The aim of this work was to provide a characterisation of volatile constituents from different commercial batches of henna (Lawsonia inermis) leaves of different geographic origin. Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC–MS) was used for the purpose. A total of 72 components were identified by GC–MS in the headspace of different henna samples which proved to differ considerably from each other, because they were characterised by different classes of components, mainly aliphatic compounds (9.0–64.7%), terpenoids (5.8–45.5%) and aromatics (7.9–45.2%), with alkanes (0.9–18.5%), aldehydes (2.1–18.8%) and carboxylic acids (3.1–29.3%), monoterpenes (3.4–30.0%) and sesquiterpenes (0.8–23.7%) and phenyl propanoids (0.6–43.1%), being the most abundant, respectively. Major representatives of these groups were n-hexadecane (0.5–4.7%), (2E)-hexenal (0.5–11.7%) and acetic acid (2.8–24.5%), limonene (0.8–14.7%), carvol (3.8–7.1%), geranyl acetone (1.4–7.9%) and (E)-caryophyllene (3.3–8.4%), and (E)-anethole (0.6–35.0%), respectively. We assume that factors such as the manufacturing process, the storage conditions and the different geographic origin of the samples may contribute to such variability.

Keywords: henna; Lawsonia inermis; HS-SPME; GC–MS

1. Introduction

Derived from cut and dried leaves of Lawsonia inermis L. (Lythraceae), henna has been used for centuries for body art, especially in Arabic and Hindu cultures (De Groot 2013). Today, henna is used as a hair dye and for temporary tattoos on the skin, frequently for self-use and easy domestic application, because of its strong colouring properties from the active component lawsone (2-hydroxy-1,4-naphthoquinone) and because people perceive henna as a natural product without the unfavourable effects of chemical colouring agents. Henna use has increased recently because of the fashion of temporary tattoos in both Europe and the USA, even if its use...
in the USA is not approved by the food and drug administration (FDA), which does not classify lawson as a colourant permitted for direct application on the skin (FDA 2012). On the contrary, henna is authorised as a colouring agent for hair, and is widely available in India, the Middle East, Europe, Australia, Canada and the USA.

The polar fraction of \textit{L. inermis} has been characterised in depth in several studies. Polar components identified in henna aerial parts are aldehydes, organic acids, flavonoids, phenolic compounds (Siddiqui & Kardar 2001; Mikhail et al. 2004; Hema et al. 2010) and condensed tannins (Musa & Gasmelseed 2012). Also identified were 1-methyl-1-$H$-pyrrole, indole, aromatic compounds, such as toluene and styrene, and aliphatic compounds, many of them appearing to be unsaturated (Keheyen & Giulianelli 2006). Large amounts of carbohydrates, phenolic glycosides, gums and mucilages were also found (Jain et al. 2010; Hsouna et al. 2011).

Concerning non-polar components, a few studies have reported the occurrence of sterols (Siddiqui & Kardar 2001), aliphatic compounds, aromatic and heterocyclic compounds (Hema et al. 2010; Hsouna et al. 2011), and free and esterified fatty acids (Hsouna et al. 2011; Jacob & Saral 2013).

Studies focused on qualitative analysis of volatile components in henna as a finished product, that is, sold in the market as a hair dye, however, are lacking. Thus, the aim of our work was to provide a characterisation of volatile profiles of henna samples. Starting from different commercial henna hair, hand and tattoo batches found in the retail trade, we performed a headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–mass spectrometry (GC–MS) analysis to characterise the volatile constituents occurring in different commercial samples of different geographic origin. We used SPME technique because this is a non-destructive and non-invasive method to evaluate aroma compounds in different kinds of matrices (Demyttenaere et al. 2001; Hamm et al. 2003; Demyttenaere, Dagher, et al. 2003a, Demyttenaere, Sánchez Martínez, et al. 2003b; Demyttenaere, Morín, et al. 2004a, Demyttenaere, Vanoverschelde, et al. 2004b; Van Lancker et al. 2008). It has been largely applied to aroma analysis in combination with GC and GC–MS, offering solvent-free and rapid sampling with low cost and ease of operation; moreover, it is sensitive, selective and also compatible with low detection limits (Pawliszyn 1997).

2. Results and discussion

The volatile components detected in the headspace of the six henna samples are reported in Table 1, while the relative chromatograms are depicted in Figure S1. A total of 72 components were identified in the headspace of the six henna samples, accounting for 69.0–91.4% of the total peak areas. The samples proved to differ considerably from each other, because they were characterised by different classes of components, mainly aliphatic compounds (9.0–64.7%), terpenoids (5.8–45.5%) and aromatics (7.9–45.2%), with alkanes (0.9–18.5%), aldehydes (2.1–18.8%) and carboxylic acids (3.1–29.3%), monoterpenes (3.4–30.0%) and sesquiterpenes (0.8–23.7%), and phenyl propanoids (0.6–43.1%), being the most abundant, respectively. Major representatives of these groups were \textit{n}-hexadecane (0.5–4.7%), (2E)-hexenal (0.5–11.7%) and acetic acid (2.8–24.5%), limonene (0.8–14.7%), carvol (3.8–7.1%), geranyl acetone (1.4–7.9%) and (E)-caryophyllene (3.3–8.4%), and (E)-anethole (0.6–35.0%), respectively.

Interestingly, acetic acid is a marker of fermentation, which probably occurs during manufacturing of henna. Being a weak acid, acetic acid slightly lowers pH of henna solution (about 5.5), allowing to extend the duration of the colour (Leung & Foster 2003). Therefore, samples with high levels of this compound may be considered of higher stability.
Table 1. Headspace components of henna samples determined by GC–MS.

| N. | Component^a          | RI calc. | RI lit. | Mogano IRAN | Mohini INDIA | Minardi INDIA | Sahara MOROCCO | Zarqa PAKISTAN | Leaves MOROCCO | ID^d |
|----|----------------------|----------|---------|-------------|--------------|---------------|----------------|----------------|----------------|------|
| 1  | Formic acid          | 510      | 512     |             |              |               | 3.3            | 0.3            | Std            |      |
| 2  | Acetic acid          | 644      | 645     | 11.9        | 24.5         | 6.8           | 26.0           | 13.8           | 2.8            | Std  |
| 3  | Hexanal              | 803      | 801     | 0.6         | 0.9          | 1.0           | 1.0            | 6.8            | 2.8            | Std  |
| 4  | Furfural             | 832      | 825     | 1.1         | 1.5          | 0.4           | 3.3            | 0.2            | RI,MS          |      |
| 5  | (2E)-Hexenal         | 858      | 857     | 1.4         | 0.6          | 1.4           | 11.7           | 0.5            | 1.9            | RI,MS|
| 6  | (3Z)-Hexenol         | 863      | 850     |             |              |               | 0.4            | 5.3            | 1.2            | RI,MS|
| 7  | 2-Acetylfuran         | 916      | 900     | 2.4         | 0.5          | 1.0           | 11.7           | 0.5            | 1.9            | RI,MS|
| 8  | 1,2-Butanolid        | 924      | 914     |             |              |               | 0.4            | 5.3            | 1.2            | RI,MS|
| 9  | Benzaldehyde         | 962      | 961     | 2.1         | 0.4          | 2.2           | 0.3            |               | Std            |      |
| 10 | 1-Octen-3-ol         | 986      | 982     | 0.3         |              |               | 1.7            |               | Std            |      |
| 11 | 6-Methyl-5-hepten-2-one | 991   | 981     | 1.2         |              | 1.3           | 1.7            |               | Std            |      |
| 12 | n-Decane             | 1001     | 1000    |             | 0.9          |               | 0.9            |               | Std            |      |
| 13 | (2E,4E)-Heptadienal  | 1014     | 1015    |             |               | 1.2           | 0.9            |               | Std            |      |
| 14 | p-Cymene             | 1024     | 1023    |             |               |               | 3.0            |               | Std            |      |
| 15 | Limonene             | 1031     | 1026    | 14.7        | 1.0          | 3.0           | 2.7            | 0.8            | RI,MS          |      |
| 16 | Benzyl alcohol       | 1042     | 1037    |             | 2.6          |               | 0.7            |               | Std            |      |
| 17 | Fenylacetalddehyde   | 1046     | 1047    | 3.8         | 3.0          | 3.2           | 8.2            | 0.4            | RI,MS          |      |
| 18 | γ-Terpinene          | 1060     | 1065    | 0.8         |              |               | 1.2            |               | Std            |      |
| 19 | 3,5-Octadien-2-one   | 1076     | 1076    |             |              | 2.1            | 1.2            |               | Std            |      |
| 20 | p,α-Dimethylstyrene  | 1089     | 1089    |             |              | 5.0            | 2.1            |               | Std            |      |
| 21 | (E,E)-3,5-Octadien-2-one | 1096   | 1098     |             | 1.0          | 1.0           | 4.7            | 1.5            | Std            |      |
| 22 | Linalool             | 1103     | 1100    | 1.2         | 1.0          | 4.7            | 1.5            |               | Std            |      |
| 23 | n-Nonanal            | 1105     | 1101    |             | 1.1          |               | 3.4            |               | Std            |      |
| 24 | 6-Methyl-3,5-heptadiene-2-one | 1108  | 1110     | 2.0         | 3.5          |               | 3.5            |               | Std            |      |
| 25 | 2-Phenylethanol      | 1117     | 1124    |             |              |               | 0.8            |               | Std            |      |
| 26 | Camphor              | 1121     | 1144    | 0.2         | 0.4          |               | 2.2            |               | Std            |      |
| 27 | Menthone             | 1153     | 1155    | 0.7         | 1.2          |               | 0.7            |               | Std            |      |

(Continued)
Table 1. (Continued).

| N. | Component                      | RI calc. | RI lit. | Mogano | Mohini | Minardi | Sahara | Zarqa | Leaves | ID   |
|----|--------------------------------|----------|---------|--------|--------|---------|--------|-------|--------|------|
| 28 | Isopropyl-1-methylcyclohexanol | 1163     | 1156    | 2.1    |        |         | 2.9    |       |        | RIMS |
| 29 | Terpinen-4-ol                  | 1177     | 1177    | 1.5    | 0.4    |         | Std    |       |        |      |
| 30 | α-Terpineol                    | 1191     | 1183    | 0.6    | 1.5    | 1.3     | Std    |       |        |      |
| 31 | Butoxyethoxyethanol            | 1193     | 1192    | 1.3    |        |         | Std    |       |        |      |
| 32 | Methyl chavicol                | 1196     | 1198    | 1.2    | 1.3    |         | 2.0    |       |        |      |
| 33 | n-Dodecane                     | 1201     | 1200    | 1.9    |        |         | Std    |       |        |      |
| 34 | n-Decanal                      | 1206     | 1205    | 1.8    | 3.6    |         | Std    |       |        |      |
| 35 | β-Cyclocitral                  | 1217     | 1218    | 0.4    | 0.6    | 0.7     | Std    |       |        |      |
| 36 | Pulegone                        | 1236     | 1233    | 1.1    |        |         | 7.1    | RLM   |        |      |
| 37 | Carvol                         | 1242     | 1253    | 4.2    | 3.8    | 7.1     | Std    |       |        |      |
| 38 | Anisaldehyde                   | 1251     | 1249    | 1.0    | 0.3    |         | 3.0    | RLM   |        |      |
| 39 | Linalyl acetate                | 1256     | 1254    | 1.6    |        |         | Std    |       |        |      |
| 40 | (E)-Anethole                   | 1281     | 1279    | 6.6    | 0.6    | 3.8     | 0.6    | 35.0  | Std    |      |
| 41 | n-Tridecane                    | 1294     | 1300    | 0.5    |        |         | Std    |       |        |      |
| 42 | Carvacrol                      | 1299     | 1297    | 0.4    |        |         | Std    |       |        |      |
| 43 | Eugenol                        | 1355     | 1346    | 1.6    | 2.3    | 3.1     | Std    |       |        |      |
| 44 | 3,4-Dimethylacetophenone       | 1358     |         | 2.9    | 2.0    |         |        |       |        |      |
| 45 | α-Copaene                      | 1369     | 1370    | 1.4    | 5.2    | 0.4     | 2.7    | RLM   |        |      |
| 46 | Diphenyl ether                 | 1393     | 1393    | 0.9    |        |         | Std    |       |        |      |
| 47 | n-Tetradecane                  | 1398     | 1400    | 0.9    | 1.1    | 0.7     | 1.2    | 0.9   | RLM   |      |
| 48 | β-Cedrene                      | 1403     | 1400    | 2.5    | 8.4    | 5.0     | 3.3    | Std   |       |      |
| 49 | (E)-caryophyllene              | 1411     | 1414    | 3.8    | 5.2    | 0.4     | 2.7    | RLM   |        |      |
| 50 | Octylcyclohexane               | 1440     | 1439    | 0.3    |        |         | Std    |       |        |      |
| 51 | 2-Methoxynaphthalene           | 1441     | 1433    | 1.5    |        |         | Std    |       |        |      |
| 52 | α-Humulene                     | 1446     | 1447    | 0.3    | 1.5    | 0.7     | Std    |       |        |      |
| 53 | Geranyl acetone                | 1453     | 1453    | 4.2    | 2.5    | 5.4     | 1.4    | 7.9   | 2.5   | RLM  |
| 54 | α-Isomethyl ionone             | 1474     | 1473    | 1.3    |        |         | RLM    |       |        |      |
| N. | Component | RI calc. | RI lit. | Mogano | Mohini | Minardi | Sahara | Zarqa | Leaves | ID |
|----|-----------|----------|--------|--------|--------|---------|--------|-------|--------|----|
| 55 | ar-Curcumene | 1478 | 1477 | 0.7 | 0.7 | 7.9 | 2.3 | RLMS |
| 56 | (E)-β-Ionone | 1482 | 1486 | 1.9 | 1.0 | 2.6 | 1.4 | Std |
| 57 | α-Zingiberene | 1491 | 1492 | 1.0 | RI,MS |
| 58 | n-Pentadecane | 1496 | 1500 | 0.6 | 4.1 | 1.4 | RI,MS |
| 59 | Dihydroactinidiolide | 1517 | 1513 | 5.4 | 2.3 | 6.8 | 4.7 | RLMS |
| 60 | β-Sesquiphellandrene | 1519 | 1518 | RI,MS |
| 61 | Caryophyllenyl alcohol | 1561 | 1569 | 0.4 | 1.7 | RLMs |
| 62 | 2-Methylpentadecane | 1560 | 1562 | 1.2 | RLMS |
| 63 | Caryophyllene oxide | 1570 | 1571 | 2.7 | 5.6 | Std |
| 64 | n-Hexadecane | 1598 | 1600 | 0.5 | 4.7 | 2.5 | 0.6 | Std |
| 65 | Isopropyl dodecanoate | 1622 | 1618 | 5.4 | RI,MS |
| 66 | ar-Turmerone | 1656 | 1660 | 0.5 | RLMs |
| 67 | n-Heptadecane | 1699 | 1700 | 4.4 | 2.0 | Std |
| 68 | n-Octadecane | 1800 | 1800 | 3.0 | Std |
| 69 | Hexahydrofarnesyl acetone | 1836 | 1838 | 1.3 | 1.8 | 0.6 | RLMS |
| 70 | Farnesyl acetone | 1900 | 1895 | 0.3 | 0.2 | RLMS |
| 71 | Methyl palmitate | 1911 | 1909 | 0.1 | 0.5 | RLMS |
| 72 | Methyl oleate | 2094 | 2095 | 0.2 | 0.3 | RLMS |
| | Total identified (%) | 91.4 | 69.6 | 79.3 | 86.6 | 80.6 | 84.7 |
| | Grouped compounds (%) | | | | | | |
| | Aliphatics | 20.7 | 48.0 | 21.2 | 64.7 | 23.7 | 9.0 |
| | Aldehydes | 3.1 | 5.0 | 3.9 | 18.8 | 4.8 | 2.1 |
| | Ketones | 3.1 | 6.6 | 1.3 | 1.7 | | |
| | Esters | 0.3 | 5.4 | 0.8 | | |
| | Alkanes | 2.3 | 11.1 | 3.6 | 6.5 | 2.3 | 0.9 |
| | Carboxylic acids | 11.9 | 24.5 | 6.8 | 29.3 | 13.8 | 3.1 |
| | Aromatic compounds | 17.5 | 12.0 | 10.7 | 9.9 | 7.9 | 45.2 |
| | Terpenoids | 50.9 | 8.1 | 44.7 | 12.03 | 43.7 | 29.3 |
| | Monoterpenes | 15.4 | 1.0 | 3.0 | 2.7 | 5.0 | 0.4 |
| | Hydrocarbons | | | | | | |

(Continued)
| N. Component | Mogano IRAN | Mohini INDIA | Minardi INDIA | Sahara MOROCCO | Zarqa PAKISTAN | Leaves MOROCCO |
|--------------|-------------|--------------|---------------|---------------|---------------|---------------|
| Oxygenated monoterpenes | 14.5 | 2.5 | 10.8 | 2.4 | 14.5 | 16.4 |
| Sesquiterpene hydrocarbons | 8.7 | 14.3 | | | 23.0 | 9.4 |
| Oxygenated sesquiterpenes | 4.5 | 9.4 | 0.8 | 0.5 | 0.8 |
| Norisoprenoids | 2.3 | 2.4 | 3.1 | 1.4 | 0.7 | 2.3 |
| Other terpenoids | 5.4 | 2.3 | 6.8 | 4.7 | | |
| Others | 2.4 | 0.9 | | | 5.3 | 1.2 |

a Compounds are listed in order of their elution from a HP-5MS column.

b Linear retention index on HP-5MS column, experimentally determined using homologous series of C₈–C₃₀ alkanes.

c Relative retention index taken from Adams and NIST 08 libraries for apolar capillary column.

d Identification methods: MS, by comparison of the mass spectrum with those of the computer mass libraries Wiley, Adams, FFNSC2 and NIST 08; RI, by comparison of RI with those reported in the literature (Adams 2007; NIST 08 2008; FFNSC2 2012); STD, by comparison of the retention time and mass spectrum of available authentic standard.
Other components present in noteworthy levels were the sesquiterpenes \textit{ar}-curcumene (7.9\%) and \textit{b}-sesquiphellandrene (7.3\%) in the Zarqa sample (Pakistan) and the lactone dihydroactinidiolide (2.3–6.8\%) in the Mogano (Iran), Mohini (India), Minaridi (India) and Sahara (Morocco) samples.

Multivariate analysis showed that the variability of data was generated mostly by the content of acetic acid, \textit{(E)}-anethole and \textit{(E)}-caryophyllene, as shown in the loading plot (Figure 1(b)). They were correlated with henna samples taking place in the same position of the score plot (Figure 1(a)). Sample 6 from Morocco was correlated with \textit{(E)}-anethole, while samples 2 and 5 from India and Morocco, respectively, were mainly characterised by high levels of acetic acid. Finally, samples 1, 3 and 4, from Iran and Pakistan, respectively, were mostly correlated with sesquiterpenes such as \textit{(E)}-caryophyllene.

3. Materials and methods
See Supplementary materials.

4. Conclusions
Our study found significant variability in the headspace volatile components of the different henna products analysed, confirmed by the principal component analysis. We assume that factors such as the manufacturing process, the storage conditions and the different geographic origin of the samples may contribute to such variability. Results obtained by SPME analysis showed different chromatographic profiles for the six henna samples, leading to the conclusion that the volatile components in the samples of henna are heterogeneous, depending on the different origin and manufacturing process of the samples. Since there are no studies in the literature that offer qualitative and semi-quantitative analysis and comparison of data between different samples of commercial henna to highlight their variability, the results of this project fill a gap in knowledge about this plant derivative that is widely used for cosmetic purposes, but still poorly understood.

Supplementary material
Supplementary material relating to this paper are available online at http://dx.doi.org/10.1080/14786419.2015.1055491, alongside Table S1 and Figure S1.
Acknowledgements

The authors would like to thank Mrs Flavia Gigli for her kind contribution to the GC-MS analysis. They would also like to thank Sheila Beatty for editing the English usage of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

de Groot AC. 2013. Side-effects of henna and semi-permanent ‘black henna’ tattoos: a full review. Contact Dermatol. 69:1–25.

Demyttenaere JCR, Dagher C, Sandra P, Kallithraka S, Verhé R, De Kimpe N. 2003a. Flavour analysis of Greek white wine by solid-phase microextraction-capillary gas chromatography-mass spectrometry. J Chromatogr A. 985:233–246.

Demyttenaere JCR, Moríña RM, De Kimpe N, Sandra P. 2004a. Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J Chromatogr A. 1027:147–154.

Demyttenaere JCR, Sánchez Martínez JJ, Verhé R, Sandra P, De Kimpe N. 2003b. Analysis of volatiles of malt whisky by solid-phase microextraction and stir bar sorptive extraction. J Chromatogr A. 985:221–232.

Demyttenaere JCR, Van Bellegem K, De Kimpe N. 2001. Biotransformation of (R)-(+) - and (S)-(−)-limonene by fungi and the use of solid phase microextraction for screening. Phytochemistry. 57:199–208.

Demyttenaere JCR, Vanoverschelde J, De Kimpe N. 2004b. Biotransformation of (R)-(+) - and (S)-(−)-citronellol by Aspergillus sp. and Penicillium sp., and the use of solid-phase microextraction for screening. J Chromatogr A. 1027:137–146.

Food and drug Administration (FDA). 2012. Temporary Tattoos, Henna/Mehndi, and “Black Henna”. 23 October 2012. (http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/HomeHealthandConsumer/ConsumerProducts/ContactLenses/ucm108569.htm).

Hamm S, Lesellier E, Bleton J, Tchapla A. 2003. Optimization of headspace solid phase microextraction for gas chromatography/mass spectrometry analysis of widely different volatility and polarity terpenoids in olibanum. J Chromatogr A. 1018:73–83.

Hema R, Kumaravel S, Gomathi S, Sivasubramaniam C. 2010. Gas Chromatography-Mass Spectroscopic analysis of Lawsonia inermis Leaves. New York Science J. 3:141–143.

Hsouna AB, Trigui M, Culioli G, Blache Y, Jaoua S. 2011. Antioxidant constituents from Lawsonia inermis leaves: isolation, structure elucidation and antioxidative capacity. Food Chem. 125:193–200.

Jacob PP, Saral AM. 2013. GC-MS Analysis of Lawsonia inermis seed oil. Int J Pharm Pharm Sci. 5:617–618.

Jain VC, Shah DP, Sonani NG, Dhakara S, Patel NM. 2010. Pharmacognostical and preliminary phytochemical investigation of Lawsonia inermis L. leaf. Rom J Biol-Plant Biol. 55:127–133.

Keheyan Y, Giulianelli L. 2006. Identification of historical ink ingredients using pyrolysis-GC-MS. A model study. e-Preserv Sci. 3:5–10.

Leung AY, Foster S. 2003. Encyclopedia of common natural ingredients used in Food, Drugs, and Cosmetics. New York: John Wiley & Sons.

Mikhaeil BR, Badria FA, Maatoq GT, Amer MM. 2004. Antioxidant and immunomodulatory constituents of henna leaves. Z. Naturforsch. 59c:468–476.

Musa AE, Gasmelseed GA. 2012. Characterization of Lawsonia inermis (Henna) as vegetable tanning material. J For Prod Ind. 1:35–40.

Pawliszyn J. 1997. Solid Phase Microextraction: Theory and Practice. New York: Wiley-VCH.

Siddiqui BS, Kardar MN. 2001. Triterpenoids from Lawsonia alba. Phytochemistry. 58:1195–1198.

Van Lancer F, Adams A, Delmulle B, De Saeger S, Moretti A, Van Peteghem C, De Kimpe N. 2008. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit. 10:1127–1133.