Effect of pressure on the magnetostructural transition in \(\text{SrFe}_2\text{As}_2 \)

M. Kumar, M. Nicklas, A. Jesche, N. Caroca-Canales, M. Schmitt, M. Hanfland, D. Kasinathan, U. Schwarz, H. Rosner, and C. Geibel

\(^1\)Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
\(^2\)ESRF, BP 220, 38043 Grenoble Cedex 9, France

(Dated: October 13, 2008)

We present a systematic pressure study of poly- and single crystalline \(\text{SrFe}_2\text{As}_2 \) by electrical resistivity and X-ray diffraction measurements. \(\text{SrFe}_2\text{As}_2 \) exhibits a structural phase transition from a tetragonal to an orthorhombic phase at \(T_0 = 205 \) K. The structural phase transition is intimately linked to a spin-density-wave transition taking place at the same temperature. Our pressure experiments show that \(T_0 \) shifts to lower temperatures with increasing pressure. We can estimate a critical pressure of 4 to 5 GPa for the suppression of \(T_0 \) to zero temperature. At pressures above 2.5 GPa the resistivity decreases significantly below \(T_s \approx 40 \) K hinting at the emergence of superconductivity but no zero-resistance state is observed up to 3 GPa.

PACS numbers: 05.70.Ln, 71.20.Lp, 74.70.Dd, 75.30.Fv

I. INTRODUCTION

The recent discovery of superconductivity and the subsequent raising of the superconducting transition temperature, \(T_c \), in iron arsenides has attracted tremendous interest in the scientific community. Superconductivity was first reported in \(\text{RFEOAs} \) compounds \((R = \text{La - Gd}) \) and later on in the \(\text{AFE}_2\text{As}_2 \) series of compounds \((A = \text{Ca, Sr, Eu, Ba}) \). The structures of both families of compounds present almost identical FeAs-layers which are responsible for the peculiar behavior of these systems. The undoped compounds show a tetragonal to orthorhombic structural phase transition associated with magnetic ordering giving rise to a spin-density-wave instability between 150–200 K, which can be suppressed by chemical substitution or application of pressure. Doping-induced superconductivity was observed in fluorine-doped/O-depleted members of \(\text{RFEOAs} \) with \(T_c \) values approaching up to 50 K. The superconducting transition temperature reaches up to 38 K in \(\text{AFE}_2\text{As}_2 \) (\(A = \text{Sr, Ba} \)) on partial replacement of \(A \) with K or Cs. However, chemical substitution in contrast to the application of pressure changes not only the unit-cell volume but also the electronic structure considerably for example by adding or removing charge carriers from the conduction band.

In \(\text{CaFe}_2\text{As}_2 \) pressure studies reported a very fast suppression of the transition temperature \(T_0 \) related to the magnetic ordering and lattice distortion and its disappearance at around 0.4 GPa. Simultaneously, superconductivity appears with a maximum \(T_c \approx 12 \) K. Further on an anomaly appears above 0.5 GPa at around 100 K and shifts strongly to higher temperatures with increasing \(p \). Neutron scattering experiments evidenced this anomaly to correspond to a structural transition towards a collapsed, tetragonal structure, with a reduced \(c/a \) ratio. In contrast measurements on \(\text{BaFe}_2\text{As}_2 \) revealed a much weaker pressure effect, with \(T_0 \) decreasing by only 15 K at 2 GPa, and no superconductivity untill this pressure. A much weaker pressure effect for the larger earth alkaline metals Sr and Ba was confirmed by Alireza et al. who reported the onset of superconductivity at 2.8 GPa and 2.5 GPa with maximum \(T_c = 27 \) K and 29 K for \(\text{SrFe}_2\text{As}_2 \) and \(\text{BaFe}_2\text{As}_2 \), respectively. However, one has to note that all these results were obtained on single crystals grown from Sn flux. Especially in the case of \(\text{BaFe}_2\text{As}_2 \) this technique is known to lead to a significant incorporation of Sn into the single crystals, which strongly affects the physical properties, resulting e.g. in a strong reduction of \(T_0 \). On the other hand the huge difference between the pressure effect on \(\text{CaFe}_2\text{As}_2 \) compared to that on \(\text{SrFe}_2\text{As}_2 \) and \(\text{BaFe}_2\text{As}_2 \), as well as the absence of a collapsed phase in doped \(\text{AFE}_2\text{As}_2 \) (and doped \(\text{RFEOAs} \)) suggests that this collapsed phase might be unique to \(\text{CaFe}_2\text{As}_2 \), being related to the comparatively small size of Ca, and not a general feature of the \(\text{AFE}_2\text{As}_2 \) materials. The absence of a collapsed phase in superconducting, doped \(\text{AFE}_2\text{As}_2 \) already proves that this collapsed phase is neither a prerequisite for the disappearance of magnetic order, nor for the onset of superconductivity.

X-ray studies on \(\text{SrFe}_2\text{As}_2 \) at room temperature and down to 210 K evidenced an undistorted tetragonal \(\text{ThCr}_2\text{Si}_2 \) type structure while at 205 K and below the diffraction diagrams can be well described by an orthorhombic unit cell in accordance with the proposed structure for \(\text{BaFe}_2\text{As}_2 \). Between 210 K to 205 K, the high-temperature undistorted tetragonal phase disappears abruptly but a small amount of the orthorhombic phase coexists as expected for a first-order phase-transition. Resistivity, \(\rho(T) \), susceptibility, \(\chi(T) \), and specific heat, \(C(T) \), measurements show anomalies around 205 K. Our results on poly- and single crystalline \(\text{SrFe}_2\text{As}_2 \) from high pressure electrical resistivity and X-ray diffraction experiments reveal a suppression of \(T_0 \) with increasing pressure and hint to the possible existence of a magnetic instability in the pressure range from 4 to 5 GPa. Resistivity data suggests the emergence of a
superconducting phase at \(p > 2.5 \) GPa.

II. METHODS

The polycrystalline \(\text{SrFe}_2\text{As}_2 \) samples were synthesized by heating a \(1 : 2 : 2 \) mixture of \(\text{Sr} \), \(\text{Fe} \), and \(\text{As} \) in an \(\text{Al}_2\text{O}_3 \) crucible, sealing it under inert atmosphere inside an evacuated quartz tube and subsequent heating\(^{4}\). Single crystals were obtained using the Bridgman method (cf. Ref. 9). Both types of samples crystallize in the undistorted tetragonal \(\text{ThCr}_2\text{Si}_2 \) structure. Measurements of the electrical resistance were carried out using a standard four-probe technique. Magnetic field was applied perpendicular to the current. The experiments on single crystals were made with current flowing in the \((a, b) \)-plane and magnetic field along the \(c \)-direction. Temperatures down to 1.8 K and magnetic fields up to 14 T were generated using a flow cryostat and a physical property measurement system (Quantum Design). Pressures up to 3 GPa have been achieved in a double-layer piston-cylinder-type pressure cell with silicone oil as pressure transmitting medium. The superconducting transition of \(\text{Pb} \) which served as a pressure gauge, remained sharp at all pressures, indicating a pressure gradient less than \(1-2 \% \) of the applied pressure. The pressure change on cooling from room temperature to 1.8 K was less than 0.1 GPa. X-ray diffraction under pressure was conducted on ground crystalline powders of the compound. The samples were loaded into the gasket of a membrane-driven diamond anvil cell with a cuvet size of 0.6 mm. In order to realize hydrostatic conditions, helium was used as a pressure transmitting medium. A helium gas-flow cryostat enabled thermostated low-temperature measurements. Sm-doped \(\text{SrB}_2\text{O}_7 \) was used as a temperature-insensitive pressure calibrant\(^{19,20}\). Diffraction data were collected on ID9A at the ESRF, Grenoble, using a wavelength of 41.34 pm. During exposure, samples were oscillated by six degrees in order to enhance powder statistics. Finally, the recorded 2D diffraction patterns were integrated by means of the computer program Fit2D.\(^{21}\) To study the pressure dependence of the magnetic instability, band structure calculations have been carried out within the local (spin) density approximation (L(S)DA) fixing the \(z \) parameter to the experimental ambient pressure values. We applied the full-potential local-orbital code FPLO\(^{22}\) (V 7.00-28) with the Perdew-Wang exchange correlation potential\(^{23}\) and a well-converged \(k \)-mesh of \(24^3 \) points for the Brillouin zone.

III. RESULTS AND DISCUSSION

Figure 1 shows the electrical resistivity of polycrystalline \(\text{SrFe}_2\text{As}_2 \) as a function of temperature for selected pressures. At ambient pressure \(\rho(T) \) is weakly decreasing between 300 K and 205 K. At around 205 K \(\rho(T) \) shows a sharp drop at \(T_0 \) followed by a further strong decrease to low temperatures, in quite good agreement with the previously reported \(T_0 = 198 \) K (Ref. 24). On increasing pressure the feature at \(T_0 \) is becoming broader but is still well defined up to the highest pressure of our electrical resistivity experiment. There is no qualitatively different behavior between the polycrystalline and the single crystalline material. At ambient pressure the polycrystals have a residual resistivity ratio of \(\rho_{300K}/\rho_{1.8K} = 32 \) and a room temperature resistivity \(\rho_{300K} = 0.83 \text{m}\Omega \text{cm} \) compared with \(\rho_{1.8K} = 25 \) and \(\rho_{300K} = 1.09 \text{m}\Omega \text{cm} \) for the single crystals. However, the kink at \(T_0 \) remains sharper for the single crystal at high pressure. It is also worth mentioning that magnetic field of \(B = 9 \) T has no effect on \(T_0 \) in the single crystalline sample at our highest pressure of 2.94 GPa for \(B || c \), similar to the behavior reported at ambient pressure\(^{24}\). \(T_0 \) as defined by the minimum in the second derivative \(d^2\rho(T)/dT^2 \) (cf. inset of Fig. 1) shifts to lower temperatures on application of pressure. The phase diagram in Fig. 2 summarizes the results. Within the error-bars there is no difference between the poly- and single crystalline samples. Initially \(T_0(p) \) decreases with a slope of \(dT_0/dp \mid_{p=0} \approx -13 \text{K/GPa} \) with increasing pressure. \(dT_0/dp \mid_{p=0} \) of \(\text{SrFe}_2\text{As}_2 \) is in fairly good agreement with \(dT_0/dp \mid_{p=0} \approx -10.4 \text{K/GPa} \) reported for \(\text{BaFe}_2\text{As}_2 \) but almost one order of magnitude smaller than for \(\text{CaFe}_2\text{As}_2 \).\(^{25}\)

In the \(\text{AFe}_2\text{As}_2 \) compounds, \(T_0 \) at ambient pressure corresponds to both the structural transition and to the onset of antiferromagnetic ordering, which are intimately linked together\(^{26,27}\). In contrast, it is presently suggested that in the \(\text{RF}_{2}\text{AsO}_3 \) compounds\(^{4,28}\) the antiferromagnetic ordering occurs at approximately \(10-20 \) K below the structural ordering. These both transitions are marked by an anomaly in the resistivity\(^{4,28}\). A careful analysis of our resistivity data do not reveal any evidence for a splitting.
The transition temperature T_x is in the same range where electron doped SrFe$_2$As$_2$ becomes superconducting giving a hint at a superconducting origin of the reduced resistance below T_x. To further elucidate the nature of the transition observed in the electrical resistivity we applied a magnetic field. The results at $p = 2.55$ GPa for the polycrystalline and at $p = 2.94$ GPa for the single crystalline sample are presented in Fig. [4]. With increasing magnetic field the reduction of the resistivity is getting smaller and the T_x shifts in the whole accessible magnetic field range towards lower temperatures. Up to $14 \, T \, B_x(T) = B(T = T_x)$ depends linearly on the magnetic field and the initial slope $dB_x(T)/dT \big|_{T = T_x} = -2.05 \, T/K$, the same for both samples and pressures, is typical for the superconducting upper critical field, $B_c2(T)$, in the iron-arsenide compounds. From these indications we speculate that the observed drop in the electrical resistivity indicates the emergence of a superconducting phase in SrFe$_2$As$_2$.

Comparing the phase boundary constructed from the X-ray diffraction and the electrical resistivity data for both poly- and single crystalline samples, we find excellent agreement between all measurements. Thus, we clearly observe an orthorhombic phase for pressures below 3.8 GPa and $T < 140 \, K$. This is most likely in contrast to the data obtained by Alireza et al. where superconductivity with $T_c \approx 27 \, K$ was observed for SrFe$_2$As$_2$ at 2.8 GPa. At ambient pressure, the occurrence of the orthorhombic phase is intimately linked to antiferromagnetism. According to our electronic structure calculations, this intimate connection between the antiferromagnetic order and the orthorhombic distortion is preserved under pressure. Simulating hydrostatic pressure in our calculations, we find that the magnetic instability disappears at about 10 percent volume reduction, corresponding to a critical pressure of slightly more than 10 GPa. This value should be considered as a rough upper estimate, since it suffers from the known LDA overestimate of magnetism in this class of compounds. In contrast to CaFe$_2$As$_2$, where our calculations indicate the tetragonal collapsed phase similar to Ref. [15].

![FIG. 2: (Color online) Temperature-pressure phase diagram of SrFe$_2$As$_2$ with T_x values from the evaluation of resistivity data (poly-crystal - filled circles, single crystal - stars) and X-ray measurements (filled diamonds). The data points for the X-ray measurements are shown by open squares and triangles for the tetragonal and the orthorhombic phase, respectively. The approximately isobaric and isothermal runs are guided by horizontal and vertical lines, exemplary X-ray patterns are presented in the upper and lower inset. The splitting of the reflections at about 15 and 17 degrees indicates the structural transition. The measured region for the orthorhombic (magnetic) phase is shaded in gray, the dashed line is an extrapolation of the phase boundary down to zero temperature.](image1)

![FIG. 3: (Color online) Lattice parameters as refined from X-ray diffraction data collected at different temperatures and pressures. Coincidence of the parameters a and b indicate the tetragonal phase.](image2)
we find no such transition for $A\text{Fe}_2\text{As}_2$ ($A = \text{Sr}, \text{Ba}, \text{Eu}$). This suggests that the c/a collapse of the tetragonal phase is a rather special feature of the CaFe_2As_2 system without general relevance for the phase diagram of the AFe_2As_2 compound family. A more precise study, including the pressure dependence of the magnetic transition upon doping, will be the subject of future investigations. Our preliminary results indicate a considerable influence of doping and impurities on the critical pressure. This result, although preliminary, may offer an explanation for the observed differences of transition pressures in different samples.

Results from specific heat, magnetic susceptibility and resistivity, as well as X-ray, neutron diffraction, muon-spin relaxation, and Mössbauer experiments indicate a first-order nature of the transition at T_0. However, Tegel et al. conclude a second-order type of the transition from their temperature-dependent X-ray powder diffraction and Mössbauer spectroscopy. To get a further insight in the nature of the phase transition, we analyzed the slope of our $T_0(p)$ data at $p = 0$ utilizing the Clausius-Clapeyron equation $\frac{dT}{dp} = T\Delta V/\Delta H$ applicable for a first-order phase-transition. With the initial slope $\frac{dT}{dp} = -13 \text{ K/GPa}$ and the latent heat at the transition $\Delta H \approx 200 \text{ J/mol}$, we obtain a volume change for the orthorhombic unit cell $\Delta V = -0.8 \times 10^{-4} \text{ nm}^3$, which has the same sign and the same order of magnitude as the experimental result $\Delta V = -0.3 \times 10^{-4} \text{ nm}^3$. This analysis for a second-order transition leads to a discrepancy of at least one order of magnitude between calculated and observed specific heat anomaly. Therefore this comparison supports the first-order nature of the transition.

IV. SUMMARY AND CONCLUSION

In summary, we have determined the effect of pressure on the structural and magnetic transition in SrFe_2As_2 using electrical resistivity and X-ray diffraction measurements. We observe a weak decrease of T_0 with increasing pressure with an initial slope of -13 K/GPa and a bending towards lower temperatures at higher pressures. Extrapolating these data and assuming a continuous suppression of T_0 down to $T = 0$ would lead to a critical pressure of 4.5 GPa. However, the suspected first-order nature of the phase transition at T_0 makes a classical critical end-point at a finite temperature more likely. We still observe a transition to the orthorhombic phase at 3.8 GPa below 140 K. Nevertheless already at around 2.5 GPa we observed in $\rho(T)$ a kink at 40 K leading to a stronger slope $d\rho(T)/dT$ at lower temperatures. This is suggestive of superconductivity emerging at the disappearance of the structural and magnetic transition. This interpretation is supported by the linear shift of this anomaly to lower temperatures with applied magnetic field. These experimental observations are supported by results of band structure calculations which also indicate the antiferromagnetic order to become unstable upon volume reduction. Thus, in contrast to the observation in the high temperature superconductors based on cuprates, in the layered FeAs systems the suppression of magnetism and the onset of superconductivity do not need electron or hole doping, but can be achieved without doping by tuning the electronic states with pressure. The suppression of magnetism upon applying pressure is in accordance with and a further hint for an itinerant character of the magnetism, since for localized magnetism one usually expects an enhancement of the ordering temperature with pressure.

Note added.— While revising our manuscript we got knowledge of a paper presenting a resistivity study of SrFe_2As_2 in the pressure range up to 2 GPa. In this work a similar decrease of $\rho(T)$ below T_2, which we observe only above 2.5 GPa, is already reported at smaller pressure.

ACKNOWLEDGEMENTS

It is a pleasure to thank K. Meier for the support of the X-ray diffraction measurements.
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

X. F. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).

C. de La Cruz, Q. Huang, J. W. Lynn, Jiying Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature 453, 899 (2008).

H. H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F.J. Litterst, M. Kraken, M. M. Korshunov, I. Eremin, S. L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. B"uhner, Phys. Rev. Lett. 101, 077005 (2008).

M. Fratini, R. Caivano, A. Puri, A. Ricci, Z. A. Ren, X. L. Dong, J. Yang, W. Lu, Z. X. Zhao, L. Barba, G. Arrighetti, M. Polentarutti, and A. Bianconi, Supercond. Sci. Techno. 21, 092002 (2008).

N. Ni, S. Nandi, A. Kreyssig, M. S. Torikachvili, S. L. Bud’ko, P. C. Canfield, Phys. Rev. B 78, 014523 (2008).

C. Krellner, N. Caroca-Canales, A. Jesche, H. Rosner, A. Ormeci, and C. Geibel, Phys. Rev. B 78, 100504(R) (2008).

M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen, Phys. Rev. B 78, 020503(R) (2008).

H. S. Jeevan, Z. Hossain, D. Kasinathan, H. Rosner, C. Geibel, P. Gegenwart, Phys. Rev. B 78, 052502 (2008).

K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, C. Chen, Y. Y. Xue, and C. W. Chu, Phys. Rev. Lett. 101, 107007 (2008).

G. F. Chen, Z. Li, J. Dong, G. Li, W. Z. Hu, X. D. Zhang, X. H. Song, P. Zheng, N. L. Wang, and J. L. Luo, arXiv:0806.2648 (unpublished).

M. S. Torikachvili, S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. Lett. 101, 057006 (2008).

M. S. Torikachvili, S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. B 78, 104527 (2008).

A. Kreyssig, M. A. Green, Y. Lee, G. D. Samolyuk, P. Zajdel, J. W. Lynn, S. L. Bud’ko, M. S. Torikachvili, N. Ni, S. Nandi, J. Leão, S. J. Poulton, D. N. Argyriou, B. N. Harmon, P. C. Canfield, R. J. McQueeney, and A. I. Goldman, arXiv:0807.3032 (unpublished).

M. S. Torikachvili, N. Ni, S. L. Bud’ko, P. C. Canfield, arXiv:0807.1089 (unpublished).

P. L. Allireza, J. Gillett, Y. T. C. Ko, S. E. Sebastian, and G. G. Lonzarich, arXiv:0807.1896 (unpublished).

A. Jesche, N. Caroca-Canales, H. Rosner, H. Bornmann, A. Ormeci, D. Kasinathan, K. Kaneko, H. H. Klauss, H. Luetkens, R. Khasanov, A. Amato, C. Krellner, and C. Geibel, [arXiv:0807.0632](unpublished).

A. Lacam and C. Chateau, J. Appl. Phys. 66, 366 (1989).

F. Datchi, R. LeToullec, and P. Loubeyre, J. Appl. Phys. 81, 3333 (1997).

A. P. Hammersley, S. O. Svensson, M. Hanfland, A. Fitch, and D. Häusermann, High Press. Res. 14, 235 (1996).

K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999).

J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

J. Q. Yan, A. Kreyssig, S. Nandi, N. Ni, S. L. Bud’ko, A. Kracher, R. J. McQueeney, R. W. McCallum, T. A. Lograsso, A. I. Goldman, P. C. Canfield, Phys. Rev. B 78, 024516 (2008).

A. L. Jasper, W. Schnelle, C. Geibel, and H. Rosner, arXiv:0807.2223 (unpublished).

X. L. Wang, R. Ghorbani, G. Peleckis, and S.X. Dou, arXiv:0806.0063 (unpublished).

D. Kasinathan, A. Ormeci, M. Schmitt, M. Kumar, C. F. Miclea, M. Nicklas, M. Hanfland, K. Koch, U. Schwarz, H. S. Jeevan, P. Gegenwart, A. Jesche, C. Krellner, N. Caroca-Canales, Z. Hossain, C. Geibel, W. Schnelle, A. Leithe-Jasper, and H. Rosner, (unpublished).

M. Tegel, M. Rotter, V. Weiss, F. M. Schappacher, R. Pöttgen, and D. Johrendt, arXiv:0806.4782 (unpublished).

M. S. Torikachvili, S. L. Bud’ko, N. Ni, P. C. Canfield, Phys. Rev. B 78, 104527 (2008).