IHDS: Intelligent Harvesting Decision System for Date Fruit Based on Maturity Stage Using Deep Learning and Computer Vision

MOHAMMED FAISAL1,2, (Member, IEEE), MANSOUR ALSULAIMAN2, MOHAMMED ARAFAH2, AND MOHAMED AMINE MEKHTICHE2, (Member, IEEE)

1College of Applied Computer Sciences, King Saud University, Riyadh 11451, Saudi Arabia
2Center of Smart Robotics Research (CS2R), King Saud University, Riyadh 11451, Saudi Arabia

This work was supported by the Deanship of Scientific Research (DSR) with King Saud University, Riyadh, Saudi Arabia, through a research group program under Grant RG-1437-018.

ABSTRACT Date is the main fruit crop of the Kingdom of Saudi Arabia (KSA), approximately covering 72% of the total area under permanent crops. The Food and Agriculture Organization states that date production worldwide was 3,430,883 tons in 1990, which increases yearly, reaching 8,526,218 tons in 2018. Date production in KSA was around 527,881 tons in 1990, approximately reaching 1,302,859 tons in 2018. Harvesting date fruits at an appropriate time according to a specific maturity stage or level is a critical decision that significantly affects profit. In the present study, we proposed an intelligent harvesting decision system (IHDS) based on date fruit maturity level. The proposed decision system used computer vision and deep learning (DL) techniques to detect seven different maturity stages/levels of date fruit (Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar). In the IHDS, we developed six different DL systems, and each one produced different accuracy levels in terms of the seven aforementioned maturity stages. The IHDS used datasets that have been collected by the Center of Smart Robotics Research. The maximum performance metrics of the proposed IHDS were 99.4%, 99.4%, 99.7%, and 99.7% for accuracy, F1 score, sensitivity (recall), and precision, respectively.

INDEX TERMS Maturity detection, deep learning, date fruit classification, neural networks.

I. INTRODUCTION

According to the Ministry of Agriculture in Saudi Arabia, an estimated 24–25 million palm trees approximately produce a million tons of dates yearly, accounting for an estimated 15% of the global date production [1], [2]. The estimated average annual yield of dates per palm tree in Saudi Arabia is 48.0 kg, with a selling price estimated at SR 4.00/kg. Several Saudi farmers are suffering from lack of skilled labor; hence, around 23.00% of the farmers sell their produce from the farm itself to foreign labor for a cheap price [1]. According to the Food and Agriculture Organization of the United Nations, global date production is annually increasing, as shown in Figure 1, and it was 3,430,883 tons in 1990, reaching up to 8,526,218 tons in 2018 [3].

Date production in Saudi Arabia was around 527,881 tons in 1990, approximately reaching 1,302,859 tons in 2018. However, despite the increase in cultivated areas,
productivity per hectare has declined in recent years. This may be due to the lack of skilled labor. Saudi Arabia is the second largest date-producing country in 2018 and the third in 1990, with a cultivated area of about 1,116,125 hectares in 2018. TABLE 1 illustrates the top 10 date-producing countries in 1990 and 2018.

TABLE 1. Top 10 date-producing countries in 1990 and 2018.

Country	2018 Rank	Quantity	Order	1990 Rank	Quantity
Egypt	1	1,562,171	2	541,963	
Saudi Arabia	2	1,302,859	3	527,881	
Iran	3	1,204,158	4	516,295	
Algeria	4	1,094,700	6	205,907	
Iraq	5	614,584	1	544,930	
Pakistan	6	471,670	6	287,300	
Sudan	7	440,871	10	110,000	
Oman	8	368,808	9	120,000	
United Arab Emirates	9	345,119	7	141,463	
Tunisia	10	241,333	Not in the list		
precision levels of 1.00 and 0.80 for mature and immature fruits, respectively.

Other several studies used robotics technology and machine vision in agricultural applications and called it harvesting robots. These harvesting robots can be used for fruit picking [8] and for detecting of fruit-bearing branches [9]. Another study [10] developed a detection algorithm based on color, depth, and shape information. Chen et al. [11] introduced a multi-camera scheme for agricultural application to increase the perception range of vision systems.

Several studies have been done to classify date fruits. Nasiri et al. [12] used computer vision and machine ML techniques to classify three maturity stages (Khalal, Rutab, and Tamar) and one defective stage. The dataset was built using single dates with a uniform background. They used the VGG-16 architecture model with max pooling, dropout, batch normalization, and dense layers. They collected the dataset through a smartphone, and their system achieved an overall accuracy of 96.98%. Another study has been done by Altaheri et al. [13], who proposed a framework using a vision system to classify date fruits in an orchard environment. They used the proposed framework to classify date fruit images based on type and maturity. This study used the VGG-16 and Alexnet architecture models, and achieved accuracy levels of 99.01% for type classification and 97.25% for a five-level maturity classification system.

Several other studies have been done to classify fruits other than dates. In 2020, Behera et al. [14] introduced two methods based on ML techniques to classify papaya fruit maturity stages. They used a very small dataset with 300 papaya fruit images, consisting of 100 images of each of the three maturity stages. They used seven pretrained architectures: VGG-19, VGG-16, ResNet101, ResNet50, ResNet18, AlexNet, and GoogleNet. Another study has been done in 2019 [15] by Pacheco, W. D. N. and F. R. López to classify the maturity of Milano and Chonto varieties of tomatoes using ML techniques. In 2020, Caladcad, J. A., S. Cabahug, et al. introduced a system to classify the maturity of Philippine coconut using ML techniques [16]. They classified the Philippine coconut into three different maturity levels (pre-mature, mature, and over-mature) using random forest and support vector machine (SVM) classification systems. Another study has been done in 2020 by de Luna et al. [17] to monitor the growth stage of tomatoes using SVM, ANN, and KNN, which achieved maximum accuracy levels of 99.81% for SVM, 99.32% for KNN, and 99.32% for ANN. Another research using MLK was introduced in 2020 by Chen et al. [11] to classify the maturity levels of sweet red and yellow peppers. They achieved 98.2% and 97.3% accuracy levels for red and yellow pepper maturity classification, respectively, for two maturity stages; and 89.5% and 97.3% for red and yellow pepper maturity classification, respectively, for four maturity stages.

III. METHODOLOGY

In general, DL works better with huge datasets than with smaller ones. For applications with a small dataset, the transfer learning concept is used to enhance the efficiency and outcomes of the system.

In the proposed IHDS system, we started by building the dataset named “DATE FRUIT DATASET FOR AUTOMATED HARVESTING AND VISUAL YIELD ESTIMATION” [18]. Then, we used this dataset to train and evaluate the proposed IHDS system that used three types of CNN: VGG-19 [19], Inception-v3 [20], and NASNet [21]. The IHDS takes live videos from video sources, extracts and manipulates the images, and then the manipulated images are entered into the maturity level detection system (MLDS) to identify the date fruit maturity level (Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar).

Selected CNN Architecture

In this work, instead of using traditional image processing techniques, we used the CNNs to detect the maturity stages/levels of date fruit from the images because of their high-accuracy. To save time, obtain better accuracy, detect high-level features; such as edges and patterns, we used pretrained CNN models instead of using an ad hoc, and then we added four more layers to the pretrained CNN models as illustrated in the succeeding part of this section. In the proposed system, we will use three models, namely, VGG-19 [19], Inception-v3 [20], and NASNet [21]. The VGG model was developed with minimum pre-processing true pixel images. The ImageNet project has been configured for applications in visual object detection research. The VGG network is characterized by its simplicity, using only 3×3 convolutional layers stacked on top of each other in increasing depths. Volume size reduction is handled by max pooling. Two fully connected layers, each with 4,096 nodes, are then followed by a Softmax classifier. In the proposed system, we froze all layers from 1 to 15 of the VGG-19 architecture. Then, we added five more layers (Global average pooling, Dropout (0.3), Dense (128), Dense (64), and Softmax (2/3/4/5/6/7 classes)) before the last layer. At the end, the VGG-19 architecture has total 20,098,759 parameters, 7,153,799 trainable parameters, and 12,944,960 non-trainable parameters for the seven-stage MLDS (TABLE 2).

In the beginning, the Inception CNN architecture was introduced as GoogleNet and called Inception-v1. Then, Ioffe and Szegedy enhanced the Inception architecture by introducing batch normalization and called it Inception-v2 [22]. Later Szegedy, C., et al. (2015) enhanced the Inception-v2 CNN by adding factorization and then called it Inception-v3. [20].The main idea of the Inception architecture was to find the optimal local construction of the convolutional network and spatially repeat it [20]. In general, Inception was introduced based on the idea that several connections between layers are...
ineffective and have redundant information due to the correlation between them. Therefore, the Inception architecture used 22 layers in a parallel manner (Figure 3), which benefited from the several auxiliary classifiers within the intermediate layers, thereby improving the discrimination capacity in the lower layers [23]. For Inception-v3, we added five more layers (Global average pooling, Dense (1,024), Batch normalization, Dense (1,024), and Softmax (2/3/4/5/6/7 classes)) before the last layer. In the end, the Inception-v3 architecture had a total of 23,916,327 parameters, 23,877,799 trainable parameters, and 38,528 non-trainable parameters for the seven-stage MLDS.

Dataset

We use a dataset named “DATE FRUIT DATASET FOR AUTOMATED HARVESTING AND VISUAL YIELD ESTIMATION” [18] that was built by the Center of Smart Robotics Research (www.CS2R.ksu.edu.sa). The date fruit dataset was introduced for use in the pre-harvesting and harvesting stages. The date fruit dataset consists of two different datasets, namely, Dataset-1 and Dataset-2. Dataset-1 contains about 8,079 pictures captured from 350 bunches that belong to 29 palms using two Canon cameras (EOS-1100D and EOS-600D), with resolutions of $4,272 \times 2,848$ and $5,184 \times 3,456$, respectively. The images were taken under different natural daylight conditions: in the morning (9:00–11:00) or afternoon (3:00–5:00). Dataset-1 covers all the maturity levels of date fruits: Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Kahalal with Rutab, Pre-Tamar, and Tamar (Figure 5 and Figure 6).
TABLE 2. Summary of the VGG-19 architecture.

Layer (type)	Output Shape	Param #
input_5 (Input Layer)	(None, 224, 224, 3)	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv4 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv4 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv4 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
global_average_pooling2d_4	(None, 512)	0
dropout_4 (Dropout)	(None, 512)	0
dense_12 (Dense)	(None, 128)	65664
dense_13 (Dense)	(None, 64)	8256
dense_14 (Dense)	(None, 7)	455

Dataset-1 was labeled according to type and maturity. Dataset-1 and its annotation files are available at [https://ieee-dataport.org/open-access/date-fruit-dataset-automated-harvesting-and-visual-yield-estimation]. Dataset-2 was built for weight estimation, which consists of 152 date bunches of 13 palms. These bunches were weighed after harvesting, and their images were captured with a white background.

A. PROPOSED SYSTEM

In this paper, we are proposing an IHDS based on maturity level detection of date fruits. As shown in Figure 7, the IHDS takes live videos from video sources (unmanned aerial vehicles or any other source), then extracts the image from the live video stream. After that, image manipulation is performed on the extracted images. Then, the manipulated images are entered into the MLDS that identifies the date fruit maturity level (Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar) as shown in Figure 8.

B. THE MATURITY LEVEL DETECTION SYSTEM (MLDS)

The MLDS was designed to detect seven different maturity types or levels of date fruits (Figure 8) (Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar) based on DL techniques. In MLDS, we developed six different DL systems with different accuracy levels, as follows: a two-stage maturity detection system to determine two maturity stages (Immature and Tamar); a three-stage maturity detection system to determine three maturity stages (Immature, Khalal, and Tamar); a four-stage maturity detection system to determine four maturity stages (Immature, Khalal, Khalal with Rutab, and Tamar); a five-stage maturity detection system to determine five maturity stages (Immature, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar); a six-stage maturity detection system to determine six maturity stages (Immature, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar); and a seven-stage maturity detection system to determine seven maturity stages. All maturity level systems used an end-to-end DL framework in detecting the date fruit maturity level from the gathered images. We have developed an ML system
that explicitly detects date fruit maturity level from raw images without requiring feature extraction. As illustrated in Figure 8, we started by collecting dataset images (thousands of date fruit images) in different maturity levels (Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar). Then, we augmented the images by resizing them based on the standard size of their respective CNN models. After that, we divided the dataset into a training dataset and a testing dataset, and then applied the retrained CNN models (VGG-19, Inception-V3, and NASNet) to determine date fruit maturity levels.

C. TRAINING AND TESTING PARAMETERS
In the proposed MLDS, two well-known pretrained deep learning CNNs (NASNet, Inception-V3, and VGG-19) were trained, evaluated, and tested using the KERAS framework to detect the date fruit maturity level from the gathered images. The training of different models was conducted on a
TABLE 3. Performance metrics.

Measurement	Equation	Abbreviation
Accuracy	TP + TN	true positive, TP
		false positive, FP
F1 score	2TP	true negatives, TN
Precision	TP	false negative, FN
Recall	TP + FN	Recall Specification

computer using the Intel i9-9880H core @ 2.3 GHz Processor and 32 GB RAM, 8 GB Graphics Unit Processing Unit Graphics Card on 64-bit Windows 10. In the present study, we used the ImageDataGenerator for augmentation with the following parameters: rotation range = 40, width shift range = 0.2, height shift range = 0.2, shear range = 0.2, and zoom range = 0.2. Also, we resized all images (224 × 224) to fulfill the requirement of the pretrained models. We used Anaconda 4.8.3 environment, Spyder 3.7 development environment, and Keras 2.2.4 with a Tensorflow 2.1.0 backend. We used the following training parameters: batch size = 16, number of epochs = 30, and ADAM optimizer with learning rate = 0.0001. For training and testing, we used a five-fold cross-validation method. We also benefited from the python implementation that was done by Talha Anwar [24].

IV. RESULTS

The evaluation of the proposed IHDS is based on Dataset-1 (https://ieee-dataport.org/open-access/date-fruit-dataset-automated-harvesting-and-visual-yield-estimation). For each MLDS, we tested the VGG-19, Inception-V3, and NASNet models for the two-stage, three-stage, four-stage, five-stage, six-stage, and seven-stage maturity detection systems. Well-known performance metrics TABLE 4, such as F1 score, accuracy, recall, precision, and confusion matrix, were used to evaluate the models and were compared with other obtained results.

Additionally, we performed five-fold cross-validation with 50 epochs for each set for all stages in the maturity detection systems for the VGG-19, Inception-V3, and NASNet models, and took the overall average of all results. TABLE 4, TABLE 5, and TABLE 6, summarizes the performance of all stages in the maturity detection systems in VGG-19, Inception-V3, and NASNet CNN architecture models that were tested for Dataset-1. VGG-19 clearly outperformed NASNet in terms of all performance metrics (F1 score, accuracy, sensitivity (recall), precision, and confusion matrix). For the two-stage maturity level detection, VGG-19 acquired 99.4% accuracy and 99.4% F1 score, having 99.6% precision for Immature and 99.8% precision for Tamar, as well as 99.6% recall for Immature and 99.8% recall for Tamar. For the seven-stage maturity level, VGG-19 obtained 99.4% accuracy and 99.4% F1 score; 0.994%, 0.964%, 0.974%, 0.988%, 0.964%, 0.988%, and 0.970% precision values for Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar, respectively; and 0.99%, 0.974%, 0.966%, 0.948%, 0.97%, 0.96%, 0.988% recall for Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar, respectively.

The VGG-19, Inception-V3, and NASNet architecture models were trained using Dataset-1. For the two-stage maturity detection, we used 1,302 images, with 661 images
TABLE 5. Performance metrics for the NASNet architecture model of the Maturity Level Detection System (MLDS).

	2 Immature Stages	3 Immature Stages	4 Immature Stages	5 Immature Stages	6 Immature Stages	7 Immature Stages
F1-score	0.963	0.990	0.970	0.981	0.916	0.97
Avg. Precision	0.953	0.993	0.978	0.988	0.945	0.984
Avg. Recall	0.960	0.991	0.957	0.979	0.91	0.957

	Immature 1	Immature 2	Pre-Khalal	Khalal	Khalal with Rutab
Precision	0.954	0.994	0.996	0.994	0.99
	0.99				
Recall	0.99	0.984	0.97		

TABLE 6. Performance metrics for the Inception-v3 architecture model of the Maturity Level Detection System (MLDS).

	2 Immature Stages	3 Immature Stages	4 Immature Stages	5 Immature Stages	6 Immature Stages	7 Immature Stages
Accuracy	0.972	0.958	0.954	0.949	0.878	0.936
F1-score	0.972	0.965	0.959	0.954	0.882	0.948
Avg. Precision	0.973	0.969	0.965	0.962	0.987	0.965714286
Avg. Recall	0.974	0.960	0.955	0.950	0.9834	0.939142857

	Immature 1	Immature 2	Pre-Khalal	Khalal	Khalal with Rutab	
Precision	0.976	0.982	0.982	0.949	0.97	0.968
Recall	0.97	0.958	0.954			

For training and testing of the Immature stage and 661 images for training and testing of the Tamar stage. For the three-stage maturity detection, we used 1,983 images, with 661 images for the Immature stage, 661 images for the Khalal stage and 661 images for the Tamar stage.

For the four-stage maturity detection, we used 2,644 images, with 661 images for the Immature stage, 661 images for the Khalal stage, 661 images for the Khalal with Rutab stage, and 661 images for the Tamar stage. For the five-stage maturity detection, we used 3,305 images, with 661 images for Immature stage, 661 images for the Khalal stage, 661 for the Khalal with Rutab stage, 661 images for the Pre-Tamar stage, and 661 images for the Tamar stage. For the six-stage maturity detection, we used 3,711 images, with 661 images for the Immature stage, 406 images for the Pre-Khalal stage, 661 images for the Khalal stage, 661 for the Khalal with Rutab stage, 661 images for the Pre-Tamar stage, and 661 images for the Tamar stage. For the seven-stage maturity detection, we used 4,066 images, with 661 images for the Immature stage, 406 images for the Pre-Khalal stage, 661 images for the Khalal stage, 661 for the Khalal with Rutab stage, 661 images for the Pre-Tamar stage, and 661 images for the Tamar stage.
TABLE 7. Comparison performance metrics.

Dataset Type	System	Maturity Stage	Accuracy	F1-score	Precision	Recall	
Date fruit bunches in orchard	Our proposed	Four Maturity	98.5	98.6	98.5	98.3	
		Five maturity	VGG-19	98.3	98.6	98.9	98.24
			NASNet	97.7	98.1	98.8	97.9
	Reference study [13]	Seven maturity	VGG-19	97	97.6	98	96.9
			NASNet	96	97	98.4	95.7
	Reference study [12]	Five maturity	VGG-16	97.25	89.56	96.1	97.2
			Alexnet	94.98	86.14	93.5	94.9
	Reference study [12]	Seven maturity	VGG-16	92.3	96.71	86.98	92.3
			Alexnet	90.1	94.27	82.51	90.1

V. DISCUSSION

In this section, we will compare the proposed system with many reference studies using the same dataset (Dataset-1), as well as other datasets. The comparison will be based on well-known performance metrics (F1 score, accuracy, sensitivity (recall), and precision). Our study and a reference study by Altaheri et al. [13] used the same datasets in a farm environment and the date fruit bunches in an orchard, whereas other studies used different datasets using single dates with uniform background. TABLE 7 illustrates a comparison of the evaluation parameters of the proposed system and the reference study of Nasiri et al. [12]. In the proposed system, VGG-19 outperformed the other models and showed outstanding results for all performance metrics for all maturity detection systems. As shown in TABLE 7, our proposed system using VGG-19 outperformed the other models and showed outstanding results for all performance metrics for all maturity detection systems. As shown in TABLE 7, our proposed system using VGG-19 outperformed the other models and showed outstanding results for all performance metrics for all maturity detection systems. As shown in FIGURE 9, the VGG-19 model has a good fit and stable performance. The training and validation loss decreased at a point of stability with a minimal gap between two final loss values. Figure 10 shows the confusion matrix for VGG-19, for one random fold for all maturity stage detection systems.
FIGURE 9. Learning performance accuracy, training, and validation learning curves of VGG-19 in one random fold with 50 epochs.
respectively, using VGG-16 for four maturity levels, whereas our proposed system achieved 98.5%, 98.6%, 98.5%, and 98.5% for accuracy, F1 score, sensitivity (recall), and precision, respectively, for four maturity levels.

VI. CONCLUSION
The present study proposed an intelligent harvesting decision system called IHDS to harvest date fruits at an appropriate time based on a specific maturity stage using DL and
computer vision. In fact, harvesting date fruits at the proper time is a critical decision that significantly affects profit. In the present study, we were able to classify all maturity stages of date fruit (Immature stage 1, Immature stage 2, Pre-Khalal, Khalal, Khalal with Rutab, Pre-Tamar, and Tamar). We used the VGG-19, Inception-V3, and NASNet architectural models for pretraining. The maximum performance metrics of the proposed IHDS were 99.4%, 99.4%, 99.7%, and 99.7% for accuracy, F1 score, sensitivity (recall), and precision, respectively. The proposed IHDS was compared with two other studies from literature, and it comparably enhances the system to estimate date fruit type, maturity level and the weight of date fruits per palm in the pre-harvesting phase.

REFERENCES

[1] A. Al-Abbad, M. Al-Jamal, Z. Al-Elaiw, F. Al-Shreed, and H. Belalufa, “A study on the economic feasibility of date palm cultivation in the Al-Hassa Oasis of Saudi Arabia,” J. Develop. Agricult. Econ., vol. 3, pp. 463–468, 2011.

[2] M. O. A. S. Arabia. (2015). [Online]. Available: http://www.moa.gov.sa/webcenter/

[3] F. A. A. O. O. T. U. Nations. (2015). [Online]. Available: http://faostat3.fao.org/browse/Q/QCE/

[4] D. Zhang, D.-J. Lee, B. J. Tippets, and K. D. Lillywhite, “Date maturity and quality evaluation using color distribution analysis and back projection,” J. Food Eng., vol. 131, pp. 161–169, Jun. 2014.

[5] P. R. Gokul, S. Raj, and P. Suriyamoorthi, “Estimation of volume and maturity of sweet lime fruit using image processing algorithm,” in Proc. Int. Conf. Commun. Signal Process. (ICCSSP), Apr. 2015, pp. 1227–1229.

[6] M. S. Prabha and J. S. Kumar, “Assessment of banana fruit maturity by image processing technique,” J. Food Sci. Technol., vol. 52, no. 3, pp. 1316–1327, Mar. 2015.

[7] K. Yamamoto, W. Guo, Y. Yoshioka, and S. Ninomiya, “On plant detection of intact tomato fruits using image analysis and machine learning methods,” Sensors, vol. 14, no. 7, pp. 12191–12206, Jul. 2014.

[8] Y. Tang, M. Chen, C. Wang, L. Luo, J. Li, G. Lian, and X. Zou, “Recognition and localization methods for vision-based fruit picking robots: A review,” Frontiers Plant Sci., vol. 11, p. 510, May 2020.

[9] B. Anwar. [Online]. Available: https://github.com/talhaanwarch/Corona_Virus/blob/master/notebooks/Corona_aug.ipynb

[10] M. Faisal et al.: IHDS: Intelligent Harvesting Decision System for Date Fruit Based on Maturity Stage

Mohammed Alsalulaiman received the Ph.D. degree from Iowa State University, USA, in 1987. Since 1988, he has been with the Department of Computer Engineering, King Saud University (KSU), Riyadh, Saudi Arabia, where he is currently a Professor with the Department of Computer Engineering. He is the Director of the Center of Smart Robotics Research with KSU. His research areas include automatic speech/speaker recognition, automatic voice pathology assessment systems, computer-aided pronunciation training systems, and robotics. He was the Editor-in-Chief of the KSU the Journal Computer and Information Systems.
MOHAMMED ARAFAH received the Ph.D. degree in computer engineering from the University of Southern California, Los Angeles, USA. He is currently an Associate Professor with the Department of Computer Engineering, King Saud University, Riyadh, Saudi Arabia. He has published in the areas of multistage interconnection networks, MPLS networks, and LTE networks. His current research interests include robotics, cooperative communication, 5G mobile communications, software defined radios, and multiple antenna systems.

MOHAMED AMINE MEKHTICHE (Member, IEEE) was born in Medea, Algeria, in 1987. He received the B.S. and M.S. degrees in electronics engineering from the University of Blida, in 2010 and 2012, respectively. Since 2014, he has been a Researcher with the Center of Smart Robotics Research, King Saud University, Saudi Arabia. His current research interest includes image processing stereo vision.