Fractalkine and TGF-β1 levels reflect the severity of chronic pancreatitis in humans

Mikihiko Yasuda, Tetsuhide Ito, Takamasa Oono, Ken Kawabe, Toyoma Kaku, Hisato Igarashi, Taichi Nakamura, Ryoichi Takayanagi

AIM: To clarify whether serum chemokine and cytokine levels can become useful biological and functional markers to assess the severity of chronic pancreatitis (CP). This study aimed at clarifying whether serum chemokine and cytokine levels can become useful biological and functional markers to assess the severity of CP.

METHODS: Serum monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta-1 (TGF-β1), and soluble type fractalkine (s-fractalkine) concentrations were examined in patients with CP (n = 109) and healthy controls (n = 116). Severity of disease was classified in patients with CP by a staging system. Relationships between stage-specific various clinical factors and serum MCP-1, TGF-β1, and s-fractalkine levels were investigated. Furthermore, 57 patients with non-alcoholic CP were similarly evaluated.

RESULTS: Patients with CP showed significant higher levels of serum TGF-β1 and s-fractalkine, but not MCP-1, compared to the controls. Serum TGF-β1 in the severe stage and s-fractalkine in the mild and the severe stage of CP significantly increased compared to those of controls. However, it was observed that both TGF-β1 and s-fractalkine levels were affected by alcohol intake. In patients with non-alcoholic CP, serum TGF-β1 showed significant increase in the moderate stage of CP, and serum s-fractalkine revealed significant increase in the early stage of CP.

CONCLUSION: It is suggested that the measurement of s-fractalkine is useful to diagnose early-stage CP. Moreover, the combined determination of both, s-fractalkine and TGF-β1, in human sera may be helpful in evaluating the severity status of CP.

© 2008 The WJG Press. All rights reserved.

Key words: Chronic pancreatitis; Transforming growth factor beta-1; Soluble fractalkine; Monocyte chemoattractant protein-1

INTRODUCTION

Chronic pancreatitis (CP) is a chronic clinical disorder characterized by irreversible damage to the pancreas, the development of histologic evidence of inflammation and fibrosis, and eventually the destruction and permanent loss of exocrine and endocrine tissue[1-4]. Furthermore, patients with long-standing CP are also at a markedly increased risk of developing pancreatic cancer[5]. Unfortunately, simple, indirect measurements of decreased pancreatic function do not show abnormality until CP is considerably advanced. Imaging or function tests may not reveal early CP, and the results of these tests do not necessarily correlate with each other[5-8]. The quest continues for useful biological and functional markers of early-stage CP. Recently, chemokines and...
cytokines have been recognized to be important factors in the progression of CP. A preliminary study by us in a small number of CP patients showed the possibility that measurement of serum soluble type fractalkine (s-fractalkine) may be useful for diagnosing early-stage of CP. Thus, in the current study, using a large number of CP patients classified by severity with a staging system, we investigated whether chemokine and cytokine levels can become useful biological and functional markers of early-stage CP, focusing particularly on monocytic chemoattractant protein-1 (MCP-1), transforming growth factor beta-1 (TGF-β1), and s-fractalkine, which are supposed to be involved in chronic inflammation.

MATERIALS AND METHODS

Patients
One hundred nine patients with CP (63 males and 46 females; age range, 25-81 years; mean, 56.8 years) who fulfilled clinical diagnostic criteria for CP by the Japan Pancreas Society and 116 healthy controls (69 males and 47 females; age range, 26-93 years; mean, 56.5 years) were selected for this study. Patients and healthy controls with recent inflammatory diseases, e.g. infectious diseases, chronic hepatitis, or substantial alcohol consumption were excluded. The study protocol was approved by the ethics committee at Kyushu University.

CP patients were classified according to a staging system reported previously (Table 1). The staging system comprises 6 parameters: exocrine pancreatic function (scored 0-3), pancreatic imaging tests by endoscopic retrograde cholangiopancreatography (ERCP; scored 0-4), glucose metabolism (scored 0-4), pain (scored 0-4), alcohol intake (scored 0-2), and complications associated with CP (scored 0-2). The CP staging system is then subclassified, according to a total score from these 6 grading factors, into mild (total score, 0-3), moderate (total score, 4-7), and severe (total score, ≥ 8).

Laboratory methods
Enzyme-linked immunosorbent assays (ELISAs) were used to determine serum MCP-1, TGF-β1, and s-fractalkine concentrations. Samples were examined with commercial kits according to the manufacturers’ instructions; human MCP-1, human TGF-β1 (Biosource, Camarillo, CA), and s-fractalkine (R&D systems, Minneapolis, MN). MCP-1 and TGF-β1 assays were run according to the protocol that was recommended in the kit. S-fractalkine was measured according to the protocol mentioned below. S-fractalkine was assessed using the basic components required by the manufacturer, and briefly, for the plate preparation, 4 µg/mL of mouse antibody to human fractalkine was used as the capture antibody with 96 well low-cell-binding EIA plates (Nunc, Roskilde, Denmark) in an overnight incubation at 25°C.

Next, the plate was blocked with phosphate buffer saline (PBS) containing 10% fetal bovine serum (Invitrogen, Auckland, New Zealand), biotinylated mouse antibody to human fractalkine (500 µg/mL) was added after serum samples and standard, and were incubated for two hours at 25°C. Recombinant human fractalkine (R&D systems) was used as a standard. After that, the plate was incubated with streptavidin conjugated to horseradish peroxidase (HRP) for 20 min at 25°C in the

Table 1 CP staging system (partial modification of reference 12, 16, 17)

Total score	Severity of chronic pancreatitis
0-3	Mild
4-7	Moderate
> 8	Severe

Sake and shochu are typical Japanese alcoholic beverages, with an ethanol content of about 16% and 25%, respectively. One unit of sake, which contains 29 g of ethanol, represents one Japanese drink.

Exocrine pancreatic function (score, 0-3)
Each of the following abnormalities is scored as 1: Decreased serum level of pancreatic amylase or trypsin, abnormal benthiomide-para amino benzoic acid (BT-PABA) test result, and low fecal chymotrypsin.

0 No abnormalities in the above examination
1 Total score 1 in the above examinations
2 Total score 2 in the above examinations
3 Total score 3 in the above examinations

Pancreatography by endoscopic retrograde cholangiopancreatography (ERCP; score, 0-4)

0 Normal
1 Slightly abnormal (simple dilatation of the main pancreatic duct or localized and irregular dilatation of two to three branches)
2 Mild pancreatitis (diffuse and irregular mild dilatation of the main pancreatic duct or branches, or moderate dilatation of the main pancreatic duct localized in the body and/or tail of the pancreas)
3 Moderate pancreatitis (diffuse and irregular moderate dilatation of the main pancreatic duct or branches, or advanced dilatation of the main pancreatic duct localized in the body and/or tail of the pancreas)
4 Severe pancreatitis (diffuse and irregular advanced dilatation of the main pancreatic duct and branches)

Glucose metabolism (score, 0-4)

0 Normal glucose tolerance (urine glucose negative; postprandial glucose < 160 mg/dL)
1 Slightly impaired glucose tolerance (impaired glucose tolerance after oral glucose loading test; postprandial glucose, > 160 mg/dL, < 200 mg/dL)
2 Mild diabetes mellitus (urine glucose positive after meal; postprandial glucose, > 200 mg/dL, < 300 mg/dL; HbA1c < 7%)
3 Moderate diabetes mellitus (postprandial glucose, > 300 mg/dL; HbA1c 7%-11%)
4 Severe diabetes mellitus (HbA1c > 11%, diabetic retinopathy, or diabetic nephropathy)

Pain (evaluated in the previous 1 yr, score 0-4)

0 No or only slight pain (requires no analgesics)
1 Mild pain (occasional pain but requires no analgesics)
2 Moderate pain (frequent pain attacks, often requires analgesics)
3 Severe (always requires analgesics)
4 Most severe (requires frequent injections of analgesics, and, often, hospitalization)

Alcohol intake (score, 0-2)

0 Less than 180 mL sake1, not every day
1 Less than 540 mL sake, almost every day
2 More than 540 mL sake, almost every day

Complications associated with chronic pancreatitis (score, 0-2)

0 No complications such as pseudocyst and stenosis of the biliary tract
1 Complications that require no treatment
2 Complications that require treatment
Serum MCP-1, TGF-β1, and s-fractalkine concentrations in patients with CP (Figure 1)

Serum MCP-1 levels in patients with CP were not significantly elevated. On the other hand, serum TGF-β1 levels in patients with CP were significantly higher than those of healthy controls (P = 0.029). Furthermore, s-fractalkine levels in CP were also significantly increased when compared to those of healthy controls (P = 0.011). Thus, we next analyzed whether specific grading factors as pancreatic imaging tests, exocrine function, glucose metabolism, pain, alcohol intake, or complications and severity of CP are related to serum MCP-1, TGF-β1, and s-fractalkine concentrations.

Serum MCP-1, TGF-β1, and s-fractalkine concentrations in relation to the severity stage of CP (Figure 2)

First, we examined the MCP-1, TGF-β1, and s-fractalkine levels in each stage of severity. Serum TGF-β1 levels in the severe stage of CP were significantly higher than in healthy controls (P = 0.008). On the contrary, serum s-fractalkine levels in the mild and in the severe stage of CP were significantly elevated compared to healthy controls (P = 0.004 and P = 0.046, respectively). However, the serum MCP-1 level didn’t significantly increase for each stage of severity.

Serum MCP-1, TGF-β1, and s-fractalkine concentrations in relation to imaging test scores in patients with CP (Figure 3)

Serum of MCP-1, TGF-β1, and s-fractalkine levels were analyzed regarding imaging scores. Serum TGF-β1 levels in patients with CP revealed a score of >3 in pancreatic imaging tests and was found to be significantly enhanced when compared to healthy controls (P = 0.0001). On the other hand, serum s-fractalkine levels in patients with a score of 1 and a score of ≥3 were significantly elevated when compared to healthy controls (P = 0.010 and P = 0.041, respectively). However, no relationship was found between serum MCP-1 levels and any level of the imaging tests.
Serum MCP-1, TGF-β1, and s-fractalkine concentrations in chronic pancreatitis

DISCUSSION

Recently, the impact of chemokines and cytokines have been recognized in the progression of chronic inflammatory diseases. However, until now, there are no specific treatments for chronic pancreatitis. In this study, we investigated the serum levels of chemokines and cytokines in patients with chronic pancreatitis.

Serum MCP-1, TGF-β1, and s-fractalkine concentrations in chronic pancreatitis

Serum MCP-1, TGF-β1, and s-fractalkine concentrations in relation to exocrine function test scores in patients with CP (Figure 4)

Serum MCP-1, TGF-β1, and s-fractalkine concentrations were measured by ELISA for each score for the exocrine function test. Healthy control (HC, n = 116), score 0 for exocrine function (E0, n = 33), score 1 for exocrine function (E1, n = 66) and score 2 for exocrine function (E2, n = 12) Bars represent the mean ± SD. aP < 0.05 vs healthy control.

Serum MCP-1, TGF-β1, and s-fractalkine concentrations for each score of alcohol intake in patients with CP (Figure 5)

Serum TGF-β1 and s-fractalkine concentrations were measured by ELISA for each score of alcohol intake. Healthy control (HC, n = 116), score 0 for alcohol intake (A0, n = 57) and score 1 for alcohol intake (A1, n = 52). Bars represent the mean ± SD. aP < 0.05 vs healthy control.
only few reports related to the serum chemokines and cytokines levels in patients with pancreatic diseases, especially CP. Therefore, in the present study, we examined serum MCP-1, TGF-β1, and s-fractalkine concentrations that are supposed to be involved in the progression of chronic inflammatory diseases in patients with CP. In patients with CP, TGF-β1 and s-fractalkine levels, but not MCP-1 levels, were significantly increased compared to healthy controls. CP patients were classified according to severity of disease using a staging system which is based on clinical symptoms and pancreatic functions[12–14] and analyzed for the relationship with those chemokines and cytokines in order to assess the usefulness of these mediators as biological or functional markers of CP.

MCP-1, a family member of C-C chemokines, is known to play an important role in the development of the pancreatic fibrosis in CP. Previously, we reported that MCP-1 is expressed strongly in mild to moderate stages of pancreatic fibrosis in CP model rats, and suggested MCP-1 to be a pro-fibrogenic factor for CP[15,17]. Furthermore, we showed fibrosis of CP is inhibited by blocking MCP-1[18,19]. In the present study, we thus examined whether MCP-1 might be a useful marker in CP. MCP-1 levels in patients with CP, however, were not significantly higher than in healthy controls. Also in previous reports, serum MCP-1 didn’t increase in patients with CP[20]. Consequently, it is thought that serum MCP-1 doesn’t become a useful marker in the diagnosis of CP.

TGF-β1 is a homodimeric, multifunctional cytokine[21]. Until now, it has been generally well understood that TGF-β1 plays an important role in the development of the pancreatic fibrosis in CP[22]. TGF-β1 is thought to be expressed in pancreatic stellate cells (PSC) and acinar cells closer to pancreatic fibrosis, and to regulate the synthesis of collagen from PSC[23,24]. In our results, serum TGF-β1 levels of the patients with CP elevated significantly in the more severe stages of CP, especially in the group with more advanced scores in pancreatic imaging and exocrine function tests. These findings suggest that serum TGF-β1 levels tended to increase significantly in patients with more advanced CP. Previously, Su et al[25] reported the expression of TGF-β1 in pancreatic tissue in WBN/Kob rats which is considered as a CP model, and demonstrated that expression of TGF-β1 and fibronectin showed a peak at 12 wk, whereas pancreatic fibrosis peaked at 16 wk. It was concluded that TGF-β1 may trigger fibrogenesis. Furthermore, Detlefsen et al[26] classified the pancreatic tissue from CP patients into histological staging by an inflammatory process, and showed that TGF-β1 receptors had expressed predominantly in the early to moderate stage of pancreatic fibrosis. Given these data, we had expected that TGF-β1 levels might increase in the progressive process of pancreatic fibrosis for the present study. However, our results showed that TGF-β1 levels are elevated in patients with most advanced CP. On the other hand, interestingly, CP patients with high alcohol consumption showed a significant increase in levels of TGF-β1 (Figure 5). Concerning other organs, such as the liver and lungs, it is well known that the expression of TGF-β1 increases in the tissue of local organs from the effects of alcohol[26,27]. Therefore, in the present study, in order to clarify whether serum TGF-β1 levels might increase by TGF-β1 originated from various organs under the influence of alcohol, we focused on 57 patients with non-alcoholic CP who are not influenced by alcohol, and analyzed similarly the
relationship between TGF-β1 and each factor (Figure 6). For the classification of severity of CP, patients with CP in the moderate stage alone showed a significant increase in serum TGF-β1 compared to healthy controls. Furthermore, in the classification of imaging tests and exocrine function tests, CP patients revealing a moderate progressive stage tended to have higher serum TGF-β1 levels. These results are in accordance with previous reports. That is to say, our results support the idea that serum TGF-β1 levels might increase because the expression of TGF-β1 was elevated in the moderate stage in which fibrosis had been proceeding in a broad range of pancreatic tissue. On the other hand, serum TGF-β1 levels might decrease in severe stages because pancreatic tissue had been already replaced with fibrosis. Taken together, it is suggested that the determination of serum TGF-β1 levels might be useful to diagnose moderate stages in patients with non-alcoholic CP.

Fractalkine/CX3CL1, a family member of CX3C chemokines, has recently been reported to be expressed as a membrane-spanning adhesion molecule that can be cleaved from the cell surface to produce a soluble chemoattractant. The expression of fractalkine has been observed on various cells such as epithelial cells or endothelial cells of several organs. Membrane-bound fractalkine (m-fractalkine) is shed by metalloproteinase, and releases s-fractalkine. M-fractalkine functions as an adhesion molecule, whereas s-fractalkine acts as a chemoattractant and recruits inflammatory cells expressing fractalkine receptors such as monocytes. In inflamed local organs, such as the liver, lungs, and the kidneys, the participation of fractalkine has been recently noted. Furthermore, increased s-fractalkine serum levels have been reported for patients with various chronic inflammatory diseases. However, until now, there are no reports related to fractalkine in pancreatic inflammatory diseases. In the present study, we measured s-fractalkine in the serum of patients with CP. We found serum s-fractalkine levels to be significantly elevated in patients with CP. In classification of severity and pancreatic imaging tests, serum s-fractalkine levels showed significant biferious increase in mild and severe stages. In classification of the exocrine function tests, serum s-fractalkine levels increased in mild stages alone. On the other hand, CP patients with high alcohol consumption showed a significant increase in s-fractalkine levels, similar to those of TGF-β1 (Figure 5). Since the relationship between alcohol and fractalkine was still unclear in organs, including the pancreas, we focused on 57 patients with non-alcoholic CP, and analyzed the relationship between s-fractalkine and each factors, similar to TGF-β1 (Figure 7). In classification of severity and pancreatic imaging tests, only patients with CP in the mild stage alone showed a significant increase in serum s-fractalkine compared to healthy controls. Thus, in patients with non-alcoholic CP, the measurement of serum s-fractalkine may be useful biological and functional markers to diagnose early-stage CP.

In conclusion, it is suggested that the measurement of serum TGF-β1 may be available to diagnose moderate stage of non-alcoholic CP, and that the measurement of serum s-fractalkine may be useful to diagnose early stages of non-alcoholic CP. Therefore, the measurement of a combination of TGF-β1 and s-fractalkine may be helpful to evaluate the status of CP.

Acknowledgments

The authors thank Mr. S E Rife and Mr. H Matsuo for their contribution to this article.

Comments

Background

Chronic pancreatitis (CP) is a chronic clinical disorder characterized by irreversible damage to the pancreas. Unfortunately, simple, indirect measurements of decreased pancreatic function have not shown abnormality until CP is advanced. The quest continues for useful biological and functional markers of early-stage CP. Recently, the roles of chemokines and cytokines have been made clear in the progression of chronic inflammatory diseases. Similarly, chemokines and cytokines have been recognized as important factors in the progression of CP. However, until now, there are only few reports addressing serum chemokine and cytokine levels in patients with pancreatic diseases, especially CP.

Research Frontiers

Recently, it is widely accepted that pancreatic stellate cells are responsible for the progression of pancreatic fibrosis production of an extracellular matrix, chemokines and cytokines. Especially, the expression of transforming growth factor beta-1 (TGF-β1) is, prior to pancreatic fibrosis in WBN/Kob rats, supposed to be a trigger for the fibrogenic process. Monocyte chemoattractant protein-1 (MCP-1) is related to the pancreatic fibrosis in di-n-butyl tin dichloride (DBTC)-induced rats. Next, it has been reported that soluble type fractalkine (s-fractalkine) increased in the serum of patients with various chronic inflammatory diseases: Atopic dermatitis, the nervous system, lupus erythematosus, rheumatoid vasculitis, and pityriasis rosea. Therefore, the purpose is to investigate whether the determination of serum MCP-1, TGF-β1, and s-fractalkine concentration can become a useful biological and functional marker of CP using large number of CP patients classified by severity with a staging system.

Innovations and Breakthroughs

Serum TGF-β1 levels of the patients with CP tended to increase in the patients with more advanced CP, whereas serum s-fractalkine levels showed bimodal increase in mild and severe stages. However, it was observed that both TGF-β1 and s-fractalkine levels were affected by alcohol intake. Thus, serum TGF-β1 showed significant increase in the moderate stage of CP, and serum s-fractalkine revealed significant increase in the early stage of CP, when removed alcoholic CP. Therefore, the measurement of serum TGF-β1 may be available to diagnose moderate stage of non-alcoholic CP, and that the measurement of serum s-fractalkine may be useful to diagnose early stages of non-alcoholic CP. The measurement of a combination of TGF-β1 and s-fractalkine may be helpful to evaluate the severity status of CP.

Applications

Patients with CP fulfilled clinical diagnostic criteria for CP by the Japanese Pancreas Society and healthy control patients excluded with recent inflammatory diseases such as infectious diseases and chronic hepatitis, and a large scale of drinking were selected. We classified the CP patients into stages of severity by the modified staging system which consists of 6 grading factors. Then, we analyzed whether each grading factor (pancreatic imaging tests, exocrine function, glucose metabolism, pain, alcohol intake, complications) and severity of CP are related with serum MCP-1, TGF-β1 or s-fractalkine levels. Enzyme-linked immunosorbent assays (ELISA) were performed to quantify serum MCP-1, TGF-β1, and s-fractalkine concentrations.

Peer review

The conclusion of the study is that serum s-fractalkine determination is useful at the early stage of the disease. First, the classification of severity of chronic pancreatitis seems complicated since involving 6 grading factors. Apart from the clinical course and histological stage, the staging system for CP, based on...
clinical symptoms and pancreatic functions has been proposed in Japan. Next, to analyze a third group, a group of ‘healthy’ but alcoholic controls without liver or other organic disease would be interesting although they are excluded in this study. An interesting perspective of this work should be the longitudinal evolution of this maker during progression of the disease.

REFERENCES

1. Clain JE, Pearson RK. Diagnosis of chronic pancreatitis. Is a gold standard necessary? Surg Clin North Am 1999; 79: 829-845
2. Charle ST, Singer MV. The problem of classification and staging of chronic pancreatitis. Proposals based on current knowledge of its natural history. Scand J Gastroenterol 1994; 29: 949-960
3. Etemaadi A, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology 2001; 120: 682-707
4. Sarles H. Pancreatitis. Symposium; 1963 April; Marseille. France. Basel: Karger, 1965, 7: 1-20
5. Nakano S, Horigauchi Y, Takeda T, Suzuki T, Nakajima S. Comparative diagnostic value of endoscopic pancreaticotography and pancreatic function tests. Scand J Gastroenterol 1974; 9: 383-390
6. Heij HA, Obertop H, van Blankenstein M, Nix GA, Westbroek DL. Comparison of endoscopic retrograde pancreaticotography with functional and histologic changes in chronic pancreatitis. Acta Radiol 1987; 28: 289-293
7. Ito T. Can measurement of chemokines become useful biological and functional markers of early-stage chronic pancreatitis? J Gastroenterol 2007; 42 Suppl 17: 72-77
8. Ito T, Otsuki M, Ito T, Shimosegawa T, Funakoshi A, Shiratori K, Naruse S, Kuroda Y. Pancreatic diabetes in a follow-up survey of chronic pancreatitis in Japan. J Gastroenterol 2007; 42: 291-297
9. Malferttheiner P, Büchler M. Correlation of imaging and function in chronic pancreatitis. Radiol Clin North Am 1989; 27: 51-64
10. Grady T, Liang P, Ernst SA, Logsdon CD. Chemokine gene expression in rat pancreatic acinar cells is an early event associated with acute pancreatitis. Gastroenterology 1997; 113: 1966-1975
11. Saufer L, Reber P, Schaffner T, Büchler MW, Buri C, Kappeler A, Walz A, Friess H, Mueller C. Differential expression of chemokines in normal pancreas and in chronic pancreatitis. Gastroenterology 2000; 118: 356-367
12. Otsuki M. Chronic pancreatitis in Japan: epidemiology, prognosis, diagnostic criteria, and future problems. J Gastroenterol 2003; 38: 315-326
13. Hayakawa T, Kondo T, Shibata T, Noda A, Suzuki T, Nakano S. Relationship between pancreatic exocrine function and histological changes in chronic pancreatitis. Am J Gastroenterol 1992; 87: 1170-1174
14. Hayakawa T, Kitaegawa M, Naruse S, Ishiguro H, Mizuno N, Nakajima M. Staging of chronic pancreatitis (in Japanese). Suizou (J Jpn Pancreas Soc) 2001; 16: 381-385
15. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214: 199-210
16. Inoue M, Ito Y, Gibo J, Ito T, Hisato N, Arita Y, Nawata H. The role of monocyte chemotactic protein-1 in experimental chronic pancreatitis model induced by dibutyltin dichloride in rats. Pancreas 2002; 25: 646-670
17. Gibo J, Ito T, Kawabe K, Hisato T, Inoue M, Fujimori N, Oono Y, Arita Y, Nawata H. Chemotactic peptide induction in chronic pancreatitis: in vitro study. J Gastroenterol 2005; 40: 219-224
18. Zhao HF, Ito T, Gibo J, Kawabe K, Oono T, Kaku T, Arita Y, Zhao QW, Usui M, Egashira K, Nawata H. Anti-monocyte chemotactic protein-1 gene therapy attenuates experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Gut 2005; 54: 1759-1767
19. Kaku T, Oono T, Zhao H, Gibo J, Kawabe K, Ito T, Takayanagi R. 15-741 attenuates local migration of monocytes and subsequent pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreas 2007; 34: 299-309
20. Pedersen N, Larsen S, Seidelin JB, Nielsen OH. Alcohol modulates circulating levels of interleukin-6 and monocyte chemoattractant protein-1 in chronic pancreatitis. Scand J Gastroenterol 2004; 39: 277-282
21. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990; 6: 597-641
22. di Mola FF, Friess H, Martignoni ME, Di Sebastian P, Zimmermann A, Innocenti P, Graber H, Gold LI, Koeck M, Büchler MW. Connective tissue growth factor is a regulator for fibrosis in human chronic pancreatitis. Ann Surg 1999; 230: 63-71
23. Shek FW, Benyon RC, Walker FM, McCrudden PR, Pender SL, Williams EJ, Johnson PA, Johnson CD, Bateman AC, Fine DR, Iredale JP. Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 2002; 160: 1767-1770
24. Apte MV, Wilson JS. Mechanisms of pancreatic fibrosis. Dig Dis 2004; 22: 273-279
25. Madrono A, Celinski K, Slomka M. The role of pancreatic stellate cells and cytokines in the development of chronic pancreatitis. Med Sci Monit 2004; 10: RA166-RA170
26. Su SB, Motoy O, Xie MJ, Miyazono K, Sawabu N. Expression of transforming growth factor-beta in spontaneous chronic pancreatitis in the WBN/Kob rat. Dig Dis Sci 2000; 45: 151-159
27. Detlefson S, Sipos B, Feyerabend B, Klöppel G. Fibrinogenesis in alcoholic chronic pancreatitis: the role of tissue necrosis, macrophages, myofibroblasts and cytokines. Mod Pathol 2006; 19: 1019-1026
28. Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Lin S, Szabo G, Wheeler M, Zou J. Cytokines and alcohol. Alcohol Clin Exp Res 2006; 30: 720-730
29. Apte MV, Zima T, Dooley S, Siegmund SV, Pandol SJ, Singer MV. Signal transduction in alcohol-related diseases. Alcohol Clin Exp Res 2005; 29: 1299-1309
30. Rossi DL, Hardiman G, Copeland NG, Gilbert DJ, Jenkins N, Zlotnik A, Bazan JF. Cloning and characterization of a new type of mouse chemokine. Genomics 1998; 47: 163-170
31. Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJ. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci 2000; 20: RC87
32. Imaï T, Heshima K, Haskell C, Baba M, Nogira M, Nishimura M, Kakizaki M, Tagaki S, Nomiyama H, Schall TJ, Yoshie O. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997; 91: 521-530
33. Ludwig A, Berkhout T, Moores K, Groot P, Chapman G. Fractalkine is expressed by smooth muscle cells in response to IFN-gamma and TNF-alpha and is modulated by metalloproteinase activity. J Immunol 2002; 168: 604-612
34. Umehara H, Bloom ET, Okazaki T, Tagaki Y, Yoshie O, Imaï T. Fractalkine in vascular biology: from basic research to clinical disease. Arterioscler Thromb Vasc Biol 2004; 24: 34-40
35. Isser K, Harada K, Zen Y, Kaminou H, Shimoda S, Harada M, Nakamura Y. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology 2005; 41: 506-516
36. Rimaniol AC, Till SJ, Garcia G, Capel F, Godot V, Balabanian K, Durand-Gasselin I, Varga EM, Simonneau G, Emile D, Durham SR, Humbert M. The CX3C chemokine fractalkine in allergic asthma and rhinitis. J Allergy Clin Immunol 2003; 112: 1139-1146
Ito Y, Kawachi H, Morioka Y, Nakatsue T, Koike H, Ikezumi Y, Oyanagi A, Natori Y, Natori Y, Nakamura T, Gejyo F, Shimizu F. Fractalkine expression and the recruitment of CX3CR1+ cells in the prolonged mesangial proliferative glomerulonephritis. *Kidney Int* 2002; 61: 2044-2057

Brand S, Hofbauer K, Dambacher J, Schnitzler F, Staudinger T, Pfennig S, Seiderer J, Tillack C, Konrad A, Göke B, Ochsenkühn T, Lohse P. Increased expression of the chemokine fractalkine in Crohn's disease and association of the fractalkine receptor T280M polymorphism with a fibrostenosing disease phenotype. *Am J Gastroenterol* 2006; 101: 99-106

Hulshof S, van Haastert ES, Kuipers HF, van der Valk P, de Groot CJ, van den Elsen PJ, De Groot CJ, van der Valk P, Ravid R, Biber K. CX3CL1 and CX3CR1 expression in human brain tissue: noninflammatory control versus multiple sclerosis. *J Neuropathol Exp Neurol* 2003; 62: 899-907

Echigo T, Hasegawa M, Shimada Y, Takehara K, Sato S. Expression of fractalkine and its receptor, CX3CR1, in atopic dermatitis: possible contribution to skin inflammation. *J Allergy Clin Immunol* 2004; 113: 940-948

Kastenbauer S, Koedel U, Wick M, Kieseier BC, Hartung HP, Pfister HW. CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. *J Neuroimmunol* 2003; 137: 210-217

Yajima N, Kasama T, Isozaki T, Odai T, Matsunawa M, Negishi M, Ide H, Kameoka Y, Hirohata S, Adachi M. Elevated levels of soluble fractalkine in active systemic lupus erythematosus: potential involvement in neuropsychiatric manifestations. *Arthritis Rheum* 2005; 52: 1670-1675

Matsunawa M, Isozaki T, Odai T, Yajima N, Takeuchi HT, Negishi M, Ide H, Adachi M, Kasama T. Increased serum levels of soluble fractalkine (CX3CL1) correlate with disease activity in rheumatoid vasculitis. *Arthritis Rheum* 2006; 54: 3408-3416

Gangemi S, Cannavò SP, Guarneri F, Merendino RA, Sturniolo GC, Minciullo PL, Di Pasquale G, Valenzise M, Drago F, Rebora A. The CX3C-chemokine fractalkine (CX3CL1) is detectable in serum of patients affected by active pityriasis rosea. *J Eur Acad Dermatol Venereol* 2006; 20: 1366-1367

S- Editor Zhong XY L- Editor Mihm S E- Editor Zheng XM