Ps1-10bzj: A Fast, Hydrogen-Poor Superluminous Supernova in a Metal Poor Host Galaxy

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Lunnan, R., R. Chornock, E. Berger, D. Milisavljevic, M. Drout, N. E. Sanders, P. M. Challis, et al. 2013. Ps1-10bzj: A Fast, Hydrogen-Poor Superluminous Supernova in a Metal Poor Host Galaxy. The Astrophysical Journal 771, no. 2: 97. doi:10.1088/0004-637x/771/2/97.

Published Version
doi:10.1088/0004-637x/771/2/97

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30485096

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
1. INTRODUCTION

The discovery of “superluminous” supernovae (SLSNe), with peak luminosities $30 - 100$ times brighter than normal supernovae and radiated energies \(\gtrsim 10^{51} \) erg, is one of the most unexpected results from studying the host environments. Of the 10 previous SLSNe and may define another class of objects. Another clue to the progenitor systems could come from intermediate-mass elements. Alternatively, the luminosity could be explained by energy injection from a central engine, such as the spin-down of a newborn magnetar (Woosley 2010; Kasen & Bildsten 2011). This class has also been linked to Type Ic SNe through the late-time spectroscopic evolution of a few objects (Pastorello et al. 2010; Dessart et al. 2012). The recently discovered SLSN PS1-10afx (Chornock et al. 2013) does not resemble any previous SLSNe and may define another class of objects.

While the associated energetics, ejecta masses and host environments point toward the explosion of a young, massive star, the ultimate energy source remains unknown for these objects. Like the H-rich SLSNe, models based on circumstellar interaction have been proposed (Chevalier & Irwin 2011; Ginzburg & Balberg 2010; Dessart et al. 2012; Moriya & Maeda 2012), but the lack of hydrogen seen in the spectrum requires such interaction to be dominated by intermediate-mass elements. Alternatively, the luminosity could be explained by energy injection from a central engine, such as the spin-down of a newborn magnetar (Woosley 2010; Kasen & Bildsten 2011). This class has also been linked to Type Ic SNe through the late-time spectroscopic evolution of a few objects (Pastorello et al. 2010; Quimby et al. 2011), but the relationship between the classes remains unclear. Exploring the diversity of SLSNe and mapping the distribution of explosion properties will be important in further shedding light on the possible energy sources.

Another clue to the progenitor systems could come from studying the host environments. Of the 10

\[\text{ABSTRACT} \]

We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift $z = 0.650$. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity ($M_{bol} \approx -21.4$ mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj’s energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy ($M_B \approx -18$ mag, diameter < 800 pc), with a low stellar mass ($M_* \approx 2.4 \times 10^7 M_\odot$), young stellar population ($\tau_* \approx 5$ Myr), and a star formation rate of $\sim 2 - 3 M_\odot$ yr$^{-1}$. The specific star formation rate is the highest seen in an SLSN host so far (~ 100 Gyr$^{-1}$). We detect the [O III] A4363 line, and find a low metallicity: $12 + \log(O/H) = 7.8 \pm 0.2 \approx 0.12Z_\odot$. Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

\[\text{Subject headings: supernovae: general, supernovae: individual (PS1-10bzj)} \]

\[\text{(Dessart et al. 2012). The recently discovered SLSN PS1-10afx (Chornock et al. 2013) does not resemble any previous SLSNe and may define another class of objects. A third subclass of hydrogen-poor SLSNe similar to the transients SN 2005ap (Quimby et al. 2007) and SCP 06F6 (Barbary et al. 2009) have also been identified, characterized by blue spectra with a few broad features not matching any standard supernova class (Quimby et al. 2007; 2011; Barbary et al. 2009; Pastorello et al. 2010; Chornock et al. 2011; Leloudas et al. 2012; Berger et al. 2012). While the associated energetics, ejecta masses and host environments point toward the explosion of a young, massive star, the ultimate energy source remains unknown for these objects. Like the H-rich SLSNe, models based on circumstellar interaction have been proposed (Chevalier & Irwin 2011; Ginzburg & Balberg 2010; Dessart et al. 2012; Moriya & Maeda 2012), but the lack of hydrogen seen in the spectrum requires such interaction to be dominated by intermediate-mass elements. Alternatively, the luminosity could be explained by energy injection from a central engine, such as the spin-down of a newborn magnetar (Woosley 2010; Kasen & Bildsten 2011). This class has also been linked to Type Ic SNe through the late-time spectroscopic evolution of a few objects (Pastorello et al. 2010; Quimby et al. 2011), but the relationship between the classes remains unclear. Exploring the diversity of SLSNe and mapping the distribution of explosion properties will be important in further shedding light on the possible energy sources.

Another clue to the progenitor systems could come from studying the host environments. Of the 10\]
2005ap-like H-poor SLSNe published prior to this paper, only five have detected host galaxies [Neill et al. 2011; Leloudas et al. 2012; Berger et al. 2012; Chen et al. 2013]. The host galaxy of SN 2010gx is the only one that has been studied in detail so far, and is a dwarf galaxy with a low metallicity ($Z = 0.06 Z_\odot$), leading to speculation of whether metallicity plays a role in the progenitor channel [Chen et al. 2013]. Increasing and characterizing the sample of SLSN host galaxies is essential for testing this hypothesis, and constraining the possible progenitors to these extreme explosions.

Here, we present the discovery and analysis of PS1-10bzj, a hydrogen-poor SLSN at $z = 0.650$ from the Pan-STARRS Medium-Depth Survey (PS1/MDS). We present a comprehensive study of the SN and its host environment. The discovery and observations of PS1-10bzj are described in Section 2. We analyze the properties of the supernova, including temperature evolution, bolometric light curve, possible models, and spectral modeling, in Section 3. Since PS1-10bzj is located in the Extended Chandra Deep Field South (ECDF-S), its host galaxy is detected in the GEMS, GaBoDs and MUSYC surveys [Rix et al. 2004; Taylor et al. 2009; Cardamone et al. 2010], as well as in the PS1 pre-explosion images. The host galaxy properties, including metallicity, star formation rate, stellar mass and population age, are analyzed in Section 4. We place this SN in a broader context, comparing it to previous events, and summarize our results in Sections 5 and 6. All calculations in this paper assume a ΛCDM cosmology with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.27$ and $\Omega_{\Lambda} = 0.73$ [Komatsu et al. 2011].

2. OBSERVATIONS

2.1. PSI Survey Summary

The PS1 telescope on Haleakala is a high-etreude wide-field survey instrument with a 1.8-m diameter primary mirror and a 3.3° diameter field of view imaged by an array of sixty 4800×4800 pixel detectors, with a pixel scale of 0.258" [Kaiser et al. 2010; Tonry & Onaka 2009]. The observations are obtained through five broad-band filters (g_p, r_p, i_p, z_p, j_p), with some differences relative to the Sloan Digital Sky Survey (SDSS); the g_p filter extends 200 Å redward of g_{SDSS} to achieve greater sensitivity and lower systematics for photometric redshifts, and the z_p filter terminates at 9300 Å, unlike z_{SDSS} which is defined by the detector response [Tonry et al. 2012]. PS1 photometry is in the “natural” PS1 magnitude system, $m = -2.5 \log(F_v) + m'$, with a single zero-point adjustment (m') in each band to conform to the AB magnitude scale, determined with PS1 observations of HST CalSpec spectrophotometric standards [Bohlin et al. 2001]. Magnitudes are interpreted as being at the top of the atmosphere, with 1.2 airmasses of atmospheric attenuation included in the system response function [Tonry et al. 2012].

The PS1 MDS consists of 10 fields (each with a single PS1 imager footprint) observed in g_p, r_p, i_p, z_p, j_p with a typical cadence of 3 d in each filter, to a 5σ depth of ~ 23.3 mag; y_p is observed near full moon with a typical depth of ~ 21.7 mag. The standard reduction, astrometric solution, and stacking of the nightly images is done by the Pan-STARRS1 IPP system [Magnier 2006; Magnier et al. 2008] on a computer cluster at the Maui High Performance Computer Center. The nightly Medium Deep stacks are transferred to the Harvard FAS Research Computing cluster, where they are processed through a frame subtraction analysis using the photpipe pipeline developed for the SuperMACHO and ESSENCE surveys [Rest et al. 2003; Garg et al. 2007; Miknaitis et al. 2007], which was further improved in order to increase the accuracy (A. Rest et al., in preparation. D. Scolnic et al., in preparation). The discovery and data presented here are from the photpipe analysis.

2.2. Photometry

PS1-10bzj was discovered in PS1 MD02 data on the rise on UT 2010 Dec 16, at coordinates RA=03h31m39.826s, Dec=$-27^\circ 47'42.17''$ (J2000). Spectroscopic follow-up confirmed it to be at redshift $z = 0.650$ from host galaxy emission lines, placing the peak observed absolute magnitude at $\lesssim -21$ mag, thus classifying it as “superluminous”. The transient was detected in g_p, r_p, i_p, z_p, j_p until PS1 stopped observing the field in early 2011 February. All photometry is listed in Table 1 and is corrected for foreground extinction with $E(B-V) = 0.008$ mag [Schlafly & Finkbeiner 2011]. When PS1 resumed observing this field in late 2011 September, PS1-10bzj had faded below the detection limit of ~ 23.5 mag.

In addition to the PS1 photometry, $griz$ images were obtained along with spectroscopic observations with the Low Dispersion Survey Spectrograph (LDSS3) on the 6.5-m Magellan-Clay telescope, the Inamori-Magellan Areal Camera and Spectrograph (IMACS) [Dressler et al. 2006] on the 6.5-m Magellan-Baade telescope, and the Gemini Multi-Object Spectrograph (GMOS; Hook et al. 2004) on the 8-m Gemini-South telescope, allowing us to extend the light curve until early 2011 April. These images were reduced using standard routines in IRAF10, and transient flux was determined by subtracting the PS1 pre-explosion template images using ISIS [Alard & Lupton 1998] to correct for galaxy contamination, and measuring the flux in the difference image using aperture photometry. For the LDSS3 and IMACS images, calibrations were obtained either from observations of standard fields on the same night, or from the PS1 catalogs of stars in the field of PS1-10bzj corrected to the SDSS system by the relations in [Tonry et al. 2012]. In the case of Gemini, archival zeropoints were used for calibration, after verifying that they produce consistent results with the PS1 catalog.

In general the slight difference between the PS1 filter set and $griz$ would not introduce any significant errors. At the particular redshift of PS1-10bzj, however, the [O III] $\lambda 5007$ galaxy emission line is located at the edge between the i and z bands, contributing primarily to the z_p-filter in the PS1 photometric system, but to the i-band filter in the SDSS system used at Magellan and Gemini. This line contributes a substantial fraction of the galaxy flux (see Section 3). Therefore, non-PS1 i and z fluxes were either determined by subtracting the galaxy templates taken at Gemini and Magellan after the supernova had faded (Section 2.3), or corrected accordin

10 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
was observing this field prior to the detection, we are with Magellan or Gemini. The arrows and triangles similarly show Figure 1. Observed light curve of PS1-10bzj. Time is shown in observer frame, relative to 2011 January 1 (MJD 55562.5). Circles show PS1 photometry, while the squares are photometry obtained with Magellan or Gemini. The arrows and triangles similarly show 3σ upper limits from PS1 and non-PS1 photometry, respectively. We note the rapid rise time and the faster fall-off in the bluer bands, which indicates temperature evolution.

ing to numerical subtraction.

Figure 1 shows the observed light curves. Since PS1 was observing this field prior to the detection, we are able to constrain the rise time, particularly in the P1-band, where PS1-10bzj brightened by > 1.2 mag in 12 days in the observed frame, corresponding to just 7 days in the rest frame. We also note that the later peak times in the redder bands indicate temperature evolution. Since the best-fit peak is different in different bands, we fit a low-order polynomial to our constructed bolometric light curve (Section 3.2) to determine the time of maximum light as UT 2011 January 02.65 (MJD 55563.65) ±2 d. All phases listed are in rest-frame days with respect to this zeropoint.

2.3. Spectroscopy

We obtained four epochs of spectroscopy of PS1-10bzj. Details are given in Table 2. Our initial spectra were taken on 2011 January 18, 25 and 28 GMOS observations were taken with complementary blue and red setups, which we will sometimes present as a combined single spectrum. The January 25 blue spectra were taken with the slit oriented at a position angle of 175°, about 68° away from the parallactic angle, so differential light loss makes the blue continuum slope on that date unreliable. The other GMOS spectra were acquired in red setups either at low airmass (January 28) or near the parallactic angle (April 2 and 3), so their spectral slopes are reliable.

Our last GMOS observations on April 2 and 3 were obtained in nod-and-shuffle mode (Glazebrook & Bland-Hawthorn 2001). An error resulted in the object being nodded off the slit for half of the April 2 observations. The exposure time quoted in Table 2 reflects only the on-slit time. The April 2 and 3 data were combined into a single spectrum.

The spectra from January 18, 25 and 28 are shown in Figure 2. The April 2 spectrum is dominated by host galaxy light, and is shown in Section 4. All of our spectra show a number of narrow emission lines originating in the host galaxy, allowing us to determine a consistent redshift of z = 0.650 for PS1-10bzj.

2.4. Host Galaxy Photometry

The host galaxy of PS1-10bzj is located in the GEMS survey, there is Hubble Space Telescope (HST) imaging with the Advanced Camera for Surveys (ACS) in F606W and F850LP (Rix et al. 2004), and we retrieved the reduced images from the Mikulski Archive for Space Telescopes. From the GaBoDs survey (Taylor et al. 2009), there are detections in UBVRI′z′ (and non-detections in JHK). In addition, the MUSYC survey (Cardamone et al. 2010) provides imaging in 18 narrow-band filters. This field is also covered by the Spitzer Infrared Array Camera (IRAC) SIMPLE survey (Damen et al. 2011), but the galaxy is not detected in their catalog. Archival photometry of the host from the catalogs of these surveys is also included in Table 3.
The various photometric measurements agree well in the bluer filters, but in the different i- and z-bands there is considerable discrepancy (e.g. the i_p measurement is ~ 0.6 mag fainter than the GMOS i-band, while the z_p measurement is ~ 0.9 mag brighter than the corresponding z filter). This is explained by the redshifted [O III] $\lambda 5007$ emission line, located near the edge between i and z. The flux we measure in this line from the spectra (Section 3) is consistent with the differences in photometry. The effect of this line is also clearly seen in the narrow-band photometry in the IA827 filter.

3. Supernova Properties

3.1. Spectroscopic and Light Curve Comparisons

Given the redshift of $z = 0.650$, we find that PS1-10bzj reached a peak absolute magnitude of -21.17 ± 0.15 mag in g_p. This is luminous enough to be classified as “superluminous” according to the definition suggested in Gal-Yam (2012). Figure 2 shows our spectra of PS1-10bzj, compared to hydrogen-poor SLSNe PS1-10ky (Chomiuk et al. 2011) and SN 2010gx (Pastorello et al. 2010; Quimby et al. 2011). Our first spectrum shows a blue continuum with broad UV features that are characteristic of the class of hydrogen-poor SLSNe (Quimby et al. 2011; Chomiuk et al. 2011). These features are also visible in the blue GMOS spectrum taken 7 rest-frame days later. In the red GMOS spectrum on day 16, a number of broad, low amplitude features have also developed, similar to the features seen in SN 2010gx at late time. The combination of its luminosity and spectral features unambiguously establishes PS1-10bzj as another member of the class of 2005ap-like, hydrogen-poor SLSNe.

Figure 2 shows the light curve of PS1-10bzj in absolute magnitude versus rest frame phase compared to a few other hydrogen-poor SLSNe: PS1-10ky and PS1-10awh (Chomiuk et al. 2011), SN 2010gx (Pastorello et al. 2010; Quimby et al. 2011) and PTF09cnd (Quimby et al. 2011). We do not carry out detailed k-corrections due to the uncertainties in the spectral energy distributions (SEDs), but have picked bands at similar effective wavelengths as indicated on the plots to facilitate comparisons. With a fast rise time and slower decline, PS1-10bzj does not show the clearly symmetric light curve behavior seen in previous hydrogen-poor SLSNe (Quimby et al. 2011), though we note that the rise time is less well constrained in the bluer bands due to shallower limits prior to detection. In general, the light curve of PS1-10bzj exhibits similar timescales to SN 2010gx and PS1-10ky, but has a flatter peak and is fainter overall.

3.2. Temperature Evolution and Bolometric Light Curve

We determine blackbody temperatures by fitting Planck functions to the broadband photometry, using a χ^2-minimization procedure. For the PS1 photometry, where different bands are observed on consecutive rather than the same night, we first interpolate the photometry to a common time by fitting a low-order polynomial to the nearby light curve points. The SED fits are shown in Figure 3 with the model temperatures and radii indicated. These numbers should be interpreted with some caution, as especially at later times the spectrum clearly deviates from that of a blackbody. In addition, by the

![Figure 2](image_url)

Figure 2. Spectra of PS1-10bzj (black), compared to spectra of other hydrogen-poor SLSNe PS1-10ky (blue; Chomiuk et al. 2011) and SN 2010gx (red; Pastorello et al. 2010). The blue continuum and broad UV features are common to hydrogen-poor SLSNe. By the Day 16 spectrum, PS1-10bzj had also developed a number of features in the optical, similar to those seen in SN 2010gx (Pastorello et al. 2010). See Section 3.3 for modeling and identification of the features.

![Figure 3](image_url)

Figure 3. Absolute magnitude light curve of PS1-10bzj (solid black circles and black arrows) compared to other hydrogen-poor SLSNe at similar rest-frame wavelengths, showing g_p ($\sim 3000 \, \text{Å}$ rest-frame, top), r_p ($\sim 3800 \, \text{Å}$ rest-frame, middle), and i_p ($\sim 4600 \, \text{Å}$ rest-frame, bottom). Blue diamonds and triangles show PS1-10awh and PS1-10ky r, i_p, and z_p, respectively (Chomiuk et al. 2011); red squares show SN 2010gx in u, g and r (Pastorello et al. 2010; Quimby et al. 2011), and yellow open circles show PTF09cnd at $\sim 3600 \, \text{Å}$ (Quimby et al. 2011).
time of the first spectrum the broad UV absorption features is clearly affecting the g-band flux, so that the temperature inferred from photometry is lower than that found by fitting to the spectrum.

The resulting blackbody temperatures and radii from all the fits to the photometry is shown in the top two panels of Figure 5. Prior to peak, we can only place a lower limit on the temperature of $\sim 15,000$ K, since the peak of the blackbody curve is bluewards of the observed photometry and we are essentially fitting the Rayleigh-Jeans tail. After the peak, we find a clear decline in temperature and increase in radius. The best-fit straight line to the estimated blackbody radius (Figure 5) corresponds to an expansion velocity of $11,000 \pm 2000$ km s$^{-1}$, in good agreement with velocities derived from spectroscopic features (Section 3.3). We note that dividing the period we observed the SN indicates a lower limit of the time of the first spectrum the broad UV absorption features is clearly affecting the g-band flux, so that the temperature inferred from photometry is lower than that found by fitting to the spectrum.

To construct a bolometric light curve, we first sum the observed flux by trapezoidal integration, interpolating to the edges of the observed bands. Since this only takes into account the flux in the observed wavelength range, it should be considered a strict lower limit of the total radiated power. Integrating this luminosity over the time period we observed the SN indicates a lower limit of the radiated energy $E_{\text{rad}} \gtrsim (2.4 \pm 0.5) \times 10^{50}$ erg. The resulting light curve is shown as open red circles in the bottom panel of Figure 5.

To improve this estimate, following Chomiuk et al. (2011) we also include a blackbody tail redwards of the observed bands, using the temperatures determined by our blackbody fits. The resulting pseudo-bolometric light curve is shown as the black, filled circles the bottom panel of Figure 5. We also include the early i'_P detection, assuming the same bolometric correction as the next light curve point. PS1-10bzj reached a peak bolometric magnitude $M_{\text{bol}} = -21.4 \pm 0.2$ mag, and an estimated total radiated energy of $E_{\text{rad}} \gtrsim (3.5 \pm 0.6) \times 10^{50}$ ergs. As expected from the light curve, this is significantly less luminous than previous events - for example, PS1-10awh and PS1-10ky reached peak bolometric magnitudes of -22.2 mag and -22.5 mag respectively (Chomiuk et al. 2011). While the spectroscopic features clearly identify PS1-10bzj as a member of the same class of objects, it is one of the least luminous hydrogen-poor SLSNe discovered to date.

3.3. Line Identifications

We used the supernova spectrum synthesis code SYNOW to obtain line identifications and estimates of the expansion velocities, including manual and automated procedures employing the recently updated versions of the software SYN++ in combination with SYNAPPS. The basic assumptions of SYNOW include spherical symmetry, velocity proportional to radius, a sharp photosphere, line formation by resonant scattering treated in the Sobolev approximation, local thermodynamic equilibrium for the level populations, no continuum absorption, pure resonance scattering, and only thermal excitations. Fits are constrained by how we are able to best match absorption minimum profiles, as well as the relative strengths of all the features (see Branch et al. 2002 for more description of fitting parameters and Thomas et al. 2011 for software details).

The fit to the 2011 January 13 spectrum (phase +7 d) is shown in the left panel of Figure 6. The photospheric velocity is set at 13,000 km s$^{-1}$, and the temperature to 15,000 K. A maximum cut-off velocity of 40,000 km s$^{-1}$ was used for all ions, with the minimum velocity set to 13,000 km s$^{-1}$. These parameters are comparable to the ions and associated velocities identified in other SLSNe (e.g., Quimby et al. 2011; Chomiuk et al. 2011). Two strong features observed around 2440 and 2650 Å are fit reasonably well with Si II and Mg II, respectively. Introduction of Fe II improves the fit around the Si III line, as seen in the inset. Without Fe II, the red wing of the absorption could not be fit with Si III alone.

Additional weaker features with less certain identifications are also seen. A sharp cut-off around 3000 Å is likely attributable in part to Si III, and we fit absorption features around 4230 and 4490 with O II. We include in the synthetic spectrum C II, which is cut off to the blue of Si III, but is seen in the other SLSNe and in the later spectrum of this object.

The 2011 January 25 and 28 spectra were combined to fit a single phase +15 d spectrum, shown in the right panel of Figure 6. The photospheric velocity is set at

![Figure 4. Spectral energy distribution fits to the photometry. The best-fit blackbody temperatures and radii are indicated in the individual panels. The concurrent spectrum is shown with the photospheric velocity set at 13,000 km s$^{-1}$, and the temperature to 15,000 K. A maximum cut-off velocity of 40,000 km s$^{-1}$ was used for all ions, with the minimum velocity set to 13,000 km s$^{-1}$. These parameters are comparable to the ions and associated velocities identified in other SLSNe (e.g., Quimby et al. 2011; Chomiuk et al. 2011). Two strong features observed around 2440 and 2650 Å are fit reasonably well with Si II and Mg II, respectively. Introduction of Fe II improves the fit around the Si III line, as seen in the inset. Without Fe II, the red wing of the absorption could not be fit with Si III alone.

Additional weaker features with less certain identifications are also seen. A sharp cut-off around 3000 Å is likely attributable in part to Si III, and we fit absorption features around 4230 and 4490 with O II. We include in the synthetic spectrum C II, which is cut off to the blue of Si III, but is seen in the other SLSNe and in the later spectrum of this object. The 2011 January 25 and 28 spectra were combined to fit a single phase +15 d spectrum, shown in the right panel of Figure 6. The photospheric velocity is set at
Ib SN 2008D, identified as the same feature as seen in SN
also suggested by a transient “W”-shaped feature near
The connection between H-poor SLSNe and SNe Ibc is
evolved to look like normal Type Ic SNe at late times.
(Pastorello et al. 2010; Quimby et al. 2011), the spectra
lution post-peak: in both SN 2010gx and PTF09cnd
II
wavelengths, prevent determining the relative strengths
at this temperature, as well as the noise at the bluest
from Fe
II
II
tent with what is found for other hydrogen-poor SLSNe.

Figure 5. Top panel: temperature evolution of PS1-10bzj, as
determined from fitting a blackbody curve to the observed pho-
tometry. The uncertainty at early times is largely due to the
peak of the blackbody being blueward of our bluest bands; see
Figure 1. Middle panel: radius of PS1-10bzj, as measured from
the same blackbody fit to photometry as the temperature. The
best-fit straight line (dashed) corresponds to an expansion velocity
of 11,000 ± 2000 km s\(^{-1}\). Bottom panel: estimated bolometric
light curve of PS1-10bzj. The open red circles show observed flux
only, while the black filled circles include the observed flux plus a
blackbody tail in the red.

11,000 km s\(^{-1}\) and the temperature to 11,500 K. The
maximum cut-off velocity was once again set to 40,000
km s\(^{-1}\) for all ions, which were fitted with minimum
velocities ranging between 11,000 and 15,000 km s\(^{-1}\).
We observe the same absorption features associated with
Si III, Mg II, and C II. Again, including Fe II substantially
improves the fit in this region; the contribution
from Fe II only to the fit is shown in the inset. However,
the lack of additional lines elsewhere in the spectrum
at this temperature, as well as the noise at the bluest
wavelengths, prevent determining the relative strengths
accurately. Additional weaker features are fit with Ca II
and Si II. The O II seen in the earlier spectrum no longer
appears to be a conspicuous contributor to the spectrum.

Two other SLSNe have shown significant spectral evolu-
tion post-peak: in both SN 2010gx and PTF09cnd
(Pastorello et al. 2011; Quimby et al. 2011), the spectra
evolved to look like normal Type Ic SNe at late times.
The connection between H-poor SLSNe and SNe Ibc is
also suggested by a transient “W”-shaped feature near
4200 Å seen in early spectra of the well-observed Type
Ib SN 2008D, identified as the same feature as seen in SN
2005ap (Moldjaz et al. 2009; Quimby et al. 2007). Fol-
lowing Quimby et al. (2007, Moldjaz et al. 2009) mod-
eled this feature with a blend of O III, N III and C III;
later modeling by Quimby et al. (2011) of SN 2005ap
and other H-poor SLSNe updated the identification of the
“W”-feature to O II. The presence of this transient
feature in SN 2008D thus provides an additional link be-
tween Type Ibc SNe and SLSNe. A basic question is
whether the SLSNe are truly distinct objects from nor-
tal Type Ic SNe, or whether there is a smooth con-
tinuum between the two. With its comparatively low
peak luminosity, PS1-10bzj is closer in luminosity to lu-
iminous Type Ic SNe like SN 2010ay, which peaked at
M\(_{\text{peak}}\) = −20.2 (Sanders et al. 2012), than to the prototype
SLSNe 2005ap and SCP 06F6. From this perspective, it
is interesting to note that at least over the time we were
following it, the spectral features in PS1-10bzj do not
look like SN Ic features, including objects like SN 2010ay.

3A. Light Curve Model Fits

The optical luminosity of most canonical Type I SNe
(i.e. type Ia, Ib and Ic) is powered by the radioactive
decay of 56Ni, with the shape of the light curve primar-
ily dictated by three parameters: the nickel mass (M_{Ni})
which sets the total luminosity, the total kinetic energy
(E_K), and ejecta mass M_{ej}, which set the character-
sitic time of photon diffusion $\tau_c \propto M_{\text{ej}}^{3/4} E_K^{-1/4}$ and essen-
tially determines the width of the light curve (Arnett
1982). Measurements of the photospheric velocity (v_{ph})
from the spectra constrain $\sqrt{E_K/M_{\text{ej}}}$, so that all three
parameters can be determined based on observable quan-
tities. We fit our bolometric light curve of PS1-10bzj us-
ing the models of Valenti et al. (2008) and Drout et al.
(2011): see Figure 7. The light curve can be reason-
ably fit with $M_{\text{Ni}} \approx 6 - 8$ M\(_{\odot}\), with the best-fit model
having $M_{\text{Ni}} = 7.2$ M\(_{\odot}\) and $\tau_c \approx 19$ d. Using the pho-
tospheric velocity derived from the spectrum near peak,
$v_{\text{ph}} = 13,000$ km s\(^{-1}\), yields $M_{\text{ej}} \approx 5 - 11$ M\(_{\odot}\), with
8.5 M\(_{\odot}\) for the best-fit model. Therefore, if PS1-10bzj
was powered by radioactive decay, it would require a
56Ni mass of ≥ 10 times what is observed in typical Type
Ibc or Ic-BL SNe (0.2 – 0.5 M\(_{\odot}\); Drout et al. 2011). In
addition, the ejecta would have to be 75 – 100% 56Ni
by mass, a fraction seen in no observed SNe, including
proposed pair-instability SNe like SN 2007bi where the
inferred Ni mass was several M\(_{\odot}\). (Gal-Yam et al. 2009).
A composition of $> 75\%$ Ni would also result in a large
amount of line-blanketing in the rest-frame UV, which
is not seen. Radioactive decay, then, is unlikely to be the
main contributor to the luminosity. This is consist-
tent with what is found for other hydrogen-poor SLSNe
(Chomiuk et al. 2011; Quimby et al. 2011).

Since nickel decay is unlikely, other explanations have
been proposed for the extreme luminosity of SLSNe. One
possibility is energy injection by a central engine, such as
the spin-down of a newborn magnetar (Kasen & Bildsten
2010; Woosley 2010). We fit our bolometric light curve
with the model of Kasen & Bildsten (2010), following the
procedure outlined in Chomiuk et al. (2011). Our as-
sumptions include magnetic dipole spin-down, an opacity
of $\kappa = 0.2$ cm\(^2\) g\(^{-1}\), and a supernova energy of
10\(^{51}\) erg; we vary the ejecta mass, the magnetar spin
(p), and the magnetic field (B). With these assump-
magnetics, Figure 6 shows a best-fit model, with $M_{\text{ej}} = 2 M_\odot$, $B = 3.5 \times 10^{14} G$, and $p = 4$ ms; however we find that the light curve can be reasonably fit within the uncertainties with ejecta masses in the range $6 - 8 M_\odot$, but require the ejecta composition to be $75 - 80$% Ni to simultaneously fit the peak luminosity and the light curve width.

The magnetar model predicts that the ejecta will be swept up into a dense shell, which then expands at a constant velocity. For the range of models that fit the light curve, those with higher spin periods (and so a lower constant velocity. For the range of models that fit the light curve equally well within the uncertainties. We note that the inferred ejecta masses are similar to what is seen in normal Type Ibc SNe (Drout et al. 2011).

A third proposed mechanism for powering SLSNe is interaction with opaque, circumstellar material. This leads to efficient conversion of the kinetic energy to radiation, with the resulting lightcurve being due to shock breakout through this opaque wind. This class of models has been applied both to superluminous SNe IIn such as SN 2006gy, and to SN 2005ap-like objects (Smith & McCray 2007; Smith et al. 2010, Chevalier & Irwin 2011; Balberg & Loef 2011; Ginzburg & Balberg 2012; Chatzopoulos et al. 2012).

The light curve of the hydrogen-poor and superluminous SN 2006oz, in particular, showed a “dip” feature on the rise that has been interpreted as a signature of shock breakout (Leloudas et al. 2012; Moriya & Maeda 2012).

We can use the observed properties of PS1-10bzj and the analytical relations of Chevalier & Irwin (2011) to estimate the physical conditions required in the interaction scenario. Assuming a wind density profile $\rho_w = D r^{-2}$, as expected from a steady wind, so that $D = M/4\pi v_w \equiv 5 \times 10^{10} D_\odot$ in cgs units. The rise-time can be roughly equated to the diffusion time, $t_d = 6.6 \kappa D_\odot$, where κ is the opacity in units of cm2 g$^{-1}$. We use $\kappa = 0.59$, as expected for an ionized He-rich wind. Taking the rise-
time of PS1-10bzj to be \(\sim 20 \) days, we find that \(D_* \simeq 5.1 \), which gives a total required wind mass of \(\sim 3.5 \, M_\odot \), using the radius at peak to be \(\sim 2.2 \times 10^{10} \) cm. Using \(E_{\text{rad}} \approx 3.5 \times 10^{50} \) erg, we find that the associated supernova energy is \(2.2 \times 10^{51} (M_{\text{ej}}/10 M_\odot)^{1/2} \) erg, and corresponding diffusion radius \(R_d \approx 1 \times 10^{15} \) cm, assuming an ejecta mass of \(10 \, M_\odot \) and using Equations (5) and (3) in Chevalier & Irwin (2011) respectively. The predicted velocity of the photosphere, using Equation 3 in Ginzburg & Balberg (2012), is \(11.800 \) km s\(^{-1}\), in good agreement with the observed velocities. Thus, this model can also reproduce the basic observed properties, but require a wind mass of several \(M_\odot \) of hydrogen-poor material.

Recently, Ginzburg & Balberg (2012) have shown that the simple treatment in Chevalier & Irwin (2011) is not appropriate in regimes where the wind radius is comparable to the diffusion radius. Instead, they carried out hydrodynamical simulations of supernovae exploding into dense circumstellar material, successfully matching the light curves of SN 2005ap, SN 2006gy and SN 2010gx. Given the similarities between PS1-10bzj and SN 2010gx, it seems plausible that its light curve could also be fit by a more sophisticated shock breakout model, though calculating such a model is outside the scope of this paper. We note that the Ginzburg & Balberg (2012) model for SN 2010gx requires an even larger total wind mass \((M_w \simeq 16 \, M_\odot) \) than our estimate for PS1-10bzj based on the simple Chevalier & Irwin (2011) relations, so an extreme mass loss episode would likely still be required.

A simple interaction model, then, can also explain the observed data, but requires a mass-loss rate of \(\sim 3 \, M_\odot \) yr\(^{-1}\) in the last year before explosion, assuming a wind velocity of \(1,000 \) km s\(^{-1}\) (as seen in Wolf-Rayet stars; e.g. Nugis & Lamers 2000). In addition, the lack of hydrogen and helium seen in the spectra would require this circumstellar material to be primarily composed of intermediate-mass elements. One might also expect to see intermediate-width lines in the spectra if the primary energy source is interaction, but this has not been seen in any of the H-poor SLSNe, including PS1-10bzj. A detailed radiative transfer model is necessary to see if this scenario can reproduce the spectra as well as the light curves.

4. HOST GALAXY PROPERTIES

In addition to studying the SN explosion itself, additional clues to the nature of the progenitors come from studying the host environments of the SLSNe. In the case of PS1-10bzj there is a wealth of data on the host galaxy, allowing for a detailed study.

4.1. Luminosity and Size

The absolute magnitude of the host is \(M_B = -18.0 \) mag, corrected for cosmological expansion and foreground extinction. This is similar to what has been seen for other SLSN hosts, which seem to show a preference for low-luminosity galaxies (Neill et al. 2011; Chen et al. 2013). In terms of the luminosity function at \(z \sim 0.7 \) (Ilbert et al. 2003; Willmer et al. 2006), this corresponds to a 0.05\(L_\star \) galaxy.

The host galaxy of PS1-10bzj is unresolved in all our ground-based images (with seeing down to \(\sim 0.6'' \)). Since the field was covered by the GEMS survey, we also have available HST/ACS images in F606W and F850LP (Chomiuk et al. 2011), shown in Figure 9. Even in these images, the host is not obviously resolved with a FWHM of \(\sim 0.12'' \) (whereas the mean FWHM of stars in the images is \(\sim 0.10'' \)). At \(z = 0.650 \), this corresponds to an upper limit on the galaxy diameter of \(\lesssim 800 \) pc. We note that it is possible that what we see in the HST images is only one bright knot of star formation, and the galaxy itself could be more extended. Nevertheless, the combination of luminosity and size establishes the host as a compact dwarf galaxy.

4.2. Stellar Mass and Population Age

To determine the stellar mass \((M_* \) and population age \((\tau_*) \) of the host we fit the SED with the Maraston (2005) evolutionary stellar population synthesis models, using a Salpeter initial mass function and a red horizontal branch morphology. Since the model only accounts for the continuum emission, and the flux in the host emission lines is substantial, we restrict our fit to the MUSYC narrow-band filters without significant emission lines. The fit to the SED is shown in Figure 10. We find that the host SED is well fit with a stellar population age of \(\tau_* \sim 5 \) Myr, yielding a stellar mass of \(M_* \sim 2.4 \times 10^6 \, M_\odot \). This assumes \(A_V = 0 \), measured from the Balmer decrement (Section 4.3).

Another estimate of the stellar population age comes from the H\(\beta \) equivalent width (EW). While we do not have a galaxy-only spectrum, the 2011 April 3 Gemini spectrum (Figure 11) does not show any broad supernova features and is dominated by galaxy light (\(\gtrsim 50\% \); estimated from pre-explosion galaxy photometry). It can therefore be used to determine a lower limit on the H\(\beta \) EW, which we find to be \(W_\beta = 61 \) Å. This value yields a young stellar population age of \(\lesssim 5 \) Myr for a metallicity \(Z = 0.2 - 0.4 \, Z_\odot \), using the fits in Levesque et al. (2010a) to the models of Schaerer & Vacca (1998). This value is in excellent agreement with the stellar population age inferred from SED modeling.

4.3. Metallicity

While all of our spectra include contributions from both the galaxy and the SN, they clearly exhibit narrow emission lines originating in the host galaxy. Figure 11 shows the 2011 April 3 GMOS spectrum, which is dominated by galaxy light, with the strongest emission lines marked. We measure the line fluxes in all of our spectra by fitting Gaussian profiles (Table 4). With the exception of the \([\text{O III}] \lambda 4363 \) line, which was only robustly...
detected in the 2011 January 28 GMOS spectrum, we use the weighted average of the three measurements for line diagnostics. Absolute flux calibration is based on the 2011 January 13 LDSS3 spectrum, by scaling synthetic photometry from the spectrum to photometry obtained the same night. The GMOS spectra were then scaled according to the flux in the [O III] doublet.

None of our spectra cover Hα, which is located at 1.083 μm at this redshift. We therefore use the Balmer decrement as measured from Hγ/Hβ to estimate reddening, assuming a Case B recombination value of 0.469 (Osterbrock 1989). Since our measured value of 0.48 ± 0.03 is consistent with no reddening, we conclude that the host galaxy extinction is minimal.

We detect the auroral [O III] λ4363 line in the 2011 January 28 GMOS spectrum at 3.5σ significance, shown in the inset of Figure 11. Assuming an electron density \(n_e = 100 \, \text{cm}^{-3} \), we calculate an electron temperature of \(T_e(O^{++}) = 16,200 \pm 1,700 \, \text{K} \) from the ratio of [O III] λ4363 to [O III] λλ5007, 4959, using the IRAF task \texttt{tendi}. This result is not sensitive to the exact choice of density since \(T_e \) is insensitive to small changes in density (Kewley et al. 2004); for example, we find identical results when doubling the assumed electron density to 200 \(\text{cm}^{-3} \). Using the relation \(T_e(O^{++}) = 0.7 \times T_e(O^{++}) + 0.3 \) from Stasińska (1984), we determine\(O^+/H \) and \(O^{++}/H \) using the relations in Shi et al. (2006). This gives an electron temperature metallicity of \(12 + \log(O/H) = 7.8 \pm 0.2 \). This translates to \(Z = 0.13Z_\odot \), using the solar abundance of Asplund et al. (2009). This low abundance is consistent with the inferred young stellar population age and low stellar mass.

For comparison, we also estimate the oxygen abundance using the \texttt{R23} diagnostic with the calibration of Kobulnicky & Kewley (2004). We measure \(R_{23} = [(\text{[O III]} \lambda\lambda5007, 4959 + \text{[O II]} \lambda3727) / \text{Hβ}] = 9.25 \pm 0.36 \), and an ionization parameter of \(y \equiv \log ((\text{[O III]} \lambda\lambda5007, 4959) / (\text{[O II]} \lambda3727)) = 0.95 \pm 0.03 \). Using the iterative scheme in Kobulnicky & Kewley (2004), and assuming the lower metallicity branch based on the presence of the [O III] λ4363 line, this method gives a metallicity \(12 + \log(O/H) \approx 8.3 \). This is 0.5 dex higher than the result from the direct method, but we note that this discrepancy is not unusual; theoretical strong-line indicators are known to be offset from the direct method, with the difference being larger at the lower-metallicity end (Bresolin et al. 2009). A similar discrepancy is seen in the host galaxy of SN 2010gx, where Stoll et al. (2011) found \(12 + \log(O/H) = 8.36 \) using the Kobulnicky & Kewley (2004) calibration, while the direct method yields \(12 + \log(O/H) = 7.46 \) (Chen et al. 2013). Still, strong-line metallicity indicators provide a useful basis for comparison, since direct metallicity indicators are otherwise mostly only available for low-redshift samples.

4.4. Star Formation Rate

We estimate the SFR of the host galaxy from the [O II] λ3727 line flux, using the metallicity-dependent relation in Kewley et al. (2004). Using the metallicity and ionization parameter we determined from the \texttt{R23} method, we find SFR \(\approx 2 \, M_\odot \, \text{yr}^{-1} \). Alternatively, since the Hγ/Hβ ratio indicates no extinction, we can use the Hβ flux to predict the Hα flux, assuming a ratio Hα/Hβ = 2.85 according to case B recombination. Using SFR = \(7.9 \times 10^{-42}L_{H\alpha} \, (\text{erg s}^{-1}) \) (Kennicutt 1998), we find SFR \(\approx 4.2 \, M_\odot \, \text{yr}^{-1} \), in reasonable agreement with the [O II] λ3727 estimate.

A complementary method to calculating the SFR is to use the galaxy UV continuum flux. At this redshift, the \texttt{UBV} filters sample rest-frame 2300 – 2900 Å, allowing us to use the relation from Kennicutt (1998): SFR = \(1.4 \times 10^{-28}L_\nu \). This yields SFR \(\approx 2 – 3 \, M_\odot \, \text{yr}^{-1} \), also in good agreement with the estimates from emission lines.

Combining the stellar mass with the SFR, we calculate a specific star formation rate (sSFR) of \(\sim 100 \, \text{Gyr}^{-1} \). This is significantly higher than the \(\sim 2.6 \, \text{Gyr}^{-1} \) measured in the host of SN 2010gx (Chen et al. 2013), and also higher than the \(\sim 10 \, \text{Gyr}^{-1} \) in the host of PS1-10bam (Berger et al. 2012). The basic picture of a low metallicity, low mass and highly star-forming dwarf galaxy is similar to what has been seen for other SLSNe.

5. DISCUSSION

5.1. The Diversity of SLSNe

As was shown by Quimby et al. (2011), the hydrogen-poor SLSNe form a spectroscopic class, though with a range of light curve properties. Figure 12 shows the distribution of peak absolute magnitudes of all published 2005ap-like hydrogen-poor SLSNe, corrected for cosmological expansion by \(M = m - 5 \log (d_L(z)/10 \, \text{pc}) + 2.5 \log (1 + z) \). Due to the lack of SED information in several objects, we do not carry out full \(k \)-corrections, but note that where multiband photometry is available the observed peak is at a rest-frame wavelength of \(\sim 3000 – 4000 \) Å. SN 2006gz is not included in this
plot, as it was only observed on the rise and so the peak magnitude is not well constrained. Most of the hydrogen-poor SLSNe peak near $M \approx -22$ mag, with a tail to higher luminosities. The apparent lack of lower-luminosity objects is likely due, at least in part, to the flux-limited surveys (and spectroscopic follow-up) so that there is a bias toward finding brighter objects. PS1-10bzj is both the lowest-luminosity and one of the lowest redshift SLSNe found in PS1/MDS, for example. Recently, Quimby et al. (2013) found that the distribution of hydrogen-poor SLSNe seems to be narrowly peaked, also when taking the effects of flux-limited selection into account. If so, an event like PS1-10bzj would be intrinsically rarer than the -22 mag objects, at the low-luminosity tail of the distribution.

The timescales seen in SLSNe also vary by a factor of several, with rise times varying from ~ 20 d in the case of PS1-10bzj, to $\gtrsim 50$ d in PTF09cdn (Quimby et al. 2011). If the faster timescales are typical for the lower-luminosity end of the distribution, it may present an additional selection bias against the fainter objects, as the timescales are approaching those of normal SNe and so the objects stand out less amongst the more common normal SNe.

Finding fainter hydrogen-poor SLSNe is particularly interesting because this class is linked to Type Ic SNe through the late time spectroscopic evolution of a few objects. A basic question is whether they are truly distinct populations, or whether there is a smooth transition between the two. There is a luminous tail to the Type Ic distribution: for example SN 2010ay reached a peak luminosity of -20.2 mag, though still had a light curve consistent with being powered by nickel decay and did not show the spectroscopic features typical of SLSNe (Sanders et al. 2012). If the dearth of intermediate-luminosity objects represents a real cutoff rather than a selection effect, this places constraints on any proposed mechanism for powering the SLSNe. Such a low-luminosity cutoff is not predicted by theoretical models of SLSNe; for example the magnetar models presented in Kasen & Bildsten (2010) can reproduce a wide range of luminosities and timescales.
or the combination of mass and SFR that minimizes scatter in metallicity (the so-called Fundamental Relation or FMR; Mannucci et al. 2010; Andrews & Martini 2013). The host of PS1-10bzj is consistent with each of the nearby relations within its uncertainties, indicating that it is not an unusually metal-poor galaxy given its mass, luminosity and SFR. The similarity to GRB hosts may indicate that the two phenomena happen in similar environments, but the sample sizes here are small. The host of SN 2010gx stands out as more extreme than the host of PS1-10bzj in terms of metallicity, and falls below the nearby/SDSS relations in each case. The two SLSN hosts are the most separated on the FMR plot, due to the larger sSFR of the PS1-10bzj host. As such, the most striking common factor between the two galaxies is their low metallicities.

We note that if low metallicity is an important factor in producing this type of SLSN, this may present a challenge for models where the luminosity of the SN is powered by interaction with a dense wind. In particular, the mass loss would be unlikely to be driven by metal-line winds and so a different mass-loss mechanism would be required.

6. CONCLUSIONS

We show that PS1-10bzj is a hydrogen-poor superluminous supernova, spectroscopically similar to the objects described in Quimby et al. (2011) and Chornock et al. (2011). Compared to previous events, it has the fastest rise time and lowest peak luminosity. From our reconstructed bolometric lightcurve, we estimate the total energy radiated over the time period observed to be $\sim 3.5 \times 10^{50} \text{erg}$, and the bolometric magnitude at peak to be about -21.4mag. A magnetar model can fit the observed light curve, velocities and temperatures. Proposed interaction scenarios for SLSNe can also match the observed energetics but would require at least $\sim 3 \ M_\odot$ of hydrogen-poor circumstellar material. The lack of intermediate-width lines in the spectra, like with other SLSNe, also speaks against this model. A normal, Ni-decay Ic model would require $M_{\text{Ni}} = 7 \ M_\odot$ and the ejecta composition to be $\gtrsim 80 \%$ Ni by mass, so although PS1-10bzj shows less extreme energetics than other hydrogen-poor SLSNe, radioactive decay is unlikely to be the primary energy source.

Like SN2010gx and PTF09end, PS1-10bzj developed a number of spectral features after peak. Our model fits these features with intermediate-mass elements Mg, Ca and Si, and Fe is also likely. We do not have the spectroscopic coverage to determine whether these features at late times evolved into a more typical Type Ic SN spectrum, as was seen in the other two objects. However, PS1-10bzj is interesting in the comparison to Type Ic SNe in the sense that it extends the distribution of SLSNe towards lower luminosities. Continuing to map out the low-luminosity tail of the SLSN population will be necessary to determine whether the two classes represent truly distinct phenomena, or whether there is a smooth continuum between them. If the timescales of PS1-10bzj are typical for the lower-luminosity objects, this may present a challenge for finding such events as they will not stand out photometrically as much as higher-luminosity events and will require spectroscopic confirmation.

The host galaxy of PS1-10bzj is detected both in our PS1 template images and in catalogs covering the ECDF-S. Combining this photometry with emission line measurements, we find that the host is a low luminosity ($M_B \approx -18 \text{mag}; \ L \approx 0.05L_\odot$), low metallicity ($Z = 0.13Z_\odot$), low stellar mass ($M_* \approx 2.4 \times 10^7 \ M_\odot$) galaxy. It is forming stars at a rate of $\sim 2-3 \ M_\odot \text{yr}^{-1}$, resulting in a high sSFR (100Gyr^{-1}). Archival HST imaging further reveal the host to be compact, with a physical diameter $\lesssim 800 \text{pc}$. While the metallicity is not as low as the host galaxy of the superluminous SN 2010gx, the discovery of a second low metallicity host galaxy supports the hypothesis that metallicity may be important in the progenitor channel of SLSNe. Compared to the host of SN 2010gx, the host of PS1-10bzj has a higher SFR, and is generally consistent with the $M-Z$ relation for star-forming galaxies at lower redshifts (Mannucci et al. 2010; Andrews & Martini 2013). Further increasing the sample of SLSNe with well-studied host galaxies will be necessary to assess whether this metallicity trend holds, and shed light on the nature of these extreme explosions.

We thank the staffs at PS1, Gemini and Magellan for their assistance with performing these observations. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, and the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate. This work is based in part on observations obtained at the Gemini Observatory (under Programs GS-2010B-Q-4 and GS-2011A-Q-29 (PI: Berger) and GS-2011B-Q-44 (PI: Chornock)), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovao Productiva (Argentina). This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper includes data based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). Some of the computations in this paper were run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University. The research...
leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. [291222] (PI: S. J. Smartt). Partial support for this work was provided by National Science Foundation grants AST-1009749 and AST-1211196.

Facilities: PS1, Gemini:South, Magellan:Baade, Magellan:Clay.

REFERENCES

Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Amorín, R., Pérez-Montero, E., Vilchez, J. M., & Papaderos, P. 2012, ApJ, 749, 185
Andrews, B. H., & Martini, P. 2013, ApJ, 765, 140
Arnett, W. D. 1982, ApJ, 253, 785
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Balberg, S., & Loeb, A. 2011, MNRAS, 414, 1715
Barbary, K., et al. 2009, ApJ, 690, 1358
Berger, E., et al. 2012, ApJ, 755, L29
Bohlin, R. C., Dickinson, M. E., & Calzetti, D. 2001, AJ, 122, 2118
Branch, D., et al. 2002, ApJ, 566, 1005
Bresolin, F., Gieren, W., Kudritzki, R.-P., Pietrzyński, G., Urban, M. A., & Carraro, G. 2009, ApJ, 700, 309
Cardamone, C. N., et al. 2010, ApJS, 189, 270
Chatzopoulos, E., Wheeler, J. C., & Vinkó, J. 2012, ApJ, 746, 121
Chevalier, R. A., & Irwin, C. M. 2011, ApJ, 729, L6
Chornock, R., et al. 2013, ApJ, 767, 162
Damen, M., et al. 2011, ApJ, 727, 1
Dessart, L., Hillier, D. J., Waldman, R., Livne, E., & Blondin, S. 2012, MNRAS, 426, L76
Dressler, A., Hare, T., Bigelow, B. C., & Osip, D. J. 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6269, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Druart, M. R., et al. 2011, ApJ, 741, 97
Filippenko, A. V. 1982, PASP, 94, 715
Gal-Yam, A. 2012, Science, 337, 927
Gal-Yam, A., et al. 2009, Nature, 462, 624
Garg, A., et al. 2007, AJ, 133, 403
Ginzburg, S., & Balberg, S. 2012, ApJ, 757, 178
Glazebrook, K., & Bland-Hawthorn, J. 2001, PASP, 113, 197
Guseva, N. G., Papaderos, P., Meyer, H. T., Izotov, Y. I., & Fricke, K. J. 2009, A&A, 505, 63

Figure 13. A comparison of the host of PS1-10bzj to other SLSNe and galaxy samples. The blue star and square show the hosts of PS1-10bzj and SN 2010gx, respectively. The top left panel is a mass-metallicity ($M-Z$) diagram, here plotting metallicity as calculated by the R_{23} method in Kobulnicky & Kewley (2003), to facilitate comparison to a broader sample. The black lines show the SDSS $M-Z$ relation (Kewley & Ellison 2008), where metallicity has been converted to the KK04 scale using the relations in (Kewley & Ellison 2008). The orange circles show hosts of core-collapse supernova (any type), with metallicities similarly converted from the Tremonti et al. (2004) scale. Red triangles show GRB hosts; connected points indicate a dual solution for either the mass or the metallicity. The other three plots show metallicity measured by the direct method, comparing to either the nearby luminosity-metallicity relation (Guseva et al. 2009; top right) or the SDSS “fundamental relation”, plotting metallicity against a combination of stellar mass and SFR that minimizes scatter (Andrews & Martini 2013; bottom right). Additional samples shown are DEEP2 star-forming galaxies (Hoyos et al. 2005), nearby blue compact galaxies (BGGs; Kewley et al. 2007) and “Green Pea” galaxies (Amorín et al. 2012). The host of PS1-10bzj is consistent with nearby relations in each case, and similar to the GRB host galaxies with direct metallicity measurements.
Hook, I. M., Jørgensen, I., Allington-Smith, J. R., Davies, R. L., Metcalfe, N., Murwinski, R. G., & Cranston, D. 2004, PASP, 116, 425
Hoyos, C., Koo, D. C., Phillips, A. C., Willmer, C. N. A., & Guhathakurta, P. 2005, ApJ, 635, L21
Ilbert, O., et al. 2005, A&A, 439, 863
Kaiser, N., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7733, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Kasen, D., & Bildsten, L. 2010, ApJ, 717, 245
Kelly, P. L., & Kirshner, R. P. 2012, ApJ, 759, 107
Kennicutt, Jr., R. C. 1998, ARA&A, 36, 189
Kewley, O., et al. 2005, A&A, 439, 863
Kaiser, N., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7733, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Kasen, D., & Bildsten, L. 2010, ApJ, 717, 245
Kewley, L. J., Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2007, AJ, 133, 882
Kewley, L. J., & Ellison, S. L. 2008, ApJ, 635, L21
Kewley, L. J., & Jansen, R. A. 2004, AJ, 127, 2002
Kobulnicky, H. A., & Kewley, L. J. 2004, ApJ, 617, 240
Komatsu, E., et al. 2011, ApJS, 192, 18
Leibler, C. N., & Berger, E. 2010, ApJ, 725, 1202
Leloudas, G., et al. 2012, A&A, 541, A129
Levesque, E. M., Berger, E., Kewley, L. J., & Bagley, M. M. 2010a, AJ, 139, 694
Levesque, E. M., Kewley, L. J., Berger, E., & Zahid, H. J. 2010b, AJ, 140, 1557
Magnier, E. 2006, in The Advanced Maui Optical and Space Surveillance Technologies Conference
Magnier, E. A., Liu, M., Monet, D. G., & Chambers, K. C. 2008, in IAU Symposium, Vol. 248, IAU Symposium, ed. W. J. Jin, I. Platais, & M. A. C. Perryman, 553–559
Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A. 2010, MNRAS, 408, 2115
Maraston, C. 2005, MNRAS, 362, 799
Miknaitis, G., et al. 2007, ApJ, 666, 674
Modjaz, M., et al. 2008, AJ, 135, 1136
—. 2009, ApJ, 702, 226
Moriya, T. J., Blinnikov, S. I., Tominaga, N., Yoshida, N., Tanaka, M., Maeda, K., & Nomoto, K. 2013, MNRAS, 428, 1020
Moriya, T. J., & Maeda, K. 2012, ApJ, 756, L22
Neill, J. D., et al. 2011, ApJ, 727, 15
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227
Olefek, E. O., et al. 2007, ApJ, 659, L13
Osterbrock, D. 1989, Astrophysics of gaseous nebulae and active galactic nuclei, A series of books in astronomy (University Science Books)
Pastorello, A., et al. 2010, ApJ, 724, L16
Persson, S. E., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Quimby, R. M., Aldering, G., Wheeler, J. C., Höflich, P., Akerlof, C. W., & Rykoff, E. S. 2007, ApJ, 668, L99
Quimby, R. M., Yuan, F., Akerlof, C., & Wheeler, J. C. 2013, MNRAS, 431, 912
Quimby, R. M., et al. 2011, Nature, 474, 487
Rest, A., et al. 2005, ApJ, 634, 1103
—. 2011, ApJ, 729, 88
Rix, H.-W., et al. 2004, ApJS, 152, 163
Sanders, N. E., et al. 2012, ApJ, 756, 184
Schaerer, D., & Vacca, W. D. 1998, ApJ, 497, 618
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Shi, F., Kong, X., & Cheng, F. Z. 2006, A&A, 453, 487
Smith, N., Chornock, R., Silverman, J. M., Filippenko, A. V., & Foley, R. J. 2010, ApJ, 709, 856
Smith, N., & McCray, R. 2007, ApJ, 671, L17
Smith, N., et al. 2007, ApJ, 666, 1116
Stasińska, G. 1982, A&AS, 48, 299
Stoll, R., Prieto, J. L., Stanek, K. Z., Pogge, R. W., Szczepański, D. M., Pojmanski, G., Antognini, J., & Yan, H. 2011, ApJ, 730, 34
Taylor, E. N., et al. 2009, ApJS, 183, 295
Thomas, R. C., Nugent, P. E., & Meza, J. C. 2011, PASP, 123, 237
Tonry, J., & Onaka, P. 2009, in Advanced Maui Optical and Space Surveillance Technologies Conference, Tonry, J. L., et al. 2012, ApJ, 750, 99
Tremonti, C. A., et al. 2004, ApJ, 613, 898
Valenti, S., et al. 2008, MNRAS, 383, 1485
Willmer, C. N. A., et al. 2006, ApJ, 647, 853
Woosley, S. E. 2010, ApJ, 719, L204
Young, D. R., et al. 2010, A&A, 512, A70
In rest-frame days relative to maximum light on UT 2011-01-0 2.7.

2011-01-13.2 6.7 LDSS3 3540–9450
2011-04-02.0 54.5 GMOS-S 5530–9830
2011-04-03.0 55.1 GMOS-S 5530–9830

Table 1
PS1-10bzj Photometry

MJD	Phasea	Filter	AB Magnitude	Telescope/Instrument
55599.4	−32.9	gP1	> 23.74	PS1
55514.4	−23.8	gP1	> 22.72	PS1
55545.4	−11.1	gP1	21.30 ± 0.12	PS1
55548.4	−9.2	gP1	21.26 ± 0.15	PS1
55557.3	−3.8	gP1	21.33 ± 0.05	PS1
55574.6	+6.6	g	21.58 ± 0.10	Magellan/LDSS3
55586.1	+13.6	g	22.32 ± 0.06	Gemini-S/GMOS
55589.0	+15.4	g	22.83 ± 0.16	Gemini-S/GMOS
55592.2	+19.7	gP1	> 23.43	PS1
55627.5	+38.7	g	> 24.47	Magellan/IMACS
55648.9	+51.7	g	> 22.07	Gemini-S/GMOS

MJD	Phasea	Filter	AB Magnitude	Telescope/Instrument
55907.5	−34.0	rP1	> 23.89	PS1
55910.4	−32.3	iP1	> 23.74	PS1
55916.4	−28.6	iP1	> 23.53	PS1
55934.4	−17.7	iP1	22.92 ± 0.27	PS1
55946.4	−10.4	iP1	21.68 ± 0.08	PS1
55955.4	−5.0	iP1	21.51 ± 0.07	PS1
55974.6	+6.6	i	21.37 ± 0.07	Magellan/LDSS3
55976.3	+7.7	iP1	21.49 ± 0.09	PS1
55986.1	+13.6	i	21.48 ± 0.03	Gemini-S/GMOS
55988.2	+14.9	iP1	21.78 ± 0.08	PS1
55989.0	+15.4	rP1	22.05 ± 0.08	PS1
55997.2	+20.3	iP1	21.78 ± 0.07	PS1
56027.5	+38.7	i	22.68 ± 0.13	Magellan/IMACS
56648.9	+51.7	i	> 22.19	Gemini-S/GMOS

Table 2
Log of Spectroscopic Observations

UT Date (YYYY-MM-DD)	Epocha (days)	Instrument	Wavelength Range (Å)	Slit	Grating	Filter	Exp. time (s)	Mean Airmass
2011-01-13.2	6.7	LDSS3	3540–9450	0.75	VPH-all	none	3900	1.3
2011-01-25.1	13.9	GMOS-S	3530–9430	1.0	R400	OG515	2400	1.4
2011-01-28.1	15.7	GMOS-S	5890–10100	1.0	R400	OG515	3000	1.1
2011-04-02.0	54.5	GMOS-S	5530–9830	1.0	R400	OG515	900	1.9
2011-04-03.0	55.1	GMOS-S	5530–9830	1.0	R400	OG515	1800	1.9

* In rest-frame days, relative to maximum light on UT 2011-01-02.7.

* In rest-frame days, relative to maximum light on MJD 55563.65
Table 3
PS1-10bzj Host Galaxy Photometry

UT Date	Filter	AB Magnitude	Telescope/Instrument
g'p1	24.37 ± 0.13	PS1	
r'p1	24.00 ± 0.12	PS1	
i'p1	23.76 ± 0.10	PS1	
zp1	22.73 ± 0.05	PS1	
y'p1	> 21.7	PS1	
2011-11-29	g'prime	24.37 ± 0.08	Gemini-S/GMOS
2011-10-21	r'prime	23.86 ± 0.18	Magellan/LDSS3
2011-09-20	i'prime	23.12 ± 0.07	Gemini-S/GMOS
2012-07-19	z'prime	23.67 ± 0.15	Magellan/IMACS
2012-12-04	J	> 23.8	Magellan/FourStar
2011-12-07	K	> 22.7	Magellan/FourStar
F606W	24.13 ± 0.05	HST/ACS	
F850LP	23.63 ± 0.06	HST/ACS	
U38	24.89 ± 0.08	ESO MPG 2.2m/WFI	
U	24.86 ± 0.04	ESO MPG 2.2m/WFI	
B	24.45 ± 0.02	ESO MPG 2.2m/WFI	
V	24.44 ± 0.02	ESO MPG 2.2m/WFI	
R	24.22 ± 0.02	ESO MPG 2.2m/WFI	
I	23.23 ± 0.05	ESO MPG 2.2m/WFI	
z'	23.39 ± 0.13	CTIO 4m/Mosaic-II	
IA427	24.25 ± 0.07	Subaru/Suprime-Cam	
IA445	24.49 ± 0.07	Subaru/Suprime-Cam	
IA464	24.59 ± 0.14	Subaru/Suprime-Cam	
IA484	24.45 ± 0.03	Subaru/Suprime-Cam	
IA505	24.42 ± 0.06	Subaru/Suprime-Cam	
IA527	24.53 ± 0.03	Subaru/Suprime-Cam	
IA550	24.41 ± 0.05	Subaru/Suprime-Cam	
IA574	24.42 ± 0.06	Subaru/Suprime-Cam	
IA598	24.21 ± 0.02	Subaru/Suprime-Cam	
IA624	23.84 ± 0.02	Subaru/Suprime-Cam	
IA651	24.08 ± 0.02	Subaru/Suprime-Cam	
IA679	24.59 ± 0.03	Subaru/Suprime-Cam	
IA709	24.64 ± 0.12	Subaru/Suprime-Cam	
IA738	24.58 ± 0.04	Subaru/Suprime-Cam	
IA767	24.63 ± 0.10	Subaru/Suprime-Cam	
IA797	23.78 ± 0.06	Subaru/Suprime-Cam	
IA827	22.25 ± 0.03	Subaru/Suprime-Cam	
IA856	24.68 ± 0.16	Subaru/Suprime-Cam	

a Data from GEMS survey catalog [Rix et al. 2004]

b Data from GaBoDs survey catalog [Taylor et al. 2009]

c Data from MUSYC survey catalog [Cardamone et al. 2010]

Table 4
Host Galaxy Emission Line Fluxes

Line	Jan 13	Jan 28	Apr 3
O III]λ5007	6.43 ± 0.18	6.36 ± 0.07	6.20 ± 0.08
O III]λ4959	1.89 ± 0.14	2.04 ± 0.05	2.32 ± 0.06
Hβ	1.05 ± 0.16	1.04 ± 0.05	0.94 ± 0.08
O III]λ4363	...	0.14 ± 0.04	...
Hγ	0.47 ± 0.07	0.53 ± 0.04	0.43 ± 0.05
Hδ	0.20 ± 0.06	0.22 ± 0.04	0.24 ± 0.04
Hα + [Ne III]λ3968	0.28 ± 0.08	0.27 ± 0.05	0.28 ± 0.06
Hα	...	0.19 ± 0.05	...
[Ne III]λ3869	0.48 ± 0.08	0.37 ± 0.04	0.58 ± 0.06
O II]λ3727	0.97 ± 0.09	0.83 ± 0.06	1.07 ± 0.08