Synthesis and Characterization of Two New p-tert-Butylcalix[4]-arene Schiff Bases.

Abdol Ali Alemi, Behrouz Shaabani, Karim Akbari Dilmaghani, Saeed Taghvaee Ganjali

Department of Inorganic Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran
Fax : +98(41)3340191.

* Author to whom correspondence should be addressed; e-mail : shaabani_b@hotmail.com

Received: 12 June 2000; in revised form 23 January 2001 / Accepted: 24 January 2001 / Published: 31 March 2001

Abstract: Synthesis and characterization of two new Schiff bases of p-tert-butylcalix[4]arene (H₂L₁ and HL₂) is described. The synthesis of H₂L₁ and HL₂ has been achieved by the condensation of salicylaldehyde with the amine group of upper rim monoamine p-tert-butylcalix[4]arene in ethanol. These compounds have been characterized on the basis of elemental analysis and spectral data. Solvatochromicity and fluorescence properties were observed and measured for H₂L₁ and HL₂. Solvatochromicity of these ligands indicates their potential for NLO applications.

Keywords: Calix[4] arene, monosubstitution, Schiff base.

Introduction

Calix[4]arenes can be easily functionalized both at the phenolic OH groups (lower rim) and, after partial removal of tert-butyl groups, at the para positions of the phenol rings (upper rim) [1-3]. The vast majority of these modified calixarenes exist in the cone conformation in which there is a cavity suitable for reception of different ionic and neutral species [4]. Furthermore, the most significant feature of the chemistry of these molecules is their ability to bind selectively alkali and alkaline earth cations [5,6]. Compared to the number of reports on the binding of alkali metal ions with calixarenes, reports on the binding of transition metal ions are still limited [7-9]. From this point of view
calixarene Schiff base ligands are in the center of interest [10-12]. Monofunctionalized calixarenes are potentially excellent starting materials for the selective design of new materials. Reinhoudt et al. [13] reported the ipsonitration of p-tert-buthylcalix[4]arenes for the preparation of nitrocalix[4]arenes. In this work we used the selectively ipsonitated p-tert-buthylcalix[4]arenes as starting materials for the preparation of two monoamine p-tert-buthylcalix[4]arenes functionalized at the upper rim and studied their conversion to the salicylaldehyde Schiff bases, 4 and 7.

Results and Discussion

Synthesis of the Schiff Bases

Schiff bases are potentially capable of forming stable complexes with metal ions [9,14-16]. In the present work the synthesis of (4) and (7) according to the Scheme 1 is described.

Scheme 1. Synthesis of the H$_2$L1 and HL2
The cone mononitro-\textit{p-tert}-butylcalix[4]arene 2 was obtained from the mono \textit{ipsonitration} of monohydroxycalixarene using a modified method [17]. The mononitro derivatives 2 and 5 were reduced to the corresponding monoamines by hydrogenation over a palladium-charcoal catalyst. The condensation of compounds 3 and 6 with salicylaldehyde gave the Schiff base ligands H$_2$L$_1$ and HL$_2$ as NO donors with a \textit{p-tert}-butylcalix[4]arene moiety (Scheme 1). The 1H-NMR spectrum of the ligands indicated the calixarene to be in a cone conformation. The conclusion that H$_2$L$_1$ and HL$_2$ exist in cone conformations was deduced from the presence of two sets of characteristic AB systems (figures 1 and 2) as described in the Experimental Section [18]. The analytical results of the isolated solid ligands with their melting points and colors are compiled in Table 1.

Table 1. Colors, yields, melting points and analytical results of H$_2$L$_1$ and HL$_2$

Compound	Formula Weight	Color	m.p, (°C)	Yield, %	Calcd. (Found)	%
H$_2$L$_1$.H$_2$O	(C$_{56}$H$_{73}$NO$_6$)	838.17	Yellow	192	86	80.25 (79.42) 8.54 (8.69) 1.67 (1.44)
HL$_2$	(C$_{59}$H$_{77}$NO$_5$)	880.25	Yellow	172	84	80.50 (80.74) 8.82 (8.79) 1.59 (1.88)

IR Spectra

The characteristic IR absorptions are given in Table 2. The observed microanalytical data for C, H, and N atoms shows that H$_2$L$_1$ contains a water molecule that is identified by broad O-H absorptions around 3547-3400 cm$^{-1}$.

Table 2. Characteristic IR bands of the H$_2$L$_1$ and HL$_2$ as KBr Pellets (cm$^{-1}$)

Compound	ν (H$_2$O)	ν (O-H)	ν (C-H)	ν (C=N)
H$_2$L$_1$.H$_2$O	3420 mbr	3547	2960, 2874 s	1620
HL$_2$	-	3540	2960, 2875 s	1620

Electronic Spectra

The electronic spectra were recorded in chloroform and acetonitrile (Table 3). An important property for distinguishing potential NLO materials is the existence of solvatochromicity [19], i.e., the solvent dependent shift of the absorption bands in the UV/vis spectra. Both H$_2$L$_1$ and HL$_2$ display strong negative solvatochromicity as shown in Table 3. Negative solvatochromicity can be attributed to the stabilization of polar ground states in polar solvents.

Compound	ν (C-H)	ν (C=N)
H$_2$L$_1$.H$_2$O		
HL$_2$		
Table 3. electronic spectra of H₂L¹ and HL²

Compound	ν (cm⁻¹)	Δν (cm⁻¹)	λₑₓ (nm) (excitation)	λₑₘ (nm) (emission)	
CHCl₃					
CH₃CN					
H₂L¹	277	281	400	390	526
HL²	287	290	300	390	522

As a result these Schiff bases are good candidates for NLO chromophores due to their strong solvatochromicity. UV/Vis fluorescence of H₂L¹ and HL² was observed when they were irradiated at a wavelength of 390 nm whereby they emitted a light with a wavelength of 526 and 522 nm, respectively.

¹H-NMR Spectra

¹H-NMR spectra of H₂L¹ and HL² are shown in Figures 1 and 2, respectively. Assignments of ¹H-NMR signals can be found in the Experimental Section. The downfield signal of the proton of hydroxy group of the salicylaldehyde moiety, the salicylidene part of H₂L¹ and HL², justifies the existence of intramolecular hydrogen bonding between the hydrogen atom of the hydroxy group and the nitrogen atom of the imine.

Fig.1. ¹H-NMR Spectra of H₂L¹
Conclusions

In this paper we present the preparation of two Schiff bases of \textit{p-tert}-buthylcalix[4]arene derivatives. Both these Schiff base ligands have fluorescence properties which suggest their potential for analytical applications. Also the solvent dependent UV/Vis spectra and solvatochromicity of these compounds show their potential for NLO applications.

Acknowledgements

We are grateful to the Research Council of Tabriz University for financial support. Generous support from Prof. Dr. J. Ipaktschi, Institute of Organic Chemistry, Giessen University is highly acknowledged. The Ministry of Science, Research and Technology of Iran is acknowledged for a grant to B. Shaabani.

Experimental

General

Melting points are taken on a Büchi SMP-20 apparatus and are uncorrected. 1H-NMR spectra were recorded on a Bruker AM-400MHz in CDCl$_3$ with Me$_4$Si as an internal standard. Elemental analysis were recorded on Carlo-Erba-Analysor Model 1104. IR spectra were recorded on Bruker IFS 25. Compound 1, \textit{p-tert}-buthylcalix[4]trioxyarene, was prepared according to a literature procedure [20].
Preparation of H_2L^1 and HL^2

According to the Scheme 1, mononitro derivatives were reduced to the corresponding monoamines by hydrogenation over palladium-charcoal catalyst and then used for the preparation of the H_2L^1 and HL^2 as follows: salicylaldehyde (170 mg, 1.36mmol) was added to a solution of 1.36 mmol of corresponding monoamine, 3 or 6, in ethanol (30 mL) and the mixture was refluxed for 24h. After cooling the reaction mixture, the yellow colored H_2L^1 product was precipitated by addition of water but HL^2 was precipitated without addition of water. Both were recrystallized from ethanol, yields 86% for H_2L^1 and 84% for HL^1.

1H-NMR spectra of H_2L^1: δ 13.85 (1H, s, H-O, sal.), 8.65 (1H, s, H-C=N), 7.44 (2H, dd, Ar-H) 7.35 (4H, m, Ar-H, sal), 7.13 (2H, dd, Ar-H), 6.55 (4H, dd, Ar-H), 5.95 (1H, s, O-H), 4.38 and 3.25 (4H, dd, Ar-CH2-Ar, $J = 12.9$ Hz), 3.85 (2H, t, OCH2), 3.75 (4H, t, OCH2), 4.33 and 3.19 (4H, dd, Ar-CH2-Ar, $J = 13.8$ Hz), 2.3 (2H, m, CH2), 1.95 (4H, m, CH2), 1.35 (9H, s, C(CH3)3), 1.1 (6H, t, 2CH3), 0.95 (3H, t, CH3), 0.85 (18H, s, C(CH3)3).

1H-NMR spectra of HL^2: δ 13.20 (1H, s, H-O, sal.), 8.15 (1H, s, H-C=N), 7.29 (2H, dd, Ar-H) 7.25 (4H, m, Ar-H, sal), 7.11 (2H, dd, Ar-H), 6.40 (4H, dd, Ar-H), 4.47 and 3.15 (4H, dd, Ar-CH2-Ar, $J = 13.0$ Hz), 4.05 (2H, t, OCH2), 4.00 (2H, t, OCH2) 3.70 (4H, t, OCH2), 4.42 and 3.12 (4H, dd, Ar-CH2-Ar, $J = 13.5$ Hz), 2.07 (4H, m, CH2), 1.90 (4H, m, CH2), 1.31 (18H, s, C (CH3)3), 1.5 (6H, t, 2CH3), 0.92 (6H, t, CH3), 0.60 (9H, s, C(CH3)3).

References

1. Gutche, C. D. *Calixarenes, Revisited*, The Royal Society of Chemistry, Cambridge, 1998.
2. Vicens, J. and Boehmer, V. *Calixarenes: A Versatile Class of Macrocyclic Compounds*, Kluver Academic, Boston, 1991.
3. Van Loon, J. D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini; A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N. *J. Org. Chem.* 1990, 55, 5639.
4. Morzherin, Y.; Rudkevich, D. M.; Verboom, W.; Reinhoudt, D. N. *J. Org. Chem.* 1993, 58, 7602
5. Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M. J.; Egberink, R. J. M.; Dejong, F.; Reinhoult, D. N. *J. Am. Chem. Soc.*, 1995, 117, 2767.
6. Arnaud-Neu, F.; Fanni, S.; Guerra, L.; McGregor, W.; Zait. K.; Schwing-Weill, M. J.; Barrett, G.; McKervey, M. A.; Marrs, D.; Seward, E. M. *J. Chem. Soc., Perkin Trans. II*, 1995, 113.
7. Yilmaz, M., Solution State Metal Complexes of Calixarenes and Polymeric Calixarene, in *Handbook of Engineering Materials*, N. P. Cheremisionoff, Ed. Marcel Dekker, Inc, New York, 1997.
8. Seangprasertkij, R.; Asfari, Z.; Arnaud, F.; Vicens, J. *J. Org. Chem.* 1994, 59, 1741.
9. Johnson, C. P.; Atwood, J. L.; Steed, J. W.; Bauer, C. B.; Rogers, R. D. *Inorg. Chem.* 1996, 35, 2602.
10. Tamburini, S.; Tomasin, P.; Vigato, P. A.; Casnati, A.; Domiano, L. *Inorganica Chimica Acta*, 1997, 254, 209.
11. Yilmaz, M. *Synth. React. Inorg. Met.-Org. Chem.* 1998, 28, 1759.
12. Guo, T. D.; Zheng, Q. Y.; Yang, L. M.; Huang, Z. T. *J. Inclusion Phenom. Macrocyclic Chem.* 2000, 36, 327.
13. Verboom, W.; Durie, A.; Egberink, R. J. M.; Asfari, Z.; Reinhoudt, D. N. *J. Org. Chem.* 1992, 57, 1313.
14. Can, S.; Bekaroglu, O. *J. Chem. Soc. Perkin Trans. I*, 1991, 3137.
15. Deligoez, H.; Yilmaz, M. *Synth. React. Inorg. Met.-Org. Chem.*, 1997, 27, 391.
16. Narag, K. K.; Shing, S. K.; Mishra, G. D. *Synth. React. Inorg. Met.-Org. Chem.* 1996, 26, 191.
17. Rashidi-Ranjbar, P.; Taghvaee-Gnajali, S.; Shaabani, B.; Akbari-Dilmaghani, K.; *Molecules*, 2000, 5, 941.
18. Iwamoto, K.; Araki, K.; Shinkai, S. *J. Org. Chem.* 1991, 56, 4955.
19. (a) McRae, E. G. *J. Phys. Chem.* 1975, 61, 562; (b) Paley, M. S.; Hariss, J. M. *J. Org. Chem.* 1989, 54, 3774.
20. Iwamoto, K.; Araki, K.; Shinkai, S. *Tetrahedron*, 1991, 47, 4325.

Sample Availability: Samples are available from the authors

© 2001 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.