Application of pattern spectra and convolutional neural networks to the analysis of simulated Cherenkov Telescope Array data

J. Aschersleben, R. F. Peletier, M. Vecchi and M. H. F. Wilkinson on behalf of the CTA Consortium

(a complete list of authors can be found at the end of the proceedings)

Kapteyn Astronomical Institute
University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence
University of Groningen, PO Box 407, NL-9700 AK Groningen, The Netherlands

E-mail: j.j.m.aschersleben@rug.nl, r.f.peletier@rug.nl, m.vecchi@rug.nl, m.h.f.wilkinson@rug.nl

The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory and will be the major global instrument for very-high-energy astronomy over the next decade, offering $5 - 10 \times$ better flux sensitivity than current generation gamma-ray telescopes. Each telescope will provide a snapshot of gamma-ray induced particle showers by capturing the induced Cherenkov emission at ground level. The simulation of such events provides images that can be used as training data for convolutional neural networks (CNNs) to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further enhance the performance to be achieved by CTA.

Pattern spectra are commonly used tools for image classification and provide the distributions of the shapes and sizes of various objects comprising an image. The use of relatively shallow CNNs on pattern spectra would automatically select relevant combinations of features within an image, taking advantage of the 2D nature of pattern spectra. In this work, we generate pattern spectra from simulated gamma-ray events instead of using the raw images themselves in order to train our CNN for energy reconstruction. This is different from other relevant learning and feature selection methods that have been tried in the past. Thereby, we aim to obtain a significantly faster and less computationally intensive algorithm, with minimal loss of performance.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
1. Introduction

The interaction of a gamma ray with the Earth atmosphere induces a particle shower, which produces a flash of Cherenkov light. Imaging atmospheric Cherenkov telescopes (IACTs) can capture the Cherenkov emission at ground level, which enables the estimation of the energy of the initial gamma ray. The Cherenkov Telescope Array (CTA)\(^1\) will host the next generation of IACTs and will offer a \(5 - 10 \times\) better flux sensitivity than current generation gamma-ray telescopes [1]. The telescopes will be located in both the northern and southern hemispheres at the Roque de los Muchachos Observatory in La Palma (CTA North) and the Atacama Desert in Chile (CTA South). The combination of telescopes of three different sizes: Small-Sized Telescopes (SSTs), Medium-Sized Telescopes (MSTs) and Large-Sized Telescope (LSTs) will provide a wide energy range between 20 GeV and 300 TeV and a precision of \(\sim 1'\) on individual photons for the upper end of the CTA energy range, which is the best resolution achieved anywhere above the X-ray domain.

Convolutional neural networks (CNNs) are a subclass of artificial neural networks (ANNs) [2] and can be trained with the Cherenkov images simulated for CTA to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further improve the performance to be achieved by CTA [3–6]. However, the construction of CNNs is typically very computationally expensive due to a large number of free parameters and the amount of data required. Pattern spectra [7] are commonly used tools for image classification, which provide the distributions of the shapes and sizes of various objects comprising an image and can significantly reduce the computational power needed to train a CNN. They are constructed using a technique from mathematical morphology known as granulometries [8], which can be computed with connected operators [9]. Compared to other classical approaches, connected operators have the advantage of not introducing any distortions into the image (see Ref. [10] for a detailed study of image distortion in IACT event reconstruction with neural networks). This is achieved by the merging of flat zones (regions in the image with the same colour) within the image, which prevents splitting or deforming of existing features and the implementation of unwanted new edges.

2. Dataset

The dataset consists of simulated shower images of gamma-ray events with CTA South (zenith angle of 20°, North pointing) generated with a 0.4° offset from the telescope pointing position. In this analysis only the charge information (i.e. the integrated photodetector pulse) of SST images is considered. The energy distribution of the events is shown in Figure 1 and covers an energy range between 20 GeV and 300 TeV. The energy used to simulate each individual event is referred to \(E_{\text{true}}\) in the following.

In order to achieve the best CNN performance a large number of gamma-ray events is required. Therefore, the dataset consists of \(\sim 1 \times 10^6\) gamma-ray events. Depending on the initial gamma-ray energy and the impact position and direction, a single event can be captured by several SSTs. As a first step towards the implementation of pattern spectra for the analysis of CTA images, images of the same event captured by several SSTs are combined into one single image by adding up the individual pixel values of each image.

\(^1\)www.cta-observatory.org
3. Analysis

The pattern spectra algorithm is based on the algorithm presented in Urbach et al. (2007) [11], which creates 2-dimensional (size & shape) pattern spectra. It detects objects within the image, which are the connected components of threshold sets of the image. The size of the objects in the image is classified by the area of the object A. The shape of the objects in the image is classified by I/A^2, which is the ratio of the moment of inertia I to the square of the area A. The moment of inertia I describes the sum of squared differences to the centre of gravity of the object. For a more detailed definition of the area A and the moment of inertia I, see Urbach et al. (2007) [11]. In order to construct a pattern spectrum from a CTA image, the CTA image has to be converted into an 8-bit greyscale image in PGM format due to current software limitations. This conversion includes a loss of information, which will be discussed in more detail in the last section. An example of a pattern spectrum obtained from a ~ 1.9 TeV gamma-ray event image is shown in Figure 2. The top-left image shows the input image and the bottom-left image the corresponding pattern spectrum. The remaining three image pairs show the detected features in the input image (features highlighted in orange, subfeatures highlighted in red) corresponding to the specific pixel in the pattern spectrum (marked in red). Whereas the features detected in the second image correspond mostly to noise, the features in the third and fourth image correspond to the Cherenkov photons emitted by the particle shower, which are of particular interest for energy reconstruction.

Taking either the original CTA images, 8-bit CTA images or pattern spectra as input, the CNN provides the (reconstructed) energy as an output, which is referred to E_{rec} in the following. The 8-bit CTA image analysis operates as a reference in order to get a rough estimate for the loss of information during the 8-bit conversion. The CNN is constructed using Tensorflow 2.3.1 [14] and Keras 2.4.3 [15]. It consists of six convolutional layers, followed by a global average pooling and a dense layer, which results in a total of 26,729 free parameters. For training the CNN, a batch size of 32, the ADAdaptive Moment (ADAM) optimizer [13], a constant learning rate of 10^{-3}, the mean squared error as loss function and 50 epochs were chosen. The dataset was split into 90% training
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

data (of which 10% was used for validation) and 10% test data. An illustration of our CNN is shown in Figure 3. The CNN is trained and its performance is evaluated with the original CTA images, the 8-bit CTA images, and the pattern spectra separately and the corresponding results are compared in the next section.

Figure 2: Top: 8-bit CTA images with highlighted features (in red/orange) detected by the pattern spectra software. Bottom: pattern spectra with the pixel (in red) corresponding to the detected features.

Figure 3: Sketch of the CNN architecture used for this analysis. Although the CTA images and the pattern spectra are applied separately on the CNN, the CNN architecture is the same in both cases.

4. Results

The reconstructed energy E_{rec} as a function of the true energy E_{true} is shown in Figure 4 (top-left, top-right & bottom-left). The black line corresponds to $E_{\text{rec}} = E_{\text{true}}$. In all cases, the CNN is able to reconstruct the energy of the initial gamma ray for the majority of events. The energy scattering
of the CNN with pattern spectra as input is larger compared to the results achieved with original and 8-bit CTA images. In order to quantify the results in more detail, the energy was binned logarithmically and the relative energy error was calculated for each event via

$$\frac{\Delta E}{E_{\text{true}}} = \frac{E_{\text{rec}} - E_{\text{true}}}{E_{\text{true}}}.$$ (1)

A histogram was created for each energy bin and the distribution was bias-corrected by subtracting the corresponding median value. The energy resolution ($\Delta E / E_{\text{true}}$)$_{68}$ is defined as the 68th percentile of the histogram $|E_{\text{rec}} - E_{\text{true}}|_{\text{corr}} / E_{\text{true}}$. The comparison of the obtained energy resolution is shown in Figure 4 (bottom-right). As already indicated in Figure 4 (top-left, top-right & bottom-left), the CNNs based on the original and 8-bit CTA images outperform the CNN based on pattern spectra for all energies. The CNN based on 8-bit CTA images results in a lower energy resolution for almost all energies compared to the original CTA images. The energy resolution stated in this analysis does not represent the actual energy resolution that is expected by the CTA Observatory at the end of the construction phase.

![Figure 4](image-url)

Figure 4: Reconstructed energy E_{rec} as a function of true energy E_{true} obtained with the original CTA images (top-left), 8-bit CTA images (bottom-left) and pattern spectra (top-right). Energy resolution comparison (bottom-right). The energy resolution stated in this analysis does not represent the actual energy resolution that is expected by the CTA Observatory at the end of the construction phase.
The maximum RAM and computing time needed at the Peregrine HPC cluster on an Nvidia V100 GPU in order to train our models is shown in Table 1. The CNN based on pattern spectra needs 65% less maximum RAM and is 41% faster compared to the CNN based on the original CTA images.

	CTA images	pattern spectra	1 - ratio
Max. RAM	30.26 GB	10.60 GB	65%
Time	7176 s	4220 s	41%

Table 1: Computational performance of the CNNs based on (a) original CTA images and (b) pattern spectra during training. The training was performed on a Nvidia V100 GPU at the Peregrine HPC cluster.

5. Conclusions & Outlook

For the first time, the energy of gamma-ray events was reconstructed by applying pattern spectra on a CNN. The fact that the pattern spectra based analysis is currently not achieving the same accuracy as the original CTA images based analysis can partly be explained by the loss of information during the conversion of the CTA images into 8-bit images before they can be put into the pattern spectra software. Thus, the pattern spectra software currently receives only information about the size and shape of the features within the image rather than getting also information about the total Cherenkov photon emission emitted by the particle shower. Since the energy of the initial gamma ray is directly proportional to the total number of Cherenkov photons emitted by the shower, this is very crucial information. However, the fact that also the CNN based on 8-bit CTA images outperforms the pattern spectra analysis for all energies might indicate that this loss of information is not the main reason for the observed difference in energy resolution.

The significant reduction in computational power and time needed to train our CNN indicates that pattern spectra have potential in full gamma-ray event reconstruction analyses based on CTA data. In the future, we will adjust the pattern spectra software to create pattern spectra directly from the CTA images without any loss of information. We see also a lot of room for improvement in the CNN architecture that can be adjusted more specifically on the characteristics of pattern spectra. Due to the smaller size of the pattern spectra, a simpler CNN architecture might already be sufficient to achieve a similar performance. Lastly, we aim to improve the background rejection of CTA by applying pattern spectra on the particle classification between gamma rays and protons.

Acknowledgments

This work was conducted in the context of the CTA Consortium and CTA Observatory. We gratefully acknowledge financial support from the agencies and organizations listed at http://www.cta-observatory.org/consortium_acknowledgments. We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluster.
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

References

[1] Cherenkov Telescope Array Consortium, Science with the Cherenkov Telescope Array, 2018, World Scientific, doi:10.1142/10986, arXiv:1709.07997

[2] Zewen Li, Wenjie Yang, Shouheng Peng, and Fan Liu, A survey of convolutional neural networks: Analysis, applications, and prospects, 2020, IEEE transactions on neural networks and learning systems, doi:10.1109/TNNLS.2021.3084827, arXiv:2004.02806

[3] M. Jacquemont, T. Vuillaume, A. Benoit, G. Maurin and P. Lambert, Multi-Task Architecture with Attention for Imaging Atmospheric Cherenkov Telescope Data Analysis, 2021, 16th International Conference on Computer Vision Theory and Applications (VISAPP 2021), doi:10.5220/0010297405340544

[4] S. Mangano, C. Delgado, M. Bernardos, M. Lallena and J. J. Rodríguez Vázquez, Extracting gamma-ray information from images with convolutional neural network methods on simulated Cherenkov Telescope Array data, 2018, Springer International Publishing, doi:10.1007/978-3-319-99978-4_19, arXiv:1810.00592

[5] D. Nieto, T. Miener, A. Brill, J. L. Contreras, T. B. Humensky and R. Mukherjee, Reconstruction of IACT events using deep learning techniques with CTLearn, 2021, arXiv:2101.07626

[6] M. Jacquemont, T. Vuillaume, A. Benoit, G. Maurin, P. Lambert and G. Lamanna, First Full-Event Reconstruction from Imaging Atmospheric Cherenkov Telescope Real Data with Deep Learning, 2021, arXiv:2105.14927

[7] P. Maragos, Pattern spectrum and multiscale shape representation, 1989, IEEE Transactions on Pattern Analysis and Machine Intelligence, doi:10.1109/34.192465

[8] E. J. Breen and R. Jones, Attribute openings, thinnings, and granulometries, 1996, Computer Vision and Image Understanding, doi: 10.1006/cviu.1996.0066

[9] P. Salembier and M. H. F. Wilkinson, Connected operators, 2009, IEEE Signal Processing Magazine, doi:10.1109/MSP.2009.934154

[10] D. Nieto, A. Brill, Q. Feng, M. Jacquemont, B. Kim, et al., Studying deep convolutional neural networks with hexagonal lattices for imaging atmospheric Cherenkov telescope event reconstruction, 2019, 36th International Cosmic Ray Conference (ICRC 2019), doi:10.22323/1.358.0753, arXiv:1912.09898

[11] E. Urbach, J. Roerdink, and Michael Wilkinson, Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images, 2007, IEEE transactions on pattern analysis and machine intelligence, doi:10.1109/TPAMI.2007.28

[12] P. Salembier, A. Oliveras and L. Garrido, Anti-extensive connected operators for image and sequence processing, 1998, IEEE transactions on image processing: a publication of the IEEE Signal Processing Society, doi:10.1109/83.663500

[13] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2017, International Conference on Learning Representations, arXiv:1412.6980

[14] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org

[15] F. Chollet et al., Keras, 2015, Available at: https://github.com/fchollet/keras
Application of pattern spectra and CNNs on CTA data

J. Aslesкеров
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

20 : LUTH, GEPI and LERMA, Observatoire de Paris, CNRS, PSL University, 5 place Jules Janssen, 92190, Meudon, France
21 : INAF - Osservatorio di Astrofisica e Scienze dello spazio di Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy
22 : INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 - 50125 Firenze, Italy
23 : INFN Sezione di Perugia and Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
24 : INFN Sezione di Napoli, Via Cintia, ed. G, 80126 Napoli, Italy
25 : INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
26 : Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
27 : Aix-Marseille Université, CNRS/IN2P3, CPPM, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
28 : INAF - Osservatorio Astronomico di Roma, Via di Frascati 33, 00040, Monteporzio Catone, Italy
29 : INAF - Osservatorio Astrofisico di Catania, Via S. Sofia, 78, 95123 Catania, Italy
30 : Grupo de Electrónica, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
31 : National Astronomical Research Institute of Thailand, 191 Huay Kaew Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
32 : Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Tenerife, Spain
33 : FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Praha 8, Czech Republic
34 : Astronomical Institute of the Czech Academy of Sciences, Boceni II 1401 - 14100 Prague, Czech Republic
35 : CCTVal, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
36 : ETH Zurich, Institute for Particle Physics, Schafmattstr. 20, CH-8093 Zurich, Switzerland
37 : The University of Manitoba, Dept of Physics and Astronomy, Winnipeg, Manitoba R3T 2N2, Canada
38 : Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland
39 : Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
40 : Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, RJ 22290-180, Rio de Janeiro, Brazil
41 : Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain
42 : Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
43 : School of Physics, University of New South Wales, Sydney NSW 2052, Australia
44 : INAF - Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy
45 : Univ. Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, 74000 Annecy, France
46 : Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4, 44221 Dortmund, Germany
47 : University of Zagreb, Faculty of electrical engineering and computing, Unska 3, 10000 Zagreb, Croatia
48 : University of Namibia, Department of Physics, 340 Mandume Ndemufayo Ave., Pioneerspark, Windhoek, Namibia
49 : Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
50 : Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
51 : Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
52 : Deutsches Elektronen-Synchrotron, Platanenallee 6, 15738 Zeuthen, Germany
53 : Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
54 : RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
55 : INFN Sezione di Padova and Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy
56 : Escuela Politécnica Superior de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, Edif. A3, 23071 Jaén, Spain
57 : Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Vaxjö, Sweden
58 : University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, 2000 Johannesburg, South Africa
59 : Institut für Theoretische Physik, Lehrstuhl IV. Plasma-Astroteilchenphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
60 : Faculty of Physics and Applied Computer Science, University of Lódź, ul. Pomorska 149-153, 90-236 Lódź, Poland
61 : INAF - Osservatorio Astrofisico di Torino, Via P. Giuria 1, 10125 Torino, Italy
62 : Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
63 : School of Physics, University of New South Wales, Sydney NSW 2052, Australia
64 : INFN Sezione di Napoli, Via Cintia, ed. G, 80126 Napoli, Italy
Application of pattern spectra and CNNs on CTA data

J. Aschersleben

76 : INAF - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy
77 : INAF - Osservatorio Astronomico di Palermo “G.S. Vaiana”, Piazza del Parlamento 1, 90134 Palermo, Italy
78 : School of Physics, University of Sydney, Sydney NSW 2006, Australia
79 : Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPHNE, 4 Place Jussieu, F-75005 Paris, France
80 : Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400 - CEP 13566-590, São Carlos, SP, Brazil
81 : Departament de Física Quântica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès, 1, 08028, Barcelona, Spain
82 : Department of Physics, Washington University, St. Louis, MO 63130, USA
83 : Saha Institute of Nuclear Physics, Bidhannagar, Kolkata-700 064, India
84 : INAF - Osservatorio Astronomico di Capodimonte, Via Salita Mosiariello 16, 80131 Napoli, Italy
85 : Université de Paris, CNRS, Astroparticule et Cosmologie, 10, rue Alice Domon et Léonie Duquet, 75013 Paris Cedex 13, France
86 : Astronomy Department of Faculty of Physics, Sofia University, 5 James Bourcher Str., 1164 Sofia, Bulgaria
87 : Institut de Recherche en Astrophysique et Planétologie, CNRS-INSU, Université Paul Sabatier, 9 avenue Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
88 : School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E. Minneapolis, Minnesota 55455-0112, USA
89 : IRFU, CEA, Université Paris-Saclay, Bât 141, 91911 Gif-sur-Yvette, France
90 : INAF - Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy
91 : INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, 90146 Palermo, Italy
92 : Astronomical Observatory, Department of Physics, University of Warsaw, Aleje Ujazdowskie 4, 00478 Warsaw, Poland
93 : Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, United Kingdom
94 : INFN Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy
95 : INAF - Osservatorio Astronomico di Brera, Via Brera 28, 20121 Milano, Italy
96 : Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
97 : Universidade Cruzeiro do Sul, Núcleo de Astrofísica Teórica (NAT/UCS), Rua Galvão Bueno 8687, Bloco B, sala 16, Liberdade 01506-000 - São Paulo, Brazil
98 : Universidad de Valparaiso, Blanco 951, Valparaíso, Chile
99 : INAF - Istituto di Astrofisica e Planetologia Spaziali (IAPS), Via del Fosso del Cavaliere 100, 00133 Roma, Italy
100 : Lund Observatory, Lund University, Box 43, SE-22100 Lund, Sweden
101 : The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow, Poland
102 : Escola de Engenharia de Lorena, Universidade de São Paulo, Área I - Estrada Municipal do Campinho, s/nº, CEP 12602-810, Pte. Nova, Lorena, Brazil
103 : INFN Sezione di Trieste e Università degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy
104 : Palacky University Olomouc, Faculty of Science, RCPTM, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
105 : Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
106 : CENBG, Univ. Bordeaux, CNRS-IN2P3, UMR 5797, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France
107 : Dublin City University, Glasnevin, Dublin 9, Ireland
108 : Dipartimento di Fisica - Università degli Studi di Torino, Via Pietro Giuria 1 - 10125 Torino, Italy
109 : Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
110 : Università degli Studi di Napoli “Federico II” - Dipartimento di Fisica “E. Pancini”, Complesso universitario di Monte Sant’Angelo, Via Cintia - 80126 Napoli, Italy
111 : Oskar Klein Centre, Department of Physics, University of Stockholm, AlbaNova, SE-10691, Sweden
112 : Yale University, Department of Physics and Astronomy, 260 Whitney Avenue, New Haven, CT 06520-8101, USA
113 : CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
114 : University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
115 : School of Physics & Astronomy, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
116 : Department of Physics and Technology, University of Bergen, Museplass 1, 5007 Bergen, Norway
117 : Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
118 : School of Physical Sciences, University of Adelaide, Adelaide SA 5005, Australia
119 : INFN Sezione di Roma, P.le Aldo Moro, 2 - 00185 Roma, Italy
120 : INFN Sezione di Bari, via Orabona 4, 70126 Bari, Italy
121 : University of Rijeka, Department of Physics, Radmile Matejci 2, 51000 Rijeka, Croatia
122 : Institute for Theoretical Physics and Astrophysics, Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Str. 31, 97074 Würzburg, Germany
123 : Universidade Federal Do Paraná - Setor Palotina, Departamento de Engenharias e Exatas, Rua Primeiro, 2153, Jardim Dallas, CEP: 85950-000 Palotina, Paraná, Brazil
124 : Dept. of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom
125 : Univ. Grenoble Alpes, CNRS, IPAG, 414 rue de la Piscine, Domaine Universitaire, 38041 Grenoble Cedex 9, France
Application of pattern spectra and CNNs on CTA data

J. Aschersleben
Application of pattern spectra and CNNs on CTA data

J. Aschersleben