Monolayer NaW_{2}O_{2}Br_{6}: a gate tunable near-infrared hyperbolic plasmonic surface†

Enhui Huang,‡a Hui Xiang,‡b Han Jiao,a Xia Zhou,a Jinli Du,a Wenying Zhong,‡a∗ and Bo Xu‡a∗

Electrically tunable hyperbolic polaritons in two dimensional (2D) materials can offer unexplored opportunities in integrating photonics and nano-optoelectronics into a single chip. Here, we suggest that monolayer NaW_{2}O_{2}Br_{6} can host electrically tunable hyperbolic plasmon polaritons for infrared light via first-principles calculations. 2D monolayer NaW_{2}O_{2}Br_{6} exhibits an extremely anisotropic metallic property: conducting for one direction but almost insulating for the other direction, which could be considered as a 2D analogue of metal/dielectric multilayers, a typical structure for hyperbolic metamaterials. More interestingly, we also demonstrate that the hyperbolic properties in the near-infrared range, including the hyperbolic windows, figure of merit, and propagation directions of plasmon beams, can be effectively modulated by carrier doping at the order of 10^{15} cm^{-2}, which even can be accessed by solid-gated field effect transistors. Thus, it is anticipated that monolayer NaW_{2}O_{2}Br_{6} has a great potential in constructing field programmable polariton nanodevices for emerging and diverse photonic applications.

Introduction

Because of the extraordinary ability to control light down to the atomic length-scale, two dimensional (2D) materials hosting hyperbolic polaritons have emerged as one of the most attractive research interests in the past few years.1–3 In particular, several 2D materials, such as BN, MoO_{3}, MoS_{2}, and V_{2}O_{3},1–4 have been demonstrated to possess hyperbolic phonon polaritons (PhPs) with excellent properties, such as long lifetimes, low loss and strong field confinement, and offer as yet unexplored opportunities for photonic and optoelectronic devices. However, hyperbolic PhPs, the hybrid excitation of light and lattice vibration, usually are hard to control and tune by electric fields, indicating that it still remains a challenge to integrate hyperbolic PhPs into nanophotonic and optoelectronic circuits.

Compared to PhPs, plasmon polaritons (PPs)15,16 show great potential in gate control devices, because of the dependence of plasma frequency (ω_p) on the carrier density: ω_p^2 = ne^2/ε_0m^*, in which n is the carrier density, and m^* is the effective mass of the carrier. Graphene,17 a special 2D metal with no intrinsic carrier, is a perfect carrier tunable plasmonic material. Periodic graphene strips15,16 are suggested to exhibit tunable hyperbolic PPs in the THz region due to the adjustable Fermi levels upon the gate voltages. WTe_{2}, an anisotropic semimetal, was demonstrated to be a natural hyperbolic plasmonic surface in the far-IR range.17,18 2D in-plane anisotropic semiconductors, such as black phosphorus19,20 and TiS_{2},21 are theoretically proposed to exhibit natural tunable hyperbolic plasmonic behaviors for near infrared (NIR) light by carrier doping. However, these proposed hyperbolic PPs in the NIR range can be realized only when the carrier densities reach 10^{14} cm^{-2}. Recently, anisotropic 2D metals, such as boron,22–24 MoOCl_{2}, and CuB_{2},25 are indicated as natural hyperbolic surfaces due to their anisotropic metallic properties. Attributed to their high intrinsic carrier densities, up to 10^{15} cm^{-2}, outstanding hyperbolic PPs, such as low losses and wide hyperbolic windows, can even work in the visible light range. But just because of the high intrinsic carrier concentrations, these hyperbolic PPs in 2D metals usually are not sensitive to the gate voltages. To modulate these plasmonic properties by carriers, the tunable carrier density should be up to 10^{14} cm^{-2} at least. As we see, despite the potential of these hyperbolic PPs for on-chip photonic devices, candidates with electrically tunable hyperbolic PPs are still rare, especially in the short wave range, attributed to the high required carrier density, up to 10^{14} cm^{-2}. Thus, from an integration perspective, it is urgent to explore electrically tunable hyperbolic PPs.

Herein, based on first-principles calculations, we found that monolayer NaW_{2}O_{2}Br_{6} is a potential candidate for electrically tunable hyperbolic PPs for NIR light. Monolayer NaW_{2}O_{2}Br_{6}
could be regarded as a 2D analogue of metal/dielectric multilayers owing to its extremely anisotropic metallic property, conducting for one direction but almost insulating for the other direction. It results in monolayer NaW$_2$O$_2$Br$_6$ with natural hyperbolic PPs for infrared light. Due to low intrinsic carrier concentration, only about 2.5×10^{14} cm$^{-2}$, the hyperbolic PPs in the NIR range are suggested to be tunable even by solid-gated field effect transistors (FETs), which shows great advantages in integrated optical devices.

Results

Anisotropic crystal structure of monolayer NaW$_2$O$_2$Br$_6$

Orthorhombic NaW$_2$O$_2$Br$_6$ was experimentally reported as a layered material with mixed valence tungsten. The optimized crystal structure of monolayer NaW$_2$O$_2$Br$_6$ is displayed in Fig. 1a with a large unit cell size of about 40 Å2 ($a = 3.82$ Å, and $b = 10.54$ Å). Detailed structure information is supplied in the ESI (Table S1†). As we see, monolayer NaW$_2$O$_2$Br$_6$ exhibits an extremely anisotropic crystal structure. The W atoms are sixfold coordinated by two O atoms and four Br atoms to form [WO$_2$Br$_4$] octahedra, which are condensed to pairs via a common Br$_2$ edge and condensed via the oxygen ligands to form 1D [W$_2$O$_2$Br$_6$]$^-$ anionic chains along the x direction. These 1D chains are interconnected by the Na$^+$ cations to form a 2D structure. By counting the electron number, we found that there is one electron per unit cell, resulting in a carrier concentration of 2.5×10^{14} cm$^{-2}$, about one order less than those in traditional metal/dielectric multilayered hyperbolic metamaterials. Such hyperbolic PPs in natural materials have significant advantages for potential applications. Apparently, they not only can avoid complex fabrication processes for hyperbolic devices. Compared to metamaterials, natural materials have much larger Brillouin zones, which can overcome the limitation of wave vectors attributed to the size of the Brillouin zone.

Anisotropic electronic and optical properties of monolayer NaW$_2$O$_2$Br$_6$

Before investigating the hyperbolic properties in monolayer NaW$_2$O$_2$Br$_6$, we first performed density functional theory (DFT) calculations (see Methods) for its electronic properties. Fig. 2a displays the calculated orbital projected band structure for monolayer NaW$_2$O$_2$Br$_6$, obtained from HSE hybrid density functional calculations. The d_{xz} and d_{xy} orbitals of W dominate the low energy states around the Fermi level, with little hybridization with Br-4p orbitals. By the carrier density mapping in Fig. 1b, we see that a one-dimensional electron gas (1DEG) is confined primarily in the [W$_2$O$_2$Br$_6$] chains and separated by Na$^+$ cations. As can be seen from the line plot in Fig. 1c, the width of the 1DEG is about 0.5–0.6 nm. The inhomogeneous carrier distribution in monolayer NaW$_2$O$_2$Br$_6$ indicates an extremely anisotropic metallic behavior: conducting along the x direction, but almost insulating along the y direction. It looks like a natural 2D metal/dielectric multilayer (Fig. 1d), which is a typical structure to design hyperbolic metamaterials. Thus, monolayer NaW$_2$O$_2$Br$_6$ may be a natural candidate to host hyperbolic PPs. Moreover, the periodicity of a metal/dielectric multilayer in monolayer NaW$_2$O$_2$Br$_6$ is only about 1 nm, about one order less than those in traditional metal/dielectric multilayered hyperbolic metamaterials. Such hyperbolic PPs in natural materials have significant advantages for potential applications. Apparently, they not only can avoid complex fabrication processes for hyperbolic devices. Compared to metamaterials, natural materials have much larger Brillouin zones, which can overcome the limitation of wave vectors attributed to the size of the Brillouin zone.

Fig. 1 Anisotropic structure of monolayer NaW$_2$O$_2$Br$_6$. (a) Top and side views of crystal structure of monolayer NaW$_2$O$_2$Br$_6$. Blue, brown, red and purple balls represent W, Br, O, and Na atoms, respectively. W atoms are coordinated by two O atoms and four Br atoms to form WO$_2$Br$_4$ octahedra. (b) Real space electron density distribution of monolayer NaW$_2$O$_2$Br$_6$. (c) The line plot electron density distribution of the red dashed line in (b). (d) Such electron distribution can be regarded as a natural metal/dielectric multilayer, a typical hyperbolic metamaterial system.
different directions. For monolayer NaW₂O₂Br₆ it is quite different. As shown in Fig. 2a, for the x direction (Γ to X and Y to S paths), two well dispersed bands, contributed by dₓz and dᵧz orbitals, respectively, cross the Fermi level. But for the y direction (Γ to Y and X to S paths), no band crosses the Fermi level, and it looks like a semiconductor with rather flat conduction and valence bands. Both the highest occupied band and the lowest unoccupied band are mainly composed of the dₓz orbital. These extremely anisotropic electronic properties are consistent with our previous analysis by the charge density that monolayer NaW₂O₂Br₆ is like a 2D metal/dielectric multilayer.

To further demonstrate this extremely anisotropic metallic property, we plot the Fermi surface (FS) for monolayer NaW₂O₂Br₆ in Fig. 2b. Notably, it displays an extremely anisotropic character: there are two sets of almost parallel lines along the kᵧ direction. As a result, no band crosses the Fermi level along the y direction. Materials with such extremely anisotropic FSs usually are unstable at low temperature, which may induce metal-insulator transitions due to Peierls transition.²⁹,³⁰ But for practical photonic applications, it is important to have the devices work at room temperature. At room temperature, it would be an anisotropic metal as we calculated. Phonon dispersion shows no imaginary frequency, indicating that this extremely anisotropic metallic state could be dynamically stable (Fig. 2c). Meanwhile, we also calculated the cleavage energy by separating a NaW₂O₂Br₆ monolayer from neighboring five layers. The corresponding cleavage energy is 0.26 J m⁻² (supplied in the ESI, Fig. S1†), which is quite small, indicating that the exfoliation of the NaW₂O₂Br₆ monolayer from its bulk phase is expected to be highly feasible. So, here we directly consider this anisotropic metallic state for monolayer NaW₂O₂Br₆, even there might be phase changes at low temperature.

Monolayer NaW₂O₂Br₆: a hyperbolic plasmonic surface

Usually, anisotropic metallic properties could result in anisotropic plasmonic properties. The optical properties of metals are usually dominated by intraband transitions in low energy regions, which can be expressed by the Drude model:³¹

\[\varepsilon_{\text{intra}} = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 + i\gamma\omega} \]

where \(\varepsilon_{\infty} \) is the static dielectric constant, and \(\gamma \) is the damping coefficient. As we see, anisotropic plasma frequencies could result in hyperbolic properties, for \(\text{Re}(\varepsilon_{xx}) \) and \(\text{Re}(\varepsilon_{yy}) \), the real part of dielectric functions, could have opposite signs in some regions. The plasma frequency tensors can be directly calculated from the electronic band structures by:³²

\[\omega_{\text{plas}}^2 = -\frac{8\pi e^2}{V} \sum_{\alpha k} \partial f_{\alpha k} / \partial \varepsilon_{\alpha k} \]
where V is the cell volume, $v_{ak} = \frac{\partial \epsilon_{ak}}{\partial k}$ is the group velocity, and f_{ak} is the quasiparticle distribution function. As we see, the plasma frequency is contributed by v_{ak} for every k point at the FS. According to the FS in Fig. 2b, it is almost independent of k_y, indicating a nearly zero ϵ_{pyy} but a finite ϵ_{pxx}. So, monolayer NaW$_2$O$_2$Br$_6$ could be a natural candidate to host hyperbolic PPs. Conformed by our DFT calculations, the ϵ_{pxx} and ϵ_{pyy} are calculated to be 1.52 and 0.12 eV, respectively. We also considered the contributions from interband transitions for monolayer NaW$_2$O$_2$Br$_6$ (Fig. S2†). In Fig. 2d, a hyperbolic window, from 0.03 to 0.98 eV, is observed ($\gamma \approx 50$ meV), in which $\text{Re}(\epsilon_{py})$ is positive, whereas $\text{Re}(\epsilon_{px})$ is negative. The influence of γ on hyperbolic properties is also evaluated by other values ($\gamma = 0.1$ and 0.02 eV) (Fig. S3†). The results show that they have a negative influence on the hyperbolic properties, especially the hyperbolic window. The hyperbolic window is very broad, ranging from far-infrared (FIR) (40 μm) to NIR light (1.3 μm). Such a broad hyperbolic window is mainly due to the large difference between ϵ_{pxx} and ϵ_{pyy}. We notice that such a broad hyperbolic window is never reported in traditional artificial metal/dielectric multilayers. However, no interband transition occurs in the hyperbolic region for the x direction, indicating the negligible optical losses. To directly compare and quantify the losses of various hyperbolic surfaces, the figure of merit (FoM) is commonly used, defined as

$$\text{FoM} = \frac{\text{Re}(\epsilon)}{\text{Im}(\epsilon)}$$

where $\text{Re}(\epsilon)$ and $\text{Im}(\epsilon)$ are the real and imaginary parts of dielectric functions for the $\text{Re}(\epsilon) < 0$ direction, respectively. As observed in Fig. 2d (blue line), the maximum FoM can be up to 7.3 around 0.56 eV, and it can be over 1 within a wide range, from FIR (30 μm) to NIR (1.3 μm). The reported as hyperbolic PhPs, BN and MoO$_3$, could exhibit much higher FoMs, up to 200. However, their hyperbolic windows are very narrow, and the high FoM is only located in a very small region in the range of mid-infrared (MIR). Thus, a broad hyperbolic window, ranging from FIR to NIR, and a considerable FoM make monolayer NaW$_2$O$_2$Br$_6$ have great potential for application in hyperbolic optical devices.

Carrier tunable hyperbolic properties in monolayer NaW$_2$O$_2$Br$_6$

Based on the electronic structure (Fig. 2a), monolayer NaW$_2$O$_2$Br$_6$ is an anisotropic metal. Usually, the properties of metals, including the plasmonic properties, do not respond to the carrier doping, due to their high intrinsic carrier concentrations. MoOCl$_2$ (ref. 24) and CuB$_3$ (ref. 25) could display hyperbolic properties even in the UV range, due to their larger plasmonic frequencies. However, to tune their hyperbolic properties, the carrier density should be up to 10^{14} cm$^{-2}$, which is hard to realize in experiment. Luckily, the intrinsic carrier concentration in monolayer NaW$_2$O$_2$Br$_6$ is only about 2.5×10^{10} cm$^{-2}$, about one order less than that in these 2D metals, which even can be recognized as an anisotropic semiconductor with an electron doping concentration of 2.5×10^{14} cm$^{-2}$. Attributed to such low intrinsic electron concentration, the plasmonic properties in monolayer NaW$_2$O$_2$Br$_6$ could be modified by carriers with the density at the order of 10^{18} cm$^{-2}$. Such required carrier density is about one order less than those for 2D metals and semiconductors, which shows great potential in real applications. To reveal this, we investigate these hyperbolic PPs in monolayer NaW$_2$O$_2$Br$_6$ upon carrier doping.

The carrier doped electronic structures of monolayer NaW$_2$O$_2$Br$_6$ are displayed in Fig. 3a. The doping carrier density ranges from -2.5×10^{13} cm$^{-2}$ (hole) to 8.75×10^{13} cm$^{-2}$ (electron). As we see, among this doping range, the Fermi level is gradually shifted without changing the shape of FSs (Fig. 3b). Electron doping will move the Fermi level upwards, and it is opposite for hole doping. We also found that the plasma frequency, ω_{pxx}, shows a good dependence on carrier concentration with the relation of $\omega_{pxx}^2 = n e^2/\varepsilon_0 m^*$. Thus, we can expect a predictable tunable hyperbolic behavior: carrier doping can gradually shift the upper limit of the hyperbolic region; electrons blueshift it, and holes redshift it, while the lower limit is almost independent of the carrier. As confirmed by the dielectric functions in Fig. 4a and b, the hyperbolic window can be changed from (0.03, 0.98) eV without doping to (0, 1.27) eV for electron doping of 8.75×10^{13} cm$^{-2}$, and also to (0.05, 0.88) eV for hole doping of 2.5×10^{13} cm$^{-2}$. It means that in the range of (0.88, 1.27) eV, whether hyperbolic or elliptic, it depends on carrier concentration.

For hyperbolic optical devices, except the hyperbolic windows, other properties are also very important for applications, such as FoM and the propagation direction of the plasmon beams. The FoM upon the carrier density of monolayer NaW$_2$O$_2$Br$_6$ is plotted in Fig. 4c. The color region is hyperbolic, while the other region is elliptic. We found that the highest FoM can be enhanced and gradually blueshifted with the electron doping. The best FoM is about 7.3 at 0.56 eV without doping, and it increases to about 9.9 at 0.75 eV with an electron doping concentration of 8.75×10^{13} cm$^{-2}$. Interestingly, although it is hyperbolic from FIR to NIR, the tunability upon carrier density is different. As shown in Fig. 4c, below about 0.4 eV, the FoM is not sensitive to carrier concentration. In the range between 0.4 and 0.88 eV, increasing the electron density would significantly improve the FoM. Above 0.88 eV, the topological transition between elliptic and hyperbolic can occur, and the FoM can also be dramatically enhanced. As we see, it is elliptic at 0.9 eV with a hole doping concentration of 2.5×10^{11} cm$^{-2}$. It changes to hyperbolic with the FoM quickly increasing to 9.0 at an electron doping concentration of 8.75×10^{13} cm$^{-2}$. Thus, although the hyperbolic window can cover almost the whole IR light, only NIR light can be tuned by carrier density, not FIR and MIR light.

Similar tunable behavior is also found for the direction of the plasmon beams. In the hyperbolic range, the plasmon beams are significantly more localized than the elliptic case,
because plasmons with all momenta carry energy along the direction of the hyperbola asymptotes defined by\(^{18}\)

\[
y = \pm x \sqrt{\frac{\text{Re}(\varepsilon_{yy})}{\text{Re}(\varepsilon_{xx})}}
\]

(4)

Usually, the direction of the plasmon beams is also defined by the direction of asymptotes. Fig. 4d displays the propagation directions of plasmon beams by the angle between the \(y\) axis and plasmon beams. As we see, the propagation directions of
MIR and FIR lights are mainly restrained along the x direction, and they show little dependence on carrier density. For NIR light above 0.4 eV, its propagation directions can be controlled by carrier density. For example, the angle can be rotated from 40° to 54° for the light of 0.6 eV, when the doped carrier concentration changes from holes of 2.5×10^{13} cm$^{-2}$ to electrons of 8.75×10^{13} cm$^{-2}$. Above 0.9 eV, the propagation directions of plasmon beams can also be tuned when the topology transition between elliptic and hyperbolic occurs. This indicates that carrier concentration not only can control the hyperbolic window and their FoMs, but also can control the propagation behaviors.

These tunable hyperbolic properties are due to the extremely anisotropic electronic properties in monolayer NaW$_2$O$_2$Br$_6$. Interestingly, we also found that the tunable behavior upon carrier concentration is also extremely anisotropic. By the dielectric properties, including $\text{Im}(\varepsilon)$ and $\text{Re}(\varepsilon)$, shown in Fig. 4a and b, the absorption peaks around 0.9 eV and 2.7 eV for the y direction are nearly independent of the carrier concentration. The absorption peak around 0.9 eV is due to the interband transitions from the d$_{xz}$ (d$_{yz}$) orbital below the Fermi level to the d$_{xy}$ (d$_{xy}$) orbital above the Fermi level, as illustrated in Fig. 2a. Shifting the Fermi level by carrier concentration has a negligible effect on this transition. It is similar for the absorption peaks around 2.7 eV. But in the x direction, the optical transitions from the d$_{xy}$ (d$_{xy}$) orbital below the Fermi level to the d$_{yz}$ (d$_{yz}$) orbital are optically forbidden. The absorption starting from 2.0 eV for the x direction is due to the interband transition from bands around −2 eV to the bands above the Fermi level. This interband transition is carrier dependent in a mechanism like the Burstein–Moss effect. Such extremely anisotropic properties, especially the anisotropic tunable behavior, are never reported in other materials, endowing monolayer NaW$_2$O$_2$Br$_6$ with particular potential in electrically controlling directional optical devices.

Tunable hyperbolic PPs by solid-gated FETs

From the perspective of potential applications, the ability to integrate hyperbolic PhPs into nanophotonic and optoelectronic circuits is highly desirable. Based on the first-principles calculations, a carrier density at the order of 10^{13} cm$^{-2}$ can effectively modulate the hyperbolic performance in monolayer NaW$_2$O$_2$Br$_6$, including the hyperbolic window, FoM and the propagation direction of plasmon beams. Such carrier density usually can be easily realized in electric double layer transistors (EDLTs)34,35 by using polymer electrolytes or ionic liquids as gated dielectrics. But EDLTs are not feasible for integrating these hyperbolic properties into nano-optoelectronic devices. Luckily, it is reported that such carrier density could also be approached in some well-fabricated solid-gated FETs,36,37 which makes a possibility for the design of gate tunable hyperbolic photonic devices. Thus, we propose a gate tunable hyperbolic device based on solid-gated FETs with monolayer NaW$_2$O$_2$Br$_6$ as the channel. The schematic device is shown in Fig. 5, where the bottom gate supplies the electric field to control the propagation behaviors of NIR light in monolayer NaW$_2$O$_2$Br$_6$. According to the calculations, when a NIR light propagates in monolayer NaW$_2$O$_2$Br$_6$, the propagation direction, the FoM, and even the topology (elliptic and hyperbolic) of NIR light can be controlled by the gate voltage, depending on the light wavelength. The ability to integrate with FETs enables electrical control of optical signals in monolayer NaW$_2$O$_2$Br$_6$, which has significant implications on integrating photonics and nano-optoelectronics into a single chip and also other novel optoelectronic devices. For example, hyperbolic PPs can support the plasmonic spin-Hall effect.38 In the range of (0.88, 1.27) eV, it is hyperbolic or elliptic depending on the carrier density, i.e., the gate voltage. It means that the plasmonic spin-Hall effect for NIR light can be switched by the gate voltage in monolayer NaW$_2$O$_2$Br$_6$.

As we discussed above, the hyperbolic PPs in monolayer NaW$_2$O$_2$Br$_6$ are mainly due to the extremely anisotropic
electronic properties. Except the electronic properties, the tunability in optical properties upon carrier density is also extremely anisotropic, indicating that other properties in monolayer NaW₂O₂Br₆, such as mechanic, transport, and thermal properties, could also be extremely anisotropic. For example, the thermal conductivity as known is contributed by both phonons and electrons. In monolayer NaW₂O₂Br₆, it is conducting for the y direction but almost insulating for the x direction, suggesting the extremely anisotropic thermal conductivity from electron contribution. Such extremely anisotropic properties in monolayer NaW₂O₂Br₆ would also open opportunities for novel functional anisotropic devices.

In conclusion, we propose that monolayer NaW₂O₂Br₆ is a natural candidate for infrared hyperbolic PPs with extraordinary properties, such as broad hyperbolic window and considerable FoM, because of its extremely anisotropic structural and metallic properties. Owing to the low intrinsic carrier concentration, hyperbolic PPs in monolayer NaW₂O₂Br₆ for NIR light can be manipulated by the gate voltage in solid-gated FETs, which provides great potential for application in integrating tunable polaritons into nano-optoelectronic devices. We anticipate our work will promote more experimental and theoretical efforts on the realization of integrable hyperbolic PPs based on 2D materials.

Methods

Electronic calculation for monolayer NaW₂O₂Br₆

The electronic and dielectric properties of monolayer NaW₂O₂Br₆ are calculated by the Vienna ab initio Simulation Package (VASP)38,40 based on density functional theory (DFT). The electronic structures are described by using the generalized gradient approximation (GGA) based Perdew–Burke–Ernzerhof (GGA-PBE) exchange–correlation functional44 with the projector augmented wave (PAW).42 The cutoff energy used for the plane-wave basis set is 450 eV for monolayer NaW₂O₂Br₆. The structures are relaxed until the atomic forces are less than 0.01 eV per Å per atom and total energies are converged to 10⁻⁵ eV. Vacuum layers of 15 Å are inserted between the periodically repeated slabs along the c-axis to avoid interactions among them caused by the periodic boundary conditions for both. The PBE exchange–correlation functional usually underestimates both band gaps of semiconductors and interband transition energies in metals. We applied a hybrid functional (HSE06)44 to compute the electronic structures of monolayer NaW₂O₂Br₆, which generally yields more reliable band energies. Finer k-point samplings of 80 × 30 × 1 are used to calculate FSs.

Dielectric calculation for monolayer NaW₂O₂Br₆

We apply the independent particle approximation to describe the dielectric function from electronic band structure calculations. The dielectric function \(\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)\) (where \(\varepsilon_1\) is the real part, and \(\varepsilon_2\) is the imaginary part) of metals in the low-frequency region is contributed by two important processes, interband (\(\varepsilon^{\text{inter}}(\omega)\)) and intraband (\(\varepsilon^{\text{intra}}(\omega)\)) transitions.

The imaginary part of the dielectric function contributed by interband transition is calculated by44

\[
\varepsilon^{\text{inter}}(\omega) = \frac{4\pi^2e^2}{\Omega} \lim_{q \to 0} \sum_{c,v,k} 2w_q \delta(E_{ck} - E_{vk} - \omega) \times \left| \langle \psi_{ck} | \psi_{vk} \rangle \right|^2
\]

where \(e\) is the electron charge, \(\Omega\) is the primitive cell volume, and \(w_q\) is the weight of the \(k\)-points. The indices \(c\) and \(v\) refer to the CB and VB states, respectively. The parameter \(E_{ck}\) is the single-electron energy state of band \(j\) at wave vector \(k\), \(\psi_{ck}\) is the periodic part of the Bloch wave function corresponding to the eigenvalue \(E_{ck}\) \((i = c, v)\), and \(\delta\) is the delta function, which depends upon the method used for calculation. The real part of the dielectric function contributed by interband transition is obtained from the Kramers–Kronig relation.

The dielectric function for intraband transitions, \(\varepsilon^{\text{intra}}(\omega)\), is known as the dielectric function of a free electron gas. The contribution by intraband transitions, \(\varepsilon^{\text{intra}}(\omega)\), is obtained by Drude expression for a given plasma frequency \(\omega_p\) and damping constant (\(\gamma\)):41

\[
\varepsilon^{\text{intra}} = \varepsilon_\infty - \frac{\omega_p^2}{\omega^2 + i\gamma \omega}
\]

while \(\omega_p\) can be calculated from the electronic band structure as follows:32

\[
\omega_p^2 = \frac{8\pi^2e^2}{V} \sum_{\alpha k} \frac{\partial^2}{\partial \epsilon_{\alpha k}}
\]

Dense k-point samplings of 100 × 40 × 1 are applied to calculate the dielectric properties of monolayer NaW₂O₂Br₆. The total dielectric function is the sum of the dielectric functions for inter- and intraband transitions: \(\varepsilon(\omega) = \varepsilon^{\text{inter}}(\omega) + \varepsilon^{\text{intra}}(\omega)\).

Conflicts of interest

The authors declare no competing interests.

Acknowledgements

B. X. acknowledges the support from “Double First-Class” University project of China Pharmaceutical University (CPU2018GFY25).

References

1. D. N. Basov, M. M. Fogler and F. J. G. de Abajo, Polaritons in van der Waals materials, Science, 2016, 354, 1992.
2. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno and F. Koppens, Polaritons in layered two-dimensional materials, Nat. Mater., 2017, 16, 182–194.
3. Q. Zhang, G. W. Hu, W. L. Ma, P. N. Li, A. Krasnok, R. Hillenbrand, A. Alu and C. W. Qiu, Interface nano-optics with van der Waals polaritons, Nature, 2021, 597, 187–195.
13 Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Hao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature, 2012, 487, 82–85.

14 G. X. Ni, A. S. McLeod, Z. Sun, L. Wang, L. Xiong, K. W. Post, S. S. Sunku, B. Y. Jiang, J. Hone, C. R. Dean, M. M. Fogler and D. N. Basov, Fundamental limits to graphene plasmonics, Nature, 2018, 557, 530–533.

15 J. S. Gomez-Diaz and A. Alu, Flatland optics with hyperbolic metasurfaces, ACS Photonics, 2016, 3, 2211–2224.

16 J. S. Gomez-Diaz, M. Tymchenko and A. Alu, Hyperbolic plasmons and topological transitions over uniaxial metasurfaces, Phys. Rev. Lett., 2015, 114, 233901.

17 C. Wang, S. Y. Huang, Q. X. Xing, Y. G. Xie, C. Y. Song, F. J. Wang and H. G. Yan, Van der Waals thin films of WTe₂ for natural hyperbolic plasmonic surfaces, Nat. Commun., 2020, 11, 1158.

18 Z. Torbatian, D. Novko and R. Asgari, Tunable Low-Hyperbolic Plasmon Polariotons in a Td-WTe₂ Single Layer, Phys. Rev. Appl., 2020, 14, 044014.

19 A. Nemilentsau, T. Low and G. Hanson, Anisotropic 2D materials for tunable hyperbolic plasmonics, Phys. Rev. Lett., 2016, 116, 066804.

20 E. Veen, A. Nemilentsau, A. Kumar, R. Roldan, M. I. Katsnelson, T. Low and S. J. Yuan, Tuning two-dimensional hyperbolic plasmons in black phosphorus, Phys. Rev. Appl., 2019, 12, 014011.

21 J. A. Silva-Guillen, E. Canadell, F. Guinea and R. Roldan, Strain tuning of the anisotropy in the optoelectronic properties of TiS₃, ACS Photonics, 2018, 5, 3231–3237.

22 Y. F. Huang, S. N. Shirodkar and B. I. Yakobson, Two-dimensional boron polymorphs for visible range plasmonics: A first-principles exploration, J. Am. Chem. Soc., 2017, 139, 17181–17185.

23 C. Lian, S. Q. Hu, J. Zhang, C. Cheng, Z. Yuan, S. W. Gao and S. Meng, Integrated plasmonics: broadband dirac plasmons in borophene, Phys. Rev. Lett., 2020, 125, 116802.

24 J. Z. Zhao, W. K. Wu, J. J. Zhu, Y. H. Lu, B. Xiang and S. Y. A. Yang, Highly anisotropic two-dimensional metal in monolayer MoOCl₂, Phys. Rev. B: Condens. Matter Mater. Phys., 2020, 102, 245419.

25 W. H. Geng, H. Gao, C. Ding, L. Sun, X. K. Ma, Y. Y. Li and M. W. Zhao, Highly-anisotropic plasmons in two-dimensional hyperbolic copper borides, Opt. Express, 2022, 30, 5596–5607.

26 Y. Q. Zheng, K. Peters and H. G. von Schnerring, The mixed valence tungsten(V,V) compound Na[W₂O₈Br₄], Z. Anorg. Allg. Chem., 1998, 624, 1415–1418.

27 K. Andersen and K. S. Thygesen, Plasmons in metallic monolayer and bilayer transition metal dichalcogenides, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 88, 155128.

28 A. Poddubny, I. Iorsh, P. Below and Y. Kivshar, Hyperbolic metamaterials, Nat. Photonics, 2013, 7, 948–957.

29 D. Hirai, M. Bremholm, J. M. Allred, J. Krizan, L. M. Schoop, Q. Huang, J. Tao and R. J. Cava, Spontaneous formation of zigzag chains at the metal-insulator transition in the pyrochlore CsW₂O₆, Phys. Rev. Lett., 2013, 110, 166402.

30 K. N. Zhang, X. Y. Liu, H. X. Zhang, K. Deng, M. Z. Yan, W. Yao, M. T. Zheng, E. F. Schwier, K. Shimada, J. D. Denlinger, Y. Wu, W. H. Duan and S. Y. Zhou, Evidence for a quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy, Phys. Rev. Lett., 2018, 121, 206402.

31 S. A. Maier, Plasmonics, Fundamentals and Applications, Springer, 2007, vol. 26, p. 224.
32. K. H. Lee and K. J. Chang, First-principles study of the optical properties and the dielectric response of Al, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, 49, 2362–2367.
33. R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. R. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. G. de Abajo and V. Pruneri, Tunable plasmons in ultrathin metal films, *Nat. Photonics*, 2019, 13, 328–333.
34. D. Braga, I. G. Lezama, H. Berger and A. F. Morpurgo, Quantitative determination of the band gap of WS$_2$ with ambipolar ionic liquid-gated transistors, *Nano Lett.*, 2012, 12, 5218–5223.
35. D. K. Efetov and P. Kim, Controlling electron-phonon interactions in graphene at ultrahigh carrier densities, *Phys. Rev. Lett.*, 2010, 105, 256805.
36. Y. J. Zhang, J. T. Ye, Y. Matsuhashi and Y. Iwasa, Ambipolar MoS$_2$ Thin Flake Transistors, *Nano Lett.*, 2012, 12, 1136–1140.
37. K. F. Mak, K. L. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz and J. Shan, Ambipolar MoS$_2$ thin flake transistors, *Nat. Mater.*, 2013, 12, 207–211.
38. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin and H. Park, Visible-frequency hyperbolic metasurface, *Nature*, 2015, 522, 192–196.
39. G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1993, 48, 13115.
40. G. Kresse and J. Furthmuller, Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, 54, 11169.
41. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, 77, 3865.
42. P. E. Blochl, Projector augmented-wave method, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, 50, 17953.
43. J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, *J. Chem. Phys.*, 2003, 118, 8207–8215.
44. M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller and F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2006, 73, 045112.