Incorporation of a Phosphino(pyridine) Subcomponent Enables the Formation of Cages with Homobimetallic and Heterobimetallic Vertices

John P. Carpenter,‡ Tanya K. Ronson,‡ Felix J. Rizzuto, Théophile Héliot, Peter Grice, and Jonathan R. Nitschke*

ABSTRACT: Biological systems employ multimaltomic assemblies to achieve a range of functions. Here we demonstrate the preparation of metal–organic cages that contain either homobimetallic or heterobimetallic vertices. These vertices are constructed using 2-formyl-6-diphenylphosphinopyridine, which forms ligands that readily bridge between a pair of metal centers, thus enforcing the formation of bimetallic coordination motifs. Two pseudo-octahedral homometallic M\textsubscript{12}L\textsubscript{4} cages (M\textsuperscript{1} = Cu\textsuperscript{1} or Ag\textsuperscript{1}) were prepared, with a head-to-head configuration of their vertices confirmed by X-ray crystallography and multinuclear NMR for Ag\textsuperscript{1}. The phosphino-pyridine subcomponent also enabled the formation of a class of octanuclear Cd\textsubscript{4}Cu\textsubscript{4}L\textsubscript{4} tetrahedral cages, representing an initial example of self-assembled cages containing well-defined heterobimetallic vertices.

Coordination-driven self-assembly provides a powerful tool for the preparation of intricate and functional architectures with relative synthetic ease. The combination of metal ions with well-defined stereoelectronic preferences and ligands that have a rigid arrangement of binding sites has enabled the rational design of polyhedral cage architectures including tetrahedra, cubes, octahedra, and higher-order structures. These cages have attracted considerable interest due to their ability to bind guests within well-defined inner cavities, within which the chemical reactivity and dynamics of guest molecules may be altered.

Most metal–organic cages contain monometallic vertices, as the design principles for these vertices are relatively well-understood. Increased structural complexity and diversity are enabled by the presence of vertices formed from bimetallic units or more complex clusters. Such vertices can also increase the functional complexity, because multiple metal ions can bring about new reactivity. Heterometallic structures are challenging to synthesize in a controlled manner, requiring strategies that include the incorporation of preformed kinetically inert metal–organic building blocks, the use of a mixture of hard and soft ligands that bind different metals preferentially, or the use of ligands with different denticities.

Recently we explored the use of 2-formyl-1,8-naphthylene to prepare cages incorporating disilver vertices. Herein we employ 2-formyl-6-diphenylphosphinopyridine A, a subcomponent containing both N and P donors with nonconverging coordination vectors, as a general method for the construction of metal–organic cages having either homobimetallic or heterobimetallic vertices. Subcomponent A was previously incorporated into a dicopper(I) motif, which was integrated into extended architectures when flexible dianilines were used in combination with rigid carboxylate templates. We reasoned that the combination of A with a more rigid, tritopic aniline would enable the synthesis of more complex metal–organic cages, where the dicopper(I) motif would bring together two aniline residues at the vertices of the cage, without requiring carboxylate templation.

The reaction of A (12 equiv), tris(4-aminophenyl)amine B (4 equiv), and [Cu(MeCN)\textsubscript{4}](OTf) (12 equiv, OTf = trifluoromethanesulfonate, triflate) led to the formation of Cu\textsubscript{12}L\textsubscript{4} cage I (Figure 1a), the composition of which was confirmed by ESI-MS. The \textsuperscript{1}H NMR spectrum of I indicated the formation of a high-symmetry product in solution, with the ligand in an environment having 3-fold symmetry. \textsuperscript{1}H DOSY NMR further confirmed that the aromatic signals corresponded to a single species (Figure 1b). The crystal structure of I revealed a pseudo-octahedral geometry, with a pair of Cu\textsuperscript{1} ions occupying each vertex (Figure 1c). Four faces of the octahedron are occupied by tritopic ligands, while the remaining faces are vacant. Each dimetallic vertex has the same P or M helical twist, with the assembly expressing approximate T point symmetry, consistent with the solution NMR spectra. Both cage enantiomers were observed in the crystal.

The bimetallic vertices display a head-to-head configuration, rather than adopting the head-to-tail arrangement observed in other structures incorporating A and related dicopper(I) complexes (Figure 1b and d). The internal Cu\textsuperscript{1} ion of each

Received: February 28, 2022
Published: May 5, 2022
vertex is thus chelated by two pyridyl-imine units, and the outer CuI ions are coordinated by two phosphine donors with a further two external acetonitrile molecules completing their tetrahedral coordination spheres. We infer that this arrangement is more favorable than a counterfactual structure with head-to-tail vertices, where the additional acetonitrile ligands would be left inside the cavity to engender steric crowding (see Supporting Information Section 3).

The coordination environments of the inner CuI ions are distorted from a regular tetrahedral geometry, with angles of $66.2^\circ - 70.4^\circ$ between the two pyridyl-imine chelate planes and $N^\equiv CuI^\equiv N$ angles in the range $80.3^\circ - 139.5^\circ$. The outer CuI ions display a more regular tetrahedral geometry, with angles of $97.9^\circ - 116.9^\circ$ between ligands. The metal centers of each vertex are separated by $4.02^\circ - 4.18 \AA$ (average $= 4.10 \AA$), which is much greater than twice the copper(I) van der Waals radius of $1.40 \AA$.20 indicating the absence of CuI$\cdots$CuI interactions.

The inner CuI ions form a regular octahedral framework with an average distance of $12.0 \AA$ along the edges and $16.9 \AA$ between antipodal CuI ions. The cavity of 1 encapsulates a single acetonitrile molecule in the solid state. Its volume was calculated to be $90 \AA^3$ using Molovol.21

We reasoned that silver(I) might also form pseudo-octahedral assemblies analogous to 1, as AgI and CuI have similar coordination preferences.22 Furthermore, $^{109}$Ag NMR spectroscopy provides a complementary means to characterize coordination complexes incorporating diamagnetic AgI in solution.24 Silver(I) complex 2 was thus formed by treating triamine B (4 equiv) with A (12 equiv) and AgOTf (12 equiv) (Figure 1a). Its Ag$^{12}$L$^4$ composition was confirmed by ESI-MS, and its $^1$H NMR spectrum (Figure 2c) was again consistent with a high-symmetry structure in solution.

The crystal structure of 2 confirmed the presence of a pseudo-octahedral assembly (Figure 2a), analogous to 1, this time with crystallographic T-symmetry. The metal–metal separation at each disilver(I) vertex was found to be $3.38 \AA$, significantly shorter than the average metal–metal distance of $4.10 \AA$ observed for 1 and slightly greater than twice the van der Waals radius of AgI (1.66 Å).20 The inner AgI ions form a perfect octahedron with $12.2 \AA$ edges and a distance of $17.3 \AA$ between opposing vertices. The cavity of 69 Å$^3$ (calculated with Molovol) is slightly smaller than that of 1, reflecting a more compressed structure.

The inner AgI ions, once more coordinated by two pyridyl-imine units, are even more distorted from regular tetrahedral geometry ($62.6^\circ$ between pyridyl-imine chelate planes and $N^\equiv AgI^\equiv N$ angles of $71.1^\circ - 157.8^\circ$) relative to the inner CuI ions of 1, consistent with the greater flexibility of the coordination sphere of silver(I).25 The outer AgI ion of each vertex is coordinated by a single acetonitrile molecule in an approximately trigonal planar coordination geometry (Figure 2b). The coordinated acetonitriles were not observed by $^1$H NMR, presumably due to rapid exchange with CD$_3$CN.

The solution structure of 2 was further probed through multinuclear NMR experiments (Figure 2c–e), which confirmed the presence of two distinct AgI environments, corresponding to the inner and outer silver ions at each vertex. These data indicate that the solution structure mirrors the solid-state one. The imine signal in the $^1$H NMR spectrum of 2 split into a doublet (Figure 2d), in contrast to the singlet observed for 1. In the case of 2, coupling arises between the imine proton and the nearby internal AgI ion with a $^{109}$Ag chemical shift of $544 \text{ ppm}$, as determined from a $^1$H$-^{109}$Ag HMBC spectrum (Figure 2c).26
We initially investigated whether CuI and AgI could be also be capable of stabilizing assemblies with heterobimetallic environments, we hypothesized that subcomponent A corresponding to the outer AgI ions.

Because structures 1 and 2 possess two distinct coordination environments, we hypothesized that subcomponent A might also be capable of stabilizing assemblies with heterobimetallic vertices. We initially investigated whether CuI and AgI could be selectively incorporated into the two distinct binding sites at the vertices of the pseudo-octahedral framework shared by 1 and 2. However, the reaction of triamine B (4 equiv) and A (12 equiv) with equimolar amounts of [Cu(MeCN)4]OTf and AgOTf (6 equiv each) led to the formation of a distribution of CuI-Ag(12-x) symmetric pseudo-octahedral species (Figure S26). We infer that the similarity in coordinative preferences between CuI and AgI led to the formation of these mixed-metal species.

We hypothesized that a metal ion with different coordinative preferences, such as cadmium(II), would lead to discrimination between the different binding sites when combined with copper(I). The self-assembly of triamine B (4 equiv) and A (12 equiv) with [Cu(MeCN)4](ClO4)2 (4 equiv) and CdCl4(ClO4)2 (4 equiv) gave rise to a new product (3), which displayed a single 1H NMR signal for each type of ligand proton (Figure 3a).27 ESI-MS revealed a CdII-CuI tetrahedral composition, distinct from pseudo-octahedral assemblies 1 and 2.

Single-crystal X-ray analysis confirmed the face-capped tetrahedral structure of 3 (Figure 3c). The heterobimetallic vertices of 3 each consist of an inner CdII and an outer CuI, separated by distances of 3.47–3.57 Å (average 3.52 Å), greater than the sum of the van der Waals radii of the two ions (2.98 Å).20 This vertex geometry enables aromatic stacking to occur between a phosphorus-bound phenyl ring from each ligand and the pyridine of a neighboring ligand, with distances of 3.1–3.4 Å between stacked rings (Figure 3c, inset). Such stacking was not observed in the homobimetallic vertices of 1 and 2.

The CdII ions bring together three pyridyl-imine ligands at each vertex. The resulting coordination geometry is flattened from a regular octahedral arrangement, with N−CdII−N angles of 71.5–112.0° between cis-coordinated nitrogen donors. The CuI ions are coordinated by a phospine donor from each ligand, with a single acetonitrile molecule completing the tetrahedral coordination sphere.

Coordination of CdII to the pyridyl-imine donors within 3 allows them to adopt their preferred six-coordinate configuration, leaving the phosphine donors free to bind CuI in an approximately tetrahedral configuration. Although both metal ions are classed as soft acids, the lower charge of CuI renders it softer than CdII, and thus with a greater propensity to coordinate to the softer phosphine donors.28

The structure of 3 evokes previously reported MII-L4 tetrahedra,2a with all octahedral CdII ions within each cage sharing the same Δ or Λ stereochemistry, and the face-capping ligands also adopting a propeller-like helical arrangement. The CdII ions are separated by an average distance of 12.6 Å. A cavity volume of 51 Å3 was calculated using Molvoly,21 within the range observed for analogous tetrahedral cages assembled from B, 2-formylpyridine, and FeII or CoII (31 and 63 Å3 respectively, calculated using the same method).2a,2b The central nitrogen atoms of each ligand are slightly pyramidalized to point outward, with C−N−C angles ranging from 115.1° to 118.1° (average 117.3°). This observation contrasts with the structures of 1 and 2, where the central nitrogen atoms are nearly planar, with average C−N−C angles of 119° and 120°, respectively.

To investigate the generality of this approach for forming heterometallic cages, we also prepared a larger tetrahedral cage based on triamine C, which was shown to produce MII4L4 tetrahedra with rich host–guest chemistry.28 Treatment of subcomponents C (4 equiv) and A (12 equiv) with [Cu(MeCN)4](ClO4)2 (4 equiv) and CdCl4(ClO4)2 (4 equiv) yielded CdII-CuI tetrahedral structure 4 (Figure 3b), as confirmed by
ESI-MS. $^1$H NMR spectra were again consistent with a T-symmetric structure in solution. The crystal structure of 4 confirmed the formation of a face-capped tetrahedral cage with heterobimetallic Cd$^{II}$Cu$^{I}$ vertices, similar to those of 3 (Figure 3d). The internal Cd$^{II}$ cations are separated from one another by an average distance of 16.3 Å, greater than in 3, and the 240 Å$^3$ cavity of 4 is also correspondingly larger, calculated using Molovol. Future work will compare the guest encapsulation abilities of this cavity with that of the analogous $M^{II}$-$L_4$ tetrahedron.

Subcomponent A represents a rare example of a building block that can generate either homobimetallic or heterobimetallic coordination motifs, resulting in two structurally distinct families of coordination cages. The two chemically distinct coordination environments formed from the previously unreported head-to-head arrangement of A have enabled access to cages with heterobimetallic vertices for the first time. Future work will investigate whether the labile coordination sites of the cages, occupied by acetonitrile molecules in the solid state, could enable further functionalization of the cage exterior, to allow tuning of their solubility, the attachment of fluorescent tags for biomedical applications, or the chirality of the cages to be controlled. Explorations may also be fruitful of the mutual influences of the two vertex metal ions, bound at well-defined distances from each other, on the electrochemical properties of the cages and their host–guest properties. Future studies will also seek to exploit the potential photophysical properties of the copper(I)-based cages reported herein for sensing or optoelectronic applications.

**ASSOCIATED CONTENT**

*Supporting Information*

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c02261.

Detailed descriptions of synthetic procedures; characterization of new compounds; spectroscopic data (PDF)

**Accession Codes**

CCDC 2153619–2153622 and 2163435 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

**AUTHOR INFORMATION**

**Corresponding Author**

Jonathan R. Nitschke — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; orcid.org/0000-0002-4060-5122; Email: jrn34@cam.ac.uk

**Authors**

John P. Carpenter — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

Tanya K. Ronson — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; orcid.org/0000-0002-6917-3685

Felix J. Rizzuto — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Present Address: School of Chemistry, University of New South Wales, Sydney 2052, Australia; orcid.org/0000-0001-7237-0401

**Figure 3.** Subcomponent self-assembly of Cd$^{II}$Cu$^{I}$-$L_4$ cages (a) 3 and (b) 4. Externally coordinated acetonitrile molecules are omitted for clarity. (c) Crystal structure of 3 with inset showing one Cd$^{II}$Cu$^{I}$ vertex. (d) Crystal structure of 4. Disorder, anions, solvent of crystallization, and hydrogen atoms are omitted for clarity.

8470
Theophile Héliot — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
Peter Grice — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

orcid.org/0000-0003-2799-903X

Author Contributions
§J.P.C. and T.K.R. contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (695009), the UK Engineering and Physical Sciences Research Council (EPSRC, EP/P027067/1 and EP/T031603/1), and a Marie Curie Fellowship for J.P.C. (ITN-2010-264645). F.J.R. acknowledges Cambridge University Scholarships and the Cambridge Trust for Ph.D. funding. We thank the EPSRC National Mass Spectrometry Centre (Swansea, UK) for high-resolution mass spectrometry and Diamond Light Source (UK) for synchrotron beamtime on I19 (MT15768). We also thank the NMR service team at the Department of Chemistry, University of Cambridge, for performing some NMR experiments.

REFERENCES

(1) (a) Ward, M. D. Polynuclear coordination cages. Chem. Commun. 2009, 4487–4499. (b) Pullen, S.; Tessarolo, J.; Clever, G. H. Increasing structural and functional complexity in self-assembled coordination cages. Chem. Sci. 2021, 12, 7269–7293. (c) Gao, W.-X.; Feng, H.-J.; Guo, B.-B.; Lu, Y.; Jin, G.-X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020, 120, 6288–6325. (d) Cook, T. R.; Stang, P. J. Recent Developments in the Preparation of Subcomponent Self-Assembly of a 4 nm M4L6 Tetrahedron with ZnII Bonded Units. Angew. Chem., Int. Ed. 2013, 52, 13815–13817. (e) Pasquale, S.; Sattin, S.; Escudero-Adán, E. C.; Martínez-Belmonte, M.; de Mendola, P.; J. Giant regular polyhedra from calixarene carboxylates and urylan. Nat. Commun. 2012, 3, 785.

(2) (a) Bilbeisi, R. A.; Clegg, J. K.; Elgrishi, N.; de Hatten, X.; Théophile Héliot; Peter Grice — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

orcid.org/0000-0003-4658-4534

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (695009), the UK Engineering and Physical Sciences Research Council (EPSRC, EP/P027067/1 and EP/T031603/1), and a Marie Curie Fellowship for J.P.C. (ITN-2010-264645). F.J.R. acknowledges Cambridge University Scholarships and the Cambridge Trust for Ph.D. funding. We thank the EPSRC National Mass Spectrometry Centre (Swansea, UK) for high-resolution mass spectrometry and Diamond Light Source (UK) for synchrotron beamtime on I19 (MT15768). We also thank the NMR service team at the Department of Chemistry, University of Cambridge, for performing some NMR experiments.

REFERENCES

(1) (a) Ward, M. D. Polynuclear coordination cages. Chem. Commun. 2009, 4487–4499. (b) Pullen, S.; Tessarolo, J.; Clever, G. H. Increasing structural and functional complexity in self-assembled coordination cages. Chem. Sci. 2021, 12, 7269–7293. (c) Gao, W.-X.; Feng, H.-J.; Guo, B.-B.; Lu, Y.; Jin, G.-X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020, 120, 6288–6325. (d) Cook, T. R.; Stang, P. J. Recent Developments in the Preparation of Subcomponent Self-Assembly of a 4 nm M4L6 Tetrahedron with ZnII Bonded Units. Angew. Chem., Int. Ed. 2013, 52, 13815–13817. (e) Pasquale, S.; Sattin, S.; Escudero-Adán, E. C.; Martínez-Belmonte, M.; de Mendola, P.; J. Giant regular polyhedra from calixarene carboxylates and urylan. Nat. Commun. 2012, 3, 785.

(2) (a) Bilbeisi, R. A.; Clegg, J. K.; Elgrishi, N.; de Hatten, X.; Théophile Héliot; Peter Grice — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

orcid.org/0000-0003-4658-4534

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (695009), the UK Engineering and Physical Sciences Research Council (EPSRC, EP/P027067/1 and EP/T031603/1), and a Marie Curie Fellowship for J.P.C. (ITN-2010-264645). F.J.R. acknowledges Cambridge University Scholarships and the Cambridge Trust for Ph.D. funding. We thank the EPSRC National Mass Spectrometry Centre (Swansea, UK) for high-resolution mass spectrometry and Diamond Light Source (UK) for synchrotron beamtime on I19 (MT15768). We also thank the NMR service team at the Department of Chemistry, University of Cambridge, for performing some NMR experiments.

REFERENCES

(1) (a) Ward, M. D. Polynuclear coordination cages. Chem. Commun. 2009, 4487–4499. (b) Pullen, S.; Tessarolo, J.; Clever, G. H. Increasing structural and functional complexity in self-assembled coordination cages. Chem. Sci. 2021, 12, 7269–7293. (c) Gao, W.-X.; Feng, H.-J.; Guo, B.-B.; Lu, Y.; Jin, G.-X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020, 120, 6288–6325. (d) Cook, T. R.; Stang, P. J. Recent Developments in the Preparation of Subcomponent Self-Assembly of a 4 nm M4L6 Tetrahedron with ZnII Bonded Units. Angew. Chem., Int. Ed. 2013, 52, 13815–13817. (e) Pasquale, S.; Sattin, S.; Escudero-Adán, E. C.; Martínez-Belmonte, M.; de Mendola, P.; J. Giant regular polyhedra from calixarene carboxylates and urylan. Nat. Commun. 2012, 3, 785.

(2) (a) Bilbeisi, R. A.; Clegg, J. K.; Elgrishi, N.; de Hatten, X.; Théophile Héliot; Peter Grice — Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

orcid.org/0000-0003-4658-4534

Notes
The authors declare no competing financial interest.
Stepwise assembly of mixed-metal coordination cages containing both kinetically inert and kinetically labile metal ions: introduction of metal-centred redox and photophysical activity at specific sites. *Dalton Trans* 2015, 44, 17939–17949. (c) Sanz, S.; O’Connor, H. M.; Pineda, E. M.; Pedersen, K. S.; Nichol, G. S.; Monsted, O.; Weibe, H.; Piligkos, S.; McNees, E. J. L.; Lusby, P. J.; Brechin, E. K. [Cr11M10]. Coordination Cubes (M1=Co, Cu). Angew. Chem., Int. Ed. 2015, 54, 6761–6764. (d) Luis, E. T.; Iranmanshesh, H.; Arachchige, K. S. A.; Donald, W. A.; Quach, G.; Moore, E. G.; Beves, J. E. Luminescent Tetrahedral Molecular Cages Containing Ruthenium(II) Chromophores. *Inorg. Chem.* 2018, 57, 8476–8486. (e) Lisboa, L. S.; Findlay, J. A.; Wright, L. J.; Hartinger, C. G.; Crowley, J. D. A Reduced-Symmetry Heterobimetallic [Pd2Pt3]. Cage: Assembly, Guest Binding, and Stimulus-Induced Switching. *Angew. Chem., Int. Ed.* 2020, 59, 11101–11107. (f) Preston, D.; Sutton, J. J.; Gordon, K. C.; Crowley, J. D. A Nona-nuclear Heterometallic Pd4Pt4 "Donut"-Shaped Cage: Molecular Recognition and Photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 8659–8663. (g) (a) Wu, H.-B.; Wang, Q.-M. Construction of Heterometallic Cages with Tripodal Metallogandis. *Inorg. Chem.* 2009, 48, 7343–7345. (b) Duriska, M. B.; Neville, S. M.; Moubarak, B.; Cashion, J. D.; Halder, G. J.; Chapman, K. W.; Balde, C.; Letard, J.-F.; Murray, K. S.; Keptet, C. J.; Batten, S. R. A nanoscale molecular switch triggered by thermal, light, and guest perturbation. *Angew. Chem., Int. Ed.* 2009, 48, 2549–2552. (h) (a) Hardy, M.; Struch, N.; Topić, F.; Schnakenburg, G.; Rissanen, K.; Lützen, A. Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach. *Inorg. Chem.* 2018, 57, 3507–3515. (b) Wang, Z.; Zhou, L.-P.; Zhao, T.-H.; Cai, L.-X.; Guo, X.-Q.; Duan, P.-F.; Sun, Q.-F. Hierarchical Self-Assembly and Chiroptical Studies of Luminescent 4d−4f Cages. *Inorg. Chem.* 2018, 57, 7982–7992. (i) (a) Carpenter, J. P.; McTernan, C. T.; Ronson, T. K.; Nitschke, J. R. Anion Pairs Template a Trigonal Prism with Disilvert Vertices. *J. Am. Chem. Soc.* 2019, 141, 11409–11413. (j) Dry, E. F. V.; Clegg, J. K.; Breiner, B.; Whitaker, D. E.; Stafek, R.; Nitschke, J. R. Reversible anion-templated self-assembly of [2 + 2] and [3 + 3] metalmacrocycles containing a new dicopper(I) motif. *Chem. Commun.* 2011, 47, 6021–6023. (k) The tetrafluoroborate salt of 1 was also prepared from [Cu(MeCN)4][BF4]. (l) Although cage 1 crystallized in the chiral space group P213, the structure was refined as a racemic twin (in addition to being a merohedral twin). (m) (a) Kuang, S.-M.; Zhang, Z.-Z.; Wang, Q.-G.; Mak, T. C. W. Reaction of [Cu2(μ-Ph2Ppyz)2(MeCN)4][ClO4] (Ppyz = 2-(diphenylphosphino-6-π-coordinated M3L2 peptide capsule by Polyhedron 1993, 12, 2425–2428. (d) Lillo, A. M.; Grice, K. A.; Kubiak, C. P. A Series of Dinuclear Copper Complexes Bridged by Phosphinobipyridine Ligands: Synthesis, Structural Characterization and Electrochemistry. *Eur. J. Inorg. Chem.* 2013, 2013, 4016–4023. (c) Although the signal for the phenyl protons H8 of B was not observed at 298 K due to their intermediate rate of rotation on the NMR time scale, they were resolved when spectra were measured at 238 K, enabling all signals to be assigned (Figures S1 and S2). (d) Bondi, A. Van Der Waals Volumes and Radii. *J. Phys. Chem.* 1964, 68, 441–451. (e) Magic, J. B.; Lavendomme, R.MoloVol: an easy-to-use program to calculate various volumes and surface areas of chemical structures and identify cavities. ChemRev 2021, https://chemrev.org/.
enables molecular separation. *J. Am. Chem. Soc.* 2019, 141, 18349–18355.

(31) (a) Casini, A.; Woods, B.; Wenzel, M. The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications. *Inorg. Chem.* 2017, 56, 14715–14729. (b) Samanta, S. K.; Isaacs, L. Biomedical applications of metal organic polygons and polyhedra (MOPs). *Coord. Chem. Rev.* 2020, 410, 213181.

(32) Zhou, Y.; Li, H.; Zhu, T.; Gao, T.; Yan, P. A Highly Luminescent Chiral Tetrahedral Eu₄L₄(L')₄ Cage: Chirality Induction, Chirality Memory, and Circularly Polarized Luminescence. *J. Am. Chem. Soc.* 2019, 141, 19634–19643.

(33) (a) Keller, S.; Prescimone, A.; Bolink, H.; Sessolo, M.; Longo, G.; Martínez-Sarti, L.; Junquera-Hernández, J. M.; Constable, E. C.; Ortí, E.; Housecroft, C. E. Luminescent copper(I) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands. *Dalton Trans* 2018, 47, 14263–14276. (b) Safin, D. A.; Mitoraj, M. P.; Robeys, K.; Filinchuk, Y.; Vande Velde, C. M. L. Luminescent mononuclear mixed ligand complexes of copper(I) with 5-phenyl-2,2′-bipyridine and triphenylphosphine. *Dalton Trans* 2015, 44, 16824–16832.

(34) (a) Ravaro, L. P.; Zanoni, K. P. S.; de Camargo, A. S. S. Luminescent Copper(I) complexes as promising materials for the next generation of energy-saving OLED devices. *Energy Rep* 2020, 6, 37–45. (b) Forero Cortés, P. A.; Marx, M.; Trose, M.; Beller, M. Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: Overview and perspectives. *Chem. Catalysis* 2021, 1, 298–338. (c) Housecroft, C. E.; Constable, E. C. TADF: Enabling luminescent copper(I) coordination compounds for light-emitting electrochemical cells. *J. Mater. Chem. C* 2022, 10, 4456–4482. (d) Zhang, Y.; Schulz, M.; Wächtler, M.; Kamahl, M.; Dietzke, B. Heteroleptic diimine–diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: Design strategies, photophysical properties and perspective applications. *Coord. Chem. Rev.* 2018, 356, 127–146.