling pathways in platelets, and the PDE3 inhibitor cilostazol was shown to inhibit platelet aggregation and the release of P-selectin, CXCL4 and platelet-derived growth factor in previous studies[29] (reviewed in [59]). Moreover, inhibition of PDE3 by cilostazol also decreased monocyte recruit-
ment [29]. In this study, the combination of ASA and cilostazol did not further inhibit chemokine release after platelet activation compared to ASA alone. However, when combined, monocyte recruitment was decreased, which suggests that the combination of ASA and cilostazol can inhibit the release of chemoattractants from platelets. Interestingly, the addition of the CC-chemokine inhibitor Evasin-4 led to a strong reduction of THP-1 chemotaxis towards both convulxin- and thrombin-induced platelet releasates. Although Evasin-4 blocks many CC-chemokines, a proteomics study only detected CCL5 as a CC-chemokine member within platelets [15]. In addition, CXCL4, which is unaffected by Evasin-4, poorly affects monocyte recruitment [17, 18]. This indicates that, at least in this experimental setting, CCL5 is mainly responsible for the chemotactic effects of platelet releasates.

In summary, on basis of our findings we can conclude that the majority of antiplatelet drugs influence the release of inflammatory mediators, chemokines in this study, from activated platelets. Although ASA, P2Y₁₂ receptor inhibitors and PDE3 inhibitors also have an effect on the vasculature and leukocytes, they are also able to reduce inflammation in a platelet-dependent manner e.g. by modulating interactions of platelets with other immune cells [43, 45], and by inhibition of platelet secretion through the thrombin activation pathway (this study). Interestingly, chemokine release from platelets can be effectively reduced by specific combinations of medications. Dual therapy with ASA and a P2Y₁₂ receptor inhibitor or with cilostazol shows promising effects in reducing the pro-inflammatory properties of platelets. Whether antiplatelet drugs can be used to reduce low-grade inflammation, a possible driver of cardiovascular disease [60], remains to be determined and it is challenging to pinpoint such effects on platelets. In addition, given the beneficial effects of platelets and their released contents in wound healing processes [61], inhibition of chemokine release might not always be advantageous.
Antiplatelet therapy reduces platelet pro-inflammatory properties

Nevertheless, for patients with cardiovascular disease and notably with atherothrombosis, the reduction of inflammation by targeting of chemokine release during antiplatelet treatment could be supplemented with an anticoagulant, e.g. rivaroxaban (direct anti-factor Xa inhibitor) to further prevent disease progression and manifestation while minimizing the risk for bleeding complications.

Key findings

1. Combined therapy of ASA and αP2Y12 or PDE3 inhibitor decreases platelets pro-inflammatory potential of leukocyte recruitment, which appeared to depend on platelet-derived CCL5.

2. Secretion triggered via PAR1/4 is most affected by anti-platelet medications.

3. As single therapy, cangrelor and ASA are comparable in reducing pro-inflammatory chemokine release by platelets.

Acknowledgement

The authors thank Dr. I. Dijkgraaf and Dr. S.S. Denisov (CARIM, Maastricht University) for the kind gift of Evasin-4.

Funding

This work was supported by the Netherlands Foundation for Scientific Research (ZonMW VIDI 016.126.358), the Landsteiner Foundation for Blood Transfusion Research (LSBR Nr. 1638) awarded to R.R.K. and by the Netherlands Organization for Scientific Research (NWO) (Vidi 91716421), and the Dutch Heart Foundation (2015T79) to DMC and J.M.E.M.C.

Author Contributions
A.C.A.H performed experiments, analysed data and drafted the manuscript; T.V and D.M.C performed experiments; J.M.E.M.C provided critical reagents and intellectual input; and R.R.K. supervised this study, obtained funding, and finalized the manuscript.

References

1. Herrington W, Lacey B, Sherliker P et al. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res 2016; 118: 535-546. DOI: 10.1161/CIRCRESAHA.115.307611

2. Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med 2011; 17: 1423-1436. DOI: 10.1038/nm.2515

3. Viles-Gonzalez JF, Fuster V, Badimon JJ. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J 2004; 25: 1197-1207. DOI: 10.1016/j.ehj.2004.03.011

4. Smyth SS, McEver RP, Weyrich AS et al. Platelet functions beyond hemostasis. J Thromb Haemost 2009; 7: 1759-1766. DOI: 10.1111/j.1538-7836.2009.03586.x

5. da Costa Martins P, van den Berk N, Ulfman LH et al. Platelet-monocyte complexes support monocyte adhesion to endothelium by enhancing secondary tethering and cluster formation. Arterioscler Thromb Vasc Biol 2004; 24: 193-199. DOI: 10.1161/01.ATV.0000106320.40933.E5

6. Kuckleburg CJ, Yates CM, Kalia N et al. Endothelial cell-borne platelet bridges selectively recruit monocytes in human and mouse models of vascular inflammation. Cardiovasc Res 2011; 91: 134-141. DOI: 10.1093/cvr/cvr040

7. Schrottmaier WC, Mussbacher M, Salzmann M et al. Platelet-leukocyte interplay during vascular disease. Atherosclerosis 2020. DOI: 10.1016/j.atherosclerosis.2020.04.018
8. Vajen T, Mause SF, Koenen RR. Microvesicles from platelets: novel drivers of vascular inflammation. Thromb Haemost 2015; 114: 228-236. DOI: 10.1160/TH14-11-0962
9. Konkoth A, Saraswat R, Dubrou C et al. Multifaceted role of extracellular vesicles in atherosclerosis. Atherosclerosis 2020. DOI: 10.1016/j.atherosclerosis.2020.11.006
10. Maugeri N, Campana L, Gavina M et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12: 2074-2088. DOI: 10.1111/jth.12710
11. Vajen T, Koenen RR, Werner I et al. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci Rep 2018; 8: 10647. DOI: 10.1038/s41598-018-29026-0
12. Gleissner CA. Macrophage Phenotype Modulation by CXCL4 in Atherosclerosis. Front Physiol 2012; 3: 1. DOI: 10.3389/fphys.2012.00001
13. von Hundelshausen P, Schmitt MM. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol 2014; 5: 294. DOI: 10.3389/fphys.2014.00294
14. Fernandez EJ, Lolis E. Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 2002; 42: 469-499. DOI: 10.1146/annurev.pharmtox.42.091901.115838
15. Burkhart JM, Vaudel M, Gambaryan S et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120: e73-82. DOI: 10.1182/blood-2012-04-416594
16. Blanchet X, Cesarek K, Brandt J et al. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome. Thromb Haemost 2014; 112: 1277-1287. DOI: 10.1160/TH14-02-0139
17. von Hundelshausen P, Koenen RR, Sack M et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 2005; 105: 924-930. DOI: 10.1182/blood-2004-06-2475

18. Koenen RR, von Hundelshausen P, Nesmelova IV et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15: 97-103. DOI: 10.1038/nm.1898

19. Coenen DM, Heinzmann ACA, Karel MFA et al. The multifaceted contribution of platelets in the emergence and aftermath of acute cardiovascular events. Atherosclerosis 2021. DOI: 10.1016/j.atherosclerosis.2020.12.017

20. Gurbel PA, Fox KAA, Tantry US et al. Combination Antiplatelet and Oral Anticoagulant Therapy in Patients With Coronary and Peripheral Artery Disease. Circulation 2019; 139: 2170-2185. DOI: 10.1161/CIRCULATIONAHA.118.033580

21. Piepoli MF, Hoes AW, Agewall S et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016; 37: 2315-2381. DOI: 10.1093/eurheartj/ehw106

22. Tsigkou V, Siasos G, Rovos K et al. Peripheral artery disease and antiplatelet treatment. Curr Opin Pharmacol 2018; 39: 43-52. DOI: 10.1016/j.coph.2018.01.011

23. Sibbing D, Byrne RA, Bernlochner I et al. High platelet reactivity and clinical outcome - fact and fiction. Thromb Haemost 2011; 106: 191-202. DOI: 10.1160/TH11-01-0040

24. Muller KA, Chatterjee M, Rath D et al. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 2015; 114: 498-518. DOI: 10.1160/TH14-11-0947
25. Denisov SS, Ramirez-Escudero M, Heinzmann ACA et al. Structural characterization of anti-CCL5 activity of the tick salivary protein evasin-4. J Biol Chem 2020; 295: 14367-14378. DOI: 10.1074/jbc.RA120.013891

26. Rosado JA, Meijer EM, Hamulyak K et al. Fibrinogen binding to the integrin alpha(IIb)beta(3) modulates store-mediated calcium entry in human platelets. Blood 2001; 97: 2648-2656. DOI: 10.1182/blood.v97.9.2648

27. Parker WAE, Storey RF. Novel approaches to P2Y12 inhibition and aspirin dosing. Platelets 2020; 1-8. DOI: 10.1080/09537104.2020.1714574

28. Floyd CN. Dual Antiplatelet Therapy in Coronary Artery Disease: Comparison Between ACC/AHA 2016 and ESC 2017 Guidelines. Eur Cardiol 2020; 15: 1-3. DOI: 10.15420/ecr.2019.09

29. Coenen DM, Heinzmann ACA, Oggero S et al. Inhibition of Phosphodiesterase 3A by Cilostazol Dampens Proinflammatory Platelet Functions. Cells 2021; 10. DOI: 10.3390/cells10081998

30. Mauler M, Herr N, Schoenichen C et al. Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation 2019; 139: 918-931. DOI: 10.1161/CIRCULATIONAHA.118.033942

31. Cloutier N, Allaeyis I, Marcoux G et al. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S A 2018; 115: E1550-E1559. DOI: 10.1073/pnas.1720553115

32. Konopatskaya O, Gilio K, Harper MT et al. PKCalpha regulates platelet granule secretion and thrombus formation in mice. J Clin Invest 2009; 119: 399-407. DOI: 10.1172/JCI34665
Antiplatelet therapy reduces platelet pro-inflammatory properties

33. van Holten TC, Bleijerveld OB, Wijten P et al. Quantitative proteomics analysis reveals similar release profiles following specific PAR-1 or PAR-4 stimulation of platelets. Cardiovasc Res 2014; 103: 140-146. DOI: 10.1093/cvr/cvu113

34. Coller BS. alphaIIbbeta3: structure and function. J Thromb Haemost 2015; 13 Suppl 1: S17-25. DOI: 10.1111/jth.12915

35. Lambrechts K, de Maistre S, Abraini JH et al. Tirofiban, a Glycoprotein IIb/IIIa Antagonist, Has a Protective Effect on Decompression Sickness in Rats: Is the Crosstalk Between Platelet and Leukocytes Essential? Front Physiol 2018; 9: 906. DOI: 10.3389/fphys.2018.00906

36. Kupatt C, Habazettl H, Hanusch P et al. c7E3Fab reduces postischemic leukocyte-thrombocyte interaction mediated by fibrinogen. Implications for myocardial reperfusion injury. Arterioscler Thromb Vasc Biol 2000; 20: 2226-2232. DOI: 10.1161/01.atv.20.10.2226

37. Massberg S, Brand K, Gruner S et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-896. DOI: 10.1084/jem.20012044

38. May AE, Kalsch T, Massberg S et al. Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 2002; 106: 2111-2117. DOI: 10.1161/01.cir.0000033597.45947.0f

39. May AE, Neumann FJ, Gawaz M et al. Reduction of monocyte–platelet interaction and monocyte activation in patients receiving antiplatelet therapy after coronary stent implantation. Eur Heart J 1997; 18: 1913-1920. DOI: 10.1093/oxfordjournals.eurheartj.a015200

40. Neumann FJ, Zohlnhofer D, Fakhoury L et al. Effect of glycoprotein IIb/IIIa receptor blockade on platelet-leukocyte interaction and surface expression of the leukocyte integrin
41. Undas A, Brummel-Ziedins K, Mann KG. Why does aspirin decrease the risk of venous thromboembolism? On old and novel antithrombotic effects of acetyl salicylic acid. J Thromb Haemost 2014; 12: 1776-1787. DOI: 10.1111/jth.12728

42. Otto GP, Sossdorf M, Boettel J et al. Effects of low-dose acetylsalicylic acid and atherosclerotic vascular diseases on the outcome in patients with severe sepsis or septic shock. Platelets 2013; 24: 480-485. DOI: 10.3109/09537104.2012.724482

43. Thomas MR, Outteridge SN, Ajjan RA et al. Platelet P2Y12 Inhibitors Reduce Systemic Inflammation and Its Prothrombotic Effects in an Experimental Human Model. Arterioscler Thromb Vasc Biol 2015; 35: 2562-2570. DOI: 10.1161/ATVBAHA.115.306528

44. Schafer A, Fraccarollo D, Pfortsch S et al. Clopidogrel improves endothelial function and NO bioavailability by sensitizing adenylyl cyclase in rats with congestive heart failure. Basic Res Cardiol 2011; 106: 485-494. DOI: 10.1007/s00395-011-0153-4

45. Schrottmaier WC, Kral JB, Badrnya S et al. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb Haemost 2015; 114: 478-489. DOI: 10.1160/TH14-11-0943

46. Thomas MR, Storey RF. Effect of P2Y12 inhibitors on inflammation and immunity. Thromb Haemost 2015; 114: 490-497. DOI: 10.1160/TH14-12-1068

47. Coimbra LS, Steffens JP, Rossa C, Jr. et al. Clopidogrel enhances periodontal repair in rats through decreased inflammation. J Clin Periodontol 2014; 41: 295-302. DOI: 10.1111/jcpe.12203

48. Harding SA, Sarma J, Din JN et al. Clopidogrel reduces platelet-leucocyte aggregation, monocyte activation and RANTES secretion in type 2 diabetes mellitus. Heart 2006; 92: 1335-1337. DOI: 10.1136/hrt.2005.083006
Antiplatelet therapy reduces platelet pro-inflammatory properties

49. Meyer A, Weithaeuser A, Steffens D et al. Inhibition of platelet function with clopidogrel is associated with a reduction of inflammation in patients with peripheral artery disease. Cardiovasc Revasc Med 2016; 17: 169-175. DOI: 10.1016/j.carrev.2016.01.010

50. Siegel PM, Sander L, Fricke A et al. P2Y12 receptor blockers are anti-inflammatory drugs inhibiting both circulating monocytes and macrophages including THP-1 cells. Sci Rep 2021; 11: 17459. DOI: 10.1038/s41598-021-95710-3

51. Micklewright JJ, Layhadi JA, Fountain SJ. P2Y12 receptor modulation of ADP-evoked intracellular Ca(2+) signalling in THP-1 human monocytic cells. Br J Pharmacol 2018; 175: 2483-2491. DOI: 10.1111/bph.14218

52. Kloss L, Dollt C, Schledzewski K et al. ADP secreted by dying melanoma cells mediates chemotaxis and chemokine secretion of macrophages via the purinergic receptor P2Y12. Cell Death Dis 2019; 10: 760. DOI: 10.1038/s41419-019-2010-6

53. Dickhout A, Tullemans BME, Heemskerk JWM et al. Galectin-1 and platelet factor 4 (CXCL4) induce complementary platelet responses in vitro. PLoS One 2021; 16: e0244736. DOI: 10.1371/journal.pone.0244736

54. Heinzmann ACA, Karel MFA, Coenen DM et al. Complementary roles of platelet alphaIbbeta3 integrin, phosphatidylserine exposure and cytoskeletal rearrangement in the release of extracellular vesicles. Atherosclerosis 2020; 310: 17-25. DOI: 10.1016/j.atherosclerosis.2020.07.015

55. Chatterjee M, Huang Z, Zhang W et al. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood 2011; 117: 3907-3911. DOI: 10.1182/blood-2010-12-327007

56. Italiano JE, Jr., Richardson JL, Patel-Hett S et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha
granules and differentially released. Blood 2008; 111: 1227-1233. DOI: 10.1182/blood-2007-09-113837

57. Jonnalagadda D, Izu LT, Whiteheart SW. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 2012; 120: 5209-5216. DOI: 10.1182/blood-2012-07-445080

58. Kamykowski J, Carlton P, Sehgal S et al. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood 2011; 118: 1370-1373. DOI: 10.1182/blood-2011-01-330910

59. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol 2011; 72: 634-646. DOI: 10.1111/j.1365-2125.2011.04034.x

60. Liu D, Richardson G, Benli FM et al. Inflammageing in the cardiovascular system: mechanisms, emerging targets, and novel therapeutic strategies. Clin Sci (Lond) 2020; 134: 2243-2262. DOI: 10.1042/CS20191213

61. Jansen EE, Braun A, Jansen P et al. Platelet-Therapeutics to Improve Tissue Regeneration and Wound Healing-Physiological Background and Methods of Preparation. Biomedicines 2021; 9. DOI: 10.3390/biomedicines9080869
Figure 1: Different platelet activation pathways have no influence on chemokine release.

Washed platelets (2x10^8/ml) were activated with convulxin (CVX, 100 ng/ml), thrombin (IIa, 5 nM), or TRAP-6 (50 µM) for 30 min at 37°C. Platelets were removed and chemokines CCL5 (A) and CXCL4 (B) were determined with ELISA. Control (Ctrl) represents no stimulated platelets. Chemokine release was followed in time after convulxin (C) and thrombin (D) activation. Closed circles represent convulxin activation and open circles represent thrombin activation, CTRL: n=31, CVX: =28-30, IIa: n=25-29, and TRAP-6: n=15 Median with interquartile range (A,B), Mean±SD (C,D). ***P<0.001, Kruskal-Wallis with Dunn's test.
Figure 2: Effects of antiplatelet drugs against α_{IIb}β_{3} on chemokine release. Washed platelets (2x10⁸/ml) were incubated with indicated compounds, 5 min prior to platelet activation and chemokine release was determined. CCL5 release after convulxin (A) and thrombin (B) activation and CXCL4 release after convulxin (C) and thrombin (D) activation. Closed circles represent convulxin activation and open circles represent thrombin activation. CTRL: n=25-30, eptifibatide: n=4-7, tirofiban: n=4-5. Median with interquartile range. *P<0.05, Kruskal-Wallis with Dunn's test.
Figure 3: Effect of ASA on chemokine release. Washed platelets (2x10^8/ml) from healthy volunteers exposed to ASA (100 mg p.o.) were activated and CCL5 (A) and CXCL4 (B) release was determined as described. Closed circles represent convulxin activation and open circles represent thrombin activation. CTRL: n=25-30 and ASA: n=8. Median with interquartile range. *P< 0.05, **P< 0.01, ***P<0.001, Kruskal-Wallis with Dunn’s test.
Antiplatelet therapy reduces platelet pro-inflammatory properties

Figure 4: Effects of P2Y\textsubscript{12} inhibition on chemokine release. Washed platelets (2x108/ml) from healthy volunteers exposed to ASA (100 mg p.o.) were activated and CCL5 (A,B) and CXCL4 (C,D) release was determined as described. Prior to activation, platelets were incubated with P2Y\textsubscript{12} inhibitor cangrelor for 5 min. Closed circles represent convulxin activation and open circles represent thrombin activation. CTRL: n=25-30, Cangrelor: n= 4. Cangr. + ASA: n=8. Median with interquartile range. *P<0.05, **P<0.01, Kruskal-Wallis with Dunn's test.
Antiplatelet therapy reduces platelet pro-inflammatory properties

Figure 5: Dual treatment with ASA + cilostazol treatment has no additional effects on chemokine release. Washed platelets (2x10⁸/ml) from healthy volunteers exposed to ASA (100 mg p.o.) were activated and CCL5 (A,B) and CXCL4 (C,D) release was determined as described. Platelets were incubated 10 min prior to activation with the PDE3 inhibitor cilostazol. Closed circles represent convulxin activation and open circles represent thrombin.
Antiplatelet therapy reduces platelet pro-inflammatory properties. Ctrl n = 25-29, Cilo n = 6, ASA n = 8, and ASA + Cilo n = 6. Median with interquartile range. * P<0.05, ** P<0.01 and *** P<0.001, ANOVA with Sidak test.

Figure 6: Combination treatment with cangrelor + cilostazol treatment has no additional effects on chemokine release. Washed platelets (2x10^8/ml) from healthy volunteers
were pre-treated with P2Y_{12} inhibitor cangrelor, 5 min before activation and CCL5 (A,B) and CXCL4 (C,D) release was determined as described. Platelets were incubated 10 min prior to activation with the PDE3 inhibitor cilostazol. Closed circles represent convulxin activation and open circles represent thrombin activation. Ctrl n = 25-30, Cilo n= 6-7, Cangrelor n = 4, and Cangr. + Cilo n = 4. Median with interquartile range. * P<0.05 and ** P<0.01, ANOVA with Sidak test.

Figure 7: Chemoattractant properties of activated platelets and the effects of antiplatelet drugs. Migration of monocytic cells (1 x 10^6/mL) was induced in a 12-well chemotaxis chamber for 90 min at 37°C. Buffer, or supernatants of resting or activated washed platelets was added in the bottom compartment. If applicable, platelets were activated by convulxin or thrombin without or with ASA or tirofiban (A), cangrelor or ASA + cangrelor (dual) (B), Cilostazol (cilo) or ASA + cilo (dual) (C), cangrelor or cangrelor + cilo (D). CCL5 (0.5 µg/
Antiplatelet therapy reduces platelet pro-inflammatory properties

mL) and platelet releasates without or with Evasin-4 (Ev-4, 1 µg/mL) (E). n=4-6, Median with interquartile range. * P<0.05, Kruskal-Wallis with Dunn’s test.