ORIGINAL ARTICLE

GTF2IRD1 on chromosome 7 is a novel oncogene regulating the tumor-suppressor gene TGFβR2 in colorectal cancer

Sho Nambara1 | Takaaki Masuda1 | Yuta Kobayashi1 | Kuniaki Sato1 | Taro Tobo2 | Kensuke Koike1 | Miwa Noda1 | Yushi Ogawa3 | Yousuke Kuroda1 | Shuhei Ito1 | Hidetoshi Eguchi1 | Keishi Sugimachi1,4 | Koshi Mimori1

1Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
2Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
3Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
4Department of Gastroenterological Surgery, National Kyushu Cancer Center, Fukuoka, Japan

Correspondence
Koshi Mimori, Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.
Email: kmimori@beppu.kyushu-u.ac.jp

Funding information
Priority Issue on Post-K computer, Grant/Award Number: hp160219 and hp170227;
JSPS KAKENHI, Grant/Award Number: 15H05707; Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research, Grant/Award Number: JP16K07177, JP16K10543, JP16K19197, JP17K10593, JP17K16454, JP17K16521 and JP17K19608; Eli Lilly Japan K.K. Grant;
OITA Cancer Research Foundation; Daiwa Securities Health Foundation; Grant-in-Aid for Scientific Research on Innovative Areas, Grant/Award Number: 15H0912; Japanese Foundation for Multidisciplinary Treatment of Cancer

Abstract
Chromosome 7q (Ch.7q) is clonally amplified in colorectal cancer (CRC). We aimed to identify oncogenes on Ch.7q that are overexpressed through DNA copy number amplification and determine the biological and clinical significance of these oncogenes in CRC. We identified general transcription factor 2I repeat domain-containing protein 1 (GTF2IRD1) as a potential oncogene using a CRC dataset from The Cancer Genome Atlas with a bioinformatics approach. We measured the expression of GTF2IRD1 in 98 patients with CRC using immunohistochemistry and RT-quantitative PCR (RT-qPCR). The biological effects of GTF2IRD1 expression were explored by gene set enrichment analysis (GSEA). Next, we undertook in vitro cell proliferation and cell cycle assays using siGTF2IRD1-transfected CRC cells. We further investigated the oncogenic mechanisms through which GTF2IRD1 promoted CRC progression. Finally, we assessed the clinical significance of GTF2IRD1 expression by RT-qPCR. GTF2IRD1 was overexpressed in tumor cells and liver metastatic lesions. The GSEA revealed a positive correlation between GTF2IRD1 expression and cell cycle progression-related genes. GTF2IRD1 knockdown inhibited cell proliferation and induced cell cycle arrest in Smad4-mutated CRC. GTF2IRD1 downregulated the expression of the gene encoding transforming growth factor β receptor 2 (TGFβR2), a tumor-suppressor gene in Smad4-mutated CRC. On multivariate analysis, high GTF2IRD1 expression was an independent poor prognostic factor. Clinicopathological analysis showed that GTF2IRD1 expression was positively correlated with liver metastasis. In conclusion, GTF2IRD1 promoted CRC progression by downregulating TGFβR2 and could be a prognostic biomarker on Ch.7q in CRC. GTF2IRD1 could also be a novel oncogene in CRC.

KEYWORDS
cell cycle, colorectal cancer, GTF2IRD1, oncogene, TGFβR2
1 | INTRODUCTION

Colorectal cancer (CRC) is a leading cause of tumor-associated morbidity and mortality worldwide, and its incidence continues to rise.\(^1\)\(^2\) Despite recent advances in therapeutic approaches, including chemotherapy and molecular targeted therapy, relapse is frequently found among patients with CRC, particularly for those with advanced disease.\(^3\)

Intratumor heterogeneity (ITH), defined as molecular and cellular heterogeneity within a single tumor, is thought to cause the development of resistance against chemotherapy and leads to therapeutic failure because the presence of distinct subpopulations of cells with different sensitivities to chemotherapeutic drugs increases the risk of resistance and recurrence.\(^4\) Therefore, identification of oncogenes expressed in all tumor cells within a single tumor is essential for the discovery of promising therapeutic targets despite ITH.

Amplification of chromosome 7 is frequently found in CRC and colorectal adenoma tissue.\(^5\)\(^7\) Moreover, we showed that amplification of the long arm of chromosome 7 (Ch.7q) exists in all regions of a single tumor by undertaking multiregional copy number analysis of tumor tissues in CRC,\(^8\)\(^9\) suggesting that amplification of Ch.7q is a fundamental and predominant event and that this region harbors oncogenes that affect the tumorigenesis of CRC.

We recently established a screening system using a bioinformatics approach with public datasets to identify candidate oncogenes in CRC. Using this system, we identified phosphoserine phosphatase (PSPH) and eIF5-mimic protein 1 (SMP1) as potential oncogenes on Ch.7p in CRC.\(^10\)\(^11\) Furthermore, we found that their expression was significantly associated with cell cycle progression genes and was an independent poor prognostic factor in patients with CRC. This system enables us to comprehensively search for oncogenes in CRC.

In this study, we aimed to identify novel potential oncogenes on Ch.7q in CRC using this screening system and to clarify the biological and clinical significance of the identified oncogenes in CRC.

2 | MATERIALS AND METHODS

2.1 | Selection of candidate genes

We obtained RNA sequencing data and DNA copy number data from 615 patients with CRC from The Cancer Genome Atlas (TCGA) from the Broad Institute’s Firehose (http://gdac.broad institute.org/runs/stddata__2015_08_21/data/COADREAD/20150821/). The RNA sequencing data also included expression profiles from 51 paired normal colon samples. Using these data, we extracted candidate genes from 819 genes on Ch.7q that showed positive correlations between DNA copy numbers and mRNA expression levels (cut-off correlation coefficient, 0.4) (criteria 1) and showed overexpression in tumor tissues compared with normal tissues (more than 2-fold change) (criteria 2).

2.2 | Cell culture

Human CRC cell lines (SW620, COLO205, COLO320, DLD1, HCT116, and LoVo) were purchased from the cell bank at RIKEN BioResource Center (Tsukuba). SW620, COLO205, and DLD1 cells were maintained in RPMI-1640. COLO320 and HCT116 cells were maintained in DMEM. LoVo cells were maintained in Ham’s F12 medium. All media contained 10% FBS with 100 U/mL penicillin and 100 U/mL streptomycin sulfate. All CRC cells were cultured in a humidified 5% CO₂ incubator at 37°C.

2.3 | Total RNA extraction and RT-quantitative PCR

Total RNA from tissues and cell lines was extracted using a modified acid guanidinium thiocyanate-phenol-chloroform extraction (AGPC) method with Isogen (Nippon Gene). Reverse transcription was carried out using 8 µg total RNA with M-MLV reverse transcriptase (Invitrogen), according to the manufacturer’s instructions. Quantitative PCR (qPCR) was undertaken using LightCycler FastStart DNA Master SYBR Green I (Roche Diagnostics) as previously described.\(^12\) The expression levels of general transcription factor 2I repeat domain-containing protein 1 (GTF2IRD1) and transforming growth factor β receptor 2 (TGFβR2) mRNA were normalized to GAPDH mRNA as an internal control. Gene expression was presented as the values relative to the expression level of the cDNA from Human Universal Reference Total RNA (Clontech). The primer sequences for qPCR were as follows:

- GTF2IRD1, forward 5’-GTGCCAGCCAAAAGACACAG-3’ and reverse 5’-TGGCCATTGCACGAGTGAGA-3’;
- TGFβR2, forward 5’-TGGACCTACTCTGTCTGTGGA-3’ and reverse 5’-CCCACAGTGGACACACCAGAGTGA-3’;
- p21, forward 5’-GCCACCTTAGCTCTCTGTTGGA-3’ and reverse 5’-CGGACTGATGAGCCTAGATGAT-3’.

We aimed to identify novel potential oncogenes on chromosome 7q in colorectal cancer (CRC). A, Schematic diagram of the strategy for candidate oncogene selection. Criteria 1: Positive correlations between DNA copy numbers and mRNA expression levels (cut-off correlation coefficient, 0.4). Criteria 2: Overexpressed in tumor tissues compared with normal tissues (>2-fold change). B, Left, GTF2IRD1 mRNA expression between 615 CRC tissues and 51 normal colon tissues in The Cancer Genome Atlas (TCGA) dataset. Right, GTF2IRD1 mRNA expression in 98 CRC tissues and paired normal colon tissues in our dataset by RT-quantitative PCR. **P < .0005. C, Left, Correlation between GTF2IRD1 copy number and GTF2IRD1 mRNA expression in TCGA dataset. Right, Correlation between GTF2IRD1 copy number and GTF2IRD1 mRNA expression in the Cancer Cell Line Encyclopedia dataset. R, Pearson’s correlation coefficient. D, Immunohistochemical staining for GTF2IRD1 in normal colon and tumor tissues (left), and liver metastatic lesion tissues (right) in the same patients. Original magnification, 40× and 200×. E, Gene set enrichment analysis of the expression of GTF2IRD1 and cell cycle-related genes using reference gene sets in the CRC dataset. KEGG, Kyoto Encyclopedia of Genes and Genomes; N, normal tissue; NES, Normalized Enrichment Score; T, tumor tissue.
(A) 819 genes on chromosome 7q in TCGA dataset

Criteria 1

105 genes

Criteria 2

8 genes

GTF2IRD1

(B)箱型图和柱状图比较

GTF2IRD1/GAPDH

Normal (n = 61) Tumor (n = 615)

Normal (n = 98) Tumor (n = 98)

(C) GTF2IRD1 copy number

GTF2IRD1 mRNA expression (log2)

R = 0.48
P < .005

R = 0.35
P < .05

(D) CRC tissue Liver

#1

N

T

#2

N

T

(E) KEGG_CELL_CYCLE

Enrichment score

NES: 1.7011458
P-value: .03364496
GAAGGTAGAGCTTGGGCAGG-3′; and GAPDH, forward, 5′-TTGGATCGTGGAAGGACTCTA-3′ and reverse, 5′-TGTCATATTTGGCAGGTT-3′.

2.4 | Protein extraction

For total protein extraction, cells were lysed in lysis buffer (25 mmol/L Tris-HCl [pH 7.5], 150 mmol/L NaCl, 0.2 mmol/L EDTA, 0.1% NP-40, 5% glycerol, and proteinase inhibitor cocktail).

2.5 | Immunohistochemical analysis

Immunohistochemistry for GTF2IRD1 in CRC cases with liver metastasis was carried out on formalin-fixed, paraffin-embedded tissues as previously described. The primary Ab against GTF2IRD was used at a dilution of 1:100. Rabbit polyclonal Abs to GTF2IRD were purchased from Sigma-Aldrich. Tumor histology was independently reviewed by an experienced research pathologist (T.T.) at Kyushu University.

2.6 | Immunoblotting analysis

Immunoblotting analysis was carried out as previously described. Briefly, equal amounts of protein (35 μg) were electrophoresed on 4%-20% Tris-glycine gels and then electroblotted onto Immobilon-P Transfer Membranes (Merck Millipore) at 70 V for 4 hours at room temperature. Nonspecific binding sites were blocked with blocking buffer (TBS and 0.1% Tween-20 with 5% nonfat milk powder) for 1 hour at room temperature, and the blots were incubated with specific primary Abs in blocking buffer (anti-GTF2IRD1, anti-TGFβRI, and anti-phospho-cyclin-dependent kinase [CDK] 2 [Tyr15] Abs at a 1:250 dilution; anti-phospho-Smad2, anti-Smad2, anti-p21, and anti-phospho-cyclin-dependent kinase [CDK] 2 [Tyr15] Abs at a 1:1000 dilution) and anti-β-actin Abs at a 1:1000 dilution) for 1 hour at room temperature. After washing, the blots were incubated with an appropriate secondary Ab conjugated with HRP for 1 hour at room temperature. After washing, the detection was undertaken using an ImageQuant LAS 4000 Mini system (GE Healthcare Japan). Rabbit polyclonal Abs targeting GTF2IRD1 were purchased from Atlas Antibodies. Rabbit polyclonal Abs targeting TGFβRII2 and mouse mAbs to β-actin were purchased from Santa Cruz Biotechnology. Rabbit polyclonal Abs targeting phospho-Smad2, Smad2, p21, and pRb were purchased from Cell Signaling Technology. Rabbit polyclonal Abs targeting BMPR1b were purchased from GeneTex. Rabbit polyclonal Abs targeting phospho-CDK2 (Tyr15) were purchased from Abcam. Protein concentrations were quantified using Bradford protein assays.

2.7 | GTF2IRD1 siRNA transfection

GTF2IRD1-specific siRNA (Silencer Predesigned siRNA: sense CAUCGUCCAUAGCAAGUCATT and antisense UGACAUUGUCAUGGAGAUGGA) and negative control siRNA (Silencer Negative Control 1 siRNA) were purchased from Ambion. Small interfering RNA oligonucleotides were transfected into SW620 or COLO205 cells using Lipofectamine RNAiMax (Invitrogen) according to the manufacturer’s instructions.

2.8 | Colony formation assay

Cells (1000 cells/well) were seeded in 6-well plates. After incubation for 24 hours followed by siRNA transfection, the cells were cultured for an additional 14 days, and the colonies were stained using a Differential Quik Stain Kit (Sysmex) according to the manufacturer’s instructions. Visible colonies were photographed using a Chemiluminescence Imaging FUSION SOLO S (VILBER). Colony counts were determined using ImageJ software (NIH).

2.9 | Cell proliferation assay

Colorectal cancer cell proliferation was assessed using an MTT assay kit (Roche Applied Science) as previously described. After incubation for 24 hours, followed by siRNA transfection, the cells were cultured for an additional 0-5 days, and the absorbance of the samples was measured.

2.10 | Cell cycle assay

Nocodazole (an inhibitor of tubulin assembly; 5 μg/mL) was added 48 hours after siRNA transfection, and the cells were incubated for an additional 16 hours. Cells were harvested, washed with PBS, and fixed in ice-cold 70% ethanol at −20°C overnight. Samples were then washed with PBS and stained with propidium iodide containing RNase A for 20 minutes at 37°C. Cell cycle distribution was measured by flow cytometry (Sony).
2.11 | In vitro invasion assay

Cell invasion capacities were assessed using the BD BioCoat Tumor Invasion System, 24 Multiwell (BD Bioscience) as previously described.\(^1\)

2.12 | Patients with CRC and collection of clinical samples

Primary CRC samples and paired normal tissues were obtained from 98 patients who underwent surgery at Kyushu University Beppu Hospital and affiliated hospitals from 1992 to 2007. All patients had a histological diagnosis of CRC and were closely followed at 3-month intervals. The median follow-up period was 3.0 years. All patients were treated in accordance with the Japanese Society of Cancer of the Colon and Rectum Guidelines for the Treatment of Colorectal Cancer. Written informed consent was obtained from all patients, and the Institutional Review Board of our university approved this study. Sample collection was carried out as previously described.\(^1\) Data on patient age, sex, histology, tumor depth of invasion, lymph node metastasis, lymphatic invasion, venous invasion, liver metastasis, and clinical stage were obtained from clinical and pathological records.

2.13 | Cancer Cell Line Encyclopedia data analysis

We obtained normalized mRNA expression data and DNA copy number data from 58 available CRC cell lines from the Cancer Cell Line Encyclopedia (CCLE) dataset (http://www.broadinstitute.org/ccle/home). Candidate gene mRNA expression and DNA copy number data were extracted from this reference.

2.14 | Gene set enrichment analysis

The correlations between GTF2IRD1 expression and previously annotated gene expression signatures were analyzed by applying gene set enrichment analysis (GSEA).\(^1\) We acquired CRC expression profiles from the NCBI’s Gene Expression Omnibus database (accession code GSE7963) and analyzed the expression profiles using GSEA. Gene sets of GTF2IRD1 targets were extracted from C2 curated gene sets in the Broad Institute database (http://www.broadinstitute.org/gsea/msigdb/collections.jsp).

2.15 | The Cancer Genome Atlas data analysis

Paired RNA sequencing and survival data of 620 available patients with CRC were obtained from TCGA (http://cancergenome.nih.gov/). GTF2IRD1 mRNA expression, Smad4 mutation status, and survival data were extracted from this reference.

2.16 | Statistical analysis

For continuous variables, data are expressed as mean ± SD, and statistical analyses were carried out using Student’s t tests. The degree of linearity was estimated by Pearson’s correlation coefficient. Categorical variables were compared using \(\chi^2\) tests or Fisher’s exact tests. Overall survival was estimated using the Kaplan-Meier method, and survival curves were compared using log-rank tests. Based on the levels of GTF2IRD1 mRNA expression in our dataset, cases were divided into 2 groups by the minimum \(P\) value approach, a comprehensive method to find the optimal risk separation cut-off point in continuous gene expression measurement.\(^1\) Data analyses were undertaken using JMP 12 software (SAS Institute) and R software version 3.1.1 (The R Foundation for Statistical Computing).\(^1\) Clinicopathological factors and clinical stages were classified using the TNM system of classification.

3 | RESULTS

3.1 | GTF2IRD1 is a potential oncogene in CRC

We identified 8 genes that satisfied the criteria described above. Among the 8 genes, we focused on GTF2IRD1 (Figure 1A) because this gene has been reported to promote mammary tumor growth.\(^1\) GTF2IRD1 mRNA expression in tumor tissues was 4.57-fold higher than that in normal tissues (\(P < .0005\); Figure 1B). GTF2IRD1 mRNA expression and copy numbers were positively correlated in TCGA dataset (\(R = .48, P < .001\); Figure 1C). Consistent with this result, there was a significant positive correlation between GTF2IRD1 mRNA expression and copy numbers in the CCLE dataset (\(R = .35, P < .05\); Figure 1C). Next, we undertook immunohistochemical analysis to confirm GTF2IRD1 protein expression in CRC tumor cells from our hospital. GTF2IRD1 was stained more intensely in the nuclei and cytoplasm of CRC tumor cells than in those of normal colon cells (Figure 1D). Notably, GTF2IRD1 showed similar strong staining in tumor cells from liver metastatic lesions from the same patients (Figure 1D). Moreover, RT-qPCR analysis also showed that GTF2IRD1 mRNA expression in tumor tissues was significantly higher than that in paired normal tissues (\(P < .0005\); Figure 1B). Indeed, GTF2IRD1 mRNA expression levels in tumor tissues were higher than those in normal tissues in 91.3% of 98 patients with CRC. In addition, GSEA revealed a positive correlation between GTF2IRD1 mRNA expression and the expression of a gene set involved in cell cycle progression (\(P < .05\); Figure 1E). These findings suggested that GTF2IRD1 was a novel oncogene in CRC.
3.2 | GTF2IRD1 promotes proliferation of CRC cells

The results of GSEA motivated us to investigate whether GTF2IRD1 regulated cell cycle progression and consequent tumor proliferation. Accordingly, RT-qPCR analysis was undertaken to quantify GTF2IRD1 mRNA expression in several CRC cell lines. Endogenous GTF2IRD1 mRNA expression was higher in SW620 and COLO205 cells (Figure 2A). Therefore, SW620 and COLO205 cells were selected for subsequent experiments. To examine the biological roles of GTF2IRD1 in CRC, we carried out knockdown experiments using siRNA. siGTF2IRD1 induced significant downregulation of GTF2IRD1 mRNA expression in SW620 and COLO205 cells (Figure 2B). Immunoblotting analysis confirmed a substantial decrease in GTF2IRD1 protein in siGTF2IRD1-transfected SW620 and COLO205 cells (Figure 2B).

The effects of GTF2IRD1 on proliferation in CRC were examined by colony formation assays and MTT assays. GTF2IRD1 knockdown significantly reduced colony formation (Figure 2C). The MTT assays showed that GTF2IRD1 knockdown significantly inhibited cancer cell proliferation (Figure 2D). In contrast, GTF2IRD1 knockdown did not affect invasion potential (Figure S1).

3.3 | GTF2IRD1 promoted cell cycle progression in CRC cells

Next, we undertook cell cycle analysis. GTF2IRD1 knockdown significantly decreased the S phase fraction (Figure 3A). Furthermore, there was a significant increase in the G1/S phase fraction in GTF2IRD1 knockdown cells in the presence of nocodazole, which prevents reentry of cells into G1 phase (Figure 3B). Immunoblotting analysis showed a substantial increase in phosphorylation of CDK2 at Tyr15 and decrease in phosphorylation of Rb, indicating G1 arrest, in GTF2IRD1-knockdown cells (Figure 3C). Taken together, these data indicated that GTF2IRD1 promoted cell proliferation by promoting cell cycle progression in CRC.

3.4 | GTF2IRD1 downregulates TGFβR2

Expression of TGFβR2, a well-known tumor suppressor gene in CRC, is downregulated by GTF2IRD1 in mouse embryonic fibroblasts.

We initially evaluated the expression of this gene using siGTF2IRD1-transfected SW620 and COLO205 cells. TGFβR2 mRNA and protein expression levels were significantly higher in siGTF2IRD1-transfected cells than in mock-transfected cells (Figure 4A,B). To further test whether TGFβR2 was a downstream target of GTF2IRD1, we measured phospho-Smad2 levels in GTF2IRD1-knockdown cells. Immunoblotting analysis showed that phospho-Smad2 levels were significantly higher in siGTF2IRD1-transfected cells. Furthermore, there was a strong increase in p21 mRNA and protein expression (Figure 4A,B), which is upregulated by activation of TGFβ. These data indicated that GTF2IRD1 downregulated membrane TGFβR2 levels, resulting in reduced TGFβ activity.

| TABLE 1 Univariate and multivariate analysis of clinicopathological factors affecting overall survival rate in colorectal cancer patients |
|---------------------------------|----------------|----------------|----------------|
| Factor | Univariate analysis | Multivariate analysis |
| | RR | 95% CI | P value | RR | 95% CI | P value |
| Age, >65/≤65 years | 1.853 | 0.843-4.178 | .124 | - | - | - |
| Sex, male/female | 2.027 | 0.856-5.568 | .112 | - | - | - |
| Histology grade: well, moderate/others | 0.188 | 0.071-0.651 | .012* | 0.275 | 0.091-1.059 | .059 |
| T factor, ≤SS/≥SE | 0.193 | 0.078-0.438 | <.001* | 0.512 | 0.181-1.389 | .189 |
| Lymph node metastasis, absent/present | 0.189 | 0.069-0.449 | <.001* | 0.581 | 0.187-1.669 | .314 |
| Lymphatic invasion, absent/present | 0.349 | 0.154-0.768 | .009* | 0.633 | 0.235-1.703 | .362 |
| Venous invasion, absent/present | 0.225 | 0.101-0.534 | .001* | 0.392 | 0.144-1.072 | .068 |
| Liver metastasis, absent/present | 0.091 | 0.041-0.219 | <.001* | 0.229 | 0.074-0.691 | .009* |
| GTF2IRD1 mRNA expression, low/high | 0.269 | 0.089-0.664 | .003* | 0.336 | 0.103-0.914 | .032* |

Abbreviations: CI, confidence interval; RR, relative risk; SE, serosa; SS, subserosa.*Statistically significant.
Bone morphogenetic protein (BMP) is a member of the TGFβ superfamily, and BMPR1b is a BMP signal receptor. It is well known that TGFβ and BMP signals play an opposing role in kidney disease and bone formation. These motivated us to assess the expression of BMPR1b by GTF2IRD1-knockdown experiments. Levels of BMPR1b expression were significantly lower in siGTF2IRD1-transfected cells than in mock-transfected cells (Figure S2C). This result suggested that GTF2IRD1 upregulated membrane BMPR1b levels.

3.5 GTF2IRD1 promotes proliferation of Smad4-mutated CRC cells

It is well known that the Smad signaling pathway is composed of the TGFβR2, TGFβR1, and Smad proteins. The cytoplasmic Smad2 and Smad3 proteins are phosphorylated by TGFβ signal through TGFβR2 and TGFβR1, which allows them to form a heteromeric complex with Smad4. This Smad complex is translocated into the nucleus and activates gene transcription, including p21. Our experimental data showed that GTF2IRD1 downregulated TGFβR2 expression, resulting in the downregulation of phospho-Smad2 and p21 expression. However, SW620 and COLO205 harbor loss of function mutation of Smad4, indicating that the TGFβ signal pathway is inactivated in these cells. Thus, we undertook the cell proliferation assay and immunoblotting analysis using Smad4-wild CRC cells, COLO320, whose endogenous GTF2IRD1 mRNA expression was near to SW620 and COLO205 cells (Figure 2A). Unexpectedly, GTF2IRD1 knockdown did not upregulate colony formation (Figure S2A). The MTT assays showed that GTF2IRD1 knockdown did not promote cancer cell proliferation (Figure S2B). The TGFβR2 and phospho-Smad2 protein expression levels in Smad4-wild cells was higher as well as Smad4-mutated cells, but p21 protein expression levels were lower in siGTF2IRD1-transfected WT cells than in mock-transfected WT cells (Figure S2C), indicating that GTF2IRD1 downregulated TGFβR2 expression, resulting in reduced p21 expression in Smad4-mutated CRC, but not in Smad4-wild CRC.

3.6 High expression of GTF2IRD1 mRNA predicts poor prognosis in CRC patients

Because our experimental data suggested that GTF2IRD1 was associated with tumor aggressiveness in CRC, we assessed the prognostic and clinical significance of GTF2IRD1 mRNA expression in CRC. First, we evaluated the survival rates according to GTF2IRD1 mRNA expression in patients with CRC. The overall survival rate in patients in the high GTF2IRD1 mRNA expression group was significantly lower than that in patients in the low expression group in our dataset (P < .0005; Figure 4C). In the univariate analysis, poor histology, higher T factor (≥SE), lymph node metastasis, lympho-vascular invasion, liver metastasis, and high GTF2IRD1 mRNA expression were significantly associated with a lower overall survival rate (Table 1). The multivariate analysis indicated that liver metastasis (P < .05) and high GTF2IRD1 mRNA expression (P < .05) were independent poor prognostic factors in CRC (Table 1). Also, the survival rates according to Smad4 mutation status in patients with CRC were examined using TCGA dataset because our experimental data suggested that GTF2IRD1 showed malignant potential in Smad4-mutated CRC. As expected, the overall survival rate in patients in the high GTF2IRD1 mRNA expression group was significantly lower than that in patients in the low expression group in Smad4-mutated CRC cases (Figure S3A). In Smad4-wild CRC cases, there was no significant difference in the overall survival rate between high and low GTF2IRD1 mRNA expression group (Figure S3B). These results imply that GTF2IRD1 acts as an oncogene in the Smad4-mutated CRC case, but not in the Smad4-wild CRC case.

Factors	Low (n = 45)	High (n = 53)	P value
Age (years)			
<65	16 (35.6)	24 (45.3)	.329
≥65	29 (64.4)	29 (54.7)	
Sex			
Male	32 (71.1)	31 (58.5)	.194
Female	13 (28.9)	22 (41.5)	
Histology			
Well/ moderate	42 (93.3)	49 (92.4)	.866
Others	3 (6.7)	4 (7.6)	
Depth of invasion			
≤SS	28 (62.2)	32 (60.4)	.852
≥SE	17 (37.8)	21 (39.6)	
Lymph node metastasis			
Absent	29 (64.4)	27 (50.9)	.178
Present	16 (35.6)	26 (49.1)	
Venous invasion			
Absent	38 (84.4)	43 (81.1)	.666
Present	7 (15.6)	10 (18.9)	
Liver metastasis			
Absent	44 (97.8)	44 (83.0)	.016*
Present	1 (2.2)	9 (17.0)	
UICC TNM stage			
I, II	27 (60.0)	25 (47.2)	.205
III, IV	18 (40.0)	28 (52.8)	

Abbreviations: SE, serosa; SS, subserosa.
*Statistically significant.
3.7 | Clinicopathological significance of GTF2IRD1 mRNA expression in CRC

Next, we examined the association between GTF2IRD1 mRNA expression and clinicopathological factors in patients with CRC from our hospital (Table 2). The high GTF2IRD1 mRNA expression group (n = 53) had a higher frequency of liver metastasis (P < .05) compared with the low expression group (n = 45), suggesting that CRC cells with high expression of GTF2IRD1 should grow faster than with the low expression at metastatic regions, including liver, resulting in early clinical detection of metastasis of GTF2IRD1-high expressed CRC cells because GTF2IRD1 can facilitate cell proliferation of CRC. There were no significant associations between GTF2IRD1 mRNA expression and age, sex, poor histology, depth of invasion, lymph node metastasis, lymphatic invasion, venous invasion, or clinical stage.

4 | DISCUSSION

In this study, we identified GTF2IRD1 as a driver gene on Ch.7q of CRC using our bioinformatics approach and determined the biological and clinical significance of GTF2IRD1 expression in CRC. To the best of our knowledge, this is the first study to provide evidence that GTF2IRD1 might act as an oncogene in CRC.

GTF2IRD1 is a member of the GTF2I gene family, which encodes a set of multifunctional transcription factors. GTF2IRD1 is located in the Williams-Beuren syndrome critical region 7q11.23. This syndrome is a genetic disorder associated with multiple systemic abnormalities, including craniofacial dysmorphism and several symptoms, such as hypertension and anxiety. Additional studies have reported that there is a positive correlation between the expression of GTF2IRD1 and that of cell cycle progression-related genes and genes involved in the noncanonical Wnt-calcium pathway, which is known to modulate migration. Consistent with these data, our GSEA revealed that GTF2IRD1 expression in CRC was positively correlated with cell cycle-related gene sets, and in vitro analysis showed that GTF2IRD1 promoted cell cycle progression and consequently accelerated cell proliferation.

Our clinical study showed that GTF2IRD1 was overexpressed due to copy number amplification at Ch.7q in CRC. The expression of GTF2IRD1 was positively associated with the malignant pathological phenotype. Furthermore, high expression of GTF2IRD1 was an independent poor prognostic factor in CRC. Huo et al revealed that high GTF2IRD1 expression correlated with poor overall survival in patients with breast cancer, lung cancer, and ovarian cancer. These clinical findings strongly supported that GTF2IRD1 is a tumor-promoting oncogene in human cancers, including CRC. Moreover, high GTF2IRD1 expression could be a novel biomarker of poor prognosis in patients with CRC.

Next, we assessed the mechanisms through which GTF2IRD1 promoted CRC progression. We found that GTF2IRD1 downregulated TGFβR2 expression, resulting in reduced TGFβ activity in Smad4-mutated CRC (Figure 4D). Our schema was strongly supported by the fact that suppression of TGFβ activity accelerated cell cycle progression and consequent cell proliferation. Mutational inactivation of TGFβR2 occurs in approximately 30% of CRCs and promotes the formation of CRC by inhibiting the tumor-suppressor activity of the TGFβ signaling pathway. In a recent paper, GTF2IRD1 was reported to repress obesity-associated adipose tissue fibrosis and improve systemic glucose homeostasis by suppressing the TGFβ signaling pathway.

Loss of chromosome 18q21 including Smad4 has been detected in up to 60% of CRC, and Smad4 was reported to harbor loss of function mutation frequently in CRC, suggesting that Smad4 is dysfunctional in the majority of CRC. Ijichi et al reported that p21 was upregulated through Smad2/3-dependent transcriptional activation through a Smad4-independent manner in Smad4-null pancreatic cancer cells. This report suggested a novel mechanism of p21 regulation that Smad4 is not involved. In our study, p21 expression was downregulated in Smad4-mutated CRC cells, but not in Smad4-wild CRC cells, suggesting that GTF2IRD1 acts as an oncogene possibly in a Smad4-independent manner in Smad4-mutated CRC cases, but not in Smad4-wild CRC cases. Survival analysis according to Smad4 mutation status supported our hypothesis described above. Our results and the reports suggested that downregulation of TGFβR2 could be an important pathway in Smad4-mutated CRC formation and progression, but not in Smad4-wild CRC, resulting in the difference of malignant phenotype between Smad4-mutated and Smad4-wild CRC. Further studies will be required to confirm this.

Recently, some reports have focused on the cross-talk between TGFβ signal and the BMP signaling pathway in the progression of cancers. BMP7 attenuates TGFβ-mediated tumor suppression in proliferation or invasion in prostate cancer or breast cancer respectively. In our study, GTF2IRD1 downregulated TGFβR2, but upregulated BMPR1b expression in CRC cells, suggesting that the upregulation of BMPR1b by GTF2IRD1 might indirectly decrease TGFβR2 expression, resulting in suppression of TGFβ signal (Figure 4D).

Some limitations exist in this study. First, only COLO320 was available as Smad4-wild CRC cells for in vitro analysis. Second, we could not identify the novel signal mediator regulating p21 instead of Smad4. Further in vitro and in vivo experiments are required to clarify these mechanisms.

In summary, our study identified GTF2IRD1 as a novel oncogene on Ch.7q and showed that GTF2IRD1 promoted cell cycle progression by downregulation of TGFβR2 in CRC. Furthermore, because overexpression of GTF2IRD1 due to copy number amplification of Ch.7q is considered to be a universal driver event present in all CRC cells, GTF2IRD1 could be a therapeutic target to overcome ITH in patients with CRC.

ACKNOWLEDGMENTS

This study used the supercomputing resource provided by the Human Genome Center, Institute of Medical Science, University of Tokyo (http://sc.hgc.jp/shirokane.html). We thank M. Oshiumi, M. Utou, K. Oda, M. Kasagi, S. Sakuma, N. Mishima, and T. Kawano for their excellent technical assistance. This work was supported in part by the
following grants and foundations: Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (grant nos. JP16K07177, JP16K10543, JP16K19197, JP17K16454, JP17K16521, JP17K10593, and JP17K19608); OITA Cancer Research Foundation; Daiwa Securities Health Foundation; Grant-in-Aid for Scientific Research on Innovative Areas (grant no. 15H0912); Priority Issue on Post-K computer (grant nos. hp170227, hp170227, and hp160219); JSPS KAKENHI (grant no. 15H05707); Eli Lilly Japan KK Grant; and the Japanese Foundation for Multidisciplinary Treatment of Cancer.

DISCLOSURE
No potential conflicts of interest were disclosed.

ORCID
Sho Nambara https://orcid.org/0000-0001-7643-3636
Takaaki Masuda https://orcid.org/0000-0002-6341-2438
Kuniaki Sato https://orcid.org/0000-0001-6014-1911
Keishi Sugimachi https://orcid.org/0000-0001-8768-5388
Koshi Mimori https://orcid.org/0000-0003-3897-9974

REFERENCES
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69-90.
2. Takahashi Y, Sugimachi K, Yamamoto K, et al. Japanese genome-wide association study identifies a significant colorectal cancer susceptibility locus at chromosome 10p14. Cancer Sci. 2017;108:2239-2247.
3. DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252-271.
4. McGranahan N, Swanton C. Biological and therapeutic impact of intra-tumor heterogeneity in cancer evolution. Cancer Cell. 2015;27:15-26.
5. Hoo Y, Su T, Cai Q, Macara IG. An in vivo gain-of-function screen identifies the Williams-Beuren syndrome gene GTF2IRD1 as a mammary tumor promoter. Cell Rep. 2016;15:2089-2096.
6. Kuo CC, Chang WC, Chiou CC, et al. The TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci. 2013;124:243-254.
7. Takeuchi Y, Fujii Y, Wu M, et al. BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009.
35. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330-337.

36. Ijichi H, Otsuka M, Tateishi K, et al. Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta. Oncogene. 2004;23:1043-1051.

37. Yang S, Zhong C, Frenkel B, et al. Diverse biological effect and Smad signaling of bone morphogenetic protein 7 in prostate tumor cells. Cancer Res. 2005;65:5769-5777.

38. Naber HP, Wiercinska E, Pardali E, et al. BMP-7 inhibits TGF-beta-induced invasion of breast cancer cells through inhibition of integrin beta(3) expression. Cell Oncol. 2012;35:19-28.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Nambara S, Masuda T, Kobayashi Y, et al. GTF2IRD1 on chromosome 7 is a novel oncogene regulating the tumor-suppressor gene TGFβR2 in colorectal cancer. Cancer Sci. 2020;111:343–355. https://doi.org/10.1111/cas.14248