Longitudinal increase of CSF soluble TREM2 is driven by early aggregation of Aβ42 and associates with slower amyloid deposition and clinical decline in autosomal-dominant Alzheimer’s disease

Christian Haass (Christian.Haass@mail03.med.uni-muenchen.de)
Biomedical Center (BMC), Ludwig-Maximilians-Universität

Estrella Morenas-Rodriguez
German Center for Neurodegenerative Diseases (DZNE)

Yan Li
Washington University in St. Louis

Brigitte Nuscher
Metabolic Biochemistry/LMU Munich

Nicolai Franzmeier
Ludwig Maximilian University

Chengjie Xiong
Washington University in St. Louis

Marc Suárez-Calvet
BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation

Anne Fagan
Washington University

Stephanie Schultz
Mallinckrodt Institute of Radiology, Washington University School of Medicine

Brian Gordon
Washington University in St. Louis

Tammie Benzinger
Washington University in St. Louis

Jason Hassenstab
Washington University in St. Louis

Eric McDade
Washington University in St. Louis

Regina Feederle
Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health

Celeste Karch
Title page

Longitudinal increase of CSF soluble TREM2 is driven by early aggregation of Aβ42 and associates with slower amyloid deposition and clinical decline in autosomal-dominant Alzheimer’s disease

Authors: Estrella Morenas-Rodríguez1,2, Yan Li3, Brigitte Nuscher1,2, Nicolai Franzmeier4, Chengjie Xiong5, Marc Suárez-Calvet5,6,7,8, Anne M Fagan9, Stephanie Schultz10, Brian A Gordon10, Tammie LS Benzinger10, Jason Hassenstab9, Eric McDade9, Regina Feederle1,11,12, Celeste M Karch13, Kai Schlepckow1,2, John C Morris9, Gernot Kleinberger1,2, Bengt Nellgård14,15, Jonathan Vöglein1,16, Kaj Blennow17,18, Henrik Zetterberg17,18,19,20, Michael Ewers1,4, Mathias Jucker21,22, Johannes Levin1,11,16, Randall J Bateman9, Christian Haass1,2,11*, on behalf of the Dominantly Inherited Alzheimer Network

Affiliations

1 German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. 2 Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany. 3 Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA. 4 Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany. 5 Barcelonaβeta Brain Research Center (BBRC),Pasqual Maragall Foundation, Barcelona, Spain. 6IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. 7 Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain. 8 Servei de Neurologia, Hospital del Mar, Barcelona, Spain. 9 Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA. 10 Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA. 11 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. 12 Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany. 13 Department of Psychiatry, Washington University School of Medicine, St Louis, USA. 14 Department of Anesthesiology and Intensive Care. 15 Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sweden. 16 Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany. 17 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. 18 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden. 19 Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK, UK Dementia Research Institute at UCL, London, UK. 20 Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China. 21 German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany. 22 Department of Cellular Neurology, Hertie Institute for Clinical Brain Research.

*Corresponding Author: Christian Haass (Christian.Haass@mail03.med.uni-muenchen.de)

Key words: TREM2, Microglia, neurodegeneration, CSF biomarkers, Alzheimer’s Disease
Abstract

Therapeutic modulation of TREM2-dependent microglial function provides an additional strategy to slow progression of Alzheimer disease (AD). Although studies on animal models suggest that TREM2 is protective, the trigger of increased TREM2 expression during disease progression and its clinical and pathological consequences in AD remain unclear. We measured longitudinally soluble TREM2 (sTREM2) as a surrogate marker for protective TREM2-signalling in cerebrospinal fluid (CSF) from participants in the Dominantly Inherited Alzheimer Network (DIAN) observational study. In mutation carriers (MC), the longitudinal sTREM2 increase followed the earliest aggregation of Aβ42 captured by CSF-Aβ42 decrease, but not yet by Pittsburg compound-B Positron Emission Tomography (PiB-PET). Higher sTREM2 increase rates provided protection from Aβ-deposition, whereas lower rates enhanced p-tau increase associated with PiB-PET increase. Moreover, presymptomatic MC with high or low sTREM2 increase rates have opposite associations between CSF Aβ42 and PiB-PET longitudinal changes, suggesting that TREM2 modifies Aβ plaque deposition and compaction. Finally, higher sTREM2 increase rates protected from cortical shrinkage and cognitive decline. Our findings position the TREM2 response within the amyloid cascade right after the first pathological changes in Aβ42 aggregation, support ongoing efforts to develop TREM2 modulating therapies, and predict a very early window for therapeutic intervention.
Introduction

Recent advances in understanding the dynamic responses of microglia to pathological challenges such as the deposition of insoluble proteins and cell death during neurodegeneration have increased our knowledge of immune cell function in the brain and even allowed the development of novel therapeutic approaches\(^1\). Historically, microglia were primarily believed to pathologically contribute to disease progression, e.g., by promoting aberrant synaptic pruning and activation of the inflammasome\(^3\). However, single-cell sequencing technologies have identified dynamic microglial populations, which sense their environment and trigger defensive responses to Alzheimer disease (AD) pathology\(^5\). Moreover, large genome-wide association studies have identified a number of risk variants for sporadic AD in genes expressed exclusively within microglia in the brain. Specifically, analyses of the disease-associated variants in the triggering receptor expressed on myeloid cells 2 (TREM2) were extremely intriguing as they strongly suggest that loss-of-function mutations are associated with an increased risk for late onset AD (LOAD)\(^6\). TREM2 loss of function locks microglia in a homeostatic state and prevents the switch to disease-associated microglia (DAM)\(^5\). Since DAM facilitate lipid metabolism, efficiently remove amyloid β-peptide (Aβ) seeds, and form a barrier around amyloid plaques, their protective activities are now explored for disease modifying therapeutic strategies\(^1\). In that regard, a variety of different TREM2-agonistic antibodies have been generated, all triggering several protective microglial functions, by stabilizing and cross-linking signalling-competent TREM2\(^1\). Moreover, one of these antibodies already passed a phase-1 clinical trial and multiple therapeutic antibodies will soon be tested for their efficacy in AD patients\(^1\). It is, therefore, of greatest importance to translate our knowledge on protective TREM2 functions from animal models to AD patients. Quantitative analysis of soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF) as a surrogate marker for TREM2-dependent microglial-activation allows such translational efforts. We have previously shown that cell-surface full-length TREM2 is shed by proteases of the ADAM family, releasing soluble TREM2 (sTREM2) into biological fluids including CSF\(^9\). Since only cell-surface full-length TREM2 is capable to efficiently initiate downstream
signalling, and ADAM proteases cleave TREM2 preferentially on the plasma membrane9,12, CSF sTREM2 can be considered as a surrogate maker for TREM2 expression and signalling.

Cross-sectional studies have shown that CSF sTREM2 levels are elevated in late presymptomatic and in early symptomatic stages both in sporadic and in autosomal-dominant AD (ADAD), and correlate with tau pathology-related markers in CSF (total tau t-tau- and phosphorylated tau on threonine 181 p-tau-), reinforcing the idea of TREM2-dependent microglial activation as a defensive response to AD pathology13-16. Higher CSF sTREM2 levels at baseline are also associated with a slower hippocampal shrinkage and slower memory decline in symptomatic phases of sporadic LOAD supporting the potential beneficial role of TREM217. However, cross-sectional CSF sTREM2 levels only give an estimate of the microglial activation state at a single time-point and are influenced by a high interindividual variability. Therefore, cross-sectional CSF sTREM2 levels do not represent the dynamic TREM2-dependent microglial response during AD progression. In fact, longitudinal studies are more accurate than cross-sectional studies to investigate pathological processes occurring in AD as they have a higher power to discriminate the temporal changes and the dynamic relationships between them18-20. Moreover, based on longitudinal amyloid PET imaging studies and seeding experiments in mice21, the beneficial effect of TREM2-dependent microglial functions is expected to be most effective in the earliest stages of Aβ-deposition. Thus, any effects of TREM2 on disease initiation and progression must be studied during an asymptomatic phase of patients known to develop AD symptoms at later time points. In contrast to sporadic AD, ADAD has a predictable clinical onset in each family and penetrance of the involved mutations is mostly complete 22. That allows to stage individuals relative to their expected year of symptom onset and enabled us to study biomarker dynamics from a very early presymptomatic phase in a way that is not possible with sporadic AD patients. The Dominantly Inherited Alzheimer Network (DIAN) observational study has recruited a large number of participants from families suffering from ADAD, many of them with longitudinal markers of Aβ-deposition, tau-related pathology, neuronal death and dysfunction, and longitudinal cognitive evaluations23,24. We studied the longitudinal change of CSF sTREM2 throughout the course of AD in the observational DIAN cohort, the factors triggering this change, and
the relationship between the dynamics of CSF sTREM2 and the dynamics of other biomarkers representing Aβ-accumulation and deposition, tau-pathology and brain structure, as well as the influence of the dynamics of CSF sTREM2 on cognitive decline. Our goal was to explore potential protective activities of TREM2 during the presymptomatic phase of the disease, to search for an interaction of sTREM2 rate of change with amyloid and tau pathology and to identify a window for therapeutic modulation of TREM2.

Results

Early Aβ changes drive CSF sTREM2. We measured sTREM2 in the longitudinal CSF samples from participants in the DIAN observational study. Table 1 summarizes baseline characteristics of the participants. First, we assessed cross-sectionally the time point at which CSF sTREM2 levels significantly differ in mutation carriers (MC) from non-carriers (NC) according to the methods already described elsewhere. We found that CSF sTREM2 levels started to be significantly higher in MC than in NC 21 years prior to the expected symptom onset (Fig. 1a). Interestingly, this time point is close to the point at which the cortical uptake of PiB-PET starts to be significantly higher in MC than NC (approximately at -22 estimated years from expected symptom onset (EYO)). Although, CSF sTREM2 levels were significantly higher in MC than in NC 21 years before the expected symptom onset, we could not find a time point at which the rate of CSF sTREM2 change was significantly different in MC from NC (Fig. 1b). We did not find any influence of sex, educational level, age, or EYO at baseline on the subsequent rate of CSF sTREM2 change studied by univariate Linear Mixed Effects (LME) models in MC and NC (supplementary table 1). The mutation status (NC vs MC) and the mutant gene involved did not significantly affect the rate of sTREM2 change (supplementary table 1 and 2).

Next, we searched for the pathological factors influencing the longitudinal change of CSF sTREM2. To do so, we investigated whether baseline levels of Aβ-related, tau-related or structural MRI biomarkers available in DIAN participants were related to the subsequent rate of CSF sTREM2 change, both in MC and NC, using univariate LME models. For Aβ, we found that lower levels of
both, CSF Aβ42 and CSF Aβ42/Aβ40 at baseline independently predicted a subsequent higher rate of
CSF sTREM2 increase in MC but not in NC (Fig. 2a and supplementary table 3). In contrast, we
did not find any association between total cortical uptake in PiB-PET at baseline and the subsequent
rate of CSF sTREM2 change (Fig. 2b and supplementary table 3). CSF p-tau, t-tau and structural
MRI biomarkers at baseline showed no relationship to the subsequent longitudinal change of CSF
sTREM2 in MC nor NC (Fig. 2c and 2d and supplementary table 3). Altogether, these results
suggest that very early Aβ-pathological changes, even before fibrillary deposits are detectable by
amyloid-PET imaging\(^{25-27}\), trigger the subsequent longitudinal increase of CSF sTREM2 in ADAD.

Higher sTREM2 increase rate slows Aβ-deposition. To further understand the relationship between
the longitudinal dynamics of CSF sTREM2 and the evolution of AD pathology represented by the
correspondent biomarkers, we studied whether the rate of CSF sTREM2 change was associated with
the rate of change of Aβ-accumulation and tau-related pathology biomarkers in MC by bivariate LME
models\(^{28,29}\). We found that a higher rate of CSF sTREM2 increase was related to a slower decrease in
CSF Aβ42 (lower rate of CSF Aβ42 decrease) in presymptomatic MC (r = 0.56, p = 0.01, Fig. 3a) and
with a slower increase in the total cortical PiB-PET uptake in symptomatic MC (r = -0.67, p = 0.006,
Fig. 3b). For tau-pathology related markers, we found a trend for an association between a higher rate
of CSF sTREM2 increase and a higher rate of t-tau increase when considering all MC together, but
not when stratifying by the clinical state (r = 0.34, p = 0.08, Fig. 3c). No association with the rate of
p-tau change in MC nor in any MC subgroup was found (presymptomatic/ symptomatic MC, Fig. 3d).

Higher sTREM2 increase rate attenuates tau pathology. Although we did not find a clear
connection between the rates of change of CSF sTREM2 and tau-related markers, we further explored
the influence of the longitudinal sTREM2 change on the association between Aβ-related markers and
CSF p-tau longitudinal changes. In presymptomatic MC, but not in symptomatic MC, the association
between the rate of CSF p-tau change and the rate of change in the PiB-PET cortical mean differed by
the rate of CSF sTREM2 change above or below the median (β = -0.394 (high sTREM2 change), p =
0.005 for the linear interaction) (Fig. 4a and 4b; appendix 1, supplementary tables 6 and 7). This
suggests a slower p-tau increase rate relative to PiB-PET in presymptomatic MC with higher rates of
CSF sTREM2 increase. Regarding the rate of CSF Aβ42 change, its association with the rate of CSF p-tau change also differed by the rate of CSF sTREM2 change in symptomatic MC with CSF sTREM2 increases above or below the median (β = -4.065 (high sTREM2 change), p = 0.027 for the quadratic interaction) (Fig. 4c and 4d, appendix 1, supplementary tables 6 and 7). That indicates a slower p-tau increase related to the CSF Aβ42 change in symptomatic MC with a higher rate of CSF sTREM2 change. Taken together these results suggest that TREM2 activation attenuates the evolution of tau-related pathology in ADAD in an Aβ-dependent manner.

The relationship between CSF Aβ42 and PiB-PET longitudinal changes is modified by the sTREM2 increase rate. Our results indicate a seemingly discrepant relationships between the CSF sTREM2 dynamics and the longitudinal changes in CSF Aβ42 and the cortical uptake in PiB-PET. That could reflect putative effects of TREM2-activation on both, clearance of early Aβ42-seeds and compaction of Aβ-plaques, which may affect the equilibrium of CSF Aβ42 and PiB-PET cortical uptake. To explore this possibility, we assessed whether the rate of CSF sTREM2 change influenced the relationship between the rates of change of CSF Aβ42 and PiB cortical uptake. Interestingly, the quadratic model predicting the rate of CSF Aβ42 change by the rate of PiB-PET uptake change significantly improved when including the binary rate of CSF sTREM2 change and its interaction with PiB-PET cortical mean, especially in presymptomatic MC (multiple r-squared = 0.51 (vs. 0.15), adjusted r-squared = 0.45 (vs. 0.09), appendix 1, supplementary tables 8 and 9). The association between CSF Aβ42 and the PiB PET cortical mean rates of change differed significantly in the groups with high (above median) versus low (below median) rate of CSF sTREM2 change (β = 0.932 (high sTREM2 change), p = 0.004, for the linear interaction; β = -6.082 (high sTREM2 change), p < 0.001, for the quadratic interaction) (Fig. 4e and 4f). In presymptomatic MC with a high rate of CSF sTREM2 change, CSF Aβ42 decreased with the increase of PIB-PET cortical uptake, whereas those with a low rate of CSF sTREM2 change showed an opposite relation. In symptomatic MC, this interaction effect was not significant, maybe due to the low number of participants in this group.

These results suggest an influence of CSF sTREM2 dynamics on the relationship between CSF Aβ42...
and PIB-PET longitudinal changes in early stages of the disease, which may be in line with the well-described role of TREM2 in clearance and compaction of Aβ-aggregates21,30,32,34,35.

Higher sTREM2 increase rate protects from cortical shrinkage in the precuneus. A higher rate of sTREM2 increase was associated with slower cortical shrinkage in the precuneus of the presymptomatic MC ($r = 0.46$, $p = 0.04$; **Fig. 5a**). We also found a trend for an association between higher sTREM2 increase rate and slower cortical shrinkage in the precuneus in the case of symptomatic MC (**Fig. 5a** and **5b**). Although we did not find any association between the rate of sTREM2 change and the rate of hippocampal shrinkage in presymptomatic nor symptomatic MC (**Fig. 5c** and **5d**), we observed that a higher CSF sTREM2 level at baseline was associated with slower hippocampal shrinkage in line with our previous results17 (supplementary table 4).

Higher sTREM2 increase rate is associated with slower cognitive decline. Finally, we studied the influence of the longitudinal dynamics of CSF sTREM2 on cognitive decline. To do so, we used again a bivariate LME model assessing the association between the rate of CSF sTREM2 change and the rate of cognitive decline, measured by a cognitive composite36. We found a strong association between a higher rate of CSF sTREM2 increase and a slower cognitive decline in presymptomatic MC ($r = 0.62$, $p = 0.003$, **Fig. 5e** and **5f**). This finding is in line with the effects of a higher rate of sTREM2 increase on CSF Aβ\textsubscript{42} and slower cortical shrinkage in the precuneus in the presymptomatic MC. On the other hand, we did not find any significant association between the rate of CSF sTREM2 change and the rate of cognitive decline in symptomatic MC ($r = -0.07$, $p = 0.79$, **Fig. 5e**). Thus, these findings indicate an early beneficial effect on cognition of the TREM2-dependent microglial response.

Discussion

Although major advances have been made in the past to develop amyloid-lowering therapeutic strategies, their clinical outcome remained disappointing. Clinically, secretase inhibitors caused major side effects probably due to the inhibition of proteolytic processing of physiologically required substrates37,38. Anti-Aβ immunotherapeutic approaches efficiently removed Aβ-plaques39, but had so
far mostly minute and inconsistent effects on cognitive and functional outcome. Furthermore, the recent approval for Aducanumab has not been exempt of controversy. Thus, intense efforts are on the way to identify new therapeutic targets. It is now widely accepted that TREM2-dependent microglial functions are required to limit initiation and progression of AD pathology in animal models of amyloidosis. Agonistic antibodies were developed with the goal to increase TREM2-dependent protective functions. They promote TREM2 expression, increase clustering of microglia around amyloid plaques, reduce amyloid plaque load and neuritic dystrophies, and even improve cognition in mouse models. It is therefore of greatest importance, to prove that TREM2-dependent protective functions observed in mouse models and cultured human microglia also occur in AD patients and to define a therapeutic window, when elevation of TREM2 activity is most efficacious. The only way to study that is using a biomarker approach. Considering sTREM2 as a surrogate marker for cell-surface signaling-competent TREM2, we studied its longitudinal changes in CSF during disease development in the longitudinal DIAN cohort, the largest and best characterized ADAD cohort. The predictable nature of ADAD allowed us to determine the relationship between the longitudinal dynamics of CSF sTREM2 and other longitudinal biomarkers associated with progression of AD pathology, along with the longitudinal cognitive evolution from the very early preclinical phases, decades before the first symptom, until a late phase with fully developed AD symptomatology. Correlating the concentrations of CSF sTREM2 with pathological measures, such as Aβ- and tau-related changes, as well as hippocampal and precuneus shrinking, and cognition allowed us to draw conclusions on a potentially protective function of TREM2 in human brains and may also predict an optimal time window for pharmacological intervention. Interestingly, we found that lower baseline levels of CSF Aβ42, but not higher baseline cortical uptake of PIB-tracer nor markers for tau-related pathology or neuronal death, were associated with a higher increase in CSF sTREM2. This finding suggests that very early Aβ-related pathology, even before Aβ-deposits are detectable by Aβ-PET imaging, drives sTREM2 generation. In line with that, a very early Aβ aggregation stage, before seeds are detectable by histology, has been recently described in animal models, and suggested to play a key role as a target for disease-modifying drugs. Further
supporting the relationship between CSF sTREM2 increase and the early Aβ-pathological changes,

CSF sTREM2 levels begin to be significantly higher in MC 21 years before the expected symptom onset, close to the time-point where the longitudinal change of CSF Aβ_{42} and Aβ-PET imaging starts to diverge in MC compared to NC19,22. Thus, microglia may be able to extremely sensitively monitor and respond to the slightest Aβ related pathological challenges in the human brain. Using a different analytical approach, we previously reported that CSF sTREM2 levels at baseline were higher in MC than in NC in a time window of five years before and after the expected symptom onset13. The difference between these findings may be due to a higher discriminative power of our current method19,22 detecting differences in the extremes of the EYO time line, where the number of included participants is low.

Our current work also shows that a higher sTREM2 increase rate is associated with a slower decrease in CSF Aβ_{42} in presymptomatic MC, and a slower increase in total cortical PIB-PET uptake in symptomatic MC. This association agrees with our previous results in symptomatic LOAD44. Moreover, our current results show differential associations between the rate of CSF sTREM2 change and CSF Aβ_{42} or PIB-PET cortical uptake in different clinical phases. That supports a potential dual protective effect in line with previous findings in animal models, aimed to reduce plaque-associated toxicity21,35. In the early presymptomatic stages, the association between higher sTREM2 increase rates and a slower CSF Aβ_{42} decrease may be related to microglia clustering around the smallest amyloid seeds, limiting their growth and spreading21. At later stages during the symptomatic phase of the disease, when plaques are fully developed, a protective function of microglia may be carried out by their barrier function and their ability to compact amyloid plaques21,30,32,34,35. Microglia may contribute to amyloid plaque compaction by secreting ApoE, which drives Aβ aggregation directly within the plaque21. Additionally, we found that in MC with a high sTREM2 increase rate, a higher increase rate in the PIB-PET uptake is related to a higher decrease rate in the CSF Aβ_{42} levels, probably reflecting the sequestration of Aβ_{42} in dense core amyloid plaques in an attempt to reduce the most toxic amyloid aggregates as recently suggested by Huang \textit{et al}35. The opposite is found in MC with lower sTREM2 increase rates, possibly reflecting a failure of microglia in compacting Aβ-
plaques. Additionally, CSF Aβ42 and Aβ-PET imaging are suggested to measure different aspects of Aβ-pathology as, so far, no relationship was found between their longitudinal changes. We now solved this problem by the introduction of CSF sTREM2 in their relationship. Thus, we obtained a relatively accurate model to predict the CSF Aβ42 changes by the PiB-PET changes. This highlights the important role of TREM2 in amyloid-plaque metabolism, and points to CSF sTREM2 as a relevant marker for a better interpretation of the Aβ-pathology related markers and their dynamics in a clinical setting.

Regarding tau-related AD pathology, we could not detect any significant association between the baseline levels of tau-related markers and the subsequent longitudinal sTREM2 change in CSF and neither between the rate of CSF sTREM2 change and the dynamics of CSF t-tau and p-tau. Previous cross-sectional studies in both sporadic and genetic AD clinical cohorts have shown a strong correlation between CSF sTREM2 and CSF t-tau and p-tau. We interpret the strong cross-sectional correlation between CSF sTREM2 and tau-related markers as the static view of AD evolution where both markers are sequentially higher, reflecting the disease progression, as a result of Aβ deposition. Albeit the lack of evidence of a direct relationship between the dynamics of CSF sTREM2 and tau-related markers, we found that the rate of CSF sTREM2 increase influenced the association between Aβ-pathology markers and CSF p-tau dynamics. A higher rate of CSF sTREM2 increase attenuated the rate of p-tau increase related with the PiB-PET increase rate in the presymptomatic MC and with the rate of CSF Aβ42 change in symptomatic MC. Nevertheless, difficulties with the interpretation of the rates of change of tau-related CSF markers have been already described. An unexpected longitudinal decrease in CSF p-tau was found in the DIAN cohort before the symptom onset, being associated with its sequestration in neurofibrillary tangles, while the rate of t-tau change remained stable along the entire disease evolution. On the other hand, studies in sporadic AD have shown an increasing rate of change in tau-related CSF markers. Although we should interpret our current results with caution, our data support a protective role of TREM2 functions on tau-related pathology dependent on Aβ-pathology, which is in line with recent results in mouse models.
Protective effects of TREM2 on Aβ and tau related pathology might lead as a consequence to reduced cortical thinning. Accordingly, we found a clear relationship between a higher sTREM2 increase rate and slower cortical shrinkage in the precuneus in presymptomatic MC and a trend for an association in symptomatic MC. However, we could not detect an association between the longitudinal sTREM2 change and the longitudinal evolution of hippocampal volume. The striking association between a higher rate of increase in CSF sTREM2 and slower cortical shrinkage in the precuneus with a lack of association in the hippocampus may not occur by chance. The precuneus is the first region affected by Aβ accumulation in ADAD followed by a decrease in cortical FDG-PET signal and subsequent cortical shrinkage. This canonical sequence is not followed by the hippocampal region, where the atrophy is the main event, not following a significant increase in amyloid deposition. That suggests that the beneficial effect of TREM2 follows a regional pattern, being more evident in early phases in those brain areas with a higher amyloid accumulation rate. That is also in line with the triggering of TREM2 protective functions by the early Aβ-pathological changes. However, we have already shown a protective role of higher CSF sTREM2 levels at baseline on the hippocampal shrinkage in symptomatic phases of sporadic LOAD, and we replicate that here in ADAD.

We found a very striking association between a higher rate of CSF sTREM2 increase and a slower cognitive decline in the presymptomatic AD stage. This result is consistent with the association observed between a higher rate of CSF sTREM2 increase and a slower pathological progression in the presymptomatic phase of the disease, represented by a slower decrease in CSF Aβ42 and slower cortical shrinkage in the precuneus, highlighting the association between the Aβ-pathological process, the neurodegeneration process and the consequent cognitive decline. We reported earlier that higher CSF sTREM2 levels at baseline exert a beneficial effect on cognition, specifically on memory domains and not on general cognitive composites, in symptomatic sporadic LOAD. The current results did not show a significant effect of the CSF sTREM2 levels at baseline on cognition, probably because the cognitive composite we used in our current work is not specific for the memory domain and also because our study is focused on the presymptomatic AD phase, including a limited number of symptomatic participants. Taken together our results suggest that a higher rate of CSF sTREM2
increase slows Aβ-deposition and precuneus shrinkage, having a clear clinical readout via its strong association with a slower cognitive decline in a presymptomatic AD stage. The beneficial effect of TREM2-functions may continue in symptomatic stages by slowing hippocampal shrinkage in patients with highest CSF sTREM2 levels.

The main limitation of our study is that this is an observational cohort, thus any causative relationships must be interpreted with caution. Moreover, we used a variety of biomarkers, which are indirect measures for studying pathological processes. Furthermore, the study of the relationship between the longitudinal changes of tau-related markers and CSF sTREM2 was restricted to CSF markers, with no available tau-imaging. Finally, CSF sTREM2 is a surrogate of TREM2 signaling and expression of the entire brain, allowing no regional conclusions. Our recently developed TREM2 reporter mouse will allow us to address this pivotal question. Our study has important strengths. This is the first study assessing longitudinally CSF sTREM2 changes through an extensive period from very early presymptomatic AD stages until a late symptomatic stage. We report a comprehensive and complete set of highly consistent findings including the biological triggers of the increase of CSF sTREM2 and the effects on Aβ deposition, tau-related pathology, brain structure and cognition.

Our findings have major implications for the future design of clinical studies and the interpretation of Aβ-related pathology markers. Based on the extremely early response of microglia to amyloid deposition, microglial modulating drugs should be given as early as possible and probably even in combination with anti-Aβ antibodies. Moreover, it is heavily discussed, where within the amyloid cascade microglia should be placed. Based on the results of our longitudinal study, increase of CSF sTREM2 and, therefore, the induction of microglial TREM2 activity may be placed right after the earliest deposition of amyloid plaques, probably immediately after or even during the seeding process. Taken together, our findings support the development of TREM2 modulating therapeutics to slow initiation and progression of AD.
Methods

Study design, participants and procedures

The Dominantly Inherited Alzheimer Network (DIAN) observational study is a well-described longitudinal and international study, launched in 2008, and recruiting individuals from families carrying mutations in the presenilin 1 (PS1), presenilin 2 (PS2) and amyloid precursor protein (APP) genes from 17 sites distributed in USA, Argentina, UK, Germany, Spain, and Australia. This study is supervised by the institutional review board at Washington University (St. Louis, MO, USA), which provided human studies approval. Participants or their caregivers provided written informed consent in accordance with their local institutional review board. Asymptomatic individuals were followed with a 3 year-interval until 3 years after their parental age at onset, when the follow-ups become annual. Symptomatic participants were followed annually. The estimated years from expected symptom onset (EYO) was calculated as the participant’s current age relative to parental age at first progressive cognitive decline for each visit per asymptomatic participant. In the case of symptomatic participants, the EYO was calculated as the participant’s current age relative to the participant’s age at symptom onset.

Participants in the study underwent longitudinally a comprehensive clinical and neuropsychological evaluation, CSF collection and analysis, neuroimaging and genetic characterization in a follow-up pattern and following the methods already described. Dementia status was determined by the Clinical Dementia Rating (CDR). The genetic characterization of the autosomal dominant Alzheimer disease mutations and the Apolipoprotein E (APOE) genotyping was performed according to the methods already described. Clinical evaluators were blinded to mutation status of participants.

Regarding biomarker measurements, CSF was obtained in the morning by lumbar puncture and followed the pre-analytical processing described elsewhere. Amyloid β-peptide1-42 (Aβ42), Amyloid β-peptide1-40 (Aβ40), total tau (t-tau), and tau phosphorylated at threonine 181 (p-tau) were measured by immuno-assay using the LUMIPULSE platform. Samples were run in duplicates and those measurements with a coefficient of variation (CV) ≥25% were excluded.
MRI was performed using the Alzheimer disease Neuroimaging Initiative (ADNI) protocol, by a 3T scanner with regular quality control assessments. T1-weighted images were acquired for all participants. Volumetric segmentation and cortical surface reconstruction were done as described elsewhere. In our study we analysed longitudinally cortical thickness in the precuneus, and hippocampal volume. Hippocampal volume was corrected for intracranial volume as already described. Cortical thickness and hippocampal volume measurements were averaged across hemispheres. Amyloid imaging was done using the 11C-Pittsburgh Compound B (11C-PiB) as already described. For the longitudinal analysis we used the total cortical Aβ uptake in the PIB-PET corrected by a Regional Spread Function (RSF) as it demonstrated a better sensitivity to longitudinal changes.

All participants with genetic, clinical, CSF and neuroimaging longitudinal data that passed the quality control from the 14th data freeze were included for sTREM2 quantification in CSF. As usually done in DIAN observational studies, families carrying the APP E693G (Dutch) mutation were excluded from the statistical analysis. These mutations often present with predominant cerebral amyloid angiopathy and diffuse Aβ plaques with little neurofibrillary tangle pathology.

Quantitative sTREM2 determination in CSF

To avoid detection of sTREM2 variants, which are created by alternative splicing and are not surrogate markers for cell surface signalling competent TREM2 (supplementary Fig. 2a), we developed a novel MSD-based immunoassay using a novel neo-epitope specific antibody (1H3), which allows the selective detection of ADAM10/17 cleaved sTREM2 (supplementary Fig. 2 and 3, supplementary table 5). We measured 682 CSF samples from 261 participants in duplicates, distributed randomly across 19 plates and measured within three weeks. All longitudinal samples coming from the same participant were measured in the same plate. Duplicate measures had a CV < 15%. Three internal standard (IS) were included in all plates and measured in duplicates (CSF samples from clinical routine obtained in the Neurology Department of the University of Munich). The mean intraplate CV% was 4.8% and the interplate CV% was 8.4%, calculated as the mean between interplate CV% from the three included IS. To account for the interplate variability of the
measurements, the sTREM2 concentrations were adjusted according to the method already described for the ADNI cohort.15

Statistical analysis

The main goals were (1) to determine which factors were related with the longitudinal change of CSF sTREM2 and (2) to study the effect of the longitudinal change of CSF sTREM2 on AD evolution. For the first, we analysed the relationship between longitudinal CSF sTREM2 as outcome and baseline markers for Aβ accumulation (CSF Aβ42, ratio CSF Aβ42/Aβ40 and total cortical PIB-PET uptake), tau-related pathology (CSF t-tau and p-tau) and brain structure (cortical thickness in the precuneus, hippocampal volume) as predictor variables. The second outcome was assessed by analysing the correlation between the longitudinal change of CSF sTREM2 and the longitudinal change of CSF Aβ42, total cortical PIB-PET uptake, CSF t-tau and p-tau, cortical thickness in the precuneus, hippocampal volume, cortical FDG-PET uptake in the precuneus and cognition as measured by a cognitive composite already describe elsewhere.36 In brief, this cognitive composite comprises the following tests: DIAN Word List Test, Logical Memory delayed recall, Digit Symbol Coding test (total score), and Minimental Status Examination (MMSE). As secondary outcomes, we analysed the relationship between baseline CSF sTREM2, as predictor, and the longitudinal change of CSF Aβ42, total cortical PIB-PET uptake, CSF t-tau and p-tau, cortical thickness in the precuneus, hippocampal volume, and cortical FDG-PET uptake in the precuneus as the outcomes.

CSF biomarker variables were log-transformed to follow a normal distribution. We calculated the time point at which the CSF sTREM2 levels were significantly different in MC than in NC cross-sectionally as already described elsewhere.19 Cross-sectional analysis focused on the descriptive characteristics at baseline of the different clinical groups, including demographic variables and biomarker values at baseline were done by chi-square tests for categorical variables, and ANOVA or analysis of covariance (ANCOVA) for continuous variables. Age and sex were included as covariates in the ANCOVA studying the differences between biomarkers at baseline across the different groups.
Presymptomatic MC were defined as MC with a CDR score at baseline equal to zero. Symptomatic MC were those MC with a CDR score at baseline higher than zero.

We calculated the raw rate of biomarker change as the individual slope using linear regression for each participant. We used this raw rate of change for illustrational purposes in figures 1, 4 and 5. In order to reassure the validity of our results we defined participants with extreme rate of CSF sTREM2 change as those with a raw rate of CSF sTREM2 change higher or lower than the mean +/- three SD, respectively (7 symptomatic MC and 2 NC). The participants with extreme rate of CSF sTREM2 change are described in the appendix 2 in the supplementary material. We performed the entire analysis by both, excluding and including them (see appendix 2), and both sets of results were highly consistent. We show in the main text the results excluding these participants and in the appendix, including them.

We based our longitudinal analysis in Linear Mixed Effects (LME) models. Univariate LME models were used to assess the influence of baseline biomarkers (predictor) on the longitudinal change of the outcome biomarker. The fixed effects in the models included baseline EYO, baseline predictor-biomarker, time from baseline (time), interactions EYO*time and predictor-biomarker*time effects. The random effects included random intercept for each family cluster, individual intercept and slope. The interaction term predictor-biomarker*time was interpreted as the effect of the baseline predictor-biomarker on the subsequent rate of outcome-biomarker change. The models were also evaluated by adjusting for baseline CSF Aβ42 and its interaction with time (when analysing the relationship between CSF sTREM2 and tau-related markers), baseline CSF p-tau and its interaction with time (when analysing the relationship between CSF sTREM2 and Aβ accumulation related markers) or both and their interaction with time (in the case of neuroimaging).

The correlations between the annual rate of change of CSF sTREM2 and that of other outcomes were evaluated using bivariate LME models that simultaneously model the longitudinal courses of both CSF sTREM2 and another biomarker/cognitive outcome. The bivariate LME models included the covariates of baseline parental EYO, baseline CSF p-tau (this is not included if p-tau or t-tau is the outcome), baseline CSF Aβ42 (this is not included if Aβ42 is the outcome) and their interaction with
time. The random effects included the random intercept for family cluster and random slope for each participant. Unstructured covariance matrix was used for the random effects. Changes from baseline were used as the outcomes instead of the values at each visit that are usually used in LME models. This was done to reduce the dimension of the covariance matrix from 4D (two random intercepts and two random slopes) to 2D (only two random slopes) so that it is easier to converge.

The modification effect of the rate of CSF sTREM2 on the association between the rates of change of Aβ-deposition and tau-related pathology markers were explored using linear or quadratic regressions. The raw rate of change calculated for each participant based on linear regression were used for this analysis. For each pair of biomarkers, for example CSF Aβ_{42} and PiB PET cortical mean, the rate of change of CSF Aβ_{42} was used as the outcome. Baseline CSF Aβ_{42}, baseline PiB PET cortical mean, rate of change of PiB PET cortical mean (and its quadratic term if the model fits better based on AIC), rate of change of CSF sTREM2 group and its interaction with the rate of change of PiB PET cortical mean (and its interaction with the quadratic rate of change of PiB PET cortical mean if the model fits better based on AIC) were used as predictors. The correlations between each pair of the three biomarkers stratified by the CSF sTREM2 rate of change group were also explored using similar bivariate LME models as described above.

Statistical analyses were conducted using SAS 9.4 (SAS Institute Inc., Cary, NC) and R version 3.6.1 (2019-07-05). All p values were based on two-sided tests and values < 0.05 were considered statistically significant.

Data availability

All the data used in this study is available upon request from DIAN at https://dian.wustl.edu/our-research/observational-study/dianobservationalstudy-investigator-resources/.

Code availability

The codes used for data analysing in our study can be requested from the corresponding author.

Funding
TREM2 related work is supported by a Koselleck Project HA1737/16-1 to C.H and the Dominantly Inherited Alzheimer’s Network (DIAN, UF1AG032438). C.H. and R.F. are supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy – ID 390857198). H.Z. is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), and Swedish State Support for Clinical Research (#ALFGBG-720931). M.S.C. is funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 948677). M.S.C also receives funding from the Instituto de Salud Carlos III (PI19/00155) and from the Spanish Ministry of Science, Innovation and Universities (Juan de la Cierva Programme grant IJC2018-037478-I).

Acknowledgments

Data collection and sharing for this project was supported by The Dominantly Inherited Alzheimer’s Network (DIAN, UF1AG032438) funded by the National Institute on Aging (NIA), the German Center for Neurodegenerative Diseases (DZNE), Raul Carrera Institute for Neurological Research (FLENI), Partial support by the Research and Development Grants for Dementia from Japan Agency for Medical Research and Development, AMED, and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI). This manuscript has been reviewed by DIAN Study investigators for scientific content and consistency of data interpretation with previous DIAN Study publications. We acknowledge the altruism of the participants and their families and contributions of the DIAN research and support staff at each of the participating sites for their contributions to this study. We thank Lis de Weerd for critically reading the manuscript.

Consortia

the Dominantly Inherited Alzheimer Network

Sarah Adams, Ricardo Allegri, Aki Araki, Nicolas Barthelemy, Randy Bateman, Jacob Bechara, Tammie Benzinger, Sarah Berman, Courtney Bodge, Susan Brandon, William (Bill) Brooks, Jared Brosch, Jill Buck, Virginia Buckles, Kathleen Carter, Lisa Cash, Charlie Chen, Jasmeer Chhatwal, Patricio Chrem Mendez, Jasmin Chua, Helena Chui, Carlos Cruchaga, Gregory S Day, Chrsimary De La Cruz, Darcy Denner, Anna Diffënbach, Aylin Dincer, Tamara Donahue, Jane Douglas, Duc, Duong, Noelia Egido, Bianca Espósito, Anne Fagan, Martin Farlow, Becca Feldman, Colleen Fitzpatrick, Shaney Flores, Nick Fox, Erin Franklin, Nelly
Author’s contributions

E.M.R. and B.N. performed the sTREM2 measurements. E.M.R. and Y.L. performed the statistical analyses. M.S.C., E.M.R. and C.H. designed the study. E.M.R. and C.H. wrote the manuscript. R.F. generated neoepitope specific monoclonal antibodies. E.M.R., G.K. and K.S. developed the new MSD-immunoassay. K.B., B.N. and H.Z. provided CSF samples to validate the new MSD-immunoassay. All other co-authors contributed CSF samples and/or clinical data from DIAN participants. All co-authors contributed to the interpretation of the results and critically reviewed the manuscript.

Conflicts of interest

H.Z. has served at scientific advisory boards for Alector, Eisai, Denali, Roche Diagnostics, Wave, Samumed, Siemens Healthineers, Pinteon Therapeutics, Nervgen, AZTherapies and CogRx and has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure and Biogen. M.S.C has served as a consultant and at
advisory boards for Roche Diagnostics International Ltd and has given lectures in symposia sponsored by Roche
Diagnostics, S.L.U and Roche Farma, S.A. C.H. collaborates with Denali Therapeutics, participated on one
advisory board meeting of Biogen, and received a speaker honorarium from Novartis and Roche. C.H. is chief
advisor of ISAR Bioscience.
References

1. Lewcock, J.W., et al. Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer’s Disease. *Neuron* 108, 801-821 (2020).

2. Deczkowska, A., Weiner, A., & Amit, I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. *Cell* 181, 1207-1217 (2020).

3. Heneka, M.T., et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. *Nature* 493, 674-678 (2013).

4. Hong, S., et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. *Science* 352, 712-716 (2016).

5. Keren-Shaul, H., et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. *Cell* 169, 1276-1290 e1217 (2017).

6. Guerreiro, R., et al. TREM2 variants in Alzheimer’s disease. *N Engl J Med* 368, 117-127 (2013).

7. Jonsson, T., et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. *N Engl J Med* 368, 107-116 (2013).

8. Colonna, M. & Wang, Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. *Nat Rev Neurosci* 17, 201-207 (2016).

9. Kleinberger, G., et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. *Sci Transl Med* 6, 243ra286 (2014).

10. Mazaheri, F., et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. *EMBO Rep* 18, 1186-1198 (2017).

11. Wang, S., et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. *J Exp Med* 217(2020).

12. Schlepckow, K., et al. An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function. *EMBO Mol Med* 9, 1356-1365 (2017).

13. Suarez-Calvet, M., et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. *Sci Transl Med* 8, 369ra178 (2016).

14. Suarez-Calvet, M., et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. *EMBO Mol Med* 8, 466-476 (2016).

15. Suarez-Calvet, M., et al. Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-beta pathology. *Mol Neurodegener* 14, 1 (2019).

16. Piccio, L., et al. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. *Acta Neuropathol* 131, 925-933 (2016).

17. Ewers, M., et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. *Sci Transl Med* 11(2019).

18. Xu, Z., Shen, X., Pan, W. & Alzheimer’s Disease Neuroimaging, I. Longitudinal analysis is more powerful than cross-sectional analysis in detecting genetic association with neuroimaging phenotypes. *PLoS One* 9, e102312 (2014).

19. McDade, E., et al. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. *Neurology* 91, e1295-e1306 (2018).

20. Thompson, W.K., Hallmayer, J., O’Hara, R. & Alzheimer’s Disease Neuroimaging, I. Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of APOE-epsilon4 on cerebral cortical thickness in Alzheimer’s disease. *Am J Psychiatry* 168, 894-903 (2011).

21. Parhizkar, S., et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. *Nat Neurosci* 22, 191-204 (2019).
22. Gordon, B.A., et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. *Lancet Neurol* **17**, 241-250 (2018).

23. Moulder, K.L., et al. Dominantly Inherited Alzheimer Network: facilitating research and clinical trials. *Alzheimers Res Ther* **5**, 48 (2013).

24. Bateman, R.J., et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. *N Engl J Med* **367**, 795-804 (2012).

25. Toledo, J.B., et al. Nonlinear Association Between Cerebrospinal Fluid and Florbetapir F-18 beta-Amyloid Measures Across the Spectrum of Alzheimer Disease. *JAMA Neurol* **72**, 571-581 (2015).

26. Lombardi, G., et al. Challenges in Alzheimer’s Disease Diagnostic Work-Up: Amyloid Biomarker Incongruences. *J Alzheimers Dis* **77**, 203-217 (2020).

27. Maier, F.C., et al. Longitudinal PET-MRI reveals beta-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. *Nat Med* **20**, 1485-1492 (2014).

28. Xiong, C., et al. Longitudinal relationships among biomarkers for Alzheimer disease in the Adult Children Study. *Neurology* **86**, 1499-1506 (2016).

29. Fieuws, S. & Verbeke, G. Joint modelling of multivariate longitudinal profiles: pitfalls of the random-effects approach. *Stat Med* **23**, 3093-3104 (2004).

30. Ulrich, J.D., et al. Altered microglial response to Abeta plaques in APPPS1-21 mice heterozygous for TREM2. *Mol Neurodegener* **9**, 20 (2014).

31. Huang, D., et al. Targeting regulator of G protein signaling 1 in tumor-specific T cells enhances their trafficking to breast cancer. *Nat Immunol* **22**, 865-879 (2021).

32. Wang, Y., et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. *J Exp Med* **213**, 667-675 (2016).

33. Yuan, P., et al. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. *Neuron* **90**, 724-739 (2016).

34. Meilandt, W.J., et al. Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Abeta42:Abeta40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer’s Mouse Model. *J Neurosci* **40**, 1956-1974 (2020).

35. Huang, Y., et al. Microglia use TAM receptors to detect and engulf amyloid beta plaques. *Nat Immunol* **22**, 586-594 (2021).

36. Bateman, R.J., et al. The DIAN-TU Next Generation Alzheimer’s prevention trial: Adaptive design and disease progression model. *Alzheimers Dement* **13**, 8-19 (2017).

37. De Strooper, B. & Chavez Gutierrez, L. Learning by failing: ideas and concepts to tackle gamma-secretases in Alzheimer’s disease and beyond. *Annu Rev Pharmacol Toxicol* **55**, 419-437 (2015).

38. McDade, E., Voytyuk, I., Aisen, P., Bateman, R.J., Carrillo, M.C., De Strooper, B., Haass, C., Reiman, E., Sperling, R., Tariot, P.N., Yan, R., Masters, C.L., Vassar, R., Lichtenthaler, S.F. The case for low-level BACE1 inhibition for the prevention of Alzheimer’s disease. *Nature Review Neurology In press* (2021).

39. Sevigny, J., et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. *Nature* **537**, 50-56 (2016).

40. Liu, K.Y., Schneider, L.S. & Howard, R. The need to show minimum clinically important differences in Alzheimer’s disease trials. *Lancet Psychiatry* (2021).

41. Knopman, D.S., Jones, D.T. & Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. *Alzheimers Dement* **17**, 696-701 (2021).

42. Hansson, O. Biomarkers for neurodegenerative diseases. *Nat Med* **27**, 954-963 (2021).
43. Uhlmann, R.E., et al. Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life. *Nat Neurosci* 23, 1580-1588 (2020).

44. Ewers, M., et al. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation. *EMBO Mol Med* 12, e12308 (2020).

45. Moscoso, A., et al. Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. *Brain* 144, 325-339 (2021).

46. Lee, S.H., et al. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by beta-amyloid pathology. *Neuron* 109, 1283-1301 e1286 (2021).

47. Morris, J.C. The Clinical Dementia Rating (CDR): current version and scoring rules. *Neurology* 43, 2412-2414 (1993).

48. Mills, S.M., et al. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. *Rev Neurol (Paris)* 169, 737-743 (2013).

49. Jack, C.R., Jr., et al. Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. *Alzheimers Dement* 6, 212-220 (2010).

50. Su, Y., et al. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer's Disease: Results from the DIAN Study Group. *PLoS One* 11, e0152082 (2016).

51. Wang, G., et al. Staging biomarkers in preclinical autosomal dominant Alzheimer's disease by estimated years to symptom onset. *Alzheimers Dement* 15, 506-514 (2019).

52. Tsubuki, S., Takaki, Y. & Saido, T.C. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Abeta to physiologically relevant proteolytic degradation. *Lancet* 361, 1957-1958 (2003).
Table 1

| Demographic data and biomarker levels at baseline of MC and NC. All p-values regarding demographics are based on ANOVA analysis of the raw data. P-values regarding cognitive data (MMSE and cognitive composite) are based in an ANCOVA on the raw data, adjusted for age and education. The p-values regarding biochemical markers are based on ANCOVA analysis considering the log-transformed variables and in the raw data the rest of variables and neuroimaging markers, adjusted by age and sex. Hippocampal volume was corrected per each participant by the total brain volume. Bonferroni correction for multiple comparisons applied in post-hoc analysis. *Symptomatic MC vs. NC and presymptomatic MC p< 0.001. **Symptomatic MC vs. NC and presymptomatic MC p < 0.001, presymptomatic MC vs NC, p =0.03. ***Symptomatic MC vs. NC and presymptomatic MC p< 0.001, presymptomatic MC vs. NC, p < 0.001. ****NC vs presymptomatic carriers, p = 0.002; NC vs symptomatic MC, p < 0.001; presymptomatic MC vs. symptomatic MC, p = 0.005. One participant was excluded because of incomplete data. SD= Standard Deviation. SUVR= standardized uptake value ratio. CSF=Cerebrospinal Fluid. MC=Mutation Carriers. NC=Mutation Non-Carriers. MMSE=Minimental State Examination. EYO= Expected Year of symptom Onset according to the parental onset. t-tau=total tau. p-tau=phosphorylated tau on threonine 181. PIB-PET=Pittsburgh compound B Positron Emission Tomography. |
Fig. 1
Fig. 1. Longitudinal and cross-sectional sTREM2 levels in CSF along EYO in MC and NC. a, baseline levels plotted against EYO at baseline for MC (red, n = 148) and NC (blue, n = 91). The dotted line at EYO = -21 indicates the time point at which cross-sectional sTREM2 levels start to be statistically higher in MC than in NC, according the method described by McDade et al. 2018. The red (MC) and blue (NC) lines implicate the LOESS best-fitting curves. b, spaghetti plot showing the longitudinal levels of CSF sTREM2 from MC (red, n = 148) and NC (blue, n = 91) as a function of EYO. The bold dotted line at EYO = zero is pointing the expected symptom onset. The negative EYO values represent the expected presymptomatic phase and while the positive values indicate the expected symptomatic phase of the disease. Due to the low number of participants located at the extremes of the graph, individual participants are not shown in the timeframe before EYO = -30 and after EYO = 10 to maintain their confidentiality. CSF = Cerebrospinal Fluid. EYO = Estimated Years from expected symptom Onset. MC = Mutation Carrier. NC = Mutation Non-Carrier.
Fig. 2

(a) Rate of sTREM2 change (ng/mL/Y) vs. CSF Aβ42 at baseline (pg/mL).

\(\beta = -4.28 \times 10^{-2}, p = 0.001 \)

(b) Rate of sTREM2 change (ng/mL/Y) vs. cortical PIB-PET uptake (baseline).

\(\beta = -5.51 \times 10^{-3}, p = 0.632 \)

(c) Rate of sTREM2 change (ng/mL/Y) vs. CSF t-tau at baseline (pg/mL).

\(\beta = -4.57 \times 10^{-3}, p = 0.758 \)

(d) Rate of sTREM2 change (ng/mL/Y) vs. CSF p-tau at baseline (pg/mL).

\(\beta = -5.64 \times 10^{-4}, p = 0.962 \)
Fig. 2. Lower levels of CSF Aβ42 at baseline are associated with a higher increase rate of CSF sTREM2 in MC. a, representation of the relationship between the lower CSF Aβ42 levels at baseline and the subsequent higher rate of sTREM2 change according to the respective LME model. The β-value and the p-value in the graph indicate the effect and statistical significance of the interaction term time*CSF Aβ42. b, c and d. we did not find any significant effect of the total cortical PIB-PET uptake, t-tau, or p-tau levels at baseline, respectively, on the subsequent rate of sTREM2 change estimated by the LME models already described in table 3. *PIB-PET uptake is measured by SUVR. CSF=Cerebrospinal Fluid. t-tau=total tau. p-tau=phosphorylated tau on threonine 181. PIB-PET= Pittsburgh compound B Positron Emission Tomography. SUVR=Standardized Uptake Value Ratio.
Fig. 3. Association in MC between sTREM2 increase rate and the rates of change of biomarkers related to amyloid deposition and tau-related pathology. a, higher sTREM2 increase rates correlated with a slower CSF Aβ42 decrease in presymptomatic MC (pale violet, n = 100). No significant correlation was found in symptomatic MC (dark red, n = 48). b, a significant association between a higher sTREM2 increase rate and a slower increase in the cortical PIB-PET uptake is observed in symptomatic MC (dark red, n = 48), while a trend for an association is seen in presymptomatic MC (pale violet, n = 100). c, only a trend for an association between a higher sTREM2 and t-tau increase rates was observed upon studying all MC together. d, no significant relationship between the rate of sTREM2 change and the rate of p-tau change in MC was observed (neither in the presymptomatic or symptomatic MC, nor in the entire MC group). Presymptomatic and symptomatic MC were defined by a CDR at baseline equal or higher than zero, respectively. The r- and p-values per group are the correlation value for the association between both rates of change and its statistical significance based on the correspondent bivariate LME models. The r- and p-values for the entire MC group only appear in the graphs when its value was statistically significant or showed a trend for a statistical association. The rates of change represented in each graph were extracted from the correspondent bivariate model. *Rate of PIB-PET change measured by SUVR/y. MC=Mutation Carriers. CSF=Cerebrospinal Fluid. t-tau=total tau. p-tau=phosphorylated tau on threonine 181. PIB-PET=Pittsburgh compound B Positron Emission Tomography. CDR=Clinical Dementia Rating. LME=Lineal Mixed Effects. SUVR= Standardized Uptake Value Ratio
Presymptomatic MC

Fig. 4

a
- β = -0.394 (0.137), p = 0.006

- β (linear interaction) = 0.279, p = 0.16
- β (quadratic interaction) = -0.33, p = 0.776

b
- β = -0.271 (0.288), p = 0.362
- β (linear interaction) = -2.105, p = 0.607
- β (quadratic interaction) = -0.632, p = 0.274

c
- β (linear interaction) = 0.973, p = 0.003
- β (quadratic interaction) = -6.24, p < 0.001

d
- β (linear interaction) = -2.105, p = 0.607
- β (quadratic interaction) = -0.632, p = 0.274

Symptomatic MC

- β = -0.973, p = 0.003
- β (quadratic interaction) = -6.24, p < 0.001
Fig. 4. Relationships between PiB-PET cortical uptake, CSF Aβ42 and p-tau longitudinal changes are modified by the sTREM2 increase rate. a, in presymptomatic MC, the relationship between PiB-PET and CSF p-tau raw rates of change is modified by the raw rate of sTREM2 change with opposite associations in the subgroup with a low rate (below the median, light blue, n = 50) and the subgroup with a high rate (above the median, green, n = 48). b, this interaction effect was not significant in symptomatic MC. c, the relationship between CSF Aβ42 and CSF p-tau raw rates of change in presymptomatic MC was not modified by the raw rate of sTREM2 change in presymptomatic MC. d, symptomatic MC showed a significant interaction effect between the raw rate of sTREM2 change and CSF Aβ42 in the quadratic regression model predicting p-tau longitudinal change. e, presymptomatic MC with a high raw rate of sTREM2 change (above the median, green, n = 50) and those with a low raw rate of sTREM2 change (light blue, n = 48) showed opposite relationships between CSF Aβ42 and PiB-PET longitudinal changes. f, this interaction effect was not significant in symptomatic MC. The β-values in each figure are the β-coefficient for the linear and quadratic interaction terms in each linear or quadratic regression model assessing the relationships between each pair of biomarkers, summarized in appendix 1. MC=Mutation Carriers. CSF=Cerebrospinal Fluid. p-tau=phosphorylated tau on threonine 181. PiB-PET=Pittsburgh compound B Positron Emission Tomography. CDR=Clinical Dementia Rating. SUVR=Standardized Uptake Value Ratio.
Fig. 5
Fig. 5. Higher sTREM2 increase rate is related to slower cortical shrinkage in the precuneus and slower cognitive decline in presymptomatic MC. a, significant association between a higher sTREM2 increase rate and slower cortical shrinkage in the precuneus in the presymptomatic MC (pale violet, n =100) and a trend for a similar association in the symptomatic MC group (dark red, n =48). b, shows the raw rate of cortical shrinkage in the precuneus over the EYO in MC. MC were divided in two groups according to their raw rate of sTREM2 (above the median, in green, or below the median, in light blue). c, no significant relationship between the rate of sTREM2 change and the hippocampal shrinkage rate in the presymptomatic or symptomatic MC was observed. d, raw rate of hippocampal shrinkage over the EYO in MC divided in two groups according to their raw rate of sTREM2 (above the median, in green, or below the median, in light blue). e, a strong correlation between higher sTREM2 increase rates and slower cognitive decline in presymptomatic MC (pale violet, n =100), but not in the symptomatic MC (dark red, n =48) was observed. f, raw rate of cognitive decline over the EYO in MC divided in two groups according to their raw rate of sTREM2 (above the median, in green, or below the median, in light blue). The r- and p-values per group in a, c, and d, are the correlation value for the relationship between both rates of change and its statistical significance based on the correspondent bivariate LME model. The rates of change represented in a, c, and d, were extracted from the correspondent bivariate LME model. The dashed lines in b, d, and f, point to change = zero, indicating stability. *Rate of cortical thickness change in the precuneus is measured by mm/y **Hippocampal rate of change (volume) is measured by mm\(^3\)/y. ***The cognitive change was calculated based on the cognitive composite already described (Bateman et al. 2017). MC=Mutation Carriers. CT=Cortical Thickness. EYO=Estimated Years from expected symptom Onset. LME=Lineal Mixed Effects. CDR=Clinical Dementia Rating.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMorenasRodriguezNatMedIS.pdf