Meal Replacements, Reduced Energy Density Eating, and Weight Loss Maintenance in Primary Care Patients: A Randomized Controlled Trial

Michael R. Lowe1, Meghan L. Butryn1, J. Graham Thomas2 and Maria Coletta1

Objective: To compare the presence or absence of meal replacements (MRs) and an energy density (ED) intervention to facilitate weight loss maintenance.

Design and Methods: A total of 238 overweight primary care patients (mean body mass index = 39.5 kg/m²) began the study; 132 completed the 12-week weight loss phase. Participants were randomly assigned to one of four maintenance conditions formed by crossing the presence or absence of MRs (MR+/MR−) and of the ED program (ED+/ED−) during a subsequent 9-month maintenance phase. Follow-up assessments occurred 1 and 2 years after treatment termination.

Results: Participants initially lost 6.1 kg. Analyses of variance based on weight change from the beginning of the maintenance phase to the 2-year follow-up produced a significant interaction. All groups except ED+/MR− regained substantial weight during follow-up; the ED+/MR− group regained significantly less weight than the control group at both follow-up assessments. No significant effects of treatment were found for several variables that were expected to mediate these outcomes.

Conclusions: Because weight losses achieved in lifestyle change programs for obesity are rarely maintained, the superior outcome achieved by the ED+/MR− condition is notable. Nonetheless, methodological issues and inability to identify a potential mediator of this outcome make replication of this finding essential.

Obesity (2014) 22, 94–100. doi:10.1002/oby.20582

Introduction

Despite intensive efforts to improve long-term weight control (1), weight loss maintenance continues to be an elusive goal in lifestyle change programs. In regard to energy intake, Lowe (2) proposed three possible reasons for this. First, lifestyle change programs place roughly equal emphasis on scores of diverse lifestyle changes, but evidence suggests that specific attributes of the food environment (e.g., the availability of high-calorie foods) and of food itself (e.g., portioning and energy density, ED) play a disproportionately large role in appetite and weight control (3,4). This suggests that it may be advantageous to make modification of participants’ personal food environments a major focus of treatment. Second, changes in self-control skills (e.g., self-monitoring, stimulus control, and boosting motivation), though useful for weight loss, apparently cannot be reliably maintained, resulting in weight regain when treatment ends. Third, because obese individuals are particularly sensitive to the influence of food cues in the environment (5-9), they might benefit the most from an approach that directly produces and sustains nutritional changes in their personal food environments (2,3). In this study, two nutrition-focused strategies for enhancing the maintenance of weight loss were tested. The first was the use of meal replacements (MRs); past research has suggested their usefulness for weight loss (10) and maintenance (11). The second strategy was training in a reduced ED eating approach to food selection and preparation. This approach (i.e., reducing the number of calories in a given weight or volume of food) is a promising strategy for weight loss maintenance because it promotes...
consumption of a satisfying volume of food while minimizing caloric intake (3,12,13). In this study, participants were also instructed to make changes in their food purchases and food preparation so the ED of the foods in their personal food environment (2) was reduced in ways that would be sustainable after treatment ended.

To evaluate the effect of the MR and ED interventions specifically for weight loss maintenance, all participants first completed a 12-week behavioral weight loss program. Participants were randomized into one of four maintenance conditions before the weight loss phase but both participants and their group leaders were kept blind about their assignment until week 13. In this manner, participants were able to remain in the same group for the full 12-month treatment period. The 9-month maintenance conditions were as follows: (a) lifestyle modification only (i.e., the absence of both MRs and the ED program, designated as MR−/ED−), (b) lifestyle modification plus MRs (MR+/ED−), (c) lifestyle modification plus the ED intervention (MR−/ED+), or (d) lifestyle modification plus MRs and the ED intervention (MR+/ED+). The study tested the hypothesis that the latter three conditional conditions would produce superior weight loss maintenance at 1- and 2-year follow-ups.

Methods

Participants

A total of 238 overweight primary care patients [65.8% African American, 89% women, and mean body mass index (BMI) = 39.5 kg/m²] were recruited by physicians in primary care offices. Participants had to be between the ages of 18 and 70 years, have a BMI over 30 kg/m² (or 27 kg/m² with a comorbid medical condition), and have regular access to a telephone. Exclusion criteria included lactose intolerance, serious psychiatric disorders, and medical conditions and drug regimens known to affect body weight or appetite.

The 132 participants who completed the 12-week weight loss phase were randomly assigned to one of four weight maintenance groups formed by crossing two factors: (1) the presence or absence of ongoing use of one meal and one snack replacement per day (MR+; n = 66 and MR−; n = 66) and (2) the presence or absence of a reduced ED eating program (ED+; n = 72 and ED−; n = 60). Informed consent was obtained and the study was approved by Drexel University’s Institutional Review Board.

Intervention

Weight loss phase. All participants were instructed to: (1) follow a 12-week weight loss diet using two MRs per day, plus a controlled meal and planned snacks, (2) read weekly lifestyle change modules from the LEARN manual (14), and (3) implement treatment recommendations via weekly 15-min phone calls with a weight control specialist (WCS). WCSs had graduate degrees in clinical psychology or nutrition. Participants were instructed to follow a balanced 1,200-1,500 kcal, MR-supplemented diet (using Slim Fast®); MR shakes and bars were provided free of charge. The WCS also reviewed appropriate use of MRs, answered questions, and provided support to motivate participants to continue adhering to LEARN recommendations. During the weight loss phase, all participants weighed themselves at least weekly on digital scales that were provided to them and reported their weight during each phone call with their WCS.

Maintenance phase. Participants were randomly assigned to weight loss maintenance interventions formed by crossing two fac-

tors: (1) continued use of MRs or not and (2) introduction of a reduced ED eating program or not. During this phase, the 15-min phone calls and written educational modules continued, but gradually decreased in frequency from weekly for the first 3 months, to biweekly for the next 3 months, and then monthly for the final 3 months. MRs continued to be provided without charge to the MR+ conditions until treatment ended.

MR−/ED− condition (n = 33): In this condition, the focus was on learning to incorporate conventional foods into the diet (to achieve a maintenance level of caloric intake following LEARN manual guidelines for macronutrient composition of the diet).

MR+/ED− condition (n = 27): Participants in this condition were told that MRs would constitute a significant part of their weight maintenance program. They were taught how to build in MRs to replace one meal and one snack per day. A rationale for the continued, long-term use of MRs to support weight loss maintenance was provided.

MR−/ED+ condition (n = 33): Participants in this condition were given the book Volumetrics (15) and individual modules that complemented the material in the book (12,13). The discontinuation of MRs was explained as a necessary transition to learning how to maintain lost weight using regular foods. The ED condition emphasized purchasing and preparing foods lower in ED, mostly by reducing fat content and/or increasing water content of foods throughout the 9-month maintenance phase. Regular homework assignments aimed at having participants systematically prepare or purchase foods that were reduced in ED to permanently replace ingredients or foods that had been a regular part of their diet. The goal was to change the ED of as many foods as possible in participants’ personal food environments (2) in ways that could be sustained. These environments included their home, car, workplace, and any other contexts where they regularly spent time. Participants were also encouraged to begin meals with a food low in ED (e.g., broth-based soups).

MR+/ED+ condition (n = 39): This condition combined the use of MRs and the ED condition as described above.

The same physical activity prescription was used across all conditions. All participants were encouraged to gradually increase their levels of structured physical activity (usually brisk walking) so that they were engaging in it at least 150 min per week.

Study design and measures

Assessments were conducted at baseline (before the start of the weight loss phase) and at months 3, 12, 24, and 36. Height was measured with a stadiometer at the baseline assessment and weight was measured with a digital scale at each assessment point.

24-h food recalls. Dietary recalls were collected at each assessment (except month 36) and analyzed by the Diet Assessment Center at Pennsylvania State University. The 24-h recall has become the best available method for dietary assessment (16-18). The total energy and ED of the diet (kcal/total weight of food and beverages) were analyzed; solid foods and beverages were analyzed separately (13).

Blood lipids and blood pressure. Fasting cholesterol, triglycerides, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol were assessed. Blood pressure was also measured [using the final two of three measurements (19)].
TABLE 1 Participant characteristics at baseline and start of weight loss maintenance (WLM) phase

	Baseline (n = 238)	Start of WLM phase (n = 132)
Age (years)	45.5 ± 11.8	48.3 ± 11.4
Baseline BMI (kg/m²)	39.5 ± 6.6	38.2 ± 6.1
Baseline WC (cm)	112.8 ± 13.7	110.2 ± 12.9
Weight loss (kg)	n/a	6.1 ± 3.7
Female (%)	89.0	86.5
Race (%)		
Caucasian	21.9	27.8
African American	65.8	62.4
American Indian	0.4	0
Asian	0.4	0.8
Other	11.5	9.0
Ethnicity (%)		
Hispanic	6.7	6.8
Non-Hispanic	93.3	93.2

Hemoglobin A1c. Hemoglobin A1c reflects the glycemic history over the previous 2-3 months and is positively impacted by weight loss, physical activity, and improved diet composition.

Waist circumference (WC). Waist circumference was measured (at the umbilicus) because it conveys information about health risks associated with obesity beyond body mass itself.

Eating inventory. Cognitive restraint measures the efforts toward control of food intake and dis inhibition assesses tendencies toward overeating (20). The ability of these subscales to predict various aspects of eating behavior has been demonstrated (21,22); cognitive restraint has been subdivided into flexible and rigid eating control subscales (22).

Weight efficacy life-style questionnaire. The weight efficacy life-style questionnaire (23) is a well-supported, 20-item scale that measures perceived self-efficacy in controlling eating in five types of situations (23,24).

Physical activity measure. The short physical activity history questionnaire (25) was used, with two modifications (a bout of activity was defined as 20 min and respondents were told to compare themselves to others of the same age and sex). Its reliability and validity have been supported (26).

Home food environment measure. Each participant completed a home food environment survey, which is a checklist of the foods stored in their refrigerator and cabinets (26). Similar questionnaires have demonstrated acceptable test-retest and inter-rater reliability (26,27).

Statistical analysis

Analysis of variance and χ^2 were used to compare treatment groups (treated as a four-level between-subjects factor in these analyses) on (a) baseline demographic characteristics and body size (i.e., age, race, ethnicity, gender, and BMI) and (b) outcome measures (weight change, blood pressure, cholesterol, glycemic control, food pantry, ED of the diet, eating behavior, and physical activity) at the end of the initial 3-month weight loss phase (at the time of randomization to a maintenance condition). Participants who did not complete the initial weight loss phase were not randomized to a maintenance intervention.

The effect of the two maintenance interventions on change in outcomes during the maintenance phase was examined using linear and nonlinear mixed models. As a first step, unconditional models were specified for each outcome variable to test for linear and exponential trends over time and to evaluate the variance components associated with slopes to determine assignment as fixed versus random effects (all slopes were treated as random effects). Given our 2 x 2 factorial design (MR=+/+ and ED=+/+), two binary variables representing the effect of the two maintenance conditions were then added simultaneously to the best fitting model from step 1, along with their interaction. This approach allowed us to test for main effects of the ED and MR conditions as well as to test for an interaction (which, if not significant, was not retained in the final model). These analyses included the following covariates: the value of the outcome at baseline and the time of randomization, gender, race (Caucasian vs. non-Caucasian), and weight loss from baseline to 3 months. As a final step, the linear mixed models were used to estimate least square (LS) means for each outcome, for each cell of the 2 x 2 design at 12, 24, and 36 months. The four means were compared against each other in post hoc tests (see Tables 2 and 3).

Results

Characteristics of sample

Descriptive information about the participants enrolled for the initial weight loss phase and those retained for the experimental phase is reported in Table 1.

Participants were randomly assigned to ED− (n = 60) or ED+ (n = 72), and the same participants were assigned to MR− (n = 66) or MR+ (n = 66). Treatment groups did not differ at baseline according to age, BMI, race, ethnicity, or gender (all P-values > 0.05).

Participants who completed the initial weight loss phase (n = 132) were significantly older than those who did not (n = 104; M ± SEM = 48.4 ± 1.0 vs. 41.9 ± 1.1 years, respectively, P < 0.001), had significantly lower BMIs at baseline (M ± SEM = 38.2 ± 0.5 vs. 41.2 ± 0.7 kg/m², P < 0.001), and were significantly more likely to be Caucasian than African American (P < 0.05). There were no significant differences in gender (P > 0.10). The percentages of participants that completed the weight loss phase who attended the end of treatment assessment, 12-month follow-up assessment, and 24-month follow-up assessment were 65.9% (n = 87), 62.1% (n = 82), and 67.4% (n = 89), respectively. The percentage of participants who contributed no follow-up data was 20.5% (n = 27). This degree of missingness is within acceptable limits for hierarchical linear modeling (HLM) analyses (28).

Weight loss maintenance by condition

Weight loss at randomization (3 months) did not significantly differ between conditions (M ± SEM = 5.8 ± 0.6 kg in the MR−/ED− group, 5.9 ± 0.7 kg in MR−/ED+, 6.7 ± 0.6 kg in MR+/ED−,
and 6.2 ± 0.6 kg in MR+/ED+; P > 0.80). Weight change during the maintenance phase (through 36-month follow-up) was characterized by a positive linear trend of weight regain over time (P < 0.001). A statistically significant interaction between the experimental conditions (MR+/+ and ED−/+−) and time was detected for change in weight (P < 0.05). As shown in Table 2, the four conditions did not significantly differ at end of treatment (12 months) but at both 24- and 36-month follow-ups the ED group experienced significantly less weight regain than the control group (see Figure 1).

For the remaining results, equivalence of experimental groups at time of randomization was confirmed except where noted.

Waist circumference, blood pressure, cholesterol, and glycemic control

Waist circumference decreased slightly early in the maintenance phase and then began to increase from 24 to 36 months (P = 0.036); group had no effect (Ps > 0.20).

Systolic blood pressure increased during maintenance (P > 0.05), but there was no effect of treatment group (P > 0.05); no effects for diastolic blood pressure were found.

At randomization, total cholesterol (P < 0.001) and LDL cholesterol (P < 0.05) were higher in ED+ vs. ED−. There was a statistically significant effect of the ED intervention on total cholesterol (P < 0.05) and LDL cholesterol (P < 0.05); ED and ED + MR groups tended to experience little change or a decrease in these variables over the maintenance phase, whereas control and MR participants showed an increase. The ED+/ MR− group exhibited a small decrease in HDL cholesterol during maintenance, whereas the other groups showed a small increase (P < 0.05). When weight change during maintenance was controlled, the effect of group assignment on total cholesterol and LDL became nonsignificant but the effect of group assignment on HDL was slightly magnified. No significant group or time effects were found for triglycerides, the ratio of total cholesterol to HDL cholesterol, or HbA1c.

Nutritional composition of the diet

The pattern of results was similar across method of ED so only total ED (foods plus beverages) results are reported (see Table 3). Both caloric intake and ED increased significantly over the maintenance phase but no group effects were found.

Percent of calories from fat did not change significantly between groups or over time. Percent of calories from carbohydrate (P < 0.01) and protein (P < 0.001) decreased over time. The MR condition experienced less of a decline in percent of calories from carbohydrates (P < 0.05). There was no effect of group on change in percent of calories from protein (P > 0.10).

The number of high fat and low fat foods in the home did not change with time (Ps > 0.10) and no between-group differences were detected (Ps > 0.10).

Eating behavior

Cognitive restraint (P < 0.001) decreased over time but there was no change in disinhibition (P > 0.30); no effect of group was found for either measure.

Physical activity

Physical activity increased early in the maintenance phase and then decreased later in the maintenance phase (P = 0.049); group had no effect (Ps > 0.10).

Discussion

This study combined elements of an effectiveness design (recruitment of primary care patients, relaxed inclusion/exclusion criteria, and absence of run-in period to exclude poorly motivated applicants) and an efficacy design (manualized interventions and thoroughly
Weight Loss Maintenance

Lowe et al.

TABLE 3 Nutritional composition of the diet at 3, 12, 24, and 36 months by condition

	MR−/ED− (Control)	MR−/ED+	MR+/ED−	MR+/ED+	
	Kcal	0.67 ± 0.03	0.67 ± 0.03	0.65 ± 0.03	0.65 ± 0.02
Energy density (kcal/g)	1095.7 ± 28.0	1074.0 ± 28.6	1069.9 ± 28.7	1048.3 ± 25.9	
Kcal	31.5 ± 0.6	31.1 ± 0.6	32.0 ± 0.6	31.6 ± 0.6	
% kcal fat	51.4 ± 0.8	51.1 ± 0.8	50.7 ± 0.8	50.4 ± 0.8	
% kcal carbohydrate	0.79 ± 0.03	0.83 ± 0.03	0.76 ± 0.03	0.80 ± 0.02	
% kcal protein	21.3 ± 0.4	21.8 ± 0.4	21.3 ± 0.4	22.3 ± 0.4	
12 Months Energy density (kcal/g)	1148.2 ± 35.1	1167.4 ± 36.8	1128.9 ± 34.5	1168.1 ± 30.6	
Kcal	35.1 ± 0.7	32.4 ± 0.8	32.0 ± 0.7	31.4 ± 0.7	
% kcal fat	48.08 ± 0.8	48.8 ± 0.9	49.5 ± 0.8	50.4 ± 0.7	
% kcal carbohydrate	20.7 ± 0.5	20.4 ± 0.5	20.9 ± 0.5	20.5 ± 0.4	
% kcal protein	20.7 ± 0.5	20.4 ± 0.5	20.9 ± 0.5	20.5 ± 0.4	
24 Months Energy density (kcal/g)	1218.2 ± 76.6	1338.5 ± 81.2	1207.5 ± 74.2	1237.8 ± 65.1	
Kcal	35.1 ± 1.6	34.2 ± 1.7	32.1 ± 1.6	31.2 ± 1.4	
% kcal fat	43.5 ± 1.8	45.8 ± 1.9	47.9 ± 1.7	50.3 ± 1.5	
% kcal carbohydrate	19.9 ± 1.0	18.4 ± 1.1	19.7 ± 1.0	18.1 ± 0.9	
% kcal protein	19.9 ± 1.0	18.4 ± 1.1	19.7 ± 1.0	18.1 ± 0.9	

All values are modeled means ± SEM.
TABLE 4 Secondary outcomes at 3, 12, 24, and 36 months by condition

	MR−/ED− (Control)	MR−/ED+	MR+/ED−	MR+/ED+
3 Months				
Blood pressure (sys)	122.4 ± 2.7	123.5 ± 2.8	122.8 ± 2.7	122.5 ± 2.3
Blood pressure (dia)	78.9 ± 1.8	78.6 ± 1.8	81.1 ± 1.8	81.3 ± 1.5
Cholesterol (total)	168.0 ± 6.8a	195.0 ± 7.0ab	179.4 ± 6.8ab	188.4 ± 5.7ab
Cholesterol (HDL)	49.5 ± 2.8	52.6 ± 2.8	52.1 ± 2.8	54.6 ± 2.3
Cholesterol (LDL)	97.5 ± 6.0a	119.7 ± 6.1b	106.3 ± 6.0ab	112.0 ± 5.0ab
Cholesterol (ratio)	3.59 ± 0.17	3.85 ± 0.18	3.56 ± 0.17	3.58 ± 0.14
Triglycerides	104.9 ± 8.5	113.2 ± 8.7	105.1 ± 8.5	109.0 ± 7.2
HbA1c	6.01 ± 0.16	5.90 ± 0.16	6.02 ± 0.16	6.05 ± 0.13
12 Months				
Blood pressure (sys)	123.7 ± 1.0	123.0 ± 1.1	125.3 ± 1.1	124.7 ± 0.9
Blood pressure (dia)	81.2 ± 0.7	79.9 ± 0.7	81.2 ± 0.7	79.9 ± 0.6
Cholesterol (total)	187.2 ± 3.0a	179.5 ± 3.4b	192.5 ± 2.9a	184.7 ± 2.6a
Cholesterol (HDL)	55.7 ± 1.0a	51.7 ± 1.3b	54.8 ± 1.0a	56.8 ± 0.9a
Cholesterol (LDL)	109.5 ± 2.6	103.7 ± 2.9	113.3 ± 2.5	107.6 ± 2.3
Cholesterol (ratio)	3.62 ± 0.07	3.48 ± 0.08	3.63 ± 0.07	3.49 ± 0.06
Triglycerides	111.2 ± 6.1	116.6 ± 7.0	108.8 ± 6.3	107.7 ± 5.5
HbA1c	6.09 ± 0.07	6.04 ± 0.08	6.08 ± 0.07	6.03 ± 0.06
24 Months				
Blood pressure (sys)	126.0 ± 1.5	123.0 ± 1.7	129.9 ± 1.6	125.9 ± 1.4
Blood pressure (dia)	82.9 ± 1.1	80.1 ± 1.2	82.4 ± 1.1	79.6 ± 1.0
Cholesterol (total)	196.6 ± 6.7a	178.3 ± 7.6b	205.7 ± 6.5a	187.4 ± 5.9b
Cholesterol (HDL)	58.8 ± 2.4a	50.7 ± 3.0b	57.0 ± 2.3a	62.0 ± 2.0a
Cholesterol (LDL)	114.5 ± 5.7a	100.3 ± 6.5b	121.1 ± 5.6a	106.9 ± 5.0b
Cholesterol (ratio)	3.68 ± 0.16	3.37 ± 0.161	3.67 ± 0.16	3.34 ± 1.4
Triglycerides	124.8 ± 11.9	120.3 ± 13.4	120.8 ± 12.1	109.7 ± 11.1
HbA1c	6.25 ± 0.17	6.12 ± 0.19	6.22 ± 0.17	6.09 ± 0.15
36 Months				
Blood Pressure (sys)	128.2 ± 2.4	122.9 ± 2.9	132.4 ± 2.5	127.1 ± 2.2
Blood Pressure (dia)	84.5 ± 1.7	80.4 ± 1.8	83.5 ± 1.7	79.4 ± 1.5

Three-month values are raw means ± SEM. The 12-, 24, and 36-month values are estimated means ± SEM obtained from linear mixed models analysis. Means with the same superscript do not differ at \(P < 0.05. \)

A novel feature of this study was the use of weight loss during the first 12 weeks as a covariate when examining the effects of the interventions on weight loss maintenance. This procedure accounted for some of the individual differences in success at weight control that otherwise would have been treated as error variance, increasing the ability of the study to detect group differences during maintenance.

This is one of the few studies that have evaluated interventions for weight loss maintenance as distinct from weight loss. Other strengths of the study include its use of primary care patients, its inclusion of a high percentage of African Americans, the comprehensiveness of its outcome measures, and its measurement of follow-up 1 and 2 years after the end of treatment. One weakness of the study was its relatively high attrition rate during the weight loss phase, which raises questions.
about the generalization of our findings to those who join a weight loss program. Also, the relatively modest weight losses achieved (an average of 3.3% of starting weight) may have reduced the potential to identify mediators of the treatment effect that was found.

In conclusion, these findings can be seen from two opposing perspectives. On one hand any intervention that offers the hope of improving the typically disappointing long-term outcomes of previous weight loss studies is noteworthy. On the other hand, this implication is balanced by several others, including the poor outcome found for the MR+/ED+ group and the fact that several nutrition-related variables that were expected to partially account for the superior performance of the ED group failed to do so. More research is warranted on the use of reduced ED diets and a focus on changing participants’ personal food environments for weight loss maintenance. Such research might also benefit from incorporating additional nutrition-focused strategies (2) to extend the durability of weight losses.

Acknowledgments

The authors thank the Slim Fast Company for their provision of MRs at cost.

© 2013 The Obesity Society

References

1. Perri MG, Corsica JA, Wadden TA. Improving the maintenance of weight lost in behavioral treatment of obesity. In: Stunkard AJ, ed. Handbook of Obesity Treatment. xv. New York, NY: Guilford Press; 2002:357-379.
2. Lowe MR. Self-regulation of energy intake in the prevention and treatment of obesity: is it feasible? Obes Res 2003;11 (Suppl):445-595.
3. Lowe MR, Tappe KA, Annunziato RA, et al. The effect of training in reduced energy density eating and food self-monitoring accuracy on weight loss maintenance. Obesity 2008;16:2016-2023.
4. Rolls B, Hermann M. The Ultimate Volumetrics Diet: Smart, Simple, Science-Based Strategies for Losing Weight and Keeping it Off. New York, NY: Harper Collins Publishers; 2012.
5. Jansen A, Vanreuten A, van Balen T, Roefs A, Nederkoorn C, Harvermans R. Negative affect and cue-induced overeating in non-eating disordered obesity. Appetite 2008;51:556-562.
6. Stroebel S. Dieting, Overweight, and Obesity: Self-Regulation in a Food-Rich Environment. Washington, DC: American Psychological Association; 2008.
7. Vartanian LR, Herman CP, Wansink B. Are we aware of the external factors that influence our food intake? Health Psychol 2008;27:533-538.
8. Alonso-Alono M, Pascual-Leone A. The right brain hypothesis for obesity. JAMA 2007;297:1819-1822.
9. Nederkoorn C, Houven K, Hofmann W, Jansen A, Jansen A. Control yourself or just eat what you like? Weight gain over a year is predicted by an interactive effect of response inhibition and implicit preference for snack foods. Health Psychol 2010;29:389-393.
10. Heymsfield SB, van Mierlo C, van dK, Heo M, Frier HI. Weight management using a meal replacement strategy: meta and pooling analysis from six studies. Int J Obes Relat Metab Disord 2003;27:537-549.
11. Ditschuneit HH, Fletchner-Mors M, Johnson TD, Adler G. Metabolic and weight-loss effects of a long-term dietary intervention in obese patients. Am J Clin Nutr 1999;69:198-204.
12. Rolls BJ, Roe LS, Beach AM, Kris-Etherton PM. Provision of foods differing in energy density affects long-term weight loss. Obes Res 2005;13:1052-1060.
13. Ello-Martin JA, Roe LS, Ledikwe JH, Beach AM, Rolls BJ. Dietary energy density in the treatment of obesity: a year-long trial comparing two weight-loss diets. Am J Clin Nutr 2007;85:1465-1477.
14. Brownell KD. The LEARN Program for Weight Control. Dallas, TX: American Health Publishing; 1994.
15. Rolls BJ, Barnett R. Volumetrics: Feel Full on Fewer Calories. New York, NY: HarperCollins; 2000.
16. DeMaio TJ, Cicchetto S, Davis WL. Research on the continuing survey of food intakes by individuals. In: Proceedings of the Section on Survey Research Methods (Vol. 2). Alexandria, VA: American Statistical Association; 1993:1021-1025.
17. Derr JA, Mitchell DC, Brannon D, Smicklitas-Weight H, Dixon LB, Shannon BM. Time and cost analysis of a computer-assisted telephone interview system to collect dietary recalls. Am J Epidemiol 1992;136:1386-1392.
18. Freskanich D, Bazzard JM, Welch BT, et al. Comparison of a computerized and a manual method of food coding for nutrient intake studies. J Am Med Assoc 1988;88:1263-1267.
19. Wadden TA. Relaxation therapy for essential hypertension: specific or nonspecific effects. J Psychosom Res 1984;28:53-61.
20. d’Amore A, Massignan C, Montera P, Moles A, De Lorenzo A, Scucchi S. Relationship between dietary restraint, binge eating, and leptin in obese women. Int J Obes 2001;25:373-377.
21. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 1985;29:71-83.
22. Westenhoefer J, Stunkard AJ, Pudel V. Validation of the flexible and rigid control process and predictor variables. Int J Eat Disord 1999;26:53-64.
23. Clark MM, Abrams DB, Niaura RS, Easton CA, Rossi JS. Self-efficacy in weight management. J Consult Clin Psychol 1991;59:739-744.
24. Prochaska JO, Norcross JC, Fowler JL, Follick MJ, Abrams DB. Attendance and outcome in a work site weight control program: processes and stages of change as process and predictor variables. Addict Behav 1992;17:35-45.
25. Haskell WL. Physical activity by self-report: a brief history and future issues. Journal of Physical Activity & Health 2012;9:S5–10.
26. Gorin AA, Raynor HA, Fava J, Maguire K, Robichaud E, Trautvetter J, Crane M, Wing RR. Randomized controlled trial of a comprehensive home environment-focused weight-loss program for adults. Health Psychol 2012;32:128-137.