A Model for Hepatitis B with Chronological and Infection Ages

T Y Kouakep*1, A Ducroty1 and Houpa D DE2

1Ngaoundere University, PO Box 454 Ndang, Ngaoundere, Cameroon
2Universite Bordeaux Segalen, UFR Sciences et Modelisation, 3 ter place de la Victoire, Bat. D, 2eme etage, 33076 Bordeaux Cedex, France

Keywords: Nonlinear dynamical systems; Global stability; Lyapunov methods; Differential infectivity models; HBV; Cameroon

A Simplified Model without Vertical Transmission and With Control Measure

Hepatitis B is endemic in Africa [1-3] (see also the references cited therein) and some models have been constructed in order to understand it’s dynamic with ODE deterministic (with delay or not) or stochastic processes [2,4-8] or partial differential equations [9,10].

Studies like [9-13] recognized the importance of the age factor in the dynamics of infectious diseases like hepatitis B [10]. Moreover some studies like [4,14] obtained results with ODEs with discrete age(s) that could be generalized with continuous age assumption more realistic and relevant.

We introduce then a model with differential infectivity and chronological or infection ages. We denote by s(t,a) the density of susceptible at time t with chronological aged a. We denote by i(t,τ) the density of infective that will not develop acute disease at time t contaminated since a time and e(t,τ) the density of infective that will develop acute disease at time t contaminated since a time τ. The model we shall consider reads as follows:

\[\frac{ds}{dt} + \frac{d}{da} = -\mu s(t,a) - \lambda(t)s(t,a), \quad t > 0, \quad a > 0, \]

\[s(0,0) = \Lambda, \]

\[\frac{di}{dt} = -(\mu + \gamma_t)i(t,\tau), \quad t > 0, \quad \tau > 0, \]

\[\frac{de}{dt} = -\mu e(t,\tau), \quad t > 0, \quad \tau > 0, \]

\[i(t,0) = \lambda(t)\int_{0}^{\tau} p(a)s(t,a)da, \quad e(t,0) = \lambda(t)\int_{0}^{\tau} (1-p(a))s(t,a)da. \]

Here \(\Lambda > 0 \) is some constant entering in flux, \(\mu > 0 \) is the natural death rate, \(\gamma_t \) is the additional death rate due to the disease, \(a \rightarrow p(a) \in [0,1] \) is the proportion of individuals going to the acute infective class while \(1-p(a) \) is the proportion to not develop the acute disease when infection occurs. Finally, it remains to model \(\lambda(t,a) \), the force of infection, those general form can be written in the form

\[\lambda(t) = \int_{0}^{\tau} (\beta_t(t,\tau) i(t,\tau) + \beta_e(t,\tau) e(t,\tau)) d\tau \]

Finally this model is supplemented together with some initial data

\[s(0,.) = s_0(.) \in L^1(0,\infty), \]

\[i(0,.) = i_0(\cdot), \quad e(\cdot, \cdot) = e_0(\cdot) \quad \text{with} \quad (i_0, e_0) \in L^1(0,\infty)^2. \]

The above model takes into account the chronological age of susceptible. This parameter has strong implication in the dynamics of infection. Indeed, depending on the age at which susceptible enters the infective’s classes, the disease will develop indifferent way. For hepatitis B virus (HBV), young infections lead to chronic infection while older infection leads to acute disease.

In the above model, we do not take into account possible vertical transmission and we do not consider any control strategy such vaccination campaign. It seems to be relevant together the assumption of WHO [3] that consider that vertical transmission of the disease does occur in sub-saharian Africa, but its influence of the dynamics of the disease is rather small because the proportion of chronic infections acquired prenatally is low. Under the above assumption, we assume that the chronological age for the infective classes do not play an important role. But the time since infection is a relevant biological variable because of the possibility to have a long latent period (especially for the asymptomatic carrier class, until several years).

The work is organized as follows. In Section 2, we prove the wellposedness of the PDE (1.1-1.2), derive preliminary results useful to study the long term behavior of the model. Sections 3, 4, and 5 is devoted to the uniqueness of endemic equilibrium when the biological basic reproduction ratio \(R_e \) is greater than 1 and study the global asymptotically stability of the disease free equilibrium if \(R_e < 1 \). Finally Section 6 presents discussion.

Abstract

We construct and study a differential infectivity model with chronological and infection age. The application is done on hepatitis B in Cameroon. We prove the global stability of the disease free equilibrium when the basic reproduction ratio \(R_e \) is less than one and the existence and uniqueness of an endemic equilibrium when \(R_e > 1 \).

*Corresponding author: T Y Kouakep, Ngaoundere University, PO Box 454 Ndang, Ngaoundere, Cameroon, Tel: 237 22 25 40 40; E-mail: kouakep@aims-senegal.org

Received July 26, 2013; Accepted December 04, 2013; Published December 23, 2013

Citation: Kouakep TY, Ducroty A, Houpa DDE (2013) A Model for Hepatitis B with Chronological and Infection Ages. J Appl Computat Math 3: 148. doi:10.4172/2168-9679.1000148

Copyright: © 2013 Kouakep TY, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract Cauchy problem

The aim of this section is to deal with (1.1). To do so, we consider the Banach spaces

\[X = \mathbb{R}^3 \times L^1(0, \infty)^3, \quad X_0 = \{0\} \times L^1(0, \infty)^3, \]

endowed the norm

\[\| \cdot \|_{L^1(0, \infty)} = \sum_{i=1}^{3} \| \cdot_i \|_{L^1(0, \infty)}, \]

as well as the non-densely defined linear operator \(A : D(A) \subset X \to X \) defined by

\[D(A) = \{ \alpha \in W^{1,1}(0, \infty)^3 \}
\]
together with

\[
\begin{pmatrix}
0 \\
0 \\
0 \\
\phi_1 \\
\phi_2 \\
\phi_3
\end{pmatrix} = \\
\begin{pmatrix}
-\phi_1(0) \\
-\phi_2(0) \\
-\phi_3(0) \\
-\phi_3(0) - \mu \phi_3(0) \\
-\phi_2(r) - (\mu + \gamma_2) \phi_2(r) \\
-\phi_1(r) - (\mu + \gamma_1) \phi_1(r)
\end{pmatrix},
\]

as well as the nonlinear map \(F : X_0 \to X \) defined by

\[
\begin{pmatrix}
0 \\
0 \\
\phi_1 \\
\phi_2 \\
\phi_3
\end{pmatrix} = \\
\begin{pmatrix}
\Lambda \\
\int_0^\infty p(a) \phi_1(a) da \\
\int_0^\infty (1 - p(a)) \phi_1(a) da + \int_0^\infty \beta_1(a) \phi_1(a) (\mu + \gamma_1) \phi_1(a) da \\
\int_0^\infty (1 - p(a)) \phi_2(a) da + \int_0^\infty \beta_2(a) \phi_2(a) (\mu + \gamma_2) \phi_2(a) da \\
\int_0^\infty (1 - p(a)) \phi_3(a) da + \int_0^\infty \beta_3(a) \phi_3(a) (\mu + \gamma_3) \phi_3(a) da
\end{pmatrix},
\]

Let us notice that \(\overline{D(A)} = X_0 \).

Now by identifying \((s(t), \cdot), (t, \cdot), e(t, \cdot))\) in (1.1) together with \(u(t) = (0, 0, 0, s(t), t, e(t), e(t))^T \), one obtains that \(u(t) \) satisfies the following abstract Cauchy problem \(\frac{du(t)}{dt} = Au(t) + F(u(t)), t > 0 \) together with the initial data \(u(0) = x \in (0, 0, 0, x_0, 0, 0) \in X_0 \).

We also consider the positive cones \(X^+ = \mathbb{R}^3 \times L^1(0, \infty)^3, \quad X_0^+ = X_0 \cap X \).

Lemma 2.1: (Hille-Yosida property) Operator \(A : D(A) \subset X \to X \) is a Hille-Yosida operator. More precisely we have \((-\mu, \infty) \subset p(A) \) the resolvent set of \(A \) and for each \(\lambda > \mu \), each \((\alpha_1, \alpha_2, \alpha_3, \psi_1, \psi_2, \psi_3)^T \in X \) we have

\[
(\lambda - A)^{-1} \begin{pmatrix}
0 \\
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\psi_1 \\
\psi_2 \\
\psi_3
\end{pmatrix} =
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\psi_1 \\
\psi_2 \\
\psi_3
\end{pmatrix}.
\]

Moreover we have for each \(\lambda > -\mu \)

\[
(\lambda - A)^{-1} X_0^+ \subset X_0^+.
\]

Proof: Let \(x = (\alpha_1, \alpha_2, \alpha_3, \psi_1, \psi_2, \psi_3)^T \in X \) and \(\lambda > -\mu \) be given. Then the equation

\[
\begin{pmatrix}
0 \\
\phi_1 \\
\phi_2 \\
\phi_3
\end{pmatrix} = \\
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\psi_1 \\
\psi_2 \\
\psi_3
\end{pmatrix}
\]

rewrites as the following system

\[
\begin{pmatrix}
\phi_1(a) = \psi_1(a) \\
\phi_2(a) = \psi_2(a) + \psi_3(a) \\
\phi_3(a) = \psi_3(a)
\end{pmatrix} \quad \text{for } a \in [0, \infty),
\]

that is

\[
\begin{pmatrix}
\phi_1(a) = e^{-(\lambda + \mu)} \alpha_1 + \int_0^a e^{-(\lambda + \mu)(r-a)} \psi_1(r) dr \\
\phi_2(a) = e^{-(\lambda + \gamma_2)} \alpha_2 + \int_0^a e^{-(\lambda + \gamma_2)(r-a)} \psi_2(r) dr \\
\phi_3(a) = e^{-(\lambda + \gamma_3)} \alpha_3 + \int_0^a e^{-(\lambda + \gamma_3)(r-a)} \psi_3(r) dr
\end{pmatrix}.
\]

On the other hand one has

\[
\begin{pmatrix}
\| \phi_1 \|_{L^1(0, \infty)} \\
\| \phi_2 \|_{L^1(0, \infty)} \\
\| \phi_3 \|_{L^1(0, \infty)}
\end{pmatrix} \leq \frac{\| \alpha_1 \|_{L^1(0, \infty)}}{\lambda + \mu},
\]

As a consequence, \((-\mu, \infty) \subset p(A) \) and \(\| \lambda - A \|_{L(X)} \leq \frac{1}{\lambda + \mu}, \forall \lambda > -\mu \)

This completes the proof of the Hille-Yosida property. Finally the explicit formula of the resolvent operator implies that (2.4) holds true.

Theorem 2.2: There exists a continuous semi flow \(\{U(t)\}_{t \geq 0} \) on \(X_0 \), into itself such that for each \(x \in X_0 \), the map \(t \to U(t)x \) is the unique integrated solution of (2.3) with initial data \(x \), namely \(t \to U(t)x \) satisfies

\[
\begin{align*}
(i) & \quad U(t)x = x + A \int_0^t U(s)x ds + \int_0^t F(U(s)x) ds \\
(ii) & \quad U(t)x = x + A \int_0^t U(s)x ds + \int_0^t F(U(s)x) ds \quad \text{for each } t \geq 0
\end{align*}
\]
Moreover we have for each \(x \in X_0 \):
\[
\frac{\Lambda}{\mu + \gamma_i + \gamma_e} \leq \lim \inf_{i \to \infty} \| U(t) x \| \leq \lim \sup_{i \to \infty} \| U(t) x \| \leq \frac{\Lambda}{\mu}
\]

Proof: Let us first notice that for each \(M > 0 \) there exists \(\lambda > 0 \) such that
\[
F(x) + \lambda x \in X_0, \quad \forall x \in B(0, M) \cap X_0,
\]

With \(B(0, M) \) denote the ball of radius \(M \) centered at 0. One obtains the existence of a maximal positive semi flow for (2.3) on \(X_0 \) into itself. It remains to prove that this semi flow is globally defined. To do so, let \(x \in X_0 \) be given and recall that
\[
U(t)x = (0, 0, 0, s(t, x), i(t, x), e(t, x))^T
\]

Consider the quantity
\[
P(t) = \left\| \frac{U(t) x}{\| U(t) x \|} \right\| = \int_{0}^{t} s(t, a) da + \int_{0}^{t} i(t, \tau) d\tau + \int_{0}^{t} e(t, \tau) d\tau.
\]

the total population at time \(t \). Then it satisfies the differential inequality
\[
\frac{dP(t)}{dt} \leq \lambda - \mu P(t)
\]

Thus the map \(t \mapsto P(t) \) cannot blow up in finite and the global existence result follows.

Let us, in addition, notice that, from this inequality one gets (by density)
\[
\lim \sup_{i \to \infty} \left\| U(t) x \right\| \leq \frac{\Lambda}{\mu}, \quad \forall x \in X_0
\]

One the other hand one has
\[
\frac{dP(t)}{dt} = \lambda - \mu P(t) - \left(\gamma_i \int_{0}^{t} i(t, \tau) d\tau + \gamma_e \int_{0}^{t} e(t, \tau) d\tau \right) \geq \lambda - (\mu + \gamma_i + \gamma_e) P(t),
\]

so that
\[
\lim \inf_{i \to \infty} \left\| U(t) x \right\| \geq \frac{\Lambda}{\mu + \gamma_i + \gamma_e}, \quad \forall x \in X_0
\]

This completes the proof of the result.

Stationary States

The disease free equilibrium

The disease free equilibrium corresponds to a stationary state that is time independent solution
\[
(s_x, s_i, s_e) = (s_0, 0, 0), \quad \text{of (1.1)-(1.2).}
\]

As a consequence we have the following lemma

Lemma 3.1: The dynamical system provided by (1.1)-(1.2) has a unique disease free equilibrium where \(\lambda \) is given by \(s^T(a) = \lambda e^{-\mu t} \).

From now on we set
\[
S_i = \int_{0}^{t} p(a) s_x(a) da, \quad S_e = \int_{0}^{t} p(a) s_e(a) da,
\]

and we consider the biological basic reproduction rate
\[
R_0 = \int_{0}^{t} (P \beta_i(\tau) e^{-\gamma_i} + P \beta_e(\tau) e^{-\gamma_e}) d\tau, \tag{3.5}
\]

where we have set

Endemic equilibrium

We look for stationary solutions \((s, i, e) \) such that \(i, e \) not identically zero satisfying

\[
s'(a) = -\mu s(t, a) - \lambda s(a), \quad a > 0,
\]

\[
s(0) = \Lambda,
\]

\[
i'(\tau) = (\mu + \gamma_i) i(\tau), \quad \tau > 0,
\]

\[
e'(\tau) = (\mu + \gamma_e) e(\tau), \quad \tau > 0,
\]

\[
i(0) = \int_{0}^{t} \beta_i(\tau) d\tau + \int_{0}^{t} \beta_e(\tau) d\tau,
\]

Thus the map \(t \mapsto \frac{\partial P(t)}{\partial t} \) cannot blow up in finite and the global existence result follows.

Let us, in addition, notice that, from this inequality one gets (by density)
\[
\left\| U(t) x \right\| \leq \frac{\Lambda}{\mu}, \quad \forall x \in X_0
\]

One the other hand one has
\[
\frac{dP(t)}{dt} = \lambda - \mu P(t) - \left(\gamma_i \int_{0}^{t} i(t, \tau) d\tau + \gamma_e \int_{0}^{t} e(t, \tau) d\tau \right) \geq \lambda - (\mu + \gamma_i + \gamma_e) P(t),
\]

so that
\[
\lim \inf_{i \to \infty} \left\| U(t) x \right\| \geq \frac{\Lambda}{\mu + \gamma_i + \gamma_e}, \quad \forall x \in X_0
\]

This completes the proof of the result.

Theorem 3.2: Recalling definition (3.5), if \(R_0 > 1 \), system (1.1)-(1.2) has a unique endemic equilibrium point denoted by \((s^*, i^*, e^*) \).

Proof: We have
\[
s(\lambda) = \Lambda e^{-(\mu + \gamma_i) \lambda},
\]

\[
i(\lambda) = \int_{0}^{t} \beta_i(\tau) e^{-(\mu + \gamma_i) \lambda} d\tau + \int_{0}^{t} \beta_e(\tau) e^{-(\mu + \gamma_e) \lambda} d\tau,
\]

\[
e(\lambda) = \int_{0}^{t} \beta_e(\tau) e^{-(\mu + \gamma_e) \lambda} d\tau,
\]

Thus
\[
\lambda = \int_{0}^{t} \beta_i(\tau) e^{-(\mu + \gamma_i) \lambda} d\tau + \int_{0}^{t} \beta_e(\tau) e^{-(\mu + \gamma_e) \lambda} d\tau.
\]

We are looking for endemic stationary state, that is \(\lambda > 0 \), so that
\[
1 = \int_{0}^{t} \beta_i(\tau) e^{-(\mu + \gamma_i) \lambda} d\tau + \int_{0}^{t} \beta_e(\tau) e^{-(\mu + \gamma_e) \lambda} d\tau
\]

and \(f(\lambda) = 0 \) when \(\lambda = 0 \). As a consequence, since \(R_0 = f(0) > 1 \), there exists a unique \(\lambda^* > 0 \) such that
\[
f(\lambda^*) = 0.
\]

Finally, the functions
\[
s_x(\lambda) = \Lambda e^{-(\mu + \gamma_i) \lambda},
\]

\[
i_x(\lambda) = \int_{0}^{t} \beta_i(\tau) e^{-(\mu + \gamma_i) \lambda} d\tau + \int_{0}^{t} \beta_e(\tau) e^{-(\mu + \gamma_e) \lambda} d\tau,
\]

\[
e_x(\lambda) = \int_{0}^{t} \beta_e(\tau) e^{-(\mu + \gamma_e) \lambda} d\tau,
\]

provide the unique endemic stationary state of system (1.1)-(1.2).

Dynamical Properties

Assumption 4.1

Assume that the maps \(a \mapsto \beta_i^a(\lambda) \) and \(a \mapsto \beta_e^a(\lambda) \) are bounded and uniformly continuous from \([0, \infty)\) into itself.

Volterra Integral Formulation:

The solutions of (1.1)-(1.2) can be reformulated as follows
\[
\frac{d}{dt} x + \mathcal{A}(t) x = -\mu x - \lambda(t) x,
\]

\[
x(t, 0) = \Lambda, \quad x(t, 0) = s_0,
\]

With
\[\lambda(t) = \int_0^t \beta(t) i(t, \tau) + \beta(t) e(t, \tau) d\tau, \]

and

\[i(t, \tau) = \begin{cases} e^{\mu t} \psi(t - a) & \text{if } a - t < 0, \\ e^{\mu t} \phi(t - a) & \text{if } a - t > 0, \end{cases} \]

where \(t \to \psi(t) = \int_0^t b(t) d\tau \) and \(t \to \phi(t) = \int_0^t b(t) d\tau \) are the unique continuous functions satisfying for \(k = i, e \):

\[b_i(t) = k(t, 0) = \int_0^t \beta_i(t) e^{\mu t} b_i(t - \tau) + \beta_i(t) e^{\mu t} b_e(t - \tau) d\tau \]

\[+ \int_0^t [s(t - \tau)] [e^{\mu t} \beta_e(t) \phi_e(t - \tau) + e^{\mu t} \beta_e(t) \phi_e(t - \tau)] d\tau \]

where we have set

\[p\phi = \int_0^\infty a \phi(a) da, \quad p\phi = \int_0^\infty (1 - p(a)) \phi(a) da. \]

By using results in Sell and You [15], one can find suitable conditions to prove that \(\{U(t)\}_{t \geq 0} \) is asymptotically smooth and derived the following proposition.

Proposition 4.2: Let Assumption 4.1 be satisfied. Then there exists a compact set \(A \subset X_\infty \) such that

(i) \(A \) is invariant under the semi flow \(\{U(t)\}_{t \geq 0} \)

(ii) \(A \) attracts the bounded sets of \(X_\infty \) under \(\{U(t)\}_{t \geq 0} \). This means that for each bounded set \(B \subset X_\infty \), we have

\[\lim \delta(U(t)B, A) = 0, \]

where \(\delta \) is defined as

\[\delta(A, B) = \sup_{t \geq 0} \inf_{y \in B} \|x - y\| \]

Moreover \(A \) is locally asymptotically stable. Next one considers the following quantities \(r_k = \sup \{\tau \in [0, \infty) : \beta_i(\tau) > 0, \ k \in \{i, e\} \} \) and the following set:

\[\tilde{M} = \left\{ (\phi, \psi) \in L_1(0, \infty)^2 : \int_0^\infty \phi(\tau) d\tau + \int_0^\infty \psi(\tau) d\tau > 0 \right\} \]

We set also

\[M_0 = \{O_{2, r} \} \times L_1(0, \infty) \times \tilde{M} \subset X_\infty, \]

\[\partial M_0 = M_0 \setminus M_0. \]

From this Volterra integral formulation one obtains the following lemma:

Lemma 4.3: The sets \(M_0 \) and \(\partial M_0 \) are positively invariant under the semi flow \(\{U(t)\}_{t \geq 0} \). Moreover if \(x \in \partial M_0 \) then

\[\lim_{t \to \infty} \left[U(t)x - x_p(\cdot) \right] = 0 \]

with \(x_p = \left(\begin{array}{c} 0 \ 0 \end{array} \right) \)

Global Stability of the Disease free Equilibrium when \(R_0 < 1 \) and Simulations

Stability with a Lyapunov like function

Lemma 5.1: Let \(t \in \mathbb{R} \) and \(a > 0 \) be given. For a globally in time solution \(s \), we get the following inequality:

\[s(t, a) \leq s_p(a), \quad \forall a > 0. \]

Proof: At first we want to prove that: \(s(t, a) \leq s_p(a), \forall a > 0. \) We have on characteristics:

\[s(t, a) = \begin{cases} e^{t \mu a} s_p(a) & \text{if } a - t \geq 0, \\ \Lambda e^{t \mu a} s_p(a - t) & \text{if } a - t < 0. \end{cases} \]

As a consequence we obtain for each \(s \in \mathbb{R}, t > 0 \) and \(a > 0 \) that

\[s(t + s, a) = \begin{cases} e^{t \mu (a + s)} s_p(s, a - t) & \text{if } a - t \geq 0, \\ \Lambda e^{t \mu (a + s)} s_p(s, a - t) & \text{if } a - t < 0. \end{cases} \]

If \(t = a \) then for each \(s \in \mathbb{R} \):

\[s(s + a, a) = e^{a \mu a} s(s, 0) \leq S_p(a) \]

Let \(t \in \mathbb{R} \) and \(a > 0 \) be given. Choose \(s \in \mathbb{R} \) such that \(s = t \cdot a \). The above equality re-writes as

\[s(t, a) \leq s_p(a), \]

and the result follows.

We will use the lemma above in the proof of the following theorem.

Theorem 5.2: For the model (1.1)-(1.2), if \(R_0 < 1 \), then the disease free equilibrium is globally asymptotically stable in \(\partial M_0 \).

Proof: Recall that

\[\frac{R_0}{\Lambda} = \int_0^\infty \beta_i(t) e^{\mu \tau} \int_0^\infty p(a) e^{-\mu a} da + \int_0^\infty \beta_e(t) e^{\mu \tau} \int_0^\infty (1 - p(a)) e^{-\mu a} da, \]

Choose and such that

\[\Gamma_i(\tau) = (\mu + \gamma_i)^{t \tau}, \quad \beta_i(t) = \beta_i(t) \]

And

\[\Gamma_e(\tau) = (\mu + \gamma_e)^{t \tau}, \quad \beta_e(t) = \beta_e(t) \]

Note that

\[R_0 = \int_0^\infty \int_0^\infty p(a)s_p(s, a) da + \int_0^\infty (1 - p(a)) s_p(s, a) da \]

Then one gets (by density):

\[\frac{d}{dt} \int_0^\infty \Gamma_i(t, \tau) i(t, \tau) d\tau = -\int_0^\infty \Gamma_i(t, \tau) i(t, \tau) d\tau \]

\[-\int_0^\infty \Gamma_i(t, \tau) i(t, \tau) d\tau \]

\[= \lambda(t) \Gamma_i(t, 0) \int_0^\infty p(a) s(a) da + \int_0^\infty \left[\Gamma_i(t, \tau) - (\mu + \gamma_i)^{t \tau} \right] i(t, \tau) d\tau \]

\[= \int_0^\infty \left[\Gamma_i(t, \tau) - (\mu + \gamma_i)^{t \tau} \right] i(t, \tau) d\tau \]

\[= \int_0^\infty (1 - p(a)) i(t, \tau) d\tau \]

\[\int_0^\infty \left[\Gamma_i(t, \tau) - (\mu + \gamma_i)^{t \tau} \right] i(t, \tau) d\tau \]

\[= \lambda(t) \Gamma_i(t, 0) \int_0^\infty (1 - p(a)) s(a) da + \int_0^\infty \left[\Gamma_i(t, \tau) - (\mu + \gamma_i)^{t \tau} \right] i(t, \tau) d\tau \]

so that

\[\frac{d}{dt} \left[\int_0^\infty \Gamma_i(t, \tau) i(t, \tau) d\tau \right] \]

\[= \lambda(t) \Gamma_i(t, 0) \int_0^\infty (1 - p(a)) s(a) da + \int_0^\infty \left[\Gamma_i(t, \tau) - (\mu + \gamma_i)^{t \tau} \right] i(t, \tau) d\tau \]
\[
\left[\Gamma_1(0) \int_0^\infty p(a)s(t,a)da + \Gamma_2(0) \int_0^\infty (1-p(a))s_r(a)da \right] \times \\
\left[\int_0^\tau \beta_e(\tau)e(t,\tau)d\tau + \beta_i(\tau)e(t,\tau)d\tau \right] \\
\left[\int_0^\tau \beta_s(\tau)i(t,\tau) + \beta_i(\tau)e(t,\tau)d\tau \right]
\]

so that

\[
\frac{d}{dt} \int_0^\tau \left[\Gamma_1(\tau)i(t,\tau) + \Gamma_2(\tau)e(t,\tau) \right]d\tau \\
\leq \left[\Gamma_1(0) \int_0^\tau p(a)s(t,a)da + \Gamma_2(0) \int_0^\tau (1-p(a))s_r(a)da \right] \times \\
\left[\int_0^\tau \beta_e(\tau)e(t,\tau)d\tau + \beta_i(\tau)e(t,\tau)d\tau \right] \\
\leq \left[\Gamma_1(0) \int_0^\tau p(a)s(t,a)da + \Gamma_2(0) \int_0^\tau (1-p(a))s_r(a)da \right] \times \\
\left[\int_0^\tau \beta_s(\tau)i(t,\tau) + \beta_i(\tau)e(t,\tau)d\tau \right] \\
\leq \left[\Gamma_1(0) \int_0^\tau p(a)s(t,a)da - s_r(a)da + \Gamma_2(0) \int_0^\tau (1-p(a))(s(t,a) - s_r(a))da \right] \\
\times \left[\int_0^\tau \beta_s(\tau)i(t,\tau) + \beta_i(\tau)e(t,\tau)d\tau \right]
\]

On the attractor \(A \) we check by lemma 5.1 that

\[
s(t,a) \leq s_r(a), \quad \forall t \in \mathbb{R}, \quad a > 0,
\]

so that the functional

\[
V[i,e](t) = \int_0^\tau \left[\Gamma_1(\tau)i(t,\tau) + \Gamma_2(\tau)e(t,\tau) \right]d\tau,
\]

is non-increasing along the complete orbits.

\(V[i,e] \) is a strict Lyapunov function for DFE on \(A \subset \partial M_\phi \) and global stability of DFE when \(R_0 < 1 \) follows.

Simulations

We first simplify the model by assuming that \(\beta_e \) and \(\beta_i \) are both constant parameters. Then introducing

\[
I(t) = \int_0^\tau i(t,\tau)d\tau
\]

and

\[
E(t) = \int_0^\tau e(t,\tau)d\tau.
\]

We will use data in Tables 1-3 for the case of Cameroon.

Age (years)	prevalence \(p \)	prevalence \(q \)	Ref.
0 to 1 month (excluded)	0.1 or 10%	0.9 or 90%	[11,5]
1 to 6 months (included)	0.2 or 20%	0.8 or 80%	[5]
7 to 12 months (included)	0.45 or 45%	0.55 or 55%	[5]
1 to 5 years (included)	0.5-0.25 or 25-50%	0.25-0.5 or 25-50%	[11,5]
>5 years	0.94-0.9 or 94-90%	0.06-0.1 or 6-10%	[11,5]

Table 1: "Data-(C)”, some other data collected on Cameroon.

Discussion

Simulations illustrate the asymptotic stability of DFE in section 5. The model described by equations (1.1-1.2) exhibit a rich dynamic. We observe that the biological basic reproduction rate \(R_0 \) is fundamental for the study of the basic dynamical properties. Applied to hepatitis B, the model suggests that infection rates play a great role in the description of the disease (see expression of \(R_0 \)). Simulations conducted follow our results and suggest the fact that the endemic equilibrium is asymptotically stable if \(R_0 > 1 \) (Figures 1-9).
Figure 3: Function $E(t)$ from Data-"C", $R_0<1$.

Figure 4: Function $I(t)$ from data of Data-"C", $R_0<1$.

Figure 5: Function $I \rightarrow \int_{0}^{t} a(t,\delta) dt$ from Data-"C", $R_0>1$.

Figure 6: Function $E(t)$ from Data-"C", $R_0>1$.

Figure 7: Function $I(t)$ from data of Data-"C", $R_0>1$.

Figure 8: Prevalence of asymptomatic carriers $E(t)$ from Data-"C", $R_0>1$.

Citation: Kouakep TY, Ducroty A, Houpa DDE (2013) A Model for Hepatitis B with Chronological and Infection Ages. J Appl Computat Math 3: 148.
doi:10.4172/2168-9679.1000148
References

1. Edmunds WJ, Medley GF, Nokes DJ, O'Callaghan CJ, Whittle HC, et al. (1996). Epidemiological patterns of Hepatitis B Virus (HBV) in highly endemic areas. Epidemiology Infection 117: 313-325.

2. Momoh AA, Ibrahim MO, Madu BA (2011) Stability of Passive Immunization and Efficacy of Vaccines of Hepatitis B Model. Research Journal of Mathematics and Statistics 3: 107-110.

3. WHO (1996) Hepatitis B and breastfeeding.

4. Bonzi B, Fall AA, Igiddr A, Sallet G (2010) Stability of differential susceptibility and infectivity epidemic models. J Math Biol 62: 39-64.

5. Chevret S (2010) Modèles mathématiques utilisés en médecine. Mathematical models in medicine. Reanimation 18: 240-244.

6. Elkenberry S, Hew S, Nagy JD, Kuan Y (2009), The Dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Math Biosci Eng 6: 283-299.

7. Goldstein ST, Zhou F, Hadler SC, Bell BP, Mast EE, et al. (2005) A mathematical model to estimate global hepatitis B disease burden and vaccination impact. Int J Epid 34: 1329-1339.

8. Zou L, Zhang W, Ruan S (2010) Modelling the transmission dynamics and control of Hepatitis B virus in China. J Theoret Biol 262: 330-338.

9. Zhao SJ, Xu ZY, Lu Y (2000) A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. Int J Epidemiol 29: 744-752.

10. Zou L, Ruan S, Zhang W (2010) An age-structured model for transmission dynamics of hepatitis B. SIAM 70: 3121-3139.

11. Hethcote HW (2000) The Mathematics of Infectious Diseases. SIAM Review 42: 599-653.

12. Inaba H (1990) Threshold and stability results for an age-structured epidemic model. J Math Biol 28: 411-434.

13. Nokes DJ, Hall AJ, Edmunds WJ, Medley GF, Whittle HC (1993), The influence of age on the development of the hepatitis B carrier state. Proc Biol Sci 253: 197-201.

14. Aziz FA, Gauthier S, Abderrahman I (2008) Modélisation de la transmission verticale de l’Hépatite B. CARI.

15. Sell, George R, You, Yuncheng (2002) Dynamics of Evolutionary Equations. Springer, New York, USA.