Heat Conduction Theory Including Phonon Coherence
Zhongwei Zhang, Yangyu Guo, Marc Bescond, Jie Chen, Masahiro Nomura, Sebastian Volz

To cite this version:
Zhongwei Zhang, Yangyu Guo, Marc Bescond, Jie Chen, Masahiro Nomura, et al.. Heat Conduction Theory Including Phonon Coherence. Physical Review Letters, 2022, 128, 10.1103/physrevlett.128.015901. hal-03868863

HAL Id: hal-03868863
https://hal.science/hal-03868863
Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Heat Conduction Theory Including Phonon Coherence

Zhongwei Zhang,1,* Yangyu Guo,1 Marc Bescond,2 Jie Chen,3,† Masahiro Nomura,1 and Sebastian Volz1,2,3,‡

1Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
2Laboratory for Integrated Micro and Mechatronic Systems, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
3Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering and China-EU Joint Lab for Nanophononics, Tongji University, Shanghai 200092, People’s Republic of China

(Received 20 June 2021; accepted 3 December 2021; published 3 January 2022)

Understanding and quantifying the fundamental physical property of coherence of thermal excitations is a long-standing and general problem in physics. The conventional theory, i.e., the phonon gas model, fails to describe coherence and its impact on thermal transport. In this Letter, we propose a general heat conduction formalism supported by theoretical arguments and direct atomic simulations, which takes into account both the conventional phonon gas model and the wave nature of thermal phonons. By naturally introducing wave packets in the heat flux from fundamental concepts, we derive an original thermal conductivity expression including coherence times and lifetimes. Our theory and simulations reveal two distinct types of coherence, i.e., intrinsic and mutual, appearing in two different temperature ranges. This contribution establishes a fundamental frame for understanding and quantifying the coherence of thermal phonons, which should have a general impact on the estimation of the thermal properties of solids.

DOI: 10.1103/PhysRevLett.128.015901

Phonons, i.e., quanta of vibrational waves, are commonly considered as one of the fundamental quasiparticles, simultaneously exhibiting wave- and particlelike characteristics in nanostructured crystals or bulk materials. The wavelike behavior of phonons impacts thermal properties via coherence mechanisms, as highlighted by several pioneering [1,2] and recent works [3,4]. The particlelike behavior has been treated by the Boltzmann transport equation (BTE) and the phonon-gas model in most solids [5–10]. Experiments [1,2,11–13] have revealed, however, that the wave nature of thermal phonons plays a substantial role in thermal transport, as, for example, in the observations of coherent thermal transport in nanophononic crystals [1,2,11,12]. Later, theoretical and simulation studies [14–18] were devoted to the understanding of phonon coherence, such as the one producing band folding [19–21], but missing the particle behavior. Recently, the theoretical study [22] revealed that the realistic phonon dynamics can only be manifested if both intrinsic coherence relevant to the extension of phonon wave packets and the particlelike behavior of thermal phonons are taken into account.

The conventional BTE also fails in complex crystals, as a pure particle picture cannot yield a complete description of thermal conductivity, such as in Tl3VSe4 [23,24]. Recently, Simoncelli et al. [3] developed a theory for thermal transport in glasses and complex crystals, in which the coherence between densely packed phonon branches contributes to thermal transport. A similar approach has been developed by Isaeva et al. [4] as well, at the same time. This mutual coherence among branches is identified as an additional phonon wave-relevant term [25–27]. The picture of this mutual coherence, which might be compared to a hopping process, however, remains physically unclear. Finally, quantifying the full coherence of thermal phonons and its effect on heat conduction remains a critical issue in transport physics.

In this Letter, a general heat conduction theory is proposed to establish an original expression for the thermal conductivity that includes the full coherent nature of phonon excitations. This expression involves both phonon lifetimes and coherence times. Those are obtained by tracking the real phonon dynamics and using a wavelet transform of the atomic trajectories during an equilibrium molecular dynamic (EMD) simulation. We show that the predictions of our theory yield significant differences from those of the conventional phonon-gas model, as demonstrated in the Tl3VSe4 case [see atomic structure in Fig. 1(a)]. We find that there are two types of coherence, i.e., intrinsic and mutual, which take a critical role over different temperature regions. These conclusions open unexpected insights on the reality of thermally activated phonon modes and the importance of the diverse coherence mechanisms when assessing thermal properties.

The thermal conductivity (κ) can be calculated based on the Green-Kubo approach with the autocorrelation of the heat flux S(t) as [28]

$$\kappa = \frac{V}{3k_BT^2} \int \langle S(t) \cdot S(0) \rangle dt,$$

where V corresponds to the system volume, k_B is the Boltzmann constant, and T is the temperature. We now
FIG. 1. (a) The conventional lattice of Tl₁VSe₄. (b) The phonon dispersion of Tl₁VSe₄ from lattice dynamic calculations (white lines) and room-temperature spectral energy density calculations (contour) for the conventional cell along Γ(0,0,0) → M(0.5,0,0). The lattice constant is denoted by a. The symbols in (b) indicate the modes being analyzed, 0.25 THz (square) and 0.93 THz (circle). (c) Evolution-time- and coherence-time-dependent phonon number (contour) of Tl₁VSe₄ for the 0.93 THz mode at 100 and 300 K. (d) Phonon decay (correlation) versus correlation time in Tl₁VSe₄ for the 0.25 and 0.93 THz modes at 100 and 300 K. The dash-dotted lines (p + w) show the fitting by Eq. (5). The dotted line (p) shows the fitting by the conventional exponential decay. The inset of (d) shows the realistic wave packet of the mode 0.93 THz resulting from the combination of shorter wave packets at 300 K.

define the heat flux component \(S_\lambda \) corresponding to the contribution of mode \(\lambda \) to the total heat flux, i.e., \(S(t) = \sum_\lambda S_\lambda(t) \). \(\lambda \) refers to a specific mode of wave vector \(k \) and of the branch \(s \), which implies that the correlation can operate between modes of different wave vectors and different branches. Then, the thermal conductivity can be decomposed as follows:

\[
\kappa_d = \frac{V}{3k_BT^2} \sum_\lambda \left\langle S_\lambda(t) \cdot S_\lambda(0) \right\rangle dt. \tag{2}
\]

As discussed before by Gill-Comeau and Lewis [29,30], the neglected off-diagonal part corresponds to the collective excitations of phonons \(\sim \langle S_\lambda(t) \cdot S_\lambda(\neq \lambda,0) \rangle \). In most solids, \(\kappa_d \) defined in Eq. (2) is predominant and the off-diagonal terms only become significant in the hydrodynamic regime [9,31–33], for instance, in graphene and graphite. Therefore, the diagonal thermal conductivity only will be addressed in the following. Based on the definition of the harmonic heat flux operator \(S = (1/V) \cdot \sum_\lambda N_\lambda \hbar \omega_\lambda \nu_\lambda \) [34], the thermal conductivity can be derived as

\[
\kappa = \frac{1}{3k_BT^2} \sum_\lambda \hbar^2 \omega_\lambda^2 \nu_\lambda^2 N_\lambda^2 \int \text{Cor}_\lambda(t) dt, \tag{3}
\]

where \(\hbar \) denotes the reduced Planck constant, \(\omega_\lambda \) is the eigenfrequency, \(\nu_\lambda \) is the group velocity of mode \(\lambda \), and \(a \) is the Cartesian coordinate. \(N_\lambda(t) \) is the time-dependent phonon number of mode \(\lambda \) and \(\text{Cor}_\lambda(t) = \langle \Delta N_\lambda(t) \Delta N_\lambda(0) \rangle / \langle \Delta N_\lambda(0) \Delta N_\lambda(0) \rangle \) is the phonon decay. Considering the classical definition of the average phonon number \(N_\lambda = (k_BT/\hbar \omega_\lambda) \), Eq. (3) reduces to \(\kappa = \frac{1}{3} \sum_\lambda \sum_\alpha C_{\alpha,\lambda}^\text{class} \nu_\alpha^2 \nu_\lambda^2 C_{\alpha,\lambda}^\text{class} \int \text{Cor}_\lambda(t) dt \), where \(C_{\alpha,\lambda}^\text{class} = (k_B/V) \) is the classical specific heat per mode. When the particle-like behavior predominates, \(\text{Cor}_\lambda(t) \) follows an exponential decay law with the lifetime \(\tau_{\lambda}^p \) according to the conventional single-mode relaxation time approximation [8,10]; that is, \(\text{Cor}_\lambda(t) = e^{-t/\tau_{\lambda}^p} \). After integration, the classical particle-like thermal conductivity can be expressed as follows:

\[
\kappa_p = \frac{1}{3} \sum_\lambda \sum_\alpha C_{\alpha,\lambda}^\text{class} \nu_\alpha^2 \nu_\lambda^2 \tau_{\lambda}^p. \tag{4}
\]

Equation (4) is analogous to the commonly used Peierls-Boltzmann formula [6]. However, as the coherence effect increases, a correction should be considered in the description of the phonon decay by including the modal coherence time \(\tau_{\lambda}^c \) [22] as follows:

\[
\text{Cor}_\lambda(t) = e^{-t/\tau_{\lambda}^p} e^{-4\ln 2 \tau_{\lambda}^c t}. \tag{5}
\]

The second Gaussian term originates from the interference between different modes, expressing coherence effects in the phonon dynamics. Consequently, by integrating Eq. (5), the complete thermal conductivity \((\kappa_{p+w}) \) including the wavelike behavior can be expressed as

\[
\kappa_{p+w} = \frac{1}{3} \sum_\lambda \sum_\alpha C_{\alpha,\lambda}^\text{class} \nu_\alpha^2 \nu_\lambda^2 \sqrt{\frac{\pi}{4\ln 2}} \tau_{\lambda}^c e^{-\tau_{\lambda}^c t^2 / 4\ln 2}. \tag{6}
\]

When setting \(\tau_{\lambda}^p = \tau_{\lambda}^c \), Eq. (6) reduces to the conventional Peierls-Boltzmann formula with a corrective coefficient \(\approx 1.07 \). This consideration reveals that equality between coherence time and lifetime [35] is underlying the traditional phonon-gas model.

In realistic systems, the scatterings are diverse and can also be incorporated into the model of Matthiessen

\[
\frac{1}{\tau_{\lambda}^\text{total}} = \frac{1}{\tau_{\lambda}^\text{ph-\text{ph}}} + \frac{1}{\tau_{\lambda}^\text{isotope}} + \frac{1}{\tau_{\lambda}^\text{boundary}}, \tag{7}
\]

where \(\tau_{\lambda}^\text{ph-\text{ph}} \) refers to the phonon decay time for \(\tau_{\lambda}^p \) and \(\sqrt{\pi/4\ln 2} \tau_{\lambda}^p e^{1/128\ln 2\tau_{\lambda}^c} \) in Eqs. (4) and (6).
respectively. The calculations of the isotope scattering time τ_{isotope} [36] and of the boundary scattering time τ_{boundary} [37] follow Ref. [38]. Only the isotope scattering is intrinsically considered in the following calculations. Quantifying the contribution of coherence as proposed in Eq. (6) requires the knowledge of lifetimes and coherence times. These quantities are accessible by a wavelet approach [22,39,46].

The developed model is then applied to the complex crystal Tl$_4$VSe$_4$ [see atomic structure in Fig. 1(a)]. In order to collect accurate phonon information from molecular dynamic (MD) simulations, a machine learning potential (MLP) [47,48] is adopted after being trained by ab initio MD simulations [49–53]. In the Supplemental Material [39], the training process and verification of the MLP are described [38,54–56]. All MD simulations using the MLP are performed with the LAMMPS package [57], which is mainly used for calculating MD thermal conductivity [28,58] for comparison (see Sec. S2.3 in [39]) and for extracting the atomic information for subsequent wavelet transform calculations (see Sec. S3 in [39] for details).

By applying the wavelet transform approach, we can first obtain the evolution-time- and coherence-time-dependent phonon number $N(t_0, \tau_c)$. An increase in temperature usually dephases the correlation of phonon waves or suppresses the coherent-wavelike behavior, resulting in a decrease in coherence time. The coherence time of the 0.25 THz mode in Tl$_4$VSe$_4$, for example, decreases when the temperature rises from 100 to 300 K (see Fig. S5). This dephasing trend has already been seen in bulk graphene [22] and superlattices [1,17,59] before which corresponds to a loss of “intrinsic” coherence. The intrinsic coherence refers to the spatial or temporal extension of each phonon wave packet, which results from the interference between plane waves [22] and explains the coherent thermal transport in superlattices [60]. However, for high frequency phonons in Tl$_4$VSe$_4$, e.g., at 0.93 THz shown in Fig. 1(c), the coherence time reversely increases with temperature, as evidenced by the expanded “clouds” and their shift into a higher coherence time regime. These clouds can be understood as the coherence effect between the modes of different branches in the phonon dispersion [Fig. 1(b)], as demonstrated before by Simoncelli et al. [3] and Isaeva et al. [4]. The clouds with long coherence times are connected to the packets with small coherence times, as if the former were generated by the latter.

The abundance of small wave packets with shorter lifetimes partially originates from the temperature-induced phonon-phonon scattering. Since lifetime is reversely proportional to the frequency broadening (i.e., $\Delta \omega$), the enlarged linewidth of the dispersion curves associated with reduced frequency intervals between branches promote smaller wave packets, as illustrated by Figs. 1(b) and 1(c). In a subsequent stage, due to their large number, those small wave packets have higher probability to establish a phase relation between themselves, which results in the generation of wave packets with large coherence times, referred to as clouds above [see the inset of Fig. 1(d)]. This argument does not only support the model of Simoncelli et al. [3], but also offers a physical picture of the mutual coherence for phonons in complex crystals. In addition, this effect should also be amplified as temperature further rises due to the increase of branches broadening from phonon-phonon scatterings. The temperature effects in Figs. 1(c) and 1(d) and Fig. S5 [39] indicate that the increase of mutual coherence for the high frequency mode crucially depends on an enhanced branch density, as smaller wave packets with the same wave vector but a lower frequency also appear, but do not exhibit an increased coherence. Note that these tendencies are also, respectively, observed in other low or high frequency modes.

Coherence is expected to have critical impact on the phonon decay and its propagation. The phonon decay can be extracted from the autocorrelation function of the phonon number $N(t_0, \tau_c)$, as displayed in Fig. 1(d). The details of the computations are provided in the Supplemental Material [39]. When including the coherence effect, the phonon decay should follow the generalized law of Eq. (5) as we demonstrated before [22]. From the fitted particle-related decay (dotted line) to the coherence corrected decay (dash-dotted line) of Fig. 1(d), the coherence appears as a delay to the conventional exponential decay due to the temporal extension of phonon wave packets [22]. Both their intrinsic extension and the one resulting from the phase correlation between several wave packets, namely mutual coherence, yield a delay in phonon decay. In addition, the phonon decay of the low frequency 0.25 THz mode shows the temperature effects on the coherence dephasing and reduction of phonon lifetimes. In contrast, for the high frequency 0.93 THz at which branch density is high (see the density of states in Fig. S6 [39]), the increase of temperature contributes to coherence, producing a further delay in phonon decay. The inset of Fig. 1(d) shows how small wave packets combine into a large one in this frequency range. By fitting this phonon decay with the generalized decay law of Eq. (5), we obtain τ^p_{ω} and τ^c_{ω} for different modes as reported in Fig. S6. The fitting details can be found in the Supplemental Material [39]. A q grid of $16 \times 16 \times 16$ is applied to analyze the modes in the full Brillouin zone; this mesh yields converged results in BTE-based estimations. Importantly, τ^c_{ω} becomes larger than τ^p_{ω} in the region of relatively high frequencies, because of the coherence effect (see Fig. S7 [39]).

Because of the predominance of phonons of low frequencies, the effect of quantum population on the transport properties of Tl$_4$VSe$_4$ is limited. The thermal conductivities of Eqs. (4) and (6) are expressed with the classical population (i.e., $\kappa_{\omega}^{\text{clas}}$), which can be quantum corrected (i.e., $\kappa_{\omega}^{\text{qua}}$) by replacing C_{ω}^{clas} with the quantum specific
heated $C_{\text{r}x}^{\text{w}}$, here $C_{\text{r}x}^{\text{w}} = [k_B \exp(x)/V] \{x/[\exp(x) - 1]\}^2$ with $x = (\hbar \omega \tau_0/k_B T)$. At low temperatures, Fig. 2(a) reports that the delay effect on phonon decay due to the intrinsic coherence leads to substantial contributions to thermal conductivity in the full frequency range. The effect of intrinsic coherence should be weakened by increasing temperature. The wavelike contributions are still prominent at 300 K and the additional components are migrating to the region after 0.25 THz, where the dense branches and mutual coherence emerge. Obviously, coherence can correct thermal conductivities by incorporating the wavelike contribution, and coherence behaviors are different at low temperatures (intrinsic coherence) and at high temperatures (mutual coherence).

The accumulative κ in Fig. 2(b) further evidences the importance of wavelike contributions to thermal conductivities in Tl$_3$VSe$_4$. Here, the BTE results are from Jain [26], in which a temperature-dependent effective potential (TDEP) is considered. As all scatterings and temperature effects are included in MD simulations, our predicted $\kappa_{\text{clas}}^\text{w}$ (thicker lines) are in reasonable agreement with the BTE results (square symbols), indicating the validity of the particle description in our model. When including the wavelike behavior of thermal phonons, the corrected $\kappa_{\text{clas}}^\text{w}$ approximately both the experimental measurements [23] and the direct MD simulations, especially at 300 K. The limited discrepancies at 50 K are mostly originating from the classical population of phonons in MD simulation, which overestimates phonon-phonon scatterings while underestimating $\kappa_{\text{clas}}^\text{p}$ and $\kappa_{\text{clas}}^\text{w}$ with suppressed τ_0^p and τ_0^w.

For overall comparison, thermal conductivities based on our direct MD simulations, experimentally measured values [23], and the BTE calculations with TDEP [26] are summarized in Fig. 3(a). MD simulations implicitly include all orders of anharmonicity for phonon-phonon scattering, as well as both the wave- and particlileike behaviors of phonons. Consequently, EMD simulations include the real phonon dynamics and coincide well with the experimental κ, indicating the accuracy of our MLP. The computed particlileike thermal conductivities ($\kappa_{\text{clas}}^\text{w}$) agree well with the BTE results, but remain lower than the experimental measurements, indicating the failure of the BTE in capturing phonon coherence of Tl$_3$VSe$_4$. As we further include the wavelike contribution by applying the revised heat conduction law of Eq. (6), the thermal conductivities significantly increase. The wavelike corrected values $\kappa_{\text{clas}}^\text{w}$ agree well with the experimental measurements and MD simulations in the full temperature region. This comparison indicates that the proposed model is sufficient in predicting thermal transport by including the wavelike features of phonons.

The degree of coherence correction to thermal conductivity is further estimated in Fig. 3(b) from $\left(\frac{\kappa_{\text{clas}}^\text{w}}{\kappa_{\text{clas}}^\text{p+w}} \right) \times 100\%$. Interestingly, a non-monotonic dependence of the coherence contribution as a function of temperature is observed, which agrees well with the above demonstration of the coexistence of two types of coherence. At room temperature, the wavelike correction reaches 66%. The trend of the correction with temperature coincides with the discrepancy between the prevailing BTE theory and the real phonon dynamics observed in the experiments and MD simulations of Fig. 3(a), revealing that the wavelike behavior becomes more significant at low and high temperatures. Jain [26] found that the conductivities including coherence, as proposed by Simoncelli et al. [3], remain close to the experimental measurements when considering uncertainties. The discrepancy still appears at low temperatures, where intrinsic coherence becomes important (see the comparison in the Supplemental Material [39]). The used Allen and Feldman model [61,62] and Cahill-Watson-Pohl model [63,64], as well as
as the theory from [3], are based on the weakly propagating modes and the intermodes “hopping” additionally contributing to thermal transport in complex crystals or disordered systems. The discovered mutual coherence offers direct evidence on how modes interact and affect the thermal transport. The above comparisons between thermal conductivities demonstrate the remaining issues of prevailing theories and indicate the ability of our model to capture both wave- and particellelike pictures of phonons in thermal transport. The agreement with measurements especially provides a satisfactory test of our theory based on experimental data. The collective thermal conductivity [i.e., off-diagonal terms in Eq. (1)] is also studied in Sec. S6 of the Supplemental Material [39]. The low contribution of collective excitations, even at 50 K, indicates the predominance of umklapp phonon-phonon scattering in this complex crystal.

Coming back to the fundamental definition of the heat flux, we have established a new expression of the thermal conductivity including phonon coherence via coherence time. The estimation of this generalized thermal conductivity was implemented by introducing a wavelet transformation of MD quantities, which offers the coherence time of phonon excitations as well as their lifetimes. This methodological treatment of coherence in heat conduction has hence unraveled the rich content of coherence effects on thermal transport. This previously uncharted information has led to quantitative estimation of the impact of coherence responsible for a 66% increase of thermal conductivity at room temperature for complex crystal Ti3VSe4. In addition, two distinct types of coherence are observed in our explorations, including intrinsic coherence and mutual coherence, which can be simultaneously modeled by our heat conduction theory. We also believe that our theory opens a broad range of applications in other complex crystals, simple crystals (see Sec. S7 in [39]), and amorphous materials (see preprint in [65]). In short, we proposed a novel paradigm to fully describe the coherence of phonon heat carriers, which has a global repercussion in the assessment of the thermal properties in nanostructures as well as in bulk materials.

This project is partially supported by the grants from the National Natural Science Foundation of China (Grants No. 11890703 and No. 12075168), and Science and Technology Commission of Shanghai Municipality (Grant No. 19ZR1478600). This work is also supported in part by CREST JST (No. JPMJCR19I1 and No. JPMJCR19Q3). This research used the computational resources of the Oakforest-PACS supercomputer system, The University of Tokyo.

References

[1] M. N. Luckyanov, J. Garg, K. Esfarjani, A. Jandl, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, and Z. Ren, Science 338, 936 (2012).
[2] J. Ravichandran, A. K. Yadav, R. Cheaito, P. B. Rossen, A. Soukiassian, S. J. Suresha, J. C. Duda, B. M. Foley, C. H. Lee, Y. Zhu, A. W. Lichtenberger, J. E. Moore, D. A. Müller, D. G. Schlom, P. E. Hopkins, A. Majumdar, R. Ramesh, and M. A. Zurbuchen, Nat. Mater. 13, 168 (2014).
[3] M. Simoncelli, N. Marzari, and F. Mauri, Nat. Phys. 15, 809 (2019).
[4] L. Isaeva, G. Barbalinardo, D. Donadio, and S. Baroni, Nat. Commun. 10, 3853 (2019).
[5] R. Peierls, Ann. Phys. (Berlin) 395, 1055 (1929).
[6] J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, 2001).
[7] R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 766 (1966).
[8] A. J. McGaughey and M. Kaviany, Phys. Rev. B 69, 094303 (2004).
[9] A. Cepellotti and N. Marzari, Phys. Rev. X 6, 041013 (2016).
[10] A. J. Minnich, J. Condens. Matter Phys. 27, 053202 (2015).
[11] N. Zen, T. A. Puurinen, T. J. Isotalo, S. Chaudhuri, and I. J. Maasilta, Nat. Commun. 5, 3435 (2014).
[12] J. Maire, R. Anufriev, R. Yanagisawa, A. Ramiere, S. Volz, and M. Nomura, Sci. Adv. 3, e1700027 (2017).
[13] R. Hu, S. Iwamoto, L. Feng, S. Ju, S. Hu, M. Ohnishi, N. Nagai, K. Hirakawa, and J. Shiomi, Phys. Rev. X 10, 021050 (2020).
[14] Z. Tian, K. Esfarjani, and G. Chen, Phys. Rev. B 89, 235307 (2014).
[15] Y. Wang, H. Huang, and X. Ruan, Phys. Rev. B 90, 165406 (2014).
[16] J. Mendoza and G. Chen, Nano Lett. 16, 7616 (2016).
[17] S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, J. Phys. Chem. Lett. 9, 3959 (2018).
[18] T. Juntunen, O. Vänskä, and I. Tittonen, Phys. Rev. Lett. 122, 105901 (2019).
[19] S. I. Tamura, Y. Tanaka, and H. J. Maris, Phys. Rev. B 60, 2627 (1999).
[20] W. E. Bies, R. J. Radtke, and H. Ehrenreich, J. Appl. Phys. 88, 1498 (2000).
[21] M. Maldovan, Nat. Mater. 14, 667 (2015).
[22] Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Phys. Rev. B 103, 184307 (2021).
[23] S. Mukhopadhyay, D. S. Parker, B. C. Sales, A. A. Puretzky, M. A. McGuire, and L. Lindsay, Science 360, 1455 (2018).
[24] Y. Luo, X. Yang, T. Feng, J. Wang, and X. Ruan, Nat. Commun. 11, 2554 (2020).
[25] Y. Xia, K. Pal, J. He, V. Ozoliņš, and C. Wolverton, Phys. Rev. Lett. 124, 065901 (2020).
[26] A. Jain, Phys. Rev. B 102, 201201(R) (2020).
[27] R. Hanus, J. George, M. Wood, A. Bonkowski, Y. Cheng, D. L. Abernathy, M. E. Manley, G. Hautier, G. J. Snyder, and R. P. Hermann, Mater. Today Phys. 18, 100344 (2021).
[28] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[29] M. Gill-Comeau and L. J. Lewis, Appl. Phys. Lett. 106, 193104 (2015).
[30] M. Gill-Comeau and L. J. Lewis, Phys. Rev. B 92, 195404 (2015).
[31] Y. Guo and M. Wang, Phys. Rep. 595, 1 (2015).
[32] Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T. H. Liu, and G. Chen, Nano Lett. 18, 638 (2018).
[33] Z. Zhang, Y. Ouyang, Y. Guo, T. Nakayama, M. Nomura, S. Volz, and J. Chen, Phys. Rev. B 102, 195302 (2020).
[34] R. J. Hardy, Phys. Rev. 132, 168 (1963).
[35] B. Latour and Y. Chalopin, Phys. Rev. B 95, 214310 (2017).
[36] S.-I. Tamura, Phys. Rev. B 27, 858 (1983).
[37] H. B. G. Casimir, Physica (Amsterdam) 5, 495 (1938).
[38] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Comput. Phys. Commun. 185, 1747 (2014).
[39] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.128.015901 for (1) construction of MLP, (2) benchmarks of MLP, including phonon dispersion, BTE calculations, and MD simulations, (3) wavelet transform, (4) density of states, (5) phonon decay formalism, (6) thermal conductivity from collective terms, (7) thermal conductivity of graphene, and (8) deviation between BTE and experimental data, which includes Refs. [40–45].
[40] J. M. Larkin, J. E. Turney, A. D. Massicotte, C. H. Amon, and A. J. McGaughey, J. Comput. Theor. Nanosci. 11, 249 (2014).
[41] S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, ACS Nano 5, 321 (2011).
[42] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Nat. Mater. 11, 203 (2012).
[43] X. Gu, Z. Fan, H. Bao, and C. Y. Zhao, Phys. Rev. B 100, 064306 (2019).
[44] L. Lindsay and D. A. Broido, Phys. Rev. B 81, 205441 (2010).
[45] Z. Fan, W. Chen, V. Vierimaa, and A. Harju, Comput. Phys. Commun. 218, 10 (2017).
[46] The code providing the thermal conductivity computed with coherence effects according to our model can be found as an open-source package in https://github.com/ZhongweiZhangsite/WPPT.
[47] A. V. Shapeev, Multiscale Model and Sim. 14, 1153 (2016).
[48] I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, Mach. Learn. 2, 025002 (2021).
[49] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[50] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[51] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[52] G. Kresse and J. Hafner, J. Condens. Matter Phys. 6, 8245 (1994).
[53] A. Jain and A. J. McGaughey, Comput. Mater. Sci. 110, 115 (2015).
[54] W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, and N. Mingo, Phys. Rev. B 86, 174307 (2012).
[55] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
[56] Y. Ouyang, Z. Zhang, C. Yu, J. He, G. Yan, and J. Chen, Chin. Phys. Lett. 37, 126301 (2020).
[57] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[58] D. Torii, T. Nakano, and T. Ohara, J. Chem. Phys. 128, 044504 (2008).
[59] X. K. Chen, Z. X. Xie, W. X. Zhou, L. M. Tang, and K. Q. Chen, Appl. Phys. Lett. 109, 173104 (2016).
[60] B. Latour, S. Volz, and Y. Chalopin, Phys. Rev. B 90, 014307 (2014).
[61] P. B. Allen and J. L. Feldman, Phys. Rev. Lett. 62, 645 (1989).
[62] P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).
[63] D. G. Cahill and R. O. Pohl, Solid State Commun. 70, 927 (1989).
[64] D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B 46, 6131 (1992).
[65] Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, arXiv:2110.10487.