Voronoi’s conjecture for extensions of Voronoi parallelohedra

A. N. Magazinov

1. Definitions and notation. A parallelohedron (see [1]) is a convex polytope P such that its translates form a face-to-face tiling $T(P)$ of the affine space.

Let Λ be a d-lattice in \mathbb{R}^d with $0 \in \Lambda$, and let Ω be a positive-definite quadratic form of d variables. Then the polyhedron

$$P_V = P_V(\Lambda, \Omega) = \left\{ y \in \mathbb{R}^d : y^T \Omega y = \min_{x' \in \Lambda} (y - x')^T \Omega (y - x') \right\}$$

is called the Voronoi parallelohedron (Voronoi cell) for the lattice Λ with respect to Ω.

Voronoi [2] stated the conjecture that all parallelohedra are Voronoi cells. A complete proof or disproof of it is still an open problem. Nevertheless, Voronoi’s conjecture holds in many important special classes of parallelohedra (see [2]–[5]).

We look at the special class of parallelohedra of the form $P + I$, where P is some parallelohedron, I is a line segment, and $+$ denotes the Minkowski sum. We call a parallelohedron of the form $P + I$ an extension of P. (Note that for an arbitrary pair of a parallelohedron P and a line interval I the Minkowski sum $P + I$ is not necessarily a parallelohedron.)

Grishukhin [6] proved Voronoi’s conjecture for extensions of $(d - 2)$-primitive parallelohedra. (In view of Zitomirskij’s result in [3], the latter form a subclass of the Voronoi cells.) In [6], he also stated the problem of proving Voronoi’s conjecture for all parallelohedra of the form $P + I$, where P is a Voronoi cell.

Here we give a sketch of the proof of Voronoi’s conjecture for extensions of Voronoi cells and thereby solve Grishukhin’s problem and improve Erdahl’s result [4] that Voronoi’s conjecture holds for zonotopes which are parallelohedra.

Now we give the requisite definitions.

If P is a parallelohedron and I a line interval such that $P + I$ is also a parallelohedron, then we say that the direction of I is free for P (see, for instance, [6]).

Following [5], we say that a parallelohedron P is reducible if it can be represented as a direct sum $P = P_1 \oplus P_2$ of lower-dimensional parallelohedra (that is, as a Minkowski sum in which the linear spans of the terms P_1 and P_2 are complementary subspaces).

For a polytope Q with symmetry centre let $c(Q)$ denote this centre. By definition, the facet vector of a facet F of a parallelohedron P is equal to $2c(F) - 2c(P)$ (that both P and F are centrally symmetric follows from Minkowski’s paper [7]).

We say that a d-dimensional parallelohedron P has a cross enveloping the facet vectors if there exist hyperplanes α_1 and α_2 in \mathbb{R}^d such that each facet vector of P is parallel to one of these hyperplanes (or both).

2. Main results. The main result of this note is as follows.

Theorem 1 [8]. Let P and $P + I$ be parallelohedra, where P is a Voronoi cell. Then $P + I$ is also a Voronoi cell.

The following results are crucial for the proof of Theorem 1.

Theorem 2. Let P be a Voronoi cell with infinitely many free directions. Then P is reducible.
Theorem 3. Let P be a Voronoi cell with a cross enveloping the facet vectors. Then P is reducible.

We sketch the proof of Theorem 1.

First we show that Theorems 1 and 2 are equivalent. Note that it was stated (although without proof) in Theorem 3.18 of [9] that Theorem 1 follows from Theorem 2.

Next we prove Theorem 2 using induction on the dimension of P, and at the same time we establish Theorem 3.

We denote the proposition “Theorem 2 holds for all parallelohedra P of dimension at most d” by $A(d)$ and the analogous proposition for Theorem 3 by $B(d)$.

Induction base: the proposition $A(d)$ holds for $d \leq 4$, and the proposition $B(d)$ holds for $d \leq 2$. This is an immediate consequence of the well-known classification of parallelohedra up through dimension 4 (see [10]).

The induction proper proceeds in accordance with the following scheme:

$$\cdots \implies B(n) \implies A(n+2) \implies B(n+1) \implies A(n+3) \implies \cdots$$

In this way $A(d)$ and $B(d)$ will be proved for any positive integer d, giving us Theorems 2 and 3.

Since Theorem 2 holds, so does Theorem 1.

Bibliography

[1] Е. С. Фёдоров, Начала учения о фигурах, Тип. Имп. АН, СПб. 1885, 279 с.; Изд-во АН СССР, М.–Л. 1953, 409 с. [E.S. Fedorov, Elements of the study of figures, Publishing House of the Royal Academy of Sciences, St. Petersburg 1885, 279 pp.; Publishing House of the USSR Academy of Sciences, Moscow–Leningrad 1953, 410 pp.]

[2] G. Voronoï, J. f. Math. 134 (1908), 198–287; J. f. Math. 136 (1909), 67–178.

[3] O. Zitomirskij, Журн. Ленингр. физ.-мат. об-ва 2:2 (1929), 131–151. [O. Zitomirskij, Zh. Leningrad. Fiz. Mat. Obshch. 2:2 (1929), 131–151.]

[4] R. M. Erdahl, European J. Combin. 20:6 (1999), 527–549.

[5] A. Ordine, Proof of the Voronoi conjecture on parallelohedra in a new special case, Thesis (Ph.D.), Queen’s University, Canada 2005, 131 pp.

[6] В. П. Гримюхин, Матем. сб. 197:10 (2006), 15–32; English transl., V. P. Grishukhin, Sb. Math. 197:10 (2006), 1417–1433.

[7] H. Minkowski, Gött. Nachr., 1897, 198–219.

[8] A. Magazinov, Voronoi’s conjecture for extensions of Voronoi parallelhedra, 2013, 27 pp., arXiv:1308.6225.

[9] A. Végh, Rácsok, kör-és gőmbelrendezések, Thesis (Ph.D.), BME, Budapest 2006, 115 c., http://www.doktori.hu/index.php?menuid=193&vid=9821

[10] B. N. Delaunay, Izv. AH CCCP. VII сер. Отд. физ.-матем. наук, 1929, № 1, 79–110. [B. N. Delaunay, Izv Akad. Nauk SSSR VII Ser. Otd. Fiz.-Mat. Nauk, 1929, no. 1, 79–110]; Izv. AH CCCP. VII сер. Отд. физ.-матем. наук, 1929, no. 2, 147–164. [B. N. Delaunay, Izv Akad. Nauk SSSR VII Ser. Otd. Fiz.-Mat. Nauk, 1929, no. 2, 147–164.]

Aleksandr N. Magazinov
Steklov Mathematical Institute
of Russian Academy of Sciences
E-mail: magazinov-al@yandex.ru

Presented by V. M. Buchstaber
Accepted 28/MAR/14
Translated by N. KRUZHILIN