Research Article

Evaluation of NH$_4^+$ Adsorption Capacity in Water of Coffee Husk-Derived Biochar at Different Pyrolysis Temperatures

Nguyen Van Phuong, 1 Nguyen Khanh Hoang, 1 Le Van Luan, 2 and L. V. Tan 3

1Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
2Hue Industrial College, Hue City 49100, Vietnam
3Chemical Engineering Faculty, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

Correspondence should be addressed to Le Van Luan; lvluan@hueic.edu.vn and L. V. Tan; levantan@iuh.edu.vn

Received 24 May 2021; Revised 30 June 2021; Accepted 31 July 2021; Published 13 August 2021

Ammonium (NH$_4^+$) is a pollutant that can be harmful to the water environment. The purpose of this study is to access NH$_4^+$ removal capacity from water by coffee husk-derived biochar. The properties of biochar prepared at different temperatures (300, 450, and 600°C) were determined including TOC, and pH, pH$_{pzc}$, functional groups of H$^+$/OH$^-$, cation-exchange capacity (CEC), and the characteristics of groups of organic matter (FT-IR spectrum) were identified and evaluated. The trend of NH$_4^+$ adsorption equilibrium and kinetics of biochar have been studied. The experimental design of adsorption equilibrium was carried out by exposing biochar to a NH$_4^+$ solution at different concentrations, ranging from 0 to 50 mg NH$_4^+/L$ for 12 hours. Kinetic surveys were carried out when biochar was exposed to a solution containing 8.3 mg NH$_4^+/L$ for a varying length of time. The results showed that Langmuir and Freundlich models and the pseudo-second-order kinetic model are suitable to explain the NH$_4^+$ adsorption equilibrium and kinetics on the biochar forms derived from coffee husk. Biochar derived from coffee husk prepared at lower pyrolysis temperature has a higher adsorption capacity. The results suggest that the biochar could be used as an adsorbent ammonium from water.

1. Introduction

Nitrogen is present in natural water in the forms of organic nitrogen, ammonia, nitrate, and nitrite. In most cases of raw wastewater, nitrogen is normally present in the organic nitrogen and NH$_4^+$. Ammonia also can be naturally generated in the environment [1]. The presence of NH$_4^+$ at high concentrations can contribute to eutrophication and the subsequent devastation of aquatic life. The residual amount of ammonium in water causes ecological issues in relation to eutrophication, acidification of freshwater ecosystems, and in anoxic conditions, poisoning benthic organisms and fish [2]. According to Eddy, the ammoniac tolerance in freshwater fishes ranges from 0.07 to 2.00 mg/L [3]. At a dose of more than 33.7 mg of ammonium ion per kg of body weight per day, it influences the metabolism by shifting the acid-base equilibrium, disturbing the glucose tolerance, and reducing the tissue sensitivity to insulin [4].

Therefore, removal of nitrous ammonium in polluted water is necessary. Many methods of removing NH$_4^+$ from water have been used, including ion adsorption and exchange, which is more effective than the others, yet of high cost [5]. Looking for new renewable materials that can be used in ion adsorption and exchange is a crucial research topic. Biochar prepared from agricultural waste is a useful material due to its efficiency, low cost, environment friendliness, and availability in large quantity [6]. Adsorption of inorganic pollutants by biochar is the result of (i) ion exchange, (ii) electrostatic attraction, or (iii) surface precipitation [7]. In the case of ammonium, mostly electrostatic exchange and interaction is used; moreover, Khalil et al. stated that biochar’s surface chemistry is more important
than the material’s surface area [5, 8]. However, surface chemistry properties are controlled by the pyrolysis condition, especially temperatures, heating, and heat-keeping time [9]. Ammonium adsorption capability by biochar which was prepared with varying pyrolysis temperatures among research is not always alike [10]. There have been studies which use biochar derived from corn plants, red oak (Quercus rubra), maple trees, and wheat plants to adsorption of ammonium [10].

Vietnam is the No. 1 producer of robusta coffee in the world, accounting for more than 40% of the global output in the 2019-2020 marketing year [11]. Coffee husks are the major solid residues from the processing of coffee, for which there are no current profitable uses, and their adequate disposal constitutes a major environmental problem. Dak Lak is a leading coffee-producing province in Vietnam with over 200,000 ha of coffee fields, and its annual coffee production reaches 450,000 tons. Together with about 250,000 tons of coffee husk to be discharged, it is a valuable material, yet has not been used efficiently [12]. Thus, innovative techniques and products for the profitable and adequate use of this type of residue are being sought. We have been also interested in the adsorption of metal ion, textile dyes, etc. on different materials [13–15]. In this work, we are reporting the assessment of NH$_4^+$ in the water adsorption capability of biochar derived from coffee husk at different pyrolysis temperatures.

2. Materials and Methodology

2.1. Sampling Method. The coffee husk was collected in January 2019 from a household at Hamlet 8, 9A village, Pong Drang Commune, Krong Buk Town, Dak Lak Province. The location of the sampling site is 12°34′10″N 108°01′39″E. The composite samples were obtained from the coffee peeling process. Coffee husk was dried at 60°C for 24 hours and stored in polyethylene bags [16].

2.2. Chemicals. All chemicals used in the study were of analytical grade. Storage solution concentration was NH$_4^+$ 1000 mg/L. Sample water was distilled water and was purified by the model EASYpure II RF from Thermo Scientific, USA. Instruments must be cleaned by being filled with nitric acid for 24 hours and then cleaned by demineralized water [16].

2.3. Experimental Design. The biochar modulation refers to the research of Yoo et al., where processed coffee husk was furnaced in a Naberthem P330 furnace at 300, 450, and 600°C [18]. The heating rate was set to 10°C.min$^{-1}$. Once the desired temperature was reached, the temperature was kept constant for 2 hours and the samples were let to cool in the oven overnight. The biochar was then pressed through a plastic sieve (hole diameter of 1 mm) to make it homogenous and was stored separately in polyethylene (PE) containers in dark at 4°C [18]. Biochar samples were analyzed and used to conduct equilibrium and kinetics experiments. Parameters including recovery efficiency and surface functional groups were determined. Analyses were conducted on these biochar samples to determine characteristics of surface functional groups such as pH and pH$_{pzc}$ [19], total organic carbon (TOC) [20], functional group H$^+/\text{OH}^−$ [21], and cation-exchange capacity (CEC) based on the Walkley Black method. Changes in biochar’s functional groups were analyzed by reflectance spectroscopy FT-IR-4700 type A with 350–4000 cm$^{-1}$ resolution.

Equilibrium experiment of NH$_4^+$ ion adsorption on biochar refers to the work of Khalil et al. and Xue et al. [5, 22]. The experiment was performed in 50 mL polypropylene tubes, and 0.3 g biochar was mixed with 30 mL of NH$_4^+$ solution. The concentration of the diluted NH$_4^+$ solution varied between 0 and 50 mg·L$^{-1}$. Two drops of chloroform were added to prevent microbial activities. The initial pH of the solutions was adjusted to 5.0–5.5 by adding either dilute HCl or NaOH solutions (pH value is close to that of natural surface water sources). The mixtures were then shaken by using a GFP3015 orbital shaker with frequency 150 round-per-minute (rpm) in 12 hours (which is the time for the NH$_4^+$ adsorption to reach the equilibrium, determined by preliminary experiments.). After that, the solutions were not adjusted during this experiment. The solid settlement was separated from the mixture by using a DLAB DM0636 centrifuge at 4000 rpm for 15 min. Then, the remaining solution was filtered through a 0.22μm filter. NH$_4^+$ was determined according to ISO 7150–1:1984 (E). Langmuir and Freundlich adsorption isotherms models were used in evaluating the suitability of experimental data.

Ion adsorption kinetics survey was conducted by mixing 0.3 g biochar and 30 mL of 8.3 mgNH$_4^+$L$^{-1}$ solution. The mixture was then shaken at 150 rpm. All the samples went through shaking intervals 5; 10; 15; 20; 30; 40; 60; 90; and 120 minutes and then were filtered to conduct NH$_4^+$ analysis. Pseudo-first- and second-order kinetic models were used to consider experiment data and to estimate kinetic parameters.

2.4. Data Processing

2.4.1. Calculation Methods

(i) Productivity efficiency of biochar is

$$\text{% production efficiency} = \frac{m_b}{m_0} \times 100,$$

where m_0 (g) is the initial coffee mass before being furnaced; m_b (g) is the biochar mass after being furnaced.

(ii) pH$_{pzc}$ of biochar is

$$\Delta \text{pH} = \left(\text{pH}_f - \text{pH}_i\right),$$

where pH$_i$: initial pH value; pH$_f$: pH value after biochar is added to the 0.01 M KCl solution (they were shaken for 2 h and allowed to settle for 48 h). Plotting ΔpH according to the initial pH, pH$_{pzc}$ is where the pH curve overcomes ΔpH = 0 [19].
(iii) Adsorption equilibrium:

Adsorption capacity, mg/g:

\[q_i = \frac{(C_0 - C_i) \times V}{m} \]

(3)

where \(C_0 \) (mg/L) is the initial NH\(_4^+\) ion concentration, \(C_i \) (mg/L) is the adsorbed NH\(_4^+\) concentration at equilibrium, \(V \) (L) is the NH\(_4^+\) solution volume, \(m \) (g) is the adsorbent mass (biochar), and \(q_i \) (mg/g) is the NH\(_4^+\) adsorption capacity at equilibrium.

Langmuir isothermal equation:

\[\frac{1}{q_i} = \frac{1}{K_L q_0} + \frac{1}{C_i} \]

(4)

where \(q_0 \) (mg.g\(^{-1}\)) is the maximum adsorption capacity at equilibrium; \(K_L \) (L.mg\(^{-1}\)) is the Langmuir adsorption constant.

The abovementioned equation has the form of \(y = ax + b \), and therefore, it could be solved by curve fitting \(y = 1/q_i \) and \(x = 1/C_i \) to yield \(K_L, q_0 \).

Freundlich isothermal equation:

\[q = \frac{y}{m} = K_F C_i^{1/n_F} \]

(5)

or

\[\log q_i = \frac{1}{n_F} \log C_i + \log K_F, \]

(6)

where \(n_F \) is the Freundlich isothermal constant for NH\(_4^+\) adsorption intensity; \(K_F \) is the Freundlich isothermal adsorption constant for adsorption capacity.

This equation also has the form of \(y = ax + b \), and as all the parameters are known, the plot of \(\log q_i \) against \(\log C_i \) can be drawn.

(iv) Adsorption kinetics:

- **Pseudo-first- and second-order (PFO and PSO)** reaction models were usually used to study the adsorption mechanism, in order to assess adsorption kinetics parameters.

 Pseudo-first-order kinetics equation:

 \[\ln(q_e - q_t) = -k_1t + \ln q_e \]

(7)

\(\ln(q_e - q_t) \) is plotted according to \(t \).

- **Pseudo-second-order kinetics equation:**

 \[\frac{1}{q_t} = \frac{1}{q_e^2} + \frac{1}{q_e} \]

(8)

The abovementioned equation has the form of \(y = ax + b \), and therefore, it could be solved by curve fitting \(y = 1/q_i \) and \(x = 1/t \) to yield \(K_2, q_2 \), the pseudo-first- and second-order kinetics constants, and \(t \) (minute) is the adsorption time.
Analyzing the relationship between the parameters, Table 2 showed that the biochar pyrolysis temperatures were correlating and proportional to pH, pH\text{pzc}, and mmolOH\text{−} and reversely proportional to %H, mmolH\text{+}, %TOC, and CEC. Analysis results by FT-IR reflectance spectroscopy, Figure 1, showed that the featured through series at 3251 cm\text{−}1 and 1575 cm\text{−}1 of biochar 300°C clearly indicated the presence of −OH and COO\text{−} groups, the results showed that the carboxylase group decreased with increasing biochar pyrolysis temperatures, and similar conclusions were stated by Fidel et al. [10] and Thuy and Do [28]. This suggested a decrease in the polar organic functional groups with an increase in pyrolysis temperature [8]. Series at 1076 cm\text{−}1 were assumed to be due to the decrease of C-O in connection with the increasing pyrolysis temperatures [29]. An aromatic hydrocarbon peak (789 cm\text{−}1) was observed at 450 and 600°C, which was in accordance with the study by Lugovoy et al. showing that lignin decomposition occurs at 280–500°C [30]. The interchangeable results were concluded by Park et al. who also studied biochar derived from coffee husk produced at 300, 450, 500, and 600°C [31].

3.2. Adsorption Equilibrium NH\text{4}+ in Water of Biochar. Results of the NH\text{4}+ adsorption equilibrium experiments of biochar derived from coffee husk produced at varying temperatures showed that adsorption capacity increased with increasing the initial NH\text{4}+ concentration in all 3 biochar forms and they all reached saturation in the experimental condition (Figure 2). Increasing the initial NH\text{4}+ concentration resulted in competition among cation in the solution, which promoted adsorption chance and capacity [5], assumed to be related to cation-exchange capacity (CEC) with %H, %TOC, and the formation of hydroxyl (OH\text{−}) and carboxylate (−COOH and −O\text{H}) on the surface of biochar samples [28]. The decrease in adsorption capacity may be due to reduction of organic groups such as −COOH and −OH on the surface of biochar samples (Figure 1). The study used biochar produced from maple trees at 500°C and generated a Langmuir maximum adsorption capacity of 0.99 mg NH\text{4}+·g\text{−}1 at pH 5.9 [35]. In the study of Thuy and Do, ammonium adsorption capacity on biochar derived from coffee husk was relatively high after 6 hours with maximum 2.8 mg·N·g\text{−}1 biochar [28]. The higher adsorption capacity can be attributed to the biochar being prepared at 350°C, but the heat retention time is much shorter, only 1 hour.

Langmuir adsorption constantly follows a downward trend with increasing temperatures, and the same conclusion is found in the work of Fidel et al., on certain biochar [10]. In terms of the Freundlich model, n\text{f} greater than 1 indicates exposure to the adsorption (for n\text{f} represents the surface exchange intensity or surface heterogeneity) [5].

According to the work in [6], better adsorption of the NH\text{4}+ of biochar with lower pyrolysis temperatures was assumed to be related to cation-exchange capacity (CEC) with greater quantity carboxylase groups on the biochar’s surface, where adsorbing positions locate, and this finding fits the results of this study. The results showed that NH\text{4}+ adsorption on coffee husk biochar occurred mainly by cation H\text{+} on functional groups containing surface oxygen; therefore, high adsorption capacity means low pyrolysis temperature. Additionally, the adsorption capacity shrinks with increasing temperatures because of the increasing competition among ions in organic minerals (K, Fe, Zn, Ca, and Mg) in biochar.

Table 1: Productivity efficiency and surface physical chemistry properties of biochar.

t\text{°C}	%H	pH	pH\text{pzc}	mmolH\text{−}·g\text{−}1	mmolOH\text{−}·g\text{−}1	%TOC	CEC, mmol·kg\text{−}1
300	51 a	7, 59 a	7, 2 a	1, 73 a	11, 17 a	25, 5 a	309 a
SD	0, 8	0, 16	0, 11	0, 11	0, 15	1, 0 a	11
450	34 b	9, 16 b	8, 2 b	0, 50 b	11, 24 b	10, 4 b	290 b
SD	0, 6	0, 02	0, 10	0, 10	0, 04	0, 3	3
600	30, 7 c	9, 69 c	9, 5 c	0, 17 c	12, 50 c	1, 5 c	266 c
SD	4, 0	0, 02	0, 06	0, 06	0, 04	0, 3	1

a,b,c in a column illustrate statistically significant differences (*p* < 0.05). SD: standard deviation.
with increasing temperatures [36]. Similar results were also found in the study of Fidel et al., which suggested that, with increasing pyrolysis temperature, the NH$_4^+$ adsorption capacity of biochar decreased [10]. This finding was also mentioned by Gao et al. who studied the ammonium adsorption capability of biochar from peanut shells, corn cobs, and cotton tree trunks at 300, 450, and 600°C and kept in 2 hours [33]. The study’s result matched with the work of Begum et al. of pyrolyzed woodchips at 700°C whose result was 0.96 mg·g$^{-1}$ [32].

To investigate the main factors influencing biochar’s ability to adsorb NH$_4^+$ – N, correlations between q_0, some properties of biochar, biochar pyrolysis temperature, and CEC of biochars were analyzed, Table 4. Maximum NH$_4^+$ adsorption capacity q_0 was positively correlated with the total organic content in the biochar ($r = 0.986$) (Table 4). This indicated that the removal of the organic functional groups with increasing pyrolysis temperature induced the decreasing NH$_4^+$ adsorption capacity of biochar. CEC seemed to be the dominating factor influencing the NH$_4^+$ adsorption capacity of biochar. The q_0 values were positively correlated with CEC ($r = 0.954$). That is to say, the biochar with higher CEC values had larger NH$_4^+$ adsorption capacity. The q_0 values were negatively correlated with biochar pyrolysis temperature, $r^2 = 0.905$ so that NH$_4^+$ adsorption capacity of the biochar also decreased with increasing pyrolysis temperatures.

Table 2: Correlations between physical chemistry properties of biochar.

t°C	CEC, mmol·kg$^{-1}$	%TOC	pH	pH$_{pzc}$	mmolOH·g$^{-1}$	mmolH$^+$·g$^{-1}$	%H	%O-H	O-H	C-O	COO-
300	0.954**	0.875**	0.673**	0.730*	0.907**	-0.692*	-1	0.976**	1	0.940*	1
450	0.943**	0.958**	0.962**	0.960*	0.905**	-0.692*	-1	0.976**	1	0.940**	1
600	0.943**	0.958**	0.962**	0.960*	0.905**	-0.692*	-1	0.976**	1	0.940**	1

* * The correlation is significant at 0.01; * the correlation is significant at 0.05.

3.3. The NH$_4^+$ Adsorption Kinetics of Biochar. The NH$_4^+$ adsorption in the water process of biochar with varying pyrolysis temperatures and exposure time periods, Figure 3, showed that adsorption kinetics occurs in 3 kinetic phases: the fast phase, slow phase, and ultraslow phase. The adsorption was dramatic within the first 15 minutes in 300, 450, and 600°C biochars. The adsorption capacity reached 82.0, 83.8, and 84.2%, respectively, to the 3 biochars and then slowed down and reached the equilibrium after 45 minutes. The speed of the reaction can be explained in the fast phase, slow phase, and ultraslow phase. The adsorption was dramatic within the first 15 minutes in 300, 450, and 600°C biochars. The adsorption capacity reached 82.0, 83.8, and 84.2%, respectively, to the 3 biochars and then slowed down and reached the equilibrium after 45 minutes. The speed of the reaction can be explained in the fast phase, slow phase, and ultraslow phase. The adsorption was dramatic within the first 15 minutes in 300, 450, and 600°C biochars. The adsorption capacity reached 82.0, 83.8, and 84.2%, respectively, to the 3 biochars and then slowed down and reached the equilibrium after 45 minutes. The speed of the reaction can be explained in the fast phase, slow phase, and ultraslow phase.
According in ANOVA analysis, differences in average experiment results showed, that after 30 minutes, the increasing NH$_4^+$ adsorption capacity was not statistically significant ($p < 0.05$) in all the 3 biochars (Figure 3). This showed that the process reached a saturated adsorption state.

Simulations from the first-order and second-order models described the experimental data fairly well with R^2 values larger than 0.89. However, only the pseudo-second-order kinetic model with q_e derived from the model and the experiment was satisfactory; specifically, the modelled
The adsorption capacity, q_e, of the 300, 450, and 600°C biochar was 0.77, 0.78, and 0.75 mg.g$^{-1}$, respectively, while the experimented q_e was 0.74, 0.70, and 0.69 mg.g$^{-1}$ (Table 5). Therefore, using the pseudo-second-order kinetic model to explain the NH$_4^+$ adsorption kinetic of biochar derived from coffee husks was suitable. The same was also confirmed from the finding of Khalil et al. [5]. This also means that the kinetics was controlled by valency-related adsorptions by sharing or ion-exchanging between adsorbents and adsorbates [37]. The k_2 parameter did not behave in a particular trend when increasing the pyrolysis temperature from 300 to 600°C.

Table 4: Correlations between some properties of biochar and maximum NH$_4^+$ adsorption capacity.

°C	%TOC	CEC, mmol.kg$^{-1}$	q_0 NH$_4^+$, mg.g$^{-1}$
300	1	-0.988 **	-1.000 **
450	-0.988 **	0.954 **	0.986 **
600	-0.954 **	0.940 **	0.954 **

** Correlation is significant at the 0.01 level (2 tailed). * Correlation is significant at the 0.05 level (2 tailed).

Figure 3: Illustration of NH$_4^+$ adsorption capacity (mg/g) by time t (min) of the biochar; a, b, c, d indicate statistically significant differences. (a) Biochar at 300°C, (b) biochar at 450°C, (c) biochar at 600°C, and (d) adsorption efficiency of 3 forms of biochar.
Table 5: NH$_4^+$ adsorption kinetics parameters of biochar.

Models	Pyrolytic temperature	q_e (mg·g$^{-1}$)	Kinetic constant	q_e of experiment, mg·g$^{-1}$	R^2
Pseudo-first-order	Biochar 300°C	-0.19	$k_1(1. \text{min}^{-1}) = 0.025$	0.74	0.9
	Biochar 450°C	0.22	$k_1(1. \text{min}^{-1}) = 0.051$	0.70	0.89
	Biochar 600°C	0.24	$k_1(1. \text{min}) = 0.065$	0.69	0.9
Pseudo-second-order	Biochar 300°C	0.77	$k_2(\text{mg} \cdot \text{min}^{-1}) = 0.314$	0.74	0.92
	Biochar 450°C	0.78	$k_2(\text{mg} \cdot \text{min}^{-1}) = 0.200$	0.70	0.93
	Biochar 600°C	0.75	$k_2(\text{mg} \cdot \text{min}^{-1}) = 0.247$	0.69	0.92

4. Conclusions

Coffee husks acquired from Krong Buk Town (Dak Lak Province, Vietnam) were used to transform into/produce biochar. Recovery efficiency and surface physical-chemical properties of the biochar (TOC, pH, pH$_{pzc}$, H$^+$ and OH$^-$ groups, and CEC) at different temperatures were determined. The results showed that biochar pyrolysis temperatures were positively correlated with pH, pH$_{pzc}$, and mmolOH$^-$ and negatively with %H, mmolH$^+$, %TOC, and CEC. The study showed biochar derived from coffee husks with lower pyrolysis temperature had higher NH$_4^+$ adsorption capacity. Both Langmuir and Freundlich isotherm models fit the NH$_4^+$ adsorption process with R^2 in range 0.91–0.98. Time to reach adsorption equilibrium ranged from 15 to 30 minutes. The pseudo-second-order kinetic model was used to explain NH$_4^+$ adsorption kinetics of coffee husks to derive biochar. In conclusion, a new idea of researching on the application of biochar produced from coffee husks in water treatments by NH$_4^+$ adsorption is based.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This research was supported by the Industrial University of Ho Chi Minh City, Vietnam.

References

[1] R. Knowles, D. R. S. Lean, and Y. K. Chan, “Nitrite oxide concentrations in lakes: Variations with depth and time,” Limnology and Oceanography, vol. 26, no. 5, pp. 855–866, 1981.
[2] D. Hsu, C. Lu, T. Pang, Y. Wang, and G. Wang, “Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain,” Applied Sciences, vol. 9, no. 23, pp. 1–16, 2019.
[3] F. B. Eddy, “Ammonia in estuaries and effects on fish,” Journal of Fish Biology, vol. 67, no. 6, pp. 1495–1513, 2005.
[4] WHO, Ammonia in Drinking-Water in Health Criteria and Other Supporting Information, World Health Organization, Geneva, Switzerland, 2nd edition, 1996.
[5] A. Khalil, N. Sergeevich, and V. Borisova, “Removal of ammonium from fish farms by biochar obtained from rice straw isoterm and kinetic studies for ammonium adsorption,” Adsorption Science & Technology, vol. 36, no. 5-6, pp. 1294–1309, 2018.
[6] C. Zhi-Liang, Z. Jian-Qiang, H. Ling, Y. Zhi-Hui, L. Zhao-Jun, and L. Min-Chao, "Removal of Cd and Pb with biochar made from dairy manure at low temperature," Journal of Integrative Agriculture, vol. 18, no. 1, pp. 201–210, 2019.
[7] T. Sizmur, T. Fresno, G. Akgül, H. Frost, and E. Moreno-Jiménez, "Biochar modification to enhance sorption of inorganics from water," Bioresource Technology, vol. 246, pp. 34–47, 2017.
[8] X. Gai, H. Wang, J. Liu et al., “Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate,” PLoS One, vol. 9, no. 12, Article ID e138888, 2014.
[9] Z. Zhou, Z. Xu, Q. Feng, D. Yao, J. Yu, and D. Wang, "Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar," Journal of Cleaner Production, vol. 187, pp. 1–26, 2018.
[10] R. B. Fidel, D. A. Laird, and K. A. Spokas, "Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent," Scientific Reports, vol. 8, Article ID 17627, 2018.
[11] United States Department of Agriculture: Coffee: World Markets and Trade https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/sq87c919h/8w32rm91m/coffee.pdf.
[12] M. Thong, https://daklak24h.com.vn/kinh-te/10306/su-dung-vo-ca-cho-san-xuat-cong-nghiệp-hieu-quan-chua-cao.html, 2015.
[13] V.-P. Dinh, T.-D.-T. Huynh, H. M. Le et al., “Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel,” RSC Advances, vol. 9, no. 44, pp. 25847–25860, 2019.
[14] N. Van Cuong, T. Q. Hieu, P. T. Thien, and T. L. V. LD Vu, “Reusable starch-graft-polyamineFe3O4 composite for removal of textile dyes,” Rasayan Journal of Chemistry, vol. 10, no. 4, pp. 1446–1454, 2017.
[15] P. T. Long, D. V. Dat, and L. V. Tan, “Modeling synthesis amorphous magnesium silicate for adsorption of lead, cadmium and arsenic on well-developed surface area in aqueous solution,” Rasayan Journal of Chemical, vol. 14, no. 1, pp. 608–615, 2021.
[16] Y. K. Kiran, A. Barkat, X.-q. Cui et al., “Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil,” Journal of Integrative Agriculture, vol. 16, no. 3, pp. 725–734, 2017.
[17] CEN/T. S. 14429, Characterization of Waste – Leaching Behaviour Test – Influence of pH on Leaching with Initial Acid/base Addition, European Committee For Standardization, Brussels, Belgium, 2005.
[18] G. Yoo, H. Kim, J. Chen, and Y. Kim, “Effects of biochar addition on nitrogen leaching and soil structure following fertilizer application to rice paddy soil,” Soil Science Society of America Journal, vol. 78, no. 3, pp. 852–860, 2014.

[19] T. T. Tu., “Physical and chemical characterization of biochar derived from rice husk,” Journal of Hue University, vol. 120, no. 6, pp. 233–247, 2016.

[20] TCVN 8941, “Soil quality—determination of total organic carbon—walkley black method,” Vietnam Standard, vol. 99, 2011.

[21] W. H. Cheung, S. S. Y. Lau, A. W. M. Ip, and G. McKay, “Characteristics of chemical modified activated carbons from bamboo scaffolding,” Chinese Journal of Chemical Engineering, vol. 20, no. 2, pp. 515–523, 2012.

[22] S. Xue, X. Zhang, H. H. Ngo et al., “Food waste based biochars for ammonia nitrogen removal from aqueous solutions,” Bioresource Technology, vol. 292, Article ID 121927, 2019.

[23] S. Xue, X. Zhang, H. H. Ngo et al., “Food waste based biochars for ammonia nitrogen removal from aqueous solutions,” Bioresource Technology, vol. 292, Article ID 121927, 2019.

[24] M.-E. Lee, J. H. Park, and J. W. Chung, “Adsorption of Pb(II) and Cu(II) by ginkgo-leaf-derived biochar produced under various carbonization temperatures and times,” International Journal of Environmental Research and Public Health, vol. 12, p. 14, 2017.

[25] X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, and B. Gao, “Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar,” Environmental Science and Pollution Research International, vol. 23, no. 18, pp. 17928–17940, 2016.

[26] A. Mukherjee, A. R. Zimmerman, and W. Harris, “Surface chemistry variations among a series of laboratory-produced biochars,” Geoderma, vol. 163, no. 3-4, pp. 247–255, 2011.

[27] Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang et al., “Competitive removal of Cd (II) and Pb (II) by biochars produced from water hyacinths performance and mechanism,” RSC Advances, vol. 6, pp. 1–28, 2016.

[28] M. H. Park, S. Jeong, and J. Y. Kim, “Peer Review #1 of Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice-wheat rotation system (v0.1),” Journal of Environmental Chemical Engineering, vol. 7, pp. 1–7, 2019.

[29] A. Begum, A. H. M. G. Hyder, Q. Hicklen, T. Crocker, and B. Oni, “Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions,” Chemical Speciation & Bioavailability, vol. 27, no. 2, pp. 92–97, 2015.

[30] Y. S. Ho and G. McKay, “Pseudo-second order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999.