ABSTRACT

Objective: Current studies of newborn screening for Fabry disease in Taiwan have revealed a remarkably high prevalence of cardiac-type Fabry disease with a Chinese hotspot late-onset Fabry mutation (IVS4+919G>A).

Design: Retrospective cohort study.

Setting: Tertiary medical centre.

Participants: 21 patients with cardiac-type Fabry disease (15 men and 6 women) as well as 15 patients with classic Fabry disease (4 men and 11 women) treated with biweekly intravenous infusions of agalsidase β (1 mg/kg) or agalsidase α (0.2 mg/kg) for at least 6 months.

Outcome measures: These data were collected at the time before enzyme replacement therapy (ERT) began and followed up after ERT for at least 6 months, including patient demographics, medical history, parameter changes of cardiac status and renal functions, plasma globotriaosylsphingosine (lyso-Gb3) and Mainz Severity Score Index.

Results: After 6–39 months of ERT, plasma lyso-Gb3 was found to be reduced in 89% (17/19) and 93% (14/15) of patients with cardiac-type and classic Fabry disease, respectively, which indicated an improvement of disease severity. For patients with cardiac-type Fabry disease, echocardiography revealed the reduction or stabilisation of left ventricular mass index (LVMI), the thicknesses of intraventricular septum (IVS) and left posterior wall (LPW) in 83% (15/18), 83% (15/18) and 67% (12/18) of patients, respectively, as well as 77% (10/13), 73% (11/15) and 60% (9/15) for those with classic type. Most patients showed stable renal function after ERT. There were statistically significant improvements (p<0.05) between the data at baseline and those after ERT for values of plasma lyso-Gb3, LVMI, IVS, LPW and Mainz Severity Score Index. No severe clinical events were reported during the treatment.

Conclusions: ERT is beneficial and appears to be safe for Taiwanese patients with cardiac-type Fabry disease, as well as for those with the classic type.

ARTICLE SUMMARY

Article focus

▪ Retrospectively reviewed the clinical findings of enzyme replacement therapy (ERT) in 21 Taiwanese patients with cardiac-type Fabry disease (IVS4+919G>A), along with 15 patients with the classic type.

▪ Evaluation of the safety and effects on disease stability for these patients under ERT.

Key messages

▪ ERT improved or stabilised cardiac status, stabilised renal function, improved microalbuminuria, stabilised or improved overall severity of signs and symptoms according to Mainz Severity Score Index, while reducing plasma globotriaosylsphingosine concentration.

▪ ERT is beneficial and appears to be safe for Taiwanese patients with cardiac-type Fabry disease (IVS4+919G>A), as well as for those with the classic type.

Strengths and limitations of this study

▪ The first report to demonstrate the efficacy and safety of ERT with agalsidase β or agalsidase α in patients with cardiac-type Fabry disease and a relatively large cohort study.

▪ Retrospective cohort study.

INTRODUCTION

Fabry disease (MIM 301500) is an X-linked inherited condition caused by the absence or reduction of α-galactosidase A (α-Gal A) activity in lysosomes, leading to a progressive accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids in lysosomes of all cells in the body. It is a complex, multistystemic disorder characterised clinically by acropaerasthesia, hypohydrosis, angiokeratomas, corneal opacities, cardiomyopathy, progressive renal impairment, gastrointestinal...
disturbances and cerebrovascular lesions. The first symptoms of classic Fabry disease usually appear in childhood, and by middle age, some degree of irreversible damage may already have occurred. Despite being an X linked disorder, heterozygous women can be as severely affected as hemizygous men, although the range of symptoms varies widely. Life-threatening complications may develop in treated and untreated patients. The estimated incidence of classic Fabry disease is 1 in 40,000–117,000 live births in the general population.

During the past decade, late-onset phenotypes of Fabry disease primarily involving the heart, kidneys or cerebrovascular system have been reported. Patients with the cardiac variant often lack the classic symptoms of Fabry disease and present with left ventricular hypertrophy (LVH), arrhythmias or hypertrophic cardiomyopathy in the fifth to eighth decades of life. Newborn screening for Fabry disease in Taiwan revealed a surprisingly high incidence (about 1 in 1500 men) of a cardiac variant GLA mutation, IVS4+919G>A, in our population, and also found this mutation in a number of adult patients with idiopathic hypertrophic cardiomyopathy. As a result, dozens of Taiwanese patients with cardiac-type Fabry disease were identified in the recent years.

There are two forms of enzyme replacement therapy (ERT) for Fabry disease: agalsidase α (Replagal; Shire Human Genetic Therapies, Lexington, Massachusetts, USA) and agalsidase β (Fabrazyme; Genzyme, Cambridge, Massachusetts, USA). Previous studies showed that ERT was an effective treatment for neuro- pathic pain and can stabilise renal function or at least slow the decline of renal function in many patients with Fabry nephropathy. However, most study participants were Caucasian patients with classic Fabry disease. Information on ERT in patients with cardiac-type Fabry disease as well as in Asian patients is limited.

In this study, we retrospectively reviewed the clinical findings of ERT in 21 Taiwanese patients with cardiac-type Fabry disease (IVS4+919G>A), along with 15 patients with the classic type. Our aim was to evaluate the safety and effects on disease stability for these patients under ERT.

PATIENTS AND METHODS

Selection of patients

Data from 21 patients with cardiac-type Fabry disease (15 men and 6 women; age range, 25–67 years) and 15 patients with classic Fabry disease (4 men and 11 women; age range, 14–79 years) treated with biweekly intravenous infusions of agalsidase β (1 mg/kg) or agalsidase α (0.2 mg/kg) for at least 6 months between December 2008 and June 2012 in Taipei Veterans General Hospital were retrospectively reviewed for this study. Of these 36 patients, 7 (patients no. 2, 3, 12, 15, 16, 18, 19) initially received agalsidase β (1 mg/kg) treatment. However, since June 2009, viral contamination of Genzyme’s production facility resulted in a worldwide shortage of agalsidase β leading to the switch to agalsidase α for these seven patients with Fabry disease in Taiwan. All other 29 patients received only agalsidase α (0.2 mg/kg) throughout the treatment course. The patients’ ages when treatment began ranged widely, from 14 to 79 years, and the duration of ERT ranged from 6 to 39 months. Written informed consent was obtained from parents for patients who were children and from patients themselves who were above 18 years of age. The study was approved by the medical ethics committee of Taipei Veterans General Hospital, Taiwan.

Baseline and follow-up biochemical and clinical evaluation

All patients had clinical manifestations of the disease, and diagnosis was confirmed by plasma α-Gal A enzyme activity assay and GLA gene mutation analysis. Data were collected retrospectively at the time before ERT began and followed up after ERT for at least 6 months, including patient demographics, such as gender, genotype, age at ERT, height and body weight and medical history. Together with the relevant data pertaining to the left ventricular mass (LVM), left ventricular mass index (LVMI), the thicknesses of the intraventricular septum (IVS) and left posterior wall (LPW) obtained by serial echocardiographic assessments, urine albumin-to-creatinine ratio (ACR), estimated glomerular filtration rate (eGFR; based on serum creatine concentration), plasma globotriaosylsphingosine (lyso-Gb3) concentration and severity of signs and symptoms of Fabry disease using the Mainz Severity Score Index (MSSI) were recorded. LVM was calculated according to the American Society of Echocardiography simplified cubed equation. LVM was indexed (LVMi) by height to normalise heart size to body size. LVH was defined as an LVMi higher than the upper normal limit (men, >51 g/m².7; women, >48 g/m².7). Microalbuminuria was defined as urinary ACR ratio ≥2.0 mg/mmol for men and ≥2.8 mg/mmol for women on at least two occasions, based on the National Kidney Foundation’s Kidney Disease Outcome Quality Initiative working group definition.

Adverse events were assessed by history; physical examination, including vital signs during treatment; patient records of side effects; laboratory tests (chemistry, haematology, urinalysis); and ECG.

Data analysis and statistics

Descriptive statistics, including means, SD and percentage change over time, were calculated. Changes in plasma lyso-Gb3, eGFR, urine ACR, LVM, LVMI, IVS, LPW and MSSI before and after treatment were analysed using Student’s paired t test. SPSS V.11.5 (SPSS Inc, Chicago, Illinois, USA) was used, and differences were considered to be statistically significant when the p value was <0.05.
Enzyme replacement therapy for cardiac-type Fabry patients

RESULTS

Demographics

Details of the 36 patients’ backgrounds and clinical characteristics are shown in Table 1. The age at start of ERT was 53.4±14.4 years. For cardiac-type Fabry patients, the mean plasma α-Gal A activity for men and women were 1.16 and 6.24 nmol/h/mL, respectively (reference range: 7.9–16.9 nmol/h/mL). For classic Fabry patients, those were 0.01 and 4.66 nmol/h/mL, respectively. No patient underwent haemodialysis. Thirty-two patients suffered from cardiac symptoms, and three of them underwent pacemaker implantation. Among 15 classic Fabry patients, 4 men and 7 women had acroparaesthesia, 3 men had angiokeratoma and 1 woman and 4 men had hypohydrosis. Cerebrovascular disorders were present in one cardiac man, one classic man and two classic women. Dysacusis, gastrointestinal symptoms and respiratory symptoms were described in 2, 8 and 17 patients, respectively. Among 28 patients receiving slit-lamp examinations of the eye, 13 and 10 patients were found with cornea verticillata and Fabry cataract, respectively.

Cardiac status, renal function, plasma lyso-Gb3 concentration and MSSI at baseline and after ERT

Table 2 shows the parameter changes of cardiac status, renal function, plasma lyso-Gb3 concentrations and MSSI of these patients at baseline and after 6–39 months of ERT. LVH was present at baseline in 13 women (13/16, 81%) and 16 men (16/21, 76%). The median ERT duration was 16 months. After ERT, plasma lyso-Gb3 was reduced in 89% (17/19) and 93% (14/15) of patients with cardiac and classic types, respectively, indicated the improvement of the disease severity. For patients with cardiac-type Fabry disease, echocardiography revealed the reduction or stabilisation of LVM, the thicknesses of IVS and LPW in 83% (15/18), 83% (15/18) and 67% (12/18) of patients, respectively, along with 77% (10/13), 73% (11/15) and 60% (9/15) for those with the classic type. For 16 patients with microalbuminuria at baseline, 15 patients (94%) showed some degree of improvement after ERT. Among 35 patients with available data for eGFR, most showed stable renal function after ERT. There were statistically significant differences (p<0.05) between the data at baseline and those after ERT for values of plasma lyso-Gb3, LVM, LVM, IVS, LPW and MSSI. No significant differences were found for values of eGFR and urine ACR after ERT (Table 2). We also subdivided these 21 cardiac and 15 classic Fabry patients into four groups according to the gender (Table 3). For the values of plasma lyso-Gb3, LVM, LVM, IVS, LPW and MSSI, the results after ERT revealed improvements compared with those of baseline. However, owing to the small sample size in each group, only some items showed statistically significant differences (p<0.05) in certain groups (Table 3). The results which showed ERT for cardiac-type Fabry disease also had beneficial effects as well as that for classic Fabry disease.

To the best of our knowledge, this is the first report to demonstrate the efficacy and safety of ERT with agalsidase β or agalsidase α in patients with cardiac-type Fabry disease. For most patients in this study, including both cardiac and classic types, ERT reduced plasma lyso-Gb3 concentration, stabilised or improved surrogate parameters, such as LVM, LVM, the thicknesses of IVS and LPW in those with LVH, improved microalbuminuria, stabilised renal function in those with Fabry nephropathy, and stabilised or improved the overall severity of signs and symptoms according to MSSI. Our results were consistent with those of the previous studies for classic Fabry patients.

Beck et al45 reported a 20% reduction in LVM after 12 months of agalsidase α treatment with the standard stabilisation in all patients. All scores in general, neurological, cardiovascular and renal components revealed mild improvements or stabilisation after ERT except a slight worsening in the general score for men with the cardiac type (Table 4).

In addition, we also presented the renal and cardiac data for all the men together and women together and did statistical analysis again on these data (Table 5, Figure 1A,B). For the values of urine ACR, LVM, IVS and LPW, the results after ERT revealed improvements compared with those of baseline. However, owing to the small sample size in each group, only some items (LVM, IVS and LPW in women) showed statistically significant differences (p<0.05).

DISCUSSION

There are numerous clinical reports describing the beneficial effects of ERT for patients with classic Fabry disease; however, there is limited literature reporting those for patients with cardiac-type Fabry disease. In order to clarify this point, we subdivided these 21 cardiac and 15 classic Fabry patients into four groups according to the gender. For the values of plasma lyso-Gb3, LVM, LVM, LPW and MSSI, the results after ERT all revealed improvements compared with baseline, including both cardiac and classic types of different genders. However, owing to the small sample size in each group, only some items showed statistically significant differences (p<0.05) in certain groups (Table 3).
Table 1: Baseline demographics and clinical characteristics of 36 Taiwanese patients with Fabry disease received enzyme replacement therapy (ERT) with agalsidase β (1 mg/kg/biweekly) or agalsidase α (0.2 mg/kg/biweekly) for 6–39 months.

No.	Type	Age at ERT (year)	Gender	Genotype	Plasma α-Gal A activity (μmol/h/mL)	Haemodialysis	Cardiac symptoms	Pacemaker	Acroparesthesia	Angiokeratoma	Hypohydrosis	Cerebrovascular disorders	Dysacusis	Gastrointestinal symptoms	Respiratory symptoms	Cornea verticillata	Fabry cataract
1	Cardiac	25	M	IVS4+919G>A	0.93	−	−	−	−	−	−	−	−	−	−	−	−
2	Cardiac	43	M	IVS4+919G>A	0.25	−	−	−	−	−	−	−	−	−	−	−	−
3	Cardiac	53	M	IVS4+919G>A	0.88	−	+	−	−	+	+	−	−	−	−	−	−
4	Cardiac	54	M	IVS4+919G>A	1.39	+	+	−	−	−	−	−	−	−	−	−	−
5	Cardiac	55	M	IVS4+919G>A	1.3	+	+	−	−	−	−	−	−	−	−	−	−
6	Cardiac	55	M	IVS4+919G>A	1.32	+	+	−	−	−	−	−	−	−	−	−	−
7	Cardiac	57	M	IVS4+919G>A	1.13	+	+	−	−	−	−	−	−	−	−	−	−
8	Cardiac	59	M	IVS4+919G>A	1.02	+	+	−	−	−	−	−	−	−	−	−	−
9	Cardiac	60	M	IVS4+919G>A	0.79	−	−	−	−	−	−	−	−	−	−	−	−
10	Cardiac	62	M	IVS4+919G>A	1.48	−	−	−	−	−	−	−	−	−	−	−	−
11	Cardiac	63	M	IVS4+919G>A	1.47	−	−	−	−	−	−	−	−	−	−	−	−
12	Cardiac	63	M	IVS4+919G>A	1.2	+	+	−	−	−	−	−	−	−	−	−	−
13	Cardiac	64	M	IVS4+919G>A	1.15	+	+	−	−	−	−	−	−	−	−	−	−
14	Cardiac	65	M	IVS4+919G>A	1.71	+	+	−	−	−	−	−	−	−	−	−	−
15	Cardiac	67	M	IVS4+919G>A	0.95	−	+	−	−	−	−	−	−	−	−	−	−
16	Classic	14	M	W204X	0	−	−	−	−	−	+	−	−	−	−	−	−
17	Classic	23	M	E398DfsX6	0.027	+	+	−	−	−	−	−	−	−	−	−	−
18	Classic	33	M	E398DfsX6	0.02	−	+	−	−	−	−	−	−	−	−	−	−
19	Classic	49	M	E398DfsX6	0.02	+	+	−	−	−	−	−	−	−	−	−	−
20	Cardiac	44	F	IVS4+919G/A	7.67	−	−	−	−	−	−	−	−	−	−	−	−
21	Cardiac	53	F	IVS4+919G/A	4.4	+	+	−	−	−	−	−	−	−	−	−	−
22	Cardiac	58	F	IVS4+919G/A	4.03	+	+	−	−	−	−	−	−	−	−	−	−
23	Cardiac	63	F	IVS4+919G/A	5.17	+	+	−	−	−	−	−	−	−	−	−	−
24	Cardiac	67	F	IVS4+919G/A	9.63	+	+	−	−	−	−	−	−	−	−	−	−
25	Cardiac	76	F	W204X	6.51	−	+	−	−	−	−	−	−	−	−	−	−
26	Cardiac	79	F	W204X	3.31	−	+	−	−	−	−	−	−	−	−	−	−
27	Classic	33	F	G132R	2.4	−	−	−	−	−	−	−	−	−	−	−	−
28	Classic	34	F	S345X	3.34	−	−	−	−	−	−	−	−	−	−	−	−
29	Classic	48	F	W204X	5.59	−	+	−	−	−	−	−	−	−	−	−	−
30	Classic	53	F	W204X	9.19	−	+	−	−	−	−	−	−	−	−	−	−
31	Classic	56	F	W204X	7.73	−	+	−	−	−	−	−	−	−	−	−	−
32	Classic	58	F	G132R	2.4	−	−	−	−	−	−	−	−	−	−	−	−
33	Classic	58	F	E398DfsX6	7.37	+	+	−	−	−	−	−	−	−	−	−	−
34	Classic	66	F	E398DfsX6	6.91	−	+	−	−	−	−	−	−	−	−	−	−
35	Classic	76	F	E398DfsX6	3.91	−	+	−	−	−	−	−	−	−	−	−	−
36	Classic	79	F	W204X	3.31	−	+	−	−	−	−	−	−	−	−	−	−

*Reference range: 7.9–16.9.

α-Gal A, α-galactosidase A; NA, not available.
Table 2 Parameter changes of cardiac status and renal function, plasma lyso-Gb3 and Mainz Severity Score Index (MSSI) at baseline and after 6–39 months of enzyme replacement therapy (ERT) for 36 Taiwanese patients with Fabry disease

No.	Type	Gender	Age at ERT (year)	ERT duration (months)	Baseline	After ERT	Adverse effects
1	Cardiac	M	25	14	4.1	7.33	101.1
2	Cardiac	M	43	39	4.4	10.69	115.1
3	Cardiac	M	53	39	5.19	9.97	92.5
4	Cardiac	M	54	10	6.13	9.39	93.3
5	Cardiac	M	55	17	8.22	7.22	80.1
6	Cardiac	M	55	19	5.44	7.61	89.9
7	Cardiac	M	57	13	6.77	9.49	7.98
8	Cardiac	M	59	12	13.31	8.67	63.2
9	Cardiac	M	60	12	5.06	4.87	96
10	Cardiac	M	62	15	11.52	9.25	95.9
11	Cardiac	M	63	18	14.54	9.48	90
12	Cardiac	M	63	35	3.49	9.34	87.5
13	Cardiac	M	63	6	9.44	8.66	89.9
14	Cardiac	M	65	8	8.08	7.61	83.5
15	Cardiac	M	67	32	7.8	10.8	100.9
16	Cardiac	M	69	12	11.74	58.8	31.5
17	Cardiac	F	46	8	2.23	13.4	106.7
18	Cardiac	F	67	37	2.59	1.29	103.6
19	Cardiac	F	59	24	2.60	12.0	26.2
20	Cardiac	F	59	17	3.49	3.11	77.2
21	Cardiac	F	63	9	4.24	1.96	96.6
22	Cardiac	F	67	12	3.67	91.1	99.1
23	Classic	M	23	16	11.74	7.08	114.7
24	Classic	M	46	25	24.82	12.7	107.9
25	Classic	F	46	8	2.23	13.4	106.7
26	Classic	F	48	17	8.97	6.85	108.2
27	Classic	F	53	6	4.66	5.66	97.2
28	Classic	F	53	17	12.17	11.0	105.6
29	Classic	F	56	12	11.41	12.1	109.1
30	Classic	F	56	12	11.41	12.1	109.1
31	Classic	F	58	11	18.38	14.0	77.9
32	Classic	F	58	16	20.12	17.2	88.3
33	Classic	F	58	20	31.77	21.0	86.7
34	Classic	F	58	25	24.8	12.7	107.9
35	Classic	F	58	35	28.12	23.2	54.7
36	Classic	F	66	7	11.55	10.3	73.2
Mean	Classic	F	53.4	17	24.1	14.2	87.9
SD	Classic	F	14.4	8.8	44.9	19.6	72.5

*Reference range: <0.01–0.5.
**Paired t test, significance at p<0.05.
ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; IVS, interventricular septum; LPW, left posterior wall; LVM, left ventricular mass; LVM-index, left ventricular mass index; lyso-Gb3, globotriaosylsphingosine; NA, not available; NS, not significant.
Table 3 Parameter changes of cardiac status and renal function, plasma lyso-Gb3 and Mainz Severity Score Index (MSSI) at baseline and after enzyme replacement therapy (ERT) for 36 Taiwanese patients with Fabry disease subdivided into four groups according to the gender and the type (cardiac or classic)

Gender Type	Gender	Baseline	After ERT																									
Male	Cardiac	Mean	7.66	5.72	86.3	90	2.3	0.9	287.2	265.2	72.8	67.7	16.1	14.2	12.3	11	21.3	20.5										
	SD	3.53	2.79	13.7	12.8	3.4	1.1	109.9	100.8	25.3	25	4.9	3.8	5.7	2.4	5.4	5.5											
	n	14	15	15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	p*	0.020	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Classic	Mean	127.13	63.52	89.8	92.3	37.99	4.32	252.4	217	52.1	44.2	11.4	11	10.3	9.6	23.8	23.3											
	SD	74.82	14.47	43.5	50.7	63.96	6.25	89.7	31.3	19.5	1.5	1.3	1.7	2.2	1.6	7	8.1											
	n	4	4	3	3	4	4	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		
	p*	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
Female	Cardiac	Mean	3.03	1.68	79.4	83	51.28	20.66	186.8	128	57.2	39.8	12.1	9.2	10.9	8.5	18.8	15.5										
	SD	0.82	0.8	31.7	40.3	115.21	47.33	13.8	39.6	4.8	14.6	0.9	3	2.1	2	3.6	2.8											
	n	5	5	6	6	5	5	5	5	5	5	5	5	5	6	6												
	p*	0.028	NS	NS	NS	0.031	0.028	NS	0.025	0.042																		
Classic	Mean	17.16	12.8	91.9	91	42.4	16	224	207.1	72.4	64.9	14.4	12.9	11.2	10.6	26.2	25.4											
	SD	8.48	5.85	19.4	19.6	104.73	33.91	111.3	95.5	35.6	30.3	5.4	4.8	3.4	2.5	9.5	10.2											
	n	11	11	11	11	10	10	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11					
	p*	0.005	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		

*Significance at p<0.05.

ERT, enzyme replacement therapy; lyso-Gb3, globotriaosylsphingosine; eGFR, estimated glomerular filtration rate; ACR, albumin-to-creatinine ratio; LVM, left ventricular mass; LVMI, left ventricular mass index; IVS, intraventricular septum; LPW, left posterior wall; MSSI, Mainz Severity Score Index; NS, not significant.
dose (0.2 mg/kg/biweekly). Our results showed similar improvements. For cardiac-type Fabry patients, there was an average decrease of 12% (68.5 to 60 g/m².7) in LVMI for 18 patients after ERT, as well as 14% (15–12.8 mm) and 13% (11.9–10.3 mm) decreases in the thicknesses of IVS and LPW, respectively, along with 11% (67.7–60.1 g/m².7), 9% (13.6–12.4 mm) and 5% (10.9–10.3 mm) decreases for those with the classic type. Schiffmann et al. described stabilisation in patients with preserved renal function, but gradual worsening in advanced kidney disease following 4–4.5 years of agalsidase α therapy. In our study, most patients revealed stable renal function after ERT. Microalbuminuria occurs when the kidney leaks small amounts of albumin into the urine, and it is a marker of vascular endothelial dysfunction. There is a handful of literature reporting the change of urine ACR after ERT. In our study, 15 of the 16 patients showed an improvement of microalbuminuria after treatment, with the average urine ACR decreased from 56.6 to 19.27 mg/mmol (−66%). These results show that ERT has a potentially positive effect for kidney disease of these patients.

Plasma lyso-Gb3 elevation is a hallmark of Fabry disease, and is associated with clinical manifestations. The average baseline plasma lyso-Gb3 concentration values of 14 male cardiac-type patients and four male classic patients were 7.66 and 127.13 nM, respectively (reference range <0.01–0.5 nM). Similar values were also seen in female patients. Plasma lyso-Gb3 is also a reliable marker for monitoring the therapeutic outcomes of ERT. In our study, plasma lyso-Gb3 showed reductions of 28% (6.4–4.7 nM) and 43% (46.5–26.3 nM) for patients with cardiac and classic types, respectively, suggesting the improvement in disease severity.

MSSI is a sensitive and useful tool for objectively assessing the severity of Fabry disease and for monitoring the effects of ERT. In our study, MSSI scores revealed the severity of signs and symptoms of Fabry disease remained stable or showed mild improvement after ERT in both cardiac and classic types with average scores of 20.6–19.1, and 25.5–24.8, respectively (maximum score=76). Given the progressive nature of Fabry disease, stabilisation can be seen as a positive outcome following treatment. Our results were in accordance with those of previous studies.

Table 4	Mainz Severity Scores Index (MSSI) at baseline and after 6–39 months of enzyme replacement therapy (ERT) for 36 Taiwanese patients with Fabry disease subdivided into four groups according to the gender and the type (cardiac or classic)							
Gender	Max score	n	ERT	General	Neuro	Cardio	Renal	Total
---	---	---	---	---	---	---	---	---
Male	Cardiac	15	Baseline	2.8 (1.3)	1.6 (1.1)	13.7 (3.1)	3.2 (3.8)	21.3 (5.4)
			Follow-up	2.9 (1.4)	1.6 (1.1)	13.1 (3.1)	2.9 (3.8)	20.5 (5.5)
	Classic	4	Baseline	3.5 (1.7)	6.8 (2.8)	10.5 (1)	3 (3.8)	23.8 (7)
			Follow-up	3.5 (1.7)	6.8 (2.8)	10 (1.2)	3 (3.8)	23.3 (8.1)
Female	Cardiac	6	Baseline	2.8 (0.8)	1.7 (0.5)	11 (1.1)	3.3 (3.9)	18.8 (3.6)
			Follow-up	2.8 (0.8)	1.7 (0.5)	9.7 (1.5)	1.3 (2.1)	15.5 (2.8)
	Classic	11	Baseline	4 (2.2)	4 (2.4)	13.1 (4.2)	5.1 (3.6)	26.2 (9.5)
			Follow-up	4 (2.2)	4 (2.4)	12.6 (4.4)	4.7 (3.5)	25.4 (10.2)

Data are mean (SD). Cardio, cardiovascular; Max, maximum possible score; Neuro, neurological.

Table 5	Parameter changes of cardiac status and renal function at baseline and after enzyme replacement therapy (ERT) for 36 Taiwanese subdivided into two groups according to the gender						
Gender	eGFR (mL/min/1.73 m²) (CKD-EPI)	Urine ACR (mg/mmol)	LVMI (g/m².7)	IVS (mm)	LPW (mm)		
---	---	---	---	---	---		
Male Mean	87.63	21.2	88.9	68.9	25.2	15.0	11.8
SD	21.2	23.1	25.3	25.2	24.3	4.7	5.1
N	20	19	NS	16	17	NS	17
p Value*	NS						
Female Mean	88.0	88.5	45.5	67.3	36.5	13.7	11.1
SD	88.0	85.0	105.0	29.6	28.3	4.6	3.0
N	16	17	NS	15	16	16	16
p Value*	NS	NS	NS	0.005	0.038	0.039	0.039

*Significance at p<0.05.
ACR, albumin-to-creatinine ratio; CKD-EPI, chronic kidney disease epidemiology; eGFR, estimated glomerular filtration rate; IVS, intraventricular septum; LPW, left posterior wall; LVMI, left-ventricular mass index; NS, not significant.
Adverse events, such as fever, dyspnoea and skin rash, were reported in clinical trials of agalsidase β and agalsidase α treatments for Fabry disease. However, the frequency and severity of adverse events diminish over time in most patients due to infusion rate optimisation, preinfusion medication and, possibly, increased tolerance to the exogenous protein since antibody titres often decline with time.15 16 Twelve of our 36 patients (33%) had similar symptoms after receiving ERT, but the reactions were easily managed. None of them had serious sequelae, and they were all able to continue with treatment. We were unable to measure IgG antibodies against these two products, but we assume that our patients’ reactions occurred by the same mechanism.

Limitations
As an uncontrolled retrospective study, we could not compare the results of ERT in our patients with any untreated control patients. For seven patients who underwent the switch of ERT from agalsidase β (1 mg/kg) to agalsidase α (0.2 mg/kg), assessments for biochemical and clinical response were not available at regular time intervals during the treatment. Thus, partial parameters of cardiac status and renal function, and plasma lyso-Gb3 were not available for certain patients at the time point of switch. The results of ERT for these seven patients could only show the overall effects of ERT with agalsidase β (1 mg/kg) and agalsidase α (0.2 mg/kg). Meanwhile, the results were reported after 6–39 months of treatment. This period could not be enough to display the effects of ERT since Fabry disease is a pleomorphic and long-lasting pathology and the clinical outcome requires a long time to be evaluated. In addition, the small sample size of each type reflected the rare nature of this genetic disorder, and the range of age at which treatment began was quite wide, as was the degree of disease severity. Therefore, studies in larger cohorts with a longer follow-up are warranted. However, our experience reflects the problem that clinicians are likely to encounter when treating patients with Fabry disease, since each patient presents with a quite different condition.

CONCLUSION
In our study, for patients with cardiac-type Fabry disease, along with those with the classic type, ERT improved or stabilised cardiac status, stabilised renal function, improved microalbuminuria and stabilised or improved overall severity of signs and symptoms according to MSSI, while reducing plasma lyso-Gb3 concentration. ERT was well tolerated, even among the patients who had hypersensitivity reactions. ERT for treatment of Fabry disease has been endorsed by the National Health Insurance programme in Taiwan since April 2002. Our clinical experience confirms that ERT is beneficial and safe for patients with a Chinese hotspot late-onset Fabry mutation (IVS4+919G>A) as well as for those with the classic type. Whether the stabilisation or improvement in disease severity and quality of life is durable remains to be seen on further follow-up.

Acknowledgements This study was partially supported by the National Science Council, Taiwan (No. NSC-100-2325-B-010-014, NSC-98-2917-I-010-103) and Taipei Veterans General Hospital (No. V101C-129). The authors thank Ms Tsai-Feng Ho for her professional assistance in biostatistics. Shire HGT was given the opportunity to review this manuscript, but the opinions remain those of the authors.
Contributors H-YL and H-CL performed acquisition, statistical analysis and interpretation of data, and drafting of the manuscript. D-MN and Y-HH participated in the design of the study, interpretation of the data and helped to draft the manuscript. H-CL, T-RH, C-KH and C-C performed biochemical analyses and revised the manuscript. C-IS, S-TL, C-FL, L-HL, P-CL, C-YL and S-PL were responsible for patient screening. All authors contributed in interpreting data, revising drafts of the manuscript and in the approval of the final manuscript.

Funding This study was partially supported by the National Science Council, Taiwan (No. NSC-100-2325-B-010-014, NSC-98-2917-I-010-103) and Taipei Veterans General Hospital (No. V101C-129).

Competing interests None.

Patient consent Obtained.

Ethics approval Institute’s ethics committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

REFERENCES

1. Desnick RJ, Ioannou YA, Eng CM. α-Galactosidase A deficiency: Fabry disease. In: Scrivner CR, Beaudet AL, Sly WS, et al. eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3733–74.

2. Zirate YA, Hopkin RJ. Fabry’s disease. Lancet 2008;372:1427–35.

3. Meikle PJ, Hopwood LJ, Clague AE, et al. Prevalence of lysosomal storage disorders. JAMA 1999;281:249–54.

4. Monserrat L, Gimeno-Blanes JR, Marin F, et al. Prevalence of Fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2007;90:2399–403.

5. Nakao S, Takenaka T, Maeda M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 1995;333:288–93.

6. Sadach V, Takenaka T, Terauchi H, et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 2002;105:1407–11.

7. Kotanko P, Kramar R, Devrnja D, et al. Agalsidase-beta therapy for advanced Fabry disease in patients with cryptogenic stroke: a prospective long-term cardiac magnetic resonance imaging study. Circulation 2003;108:1299–301.

8. Eto Y, Ohashi T, Utsunomiya Y, et al. Enzyme replacement therapy in Japanese Fabry disease patients: the results of a phase 2 bridging study. J Inherit Metab Dis 2005;28:575–83.

9. Choi JH, Cho YM, Suh KS, et al. Short-term efficacy of enzyme replacement therapy in Korean patients with Fabry disease. J Korean Med Sci 2008;23:243–50.

10. Smid BE, Rombach SB, Aerts JM, et al. Consequences of a global enzyme shortage of agalsidase beta in adult Dutch Fabry patients. Orphanet J Rare Dis 2011;6:69.

11. De Simone G, Daniels SR, Devereux RB, et al. Prevalence of Fabry disease: overall effects of enzyme replacement therapy. Arch Intern Med 2005;165:2301–8.

12. Parini R, Rigoldi M, Santus F, et al. Enzyme replacement therapy with agalsidase alfa enzyme replacement therapy: a Brazilian experience. Ren Fail 2009;31:773–8.

13. Schwarting A, Delhaut F, Ferriozzi S, et al. European FOS Investigators. Enzyme replacement therapy and renal function in 201 patients with Fabry disease. Clin Nephrol 2006;66:77–84.

14. Hoffmann B, Beck M, Sunder-Plasmann G, et al. FOS European Investigators. Nature and prevalence of pain in Fabry disease and its response to enzyme replacement therapy—a retrospective analysis from the Fabry Outcome Survey. Clin J Pain 2007;23:535–42.

15. West M, Nicholls K, Mehta A, et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol 2009;20:1132–9.

16. Weidemann F, Breunig F, Beer M, et al. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study. Circulation 2003;108:1299–301.

17. Imbriaco M, Pisani A, Spinelli L, et al. Effects of enzyme-replacement therapy in patients with Anderson-Fabry disease: a prospective, randomised, placebo-controlled clinical trial of agalsidase alfa. Heart 2008;94:153–8.

18. Motwani M, Banyersad S, Woolston P, et al. Enzyme replacement therapy improves cardiac features and severity of Fabry disease. Mol Genet Metab 2012;107:197–202.

19. Tsuboi K. Enzyme replacement therapy in patients with Fabry’s disease. J Int Med Res 2007;35:574–81.

20. Eto Y, Ohashi T, Utsunomiya Y, et al. Enzyme replacement therapy in Japanese Fabry disease patients: the results of a phase 2 bridging study. J Inherit Metab Dis 2005;28:575–83.

21. Choi JH, Cho YM, Suh KS, et al. Short-term efficacy of enzyme replacement therapy in Korean patients with Fabry disease. J Korean Med Sci 2008;23:243–50.

22. Smid BE, Rombach SB, Aerts JM, et al. Consequences of a global enzyme shortage of agalsidase beta in adult Dutch Fabry patients. Orphanet J Rare Dis 2011;6:69.

23. De Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 1995;25:1056–62.

24. Levey AS, Stevens LA, Schmid CH, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:60–8.

25. Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA 2008;105:2812–17.

26. Rombach SM, Decker K, Bouwman MG, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta 2010;1802:741–6.

27. Whybra C, Kampmann C, Krummenauer F, et al. The Mainz Severity Score Index: a new instrument for quantifying the Anderson-Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clin Genet 2004;65:99–107.

28. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39:S1–266.

29. Parini R, Riggoli M, Santus F, et al. Enzyme replacement therapy with agalsidase alfa in a cohort of Italian patients with agalsidase alfa enzyme replacement therapy: a Brazilian experience. Ren Fail 2009;31:773–8.
Enzyme replacement therapy for cardiac-type Fabry patients

Anderson-Fabry disease: testing the effects with the Mainz Severity Score Index. Clin Genet 2008;74:260–6.

41. Togawa T, Kodama T, Suzuki T, et al. Plasma globotriaosylsphingosine as a biomarker of Fabry disease. Mol Genet Metab 2010;100:257–61.

42. Togawa T, Kawashima I, Kodama T, et al. Tissue and plasma globotriaosylsphingosine could be a biomarker for assessing enzyme replacement therapy for Fabry disease. Biochem Biophys Res Commun 2010;399:716–20.

43. Van Breemen MJ, Rombach SM, Dekker N, et al. Reduction of elevated plasma globotriaosylsphingosine in patients with classic Fabry disease following enzyme replacement therapy. Biochim Biophys Acta 2011;1812:70–6.