An enumerative algorithm for de novo design of proteins with diverse pocket structures

Benjamin Basanta,a,b,1 Matthew J. Bick,a,b,2 Asim K. Bera,a,b Christoffer Norm,a,b, Cameron M. Chow,a,b, Lauren P. Carter,a,b Inna Goreshnik,a,b Frank Dimaio,a,b, and David Baker,a,b,c,3

1Institute for Protein Design, University of Washington, Seattle, WA 98195; 2Biochemistry Department, School of Medicine, University of Washington, Seattle, WA 98195; and 3Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195

Edited by William F. DeGrado, University of California, San Francisco, CA, and approved July 28, 2020 (received for review March 26, 2020)

To create new enzymes and biosensors from scratch, precise control over the structure of small-molecule binding sites is of paramount importance, but systematically designing arbitrary protein pocket shapes and sizes remains an outstanding challenge. Using the NTF2-like structural superfamily as a model system, we developed an enumerative algorithm for creating a virtually unlimited number of de novo proteins supporting diverse pocket structures. The enumerative algorithm was tested and refined through feedback from two rounds of large-scale experimental testing, involving in total the assembly of synthetic genes encoding 7,896 designs and assessment of their stability on yeast cell surface, detailed biophysical characterization of 64 designs, and crystal structures of 5 designs. The refined algorithm generates proteins that remain folded at high temperatures and exhibit more pocket diversity than naturally occurring NTF2-like proteins. We expect this approach to transform the design of small-molecule sensors and enzymes by enabling the creation of binding and active site geometries much more optimal for specific design challenges than is accessible by repurposing the limited number of naturally occurring NTF2-like proteins.

Proteins from the NTF2-like structural superfamily consist of an elongated β-sheet that, along with three helices, forms a cone-shaped structure with a pocket (Fig. 1A). This simple architecture is highly adaptable, as evidenced by the low-sequence homology among its members, and the many different functions they carry out (1). Natural NTF2-like proteins have been repurposed for new functions through design (2-4), further showing the adaptability of this fold. General principles for designing proteins with curved β-sheets have been elucidated, and used to design several de novo NTF2-like proteins (5).

De novo design of protein function starts with an abstract description of an ideal functional site geometry (for example, a catalytic active site), and seeks to identify a protein backbone conformation with geometry capable of harboring this site. The extent to which the ideal site can be realized depends on the number and diversity of backbone conformations that can be searched (6, 7). A promise of de novo protein design is to generate a far larger and more diverse set of designable backbones for function than is available in the largest public protein structure database, the Protein Data Bank (PDB) (8, 9). This has been achieved for protein–protein binding due to the simplicity of small globular proteins (10). However, protein structures with pockets are considerably more complex, and since only a small number of de novo designed pocket-containing proteins have been characterized, this vision has not yet been realized for small-molecule binder or enzyme design. Here we develop a rule-based algorithm, akin to those used in generative design (11) that generates NTF2-like protein structures, exploring structure space by enumerating all possible combinations of high-level structural parameters that describe this fold. This algorithm samples the structural space available to the NTF2 fold systematically and widely, and the generated protein models surpass native NTF2-like proteins in pocket diversity.

Results

De novo protein design is a two-step process: First, a protein backbone conformation is generated, and second, low-energy amino acid sequences for this backbone are found by combinatorial side-chain packing calculations. In Rosetta (12, 13), new backbones can be constructed by Monte Carlo assembly of short peptide fragments based on a structure “blueprint,” which describes the length of the secondary structure elements, strand pairings, and backbone torsion ranges for each residue (14, 15). Because this process is stochastic, each structure generated is distinct. We previously showed that NTF2-like proteins can be designed from scratch using this approach (5), but the diversity and number of designs to date (on the order of tens) is too limited to provide pockets for arbitrary function design. For a given blueprint, the resulting set of structures is generally more homogeneous than that observed in naturally occurring proteins within a protein family, where differences in secondary structure lengths and tertiary structure give rise to considerable diversity. Hence while large numbers of backbones can be generated for a particular blueprint, for example those previously used to design NTF2-like proteins, the overall structural diversity will be limited.

The NTF2 Enumerative Algorithm.

To access a much broader range of protein backbones, we sought to develop an algorithm that samples a wider diversity of structures than natural NTF2-like

Significance

Reengineering naturally occurring proteins to have new functions has had considerable impact on industrial and biomedical applications, but is limited by the finite number of known proteins. A promise of de novo protein design is to generate a larger and more diverse set of protein structures than is currently available. This vision has not yet been realized for small-molecule binder or enzyme design due to the complexity of pocket-containing structures. Here we present an algorithm that systematically generates NTF2-like protein structures with diverse pocket geometries. The scaffold sets, the insights gained from detailed structural characterization, and the computational method for generating unlimited numbers of structures should contribute to a new generation of de novo small-molecule binding proteins and catalysts.

Author contributions: B.B. and D.B. designed research; B.B., M.J.B., A.K.B., C.N., C.M.C., L.P.C., and I.G. performed research; B.B., M.J.B., A.K.B., C.N., and F.D. analyzed data; and B.B. and D.B. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1Present address: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037.

2Present address: Lyle Immunopharma, Seattle, WA 98109.

3To whom correspondence may be addressed. Email: dabaker@uw.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005412117/-/DCSupplemental.

First published August 24, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.2005412117

PNAS | September 8, 2020 | vol. 117 | no. 36 | 22135–22145
proteins by carrying out backbone sampling at two levels (Fig. 1B). At the top level, sampling is carried out in the space of high-level parameters that define the overall properties of the NTF2 fold: For example, the overall sheet length and curvature, the lengths of the helices that pack on the sheet, the placement of the pocket opening, and the presence or absence of C-terminal elements (Fig. 1C). We then convert each choice of high-level parameters into structure blueprint/constraints pairs (hereon referred to as...
simply as blueprints), which guide backbone structure sampling at successive stages of fold assembly (see next paragraphs) (Fig. 1B). In total, there are 18 high-level fold parameters (SI Appendix, Table S1), and each unique combination gives rise to a specific blueprint. At the lower level, backbone structures are generated according to these blueprints through Monte Carlo fragment assembly; the blueprints dictate the secondary structure and torsion angle bins of the fragments, as well as a number of key residue-residue distances (SI Appendix, Figs. S1–S4). In a final sequence design step, for each generated backbone, low-energy sequences are identified through combinatorial sequence optimization using RosettaDesign.

We generate structure blueprints from the high-level parameters using a hierarchical approach (Fig. 1B). First, the four main strands of the sheet are constructed, then helix 3 and the frontal hairpin, finally, the two N-terminal helices. If the backbone to be assembled has a C-terminal helix, it is added in a fourth step. In the first step, the length and curvature of the sheet are the primary high-level parameters sampled (Fig. 1C, Top and Middle). For each choice of high-level sheet length and curvature parameters, compatible sets of low-level parameters (secondary structure strings and angle and distance constraints) are generated to guide Rosetta fragment assembly. The translation from sheet length to secondary structure length is straightforward as longer strands generate longer sheets. To realize a specified sheet curvature, bulges are placed at specific positions on the edge strands, where they promote sheet bending (5, 16, 17). Bulges are specified by a residue with α-helical Ψ torsion values in the blueprint, leading to a backbone protuberance with two adjacent residues pointing in the same direction. As shown in Fig. 1A, there are always at least two bulges on the NTF2 sheet, delimiting the base and arms, and marking the axes at which the sheet bends. An additional bulge can exist on the long arm, further bending the sheet. To control the degree of bending centered at these points, angle constraints are placed on Cα carbons on center strands, at positions adjacent to bulges (SI Appendix, Fig. S1). Not all combinations of sheet length and curvature values are compatible with a closed pouch-containing structure: For example, long sheets with low curvature cannot generate a cone-shaped structure. These incompatibilities are identified by attempting to construct sheet structures (as described above) across the full parameter space, and then assessing the lengths of the resulting secondary structure segments. The region with no solutions at the bottom left of Fig. 3 reflects the incompatibility of long sheets and low curvature with the formation of a pocket; See SI Appendix, Table S2 for the complete set of rules dictating high-level parameter combinations).

The range of possibilities for helix 3 and the frontal hairpin, which are generated next, is limited by the geometric properties of the sheet constructed in the first step. In order to determine which parameter combinations lead to folded proteins, we generated and evaluated backbone structures based on a wide variety of parameter combinations, and extracted the following rules. Structures where the sheet does not protrude outwards beyond the pocket opening require longer loops between helix 3 and strand 3 (SI Appendix, Fig. S2A). Conversely, sheets that protrude outwards over the opening of the pocket require shorter loops between helix and strand 3, to avoid placing helix 3 too far from the rest of the structure (SI Appendix, Fig. S2A).

The length of helix 3 is coupled to the torsional angles of the loop that connects it to strand 3, such that hydrogen bonds form between the backbone of the loop and the C terminus of helix 3 (SI Appendix, Fig. S2B and Table S3). Independent from helix 3 length and its connection to strand 3, the length of the frontal hairpin strands (two possible values: four or six residues) depends on the length of the sheet base: Narrow sheet bases allow only short hairpins, as all positions on strand 1 must be paired to strand 6 (SI Appendix, Fig. S2C).

Stage 3, the construction of the N-terminal helices, is likewise constrained by the geometric properties of the structure built so far. If the distance between the bulge on strand 6 and the loop connecting helix 3 with strand 3 is more than 25 Å, then helix 1 and 2 are elongated by a full turn (4 amino acids) to close the cone described by the sheet (SI Appendix, Fig. S3). The constraints that control the placement of H1 and H2 are adapted based on the shape of the current structure in order to position H1 and H2 such that good side-chain packing is favored during sequence design, and occluding backbone polar atoms on the outward-facing edge of S3 is avoided (SI Appendix, Fig. S3).

In cases where the backbone to be assembled has a C-terminal helix (has cHelix = True), if the pocket opening is, like in most native NTF2-like proteins, between the frontal hairpin and H3 (Opening = Classic), the C-terminal helix is set to eight residues long and rests against the long arm. If the opening is set to be between the termini of H1 and H2, and H3 (Opening = Alternative), then the C-terminal helix length is set to 11 residues long, and closes the space between H3 and the frontal hairpin (Fig. 1B and SI Appendix, Fig. S4).

This four-step blueprint building procedure is implemented in a Python script that samples over the high-level degrees of freedom incorporating the logic described in the preceding paragraphs, and the improvements described throughout the remainder of the paper.

High-Throughput Characterization of the Known De Novo NTF2 Structure Space

The design of large pockets in de novo NTF2-like proteins is challenging and requires strategies to compensate for the loss of stabilizing core residues that would otherwise fill the space occupied by the pocket. Before setting out to experimentally sample the full range of structure space accessible to the enumerative algorithm, we chose to characterize the sequence and structure determinants of stability in the region of NTF2 space explored in our previous work (5), and its immediate vicinity. We generated 2,709 new NTF2-like proteins belonging to the blueprints previously described, plus a few variations (9 different blueprints) (SI Appendix, Fig. S5 and Table S4). We adapted a high-throughput stability screen based on folding-induced protease resistance on yeast cell surface, originally developed for small (<43 amino acid) domains (18) to the much larger (105 to 120 residues) NTF2-like protein family. This required optimizing current methods (19) for efficiently splicing long oligonucleotides (230 bases) from oligonucleotide arrays to form longer genes by limiting pairing promiscuity and, therefore, the number of chimeric design combinations (Materials and Methods).

A fifth (578, 21%) of the tested designs were stable (stability scores above 1), while only 2% of scrambled controls (randomly selected design sequences scrambled such that the hydrophobicity pattern is maintained) passed this stability threshold (Fig. 2A). All tested blueprints had representatives among the stable sequences (SI Appendix, Fig. S6). Analysis of the sequences and structures of the stable designs revealed several broad trends. There was a marked depletion of hydrophobic residues in positions oriented toward the protein core (SI Appendix, Fig. S7), suggesting that the stable proteins identified in this first round experiment are likely folded as modeled, but may not be able to accommodate a pocket with polar amino acids, limiting their potential to be designed for general function. A logistic regression model trained to distinguish between designs with stability scores above or below 1.0 identified total sequence hydrophobicity (see “hydrophobicity” feature definition in SI Appendix, Supplementary Methods), Rosetta energy (“score_res betacart”), and local sequence-structure agreement (fragment quality, see “avAll”) as key determinants of stability (SI Appendix, Fig. S8).

The importance of overall hydrophobicity is in agreement with the observed per-position amino acid enrichments, and suggests the composition or size of the designed protein cores is suboptimal. While Rosetta optimizes local sequence-structure agreement at single positions [p_aa_pp and rama_prepro energy function terms (20)], overall secondary structure propensity depends on stretches
of several residues and cannot be decomposed in pairwise or single body energies. The detection of local sequence-structure agreement as a feature of stable designs suggests the design protocol produces sequences with suboptimal local sequence-structure relationship.

We selected 17 designs with a stability score above 1 for more thorough biophysical characterization (SI Appendix, Supplementary Methods). Seven of these expressed in soluble form in Escherichia coli, and were found to be folded by CD spectroscopy. Six of seven remained folded up to 95 °C, and had two-state unfolding transitions in guanidine hydrochloride denaturation experiments (SI Appendix, Figs. S9 and S10 and Table S5). The remaining 10 designs did not express or formed higher-order oligomers (SI Appendix, Table S5), indicating stability score values above those of most scrambles are no guarantee of soluble expression and folding in E. coli cytoplasm; aggregation is likely suppressed on yeast cell surface.

We obtained crystal structures for two of the above-mentioned hyperstable proteins with de novo NTF2 blueprints not characterized before (Fig. 2 B and C and SI Appendix, Fig. S11A). The crystal structure and model of design Rd1NTF2_04 are in close agreement both in terms of Cα atom positions and most core side-chain rotamers (Fig. 2B and SI Appendix, Fig. S11B). In contrast, the structure of design Rd1NTF2_05 shows a two-residue register shift between strands 5 and 6 relative to the design (Fig. 2C), which results in a flatter sheet and a smaller core, a shorter strand 5, and longer strand 6. While the overall shape of the structure and the relative orientations of the hydrophobic residues in strand 5 and 6 are preserved (Fig. 2C), the structure deviations would be significant for a designed functional pocket. The identification of a design that is stable but has a structure different from its model provides an opportunity to discover determinants of structural specificity not captured by the design method.

We hypothesized that the disagreement between model and structure for design Rd1NTF2_05 originates from a lack of core stabilizing features, such as a disulfide bond or a dimer interface (SI Appendix, Fig. S14). We incorporated the principles used to improve the design Rd1NTF2_05 in the enumerative algorithm to increase the probability that the generated designs fold as modeled.

High-Throughput Characterization of New Regions of NTF2 Structure Space Explored by the Enumerative Algorithm. Armed with the insights from high-throughput characterization of known de novo NTF2 structural space, we set out to design proteins from hundreds of backbone blueprints created using our enumerative algorithm that explore a much larger structure space. We incorporated the
lessons learned in the sequence design stage, with the goal of generating more stable and diverse designs that fold as modeled. To address the low sequence hydrophobicity, we added an amino acid composition term to the Rosetta energy function to favor sequences with 30% nonalanine hydrophobic amino acids on average, with different hydrophobicity targets for core, interface, and surface positions. We increased the consistency of the predicted and design target secondary structure by increasing sampling (SI Appendix, Fig. S15). Finally, guided by the experience with design Rd1NTF2_05, we incorporated steps in the design process that detect strand curvature ranges that require glycin placement to reduce strain. We used this improved method to generate a second round of designs exploring a much larger set of 1,503 blueprints. These designs span a wide range of pocket volumes that are modulated by sheet length and curvature (Fig. 3) and signs span a wide range of pocket volumes that are modulated by designs exploring a much larger set of 1,503 blueprints. These designs do not necessarily translate to folding in E. coli cytoplasm. While stability score has no significant correlation with ΔG unfolding (SI Appendix, Fig. S28), the most significant correlation was found between the stability score and the length of helix 3 (29% of the designs had stability values above those of most scrambled sequences (Fig. 3B)) (98% of all scrambles have stability score <1.55), a larger fraction than the 21% of stable designs in the initial screen, increasing our dataset of stable NTF2-like designs from a total of 578 to 2,077. These stable designs belong to 236 different parameter combinations, a very large increase over the 9 combinations in the previous round, with most of the missing combinations having fewer than 10 initial samples (SI Appendix, Fig. S19). The native secondary structures for these less-populated parameter combinations were sampled before, such as a secondary bulge on the long arm, new H3–S3 connections, and elongated frontal hairpins. The pocket volume distribution of stable designs is very similar to the distribution for all tested designs (Fig. 3C), suggesting that pocket volume is not a limiting factor, and spans most of the native NTF2 range (SI Appendix, Fig. S20). Stable designs not only sample the native pocket volume range, but also the native range for several other pocket properties (SI Appendix, Fig. S21). The amino acid identities in stable designs show much lower levels of enrichment and depletion at individual positions than in the first round of high-throughput screening (SI Appendix, Fig. S22); in particular, polar amino acids are not depleted in core positions (SI Appendix, Fig. S22), suggesting that polar residues are likely better tolerated in pocket positions perhaps due to the improved core packing resulting from the optimized sequence design protocol.

The large increase in diversity in the second round, the stable designs created by the enumerative algorithm span a very wide range of structures. To visualize the space spanned by our generated structures compared to native NTF2 structures, we used the uniform manifold approximation and projection (UMAP) algorithm (22) to project similarity in backbone structure [TM-score (23)] into two dimensions (see Fig. 4 and SI Appendix, Fig. S23 for plots generated using different UMAP hyperparameters). The grouping of structures with similar features in different map regions provides an indication of which model parameters lead to novel NTF2 structures (SI Appendix, Fig. S24). Inspection of the map shows that our algorithm samples most of the native space, as well as completely uncharted regions. Most native proteins form clusters that overlap with de novo ones, likely reflecting overall structural similarity between these, with differences that can be attributed to loop structure: Native NTF2-like proteins often have long, heterogeneous loops, while our designs tend to have short, homogeneous loops. The subset of designs tested by high-throughput screening sample a wide range of structures within the accessible protein length, and stable representatives from the 236 unique NTF2 parameter combinations are found across the sampled space (Figs. 3A and 4). Overall, the number and diversity of de novo-designed NTF2-like structures is considerably larger than that of the NTF2 structures in the PDB.

A logistic regression model trained on stability of second-round designs suggests the lessons from the first round of high-throughput screening proved effective, and provides new suggestions for improvement (SI Appendix, Supplementary Information Text and Fig. S25). Features based on the high-level parameters of the enumerative algorithm (e.g., H3 length, sheet curvatures, sheet length, and hairpin length) did not contribute significantly to stability prediction, suggesting stable proteins can be designed across all of the considered structural space (SI Appendix, Supplementary Information Text).

We experimentally characterized 37 stable designs from the second round of high-throughput screening: 43%, similar to the 41% in round 1, expressed solubly in E. coli and had CD spectra consistent with the folded state (the remaining 20 second-round designs did not express or formed higher-order oligomers) (SI Appendix, Table S6). Most of the folded designs retained their folded state CD spectrum above 95 °C (SI Appendix, Figs. S26 and S27 and Table S6). The length of helix 3 in two of the second-round stable designs, Rd2NTF2_06 and Rd2NTF2_19, is the longest of the values we allowed, supporting the designability of this feature despite it being slightly disfavored by the stability model (SI Appendix, Supplementary Information Text and Fig. S25). Overall, the folded designs sample a wide range of pocket shapes and sizes (SI Appendix, Fig. S21).

More than half of the designs we attempted to express in E. coli did not express or formed soluble aggregates, indicating that a high stability score does not necessarily translate to folding in E. coli cytoplasm. While stability score has no significant correlation with ΔG unfolding (SI Appendix, Fig. S28), the most significant correlation was found between the stability score and the length of helix 3 (29% of the designs had stability values above those of most scrambled sequences (Fig. 3B)) (98% of all scrambles have stability score <1.55), a larger fraction than the 21% of stable designs in the initial screen, increasing our dataset of stable NTF2-like designs from a total of 578 to 2,077. These stable designs belong to 236 different parameter combinations, a very large increase over the 9 combinations in the previous round, with most of the missing combinations having fewer than 10 initial samples (SI Appendix, Fig. S19). The native secondary structures for these less-populated parameter combinations were sampled before, such as a secondary bulge on the long arm, new H3–S3 connections, and elongated frontal hairpins. The pocket volume distribution of stable designs is very similar to the distribution for all tested designs (Fig. 3C), suggesting that pocket volume is not a limiting factor, and spans most of the native NTF2 range (SI Appendix, Fig. S20). Stable designs not only sample the native pocket volume range, but also the native range for several other pocket properties (SI Appendix, Fig. S21). The amino acid identities in stable designs show much lower levels of enrichment and depletion at individual positions than in the first round of high-throughput screening (SI Appendix, Fig. S22); in particular, polar amino acids are not depleted in core positions (SI Appendix, Fig. S22), suggesting that polar residues are likely better tolerated in pocket positions perhaps due to the improved core packing resulting from the optimized sequence design protocol.

With the large increase in diversity in the second round, the stable designs created by the enumerative algorithm span a very wide range of structures. To visualize the space spanned by our generated structures compared to native NTF2 structures, we used the uniform manifold approximation and projection (UMAP) algorithm (22) to project similarity in backbone structure [TM-score (23)] into two dimensions (see Fig. 4 and SI Appendix, Fig. S23 for plots generated using different UMAP hyperparameters). The grouping of structures with similar features in different map regions provides an indication of which model parameters lead to novel NTF2 structures (SI Appendix, Fig. S24). Inspection of the
Fig. 3. Characterization of second-round designs. (A) De novo NTF2 designs sorted by sheet structure and ordered by sheet curvature and length. Each quadrant is colored by the average pocket volume of designs belonging to it. Orange frames denote quadrants for which stable designs were identified. Black frames denote designs were tested, but no stable design was identified. (B) Stability score of algorithm designs (orange), compared to controls (gray) and designs from the initial screening (blue). (C) Volume distribution of stable and unstable designs. (D) Crystal structure of stable design Rd2NTF2_20 (PDB ID code 6W3W), which features a new, elongated helix three-strand connection. Despite significant differences between the model and structure in the N-terminal helices, the new loop and the sheet are well recapitulated. (E) Core rotamers of Rd2NTF2_20. TYR101 (red, sticks) shows a significant deviation from the model, and enables the change in location of helix 1. In contrast, PHE61 and GLY77 interact as modeled, showing the glycine rescue feature can be designed from scratch. (F) Crystal structure of stable design Rd2NTF2_16 (PDB ID 6W40), which has a secondary bulge and an elongated frontal hairpin, features not designed before. Both of these features are recapitulated in the crystal structure. As in Rd2NTF2_20, but not as dramatic, the Rd2NTF2_16 crystal structure presents significant deviations from the model in the N-terminal helices. (G) Surface rendering of the model and crystal structure of Rd2NTF2_16, showing the shallow pocket formed by the long arm and the frontal hairpin is recapitulated by the crystal structure.
placements. The extended hairpin, which is only designable when the base is sufficiently long, extends the pocket outwards, thereby increasing its volume. In the case of Rd2NTF2_16, the combination of these features yields a protein with a shallow groove instead of a pocket (Fig. 3G). The ability to generate proteins with shallow grooves with two open ends should enable design of binding sites for polymers, such as peptides or polysaccharides. The properties of the pockets in the crystal structures obtained in this work (SI Appendix, Table S7) span a broad range (SI Appendix, Fig. S22), confirming the ability of the enumerative algorithm to generate a diversity of pocket geometries.

The accuracy of the Rd2NTF2_20 and Rd2NTF2_16 computational models follows directly from the insights gained in the first large-scale design round. Both proteins feature a glycine on strand 4, enabling high curvature between the base and the long arm, as described for the design Rd1NTF2_05 fivefold mutant, and consequently incorporated in the enumerative algorithm. In order to implement the glycine placement on strand 4 as generally as possible, the design protocol searches for large hydrophobic side chains to fill the void left by the glycine. In Rd2NTF2_20, this is achieved by a phenylalanine in the same conformation as the one observed in the design 0589 fivefold mutant, while in Rd2NTF2_16 a void is left in the core. Unlike design Rd1NTF2_05, in the Rd2NTF2_20 and Rd2NTF2_16 crystal structures the highly curved sheet conformation is in close agreement with the model. In addition to generally supporting the models created by the enumerative algorithm, the two crystal structures provide information to improve the design method (SI Appendix, Supplementary Information Text and Fig. S29). The ability to design and properly model the sheet in de novo NTF2-like proteins is of great importance, as this structural element is the most involved in pocket structure.

Most of the 1,503 possible high-level parameter combinations yield proteins that are too long to be encoded by assembling two 240-base pair oligonucleotides (the limit of what can be synthesized at very large scale). To explore the parameter space that generates these longer proteins, we characterized 10 designs that are predicted to be stable by a logistic regression model trained on the second high-throughput screening experiment data, and have large pockets (500 to 1,200 Å³). Two of the 10 were monomeric and remained folded above 95 °C, a success rate similar to that of the biochemical characterization of designs identified in the second high-throughput experiment, suggesting that de novo NTF2-like proteins longer than 120 amino acids with large pockets are also designable using the enumerative algorithm (SI Appendix, Figs. S30 and S31 and Table S8).

The goal of widely sampling NTF2 structural space is to produce structurally diverse pockets that can, in turn, harbor diverse binding and active sites. Most effective methods to design such sites do not rely on finding a preformed pocket with side chains of the correct identity, in perfect arrangement and configuration. Instead, they evaluate the ability of the protein backbone to harbor a binding site—represented as a precalculated constellation of side chains—for the small-molecule ligand or substrate of interest (6, 7). Because of this focus on backbone structure rather than complete atomic structure, we choose to analyze the utility of the NTF2-like proteins we generate in terms of the diversity of the backbone positions lining the inside of the cone.
formed by the backbone. The enumerative algorithm outputs, alongside each model generated, a list of positions near the opening of the cone, which exclude loops, and whose Cα-Cα vectors point toward the concave side of the sheet (Materials and Methods). We can compare the geometric diversity of these positions to the positions lining the pockets of native proteins, as detected by CLIPPERS (24) (SI Appendix, Supplementary Methods). SI Appendix, Fig. S32 shows the distributions of three parameters (angles α, β, and distance D; defined in SI Appendix, Supplementary Methods and Fig. S32A), which describe the geometry of pocket positions around the pocket center of mass. Aside from differences that can be attributed to the heuristics used for choosing pocket positions (see further analysis in SI Appendix), the set of de novo proteins sample geometry space more thoroughly than native NTF2-like structures (SI Appendix, Fig. S32 B–F).

To further compare pocket geometries of our de novo-generated structures to those of native NTF2 proteins, we binned the Cα-Cα vectors lining each pocket based on their coordinates, and used UMAP (22) to project these features into two dimensions for visualization. Maps without and with loop positions are shown in SI Appendix, Fig. S33 A and B, respectively; in the former, the de novo designed and native distributions overlap (we do not match the loop variation in native structures in our designs); the structure and sequence of loops can be crucial for de novo-designed protein stability and folding (this work and refs. 15, 18, 25, and 26) and controlling connectivity. Second, we compared structural and functional properties not only the structures themselves but also the small molecules (ligands) that bind to them from the pocket, such as PDB ligand codes EQU and AKV, bound by 1OH0 and 2F99, respectively and found that native-like poses are recovered when the bound ligand conformer found in the crystal structure is used (SI Appendix, Fig. S38). The de novo scaffold with the largest number of top ranking docks is R2NTTF2 (03, one of the designs found to be folded and highly stable (SI Appendix, Fig. S39). The observed advantage of de novo structures in binding site scaffolding should increase with the number of de novo designed structures generated, while the rate of growth of the native set is limited to what has been sampled by evolution.

As the overarching goal of this work is to expand the set of available protein structures with pockets, we generated a final set of scaffolds that incorporates all of the lessons from previous experiments. Improvements in the enumerative algorithm, both in sequence design and backbone generation resulted in increased diversity (1,619 unique parameter combinations) and improved stability-related metrics (see SI Appendix, Supplementary Methods and Figs. S33, S34, and S40 for pocket diversity). We here make this set of 32,380 scaffolds (20 models with different sequences per parameter combination) available for general use as starting points for ligand binding and enzyme design.

Discussion

Our enumerative algorithm may be viewed as encoding the “plasmonic ideal” of the NTF2-like structural superfamily along with a method for essentially unlimited sampling structures belonging to it, in a fashion directly tied to pocket structure. In terms of Structural Classification of Proteins-Extended (SCOPe) categories (29), each combination of top-level parameters can be thought of as a protein family, and the set of all combinations, the de novo NTF2-like structural superfamily. Whereas in our previous work four NTF2 structure blueprints were manually constructed, the new enumerative algorithm samples through over 1,600 unique blueprints that result in well-formed backbones. This represents a qualitative jump in the structural diversity that can be achieved for complex folds by de novo protein design.

Our experience in developing the enumerative algorithm for NTF2-like structures suggests guidelines for developing similar enumerative algorithms for other folds. First, determine the common structural elements that are part of all proteins in the target family: each stage of our algorithm builds one of such elements for the NTF2 fold. Second, identify a subset of elements that together form a central hub: In NTF2-like proteins, the hub is the curved sheet, and all stages use it as a reference point. Third, analyze how the properties of the elements covary due to larger structural constraints: For example in de novo NTF2-like proteins, at stage 2, the length of strands 1 and 2 is limited by the width of the sheet base, and the length of helix 4 and its connection to the sheet are dictated by the shape of the sheet. Fourth, simplify and adapt structural elements and their connections to rules that are well understood: We base the sheet construction on previously described principles, limit the length and torsions of many structural elements to a few easy-to-pair options, and make use of the knob-socket packing description (30) to arrange structural elements relative to each other (SI Appendix, Fig. S3). Even with these simplifications, the combination of relatively simple elements leads to a high level of structural diversity.

The generative approaches to de novo protein structure design so far described in the literature, rule- or model-based, either focus exclusively on helical structures (31–33), are not geared
toward atomic-detail modeling and design (34), or sacrifice fine-grained structural control for structural diversity (35). Machine-learning–based generative models show considerable promise (35, 36), but have not yet been applied to the direct generation of full atomic structures with specific features of interest, as we do here for scaffolds containing a varied geometry of binding pockets. We hope the experimental data generated in this work will aid the development of models that more efficiently produce protein structures with finer control over atomic detail and greater diversity.

We provide several sets of de novo NTF2 models, and an algorithm to generate an unlimited number of them, to help the community address the challenge of finding an ideal scaffold in which to design a binding or active site. Because our algorithm can sample NTF2 space at different structural resolutions, we propose a hierarchical strategy to find the best-fitting scaffold for binding a specific ligand: First, use RIFDOCK to quickly dock and design binding sites on a set of scaffolds that sample a wide range of high-level parameters, and select a subset of parameter combinations that fit the ligand most favorably. Then, use the enumerative algorithm to create more models with these high-level parameter combinations, sampling the selected subspace more deeply, and dock and design with more exhaustive RIFDOCK settings. We should note that, as indicated by the differences between the experimental structures we obtained and their computational models, after a binding or active site is designed in a de novo NTF2 model, protein structure refinement and/or evaluation by independent measures, such as molecular dynamics simulations, is advisable to increase the likelihood that the desired active or binding site is recapitulated in the protein structure (37). Up to now, protein design for a specific function has relied either on searching through the scaffolds in the PDB, or generating small variations of a limited set of de novo scaffolds. Our approach now enables going far beyond both approaches by searching through an essentially unlimited set of generated scaffolds.

The experimental characterization of many of our designs shows that the enumerative algorithm samples a wide range of feasible structure space, and that designs usually fold as modeled. The insights we gained in learning to produce these diverse proteins can be harnessed to improve the success rate in future protein design efforts. Furthermore, our approach could be implemented for other protein folds to expand structural diversity even further.

In combination with existing docking and design methods, the enumerative algorithm here presented should open the door to

Fig. 5. Comparison of de novo designs to native structures for ligand docking and design. Following docking and design into our de novo designed and native protein scaffolds, ligand binding energies were computed and converted to z-scores. The y axis is the difference between the z-scores obtained for the best designed and best native scaffolds; higher values indicate that the best design had a more favorable binding energy and hence was a better scaffold for the ligand. Ligands are arranged along the x axis in order of Δz-score. In each panel bars are colored by ligand properties, from top to bottom: molecular weight (Da), charge at pH 7.5, and hydrophobicity (LogP).
design of novel functions by eliminating the limitations imposed by current protein structural databases, and enabling scaffold generation custom-tailored to function.

Materials and Methods

Enumerative Algorithm for Proteins from the NTF2-like Superfamily. All code can be downloaded from GitHub (https://github.com/basantab/NTF2Gen).

The NTF2Gen repository contains all of the tools for de novo design of NTF2-like proteins. The main script is CreateBeNTF2_backbone.py, which manages the construction of NTF2 backbones, followed by DesignBeNTF2.py, which designs sequence on a given backbone generated by the previous script. To generate backbones from a specific set of parameters, use CreateBeNTF2PDBFromDict.py. The fundamental building blocks of the backbone generation protocol are Rosetta XML protocols (included in the repository) that are specialized instances of the BlueprintBDRMover Rosetta fragment assembly masher. All checks and filters mentioned in Results previous to design are implemented either in the XML files or the Python scripts. Additional backbone quality controls are run after each step ([SI Appendix, Supplementary Methods](https://github.com/basantab/NTF2Analysis, NewSubfamiliesGeneration)). The design script is also based on a set of XML protocols, one for each of three stages. The glycine placement in highly curved strand positions and the selection of pocket positions are managed by DesignBeNTF2.py (see the BeNTF2seq/Nonbinding directory). Pocket positions are selected by placing a virtual atom in the midpoint between the H3–S3 connection and the S6 bulge, and choosing all positions whose Cγ–Cγ vector is pointing toward the virtual atom (the Vsum–Cγ–Cγ angle is smaller than 90°), excluding positions in loops, and their Cγ is closer than 8 Å, this information is stored in the each model PDB file under the PDB-Info labels, with the tag "Pckt".

De Novo NTF2 Backbone Generation and Sequence Design for the First Round of High-Throughput Screening. Backbones were constructed as described in [Marcos et al. (5)](https://www.pnas.org/cgi/doi/10.1073/pnas.2005412117 Basanta et al.). For families not described in said paper (i.e., BBMznHm* designs), the same backbone construction algorithms were used, but parameters were changed accordingly. Scripts for producing all these backbones can be found at https://github.com/basantab/NTF2Analysis, NewSubfamiliesGeneration. The sequence design protocol for the first round of designs can be found in the above-mentioned Github repository. Briefly, the design protocol begins by generating four different possible sequences using the Rosetta FastDesign maver in core, interface, and surface layers separately. Then, random mutations are tested, accepting only those that improve secondary structure prediction without worsening score, introducing Ramachandran outliers, or worsening the shape complementarity between helices and the rest of the protein.

Design of Gene Fragments for Multiplex Gene Assembly. In order to obtain full-length genes from fragments synthesized in DNA microarrays, they must be assembled from halves, as described in [Klein et al. (19)](https://www.pnas.org/cgi/doi/10.1073/pnas.2005412117 Basanta et al.). To generate highly orthogonal overlaps, we generated DNA sequences using DNAWorks (38), then split the gene in half and altered the composition of around 20 overlapping nucleotides to have as low homology as possible with other halves in the pool, while maintaining an adequate melting temperature, GC content, and staying below the maximum oligonucleotide length (230 nucleotides). This optimized version of the algorithm described in Klein et al. (19) can be found at https://github.com/basantab/OligoOverlapOpt.

Protease-Based High-Throughput Stability Screening. The protease-based high-throughput stability screening was carried out as described in [Rocklin et al. (18)](https://www.pnas.org/cgi/doi/10.1073/pnas.2005412117 Basanta et al.). Briefly, genes encoding for thousands of different de novo NTF2 sequences cloned in the pETCON2 vector, which has the protein of interest expressed as a chimera of the extracellular wall yeast protein Agal, on its C terminus, connected by a "GS" linker of alternating glycin and serine. The protein of interest is followed by a myc-tag (EQKLISEEDL). This library is transferred to yeast and displayed in a one-pot fashion using electroporation. Different aliquots of the yeast culture are then subjected to increasing concentrations of trypsin and chymotrypsin, and labeled with an angle is smaller than 90°), excluding positions in loops, and their Cγ is closer than 8 Å, this information is stored in the each model PDB file under the PDB-Info labels, with the tag "Pckt".

Results

UMAP-Enriched Embedding of NTF2 Backbones. UMAP (22) is a dimension reduction technique widely used for visualization of high-dimensional data. We obtained the code for running UMAP by following instructions in [https://umap-learn.readthedocs.io/en/latest/.](https://umap-learn.readthedocs.io/en/latest/) For generating the embedding, UMAP requires a distance measure between points, for which we provided 1-TMscore between all analyzed structures. We used UMAP in a notebook with different methods, obtained combinations and verified that the general cluster structure was preserved among all of them, and that structural features were reflected in the groupings. The code and files necessary for generating the UMAP-related figures can be found in the Github repository https://github.com/basantab/NTF2Analysis, UMAP_embedding and Position_vector_analysis.

Ligand in Silico Docking Test. The goal of the ligand in silico docking test is to provide an estimate of how de novo NTF2-like proteins compare to native ones in terms of their ability to harbor arbitrary binding sites. We used RIFDOCK (6) for simultaneous docking and design based on a set de novo and native protein backbones. As RIFDOCK only uses backbone coordinates and a list of pocket positions to dock the ligand and design a binding site around it, it can be used in a sequence-agnostic way. We selected and prepared (see ligand preparation in [SI Appendix, Supplementary Methods](https://github.com/basantab/NTF2Analysis, ttree/master/ligandinSxdaicingTest)) a subset of 50 ligands from all nonpolymeric PDB ligands (Ligand Expo, ligand-expo.rcsb.org using k-means clustering on physical and chemical features (see [SI Appendix, Fig. 330](https://www.pnas.org/cgi/doi/10.1073/pnas.2005412117 Basanta et al.), and the 50_ligand_table.html file at https://github.com/basantab/NTF2Analysis/tree/master/ligandInSilicoDockingTest). The number of ligands tested was limited to 50 for computational tractability. We used RIFDOCK uses a significant amount of resources per ligand and scaffold: >3 h in 32 cores and 64 GB of RAM on average per ligand, to generate the initial rotamer interaction field (RIF), and ~2 h in 32 cores using >20 GB of RAM, per ligand for docking in a subset of 12 scaffolds. As
NTF2-like native representatives, we selected 64 structures with pockets (pockets detected and defined as described in the SI Appendix, Supplementary Methods) from the SCOPe2.05 database (described in SI Appendix, Supplementary Methods). In order to provide a conservative estimate of pocket diversity and aid computational tractability, we limited the set of de novo designs used for docking to those stable (stability score > 1.55) and with detectable pockets in the concave side of the sheet (>25% overlap between CLIPPERS-detected pocket and backbone-based pocket positions, and >30 Å3 volume), resulting in 790 different de novo sequences (see https://github.com/basantab/NTF2Gen GitHub repository for relevant files). Pocket residues were detected using CLIPPERS, as described in SI Appendix, Supplementary Methods, and only positions lining the pocket of the scaffolds this way, including loops, were considered for binding site design by RifDock. We generated five binding site designs per scaffold per ligand, and sorted them by “pockscore,” a measure of favorable Van der Waals interactions and hydrogen bonds, with bonuses for bidentate (one side chain contacting two hydrogen-bonding ligand atoms) interactions. We measured the capacity of de novo scaffolds to accommodate binding sites better than natives by subtracting the best (lowest) de novo pockscore z-score from the best native pockscore z-score, as described in the main text.

Data and Code Availability. The atomic coordinates have been deposited in the Protein Data Bank, www.wwpdb.org (PDB codes: 6W3D, 6W3F, 6W3G, 6W3H, and 6W40). In order to facilitate reproducibility, improvement, further analysis, and use of the models and information in this work, we have made all relevant data and code publicly available on basantab/NTF2Analysis and basantab/NTF2Gen GitHub repositories (GitHub repositories: https://github.com/basantab/NTF2Gen and https://github.com/basantab/NTF2Analysis). All sequences, PDB models, analysis scripts, and data tables for the first high-throughput experiments can be found in the ProteaseAnalysisExp1 folder of NTF2Analysis, and ProteaseAnalysisExp2 for the second high-throughput experiment. The set of 32,380 scaffolds, available for general use as starting points for ligand binding and enzyme design, is available in the basantab/NTF2Gen GitHub repository.

ACKNOWLEDGMENTS. We thank current and former D.B. laboratory members, in particular, Anastasia Vorobieva, Gabriel Rocklin, Mark Lajoie, Enrique Marcos, Ivan Anishchanka, Brian Coventry, William Sheffler, Hahnbeom Park, and Sergey Ovchinnikov for insightful conversations and suggestions. This work was funded by Defense Advanced Research Projects Agency Synergistic Discovery and Design (SD2) HR0011835403 contract FAB750-17-C-0219, Eric and Wendy Schmidt by recommendation of the Schmidt Futures program, and the Institute for Protein Design Directors Fund. C.N. is supported by Novo Nordisk Foundation Grant NNF17OC0030446. This work was facilitated through the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system at the University of Washington.