Correlation between polymorphism of vitamin D receptor Taq1 and susceptibility to colorectal cancer

A meta-analysis

Shihou Sheng, MD, Yahong Chen, MM, Zhen Shen, MD∗

Abstract

The meta-analysis aimed to investigate the correlation between the polymorphism of the vitamin D receptor (VDR) Taq1 and susceptibility of colorectal cancer.

Studies were extracted from the electronic databases of PubMed and Embase. The balance of heredity was estimated by the Hardy–Weinberg equilibrium test, and heterogeneity was assessed by Cochran Q statistics and 2 test. Four assessed models, namely additive (T vs T), dominant (TT + T vs TT), recessive (TT vs T + TT), and codominant (TT vs TT and T vs TT), were used to evaluate the correlations and the effective results were measured as odds ratio (OR) with 95% confidence interval (CI).

A total of 14 studies, including 4632 patients and 5086 controls, were enrolled in this meta-analysis. With no significant heterogeneities observed among the 4 models, the fixed-effect model was used to examine the pooled effect value. There were no significant differences among T vs T (OR = 1.01; 95% CI, 0.94–1.09; P = .70), T + T vs TT (OR = 1.05; 95% CI, 0.98–1.16; P = .32), TT vs T + TT (OR = 1.01; 95% CI, 0.87–1.17; P = .92), T vs TT (OR = 1.03; 95% CI, 0.93–1.13; P = .82), and TT vs TT (OR = 1.00; 95% CI, 0.85–1.17; P = .98) with respect to increasing CRC frequency.

No evidence showed that Taq1 polymorphisms were significantly associated with susceptibility to CRC.

Abbreviations: CI = confidence interval, CRC = colorectal cancer, OR = odds ratio, VDR = vitamin D receptor.

Keywords: colorectal cancer, meta-analysis, Taq1, vitamin D receptor

1. Introduction

Colorectal cancer (CRC) is the third most common cause of cancer-related mortality worldwide in both men and women.[1,2] It was estimated that there would be 95,270 new cases and 49,190 deaths in 2016.[3] Although the incidence of and death rate from CRC increased in China.[4] Family-based researches have the popularization of a westernized lifestyle, CRC prevalence owing to CRC decreased by 3% from 2003 to 2012 because of 19 May 2017 Received: 20 January 2017 / Received in final form: 18 May 2017 / Accepted: 19 May 2017

Meta-Analysis of Observational Studies in Epidemiology

A meta-analysis

Correlation between polymorphism of vitamin D receptor Taq1 and susceptibility to colorectal cancer

A meta-analysis

Shihou Sheng, MD, Yahong Chen, MM, Zhen Shen, MD∗

Abstract

The meta-analysis aimed to investigate the correlation between the polymorphism of the vitamin D receptor (VDR) Taq1 and susceptibility of colorectal cancer.

Studies were extracted from the electronic databases of PubMed and Embase. The balance of heredity was estimated by the Hardy–Weinberg equilibrium test, and heterogeneity was assessed by Cochran Q statistics and 2 test. Four assessed models, namely additive (T vs T), dominant (TT + T vs TT), recessive (TT vs T + TT), and codominant (TT vs TT and T vs TT), were used to evaluate the correlations and the effective results were measured as odds ratio (OR) with 95% confidence interval (CI).

A total of 14 studies, including 4632 patients and 5086 controls, were enrolled in this meta-analysis. With no significant heterogeneities observed among the 4 models, the fixed-effect model was used to examine the pooled effect value. There were no significant differences among T vs T (OR = 1.01; 95% CI, 0.94–1.09; P = .70), T + T vs TT (OR = 1.05; 95% CI, 0.98–1.16; P = .32), TT vs T + TT (OR = 1.01; 95% CI, 0.87–1.17; P = .92), T vs TT (OR = 1.03; 95% CI, 0.93–1.13; P = .82), and TT vs TT (OR = 1.00; 95% CI, 0.85–1.17; P = .98) with respect to increasing CRC frequency.

No evidence showed that Taq1 polymorphisms were significantly associated with susceptibility to CRC.

Abbreviations: CI = confidence interval, CRC = colorectal cancer, OR = odds ratio, VDR = vitamin D receptor.

Keywords: colorectal cancer, meta-analysis, Taq1, vitamin D receptor

1. Introduction

Colorectal cancer (CRC) is the third most common cause of cancer-related mortality worldwide in both men and women.[1,2] It was estimated that there would be 95,270 new cases and 49,190 deaths in 2016.[3] Although the incidence of and death rate from CRC increased in China,[4] the popularization of a westernized lifestyle, CRC prevalence continues to increase in China.[4] Family-based researches have identified multiple deleterious germline mutations, such as MLH1, MSH2, MSH6, BMPR1A, SMAD4, POLE, NTHL1, MUTYH, POLD1, and adenomatous polyposis coil (APC), that increase susceptibility to CRC.[5–8] Although gene mutations account for <5% of all CRCs, it is accepted that combinations of these low-risk genes contribute to an increased risk for CRC.[9] Vitamin D is a fat-soluble steroid hormone, which is obtained from the diet and is synthesized in the skin after exposure to ultraviolet light.[10] During the synthesis process, vitamin D is converted to active 1,25 dihydroxyvitamin D [1,25(OH)2D], which is involved in the administration of cell cycle and has been implicated in CRC development.[11,12] The vitamin D receptor, encoded by VDR, is involved in the first step of 1,25(OH)2D signal transduction.[11] Several studies have reported that VDR polymorphisms, including Taq1, Bsm1, and Tru91, are associated with the susceptibility of CRC.[13] Many studies have focused on the association between Taq1 polymorphisms and CRC with conflicting results.[14,15]; thus, the involvement of vitamin D in CRC pathogenesis remains unclear.[12,16]

To our knowledge, although several meta-analyses have been performed to clarify the association between VDR polymorphisms and CRC, only the Bsm1 polymorphism has been clearly confirmed as a risk factor for CRC; the role of Taq1 remains unclear.[17] Although Serrano et al[18] have reported that Taq1 is associated with a significantly increased risk for CRC, Touvier et al[19] demonstrated no significant associations between Taq1 and CRC, consistent with the findings of Xu et al.[17] Therefore, to further investigate the correlation, in this meta-analysis, the associations between Taq1 polymorphisms and CRC were assessed with updated publications to provide new insights regarding the CRC mechanism.
2. Materials and methods

2.1. Search strategy

The electronic databases of PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Embase (http://www.embase.com) were searched for English-language publications about the vitamin D receptor TaqI and CRC for all records listed up to December 18, 2016. Key search terms used were as follows: "genetic" (OR "polymorphism" OR "variant") AND "colorectal cancer" (OR "colorectal neoplasm") AND "vitamin D receptor" (OR "VDR"). The references of retrieved articles were also manually searched for further references.

2.2. Inclusion and exclusion criteria

Articles included in this meta-analysis had to meet the following criteria: research designed as a case-control study, the research subjects were humans, patients in case group had CRC, research focused on the correlation between TaqI and susceptibility to CRC, and gene numbers were provided or could be computed. Articles were excluded if they met any of the following criteria: publications were reviews, comments, or letters; studies included only were family members or relatives; allele frequencies were not according to Hardy-Weinberg equilibrium (HWE); and studies focused on the correlation between TaqI polymorphism and CRC occurrence.

2.3. Data extracted and quality evaluation

Two authors independently screened the literatures based on the inclusion and exclusion criteria. When the selected studies were confirmed, the data were extracted and summarized in tables, including data regarding the first author, publication year, geographical region where the study was conducted, age and sex of subjects, sample size of both case and control groups, source of control groups, and data of gene types. After extraction, the authors exchanged the tables, and disagreements were resolved by discussion. The quality of the included papers was estimated by the standard provided by Clark and Baudouin.[20] For this measurement, 10 terms were included, and each with a score of 1. A final score of ≥6 was considered to indicate high quality, with lower scores indicating low quality.[21]

2.4. Statistical analysis

The HWE test for each study was performed using Stata version 11.0 software (Stata Corporation, College Station, TX), and \(P < .05 \) was considered to indicate significant disequilibrium. The codominant (\(TT \) vs \(TT, \) \(TT \) vs \(TT \)), dominant (\(TT + TT \) vs \(TT \)), recessive (\(TT + TT \) vs \(TT \)), and additive (\(T \) vs \(T \)) were compared. Odds ratio (OR) and 95% confidence interval (CI) calculated. A heterogeneity test of the studies was conducted using Cochran Q statistics and \(I^2 \) tests.[22] When the \(Q \) statistic indicated a \(P < .05 \) and/or \(I^2 > 50\% \), significant heterogeneity was considered to be presented, and the statistics were merged with a random-effect model; otherwise, the fixed-effect model was utilized. Sensitivity was assessed by the leave one-out method. OR with 95% CI and \(P \) values were used to report the effect size. OR values were calculated using RevMan 5.3 software.

3. Results

3.1. Literature retrieval

Using the search items, we identified 127 articles in PubMed and 377 papers in Embase. Of the 504 articles, 444 were excluded as duplicates or not relevant. Of the remaining 60 articles, 43 studies were rejected, including 9 reviews, 3 not case-control studies, 15 not relevant to TaqI, 9 without gene frequency, and 7 on CRC incidence. The complete text of the remaining 17 articles was reviewed, and 3 articles were ruled out because of significant disequilibrium identified by the HWE test. Therefore, 14 articles were enrolled in this meta-analysis (Fig. 1).[23–36]

3.2. Characteristics of included studies

In this meta-analysis, 9718 subjects from 14 studies were reviewed, including 4632 subjects in case groups and 5086 in control groups (Table 1). Among the included studies, 4 were
Study	Study design	Geographic area	Ethnicity	Disease	Subjects, n	Control type	Subjects, n	Genotyping method	M/F	Test for HWE		
Alkhayal (2016)	CCS	Saudi	Caucasians	CRC	100/100	Healthy	57.5 (20–80)/57.5 (21–81)	PCR-Sanger	64/46	64/36	1.335	.248
Atoum (2014)	CCS	Jordan	Caucasians	CRC	93/102	Healthy	69.5±0.4	PCR-RFLP	47/46	52/50	0.112	.738
Bentley (2012)	CCS	New Zealand	Caucasians	CRC	200/200	Healthy	56.7±7.3/61.6±7.2	TagMan	106/94	106/94	0.96	0.56
Budhathoki (2016)	Nested-CCS	Japan	Asia	CRC	396/709	Subjects with no CRC history	61.9±10.6/63.2±11.2	PCR-RFLP	124/130	125/131	0.358	.549
Rogge (2007)	CCS	Russia	Caucasians	CRC	250/256	Patients without malignant disease	54.8±48.8	PCR-RFLP	27/16	26/16	0.013	.908
Gunduz (2012)	CCS	Turkey	Caucasian	CC	43/42	Healthy	61 (27–85)/53 (29–91)	Allele-specific PCR	0.702	0.0421		
Hughes (2011)	CCS	Czech	Caucasian	CRC	754/627	Patients without malignant disease	54.8±0.8	PCR-SNAPshot	106/73	106/73	1.733	.1855
Laczmanska 2014	CCS	Poland	Caucasians	CRC	179/180	Healthy	65.7±11.2	PCR-SNAPshot	120/130	81/165	0	0.9927
Ochs-Balcom (2008)	CCS	United States	Caucasians	CRC	250/246	Cancer-free controls	62.76±21.68/62.47±12.11	PCR-Titanium Taq polymerase	99/99	10/10	0.578	.442
Park (2006)	CCS	South Korea	Asia	CRC	179/180	Healthy	55 (23–81)	PCR-RFLP	531/232	535/239	0.935	.329
Peters (2004)	CCS	United States	Caucasians	CRC	763/774	Patients with negative screening sigmoidoscopy	Range: 20–74	PCR-RFLP	526/256	482/256	0.069	.791
Takeshige (2015)	CCS	Japan	Asia	CRC	685/788	People without CRC before	Range: 20–74	PCR-RFLP	NA	NA	0.069	.7921
Yamaji (2012)	CCS	Japan	Asia	CRC	737/703	Healthy	NA	TagMan	526/256	482/256	0.069	.8174
Yaylim-Eraltan (2007)	CCS	Turkey	Caucasians	CRC	26/52	Patients attending the general surgery and orthopedic clinics of the same hospital	59.07±4.01/52.0±0.77	PCR-RFLP	259	259	0.299	.611

CCS = case-control study; CRC = colorectal cancer; F = female; HWE = Hardy-Weinberg equilibrium; M = male; PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphisms.

* Median (range).

† Mean (range).
preformed among the Asians and 10 among the Caucasians. Among the control groups, half comprised healthy individuals and the other half included subjects without CRCs. No significant deviations of HWE were identified for allele frequencies in both the case and control groups. All included studies were published between 2004 and 2016 and were of high quality (Table 2).

3.3. Correlation between TaqI polymorphisms and CRC

To investigate the correlation between TaqI polymorphisms and CRC, 4 models, namely additive (t vs T), dominant (Tt + tt vs TT), recessive (tt vs Tt + TT), and codominant (Tt vs TT and tt vs TT), were brought out (Figs. 2–6). Because there were no significant heterogeneities among the 4 models ($I^2 = 38\%, P = .08; I^2 = 27\%, P = .16; I^2 = 30\%, P = .16; I^2 = 0\%, P = .45$; and $I^2 = 35\%, P = .11$, respectively), the fixed-effect model was used to estimate the pooled effects. After evaluation, there were no significant differences among t vs T ($OR = 1.01; 95\% CI, 0.94–1.09; P = .70$), Tt + tt vs TT ($OR = 1.05; 95\% CI, 0.96–1.15; P = .32$), tt vs Tt + TT ($OR = 1.01; 95\% CI, 0.87–1.17; P = .92$), Tt vs TT ($OR = 1.03; 95\% CI, 0.93–1.13; P = .62$), and tt vs TT ($OR = 1.00; 95\% CI, 0.85–1.17; P = .98$) with respect to increasing CRC frequency of CRC. Sensitivity testing showed that the pooled result could not be reversed by leave-one-out method (Table 3).

Subgroup analyses based on ethnicity and control group composition were also performed. However, no statistically significant relevance was identified between TaqI polymorphisms and CRC (Table 4). Finally, publication bias was also examined, and no obvious bias was identified in the funnel plot (Fig. 7).

4. Discussion

In this meta-analysis, 14 investigations involving 9718 subjects were evaluated. With no obvious heterogeneities, the fixed-effect

Table 2

Quality assessment of the included literatures.

Author	A	B	C	D	E	F	G	H	I	J	Sum
Alkhayal (2016)	1	1	1	1	1	0	1	1	1	0	8
Atoum (2014)	1	1	1	1	1	0	0	1	0	0	6
Bentley (2012)	1	1	1	0	0	1	1	1	7		
Budhathoki (2016)	1	1	1	1	1	0	1	1	0	9	
Flugge (2007)	1	1	1	1	1	0	0	1	0	7	
Gunduz (2012)	1	1	1	1	1	0	1	1	0	7	
Hughes (2011)	1	1	1	1	1	0	0	0	6		
Laczmanska 2014	1	1	1	1	0	0	1	1	0	6	
Ochs-Balcom (2008)	1	1	1	1	1	1	1	1	10		
Park (2006)	1	1	1	1	1	0	1	1	0	7	
Peters (2004)	1	1	1	1	1	1	1	1	0	9	
Takeshige (2015)	1	1	1	1	1	0	0	1	0	7	
Yamaji (2012)	1	1	1	1	1	1	0	0	8		
Yaylim-Eraltan (2007)	1	1	1	1	1	1	0	0	6		

0 = undone or unclear, 1 = done, A = control group, B = Hardy-Weinberg equilibrium, C = case group, D = primer, E = reproducibility, F = blinding, G = power calculation, H = statistics, I = corrected statistics, J = independent replication, Sum = sum of quality assessment score.

Figure 2. Forest plot to estimate the effect of the TaqI polymorphism on colorectal cancer in the additive model (t vs T).
model was used to estimate the pooled effects, and no significant differences were among t vs T, $Tt+tt$ vs TT, tt vs $Tt+TT$, Tt vs TT, and tt vs TT with respect to increasing CRC frequency. There were also no remarkable correlations detected between $TaqI$ polymorphisms and CRC in the ethnicity or control subgroup analyses.

VDR, which codes a type II nuclear receptor, is located on the chromosome 12q12-q14, with 6 polymorphic sites described.\cite{27,37}\(TaqI\) is one of these sites located in the 3’UTR of VDR that has been considered to be a risk factor for CRC.\cite{33} Atoum and Tchoporyan\cite{13} have reported that Jordanians with $TaqI TT$ and Tt genotypes had an increased CRC risk, and Yaylim-Elaltan et al\cite{15} indicate that a VDR gene with $TTFf$ or $TtFf$ genotypes appears to be protective against CRC. However, studies in New Zealand\cite{38} and Saudi Arabian\cite{39} found no evidences, suggesting that the $TaqI$ polymorphisms correlated with susceptibility to CRC. Meta-analyses that included studies of $TaqI$ polymorphism have also reached conflicting conclusions.\cite{17,40} Our meta-analysis included 5 new and stricter criteria. Although the population size in our meta-analysis was larger than that in previous meta-analyses and the quality of included studies were good, no significant association was found

Table 1: Odds Ratio for the Association of $TaqI$ Polymorphism with CRC

Study or Subgroup	Case Events	Case Total	Control Events	Control Total	Weight	M-H Fixed, 95% CI
Akhayal 2016	52	100	57	100	2.9%	0.62 [0.47, 1.43]
Atoum 2014	60	93	68	102	2.1%	1.38 [0.77, 2.46]
Bentley 2012	135	199	118	182	4.3%	1.14 [0.75, 1.75]
Budhatthodi 2016	92	356	145	708	7.7%	1.35 [1.00, 1.83]
Fluge 2007	149	256	150	256	6.7%	0.98 [0.69, 1.40]
Gunduz 2012	28	43	20	42	0.8%	2.05 [0.86, 4.91]
Hughes 2011	419	717	366	615	17.6%	0.96 [0.77, 1.19]
Laczmanska 2014	83	157	118	175	5.6%	0.54 [0.35, 0.85]
Ochs-Balcum 2008	161	250	149	246	5.7%	1.18 [0.82, 1.69]
Park 2006	22	190	26	318	1.8%	1.47 [0.81, 2.68]
Peters 2004	475	763	473	774	19.0%	1.05 [0.85, 1.29]
Takeshige 2015	159	778	134	685	12.2%	1.06 [0.82, 1.37]
Yamaji 2012	161	884	148	640	12.6%	1.02 [0.79, 1.32]
Yaylim-Eraltan 2007	17	26	35	52	0.9%	0.92 [0.34, 2.48]

| Total (95% CI) | 4612 | 4985 | 100.0% | | |

Heterogeneity: $\chi^2 = 17.84$, df = 13 ($P = 0.16$); $I^2 = 27$

Test for overall effect: $Z = 1.00$ ($P = 0.32$)

Figure 3. Forest plot to estimate the effect of the $TaqI$ polymorphism on colorectal cancer in the dominant model ($Tt+tt$ vs TT).

Table 2: Odds Ratio for the Association of $TaqI$ Polymorphism with CRC

Study or Subgroup	Case Events	Case Total	Control Events	Control Total	Weight	M-H Fixed, 95% CI
Akhayal 2016	16	100	16	100	3.8%	1.00 [0.47, 2.13]
Atoum 2014	13	93	16	102	3.7%	0.87 [0.40, 1.93]
Bentley 2012	34	199	32	182	7.9%	0.97 [0.57, 1.64]
Fluge 2007	38	256	36	256	8.7%	1.07 [0.65, 1.74]
Gunduz 2012	10	43	3	42	0.7%	3.94 [1.00, 15.52]
Hughes 2011	98	717	89	615	23.6%	0.94 [0.69, 1.28]
Laczmanska 2014	25	157	40	175	9.1%	0.64 [0.37, 1.11]
Ochs-Balcum 2008	50	250	34	246	7.8%	1.56 [0.97, 2.51]
Park 2006	0	190	0	318	Not estimable	
Peters 2004	117	763	120	774	28.7%	0.99 [0.75, 1.30]
Takeshige 2015	6	778	8	685	2.4%	0.66 [0.23, 1.91]
Yamaji 2012	5	684	9	640	2.6%	0.52 [0.17, 1.55]
Yaylim-Eraltan 2007	9	26	8	52	1.0%	2.91 [0.96, 8.79]

| Total (95% CI) | 4256 | 4517 | 100.0% | | |

Heterogeneity: $\chi^2 = 15.64$, df = 11 ($P = 0.16$); $I^2 = 30$

Test for overall effect: $Z = 0.10$ ($P = 0.92$)

Figure 4. Forest plot to estimate the effect of the $TaqI$ polymorphism on colorectal cancer in the recessive model (tt vs $Tt+TT$).
between TaqI polymorphisms and susceptibility to CRC. This indicated that different TaqI gene types likely have no significant effect on CRC occurrence.

CRC is a result of the interaction of various risk factors such as age, lifestyle, physical activity, and genetic and ethnic backgrounds. Thus, we conducted subgroup analyses based on ethnicity and the types of control groups. However, no significant correlation was identified between the TaqI polymorphisms and susceptibility to CRC. Considering the absence of such subgroup analysis in previous meta-analyses,[17,40,41] whether ethnicity correlates with the CRC incidence still needs to be further investigated. However, it does seem clear that regardless of the comparison with control groups of healthy people or those with diseases other than CRC, the TaqI polymorphisms are not correlated with susceptibility to CRC.

This meta-analysis had some limitations. Despite the large sample size, the percentage of Asians was still limited; therefore, results from the subgroup analysis of ethnicity may not be robust. Further high-quality research among Asians is required to verify our findings. In addition, because of incomplete information regarding sex, age, and other factors, subgroup analyses of these factors are still required. However, despite these limitations, the results of this meta-analysis provide knowledge regarding the

Figure 5. Forest plot to estimate the effect of the TaqI polymorphism on colorectal cancer in the codominant model (Tt vs TT).

Figure 6. Forest plot to estimate the effect of the TaqI polymorphism on colorectal cancer in codominant model (tt vs TT).
lack of association between TaqI polymorphism and susceptibility to CRC.

In conclusion, this meta-analysis indicates the absence of an obvious correlation between TaqI polymorphisms and susceptibility to CRC. Further high-quality research is required to address questions of factors affecting the results among various subgroups.

References

[1] Li B. Global cancer statistics, 2012. CA Cancer J Clin 2011;61:33–64.
[2] Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin 2014;64:10–17.
[3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:4–30.
[4] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016;66:115–32.
[5] Ma X, Zhang B, Zheng W. Genetic variants associated with colorectal cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol 2014;14:777–88.
[6] Palles C, Cazier JB, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2012;44:136–44.
[7] Aaltonen L, Johns L, Järvinen H, et al. Explaining the familial colorectal cancer risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res 2007;13:356–61.
[8] De ICA. Genetic predisposition to colorectal cancer. Nat Rev Cancer 2009;9:769–80.
[9] Zeng C, Matsuda K, Jia W-H, et al. Identification of susceptibility loci and genes for colorectal cancer risk. Gastroenterology 2016;150:1633–43.
[10] Biancuzzo RM, Clarke N, Reitz RE, et al. Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to...
Sheng et al. Medicine (2017) 96:26

vitamin D2 and vitamin D3 supplementation. J Clin Endocrinol Metab 2013;98:973–9.

[11] Welsh J. Cellular and molecular effects of vitamin D on carcinogenesis. Arch Biochem Biophys 2011;523:107–14.

[12] Pereira F, Larriera MJ, Muñoz A. Vitamin D and colon cancer. Endocr Relat Cancer 2012;19:851–71.

[13] Atoum MF, Tchoporyan MN. Association between circulating vitamin D, the Taq1 vitamin D receptor polymorphism and colorectal cancer risk among Jordanians. Asian Pac J Cancer Prev 2014;15:7337–41.

[14] Lidiya , Klampfer . Vitamin D and colon cancer. World J Gastrointest Oncol 2014;6:430–7.

[15] Yaylin-Eroltan I, Arzu Ergen H, Arıkan S, et al. Investigation of the VDR gene polymorphisms association with susceptibility to colorectal cancer. Cell Biochem Funct 2007;25:731–7.

[16] Vuolo L, Di SC, Faggiano A, et al. Vitamin D and cancer. Front Endocrinol 2012;3:58.

[17] Xu Y, He B, Pan Y, et al. Vitamin D and cancer. Front Endocrinol 2012;3:58.

[18] Xu Y, He B, Pan Y, et al. Systematic review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Tumor Biol 2014;35:4153–69.

[19] Serrano D, Gnagnarella P, Raimondi S, et al. Meta-analysis on vitamin D receptor gene polymorphisms and cancer risk: focus on the role of TaqI, ApaI, and Cdx2 polymorphisms. Euro J Cancer Prev 2016;25:85–96.

[20] Touvier M, Chan DSM, Lau R, et al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2011;20:1003–16.

[21] Clark MF, Baudouin SV. A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 2006;32:1706–12.

[22] Srivastava K, Srivastava A, Sharma KL, et al. Candidate gene studies in gallbladder cancer: a systematic review and meta-analysis. Mutat Res 2011;728:67–79.

[23] Alkhayal KA, Awadalia ZH, Vaali-Mohammed MA, et al. Association of Vitamin D receptor gene polymorphisms with colorectal cancer in a Saudi Arabian population. PLoS One 2016;11:e0155236.

[24] Atoum MF, Tchoporyan MN. Association between circulating vitamin D, the Taq1 vitamin D receptor gene polymorphism and colorectal cancer risk among Jordanians. Asian Pac J Cancer Prev 2014;15:7337–41.

[25] Bentley RW, Keown DA, Gearry RB, et al. Vitamin D receptor polymorphisms in colorectal cancer in New Zealand: an association study. N Z Med J 2012;125:47–51.

[26] Budhathoki S, Yamaji T, Iwasaki M, et al. Vitamin D receptor gene polymorphism and the risk of colorectal cancer: a nested case-control study. PLoS One 2016;11:e0164648.

[27] Flügge J, Krusekopf S, Goldammer M, et al. Vitamin D receptor haplotypes protect against development of colorectal cancer. Eur J Clin Pharmacol 2007;63:997–1005.

[28] Habuchi T, Suzuki T, Sasaki R, et al. Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. Cancer Res 2000;60:305–8.

[29] Hughes DJ, Hlavatá I, Soucek P, et al. Variation in the vitamin D receptor gene is not associated with risk of colorectal cancer in the Czech Republic. J Gastrointest Cancer 2011;42:149–54.

[30] Łazcmanska I, Łazcmanski L, Bebenek M, et al. Vitamin D receptor gene polymorphisms in relation to the risk of colorectal cancer in the Polish population. Tumor Biol 2014;35:12397–401.

[31] Ochs-Balcom HM, Ciccek MS, Thompson CL, et al. Association of vitamin D receptor gene variants, adiposity and colon cancer. Carcinogenesis 2008;29:1788–93.

[32] Park K, Woo M, Nam J, et al. Start codon polymorphisms in the vitamin D receptor and colorectal cancer risk. Cancer Lett 2006;237:199–206.

[33] Peters U, Hayes RB, Chatterjee N, et al. Circulating vitamin D metabolites, polymorphism in vitamin D receptor, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 2004;13:546–52.

[34] Carvalho C, Marinho A, Leal B, et al. Association between vitamin D receptor (VDR) gene polymorphisms and systemic lupus erythematosus in Portuguese patients. Lupus 2015;24:846–53.

[35] Yamaji T, Iwasaki M, Sasazuki S, et al. Association between plasma 25-hydroxyvitamin D and colorectal adenoma according to dietary calcium intake and vitamin D receptor polymorphism. Am J Epidemiol 2011;kwr295.

[36] Yaylin-Eroltan I, Arzu Ergen H, Arıkan S, et al. Investigation of the VDR gene polymorphisms association with susceptibility to colorectal cancer. Cell Biochem Funct 2007;25:731–7.

[37] Gündüz M, Çacık M, Arzu Ergen H, Arıkan S, et al. Investigation of the VDR gene polymorphisms association with susceptibility to colorectal cancer. Cell Biochem Funct 2007;25:731–7.

[38] Bentley RW, Keown DA, Gearry RB, et al. Vitamin D receptor gene polymorphisms association with colorectal cancer. Cancer Epidemiol Biomarkers Prev 2011;20:1003–16.

[39] Clark MF, Baudouin SV. A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 2006;32:1706–12.

[40] Srivastava K, Srivastava A, Sharma KL, et al. Candidate gene studies in gallbladder cancer: a systematic review and meta-analysis. Mutat Res 2011;728:67–79.

[41] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.

[42] Alkhayal KA, Awadalia ZH, Vaali-Mohammed MA, et al. Association of Vitamin D receptor gene polymorphisms with colorectal cancer in a Saudi Arabian population. PLoS One 2016;11:e0155236.

[43] Atoum MF, Tchoporyan MN. Association between circulating vitamin D, the Taq1 vitamin D receptor gene polymorphism and colorectal cancer risk among Jordanians. Asian Pac J Cancer Prev 2014;15:7337–41.

[44] Bentley RW, Keown DA, Gearry RB, et al. Vitamin D receptor polymorphisms in colorectal cancer in New Zealand: an association study. N Z Med J 2012;125:47–51.

[45] Bentley RW, Keown DA, Gearry RB, et al. Vitamin D receptor polymorphisms in colorectal cancer in New Zealand: an association study. N Z Med J 2012;125:47–51.

[46] Alkhayal KA, Awadalia ZH, Vaali-Mohammed MA, et al. Association of vitamin D receptor gene polymorphisms with colorectal cancer in a Saudi Arabian population. PLoS One 2016;11:e0155236.

[47] Serrano D, Gnagnarella P, Raimondi S, et al. Meta-analysis on vitamin D receptor gene polymorphisms and colorectal cancer risk: focus on the role of TaqI, ApaI, and Cdx2 polymorphisms. Eur J Cancer Prev 2015;25:85–96.

[48] Bai YH, Lu H, Hong D, et al. Vitamin D receptor gene polymorphisms and colorectal cancer risk: a systematic meta-analysis. World J Gastroenterol 2012;18:3672–9.