Activation of CS₂ and CO₂ by Silylium Cations
Carsten Jenne,* Marc C. Nierstenhöfer, and Valentin van Lessen[a]
Table of contents

S1 Numbering scheme for the [Me$_3$NB$_{12}$Cl$_{11}$]$^-$ anion ... 3
S2 Synthetic details and spectroscopic data ... 3
 S2.1 Synthesis of [(Et$_3$Si)$_3$S][Me$_3$NB$_{12}$Cl$_{11}$] ... 5
 S2.2. Generation of [(Et$_3$SiS)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$] and (Et$_3$Si)$_2$S at 253 K 9
 S2.3 Generation of [(Et$_3$SiS)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$], [(Et$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$], (Et$_3$Si)$_2$S at 243K .. 12
 S2.4 Synthesis of [Et$_3$SiS(H)Me][Me$_3$NB$_{12}$Cl$_{11}$] .. 16
 S2.5 Generation of [iPr$_3$SiS(H)Me][Me$_3$NB$_{12}$Cl$_{11}$], [iPr$_3$SiSC(SiiPr$_3$)$_3$][Me$_3$NB$_{12}$Cl$_{11}$] and [iPr$_3$Si(C$_6$D$_6$)][Me$_3$NB$_{12}$Cl$_{11}$] ... 17
 S2.6 Generation of [(Me$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$] ... 19
 S2.7 Generation of [(Et$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$] ... 20
 S2.8 Generation of [(tBu$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$] and [(tBu$_3$SiS)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$] 21
 S2.9 Generation of [(Et$_3$Si)$_3$S(SiEt$_2$H)][Me$_3$NB$_{12}$Cl$_{11}$] ... 22
 S2.10 Generation of [(Et$_3$SiO)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$]- (Et$_3$Si)$_2$O .. 24
S3 Crystal structures ... 25
 S3.1 Crystallographic data .. 25
 S3.2 Treatment of disorder in the crystal structures ... 27
 S3.3 Graphical representations of the crystal structures .. 27
 S3.4 Fractional atomic coordinates .. 31
S4 Density functional calculations .. 43
 S4.1. Calculated Structures .. 45
 S4.2. Comparison with experimental findings ... 52
 S4.3. Optimized coordinates .. 53
S5 Literature ... 73
S1 Numbering scheme for the [Me₃NB₁₂Cl₁₁]⁻ anion

![Numbering scheme for the [Me₃NB₁₂Cl₁₁]⁻ anion]

Figure S1. Numbering scheme for the [Me₃NB₁₂Cl₁₁]⁻ anion according to IUPAC.

S2 Synthetic details and spectroscopic data

General remarks. IR spectra were measured in the glovebox on a Bruker ALPHA P FT-IR spectrometer equipped with a diamond ATR attachment. NMR spectra were measured on Bruker Avance 400 and Bruker Avance III 600 spectrometers in 5 mm NMR tubes equipped with J. Young Teflon-in-glass valves at 243 K, 253 K, or 300 K. The NMR spectra were referenced on the partly deuterated NMR solvents and chemical shifts are given with respect to Me₄Si (¹H, ¹³C, ²⁹Si) and BF₃·OEt₂ (¹¹B). Two dimensional NMR experiments (HSQC (Heteronuclear Single Quantum Coherence), HMBC (Heteronuclear Multiple Bond Correlation)) were performed to help with the assignment of the resonances.

The single crystal X-ray structure analyses were measured on an Oxford Diffraction Gemini E Ultra diffractometer with an EOS CCD area detector, a four-circle Kappa goniometer and a molybdenum tube (Kα 0.71073 Å). Data reduction, empirical absorption correction and scaling were performed with CrysAlis Pro.¹ The air and moisture sensitive crystals were taken directly from the reaction vessel under a stream of dry nitrogen, transferred into non-fluorinated paraffin oil (Alfa Aesar), selected under a microscope and immediately cooled to 150 Kelvin on the diffractometer. The structures were solved with direct methods using SHELXS and refined with SHELXL using the least squares method against F².² These programs were embedded in the
platform Olex2. All non-hydrogen atoms were refined anisotropically. Graphical representations of the crystal structures were made with Diamond 3.2f.

The density functional theory (DFT) calculations were performed with the program package Gaussian 16. The functional PBE0 and the basic set def2-TZVP used for the quantum chemical calculations were included with the program. The SMD solvation model was used to account for solvation effects. The parameters to describe the solvent o-dichlorobenzene were implemented with Gaussian 16. Note that only reaction energies are discussed and thus errors in absolute energies are averaged out by this procedure. NBO analyses were carried out using NBO 3.1 implemented in the same program package.

Air and moisture sensitive solids were manipulated using standard vacuum and Schlenk techniques or in a glove box with an atmosphere of dry nitrogen (O₂ < 1 ppm; H₂O < 1 ppm). The solid starting materials were weighed and filled into the reactions tubes inside a glove box. All Reactions were performed in H-shaped glass vessels with J. Young Teflon-in-glass valves and an incorporated fine frit. 1,2-Difluorobenzene (Fluorochem), n-pentane (VWR Chemicals, HPLC grade), dichloromethane deut. (Roth), benzene deut. (Sigma-Aldrich), diethylsilane (Sigma-Aldrich), triisobuthylsilane (Sigma-Aldrich), triisopropylsilane (Sigma-Aldrich), ethylidimethylsilane (Sigma-Aldrich), and triethylsilane (Sigma-Aldrich) were dried using CaH₂ (Merck, 90-95 %), condensed onto molecular sieve (4 Å, Roth), and stored under an atmosphere of dry nitrogen. Carbon dioxide (4.5, Messer) was used without further purification. Carbon disulfide (Merck) was dried with molecular sieve (4 Å, Roth) and stored under nitrogen. The starting materials [Ph₃C][Me₃NB₁₂Cl₁₁], [(Et₃Si)₂H][Me₃NB₁₂Cl₁₁], and [(tBu₃Si)₂H][Me₃NB₁₂Cl₁₁] were synthesized by literature procedures. All glass ware was dried at 120 °C over night and reaction vessels were evacuated for 15 minutes before use.

Isolated cation	Molecular formula	Molecular weight [g mol⁻¹]
[Et₃SiS(H)Me]⁺	C₃H₁₉SSi⁺	163.38
[‘Pr₃Si(H)Me]⁺	C₁₀H₂₅SSi⁺	205.46
[(Me₃Si)₂SMe]⁺	C₃H₂₀SSi₂⁺	193.48
[(Et₃Si)₂SMe]⁺	C₁₃H₃₃SSi₂⁺	277.64
[(Bu₃Si)₂SMe]⁺	C₂₅H₅₇SSi₂⁺	445.96
[(Et₃Si)₃Si]⁺	C₁₈H₄₄Si₃⁺	377.87
[Et₃SiOC(H)OSiEt₃]⁺	C₁₃H₂₂O₂Si₂⁺	276.56
S2.1 Synthesis of [(Et₃Si)₃S][Me₃NB₁₂Cl₁₁]

\[
2 [(Et₃Si)_2H][Me₃NB₁₂Cl₁₁] + CS₂ + 2 Et₃SiH \xrightarrow{C₆F₂H₄} 2 [(Et₃Si)₃S][Me₃NB₁₂Cl₁₁] + CH₄
\]

[(Et₃Si)₂H][Me₃NB₁₂Cl₁₁] (190 mg, 0.23 mmol, 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CS₂ (0.14 mL, 2.30 mmol, 10 eq.) was condensed onto the reaction mixture, which was warmed up to 273 K. Finally, triethylsilane (1.15 mL, 0.52 mmol, 4 eq.) was added dropwise to the reaction mixture under a stream of dry nitrogen. Subsequently, the reaction mixture was stirred for one hour at 273 K and for additional three hours at room temperature. Diffusion of n-pentane into the reaction mixture yielded colorless crystals. The solvent was removed by filtration. Only clean crystals without any attached deposit were picked by hand to give pure [(Et₃Si)₃S][Me₃NB₁₂Cl₁₁] (22 mg, 0.02 mmol, 9%).

\(^1\text{H-NMR}\) (600.14 MHz, CD₂Cl₂, 300 K): \(\delta = 0.82\) (q, \(^3J_{HH} = 7.8\) Hz, 18H, Si-CH₂CH₃), 1.03 (t, \(^3J_{HH} = 7.8\) Hz, 27H, Si-CH₂CH₃), 3.39 (s, 9H, N(CH₃)₃); \(^1^3\text{C-NMR}\) (150.92 MHz, CD₂Cl₂, 300 K): \(\delta = 6.6\) (Si-CH₂CH₃), 7.5 (Si-CH₂CH₃), 57.6 (N(CH₃)₃); \(^2^9\text{Si-NMR}\) (119.24 MHz, CD₂Cl₂, 300 K): \(\delta = 36.9\); \(^1^1\text{B-NMR}\) (192.54 MHz, CD₂Cl₂, 300 K): \(\delta = -15.5\) (s, 1B, B12) - 13.8 (s, 5B, B7-11), -10.9 (s, 5B, B2-6), -9.6 (s, 1B, B1); FT-IR (ATR): \(\tilde{\nu} = 2958\) (w), 2922 (s), 2876 (w), 2853 (w), 1488 (w), 1465 (s), 1412 (vw), 1379 (vw), 1234 (vw), 1124 (vw), 1020 (vs), 951 (s), 820 (w), 750 (s), 683 (w), 675 (w), 611 (w), 578 (s), 544 (vs), 489 (s), 435 (w), 425 (w) cm⁻¹.
Figure S2: \(^1\)H-NMR (600.14 MHz, CD\(_2\)Cl\(_2\), 300 K) spectrum of \([((Et_3Si)_3S][Me_3NB_{12}Cl_{11}])\].

Figure S3: \(^1\)H, \(^{13}\)C-NMR HSQC spectrum (600.13 MHz, 150.91 MHz, CD\(_2\)Cl\(_2\), 300 K) of \([(Et_3Si)_3S][Me_3NB_{12}Cl_{11}])\). ? = unknown impurity.
Figure S4: 13C-NMR DEPT spectrum (150.92 MHz, CD$_2$Cl$_2$, 300 K) of [(Et$_3$Si)$_3$S][Me$_3$NB$_{12}$Cl$_{11}$]. ? = unknown impurity.

Figure S5: 11B-NMR spectrum (192.54 MHz, CD$_2$Cl$_2$, 300 K) of [(Et$_3$Si)$_3$S][Me$_3$NB$_{12}$Cl$_{11}$].
Figure S6: 1H, 29Si-NMR HMBC spectrum (600.14 MHz, 119.24 MHz, CD$_2$Cl$_2$, 300 K) of [([Et$_3$Si]$_3$S][Me$_3$NB$_{12}$Cl$_{11}$]. $?$ = unknown impurity.

Figure S7: FT-IR spectra (diamond ATR, 300 K) of [([Et$_3$Si]$_3$S][Me$_3$NB$_{12}$Cl$_{11}$] (a) and Na[Me$_3$NB$_{12}$Cl$_{11}$] (b).
Table S2: Experimental (FT-IR) and calculated (PBE0/def2-TZVPP) vibrational frequencies of [(Et₃Si)₃S][Me₃NB₁₂Cl₁₁].

Exp. [cm⁻¹]	Calc. [cm⁻¹]	Vibration	Assignment
2958 (w)	3132 (s)	ν	CH₂, CH₃
2922 (w)	3056 (s)	ν	CH₂, CH₃
2876 (w)	-	ν	CH₂, CH₃
2853 (w)	-	ν	CH₂, CH₃
1488 (w)	1498 (w)	δ	CH₂, CH₃
1465 (s)	1443 (w)	δ	CH₂, CH₃
1412 (vw)	-	δ	CH₂, CH₃
1379 (vw)	-	δ	CH₂, CH₃
1234 (vw)	1264 (vw)	δ	CH₂, CH₃
1124 (vw)	1033 (s)	δ	CH₂, CH₃
1020 (vs)	-	ν	B-Cl
951 (s)	-	ν	B-Cl
820 (w)	-	-	
750 (s)	752 (vs)	ν	Si-C
683 (w)	-	δ	CH₂, CH₃
675 (w)	671 (w)	δ	CH₂, CH₃
611 (w)	-	-	
578 (s)	585 (vw)	δ	BB-Cl
544 (s)	-	-	
489 (w)	-	-	
435 (w)	440 (vs)	ν	Si-S
425 (w)	-	ν	Si-S

ν = stretching, δ = deformation

S2.2. Generation of [(Et₃Si)₂CH][Me₃NB₁₂Cl₁₁] and (Et₃Si)₂S at 253 K

[(Et₃Si)₂H][Me₃NB₁₂Cl₁₁] (150 mg, 0.19 mmol, 1 eq.) was dissolved in 1,2-Difluorobenzene (5 ml) in an H-shaped reaction vessel. CS₂ (0.06 mL, 0.09 mmol, 0.5 eq.) was condensed onto the reaction mixture at 77 K, which was warmed up to 253 K and was stirred for one hour. Finally, all volatile compounds were removed in vacuo. The residue was washed twice with n-pentane (3.5 mL). The colorless residue was transferred into an NMR tube and 1,2-difluorobenzene and C₆D₆ (9:1 ratio) were condensed in at 77 K. The NMR sample was allowed to melt only shortly before the measurement and placed in the pre-cooled (253 K) NMR device.

¹H-NMR (600.14 MHz, C₆H₄F₂/C₆D₆, 253 K): δ = 0.50 ([(CH₃CH₂)₃Si]₂S, 0.93 [(CH₃CH₂)₂SiS₂CH]⁺, 0.94 ([(CH₃CH₂)₃Si]₂S, 1.04 [(CH₃CH₂)₃SiS(CH)⁺, 3.36 [(H₂C)₃NB₁₂Cl₁₁]⁺); 11.58 [([(CH₃CH₂)₃SiS]₂CH]⁺); ¹³C-NMR (C₆H₄F₂/C₆D₆, 253 K): δ = 56.7 ([(CH₃)₃NB₁₂Cl₁₁]⁺); ²⁹Si-NMR (C₆H₄F₂/C₆D₆, 253 K): δ = 7.9 ([(CH₃CH₂)₃Si]₂S, 39.0,
49.8, 53.5 $[(\text{CH}_3\text{CH}_2)_2\text{SiS})_2\text{CH}]^+$, 58.2, 77.1; 11B-NMR ($\text{C}_6\text{H}_4\text{F}_2/\text{C}_6\text{D}_6$, 253 K): $\delta = -15.1$ (s, 1B, B12) -8.9 (s, 1B, B1), -10.2 (s, 5B, B2-6), -13.3 (s, 5B, B7-11), -15.1 (s, 1B, B12).

Figure S8: 1H-NMR (600.14 MHz, $\text{C}_6\text{H}_4\text{F}_2/\text{C}_6\text{D}_6$, 253 K) spectrum of $[(\text{Et}_3\text{SiSC(H)SiEt}_3)][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]$ and $(\text{Et}_3\text{Si})_2\text{S}$.
Figure S9: 1H, 29Si-NMR HMBC spectra (600.13 MHz, 119.25 MHz, C$_6$H$_4$F$_2$/C$_6$D$_6$, 253 K) spectrum of [(Et$_3$SiSC(H)SiEt$_3$)][Me$_3$NB$_{12}$Cl$_{11}$] and (Et$_3$Si)$_2$S.

Figure S10: 11B-NMR (192.54 MHz, C$_6$H$_4$F$_2$/C$_6$D$_6$, 290 K) spectrum of [(Et$_3$SiSC(H)SiEt$_3$)][Me$_3$NB$_{12}$Cl$_{11}$] and (Et$_3$Si)$_2$S.
Table S3: Comparison of the measured NMR resonances with literature data.

Solvent	Et$_3$S$_6$	(Et$_3$S)$_2$S	(Me$_3$Si)$_2$S	[(Et$_3$Si)$_2$CH]	[(Et$_3$Si)$_2$OSi]	[(Et$_3$Si)$_2$S]
C$_6$D$_6$	C$_6$F$_2$H/C$_6$D$_6$	CD$_2$Cl$_2$	C$_6$F$_2$H/C$_6$D$_6$	C$_6$D$_6$	CD$_2$Cl$_2$	CD$_2$Cl$_2$
CH$_2$	0.55	0.94	-	1.04	0.44	1.03
CH$_3$	0.98	0.50	0.33	0.93	0.66	0.82
CH	-	-	-	11.58	7.03	-
SiH	3.88	-	-	-	-	-
CH$_2$	NA	NA	-	-	3.5	6.8
CH$_3$	NA	4.1	-	4.8	7.7	NA
CH	-	-	-	172.6	-	-

1H: [A] = [Me$_3$NB$_2$(Cl)$_{11}$]; [B] = [B(C$_6$F$_5$)$_4$]; [C] = [HCB$_2$(Cl)$_{11}$].

S2.3 Generation of [(Et$_3$Si)$_2$CH][Me$_3$NB$_2$(Cl)$_{11}$], [(Et$_3$Si)$_2$SMe][Me$_3$NB$_2$(Cl)$_{11}$], (Et$_3$Si)$_2$S at 243K

[(Et$_3$Si)$_2$H][Me$_3$NB$_2$(Cl)$_{11}$] (205 mg, 0.25 mmol 1 eq.) was dissolved in 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CS$_2$ (0.15 mL, 2.5 mmol 10 eq.) was condensed onto the reaction mixture at 77 K, which then was warmed up to 243 K and stirred for two hours. Finally, all volatile compounds were removed in vacuo. The colorless residue was transferred into an NMR tube and 1,2-difluorobenzene and C$_6$D$_6$ (ratio 9:1) were condensed onto the product at 77 K. The NMR sample was allowed to melt only shortly before the measurement and directly placed in a pre-cooled (243 K) NMR device.

1H-NMR (600.14 MHz, C$_6$H$_4$F$_2$/C$_6$D$_6$, 243 K): $\delta = 0.76 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{CH}]^+$, 0.86 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{CH}]^+$, 0.91 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{SMe}]^+, 1.04 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{CH}]^+$, 2.33 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{SMe}]^+, 3.29 [(\text{H}_3\text{C})_3\text{NB}_2\text{Cl}_{12}]^+; 13C-NMR (C$_6$H$_4$F$_2$/C$_6$D$_6$, 243 K): 11.2 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{SCH}_3]^+ $\delta = 56.5 [(\text{H}_3\text{C})_3\text{NB}_2\text{Cl}_{12}]^+$; 29Si-NMR (C$_6H_4F_2$/C$_6D_6$, 243 K): $\delta = -1.6$, 7.9 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{S}], 13.7, 17.8, 33.3, 46.3 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{SCH}_3]^+$, 53.6 [(\text{CH}_3\text{CH}_2\text{SiS})_2\text{CH}]^+, 68.3, 108.7; 11B-NMR (C$_6$H$_4$F$_2$/C$_6$D$_6$, 243 K): $\delta = -9.1$ (s, 1B, B1), -10.5 (s, 5B, B2-6), -13.6 (s, 5B, B7-11), -15.5 (s, 1B, B12).
Figure S11: 1H-NMR (600.13 MHz, $C_6H_4F_2/C_6D_6$, 243 K) spectrum of the product containing $[(Et_3SiSC(H)SiEt_3)][Me_3NB_{12}Cl_{11}]$, $[(Et_3Si)_2SMe][Me_3NB_{12}Cl_{11}]$, and $(Et_3Si)_2S$.

Figure S12: 1H, 29Si-NMR HMBC spectrum (600.13 MHz, 119.25 MHz, $C_6H_4F_2/C_6D_6$, 243 K) of the product containing $[(Et_3SiSC(H)SiEt_3)][Me_3NB_{12}Cl_{11}]$, $[MeS(SiEt_3)_2][Me_3NB_{12}Cl_{11}]$, and $[(Et_3Si)_2S]$.
Figure S13: 1H, 13C-NMR HMBC (600.13 MHz, 150.92 MHz, C$_6$H$_4$F$_2$/C$_6$D$_6$, 243 K) spectrum of the product containing [(Et$_3$SiSC(H)SiEt)$_3$][Me$_3$NB$_{12}$Cl$_{11}$], [(Et$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$], and (Et$_3$Si)$_2$S.
Figure S14: 13C-NMR spectrum (150.92.24 MHz, C$_6$H$_4$F$_2$/C$_6$D$_6$, 243 K) of the product containing [(Et$_3$SiSC(H)SiEt$_3$)[Me$_3$NB$_{12}$Cl$_{11}$], [(Et$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$], and (Et$_3$Si)$_2$S.

Figure S15: 13B-NMR (192.54 MHz, C$_6$H$_4$F$_2$/C$_6$D$_6$, 290 K) spectrum of the product containing [(Et$_3$SiSC(H)SiEt$_3$)[Me$_3$NB$_{12}$Cl$_{11}$], and (Et$_3$Si)$_2$S.
Table S4: Comparison of the measured NMR resonances with literature data.[11]

	\([(\text{Et}_3\text{SiS(H)SiEt}_3)](\text{A})\)	\([(\text{Me}_3\text{Si})_2\text{SMc}])(\text{B})[11]	\([(\text{Et}_3\text{Si})_2\text{SMc}])(\text{A})\)
	\(\text{C}_6\text{F}_{12}/\text{C}_6\text{D}_6\)	\(\text{CD}_2\text{Cl}_2\)	\(\text{C}_6\text{F}_{12}/\text{C}_6\text{D}_6\)
\(^1\text{H}\)	CH\(_2\) 0.86	-	0.91
	CH\(_3\) 0.76	0.68	0.91
	CH 11.49	-	-
	SCH\(_3\) -	2.37	2.33
\(^{13}\text{C}\)	CH\(_2\) -	-	-
	CH\(_3\) -	-0.2	-
	SCH\(_3\) -	10.8	11.2
\(^{29}\text{Si}\)	53.6	40.8	46.3

\(\text{A} = [\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]\); \(\text{B} = [\text{B(C}_6\text{F}_5)_4]\)[11]

S2.4 Synthesis of \([\text{Et}_3\text{SiS(H)Me}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]\)

\([(\text{Et}_3\text{Si})_2\text{H}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]\) (77 mg, 0.1 mmol 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CS\(_2\) (0.01 mL, 0.1 mmol 1 eq.) was condensed onto the reaction mixture at 77 K, which subsequently was warmed up to room temperature. Triethylsilane (0.03 mL, 0.19 mmol, 19 eq.) was added and the reaction mixture was stirred for three days at room temperature. Diffusion of \(n\)-pentane into the reaction mixture yielded colorless crystals of \([\text{Et}_3\text{SiS(H)Me}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]\) suitable for X-ray diffraction analysis, which were selected by hand from the crude product.

\(^{29}\text{Si-NMR}\) (119.25 MHz, CD\(_2\)Cl\(_2\), 300 K) of the crude product: \(\delta = 2.3, 36.8, 38.5, 172.4\).

Figure S16: \(^1\text{H}, ^{29}\text{Si-NMR HMBC spectrum}\) (600.13 MHz, 119.25 MHz, CD\(_2\)Cl\(_2\), 293 K) of \([\text{Et}_3\text{SiS(H)Me}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]\).
S2.5 Generation of $[\text{Pr}_3\text{Si}(\text{H})\text{Me}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]$, $[\text{Pr}_3\text{SiSC(\text{H})SSiPr}_3][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]$ and $[\text{Pr}_3\text{Si(\text{C}_6\text{D}_6)}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]$.

$[\text{Pr}_3\text{Si}_2\text{H}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]$ (150 mg, 0.17 mmol 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CS$_2$ (0.01 mL, 0.13 mmol 0.7 eq.) was added by condensation at 77 K and the reaction mixture was warmed up to room temperature. Tri tert butylsilane (0.03 mL, 0.17 mmol, 1 eq.) was added and the reaction mixture was stirred for three days at room temperature. Diffusion of n-pentane into the reaction mixture yielded colorless crystals of $[\text{Pr}_3\text{Si}(\text{H})\text{Me}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}]-\frac{1}{2} \text{C}_6\text{F}_2\text{H}_4$ suitable for X-ray diffraction analysis, which were selected by hand from the crude product.

$^1\text{H}-\text{NMR}$ (600.14, C$_6$D$_6$, 300 K): $\delta = 0.80 \ [(\text{CH}_3)_2\text{CH}]_2\text{Si}(\text{C}_6\text{D}_6)^+$, 0.85 $ [(\text{CH}_3)_2\text{CH}]_2\text{Si}]_2\text{CH}]^+$, 1.07 $ [(\text{CH}_3)_2\text{CH}]_2\text{Si}]_2\text{CH}]^+$, 1.65 $ [(\text{CH}_3)]_2\text{CH}]_2\text{Si}(\text{C}_6\text{D}_6)^+$, 2.62$[(\text{CH}_3)_3\text{NB}_{12}\text{Cl}_{11}]^+$; 11.96 $ [(\text{CH}_3)_2\text{CH}]_2\text{Si}]_2\text{CH}]^+$; $^{13}\text{C}-\text{NMR}$ (150.92 MHz, C$_6$D$_6$, 300 K): $\delta = 17.5$ $ [(\text{CH}_3)_2\text{CH}]_2\text{Si}(\text{C}_6\text{D}_6)^+$, 17.5 $ [(\text{CH}_3)_2\text{CH}]_2\text{Si}(\text{C}_6\text{D}_6)^+$, 56.2 $ [(\text{CH}_3)_3\text{NB}_{12}\text{Cl}_{11}]^+$; $^{29}\text{Si}-\text{NMR}$ (119.24 MHz, C$_6$D$_6$, 300 K): $\delta = 4.9, 5.0, 13.4, 15.0, 35.0, 44.3, 46.2 [(\text{CH}_3)_2\text{CH}]_2\text{Si}]_2\text{CH}]^+$, 53.7, 56.7, 62.2, 119.1 $ [(\text{CH}_3)_2\text{CH}]_2\text{Si}(\text{C}_6\text{D}_6)^+$, 152.6; $^{11}\text{B}-\text{NMR}$ (192.54 MHz, C$_6$D$_6$, 300 K): $\delta = -9.7$ (s, 1B, B1), -10.5 (s, 5B, B2-6), -13.2 (s, 5B, B7-11), -14.4 (s, 1B, B12).

Figure S17: $^1\text{H}-\text{NMR}$ (600.13 MHz, C$_6$D$_6$, 300 K) spectrum of the product mixture.
Figure S18: 1H, 29Si-NMR HMBC (600.13 MHz, 119.25 MHz, C$_6$D$_6$, 300 K) spectrum of the product mixture.

Figure S19: 1H, 13C-NMR HMBC (600.13 MHz, 150.92 MHz, C$_6$D$_6$, 300 K) spectrum of the product mixture.
Figure S120: 13B-NMR (192.54 MHz, C$_6$D$_6$, 300 K) spectrum of the product mixture.

S2.6 Generation of [(Me$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$]

[([Me$_2$Et]Si)$_2$H][Me$_3$NB$_{12}$Cl$_{11}$] (220 mg, 0.29 mmol 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CS$_2$ (0.18 mL, 2.90 mmol 10 eq.) was condensed onto the reaction mixture at 77 K, which was subsequently warmed up to 273 K. Ethyldimethylsilane (0.15 mL, 0.35 mmol, 1.2 eq.) was added dropwise and the reaction mixture was stirred for three days at room temperature. Diffusion of n-pentane into the reaction mixture yielded colorless crystals of [(Me$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$] suitable for X-ray diffraction analysis, which were selected by hand from the crude product.

29Si-NMR (119.24 MHz, C$_6$D$_6$, 300 K) of the product mixture: $\delta = 34.0, 42.1, 44.3, 45.5, 45.8, 46.6, 47.8, 49.9, 53.7, 59.3$.
Figure S21: 1H, 29Si NMR HMBC (600.13 MHz, 119.25 MHz, C$_6$D$_6$, 300 K) spectrum of the product mixture containing [((Me$_2$Et)Si)$_2$H][Me$_3$NB$_{12}$Cl$_{11}$].

S2.7 Generation of [(Et$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$]

[((Et$_3$Si)$_2$H)][Me$_3$NB$_{12}$Cl$_{11}$] (350 mg, 0.43 mmol 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 mL) in an H-shaped reaction vessel. CS$_2$ (0.02 mL, 0.22 mmol 0.5 eq.) was condensed onto the reaction mixture at 77 K, which subsequently was warmed up to 273 K. Triethylsilane (0.05 mL, 0.43 mmol, 1 eq.) was added dropwise, the reaction mixture was stirred for three days at room temperature, and then the solvent was removed by filtration. Diffusion of n-pentane into the reaction mixture yielded colorless crystals of ([(Et$_3$Si)$_3$S)][Me$_3$NB$_{12}$Cl$_{11}$] and [(Et$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$]), which were selected by hand from the crude product.

29Si-NMR (119.24 MHz, C$_2$DCl$_2$, 300 K) of the product mixture: $\delta = 9.0$ (Et$_3$Si)$_2$S, 35.7, 36.8/36.9[(Et$_3$Si)$_3$S]$, 63.2.$
Figure S22: 1H, 29Si-NMR HMBC (119.24 MHz, CD$_2$Cl$_2$, 300 K) spectrum of the product mixture.

S2.8 Generation of [(‘Bu$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$] and [(‘Bu$_3$Si)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$]

[(‘Bu$_3$Si)$_2$H][Me$_3$NB$_{12}$Cl$_{11}$] (176 mg, 0.18 mmol 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CS$_2$ (0.01 mL, 0.18 mmol 0.5 eq.) was condensed onto the reaction mixture at 77 K, which subsequently was stirred for one hour at 273 K. ‘Buthylsilane (0.03 mL, 0.35 mmol, 1 eq.) was added dropwise and the reaction mixture was stirred for another three days at room temperature. Diffusion of n-pentane yielded colorless crystals of [(‘Bu$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$] suitable for X-ray diffraction analysis, which were selected by hand from the crude product.

29Si-NMR (119.24 MHz, C$_2$DCl$_2$, 300 K) of the product mixture: $\delta = -6.9, 0.0, 4.7, 16.5, 44.3, 49.1$ [(‘Bu$_3$Si)$_2$CH]$^+$, 167.9.
Figure S23: 1H, 29Si-NMR HMBC (119.24 MHz, CD$_2$Cl$_2$, 300 K) spectrum of the product mixture

S2.9 Generation of [(Et$_3$Si)$_3$S(SiEt$_2$)][Me$_3$NB$_{12}$Cl$_{11}$]

[(Et$_3$Si)$_2$H][Me$_3$NB$_{12}$Cl$_{11}$] (350 mg, 0.43 mmol 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CS$_2$ (0.02 mL, 0.22 mmol 0.5 eq.) was condensed onto the reaction mixture at 77 K, which was warmed up to room temperature. Triethylsilane (0.05 mL, 0.43 mmol, 1 eq.) was added dropwise and the reaction mixture was stirred for three days at room temperature. Diffusion of n-pentane yielded a mixture of colorless crystals of [(Et$_3$Si)$_3$S(SiEt$_2$)][Me$_3$NB$_{12}$Cl$_{11}$] and [(Et$_3$Si)$_3$S][Me$_3$NB$_{12}$Cl$_{11}$], which were selected by hand from the crude product.

29Si-NMR (119.24 MHz, C$_2$DCl$_2$, 300 K) of the product mixture: $\delta = -15.0, -10.7, 7.5, 8.5, 31.6, 33.7, 35.6, 36.8, 144.2, 149.9$.
Figure S24: 1H, 29Si-NMR HMBC (119.24 MHz, CD$_2$Cl$_2$, 300 K) spectrum of the product mixture.

Figure S25: 1H-NMR spectrum (600.27 MHz, CD$_2$Cl$_2$, 300 K) of the product mixture.
Figure S26: 13C-NMR (150.95 MHz, CD$_2$Cl$_2$, 300 K) spectrum of the product mixture

S2.10 Generation of [(Et$_3$SiO)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$]·(Et$_3$Si)$_2$O

[(Et$_3$Si)$_2$H][Me$_3$NB$_{12}$Cl$_{11}$] (150 mg, 0.19 mmol 1 eq.) was dissolved in dry 1,2-difluorobenzene (5 ml) in an H-shaped reaction vessel. CO$_2$ (7 atm, 56.0 mmol 3.3 eq.) was condensed at 77 K into the reaction mixture, which subsequently was warmed up slowly to room temperature (DANGER OF EXPLOSION!!!) and stirred for three days. All volatiles were removed and 1,2-difluorobenzene (5 ml) was condensed onto the residue. Diffusion of n-pentane yielded colorless crystals of [(Et$_3$SiO)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$]·(Et$_3$Si)$_2$O suitable for X-ray diffraction analysis, which were selected by hand from the crude product.
S3 Crystal structures

S3.1 Crystallographic data

Table S5: Crystallographic data, part 1.

CCDC-Nr.	Formula	Name	Space group	a/µm	b/µm	c/µm	α/°	β/°	γ/°	U/Å³	Z	μ(Mo-Kα)/mm⁻¹	No. of data collected	No. of unique data	Rm	R₁, wR₂ (I>2σ(I))	R₁, wR₂ (all data)
2034324	C₁₃H₃₀B₁₂Cl₁₁FNSSi	acvm56	Pccn	3032.34(15)	1582.33(8)	1423.65(7)	90	90	90	6830.9(6)	8	1.009	19210	6696	0.0431	0.0459, 0.1146	
2034325	C₁₆H₃₆B₁₂Cl₁₁NSSiF	acvm61	Pccn	3245.88(16)	1608.32(5)	1438.06(9)	90	90	90	7507.3(6)	8	0.922	27268	7365	0.0384	0.0705, 0.1720	
2034331	C₁₀H₃₀B₁₂Cl₁₁NSSi₂	acvm74kl	C2/c	2702.10(11)	986.13(5)	2606.42(15)	90	92.903(4)	92	6936.2(6)	8	1.020	30520	6794	0.0550	0.0769, 0.1720	
2034328	[Et₃Si(H)Me][A] : ½ C₆F₆H₄	Acvm99.2.2	P2₁/c	1246.42(7)	1613.08(9)	1990.33(10)	90	90	90	3916.1(4)	4	0.911	21300	7700	0.0274	0.0366, 0.0827	
2034329	[iPrSiS(H)Me][A] : ½ C₆F₆H₄	Acvm95.2	Pca2₁	1952.94(5)	1955.44(5)	2622.29(5)	90	90	90	10014.2(3)	4	0.725	23639	13562	0.0827	0.0381, 0.0835	
2034331	[(Me₃Si)₂SMe][A]	[(Et₃Si)₂SMe][A] : ½ C₆F₆H₄	C₁₆H₃₆B₁₂Cl₁₁NSSi₂	2034328	150(1)	149.8(10)	90	90	90	6936.2(6)	8	1.020	27268	6794	0.0550	0.0769, 0.1720	
2034329	[(Bu₂Si)₂SMe][A] : ½ C₆F₆H₄	[(Bu₂Si)₂SMe][A]	C₂₈H₆₆B₁₂Cl₁₁NSSi₂	2034331	150(1)	150(1)	90	90	90	10014.2(3)	8	0.725	27268	6794	0.0550	0.0769, 0.1720	

\[R₁ = \sum |F_o| - |F_c| / \sum |F_o|, \ wR₂ = (\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^4)])^{1/2}; [A] = [Me₃NB₁₂Cl₁₁]⁻]
Table S6: Crystallographic data, part 2.

	[(Et₃Si)₃S][A]	[(Et₃Si)₂S(SiEt₂H)][A]	[Et₃SiOC(H)OSiEt₃][A] · (Et₃Si)₂O
CCDC-Nr.	2034326	2034327	2034330
Formula	C₂₁H₅₆B₁₂Cl₁₁NSSi₃	C₁₉₅₈H₅₁₁B₁₂Cl₁₁NSSi₃	C₃₁H₇₈B₂₂Cl₁₂N₂O₃Si₄
Name	acvm37krist	acvm101	acvmCO2.2
M	956.65	936.77	1674.62
Temperature / K	150(1)	152(4)	149.8(4)
Crystal system	triclinic	orthorhombic	tetragonal
Space group	P̅₁	P₂₁₂₁	P₄₁₂₁₂₁
a/pm	976.82(3)	1408.64(4)	1414.73(3)
b/pm	1385.26(4)	1711.38(5)	1414.73(3)
c/pm	1700.20(7)	18.0545(5)	3766.53(10)
α/°	84.283(3)	90	90
β/°	89.539(3)	90	90
γ/°	84.382(3)	90	90
U/Å³	2278.19(13)	4352.4(2)	7538.6(3)
Z	2	4	4
μ(Mo-Kα)/mm⁻¹	0.816	0.852	0.894
No. of data collected	18539	23048	38814
No. of unique data	9429	9945	7395
R cryst	0.0211	0.0236	0.0356
R₁, wR₂ (I>2σ(I))	0.0321, 0.0797	0.0347, 0.0765	0.0399, 0.0892
R₁, wR₂ (all data)	0.0400, 0.0842	0.0442, 0.0807	0.0455, 0.0920

\(^a R₁ = \sum |F_o| - |F_c| / |F_o|, wR₂ = (∑|w(F_o^2-F_c^2)|)^{1/2} / ∑|wF_o^2|^{1/2}; [A] = [Me₃NB₁₂Cl₁₁] \)
S3.2 Treatment of disorder in the crystal structures

Some of the crystal structures suffer from positional disorder in particular of the alkyl chains. The disordered parts were refined over two positions with fixed occupancies. SADI, DFIX, and ISOR restraints within the Shelx software were used.

S3.3 Graphical representations of the crystal structures

Figure S27. Part of the crystal structure of $[\text{Et}_3\text{SiS(H)Me}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}] \cdot \frac{1}{2} \text{C}_6\text{F}_{2}\text{H}_4$. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii. Disordered atoms were omitted for clarity.

Figure S28. Part of the crystal structure of $[\text{iPr}_3\text{SiS(H)Me}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}] \cdot \frac{1}{2} \text{C}_6\text{F}_{2}\text{H}_4$. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii. Disordered atoms were omitted for clarity.
Figure S29. Part of the crystal structure of [(Me$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$]. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii. Disordered atoms were omitted for clarity.

Figure S30. Part of the crystal structure of [(Et$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$]. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii. Disordered atoms were omitted for clarity.
Figure S31. Part of the crystal structure of [(tBu$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$]. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii.

Figure S32. Part of the crystal structure of [(Et$_3$Si)$_3$S][Me$_3$NB$_{12}$Cl$_{11}$]. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii.
Figure S33. Part of the crystal structure of [(Et$_3$Si)$_2$S(SiHEt$_2$)][Me$_3$NB$_{12}$Cl$_{11}$]. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii. Disordered atoms were omitted for clarity.

Figure S34. Part of the crystal structure of (Et$_3$SiOC(H)OSiEt$_3$)][Me$_3$NB$_{12}$Cl$_{11}$]·(Et$_3$Si)$_2$O. Ellipsoids are drawn at 50% probability and hydrogen atoms are drawn with arbitrary radii. Disordered atoms were omitted for clarity.
S3.4 Fractional atomic coordinates

Table S7: Fractional atomic coordinates of [(Et₃Si)S(H)Me][Me₃NB₁₂Cl₁₁] · ½ C₆F₂H₄.

Atom	x	y	z	U(eq)
Cl₁₀	3887.5(3)	5631.5(5)	9798.7(5)	31.42(19)
Cl₁₇	3374.2(2)	3428.1(5)	6626.2(5)	28.23(18)
Cl₁₃	4160.0(3)	4395.4(5)	5133.1(5)	30.12(19)
Cl₁₅	4685.5(3)	6642.9(5)	8442.7(6)	31.9(2)
Cl₁₉	4875.1(3)	4479.0(5)	8978.5(6)	34.4(2)
Cl₁₆	3499.4(3)	6961.4(5)	7943.1(7)	37.0(2)
Cl₁₂	3803.8(3)	3404.4(5)	8991.8(5)	33.6(2)
Cl₁₂	3154.1(3)	5534.6(6)	5954.3(6)	35.8(2)
Cl₁₄	5115.1(2)	5126.7(6)	6639.5(6)	34.0(2)
Cl₁₈	4563.9(2)	3165.5(5)	7011.6(6)	29.07(19)
Cl₁₁	2962.7(2)	4979.0(5)	8344.3(6)	35.7(2)
Si₁	6781.7(3)	5740.9(6)	7415.2(7)	37.3(2)
S₁	6098.1(3)	6366.0(5)	7473.5(6)	30.3(2)
N₁	4253.0(9)	6640.1(16)	5955.0(18)	29.2(6)
B₁₀	3711.8(10)	4272(2)	7052(2)	18.5(6)
C₈	6976.2(11)	5588(2)	8616(3)	39.2(9)
B₃	4101.4(10)	4794(2)	6303(2)	19.3(7)
B₁₁	3510.7(10)	5016(2)	7886(2)	22.1(7)
C₉	7077.7(13)	6400(3)	9168(3)	48.0(10)
B₁₀	3958.6(11)	5328(2)	8600(2)	21.8(7)
C₁₀	5855.4(11)	6065(2)	8587(2)	40.0(9)
F₁	2732.0(18)	8203(4)	7147(4)	86.1(18)
B₅	4353.0(11)	5850(2)	7880(2)	21.0(7)
C₂	4506.6(18)	6351(3)	5113(3)	72.4(15)
B₁	4147.1(11)	5883(2)	6674(2)	21.6(7)
B₄	4554.6(10)	5120(2)	7027(2)	20.6(7)
B₂	3618.1(11)	5334(2)	6704(2)	21.9(7)
B₁₂	3919.1(11)	4261(2)	8214(2)	20.7(7)
C₅	6956.7(15)	6632(3)	5727(3)	42.8(14)
C₁	3844.7(16)	7023(3)	5559(4)	80.1(17)
B₉	4439.4(10)	4782(2)	8209(2)	21.1(7)
C₃	4501(2)	7331(3)	6399(3)	91(2)
C₆	6660.1(15)	4756(3)	6801(3)	52.7(11)
B₈	4286.2(10)	4140(2)	7244(2)	18.9(7)
B₆	3777.2(11)	6003(2)	7663(2)	21.5(7)
C₇	6296.5(15)	4232(3)	7227(4)	67.2(14)
Atom	x	y	z	U(eq)
------	------------	------------	------------	----------
Cl17A	6022.0(14)	4359.5(18)	9806(3)	44.7(9)
Cl12A	5234.8(14)	3396(3)	8523(4)	46.5(8)
Cl9A	6530.6(16)	6387(3)	6581(4)	45.1(9)
Cl10	5430.7(12)	6772.4(17)	6978(2)	42.8(8)
Cl13A	6325(2)	2950(3)	8036(3)	52.3(10)
Cl5A	5752.6(13)	5493(4)	5157(3)	51.1(9)
Cl6A	4856.1(14)	4926(3)	6741(2)	52.6(9)
Cl12	6160.1(19)	6506(2)	8912(3)	54.9(11)
Cl11	5122.8(18)	5573(2)	8995(4)	53.6(10)
Si1	6698.0(5)	5761.4(9)	2420.3(10)	47.0(4)
Cl8A	6890(2)	4849(4)	8304(5)	60.3(11)
Cl4A	6673.6(11)	4261(3)	5967(3)	58.5(9)
S1A	6055.9(10)	6475.6(14)	2370.2(15)	51.8(9)
N1	5610.5(15)	3299(3)	6041(3)	53.8(12)
B2	5565.2(15)	4120(3)	7923(4)	32.9(11)
B5	5814.8(16)	5094(3)	6330(3)	34.7(11)
B4	6252.5(17)	4511(3)	6707(4)	39.0(12)
B10	5678.4(17)	5780(3)	7249(3)	34.1(11)
B1	5740.3(16)	4040(3)	6724(4)	35.9(11)
B6	5390.2(16)	4849(3)	7078(4)	35.0(11)
C16	7330.9(18)	2286(4)	4173(5)	66.2(16)
B7	5954.7(17)	4609(3)	8599(3)	34.2(11)
B9	6203.1(17)	5575(3)	7016(4)	36.9(12)
B3	6093.7(16)	3904(3)	7700(4)	37.5(12)
B12	6024.7(18)	5634(3)	8178(3)	37.7(12)

Table S8: Fractional atomic coordinates of [(^3)Pr$_3$SiS(H)Me][Me$_3$NB$_{12}$Cl$_{11}$]·½ C$_6$F$_2$H$_4$.
B11	5524.1(17)	5190(3)	8222(4)	36.3(12)
B8	6377.7(17)	4841(3)	7864(4)	38.8(12)
C15	7139(2)	2056(4)	4945(6)	73.3(19)
C8A	6931(3)	6564(5)	3206(5)	54(2)
C13	6214(2)	4300(4)	2432(6)	84(2)
C5A	6870.5(19)	5682(4)	1206(4)	36.4(15)
C11A	6497(2)	4802(4)	3032(5)	46.2(19)
C12	6878(2)	4258(4)	3378(5)	79(2)
C7	7243(2)	5094(4)	1103(6)	78(2)
C6A	6958(3)	6506(5)	759(5)	49.1(19)
F1	7158(3)	2067(4)	6599(5)	204(4)
C10A	6774(4)	6585(6)	4189(6)	68(3)
C14	7307(3)	2275(4)	5771(5)	90(3)
C1B	5134(6)	3253(15)	5940(20)	108(9)
C2B	5676(9)	2450(12)	6467(19)	95(8)
C3B	5853(9)	3276(17)	5153(17)	110(9)
C1A	5388(7)	2657(11)	6496(12)	111(7)
C2A	5994(5)	2848(10)	5682(15)	114(6)
C3A	5392(6)	3605(8)	5201(10)	99(6)
C16B	4908(8)	5000(20)	6730(20)	131(12)
C17B	6108(9)	4189(19)	9714(16)	114(8)
C13B	6342(9)	2852(16)	7840(20)	116(10)
C11	6293(11)	6320(20)	8920(20)	103(9)
C18B	6911(9)	4599(18)	8080(20)	79(8)
C12	5234(9)	5480(17)	9070(20)	89(8)
C13	5553(8)	6734(14)	7070(18)	113(9)
C19B	6587(8)	6179(16)	6418(17)	59(5)
C14B	6627(8)	4001(16)	5816(18)	111(8)
C15B	5735(8)	5255(18)	5156(14)	84(8)
C12B	5246(9)	3313(17)	8370(20)	102(10)
C5B	7194(13)	5720(20)	1460(30)	107(12)
C11B	6624(9)	4599(11)	2580(20)	76(8)
C9	7414(3)	6404(6)	3206(8)	120(3)
S1B	6286(4)	6690(5)	2249(6)	80(3)
C4	5842(2)	6233(5)	1264(5)	80(2)
C6B	7195(13)	6720(20)	1050(30)	100(11)
C8B	7089(9)	6170(20)	3289(18)	77(8)
C10B	6987(14)	6360(30)	4150(30)	106(14)
Table S9: Fractional atomic coordinates of [(Me₃Si)₂SMe][Me₃NB₁₂Cl₁₁].

Atom	x	y	z	U(eq)
Cl₁₁	1855.7(5)	3329.8(13)	2210.9(6)	50.5(4)
Cl₃	777.1(6)	8420.1(15)	690.3(6)	62.5(5)
Cl₅	2630.0(4)	5815.9(14)	1689.6(6)	49.8(4)
Cl₁₀	2017.1(6)	3503.7(13)	833.1(6)	55.0(4)
Cl₆	1770.8(6)	6651.8(16)	2720.2(5)	58.3(4)
Cl₄	2032.2(6)	6981.8(15)	436.5(6)	57.8(4)
Cl₉	907.8(7)	5107.7(17)	227.0(6)	68.5(5)
Cl₁₂	812.4(6)	2749.5(15)	1300.8(8)	67.9(5)
Cl₁₂	652.2(7)	8351(2)	2075.5(7)	78.4(6)
Cl₈	74.3(5)	5801(2)	1232.1(8)	77.1(6)
S₁	1106.6(6)	-352(2)	3657.3(7)	66.2(5)
Cl₇	657.4(6)	4852(2)	2465.6(8)	81.4(6)
Si₂	1342.9(7)	-1331(2)	4402.3(8)	68.4(5)
Si₁	716.4(7)	1648(2)	3744.3(8)	73.1(6)
B₅	1971.6(19)	5962(5)	1578(2)	31.4(11)
N₁	1878.1(19)	8980(4)	1610.7(19)	49.6(12)
B₄	1687(2)	6507(5)	973(2)	36.6(12)
B₃	1096(2)	7197(6)	1095(2)	40.3(13)
B₁₀	1670(2)	4752(5)	1158(2)	36.8(12)
B₁	1625(2)	7536(5)	1540(2)	35.6(12)
B₆	1559(2)	6358(6)	2066(2)	36.7(12)
B₁₁	1593(2)	4673(5)	1826(2)	36.4(12)
B₂	1023(2)	7136(7)	1766(2)	43.7(14)
B₉	1139(2)	5520(6)	861(2)	43.6(14)
B₇	1013(2)	5389(7)	1946(2)	43.7(14)
B₁₂	1083(2)	4387(6)	1384(3)	44.1(14)
B₈	731(2)	5889(7)	1352(3)	48.5(16)
C₄	327(3)	1612(10)	4295(3)	93(3)
C₁₁	612(3)	-1476(10)	3434(3)	92(3)
C₇	790(3)	-1651(8)	4765(3)	80(2)
C₁	1914(4)	9456(8)	2143(3)	90(3)
C₃	2413(3)	8990(8)	1470(5)	113(4)
C₈	1782(3)	-135(9)	4715(3)	89(3)
C₂	1625(4)	10017(7)	1292(4)	106(4)
C₉	1661(4)	-2895(10)	4181(4)	115(4)
C₅	371(4)	1782(10)	3131(3)	96(3)
C₆	1243(4)	2921(12)	3809(5)	141(5)
Table S10: Fractional atomic coordinates of \([\text{Et}_3\text{Si})_2\text{SMe}][\text{Me}_3\text{NB}_{12}\text{Cl}_{11}].

Atom	x	y	z	U(eq)
Cl2	5516.8(5)	6651.9(4)	2625.8(3)	21.22(13)
Cl8	2948.2(5)	7222.0(4)	1543.7(3)	25.33(14)
Cl6	5076.3(5)	6325.5(4)	4382.9(3)	23.10(14)
Cl7	3756.5(5)	7955.0(4)	3342.9(3)	26.02(14)
Cl5	3020.1(5)	4568.0(4)	4315.0(3)	27.69(15)
Cl4	2131.9(5)	3884.3(4)	2509.1(3)	27.82(15)
S1	2487.0(5)	2337.8(4)	5046.3(3)	21.31(14)
Cl3	3814.7(5)	5100.2(4)	1477.2(3)	25.42(15)
Cl10	531.2(5)	5242.6(5)	3238.4(3)	30.74(16)
Cl9	984.9(5)	5577.3(4)	1487.7(3)	29.72(16)
Cl12	914.3(5)	7348.1(4)	2623.8(3)	32.18(16)
Cl11	2276.6(5)	6718.3(5)	4389.4(3)	31.06(16)
Si1	2661.3(6)	1204.2(5)	4427.5(4)	25.42(17)
Si2	740.4(6)	2691.5(5)	5044.1(4)	29.52(18)
N1	5071.6(16)	4511.3(12)	3239.1(10)	18.5(4)
C1	5984(2)	4701.8(18)	2880.4(14)	30.2(6)
B2	4266(2)	6225.6(16)	2792.8(12)	14.4(5)
C10	3091(2)	2025.7(18)	5922.1(13)	31.9(6)
B6	4052(2)	6066.8(17)	3642.7(13)	16.5(5)
B1	4103(2)	5178.5(17)	3097.6(13)	16.2(5)
C8	2037(2)	290.8(17)	4766.8(15)	33.6(7)
B3	3435(2)	5494.9(17)	2240.8(13)	17.1(6)
C4	4175(2)	1107.5(19)	4578.6(16)	35.3(7)
C2	4660(2)	3665.2(17)	2997.9(17)	38.1(7)
B5	3073(2)	5243.6(18)	3610.5(13)	18.3(6)
B10	1812(2)	5590.3(18)	3084.0(14)	20.2(6)
C3	5605(2)	4424(2)	3988.6(13)	38.2(7)
B8	3000(2)	6553.5(17)	2264.3(13)	17.0(6)
B9	2035(2)	5747.2(18)	2235.9(13)	18.9(6)
C13	928(2)	3410(2)	5786.9(15)	37.0(7)
C5	4782(3)	1857(2)	4381.8(17)	42.4(8)
B4	2675(2)	4899.3(17)	2739.9(13)	17.6(6)
B7	3380(2)	6899.9(17)	3130.4(13)	17.2(6)
C15	-92(3)	1788(2)	5163.7(16)	39.2(7)
C6	1992(3)	1516(2)	3542.4(13)	39.0(7)
C11	295(3)	3193(2)	4180.9(15)	39.7(7)
B11	2650(2)	6304.5(19)	3637.6(13)	19.7(6)
B12	2000(2)	6610.7(18)	2787.2(14)	20.2(6)
C12	-714(3)	3713(2)	4137.9(17)	46.2(8)
Atom	x	y	z	U(eq)
-------	------	------	------	---------
Si3	6871.5(6)	1039.7(7)	6505.0(5)	14.5(3)
Cl19	4199.0(6)	4847.6(7)	5516.4(5)	23.0(3)
Cl9	5567.5(6)	11057.2(8)	2759.3(5)	27.7(3)
Si1	4375.7(6)	4120.9(7)	3788.2(5)	14.7(3)
S1	4643.4(6)	5095.5(6)	3357.9(5)	15.6(3)
Cl5	4525.7(6)	11609.5(7)	3784.4(6)	29.2(3)
Cl24	4537.1(5)	4829.9(7)	6922.0(5)	24.2(3)
Cl18	1961.0(6)	3408.0(7)	6567.9(5)	22.4(3)
Si4	6805.6(6)	-965.8(7)	6416.3(5)	14.6(3)
Cl14	3933.1(6)	10214.1(7)	2887.5(5)	25.1(3)
S2	7110.2(5)	1.0(6)	6845.8(5)	14.6(3)
Cl21	3175.5(6)	5832.1(7)	7533.2(5)	25.7(3)
Cl6	5122.9(7)	10761.2(9)	4975.3(5)	32.9(4)
Cl14	2622.6(6)	3960.9(7)	5308.5(5)	21.5(3)
Cl10	6283.3(7)	11374.4(8)	4034.7(6)	34.4(4)
Cl15	2731.0(6)	5901.0(7)	5304.4(5)	26.8(3)
Cl12	6890.2(6)	9921.8(9)	3269.5(5)	32.3(4)
Si2	4434.4(7)	6097.6(7)	3759.3(6)	17.4(3)
Cl20	3905.1(6)	6371.5(7)	6297.8(6)	27.0(3)
Cl16	2150.3(6)	6529.3(7)	6568.3(5)	24.9(3)
Cl22	3082.6(6)	3969.3(7)	7528.5(5)	23.3(3)
Cl18	5418.5(7)	9231.9(8)	2582.6(5)	29.4(3)
Cl17	1568.1(6)	4987.8(7)	7319.9(5)	21.4(3)
Cl23	3730.7(6)	3362.5(7)	6277.9(5)	22.5(3)
Cl3	4273.5(7)	8529.7(7)	3465.6(6)	30.4(3)
Cl11	6542.0(6)	9713.0(9)	4667.4(5)	37.2(4)
Cl7	6038.3(7)	8379.5(8)	3749.8(6)	37.3(4)
Cl12	4928.2(7)	8829.8(8)	4781.2(5)	31.8(3)
C19	5579(2)	5102(3)	3331(2)	22.2(12)
N2	1292.3(18)	5015(2)	5954.0(17)	17.1(10)
C52	7474(2)	-1112(3)	5912(2)	19.7(11)
C56	8048(2)	-33(3)	6860(2)	19.6(12)
B20	3387(2)	5624(3)	6360(2)	14.2(12)

Table S11: Fractional atomic coordinates of [(t-Bu$_3$Si)$_2$SMe][Me$_3$NB$_{12}$Cl$_{11}$].
	3650.2(18)	10029(2)	4254.2(17)	19.9(10)
B5	4854(3)	10757(3)	3797(2)	15.5(12)
C24	5049(2)	3989(3)	4281(2)	20.2(12)
B17	2233(2)	4954(3)	6844(2)	14.4(12)
B24	3692(3)	4876(3)	6656(2)	14.3(12)
B16	2487(3)	5692(3)	6475(2)	13.6(12)
B10	5751(3)	10650(3)	3899(2)	19.9(14)
C49	5300(2)	-947(3)	6417(2)	25.3(13)
C29	4945(2)	3432(3)	2867(2)	22.3(12)
C32	5931(2)	1011(3)	6359(2)	22.1(12)
C2	3625(3)	10024(3)	4826(2)	33.5(16)
B4	4589(2)	10103(3)	3358(2)	15.3(12)
B7	5632(3)	9196(3)	3767(2)	21.6(14)
C36	7479(3)	1106(3)	5954(2)	24.1(12)
B9	5406(3)	10500(3)	3286(2)	15.2(12)
B15	2784(3)	5388(3)	5872(2)	14.2(12)
B14	2731(3)	4471(3)	5869(2)	12.9(12)
C48	5958(2)	-777(3)	6116(2)	21.0(12)
C28	4347(2)	3494(3)	3250(2)	20.3(12)
B19	3533(2)	4881(3)	5986(2)	15.5(12)
B11	5879(3)	9846(3)	4194(2)	20.9(14)
B8	5336(3)	9610(3)	3202(2)	16.3(12)
C53	7532(2)	-1859(3)	5727(2)	20.1(11)
C20	3519(2)	4307(3)	4077(2)	21.9(12)
C47	7133(3)	-2036(3)	7820(2)	32.4(14)
C30	4731(3)	3003(4)	2414(2)	39.5(16)
C12	3131(2)	6824(3)	3810(2)	27.2(13)
C43	8252(2)	1956(3)	7026(2)	26.9(13)
C33	5499(2)	1647(3)	6451(2)	20.4(12)
C13	2354(2)	6729(3)	3839(2)	34.9(15)
B22	2991(2)	4457(3)	6957(2)	15.1(12)
C18	5327(3)	7180(3)	2506(2)	33.8(14)
B1	4418(2)	10000(3)	4030(2)	14.9(12)
C25	5121(2)	3251(3)	4476(2)	20.8(12)
C1	3265(2)	10644(3)	4088(2)	28.6(14)
C54	6867(3)	-2125(3)	5504(2)	30.6(13)
C37	7556(3)	1811(3)	5702(2)	23.0(12)
C46	8026(2)	-1864(3)	7148(2)	27.4(13)
C16	4821(3)	6679(3)	2751.9(19)	23.2(12)
B12	6046(3)	9948(3)	3538(2)	19.3(14)
C3	3237(2)	9423(3)	4082(2)	29.2(14)
C34	5717(3)	2258(3)	6132(2)	31.7(14)
---	-----	-----	-----	-----
C31	5587(3)	3119(3)	3110(2)	28.7(14)
C55	8105(3)	-1914(3)	5327(2)	34.7(14)
C26	5727(3)	3179(4)	4826(3)	43.8(18)
C45	7352(2)	-1594(3)	7362.6(19)	18.3(11)
C50	5147(3)	-1707(3)	6408(2)	35.5(16)
C11	3472(2)	6124(3)	3768(2)	24.9(12)
C23	2694(3)	3396(3)	3805(3)	42.7(17)
B18	2395(3)	4200(3)	6476(2)	15.5(12)
C8	5165(3)	6741(3)	4591(2)	24.6(12)
C27	4478(3)	2981(3)	4737(2)	34.1(15)
C44	6775(2)	-1577(3)	6964.2(19)	17.5(11)
B13	2062(3)	4969(3)	6170(2)	14.3(12)
C40	7010(2)	1604(3)	7067(2)	20.1(11)
C51	4687(2)	-549(3)	6204(3)	34.6(15)
C15	4903(2)	6707(3)	3337.1(19)	21.2(11)
C35	4737(2)	1500(3)	6349(2)	24.8(12)
C9	5933(3)	6720(4)	4493(2)	42.8(17)
C17	4099(3)	6837(3)	2579(2)	35.1(14)
C21	2878(2)	4138(3)	3760(2)	32.3(15)
C42	7604(3)	2081(3)	7835(2)	34.6(15)
C41	7685(2)	1653(3)	7358(2)	21.8(12)
C38	8302(3)	1955(4)	5554(2)	35.4(15)
C4	944(2)	5657(3)	6122(2)	25.0(13)
C22	2267(3)	4582(4)	3935(3)	44.7(18)
B3	4735(3)	9285(3)	3648(2)	19.1(13)
B23	3300(2)	4157(3)	6356(2)	14.9(12)
C14	3375(3)	7237(3)	4276(2)	35.9(15)
B2	5065(3)	9440(3)	4275(2)	20.2(13)
B21	3035(2)	5359(3)	6959(2)	15.7(13)
C39	7101(3)	1858(4)	5229(2)	43.8(18)
C5	860(2)	4429(3)	6131(2)	27.0(14)
C6	1264(3)	5008(3)	5379(2)	32.6(15)
C10	5031(3)	6886(4)	5150(2)	45.2(18)
B6	5146(3)	10344(3)	4365(2)	21.2(14)
C7	4815(3)	6074(3)	4409(2)	29.2(14)
Table S12: Fractional atomic coordinates of [(Et$_3$Si)$_3$S][Me$_3$NB$_{12}$Cl$_{11}$].

Atom	x	y	z	U(eq)
Cl7	5939.3(4)	3815.4(3)	864.6(3)	29.18(11)
S1	5348.6(5)	2714.4(3)	6828.0(3)	25.70(11)
Cl2	8693.8(5)	5101.9(3)	1445.7(3)	30.27(11)
Cl12	5553.6(4)	1764.9(4)	2445.2(3)	32.67(12)
Cl5	11552.4(5)	1340.2(3)	2960.0(3)	33.18(12)
Cl3	9123.3(5)	3292.6(4)	-99.5(3)	32.47(11)
Cl6	10093.4(5)	3853.7(4)	3354.5(3)	32.48(11)
Cl4	10753.7(5)	930.5(3)	858.8(3)	33.97(12)
Cl8	7207.8(5)	1304.1(3)	557.1(3)	34.22(12)
Cl9	8644.5(5)	91.3(3)	2406.0(3)	34.80(12)
Si3	4012.8(5)	2242.3(4)	5891.0(3)	31.64(13)
Si1	7579.2(5)	2393.7(4)	6496.9(3)	29.47(13)
Si2	4886.6(6)	1967.2(4)	8030.6(3)	31.64(13)
N1	11803.7(14)	3342.3(11)	1419.4(9)	24.1(3)
C20	4755(2)	2770.0(17)	4949.8(11)	34.9(5)
C8	7806(2)	1207.5(14)	6072.6(12)	33.4(4)
C18	4053(2)	888.5(15)	6021.5(13)	36.6(5)
C10	5686(2)	2689.5(14)	8738.2(12)	36.8(5)
C15	5657(2)	184.5(15)	8926.1(13)	39.4(5)
C1	12532(2)	3650.6(17)	2110.8(13)	39.3(5)
C2	12730.0(19)	2536.9(16)	1111.0(14)	40.6(5)
B3	8981.6(19)	2947.0(14)	944.5(12)	20.3(4)
B1	10330.3(19)	2981.7(14)	1655.2(12)	19.9(4)
B4	9804.7(19)	1819.3(14)	1397.7(12)	21.1(4)
B5	10128(2)	1991.4(14)	2411.6(12)	21.8(4)
C6	7931(2)	3435.2(17)	5769.3(14)	44.0(6)
B10	8492(2)	2213.9(15)	2878.3(12)	23.3(4)
C14	5601(3)	670.3(15)	8089.2(13)	46.8(6)
Atom	x	y	z	U(eq)
------	--------	--------	--------	--------
Cl8	3764.4(6)	5289.1(5)	2036.2(5)	28.04(19)
Cl12	3498.9(6)	4321.5(5)	3832.4(5)	28.54(19)
S1	120.0(6)	3500.6(5)	3630.3(5)	23.17(18)
Cl2	3637.7(7)	7359.6(6)	2318.5(5)	34.6(2)
Cl7	2160.7(6)	6108.2(6)	3406.0(6)	34.1(2)
Cl10	5510.4(8)	4893.1(6)	4988.5(6)	37.6(2)
Cl9	5844.5(7)	4519.7(6)	3029.1(6)	36.0(2)
Cl3	5917.7(7)	6295.8(6)	2036.6(6)	36.9(2)
Cl11	3276.0(8)	5849.8(6)	5243.3(5)	35.8(2)
Cl6	3225.4(8)	7649.0(6)	4353.0(6)	39.9(2)
Cl4	7044.2(6)	6097.7(7)	3876.8(7)	44.2(3)
Cl5	5396.5(9)	6941.3(6)	5306.4(5)	41.1(3)
Si3	-404.7(7)	3627.8(6)	2472.4(5)	25.5(2)
Si1	-232.9(8)	2293.0(6)	4010.2(7)	33.9(3)
Si2	-492.6(8)	4436.9(7)	4346.5(6)	33.2(2)
N1	5635(2)	7862.7(17)	3474.8(18)	31.4(7)
Cl18	400.3	4345(2)	2049(2)	31.8(8)
Cl11	3937(3)	5986(2)	4419(2)	21.8(8)
B8	4191(3)	5713(2)	2869(2)	19.6(7)
B9	5194(3)	5344(2)	3344(2)	21.6(8)
C16	-1672(3)	3901(3)	2472(3)	43.8(11)
C2	5992(3)	8003(3)	2709(2)	42.3(10)
B1	5146(3)	7029(2)	3564(2)	22.5(8)
B6	3980(3)	6912(2)	3977(2)	22.9(8)
C8	-1478(3)	2086(3)	3772(3)	48.5(12)
B5	5007(3)	6552(2)	4439(2)	23.8(8)
B3	5257(3)	6259(2)	2879(2)	21.9(8)
Atom	x	y	z	U(eq)
------	----------	----------	----------	---------
Cl11	4362.2(9)	1341.3(8)	4926.9(3)	28.4(3)
Cl7	2240.2(8)	2338.3(9)	4536.2(3)	29.4(3)
Cl12	4500.3(9)	2861.0(8)	4195.5(3)	30.4(3)
Cl6	5972.0(8)	709.6(9)	4252.1(3)	31.9(3)
Cl8	1103.2(9)	493.1(10)	3998.2(3)	36.0(3)
Cl12	2227.8(9)	-117.9(9)	4838.4(3)	35.4(3)
Cl13	2457.5(9)	2329.5(9)	3581.5(3)	32.8(3)
Cl10	4574.2(10)	-1105.8(9)	4640.7(3)	36.8(3)
Cl5	4825.4(10)	-1180.5(9)	3688.3(3)	39.4(3)
Cl4	2593.0(10)	-212.2(10)	3306.9(3)	38.0(3)
Cl9	2549.3(11)	-1639.2(9)	4064.9(4)	42.0(3)
Si1	5604.4(11)	3824.7(13)	5410.0(4)	43.1(4)
O3	8578(2)	8578(2)	5000	33.5(11)

Table S14: Fractional atomic coordinates of [(Et$_3$SiO)$_2$CH][Me$_3$NB$_{12}$Cl$_{11}$].
Element	Z	X	Y	Z	
N1	7	4767(3)	1307(3)	3400.1(10)	27.1(9)
Si2	14	9654(2)	9148(3)	4860.3(9)	46.6(8)
Si3	14	8474(3)	7459(2)	4798.2(10)	49.3(8)
C4	6	3987(4)	3987(4)	5000	32.7(16)
C3	6	5744(4)	900(4)	3386.8(14)	39.6(13)
B3	5	3039(4)	1445(4)	3842.4(13)	22.7(11)
Si2	14	4181(4)	-236(4)	3892.6(13)	25.8(11)
B1	5	4188(4)	965(4)	3738.2(13)	24.3(11)
Si3	14	8474(3)	7459(2)	4860.3(9)	46.6(8)
C4	6	4024(4)	1702(4)	4125.5(12)	20.9(10)
C3	6	4732(4)	661(4)	4156.2(13)	23.6(11)
B11	5	3934(4)	953(4)	4505.7(13)	23.1(10)
B9	5	3056(4)	-488(4)	4088.1(14)	28.0(12)
B10	5	4038(4)	-231(4)	4366.1(13)	25.1(11)
C1	6	4897(5)	2351(4)	3389.5(16)	47.4(15)
B2	5	4024(4)	1702(4)	4125.5(12)	20.9(10)
B6	5	4732(4)	661(4)	4156.2(13)	23.6(11)
B11	5	3934(4)	953(4)	4505.7(13)	23.1(10)
O2	8	4490(5)	3512(5)	5239.0(18)	30.1(15)
B7	5	2898(4)	1443(4)	4315.4(13)	22.7(10)
O1	8	4759(5)	4284(5)	5096.7(19)	38.9(17)
C13	6	9344(6)	10182(5)	4658(2)	64(2)
C8	6	6399(5)	5083(5)	5904(2)	70(2)
C7	6	5619(5)	5003(5)	5642(2)	67(2)
C5	6	6510(6)	3690(7)	5071(3)	101(3)
C6	6	6717(8)	2840(8)	4912(3)	121(4)
C10	6	5043(10)	2909(9)	6045(3)	50(3)
C9	6	5739(10)	2812(9)	5735(4)	43(3)
C12	6	5741(11)	2550(10)	5947(5)	60(4)
C11	6	5072(11)	2965(9)	5687(4)	55(4)
C21	6	8077(11)	7819(10)	4354(4)	65(4)
C20	6	7559(13)	6892(13)	5077(5)	87(6)
C2	6	4296(4)	1027(5)	3061.8(13)	48.9(16)
C19	6	9710(20)	6930(30)	4819(8)	78(8)
C17	6	10431(13)	7455(13)	4587(5)	63(5)
C18	6	10060(30)	7130(20)	4728(7)	102(17)
C16	6	10157(10)	8183(11)	4590(3)	56(3)
C15	6	8724(11)	10057(12)	4278(4)	68(4)
C22	6	7040(7)	8032(9)	4401(4)	160(7)
C14	6	8610(11)	10596(10)	4503(3)	56(3)
S4 Density functional calculations

Quantum chemical calculations were performed in order to understand the reaction mechanism for the formation of the \([R_3Si]_3S^+\) cations (R = alkyl). Several reactions were considered based on the experimental findings (compounds identified by their crystal structures). Reactions enthalpy and free Reactions energies in solution (dichlorobenzene) using the SMD solvation model were calculated. The corresponding energies for the reaction with CO₂ can be found in Table S16.

Table S15: Calculated reaction enthalpies (1 atm, 0 K) and free reactions energies (1 atm, 298 K) in solution (dichlorobenzene) based on PBE0/def2-TVZPP.

Step	Reaction	\(\Delta H_{(sol.)}\) [kJ/mol]	\(\Delta G_{(sol.)}\) [kJ/mol]
1	CS₂ + [SiEt₃]⁺ \(\rightarrow\) [Et₃SiS=Si=C=S]⁺	-40.8	2.1
1.1[a]	CS₂ + [Et₃SiH-SiEt₃]⁺ \(\rightarrow\) [Et₃SiS=Si=C=S]⁺ + Et₃SiH	42.9	30.6
2	[Et₃SiS=Si=C=S]⁺ + Et₃SiH \(\rightarrow\) [Et₃SiSCHSSiEt₃]⁺	-179.9	-127.8
3	[Et₃SiSCHSSiEt₃]⁺ + Et₃SiH \(\rightarrow\) [Et₃SiSCH₃]⁺ + S(SiEt₃)₂	-9.1	-11.7
4	S(SiEt₃)₂ + [SiEt₃]⁺ \(\rightarrow\) [(Et₃Si)₃S]⁺	-130.1	-68.5
5.1	[Et₃SiSCH₃]⁺ + Et₃SiH \(\rightarrow\) [(Et₃Si)₂SCH₃]⁺	-217.6	-164.3
5.2[b]	[Et₃SiSCH₃]⁺ + H₂ \(\rightarrow\) [Et₃SiSHCH₃]⁺	-166.9	-131.9
Σ	CS₂ + 2 [SiEt₃]⁺ + 4 Et₃SiH \(\rightarrow\) 2 [(Et₃Si)₃S]⁺ + CH₄	-675.2	-453.5

[a] Alternative reaction to step 1

[b] Alternative reaction of [Et₃SiSCH₃]⁺ resulting in the crystallized [Et₃SiSHCH₃]⁺ cation.

Table S16: Calculated reaction enthalpies (1 atm, 0 K) and free reactions energies (1 atm, 298 K) in solution based on PBE0/def2-TVZPP (1 atm, 298 K).

Step	Reaction	\(\Delta H_{(sol.)}\) [kJ/mol]	\(\Delta G_{(sol.)}\) [kJ/mol]
1	CO₂ + [SiEt₃]⁺ \(\rightarrow\) [Et₃SiO=C=O]⁺	-25.5	10.9
2	[Et₃SiO=C=O]⁺ + Et₃SiH \(\rightarrow\) [Et₃SiOCHOSiEt₃]⁺	-216.3	-159.6
3	[Et₃SiOCHOSiEt₃]⁺ + Et₃SiH \(\rightarrow\) [Et₃SiOCH₂]⁺ + O(SiEt₃)₂	-26.4	-24.5
4	O(SiEt₃)₂ + [SiEt₃]⁺ \(\rightarrow\) [(Et₃Si)₂O]⁺	-51.1	21.7
5	[Et₃SiOCH₂]⁺ + Et₃SiH \(\rightarrow\) [(Et₃Si)₂OCH₃]⁺	-173.7	-118.0
6	[(Et₃Si)₂OCH₃]⁺ + Et₃SiH \(\rightarrow\) [(Et₃Si)₃O]⁺ + CH₄	-135.2	-105.7
Σ	CO₂ + 2 [SiEt₃]⁺ + 4 Et₃SiH \(\rightarrow\) 2 [(Et₃Si)₃O]⁺ + CH₄	-628.2	-375.2
Table S17: Calculated energies including ZPE and thermal correction to enthalpy on the PBE0/def2-TZVPP level in the gas phase (1 atm, 298 K).

Structure	Energy [Eh]	Symmetry
Et₃SiH	-527.246157	C₃
[Et₃Si]⁺	-526.385148	C₃
Et₃SiSiEt₃	-1053.321841	D₃
[Et₃SiS=C=S]⁺	-1360.608878	C₁
[Et₃SiSCHSSiEt₃]⁺	-1887.928605	C₂
[Et₃SiSCH₂]⁺	-963.09428	C₁
(Et₃Si)₂S	-1451.45509	C₁
[(Et₃Si)₃S]**a	-1977.914967	C₁
[Et₃Si(H)Me]**⁺	-964.928016	C₁
[(Et₃Si)₂SMe]**⁺	-1491.05028	C₁
CH₄	-40.426852	T₄
CS₂	-834.194834	D₆h
H₂	-1.155132	D₆h
[(Et₃Si)₂H]**⁺⁡	-1053.678047	D₃
[(Pr₃Si(H)Me)**⁺⁡	-1082.665841	C₁
[(Pr₃Si)₂SMe]**⁺	-1726.513095	C₁
'Pr₃SiH	-644.982059	C₃
'Pr₃SiSPr₃	-1288.785031	D₃
[(Me₃Si)₂SMe]**⁺⁡	-1255.585838	C₁
[(Bu₃Si)₂SMe]**⁺⁡	-1962.037625	C₁
[Et₃SiO=C=O]**⁺	-714.853221	C₁
[Et₃SiOCCHOEt₃]**⁺²⁡	-1242.187804	C₁
[Et₃SiOCH₂]**⁺	-640.827499	C₁
(Et₃Si)₂O	-1128.605939	C₂
[(Et₃Si)₂O]**⁺	-1655.033263	C₁
[(Et₃Si)₂OMe]**⁺	-1168.154476	C₁
CO₂	-188.451082	D₆h

*a = Structures were optimized starting from experimental (crystal structure) coordinates.

Table S18: SCF energies on the PBE0/def2-TZVPP level in o-dichlorobenze as solvent. Zero-point correction and thermal correction to Gibbs free energy were taken from the gas phase calculations.

Structure	SCF-energy [Eh]	ZPE [Eh]	Thermal correct. [Eh]
Et₃SiH	-527.4697876	0.205325	0.168779
Species	E (kcal/mol)	σ	τ
---	--------------	---------	---------
\([\text{Et}_3\text{Si}]^+\)	-526.6775706	0.195717	0.157933
\([\text{Et}_3\text{SiS}=\text{C}=\text{S}]^+\)	-1360.903964	0.205707	0.161092
\([\text{Et}_3\text{SiCHSSiEt}_3]^+\)	-1888.447601	0.416217	0.355039
\([\text{Et}_3\text{SiSCH}_2]^+\)	-964.030438	0.225333	0.182915
\((\text{Et}_3\text{Si})_2\text{S}\)	-1451.892712	0.39846	0.342219
\([(\text{Et}_3\text{Si})_3\text{S}]^+\)	-1978.624548	0.599133	0.528328
\([\text{Et}_3\text{SiS(H)Me}]^+\)	-1491.590084	0.437474	0.378971
\([(\text{Et}_3\text{Si})_2\text{SMe}]^+\)	-40.47505756	0.044738	0.027425
\(\text{CH}_4\)	-834.208243	0.007099	-0.015799
\(\text{CS}_2\)	-1.16795364	0.010048	-0.001445
\(\text{H}_2\)	-715.1568967	0.210644	0.16604
\([\text{Et}_3\text{SiO}=\text{C}=\text{O}]^+\)	-1242.715412	0.42231	0.362758
\([\text{Et}_3\text{SiOCHOSiEt}_3]^+\)	-641.1546921	0.228346	0.1873
\([\text{Et}_3\text{SiOCH}_2]^+\)	-1129.041071	0.3998	0.345472
\((\text{Et}_3\text{Si})_2\text{O}\)	-1655.746632	0.604056	0.539658
\([(\text{Et}_3\text{Si})_3\text{O}]^+\)	-1168.698799	0.441845	0.385462
\([(\text{Et}_3\text{Si})_2\text{OMe}]^+\)	-188.4665942	0.011902	-0.008778

\(a = \) Optimized structures using crystal atomic coordinates.

S4.1. Calculated Structures

The calculated structures used for the suggested reaction mechanism as well as the structures for different alkyl groups R = Me, 'Pr and 'Bu for comparison with the experimental findings are presented herein.
Figure S35. Calculated structures (PBE0/Def2-TZVPP) of Et$_3$SiH (C_3) and [Et$_3$Si]$^+$ (C_{3v}).

Figure S36. Calculated structures (PBE0/Def2-TZVPP) of [Et$_3$SiSCS]$^+$ (C_1) and [Et$_3$SiSCHSSiEt$_3$]$^+$ (C_2).
Figure S37. Calculated structures (PBE0/Def2-TZVPP) of [Et₃SiSCH₂]⁺ (C₁) and (Et₃Si)₂S (C₁).

Figure S38. Calculated structure (PBE0/Def2-TZVPP) of [(Et₃Si)₃S]⁺ (C₁).
Figure S39. Calculated structures (PBE0/Def2-TZVPP) of \([\text{Et}_3\text{SiSHCH}_3]^+\) \((C_i)\) and \([(\text{Et}_3\text{Si})_2\text{SCH}_3]^+\) \((C_i)\).

Figure S40. Calculated structures (PBE0/Def2-TZVPP) of \([\text{iPr}_3\text{SiSHCH}_3]^+\) \((C_i)\) and \([(\text{Me}_3\text{Si})_2\text{SCH}_3]^+\) \((C_i)\).
Figure S41. Calculated structure (PBE0/Def2-TZVPP) of [(tBu3Si)2SCH3]+ (C1).

Figure S42. Calculated structure (PBE0/Def2-TZVPP) of [Et3SiOCO]+ (C1).
Figure S43. Calculated structure (PBE0/Def2-TZVPP) of [Et$_3$SiOCHOSiEt$_3$]$^+$ (C_1).

Figure S44. Calculated structures (PBE0/Def2-TZVPP) of [Et$_3$SiOCH$_2$]$^+$ (C_1) and (Et$_3$Si)$_2$O (C_2).
Figure S45. Calculated structure (PBE0/Def2-TZVPP) of \[\text{[(Et}_3\text{Si)}_2\text{OCH}_3]^+\] \text{(C1).}

Figure S46. Calculated structure (PBE0/Def2-TZVPP) of \[\text{[(Et}_3\text{Si)}_3\text{O}]^+\] \text{(C1).}
S4.2. Comparison with experimental findings

Table S19: Comparison of the bond parameters of the crystallized silylium cations with the calculated structures (PBE0/Def2TZVPP) in gas phase.

Cation	Parameter	Experimental	Calculated
\([\text{Et}_3\text{SiSHCH}_3]^+\)	Si–S	229.84(12) pm	232.8 pm
	S–CH\(_3\)	181.1(3) pm	180.8 pm
	Si–S–CH\(_3\)	108.35(12)°	107.86°
	Si–S	224.01(10) pm	227.7 pm
	S–CH\(_3\)	182.2(3) pm	181.4 pm
\([\text{Et}_3\text{Si})_2\text{SCH}_3]^+\)	Si–S	225.31(7) pm	226.7 pm
	S–CH\(_3\)	111.49(3)°	112.63°
	Si–S–CH\(_3\)	110.88(3)°	111.96°
	Si–S–Si	108.96(3)°	111.19°
	Si–S	226.15(19) pm	228.2 pm
	S–CH\(_3\)	105.2(2)°	109.75°
\([\text{tBu}_3\text{SiSHCH}_3]^+\)	Si–S	226.15(19) pm	228.2 pm
	S–CH\(_3\)	182.8(4) pm	181.2 pm
	Si–S–CH\(_3\)	104.73(18)°	104.68°
	Si–S–Si	101.12(19)°	100.66°
	Si–S	116.96(8)°	118.31°
\([\text{Me}_3\text{Si})_2\text{SCH}_3]^+\)	Si–S	223.3(3) pm	226.9 pm
	S–CH\(_3\)	103.1(3)°	104.83°
	Si–S–CH\(_3\)	100.9(3)°	103.59°
S4.3. Optimized coordinates

	Si–S–Si	113.94(10)°	113.78°
Et3SiH \((C_3)\)			
Si	0.0000000000000000	0.0000000000000000	0.2397710000000000
H	0.0000000000000000	0.0000000000000000	1.7382610000000000
C	0.6929120000000000	1.6504930000000000	-0.3463400000000000
H	0.0000000000000000	2.4384340000000000	-0.0327180000000000
H	0.6759730000000000	1.6604880000000000	1.4227000000000000
C	2.0980910000000000	1.9652560000000000	0.1611050000000000
H	2.4431280000000000	2.9437700000000000	0.0327180000000000
H	2.8256500000000000	1.2269370000000000	1.4422700000000000
C	2.1346500000000000	1.9694330000000000	1.2531510000000000
C	-1.7758250000000000	-0.2251670000000000	-0.3463400000000000
H	-2.1117460000000000	-1.2192170000000000	-0.0327180000000000
H	-1.7760110000000000	-0.2448340000000000	-1.4422700000000000
C	-2.7510070000000000	0.8343720000000000	0.1611050000000000
H	-2.4753840000000000	1.8336160000000000	-0.1834870000000000
H	-2.7733460000000000	0.8636900000000000	1.2531510000000000
H	-3.7709440000000000	0.6439260000000000	-0.1834870000000000
C	1.0829130000000000	-1.4253260000000000	-0.3463400000000000
H	2.1117460000000000	-1.2192170000000000	-0.0327180000000000
H	1.1003800000000000	-1.4156540000000000	-1.4422700000000000
C	0.6529160000000000	-2.7996280000000000	0.1611050000000000
H	0.6386960000000000	-2.8336330000000000	1.2531510000000000
H	1.3278160000000000	-3.5876960000000000	-0.1834870000000000
H	-0.3502660000000000	-3.0605530000000000	-0.1834870000000000
[Et3Si]+ \((C_3)\)			
Si	0.0000000000000000	0.0000000000000000	0.0000450000000000
C	0.0000000000000000	1.8341570000000000	0.0001250000000000
H	-0.6162020000000000	2.1295380000000000	0.8627700000000000
H	-0.6166910000000000	2.1296540000000000	-0.8621210000000000
C	1.3510420000000000	2.5458390000000000	-0.0001550000000000
H	1.2032810000000000	3.6253740000000000	-0.0001420000000000
H	1.9410130000000000	2.2967470000000000	-0.8826740000000000
H	1.9413550000000000	2.2967590000000000	0.8821380000000000
C	-1.5884270000000000	-0.9170790000000000	0.0001250000000000
H	-1.5361330000000000	-1.5984150000000000	0.8627700000000000
H	-1.5359890000000000	-1.5988970000000000	-0.8621210000000000
C	-2.8802820000000000	-0.1028830000000000	-0.0001550000000000
H	-2.9595480000000000	0.5325930000000000	-0.8826740000000000
H	-2.9597290000000000	0.5328830000000000	0.8821380000000000
H	-3.7413070000000000	-0.7706150000000000	-0.0001420000000000
C	1.5884270000000000	-0.9170790000000000	0.0001250000000000
H	2.1523350000000000	-0.5311220000000000	0.8627700000000000
H	2.1526800000000000	-0.5307570000000000	-0.8621210000000000
C	1.5292410000000000	-2.4429560000000000	-0.0001550000000000
\[
\text{Et}_3\text{SiSiEt}_3 (D_3)
\]

Element	X	Y	Z	Comment
Si	0.000000000000	0.000000000000	1.194263000000	
C	1.354333000000	1.134089000000	1.887187000000	
H	2.319463000000	0.819992000000	2.963903000000	
H	1.412354000000	0.931574000000	1.656607000000	
C	1.157292000000	2.629273000000	1.656607000000	
H	1.967568000000	3.216010000000	2.096756000000	
H	0.223687000000	2.984718000000	2.098650000000	
H	1.122931000000	2.873492000000	0.592292000000	
C	0.304984000000	-1.739931000000	1.887187000000	
H	-0.449597000000	-2.418709000000	1.477256000000	
H	0.100590000000	-1.688921000000	2.963903000000	
C	1.698371000000	-2.316881000000	2.096756000000	
H	2.472998000000	-1.686078000000	2.098650000000	
H	1.927052000000	-2.409232000000	0.592292000000	
H	1.801362000000	-3.311969000000	2.096756000000	
C	-1.659316000000	0.605842000000	1.887187000000	
H	-1.869865000000	1.598718000000	1.477256000000	
H	-1.512944000000	0.757347000000	2.963903000000	
C	-2.855663000000	-0.312392000000	1.656607000000	
H	-3.049982000000	-0.464260000000	0.592292000000	
H	-3.768930000000	0.095959000000	2.096756000000	
H	-2.696685000000	-1.298640000000	2.098650000000	
Si	0.000000000000	0.000000000000	-1.194263000000	
C	-1.354333000000	1.134089000000	-1.887187000000	
H	-2.319463000000	0.819992000000	-1.477256000000	
H	-1.412354000000	0.931574000000	-2.963903000000	
C	-1.157292000000	2.629273000000	-1.656607000000	
H	-1.967568000000	3.216010000000	-2.096756000000	
H	-0.223687000000	2.984718000000	-2.098650000000	
H	-1.122931000000	2.873492000000	-0.592292000000	
C	-0.304984000000	-1.739931000000	-1.887187000000	
H	0.449597000000	-2.418709000000	-1.477256000000	
H	-0.100590000000	-1.688921000000	-2.963903000000	
C	-1.698371000000	-2.316881000000	-1.656607000000	
H	-2.472998000000	-1.686078000000	-2.098650000000	
H	-1.927052000000	-2.409232000000	-0.592292000000	
H	-1.801362000000	-3.311969000000	-2.096756000000	
C	1.659316000000	0.605842000000	-1.887187000000	
H	1.869865000000	1.598718000000	-1.477256000000	
H	1.512944000000	0.757347000000	-2.963903000000	
C	2.855663000000	-0.312392000000	-1.656607000000	
H	3.049982000000	-0.464260000000	-0.592292000000	
H	2.696685000000	-1.298640000000	-2.098650000000	
H	3.768930000000	0.095959000000	-2.096756000000	

\[\text{Et}_3\text{SiS=C=S}^+ (C_1)\]

S54
Si -0.9909890000000 -0.005323000000 0.4454790000000
C -2.4668910000000 0.7974450000000 -0.3513270000000
H -2.1971590000000 1.8148830000000 -1.5038510000000
H -3.1202330000000 0.0386150000000 -1.5038510000000
H -4.0000900000000 0.5737120000000 -1.8619240000000
H -3.4440190000000 -0.9590950000000 -1.2052570000000
C -0.0846500000000 1.0118640000000 1.7069770000000
H 0.8656460000000 0.5248400000000 1.9465220000000
H -0.6889680000000 0.9006370000000 2.6187980000000
C 0.1132260000000 2.4912180000000 1.3840450000000
H 0.8374880000000 3.0016840000000 1.2262540000000
H 0.7176930000000 2.6374550000000 0.4865900000000
H 0.6210890000000 2.9978320000000 2.2050710000000
C 0.0984420000000 2.5466070000000 0.5644070000000
H 0.8888170000000 2.5466070000000 2.3587310000000
H 0.1274890000000 -3.5738080000000 -1.5584110000000
H 0.4989990000000 -2.0720920000000 -1.5047550000000
S 0.4047550000000 0.0049850000000 -1.5047550000000
S 3.2940300000000 0.0078740000000 -0.3625880000000

[Et3SiSCH2SiEt3]+ (C2)

Si 0.0000000000000 3.0311000000000 -0.2232650000000
C -0.5645090000000 4.5225730000000 0.7447590000000
H -1.5617650000000 4.3227040000000 1.1404560000000
H -0.6990690000000 5.3237410000000 0.0071650000000
C 0.3719160000000 4.9878030000000 1.8593230000000
C -0.0307490000000 5.8697530000000 2.3587310000000
H 1.3584140000000 5.2530790000000 1.4761930000000
H 0.5107970000000 4.2214620000000 2.6254720000000
C -1.2045580000000 2.4771250000000 -1.5417700000000
H -0.8667610000000 1.5336620000000 -1.9838070000000
H -1.0926030000000 3.2123530000000 -2.3494230000000
C -2.6679780000000 2.3855200000000 -1.1164160000000
H -3.0446360000000 3.3457220000000 -0.7640120000000
H -2.8146330000000 1.6631660000000 -0.3095180000000
H -3.2986840000000 2.0756810000000 -1.9511050000000
C 1.7659760000000 3.1471100000000 -0.8221000000000
H 2.4018810000000 3.4104200000000 0.0282280000000
H 1.7880250000000 4.0225720000000 -1.4840020000000
C 2.3257350000000 1.9287980000000 -1.5500000000000
H 2.3759570000000 1.0550320000000 -0.8953390000000
H 3.3412380000000 2.1173010000000 -1.9011160000000
H 1.7270770000000 1.6638790000000 -2.4241390000000
C 0.0000000000000 0.0000000000000 0.6036530000000
H 0.0000000000000 0.0000000000000 -0.4826960000000
\[
\text{[Et}_3\text{SiSCH}_2]^+ (\text{C}_1)
\]

\begin{tabular}{lcccc}
\hline
Element & x & y & z & \\
\hline
Si & -0.31226700000 & -0.03012000000 & -0.452263000000 & \\
C & -1.79214900000 & -1.13116500000 & -0.195742000000 & \\
H & -1.45000100000 & -2.09823300000 & 0.190149000000 & \\
H & -2.16776600000 & -1.34242300000 & -1.205733000000 & \\
C & -2.91190300000 & -0.55569000000 & 0.670938000000 & \\
H & -3.74303800000 & -1.25819900000 & 0.737001000000 & \\
H & -3.30486100000 & 0.37579400000 & 0.261510000000 & \\
H & -2.58313400000 & -0.35565000000 & 1.693587000000 & \\
C & 1.06586400000 & -0.76077300000 & -1.471109000000 & \\
H & 1.94829200000 & -0.11353400000 & -1.431211000000 & \\
H & 0.70730900000 & -0.65344700000 & -2.504453000000 & \\
C & 1.42553300000 & -2.22014000000 & -1.197089000000 & \\
H & 0.56636000000 & -2.87781500000 & -1.332936000000 & \\
H & 1.79427600000 & -2.37566800000 & -0.180548000000 & \\
H & 2.20550700000 & -2.55930400000 & -1.879186000000 & \\
C & -0.70415300000 & 1.75807000000 & -0.809988000000 & \\
H & -1.38294600000 & 2.13666400000 & -0.039641000000 & \\
H & -1.30624600000 & 1.72770600000 & -1.728366000000 & \\
C & 0.49107500000 & 2.68948100000 & -0.993247000000 & \\
H & 1.09629400000 & 2.76470000000 & -0.086602000000 & \\
H & 0.15655100000 & 3.69883200000 & -1.234715000000 & \\
H & 1.14303500000 & 2.36202900000 & -1.804473000000 & \\
S & 0.47073300000 & 0.10696600000 & 1.728333000000 & \\
C & 2.07546000000 & 0.07753000000 & 1.651300000000 & \\
H & 2.62299500000 & -0.01931300000 & 0.719146000000 & \\
\hline
\end{tabular}
Atoms	x	y	z
Si	1.862	0.082	0.027
C	3.086	0.507	1.394
H	2.782	1.460	1.839
C	4.050	0.695	0.905
C	3.248	-0.548	2.485
H	3.973	-0.236	3.240
H	3.594	-1.500	2.075
H	2.301	-0.737	2.995
C	1.899	1.425	-0.287
H	1.910	1.161	-2.079
H	2.890	1.368	-1.756
C	1.637	2.841	-0.784
H	2.398	3.155	-0.090
C	1.640	2.911	-0.279
H	0.671	2.908	-0.302
C	1.636	3.567	-1.600
H	2.378	3.155	-2.489
H	2.302	0.714	3.006
Si	-1.862	-0.082	0.027
C	-0.086	-0.518	1.390
H	2.782	-1.474	1.827
C	-0.405	-0.702	0.900
C	-3.248	0.528	2.489
H	-3.974	0.210	3.241
H	-3.595	1.483	2.087
H	-2.302	0.714	3.006
C	-1.898	-1.415	-1.298
H	-1.190	1.144	-2.085
H	-2.889	1.355	-1.766
C	-1.636	-2.834	-0.806
H	-2.397	-3.154	-0.090
H	-0.670	-2.906	-0.302
H	-1.639	-3.554	-1.629
C	-2.378	1.573	-0.715
H	-2.093	2.363	-0.012
H	-3.475	1.557	-0.705
C	-1.887	1.908	-2.119
H	-0.800	1.994	-2.159
H	-2.181	1.145	-2.842
H	-2.297	2.859	-2.467
S	-0.000	-0.004	1.119

[(EtsSi)S]⁺ (C₁)

Atoms	x	y	z
S	0.014	0.088	-0.519

S57
\[\text{[Et}_3\text{SiS(H)Me]}^+ (C_1) \]

Element	X	Y	Z
Si	0.425533000000	0.002698000000	-0.472960000000
S	-0.647319000000	1.656253000000	-1.564873000000
C	-1.631628000000	1.577074000000	-1.682898000000
H	-0.199760000000	0.983426000000	-2.557883000000
C	-0.802058000000	2.524002000000	-1.168923000000
H	-1.421697000000	3.058824000000	-1.889255000000
H	-2.912592000000	0.184934000000	-2.249190000000
C	2.900489000000	-0.002412000000	1.022517000000
H	2.402936000000	-0.139982000000	1.985421000000
H	3.157577000000	-0.991717000000	0.642142000000
C	3.835333000000	0.523330000000	1.218041000000
C	0.528799000000	-1.793668000000	-0.945380000000
H	1.170332000000	-2.306532000000	-0.222580000000
H	1.095952000000	-1.797510000000	-1.885860000000
C	-0.786655000000	-2.548527000000	-1.129027000000
H	-1.452517000000	-2.052826000000	-1.837426000000
H	-0.602562000000	-3.554057000000	-1.508062000000
H	-1.323123000000	-2.665322000000	-0.184281000000
C	2.040951000000	0.782046000000	0.031406000000
H	1.848621000000	1.796194000000	0.396484000000
H	2.588718000000	0.922316000000	-0.910078000000
H	-0.440056000000	1.204375000000	1.934759000000

\[\text{[Et}_2\text{SiSMe}]}^+ (C_1) \]

Element	X	Y	Z
Si	-1.960878000000	0.301469000000	-0.123502000000
S	0.127528000000	-1.033098000000	-0.382766000000
Si	1.839005000000	-0.028591000000	0.170640000000
C	-0.311629000000	-2.298703000000	0.904002000000
H -0.221994000000 -1.867762000000 1.897865000000
H 0.462568000000 -3.044736000000 0.739686000000
H -1.287547000000 -2.762165000000 0.782404000000
C -2.317768000000 0.399160000000 1.708493000000
H -2.409014000000 -0.616488000000 2.117736000000
H -1.468299000000 0.857156000000 2.218676000000
C -3.727445000000 -1.956595000000 -0.649152000000
H -2.943760000000 -2.702760000000 -0.795534000000
C -3.280406000000 -0.572847000000 1.113208000000
H -4.133123000000 0.739686000000 2.158045000000
H -3.654774000000 1.527359000000 1.374339000000
C 3.855539000000 2.209640000000 0.547299000000
C -3.601041000000 1.181765000000 1.996601000000
H -4.473860000000 0.721462000000 1.529871000000
H 2.235098000000 0.370653000000 2.227226000000
H -1.036671000000 0.254934000000 2.467800000000
H 1.510400000000 0.908867000000 1.767545000000
H -1.335429000000 1.271514000000 2.756480000000
C 1.568719000000 0.908867000000 1.767545000000
H 0.900024000000 1.753186000000 1.573152000000
H -1.036671000000 0.254934000000 2.466555000000
H -3.537723000000 2.211050000000 1.638906000000
H -3.792361000000 1.223884000000 3.069573000000
H -4.013603000000 1.967281000000 0.404678000000
H -4.592268000000 -2.295481000000 1.220775000000
H -1.057290000000 2.961721000000 2.749745000000
H -2.269137000000 1.699876000000 2.900271000000
H 3.839003000000 2.076735000000 2.293720000000
H 4.389312000000 0.721551000000 2.227226000000
H 2.645041000000 1.926897000000 3.353577000000
H 3.537621000000 0.580879000000 2.661249000000
H 3.531989000000 -1.819588000000 1.712510000000
H 3.892422000000 -3.173810000000 0.651934000000

CH₄ (Tₐ)

C 0.000000000000 0.000000000000 0.000000000000
H 0.628669000000 0.628669000000 0.628669000000
H -0.628669000000 -0.628669000000 0.628669000000
H 0.628669000000 -0.628669000000 0.628669000000

S60
Atom	X	Y	Z
H	-0.628669000000	0.628669000000	-0.628669000000

CS$_2$ (D_{ch})

Atom	X	Y	Z
C	0.000000000000	0.000000000000	0.000000000000
S	0.000000000000	0.000000000000	1.548469000000
S	0.000000000000	0.000000000000	-1.548469000000

H$_2$ (D_{ch})

Atom	X	Y	Z
H	0.000000000000	0.000000000000	0.372581000000
H	0.000000000000	0.000000000000	-0.372581000000

[(Et$_3$Si)$_2$H]$^+$ (D_3)

Atom	X	Y	Z
Si	0.000000000000	0.000000000000	1.641523000000
C	1.427439000000	1.125116000000	2.036460000000
H	2.322548000000	0.749969000000	1.531292000000
H	1.619296000000	0.965859000000	3.106563000000
C	1.221655000000	2.612056000000	1.757828000000
H	2.098916000000	3.185811000000	2.058437000000
H	0.367872000000	3.013350000000	2.305811000000
H	1.054418000000	2.809049000000	0.696911000000
C	0.260660000000	-1.798756000000	2.036460000000
H	-0.511782000000	-2.386370000000	0.696911000000
H	0.026810000000	-1.885281000000	2.305811000000
C	1.651280000000	-2.364012000000	1.757828000000
H	2.425702000000	-1.825261000000	2.058437000000
H	1.905499000000	-2.317677000000	0.696911000000
H	1.709535000000	-3.410620000000	2.058437000000
C	-1.688099000000	0.673640000000	2.036460000000
H	-1.810766000000	1.636401000000	1.531292000000
H	-1.646106000000	0.919422000000	3.106563000000
C	-2.872934000000	-0.248044000000	1.757828000000
H	-2.959917000000	-0.491372000000	0.696911000000
H	-3.808451000000	0.224809000000	2.305811000000
H	-2.793574000000	-1.188088000000	2.305811000000
H	0.000000000000	0.000000000000	0.000000000000

Si

Atom	X	Y	Z
C	-1.427439000000	1.125116000000	-2.036460000000
H	-2.322548000000	0.749969000000	-1.531292000000
H	-1.619296000000	0.965859000000	-3.106563000000
C	-1.221655000000	2.612056000000	-1.757828000000
H	-2.098916000000	3.185811000000	-2.058437000000
H	-0.367872000000	3.013350000000	-2.305811000000
H	-1.054418000000	2.809049000000	-0.696911000000
C	-0.260660000000	-1.798756000000	-2.036460000000
H	0.511782000000	-2.386370000000	-1.531292000000
H	-0.026810000000	-1.885281000000	-3.106563000000
C	-1.651280000000	-2.364012000000	-1.757828000000
H	-2.425702000000	-1.825261000000	-2.305811000000
H	-1.905499000000	-2.317677000000	-0.696911000000
H	-1.709535000000	-3.410620000000	-2.058437000000
C	1.688099000000	0.673640000000	-2.036460000000
\[[\text{PrSiS(H)Me}]^{\text{rd}} (C_1) \]

\[
\begin{array}{cccc}
\text{Si} & -0.157740000000 & 0.002229000000 & -0.022872000000 \\
C & -1.315638000000 & -1.007267000000 & -1.106306000000 \\
H & -0.768928000000 & -1.937892000000 & -1.306935000000 \\
C & -1.600876000000 & -0.324313000000 & -2.444505000000 \\
H & 2.369610000000 & -1.947807000000 & 0.532102000000 \\
H & 2.793574000000 & -0.696911000000 & -2.305811000000 \\
C & 2.872934000000 & -0.248044000000 & -1.757828000000 \\
H & 2.959917000000 & -0.491372000000 & -0.696911000000 \\
H & 2.793574000000 & -1.188088000000 & -2.305811000000 \\
H & 3.808451000000 & 0.224809000000 & -2.058437000000 \\
\end{array}
\]

\[[(\text{PrSi})_2\text{SMe}]^{\text{C}_1} \]

\[
\begin{array}{cccc}
\text{Si} & 2.140212000000 & 0.035486000000 & -0.014322000000 \\
S & 0.000678000000 & -0.357798000000 & -0.822679000000 \\
Si & -2.077667000000 & 0.059528000000 & 0.084289000000 \\
C & 0.006999000000 & 0.564155000000 & -2.383070000000 \\
\end{array}
\]
H	-2.5964950000000	1.2681480000000	-2.9852810000000
H	-4.3350820000000	1.1335030000000	-2.8381960000000
H	-3.4354260000000	2.1236650000000	-1.6976090000000
C	-1.6872600000000	-2.6922480000000	0.9805190000000
H	-2.0844640000000	-3.1112820000000	0.0545820000000
H	-0.6043600000000	-2.6271480000000	0.8720880000000
H	-1.8934340000000	-3.4130270000000	1.7758040000000
C	1.0944190000000	2.8897110000000	-0.1455640000000
H	2.0883030000000	3.8219280000000	-0.6430290000000
H	0.7319620000000	2.7606420000000	-0.2687260000000
H	2.0033990000000	3.0270310000000	0.9205850000000
H	-4.0541680000000	-1.3585170000000	-2.9030390000000

\[\text{Pr}_3\text{SiH} (C_3) \]

Si	0.0000000000000	0.0000000000000	0.7021880000000
H	0.0000000000000	0.0000000000000	2.2013700000000
C	1.2997600000000	1.2953810000000	-0.2116760000000
H	2.1790480000000	1.0146500000000	0.8069050000000
C	0.8672050000000	2.6882640000000	0.6686700000000
C	1.7248360000000	1.3062190000000	-1.2549140000000
H	2.1404600000000	0.3475470000000	-0.1570429000000
H	0.8904090000000	1.5367990000000	-0.9213700000000
H	2.4932240000000	2.0670550000000	-1.4273850000000
H	0.0000000000000	3.0425120000000	0.1045540000000
H	1.6698580000000	3.4168340000000	0.5162460000000
H	0.6002790000000	2.7078970000000	1.7282180000000
C	0.4719530000000	-1.7733160000000	0.2116760000000
H	-0.2108110000000	-2.3944360000000	0.8069050000000
C	1.8945020000000	-2.0951540000000	0.6686700000000
C	0.2688010000000	-2.1468610000000	-1.2549140000000
H	-0.7692450000000	-2.0274660000000	-1.5704290000000
H	0.8857020000000	-1.5395160000000	-1.9213700000000
H	0.5435100000000	-3.1927230000000	-1.4273850000000
H	2.6348930000000	-1.5212560000000	0.1045540000000
H	2.1241360000000	-3.1545560000000	0.5162460000000
H	2.0449680000000	-1.8738060000000	1.7282180000000
C	-1.7717130000000	0.4779350000000	0.2116760000000
H	-1.9682370000000	1.3797850000000	0.8069050000000
C	-2.7617080000000	-0.5931100000000	0.6686700000000
C	-1.9936370000000	0.8406420000000	-1.2549140000000
H	-1.3712150000000	1.6799190000000	-1.5704290000000
H	-1.7761110000000	0.0027170000000	-1.9213700000000
H	-3.0367340000000	1.1256680000000	-1.4273850000000
H	-2.6348930000000	-1.5212560000000	0.1045540000000
H	-3.7939940000000	-0.2622770000000	0.5162460000000
H	-2.6452470000000	-0.8340910000000	1.7282180000000

\[\text{Pr}_3\text{SiSiPr}_3 (D_3) \]

Si	0.0000000000000	0.0000000000000	1.2130180000000
Si	0.0000000000000	0.0000000000000	-1.2130180000000
C	-1.6876770000000	0.6922720000000	-1.8192560000000

S64
C 2.853658000000 -0.252756000000 1.531120000000
C 1.734120000000 1.146721000000 3.278667000000
H 0.998265000000 1.921228000000 3.496523000000
H 1.557799000000 0.322507000000 3.972481000000
H 2.720749000000 1.560153000000 3.278667000000
H 2.774083000000 -1.181239000000 2.102150000000
H 3.804425000000 0.213560000000 1.809703000000
H 2.922067000000 -0.524978000000 0.476625000000

\[(\text{Me}_3\text{Si})_2\text{SMe}]^{\#a} (C_1)

S 0.000665000000 0.709214000000 -0.721604000000
Si -1.899911000000 -0.272012000000 0.041443000000
Si 1.902164000000 -1.899911000000 -0.041443000000
C 1.706042000000 -0.696023000000 1.835168000000
H 1.452527000000 0.169094000000 2.450991000000
H 2.720749000000 1.560153000000 3.278667000000
H 2.774083000000 -1.181239000000 2.102150000000
H 3.804425000000 0.213560000000 1.809703000000
H 2.922067000000 -0.524978000000 0.476625000000

\[(\text{tBu}_3\text{Si})_2\text{SMe}]^{\#a} (C_1)

Si 1.991102000000 0.236090000000 -0.157385000000
S -1.914549000000 -0.201682000000 0.025548000000
Si -1.088720000000 -2.457821000000 1.007657000000
Si 0.582205000000 -1.808809000000 2.519546000000
C 2.267983000000 -1.385032000000 -1.063722000000

S66
Atom	X	Y	Z	Coordinates
H	-3.000416000000	-1.759171000000	1.497310000000	
C	-2.189229000000	-3.827132000000	-0.419781000000	
H	-2.885803000000	-4.666751000000	-0.401412000000	
H	-2.064794000000	-3.486893000000	0.610575000000	
H	-1.224242000000	-4.209931000000	-0.766108000000	
C	-3.326538000000	1.488113000000	2.697915000000	
H	-4.347724000000	1.646643000000	2.341053000000	
H	-2.650413000000	2.045571000000	2.046962000000	
H	-3.257537000000	1.928290000000	3.693993000000	
C	1.662019000000	3.092915000000	-0.865732000000	
H	1.287178000000	3.167972000000	0.163133000000	
C	0.797857000000	3.993368000000	-1.740848000000	
H	1.122529000000	3.941110000000	-2.783647000000	
H	0.873689000000	5.035056000000	-1.423320000000	
H	-0.255220000000	3.708631000000	-1.703481000000	
C	-4.286408000000	0.941180000000	-2.013888000000	
H	-5.315882000000	1.241872000000	-2.214411000000	
H	-4.319701000000	-0.088631000000	-1.644690000000	
H	-3.753817000000	0.935022000000	-2.969224000000	
C	-2.866132000000	-3.273131000000	-2.758640000000	
H	-1.907529000000	-3.598874000000	-3.172043000000	
H	-3.280882000000	-2.518237000000	-3.429580000000	
H	-3.539240000000	-4.132503000000	-2.764377000000	
C	-1.735171000000	-1.516437000000	-1.363972000000	
H	-1.874686000000	-0.961448000000	-2.298597000000	
H	-0.701538000000	-1.877280000000	-1.400135000000	

[Et₃SiO=C=O]⁺ (C₁)

Atom	X	Y	Z	Coordinates
Si	-0.595639000000	-0.002519000000	-0.395526000000	
C	-1.488426000000	-1.553611000000	0.052080000000	
H	-0.769060000000	-2.379011000000	0.059507000000	
H	-2.140619000000	-1.759512000000	-0.808787000000	
C	-2.308331000000	-1.518120000000	1.342163000000	
H	-2.810812000000	-2.472738000000	1.497083000000	
H	-3.077716000000	-0.745748000000	1.313157000000	
H	-1.682723000000	-1.334484000000	2.217342000000	
C	0.558439000000	-0.061889000000	-1.839357000000	
H	1.214126000000	0.814893000000	-1.805118000000	
H	-0.087777000000	0.115654000000	-2.711030000000	
C	1.355470000000	-1.351771000000	-2.034803000000	
H	0.703941000000	-2.219095000000	-2.145313000000	
H	2.033619000000	-1.554394000000	-1.202123000000	
H	1.969324000000	-1.287376000000	-2.933075000000	
C	1.416738000000	1.606415000000	-0.020479000000	
H	1.797402000000	1.563617000000	1.005124000000	
H	-2.315919000000	1.615314000000	-0.652880000000	
C	-0.592050000000	2.871544000000	-0.255540000000	
H	0.289966000000	2.909740000000	0.386962000000	
H	-1.186255000000	3.757898000000	-0.033881000000	
H	-0.257440000000	2.954796000000	-1.290282000000	

S68
Element	Atomic Position	X-C	Y-C	Z-C
C	1.907583000000	0.004340000000	1.318240000000	
O	0.748906000000	0.001130000000	1.108976000000	
O	3.020846000000	0.008152000000	1.549374000000	

$$\text{[Et}_3\text{SiOCHOSiEt}_3]^+ \ (C_1)$$

Si	2.440868000000	-0.047458000000	0.059155000000
C	0.041506000000	-0.072532000000	-1.332509000000
O	0.748906000000	0.001130000000	1.108976000000
C	3.020846000000	0.008152000000	1.549374000000

S69
[Et₃SiOCH₃]$^+$ (C₁)

Element	X	Y	Z
Si	-0.154986000000	-0.018797000000	-0.323852600000
C	-1.620132000000	-1.148822000000	-0.351690000000
H	-1.338904000000	-2.907630000000	0.131082000000
H	-1.775401000000	-1.407194000000	0.187373000000
C	-2.907956000000	-0.588251000000	0.252893000000
H	-3.710345000000	-0.154986000000	1.306955000000
H	-2.277389000000	-0.154986000000	1.306955000000
C	1.431256000000	-0.721801000000	0.461457000000
H	2.267542000000	0.057670000000	-0.743097000000
H	1.338467000000	-0.632186000000	-0.743097000000
C	1.743385000000	-2.081820000000	-0.617023000000
H	0.960544000000	-0.018797000000	1.306955000000
H	1.849587000000	-2.318101000000	0.461457000000
C	-0.465244000000	1.771328000000	-1.075960000000
H	-1.321304000000	2.104681000000	-0.105076000000
H	-0.812986000000	1.793291000000	-1.740721000000
C	0.724888000000	2.712006000000	-0.523248000000
H	1.081363000000	2.737693000000	-0.510760000000
H	0.447085000000	3.734555000000	-0.780214000000
H	1.564960000000	2.434597000000	-1.161638000000
O	0.139814000000	0.101165000000	1.512107000000
C	1.186932000000	0.093002000000	2.143130000000
H	2.153087000000	-0.335910000000	1.644090000000
H	1.141230000000	0.213944000000	3.228614000000

(Et₃Si)₂O (C₂)

Element	X	Y	Z
Si	1.636781000000	0.016215000000	-0.000446000000
C	2.244988000000	0.045450000000	1.776516000000
H	1.903540000000	0.985479000000	2.216004000000
H	3.339391000000	0.106733000000	1.758642000000
C	1.803606000000	-1.127833000000	2.653505000000
H	2.160231000000	-1.022343000000	3.681025000000
H	2.183020000000	-2.079939000000	2.275457000000
H	0.714759000000	-1.206210000000	2.693280000000
C	2.262331000000	1.483655000000	-0.943391000000
H	1.899527000000	1.409043000000	-1.974448000000
H	3.354537000000	1.404826000000	-1.011679000000
C	1.869922000000	2.835913000000	-0.352795000000
H	2.278658000000	2.970089000000	0.651371000000
H	0.784584000000	2.935867000000	-0.276477000000
H	2.231469000000	3.666926000000	-0.963345000000
C	2.234708000000	-1.588250000000	-0.839037000000
H	1.909497000000	-2.443002000000	-0.235798000000

S70
H	3.330318000000	-1.595052000000	-0.790000000000
C	1.775415000000	-1.768396000000	-2.284182000000
H	0.685613000000	-1.770385000000	-2.357215000000
H	2.133107000000	-2.709301000000	-2.709301000000
H	2.141645000000	-0.963360000000	-2.925548000000
Si	-1.636702000000	0.015840000000	-0.002514000000
C	-2.245664000000	0.147648000000	1.770260000000
H	-1.904542000000	-0.743962000000	2.308189000000
H	-3.340071000000	0.080835000000	1.758630000000
C	-1.805082000000	1.404009000000	2.517823000000
H	-2.162797000000	1.408830000000	3.550355000000
H	-2.184067000000	2.310282000000	2.039874000000
H	-0.716277000000	1.486287000000	2.550196000000
C	-2.262558000000	-1.575784000000	-0.780767000000
H	-1.899603000000	-1.610873000000	-1.814041000000
H	-3.354318000000	-1.505195000000	-0.856668000000
C	-1.868981000000	-2.857597000000	-0.500770000000
H	-2.277325000000	-2.884480000000	0.962804000000
H	-0.783608000000	-2.948733000000	0.035982000000
H	-2.230590000000	-3.748805000000	-0.568780000000
C	-2.234126000000	1.490052000000	-1.003300000000
H	-1.908548000000	2.403878000000	-0.494222000000
H	-3.329736000000	1.502328000000	-0.955090000000
C	-1.775125000000	1.515679000000	-2.459527000000
H	-0.685347000000	1.509216000000	-2.532656000000
H	-2.142053000000	0.647477000000	-3.011912000000
H	-2.132352000000	2.406452000000	-2.981898000000
O	0.000078000000	-0.000189000000	-0.001433000000

O	-0.008280000000	0.041457000000	0.040230000000
Si	-1.712151000000	-0.591581000000	-0.021747000000
Si	0.298033000000	1.793906000000	-0.332439000000
Si	1.377345000000	-1.128511000000	-0.065502000000
C	-2.921700000000	0.835715000000	0.070026000000
H	-2.870322000000	1.306860000000	1.053818000000
H	-2.697920000000	1.612440000000	-0.662095000000
C	-0.336878000000	2.035593000000	-2.079272000000
H	0.411392000000	1.627444000000	-2.766701000000
H	-1.245279000000	1.457992000000	-2.262396000000
C	-1.838706000000	-1.457363000000	-1.683866000000
H	-2.237047000000	-0.726030000000	-2.395532000000
H	-0.840094000000	-1.699982000000	-2.057316000000
C	2.598157000000	-0.735881000000	1.289136000000
H	3.332993000000	-1.546825000000	1.201630000000
H	3.161942000000	0.170557000000	1.071419000000
C	3.573006000000	-1.146048000000	-1.919552000000
H	3.896723000000	-2.116818000000	-1.541723000000
H	4.119159000000	-0.383348000000	-1.360833000000
C	-2.054153000000	-1.701066000000	1.441320000000
H	-3.090314000000	-2.011570000000	1.249474000000

\[([\text{Et}_3\text{Si}]\text{O})^+ (\text{C}_1) \]
Atom	Coordinates	Bond Lengths	Angle (°)
C	-1.482637000000	-2.625980000000	1.390655000000
C	0.771911000000	-2.879216000000	0.215148000000
C	0.531618000000	-3.015526000000	1.271817000000
C	-0.135867000000	-3.104940000000	-0.346213000000
C	-0.584803000000	3.509450000000	-2.411949000000
H	-1.381697000000	3.935909000000	-1.799819000000
H	-0.876390000000	3.628060000000	-3.456231000000
H	0.307191000000	-2.879216000000	0.215148000000
C	0.771911000000	-2.879216000000	0.215148000000
H	0.531618000000	-3.015526000000	1.271817000000
H	-0.135867000000	-3.104940000000	-0.346213000000
C	-0.584803000000	3.509450000000	-2.411949000000
H	-1.381697000000	3.935909000000	-1.799819000000
H	-0.876390000000	3.628060000000	-3.456231000000
H	0.307191000000	-2.879216000000	0.215148000000
C	0.771911000000	-2.879216000000	0.215148000000
H	0.531618000000	-3.015526000000	1.271817000000
H	-0.135867000000	-3.104940000000	-0.346213000000
C	-0.584803000000	3.509450000000	-2.411949000000
H	-1.381697000000	3.935909000000	-1.799819000000
H	-0.876390000000	3.628060000000	-3.456231000000
H	0.307191000000	-2.879216000000	0.215148000000
C	0.771911000000	-2.879216000000	0.215148000000
H	0.531618000000	-3.015526000000	1.271817000000
H	-0.135867000000	-3.104940000000	-0.346213000000
C	-0.584803000000	3.509450000000	-2.411949000000
H	-1.381697000000	3.935909000000	-1.799819000000
H	-0.876390000000	3.628060000000	-3.456231000000
H	0.307191000000	-2.879216000000	0.215148000000
C	0.771911000000	-2.879216000000	0.215148000000
H	0.531618000000	-3.015526000000	1.271817000000
H	-0.135867000000	-3.104940000000	-0.346213000000
C	-0.584803000000	3.509450000000	-2.411949000000
H	-1.381697000000	3.935909000000	-1.799819000000
H	-0.876390000000	3.628060000000	-3.456231000000
H	0.307191000000	-2.879216000000	0.215148000000
C	0.771911000000	-2.879216000000	0.215148000000

\[\text{CO}_2 (D_{\text{eh}}) \]

Element	Coordinates	Bond Lengths	Angle (°)
C	0.000000000000	0.000000000000	0.000000000000
O	0.000000000000	0.000000000000	1.156797000000
O	0.000000000000	0.000000000000	-1.156797000000

S72
S5 Literature

[1] Rigaku OD, *CrysAlis Pro*, Rigaku Oxford Diffraction, Rigaku Corporation, Yarnton, England, 2015.

[2] a) G. Sheldrick, *Acta Crystallogr. C* 2015, 71, 3–8; b) G. M. Sheldrick, *Acta Crystallogr. A* 2008, 64, 112–122.

[3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr*. 2009, 42, 339–341.

[4] K. Brandenburg, *Diamond v.3.2f, Crystal Impact GbR*, 2001.

[5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji et al., *Gaussian 16 Rev. A.03*, Wallingford, CT, 2016.

[6] a) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1997, 78, 1396; b) Perdew, Burke, Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865–3868; c) J. P. Perdew, M. Ernzerhof, K. Burke, *J. Chem. Phys.* 1996, 105, 9982–9985; d) C. Adamo, V. Barone, *J. Chem. Phys.* 1999, 110, 6158–6170.

[7] a) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, 8, 1057–1065; b) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.

[8] A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* 2009, 113, 6378–6396.

[9] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, *NBO Version 3.1*.

[10] C. Bolli, J. Derendorf, C. Jenne, H. Scherer, C. P. Sindlinger, B. Wegener, *Chem. Eur. J.* 2014, 20, 13783–13792.

[11] G. K. S. Prakash, C. Bae, Q. Wang, G. Rasul, G. A. Olah, *J. Org. Chem.* 2000, 65, 7646–7649.

[12] A. Schäfer, W. Saak, D. Haase, T. Müller, *Angew. Chem. Int. Ed.* 2012, 51, 2981–2984; *Angew. Chem.* 2012, 124, 3035–3038.

[13] K. Bläsing, R. Labbow, D. Michalik, F. Reiß, A. Schulz, A. Villinger, S. Walker, *Chem. Eur. J.* 2020, 26, 1640–1652.