Sex differences in psychosis and their interaction with laterality (systematic departures from 50:50 left-right symmetry across the antero-posterior neural axis) are reviewed in the context of the X-Y gene hypothesis. Aspects of laterality (handedness/cerebral asymmetry/the torque) predict (1) verbal and non-verbal ability in childhood and across adult life and (2) anatomical, physiological, and linguistic variation relating to psychosis. Neuropsychological and MRI evidence from individuals with sex chromosome aneuploidies indicates that laterality is associated with an X-Y homologous gene pair. Within each mammalian species the complement of such X-Y gene pairs reflects their potential to account for taxon-specific sexual dimorphisms. As a consequence of the mechanism of meiotic suppression of unpaired chromosomes <MSUC> such X-Y gene pairs generate epigenetic variation around a species defining motif that is carried to the zygote with potential to initiate embryonic gene expression in XX or XY format. The Protocadherin11XY (PCDH11XY) gene pair in Xq21.3/Yp11.2 in probable coordination with a gene or genes within PAR2 (the second pseudo-autosomal region) is the prime candidate in relation to cerebral asymmetry and psychosis in Homo sapiens. The lately-described pattern of sequence variation associated with psychosis on the autosomes may reflect a component of the human genome’s adjustment to selective pressures generated by the sexually dimorphic mate recognition system.

ORIGINS OF THE HYPOTHESIS

Sex interacts with psychosis in three ways:

1. onsets of schizophrenia are earlier (by a mean of 3–4 years) and outcome is worse in males [Penrose, 1991]; later onsets for example, of schizoaffective and affective illness show an increase in females with a clear excess among late-onset paraphrenic psychoses.
2. among hospitalized populations of patients with psychosis there is over-representation of individuals with sex chromosome aneuploidies [DeLisi et al., 1994b] see footnote 1.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non–commercial and no modifications or adaptations are made.

Financial disclosures: None reported.

Grant sponsors: The UK Medical Research Council, SANE, The TJ Crow Psychosis Research Trust; The European Community NEST Program through the Biomorph and Paul Broca II Projects.

Correspondence to: Timothy J. Crow, FMedSci., Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK.
E-mail: tim.crow@psych.ox.ac.uk
Article first published online in Wiley Online Library (wileyonlinelibrary.com): 3 October 2013
DOI 10.1002/ajmg.b.32202

1Mors et al. [2000] examined the relationship between aneuploidies of the sex chromosomes and an ICD8 diagnosis of schizophrenia or bipolar disorder in the Danish population and found no excess amongst XXX or XXY syndromes. They did however uncover an excess of such cases in the XXY syndrome and a deficit in Turner’s (XO) syndrome, consistent with influences of the Y and X chromosomes. They excluded mosaicisms of the X chromosome that have been reported associated with schizophrenia [Kunugi et al., 1999; Koc et al., 2010]. Recent series [DeLisi et al., 2005; Van Rijn et al., 2006, 2009] confirm that XXY individuals score high on schizotypy, and some experience psychotic symptoms.
3. within families individuals with schizophrenic or affective psychosis tend to be of the same sex ("same-sex concordance" [Rosenthal, 1962; Penrose, 1991]).

Father to son transmission, incompatible with an X chromosomal locus, is sometimes observed. A gene present in homologous form on both X and Y chromosomes can be transmitted from a father to a son on the Y chromosome, as well as to a daughter on the X. To the extent that such transmission occurs on both X and Y, a trend towards concordance by sex (para 3 above) will be observed [Crow et al., 1989c].

FORMULATIONS OF THE HYPOTHESIS

Three classes of XY homologous gene can be distinguished [Affara et al., 1996]:

1. within the 3.5 Mb pseudo-autosomal region 1 (PAR1) at the short arm telomeres of the X and Y chromosomes a single obligatory recombination occurs in each male meiosis, and strict homology between genes on the X and Y is maintained.

2. within the 0.4 Mb pseudo-autosomal region 2 (PAR2) at the long arm telomeres recombination occurs much less frequently, perhaps once in 20–40 meioses [Freije et al., 1992]. As in PAR1 homology between X and Y sequences is maintained.

3. within the sex-specific parts of the X and Y recombination does not take place, and sequence divergence between the X and Y forms occurs, and is exposed to sex-specific selective pressures. Some XY homologies are relics of the origin of the sex chromosomes from an autosomal pair [Ohno, 1967]; others have arisen as duplications from the X to the Y-chromosome at irregular intervals in mammalian evolution (Fig. 1).

A degree of concordance by sex within families may be expected with each of these locations, and has been reported in schizophrenia, schizo-affective and bipolar disorder [Rosenthal, 1962; Penrose, 1991; Crow, 1994b].

The hypothesis that a gene for psychosis is located within PAR1 [Crow, 1988; Crow et al., 1989c] was investigated by linkage. Although positives [Collinge et al., 1991; d’Amato et al., 1992, 1994; Gorwood et al., 1992] were reported, these were not consistent
across locations and studies [Asherson et al., 1992; Wang et al.,
1993; Barr et al., 1994; Crow et al., 1994]. An unusual case of an XX
male with schizophrenia [Nanko, 1981] was found to have one
breakpoint within PAR1 and the second within the Yp11.2 homol-
ogous region [Ross et al., 2001]; the significance remains unclear.
Thus while linkage to PAR1 has been ruled out some questions
regarding this region (class 1 above) remain.

A genetic influence of the sex-chromosomes has also been
considered in relation to PAR2 (class 2) in bipolar disorder
[Hawi et al., 1999; Saito et al., 2000; Muffer et al., 2002], in a
cohort at high risk for schizophrenia [Goldstein et al., 2011], and as
an explanation for the effect of paternal age [Perrin et al., 2010].

Because recombination ensures strict identity between X and Y
sequences, a pseudo-autosomal gene pair will not explain a sex
difference (although gene expression within PAR2 can now be seen
as subject to further complexity on account of the presence of a
“hot-spot” of recombination [Sarbajna et al., 2012]). However
within a region of sex-specific homology (class 3 above), such a
difference can be explained by divergence over evolutionary time
of the gene copies on the two chromosomes.

HUMAN SEXUAL DIMORPHISM FOR COGNITIVE
ABILITY

In many studies females are found to have a modest advantage
with respect to verbal ability, and males with respect to spatial
ability [Maccoby and Jacklin, 1975; McGlone, 1980; Halpern, 2000;
Kimura, 2000]. These differences have been attributed to lateraliza-
females lateralizing earlier, and being less likely to be left-
handed than males [Crow et al., 1998]. McGlone [1980] in her
account of sex differences in human brain asymmetry quotes
Crichton-Browne [1879]: “It would appear that the tendency to
symmetry in the two halves of the cerebrum is stronger in women
than in men.” How this difference came about is perhaps the central
problem in human evolution.

A gene for cerebral dominance in the XY homologous class
was predicted from the neuropsychology of individuals with sex
chromosome aneuploidies [Crow, 1989; Crow, 1994a]. Individuals
who lack an X chromosome (Turner syndrome) read early and
relatively well but have deficits in spatial ability; individuals with an
extra X (XXY or XXX syndromes [Netley, 1986, 1998]), as also those
with an extra Y (XXY syndrome [Geerts et al., 2003; Bryant
et al., 2012]), have delays in the acquisition of words but normal
spatial abilities. Anomalies of anatomical asymmetry—diminished
anteriorly, and exaggerated posteriorly—consistent with the loca-
tion of a gene for cerebral laterality on the X and Y chromosomes
were observed in an MRI study in XXY and XO syndromes,
respectively [Rezaie et al., 2009].

In a survey of 15,000 families for handedness, the outward
manifestation of cerebral dominance, same sex concordance was
detected [Corballis et al., 1996] consistent with XY linkage.

Degrees of laterization predict verbal and non-verbal ability
according to an M-shaped curve, with deficits at the extremes of
left- and right-handedness, and at the point of ambidexterity; thus
those who are moderately right or left-handed have an advantage
relative to those who are at the extremes or in the middle of the scale.

This finding, originally reported in 11 year olds in the UK National
Child Development cohort [Crow et al., 1998], has been replicated
across adult life in the population of 1/4 million in the BBC
Internet survey [Peters et al., 2006], and in children in the ALSPAC
cohort [Gregg et al., 2008]. Thus laterality as a heritable index
behaviorally assessed predicts human ability in a way that no
molecularly identified gene has been shown to do [for the
failure of microarray studies to predict dyslexia see Plomin and
Davis, 2009].

SEARCH FOR LINKAGE TO HANDEDNESS AND
PSYCHOSIS ON THE X CHROMOSOME

This background justified a search for linkage for both psychosis
and handedness to the X chromosome. Markers at approximately
10 cM intervals along the 200 cM extent of the chromosome failed
to detect linkage [DeLisi et al., 1994a]. A study that combined
samples of families with psychosis with a series of 180 left-handed
pairs of brothers [Laval et al., 1998] revealed a modest peak (Lod
score 1.8) for psychosis overlapping with a stronger peak (Lod score
2.8 at DXS990 see also Francks et al., 2002) for handedness in the
Xq21.3 region of the long arm. The location is significant in that it
includes a block (in class 3 above) duplicated onto the Y chromo-
some approximately 6 million years ago (i.e., close in time to the
chimpanzee–hominid lineage separation); the duplicated block
(referred to as the “X-transposed region” or XTR on the Y [Ross
et al., 2005]) together with the sequences of origin in Xq21.3
therefore constitutes a hominin-specific region of homology.
However a systematic approach to the X in 301 families [DeLisi
et al., 2000] and a targeted study of the marker DXYS156 within the
Xq21.3 block again failed to detect evidence of linkage to psychosis
[Nicholson et al., 2002].

Thus a body of work converged on the conclusions that (1)
there are sex differences in psychosis, (2) laterality, the major
determinant of human cognitive ability, is located on the X and
Y chromosomes, and (3) genetic linkage on the X chromosome
to psychosis is absent, and to handedness is at best weak (although
modest support for Xq21.3 was reported in a revised linkage
analysis [Francks et al., 2002]). In the absence of strong linkage
signals elsewhere it was concluded “the possibility that the genetic
predisposition” (to schizophrenia and schizo-affective disorder)
“is contributed by epigenetic modifications rather than variations in
the nucleotide sequence has to be considered” [DeLisi et al., 2000].
This conclusion can now be evaluated in the context of the relative
failure of systematic search for linkage [Crow, 2007] and the
unpredicted and puzzling findings [Collins et al., 2012; Lee
et al., 2012] of whole genome association studies.

The paradox that laterality has an influence on cognitive ability
and psychosis that depends on sex, but that sex linkage cannot be
detected, requires that the role of laterality be re-considered. Is it
central to pathophysiology, and what is the nature of the interaction
with sex?

The evidence is first summarized that the dimension of laterality
is pervasive to pathogenesis, and then its interaction with sex is
examined. It is argued that there is greater coherence of evidence on
incidence and clinical characteristics relating to sex linkage and to

the ontogeny and phylogeny of the capacity for language, than is associated with alternative concepts, for example, the concepts that genetic predisposition is due either to “common polygenes” or “multiple rare variant” genes located on the autosomes, or a combination of such genetic effects in the absence of an influence from the X and Y chromosomes.

**LATERALITY DEVIATIONS IN PSYCHOSIS**

Since the report of Flor-Henry [1969] that when psychosis occurs in association with temporal lobe epilepsy and the lesion is on the left side, the form of psychosis is schizophrenia-like, and when on the right side it is affective, there has been interest in lateralization in psychosis. Earlier origins of the concept of lateralization and its influence on neurology and psychiatry in the nineteenth century have been traced by Harrington [1987].

Principal findings are summarized in Tables I–X.

An implication of the finding that features are lateralized is that they may be, as Broca [1877] first proposed species-specific. That is to say in Homo sapiens, they are language-related. This claim raises empirical questions concerning the nature of human/non-human primate differences [Crow, 2004a; Rogers, 2004], and introduces a challenge to formulate a saltational account of the speciation process [Crow, 2005]. These issues are addressed in the section below on Speciation in the Hominin lineage.

Gur [1977] first reported that a population of 200 patients with schizophrenia was less strongly right-handed on a laterality index than a control population of similar size, inferring dysfunction in the left hemisphere (Table I). Two meta-analyses [Sommer et al., 2001; Dragovic and Hammond, 2005] support a shift away from strong right-handedness. An excess of ambidexterity preceding the onset of psychosis by >15 years in the UK National Child Development cohort [Crow et al., 1996] indicates that individuals predisposed to psychosis are lateralizing less, or more slowly than the general population. Sex-matching [Gur, 1977] establishes these deviations are independent of the sex difference in handedness in the normal population, a point raised by Deep-Soboslay et al. [2010].

**Ventricular enlargement.** First reliably documented with computerized tomography [Johnstone et al., 1976] was found in a radiographic postmortem study proportionally greatest in the left temporal horn [Crow et al., 1989a]. Subsequent MRI studies have found symptoms selectively related to enlargement of the left temporal and occipital horns [Table II and see also Narr et al., 2001].

**Loss of torque.** Losses of the cerebral torque (greater width of the right frontal and left occipital lobes relative to their contra-lateral counterparts) in patients with schizophrenia compared to normal controls have been reported in CT scan and MRI studies, sometimes in relation to early onset (Table II). Volume assessments of the hemispheres in four coronal sections along the antero-posterior axis [Bilder et al., 1994] revealed a torque systematically reduced in patients with schizophrenia, individuals with mood disorders showing reductions intermediate between those of patients with schizophrenia and controls [Bilder et al., 1999]. Comparable reductions in torque were not obtained in gray and white matter assessed perpendicular to the mid-line plane (although three patients and no controls failed to show the predicted deviation either anteriorly or posteriorly) [Barrick et al., 2005]. The nature of the torque therefore remains obscure. It has been suggested it reflects “ballooning” (thinning and broadening—a surface area change) of the cortex on one side relative to the other [Harasty et al., 2003] but there are alternative interpretations (see, e.g., the following para and Table VI on gyriﬁcation below).

**Decrease in lobar volume asymmetries.** Selective decrease in volume in the left temporal and right frontal regions in patients with schizophrenia [Turetsky et al., 1995] and a reduction in left temporal lobe gray matter, and absence of normal left-greater-than-right asymmetry of the temporal pole gray volume [Kasai et al., 2003b] are consistent with the concept of Gratiolet and Leuret [1839] that the left frontal lobe, and right occipito-parieto-temporal regions gyriﬁer earlier than their contralateral counterparts. Apparent volume losses in right frontal and left temporal

---

**TABLE I. Deviations in Handeness and Relative Handskill in Schizophrenia**

| Study            | Variable                              | Finding                              | Interpretation                        |
|------------------|---------------------------------------|--------------------------------------|---------------------------------------|
| Gur [1977]       | Laterality index                      | Patients less strongly lateralized: controlled for sex | “Dysfunction in left hemisphere” in SCHZ predicts psychosis (weakly) |
| Crow [1996]      | Writing hand at age ? and relative handskill at 11 years in UK National Child Development cohort | Excess of ambidexterity ($P<0.0003$ age ?; $P<0.01$ age 11) in individuals who developed schizophrenia by age 28 years | “Hemispheric indecision” |
| Sommer et al. [2001] | Meta-analysis of 19 studies of handedness in schizophrenia | Increase of left- and mixed-handedness [OR 1.61 [95% CI 1.4–1.81]] vs. HC [OR 1.54 [CI 1.28–1.84]] vs. other psychiatric pts |  |
| Dragovic and Hammond [2005] | Meta-analysis of 40 studies | Increase in non-right. [OR 1.58 [95% CI 1.22. 2.04]], mixed- <OR 1.77 [CI 1.29, 2.45]> and notably left-handedness [OR 1.82 [1.55, 2.13]] separately assessed, confirmed |  |

HC, healthy controls; SCHZ, patients with a diagnosis of schizophrenia; OR, odds ratio; CI, confidence interval.
### TABLE II. Anomalies of Asymmetrical Structure of the Ventricles and Lobar Volumes in Psychosis

| Asymmetries of the ventricles | Method | Finding | Comment |
|-------------------------------|--------|---------|---------|
| Crow et al. [1989a]           | Lateral X-rays of radio-opaque filled ventricles of formalin-fixed post-mortem hemispheres | Percentage enlargement greatest in temporal horn and selective to the left side | “Schizophrenia as an anomaly of development of cerebral asymmetry—... a proposal concerning the genetic-basis of the disease” |
| Degreaf et al. [1992], Kawasaki et al. [1993], and Yotsutsuji et al. [2003] | MRI: ventricular shape analysis | Left temporal horn enlargement—selectively correlated with indices of clinical severity [Degreaf et al., 1992]; with positive symptoms [Kawasaki et al., 1993]; greater than right \( (M > F) \) [Yotsutsuji et al., 2003] | ?Arrest of development of left temporal pole |
| Cerebral torque               |        |         |         |
| Crow et al. [1989b] and Falkai et al. [1995b] | CT scan: hemisphere width measures | Loss in early onset cases [Crow et al., 1989b]; overall loss of anterior and posterior asymmetries [Falkai et al., 1995b] | Consistent with a continuum concept of SCHZ and BP |
| Bilder et al. [1994]          | MRI: coronal section volumes | Loss of torque in schizophrenia [Bilder et al., 1994]; mood disorder pts intermediate between pts with schizophrenia and controls [Bilder et al., 1999] | |
| DeLisi et al. [1997] and Maher et al. [1998] | MRI: hemisphere width measures | Loss of posterior and occipital asymmetries [DeLisi et al., 1997]; loss of torque in early onset cases [Maher et al., 1998] | |
| Chance et al. [2005]          | Post-mortem MRI serial coronal sections | Maximum coronal hemisphere area: Left anterior to right in HC; Left posterior to right in SCHZ \( (P < 0.01) \) | Shift of “centre of gravity” caudad in left hemisphere |
| Decrease in lobar volume asymmetries | MRI: lobar volumes | Selective decrease in volume in left temporal and right frontal regions correlated with negative symptoms, and duration of illness respectively | Consistent with the torque |
| Turetsky et al. [1995]        | MRI: gray matter volume | Reduction in left temporal lobe; absence of normal left-greater-than-right asymmetry of the temporal pole in SCHZ and BP | ?Arrest of development of left temporal pole |
| Kasai et al. [2003b]          |        |         |         |

HC, healthy controls; SCHZ, patients with schizophrenia; BP, bipolar disorder.
lobes together with relative loss of late-developing gray matter in the temporal pole on the left side could result from asynchrony of gyriﬁcation. Such a change is consistent with the post-mortem observation of Chance et al. [2005] that the maximum coronal area of the left hemisphere in psychosis is caudal to that for the right, while the reverse is the case in unaffected controls.

Loss or reversal of planum temporale asymmetry (Table III), summarized in meta-analyses [Shapleske et al., 1999; Sommer et al., 2001] of the MRI literature, was found also in two post-mortem studies [Falkai et al., 1995a; Chance et al., 2008]. However in three systematic MRI investigations [Kulynych et al., 1995; Shapleske et al., 2001; Meisenzahl et al., 2002] asymmetry was present equally in patients as in healthy controls.

Demarcation of the planum temporale depends on delineation of segment HB (from Heschl’s gyrus to the bifurcation) of the Sylvian fissure, complicated by variable extension beyond the bifurcation into descending and ascending rami [Ide et al., 1996]. The latter may sometimes slope forwards, these arrangements being sexually dimorphic [see also Kulynych et al., 1994], and thereby constituting a potential source of difference in ﬁndings between studies. The deﬁnition of planum temporale asymmetry and its relevance to psychosis remain uncertain.

In a meta-analysis of VBM studies [Honea et al., 2005] while the superior temporal gyrus was frequently implicated in schizophre- nia, this was as often on the right as the left. For asymmetry two structures stood out—the anterior cingulate gyrus on the right, and the medial temporal lobe (and adjacent parahippocampal gyrus) on the left [Crow et al., 2013]. Thus change in neocortex may be secondary to asymmetries in limbic cortex. Review of meta-analyses of structural MRI studies concluded that the structures most consistently affected were the insula (more often in schizophrenia including the left as well as the right, and in bipolar disorder more often conﬁned to the right), the anterior cingulate gyrus (more to the right in schizophrenia and to the left in bipolar disorder), and the left para-hippocampal gyrus, amygdala and uncus in schizophre- nia [Crow et al., 2013] (see also section on Genetic High Risk studies below).

Parietal lobe asymmetries. Lyttelton et al. [2009] found greater (18%) surface area asymmetry in the inferior parietal region than in the planum temporale (8%) in normal individuals; reductions of asymmetry to the left in patients with schizophrenia are reported (Table III).

Sylvian ﬁssure. Anomalies of asymmetry of the Sylvian ﬁssure have been identiﬁed, some associated with sex differences (Table IV).

Morphology in discordant MZ twins. Saddath et al. [1990] presented data indicating that the affected twin differed from the unaffected asymmetrically with respect to anterior temporal lobe volume and length of the posterior segment of the Sylvian ﬁssure [Crow, 1995, 1999]. Borgwardt et al. [2010] found lateralized differences between ill and well twins for the medial frontal gyrus on the left, and anterior cingulate and post-central gyri on the right, the ﬁnding of a deﬁcit in the anterior cingulate to the right appearing also in a number of meta-analyses of singletons with schizophrenia [Crow et al., 2013]. Csernansky et al. [2008] found loss of asymmetry of the posterior Sylvian ﬁssure, and the parietal operculum, and in a DTI study of white matter tracts there was relatively discrete increase in rightward asymmetry of the external capsule and decrease in leftward asymmetry of the posterior limb of the internal capsule [Miyata et al., 2012]. The ﬁndings suggest asymmetrical change in the Sylvian ﬁssure and underlying insula.

In a series of studies the paracingulate sulcus (PCS), a variable feature of the medial frontal surface that demarcates the boundary between paralimbic and neocortex, has been found to be generally longer in the left than the right hemisphere. In schizophrenia the asymmetry is diminished or lost in five studies, and in one study in normal subjects was found correlated with verbal ﬂuency (Table V). In two studies there are indications of a difference between the sexes in the time course and lateralization of this developmental anomaly. Relative normality of PCS length in a high-risk group and ﬁrst episode cases in one study together with prominent change in patients with longer durations of illness is compatible with a deviation that progresses with the illness.

Cortical gyriﬁcation. Increases in cortical folding in the right superior frontal cortex observed in three studies (in two of these in male but not female patients) contrast with possible reductions on the left. A side by diagnosis interaction (reversal of normal L < R asymmetry) was observed by Palaniyappan et al. [2011] in a predominantly male population.

Cortical complexity. On a measure of voxel count along the gray matter-CSF boundary [Wiegand et al., 2003] left-greater-than- right asymmetry of pre-frontal cortex in normal controls was reduced in schizophrenia. In normal subjects it appears that there is an increase in gyriﬁcation and complexity of the cerebral cortex aligned along a diagonal from left frontal to right occipital as envisaged by Pierre Gratiosa. A possibility to be considered is that the angle that this trajectory makes with the antero-posterior axis is variable between individuals and has particular values in relation to psychiatric states.

Broca’s and Wernicke’s areas. Studies of functional connectivity (assessed in a visual lexical decision task with a seed located in Broca’s area) and structural asymmetry with MRI, are in agreement for example, in showing a leftward deviation in normal subjects and a skew toward the right frontally [Li et al., 2007; Kawasaki et al., 2008] in schizophrenia. Similarly reduction in leftward asymmetry in the planum temporale in patients relative to control subjects [Kawasaki et al., 2008] parallels loss of connectivity of Wernicke’s area (see also the study of Bhojraj et al. [2009] in the section below on High Genetic Risk). In adolescent onset patients hypergyriﬁcation of Broca’s area on the left and an adjacent area of the anterior insula was observed together with hypogyriﬁcation of an area corresponding to Wernicke’s area but in the right hemisphere, together with an adjacent area of posterior insula [Palaniyappan et al., 2013]. In healthy controls of the same age gyriﬁcation was right lateralized in Broca’s area. At 2-year follow-up gyriﬁcation decreased in patients, in correlation with impaired category ﬂuency [Crow et al., 2012], but increased in controls.

Lateralization of speech production. In 12 right-handed monon-ygotic (MZ) twin pairs discordant for schizophrenia fMRI activation in a verbal ﬂuency task were similar to controls in the left hemisphere but were signiﬁcantly higher in the right hemisphere in both ill and well twins [Sommer et al., 2004] compared to healthy controls. In a second study [Spaniel et al., 2007] (in four pairs of right handed MZ twins with at least one twin suffering from
### TABLE III. Anomalies of Asymmetry Within Temporal and Parietal Lobes

| Area and authors | Method | Findings | Comment |
|------------------|--------|----------|---------|
| Loss/reversal of PT asymmetry<br>Rossi et al. [1992, 1994], Petty et al. [1995], Barta et al. [1997], Kwon et al. [1999], and Kawasaki et al. [2008]<br>Falkai et al. [1995a] and Chance et al. [2008]<br>Shapleske et al. [1999] and Sommer et al. [2001]<br>Kulynych et al. [1995], Shapleske et al. [2001], and Meisenzahl et al. [2002]<br>Reite et al. [2003]<br>Qiu et al. [2009]<br>Takahashi et al. [2007], Kasai et al. [2003a], and Takahashi et al. [2009]<br>Niznikiewicz et al. [2000]; Frederikse et al. [2000] | MRI volume and surface area measures<br>Post-mortem<br>Meta-analyses of MRI<br>MRI<br>MEG<br>MRI<br>MRI in first episodes<br>MRI lobule volumes | Losses of area asymmetry [Rossi et al., 1992]; correlated with [Rossi et al., 1994] thought disorder, or reversals of area [Petty et al., 1995; Barta et al., 1997] and volume asymmetry [Kwon et al., 1999], correlated with persecution/suspicion, VBM reduced [Kawasaki et al., 2008] asymmetries<br>Surface area asymmetry reduced due to decrease on left \(P<0.01\) [Chance et al., 2008]; area correlated with minicolumn spacing<br>Asymmetry ‘much reduced’ due to larger right PT [Shapleske et al., 1999]; reduced (effect size 0.18 [Sommer et al., 2001])<br>Negative findings: surface morphometry [Kulynych et al., 1995]; surface area and volume [Shapleske et al., 2001]; volume [Meisenzahl et al., 2002]<br>M50 current dipole location: SCHZ pts left anterior to right; HC right anterior to left<br>Expansions and deformations: anterior \(R>L\); posterior \(R<L\) in HC; \(R>L\) exaggerated in medial hippocampus, \(R<L\) exaggerated in lateral hippocampus and amygdala in SCHZ and siblings<br>DUP inversely related to Left PT volume [Takahashi et al., 2007]; decreases in GM volume in left STG at follow-up [Kasai et al., 2003a]. GM reduction in PT \(P<0.001\), rostral STG \(P=0.006\), and caudal STG \(P=0.009\) in FEP patients >UHRNP on the left<br>Inferior parietal L > R volume asymmetry reversed [Niznikiewicz et al., 2000]; reversal selective to males Frederikse et al. [2000] | But see Shapleske et al. [2001] below<br>These studies rule out any simple anatomical hypothesis regarding PT asymmetry<br>? Arrest of development of left temporal lobe<br>Shape changes in hippocampus and amygdala along AP and LR axes<br>In the Melbourne high-risk study [Takahashi et al.] L–R % volume change scores for superior temporal gyrus between initial and follow-up assessments were: healthy controls 0; ultra-high risk non-psychotic −0.6; ultra high-risk psychotic 1.1; and ultra-high risk schizophrenia 2.1<br>Note [Lyttelton et al., 2009]: found surface asymmetries parietal >> temporal in HC |

DUP, duration of untreated psychosis; GM, gray matter; HC, healthy controls; PT, planum temporale; STG, superior temporal gyrus; SCHZ, schizophrenia.
**TABLE IV. Anomalies of Asymmetry of the Sylvian Fissure**

| Study                  | Method             | Principal findings                                                                                                                                                                                                 |
|------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Falkai et al. [1992]   | Post-mortem       | SF reduced length on left (−16%, *P* < 0.0001) vs. HC; right SF unchanged. L/R ratio reduced more in male (−24%, *P* < 0.001) than female patients (−16%, *P* < 0.03)          |
| Crow et al. [1992]     | Post-mortem       | Loss of Sylvian fissure asymmetry in schizophrenia—in Runwell two series of brains                                                                                                                                  |
| Aso et al. [2001]      | MRI               | Loss of R > L asymmetry of anterior segment; trend to loss of L > R asymmetry of posterior segment in female pts [DeLisi et al., 1994c]; atypical asymmetry associated with better cognition in schizotypal pts |
| DeLisi et al. [1994c]  | MRI first episode cases |                                                                                                                                                    |
| and Hoff et al. [1994] |                   |                                                                                                                                                                                                                     |
| Suddath et al. [1990]  | MRI of discordant MZ twin pairs | Review [Crow, 1999] concluded that the ill twin differs from the well twin with respect to asymmetry of anterior temporal lobe volume and posterior Sylvian fissure length; see commentaries by Weinberger et al. [1991] and Crow et al. [1991] |
| Csernansky et al. [2008]| MRI               | Sulcal depth in the two hemispheres more symmetrical in schizophrenia than HC; loss of asymmetry (R > L) of inclination of posterior SF; loss of depth of sulci in R parietal operculum (R > L) |
| Miyata et al. [2012]   | DTI and TBSS      | Rightward asymmetry of external capsule and leftward asymmetry of posterior limb of internal capsule reduced in SCHZ vs. HC                                                                                           |

SF, Sylvian fissure; HC, healthy controls. DTI, diffusion tensor imaging; TBSS, tract based spatial statistics.

**TABLE V. Deviations of Asymmetry in the Para-Cingulate Sulcus**

| Study                  | Design                                              | Measure                  | Findings                                                                 | Comments                                                                 |
|------------------------|-----------------------------------------------------|--------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| Yucel et al. [2002]    | 55 SCHZ patients and 75 HCs all male and right handed | PCS absent, present or prominent | LH vs. RH: HCs 84% vs. 63% SCHZ 57% vs. 57%                            | Loss of PCS asymmetry in SCHZ                                           |
| Le Provost et al. [2003]| 40 SCHZ patients and 100 HCs all male and right handed | PCS present, prominent or absent | LH vs. RH: HCs 66% vs. 27% SCHZ 45% vs. 43% i                          | Loss of PCS asymmetry in SCHZ                                           |
| Koo et al. [2008]      | 39 FESZ, 41 FEAFF and 40 HCs high-spatial-resolution MRI, with follow-up scans in 50% of subjects | ROIs of CG and PCS       | FESZ loss of asymmetry of PCS, smaller left subgenual, left and rightrostro-dorsal, and right posterior CG compared with HCs and progressed; FEAFF showed right and left subgenual loss of CG and progressed | FESZ show possible loss of lateralization of CG across AP axis           |
| Rametti et al. [2010]  | 23 Treatment-resistant SCHZ patients and 23 HCs     | Volume and depth of ACS and PCS | Smaller volume of left ACS in SCHZ patients compared with HC. Female patients also had an increase of right PCS compared to female controls | hemisphere × sex × diagnosis interaction                               |
| Clark et al. [2010]    | 38 adolescent SCHZ patients & 35 HCs with 65% follow-up | PCS length and symmetry  | PCS asymmetry at intake correlated with verbal fluency in HCs not in patients; at follow-up had increased in HCs but decreased in patients. | trend to diagnosis × sex × side × time interaction                     |
| Meredith et al. [2012] | High genetic risk (HGR) \(n = 146\), FESZ \(n = 34\) and healthy controls \(n = 36\) | PCS absent, present or prominent | PCS in LH HCs 86% HGR 79% FESZ 94% in RH HCs 72% HGR 63% FESZ 69%       | No significant differences in PCS structure in HGR and FESZ groups compared to HCs |

ACS, anterior cingulate sulcus; AP, antero-posterior; CG, cingulate gyrus; FESZ, first episode schizophrenia; FEAFF, first episode affective disorder; HGR, high genetic risk; HC, healthy controls; LH, RH, left, right hemisphere; PCS, paracingulate sulcus; ROI, region of interest; SCHZ, schizophrenia.
schizophrenia and four healthy MZ twin pairs) activation of the right homologue of Broca's area increased with familial loading. Discrimination of speech. In an fMRI study of activations by stories presented in a familiar versus an unfamiliar language, lateralization to the left middle temporal, angular, and inferior frontal gyri was decreased in patients [Dollfus et al., 2005], and the decrease was stable over time [Razafimandimby et al., 2007].

In a review of functional brain imaging in relation to language in individuals with, and those at genetic risk of schizophrenia Li et al. [2009] concluded that the normal pattern of left hemisphere dominance for language is significantly disturbed. In eight out of fifteen studies in their Table I disturbance on the left reflected loss of asymmetry between the hemispheres.

Lateralization and inter-hemispheric transmission of words. Monitored with slow event-related potentials individuals with schizophrenia consistently failed to achieve the left (fronto-temporal) dominance for phonological discriminations [Angrilli et al., 2009] observed in healthy controls. This suggests that the primary change in the evolution of language is segregation of the phonological engram in the frontal lobe to the left; and that in schizophrenia this lateralization is diminished or lost.

In a tachistoscopic lexical decision task for words presented to one or both visual fields, Mohr et al. [2008] found patients with schizophrenia failed to show the "bilateral redundancy gain" (BRG) of healthy individuals. In another study [Barnett et al., 2005] performance of controls improved when words were presented bilaterally, while that of patients deteriorated.

These studies identify the pathophysiology of schizophrenia as "failure of hemispheric dominance for language" [Crow, 1997b]. They suggest a concept of normal language whereby phonological engrams (particularly motor) are lateralized to the left hemisphere but associative engrams (i.e., "semantic" elements) are represented in the diversity of connexions between the hemispheres. In predisposed or affected individuals lateralization of the phonological component is retarded, and its connexions with the associative components are impaired.

Three studies relate dopamine (DA) and glutamate mechanisms to asymmetry (Table VIII).

Amygdala DA. In a post-mortem study a selective increase in dopamine content in the left amygdala [Reynolds, 1983] was correlated with (i) loss of GABA uptake sites in the left hippocampus [Kerwin et al., 1998], and (ii) loss of glutamatergic elements,

| Area and authors | Method | Principal findings | Comments |
|------------------|--------|--------------------|----------|
| Cortical morphology | MRI gyrification Indices | Mean increase in gyrisation in right prefrontal region in males. Narr et al [2004] found significant increases in cortical folding in the right superior frontal cortex [Harris et al., 2004], in male but not female patients [Narr et al., 2004]; bilateral increase in SCHZ [Falkai et al., 2007] decrease on left [Sallet et al., 2003]. | Finding of an increase on the right together with a decrease on the left is consistent with the concept of failure of hemispheric lateralization |
| Harris et al. [2007] | MRI high risk study | Increased gyrisation of right PFC predicts transition to psychosis | Consistent with a continuum concept |
| Wiegand et al. [2005] | MRI gyrals surface complexity along the gray matter-CSF boundary | Left-greater-than-right asymmetry of pre-frontal cortex: HC > BP > SCHIZ | Entorhinal cortex is close to temporal horn and pole. |
| Schultz et al. [2010] | MRI entorhinal cortical shape and area | Left but not right entorhinal cortical surface area and folding correlated with positive symptoms | Two year follow-up: gyrisation increased in HC, decreased in SCHZ patients and predicts impaired category fluency |
| Palaniyappan et al. [2013] | MRI adolescent onset SCHZ patients and age-matched HC | Hypergyria of Broca's area on L and hypogyria of "Wernicke's area" on R with adjacent areas of insula | |
| Mental retardation | MRI of psychotic and retarded populations | Gyrification index: HC > SCHZ-icoromibd group > retarded group | |
| Bonnici et al., [2007] | Post-mortem: cell density, size and shape in area 9 of DLPFC | Asymmetries of each index reduced or reversed | |
| DLPFC | Cullen et al. [2006] | | |

BP, bipolar; SCHZ, schizophrenia; HC, healthy controls; DLPFC, dorso-lateral pre-frontal cortex.
| Lateralization of structure | Method | Principal findings | Comments |
|----------------------------|--------|--------------------|----------|
| Li et al. [2007] | fMRI: connectivity of Broca’s and other brain areas in a visual lexical decision task | Correlations reduced in both high-risk subjects and SCHZ pts | NB hippocampal structure in pm brain not abnormal in SCHZ [Walker et al., 1998; Highley et al., 2003] |
| Walder et al. [2007] | sMRI SCHZ patients [11M:8F] vs. HC [6M:9F] | Total hippocampal volume reductions correlated with phonological, semantic and syntactic deficits in males | |
| Wisco et al. [2007] | MRI “metric distortion” of brain structure | Increase in pars triangularis of Broca’s area on left in SCHZ pts | |
| Kawasaki et al. [2008] | MRI: structural lateralization in the pars triangularis of Broca’s area and planum temporale | Skew to rightward asymmetry in pars triangularis and reduced leftward asymmetry in planum temporale in SCHZ pts relative to HC | |
| Bhujraj et al. [2009] | Asymmetries L > R of pars triangularis, L > R of Heschl’s gyrus, L > R of supramarginal and R > L of angular gyri in HC | Asymmetry of pars triangularis reversed; Heschl’s gyrus asymmetry exaggerated; asymmetries of supramarginal and angular gyri attenuated in high-risk subjects with verbal fluency deficits | |
| Lateralization of function | | |
| Sommer et al. [2004] | Language lateralization in MZ twins discordant for SCHZ | Language-related activation in discordant pairs, higher in RH, not different in LH [Sommer et al., 2004]; activation by words in Broca’s homologue in RH increased with familial loading [Spaniel et al., 2007] | |
| Dollfus et al. [2005] and Razafimandimby et al. [2007] | fMRI: speech comprehension | Lateralization to the left middle temporal gyrus, angular, and inferior frontal gyri decreased in patients [Dollfus et al., 2005] stable over time | |
| Walter et al. [2003] | fMRI: working memory | Verbal > left inferior frontal, spatial > right prefrontal dominance in HC, absent in SCHZ pts, that is, loss of laterality | |
| Mohr et al. [2008] and Barnett et al. [2005] | Lexical decision task with words and pseudowords presented tachistoscopically either unilaterally or bilaterally | HC showed bilateral redundancy gain (BRG) for words, not for pseudowords. SCHZ pts failed to show the BRG for words [Mohr et al., 2008]; SCHZ pts disadvantaged by bilateral presentation [Barnett et al., 2005] | Consistent with a deficit in inter-hemispheric information exchange |
| Walder et al. [2006, 2007] | 31 SCHZ patients vs. 27 HC assessed with a battery of phonological, syntactic and semantic features | Male patients more impaired than male HC with least deficits in phonology; females less impaired than males but with greatest deficits in phonology | |
| Collinson et al. [2009] | MRI: 39 adolescent onset SCHZ patients; Dichotic listening | Impaired R ear advantage correlates with smaller L temporal lobe volume | |
| Angrilli et al. [2009] | Event-related, for example, slow potentials: rhyming/phonological, semantic and word recognition tasks | Phonological potentials lateralize to the left in anterior [fronto-temporal] regions in HC; lateralization absent in SCHZ pts | Exemplifies an hypothesis of the segregation of phonological and semantic traces |
| Jalili et al. [2010] | EEG synchronization-in SCHZ patients and matched controls [1st and 2nd order S-estimator] | Attenuated asymmetry in alpha and beta bands increasing with disease duration and negative symptoms | |
| van Veelen et al. [2011] | fMRI of verb generation, antonyms, and semantic decision task in 35 FES neuroleptic-free SCHZ patients | Diminished lateralization between both IFG and STG in SCHZ vs. HC; no correlation with symptoms | Loss of hemispheric differentiation is present early and is not due to medication | (Continued)
assessed with D-aspartate, in the left temporal pole [Deakin et al., 1989]. It is plausible that these changes reflect a delay in lobar development (Table II), with loss of cortical inputs to the central nucleus, and relative proliferation of the DA projection on the left.

**Striatal DA uptake.** The right-left asymmetry of striatal dopamine uptake assessed with SPECT seen in healthy controls disappeared in a neuroleptic naive schizophrenia group [Hsiao et al., 2003], with absence of overlap between the groups.

**Dopamine receptors in striatum.** With positron emission tomography (PET) using <C-11> raclopride unaffected individuals from families with two or more first- or second-degree relatives with schizophrenia were found [Lee et al., 2008] to show a loss of asymmetry of D-2 receptors in the putamen, but not the caudate.

| Chemical variable and authors | Method | Principal findings | Comments |
|------------------------------|--------|--------------------|----------|
| **Globus pallidus** Early et al. [1987] | PET: blood flow | Increased in globus pallidus on left | |
| **Dopamine content of amygdala** Reynolds [1983] | Post-mortem brain | Selective increase in dopamine content in left amygdala | |
| Kerwin et al. [1998] and Deakin et al. [1989] | Post-mortem brain | DA increase on the left correlated [i] with loss of GABA uptake sites in left hippocampus [Kerwin et al., 1998], and [ii] loss of glutamatergic elements in the left temporal pole Deakin et al. [1989] | |
| **Dopamine uptake in striatum** Hsiao et al. [2003] and Lee et al. [2008] | SPECT study in neuroleptic-naive SCHZ patients | No overall change in average striatal dopamine uptake but right-left asymmetry of the caudate and putamen DAT binding in HC disappeared in SCHZ pts | Complete separation of diagnostic groups |
| **Dopamine receptors in striatum** Lee et al. [2008] | Positron emission tomography (PET) with <C-11> raclopride; nine individuals each with two 1st or 2nd degree relatives and two MZ co-twins of SCHZ patients vs. 11 HCs | Subjects with high genetic risk showed a loss of asymmetry of D-2 receptors in the putamen in comparison with HC | |
| Study                  | Methods                                                                 | Measures                                                                 | Lateralized findings                                                                 | Comment                                                                 |
|-----------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Keshavan et al. [2002]| MRI of 17 offspring of SCHZ patients compared to HC                   | DLPFC and amyglo-hippocampal volumes adjusted for brain size              | “...Lateralized alterations in the volume of the left anterior amygdalo-hippocampal complex are evident in unaffected young offspring of schizophrenia patients...” | “And may be of neurodevelopmental origin”                               |
| Harris et al. [2004]  | MRI of 16 individuals who developed SCHZ from a total of 30 at high familial risk | Volume and gyrification of cortical quadrants                             | Gyrification increased in DLPFC (areas 9 and 10) in male but not female cases transiting to SCHZ | Sex × diagnosis × hemisphere interaction                                 |
| Bhojraj et al. [2011] | MRI of 56 offspring of SCHZ patients and 36 controls with 1-year follow-up | Freesurfer surface area and thickness AAA—planum temporale, planum polare, rostral and caudal superior temporal gyrus | Progressive reduction of surface area in left AAA selective to males                  | Apparent sex × diagnosis × hemisphere interaction over time               |
| Li et al. [2012b]     | MRI of 20 SCHZ patients, 21 familial high risk subjects and 48 controls | Freesurfer thickness, area and volume measures                           | “...Decrease of the normal left-greater-than-right anatomical asymmetry in the inferior orbital frontal area, and a increased left-greater-than-right pattern in the inferior parietal and occipital regions” |                                                                                                             |
| Francis et al. [2012] | 3T MRI; young adult HGR subjects [N = 46] and controls with no family history of illness (i.e., at low genetic risk LRC; N = 31) | FreeSurfer 5.0 analysis                                                   | Controlling intra-cranial volume, significantly smaller left pars triangularis (PT) [P < 0.01] and right pars orbitalis (PO) [P < 0.01] volumes and reversal of the L > R pars orbitalis [P < 0.001] lateralization were observed in FHR subjects |                                                                                                             |
| Byun et al. [2012]    | The cortical thickness of the subjects at HGR (n = 31) was compared with that of HC (n = 29) and patients with schizophrenia (n = 31) | Cortical thickness was measured by Constrained Laplacian-based Automated Segmentation with Proximities algorithm using 1.5-T structural MRI scans | Relative to HC, GHR subjects showed significant cortical thinning in the right anterior cingulate cortex (ACC), left paracingulate and parahippocampal gyrus and posterior cingulate regions. GHR subjects with two or more first-degree relatives with schizophrenia showed a greater reduction in cortical thickness in the right ACC and in the left para-cingulate cortex than those with only one first-degree relative with schizophrenia | By separating groups by degree of genetic loading this study suggests that change in right cingulate and left para-cingulate gyri is closer to the genetic core than other structural change |
| Li et al. [2012a]     | fMRI of language task-based data from 21 patients with schizophrenia, 22 genetic high risk subjects and 36 controls were analyzed | Compared to controls, SCHZ patients and the high risk subjects showed significantly weakened network hubs in left inferior frontal and right fusiform gyri | A “unique” topology of super active and intercommunicating network hubs at left fusiform gyrus and right inferior/middle frontal gyri, which were associated with language impairment was found in the patient group, compared to the high risk and control groups |                                                                                                             |

AAA, auditory association areas; ACC, anterior cingulate cortex; DLPFC, dorsolateral pre-frontal cortex; HGR, high genetic risk; SCHZ, schizophrenia.
| Authors | Method | Measures | Principal findings | Comments |
|---------|--------|----------|--------------------|----------|
| Cortical surface lengths | Highley et al. [1998] | Post-mortem study | Lengths measured dorsally over the external surface from frontal pole to central sulcus, and from central sulcus to occipital pole | Length asymmetry showed a gender × diagnosis interaction \( P = 0.002 \). L > R in F, R > L in M HC. This pattern was reversed in schizophrenia. The converse effect was observed for occipito-parietal measures \( P = 0.028 \). No differences for measures around the lateral surfaces of the hemispheres. The dorsal and not lateral location (i.e., in a para-sagittal rather than axial plane) suggests the interactions are in the paralimbic system rather than generalized to neocortex. |
| Gyral volume | Highley et al. [1999c] and McDonald et al. [2000] | Post-mortem study | Stereological volume measures in three gyri—superior temporal parahippocampal, and fusiform gyri | In each gyrus, asymmetry to left in HC was absent or reversed in SCHZ pts; in F pts the anomaly was greater with earlier age of onset, but in M pts the anomaly was greater with later ages of onset. |
| Inter-hemispheric connexions | Highley et al. [1999a,b] | Post-mortem study | Fibre density | Greater in F than M HC: relative to same-sex controls decreased in F with SCHZ, but increased in M. |
| Savadjiev et al. [2013] | MRI | Tract-based spatial statistics & dispersion analysis to determine fibre geometry; applied in adolescent onset schizophrenia | A single area of diagnosis by sex interaction was identified in L frontal corpus callosum. PANSS negative symptoms correlate positively with increasing dispersion to the left in males and negatively in females. |
| Ventricular size and shape | Narr et al. [2001] | MRI | Three-dimensional assessment of ventricular structure | Enlargements L > R hemisphere, and diagnosis by hemisphere by sex interactions, [esp superior horn]; horizontal displacement of the walls in opposite direction in the two sexes—outward in F and inward in M. |
| Graham et al. [2006] | MRI | Point distribution with discriminant linear analysis of shape asymmetry | M and F HC and SCHZ patients differ from each other in lateral asymmetry. |
| Planum temporale area | Goldstein et al. [2002] | MRI | Topographic landmarks | Area asymmetry accentuated in M, diminished in F SCHZ patients. Emphasizes sexual dimorphisms. |
| Hemisphere volume | Collinson et al. [2003] | MRI | Total brain volume \([TBV]\) and hemisphere volumes | TBV smaller in early-onset, especially for the left hemisphere in males (6.0%). A significant sex × diagnosis × hemisphere interaction: F pts reduced rightward asymmetry and M pts reduced leftward asymmetry relative to male controls. Both correlated with reduced IQ. |
The genetic influence on laterality of brain structure has been assessed in “high risk” relatives of psychotic patients. Thus in 60 young (9–25 years of age, mean 15.4 years) high risk subjects by comparison with 42 healthy controls Bhojraj et al. [2009] found reversal of the L>R planum temporale asymmetry present in controls. Moreover the L>R asymmetry of Heschl’s gyrus seen in controls was exaggerated and asymmetries L>R of supramarginal and R>L of angular gyri seen in HC were attenuated in HR subjects. In an older population (mean age 25 years) at high genetic risk Francis et al. [2012] found significantly smaller left pars triangularis (PT; \( P < 0.01 \)) and right pars orbitalis (PO; \( P < 0.01 \)) volumes in Broca’s area and reversal of the L>R pars orbitalis (\( P < 0.001 \)) lateralization.

There is little reason to doubt that changes in brain structure close in form to those present in individuals with the disease and comprising deviations plausibly related to the faculty of language are true manifestations of genetic predisposition. This conclusion challenges a primary pathogenic role for the multiple associations now identified in genome-wide association studies <see section below on the genetics of psychosis>. How could such diversity of genetic predisposition account for these relatively uniform structural deviations? The alternative interpretation is that the GWAS findings represent secondary adjustments to a primary and sex-dependent re-organization of the latest aspect of development of the human brain.

LATERALITY BY SEX INTERACTIONS

While the above findings support the argument that asymmetry is pivotal to pathophysiology some interactions with sex have been noted [Falkai et al., 1992; DeLisi et al., 1994c; Hoff et al., 1994; Goldstein et al., 2002; Harris et al., 2004; Rametti et al., 2010; Walder et al., 2006]. A further set of findings document that the relationship is systematic:

1. Cortical surface lengths. In post-mortem brain [Highley et al., 1998] length asymmetry from the frontal pole to the central sulcus measured dorsally over the external surface, showed a gender × diagnosis interaction (\( P = 0.002 \)). Female controls had a left-greater-than-right asymmetry, and male controls had a right-greater-than-left asymmetry. In both sexes the pattern was reversed in schizophrenia. With a similar measure in the occipito-parietal lobes (\( P = 0.028 \)) a complementary pattern was seen. Differences between the groups were not present in measures taken around the lateral surface of the hemispheres.

2. Gyral volumes. In the same brain series, consistent changes of asymmetry were observed in three gyri—superior temporal [Highley et al., 1999c], parahippocampal, and fusiform [McDonald et al., 2000]. In each case, an asymmetry of volume to the left observed in the control population was absent or reversed in patients of both sexes, but age of onset separated the sexes—in female patients the anomaly was greater with earlier age of onset, as might be expected, but in male patients the reverse was the case—the anomaly was greater with later ages of onset.

3. Inter-hemispheric connexions. On histology of the corpus callosum [Highley et al., 1999a] fibre density was greater in females than males: compared to same-sex controls in female patients with schizophrenia density was decreased, whereas in males it

---

**TABLE X.** (Continued)

| Authors                      | Method  | Measures                              | Principal findings                                      | Comments                                                                 |
|------------------------------|---------|---------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|
| Gyral complexity             |         |                                      |                                                        |                                                                          |
| Narr et al. [2004]           | MRI     | Gyral complexity                      | Frontal asymmetry to the left in M controls lost in M SCHZ patients; occipital asymmetry to the right in F HC lost in F SCHZ patients | Distribution of asymmetry according to the Gratiolettian axis, with a sexual dimorphism along the antero-posterior dimension |
|                              |         | assessed by lobe and hemisphere       |                                                        |                                                                          |
|                              |         |                                      |                                                        |                                                                          |
| Paracingulate sulcus length  |         |                                      |                                                        |                                                                          |
| Clark et al. [2010]          | MRI     | Length measurements                   | L > R asymmetry increases with age in HC; trends to symmetry in SCHZ patients (M L > R; F L < R) |                                                                          |
|                              |         |                                      |                                                        |                                                                          |
| Anterior cingulate sulcus    |         |                                      |                                                        |                                                                          |
| volume                       |         |                                      |                                                        |                                                                          |
| Rametti et al. [2010]        | MRI     | BrainVisa                             | Reduced on L in SCHZ patients F > M                     |                                                                          |
|                              |         |                                      |                                                        |                                                                          |
| Cortical quadrant volumes    |         |                                      |                                                        |                                                                          |
| Mackay et al. [2010]         | MRI     | Torque analysis [Mackay et al., 2003] | Cortical volumes increased in M bipolar and decreased in F patients relative to sex-matched HC in L frontal and R occipito-parietal–temporal quadrants | Change follows the “Gratiolettian torque,” indicating that bipolarity cortical volume, sex, and laterality are somehow related |

HC, healthy controls; SCHZ, schizophrenic patients; IQ, intelligence quotient.
was increased. A similar sex by diagnosis interaction was seen in the anterior commissure [Highley et al., 1999b].

4. **Hemisphere volumes.** In an MRI study total brain volume was reduced in a group of individuals with early-onset psychosis [Collinson et al., 2003], especially for the left hemisphere in males (6.0%). Female cases had reduced rightward asymmetry relative to female controls, and male cases tended to have reduced leftward asymmetry relative to male controls. Both reductions were correlated with reduced IQ.

5. **Ventricular size.** In a three-dimensional MRI analysis Narr et al. [2001] observed enlargements of the ventricles greater in the left hemisphere, and diagnosis by hemisphere by sex interactions, particularly in the superior horn (Fig. 2). The changes include a vertical displacement upward of the roof of the ventricle present in both sexes, and a horizontal displacement of a large segment of the walls, extending from the trigone to the ventral surface of the superior horn, and including the dorsal surface of the inferior horn, that is in opposite direction in the two sexes—outward in females and inward in males. The shape of that part of the ventricle that encircles the Sylvian fissure has changed in a way that differentiates the sexes.

With linear discriminant analysis significant differences in lateral asymmetry between the sexes were observed alongside sex-specific deviations in schizophrenia [Graham et al., 2006].

6. **Gyral complexity.** Along the Gratioletian axis asymmetry to the left in the frontal lobes in control males, and to the right in the occipital lobes in females was lost in the respective male and female patient groups [Narr et al., 2004].

7. **Cingulate sulcus continuity.** Interruptions of the cingulate sulcus have been reported to be more common in high-risk individuals and in those with schizophrenia, in both hemispheres, compared to controls [Meredith et al., 2012]. Notably when separated by gender, the finding was present in males only in the left hemisphere and in females only in the right hemisphere.

In the first analysis structural deficits were detected in schizophrenia in the insula and paralimbic structures (cingulate and paracingulate gyri) on both sides. In the second analysis there was reciprocal laterality between the disorders: in schizophrenia the deficits in the insula were focal to the left side, and more posterior, whereas in bipolar disorder they were focal to the right side, and more anterior. In the paralimbic system (cingulate gyrus) sidedness was reversed—the deficits were predominantly to the right in schizophrenia and to the left in bipolar disorder.

Three telling conclusions can be drawn: (a) that the anatomical bases of bipolar disorder and schizophrenia are intimately related. The structures implicated in schizophrenia include all the structures implicated in bipolar disorder, (b) the conditions are distinguished by the direction of deviations in lateralized brain structure, and (c) laterality interacts with sex to determine form of psychosis.

Together these findings indicate that the interaction between sex and asymmetry is intrinsic to psychosis. What is the meaning of such an interaction? How is laterality apparently involved in so many aspects of psychosis? Here it is argued that psychosis can be understood only in relation to the mechanism of sexual selection, and that such selection relates to a feature that defines a species.

**SEXUAL DIMORPHISMS AND SPECIES DIFFERENCES**

How do quite different sexual dimorphisms come to characterize closely related species? Since Darwin [1871] introduced the concept the relationship between sexual selection (as an explanation of the origin of sexual dimorphisms) and natural selection (as the mechanism of adaptation to the environment) has been debated.

One concept of what defines a species is the “specific mate recognition system” [Paterson, 1985, 1992], an externally detectable characteristic that distinguishes individuals of the same from other species, but also distinguishes members of one sex from the other. How might such a system evolve? A recent view [Kaneshiro, 1980; Kaneshiro and Boake, 1987; Carson, 1997] is that sexual selection and speciation are related, and that speciation is initiated by a change in a male that is then selected by females. This suggests initiation by the Y chromosome; but the X is also involved. Haldane’s [1922] rule—that when in a hybrid cross viability or fertility is reduced it is the heterogametic sex that is most affected is generally held to implicate a locus on the X chromosome [Coyne and Orr, 1989; Presgraves, 2008] in speciation in mammals (and more generally across orders the homogametic chromosome).

A region of XY homology is implicated by the following account:

Each speciation event is initiated by a change (often the addition or subtraction of gene sequences) on the Y chromosome, and...
completed by change (in this case at the level of DNA sequence) in a region of homology on the X chromosome.

Each species is identified by the configuration (the pattern of paired and unpaired segments) of the X and Y chromosomes achieved in the XY body (the compartment that separates the X and Y from the autosomes in male meiosis [Namekawa et al., 2006]). The configuration arrived at by steps (1) and (2) is “validated” (sealed by an epigenetic modification yet to be identified) by a unique conformation of the zinc finger motif of the Prdm9 gene [Oliver et al., 2009] that plays a role in both speciation and identifying sites of recombination within species. Recombination sites are selected by the new conformation of the Prdm9 zinc finger motif [Myers et al., 2010]. For each species an engrave that encodes the species-defining function (a unique combination of X and Y chromosomes) is passed, with its associated variation, between generations as an epigenetic imprint [Crow, 2000, 2004b, 2008, 2012]. In Homo sapiens it is argued this variable specifies the torque (laterality) of the cerebral hemispheres.

MALE MEIOSIS AND THE EPIGENETIC IMPRINT

Male meiosis, in which X and Y gametes are generated and the diploid is reduced to the haploid number of chromosomes, takes place in two nuclear compartments, one containing the autosomes, and the other a structure termed the XY body [Namekawa et al., 2006] the only location and time at which the X and Y chromosomes come into apposition [Crow, 1991]. Homologous regions pair and unpaired regions are inactivated by a process referred to as “meiotic suppression of unpaired chromosomes” (MSUC) [Baarends et al., 2005; Turner, 2007] that reflects the distribution of X–Y homologies. The resulting imprint persists through fertilization [Huynh and Lee, 2003] to the embryo.

What happens when a structural re-arrangement, such as the Xq21.3/Yp11.2 duplication [Sargent et al., 1996; Schwartz et al., 1998] that created the X-transposed region (XTR) of the Y, occurs? In the rare event that the change is advantageous (through female selection) the new arrangement of the Y will increase in the population. At this stage a change in the X sequence that increases the distinction between the phenotypic character in males and females will have an advantage because it facilitates mate recognition with respect to the new feature. Thus a change in the X sequence that separates the interaction of the X protein with itself from its interaction with the Y protein (e.g., of the Protocadherin11XY (PCDH11XY) gene par described in the section below) will generate a marker that distinguishes the species and separates males from females in terms of a single dimension.

According to this account the process of speciation generates the “lock and key” (the interaction between X and Y chromosomes) that passes as an encoded message (with unpaired segments epigenetically inactivated) between generations to identify the new species. The gene Prdm9 that includes a zinc finger motif highly variable between species, and a histone3lysine4 tri-methylation capacity relevant to modifications of chromosome configuration may encode and apply the imprint. Thus Prdm9 represents a component of the hardware of speciation while segments of the X and Y chromosomes constitute the software on which Prdm9 acts.

It has recently been reported [Frans et al., 2011] that in addition to the well-established increase with age of the father at the time of birth of the child [Malaspina et al., 2001] risk of psychosis also increases with age of the maternal grandfather. Selectivity to the maternal rather than the paternal grandfather suggests X linkage, but an influence of paternal age cannot be transmitted to a son if it is carried by the X chromosome [Crow, 2012]. Therefore if these apparently epigenetic effects are related they reflect interaction between X and Y chromosomes.

Models of epigenetic transmission between generations [Morgan and Whitelaw, 2008] including that, at least in mice, such transmission relates to mate preference, that is sexual selection [Crow et al., 2007], are of particular interest. In man parental influence on the cerebral cortex has been related differentially to area in paternal and thickness in maternal transmission [Shaw et al., 2012].

SPECIATION IN THE HOMININ LINEAGE

Human speciation is cast in this wider context. The hominin lineage is defined by the Xq21.3 to Yp11.2 duplication [Sargent et al., 1996] that took place 6 MYA (million years ago), close and perhaps causally-related to the divergence of hominin and chimpanzee lineages [Williams et al., 2006] (PAR2 was established later [Freije et al., 1992]). Within this homologous block the gene pair Protocadherin11XY (PCDH11XY) is expressed as two complementary cell surface adhesion factors from the X and the Y chromosomes respectively; playing a role in cell-cell recognition [Priddle and Crow, 2013a]. PCDH11X has been subject to 16 non-synonymous substitutions since the common human-chimpanzee ancestor. PCDH11X has been subject to five amino acid substitutions including addition of two sulfur-containing cysteines [Williams et al., 2006]. In post-natal ontogeny [Weickert et al., 2009] the PCDH11XY gene pair has the largest expression among the earliest expressed sexually dimorphic genes in the human brain. The potential significance of the Protocadherin11XY gene pair in the development of the capacity for language [Priddle and Crow, 2013a] is illustrated by the case of a 4-year-old boy with severe language delay found to have independent deletions of the PCDH11 gene on both the X and the Y chromosomes detected by micro-array and confirmed by fluorescence in situ hybridization [Speevak and Farrell, 2011]. More generally the sequence of changes within the X-transposed region and in PCDH11X, and the acquisition of PAR2, can be seen to be relevant to the course of hominin speciation over the past 6 million years. Within this context a hot-spot of recombination identified within PAR2 [Sarbajna et al., 2012] is of potential relevance to human diversity.

THE GENETICS OF PSYCHOSIS

Attempts to identify genes for psychosis by linkage have not yielded findings consistently replicable across studies or populations [Crow, 2007]. Until recently genome-wide association studies (GWAS) have also failed to identify markers closely associated with psychosis, but with a steady increase in sample size and in density of markers across the genome there are indications that a small number of genes (including CACNA1C and ZNF804A) it is
suggested) are consistently associated with schizophrenia and/or bipolar disorder [Cross-Disorder Group of the Psychiatric Genomics Consortium et al., 2013 2013], although through associations that are small in magnitude.

From the observation that combinations of autosomal SNPs (single nucleotide polymorphisms) predicting schizophrenia in one sample also predict illness in independent samples it has been argued [Purcell et al., 2009] that heritability is highly polygenic with perhaps more than a thousand genes each contributing a very small effect. These authors postulate a causal relationship between genes in LD with these SNPs and the disease. Since only a fraction of the heritability can be accounted for a sex chromosomal contribution is not excluded, as argued here, alongside but independent of autosomal polygenes. The question arises why genes on the sex chromosomes have not hitherto been examined in GWAS. The current state of microarrays in relation to the XTR presents a particular problem in that a distinction must be made between variability of sequence arising from true polymorphisms (between individuals) and X–Y differences fixed in the population [Trombetta et al., 2010]. A map of these two classes of variation has yet to be constructed.

A parsimonious hypothesis is that autosomal and sex chromosomal contributions are related through adaptive changes that follow the speciation event. Here it is postulated that a new species is established on the basis of a structural change on the Y chromosome selected by females, followed by change in homologous sequences on an X chromosome that consolidates a new system of mate recognition [Paterson, 1992]. The novel configuration of X and Y chromosomes carries into the new species a subset of autosomal variation that operates in an environment dominated by a new mate recognition principle. Some alleles will be unsuited to the milieu of both male and female cells in the novel environment and will be selected out, but others will be suited more to the cells of one sex than the other.

Mate recognition dominates fecundity in the new species. It aligns the force of selection along the male-female axis. The new principle drives growth of certain structures (in particular those concerned with signaling between individuals) and sustains maxima of discriminability and reproductive capacity in the two sexes. Existing variation un-coordinated with the new sexual dimorphism will need to adapt. Systems previously unidirectional or “monomorphic” are driven to distinct peaks of activity compatible with a system operating in a dimorphic manner. Thus the transition between sexual dimorphisms (in the formation of the new species) is the driving force in creating diversity and conflict in the genome.

If the primary change in speciation of modern Homo sapiens is in the Protocadherin11XY gene pair secondary changes, for example, in calcium delivery, neural connectivity and myelination in the central nervous system may be expected. Such change may take place over many generations, and a range of individual variation that is less than optimal viewed in relation to the dimorphism as a whole will be retained. The spectrum of variation in the new species thus comprises a primary dimorphic core entrained through secondary mechanisms each associated with genetic variation positive in one of the dimorphic states but neutral or negative in the other. Such genes are predicted to be sex-related in expression, although autosomal in location (see, e.g., the findings relating to CACCNAIC [Strohmaier et al., 2013]).

Brain size increased at least twice in the hominin lineage: at the transition from Australopithecus to Homo habilis or Homo ergaster, and at the transition between Homo heidelbergensis/antecessor and the large brained Homo neanderthalensis and Homo sapiens. Such increases were presumably achieved by a prolongation of brain growth and, according to the above argument, through a new sexual dimorphism. The relevant genes are predicted to be “late developmental” [Pogue-Geile, 1997] and to encode a range of diversity expressed at the reproductive peak rather than early in the course of development. Recent evidence from dental striations [Volpato et al., 2012] indicates that directional asymmetry almost certainly was present in Homo neanderthalensis, and its absence earlier although controversial [McGrew and Marchant, 1997; Palmer, 2002; Lonsdorf and Hopkins, 2003; Hopkins, 2007] has been documented within [Chaplain et al., 2011] and across [Holder, 1999] species. It is possible that directional asymmetry on a species basis entered at the Australopithecus/Homo ergaster transition. This suggests that hominin species prior to Man had a capacity for “proto-language,” and that this underwent a transformation at the origin of modern Homo sapiens 150 thousand years ago [Fridle and Crow, 2013a]. In this case a plausible genetic correlate is the paracentric inversion of the duplicated block in Yp11.2 as this will have brought the X and Y sequences of PCH11XY into register thus increasing the likelihood of pairing, with a concomitant increase in diversity and complexity of late development.

The corpus callosum goes on expanding into the third and fourth decades, and this expansion is delayed in females relative to males [Cowell et al., 1992; Pujol et al., 1993] perhaps because the cortex is wider, and a critical fraction of myelinated axons is reached later. Fibre density is greater in females [Highley et al., 1999a,b]; in male patients it is reduced, and in male patients increased, relative to same sex controls. Thus myelination of inter-hemispheric connexions is a leading candidate as the target of the disease process [Crow, 1998a]. The functions most directly affected are those that are most recently evolved and sapiens-specific, including the capacity for language [Crow, 1996, 1997a, 1998b; DeLisi, 2001], and its putative anatomical correlate cerebral asymmetry [Crow et al., 1989a]. In evolutionary terms, psychosis can be described as “the price that Homo sapiens pays...” [Crow, 1997a] and its pathology as the “...failure of lateralization...” [Crow, 1997b] for language.

According to this concept the variation that underlies psychosis: (1) relates to the most recent change (the cerebral torque) in hominin evolution, established at the transition to modern Homo sapiens, (2) is epigenetic (non-Mendelian) in form, being generated and modified in male and female meiosis, (3) is formed around the configuration of X and Y chromosomes that pair in male meiosis, and (4) includes variation relating to the most recently acquired XY homologous gene pair. The PCDH11XY gene pair generates a sexual dimorphism that may constitute the human mate recognition system as the foundation of the capacity for language.

Direct tests of this hypothesis can now be framed as predictions concerning epigenetic modifications of expression of the Protocadherin11XY gene pair either through methylation of DNA...
sequences, in part excluded by Ross et al. [2003], or modifications of other elements of epigenetic control at the level of histone structure. Parallel predictions relate to the diversity generated in relation to genes such as SPRY and VAMP in PAR2. Such predictions may be testable within a discordant MZ twin paradigm [Rosa et al., 2008]. Quested et al. [2010] asked “Is loss of gender dimorphism a unifying theme in schizophrenia findings?.” In the wider context of schizophrenia and bipolar disorder the relevance of this question is pinpointed by Bora et al. [2012]. Neither the morphological changes nor their genetic basis can be understood unless the factors of sex and laterality and the interaction between them in the psychoses are taken into account.

ACKNOWLEDGMENTS

The author acknowledges the contributions of valued colleagues who contributed to or commented on the genetic, psychological and morphological studies related to this work but particularly the contribution of Dr. Lynn E. DeLisi who helped to formulate the hypothesis, followed it into linguistic and palaeontological contexts and contributed to its genetic and anatomical investigation, and the attempt to integrate these aspects. I am grateful to Dr. Kathleen Narr and colleagues for permission to reproduce Figure 2.

REFERENCES

Affara N, Bishop C, Brown W, Cooke H, Davey P, Ellis N, Graves JM, Jones M, Mitchell M, Rappold G, Tyler-Smith C, Yen P, Lau YFC. 1996. Report of the second international workshop on Y chromosome mapping 1995. Cytogenet Cell Genet 73:33–76.

Angrilli A, Spironelli C, Elbert T, Crow TJ, Marano G, Stegagno L. 2009. Schizophrenia as failure of left hemispheric dominance for the phonological component of language. PLoS ONE 4:1–9.

Asherson P, Parfitt E, Sargent M, Tidmarsh S, Buckland P, Taylor C, Clements A, Gill M, McGuffin P, Owen M. 1992. No evidence for a pseudautosomal locus for schizophrenia—Linkage analysis of multiply affected families. Br J Psychiatry 161:63–68.

Aso M, Suzuki M, Kawasaki Y, Matsui M, Hagino H, Kurokawa K, Seto H, Kurachi M. 2001. Sylvian fissure and medial temporal lobe structures in patients with schizophrenia: A magnetic resonance imaging study. Psychiatry Clin Neurosci 55:49–56.

Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JHJ, de Boer P, Grootegoed JA. 2005. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25:1041–1053.

Barnett JK, Kirk IJ, Corballis MC. 2005. Right hemispheric dysfunction in schizophrenia. Laterality 10:29–35.

Barr CL, Kennedy JL, Pakstis AJ, Castiglione CM, Kidd JR, Wetterburg L, Kidd KK. 1994. Linkage study of a susceptibility locus for schizophrenia in the pseudoautosomal region. Schizophr Bull 20:277–286.

Barrick TR, Mackay CE, Prima S, Vandermeulen D, Crow TJ, Roberts N. 2005. Automatic analysis of cerebral asymmetry: An exploratory study of the relationship between brain torque and planum temporal asymmetry. Neuroimage 24:678–691.

Barta PE, Pearlson GD, Brill LB, Royall R, McGilchrist IK, Pulver AE, Powers RE, Casanova MF, Tien AT, Frangou S, Petty RG. 1997. Planum temporale asymmetry in schizophrenia: Replication and relationship to grey matter abnormalities. Am J Psychiatry 154:662–667.

Bhojraj TS, Francis AN, Rajarethnham R, Eack S, Kulkarni S, Prasad KM, Montrose DM, Keshavan MS. 2009. Verbal fluency deficits and altered lateralization of language brain areas in individuals genetically predisposed to schizophrenia. Schizophr Res 113:202–208.

Bhojraj T, Sweeney J, Prasad K, Eack S, Rajarethnham R, Francis A, Montrose D, Keshavan M. 2011. Progressive alterations of the auditory association areas in young non-psychotic offspring of schizophrenia patients. J Psychiatr Res 45:205–212.

Bilder RM, Wu H, Bogerts B, Degreef G, Asharti M, Alvir JM, Snyder P, Lieberman JA. 1994. Absence of regional hemispheric volume asymmetries in first episode schizophrenia. Am J Psychiatry 151:1437–1447.

Bilder RM, Wu H, Bogerts B, Asharti M, Robinson D, Woerner M, Lieberman JA, Degreef G. 1999. Cerebral volume asymmetries in schizophrenia and mood disorders: A quantitative magnetic resonance imaging study. Int J Psychophysiol 34:197–205.

Bleich-Cohen M, Sharon H, Weizman R, Poyurovsky M, Faragian S, Hendler T. 2012. Diminished language lateralization in schizophrenia corresponds to impaired inter-hemispheric functional connectivity. Schizophr Res 134:131–136.

Bonnici HM, Moorhead TWJ, Stanfield AC, Harris JM, Owens DG, Johnstone EC, Lawrie SM. 2007. Pre-frontal lobe gyriﬁcation index in schizophrenia, mental retardation and comorbid groups: An automated study. Neuroimage 35:648–654.

Bora E, Fornito A, Yucel M, Pantelis C. 2012. The effects of gender on grey matter abnormalities in major psychoses: A comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med 42:295–307.

Borgwardt SJ, Picchioni MM, Etinger U, Toulopoulou T, Murray R, McGuire PK. 2010. Regional gray matter volume in monzygotic twins discordant and discordant for schizophrenia. Biol Psychiatry 67:956–964.

Broca P. 1877. Rapport sur un memoire de M. Armand de Fleury intitule: De l’inegalite dynamique des deux hemispheres ccebraux. Bull Acad Med 6:508–539.

Bryant DM, Hoeft F, Lai S, Lackey J, Roeltgen D, Ross J, Reiss AL. 2012. Sex chromosomes and the brain: A study of neuroanatomy in XYY syndrome. Dev Med Child Neurol 54:1149–1156.

Byun MS, Kim JS, Jung WH, Jang JH, Choi JS, Kim SN, Choi CH, Chung CK, An SK, Kwon JS. 2012. Regional cortical thinning in subjects with high genetic loading for schizophrenia. Schizophr Res 141:197–203.

Carson HL. 1997. Sexual selection: A driver of genetic change in Hawaiian Drosophila. J Hered 88:343–352.

Cross-Disorder Group of the Psychiatric Genomics Consortium. Smoller JW, Graddock N, Kendler K, Lee PH, Neale BM, Nurnberger JI, Ripke S, Santangelo S, Sullivan PF. 2013. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 381:1371–1379.

Chance SA, Esiri MM, Crow TJ. 2005. Macroscopic brain asymmetry is changed along the antero-posterior axis in schizophrenia. Schizophr Res 74:163–170.

Chance SA, Casanova MF, Switala AE, Crow TJ. 2008. Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain 131:3178–3192.

Chapelin AS, Hovgervost E, Mbonzo P, Hopkins WD. 2011. Hand preferences for bimanual coordination in 77 bonobos (Pan paniscus): Replication and extension. Int J Primatol 32:491–510.

Clark GM, Mackay CE, Davidson ME, Iversen SD, Collinson SL, James AC, Roberts N, Crow TJ. 2010. Paracingulate sulcus asymmetry; sex differences, correlation with semantic fluency and change over time in adolescent onset psychosis. Psychiatry Res Neuroimaging 184:10–15.
locus for schizophrenia. II: Replication of a non-random segregation of alleles at the DXYS14 locus. Br J Psychiatry 161:59–62.

d’Amato T, Waksman G, Martinez M, Laurent C, Gorwood P, Campion D, Jay M, Petit C, Savoye C, Bastard C. 1994. Pseudoautosomal region in schizophrenia: Linkage analysis of seven loci by sib-pair and lod-score methods. Psychiatry Res 52:135–147.

Darwin C. 1871. The descent of man, and selection in relation to sex (facsimile of original published in 1871 by Princeton University Press New Jersey). London: J Murray.

Deakin JF, Slater P, Simpson MD, Gilchrist AC, Skan WJ, Royston MC, Reynolds GP, Cross AJ. 1989. Frontal cortical and left glutamatergic dysfunction in schizophrenia. J Neurochem 52:1781–1786.

Deep-Sobolay A, Hyde TM, Callcott JP, Lener MS, Verchinski BA, Apud JA, Weinberger DR, Elvevag B. 2010. Handedness, heritability, neurocognition and brain asymmetry in schizophrenia. Brain 133:3113–3122.

Degreg G, Ashtari M, Bogerts B, Bilder R, Jody D, Alvir J, Lieberman J. 1992. Volumes of ventricular system subdivisions measured from magnetic resonance images in first episode schizophrenic patients. Arch Gen Psychiatry 49:531–537.

Delisi LE. 2001. Speech disorder in schizophrenia: Review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophr Bull 27:481–496.

Delisi LE, Crow TJ. 1989. Evidence for a sex chromosome locus for schizophrenia. Schizophr Bull 15:431–440.

Delisi LE, Devoto M, Lofthouse C, Poulter M, Smith A, Shields G, Bass N, Chen G, Vita A, Morganti C, Ott J, Crow TJ. 1994a. Search for linkage to schizophrenia on the X and Y chromosomes. Am J Med Genet 54:113–121.

Delisi LE, Friedrich U, Wahlstrom J, Boccio-Smith A, Forsman A, Eklund K, Crow TJ. 1994b. Schizophrenia and sex chromosome anomalies. Schizophr Bull 20:495–505.

Delisi LE, Hoff AL, Neale C, Kushner M. 1994c. Asymmetries in the superior temporal lobe in male and female first-episode schizophrenic patients: Measures of the planum temporale and superior temporal gyrus by MRL. Schizophr Res 12:19–28.

Delisi LE, Sakuma M, Kushner M, Finer DL, Hoff AL, Crow TJ. 1997. Anomalous cerebral asymmetry and language processing in schizophrenia. Schizophr Bull 23:255–271.

Delisi LE, Shaw S, Sherrington R, Nanthakumar B, Shields G, Smith AB, Wellman N, Larach WW, Loftus J, Razi K, Stewart J, Comazzi M, Vita A, De Hert M, Crow TJ. 2000. Failure to establish linkage on the X chromosome in 301 families with schizophrenia or schizoaffective disorder. Am J Med Genet Part B Neuropsychiatr Genet 96:335–341.

Delisi LE, Maurizio AM, Svetina C, Ardekani B, Szulc K, Nierenberg J, Leonard J, Harvey PD. 2005. Klinefelter’s syndrome (XXY) as a genetic model for psychotic disorders. Am J Med Genet Part B Neuropsychiatr Genet 135B:15–23.

Dollfus S, Razafimandimbay A, Delamilleure P, Brazo P, Joliot M, Mazoyer N. 2005. Atypical hemispheric specialization for language in right-handed schizophrenic patients. Biol Psychiatry 57:1020–1028.

Dragovic M, Hammond G. 2005. Handedness in schizophrenia: A quantitative review of evidence. Acta Psychiatr Scand 111:410–419.

Early TS, Reiman EM, Raichle ME, Spitznagel EL. 1987. Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc Natl Acad Sci USA 84:561–563.

Falkai P, Bogerts B, Greve B, Pfeiffer U, Machus B, Folsch-Reeze B, Majtenyi C, Ovary I. 1992. Loss of Sylvian fissure asymmetry in schizophrenia - a quantitative post-mortem study. Schizophr Res 7:23–32.

Falkai P, Bogerts B, Schneider T, Greve B, Pfeiffer U, Pilz K, Gonsiorczyk C, Majtenyi C, Ovary I. 1995a. Disturbed planum temporale asymmetry in schizophrenia: A quantitative post-mortem study. Schizophr Res 14:161–176.

Falkai P, Schneider T, Greve B, Klieser E, Bogerts B. 1995b. Reduced frontal and occipital lobe asymmetry on the CT scans of schizophrenic patients: Its specificity and clinical significance. J Neural Transm Gen Sect 99:63–77.

Falkai P, Honer WG, Kamer T, Dustert S, Vogeley K, Schneider-Axman T, Dani I, Wagner M, Reitschel M, Muller DJ, Schulze TG, Gaebel W, Cordes J, Schonell H, Sbild HH, Block W, Traber F, Steinmetz H, Maier W, Tepest R. 2007. Disturbed frontal gyirification within families affected with schizophrenia. J Psychiatr Res 41:805–813.

Flor-Henry P. 1969. Psychosis and temporal lobe epilepsy, a controlled investigation. Epilepsia 10:363–395.

Francis AN, Seidman LJ, Jabbar GA, Mesholam-Gately R, Thermenos HW, Juelich R, Proal AC, Shronton M, Kubicki M, Mathew I, Keshavan M, Delisi LE. 2012. Alterations in brain structures underlying language function in young adults at high familial risk for schizophrenia. Schizophr Res 141:65–71.

Franks C, Fisher SE, MacPhie II, Richardson AJ, Marlow AJ, Stein JF, Monaco AP. 2002. Erratum to Franks et al. A genome-wide screen for linkage to relative hand skill in sibling pairs. Amer J Hum Genet 70:800–805. published in Amer J Hum Genet 70:1075–1075.

Frans EM, McGrath JJ, Sandin S, Lichtenstein P, Reichenberg A, Langstrom N, Hultman CM. 2011. Advanced paternal and grandpaternal age and schizophrenia: A three-generation perspective. Schizophr Res 133:120–124.

Frederikse M, Lu A, Ayaward EH, Barta P, Sharma T, Pearson GD. 2000. Sex differences in inferior parietal volume in schizophrenia. Am J Psychiatry 157:422–427.

Freije D, Helms C, Watson MS, Donis-Keller H. 1992. Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258:1784–1787.

Geerts M, Steyaert J, Fryns JP. 2003. The XXY syndrome: A follow-up study on 38 boys. Genet Couns 14:267–279.

Goldstein JM, Seidman LJ, O’Brien LM, Horton NJ, Kennedy DN, Makris N, Caveness VS, Farone SV, Tsuang MT. 2002. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry 59:154–164.

Goldstein JM, Cherkizerian S, Seidman LJ, Petryshen TL, Fitzmaurice G, Tsuang MT, Buka SL. 2011. Sex-specific rates of transmission of psychosis in the New England high-risk family study. Schizophr Res 128:150–155.

Gorwood P, Leboyer M, d’Amato T, Jay M, Campion D, Hillaire D, Mallet J, Feingold J. 1992. Evidence for a pseudoautosomal locus for schizophrenia. I: A replication study using phenotype analysis. Br J Psychiatry 161:55–58.

Graham J, Babalola KO, Honer WG, Lang D, Kopala L, Vandorpe R. 2006. Lateral asymmetry in the shape of brain ventricles in control and schizophrenia groups. 2006 3rd Ieee International Symposium on Biomedical Imaging: Macro to Nano, Vols 1-3, 414–417.

Gratioso P, Leuret F. 1839. Anatomie compare du système nerveux, considérez dans ses rapports avec l’intelligence J.B. Paris: Bailliere et Fils.

Gregg P, Janke K, Propper C. 2008. Handedness and child development. Bristol: Centre for Market and Public Organisation.

Gur RE. 1977. Motoric laterality imbalance in schizophrenia. Arch Gen Psychiatry 34:33–37.
Haldane JBS. 1922. Sex-ratio and unisexual sterility in hybrid animals. J Genet 12:101–109.

Halpern DF. 2000. Sex differences in cognitive abilities. 3rd edition. New Jersey: L. Erlbaum.

Harasty J, Seldon HL, Chan P, Halliday G, Harding A. 2003. The left human speech-processing cortex is thinner but longer than the right. Laterality 8:247–260.

Harrington A. 1987. Medicine, mind and the double brain. Princeton: Princeton University Press.

Harris JM, Whalley H, Yates S, Miller P, Johnstone EC, Lawrie SM. 2004. Abnormal cortical folding in high-risk individuals: A predictor of the development of schizophrenia? Biol Psychiatry 56:182–189.

Harris JM, Moorhead TWJ, Miller P, McIntosh A, Bonnici HM, Owens DGC, Johnstone EC, Lawrie SM. 2007. Increased prefrontal gyrification in a large high-risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol Psychiatry 62:722–729.

Hawi Z, Mynett-Johnson L, Gill M, Murphy V, Straubl RE, Kendler KS, Walsh D, Machen F, Connell H, McKeon P, Shields D. 1999. Pseudoautosomal gene: Possible association with bipolar males but not with schizophrenia. Psychiatr Genet 9:129–134.

Highley JR, Esiri MM, Cortina-Borja M, McDonald B, Cooper SJ, Herron B, Crow TJ. 1998. Anomalies of cerebral asymmetry in schizophrenia interact with gender and age of onset: A post mortem study. Schizopr Res 34:13–25.

Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Herron B, Cooper SJ, Crow TJ. 1999a. The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: A post mortem study. Brain 122:99–110.

Highley JR, Esiri MM, McDonald B, Walker MA, Crow TJ. 1999b. The size and fibre composition of the anterior commissure with respect to gender and schizophrenia. Biol Psychiatry 45:1120–1127.

Highley JR, McDonald B, Walker MA, Esiri MM, Crow TJ. 1999c. Schizophrenia and temporal lobe asymmetry. A post mortem stereological study of tissue volume. Br J Psychiatry 175:127–134.

Highley JR, Walker MA, McDonald B, Crow TJ, Esiri MM. 2003. Size of hippocampal pyramidal neurons in schizophrenia. Br J Psychiatry 183:414–417.

Hoff AL, Neale C, Kushner M, DeLisi LE. 1994. Gender differences in corpus callosum size in first episode schizophrenics. Biol Psychiatry 35:913–919.

Holder MK. 1999. Influences and constraints on manual asymmetry in wild African primates: Reassessing implications for the evolution of human handedness and brain lateralization (Dissertation Abstracts International Section A). Humanit Soc Sci 60: 0470.

Honea R, Crow TJ, Passingham D, Mackay CE. 2005. Regional deficits in brain volume in schizophrenia: A meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245.

Hopkins WD. 2007. The evolution of hemispheric specialization in primates. Oxford: Elsevier on behalf of American Society of Primatologists.

Horn H, Federspiel A, Wirth M, Mueller TJ, Wiest R, Walther S, Strik W. 2010. Gray matter volume differences specific to formal thought disorder in schizophrenia. Psychiatry Res Neuroimaging 182:183–186.

Hsiao MC, Lin KJ, Liu CY, Tzen KY, Yen TC. 2003. Dopamine transporter change in drug-naive schizophrenia: An imaging study with Tc-99m-TRODAT-1. Schizopr Res 65:39–46.

Huynh KD, Lee JT. 2003. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426:857–862.

Idea A, Rodriguez E, Zaidel E, Aboitiz F. 1996. Bifurcation patterns in the human Sylvian fissure: Hemispheric and sex differences. Cereb Cortex 6:717–725.

Jalili M, Meuli R, Do KQ, Hasler M, Crow TJ, Knayzeva MG. 2010. Attenuated asymmetry of functional connectivity in schizophrenia: A high-resolution EEG study. Psychophysiology 47:706–716.

Johnstone EC, Crow TJ, Frith CD, Husbands J, Kree L. 1976. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2:924–926.

Kaneshiro KY. 1980. Sexual isolation, speciation and the direction of evolution. Evolution 34:437–444.

Kaneshiro KY, Boake CRB. 1987. Sexual selection: Issues raised by Hawaiian Drosophila. Trends Ecol Evol 2:207–211.

Kasai K, Shenton ME, Salisbury DF, Hiyasu Y, Onitsuka T, Spencer MH, Yurgeln-Todd DA, Kikinis R, Jolesz FA, McCarley RW. 2003a. Progressive decrease of left heschl gyrus and planum temporale gray matter volume in first-episode schizophrenia. Arch Gen Psychiatry 60:766–775.

Kasai K, Shenton ME, Salisbury DF, Onitsuka T, Toner SK, Yurgelun-Todd D, Kikinis R, Jolesz FA, McCarley RW. 2003b. Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Arch Gen Psychiatry 60:1069–1077.

Kawasaki Y, Maeda Y, Urata K, Higashima M, Yamaguchi N, Suzuki M, Takashima T, Ide Y. 1993. A quantitative magnetic-resonance-imaging study of patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 242:268–272.

Kawasaki Y, Suzuki M, Takahashi T, Nohara S, McGregor PK, Seto H, Kurachi M. 2008. Anomalous cerebral asymmetry in patients with schizophrenia demonstrated by voxel-based morphometry. Biol Psychiatry 63:793–800.

Kerwin RW, Patel S, Meldrum BS, Czudek C, Reynolds GP. 1998. Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet 583–584.

Keshavan M, Dick E, Mankowski L, Harenski K, Montrose D, Diwadkar V, DeBellis M. 2002. Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizopr Res 58:173–183.

Kimura D. 2000. Sex and cognition. Cambridge MA: MIT Press.

Kircher TTI, Liddle PF, Brammer MJ, Williams SC, Murray RM, McGuire PK. 2002. Reversed lateralization of temporal activation during speech production in thought disordered patients with schizophrenia. Psychol Med 32:439–449.

Koc A, Karaoguz M, Cosar B, Percin E, Sahin S, Baysak E, Acikyurek K. 2010. The importance of systematic genetic approach to familial schizophrenia cases and discussion of cryptic mosaic X chromosome aneuploidies in schizophrenia pathogenesis. Int J Psychiatry Clin Pract 14:204–211.

Koo MS, Levitt J, Salisbury DF, Nakamura M, Shenton ME, McCarley RW. 2008. A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode psychosis. Arch Gen Psychiatry 65:746–760.

Kulyshyn JJ, Vladar K, Fantic BD, Jones DW, Weinerberger DR. 1994. Gender differences in the normal lateralization of the supratemporal cortex—MRI surface-rendering morphometry of Heschel’s gyrus and the planum temporale. Cereb Cortex 4:107–118.

Kulyshyn JJ, Vladar K, Fantic BD, Jones DW, Weinerberger DR. 1995. Normal asymmetry of the planum temporale in patients with schizophrenia: Three dimensional cortical morphometry with MRI. Br J Psychiatry 166:742–749.
Niznikiewicz MA, Donnino R, McCarley RW, Nestor PG, Losifescu DV, O’Donnell B, Levitt J,enton ME. 2000. Abnormal angular gyrus asymmetry in schizophrenia. Am J Psychiatry 157:428–437.

Ohno S. 1967. Sex chromosomes and sex-linked genes. Berlin: Springer-Verlag.

Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC, Phadnis N, Beatson SA, Lunter G, Malik HS, Ponting CP. 2009. Accelerated evolution of the Pdm9 specification gene across diverse Metazoan taxa. PLoS Genetics 5: e1000753.

Palaniyappan L, Mallikarjun P, Vereghese J, White TP, Liddle PF. 2011. Folding of the prefrontal cortex in schizophrenia: Regional differences in gyrification. Biol Psychiatry 69:794–797.

Palaniyappan L, Crow TJ, Hough M, Voets NL, Liddle PF, James S, Winnill L, James AC. 2013. Gyrification of Broca’s region is anomalously lateralized at onset of schizophrenia in adolescence and regresses at 2 year follow-up. Schizophr Res 149:37–45.

Palmer AR. 2002. Chimpanzee right handedness reconsidered: Evaluating the evidence with funnel plots. Am J Phys Anthropol 118: 191–199.

Paterson HEH. 1985. The recognition concept of species. In: Vrba ES, editor. Species and speciation. Pretoria: Transvaal Museum Monograph. pp 21–29.

Paterson HEH. 1992. Evolution and the recognition concept of species: Collected writings. Johns Hopkins University Press. Baltimore.

Penrose LS. 1991. Survey of cases of familial mental illness. Eur Arch Psychiatry Clin Neurosci 240:314–324.

Perrin M, Harlap S, Kleinhaus K, Lichtenberg P, Manor O, Draidman B, Fennig S, Malaspina D. 2010. Older paternal age strongly increases the morbidity for schizophrenia in sisters of affected females. Am J Med Genet Part B 153B:1329–1335.

Peters M, Reimers S, Manning JT. 2006. Hand preference for writing and associations with selected demographic and behavioral variables in 255,100 subjects: The BBC internet study. Brain Cogn 62:177–185.

Petty RG, Barta PE, Pearlson GD, Lewis RW, Tien AY, Pulver A, Vaughan DD, Casanova MF, Powers RE. 1995. Reversal of asymmetry of the planum temporale in schizophrenia. Am J Psychiatry 152:715–721.

Plomin R, Davis OPS. 2009. The future of genetics in psychology and psychopathology. Cambridge: Cambridge University Press. pp 137–154.

Pogge-Giel M. 1997. Developmental aspects of schizophrenia. In: Keshavan MS, Murray RM, editors. Neurodevelopmental and adult psychopathology. Cambridge: Cambridge University Press. pp 137–154.

Presgraves DC. 2008. Sex chromosomes and speciation in Drosophila. Trends Genet 24:336–343.

Pridde TH, Crow TJ. 2013a. The protocadherin11X/Y (PCDH11XY) gene pair as determinant of cerebral asymmetry in modern Homo sapiens. Ann N Y Acad Sci 1288:36–47.

Pridde TH, Crow TJ. 2013b. Protocadherin 11X/Y a human-specific gene pair: An Immunohistochemical survey of fetal and adult brains. Cereb Cortex 23:1933–1941.

Puigj G, Vendrell P, Junque C, Marti-Valalta JC, Capdevila A. 1993. When does human brain development end? Evidence of corpus callosum growth up to adulthood. Am J Neurol 34:71–75.

Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P, International Schizophrenia Consortium. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752.

Qi A, Wang L, Younes L, Harms M, Ratnamather J, Miller M, Csernansky J. 2009. Neuroanatomical asymmetry patterns in individuals with schizophrenia and their non-psychotic siblings. Neuromage 47:1221–1229.

Quested DJ, Patel R, Mackay CE. 2010. Is loss of gender dimorphism a unifying theme in schizophrenia findings? An mri test of the hypothesis. J Psychopharmacol 24:A44–A44.

Rametti G, Junque C, Bartres-Faz D, Zubiaurre-Elorza L, Catalan R, Penades R, Bargallo N, Bernardo M. 2010. Anterior cingulate and paracingulate sulci morphology in patients with schizophrenia. Schizophr Res 121:66–74.

Razafimandimbry A, Maza O, Herv PY, Lecardeur L, Delamilliere P, Brazo M, Mazoyer B, Tzourio-Mazoyer N, Dolfus S. 2007. Stability of functional language lateralization over time in schizophrenia patients. Schizophr Res 94:197–206.

Reite M, Teale P, Rojas DC, Benkers TL, Carlson J. 2003. Anomalous somatosensory cortical localization in schizophrenia. Am J Psychiatry 160:2148–2153.

Reynolds GP. 1983. Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305:527–529.

Rezaie R, Daly EM, Cutter WJ, Murphy DGM, Robertson DMW, Delisi LE, Mackay CE, Barrick TR, Crow TJ, Robert N. 2009. The influence of sex chromosome aneuploidy on brain asymmetry. Am J Med Genet Part B 150B:74–85.

Rogers LJ. 2004. A review of the speciation of modern Homo sapiens. Leaping to laterality and language: The case against. Laterality 9:225–232.

Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulouropoulos T, Vork R, van der Schot AC, Nolen W, Kahn RS, McElfan P, Murray RM, Craig IW. 2008. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder in female monogygotic twins. Am J Med Genet Part B 147B:459–462.

Rosenthal D. 1962. Familial concordance by sex with respect to schizophrenia. Psychol Bull 59:401–421.

Ross NJL, Yang J, Sargent CA, Boucher CA, Nanko S, Wadekar RV, Williams N, Affara NA, Crow TJ. 2001. Tripllication of several PAR1 genes and part of the Homo sapiens–specific Yp11.2/Xq21.3 region of homology in 46, X,t(X,Y) male with schizophrenia. J Med Genet 38:710–719.

Ross NJL, Mavrogiani LA, Sargent CA, Knight SJ, Wadekar RV, Delisi LE, Crow TJ. 2003. Quantification of X–Y homologous genes in patients with schizophrenia by multiplex polymerase chain reaction. Psychiatr Genet 13:115–119.

Ross MT, Graftham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Patzer M, Howell GR, Burrows C, Bird CP, Frankish A, Lovell FL, Howe KL, Ashurst JL. 2005. The DNA sequence of the human X chromosome. Nature 434:325–337.

Rossi A, Serio A, Stratta P, Petruzzi C, Schiazza G, Mattei P, Mancini F, Cassachia M. 1992. Planum temporale in schizophrenia: A magnetic resonance study. Schizophr Res 7:19–22.

Rossi A, Serio A, Stratta P, Petruzzi C, Schiazza G, Mattei P, Mancini F, Cassachia M. 1992. Planum temporale asymmetry and callosal connectivity in schizophrenia. Schizophr Res 11:131–132.

Saito T, Parsia S, Paplos D, Lachman HM. 2000. Analysis of the pseudoautosomal X-linked gene SYBL1 in bipolar affective disorder: Description of a new candidate allele for psychiatric disorders. Am J Med Genet Part B Neuropsychiatr Genet 96:317–323.

Sallet PC, Elkis H, Alves TM, Oliveira JR, Sassi E, Campi de Castro C, Busato GF, Gattaz WF. 2003. Reduced cortical folding in schizophrenia: An MRI morphometric study. Am J Psychiatry 160:1606–1613.
Sarbajna S, Denniff M, Jeffreys A, Neumann R, Soler Artigas M, Veselis A, May C. 2012. A major recombination hotspot in the Xq.Yq pseudautosomal region gives new insight into processing of human gene conversion events. Human Mol Genet 21:2029–2038.

Sargent CA, Briggs H, Chalmers JJ, Lambson B, Walker E, Affara NA. 1996. The sequence organization of Yp/proximal Xq homologous regions of the human sex chromosomes is highly conserved. Genomics 32:200–209.

Savadjiev P, Whitford TJ, Hough ME, Clemm von Hohenberg C, Bouix S, Westin CF, Shenton ME, Crow TJ, James AC, Kubicki M. 2013. Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia. Cereb Cortex. doi: 10.1093/cercor/bhs422.

Schultz CC, Koch K, Wagner G, Roebel M, Schnatzzelb C, Nenadic I, Albrecht C, Reichenbach JR, Juergen R, Sauer H, Schlosser RGM. 2010. Psychopathological correlates of the entorhinal cortical shape in schizophrenia. Eur Arch Psychiat Clin Neurosci 260:351–358.

Schwartz A, Chan DC, Brown LG, Alagappan R, Pettay D, Distech C, McGillivray B, De la Chapelle A, Page DC. 1998. Reconstructing hominid Y evolution: X-homologous block, created by X-Y transposition, was disrupted by Yp inversion through LINE-LINE recombination. Human Mol Genet 7:1–11.

Shapleske J, Rossell SL, Woodruff PW, David AS. 1999. The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Res Rev 29:26–49.

Shapleske J, Rossell SL, Simmons A, David AS, Woodruff PW. 2001. Are auditory hallucinations the consequence of abnormal cerebral lateralization? A morphometric MRI study of the sylvian fissure and planum temporale. Biol Psychiatry 49:685–693.

Shaw P, Gilliam M, Malek M, Rodriguez N, Greenstein D, Clasen L, Evans A, Rapoport J, Giedd J. 2012. Parental age effects on cortical morphology in offspring. Cereb Cortex 22:1256–1262.

Shenton ME, Kikinis R, Jolesz F, Pollak SD, Le May M, Wible CG, Hokama H, Martin J, Metcalf D, Coleman M, McCarley RW. 1992. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. N Engl J Med 327:604–612.

Sommer I, Ramsey N, Kahn S, Aleman A, Bouma A. 2001. Handedness, language lateralisation and anatomical asymmetry in schizophrenia: Meta-analysis. Br J Psychiatry 178:344–351.

Sommer IEC, Ramsey NE, Mandl RWC, van Oel CJ, Kahn RS. 2004. Language activation in monozygotic twins discordant for schizophrenia. Br J Psychiatry 184:128–135.

Spaniel F, Tintera J, Hajek T, Horacek J, Dezortova M, Hajek M, Dockery C, Kozeny G, Hoeschl C. 2007. Language lateralization in monozygotic twins discordant and concordant for schizophrenia. A functional MRI pilot study. Eur Psychiatry 21:319–322.

Speevak M, Farrell S. 2011. Non-syndromic language delay in a child with disruption in the Protocadherin11X/Y gene pair. Am J Med Genet Part B 156B:484–489.

Strohmaier J, Amelang M, Hothorn LA, Witt SH, Nieratschker V, Gerhard D, Meier S, Wust S, Frank J, Loerbrooks A, Rietschel M, Sturmer T, Schulze TG. 2013. The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Mol Psychiatry 18:607–613.

Suddath RL, Christison GW, Torrey EF, Casonova MF, Weinberger DR. 1990. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322:789–794.

Takahashi T, Suzuki M, Tanino R, Zhou SY, Hagino H, Niu L, Kawasaki Y, Seto H, Kurachi M. 2007. Volume reduction of the left planum temporale gray matter associated with long duration of untreated psychosis in schizophrenia: A preliminary report. Psychiatry Res Neuroimaging 154:209–219.

Takakashi T, Wood SJ, Yung AR, Soulsby B, McGorry PD, Suzuki M, Kawasaki Y, Phillips LJ, Velakoulis D, Pantelis C. 2009. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Arch Gen Psychiatry 66:366–376.

Trombetta B, Cruciani F, Underhill PA, Sellitto D, Scozzari R. 2010. Footprints of X-to-Y gene conversion in recent human evolution. Mol Biol Evol 27:714–725.

Turetsky B, Cowell PE, Gur RC, Grossman RI, Shtasel DL, Gur RE. 1995. Frontal and temporal lobe brain volumes in schizophrenia: Relationship to symptoms and clinical subtype. Arch Gen Psychiatry 52:1061–1070.

Turner JMA. 2007. Meiotic sex chromosome inactivation. Development 134:1823–1831.

Van Rijn S, Aleman A, Swaab H, Kahn R. 2006. Klinefelter's syndrome (karyotype 47,XXY) and schizophrenia-spectrum pathology. Br J Psychiatry 189:459–460.

Van Rijn S, Aleman A, De Sonneville L, Swaab H. 2009. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY). Schizophr Res 112:91–98.

van Veelen N, Vink M, Ramsey N, Sommer I, van Buuren M, Hoogendam J, Kahn R. 2011. Reduced language lateralization in first-episode medication-naive schizophrenia. Schizophr Res 127:195–201.

Vogeley K, Schneider-Axman T, Pfeiffer U, Bayer TA, Bogerts B, Honer WG, Falkai P. 2000. Disturbed gyration of the prefrontal region in male schizophrenic patients: A morphometric study. Am J Psychiatry 157:34–39.

Volpato V, Macchiarelli R, Guattelli-Steinberg D, Fiore I, Bondioli L, Frayer D. 2012. Hand to mouth in a neandertal: Right-handedness in regordou 1. PLoS ONE 7:e43949.

Walder D, Seidman L, Cullen N, Su J, Tsuang M, Goldstein J. 2006. Sex differences in language dysfunction in schizophrenia. Am J Psychiatry 163:470–477.

Walder D, Seidman L, Makris N, Tsuang M, Kennedy D, Goldstein J. 2007. Neuroanatomic substrates of sex differences in language dysfunction in schizophrenia: A pilot study. Schizophr Res 90:295–301.

Walker MA, Highley JR, McDonald B, Roberts H, Crow TJ. 1998. A stereological study of the volume of the hippocampus in post mortem control and schizophrenic brains. Schizophr Res 29:88.

Walter H, Wunderlich AP, Blankenhorn M, Schaefer S, Romczak R, Spitzer M, Green G. 2003. No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia. Schizophr Res 61:175–184.

Wang ZW, Black D, Andreasen N, Crowe RR. 1993. Pseudoautosomal locus for schizophrenia excluded in 12 pedigrees. Arch Gen Psychiatry 50(3):199–204.

Weickert CS, Elashoff M, Richards AB, Sinclair D, Bahn S, Paabo S, Khaitovich P, Webster MJ. 2009. Transcriptome analysis of male–female differences in prefrontal cortical development. Mol Psychiatry 14:586–591.

Weinberger DR, Suddath RC, Casanova MF, Torrey EF, Kleinman JE. 1991. Crow's "Lateralisation hypothesis for schizophrenia." Arch Gen Psychiatry 48:85–87.

Wiegand LC, Warfield SK, Levitt JJ, Hirayasu Y, Salisbury DF, Heckers S, Bouix S, Schwartz D, Spencer M, Dickey CC, Kirkinis R, Jolesz FA, McCarley RW, Shenton ME. 2005. An in vivo MRI study of prefrontal
cortical complexity in first-episode psychosis. Am J Psychiatry 162: 65–70.

Williams NA, Close J, Giouzeli M, Crow TJ. 2006. Accelerated evolution of Protocadherin11X/Y: A candidate gene-pair for cerebral asymmetry and language. Am J Med Genet Part B 141B:623–633.

Wisco JJ, Kuperberg G, Manoach D, Quinn BT, Busa E, Fischl B, Heckers S, Sorensen AG. 2007. Abnormal cortical folding patterns within Broca’s area in schizophrenia: Evidence from structural MRI. Schizophr Res 94:317–327.

Yotsutsuji T, Saitoh O, Suzuki M, Hagino H, Mori K, Takahashi T, Kurokawa K, Matsui M, Seto H, Kurachi M. 2003. Quantification of lateral ventricular subdivisions in schizophrenia by high-resolution three-dimensional magnetic resonance imaging. Psychiatry Res Neuroimaging 122:1–12.

Yucel M, Stuart GW, Maruff P, Wood SJ, Savage GR, Smith DJ, Crowe SF, Copolov DL, Velakoulis D, Pantelis C. 2002. Paracingulate morphologic differences in males with established schizophrenia: A magnetic resonance imaging morphometric study. Biol Psychiatry 52:15–23.