NON-NEGATIVE PERTURBATIONS OF NON-NEGATIVE
SELF-ADJOINT OPERATORS

VADYM ADAMYAN

ABSTRACT. Let A be a non-negative self-adjoint operator in a Hilbert space \mathcal{H}
and A_0 be some densely defined closed restriction of A_0, $A_0 \subseteq A \neq A_0$. It is of
interest to know whether A is the unique non-negative self-adjoint extensions of A_0 in \mathcal{H}. We give a natural criterion that this is the case and if it fails, we
describe all non-negative extensions of A_0. The obtained results are applied to
investigation of non-negative singular point perturbations of the Laplace and
poly-harmonic operators in $L_2(\mathbb{R}_n)$.

1. INTRODUCTION

In this paper we deal with a non-negative self-adjoint operator A in a Hilbert
space \mathcal{H}, some densely defined not essentially self-adjoint restriction A_0 of A and
again with self-adjoint extensions of A_0 in \mathcal{H}, which following [1] we call here
singular perturbations of A. For quick getting onto the matter of main problem
let us compare the point perturbations of self-adjoint Laplace operators $-\Delta$ in
three and two dimensions acting in $L_2(\mathbb{R}_3)$ and $L_2(\mathbb{R}_2)$, respectively, that is let us
consider the restriction $-\Delta^0$ of $-\Delta$ onto the Sobolev subspaces $H^2_0(\mathbb{R}_i \setminus \{0\})$, $i = 3, 2$
and self-adjoint extensions $-\Delta_{\alpha}$, $\alpha \in \mathbb{R}$ of $-\Delta^0$ in $L_2(\mathbb{R}_i)$ with domains

\begin{equation}
D^{(3)}_\alpha := \{ f : f \in H_0^2(\mathbb{R}_3), \lim_{|x|\to 0} \frac{|\alpha|}{|x|^2} (|x| f(x)) - \alpha |x| f(x) = 0 \},
\end{equation}

\begin{equation}
D^{(2)}_\alpha := \{ f : f \in H_0^2(\mathbb{R}_2), \lim_{|x|\to 0} \left(\frac{2\pi \alpha}{|x|^2} + 1\right) f(x) - \lim_{|x'|\to 0} \ln |x| f(x') = 0 \}.
\end{equation}

The self-adjoint operators $-\Delta_{\alpha}$ are just mentioned above singular perturbations of
$-\Delta$. Resolvents $(-\Delta_{\alpha} - z)^{-1}$, $z \in \rho(-\Delta_{\alpha})$, of operators $-\Delta_{\alpha}$ act in the corre-
sponding spaces L_2 as integral operators with kernels (Green functions) [1]:

\begin{equation}
G^{(3)}_{\alpha,z}(x, x') = \begin{cases}
G^{(0)}_z(x, x') + (\alpha - i\sqrt{2}/4\pi)^{-1} G^{(0)}_z(x, 0) G^{(0)}_z(0, x'),
\end{cases}
\end{equation}

\begin{equation}
G^{(2)}_{\alpha,z}(x, x') = \begin{cases}
G^{(0)}_z(x, x') + 2\pi (2\pi \alpha - \psi(1) + \ln \sqrt{2}/2\pi)^{-1} G^{(0)}_z(x, 0) G^{(0)}_z(0, x'),
\end{cases}
\end{equation}

\begin{equation}
G^{(2)}_z(x, x') = \left(\frac{i}{4}\right) H_0^{(1)}(i\sqrt{2}|x - x'|) \quad \text{(two dimension)}.
\end{equation}

1991 Mathematics Subject Classification. Primary 47A63, 47B25; Secondary 47B65.

Key words and phrases. Non-negative self-adjoint extension, non-negative contraction, singular
perturbation.

The author is grateful to Sergey Grecescul for the idea of this work and Yury Arlinskii for valu-
able discussion. The author acknowledges the support from USA Civil Research and Development
Foundation(CRDF) and Government of Ukraine grant UM2-2811-OD06.
By (1.2) the Green function $G_{\alpha,z}(x,x')$ of self-adjoint operator $-\Delta_{\alpha}$ in $L^2(\mathbb{R}^3)$ is holomorphic on the half-axis $(-\infty,0)$ for $\alpha \geq 0$ and has on this half-axis a simple pole for $\alpha < 0$. Hence in the case of three dimensions self-adjoint extensions $-\Delta_{\alpha}$ are non-negative for all ($\alpha \geq 0$) and non-positive for $\alpha < 0$.

Contrary to this by (1.3) in the case of two dimensions for any $\alpha \in \mathbb{R}$ the Green function $G_{\alpha,z}$ has a simple pole on the half-axis $(-\infty,0)$. Hence all singular perturbations $-\Delta_{\alpha}$ of the two-dimensional Laplace operators have one negative eigenvalue. In other words the standardly defined Laplace operator $-\Delta$ is the unique non-negative self-adjoint extension in $L^2(\mathbb{R}_2)$ of the symmetric operator $-\Delta^0$ in $L^2(\mathbb{R}_2)$.

In this note we try to reveal the underlying cause of such discrepancy. Remind that each densely defined non-negative symmetric operator has at least one non-negative canonical self-adjoint extension (Friedrichs extension). In more general setting we try to understand here why in some cases the non-negative extension appears to be unique. Actually this questions is embedded into the framework of the general extension theory for semi-bounded symmetric operators developed in the famous paper of M.G. Krein [2]. Naturally, there is a criterium of uniqueness of non-negative extension in [2]. In the next Section using only approaches of [2] we find another form of this criterium directly facilitated to investigation of singular perturbations and for cases where conditions of these criterium fail describe all non-negative singular perturbations of a given non-negative self-adjoint operator A associated with some its densely defined non-self-adjoint restriction A_0. In fact we give here a parametrization of the operator interval $[A_\mu,A_M]$ of all canonical non-negative self-adjoint extensions of a given densely defined non-negative operator. The third Section illustrates obtained results by the example of singular perturbations of Laplace and poly-harmonic operators in $L^2(\mathbb{R}_n)$.

Note that very close results were obtained recently in somewhat different way in [3], where in terms of this note were described singular perturbations of the Friedrichs extension of a given densely defined non-negative operator and also with illustration by the example of singular perturbations of the Laplace operator in $L^2(\mathbb{R}_3)$.

2. Uniqueness criterium and parametrization of non-negative singular perturbations

Let A be a non-negative self-adjoint operator acting in the Hilbert space \mathcal{H} and A_0 be a densely defined closed operator, which is a restriction of A onto a subset $\mathcal{D}(A_0)$ of the domain $\mathcal{D}(A)$ of A. Let us consider the subspaces $\mathcal{M} := (I + A_0 \mathcal{D}(A_0))$ and $\mathcal{N} := \mathcal{H} \ominus \mathcal{M}$. We will assume that

$$\begin{align*}
1) \quad & \mathcal{M} \neq \mathcal{H}, \\
2) \quad & \mathcal{N} \cap \mathcal{D}(A) = \{0\}.
\end{align*}$$

We call all self-adjoint extensions of A_0 in \mathcal{H} other than the given A singular perturbations of A. It is of interest to know whether there are non-negative operators among singular perturbations of A. In this section we try to find a convenient criterium that such singular perturbations of A does not exist. In other words we look for a criterium that A is one and only non-negative operator among all self-adjoint extensions of A_0. Following the approach developed in the renowned paper of M.G. [2],

1The attention of author to this phenomenon was drawn by Sergey Gredeskul.
Krein [2] let us consider the operator from $K_0 : \mathcal{M} \to \mathcal{H}$ defined by relations
\begin{equation}
(2.2) \quad f = (I + A_0)x, \quad K_0 f = A_0 x, \quad x \in \mathcal{D}(A_0).
\end{equation}

It is easy to see that K_0 is a non-negative contraction:
\begin{equation}
(2.3) \quad (K_0 f, f) \geq 0, \quad \|K_0 f\|^2 \leq \|f\|^2, \quad f \in \mathcal{M}.
\end{equation}

Let A_1 be any non-negative self-adjoint extension of A_0 in \mathcal{H}. Then $K_1 := A_1 (A_1 + I)^{-1}$ is a non-negative operator, which is a contractive extension of K_0 from the domain \mathcal{M} onto the whole \mathcal{H}, $K_1 f = K_0 f, f \in \mathcal{M}$.

From the other hand for any contractive extension K_1 from \mathcal{M} onto \mathcal{H} such that the unity is not its eigenvalue the non-negative self-adjoint operator $A_1 = K_1 (I - K_1)^{-1}$ is a self-adjoint extension in \mathcal{H} if and only if K_0 admits only one non-negative contractive extension onto the whole \mathcal{H}, no eigenvalue of which is 1, that is $K = A(I + A)^{-1}$. So the uniqueness of A as non-negative extension of A_0 is equivalent to uniqueness of K_0 as non-negative contractive extension of K_0.

From now on we will denote by G the set consisting of A and all its singular perturbations and by C the set of non-negative contractions obtained from G by transformation $A_1 \to A_1 (A_1 + I)^{-1}, A_1 \in G$. Let us denote by P_M the orthogonal projector onto \mathcal{M} in \mathcal{H} and let $P_N = I - P_M$. With respect to representation of \mathcal{H} as the orthogonal sum $\mathcal{M} \oplus \mathcal{N}$ we can represent each operator from C as 2×2 block operator matrix
\begin{equation}
(2.4) \quad K_X = \begin{pmatrix} T & \Gamma^* \\ \Gamma & X \end{pmatrix}
\end{equation}

Here
\begin{align*}
T &= P_M K_0|_M, \quad \Gamma = P_M K_0|_M, \\
\end{align*}

and X is some non-negative contraction in \mathcal{N}, which distinguishes different elements from C. Since each $K_X \in C$ is non-negative and contractive then
\begin{equation}
(2.5) \quad T \geq 0; \quad T^2 + \Gamma^* \Gamma \leq I
\end{equation}

Note further that
\begin{equation}
(2.6) \quad K_X + \varepsilon I \geq 0; \quad (1 + \varepsilon)I - K_X \geq 0
\end{equation}

for any $\varepsilon > 0$.

The block matrix representation of K_X and the Schur-Frobenius factorization formula transform 2.6 into the following block matrix inequalities:
\begin{equation}
(2.7) \quad \begin{pmatrix} I & 0 \\ \Gamma(T + \varepsilon)^{-1} & I \end{pmatrix} \begin{pmatrix} T + \varepsilon & 0 \\ 0 & X + \varepsilon - \Gamma(T + \varepsilon)^{-1}\Gamma^* \end{pmatrix} \begin{pmatrix} I \\ (T + \varepsilon)^{-1}\Gamma^* \end{pmatrix} \geq 0,
\end{equation}

\begin{equation}
(2.8) \quad \begin{pmatrix} I & 0 \\ -\Gamma(I + \varepsilon - T)^{-1} & I \end{pmatrix} \begin{pmatrix} 1 + \varepsilon - T & 0 \\ 0 & 1 + \varepsilon - X - \Gamma(1 + \varepsilon - T)^{-1}\Gamma^* \end{pmatrix} \begin{pmatrix} I \\ -(1 + \varepsilon - T)^{-1}\Gamma^* \end{pmatrix} \geq 0.
\end{equation}
By our assumptions $T \geq 0$ and $I - T \geq 0$. Therefore block matrix inequalities (2.7) and (2.8) are reduced to

\[
\begin{align*}
X + \varepsilon I - \Gamma(T + \varepsilon I)^{-1}\Gamma^* & \geq 0, \\
(1 + \varepsilon)I - X - \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* & \geq 0, \quad \varepsilon > 0.
\end{align*}
\]

Observe that operator functions of ε in the left hand sides of inequalities (2.9) are monotone. Setting

\[
Y := X - \lim_{\varepsilon \downarrow 0} \Gamma(T + \varepsilon I)^{-1}\Gamma^*
\]

we conclude from (2.9) that

\[
KX \in C \text{ if and only if } (2.10) 0 \leq Y \leq I - \lim_{\varepsilon \downarrow 0} \{\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^*\}.
\]

Hence the equality

\[
(2.11) \quad I - \lim_{\varepsilon \downarrow 0} \{\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^*\} = 0
\]

is the criterium that there are no contractive non-negative extension of K_0 in \mathcal{H} other than K.

Let us express now (2.10) and (2.11) in terms of given K and A. To this end we use the following proposition.

Proposition 2.1. Let L be a bounded invertible operator in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ given as 2×2 block operator matrix,

\[
L = \begin{pmatrix} R & U \\ V & S \end{pmatrix},
\]

where R and S are invertible operators in \mathcal{M} and \mathcal{N}, respectively, and U, V act between \mathcal{M} and \mathcal{N}. If R is invertible operator in \mathcal{M}, then

\[
\begin{pmatrix} R^{-1} & 0 \\ 0 & 0 \end{pmatrix} = L^{-1} - L^{-1}P_N\Lambda^{-1}P_NL^{-1}, \quad \Lambda = P_NL^{-1}|_N.
\]

Setting

\[
\begin{align*}
\Lambda_1, \varepsilon &= P_N(K + \varepsilon I)^{-1}|_N, \\
\Lambda_2, \varepsilon &= P_N[(1 + \varepsilon)I - K]^{-1}|_N
\end{align*}
\]

and applying (2.12) with $L = K + \varepsilon I$ and

\[
\begin{align*}
R &= T + \varepsilon I, \\
U &= \Gamma^* = P_MK|_N = P_M[K + \varepsilon I]|_N, \\
V &= \Gamma = P_NK|_M = P_N[K + \varepsilon I]|_M, \\
S &= P_N\Lambda|_N + \varepsilon I
\end{align*}
\]

yields

\[
\Gamma(T + \varepsilon I)^{-1}\Gamma^* = P_NK|_N + \varepsilon I - \Lambda_1^{-1}.
\]

In the same fashion we get

\[
\Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^* = P_N[I - K]|_N + \varepsilon I - \Lambda_2^{-1}.
\]

Hence

\[
(2.14) \quad I - \lim_{\varepsilon \downarrow 0} \{\Gamma(T + \varepsilon I)^{-1}\Gamma^* + \Gamma[(1 + \varepsilon)I - T]^{-1}\Gamma^*\} = \lim_{\varepsilon \downarrow 0} \Lambda_1^{-1} + \lim_{\varepsilon \downarrow 0} \Lambda_2^{-1}.
\]

Combining (2.10), (2.11) and (2.14) results in the following theorem.
Theorem 2.2. Let K be a non-negative contraction in the Hilbert space $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$, K_0 is the restriction of K onto the subspace $\mathcal{M} = \mathcal{M} \oplus \{0\}$ and

$$G_1 = \lim_{\epsilon \downarrow 0} (P_N[K + \epsilon I]_{|\mathcal{N}})^{-1} \quad G_2 = \lim_{\epsilon \downarrow 0} (P_N[I - K + \epsilon I]_{|\mathcal{N}})^{-1}$$

Then the set C of all non-negative contractive extensions K_X of K_0 in \mathcal{H} is described by expression

$$(2.15) \quad K_X = \begin{pmatrix} P_M K_{|\mathcal{M}} & P_M K_{|\mathcal{N}} \cr P_M K_{|\mathcal{N}} & X \end{pmatrix},$$

where X runs the set of all non-negative contractions in \mathcal{N} satisfying inequalities

$$(2.16) \quad P_N K_{|\mathcal{N}} - G_1 \leq X \leq P_N K_{|\mathcal{N}} + G_2.$$

In particular, K is the unique non-negative contractive extension of K_0 if and only if $G_1 = G_2 = 0$.

Remark 2.3. The set C of non-negative contractive of K_0 contains the minimal extension $K_{X_{\mu}}$ with $X_{\mu} = P_N K_{|\mathcal{N}} - G_1$ in (2.15) and the maximal extension $K_{X_{M}}$ with $X_{M} = P_N K_{|\mathcal{N}} + G_2$ in (2.15). If $G_1 = 0 (G_2 = 0)$, then K is the minimal (maximal) element of C.

Theorem 2.2 can be formulated in terms of non-negative self-adjoint operator A and its non-negative singular perturbations.

Theorem 2.4. Let A be a non-negative self-adjoint operator in the Hilbert space \mathcal{H}, A_0 is a densely defined closed symmetric operator, which is a restriction of A onto a linear subset $\mathcal{D}(A_0) \subset \mathcal{D}(A)$ such that $\mathcal{N} = (I + A)\mathcal{D}(A_0) \neq \{0\}$ and let

$$G_1 = \lim_{\epsilon \downarrow 0} (P_N[I + A][A + \epsilon I]_{|\mathcal{N}})^{-1} \quad G_2 = \lim_{\epsilon \downarrow 0} (P_N[I + A][I + \epsilon A]_{|\mathcal{N}})^{-1}$$

Then the set of all non-negative singular perturbations A_Y of A is described by the formula

$$(2.17) \quad \left\{ \begin{array}{l} f = g - Y(I + A)g, \\ A_Y f = Ag + Y(I + A)g, \end{array} \right.$$

where $g \in \mathcal{D}(A)$ and Y runs the set of non-negative contractions in \mathcal{N} satisfying inequalities

$$(2.18) \quad -G_1 \leq Y \leq G_2.$$

A has no singular non-negative perturbations if and only if $G_1 = G_2 = 0$.

Remark 2.5. The set of all non-negative singular perturbations of A contains the minimal perturbation A_{μ} with and the maximal perturbation A_{M} such that any non-negative perturbation A_X satisfies inequalities

$$(I + A_M)^{-1} \leq A_Y \leq (I + A_{\mu})^{-1}.$$

The corresponding values of parameters Y in Theorem 2.4 are

$$(2.19) \quad Y_{\mu} = -G_1 \quad Y_{M} = G_2$$

If $G_1 = 0 (G_2 = 0)$, then the minimal (maximal) perturbation coincides with A.

By simple calculation we get from (2.17) the following version of the M.G. Krein resolvent formula.
Proposition 2.6. The set of resolvents of all non-negative singular perturbations A_Y of A is described by the M.G. Krein formula

\[(A_Y - zI)^{-1} = (A - zI)^{-1}\]

\[-(1 + z)(A + I)(A - zI)^{-1} Y \left[(1 + z)P_N(A + I)(A - zI)^{-1} Y \right]^{-1} \times \]

\[P_N(A + I)(A - zI)^{-1},\]

where Y runs contractions in N satisfying inequalities $-G_1 \leq Y \leq G_2$.

3. Application to some differential operators

Let us consider the multiplication operator A in $L^2(\mathbb{R}^n)$ by the continuous function $\varphi(k)$, $k^2 = k_1^2 + \ldots + k_n^2$, such that $\varphi(k) > 0$ almost everywhere and

\[\int_0^\infty \frac{1}{(1 + \varphi(k))^2} k^{n-1} dk < \infty.\]

A is a non-negative self-adjoint operator,

\[\mathcal{D}(A) = \left\{ f : \int_{\mathbb{R}^n} |1 + \varphi(k)|^2 |f(k)|^2 dk < \infty, \; f \in L^2(\mathbb{R}^n) \right\}.\]

In the sequel $\hat{\delta}$ stands for the unbounded linear functional in $L^2(\mathbb{R}^n)$, formally defined as follows:

\[\hat{\delta}(f) = \int_{\mathbb{R}^n} f(k) dk.\]

Note that the domain of $\hat{\delta}$ contains $\mathcal{D}(A)$. Let us denote by A_0 the restriction of A onto linear set

\[\mathcal{D}_0(A) := \left\{ f : f \in \mathcal{D}(A), \; \hat{\delta}(f) = 0. \right\} \]

The closure of $A_0 \neq A$ and

\[\mathcal{N} = (L^2(\mathbb{R}^n) \ominus (I + A)\mathcal{D}(A)) = \left\{ \xi \cdot \frac{1}{1 + \varphi(k)}, \; \xi \in \mathbb{C} \right\}.\]

Applying Theorem 2.4 yields

Proposition 3.1. A is the unique non-negative self-adjoint extension of A_0 that is A has no non-negative singular perturbations if and only if

\[\int_0^\infty \frac{1}{\varphi(k)(1 + \varphi(k))} k^{n-1} dk = \infty \quad \text{and} \quad \int_0^\infty \frac{1}{(1 + \varphi(k))} k^{n-1} dk = \infty.\]

Put $\varphi(k) = k^2$ and let $n = 2$. Then the both integrals in Proposition 3.1 are divergent. Hence the restriction A_0 of the operator A of multiplication by k^2 in $L^2(\mathbb{R}^2)$ onto the linear set (3.2) has unique non-negative self-adjoint extension in L^2. Note that the multiplication operator by k^2 in $L^2(\mathbb{R})$ is isomorphic to the self-adjoint Laplace operator $-\Delta$ in $L^2(\mathbb{R})$ and its concerned here restriction A_0 is isomorphic to the restriction $-\Delta$ onto the Sobolev subspace $H^2_0(\mathbb{R} \setminus \{0\})$. As follows, the self-adjoint Laplace operator in $L^2(\mathbb{R}^2)$ has no non-negative singular perturbations with support at one point of \mathbb{R}^2.

However, the non-negative singular perturbations of $-\Delta$ in $L^2(\mathbb{R}^2)$ with support at two or more points do already exist. For example, let us consider there the
Hence \(G \) is one-dimensional and consists of functions collinear to \(N \) operator \(A \) extensions. It remains to note that \(A \) subset of function \(f \) \(L \) extensions in \(A \) in this case self-adjoint Laplace operator in \(A \) 3.1 is convergent while the second one as before divergent. Hence the restriction \(R \) has infinitely many non-negative self-adjoint extension in \(L \) the maximal element in the set of this perturbation.

Proposition 3.2. assuming that \(4 \) \((perturbations of \(-\Delta \) polyharmonic operator \() \) is non-negative symmetric operator which is isomorphic to the restrictions \(A \) of the in \(-\Delta \)), Let us consider the restriction \(R \) has no such perturbations in \(L \). As the next example we consider the multiplication operator \(A \) by \(k^2 \) if \(n > 2l \) then there is the infinite set of non-negative singular perturbations of \(-\Delta \) associated with \(A_0 \) and for those as non-negative extensions of \(A_0 \) in the set of the in \(H^2 \) \((R_2 \setminus \{0\}) \) the operator \(-\Delta \) is the maximal element.

Put now as above \(\varphi(k) = k^2 \) and let \(n = 3 \). Then the first integral in Proposition 3.1 is convergent while the second one as before divergent. Hence the restriction \(A_0 \) of the operator \(A \) of multiplication by \(k^2 \) in \(L_2(R_3) \) onto the linear set \(3.2 \) has infinitely many non-negative self-adjoint extension in \(L_2(R_3) \). As follows, the self-adjoint Laplace operator in \(L_2(R_3) \) has infinitely many non-negative singular perturbations with support at one point of \(R_3 \) and the standardly defined Laplace the maximal element in the set of this perturbation.

As the next example we consider the multiplication operator \(A \) by \(k^{2l} \) in \(L_2(R_n) \) assuming that \(4l \leq n + 1 \). \(A \) is isomorphic to the polyharmonic operator \((-\Delta)^l \) in \(L_2(R_n) \). Let us consider the restriction \(A_0 \) of \(A \) with the domain \(3.2 \) that is non-negative symmetric operator which is isomorphic to the restriction of the polyharmonic operator \((-\Delta)^l \) onto the Sobolev subspace \(H^2 \) \((R_2 \setminus \{0\}) \). Applying Theorem 2.3 and Proposition 3.1 results in the following proposition.

Proposition 3.2. If \(n < 2l \) then there are infinitely many non-negative singular perturbations of \((-\Delta)^l \) associated with the one-point symmetric restriction \(A_0 \) and \((-\Delta)^l \) is the minimal element in the set of the non-negative extensions of \(A_0 \) in \(H^2 \) \((R_n \setminus \{0\}) \).

If \(n = 2l \) then \((-\Delta)^l \) has no such perturbations in \(H^2 \) \((R_n \setminus \{0\}) \).

If \(n > 2l \) then there is the infinite set of non-negative singular perturbations of \((-\Delta)^l \) associated with \(A_0 \) and for those as non-negative extensions of \(A_0 \) in the set of the in \(H^2 \) \((R_n \setminus \{0\}) \) the operator \(-\Delta \) is the maximal element.
REFERENCES

1. Albeverio S., Gesztesy F., Høegh-Krohn R. and Holden H. *Solvable models in quantum mechanics*, Springer Verlag (1988), 1 - 566

2. Krein M.G., *Theory of self-adjoint extensions of semibounded Hermitian operators and its applications. I*. Mathematical reports (Mat. Sbornik (in Russian)), v. **20**(62), 3 (1947)

3. Arlinskii Yu. and Tsekanovskii E. *The von Neumann Problem for Nonnegative Symmetric Operators*, Integr. equ. oper. theory **51** (2005), 319 - 356

Odessa National I.I. Mechnikov University, Odessa 65026, Ukraine

E-mail address: vadym@paco.net