Detection of *magA* Gene in *Klebsiella* spp. Isolated from Clinical Samples

Alireza Zamani*, Rasoul Yousefi Mashouf 2, Amir Morteza Ebrahimzadeh Namvar 2, Mohammad Yousef Alikhani2

1Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2Department of Medical Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Objective(s): *Klebsiella* infections are caused mainly by *K. pneumoniae* and *K. oxytoca*. In the last two decades, a new type of invasive *Klebsiella pneumoniae* which contains mucoviscosity-associated gene (*magA*) has emerged. The aim of this study was to investigate the prevalence of *magA* gene and to detect antimicrobial susceptibility patterns of *Klebsiella* spp. isolated from clinical samples.

Materials and Methods: *Klebsiella* isolates were collected from patients admitted to referral hospitals of Hamadan, Iran, during a 12-month period from 2007 to 2008. The samples were analyzed by conventional microbiological methods and polymerase chain reaction (PCR). The hypermucoviscosity (HV) phenotype of *Klebsiella* isolates was characterized by formation of viscous strings >5 mm as a positive test. The susceptibility of isolates to routine antibiotics was assessed by agar disk diffusion method.

Results: Out of 105 *Klebsiella* isolates, 96.2% was identified as *K. pneumoniae* and 3.8% as *K. oxytoca* by PCR. *magA* gene was detected in 4 (3.8%) isolates of *K. pneumoniae*. The isolates of *K. oxytoca* contained no *magA* gene. From 4 isolates with positive *magA* gene, two of them were HV+ and two were HV- phenotype. Overall, sixty-four isolates (60.95%) of *K. pneumoniae* showed an HV positive phenotype and all isolates of *K. oxytoca* were HV- phenotype. The most effective antibiotics against the isolates were tobramycin (79.05%), ceftazidime (79.05%), ceftizoxime (78.09%), ciprofloxacin (76.19%), ceftriaxone (76.24%) and amikacin (74.29%).

Conclusion: The results suggest that there is also *magA* associated serotype of the *K. pneumoniae* in this region. In addition, the presence of HV+ phenotype may not be associated with *magA*.

Introduction

Klebsiella infections are caused mainly by *K. pneumoniae* and *K. oxytoca*. They are opportunistic bacterial pathogens associated with nosocomial infections such as urinary tract infection (UTI), pneumonia and septicemia (1, 2). For the first time in 1998, a new type of invasive *K. pneumoniae* emerged in Taiwan, which was typically presented as a community-acquired primary liver abscess (3-5). Several reports, especially from the Asia Pacific region and the United States, have also shown that this pathogen has become the predominant cause of liver abscess (6-8). A new virulence gene which is mucoviscosity-associated gene A (*magA*), has recently been identified in this pathogen (9). *magA* is detected in a vast majority of *K. pneumoniae* liver abscess isolates and is associated with hypermucoviscosity (HV) and resistance to killing by human serum and phagocytosis (10).

Based on many recent reports all indicating the emer...
gence of multi-drug resistance *K. pneumoniae* (11-14). It seems that the determination of antimicrobial susceptibility patterns are essential for appropriate therapy (12). Antibiotic susceptibility pattern of isolates has not been previously determined in our region. Therefore, the aim of this study was to investigate the prevalence of *magA* gene in *Klebsiella* spp. isolated from clinical samples and to detect their antimicrobial susceptibility in Hamadan, Iran.

Materials and Methods

A cross-sectional study was conducted on 105 *Klebsiella* isolates collected from patients. The patients were admitted to referral hospitals in Hamadan, Iran, during a 12-month period from 2007 to 2008. They had no history of antibiotic therapy before sampling and informed consents were obtained from them. The samples were transferred to bacteriology laboratory, plated on MacConkey agar, eosin methylene blue agar, blood agar, incubated for 18-24 hr at 37°C and identified by conventional microbiological methods (15).

DNA extraction

A single colony was taken from each eosin methylene blue agar which had been incubated overnight and emulsified into 100 μl of phosphate buffer salt. After incubation for 10 min at 95°C, 50 μl of proteinase K (100 mg/l) and 150 μl of TE (1 mM EDTA/10 mM Tris, pH 7.5) were added to the suspension and incubated for a further 20 min at 37°C (16).

For PCR detection, the bacterial DNAs were extracted and amplified using primer pairs targeting specific sequences (Table 1). To identify *K. pneumoniae* isolates, 40 pair primers were designed by Oligo software using urease-D gene. These primers were tested by Blast software and chosen from literature (9, 17-19).

The 20 μl final volume of the PCR mixture contained 2 μl 10x buffer (500 mM-KCl, 100 mM Tris-HCl, pH 8.4, 15 mM MgCl₂), 0.4 μl of deoxynucleotide mixture (dGTP, dTTP, dATP, and dCTP; 10 mM each), 0.8 μl of MgCl₂ (50mM), 1 μl of each primer (10 mM), 0.1 μl Taq polymerase (5 units), 1 μl of template DNA and 13.7 μl distilled water. For amplifying condition, the initial denaturation step of 2 min at 94°C was followed by 35 cycles of 45 s at 94°C, 45 s at 60°C for *ure-D*, 59°C for *PehX* and 52°C for *magA*, 45 s at 72°C and the extension step of 5 min at 72°C. PCR products were detected by electrophoresis on 1% agarose gel. Finally, for *magA*, the related band was prepared by DNA extraction kit from gel and was sequenced (Milegen, France) (20).

The hypermucoviscosity (HV) phenotype of *Klebsiella* isolates was also characterized and formation of viscous strings >5 mm in length showed a positive string test or a mucoviscose shape when a loop was passed through a colony (17).

In order to detect susceptibility of isolates to routine antibiotics, all isolates of *K. pneumoniae* and *K. oxytoca* were assessed by an agar disk diffusion method recommended by Clinical and Laboratory Standards Institute (21). Ten antibiotics including tobramycin (10 μg), amikacin (30 μg), gentamicin (10 μg), ceftriaxone (30 μg), cefotaxime (30 μg), cefalotine (30 μg), cefazolin (30 μg), nalidixic acid (30 μg), and ciprofloxacin (5 μg) were used for the antibioticogram. *K. pneumoniae* ATCC 1290, *K. oxytoca* ATCC 1402 and *E. coli* ATCC 11303 were used as reference strains (20).

Results

Out of 105 *Klebsiella* isolates, 38.1% were isolated from urine, 30.4% from stool, 11.4% from liver abscess, 4.8% from blood, 3.8% from wound, 3.8% from sinus, 2.9% from sputum and 4.8% from unknown samples. From 105 *Klebsiella* isolates, 92 strains (87.6%) were identified as *K. pneumoniae*, 5 strains (4.7%) as *K. oxytoca* and 8 strains (7.6%) as *Klebsiella* spp. by conventional microbiological tests, compared to 101 strains (96.2%) as *K. pneumoniae* and 4 strains (3.8%) as *K. oxytoca* by PCR. *MagA* gene was detected in 4 isolates (3.8%) of *K. pneu-

Table 1. Details of specific oligonucleotides which were used as primers to amplify particular sequences of Klebsiella pneumoniae, *K. oxytoca* and *magA* gene

Gene	primers	Size of amplicon	GenBank Accession no.	Ref.
Ure-D	5’-GCC GTT TTA CCC GGA AGA AG-3’ 5’-GGA AAG AAG ATG GCA TCC TGC-3’	243 bp	L07039	This study
PehX	5’-GAT AGC GAG TAG ATG GGA TGC TGC-3’ 5’-TAG CTT TTA TCA AGG GGA TAC TGC-3’	344 bp	AYO66648	(19)
magA	5’-GCC CGC AAA TAC GAG AAG TG-3’ 5’-GCA ATC GAA GTG AAG AGT GC-3’	540 bp	AB085741	(9)
moniae, but none of the isolates of K. oxytoca contained magA gene. From the 4 isolates, three (75%) were obtained from blood samples and one (25%) from an abscess sample. Sixty-four isolates (60.95%) of K. pneumoniae showed an HV positive phenotype. From 4 isolates with positive magA gene, two of them were HV+ and two were HV- phenotype. The 4 isolates (100%) of K. oxytoca were HV- phenotype.

The results of the susceptibility of 105 isolates of K. pneumoniae and K. oxytoca to ten routine antibiotics are shown in the Table 2.

Table 2. Susceptibility of 105 isolates of Klebsiela pneumoniae and K. oxytoca to ten routine antibiotics

Antibiotic	Sensitive No (%)	Resistant No (%)	Antibiotic	Sensitive (%)	Resistant (%)
Tobramycin	83 (79.05)	22 (20.95)	Amikacin	78 (74.290)	27 (25.71)
Ceftazidime	83 (79.05)	22 (20.95)	Gentamicin	75 (71.430)	30 (28.57)
Ceftizoxime	82 (78.09)	23 (21.90)	Nalidixic acid	75 (71.430)	30 (28.57)
Ciprofloxacin	80 (76.19)	25 (23.81)	Cefalotine	65 (61.91)	40 (38.09)
Ceftriaxone	79 (75.24)	26 (24.76)	Cefazolin	64 (60.95)	41 (39.05)

Figure 1. Agarose gel electrophoresis analysis for the Ure-D gene in Klebsiela pneumoniae (A), the PehX gene in K. oxytoca (B) and magA gene in K. pneumoniae (C) strains isolates

Lane 1, molecular size marker, expressed in base pairs. Lanes 2A, K. pneumoniae (ATCC 1290), 243 bp and 2B, K. oxytoca (ATCC 1402), 344 bp as positive controls. Lanes 3A, 3B and 2C, Escherichia coli (ATCC 11303) as negative controls and the other wells as positive isolates.

Discussion

The purpose of the study was to investigate the presence of magA gene in K. pneumoniae and K. oxytoca, which were isolated from clinical samples. In Fang’s study, 52 out of 53 (98%) K. pneumoniae isolated from liver abscess carried this specific virulence gene and the presence of one magA-negative isolate was thought to be due to patient’s underlying disease of liver cirrhosis and hepatic failure. Thus, Fang et al. concluded that magA is an essential virulence gene for K. pneumoniae strains causing liver abscess and could be used as a diagnostic tool. Fang believed that magA gene is exclusively limited to liver abscess and HV positive phenotype (9, 10, 22). With extension of global research in other countries such as North American countries, Singapore and Korea, on Klebsiella isolates, they showed magA gene isolated from other cases like acquired bacteraemia, sepsis, meningitis and endophthalmitis (5, 6, 8, 17, 23, 24). In contrast to Fang’s studies, these samples included HV and HV- phenotypes. Therefore, based on the results of the present as well as other studies, containing HV phenotype is not a certain reason for the presence of magA gene since the HV phenotype may have magA gene, too (17, 25). In our study, we found 4 positive magA gene isolates while two of them contained HV and two were HV- phenotype. Based on the data of this project, magA gene can specially belong to K. pneumoniae because we examined the K. oxytoca isolates for the presence of magA gene but none of them carry this gene.
The survey of antibiotic susceptibility of K. pneumoniae and K. oxytoca showed different percentages of susceptibility to the tested antibiotics. In this study resistance to nalidixic acid, cefalotin and cefazolin was relatively high in contrast to other studies (13, 14, 26). In our study, tobramycin was mostly active against strains of Klebsiella followed by cefazidime and cefotioxime.

Conclusion

The K. pneumoniae magA positive strains exist in our area and are isolated from various samples. In addition, the presence of HV phenotype is not associated with magA gene.

Acknowledgment

This study was funded by the Research Deputy of Hamadan University of Medical Sciences and approved by its ethics committee. The authors have no conflict of interest.

References

1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603.

2. Kang CI, Kim SH, Bang JW, Kim HB, Kim NJ, Kim EC, et al. Community-acquired versus nosocomial Klebsiella pneumoniae bacteremia: clinical features, treatment outcomes, and clinical implication of antimicrobial resistance. J Korean Med Sci 2006; 21:816-822.

3. Yu WL, Ko WC, Cheng KC, Lee CC, Lai CC, Chuang YC. Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagn Microbiol Infect Dis 2008;62:3-6.

4. Wang JH, Liu YC, Lee SS, Yen MT, Chen YS, Wang JH, et al. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 1998;26:1434-1438.

5. Liu YC, Cheng DL, Lin CL. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch Int Med 1986;146:913-916.

6. Chung DR, Lee SS, Lee HR, Kim HB, Choi HJ, Eom JS, et al. Emerging invasive liver abscess caused by K1 and K2 serotype Klebsiella pneumoniae in Korea. J Infect 2007;54:578-583.

7. Lederman ER, Crum NF. Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics. Ann J Gastroenterol 2005:100:322-331.

8. Ohmori S, Shiraki K, Ito K, Inoue H, Ito T, Sakai T, et al. Septic endophthalmitis and meningitis associated with Klebsiella pneumoniae liver abscess. Hepatol Res 2002;22:307-312.

9. Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 2004;199:697-705.

10. Lee KC, Chuang YC, Yu WL, Lee NY, Chang CM, Ko NY, et al. Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with community-acquired bacteremia. J Int Med 2006; 259:606-614.

11. Blahova J, Kralikova K, Krcmery V, Sr, Babalova M, Menkyna R, Gloslova L, et al. Four years of monitoring antibiotic resistance in microorganisms from bacteremic patients. J Chemother (Flor- ence, Italy) 2007; 19:665-649.

12. Biedenbach DJ, Moet GJ, Jones RN. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997-2002). Diagn Microbiol Infect Dis 2004; 50:59-69.

13. Ivanov DV, Egorov AM. [Spreading and mechanisms of antibiotic resistance of microorganisms, producing beta-lactamases. Molecular mechanisms of resistance to beta-lactams of Klebsiella spp. strains, isolated in cases of nosocomial infections]. Biomed khim 2008; 54:104-113.

14. Lagamayo EN. Antimicrobial resistance in major pathogens of hospital-acquired pneumonia in Asian countries. Am J Infect Control 2000; 28:500-108.

15. Forbes BA, Sahn DF, Weissfeld AS. Bailey & Scott’s Diagnostic Microbiology. UK: Mosby; 2007.

16. Zamani A, Sadeghian S, Ghaiderkhani J, Alikhani MY, Najafmosleh M, Goodarzi MT, et al. Detection of methicillin-resistance (mec-A) gene in Staphylococcus aureus strains by PCR and determination of antibiotic susceptibility. Ann Microbiol 2007; 57:273-276.

17. Fang FC, Sandler N, Libby SJ. Liver abscess caused by magA+ Klebsiella pneumoniae in North America. J Clin Microbiol 2005; 43:991-992.

18. Kurupati P, Chow C, Kumasariyige G, Poh CL. Rapid detection of Klebsiella pneumoniae from blood culture bottles by real-time PCR. J Clin Microbiol 2004; 42:337-340.

19. Kortunovych G, Lytvenenko T, Negrutska V, Lar O, Brisse S, Kozyrovksa N. Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase plgA gene. Res Microbiol 2005;156:587-592.

20. Mashouf RV, Zamani A, Farahani HS. Diagnostic multiplex polymerase chain reaction assay for the identification of Pseudomonas aeruginosa from the skin biopsy specimens in burn wound infections and detection of antibiotic susceptibility. Saudi Med J 2008;29:509-514.

21. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 17th informational supplement. M100-S17. Clinical and Laboratory Standards Institute, Wayne:PA,2007.

22. Struve C, Krosgelt KA. Role of capsule in Klebsiella pneumoniae virulence: lack of correlation between in vitro and in vivo studies. FEMS Microbiol lett 2003; 218:143-148.

23. Yeh KM, Kurup A, Liu YC, Fung CP, Lin JC, et al. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscesses in Taiwan. J Clin Microbiol 2007; 45:465-471.

24. Fung CP, Chang FY, Lee SC, Hu BS, Kuo BI, Liu CY, et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 2002; 50:420-424.

25. Struve C, Bojer M, Nielsen EM, Hansen DS, Krosgelt KA. Investigation of the putative virulence gene magA in a worldwide collection of 495 Klebsiella isolates: magA is restricted to the gene cluster of Klebsiella pneumoniae capsule serotype K1. J Med Microbiol 2005; 54:311-313.

26. Kuo LC, Yu CJ, Kuo ML, Chen WN, Chang CK, Lin HI, et al. Antibiotic resistance of bacterial isolates from respiratory care wards in Taiwan: a horizontal surveillance study. Int J Antimicrob Agents 2008; 32:420-426.