The effect of in-office bleaching materials with different pH on the surface topography of bovine enamel

Chamari L. WIJETUNGA1, Masayuki OTSUKI1, Ahmed ABDOU2, Minh N. LUONG3, Feng QI1 and Junji TAGAMI1

1 Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
2 Biomaterials Department, Faculty of Dentistry, Modern University for Technology and Information, Mokatam, Cairo, 11571, Egypt
3 Department of Restorative Dentistry, University of Washington School of Dentistry, 1959 NE Pacific St Box 357456, Seattle, WA 98195-7456, USA

Corresponding author, Masayuki OTSUKI; E-mail: otsuki.ope@tmd.ac.jp

This study evaluated the alterations of surface topography of the bovine enamel caused by different pH of in-office bleaching agents. 23% H2O2 with pH 5.5, 7.0 and 8.5 were applied on the bovine tooth specimens (n=10) and photo-irradiated for 10 min. The bleaching procedure was repeated three times and specimens were subjected to linear surface roughness (Ra) and Vickers microhardness (VHN) test (VHN) at baseline and after three consecutive applications. The morphological alterations were observed before and after third bleaching application. Data were analyzed by two-way ANOVA followed by Tukey's HSD. The pH of the bleaching agent significantly affects the Ra and VHN (p<0.05). Low pH yielded a significant increase in Ra and decrease in VHN. All the groups showed morphological alterations and profound effect was found in pH 5.5 group. It was concluded that the pH of the bleaching agent can affect Ra, VHN and surface morphology.

Keywords: pH, Bleaching agent, Surface roughness, Microhardness, Morphology

INTRODUCTION

Tooth bleaching treatment helps to enliven the smile disfigured by the discoloration. For most of the in-office bleaching agents, the active ingredient is hydrogen peroxide (H2O2) with high concentrations (25%–40%)3. H2O2 is a strong oxidizing agent and it produces free radicals, reactive oxygen molecules and hydrogen peroxide anions4. The tooth bleaching mechanism can be subdivided into three phases: the bleaching agent firstly goes into the tooth structure; then it interacts with the chromogen; and third, the tooth structure surface gets affected, alter the structure result in reflects light differently. Consequently, the tooth color is changing after bleaching with H2O2 with the advantages of low molecular weight. Thus, the higher penetration ability through the enamel and dentin substrate compared to the other bleaching agents. Ideal bleaching agent must have maximum bleaching potentials while minimizing the concurrent damage to the dental tissues. Moreover, the type of discoloration and the physical and chemical environment presented at the time of action can influence the bleaching reaction5. Thus, the bleaching agent concentration, heat, light, pH, catalysts, application times6-14 and other conditions should be justified.

The enamel is composed of inorganic material contains 97% of its total weight and essentially constituted of hydroxypatite, 1% of organic material; primarily proteins such as amelogenin and enamelin, and 2% of water15. The organic layer is a semi-permeable membrane that allows hydrogen peroxide to penetrate the tooth structure and react chemically with tooth discoloration and the tooth structure16. Enamel hardness is related to the mineral and protein content.

The organic content of the enamel plays an important role in the bleaching process. It is assumed that the reaction between peroxide and organic materials on the enamel surface or sub-surface can cause morphological alterations during the bleaching process17.

The importance of understanding the effects of pH of bleaching agent on the tooth enamel especially microhardness, surface roughness and morphology can help to determine the more safer bleaching material with maximum preservation of the tooth structure. Additionally, the effect of bleaching on the tooth enamel is still controversial. Some studies have reported the adverse effects associated with an increase in surface roughness, a decrease in microhardness and major morphological changes18, whereas several studies showed no such differences in the bleached enamel19. These controversial results are might be due to the type, concentration, pH and the formulation of bleaching agent used, bleaching protocol, alongside the variations in the study design such as the sample size and type of tissue (human or bovine enamel), method of specimen preparation (polished or sound enamel), type of storage medium, and method of data analysis20-23.

Most of studies focused on the concentration of bleaching agents20,24,25 and bleaching protocol26. But different bleaching agents have distinct pH values ranging from acidic pH to alkaline pH and it was revealed that the alkaline pH shows a higher bleaching effect than the acidic pH21,27. Since the pH of in-office bleaching agent plays an important role in the bleaching action, it is necessary to evaluate the effects of pH on dental tissues as well.

While high effectiveness of bleaching agent is desirable, its alterations for the substrate in terms
of surface roughness, microhardness and surface morphology should be taken into account. There are few publications evaluate the effect of pH on tooth enamel11,12, but the preparation of bleaching agents was not standardized which could be a confounding factor in the evaluation. Therefore, the purpose of this \textit{in-vitro} study was to assess the effect of different pH of bleaching agents on dental enamel by evaluating surface roughness, microhardness and the surface morphology of bovine dental enamel using the different pH of bleaching agents with the same composition. The null hypothesis was that the pH of the bleaching agent will not affect the surface roughness, microhardness and morphology of the bovine enamel.

MATERIALS AND METHODS

Specimen preparation for assessment of surface roughness and microhardness

The labial enamel surface of bovine incisors were ground with 280-2000 grit silicon carbide papers (Sankyorkikagaku, Saitama, Japan) under running water to leave flat enamel surfaces of approximately 1-mm in thickness. Two specimens were obtained from each flattened surface (5×5×1 mm). The cut specimens were embedded in a plastic mold (Fig. 1) by self-curing clear acrylic resin (Unifast III, GC, Tokyo, Japan). Final polishing was done with diamond pastes from 6 µm up to 0.25 µm (DP-Paste P, Struers, Ballerup, Denmark). Finally, the specimens were cleaned ultrasonically for five minutes to remove any trace of the polishing materials.

Preparation of bleaching material

The materials and preparation formula to create different pH of bleaching agents are listed in Table 1. 30% H\textsubscript{2}O\textsubscript{2} was mixed with sodium carbonate (Na\textsubscript{2}CO\textsubscript{3}), carboxymethyl cellulose sodium (CMCS) and distilled water according to a pre-calculated formula. The pH was adjusted by Na\textsubscript{2}CO\textsubscript{3} and CMCS acts as the thickener. Finally, 23% H\textsubscript{2}O\textsubscript{2} with different pH 5.5, 7.0 and 8.5 were prepared according to a previous study28. During the mixing of materials, the pH-conditioner was added just before usage, as the degradation of H\textsubscript{2}O\textsubscript{2} is accelerated in higher pH media. The pH of the bleaching agent was measured using a portable pH meter (LaquaTwin compact pH meter, Horiba, Kyoto, Japan) immediately before application.

Bleaching procedure

The thirty specimens were randomly divided into three treatment groups (n=10) based on the pH of the bleaching agents (pH 5.5, 7.0 and 8.5). The bleaching agent was applied evenly on the enamel surface of the specimens in a 2-mm-thick layer using a plastic spatula. Photo-irradiation was performed for 10 min by an arch type violet-LED light unit for tooth bleaching (Cosmo Blue, GC, Tokyo, Japan). The peak wavelength of the light unit was 405 nm and its intensity was 55 mW/cm2. Then, the specimens were washed with running water and dried with mild air blow. The bleaching procedure was repeated three times. The leaner surface roughness (Ra) and Vickers microhardness (VHN) were measured after every bleaching application.

Assessment of surface roughness

All the specimens of three experimental groups were subjected to assessment of Ra using a confocal laser scanning microscope (CLSM; VK-X 150 series, Keyence, Osaka, Japan) under 20X magnification. Ra was measured before the bleaching application as the base line data. The measurement was repeated three times for each specimen as 250 µm apart horizontal lines and the average Ra was used to represent the surface roughness of each sample. Ra was measured after each bleaching application.

Table 1 Ingredients of bleaching agent of each group and manufacture

Ingredient	Manufacturer	pH 5.5	pH 7.0	pH 8.5
H\textsubscript{2}O\textsubscript{2} (mL)	Wako Pure Chemicals, Tokyo, Japan	10	10	10
DW (mL)	Wako Pure Chemicals	5	5	5
CMCS (g)	Wako Pure Chemicals	0.35	0.35	0.35
Na\textsubscript{2}CO\textsubscript{3} (g)	Wako Pure Chemicals	0	0.015	0.75
Assessment of microhardness
The VHN of the specimen was measured using a microhardness tester (HM-102, Mitutoyo, Yokohama, Japan) for the three experimental groups mentioned earlier. For each specimen, three indentations were performed on the enamel surface, with a distance of 200 µm between them. The measuring load was 100 g with dwelling time of 15 s. The VHN measurements were made in each specimen before and after every bleaching application.

Assessment of morphological changes
Three specimens were randomly selected from each experimental group to assess the changes of the morphology of bleached enamel. Further, three samples were prepared to assess the unbleached enamel (control). The observing surface of the specimens were sputter-coated with gold (300-µm-thick layer). Enamel surface was examined at 700× and 2,500× magnifications with scanning electron microscope (SEM; JSM-IT 100, JEOL, Tokyo, Japan), under operating condition of 20 kv. A scanning of the entire surface of the specimen was done and most critical areas were selected for photomicrographs.

Statistical analysis
The Kolmogorov-Smirnov and Shapiro-Wilk tests were performed to confirm the normal distribution of the data prior to the data analysis. The data of Ra and VHN were statistically analyzed using two-way ANOVA followed by Tukey’s HSD for multiple comparisons with the factors of pH of the bleaching agent and application time (α=0.05) (IBM SPSS Statistics for Windows, Version 27.0, Armonk, NY, USA).

RESULTS
Surface roughness
Figure 2 shows the mean and standard deviation of Ra of all the experimental groups. The baseline Ra was similar in all the experimental groups. Two-way ANOVA revealed that pH of the bleaching material and the number of application times (p<0.05) significantly affect the Ra. For the effect of pH, pH 5.5 showed significantly higher Ra value than pH 8.5 group (p<0.05). But comparatively there is no significant difference of Ra of pH 5.5 group with pH 7.0 (p>0.05). The Ra of all the experimental groups were significantly influenced by number of bleaching applications (p<0.001).

Microhardness
The mean and standard deviation of the VHN of all the experimental groups were shown in Fig. 3. Two-way ANOVA showed the VHN of the specimens in all experimental groups were significantly influenced by the pH of the bleaching agent and number of application times (p<0.001). On the other hand, an insignificant interaction between the pH and application times resulted (p>0.05). Tukey’s HSD showed that there is significant reduction of microhardness between pH 5.5 and pH 8.5 (p<0.001), as well as between pH 7.0 and pH 8.5 (p<0.05). But there is no significant difference between pH 5.5 and pH 7.0 groups (p>0.05). All the bleaching application times showed a significant reduction on the microhardness compared to baseline evaluation (p<0.05). Conversely, no difference between the bleaching steps resulted (p>0.05).
Surface morphology

The specimens belong to all the experimental groups showed different morphological changes after the bleaching procedure. The representative photomicrographs (Figs. 4a and b) of unbleached specimens did not show any remarkable morphological changes. The surface was smooth and uniform. Morphological changes were randomly distributed in most of the areas of the specimens in the experimental groups and more pronounced in pH 5.5 group (Figs. 4c and d). Surface erosions, depressions, increase depth of enamel grooves and increased porosity were detected.

Figures 4e, f and Figs. 4g, h showed the changes of pH 7.0 and pH 8.5 groups respectively. The morphological alterations were comparatively less prominent in pH 7.0 and 8.5 groups respectively. Erosions were seldomly detected. Comparatively the surface alterations were much more significant in pH 7.0 group than pH 8.5 group. The grooves that appeared to be an eroded enamel rod sheath were visible on the whole surface. Narrow gaps are observed in the enamel rod sheath region of the head of enamel prisms. Increased porosity can be detected.

DISCUSSION

The present study assessed the effect of pH of tooth bleaching agent on the enamel surface. The results of all the experimental groups showed a different degree of changes in Ra, VHN and surface morphology after bleached with different pH of bleaching gels, so the null hypothesis had to be rejected.

When using the high concentration of H₂O₂ for in-office bleaching, the formed free radicals from the oxidation of peroxide will act on both organic and inorganic matrix and cause the alterations of enamel surface even after single application. These alterations are due to the decrease in the quantity of hydroxyapatite and proteins by the synergistic effect of both oxidation and demineralization action of H₂O₂ and its low pH.²⁹,³⁰ Although H₂O₂ itself does not have any deleterious effects on the enamel, but the low pH of bleaching agent can adversely affect the enamel integrity.²⁵ The higher pH prevents the demineralization of dental surface as pH of the bleaching agent with higher than pH 6.0 can prevent the damage to dental tissues.³¹ The average pH of in-office bleaching gels available in the market is around pH 5.5. But the many bleaching gels with a lower pH between 3.6 and 6.5 also available.³² It is below the critical pH for enamel dissolution (pH 5.5–6.5).²⁰ The reaction for enamel dissolution occurs because H⁺ ions release from the acidic medium react with OH⁻ ions and form H₂O³³. Therefore, due to decreased OH⁻ concentration the reaction mentioned below is shifted to the right and more Ca²⁺ and PO₄³⁻ ions form to maintain the new state of equilibrium. As the result, the enamel loss takes place according to the following equation:

\[
\text{Ca}_{10} (\text{PO}_4)_6 (\text{OH})_2 \rightleftharpoons 10 \text{Ca}^{2+} + 6 \text{PO}_4^{3-} + 2\text{OH}^{-}
\]

Surface roughness is an important parameter that can influence the dental esthetics and health.³⁴ Among various parameters used to assess the surface roughness, we used in our present study the Ra, which measures on a single line on a sample. This parameter describes the overall roughness of a surface. It is the arithmetic average of all absolute distances of the roughness profile from the centerline within the measuring length.³⁵ The shape and size of irregularities on the surface can affect the quality and performance of the surface. Generally, the increase surface roughness can increase the food particles accumulation and biofilm formation causing periodontal diseases and tooth discoloration.³⁶
Therefore, one of the purposes of this study was to evaluate the surface roughness after the application of bleaching agents with different pH. In this study Ra was significantly increased in all the experimental groups, although the base line Ra of these groups had been similar. The average baseline Ra was 0.056±0.006 (mean±SD) and maximum Ra reported as 0.079±0.006. The pH 5.5 group exhibits highest Ra even after first application. Comparatively pH 7.0 and 8.5 groups yielded a low Ra. Enamel dissolution can take place when it is treated with bleaching agents with lower pH below the critical pH for enamel dissolution20. As pH 5.5 is slightly acidic, it can be the reason for dissolution of enamel and increased Ra. Some studies have reported that the pH of bleaching agent has a direct relationship with the surface roughness36,37. Acidic bleaching gels can demineralize the enamel and cause increase of surface roughness36,37. Previous studies have revealed that 30–35% H\textsubscript{2}O\textsubscript{2} can increase surface roughness and reduce the calcium-phosphorus ratio38–40. To date, a fewer studies related to direct effect of pH of bleaching agent on alterations of surface roughness available in the literature.

The changes in microhardness of enamel is related to its loss or gain of minerals and the changes of the organic content. Decreased microhardness can affect the mechanical properties of the enamel. To assess the minor changes resulted after mineral loss or gain, microhardness test was chosen as a fast and simple test with reliable outcome22. In this study all the experimental groups showed a significant reduction of microhardness in relation to the base line values of them (The average baseline VHN was 236.83±9.3 and maximum reduction was 209.5±15.6). pH 5.5 group showed maximum reduction of microhardness after third application time. The pH 7.0 group showed comparatively intermediate reduction and pH 8.5 group showed a slight reduction of microhardness. The decrease in microhardness is related to the loss of minerals by the bleaching agent. The effect of the pH of bleaching agent on enamel is controversial. One study has reported that bleaching gel with pH 7.0 did not affect and pH 5.5 may cause the reduction of microhardness41. Another study has noted that high concentration of bleaching agents with acidic pH were more effective on tooth bleaching while it caused reduction of microhardness. They have found that 30% neutral H\textsubscript{2}O\textsubscript{2} (pH=7.0) caused less detrimental effects compared to the acidic H\textsubscript{2}O\textsubscript{2} (pH=3.6) with the same efficiency of tooth bleaching42.

The morphological alterations of the enamel could happen due to the reaction between peroxide and organic materials on the surface or in the subsurface of the enamel17. That changes of enamel morphology and microstructure as the result of tooth bleaching have an impact on the physical and mechanical properties of the enamel. The enamel alterations are most probably due to an initial process of enamel demineralization with the loss of calcium in teeth when exposed to peroxide40,48. Additionally, the higher solubility and lower resistance of dental hard tissues after the tooth bleaching is due to the modification of the organic and inorganic ratio of the dental tissues46. Regarding the present study, SEM photomicrographs showed different degree of the enamel alterations in all the experimental groups. The pH 5.5 group showed some changes throughout the entire surface while pH 7.0 and pH 8.5 groups showed minor alterations randomly. That changes include surface erosions, depressions, increase depth of enamel grooves and increased porosity. The grooves around the eroded enamel rod sheath were visible in all experimental groups. The narrow gaps which consistent with the distribution pattern of organic substances in the enamel are observed in the enamel rod sheath region of the head of enamel prisms. They are probably created by decomposition and removal of the organic substances. The narrow gaps in the prism sheath and between crystals were created by dehydration and removal of the organic substances45. In agreement with one study, in-office bleaching agents with pH 6.4 (35% carbamide peroxide) and pH 3.8 (35% H\textsubscript{2}O\textsubscript{2}) showed porosities, depressions, craters, increased depth of enamel grooves, and partial removal of enamel prisms49. More severe enamel alterations could be expected after in-office bleaching. It consists of increased porosity46,47, enamel erosion with crater formation48,49, depressions49, removal of the aprismatic layer and exposure of the enamel prisms17,49,50. Conversely, the same concentration of 35% H\textsubscript{2}O\textsubscript{2} and 35% carbamide peroxide did not produce any morphological alterations on enamel in other studies39,51.

The present study used bovine teeth model that has been verified as a good alternative for human teeth for tooth bleaching study2,36,41, because the chemical and physical properties in terms of composition51, heat capacity, hardness, dentinal tubule density52 and permeability53 are similar to the human teeth. The bleaching agent was photo-irritated although it did not contain a photocatalyst. As a result, the temperature of the bleaching gel was increased by converting the energy into heat. A violet LED light for tooth bleaching was used due to its effectiveness and the safety. As the violet LED light is having a short wavelength and high-vibration frequency, less penetrate through the dental tissues and remain greater amount of energy on the tissue surface. Because of this feature it can breakdown the large chromogenic molecules with lower heating. As well as it can use to enhance the bleaching outcome with various concentration of bleaching gel without causing any damage to its molecular structure54.

Few studies have evaluated the direct effect of pH of bleaching gel on the enamel surface12,27. But the content of each experimental group was different from each other. They have shown the difference in either type of pH-conditioner included or the concentration of the H\textsubscript{2}O\textsubscript{2}. But for the purpose of comparison using same concentration of H\textsubscript{2}O\textsubscript{2} and same composition of bleaching gel is essential. This is the unique feature of this study when compared with the previous studies. We have used the bleaching gels with same concentration of H\textsubscript{2}O\textsubscript{2} and same ingredients, only changed the quantity of the pH-conditioner in each group to eliminate the factor
of composition.

The adverse effects caused by low pH of bleaching materials can be transient. Because, the action of saliva can reverse the transient damage of the enamel by wash out and acid-buffering effect. This is happening in the healthy patients with normal salivary secretion. But there can be many patients with reduced salivary secretion due to aging, medications and various systemic disorders who are seeking tooth bleaching treatment. Under these conditions the enamel damage cannot be reversed by saliva6. Therefore, it is important to consider about using an alkaline pH of bleaching agent to avoid damage to the enamel.

According to this study acidic pH (pH 5.5) showed increased surface roughness, decreased microhardness and more pronounced morphological alterations. The neutral (pH 7.0) and alkaline pH (pH 8.5) showed comparatively less alterations of enamel surface. While having the advantages of alkaline pH there are some adverse effects due to the extremes of pH values of the bleaching agent. OECD (Organization of Economic Co-operation and Development) has published the guidelines correlated with pH and the degree of thermal irritation. According to them the safest pH range is pH 2.0–11.5 and extremes of pH may cause strong local effects as corrosion of skin or mucosa39. In our study design we have included the experimental groups with different pH within the safety range. Considering the findings of previous studies related to the effect of pH on effectiveness of the tooth bleaching and based on the results of the present study the alkaline pH is the most effective and safest pH for tooth bleaching among our experimental groups. Further studies with extracted human teeth and in-vivo study are necessary to evaluate the actual effect of pH of bleaching gel on tooth bleaching and the tooth structure, as well as to evaluate the degree of recovery after the damage. It will be helpful to development of new tooth bleaching agents that provide maximum bleaching effect with minimum damage to the dental enamel.

CONCLUSION

In conclusion, we could demonstrate that the bleaching agents with low, neutral and alkaline pH can cause increased surface roughness, decreased microhardness and morphological alterations in the enamel surface at different degree with repeated bleaching applications. Acidic bleaching agent showed more evident surface changes of the enamel compared to neutral and alkaline one.

CONFLICT OF INTEREST

The authors do not have any financial interest in the companies whose materials are included in this article.

REFERENCES

1) Miranda CB, Pagani C, Benetti AR, Matuda FS. Evaluation of the bleached human enamel by scanning electron microscopy. J Appl Oral Sci 2005; 13: 204-211.
2) Okada M, Otsuki M, Tagami J. Effect of nonthermal atmospheric discharge on stain removal of tooth. Dent Mater J 2019; 38: 396-402.
3) Dahl J, Pallesen U. Tooth bleaching —A critical review of the biological aspects. Crit Rev Oral Biol Med 2003; 14: 292-304.
4) Kwon SR, Wertz PW. Review of the mechanism of tooth whitening. J Esthet Restor Dent 2015; 27: 240-257.
5) Haywood VB, Leech T, Heymann HO, Crumpler D, Bruggers K. Nightguard vital bleaching: effects on enamel surface texture and diffusion. Quintessence Int 1990; 21: 801-804.
6) Sulieman M. An overview of tooth-bleaching techniques: Chemistry, safety and efficacy. Periodontol 2000 2008; 48: 148-169.
7) Matis BA, Cochran MA, Eckert G. Review of the effectiveness of various tooth whitening systems. Oper Dent 2009; 34: 230-235.
8) Davidi MP, Hadad A, Weiss EI, Domb A, Mizrahi B, Steyer N. The effect of a mild increase in temperature on tooth bleaching. Quintessence Int 2008; 39: 771-775.
9) Buchalla W, Attin T. External bleaching therapy with activation by heat, light or laser —A systematic review. Dent Mater 2007; 23: 586-596.
10) Luong MN, Otsuki M, Shimada Y, Ei TZ, Sumi Y, Tagami J. Effect of lights with various wavelengths on bleaching by 30% hydrogen peroxide. Lasers Med Sci 2018; 34: 901-906.
11) Torres CRG, Crastechni E, Feitosa FA, Pucci CR, Borges AB. Influence of pH on the effectiveness of hydrogen peroxide whitening. Oper Dent 2014; 39: E261-E268.
12) Xu B, Li Q, Wang Y. Effects of pH values of hydrogen peroxide bleaching agents on enamel surface properties. Oper Dent 2011; 36: 554-562.
13) Suyama Y, Otsuki M, Ogisu S, Kishikawa R, Tagami J, Ikeda M, et al. Effects of light sources and visible light-activated titanium dioxide photocatalyst on bleaching. Dent Mater J 2009; 28: 693-699.
14) Kishi A, Otsuki M, Sadr A, Ikeda M, Tagami J. Effect of light units on tooth bleaching with visible-light activating titanium dioxide photocatalyst. Dent Mater J 2011; 30: 723-729.
15) Zhou Z, Zheng J. Tribology of dental materials: A review. J Phys D Appl Phys 2008; 41: 113001.
16) Horning D, Gomes GM, Bittencourt BF, Ruiz LM, Reis A, Gomes OMM. Evaluation of human enamel permeability exposed to bleaching agents. Braz J Oral Sci 2013; 12: 114-118.
17) Hegedüs C, Bistey T, Flóra-Nagy E, Keszthelyi G, Jenei A. An atomic force microscopy study on the effect of bleaching agents on enamel surface. J Dent 1999; 27: 509-515.
18) Basting RT, Rodrigues ALJ, Serra MC. Micromorphology and surface roughness of sound and demineralized enamel and dentin bleached with a 10% carbamide peroxide bleaching agent. Am J Dent 2007; 20: 97-102.
19) Ernst CP, Marroquin BB, Willershausen-Zonnchen B. Effects of hydrogen peroxide-containing bleaching agents on the morphology of human enamel. Quintessence Int 1996; 27: 53-56.
20) Sulieman M, Addy M, Macdonald E, Rees JS. A safety study in vitro for the effects of an office bleaching system on the integrity of enamel and dentine. J Dent 2004; 32: 581-590.
21) Cadenaro M, Breschi L, Nucci C, Antoniolli F, Matis BA, Lenarda R. Effect of two in-office bleaching systems. Oper Dent 2009; 34: 230-235.
22) Joiner A. Review of the effects of peroxide on enamel and dentine properties. J Dent 2007; 35: 889-896.
23) Attin T, Schmidlin PR, Wegehaupt F, Wiegand A. Influence of study design on the impact of bleaching agents on dental
enamel microhardness: A review. Dent Mater 2009; 25: 143-157.
24) Lewinstein I, Fuhrer N, Churaru N, Cardash H. Effect of different peroxide bleaching regimens and subsequent fluoridation on the hardness of human enamel and dentine. J Prosthodont Dent 2004; 92: 337-342.
25) Cavalli V, Arrais CAG, Giannini M, Ambrosano GMB. High-concentrated carbamide peroxide bleaching agents effects on enamel surface. J Oral Rehabil 2004; 31: 155-159.
26) Mondelli RFL, Garrido Gabriel TRC, Rizzante FAP, Magalhães MB, Cavalli V, Arrais CAG, Giannini M, Ambrosano GMB. High-concentrated carbamide peroxide bleaching agents effects on enamel surface. J Oral Rehabil 2004; 31: 337-342.
27) Sa Y, Sun L, Wang Z, Ma X, Liang S, Xing W, et al. Effects of two in-office bleaching agents with different pH on the structure of human enamel: An in situ and in vitro study. Oper Dent 2013; 38: 100-110.
28) Ito Y, Otsuki M, Tagami J. Effect of pH conditioners on tooth bleaching. Clin Exp Dent Res 2019; 5: 212-218.
29) Kwon YH, Huo MS, Kim KH, Kim SK, Kim YJ. Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel. J Oral Rehabil 2002; 29: 473-477.
30) Borges BC, Pinheiro MH, Feitosa DA, Correia TC, Bazz R, Montes MAJR, et al. Preliminary study of a novel in-office bleaching therapy modified with a casein phosphopeptide-amorphous calcium phosphate. Microsc Res Tech 2012; 75: 1571-1575.
31) Young N, Fairley P, Mohan V, Jumeaux C. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening. J Dent 2012; 40: e11-16.
32) Price RBT, Sedarousy M, Hiltz GS. The pH of tooth-whitening products. J Can Dent Assoc 2000; 66: 421-426.
33) Dawes C, What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 2003; 69: 722-724.
34) Bahari M, Chaharom MEE, Daneshpooy M, Gholizadeh S, Zalkind M. Histochemical analysis of dental hard tissues following bleaching. J Endod 1996; 22: 23-26.
35) Alexandrino L, Gomes Y, Alves E, Costi H, Régis H, Silva C. Effects of a bleaching agent with calcium on bovine enamel. Eur J Dent 2014; 8: 320-325.
36) Sun L, Liang S, Yu Y, Wang Z, Ma X, Jiang T, et al. Surface alteration of human tooth enamel subjected to acidic and neutral 30% hydrogen peroxide. J Dent 2011; 39: 686-692.
37) McCracken MS, Haywood VB. Demineralization effects of 10 percent carbamide peroxide. J Dent 1996; 24: 395-398.
38) Pashayi H. Effect of bleaching protocols on surface roughness of enamel microhardness: A review. Dent Mater 2009; 25: 143-157.
39) McGuckin RS, Babin JF, Meyer BJ. Alterations in human enamel surface morphology following vital bleaching. J Prosthodont Dent 1992; 68: 754-760.
40) Rotstein I, Dankner E, Goldman A, Heling I, Stubbohal A, Zalkind M. Histochemical analysis of dental hard tissues following bleaching. J Endod 1996; 22: 23-26.
41) Berkovitz BKB, Boyde A, Frank RM, Hohling HJ, Moxham BJ, Nalbandian J, et al. Enamel In: Teeth, Tokyo: Springer Inc.; 1989. p. 309-473.
42) Josey AL, Meyers IA, Romaniuk K, Symons AL. The effect of a vital bleaching technique on enamel surface morphology and the bonding of composite resin to enamel. J Oral Rehabil 1996; 23: 244-250.
43) Bitter NC. A scanning electron microscope study of the long-term effect of bleaching agents on the enamel surface in vivo. Gen Dent 1998; 46: 84-88.
44) Covington JS, Friend GN, Lamoreaux WJ, Perry T. Carbamide peroxide tooth bleaching effects on enamel composition and topography. J Dent Res 1990; 69: 175.
45) Gultz J, Kaim J, Scherer W, Gupta H. Two in-office bleaching systems: a scanning electron microscope study. Compend Contin Educ Dent 1999; 20: 965-968.
46) Feagin F, Patel PR, Koulorides T, Pigman W. Study of the effect of calcium, phosphate, fluoride and hydrogen ion concentrations on the remineralization of partially demineralized human and bovine enamel surfaces. Arch Oral Biol 1971; 16: 535-548.
47) Schile R, Lindor JA, Bausch B, Gerahs W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol 2000; 45: 337-342.
48) Tagami J, Tao L, Pashley DH, Horner JA. The permeability of dentine from bovine incisors in vitro. Arch Oral Biol 1989; 34: 773-777.
49) Zanin F. Recent advances in dental bleaching with laser and LEDs. Photomed Laser Surg 2016; 34: 135-136.
50) Organization of Economic Co-operation and Development. Guidelines for the Testing of Chemicals: acute dermal irritation/corrosion (OECD 404). 2015; 4: 1-8.