LAPAROSCOPIC CHOLECYSTECTOMY VERSUS MINILAPAROTOMY IN CHOLELITHIASIS: SYSTEMATIC REVIEW AND META-ANALYSIS

ABSTRACT - Introduction: A introduction da técnica laparoscópica em 1985 foi um fator importante na colecistectomia por representar técnica menos invasiva, resultado estético melhor e menor risco cirúrgico comparado ao procedimento laparotômico. Aim: To compare laparoscopic and minilaparotomy cholecystectomy in the treatment of cholelithiasis. Methods: A systematic review of randomized clinical trials, which included studies from four databases (Medline, Embase, Cochrane and Lilacs) was performed. The keywords used were “Cholecystectomy”, “Cholecystectomy, Laparoscopic” and “Laparotomy”. The methodological quality of primary studies was assessed by the Grade system. Results: Ten randomized controlled trials were included, totaling 2043 patients, 1020 in Laparoscopy group and 1023 in Minilaparotomy group. Laparoscopic cholecystectomy dispensed shorter length of hospital stay (p<0.00001) and return to work activities (p<0.00001) compared to minilaparotomy, and the minilaparotomy shorter operative time (p<0.00001) compared to laparoscopy. Laparoscopy decrease the risk of postoperative pain (NNT=7) and infectious complications (NNT=50). There was no statistical difference between the two groups regarding conversion (p=0.06) and surgical reinterventions (p=0.27), gall bladder’s perforation (p=0.98), incidence of common bile duct injury (p=1.00), surgical site infection (p=0.52) and paralytic ileus (p=0.22). Conclusion: In cholelithiasis, laparoscopic cholecystectomy is associated with a lower incidence of postoperative pain and infectious complications, as well as shorter length of hospital stay and time to return to work activities compared to minilaparotomy cholecystectomy.

INTRODUCTION

Cholelithiasis is one of the most common digestive tract diseases and constitutes an important health problem in developed countries. It is estimated that 10-15% of the adult population accounting for 20 to 25 million americans have or will have gallstones1. The third National Health and Nutrition Assessment estimates that 6.3 million of men and 14.2 millions of women aged between 20 and 74 years in the United States had gallbladder disease7. Besides the problems related to health, cholelithiasis also brings significant costs, estimated at around 6.2 million dollars annually in the same country12.

About 750,000 patients undergo cholecystectomy per year in the United States, and the number of surgical procedures has grown increasingly over the years, with the purpose to avoid the symptoms, complications and recurrence of gallstones in the biliary tract11. In Brazil, cholelithiasis is the most common abdominal surgical disease in elderly patients, its incidence being associated with the progression of age, with an overall prevalence in the general population of 9.3%13. In the last two years in the Unified Health System, according to the Datasus, conventional cholecystectomy represents 88% of the surgeries, compared to 12% of laparoscopic cholecystectomy2, this probably explains why the distribution of equipment and offer of services related to the procedure is quite uneven.
being the most modern techniques adopted in a limited number of countries, and most of these have neither the technology nor the qualified professional for this procedure, but in the private sector in Brazil, it is clear an absolute predominance of laparoscopic cholecystectomy over the conventional cholecystectomy during the whole period (90% or more of total).1

The introduction of the laparoscopic technique in 1985, first made by Mühe was an important factor for the large increase in the cholecystectomy, since it represented a less invasive technique, generated better esthetic result and provided a lower surgical risk compared to the conventional procedure.12

Dubois and Barthelot introduced in 1982, minimally invasive technique for conventional cholecystectomy, the minilaparotomy cholecystectomy,6 and Tyagi et al, in 1994, described a new technique for minimally invasive cholecystectomy, and this has recently challenged the role of laparoscopic cholecystectomy.2,8

This review aims to compare laparoscopic and minilaparotomy cholecystectomy in the treatment of cholelithiasis regarding perioperative complications, length of hospital stay, surgical time, incidence of reoperation and conversion to open surgery and time for returning to labor activities.

METHODOLOGY

Identification and selection of studies

A search of electronic literature was done through the database MEDLINE, EMBASE, COCHRANE, and LILACS. On Medline and Embase the combination of terms (Cholecystectomy) and (Cholecystectomy, Laparoscopic) and (Laparotomy) were utilized. On LILACS and Cochrane, the keywords used were: (Cholecystectomy) and (Laparoscopy) and (Laparotomy). Manual searches were done among study references found. The searches ended on July 5, 2013.

The articles were selected independently and in pairs, by reading the titles and abstracts. Any difference between the articles was resolved by consensus.

Inclusion and exclusion criteria

Inclusion criteria: 1) randomized controlled trials; 2) comparison between laparoscopic and minilaparotomic cholecystectomy in cholelithiasis; 3) analysis of at least one of the outcomes described below; 4) a clear description of the surgical indication.

Exclusion criteria: 1) non-randomized trials, cohort, case-control and case report; 2) outcomes of interest not reported for both surgical techniques; 3) failure to provide data for performing at least one calculation in the meta-analysis; 4) studies that correspond to the same sample and identical study authors.

Outcomes analyzed

They were length of hospital stay, operative time, surgical conversion, reoperation, time to return to labor activity and perioperative complications, divided into: 1) intraoperative complications (perforation of the gallbladder and common bile duct injury); and 2) postoperative complications (surgical site infection, pain, postoperative ileus, infectious complications).

Methodological quality and statistical analysis

The methodological quality of the primary studies was evaluated by the GRADE system proposed by the Grades of Recommendation, Assessment, Development and Evaluation group.4

The meta-analysis was performed with the Review Manager 5.2 program. Data were evaluated by intention-to-treat, meaning the patients that did not undergo the proposed intervention or patients lost in follow-up during the study were considered as clinical outcome.

The evaluation of the dichotomous variables was performed by the difference in absolute risk (RD) adopting a 95% confidence interval. When there was a statistically significant difference between the groups, the number needed to treat (NNT) or the number needed to cause harm (NNH) was calculated. The continuous variables were evaluated by the difference in means (MD). Studies that did not show data in terms of means and their respective standard deviations were not included in the analyses.

Heterogeneity and sensitivity analysis

Inconsistencies among the clinical studies were estimated using the chi-squared heterogeneity test and quantified using I². A value above 50% was considered substantial. Studies that generated heterogeneity were represented by funnel plots.

RESULTS

Study selection

In total, 2071 articles (Medline=900; Embase=1135; Cochrane=3 and Lilacs=27) were retrieved through the electronic searches. In manual search no articles were found in addition to the previously selected on the bases cited. After using methodological filter Randomized Controlled Trial, 77 articles remained for analysis by title and abstracts. Sixty-seven were excluded for not comparing laparoscopic and minilaparotomy cholecystectomy. Thus, in this review were included in the analysis ten randomized clinical trials (Figure 1).

Description of included studies

The ten studies included randomized patients into two groups, laparoscopy and minilaparotomy, totaling 2043 patients, 1020 in the laparoscopy group and 1023 in the minilaparotomy group (Table 1).

Methodological quality

Evaluation of methodological quality of the selected studies performed by GRADE system include 11 questions that were answered as: Y=yes; N=no; ND=not described (no information enabling the evaluation).

The questions and answers according to each study were: 1) was the study randomized? Y for all; 2) was the allocation of patients to groups confidential? N to Velázquez-Mendoza (2012) and Y for the rest; 3) were patients analyzed in the groups to which they were randomized (was the analysis by intention to treat)? Y for all; 4) were patients in
TABLE 1 – Description of included studies

Name	Year of publication	Patients (n)	Laparoscopy	Minilaparotomy	Outcomes
Velázquez-Mendoza25	2012	88	43	45	Bleeding; surgical site infection; perforation of the gallbladder; hepatic injury; postoperative ileus; postoperative pain
Harju23	2010	60	31	29	Infection; common bile duct injury; bleeding
Keus22	2007	257	120	137	Inflammation; abscess; pancreatitis; common bile duct injury; fistula; time to return to labor activity
Vaghas24	2006	88	44	44	Fever; hernia; pneumonia; postoperative ileus; time to return to labor activity
Harju23	2006	157	72	85	Surgical site infection; pneumonia; ITU; fistula
Srivastava22	2001	100	59	41	Fistula; surgical site infection; wound with pus; pain
Ros19	2001	724	362	362	Subphrenic collection; surgical site infection; urinary retention; bile duct injury; chest infection; time to return to labor activity
Majeed16	1996	200	100	100	Infection; hematoma; urinary retention; ITU; sepsisemia; incisional hernia; IAM; chest infection; fistula; pain; bridža’s obstruction; postoperative bleeding
McMahon16	1994	302	151	148	Surgical site infection; perforation of the gallbladder; postoperative ileus; pain
Barkun7	1992	70	38	32	

ITU=urinary tract infection; IAM=acute myocardial infarction
both groups similar with respect to the previously known prognostic factors? Y for all; 5) was the study blind? ND to Vagenas (2006) Harju (2006), Srivastava (2001), McMahon (1994) and Barkun (1992) and Y for the remainder; 6) except the experimental intervention, were the groups treated equally? Y for all; 7) were the losses significant? ND to Vagenas (2006) Harju (2006) and Srivastava (2001) and N for the remaining; 8) did the study have a precision estimate for the effects of treatment? Y for all; 9) are the study patients similar to those of interest? Y for all; 10) are the outcomes of the study clinically relevant? Y for all; 11) were the potential conflicts of interest declared? ND for all.

Outcomes analyzed
Length of hospital stay
Four studies analyzed the primary outcome length of hospital stay; however, due to the high heterogeneity (MD -0.79 CI95% -0.90 a -0.68; p<0.00001 e I²=67%) related to the study of Majeed (1996), was chosen to exclude it from the analysis. The new forest-plot showed a mean difference between groups of 0.82 (CI95% -0.94 a -0.71; p<0.00001 e I²=0%). Thus, laparoscopy dismissed shorter hospital stay compared to minilaparotomy (Figure 2).

Surgical time
Seven primary studies analyzed the outcome surgical time; however, the studies Majeed (1996) and Vagenas (2006) promoted high heterogeneity (MD 31.83; CI95% 30.33 a 33.32; p<0.00001 e I²=96%) and were excluded from the initial forest-plot. Thus, the difference in mean between groups was 15.51 (CI95% 12.20 a 18.81; p<0.00001 e I²=43%), and that the minilaparotomy dismissed shorter surgical time compared to laparoscopy (Figure 3).

Surgical conversion
Nine primary studies analyzed the outcome surgical conversion. The conversion was defined: laparoscopy-laparotomy and minilaparotomy-laparotomy. There was no

FIGURE 2 - Meta-analysis of the mean difference in length of hospital stay between laparoscopy and minilaparotomy in patients with cholelithiasis

Study of Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI
Keus 2007	2.4	4.6	120	3.1	12.4	137	0.3%	-0.70 [-2.93, 1.53]
Majeed 1996	3.6	2.3	100	3.5	2.1	100	0.0%	0.10 [-0.51, 0.71]
Ros 2001	2.6	3.3	362	3.2	362	362	3.4%	-0.60 [-1.23, 0.03]
Vagenas 2006	2.28	0.14	44	3.11	0.37	44	96.3%	-0.83 [-0.95, -0.71]
Total (95% CI)	526		543	100%			-082 [-0.94, 0.71]	

Heterogeneity: Chi²=0.51, df=2 (P=0.77); I²=0%; Test for overall effect: Z=13.91 (P<0.00001)

FIGURE 3 - Meta-analysis of the mean difference in surgical time between laparoscopy and minilaparotomy in patients with cholelithiasis pacientes com coleciotilase

Study of Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI
Barkun 1992	85.9	32	32	73.1	24.5	32	6.2%	12.80 [-0.45, 26.05]
Harju 2006	79	27	72	55	19.5	85	19.5%	24.00 [16.51, 31.49]
Majeed 1996	69.2	24.6	100	45.4	19.8	100	0.0%	23.80 [17.61, 29.99]
McMahon 1994	71	20	151	57	24	148	43.5%	14.00 [8.99, 19.01]
Ros 2001	108	45	362	94	45	362	25.5%	14.00 [7.44, 20.56]
Vagenas 2006	101.3	4.99	44	64.32	3.13	44	0.0%	36.98 [35.24, 38.72]
Velázquez-Mendoza 2012	86.04	42.25	43	79.02	23.68	45	5.3%	7.02 [-7.938, 21.42]
Total	666		672	100%			15.51 [12.20, 18.81]	

Heterogeneity: Chi²=6.99, df=4 (P=0.14); I²=43%; Test for overall effect: Z=9.19 (P<0.00001)
statistically significant difference between the two groups (RD \(-0.03; CI95\% -0.06 a 0.00; p=0.06; I^2=66\%).

Surgical reintervention

Three primary studies analyzed the surgical reintervention. There was no statistically significant difference between the two groups (RD \(-0.01; CI95\% -0.02 a 0.01; p=0.27; I^2=0\%).

Time to return to labor activity

Four studies analyzed the primary endpoint time to return to labor activity; however, studies of Ros (2001) and Vagenas (2006) showed high heterogeneity (MD 1.11; CI95\% 0.73 a 1.48; \(p<0.00001\) e \(I^2=98\%\) being excluded from the analysis. Thus, the mean between groups was 0.49 (CI95\% 0.04 a 0.93; \(p=0.03\) e \(I^2=0\%\)) demonstrating that laparoscopy dismissed less time to return to labor activity compared to minilaparotomy (Figure 4).

Intraoperative complications

Gallbladder perforation

Three primary studies analyzed the gallbladder perforation; however, the study of Ros (2001) promoted high heterogeneity (RD 0.11; CI95\% 0.06 a 0.16; \(p<0.0001\) e \(I^2=91\%\)), being excluded from the analysis. In the construction of the new forest-plot can be seen that there was no statistically significant difference between the two groups (RD \(-0.00; CI95\% -0.05 a 0.05; p=0.98; I^2=13\%).

Injury to the common bile duct

Four primary studies analyzed the outcome common bile duct injury. There was no statistically significant difference between the two groups (RD \(-0.00; CI95\% -0.01 a 0.01; p=1.00; I^2=0\%).

Meta-analysis of the time to return to labor activity between laparoscopy and minilaparotomy in patients with cholelithiasis

Study of Subgroup

Study of Subgroup	Laparoscopy	Laparotomy	Mean difference
Keus 2007	4.1	2.3	120
Majeed 1996	4.3	3.8	100
Ros 2001	11.5	8.1	362
Vagenas 2006	10.68	1.59	44
Total	220	237	100

Heterogeneity: \(\chi^2=0.35, df=1\) (\(p=0.55\)); \(I^2=0\%\); Test for overall effect: \(Z=2.13\) (\(p=0.03\)).

FIGURE 4 - Meta-analysis of the time to return to labor activity between laparoscopy and minilaparotomy in patients with cholelithiasis

Meta-analysis of the incidence of infectious complications between laparoscopy and minilaparotomy in patients with cholelithiasis

Study of Subgroup

Study of Subgroup	Laparoscopy	Laparotomy	Risk difference
Barkun 1992	1	38	0.00
McMahon 1994	40	151	148
Ros 2001	226	362	298
Srivastava 2001	0	59	1
Velázquez-Mendoza 2001	30	43	29
Total (95\% CI)	513	510	-0.18 (-0.23, -0.13)
Total events	266	357	

Heterogeneity: \(\chi^2=1.08, df=1\) (\(p=0.30\)); \(I^2=7\%\); Test for overall effect: \(Z=6.46\) (\(p=0.00001\)).

FIGURE 5 - Meta-analysis of the incidence of postoperative pain between laparoscopy and minilaparotomy in patients with cholelithiasis

Meta-analysis of the incidence of infectious complications between laparoscopy and minilaparotomy in patients with cholelithiasis

Study of Subgroup

Study of Subgroup	Laparoscopy	Laparotomy	Risk difference
Harju 2006	0	72	85
Keus 2007	2	120	1
Majeed 1996	2	100	100
McMahon 1994	1	151	8
Ros 2001	6	362	14
Vagenas 2006	0	44	2
Total (95\% CI)	729	739	100
Total events	9	28	

Heterogeneity: \(\chi^2=6.07, df=4\) (\(p=0.19\)); \(I^2=34\%\); Test for overall effect: \(Z=3.09\) (\(p=0.002\)).

FIGURE 6 - Meta-analysis of the incidence of infectious complications between laparoscopy and minilaparotomy in patients with cholelithiasis
ARTIGO DE REVISÃO

DISCUSSÃO

O primeiro caso de colecistectomia foi feito por Carl Langenbuch em 1882, que acreditava na ideia de que a prevenção da colecistite poderia ocorrer se ela não fizesse a galinha, mas sim que ela era "síndrome". Após isso, a técnica de colecistectomia aberta foi popularizada através de grandes incisões laparóticas. Em 1985, Erich Mühe em Böblingen, Alemanha, realizou a primeira colecistectomia laparoscópica (LC), que se tornou um procedimento dominante no tratamento de colecistite na era da endoscopia.

No entanto, um dos maiores desafios da Laparoscopia é a incisão de laparotomia, que pode variar de 8 a 10 cm. Isso resulta em um tempo de cirurgia maior e um tempo de hospitalização maior. Além disso, a regra de trabalho também é mais longa. Outro fator importante é a taxa de conversão cirúrgica. A taxa de conversão cirúrgica em colecistectomia laparoscópica é geralmente mais alta do que em colecistectomia aberta.

No entanto, os poucos estudos que compararam os resultados de Laparoscopia e colecistectomia aberta não encontraram resultados significativos. Por exemplo, Purkayastha et al. (2007) compararam os resultados de Laparoscopia e colecistectomia aberta e não encontraram diferença significativa na taxa de regras de trabalho ou tempo de hospitalização.

A Laparoscopia também tem algumas desvantagens, como a necessidade de instrumentos especializados e pessoal qualificado. Além disso, a Taxa de conversão cirúrgica também é mais alta. No entanto, a Laparoscopia tem vantagens, como menores cicatrizes e tempo de recuperação.

CONCLUSÃO

A colecistectomia laparoscópica é associada a uma menor incidência de complicações pós-operatórias e infecções. No entanto, o tempo de recuperação é mais longo em comparação com a colecistectomia aberta. Portanto, a decisão de qual técnica usar deve ser baseada no caso individual e no tipo de cirurgia.

REFERÊNCIAS

1. Altenfelder-Silva R. Complicações da colecistectomia vídeo laparoscópica. In: Margarido NF, Saad Junior R, Cecconello I, Martins JL, Paula RA, Soares, LA. Videocirurgia. São Paulo: Robe; 1994; 223-43.
2. Barkun JS, Barkun AN, Sampalis JS, Fried G, Taylor B, Wexler MJ, Goresky CA, Meakins JL (1992) Randomised controlled trial of laparoscopic versus mini cholecystectomy. The McGill Gallstone Treatment Group. Lancet. 1992; 340: 1116–1119

3. Brasil. Ministério da Saúde. Datasus. Sistema de Informações Hospitalares do SUS. Informações de Saúde: Procedimentos Hospitalares do SUS – Brasil; 2013. Acesso em: 10 de julho de 2013.

4. Brasil. Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Ciência e Tecnologia. Diretrizes metodológicas: elaboração de pareceres técnico-científicos. Brasília; Ministério da Saúde; 2011. 79 p. (A. Normas e Manuais Técnicos).

5. Centre for Reviews and Dissemination, University of York, 2008 Systematic Reviews. CRD’s guidance for undertaking reviews in healthcare. Published by CRD, University of York January 2009.

6. Dubois F, Barthelot G. Cholecystectomie par minilaparotomie. Nouv. Presse Med. 1982 1:1139.

7. Everhart JE, Khare M, Hill M, Maurer KR. Prevalence and ethnic differences in gallbladder disease in the United States. Gastroenterology 1999; 117:632.

8. Harju J, Aspinen S, Juvenon P, Kokki H, Eskelinen M. Ten-year outcome after minilaparotomy versus laparoscopic cholecystectomy: a prospective randomised trial Surgical Endoscopy 2013 (1-5)

9. Harju J, Juvenon P, Eskelinen M, Miettinen P, Pääkkönen M. Minilaparotomy versus laparoscopic cholecystectomy: a randomized study with special reference to obesity. Surg Endosc. 2006 Apr; 20(4):583-6. Epub 2006 Jan 25.

10. Harju J, Kokki H, Pääkkönen M, Karjalainen K, Eskelinen M. Feasibility of minilaparotomy versus laparoscopic cholecystectomy for day surgery: a prospective randomised study. Scand J Surg. 2010; 99(3):132–6.

11. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials, 1996;17:1-12.

12. Keus F, de Vries J, Goossen HG, van Laarhoven CJ. Laparoscopic versus small-incision cholecystectomy: health status in a blind randomised trial. Surg Endosc. 2008 Jul;22(7):1649-59. Epub 2007 Dec 11.

13. Laura M, Shaffer S, Shaffer EA. Epidemiology of Gallbladder Disease: Cholelithiasis and Cancer. Gut and Liver; April 2012, Vol. 6, No. 2, pp. 172-187.

14. Majeed AW, Brown S, Hannay DR, Johnson AG. Variations in medical attitudes to postoperative recovery period. BMJ 1995; 311: 296.

15. Majeed AW, Troy G, Nicholl JP, Smythe A, Reed MW, Stoddard CJ, Peacock J. Johnson AG (1996) Randomised, prospective, single-blind comparison of laparoscopic versus small-incision cholecystectomy. Lancet. 1996; 347: 989–994

16. McMahon AJ, Russell IT, Baxter RN, Ross S, Anderson JR, Morran CG, Sunderland G, Galloway D, Ramsay G, O’Dwyer PJ. Laparoscopic versus minilaparotomy cholecystectomy: a randomized trial. Lancet.1994 Jan 15;343(8890):135–8.

17. Müber E. Die erste cholecystektomie durch das laparoskop. Langenbecks Arch Surg. 1986; 369-804.

18. Purkayastha S, Tilney HS, Georgiou P, Athanasiou T, Tekkis PP, Darzi AW. Laparoscopic cholecystectomy versus mini-laparotomy cholecystectomy: a meta-analysis of randomised control trials. Surg Endosc. 2007 Aug;21(8):1294-300. Epub 2007 May 22.

19. Ros A, Gustafsson L, Krook H, Nordgren CE, Thorell A, Wallin G, Nilsson E. Laparoscopic cholecystectomy versus mini-laparotomy cholecystectomy: a prospective, randomized, single-blind study. Ann Surg. 2001 Dec; 234(6):741-9.

20. Seale K, Ledet WP. Mini-cholecystectomy: a safe, cost-effective day surgery procedure. Arch Surg. 1999;134:308–310.

21. Sharma AK, Rangan HK, Choube RP. Mini-lap cholecystectomy: a viable alternative to laparoscopic cholecystectomy for the Third World? Aust N Z J Surg. 1998;68:774–777.

22. Sriwastava A, Srinivas G, Misra MC, Pandav CS, Seenu V, Goyal A. Cost-effectiveness analysis of laparoscopic versus minilaparotomy cholecystectomy for gallstone disease. A randomized trial. Int J Technol Assess Health Care. 2001; 17: 497–502

23. Tyagi NS, Meredith MC, Lumb JC, Cacdac RG, Vanterpool CC, Rayls KR, Zerega WD, Silberglett A. A new minimal invasive technique for cholecystectomy: subphoid “minimal stress triangle” microceliotomy. Ann Surg. 1994; 220:617–625

24. Vagenas K, Spyrakopoulos P, Karanikolas M, Sakelaropoulos G, Maroulis I, Karavias D. Mini-laparotomy cholecystectomy versus laparoscopic cholecystectomy: which way to go? Surg Laparosc Endosc Percutan Tech. 2006 Oct; 16(5):321-4.

25. Velázquez-Mendoza JD, Villagrañ-Murillo FJ, González-Ojeda A. Minilaparotomy vs. laparoscopic cholecystectomy: results of a randomized clinical trial. Cir Cir. 2012 Mar-Apr, 80(2):115-21.