The maximum spectral radius of C_4-free graphs of given order and size

Vladimir Nikiforov

Department of Mathematical Sciences, University of Memphis, Memphis TN 38152
email: vnikifrv@memphis.edu

February 2, 2008

Abstract

Suppose that G is a graph with n vertices and m edges, and let μ be the spectral radius of its adjacency matrix.

Recently we showed that if G has no 4-cycle, then $\mu^2 - \mu \leq n - 1$, with equality if and only if G is the friendship graph.

Here we prove that if $m \geq 9$ and G has no 4-cycle, then $\mu^2 \leq m$, with equality if G is a star. For $4 \leq m \leq 8$ this assertion fails.

Keywords: 4-cycles; graph spectral radius; graphs with no 4-cycles; friendship graph.

AMS classification: 05C50, 05C35.

This note is part of an ongoing project aiming to build extremal graph theory on spectral grounds, see, e.g., [3] and [6, 14].

Suppose G is a graph with n vertices and m edges and let $\mu(G)$ be the spectral radius of its adjacency matrix. How large can $\mu(G)$ be if G has no cycles of length 4? This question was partially answered in [10], Theorem 3:

Let G be a graph of order n with $\mu(G) = \mu$. If G has no 4-cycles, then

$$\mu^2 - \mu \leq n - 1. \quad (1)$$

Equality holds if and only if every two vertices of G have exactly one common neighbor.

The condition for equality in (1) is a popular topic: as shown in [4] and [5], the only graph satisfying this condition is the friendship graph - a set of $\lfloor n/2 \rfloor$ triangles sharing a single common vertex. Thus equality is possible only for n odd, and (1) may be improved for even n.

Conjecture 1 Let G be a graph of even order n with $\mu(G) = \mu$. If G has no 4-cycles, then

$$\mu^3 - \mu^2 - (n - 1) \mu + 1 \leq 0. \quad (2)$$

Equality holds if and only if G is a star of order n with $n/2 - 1$ disjoint additional edges.
Note that the number of edges of G is missing in (1) and (2). In contrast, Nosal [15] showed that if $\mu(G) > \sqrt{m}$, then G has triangles. Our main result here is a similar assertion for 4-cycles:

Theorem 2 Let $m \geq 9$ and G be a graph with m edges. If $\mu(G) > \sqrt{m}$, then G has a 4-cycle.

Note that Theorem 2 is tight, for all stars are C_4-free graphs with $\mu(G) = \sqrt{m}$. Also, let $S_{n,1}$ be the star of order n with an edge within its independent set: $S_{n,1}$ is C_4-free and has n edges, but $\mu(G) > \sqrt{n}$ for $4 \leq n \leq 8$, as shown in Lemma 6 below.

Observe that the original result of Nosal was sharpened in [12], Theorem 2, (i):

If $\mu(G) \geq \sqrt{m}$, then G has a triangle, unless G is a complete bipartite graph with possibly some isolated vertices.

It turns out that Theorem 2 can be sharpened likewise, at the price of a considerably longer proof, which we omit.

Theorem 3 Let $m \geq 9$ and G be a graph with m edges. If $\mu(G) \geq \sqrt{m}$, then G has a 4-cycle unless G is a star or $S_{9,1}$ with possibly some isolated vertices.

Proofs

Our notation follows [2]; thus, if G is a graph G, and X and Y are disjoint sets of vertices of G, we write:

- $E(G)$ for the edge set of G and $e(G)$ for $|E(G)|$;
- $G[X]$ for the graph induced by X, $E(X)$ for $E(G[X])$, and $e(X)$ for $|E(X)|$;
- $e(X,Y)$ for the number of edges joining vertices in X to vertices in Y;
- $G - uv$ for the graph obtained by removing the edge $uv \in E(G)$;
- $\Gamma_G(u)$ for the set of neighbors of a vertex u and $d_G(u)$ for $|\Gamma_G(u)|$;
- $\Gamma_X(u)$ for $\Gamma_G(u) \cap X$ and $d_X(u)$ for $|\Gamma_X(u)|$.

We drop the subscript in $\Gamma_G(u)$ and $d_G(u)$ when it is understood.

Define $S_{n,k}$ to be the star of order n with k disjoint edges within its independent set.

Next we give some facts, needed in the proof of Theorem 2.

First, a fact implied by Theorem 1 in [16]:

Fact 4 Let x be a unit eigenvector to the spectral radius of a graph with some edges. Then the entries of x do not exceed $2^{-1/2}$.

Next, a known fact, proved here for completeness:

Lemma 5 Let A and A' be the adjacency matrices of two graphs G and G' on the same vertex set. Suppose that $\Gamma_G(u) \subseteq \Gamma_{G'}(u)$ for some vertex u. If some positive eigenvector x to $\mu(G)$ satisfies $\langle A'x, x \rangle \geq \langle Ax, x \rangle$, then $\mu(G') > \mu(G)$.
Proof Since \(\langle A' x, x \rangle \geq \langle A x, x \rangle \), the Rayleigh principle implies that \(\mu(G') \geq \mu(G) \). If \(\mu(G') = \mu(G) \), then \(\langle A' x, x \rangle = \langle A x, x \rangle \), and, again by the Rayleigh principle, \(x \) is an eigenvector to \(\mu(G') \). But this is impossible, for
\[
\mu(G') x_u = \sum_{uv \in E(G')} x_v \geq \sum_{uv \in E(G)} x_v = \mu(G) x_u.
\]
We use above that \(\Gamma_G(u) \subset \Gamma_{G'}(u) \), but there is some \(v \in \Gamma_{G'}(u) \) such that \(v / \in \Gamma_G(u) \). This completes the proof of Lemma 5.

Finally, some facts about \(\mu(S_{n,k}) \):

Lemma 6

(a) \(\mu(S_{n,k}) \) is the largest root of the equation
\[
x^3 - x^2 - (n - 1) x + n - 1 - 2k = 0;
\]
(b) \(\mu(S_{n,k}) \leq \sqrt{n - 1 + k} \) for \(n - 1 + k \geq 9 \), and \(\mu(S_{n,1}) > \sqrt{n} \) for \(4 \leq n \leq 8 \).

Proof Suppose that 1 is the dominating vertex of \(S_{n,k} \), and \(\{2,3\}, \ldots, \{2k,2k+1\} \) are its \(k \) additional edges. Set \(\mu = \mu(S_{n,k}) \) and let \((x_1, \ldots, x_n) \) be an eigenvector to \(\mu \). By symmetry,
\[
x_2 = x_3 = \cdots = x_{2k+1} \quad \text{and} \quad x_{2k+2} = x_{2k+3} = \cdots = x_n.
\]
Setting \(x_1 = x, x_2 = y, x_n = z \), we see that
\[
\mu z = x,
\mu y = y + x,
\mu x = 2ky + (n - 2k - 1) z.
\]
Solving this system, we find that \(\mu \) is a root of the equation
\[
x^3 - x^2 - (n - 1) x + n - 1 - 2k = 0.
\]
If \(\mu \) is not the largest root of this equation, then it has to be smaller than
\[
x_{\min} = 1/3 + \sqrt{1/9 + (n - 1)/3},
\]
the point where the function
\[
f_k(x) = x^3 - x^2 - (n - 1) x + n - 1 - 2k
\]
has a local minimum. This, however, is not possible since
\[
\mu > \sqrt{n - 1} > 1/3 + \sqrt{1/9 + (n - 1)/3}.
\]
This completes the proof of (a).

To prove (b) note that
\[
f_k(\sqrt{n - 1 + k}) = (\sqrt{n - 1 + k})^3 - (\sqrt{n - 1 + k})^2 - (n - 1) \sqrt{n - 1 + k} + n - 2k
\]
\[= k \left(\sqrt{n - 1 + k - 3} \right),
\]
implying the assertion since \(\sqrt{n - 1 + k} > x_{\min} \) and \(f_k(x) \) is increasing for \(x > x_{\min} \).
Proof of Theorem \[2\]

Let $m \geq 9$, and assume for a contradiction that G is a C_4-free graph with m edges, satisfying $\mu(G) > \sqrt{m}$. Set $\mu = \mu(G)$, and suppose that

$$\mu = \max \{ \mu(G) : G \text{ is a } C_4\text{-free graph with } e(G) = m \}.$$ \hspace{1cm} (3)

Also, for the purposes of the proof we may and shall suppose that G has no isolated vertices. This implies that G is connected.

Indeed, let G_1 be a component of G with $\mu(G_1) = \mu(G)$, and let G_2 be the nonempty union of the remaining components of G. Remove an edge from G_2, and add an edge between G_1 and G_2. The resulting graph is C_4-free with m edges, but its spectral radius is larger than μ, contradicting (3). Hence, G is connected.

The essentially part of the proof is induction on m, but it needs some preparation. We first introduce some structure in G and settle several cases with direct arguments, in particular the case $m \leq 13$. Then, having restricted the structure of G, we prove the induction step. Now the details.

Let $\{1, \ldots, n\}$ be the vertices of G, and let $x = (x_1, \ldots, x_n)$ be a positive unit eigenvector to μ, i.e.,

$$\mu = 2 \sum_{ij \in E(G)} x_ix_j.$$ \hspace{1cm}

By symmetry, suppose that $x_1 \geq \cdots \geq x_n$. We claim that all vertices of degree 1 are joined to vertex 1.

Indeed, assume for a contradiction that there exists a vertex $u \neq 1$ such that $d(u) = 1$ and u is joined to $v \neq 1$. Remove the edge uv and join u to vertex 1. The resulting graph G' is C_4-free and has m edges. Also, we see that

$$\sum_{ij \in E(G')} x_ix_j = \sum_{ij \in E(G)} x_ix_j + x_u (x_1 - x_v) \geq \sum_{ij \in E(G)} x_ix_j.$$ \hspace{1cm}

Since $\Gamma_G(1) \subseteq \Gamma_{G'}(1)$, Lemma [5] implies that $\mu(G') > \mu$, contradicting (3). Hence, all vertices of degree 1 are joined to vertex 1.

Let $A = (a_{ij})$ be the adjacency matrix of G and $A^2 = B = (b_{ij})$. Since x is an eigenvector of B to μ^2, we have

$$x_1\mu^2 = \sum_{i=1}^{n} b_{1i}x_i \leq x_1 \sum_{i=1}^{n} b_{1i} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}a_{ji} = x_1 \sum_{v \in \Gamma(1)} d(v).$$ \hspace{1cm} (4)

Set

$$U = \Gamma(1), \quad W = \{2, 3, \ldots, n\} \setminus \Gamma(1),$$

and let $t = e(U)$ and $q = e(W)$. We see that

$$\sum_{v \in U} d(v) = d(1) + 2e(U) + e(U,W) = e(G) - e(W) + e(U) = m - q + t.$$ \hspace{1cm}

Thus (4) gives $\mu^2 \leq m + t - q$, and from $\mu^2 > m$, we get the crucial inequality $t \geq q + 1$. \hspace{1cm} 4
Since all vertices of degree 1 belong to U, we have $d(u) \geq 2$ for all $u \in W$. Also, since G is C_4-free, a vertex in W can be joined to at most one vertex in U. Thus, for all $w \in W$ we have $d_W(w) \geq d(w) - 1 \geq 1$, and consequently,

$$2q = \sum_{w \in W} d_W(w) \geq \sum_{w \in W} 1 = |W|.$$

Suppose first that $q = 0$. Then $|W| = 0$, and so, $e(U, W) = 0$. Therefore, vertex 1 is dominating and $G = S_{m+1-t,t}$. By Lemma 6,

$$\mu = \mu(S_{m+1-t,t}) \leq \sqrt{m}$$

for $m \geq 9$, contradicting the hypothesis. Therefore, $q \geq 1$.

The next claim gives a useful property of $G[W]$, and, in particular, settles the case $q = 1$.

Claim 1 The graph $G[W]$ contains no isolated edges.

Proof Let $uv \in E(W)$ be an isolated edge. Since $d(u) \geq 2$ and $d(v) \geq 2$, we see that $d_U(u) = d_U(v) = 1$. Let $\{k\} = \Gamma_U(u)$ and $\{l\} = \Gamma_U(v)$. Remove the edges uk, vl, and join u and v to the vertex 1. The resulting graph G' is C_4-free and has m edges. Also, we see that

$$\sum_{ij \in E(G')} x_ix_j = \sum_{ij \in E(G)} x_ix_j + x_u(x_1 - x_k) + x_v(x_1 - x_l) \geq \sum_{ij \in E(G)} x_ix_j.$$

Since $\Gamma_G(1) \not\subseteq \Gamma_{G'}(1)$, Lemma 5 implies that $\mu(G') > \mu$, contradicting (3), and completing the proof of Claim 1.

Claim 1 implies that $q \geq 2$. Our next goal is to obtain a contradiction for $m \leq 13$. Indeed, suppose that $m \leq 13$; then $q \geq 2$ gives

$$13 \geq m = 3t + e(U, W) + q \geq 4q + 3 + e(U, W) \geq 11 + e(U, W),$$

which is possible only if $q = 2$, $e(U, W) \leq 2$, and $t = 3$.

The graph $G[W]$ has 2 non-isolated edges, and thus is a path of order 3. Let u, v, w be the vertices of this path and suppose that $uv \in E(W)$ and $vw \in E(W)$. Since $d(u) \geq 2$ and $d(w) \geq 2$, we find that $d_U(u) = d_U(w) = 1$. This, in view of $e(U, W) \leq 2$, gives $e(U, W) = 2$, and so, v has no neighbors in U.

Let $\{k\} = \Gamma_U(u)$ and $\{l\} = \Gamma_U(w)$. Remove the edges uk, wl, uv, and join u, v, w to the vertex 1. The resulting graph G' is C_4-free and has m edges. Also, we see that

$$\sum_{ij \in E(G')} x_ix_j = \sum_{ij \in E(G)} x_ix_j + x_u(x_1 - x_k) + x_w(x_1 - x_l) + x_v(x_1 - x_u) \geq \sum_{ij \in E(G)} x_ix_j.$$

Since $\Gamma_G(1) \not\subseteq \Gamma_{G'}(1)$, Lemma 5 implies that $\mu(G') > \mu$, contradicting (3).

At this point we have proved the theorem for $9 \leq m \leq 13$. Assume now that $m \geq 14$ and that the theorem holds for $m - 1$; we shall prove it for m. The induction step is based on three claims.
Claim 2 If an edge $uv \in E(G)$ satisfies $d(u) = d(v) = 2$, then $x_u x_v < 1/4\mu$.

Proof Let $\{i, u\} = \Gamma(v)$ and $\{j, v\} = \Gamma(u)$. From

$$\mu x_u = x_i + x_v \leq x_1 + x_v \quad \text{and} \quad \mu x_u = x_i + x_v \leq x_1 + x_v$$

we see that $x_u + x_v = 2x_1/(\mu - 1)$. Hence, using the AM-QM inequality and Fact 4, we obtain

$$x_u x_v \leq \left(\frac{x_u + x_v}{2}\right)^2 = \frac{x_i^2}{(\mu - 1)^2} \leq \frac{1}{2(\mu - 1)^2} \leq \frac{1}{4\mu}$$

whenever $\mu^2 \geq 14$. This completes the proof of Claim 2. \hfill \Box

Claim 3 Let $m \geq 20$. Let the vertices u, v, w satisfy $d(u) = d(w) = 2$ and $d(v) = 3$, and let v be joined to u and w. Then either $x_u x_v < 1/4\mu$ or $x_w x_v < 1/4\mu$.

Proof We first note that if $x \geq \sqrt{20}$, then

$$\frac{(x^2 - 2)^2}{x(x + 1)(x + 2)} > \frac{x^4 - 4x^2}{x(x + 1)(x + 2)} = \frac{x(x - 2)}{x + 1} = \frac{x^2 - 4x - 2}{x + 1} + 2 > 2. \quad (5)$$

Next, letting $\Gamma(u) = \{i, v\}$, $\Gamma(w) = \{j, v\}$, and $\Gamma(v) = \{k, u, w\}$, we see that

$$\mu x_u = x_i + x_v \leq x_1 + x_v,$$

$$\mu x_w = x_j + x_v \leq x_1 + x_v,$$

$$\mu x_v = x_k + x_u + x_w \leq x_1 + x_u + x_w,$$

and therefore,

$$\mu (x_u + x_w) \leq x_1 + 2x_v,$$

$$\mu x_v \leq x_1 + x_u + x_w.$$

The solution of this system is

$$x_u + x_w \leq \frac{2\mu + 1}{\mu^2 - 2} x_1, \quad x_v \leq \frac{\mu + 2}{\mu^2 - 2} x_1.$$

Now, assuming $x_u \geq x_w$, and using Fact 4 we obtain

$$x_u x_v \leq \frac{(\mu + 1)(\mu + 2)}{(\mu^2 - 2)^2} \frac{x_1^2}{x_1^2} \leq \frac{(\mu + 1)(\mu + 2)}{2(\mu^2 - 2)^2}.$$

Finally, inequality (5) implies that

$$x_u x_v \leq \frac{(\mu + 1)(\mu + 2)}{2(\mu^2 - 2)^2} \leq \frac{1}{4\mu}$$

whenever $\mu^2 \geq 20$. This completes the proof of Claim 3. \hfill \Box
Claim 4: If there exists $uv \in E(G)$ satisfying $x_u x_v \leq 1/4\mu$, then $\mu^2 (G - uv) > \mu^2 - 1$.

Proof: For every edge $uv \in E(G)$, by the Rayleigh principle, we have

$$\mu^2 (G - uv) \geq \left(2 \sum_{ij \in E(G-uv)} x_i x_j \right)^2 = (\mu - 2x_u x_v)^2 > \mu^2 - 4\mu x_u x_v \geq \mu^2 - 1,$$

completing the proof of Claim 4. \(\square\)

Having proved the claims, we proceed with the induction step. If there exists $uv \in E(U)$ with $d(u) = d(v) = 2$, then by Claims 2 and 4 we obtain $\mu (G - uv) > \sqrt{m - 1}$; by the induction hypothesis G contains a C_4, a contradiction.

Hereafter, we assume that $d(u) + d(v) \geq 5$ for all $uv \in E(U)$. For every edge $uv \in E(U)$, let $W_{uv} = \Gamma_W(u) \cup \Gamma_W(v)$. Since a vertex in W can be joined to at most one vertex in U, the sets W_{uv}, $uv \in E(U)$ are disjoint. From

$$2q = 2e(W) = \sum_{w \in W} d_W(w) \geq \sum_{uv \in E(U)} \sum_{w \in W_{uv}} d_W(w) \geq t \min_{uv \in E(U)} \sum_{w \in W_{uv}} d_W(w)$$

we see that there is an edge $uv \in E(U)$ such that $\sum_{w \in W_{uv}} d_W(w) \leq 1$. Then from

$$|W_{uv}| = d(u) + d(v) - 4 \geq 1$$

we conclude that W_{uv} contains a single vertex w, and that $d_W(w) = 1$.

Assume, by symmetry, that w is joined to v. Then, $d(u) = 2$, $d(w) = 2$, and $d(v) = 3$. Now, if $m \geq 20$, Claims 3 and 4 imply either $\mu (G - uw) > \sqrt{m - 1}$ or $\mu (G - uv) > \sqrt{m - 1}$; by the induction hypothesis G contains a C_4, contradiction.

To complete the proof we have to settle the case when $15 \leq m \leq 19$ and $d(u) + d(v) \geq 5$ holds for all $uv \in E(U)$. We shall show that these conditions also lead to a contradiction.

From

$$e(U,W) = \sum_{uv \in E(U)} d_W(u) + d_W(v) \geq \sum_{uv \in E(U)} (5 - 4) = t$$

and

$$19 \geq m = 3t + e(U,W) + q \geq 3t + t + q \geq 5q + 4 \quad (6)$$

we see that $q \leq 3$ and $t \leq 4$.

Consider first the case $q = 3$. From (6) we find that this is possible only if $m = 19$, $t = 4$, $e(U,W) = 4$. This implies also that $|W| \geq e(U,W) \geq 4$.

$G[W]$ has no isolated vertices and, by Claim 1, it has no isolated edges either. Thus, from $e(W) = 3$ we see that $G[W]$ is a tree of order 4. Now the structure of G is determined: G consists of 4 triangles sharing vertex 1, a tree T of order 4, and a 4-matching joining every vertex of T to a separate triangle.
Select \(u \in W \) to be with \(d_W (u) = 1 \) and let \(\{ v \} = \Gamma_W (u) \), \(\{ k \} = \Gamma_U (u) \), \(\{ l \} = \Gamma_U (v) \). Suppose that \(x_k \geq x_l \), remove the edge \(vl \), and add the edge \(vk \). The resulting graph \(G' \) is \(C_4 \)-free and has \(m \) edges. Also, we see that

\[
\sum_{ij \in E(G')} x_i x_j = \sum_{ij \in E(G)} x_i x_j + x_v (x_k - x_l) \geq \sum_{ij \in E(G)} x_i x_j.
\]

Since \(\Gamma_G (k) \subsetneq \Gamma_G' (k) \), Lemma \(5 \) implies that \(\mu (G') > \mu \), contradicting \((3) \).

The same argument applies when \(x_k < x_l \), completing the proof in this case.

Let now \(q = 2 \). If \(t = 4 \), then \(|W| \geq e(U,W) \geq t = 4 \), and so \(W \) contains isolated edges, contradicting Claim \(\text{[1]} \). Hence, \(t = 3 \), \(|W| = 3 \), and \(G[W] \) is a path of order \(3 \). Now, the structure of \(G \) is determined: \(G \) consists of the graph \(S_{m-4,3} \), a path \(P \) of order \(3 \), and a 3-matching, joining every vertex of \(T \) to a separate triangle of \(S_{m-4,3} \).

At this point we apply again the above argument, completing the proof of Theorem \(2 \). \(\square \)

Concluding remarks

Theorem 3 in \([10] \) gives a result more general than just inequality \((1) \):

Theorem 7 Let \(G \) be a graph of order \(n \) with \(\mu (G) = \mu \). If \(G \) has no \(K_{2,k+1} \) for some \(k \geq 1 \), then

\[
\mu^2 - \mu \leq t(n - 1).
\]

Equality holds if and only if every two vertices of \(G \) have exactly \(k \) common neighbors.

This theorem is sharper than Theorem 3 in \([1] \), and for some values of \(n \) and \(k \) it is as good as one can get. However, in general, the maximal \(\mu (G) \) of \(K_{2,k+1} \)-free graphs \(G \) of order \(n \) is not known at present.

Note that for \(k > 1 \), there may exist regular graphs with every two vertices having exactly \(k \) common neighbors: here is a small selection from \([17] \):

\(k \)	\(n \)	\(\mu \)
2	16	6
3	45	12
4	96	20
5	175	30
6	36	15

Acknowledgement. Thanks Laszlo Babai for the preprint \([1] \).
References

[1] L. Babai, B. Guiduli, Spectral extrema for graphs: the Zarankiewicz problem, preprint, (2007).

[2] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York (1998).

[3] B. Bollobás, V. Nikiforov, Cliques and the spectral radius, J. Combin. Theory Ser. B. 97 (2007), 859-865.

[4] P. Erdős, A. Rényi, V. T. Sós: On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966), 215–235.

[5] C. Huneke, The Friendship Theorem, Amer. Math. Monthly 109 (2002), 192-194.

[6] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comp. 11 (2002), 179-189.

[7] V. Nikiforov, The smallest eigenvalue of K_r-free graphs, Discrete Math. 306 (2006), 612-616.

[8] V. Nikiforov, A spectral condition for odd cycles, to appear in Linear Algebra Appl.

[9] V. Nikiforov, Eigenvalues and forbidden subgraphs I, Linear Algebra Appl. 422 (2007), 384-390.

[10] V. Nikiforov, Bounds on graph eigenvalues II, Linear Algebra Appl. 427 (2007) 183-189.

[11] V. Nikiforov, A spectral stability theorem for large forbidden graphs, submitted for publication. Preprint available at http://arxiv.org/abs/0711.3485

[12] V. Nikiforov, More spectral bounds on the clique and independence numbers, submitted for publication. Preprint available at http://arxiv.org/abs/0706.0548

[13] V. Nikiforov, A spectral Erdős-Stone-Bollobás theorem, submitted for publication. Preprint available at http://arxiv.org/abs/0707.2259

[14] V. Nikiforov, Spectral saturation: inverting the spectral Turán theorem, submitted for publication. Preprint available at http://arxiv.org/abs/0707.2259

[15] E. Nosal, Eigenvalues of Graphs, Master’s thesis, University of Calgary, 1970.

[16] B. Papendieck, P. Recht, On maximal entries in the principal eigenvector of graphs, Linear Algebra Appl. 310 (2000) 129–138.

[17] G. Royle, Strongly regular graphs, http://people.csse.uwa.edu.au/gordon/remote/srgs/