A theoretical study of dynamic processes observed in trimethylsilyl-1H-pyrazoles: prototropy and silylotropy

Rosa M. Claramunt1 · José Elguero2 · Ibon Alkorta2

Received: 9 October 2022 / Accepted: 4 November 2022 / Published online: 19 November 2022 © The Author(s) 2022

Abstract
The 1H, 13C, 15N and 29Si chemical shifts of three trimethylsilyl-1H-pyrazoles were calculated and compared with literature results; the calculations were carried out at the GIAO/B3LYP/6–311++G(d,p) level resulting in a very good agreement that allows to predict with confidence the missing experimental values. The prototropic barrier of 4-trimethylsilyl-1H-pyrazole (1) as well as the silylotropic barriers of 1-trimethylsilyl-1H-pyrazole (2) and 1-trimethylsilyl-4-methyl-1H-pyrazole (3) were also calculated and the mechanism was established, the accordance with the experimental values being satisfactory.

Keywords Pyrazoles · Trimethylsilyl · Prototropy · Silylotropy · DFT calculations · GIAO

1 Introduction
Dynamic phenomena are one of the essential aspects of chemistry; some of these phenomena occur without breaking/creating bonds, such as the conformational analysis of molecules [1], while others involve the building and breaking of bonds, the most known being prototropic tautomerism [2]. These processes are studied by dynamic NMR the technique being called DNMR.

Although prototropic tautomerism is important in general organic chemistry, for instance in β-diketones [3], most results come from heterocycles [2], particularly from azoles that have a N-substituted nitrogen atom and a N-unsubstituted one. In pyrazoles (but also in triazoles and tetrazoles), these nitrogen atoms occupy contiguous positions that facilitate the transfer of the migrating atom.

Proton transfer is by far the most common process, but nonetheless other groups can also migrate, among them, silyl groups like the trimethylsilyl (TMS) [4]. In 1998, Larina et al. reported a large series of NMR data in a paper where they wrote, ”C- and N-trimethylsilylazo derivatives were studied by 1H, 13C and 29Si NMR spectroscopy. Degenerated prototropic tautomerism of 4-trimethylsilyl-pyrazole (1) in methanol and the silylotropy of 1-trimethylsilyl-4-methylpyrazole (3) in a neat liquid were investigated for the first time” [5]. [Compound 2 was also studied in this paper (Scheme 1).]

2 Computational details
Density functional theory (DFT) calculations were carried out using the Becke, three-parameter, Lee, Yang and Parr (B3LYP) functional [6–8] together with the 6–311++G(d,p) basis set [9, 10]. Frequency calculations were carried out to verify that the structures obtained correspond to energetic minima (I = 0) or to transition states (TS, I = 1): see Supplementary Information for the geometries of the minima and the TS.

Absolute shieldings were calculated within the GIAO approximation [11]. Empirical equations were used to transform the 1H, 13C, 15N and 29Si absolute shieldings into chemical shifts [12–14]. All these calculations have been carried out with the Gaussian 16 program [15].

3 Results and discussion
There are three compounds under study:
4-Trimethylsilyl-1H-pyrazole (1). This compound was first prepared by Birkofer [16] and studied thoroughly by him [17–20] and other authors [21–26]. (The X-ray structure of 1 has been determined [25].) 1-Trimethylsilyl-1H-pyrazole (2). Again Birkofer prepared for the first time in 1960 [27], we reported the synthesis of 2 in 1968 [28]. The subsequent syntheses were due to O’Brien [29] and to Wrackmeyer [30, 31]. We have devoted several papers to the synthesis and study of this compound [32–38].

3.1 Static part

We have reported in Table 1 the calculated and experimental NMR values concerning compounds 1, 2 and 3. A column called "Prototropy" reports the GIAO calculated values when averaged by prototropy and silylotropy; this affects H3/H5, C3/C5 and N1/N2, for instance, $(7.47 + 7.17)/2 = 7.32$ ppm.

Table 1 NMR chemical shifts, all experimental data from reference unless indicated. Mean values are given in red

Compound	GIAO	Prototropy	Exp. CDCl₃	Exp. CCl₄	Exp. CD₃OD
1 H1	9.06	9.06	12.97	14.58	---
H3	7.47	7.32	7.58	7.50	7.57
H5	7.17	7.32	7.58	7.50	7.57
Me (1H, SiMe₃)	0.20	0.20	0.21	0.22	0.21
C3	143.6	136.4	138.2	---	---
C4	114.5	114.5	113.6	---	---
C5	129.3	136.4	138.2	---	---
Me (13C, SiMe₃)	–1.3	–1.3	–0.2	---	---
N1	–187.2	–130.1	---	---	---
N2	–73.0	–130.1	---	---	---
Si	–15.0	–15.0	–10.35	---	---
Compound	GIAO	Silylotropy	Exp. CDCl₃	Exp. neat liquid	---
2 H3	7.64	7.52	7.79ᵇ	7.65	---
H4	6.19	6.19	6.33ᵇ	6.22	---
H5	7.39	7.52	7.60ᵇ	7.55	---
Me (1H, SiMe₃)	0.36	0.36	0.46ᵇ	0.37	---
C3	142.7	137.2	143.1ᵇ	143.0	---
C4	105.1	105.1	106.0ᵇ	106.3	---
C5	131.6	137.2	132.2ᵇ	133.6	---
Me (13C, SiMe₃)	–2.2	–2.2	–1.1ᵇ	–0.8	---
N1	–161.0	–112.0	–162.9ᵇ–161.1ᵇ	---	---
N2	–63.0	–112.0	–72.5ᵇ–71.4ᵇ	---	---
Si	10.1	10.1	14.6ᵇ	14.2	---
Compound	GIAO	Silylotropy	Exp. CDCl₃	---	---
3 H3	7.50	7.29	7.53	---	---
H5	7.08	7.29	7.39	---	---
Me4 (1H, 4-Me)	2.08	2.08	2.08	---	---
Me (1H, SiMe₃)	0.32	0.32	0.40	---	---
C3	143.9	137.2	144.8	---	---
C4	117.6	117.6	116.9	---	---
C5	130.4	137.2	132.9	---	---
Me (13C, 4-Me)	8.9	8.9	Unreported	---	---
Me (13C, SiMe₃)	–2.2	–2.2	–0.3	---	---
N1	–165.5	–113.2	---	---	---
N2	–60.8	–113.2	---	---	---
Si	9.0	9.0	13.1	---	---

ᵃreference [39];ᵇreference [36];ᶜpure liquid: references[22, 40]
In the case of compound 1 in CD₃OD at low temperature (−90 ºC), only H₃, H₅ and SiMe₃ were reported to appear at 7.70, 7.56 and 0.21 ppm, respectively.

The data of Table 1 were analyzed statistically using the calculated mean values; with regard to CDCl₃, the other solvents (CCl₄, CD₃OD and "neat liquid") do not modify the values in a significant way; on the other hand, the NH proton of compound 1 differs significantly from the GIAO calculated value in the gas phase (9.06 vs. 12.97 and 14.58 ppm), a well-known fact [41]. In the following equation, NH variable corresponds to these differences but statistically calculated.

The resulting equation is Exp. (ppm) = (1.01 ± 0.04) GIAO (ppm) + (4.7 ± 1.6) NH (ppm), n = 50, R² = 0.999. The solvent effect on the NH is 4.7 ppm. Since the slope is 1.01, the missing experimental values of Table 1 should be very close to the calculated ones.

3.2 Dynamic part: barriers

We have summarized in Table 2 the experimental barriers determined by Larina et al. by DNMR for the compounds of Scheme 1 [42]. The barrier of compound 2 (2a/2b equilibrium) was measured by O’Brien & Hrung [29] who reported a value of 133.9 kJ mol⁻¹. Larina et al. [22, 40, 42] using their DNMR data calculate a barrier of 96.7 kJ mol⁻¹, using the temperature of coalescence: Δ𝐺_C = 19.12 * T_C * (10.32 + log T_C/k_C), the temperature of coalescence T_C is 438 K, k_C = (π * Δν/√2, Δν = 11.6 Hz (k_C = 25.8 s⁻¹), and consequently, Δ𝐺_C = 96.7 kJ mol⁻¹.

It is well known that the direct proton transfer in NH-pyrazoles is forbidden resulting in very high barriers; solvent molecules or other NH-pyrazole molecules are necessary to facilitate the transfer [45–49]; these auxiliaries must have centers able to establish hydrogen bonds, either HB acceptors, HB donors or both, like water. To test the reliability of our approach, we have calculated those of the parent pyrazole, as shown in Fig. 1 (all values in kJ mol⁻¹). Similar structures for the unsubstituted pyrazole were published by Oziminski [49] who reported at the MP2/ B3LYP/6-311 + + G(d,p) level a barrier of Δ𝐸 = 81.6 kJ mol⁻¹ to compare with Δ𝐸 = 82.2 kJ mol⁻¹ of Fig. 1, right side. Note that an experimental study has demonstrated the role of water in the prototropy of phenylmethyl-pyrazole [50].

Then, we have carried out the same calculations on 1 obtaining very similar results, i.e., according to the calculations in the gas phase the effect of the 4-trimethylsilyl is insignificant, as shown in Fig. 2. Experimentally, there is a noticeable decrease, from 61.9 to 49.8 kJ mol⁻¹ (12.1 kJ mol⁻¹).

Continuum solvation effects, estimated with the PCM approximation [51], reduce the barrier slightly (Table 3), but it remains overestimated. Considering that the presence of two water molecules continues to be a model, the results are satisfactory. We have also calculated the value with

| Table 2 Dynamic processes present in pyrazole and in trimethylsilyl-1H-pyrazoles. Barriers in kJ mol⁻¹; the calculated values at 298.15 K |
|---|---|---|---|---|
| Pyrazole | Solvent | Barrier | Ref | Δ𝐺 calc |
| Prototropy | Unsubstituted pyrazole | DMSO | 61.9 | [43, 44] | 68.7 |
| | 4-Trimethylsilyl 1a/1b | CD₃OD | 49.8 | [5] | 66.4 |
| Silylotropy | 1-Trimethylsilyl 2a/2b | Neat liquid | 96.7 | [29] | 103.6 |
| | 1-Trimethylsilyl-4-methyl 3a/3b | Neat liquid | 94.4 ± 1.0 | [5, 22] | 102.7 |

Fig. 1 Transition states corresponding to the proton transfer of parent pyrazole. The N–H distances are indicated

Isolated molecule	With one water molecule	With two water molecules
Δ𝐸 = 212.9	Δ𝐸 = 122.6	Δ𝐸 = 82.2
Δ𝐻 = 196.3	Δ𝐻 = 101.7	Δ𝐻 = 54.6
Δ𝐺 = 196.6	Δ𝐺 = 112.2	Δ𝐺 = 68.7

1.243 Å 1.290 Å 1.184 Å
methanol instead of water and PCM/methanol (Fig. 3 and Table 3), obtaining a lower value.

The characteristic out-of-plane TSs of the silylotropy [4] (Fig. 4) are very similar for 2 and 3. The calculated barriers show that the 4-methyl group produces almost no effect, and that of 3 is a slightly lower in agreement with the experimental values (Table 2), but overestimated, ratio calculated/experimental, 1.07 for 2 and 1.09 for 3.

4 Conclusions

Whereas the agreement between calculated and experimental chemical shifts for the three derivatives, 4-trimethylsilyl-1H-pyrazole (1), 1-trimethylsilyl-1H-pyrazole (2) and 1-trimethylsilyl-4-methyl-1H-pyrazole (3), was expected due to our previous experience on these relationships, the part concerning the barriers to the dynamic processes (prototropy and silylotropy) is more complex. When the migrating group is the trimethylsilyl, the calculations do not involve any particular problem and the results are good. On the other hand, prototropy needs the assistance of solvent molecules that other authors [49, 52] and ourselves [45–48] have modeled with water molecules, which is only an acceptable simplification.

![Fig. 2](image1.jpg)

Fig. 2 Transition states corresponding to the proton transfer of 4-trimethylsilyl-1H-pyrazole (1). The N–H distances are indicated

Pyrazole	Solvent	Barrier Ref	+PCM at 298.15 K	+PCM at the T _c^d
Unsubstituted pyrazole	DMSO	61.9 [43, 44]	66.5^a	68.3
4-Trimethylsilyl 1a/1b	CD₃OD	49.8 [5]	64.2^b	61.6
4-Trimethylsilyl 1a/1b	CD₃OD	49.8 [5]	60.4^c	58.4

^aPCM(DMSO) with two water molecules
^bPCM(methanol) with two water molecules
^cPCM(methanol) with two methanol molecules
^dtemperature of coalescence for unsubstituted pyrazole, 337 K, for compound 1, 229 K

![Fig. 3](image2.jpg)

Fig. 3 Transition state of 4-trimethylsilyl-1H-pyrazole (1) with two methanol molecules. The N–H distances are indicated

![Fig. 4](image3.jpg)

Fig. 4 Transition states corresponding to the TMS transfer of N-trimethylsilyl derivatives 2 and 3. The N–Si distances are indicated

Compound 2	ΔE = 103.7	ΔH = 99.3	ΔG = 103.6
Compound 3	ΔE = 102.5	ΔH = 98.0	ΔG = 102.7

![Table 3](image4.jpg)

Table 3 Dynamic processes present in NH-pyrazoles. Calculated barriers in kJ·mol⁻¹ including two water or two methanol molecules and PCM effects

Pyrazole	Solvent	Barrier Ref	ΔE	ΔH	ΔG
Unsubstituted pyrazole	DMSO	61.9 [43, 44]	214.4	197.7	197.6
4-Trimethylsilyl 1a/1b	CD₃OD	49.8 [5]	123.5	102.3	110.6
4-Trimethylsilyl 1a/1b	CD₃OD	49.8 [5]	82.1	55.0	66.4

![Isolated molecule](image5.jpg)

Isolated molecule
ΔE = 214.4
ΔH = 197.7
ΔG = 197.6

![With one water molecule](image6.jpg)

With one water molecule
ΔE = 123.5
ΔH = 102.3
ΔG = 110.6

![With two water molecules](image7.jpg)

With two water molecules
ΔE = 82.1
ΔH = 55.0
ΔG = 66.4
Author contributions
The three authors wrote the main manuscript text.

Acknowledgements
This work was carried out with financial support from the Ministerio de Ciencia, Innovación y Universidades (PGC2018-094644-B-C22 and PID2021-125207NB-C32), Comunidad de Madrid (P2018/EMT-4329). The authors thank the CTI (CSIC) for their continued computational support.

Author contributions
The three authors wrote the main manuscript text.

Funding
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations
Conflict of interest
The authors declare that they have no conflict of interest.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Eliel EL, Willen SH, Mander LN (1994) Stereochemistry of organic compounds. John Wiley & Sons, New York
2. Elguero J, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles. Academic Press, New York
3. Claramunt RM, López C, Lott S, Santa María MD, Alkorta I, Elguero J (2005) Heli Chim Acta 88:1931–1942
4. Alkorta I, Elguero J (1998) J Chem Soc Perkin Trans 2:2497–2503
5. Larina LI, Sorokin MS, Albanov AI, Elokhina VN, Protsuk NI, Lopyrev VA, Larina LI, Voronkov G (2001) Russ J Org Chem 37:149–193
6. Birkofer L, Franz M (1967) Chem Ber 100:2681–2684
7. Birkofer L, Franz M (1971) Chem Ber 104:3062–3068
8. Birkofer L, Franz M (1972) Chem Ber 105:1759–1767
9. Birkofer L, Stuhl O (1980) Top Curr Chem 88:33–88
10. Birkofer L, Kühn T (1981) Chem Ber 114:2293–2299
11. Effenberger F, Krebs A (1984) J Org Chem 49:4687–4695
12. Silva AMS, Sousa RMS, Jimeno ML, Blanco F, Alkorta I, Elguero J (2007) Magn Reson Chem 46:859–864
13. Blanco F, Alkorta I, Elguero J (2007) Magn Reson Chem 45:797–800
14. Elguero J, Alkorta I, Claramunt RM, Cabildo P, Cornago P, Farrán MA, García MA, López C, Pérez-Torrailha M, Santa María D, Sanz D (2013) Chem Heterocycl Comp 49:177–202
15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersons GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lippard F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Yngvar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT
16. Birkofer L, Franz M (1967) Chem Ber 100:2681–2684
17. Birkofer L, Franz M (1971) Chem Ber 104:3062–3068
18. Birkofer L, Franz M (1972) Chem Ber 105:1759–1767
19. Birkofer L, Stuhl O (1980) Top Curr Chem 88:33–88
20. Birkofer L, Kühn T (1981) Chem Ber 114:2293–2299
21. Effenberger F, Krebs A (1984) J Org Chem 49:4687–4695
22. Lopyrev VA, Larina LI, Voronkov G (2001) Russ J Org Chem 37:149–193
23. Gowenlock BG, Richter-Addo GB (2004) Chem Rev 104:3315–3340
24. Seven O, Popp S, Bolte M, Lerner HW, Wagner M (2014) Dalton Trans:4824–8253
25. Pejc M, Popp S, Bolte M, Wagner L, Lerner HW (2014) Z Naturforsch 69b:83–97
26. Onodera S, Kochi T, Kikuchi F (2019) J Org Chem 84:6508–6515
27. Birkofer L, Richter P, Ritter A (1960) Chem Ber 93:2804–2809
28. Elguero J, Rivière-Baudet M, Saïgé J (1968) C R Acad Sci Paris 266:44–47
29. O’Brien DH, Hrung CP (1971) J Organomet Chem 27:185–193
30. Nöth H, Wrackmeyer B (1974) Chem Ber 107:3070–3088
31. Wrackmeyer B (1984) Spectrochim Acta 40A:963–977
32. Gasparini JP, Gassend R, Maire JC, Elguero J (1980) J Organomet Chem 188:141–150
33. Gasparini JP, Gassend R, Maire JC, Elguero J (1981) J Organomet Chem 208:309–315
34. Begtrup M, Elguero J, Faure R, Camps P, Estopá C, Ilavsky D, Fruchier A, Marzin C, Mendoza JD (1988) Magn Reson Chem 26:134–151
35. Elguero J, Claramunt RM, López C, Sanz D (1993) Afinidad 48:383–388
36. Claramunt RM, Sanz D, Santa María MD, Jiménez JA, Jimeno ML, Elguero J (1998) Heterocycles 47:301–314
37. Birkofer L, Balle T, Claramunt RM, Sanz D, Jiménez JA, Mó O, Yáñez M, Elguero J (1998) J Mol Struct (Theochem) 453:255–273
38. Claramunt RM, Sanz D, Alkorta I, Elguero J (2005) Magn Reson Chem 43:985–991
39. Claramunt RM, Sanz D, López C, Jiménez JA, Jimeno ML, Elguero J, Fruchier A (1997) Magn Reson Chem 35:35–75
40. Lopyrev VA, Larina LI, Albanov AI, Sorokin MS, Dolgushin GV (1996) Russ Chem Bull Chem Bull 45:2861–2862
41. Alkorta I, Claramunt RM, Elguero J, Gutiérrez-Puebla E, Monge MA, Reviriego F, Roussel C (2022) J Org Chem 87:5866–5881
42. Larina LI (2021) Adv Heterocycl Chem 76:141–150
43. Litchman WM (1979) J Am Chem Soc 101:545–547
44. Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV (2000) Adv Heterocycl Chem 76:395–417
45. Catalán J, de Paz JLG, Sánchez-Cabezudo M, Elguero J (1986) Bull Soc Chim Fr 429–435
46. Alkorta I, Elguero J (1998) J Chem Soc Perkin Trans 2:2497–2503
47. Alkorta I, Rozas I, Elguero J (1998) J Chem Soc Perkin Trans 2:2671–2675

Springer
48. Trujillo C, Sánchez-Sanz G, Alkorta I, Elguero J (2015) ChemPhysChem 16:2140–2150
49. Oziminski WP (2016) Struct Chem 27:1845–1854
50. Bensaude O, Chevrier M, Dubois JE (1978) Tetrahedron 34:2259–2262
51. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094
52. Secrieru A, O’Neil PM, Cristiano MLS (2020) Molecules 25:42

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.