Molecular characterization of the gibberellin-stimulated transcript of GASA4 in *Citrus*

Tianli Wu1,2 · Chunzhen Cheng3,5 · Yun Zhong2,3 · Yuanda Lv2,4 · Yanyan Ma1 · Guangyan Zhong2

Received: 14 October 2019 / Accepted: 11 February 2020 / Published online: 19 February 2020
© The Author(s) 2020

Abstract

A *Citrus clementina* gene, *CcGASA4*, which is involved in the responses of citrus to stress, was characterized. The gene was induced by *Citrus tristeza virus* infection, wounding and gibberellic, salicylic and abscisic acid treatments. A qRT-PCR analysis showed that *CcGASA4* had a very high basal expression in flowers yet was still able to be further induced independently in gibberellic, salicylic and abscisic acid-treated flowers. Subcellular localization analysis revealed that the *CcGASA4* protein localized to the cell membrane and nucleus. A yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC) assays showed that *CcGASA4* interacted with two proteins, the large proline-rich protein bag6-A (PRPBAG6-A) and the general negative regulator of transcription subunit 3 (CNOT3). PRPBAG6 has been reported to be involved in disease resistance. Replacing some of *CcGASA4*’s conserved cysteines with alanines (Cys → Ala) abolished the protein’s interaction with CNOT3 but did not show any effect on the protein’s interaction with PRPBAG6-A. Thus, *CcGASA4* appears to play multiple roles in *Citrus*, probably by interacting with different proteins and/or by localizing to different subcellular compartments.

Keywords *Citrus* · GASA4 · Subcellular localization · Expression analysis · Yeast two-hybrid · BiFC

Introduction

Cysteine-rich peptides are particularly well represented among plants and are categorized into different classes based on the number and arrangement of the cysteine residues in the primary sequence (Silverstein et al. 2007). One class of cysteine-rich peptides, the gibberellic acid (GA) stimulated Arabidopsis (GASA)/GA-stimulated transcript (GAST) family plays crucial roles in plant growth, development and responses to abiotic and biotic stresses (Nahirnak et al. 2012a, b; Silverstein et al. 2007). Most GASA genes are primarily regulated by GA. GAST1 was the first GASA family gene identified in planta (Shi et al. 1992). GAST1 homologs have since been identified in different plant species, including GIP1-5 in petunia (Ben-Nissan et al. 2004), SN1–2 in potato (Segura et al. 1999; Berrocal-Lobo et al. 2002), FBCBP in French bean (Bindschedler et al. 2006), GASA1–15 in *Arabidopsis thaliana* (Herzog et al. 1995; Nahirnak et al. 2012a, b), FsGASA4 in beechnut (Alonso-Ramírez et al. 2009), ZmGSL1–10 in maize (Zimmermann et al. 2010), GsGASA1 in soybean (Li et al. 2011), CaSn in pepper (Mao et al. 2011). GASA proteins possess a cleavable signal peptide, consisting of 18–23 amino acid residues at the N-terminus, and a conserved GASA domain, consisting of 12 cysteines at the C terminus. However, a few GASA proteins such as PRGL in Gerbera hybrid (Peng et al. 2008) and AtGASA14 in *Arabidopsis* (Sun et al. 2013) contain an additional proline-rich protein (PRP) domain. GASA
to alanine mutant inhibited H2O2 reduction (Rubinovich and Weiss 2010). The expression levels of GA metabolic genes and flowering-related genes were elevated in the Arabidopsis gasa4 mutant (Chen et al. 2007). Following exogenous GA treatments, AtGASA4 was up-expressed in meristematic tissues and young flower buds and was down-regulated in cotyledons, leaves, elongated roots, stems, petioles and floral organs (Aubert et al. 1998). An analysis of GASA4 mutants indicated that GASA4 regulates floral meristem identity and positively affects both seed size and total seed yield (Roxrud et al. 2007).

In addition, GASA4 shows a broad-spectrum anti-stress activity. Overexpression of wild-type GASA4 reduced the accumulation of reactive oxygen species, while the cysteine to alanine mutant inhibited H2O2 reduction (Rubinovich and Weiss 2010). Overexpressing the maize GASA4 enhanced the heat tolerance of Arabidopsis (Ko et al. 2007). Overexpressing the Fagus sylvatica FsGASA4 increased tolerance to salt, oxidative and heat stresses, and increased the endogenous salicylic acid (SA) content in seeds of Arabidopsis (Alonso-Ramírez et al. 2009).

The GASA proteins’ N-terminal signal peptide suggests that these proteins may be secretory. N-terminal signal peptides must be cleaved to allow the proteins to localize accurately in cells (Qu et al. 2016). Different GASA proteins may differ in subcellular localizations. For example, GIP2 and GIP5 are localized in the cell wall, while GIP1 and GIP4 are confined to the endoplasmic reticulum membrane in petunia (Ben-Nissan et al. 2004). Soybean (Glycine soja) GsGASA1 can localize to different subcellular compartments, including cell wall, cytoplasm and nucleus (Li et al. 2011).

However, little is known about the role of GASA4 in plant responses to biotic stresses caused by pathogens. In our previous gene chip experiments, we found that the citrus homolog of AtGASA4, Cit.11064.1.S1_at, was highly induced in citrus leaves after infection with Citrus tristeza virus (CTV) (Zhang 2010), indicating that GASA4 may also play a role in biotic stress responses. In this report, we show that CcGASA4 is indeed responsive to CTV infection.

Materials and methods

Plant materials and growth conditions

Citrus plants (Citrus clementina and Citrus sinensis cv. Jincheng) were grown in the greenhouse of the Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences. Arabidopsis thaliana plants, ecotype Columbia Col-0, were used for transient expression and a protein–protein interaction analysis, and were grown at 22 °C under 16 h light/8 h dark photocycle. Anion epidermal cells were used for analyzing protein localizations.

Hormone treatments and the growth assay

For the CTV treatment, ten Citrus sinensis seedlings were randomly assigned into two groups, each containing five seedlings. The treatment and the control groups were graft-inoculated with CTV virulent strain CT14-infected and with virus-free Citrus sinensis branches, respectively. Leaf samples were taken at 1, 3 and 5 months after treatment. For hormone treatments, 200 mg/L GA3, 500 μM SA, 100 μM indole-3-acetic acid (IAA) and 200 μM abscisic acid (ABA) (Reckova et al. 2019) were independently sprayed onto Jincheng leaves and flowers, with water as the control. For mechanical injury, Jincheng leaves were pressed with foeces until clear dents were seen on the surfaces. Leaves were collected at 1, 4, 12 and 24 h, respectively, while the flowers were collected at 2, 4, 8 and 16 h after treatment. For the tissue-specific expression analysis, samples of roots, stems, leaves, fully developed flowers and newly opened flowers were collected.

RNA and DNA extraction

Total RNA was extracted using an RNA extraction kit (Biotek, China) following the manufacturer’s instructions. Genomic DNA was extracted using a Genomic DNA Rapid Extraction Kit (Dongsheng Biotech, China) following the user’s manual. The quality and quantity of total RNA and DNA were analyzed on a NanoDrop 2000C (Thermo Fisher Scientific, USA).

CcGASA4 cloning

All primers used in this study were synthesized by Beijing Liuhe Huada Gene Technology Company (China) (see Table S1 in Supplementary Material). cDNA was synthesized from total leaf RNA of Citrus clementina using a PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa, Japan). The complete coding sequence...
of CcGASA4 (GenBank accession number: MN781588) was amplified by PCR from cDNA using the primer pair GASA4-F/R. The PCR was performed on an ABI thermal cycler (Thermo Fisher Scientific, USA). PCR products were purified using an AxyPrep™ DNA Gel Extraction Kit (Axygen, USA), and they were then independently cloned into the pMD®20-T vector (TaKaRa). The same primers and PCR protocol were also used to amplify the gene from genomic DNA. PCR products were directly sequenced. All the sequencing was conducted by the Sangon Biotechnology Company (China).

Bioinformatics analysis

The CcGASA4 gene sequence (Ciclev10013454m CDS) was downloaded from the Phytozome (https://www.phytozome.org). cDNA and genomic DNA sequence analysis and the sequence alignment of the homologous proteins were conducted in DNAMAN5.2.2. The protein secondary structure prediction was performed using YASPIN (https://www.ibi.vu.nl/programs/yaspinwww/). The signal peptide and GASA domain were identified using InterProScan (https://www.cbs.dtu.dk/services/SignalP/; https://www.ebi.ac.uk/Tools/pfa/iprscan/). The phylogenetic tree was generated for GASA4 and its homologs using the Neighbor-joining method in MEGA 5.0. The cis-acting elements were identified from the CcGASA4 promoter using PlantCARE (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Lescot et al. 2002).

Gene expression analysis

The CcGASA4 expression was quantified using qRT-PCR with gene-specific primers and the reference gene β-actin primers. qRT-PCR reactions were performed on a Bio-RAD CFX Connect™ Real-Time System (Bio-Rad, USA) using SYBR®Premix Ex Taq™ II (Perfect Real Time) (TaKaRa, Japan). The expression ratios of the analyzed gene over the reference gene were determined by calculating the $2^{-\Delta\Delta C_T}$.

Subcellular localization

cDNA was amplified using primers GASA4–GFPF/R, digested with XbaI and BamHI (TaKaRa, Japan), and cloned into the pBEGFP vector to generate the CcGASA4–GFP fusion construct. Onion epidermal cells were transformed independently with the control original pBEGFP vector by agroinfiltration (Sun et al. 2007) and incubated in the dark for 36 h. The GFP fluorescence was then observed under a confocal laser scanning microscope.

Yeast two-hybrid (Y2H) assay

A yeast cDNA library was prepared using Clontech’s Make Your Own “Make & Plate™” Library System (Clontech, USA). Total RNA was extracted from leaves of Citrus sinensis trees infected with Candidatus Liberibacter asiaticus (CLas), a bacterium causing the disease Huanglongbing, and used to generate cDNA. cDNA amplification was performed using long distance PCR (SMART™ technology, Clontech). The purified cDNA and the pGADT7-Rec linearized vector were co-transformed into Y187 yeast cells.

The open reading frame (ORF) of CcGASA4 was amplified using the primers GASA4BAIT-F/R, digested with EcoRI and BamHI (TaKaRa, Japan), and cloned into pGBK7T (Clontech, USA) to produce the bait vector pGBK7T–GASA4. Preparation of Y2HGold yeast competent cells and the subsequent transformation of the cells with pGBK7T–GASA4 plasmid were performed by following the same protocol used in the yeast cDNA library preparation. The pGBK7T–GASA4 vector without autoactivation activity and toxicity in the yeast cells was selected as a bait to screen the citrus cDNA library for proteins interacting with GASA4 by following the instructions of the Matchmaker™ Gold Yeast Two-Hybrid System (Clontech, USA). The candidate CcGASA4-interacting protein genes were cloned and inserted into pGADT7 vectors to verify their interactions with GASA4 using the yeast two-hybrid assay.

Bimolecular fluorescent complementary (BiFC) analysis

The GASA4 cDNA was inserted into pSAT4–nEYFP, and the cDNAs of the CcGASA4 interacting proteins were individually inserted into the pSAT4–cEYFP vector using the ClonExpress II One Step Cloning Kit (Vazyme, China). All the constructed BiFC plasmids were then propagated in E. coli, extracted using Magen’s HiPure Plasmid EF Mini Kit, and transformed into Arabidopsis protoplast cells. The GASA4–GFP plasmid was used as a control to verify if the transformation was successful. The transformed protoplasts were incubated at room temperature for 16 h in darkness as described previously (Wu et al. 2009). The fluorescence signals from transiently expressed GASA4–nEYFP and interacting-protein-cEYFPs were observed under a Zeiss LSM710 laser scanning confocal microscope.

Creation of cysteine-to-alanine mutations

The gene’s cysteine to alanine mutations were created by PCR by using primers that contained one or two alanine (GCG) codons at the sites corresponding to the original cysteine residues. Specifically, mutant 1 was mutated at residues 48, 52 and 56; mutant 2 was mutated at 72, 73, 76 and
were clearly identifiable on the phylogenetic tree (Fig. 1c): the first included *Arabidopsis*, *Rosa damascene* and strawberry, and the second included the CcGASA4 protein cloned in this study and the remaining analyzed GAST-like proteins. CcGASA4 was evolutionally closer to a cucumber homolog.

CcGASA4 responds to stresses and hormones in *Citrus* leaves

The effects of CTV infection on the expression of GASA4 were investigated in leaves of Jincheng. GASA4 was up-regulated at 1 month post-CTV inoculation. The peak expression was observed after 3 months. Although it decreased substantially, the gene’s expression was still higher in CTV-infected leaves than in control leaves after 5 months (Fig. 2a). The CcGASA4 promoter sequence downloaded from Phytozome was 1800 bp. It contains the gibberellin response element GARE, the abscisic acid response element ABRE, the inductive salicylic acid and the damage signal element WBox, the inductive pathogen invasion and the salt stress element GT1-Box, the drought response element MYB, the MYC and MYB transcription factor binding site MBS, the pollen-specific activation element AGAAA, the auxin response factor binding site AFR, and the photo-responsive elements, GBox, Box4 and iBox core (Fig. S3). Thus, CcGASA4 might participate in hormone and stress responses. Therefore, hormone and wounding treatments were performed on Jincheng leaves. As shown in Fig. 2b, the gene was significantly induced after 4 h in leaves treated with GA3, and a small peak induction was shown at 12 h. Following the SA treatment, CcGASA4 expression increased at 1 h and reached a peak of 87-fold increase at 4 h, as compared with the control. In ABA treatment, CcGASA4 expression showed two peaks, the first one at 4 h and the second one at 24 h, corresponding to increases of 12.9-fold and 17.8-fold, respectively. CcGASA4 was also up-regulated by mechanical injury with a peak expression of 6.21-fold after 24 h.

CcGASA4 is highly expressed in flowers

The variations in CcGASA4 expression were investigated in *Citrus* roots, stems, leaves and flowers. Figure 2c showed that the gene was expressed, although at different levels, in all the analyzed tissues. Notably, the gene was highly abundantly expressed in flowers. The gene’s temporal expression pattern was investigated in flowers, and it was expressed higher at the initiating bloom and bloom stages, with the lowest expression at the wither stage (Fig. 2d). As shown in Fig. 2e, the gene varied in its expression level in different flower parts, with the highest expression in petals and the lowest in anthers.

**Fig. 1 Cloning of the CcGASA4 gene and bioinformatics analysis of its deduced amino acid sequence. a PCR amplifications of CcGASA4 from genomic DNA and cDNA. M is DSTM 2000 marker. b Phylogenetic tree showing the similarities between the deduced amino acid sequence of CcGASA4 and its homologs from other species. The black triangle represents the CcGASA4 sequence. The homologs are as follows: *Vitis vinifera* (XP_002283517.1), *Cicer arietinum* (XP_004491797.1), *Gossypium hirsutum* (AGE15501.1), *Fagus sylvatica* (CAJ77893.1), *Citrus clementina* (XP_006431148.1), *Cucumis sativus* (XP_004147472.1), *Gerbera hybrid cultivar* (AQL92232.1), *Solanum lycopersicum* (XP_004236040.1), *Petunia hybrid* (CAD10106.1), *Rosa damascene* (ACM47319.1), *Fragaria vesca* subsp. *Vesca* (XP_004304306.1) and *Arabidopsis thaliana* (AAG52379.1). c Multiple alignment of CcGASA4 and its homologs from other species. Lowercase letters indicate the conserved residues. Different background colors highlight residues having different conservation levels. The underline indicates the 60-amino acid GASA domain. d Partial sequence alignment of GASA4 and the three mutants created in the study. The numbers indicate the sites where the original cysteines were replaced by alanines.
Fig. 2 Expression levels of CcGASA4 in leaves and flowers.

a The expression of GASA4 in leaves of CTV-infected Jincheng seedlings after 1, 3 and 5 months of treatment.

b qRT-PCR analysis of CcGASA4 expression in leaves of Jincheng seedlings treated with GA, SA and ABA as well as after wounding.

c Expression of CcGASA4 in roots, stems, leaves and flowers.

d Expression level of CcGASA4 in flowers at different flowering stages: sprout stage, S1; flower-bud stage, S2; petal-display stage, S3; initiating bloom stage, S4; bloom stage, S5; and wither stage, S6.

e CcGASA4 expression in different floral tissues (anthers, petals, filaments and styles).

f Effects of GA, SA, ABA and IAA treatments on CcGASA4 expression in flowers. All the experiments were replicated three times. Bars indicate SEs.
GA, SA and ABA promote GASA4 expression in flowers

With the GA treatment, the expression of GASA4 spiked after 2 h and then subsided (Fig. 2f). The SA treatment gradually stimulated the gene’s expression in the first 4 h and then reduced its expression in the following hours. ABA increased the expression of GASA4 to a peak at 2 h but not after 8 h. Interestingly, although its promoter contains an auxin response factor binding AFR site, the gene’s expression was not induced by the IAA treatment.

CcGASA4 localizes to the plasma membrane and nucleus

The CcGASA4-GFP was successfully constructed (Fig. 3a) and transiently expressed in onion epidermal cells (Fig. 3b). After plasmolysis, GFP fluorescence signals were observed in the nucleus and plasma membrane but not in the cell wall.

CcGASA4 interacts with two different proteins in Y2H system

A representative pGADT7-DEST-cDNA yeast library was constructed using mRNA from leaves of sweet orange trees infected with Clas bacteria. The pGBKTK7-GASA4 bait vector was constructed and successfully transformed into Y2HGold yeast. In total, 12 positive clones were obtained after screening for GASA4-interacting proteins on the auxotrophic medium DDO/X/A and the chromogenic medium QDO/X/A. Plasmids from all the positive clones were extracted (Table S2 in Supplementary Material), transformed into E. coli and sequenced. The yeast two-hybrid assay showed that only two of the proteins PRPBAG6-A and CNOT3 interacted with CcGASA4 (Fig. 4a). In the BiFC assay, green fluorescence signals were detected on cell membranes and nuclei following co-transformation of CcGASA4 with either CNOT3 or PRPBAG6-A (Fig. 4b) further verifying the interactions of CcGASA4 with PRPBAG6-A and with CNOT3.

Mutations in specific cysteine residues abolish CcGASA4’s interaction with CNOT3

To investigate if the cysteine residues participate in the interactions of CcGASA4 with PRPBAG6-A and CNOT3, three CcGASA4 constructs, each containing 3–4 cysteine to alanine (C → A) mutations (Fig. 1d) were made and subjected to yeast two-hybrid assay. As shown in Fig. 4a, these mutants were still capable of interacting with PRPBAG6-A but not with CNOT3.

Discussion

We previously found that a GASA4-like protein gene (Cit.11064.1.S1_at) was highly up-regulated by CTV-infection in Jincheng (Zhang 2010). In this study, we isolated, sequenced and characterized the gene designated as CcGASA4. We showed that the gene was responsive to biotic and abiotic stresses and stress-related hormones in citrus, and demonstrated that the protein interacted with PRPBAG6-A and CNOT3 and that its interaction with CNOT3 was associated with cysteine residues. Results showed that CcGASA4 was localized to the plasma membrane and the nuclei.

GASA genes are responsive to GAs (Sun et al. 2013). Although the basal GASA4/GUS activity was only slightly enhanced in root and flower meristems of the wild type Arabidopsis by the GA treatment, the GA-dependent expression of GASA4 was evident in GA-deficient mutants (Aubert et al. 1998). Our study demonstrated that CcGASA4 was up-regulated in flowers and leaves of citrus by an exogenous GA treatment, indicating that CcGASA4 is also GA-responsive. The involvement of GA in flowering has been well documented in higher plants. That the CcGASA4 expression was much higher in flowers than in other organs may signify its importance in flower development. GASA6, a GASA4 homolog in Arabidopsis was reported to affect flowering time as indicated by the GASA6 over-expression plants being early-flowering and the gasa4/gasa6 double mutants being late-flowering (Qu et al. 2016).

The presence of multiple stress-responsive elements in CcGASA4’s promoter suggests it may be a stress-responsive gene. Treatments with the stress-related hormones SA and ABA, as well as wounding, up-regulated CcGASA4 in Citrus. Similarly, the rice GAST family gene OsGASRI was induced by salt and ABA treatments, and over-expressing OsGASRI enhanced salt tolerance (Lee et al. 2015). Its stress responsiveness may involve cysteine residues because over-expressing the GAST-like gene GIP2 reduces H$_2$O$_2$ levels in wound-treated petunia leaves and in osmotic stress- and ABA-treated guard cells (Wigoda et al. 2006). Rubinovich and Weiss (2010) showed that over-expressing GASA4 suppressed ROS accumulation in Arabidopsis and that the transgenic seeds were partially resistant to NO donor sodium nitroprusside. Additionally, E. coli cells expressing either an intact GASA4 or a truncated version containing only the cysteine-rich domain were resistant to sodium nitroprusside. They also showed that the gasa4 with four C → A mutations lost redox activity and GA responsiveness, suggesting that the two functions are interlinked.
Fig. 3 Subcellular localization of CcGASA4-GFP protein in onion epidermal cells.

a The schematic illustration of the two vectors: PBE-GFP and CcGASA4-GFP. The cauliflower mosaic virus 35S promoter was used to drive the transient expression of the CcGASA4-GFP fusion protein in Arabidopsis protoplasts. **b** Fluorescence images showing the subcellular locations of the fusion proteins. (1) Hoechst 33,342 staining; (2) fluorescent field; (3) bright field; and (4) merged. Scale bar = 100 μm.
We showed that the citrus \textit{GASA4} gene was induced by CTV infection. This is the first report, to our knowledge, that \textit{GASA4} is also responsive to viral infection. The potato \textit{Snakin-1} has in vivo antibacterial activity (Segura et al. 1999), and \textit{Snakin-2} has both anti-bacterial and anti-fungal activities (Berrocal-Lobo et al. 2002). The pepper \textit{CaSn} protein has an anti-nematode activity (Mao et al. 2011). A compound protein containing a French bean \textit{Snakin-2}-like protein has antimicrobial activity (Bindschedler et al. 2006).

Two \textit{CcGASA4}-binding proteins, \textit{PRPBAG6-A} and \textit{CNOT3}, were identified in this study (Fig. 4b). The French bean \textit{Snakin-2}-like protein can form a two-component protein complex with a PRP to bind the pathogen \textit{Colletotrichum lindemuthianum} (Bindschedler et al. 2006). We, therefore, hypothesize that the interaction between \textit{CcGASA4} and \textit{PRPBAG6-A}, also a PRP, may be similarly involved in defense in \textit{Citrus}. \textit{CNOT3} is a component of the CCR4–NOT complex, an essential and conserved multi-subunit complex that plays multiple roles, including suppressing tumors in drosophila and in humans, maintaining self-renewal program in ES cells, and regulating RNA turnover and transcription termination (Vicente et al. 2018; Martufi 2014). Because \textit{CNOT3} interacts with Nucleolin and Histone H1 (Martufi 2014), \textit{GASA4}'s nuclear localization and its interaction with \textit{CNOT3} may signify its potential role in chromatin organization.

\footnotesize{
Fig. 4 Interactions of \textit{CcGASA4} with both \textit{PRPBAG6-A} and \textit{CNOT3}. a Identification of GASA4 interacting proteins by Y2H assay. The GAL4 DNA-binding domain was fused to the \textit{CcGASA4} coding region, forming BD-GASA4, and the three mutated \textit{CcGASA4} sequences, BD-mut1, BD-mut2 and BD-mut3, were used as bait vectors. The cDNA sequences of \textit{PRPBAG6-A} and \textit{CNOT3} isolated from the citrus cDNA library were fused with the Gal4 activation domain to construct the prey vectors, AD-BAG6 and AD-CNOT3, respectively. Yeast was grown on QDO/X/A (SD/–Ade/–His/–Leu/–rp/x-α-gal/Aba) medium. b BiFC verification of protein interactions. The transient expression of the BiFC plasmids in \textit{Arabidopsis} leaf protoplasts are shown by individual and merged images of GFP and chlorophyll autofluorescence (Chl), as well as DIC images, of protoplasts. Scale bars = 5 μm. a GFP vector; b \textit{GASA4}-GFP vector; c large proline-rich protein bag6-A (PRPBAG6-A)-GFP vector; d general negative regulator of transcription subunit 3 (CNOT3)-GFP vector; e \textit{CcGASA4}-nYFP vector + \textit{PRPBAG6-A}-cYFP vector; and f \textit{CcGASA4}-nYFP vector + CNOT3-cYFP vector.
}
Cysteine is required for the formation of disulfide bonds inside a single peptide or between different subunits of a compound protein, and thus, it plays an important role in stabilizing the protein’s spatial conformation. The 12 conserved cysteine residues present in all the GASA proteins, including the citrus CcGASA4, can theoretically form 5 to 6 disulfide bonds (Ben-Nissan et al. 2004). Although the replacement of cysteine residues with alanines impaired the protein’s GA responses and redox activity (Rubinovich and Weiss 2010), no reports have demonstrated roles for cysteine residues in the interactions between GASA4 and other proteins. In this study, we showed that the interaction between the C → A mutated gasa4 protein and CNOT3 was totally abolished but not the interaction between gasa4 and PRPBAG6-A. This may indicate that the interaction between GASA4 and CNOT3 requires correctly-folded GASA4, which requires disulfide bonds, whereas the interaction between GASA4 and PRPBAG6-A may involve only limited surface areas of GASA4. Clearly, the binding sites of GASA4 to PRPBAG6-A and CNOT3 are different.

Conclusions

Previous reports and this study showed that GASA4 is involved not only in plant growth and development but also in biotic and abiotic stress responses. Clues to why it plays diverse roles are partially provided by this study, because it resides in different subcellular compartments, and/or it interacts with different proteins. However, the exact mechanisms are still elusive and further studies are required.

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (2018B020202009), National Natural Sciences Foundation of China (Grant No. 315711362), Guangdong Provincial Science and Technology Programs (2019B030316005, 2017A030310281), Guangdong Provincial Special Fund For Modern Agriculture Industry Technology Innovation Teams (2019K1108), the Natural Science Foundation of China Chongqing (cstc2018jcyjAX0384) and Fujian Provincial Science and Technology Program (2017J01615). The authors would like to thank Dr. Minlun Hu for his experimental support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in arabidopsis seeds. Plant Physiol 150:1335–1344

Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M (1998)
Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Mol Biol 36:871–883

Ben-Nissan G, Lee J, Borohov A, Weiss D (2004) GIP, a Petunia hybridia GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37:229–238

Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garciaolmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

Bindschedler LV, Whitelegge JP, Millar DJ, Bolwell GP (2006) A two component chitin-binding protein from French bean—association of a proline-rich protein with a cysteine-rich polypeptide. FEBS Lett 580:1541–1546

Chen I, Lee S, Pan S, Hsieh H (2007) GASA4, a GA-stimulated gene, participates in light signaling in Arabidopsis. Plant Sci 172:1062–1071

Herzog M, Dorne AM, Grelet F (1995) GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743–752

Ko C, Woo Y, Lee DJ, Lee M, Kim CS (2007) Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiol Biochem 45:722–728

Lee S, Han S, Kim S (2015) Salt- and ABA-inducible OsGASR1 is involved in salt tolerance. J Plant Biol 58:96–101

Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, De Peer YV, Rouz P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

Li KL, Bai X, Li Y, Cai H, Ji W, Tang LL, Wen YD, Zhu YM (2011) GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLA. J Plant Physiol 168:2153–2160

Mao Z, Zheng J, Wang Y, Chen G, Yang Y, Feng D, Xie B (2011) The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica 39:151–164

Martufi M (2014) Role of Cnot3 in gene regulation and cell cycle progression. Doctoral dissertation, Imperial College, London

Nahirnak V, Almasia NI, Hopp HE, Vazquezrovere C (2012a) Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition. Plant Physiol 158:252–263

Nahirnak V, Almasia D, Hopp HE, Vazquezrovere C (2012b) Snakin/GASA proteins involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav 7:1004–1008

Peng JZ, Lai LJ, Wang XJ (2008) PRGL: A cell wall proline-rich protein containing GASA domain in Gerbera hybrida. Sci China Life Sci 51:520–525
Qu J, Kang SG, Hah C, Jang J (2016) Molecular and cellular characterization of GA-stimulated transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Sci 246:1–10

Reckova S, Tuma J, Dobrev P, Vankova R (2019) Influence of copper on hormone content and selected morphological, physiological and biochemical parameters of hydroponically grown Zea mays plants. Plant Growth Regul 89(2):191–201

Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahlsoerteborg H (2007) GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471–483

Rubinovich L, Weiss D (2010) The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. Plant J 64:1018–1027

Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe In 12:16–23

Shi L, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant J 2:153–159

Silverstein KA, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, Vandebosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

Sun W, Cao Z, Li Y, Zhao Y, Zhang H (2007) A simple and effective method for protein subcellular localization using agrobacterium-mediated transformation of onion epidermal cells. Biologia 62:529–532

Sun S, Wang H, Yu H, Zhong C, Zhang X, Peng J, Wang X (2013) GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp Bot 64:1637–1647

Vicente C, Stirparo R, Demeyer S, de Bock CE, Gielen O, Atkins M, Yan JK, Halder G, Hassan BA, Cools J (2018) The CCR4-NOT complex is a tumor suppressor in Drosophila melanogaster eye cancer models. J Hematol Oncol 11:108

Wigoda N, Bennissan G, Granot D, Schwartz A, Weiss D (2006) The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J 48:796–805

Wu F, Shen S, Lee L, Lee S, Chan M, Lin C (2009) Tape-Arabidopsis sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16–16

Zhang LY (2010) Transcriptome profiling of genes involved in ethylene-induced fruit abscission, cloning and characterization of ethylene-regulated genes in citrus sinensis. PhD thesis, Southwest University, China

Zimmermann R, Sakai H, Hochholdinger F (2010) The gibberellic acid stimulated-like gene family in Maize and Its role in lateral root development. Plant Physiol 152:356–365

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.