SARS-CoV-2 N501Y introductions and transmissions in Switzerland from beginning of October 2020 to February 2021 – implementation of Swiss-wide diagnostic screening and whole genome sequencing

Ana Rita Goncalves Cabecinhas1,2,+, Tim Roloff3,4,5,+, Madlen Stange3,4,5,+, Claire Bertelli6,+, Michael Huber7,+, Alban Ramette8,+, Chaoran Chen9,+, Sarah Nadeau9, Yannick Gerth10, Sabine Yerly1,2, Onya Opota6, Trestan Pillonel6, Tobias Schuster11, Cesar M.J.A. Metzger12, Jonas Sieber12, Michael Bel11, Nadia Wohlwend13, Christian Baumann8, Michel C. Koch8, Pascal Bittel8, Karoline Leuzinger14,15, Myrta Brunner3, Franziska Suter-Riniker8, Livia Berlinger16, Kirstine K. Søgaard3,4, Christiane Beckmann17, Christoph Noppen17, Maurice Redondo17, Ingrid Steffen18, Helena M.B. Seth-Smith3,4,5, Alfredo Mari3,5, Reto Lienhard19,20, Martin Risch13,20, Oliver Nolte10, Isabella Eckerle1,2, Gladys Martinetti Lucchini20,21, Emma B. Hodcroft22, Richard A. Neher5,23, Tanja Stadler5,9, Hans H. Hirsch14,15,24, Stephen L. Leib8, Lorenz Risch13,25,26, Laurent Kaiser1,2,+, Alexandra Trkola7,+, Gilbert Greub6,20,+, Adrian Egli2,3,20,+,+

1 Laboratory of Virology, University Hospital Geneva, Geneva, Switzerland
2 Center for Emerging Viral Diseases, University Hospital Geneva, Geneva, Switzerland
3 Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
4 Clinical Bacteriology and Mycology, University Hospital Basel & University of Basel, Basel, Switzerland
5 Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
6 Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
7 Institute of Medical Virology, University of Zurich, Zurich, Switzerland
8 Institute for Infectious Diseases, University of Bern, Bern, Switzerland
9 Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
10 Center for Laboratory Medicine, Saint Gall, Switzerland
11 Federal Office of Public Health FOPH, Berne, Switzerland
12 Spiez Laboratory, Federal Office for Civil Protection FOCP, Spiez, Switzerland
13 Clinical Microbiology, labormedizinisches zentrum Dr. Risch , Buchs SG, Switzerland
14 Clinical Virology, University Hospital Basel, Basel, Switzerland
15 Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
16 Bioanalytica AG, Lucerne, Switzerland
17 Viollier AG, Allschwil, Switzerland

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
18 Rothen AG, Basel, Switzerland
19 ADMED Microbiology, La Chaux-de-Fonds, Switzerland
20 Coordination Commission of Clinical Microbiology, Swiss Society of Microbiology, Cheseaux, Switzerland
21 EOC Microbiological Laboratory, Bellinzona, Switzerland
22 Institute of Social and Preventive Medicine, University of Bern, Switzerland
23 Biozentrum, University of Basel, Basel, Switzerland
24 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
25 Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
26 Centre of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Switzerland

+ these authors have equally contributed to this work

*corresponding author:
Prof. Adrian Egli, MD PhD
University Hospital Basel
Petersgraben 4
4031 Basel
Email: adrian.egli@usb.ch
Abstract

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations by the European Center for Disease Prevention and Control (ECDC) and World Health Organization (WHO) for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological definitions based on travel history and the S gene dropout in certain diagnostic systems. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 3492 VoCs have been identified since the detection of the first Swiss case in October 2020, with 1370 being B1.1.7, 61 B.1.351, and none P.1. The remaining 2061 cases of VoCs have been described without further lineage specification. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.
Introduction

Since December 2020, three emerging SARS-CoV-2 lineages - B.1.1.7 (N501Y.V1), B.1.351 (N501Y.V2), and P.1 (B.1.1.28.1; N501Y.V3) - have generated concern in public and scientific communities. All three lineages show a rapid spread and displacement of locally established SARS-CoV-2 lineages, in the United Kingdom (UK), South Africa (ZA), and Brazil (BR), respectively, where they were first detected. The B.1.1.7 and B.1.351 lineages have subsequently been reported in many countries around the globe, including Switzerland. Most recently the P.1 lineage, exhibiting the N501Y and E484K mutations, among others, was described in Brazil and has also been found in Japan. It is hypothesized that the viral variants B.1.1.7, B.1.351, and P.1 are more transmissible compared to other circulating variants, due to a higher affinity towards the angiotensin-converting enzyme 2 (ACE2) receptor resulting from the N501Y mutation and were defined as variants of concern (VoC). In the last week of December 2020, the B.1.1.7 lineage accounted for more than 25% of overall published genomes from the UK (according to the GISAID database) as of 19 January 2021, but it is estimated to account for up to 70% of transmission events in specific areas of the UK. Waste water screening in Switzerland suggests that the B.1.1.7 lineage was present in Switzerland in early December. In South Africa, no reliable prevalence data on the B.1.351 lineage is available, but published data suggests that this VoC is also spreading more rapidly.

The first genome belonging to the B.1.1.7 lineage was detected in September 2020 in the UK (according to the GISAID database) and showed 17 lineage specific polymorphisms, eight of which are located in the 1273 amino acid spike glycoprotein (nucleotide position 21563 to 25384). The spike glycoprotein is crucial for viral infection of host cells and is an important target for neutralizing antibodies. Some of the B.1.1.7 polymorphisms may modulate the protein’s function, such as the N501Y mutation in the receptor binding domain, the HV 69-70 deletion, and the P681H mutation in the furin cleavage site. The HV 69-70 deletion at nucleotide position 21765-21770 of the SARS-CoV-2 genome results in a dropout of the spike glycoprotein (S) gene diagnostic target in some commercial PCR assays. Although the S gene dropout is not specific for the B.1.1.7 lineage, it may nevertheless be a good first approach to screen for B.1.1.7 variants. This HV 69-70 deletion in the spike glycoprotein might favour immune escape. The B.1.1.7 variant also carries several lineage specific mutations in the ORF8 gene, which might also be associated with decreased host immunity against SARS-CoV-2. Indeed, the ORF8 protein disrupts antigen presentation and reduces the recognition and the elimination of virus-infected cells by cytotoxic T-cells.
The B.1.351 lineage was first detected in October 2020 in ZA (according to the GISAID database) and also shares the N501Y mutation, but has otherwise different lineage-determining polymorphisms (Table S1) and does not show a characteristic S gene dropout due to lack of the HV 69-70 deletion. Of particular concern is the spike glycoprotein E484K mutation, which has been shown to reduce binding affinities towards neutralizing antibodies. Some of the polymorphisms that the viral variants described here possess are also present in other SARS-CoV-2 lineages (Table S2) and hence raise the question about how viral variants and lineages evolve (parallelism or same ancestral strain) and what selective pressures are important at single patient and population levels. The origins of B.1.1.7 and B.1.351 remain speculative, but include mutations during chronic infection in immunosuppressed patients exposed to convalescent plasma or other therapies, or potential recombination events between different lineages. As SARS-CoV-2 whole genome sequencing (WGS) is not performed uniformly across the globe, there may be other, unsampled, lineages also showing similar features of selection. Some variants may have been selected in intensive mink farms, where large outbreaks have been documented, as well as common cross-species transmission from human to minks and back. The adaptations on VoCs may lead to a substantially higher case burden, potentially paving the way for additional waves of the pandemic, and continued challenge for healthcare systems across European countries. Therefore, rapid identification of the B.1.1.7, B.1.351, and P.1 lineages is very important, and should trigger intensified contact tracing, targeted public health interventions in affected geographical areas, and re-allocation of vaccination strategies to areas with increasing community transmission of the VoCs.

During December 2020, awareness of the B.1.1.7 and B.1.351 lineages and the epidemiological situations in the UK and ZA reached the public, while at the same time approximately 10,000 tourists from endemic areas arrived in Switzerland for ski holidays. In order to understand the spread of VoC and to adapt public health interventions accordingly, a multi-step screening concept was developed across diagnostic and research laboratories in collaboration with the Federal Office of Public Health (FOPH), Spiez Laboratory from the Federal Office for Civil Protection (FOCP), Coordination Commission of Clinical Microbiology of the Swiss Society of Microbiology (CCCM-SSM), and the National Reference Center for Emerging Viral Infections at the University Hospital Geneva. The concept first focused on the epidemiological risk definition, with travel history from the UK and ZA. Second, a microbiological risk definition used the S gene dropout as a potential indicator for the B.1.1.7 lineage. Third, N501Y-specific PCRs were established in several laboratories. Suspected cases were confirmed by amplicon sequencing or whole genome sequencing for accurate lineage determination. This screening strategy was rapidly and sequentially implemented...
within a few weeks through 21 diagnostic laboratories (as of 02.02.2021) across Switzerland with the goals of reducing and delaying introduction and community transmission events of the B.1.1.7 and B.1.351 lineages within Switzerland. In this article, we share our experience of a nationwide screening strategy, its implementation, and early results on the spread of the VoCs in Switzerland.

Methods

Ethical statement. This study was conducted in close collaboration with the FOPH and part of an epidemiological assessment (Communicable Diseases Legislation – Epidemics Act). In addition, the study was approved as a multi-center study by the leading ethical committee (Ethik Kommission Nordwest- und Zentralschweiz, EKNZ; Approval number 2019-01291).

Development of a screening strategy. Due to the highly probable introduction of the B.1.1.7 and B.1.351 lineages into the Swiss population, the FOPH, Spiez Laboratory (within the FOCP), the CCCM-SSM, the National Reference Center for Emerging Viral Infections, and the diagnostic laboratories developed a pragmatic screening strategy for the VoC (Figure 1). The goal was to use already established infrastructures and reporting systems. The concept was communicated to cantonal physicians and diagnostic laboratories via the FOPH and FOCP and on the website of the CCCM-SSM. Suspected and confirmed VoCs were reported to the FOPH and cantonal physicians, initiating extensive backward and forward contact tracing with the goal of rapidly interrupting transmission chains. The screening strategy was continuously adapted.

![Figure 1](https://example.com/figure1.png)

Figure 1. Diagnostic strategy to detect the B.1.1.7 and the B.1.351 in Switzerland. The flowchart shows the three step strategy with (i) initial epidemiological case definitions with travels from the UK or South Africa, (ii) the diagnostic evidence due to a S gene dropout and (iii) the final establishment of a N501Y-specific PCR. In all steps amplicon based and whole genome sequencing was used to determine and confirm the lineage allocation.
As a first step, an epidemiological case definition with recent travel history to the UK or ZA was used to identify potential carriers of the VoC. In mid-January 2021 this was expanded to BR. Both direct and indirect contacts of people travelling from these areas were considered. Patient travel history was recorded on mandatory FOPH reporting forms by clinical and laboratory institutions, as well as by cantonal physicians during contact tracing. In Switzerland, quarantine upon arrival was made mandatory for travellers from the UK and ZA from 28th December 2020; and from BR from 21st January 2021.

As a second step, a microbiological case definition was used. LZM Risch AG using the TaqPath™ COVID-19 Combo Kit diagnostic assay (Thermo Fisher) noted a significant increase in S gene dropouts through November and December 2020. This multi-target PCR assay target sequences within the SARS-CoV-2 genes ORF1ab, N and S. A geographical distinction was observed: S gene dropouts were mainly noted in the eastern region of Switzerland, whereas other laboratories using the same assay in the western region of Switzerland noted an increase after a delay of four weeks. The S gene dropout is explained by a deletion at the positions 21765-21770 (HV 69-70) and is an indication for the B.1.1.7 lineage, as well as other non-VoC lineages. For this reason, and because initially variant-specific PCR assays were not yet available, the sequencing of all S gene dropouts was strongly recommended. A similar approach was developed by Danish and Portuguese colleagues. However, during November and December, most of the S gene dropouts occurred in another emerging lineage, B.1.258, not showing the N501Y mutation, but featuring the HV 69-70 deletion and the N439K mutation.

During the Christmas holidays 2020, personnel and technical resources were limited, and focusing on these first two steps provided an initial screening program (from 22nd December). In January 2021 the screening strategy was modified with a third step: several N501Y-specific PCR protocols were validated and established in laboratories throughout the country. All diagnostic laboratories in Switzerland were contacted on 15th January 2021 via the FOCP to encourage and establish a N501Y-specific PCR. The CCCM-SSM published concomitantly additional recommendations on the society website (www.swissmicrobiology.ch). Since then, 21 laboratories have started to validate and implement a N501Y-specific PCR (as of 02.02.2021).

Various laboratories have used different PCR approaches to increase the pre-test probability of the identification of VoC. Table S3 summarizes the different PCR approaches used by centers until 20th of January (Table S3). Most centers used the commercial assay SARS
Spike N501Y (53-0780-96; TIB MOLBIOL, Germany). In addition to the N501Y-specific PCR, at the University Hospital Lausanne, ORF8 PCR/sequencing was used for the initial 12 samples received, in order to rapidly obtain results based on the presence/absence of the B.1.1.7 specific mutations C27972T, G28048T and A28111G, while waiting for the results of whole genome sequencing and the implementation of the S dropout and N501Y-specific PCR.

Included samples for sequencing and reporting. The initial identified samples, from 22nd December 2020, were strongly biased towards the epidemiological and microbiological case definition (S gene dropout). From the beginning of January 2021, an increasing number of laboratories have joined the incentive and implemented N501Y-specific protocols. Meanwhile, older samples collected from September to December 2020 have also been sequenced. All VoC were reported to the FOPH via an electronic reporting form.

Sanger sequencing protocols. For the sake of rapidity, amplicon-based sequencing, focusing on the S gene, was established at the National Reference Center for Emerging Viral Infections (HUG, Virology Laboratory) and implemented by other laboratories. The detailed protocols are available online. In addition, amplicon-based sequencing focusing on the ORF8 gene was performed at the Institute of Microbiology of the University Hospital Lausanne. Briefly, specific primers were used to generate an amplicon for Sanger sequencing. All sequences were then compared to available sequences on GISAID.

Whole genome sequencing protocols. For this study whole genome sequencing data was produced using Illumina and Oxford Nanopore Technologies (ONT, Oxford, UK) sequencing. SARS-CoV-2 genomes were generally amplified following the amplicon sequencing strategy of the ARTIC protocol (https://artic.network/ncov-2019) with V.1 or V.3 primers and 150 nucleotide paired-end sequenced, on an Illumina platform e.g. Most laboratories used Illumina based library preparations (NexteraXT or Nextera Flex). At the University Hospital Lausanne, libraries were prepared using the CleanPlex 5 SARS-CoV-2 Panel (Paragon Genomics). Further technical details on different sequencing protocols have been published.

A typical Nanopore sequencing library consisted of the pooling of PCR amplicons generated according to the ARTIC v3 protocol (https://artic.network/ncov-2019), which generates 400 bp amplicons that overlap by approximately 20 bp. Library preparation was performed with SQK-LSK109 (ONT) according to the ONT "PCR tiling of COVID-19 virus" (version: PTC_9096_v109_revE_06Feb2020, last update: 26/03/2020). Reagents, quality control and
flow cell preparation were as described previously 39,40. ONT sequencing was performed on a GridION X5 instrument (Oxford Nanopore Technologies) with real-time base calling enabled (ont-guppy-for-gridion v.4.2.3; fast base calling mode). Sequencing runs were terminated after production of at least 100,000 reads per sample. Bioinformatic analyses followed the workflow described (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html) using artic version 1.1.3. Consensus sequences were generated using medaka (https://github.com/nanoporetech/medaka) and bcftools 41. Each center used individual bioinformatic pipelines to check for sequencing quality and generate the consensus sequences details are shared in GISAID (e.g. 37; https://gitlab.com/RKIBioinformaticsPipelines/ncov_minipipe/). The consensus sequence data were either directly shared between diagnostic laboratories or via GISAID.

Phylogenetic inference. Global sequences and metadata were downloaded from GISAID 42,43 (as of 2nd February 2021; 456,184 consensus sequences). Sequences with more than 10 percent Ns (94,271) and with incomplete dates (23,871) were removed. 342,970 sequences remained, which were joined with sequence data from the University Hospital Lausanne (N=59), which is not yet available on GISAID. The total dataset contained a total of 260 whole genomes from variants of concern with S:N501Y mutations from Switzerland (B.1.1.7, n=249; B.1.351, n=11) (Table S4). The latest collection date of a N501Y positive whole genome dates to 19th January 2021, the earliest to 28th November 2020. We inferred a time-calibrated phylogeny rooted to the first cases in Wuhan, China from December 2019, using a subset of global genomes and focal Swiss sequences. For sub-setting, we included 800 genomes evenly subsampled over canton (administrative subdivision), month and year for the focal area Switzerland; 20 genomes per country and month in Europe, and 5 genomes per country and month for the rest of the world (contextual samples) totalling 9,026 genomes, using the nextstrain software v.2.0.0.post1 (nextstrain.org) and augur v.10.3.8 44. The resulting alignment of focal and contextual genomes was used to infer clusters with zero single nucleotide mutations (SNPs) using a custom python script (https://github.com/appliedmicrobiologyresearch). Identified clusters were investigated regarding cantonal origin of the sample as well as known travel history.

Results

SARS-CoV-2 case numbers and spatio-temporal distribution in Switzerland. The first cases of the B.1.1.7 lineage in Switzerland were detected in retrospectively examined and sequenced samples from UK travel returners dated back to mid-October 2020 in Geneva and Lausanne and end of November 2020 in Basel. The first cases of B.1.351 were
discovered in December 2020 in Schwyz (GISAID ID Switzerland/SZ-ETHZ-410256/2020 and Switzerland/BS-UHB-11011756/2020) also in travel returnee from ZA.

The initial S gene dropout based screening showed a large geographical heterogeneity in terms of detected B.1.1.7 variants. Whereas in the eastern parts of Switzerland the S gene dropout based screening resulted only in about 1% of identified B.1.1.7 variants, in the western parts of Switzerland the percentage of B1.1.7 variants within the S gene dropouts was much higher e.g., at the University Hospital Lausanne, as many as 78.9% (101 of 128).

Using our screening approach, a total of 3492 samples carrying VoC have been found across different geographical regions (cantons, administrative subdivisions) (Table 1; Figure 2) from 14th October 2020 to 5th February 2021. 1431 of 3492 (41%) could be confirmed by amplicon sequencing or whole genome sequencing, for which lineages were identified. 95.7% of these successfully sequenced genomes were assigned to the B.1.1.7 lineage. 4.3% were assigned to the B.1.351 lineage. No case of the P.1 lineage was detected.

Canton	B.1.1.7 (501Y.V1)	B.1.351 (501Y.V2)	Lineage not specified	VoC total
AG	40	1	123	164
AI	1			1
AR	1		21	22
BE	232	4	130	366
BL	64	1	31	96
BS	29	2	49	80
FR	69	2	94	165
FL	28	1	2	31
GE	149	4	406	559
GL	4	1	2	7
GR	82		160	242
JU	105	1	3	109
LU	12		86	98
NE	24		12	36
NW	1		3	4
OW				0
SG	52	22	152	226

This preprint is licensed under a CC-BY-NC 4.0 International license.
Table 1. Absolute numbers of variants of concern (VoC) including cases of B.1.1.7 and B.1.351 in Switzerland and Principality of Liechtenstein. No case of P.1 was detected to 05.02.2021. Absolute numbers reflect a biased sample set due to the initial case definitions and biased distribution of diagnostic capacities. The numbers and distributions of lineages is likely biased due to delay in processing and different sequencing capacities.

Region	SH	SO	SZ	TG	TI	UR	VD	VS	ZG	ZH	CH/FL
Case	9	43	11	27	32	32	217	49	2	88	1370
VoC	1	18	2	4	2	36	48	93	1	38	61
Total	10	6	3	6	2	40	268	142	4	41	2061
Total											3492

Figure 2. Distribution of absolute numbers as epidemiological curves according to canton and time. Absolute numbers reflect a biased sample set due to the initial case definitions, higher usage of antigen test in some regions, and distribution of diagnostic capacities. This does not reflect the prevalence of cases. Also the current amount of specific lineages is biased due to different sequencing capacities.
This initial screening was implemented in a few centers in the last two weeks of December 2020, during which time there was a selection bias due to the case definition and limited sequencing capacity over the Christmas holidays. Complementary to these cases, two additional datasets were analysed using whole genome sequencing: the first included 545 randomly selected SARS-CoV-2 samples from throughout Switzerland (Viollier AG, a large private laboratory) from 18th to 24th December 2020. Within this first dataset, no VoC was found. A second set focused on 1511 samples showing the S gene dropout (LMZ Dr. Risch, a large private laboratory) from 21st to 27th December 2020. From a total of 1511 PCR positive cases (15.1% positivity rate), 137 (9.1%) samples showed an S gene dropout. 79 of 137 S gene dropout samples were sequenced - and in 6/79 (8%) a B.1.1.7 lineage was found. This corresponds to 0.06% of the overall SARS-CoV-2 positive cases.

Since the second week of January 2021, increasing numbers of SARS-CoV-2 positive samples were analysed using an N501Y-specific PCR. However, at this stage our data does not allow the reliable determination of a Swiss-wide prevalence, as not all PCR positive cases are fully re-analysed with the N501Y-specific PCR. However, some laboratories re-analyse every SARS-CoV-2 positive case and thereby individual prevalence rates for VoCs could be determined for the last two weeks: The University Hospital Geneva reported 40% positivity for VoCs (25th to 31th of January); University of Zurich reported 13.3% (18th to 24th January), 20.2% (25th to 31th of January), and 28.4% (1st to 5th of February); Viollier AG reported 15% (25th to 31th of January) and 19.9% (1st to 5th of February); University Hospital Basel reported 29% (25th to 31th January) and 45% (1st to 4th of February); University of Bern reported 10.2% (25th to 31st January) and 30% (1st to 3rd February); Bioanalytica reported 6% (25th to 31st January) and 21.6% (1st to 5th February). LMZ Dr. Risch reported 18.5% (25th to 31st January) and 21% (1st to 3rd February). Within the upcoming weeks, we expect that a Swiss wide prevalence determination for VoC is established and reported. Of note, the detection rate has been going down in some centers and also overall, albeit slowly.

Some laboratories have reported the median age (with interquartile ranges) in years between patients with and without the N501Y variants. At the University Hospital Basel the median age of patients with N501Y positive was 34 years (IQR 12-47) whereas the median age of patients with N501Y negative was 38 years (27-54); At the University of Bern the media age was 33 years (IQR 20-51; N501Y positive) vs. 44 years (IQR 29-60; N501Y negative); at Bioanalytica the median age was 43 years (IQR 29-53; N501Y positive) vs. 48 years (IQR 32-67; N501Y negative); and at Viollier AG the median age was 41 years (IQR 26-54; N501Y positive) vs. 41 years (IQR 25-57; N501Y negative). Also this data may be
biased due to the fact that certain laboratories may receive samples more predominantly from paediatric physicians or hospitals.

Phylogenetic relatedness of first cases. A total of 260 N501Y-carrying (B.1.1.7 n=249, and B.1.351 n=11) high quality genomes from Switzerland were available for phylogenetic analysis. For 58 cases (known for University Hospitals Basel and Lausanne) a travel history to an endemic country or known contact to a traveller was available, however, for most cases the risk exposure was not available. For 213 cases the canton of residence was known. Using a 0 SNP threshold, we infer 9 out of the 11 B.1.351 cases to be single introduction events, two cases (from BS) are genetically (0 SNPs) and epidemiologically linked and trace back to a ZA travel returner and a transmission to a family member (**Figure S3**). The phylogenetic analysis of B.1.1.7 cases shows at least 116 single introductions into 11 cantons (**Figure 2A**), 106 without immediate links (0 SNP distance) to other genomes in the sub-sampled global dataset, 11 of which were known risk contacts or travellers (**Figure 2B**). Ten further single introductions had genetic links to genomes from UK samples, two of which had known travel history or risk contact. We identified 45 clusters (0 SNP distance) comprising 133 (range 2-10) genomes. 18 clusters contain samples with known travel links to the UK or risk contacts. Of interest, ten of these clusters contained cases from different cantons – suggesting outside of household transmission (**Figure 2C**).
Figure 3. Phylogeny of sequenced B.1.1.7 cases in Switzerland. (A) Geographic distribution through Switzerland and (B) phylogenetic relationship of 249 genomes dating between 28th November, 2020 and 19th January 2021 from the Geneva University Hospitals (n=113), University Hospital Lausanne (n=59), University Hospital Basel (n=55), University of Bern (n=7), University of Zurich (n=12), and ETH Zurich (n=3). X-Axis scales to time. (C) Zoom into an exemplar constituting household transmissions, possible cryptic transmissions within a cluster, and single introductions.
Discussion

The epidemiological situation with the SARS-CoV-2 lineages B.1.1.7 and B.1.351 in the UK and ZA resulted in the definition of so called variants of concern (VoC). The European Center for Disease Prevention and Control (ECDC) and the World Health Organization (WHO) strongly recommend identifying the viral lineages in order to monitor the distribution of VoCs, using sequencing for surveillance. In Switzerland, we started a targeted screening program for VoC in December 2020, and are currently developing an unbiased sequencing-based surveillance program for new variants. Interestingly, we found the first case of the B.1.1.7 lineage from October 2020, by sequencing archived sample collections.

However, in two large sets of 549 and 1511 SARS-CoV-2 samples from mid- to late-December 2020, we detected only sporadic cases of VoCs, suggesting that until then introductions and spread were not extensive. We calculate that the overall prevalence in Switzerland was less than 1% until the end of December 2020. Since then, our screening strategy showed a continuous increase of absolute case numbers, starting to ramp up in January 2021. This followed the Christmas holidays with thousands of ski tourists from endemic areas sojourning in Swiss ski resorts. During the first wave of the pandemic in 2020, skiing and associated activities resulted in an European wide spread of specific mutants linked to the alpine village Ischgl in Austria. Similar, we have detected cases linked to a potential super spreading event in the ski resort Wengen in December 2020, as reported in public news articles. Due to the concerns of high transmissibility of VoC, travellers from the UK and ZA were added to the quarantine list during the last week of December 2020. The comparison of our WGS data with a global dataset suggests direct links to the UK and indicates that a substantial number of the cases in January 2021 were due to individual introduction events from the UK. Unfortunately, information on links to UK travel is incomplete. Our experience suggests that detailed epidemiological data should be asked for and made available (such as travel history, contact to other infected people etc). In the future, more resources should be dedicated to this purpose. The identification of identical genomes from samples collected in distant regions of the country might indicate that cryptic transmission events are already happening as only a few cases of household transmission were documented. However, they could also be due to multiple introductions of identical variants from the UK to Switzerland and is a possibility that we cannot rule out.

Our sampling strategy focusing first on the epidemiological risk and a microbiological case definition including the S gene dropout, and the initial lack of diagnostic capabilities to confirm the VoC introduced a strong selection bias of samples. Thus our findings should be interpreted with care. Currently, our data does not allow us to properly determine the prevalence of VoCs in Switzerland. However, some laboratories have established a workflow...
including N501Y-specific PCR for all SARS-CoV-2 positive cases - this allowed us to monitor the increase in prevalence across tested samples in these individual laboratories. Available prevalence data for Switzerland is continuously visualized (https://ibz-shiny.ethz.ch/covidDashboard/variant-plot/index.html and https://ispmbern.github.io/covid-19/variants). Nevertheless, our pragmatic approach indicates that prior to the Christmas holidays, the VoC distribution in Switzerland was low (<1%) and now has reached within 8 weeks most likely rates of 20-45%. Our phylogenetic analysis provides important evidence that community transmission started to increase after New Year and continuously accelerated in mid-January 2021.

VoC identification based on the S gene dropout is not specific and sensitive enough to identify VoC lineages (see Table S1). Our WGS data of samples collected in December 2020 showed that most of the S gene dropout samples were due to the B.1.258 lineage, at least in eastern Switzerland. Due to this geographical distribution pattern, the curious phenomenon emerged that in western Switzerland the S dropout screen was an efficient approach to detect the B.1.1.7. lineage, whereas in eastern Switzerland it was confounded by other more prevalent lineages. For this reason, the pre-test probability for the B.1.1.7 lineage using the S dropout was different based on the local epidemiology.

The B.1.351 and P.1 lineages cannot be identified based on the S gene dropout. VoC can be confirmed using either amplicon based sequencing of the S gene or whole genome sequencing. Both sequencing approaches show specific advantages and disadvantages in terms of speed, costs, and resolution for molecular epidemiological studies. These aspects have to be carefully evaluated when establishing a screening program. Mixed usage may allow the strength of both methods. In order to efficiently select samples for subsequent sequencing, we have implemented a N501Y-specific PCR in many laboratories throughout Switzerland. The challenge was, as most diagnostic institutions were focusing on high throughput testing using fully automated robotic systems, to establish again a manual method including separate RNA extraction. It took several weeks to establish the workflows in larger laboratories and to implement new variables for reporting. Similar to the UK, our data shows an increase of positivity rates across time and the B.1.1.7 lineage displaces other circulating strains.

Surveillance of these and other VoC may become more important with new selective pressures such as therapeutics and vaccination. The Swiss model to monitor in a first phase with epidemiological and microbiological case definitions and in a second phase, as soon as it was available, with a specific PCR, allowed to rapidly screen isolates and identify the N501Y mutation as a surrogate marker for a potentially more transmissible variant. The subsequent confirmation with sequencing provides an efficient way to rapidly identify certain
VoCs. We feel it is strongly recommended to further sequence the VoCs and not stop at the identification of the N501Y mutations. Lineage or also whole genome resolution provides highly valuable information for public health management. The development of our screening system, with all attached pre- to post-analytical aspects of diagnostics, may be valuable in the search for upcoming variants such as vaccine escape mutants. However, it is clearly time for nations to seriously consider implementing national surveillance programs with an unbiased sequencing approach, incorporating sustainable elements for other key pathogens and potential future pandemics.

References

1. Kupferschmidt K. Fast-spreading U.K. virus variant raises alarms. *Science* 2021; 371(6524): 9-10.
2. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. *Euro Surveill* 2021; 26(1).
3. Tang JW, Tambyah PA, Hui DS. Emergence of a new SARS-CoV-2 variant in the UK. *J Infect* 2020.
4. Wang M, Li M, Ren R, et al. International Expansion of a Novel SARS-CoV-2 Mutant. *J Virol* 2020; 94(12).
5. Davies NG, Barnard RC, Jarvis CI, et al. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England. *medRxiv* 2020: 2020.12.24.20248822.
6. Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. *medRxiv* 2020: 2020.12.21.20248640.
7. Volz E, Mishra S, Chand M, et al. Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. *medRxiv* 2021: 2020.12.30.20249034.
8. O'Toole A, Hill V, Pybus OG, et al. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. 2021. https://virological.org/t/tracking-the-international-spread-of-sars-cov-2-lineages-b-1-1-7-and-b-1-351-501y-v2/592 (accessed 06.02.2021 2021).
9. Voloch CM, Silva F Rd, de Almeida LGP, et al. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. *medRxiv* 2020: 2020.12.23.20248598.
10. Faria NR, Claro IM, Candido D, et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. 2021. https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586 (accessed 06.02.2021 2021).
11. Naveca F, Nascimento V, Souza V, et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein. 2021. https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585 (accessed 06.02.2021 2021).
12. National Institute of Infectious Disease J. Brief report: New Variant Strain of SARS-CoV-2 Identified in Travelers from Brazil. 2021. https://www.niid.go.jp/niid/en/2019-n cov-e/10108-covid19-33-en.html (accessed 06.02.2021 2021).
13. Luan B, Wang H, Huynh T. Molecular Mechanism of the N501Y Mutation for Enhanced Binding between SARS-CoV-2's Spike Protein and Human ACE2 Receptor. bioRxiv 2021: 2021.01.04.425316.
14. Kirby T. New variant of SARS-CoV-2 in UK causes surge of COVID-19. Lancet Respir Med 2021; 9(2): e20-e1.
15. Jahn K, Dreifuss D, Topolsky I, et al. Detection of SARS-CoV-2 variants in Switzerland by genomic analysis of wastewater samples. medRxiv 2021: 2021.01.08.21249379.
16. Gupta R, Kemp S, Harvey W, Lytras S, Carabelli A, Robertson D. Recurrent independent emergence and transmission of SARS-CoV-2 Spike amino acid H69/V70 deletions. 2021. https://www.researchsquare.com/article/rs-136937/v1 (accessed 06.02.2021 2021).
17. Rambaut A, Loman NJ, Pybus O, et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. 2020. https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563 (accessed 06.02.2021 2021).
18. Isabel S, Grana-Miraglia L, Gutierrez JM, et al. Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein mutation now documented worldwide. Sci Rep 2020; 10(1): 14031.
19. Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165878.
20. Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021.
21. Guruprasad L. Human SARS CoV-2 spike protein mutations. Proteins 2021.
22. F. GR. Mutations arising in SARS-CoV-2 spike on sustained human-to-human transmission and human-to-animal passage. 2021. https://virological.org/t/mutations-arising-in-sars-cov-2-spike-on-sustained-human-to-human-transmission-and-human-to-animal-passage/578 (accessed 06.02.2021 2021).
23. Administration UFaD. Genetic Variants of SARS-CoV-2 May Lead to False Negative Results with Molecular Tests for Detection of SARS-CoV-2 - Letter to Clinical Laboratory Staff and Health Care Providers. 2021. https://www.fda.gov/medical-devices/letters-health-care-providers/genetic-variants-sars-cov-2-may-lead-false-negative-results-molecular-tests-detection-sars-cov-2 (accessed 06.02.2021 2021).
24. Control ECfDPa. Risk Assessment: Risk related to spread of new SARS-CoV-2 variants of concern in the EU/EEA. 2020. https://www.ecdc.europa.eu/en/publications-data/covid-19-risk-assessment-spread-new-sars-cov-2-variants-eueea (accessed 06.02.2021 2021).
25. Zhang Y, Zhang J, Chen Y, et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC-I. bioRxiv 2020: 2020.05.24.111823.
26. Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. bioRxiv 2020: 2020.07.21.214759.
27. Greaney AJ, Starr TN, Gilchuk P, et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 2021; 29(1): 44-57 e9.
28. Lauring AS, Hodcroft EB. Genetic Variants of SARS-CoV-2-What Do They Mean? JAMA 2021.
29. Welkers MRA, Han AX, Reusken C, Eggink D. Possible host-adaptation of SARS-CoV-2 due to improved ACE2 receptor binding in mink. Virus Evol 2021; 7(1): vee094.
30. Microbiology CCfCMotSSo. Recommendations for testing using the N501Y PCR. 2021. https://www.swissmicrobiology.ch/en/sars-cov-2-pcr-tests (accessed 06.02.2021 2021).
31. Health FOoP. COVID-19 Reporting. 2021. https://www.bag.admin.ch/bag/de/home/krankheiten/infektionskrankheiten-bekaempfen/meldesysteme-infektionskrankheiten/meldepflichtige-ik/meldeformulare.html (accessed 06.02.2021 2021).
32. Health FOoP. Coronavirus: Entering Switzerland. 2021. https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/empfehlungen-fuer-reisende/quarantaene-einreisende.html (accessed 06.02.2020 2021).
33. Institut SS. Nye PCR-tests skal styrke kontrollen med muterede varianter. 2021. https://www.ssi.dk/aktuelt/nyheder/2021/nye-pcr-tests-skal-styrke-kontrollen-med-muterede-varianter (accessed 06.02.2021 2021).
34. Borges V, Sousa C, Menezes L, et al. Tracking SARS-CoV-2 VOC 202012/01 (lineage B.1.1.7) dissemination in Portugal: insights from nationwide RT-PCR Spike gene drop out data. 2021. https://virological.org/t/tracking-sars-cov-2-voc-202012-01-lineage-b-1-1-7-dissemination-in-portugal-insights-from-nationwide-rt-pcr-spike-gene-drop-out-data/600 (accessed 06.02.2021 2021).
35. Hodcroft EB. CoVariants S:N439K. 2021. https://covariants.org/variants/S.N439K (accessed 06.02.2021 2021).
36. Diseases CfEV. Protocol for specific RT-PCRs for marker regions of the Spike region indicative of the UK SARS-CoV2 variant B.1.1.7 and the South African variant 501Y.V2. 2020. https://www.hug.ch/sites/interhug/files/structures/laboratoire_de_virologie/protocol_amplification_voc_20201201_uk_geneva.pdf (accessed 06.02.2021 2021).
37. Stange M, Mari A, Roloff T, et al. SARS-CoV-2 outbreak in a tri-national urban area is dominated by a B.1 lineage variant linked to mass gathering events. medRxiv 2020: 2020.09.01.20186155.
38. Nadeau S, Beckmann C, Topolsky I, et al. Quantifying SARS-CoV-2 spread in Switzerland based on genomic sequencing data. medRxiv 2020: 2020.10.14.20212621.
39. Gradel C, Terrazos Miani MA, Barbani MT, Leib SL, Suter-Riniker F, Ramette A. Rapid and Cost-Efficient Enterovirus Genotyping from Clinical Samples Using Flongle Flow Cells. Genes (Basel) 2019; 10(9).
40. Neuenschwander SM, Terrazos Miani MA, Amlang H, et al. A Sample-to-Report Solution for Taxonomic Identification of Cultured Bacteria in the Clinical Setting Based on Nanopore Sequencing. J Clin Microbiol 2020; 58(6).
41. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011; 27(21): 2987-93.
42. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chall 2017; 1(1): 33-46.
43. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill 2017; 22(13).
44. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 2018; 34(23): 4121-3.
45. Control ECfDPa. Sequencing of SARS-CoV-2 - first update. 2021. https://www.ecdc.europa.eu/en/publications-data/sequencing-sars-cov-2 (accessed 06.02.2021 2021).
46. Bluhm A, Christandl M, Gesmundo F, et al. SARS-CoV-2 transmission routes from genetic data: A Danish case study. PloS One 2020; 15(10): e0241405.
47. Correa-Martinez CL, Kampmeier S, Kumpers P, et al. A Pandemic in Times of Global Tourism: Superspreading and Exportation of COVID-19 Cases from a Ski Area in Austria. J Clin Microbiol 2020; 58(6).
48. Organization WH. Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health. 2021. https://www.who.int/publications/i/item/9789240018440 (accessed 06.02.2021 2021).
49. Egli A, Blanc DS, Greub G, et al. Improving the quality and workflow of bacterial genome sequencing and analysis: paving the way for a Switzerland-wide molecular epidemiological surveillance platform. *Swiss Med Wkly* 2018; **148**: w14693.
Supplementary Tables

Table S1. Mutations of the new SARS-CoV-2 lineages B.1.1.7, B.1.351 and P.1 (B.1.1.28.1). Data from GISAID and Covariants.org/shared-mutations. Full SARS-CoV-2 genome of Wuhan-Hu-1 is available (https://www.ncbi.nlm.nih.gov/nuccore/MN908947).

Table S2. N501Y mutations across different viral lineages since September 2020. Based on GISAID database (access 15.01.2021).

Table S3. Screening methods used by different diagnostic laboratories as of 20th January 2021. N501Y screening assay was most commonly used from TIB MOLBIOL (Germany), but also in-house developed assays were used. University centers offering whole genome sequencing included the University Hospital Basel (Division of Clinical Bacteriology and Mycology), University of Bern (Institute for Infectious Diseases), University Hospital Geneva (Virology Laboratory), University Hospital Lausanne (Institute of Microbiology), and the University of Zurich (Institute of Medical Virology). In addition, ETHZ (D-BSSE core facility) sequenced samples.

Table S4. GISAID database identifier. The N501Y-carrying genomes from Switzerland included into phylogenetic analysis are listed.

Table S5. List of laboratories submitting to GISAID. We thank all the laboratories actively sharing their datasets.

Description of mutation (gene, mutations: effects)	Position in Genome	B.1.1.7 N501Y.V1	B.1.351 N501Y.V2	P.1 N501Y.V3
Spike, T20N: Unknown effects	C21621A	not lineage defining	not lineage defining	lineage defining
Spike, P26S: Unknown effects	C21638T	not lineage defining	not lineage defining	lineage defining
Spike, D138Y: Unknown effects	G21974T	not lineage defining	not lineage defining	lineage defining
Spike, R190S: Unknown effects	G22132T	not lineage defining	not lineage defining	lineage defining
Spike, N501Y: May bind more tightly to the human angiotensin-converting enzyme 2 (ACE2) receptor	A23063T	lineage defining	lineage defining	lineage defining
Spike, H655Y: Unknown effects	C23525T	not lineage defining	not lineage defining	lineage defining
Spike, T1027I: Unknown effects	C24642T	not lineage defining	not lineage defining	lineage defining
Spike, double deletion (HV 69, 70): Enhances viral infectivity by two-fold, may lead to reduced neutralizing activity of antibodies raised against previous variants	21765-21770 deletion	lineage defining	not lineage defining	not lineage defining
Spike, deletion Y144: Confers resistance to 4A8 monoclonal antibody	21991-21993 deletion	lineage defining	not lineage defining	not lineage defining
Spike, P681H: Adjacent to the furin cleavage site, may plausibly affect transmissibility	C23604A	lineage defining	not lineage defining	not lineage defining
Spike, D614G: Already dominant world-wide	A23403G	lineage defining	lineage defining	not lineage defining
Spike, E484K: Leads to reduced neutralizing activity of antibodies raised against previous variants, may increase affinity for ACE2	G23012A	not lineage defining	lineage defining	lineage defining
---	---	---	---	---
Spike, A570D, T716I, S982A, D1118H: Unknown effects	C23271A, C23709T, T24506G, G24914C	lineage defining	not lineage defining	not lineage defining
Spike, L18F, K417N: Unknown effects	C21614T, G22813T	not lineage defining	lineage defining	lineage defining
Spike, D80A, D215G, R246I, A701V: Unknown effects	A21801C, A22206G, G22299T, C23664T	not lineage defining	lineage defining	not lineage defining
ORF1ab, triple deletion SGF 3675-3677: Unknown effects	11288-11296 deletion	lineage defining	not lineage defining	lineage defining
ORF1ab, K1795Q: Unknown effects	A5648C	not lineage defining	not lineage defining	lineage defining
ORF1ab, T1001I, A1708D, I2230T: Unknown effects	C3267T, C5388A, T6954C	lineage defining	not lineage defining	not lineage defining
ORF1ab, E5665D: Unknown effects	G17259T	not lineage defining	not lineage defining	lineage defining
ORF8, Q27Stop: Early stop codon likely to render ORF8 non-functional. ORF8 deletions/mutations are associated with milder clinical course and lower post-infection inflammation. ORF8 is involved in immune evasion by down-	C27972T	lineage defining	not lineage defining	not lineage defining
regulation of MHC class 1

ORF8, R52I, Y73C: Likely irrelevant due to earlier stop codon	G28048T, A28111G	lineage defining	not lineage defining	not lineage defining
ORF7a, E92K: Unknown effects	G27667A	not lineage defining	not lineage defining	lineage defining
ORF8, insertion 28269-28273: Unknown effects	ins28269-28273	not lineage defining	not lineage defining	lineage defining
N, P80R: Unknown effects	C28512G	not lineage defining	not lineage defining	lineage defining
N, D3L, S235F: Unknown effects	28280 GAT->CTA, C28977T	lineage defining	not lineage defining	not lineage defining

Table S1. Mutations of the new SARS-CoV-2 lineages B.1.1.7, B.1.351, and P.1. Data from GISAID and Covaraints.org/shared-mutations. Full SARS-CoV-2 genome of Wuhan-Hu-1 is available (https://www.ncbi.nlm.nih.gov/nuccore/MN908947).

Lineage	Frequency	Countries	Number genomes	Percentage of N501Y
B.1	6	USA, United Kingdom	24057	0.025
B.1.1	3	United Kingdom, USA	21672	0.014
B.1.1.189	1	Denmark	113	0.885
B.1.1.7	3072	Australia, Canada, Denmark, United Kingdom, Finland, Hong Kong, India, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Singapore, Spain	3155	97.369
B.1.1.70	484	United Kingdom	1009	47.968
B.1.160	1	United Kingdom	4536	0.022
Lineage	Date	Country	Cases	Frequency
---------	------	--------------------------------	-------	-----------
B.1.177	6	United Kingdom	35019	0.017
B.1.351	326	United Kingdom, South Africa, Switzerland	329	99.088
B.1.5	9	United Kingdom	10533	0.085
B.1.83	1	United Kingdom	25	4

Table S2. N501Y mutations across different viral lineages since September 2020. Based on GISAID database (access 15.01.2021).

Center	Initial case definition	PCR approach	Sequencing method
Microbiological Laboratory EOC Bellinzona	Epidemiological	N501Y	Sent to University center
LMZ Dr. Risch AG	Epidemiological	N501Y	Sent to University center
University Hospital Basel	Epidemiological	N501Y	Illumina and Oxford Nanopore based whole genome sequencing
University of Bern	Epidemiological	N501Y	Oxford Nanopore based amplicon and whole genome sequencing
University Hospital Geneva	Epidemiological	N501Y	Amplicon based Sanger sequencing and WGS
University Hospital Lausanne	Epidemiological	N501Y	Illumina based whole genome sequencing
University of Zurich	Epidemiological	N501Y	Illumina based whole genome sequencing
Centre for Laboratory Medicine St. Gall	Epidemiological	N501Y	Illumina based whole genome sequencing

Table S3. Screening methods used by different diagnostic laboratories as of 20th January 2021. N501Y screening assay was most commonly used from TIB MOLBIOL (Germany), but also in-house developed assays were used. University centers offering whole genome sequencing included the University Hospital Basel (Division of Clinical Bacteriology and Mycology), University of Bern (Institute for Infectious Diseases), University Hospital Geneva (Virology Laboratory), University Hospital Lausanne (Institute of Microbiology), and the University of Zurich (Institute of Medical Virology). In addition, ETHZ (D-BSSE core facility) sequenced samples.
GISAID identifier	Submitting lab	EPI_ISL
Switzerland/ZH-UZH-	Institute of Medical Virology, University of Zurich	EPI_ISL_812257
IMV154/2021		
Switzerland/ZH-UZH-	Institute of Medical Virology, University of Zurich	EPI_ISL_812250
IMV146/2020		
Switzerland/ZH-UZH-	Institute of Medical Virology, University of Zurich	EPI_ISL_751193
IMV130/2020		
Switzerland/ZH-UHB-	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896104
718502801/2020		
Switzerland/ZH-UHB-	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861862
717847701/2020		
Switzerland/ZH-UHB-	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861861
717559301/2020		
Switzerland/ZH-SNRCI-	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864737
32927909/2021		
Switzerland/VS-33014410/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897679
Switzerland/VS-33007317/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897613
Switzerland/VS-33007285/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897678
Switzerland/VS-32987160/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897677
Switzerland/VS-32970201/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897598
Switzerland/VS-32956055/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897676
Switzerland/VS-32867209/2021	HUG, Laboratory of Virology and Universitatssspital Basel	EPI_ISL_860252
Switzerland/VS-32859876/2021	HUG, Laboratory of Virology and Universitatssspital Basel	EPI_ISL_860254
Switzerland/VD-UZH-	Institute of Medical Virology, University of Zurich	EPI_ISL_766590
IMV144/2020		
Switzerland/VD-UZH-	Institute of Medical Virology, University of Zurich	EPI_ISL_766589
IMV143/2020		
Switzerland/VD-UHB-	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861859
717443100/2020		
Switzerland/VD-UHB-	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896088
717443100/2020		
Switzerland/VD-UHB-0718440401/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896103
Switzerland/VD-SNRCI-32961024/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897603
Switzerland/VD-32938885/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864734
Switzerland/un-UHB-720584600/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896099
Switzerland/un-UHB-720271701/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896112
Switzerland/un-UHB-719559501/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896089
Switzerland/un-UHB-716224001/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861858
Switzerland/un-UHB-716122601/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861857
Switzerland/un-UHB-4177791901/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896069
Switzerland/un-UHB-4177635701/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896090
Switzerland/un-UHB-4177450201/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896084
Switzerland/un-UHB-4176940001/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896078
Switzerland/un-UHB-4176935301/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896083
Switzerland/un-UHB-4176923001/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896097
Switzerland/un-UHB-4176911401/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896082
Switzerland/un-UHB-4176908401/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896081
Switzerland/un-UHB-4176713101/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896073
Switzerland/un-UHB-4175179401/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861856
Switzerland/un-UHB-311876444/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_910030
Switzerland/un-UHB-31177838/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_910324
Switzerland/un-UHB-31177835/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_910222
Switzerland/un-UHB-31028197/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896094
Switzerland/un-UHB-30846237/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896093
Switzerland/un-UHB-30830994/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896107
Switzerland/un-UHB-11020688/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896070
Switzerland/un-UHB-11016146/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896098
Switzerland/un-UHB-100409625701/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896095
Switzerland/un-UHB-0719562301/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896071
Switzerland/un-UHB-0719336901/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896106
Switzerland/un-UHB-0719165700/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896080
Switzerland/un-UHB-0719087200/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896079
Switzerland/un-UHB-0718975401/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896096
Switzerland/un-UHB-016-31-214602/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896072
Switzerland/un-UHB-001-312-23781/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896075
Switzerland/un-UHB-001-312-23775/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896110
Switzerland/un-UHB-001-31-320558/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896100
Switzerland/un-UHB-001-31-319867/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896111
Switzerland/un-UHB-001-31-315355/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896086
Switzerland/un-UHB-001-31-302300/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896085
Switzerland/un-UHB-001-31-274403/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896113
Switzerland/un-UHB-001-31-237034/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896078
Switzerland/un-UHB-001-31-224049/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896076
Switzerland/un-UHB-001-31-186398/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896114
Switzerland/un-ETHZ-410279/2020	Department of Biosystems Science and Engineering, ETH Zürich	EPI_ISL_737642
Switzerland/un-ETHZ-2/2020	Department of Biosystems Science and Engineering, ETH Zürich	EPI_ISL_811130
Switzerland/un-33001761/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897675
Switzerland/un-32987164/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897674
Switzerland/un-32986844/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897673
Switzerland/un-32955355/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897604
Switzerland/un-32955239/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897714
Switzerland/TI-33010784/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897672
Switzerland/TI-33010582/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897671
Switzerland/TI-33009173/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897670
Switzerland/SZ-UHB-100409126701/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861866
Switzerland/SZ-UHB-100408915101/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861865
Switzerland/SZ-ETHZ-410256/2020	Department of Biosystems Science and Engineering, ETH Zürich	EPI_ISL_737488
Switzerland/SG-UHB-4175525901/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861863
Switzerland/SG-32956007/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897605
Switzerland/SG-32938747/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864718
Switzerland/NE-ETHZ-431070/2020	Department of Biosystems Science and Engineering, ETH Zürich	EPI_ISL_899175
Switzerland/GR-UHB-717511401/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861860
-----------------------------------	---	----------------
Switzerland/GE-ETHZ-420394/2020	Department of Biosystems Science and Engineering, ETH Zürich	EPI_ISL_768105
Switzerland/GE-33015157/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897669
Switzerland/GE-33014209/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897668
Switzerland/GE-33012307/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897667
Switzerland/GE-33010304/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897666
Switzerland/GE-33010190/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897665
Switzerland/GE-33009879/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897664
Switzerland/GE-33008898/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897663
Switzerland/GE-33008755/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897662
Switzerland/GE-33008184/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897661
Switzerland/GE-33007670/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897660
Switzerland/GE-33007562/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897659
Switzerland/GE-33002300/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897658
Switzerland/GE-33002169/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897657
Switzerland/GE-33002031/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897656
Switzerland/GE-33000950/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897655
Switzerland/GE-33000809/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897654
Switzerland/GE-33000775/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897653
Switzerland/GE-33000673/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897652
Switzerland/GE-32998367/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897651
-----------------------------	---	----------------
Switzerland/GE-32997830/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897650
Switzerland/GE-32997521/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897649
Switzerland/GE-32996759/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897648
Switzerland/GE-32996014/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897647
Switzerland/GE-32990906/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897615
Switzerland/GE-32990876/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897646
Switzerland/GE-32990811/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897645
Switzerland/GE-32990664/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897614
Switzerland/GE-32990272/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897644
Switzerland/GE-32988968/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897642
Switzerland/GE-32987355/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897641
Switzerland/GE-32986668/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897640
Switzerland/GE-32986564/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897639
Switzerland/GE-32986541/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897638
Switzerland/GE-32986531/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897637
Switzerland/GE-32985530/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897636
Switzerland/GE-32985523/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897635
Switzerland/GE-32985372/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897634
Switzerland/GE-32985291/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI(ISL_897633
Switzerland/GE-32984722/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897632
-----------------------------	---	----------------
Switzerland/GE-32980539/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897601
Switzerland/GE-32979635/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897631
Switzerland/GE-32979427/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897630
Switzerland/GE-32975711/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897629
Switzerland/GE-32974011/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897628
Switzerland/GE-32971764/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897627
Switzerland/GE-32971762/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897626
Switzerland/GE-32967707/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897625
Switzerland/GE-32966158/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897624
Switzerland/GE-32962637/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897623
Switzerland/GE-32960750/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897622
Switzerland/GE-32958264/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897621
Switzerland/GE-32955885/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897620
Switzerland/GE-32955795/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897619
Switzerland/GE-32955227/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897618
Switzerland/GE-32953303/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897713
Switzerland/GE-32951607/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897617
Switzerland/GE-32946639/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_897616
Switzerland/GE-32943897/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864620
Switzerland/GE-32942704/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864610
------------------------------	---	-----------------
Switzerland/GE-32941881/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864611
Switzerland/GE-32941084/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864608
Switzerland/GE-32940107/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864609
Switzerland/GE-32938066/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864619
Switzerland/GE-32934874/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864612
Switzerland/GE-32932653/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864616
Switzerland/GE-32929459/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864607
Switzerland/GE-32929149/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864617
Switzerland/GE-32929122/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864618
Switzerland/GE-32925037/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864621
Switzerland/GE-32924479/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864606
Switzerland/GE-32924396/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864602
Switzerland/GE-32924322/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864605
Switzerland/GE-32923434/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864614
Switzerland/GE-32923278/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864615
Switzerland/GE-32922788/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864603
Switzerland/GE-32920311/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864601
Switzerland/GE-32920214/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864600
Switzerland/GE-32914355/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_864613
Switzerland/GE-32893218/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860246
Switzerland/GE-32891984/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860245
Switzerland/GE-32886922/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860240
Switzerland/GE-32885673/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860253
Switzerland/GE-32880193/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860244
Switzerland/GE-32875604/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860255
Switzerland/GE-32875307/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860251
Switzerland/GE-32870305/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860243
Switzerland/GE-32869532/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860250
Switzerland/GE-32865744/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860249
Switzerland/GE-32860303/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860241
Switzerland/GE-32859618/2021	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860248
Switzerland/GE-32849290/2021	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_847920
Switzerland/GE-32845730/2020	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_847921
Switzerland/GE-32845532/2020	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_847924
Switzerland/GE-32820828/2020	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_847925
Switzerland/GE-32813021/2020	HUG, Laboratory of Virology and Universitätsspital Basel	EPI_ISL_860247
Switzerland/GE-32808468/2020	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_847922
Switzerland/GE-32808252/2020	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_847926
Switzerland/GE-32807087/2020	HUG, Laboratory of Virology and the Health2030 Genome Center	EPI_ISL_847923
Switzerland/BS-UHB-11011756/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_910325
Switzerland/BE-UZH-IMV151/2021	Institute of Medical Virology, University of Zurich	EPI_ISL_812254
Switzerland/BE-UZH-IMV150/2021	Institute of Medical Virology, University of Zurich	EPI_ISL_812253
Switzerland/BE-UZH-IMV149/2021	Institute of Medical Virology, University of Zurich	EPI_ISL_812252
Switzerland/BE-UZH-IMV148/2021	Institute of Medical Virology, University of Zurich	EPI_ISL_812251
Switzerland/BE-UZH-IMV142/2020	Institute of Medical Virology, University of Zurich	EPI_ISL_766588
Switzerland/BE-UHB-4176114301/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_861864
Switzerland/BE-UHB-0718434601/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896087
Switzerland/BE-ETHZ-5/2020	Department of Biosystems Science and Engineering, ETH Zürich	EPI_ISL_768015
Switzerland/BE-418-8489/2021	Institute for Infectious Diseases, University of Bern, Switzerland	EPI_ISL_860725
Switzerland/BE-417-8488/2021	Institute for Infectious Diseases, University of Bern, Switzerland	EPI_ISL_860724
Switzerland/BE-416-1928/2021	Institute for Infectious Diseases, University of Bern, Switzerland	EPI_ISL_860723
Switzerland/BE-415-1516/2021	Institute for Infectious Diseases, University of Bern, Switzerland	EPI_ISL_860722
Switzerland/BE-413-0505/2021	Institute for Infectious Diseases, University of Bern, Switzerland	EPI_ISL_860720
Switzerland/BE-395-3566/2021	Institute for Infectious Diseases, University of Bern, Switzerland	EPI_ISL_830648
Switzerland/BE-386-4590/2020	Institute for Infectious Diseases, University of Bern, Switzerland	EPI_ISL_831649
Switzerland/AG-UZH-IMV152/2021	Institute of Medical Virology, University of Zurich	EPI_ISL_812255
Switzerland/AG-UZH-IMV145/2021	Institute of Medical Virology, University of Zurich	EPI_ISL_812249
Switzerland/AG-UHB-301231-0448/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896102
Switzerland/AG-UHB-301231-0447/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896101
Study ID	Institution	Prefix
--------------------------	--	---------
Switzerland/AG-UHB-301230-0716/2020	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896116
Switzerland/AG-UHB-301226-1010/2021	University Hospital Basel, Clinical Bacteriology	EPI_ISL_896091
CHUV_2101214976	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101214956	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101151534	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101144438	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101141386	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101133564	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101133555	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101133511	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101133494	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101133464	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101123657	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122391	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
----------------	---	----------------
CHUV_2101122349	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122335	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122323	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122314	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122296	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122207	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122205	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122200	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122192	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101122172	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101121622	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_210111443	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
----------------------	--	----------------
CHUV_210111358	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101114173	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101113858	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101112971	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101101136	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091295	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091034	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091033	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091032	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091030	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091029	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091028	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
-----------------	--	----------------
CHUV_2101091027	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091026	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091025	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101091024	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101083708	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101081224	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101074841	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101074771	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101072145	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101064155	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101063937	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101044049	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
-----------------------	--	----------------
CHUV_2101044048	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2101031576	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012311985	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012311983	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012311982	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012311617	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012311586	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012311581	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012283992	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_2012283415	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
CHUV_201226923	Centre Hospitalier Universitaire Vaudois Genomics and Metagenomics Laboratory	in preparation
Table S4. GISAID database identifier of N501Y-carrying genomes from Switzerland included into phylogenetic analysis.
Figure legends

Figure 1. Diagnostic strategy to detect the B.1.1.7 and the B.1.351 in Switzerland. The flowchart shows the three step strategy with (i) initial epidemiological case definitions with travels from the UK or South Africa, (ii) the diagnostic evidence due to a S gene dropout and (iii) the final establishment of a N501Y-specific PCR. In all steps amplicon based and whole genome sequencing was used to determine and confirm the lineage allocation.

Figure 2. Distribution of absolute numbers as epidemiological curves according to canton and time. Absolute numbers reflect a biased sample set due to the initial case definitions, higher usage of antigen test in some regions, and distribution of diagnostic capacities. This does not reflect the prevalence of cases. Also the current amount of specific lineages is biased due to different sequencing capacities.

Figure 3. Phylogeny of sequenced B.1.1.7 cases in Switzerland. (A) Geographic distribution through Switzerland and (B) phylogenetic relationship of 249 genomes dating between 28th November, 2020 and 19th January 2021 from the Geneva University Hospitals (n=113), University Hospital Lausanne (n=59), University Hospital Basel (n=55), University of Bern (n=7), University of Zurich (n=12), and ETH Zurich (n=3). X-Axis scales to time. (C) Zoom into an exemplar constituting household transmissions, possible cryptic transmissions within a cluster, and single introductions, scale by mutations distance to the reference Wuhan/Hu1-1..
Figure S3. Phylogeny of sequenced B.1.351 cases in Switzerland.
Acknowledgements: We thank the Federal Office of Public Health for providing the overview data on N501Y-specific PCR results. We thank all diagnostic centers performing the N501Y-specific PCR (as of 02.02.2021) with Laboratoire de virologie (CRIVE-HUG), Institut für medizinische Virologie (University of Zurich), Institut de Microbiologie (University Hospital Lausanne), Institut für Infektionskrankheiten (University of Bern), Klinische Virologie (University Hospital Basel), Analytica Medizinische Laboratorien AG, Bioanalytica AG, Biolytix AG, EOLAB (Bellinzona), Labor Kantonsspital Winterthur, Labor team w AG, Labormedizin SRO AG Spital Langenthal, LMZ Dr. Risch, MCL Medizinisch Laboratorien AG, Medics Labor AG, Synlab (Bioggio and Lausanne), Unilabs (Coppet and Dübendorf), Viollier AG, and Zentrum für Labormedizin (St. Gallen). We thank the sequencing centers for excellent technical assistance: University Hospital Basel with Nadine Blind, Christine Kiessling, Magdalena Schneider, Elisabeth Schultheiss, Clarisse Straub, Daniel Gander, and Rosa-Maria Vesco; University of Bern with Miguel A Terrazos Miani, Stefan Neuenschwander, Cora Sägesser, and Peter Keller; University Hospital Lausanne: Sébastien Aeby, René Brouillet, and Damien Jacot; University of Zurich with Stefan Schmutz, Verena Kufner, Maryam Zaheri, Kevin Steiner, Cyril Shah, Jon Huder, and Jürg Böni. Computations were performed at sciCORE (http://scicore.unibas.ch) scientific computing facility at the University of Basel. We also thank all colleagues submitting data to GISAID - a list of all people contributing used sequences to GISAID is available as supplementary table 5.

Author contributions: Draft of first version: AE, KKS, HSS, MS; PCR and epidemiological data: DP, TS, PB, HHH, KL, OO, GG, MH, AT, FS, MB; samples: CB, LR, NW, GML, LB, IS; sequencing data CC, TS, TR, MS, AE, ARG, SC, MH, AT, AR, CB, GG; concept development: AE, LK, AT, SL, HHH, GG, TS, MB, JS, CM; bioinformatic tools used: RN, EH, AM, MS, HSS, TR, TP, AL; reviewing of manuscript: all.

Competing Interests: The authors declare that they have no competing financial interests.