Can magneto-transport properties provide insight into the functional groups in semiconducting MXenes?

Namitha Anna Koshi, Anup Kumar Mandia, Bhaskaran Muralidharan, Seung-Cheol Lee, and Satadeep Bhattacharjee

*Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru 560065, India
\(^b\)Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
\(^c\)Electronic Materials Research Center, KIST, Seoul 136-791, South Korea

*E-mail: leesc@kist.re.kr, s.bhattacharjee@ikst.res.in

Figure S1: Side view of Sc\(_2\)CF\(_2\) (a) I, (b) II, (c) III and (d) IV configurations. Side and top view of optimized structure of Sc\(_2\)C functionalized by (e,h) F, (f,i) O and (g,j) OH. Lavender, brown, blue, red and white balls correspond to Sc, C, F, O and H atoms respectively.
Figure S2: For Sc$_2$CF$_2$, the conduction band edge shift position for uniaxial strain along (a) x, (c) y, and (e) z directions. The relationship between total energy and strain along (b) x, (d) y, and (f) z directions are given for Sc$_2$CF$_2$.
Table S1: Deformation potential calculation for Sc$_2$CF$_2$: $E(\epsilon) = a\epsilon + b$, $D_A = \frac{\partial E}{\partial \epsilon} = a$

Parameter	LA	TA	ZA
a	-2.166	-2.17	-6.842
Standard error	±0.07429	±0.07243	±0.0006
b	-1.541	-1.541	-1.539
Standard error	±0.00053	±0.00051	±0.0004

Table S2: Elastic moduli calculation for Sc$_2$CF$_2$: $E(\epsilon) = a\epsilon^2 + b\epsilon + c$, $C = \frac{\partial^2 E}{\partial \epsilon^2} = 2a$

Parameter	LA	TA	ZA
a	69.218	69.205	49.620
Standard error	±0.522	±0.517	±0.142
b	-0.124	-0.124	-0.014
Standard error	±0.0031	±0.0031	±0.0008
c	-38.451	-38.451	-38.451
Standard error	±0.00003	±0.00003	±0.000009

Figure S3: Scattering rates versus energy due to acoustic phonons: (a) Sc$_2$CF$_2$, (b) Sc$_2$CO$_2$ and (c) Sc$_2$C(OH)$_2$.
Figure S4: Conductivity as a function of temperature: (a) Sc$_2$CF$_2$, (b) Sc$_2$CO$_2$ and (c) Sc$_2$C(OH)$_2$.

Figure S5: For a given concentration ($n=5\times10^{12}$ cm$^{-2}$), the difference in Hall scattering factor Δr calculated using RTA and Rode approach as a function of temperature.
Figure S6: The Hall scattering factor as a function of concentration at different temperatures (a)Sc$_2$CF$_2$, (b)Sc$_2$CO$_2$ and (c)Sc$_2$C(OH)$_2$. (d) Hall factor of Sc$_2$CF$_2$, Sc$_2$CO$_2$ and Sc$_2$C(OH)$_2$ at 300 K.
Table S3: At Fermi energy (E_F) for doping concentration of 4×10^{13} cm$^{-2}$ and temperature of 300 K

Material	$g(E)$	$h(E)$	$\frac{h(E)}{((g(E))^2}$
Sc_2CF_2	1.63×10^{-7}	-5.97×10^{-12}	-224.69
Sc_2CO_2	4.52×10^{-7}	-3.60×10^{-11}	-176.21
$\text{Sc}_2\text{C(OH)}_2$	6.80×10^{-7}	-8.96×10^{-11}	-193.77