Ranitidine and cimetidine differ in their *in vitro* and *in vivo* effects on human colonic cancer growth

JA Lawson, WJ Adams and DL Morris

UNSW Department of Surgery, The St. George Hospital, Kogarah Sydney, N.S.W. 2217 Australia.

Summary Histamine has recently been shown to be a growth factor for some gastric and colorectal cancer cells. Previous studies have shown that cimetidine blocks *in vitro* and *in vivo* histamine-stimulated growth and cAMP release from the human colorectal cancer cell line, C170. In this study, ranitidine, another H2 receptor antagonist, did not affect either basal or histamine-stimulated *in vitro* proliferation of C170, and failed to prevent cAMP release *in vitro*. Ranitidine did not inhibit *in vivo* growth of C170 at a dose of 1, 10, 25, 50 or 100 mg kg⁻¹, in contrast to 50 mg kg⁻¹ day⁻¹ cimetidine, which produced 39.3% inhibition of tumour volume (P < 0.01) after 23 days' treatment. Ranitidine did not inhibit *in vivo* histamine-stimulated growth of C170 cells. LIM2412, another colorectal cancer cell line, was significantly stimulated by both cimetidine and ranitidine *in vivo*. Ranitidine had no effect on *in vitro* cell proliferation.

Keywords: cimetidine; colon cancer; histamine; ranitidine

We recently reported that histamine is a growth factor for some colorectal cancer cell lines (Adams et al., 1994). The histamine receptor antagonist, cimetidine, has been found to significantly slow the growth of experimentally induced gastrointestinal cancers (Adams et al., 1993, 1994; Watson et al., 1993) and improve survival in patients with gastrointestinal malignancies (Tonnesen et al., 1988; Adams and Morris, 1994; Matsumotos, 1995). Whether this is due to the inhibitory effect of cimetidine on suppressor T-lymphocyte activity (Osband et al., 1981), its stimulation of natural killer (NK) cell activity (Helslrand and Hermodsson, 1986; Allen et al., 1987; Kikuchi et al., 1985), its stimulation of interleukin 2 production in helper T cells (Gifford and Talberg, 1987) or its blocking of the direct mitogenic effect of histamine on colon cancer (Adams et al., 1994), is unknown.

Ranitidine is a more potent and clinically well-tolerated histamine H2 receptor antagonist than cimetidine. There has been some conflict in the literature as to whether ranitidine and cimetidine have similar effects on the immune system (Nielson et al., 1989a, b; Halm et al., 1995).

The effects of ranitidine on cancer growth are not well investigated. The aim of this paper was to examine the effect of ranitidine on the growth of colon cancer, and its effect on the histamine-sensitive human colorectal cancer cell lines, C170 and LIM2412.

Method

Cell lines

C170 cells are an adenocarcinoma cell line (Durrant et al., 1986), which were derived from a patient with a Duke's C colorectal adenocarcinoma (CRC Laboratories, Nottingham, UK). LIM2412 cells are a suspension cell line with some adenocarcinoma present (Whitehead et al., 1992). This cell line was derived from a patient diagnosed with a poorly differentiated colorectal adenocarcinoma (Ludwig Institute, Melbourne, Australia). Both these cell lines were grown in RPMI-1640 with 10% fetal calf serum (FCS) under 5% carbon dioxide and refed twice weekly.

In vitro cell proliferation assay

Cells were resuspended in serum containing RPMI-1640 at a concentration of 1 x 10⁴ cells 0.2 ml⁻¹ and incubated overnight in a 96-well microtitre plate. The supernatant was then replaced with 0.6 µmol of thymidine (Sigma, St Louis, MO, USA) in serum-free media. After 24 h the supernatant was removed and replaced with histamine (Sigma) and/or ranitidine hydrochloride (Glaxo, Greenford, UK) in serum-free media with untreated controls. Ranitidine was added in replicates of at least three, over a concentration range of 1 x 10⁻⁸ M to 1 x 10⁻⁴ M. Histamine was added to the cells with/without ranitidine at a concentration range of 1 x 10⁻⁸ M to 1 x 10⁻⁴ M, as 1 x 10⁻⁸ M most frequently achieved maximal stimulation (Adams et al., 1994). Each experiment was repeated three times. As a direct measure of DNA replication (Kusyk et al., 1986), 0.1 µCi of methyl-[³H]-thymidine (DuPont, NEN, Boston, MA, USA) was added to the wells and incubated for a further 8, 24 and 48 h. The cells were then harvested using a cell harvester (PHD cell harvester, Cambridge Technology, USA) and counted using a beta-counter (Minaxi Tri-carb 4000 series, United Technologies Packard, USA).

Statistical analysis

Results were calculated as a mean percentage of the control (s.e.). Any statistical differences were calculated using a one-way analysis of variance (ANOVA). A P-value of less than 0.05 was considered significant.

Quantification of intracellular cyclic adenosine monophosphate (cAMP)

Intracellular cAMP was measured using a monoclonal antibody-based kit (Amersham, UK). C170 cells were harvested and resuspended in serum-free RPMI-1640 with 0.5 mM isobutyl methylxanthine (IBMX, Sigma) at 1.25 x 10⁵ cells 0.25 ml⁻¹, and incubated in polystyrene tubes at 37°C for 10 min. Histamine aliquots of 0.125 ml were added at a concentration range of 1 x 10⁻⁷ to 1 x 10⁻³ M, with or without the addition of ranitidine at 1 x 10⁻⁴ M. Forskolin, a direct stimulator of adenyly cyclase (Seamom and Daly, 1981), was added in triplicate at a final concentration of 1 x 10⁻⁴ M. Following the addition of histamine, the cells were incubated for 10 min at 37°C (Shanin et al., 1985), then centrifuged for 3 min at 2000 r.p.m. The supernatant was removed and the cells fixed in 0.5 ml of 0.001 M hydrochloric acid–ethanol chilled at 4°C, to allow for cAMP extraction. After thorough mixing, the tubes were further centrifuged for 15 min at 15 000 r.p.m. Supernatant (0.4 ml) was removed and placed into fresh tubes and the contents dried using a Speed Vac Concentrator (model SVC100H, Savant Instruments, NY, USA) at 60°C for 60 min. These were then

Correspondence: DL Morris

Received 7 August 1995; revised 27 October 1995; accepted 20 November 1995
reconstituted in 2 ml of buffer provided in the kit and cAMP measured.
Results were expressed as fmol of cAMP 1 x 10^{-8} cells. Each drug concentration was measured in triplicate and the results expressed as a mean (s.e.).

Nude mouse model
All animal procedures were carried out under the approval of the University of New South Wales, Australia, Animal Care and Ethics Committee.

Effect of ranitidine on in vivo basal C170 or LIM2412 tumour growth
C170 or LIM2412 cells were injected subcutaneously into 6–9 week male nu/nu mice (Ansto, Lucas Heights, Australia) at a concentration of 1 x 10^6 cells 0.1 ml^{-1} RPMI-1640 with 10% FCS. Each treatment group had ten animals per group unless otherwise stated, based on our previous studies, which showed 50 mg kg^{-1} day^{-1} cimetidine to inhibit C170 tumour growth by 44% of the control (Adams et al., 1994). Animals with C170 tumours received 0, 0.1, 0.2, 0.4 mg ml^{-1} ranitidine hydrochloride in the drinking water, in two separate experiments, which produced an approximate daily intake of 25, 50 or 100 mg kg^{-1} day^{-1} of ranitidine hydrochloride, commencing immediately following tumour injection. Animals inoculated with LIM2412 cells were randomised to receive ranitidine 10, 25 and 50 mg kg^{-1} given in the drinking water. These calculations are based on the observations in our laboratory that the mice drink an average of 5 (s.e. 0.6) ml day^{-1} (Adams et al., 1994). The water bottles containing ranitidine hydrochloride were replaced every 2 days.
Tumour areas were measured twice weekly using vernier callipers. Tumour volumes were calculated using the formula 0.5 length x (width)^2 (Euhus et al., 1986). The mice were sacrificed after a maximum of 28 days after inoculation.

Effect of concurrent histamine and ranitidine administration on C170
C170 cells were injected subcutaneously, as above. The animals were then randomly allocated to receive either control (phosphate-buffered saline; PBS) or histamine (1 x 10^{-8} M min^{-1}) via a 14 day subcutaneous Alzet mini-osmotic pump (Alza Corporation, Palo Alto, CA, USA). Both the control and histamine-treated group received 0.4 mg ml^{-1} (approximately 100 mg kg^{-1} day^{-2}) of ranitidine hydrochloride in the drinking water. Treatment continued for 22 days after injection. Mini-osmotic pumps were replaced after 14 days.

Effect of histamine, cimetidine and ranitidine on in vivo LIM2412 growth
LIM2412 cells were injected as above. The control group received water ad libitum. Ranitidine and cimetidine was administered via the drinking water at a dose of 50 and 100 mg kg^{-1} day^{-1} respectively. Histamine was administered via a mini-osmotic pump at a dose of 1.2 x 10^{-7} M day^{-1} on the opposite flank to the tumour site. Treatment continued for 25 days after tumour inoculation.

Direct comparison of ranitidine and cimetidine administration on C170
C170 xenografts were established as above and animals randomised to cimetidine 50 mg kg^{-1} day^{-1}, ranitidine 1 or 10 mg kg^{-1} day^{-1} in the drinking water, or untreated control.

Statistical analysis
A one-way analysis of variance (ANOVA) was used to measure the significant differences as a result of the different treatment regimens in all experiments. Only animals with actively growing tumours were used as part of the statistical analysis.

Results

In vitro: C170
Ranitidine had no effect on basal growth in five experiments in which histamine produced a stimulation in cell proliferation, of which three were significant (P < 0.05) to a maximum of 142.8% of control at 1 x 10^{-8} M histamine (Table 1).

Ranitidine, at a concentration of 1 x 10^{-8} to 1 x 10^{-4} M, failed to inhibit the histamine-stimulated cell proliferation. Histamine did not stimulate cell proliferation in assays shorter than 48 h (data not shown).

LIM2412
Neither histamine nor ranitidine affected basal growth of LIM2412 cells. Because of our inability to show a significant in vitro stimulation with histamine we were unable to study the effect of ranitidine on histamine-stimulated in vitro growth (data not shown).

Quantification of intracellular cAMP, C170
The addition of histamine alone to C170 cells significantly stimulated cAMP production in a dose-dependent manner. This effect was antagonised by cimetidine (Figure 1). In contrast, ranitidine did not inhibit histamine-stimulated cAMP release.

Table 1 Effect of ranitidine and histamine on in vitro cell proliferation of C170 cells after 48 h with a tritiated thymidine label

Ranitidine	Histamine	1	2	3	4	5
0	–	100.0 (2.3)	100.0 (4.4)	100.0 (3.8)	100.0 (12.9)	100.0 (4.2)
1 x 10^{-8} M	–	–	–	–	–	–
1 x 10^{-7} M	–	–	–	–	–	–
1 x 10^{-6} M	–	106.5 (4.2)	–	–	114.0 (13.4)	106.2 (6.5)
–	1 x 10^{-7} M	95.6 (7.2)	125.3 (11.0)*	–	114.3 (13.4)	115.1 (7.7)
–	1 x 10^{-8} M	142.8 (21.0)*	132.5 (7.5)*	117.3 (4.3)*	126.2 (14.6)	119.9 (7.7)
–	1 x 10^{-9} M	141.8 (23.0)*	106.1 (9.6)	–	126.9 (14.6)	112.1 (12.4)
1 x 10^{-8} M	1 x 10^{-8} M	–	–	–	114.2 (6.2)*	–
1 x 10^{-7} M	1 x 10^{-8} M	–	–	–	128.4 (8.5)*	124.4 (9.1)
–	1 x 10^{-6} M	121.8 (10.0)	–	–	116.1 (16.1)	121.6 (8.2)

Results are expressed as a mean per cent (s.e.m.) of the control of each experiment (n = 5). Results of five separate experiments are presented.

*P < 0.05 vs control using a one-way ANOVA.
Effect of ranitidine and cimetidine on basal C170 growth in vivo

The administration of oral ranitidine to mice bearing C170 tumours had no effect at 1 or 10 mg kg\(^{-1}\) day\(^{-1}\) (Figure 2). Higher doses of ranitidine (25, 50 or 100 mg kg\(^{-1}\) day\(^{-1}\)) also had no effect on tumour growth (data not shown). This is in contrast to tumours in animals receiving cimetidine at a dose of 50 mg kg\(^{-1}\) day\(^{-1}\), which were inhibited maximally to 48.4% of the control after 18 days' treatment (P = 0.019) (Figure 2).

Effect of histamine, cimetidine and ranitidine on in vivo LIM2412 growth

The administration of 50 mg kg\(^{-1}\) day\(^{-1}\) ranitidine to mice bearing LIM2412 tumours produced significant stimulation in tumour growth of 90.6% (P < 0.01) (Figure 3) and 98.4% (P < 0.01) (Figure 4) of the untreated control in two separate experiments. Ranitidine (25 mg kg\(^{-1}\)) produced some stimulation but was not significant (P = 0.12) whereas 10 mg kg\(^{-1}\) ranitidine had no effect (P = 0.77) (Figure 3).

Cimetidine, at a dose of 100 mg kg\(^{-1}\) day\(^{-1}\) produced a significant stimulation of 94.9% (P = 0.014) (Figure 4) to LIM2412, whereas histamine produced a trend to stimulation of 70.8% (P = 0.063).

Effect of concurrent histamine and ranitidine administration on in vivo C170 growth

Histamine pumped subcutaneously achieved a 30.4% stimulation in terminal tumour volume, as compared with the control, which, in this experiment, did not achieve statistical significance (P = 0.20). Ranitidine alone stimulated tumour growth by 26.2% of the control (P = 0.40), but again was not significantly significant. The addition of 100 mg kg\(^{-1}\) day\(^{-1}\) ranitidine concurrently to animals bearing histamine pumps did not prevent this trend (27.0% of the control) (histamine vs ranitidine/histamine; P < 0.8; data not shown).

Discussion

Ranitidine had no effect on either basal or histamine-stimulated growth of C170 either in vitro or in vivo and had no effect on histamine-stimulated cAMP production. This is in marked contrast to the effects of cimetidine, another H\(_2\) receptor antagonist, which we have found in this series of experiments and previously to inhibit histamine-stimulated C170 growth in vitro and in vivo, as well as being

Figure 1 The differential effects of cimetidine and ranitidine on histamine-stimulated cAMP release of C170 cells. Results are expressed as the mean cAMP produced in fmol CAMP per 10000 cells in replicate. Statistical differences were assessed using a one-way ANOVA. *P < 0.05 vs control; **P < 0.05 vs control. ○, control; ▼, 1 × 10\(^{-6}\)M cimetidine; ■, 1 × 10\(^{-6}\)M ranitidine.

Figure 2 Direct comparison of oral cimetidine (50 mg kg\(^{-1}\) day\(^{-1}\)) and ranitidine (1 and 10 mg kg\(^{-1}\) day\(^{-1}\)) on the in vivo growth of C170 after 23 days treatment. Results were expressed as the mean (s.e.) viable tumour volume (mm\(^3\)) on various days after tumour inoculation. A one-way analysis of variance was used to determine any statistical differences between treatment groups. *P < 0.01 vs control, **P < 0.05 vs control. ○, control (n = 9); ●, ranitidine (1 mg kg\(^{-1}\) day\(^{-1}\)) (n = 9); ▼, ranitidine (10 mg kg\(^{-1}\) day\(^{-1}\)) (n = 9); ■, cimetidine (50 mg kg\(^{-1}\) day\(^{-1}\)) (n = 9).

Figure 3 Effect of oral ranitidine (10, 25 and 50 mg kg\(^{-1}\) day\(^{-1}\)) on the in vivo growth of LIM2412 after 27 days. Results were expressed as the mean (s.e.) viable tumour volume (mm\(^3\)) on the various days after tumour injection. A one-way ANOVA was used to determine any statistical differences between treatment groups, after days 23 and 27 of ranitidine treatment. Ranitidine treatment at 50 mg kg\(^{-1}\) day\(^{-1}\) significantly inhibited LIM2412 tumour volumes (*P < 0.01). There was no significant difference in the resulting tumour volumes with 25 mg kg\(^{-1}\) day\(^{-1}\) ranitidine vs control (P = 0.12) or 10 mg kg\(^{-1}\) day\(^{-1}\) ranitidine vs control (P = 0.77). ○, Control (n = 13); ●, ranitidine (50 mg kg\(^{-1}\) day\(^{-1}\)) (n = 12); ▼, ranitidine (25 mg kg\(^{-1}\) day\(^{-1}\)) (n = 13); ■, ranitidine (10 mg kg\(^{-1}\) day\(^{-1}\)) (n = 16).
able to inhibit histamine-stimulated cAMP production by C170 cells (Adams et al., 1994a). These results are surprising because ranitidine is a 4–9 times more potent antagonist at the H2 receptor than cimetidine on the parietal cell (Woodings et al., 1983). This suggests a mechanism of action for cimetidine on cancer cells that is independent of classical H2 receptor antagonism. Although both cimetidine and ranitidine are both H2 receptor antagonists, they are quite different structurally and possess different binding affinities at other sites (Lin, 1991). It would seem likely that colon cancer cells carry histamine receptors different in structure to parietal type 2 receptors and these may lend themselves to the development of specific receptor antagonists.

Our CAMP studies certainly indicate that there is a receptor-mediated effect of histamine in colon cancer cells and the finding that cimetidine but not ranitidine affects histamine-stimulated cAMP release, in vitro and in vivo growth is strong evidence that this receptor system responsible for the histamine-stimulated growth and is other than a typical H2 receptor. Whether the functional histamine receptor of gastric cancer (Watson et al., 1993) and melanoma (Whitehead et al., 1988) are identical to C170 is unknown.

Previously, LIM2412 was demonstrated to be stimulated by histamine in vitro and inhibited by cimetidine in vivo (Adams et al., 1994a). In the current experiments, histamine pumped into the opposite side of the tumour site produced a significant stimulation of tumour growth by 71.9% of the control. Ranitidine produced a significant in vivo stimulation in both experiments that appeared to be dose dependent (Figures 3 and 4). We did not see evidence of in vitro stimulation (data not shown). The mechanism for this stimulation is uncertain and may not be H2 receptor mediated. In the current studies, cimetidine did not inhibit in vivo growth of LIM2412 but produced a significant stimulation. The reason for the variations in response of LIM2412 is not currently understood. This significant stimulation seen with ranitidine and cimetidine are clearly of concern and could be explained by agonist activity.

Figure 4 Effect of histamine (1.2 × 10^{-7} M day^{-1}), ranitidine (50 mg kg^{-1} day^{-1}) and cimetidine (100 mg kg^{-1} day^{-1}) on the in vivo growth of LIM2412. Histamine was administered via a 14 day subcutaneous mini-osmotic pump that was replaced after 14 days (Alza Corporation, Palo Alto, CA, USA). Results were expressed as the mean (s.e.m.) tumour volumes on various days after tumour inoculation. A one-way ANOVA was used to determine any differences between treatment groups after 23 days' treatment. Histamine and cimetidine significantly stimulated tumour growth (⁎⁎P<0.05). Ranitidine significantly stimulated tumour growth (⁎⁎⁎P<0.01). Control (n=18); □; histamine (1.2 × 10^{-7} M day^{-1}) (n=10); ▪; cimetidine (100 mg kg^{-1} day^{-1}) (n=11); ▲; ranitidine (50 mg kg^{-1} day^{-1}) (n=13).

References

ADAMS WJ, LAWSON JA, NICHOLSON SE, COOK TA AND MORRIS DL. (1993). The growth of carcinogen-induced colon cancer in rats is inhibited by cimetidine. Eur. J. Surg. Oncol., 19, 332–335.

ADAMS WJ, LAWSON JA AND MORRIS DL. (1994). Cimetidine inhibits in vivo growth of human colon cancer and reverses histamine stimulated in vitro and in vivo growth. Gut, 35, 1632–1636.

ADAMS WJ AND MORRIS DL. (1994). Short-course cimetidine and survival with colorectal cancer. Lancet, 1, 1768–69.

ALLEN JI, SYRPOULOS HJ, GRANT B, EAGON JC AND KAY NE. (1987). Cimetidine modulates natural killer cell function of patients with chronic lymphocytic leukemia. J. Lab. Clin. Med., 109, 396–401.

BRANDES LJ AND LA BELLA FS. (1993). Identification of intracellular histamine receptors (H1c) that regulate cell proliferation. In Histamine in Normal and Cancer Cell Proliferation. Advances in the Biosciences. Garcia-Caballeró M, Brandes LJ and Hosoda S. (eds.), 89, 31–41. Pergamon Press: Oxford.
Durrant LG, Robins RA, Pimm MV, Perkins AC, Armitage NC, Hardcastle JD and Baldwin RW. (1986). Antigenicity of newly established colorectal carcinoma cell lines. Br. J. Cancer, 53, 37–45.

Euhus D, Hudd C, Laregina MC and Johnson FE. (1986). Tumour measurement in the nude mouse. J. Surg. Oncol., 31, 229–234.

Gifford R and Tilberg A. (1987). Histamine type-2 receptor antagonist immune modulation II. Cimetidine and ranitidine increase interleukin-2 production. Surgery, 102, 242–247.

Halm KB, Kim WH, Lee SI, Kang JK and Park IS. (1995). Comparison of immunomodulatory effects of the histamine-2 receptor antagonists cimetidine, ranitidine, and famotidine on peripheral blood mononuclear cells in gastric cancer patients. Scand. J. Gastroenterol., 30, 265–271.

Hellstrand K and Hermodsson S. (1986). Histamine H2 receptor-mediated regulation of human natural killer cell activity. J. Immunol., 137, 656–660.

Kikuchi Y, Oomori K and Kato K. (1985). Effects of cimetidine on growth and immune function in nude mice bearing human ovarian carcinoma. J. Natl. Cancer Inst., 74, 495–498.

Kusyk CJ, McNeil NO and Johnson LR. (1986). Stimulation of growth of a colon cancer cell line by Gastrim. Am. J. Physiol., 251, G597–601.

Lin JH. (1991). Pharmacokinetic and pharmacodynamic properties of histamine H2 receptor antagonists. Relationship between intrinsic potency and effective plasma concentrations. Clin. Pharmacokinet., 20, 218–236.

Matsumoto S. (1995). Cimetidine and survival with colorectal cancer. Lancet, 346, 115.

Nielson HJ, Moesgaard F and Kehlet H. (1989a). Ranitidine for prevention of postoperative suppression of delayed hypersensitivity. Am. J. Surg., 157, 291–294.

Nielson HJ, Pedersen BK, Moesgaard F, Haahr PM and Kehlet H. (1989b). Effect of ranitidine on postoperative suppression of natural killer cell activity and delayed hypersensitivity. Acta Chir Scand., 155, 377–382.

Osbland ME, Hamilton D, Shen Y-J, Cohen E, Shlesinger M, Laven P, Brown A and McCaffrey R. (1981). Successful tumour immunotherapy with cimetidine in mice. Lancet, 1, 636–638.

Seamon KB and Daly JW. (1981). Forskolin, a unique diterpene activator of cyclic AMP generating systems. J. Cyclic Nucleotide Res., 7, 201–224.

Shanin E, Gospach C and Bodere H. (1985). Selective disappearance of histamine H2 receptor activity in the gastric cancer cell line HGT-1 after short term or chronic treatment by histamine or its H2 antagonists. Agents Actions, 16, 195–198.

Svendsen LB, Ross C, Knigge U, FrederksenLT J, Graveesen P, Kjaergard J, Kluke M, Stimpel H, Sporsbo BH. (1995). Cimetidine as an adjuvant treatment in colorectal cancer. A double-blind randomised pilot study. Dis. Colon Rectum, 38, 514–518.

Tonnesen H, Knigges U, Bulow S, Dampp P, Fischerman K and Hesselfeld P. (1988). Effect of cimetidine on survival after gastric cancer. Lancet, 2, 990–991.

Tutton PJM and Barkla DH. (1983). Comparison of the tumour inhibiting effects of three histamine H2 receptor antagonists. Anticancer Res., 3, 7–10.

Watson SA, Wilkinson LJ, Robertson JFR and Hardcastle JD. (1993). Effect of histamine on the growth of human gastrointestinal tumours, reversal by cimetidine. Gut, 34, 1091–1096.

Whitehead R, Taylor D, Evanson J, Hart I, Woolley D. (1988). Demonstration of histamine H2 receptors on human melanoma cells. Biochem Biophys Res Commun., 151, 518–523.

Whitehead RH, Zhang HH and Hayward IP. (1992). Retention of tissue-specific phenotype in a panel of colon carcinoma cell lines. Relationship to clinical correlates. Immunol. Cell Biol., 70, 227–236.

Woodings DP, Dixon GT, Harrison C, Carey P and Richards DA. (1983). Ranitidine – a new H2 receptor antagonist. Gut, 21, 187–191.