FermiKit: assembly-based variant calling for Illumina resequencing data
Heng Li

Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

1 INTRODUCTION
Deep resequencing of a human sample typically results in a BAM file of 60–100GB in size. Storing, distributing and processing many such huge files is becoming a burden for sequencing facilities and research labs. While better compression helps to alleviate this issue, it adds processing time and can barely halve the size, which does not keep up with the rapidly increasing sequencing throughput. Illumina and GATK use gVCF (Raczy et al., 2013) as a reduced representation of raw data. However, gVCF is reference dependent and it is nontrivial to encode both large and small variants consistently. We still need to go back to raw data for long events and when upgrading the reference genome. Another idea from the past practice is to assemble sequence reads into contigs that ideally retain all information in the raw data, but whether this approach is practical to Illumina human resequencing remains to be confirmed.

2 METHODS
The FermiKit pipeline uses BFC (Li, 2015) for error correction, ropeBWT2 (Li, 2014a) for BWT construction, an improved version of fermi (Li, 2012) for de novo assembly, BWA-MEM (Li, 2013) for mapping and HTSBox (http://bit.ly/HTSBox) for variant calling. The assembler retains the number of supporting reads at each position on the contigs. The caller simply parses edits in the ‘pileup’ output for small variant calling from one or multiple BAMs, and extracts alignment break points for SV calling. It sets thresholds on mapping quality and the number of supporting reads without using sophisticated statistical models. FermiKit does not use paired-end information for the time being, but this does not have a great impact on its power empirically. With longer upcoming Illumina reads, it will be actually preferred to merge overlapping ends and treat them as single-end reads.

Table 1. GIAB evaluation on SNP/INDEL accuracy

Sample	Caller	SNP-FN	SNP-FP	InDel-FN	InDel-FP
PG-	FermiKit	45,700	824	2,324	472
	FreeBayes	21,601	440	3,856	616
	HC+HardFilter	27,010	144	943	370
	HC+VQSR	128,604	1,955	1,423	366
S7-	FermiKit	65,217	531	2,340	549
	FreeBayes	50,866	675	2,895	670
	HC+HardFilter	66,847	228	1,543	457
	HC+VQSR	103,979	1,508	1,396	605
S11-	FermiKit	91,468	541	2,973	554
	FreeBayes	52,120	904	3,200	672
	HC+HardFilter	65,223	407	1,502	472
	HC+VQSR	111,504	1,694	1,175	765
S2-	FermiKit	63,445	448	2,244	568
S12-	FermiKit	74,940	501	2,562	553
S1+	FermiKit	67,816	455	4,051	516
	FreeBayes	63,147	902	4,626	660
	HC+HardFilter	71,174	531	2,376	591
	HC+VQSR	108,101	8,852	2,377	1,827
S4+	FermiKit	71,262	452	4,197	536
	FreeBayes	65,476	1,057	4,782	661
	HC+HardFilter	75,040	672	2,477	653
	HC+VQSR	103,595	10,492	2,401	1,622

PCR-free Platinum Genome NA12878 (PG--; AC:ERR194147), four Illumina X10 lanes of PCR-free NA12878 (S7-, S11-, S2- and S12- under BaseSpace project ID 18475457) and two X10 lanes of PCR-amplified NA12878 (S1+ and S4+ under project ID 8998991) were acquired and called with FermiKit-0.9, FreeBayes-0.9.20 (option: ‘–experimental-gls –min-repeat-entropy 1’) and HC-3.3 (option: ‘-stand_emit_conf 10 -stand_call_conf 30’). For FreeBayes and HC, BWA-MEM was used for mapping with PCR duplicates marked by Samblaster (Faust and Hall, 2014). Short variant calls were hard filtered with hapdip (http://bit.ly/HapDip). GATK-VQSR was also applied to HC calls. The filtered calls were compared to GIAB-v2.18 excluding poly-A regions longer than 6bp plus 10bp flanking. A true variant is counted as an FN if there are no called variants within 10bp around the truth, and a called variant is counted as an FP if it falls in GIAB trusted regions and there are no true variants within 10bp around the called variant.

3 RESULTS
We have run FermiKit on multiple NA12878 whole-genome data sets along with GATK-HaplotyperCaller (HC in brief) and FreeBayes (Garrison and Marth, 2013). We used Genome-In-A-Bottle (GIAB; Zook et al. 2014) as truth data to evaluate the accuracy (Table 1). Recent Illumina data have excessive systematic
Table 2. Evaluation on SNP/INDEL accuracy with CHM1-NA12878 pair

Caller	Filter	SNP-TP	SNP-FP	Indel-TP	Indel-FP
FermiKit	hard-polyA	1.937	22.743	230.955	14.602
	uniMask	1.802	9.507	127.304	1.126
FreeBayes	hard-polyA	2.026	9.422	30.607	30.909
	uniMask	1.842	15.252	117.764	6.329
HC	hard-polyA	2.003	32.030	267.870	15.541
	uniMask	1.824	14.912	133.458	2.046

SNP/INDELs were called from the CHM1 (AC:SRRA642636 through SRRA642641) and NA12878-PG- BWA-MEM alignments used by [Li, 2014b]. On the assumption that CHM1 is haploid, (heterozygous) FP equals the number of CHM1 heterozygotes and (heterozygous) TP equals the number of NA12878 heterozygotes minus the number of CHM1 heterozygotes. Two sets of filters were applied for filtering. ‘Hard-polyA’ is the same as the filter used in Table 1. ‘UniMask’ filters out genomic regions that tend to be repetitive, low-complexity or susceptible to copy number changes or systematic artefacts [http://bit.ly/unimask]. This filter is sample independent.

Table 3. Performance on calling long deletions over 100bp

Sample	Caller	1000g pilot	Ensemble	LUMPY	Merged
S7-	FermiKit	0.43 / 0.23	0.50 / 0.15	0.32 / 0.23	0.58 / 0.09
S1+	FermiKit	0.43 / 0.22	0.51 / 0.15	0.33 / 0.23	0.58 / 0.10
PG-	FermiKit	0.43 / 0.20	0.52 / 0.14	0.34 / 0.22	0.59 / 0.09
	DELLY	0.47 / 0.34	0.50 / 0.22	0.31 / 0.28	0.58 / 0.16
	LUMPY	0.72 / 0.34	0.76 / 0.29	0.68 / 0.37	0.79 / 0.20

FermiKit was used to call 100bp or longer deletions from the PG-, S7- and S1+ datasets. DELLY [Rausch et al., 2012] and LUMPY PG- calls were acquired from [http://bit.ly/bcbsval]. B. Chapman, personal communication. For all call sets, overlapping events were merged and deletions longer than 100bp were discarded. The two numbers in a cell at row R and column C give the false negative rate and false positive rate of call set R, assuming truth set C is correct and complete. In the table, truth set ‘1000g pilot’ consists of deletions by [Mills et al., 2011] and further validated by [Layer et al., 2014]. ‘Ensemble’ contains validated calls by multiple callers; ‘LUMPY’ consists of validated LUMPY-only deletions; ‘Merged’ is the union of all the three truth sets above.

errors around poly-A which HC does not handle well. It called over 4000 false INDELs from sample S1+ and S4+ with the vast majority around poly-A. We excluded these regions to avoid one simple error source greatly affecting the metrics. After this treatment, variant callers are broadly comparable when the same set of hard filters are applied. VQSR as is advised in GATK Best Practice does not work well with single-sample calling.

GIAB was generated from multiple NA12878 call sets. It is potentially biased against new callers and biased towards easier regions that can be called by the existing callers. For example, the GIAB call set available from the Platinum Genome website has 13,278 FN SNPs and 46 FP out of 2.03Gb confident regions (i.e. one SNP error per 44Mb), which is overly good and is worrying.

We turned to the CHM1-NA12878 dataset [Li, 2014a] for an unbiased evaluation (Table 2). In this evaluation, FermiKit produces calls of higher specificity at the cost of sensitivity. This is probably because FermiKit is less powerful in repetitive or duplicated regions or regions affected by systematic artefacts. Nonetheless, in well-behaved regions that are outside ‘uniMask’, the loss of sensitivity is minor. The gain in precision is significant if we consider that there may be 5–20k real heterozygous SNPs in CHM1 [Li, 2014a], which should not be counted as FPs.

FermiKit performs well in calling long deletions (Table 3). While it does not use read pairs, it achieves comparable sensitivity and higher specificity in comparison to the state of art. FermiKit also called ~900 novel sequence insertions and identified multiple kb-long contigs having poor alignments to GRCh37 but nearly perfect alignment to a PacBio assembly of CHM1 (J. Chin, personal communication). We also mapped the CHM1 unitigs to this assembly and called 71 long deletions, 35 insertions and 262 other events. As PacBio assemblies are generally of higher quality, these numbers give a rough estimate on the number false positives for haploid data.

4 CONCLUSIONS

A FermiKit assembly is currently 3GB compressed. After assembly, single-sample variants can be obtained in half an hour to high accuracy through mapping against a reference genome. Jointly calling 261 aligned SGDP samples only took ~40 CPU hours. FermiKit is a viable option for aggressive data compression, greatly reducing the efforts and expense on data storage, distribution and re-analyses at an acceptable cost of information loss.

ACKNOWLEDGEMENT

Funding: NHGRI U54HG003037; NIH GM100233

REFERENCES

Faust, G. G. and Hall, I. M. (2014). Samblaster: fast duplicate marking and structural variant read extraction. Bioinformatics, 30:2503–5.

Garrison, E. and Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907.

Li, H. (2012). Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics, 28:1388–44.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.5997.

Li, H. (2014a). Fast construction of FM-index for long sequence reads. Bioinformatics, 30:3274–5.

Li, H. (2014b). Toward better understanding of artifacts invariant calling from high-coverage samples. Bioinformatics, 30:2843–2851.

Li, H. (2015). BFC: correcting illumina sequencing errors. arXiv:1502.03744.

Mills, R. E. et al. (2011). Mapping copy number variation by population-scale genome sequencing. Nature, 470:59–65.

Raczy, C. et al. (2013). Isaac: ultra-fast whole-genome secondary analysis on illumina sequencing platforms. Bioinformatics, 29:2041–3.

Rausch, T. et al. (2012). DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 28(18):i333–i339.

Zook, J. M. et al. (2014). Integrating human sequence data sets provides a resource of benchmark snp and indel genotype calls. Nat Biotechnol, 32:246–51.