Glutathione S-Transferase Gene Polymorphisms and Treatment Outcome in Cervical Cancer Patients under Concomitant Chemoradiation

Mohammad Abbas¹, Vandana Singh Kushwaha², Kirti Srivastava², Monisha Banerjee¹*

¹ Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, Uttar Pradesh, India, ² Department of Radiotherapy, King George’s Medical University, Lucknow-226003, Uttar Pradesh, India

* banerjee_monisha30@rediffmail.com

Abstract

Purpose

Cisplatin-based concomitant chemoradiation (CRT) is the standard treatment for locally advanced cervical cancer (CC). Glutathione S-transferase (GST), a phase II antioxidant enzyme is induced by oxidative stress generated by drugs and reactive oxidants. The present study was undertaken to evaluate the association of GSTM1, T1, and P1 polymorphisms with the outcome of CRT treatment in CC patients.

Methods

A total of 227 cervical cancer patients with stages IIB-IIIB treated with the same chemoradiotherapy regimen were enrolled and genotyped for GSTM1, T1, and P1 gene polymorphisms by multiplex polymerase chain reaction (mPCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Overall survival was evaluated using Kaplan-Meier survival function and Cox proportional hazards model. All data were analyzed using SPSS (version 21.0).

Results

Stratified analysis showed that GSTM1 null (M1-) genotype was associated with a significantly better survival among patients with stage IIB cervical cancer (log-rank \(P = 0.004 \)) than cases with stage IIIA/IIIB. Death and recurrence were significantly higher in patients with GSTM1 present genotype (M1+) (\(P = 0.037 \) and \(P = 0.003 \) respectively) and those with M1- showed reduced hazard of death with an adjusted hazard ratio ‘HR’ of 0.47 (95% CI, 0.269–0.802, \(P = 0.006 \)). Women with M1- genotype as well as in combination with GSTT1 null (T1-), GSTP1 (AG+GG) and GSTT1 null/GSTP1 (AG+GG) showed better survival and also reduced risk of death (HR = 0.31, \(P = 0.016 \); HR = 0.45, \(P = 0.013 \); HR = 0.31, \(P = 0.02 \) respectively).
Conclusions
To the best of our knowledge, this is the first study to correlate the association of GSTM1, T1 and P1 gene polymorphisms with treatment outcome of CRT treated CC patients. Our results suggested that individuals with GSTM1 null genotype and in combination with GSTT1 null and GSTP1 (AG+GG) had a survival advantage. Such genetic studies may provide prognostic information in CRT treated CC patients.

Introduction
Cisplatin based concomitant chemoradiation (CRT) is the standard treatment used for patients with locally advanced cervical cancer. It is known to improve survival and reduce the recurrence rate [1–2]. However, primary or acquired chemoradioresistance are serious clinical problems that contribute to disease recurrence, progression and mortality [3–4]. Local and distant relapses occur due to the survival of some cancer cells leading to treatment failure. Therefore, new and more effective approaches are required to tackle this issue. The mechanisms behind the heterogeneous responses to treatment among patients are multifactorial and involve variability in genetic constitution. There is mounting evidence that genes involved in metabolism, DNA repair and intracellular signaling pathway can influence individual variability to treatment response and toxicity [5–6]. There is a constant search for new prognostic and predictive factors in order to individualize treatment regimens.

The cytotoxic effects of both radiation and chemotherapy are mediated primarily through generation of reactive oxygen species (ROS) and their byproducts causing cell damage. The tumor cell death by ROS is either by direct cytotoxic effect or intracellular apoptotic pathways. Therefore, various enzymes affecting ROS levels are likely to impact patient prognosis after treatment [7–8]. Glutathione S-transferase (GST) is a phase II metabolic enzyme that plays an important role in cellular defense against numerous harmful chemicals produced both exogenously and endogenously [9–10]. It protects cells from oxidative damage by catalyzing conjugation of ROS [11–12] and also detoxifies various chemotherapeutic agents such as alkylating agents, platinum compounds and adriamycin [3]. Glutathione (GSH) is one of the main detoxifying agents which can be affected by metabolic enzymes that use tripeptides as substrates. At the time of chemotherapy, sufficient activity of GST is crucial, since during the enzyme catalyzed conjugation reaction with GSH, the water solubility of drugs and other toxic materials increases and can be eliminated from the body [13–14]. Many studies have shown that genetic variation in these enzymes, including GSTP1 A313G (rs1695, Ile105Val) and whole gene deletions in GSTM1 and GSTT1 have impact on survival and toxicities in different cancers treated with platinum agents and radiation [9, 15–17].

Due to the free radical scavenging activity and detoxification of platinum agents, role of GST in treatment response and survival in cervical cancer patients is plausible. In the present study, we have investigated patients’ survival and disease recurrence in relation to GSTM1, T1 and P1 gene polymorphisms after treatment with cisplatin based concomitant chemoradiation (CRT).

Materials and Methods
Ethics Statement
Cervical cancer patients who were under cisplatin based concomitant chemoradiation (CRT) at the Radiotherapy Department of King George’s Medical University (KGMU), Lucknow,
India (from 2009 through 2011) were included in this study. This study was approved by the Institutional Ethics Committee of KGMU and all patients provided written informed consent for their participation in the study.

Patients Selection and Sample Collection

Five milliliters venous blood samples were obtained from 244 subjects at the start of treatment regimen. The patients were of same ethnicity, stages IIB-IIIB according to International Federation of Gynecology and Obstetrics (FIGO), with no associated co-morbid conditions and exposed to first course treatment of CRT. Demographic and clinical characteristics of patients were obtained from medical records while staging and clinical diagnosis of patients were performed by expert clinicians as per guidelines of FIGO.

Treatment and Response Evaluation

Chemotherapy and radiation dose were same for all patients. They received pelvic external beam radiotherapy (for a total dose of 50 Gy in 25 fractions) with weekly concomitant cisplatin (40 mg/m²) followed by three applications of high dose rate (HDR) intracavitary brachytherapy 7 Gy/fraction at one week interval. The patients who did not complete the planned chemoradiation dose or violated the treatment protocol were excluded from the study. The response to treatment was measured by RECIST criteria version 1.0 after one month of treatment. Women were followed-up after treatment and checked for survival. The primary endpoint was overall survival (OS) from the date of diagnosis to the date of death from any cause. Women who were alive at the end of the study were censored.

Genotyping

Genomic DNA was extracted from peripheral blood samples by standard salting out method with slight modifications [18–19], checked on 1% agarose gel and quantified in a biophotometer (Eppendorf, Germany).

\(GSTM1 \) and \(T1 \) null genotypes (M1- and T1-) were detected by using multiplex polymerase chain reaction (mPCR) using specific primers. The GSTP1 313A>G polymorphism was genotyped by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) using specific primers and Alw26I restriction enzyme [20].

Statistical Analysis

Demographic and clinical information was compared across genotypes using \(\chi^2 \) analysis and Fisher’s exact test. Genotype effects on overall survival (OS) were evaluated by Kaplan-Meier function and Cox proportional hazards model. The differences in OS across different genotypes were compared using the log-rank test. Hazard ratios (HRs) and 95% Confidence Intervals (CIs) were estimated using multivariate Cox proportional hazards model/Cox regression analysis with adjustment for age, pathological stage and histopathology. All \(P \) values were two-sided and differences were considered statistically significant for \(P<0.05 \). The statistical analyses were performed by SPSS (Version 21.0).

Results

Among 244 cervical cancer patients enrolled, 227 were included in the study. Seventeen patients had protocol violations, out of which three did not commence treatment, two did not receive concomitant chemotherapy, one received additional chemotherapy and eleven did not complete treatment.
Clinical Characteristics of Patients

The mean age of patients was 49.0±8.68 years. Histopathological analysis showed 216 patients (95.2%) with squamous cell carcinoma and remaining 11 (4.8%) with adenocarcinoma. The distribution of squamous cell carcinoma into three categories were 96 well (44.4%), 79 moderate (36.6%) and 21 poor (9.7%) while no differentiation was reported in histopathological report of 20 cases (9.3%). The staging of tumor according to FIGO was 117 cases (51.5%) with stage IIB and 110 (48.5%) with stage IIIA+IIIB (Table 1).

Genotyping

The distribution of GSTM1 genotypes showed 64.8% cases with GSTM1 present (M1+) and 35.2% with GSTM1 null (M1-) while distribution of GSTT1 showed 77.5% cases with GSTT1 present (T1+) and 22.5% with GSTT1 null (T1-). The distribution of GSTP1 genotypes showed 56.4% cases with AA, 43.6% with AG+GG. Adenocarcinoma of cervix was significantly higher in the patients having AG+GG genotype of GSTP1 (P = 0.02). However, distribution of GSTM1, T1 and P1 did not (P>0.05) show significant association with age and clinical stage (Table 1).

Survival of patients

The median follow-up duration for all patients was 34 months (range, 4.2–63.0 months). During the study period (2009–2011) 31.3% patients succumbed to death. The median survival had not been reached and overall mean survival time was 49.4 months (95% CI = 46.78 to

Table 1. Demographic and clinicopathological characteristics of cervical cancer patients (n = 227), and their distributions by genotypes of GSTM1, T1 and P1.

Patients, n (%)	GSTM1, n (%)	GSTT1, n (%)	GSTP1, n (%)						
	M1+	M1-	P value	T1+	T1-	P value	AA	AG+GG	P value
Total	227	147 (64.8)	80 (35.2)	176 (77.5)	51 (22.5)	128 (56.4)	99 (43.6)		
Age (years)									
31–40	53 (23.3)	32 (14.1)	21 (9.2)	34 (15.0)	19 (8.4)	31 (13.7)	22 (9.7)		
41–50	105 (46.3)	69 (30.4)	36 (15.9)	89 (39.2)	16 (7.0)	96 (42.4)	26 (11.4)		
51–60	50 (22.0)	34 (15.0)	16 (7.0)	39 (17.2)	11 (4.8)	74 (32.6)	32 (14.1)		
>60	19 (8.4)	12 (5.3)	7 (3.1)	14 (6.2)	5 (2.2)	22 (9.7)	9 (4.0)		
Stage									
IIB	117 (51.5)	73 (32.1)	44 (19.4)	88 (38.8)	29 (12.7)	96 (42.4)	26 (11.4)		
IIIA+IIIB	110 (48.5)	74 (32.6)	36 (15.9)	88 (38.8)	22 (9.7)	74 (32.6)	31 (13.7)		
Histology									
SCC	216 (95.2)	142 (62.6)	74 (32.6)	169 (74.4)	47 (20.7)	166 (73.2)	73 (32.2)		
AD	11 (4.8)	5 (2.2)	6 (2.6)	7 (3.1)	4 (1.8)	22 (9.7)	22 (9.7)		
Vital Status									
Alive	156 (68.7)	94 (41.4)	62 (27.3)	117 (51.5)	39 (17.2)	81 (36.6)	73 (32.2)		
Deceased	71 (31.3)	53 (23.4)	18 (7.9)	59 (26.0)	12 (5.3)	45 (19.8)	26 (11.4)		
Recurrence									
Disease Free	160 (70.5)	92 (42.6)	68 (58.5)	120 (68.2)	40 (18.4)	98 (43.4)	44 (19.4)		
Never Disease Free	25 (11.0)	22 (15.0)	3 (3.8)	24 (13.6)	1 (0.5)	17 (7.5)	8 (3.5)		
Recurred	42 (18.5)	33 (22.4)	9 (11.3)	32 (18.1)	10 (19.6)	25 (11.4)	17 (7.5)		

Bold, significant association (P<0.05); (+), present; (-), null; SCC, Squamous cell carcinoma; AD, Adenocarcinoma.

doi:10.1371/journal.pone.0142501.t001
52.01). It was observed by stage-stratified analysis that the overall survival among patients with stage IIB was significantly better than in those with stage II/IIIB in case of GSTM1 null (M1-) individuals (log-rank $P = 0.004$). Disease recurrence was recorded for 42 women (18.5%). Most of the patients with GSTM1 null genotype (M1-) were alive and disease free at the end of study period ($P = 0.037$ and $P = 0.003$, respectively) while none with GSTT1&P1 genotypes exhibited similar response (Table 1). The multiple testing for all three studied genes with clinicopathological characteristics showed that the risk of recurrence was significantly reduced in GSTM1 null/GSTT1 null and GSTM1 null/GSTP1 AG+GG ($P = 0.004$ and $P = 0.021$ respectively). None of the other combinations showed any significant association.

Effect of GST genotypes on Survival

The Kaplan-Meier function and Log rank test for survival in cases with GSTM1, T1 and P1 genotypes are shown in Figs 1 and 2. In the Kaplan-Meier curve, GSTM1 null genotype (M1-) was associated with better overall survival (log-rank, $P = 0.004$). The overall survival in women
with \textit{GSTM1} null (M1-) genotype and \textit{GSTT1} null (M1-/T1-) and \textit{GSTP1} (M1-/AG+GG) was significantly better (log-rank, \(P = 0.021 \) and \(P = 0.032 \) respectively).

Association of \textit{GSTM1}, \textit{T1} and \textit{P1} genotypes with overall survival as analysed by Cox proportional hazards model, adjusted for age, stage and histopathology is shown in Table 2. There was significant reduction in hazard of death to 0.47 among women with \textit{GSTM1} null genotype (M1-) when compared with women having \textit{GSTM1} present (M1+) genotype (95% CI, 0.269–0.803, \(P = 0.006 \)). There was no significant association with \textit{GSTT1} null and \textit{GSTP1} AG+GG genotypes. In addition, the combined effect showed that all three genes have impact on survival. Women with \textit{GSTM1} null genotype in combination with \textit{GSTT1} null (M1-/T1-) and \textit{GSTP1} (M1-/AG+GG) showed further reduced risk of death [hazard ratio adjusted (HR) = 0.31, 95% CI, 0.121–0.805, \(P = 0.016 \); 0.45, 95% CI, 0.243–0.846, \(P = 0.013 \) respectively]. The adjusted HR associated with triple GST genotype combinations have been shown in Table 2. The analysis showed better survival in patients having \textit{GSTM1} null/\textit{GSTT1} null/\textit{GSTP1} AG+GG genotype combination (HR = 0.31, 95% CI, 0.120–0.836, \(P = 0.02 \)).
Discussion

The most important prognostic factors in cervical cancer patients primarily treated with chemo-radiation are stage and tumor histology [21]. However, the prognostic information provided by tumor stage and histology are not to an extent that they can be used to meet current requirements for optimal therapy. The toxicity and cost of additional therapy can only be justified in the subset of patients at high risk of local as well as distant relapse. Although chemoradiation improves survival and locoregional control, the 5 year overall survival rate being ~60% [22].

Table 2. Associations between GSTM1, T1 and P1 genetic polymorphisms and survival after treatment (CRT) for cervical cancer.

Genotypes	No. of cases, n (%)	Deaths, n (%)	HR (95% CI)	P value
Total	227	71		
GSTM1				
M1+	147 (64.8)	53 (74.6)	1.0 (Ref)	
M1-	80 (35.2)	18 (25.4)	0.465 (0.269–0.802)	0.006
GSTT1				
T1+	176 (77.5)	59 (83.1)	1.0 (Ref.)	
T1-	51 (22.5)	12 (16.9)	0.598 (0.318–1.123)	0.11
GSTP1				
AA	128 (56.4)	45 (63.4)	1.0 (Ref.)	
AG+GG	99 (43.6)	26 (36.6)	0.639 (0.386–1.060)	0.083
GSTM1/GSTT1				
M1+/T1+	125 (55.0)	46 (64.8)	1.0 (Ref.)	
M1+/T1-	22 (9.7)	7 (9.9)	0.828 (0.373–1.839)	0.643
M1-/T1+	51 (22.5)	13 (18.3)	0.539 (0.291–0.999)	0.05
M1-/T1-	29 (12.8)	5 (7.0)	0.312 (0.121–0.805)	0.016
GSTM1/GSTP1				
M1+/AA	108 (47.6)	41 (57.8)	1.0 (Ref.)	
M1+/AG+GG	39 (17.2)	12 (16.9)	0.851 (0.429–1.689)	0.645
M1-/AA	20 (8.8)	4 (5.6)	0.434 (0.155–1.213)	0.111
M1-/AG+GG	60 (26.4)	14 (19.7)	0.453 (0.243–0.846)	0.013
GSTT1/GSTP1				
T1+/AA	112 (49.3)	42 (59.2)	1.0 (Ref.)	
T1+/AG+GG	64 (28.2)	17 (23.9)	0.633 (0.352–1.139)	0.127
T1-/AA	16 (7.1)	3 (4.2)	0.461 (0.141–1.508)	0.201
T1-/AG+GG	35 (15.4)	9 (12.7)	0.526 (0.251–1.100)	0.088
GSTM1/GSTT1/GSTP1				
M1+/T1+/AA	95 (41.9)	38 (53.5)	1.0 (Ref.)	
M1+/T1+/AG+GG	30 (13.2)	8 (11.3)	0.710 (0.315–1.599)	0.408
M1-/T1+/AA	17 (7.5)	4 (5.6)	0.509 (0.181–1.431)	0.201
M1-/T1+/AG+GG	34 (15.0)	9 (12.7)	0.499 (0.239–1.042)	0.064
M1+/T1-/AA	13 (5.7)	3 (4.2)	0.547 (0.166–1.801)	0.321
M1+/T1-/AG+GG	9 (4.0)	4 (5.6)	1.129 (0.387–3.295)	0.825
M1-/T1-/AA	3 (1.3)	0	—	—
M1-/T1-/AG+GG	26 (11.5)	5 (7.7)	0.317 (0.120–0.836)	0.02

Bold, significant association (P<0.05); CI, Confidence interval; HR, Hazard ratio; 1.0 (Reference); (+), Present; (-), Null; aAdjusted for age, stage and histopathology.
The effects of chemotherapy and radiotherapy are potentially modified by GST enzymes [23–24]. An attempt was made to identify genetic polymorphisms in GST gene which can be a predictive marker for response and survival to cisplatin based concomitant chemoradiation (CRT) in patients with advanced cervical cancer. Cisplatin (CDDP), commonly used in the treatment of cervical cancer is detoxified partly by GST enzyme. It was confirmed that increased GST expression in tumor cells determines resistance to cisplatin and other platinum-compounds [25–27]. The direct involvement of GSTP1 in the detoxification of CDDP is by forming CDDP-GSH adducts [28–29].

Many studies suggested that GST plays an important role in development of tumor cell resistance to treatment. Reactive oxygen species (ROS) is generated during the treatment from both regimens viz. chemotherapy and radiotherapy. ROS is also generated as part of the cytotoxic activity of chemotherapeutic agents [30–31]. Radiotherapy may kill cancer cells either directly through effect on target molecules or indirectly through ROS. These ROS can damage cells, proteins and DNA or other cellular molecules.

Two possible mechanisms have been suggested for an association between GST genotypes and treatment outcome, one involving differences in carcinogen damage to DNA and the other, differences in detoxification by treatment agents or GST-mediated protection against oxidative damage during treatment [23]. In addition to GST, genetic polymorphisms in DNA repair genes are also known to be associated with cervical cancer and treatment outcomes of CRT [32–33]. One of the important DNA repair genes influencing response of cervical carcinoma to neoadjuvant chemotherapy was XRCC1 gene variant at codon 399 [34]. Another gene variant RAD51 G172T also showed association in overall survival of cervical cancer patients treated with CRT [2].

Many studies showed an association between polymorphisms of GSTM1 and T1 with treatment outcome in patients with breast cancer or childhood leukemia [7,35] but no association was found in colorectal cancer [11]. No individual effect of GSTM1 or T1 genotypes was found but in combination, null genotypes of both were associated with poor survival in ovarian cancer [36–37]. In the present study, a reduced hazard of death and better overall survival was observed among CRT treated women with null genotype of GSTM1 (M1-), particularly in combination with GSTT1 null (M1-/T1-) and GSTP1 (M1-/AG+GG) (Table 2). These results correspond with the hypothesis that the treatment would be more successful among patients with less or no GST activity.

According to Stanulla et al., the risk of recurrence was reduced among children with GSTM1 null, GSTT1 null and GSTP1 GG genotypes in acute lymphoblastic leukemia [38]. This probably resulted in reduced or no enzymatic activity. The present study also showed a similar result i.e. a significant reduction in recurrence among women only with GSTM1 null genotype (M1-).

An association of GSTP1 with both acquired and intrinsic resistance to cisplatin was observed in human colon cancer cells [39]. Oesophageal cancer patients with decreased intratumoral GSTP1 levels and those treated with FU/cisplatin based chemoradiotherapy showed better survival [40]. However, McLeod et al., did not find a correlation between GSTP1-A313G polymorphism and response to oxaliplatin based chemotherapy in colorectal cancer [41]. The present study demonstrated that GSTP1 AG+GG polymorphism individually did not show any association with survival but in combination with GSTM1 null genotype (M1-/AG+GG) and both GSTM1 and GSTT1 null genotype (M1-/T1-/AG+GG) showed reduced hazard ratio which means a better overall survival.

Conclusion

Our results demonstrated that GST genotypes correlate with the clinical outcome of CRT treated cervical cancer patients. The interindividual difference results in differential activity of
GST enzymes thus having impact on treatment outcome. However, the genetic variability in GST polymorphisms among individuals may be studied in larger patient populations in order to develop useful therapeutic regimens.

Acknowledgments
We thank the Council of Science and Technology-Uttar Pradesh (CST-UP) and Centre of Excellence (Higher Education) UP Govt., Lucknow, India; Indian Council of Medical Research (ICMR) and Department of Science and Technology (DST), New Delhi, India for their financial support. M.A. is thankful to ICMR for research fellowship.

Author Contributions
Conceived and designed the experiments: MA MB KS. Performed the experiments: MA. Analyzed the data: MA VSK. Contributed reagents/materials/analysis tools: MB. Wrote the paper: MA VSK MB.

References
1. Vale C, Tierney JF, Stewart LA, Brady M, Dinshaw K, Jakobsen A, et al. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 2008; 26:5802–5812. doi:10.1200/JCO.2008.16.4368 PMID: 19001332
2. Nogueira A, Catarino R, Faustino I, Nogueira-Silva C, Figueiredo T, Lombo L, et al. Role of the RAD51 G172T polymorphism in the clinical outcome of cervical cancer patients under concomitant chemoradiotherapy. Gene 2012; 504:279–283. doi: 10.1016/j.gene.2012.05.037 PMID: 22634097
3. Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huijten MA. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009; 35:18–31. doi: 10.1016/j.ctrv.2008.07.003 PMID: 18771857
4. Lando M, Holden M, Bergersen LC, Svendsrud DH, Sundfør K et al. Gene dosage, expression, and ontolgy analysis identifies driver genes in the carcinogenesis and chemoradiosensitivity of cervical cancer. PLoS Genetics 2009; 5:e1000719. doi: 10.1371/journal.pgen.1000719 PMID: 19911042
5. Goekkurt E, Hoehn S, Wolschke C, Wittmer C, Stueber C, Hossfeld DK, et al. Polymorphisms of glutathione S-transferases (GST) and thymidylate synthase (TS)—novel predictors for response and survival in gastric cancer patients. Br J Cancer 2006; 94:281–286. PMID: 16317430
6. Fodale V, Pierobon M, Liotta L, Petricoin E. Mechanism of cell adaptation when and how do cancer cells develop chemoresistance? Cancer J 2011; 17:89–95. doi: 10.1097/PPO.0b013e318212dd3d PMID: 21427552
7. Ambrosone CB, Sweeney C, Coles BF, Thompson PA, McClure GY, Korourian S, et al. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res 2001; 61:7130–7135. PMID: 11585745
8. Sun X, Al M, Wang Y, Shen S, Gu Y, Jin Y, et al. Selective induction of tumor cell apoptosis by a novel P450-mediated reactive oxygen species (ROS) inducer methyl 3-(4-nitrophenyl) propiolate. J BiolChem 2013; 288:8826–8837.
9. Jiao L, Bondy ML, Hassan MM, Chang DZ, Abbruzzese JL, Evans DB, et al. Glutathione S-transferase Gene Polymorphisms and Risk and Survival of Pancreatic Cancer. Cancer 2007; 109:840–848. PMID: 17265526
10. Tulsyan S, Chaturvedi P, Agarwal G, Lal P, Agrawal V, Mittal RD, et al. Pharmacogenetic influence of GST polymorphisms on anthracycline-based chemotherapy responses and toxicity in breast cancer patients: A multi-analytical approach. Mol Diagn Ther 2013; 17:371–379. doi: 10.1007/s40291-013-0045-4 PMID: 23812950
11. Sturmiac h j, Park DJ, Zhang W, Groshen S, Tsao-Wei DD, Yu MC, et al. Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J Natl Cancer Inst 2002; 94:936–942. PMID: 12072547
12. Yang Y, Parsons KK, Chi L, Malakauskas SM, Le TH, et al. Glutathione S-transferase-μ1 regulates vascular smooth muscle cell proliferation, migration, and oxidative stress. Hypertension 2009; 54:1360–1366. doi: 10.1161/HYPERTENSIONAHA.109.139426 PMID: 19822795
13. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003; 22:7369–7375. PMID: 14576844

14. Economopoulos KP, Choussin S, Vlahos NF, Sergentanis TN. GSTM1 polymorphism. GSTT1 polymorphisms and cervical cancer risk: a meta-analysis. Int J Gynecol Cancer 2010; 20:732–737. doi: 10.1111/IGC.0b013e3181dedeb5 PMID: 20966642

15. Okcu MF, Selvan M, Wang LE, Stout L, Erana R, Airewele G, et al. Glutathione S-transferase polymorphisms and survival in primary malignant glioma. Clin Cancer Res 2004; 10:2618–2625. PMID: 15102663

16. Ambrosone CB, Tian C, Ahn J, Kropp S, Helmbold I, von Fournier D, et al. Genetic predictors of acute toxicities related to radiation therapy following lumpectomy for breast cancer: a case-series study. Breast Cancer Res 2006; 8:1–7.

17. Rednam S, Scheurer ME, Adesina A, Lau CC, Okcu MF. Glutathione S-transferase P1 single nucleotide polymorphism predicts permanent ototoxicity in children with medulloblastoma. Pediatr Blood Cancer 2013; 60:593–598. doi: 10.1002/pbc.24366 PMID: 23065688

18. Miller SA, Dykes DD, Polesky HF. Simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:1215. PMID: 3344216

19. Abbas M, Srivastava K, Imran M, Banerjee M. Association of CYP1A1 gene variants rs4646903 (T>C) and rs1048943 (A>G) with cervical cancer in a North Indian population. Eur J Obstet Gynecol Reprod Biol 2014; 176:68–74. PMID: 24657182

20. Abbas M, Srivastava K, Imran M, Banerjee M. Association of Glutathione S-transferase (GSTM1, GSTT1 and GSTP1) polymorphisms and passive smoking in cervical cancer cases from North India. IJBR 2013; 4:1–8.

21. Noordhuis MG, Eijsink JJ, Roossink F, de Graeff P, Pras E, Schuuring E, et al. Prognostic cell biological markers in cervical cancer patients primarily treated with (chemo) radiation: a systematic review. Int J Radiat Oncol Biol Phys 2011; 79:325–334. doi: 10.1016/j.ijrobp.2010.09.043 PMID: 21195874

22. Hareyama M, Sakata K, Shirato H, Nishioka T, Nishio M, Suzuki K, et al. A prospective, randomized trial comparing neoadjuvant chemotherapy with radiotherapy alone in patients with advanced nasopharyngeal carcinoma. Cancer 2002; 15:2217–2223.

23. Sweeney C, Nazar-Stewart V, Stapleton PL, Eaton DL, Vaughan TL. Glutathione S-transferase M1, T1, and P1 polymorphisms and survival among lung cancer patients. Cancer Epidemiol Biomarkers & Prev 2003; 12:527–533.

24. Duggan C, Ballard-Barbash R, Baumgartner RN, Baumgartner KB, Bernstein L, McTiernan A, et al. Associations between null mutations in GSTT1 and GSTM1, the GSTP1 Ile105Val polymorphism, and mortality in breast cancer survivors. Springer Plus 2013; 2:1–9.

25. Hirano T, Kato H, Maeda M, Gong Y, Shou Y, Nakamura M, et al. Identification of postoperative adjuvant chemotherapy responders in non-small cell lung cancer by novel biomarker. Int J Cancer 2005; 117:460–468. PMID: 15900595

26. Xiang F, Yu W, Shen Y, Wu C, Wang Y. Effects of neoadjuvant chemotherapy on the quantitative expression of P-gp, LRP, MRP, GST-π in NSCLC and its clinical significance. Chin J Lung Cancer 2007; 10:398–405.

27. Wang J, Zhang J, Zhang L, Zhao L, Fan S, Yang Z, et al. Expression of P-gp, MRP, LRP, GST-π and Topo IIα and intrinsic resistance in human lung cancer cell lines. Oncol Rep 2011; 26:1081–1089. doi: 10.3892/or.2011.1405 PMID: 21805041

28. Goto S, Iida T, Cho S, Oka M, Kohno S, Kondo T. Overexpression of glutathione S-transferase π enhances the adduct formation of cisplatin with glutathione in human cancer cells. Free Radic Res 1999; 31:549–558. PMID: 10630679

29. Rolland D, Raharjaona M, Barbarat A, Houlogatte R, Thieblemont C. Inhibition of GST-π nuclear transfer increases mantle lymphoma sensitivity to cisplatin, cytarabine, gemcitabine, bortezomib and doxorubicin. Anticancer Res 2010; 30:3951–3957. PMID: 21036708

30. Hellman S. Principles of radiation therapy. In: Devita VT, Hellman S, Rosenberg SA, editors. Cancer: Principles and Practice of Oncology, Philadelphia: J.B. Lippincott Co; 1993. pp. 248–275.

31. Ana-Maria F, Dietrich B. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011; 3:1351–1371. doi: 10.3390/cancers3011351 PMID: 24212665

32. Gurubhagavatula S, Liu G, Park S, Zhou W, Su L, Wain JC. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol 2004; 22:2594–2601. PMID: 15173214
33. Ryu JS, Hong YC, Han HS, Lee JE, Kim S, Park YM. Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer 2004; 44:311–316. PMID: 15140544

34. Cheng XD, Lu WG, Ye F, Wan XY, Xie X. The association of XRCC1 gene single nucleotide polymorphisms with response to neoadjuvant chemotherapy in locally advanced cervical carcinoma. J Exp Clin Cancer Res 2009; 28:91. doi: 10.1186/1756-9966-28-91 PMID: 19563645

35. Davies SM, Robison LL, Buckley JD, Tjoa T, Woods WG, Radloff GA. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol 2001; 19:1279–1287. PMID: 11230469

36. Howells RE, Redman CW, Dhar KK, Sarhanis P, Musgrove C, Jones PW, et al. Association of glutathione S-transferase GSTM1 and GSTT1 null genotypes with clinical outcome in epithelial ovarian cancer. Clin Cancer Res 1998; 4:2439–2445. PMID: 9796976

37. Lallas TA, McClain SK, Shahin MS, Buller RE. The glutathione S-transferase M1 genotype in ovarian cancer. Cancer Epidemiol Biomark Prev 2000; 9:587–590.

38. Stanulla M, Schrappe M, Brechlin AM, Zimmermann M, Welte K. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood 2000; 95:1222–1228. PMID: 10666194

39. Ban N, Takahashi Y, Takayama T, Kura T, Katahira T, Sakamaki S, et al. Transfection of glutathione S-transferase (GST)-pi antisense complementary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide. Cancer Res 1996; 56:3577–3582. PMID: 8758929

40. Joshi MB, Shirot A, Danenberg KD, Conlon DH, Salonga DS, Herrndon JE II, et al. High gene expression of TS1, GSTP1, and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer. Clin Cancer Res 2005; 11:2215–2221. PMID: 15788669

41. McLeod HL, Sargent DJ, Marsh S, Fuchs C, Ramanathan RK, Williamson S, et al. Pharmacogenetic analysis of systemic toxicity and response after 5-fluorouracil (5FU)/CPT-11, 5FU/oxaliplatin (oxal), or CPT-11/oxal therapy for advanced, colorectal cancer (CRC): Results from an intergroup trial. Proc Am Soc Clin Oncol 2003; 22:253.