Cardiovascular risk and fruit and vegetable consumption among women in KSA. A cross-sectional study

Mashael K. Alshaikh, PhD b,*, Salman Rawaf, MD a and Harumi Quezada-Yamamoto, MD a

a Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
b Pharmacy Department, King Saud University Medical City, Riyadh, KSA

Received 19 April 2018; revised 2 June 2018; accepted 4 June 2018; Available online

Objective: This study aims to assess fruit and vegetable consumption among Saudi women to identify perceived benefits and barriers associated with a healthy diet in cardiovascular disease (CVD) risk prevention and to correlate Framingham risk scores (FRS) with the perceived barriers.

Methods: A questionnaire adapted from the Health Beliefs Related to Cardiovascular Disease Scale was administered to women attending a primary care centre in KSA. In addition to descriptive statistics, a chi-square test and multiple linear regression analysis were used to determine the association between perceptions of benefit and barriers with FRS categories and between mean FRS and perceived barriers.

Results: A total of 503 women were included in this study, and 75% of the women were older than 45 years. More than 60% of women were obese, and 97% consumed 1–3 fruit and vegetable servings per day, whereas only 1.4% consumed fruits and vegetables 5 or more per day.
more times per day. The majority of women were aware of the benefits of a healthy diet in CVD prevention. No significant difference between FRS and perceived benefits or barriers was observed. Barriers across the low- to high-risk groups included a lack of knowledge about a ‘healthy diet’, insufficient time to cook, food affordability, and having more important problems. Women who disagreed on barriers had negative beta coefficients for the mean FRS ($p < 0.03$).

Conclusions: In this study cohort, fruit and vegetable intake was lower than the recommended guidelines. Despite awareness of the benefits of a healthy diet in CVD prevention, very few women understood the true meaning of ‘healthy diet’. A direct association between FRS and perceptions/barriers could not be validated. Perceived barriers could be addressed by integrating innovative educational campaigns to existing models of the Healthy Food Plan.

Keywords: Cardiovascular disease; Diet; Lifestyle; Women; KSA

© 2018 The Authors.
Production and hosting by Elsevier Ltd on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

High consumption of fruit and vegetable (FV) is a vital element of a healthy diet that is recommended for preventing diseases, including cardiovascular disease (CVD). A minimum of 5 portions (400 g) of FV per day has been shown to reduce the risk of serious health problems. FVs are a source of vitamins, minerals, fibres, and antioxidants, which protect against CVD and its risk factors. According to the World Health Organization (WHO) (2003), low FV intake is associated with more than 2.7 million deaths per year globally. Thus, increasing FV consumption is crucial not only to save lives but also to improve the well-being of society. Despite the general knowledge and perceived health benefits attributed to FV consumption, FV intake is far below the minimum daily recommendation in many countries. Barriers to consumption seem to play an important role in affecting dietary choices, regardless of perceived benefits.

According to the WHO, the lack of compliance to FV intake recommendations is particularly evident in Middle Eastern countries and the North Africa region, with the proportion being up to 96.7% in Egypt and 91.1% in Qatar. Furthermore, in KSA, where this study will be focused, data from the last national health survey show that 97.4% of adults consumed fewer than 5 FV servings, and only 2.6% of adults complied with the consumption guidelines. Moreover, two studies reported a significant statistical difference in FV consumption between sexes; women were found to consume less FV than men ($p = 0.001$). Additionally, as reported in a recent systematic review (2016), CVD affected women in KSA due to lifestyle-related factors such as obesity and physical inactivity.

Consequently, to increase FV consumption, factors affecting behaviours associated with FV consumption need to be studied, i.e. perceived benefits and barriers to a healthy diet. Addressing low FV consumption among women can contribute to reducing not only their own CVD risk but also that of men. Furthermore, women can be key to a healthier diet as traditionally they are responsible for the household diet (ref). This study employed the Framingham risk score (FRS), which is commonly used in KSA, together with a modified version of the Health Beliefs Related to Cardiovascular Disease Scale (HBRCDS). These tools were used to understand health-related behaviours and assess behavioural associations with perceived benefits and barriers related to a healthy diet and CVD prevention. Perceived benefits and barriers to a healthy diet can influence food choices. Therefore, this study aimed to contribute towards increasing FV consumption among women in KSA by exploring FV consumption, identifying perceived benefits and barriers associated with a healthy diet for CVD risk prevention, and correlating probability FRSs with these perceived barriers.

Materials and Methods

Study design and sample recruitment

This cross-sectional descriptive and analytical study targeted women attending the Primary Care Centre (PCC) at King Saud University Medical City from December 2015 to June 2016.

The sample size calculation was based on an expected CVD frequency of 18% amongst women in KSA. Among these women, we aimed to determine if there was a correlation between their FV consumption and their CVD status. The required sample size was at least 389 women using the FluidSurveys® (2014) software, with 95% CI and an error margin of 0.05. In order to account for any missing data, the sample size was increased by 30%, and thus, the total number of required participants was 503. Using a non-random convenience sampling method, 503 women who visited the PCC for a regular appointment were recruited. All candidates answered an individual questionnaire, which was filled in by a research assistant. Inclusion criteria required that all participants be females with an age above 15 years. All the participants signed a consent form to participate in this study. Patients with known CVD, i.e., ischaemic heart disease, stroke history, and other serious diseases, were excluded.

Questionnaire

The final questionnaire was divided into three sections. The first section queried about demographic data (e.g. age, marital status, educational level, employment, monthly family income, height, weight, and family history of CVD). The second section enquired about personal lifestyle. For an accurate report of FV intake, visual aids were used. The
images included serving dishes, cups, bowls, spoons, vegetables, and fruits to help participants estimate their daily servings. The last section included a validated tool adopted from the HBRCDS. Four statements were posed with respect to perceived benefits (i.e. Eating a healthy diet will decrease my chances of having heart attack or stroke; Eating a healthy diet most days of the week is one of the best ways for me to prevent a heart attack or stroke; When I eat healthy I am doing something good for myself; and Eating a healthy diet will decrease my chances of dying from cardiovascular disease), in addition to 4 statements regarding perceived barriers (I do not know what is considered a healthy diet that would prevent me from developing CVD; I do not have time to cook meals for myself; I can’t afford to buy healthy foods; I have other problems more important than worrying about diet).

Ethical aspects

Ethical approval was obtained from King Saud University Medical City. Written informed consent was also obtained from each participant before data collection (reference # 15/0438/IRB).

Translation and data collection

The questionnaire was translated into Arabic and subjected to a process of forward and backward translation. A cross-cultural translation and adaptation process was used to adapt the HBRCDS questionnaire, and recommended amendments were discussed before the questionnaire was finalized. It was pre-tested for content, design, readability, and comprehension among 23 women (not included in the final analysis), and modifications were made to ensure that the questionnaire was simple to understand and answer.

The data were collected by a team of in-house trained research assistants who conducted face-to-face interviews with the patients. Each interview lasted for approximately 20–25 min.

Anthropometric measurements and laboratory measurements

Data for anthropometric and laboratory measurements were obtained from the most recent registries of patients’ medical records. Height and weight were used to calculate the body mass index. Blood pressure included both systolic blood pressure and diastolic blood pressure. For the lipid profile, we used the most recent cholesterol level, i.e. within the last 4–6 years. FRS was calculated considering the following factors: age; presence or absence of diabetes; smoking; lipid profile; and blood pressure values. The participants were then classified according to the FRS for CVD: low risk (10% or less) at 10 years; intermediate risk (10–20%); and high risk (20% or more).

Statistical analysis

Each survey item was coded and entered into the Statistical Package for the Social Sciences (SPSS) version 24.0 software. Descriptive statistics, such as frequencies, was performed for all demographic and personal variables. The chi-square test was used to determine the association between perceived benefits and barriers to a healthy diet with the FRS categories (low, moderate, and high). Moreover, multiple linear regression analysis was performed between mean FRS (as the dependent variable) and perceived barriers to a healthy diet. Variables with p values of <0.05 were considered statistically significant.

Results

A total of 503 women were included in this study. Of 503 women, FRS could be calculated for only 480 women because of the availability of a recent lipid profile (within the last 5 years). Table 1 summarizes the demographic characteristics of the participants. Among the participants, 75% were older than 45 years, and more than 60% were obese, with waist-to-hip ratios exceeding 0.8.

Our first objective was to estimate the prevalence of FV consumption. Regarding this, the majority (97%) of participants consumed 1–3 servings per day, and only 1.4% of them consumed the recommend 5 or more servings per day. Half of the participants had a low educational level, mostly below high school, and more than 68% were housewives. Overall, the mean FRS among all the participants was 12.55 (±8.9).

The second objective was to address the perceived benefits and barriers to a healthy diet. Most of the women were aware of the benefit of a healthy diet in CVD prevention (Table 2). No significant difference between FRS classification and perceived benefits and barriers was identified (See Figures 1 and 2). Nevertheless, it appeared that despite knowing the benefits of a healthy diet, the participants did not clearly understand the meaning ‘healthy diet’. The other barriers across the low- to high-risk groups were not having time to cook, affordability, and having more important problems to take care of. The difference in agreement with these statements was 64–65% in the low-risk group, 71% in the moderate-risk group, and 73–74% in the high-risk group.

Table 3 shows the relationship between perceived barrier items and FRSs of the perceived barrier items using multiple linear regression analysis. Women who disagreed regarding the barrier (all 4 statements in regard to the barrier) had negative (−2.12) beta coefficients on the mean FRS, and this relationship was significantly different (p < 0.03). This indicates a higher mean FRS among women who agree regarding these barriers.

Discussion

The current study found that a low consumption of FV was common among all the participants. A number of researchers have also reported low FV consumption in the Saudi population. Alzeidan et al. measured the CVD risk among university employees and their families and documented the FV consumption. They reported that more than 87% of participants consumed less than 5 FV servings per day. Similarly, 2 national household surveys reported low-level consumption of FV. The first was conducted between August 2004 and 2005 and showed that only 5% of participants consumed 5 FV servings daily. The second was
Table 1: Demographic characteristics of the participants (n = 503).

Age	Frequency	Percent (%)
15–24	21	4.2
25–34	33	6.5
35–44	69	13.7
45–54	145	28.8
55–64	167	33.1
>65	68	13.5

Marital status	Frequency	Percent (%)
Currently married	371	73.6
Never married	32	6.3
Separated/divorced/widowed	100	19.9

Education level	Frequency	Percent (%)
Elementary or less	251	49.8
Intermediate/high school	129	25.6
Diploma/college degree or postgraduate	123	24.4

Employment condition	Frequency	Percent (%)
Government/semi-government/ private sector	88	17.5
Student/not working	31	6.2
Housewife	336	67.6
Retired	28	5.6

Monthly Income	Frequency	Percent (%)
less than 2000 SR	124	24.6
3000–6999 SR	107	21.2
7000–14999 SR	182	36.1
15000 or above	90	17.8

Reported chronic disease status	Frequency	Percent (%)
Hypertension	191	37.9
Diabetes	275	54.6

Daily servings of fruits and vegetables	Frequency	Percent (%)
None	5	1
1–3 servings	489	97
+3–5 servings	5	1
More than 5 servings	2	0.4

Daily hours spent in watching TV	Frequency	Percent (%)
1 h or less	246	48.8
1–3 h	145	28.8
3–5 h	35	6.9
More than 5 h	74	14.7

BMI	Frequency	Percent (%)
Underweight/normal	38	7.5
Overweight	138	27.4
Obese	308	61.1

Waist-to-hip ratio (WHR)	Frequency	Percent (%)
<0.8	7	1.4
>0.8	497	98.6

Family history of DM	Frequency	Percent (%)
Yes	170	33.7

Family history of HTN	Frequency	Percent (%)
Yes	269	58.8
No	206	40.9

Table 1 (continued)

Family history of hyperlipidaemia	Frequency	Percent (%)
Yes	127	25.1
No	376	74.5

Framingham risk classification	Frequency	Percent (%)
Low	217	43.0
Intermediate	153	30.3
High	113	22.4

DM: Diabetes mellitus, HTN: Hypertension, BMI: Body mass index.

Conducted in 2013, with only 8% of participants consuming 5 FV servings daily (8%). In addition, university studies, such as those by Alsumni and Badar (2015), reported that despite more than 78% of university students being aware of the WHO FV recommendation, 83% consumed less than 1 serving per day. Furthermore, in the study by Al-Otaibi (2013), 78% of university students consumed less than 5 FV servings daily; only 22% consumed 5 or more servings. In this study, the higher FV consumption group was more knowledgeable about the daily recommendation of FV intake. While in the study by Epuru et al. (2014), nearly half of the study population did not know about the potential health benefits of consuming FV on a daily basis, and about four-quarter did not believe that it was important to consume fresh FV. In our study, despite most of the study participants understanding the benefit of a healthy diet in CVD prevention, only 0.4% consumed more than 5 servings per day. However, the majority of the participants did not know what is considered a healthy diet for CVD prevention. This suggests that addressing the knowledge gap in FV daily consumption will positively contribute to achieving adequate intake of FV for CVD prevention. The more knowledge an individual gains, the more likely the individual is to act upon that knowledge. An example can be seen in the study by Al-Bannay et al. (2015). In the intervention group of that study, the participants showed that they benefited from the intensive education program with improvements in blood sugar levels, physical activity, nutritional behaviours, and choices.

Overall, in this study, a high score for perceived barriers was reported to help engage in the healthy consumption of food. Most of the women were part of the intermediate and high FRS categories. The barriers were a lack of time, financial issues, or other priorities. Some other studies have addressed the barriers for FV consumption among women in KSA. The most commonly reported barrier was the lack of time to prepare food or eat healthily. Two studies reported that healthier food was more expensive. In the report by Epuru et al. (2014), around 40% of the participants believed that eating fresh FV was costly. Al-Otaibi et al. (2013) revealed that the students who consumed less than 5 servings of FV per day believed that FV was expensive and that FV was unavailable in university restaurants. In the study by Farrukh et al. (2015), 17% of participants reported a lack of access to healthy food, and 25% reported a lack of time. Most of the reported...
Table 2: Relationship between perceived benefit/barrier to a healthy diet and Framingham risk scores in different categories.

Perceived benefit to healthy diet	Framingham risk scores in different categories	Perceived barrier to healthy diet	Framingham risk scores in different categories							
	Low (FRS < 10%)	Moderate (FRS 10–19%)	High (FRS > 20%)	P value	N	Column %	N	Column %	N	Column %
Eating a healthy diet will decrease my chances of having heart attack or stroke	Disagree	11	5%	8	5%	6	5%	0.158		
	Neutral	4	2%	11	7%	6	5%			
	Agree	196	93%	129	87%	98	89%			
Eating a healthy diet most days of the week is one of the best ways for me to prevent a heart attack or stroke	Disagree	11	5%	8	5%	6	5%	0.155		
	Neutral	4	2%	11	7%	6	5%			
	Agree	200	93%	131	87%	100	89%			
When I eat healthy I am doing something good for myself	Disagree	11	5%	8	5%	6	5%	0.256		
	Neutral	4	2%	11	7%	6	5%			
	Agree	200	93%	131	87%	100	89%			
Eating a healthy diet will decrease my chances of dying from cardiovascular disease	Disagree	11	5%	8	5%	6	5%	0.167		
	Neutral	5	2%	11	7%	6	5%			
	Agree	197	92%	129	87%	99	89%			
I do not know what is considered a healthy diet that would prevent me from developing cardiovascular disease	Disagree	57	27%	33	22%	19	17%	0.353		
	Neutral	17	8%	10	7%	10	9%			
	Agree	137	65%	105	71%	81	74%			
I do not have time to cook meals for myself	Disagree	57	27%	33	22%	19	17%	0.353		
	Neutral	17	8%	10	7%	10	9%			
	Agree	137	65%	105	71%	81	74%			
I cannot afford to buy healthy foods	Disagree	58	27%	33	22%	19	17%	0.284		
	Neutral	18	9%	10	7%	10	9%			
	Agree	135	64%	105	71%	81	74%			
I have other problems more important than worrying about diet	Disagree	59	27%	34	22%	19	17%	0.255		
	Neutral	18	8%	11	7%	12	11%			
	Agree	140	65%	108	71%	82	73%			

Framingham risk score (FRS) categories: low risk (10% or less) at 10 years, intermediate risk (10–19%), and high risk (20% or more).

Barriers identified in primary care settings were a lack of knowledge, self-motivation, social support, and encouragement, which were reported by 43.7%, 82.4%, and 73.9% of the participants, respectively.29

Conclusion

The findings of this study indicated that FV intake was lower than the recommended minimum daily requirement among women in KSA. Despite being aware of the benefit of a healthy diet in the prevention of CVD, the exact meaning of a healthy diet remained unclear and thus represented a barrier for achieving the target FV consumption according to the KSA guidelines and the WHO serving recommendation; other barriers include a lack of prioritization and affordability. The perceived barriers could be addressed by integrating innovative educational campaigns to existing models, such as the Healthy Food Palm. Understanding FV consumption and addressing barriers to healthy eating are beneficial in CVD prevention and could also have an impact on other non-communicable diseases such as cancer. Further studies should be conducted using samples with an age distribution closer to the general population to accurately measure the association between FRS and FV consumption.

Abbreviations: FV, Fruit and vegetable; PCCs, Primary Care Centres; HBRCDS, Health Beliefs Related to Cardiovascular Disease Scale; CVD, Cardiovascular disease; WHO, World Health Organization.

Recommendations

Saudi’s ‘Healthy Food Palm’ guideline

In 2012, the Ministry of Health published dietary guidelines called the ‘Healthy Food Palm’.30 The Healthy Food Palm aims to educate and raise awareness to improve the well-being and lifestyle of the Saudi population. The guideline promotes adequate consumption of FV, meat, and grains, among others. This is especially relevant in a country in which women have an elevated prevalence of risk factors, such as diabetes (9.6%), hypertension (21.85), and obesity (40.2%).12 The latter could be partially attributed to the large daily intake of fast food like roast chicken, or traditional Saudi foods that contain high quantities of meat. It is important to note that consumption of grains has been found to be at an adequate level in this country.9 We recommend updating the dietary guidelines to prioritise and focus on FV intake with a simple, clear message about the serving amounts. For example, in 2003 the UK’s Department of Health started a national campaign on FV consumption with the slogan "5 a day". The objective was to increase.
FV consumption. After 4 years they evaluated the efficacy of the campaign, and found an increase of more than 0.3 servings per person per day. The "5 a day" campaign is a good example of an effective national public health campaign, with a simple message, conveyed visually in a simple manner.

Making the right food choices can be complex, and therefore empowering women in making the right decisions for their own health is highly recommended and will be reflected in society.

One of the promising approaches is the use of the Nudge Theory. This theory, which was proposed by Thaler and Sunstein in their 2008 book, provides a useful and practical public health strategy for encouraging healthier eating choices in adults. A recent systematic review was conducted in 2016 to determine whether Nudge strategies

Please cite this article in press as: Alshaikh MK, et al. Cardiovascular risk and fruit and vegetable consumption among women in KSA. A cross-sectional study. Journal of Taibah University Medical Sciences (2018), https://doi.org/10.1016/j.jtumed.2018.06.001
are successful in changing adults’ dietary choices for healthier ones. It found that the application of the theory resulted in an average 15.3% increase in healthier dietary or nutritional choices.13

Strengths and limitations

One of the strengths of this study was the use of visual aids to describe the FV portion in order to overcome misunderstandings in defining the serving size.

The main limitation of the study is the recall bias that could have occurred when measuring behaviours like FV consumption. Another limitation is that the study was implemented in only 1 primary care setting, and most of the participants were older than 45 years of age, which can limit the generalizability of the findings. Further, in this study, we were not able to test the association between the FRS and FV consumption because most of the participants (98%) were in 1 category (1–3 servings per day).

Authors’ contributions

MKA constructed and designed the study, wrote the initial and final manuscript, led the research, provided research materials, and analysed and organised data. SR revised the process and development of the manuscript by acting as a supervisor. HQY proofread and edited the final manuscript, as well as revised the data analysis. All authors reviewed and approved the manuscript for submission. All authors checked the manuscript for plagiarism and are satisfied that this manuscript complies with academic standards. All authors have critically reviewed and approved the final draft and are responsible for the content and similarity index of the manuscript.

Ethical approval

Ethical approval was obtained from King Saud University Medical City. In addition, written informed consent was obtained from each participant before data collection. (reference # 15/0438/IRB).

Table 3: Relationship between perceived barrier items and Framingham risk scores.

Perceived barrier items	N	Unstandardized coefficients	Sign.		
		B	Std. Error		
I do not know what is considered a healthy diet that would prevent me from developing cardiovascular disease	Agree (ref)	339	–		
	Disagree	112	–2.12	0.98	0.03*
	Neutral	38	0.14	1.55	0.93
I do not have time to cook meals for myself	Agree (ref)	339	–		
	Disagree	112	–2.12	0.988	0.03*
	Neutral	38	0.144	1.55	0.92
I can’t afford to buy healthy foods	Agree (ref)	339	–		
	Disagree	112	–2.20	0.99	0.02*
	Neutral	38	–0.17	1.53	0.91
I have other problems more important than worrying about diet	Agree (ref)	339	–		
	Disagree	112	–2.13	0.98	0.03*
	Neutral	38	0.68	1.48	0.64

* Significant with P value < 0.05.

Mean Framingham risk scores: 12.55. Std. deviation 8.9, constant 13.018.

Dependent variable: Framingham risk scores.

Linear regression analysis shows the relationship between.

Availability of data and materials

Anonymised patient data are in the possession of author Mashael Alshaikh and may be shared upon request.

Conflict of interest

The author declares that they have no competing interests.

Funding

This research was supported by sponsorship provided to Mashael K Alshaikh, by King Saud University, Riyadh, KSA. The Department of Primary Care and Public Health at Imperial College London is grateful for support from the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research & Care (CLAHRC) scheme, the NIHR Biomedical Research Centre scheme, and the Imperial Centre for Patient Safety and Service Quality.

Acknowledgements

We are grateful for the support of the Primary Care Centre at the King Saud University Medical City, and the Department of Primary Care and Public Health at Imperial College London.

References

1. Gan Y, Tong X, Li L, Cao S, Yin X, Gao C, et al. Consumption of fruit and vegetable and risk of coronary heart disease: a meta-analysis of prospective cohort studies. Int J Cardiol 2015; 183: 120–137.
2. Hartley L, Igbinedion E, Thorogood M, Clarke A, Stranges S, Hooper L, et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst Rev 2012: 6.
3. Wu Q-J, Wu L, Zheng L-Q, Xu X, Ji C, Gong T-T. Consumption of fruit and vegetables reduces risk of pancreatic
