The dynamic amplification effect of a site with earth fissures: a case study in the Taiyuan Basin, China

Jiang Chang · Yahong Deng · Ge Cao · You Xuan · Nainan He · Xunchang Zhao · Huandong Mu

Received: 23 August 2021 / Accepted: 29 June 2023 / Published online: 13 July 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract As a widespread geological hazard, the disaster development process of earth fissures is irreversible and difficult to control, which seriously affects the construction and safe operation of engineering facilities. However, few clear conclusions and special regulations have been given regarding the influence of earth fissures on the dynamic response characteristics of a site and earthquake prevention and disaster reduction measures. Therefore, the microtremor was used instead of earthquake motions to reveal the dynamic response of a site with fissures. The earth fissures in the Taiyuan Basin, which exhibit a large amount of activity, were used as representative examples. In order to reveal the dynamic response from several aspects, four methods, including the Fourier spectrum, the horizontal-to-vertical spectral ratio (HVSR), the response acceleration, and the Arias intensity, were employed. The results show that the spectrum peaks increase sharply at an earth fissure and return to a stable value approximately 20–25 m away from the fissure, indicating that the earth fissures have an amplification effect on the dynamic response of the site. Additionally, a greater amplification occurs on the hanging wall of the earth fissure. The influence range of the dynamic response of site can be divided into four areas. Suggestions on the seismic fortification intensity and setback distances were also proposed. After ground motion finite element simulation, the amplification effect of seismic response at the earth fissure site has been further confirmed. The amplification mechanism was summarized as the coupling of the changes in the soil properties caused by earth fissure activity, the cata-dioptic effect of the earth fissure interface, and the multiple amplifications caused by secondary fissures.

Keywords Dynamic response · Earth fissure · Microtremor · Amplification effect · Seismic fortification

1 Introduction

As a type of geohazard that stretches and ruptures from the shallow rocks to the topsoil, the development of earth fissures is relatively slow, but it is hard to monitor. Therefore, earth fissures severely restrict any nearby urban land planning and engineering construction projects. From the end of the last century to the beginning of the twenty-first century,
induced by anthropogenic factors, including regional groundwater exploitation caused by global economic development and population expansion, earth fissure disasters have occurred worldwide. A large number of earth fissures have been reported in Iceland (Hauksson 1983), Ethiopia (Ayalew et al. 2004; Williams et al. 2004), Kenya (Ngece and Myambok 2000), Saudi Arabia (Al-Harthi and Bankher 1999; Youssef and Ahmed 2013), the USA (Neal et al. 1968; Lofgren 1978; Holzer and Pampeyan 1979; Jachens and Holzer 1982), and China (Meyer et al. 1996; Geng and Li 2000; Peng et al. 2007; Deng et al. 2013). The continuous dislocation movements of earth fissures in these areas have caused the differential settlement and tensile fissures on the ground surface. Therefore, there are serious contradictions between earth fissure disasters and road engineering, construction engineering, underground pipeline planning, underground exploitation, and urban construction planning.

In order to reduce the damage earth fissure disasters cause to engineering construction projects, scholars have conducted basic research on the development characteristics, formation mechanism, and activity characteristics of earth fissures (Bouwer 2010; Leonard 1929; Holzer and Gabrysich 2010; Neal et al. 1968; Peng et al. 2016; Deng et al. 2013). Now that the basic information of earth fissures has been determined, it is particularly important to develop disaster prevention and mitigation measures for sites with earth fissures. Since China is the country with the most earth fissures around the world, the contradiction between urbanization and earth fissure disasters is more salient. In order to solve the earth fissure disaster prevention and mitigation problems, scholars have conducted research on methods of strengthening structures, avoidance distances, and earth fissure activity monitoring (Zhang et al. 2016; Qiao et al. 2018; Zang et al. 2019). However, the dynamic response and earthquake fortification of a site with earth fissures is still unclear.

Earth fissures with a tectonic origin are similar to buried faults in appearance and shape. The amplification effect of the dynamic response of seismogenic faults and non-seismic faults during earthquakes has been confirmed (Marra et al. 2000; Spudich and Olsen 2001), and fortification specifications and standards for many sites with faults have been established (Bouckovalas 2006; Janine et al., 2003; Christenson et al. 2003). Therefore, as a type of surface disaster formed under the effects of a buried fault, regional tectonic stress, and groundwater recession, the dynamic response of a site with earth fissures to earthquakes also deserves attention. Moreover, the seismic response is not the only dynamic problem in sites with earth fissures. Dynamic loads caused by blasting, high-speed ways, and subways can also motivate additional dynamic responses in sites with earth fissures. Therefore, the dynamic response of a site with earth fissures is a particularly important issue for the current pace of urban development. However, previous studies and specifications have only considered the influence range of differential settlement of the ground due to earth fissure activity (Zhang et al. 2006; Lu et al. 2014; Chen 2002). The setback distance of a site with earth fissures based on their dynamic responses requires further study.

Unfortunately, there is an obstacle to studying the dynamic response of a site with fissures. The availability of strong motion data for an earth fissure site is rare, and real-time monitoring while waiting for an earthquake to occur is impractical. Fortunately, the required analysis can be carried out using microtremors, which are readily available. A microtremor signal is a type of stable non-repetitive random wave motion that is excited by natural and artificial random vibration sources. It propagates through the ground while being reflected and refracted multiple times by the strata interfaces. In the 1950s, after conducting a series of studies on microtremors, scholars in Japan came to the conclusion that the spectral characteristics of microtremors can reflect the dynamic characteristics of engineering sites (Kanai 1954; Aki 1975; Ohta et al. 1978; Kagami et al. 1982, 1986). Since then, through further research, scholars from various countries have continuously improved the technical means of the application of microtremors (Nakamura 1989; Lerma 1994; Field and Jacob 1995; Seekins et al. 1996; Guo et al. 1999).

Therefore, in this study, we used microtremors to analyze the dynamic response of a site with earth fissures. The Fenwei Graben in China is one of the regions with the widest, largest, and most active earth fissures in the world. The Taiyuan Basin, which contains 107 earth fissures, is the most affected areas in Fenwei Garben (Jia et al. 2020). The distribution characteristics, formation mechanism, and activity of the earth fissures in the Taiyuan Basin are particularly
representative (Peng et al. 2018). Therefore, the case study of earth fissure in Taiyuan Basin is helpful to solve the dynamic response problem of other earth fissure sites in China and even in the world.

Thus, in this paper, the Fourier spectrum, horizontal-to-vertical spectral ratio (HVSR), response acceleration, and Arias intensity of the microtremors at these earth fissure sites were analyzed. The spectrum characteristics were clarified, and the amplification effect of the earth fissures on the dynamic response of the site was determined. Finally, in order to provide suggestions for the seismic fortification of sites with earth fissures, the change in the influence range and the amplification effect were also investigated.

2 Earth fissures basic characteristics

2.1 Geologic setting

The Taiyuan Basin is located in the central part of Shanxi Province, and it is a northeast syncline elongated basin under the control of active faults. As can be seen from Fig. 1, the basin is surrounded by Taihang Mountain to the east and Lvliang Mountain to the west, with a total area of about 4000 km². This basin is one of the large faulted basins in the Cenozoic faulted belt on the Shanxi continental platform. At the beginning of the Neogene, the north–south regional tectonic stress strengthened, causing the shovel-type faults at the edge of the basin, which was originally formed by the tectonic activities from the late Jurassic to early Cretaceous, to be further developed. The block was depressed along the basin’s margin fault, and the Taiyuan Basin began to experience deposition.

The uplift of the upper mantle in the deep part of the basin led to the horizontal flow development of the low velocity, high conductivity layer in the middle crust, which induced the extension of the upper crust and along the fracture surfaces. The resulting shovel-type normal fault at the edge of the basin laid the foundation for the tensile fracturing of the basin structure. Moreover, additional horizontal tensile stress was generated in the shallow surface, which provided a regional tensile environment for the
formation of earth fissures. The basement of the Taiyuan Basin undulates, with extensional faults developed and clearly divided fault blocks. The extensional structural characteristics developed under the regional tensile stress provide a convenient environment for the development of earth fissures. The average thickness of the Cenozoic sedimentary layer in the basin is about 1500 m, with a maximum thickness of 3800 m. Some of the faults in the Quaternary strata are vertical extensions of basement faults, while others are only developed in the Quaternary soils. These faults are active, indicating that the basin has been in an extensional environment since the Quaternary. These faults of different scales constitute multistage extensional fractures in the Quaternary strata, providing favorable geological conditions for land subsidence (Peng et al. 2018). The deeper-seated faults provide the initial fracture source and favorable boundary conditions for the formation of earth fissures. The coverage of the Quaternary strata provides moderately good conditions for the development of earth fissures.

In general, the earth fissures in the Taiyuan Basin formed under the following conditions: an extensional environment for the structures at depth, space for the development of deep faults provided by the basement’s structure, and a convenient environment for the rupturing in the Quaternary sediments. In addition to the geological factors, the over-exploitation of groundwater in the basin has formed a large number of depression cones that have caused regional ground subsidence and eventually induced the widespread development of earth fissures (Jia et al. 2020).

2.2 Characteristics of the earth fissures

The earth fissures in the Taiyuan Basin began to emerge on the ground surface in the 1970s. At present, investigations have identified about 107 earth fissures. The earth fissures in this basin are mostly distributed in the Lvliang piedmont alluvial-pluvial fan at the basin margin and the interior of the basin. The regional earth fissures in the Taiyuan Basin have the following common characteristics. (1) The trends and occurrences of the fissures are consistent with those of the buried faults. (2) The fissures are mostly concentrated at the edges of the groundwater depression cones. (3) The earth fissures are more densely distributed in the region where the thickness of the Quaternary sediments changes abruptly. According to their distribution, activity characteristics, and formation mechanism, the earth fissures in the Taiyuan Basin can be divided into two regions. Region I is the Qixian-Taigu earth fissure zone, which contains about 51 fissures, and Region II is the Qingxu-Jiaocheng-Wenshui earth fissure zone, which extends for about 46 km (Fig. 2).

2.2.1 Qixian-Taigu earth fissure zone (Region I)

The Qixian-Taigu earth fissure zone is located in the interior of the basin and contains about 51 identified fissures. There are four parallel giant earth fissures in Dongguan Town at the junction of Qixian and Taigu. As shown in Fig. 3, these typical earth fissures (i.e., E1, E2, E3, and E4) are located in DongLZ Village, Baigui Village, Dongguan Substation, and Guanchang Village. The four earth fissures have an overall trend of 65°–75°, and their lengths are all greater than 2 km. E1 and E4 are 1 km apart, and both extend linearly. The length of their surface outcrops is 22.4 km and 4.45 km, respectively, with widths of 0.3–2 m. The fissures continue to develop at an activity rate of 2–3 cm/a, causing damage to houses and roads. An obvious step with a vertical dislocation of 45 cm can be seen on a road crossed by E1. Fissure E2 crosses Baigui Village with a strike of about 77°. It is inclined at 347° and has a total length of about 6.6 km. This fissure appeared in 1998 and has been continuously active until now. The movement of earth fissures has caused damage to a large number of houses in Baigui Village and has resulted in areas in which the height difference of the ground is 40 cm. E3 is located in the northern part of Dongguan Town, extends for 10.2 km, and has a strike of NE73°. This fissure first appeared in 1978 and became active again after 2000. The activity of this earth fissure has resulted in ground rupture and the formation of dislocation steps on the road.

These four typical earth fissures have the characteristics of vertical differential settlement and lateral horizontal extension. As for their profile characteristics, according to exploratory trench data from previous studies, the activity of the earth fissure increases with depth (Peng et al. 2018; Qiao et al. 2018). The vertical displacement of the earth fissures increases with depth, and they exhibit obvious syn-sedimentary fault structure attributes. Some small secondary fissures have been found in the hanging wall of the earth fissures in Region I. These secondary fissures are
mostly within 10 m of the main fissures. They have small widths, small vertical displacements, and barely ruptured the ground surface.

The formation mechanism of the earth fissures in Region I can be summarized as follows. Under the influence of the NW-NNW horizontal tensile stress in...
the Taiyuan Basin, the hanging wall of the Hongshan-Fancun fault (F3) has continued to subside. The earth fissures began to grow at depth. After the Tangshan earthquake (Ms=7.8) in 1976, the internal tensile stress of the basin increased rapidly. Under the tensile environment in the basin, the concealed fractures stretched to form rupture deformation that developed from depth toward the surface, forming buried earth fissures below the ground. From the 1980s to the 2000s, due to the over-exploitation of groundwater in the area, the groundwater level dropped significantly. Subsequently, the water-containing layer was densely deformed, and ground subsidence occurred. Under the additional effects of torrential rains and irrigation, the earth fissures reached the surface. The formation mechanism of the earth fissures in Region I can be summarized as the coupling of the creep deformation of buried faults and the over-exploitation of groundwater.

2.2.2 Qingxu-Jiacheng-Wenshui earth fissure zone (Region II)

The Qingxu-Jiacheng-Wenshui earth fissure zone is located at the junction of the Jiacheng uplift and the piedmont alluvial-pluvial fan. From Qingxu County in the southwest to Wenshui County in the northeast, the earth fissures are intermittently distributed along the trend of the buried Jiacheng Fault (F1). As shown in Fig. 4, the activity of the earth fissures in this area has caused wall cracks, road damage, and ground fractures. The earth fissures are mostly distributed in areas where the thickness of the Quaternary strata is thinner than 200 m.

According to the investigations in this area, the earth fissures mostly trend NE and are inclined to the SE, with dip angles of 70°–80°. The movement of the earth fissures involves horizontal tension, vertical dislocation, and strike-slip dislocation, which is consistent with the characteristics of the buried faults. The main planar distribution characteristics of the earth fissures include morphological diversity, strike stability, and zonal distribution. According to the profile of the exploratory trench, 2–4 secondary fissures were found on the hanging wall, and 1–2 small secondary fissures were found on the footwall. Under the control of the piedmont faults, the profile morphology of the earth fissures in Region II is mostly steps-type, y-shaped, comb-shaped, and shovel-shaped. As can be seen from Fig. 5, the activities of the main fissures and the secondary fissures have caused the overlying loess layer and the sandy gravel layer to move along the fissures, forming multi-level steep ridges on the surface.

The formation of the earth fissures is mainly controlled by the Jiacheng Fault, and the enhancement of the neotectonic activity has directly intensified the development of the earth fissures. The NW–SE horizontal tensile tectonic stress in the basin provides a convenient environment for the expansion of the NE-SE trending earth fissures. In the piedmont where Region II is located, the ground subsided after the over-pumping of karst groundwater and pore groundwater. As a result, the formation mechanism of the earth fissures in Region II can be summarized as follows: under the control of the buried faults at the basin’s margin, the regional stress provides an environment for fissure propagation, and

![Wall cracking, Road broken, Ground fracturing](image)
the over-exploitation of groundwater accelerates the extension of the fissures to the surface.

The distribution characteristics, activity characteristics, and formation mechanism of the earth fissures in the Qixian-Taigu area (Region I) and the Wenshui-Jiaocheng-Qingxu area (Region II) are the most representative fissures in the Taiyuan Basin. Therefore, seven microtremor survey lines (L1–L7) were laid over these fissures to analyze the dynamic response of a site containing earth fissures.

3 Methodology

The microtremor signal is a type of stable non-repetitive random wave that propagates through the ground after being repeatedly reflected and refracted by the interfaces of the layers after being excited by natural and artificial random vibration sources. It can be used to determine the dynamic characteristics of the foundation soil of a site (Bour et al. 1998; Ozalaybey et al. 2011). According to the microtremor test research conducted by SESAME (site effects assessment using ambient excitations) European research project, a microtremor can be regarded as the superposition of numerous sin waves with different frequency components (Bard et al. 2008). The microtremor transfer function is defined as:

\[M(\omega) = S(\omega)E(\omega)I(\omega)P(\omega) \] (1)

where \(S(\omega) \) represents the subsoil conditions, \(E(\omega) \) is the environmental background noise, \(I(\omega) \) describes the seismometer characteristics, and \(R(\omega) \) is the propagation path. The survey line in this study, which consists of nine measuring points, was oriented perpendicular to the fissure. The total length of survey line is ~60 m, which is short enough for the soil properties to be considered constant. The subsoil condition \(S(\omega) \) can be regarded as homogeneous at a given site. At each test site, the microtremor testing was conducted with the same seismometer on a calm and quiet night and recorded data for at least 10 min within the selected stationary band in order to reduce the impact of the environmental background noise \(E(\omega) \) and
seismometer characteristics $I(\omega)$. In this case, the difference in microtremor characteristics $M(\omega)$ between points at a site is only caused by the propagation path $R(\omega)$. Therefore, the influence of earth fissures on the dynamic response of a site can be determined according to the frequency spectrum changes of the microtremor at different distances.

In this paper, a seismometer with a built-in triaxial velocity meter, a sampling frequency of 0.1–100 Hz, and a sensitivity of 1000 mV/(cm/s) was used to collect the microtremor at the site with earth fissures. A survey line containing 18 measurement points was laid out perpendicular to an earth fissure in order to compare the variation in the microtremor’s characteristics at different distances from the earth fissure. Our preliminary test shows that the dynamic response changes significantly near the earth fissures, so the measurement points near the fissures are arranged more densely. According to the research of SEASEM (Bard et al. 2008), the recording time of each point was guaranteed to be greater than 10 min.

The data processing steps are as follows. First, at least six 10 s-long microtremor samples were taken at each point to represent the characteristics of the signal. After that, the acceleration data were imported into SeismoSignal for frequency-domain analysis. Since the energy of the earthquake’s motion with the most prominent dynamic response is mostly concentrated within 15 Hz, the Butterworth filter was used to perform the 0.1–20 Hz band-pass filtering, followed by a baseline correction (Fig. 6).

In order to reveal the dynamic response of a site containing earth fissures from several aspects, four methods, including Fourier spectrum, HVSR, response acceleration, and Arias intensity, were used. Since the Fourier spectrum and HVSR methods can reflect the inherent dynamic characteristics of the site (Louie 2001; Bonnefoy-Claudet et al. 2006; Sanchez-Sesma et al. 2011), the differences in the spectral characteristics of the different measurement points can preliminarily reflect the relative influence of the earth fissure on the dynamic response. In addition, the differences in the frequency spectrum in the acceleration response spectrum can be used to evaluate the dynamic response characteristics of a structure in a site containing earth fissures (Sabetta and Pugliese 1996). Moreover, the Arias intensity can also reflect the accumulation of microtremor energy during the interception period to further demonstrate the dynamic response of a site containing earth fissures (Amiri et al. 2010).

4 Results

4.1 Frequency content

Region I can be regarded as a site with only a single fissure, while Region II can be regarded as a site with a main fissure and secondary fissures. After processing the microtremor data, it was found that the spectral characteristics of the earth fissures in the same region are similar. Therefore, taking survey L2 in Baigui Village (Region I) and survey line L5 in Wenshui (Region II) as representative lines in the two regions, the spectrum frequency contents of the sites with earth fissures were described in detail as follows.

![Data processing of the microtremor](image)

Fig. 6 The data processing of the microtremor
(1) Region I (L2 in Baigui)

As shown in Fig. 7a, the direct Fourier spectrum and HVSR, which reflect the inherent information of the site, have the following characteristics. (1) The dominant frequency peaks of the Fourier spectrum of the measurement points within 10 m on both sides of the fissure are significantly prominent. The average predominant frequency in each direction is 2–4 Hz. (2) The horizontal and vertical Fourier spectrum peaks rise rapidly at the earth fissure. (3) The spectrum curves at the measurement points far away from the earth fissure are relatively smooth, and the spectrum peaks are not very prominent. That is, the microtremor propagation at the measurement points 20 m away from the earth fissure is hardly affected by the earth fissure. (4) A greater amplification effect occurs on the hanging wall of the...
earth fissure. The peak value of the Fourier spectrum within 3 m of the hanging wall of the fissure is significantly larger than that of the footwall. Moreover, the attenuation speed of the peak value of the measurement points on the hanging wall is also lower than those on the footwall.

In order to determine the dynamic response characteristics of the structures in the site containing earth fissures, the acceleration response spectrum was used to reflect the variation in the acceleration response of the single particle system with a natural particle vibration period. The response acceleration is shown in Fig. 7b. (1) The bandwidth of the response acceleration spectrum is narrow, and the peak form is mainly a single peak. (2) At measurement points A1, A2, B1, and B2, which are within 3 m of the earth fissure, the spectrum’s peaks are more prominent. (3) The response acceleration peak attenuates as it moves away from the earth fissure, and it remains stable beyond 15–20 m. (4) The peak value on the hanging wall is slightly larger than that on the footwall. The dynamic response of the site with normal-type earth fissures is greater on the hanging wall.

The Arias intensity reflects the variation characteristics of the microtremor accumulated over time, thereby the dynamic response of the different positions can be determined. The Arias intensity curves of the 18 measurement points on both sides of the earth fissure (Fig. 7c) have the following characteristics. (1) The intensity of the microtremor continues to increase over time until it reaches its maximum value. Moreover, the Arias intensity increases faster, and the peak value is higher near the earth fissure. (2) A greater amplification also occurs on the hanging wall of the earth fissure. (3) The intensity curves of the points that are 20 m away from the earth fissure are relatively smooth. The intensity peaks at these points are low and are basically the same, which can be regarded as the original intensity of the site when it was barely affected by earth fissures.

(2) Region II (L5 in Wenshui)

As shown in Fig. 8, the Fourier spectrum and HVSR of survey line L5 in Region II have the following characteristics. (1) The peaks of the spectrum are sharp, narrow, and multimodal, with three or more secondary peaks near the main peak. The occurrence of multiple secondary peaks is due to the large number of sand and gravel layers in the shallow surface. (2) The predominant frequency of this site is about 2.9–4.1 Hz. There is no obvious relationship between the predominant frequency and the distance from the earth fissure. (3) The spectrum peaks of the measurement points near the earth fissure are sharper and more prominent than those far from the earth fissure, especially at A1–A3 and B1–B3. The spectrum peak gradually decays to a low and stable value with distance from earth fissure. (4) The spectrum peaks of the measurement points on the hanging wall (especially at A1 and A2) are higher than those on the footwall, indicating the greater amplification effect of the hanging wall.

As can be seen from Fig. 8b, the response acceleration curves are mostly multimodal. The amplification effect can also be seen near the earth fissure. The Arias intensity curves are shown in Fig. 8c. The intensity of the microtremor increases with time. Moreover, the increases in the velocity and peak value of the intensity near the earth fissure are higher, while the intensity 20–25 m away from earth fissure is low and hardly changes.

In addition to the previously mentioned lines L2 and L5, the spectrum content of each survey line in the Taiyuan Basin is slightly different. As the ground conditions change, the frequency content, which reflects the inherent conditions of the site, changes, including the peak type, predominant frequency, and bandwidth. However, a similar amplification effect occurred for seven of the survey lines. The amplification effect of the earth fissure on the dynamic response of the site is significantly obvious in the Fourier spectrum, HVSR, response acceleration, and Arias intensity. However, the amplitudes of the four methods have different meanings, and the magnitudes of their peaks are also different for the different sites. Therefore, the ratio of the affected peak value to the unaffected peak is used as a unified scale for determining the amplification effect.

4.2 Amplification effect

The spectrum contents of the representative earth fissures in the Taiyuan Basin show that the existence
of earth fissures amplifies the dynamic response of the site. The results show that the spectrum peaks attenuate to a stable value about 25 m away from the fissure. Therefore, these peak values can be regarded as the original value of the site, i.e., when it was not affected by the earth fissures. The amplification factor of the earth fissure on the dynamic response of the site is defined as the ratio of the spectral peak value of each point to the unaffected peak value. In this way, the amplification effects in different regions, due to different earth fissures, and observed using different spectra can be compared intuitively. Figure 9 shows the amplification factors of seven representative earth fissures obtained using four methods.

As can be seen from the curves, the amplification factors are higher near the fissure. As the distance from the earth fissure increases, the factors attenuate and stabilize at 20–25 m from the earth fissure. By comparing the amplification factor curves of the hanging wall and the footwall of an earth fissure, it was found that a greater amplification occurs in the hanging wall. The amplification factor of a measurement point 3–5 m from the fissure on the hanging wall is consistent with that of a measurement point close to the fissure on the footwall. Although a common amplification effect was observed for the sites containing earth fissures in the Taiyuan Basin, the magnification and the attenuation process of the factors are slightly different.

Survey lines L1–L4 were located in the Qixian-Taigu earth fissure zone (Region I). The earth fissures in this area are mostly single fissures with small, shallow secondary fissures.
only affected by a single earth fissure, the amplification factor curves of lines L1–L4 decay smoothly and quickly. They attenuate to 1 at about 16–20 m from the earth fissure on the hanging wall and attenuate to 1 less than 16 m from the earth fissure on the footwall. As shown in Fig. 9, the shapes of the amplification curves of survey lines L5–L7 in Region II are different from those in Region I.

This investigation has shown that there are very active secondary fissures on both sides of the main fissures in Region II. These secondary fissures have large dislocations and have ruptured the ground surface. Affected by these secondary fissures, the amplification factor is slightly higher at 15 m from the fissure on the hanging wall for line L5, 20 m on the hanging wall for line L6, and 8 m on the footwall for line L7.

Fig. 9 The amplification factor for survey lines L1–L7
After this, the amplification factor starts to decay again and forms a larger amplification range. Unlike in Region I, the amplification factor of line L5 for an earth fissure in Wenshui attenuates to 1 at about 20 m from the fissure on the hanging wall. However, the attenuation is relatively faster on the footwall, approaching 1 at about 8–16 m from the fissure. The secondary fissure located 20 m from the main fissure on the hanging wall of the earth fissure in Jiaocheng leads to a slower attenuation of the amplification factor for line L6. After a small increase at 20 m, the amplification factor decreases again and approaches 1 at about 25 m from the fissure. It becomes almost stable before 20 m from the earth fissure on the footwall. The secondary fissure on the footwall of the Qingxu fissure slows down the attenuation process of the amplification effect for line L7. Therefore, the amplification factor on the hanging wall and footwall of the Qingxu earth fissure is similar, becoming stable at about 24 m from the fissure.

By analyzing the amplification factors of the representative earth fissures in the Taiyuan Basin, it was found that an earth fissure will stimulate the amplification effect of the dynamic response of the site. The amplification will attenuate with increasing distance from the fissure. Moreover, the amplification effect is more prominent in the hanging wall. In order to reveal the influence range of the amplification and the seismic fortification distance, the amplification factors of the representative earth fissures in the basin were fitted.

4.3 Seismic fortification distance

The influence range of the earth fissures on the dynamic response of the site was determined by concatenated exponential fitting of the seven amplification factor curves. The fitting curve of the Fourier spectrum amplification factor is shown in Fig. 10a. The dynamic response was amplified twice within 5 m on the hanging wall and decayed to 1.5 times at about 9 m from the fissure. Eventually, it decreased to 1 at about 24 m from the fissure. The amplification factor of the earth fissure was greater than 1.5 within 4 m, and it decayed to a safe value about 20 m away from the fissure. The fitting curve of the response acceleration amplification factor is shown in Fig. 10b. The amplification factor was greater than 2 within 6 m on the hanging wall and 4 m on the footwall, making this the high-risk zone. The amplification effect decreased to 1.5 times between 6 and 10 m on the hanging wall and 4 and 8 m on the footwall, making this the medium-risk zone. The low-risk zone is 10–20 m from the fissure on the hanging wall and 8–16 m on the footwall. In the low-risk zone, the amplification effect dies down. However, the area more than 20 m from the fissure on the hanging wall and 16 m on the footwall is the

![Fig. 10 Fitted curves of the amplification factors](image)
safe original site, which is not affected by the earth fissure. The amplification factor of the Arias intensity curve reveals that the amplification is greater than 2 within 9 m of the fissure on the hanging wall. Then, it decreased to 1.5 times at about 15 m and attenuated to the original value after 24 m. As for the footwall, the high-risk zone with twice the magnification is within 6 m of the fissure. The medium-risk zone with 1.5 times the magnification is 6–10 m from the fissure. The change in the attenuation of the amplification factor determined using the HVSR method is shown in Fig. 10d. The amplification effect on the hanging wall of the earth fissure is greater than 2 within 9 m of the fissure, but it decreases rapidly to 1.5 times within 9–15 m. It is magnified by 2 within 6 m on the footwall and attenuates to 1.5 times after 10 m. The area beyond 26 m from the fissure on the hanging wall and 24 m on the footwall is the safe area without amplification.

The distances of the different amplification factors of the earth fissures in the Taiyuan Basin are presented in Table 1. The average high-risk distance is 7.3 m on the hanging wall and only 4 m on the footwall. Since the dynamic response in this range is amplified by more than 2 times, it is not recommended that any construction projects be undertaken in this area. The range in which the dynamic response amplification is 1.5–2 times is the medium-risk zone. Therefore, within 12.3 m on the hanging wall and 8 m on the footwall, only temporary buildings of low importance, with short service life, and low seismic fortification requirements should be constructed. Further than 23.5 m from the fissure on the hanging wall and 20 m on the footwall is the low-risk area with only a slight amplification effect. Buildings can be arranged appropriately in this area, but the seismic fortification intensity of the proposed buildings should be increased to 1.5 times the designed value. When some parts of the structure or infrastructure of the building are located within the medium-risk zone, the fortification intensity of the overall structure should also be increased to at least twice that of the original design to ensure safety. In the area beyond 23.5 m from the fissure on the hanging wall and 20 m on the footwall, there is no need to consider the amplification effect of the dynamic response.

Since the earth fissures in the Taiyuan Basin are mostly distributed in the piedmont on the edge of the basin and within the sedimentary areas inside the basin, the distribution characteristics, formation mechanism, and activity characteristics of earth fissures in the two regions are different. Therefore, the amplification effects of the earth fissures in the different regions were compared. The differences in the amplification factors in the two regions are shown in Fig. 11. Since there are more secondary fissures in the piedmont area of Region II, and the activity of these fissures is greater, the range of each risk area is about 5 m wider than that in Region I. Therefore, the seismic fortification intensity of a site with earth fissures in the piedmont area requires additional safety measures.

5 Ground motion simulation

After analyzing the characteristics of the dynamic response of the representative earth fissure sites, the ground motion simulation was carried out by means of the finite element method (FEM) to verify the amplification effect and its basic characteristics. Based on the aforementioned survey data, four generalized models including origin site in Region I, earth fissure site in Region I, origin site in Region II, and earth fissure site in Region II were established as shown in Fig. 12a and Fig. 13a.

The Hardening Soil with small stiffness model (HSS) was used to simulate the dynamic behavior...
The sliding behavior of the earth fissure was achieved by using interface elements that follow the Coulomb friction law (Chang et al. 2023). The parameters of materials during simulation are summarized in Table 2, which were obtained from previous researches (Liu et al. 2017; Mu et al. 2020; Xiong et al. 2020). The strength reduction factor of earth fissure is generally 0.3. Due to the greater tension and sliding activity of the earth fissure in the alluvial-proluvial fan (Region II), the reduction factor is 0.2. The meshing of the model follows the dimensional effect of wave propagation in the finite element analysis (Kuhlmeyer and Lysmer 1973; Chen 2007).

The bottom of the model was regarded to be the bedrock and was fixed. To model infinite ground
and eliminate the boundary effect caused by the reflection wave, free-field elements were applied on the left and right sides (Seed et al. 1975). The boundary elements and the main model were connected by dampers. The reacting force of the free-field element acted on the main model through the damper. The El centro wave was loaded at the edge of the model’s bottom after the baseline correction and 0.1–20 Hz filtering. Rayleigh damping was employed in this study (Caughey and Kelly, 1965; Hall, 2018) and nonlinear time history analysis with a time step of 0.01 s was carried out. The maximum acceleration cloud diagrams can be seen in Fig. 12b and Fig. 13b.

The results show that the seismic response in the interior of the basin (Region I) and the alluvial fan at basin margin (Region II) will change significantly due to the existence of earth fissures. The peak ground acceleration is completely consistent as shown in Fig. 12b but becomes uneven near the earth fissure (Fig. 13b). The peak ground acceleration near the fissure is remarkably higher than that of the original site and more significant on the hanging wall, up to 15 m/s² or more. It gradually decreases to about 4 m/s² when it is far from the earth fissure, where it becomes an unaffected original site.

Under the original working conditions as shown in Fig. 13b, the distribution of peak ground acceleration on the alluvial fan is slightly non-uniform, ranging from about 5 to 7 m/s². However, once the earth fissures were added to the site, a clear amplification zone can be found near these fissures. Such amplification effect also has two distinct characteristics: stronger on the hanging wall and gradual decay in a certain range.

The results of peak ground acceleration in different regions can be seen in Fig. 14. The amplification influence range in Region I is about 21 m on the hanging wall and 16 m on the footwall. The amplification effect generated by the earth fissure in Region II has a larger influence range, which is consistent with the measured results of microtremor. It can also be found that the amplification effect in Region II is more remarkable at earth fissure f1, which is closer to the bedrock. The reflection between the earth fissure interface and the bedrock surface can exacerbate the amplification effect. Therefore, in addition to the stronger activity of the earth fissure at the basin

Table 2: Main constitutive parameters for HSS

Soils	Loess	Sand gravel	Mild clay	Silt	Silt clay	Fine sand	Bedrock
γs (kN/m³)	16.3	20.5	19.5	18	18	19	26
ν	0.33	0.22	0.32	0.25	0.35	0.33	0.27
c' (kPa)	24	0	0.32	14	12	22	0
φ' (°)	19	42	22	20	23	32	
E50 ref (MPa)	3.5	40	15	21	10	19	30,000
E0ed ref (MPa)	3.8	43	5	23.1	11	20.8	
Eur ref (MPa)	15.1	172	21.5	99	47.3	25.1	
G₀ ref (MPa)	45	516	64	300	142	75	

Bedrock is considered as elastic material.

Fig. 13 The ground motion simulation in Region II (a, model information; b, result of acceleration)
margin, the proximity to bedrock also contributes to the superior amplification effect at this type of site.

6 Discussion of the amplification mechanism

This paper has revealed the relative amplification of the dynamic response of sites with earth fissures using microtremors. In addition to the magnification and the response distance of the amplification effect, the mechanism of dynamic response amplification is also worth discussing. The following are preliminary discussions on the formation of the amplification mechanism, which mainly depends on the soil around the earth fissure and the interface effect of fissure itself.

(1) The activity of earth fissures changes the properties of the shallow surface soil. At present, earth fissures are mostly formed under the control of buried active faults and due to the over-exploitation of groundwater in the area. The activity of these earth fissures increases dramatically as the groundwater table dropped and as surface water infiltrated due to heavy rainfall, resulting in substantial vertical dislocations and horizontal extensions. These movements cause the soil on both sides of the earth fissure to become looser. In addition, the surface water infiltration and the refilling of the earth fissures exacerbate this phenomenon. According to the conservation of elastic wave energy \(\text{energy flux} = \rho v_s u^2 \), for soil layers with the same energy flux, the density is lower near the fissure, and the shear wave velocity of loose soil is lower, so the particle velocity, \(u \), must increase. Therefore, the dynamic response is amplified near the earth fissure. Additionally, since the settlement displacement on the hanging wall of a normal-type fissure causes the soil to become looser, the amplification effect is greater on the hanging wall.

(2) Since an earth fissure can be regarded as the interface during propagation, the amplification of the dynamic response of the site is manifested in two aspects: refraction and reflection. According to Snell’s law, when the incidence angle is greater than a certain critical angle, the generated transmitted wave will slide along the interface. As there are earth fissures in the site, the weak zone formed by the rupture and tension of the earth fissure can be regarded as the propagation interface. This interface provides a convenient channel for the generation of sliding waves and increases the dynamic response near the earth fissure. Moreover, when the earth fissure becomes the propagation interface, dynamic loads including microtremors, ground motions, nearby stable dynamic loads, and other random impacts will be reflected at various angles. Unlike a site without earth fissures, this reflection will cause part of the vibration to be blocked and reflected into the ground, thereby forming an amplification effect near the fissure. Since the normal-type earth fissure dips toward the hanging side, it is more favorable for the reflection of various vibration waves toward the earth fissure, creating a greater amplification in the hanging wall.

(3) When there are secondary fissures with obvious dislocations near the main fissure, the amplification created by the main fissure will be increased again by the secondary fissures. The multiple reflections between the main fissure and the secondary fissures lead to a more significant amplification and a larger influence range.

![Image](image.png)

Fig. 14 The peak ground acceleration in different regions (A, hanging wall; B, footwall)
(4) In addition, under the action of strong vibrations, the friction and collision of the soil on both sides of the earth fissure also stimulate a further dynamic response. In most sites with earth fissures, the most common way to deal with the differential settlement of the hanging wall of the earth fissure is to backfill and compact the area. However, due to the continuous activity of earth fissures, this part of the overlying backfilled soil easily becomes loose or even separates from the lower part. When a strong vibration strikes, the friction and collision between the loose or separated soil in the hanging wall and the original soil in the footwall will cause a strong dynamic response, resulting in a serious seismic hazard.

7 Conclusions and discussion

Using microtremor tests combined with the Fourier spectrum, response acceleration, Arias intensity, and HVSR methods, in this study, we analyzed the spectral characteristics of sites containing representative earth fissures in the Taiyuan Basin. The amplification effect of the earth fissure on the dynamic response of the site was determined based on the attenuation of the spectral peaks. The results show that there are certain differences in the spectral characteristics of the seven survey lines in the two regions. The predominant frequencies, peak shapes, bandwidths, and number of peaks are different. However, the peaks obtained using the Fourier spectrum, response acceleration, Arias intensity, and HVSR methods are significantly larger near the fissure and attenuate with increasing distance from the earth fissure. Moreover, a greater amplification effect was observed on the hanging wall of normal-type earth fissures. After ground motion finite element simulation, the amplification effect of seismic response at the earth fissure site has been further confirmed. Earth fissure activity and bedrock reflection background are the main factors contributing to the difference in the amplification effect between the inner basin and the basin margin.

In order to provide specific suggestions for the seismic fortification of similar earth fissure sites, the ratio of the peak value of the measurement points to the original peak value of the site was defined as the amplification factor to intuitively measure the amplification effect. The results show that on the hanging wall of the earth fissure, 0–7.3 m from the fissure is the high-risk area, 7.3–12.3 m is the medium-risk area, and 12.3–23.5 m is the low-risk area. However, the influence range on the footwall is lower, with the high-risk area being within 4 m of the fissure, the medium-risk area being 4–8 m from the fissure, and the low-risk area being 8–20 m from the fissure. The safe zone is more than 23.5 m away from the earth fissure on the hanging wall and only 20 m on the footwall. Since the dynamic response in the high-risk zone is amplified by more than 2 times, it is recommended that buildings not be constructed in this zone. The seismic fortification intensity of the structures in the medium-risk zone should be doubled to ensure safety. The seismic fortification intensity of the low-risk zone should be increased to 1.5 times, while the safe area is not affected by the amplification effect of the earth fissure on the dynamic response of the site. In addition to the average fortification distance of a site with earth fissures, this study also analyzed the differences in the amplification effect of the earth fissures on the dynamic response of a site in two regions. A smaller influence range was determined for the Qixian-Taigu earth fissure zone (Region I). Due to the secondary fissures near the main fissures in the Jiaocheng earth fissure zone (Region II), a larger amplification of the dynamic response occurred.

Finally, the mechanism of the dynamic response amplification of the site with earth fissures was also investigated. The changes in the soil properties caused by earth fissure activity and the catadioptric effect of the earth fissure interface result in the amplification effect. Based on the variation in the microtremor spectral peaks, the amplification effect of the earth fissures on the dynamic response of the site was determined. Preliminary suggestions for seismic fortification were also given. In order to provide the most practical suggestions for engineering construction projects, it is necessary to further analyze the dynamic response characteristics of different types of structures in sites with earth fissures.

Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant No. 41772275) and the Fundamental Research Funds for the Central Universities (No. 300102268203, No. 300102261716). All of the support provided is gratefully acknowledged.
Data Availability The data that support the findings of this study are available from the corresponding author, Yahong Deng, upon reasonable request.

Declarations

Conflict of interest We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. The data sets supporting the results of this article are included within the article and its additional files. All authors have read and approved this version of the article, and due care has been taken to ensure the integrity of the work. Neither the entire paper nor any part of its content has been published or has been accepted elsewhere. It is not being submitted to any other journal.

References

Al-Harthi AA, Bankher KA (1999) Collapsing loess-like soil in western Saudi Arabia. J Arid Environ 41:383–399
Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–456
Amiri GG, Khorasani M, Hessabi RM, Amrei SAR (2010) Ground-motion prediction equations of spectral ordinates and Arias intensity for Iran. J Earthquake Eng 14(1):1–29
Ayalew L, Yamagishi H, Reik G (2004) Ground cracks in Ethiopian Rift Valley: facts and uncertainties. Eng Geol 75:309–324
Bard PY, Acerra C, Aguacil G, Anastasiadis A, Zacharopoulos S (2008) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. Bull Earthq Eng 6(4):1–2
Bouckovalas G (2006) ETC-12: geotechnical evaluation and application of the seismic eurocode EC8. National Technical University, Greece, pp 55–64
Bonnefay-Claudet S, Cornou C, Bard P-Y, Cotton F, Moczo P, Kristek J, Fah D (2006) H/V ratio: a tool for site effects evaluation Results from 1-D noise simulations. Geophys J Int 167(2):827–837
Bour M, Fouissac D, Dominique P, Martin C (1998) On the use of microtremor recordings in seismic microzonation. Soil Dyn Earthq Eng 17(7–8):465–474
Bouwer H (2010) Land subsidence and cracking due to groundwater depletion. Groundwater 15:358–364
Chang J, Deng YH, Mu HD (2023) Effects of the earth fissure on the seismic response characteristics of nearby metro stations and tunnels. Bull Eng Geol Env 82(6):232
Chen GX (2007) Geotechnical earthquake engineering, 1st edn. Science Press, Beijing
Chen ZX (2002) Mechanism of ground fissure and its prevention countermeasures. Journal of Xi’an Engineering University. 24(2):17–20 (In Chinese)
Christenson GE, Darlene BL, Nelson CV (2003) Guidelines for Evaluating Surface-Fault-Rupture in Utah. Utah Geological Survey, Salt Lake City
Deng YH, Peng JB, Mu HD, Li L, Sun Z (2013) Ground fissures germination mechanism of deep structure activities in Weihe Basin. J Jilin Univ. (earth Science Edition) 43(2):521–527
Field EH, Jacob KH (1995) A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. B Seismol Soc Am 85:1127–1143
Geng DY, Li ZS (2000) Ground fissure hazards in the USA and China. Earthq Sci 13(04):466–476
Guo M, Xie L, Gao E, Liu C (1999) Review for analysis of site response by microtremors. World Inform Earthquake Eng 3:14–19
Hauksson E (1983) Episodic rifting and volcanism at Krafla in north Iceland—growth of large ground fissures along the plate boundary. J Geophys Res Solid Earth 88(B1):625–636
Holzer TL, Pampayen EH (1979) Earth fissures and localized differential subsidence. Water Resour Res 17:223–227
Holzer TL, Gabrysck RK (2010) Effect of water-level recoveries on fault creep. Houston. Texas Groundwater 25:392–397
Lermo JFC (1994) Are microtremors useful in site response evaluation? B Seismol Soc Am. 84:1350–1364
Jachens RC, Holzer TL (1982) Differential compaction mechanism for earth fissures near Casa Grande, Arizona. Geological Society of America Bulletin 93(10):998–1012
Kerr J, Nathan S, Dissen RV, Webb P, Brunson D, King A (2003) Planning for Development of Land on or Close to Active Faults: A Guideline to Assist Resource Management Planners in New Zealand. Institute of Geological & Nuclear Science
Jia ZJ, Peng JB, Lu QZ, Meng LC, Meng ZJ, Qiao JW, Wang FY, Zhao JY (2020) Characteristics and genesis mechanism of ground fissures in Taiyuan Basin, northern China. Eng Geol 275(3):105783
Kagami H, Duke CM, Liang GC, Ohta Y (1982) Observation of 1-to 5-second microtremors and their application to earthquake engineering. Part II. Evaluation of site effect upon seismic wave amplification due to extremely deep soil deposits. B Seismol Soc Am 72:987–998
Kagami H, Okada S, Shiono K, Oner M, Dravinski M, Mal AK (1986) Observation of 1-to 5-second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in the San Fernando Valley. B Seismol Soc Am 76:1801–1812
Kanai K (1954) Measurement of microtremor. I Res Inst :199–209
Kuhlmeier RL, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mechanics Foundations Division 99(5):421–427
Leonard RJ (1929) An earth fissure in Southern Arizona. J Geol 37:765–774
Liu NN, Huang QB, Ma YJ, Bulut R, Peng JB, Fan W, Men YM (2017) Experimental study of a segmented metro tunnel in a ground fissure area. Soil Dyn Earthq Eng 100:410–416
Lofgren BE (1978) Hydraulic stresses cause ground movement and fissures. Picacho. Arizona Geol Soc Am Abstracts Prog 10:113
Louie JN (2001) Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull Seismol Soc Am 91(2):347
Lu QZ, Peng JB, Deng YH, Li L, Feng L (2014) Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing. Geotech Investig Survey 42(06):5–11 In Chinese with English abstract

Marra F, Azzara R, Bellucci F, Caserta A, Cultrera G, Mele G, Palombo B, Roccella BA (2000) Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy). J SEISMOL 4:543–554

Meyer B, Tapponnier P, Bourjot L, Métivier F, Gaudemer Y, Peltzer G, Guo SM, Chen ZT (1998) Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys J Int 135(1):1–47

Mu HD, Deng YH, Chang J, Yan ZF, Xuan Y (2020) Shaking table model test study on dynamic response of Xian ground fissure site. Chin J Rock Mech Eng S01:3139–3149 In Chinese

Nakamura YA (1989) method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI 30(1):25–33

Neal JT, Langer AM, Kerr PF, Paul F (1968) Giant desiccation polygons of Great Basin playas. Geol Soc Am Bull 79(1):69

Ngce WM, Myambok IO (2000) Ground subsidence and its socio-economic implications on the population: a case study of the Nakuru area in Central Rift Valley. Kenya Environ Geol 39(6):567–574

Ohta Y, Kagami H, Goto N, Kudo K (1978) Observation of 1-to 5-second microtremors and their application to earthquake engineering. Part I: comparison with long-period accelerations at the Tokachi-Oki earthquake of 1968. B Seismol Soc Am 68:767–779

Ozalaybey S, Zor E, Ergintav S, Tapirdamaz MC (2011) Investigation of 3-D basin structures in the Izmıt Bay area (Turkey) by single-station microtremor and gravimetric methods. Geophys J Int 186(2):883–894

Peng JB, Li XA, Fan W (2007) Classification and development pattern of caves in the loess plateau. Earth Sci Front 14(6):234–244

Peng JB, Qiao JW, Leng YQ, Wang FY, Xue SZ (2016) Distribution and mechanism of the ground fissures in Wei River Basin, the origin of the Silk Road. Environ Earth Sci 75(8):718

Peng JB, Meng LC, Lu QZ, Deng YH, Meng ZJ (2018) Development characteristics and mechanisms of the Taigü-Qixian earth fissure group in the Taiyuan Basin. China Environ Earth Sci 77(11):407

Qiao JW, Peng JB, Deng YH, Leng YQ (2018) Earth fissures in Qinglong Graben in Yuncheng Basin. China J Earth Syst Sci 127(1):10

Sabettia F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86(2):337

Sanchez-Sesma FJ, Rodriguez M, Iturra-Viveros U, Luizon F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo MA, Rodriguez-Castellanos A (2011) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys J Int 186(1):221–225

Schantz T, Vermeer PA, Bonnier PG (1999) The hardening soil model: formulation and verification, Beyond 2000 in Computational geotechnics. https://doi.org/10.1201/978153820627

Seekins LC, Wennerberg L, Margheriti L, Liu HP (1996) Site amplification at five locations in San Francisco, California: a comparison of S waves, codas, and microtremors. Bull Seism Soc Am 86:627–635

Spudich P, Olsen KB (2001) Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California. Geophys Res Lett 28:2533–2536

Williams FM, Williams MAJ, Aumento F (2004) Tensional fissures and crustal extension rates in the northern part of the Main Ethiopian Rift. J African Earth Sci 38(2):183–197

Xiong ZM, Zhang C, Huo XP, Chen X (2020) Distributing disciplinary of ground motion parameters on an earth fissure site during strong earthquakes. Earthq Eng Eng Vib 19:597–610

Youssef AM, Maerz NH (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70(7):3115–3130

Zang MD, Peng JB, Qi SW (2019) Earth fissures developed within collapsible loess area caused by groundwater uplift in Weihe watershed, northwestern China. J Asian Earth Sci 173:364–373

Zhang JM, et al. (2006) Specification for site investigation and engineering design on Xi’an ground fractures. Shaanxi Province construction standard design station, Xian (In Chinese)

Zhang Y, Wang ZC, Xue YQ, Wu JC, Yu J (2016) Mechanisms for earth fissure formation due to groundwater extraction in the Su-Xi-Chang area, China. Bull Eng Geol Env 75(2):745–760

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.