Lactobacillus Species as Probiotics: Isolation Sources and Health Benefits

Ameera M. Al-Yami1, Abeer T. Al-Mousa1, Sarah A. Al-Otaibi1*, and Ashraf Y. Khalifa1,2

1Department of Biological Sciences, College of Sciences, King Faisal University, Al- Ahsa, Saudi Arabia.
2Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.

Abstract

Recently, the attention to exploring and applying probiotics has been increased. Probiotics are living microscopic organisms that have valuable impacts on health when consumed in adequate amounts. One of the most popular widespread utilized probiotics for many years until now is the **Lactobacillus** species which exemplifies the hugest heterogeneous group among the lactic acid bacteria (LAB) that normally occupy many environments that contain high nutrient levels such as soil, humans, waters, plants, animals and even air without causing any illness. The purpose of this work is to review and demonstrate the wide diversity of lactobacilli isolation sources and related health benefits applications of the strains discovered in order to break the familiar sources of **lactobacillus** spp., thereby encouraging more research into unconventional sources and opening up opportunities for clinical applications of **Lactobacillus** spp. As a result, the isolation sources of **lactobacillus** spp. in this review have been split into two groups based on the environmental condition, including fermented and non-fermented habitats described as lactobacilli probiotic sources. The unique Lactobacilli isolated from various sources are regarded as potential therapies for a variety of illnesses and physiological abnormalities, including immunomodulation, suppression of carcinogenesis, and cholesterol reduction, in addition to their capacity to guard against infections. This will be highly significant for revealing updated information about **Lactobacillus** spp. that has attracted considerable attention due to its potential application in clinical practices.

Keywords: **Lactobacillus** spp., LAB, Probiotics, Health Benefits, Isolation Sources
INTRODUCTION

Probiotics

The probiotic term refers to nonpathogenic living microorganisms that are intended to have beneficial health to humans and animals when consumed in adequate volumes. The term was created from the Greek words Pro (favor) and bios (life).

Probiotics have earned enormous attention due to their valuable impacts on health. Furthermore, probiotics can be considered a healthy alternative therapeutic method to minimize drug resistance due to the excessive use of antibiotics to fight infections in people and animals. They can be helpful for the host by enhancing the intestinal microbial balance in the gastrointestinal tract, strengthening the epithelial barrier, and improving mucosal immunity. In addition, boost-up the immune system and its own antagonistic activity against many pathogens by producing antimicrobial compounds such as bacteriocins. Probiotics can prevent and heal many health issues and diseases including decreasing liver lipids concentrations, common cold, Fever blisters, Lyme disease, improving the general digestion problems, constipation, cancers, cardiovascular diseases, diabetes, allergic diseases, Helicobacter pylori infection, and even relief of anxiety and depression. According to the statement of a conducted study related to antibiotics, probiotics particularly the ones that belong to the genus lactobacillus found powerful enough to kill the HIV-1 virus when given at a high dosage. Moreover, Liggilactobacillus salivarius had the ability to inhibit the formation of carcinogenic biofilms of Streptococcus mutans and Candida albicans reducing its pathogenicity.

Probiotics contain several genera and species of bacteria, yeast, and molds such as Lactobacillus, Bifidobacterium, Candida pintolesii, Streptococcus, Aspergillus niger, Leuconostoc, Aspergillus oryzae, Propionibacterium, Bacillus, Pediococcus, Saccharomyces cerevisiae, and Enterococcus. Among the above-mentioned, the widely used genera belong to bacteria and particularly to the lactic acid bacteria (LAB) mainly represented by Bifidobacterium and Lactobacillus. The LAB that belongs to the genus of Lactobacillus has been one of the most popular and widely used probiotics for many years until now which exemplifies the hugest heterogeneous group among LAB.

Lactobacilli are members of LAB, a diversified group of catalase-negative, Gram-positive, non-spore-forming and anaerobic or aero tolerant, coccobacilli, or rod-shaped that is mainly characterized by the lactic acid production as the main end product of their carbohydrate fermentation.

Lactobacilli occupy many nutrient-rich habitats and environments such as spoiled and fermented food and are found in animal feed, soil, and body of invertebrate and vertebrate animals. They live naturally in our body by inhabiting the digestive tract, oral cavity, genital and urinary system. Members of the Lactobacilli group have been generally renowned as safe (GRAS) by Food and Drug Administration (FDA) due to their frequent abundance in our food like cheese and yogurt without causing illnesses.

Lactobacillus genus characterized by a massive genome possesses a high grade of genetic diversity and physiology which make them a targeted candidate in many important applications, such as the production of fermented food, food bio preservation strategies to prolong the shelf life while guaranteeing their safety, and in health improvement applications. The reason behind the focus on Lactobacillus is due to their vast impact on the host immune system, considered safe in use, show a competitive exclusion, and own a high adhering ability. This work is aimed to review the wide variety of lactobacilli isolation sources and associated health benefits applications of the strains discovered to break the acquainted sources of lactobacillus spp., thus also inspiring more research to isolate new strains from unconventional sources and providing possibilities for more clinical applications.

Taxonomy of Lactobacilli

Lactobacilli were one of the earliest classified bacteria due to their ubiquitous existence in many fermented products. Numerous classifications have been improved since the first description of the Lactobacillus genus by Beijerink in 1901.
The base of the initial taxonomy of lactobacilli was depend on the observable and measurable traits including cell morphology, gram stain, colony appearance, optimum growth temperature, pH tolerance, oxygen requirements, and pathways for carbohydrate fermentation which classified lactobacilli according to the type of fermented sugars and fermentation products into three general groups; obligate homofermentative, facultative heterofermentative and obligate heterofermentative. In the 1980s, with the entrance of bacterial taxonomy the genetic age, genotypic and chemotaxonomic characteristics were used in classification. The availability of 16S rRNA sequencing allowed the first phylogenetic analysis of the Lactobacillus which uncovered an extensive diversity by the generation of a true phylogenetic tree that contributed to the development of the taxonomy of lactobacilli. After the evolution of molecular techniques, most species have been named again and some reclassified to other genera. Based on NCBI taxonomy, the current taxonomic hierarchy for Lactobacillus is Domain: Bacteria, Phylum: Firmicutes, Class: Bacilli, Order Lactobacillales, Family Lactobacillaceae, Genus: Lactobacillus.

The Lactobacillus genus implicates more than 200 species distinguished by phylogenetic and metabolic diversity. About 540 species and 54 subspecies of this genus have been identified according to the online database of List of Prokaryotic names with standing in Nomenclature (LPSN) (http://www.bacterio.net/lactobacillus.html) which is classified by the taxonomy requirements of the International Code of Nomenclature of Prokaryotes such as L. achengensis. Lactobacillus delbrueckii subsp. bulgaricus appears to be adapting to conditions in fermented products, as evidenced by a rapid and continuing decrease in the size of the genome. As a result, despite the fact that the vast majority of the strain types were obtained from fermented foods, they are improbable to serve as Lactobacillus' main habitat. Lactobacillus species can be isolated directly from a variety of natural and man-made fermented environments and products:

Dairy Products

Probiotics are used in a variety of dairy products, including sour/fermented milk, cheese, yogurt, butter/cream, new-born formula, and ice cream, according to the dairy industry. Probiotics are also utilized as starting cultures in conventional starters, either alone or in combination, or integrated into dairy products after fermentation, where their presence adds many functional characteristics to the fermented product (for example, improved taste, aroma, and textural characteristics), as well as conferring many health-promoting effects.

The fermented milk includes multiplex species of LAB and hence serve as an excellent probiotic supply. It should come as no surprise that Streptococcus thermophilus and L. delbrueckii...
subsp bulgaricus are the most prevalent microbiological communities were found recently in the fermented yak milk (Kurut). Furthermore, probiotic lactobacillus strains and yeasts were identified from kefir grains, Koumissm, a fermented milk drink; and Masai milk; these bacteria have the capacity to favorably alter immunological responses.

Some products, such as yogurt, cheese, and butter, can benefit from the addition of starting cultures made from milk or milk alone. In comparison to the traditional Luria-Bertani medium, milk whey, a dairy by-product from the cheese manufacturing industry, is utilized to develop LAB to create more lactic acid. As a result, it might be one of several sources from which advantageous LAB strains can be obtained (Figure 1).

Meats
LAB strains used to be detected in a variety of traditional fermented foods, such as beef, fish, pork, and seafood. Enterococcus is the most common LAB strain recovered from fermented crustaceans and fishes, whereas Lactobacillus is the most common LAB obtained from fermented meats and plants. Due to the complex components of meats, LAB extracted from such environments is likely to be more diversified functionally and physiologically and it is likely to provide further therapeutic applications than LAB isolated from other sources (Figure 1).

Grains, Fruits & Vegetables
Lactobacilli strains from Plant-derived LAB are the most halophilic and flourished at NaCl concentrations greater than 22%. Significance species of lactobacillus were collected from fermentation condition of the plant parts are L. plantarum and L. fermentum. In addition, the various basic substance of dry wheat, garlic, olives, as well as parsley used in fermented food are high in LAB and may be tested for probiotic strains.

Lactobacilli isolated from the natural brine of Algren, green olive fermented, was discovered in recent research. Several health benefits can be obtained from L. buchneri P2 as a potential probiotic collected from pickle juice was proved to have properties of antimicrobial activity, cholesterol reduction, and tolerance to acid and bile juice.

Lactobacillus spp. or Leuconostoc spp. Were represented the majority of LAB isolated in a study from sauerkraut fermentations and investigated to discover their probiotic properties and determined genotypic and phenotypic characterization of the isolates were found in four different sauerkraut fermentations (Figure 1).

LAB isolated from manufactured fermented products that basically contain plant parts are generated due to the contamination conditions during production processes or from endophytes bacteria. Endophytes lactobacillus spp. recovered from plant parts have the capacity to survive in a wide variety of PH gradients, allowing LAB to be separated from mild PH conditions of plant tissues or surfaces. lactobacilli did, however, exhibit a definite preference for improved development in a low pH environment.

Traditional Food & Beverages
Many of the isolated species of Traditional fermented foods and drinks flourished in NaCl concentrations of less than 6%. Traditional Thai salted crab also contains NaCl-like LAB (Poo-Khem). The fish dressing is identified as meal prepared under fermentation condition created from various basic ingredients including fish and shellfish. Probiotic isolates of L. plantarum was isolated from fermented soybean, popular traditional food in India, in addition, other genera of LAB including Lactobacillus, Vagococcus, Weissella, and Enterococcus were discovered.

After conducting several tests to determine LAB genera isolated from natural fermented dry sausage, L. plantarum and L. brevis have been identified as the crucial lactobacillus spp. The majority of L. plantarum isolates from LAB came from traditional fermented Turkish beverages (Boza). To overcome Bacteria that cause disease including B. subtilis, B. cereus, E. coli, P. aeruginosa, L. monocyctogenes, and K. pneumoniae, the antagonistic activity of isolates was examined by produced substances (primarily hydrogen peroxide and organic acids). In addition, various studies reported that probiotic LAB was collected from ungerminated cereal crops mixed with millet cereals known as (Kunu-zaki) as a traditional fermented beverage in Nigeria (Figure 1).
Lactobacilli utilized in traditional meals are either mesophilic or thermophilic, depending on the kind of ingredients and preparation circumstances, and may live at low temperatures as Psychrophilic bacteria. Lactobacillus spp. thrive in a wide range of temperatures, putting them at the forefront of bacterial species found in traditional meals.

Waste & Sewage

L. delbrueckii is one of the other species of lactobacillus that can be obtained from Fermented veggies that were discarded and inhibited the development of various harmful bacteria such as E. coli, P. aeruginosa and P. vulgaris. Lactobacilli can be discovered in sewage due to fecal contamination. Potential probiotics had been located in diffusion of areas of the human body, consisting of human feces remoted from each healthful adult and youngsters and breast-fed newborns (Figure 1).

Lactobacilli found in waste or sewage come from a variety of original environments, including humans, animals, and plants. Because of the abundance of complex components and the availability of growth nutrients, waste circumstances enable optimal development for Lactobacillus spp.

From Non-fermented Biological Sources

Traditional Food & Beverages

In numerous traditional non-fermented drinks have an excessive number of probiotics. Non-fermented drinks are created from a range of ingredients, including grains, millets, fruits, legumes, and vegetables.

These meals and beverages are mostly composed of fresh items infected with lactobacillus spp., such as "waldorf" salad (Figure 1).

Grains, Fruits & Vegetables

Microorganisms containing Probiotic properties may be isolated from raw materials of plant origin including fruits and their liquids, honeycomb, cereals, and dirt. *L. plantarum* specifically and many other LAB strains were isolated in a study from different kind of fruit juices, whereas *L. mesenteroides* is seldom isolated from fruits, however, it has been found in tomato. Another growing medium may be utilized to produce LAB and isolate lactobacilli from origin including pineapple waste and tomato juice. *Lactobacillus kunkeei* is one of the most common strains from the majority of Lactobacillus spp. among LAB. These species have been shown to have antibacterial properties against yeast development as well as spoilage-related effects.

Figure 1. Diagram of various sources of lactobacillus spp. identified as probiotics
in honey by yeast. Several studies have indicated that fruit juice, vegetables, and long grass may be used to isolate LAB. Green olives were used to isolate \textit{L. plantarum}, \textit{L. pentosus}, and \textit{L. paracasei}, whereas \textit{L. mesenteroides} and \textit{L. pentosus} were isolated from dark olives.

Several characteristics were examined to identify the probiotic potential of specific strains after isolation in a propitiate nutrient media of LAB. Plants Sources like papaya, yam, cassava, sugarcane, and taro leaves were confirmed to contain isolates of \textit{lactobacillus} spp. by reading the sequence of 16S rDNA of the samples, species were recognized as \textit{L. paraplanarum} and \textit{L. plantarum} isolated from crops leaves.

According to one study, these LAB isolated from plant sources may not be present in the regular microflora of plants grown recently, \textit{lactobacillus} spp. can be isolated from dead plants or raw materials such as olives, cabbage, carrots, beets, and fruits (for example pears and grapes). However, identification of \textit{lactobacillus} spp. from surfaces of flowers or in the tissues of the other plant parts is restricted.

The leaves of \textit{P. aquilinum} and, Aloe Barbadensis, also seeds of \textit{L. usitatissimum}, roots of \textit{D. carota}, and flowers of \textit{P. cerasifera} were investigated, and 14 distinct LAB were identified as Lactococcus and \textit{lactobacillus} as well as 8 various enterococci. species were initially identified by API kit, and then again analyzed given information by PCR technology, which corroborated the biochemical outcomes. The strains of LAB were isolated from plants’ parts comprised of \textit{lactobacillus delbrueckii} subsp. \textit{Bulgariicus}, \textit{lactobacillus brevis}, \textit{Lactococcus lactis}, \textit{Lactobacillus acidophilus}, and some species of \textit{Leuconostoc} (Figure 1).

The epiphyte \textit{lactobacillus} spp. outnumbered the endophyte bacteria, the reason may back to the species coming from surrounding sources such as animals, humans, waste, and soil. Climate, geographical factors, plant type, resident microbial communities, and Physical factors of the environment can impact \textit{lactobacilli} dispersion in plants.

Vertebrate & Invertebrate

Animal intestines, according to Siddique et al., are the most likely source of LAB. Several probiotic strains have been identified from human sources, including human breast milk, from various regions of the human body.

the non-sterile breast milk, even if amassed aseptically, still makes the chance of containing isolates of \textit{lactobacillus} spp. in high odds. Breast milk bacteria were long thought to be the result of cutaneous or fecal infections. Although genotypes of \textit{lactobacillus} spp. in breast milk differ from the genes of the isolates \textit{lactobacilli} collected from the skin, also the strains of LAB detected in breast milk also were discovered inside newborns’ excrement. \textit{lactobacillus} spp. can be found in numerous amounts in breast milk as a natural source of probiotics to be for incorporation into food products.

\textit{lactobacillus} species are among the most common bacteria isolated from breast milk, also its consumption promotes the predominance of one more source of probiotics in the human intestinal tract. over 500 various species of bacteria can be obtained from the stomach of adult humans. Indeed, many of today’s probiotic strains, including \textit{L. gasseri} and \textit{L. reuteri}, were isolated from this source. It’s a common misconception that the digestive tract should be the sole residence for the probiotics strains to be more beneficial.

Probiotics are present in the stomachs of many animals, including rats, pigs, and even chickens. Lately, strains of \textit{lactobacillus johnsonii}, collected from \textit{Apis mellifera} stomach, were proven to boost honeybee colonies. Probiotics’ isolates were also identified from the digestive tract of freshwater and marine fish, including \textit{Carassius auratus gibelio}, \textit{rainbow trout}, and \textit{shrimp}.

\textit{In vitro} research has shown that some strains of bacteria obtained from meats (\textit{lactobacillus sakei}, \textit{Staphylococcus carnosus}, and \textit{lactobacillus curvatus}) and fruits (\textit{L. plantarum} and \textit{L. paracasei}) exhibit functional and metabolic features comparable to bacteria of adult’s intestine.

\textit{lactobacilli} may be isolated consistently from a broad variety of insects, including bees and flies, as well as vertebrates such as rodents, birds, people, and agricultural animals. Because scientific research has mostly concentrated on domesticated animals and people, the host range is likely to be substantially greater.

\textit{lactobacilli}
tend to favor food storage organs in animal hosts, such as the crop and forestomach. Insects including bees, flies, bumblebees, and vertebrates’ organs were used to isolate lactobacillus species. Digestive tract, mouth cavity, vagina, and saliva and feces of healthy adults can be considered as non-fermented sources of lactobacillus isolates. Tajabadi et al. extracted LAB from honey collected from massive honeybees. Lactic Acid Bacteria (LAB) from ten healthy wild giant freshwater prawns’ stomachs and hepatopancreas, Macrobrachium rosenbergii, were identified in a recent study to investigate native probiotic strains for additional uses. According to the findings, two LAB isolates, L. plantarum and E. faecalis, have been recommended as prospective Probiotics derived from huge freshwater prawns to enhance the aquaculture sector (Figure 1).

The presence of Lactobacillus spp. species in many terrestrial and marine organisms gives a clear indication of the concept of one health approach. Therefore, the balance of these species in other organisms and environments can provide solutions for environmental balance, food security, and public health alike.

Environmental Sources

Environments around food products, for example, have also been isolated as unconventional sources of high potential probiotics.

Air

The air in the surrounding environs, as well as the air in a bakery’s storage and working rooms, can be a source of lactobacilli during the sourdough preparation process. L. plantarum was discovered in the samples, which is comparable to the one collected from the dough. In addition, Lactobacilli were isolated from the air around palm plants (Figure 1).

Soils

Probiotic bacteria isolated from soil in Japan and Taiwan have been discovered and categorized. In order to isolate LAB in Japan and Taiwan, 68 soil samples were collected from various animal areas including the area surrounding the horse farm and floors of the henhouses. Several tests were conducted Physiologically and genetically to determine strains of LAB. 54 out of 68 isolates identified as LAB. This clearly indicates the existence of LAB in significant numbers. According to the findings, dirt may be a frequent source of lactic acid bacteria isolation.

Aquatic Environments

In aquatic environments, scientists are interested in isolates from the gastrointestinal tract of marine organisms. Lactobacillus spp. were collected from the GIT of several fish and shrimp. However, the environment surrounding and hydroplanktons that form as nutrients for the marine organisms are rich in probiotic strains (Figure 1).

The Significant Roles of lactobacillus Species in Our Life

Human has very tight contact with an enormous number of microorganisms that exist in the mouth, skin, or in gut. Some of them possess remarkable health functions such as inducing the immune system, owning an agnostic activity against invading pathogens, enhancing the digestion process, and amending many diseases. There are many identified Lactobacillus species that have been reported as probiotics and have beneficial effects on health (Figure 2).

Protection against Pathogens

Inhibiting the growth of pathogens is one of the ways probiotics benefit human health. These probiotics compete for resources that pathogens would use for growth and proliferation. As a result, they provide protection against pathogens colonization by causing direct death and competing for resources.

In the Gastrointestinal Tract

Probiotics are one of the most effective ways to influence human health and disease by balancing the gut flora. Several studies demonstrated the role of Lactobacillus as a probiotic against many pathogens such as Lactobacillus acidophilus is safe for human epithelial colorectal cells and efficacious enough to be utilized as a supplementary
treatment for reducing toxin generation in *Vibrio cholerae* and *Shigella dysenteriae* caused acute infectious diarrhea.101

Furthermore, it was reported that taking *Lactobacillus rhamnosus* HN001 on a regular basis lowered the risk of *Staphylococcus aureus* carriage in the human gastrointestinal tract (GI). Competitive inhibition is the key possible mechanism of *L. rhamnosus* HN001, in which pathogen colonization is limited by beneficial commensal microbes out-competing them for vital resources in the GI tract.102

In another study, Jun Meng and others found that the surface layer protein (SLP) of *Lactobacillus casei* fb05 might reduce *Escherichia coli* and *Salmonella*’s harmful effects on the digestive tract in two ways: by lowering pathogen adherence and avoiding apoptosis caused by pathogens.103

The leading cause of disruption of the normally protective gastrointestinal microbiota is *Clostridium difficile* infection (CDI) and antibiotic usage is a common cause of this condition. However, the supplementation of a certain probiotic combining *Lactobacillus casei*, *L. rhamnosus*, and *L. acidophilus* strains has been shown to be effective in inhibiting a number of undesirable consequences, including CDI and antibiotic-associated diarrhoea.104 The information about the gut microbiome is constantly accumulating which has heightened the interest in gut microbiome-based healthcare (Figure 3).

Because of the strong connections between gut microbiota, health, and disease, there is a lot of interest in utilizing probiotics to alter the gut microbiota in order to treat or prevent certain diseases. However, more research is required to ascertain which probiotic species and strains, dosage, and duration of treatment are efficient. It is also necessary to look into any potential probiotic-diet interactions and interindividual variability that may result in disparate responses to probiotics.

In the Vaginal Tract

There are a variety of normal mycobacteria and microbiota that colonize the human vagina, but *Lactobacillus* is the most prevalent bacteria

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{probiotics.png}
\caption{Reported *Lactobacillus* species as probiotics}
\end{figure}
found in the normal vaginal tract. These vaginal lactobacilli have been claimed as having the ability to prevent disease invasion by controlling their population.105

Lactobacillus has been shown to have fundamental probiotic effects against infections in the vaginal tract in several investigations. Fermentation of Lactobacillus acidophilus KS400 has been shown to generate bacteriocin that prevents urogenital pathogens growth like \textit{G. vaginalis}, \textit{S. agalactiae}, and \textit{P. aeruginosa}.106

In addition, Lactobacillus acidophilus GLA-14 and Lactobacillus rhamnosus HN001 exhibit antibacterial activities against several pathogens that were responsible for aerobic vaginosis (\textit{Staphylococcus aureus} and \textit{Escherichia coli}) and bacterial vaginosis (\textit{Atopobium vaginae} and \textit{Gardnerella vaginalis}) by means of a co-culturing assay.107

The \textit{L. Plantarum} new isolates called ZX1, ZX2, ZX27, and ZX69 were found to limit \textit{Gardnerella vaginalis} growth, the Bacterial vaginosis causative agent.108

In another study, they demonstrated that the major Lactobacillus species linked to a healthy vagina is \textit{L. crispatus} may effectively block the growth of \textit{C. Albicans} and the formation of hyphae. In an NRG1-dependent way, \textit{L. crispatus} may also suppress the hyphae-specific gene expression (ALS3, HWP1, and ECE1). Furthermore, \textit{L. crispatus} B145 is an excellent candidate for probiotic research.109

Also, a Lactobacilli dominated vaginal ecology has the ability to protect the host from human immunodeficiency virus (HIV) and sexually transmitted infections (STIs).110,111

\textit{L. crispatus} BC3 and \textit{L. gasseri} BC12 protect isolated cells and ex vivo tissues from infection with the Human Immunodeficiency Virus 1 (HIV-1) by releasing their extracellular vehicles (EVs) this finding could lead to new HIV-1 prevention measures for male-to-female sexual transmission112 (Figure 3).

Moreover, Lactobacillus shows to be a promising influence to use in the prevention of vaginal infections such as vulvovaginal candidiasis (VVC) and bacterial vaginosis (BV).105

To reduce the need for antimicrobial medications, a complementary method involving Lactobacillus to correct the imbalance of vaginal microbiota is urgently needed. To treat the heterogeneity of probiotic effectiveness, there should be more scientific investigations on the effectiveness of probiotic lactobacilli against vaginal infection.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Different Lactobacillus species identified as human body protectors against various pathogens in the gastrointestinal tract, the vaginal tract, and the skin.}
\end{figure}
In Skin Health

The skin is one of the largest organs in the human body, and it serves as a vital barrier and protective barrier against pathogen invasion.113 For many years, various studies on *Lactobacillus* and skin health have been published, including prevention of skin illness and improvement of skin diseases.

Several studies have shown that exogenously applied *lactobacilli*, for example *Lactobacillus rhamnosus* GG and *Lactobacillus reuteri* DSM 17938 have been found to have anti-pathogenic properties both directly and indirectly. *Lactobacilli* or their lysates, through direct binding interactions, can prevent infections from adhering to keratinocytes or actively displace adherent pathogens, as proven *in vitro* against *S. aureus*. For *L. rhamnosus* GG at least in part, these effects appear to be caused by SpaCBA pili, it has a high level of adhesion to human keratinocytes;114-116

Furthermore, live *L. reuteri* DSM 17938 demonstrated antibacterial activity against pathogens on the skin including (*Streptococcus pyogenes* M1 *Staphylococcus aureus*, *Pseudomonas aeruginosa*, and *Cutibacterium acnes* AS12).116 Exopolysaccharides and the primary peptidoglycan hydrolase Msp1 were identified as important components of *L. rhamnosus* GG that reduced *C. albicans* hyphae production and attachment to host epithelial cells.117

Under the influence of *Lactobacillus pentosus* KCA1, *L. rhamnosus* GG, and *L. plantarum* WCFS1 has greatly reduced the lipase activity of *Cutibacterium acnes* that helps in the conversion of sebum into free fatty acids, contributing to acne (Figure 3).

These mechanistic insights have already been converted into positive therapeutic outcomes in a few clinical trials, demonstrating that topically applied *lactobacilli* can colonize the skin for a short period of time and improve skin health. However, in order to generate *in vivo* mechanistic insights and in-depth skin microbiome analyses, more and larger clinical studies are required.118,119

Numerous novel probiotic products are being developed for the treatment of various skin problems as a result of these studies on the gut and skin microbiomes, which have produced some extremely insightful findings. Additionally, Eczema, atopic dermatitis, acne, and allergic inflammation are just a few of the skin conditions that probiotic bacteriotherapy may help prevent and treat. It may also help reduce skin hypersensitivity and help protect against UV-induced skin damage and wounds. It can also be applied topically.

Combating Physiological Disorders

Lactobacillus probiotics have demonstrated effectiveness in a variety of clinical disorders and conditions ranging from diarrhea, female urogenital infection, *Helicobacter pylori* infections and inflammatory bowel disease to cancer98,119 (Table).

The impact of gut microbiota on host physiological regulation has recently gotten a lot of attention, especially in crucial areas including the immune system and metabolism.153

Immunomodulation

The immunomodulatory activities of probiotics can act both directly and indirectly. Directly such as by increasing the activity of natural killer cells or macrophages modulating the secretion of cytokines or immunoglobulins. Indirectly by competitive exclusion of other (pathogenic) bacteria, enhancing the gut epithelial barrier and altering the mucus secretion.154

Anti-commensal antibodies, innate cytokines, and Th17 responses were all reduced after oral gavage with *L. reuteri*, reducing immunological hyper-reactivity (Table). Also, autochthonous *Lactobacillus* may also aid in the restoration of immunological homeostasis and the resolution of infectious illness.155

Lactobacillus-free (LF) mice were used to establish the physiological relevance of *L. reuteri*’s immunological effects *in vivo*.156,157 Proinflammatory cytokines and chemokines generated by intestinal epithelial cells in the ileum and jejunum were activated as a result of the administration of *L. reuteri* in this animal.158

Furthermore, probiotics have been shown in multiple studies to strengthen the integrity of the intestinal barrier by increasing gene expression in tight junction signaling. By tight junctional protein phosphorylation, enhancing (actinin, occludin) cytoskeletal or preserving (actin, ZO-1). *L. acidophilus* inhibited enter invasive *E. coli*.
Table. Uses of Lactobacillus spp. as probiotic against various human diseases. The clinical outcomes had been conducted on humans as a subject.

Probiotic	Effective against	Clinical outcomes	Ref.
L. reuteri	Bowel diseases	Improved inflammation along with increased cytokine expression levels	120
		restoration of gut flora and the prevention of diarrhea.	
	Coxsackieviruses	Reduce the antiviral activity	28
	Periodontitis	Reduced abundance of the pathogenic bacterium	122
	Gingivitis	Decreased bleeding during chewing gums containing probiotics	123
	Type 2 diabetes mellitus	Beneficial effects on patients	124
	Diarrhea	Minimize the frequency and period of diarrhea	125
	Respiratory tract infection	Decrease the rate of the infection	125
	H. pylori infection	Lower the pathogen load in the stomach.	126
	Cholesterol	Reduce cholesterol levels.	127
L. salivarius	Halitosis	Enhanced physiologic halitosis and appeared beneficial impacts on bleeding from	128
		the periodontal pocket	
	Atopic dermatitis	Enhance scoring atopic dermatitis and itch values from baseline	129
L. gasseri	Obesity	Reduce the risk of obesity by lowering NEFA levels	130
	Chronic Stress	Enhance sleep quality and mental state	131
L. casei	Influenza virus (H3N2) respiratory tract infection	Decreased prevalence of symptoms	132
		lowering the infection occurrence and duration of the upper respiratory tract.	
L. fermentum	respiratory tract infection	Decreased prevalence of symptoms	133
	Conjunctivitis	Lowered the incidence of conjunctivitis in infants.	135
L. johnsonii	Type 1 diabetes	Provide prevention against T1D	136
L. acidophilus	Autism disorder	Improved concentration and carrying out orders	137
	Perennial allergic rhinitis	Reduced the symptoms	138
L. plantarum	Irritable bowel syndrome	Relief the abdominal pain and reduce the bloating	139
	Autism Disorder	Improve some autism symptoms	140
L. helveticus	Neurological and psychiatric diseases	Beneficial psychological effects in healthy humans	141
	Cognitive fatigue	Enhancement of cognitive function.	142
L. paracasei	respiratory tract infection	Decreased prevalence of symptoms	133
	Allergic rhinitis	Reduction of nasal symptoms	143
L. delbrueckii	influenza virus	Help by preventing the infection	144
L. crispatus	Urinary tract infections	Decreased recurrence	145
	Vaginal wounds	expedite vaginal epithelial cell wound healing	146
L. rhamnosus	severe watery diarrhea	Reduce the duration and frequency of diarrhea	147
	Dental caries	lowered Streptococcus mutans counts	148
	Bacterial vaginosis	Decreased pH and the rate of recurrence.	149
	allergic disease	Protect and reduce the eczema symptoms.	150
	Respiratory and gastrointestinal tract infections	Decreased the danger of infection, and the duration of symptoms	152
invasion and adhesion in the human colon cancer cell line (HT29) and Caco-2 cells.159

Inhibition of Carcinogenesis

It is well proven that *Lactobacillus* can modulate-ameliorate specific mechanisms against cancers via stimulating anti-cancer effects like enhancing apoptosis of cancer cells and protecting them from oxidative stress.

Probiotic bacteria, particularly *Lactobacillus* microorganisms, have been reported to cause anti-cancer action through increasing apoptosis of cancer cells and the protection against oxidative stress.160,161

In similar research involving colon cancer, it was demonstrated that the administration of *L. fermentum* NCIMB 5221 and *L. acidophilus* ATCC 314 in a murine colon cancer model had been discovered to stop or slow the growth of the tumor by triggering an anti-cancer immune response.162

Moreover, in mice models of colorectal cancer and melanoma, it has been shown that the administration of live *L. rhamnosus* GG orally enhanced the antitumor effectiveness of anti-programmed cell death 1 (PD-1) immunotherapy by boosting tumor-infiltrating dendritic cells (DCs) and T cells.163

In addition, *L. paracasei*, *L. casei*, *L. fermentum*, and *L. rhamnosus* were the most frequently isolated species from head and neck cancer patients. moreover, *L. paracasei* had the highest proportion of antimicrobial activity and the best acid-producing capacity against *S. mutans*.164

Probiotics might alter the microenvironment of the intestine, causing pro-inflammatory cytokines to decrease. As in the study of Zaharuddin and his group they have shown that pro-inflammatory cytokines were reduced in colorectal cancer patients by using probiotics consisting of six live *Lactobacillus* and *Bifidobacteria* strains.165

In addition, *L. paracasei*, *L. casei*, *L. fermentum*, and *L. rhamnosus* were the most frequently isolated species from head and neck cancer patients. moreover, *L. paracasei* had the highest proportion of antimicrobial activity and the best acid-producing capacity against *S. mutans*.164

Probiotics might alter the microenvironment of the intestine, causing pro-inflammatory cytokines to decrease. As in the study of Zaharuddin and his group they have shown that pro-inflammatory cytokines were reduced in colorectal cancer patients by using probiotics consisting of six live *Lactobacillus* and *Bifidobacteria* strains.165

In addition, in breast cancer metastases in a mouse model, it has been shown that the fermentation of milk by *Lactobacillus casei* CRL431 (probiotic fermented milk (PFM) help in breast cancer metastases by altering the immune response.166

Furthermore, probiotic *L. rhamnosus* MD 1 produced metabolites that exhibited both cytotoxic and antigenotoxic potential against colon cancer.167

Another study has shown that *lactobacillus* E6-1 can inhibit the proliferation of Cal-27 and effectively induce apoptosis of tumor cells *in vitro*.168

The exopolysaccharide (EPS) generated by *L. plantarum*-12 was found to suppress the colon cancer cell line's proliferation HT-29 in humans via the mitochondrial route.169

The findings of a study about colorectal cancer (CRC) suggested that consuming *Lactobacillus acidophilus* in persons with polyps and people that have a family history of CRC may be a means to prevent, treat, or lower the severity of CRC.170

Because of their activity against cervix cancer cells, other research suggests that *Lactobacillus casei* SR1, *L. casei* SR2 and *L. paracasei* SR4 strains derived from the breast milk of humans can be employed as topical therapy with a potential therapeutic index.171

The results of recent investigations support the hypothesis that probiotics may be used in cutting-edge cancer treatments. Therefore, to validate these findings and develop treatment plans, additional research on the subject is required. This could theoretically result in a breakthrough in many areas of medicine, including the support of immunotherapy in the treatment of cancer and the development and production of novel vaccines, as well as the improvement of drug delivery in the treatment of other bowel diseases while simultaneously preventing and reducing inflammation.

Reduction of Cholesterol Level

Numerous studies have demonstrated *Lactobacillus* potential to lower cholesterol levels. Such as In C57BL/6 mice fed a hypercholesterolemia diet, *L. plantarum* H6 lowered serum cholesterol levels. It improved the microbial community of intestinal structure in mice by preventing the pathway of farnesoid X receptor to increase the synthesis of bile acids *in vivo* via promoting the expression of the CYP7A1 gene.172 (Table).

It was shown that *L. plantarum* Y55 can reduce the level of cholesterol by 84% due to its ability to remove cholesterol *in vitro*. furthermore,
in male Wistar rats, probiotic supplementation was observed to lower serum total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels.173

There is evidence that consuming probiotic-rich dairy products lowers blood cholesterol, which could help prevent diabetes, obesity, cerebral stroke, and cardiovascular disease.174

\emph{Lactobacillus}, such as \emph{L. fermentum}, \emph{L. plantarum}, and \emph{L. acidophilus} decrease cholesterol and ameliorate the advancement of nonalcoholic steatosis. Thus, \emph{Lactobacillus} can be used as a beneficial strategy for non-alcoholic fatty liver disease (NAFLD) treatment.175

Furthermore, the administration of \emph{L. rhamnosus} BFE5264 resulted in a major reduction in serum cholesterol in a mouse model fed a high-cholesterol diet and changes in the gut flora and the production of short-chain fatty acids were also observed (SCFA). Also, this strain has a positive impact on the metabolism of cholesterol in the liver in a manner like that resulting from statin treatment, which is a drug that can inhibit the biosynthesis of cholesterol in the liver.176

\emph{Lactobacillus kefiri} DH5 has anti-obesity benefits via lowering the lumen cholesterol and upregulating the PPAR gene in adipose tissues.177

\emph{Lactobacillus} spp. were also tested for their effect on cholesterol metabolism in mice fed a cholesterol-rich diet. The consumption of LP06CC2 inhibited the hepatic damage indices as well as the increase of liver cholesterol. The deconjugation of bile acids was clearly boosted by LP06CC2, indicating that bile acid absorption was reduced. LP06CC2 appears to be a promising \emph{Lactobacillus} for lowering cholesterol levels by modulating deconjugation of bile acid.179

Probiotics’ effects on total cholesterol levels have been thoroughly studied. Researchers have made an effort to elucidate the mechanisms of probiotics on the hypocholesterolemic effect through \emph{in vitro} and \emph{in vivo} experiments in order to explain the variable cholesterol-lowering effect displayed by distinct probiotic strains. Numerous theoretical explanations and experimental data focusing on cholesterol-lowering effects are still debatable. Therefore, better-designed \emph{in vivo} studies may reveal more information that can help resolve disagreements, better understand underlying mechanisms, and determine whether a substance is safe to consume before it is used.

Probiotics as “One Health” Perspective

According to the World Health Organization, One Health is an integrated, unified strategy aimed at continuously balancing and optimizing the health of humans, animals, and ecosystems; in order to intimately connect the interdependence of all these domains.

Increasing the risks of antibiotic resistance and pathogen transmissibility between humans and animals, changing climatic conditions, people’s migrations, and increasing the rate of communication are all factors that have contributed to disease spread and will require the application of the concept of “one health.” Some of the most often used antimicrobial medications in animals, for example, are likewise reserved for the most difficult cases in humans.

Beneficial domestic multi-dominant agents such as probiotics, which are used to dwell in ecosystems and organisms, can apply the "one health" principle. Ecosystems contain and maintain the most biodiversity on the planet, which may be transmitted to humans via animal and plant products. Probiotics found in soil and plants are primarily favorable to humans and animals. Probiotics, which demonstrate dynamic relationships with different bacteria across the animal and plant kingdoms, developed alongside plants, invertebrates, and vertebrates, forming mutualism, symbiosis, commensalism, or even parasitic behavior with their hosts. \emph{Lactobacillus} spp., with their ability to colonize the phyllosphere, endosphere, and rhizosphere, as well as the fruits and flowers of many plants, make these probiotics species suitable for achieving the "one health" notion.

The diverse \emph{Lactobacilli} isolation sources, as well as the species' capacity to transmit and reside in multiple locations and habitats, enhance the implementation of the “one health” concept. Many studies have shown that \emph{Lactobacillus} spp.
can restore environmental balance and enhance human and animal health. For example, in human health, the remarkable flexibility and adhesion of lactobacilli in the host’s gastrointestinal system may help enhancement of the host’s gut health. Furthermore, lactobacilli species may be useful as plant growth promoters. Probiotics with the ability to ferment a wide range of carbohydrates, probiotic benefits on human and animal health, and are found in vegetables, dairy products, pickles, sauerkraut, cheeses, fish products, and sausages are likely the greatest candidates for "One Health."

Improving the quality of animal products, increasing production and food security, and lowering the risk of pathogenic agents can all be accomplished by using probiotics as nutritional supplements in scientifically studied ways, in addition to providing an alternative solution to the use of antibiotics. Despite its critical and helpful properties, a high concentration of lactobacillus spp. in food can induce food spoilage.

CONCLUSION AND FUTURE PERSPECTIVES

Almost a century after Lactobacillus species were initially characterized, researchers are constantly working to identify new Lactobacillus species from previously unknown sources. Probiotics may be found in a number of locations; however, as development techniques have been employed, scientists have begun to seek probiotics in unorthodox sources that can aid in the discovery of novel probiotic strains such as non-dairy fermented goods and inanimate surroundings. Lactose-intolerant persons are given probiotics obtained from plant sources, which also demonstrate potential new antibiotics activities of isolates that can be utilized as a replacement or supplement to current chemical antibiotics. Lactobacillus species may be separated from fermented and non-fermented biological sources, as well as from environmental sources. The lactobacilli's unique habitat features and wide range of environments indicate the possibility of searching for and isolating new lactobacillus probiotics strains from unexpected sources.

It’s far viable that they may grow to be greater effective strategies inside the remedy of diverse issues which includes immune gadget stimulation, high cholesterol level, oral infections, urinary tract infections, vagina inflammation, diarrhea symptoms, and so forth as an alternative or supplement to other well-known treatments in the future. It is a natural remedy for newborn animals and humans, as well as for nutrition and sickness treatment. Aside from therapy, they are now widely used in newborn diets and milk. In terms of liver disease, lowering liver enzymes and bilirubin levels can be achieved by Lactobacilli isolated from sugar cane following the fermentation process.

Probiotics are vital for restoring normal gut flora, increasing the development of good bacteria, and decreasing the chance of acquiring chronic conditions including cardiovascular disease. As a result, there is widespread interest in these molecules as components for the development of innovative meals with functional qualities. seeking to the roles of native microbiota affecting health and balance restoration, the most current scientists in this regard are still in the early stages of discovering connections and relationships between native probiotics and intestinal microbiota, which might enable for successful customization of probiotic treatment, the commitment of supplementation time, and description of optimal doses for patients in order to improve cardiovascular efficiency or treat certain disorders.

Gut microbiome research is a young and difficult topic with methodologies that are a way to be uniform and coordinated. Massive datasets created from the microbiome, metabolomics, genomics, and transcriptomics are analyzed as consolidated investigation data could be a challenge to interpret, and a variety of complicated bioinformatics approaches have been conducted. the requirement for improving this field of inquiry is crucial through empirical and disarranged controlled studies. To increase existing understanding, well-designed clinical studies including all components of life routine, intestinal microbiome, metabolite, and genetics data are better to be improved.

Although additional clinical evidence is needed to further assess probiotics' therapeutic value, prokaryotes such as Lactobacilli strains are now among the most extensively utilized agents in GIT diseases. According to in vivo investigations,
Lactobacillus survives well in the human GI tract. *Lactobacilli* are one of the most common LAB species that have played important therapeutic functions since their discovery. The increasing amount of research shows that it may be beneficial for diarrhea prevention and alleviation, as well as the treatment of recurring *Clostridium difficile* colitis.

By upgrading methodologies, tools, and techniques for isolation and identification, new pathways for probiotics will open, resulting in additional discoveries of local probiotic strains. New approaches, such as those that enable real-time human study and monitoring of a microbe's integration into an established microbiome, are being developed, along with technologies capable of assessing hit points, which can move this area ahead. After moving on to physical tests henceforth, information on the presence of bacteria, their interaction with the host, and the effect of environmental stimuli (including medications, and nutrition) going to be routine. Revolutionary pattern technology will disclose how a probiotic interacts with the host in several stages such as immune machine, all microbiome components, and metabolism. The integrated approach will aid in the establishment of dose-response connections for diagnosis, as well as in coordinating what gets into our systems, which probiotic bacteria have the most predicted impact, and how they will be absorbed.

Probiotic strains isolated from marine organisms have several applications and can be used for Aquaculture species and to prevent microbial pathogens that could threaten marine life. Studies that aim to isolate novel strains of probiotics from aquatic organisms present alternative treatments for the human and marine organisms’ pathogens and shed the light on the significant importance to intensify research for probiotics isolated from marine organisms in the future.

ACKNOWLEDGMENTS

The authors would like to thank Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research & Department of Biological Sciences, King Faisal University, for their endless encouragement and support to accomplish this work.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia Project No. Grant727.

DATA AVAILABILITY

All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT

This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES

1. Sornplang P, Piyadeatsoontorn S. Probiotic isolates from unconventional sources: a review. *J Anim Sci Technol*. 2016;58(1):26. doi: 10.1186/s40781-016-0108-2

2. Montoro B, Benomar N, Lemar LL, Gutierrez SC, Galvez A, Abriouel H. Fermented Alorena Table Olives as a Source of Potential Probiotic *Lactobacillus pentosus* Strains. *Front Microbiol*. 2016;7:1583. doi: 10.3389/fmicb.2016.01583

3. Chauhan A, Ranjan A, Kumar Basniwal R, Jindal T. Probiotic, Prebiotic and Synbiotics in the Prevention of Lifestyle Disorders. *Int J Curr Microbiol Appl Sci*. 2016;5(12):933-947. doi: 10.20546/ijcmas.2016.512.102

4. Kaur M, Kaur G, Sharma A. Isolation of newer probiotic microorganisms from unconventional sources. *J Appl Nat Sci*. 2018;10(3):847-852. doi: 10.31018/jans.v10i3.1724

5. Wu H, Xie S, Miao J, et al. *Lactobacillus reuteri* maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa. *Gut Microbes*. 2020;11(4):997-1014. doi: 10.1080/19490976.2020.1734423

6. Darbandi A, Ghanavati R, Asadi A, et al. Prevalence of bacteriocin genes in *Lactobacillus* strains isolated
from fecal samples of healthy individuals and their inhibitory effect against foodborne pathogens. Iran J Basic Med Sci. 2021;24(8):1117-1125. doi: 10.22038/ijbms.2021.33299.11998

7. Fuochi V, Coniglio MA, Laghi L, et al. Metabolic characterization of supernatants produced by lactic acid bacteria with in vitro anti-legionella activity. Front Microbiol. 2019;10:1403. doi: 10.3389/fmib.2019.01403

8. Plaza-Diaz J, Ruiz-Ojeda F, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Advances in Nutrition. 2019;10(suppl_1):S49-S66. doi: 10.1093/advances/nmy063

9. Arshad F, Mehmood R, Hussain S, Khan A, Khan MS. Lactobacilli as Probiotics and their isolation from different sources. Br J Res. 2018;5(3):43. doi: 10.21767/2394-3718.1000443

10. Vandenplas Y, Huys G, Daube G. Probiotics: an update. J Pediatr (Rio J). 2015;91(1):6-21. doi: 10.1016/j.jped.2014.08.005

11. Bazireh H, Shariati P, Azimzadeh Jamalaki S, Ahmadi A, Boroumand MA. Isolation of Novel Probiotic Lactobacillus and Enterococcus Strains From Human Salivary and Fecal Sources. Front Microbiol. 2020;11:597946. doi: 10.3389/fmicb.2020.597946

12. Chamberlain C, Hatch M, Garrett T. Metabolomic profiling of oxolate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS One. 2019;14(9):e0222393. doi: 10.1371/journal.pone.0222393

13. Terai T, Kato K, Ishikawa E, et al. Safety assessment of the candidate oral probiotic Lactobacillus crispatus YF1 12319: Analysis of antibiotic resistance and virulence-associated genes. Food Chem Toxicol. 2020;140:111278. doi: 10.1016/j.fct.2020.111278

14. Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: A systematic review of randomized controlled trials. Nutr Res. 2016;36(9):889-898. doi: 10.1016/j.nutres.2016.06.009

15. Krzyzsiak W, Koscieniak D, Papiez M et al. Effect of a Lactobacillus Salivarius Probiotic on a Double-Species Streptococcus Mutans and Candido Albicans Caries Biofilm. Nutrients. 2017;9(11):1242. doi: 10.3390/nu9111242

16. Luchansky JB, Mairani PM, Klaehammer TR. Application of electrophoresis for the detection of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol Microbiol. 1988;2(5):637-646. doi: 10.1111/j.1365-2958.1988.tb0072x

17. Darukaradhya J, Phillips M, Kailasapathy K. Selective enumeration of Lactobacillus acidophilus, Bifidobacterium spp., starter lactic acid bacteria and non-starter lactic acid bacteria from Cheddar cheese. Int Dairy J. 2006;16(5):439-445. doi: 10.1016/j.idairyj.2005.06.009

18. Bull M, Plummer S, Marchesi J, Mahenthiralingam E. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microb Lett. 2013;349(2):77-87. doi: 10.1111/1574-6968.12293

19. Ojha A, Shah N, Mishra V. Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Curr Microbiol. 2021;78(8):2839-2849. doi: 10.1007/s00284-021-02554-1

20. Duar RM, Lin XB, Zheng J, et al. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev. 2017;41(Suppl_1):S27-S48. doi: 10.1093/femsre/fux030

21. Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int J Environ Res Public Health. 2014;11(5):4745-4767. doi: 10.3390/ijerph110504745

22. Widyastuti Y, Febrisiantosa A, Tidona F. Health-promoting Properties of Lactobacilli in Fermented Dairy Products. Front Microbiol. 2021;12:673890. doi: 10.3389/fmicb.2021.673890

23. Ravescot C, Cudennec B, Coutte F, et al. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front Microbiol. 2018;9:2354. doi: 10.3389/fmicb.2018.02354

24. Barcennilla C, Ducic M, Lopez M, Prieto M, Alvarez-Ordonez A. Application of lactic acid bacteria for the biopreservation of Meat Products: A systematic review. Meat Sci. 2022;183:108661. doi: 10.1016/j.meatsci.2021.108661

25. Lievin-Le Moal V, Servin AL. Anti-infective Activities of Lactic Acid Bacteria Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents. Clin Microbiol Rev. 2014;27(2):167-199. doi: 10.1128/cmr.00080-13

26. Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus lactobacillus: Description of 23 novel genera, emended description of the genus lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782-2858. doi: 10.1099/ijsem.0.004107

27. Felis GE, DellaLoggia F. Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol. 2007;8(2):44-61. PMID: 17542335

28. Ang LY, Too HK, Tan EL, et al. Antiviral activity of lactobacillus reuteri Protectis against Coxsackievirus A9 and enterovirus 71 infection in human skeletal muscle and colon cell lines. Virol J. 2016;13:111. doi: 10.1186/s12985-016-0567-6

29. Salvetti E, Torriani S, Felis GE. The genus lactobacillus: A taxonomic update. Probiotics Antimicrob Proteins. 2012;4(4):217-226. doi: 10.1007/s12602-012-9117-8

30. Ganzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science. 2015;2:106-117. doi: 10.1016/j.cofs.2015.03.001

31. Scherhirink I, Van der Meulen R, De Vuyst L, huys VG. Molecular source tracking of predominant lactic acid bacteria in traditional Belgian sourdoughs and their production environments. J Appl Microbiol. 2009;106(4):1081-1092. doi: 10.1111/j.1365-2672.2008.04094.x

32. Ripari V, Ganzle MG, Berardi E. Evolution of
sourdough microbiota in spontaneous sourdoughs started with different plant materials. *Int J Food Microbiol.* 2016;232:35-42. doi: 10.1016/j.ijfoodmicro.2016.05.025

33. Van de Gucht M, Penaud S, Grimaldi C, et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. *Proc Natl Acad Sci U S A.* 2006;103(24):9274-9279. doi: 10.1073/pnas.0603024103

34. Vogel C, Silva GM, Marcotte EM. Protein Expression Regulation under Oxidative Stress. *Mol Cell Proteomics.* 2011;10(12):M111.009217. doi: 10.1074/mcp.M111.009217

35. Won TJ, Kim B, Lim YT, et al. Oral administration of Lactobacillus strains from Kimchi inhibits atopic dermatitis in NC/Nga mice. *J Appl Microbiol.* 2011;110(5):1195-1202. doi: 10.1111/j.1365-2672.2011.04981.x

36. Ayeni FA, Sanchez B, Adeniyi BA, de Los Reyes-Gavilan CG, Margolles A, Ruas-Madiedo P. Evaluation of the functional potential of *Weissella* and *Lactobacillus* isolates obtained from Nigerian traditional fermented foods and cow's intestine. *Int J Food Microbiol.* 2011;147(2):97-104. doi: 10.1016/j.ijfoodmicro.2011.03.014

37. Gao J, Li X, Zhang G, et al. Probiotics in the dairy industry—Advances and opportunities. *Compr Rev Food Sci Food Saf.* 2021;20(4):3937-3982. doi: 10.1111/1541-4337.12755

38. Sun Z, Liu W, Gao W, et al. Identification and characterization of dominant lactic acid bacteria isolated from kurut: The naturally fermented yak milk in China. *J Gen Appl Microbiol.* 2010;56(1):1-10. doi: 10.2323/jgam.56.1

39. Lopitz-Otsoa F, Rementeria A, Elguezabal N, Garaizar J. Kefir: a symbiotic yeasts-bacteria community with advanced healthy capabilities. *Rev Iberoam Micol.* 2006;23(2):67-74. doi: 10.1016/S1130-1406(06)007016-X

40. Ya T, Zhang Q, Chu F, et al. Immunological evaluation of *Lactobacillus casei* Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. *BMC Immunol.* 2008;9(1):68. doi: 10.1186/1471-2474-9-68

41. Shiprah VH, Sahu S, Thakur AR, Chaudhru SR. Screening of Bacteria for Lactic Acid Production from Whey Water. *J Microbiol.* 2013;9(2):118-123. doi: 10.3844/jmmsp.2013.118.123

42. Sonplang P, Uriyapongson P, Poonsuk K, Mahakhon A, Angkittrakul S. Antimicrobial Susceptibility of Lactic Acid Bacteria Isolated From Native Chicken Feces. *KKU Res J (GS).* 2007;7(3):1-8. doi: 10.5341/KKUJGS.2007.3.1

43. Paludan-Muller C, Huss HH, Gram L. Characterization of lactic acid bacteria isolated from a Thai low-salt fermented fish product and the role of garlic as substrate for fermentation. *Int J Food Microbiol.* 1999;46(3):219-229. doi: 10.1016/S0168-1605(98)00204-9

44. Siripornadulsil W, Tasaki U, Buahorn J, et al. Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food. *Zenodo.* 2014. doi: 10.5281/zenodo.1092089

45. Golshesh A, Adetutu E, Ball AS, May BK, Van TTH, Smith AT. Complete Genome Sequence of *L. plantarum* Strain B21, a Bacteriocin-Producing Strain Isolated from Vietnamese Fermented Sausage Nem Chua. *Genome Announc.* 2015;3(2):e00555-15. doi: 10.1128/genomeA.00555-15

46. S nons-Ard N, Rodtong S, Chikindas ML, Yongswagadwil J. Characterization of bacteriocin produced by *Enterococcus faecium* CN-25 isolated from traditionally Thai fermented rice roe. *Food Control.* 2015;54:308-316. doi: 10.1016/j.foodcont.2015.02.010

47. Parulindung E, Ling LI, Ventura M, van Sinderen D, Mahony J. Lactic Acid Bacteria Diversity and Characterization of Probiotic Candidates in Fermented Meats. *Foods.* 2021;10(7):1519. doi: 10.3390/foods10071519

48. Abriouel H, Benomar N, Perez Pulido R, Camanero MM, G Lavez A. Annotated Genome Sequence of *Lactobacillus pentosus* MP-10, Which Has Probiotic Potential, from Naturally Fermented Alorena Green Table Olives. *J Bacteriol.* 2011;193(17):4559-4560. doi: 10.1128/JB.05171-11

49. Zeng XQ, Pan DD, Guo YX. The probiotic properties of *Lactobacillus buchneri* P2. *J Appl Microbiol.* 2010;108(6):2059-2066. doi: 10.1111/j.1472-6882.2011.01153.x

50. Touret T, Oliveira M, Semedo-Lemsaddek T. Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. *PLOS ONE.* 2018;13(9):e0203501. doi: 10.1371/journal.pone.0203501

51. Miyashita M, Yukphan P, Chaipitakchonlatarn, W, et al. 16S rRNA gene sequence analysis of lactic acid bacteria isolated from fermented foods in Thailand. *Microbial Cult Coll.* 2012;28(1):1-9. http://jsmsrs.jp/journal/No28_1/No28_1_1.pdf

52. Thokchom S, Joshi SR. Antibiotic resistance and probiotic properties of dominant lactic microflora from Tungrymbai, an ethnic fermented soybean food of India. *J Microbiol.* 2012;50(3):535-539. doi: 10.1016/j.jef.2015.02.003

53. Cvrti A Fleck Z, Savic V, Kozaczinski L, Nijari B, Zdolec N, Filipovic I. Identification of lactic acid bacteria isolated from dry fermented sausages. *Veterinary Archives.* 2012;82(3):265-272. https://hrcak.srce.hr/clanak/119820

54. Kivanc M, Yilmaz M, Cakir E. Isolation and identification of lactic acid bacteria from boza, and their microbial activity against several reporter strains. *Turk J Biol.* 2011;35(3):313-324. doi: 10.3906/biy-0906-07

55. Oluwajoba SO, Akinyosoye FA, Oyetayo OV. In Vitro Screening and Selection of Probiotic Lactic Acid Bacteria Isolated from Spontaneously Fermenting Kunu-Zaki. *Adv Microbiol.* 2013;03(04):309-316. http://dx.doi.org/10.4236/aim.2013.34044

56. Jiri R, Swapan H, Rai A, et al. Isolation and characterization of potential lactic acid bacteria (LAB) from freshwater fish processing wastes for application in fermentative utilisation of fish processing waste. *Braz J Microbiol.* 2011;42(4):1516-1525. doi: 10.1590/ S1517-83822011000400039

57. Kvasnikov E, Kovalenko N, Nesterenko O. Lactic acid bacteria in nature and the national economy [USSR, excludes the dairy industry] [1983]. *Appl Biochem
84. Petrof EO. Probiotics and Gastrointestinal Disease: Clinical Evidence and Basic Science. *Antiinflamm Allergy Agents Med Chem*. 2009;8(3):260-269. doi: 10.2174/187152309798151977

85. Audisio MC, Benitez-Ahrendts MR. *Lactobacillus johnsonii* CNR1647, isolated from *Apis mellifera* L. bee-gut, exhibited a beneficial effect on honeybee colonies. *Benef Microbes*. 2011;2(1):29-34. doi: 10.3920/bm2010.0024

86. Chu W, Lu F, Zhu W, Kang C. Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. *J Appl Microbiol*. 2010;110(1):202-208. doi: 10.1111/j.1365-2672.2010.04872.x

87. Perez-Sanchez T, Balcazar JL, Garcia Y, et al. Identification and characterization of lactic acid bacteria isolated from rainbow trout, *Oncorhynchus mykiss* (Walbaum), with inhibitory activity against *Lactococcus garvieae*. *J Fish Dis*. 2011;34(7):499-507. doi: 10.1111/j.1365-2761.2011.01260.x

88. Hill JE, Baiano JCF, Barnes AC. Isolation of a novel strain of *Bacillus pumilus* from penaeid shrimp that is inhibitory against marine pathogens. *J Fish Dis*. 2009;32(12):1007-1016. doi: 10.1111/j.1365-2761.2009.01084.x

89. Haller D, Colbus H, Ganzle MG, Scherenbacher P, Bode C, Hammes WP. Metabolic and Functional Properties of Lactic Acid Bacteria in the Gastrointestinal Ecosystem: A comparative in vitro Study between Bacteria of Intestinal and Fermented Food Origin. *Syst Appl Microbiol*. 2001;24(2):218-226. doi: 10.1078/0723-2020-00023

90. Endo A, Futagawa-Endo Y, Sakamoto M, Kitahara M, Dicks LM. *Lactobacillus florum* sp. nov., a fructophilic species isolated from flowers. *Int J Syst Evol Microbiol*. 2010;60(10):2478-2482. doi: 10.1099/ijs.0.019067-0

91. Engel P, James RR, Koga R, Kwong WK, Mcfrederick Q, Moran NA. Standard methods for research on *Apis mellifera* gut symbionts. *J Appl Bacteriol*. 2009;8(3):260-269. doi: 10.1111/j.1365-2761.2009.01084.x

92. Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERCLES): a proof-of-concept, multicentre, open-label, phase 2 trial. *Lancet Oncol*. 2016;17(6):738-746. doi: 10.1016/S1470-2241(16)00150-9

93. Walter J. Ecological Role of *Lactobacilli* in the Gastrointestinal Tract: Implications for Fundamental and Biomedical Research. *Appl Environ Microbiol*. 2008;74(16):4985-4996. doi: 10.1128/aem.00753-08

94. Ugras S. Isolation, identification and characterization of probiotic properties of bacterium from the honey stomachs of *Vigilia* honeybees in Turkey. *Turk J Entomol*. 2017;41(3). doi: 10.16970/teed.74860

95. Mohamad N, Manan H, Sallehuddin M, Musa N, Ikhwanuddin M. Screening of Lactic Acid Bacteria isolated from giant freshwater prawn (*Macrobrachium rosenbergii*) as potential probiotics. *Aquaculture Reports*. 2020;18:100523. doi: 10.1016/j.aqrep.2020.100523

96. Faparusi SI. Origin of initial Microflora of Palm Wine from Oil Palm Trees (*Elaeis guineensis*). *J Appl Bacteriol*. 1973;36(4):559-565. doi: 10.1111/j.1365-2672.1973.tb04142.x

97. Yanagida F, Chen Y, Sato H, Suzui K-I. An attempt at isolation of lactic acid bacteria from soil samples collected in Aokigahara Jukai Forest, Japan. *Japanese Journal of Lactic Acid Bacteria*. 2006;17(2):138-141. doi: 10.4109/jlab.17.138

98. Gupta V, Garg R. Probiotics. *Indian J Med Microbiol*. 2009;27(3):202-209. http://dx.doi.org/10.4103/0255-0857.53201

99. Galdeano CM, Cazorla SI, Dumit JML, Velez E, Perdigon Q, Moran NA. Standard methods for research on *Apis mellifera* gut symbionts. *J Appl Microbiol*. 2020;127(6):1099-1107. doi: 10.1111/jam.14650

100. Bertuccini L, Russo R, Iosi F, Superti F. Effects of probiotics on gut microbiota and immune system. *Ann Nutr Metab*. 2017;74(2):115-124. doi: 10.1159/000496426

101. Lee E-S, Song E-J, Nam Y-D, Lee S-Y. Probiotics in human health and disease: from nutrition to pharmaceuticals. *J Microbial*. 2018;56(11):773-782. doi: 10.1007/s11275-018-8293-y

102. Alamdary SZ, Bakhshi B. *Lactobacillus acidophilus* attenuates toxin production by *Vibrio cholerae* and *shigella dysenteriae* following intestinal epithelial cells infection. *Microbial Pathogenesis*. 2020;149:104543. doi: 10.1016/j.micpath.2020.104543

103. McFarland L, Ship N, Auclair J, Millette M. Primary prevention of *Clostridium difficile* infections with a specific probiotic combining *Lactobacillus acidophilus*, *L. casei*, and *L. rhamnosus* strains: assessing the evidence. *J Hosp Infect*. 2018;112(1):129. doi: 10.1111/jhii.13568-018-0679-z

104. Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERCLES): a proof-of-concept, multicentre, open-label, phase 2 trial. *Lancet Oncol*. 2016;17(6):738-746. doi: 10.1016/S1470-2241(16)00150-9

105. Choo WY, Hsu Y-P. Protective function of surface layer protein from *Lactobacillus casei* FB05 against intestinal pathogens in vitro. *Biochem Biophys Res Commun*. 2021;546:15-20. doi: 10.1016/j.bbrc.2021.01.101

106. Gaspar C, Donders G, Palmeira-de-Oliveira R, et al. Bacteriocin production of the probiotic *Lactobacillus acidophilus KS400*. *AMB Express*. 2018;8(1):1-8. doi: 10.1186/s13568-018-0679-z

107. Burtucchi L, Russo R, Isosi F, Superti F. Effects of *Lactobacillus rhamnosus* and *Lactobacillus acidophilus* on bacterial vaginal pathogens. *Int J Immunopathol Pharmacol*. 2017;30(2):163-167. doi: 10.1177/039463021779788

108. Qian Z, Zhao D, Yin Y, Zhu H, Chen D. Antibacterial activity of *Lactobacillus* strains isolated from Mongolian yogurt against *Gardnerella vaginalis*. *BioMed Res Int*. 2020;1-9. doi: 10.1155/2020/3548618

109. Wang S, Wang Q, Yang E, Yan L, Li T, Zhuang H. Antimicrobial compounds produced by vaginal *Lactobacillus crispatus* are able to strongly inhibit *Candida albicans* growth, hyphal formation and regulate virulence-related gene expressions. *Front
110. van de Wijgert JHHM. The vaginal microbiome and sexually transmitted infections are interlinked: Consequences for treatment and prevention. PLoS Med. 2017;14(12):e1-4. doi: 10.1371/journal.pmed.1002479

111. Niccoli AA, Artesi AL, Candio F, et al. Preliminary results of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synth Syst Biotechnol. 2018;3(2):113-120. doi: 10.1016/j.sybsynbio.2018.03.001

112. Twetman S, Derawi B, Keller M, Ekstrand K, Yuell-Lindberg T, Stecksen-Blicks C. Short-term effect of chewing gums containing probiotic lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand. 2009;67(1):19-24. doi: 10.1080/0003480802516170

113. Gutierrez-Castrellon P, Lopez-Velazquez G, Diaz-Garcia L, et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. Pediatrics. 2014;133(4):e904-9. doi: 10.1542/peds.2013-0652

114. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

115. Al-Yami et al. | J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

116. Wang H, Zhou C, Huang J, Kuai X, Shao X. The potential therapeutic role of Lactobacillus reuteri in the treatment of chronic periodontitis: A randomized placebo-controlled study. J Clin Periodontol. 2013;40(11):1025-1035. doi: 10.1111/j rapp.12155

117. Wang H, Zhou C, Huang J, Kuai X, Shao X. The potential therapeutic role of Lactobacillus reuteri in the treatment of chronic periodontitis: A randomized placebo-controlled study. J Clin Perio. 2013;40(11):1025-1035. doi: 10.1111/jcpp.12155

118. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

119. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

120. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

121. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

122. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

123. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

124. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

125. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

126. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

127. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

128. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

129. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

130. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

131. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

132. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

133. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

134. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19

135. Al-Yami et al. Diarrhea in preschool children and lactobacillus reuteri: A randomized controlled trial. J Pure Appl Microbiol. 2022;16(4):2270-2291. https://doi.org/10.22207/JPAM.16.4.19
136. Marcial G, Ford AL, Haller MJ, et al. Lactobacillus johnsonii N6.2 modulates the host immune responses: a double-blind, randomized trial in healthy adults. *Front Immunol.* 2017;8:655. doi: 10.3389/fimmu.2017.00655

137. Kalużna-Czaplinska J, Blaszczyk S. The level of Arabinitol in serum of nursing women. *J Dairy Sci.* 2005;88(2):527-533. doi: 10.3168/jds.S0022-0302(05)72714-4

138. Ishida Y, Nakamura F, Kanzato H, et al. Clinical effects of *Lactobacillus acidophilus* strain L-92 on perennial allergic rhinitis: A double-blind, placebo-controlled study. *J Dairy Sci.* 2005;88(2):527-533. doi: 10.3168/jds.S0022-0302(05)72714-4

139. Ducrotte P, Sawant P, Jayanthi V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. *World J Gastroenterol.* 2012;18(30):4012. doi: 10.3748/wjg.v18.i30.4012

140. Liu Y, Liong M, Chung Y, et al. Effects of *Lactobacillus acidophilus* plantarum PS128 on allergic rhinitis: A double-blind, placebo-controlled trial. *J Funct Foods.* 2014;10:465-474. doi: 10.1016/j.jff.2014.07.007

141. Li Y, Sosnoff N, Abdovic S, Szajewska H, Misak Z, Kolacek S. *Lactobacillus rhamnosus* GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: A randomized, double-blind, placebo-controlled trial. *Clin Nutr.* 2010;29(3):312-316. doi: 10.1016/j.clnu.2009.09.008

142. Hojsak I, Novak N, Takahashi T, et al. Effect of *Lactobacillus rhamnosus* GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: A randomized, double-blind, placebo-controlled trial. *Clin Nutr.* 2010;29(3):312-316. doi: 10.1016/j.clnu.2009.09.008

143. Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive *Escherichia coli* (EIEC). *Gut.* 2003;52(7):988-997. doi: 10.1136/gut.52.7.988
160. Badgeley A, Anwar H, Modi K, Murphy P, Lakshminikttyamma A. Effect of probiotics and gut microbiota on anti-cancer drugs: mechanistic perspectives. *Biochim Biophys Acta Rev Cancer* 2021;1875(1):188494. doi: 10.1016/j.bbr.2020.188494

161. Dasari S, Kathera C, Janardhan A, Kumar AP, Viswanath B. Surfacing role of probiotics in cancer prophylaxis and therapy: a systematic review. *Clin Nutr.* 2017;36(6):1465-1472. doi: 10.1016/j.clnu.2016.11.017

162. Kahouli I, Malhotra M, Westfall S, Alaoi-Jamali MA, Prakash S. Design and validation of an orally administered active L. fermentum-L. acidophilus probiotic formulation using colorectal cancer Ap Min/+ mouse model. *Appl Microbiol Biotechnol.* 2017;101(5):1999-2019. doi: 10.1007/s00253-016-7885-x

163. Si W, Liang H, Bugno J, et al. *Lactobacillus rhamnosus* GG induces cGAS/STING-dependent type I interferon and improves response to immune checkpoint blockade. *Gut.* 2022;71(3):521-533. doi: 10.1136/gutjnl-2020-323426

164. Rahne M, Basic A, Almstahl A. Explorative study on *Lactobacillus* species and their acid-producing capacity and anti-microbial activity in head and neck cancer patients. *Clin Exp Dent Res.* 2021;7(5):924-933. doi: 10.1002/cerd.426

165. Zaharuddin L, Mokhtar N, Nawawi K, Ali RAR. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. *BMC Gastroenterol.* 2019;19(1):131. doi: 10.1186/s12876-019-1047-4

166. Utz V, Visnak D, Perdigon G, de LeBlanc AdeM. Milk fermented by *Lactobacillus casei* CR1431 administered as an immune adjuvant in models of breast cancer and metastasis under chemotherapy. *Appl Microbiol Biotechnol.* 2021;105(12):327-340. doi: 10.1007/s00253-020-11007-x

167. Sharma M, Chandel D, Shukla G. Antigenotoxicity and cytotoxic potentials of metabolites extracted from isolated probiotic *Lactobacillus rhamnosus* MD 14 on Caco-2 and HT-29 human colon cancer cells. *Nutr. Cancer.* 2020;72(1):110-119. doi: 10.1080/01635581.2019.1615514

168. Gao L, Sun Z, Yu H, Jing J-X, Xu Z-G. Inhibiting effect and mechanism of *Lactobacillus* E6-1 on oral cancer cell line Ca1-27. *Shanghai Journal of Stomatolgy.* 2019;28(6):605-609.

169. Sun M, Liu W, Song Y, Tuo Y, Mu G, Ma F. The Effects of *Lactobacillus plantarum*-12 crude exopolysaccharides on the cell proliferation and apoptosis of human colon cancer (HT-29) cells. *Probiotics Antimicrob Proteins.* 2021;13(2):413-421. doi: 10.1007/s12602-020-09699-8

170. Zinatizadeh N, Khalili F, Falah P, Farid M, Geravand M, Yaslianifard S. Potential preventive effect of *lactobacillus acidophilus* and *lactobacillus plantarum* in patients with polyps or colorectal cancer. *Arg Gastroenterol.* 2018;55(4):407-411. doi: 10.1590/ S0004-2803.201800000-87

171. Rajoka MR, Zhao H, Lu Y, et al. Anticancer potential against cervix cancer (HeLa) cell line of probiotic *Lactobacillus casei* and *Lactobacillus paracasei* strains isolated from human breast milk. *Food & Function.* 2018;9(5):2705-2715. doi: 10.1039/c8fo00547h

172. Qu T, Yang L, Wang Y, Jiang B, Shen M, Ren D. Reduction of serum cholesterol and its mechanism by *Lactobacillus plantarum* H6 screened from local fermented food products. *Food & Function.* 2020;11(2):1397-1409. doi: 10.1039/c9fo02478f

173. Nami Y, Bakhshayesh RV, Manafi M, Hejazi MA. Hypcholesterolaemic activity of a novel autochthonous potential probiotic *Lactobacillus plantarum* Y5S isolated from yogurt. *LWT.* 2019;111:876-882. doi: 10.1016/j.lwt.2019.05.057

174. Markowiak P, Sliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. *Nutrients.* 2017;9(9):1-30. doi: 10.3390/nu90901021

175. Lee N, Shin M, Youn G, et al. *Lactobacillus attenuates* progression of nonalcoholic fatty liver disease by lowering cholesterol and steato-sis. *Clin Mol Hepatol.* 2021;27(1):110-124. doi: 10.3350/cmh.2020.0125

176. Park S, Kang J, Choi S, et al. Cholesterol-lowering effect of *Lactobacillus rhamnosus* BFE5264 and its influence on the gut microbiome and propionate level in a murine model. *PLoS ONE.* 2018;13(11):e0208294. doi: 10.1371/journal.pone.0208294

177. Kim D, Jeong D, Kang I, Kim H, Song K-Y, Seo K-H. Dual function of *Lactobacillus kefiri* DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue. *Mol Nutr Food Res.* 2017;61(11):1700252. doi: 10.1002/mnfr.201700252

178. Lew-L-C, Choi S-B, Khoo B-Y, Sreenivasan S, Ong K-L, Liong M-T. *Lactobacillus plantarum* DR7 reduces cholesterol via phosphorylation of AMPK that down-regulated the mRNA expression of HMG-CoA reductase. *Korean J Food Sci Anim Resour.* 2018;38(2):350-361. doi: 10.5851/kosfa.2018.38.2.350

179. Yamasaki M, Minesaki M, Iwakiri A, et al. Hypocholesterolaemic activity of a novel autochthonous potential probiotic *Lactobacillus rhamnosus* isolated from yogurt. *LWT.* 2019;111:876-882. doi: 10.1016/j.lwt.2019.05.057

180. Markowiak P, Sliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. *Nutrients.* 2017;9(9):1-30. doi: 10.3390/nu90901021