Increasing evidences have pointed out the relevance of natural killer (NK) cells in organ-specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands up-regulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILCs), comprising the classical CD56+ NK cells, have a role in maintaining or alternating tissue homeostasis secreting protective and/or pro-inflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular-matrix components, and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.

Keywords: NK cells, autoreactivity, autoimmunity, NKG2D, DNAM1, regulatory NK cells, mesenchymal stromal cells, LAIR1

FUNCTIONAL BALANCE BETWEEN ACTIVATING AND INHIBITING SIGNALS IN NK CELLS

It is well known that the functional behavior of NK cells can be regulated by positive and negative signals. A detailed analysis of positive and negative NK cell receptors is reported elsewhere (6). Roughly, two main systems of molecular regulators are expressed on NK cells: the first one is represented by invariant NK cell receptors for HLA-I while the second one is composed of several receptors which do not bind HLA-I. The molecular and functional characteristics of NK cell receptors for HLA-I have been extensively analyzed (26–28): briefly, killer immunoglobulin-like inhibitory receptors (KIRs) and C-reactive protein-type-inhibitory receptors (CLRs) can recognize either unique or several HLA-I alleles blocking NK cell function. Some members of these receptors can be expressed on NK cells also in an activating isoform that, in the extracellular portion, is apparently identical to the inhibiting one, indicating that the same HLA-I allele product can be positively recognized as well.

Furthermore, in some instances, only the activating form of a member of KIR family has been identified, although it is not still defined unequivocally its corresponding HLA-I ligand. All these findings would render the scenario of NK cell receptors for HLA-I much more complicated than it was supposed in the late 90s (29, 30). Regarding the non-HLA-I receptors present on NK cells, some are of the activating type such as CD69, NKP30, NKP44, and...
NKG2D, and DNAM1 (31–33), while others are of the inhibiting type as LAIR1 (34). It should be noted that the peculiar behavior of the 2B4 receptor, which can deliver an activating signal when the signal transducer called SAP/SH2D1A is present in the cytoplasm; but in some instances it can deliver an inhibiting signal also in the presence of this transducer [reviewed in Ref. (35, 36)]. It is commonly thought that NK cells do not aggress self-cells because the balance between negative and positive signals is always in favor of the negative regulation: this balance is broken when self-cells do not express HLA-I (as during viral infections) or up-regulate natural ligands for activating receptors as it happens during tumor transformation (10, 37).

EVIDENCE FOR THE RECOGNITION OF SELF-CELL BY NK CELLS

Like T lymphocytes, NK cells should not recognize autologous cells, unless autoreactivity is triggered, potentially leading to an autoimmune disease. Based on the original definition of NK cells (1), in principle a self-cell can be killed by NK cells without any previous stimulation. To avoid this damage, a self-cell is equipped with two major molecular mechanisms: (a) strong expression of HLA-I antigens able to deliver inhibiting signals to NK cells; (b) low levels or lack of expression of surface ligands essential for triggering NK cell activation [reviewed in Ref. (8)]. In the latter context, also the down-regulation of ligands for co-receptors of NK cell activation can play a key role in avoiding self-agression [reviewed in Ref. (4, 38)].

It is becoming evident that NK cells can recognize self-cells, which express ligands for activating receptors (8); indeed, NK cells can aggress both T and antigen presenting cells (APCs) upon triggering with toll-like receptor (TLR) or stimulation with IL2 or IL15 cytokines. These stimuli lead to the up-regulation of NKG2D receptor or to the neo-expression of CD69 and Nkp44, which in turn can trigger cytolytic activity and cytokine production (31, 39). On the other hand, several stimuli conceivably acting through the T cell receptor/CD3 complex, such as phytohemagglutinin (PHA), alloantigens, superantigens, and antigenic peptides, can induce the neo-expression of NKG2D ligands (NKG2DL) on CD4+ and CD8+ T lymphocytes [reviewed in Ref. (8)]. Moreover, also microorganisms as HIV or Mycobacterium tuberculosis can trigger NKG2DL expression on CD4+ T cells and T regulatory (Treg) cells (40, 41). The NKG2DL are represented by stress-induced MHC class I-related molecules, such as MICA/B, or the UL16 binding proteins (ULBPs), that are indeed recognized not only by NK cells but also by a large number of “unconventional” T lymphocytes, as γδ T and NKT cells (11, 12, 42–44). It is conceivable that even CD8+ memory T cells could be triggered through NKG2DL: all these cell populations can lead, acting alone or together, to autoreactivity (11). Indeed, the duty of innate immunity is to clear the body from a specific pathogen or impede the development of cancer; thus, one can consider autoimmunity as a drawback of a defective lymphoid stress surveillance that does not limit properly the dissemination of infected or malignant cells and does not maintain tissue integrity, leading to an altered adaptive immune response. In addition, also the poliovirus receptor (PVR) or nectin-2, both ligands for DNAM1 (45) can be expressed on activated or HIV-infected CD4+ T cells possibly leading to NK cell recognition through the DNAM1 activating receptor. To our knowledge, no reports are present so far in the literature on the possible interactions between activated T cells and NK cell receptors, such as natural cytotoxicity receptors and/or 2B4, although the 2B4 ligand CD48 can be expressed on T, B, and NK cells [reviewed in Ref. (46)]. It has been shown in a mouse model that blocking of 2B4 with a 2B4-fusion protein inhibits the generation of autoimmune hepatitis (AIH) suggesting that a still undefined 2B4+ lymphocyte subset can be involved (47). This deserves further studies in humans to better clarify the molecular mechanisms of NK cell-T lymphocyte cross-talk. Nevertheless, these findings strongly indicate that NK cells can strikingly regulate T cell responses influencing adaptive immunity. In the adaptive immune response, APCs take a key role; indeed, APC can adequately expose the peptide antigen to allow its recognition by T cells (48). Different kinds of APC, with a reported different capacity of presenting the peptide antigen, can be identified (49–51). Focusing our analysis on monocyte and monocyte-derived dendritic cells (moDCs), it is known that NK cells can actively interact with these APC that produce interleukin 12 (also known as NK stimulating factor), which triggers both proliferation and cytolytic activity of NK cells (52). In turn, NK cells can produce cytokines, as TNFα, which contribute to DC cell maturation. Several reports have shown that IL2-activated NK cells can lyse self-APC and that NK–APC interaction may lead to cytokine production (9, 10, 49, 53, 54). Importantly, this interaction can be mediated by different activating receptors, including some natural cytotoxicity receptors, and by NKG2D or DNAM1 (9, 54–59). In addition, ligands for NKG2D can be up-regulated on APC upon stimulation with TLR-ligands, further supporting the idea that microbial infections can evoke an autoreactive response that leads to a limited adaptive immune response. Indeed, the NK cell-mediated elimination of a given APC before antigen presentation to T cells should conceivably impede an optimal T cell activation [reviewed in Ref. (10, 49)]; thus, also the second player of the adaptive immune response can be shut down by NK cells. Finally, on epithelial and mesodermal-derived cells, as well as on leukocytes, adhesive ligands such as the intercellular adhesion molecule-1 (ICAM1) can be up-regulated upon triggering by TLR or inflammatory cytokines, including IFNγ and TNFα (60). The counter receptor of ICAM1 is the lymphocyte function associated antigen-1 (LFA1), which is a major player of leukocyte-to-cell adhesion and NK cell activation [reviewed in Ref. (60–64)]. Of course, stress signals can up-regulate the ligands for NK cell activating receptors also on this cell population, favoring the NK cell-mediated self-agression [reviewed in Ref. (37)]. These findings strongly suggest that the interaction between NK and self-cells during infection and/or inflammation should be the rule and not the exception; in addition, NK cells together with the so-called T cells with NK activity (primarily NKT and γδT cells) can down-regulate or even impede the generation of an adaptive immune response (43, 65, 66). It is conceivable that this interaction does not happen in the peripheral blood but within tissues or in the lymph nodes, at least in the case of organ-specific autoimmune diseases. In this context, several evidences have been reported on the presence of NK, NKT, or γδT lymphocytes, expressing NKG2D and DNAM1, among tissue infiltrating cells during autoimmune diseases; in the same
tissues NKG2D and/or DNAM1 ligands are detectable. Indeed, these cells have been found in psoriatic, blistering diseases, and alopecia areata (AA) skin lesions (16, 22, 67–71), central nervous system (CNS) in multiple sclerosis (MS) patients (23, 25, 72–78) and synovial fluid in rheumatoid arthritis (RA) (17, 79–83).

MESENCHYMAL STROMAL CELLS AS A TARGET FOR NK CELLS

Within tissues NK cells can interact with other cells of innate immunity as monocyte-derived macrophages and dendritic cells, mesodermal cells, and extracellular-matrix components (EMCs) besides NKT and γδT cells (Figure 1). In particular, mesenchymal stromal cells (MSCs) are fibroblast-like cells responsible for the production of several extracellular-matrix proteins as collagen, vitronectin, fibronectin, and laminin, through which parenchymal cells can maintain both shape and functional interactions in a given organ. Among MSC, mesenchymal stem cells can undergo differentiation to stromal cells typical of connective tissues, including osteocytes, adipocytes, and chondrocytes (reviewed in Ref. (84)). According to some experimental findings, the property to differentiate is not limited to cells of mesodermal origin but is also shared by ectodermal cells as neurons. Although conflicting results are reported in the literature, it is becoming evident that MSC can be a source of pluripotent stem cells that can be employed in tissue repair and regeneration. In addition, a functional common feature of MSC is the ability of regulating immune responses (Ref. (85); reviewed in Ref. (84, 86)). Indeed, it has been shown that MSC derived from different tissues can down-regulate the activation of the immune system both in vitro and in vivo murine models. More importantly, these cells have been proposed as an additional therapeutic tool to control graft versus host disease (GVHD) in particular in children (87, 88). MSC can have a role in regulating autoactivity through the modulation of cell-to-cell interactions and the production of extracellular-matrix proteins, cytokines, and enzymes (Ref. (85); reviewed in Ref. (84)).

More importantly, these cells have been shown to control graft versus host disease (GVHD) in particular in children (87, 88). MSC can have a role in regulating autoactivity through the modulation of cell-to-cell interactions and the production of extracellular-matrix proteins, cytokines, and enzymes (Ref. (85); reviewed in Ref. (84)).

The prevailing point of view of the literature is that MSC have a regulatory inhibiting role on several T and NK cell-mediated activities (87, 89). This regulation is reported to be mediated by soluble factors, such as TGFβ, HGF, IDO, and PGE2, which affect lymphocyte functions upon lymphocyte–MSC interaction (Ref. (85); reviewed in Ref. (84, 86, 89)). On the other hand, it appears that NK and T cells can aggress MSC recognizing NKG2D and DNAM1 ligands, leading to MSC killing and release of pro-inflammatory cytokines (57, 90–92). This property is mainly confined to cytokine-activated NK cells, as ex vivo peripheral blood isolated NK cells are not efficient in MSC killing (90–93). It is of note that the regulatory role of MSC on NK cell functions is found in vitro at well defined MSC:NK cell ratios, ranging from 1:1 to 1:4, while at lower MSC–NK cell ratios the inhibiting effect is barely or not detectable and an activating effect is found (90). Due to in vitro culture conditions, at this ratios MSC grow as a monolayer covering the culture well, with lymphocytes seeded on them; thus, both extracellular-matrix proteins, as

![FIGURE 1 | Opposite roles of NK cells in autoimmunity.](image-url)

T cells through the triggering of activating receptors or regulate tissue homeostasis. On the other hand, NK cells can aggress tissues inducing inflammation through IFNγ production (B), favoring the maturation of APC with the consequent triggering of adaptive immune response. Killing and damaging parenchymal, epithelial, and mesenchymal cells eventually lead to an altered tissue homeostasis and then to autoimmunity. ILC1-3, NKT, and γδT cells are involved and may regulate the NK cell-microenvironment interactions.
As an example, the engagement of VLA4 can induce activation of lagens type I, II, III, XIII, XVII, and XXIII (112–115) (shown to be a receptor for the Gly-Prol-Hyp common motif of collagen, osteopontin, and collagen are reported in the literature up-regulated upon stimulation. Several different effects of NK cells with infected self-cells results in the secretion of TGFβ and IL10, which are considered mediators of tolerance for T cells (5, 145). For instance, during viral infections, it is conceivable that the interaction of NK cells with collagen is involved in the presence of soluble (s) LAIR (119–121). No direct evidence for the interaction of LAIR1 expressed by NK cells and collagen is available; however, it is conceivable that cross-linking of collagen can trigger an inhibiting signal in lymphocytes upon LAIR1 engagement has been demonstrated for T and B cells (117, 122–124), APCs (125, 126), and tumor cells (127–130). Altogether, these findings suggest that collagen produced by MSCs may be involved in the negative regulation of NK cell function. It is still to be defined which stimuli can regulate LAIR1 expression on NK cells. It is of note that LAIR1 is present on almost all leukocytes and it appears to be associated with the leukocyte common antigen (LCA) tyrosine phosphatase (CD45) on NK cells (131); thus, LAIR1 could regulate NK cell activation by itself and/or through the association with CD45. Interestingly, the lack or lower expression of LAIR1 is associated with an impaired inhibiting signal delivered upon LAIR1 engagement in B cells isolated from systemic lupus erythematosus (SLE) patients or B cell chronic leukemia (129, 132) supporting the idea that down-regulation of LAIR1 expression can be associated with autoimmune or neoplastic diseases.

NK CELL SUBSETS AND INNATE LYMPHOID CELLS AS PLAYERS AND REGULATORS OF AUTOIMMUNITY

It is generally thought that autoreactivity and autoimmune diseases are based on an altered adaptive immune response determining the generation of T and B cell-mediated aggression of self-cells (133–136). This can be the result of a too strong reaction to self-antigens due to altered central or peripheral tolerance of autoreactive T and B cell clones. Treg cells are the main effectors of tolerance and several evidences have demonstrated that the lack of an optimal regulation of the adaptive immune response may be a consequence of their impaired function (137). NK cells can influence tolerance by eliminating Treg cells (135, 138, 139) or by acting as regulatory cells themselves (14, 21, 140–144). Indeed, upon engagement of activating receptors, NK cells can release several regulating cytokines, such as TGFβ and IL10, which are considered mediators of tolerance for T cells (5, 145). For instance, during viral infections, it is conceivable that the interaction of NK cells with infected self-cells results in the secretion of TGFβ and IL10, which in turn modulate T and B cell responses; of note, TGFβ is a strong down-regulator of NK cell-mediated activation and proliferation (146–149). Interestingly, secretion of functional TGFβ can be elicited in NK cells upon triggering with soluble HLA-I molecules that interact with the corresponding counter-receptors, as CD8 and/or the activating isoforms of KIRs and/or CLRs (150, 151). An increment of sHLA-I can be detected in the sera of patients suffering from different autoimmune diseases; thus, one could suggest that sHLA-I can down-regulate NK cell activation. In addition, together with TGFβ, NK cells can release FasL (152); in turn, soluble FasL, interacting with Fas at the surface of lymphocytes, can lead to their cell death. Thus, the NK cell-mediated down-regulation of immune response may occur both by blocking activation with TGFβ and triggering cell death via FasL–Fas interaction (152). Recently, several distinct NK cell subsets have been found in different tissues playing opposite functional roles in immune response (Table 1). Briefly, it is commonly accepted that CD56⁺ and CD56[−] NK cells present in the peripheral blood have distinct phenotype and functional activities. Indeed, CD16⁺KIR⁺CD56⁺ NK cells are primarily cytotoxic while the CD16⁺KIR⁺CD56⁺ produce huge amounts of cytokines. It is not clear whether CD56⁺ possesses the plasticity to become CD56⁺ and vice versa. Also, human NK cells can be subdivided on the basis of CD27 and CD11b expression (153, 154): the minority of peripheral NK cells is CD27⁺ (about 5%), while this population is more represented in the bone marrow and further in the spleen and tonsils. CD27⁺ NK cells, either CD11b⁺ or CD11b⁺−, can produce high amounts of cytokines while among the CD27⁺ NK cells those expressing CD11b are highly cytokotoxic (Table 1). Of note, early during pregnancy the majority of human decidual lymphocytes are characterized by unique phenotype: CD16[−]CD11b⁺CD56⁺ either expressing or not CD27, CD9, and CD151 tetraspanning family members. Some of these cells can produce IL22 and express immunomodulatory molecules as galectin-1 and progestagen-associated protein 14 (155). Importantly, decidual NK (dNK) CD56^{bright}CD27⁺ cells...
Table 1 | Features of NK cell subsets in peripheral blood and tissues.

NK cell type	Cytotoxic	Regulatory/ tolerant
Prototype examples	Peripheral NK cells	Decidual NK cells
Phenotype	CD56dimCD27−CD11b+	CD56brightCD27−CD11b−
Cytokine produced	Mainly IFNγ and TNFα	Several different cytokines (TGFβ, VEGF, IL10, IL17, IL22)
Main activity	Cytolysis	Vascular remodeling
Tissue localization	Peripheral blood, bone marrow	Lung, uterus, liver, and gut
Immunity against	Viruses and tumor immunosurveillance	Maintenance of tissue homeostasis
Role in autoreactivity	Triggering or protective effect	Mainly protective effect

Schematically, NK cells can show two different functional behaviors (a) cytolytic NK cells (cNK) express high levels of lytic granules and kill spontaneously tumor cells; (b) regulatory/tolerant NK cells producing several soluble factors which are relevant in regulating tissue homeostasis. Cytotoxic NK cells may exert a key role in inducing inflammation and they can down-regulate adaptive immunity acting on antigen presenting cells. Regulatory/tolerant NK cells are involved in controlling tissue homeostasis playing a protective role aimed to maintain and reconstitute the healthy conditions during tissue reparation.

suppress Th17 through an IFNγ-dependent pathway and this population is lost in women with spontaneous abortion. Additional NK cell subsets, as NK2, NK3, NKr, and NK22 specifically involved in the secretion of immune-regulatory cytokines have been recently identified [reviewed in Ref. (21, 156–160)]. Subsets with a protective role in autoimmunity are NK2 cells, predominant in allergic disease, producing high amounts of IL4, IL5, and IL13 (161), NK3 cells which release IL10 (162), together with secreting TGFβ NKr cells which are involved in maternal-fetal immune tolerance (80) while NK22 cells limit inflammation and protect gut mucosal integrity through the action of IL22. To further complicate this scenario, innate lymphoid cells (ILCs, Table 2) distinct from NK cells, has been identified in mucosa associated lymphoid tissue (163). To uniform this variegate picture, it has been suggested to include NK cells within the ILC1 subset and it has been proposed that the CD56 molecule can be considered the best marker to distinguishing between NK and other lineage negative lymphoid cells (Table 2) as both kind of cells can express Nkp46 and Nkp44 receptors. More importantly, ILC1, ILC2, and ILC3 subsets express peculiar transcription factors as T-bet or RORα or RORγT (Table 2) resembling Th1, Th2, or Th17 T cell subsets respectively. Of note, ILC1, ILC2, and ILC3 cells are present in the gut and display a pro-inflammatory or a protective role depending on the main cytokine produced (Table 2). Finally, the Nkp46+Nkp44+RORγT+CD127+ NK cells show a protective role in autoimmunity but they may be counteracted by Nkp46+Nkp44−RORγT−CD127− NK cells which appear to be pathogenic through the production of IFNγ (164). Altogether these findings suggest that both different NK cell subsets and ILC are primarily involved in either host defense against viruses and tumor immunosurveillance or in regulating tissue homeostasis and autoimmunity. Furthermore, it is still to be determined the “plasticity” of an NK cell or ILC subset as it has been demonstrated for some T cell subsets [reviewed in Ref. (165, 166)].

NK CELLS AND GENETIC CORRELATION WITH AUTOIMMUNE DISEASES

Natural killer cell development and function is strictly related to genetic elements: the genetic background, particularly the defects and variations of KIR/HLA genotypes, can influence the function of a given NK cell receptor in target cell recognition and impair NK cell activation as well as self-tolerance. This influence is supposed to be related to autoimmunity (167); indeed, several findings have pointed out associations between risk of systemic or organ-specific autoimmune diseases and KIR/HLA genotypes, which indicate that self-tolerance may be broken with inappropriate receptor and ligand pairs or with the interrupted signal balance (38, 168–177). In general, the presence of an activating receptor for HLA-I associated with the lack of reduction or inhibitory pairs has been shown in several autoimmune diseases [reviewed in Ref. (21, 178)] suggesting that an imbalance in favor of activating receptors for HLA-I is associated with autoimmunity (Figure 2). This is in line with the findings observed in bone marrow transplantation where the expression of activating KIRs can override the regulating signals generated through inhibiting KIRs and/or CLRs (179–182).

In the following paragraphs, the findings regarding the potential role of NK cells in different autoimmune diseases will be listed and discussed.

FEATURES OF NK CELLS IN SKIN DISEASES

Typical autoimmune diseases of the skin are psoriasis, pemphigus vulgaris (PV), and AA; herein, we will not deal with skin specific manifestations of SLE which can be considered as a systemic autoimmune disorder with involvement of the skin. It has been reported that NK cells represent about 5–8% of infiltrating lymphocyte in psoriatic lesions and these cells are CD56brightCXCR3+CCR5+ cells (67) expressing the activation antigen CD69. These cells produce IFNγ after IL2 stimulation; in
Innate lymphoid cells (ILCs) are mucosa associated lymphoid cells which can express some markers of NK cells. It has been proposed to include NK cells within the ILC1 subset of ILC. NK cells are CD56^bright and display strong cytolytic activity while ILC produce a set of different cytokines depending on the subset they belong to. This dichotomy is not so well defined as some ILC3 cells can express CD56 and thus it is still debate whether NK and some ILC subsets may be inter-converted due to intrinsic plasticity. IBD, inflammatory bowel disease.

Table 2 | Innate lymphoid cells characteristics

Characteristic	ILC group 1	ILC group 2	ILC group 3
Cell type	NK cells (CD56^bright, NKP46^+)	IL1R^+	ILC3 and LTi cells Some CD56^+ cells
	ILC1 cells not cytotoxic	IL23R^+	
Main cytokine produced	IFNγ	IL5 and IL13 triggered through IL25 or IL33	IL22 and/or IL17 IFNγ
Cytoplasmic activity	Yes (NK cells)		
Main transcription factor expressed	Tbet Eomes	RORα	RORγt
Peculiar phenotypic features	c-kit^− (CD117) IL12Rβ2^+	c-kit^− IL12Rβ2^− Subunits of IL25R and IL33R	
Common phenotypic features	IL7Rα^+ (CD127) NKP1a^+ (CD161)	IL7Rα^+ NKP1a^+	IL7Rα^+ NKP1a^+
Immune function	Viral infections, tumor surveillance NK IFNγ	Tissue defense/homeostasis	Inflammation (IL17^+ IFNγ^+ colitis)
	Inflammation (ILC1)		Protection (Citrobacter rodendrium ILC3 IL22^+)
Main tissue localization	Lymphoid organs, uterus, lung, gut, liver	Lung, adipose tissue, gut	Gut barrier, wound healing, and epithelial proliferation
Role in autoreactivity	IBD (CD56^bright NK cells)	Murine models of gut parasitic infections	Murine models of colitis Chron disease
		Human IBD	

NK CELLS IN MULTIPLE SCLEROSIS

Multiple sclerosis is a CNS inflammatory autoimmune disease involving as target the myelin associated with neuronal axons; MS eventually leads to a progressive disability and host death due to the impairment of vital CNS functions. A potential pathogenic role of NK cells in MS is supported mainly in relapsing remitting MS patients (RRMS) [reviewed by Chanvillard et al. (23)]; indeed, NK cells can directly aggress and damage oligodendrocytes which produce myelin and NK cells are increased in MS lesions (192, 193). On the other hand, NK cells can directly affect the life of autoreactive T cells or APCs; in MS patients treated with IFNβ (194) or with the anti-CD25 antibody daclizumab, there is a selective expansion and activation of CD56^bright NK cells and this correlates
FIGURE 2 | Schematic representation of the imbalance between inhibiting and activating receptors on NK cells with the occurrence of autoimmune disease. (A) In healthy conditions the negative signal (in red) delivered through inhibiting receptors for HLA-I can prevail on the positive signal (in green) induced by the engagement of activating receptor. The net effect is that no damage to self-cells is induced, thus there is no autoreactivity. (B,C) The down-regulation of expression of inhibiting receptors (B) or an increment of activating receptors (C) determines in any case the prevalence of the activating signal on the inhibiting one, leading to self-reactivity (indicated as prevalence of positive signal shown in green). Although not shown, these two situations may also be found together. (D) In this case the lack of activating receptors can lead to impaired blocking of autoreactive T cell clones favoring autoreactivity. For each situation are listed the autoimmune diseases where an alteration of NK receptors have been reported. KIR2DL1 and KIR2DL2 are the inhibiting isoforms of NK receptors for HLA-C alleles. The KIR2DS1 and KIR2DS2 are the activating isoforms of the NK receptor for HLA-C alleles. NKG2C is the activating isoform of CLIR. DNAM1 is an activating receptor present on NK cells and MICA and ULBP are the ligands of the NKG2D surface receptor involved in the recognition of either infected or tumor transformed cells. AA, Alopecia areata; AS, ankylosing spondylitis; ATD, autoimmune thyroid disease; MS, multiple sclerosis; P, psoriasis; PV, pemphigus vulgaris; RA, rheumatoid arthritis; SS, systemic sclerosis; TID, type I diabetes; V, vasculitis.

with a down-regulation of T cells activation and inhibition of inflammation (195, 196), suggesting that CD56bright NK cells are relevant in the control of MS lesions. Importantly, this NK cell subset appeared to kill T cells through granzyme K and A, which activate the mitochondrial pathway of apoptosis. The expansion of CD56bright NK cells can be dependent on their relative higher expression (compared to CD56dull NK cells) of the intermediate affinity receptor for IL2. Thus, during MS therapy CD56dull NK cells should be shut down through the blocking of the CD25 receptor by daclizumab; on the other hand, the expansion of CD56bright NK cells is favored because daclizumab does not impair their proliferation. Furthermore, in MS the NK2 cell subset is responsible for the production of IL5 and IL13, which may actively suppress the activity of self-reactive T cells. These cells disappear in MS patients when an exacerbation of the disease is present, while they re-appeared during the remission phase, suggesting that NK2 cells may be relevant for the disease control (197, 198).

NK CELLS AND TYPE I DIABETES

A reduction of peripheral NK cells has been reported in early diagnosed type I diabetes (TID) while the amount of NK cells is mostly similar to healthy controls in long-standing TID patients; more importantly, long-standing TID display lower amounts of IFNγ and lower expression of some natural cytotoxicity receptors (199) associated with high levels of glycosylated hemoglobin, suggesting that the impairment of NK cells could be a consequence of the disease. It is of note that some NK cells have been identified also within the pancreas, nearby to β pancreatic islets (200), although this finding has not been confirmed (201). In a murine diabetes model, it has been reported that NK cell are essential in abolishing the onset of the disease in NOD mice through a TGFβ-dependent mechanism that interferes with the activation of β-islet specific T cells (202, 203).

NK CELLS IN RHEUMATOID ARTHRITIS

It has been reported that NK cells producing IL22 and TNFα are increased in the synovial fluid of RA patients. It is of note that culture supernatants from these IL22-producing NK cells can trigger the proliferation of synovial fibroblast-like synoviocytes and this proliferation is inhibited using anti-IL22 and anti-TNFα antibodies (79). In addition, NK cells from synovial fluid are mainly CD56bright, express high levels of activation antigens and produce IFNγ. Furthermore, they can induce monocyte differentiation to dendritic cells, which in turn can trigger NK cells (204). Altogether
these findings would suggest an active role of NK cells in sustaining inflammation in RA patients.

NK CELLS IN INFLAMMATORY BOWEL DISEASE

Inflammatory bowel diseases are represented by ulcerative colitis (UC) and Chron disease (CD): these two illnesses are characterized by the inflammation of gut accompanied by diarrhea and impairment of absorption of nutrients. It is commonly accepted that IL17A-producing lymphocytes are extremely relevant in IBD (205); among the different cell populations residing and colonizing (Th17, Th1-Th17, NKT, γδT cells) bower mucosa in UC or CD, NK cells, and the group 3 of ILC3 (see Table 2) are good producer of IL17A. These cells can release IL17A immediately upon engagement with pathogen associated molecular patterns (PAMPs) and/or cytokines as IL23 (163). More importantly, both NK cells and ILC3 producing IFNγ and IL17 are abundant in inflamed CD mucosa while it is debated whether ILC3 secreting IL22 cells are increased or decreased in IBD (164, 206). It appears that some ILC of the subgroup 3 (Table 2) are relevant in the generation of the gut-associated lymphoid tissues and the maintenance of healthy conditions. In this context, the fine tuning of the respective functional role of colitogenic ILC producing IFNγ (ILC1 and some ILC3) and protective ILC3 secreting IL22 should be relevant in the generation of IBD.

NK CELLS IN AUTOIMMUNE LIVER DISEASES

Natural killer cells present in the healthy liver are different from those found in the peripheral blood; indeed, the former are mainly CD56^dim and about a half do not express CD16. Furthermore, these cells are more prompt to be stimulated with IL2 and, unexpectedly, do not lyse autologous hepatocytes, although these cells do not bear HLA class I antigens [reviewed in Ref. (207)]. Autoimmune diseases that hit the liver are mainly represented by AIH, primary biliary cirrhosis (PBC), and primary sclerosing cholangitis (PSC). AIH is characterized by the progressive destruction of the liver parenchyma which eventually leads to cirrhosis and in several instances to hepatic failure and host death. NK cells, together with γδT cells, play a role in the physiopathology of the AIH (208, 209). This is confirmed also in a murine model where administration of poly immune complexes (IC) can induce a strong production of type I IFN and consequent activation of liver NK cells leading to liver destruction with similar histopathologic features found in human AIH (210). In PBC, besides IL17+ cells infiltrating damaged bile ducts, hepatic NK cells active against biliary epithelial cells are found, but it is to be determined whether they are directly involved in the break of immune tolerance characteristic of this disease (207, 211–213). PSC is characterized on one hand by the reduced frequencies of some alleles of inhibiting receptors for HLA-I (214) and on the other by the expression of peculiar alleles of the NKG2D ligand MICA (215); both these molecular events might regulate the NK cell-mediated immune interaction with cholangiocytes.

NK CELLS IN LUPUS ERYTHEMATOSUS SYSTEMICUS

Systemic lupus erythematosus is a systemic autoimmune disease characterized by tissue damage mediated mainly through type II and III hypersensitivity. Several autoantibodies are present in SLE patients and it is evident that interaction with cellular antigens can deliver an activating signal to leukocytes bearing Fcγ receptors, as NK cells and monocyte–macrophages, which eventually leads to cell damage and inflammatory cytokine production. In SLE, a reduction of the absolute number of NK cells with an impaired cytolytic activity is reported (20, 216–222) with an imbalance between CD56^null and CD56^bright peripheral blood NK cell subsets (223) characterized by an increase of cytokines production (220) and a lower lymphokine activated killer cell activity (219).

It is of note that in different systemic autoimmune disorders, as systemic sclerosis (SSc) and anti-neutrophil cytoplasmic antibody-associated vasculitis, the number of CD3+CD56+ NK cells are markedly reduced (224). These findings could be interpreted either as a consequence or as a pathogenic player of the autoimmune disorder. In addition, the NK cell subsets found in the peripheral blood may be considered as the results of the localization of effector cells within target tissues, mainly in the case of systemic autoimmune diseases (24, 76). Recently, it has been reported a prominent reduction of NK cells expressing the DNAM1 activating receptor together with an up-regulation of DNAM1 ligand on plasmacytoid dendritic cells (pDCs) which in turn can mediate NK cell death through type I IFN (20). Of note, in the MRL-lpr/lpr mice model kidney-infiltrating NK cells express activation antigens and high content of cytotoxic granules, suggesting a possible role in the kidney tissue damage associated with SLE (20).

The presence of autoantibodies to inhibitory NK cell receptors and NKG2A (225) can promote excessive NK cell function leading to increased levels of autoantigens and further stimulating autoimmune reactions. Of note, in SLE an increase of CS1/CD319 activating receptor of the SLAM family on NK and pDCs could be detected upon triggering with RNA-IC (225); in addition, expression of CS1/CD319 on B cells of SLE patients increased. Altogether, these findings would suggest a role of CS1/CD319 homophilic interaction among pDC, NK, and B cells in SLE (226, 227). It is still to be determined whether these interactions are involved in the pathogenesis of SLE and whether NK cells may be protective or not in this disease.

AUTHORS’ VIEWPOINT

It is clear that antigen unspecific autoreactivity can occur, before the onset of an autoimmune disease or in healthy individuals that will not develop any illness: cytotoxic NK (some ILC1 cells), NKT, and γδT cells, are the main active players of this phenomenon while regulatory/tolerant NK cells and ILC2 and ILC3 are mainly involved in maintaining tissue homeostasis. The complex cellular network composed of effector lymphocytes, MSCs, and APCs is the place where the fate of antigen unspecific reactivity determines whether adaptive immune responses will take place or not. One could hypothesize that a strong innate immunity can impede the generation of adaptive immunity as infectious agents are cleared before specific T and B lymphocyte can respond. On the other hand, a low innate response chronically triggers specific T and B cells favoring the establishment of an autoimmune disease due to persistence of the antigen. Finally, an adequate innate response can lead to an optimal B and T cell response that definitively clear the antigen without self-aggression as a consequence (Figure 3). If this idea is true, to cure an autoimmune disease
FIGURE 3 | Hypothesis for the generation of adaptive autoreactivity and autoimmunity (A) Pathogen associated molecular patterns and/or damage associated molecular patterns (PAMPs and DAMPs) can activate innate immunity interacting with receptors expressed on innate lymphoid cells (NK, ILC subsets, NKT, and γδ T lymphocytes). The activation of innate immunity can be regulated by reciprocal interactions among mesenchymal stromal cells (MSC), extracellular-matrix components (EMCs), lymphoid cells, monocyte-derived macrophages (MΦ), and dendritic cells (MoDCs). (B) Innate response elicited by NK, ILC subsets, NKT, and γδ T lymphocytes interacting with MSC and EMCs can lead to: (a) rapid elimination of the danger signal that avoids the triggering of adaptive immune cell response; (b) intermediate innate response that leads to the triggering of adaptive immunity with the generation of memory T and B cells; (c) low innate response that determines the persistence of the danger signal leading to generation of autoreactive T and B cells. Autoreactive T and B lymphocytes are controlled by regulatory cells (Treg) but chronic stimulation tends to break the tolerance leading to autoimmune disease.

one should trigger innate immunity instead of down-regulate adaptive immunity. However, any therapeutic treatment should take into account that both innate and adaptive immune responses can be regulated through MSCs and EMCs besides lymphocytes and APC.

AUTHOR CONTRIBUTIONS
Both the authors have equally contributed to the preparation and reviewing of this manuscript.

ACKNOWLEDGMENTS
This work was partially supported by grants from Associazione Italiana per la Ricerca sul Cancro to Alessandro Poggi (IG 8761) and Maria Raffaella Zocchi (IG 12759) and from Compagnia di San Paolo (2012.0312 ID.ROL 891).

REFERENCES
1. Trinchieri G. Biology of natural killer cells. *Adv Immunol* (1989) 47:187–376. doi:10.1016/S0065-2776(08)60644-1
2. Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. *Nat Immunol* (2004) 5:996–1002. doi:10.1038/ni1114
3. Lanier LL. NK cell recognition. *Annu Rev Immunol* (2005) 23:225–74. doi:10.1146/annurev.immunol.23.021704.115526
4. Bryceson YT, Long EO. Line of attack: NK cell specificity and integration signal. *Curr Opin Immunol* (2008) 20:344–52. doi:10.1016/j.coi.2008.03.005
5. Caligiuri MA. Human natural killer cells. *Blood* (2008) 112:461–9. doi:10.1182/blood-2007-09-077438
6. Vivier E, Tomasello E, Baratin M, Walder T, Ugolini S. Functions of natural killer cells. *Nat Rev Immunol* (2008) 9:503–10. doi:10.1038/nri1582
7. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. *Nat Rev Immunol* (2008) 9:503–10. doi:10.1038/nri1582
8. Zingoni A, Ardolino M, Santoni A, Carboni C. NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in NK cell-mediated negative regulation of T cell responses. *Front Immunol* (2013) 3:408. doi:10.3389/fimmu.2012.00408
9. Spaggiari GM, Carosio R, Pende D, Marcenaro S, Rivera P, Zocchi MR, et al. NK cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. *Eur J Immunol* (2001) 31:1656–65. doi:10.1002/1521-4141(200106)31:6<1656::AID-IJM1656>3.0.CO;2-V
10. Zitvogel L, Terme M, Borg C, Trinchieri G. Dendritic cell-NK cell cross-talk: regulation and physiopathology. *Curr Top Microbiol Immunol* (2006) 298:157–74.

11. Seaman WE. Natural killer cells and natural killer T cells. *Arthritis Rheum* (2000) 43:1204–17. doi:10.1002/1529-0131(200006)43:6<1204:AID-ANR3>3.0.CO;2-1

12. Van Kaer L. Natural killer T cells as targets for immunotherapy of autoimmune diseases. *Immunol Cell Biol* (2004) 82:215–22. doi:10.1111/j.0114-2824.2004.01252.x

13. Bos JD, de Rie MA, Teunissen MB, Puikin G. Poiriastic dysregulation of innate immunity. *Br J Dermatol* (2005) 152:1098–107. doi:10.1111/j.1365-2133.2005.06645.x

14. Zhang C, Zhang J, Tian Z. The regulatory effect of natural killer cells: do “NK-reg cells” exist? *Cell Mol Immunol* (2006) 3:241–54.

15. Lünemann A, Lünemann JD, Münz C. Regulatory NK-cell functions in inflammation and autoimmunity. *Mol Med* (2009) 15:352–8. doi:10.2119/molmed.2009.00035

16. von Bubnoff D, Andrés E, Hentges F, Bieber T, Michel T, Zimmer J. Natural killer cells in atopic and autoimmune diseases of the skin. *J Allergy Clin Immunol* (2010) 125:80–8. doi:10.1016/j.jaci.2010.11.020

17. Ahrens DJ, Brennan FM. The role of natural killer cells in the pathogenesis of rheumatoid arthritis: major contributors or essential homeostatic modulators? *Immuno Lett* (2011) 136:115–21. doi:10.1016/j.imlet.2010.11.001

18. Berzins SP, Smyth MJ, Baker AG. Presumed guilty: natural killer T cell defects and human disease. *Nat Rev Immunol* (2011) 11:131–42. doi:10.1038/nri2904

19. Conigliaro P, Scivo R, Valesini G, Perrone R. Emerging role for NK cells in the pathogenesis of inflammatory arthropathies. *Autoimmun Rev* (2011) 10:577–81. doi:10.1016/j.autrev.2011.04.017

20. Huang Z, Fu B, Zheng SG, Li X, Sun R, Tian Z, et al. Involvement of CD226+ natural killer lymphocytes to autoreactivity: evidence for the involvement of 2B4-mediated signals in the pathogenesis of a murine hepatitis model. *Oncogene* (2008) 27:5994–59. doi:10.1038/onc.2008.272

21. Hayday AC, Gammadelta T cells and the lymphoid stress-surveillance response. *Immunity* (2009) 31:184–96. doi:10.1016/j.immuni.2009.08.006

22. Van Kaer L, Parekh VV, Wu L. Invariant natural killer T cells: bridging innate and adaptive immunity. *Tissue Cell Res* (2011) 343:43–55. doi:10.1007/s00410-010-1023-3

23. Bottino C, Castriconi R, Benedetti P, Rivera P, Bisaoni R, Minacci M, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. *J Exp Med* (2003) 198:557–67. doi:10.1084/jem.20030788

24. Elishmereni M, Levi-Schaffer F. CD48: a co-stimulatory receptor of immunity. *Int J Biochem Cell Biol* (2013) 45:25–8. doi:10.1016/j.biocel.2010.09.001

25. Furukawa H, Kitazawa H, Kanie T, Matsuura M, Nose M, Ono M. Role of 2B4-mediated signals in the pathogenesis of a murine hepatitis model independent of Fas and Valpha14 NK cells. *Immunology* (2009) 128:e151–8. doi:10.1111/j.1365-2657.2008.02936.x

26. Loschko J, Krug A. Antigen delivery to plasmacytoid dendritic cells -induction of tolerance and immunity. *Cell Death Diff* (2007) 20:489–501. doi:10.1038/cdd.2013.66

27. Münz C, Steinman RM, Fuji S. Natural killer cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. *J Exp Med* (2005) 202:203–7. doi:10.1084/jem.20050810

28. Guerder S, Jonker N, Mahididde K, Serre L. Dendritic cells in tolerance and autoimmune diabetes. *Curr Opin Immunol* (2013) 25(6):670–5. doi:10.1016/j.coi.2013.07.004

29. Galicia G, Gommerman JL. Plasmacytoid dendritic cells and autoimmune inflammation. *Biochem* (2013). doi:10.1515/bghs-2013-0213

30. Trinchieri G. Immunobiology of interleukin-12. *Immunol Rev* (1998) 167:269–78. doi:10.1038/BF0276451

31. Carbone E, Terrazano G, Ruggiero G, Zanini D, Ottizzano A, Manzo C, et al. Recognition of autologous dendritic cells by human NK cells. *Eur J Immunol* (1999) 29:4022–9. doi:10.1002/1521-4141(199912)29:12<4022::AID-JEMM-110>3.0.CO;2-F

32. Plas M, Moretta D, Ciccinni R. Spaggiari GM, Marcenaro S, Dondero A, et al. Expression of the DNAM-1 ligands nectin-2 (CD112) and poliovirus receptor (CD115), on dendritic cells: relevance for natural killer-dendritic cell interaction. *Blood* (2006) 107:2030–6. doi:10.1182/blood-2005-07-2806

33. Poggi A, Zocchi MR. Antigen presenting cells and stromal cells trigger human natural killer lymphocytes to autoactivation: evidence for the involvement of...
natural cytotoxicity receptors (NCR) and NK2G2D. Clin Dev Immunol (2006) 13:325–36. doi:10.1080/17425200600571894

Poggi A, Prevosto C, Zanocchi M, Canevali P, Musso A, Zocchi MR, NK2G2D and natural cytotoxicity receptors are involved in natural killer cell interaction with self-antigen presenting cells and stromal cells. Ann NY Acad Sci (2007) 1109:47–57. doi:10.1196/annals.1398.007

Poggi A, Zocchi MR. Human natural killer lymphocytes through the engagement of natural cytotoxicity receptors and NK2G2D can trigger self-agression. Autoimmun Rev (2007) 6:295–9. doi:10.1016/j.autrev.2006.07.003

Nedvetski S, Sowinski S, Eagle RA, Harris I, Vely F, Pende D, et al. Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood (2007) 109:3776–85. doi:10.1182/blood-2006-10-052977

Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol (2012) 24:107–15. doi:10.1016/j.ceb.2011.10.004

Dustin ML, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol (1991) 9:27–66. doi:10.1146/annurev.immunol.9.040191.000331

Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol (2007) 25:619–47. doi:10.1146/annurev.immunol.25.022206.141618

Brown AC, Oddie S, Dobbie IM, Parton RM, Eissmann P, et al. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol (2011) 9:e1001152. doi:10.1371/journal.pbio.1001152

Herter J, Zarbock A. Integrin regulation during leukocyte recruitment. J Immunol (2011) 187:4515–7. doi:10.4049/jimmunol.1203179

Liang D, Zuo A, Shao H, Born WK, O'Brien RL, Kaplan HJ, et al. IL-23 receptor on autoreactive T cells in experimental autoimmune uveitis. J Immunol (2011) 187:1196–206. doi:10.1111/j.1556-2862.2010.01106.x

Poggi A, Prevosto C, Massaro AM, Negrini S, Urbani S, Saccardi R, et al. Interaction between human natural killer cells and bone marrow stromal cells induces NK cell triggering. Role of NKP30 and NKRD22 receptors. J Immunol (2005) 175:6352–60.

Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med (2013) 13:856–67. doi:10.2174/15665240134010016

Le Blanc K. Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy (2005) 7:859–65. doi:10.1080/14653260601045399

Le Blanc K, Frassoni F, Ball L, Locatelli F, Rodeihl H, Lewis I, et al. Developmental committee of the European group for blood and marrow transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet (2008) 371:579–86. doi:10.1016/S0140-6736(08)60690-X

Saito S, Nakanishi A, Matsuo-Yabu S, Shiozaki A. The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy. J Reprod Immunol (2008) 77:14–22. doi:10.1016/j.jri.2007.04.007

Villanueva J, Lee S, Giannini EH, Graham TB, Passo MH, Filippovich A, et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Rheum (2005) 7:R30–7. doi:10.1002/art.13151

Dalbeth N, Gudat R, Davies RJ, Lee YC, McMichael AJ, Callan MF. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol (2004) 173:6418–26.

Saito S, Murakoshi K, Kotake S, Kamatani N, Tomatsu T. Granzyme B induces apoptosis of chondrocytes with natural killer cell-like cytotoxicity in rheuma- toid arthritis. J Rheumatol (2008) 35:1932–43.

Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood (2007) 110:4399–506. doi:10.1182/blood-2007-02-060976

Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood (2005) 105:1815–22. doi:10.1182/blood-2004-04-1559

Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med (2013) 13:856–67. doi:10.2174/15665240134010016

Le Blanc K. Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy (2005) 7:859–65. doi:10.1080/14653260601045399

Le Blanc K, Frassoni F, Ball L, Locatelli F, Rodeihl H, Lewis I, et al. Developmental committee of the European group for blood and marrow transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet (2008) 371:579–86. doi:10.1016/S0140-6736(08)60690-X

Uccelli A, Moretta I, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol (2008) 8:726–36. doi:10.1038/nri2395

Poggi A, Prevosto C, Massaro AM, Negrini S, Urbani S, Saccardi R, et al. Interaction between human natural killer cells and bone marrow stromal cells induces NK cell triggering. Role of NKP30 and NKRD22 receptors. J Immunol (2005) 175:6352–60.

Sotropioupolou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells (2006) 24:74–85. doi:10.1664/stemcells.2004-0359

Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood (2006) 107:1484–90. doi:10.1182/blood-2005-07-2775

Spaggiari GM, Moretta L. Cellular and molecular interactions of mesenchymal stem cells in innate immunity. Immuno Cell Biol (2013) 91:27–31. doi:10.1038/icb.2012.62

Kim MJ, Kisson RP, Albertsson P, Nanmark U, Basse PH, Kuppen PJ, et al. Secreted and membrane-associated matrix metalloproteinases of IL-2-activated NK cells and their inhibitors. J Immunol (2000) 164:5883–9.

Albertsson P, Kim MH, Jonges LE, Kisson RP, Kuppen PJ, Johannson BR, et al. Matrix metalloproteinases of human NK cells. In vivo (2000) 14:269–76.

Palmeri G, Serra A, De Maria R, Gismondi A, Milella M, Piccoli M, et al. Cross-linking of alpha 4 beta 1 and alpha 5 beta 1 fibronectin receptors enhances natural killer cell cytotoxic activity. J Immunol (1995) 155:5314–22.

Gismondi A, Milella M, Palmeri G, Piccoli M, Frati L, Santoni A. Stimulation of protein tyrosine phosphorylation by interaction of NK cells with fibronectin via alpha 4 beta 1 and alpha 5 beta 1. J Immunol (1995) 154:3128–37.
98. Gismondi A, Bisogno L, Mainiero F, Palmieri G, Piccoli M, Frati L, et al. Proline-rich tyrosine kinase-2 activation by beta 1 integrin fibronectin receptor cross-linking and association with paxillin in human natural killer cells. J Immunol (1997) 159:4729–36.

99. Rabinovich H, Lin WC, Amoscato A, Herberman RB, Whiteside TL. Expression of vitronectin receptor on human NK cells and its role in protein phosphorylation, cytokine production, and cell proliferation. J Immunol (1995) 154:1124–35.

100. Piali L, Hammel P, Ubeck C, Bachmann F, Gisler RH, Dunon D, et al. CD31/PECAM-1 is a ligand for alpha beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol (1995) 130:451–60. doi:10.1083/jcb.130.2.451

101. Unger ML, Johansson BR, Nannmark U. Migration of IL-2-activated natural killer cells in vitro: influence of extracellular matrix proteins. APMS (1996) 104:840–7. doi:10.1111/j.1696-0463.1996.tb04950.x

102. Diao H, Iwabuchi K, Li L, Ono K, Van Kazer L, Kon S, et al. Osteopontin regulates development and function of invariant natural killer T cells. Proc Natl Acad Sci U S A (2008) 105:15888–9. doi:10.1073/pnas.080609108

103. Chung JW, Kim MS, Piao ZH, Jeong M, Yoon SR, Shin N, et al. Osteopontin regulates the differentiation of peripheral blood precursors to dendritic cells. PLoS One (2013) 8:e56328. doi:10.1371/journal.pone.0056328

104. Merlo A, Tenca F, Fais F, Battini L, Cicone E, Grossi CE, et al. Inhibitory receptors CD85j, CD152, and CD155 down-regulate immunoglobulin and cytokine production by human B lymphocytes. Clin Diagn Lab Immunol (2005) 12:752–6.

105. van der Vuurst de Vries AR, Clevers H, Logtenberg T, Meyaard L. Leukocyte-associated immunoglobulin-like receptor-1 functions as an inhibitory receptor on cytotoxic T cells. Eur J Immunol (2009) 39:1167–75. doi:10.1002/eji.1830250210

106. Rabinowich H, Lin WC, Aderka D, Herberman RB, Whiteside TL. Induction of vitronectin receptor on human NK cells and its role in protein phosphorylation, cytokine production, and cell proliferation. J Immunol (1996) 157:2353–60. doi:10.4049/jimmunol.157.4.2353

107. Letourneur S, Lemarchand-Collet N, Dehne N, Herrmann N, Fink S, Jullien C, et al. MHC class I upregulation on human NK cells: influence of extracellular matrix proteins. Int Immunol (2003) 15:2323–31. doi:10.1093/intimm/dxh184

108. Albertsson P, Edsparr K, Kim MH, Goldfarb RH, Kitson RP, et al. Differential locomotion of long- and short-term IL-2-activated murine natural killer cells in a model matrix environment. J Exp Med (2007) 201:1391–6. doi:10.1084/jem.20052554

109. Edsparr K, Johansson BR, Goldfarb RH, Kallén PH, Edeman H, Kitson RP, et al. Mutational analysis of collagen-binding sites in human leukocyte-associated immunoglobulin-like receptor-1. J Biol Chem (2007) 282:1076–85. doi:10.1074/jbc.M601241200

110. Edman G, Rini A, Burrell C, Goodnow CC, Zeeberg G, Gavrilovska E, et al. Engagement of the leukocyte-associated inhibitory receptor-1 with collagens. Int Immunol (2009) 21:1419–25. doi:10.1080/09506220903175315

111. Meyaard L. The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol (2009) 85:369–76. doi:10.1128/JLB.C0507-3160

112. Lebbink RJ, de Ruiter T, Adelmeijer J, Brenkman AB, van Helvoort JM, Koch M, et al. Engagement of leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is differentially expressed on human B cell differentiation and inhibits B cell receptor-mediated signaling. Eur J Immunol (1999) 29:3166–72. doi:10.1002/1521-4141(199910)29:10<3166::AID-EIJIMM3>3.0.CO;2-C

113. Lebbink RJ, de Ruiter T, Raynal N, van Roon JA, Lenting PJ, et al. The soluble leukocyte-associated Ig-like receptor (LAIR)-2 antagonizes the collagen/LAIR-1 inhibitory immune interaction. J Immunol (2008) 180:1662–9.

114. Jiang L, Barclay AN. New assay to detect low-affinity interactions and characterization of multiple potent binding sites for human leukocyte associated immunoglobulin-like receptor-1 LAIR-1 functions as an inhibitory receptor on cytotoxic T cells. Eur J Immunol (2006) 36:2086–91. doi:10.1002/eji.20052554

115. Lebbink RJ, van den Berg MC, de Ruiter T, Raynal N, van Roon JA, Lenting PJ, et al. The soluble leukocyte-associated Ig-like receptor (LAIR)-2 antagonizes the collagen/LAIR-1 inhibitory immune interaction. J Immunol (2008) 180:1662–9.

116. Poggi A, Tomasoello E, Revello V, Nanni L, Costa P, Moretta L. P40 molecule regulates NK cell activation mediated by NK receptors for HLA class I antigens and TCR-mediated triggering of T lymphocytes. Int Immunol (1997) 9:1271–9. doi:10.1093/intimm/9.11.1271

117. Lebbink RJ, van den Berg MC, de Ruiter T, Raynal N, van Roon JA, Lenting PJ, et al. The soluble leukocyte-associated Ig-like receptor (LAIR)-2 antagonizes the collagen/LAIR-1 inhibitory immune interaction. J Immunol (2008) 180:1662–9.

118. Lebbink RJ, van den Berg MC, de Ruiter T, Raynal N, van Roon JA, Lenting PJ, et al. The soluble leukocyte-associated Ig-like receptor (LAIR)-2 antagonizes the collagen/LAIR-1 inhibitory immune interaction. J Immunol (2008) 180:1662–9.

119. Schmitt EG, Williams CB. Generation and function of induced regulatory T cells. Front Immunol (2013) 4:152. doi:10.3389/fimmu.2013.00152

Frontiers in Immunology | NK Cell Biology

February 2014 | Volume 5 | Article 27 | 12

Poggi and Zocchi

NK cells and self-recognition
153. Hayakawa Y, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun. Rev. (2012) 11(12):1091–100. doi: 10.1016/j.autrev.2013.05.003

154. Fu B, Wang F, Sun R, Ling B, Tian Z, Wei H. CD11b and CD27 reflect dissection of mature NK cells into two subsets with non-redundant tissue specific features. Front Immunol (2013) 4:294. doi: 10.3389/fimmu.2013.00294

155. Lehtimaki S, Lahesmaa R. Regulatory T cells control immune responses through their non-redundant tissue specific features. Front Immunol (2013) 4:294. doi: 10.3389/fimmu.2013.00294

156. Tsai S, Santamaría P. MHC class II polymorphisms, autoreactive T-cells, and autoimmunity. Front Immunol (2013) 4:321. doi: 10.3389/fimmu.2013.00321

157. Crome SQ, Lang PA, Lang KS, Ohashi PS. Natural killer cells regulate diverse T cell responses. Trends Immunol (2013) 34:342–9. doi: 10.1016/j.it.2013.03.002

158. Sun H, Sun C, Tian Z, Xiao W. NK cells in immunotolerant organs. Cell Mol Immunol (2013) 10:202–12. doi:10.1038/cmi.2013.9

159. Deniz G, Ertgen G, Kucaikcige UC, Kocacik D, Karagiannidis C, Aktas E, et al. Regulatory NK cells suppress antigen-specific T cell responses. J Immunol (2008) 180:850–7.

160. Ehlers M, Papewalis C, Stenzel W, Jacobs B, Meyer KL, Deenen R, et al. Schneidawind D, Pierini A, Negrin RS. Regulatory T cells and natural killer T cell responses. Blood (2013) 122:3378–83. doi:10.1182/blood-2012-06-453126

161. Wang F, Jiang W, Zhang C, Tian Z, Zhang J. Human natural killer cells exhibit a CD56bright subset. Blood (2013) 119:2516–18. doi:10.1182/blood-2013-08-453121

162. Blode GC, Schemann WP, Lodish HF. Role of transforming growth factor-beta in human disease. N Engl J Med (2002) 345:1350–8. doi:10.1056/NEJM20020530135018

163. Chen W, Frank ME, Jin W, Wahl SM. TGF-beta released by apoptotic T cells negatively regulates TCR and MHC class II expression on dendritic cells. Eur J Immunol (2007) 37:3378–83. doi:10.1002/eji.2006369104

164. Spaggiari GM, Contini P, Rosaro C, Ruffo P, Indiveri E, et al. Soluble HLA class I molecules induce natural killer cell apoptosis through the engagement of CD94: evidence for a negative regulation exerted by members of the inhibitory receptor superfamily. Hum Immunol (2002) 63:1706–14. doi:10.1016/S0198-8859(02)00176-8

165. Spaggiari GM, Contini P, Dondero A, Rosaro C, Ruffo P, Indiveri E, et al. Soluble HLA class I induces NK cell apoptosis upon the engagement of the receptor activating HLA class I receptors through FasL-Fas interaction. Blood (2002) 100:10498–107. doi:10.1182/blood.v100.p1284

166. Ghio M, Contini P, Negrini S, Boero S, Musso A, Poggi A. Soluble HLA-I-mediated secretion of TGF-β1 by human NK cells and consequent down-regulation of anti-tumor cytolytic activity. Eur J Immunol (2009) 39:3459–68. doi:10.1002/eji.200939728

167. Hayakawa Y, Smyth MJ. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol (2006) 176:1517–24.

168. Fu B, Wang F, Sun R, Ling B, Tian Z, Wei H. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunologically affiliated cells, Mult Scler. (2012) 18:551–8. doi:10.1177/1355500811431726

169. Koopman LA, Kopchow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, et al. Human dendritic natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med (2003) 198:1201–12. doi:10.1084/jem.20030305

170. Deniz G, van de Veen W, Akdis M. Natural killer cells in patients with allergic diseases. J Allergy Clin Immunol (2013) 132:527–35. doi:10.1016/j.jaci.2013.07.030

171. Fuchs A, Vermi W, Lee JS, Lonardi S, Gillilan S, Newberry RD, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFNγ-producing cells. Immunity (2013) 38:769–81. doi:10.1016/j.immuni.2013.02.010

172. Sciume G, Hirahara K, Takahashi H, Laurence A, Villarino AV, Singleton KL, et al. Distinct requirements for T-bet in gut innate lymphoid cells. J Exp Med (2012) 209:2331–8. doi:10.1084/jem.20122097

173. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature (2009) 457:722–5. doi:10.1038/nature07537

174. Fuchs A, Golombina M. Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol (2013) 29:581–7. doi:10.1097/MOG.0b013e328365d339

175. Wei H, Zhang J, Xiao W, Feng J, Sun R, Tian Z. Involvement of human natural killer cells in asthma pathogenesis: natural killer 2 cells in type 2 cytokine predominance. J Allergy Clin Immunol (2005) 115:841–7. doi:10.1016/j.jaci.2004.11.026

176. Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC. NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med (2006) 203:1851–8. doi:10.1084/jem.20060603

177. Spaggiari GM, Contini P, Rosaro C, Ruffo P, Indiveri E, et al. Soluble HLA class I molecules induce natural killer cell apoptosis through the engagement of CD94: evidence for a negative regulation exerted by members of the inhibitory receptor superfamily. Blood (2002) 99:1706–14. doi:10.1182/blood.v99.p1706

178. Holm SJ, Sakuraba K, Mallbris L, Wolk K, Ståhle M, Sánchez FO. Distinct KIR2DL3 contributions to adaptive immunity. J Exp Med (2011) 208:1851–8. doi:10.1084/jem.2010.65068

179. Spaggiari GM, Contini P, Rosaro C, Ruffo P, Indiveri E, et al. Soluble HLA class I induces NK cell apoptosis upon the engagement of the receptor activating HLA class I receptors through FasL-Fas interaction. Blood (2002) 100:10498–107. doi:10.1182/blood.v100.p1284

180. Li MO, Wan YX, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol (2006) 24:99–146. doi:10.1146/annurev.immunol.24.021605.090737

181. Keskin DB, Allan DS, Rybalov B, Andzelmm MM, Steren JN, Kopchow HD, et al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16+ NK cells with similarities to decidua NK cells. Proc Natl Acad Sci U S A (2013) 110:E231–40. doi:10.1073/pnas.1216221110

182. Cooper MA, Fehgunakan TA, Turner SC, Chen KS, Ghaheri BA, Gaytur Y, et al. Human natural killer cells: a unique innate immune regulator for CD56bright subset. Blood (2001) 97:3146–51. doi:10.1182/blood.V97.p3146

183. Poggi and Zocchi NK cells and self-recognition

www.frontiersin.org
February 2014 | Volume 5 | Article 27 | 13
194. Saraste M, Irjala H, Airas L. Expansion of CD56Bright natural killer cells in

196. Bielekova B, Howard T, Packer AN, Richert N, Blevins G, Ohayon J, et al. Effect

190. Takahashi H, Amagai M, Tanikawa A, Suzuki S, Ikeda Y, Nishikawa T,

188. Patel F, Marusina AI, Duong C, Adamopoulos IE, Maverakis E. NKG2C,

181. Sivori S, Carlomagno S, Falco M, Romeo E, Moretta L, Moretta A. Natural

182. Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S, Haagenson M,

176. Kusnierczyk P. Killer cell immunoglobulin-like receptor gene associations with

Poggi and Zocchi

NK cells and self-recognition

stabilization of disease progression in multiple sclerosis. Arch Neurol (2009)

66:483–9. doi:10.1001/archneur.2009.50

197. Takahashi K, Miyake S, Kondo T, Terasa K, Hatakenaka M, Hashimoto S, et al. Natural killer type 2 bias in remission of multiple sclerosis. J Clin Invest (2001)

107:R23–9. doi:10.1172/JCI11819

198. Takahashi K, Aramani T, Endoh M, Miyake S, Yamamura T. The regulatory role of natural killer cells in multiple sclerosis. Brain (2004) 127:1917–27.

10.1093/brain/awl219

199. Rodacki M, Soren B, Butty V, Besse W, Lafll L, Benoit C, et al. Altered natural killer cells in type 1 diabetic patients. Diabetes (2007) 56:177–85.

10.1237/db06-0493

200. Dotta F, Censis S, van Halteren AG, Marselli L, Masini M, Dionisi S, et al. Coxsackie B virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A (2007) 104:5115–20.

10.1073/pnas.070042104

201. Wilcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol (2009) 155:173–81.

10.1389/jlt.2010.00860.x

202. Zhou M, McPherson L, Feng D, Song A, Dong C, Lye SC, et al. Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J Immunol (2007) 178:5496–504.

203. Chen Y, Hu Y, Zhou T, Zhou KK, Mott R, Wu M, et al. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol (2009) 175:2676–85. doi:10.3323/apjph.2009.080945

204. Perricone R, Perricone C, De Carolis C, Shoenfeld Y. NK cells in autoimmunity: a two-edged weapon of the immune system. Autoimmun Rev (2008) 7:384–90.

10.1016/j.autrev.2008.03.002

205. Kanai T, Mikami Y, Sujino T, Hisamatsu T, Hibi T. ROYt-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Inflamm Bowel Dis (2012) 5:240–7. doi:10.1093/ibd/iyr126

206. Geremia A, Arancibia-Cárncamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med (2011) 208(6):1127–33. doi:10.1084/jem.20101712

207. Hudspeth K, Pontoriero E, Tentorio P, Gimino M, Donadon M, Torzilli G, et al. The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun (2013) 46:65–65. doi:10.1016/j.jaut.2013.07.003

208. Strassburg CP, Obermayer-Straub P, Manns MP. Autoimmunity in liver diseas es. Clin Rev Allergy Immunol (2000) 18:127–39. doi:10.3855/criai.18.2.127

209. Oo YH, Hubscher SG, Adams DH. Autoimmune hepatitis: new paradigms in its pathogenesis, diagnosis, and management. Hepatol Int (2010) 4:475–93. doi:10.1111/j.1750-2939.2010.00310.x

210. Shimoda S, Harada K, Sato Y, Isse K, Ikeda H, Nakamura Y. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol (2009) 157:261–70. doi:10.1111/j.1365-2499.2009.03947.x

211. Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakamura Y. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol (2009) 157:261–70. doi:10.1111/j.1365-2499.2009.03947.x

212. Sanden JS, Dardalot C, Nega M, Knevel R, Boumsell L, Gicquel B, et al. Specific genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J Hepatol (2007)

46:899–906. doi:10.1016/j.jhep.2007.01.032

213. Van Steenbergen W, De Goede E, Emonds PR, Reinders J, Tielen M, Fewey J. Primary sclerosing cholangitis in two brothers: report of a family with special emphasis on molecular HLA and MICA genotyping. Eur J Gastroenterol Hepatol (2005) 17:767–71. doi:10.1093/ejgh/373-0507000-00013

214. Ricciere V, Spadaro A, Parisi G, Taccari E, Moretti T, Bernardini G, et al. Down-regulation of natural killer cells and of delta/delta T cells in systemic lupus erythematosus. Does it correlate to autoimmunity and to laboratory indices of disease activity? Lupus (2009) 19:933–7. doi:10.1177/0961203309338460

215. Bielekova B, Catala-Sanz S, Palacios P, Ametry E, Fauquier L, Schellens JH, et al. Targeting CD56(bright) natural killer cells serves as an immunomodulatory strategy of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A (2006) 103:5941–6. doi:10.1073/pnas.0601335103

216. Bielekova B, Howard T, Packer AN, Richert N, Blevins G, Ohayon J, et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and
217. Toyabe S, Kaneko U, Uchiyama M. Decreased DAP12 expression in natural killer lymphocytes from patients with systemic lupus erythematosus is associated with increased transcript mutations. *J Autoimmun* (2004) 23:371–8. doi:10.1016/j.jaut.2004.09.003

218. Green MR, Kennell AS, Larche MJ, Seifert MH, Isenberg DA, Salaman MR. Natural killer cell activity in families of patients with systemic lupus erythematosus: demonstration of a killing defect in patients. *Clin Exp Immunol* (2005) 14:165–73. doi:10.1111/j.1365-2249.2004.03938.x

219. Park YW, Kee SJ, Cho YN, Lee EH, Lee HY, Kim EM, et al. Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. *Arthritis Rheum* (2009) 60:1753–63. doi:10.1002/art.24556

220. Hervier B, Beziat V, Haroche J, Mathian A, Lebon P, Ghillani-Dalbin P, et al. Phenotype and function of natural killer cells in systemic lupus erythematosus: excess interferon-γ production in patients with active disease. *Arthritis Rheum* (2011) 63:1698–706. doi:10.1002/art.30313

221. Abud-Mendoza C, Caevas-Orta E, Santillán-Guerrero EN, Martínez-Martínez MU, Hernández-Castro B, Estrada-Capetillo L, et al. Decreased blood levels of B lymphocytes and NK cells in patients with systemic lupus erythematosus (SLE) infected with papillomavirus (HPV). *Arch Dermatol Res* (2013) 305:117–23. doi:10.1007/s00403-012-1258-9

222. Henriques A, Teixeira L, Inês L, Carvalheiro T, Gonçalves A, Carvalho A, et al. NK cells dysfunction in systemic lupus erythematosus: relation to disease activity. *Clin Rheumatol* (2013) 32:805–13. doi:10.1007/s10067-013-2176-8

223. Schepis D, Gunnarsdottir I, Eloranta ML, Lampja J, Jacobsson SH, Karre K, et al. Increased proportion of CD56bright natural killer cells in active and inactive systemic lupus erythematosus. *Immunology* (2009) 126:140–6. doi:10.1111/j.1365-2567.2008.02687.x

224. Puxeddu I, Bongiorni F, Chimenti D, Bombardieri S, Moretta A, Bottino C, et al. Cell surface expression of activating receptors and co-receptors on peripheral blood NK cells in systemic autoimmune diseases. *Scand J Rheumatol* (2012) 41:298–304. doi:10.3109/03009742.2011.648657

225. Hagberg N, Theorell J, Eloranta ML, Pascal V, Bryceson YT, Rännblom L. Anti-NKG2A autoantibodies in a patient with systemic lupus erythematosus. *Rheumatology (Oxford)* (2013) 52:1818–23. doi:10.1093/rheumatology/ker220

226. Hagberg N, Theorell J, Schlums H, Eloranta ML, Bryceson YT, Rännblom L. Systemic lupus erythematosus immune complexes increase the expression of SLAM family members CD319 (CRACC) and CD229 (LY-9) on plasmacytoid dendritic cells and CD319 on CD56(dim) NK cells. *J Immunol* (2013) 191:2989–98. doi:10.4049/jimmunol.1301022

227. Kim JR, Mathew SO, Patel RK, Persutti RM, Mathew PA. Altered expression of signalling lymphocyte activation molecule (SLAM) family receptors CS1 (CD319) and 2B4 (CD244) in patients with systemic lupus erythematosus. *Clin Exp Immunol* (2010) 160:348–58. doi:10.1111/j.1365-2249.2010.04116.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 November 2013; accepted: 17 January 2014; published online: 04 February 2014.

Citation: Poggi A and Zocchi MR (2014) NK cell autoreactivity and autoimmune diseases. *Front. Immunol.* 5:27. doi: 10.3389/fimmu.2014.00027

This article was submitted to NK Cell Biology, a section of the journal *Frontiers in Immunology*. "This work is licensed under a Creative Commons Attribution 4.0 License. You may share and remix the material, but not for commercial purposes."

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 November 2013; accepted: 17 January 2014; published online: 04 February 2014.