THE PROCESSING TECHNIQUES AND BEHAVIOUR OF ALUMINUM METAL MATRIX WITH DIFFERENT REINFORCEMENT MATERIALS

HARISH MUGUTKAR1, N. TAMILOLI2 & VISHALDATT V. KOHIR3

1Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Deemed to be University, Green Fields, Vaddeswaram, Guntur, India
2Department of Mechanical Engineering, Anurag Group of Institutions, Hyderabad, India
3Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Deemed to be University, Green Fields, Vaddeswaram, Guntur, India

Professor, Department of Mechanical Engineering, KBN College of Engineering, Kalaburgi, India

ABSTRACT

Improvement in the mechanical properties and retainment of properties is an essential requirement for the industrial application. The properties of the composite not only depend on reinforcement materials but it also depends on the manufacturing technique adopted for processing of the composites. This paper discusses various fabrication techniques of composite. This paper summarizes the various aluminium grades used in the industry and how its properties can be improved using different reinforcement materials like carbides, oxides, organic compounds and industrial agro waste. It reviews the influence of different reinforcement material on mechanical properties like hardness, tensile strength, density, and percentage elongation. This also paper reviews comprehensive data related to the research work carried with different various weight percentage reinforcement material.

KEYWORDS: Metalmatrix Composite, Industrial Waste, RHA & Casting

INTRODUCTION

The industrial revolution has also led to the development of new materials in the automobile, aerospace and various processing industries. Composite are one among the developing materials due to its improved properties which satisfied the requirements of the various industries. Composites are made of several parts or element. Composite materials are defined as a material which is made of two or more materials at a microscopic scale and has chemically distinct phases. Composite materials can also be defined as the combination of two or more materials to enhance the properties of the parent material. The composite material constitutes of two materials viz. Reinforcing materil and Matrix material. Properties of composite materials can be modified according to required final properties of a component or the product. Metal matrix composite (MMC), polymer matrix composite (PMC), ceramic matrix composite (CMC), and other inorganic composites are glass and carbon composite, these above composites are classified based on the matrix material used during processing of composite materials. Composites can also be classified based on the structure and geometry of reinforcement materials – dispersive composites, particulate composite and fibrous composite.

MMC are defined as the composite with at least two constituent materials with one being a metal and the other being metals, ceramics or organic compounds. The purpose of manufacturing of composites is not only
concerned to increase the firmness or strength, it also has to serve the various other purposes like improved temperature range, mechanical properties, abrasion resistance, dimensional stability and reduce specific weight compared with pure metal. The most widely used metal matrices, mainly for their price and variability. Aluminium alloys are most preferred material for engineering application due to its advantage of low weight and excellent thermal properties over other material [1]. Aluminium matrix composite is the most competitive composite in emerging industrial era. Aluminium matrix improves its properties when it is reinforced with hard ceramic materials like Al₂O₃, SiC, and B₄C etc [2].

Properties of Matrix and Particles Reinforcements

Aluminium and its alloys have a excellent industrial applications due to its properties, however there are some of the drawbacks of the material can be overcome by addition of reinforcement material. Choosing of appropriate aluminium alloy with characteristic alloying elements for desired industrial application where the mechanical properties are taken into consideration [3]. The aluminium alloy composite materials have high strength, high stiffness, high thermal stability, more corrosion and wear resistance and high fatigue life hence aluminium has found to be best alternative for industrial applications [4]. The property of MMC mainly depends on the processing method adopted for producing the composites. Aluminium alloys are normally identified by a four figure system which is now universally accepted. Table 1 describes the designation for aluminium wrought alloys.

Table 1: Designation of Aluminium Alloys

Designation	Principle Element
1xxx	Unalloyed (Pure)
2xxx	Copper
3xxx	Manganese
4xxx	Silicon
5xxx	Magnesium
6xxx	Magnesium+ Silicon
7xxx	Zinc
8xxx	Lithium/Tin

Oxides, carbides and other organic compounds can be used as reinforcement materials in the metal matrix composites. Reinforcement particle changes the structural and mechanical properties of the matrix material. The most commonly used reinforcement materials are listed in table 2. Selection of reinforcement materials mainly depends on the required properties for industrial application. For operation like toughening mechanisms, the microstructure should be homogeneous; it means the metal particles should be uniformly distributed in the ceramic particles [5].

Table 2: Reinforcement Materials and its Properties

Reinforcement	Melting	Density Point °C/cm³	Hardness Gpa
SiC	2730	3.21	32.0
B₄C	3500	2.52	38.0
TiC	3250	4.93	31.4
Al₂O₃	2045	3.97	20.7
TiB₂	2980	4.52	25.0
Si₃N₄	1900	3.17	15.5

Apart from oxides, carbides and other compounds industrial agro wastes can also be used as reinforcement material in the manufacturing of MMC. Fly ash, red mud, palm oil clinker, rice husk ash, coconut shell and sugarcane bagasse are some of the examples of industrial agro waste material [6]. The chemical compositions of some of the
The Processing Techniques and Behaviour of Aluminum Metal Matrix with Different Reinforcement Materials

industrial waste are listed in the tables 3-7.

Table 3: Chemical Composition of Fly Ash [7]

	SiO$_2$	Al$_2$O$_3$	Fe$_2$O$_3$	TiO$_2$	Carbon/LOI
	56.92	29.9	8.44	2.75	1.99

Table 4: Chemical Composition of Bagasse Ash [8]

	SiO$_2$	Al$_2$O$_3$	Fe$_2$O$_3$	CaO	MgO	SO$_3$	K$_2$O	Na$_2$O	Others	LOI
	77.29	10.95	3.66	2.09	1.49	0.49	3.16	0.38	Balance	3.28

Table 5: Chemical Composition of Coconut Shell Ash [9]

	SiO$_2$	MgO	Al$_2$O$_3$	Fe$_2$O$_3$	CaO	K$_2$O	Na$_2$O	ZnO	MnO
	45.05	16.2	15.6	12.4	0.57	0.52	0.45	0.3	0.22

Table 6: Chemical Composition of Palm Oil Clinker [10]

	SiO$_2$	Fe$_2$O$_3$	K$_2$O	Al$_2$O$_3$	CaO	MgO	P$_2$O$_5$	TiO$_2$	Na$_2$O
	81.8	5.18	4.66	3.5	2.3	1.24	0.76	0.17	0.14

Table 7: Chemical Composition of Rice Husk Ash [11]

	SiO$_2$	Al$_2$O$_3$	MgO	Fe$_2$O$_3$	K$_2$O	SO$_3$	Na$_2$O	CaO	LOI	Others
	97.095	1.135	0.825	0.316	0.181	0.146	0.092	0.073	0.965	Balance

Manufacturing Techniques

The property of MMC not only depends on the type of reinforcement but it also mainly depends on the manufacturing technique adopted for producing the composites. The manufacturing technique plays an important role in improving the physical appearance and developing different mechanical properties of the composite. The manufacturing techniques of the composite are classified based on the nature and behaviour of raw material. The various techniques for processing a composites are-

- Stir casting
- Friction stir processing
- Squeeze casting
- Chemical vapour deposition
- Physical vapour deposition
- In-situ fabrication technique
- Powder metallurgy
Impact Factor (JCC): 7.6197

Figure 1: Stir Casting

Figure 2: Friction Stir Processing

Figure 3: Squeeze Casting

Figure 4: Chemical Vapour Deposition

Figure 5: Physical Vapour Deposition

Figure 6: In-Situ Fabrication Technique
Influence of Reinforcement on MMC’s

The different reinforcement materials used in developing the metal matrix are carbides, oxides, organic compounds, industrial agro waste and so on. The properties of reinforcement also play an important role in deciding the property of the composite along with manufacturing technique used. The different factors such as density, hardness, tensile test, and percentage elongation are considered in the study of various reinforcement materials for developing the composites. Present paper mainly focuses on the stir casting technique for manufacturing of composite.

Gaurav A et al. [38] did a comparative study of AA6351 reinforced with SiC/RHA the results showed that the density of the composite increased with the increased content of SiC while with the increase in content of RHA the density of composite decreased. The micro hardness of the composite with SiC and RHA as reinforcement increased from 52.82 VHN to 72.5 and 61.3 VHN respectively for 8% reinforcement; this is due to uniform distribution of reinforcement in the matrix melt & dislocation density. The presence of hard particles in the in the reinforcement transferring of load from matrix to reinforcement has improved the tensile strength of the composite developed. S Nayaket, al. [39] studied tensile and hardness characterization for the composite, lower the percentage of zirconia higher the tensile strength and lowers the hardness value of the composite. PB Pawaret, al. [4] studied the hardness value of silicon carbide particle based aluminium composite and found highest hardness value of 60.3 BHN for 10% SiC reinforcement which is better than the aluminium metal. P Ashwathet, al. [40] evaluated the property of Al 2xxx with Al2O3 and SiC, alumina as reflected the better mechanical properties when compared with SiC. Table 8 gives the various different reinforcement aluminium metal matrix and its behaviour with and without reinforcement.

CONCLUSIONS

This paper presents the various aspects regarding the manufacturing of metal matrix by stir casting with different combination of reinforcement materials used in synthesis of MMC or Hybrid MMC and how it influences the mechanical properties has been reviewed. This paper also focuses on the use of industrial Agro waste as reinforcement material and its influence on the properties of the matrix material for manufacturing of the green composite. The data results showed that
with the addition of the agro waste as reinforcement material the mechanical properties like tensile strength, hardness has been increased and the weight of the prepared composite has been reduced due to less density of the reinforcement material. This paper provides the future scope for the researcher to study the behaviour of the reinforcement material on different grades of aluminium matrix composites.

Table 8: Properties of MMC with Different Reinforcement Materials

Composition References	Fabrication	Hardness (MPa)	Tensile/Yield (MPa)	Density (g/cm²)	%	Elongation
AI6082	Stir casting	31.6	161.5	2.69	8.6	[12]
AI6092 - 3wt.% Gr		31.0	160.0	2.67	8.0	
AI6082 - 6wt.% Gr		30.2	158.0	2.64	7.4	
AI6082 - 9wt.% Gr		29.0	155.0	2.62	7.0	
AI6082 - 12wt.% Gr		28.3	152.0	2.58	6.8	
AI6061 - 5wt.% SiC	Stir casting			132.3	6.7	[13]
AI6061 - 10wt.% SiC		143.4		2.71	2.66	
AI6061 - 15wt.% SiC		150.9		2.73	2.66	
AI6061 - 5wt.% SiC/Gr		144.7		2.66	2.66	
AI6061 - 10wt.% SiC/Gr		173.3		2.64	2.64	
AI6061 - 15wt.% SiC/Gr		192.4		2.63	2.63	
AI7075 - 2wt.% A3h + 1wt. % Gr	Stir casting	87.3	259.3		6.7	[16]
AI7075 - 2wt.% A3h + 3wt. % Gr		92.4	255.4		6.4	
AI7075 - 2wt.% A3h + 5wt. % Gr		94.3	272.3		5.8	
AI7075 - 4wt.% A3h + 1wt. % Gr		87.3	267.3		6.3	
AI7075 - 4wt.% A3h + 3wt. % Gr		94.2	283.4		5.9	
AI7075 - 4wt.% A3h + 5wt. % Gr		95.4	290.3		5.2	
AI7075 - 6wt.% A3h + 1wt. % Gr		88.3	294.2		5.9	
AI7075 - 6wt.% A3h + 3wt. % Gr		95.4	296.3		5.4	
AI7075 - 6wt.% A3h + 5wt. % Gr		99.6	299.4		4.9	
AI6051 - 2wt.% MoS2 + 4wt. % Al2O3	Stir casting	94.5	201.5	201.5 N/mm²	6.7	[14]
AI6051 - 2wt.% MoS2 + 8wt. % Al2O3		98.0	221.4	221.4 N/mm²	6.4	
AI6051 - 2wt.% MoS2 + 12wt. % Al2O3		106.23	243.4	243.4 N/mm²	5.8	
AI6051 - 4wt.% MoS2 + 4wt. % Al2O3		98.7	219.3	219.3 N/mm²	5.4	
AI6051 - 4wt.% MoS2 + 8wt. % Al2O3		104.7	237.2	237.2 N/mm²	4.9	
AI6051 - 4wt.% MoS2 + 12wt. % Al2O3		107.5	259.5	259.5 N/mm²	4.5	
AI6051 - 8wt.% MoS2 + 4wt. % Al2O3		97.37	207.4	207.4 N/mm²	3.7	
AI6051 - 8wt.% MoS2 + 8wt. % Al2O3		101.2	227.8	227.8 N/mm²	3.2	
AI6051 - 8wt.% MoS2 + 12wt. % Al2O3		104.5	251.3	251.3 N/mm²	2.9	
The Processing Techniques and Behaviour of Aluminum Metal Matrix with Different Reinforcement Materials

Composition References	Fabrication	Hardness	Tensile/Yield	Density	%
AA6062	Stir casting	49.5 VHN	2.69 g/cm³	[15]	
AA6062 + 3wt.% Si₃N₄		82.0 VHN	2.70 g/cm³		
AA6062 + 6wt.% Si₃N₄		85.0 VHN	2.72 g/cm³		
AA6062 + 9wt.% Si₃N₄		91.0 VHN	2.74 g/cm³		
AA6062 + 12wt.% Si₃N₄		91.5 VHN	2.75 g/cm³		
A7075	Stir casting		157N/mm²	[17]	
A7075 + 1wt.% BaC		250N/mm²			
A7075 + 2wt.% BaC		255N/mm²			
A7075 + 3wt.% BaC		270N/mm²			
A7075 + 4wt.% BaC		285N/mm²			
A2024	Hot-extrusion	489 MPa	1.17		
A2024 + 10vol.% BaC		573 MPa			
A2024 + 20vol.% BaC		626.7 MPa			
A7075 + 5%BaC+35%Gr+6%Al₂O₃	Stir casting	140 BHN			
A7075 + 35%BaC+45%Gr+75%Si₃N₄	Hot-extrusion	162 BHN			
AL25	Stir casting	37.8 BHN	452 MPa		
LM25 + 3wt.% Al₂O₃ + 2wt.% Al₂O₃	Stir casting	33.4 BHN			
LM25 + 2wt.% Al₂O₃ + 3wt.% Al₂O₃	Stir casting	48.5 BHN			
A2024 + 5% SiC + 5% FA	Powder metallurgy	138.9 BHN			
A2024 + 10% SiC + 10% FA		167.6 BHN			
A2024	Stir casting	80 BHN 236N/mm²	19.4		
A2024 + 5% SiC		83 BHN 248N/mm²	19.0		
A2024 + 10% SiC		87 BHN 265N/mm²	18.2		
A2024 + 5% FA		80 BHN 243N/mm²	10.3		
A2024 + 10% FA		83 BHN 263N/mm²	15.8		
A2024 + 5% SiC + 5% FA		88 BHN 276N/mm²	14.4		
A2024 + 5% SiC + 10% FA		90 BHN 278N/mm²	13.8		
A2024 + 5% SiC + 5% FA		93 BHN 285N/mm²	12.3		
A2024 + 10% SiC + 10% FA		95 BHN 293N/mm²	11.9		

Composition References	Fabrication	Hardness	Tensile/Yield	Density	%
A10602	Stir casting	31.6 BHN	151.3 MPa	2.69 g/cm³	8.6
A10602 + 3wt.% Cr		31.0 BHN	160.6 MPa	2.67 g/cm³	8.0
A10602 + 6wt.% Cr		30.2 BHN	158.0 MPa	2.64 g/cm³	7.4
A10602 + 9wt.% Cr		36.0 BHN	155.0 MPa	2.62 g/cm³	7.0
A10602 + 12wt.% Cr		38.3 BHN	152.0 MPa	2.58 g/cm³	6.8
A6061 + 5wt%SiC	Stir casting	133.9 MPa	2.70 g/cm³	[23]	
A6061 + 5wt%SiC		143.4 MPa	2.71 g/cm³		
A6061 + 10wt%SiC		150.9 MPa	2.73 g/cm³		
A6061 + 15wt%SiC		144.7 MPa	2.68 g/cm³		
A6061 + 30wt%SiC		173.3 MPa	2.64 g/cm³		
A7075 + 2wt% Ash + 1wt% Cr	Stir casting	87.3 BHN	259.3 MPa	6.7	
A7075 + 2wt% Ash + 3wt% Cr		92.4 BHN	265.4 MPa	6.4	
A7075 + 2wt% Ash + 5wt% Cr		94.3 BHN	272.5 MPa		
A7075 + 4wt% Ash + 2wt% Cr		87.3 BHN	267.5 MPa	6.3	
A7075 + 4wt% Ash + 3wt% Cr		94.2 BHN	283.4 MPa	5.9	
A7075 + 4wt% Ash + 5wt% Cr		95.7 BHN	293.0 MPa	5.2	
A7075 + 6wt% Ash + 1wt% Cr		86.3 BHN	294.2 MPa		
A7075 + 6wt% Ash + 3wt% Cr		95.4 BHN	296.3 MPa		
A7075 + 6wt% Ash + 5wt% Cr		99.6 BHN	299.4 MPa		
A6061 + 2wt% MoS₂ + 4wt% Al₂O₃	Stir casting	94.5 BHN	261.5 N/mm²	[14]	
A6061 + 2wt% MoS₂ + 8wt% Al₂O₃		98.0 BHN	221.4 N/mm²		
A6061 + 2wt% MoS₂ + 12wt% Al₂O₃		102.5 BHN	243.5 N/mm²		
A6061 + 4wt% MoS₂ + 4wt% Al₂O₃		96.5 BHN			
A6061 + 4wt% MoS₂ + 8wt% Al₂O₃		104.7 BHN	237.2 N/mm²		
A6061 + 4wt% MoS₂ + 12wt% Al₂O₃		107.7 BHN	256.5 N/mm²		
A6061 + 8wt% MoS₂ + 4wt% Al₂O₃		97.3 BHN	207.4 N/mm²		
A6061 + 8wt% MoS₂ + 8wt% Al₂O₃		103.3 BHN	237.8 N/mm²		
A6061 + 8wt% MoS₂ + 12wt% Al₂O₃		104.2 BHN	251.3 N/mm²		
Composition References	Fabrication	Hardness	Tensile/Yield	Density %	Technique
------------------------	-------------	----------	---------------	-----------	------------
AA6082 - 3 wt. % Si3N4	Stir casting	45.5 HVN	2.69 g/cm³	[5]	
AA6082 - 6 wt. % Si3N4		82.0 HVN	2.70 g/cm³		
AA6082 - 9 wt. % Si3N4		86.0 HVN	2.72 g/cm³		
AA6082 - 12 wt. % Si3N4		91.0 HVN	2.74 g/cm³		
AA6082 - 15 wt. % Si3N4		93.5 HVN	2.75 g/cm³		
A17075 - 3 wt. % B4C	Stir casting	157 N/mm²		[7]	
A17075 - 6 wt. % B4C		230 N/mm²			
A17075 - 9 wt. % B4C		232 N/mm²			
A17075 - 12 wt. % B4C		285 N/mm²			
A1024 - 7 wt. % B4C	Hot-extrusion	450 MPa	14.7	[18]	
A1024 - 10 vol. % B4C		573 MPa	1.73		
A1024 - 20 vol. % B4C		626 MPa	1.84		
A10705 - 7 wt. % B4C	Stir casting	378 BHN	64.24 MPa	[20]	
A10705 - 10 wt. % B4C		52.8 BHN	51.75 MPa		
A10705 - 15 wt. % B4C		46.5 BHN	54.60 MPa		
A1 - 5 wt. % B4C	Powder metallurgy	112.8 BHN	371 MPa	[21]	
A1 - 10wt % B4C		138.0 BHN	483 MPa		
A1 - 15 wt. % B4C		197.6 BHN	482 MPa		
A1024 - 3 wt. % SiC	Stir casting	80 BHN	2.60 g/cm³	[22]	
A1024 - 5 wt. % SiC		81 BHN	2.40 g/cm³		
A1024 - 7 wt. % SiC		87 BHN	2.39 g/cm³		
A1024 - 9 wt. % SiC		89 BHN	2.39 g/cm³		
A1024 - 11 wt. % SiC		90 BHN	2.10 g/cm³		
A1024 - 13 wt. % SiC		95 BHN	2.10 g/cm³		
A10705 - 5 wt. % SiC	Stir casting	70 BHN	224 N/mm²	[23]	
A10705 - 10 wt. % SiC		100 BHN	146 N/mm²	3.00 g/cm³	
A10705 - 15 wt. % SiC		135 BHN	135 N/mm²	3.10 g/cm³	
A10705 - 20 wt. % SiC		110 BHN	148 N/mm²	3.16 g/cm³	
A1-MgSi	Stir casting	67 BHN	2.81 g/cm³	[24]	
A1-MgSi + 10% SiC		77 BHN	2.74 g/cm³		
A1-MgSi + 20% SiC		74 BHN	2.69 g/cm³		
A1-MgSi + 30% SiC		72 BHN	2.63 g/cm³		
A1-MgSi + 40% SiC		67 BHN	2.64 g/cm³		
A1-MgSi	Stir casting	67 BHN	2.81 g/cm³	[25]	
A1-MgSi + 10% Al2O3		75 BHN	2.79 g/cm³		
A1-MgSi + 20% RHA		69 BHN	2.66 g/cm³		
A1-MgSi + 30% RHA		66 BHN	2.66 g/cm³		
A1-MgSi + 40% RHA		64 BHN	2.62 g/cm³		
A1	Stir casting	65 BHN	2.72 g/cm³	[26]	
A1-MgSi + 20% SiC		74 BHN	2.70 g/cm³		
A1-MgSi + 30% SiC		83 BHN	2.70 g/cm³		
A1-MgSi + 50% SiC		96 BHN	2.69 g/cm³		
A1-MgSi	Stir casting	67 BHN	2.72 g/cm³	[27]	
A1-MgSi + 3% B4C		77 BHN	2.69 g/cm³		
A1-MgSi + 5% B4C		82 BHN	2.54 g/cm³		
A1-MgSi + 7% B4C		85 BHN	2.54 g/cm³		
A1-MgSi + 10% B4C		88 BHN	2.54 g/cm³		
A1-MgSi	Die casting	65 BHN	199 MPa	[28]	
A1-MgSi + 3% Ba		70.2 BHN	215 MPa	1.75 g/cm³	
A1-MgSi + 5% Ba		67.5 BHN	208 MPa	1.75 g/cm³	
A1-MgSi + 7% Ba		67.4 BHN	210 MPa	1.75 g/cm³	
A1-MgSi	Stir casting	70.4 BHN	164 MPa	2.84 g/cm³	[29]
A1 + 5% Ba		73.6 BHN	174 MPa	2.67 g/cm³	
A1 + 10% Ba		77.5 BHN	176 MPa	2.60 g/cm³	
A1 + 15% Ba		84.7 BHN	155 MPa	2.54 g/cm³	
A1 + 20% Ba		90.7 BHN	144 MPa	2.46 g/cm³	
REFERENCES

1. N. Fatchurrohman, I. Iskandar, S. Suraya, K. Johan, “Sustainable Analysis in the product development of Al-Metal Matrix composites automotive component”, Applied Mechanics and Materials, Vol. 695, pp. 32-35, 2015. g/cm^3

2. ChinishKalra, ShivamTiwari, AkshaySapra, SidhantMahajan, Pallav Gupta, “Processing and Characterization of Hybrid Metal Matrix Composites”, Journal of Materials and Environment Sciences, Vol. 9, pp. 1979-1986, 2017.

3. P. Ashwath, M. Anthony Xavior, “Processing methods and property evaluation of Al2O3 and SiC reinforce metal matrix composites based on aluminium 2xxx alloys”, Journal of Materials Research, 2016.

4. P. B. Pawar, Abhay A. Utpat, “Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite for Spur Gear”, ICMPC 2014, pp.1150-1156.

5. S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, F.M. Varachia, “Aluminium Matrix Composites for industrial Use: Advances and Trends”, SMPM 2017, pp.178-182.

6. Ramteke, B., & Saxsena, A. Strengthening black cotton soil with rha and moorum for pavement subgrade.

7. GauravArora, Satpal Sharma, “A review on monolithic and hybrid metal matrix composites reinforced with industrial agro wastes”, pp. 4819-4835, 2017.

8. Suresh N, Venkateswara S, Seetharamu S, “Influence of cenosphere of fly ash on the mechanical and wear of permanent moulded eutectic Al-Si alloys”, pp. 55-65, 2010.

9. Usman AM, Raji A, Waziri NH et al, “Production and characterisation of aluminium alloy-bagasse ash composites”, IOSRJ, pp. 38-44, 2014.
10. Madakson PB, Yawas DS, Apasi A, “Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications”, IJEST, pp. 1190-1198, 2012.

11. Irfan, O. M. Influence of specimen geometry and lubrication conditions on the compression behavior of a6066 aluminum alloy.

12. Robani RB, Chan CM, “Reusing soft soil with cement palm oil clincker (POC) stabilization”, pp. 1-4, 2009.

13. Usman AM, Raji A, Wazzri NH et al, “Aluminium alloy- rice husk ash composite production and analysis”, pp. 84-98, 2014.

14. Pradeep Sharma, Satpal Sharma, Dinesh Khanda, “Effect of Graphite Reinforcement on physical and mechanical properties of aluminium metal matrix composites”, Particulate science and Technology: An International Journal, 2015.

15. M. Vamsi Krishna, Anthony M Xavior, “An Investigation on the Mechanical Properties of Hybrid Metal Matrix Composites”, GCMM 2014, pp.918-924, 2014.

16. G Pitchayyapillai, P. Seenikannan, K. Raja, K. Chandrasekaran, “Al6061 Hybrid Metal Matrix Composite Reinforced with Alumina and Molybdenum Disulphide”, HindawiPublicarions, 2016.

17. Sharma P., Sharma S. And Khanda D., J AsiCerSoc 3, pp. 352, 2015.

18. Reddy, A. C. Low and high temperature micromechanical behavior of bn/3003 aluminum alloy nanocomposites.

19. Imran M., Khan A. R. A., Megeri S and Sadik S., Res Eff Tech, pp. 81, 2016.

20. Praveen Kumar, Dr. C P S Prakash, Dr. Mallikarjun B, Shantharam A, “A Study on Tensile and Tribological Properties of Aluminium 7075 Metal Matrix with Boron Carbide Reinforcement Composite Material by using Computer Interface Tensile and Wear Test”, ICIMIA 2017, 2017.

21. Cun-Zhu Nie, Jia-Jun Gu, Jun-Liang Liu and Di Zhang, “Production of Boron Carbide Reinforced 2024 Aluminium Matrix Composites by Mechanical Alloying”, Vol 48, pp. 990 – 995, 2007.

22. S. Nallusamy, S. Saravanan, V. Kannarasu, M. Rajaram Narayanan, “Experimental Analysis on Reinforced Aluminium Metal Matrix with Boron Carbide, Graphite and Fly ash chemical Composition”, Rasayan J. Chem, 2017.

23. B. VijayaRammuth, C. Elanchezhian, M. Jaivignesh, S. Rajesh, C. Parswajinan, A. Siddique Ahmed Ghas “Evaluation of Mechanical Properties of aluminium alloy-alumina-boron carbide metal matrix composites”, Materials and Design, 2014.

24. E. Mohammad Sharifi, F Karimzadeh, M. H. Enayti, “Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminium matrix nanocomposites”, Materials and Design, pp.3263-3271, 2011.

25. MahendraBoopathi, K.P Arulshri, N. Lyanduri, “Evaluation of Mechanical Properties of Aluminium Alloy2024 Reinforced with Silicon Carbide and Fly ash Hybrid Metal Matrix Composite”, American Journal of Applied Sciences, pp. 219-229, 2013.

26. T. Rajmohan, K. Palinikumar, S. Ranganathan, “Evaluation of mechanical and wear properties of hybrid metal matrix composites”, Trans. Nanoferrous Met.Soc. China, pp. 2509-2517, 2013.

27. K.K Alaneme, B.O.Ademilua, M.O.Bodunrin, “Mechanical Properties and Corrosion Behaviour of Aluminium Hybrid Composites Reinforced with Silicon Carbide and Bamboo Leaf Ash”, Tribology in Industry, pp. 22-35, 2013.

28. Al-Sharidi, S. H., Sitepu, H., & AlYami, N. M. Application of Tungsten Oxide (WO3) Catalysts Loaded with Ru and Pt Metals to Remove MTBE from Contaminated Water: A Case Of Laboratory-Based Study. IMPACT: International Journal of Research in Engineering & Technology, ISSN (P): 2347-4599; ISSN (E): 2321, 8843, 19-30.
29. Keneth Kanayo Alaneme, Idris B Akintunde, Peter Apata Olubambi, Tolulope M Adewale, “Fabrication characteristics and mechanical behaviour of rice husk ash – Alumina reinforced Al-Mg-Si alloy matrix hybrid composites”, Journal of Materials Research and Technology, pp. 60-67, 2013.

30. Prasad DS, Shoba C, Ramaanaihet N, “Investigations on mechanical properties of aluminum hybrid composites”, J Mater Res Technol, pp. 79-85, 2014.

31. Uvaraja VC, Natrajan N, “Optimization of friction and wear behaviour in hybrid metal matrix composites using Taguchi technique”, J Miner Mater Character, pp. 757-768, 2012.

32. Rohatgi PK, Daoud A, Schultz BF, “Microstructure and mechanical behaviour of die casting AZ91D-fly ash cenosphere composites”, Composites, pp. 883-896, 2009.

33. Sudarshan Surapa MK, “Synthesis of fly ash particle reinforced A356 Al composites and their characterization”, Mater Sci Eng, pp. 117-124, 2008.

34. Mahendar KV, Radhakrishna K, “Fabrication of Al-4.5%Cu alloy with fly ash metal matrix composites and its characterization”, Mat Sci Pol, pp. 57-68, 2007.

35. Aku SY, Yawas DS, Apasi A, “Evaluation of cast Al-Si-Fe alloy/coconut shell ash particulate composites”, GazUniv J Sci, pp. 449-457, 2013.

36. Prasad DS, Krishna AR, “Production and mechanical properties of A356.2/RHA composites”, Int J AdvSciTechnol, pp. 51-58, 2011.

37. Prasad DS, Krishna AR, “Tribological Properties of A356.2/RHA composites”, J Mater Sci Tech, pp. 3657-372, 2012.

38. Ramachandra M, Radhakrishna K, “Effect of reinforcement of fly ash on sliding wear, slurry erosive wear and corrosion behaviour of aluminium matrix composite”, Wear, pp. 1450-1462, 2007.

39. Fatile OB, Akinruli JI, Amori AA, “Microstructure and mechanical behaviour of stir cast Al-Mg-Si alloy matrix hybrid composite reinforced with corn cob ash and silicon carbide”, Int J EngTechnolInnov, pp. 251-259, 2014.

40. Alaneme KK, Akintunde IB, Olubami PA, “Fabrication characteristics and mechanical behaviour of rice husk ash – alumina reinforced Al-Mg-Si alloy matrix hybrid composites”, J Mater Res Tech, pp. 60-67, 2013.

41. Prasad DS, Shoba C, “Hybrid composites- a better choice for high wear resistant materials”, J Mater Res Technol, pp. 79-85, 2014.

42. Gaurav Arora, Satpal Sharma, “A Comparative study of AA6351 Mono composites reinforced with synthetic and agro waste reinforcement”, IJPEM, pp. 631-638, 2018.

43. S K Nayak, T Mahanta, J K Sahoo, A Mishra, “Mechanical Properties and wear characterisations Al-ZrO2-SiCp and Graphite Hybrid Metal Matrix Composites”, 2017.

44. P Ashwath, M Anthony Xavior, “Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys”, J Mater Res, 2016.

45. Jaswinder Singh, “Fabrication characteristics and tribological behaviour of Al/SiC/Gr hybrid aluminium matrix composites: A Review”, 2016.

46. Michael Oluwatosin Bodunrin, Kenneth Kanayo Alaneme, “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical corrosion and tribological characteristics”, JMR&T, pp. 434-445, 2015.
