Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien

Christina M. Geiselhart, Hatice Mutlu* und Christopher Barner-Kowollik*

Stichwörter:
Autonome Detektion · Intelligente Materialien · Lumineszenz · Selbstberichtende Materialien · Sensoren

SELBSTBERICHTENDE MATERIALIEN
Selbstberichtende intelligente Materialien sind in der modernen Polymer-Materialwissenschaft von großer Bedeutung, da sie die autonome Erkennung von Veränderungen in synthetischen Polymeren, Materialien oder Verbundstoffen ermöglichen. Obwohl diese Materialien wichtige Vorteile bieten, haben sie wesentlich weniger Aufmerksamkeit erhalten als selbstheilende Materialien. Die Rückmel dung über Systemveränderungen und deren genaue Position ist jedoch von größerer Bedeutung, um eine Ausbreitung zu verhindern. Daher geben wir hier einen kritischen Überblick über die Chemie selbstberichtender weicher Materialien und zeigen auf, wie aktuelle Herausforderungen und Einschränkungen durch die Übertragung selbstberichtender Forschungskonzepte aus dem Labor in die Industrie überwunden werden können. Besonders im Bereich der diagnostischen selbstberichtenden Systeme weist die jüngste SARS-CoV-2-Pandemie auf einen dringenden Bedarf an solchen Konzepten hin, welche die Anwesenheit von Viren oder Bakterien auf und in Materialien auf selbstberichtende Weise anzeigen.

1. Einleitung

Die wachsenden Ansprüche an die Technologien in unserem täglichen Leben erfordern immer komplexere, inovativere und langlebigere Materialien. Aus diesem Grund lassen sich Wissenschaftler von biologischen Systemen inspirieren, welche oft die einzigartige Fähigkeit besitzen, Schäden sofort visuell zu erkennen, anzuzeigen und gegebenenfalls zu heilen. Bekannte Beispiele hierfür sind die Biolumineszenz des marinen Phytoplanktons, die fallenden und sich verfär benden Blätter von Pflanzen in Abwesenheit von Wasser, die rote Farbe blutender Wunden oder der Farbwechsel während des Heilprozesses von Blutgerüsten. Tatsächlich wurde der erfolgreiche Transfer solcher Eigenschaften auf synthetische Materialien berichtet und eine Vielzahl bioinspirierter, stimuliresponsiver intelligenten Materialien entstanden.\[1-4\] Diese Materialien besitzen die Fähigkeit, ihre Eigenschaften aufgrund einzelner oder mehrerer Reize, z.B. mechanische Kräfte, Temperatur, pH-Wert, Licht, Ultraschall, magnetische Felder oder Chemikalien, zu ändern.\[9\] Die durchdachte Kombination stimuliresponsiver Eigenschaften mit geeigneten Polymerstrukturen ermöglicht die Entwicklung von faszinierenden Materialien, von denen eine wichtige repräsentative Klasse die selbstheilenden Materialien darstellt.\[10-12\] Ähnlich wie biologische Organismen können solche Materialien beschädigte Bereiche reparieren. Dabei hängen die Mechanismen der Selbstheilungsprozesse stark von der ursprünglichen Entwurfsstrategie ab. Einerseits kann der Mechanismus autonom ablaufen, d.h., der Schaden selbst löst den Heilungsprozess aus, indem an der beschädigten Stelle Heilmittel aus Mikrokapseln, hohlen Fasern (Glashasern) oder Gefäßsystemen freigesetzt werden. Nicht-autonome Systeme hingegen benötigen zusätzliche Auslöser wie Temperatur, Chemikalien oder Licht, um Schäden z.B. durch Vernetzungs- oder Polymerisationsreaktionen zu reparieren.\[13-21\] Leider sind die meisten Selbstheilungsprozesse reversibel. Sobald das Heilmittel freigesetzt wurde oder die Polymerisation stattgefunden hat, können keine weiteren Schäden geheilt werden. Daher ist es äußerst wichtig, zuerst die Existenz und die genaue Position des Schadens anzuzeigen, bevor der eigentliche Heilungsprozess stattfinden kann. Auf diese Weise wird der Schaden schnell erkannt und der Heilungsprozess kann sorgfältig überwacht werden. Erneut dienten biologische Systeme als Vorbild, um das Spektrum stimuliresponsiver Materialien durch die Entwicklung verschiedener selbstberichtender intelligenten Materialien zu erweitern. Aufgrund der Vorteile solcher selbstberichtenden Eigenschaften für Trägermaterialien, Nano-

Aus dem Inhalt

1. Einleitung 17431

2. Stimuliresponsive selbstberichtende polymere Materialien 17432

3. Selbstberichtende Materialien als (biomedizinische) Diagnostikinstrumente 17449

4. Zusammenfassung und Ausblick 17450

\[1\] C. M. Geiselhart, Dr. H. Mutlu
Soft Matter Synthesis Laboratory
Institut für Biologische Grenzflächen 3
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen (Deutschland)
E-Mail: hatice.mutlu@kit.edu

C. M. Geiselhart, Dr. H. Mutlu, Prof. Dr. C. Barner-Kowollik
Macromolecular Architectures
Institut für Technische Chemie und Polymerchemie (ITCP)
Karlsruher Institut für Technologie (KIT)
Engesserstraße 18, 76131 Karlsruhe (Deutschland)
E-Mail: christopher.barner-kowollik@kit.edu

Prof. Dr. C. Barner-Kowollik
Centre for Materials Science
Queensland University of Technology (QUT)
2 George Street, Brisbane, QLD 4000 (Australien)

School of Chemistry and Physics
Queensland University of Technology (QUT)
2 George Street, Brisbane, QLD 4000 (Australien)
E-Mail: christopher.barner-kowollik@qut.edu.au

Die Identifikationsnummern (ORCIDs) der Autoren sind unter:
https://doi.org/10.1002/ange.202012592 zu finden.

© 2020 Die Autoren. Angewandte Chemie veröffentlicht von Wiley-VCH GmbH. Dieser Open Access Beitrag steht unter den Bedingungen der Creative Commons Attribution Non-Commercial License, die eine Nutzung, Verbreitung und Vervielfältigung in allen Medien gestattet, sofern der ursprüngliche Beitrag ordnungsgemäß zitiert und nicht für kommerzielle Zwecke genutzt wird.
technologie, Biomedizin oder Theranostik ist es unserer Meinung nach zwingend erforderlich, bestehende selbstberichtende Systeme in Abhängigkeit vom auslösenden Stimulus (wie mechanische Kräfte, Temperatur, pH, Solvatation, Licht und Chemikalien) zu untersuchen.

Der vorliegende Aufsatz fokussiert sich auf polymerbasierte intelligente Materialien, die Veränderungen oder Schäden sofort sichtbar durch Farb-, Fluoreszenz- oder Chemilumineszenz-Änderungen anzeigen können. Außerdem werden neben aktuellen Herausforderungen und Grenzen Möglichkeiten erörtert, wie diese erfolgreich durch Übertragung von selbstberichtenden Forschungskonzepten aus dem Labor in die Industrie überwunden werden könnten. Abgeschließend wird das (unterschätzte) Potential selbstberichtender Materialien als biomedizinische Diagnostikinstrumente im Hinblick auf die jüngste SARS-CoV-2-Pandemie diskutiert.

2. Stimuliresponsive selbstberichtende polymere Materialien

Aufgrund der breitgefächerten Zahl an stimuliresponsiven Auslösern konzentrieren wir uns hier auf speziell ausgewählte Vertreter, die in Schema 1 zusammengefasst sind. Wir beginnen zunächst mit den gräflichsten selbstberichtenden Materialien, nämlich den mechanoresponsiven. Anschließend werden thermo-, pH-, solvations-, licht-, chemikalien- und schließlich multistimuliresponsive Systeme diskutiert. Dabei werden sowohl aktuelle Probleme als auch (zukünftige) Alternativen erläutert.

2.1. Mechanoresponsive Materialien

Wie bereits erwähnt, gelten mechanoresponsive selbstberichtende Materialien aufgrund zahlreicher Studien und möglicher Anwendungen (z.B. als Trägermaterial, in Hochleistungsmaterialien, in der Luft- und Raumfahrt- sowie der Automobilindustrie oder in der Biotechnologie) als die am weitesten verbreiteten. Da all diese Materialien mechanischen Kräften ausgesetzt sind, ist eine möglichst frühe Schadenserkennung zur Prävention von katastrophalem Versagen äußerst wichtig. Darüber hinaus können vorbeugende Wartungsarbeiten präziser (nach Bedarf) durchgeführt werden, um die Zuverlässigkeit und Lebensdauer der Materialien mit geringeren Kosten zu erhöhen. Tatsächlich sind verschiedene Techniken entwickelt worden, um mechanisch bedingte Schäden auf selbstberichtende Weise anzuzeigen. Diese Techniken basieren im Allgemeinen auf dem Einbau von mit Farbstoff gefüllten Kapseln oder mechanophoren Fasern oder Sensormolekülen in Verbundstoffe, Polymermatrices/netzwerke/hydrogelle (siehe Schema 1) mit der Absicht, die Nervensysteme und Gewebe biologischer Organismen nachzuahmen. Bei mechanischer Beschädigung werden die selbstberichtenden Eigenschaften ausgelöst und durch Fluoreszenz-, Lumineszenz- oder Farbänderungen visualisiert.

Spiropyrane (SPs) wurden zum Beispiel als die am meisten erforschten Mechanophore in polymeren Materialien eingesetzt, um Schäden im Mikrobereich durch deutliche Farb- und Fluoreszenzänderungen mitzuteilen. Mechanische Kräfte führen zu einem Bindungsbereich des farblosen SP, wodurch eine Isomerisierung in das rot fluo...
reszierende Merocyanin (MC) stattfindet (siehe Schema 1). Silberstein und Mitarbeiter beispielsweise synthetisierten ein hochleistungsfähiges SP-Polycarbonat, das bereits bei Umgebungstemperatur auf mechanische Kräfte reagiert. In einem anderen Beispiel wurde ein SP-haltiges Pfropfcopolymer aus kautschukartigem Poly(butylacrylat) (PBA) als Rückgrat und glasartigem Poly(methylmethacrylat) (PMMA) als Kammseitenketten synthetisiert, wie in Abbildung 1A zu sehen ist. Das erhaltene Polymer mit SP (orangefarbene Punkte) als kovalente Verbindung zwischen dem PBA (blaue Linien) und dem PMMA (rote Linien) zeigt aufgrund des Fluorophors Nitrobenzoxydiazol (NBD, grüne Dreiecke) in der PMMA-Seitenkette eine grüne Fluoreszenz ($\lambda_{\text{em}} = 530\ \text{nm}$). Unter mechanischer Krafteinwirkung wandelt sich das SP in das MC-Derivat (rote Punkte) um. Infolge des Förster-Resonanzenenergietransfers (FRET) wird die grüne Fluoreszenz des NBD unterdrückt und die rote Fluoreszenz ($\lambda_{\text{em}} = 656\ \text{nm}$) des MC sichtbar. Mit zunehmender Belastung...
nimmt die Intensität der grünen Fluoreszenz ab, während die Intensität der roten Fluoreszenz zunimmt, bis das Material bricht (Abbildung 1B,C). Eine derartige Kombination in einem Polymer hat die Vorteile eines hohen Kontrasts zwischen grüner und roter Fluoreszenz, der Möglichkeit, mittels fokuskaler Laser-Scanning-Mikroskopie die Veränderungen nachzuverfolgen, sowie der Selbstkalibrierung des ratiometrischen Fluoreszenzsignals. Daher sind solche SP-haltigen Materialien aussichtsreich für Sensoranwendungen zur selbstständigen Meldung von Schäden auf der Mikroskala. Allerdings muss bei der Synthese von Mechanophor-basierten Polymeren sichergestellt werden, dass die ursprünglich hohen Leistungs- oder Trageigenschaften der gewünschten Materialien nicht beeinträchtigt werden. Darüber hinaus reagieren Mechanophore wie die SPs nicht nur auf mechanische Stimuli, sondern z. B. auch auf Temperatur oder Licht (für weitere Informationen siehe Abschnitt 2.7).[43-46,47]

Eine mögliche Methode zur Überwindung eines solch multiresponsiven Verhaltens ist die Bildung supramolekularer Komplexe. Weder und Mitarbeiter setzten Rotaxane als molekulare Shuttles in Polyurethanelastomeren ein und ermöglichten so die nicht-kovalente Verankerung von Mechanophoren.[48] Die Funktionsweise von derartigen Rotaxan-basierten molekularen Shuttles und die dazugehörige Moleküllstruktur sind in Abbildung 2A,B dargestellt. Ein Ring, der den Fluorophor (grau/grün) enthält, befindet sich über einem Quencher (braun) mit zwei Stopern (blau) und Ankergruppen (rot) zum Einbau in Polymerketten (z. B. Polyurethane, PUs). Mechanische Kräfte trennen den Fluorophor-Ring von dem Quencher und die Fluoreszenz wird eingeschaltet. Relaxation führt durch Ladungstransfer-Wechselwirkungen zu einer Rückkehr des molekularen Shuttles in seine Ausgangsposition um den Quencher und die Fluoreszenz wird wieder ausgeschaltet, wie in Abbildung 2C dargestellt. Die Autoren zeigten auch, dass der Ein- und Auschaltvorgang mehrmals wiederholt werden kann (20 getestete Zyklen) und spezifisch für mechanische Stimuli ist, da bei erhöhten Temperaturen keine Fluoreszenz beobachtet wurde. Harsche Bedingungen (Temperaturen > 150°C oder Ultraschallbehandlung) führen allerdings zu einer Zersetzung der Polymerfilme oder zu einer irreversiblen Spaltung der Mechanophore aus dem Polymer. Dennoch ist das eingeführte Konzept der supramolekularen Shuttles ideal geeignet, um mechanische Kräfte reversibel und spezifisch zu visualisieren. Außerdem kann das Konzept gegebenenfalls durch die Anwendung anderer supramolekularer Systeme (z. B. Catenane, Knoten) und/oder verschiedener Chromophore zur Einstellung der Farbe und Fluoreszenzemission verfeinert werden, wodurch die Gestaltung verschiedener mechanoresponsiver selbstberichtender Systeme ermöglicht wird.
Tatsächlich wurde das Konzept der supramolekularen Komplexe im Bereich der Verbundwerkstoffe in ähnlicher Weise umgesetzt. Solche Materialien bieten geringes Gewicht in Kombination mit hoher mechanischer Festigkeit und finden daher Anwendung als Strukturbauteile z.B. in der Flugzeug- oder Automobilindustrie.[23,49] Folglich wäre es für Verbundwerkstoffe sehr vorteilhaft, selbst über Schäden und Ermüdung zu berichten, um ein katastrophales Versagen zu verhindern. Analog zu dem Rotaxan-basierten Shuttle[24] brachten Das et al.[30] ein supramolekulares Wirtmolekül, nämlich Cucurbit[8]uril (CB[8]), in eine Verbundmatrix aus Kohlenstofffaserr-Epoxid (carbon fiber epoxy (CFR)) ein. Ein stark fluoreszierendes Perylenmonomimid (PER) als Fluorophor wurde gleichzeitig mit einem Derivat entweder von Azobenzol (AZO) oder von Dibenzofuran (DBF) als Quencher von CB[8] eingeschlossen, wie in Abbildung 3 gezeigt. Über terminale Aminogruppen wurden der Fluorophor und der Quencher kovalent in der Verbundmatrix vernetzt. Es wird keine Fluoreszenz beobachtet, wenn sowohl der Fluorophor als auch der Quencher von CB[8] eingeschlossen sind, wohingegen die Fluoreszenz des PER-Derivats durch mechanische Kraft einwirkung eingeschaltet wird, da der Fluorophor und der Quencher getrennt werden (siehe Abbildung 3). Über 1000 Zyklen werden keine Veränderungen in der Fluoreszenz oder Steifheit beobachtet, was sich jedoch ab etwa 10000 Zyklen ändert, bis hin zu einem Steifheitssfall von 40 % sowie einer Fluoreszenz entlang der Fasern bei mehr als 100000 Zyklen. Nichtsdestotrotz erlaubt der supramolekulare Ansatz auf dem Gebiet der CFR-Verbundwerkstoffe die einfache Einarbeitung selbstberichtender Einheiten in polymere Materialien und lässt sich sicher auf andere Materialien mit geeigneten Fluorophor-Quencher-Paaren übertragen.

Alternativ können mechanoresponsive intelligente Materialien durch das Einbetten von hohlen Mikrokapseln[24,29–33] oder Fasern[23,30] in das gewünschte Ausgangsmaterial hergestellt werden. Die Mikrokapseln oder Fasern werden mit Farbstoffmolekülen gefüllt, die bei Beschädigung der Hülle freigesetzt werden und so auf beschädigte Bereiche hinweisen. Diese Methode bietet nicht nur eine große Vielfalt an anwendbaren Farbstoffmolekülen, sondern ermöglicht auch die gleichzeitige Einarbeitung von selbstheilenden Wirkstoffen. Zerbricht der stimulirosponsive Behälter durch mechanische Kräfte, werden sowohl das selbstberichtende als auch das selbstheilende Mittel freigesetzt. Ohne Zweifel wären solche kombinierten Eigenschaften für synthetische Materialien äußerst hilfreich, um deren Lebensdauer und Sicherheit zu erhöhen und Garantiekosten zu senken. In der Tat wurden verschiedene Materialien mit solch kombinierten selbstheilenden und selbstberichtenden Eigenschaften beschrieben, insbesondere im Bereich von Beschichtungen.[34,40,50–54] Yang und Mitarbeiter beispielsweise synthetisierten Mikrokapseln mit Hexamethylenisocyanat (HD1) als selbstheilende Komponente und einem Tetraphenyylethen (TPE)-Derivat als selbstberichtende Komponente (Abbildung 4A).[31] Eingebettet in Polymerbeschichtungen brechen diese Mikrokapseln unter mechanischer Kraft einwirkung auf und setzen ihren Inhalt frei. Die HDI-Lösung initiiert ohne zusätzlichen Katalysator den Selbstheilungsprozess und die blaue Fluoreszenz des TPE macht die beschädigte Stelle unter UV-Licht sichtbar, wie in Abbildung 4B dargestellt. Um die Eignung der bifunktionalen

Abbildung 3. Funktionsweise der Cucurbit[8]uril (CB[8])-basierten schadensmeldenden CFR-Verbundstoffe und die Molekülstrukturen des verwendeten Wirtmoleküls (CB[8], grau/rot), des Fluorophors (PER, gelb) und der beiden Quencher-Derivate (AZO und DBF, blau). Nachgedruckt von Lit.[38] mit Genehmigung der ACS. (https://pubs.acs.org/doi/10.1021/acsapm.9b00694. Weitere Genehmigungen in Bezug auf das nachgedruckte Material müssen an die ACS gerichtet werden.)

Abbildung 4. A) Bifunktionale Mikrokapseln, gefüllt mit Tetraphenylethen (TPE) als AlEgen und Hexamethylenisocyanat (HDI) als selbstheilende Komponente. B) Selbstberichtende und selbstheilende Beschichtung, die bifunktionale Mikrokapseln enthält. Bilder (C–E) von Stahlplatten mit C) einer reinen E-Epoxidbeschichtung, D) einer E-Epoxidbeschichtung mit HDI-Mikrokapseln und E) einer E-Epoxidbeschichtung mit TPE/HDE-Mikrokapseln unter Weißlicht. Bilder (F–H) von Stahlplatten mit F) einer reinen E-Epoxidbeschichtung, G) einer E-Epoxidbeschichtung mit HDI-Mikrokapseln und H) einer E-Epoxidbeschichtung mit TPE/HDE-Mikrokapseln unter UV-Licht. Nachgedruckt von Lit.[31] Copyright 2020 ACS.
2.2. Thermoresponsive Materialien

Während intensive Forschung betrieben wurde, um intelligente, selbstberichtende (und selbstheilende) mechanoresponsive Materialien zu entwickeln, können polymere Materialien und ihre Eigenschaften auch durch die Temperatur beeinflusst werden. Temperatureinstellungen können z. B. zu Änderungen des Aggregatzustandes, der Farbe und der Sprödigkeit führen, weshalb der Einfluss der Temperatur und das Anpassungsverhalten des Materials unbedingt berücksichtigt werden müssen.[58–61] Tatsächlich wurden verschiedenen wärmeempfindlichen Materialien durch die Synthese von Verbundwerkstoffen/Polymere/Hydrogelen entwickelt (z. B. Poly(N-substituierter (Meth)acrylamide), Polyoxazoline, Polyether, Polycaprolactone, Polychlorsphene oder Polypeptide).[62] die eine untere oder obere kritische Lösungstemperatur (LCST bzw. UCST), eine thermochrome Komponente, ein temperaturabhängiges Selbstorganisationsverhalten oder thermoresponsive Additive wie (Leuko-)Farbstoffe, Quantenpunkte oder anorganische thermochrome Komplexe aufweisen.[63]

Vor allem im Zusammenhang mit Energieeinsparung und Solarmodulation sind thermoresponsive Materialien von zentralen Interesse.[64–70] Heiz- und Kühlsysteme in jedem Fahrzeug, Lagerort oder Innenraum benötigen hohe Energie, um verursachten Umweltprobleme (toxische Kühlmittel, Verschmutzung)[71,72] oder verursachen eventuell Gesundheitsprobleme (trockene Haut, Kopfschmerzen, Erkältung).[73,74] Aus diesem Grund wurden intelligente thermoresponsive Verglasungssysteme und Fensterbeschichtungen entwickelt.

Lin und Mitarbeiter mischten z. B. Dodecandisäure (DDA) mit Glycerin, um ein vernetztes Polyesternetzwerk (PGD), wie in Abbildung 5 A,B dargestellt, zu erhalten.[64] Das Material enthält sowohl amorphe Domänen (das vernetzte PGG-Netzwerk) als auch teilkristalline Domänen (nicht vernetzte DDA-Seitenketten; Abbildung 5B). Unterhalb der Übergangstemperatur (39,1 °C) besitzen die beiden Domänen unterschiedliche Brechungsindizes (RI), sodass das Material transluzent ist (linke Seite in Abbildung 5C). Oberhalb der Übergangstemperatur jedoch schmelzen die nicht vernetzten DDA-Gruppen und der RI der teilkristallinen Domäne nähert sich dem RI der amorphen Domäne an. Dies führt dazu, dass das Material transparent wird (rechte Seite in Abbildung 5C). Darüber hinaus war die mechanische Festigkeit von PGD-beschichtetem Glas noch im Vergleich zu Tiefe der

Abbildung 5. A) Veresterung von Glycerin und Dodecandisäure (DDA). B) Polykondensation und Netzwerkbildung von Glycerin und DDA. C) Bilder von PGD-beschichtetem Glas unterhalb (links) und oberhalb (rechts) der Übergangstemperatur. Nachgedruckt von Lit. [64], Copyright 2019 American Chemical Society.
Beschichtung bis zu 10-mal höher als bei unbeschichtetem Glas.

Andererseits wurde ein auf Polyurethan (PU) basierendes Ionogel synthetisiert, welches durch Erwärmung von transparenten zu transluzenten Eigenschaften wechselt.\(^\text{[63]}\) Das Ionogel besteht aus ionischen Flüssigkeiten (ionic liquids, IL), die mit Poly(propylenoxid) (PPO) über die Urethanchemie vernetzt sind. Bei Umgebungstemperatur ist das Ionogel homogen und transparent, wohingegen erhöhte Temperaturen zu einer Phasentrennung zwischen dem IL- und dem PU-Netzwerk führen, was eine Lichtstreuung und eine Verringerung der optischen Durchlässigkeit zur Folge hat. Durch verschiedene Zusammensetzungen der IL konnte der Bereich der Übergangstemperatur von unter null bis > 100°C mit einer allmählichen Änderung der Transparenz unterhalb und oberhalb der Übergangstemperatur abgestimmt werden. In einem experimentellen Aufbau eines Modellhauses mit entweder einem intelligenten Ionogel-Fenster oder einem konventionellen Flachglasfenster zeigte das Haus mit dem Ionogel-Fenster eine reduzierte Temperatur von 20°C gegenüber dem konventionellen Haus. Zusätzlich konnten die optischen Eigenschaften durch die Einarbeitung von organischem Farbstoffmolekülen oder plasmonischen Nanopartikeln in das Ionogel weiter angepasst werden.

Ähnliche Phasenübergänge von transparent zu transluzent (oder umgekehrt) wurden in flüssigkristallinen Siloxanpolymeren,\(^\text{[64]}\) Polyacrylamid-Hydrogelen,\(^\text{[67–68]}\) Nanopartikel-Polymer-Verbundstoffen\(^\text{[69]}\) oder dynamischen porösen Siliciumfilmen erzielt.\(^\text{[70]}\) Somit sind diese Materialien sicherlich nützlich für zukünftige Entwicklungen intelligenter, thermoressiver Systeme für Sonnenschutzbeschichtungen und Fenster, Displays oder Sensoren mit einstellbaren thermischen und optischen Eigenschaften.

Ein weiteres Anwendungsgebiet für wärmeempfindliche Materialien betrifft die Biomedizin und den Transport von Medikamenten.\(^\text{[72–79]}\) Zum Beispiel zeigen inverse optische Partikel aus Poly(N-isopropylacrylamid)/(pNIPAM)-Hydrogelen temperaturabhängige Eigenschaften.\(^\text{[80]}\) Je nach Temperatur schrumpfen oder schwellen die Partikel und ändern ihre Farbe von Rot nach Blau, wie in Abbildung 6 A dargestellt, wodurch sie ideal für den Transport von Medikamenten geeignet sind. Die Partikel besitzen Makroporen, die mit Medikamenten beladen und durch eine präzise Einstellung der Temperatur freigesetzt werden können. Interessanterweise wurde die Wirkstofffreisetzung genau abgestimmt, sodass eine Regulierung der Medikamentenabgabe und die Rückgewinnung der Ausgangsartikel möglich ist (Abbildung 6 B). Da die in Abbildung 6 C gezeigte Reflexionspektrum der Medikamenten-beladenen Partikel auch eine Blauverschiebung von ca. 650 bis 475 nm zur Folge hat. Durch das profluoreszente Copolymer P2 in Abbildung 7 wird der Ablösungsprozess durch Erhitzen oder Abkühlen des Materials eingeleitet. Daher wurde aus einem Methacrylataminodiithioester und einem Cyclopentadien ein HDA-basiertes Monomer synthetisiert, welches die anschließende Aufnahme von Pyren als Fluorophor ermöglicht\(^\text{[81–83]}\). Zum Beispiel können Cyclopentadieni Di- und Dithioester bei Umgebungstemperatur eine HDA-Reaktion eingehen, die durch Temperaturerhöhung zwischen 30–140°C wieder umgekehrt werden kann. Daher wurde aus einem Methacrylataminodiithioester und einem Cyclopentadien ein HDA-basiertes Monomer synthetisiert, welches die anschließende Aufnahme von Pyren als Flouorophor ermöglicht\(^\text{[81–83]}\). Durch Copolymerisation dieses HDA-Monomers mit 2,2,6,6-Tetramethylpiperidin-4-yl-methacrylat in einer freien radikalen Polymerisation erhält man das statistische Copolymer P1 mit stark fluoreszierenden Eigenschaften, wie in Abbildung 7 dargestellt. Oxidation mit meta-Chlorperbenzo säure (mCPBA) stoppt die Fluoreszenz durch die Umwandlung der Piperidenin ein in Nitroxdialradikal, wodurch das profluoreszente Copolymer P2 in Abbildung 7 entsteht. Anschließend wird der Ablösungsprozess durch Er
wärmen des Polymers auf 90°C initiiert, die HDA-Einheit wird freigesetzt und die Fluoreszenz des Pyrens wird in einer solchen Intensität wiederhergestellt, dass sie schon mit bloßem Auge beobachtet werden kann (Abbildung 7). Auf diese Weise wurde ein selbstberichtendes thermoresponsives Polymersystem erhalten, welches auf der Kombination von HDA-Chemie und Spin-Fluoreszenz-Dämpfung basiert und ideal als molekularer Sensor geeignet ist.

In einem anderen, jedoch verwandten HDA-basierten Beispiel wurden polymere Netzwerke von Methacryl- (HDA-PMA)\(^{[88]}\) bzw. Dimethylcarbonat (HDA-PC)\(^{[89]}\) gebildet, die aus einem Di- oder Tricyclpentadien (Di-/TriCp) und einem Phosphoryldithioester (PDT) bestehen, dargestellt in Abbildung 8 A,B. Während der Bindungsprozess für die Netzwerkbildung bei Umgebungstemperaturen durchgeführt wird, um eine vorzeitige Spaltung der HDA-Einheiten zu vermeiden, wird der Ablöseprozess bei erhöhten Temperaturen zwischen 30 und 140°C durchgeführt. Die Prozesse waren über mehrere Kühl-/Heizzyklen reversibel, wie aus der UV/Vis- (Abbildung 8 C) und \(^1\)H-NMR-Analyse (Abbildung 8 D) hervorgeht. Innerhalb von drei Heiz-/Kühlzyklen von 20 bis 100°C wurden ähnliche Absorbanzscheife aufgenommen (Abbildung 8 C), was eindeutig die Reversibilität des Bindungs-/Ablöseprozesses beweist. Besonders die Resonanzzänderungen der Cyclopentadienyl-Einheiten (6.5–6.4 ppm) und der HDA-Einheiten (5.85–5.6 ppm) in den \(^1\)H-NMR-Spektren (Abbildung 8 D) stützen die erfolgreichen Bindungs-/Ablöseeigenschaften auf Abruf. Zusätzlich kann der Bindungs-/Ablöseprozess einfach mit dem bloßem Auge beobachtet werden. Während das gebundene HDA-PC-Netzwerk fest und leicht gelblich ist, führt die Spaltung der PDT-Einheiten in der Retro-HDA-Reaktion zu einem niederviskosen, stark rotgefärbten Material aufgrund der abgelösten Polymerketten und der Absorption der gebildeten C=S-Doppelbindung, wie in Abbildung 8 E gezeigt. Da die Eigenschaften, wie die Optik oder die Temperaturabhängigkeit, je nach Polymerisationsverfahren, Zugabe geeigneter Co-
monomere oder anderer HDA-Paare gezielt angepasst werden können, eröffnen solche Materialien vielversprechende Anwendungsmöglichkeiten in unterschiedlichen Bereichen, z. B. in Klebstoffen oder in der Medizintechnik.

2.3. pH-responsive Materialien

Die Diskussion über die oben genannten pNIPAM-Partikel ließ bereits die Bedeutung von Partikelgrößen und deren Schwell-/Schrumpfverhalten vermuten. Die Änderung der Partikelgröße und Beschaffenheit muss jedoch nicht allein thermisch verursacht werden, sondern kann auch durch pH-Änderungen verursacht werden.[90–93] Besonders in den Bereichen des Medikamententransports, der Bio- oder Nanotechnologie sind pH-responsive Materialien von großem Interesse, da bestimmte pH-Werte entweder für gesundes (pH \(\approx 7.4\)) oder für krankes Gewebe (pH \(< 7\)) charakteristisch sind.[94–96] Daher ermöglichen Partikel mit unterschiedlichen Fluoreszenzeigenschaften in ihrem geschwollenen oder geschrumpften Zustand die Berichterstattung von pH-Wert-abhängigen Umgebungsänderungen.

Wang und Mitarbeiter nutzten solche Partikel, um den mikroökologischen pH-Wert im Endozytose-Prozess für den Transport von Nanomedizin zu überwachen.[97] Eine Bis-(pyren)-Einheit (BP) wurde mit Poly(aminostern) (P) konjugiert und von zyklischen Peptiden terminiert, um einen pH-sensitive Nanoträger (P-BP) wie in Abbildung 9 A zu bilden. Das BP ermöglicht die Bildung von J-Typ-Nanoaggregate durch hydrophobe und \(\pi-\pi\)-Wechselwirkungen in Wasser, während die tertiären Aminogruppen von P (blauer Pfeil in Abbildung 9 A) die reversible Protonierung und damit das Schrumpfen und Schwellen des Partikels in Abhängigkeit vom pH-Wert gewährleisten. Die zyklischen Peptideinheiten an den Kettenenden ermöglichen die gezielte Zellaufnahme. Bei neutralem pH-Wert ordnen sich die P-BPs selbstständig zu Nanopartikeln mit einer hydrophilen Hülle (P) und einem hydrophoben Kern (BP) an und ermöglichen die Verkapselung von Nilrot (NR). Dadurch kann die Selbstassemblierung durch rote Fluoreszenzemission sichtbar gemacht werden (Abbildung 9B). In Gegenwart von NR wird die Fluoreszenz des BP aufgrund des FRET zwischen NR und BP unterdrückt. Sinkt der pH-Wert von 7.4 auf 5.0, induziert die Protonierung der tertiären Aminogruppen in den Polymerketten ein Anschrumpfen der Partikel (von 41.7 auf 183.2 nm). Das NR wird freigesetzt und seine Fluoreszenz durch Aggregation in Wasser unterdrückt. Gleichzeitig wird die Fluoreszenz der BP-Einheiten durch das Aufbrechen der fluoreszenzlosen J-Typ-Nanoaggregate im geschrumpften Zustand und damit die Beseitigung des FRET-Effekts eingestellt. So ermöglichen die Veränderungen der Fluoreszenz durch die In-situ-Überwachung von mikroökologischen pH-Werten, was vor allem im Bereich der Biologie und Medizin für die präzise Entwicklung von Nanomedizin, z. B. für die Behandlung von (gutartigen/bösartigen) Krebserkrankungen, nützlich ist. Durch die Beladung von pH-responsive Nanopartikeln mit pharmazeutisch aktiven Molekülen werden diese ausschließlich von kranken Zellen mit passendem pH-Wert aufgenommen und freigesetzt. Im Gegensatz zu konventionellen Nanomedikamenten ohne pH-responsive Eigenschaften konnte so die Selektivität, Sensitivität und Effizienz der Wirkstoffe verbessert werden, während gleichzeitig unerwünschte celluläre Zytoxizität und Nebenwirkungen reduziert werden konnten.[98–102]

Abb. 9: A) Der Nanoträger P-BP mit Poly(aminostern) als pH-responsive Rückgrat (blau), terminiert von zyklischen Peptiden (grün) für die Zellaufnahme, und ein konjugiertes Bis(pyren) (BP, orange) als Fluorophor. B) Selbstordnung des P-BP in Nanopartikel mit einer hydrophilen Hülle (P) und einem hydrophoben Kern (BP). Verkapselung von Nilrot (NR) führt zu einer roten Fluoreszenz, die bei niedrigeren pH-Werten blauverschoben ist durch die Auflösung des FRET-Effekts. Nachgedruckt von Lit. [97] mit Genehmigung der Royal Society of Chemistry.
Abbildung 10E). Daher sind intensive Forschungsarbeiten erforderlich, um die Stabilität der Partikel z.B. durch Wechsel der Monomere für die Emulsionscopolymerisation oder erhöhte Konzentration der Vernetzer zu verbessern. Nichtsdestotrotz haben solche selbstberichtenden pH-responsiven Materialien ein großes Potenzial für Anwendungen in der Sensorik und Biomedizin.

2.4. Solvatationsresponsive Materialien

Zusätzlich zu Temperatur und pH-Wert als Stimuli für selbstberichtende Eigenschaften wurden polymere Nanopartikel und Mizellen entwickelt, die auf Solvatations-Stimuli reagieren. Bei Verdünnung wird die Selbstorganisation von Copolymeren, die sowohl mit hydrophilen als auch mit hydrophoben Segmenten ausgestattet sind, zu Mizellen induziert. Ähnlich wie bei den zuvor beschriebenen pH-responsiven Materialien sind solche selbstorganisierenden Polymere von großem Interesse im biomedizinischen Bereich, besonders für die Bildgebung und Sensorik. So wurden amphiphile Blockcopolymere mit integrierten Fluorophoren und Farbstoffmolekülen zur selbstorganisierenden Überwachung des Organisierungs- und Verkapselungsverhaltens entwickelt. Von besonderer Bedeutung ist die Optimierung bisheriger Synthesewegen, um sowohl die kovalente Anlagerung des Fluorophors an die Materialien als auch die variable Positionierung des Fluorophors entweder im Mizellenkern oder in der Schale zu ermöglichen. Diese Variabilität wurde durch die Synthese von Poly(triethylenglycolacrylat)-block-poly tert-butylacrylat)-Copolymeren (P(TEGA)-b-P(tBA)) mit einem Dithiomealeimid (DTM)-Fluorophor (grün) entweder im kernbildenden (P(tBA)) Block (rot, CLP) oder im schalenbildenden (P(TEGA)) Block (blau, SLP) durch reversible Additions-Fragmentierungs-Kettentransfer-Polymerisation (RAFT) erreicht. Die Strukturen der erhaltenen CLPs und SLPs sind in Abbildung 11A gezeigt. Lösst man diese direkt in Wasser auf, werden die gewünschten kern- (CLM) bzw. schalenmarkierten Mizellen (SLM) gebildet, wie in Abbildung 11B dargestellt. In der Tat spielt die Position des Fluorophors eine entscheidende Rolle hinsichtlich der Fluoreszenzeigenschaften. Während der DTM-Fluorophor im Kern der CLMs gut geschützt ist, leidet der Chromophor in dem weniger lösungsmittelreichen Kern der CLMs unter Solvatations-Effekten. Daher zeigen die CLMs im mikroskopischen Zustand eine stärkere Emission und eine längere Fluoreszenzliftdauer als SLMs. Darüber hinaus konnten die CLMs dazu verwendet werden, das Vorhandensein fluoreszierender hydrophober Gastmoleküle wie NR aufgrund des FRET-Effekts visuell anzuzeigen (Abbildung 11C). Bei Aufnahme des Gastmoleküls in den Kern der CLMs wurde die DTM-Emission bei 515 nm unterdrückt, während die Emission von NR bei 610 nm verstärkt wurde (die Emission war höher als bei nicht-markierten Mizellen, bei denen nur NR vorhanden war), wie aus den Emissionsspektren in Abbildung 11E deutlich zu erkennen ist. Dies ist nur möglich, wenn sich die beiden Fluorophore nahe beieinander befinden (im Allgemeinen <4 nm), was beweist, dass der FRET im Kern der CLMs auftritt. Da in Gegenwart eines hydrophilen Gastmoleküls, z.B. Rhodamin B (Rhb), kein FRET beobachtet wird (Abbildung 11F), wird das RhB nicht im Mizellenkern eingekapselt, wie in Abbildung 11D dargestellt. So berichten die CLMs nicht nur selbst über die Bildung der Mizellen bei der Verdünnung des Polymers, sondern auch über die Anwesen-
heit (oder Abwesenheit) von kleinen Gastmolekül/en durch Messungen der Fluoreszenzänderungen, was besonders im Bereich des Medikamententransports relevant ist. Außerdem lassen sich die Fluoreszenzeigenschaften durch sorgfältige Auswahl der Substituenten des Maleimid-Fluorophors und des Lösungsmittels leicht abstimmen, was solche Mizellen zu einem vielseitigen Werkzeug in der Biologie, Medizin oder chemischen Sensoranwendungen macht.

Das solvatationsresponsive Verhalten kann jedoch auch verwendet werden, um chemische Reaktionsmechanismen besser zu verstehen und somit intelligente Materialien aus weicher Materie auf präzisere und einfachere Weise zu entwickeln. Bis vor kurzem war es schwierig, detailierte Einblicke in den Mechanismus der Füllungspolymerisation zu gewinnen, obwohl diese Reaktion aufgrund ihrer Tensidfreiheit, Größenkontrolle und Funktionstoleranz für die Industrie von großem Interesse ist. Während nur vermutet wurde, dass der Prozess zwei Schritte umfasst, nämlich die Keimbildung und das Wachsen,[108, 109] konnten Tang und Mitarbeiter die verschiedenen Stadien der Reaktion direkt und selbstberichtend durch die Verwendung von Fluorophoren mit AIE-Eigenschaften nachverfolgen.[106] Es wurde ein 4-Vinylbenzyl-modifiziertes Tetrphenylethilen (TPE-VBC) mit typischen AIE-Merkmalen synthetisiert. Während das TPE-VBC in Lösung nur eine schwache Emission zeigt, wird eine starke Fluoreszenz bei der Aggregation der gefüllten Polymermoleküle generiert. In der Füllungspolymerisation von Styrol, Maleinsäureanhydrid und Azobisisobutyronitril (AIBN) wird die zunächst transparente Lösung trüb, die Fluoreszenzintensität nimmt stark zu und kann unter Tageslicht oder UV-Licht wie in Abbildung 12 beobachtet werden. Die Auswertung der verschiedenen Analysenergebnisse (Mikroskopie und Fluoreszenzmessungen) in Bezug auf das nachgeordnete Material müssen an die ACS gerichtet werden.)

Abbildung 11. A) Strukturen der kernmarkierten Blockcopolymeren (CLP) und schalenmarkierten Blockcopolymeren (SLP). B) Synthesestrategie für die kernmarkierten Mizellen (CLMs) und schalenmarkierten Mizellen (SLMs). C) Wechselwirkungen zwischen den CLMs und Nilrot (NR). D) Wechselwirkungen zwischen den CLMs und Rhodamin B (RhB). Emissionsspektren (E–F) der CLMs bei t = 0, 1 und 60 min nach der Zugabe von E) NR (NR in Wasser/0,1% 1,4-Dioxan) und F) RhB (RhB in Wasser). Alle Spektren wurden bei λex = 422 nm aufgenommen, die Intensitäten bei 495 nm entsprechen der Raman-Streuung von Wasser. Nachgedruckt von Lit. [106] mit Genehmigung der ACS. (https://pubs.acs.org/doi/10.1021/acs.macromol.5b02152. Weitere Genehmigungen in Bezug auf das nachgedruckte Material müssen an die ACS gerichtet werden.)

Abbildung 12. Füllungspolymerisation des AIEgens TPE-VBC mit Styrol, Maleinsäureanhydrid und AIBN in Isopentylacetat (IAAC) bei 60 °C unter Schutzgas. Der Verlauf der Reaktion wurde unter Tageslicht und UV-Licht in spezifischen Zeitintervallen analysiert. Nachgedruckt von Lit. [108], Copyright 2020 Wiley-VCH GmbH, Weinheim.
(TEM, REM, CLSM), dynamische Lichtstreuung (DLS) und UV/Vis-/Fluoreszenzspektroskopie) ermöglicht die umfassende Charakterisierung des zugrundeliegenden Mechanismus und die genaue Zuordnung der verschiedenen Reaktionsorte. Neben der In-situ-Überwachung des Reaktionsfortschritts besitzen die erhaltenen polymeren Fluoreszenzpartikel (PPPs) mit einheitlichen (PSD) kleiner als 0,15) und einstellbaren Größen biomarkierende und lichtempfindliche Eigenschaften für bildgebende und therapeutische Anwendungen. Die Autoren beschritten erfolgreich natürliche Killerzellen (NKs), die im Immunsystem eine entscheidende Rolle bei der Abwehr von Infektions- und Krebszellen spielen, mit den PPPs. Tatsächlich zeigten die beschichteten PPP-NK-Zellen im Vergleich zu nichtbeschichteten NK-Zellen eine fortgeschrittene Immuntherapie-Effizienz gegenüber Krebszellen, die durch Fluoreszenzanalyse leicht verfolgt werden kann. Diese erhöhte Effizienz wird auf das lichtempfindliche Verhalten des TPE-VBC zurückgeführt. Die Bestrahlung mit Licht induziert die Bildung reaktiver Sauerstoffspezies (ROS), was wiederum die Immuntherapie-Aktivität der NK-Zellen auslöst. Während native NK-Zellen und PFP-be schichtete NK-Zellen bei Abwesenheit von Licht eine ähnliche Immuntherapie-Aktivität gegenüber Krebszellen zeigen, wurde bei den PPP-beschichteten NK-Zellen unter Lichtbestrahlung (Xenon-Lampe, 1 kW cm⁻²) eine höhere Immuntherapie-Aktivität erzielt.

Ähnlich wie die zuvor eingeführten pH-responsiven Materialien sind solche solvatationsresponsiven polymeren selbstberichtenden Materialien daher attraktiv für zukünftige Entwicklungen in biomedizinischen und analytischen Technologien.

2.5. Lichtresponsive Materialien

Die Fähigkeit, chemische Reaktionen durch Licht auszulösen und zu steuern, ist eine wichtige Methode in verschiedenen Bereichen der Chemie, Materialwissenschaft und Biomedizin. Dies wird auf den damit verbundenen, relativ schnellen Prozess bei Umgebungstemperatur, die räumlich zeitliche Kontrollierbarkeit und die erhöhte Eindringtiefe bei niedrigen Energien im sichtbaren Lichtbereich (400–800 nm) zurückgeführt. Dies ist besonders für Biomoleküle nötig, um unerwünschte Schäden zu vermeiden. Durch die Kombination lichtresponsiver Komponenten mit selbstberichtenden Eigenschaften entsteht ein leistungsfähiges Werkzeug für die Biosensorik und die In-situ-Überwachung. Zum Beispiel nutzen Tag und Mitarbeiter die Vorteile lichtempfindlicher AIEgene, nämlich Tetraphenylethenenthioephin (TPEPT) und Tetraphenyliod (TIPS), mit unterschiedlich gefärbten AIEs (rot für TPEPT und grün für TIPS). Beide AIEgene wurden in ein Peptidderivat mit einer Caspase-3/7-responsive Aminosäuresequenz Asp-Glu-Val-Asp (DEVD) zwischen den beiden AIEgenen und einer cyclischen Aminosäuresequenz Arg-Gly-Asp (cRGD) am TIPS-haltigen Kettenende eingebaut, um die Zellaufnahme zu ermöglichen, wie in Abbildung 13 A dargestellt.

Bei der Zellaufnahme (Schritt 1 in Abbildung 13 B) wird TPETP durch intrazelluläres Glutathion vom Peptidderivat abgespalten und die rote Emission (λem = 650 nm) eingeschaltet (Schritt 2 in Abbildung 13 B). Die anschließende Bestrahlung mit Licht regt das abgespaltenen TPETP zur Bildung von reaktiven Sauerstoffspezies (ROS) an, die wiederum die Zellapoptose induzieren und das Enzym Caspase-3/7 aktivieren (Schritt 3 in Abbildung 13 B). Das aktivierte Caspase-Enzym spaltet die DEVD-Sequenz vom Apoptosesensor ab und die grüne Fluoreszenz (λem = 480 nm) des TIPS wird eingeschaltet (Schritt 4 in Abbildung 13 B). Auf diese Weise entsteht ein selfberichtendes System zur Anwendung als Photonsensibilisator (PS) in der photodynamischen Therapie (PT), welches zeitgleich die Echtzeit-Überwachung der PS-Aktivierung und die therapeutische Reaktion durch einfachen Farbwechsel der AIE ermöglicht.

In ähnlicher Weise wurde kürzlich über die In-situ-Überwachung der Zellapoptose durch Anwendung eines neuen, jedoch verwandten AIEgens, Tetraphenylenethen-Tetraethylpyridinium-Iod (TPE-4EP⁺) berichtet. Dieses AIEgen erwies sich als bemerkenswert selektiv für Krebszellen, begleitet von einer effizienten ROS-Generation (insbesondere O₂⁻). Die Selektivität gegenüber Krebszellen wird auf elektrostatische Wechselwirkungen zwischen dem negativen Transmembranpotential der mitochondrialen Mitochondrien innerhalb der Krebszellen und den positiv gela denen Pyridiniumeinheiten in TPE-4EP⁺ zurückgeführt. Bei der Aufnahme der AIEgene in die Krebszelle wird im Gegensatz zu normalen Zellen ohne AIEgene eine erhöhte Fluoreszenzintensität gemessen. Die Bestrahlung mit weißem Licht (4.2 mW cm⁻²) induziert die Bildung von O₂⁻ und damit die Zellapoptose. Da der Apoptoseprozess zu einer Depolarisierung des mitochondrialen Membranpotentials und einer erhöhten Zellpermeabilität führt, wird das AIEgen von den Mitochondrien abgespalten und über elektrostatische Wechselwirkungen mit der Kern-DNA in den Kern verlagert. Obwohl die vorgestellten Arbeiten lediglich ein Indiz für die Machbarkeit darstellen, versprechen sie sicherlich eine Verbesserung der therapeutischen Behandlungen und der Auswertung der therapeutischen Wirkung. Mit zukünftigen Entwicklungen von AIEgenen, die verlängerte Absorptions- und Emissionswellenlängen aufweisen, ist der Weg für multifunktionale, selbstberichtende In-vivo-Anwendungen geebnet.

Ergänzend zu der in Abschnitt 2.4 vorgestellten selbstberichtenden Fällungs-Polymerisation (siehe Abbildung 12) wurden Methoden zur Verfolgung des Fortschritts und der Monomerumsetzung in lichtgesteuerten Polymerisationsprozessen entwickelt. Beispielsweise ermöglichte ein Porphrin-Zink-Derivat, das bei einer PET-RAFT-Polymerisation (PET = photoinduzierter Elektronen/Energie-Transfer) als Photokatalysator eingesetzt wurde, die Echtzeit-Messung des Monomerumsetzrates durch Änderungen der Fluoreszenzmessung und der Auswertung der therapeutischen Wirkung. Mit zukünftigen Entwicklungen von AIEgenen, die verlängerte Absorptions- und Emissionswellenlängen aufweisen, ist der Weg für multifunktionale, selbstberichtende In-vivo-Anwendungen geebnet.
gungsmittels (CTA) und eines Bismaleimids führt durch Bestrahlung bei 320 nm zur schrittweisen Bildung fluoreszender Polymere. Während das anfängliche Reaktionsgemisch keine Fluoreszenzemission zeigt, weisen die Poly(pyrroloazoline) eine starke Fluoreszenzemission zwischen 470 und 670 nm auf, sodass der Reaktionsverlauf durch Fluoreszenzspektroskopie leicht verfolgt werden kann. Gleichermaßen wurde die NITEC-Reaktion verwendet, um die Bildung von polymeren Netzwerken und deren Charakterisierung nachzuverfolgen. Polymere mit Tetrazolkettenenden können in Gegenwart von Trimaleimiden unter UV-Bestrahlung zu polymeren Netzwerken vernetzt werden. Für jeden Vernetzungspunkt wird ein fluoreszierender Pyrazolin-Ring gebildet und die Kinetik der Netzwerkbildung kann quantitativ beobachtet werden. Damit wurde eine effektive Methode zur einfachen und detaillierten Charakterisierung von Polymernetzwerken entwickelt, was bisher aufgrund der Komplexität der Netzwerksysteme oft schwierig war.

Darüber hinaus wurde Licht als Auslöser für den intramolekularen Kollaps von wohlfunktionierenden Polymeren zu Einzelketten-Nanopartikeln (SCPNs) verwendet. In den letzten Jahren hat die Forschung über SCPNs große Aufmerksamkeit erlangt, da sie Anwendungen in der Katalyse, dem Medikamententransport, der Proteinnachahmung oder der Sensorik finden. Unter den verschiedenen Synthesestrategien für maßgeschneiderte SCPNs zeigt der lichtinduzierte Kettenkollaps einen milden und vielseitigen Weg, vor allem in Kombination mit selbstberichtenden Eigenschaften. Daher wurden verschiedene Konzepte für die Vernetzung entwickelt, die von der bereits eingeführten NITEC-Reaktion bis hin zum Einzelkettenkollaps durch Radikalspezies reichen. Der Einbau von Nitroxiden oder Pyren-substituierten Oximern in Polymere führt unter Lichtbestrahlung zur Bildung von SCPNs, die den Status der Faltung visuell anzeigten können. Darüber hinaus wurde Licht als Auslöser für den intramolekularen Kollaps von wohlfunktionierenden Polymeren zu Einzelketten-Nanopartikeln (SCPNs) verwendet. In den letzten Jahren hat die Forschung über SCPNs große Aufmerksamkeit erlangt, da sie Anwendungen in der Katalyse, dem Medikamententransport, der Proteinnachahmung oder der Sensorik finden. Unter den verschiedenen Synthesestrategien für maßgeschneiderte SCPNs zeigt der lichtinduzierte Kettenkollaps einen milden und vielseitigen Weg, vor allem in Kombination mit selbstberichtenden Eigenschaften. Daher wurden verschiedene Konzepte für die Vernetzung entwickelt, die von der bereits eingeführten NITEC-Reaktion bis hin zum Einzelkettenkollaps durch Radikalspezies reichen. Der Einbau von Nitroxiden oder Pyren-substituierten Oximern in Polymere führt unter Lichtbestrahlung zur Bildung von SCPNs, die den Status der Faltung visuell anzeigten können. Einerseits zeigen Nitroxid-haltige Polymere im ungefalteten Zustand keine Fluoreszenz, andererseits führt die Faltung in Gegenwart eines Vernetzers zu SCPNs mit einer starken Emission zwischen 380 und 550 nm, wie in Abbildung 14A zu sehen ist. Die Oxidation mit mCPBA kehrt den Prozess um und das nicht-fluoreszente, ungefaltete Polymer wird zurckgewonnen (Abbildung 14A). Pyren-substituierte Oximester-Polymere dagegen zeigen das umgekehrte Verhalten. Während die ungefaltete Polymerkette aufgrund der eingebauten Pyreneinheit eine starke Fluoreszenzmission zwischen 400 und 800 nm aufweist, spaltet die Lichtbestrahlung den Oximester und die Pyreneinheit wird vom Polymer getrennt. Da bei der Reaktion auch CO2 freigesetzt wird, haben die Polymerketten mehrere Möglichkeiten zur Vernetzung, wie in Abbildung 14B dargestellt. Durch sorgfältige Auswahl der in der Polymerrückgratketten einge-
oder den Luminophor selbst so zu modifizieren, dass die CL-Eigenschaften nicht versehentlich vermindert werden. Nichtsdestotrotz führte die aktuelle Forschung an bekannten Luminophoren wie Dioxetanen,\([131,132]\) Peroxyoxalaten (POs),\([122,135–137]\) Acridiniumestern,\([138–141]\) Luminol\([129,142]\) und deren jeweiligen Derivaten zur Entwicklung einer Fülle von fortschrittlichen, vielversprechenden selbstberichtenden CL-Systemen. Die CL von Acridiniumestern beispielsweise kann durch Antioxidantien, Enzyme oder Peroxide ausgelöst werden und findet daher in der (biomedizinischen) Analytik als selbstberichtender Sensor für diese Stoffe Anwendung.\([138–141]\) In der Gegenwart eines Auslösers werden die Acridiniumester zu Dioxetanonen oxidiert, die sich durch die Freisetzung von CO\(_2\) in das stark emittierende 10-Methyl-9-acridon zersetzen,\([139,143]\) wie in Schema 2 dargestellt. Bislang waren für die CL-Emission von Acridiniumestern alkalische Bedingungen erforderlich. Kürzlich wurden jedoch Acridiniumesterivate synthetisiert, welche die CL-Reaktion unter neutralen Bedingungen ermöglichten. Dies wurde durch Einführung elektronenziehender Gruppen (z. B. Cyan, Nitro, Bromid oder Trifluromethyl) in der 4-Position der Phenoleinheit erreicht.\([139]\) Auch die Zugabe von Cetyltrimethylammoniumbromid führte zu einer erhöhten CL solcher Acridiniumesterivate.\([140]\)

Ebenso eignen sich Peroxyoxalat (PO)-Luminophore ideal für Analysemethoden in der Lebensmittel- und Umweltanalyse, Sensortechnik, Pharmakologie, Biologie oder Medizin.\([122,135,136]\) Wie bei den Acridiniumestern kann die CL-Reaktion von POs durch verschiedene aktive Spezies wie Peroxide, Mikroorganismen, Glucose, Toxine oder Antioxidantien induziert werden.\([122,144]\) Die Oxidation von PO, wie z.B. des Bis(2,4,6-trichlorphenyl)oxalats (TCPO), führt zur Zersetzung des PO und der Bildung eines instabilen energiereichen Dioxetanons. Im Gegensatz zu den Acridiniumestern führt die Zersetzung des Dioxetanons zu CO\(_2\), jedoch nicht zur Lichtemission, es sei denn, ein Fluorophor ist vorhanden. In Gegenwart eines solchen, z. B. 9,10-Diphenylanthracen (DPA), ruft die Zersetzung des Dioxetanons eine Anregung des Fluorophors hervor, welcher bei Relaxation in den Grundzustand Licht emittiert,\([133]\) wie in Schema 2 zu sehen ist. Obwohl die Notwendigkeit eines zusätzlichen Fluorophors für die CL-Reaktion als Nachteil angesehen werden könnte, überwiegt der Vorteil, die Emissionswellenlänge vom UV/Vis- bis zum NIR-Spektralbereich nach Bedarf durch sorgfältige Auswahl des Fluorophors leicht anzupassen, anstatt den Luminophor in einer (komplizierten) Synthesestrategie modifizieren zu müssen.\([134]\) Tatsächlich wurde vor kurzem über die erfolgreiche Kombination der PO-Einheit und des Fluorophors in einem Material berichtet, um das Auslesen von CL in fester Phase zu ermöglichen.\([139]\) Dies wurde durch die Synthese von Mikrophären mit einem Poly(divinylbenzol)-Kern und einer Poly(2-hydroxyethylmethacrylat)-Hülle erreicht, was die anschließende Funktionalisierung mit einer Tetrazolcarbonsäure ermöglichte. Anschließend wurde ein Maleimid-PO (MDCPO) über die bereits erwähnte NITEC-Reaktion photochemisch an die Tetrazol-haltigen Mikrophären gebunden, wie in Abbildung 15A dargestellt. Die erhaltenen „All-in-one“-Mikrophären bieten eine hohe Fluoreszenz und CL-Emissi-baßen Spezies sind somit SCNP's mit selbstberichtenden Eigenschaften in Abhängigkeit vom Faltzustand zugänglich. Auf diese Weise können leistungsfähige Instrumente für zukünftige biomedizinische, bildgebende oder sensorische Anwendungen konstruiert werden, allerdings müssen Einschränkungen wie Faltung in stark verdünnten Medien (c = 20 mg L\(^{-1}\)) oder komplexe Monomer- und Polymersynthesen für industrielle Zwecke überwunden werden.

2.6. Chemikalienresponsive Materialien

Die Diskussion im vorhergehenden Abschnitt über lichtresponsive Materialien zeigte die Bedeutung von Licht als Auslöser für selbstberichtende Eigenschaften. Licht ist jedoch nicht nur in der Lage, das Selbstberichten zu induzieren, sondern kann auch das selbstberichtende Merkmal selbst sein. Licht als direktes Produkt einer chemischen Reaktion, die so genannte Chemilumineszenz (CL),\([122–125]\) bietet nützliche Vorteile wie hohe Empfindlichkeit und Echtzeit-Überwachung über einen großen dynamischen Bereich ohne die Notwendigkeit von hochentwickelten Geräten.\([134,136–139]\) Daher finden CL-Reaktionen weit verbreitete Anwendungen in biomedizinischen oder analytischen Bereichen mit laufender Forschung für ständige Verbesserungen. Die Herausforderung, höhere CL-Quantenausbeuten zu erzielen, den Emissionsbereich einzustellen oder das CL-System zu ver-schaffen, besteht jedoch darin, die Reaktionsumgebung

Abbildung 14. A) Faltungsprozess der Nitroxid-Polymere. In Gegenwart eines Vernetzers wird das nicht-fluoreszente Polymer durch Bestrahlung mit Licht zu einem fluoreszenten SCNPs befördert. Oxidation mit mCPA spaltet den Vernetzer und das ungefaltete, nicht-fluoreszente Polymer zurückgewonnen. Nachgedruckt aus Lit. [120], publiziert von der Royal Society of Chemistry. B) Intramolekularer Kettenkollaps des fluoreszenten Pyren-substituierten Oximester-Polymers. Durch Lichtbestrahlung wird der Oxiomer gespalten und die fluoreszierende Pyren-Einheit vom Polymer getrennt. Anschließend haben die Polymereketten mehrere Möglichkeiten, über radikale Kupplungen zu ver-netzen.
on bei niedriger Konzentration der oxidativen Spezies und fungieren somit als selbstberichtender Sensor für diese oxidativen Spezies. Darüber hinaus lässt sich die Emissionswellenlänge der CL durch Variation der eingebauten Tetrazolderivate leicht einstellen. Durch die Verwendung von rotverschobenen Tetrazolen sind solche Mikrosphären auch für biologische Systeme praktikabel. Außerdem besitzt die Festphasen-CL das entscheidende Potenzial, die derzeitigen PO-CL-Mehrkomponentensysteme für die Erfassung und den Nachweis niedriger Konzentrationen aktiver Spezies auf selbstberichtende Weise zu ersetzen.

Dementsprechend hat sich die Verbesserung und Verfeinerung komplexer CL-Systeme auch auf dem Gebiet der Luminol-Chemie durchgesetzt. Der bekannte und in der forensischen Wissenschaft am häufigsten verwendete Luminophor [145,146] bietet Vorteile wie geringe Kosten, breite analytische Kompatibilität und ein weitreichendes Anwendungsspektrum. [123,148] Ähnlich der CL von PO wird die CL von Luminol durch eine Oxidationsreaktion ausgelöst. Wie in Schema 2C dargestellt, liegt Luminol in (basischer) Lösung in seiner deprotonierten Spezies, nämlich dem Luminol-Monoanion, vor. Durch Zugabe eines Oxidationsmittels (z. B. ROS) wird das Monoanion zur angeregten 3-Aminophthaläure oxidiert, deren Zerfall in den Grundzustand von einem auffallenden blaugrünen Licht begleitet wird. Unglücklicherweise ist die CL-Quantenausbeute von Luminol in polaren aprotischen Lösungsmitteln (wie DMSO) oder wässrigen Medien eher gering. [123] Daher wurden verschiedene katalytische Systeme entwickelt, die Nanomaterialien, [136-138] Metallionen [133-135] oder andere Verstärker [153-155] für eine verbesserte CL-Emission enthalten. Da all diese Systeme unter speziellen Nachteilen leiden (u. a. Kosten, Toxizität, Luft-/Feuchtigkeitsempfindlichkeit oder Stabilitätsprobleme), ist die Entwicklung neuer, fortschrittlicher Luminol-CL-Systeme von großer Bedeutung. Der entscheidende Punkt für solch verbesserte Luminol-CL-Systeme besteht darin, die Anzahl der Komponenten auf ein Minimum zu reduzieren und gleichzeitig die CL-Emission zu erhöhen. Tatsächlich wurden signifikante Verbesserungen durch die Einführung einer organischen Superbase, nämlich 1,5,7-Triaabicyclo-[4.4.0]dec-5-en (TBD), in die Oxidationsreaktion von Luminol erzielt [142]. Superbasen wie TBD werden in der organischen Synthese umfassend verwendet und liefern hohe pKₐ-Werte (26,0 in Acetonitril für TBD), wodurch sie zwei wesentliche Eigenschaften – Basizität und Katalyse – für die CL-Reaktion von Luminol in einem Molekül vereinen. Die Zugabe von H₂O₂ zu einer Lösung, die nur TBD und Luminol enthält, resultiert in einem auffälligen blauen Licht, das sogar für das bloße Auge sichtbar ist. Der Vergleich der CL-Emission des Luminol-TBD-Systems mit den organischen Superbasen 1,1,3,3-Tetramethylguanidin (TMG) und 1,8-Diaza-bicyclo[5.4.0]undec-7-en (DBU) sowie mit der bereits bekannten anorganischen Base KOH als Katalysator CuSO₄ offenbarte die überlegene CL-Emission des Luminol-TBD-Systems, wie in Abbildung 15B deutlich zu erkennen ist. Nennenswert ist die Tatsache, dass organische Superbasen im Gegensatz zu konventionellen anorganischen Basen, die bei der Luminol-CL-Reaktion eingesetzt werden, in polymere Materialien eingebaut werden können. Ohne eine (komplizierte) TBD-Monomer-Synthese konnte TBD direkt in das gleiche polymere Grundgerüst wie Luminol über einen Postpolymerisationsmodifikations (PPM)-Ansatz ein-
gebaut werden, wie in Abbildung 15C gezeigt.\[129\] Das post-modifizierte Polymer ermöglicht darüber hinaus eine supra-molekulare (Dis-)Assemblierung (analog dem Bindungsverhalten zwischen Biomolekülen und Substraten) mit statistisch methyliertem β-Cyclodextrin. Dies führt zu einer starken CL-Emission, die ohne ausgeklügelte Instrumentierung, wie z. B. Kernspinresonanz (NMR) und dynamische Lichtstreuung (DLS), nachgewiesen werden kann. Daher erweitert die Implementierung organischer Superbasen in die CL-Reaktion von Luminol sowohl auf der niedermolekularen als auch auf der makromolekularen Ebene nicht nur den Anwendungsbereich der Luminol-Chemie, sondern ermöglicht auch das Design neuer, künstlicher Luminol-Materialien für die Sensorschnelle oder biomedizinische Anwendungen.

Chemikalienresponsive Materialien sind in der Sensorik, Diagnostik oder Biomedizintechnik von erheblichem Interesse, da sie spezifische aktive Spezies schnell und sensitiv in einer für das bloße Auge sichtbaren CL-Emission anzeigen. Deshalb werden solche CL-Materialien sicherlich nicht nur in zukünftigen Analysenverfahren, sondern auch bei der schnellen Detektion von (neuen) Krankheiten und (gutartigen/bösartigen) Biomolekülen eine entscheidende Rolle spielen.

2.7. Multistimuliresponsive Materialien

Bisher wurden selbstberichtende Systeme diskutiert, die auf einen einzelnen Stimulus aus Schema 1 reagieren. Es gibt jedoch Substanzen, die abhängig von der selbstberichtenden Einheit auf verschiedene Stimuli reagieren können.\[156–161\] Eine wichtige Klasse, die ein solch multistimulirespon-sives Verhalten zeigt, sind die lichtemittierenden 1,2-Dioxetane. Im Gegensatz zu den bereits in Abschnitt 2.6 erwähnten CL-Systemen kann die CL von 1,2-Dioxetanen nicht nur durch chemische Reaktionen, sondern auch durch mechanische Kräfte und Temperatur ausgelöst werden. Über die thermische Zersetzung von 1,2-Dioxetanen unter Emission von Licht wurde bereits in den 1970ern berichtet.\[162–164\] Allerdings waren hohe Temperaturen von bis zu 250°C für die Zersetzung erforderlich,\[165,166\] weshalb die Forschung über thermoresponsiven 1,2-Dioxetanderivate außer einigen wenigen Berichten von Roda und Mitarbeitern vernachlässigt wurde.\[165–170\] 1,2-Dioxetanderivate auf Acridinbasis, wie in Schema 3 A dargestellt, zersetzten sich zwischen 80 und 110°C in 2-Adamantan und eine angeregte Acridonspezies, die bei der Rückkehr in den Grundzustand Licht emittiert (ähnlich dem 10-Methyl-9-acridon der Acridiniumester-CL, siehe Schema 2 A).

Deutlich mehr Forschung wurde jedoch für die chemische/biologische Aktivierung von 1,2-Dioxetanen betrieben.
Eine Vielzahl chemilumineszenten 1,2-Dioxetanderivate wurde basierend auf Schaaps Erkenntnissen von 1987 entwickelt. Im Allgemeinen wurde ein 1,2-Dioxetan mit einer enzym- oder analytresponsiven Schutzgruppe synthetisiert, deren Entfernung den chemisch initiierten Elektronenaustauschprozess (CIEEL) auslöst. Während dieses Prozesses zersetzt sich das entschützte Dioxetan und es entsteht eine angeregte Benzoatespezies, die unter Lichtemission in den Grundzustand zurückkehrt (Schema 3 B).[123,125,132] Durch eine wohlüberlegte Auswahl der Phenol-Substituenten (und ihrer Position) des 1987 entdeckten Schaap-Dioxetans wurde eine große Anzahl an CL-1,2-Dioxetan-Derivaten zur (Bio-)Markierung und Bildgebung entwickelt, die auch für in-vivo-Anwendungen unter physiologischen Bedingungen geeignet sind.[126,171–177]

Neben der thermischen und chemischen Aktivierung kann die CL von 1,2-Dioxetanen auch durch mechanische Kräfte ausgelöst werden. Der Einbau von Bis(adamanthy)-1,2-dioxetanen in polyvare Materialien (z.B. Polyurethan,[178–180] Poly(methylmethacrylat),[182] Poly(methacrylat),[183,184] Poly(dimethylsiloxan)[185]) ermöglichte die einfache Echtzeit-Überwachung von bindungspaltenden Ereignissen, da mechanische Kräfte zu einem Bindungsbruch der Dioxetan-Einheit in zwei Adamantontermierte Polymernetze führt, was durch Lichtemission sichtbar gemacht wurde (Schema 3 C). Ohne Zweifel stellen die 1,2-Dioxetane eine wichtige Klasse für die Entwicklung vielseitiger, intelligenter, selbstberichtender Materialien dar, da die CL durch sorgfältige Auswahl des jeweiligen 1,2-Dioxetanderivats leicht auf den gewünschten Stimulus zugeschnitten werden kann.

Eine weitere wichtige Klasse für selbstberichtende Materialien sind Flüssigkristalle (LCs). LCs finden breite Anwendung in der Biologie und Medizin sowie in Photovoltaik-Systemen, Displays, Optoelektronik oder Sensoren.[186–191] Diese unterschiedlichen Anwendungen werden auf die kombinierten Eigenschaften von Kristallen (Ordnung) und Flüssigkeiten (Mobilität) innerhalb der LCs zurückgeführt. Bei Einwirkung von Stimuli (z.B. chemische oder biologische Substanzen, elektrische Felder, Temperatur oder mechanische Kräfte) wird die ursprüngliche Ordnung und Mobilität der LCs gestört und das optische Erscheinungsbild verändert. Abbott und Mitarbeiter machten sich solche selbstberichtenden LCs zunutze und erweiterten das Konzept durch die Einführung selbstregulierender Eigenschaften.[192] Dies wurde durch die Synthese von LC-Filmen aus 4'-Pentyl-4-biphenylcarbonitril (5CB) erreicht, in die zur Visualisierung Mikrotröpfchen mit einem roten Farbstoff zugesetzt wurden (Abbildung 16 A,B). Die Mikrotröpfchen wurden in eine Mini-Vertiefung mit darüber liegender wässriger Phase eingebracht und von gespannten LCs umschlossen. In Gegenwart eines thermischen Stimulus findet ein Phasenübergang statt und der ursprüngliche Zustand der LC wird gestört, was visuell durch die Freisetzung der roten Mikrotröpfchen angezeigt wird. Da der Phasenübergang von 5CB bereits bei 35°C abläuft, kann die von einem menschlichen Finger abgegebene Wärme den Phasenübergang auslösen (Abbildung 16 C–E). Exakt zu dem Zeitpunkt des Phasenübergangs wird eine bestimmte Menge an Mikrotropfchen freigesetzt und anschließend wieder gestoppt. Dieses selbstregulierende Verhalten kann für mehrere Heiz-/Kühlyzyklen beobachtet werden. Im Gegensatz dazu geben konventionelle Materia-

Schema 3. CL-induzierender Mechanismus von A) thermo-, B) chemikalien- und C) mecanoresponsiven 1,2-Dioxetanen.
ten von multistimuliresponsiven LCs ein großes Potenzial für zukünftige Entwicklungen programmierbarer Materialien birgt. Durch eine sorgfältige Auswahl des LC-Materials und der Zusammensetzung der Mikrotröpfchen können verschiedene Systeme mit den gewünschten stimuliressiven Eigenschaften entworfen werden.

Dementsprechend kann die Isomerisierung der zuvor eingeführten Spiropyranen (SP) (siehe Abschnitt 2.1) zu Merocyanin (MC) nicht nur durch mechanische Kräfte, sondern z.B. auch durch Temperatur, pH-Wert, Solvataion oder Licht induziert werden.[193–200] Interessanterweise sind SP-basierte selbstberichtende Systeme entwickelt worden, die auf mehrere Stimuli gleichzeitig reagieren.[46,47,201–204] Qui et al. bezeichneten das Beispiel über die Synthese von Poly[(hydroxyethylacrylat) mit eingebauten SPs, die bei Lichteinstrahlung oder Schwellung in Wasser ihre Farbe änderten.[200] Darüber hinaus wurden amphiphile Copolymere mit SP-Einheiten synthetisiert, die sich selbst durch Licht-, pH-Wert- oder Temperaturreinwirkungen zu micelaren Nanopartikeln zusammensetzten.[206] In einem anderen Beispiel synthetisierten Mondal et al. einen organischen Käfig mit SP-Einheiten, die ihre Farbe von Gelb nach Orange in Gegenwart thermischer oder photochemischer Stimuli änderten.[207] Dieses Verhalten wurde sowohl in Lösung als auch im festen Zustand beobachtet. Tests mit bis zu 20 UV/Vis- und Heiz-/Kühlzyklen in beiden Zuständen bewiesen die Reversibilität der SP-MC-Isomerisierung bei thermischer oder photochemischer Behandlung. In ähnlicher Weise zeigen Luminogene wie Hexakis(pyridin-4-ylthio)benzol im flüssigen und festen Zustand je nach angewendetem Stimulus (z. B. Lösungsmittel, pH-Wert, Metallionen) eine unterschiedlich gefärbte Phosphoreszenz.[208] Zusätzlich wurden Netzwerke mit einem koordinierten Triphenylamin-Fluorophor hergestellt, die ihre Emissionsfarbe allmählich entweder durch Temperatur (von Cyan zu Grün) oder Druck (Grün zu Rot) auf reversible Weise ändern.[209]

Solche selbstberichtenden multistimuliresponsiven Eigenschaften bergen eindeutig ein Schlüsselpotenzial für die Entwicklung innovativer intelligenter Materialien, die gleichzeitig mehreren Stimuli ausgesetzt sind, z.B. Materialien für den Außenbereich oder Materialien, die in extremen Umgebungen eingesetzt werden. Materialien müssen oft verschiedenen Stimuli gleichzeitig trotzen, z.B. Temperatur und Licht (Winter/Sommer, Heizung/Klimaanlage, natürliches/künstliches Licht, Tag/Nacht), Chemikalien (Verschmutzung, Reinigungsmittel, Aerosole), mechanischen Kräften (Wind, Erdbeben, Donner) und Wetterbedingungen (regnerisch, trocken, feucht, neblig). Daher würde die visuelle Anzeige von Schäden oder Veränderungen, die durch mehrere Stimuli hervorgerufen wurden, sicherlich dazu beitragen, die Lebensdauer und Sicherheit der Materialien zu erhöhen. Zusätzlich könnten die Kosten durch eine verlängerte Lebensdauer und effektivere Wartungsarbeiten gesenkt werden.
3. Selbstberichtende Materialien als (biomedizinische) Diagnostikinstrumente

Während des gesamten aktuellen Aufsatzes haben wir die Bedeutung von selbstberichtenden Materialien im Bereich der Biologie, Medizin und Analytik erwähnt. Da die Relevanz neuartiger, innovativer Materialien in diesen Bereichen im Hinblick auf die aktuelle SARS-CoV-2 (COVID-19)-Pandemie besonders deutlich geworden ist,[210–213] konzentriert sich dieser Abschnitt auf selbstberichtende Materialien als (biomedizinische) Diagnostikinstrumente. Der Nachweis wichtiger biologischer Substanzen (z. B. Biothiole) für physiologische Prozesse beispielsweise erfordert oft ausgefeilte und komplexe Analysemethoden wie HPLC, Kapillarelektrophoresetnrennungen, Immunnassays und zeitaufwendige Probenvorbereitungen.[214–216] Deshalb wurden selbstberichtende Systeme entwickelt, die den einfachen und schnellen Nachweis von Biothioledurch Fluoreszenzänderungen ermöglichen. Zu diesen Biothioleden gehören Cystein (Cys), Homocystein (Hcy), Glutation (GSH) oder Schwefelwasserstoff (H₂S), welche für die Zellmobilität und den Zellabau, die Aufrechterhaltung der Redox-Homöostase und des xenobiotischen Stoffwechsels, die Apoptose oder die Entzündungshemmung verantwortlich sind. Darüber hinaus dienen sie als Indikatoren für Störungen (Alzheimer, Herzkreislauf-Erkrankungen, verlangsamtes Wachstum, Leberläsionen, Lethargie, u. a.).[217–219] Während verschiedene Systeme für den selektiven Nachweis einzelner Cys.[220–223] Cys/Hcy[214] oder GSH[214,215] entwickelt wurden, sind die Produktion und der Metabolismus der Biothiole miteinander verbunden, weshalb oft zwei oder mehrere Biothiole gleichzeitig vorhanden sind. Daher wäre es sehr vorteilhaft, Sensormoleküle für den gleichzeitigen Nachweis solcher Biothiole zu haben.[224–226] Trotz der ähnlichen chemischen Struktur und Reaktivität wurden selbstberichtende Materialien entwickelt, die nicht nur mehrere Biothiole nachweisen, sondern auch zwischen ihnen unterscheiden können. So wurde z. B. ein fluoreszierender Marker auf Cumarinbasis erfolgreich eingesetzt, um durch unterschiedliches Fluoreszenzverhalten zwischen GSH und Cys/Hcy zu unterscheiden.[227] Andererseits kann die Fluoreszenzverteilung aufgrund des einzigartigen Bindungsverhaltens der Biothiole verändert werden. Fluorophore mit mehreren funktionalen Gruppen, die jeweils spezifisch mit einem einzigen Biolith reagieren, zeigen je nach Biolith und der reagierten Funktionalität unterschiedliche Fluoreszenzveränderungen.[228,229] In einem anderen Beispiel wurde ein Lysosom-fokussierenden Marker mit sowohl 7-Dimethylaminocumarin als auch mit Resorufin als Fluorophor synthetisiert, wie in Abbildung 17 dargestellt.[220] Das freie Resorufin zeigt eine rote Emission, während das gebundene Resorufin keine Emission zeigt und die Fluoreszenz des Cumarin-Fluorphors stoppt. In Gegenwart von H₂S, Cys/Hcy oder GSH wird das Resorufin gespalten und die rote Emission wird eingeschaltet. Je nach vorhandenem Biothiol weist der Cumarin-Fluorphor eine andere Fluoreszenzveränderung auf: In Gegenwart von H₂S wird kein fluoreszierendes Produkt erhalten, wohingegen in Gegenwart von GSH ein grün emittierendes Produkt und in Gegenwart von Cys/Hcy eine blau emittierende Spezies entsteht (Abbildung 17). Das charakteristische Fluoreszenzemissionsverhalten des Lysosom-fokussierenden Markers in Gegenwart von H₂S, Cys/Hcy und GSH. Nachgedruckt von Lit. [230], Copyright 2018 American Chemical Society.

Eine andere Strategie verwendet optische Sensoren mit porösen photonischen Si-Kristallen. Bakterien wie Escherichia coli (E. coli) können gezielt durch Anpassen der Porengröße eingefangen werden, wodurch sich das Reflexionsvermögen ändert. Die einstellbare Porengröße erlaubt den einfachen und sensitiven Nachweis verschiedener Krankheitserreger.[246] In ähnlicher Weise wurden Indium-Zinnoxid-Siebdruckelektroden mit Polyaminin (PANI) und Antikörpern beschichtet, die gezielt Krankheitserreger einfängen können (Abbildung 18).[244] In Abwesenheit von Krankheitserregern führt ein konstantes Potential zu einer Änderung der Oxidationsstufe und damit zu einem Farbwechsel von Gelb nach Blau. In Gegenwart von Krankheitserregern wird jedoch der Widerstand auf der Elektrodenoberfläche beeinflusst und je nach Konzentration des Erregers werden verschiedenefarbige PANI-Oxidationsstufen erreicht (Abbildung 18). Durch passende Auswahl des Polymermaterials und der Antikörper für die Elektrodenbeschichtung können verschiedene Krankheitserreger auf einfache, schnelle und sichtbare Weise nachgewiesen werden.

Es liegt auf der Hand, dass die eingeführten selbstberichtenden Systeme für den Nachweis von biologischen Substanzen und Krankheitserregern ein großes Potenzial für in-
novative, intelligente Materialien beinhalten. Die Entwicklung hin zu innovativen Systemen, die das Vorhandensein von Biomolekülen oder Krankheitserregern auf selektive und schnelle Weise selbst anzeigen, könnte künftige pandemische Krankheitsausbrüche möglicherweise verhindern. Zuwidererst muss das Vorhandensein eines neuen potenziellen Erregers (wie des aktuellen Pandemievirus) erkannt werden, damit er sich nicht weltweit ausbreiten kann. Andererseits werden schnelle Analyseergebnisse die klinischen Labore entlasten, und infizierte Patienten könnten sofort isoliert werden, um das Infektionsrisiko zu verringern.

Inspirierende Ideen wie viruzid-aktive persönliche Schutzausrüstungen[2] antivirale Oberflächenbeschichtungen[2] oder sogar selbstreinigende Oberflächen[2] wurden vorgeschlagen. Da Krankheitserreger nicht nur über Oberflächen, sondern viel eher über die Luft übertragen werden, würden sich zukünftige Aerosole mit selbstberichtenden Eigenschaften und eventuellen antiviralen Aktivitäten sicherlich als wirksames Mittel zur Bekämpfung und Eindämmung von Krankheitserregern erweisen.

4. Zusammenfassung und Ausblick

Die signifikante Zunahme von Studien über stimulierungspezifische Materialien innerhalb des letzten Jahrzehnts zeigt die Bedeutung und den Bedarf an weiterer Forschung und Entwicklung solcher Materialien. Während stimulierungspezifische Materialien mit selbstheilenden Eigenschaften auf hauptsächlich akademische Zwecke beschränkt sind, finden selbstberichtende stimulierungspezifische Materialien bereits großtechnische Anwendungen. Beispiele sind thermosensitive Tinten, forensische chemilumineszente Mischungen oder Flüssigkristalldisplays. Es gibt jedoch noch zentrale Schwierigkeiten, die für großflächige kommerzielle Anwendungen überwunden werden müssen: 1) Das Design von selbstberichtenden Materialien ist durch mehrstufige Synthese, geringe Ausbeute, hohe Kosten und nicht praktikables Up-Scaling gekennzeichnet, 2) die selbstberichtende Funktion ist oft im Hinblick auf reaktive Funktionen, Zyklen oder Mobilität eingeschränkt, 3) für die selbstberichtenden Eigenschaften ist vor allem in Gegenwart von Wärme oder UV-Licht ein hoher Energieaufwand erforderlich, weshalb der Trend zu milderen Stimuli (z.B. sichtbares Licht) als Ersatz angestrebt wird, und 4) die selbstberichten Eigenschaft ist im Allgemeinen auf die Erkennung von nano- oder mikroskopischen Schäden beschränkt. Daher ist das Überwinden dieser Schwierigkeiten bei der Entwicklung von selbstberichtenden Materialien von größter Bedeutung. Der zukünftige Fortschritt wird dabei höchstwahrscheinlich durch Kombination verschiedener Konzepte, die in dem vorliegenden Aufsatz beschrieben wurden, vorangetrieben werden. Die Kombination von chemischen oder physikalischen Antwortmechanismen in einem einzigen Material stellt eine attraktive Option dar, um Materialveränderungen auch tatsächlich visuell sichtbar anzuzeigen. Abschließend bleibt zu sagen, dass sich die Entwicklung kombinatorischer spektroskopischer Techniken und Kenntnisse zur Erforschung des selbstberichten Mechanismus als Schlüsselfaktor für den Entwurf effizienter Systeme noch im Anfangsstadium befindet.

Danksagung

C. B.-K. würdigt die Unterstützung durch das KIT im Rahmen des Wissenschafts- und Technologieprogrammes der Nanomedizin (STN). Des Weiteren erkennt C. B.-K. die wichtigste Unterstützung durch die QUT und den Australian Research Council (ARC) in Form eines Laureate Fellowship an, das sein photochemisches Forschungsprogramm unterstützt. H.M. dankt Prof. P. Theato (KIT) und Prof. C. Barner-Kowollik (QUT) für die Mentorentsch. Open Access Veröffentlichung ermöglicht und organisiert durch Projekt DEAL.

Interessenkonflikt

Die Autoren erklären, dass keine Interessenkonflikte vorliegen.

[1] S. Wang, M. W. Urban, Nat. Rev. Mater. 2020, 5, 562.
[2] J. A. McCune, S. Mommer, C. C. Perkins, O. A. Scherman, Adv. Mater. 2020, 32, 1906890.
[3] J. F. Patrick, M. J. Robb, N. R. Sottos, J. S. Moore, S. R. White, Nature 2016, 540, 363.
[4] C. E. Diesendruck, N. R. Sottos, J. S. Moore, S. R. White, Angew. Chem. Int. Ed. 2015, 54, 10428; Angew. Chem. 2015, 127, 10572.
[5] K. M. Wiggins, J. N. Brantley, C. W. Bielawski, Chem. Soc. Rev. 2013, 42, 7130.
[6] A. L. Black, J. M. Lenhardt, S. L. Craig, J. Mater. Chem. 2011, 21, 1655.
[7] M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101.
[8] M. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S. R. White, J. S. Moore, Chem. Rev. 2009, 109, 5755.
