Absorption spectra at the iodine 3d ionisation threshold following the CH$_x$I$^+$ (x = 0–3) cation sequence

Kaja Schubert,aab Alexander A. Guda,c Karolin Mertens,b Jan O. Schunck,dab Stefan Schippers,d Alfred Müller,c Sadia Bari,d Stephan Klumpp,bab and Michael Martinsb*ab

Yields of atomic iodine Iq (q ≥ 2) fragments resulting from photoexcitation and photoionisation of the target cations CH$_x$I$^+$ (x = 0–3) have been measured in the photon-energy range 610 eV to 670 eV, which comprises the threshold for iodine 3d ionisation. The measured ion-yield spectra show two strong and broad resonance features due to the excitation of the 3d$_{3/2,5/2}$ electrons into s states similar to atomic iodine. In the 3d pre-edge range, electrons are excited into molecular orbitals consisting of iodine, carbon, and hydrogen atomic orbitals. These transitions have been identified by comparison with literature data and by simulations using time-dependent density functional theory (TDDFT) with the KMLYP functional. The ion-yield spectrum for CH$_3$I$^+$ resembles the spectrum of IH$^+$ [Klumpp et al., Phys. Rev. A, 2018, 97, 033401] because the highest occupied molecular orbitals (HOMO) of the H and CH$_3$ fragments both contain a single vacancy, only. For the molecular cations with higher number of vacancies in the valence molecular orbitals CH$_x$I$^+$ (x = 0–2), a stronger hybridisation of the molecular orbitals occurs between the organic fragment and the iodine resulting in a change of bonding from a single σ bond in CH$_3$I$^+$ to a triple bond including two π orbitals in CI$^+$. This is reflected in the resonance energies of the observed absorption lines below the iodine 3d excitation threshold.

Introduction

Inner-shell absorption spectroscopy utilising soft X-rays is an ideal tool to probe the chemical environment of a specific element within a molecule. The power of inner-shell excitation was proven by Siegbahn and co-workers in photoelectron spectroscopy studies of the famous ESCA molecule ethyl trifluoroacetate (see e.g. the recent review by Martensson et al. 1) which show a chemical shift of the binding energy of carbon 1s electrons depending on the chemical environments established by the different ligands.

In general, to understand the influence of each ligand on a molecule, one approach is to vary the number of the ligands (e.g. by removing them) and to determine the changes in the spectrum. However, these newly formed molecules are often not stable. Here, ionic targets offer a way to prepare various (ionic) molecular species in an ion beam that are not accessible by other methods. The different molecular ions can easily be separated by their mass-to-charge ratio and, thus, purified target beams of molecular fragments (radicals) can be provided for experiments. We have chosen the molecular target ion sequence CH$_x$I$^+$ (x = 0–3) as a model system to study, in a combined experimental and theoretical effort, the dependence of the molecular electronic and geometric structure on the number x of hydrogen atoms bound to the central carbon atom. Previously, we examined the electronic structure of the IH$^+$ cation.2

The nature of most of the observed resonances was dominated by the iodine atom. However, for one observed resonance (peak E in Fig. 6b) the final molecular orbital was identified to result from hybridisation of the atomic iodine 5p and the hydrogen 1s orbital to form a (5pr) σ* state. By exchanging the bonding partner of the iodine atom from hydrogen in IH$^+$ to carbon in CH$_x$I$^+$ the explicit changes of the electronic structure of the different molecules are studied in the present project.

Neutral iodomethane is intensively studied because it can easily be excited either by electrons,3 by high-power lasers of
193 nm, 4–8 266 nm, 9–11 or even longer wavelengths, 12–18 dissociating the molecule. 8,19,20 Photons of these different wavelengths, produced by the Sun, 21–24 can dissociate CH3I from natural sources 25–27 in Earth’s atmosphere forming atomic iodine (ions) which act as catalysts for ozone depletion. 28–30 Unravelling the dissociation and excitation mechanisms of the iodomethane molecule is important to understand its role in the chemistry of Earth’s atmosphere. 31,32

Studies of iodomethane in the soft X-ray regime are limited. Olney et al. 33 provide an overview of the work done until 1997. More recent publications in which the valence structure of iodomethane is studied discuss the use of photoelectron spectroscopy with photons in the energy range of up to 30 eV. 34–38 The iodine 4d resonance was studied by absorption 39 and photoelectron spectroscopy, 40–43 by electron excitation techniques, 34,44 and is exploited to study charge transfer dynamics using the pump–probe technique with short X-ray pulses produced by free-electron lasers (FELs), 45–50 or a combination of optical and XUV pulses from higher harmonic generation (HHG) sources. 11,51,52

Inner-shell excitation studies of iodomethane including the carbon 1s 53 or the iodine 3d resonance 54,55 have been scarce, but a comprehensive study examining the iodine 3d threshold in neutral CH3I was published recently, 56 showing photo- and Auger electron spectra in the energy regions of the 3d, 4s, and 4p thresholds.

Experiment

The experiments were carried out at the ion beamline facility PIPE at P04, PETRA III, DESY, using accelerated beams of CH3I+ (x = 0–3) molecular ions. Details of the set-up and operation of PIPE 57–59 and of the photon beamline P04 60 have been discussed previously. The ion preparation and the beamline parameters for the soft X-ray photons delivered by P04 are chosen as described in the context of the IH+ experiment. 5

For the production of the target molecular cations, liquid CH3I was evaporated under vacuum conditions. The vapour was leaked into a 10 GHz-ECR 61 ion source via an electronically controlled needle valve keeping the gas pressure within the ion source in the order of 1 × 10−4 hPa. Fig. 1 shows the mass spectrum of CH3I+ (x = 0–3) molecular cations measured behind the mass analysing dipole magnet. The resolving power for the ion preparation is sufficient to distinguish each single molecular ion of the sequence without overlapping mass lines. Still, some mixing of molecular ions can occur because of different stable isotopes of the constituent elements. Iodine has only one isotope, but carbon has two. 13C has an abundance of 1% 62 and its presence in the experiment is visible at the mass line marked with 13CH3I+. The mass lines of CH3I+ (x = 1–3) can be mixed with ions containing the 13C isotope and one hydrogen atom less, but because of the low abundance of 13C, we consider these contributions to be negligible.

To obtain absorption spectra of the CH3I+ (x = 0–3) molecular cations, the merged-beams technique was used. 57,63,64

The 6 keV, mass-to-charge selected ion beam from the ECR source was overlaid with the photon beam from the P04 beamline in the approximately 1.5 m long merged beam section of PIPE. To reduce the background from collisions of the chosen molecular ion with residual gas, the background pressure in the merged-beam interaction region of the photons and the ions was kept below 2 × 10−10 mbar.

As a measure for the absorption of photons by the target ions, the atomic fragment-ion channels I+ (q = 2–4) were individually recorded as functions of the photon energy (Fig. 2). The maximum count rate in the different ion spectra scales roughly with the available ion current of the target ion for the direct 1d photo-ionisation. Because of the low ion current for CI+ and CHI+ target ions, only the fragment channels up to q = 3 were recorded.

The ion fragment channels were separated by means of mass spectrometry by a second dipole magnet and were detected by a channeltron detector capable of counting single ions. 57,65 The recorded spectra were normalised to the flux of target ions, measured with a Faraday-cup behind the interaction region inside the fragment-separating dipole magnet, and to the photon flux measured with a calibrated photodiode. Both quantities were recorded in parallel to the ionic fragment counting.

To disperse the soft X-rays of beamline P04, a 400 lines per mm grating was chosen in order to achieve a photon flux of 2 × 1014 photons per s. The exit slit of the P04 monochromator was set to 1500 μm resulting in a bandwidth of the photons of about 1 eV.

Theoretical methods

To model the observed absorption spectra, the molecular geometry, the electronic structure and the transition probabilities were calculated using density functional theory (DFT) with the KMLYP functional in the ADF-2017 software suite. 66–68 The total charge for all molecules was set equal to 1+. Relativistic effects were taken into account via the non-collinear spin–orbit
approximation, which gives a more accurate prediction of the electron energies for heavy elements than the collinear approach. The electron transition energies and oscillator strengths were calculated within the Tamm–Dancoff approximation for the time-dependent DFT (TDDFT) including the self-consistent calculation of spin–orbit effects. For the TDDFT calculations, no symmetry constraints were used to restrict the wavefunction, while the assignment of the transitions was performed afterwards in terms of non-relativistic symmetric molecular orbitals. The absolute energy values of the calculated spectra were shifted by 0.6 eV using peak A (Fig. 6) in the experimental absorption spectrum of I+ as a reference. This shift is explained by the uncertainty of theoretical DFT calculations for calculating absolute values of the core level energies. In general, for deeper core states this error increases. However, the relative chemical energy shifts are more precise within the same computational approach due to cancelling of uncertainties for different spectra originated from the same core level. In our work we have applied a rigid shift of 0.6 eV for all spectra to align them with the experimental data, while relative shifts between calculated spectra for different species were not adjusted. The calculated resonances were convoluted with a 1.0 eV (FWHM) Gaussian matching the experimentally observed width. To describe higher-energy states, the largest available quadruple-zeta basis set with four polarisation functions (QZAP) was additionally extended with diffuse iodine p-orbitals.

Experimental results

For the cations CH₃I⁺ (x = 0–3), different ion fragment channels Iⁿ⁺ up to q = 4 were observed depicted in Fig. 2, which were summed up to obtain the spectra shown in Fig. 3b. For x = 2, 3 the fragment charge states q = 2–4 and for CH⁺ and Cl⁺ the fragment channels q = 2, 3 were measured, as for these two fragments the q = 4 channel was too weak.

For the IH⁺ cation we assumed that the hydrogen is ejected as H⁺ after photoionisation. As can be seen in the partial ion-yield absorption spectra in Fig. 2, the dominating fragment channels for the atomic iodine are q = 4–6, especially I⁵⁺ (panel e in Fig. 2). For the larger molecular cations CH₃I⁺ and CH₂I⁺, the dominating fragment channel is I⁶⁺, while for the smaller cations CH⁺ and IC⁺ the dominating fragment channel is I⁵⁺. This indicates, the more constituents a molecule has, especially hydrogen, the more charge can be carried away by its fragments after the charge has been transferred to them. This results in a reversal of the I⁵⁺/I⁴⁺ fragment ratio from Cl⁺ to CH₁⁺. In the following the sum of the partial ion yields will be discussed which are referred to as absorption spectra. Fig. 3 compares the measured absorption spectra of CH₃I⁺ (x = 0–3) with the spectroscopic features associated with photoproduction of a 3d vacancy in the atomic I⁺ ion.

Charged carbon, hydrogen or CH₄⁺ fragments were not observed. The reason is the large kinetic energy release of these light fragments which they acquire during the fragmentation process. With a typical charge q = 3 of the iodine fragment, a singly charged H⁺ or C⁺ fragment with a mean C−1 or H−1 bond length of around 2 Å, the kinetic energy release is approximately 21 eV. This results in a large transverse momentum change of the light fragments, which largely inhibits their detection. The effect reduces also the transmission of the iodine fragments. This transmission must be known for the derivation of absolute cross sections from the measured particle counts rates. In principle, an estimate for the transmission can be derived from detailed ion-optical calculations. However, such simulations are beyond the scope of the present work.
Calculations

To make a line assignment and to understand the contribution of the atomic orbitals to the absorption lines, we performed calculations based on density functional theory. Table 1 shows equilibrium bond length values and Mulliken charges on iodine for the different molecular ion species. The Mulliken charge decreases along with the number \(x \) of hydrogen atoms in the series of \(\text{CH}_x\text{I}^+ \) \((x = 0-3)\) upon filling the anti-bonding orbitals. Similarly, the bond length \(\text{C–I} \) is larger for \(\text{CH}_3\text{I}^+ \) compared to \(\text{CHI}^+ \) and \(\text{CH}_2\text{I}^+ \).

The relaxed geometries reported in Table 1 were used further for TDDFT simulations. The TDDFT approach does not account for all many body interactions in the iodine 5d–n\(f \) transitions which result in rich multiplet structures. However, we have recently shown\(^3\) its applicability to iodine 5d–n\(p \) transitions. The spectra depicted as solid lines in Fig. 7a–d show the results of the calculations in comparison with the experimentally data. Table 2 lists the final-state configurations of the observed absorption lines according to the theoretical model.

Table 1 Ground-state geometry and Mulliken charge for the different molecular ion species \(\text{CH}_x\text{I}^+ \) \((x = 0–3)\) and \(\text{IH}^+ \). The binding energy for the bent configuration of the \(\text{CI}^+ \) molecule ion has been determined to be energetically more favourable by 0.06 eV than the linear one.

Molecular ion	I–X bond length in Angstrom \((X = \text{H or C})\)	Mulliken charge on \(\text{I}^+ \)	Molecular ion
\(\text{IH}^+ \)	1.63	0.89	\(\text{CI}^+ \)
\(\text{Cl}^+ \)	1.88	1.00	\(\text{CHI}^+ \) linear \((180°)\)
\(\text{CHI}^+ \)	1.85	0.98	\(\text{CHI}^+ \) bent \((152°)\)
\(\text{CH}_2\text{I}^+ \)	2.01	0.91	\(\text{CH}_3\text{I}^+ \)
\(\text{CH}_3\text{I}^+ \)	2.10	0.81	\(\text{CI}^+ \)

The three-dimensional visualisation of the valence molecular orbitals for the molecular cation \(\text{IH}^+ \) and for the cationic sequence \(\text{CH}_x\text{I}^+ \) \((x = 0–3)\) are shown in Fig. 4.

Fig. 5 shows the molecular orbitals of the neutral constituents \(\text{H}, \text{CH}, \text{CH}_2 \) and \(\text{CH}_3 \) which form the molecular orbitals after their hybridisation with the iodine 5p states. In terms of electronic configuration, \(\text{H} \) and \(\text{CH}_3 \) are very similar. As depicted in Fig. 5, both constituents miss one electron to complete their valence shell. The single bond of \(\text{H}^+ \) is formed by the hybridisation of the valence iodine 5p orbital and the hydrogen 1s orbital.\(^2\)

Though, \(\text{CH}_3 \) offers a \(n \)-type unoccupied orbital oriented around the CI bond which results in its low hybridisation with iodine 5p\(x \) and 5p\(y \) orbitals, oriented perpendicularly to the CI bond. In contrast, the empty carbon 2p\(z \) orbital of \(\text{C}, \text{CH}_2 \) is suitable for hybridisation. The \(\text{Cl}^+ \) molecular ion, like neutral \(\text{CO} \), exhibits a triple bond. The valence carbon 2p and the iodine 5p orbitals form three bonding and three anti-bonding orbitals. Two of them of \(n \)-type, directed perpendicularly to the CI bond, are degenerate.

Discussion

The ionisation thresholds for the 3d\(5s \) and 3d\(3/2 \) levels are located at 619.3 eV and 630.8 eV, respectively, for neutral atomic iodine.\(^74\) In the molecular iodine spectra shown in Fig. 3b, the broad iodine 3d\(5s \rightarrow e\{f \) lines are visible above 630 eV, similar to the atomic iodine ion from Fig. 3a. As indicated by the red dashed lines in Fig. 3b, the spin–orbit splitting of the \(e\{f \) lines is apparently larger for the molecular cation sequence and the molecular \(e\{f \) appear to be broader compared to the atomic ones. Further, the position of the \(e\{f \) lines on the energy scale are comparatively stable, slightly shifting to lower photon energies for smaller numbers of hydrogen \(x \) in the cation ion sequence \(\text{CH}_x\text{I}^+ \). This observed small energy shift of the molecular \(e\{f \) lines relative to the \(\text{I}^+ \) resonances at 647 eV and 658 eV can rather be explained by an increase of line broadening with respect to the atomic iodine ion \(\text{I}^+ \) lines than by an increase of spin–orbit splitting of the molecular lines.

More distinct spectroscopic features can be seen below the iodine 3d ionisation threshold (Fig. 6 and 7). Obviously, the resonance structure of the cations \(\text{CH}_x\text{I}^+ \) \((x = 0–3)\) changes with the number of hydrogen atoms in the molecules. This can be
Table 2. Final-state configurations of the observed absorption lines labelled A–E in Fig. 6 and 7 of the molecular cations IH + and CH3I + (x = 0–3) according to the calculations (details see text). In case of a strong mixing of different levels forming one orbital, the percentage is given in front of the configuration. Only leading atomic orbitals with a coefficient larger than 10% involved in the hybridisation (given in parenthesis in descending order of their percentage) are given for the different configurations. Due to the extended diffuse basis set QZ4P used for the calculations (see text), the p-orbitals with large principal quantum numbers n are described by linear combinations of basis atomic functions. Therefore, the assignment of higher lying np-states (n ≥ 7) in terms of 7p, 8p, etc., levels can be ambiguous. Orbitals marked with SO are partner spin–orbit levels, with c denoting the label of the partner, respectively. The terms labelled with E1/E2/E3 for the linear geometry of CHI+ are split due to exchange interaction.

Molecular cation	Line label	IH+ (Cα)	CH3I+ (Cα)	CH3I+ (Cα)
A	(I 5pα, 3p3)/SO	E (I 5pα, 3p3)/SO	B (C 2p2/I 3p3)/SO	
B	(I 5pα, 3p3)/SO	E (I 5pα, 3p3)/SO	B (C 2p2/I 3p3)/SO	
C	72%: (I 6pα, 6p3/I 6d3, 6d6)	60%: A1 (I 6p/1 H 2s)	40%: E (I 6p, 6p/1 H 2s)	
D	53%: (H 2s/2p/I 6d3)	51%: E (I 5d3/2/2p/I 7p7/1 5d3/2/2p/I 7p7)	73%: B (C 2p2/I 3p3)/SO	
E	9%: (I 6p)	40%: E (I 3p3/2/I 6d3, 6d6/I 7p7/1 5d3/2/2p/I 7p7)	27%: B (C 7p7/1 5d3/2/2p/I 7p7)	

Molecular cation	Line label	Linear (Cα)	Bent (Cα)	CHI+ (Cα)
CHI+	A	E (C 2p2, 2p/I 3p3, 5p3)	A00 (C 2p2, 2p/I 3p3, 5p3)	
B	62%: (I 6p/2p)	56%: A0 (I 6p/2p)	(I 6p)	
C	80%: (I 3p3, 3p3/2/2p/I 6p6)	43%: A (I 3p3, 3p3/2/2p/I 6p6)	57%: (I 6p)	
D	46%: (I 7p7)	31%: A (I 7p7)	57%: (I 6p)	
E	9%: (I 6p)	22%: A (I 5p2/I 7p7)	33%: (I 6d3, 6d3/2/2p/C 6p3, 6p3/C 3p3, 3p3)	
E2/E3	31%: (I 7p7)	17%: A (I 5p2/I 7p7)	33%: (5p3/2/I 7p7)	

Easily understood in terms of occupation of molecular orbitals for the different CH2 fragments as we show in Fig. 5. A qualitative assignment of the resonances in CH2I+ can be performed by comparison with the absorption spectra of I+ and IH+ as shown in Fig. 6. Neutral CHI is of C4v symmetry. Its electronic ground state can be expressed as:14,15,75

$$K_e K_L M_e N_e [1a_1]^2[2a_1]^2[1e]^4[3a_1]^2[2e]^4 A_1.$$ (1)

Accordingly, the ground state of the molecular ion CH3I+ has an electron configuration:76-79

$$K_e K_L M_e N_e [1a_1]^2[2a_1]^2[1e]^4[3a_1]^2[2e]^4 E_{3/2,1/2}.$$ (2)

with a separation of ΔEIO ≈ 0.6 eV of the spin–orbit split term 1Ej. The 2e orbital is attributed to a localised 5p level in the iodine of the CH3I+ molecule. Attar et al.11 reported a transition from iodine 4d into a molecular orbital (4a1) which is attributed to a localised, anti-bonding σ* state of the C–I bond. With this information, the observed CH3I+ resonances below the iodine 3d ionisation threshold can be assigned to (Fig. 6) (A) 3d3/2 → 2e4, (B) 3d3/2 → 2e4, which is the 3d spin–orbit partner of A, and (E) 3d3/2 → 4a1. The theoretical calculations discussed above predict even more lines with a rich fine structure. Nonetheless, our achieved resolving power in the experiment is not good enough to separate the components of the multiplet and all lines are strongly broadened by approximately 1 eV due to the 3d core-hole lifetime. E.g., the line C is assigned to the transition 3d5/2 → 6p, but it may contain the spin–orbit–split counterpart of line (A) 3d3/2 → 2e4 which is not resolved. The (D) 7p line in IH+ is not observed in CH3I+. Forbes et al.56 came to a similar assignment for neutral CHI, recently. However, they did not observe the 3d5/2,3/2 → 2e4 line pair since the 2e orbital is fully occupied in the neutral molecule.

Summarising the resonance structures below the iodine 3d ionisation threshold in Fig. 7, the CH3I+ (x = 1–3) ions all show quite different behaviour in terms of line position and number of them in Table 3. However, theoretical analysis in Fig. 4 and Table 2 reveals that lines of the same origin are shifted compared relative to one another due the varying number of hydrogen atoms in the molecular ions.

Further, the lines B and C can be resolved separately for CH3I+ and CHI+, only. Some indication for line D can be...
observed in CHI⁺, but as in IH⁺, it is overshadowed by the rising edge of the 3d threshold.

The changes in the resonance structure for CI⁺ can be explained with its different electronic ground state configuration which has the same valence electronic structure as the neutral CO molecule:

\[
\text{\((1s)^2(2\sigma)^2(3\sigma)^2(\Im)^2(1\pi)^4(5\sigma)^2 \quad 1\Sigma^+\). (3)}
\]
The CO molecule is bound by a characteristic triple bond attributed to the (1\(p\)) and (5\(s\)) orbitals. In the ground state, these valence orbitals are filled. The lowest unoccupied molecular orbital is related to the anti-bonding (2\(p^*\)) orbitals and contributes to line A in the CI + spectrum, which is shifted with respect to the CH\(x\)I+ spectra (\(x = 1–3\)) due to the stronger interaction of the iodine with the single carbon atom (Fig. 7d). Any further resonances near the iodine 3d ionisation threshold could not be resolved because of the low signal-to-noise ratio.

The bonding nature of the iodine in IH + and CH\(3\)I+ can be compared to the similar isoelectronic configuration of the CH\(3\) and H counterparts. Resonance A in the molecular cations IH + and CH\(3\)I+ can be described by an almost pure atomic iodine 5p orbital. Weak hybridisation for the first transition in IH + and CH\(3\)I+ compared to other molecules is evident also from Fig. 4. Peak A in CHI, CH\(3\)I and CI corresponds to the transition into the anti-bonding \(\pi\) orbital which is described by an iodine 5p hybridised with the 2p orbital of carbon, oriented perpendicularly to the C–I bond. The latter is blocked for the CH\(3\) constituent due to presence of three hydrogen atoms.

Resonance E in all molecules is related to the anti-bonding \(\Sigma\) bond between the iodine 5p\(_z\) and the \(\pi\) orbital of the ligand directed along the C–I (or I–H) bond. The only exception is the feature marked E1 in the CHI + spectrum in Fig. 7c which arises from the opposite-spin counterpart of the feature A shifted by exchange interaction. Resonance B in the molecules IH + and CH\(3\)I+ is the spin–orbit counterpart of resonance A. However in CI +, CHI +, and CH\(3\)I + resonance A is shifted to higher energies and its spin–orbit counterpart overlaps with higher-energy continuum transitions. Therefore resonance B in CI +, CHI +, and CH\(3\)I + was assigned to the iodine 6p orbital directed perpendicularly to the C–I bond. Resonance C for IH +, CHI +, and CH\(3\)I +, and resonance D in CH\(3\)I + and CHI + is related to the hybridised iodine 6p and 6d orbitals. The higher-lying resonances belong to the iodine 7p orbital of the np Rydberg series which is hardly observed in our spectrum and masked by the onset of the iodine 3d excitation threshold.

Conclusions

To unravel the influence of ligands on the electronic structure of a molecule we studied the sequence of CH\(3\)I + (\(x = 0–3\)) cations as a model system. The absorption resonances observed below the iodine 3d ionisation threshold show a strong dependence on the number of hydrogen atoms \(x\). The observed lines for
Table 3 Chemical shifts observed for the absorption lines of the target cation sequence CH$_3$I$^+$ ($x=0–3$). Line E of CH$_3$I$^+$ is shifted by (2.85 ± 0.3) eV with respect to the 3d$_{5/2}$ → 4p$_{3/2}$ transition at 620.35 eV in neutral CH$_3$I.15 In the top row of the table, the chemical shift for CH$_3$I$^+$ is given with respect to the cation IH$^+$. For any other molecular cation in the sequence CH$_3$I$^+$ ($x=0–2$), the value of the chemical shift is given in respect to the CH$_3$I$^+$ cation.

| Molecular Line label (see text, Fig. 6 and 7); all values of the chemical shift are in eV |
|----------------------------------|----------------------------------|----------------------------------|-----------------|
| Reference | Target cation | A | B | C | D | E |
| IH$^+$ | CH$_3$I$^+$ | 0.3 ± 0.2 | 1.0 ± 0.2 | 0.9 ± 0.2 |
| CH$_3$I$^+$ | CH$_3$I$^+$ | 2.1 ± 0.2 | 0.3 ± 0.2 | 1.5 ± 0.2 | 0.7 ± 0.2 |
| Cl$^+$ | (1.8 ± 0.2) | 0.2 | 0.7 ± 0.2 | 1.6 ± 0.2 | (0.7 ± 0.4) | 0.5 ± 0.2 |
| I$^+$ | CH$_3$I$^+$ | 0.2 | 0.7 | 1.5 | 0.3 | 2.5 ± 0.2 |

CH$_3$I$^+$ and Cl$^+$ were assigned to electronic states known from the literature. According to (TD)DFT calculations, the resonances observed for CH$_3$I$^+$ and IH$^+$ shown in Fig. 6 have similar origins due to the similar nature of the hydrogen and CH$_3$ ligands. The evolution of the energy position and splitting of the resonances in the pre-edge spectra in CH$_3$I$^+$ series is explained by a change of occupation of first molecular antibonding orbitals and value of hybridisation mainly between iodine and fragment orbitals of π-type. The two main pre-edge resonances can be well described by a molecular orbital composed of single atomic orbitals, whereas the higher lying resonances in the pre-edge are influenced by stronger hybridisation between several delocalised atomic orbitals, e.g. π and d types for iodine. Finally sharp resonances on the main edge originate from the multiplet structure of d→f transitions.

As demonstrated in this work, inner-shell spectroscopy is a powerful tool to reveal the electronic structure of molecules within a different chemical environment. In combination with an ion beam in a merged beam geometry it allows to study molecular ions not accessible by other methods and unveil their electronic structure.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was carried out at the synchrotron light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We would like to thank L. Glaser, G. Hartmann, F. Scholz, J. Seltmann, and J. Viehhaus for assistance in using beamline P04. The construction of PIPE and this work were funded by the German ministry for education and research (BMBF) under contracts 05KS7RG1, 05KS7GU2, 05KS7KE1, 05KS7RF2, 05K10RG1, 05K10GUB, 05K10KEA, and 05K10RF2 within the “Verbundforschung” funding scheme. KM and MM acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) via SFB755 Nanoscale Photonic Imaging. SK acknowledges the funding of the EUCALL project within the European Union's Horizon 2020 research and innovation programme under the grant agreement No. 654220.

Notes and references

1. N. Märtensson, E. Sokolowski and S. Svensson, J. Electron Spectrosc. Relat. Phenom., 2014, 193, 27.
2. S. Klumpp, A. A. Guda, K. Schubert, K. Mertens, J. Hellhund, A. Müller, S. Schippers, S. Bari and M. Martins, Phys. Rev. A, 2018, 97, 033401.
3. H. Kato, H. Masui, M. Hoshino, H. Cho, O. Ingólfsson, M. J. Brunger, P. Limão-Vieira and H. Tanaka, J. Chem. Phys., 2010, 133, 054304.
4. C. Fotakis, M. Martin, K. Lawley and R. Donovan, Chem. Phys. Lett., 1979, 67, 1.
5. G. V. Veen, T. Baller and A. D. Vries, Chem. Phys., 1985, 97, 179.
6. R. E. Continetti, B. A. Balko and Y. T. Lee, J. Chem. Phys., 1988, 89, 3383.
7. A. Gilchrist, G. Hancock, R. Peverall, G. Richmond, G. A. D. Ritchie and S. Taylor, J. Phys. Chem. A, 2008, 112, 4531.
8. H. Xu and S. T. Pratt, J. Chem. Phys., 2013, 139, 214310.
9. D. W. Chandler, J. W. Thoman, M. H. Janssen and D. H. Parker, Chem. Phys. Lett., 1989, 156, 151.
10. R. O. Loo, H. P. Haerri, G. E. Hall and P. L. Houston, J. Chem. Phys., 1989, 90, 4222.
11. A. R. Attar, A. Bhattacherjee and S. R. Leone, J. Phys. Chem. Lett., 2015, 6, 5072.
12. C. Kosmidis, S. Kaziannis, P. Siozos, A. Lyra, L. Robson, K. Ledingham, P. McKenna and D. Jaroszynski, Int. J. Mass Spectrom., 2006, 248, 1.
13. H. Liu, Z. Yang, Z. Gao and Z. Tang, J. Chem. Phys., 2007, 126, 044316.
14. Y. Wang, S. Zhang, Z. Wei and B. Zhang, J. Phys. Chem. A, 2008, 112, 3846.
15. G. Gitzinger, M. E. Corrales, V. Loriot, R. de Nalda and L. Bañares, J. Chem. Phys., 2012, 136, 074303.
A. Dorn, A. Wolf, J. Ullrich and A. Müller, *J. Phys. B: At., Mol. Opt. Phys.*, 2014, 47, 115602.

A. Müller, D. Bernhardt, A. Borovik Jr., T. Buhr, J. Hellhund, K. Holste, A. Kilcoyne, S. Klumpp, M. Martins, S. Ricz, J. Seltmann, J. Viefhaus and S. Schippers, *Astrophys. J.*, 2017, 836, 166.

A. Müller, D. Bernhardt, A. Borovik Jr., T. Buhr, J. Hellhund, K. Holste, A. Kilcoyne, S. Klumpp, M. Martins, S. Ricz, J. Seltmann, J. Viefhaus and S. Schippers, *Astrophys. J.*, 2017, 836, 166. DOI: 10.1002/xrs.3035.

J. Viefhaus, F. Scholz, S. Deinert, L. Glaser, M. Ilchen, J. Seltmann, P. Walter and F. Siewert, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 2013, 710, 151.

R. Trassl, P. Hathiramani, F. Broetz, J. B. Greenwood, R. W. McCullough, M. Schlapp and E. Salzborn, *Phys. Scr.*, 1997, 1997, 380.

M. Berglund and M. Wieser, *Pure Appl. Chem.*, 2011, 83, 397.

S. Schippers, A. L. D. Kilcoyne, R. A. Phaneuf and A. Müller, *Contemp. Phys.*, 2016, 57, 215–229.

H. Kjeldsen, *J. Phys. B: At., Mol. Opt. Phys.*, 2006, 39, R325.

K. Rinn, A. Müller, H. Eichenauer and E. Salzborn, *Rev. Sci. Instrum.*, 1982, 53, 829.

C. Fonseca Guerra, G. J. Snijders, G. te Velde and J. E. Baerends, *Theor. Chem. Acc.*, 1998, 99, 391.

C. Fonseca Guerra, G. J. Snijders, G. te Velde and J. E. Baerends, *Theor. Chem. Acc.*, 1998, 99, 391.

G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, 22, 931.

H. Brion and C. Moser, *J. Chem. Phys.*, 1960, 32, 1194.

Y. A. Teterin and S. G. Gagarin, *Russ. Chem. Rev.*, 1996, 65, 825.

R. K. Nesbet, *J. Chem. Phys.*, 1965, 43, 4403.

E. Van Lenthe and E. J. Baerends, *J. Comput. Chem.*, 2003, 24, 1142.

C. Van Wullen, *J. Comput. Chem.*, 2002, 23, 779–785.

S. van Gisbergen, J. Snijders and E. Baerends, *Comput. Phys. Commun.*, 1999, 118, 119.

S. Hirata and M. Head-Gordon, *Chem. Phys. Lett.*, 1999, 314, 291.

F. Vines, C. Sousa and F. Illas, *Phys. Chem. Chem. Phys.*, 2018, 20, 8403–8410.

M. Hollstein, K. Mertens, S. Klumpp, N. Gerken, S. Palutke, I. Baev, G. Brenner, S. Dziarzhytski, M. Meyer, W. Wurth, D. Pfannkuche and M. Martins, *New J. Phys.*, 2019, 21, 033017.

J. A. Bearden and A. F. Burr, *Rev. Mod. Phys.*, 1967, 39, 125–142.

R. S. Mulliken, *Phys. Rev.*, 1935, 47, 413.

J. L. Ragle, I. A. Stenhouse, D. C. Frost and C. A. McDowell, *J. Chem. Phys.*, 1970, 53, 178.

M. Tadjeddine, G. Boucheux, L. Malegat, J. Durup, C. Pernot and J. Weiner, *Chem. Phys.*, 1982, 69, 229.

M. Tadjeddine, J. Flamant and C. Teichteil, *Chem. Phys.*, 1987, 118, 45.

K. Walter, R. Weinkauf, U. Boesl and E. W. Schlag, *J. Chem. Phys.*, 1988, 89, 1914.

H. Brion and C. Moser, *J. Chem. Phys.*, 1960, 32, 1194.

Y. A. Teterin and S. G. Gagarin, *Russ. Chem. Rev.*, 1996, 65, 825.