Risk Analysis of High Pressure Gas Pipeline Leakage Based on Bow-tie Model and IAHP

Yu Zhang¹, Shuran Lv¹ and Wanqing Wang*¹

¹School of Management and Engineering, Capital University of Economics and Business, Beijing, China

*Corresponding author’s e-mail: wwq199219@163.com

Abstract. Natural gas is a kind of inflammable and explosive high-risk gas, and its transportation mainly depends on high-pressure pipelines. Serious pipeline leaks can cause fires and explosions. These accidents will cause loss of life and property to residents along the line. Therefore, it is very important to conduct risk analysis on high-pressure gas pipelines. In this paper, the Bow-tie model is used to conduct a strict logical reasoning on the causes and consequences of pipeline leakage, and a complete and clear risk evaluation index system for high-pressure gas pipelines is proposed. Secondly, the improved analytic hierarchy process (IAHP) is used to calculate the weight of each indicator and sort the weights. The calculation shows that the equipment plays a major role in the first-level indicators. Among the secondary indicators, the safety equipment, alarm system, natural disasters, operational misoperations, safety inspection errors, and design misoperations account for a significant weight ratio. The evaluation results of various factors are basically consistent with the actual situation. The research results can provide a reliable basis for the daily safety management of gas pipelines.

1. Introduction

Natural gas is a kind of clean energy, which has higher calorific value, less pollution and safer use than traditional energy such as coal and oil. As a result, dependence on natural gas has increased year by year in China and around the world. However, natural gas is a flammable, explosive, toxic and highly corrosive gas, and the means of transportation relies on high-pressure pipelines. Therefore, natural gas pressure pipeline engineering has become a high-risk industry. Once the gas pipeline leaks, it will cause different degrees and different types of disasters such as explosion, fire, poisoning and so on. According to the analysis report of China’s natural gas explosion accident in 2017, a total of 702 gas explosion accidents occurred throughout the year, causing more than 1,100 people to be injured and 126 deaths. The accident has caused many people to lose their young lives and homes, seriously affecting the harmonious and stable development of society. Based on the above reasons, it is very necessary to analyze the leakage risk of high pressure gas pipeline.

Under the unremitting exploration of researchers, the current research on the risk analysis of high-pressure natural gas pipeline leakage has achieved rich results. Li [1] used a Bayesian network and a bow-tie model for quantitative risk analysis of subsea oil and gas pipelines. Guo [2] used Bayesian network to analyze the failure of oil and gas pipelines caused by third-party damage. Ahamed et al. [3] studied the corrosion failure of pipelines by applying the equivalent effect method and analyzed the reliability of the pipeline. Xie et al. Shin [4] introduced a new underground pipeline safety management method based on the principle of pipeline management, which also reflects the corrosion effect of pipeline corrosion effect. Shahriar [5] explored the interactions between...
various factors leading to the failure of oil and gas pipelines, and introduced fuzzy utility value (FUV) and three bottom line (TBL) sustainability criteria for risk assessment of natural gas pipelines. Yang [6] used the Analytic Hierarchy Process (AHP) and entropy method to establish a comprehensive evaluation index for the gas pipeline leakage disaster system. Liu [7] studied the leakage and diffusion laws of natural gas pipelines under different building layouts through experiments and CFD numerical simulations. Rui [8] developed a mathematical model that can be used to detect multiple leaks in the same natural gas pipeline. Trowsdale et al. [9] studied the probability of a leakage accident during the operation of a buried pipeline through laboratory experiments. Kim et al. Lu [10] used numerical simulation to study the leakage and diffusion laws and ventilation schemes of natural gas pipelines in Myanmar.

In summary, although theoretical analysis and experimental research in the field of high-pressure gas pipeline leakage risk research have achieved some results. However, most scholars' research on cause analysis only makes a deeper analysis of some aspects of pipeline leakage, such as pipeline corrosion, third-party damage, and so on. In the analysis of leakage consequences, most researchers used CFD numerical simulation to study the law of natural gas leakage and diffusion. However, there are some errors in computer simulation, and it is difficult to provide more clear ideas for managers in pipeline management. Therefore, in view of the above deficiencies, this paper will firstly use the bow-tie model to conduct strict logical reasoning on the causes and consequences of pipeline leakage, aiming to propose a relatively complete and clear risk evaluation index system for high-pressure gas pipeline leakage risk assessment. Secondly, the improved analytic hierarchy process (IAHP) is used to calculate the weight of each indicator and sort the weights. The research results can provide a reliable basis for the daily safety management of gas pipelines.

2. Methodology

2.1 Bow-tie model

David Gill of the University of Queensland in Australia presented the bow-tie model for the first time in 1979. Because the bow-tie model is easy to grasp in control logic and operating standards, it is widely used as a qualitative and semi-quantitative risk management technology. The bow-tie model is based on the combination of accident tree analysis (FTA) and event tree analysis (ETA). Using FTA to determine the initial event and identify all potential risk factors triggering the accident and their relationship. The ETA takes the top event of the FTA as the initial event and obtains the impact and potential consequences of the accident through the evolution of a series of possible processes.

2.2 Improved Analytic Hierarchy Process (IAHP)

Both Analytic Hierarchy Process (AHP) and Improved Analytic Hierarchy Process (IAHP) analyze the factors that influence decision-making, divide them into different target and criterion layers, and use these levels to qualitatively and quantitatively analyze the system. The difference between them is that the traditional analytic hierarchy process uses the 9-scale method to establish a judgment matrix. 9 scale method is more detailed and accurate, but it is easy to be interfered by personal subjective reasons in the judgment process, resulting in error and logic confusion. The improved analytic hierarchy process simplifies the 9-scale method to the 3-scale method. Because this method is easier to make accurate judgments, it is often used in the analysis of engineering projects. The basic steps of IAHP are detailed in the references[11].

3. Risk analysis of high pressure gas pipeline leakage

3.1 The establishment of the bow-tie model

After analyzing a large number of natural gas pipeline accidents, it can be found that the cause of fires and explosions in high-pressure pipelines is almost caused by the ignition source after the pipeline leaks. Therefore, this paper selects “pipe leakage” as the top event. According to the survey, pipeline
penetration and rupture are the most fundamental causes of pipeline leakage failure. Pipeline penetration and pipe rupture are then analyzed as sub-top events, and combined with hazard source identification results, the events are analyzed one by one until the most basic bottom events are found.

Figure 1 shows the bow-tie model for high-pressure gas pipeline leakage. Table 1 shows the event list. The model considers 28 basic events and 8 consequence paths.

Event code	Event name	Event code	Event name
T	Pipeline leakage	X5	Corrosion detection failure
M1	Penetration	X6	Pipes have poor corrosion resistance
M2	Rupture	X7	Alarm system failure
M3	Third party destruction	X8	Low pipeline inspection frequency
M4	Corrosion	X9	Pipeline inspection is not serious
M5	Violent construction above the pipeline	X10	Acidic medium corrosion
M6	Destruction of others	X11	Anticorrosion measures failure
M7	Corrosion cracking	X12	Current interference
M8	Misoperation	X13	Cathodic protection failure
M9	Pipeline safety inspection	X14	Large tensile stress
M10	Quality deterioration of anticorrosive insulating layer	X15	Equipment aging
M11	Internal corrosion of pipe	X16	Construction supervision failed
M12	External corrosion of pipeline	X17	Pipe welding failed
M13	Defect	X18	Corrosion insulation layer is damaged
M14	Severe pressure along the line	X19	Pipe installation failed
M15	Stress corrosion	X20	Excessive external facilities
M16	Operational misoperation	X21	Unreasonable design of pipeline
M17	Maintenance misoperation	X22	Operator error
M18	Construction misoperation	X23	Communication system failure
M19	Construction defect	X24	Safety equipment failure
M20	Stole natural gas by punching	X25	Poor maintenance equipment
X1	Natural disaster	X26	Maintenance personnel mistakes
X2	Malicious destruction	X27	Unreasonable construction of pipe ditch
X3	Farming activities	X28	Lack of public education
X4	Initial defect		

3.2 Pipeline Leakage Risk Assessment Index System

According to the bow-tie model established in Figure 1, the basic events are classified, and the pipeline failure analytic model and the accident consequence analytic model can be constructed, as shown in Tables 2 and 3.

Target layer	Standard layer	Index layer
High-pressure gas pipeline failure index system	Third party factor	Public education
	Corrosion	Construction supervision
		Safety check frequency
		Acid medium content
		Corrosion detection
		Natural disaster
		Malicious destruction
		External facilities activities
		Current interference
		Cathodic protection
		Tensile stress
Pipe corrosion resistance
Anti-corrosion layer
Maintenance misoperation
Pipeline construction misoperation
Design misoperation
Operation misoperation
Installation misoperation
Welding misoperation
Maintenance equipment
Alarm system
Equipment construction
Communication system
Safety inspection error
safety equipment
Initial defect

Misoperation	Equipment condition	Safety inspection error
Pipe corrosion resistance	Maintenance misoperation	Anti-corrosion layer
Design misoperation	Installation misoperation	Pipeline construction misoperation
Operation misoperation	Maintenance equipment	Operation misoperation
Welding misoperation	Equipment aging	Communication system

Table 3. Analytical model of accident consequences

Target layer	Standard layer	Index layer	Minor injuries		
High-pressure gas pipeline leakage consequence	Security consequences	Death	Serious injury	Suspension loss	
Economic losses	Poisoning	Building destruction	Equipment destruction	Air pollution	Water pollution
Environmental pollution	Repair cost	Plant destruction	Lost medium	Soil pollution	
3.3 Calculating weights

Refer to 2.2 above to improve the calculation steps of the analytic hierarchy process, and then combine the expert scoring to establish the judgment matrix. Next, the weights of each indicator need to be calculated and sorted. Due to space limitations, the indicators involved are numerous and complex. Therefore, the calculation result is directly given, as shown in Table 4. The calculation shows that the equipment plays a major role in the first-level indicators. Among the secondary indicators, the safety
Equipment, alarm system, natural disasters, operational misoperations, safety inspection errors, and design misoperations account for a significant weight ratio. The evaluation results of various factors are basically consistent with the actual situation, indicating that the method has certain practical value. At the same time, relevant departments can formulate risk mitigation measures according to Table 4.

Table 4: Pipeline leakage influence factor weights

Factors affecting pipeline leakage	Weights	Weight sorting
Third party factor		
(0.310029418)		
Public education	0.022634886	13
Malicious destruction	0.065816573	7
External facilities activities	0.039243838	9
Construction supervision	0.039243838	9
Farming activities	0.017611736	16
Natural disaster	0.091846568	3
Safety check frequency	0.033632894	11
Corrosion		
(0.049947235)		
Acid medium content	0.003697985	27
Current interference	0.003697985	27
Anti-corrosion layer	0.009402426	20
Corrosion prevention	0.010217808	19
Tensile stress	0.003943369	25
Pipe corrosion resistance	0.007334094	24
Corrosion detection	0.007955582	22
Cathodic protection	0.003697985	26
Misoperation		
(0.315845019)		
Welding misoperation	0.020777154	15
Pipeline construction misoperation	0.024641659	12
Safety inspection error	0.079825395	5
Design misoperation	0.074259176	6
Operation misoperation	0.085717309	4
Installation misoperation	0.02265744	13
Maintenance misoperation	0.007955582	22
Equipment condition		
(0.324178328)		
Initial defect	0.016241245	17
Alarm system	0.117154888	2
Safety equipment	0.123999706	1
Equipment aging	0.011568189	18
Communication system	0.046691893	8
Maintenance equipment	0.008522407	21

4. Conclusion

This paper combines the bow-tie model with the improved analytic hierarchy process (IAHP). According to the bow-tie model, the indicators of the IAHP are determined to make the relationship between the indicators more clear, and the evaluation results are more in line with the objective reality. Then, based on the hazard source identification results, a bow-tie model for high pressure gas pipeline leakage was established. The model considers 28 basic events and 8 consequences paths. Secondly, based on the analysis results of the bow-tie model, a high-pressure gas pipeline leakage risk assessment system and an accident consequence evaluation system are established. Finally, the improved analytic hierarchy process is used to calculate the weight of each indicator and sort them. The calculation shows that the equipment plays a major role in the first-level indicators. Among the secondary indicators, the safety equipment, alarm system, natural disasters, operational misoperations, safety inspection errors, and design misoperations account for a significant weight ratio. The evaluation results of various factors are basically consistent with the actual situation, indicating that the method has certain practical value.
Acknowledgements
The study was supported by the National Natural Science Foundation of China (Grant: 51474151), the Beijing Natural Science Foundation of China (Grant: 9162001).

References
[1] Li X, Chen G, Zhu H. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network. Process Safety & Environmental Protection, 2016, 103, pp. 163-173.
[2] Guo X, Zhang L, Liang W, et al. Risk identification of third-party damage on oil and gas pipelines through the Bayesian network. Journal of Loss Prevention in the Process Industries, 2018, 54, pp. 163-178.
[3] Ahammed M, Melchers R E. Reliability of Underground Pipelines Subject to Corrosion. Journal of Transportation Engineering, 1994, 120(6), pp. 989-1002.
[4] Shin S, Lee G, Ahmed U, et al. Risk-based underground pipeline safety management considering corrosion effect. Journal of Hazardous Materials, 2018, 342, pp. 279-289.
[5] Shahriar A, Sadiq R, Tesfamariam S. Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis. Journal of Loss Prevention in the Process Industries, 2012, 25(3), pp. 505-523.
[6] Yang K, Lv S, Gao J, et al. Research on the Coupling Degree Measurement Model of Urban Gas Pipeline Leakage Disaster System[J]. International Journal of Disaster Risk Reduction, 2016, 22, pp. 238-245.
[7] Liu A, Huang J, Li Z, et al. Numerical simulation and experiment on the law of urban natural gas leakage and diffusion for different building layouts. Journal of Natural Gas Science & Engineering, 2018, 54, pp. 1-10.
[8] Rui Z, Han Q, Zhang H, et al. A new model to evaluate two leak points in a gas pipeline. Journal of Natural Gas Science & Engineering, 2016, 46, pp. 491-497.
[9] Trowsdale S A, Lerner D N. A modelling approach to determine the origin of urban ground water. Journal of Contaminant Hydrology, 2007, 91(1), pp. 171-183.
[10] Lu H, Huang K, Fu L, et al. Study on leakage and ventilation scheme of gas pipeline in tunnel. Journal of Natural Gas Science & Engineering, 2018, 53, pp. 347-358.
[11] Ji-hong PANG, Mbah Collins TEBO, Shu-zhen YE, Yi-ni JIN, Chao-hsien HSIEH. Research on Quality Evaluation Model with the Application of Mechanical and Electrical Products Based on IAHP[P]. 2nd International Conference on Applied Mechanics, Electronics and Mechatronics Engineering (AMEME 2017), 2017.