Matter Density and Relativistic Models of Wave Function Collapse

Daniel Bedingham
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

Detlef Dürr
Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München, Germany

GianCarlo Ghirardi
Department of Theoretical Physics of the University of Trieste, and the Abdus Salam International Centre for Theoretical Physics, Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy

Sheldon Goldstein
Departments of Mathematics, Physics and Philosophy, Rutgers University, Hill Center, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

Roderich Tumulka
Department of Mathematics, Rutgers University, Hill Center, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

Nino Zanghì
dipartimento di Fisica dell’Università di Genova and INFN sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy

(Dated: August 15, 2012)

Mathematical models for the stochastic evolution of wave functions that combine the unitary evolution according to the Schrödinger equation and the collapse postulate of quantum theory are well understood for non-relativistic quantum mechanics. Recently, there has been progress in making these models relativistic. But even with a fully relativistic law for the wave function evolution, a problem with relativity remains: Different Lorentz frames may yield conflicting values for the matter density at a space-time point. We propose here a relativistic law for the matter density function. According to our proposal, the matter density function at a space-time point \(x \) is obtained from the wave function \(\psi \) on the past light cone of \(x \) by setting the \(i \)-th particle position in \(|\psi|^2 \) equal to \(x \), integrating over the other particle positions, and averaging over \(i \). We show that the predictions that follow from this proposal agree with all known experimental facts.

Background.—It is widely believed that in our quantum world physical facts about occurrences in space-time must be grounded in the wave function. There are several long recognized and much discussed difficulties with this view:

1. To the extent that one can discern these facts in the wave function, they seem to originate primarily (if not exclusively) in wave function collapse upon measurement, and not in the fundamental wave function dynamics itself, given by Schrödinger’s equation, which appears to be incompatible with collapse.

2. The nature of these facts is rather nebulous, in part because the notion of measurement is itself rather vague, but also because no precise specification is provided for the connection between the wave function and clear structures in space-time.

3. The facts that originate via collapse upon measurement seem very much to depend upon the choice of Lorentz frame [9], and thus seem to conflict with special relativity.

One way to deal with the first problem involves replacing Schrödinger’s equation with a suitable stochastic evolution law for the wave function (a “law for \(\psi \)”) that remains close to the unitary Schrödinger evolution for systems consisting of few particles but avoids superpositions of macroscopically different states (such as Schrödinger’s cat) for macroscopic systems. This is the approach of spontaneous-collapse theories [14] (such as the GRW theory [6, 16] and the CSL theory [23], a.k.a. dynamical state reduction theories; hereafter, “collapse theories”), also considered by [1, 10, 17, 22, 25, 29], among others.

As for the second problem, Ghirardi et al. [8] have proposed that we define a “matter density” in terms of the wave function; a simple example of such a specification will be given shortly.
To deal with the third problem, Hellwig and Kraus (HK) [19], following Bloch [3], proposed that a measurement at space-time point \(x \) lead to a collapse along the past light cone of \(x \). For example, for a single-particle system a detection at \(x \) should imply the vanishing of its wave function everywhere in space-time except within the light cone (past and future) of \(x \). However, Aharonov and Albert (AA) [2, 3], following Landau and Peierls [21], have effectively argued that the proposal of HK is very problematical. Following Bloch, they insist that upon measurement the effect of the associated collapse must be allowed to depend upon the choice of Lorentz frame. More generally, the wave function must be regarded, according to AA, as depending upon a choice of spacelike hypersurface, with different surfaces that locally agree sometimes supporting wave functions—and hence facts—that are respectively entirely different, even locally. For example, consider an EPR experiment [7], in which two particles are respectively entirely different, even locally. For an interpretation of quantum mechanics, it must be decided what is the purpose of introducing the concept of a wave function (e.g., [4, 6, 26]) and the “matter density function” (e.g., [18, 21]). According to the latter choice, matter is continuously distributed in space with matter density function

\[
m(x, t) = \sum_{i=1}^{N} m_i \int_{\mathbb{R}^{3n}} d^{3N}q \, \delta^3(x - q_i) |\psi_i(q)|^2, \quad (1)
\]

where \(q = (q_1, \ldots, q_N) \) is the configuration variable of a non-relativistic \(N \)-particle universe, \(\psi_i \) is the wave function of this universe at time \(t \) (as obtained from the stochastic law for \(\psi \)), and \(m_i \) is the constant usually called the mass of particle number \(i \). We call Eq. (1) a “law for \(m \).” Eq. (1) can be reformulated as \(m(x, t) = \langle \psi_i | M(x) | \psi_i \rangle \), where \(M(x) \) is the mass density operator at \(x \in \mathbb{R}^3 \), defined on \(L^2(\mathbb{R}^{3n}) \) to be the multiplication operator \(M(x) = \sum_{i=1}^{N} m_i \delta^3(x - q_i) \).

Since matter is distributed continuously, there are strictly speaking no particles according to this theory. Nevertheless, we will often adopt conventional language and speak of particles, thereby meaning the variables \(q_i \) in the wave function. It is known that with the PO given by (either flashes or) a matter density function, the empirical predictions of the GRW and CSL theories deviate from those of standard quantum theory only so slightly that experimental tests distinguishing them from standard quantum theory are not possible to date [1, 11, 14, 20, 22], though possible in principle.

Eq. (1) is not Lorentz invariant because it involves integrating over all positions \(q_i \) at the same time \(t \), so that for any space-time point \(x \) the value of \(m(x) \) depends on the Lorentz frame chosen for evaluating Eq. (1).

Relativistic law for \(\psi \).—Progress to date towards a relativistic law for \(\psi \) involving spontaneous collapse includes: a toy model providing a Lorentz-invariant process for \(\psi \) in terms of given “measurement” events [13, Sec. 7]; a relativistic CSL process for the state vector of a quantum field theory [12, 21] which, however, suffers from divergences; a recent modification of that process avoiding the divergences [3]; and a relativistic GRW process for the state vector of \(N \) non-interacting spin-\(\frac{1}{2} \) particles in an external field [20].

Our scheme works with any of these laws for \(\psi \); we only use that the law for \(\psi \) has the properties (P1)–(P4) below. We use the Schrödinger picture in the Tomonaga–Schwinger variant, in which with every spacelike hypersurface \(\Sigma \) there is associated a vector \(|\psi_\Sigma\rangle \) in a Hilbert space \(\mathcal{H} \) with \(||\psi_\Sigma|| = 1 \). It will sometimes be convenient to work in a representation using a separate Hilbert space \(\mathcal{H}_\Sigma \) for every \(\Sigma \), with \(|\psi_\Sigma\rangle \in \mathcal{H}_\Sigma \). For simplicity, we assume that the world history begins on a spacelike hypersurface \(\Sigma_0 \), say at a big bang singularity; however, this assumption is not indispensable. For any space-time point \(x = x^k \) (\(x, t \)), let \(PLC(x) \) denote the past light
cone of x, more precisely the hypersurface formed by the past light cone of x (down to its intersection with Σ_0) together with the part of Σ_0 outside the past of x. We use that:

(P1) Given an initial wave function ψ_0 on Σ_0 (and possibly further data), the law for ψ specifies the joint distribution of all ψ_Σ with Σ in the future of Σ_0.

(P2) Apart from spacelike hypersurfaces, the Σ in (P1) can also be $PLC(x)$ for any space-time point x.

(P3) In situations in which the unitary Schrödinger evolution would lead to a superposition $\psi_\Sigma = \sum_\alpha c_\alpha \psi(\alpha)$ of macroscopically different contributions $\psi(\alpha)$ (with $\|\psi(\alpha)\| = 1$), the law for ψ yields $\psi_\Sigma \approx \psi(\alpha)$ with probability close to $|c_\alpha|^2$.

(P4) For any two hypersurfaces Σ, Σ' after a local measurement at a space-time point y, ψ_Σ and $\psi_{\Sigma'}$ select the same α of that measurement (using the notation of (P3)).

Property (P3) is a basic feature of collapse theories \cite{P3}. For the models of \cite{5, 13, 11, 24, 26, 10, 15, 26}, (P1), (P3), and (P4) are true. Property (P2) also holds whenever the unitary evolution (without collapse) extends to lightlike hypersurfaces; although lightlike hypersurfaces are often not Cauchy hypersurfaces, this is known to be true \cite{28} at least for systems (with suitable potentials) containing no massless particles.

Relativistic law for m.—We propose the following relativistic law for m, which was outlined in \cite{11, 27} using ideas from \cite{12}:

$$m(x) = \left\langle \psi_{PLC(x)} \right| M_{PLC(x)}(x) \left| \psi_{PLC(x)} \right\rangle, \tag{2}$$

where $\left\langle \cdot \right| \cdot$ is the inner product in $H_{PLC(x)}$, and $M_{PLC(x)}(x)$ is the mass density operator at x in $H_{PLC(x)}$. If $M_{PLC(x)}(x)$ is a 4-vector or tensor, then so is $m(x)$. We shall call a theory such as described above, based on (2) and (P1)–P(4), a relativistic matter density based collapse theory.

As a concrete example, if the law for ψ is a collapse version of a quantum field theory then $M(x)$ should be the stress-energy-momentum-tensor operator $T_{\mu\nu}(x)$. Note that while for a conventional quantum field theory, i.e., one without spontaneous collapses and with a unitary time evolution, the expression $\left\langle \psi_\Sigma \right| T_{\mu\nu}(x) \left| \psi_\Sigma \right\rangle$ is independent of the choice of Σ, the expression does depend on Σ in collapse theories (because when changing Σ to Σ', the collapses during the evolution from Σ to Σ' may affect its value)—so it is relevant to specify that $\Sigma = PLC(x)$.

As another concrete example, consider a universe consisting of N Dirac particles. Then H_Σ consists of those functions $\psi : \Sigma^N \rightarrow (\mathbb{C}^4)^{\otimes N}$ with

$$\int_{\Sigma^N} d\sigma^\mu_1(y_1) \cdots d\sigma^\mu_N(y_N) \overline{\psi}[\gamma_{\mu_1} \otimes \cdots \otimes \gamma_{\mu_N}] \psi < \infty, \tag{3}$$

where ψ is evaluated at $(y_1, \ldots, y_N) \in \Sigma^N$ and the vector-valued measure $d\sigma^\mu(y)$ on Σ is defined by the vector-valued differential 3-form obtained from the invariant 4-form $\varepsilon_{\nu\lambda\mu\nu}$ by raising the first index. (For spacelike Σ, $d\sigma^\mu(y) = n^\nu(y) d^\nu y$ with $n^\mu(y)$ the future-pointing unit normal vector on Σ at y and $d^\nu y$ the volume in the sense of the 3-metric on Σ. For $\Sigma = PLC(x)$, $d\sigma^\mu(y)$ is the Lorentz-invariant vector-valued measure on $PLC(x)$ obtained as the product of the invariant vector field $x^\mu - y^\mu$ on $PLC(x)$ and the invariant scalar measure with coordinate expression $d^\nu y \cdot d^\nu y / (x^0 - y^0)^3$.)

In this case, $m(x) = m_\mu(x) = \mu$ is the 4-vector field

$$m_\mu(x) = \sum_{i=1}^N m_\mu \int_{PLC(x)^{N-1}} \left(\prod_j d\sigma^\mu_j(y_j) \right) \times \overline{\psi}_{PLC(x)}[\gamma_{\mu_1} \otimes \cdots \otimes \gamma_{\mu_N}] \psi_{PLC(x)}, \tag{4}$$

with ψ evaluated at $(y_1, \ldots, y_i-1, x, y_{i+1}, \ldots, y_N)$. The law for m, Eq. (2), is relativistic and does not invoke any notion of simultaneity of spacelike separated points. In the non-relativistic limit, formally $c \rightarrow \infty$, the law approaches Eq. (1), as $PLC(x)$ approaches a hyperplane of constant time $(viz., t = x^0)$ in that limit.

Quantum measurements.—Assertions (3) and (4) below are the crucial observations concerning the connection between the predictions of a relativistic matter density based collapse theory and those of standard quantum theory.

Suppose that a local measurement is made at a space-time point y as described in (P4). Then in the future light cone of y, the function m is one in which the apparatus pointer points to α. That is, the m function and the ψ function (on any Σ after y) agree about the outcome.

Proof: According to the law for m, Eq. (2), the values $m(x)$ at points x in the future light cone of y representing the pointer are determined by $\psi_{PLC(x)}$. By (P3) and (P4), $\psi_{PLC(x)}$ is (approximately) collapsed to one outcome α. By (P4), that α is independent of x. By (2), the m function is near zero if x is a location at which the pointer would indicate an outcome $\neq \alpha$ but substantial if x is a location indicating α. Thus, the pointer (made out of the m function) points to α. By (P4), ψ_Σ on any Σ after y selects the same outcome α.

As a consequence of (3), the outcome (defined by the m function!) can be read off from ψ_Σ on a hypersurface Σ after y, notwithstanding our insistence that the pointer consists of m, not of ψ. As a further consequence of (3) and (P3), the probabilities of different pointer positions agree (approximately) with the probabilities assigned to the different outcomes by the quantum formalism. The same is true of the joint probability distribution of several pointers reporting the outcomes of several local measurements at y_1, \ldots, y_n, as follows by applying (3) to each of the y_i, and to a hypersurface Σ after all of the y_i.
Since any experiment ultimately consists of local measurements, we obtain that

The empirical predictions of a relativistic matter density based collapse theory agree (approximately) with those of the quantum formalism.

It follows from [9] by virtue of Bell’s theorem [7] that collapse theories with our law for \(m \), Eq. (2), although relativistic, are non-local, i.e., there is faster-than-light action-at-a-distance.

Example.—Consider a single particle and a detector. At time \(t = 0 \) in some Lorentz frame, let the wave function be

\[
\psi_0 = \frac{1}{\sqrt{2}} (|y\rangle + |z\rangle) |\text{ready}\rangle,
\]

where \(|y\rangle \) and \(|z\rangle \) are well-localized wave packets centered at (distant) space points \(y \) and \(z \), respectively, and \(|\text{ready}\rangle \) is a state of the environment in which the detector is ready. Suppose that, in that Lorentz frame, the detector is at rest at \(y \), and the interaction between the particle and the detector is turned on at time \(\tau > 0 \). Then \(\psi_\Sigma \) has collapsed to either \(\approx |y\rangle|\text{fired}\rangle \) or \(\approx |z\rangle|\text{not fired}\rangle \) for every hypersurface \(\Sigma \) after the space-time point \((y, \tau) \). Consider the latter possibility. Then the contribution \(m_1(x) \) to the \(m(x) \) function from the single particle according to Eq. (2) is as depicted in Fig. 1 left, with suitable constant \(m_0 \).

![FIG. 1: Space-time diagram of \(m(x) \) in the example. Semicircles represent detectors, dashed lines a light cone, thick lines the region where \(m_1(x) = m_0 \) (black) or \(m_1(x) = m_0/2 \) (grey). LEFT: with one detector, RIGHT: with two detectors.](https://example.com/fig1)

That is, the change in \(m \) at \(z \) is delayed at the speed of light. As a consequence, there is no conservation law for \(\int m(x) \, dx \) —this quantity depends on \(\Sigma \), and that is not a problem. Readers might worry, however, that because of the delay another detector at \((z, \tau + \varepsilon) \) might have a probability of only 1/2 (instead of 1) to be triggered. This is not so, as is obvious from [9]. More directly from (P4), for any hypersurface \(\Sigma \) after both \((y, \tau) \) and \((z, \tau + \varepsilon) \), \(\psi_\Sigma \) has collapsed corresponding to exactly one detector having fired. The function \(m_1(x) \) changes accordingly at each detection (Fig. 1 right).

EPR-type experiments.—In these experiments, one performs a Stern–Gerlach experiment on each of two particles in the singlet spin state, one in region \(A \) and one in \(B \), with \(A \) and \(B \) spacelike separated; see Fig. 2. We shall denote by \(O_A, O_B \in \{-1, +1\} \) the outcomes of these experiments. Let \(\Sigma_1 \) be a spacelike hypersurface after \(A \) and \(B \), as in Fig. 2 and \(\psi \) the wave function of the two EPR particles together with all relevant apparatuses.

![FIG. 2: Space-time diagram of EPR experiment together with some hypersurfaces; semicircles represent detectors; thick lines indicate where the two EPR particles can move; they split when passing the Stern–Gerlach magnets.](https://example.com/fig2)

We focus on the contribution to \(m \) from the two EPR particles themselves. To this end, consider a hypersurface \(\Sigma_2 \) that passes through \(A \) before detection, but after the particle has passed the Stern–Gerlach magnet; and likewise with \(\Sigma_3 \) in \(B \); see Fig. 2.

The \(m \) function of the EPR pair restricted to \(\Sigma_1 \) agrees (approximately) with what would have been obtained by a naive application of Eq. (1) in a frame in which \(\Sigma_1 \) is a constant-time hypersurface.

However:

The statements analogous to (8) for \(\Sigma_2 \) and \(\Sigma_3 \) are generally not true.

Proof: Claim (8) is shown in much the same way as (5), as follows. Let \(\psi \) be again the wave function of the EPR pair together with all apparatus, and let us suppose \(O_A = +1 \). Then both \(\psi_{\Sigma_1} \) and \(\psi_{PLC(x)} \) for \(x \) on the \(A \) side of \(\Sigma_1 \) have so collapsed that the EPR particle on the \(A \) side has (say) wave function \(|\text{right}\rangle \). (The word “approximately” in (8) refers to the fact that the collapsed-away contribution is not exactly zero, just tiny.) Thus, \(m(x) = 0 \) in the left channel and \(m(x) = m_0 \) in the right channel, in agreement with what would have been obtained from Eq. (1) on \(\Sigma_1 \). The same argument applies to \(B \), which proves (8). To prove (9) for (say) \(\Sigma_2 \), consider a hypersurface \(\Sigma_4 \) passing through both \(A \) and \(B \) just before the detection as in Fig. 2 and a wave function

\[
\psi_{\Sigma_4} = \frac{1}{\sqrt{2}} \left(|\text{left}\rangle|\text{right}\rangle - |\text{right}\rangle|\text{left}\rangle \right) |\text{ready}\rangle
\]

(as would arise from the spin singlet state by choosing the same orientation for both magnets). For \(x \in A \cap \Sigma_2 \), \(m(x) \) is determined by the uncollapsed wave function \(\psi_{PLC(x)} \) and thus is \(m_0/2 \) in the left channel and \(m_0/2 \)
in the right. However, since ψ_{Σ_2} is collapsed thanks to the detection in B, it is (approximately) $|\text{right}|\text{left}$, so Eq. (11) on Σ_2 would yield a matter density on the A side that is 0 in the left channel and m_0 in the right, q.e.d.

Acknowledgments

G.C.G. and N.Z. are supported in part by INFN, Sezioni di Trieste e Genova. D.D., S.G., G.C.G., and N.Z. are supported in part by the COST-Action MP1006. R.T. is supported in part by NSF Grant SES-0957568 and by the Trustees Research Fellowship Program at Rutgers, the State University of New Jersey. S.G. and R.T. are supported in part by grant no. 37433 from the John Templeton Foundation.

[1] S. L. Adler: Lower and Upper Bounds on CSL Parameters from Latent Image Formation and IGM Heating. *J. Phys. A: Math. Theor.* **40**: 2935–2957 (2007). [arXiv:quant-ph/0605072]

[2] Y. Aharonov, D. Z. Albert: States and observables in relativistic quantum field theories. *Phys. Rev. D* **21**: 3316–3324 (1980)

[3] Y. Aharonov, D. Z. Albert: Can we make sense out of the measurement process in relativistic quantum mechanics? *Phys. Rev. D* **24**: 359–370 (1981)

[4] V. Allori, S. Goldstein, R. Tumulka, N. Zanghì: On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory. *Brit. J. Philos. Sci.* **59**: 353–389 (2008). [arXiv:quant-ph/0603027]

[5] D. Bedingham: Relativistic state reduction dynamics. *Found. Phys.* **41**: 686–704 (2011). [arXiv:1006.2774]

[6] J. S. Bell: Are There Quantum Jumps? Pages 41–52 in C. W. Kilmister (ed.), *Schrödinger. Centenary Celebration of a polymath*. Cambridge University Press (1987). Reprinted as chapter 22 of [22].

[7] J. S. Bell: *Speakable and UnSpeakable in Quantum Mechanics*. Cambridge University Press (1987)

[8] F. Benatti, G.C. Ghirardi, R. Grassi: Describing the macroscopic world: closing the circle within the dynamical reduction program. *Found. Phys.* **25**: 5–38 (1995)

[9] I. Bloch: Some relativistic oddities in the quantum theory of observation. *Phys. Rev.* **156**: 1377–1384 (1967)

[10] L. Diósi: Models for universal reduction of macroscopic quantum fluctuations. *Phys. Rev. A* **40**: 1165–1174 (1989)

[11] W. Feldmann, R. Tumulka: Parameter Diagrams of the GRW and CSL Theories of Wave Function Collapse. *J. Phys. A* **45**: 065304 (2012). [arXiv:1109.6579]

[12] G.C. Ghirardi: Some Lessons from Relativistic Reduction Models. Pages 117–152 in H.-P. Breuer, F. Petruccione (ed.s), *Open Systems and Measurement in Relativistic Quantum Theory*. Berlin: Springer-Verlag (1999)

[13] G.C. Ghirardi: Local Measurements of Nonlocal Observables and the Relativistic Reduction Process. *Found. Phys.* **30**: 1337–1385 (2000)

[14] G.C. Ghirardi: Collapse Theories. In E. N. Zalta (ed.), *Stanford Encyclopedia of Philosophy*, published online by Stanford University. http://plato.stanford.edu/entries/qm-collapse/ (2007)

[15] G.C. Ghirardi, R. Grassi, P. Pearle: Relativistic dynamical reduction models: General framework and examples. *Found. Phys.* **20**: 1271–1316 (1990)

[16] G.C. Ghirardi, A. Rimini, T. Weber: Unified Dynamics for Microscopic and Macroscopic Systems. *Phys. Rev. D* **34**: 470–491 (1986)

[17] N. Gisin, I. C. Percival: The quantum state diffusion picture of physical processes. *J. Phys. A: Math. Gen.* **26**: 2245–2260 (1993)

[18] S. Goldstein: Quantum Theory Without Observers. *Physics Today*, Part One: March 1998, 42–46. Part Two: April 1998, 38–42.

[19] K.-E. Hellwig, K. Kraus: Formal Description of Measurements in Local Quantum Field Theory. *Phys. Rev. D* **1**: 566–571 (1970)

[20] G. Jones, P. Pearle, J. Ring: Consequence for Wavefunction Collapse Model of the Sudbury Neutrino Observatory Experiment. *Found. Phys.* **34**: 1467–1474 (2004). [arXiv:quant-ph/0411010]

[21] L. Landau, R. Peierls: Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie. *Z. Physik* **69**: 56–69 (1931)

[22] A. J. Leggett: Testing the limits of quantum mechanics: motivation, state of play, prospects. *J. Phys.: Cond. Matt.* **14**: R415–R451 (2002)

[23] P. Pearle: Combining stochastic dynamical state-vector reduction with spontaneous localization. *Phys. Rev. A* **39**: 2277–2289 (1989)

[24] P. Pearle: Toward a relativistic theory of statevector reduction. In A. I. Miller (ed.): *Sixty-Two Years of Uncertainty*, volume 226 of NATO ASI Series B. New York: Plenum Press (1990)

[25] R. Penrose: Wavefunction Collapse As a Real Gravitational Effect. Pages 266–282 in A. Fokas, T. W. B. Kibble, A. Grigoriou, B. Zegarlinski (ed.s), *Mathematical Physics 2000*. London: Imperial College Press (2000)

[26] R. Tumulka: A relativistic version of the Ghirardi–Rimini–Weber model. *J. Statist. Phys.* **125**: 821–840 (2006). [arXiv:quant-ph/0406009]

[27] R. Tumulka: The ‘Unromantic Pictures’ of Quantum Theory. *J. Phys. A: Math. Theor.* **40**: 3245–3273 (2007). [arXiv:quant-ph/0607124]

[28] R. Tumulka: The Point Processes of the GRW Theory of Wave Function Collapse. *Rev. Math. Phys.* **21**: 155–227 (2009). [arXiv:0711.0035]

[29] S. Weinberg: Collapse of the State Vector. *Phys. Rev. A* **85**: 062116 (2012). [arXiv:1109.6462]