Table. Antiviral activity of A218 and Vap against RV/EV infection.

Virus types	A218	Vap
RV-A18	63	3.6
RV-A16	44	37
RV-A39	45	3.2
RV-A45	42	> 1,000
RV-B14	73	30
RV-B52	77	34
RV-B69	43	33
RV-C15	19	> 10,000
EV-A71	41	7,300
CV-A6	66	340
EV-B3	53	> 10,000
CV-B4	25	4,000
EV-D68	60	210

Figure. Therapeutic effect of A218 on survival rate in CVB3-infected mice.

Conclusion. A218 is a promising therapeutic agent for improving the exacerbation of pathological conditions caused by RV infection. Nonclinical package including GLP-Toxo also supports the ongoing first-in-human study of A218.

Disclosures. Toshiyuki Matsui, MPharm, Kyorin pharmaceutical Co., LTD (Employee) Motomichi Fujita, PhD, Kyorin Pharmaceutical Co., Ltd. (Employee) Yuji Ishibashi, PhD, Kyorin Pharmaceutical Co., ltd. (Employee) Typhoon Nomanbhoy, PhD; AktivX Biosciences (Other Financial or Material Support, Full time employee of Actixin, a wholly owned subsidiary of Kyorin Pharmaceuticals) Jonathan S. Rosenblum, PhD, AktivX Biosciences (Employee) Michiaki Nagasawa, PhD, Kyorin Pharmaceutical Co., Ltd (Employee)

Session: O-28. Practice Issues

Background. In October 2015, CMS began requiring U.S. hospitals to report compliance with the Severe Sepsis/Septic Shock Early Management Bundle (SEP-1). We evaluated the impact of SEP-1 implementation on sepsis treatment patterns and outcomes using detailed clinical data from diverse hospitals.

Methods. We conducted a quasi-experimental interrupted time-series analysis of adults admitted to 114 hospitals in the Cerner HealthFacts dataset from October 2013-December 2017 with suspected sepsis (defined by blood culture orders, SIRS criteria, and acute organ dysfunction) within 24 hours of hospital arrival. The primary outcome was quarterly short-term mortality rates (in-hospital death or discharge to hospice). Secondary outcomes included lactate testing and administration of anti-MRSA or anti-Pseudomonal beta-lactam antibiotics within 24 hours of hospital arrival. Generalized estimating equations with robust sandwich variances were used to fit logistic regression models to assess for immediate SEP-1 impact and changes in quarterly trends after October 2015, adjusting for baseline characteristics and severity-of-illness.

Results. The cohort included 117,510 patients with suspected sepsis on admission. Lactate testing rates increased over the study period (61.9% pre-SEP-1 vs 77.9% post-SEP-1) with a significant immediate increase in risk-adjusted testing rates after SEP-1 (OR 1.34, 95% CI 1.04-1.74) (Figure 1). There was also an increase in utilization of anti-MRSA (20.6% pre vs 23.2% post-SEP-1) and anti-Pseudomonal antibiotics (30.1% vs 39.8%), but these trends began before SEP-1 implementation. Unadjusted short-term mortality was similar in the pre vs post-SEP-1 periods (20.3% vs 20.4%). SEP-1 was not associated with either an immediate change (OR 0.94, 95% CI 0.68-1.28) or quarterly trend change (OR 1.00, 95% CI 0.97-1.04) in risk-adjusted short-term mortality (Figure 2).

CDC Prevention Efficacies

Session: O-27. Novel Antimicrobial Agents

Background. Rhinovirus (RV) is a major respiratory virus that poses a threat to immunocompromised people and those with underlying disease. However, there are no approved therapies. Moreover, RV infection cannot be prevented by a vaccine because there are over 100 serotypes. Here we report the pharmacological profile of a novel small molecule host-targeted antiviral (HTA), KRP-A218 (A218). A highly potent and selective inhibitor of phosphatidylinositol 4 kinase beta (PI4KB), a key host factor of RV replication, A218 is undergoing clinical study.

Methods. In vitro antiviral activities of A218 and Vapendavir (Vap), a virus-targeted antiviral, were examined by inhibition of CPE, viral load, or replication. In vivo antiviral activity and pathological analysis of A218 were examined in coxsackievirus B3 (CVB3; belong to the genus enterovirus as with RV)-infected mice as a surrogate model of RV infection as CVB3, unlike RV, replicates very well in both mouse and human tissue. Daily oral dosing of A218 (1-10 mg/kg) was started 2 days post intra-peritoneal infection with RV. Tissue viral load, pancreas pathological change at 4 days post infection, and survival rate up to 14 days were evaluated. PI4KB heterozygous kinase-dead mice (PI4KB KD) were established by a CRISPR-Cas9 system. Viral load and survival rate following viral infection were evaluated in these mice.

Results. A218 showed antiviral activity for RV and enteroviruses (Table) and has a higher barrier to drug resistance than Vap. These results are consistent with expectations for HTAs. Repeated dosing of A218 starting 2 days post infection decreased viral load and improved acute pancreatitis, accompanied by decrease of inflammatory and pancreatitis markers in plasma. Moreover, therapeutic dosing of A218 improved survival rate in a CVB3-infected lethal mouse model (Figure). These results show the first evidence that a PI4KB inhibitor has potent therapeutic efficacy in a severe viral infection model. Similar effects were observed in PI4KB KD, supporting the on-target effect of A218.

134. KRP-A218, an Orally Active and Selective PI4KB Inhibitor with Broad-Spectrum Anti-Rhinovirus Activity, Has Potent Therapeutic Antiviral Activity In vivo

Toshiyuki Matsui, MPharm; Motomochi Fujita, PhD; Yuji Ishibashi, PhD; Typhoon Nomanbhoy, PhD; Jonathan S. Rosenblum, PhD; Michiaki Nagasawa, PhD; Kyorin pharmaceutical Co., Ltd. Shimotsuga-gun, Nogi-machi, Tochigi, Japan; Kyorin Pharmaceutical Co., Ltd. Shimotsuga-gun, Nogi-machi, Tochigi, Japan; AktivX Biosciences, La Jolla, California

Session: O-27. Novel Antimicrobial Agents
Figure 1. Quarterly risk-adjusted rates of A) lactate testing, B) anti-MRSA antibiotic administration, and C) anti-Pseudomonal beta-lactam antibiotic administration within 24 hours of hospital presentation for patients with suspected sepsis before and after SEP-1 implementation in Q4 2015.

Table 1. Weekly Laboratory Monitoring of Antimicrobials (%)

Antimicrobial	CBC	BMP	Liver	Other
Beta-lactams (n=68)	92.2	90.5	83.2	–
Daptomycin (n=5)	96.7	96.7	–	CPK: 96.7
Vancomycin (n=18)	94.4	95.8	–	Trough: 88.5
Micafungin (n=1)	100.0	100.0	100.0	–
Post-Total (n=92)	93.0	92.1	83.6	90.7
Pre-Total (n=91)	63.2	63.3	49.5	73.5
p-value	<0.001	<0.001	<0.001	0.087

Figure 2. Adherence to IDSA Guideline Follow-up Recommendation

Table of values for each parameter:

- ID consult prior to discharge: Pre (n=83) 36 (43.4), Post (n=77) 77 (100), p-value = 0.001
- Follow-up visit within 7-14 days of discharge: Pre (n=83) 26 (31.3), Post (n=77) 72 (93.5), p-value = 0.001
- Follow-up after completing OPAT: Pre (n=83) 51 (61.4), Post (n=77) 67 (87.0), p-value = 0.003

Figure 3. Rates of Clinical Cure

Abstracts • OFID 2021:8 (Suppl 1) • S83