Reclamation of ex-nickel mining soil using organic plus fertilizer to support corn cultivation in Southeast Sulawesi

S Leomo¹, M Tufaila¹, R Adawiyah², A A Anas¹, T C Rakian², Muhidin², L Mudi², E Aprianto², G A K Sutariati² and Y Lumoindong³

¹Department of Soil Science, Faculty of Agriculture, Halu Oleo University, Kampus Anduonohu JL. HEA Mokodompit, Kendari 93232, Indonesia
²Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kampus Anduonohu JL. HEA Mokodompit, Kendari 93232, Indonesia
³Agribusiness Study Program, Department of Social Economic of Agriculture, Faculty of Agriculture, Hasanuddin University

Email: sittileomo@yahoo.com

Abstract. In addition to providing incomes for the country, mining activities can also cause land damage resulting in a decrease in soil function as a medium for growing plants. The study aim to analyse the growth and production of corn on ex-nickel mining soils that had been remediated using cover crops and rhizobacteria for five years (2013-2018). The research has arranged in a randomized block design (RBD) with the treatment of organic fertilizer enriched with rhizobacteria of Bacillus sp and Pseudomonas sp (organic plus fertilizer), consisting of 6 levels, namely control without organic plus fertilizer (B₀), 1 ton ha⁻¹ (B₁), 2 tons ha⁻¹ (B₂), 3 tons ha⁻¹ (B₃), 4 tons ha⁻¹ (B₄), and 5 tons ha⁻¹ (B₅). Each treatment was repeated three times so that there were 18 experimental units. The observed variables were plant height, stem diameter, leaf area, the weight of corn kernels per fruit, and weight of dried kernels per hectare. The results show that the application of organic plus fertilizer on the ex-nickel mining soils effectively increased the growth and production of corn.

1. Introduction

Mining is one sector that can generate large income and that cannot be separated from the national economic system [1,2]. The mining industry, in addition to being a source of income, has also resulted in side effects in the form of environmental damage [3–5]. Nickel mining has physical and chemical problems [6,7].

Physical problems include changes in soil physical properties such as damaged soil profile, existing mining areas create steep slopes, soil compaction due to heavy equipment, increase the potential for erosion, reduce hydrological functions, and damage to a soil structure that decreases water retention capacity [8–10]. Moreover, the chemical problems include low organic matter content in ex-mining soil, very low macro-nutrients, and high amounts of metal elements that are toxic to plants because the elements have not yet mineralization [11,12].

A serious problem due to open mining is the exposure of rock layers composed of sulfide compounds, such as pyrite and chalcopyrite. This exposed rock layer will oxidize to release sulfate ions and hydrogen ions which can reduce the pH of water and soil [13]. This condition will directly affect plant growth and agriculture commodities due to the toxicity of heavy metals [10,14].
Reclamation of ex-nickel mining soil by using cover crops and rhizobacteria (phytoremediation) had been carried out from 2009 to 2018 and the results of the study showed improved soil physical properties such as soil permeability [8,11], where the values before and after planting Legume cover crops were 839 and 543.72 cm per hour, respectively [8]. In addition, soil water content also increases [11]. The chemical nature of the soil changes after phytoremediation includes the increase of the pH of the soil, the C-organic content, and the cation exchange capacity [12–16].

To accelerate the reclamation of ex-nickel mining soil to support the growth of food crops, it is necessary to provide organic materials as they can provide nutrients and regulate their release. Moreover, it plays a role in the formation of more stable aggregates so that water flow and air circulation can run well and the soil’s water retention ability will increase [14]. Organic plus fertilizer becomes one of the choices as sources of organic material for ex-nickel mining soil because organic plus fertilizer is an organic fertilizer product that enriched with local indigenous rhizobacteria agents from Southeast Sulawesi. The rhizobacteria would increase the growth of cover crops as sources of organic material. Rhizobacteria has benefit effect to plants [17–19] and produce growth hormones such as IAA and gibberellins [20]. The application of organic plus fertilizer is expected to improve the quality of ex-nickel mining soil.

2. Methods
The research was conducted in the Field Laboratory and Soil Science Laboratory of the Faculty of Agriculture, Halu Oleo University, from May to August 2018. The material used was the ex-nickel mining soil that had been used since 2009 from Sonai Village, Puriala District, Konawe Regency, Southeast Sulawesi, corn seeds, and organic plus fertilizer. The study used a randomized block design (RBD) with organic plus fertilizer treatment consisting of 6 levels, namely control without organic plus fertilizer (B₀), 1 ton ha⁻¹ (B₁), 2 tons ha⁻¹ (B₂), 3 tons ha⁻¹ (B₃), 4 tons ha⁻¹ (B₄), and 5 tons ha⁻¹ (B₅) of organic plus fertilizer. Each treatment was repeated 3 times; thus, there were 18 experimental units. Observation data were analysed using variance analysis. If there is a significant effect in the analysis of variance, further tests were carried out based on the Duncan's Multiple Range Test (DMRT) at a 95% confidence level. Variables observed included growth components (plant height, stem diameter, and leaf area) and components of corn production (the weight of corn kernels and weight of dried kernels).

3. Results and discussion

3.1. The height of the corn plant
The height of corn plant was observed at 2-8 Weeks After Planting (WAP). The result showed that application of organic plus fertilizer has significant effect on the height of corn plant. But on the age of 6 and 8 WAP, it had no significant effect. The average height of a corn plant on the ex-nickel mines that were given organic plus fertilizer is presented in table 1.

Dosage of organic plus fertilizer	2	4	6	8
Control (B₀)	15.10 c	34.63 d	107.56	114.81
1 ton ha⁻¹ (B₁)	17.92 bc	44.98 cd	121.47	132.13
2 ton ha⁻¹ (B₂)	19.89 abc	49.53 bc	126.00	133.25
3 ton ha⁻¹ (B₃)	23.88 ab	54.43 abc	130.02	133.62
4 ton ha⁻¹ (B₄)	24.34 a	60.09 ab	131.79	133.99
5 ton ha⁻¹ (B₅)	24.82 a	63.29 a	139.18	146.22
Table 1 shows that increasing in the dose of organic plus fertilizer on ex-nickel mine soils could increase the height of corn plants for all observations. The treatment of 5 tons ha$^{-1}$ of organic plus fertilizer (B5) showed the highest growth in plant height.

Table 2. The average stem diameter of corn plant on ex-nickel mines soil that was given organic plus fertilizer in various observation times

Treatment	Observation times (WAP)			
	2	4	6	8
----------	------------	------------	------------	------------
	Stem diameter (cm)			
Control (B$_0$)	0.63 e	1.10 d	1.43 b	2.16a
1 ton ha$^{-1}$ (B$_1$)	0.75 d	1.33 c	2.17 a	2.43a
2 ton ha$^{-1}$ (B$_2$)	0.80 cd	1.44 bc	2.03 a	2.49a
3 ton ha$^{-1}$ (B$_3$)	0.88 bc	1.53 bc	2.19 a	2.62a
4 ton ha$^{-1}$ (B$_4$)	0.96 ab	1.65 ab	2.26 a	2.76a
5 ton ha$^{-1}$ (B$_5$)	1.00 a	1.87 a	2.36 a	3.04a

Table 2 shows that each increase in the dose of organic plus fertilizer on ex-nickel mine soils can increase the stem diameter of corn plants for all observations. The treatment of 5 tons ha$^{-1}$ of organic plus fertilizer (B$_5$) showed the highest growth in stem diameter while the lowest value was obtained by B$_0$ (without fertilizer). This is caused by the improved condition of soil fertility due to the contribution of nutrient elements from organic plus fertilizer that was given.

Table 3. The average corn production on ex-nickel mines soil that was given organic plus fertilizer

Treatment	Corn production	
	The weight of corn kernels per fruit (g)	The weight of dried kernels (kg ha$^{-1}$)
Control (B$_0$)	17.21 b	478.06b
1 ton ha$^{-1}$ (B$_1$)	25.37 a	704.72a
2 ton ha$^{-1}$ (B$_2$)	28.69 a	796.94a
3 ton ha$^{-1}$ (B$_3$)	29.79 a	827.50a
4 ton ha$^{-1}$ (B$_4$)	32.24 a	895.56a
5 ton ha$^{-1}$ (B$_5$)	33.11 a	919.72a
Table 3 shows that the corn planted on ex-nickel mines soil treated with organic plus fertilizer was able to provide production, although the production achieved was still low. This shows that the dose of organic plus fertilizer used was still low even though it is known that organic fertilizer plus is a source of nutrients for plants.

4. Conclusion
The results show that the reclamation of the land of the ex-nickel mine by providing organic plus fertilizer can increase the growth and production of corn plants. The application of organic plus fertilizer in a dose of 2 tons ha\(^{-1}\) has shown an influence on the growth and production of corn on ex-nickel mining soils.

References
[1] Ministry for Economic Affairs R of I 2011 Masterplan for Acceleration and Expansion of Indonesia Economic Development 2011–2025 Ministry for Economic Affairs, Republic of Indonesia. (Jakarta)

[2] Planning M of N 2015 Delivering Green Growth for a Prosperous Indonesia. A Roadmap for Policy, Planning, and Investment (Jakarta: Global Green Growth Institute)

[3] Monjezi M, Shahriar K D and N F 2009 Environmental impact assessment of open pit mining in Iran. *Environ Geol* **58**

[4] Li J, Zhang TT Y W and Z Y 2016 The environmental impact of mining and its counter measures MATEC Web of Conferences **63** 1-7

[5] Leppänen JJ W J and K A 2017 Multiple mining impacts induce widespread changes in ecosystem dynamics in a boreal lake *Scientific Reports* **7**

[6] Publication U N 2013 *World Economic and Social Survey 2013 : Sustainable Development Challenges.* (Belgien: Internationa Young Naturefriend)

[7] Mensah S O and Okyere S A 2014 Mining, environment and community conflicts: A study of company-community conflicts over gold mining in the Obuasi Municipality of Ghana *J. Sustain. Dev. Stud.* **5**

[8] DE S 2000 Present applications and future promise. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI and Stottmeister U (eds.). Bioremediation of Cotaminated Soils

[9] Singh G, Pal A, Niranjan R K and Kumar M 2010 Assessment of environmental impacts by mining activities: A case study from Jhansi open cast mining site-Uttar Pradesh, India *J. Exp. Sci.* **1**

[10] Mensah A K 2015 Role of revegetation in restoring fertility of degraded mined soils in Ghana: A review *Int. J. Biodivers. Conserv.* **7** 57–80

[11] Li YM, Chaney RL A J and B M 2000 Phytoremediation of heavy metal contaminated soils In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI and Stottmeister U (eds.). Bioremediation of Cotaminated Soils.

[12] Leomo S, Tufaila M, Adawiyah R M and R T 2018 The application of phytoremediation techniques for improving ex-nickel mining soil health using land cover crops

[13] S L S and A 2008 *Pengelolaan tanah dan air.* (Universitas Halu Oleo)

[14] Leomo S, Tufaila M, Adawiyah R, Rakian T C, Alam S, Mudi L and Sutariati G A K 2019 The effectiveness of cover crop and rhizobacteria as amelioration on ex-nickel mine soil southeast Sulawesi *IOP Conference Series: Earth and Environmental Science* **260** 12146

[15] Leomo S R T and A R 2011 Efektivitas Tanaman Penutup Tanah dalam Merehabilitasi Lahan Bekas Tambang”. *Prosiding Seminar Nasional “Benarkah Tambang Mensejahterakan ?*

[16] Sari G L and Trihadiningrum Y 2018 Petroleum Hydrocarbon Pollution in Soil and Surface Water by Public Oil Fields in Wonocolo Sub-district , Indonesia *J. Ecol. Eng.* **19** 184–93

[17] Ashrafuzzaman M, Hossen F A, Ismail M R, Hoque A, Islam M Z, Shahidullah S M and Meon S 2009 Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice
growth *African J. Biotechnol.* 8

[18] Sutariati GAK, Muhidin, Rakian TC, Afa LO, Widanta IM, Mudi L S G and L S 2018 The effect of integrated application of pre-plant seed bio-invigoration, organic and inorganic fertilizer on the growth and yield of local upland rice 15 160-165

[19] Sutariati G A K, Bande L O S, Khaeruni A, Mudi L and Savitri R M 2018 The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi *IOP Conference Series: Earth and Environmental Science* 122 p 12031

[20] Sutariati GAK, Widodo S and I S 2006 Effects of plant growth promoting rhizobacteria on seed germination and seedling growth of hot pepper *American Journal of Plant Sciences* 4 1013-1021