TACTIC: the TRIUMF Annular Chamber for Tracking and Identification of Charged particles

L Martin1, G Ruprecht1(3), U Hager1(4), P-A Amaudruz1, L Buchmann1, S P Fox2, A M Laird2, E Martin2

1TRIUMF, Vancouver, Canada,
2University of York, UK,
3Institut für Festkörper-Kernphysik, Berlin, Germany,
4Michigan State University, East Lansing, USA

Affiliations at time of research, differing current affiliations given in parentheses

E-mail: LarsMartin1978@gmail.com

Abstract. An in-depth characterization of the TACTIC detector was performed using data from a 148Gd alpha source and some test runs with a stable ion beam. The detector is an active target time-projection chamber with a blind central region for maximizing beam tolerance and GEM-based electron amplification, equipped with a modern digitizing data acquisition system allowing the recording of full signals. The system was developed to study the reaction 8Li(α,n)11B, which is important for bridging the mass 8 gap in scenarios of low 4He density like Inhomogeneous Big Bang Nucleosynthesis and the production of r-process seeds in supernovae. Both energy resolution and tracking accuracy were found to agree with theoretical predictions and Geant4 simulations. The 8Li beam rate capability of the system is predicted to be of the order of 10^5 s$^{-1}$, several orders of magnitude higher than most previous measurements of the same reaction, while still maintaining a high detection efficiency of 70\% to 80\%.

1. Motivation
The reaction 8Li(α,n)11B is considered to be important for bridging the mass 8 gap in scenarios like inhomogeneous Big Bang nucleosynthesis [1] and r-process seed formation in supernovae [2].

While several experiments have measured a cross section for this reaction, there is significant disagreement between the results (see [3] and references therein), and they all suffer from severe rate limitations. To address this, a new time projection chamber (TPC) was built to measure and identify the charged reaction product 11B [4]. The design includes a blind central region to avoid rate saturation due to detected beam particles.

2. Setup
TACTIC is an active target time-projection chamber with radial field geometry [4–6]. A schematic showing the main parts of the detector is given in Figure 1.

In a TPC ion tracks are reconstructed from ionization electrons collected on a segmented anode, one spatial coordinate being calculated from the electron drift time. In TACTIC the anode is segmented into 8 azimuthal sectors of 60 pads each along the beam direction z. A gas electron multiplier (GEM, [7]) amplifies the charge before it enters the amplifier and data acquisition system (DAQ). In order to not overwhelm the DAQ with irrelevant beam-induced
signals, the target region is separated from the detection region by a cathode wire cage. This means only ion tracks at a significant angle to the beam axis produce signals, while the detector remains blind to “unscattered” beam particles.

The DAQ comprises 11 VF48 48-channel sampling ADCs [8], which can record and output the full pulses from each pad or perform some limited on-board data reduction. Tracks affecting more than one VF48 module have to be assembled in the analysis using recorded time stamps.

The main fundamental difficulty of the setup lies in the cylindrical field. While most TPCs use a homogeneous field, leading to a linear relationship between drift time and position, in a radial field the drift velocity is radius-dependent, making an analytical solution impractical. To address this a radius formula was derived by simulation with GARFIELD [9]. Tracking is further complicated by the fact that TACTIC is self-triggering, resulting in the drift times only being known relative to each other. To calculate the radius coordinate the assumption must be made that the last detected pulse originates from a track point just outside the cathode cage.

3. Test results

Several tests were performed with a 148Gd alpha source and stable beam to characterize the tracking capabilities and resolutions as well as efficiency and rate limitations. Any serious problem with the radius calculation would most likely lead to an apparent overall curvature of analyzed tracks. Figure 2 shows the coefficient of a quadratic fit to 1000 tracks as a function of the number of points per track. It is clear that the curvature only strays from zero for tracks with very few points, more consistent with a noise effect than a problem with the radius calculation.

A working tracking algorithm should reproduce the isotropic angular distribution of the alpha source. Figure 3 shows that this is indeed the case for small to medium angles in most sectors, with major discrepancies at large angles, which are explainable due to the small number of measured points and track angle effects on the pulse shape. It is important to keep in mind that large angles are not needed for the detection of 11B in the reaction of interest, however. Fitting the shown expected isotropic angular distribution to the histogram (fit range $20^\circ < \theta < 40^\circ$) for each sector results in a measured source activity of $3278(10) \ \text{Bq}$, compared with the independently measured activity of $3206(24) \ \text{Bq}$. The apparent discrepancy is due to the fact that only the statistical counting error is reported, disregarding other uncertainties.

The cylindrical symmetry gives TACTIC a high geometric efficiency of about 69.5%, which could be increased to 81.8% with a relatively simple modification of the cathode wire assembly in the future. The rate capability of TACTIC is limited mainly by the DAQ. Beam tests found the system saturates at an event rate of 2800s^{-1} or a data rate of $19 \text{MB} \text{s}^{-1}$. Assuming the on-board data reduction can be utilized fully, the data limit should not be reached in normal operation, leaving only the count rate limit. For elastic scattering in typical experimental conditions for $^{8}\text{Li}(\alpha,n)^{11}\text{B}$, Geant simulations show this to be reached at a beam rate of 10^5s^{-1} to 10^6s^{-1}, this is compared to other measurements of $^{8}\text{Li}(\alpha,n)$ in Table 1.

\footnote{e.g. 500 mbar He/CO\textsubscript{2} gas, 10 MeV ^{8}Li beam}
Figure 2. Coefficient of a quadratic fit to 1000 tracks. A significant curvature is only seen for tracks involving very few points.

Figure 3. Angular distribution of alpha tracks measured in all 8 sectors compared to Geant4 simulation. Only scaled by measurement time, ignoring differences in geometric efficiency.

Experiment	MUSIC	Polycube	RIKEN \[^{[10]}\]	TACTIC
Max. Rate (s\(^{-1}\))	23 to 2400	\(\approx 10^5\)	\(\approx 10^5\)	\(10^4\) to \(10^5\)
Efficiency (%)	100	10 to 20	2 to 12.56	70

Table 1. Rate capabilities and efficiency for \(^8\)Li(\(\alpha, n\))\(^{11}\)B measurements (from citations in \([3]\)).

Of course superior rate capabilities are only useful if particle identification can be achieved. While a qualitative understanding of the energy response of the detector exists, GEM effects and pulse-shape-induced angle dependencies of the gain mean energy alone cannot be used for particle identification in TACTIC yet. Geant simulations do however look promising in terms of utilizing the ion stopping length in the gas as an indicator of particle identity.

4. Conclusion
TACTIC is a functioning tracking detector, albeit with a poorly understood energy response. More work is needed to determine to what extent this impedes the particle identification required for the intended reaction \(^8\)Li(\(\alpha, n\))\(^{11}\)B. If particle identification can be achieved to a sufficient accuracy, TACTIC should be capable to improve on previous statistics.

References
[1] Kajino T and Boyd R N 1990 Astrophys. J. \textbf{359} 267–276
[2] Terasawa M, Sumiyoshi K, Kajino T, Mathews G J and Tanihata I 2001 Astrophys. J. \textbf{562} 470
[3] Ishiyama H \textit{et al.} 2006 Phys. Lett. B \textbf{640} 82 – 85
[4] Laird A \textit{et al.} 2007 Nucl. Instrum. Methods Phys. Res., Sect. A \textbf{573} 306 – 309
[5] Martin L \textit{et al.} 2010 J. Phys. Conf. Ser. \textbf{202} 012040
[6] Fox S P \textit{et al.} 2011 J. Phys. Conf. Ser. \textbf{312} 052007
[7] Bouclier R, Capeans M, Dominik W, Hoch M, Labbe J C, Million G, Ropelewski L, Sauli F and Sharma A 1997 IEEE T. Nucl. Sci. \textbf{44} 646 –650
[8] Martin J P and Amaudruz P A 2006 IEEE T. Nucl. Sci. \textbf{53} 715 – 719
[9] Veenhof R GARFIELD website at CERN \url{http://garfield.web.cern.ch}
[10] Ishiyama H \textit{et al.} 2012 Journal of Instrumentation \textbf{7} C03036