The Minimal Dimension of a Sphere with an Equivariant Embedding of the Bouquet of g Circles is $2g - 1$

Zhongzi Wang

Received: 28 June 2020 / Revised: 6 March 2021 / Accepted: 17 March 2021 / Published online: 22 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
To embed the bouquet of g circles B_g into the n-sphere S^n so that its full symmetry group action extends to an orthogonal actions on S^n, the minimal n is $2g - 1$. This answers a question raised by Zimmermann.

Keywords Groups acting on finite graphs · Equivariant embeddings into spheres

Mathematics Subject Classification 57M25 · 57S17 · 57S25 · 05C10

In this note graphs are finite and connected, and group actions are faithful. Denote the n-dimensional Euclidean space and orthogonal group by \mathbb{R}^n and $O(n)$, and the unit sphere in \mathbb{R}^{n+1} by S^n. For a given graph Γ with an action of a finite group G, an embedding $e: \Gamma \to S^n$ is G-equivariant, if there is a subgroup $G \subset O(n+1)$ such that G acts on the pair $(S^n, e(\Gamma))$ and satisfies $g(e(x)) = e(g(x))$ for any $x \in \Gamma$ and $g \in G$. In the definition of G-equivariant embedding, one may replace $(S^n, O(n+1))$ by $(\mathbb{R}^n, O(n))$. See Remark 5 for relations between the two definitions.

The existence of G-equivariant embedding for any pair (G, Γ) is known, see [3,4]. On the other hand, for given Γ and G, usually it is difficult to find the minimal n such that there is a G-equivariant embedding $\Gamma \to \mathbb{R}^n$.

The most significant finite group associated to a graph Γ is its full symmetry group $\text{Sym} \Gamma$. The simplest and also most symmetric graph is the bouquet of g circles (the graph with one vertex and g closed edges, see Fig. 1), denoted as B_g. B_g is the simplest in the sense that B_g has only one vertex. B_g is the most symmetric in the sense that: for $g \geq 3$, the maximum order of finite group action on a hyperbolic graph of rank g (defined as its fundamental group rank) is $2^g g!$, which is realized uniquely by the
action of Sym B_g on B_g [7]. A graph Γ is hyperbolic if it has rank > 1 and it has no free edge. See Example 6 for the rank 2 case.

For simplicity, (Sym Γ)-equivariant embeddings of Γ will be called just equivariant embeddings of Γ. Recently, Zimmermann [8] asked a very interesting question (as commented by the MR review of the paper).

Question 1 What is the minimal value of n such that there is an equivariant embedding $B_g \to S^n$?

Zimmermann pointed out that $n \geq g - 1$, which follows from a group theoretical argument. He also described an equivariant embedding of B_g into S^{2g}. So, he concluded, the minimal n is between $g - 1$ and $2g$ [8]. We answer Zimmerman’s question with

Theorem 2 The minimal n such that there is an equivariant embedding $B_g \to S^n$ is $2g - 1$.

Theorem 2 follows from the next two propositions.

Proposition 3 Suppose there is an equivariant embedding of B_g into S^n, then $n \geq 2g - 1$.

Proposition 4 There are equivariant embeddings of B_g into S^{2g-1} for each $g > 1$.

Proof of Proposition 3 First, we recall carefully a description of the action of Sym B_g on B_g. Denote the vertex of B_g by v and the g circles by C_1, \ldots, C_g, see Fig. 2. From
now on we consider each circle C_i as oriented. It is known that $\text{Sym} \ B_g$ is the semidirect product $(\mathbb{Z}_2)^g \rtimes S_g$, where S_g is the permutation group of g elements, which permutes those g oriented circles, and the normal subgroup $(\mathbb{Z}_2)^g$ acts by orientation reversing involutions of those g oriented circles.

More precisely, for each $\sigma \in S_g$, denote the corresponding action on B_g by τ_σ, which sends C_i to $C_{\sigma(i)}$ and preserves the orientations. Denote the element ρ_i to be the element in $(\mathbb{Z}_2)^g \subset \text{Sym} \ B_g$, which is the orientation reversing involution on C_i and is the identity on the remaining C_j, for $j \neq i$. Now ρ_i has two fixed points, one is v, another we denote as p_i. It is clear that

$$\tau_\sigma \rho_i \tau_\sigma^{-1} = \rho_{\sigma(i)}. \quad (1)$$

By (1) we have

$$\rho_{\sigma(i)} \tau_\sigma (p_i) = \tau_\sigma \rho_i \tau_\sigma^{-1} \tau_\sigma (p_i) = \tau_\sigma \rho_i (p_i) = \tau_\sigma (p_i).$$

So, we have $\rho_{\sigma(i)} \tau_\sigma (p_i) = \tau_\sigma (p_i)$. That is, $\tau_\sigma(p_i)$ is the fixed point of $\rho_{\sigma(i)}$ on $C_{\sigma(i)} - \{v\}$. Since the fixed point of $\rho_{\sigma(i)}$ on $C_{\sigma(i)} - v$ is unique, we have

$$\tau_\sigma(p_i) = p_{\sigma(i)}. \quad (2)$$

Suppose now we have an equivariant embedding $B_g \subset S^n$. That is, we have embedded $\text{Sym} \ B_g$ into $O(n+1)$ which acts on the pair (S^n, B_g) and the restriction on B_g is the action of $\text{Sym} \ B_g$ described as above. Since S^n is the unit sphere of \mathbb{R}^{n+1} and $O(n+1)$ is the orthogonal transformation group of \mathbb{R}^{n+1}, the action of $\text{Sym} \ B_g$ on S^n extends to a $(\text{Sym} \ B_g)$-action on \mathbb{R}^{n+1} as an orthogonal transformation group.

Consider each point in \mathbb{R}^{n+1} as a vector in \mathbb{R}^{n+1}. Since v, p_1, p_2, \ldots, p_g are in the unit sphere, each of them is a non-zero vector. Let

$$V = \langle v, p_1, p_2, \ldots, p_g \rangle$$

be the subspace of \mathbb{R}^{n+1} spanned by the vectors v, p_1, p_2, \ldots, p_g. By (2), the S_g-action on B_g permutes those vectors p_1, p_2, \ldots, p_g and fixes v. Hence S_g acts faithfully on V, that is, $\tau_\sigma|_V = \text{id}|_V$ if and only if σ is the identity on S_g.

Now we show that the vectors v, p_1, \ldots, p_{g-1} are linearly independent: Suppose a, a_1, \ldots, a_{g-1} are real numbers such that

$$av + \sum_{i=1}^{g-1} a_i p_i = 0. \quad (3)$$

For each $j \in \{1, 2, \ldots, g-1\}$, recall that $(j, g) \in S_g$ exchanges j and g, fixes all the remaining i, and $\tau_{(j,g)}$ corresponds to the element $(j, g) \in S_g$. Since $\tau_{(j,g)}$ is an orthogonal transformation, $\tau_{(j,g)}$ is linear. Applying $\tau_{(j,g)}$ to (3), we have
\[0 = \tau(j, g) \left(a v + \sum_{i=1}^{g-1} a_i p_i \right) = a \tau(j, g)(v) + \sum_{i=1}^{g-1} a_i \tau(j, g)(p_i). \]

Since \(v \) is the common fixed point of \(S_g \), and \(\tau(j, g)(p_i) = p_i \) if \(j \neq i \) and \(\tau(j, g)(p_j) = p_g \), we have further

\[av + \sum_{i=1 \atop i \neq j}^{g-1} a_i p_i + ajp_g = 0. \] (4)

On the other hand, by (3) and some elementary transformations,

\[av + \sum_{i=1 \atop i \neq j}^{g-1} a_i p_i + ajp_g = av + \sum_{i=1}^{g-1} a_i p_i - ajp_j + ajp_g = aj(p_g - p_j). \] (5)

Combining (4) and (5) we get \(aj(p_g - p_j) = 0 \). Since \(B_g \subset \mathbb{R}^{n+1} \) is an embedding, and \(j \neq g \),

\[p_g - p_j \neq 0. \]

Hence \(a_j = 0 \). Since \(j \) can be any element in \(\{1, 2, \ldots, g-1\} \), \(a_j = 0 \) for each \(j \in \{1, 2, \ldots, g-1\} \). By (3), \(av = 0 \). Since \(v \in S^n, v \neq 0 \), we have \(a = 0 \). That is, (3) implies that

\[a = a_1 = a_2 = \ldots = a_{g-1} = 0, \]

so \(v, p_1, \ldots, p_{g-1} \) are linearly independent. As a conclusion we have

\[\dim V \geq g. \] (6)

Let \(V^\perp \) be the orthogonal complement of \(V \) in \(\mathbb{R}^{n+1} \). We have

\[\mathbb{R}^{n+1} = V \oplus V^\perp. \] (7)

For any \(i \in \{1, 2, \ldots, g\} \), \(\rho_i \) is orthogonal, so is linear. Moreover, each point in \(\{v, p_1, p_2, \ldots, p_g\} \) is a fixed point of \(\rho_i \). Therefore \(\rho_i \) is the identity on \(V \), the subspace spanned by \(\{v, p_1, p_2, \ldots, p_g\} \). Furthermore, we conclude that the action of the subgroup \((\mathbb{Z}_2)^g \) on \(V \) is trivial. In particular, \(V \) is an invariant subspace of the \((\mathbb{Z}_2)^g \)-action.

Since the \((\mathbb{Z}_2)^g \)-action on \(\mathbb{R}^{n+1} \) is orthogonal and \(V \) is invariant under the \((\mathbb{Z}_2)^g \)-action, \((\mathbb{Z}_2)^g \) acts orthogonally on the orthogonal complement \(V^\perp \) of \(V \). Since the \((\mathbb{Z}_2)^g \)-action is trivial on \(V \) and is faithful on \(\mathbb{R}^{n+1} \), the \((\mathbb{Z}_2)^g \)-action must be faithful on \(V^\perp \) by (7).
Let \(q \) be the dimension of \(V^\perp \), and consider \(O(q) \) as the \(q \) by \(q \) orthogonal matrix group. Then the \((\mathbb{Z}_2)^g \)-action on \(V^\perp \) is by a matrix group in \(O(q) \). Let \(\Omega_q \) be the set of all \(q \) by \(q \) diagonal matrices whose entries on the diagonal are either 1 or \(-1\). Then there are exactly \(2^q \) matrices in \(\Omega_q \).

Each element in \((\mathbb{Z}_2)^g \) is of order 1 or 2, therefore it can be diagonalized, in fact, so that it is in \(\Omega_q \). By linear algebra, a finite number of commuting diagonalizable matrices can be diagonalized simultaneously. Since \((\mathbb{Z}_2)^g \) is a finite abelian group, we may assume that under a basis of \(V^\perp \), all matrices in \((\mathbb{Z}_2)^g \) are diagonalized, therefore are elements of \(\Omega_g \). Since \((\mathbb{Z}_2)^g \) has \(2^g \) elements, \((\mathbb{Z}_2)^g \) acts faithfully on \(V^\perp \), the image of \((\mathbb{Z}_2)^g \) in \(\Omega_g \) must be also \(2^g \) pairwise different elements. Therefore \(2^g \leq 2^q \), that is,

\[
g \leq q = \dim V^\perp. \tag{8}
\]

By (6), (7), and (8) we have

\[
n + 1 = \dim V + \dim V^\perp \geq 2g.
\]

That is, \(n \geq 2g - 1 \). We finished the proof.

Proof of Proposition 4 We will construct two different equivariant embeddings. The first one is an equivariant embedding \(B_g \rightarrow \mathbb{R}^{2^g-1} \); here the required \(G \)-equivariant embedding \(B_g \rightarrow S^{2^g-1} \) can be obtained by one point compactification via the inverse of stereographic projection \(p: S^{2^g-1} \rightarrow \mathbb{R}^{2^g-1} \). The second one is an equivariant embedding of \(B_g \rightarrow \mathbb{R}^{2^g} \), where \(B_g \) stays equivariantly in the unit sphere \(S^{2^g-1} \).

The first construction Before we give a general construction, we would like to provide a visible equivariant embedding of \(B_2 \subset \mathbb{R}^3 \) in the familiar dimension in which we live. Fix a standard \(xyz \)-coordinate system of \(\mathbb{R}^3 \). Let \(C_1 \) be the unit circle in the lower-half \(zx \)-plane that is tangent to the \(x \)-axis at the origin, and \(C_2 \) be the
unit circle in the upper-half yz-plane that is tangent to the y-axis at the origin, as shown in Fig. 3. Then $C_1 \cup C_2$ provides an embedding $B_2 \subset \mathbb{R}^3$. The action of $\text{Sym} \ B_2 = (\mathbb{Z}_2)^2 \ltimes S_2$ is also realized by a subgroup of $O(3)$: where the inversion of C_1 is given by the reflection about the yz-plane, the inversion of C_2 is given by the reflection about the zx-plane, and the permutation of C_1 and C_2 is given by the π-rotation around a diagonal L in the xy-plane. This provides an equivariant embedding.

Now we provide the equivariant embedding of $B_g \subset \mathbb{R}^{2g-1}$ for $g > 2$. Let $V_1 = \mathbb{R}^{g-1}$ and v_1, v_2, \ldots, v_g be the vertices of a regular $(g - 1)$-dimensional simplex Δ_{g-1} centered at the origin O_1 of V_1 with the length $|O_1v_i| = 1$. Then S_g, the full symmetry group of Δ_{g-1}, is a subgroup of $O(g - 1)$. Let $V_2 = \mathbb{R}^g$ and e_1, e_2, \ldots, e_g be the standard orthogonal basis of V_2. Let $V = V_1 \times V_2$, then $V = \mathbb{R}^{2g-1}$ and (v_i, e_i) is a standard orthogonal basis of the Euclidean plane E_i spanned by v_i and e_i, $i \in \{1, \ldots, g\}$.

Define the isometrical embedding $i_i : S^1 \rightarrow V$ by

$$i_i(\cos \theta, \sin \theta) = (1 + \cos \theta) \cdot v_i + \sin \theta \cdot e_i, \quad (9)$$

where $0 \leq \theta < 2\pi$ is the parameter on the unit circle. Let $i_i(S^1) = C_i, i \in \{1, \ldots, g\}$. Clearly, the origin O of V belongs to each C_i. Moreover, C_i belongs to E_i and $E_i \cap E_j = O$ for $i \neq j$, so $C_i \cap C_j = O$ for $i \neq j$. Hence $\bigcup_{i=1}^g C_i$ is a bouquet of g circles embedded in V with the origin O as the vertex, still denoted as B_g.

For each $i \in \{1, 2, \ldots, g\}$ and each $\sigma \in S_g$, we define $i_i, \tau_\sigma \in O(2g - 1)$ as follows:

$$i_i(v_j) = v_j \quad \text{for all } j, \quad i_i(e_j) = e_j \quad \text{for } j \neq i, \quad i_i(e_i) = -e_i, \quad \tau_\sigma(1) = C_{i(i)}, \quad \tau_\sigma(v_i) = v_{i(i)}. \quad (11)$$

By (9), (10), and (11), one can check directly that

(i) i_i is the identity on C_j for $j \neq i$ and is an orientation reversing involution on C_i;

(ii) $\tau_\sigma(C_i) = C_{i(i)}$ and $\tau_\sigma^{-1}(C_i) = C_{i^{-1}(i)}$.

Let

$$H = \langle i_i, \tau_\sigma : 1 \leq i \leq g, \sigma \in S_g \rangle.$$

Then H is a subgroup of $\text{Sym} \ B_g$ and each $h \in H$ has the form

$$h = \tau_\sigma \prod_{i=1}^g i_i^{a_i},$$

where $a_i = 0$ or 1, since $\langle i_i : 1 \leq i \leq g \rangle$ is a normal subgroup of H. Clearly H acts faithfully on B_g. Moreover, if $h \in H$ is the identity on B_g, h must fix all v_i and e_i, which implies that h is the identity on V. So H also acts faithfully on V. The restriction of H on B_g is $\text{Sym} \ B_g$, since it exhausts all symmetries of $\text{Sym} \ B_g$. Therefore we get an equivariant embedding $B_g \rightarrow \mathbb{R}^{2g-1}$.
The second construction

View \mathbb{R}^{2g} as the product

$$\mathbb{R}^{2g} = \mathbb{R}^2_1 \times \mathbb{R}^2_2 \times \ldots \times \mathbb{R}^2_g,$$

where each \mathbb{R}^2_i is a Euclidean plane with standard coordinate system (x_i, y_i). Then $(x_1, y_1, x_2, y_2, \ldots, x_g, y_g)$ provides a standard coordinate system of the Euclidean space \mathbb{R}^{2g}. Let C_i be the circle in $\mathbb{R}^{2i}_i \subset \mathbb{R}^{2g}$ given by

$$x^2_i + y^2_i = \frac{1}{g}, \quad x_j = \frac{1}{\sqrt{g}} \quad \text{and} \quad y_j = 0 \quad \text{for} \quad j \neq i,$$

with anti-clockwise orientation in the $x_i y_i$-plane. Now we make three observations:

(a) Clearly, the point $v = \left(\frac{1}{\sqrt{g}}, 0, \frac{1}{\sqrt{g}}, 0, \ldots, \frac{1}{\sqrt{g}}, 0\right) \in \mathbb{R}^{2g}$ belongs to each C_i, and each pair C_i and C_j intersect only at v for $i \neq j$. Therefore the union $\bigcup_{i=1}^g C_i$ provides an embedding of $B_g \rightarrow \mathbb{R}^{2g}$.

(b) For each $i \in \{1, 2, \ldots, g\}$ and each $\sigma \in S_g$, we define $\iota_i, \tau_{\sigma} : \mathbb{R}^{2g} \rightarrow \mathbb{R}^{2g}$ as below:

$$\iota_i(x_1, y_1, \ldots, x_{i-1}, y_{i-1}, x_i, y_i, x_{i+1}, y_{i+1}, \ldots, x_g, y_g) = (x_1, y_1, \ldots, x_{i-1}, y_{i-1}, x_i, -y_i, x_{i+1}, y_{i+1}, \ldots, x_g, y_g),$$

$$\tau_{\sigma}(x_1, y_1, \ldots, x_i, y_i, \ldots, x_g, y_g) = (x_{\sigma(1)}, y_{\sigma(1)}, \ldots, x_{\sigma(i)}, y_{\sigma(i)}, \ldots, x_{\sigma(g)}, y_{\sigma(g)}).$$

Clearly $\iota_i, \tau_{\sigma} \in O(2g)$, ι_i is the identity on C_j for $j \neq i$ and is an orientation reversing involution on C_i, and $\tau_{\sigma}(C_i) = C_{\sigma(i)}$. Moreover, the group

$$H = \langle \iota_i, \tau_{\sigma} : 1 \leq i \leq g, \sigma \in S_g \rangle$$

is isomorphic to $(\mathbb{Z}_2)^g \rtimes S_g \cong \text{Sym } B_g$ and acts faithfully on the pair (\mathbb{R}^{2g}, B_g).

(c) For each $w \in B_g$, $w \in C_i$ for some i. By (11) we have

$$|w|^2 = \sum_{j=1}^g (x_j^2 + y_j^2) = \sum_{j=1}^g (x_j^2 + y_j^2) + \sum_{j \neq i}^g (x_i^2 + y_i^2)$$

$$= \sum_{j=1}^g \left(\left(\frac{1}{\sqrt{g}}\right)^2 + 0^2\right) + \frac{1}{g} = 1.$$

That is, B_g stays in the unit sphere $S^{2g-1} \subset \mathbb{R}^{2g}$.
By the conclusion of (b), the given $B_\ell \subset S^{2\ell-1}$ is an equivariant embedding. \qed

Remark 5 For a given pair (G, Γ), as we explained in the proof of Proposition 4, each G-equivariant embedding $\Gamma \to \mathbb{R}^n$ provides a G-equivariant embedding $\Gamma \to S^n$. However a G-equivariant embedding $\Gamma \to S^n$ does not guarantee a G-equivariant embedding $\Gamma \to \mathbb{R}^n$, see the example below.

Example 6 The maximum order of finite group action on a hyperbolic graph of rank 2 is 12, which is realized uniquely by the action of $\text{Sym} M_3 = S_3 \ltimes \mathbb{Z}_2$ on M_3 [7], where M_3 is the graph with two vertices joined by three edges, S_3 permutes three edges and fixes each vertex, and \mathbb{Z}_2 is an orientation-reversing involution on each edge. There is an equivariant embedding $M_3 \to S^2$, which is indicated by the left side of Fig. 4.

There is no equivariant embedding $M_3 \subset \mathbb{R}^2$. A quick proof uses Jordan curve theorem: For any embedding $M_3 \to \mathbb{R}^2$, M_3 divides \mathbb{R}^2 into two bounded regions R_1, R_2, and one unbounded region R_3, see the right side of Fig. 4. Then C_2, the unique edge neighboring two bounded regions, must be invariant under any $\tau \in O(2)$, therefore the embedding is not equivariant.

Remark 7 A related question is when a finite group action G on a graph Γ can be G-equivariantly embedded into $\mathbb{R}^3 (S^3)$, see [2,6]. Similar question for surfaces has also been raised, see [1,5].

Acknowledgements We thank the referees for their suggestions which enhanced the paper.

References

1. Cavendish, W., Conway, J.H.: Symmetrically bordered surfaces. Amer. Math. Monthly **117**(7), 571–580 (2010)
2. Flapan, E., Naimi, R., Pommersheim, J., Tamvakis, H.: Topological symmetry groups of graphs embedded in the 3-sphere. Comment. Math. Helv. **80**(2), 317–354 (2005)
3. Mostow, G.D.: Equivariant embeddings in Euclidean space. Ann. of Math. **65**, 432–446 (1957)
4. Palais, R.S.: Imbedding of compact, differentiable transformation groups in orthogonal representations. J. Math. Mech. **6**, 673–678 (1957)
5. Wang, C., Wang, S.C., Zhang, Y.M., Zimmermann, B.: Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry. Sci. China Math. **60**(9), 1599–1614 (2017)
6. Wang, C., Wang, S., Zhang, Y., Zimmermann, B.: Graphs in the 3-sphere with maximum symmetry. Discrete Comput. Geom. **59**(2), 331–362 (2018)
7. Wang, S.C., Zimmermann, B.: The maximum order of finite groups of outer automorphisms of free groups. Math. Z. 216(1), 83–87 (1994)
8. Zimmermann, B.P.: On large groups of symmetries of finite graphs embedded in spheres. J. Knot Theory Ramifications 27(3), #1840011 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.