Scalable Data Cube Analysis over Big Data

Zhengkui Wang†
wangzhengkui@nus.edu.sg
Divyakant Agrawal‡
agrawal@comp.ucsb.edu
Yan Chu † ∗
chuyan@hrbeu.edu.cn
Amr El Abbadi‡
amr@comp.ucsb.edu
Kian-Lee Tan‡
tankl@comp.nus.edu.sg
Xiaolong Xu∗
qlxucn@gmail.com

† National University of Singapore
‡ University of California at Santa Barbara
∗ Harbin Engineering University
§ AppFoilo Inc.

ABSTRACT

Data cubes are widely used as a powerful tool to provide multidimensional views in data warehousing and On-Line Analytical Processing (OLAP). However, with increasing data sizes, it is becoming computationally expensive to perform data cube analysis. The problem is exacerbated by the demand of supporting more complicated aggregate functions (e.g. CORRELATION, Statistical Analysis) as well as supporting frequent view updates in data cubes. This calls for new scalable and efficient data cube analysis systems. In this paper, we introduce HaCube, an extension of MapReduce, designed for efficient parallel data cube analysis on large-scale data by taking advantages from both MapReduce (in terms of scalability) and parallel DBMS (in terms of efficiency). We also provide a general data cube materialization algorithm which is able to facilitate the features in MapReduce-like systems towards an efficient data cube computation. Furthermore, we demonstrate how HaCube supports view maintenance through either incremental computation (e.g. used for SUM or COUNT) or recomputation (e.g. used for MEDIAN or CORRELATION). We implement HaCube by extending Hadoop and evaluate it based on the TPC-D benchmark over billions of tuples on a cluster with over 320 cores. The experimental results demonstrate the efficiency, scalability and practicality of HaCube for cube analysis over a large amount of data in a distributed environment.

1. INTRODUCTION

In many industries, such as sales, manufacturing, transportation and finance, there is a need to make decisions based on aggregation over multiple dimensions. Data cubes are one such critical technology that has been widely used in data warehousing and On-Line Analytical Processing (OLAP) for data analysis in support of decision making.

In OLAP, the attributes are classified into dimensions (the grouping attributes) and measures (the attributes which are aggregated). Given n dimensions, there are a total of 2^n cuboids, each of which captures the aggregated data over one combination of dimensions. To speed up query processing, these cuboids are typically stored into a database as views. The problem of materialization is to efficiently compute all the views (V) based on the data (D). Fig. 1 shows all the cuboids represented as a cube lattice with 4 dimensions A, B, C and D.

In many append-only applications (no UPDATE and DELETE operations), the new data (ΔD) will be incrementally INSERTed or APPENDed to the data warehouse for view update. For instance, the logs in many applications (like the social media or stocks) are incrementally generated/updated. There is a need to update the views in a manner of one-batch-per-hour/day. The problem of view maintenance is to efficiently calculate the latest views while ΔD are produced.

Both data cube materialization and view maintenance are computationally expensive, and have received considerable attention in the literature. However, existing techniques can no longer meet the demands of today’s workloads. On the one hand, the amount of data is increasing at a rate that existing techniques (developed for a single server or a small number of machines) are unable to offer acceptable performance. On the other hand, more complex aggregate functions (like complex statistical operations) are required to support complex data mining and statistical analysis tasks. Thus, this calls for new scalable systems to efficiently support data cube analysis over a large amount of data.

Meanwhile, MapReduce (MR) has emerged as a powerful computation paradigm for parallel data processing on large-scale clusters. Its high scalability and append-only features have made it a potential target platform for data cube analysis in append-only applications. Therefore, exploiting MR for data cube analysis has become an interesting research topic. However, deploying an efficient data cube analysis using MR is non-trivial. A naive implementation of cube materialization and view maintenance over MR can result in high overheads.

We first summarize the main challenges for cube analysis on large-scale data for developing an efficient cube analysis system.

- Given n dimensions in one relation, there are 2^n cuboids that need to be computed in the cube materialization. An efficient parallel algorithm to materialize the cube faces two challenges: (a) Given that some of the cuboids share common dimensions, is it possible to batch these cuboids to exploit some common processing? (b) Assuming we are able to create batches of cuboids, how can we allocate these batches or resources so that the load across the processing nodes is balanced?

- View maintenance in a distributed environment introduces significant overheads, as large amounts of data (either the old materialized data or the old base data) needs to be read, shuffled and written among the processing nodes and distributed file system (DFS). Moreover, more and more appli-
new computation paradigm MMRR (map-merge-reduce-refresh). HaCube illustrates one way to develop a scalable and efficient decision making system, such that cube analysis can be utilized in more applications.

2. A General Cubing Algorithm: We provide a general and efficient data cubing algorithm, CubeGen, which is able to complete the entire cube lattice using one MR job. We show how cuboids can be batched together to minimize the read/shuffle overhead and salvaging partial work done. On the basis of batch processing principle, CubeGen further leverages the ordering property of the reducer input provided by the MR-like framework for an efficient materialization. In addition, we propose one load balancing approach, LBCCC to calculate the number of computation resources (reducers) for each batch, such that the load to each reducer is balanced.

3. Efficient View Maintenance Mechanisms: We demonstrate how views can be efficiently updated under HaCube through either recomputation (e.g. used for median or correlation) or incremental computation (e.g. used for sum or count). To the best of our knowledge, this is the first work to address data cube view maintenance in MR-like systems.

4. Experimental Study: We evaluate HaCube based on the TPC-D benchmark with more than two billions tuples. The experimental results show that HaCube has significant performance improvement over MR.

The rest of the paper is organized as follows. Section 2 provides the preliminary knowledge of MR computation paradigm. In Section 3, we provide an overview of HaCube. Sections 4 and 5 present our proposed cube materialization and view maintenance approaches. We discuss the fault tolerance and other issues in Section 6 and report our experimental results in Section 7. In Section 8 and Section 9 we review some related works and conclude the paper.

2. PRELIMINARIES

In this section, we provide a brief overview of the MR computation paradigm. MapReduce has emerged as a powerful parallel computation paradigm [9]. It has been widely used by various applications such as scientific data processing [23][25][26], text processing [17][22], data mining [7][30] and machine learning [8][12] and so on. MapReduce has several advantages which make it an attractive platform for large-scale data processing, such as its high scalability (scalability of thousands of machines), good fault tolerance (automatic failure recovery by the framework), ease-of-programming (simple programming logic) and high integration with cloud (availability to every user and low expense in a pay-as-you-go cloud model).

Under the MapReduce framework, the system architecture of a cluster consists of two kinds of nodes, namely, the NameNode and DataNodes. The NameNode works as a master of the file system, and is responsible for splitting data into blocks and distributing the blocks to the data nodes (DataNodes) with replication for fault tolerance. A JobTracker running on the NameNode keeps track of the job information, job execution and fault tolerance of jobs executing in the cluster. A job may be split into multiple tasks, each of which is assigned to be processed at a DataNode.

The DataNode is responsible for storing the data blocks assigned by the NameNode. A TaskTracker running on the DataNode is responsible for the task execution and communicating with the JobTracker.

The computation of MR follows a fixed model with a map phase, followed by a reduce phase. Users can set their own computation logic by writing the map and reduce functions in their applications.

Map Phase: The MR library is responsible for splitting the data into chunks from the distributed system (DFS) and distributing each chunk to a processing unit (called mapper) on different nodes. The map function is used to process (key, value) pairs (k1, v1) read from data chunks and, after applying the map function, then emits a new set of intermediate (k2, v2) pairs.

The MR library sorts and partitions all the intermediate data into r partitions based on the partitioning function in each mapper, where r is the number of processing units (called reducers) for each batch, such that the load to each reducer is balanced.

Reduce Phase: The MR library merge-sorts all the (key, value) pairs based on the key first. Then, the globally sorted data are supplied to the reduce function iteratively. After the reduce process, the reducer emits new (k3, v3) pairs to the DFS.

When one job finishes, all intermediate data are removed from the mappers and reducers. If another job wants to use the same data, it has to reload the data from the DFS again.

3. HACUBE: THE BIG PICTURE

3.1 Architecture

Figure 2 gives an overview of the basic architecture of HaCube. We implement HaCube by modifying Hadoop which is an open source equivalent implementation of MR [1]. Similar to MR, all the nodes in the cluster are divided into two different types of function nodes, including the master and processing nodes. The master node is the controller of the whole system and the processing nodes are used for storage as well as computation.

Master Node: The master node consists of two functional layers:
1. The **cube converting layer** contains two main components: Cube Analyzer and Cube Planner. The cube analyzer is designed to accept the user request of data cube analysis, analyze the cube, such as figuring out the cube id (the identifier of the cube analysis application), analysis model (materialization or view update), measure operators (aggregation function), and input and output paths etc.

 The cube planner is developed to convert the cube analysis request into an execution job (either a materialization job or a view update job). The execution job is divided into multiple tasks each of which handles part of the cuboid calculation. The cube planner consists of several functional components such as the execution plan generator (combine the cuboids into batches to reduce the overhead), and load balancer (assign the right number of computation resources for each batch).

2. The **execution layer** is responsible for managing the execution of jobs passed from the cube converting layer. It has three main components: job scheduler, task scheduler and task scheduling factory. We use the same job scheduler as in Hadoop which is used to schedule different jobs from different users. In addition, we add a task scheduling factory which is used to record the task scheduling information of a job which can be reused in other jobs. Furthermore, we develop a new task scheduler to schedule the tasks in terms of the scheduling history stored in the task scheduling factory rather than the random scheduler used in MR.

 Processing Node: A processing node is responsible for the task execution assigned from the master node. Similar to MR, each processing node contains one or more processing units each of which can either be a mapper or a reducer. Each processing node has a TaskTracker which is in charge of communicating with the master node through heartbeats, reporting its status, receiving the task, reporting the task execution progress and so on. Unlike MR, there is a Local Store built at each processing node running reducers. The local store is developed to cache useful data of a job in the local file system of the reducer node. It is a persistent storage in the local file system and will not be deleted after a job execution. In this way, tasks (possibly from other jobs) assigned to the same reducer node are able to access the local store directly from the local file system.

3.2 Computation Paradigm

HaCube inherits some features from MR, such as data read/process/write format of (key, value) pairs, sorting all the intermediate data and so on. However, it further enhances MR to support a new computational paradigm. HaCube adds two optional phases - a Merge phase and a Refresh phase before and after the Reduce phase - to support the MAP-MERGE-REDUCE-REFRESH (MMRR) paradigm as shown in Fig. 2.

The Merge phase has two functionalities. First, it is used to cache the data from the reduce input to the local store. Second, it is developed to sort and merge the partitions from mappers with the cached data in the local store. The Refresh phase is developed to perform further computations based on the reduce output data. Its functionalities include caching the reduce output data to the local store and refreshing the reduce output data with the cached data in the local store. These two additional phases are intended to fit different application requirements for efficient execution support.

As mentioned, these two phases are optional for the jobs. Users can choose to use the original MR computation or MMRR computation. More details can be found in Section 5 about how MMRR benefits the data cube view maintenance.

4. CUBE MATERIALIZATION

In this section, we provide our proposed data cubing algorithm, CubeGen, under the MR-like systems. We first present some principles of sharing computation through cuboid batching followed by a batched generator. We then introduce the load balancing strategy followed by the detail implementation of CubeGen. For simplicity, we assume that we are materializing the complete cube. Note that our techniques can be easily generalized to compute a partial cube (compute only selective cuboids). We also omit the cuboid “all” from the lattice. This special cuboid can be easily handled through an independent processing unit.

4.1 Cuboid Computation Sharing

![Figure 2: HaCube Architecture](image-url)
To build the cube, computing each cuboid independently is clearly inefficient. A more efficient solution, which we advocate, is to combine cuboids into batches so that intermediate data and computation can be shared and salvaged.

We provide the following lemma as a formal basis for combining and batching the cuboids computation under MR-like systems.

Lemma 1. Let A and B be a set of dimensions such that $A \cap B = \emptyset$. In MR-like systems, given cuboids A and B, A can be combined and processed together with AB, once AB is set of the key and is partitioned by A in one MR job. A is referred to as the ancestor of AB (denoted as $A \prec AB$). Meanwhile, AB is called the descendant of A. Note that the ancestor and descendant require them share the same prefix.

Proof. Without loss of generality, we assume $A = d_1, ..., d_i$ and $B = d_i, ..., d_{i+z}$ where d_i is one dimension. When AB is processed, the output key in the mapper can be set as the group-by dimensions of AB ($d_1, ..., d_z, d_{i+1}, ..., d_{i+z}$) on which the (k,v) pairs are further sorted based on AB. Partitioning AB based on A guarantees that all the same group-by cells in A are shuffled to the same reducer where A is also in a sorted order. Therefore, we can process A as well while AB is processed. \square

The above results can be generalized using transitivity: Since we can combine the processing of the pair of cuboids $\{A, AB\}$ and the pair $\{AB, ABC\}$, we can also combine the processing of the three cuboids $\{A, AB, ABC\}$. Thus, given one cuboid, all its ancestors can be calculated together as a batch. For instance, in Fig. 1 as $A \prec AB \prec ABC$, the cuboids A, AB, ABC can be processed with $ABCD$. Note that BC cannot be processed with $ABCD$ because $BC \not\prec ABCD$.

Given a batch, the principle to calculate this batch is to set the sort dimensions as the key and partition the (k,v) pairs based on the partition dimensions in the key in the MR-like paradigm. We formally define these two dimension classes below:

Definition 1 Sort Dimensions: The dimensions in cuboid A are called the sort dimensions if A is the descendant of all other cuboids in one batch.

Definition 2 Partition Dimensions: The dimensions in cuboid A are called the partition dimensions if A is the ancestors of all other cuboids in one batch.

For instance, given the batch $\{A, AB, ABC, ABCD\}$, $ABCD$ and A can be set as the sort and partition dimensions respectively.

The benefits of this approach are: 1) In the reduce phase, the group-by dimensions are all in sorted order for every cuboid in the batch, since MR would sort the data before supplying to the reduce function. This is an efficient way of cube computation since it obtains sorting for free and no other extra sorting is needed before aggregation. 2) All the ancestors don’t need to shuffle their own intermediate data but use their descendant’s. This would significantly reduce the intermediate data size, and thus remove a lot of data sort/partition/shuffle overheads.

To achieve good performance, we need to address two issues. First, how can we find the minimum number of batches from the 2^n cuboids? As more cuboids are combined together, the shuffling overhead incurred for data shuffling will be reduced. Second, how can we balance the load to assign the right number of computation resources to each batch? As different batches may have different computation complexity and data size, it is not optimal to evenly assign the computation resources to each batch. Before providing the detailed algorithm for CubeGen, we first introduce how it solves the aforementioned challenges by developing a plan generator and a load balancer.

Figure 3: A directed graph of expressing 4 dimensions A, B, C and D

4.2 Plan Generator

The goal of the plan generator is to generate the minimum number of batches among the 2^n-1 cuboids, excluding “all”. The plan generator first divides the 2^n-1 cuboids into n groups each of which consists of the cuboids with i dimension attributes. For instance, given the cube lattice with 4 dimension attributes in Figure 4, it can be divided into 4 groups (from the bottom of the lattice to the top) as follows: $G_1 = \{A, B, C, D\}$, $G_2 = \{AB, BC, CD, DA, AC, BD\}$, $G_3 = \{ABC, BCD, CDA, DAB\}$, $G_4 = \{ABCD\}$.

Recall that one cuboid can be batched with all its sub-cuboids. Thus, we adopt a greedy approach to combine one cuboid with as many of its ancestors as possible. Initially, all the cuboids in each group are marked as available. Each construction of a batch starts with one available cuboid, α, from the non-empty group with the maximum number of dimensions. It then searches all the available ancestors of α from other groups that can be batched together. For instance, the first batch construction starts with $ABCD$ in the example above (Since $ABCD$ has 4 dimensions, it is the one with maximum number of dimensions). Note that since cuboid α has different permutations (e.g. $ABCD$ can also be permuted as $ACBD$, $BCDA$, $CDAB$, $DABC$ etc.), the algorithm enumerates all permutations and the one with the maximum number of available ancestors will be chosen. Once one batch is constructed, all the cuboids in this batch are deleted from the search space and become unavailable. Similarly, the next batch construction is conducted among the remaining available cuboids. The construction finishes when there are no available cuboids left.

The approach we adopt to generate the batches is similar to the one proposed in [16]. Lee et al. provide an extensive proof that the algorithm is able to generate $C_n^{2^n-1}$ batches which is the minimum number. Recall that there are $C_n^{2^n-1}$ cuboids in group G_0 and that none of them can be combined with each other. So there are at least $C_n^{2^n-1}$ batches. Interested readers are referred to [16] for more details.

To improve the efficiency of batch construction, two optimizations are adopted to reduce the search space.

- First, recall that for a set of dimensions, we need to compute a batch for each permutation. This, however, may not be necessary. In fact, when all the sub-cuboids of a particular permutation are available, we know that we have found a permutation with the maximum number of sub-cuboids. Therefore, as soon as we encounter such a permutation, we do not need to continue the search for this set of dimensions.

- Second, we organize all the dimensions as one directed graph such that one dimension points to another and we refer to the distance between two adjacent dimensions as one hop. For instance, given 4 dimensions A, B, C and D, they can...
be expressed as a directed graph such that A, B, C and D point to B, C, D and A respectively as shown in Figure 4(b). During permutation enumeration, changing from A to B or C is referred as moving one hop or two hops from A.

To find the permutation of a cuboid α with the maximum number of sub_cuboids, the enumeration starts from the permutation that is obtained by moving the equivalent number of hops for each dimension of the unavailable cuboid in the same group. This is to guarantee that, most likely, the first search permutation is the one we need to reduce the search space. For instance, assume that the first batch is generated as $ABCD$, ABC, AB and A. Then the next initial permutation for a new batch is BCD which is computed through moving one hop for each dimension in the unavailable cuboid ABC. It is clear that the new batch can be generated with BCD (since all its sub_cuboids are available) and there is no need to search other permutation of BCD.

In the same way, the batches of CDA and DAB will be generated. These two optimizations speed up the batch construction.

Figure 4 shows an example of the generated batches using the dotted lines.

4.3 Load Balancer

Given a set of batches from the plan generator, the load balancer is used to assign the right number of computation resources to each batch to balance the load.

We argue that existing works (like [20]) that balance the batches by evenly assigning the computation resources may not always be a good choice.

- First, it requires users to provide very specific information about the application data to be able to estimate a model to find the balanced batches.
- Second, the cuboids may not be combined into balanced batches.
- Third, in a MR-like system, it is hard to make a precise cost estimate of each batch. For instance, the total cost of each batch includes the following main parts: the data shuffling cost (shuffling the intermediate data from mappers to reducers), the sorting cost (all the intermediate data are sorted), data processing cost (applying the measure function to each cuboid in a batch) and data writing cost (writing the views to the file system). It is hard to estimate each of these component costs and even harder to evaluate the total cost of each batch (as this requires setting the appropriate weights when combining these components).

Therefore, the load balancing among different batches becomes a very tricky and challenging problem in MR-like systems.

In this paper, we propose a novel load balancing scheme $LBCCC$ (short for Load Balancing via Computation Complexity Comparison) to assign the right number of computation resources to each batch. Intuitively, $LBCCC$ adopts a profiling based approach where a learning job (we refer as CCC - Computation Complexity Comparison job) is first conducted on a small test dataset to evaluate the computation overhead relationship between each batch and then generate the number of reducers for each batch that are proportional to computation overhead for the actual $CubeGen$ jobs. The computation cost relationship is estimated through the execution comparisons when each batch is provided the same number of computation resources. The execution time relationship over the same computation resource indicates the entire batch processing overhead relationship, thus helps to make an accurate load balancing decision.

In particular, $LBCCC$ first conducts the CCC job, a cube materialization learning job, on a small test dataset where each batch is assigned to one reducer. It then records and utilizes the execution time of each batch to estimate the computation overhead relationship among different batches.

The test data can be obtained either by sampling or produced within a time window provided by users. Note that the sampling can be accomplished during the CCC job, since the MR framework provides APIs for sampling data directly. Therefore, by default, we use the sampling approach provided by the Hadoop API where one tuple is sampled from every s records. Users can also plug in their own sampling algorithm easily. The sampling algorithms have been widely studied in the literature. Since it is not our focus on studying how to choose or design a good sampling algorithm, we shall not discuss it here and more sampling algorithms can be found in [11].

In the CCC job, given a set of base data, the mapper conducts sampling on it. For each sampling tuple, the mapper emits multiple (key,value) pairs each of which is for one batch. Then the CCC job shuffles the pairs that belong to the same batch to one particular reducer. Given b batches, the CCC job uses b reducers each of which is in charge of processing one batch. The implementation of the CCC algorithm is similar to the $CubeGen$ algorithm provided in Algorithm 1 except for the number of reducers assigned to each batch. The algorithm detail can be found in section 4.4.

The CCC learning job records the execution time T_j for processing batch B_i. Based on the execution time recorded, the load balancer generates the resources assignment plan for each batch. Given r reducers, the right number of reducers, R_i for batch B_i can be calculated as follows:

$$R_i = \frac{T_i \times r}{\sum_{j=1}^{n} T_j}$$

The load balancer integrates this plan into the $CubeGen$ algorithm to balance the load. The experimental results show that $LBCCC$ is able to balance the load very well.

We note that this evaluation only needs to be done once before the initial cube materialization and is used for subsequent jobs in the same application. Furthermore, performing the CCC job is cheap as only b reducers are needed. Note that the load balancer can support different kinds of batching approaches. Therefore, the $LBCCC$ load balancing scheme is general and effective for different cubing algorithms.

4.4 Implementation of CubeGen
Algorithm 1: CubeGen Algorithm

Function: Map(t)

1. \# t is the tuple value from the raw data
2. Let B (resp. I) be the batch set with \(B_0, B_1, ..., B_{b-1}\) (resp. the identifier of batch B_i)
3. for each \(B_i \) in \(B \) do
4. \(k \) (resp. v) \(\leftarrow\) get sort dimensions (resp. the measure m) in \(B_i\) from \(t\)
5. \# If there are multiple measures (e.g. \(m_1, m_2\)), then \(v \leftarrow (m_1, m_2)\)
6. v.append(k); emit(kv);

Function: Partitioning(k, v)

7. Let \(R_i\) (resp. attr) be the number of reducers (resp. the partition dimensions) for \(B_i\)
8. \(S_i \leftarrow \sum_{j=0}^{R_i} R_j\)
9. return \(S_i + hash(attr, R_i)\);

Function: Reduce/Combine (k, \{v_1, v_2, ..., v_n\})

10. Let \(C\) (resp. M) be the cuboid set in the batch identifier (resp. the aggregate function)
11. for \(C_i \) in \(C \) do
12. \# if \(C_i\) is ready then
13. \(k'\) (resp. \(v'\)) \(\leftarrow\) get the group-by dimensions in \(C_i\) (resp.
14. \(M(v_i, ..., v_n, v'_1, ..., v'_k, ...)\))
15. \# Perform multiple aggregate functions e.g. \((M_1, M_2)\) here:
16. \(v'_1 \leftarrow M_1(v_i, ..., v_n, v'_1, ..., v'_k, ...)\) and \(v'_2 \leftarrow M_2(v_i, ..., v_n, v'_1, ..., v'_k, ...)\)
17. emit(\(k', v'\));
18. else
19. Buffer the measure for aggregation

Algorithm 2: A Refresh Job in MR

Function: Map(t)

1. \# t is the tuple value from either \(V\) or \(\Delta V\)
2. \(k\) (resp. \(v\)) \(\leftarrow\) get dimensions (resp. aggregate value) from \(t\)
3. emit(k,v)

Function: Reduce(k, \{v_1, v_2\})

4. emit(k, M(v_1, v_2))

Consider the batch plan \(B(\text{Bo}, \text{B}_1, ..., \text{B}_{b-1})\) generated from the plan generator and the load balancing plan \(R=(\text{R}_0, \text{R}_1, ..., \text{R}_{b-1})\) where the \(\text{R}_i\) is the number of reducers assigned for batch \(\text{B}_i\). Given \(B\) and \(R\), the proposed CubeGen algorithm materializes the entire cube in one job and its pseudo-code is provided in Algorithm 1.

Map Phase: The base data is split into different chunks each of which is processed by one mapper. CubeGen parses each tuple and emits multiple \((k,v)\) pairs each of which is for one batch (lines 3-6). The sort dimensions in the batch are set as the key and the measure is set as the value.

To distinguish which \((k,v)\) pair is for which batch with which cuboids, we add a batch identifier appended after the value. The identifier is developed as one Bitmap with 2^n bits where \(n\) is the number of dimensions and each bit corresponds to one cuboid. First, we number all the 2^n cuboids from 0 to 2^n-1. Second, if the cuboid is included in one batch, its corresponding bit is set as 1, otherwise 0. For instance, Fig. 1 depicts an example of a numbered cube lattice. Assume that \(\text{B}_0\) consists of cuboids \(\{A, AB, ABC, ABD\}\). The identifier for \(\text{B}_0\) is set as ‘1000100000100010’. The partitioning function partitions the pairs to the appropriate partition based on the identifier and the load balancing plan \(R\). CubeGen first schedules the data into the right range of reducers. Recall that the batch \(\text{B}_i\) is assigned \(\text{R}_i\) reducers. Therefore, the assigned reducers for batch \(\text{B}_i\) are from \(\sum_{j=0}^{R_i-1} R_j\) to \(\sum_{j=0}^{R_i-1} R_j + \text{R}_i - 1\). Then the \((k,v)\) pairs are hash partitioned among these \(\text{R}_i\) reducers according to the partition dimensions in the key (lines 2-9).

Reduce Phase: In the Reduce phase, the MR library sorts all the \((k,v)\) pairs based on the key and passes them to the reduce function. Each reducer obtains its computation tasks (the cuboids in the batch) by parsing the batch identifier in the value. The reduce function extracts the measure and projects the group-by dimensions for each cuboid in the batch. For the descendant cuboid, the aggregation can be performed directly based on input tuple, since each input tuple is one complete group-by cell. For other cuboids, the measures of the group-by cell are buffered until the cell receives all the measures it needs for aggregation (lines 11-17). We develop multiple file emitters to write different aggregated results to different destinations.

Note that if the \((k,v)\) pairs can be pre-aggregated in the map phase, users can specify a combine function to conduct a first round aggregation. The combine function is normally similar to the reduce function as shown in lines 10-17, but only aggregates the pairs with the same key. This pre-aggregation is able to reduce the data shuffle size between mappers to reducers.

We emphasize that if there are multiple measures (e.g. \(m_1, m_2, ..., m_n\)) and multiple aggregate functions \((M_1, M_2, ..., M_m)\), they can be processed in the same MR job as shown in the line 5 and 14 in Algorithm 1. Compared to the naive solution, CubeGen minimizes the cube materialization overheads by sharing the data read/shuffle/computation to the maximum, which obtains significant performance improvement as we shall see in Section 4.

5. VIEW MAINTENANCE

There are two different manners to update the views, namely recomputation and incremental computation. Recomputation computes the latest views by reconstructing the cube based on the entire base data \(D\) and \(\Delta D\). In append-only applications, this manner is normally used for the holistic aggregate functions, e.g. STDDEV, MEDIAN, CORRELATION and REGRESSION [13]. Incremental computation, on the other hand, updates the views using only \(V\) and \(\Delta V\) in two steps: 1) In the propagate step, a delta view \(\Delta V\) is calculated based on \(\Delta D\). 2) In the refresh step, the latest view is obtained by merging \(V\) and \(\Delta V\) without visiting \(D\) [13]. In append-only applications, this manner is normally used for the distributive and algebraic aggregate functions, e.g. SUM, COUNT, MIN, MAX and AVG [13]. Note that the update for these functions can also be conducted through recomputation.

5.1 Supporting View Maintenance in MR

To support recomputation in MR, when \(\Delta D\) is inserted, the latest views can be calculated by issuing one MR job using our CubeGen algorithm to reconstruct the cube over \(D \cup \Delta D\). The key problem with such a MR-based recomputation view updates is that reconstruction from scratch in MR is expensive. This is because the base data (which is large and increases in size at each update) has to be reloaded to the mappers from DFS and shuffled to the reducers for each new view update, which incur significant overheads.

To support incremental computation in MR, the latest views can be calculated by issuing two MR jobs. The first propagate job generates \(\Delta V\) from \(\Delta D\) using our proposed CubeGen algorithm. The second refresh job merges \(V\) and \(\Delta V\) as shown in Algorithm 2. However, this would incur significant overheads. For instance, the materialized \(\Delta V\) from the propagate job has to be written back to DFS, reloaded from DFS again and shuffled from mappers to reducers in the refresh job. Likewise, \(V\) has to be reloaded and shuffled around in the refresh job. Therefore, it is highly expensive to support view update operations directly over the traditional MR.
5.2 HaCube Design Principles

HaCube avoids the aforementioned overheads through storing and reusing the data between different jobs. We extend MR to add a local store in the reducer node which is intended to store useful data of a job in the local file system. Thus, the data shuffled to the same reducer is able to reuse the data already stored there. In this way, the data can be read directly from the local store (and thus significantly reducing the overhead that would have been incurred to read the data from DFS and shuffle them from mappers).

We further extend MR to develop a new task scheduler to guarantee that the same task is assigned to the same reducer node and thus the cached data can be reused among different jobs. Specifically, the task scheduler records the scheduling information by storing a mapping between the data partition number (corresponds to the task) and the TaskTracker (corresponds to the reducer node) and puts it to the task scheduling factory from one job. When a new job is triggered to use the scheduling history from previous jobs, the task scheduler fetches and adopts the scheduling information from the factory to distribute the tasks. The scheduler automatically checks the situation of the over-loaded nodes and re-assigns the task to a nearby processing node.

In addition, two computation phases (Merge and Refresh) are added to conduct more computation with the cached data locally. The Merge phase is added to either cache the intermediate reduce input data in one job or preprocess the data between the newly arriving data and cached data before the Reduce phase. The Refresh phase is added to either cache the reduce output data in one job or preprocess the reduce output result with the cached data after the Reduce phase.

5.3 Supporting View Maintenance in HaCube

5.3.1 Recomputation

The recomputation view update can be efficiently supported in HaCube using a Map-Merge-Reduce (MMR) paradigm. We demonstrate this procedure through one running example by introducing the cube materialization and update jobs.

In the first cube materialization job, HaCube is triggered to cache the intermediate reduce input data to the local store in the Merge phase, such that this data can be reused during the view update job. For instance, Fig. 5(a) shows an example of calculating the cuboid A for MEDIAN. Assume that reducer 0 is assigned to process cuboid A. In this job, each mapper emits one sorted partition for reducer 0, such as $P_{0,0}, P_{0,1}$ and $P_{0,2}$. Here, each partition is a sequence of (dimension-value, measure-value) pairs, e.g., (a1, 3), (a2, 4). Recall that once these partitions are shuffled to the reducer 0, it first performs a merge-sort (the same as MR does) to sort all the partitions based on the key in the Merge phase. The sorted data is further supplied to the reduce function to calculate the MEDIAN for each group-by cell (e.g. $< a1, 5 >$ and $< a2, 5 >$) where this view will be written to DFS.

Different to MR (which deletes all the intermediate data after one job), since recomputation requires the base data for update, HaCube caches the sorted reduce input data in the Merge phase for subsequent reuse. This caching operation is conducted while the Reduce phase finishes, which guarantees the atomicity of the operation - if the reduce task fails, the data will not be written to the local store. Meanwhile, the scheduling information is recorded.

A view update job is launched when $\Delta\bar{D}$ is added for view updates. Intuitively, this job conducts a cube materialization job using the CubeGen algorithm based on $\Delta\bar{D}$. It differs from the first materialization job in the scheduling and the Merge phase. For task scheduling, instead of randomly distributing the tasks to reducer nodes, it distributes the tasks according to the scheduling history from the first materialization job to guarantee that the same tasks are processed at the same reducer. For instance, the partitions of cuboid A ($\Delta P_{0,0}$ and $\Delta P_{0,1}$) are scheduled to the same node running reducer 0 as shown in Fig. 5(b) in the Merge phase, since the base data is already cached in the local store, HaCube merges the delta partitions with the cached base data from the local store. Recall that the cached data is the sorted reduce input data from the previous job, and so it has the same format as the delta partition. Thus, it can be treated as a local partition and a global merge-sort is further performed. Then the sorted data will be supplied to the reduce function for recalculation in the Reduce phase. When the Reduce phase finishes, the local store is updated with both the base and delta data (becoming an updated base dataset) for further view update use.

![Figure 5: Recomputation for MEDIAN in HaCube](image-url)
Compared to MR, HaCube does not need to reload the base data from DFS and shuffle them from mappers to reducers for recomputation. This significantly reduces the data read/shuffle overheads. Another implementation optimization is proposed to minimize the data caching overhead. To cache the data to the local store, it is expensive to push the data to the local store, as this would incur much overhead of moving a large amount of data. Based on the observation that the intermediate sorted data are maintained in temporary files in the local disk in each reducer, HaCube simply registers the file locations to the local store other than moving them. Note that the traditional MR would delete these temporary files once one job finishes. As we shall see, the experimental study shows that there is almost no overhead added for caching the data with this optimization.

Incremental Computation HaCube adopts a Map-Reduce-Refresh (MR) paradigm for incremental computation. Intuitively, different to MR in the first materialization job, it triggers to invoke a refresh phase after the Reduce phase, to cache the view V to the local store for further reuse. For instance, Fig. 5(c) shows an example of calculating cuboid A for SUM in reducer 0. In this job, V (a1, 17 > & a2, 16 >) is cached to the local store in the refresh phase. In addition, this scheduling information is also recorded.

When ∆D is added for view updates, HaCube conducts both the propagate and refresh steps in one view update job, as V is already cached in the reducer node. This view update job in HaCube also executes in a MRR paradigm where MR (Map-Reduce) phases obtain ∆V based on ∆D (propagate step) and the refresh phase merges ∆V with V locally (refresh step). Intuitively, this can be achieved by running the CubeGen algorithm on ∆D using the same scheduling plan as the previous materialization job. Meanwhile, the cached views in the local store will be updated with the latest ones. For instance, in Fig. 5(d), the Reduce phase calculates the ∆V (a1, 6 > & a2, 4 >) based on ∆D. In the refresh phase, the updated view (< a1, 23 > & a2, 20 >) is obtained by merging ∆V with V (< a1, 17 > & a2, 16 >) cached in the local store.

Different to MR, HaCube is able to finish the incremental computation in one job where there is no need to reload and shuffle the delta views and old views among DFS and the cluster during the propagate and refresh steps. This provides an efficient view update using the incremental computation by removing much overheads.

6. OTHER ISSUES

6.1 Fault Tolerance

Since HaCube is built on the MR framework, it preserves the fault-tolerance mechanisms of the MR framework. For instance, the data is replicated in DFS and thus is safe when nodes fail. When a map task fails, the framework schedules the task on another free mapper in the system instead of restarting the whole job.

In addition, we provide an additional fault tolerance strategy to guarantee data availability in the reducer nodes in HaCube. The caching mechanism plays an important role in improving the efficiency of data cube analysis. It is important to make sure that the cached data in the reducer node is accessible when a subsequent job arrives. We handle two kinds of failures in the reducer nodes, including the recoverable and the unrecoverable reducer failures.

Recoverable Failures: Recoverable reducer failures include the task failure and reducer node failure. These failures can be recovered once the corresponding failed task or node is restarted. When the task fails in the reducer node, the scheduler kills the task and reschedules it. If the job does not need to use the data in the local store, it will be scheduled to any reducer node. Otherwise, it is scheduled to the same node for data locality. The local store is in a persistent local file system on the reducer node. Thus, after restarting this task, the data is still readable. Similar to the reduce task failure, if the reducer node fails, the data is still accessible after the node is restarted.

Unrecoverable Failures: Unrecoverable reducer node failures happen when the reducer node is totally corrupted and not usable at all. In this case, the data in the local store will be lost. To handle this failure, alternative recovery strategies can be adopted for incremental computation and recomputation.

For incremental computation, recovery is straightforward. This is because the views from previous jobs cached at the local store are also stored in the DFS. Thus, when the reducer node is corrupted, the views can be easily recovered from the DFS.

Under recomputation, the local store caches the sorted interme-
6.2 Storage Cost Discussion
We argue that HaCube’s storage costs are acceptable.

- First, even though HaCube needs to cache extra data in the local store, the base data can be deleted from the file system when there is no need to maintain them for other purposes. The cached data in the local store is sufficient to facilitate view updates when new data are added.

- Second, we can also reduce the number of replicas stored in the DFS accordingly. The data cached in the local store can be seen as one replicated dataset.

- Third, HaCube only needs to cache one copy of the dataset for different measures in each computation model. Recall that all the measures can be processed together. Thus, for all measures issuing recomputation, the cached sorted raw data is able to serve all of them. For all measures issuing incremental computation, the cached view data can be stored together to reduce storage overhead. For instance, assume that both SUM and MAX need to be calculated, we can store these two views together in the format of <dimension attributes, SUM, MAX> instead of maintaining them independently.

7. PERFORMANCE EVALUATION
We evaluate HaCube on the Longhorn Hadoop cluster in TACC (Texas Advanced Computing Center) [2]. Each node consists of 2 Intel Nehalem quad-core processors (8 cores) and 48GB memory. By default, the number of nodes used is 35 (and 280 cores).

We perform our studies on the classical dataset generated by TPC-D benchmark generators [3]. The TPC-D benchmark offers a rich environment representative of many decision support systems. We study the cube views on the fact table, lineitem in the benchmark. The attributes l_partkey, l_orderkey, l_suppkey and l_shipdate are used as the dimensions and the l_quantity as the measure. We choose MEDIAN and SUM as the representative functions for evaluation. We report the result based on the average execution time of three runs in each experiment.

7.1 Cube Materialization Evaluation
Baseline Algorithms To study the benefit of the optimizations adopted in CubeGen, we design two corresponding baseline algorithms to study each of them including MulR_MulS (compute each cuboid using one MR job) and SingR_MulS (compute all the cuboids using one MR job without batching them), which are widely used for cube computations in MR. MulR_MulS is used to study the benefit of removing multiple data read overheads. SingR_MulS is used to study the benefit of sharing the shuffle and computation through batch processing.

In the following set of experiments, we vary the data size from 600M (Million) to 2.4B (Billion) tuples. We study two versions of the CubeGen algorithm where CubeGen_Cache caches the data and CubeGen_NoCache does not. This provides insights into the overhead of caching the data to the local store.

7.1.1 Efficiency Evaluation
We first evaluate the performance improvement of CubeGen for cube materialization. Fig. 7(a) and (b) show the execution time of all four algorithms for MEDIAN and SUM respectively. As expected, for both MEDIAN and SUM, our CubeGen-based algorithms are 2.2X and 1.6X faster than MulR_MulS and SingR_MulS on average respectively. This indicates that computing the entire cube in one MR job reduces the overheads significantly compared to the case where multiple MR jobs were issued which requires reading data multiple times. In addition, it also demonstrates that batch processing highly reduces the size of intermediate data which can consequently minimize the overheads of data sorting, shuffling as well as computing.

7.1.2 Impact of Caching Data
Figure 7(a) and (b) also depict the impact of caching data. For MEDIAN, we can see that the execution time of the CubeGen_Cache algorithm is almost the same as CubeGen_NoCache as shown in Fig. 7(a). This confirms that our optimization to cache the data
through file registration instead of actual data movement does not cause much overhead. For SUM, we observe that CubeGen_Cache performs worse than CubeGen_NoCache. This is not surprising as the former needs to write an extra view to the local file system. However, even though CubeGen_Cache incurs around 16% overhead to cache the view, as we will see later, it is superior to CubeGen_NoCache when it comes to view updates.

7.1.3 Load Balancing

We next show how the LBCCC load balancing scheme works. The CCC learning job is conducted using 2 machines and 1GB testing data generated by the benchmark generator. Then each reducer execution time is recorded to generate a load balancing plan for the Cube-Gen algorithm.

We observe that the LBCCC scheme is able to balance the load very well in CubeGen. Fig. 8 shows the load situation at each reducer when CubeGen_NoCache processes 600M tuples. We record the reduce phase execution time of each reducer among all the 280 reducers. We find that 95% of the reducers complete their processing within a 10-second difference in execution time.

For the remaining 5% of the reducers, as shown in the tail part of the execution time line in Fig. 8, they take 35 seconds or more or less than the others. This may be caused by the dimension data hash code skew. We find out that reducers 211 to 280 are assigned to process the same batch. Recall that within these 69 reducers, the data is hash partitioned to each reducer. Thus, if the hash codes of partition attributes are skewed, some reducers will get more data than others. However, we can see that the average execution time of these 69 reducers is almost the same as the others which confirms that our LBCCC does provide each batch the right number of computation resources. One possible solution to handle this skew challenge is to adopt the partitioning mechanisms such as range partitioning to better allocate the data evenly.

7.1.4 Impact of Number of Dimensions

We further analyze the impact for cube materialization while varying the number of dimensions from 3 to 5. Our current dataset has 4 dimensions: l_partkey, l_orderkey, l_suppkey and l_shipdate. To generate a 3-dimension dataset, we generate the data by removing the l_shipdate from current dataset. While for the 5-dimension dataset, we generate the data by adding another dimension, l_receiptdate to current dataset.

Figure 9 shows the execution time of SingR_MulS and CubeGen_NoCache for SUM on 600M tuples. Not surprisingly, increasing the number of dimensions increases the cube building time. The results show that CubeGen_NoCache outperforms SingR_MulS in all these three cases.

7.2 View Maintenance Evaluation

7.2.1 Efficiency Evaluation

We next study the efficiency of performing the view maintenance in HaCube compared with Hadoop. We fix D with 2.4B tuples in the first cube materialization job and vary the size of ∆D from 5% to 100% of D for view updates.

Figure 10 (a) shows the execution time for both the cube materialization (Ini_Cube) and the view updates (View_Update) for MEDIAN. In this set of experiments, we adopt recomputation for view updates of MEDIAN using MR (Re_MR) and HaCube (Re_HC). The result shows that Re_HC is 2X and 1.4X faster than Re_MR, when ∆D is 5% and 100% respectively. The gains come from avoiding reloading and reshuffling ∆ among the cluster. Thus, the larger ∆ is, the bigger the benefit will be.

Figure 10 (c) depicts the result for SUM. As view updates for SUM can either be done by incremental computation or recomputation, we evaluate both approaches. In Fig. 10 (c), In_MR and Re_MR (resp. In_HC and Re_HC) are MR (resp. HaCube) -based methods using incremental computation and recomputation respectively.

In_MR and Re_MR are implemented in the way described in Section 5.1. In In_HC, Delta_Cube (in the figure) corresponds to the propagate job to generate the delta view and View_Update is the refresh job. The result shows that, for incremental computation, In_HC is 2.8X and 2.2X faster than In_MR when ∆D is in 5% and 100% as shown in Fig. 10 (c). For recomputation, Re_HC is about 2.1X and 1.4X faster than the Re_MR when the ∆D is in 5% and 100% as shown in Fig. 10 (c). This indicates that HaCube has significant performance improvement compared to MR for the view update for both recomputation and incremental computation.

We observe that incremental computation performs worse than recomputation in both MR and HaCube. While this seems counter-intuitive, our investigation reveals that DFS does not provide indexing support; as such, in incremental computation, the entire view which is much larger than the base data (in our experiments) has to be accessed. Another insight we gain is the smaller the ∆D is, the more effective HaCube is. As future work, we will integrate more existing techniques (e.g. indexing) in DBMS into HaCube, which
will further improve the view update performance.

7.2.2 Impact of Parallelism

We further analyze the impact of parallelism on HaCube for both cube materialization and view update while varying the number of nodes from 10 to 40. The experiments use \mathbb{D} with 600M tuples and $\Delta\mathbb{D}$ in 20% of \mathbb{D}.

Figures 10 (b) and (d) report the execution time for MEDIAN and SUM. Note that, in this experiment, incremental computation is used for SUM. We observe that for both recomputation and incremental computation, HaCube scales linearly on the testing data set from 10 to 20 nodes, where the execution time almost reduces to half when the resources are doubled. From nodes to 40 nodes, the benefit of parallelism decreases a little bit. This is reasonable, since the entire overheads include two parts, the setup of the framework and the cube computation; the former one may reduce the benefits of increasing the computation resources while cube computation cost is not big enough.

8. RELATED WORK

Much research has been devoted to the problem of data cube analysis [13]. A lot of studies have investigated efficient cube materialization [28] [27] [4] [31] and view maintenance [16] [21]. Three classic cube computation approaches (Top-down [3] Bottom-Up [4] and Hybrid [27]) have been well studied to share computation among the lattice in a centralized system or a small cluster environment. Different to these approaches, CubeGen adopts a new strategy to partition and batch the cuboids according to their prefix order to tackle the new challenges brought by MR. It utilizes the sorting feature better in MR-like systems such that no extra sorting needed during materialization.

Existing works [23] [29] have adopted MR to build closed cubes for algebraic measures. However, both of these works do not provide a generic algorithm that can balance the load to materialize the cube for different measures. Nandi et al. [19] provided a solution to a special case during the cube computation under MR where one reducer gets the “hot spot” group-by cell with a large number of tuples. This complements our work and can be employed to handle such a case when one reducer is overloaded. We note that HaCube is able to support all these existing cube materialization algorithms. Last but not the least, none of these aforementioned works have developed any techniques for view maintenance. This is, to the best of our knowledge, the first work to address the data cube view maintenance in MR-like systems.

Our work is also related to the problem of incremental computations. Existing works [5] [14] [15] have studied some techniques for incremental computations for single operators in MR. HaLoop [6] is designed to support iterative operations through a similar caching mechanism which is used for different purposes under a different application context. Restore [10] also shares the similar spirit to keep the intermediate results (either the output of one MR job or the data operated within one job) to DFS in a workflow and reuse them in the future. For data cube computation, as the size of intermediate results is large, HaCube adopts a different data caching mechanism to guarantee the data locality that the cached data can be directly used from local store. This avoids the overhead incurred by Restore.
in reloading and reshuffling data from DFS. Furthermore, none of these existing works provide explicit support and techniques for data cube analysis under OLAP and data warehousing semantics.

9. CONCLUSION

It is of critical importance to develop new scalable and efficient data cube analysis systems on a big cluster with low-cost commodity machines to face the challenges brought by the large-scale of data, to provide a better query response and decision making support. In this paper, we made one step towards developing such a system, HaCube an extension of MapReduce, by integrating the good features from both MapReduce (e.g. Scalability) and parallel DBMS (e.g. Local Store). We showed how to batch and share the computations to salvage partial work done by facilitating the features in MapReduce-like systems towards an efficient cube materialization. We also proposed one load balancing strategy such that the load in each reducer can be balanced. Furthermore, we demonstrated how HaCube supports an efficient view maintenance by facilitating the extension a new computation paradigm. The experimental results showed that our proposed cube materialization approach at least 1.6X to 2.2X faster than the naive algorithms and HaCube performs at least 2.2X to 2.8X faster than Hadoop for view maintenance. We expect HaCube to further improve the performance by integrating more techniques from DBMS, such as indexing techniques.

10. REFERENCES

[1] Hadoop. http://hadoop.apache.org/.
[2] Tacc longhorn cluster. https://www.tacc.utexas.edu/.
[3] Tpc-h, ad-hoc, decision support benchmark. Available at: www.tpc.org/tpch/.
[4] Kevin S. Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In SIGMOD, pages 359–370, 1999.
[5] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini. Incoop: Mapreduce for incremental computations. In SOCC, 2011.
[6] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Halooop: Efficient iterative data processing on large clusters. PVLDB, 3(1):285–296, 2010.
[7] Edward Y. Chang, Hongjie Bai, and Kaihua Zhu. Parallel algorithms for mining large-scale rich-media data. In ACM Multimedia, pages 917–918, 2009.
[8] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore. In NIPS, pages 281–288, 2006.
[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, pages 137–150, 2004.
[10] Iman Elghandour and Ashraf Aboulnaga. Restore: Reusing results of mapreduce jobs. PVLDB, 5(6):586–597, 2012.
[11] Rainer Gemulla. Sampling algorithms for evolving datasets. PhD thesis, 2008.
[12] Dan Gillick, Arlo Faria, and John Denero. Mapreduce: Distributed computing for machine learning, 2006.
[13] Jim Gray, A. Bosworth, A. Layman, and D. Reichart. Data cube: A relational aggregation operator generalizing group-by cross-tab and sub-totals. In ICDE, pages 152–159, 1996.
[14] Thomas Jörg, Roya Parviz, Hu Yong, and Stefan Dessloch. Incremental recomputations in mapreduce. In CloudDB, pages 7–14, 2011.
[15] R. Lämmel and D. Saile. Mapreduce with deltas. In PDPTA, 2011.
[16] Ki Yong Lee and Myoung Ho Kim. Efficient incremental maintenance of data cubes. In VLDB, pages 823–833, 2006.
[17] J. Lin and C. Dyer. Data-intensive text processing with mapreduce. Synthesis Lectures on Human Language Technologies, 3(1):1–177, 2010.
[18] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and summary tables in a warehouse. In SIGMOD, pages 100–111, 1997.
[19] Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu Ramakrishnan. Distributed cube materialization on holistic measures. In ICDE, pages 183–194, 2011.
[20] Raymond T. Ng, Alan S. Wagner, and Yu Yin. Iceberg-cube computation with pc clusters. In SIGMOD, pages 25–36, 2001.
[21] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid Pirahesh. Incremental maintenance for non-distributive aggregate functions. In VLDB, pages 802–813, 2002.
[22] G. Sudha Sadasivam and G. Baktavatchalam. A novel approach to multiple sequence alignment using hadoop data grids. IJBA, 6(5):472–483, 2010.
[23] Kuznecov Sergey and Kudryavcev Yury. Applying map-reduce paradigm for parallel closed cube computation. In DBKDA, pages 62–67, 2009.
[24] Zhengkui Wang, Divyakant Agrawal, and Kian-Lee Tan. Cosac: A framework for combinatorial statistical analysis on cloud. IEEE Transactions on Knowledge and Data Engineering, 25(9):2010–2023, 2013.
[25] Zhengkui Wang, Yue Wang, Kian-Lee Tan, Limsoon Wong, and Divyakant Agrawal. Ceo: A cloud epistasis computing model in genome-wide association study. Bioinformatics, 27(8):1045–1051, 2011.
[26] Dong Xin, Jiawei Han, Xiaolong Li, and Benjamin W. Wah. Computing iceberg cubes by top-down and bottom-up integration: The starcubing approach. TKDE, 19(1):111–126, 2007.
[27] Dong Xin, Jiawei Han, and Benjamin W. Wah. Star-cubing: Computing iceberg cubes by top-down and bottom-up integration. In VLDB, pages 476–487, 2003.
[28] Jinguo You, Jianqiu Xi, Pingjiang Zhang, and Hu Chen. A parallel algorithm for closed cube computation. In ACIS-ICIS, pages 95–99, 2008.
[29] Wei Zhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on mapreduce. In CloudCom, volume 5931 of Lecture Notes in Computer Science, pages 674–679. Springer, 2009.
[30] Yihong Zhao, Prasad M. Deshpande, and Jeffrey F. Naughton. An array-based algorithm for simultaneous multidimensional aggregates. In SIGMOD, pages 159–170, 1997.