Henoch-Schönlein Purpura Nephritis: Pathophysiology, Treatment, and Future Strategy

Jean-Claude Davin

Summary
Henoch-Schönlein purpura nephritis is a rare kidney disease leading to chronic kidney disease in a non-negligible percentage of patients. Although retrospective studies suggest beneficial effects of some therapies, prospective randomized clinical trials proving treatment efficacy are still lacking. The dilemma of spontaneous recovery even in patients with severe clinical and histologic presentation and of late evolution to chronic kidney disease in patients with mild initial symptoms renders it difficult for clinicians to expose patients to treatment protocols that are not evidence-based. A better understanding of the pathophysiology of progression to chronic kidney disease in Henoch-Schönlein purpura patients could be achieved by designing prospective international multicenter studies looking at determinants of clinical and histopathological evolution as well as possible circulating and urinary markers of progression. Such studies should be supported by a database available on the web and a new histologic classification of kidney lesions. This paper reports clinical, pathologic, and experimental data to be used for this strategy and to assist clinicians and clinical trial designers to reach therapeutic decisions.

Introduction
Henoch-Schönlein purpura nephritis (HSPN) and IgA nephropathy (IgAN) are currently considered related diseases. Indeed, in a set of identical twins, one can present with IgAN and the other one with HSPN (1). Furthermore, both diseases display similar histologic features and IgA abnormalities (2). The common clinical pattern of IgAN is an indolent progressive disease with slowly increasing proteinuria and loss of renal function with flair-ups of macroscopic hematuria in half of the patients. HSPN, in contrast, presents most often with an initial acute episode followed by complete healing in the majority of patients. Persisting proteinuria and progressive chronic renal failure occur in a minority of patients (2). Nephritic and/or nephrotic syndromes are more often seen at presentation in HSPN (2). End-stage renal failure (ESRF) caused by HSPN is infrequent in adults (3), but it reached 5.1% in a large series of children from Necker-Enfants Maladies Hospital (4). The prevalence of HSP is difficult to assess from the literature (5). Using the controversial American College of Rheumatology criteria for vasculitis classification (6,7), which may result in overdiagnosis, the yearly incidence varies between 6.1/100,000 children in The Netherlands to 20.4/100,000 children in UK (8–11). It is generally agreed that the incidence of HSP decreases with age (3). The proportion of children presenting with renal involvement reported in studies varies from 20 to 100% (for a review, see reference 12). In one study using a cohort of adult patients in whom the diagnosis was based on the findings of the characteristic leucocytoclastic skin vasculitis accompanied by IgA deposits (13), 49% of patients presented with abnormal urinary signs. In selected series, HSPN leads to chronic kidney disease (CKD) 20 years after the diagnosis in up to 20% of children (14), whereas this percentage falls to less than 5% in unselected series (15). The risk of CKD in adults is higher. It varies from 35 to 69% in 388 patients followed up at least 5 years in four published series (16–19). Furthermore, adults have more often joint symptoms at presentation (20).

Our knowledge on treatment of HSPN is quite limited. Randomized clinical trials (RCTs) are scarce and often inconclusive. Spontaneous complete recovery in patients with severe initial presentation and/or extended histologic lesions and the late evolution to CKD of patients with mild initial symptoms makes the interpretation of treatment efficacy difficult (12,14,21). The main goal of the present paper is to propose a strategy aimed to better define patients at risk, using renal symptoms, histologic lesions, and possible new markers of progression to assist clinicians and clinical-trial designers to reach therapeutic decisions.

Experimental Data and Pathophysiological Hypothesis
The pathophysiology of HSPN has been extensively described elsewhere (2,22). Endocapillary and extracapillary inflammation as well as glomerular fibrin deposits are more frequent in HSPN than in IgAN. No major biologic differences have been found between the two illnesses excepted for the IgG content and bigger size of the circulating IgA-containing complexes (IgA-CC) and the higher incidence of increased...
IgE plasma levels in HSPN (23–25). Our own study on the possible role of immunoaergic mechanism (25) was initiated on the basis of reports of HSP associated with allergy and high IgE plasma levels and on the observation of a 7-year-old boy with HSPN that started 1 day after he fell into stinging nettles (Jean-Claude Davin, personal communication). This information led us to postulate that stimulation of IgE-sensitized mast cells (present in skin, intestine, and lungs) by specific antigens in the presence of IgA-CC might lead to the release of vasoactive substances, increasing capillary permeability and perivascular deposition of IgA-CC. Although mast cells are not usually found in the mesangium, circulating vasoactive substances released by other organs might account for increasing the deposition of large IgA-CC in glomeruli.

IgA Abnormalities

HSPN and IgAN might result primarily from an abnormal IgA1 glycosylation. The lack of terminal β1-galactosyl residues in the hinge region of IgA1 observed in both diseases might be due to a reduced activity of the β1,3 galactosyltransferase in peripheral B cells (26–28). This abnormality is present only in HSP complicated by nephritis, which suggests a pathophysiological role (26). N-Acetylgalactosamine (GalNac) residues exposed on IgA1 because of the lack of terminal β1 galactosylation constitute a novel antigen inducing a humoral auto-immune response (29). The possible impaired resistance to antigen penetration at mucosal levels suggested in HSPN by an increased intestinal permeability (30) and in IgAN by a reduced mucosal immune reaction to novel antigen (31) might contribute to the production of large amounts of GalNac-IgA1 that cannot be cleared by the asialoglycoprotein receptor of hepatocytes binding specifically to β1,3 galactosyl-IgA1. Accumulating GalNac-IgA1 in polymeric forms (pIgA) in circulating blood favors the formation of large IgA1-CC that deposit in different tissues and induce local inflammation. IgA1 binding to leukocyte FcαRI receptors is followed by cleavage of the FcαRI extracellular domain, resulting in a release of IgA1/FcαRI receptor complexes that amplifies the molecular size of IgA-CC (32). In glomeruli, IgA1 complexes localize in a mesangial or in a subendothelial pattern (33) according to their physicochemical properties. CD71 mRNA coding for the transferrin receptor, which preferentially binds GalNac-IgA1, is expressed on mesangial cells (32,34). In vitro studies have shown binding of pIgA to mesangial cells to enhance cell proliferation, cytokine release, and production of extracellular matrix (ECM) (35–37).

Complement Activation

Activation of the complement pathway is probably an important effector event in the pathophysiology of glomerular lesions. C3 deposits are seen in a vast majority of patients with HSPN (38). Alternative pathway components, such as FB in contrast to C1 and C4, and the membrane attack complex C5b9 are regularly present, accompanying predominant IgA deposits in a mixed mesangial and capillary pattern (33). The glomerular deposition of MBL, L-ficolin, MASP, C4d, but not C1q shown to be associated with a higher grade of proteinuria and hematocrit and more severe histological lesions in HSPN (39) strongly suggests, as seen in IgAN (40), a predominant pathophysiological role of the activation of the complement system by the lectin pathway. This emphasizes the need of studies examining the value of blood and urinary complement splits product and of the membrane attack complex to evaluate the disease activity.

Mesangial Cell Activation, Proliferation, and Glomerulosclerosis

The deposition of IgA-CC in glomeruli is favored by their high plasma concentration and their biochemical features in HSPN (23,24). Once in the mesangium, different components of IgA-CC (for example, Fco and Fcy fragments, fibronectin, C3b, etc.) can bind to their specific receptors on the surface of mesangial cells (MCs) (2,41) and trigger cell proliferation, ECM production, and synthesis of chemokines monocyte chemoattractant protein-1 and IL-8 (34–37) that might account for the attraction of polymorphonuclear leukocytes and monocytes found in patient biopsies. MCs can also be stimulated by cytokines of the acute phase (IL-1, TNF-α, and IL-6) and of the chronic phase (PDGF and TGF-β) produced by themselves (for a review, see references 41–46) and/or by infiltrating cells.

Chemokines generated by IgA1-stimulated MCs can interact with their receptors on podocytes and in this way may influence their metabolism, local migration, and adherence to the basement membrane and control of proteinuria (47,48). The urinary excretion of podocytes (u-podo excretion) seems to be a good parameter for predicting glomerulosclerosis in HSPN and IgAN because chronic histology scores and glomerulosclerosis both correlate well with cumulative u-podo excretion (49). Patients with severe histologic progression of disease also had persistent u-podo excretion (49).

Crescent Formation

Because the presence of crescents is a prominent histologic feature of HSPN that represents an important prognostic factor and constitutes the basis for the International Study Group of Kidney Disease in Childhood (ISKDC) pathology classification (38), the study of crescent pathophysiology might provide useful information for therapeutic strategy (50–52). As already mentioned, crescents are much more often seen in HSPN than in IgAN, and their number is related to the severity of clinical signs and to the prognosis of HSPN in most series (16,17,53–60). They are frequently seen in association with capillary wall destruction and endocapillary cell proliferation (33). The presence and extension of crescents are related to the finding of subendothelial immune deposits of IgA and complement using immunofluorescence microscopy and with the presence of subendothelial electron dense deposits (33).

Histology of patient biopsies combined with studies on experimental crescentic glomerulonephritis (61–75) suggest that the following succession of events is involved in the crescent formation in HSPN (2): (1) subendothelial and mesangial deposition of IgA-CC; (2) local complement activation; (3) IL-8 production by mesangial and endothelial cells inducing neutrophil attraction; (4) stimulation of endothelial cells to express von Willebrand factor and tissue
The use of the severity of initial renal symptoms to adapt the treatment should be justified by the correlation between the latter and the prognosis at long term. The interpretation of data from reported series is complicated by the possible influence of treatment, which is most often heterogeneous and not precisely reported (dosage, duration of administration). Moreover, the latter has varied through the years. Until the 1980s, HSPN was considered to be mostly an illness with spontaneous recovery (77). This concept began to change after the publication of long-term follow-up studies (53–55). Parallel to this change and despite the lack of evidence-based data, recommended treatments in text books changed from supportive measures (77–79) to the use of steroids and immunosuppressive drugs (80,81) even in the absence of a picture of rapidly progressive glomerulonephritis (80). Another difficulty resides in the development of CKD up to 20 years after disease initiation, especially during pregnancy, even after complete apparent resolution (14,21). This implies that only series with sufficient follow-up might be informative. Finally, most series of long-term follow-up relate outcome to initial symptoms and biopsy without intermediate observational moments, discarding the potential role of relapses and of a progressive active process. This lack of information does not allow for the differentiation of different patterns of pathologic events leading to CKD: (1) one unique episode with apparent complete recovery but leading to an important nephronic reduction and CKD at long term (14,21) (Table 1), but it is far from being a constant rule.

According to the study of Goldstein et al. (14), CKD is encountered at long term in less than 5% of patients when clinical signs at presentation are hematuria and/or minimal proteinuria, 15% when proteinuria is heavy but not nephrotic or in the case of nephritic syndrome, 40% with nephrotic syndrome, and in more than 50% when nephritic and nephrotic syndromes are associated. It is remarkable that some (rare) patients presenting with mild initial symptoms are seen with CKD at long term (14,86). A particular example is CKD observed after repeated episodes of isolated macroscopic hematuria (87,88). Even patients with no urinary abnormalities at all have been reported to present with hypertension later on (89).

Bias in the interpretation of initial symptoms for prognostic purposes has resulted in the consideration of other clinical parameters. Failure to reach a creatinine clearance of >70 ml/min per 1.73 m² at 3 years and increasing proteinuria levels during follow-up correlate better with the risk of progression to CKD than decreased renal function, severe proteinuria, hypertension, or crescents present at onset of disease (88,90) (Table 1). On the other hand, although there is no specific report of late follow-up of patients with untreated initial severe renal symptoms at presentation (nephrotic proteinuria, nephrotic syndrome combined or not with nephritic syndrome), it is commonly accepted that HSPN might heal completely when presenting with severe renal symptoms even when no treatment has been used (77,86,90,91).

Prognostic Value of Histologic Lesions

Histologic lesions have been classified by the ISKDC in five categories (I, II, III, IV, and V) according to the presence and number of crescents. Grade VI is used for a membranoproliferative aspect (38). A rough appreciation

| Table 1. Clinical prognostic factors for chronic kidney disease at long term in Henoch-Schönlein purpura |
|---|-----------------|
| Symptoms | Patients (%) |
| Initial renal symptoms | CKD |
| nephrotic-nephritic syndrome | >50 |
| nephrotic syndrome | 40 |
| nephritic syndrome | 15 |
| heavy non-nephrotic proteinuria | 15 |
| hematuria and/or minimal proteinuria | <5 |
| Renal symptoms during follow-upb | ESRD |
| GFR< 70 ml/1.73 m² per min at 3 years | 100 |
| Initial symptoms vs. increasing proteinuria during follow-upa | Progression (significance) |
| Mean follow-up proteinuria (g/d) | RR = 1.77 \(P < 0.001\)* |
| Severely impaired vs. normal GFR (onset) | RR = 3.83 \(P = 0.20\) |
| Nephrotic vs. minimal proteinuria (onset) | RR = 4.74 \(P = 0.17\) |

*From reference 14.

*From reference 88.

*From reference 91. Univariate analysis of predictors related to renal survival by using dialysis therapy as end point.

*Relative risk 1.77 for each 1-g/d increase for doubling of creatinine level. GFR has been calculated using the Schwartz formula.
of mesangial hypercellularity is also considered in this classification.

As for clinical symptoms, it is generally accepted that the risk for the development of CKD increases with the severity of the histologic lesions at presentation. Combining three studies (55,57,86) with a follow-up of about 6 years (38), all ISKDC grades combined result in 25% of severe complications (active renal disease and/or CKD and/or ESRF): 15, 15, 35, 70, and 66% for classes II, III, IV, V, and VI, respectively. Class I, which includes minimal glomerular abnormalities, is the only class without long term complications. Only four (18,19,21,92) from 15 series (eight in children and seven in adults) (14,16–19,21,53–60,92) reporting on the relation between outcome and the histology of the first renal biopsy do not mention a predictive value of crescents for CKD and ESRF. In contrast, the latter studies also show that low grade histologic lesions can also lead to CKD and that high grade lesions can heal definitively. The reasons for those discrepancies can be multiple: (1) A renal biopsy is only a small fragment of renal tissue; it is therefore possible that lesions observed are either over-represented or on the contrary under-represented, giving a biased image of the reality in its totality. (2) Reversibility with minimal or no scarring can be expected when crescents are not yet fibrotic and still remain predominantly cellular without a significant fibroblast or collagen component; this spontaneous resolution can be expected with a triggering event of short duration such as episodes of macroscopic hematuria accompanying respiratory infections in HSPN (53). (3) The ISKDC classification does not consider some other important well-accepted prognostic factors such as tubular lesions, interstitial fibrosis, interstitial and glomerular inflammation, crescent features (localized or completely surrounding the glomerulus, fibrotic or not), segmental sclerosis, and arteriosclerosis; this classification neither takes electron microscopy nor immunofluorescence features into consideration; and the importance of this issue is illustrated in a recently reported large series of French patients (93) in whom interstitial fibrosis and the percentage of sclerotic glomeruli, but not crescents, were associated with a poor renal prognosis. (4) Another possible explanation for this discrepancy is the promulgate use of aggressive immunosuppressive treatments suggested by Ronkainen et al. (21) to explain the worse outcome of ISKDC grades II–III than grades IV–V in their series. This has led the latter authors to advise repeated kidney biopsies when severe symptoms do not improve and to rely more on symptoms than on histology for therapeutic decisions. It is remarkable that the four studies that did not show a relationship between crescents at first biopsy and outcome report data from the last 15 years, when the use of prednisone and immunosuppressive drugs had become the rule. This suggests indirectly that treatment might prevent cellular crescents to progress to fibrosis and to contribute to CKD. (5) Finally, delaying the kidney biopsy could play a role because crescentic glomeruli can rapidly lead to complete glomerulosclerosis if not treated (53,94).

In conclusion, those observations suggest that histologic documentation should consider all factors that may provide prognostic information using a new detailed histologic classification similar to that recently published for IgAN (95). The latter should take into account the mesangial cellular score, the presence and extension of glomerulosclerosis, endocapillary hypercellularity, inflammatory cells infiltration, the integrity of the Bowman’s capsules, cellular versus fibrotic crescents, and interstitial fibrosis/tubular atrophy. The difficulty in predicting outcome underlines the necessity to develop markers of activity that can be repeated easily with blood or urine samples (for example circulating GalNac-IgA1 and anti-GalNac-IgA1 antibodies, various cytokines and products of the activation of the complement system, and urinary podocyte excretion) to avoid unnecessary renal biopsies.

Treatment Strategies According to Pathophysiology

The strategy to treat HSPN should take into account the different steps of the pathophysiological process leading to HSPN.

Antigen Penetration at a Mucosal Level

Because acute HSPN episodes are often triggered by an upper respiratory tract infection (11), the removal of any source of chronic bacterial infection should be theoretically beneficial. That is the reason why some authors have performed tonsillectomy in patients with IgAN and HSPN. Unfortunately, not a single report mentioned in recent reviews on that topic (96–98) gives a level of evidence sufficient to recommend this treatment, because it is often associated with other therapies.

Reduction of IgA1 Production

All types of immunosuppressive drugs (steroids, cyclophosphamide, azathioprin, and calcineurin inhibitors) have been used to prevent CKD in HSPN. No study has been designed up to now to show drug efficacy on the production of IgA1, pIgA1, or GalNac-IgA1. Interestingly, efficacy of rituximab (RTX) therapy in chronic HSP has been suggested in three pediatric patients treated with RTX for severe refractory chronic HSP characterized mainly by neurologic and gastroenterological symptoms resistant to steroids and cyclophosphamide (CPH). All three patients responded to one or two courses of RTX without serious adverse events. The response was related to the suppression of the CD19 expression on mononuclear cells (99).

Removal of IgA1 and IgA1 Complexes

Several case reports relate the dramatic improvement of extra renal symptoms (gastrointestinal, pulmonary, or cerebral) after plasma exchange (PE) (100–110). Interestingly, Hattori et al. (109) and later on Shenoy et al. (110) reported encouraging results on the use of PE as the only treatment in patients with severe initial acute HSPN. In both series, patients presented with acute renal impairment, heavy proteinuria, or nephrotic syndrome and a histologic class equal to or higher than III (110) or equal to V (109). At last review after 4 (110) and 10 years (109), 13 of 14 and 6 of 9 patients, respectively, had a normal GFR and complete or almost complete resolution of renal symptoms. The three patients having reached ESRF were treated at least 1 month after the start of symptoms. Apart from removing circulating complexes, the favorable role of PE might also be due
Complement Activation

As stated above, activation of the lectin pathway of complement in HSPN is associated with more severe renal damage (39). It can be hypothesized that the latter might be prevented by impeding the formation of some end products of the complement activation playing a role in the inflammatory response such as C5a and the membrane attack complex C5b9. Eculizumab is a high affinity humanized monoclonal antibody that binds to and blocks the cleavage of C5, leaving the upstream components of complement, most notably C3b, intact. Eculizumab has been shown to be very efficacious in preventing acute episodes of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome, two diseases resulting from defective inhibition of the complement system at different levels (111–115). This suggests that eculizumab might also be of value in other kidney illnesses in which complement activation plays a role.

Fibrin Formation

The possible role of fibrin in the pathogenesis of crescents has been strongly suggested by clinical and experimental observation. That is the reason why warfarin, dipyridamol, and acetylsalicilic acid have been used along with immunosuppressive agents by several authors (for a review, see references 96–98). Difficulty of interpretation results from the following cause of bias: retrospective studies, no controls, and heterogeneity of histology and clinical symptoms as well as of heterogeneity of treatment. Aside from the lack of reliable data, the possible bleeding complications in the case of gastroenterological complications often seen in those patients might discourage clinicians from using anti-coagulation.

Mesangial Proliferation, Glomerulosclerosis, and Proteinuria

HSPN might possibly progress by continuous deposition of IgA-CC inducing mesangial proliferation, ECM accumulation, and gomerulosclerosis such as IgAN (82–85). Proteinuria persisting after the acute phase might be due to two different mechanisms: either hyperfiltration due to nephronic mass reduction during the acute phase or the effect of chemokines produced by persistently stimulated MCs on podocytes (47,48,116,117). Theoretically, both mechanisms could be counteracted by ACE inhibitors, whereas corticosteroids might prevent MC proliferation and metabolic stimulation. Although prolonged administration of both classes of drugs has been shown to be valuable in reducing proteinuria and preventing progression in IgAN (118–120), no similar studies have been done in HSP. Despite the report of proteinuria reduction by cyclosporine in some patients with HSPN not having responded to steroids and immunosuppressive drugs (121), this treatment should not be recommended before the publication of the results of a RCT comparing cyclosporine to high dosage methylprednisolone (MPNS) followed by prednisone (122), because of the potential nephrotoxicity of cyclosporine.

Crescent Formation

Because renal prognosis is related to crescent progression to sclerosis, it is important to detect histologic signs predicting such an evolution (e.g., disruption of the Bowman capsule and presence of fibroblasts in the Bowmans’ space) to initiate anti-sclerosis strategies. Because genetically-determined differences in both glomerular and bone marrow-derived cells influence individual susceptibility to crescent formation in rats (76), studies directed to the latter will be initiated in humans. Known susceptibilities should indicate more aggressive treatments.

Treatment has to be initiated early to prevent fibrotic transformation (53). As mentioned above, prevention of the development and resolution of crescents might be obtained by the removal of IgA-CC by plasmapheresis (109,110). The use of pulses of high doses of MPNS instead of the usual oral dosage of prednisone is sustained by experimental results. In a rat model of crescentic glomerulonephritis, the maximal therapeutic effect is obtained with 30 mg/kg IV MPNS (123). In a prospective non-controlled study, Niaudet and Habib (124) suggested improved outcome of severe HSPN (nephrotic syndrome or association of nephrotic and nephritic syndrome) when MPNS pulses were used initially. In the latter series, only 11% progressed to end-stage renal failure in comparison with 38 and 27% of patients in two historical series of the same center receiving, respectively, a supportive treatment or various immunosuppressive drugs but not MPNS. Overall, these observations suggest that MPNS pulses should be used preferentially at the initiation of the steroid treatment. A favorable role of initial high dosage of steroids is suggested by other noncontrolled studies (125–128).

More specific treatment might be considered for clinical trials to prevent the influx of monocytes in the Bowman’s space. Indeed selective blockade of IL-1 with IL-1 receptor antagonists and of TNF with soluble TNF receptors markedly reduces crescent formation (68,70) by reducing the expression of adhesion molecules and the recruitment of macrophages in experimental models of glomerulonephritis.

Actual Choice for the Clinician

As usual, the clinician has to balance the risk of CKD versus the risk and the cost of the proposed treatment. The effect of treatment is particularly difficult to evaluate considering possible spontaneous complete recovery or apparent restoration of renal function masking a nephronic mass reduction that could be sufficient to lead to CKD after prolonged hyperfiltration.

The lack of benefit of steroids and immunosuppressive treatment reported in old series (14,54) and the lack of data allowing a high level of evidence-based recommendations make the choice of therapy more difficult, and one may wonder if treatment is really useful. However, pediatric nephrologists with expertise in this field (21,80,81,98,124) are actually convinced of this necessity. This opinion is based on the impression of a reduction of CKD caused by HSPN parallel to treatment intensification and on several reports mentioning a worse evolution when treatment is delayed (21,109,110,124,126). Re-
Table 2. Proposed strategy to improve Henoch-Schönlein purpura nephritis prognosis

| Determination of risk factors | Commercialization of kits for detecting specific markers of the disease as GalNac IgA1 and anti-GalNac IgG setting up a new histological classification taking into account all suspected risk factors for developing CKD blood and/or urinary measurements of markers possibly involved at different stages of the pathophysiological process (i.e., II-1, II-6, II-8, TNF-α, TGF-β, C5b-9, etc.) development of a registry available on the web multicenter studies recording prospectively and parallel clinical symptoms, biological markers values, histological data, and treatment features determining from registry data different grades of risk. |
| Clinical trials features | No placebo-controlled RCT allowed except for low grade risk treatment started as soon as possible after disease initiation tonsillectomy tested adequately study treatment adapted according to risk grade and treatment toxicity for highest risk, steroid treatment preferably with initial methylprednisolone bolus for highest risk, plasma exchanges alone compared with other treatments biological treatments considered (rituximab, antibodies anti-cytokines involved in inflammation and fibrosis processes, etc.). |

In the case of nephritic syndrome or nephrotic proteinuria, even without clinical nephrotic syndrome, treatment might be recommended (80) considering a risk of 15% to develop CKD at long term (14). A course of steroids initiated as intravenous high dosage MPNS given without delay might be proposed because oral prednisone alone has been claimed to be of no benefit (14,54,81,124–128). The addition of immunosuppressive drugs might be considered when improvement is delayed or in situations of higher risks. However, considering negative RCTs and side effects, CPH should probably not be recommended anymore. Although PE might be seen as an aggressive treatment, the risk of complications with modern devices is minimal in expert hands in comparison with the risk of CKD in patients with a severe clinical presentation especially in association with ISKDC pathology classification class IV or V. The encouraging results cited above suggest that PE should be considered promptly in patients where steroids and immunosuppressive drugs are not effective or even initially when nephritic and nephrotic syndromes are associated with a high percentage of crescents. Reports of long term follow-up of previous studies on the use of PE as sole treatment will help to further determine the latter indication (109,110). ACE inhibitors may be added at any level of proteinuria and may be used alone in the case of persisting proteinuria with a high chronicity index at biopsy. As mentioned above, early treatment initiation might be a major factor for preventing the progression to CKD (21,109,110,124,126).

Future Strategy

The future strategy will consist of better definition of patients at risk of CKD to adapting treatment and clinical trials to groups of patients according to their risk profiles (Table 2). The poor documentation of patient history constitutes a major pitfall in the interpretation of the prognostic role of the initial clinical signs and histologic data. The relationship of the latter to outcome has been shown to be variable, and parameters of variability can be multiple. Adequate assessment must consider all features of the therapy (moment of administration re-
lated to illness initiation, type of drugs used, dosage, and duration of drug administration). Instead of relating initial clinical and histologic data only to outcome, multiple intermediate moments should also be reported considering renal function, proteinuria, and relapses of purpura and of macroscopic hematuria. The report of the delay between initial symptoms and biopsy is of major importance because crescents can lead rapidly to glomerulosclerosis and tubular atrophy (53,94). It is now obvious that the ISKDC classification that grades the severity according to the amount of crescents only has become obsolete and should be replaced by a new detailed histologic classification similar to that recently published for IgAN (95), taking into account some or all of the following parameters that are shown to be independent predictors of renal functional decline and/or response to therapy: mesangial hypercellularity, endocapillary hypercellularity, crescents, segmental and global glomerulosclerosis, arterio- and arteriolosclerosis, interstitial inflammation, and tubular atrophy/intestinal fibrosis.

The high diversity of pathophysiological steps possibly involved between the hypothesized initial event (GalNac-IgA1 formation) and the final glomerular lesions enables different types of evolution according to the specificity of the markers participating in each step (i.e., size and composition of IgA1-CC, ability of the latter to localize in the mesangium or under endothelial cells and to induce inflammation, capacity of glomerular cells to produce cytokines and matrix after stimulation, fibroblast ability to invade the Bowman’s space and to generate fibrosis, etc.).

A better understanding of HSPN pathophysiology, defining the pattern of progression to CKD (scars from acute limited episodes or a slowly progressive active process as in IgAN) and the detection of patients at risk are sine qua non conditions to improving treatment strategies. This could be reached by prospective multicenter international studies initiated from disease presentation and pursued at long term in large cohorts of patients including also those presenting with minimal symptoms and resulting in apparent complete healing. The latter studies should be designed to look at regular intervals for correlations between clinical signs, histologic findings, treatments, and modifications of circulating and/or urinary markers (circulating GalNac-IgA1 and anti-GalNac-IgA1 antibodies, various cytokines, products of the complement system activation, and urinary excretion of podocytes) (26–29,34–37,43–47,131–132). This process should be supported by an electronic database available on the web.

Clinical trials might be coupled to this electronic registry. They should be designed by experts in the field who will decide on treatments according to risk profiles and on puzzling issues such as primary end points and follow-up duration. The results of studies looking for early clinical prognostic indications for long term outcome should help with the design (88,90). If placebo-controlled studies could be considered to study the value of treatments preventing the development of severe renal symptoms in patients with no or only minimal initial urinary abnormalities, as has been previously done (for a review, see references 96–98), it does not seem ethical to do this for all of the other presentations because of their association with a significant CKD risk.

Trials should be designed to determine the efficacy of immunosuppressive drugs, anticoagulation agents, and PE. The dramatic improvement after RTX therapy in three severe extrarenal cases of HSP resistant to steroids and immunosuppressive treatment supports this drug as a candidate for RCTs (99). However, its potential severe and sometimes fatal side effects (133) might limit its indication to a RCT devoted to cases resistant to PEs. Other biologic treatments such as eculizumab, for example, might also be considered. Finally, the efficacy of tonsillectomy should be tested adequately.

Acknowledgments
Jean-Claude Davin would like to thank Prof. Jan Weening for his useful comments and Dr. Sally-Ann Chur for the revision of the text.

Disclosures
None.

References
1. Meadow SR, Scott DG: Berger disease: Henoch-Schönlein without the rash. J Pediatr 106: 27–32, 1985
2. Davin JC, Ten BERGE Il, Weening JJ: What is the difference between IgA nephropathy and Henoch-Schönlein purpura nephritis? Kidney Int 59: 823–834, 2001
3. Haycock GB: The nephritis of Henoch-Schönlein purpura. In: Oxford Textbook of Clinical Nephrology, edited by Cameron S, Davison AM, Grünfeld JP, Oxford, Oxford University Press, 1992, pp 595–612
4. Broyer M: Fréquence et cause de l’insuffisance rénale chez l’enfant. In: Néphrologie Pédiatrique, edited by Royer P, Habib R, Mathieu H, Broyer M, Paris, Flammarion Médecine-Sciences, 1983, pp 425–433
5. Eleftheriou D, Brogan PA: Vasculitis in children. Best Pract Res Clin Rheumatol 23: 309–323, 2009
6. Mills JA, Michel BA, Bloch DA, Calabrese LH, Hunder GG, Arend WP, Edworthy SM, Fauci AS, Leavitt RY, Lie JT: The American College of Rheumatology 1990 criteria for the classification of Henoch-Schönlein purpura. Arthritis Rheum 33: 1114–1121, 1990
7. Rao JK, Allen NB, Pincus T: Limitations of the 1990 American College of Rheumatology classification criteria in the diagnosis of vasculitis. Ann Intern Med 129: 345–352, 1998
8. Gardiner-Medwin JM, Dolezalova P, Cummins C, Southwood TR: Incidence of Henoch-Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360: 1197–1202, 2002
9. Dolezalova P, Tekelova P, Nemcova D, Hoza J: Incidence of vasculitis in children in the Czech Republic: 2-year prospective epidemiology survey. J Rheumatol 31: 2295–2299, 2004
10. Yang YH, Hung CF, Hsing CK, Wang LC, Chuang YH, Lin YT, Chiang BL: A nationwide survey on epidemiological characteristics of childhood Henoch-Schönlein purpura in Taiwan. Rheumatology 44: 618–622, 2005
11. Aalberse J, Dolman K, Ramnath G, Pereira RR, Davin JC: Henoch Schönlein purpura in children: An epidemiological study among Dutch paediatricians on incidence and diagnostic criteria. Ann Rheum Dis 66: 1648–1650, 2007
12. White RHR, Yoshikawa N, Henoch-Schönlein nephritis. In: Pediatric Nephrology, edited by Barratt TM, Holiday M, Baltimore, Williams & Wilkins, 1993, pp 729–738
13. Tancred-Bohin E, Ochonisky S, Vignon-Pennamen MD, Flageul B, Morel P, Rybojad M: Schönlein-Henoch purpura in adult patients: Predictive factors for IgA glomerulonephritis in
a retrospective of 57 cases. *Arch Dermatol* 133: 438–442, 1997

14. Goldstein AR, White RHR, Akuse R, Chantler C: Long-term follow-up of childhood Henoch-Schönlein nephritis. *Lancet* 339: 280–282, 1992

15. Koskimies O, Mir S, Rapolla J, Viisla J: Henoch-Schönlein nephritis: Long-term prognosis of unresolved patients. *Arch Intern Med* 56: 482–484, 1981

16. Fogazzi GB, Pasquali S, Morigli M, Casanova S, Damilano I, Mithatsch MJ, Zucchelli P, Ponticelli C: Long-term outcome of Schönlein-Henoch nephritis in the adult. *Clin Nephrol* 31: 60–66, 1989

17. Shrestha S, Sumingan N, Tan J, Alhous H, McWilliam L, Bal-

16. Fogazzi GB, Pasquali S, Morigli M, Casanova S, Damilano I, Mithatsch MJ, Zucchelli P, Ponticelli C: Long-term outcome of Schönlein-Henoch nephritis in the adult. *Clin Nephrol* 31: 60–66, 1989

18. Coppo R, Mazzucco G, Cagnoli L, Lupo A, Schena FP: Long-term prognosis of Henoch-Schönlein nephritis in adults: adverse prognostic indicators in a UK population. *QJM* 99: 253–265, 2006

19. Ronkainen J, Nuutinen M, Koskimies O: The adult kidney 24

20. Blanco R, Martínez-Taboada VM, Rodríguez-Valverde V, García-Fuentes M, González-Gay MA: Henoch-Schönlein purpura in adulthood and childhood: Two different expres-

sions of the same syndrome. *Arthritis Rheum* 40: 859–864, 1997

21. Ronkainen J, Nuutinen M, Koskimies O: The adult kidney 24 years after childhood Henoch-Schönlein purpura: A re-

22. Lau KK, Suzuki H, Novak J, Wyatt RJ: Pathogenesis of Hen-
och-Schönlein purpura nephritis. *Pediatr Nephrol* 25: 179–184, 2010

23. Levinsky RJ, Barratt TM: IgA immune complexes in Henoch-

24. Kauffman RH, van Es LA, Daha MR: The specific detection of IgA in immune complexes. *J Immunol Methods* 40: 117–129, 1981

25. Davin JC, Pierard G, Dechenne C, Jansen F, Chantraine JM, Mahieu PR: Possible pathogenic role of IgE in Henoch-Schönlein purpura. *Pediatr Nephrol* 8: 169–171, 1994

26. Allen AC, Willis FR, Beattie TJ, Feethally J: Abnormal IgA glycosylation in Henoch-Schönlein-Schönlein purpura restricted to patients with clinical nephritis. *Nephrol Dial Transplant* 13: 930–934, 1998

27. Davin JC, Pierard G, Dechenne C, Jansen F, Chantraine JM, Mahieu PR: Possible pathogenic role of IgE in Henoch-Schönlein-Schönlein purpura. *Pediatr Nephrol* 8: 169–171, 1994

28. Novak J, Moldoveanu Z, Renfrow MB, Yanagihara T, Suzuki H, Raska M, Hall S, Brown R, Huang WQ, Goeppert A, Kilian M, Poulson K, Tomana M, Wyatt RJ, Julian BA, Hogg RJ, Lee JY, Huang WQ, Mestecky J, Novak J: Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. *Pediatr Nephrol* 22: 2067–2072, 2007

29. Novak J, Moldoveanu Z, Renfrow MB, Yanagihara T, Suzuki H, Raska M, Hall S, Brown R, Huang WQ, Goeppert A, Kilian M, Poulson K, Tomana M, Wyatt RJ, Julian BA, Mestecky J: IgA nephropathy and Henoch-Schönlein-Schönlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. *Con

30. Davin JC, Forget P, Mahieu PR: Increased intestinal permea-

31. de Fijter JW, Eijgenraam JW, Braam CA, Holmgren J, Daha MR, van der Wall Bake AW: Deficient IgA1 immune response to nasal choler toxin subunit B in primary IgA nephropathy. *Kidney Int* 50: 952–961, 1996

32. Monteiro RC: The role of IgA and IgA Fc receptors in inflammati

33. Emancipator SN: Primary and secondary forms of IgA nephri-

34. Oortwijn BD, Roos A, Royle L, van Giljswijk-Janssen DJ, Faber-Krol MC, Eijgenraam JW, Dwek RA, Daha MR, Rudd PM, van Kooten C: Differential glycosylation of polymeric and monomeric IgA: A Possible Role in Glomerular Inflammation in IgA Nephropathy. *J Am Soc Nephrol* 17: 3529–3539, 2006

35. Chen A, Chen WP, Sheu LF, Lin CY: Pathogenesis of IgA ne-

36. Gomez-Guerrero C, Lopez-Armada MJ, Gonzalez E, Egidio J: Soluble IgA and IgG aggregates are catabolized by cultured rat mesangial cells and induce production of TNF-alpha and IL-6, and proliferation. *J Immunol* 153: 5247–5255, 1994

37. Lopez-Armada MJ, Gomez-Guerrero C, Egidio J: Receptors for immune complexes activate gene expression and synthesis of matrix proteins in cultured rat and human mesangial cells: Role of TGF-beta. *J Immunol* 157: 2136–2142, 1996

38. Haas M: IgA nephropathy and Henoch-Schönlein purpura. In: *Pathology of the Kidney*, 6th Edition, edited by Jette

39. Hisano S, Matsushita M, Fujita T, Iwasaki F: Activation of the lectin complement pathway in Henoch-Schönlein purpura nephritis. *Am J Kidney Dis* 45: 295–302, 2005

40. Roos A, Rastaldi MP, Calveresi N, Oortwijn BD, Schlagwein N, van Giljswijk-Janssen DJ, Stahl GL, Matsushita M, Fujita T, van Kooten C, Daha: Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. *J Am Soc Nephrol* 17: 1724–1734, 2006

41. Davies M: The mesangial cell: A tissue culture view. *Kidney Int* 45: 320–327, 1994

42. Yokoyama H, Wada T, Fujiuchi K, Segawa C, Shimizu M, Kobayashi K, Su S, Mukaida N, Matsuhasha K: Urinary levels of chemokines (MCAF/MCP-1, IL-8) reflect distinct disease activities and phases of human IgA nephropathy. *J Leukocyte Biol* 63: 493–499, 1998

43. Horii Y, Muraguchi A, Iwano M, Matsuda T, Hirayama T, Yamada H, Fujii Y, Dohi K, Isikawa H, Ohmotto Y: Involvement of IL-6 in mesangial proliferative glomerulonephritis. *J Immunol* 143: 3949–3955, 1989

44. Kashem A, Endoh M, Yano N, Yamauchi F, Nomoto Y, Sakai H, Kurokawa K: Glomerular FcαR expression and disease activity in IgA nephropathy. *Am J Kidney Dis* 30: 389–396, 1997

45. Terada Y, Yamada T, Nakashima O, Sasaki S, Nonoguchi H, Tomita K, Marumo F: Expression of PDGF and PDGF receptor mRNA in IgA nephropathy. *J Am Soc Nephrol* 8: 817–819, 1997

46. Niemir ZI, Stein H, Noronha IL, Krüger C, Andrassy K, Ritz E, Waldherr R: PDGF and TGF-β contribute to the natural course of human IgA glomerulonephritis. *Kidney Int* 48: 1530–1541, 1995

47. Schöndorf D, Banas B: The mesangial cell revisited: No cell is an island. *J Am Soc Nephrol* 20: 1179–1187, 2009

48. Wang C, Liu X, Peng H, Tang Y, Tang H, Chen Z, Lou T, Zhang H: Mesangial cells stimulated by immunoglobulin A1 from IgA nephropathy upregulate transforming growth factor-beta1 synthesis in podocytes via renin-angiotensin system activation. *Arch Med Res* 41: 255–260, 2010

49. Hara M, Yanagihara T, Kiraha I: Cumulative excretion of urinary podocytes reflects disease progression in IgA nephropathy. *Kidney Int* 74: 158–164, 2008

50. Couser, WG: Glomerulonephritis. *Lancet* 353: 1509–1515, 1999

51. Jennette JC: Rapidly progressive crescentic glomerulonephritis. *Kidney Int* 63: 1164–1177, 2003

52. Cunningham MA, Kitching AR, Tipping PG, Holdsworth SR: Fibrin independent proinflammatory effects of tissue factor in
Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Barratt J, Berthoux F, Bonsib S, Bruijn JA, D’Agati V, D’Amico G, Empancioper S, Emma F, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Jok K, Julian BA, Kawamura T, Lai FM, Leung CB, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H: The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. *Kidney Int* 76: 534–545, 2009

96. Zaffanello M, Fanos V: Treatment-based literature of Henoch-Schönlein purpura nephritis in childhood. *Pediatr Nephrol* 24: 1901–1911, 2009

97. Chartapisak W, Opastirakul S, Hodson EM, Willis NS, Craig JC: Interventions for preventing and treating kidney disease in Henoch-Schönlein Purpura (HSP). Cochrane Database Syst Rev 3: CD005128, 2009

98. Bogdanovic R: Henoch-Schönlein purpura nephritis in childhood. *Lancet* 371: 602–608, 2008

99. Donnithorne KJ, Atkinson TP, Hinze CH, Nogueira JB, Saeed SA, Askern DJ, Beukelman T, Cron RQ: Rituximab Therapy for Severe Refractory Chronic Henoch-Schönlein Purpura. *J Pediatr Nephrol* 15: 136–139, 2009

100. Donghi D, Schanz U, Sahrhacher U, Recher M, Trüeb RM, Müllhaupt B, French LE, Halpern J: Life-threatening or organ-impairing Henoch-Schönlein purpura: Plasmapheresis may save lives and limit organ damage. *Dermatology* 219: 167–170, 2009

101. Acur B, Arikan FI, Alioglu B, Oner N, Dallar Y: Successful treatment of gastrointestinal involvement in Henoch-Schönlein-Schönlein purpura with plasmapheresis. *Pediatr Nephrol* 23: 2103, 2008

102. Lee J, Clayton F, Shihab F, Goldfarb-Rumyantsev A: Successful treatment of recurrent Henoch-Schönlein purpura in a renal allograft with plasmapheresis. *Am J Transplant* 8: 228–231, 2008

103. Wortmann SB, Fiselier TJ, Van De Kar NC, Aarts RA, Warris A, Draaisma JM: Refractory severe intestinal vasculitis due to Henoch-Schönlein purpura: Successfull treatment with plasmapheresis. *Acta Paediatr* 95: 622–623, 2006

104. Rech J, Fuchs F, Kallert S, Hueber AJ, Requadt C, Manger B, Kalden JR, Mann K, Strass R, Schulze-Koops H: Plasmaphresis therapy in an elderly patient with rapidly progressive Henoch-Schönlein purpura with disseminated organ involvement. *Clin Rheumatol* 26: 112–114, 2007

105. Wen YK, Yang Y, Chang CC: Cerebral vasculitis and intracerebral hemorrhage in Henoch-Schönlein purpura treated with plasmapheresis. *Pediatr Nephrol* 20: 223–225, 2005

106. Kawasaki Y, Suzuki J, Muraia M, Takahashi A, Iseme M, Nozawa R, Suzuki S, Suzuki H: Plasmaphresis therapy for rapidly progressive Henoch-Schönlein purpura. *Pediatr Nephrol* 19: 920–923, 2004

107. Eun SH, Kim SJ, Cho DS, Chung GH, Lee DY, Hwang PH: Cerebral vasculitis in Henoch-Schönlein purpura: MRI and MRA findings, treated with plasmapheresis alone. *Pediatr Int* 45: 484–487, 2003

108. Chen CL, Chiou YH, Wu CY, Lai PH, Chung HM: Cerebral vasculitis in Henoch-Schönlein purpura: A case report with sequential magnetic resonance imaging changes and treated with plasmapheresis alone. *Pediatr Nephrol* 15: 276–278, 2000

109. Hattori M, Ito K, Konomoto T, Kawaiuchhi H, Yoshikawa T, Khojo M: Plasmaphresis as the sole therapy for rapidly progressive Henoch-Schönlein purpura nephritis in children. *Am J Kidney Dis* 33: 427–433, 1999

110. Shenoy M, Ogjovanov MC, Coulthard MG: Treating severe Henoch-Schönlein and IgA nephritis with plasmapheresis alone. *Pediatr Nephrol* 22: 1167–1171, 2007

111. Parker CJ: Eculizumab for paroxysmal nocturnal haemoglobinuria. *Lancet* 373: 759–767, 2009

112. Brodsky RA, Young NS, Antonioli E, Risitano AM, Schrezenmeier H, Schubert J, Gaya A, Coyle L, de Castro C, Fu CL, Maciejewski JP, Bessler M, Kroon HA, Rother RP, Hillmen P: Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. *Blood* 115: 1840–1847, 2005

113. Davin JC, Gracchi V, Bouts A, Groothoff J, Strain L, Goodship T: Maintenance of kidney function following treatment with eculizumab and discontinuation of plasma exchange after a third kidney transplant for atypical hemolytic uremic syndrome associated with a CFH mutation. *Am J Kidney Dis* 55: 708–711, 2010

114. Gruppo R, Rother RP: Eculizumab for congenital atypical hemolytic-uremic syndrome. *N Engl J Med* 360: 544–546, 2009

115. Nürnberg J, Tripp T, Witzke O, Opazo Saez A, Vester U, Baba HA, Kriiben A, Zimmerhackl LB, Janecke AR, Nagel M, Kirschhink M: Eculizumab for atypical hemolytic-uremic syndrome. *N Engl J Med* 360: 542–544, 2009

116. Coppo R, Amore A, Gianoblu G, Cassac G, Picciotto G, Roccatello D, Peruzzi L, Piccoli G, De Filippi PG: Angiotensin II local hyperreactivity in the progression of IgA nephropathy. *Am J Kidney Dis* 21: 593–602, 1993

117. Del Prete D, Gambaro G, Lupoa A, Anglanl F, Brezzi B, Magistroni R, Grazziotto R, Furlci L, Modena F, Bernich P, Alber-tazzi A, D’Angelo GL: Placebo-controlled randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. *J Am Soc Nephrol* 18: 1880–1888, 2007

118. Kanno Y, Okada H, Yamaji Y, Nakazato Y, Suzuki H: Angiotensin-converting-enzyme inhibitors slow renal decline in IgA nephropathy, independent of tubulointerstitial fibrosis at presentation. *QJM* 98: 199–203, 2005

119. Pozzi C, Andruilli S, Del Vecchio L, Melis P, Fogazzi GB, Alteri P, Ponticelli C, Locatelli F: Ciclosporin effectiveness in IgA nephropathy: Long-term results of a randomized, controlled trial. *J Am Soc Nephrol* 15: 157–163, 2004

120. Ronkainen J, Auto-Ilmanen H, Nuutinen M: Cyclosporin A for the treatment of severe Henoch-Schönlein glomerulonephritis. *J Pediatr Nephrol* 18: 1138–1142, 2003

121. Ronkainen J, Ala-Houhala M, Antikainen M: Cyclosporine A (CyA) versus MP pulses (MP) in the treatment of severe Henoch-Schönlein Nephritis (HSN). Pediatr Nephrol 21: 1531, 2006

122. Ou ZL, Nakayama K, Natori Y, Doi N, Saito T, Natori Y: Effect of moderate methylprednisolone dose in experimental crescentic glomerulonephritis. *Am J Kidney Dis* 37: 411–417, 2001

123. Niaudet P, Habib R: Methylprednisolone pulse therapy in the treatment of severe forms of Schönlein-Henoch purpura nephritis. *Pediatr Nephrol* 12: 238–243, 1998

124. Kawasaki Y, Suzuki J, Nozawa R, Suzuki S, Suzuki H: Efficacy of methylprednisolone and urokinase pulse therapy for severe Henoch-Schönlein nephritis. Pediatrics 111: 785–789, 2003

125. Andersen RF, Rubak S, Jespersen B, Rittig S: Early high-dose immunosuppression in Henoch-Schönlein nephrotic syndrome may improve outcome. *Scand J Urol Nephrol* 43: 409–415, 2009

126. Flynn JT, Smoyer WE, Bunchman TE, Kershaw DB, Sedman AB: Treatment of Henoch-Schönlein Purpura glomerulonephritis in children with high-dose corticosteroids plus oral cyclophosphamide. *Am J Nephrol* 21: 128–133, 2001

127. Kawasaki Y, Suyama K, Hashimoto K, Hasegawa M, Hiraoka Y, Hara H, Kitaoka A: Effect of methylprednisolone pulse therapy for severe Henoch-Schönlein nephritis. *Clin Rheumatol* 29: 1841–1845, 2010

128. Bergstein J, Leiser J, Andreoli SP: Response of crescentic Henoch-Schönlein purpura nephritis to corticosteroids and azathioprine therapy. *Clin Nephrol* 49: 9–14, 1998
131. Manzi S, Rairie JE, Carpenter AB, Kelly RH, Jagarlapudi SP, Sereika SM, Medsger TA Jr, Ramsey-Goldman R: Sensitivity and specificity of plasma and urine complement split products as indicators of lupus disease activity. *Arthritis Rheum* 39: 1178–1188, 1996

132. Branten AJ, Kock-Jansen M, Klasen IS, Wetzels JF: Urinary excretion of complement C3d in patients with renal diseases. *Eur J Clin Invest* 33: 449–456, 2003

133. Bitzan M, Anselmo M, Carpineta L: Rituximab (B-cell depleting antibody) associated lung injury (RALI): A pediatric case and systematic review of the literature. *Pediatr Pulmonol* 44: 922–934, 2009

Published online ahead of print. Publication date available at www.cjasn.org.