Supplementary Information for “Quantifying echo chamber effects in information spreading over political communication networks”

Wesley Cota,1 Silvio C. Ferreira,1, 2 Romualdo Pastor-Satorras,3 and Michele Starnini4

1 Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
2 National Institute of Science and Technology for Complex Systems, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
3 Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain
4 ISI Foundation, via Chisola 5, 10126 Torino, Italy

I. ETHICS STATEMENT

The data collection was done using the Python library Twython (available at https://github.com/ryanmcgrath/twython) for the connection with the Twitter API, using standard accounts for filtering of public statuses. Only public stream information is released by this API and, therefore, data from users with private profiles (at the time of the collection) are not included in the data set. The terms, privacy policies and conditions of Twitter were abided by us. All profiles IDs were anonymized before the analysis.

II. DATA AVAILABILITY

The data sets generated and/or analyzed in this study are available from the corresponding author on reasonable request.

III. DATA COLLECTION

We collect data regarding the political discussion on Twitter about the impeachment process of the former president of Brazil Dilma Rousseff [1]. The impeachment process started in December 2nd of 2015 by the acceptance of the president of the Brazilian parliament Eduardo Cunha, and followed a parliamentary recess until February 1st of 2016. The impeachment was officially approved on August 31st of 2016, with a ruling vote in the Senate. During the period of data collection, street protests both against and supporting Dilma Rousseff were arranged within social media particularly in Twitter. A schematic timeline of this process is presented in Table S1.

Our data set is composed of tweets collected daily from the public streaming of the Twitter API by specifying a list of keywords [2] related to the impeachment process along the year 2016. The keywords used in the data mining were selected according to trending topics information and generic words, which were, in principle, related to the impeachment process and that were continuously updated by adding new keywords and keeping the previously added ones. See the list of keywords in Table S2. Keywords were converted to lower case, and their punctuation and accents removed. Tweets have been later filtered according the hashtags they contain, by following the procedure described in Section IV.

We collect tweets from March 5th to December 31st of 2016, by recording the timestamp, user IDs of the sender and mentioned users, and all hashtags contained in each tweet. During this period, we collected a grand total of 48 212 722 tweets, which 12 322 322 of them contained at least one hashtag. The number of interactions with hashtags collected daily is shown in Fig. S1. One can see that such number considerably varies from day to day, with peaks of high activity around some events reported in Table S1. The maximum number of tweets collected containing hashtags in a day was more than 500 thousands, on April 17th, when the parliament voted and approved the impeachment.

Since hashtags are usually employed to express opinions regarding a given topic, in opposition to generic keywords, in our analysis we will focus on the hashtags qualifying the tweets collected.

IV. HASHTAG CLASSIFICATION

Hashtags can be used to define the political position of the users [3]. To this aim, we define four possible categories for the leaning l_t of an hashtag used in a tweet t: i) not related to the impeachment process ($l_t = \times$), ii) pro-impeachment ($l_t = -1$), iii) anti-impeachment ($l_t = +1$), or iv) neutral ($l_t = 0$). The last one includes tweets whose leanings are not clearly polarized and hashtags that can express both pro- or anti-impeachment leanings.

The hashtags were classified by performing a manual annotation of the leanings they carry [4–7]. Considering the list of the 495 most tweeted hashtags during the collecting process, four volunteers independently performed their categorization. All volunteers were Brazilian, graduated in Physics, and interested in the subject. Two of the authors (WC and SCF) participated
in the analysis. To proceed with the leaning classification, an interactive webpage (http://labs.wesleycota.com/twitter) was used to classify the hashtags according to the four categories. The webpage allowed to browse the Twitter search platform for checking tweets containing the selected hashtag within the time window of interest. The volunteers were instructed to read these tweets before answering the question: “How do you think that these hashtags were used in tweets related to the process of the impeachment of the president Dilma Rousseff along the year of 2016?”

The final classification of each hashtag was determined by the majority of the opinions of the volunteers. A number of 321 (64.8%) hashtags had a full agreement, while in 443 (89.5%) of them at least 3 out of 4 persons agreed. Divergent opinions were given for 52 (10.5%) hashtags. The 443 hashtags for which an agreement was achieved are reported in Tables S3 to S5, colored according to their classification: blue for hashtags used in tweets that convey pro-impeachment leanings, red for anti-impeachment leanings, grey for neutral leanings, yellow for not related hashtags. Dark (light) colors have been used to indicate full (partial) agreement. A statistical summary of the classification is presented in Table S6. In Table S7 we report the 52 hashtags for which an agreement was not achieved. We then extracted the 404 hashtags for which an agreement was achieved as well as the 72-neutral network, see Table S8.

The final temporal networks considered in our analysis were given by the set of users belonging to the SCCs and the explicit mentions, i.e., disregarding RTs. For the case of the 20-neutral network, the total number of mentions was 5 050 291, in which 2 327 787 (46.092%) of them were in retweets (RTs). For 72-neutral, we have 7 596 888 mentions being 3 837 204 (50.510%) in RTs. Discarding RTs, we obtained \(N = 285\ 670 \) users and \(2\ 722\ 504 \) explicit mentions for the 20-neutral, and \(N = 437\ 728 \) users and \(3\ 759\ 684 \) explicit mentions for the 72-neutral network. Hereafter as well as in the main paper, we consider only networks obtained with explicit mentions, i.e., disregarding RTs.

From these filtered data sets, a temporal network \(G \) [8] was constructed, defined by a set of \(N \) nodes (users), \(N = \{1, 2, \ldots, N\} \). An interaction between node \(i \) and node \(j (i, j \in N) \) occurs in a time \(t \) when the user \(i \) mentions user \(j \) in a tweet with a leaning \(l_t \). An interaction is represented by a directed temporal link from node \(i \) to node \(j \) at time \(t \), with flavor \(l_t \), \(e_t = (i, j, t, l_t) \). The set of interactions \(\mathcal{E} = \{e_1, e_2, \ldots, e_E\} \) forms the sequence of interactions defining the temporal network \(G \). Multiple mentions (to different users) in the same tweet imply multiple simultaneous interactions. It is worth noting that these contacts do not have duration and are not symmetric.

From the temporal network representation \(G \), we extracted a time-aggregated, directed network [9], defining the presence of a static directed link between nodes \(i \) and \(j \) whenever an interaction between \(i \) and \(j \) at some point of our observation window has occurred. From this network, we finally extracted the largest strongly connected component (SCC) of the aggregated network [10, 11]. The resulting SCC had \(N = 31\ 412 \) nodes, \(L = 833\ 123 \) links and \(W = 1\ 552\ 389 \) interactions in the 20-neutral network, and \(N = 39\ 525 \) nodes, \(L = 1\ 063\ 699 \) links, and \(W = 2\ 056\ 448 \) interactions in the case of the 72-neutral network, see Table S8.

The final temporal networks considered in our analysis were given by the set of users belonging to the SCCs and the explicit interactions among them.

VI. LEANING ANALYSIS OF TWEETS

Here we present a leaning analysis of the tweets used to reconstruct the SCC of the PC network. Figs. S2 and S3 show the percentage of daily activity for each leaning (anti-impeachment, pro-impeachment and neutral) in tweets forming the 20-neutral network.
and 72-neutral networks, respectively. Each leaning is represented by a different color. Some important dates and events related to the impeachment process, together with the leaning of the majority of tweets, are indicated in Table S1. For both networks, March 29th had the largest +1 activity, when the party PMDB interrupted their support to the Rousseff’s government (see Table S1). The activity of pro-impeachment leanings (−1) was larger in the June 4th and July 29th, when Rousseff presented her final defense in the Deputy’s chamber.

In the SCC of the 20-neutral network, the number of interactions with at least one pro-impeachment, neutral, or anti-impeachment hashtag was 1126150, 144405, and 756498, respectively, showing only a slight tendency for pro-impeachment hashtags, while the number of users was 20200, 10821, and 22566, respectively, showing a remarkable balance. We present the number of tweets containing the 100 most popular hashtags in Fig. S4, showing that pro-impeachment hashtags were the most popular but the anti-impeachment ones were more numerous in the top 100.

VII. NETWORK PROPERTIES

The reconstructed PC networks can be represented as a temporal network, in terms of the set of interactions \(\{e_t\} \), or in terms of a static aggregated network, which is directed and weighted in nature. The static network is given by the adjacency matrix \(A = \{A_{ij}\} \) in which \(A_{ij} = 1 \) if \(i \) ever interacted with the user \(j \), forming a directed link from \(i \) to \(j \), or 0 otherwise; and by the weight matrix \(W = \{W_{ij}\} \) in which \(W_{ij} \) is the total number of directed interactions between \(i \) and \(j \). The total number of links is denoted as

\[
L = \sum_{ij} A_{ij}, \tag{1}
\]

while the total number of interactions is

\[
W = \sum_{ij} W_{ij}. \tag{2}
\]

For each node \(i \), we define the out-degree as

\[
k_{\text{out},i} = \sum_j A_{ij}, \tag{3}
\]

the in-degree as

\[
k_{\text{in},i} = \sum_j A_{ji}, \tag{4}
\]

and the degree as

\[
k_i = \sum_j \tilde{A}_{ij}, \tag{5}
\]

where \(\tilde{A}_{ij} = 1 \) if \(i \) has mentioned \(j \) or vice-versa (undirected) at least once in the time window.

The activity of a sender \(a_i \) or receiver \(a_{IN}^i \) are defined as

\[
a_i = \sum_j W_{ij} \quad \text{and} \quad a_{IN}^i = \sum_j W_{ji}, \tag{6}
\]

such a way that the total activity (number of tweets exchanged) is \(a_i^{\text{total}} = a_i + a_{IN}^i \).

The distributions of activity \(\rho(a) \) for the two PC networks are shown in Fig. S5. In all cases, the activity distributions exhibit heavy tails, compatible with a power law form \(\rho(a) \sim a^{-\alpha} \). This indicates that, while the average activity can be small, a non-negligible fraction of users can send or receive a disproportionately large number of tweets. If we restrict the analysis to users with activity between \(a \in [10, 100] \) we have that activity is approximately homogeneous across different political position levels as can seen in Fig. S6. The political position \(P \) is defined in the main paper.

The main average properties of the PC networks are summarized in Table S8, in which data for both SCC and whole networks are presented.

The PC networks have a marked community structure [12], that can be obtained by applying the Louvain algorithm [13], based in the partition of the networks in groups of nodes, such that the modularity \(Q \), defined by

\[
Q = \frac{1}{2m} \sum_{ij} \left(\tilde{A}_{ij} - \frac{k_i k_j}{2m} \right) \delta(g_i, g_j), \tag{7}
\]
is maximized. In Eq. (7), \(m = \sum_{ij} \tilde{A}_{ij} \) is the number of links in the undirected network and \(g_i \) is the group to which node \(i \) belongs. This resulted in \(Q = 0.435 \) and \(0.431 \) for the 20-neutral and 72-neutral networks, respectively. The community structures of both networks are described in Table S9.

VIII. ANALYSIS OF THE 72-NEUTRAL NETWORK

Figures S7 to S10 reproduce for the 72-neutral network the results corresponding to the 20-neutral network in Figures 1 to 4 in the main paper. We see essentially the same behavior for both 20-neutral and 72-neutral.

IX. AVERAGE POLITICAL POSITION OF THE PREDECESSORS

Figure S11 presents a contour map for the average political position of the predecessors \(P_{\text{NN}} \) as a function of the political position \(P \). It shows the same behavior as the corresponding plot for successors shown in Figure 2(a) in the main paper.

X. NUMBER OF RETWEETS AS FUNCTION OF THE POLITICAL POSITION

Figure S12 shows an analysis of the number of RTs a user achieves, as a function of his/her political position and activity. We observe that the number of RTs is quite clearly correlated with the activity of a user, which is a natural result: a more active user sends more tweets, and thus have chances to get a larger total number of RTs. The average number of RTs per activity appears to be quite uncorrelated with the political position.

XI. ANALYSIS OF THE SPREADING MODELS FOR DIFFERENT PARAMETERS

Figure S13 presents supplementary heat maps for the average spreading capacity \(\langle S \rangle \) obtained with the SIS model as function of the political position \(P \) and the activity \(a \) for different values of the infection probability.

In Figs. S14 and S15, analysis of the dependence with the infection rate and healing times of the average spreading capacity \(\langle S \rangle \), diversity \(\sigma \), and political position \(\mu \) of the set of influence \(I \) are shown for SIS and SIR epidemic processes, respectively. We can see that despite expected quantitative differences due to the nature of models, both dynamical processes exhibit similar behaviors which are also preserved as the parameters are varied.

Figure S16 shows the effects of different activity intervals used in the analysis with the same parameters of Figure 4 in the main paper.

XII. RELATION BETWEEN POLITICAL POSITION AND TOPOLOGY

Figure S17 presents the average \(k \)-core index [14] and the average degree (Eq. 5) as function of the political position \(P \). In both analyses, we see the same pattern observed for activity as function of \(P \) shown in Fig. S6(a). This behavior deviates from that of spreading capacity as function of \(P \), showing that such topological quantities are not able to fully explain the spreading capacity dependence on \(P \).

XIII. RESULTS FOR THE WATTS THRESHOLD MODEL

In order to check the robustness of our results on different spreading models, we have considered additionally a modification of the classic Watts threshold model of complex contagion [15]. In this model, each individual is either in state \(S \) or \(I \), whose interpretation is akin to the one in the SIR/SIS models. We have considered the absolute-threshold version of the Watts model on temporal networks described in Ref. [16], in which each individual is endowed with a threshold value \(\Phi \). For each interaction at a time \(t \), an individual in state \(S \) counts the total number of contacts from infected vertices to him/her within a time window \([t - \theta, t]\). If this value is larger than \(\Phi \), individual \(i \) flips to state \(I \); otherwise it remains in the \(S \) state. Transitions from \(I \) to \(S \) are forbidden. Starting from a single individual in state \(I \), a cascade of transitions to state \(I \) is produced. In Fig. S18 we show the results analogous to those for SIS and SIR models using the absolute-threshold Watts model to compute spreading capacity and diversity as function of the political position \(P \). As we can observe, all three models yield the same qualitative behavior.
Tables S1 to S9 report important facts concerning the impeachment process of president Rousseff as well as details of the communication network reconstruction process.

FIG. S1. Activity of tweets with hashtags collected as function of the day. High activity can be observed around some events, reported in Table S1, which are indicated by arrows. The high activity in November 9th coincide with Trump’s victory in USA election which is, in principle, not related to the process we are investigating. This peak of activity disappears when we consider only the largest strongly connected component of the communication network. Arrows indicate the relevant political events singled out in Table S1.
FIG. S2. Activity frequency of tweets for the SCC of the 20-neutral network. The legend indicates the colors corresponding to the activity for -1, 0 and $+1$ interactions.
FIG. S3. Activity frequency of tweets for the SCC of the 72-neutral network. The legend indicates the colors corresponding to the activity for -1, 0 and $+1$ interactions.
FIG. S4. Usage count for the 100 most popular hashtags in the SCC of the 20-neutral network. Only manually classified hashtags as pro- (−1), anti-impeachment (+1), or neutral (0) are shown, with colors indicated in the legend.
FIG. S5. Distributions of (a,d) activity of sender $\rho(a)$, (b,e) receiver $\rho(a^{IN})$ and (c,f) total activity $\rho(a^{total})$ of interactions with leanings -1, 0, $+1$ and all tweets. The top row corresponds to 20-neutral and the bottom to 72-neutral networks.

FIG. S6. Average activity versus political position for users with activity $a \in [10, 100]$ for (a) 20-neutral and (b) 72-neutral PC networks. Error bars represent the standard error.
FIG. S7. Figure 1 of the main paper for the 72-neutral network. (a) Number of users as a function of political position P. (b) Average activity as function of P. Only users with activity $a \geq 10$ in the SCC are considered for (a) and (b). (c) Visualization of the time-aggregated representation of the PC network, formed by $N = 39,525$ users in the SCC. The size of nodes increases (non-linearly) with their degree. Colors represent political position, as defined in the main paper, blue for pro-, red for anti-impeachment, and white for neutral average leaning of users. (d) Community size and average political position of different communities identified by the Louvain algorithm.

FIG. S8. Figure 2 of the main paper for the 72-neutral network. Contour maps for the (a) average political position P of the nearest-neighbor P_{NN} and (b) average leaning of received tweets, P_{IN} against P. Colors represent the density of users: the lighter the larger the number of users. Probability distribution of P, P_{NN}, and P_{IN} are plotted in the axes. Only users with activity $a \geq 10$ (corresponding to 17923 users) are considered.
FIG. S9. Figure 3 of the main paper for the 72-neutral network. Heat map of the average spreading capacity $\langle S \rangle$ of users, as a function of their political position P and activity a. The transmission probability of the SIS dynamics is $\lambda = 0.5$ and $\tau = 7$ days. Averages were performed over 100 runs.

FIG. S10. Figure 4 of the main paper for the 72-neutral network. Average spreading capacity $\langle S(P) \rangle$ (black curve, left axes), diversity $\langle \sigma(P) \rangle$ (red curve, right axes) and political position $\langle \mu(P) \rangle$ (bars, top panel) of the set of influence reached by users with political position P. Transmission probability $\lambda = 0.2$ and $\tau = 7$ days. Only the 13556 users with activity $a \in [10, 100]$ are considered. Results are averaged over 100 runs, error bars represent the standard error.
FIG. S11. Contour maps for the average political position of the predecessors \(P_{\text{NN}} \), given by \(P_{\text{NN}}^{\text{in}} \equiv \sum_j A_{ji} P_j / k_{\text{in},i} \), against the political position \(P \) of a user for the 20-neutral network. The political position \(P \) is defined in the main text. Colors represent the density of users: the lighter the larger the number of users. Probability distribution of \(P \) and \(P_{\text{NN}} \) are plotted in the axes. Only users with activity \(a \geq 10 \) (corresponding to 14813 users) are considered.
FIG. S12. Number of retweets received by users of the 20-neutral network in the classified data: (a) heat map of the number of retweets of users as a function of their political position P and activity a, (b) average number of retweets and (c) average number of retweets normalized by the user activity as function of the political position. Error bars represent the standard error.
FIG. S13. Heat maps of the average spreading capacity $\langle S \rangle$ of users generated with the SIS model as a function of their political position P and activity a for temporal network with healing time $\tau = 7$ days for the 20-neutral network and transmission probability (a) $\lambda = 0.01$, (b) $\lambda = 0.02$, (c) $\lambda = 0.05$, (d) $\lambda = 0.1$, (e) $\lambda = 0.2$, and (f) $\lambda = 1$. The case $\lambda = 0.5$ is presented in the main text. Averages were performed over 100 runs.
FIG. S14. Average spreading capacity $\langle S \rangle$ (black, left axes), diversity σ (red, right axes), and political position μ (top panel) of the set of influence I, as a function of the political position P, for SIS model with transmission probability (a)–(c) $\lambda = 0.05$, (d)–(f) $\lambda = 0.10$ and (g)-(i) $\lambda = 0.50$ for the temporal 20-neutral network. The healing times τ are (a,d,g) 1 day, (b,e,h) 3 days and (c,f,i) 7 days. Only users with activity $a \in [10, 100]$ were considered. Averages were performed over 100 runs.
FIG. S15. Average spreading capacity $\langle S \rangle$ (black, left axes), diversity σ (red, right axes), and political position μ (top panel) of the set of influence I, as a function of the political position P, for SIR model with transmission probability (a)–(c) $\lambda = 0.05$, (d)–(f) $\lambda = 0.10$ and (g)–(i) $\lambda = 0.50$ for the temporal 20-neutral network. The healing times τ are (a,d,g) 1 day, (b,e,h) 3 days and (c,f,i) 7 days. Only users with activity $a \in [10, 100]$ were considered. Averages were performed over 100 runs.

FIG. S16. Average spreading capacity $\langle S \rangle$ (black, left axes), diversity σ (red, right axes), and average political position μ (top panel) of the set of influence I, as a function of the political position P, for SIS model with transmission probability $\lambda = 0.2$ and $\tau = 7$ days for the temporal 20-neutral network. Only users with activity (a) $a \in [1, 100]$, (b) $a \in [10, 500]$ and (c) $a \in [20, 200]$ are considered, in a total of 27985, 14313 and 10409 users, respectively. Fig. 4 of the main paper shows results for $a \in [10, 100]$. Averages were performed over 100 runs.
FIG. S17. Topological centrality measures as function of political position P for the 2D-neutral network: (a) average k-core index and (b) average degree as functions of the political position. Only users with activity $a \in [10, 100]$ are considered.
FIG. S18. Average spreading capacity $\langle S \rangle$ (black, left axes), diversity σ (red, right axes), and political position μ (top panel) of the set of influence I, as a function of the political position P, for the absolute-threshold model on the 20-neutral network with (a) $\theta = 2$ days, $\Phi = 2$, (b) $\theta = 3$ days, $\Phi = 3$ and (c) $\theta = 7$ days, $\Phi = 5$. Only users with activity $a \in [10, 100]$ are considered.
TABLE S1. Some important dates and events during the impeachment process of President Dilma Rousseff, indicated by arrows in Fig. S1. The leaning of the majority of interactions (belonging to the largest strongly connected component of the PC network, see Sec. V) collected on that day is shown in the rightmost column.

Date	Event	Activity
Sun Mar 13	Biggest street manifestation against the government spread out in more than 250 cities.	−1
Wed Mar 16	Supreme court permits the constitution of a commission on the chamber of deputiesMDB (Brazilian political party “Movimento Democrático Brasileiro”) left the government	+1
Tue Mar 29	Deputies chamber approves impeachment with 367 votes against 137	+1
Thu May 12	Rousseff leaves the presidency after Senate approval	−1
Mon May 23	Audio of Senator Romero Jucá saying ”Estancar a sangria”	+1
Fri Jul 29	Rousseff delivers final arguments in the Deputies chamber	−1
Mon Aug 29	Rousseff’s defense in Senate	+1
Wed Aug 31	Senate approves impeachment with 62 to 20 votes	+1
TABLE S2. List of the 323 keywords used to collect tweets.

13marbrasilnasruas	13marco	13marco2016brasilnasruas	13marcopaizsabes	13marcopasem	13marcopaizsabes2016	13marcopaizsabes2016brasilnasruas	13marcopasem2016brasilnasruas	13marcopaizsabes2016brasilnasruas	13marcopaizsabes2016brasilnasruas
13marco2016brasilnasruas	13marco2016	16ago	16ago	16ago	16ago	16ago	31julho	31julho	31julho
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
31julho									
Hashtag	O1	O2	O3	O4					
---	---	---	---	---	---				
102	ptdesmoronando	−1	−1	−1	−1				
103	ptexit	−1	−1	−1	−1				
104	ptnuncamais	−1	−1	−1	−1				
105									
106	brasilnasruas	−1	−1	−1	×				
107	brasilnasruas20nov	−1	−1	−1	×				
108	crimeabandeirabr	−1	−1	−1	+1				
109									
110	deolhonostf	−1	−1	−1	+1				
111	dilmanuncamais	−1	−1	+1	−1				
112	felizaniversariomoro	−1	−1	−1	×				
113									
114	finalclassification:−1								
115									
116									
117									
118									
119									
120									
121									
122									
123									
124									
125									
126									
127									
128									
129									
130									
131									
132									
133									
134									
135									
136									
137									
138									
139									
140									
141									
142									
143									
144									
145									
146									
147									
148									
149									
150									
151									
152									
153									
154									
155									
156									
157									
158									
159									
160									
161									
162									
163									
164									
165									
166									
167									
168									
169									
170									
171									
172									
173									
174									
175									
176									
177									
178									
179									
180									
181									
182									
183									
184									

TABLE S3. List of all the 184 hashtags classified as pro-impeachment leaning. For each hashtag, the opinion O_i of each volunteer i is reported. Four choice were possible: $s = \{-1, 0, +1, \times\}$.
TABLE S4. List of all the 200 hashtags classified as anti-impeachment leaning. For each hashtag, the opinion O_i of each volunteer i is reported. Four choice were possible: $s = \{-1, 0, +1, \times\}$.

Hashtag	O1	O2	O3	O4	
1	180diasdegolpe	+1	+1	+1	+1
2	54milhoesdedilmas	+1	+1	+1	+1
3	...	+1	+1	+1	+1
4	foracoxinhas	+1	+1	+1	+1
48	foragilmar	+1	+1	+1	+1
49	foragolpista	+1	+1	+1	+1
50	foragolpistas	+1	+1	+1	+1
51	foratemerficahaddad	+1	+1	+1	+1
52	foratemergolpista	+1	+1	+1	+1
53	foratemerladrao	+1	+1	+1	+1
99	mentiraenaglobo	+1	+1	+1	+1
100	mexeucomlulamexeucomigo	+1	+1	+1	+1
101	mobilizacaototal	+1	+1	+1	+1

...
TABLE S5. List of all the 20 hashtags classified as neutral leaning \((s = 0)\) and all the 39 hashtags classified as not related \((s = \times)\). For each hashtag, the opinion \(O_i\) of each volunteer \(i\) is reported. Four choice were possible: \(s = \{-1, 0, +1, \times\}\).

Hashtag	\(O_1\)	\(O_2\)	\(O_3\)	\(O_4\)	final classification
foracorruptos	0	0	0	0	0
impeachment	0	0	0	0	0
tchuacunha	0	0	0	0	0
delatacunha	0.5	0	0	0	×
dilma	-0.5	0	0	0	×
dilmarousseff	0	0	-1	0	0
diretassaja2018	0	0	0	0	0
eduardocunha	0.5	0	0	0	×
ficanesmedina	0	0	0	0	0
forabandidos	0	0	-1	0	0
foramin	0	0	0	1	0
forastf	0	0	0	-1	0
foratodosratos	0	0	0	0	0
janotgolpista	0	0	0	0	0
seeufosseadilma	0	0	0	0	0
seussosseadilma	0	0	0	0	0
sessaod impeachment	0	0	0	0	0
stfvergonhanacional	0	0	0	×	×
vemprarua	0	0	0	-1	0
votacao impeachment	-1	0	0	0	×

TABLE S6. Final number of hashtags for each category. The symbols in superscript between parenthesis correspond to the ones used in Tables S3 to S5 and main text. Three different levels of agreement are listed: full agreement (full); 3/4 agreement (partial); and less than 3 agreements (divergent). In the modified classification, we include the 52 hashtags with divergent classification in the neutral class, see text.

	full	partial (×)	divergent (×)	total
\(-1\)	139	45	—	184
0	3	17	0 (52)	20 (72)
\(+1\)	163	37	—	200
\(\times\)	16	23	52 (0)	91 (39)
total	321	122	52	495
TABLE S7. List of the 52 hashtags for which an agreement was not achieved. For each hashtag, the opinion O_i of each volunteer i is reported. Four choice were possible: $s = \{-1, 0, +1, \times\}.$

Hashtag	O_1	O_2	O_3	O_4	final classification:
2ainstanciacadeia	×	−1	−1	×	−1 −1 ×
aceleralavajatostf	×	×	−1	−1	× −1 −1
acordabrasil	−1	0	−1	×	−1 0 −1 ×
adeuscunha	×	+1	0	+1	× +1 0 +1
brasilextractostf	−1	+1	0	×	−1 +1 0 ×
comandantelula	×	0	0	−1	× 0 0 −1
cumhacau	−1	0	+1	+1	−1 0 +1 +1
desejoprotener	+1	−1	0	0	+1 −1 0 0
esvezemmulheres	×	×	+1	+1	× × +1 +1
fimforopriviligado	0	0	×	×	0 0 × ×
foracunha	−1	+1	+1	0	−1 +1 +1 0
forajuca	0	+1	+1	0	0 +1 +1 0
foraladrao	0	−1	×	+1	0 −1 × +1
foraoab	×	×	+1	+1	× × +1 +1
forapmdb	0	0	+1	+1	0 0 +1 +1
forarenan	×	0	+1	+1	× 0 +1 +1
forarodrigomaia	0	−1	0	+1	0 −1 0 +1
foratemer	+1	0	0	0	+1 0 0 +1
foratodos	0	+1	0	×	0 +1 0 ×
impeachmentbrazil	−1	0	0	+1	−1 0 0 +1
impeachmentday	−1	0	+1	0	−1 0 +1 0
impeachmentja	×	−1	−1	0	× −1 −1 0
jucanacadeia	+1	+1	0	0	+1 +1 0 0
lulal	+1	0	×	0	+1 0 × 0
lulaministro	−1	×	−1	+1	−1 × −1 +1
lulareministro	+1	0	0	+1	+1 0 0 +1

Hashtag	O_1	O_2	O_3	O_4
27 lulamorecife	+1	0	0	×
28 mapadoimpeachment	−1	0	−1	0
29 mantenhoconviccao	×	0	+1	+1
30 micheltener	×	0	×	0
31 mudabrasil	−1	0	×	×
32 ocupabrasil	0	+1	−1	0
33 ocupacopacabana	×	0	+1	+1
34 ocupapaulista	−1	+1	−1	0
35 ocuparj	−1	×	+1	×
36 ocupasp	−1	0	×	0
37 ocupastf	+1	0	0	×
38 olimpeachment	+1	−1	−1	0
39 panelaco	×	×	−1	+1
40 posadadesonra	×	+1	+1	0
41 renangreso	0	×	0	×
42 renanreu	×	−1	0	×
43 renantemeavajato	−1	0	−1	0
44 renunciaja	0	−1	−1	+1
45 salveavajato	×	−1	−1	×
46 sergionoro	−1	0	−1	0
47 somostodosgolpistas	−1	−1	+1	+1
48 souptpq	×	+1	+1	0
49 tchaquersido	×	+1	−1	×
50 temer	×	0	×	0
51 teorigolpista	−1	×	+1	+1
52 vergonbacongressobr	×	+1	+1	×
TABLE S8. Properties of the 20-neutral, 72-neutral integrated networks considering the SCC (top) and whole network (bottom). \(N \) is the total number of nodes; \(L \) is the number of links; \(\langle k_{\text{out}}^n \rangle \) is the \(n \)-th moment of the number of links; \(E \) is the number of interactions; \(\langle a^n \rangle \) is the \(n \)-th moment of the activity. The average weight of the links is denoted by \(\langle W_{ij} \rangle \); \(N_+ \) and \(N_- \) are the numbers of nodes with overall anti- and pro-impeachment position, respectively.

	20-neutral	72-neutral
\(N \)	31 412	39 525
\(L \)	833 123	1 063 699
\(\langle k_{\text{out}} \rangle \)	26.52	26.91
\(\langle k_{\text{out}}^2 \rangle \)	4 727.82	5 251.52
\(W \)	1 552 389	2 056 448
\(\langle a \rangle \)	49.42	52.03
\(\langle a^2 \rangle \)	44 162.64	50 110.90
\(\langle W_{ij} \rangle \)	1.86	1.93
\(N_+ \)	16257	16352
\(N_- \)	0.435	0.431

Largest strongly connected component:

	20-neutral	72-neutral
\(N \)	31 412	39 525
\(L \)	833 123	1 063 699
\(\langle k_{\text{out}} \rangle \)	26.52	26.91
\(\langle k_{\text{out}}^2 \rangle \)	4 727.82	5 251.52
\(W \)	1 552 389	2 056 448
\(\langle a \rangle \)	49.42	52.03
\(\langle a^2 \rangle \)	44 162.64	50 110.90
\(\langle W_{ij} \rangle \)	1.86	1.93
\(N_+ \)	16257	16352
\(N_- \)	0.435	0.431

Whole network:

	20-neutral	72-neutral
\(N \)	285 670	437 728
\(L \)	1 696 841	2 341 473
\(\langle k_{\text{out}} \rangle \)	5.94	5.35
\(\langle k_{\text{out}}^2 \rangle \)	818.25	768.02
\(W \)	2 722 504	3 759 684
\(\langle a \rangle \)	9.53	8.59
\(\langle a^2 \rangle \)	8 242.83	7 404.21
\(\langle W_{ij} \rangle \)	1.60	1.61
\(N_+ \)	101 250	101 250
\(N_- \)	125 591	125 591
\(Q \)	—	—

TABLE S9. Community structure of the networks 20-neutral and 72-neutral, according to the Louvain algorithm. Very small communities with only a few nodes are omitted due to the resolution limit of the modularity optimization [17].

	20-neutral	72-neutral
\(\langle P \rangle \)	10502 0.840 ± 0.437	12570 0.598 ± 0.438
\(\langle k_{\text{out}} \rangle \)	9937 −0.687 ± 0.428	11821 −0.566 ± 0.436
\(\langle k_{\text{out}}^2 \rangle \)	4238 −0.097 ± 0.852	6489 −0.009 ± 0.654
\(W \)	3708 −0.011 ± 0.829	5531 −0.045 ± 0.698
\(\langle a \rangle \)	2599 −0.529 ± 0.427	2711 −0.481 ± 0.393
\(\langle a^2 \rangle \)	170 −0.484 ± 0.781	254 −0.217 ± 0.764
\(\langle W_{ij} \rangle \)	52 −0.043 ± 0.884	23 −0.433 ± 0.592
\(N_+ \)	9 −0.459 ± 0.806	0.998 ± 0.009
\(N_- \)	18 −0.520 ± 0.617	19 −0.863 ± 0.217
\(Q \)	8 −0.811 ± 0.275	9 −0.002 ± 0.623
[1] Wikipedia, “Impeachment of Dilma Rousseff,” (2018), [Online; accessed 01-October-2018].
[2] Twitter Inc., “Filter realtime Tweets - Standard stream parameters,” (2018), [Online; accessed 01-August-2018].
[3] M. Conover, B. Gonçalves, J. Ratkiewicz, A. Flammini, and F. Menczer, “Predicting the political alignment of Twitter users,” in Proceedings of 3rd IEEE Conference on Social Computing (SocialCom) (2011).
[4] D. M. Romero, B. Meeder, and J. Kleinberg, “Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on Twitter,” in Proceedings of the 20th International Conference on World Wide Web, WWW ’11 (ACM, New York, NY, USA, 2011) pp. 695–704.
[5] A. Bessi, F. Zollo, M. Del Vicario, M. Puliga, A. Scala, G. Caldarelli, B. Uzzi, and W. Quattrociocchi, “Users polarization on Facebook and Youtube,” PLOS ONE 11, 1 (2016).
[6] M. D. Conover, B. Gonçalves, A. Flammini, and F. Menczer, “Partisan asymmetries in online political activity,” EPJ Data Science 1, 6 (2012).
[7] J. Borge-Holthoefer, W. Magdy, K. Darwish, and I. Weber, “Content and network dynamics behind egyptian political polarization on Twitter,” in Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW ’15 (ACM, New York, NY, USA, 2015) pp. 700–711.
[8] P. Holme and J. Saramäki, “Temporal networks,” Physics Reports 519, 97 (2012).
[9] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora, “Graph metrics for temporal networks,” in Temporal networks (Springer, 2013) pp. 15–40.
[10] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Computing 1, 146 (1972).
[11] E. Nuutila and E. Soisalon-Soininen, “On finding the strongly connected components in a directed graph,” Information Processing Letters 49, 9 (1994).
[12] S. Fortunato, “Community detection in graphs,” Physics Reports 486, 75 (2010).
[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” Journal of Statistical Mechanics: Theory and Experiment 2008, P10008 (2008).
[14] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “k-core organization of complex networks,” Physical Review Letters 96, 040601 (2006).
[15] D. J. Watts, “A simple model of global cascades on random networks,” Proceedings of the National Academy of Sciences 99, 5766 (2002).
[16] F. Karimi and P. Holme, “Threshold model of cascades in empirical temporal networks,” Physica A: Statistical Mechanics and its Applications 392, 3476 (2013).
[17] S. Fortunato and M. Barthelemy, “Resolution limit in community detection,” Proceedings of the National Academy of Sciences 104, 36 (2007).