INTRODUCTION

The plant kingdom holds many species of plant containing substances of medicinal values. Traditional medicine is the backbone of primary health care and act as an important global item due to the demand. Safety, efficacy and fewer side effects are the reasons increased of the demand [1, 2]. L. microphyllum are classified as pteridophytes and estimated about 10,500 to 11,300 species have been described and recorded in the tropical rain forest of Malaysia [3]. L. microphyllum was used as a traditional medicine with a different preparation for a different mode of uses. It is the one of the plant potentially useful in traditional medicine practice in the management of diabetes, but the scientific basis for this action has not yet been explored.

Diabetes mellitus (DM) is a chronic endocrine disorder involving most common metabolic disorders of carbohydrate, fat, and protein [4, 5]. In Malaysia, Type II DM is the most prevalent and became a growing problem. The Fourth Malaysian National Health and Morbidity Survey (NHMS IV, 2011) reported that the increased to 20.8% (10.7% known and 10.1% undiagnosed) compared to the Third Malaysian National Health and Morbidity Survey (NHMS III, 2006) which is 14.9% from the population [6]. DM management is very costly because Malaysia Ministry of Health (MOH) spent a calculated amount of RM386, 531.21 as RM2, 684.24 direct costs per patient for a 6-month period [7]. Nowadays, DM becomes a major and much bigger problem in Malaysia. Satisfactory of DM care of patients still not achieving the clinical goal and the rate of complications being still high [8]. Therefore, treatments or management of DM is very important. Plant and plant products played an important role in DM treatment and had been used throughout the world since ancient times. Folk and traditional medicine healing system have been used globally as an antioxidant, antihyperglycemic, and antidiabetic properties from plants.

In the laboratory, experimental DM is commonly induced by using alloxan monohydrate (ALX) or streptozotocin (STZ). Alloxan is a β-cytotoxic toxic glucose analogue [9]. The chemical is selectively destroyed the pancreatic beta cells through the reactive oxygen species (ROS) production. Damage of the cells is the results of alloxan toxicity action [10]. Although the studies have been done on L. microphyllum, the antihyperglycemic effect of L. microphyllum is still lacking. Therefore, present study was aimed at evaluating the effect of aqueous extract of L. microphyllum as an antihyperglycemic and antioxidant by determining the fasting blood glucose, biochemical assays and the histopathological effect on the alloxan-induced diabetic rat pancreas.

MATERIALS AND METHODS

Chemicals

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO): 1,2-Dithio-bis-nitro benzoic acid (DTNB), alloxan monohydrate, 1-chloro-2,4-dinitrobenzene (CDNB), bovine serum albumin (BSA), disodium hydrogen phosphate dehydrate (NaHPO₄), ethylene diamine tetraacetic acid (EDTA), folin-ciocalteu reagent (FCR), glutathione (oxidized form, GSSG), glutathione reductase, hydrogen peroxide (H₂O₂), reduced glutathione (GSH), sodium dihydrogen phosphate (NaH₂PO₄), sodium hydroxide (NaOH), sulfosalicylic acid (SSA), thio barbituric acid (TBA), trichloroacetic acid (TCA) and β-Nicotinamide adenine dinucleotide phosphate reduced (NADPH). All other solvents and chemicals used were either of analytical grade or of the highest purity commercially available.

Preparation of plant extract

Fresh leaves of L. microphyllum (voucher number: Syahidah 001) were collected locally at Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah, Malaysia and identified and authenticated by Mr. Johnny Gsill (botanist), Biology Tropical and Conservation Institute, Universiti Malaysia Sabah. Voucher specimens have been submitted to the universiti herbarium. Leaves were washed with tap water to remove unwanted dirt or any other contaminant. The leaves...
exposed to the ambient temperature as an air-drying method for up to 14 d until no moisture left. Then, the dried leaves were grind using heavy duty blender to coarse smaller samples. Briefly, to prepare the extract, the coarse smaller sample was boiled in 1:10 volume of water in 10 min [11]. After 10 min, the mixture stops heating and cooling at room temperature for 1 hour. Then, the products filter using Whatman No. 1 filter paper. Filtered product frozen at -80°C for three days and freeze-dried for also three days. The extract ready to use in the process of animal treatment.

Animals and treatment

The study protocol was approved by the Animal Ethics Committee (AEC) of the University Malaysia Sabah reference number AEC-01/2015. Adult Sprague-Dawley male rats (8-12 w old), weighing 120-150 g were purchased from the animal house facility of Health Campus, Universiti Sains Malaysia. In this experiment, 36 healthy male Sprague Dawley rats were divided into 6 groups (n = 6) and kept under standard laboratory environmental conditions (25 °C, 12 h light/12 h dark cycle). A standard pellet diet and water were available ad libitum throughout the experimental period. After 6 h to 8 h fasting, four groups of rats were injected intravenously with alloxan monohydrate freshly dissolved in normal saline at dose 100 mg/kg of body weight i. v. whereas the control animals received a normal saline intravenous injection. Diabetes was induced in groups II, IV, V, and VI. Group I and group III served as the normal control groups. Three days after treatment, rats with diabetes (blood glucose level>7.0 mmol/l) were used for the experiment. Treatment groups as shown below:

Group	Treatment
I	Normal control rats received normal saline
II	Diabetic control rats alloxan treated with normal saline
III	Normal control rats treated with plant extract 400 mg/kg of body weight
IV	Diabetic control rats alloxan treated with plant extract 400 mg/kg of body weight
V	Diabetic control rats alloxan treated with plant extract 200 mg/kg of body weight
VI	Diabetic control rats alloxan treated with plant extract 100 mg/kg of body weight

The rats have received treatment daily via orogastric intubation for 14 d. Blood glucose level was measured using a glucometer kit machine on the pre and post (day-3, 0th, 7th, and 14th) of the treatments. Blood samples were taken from the tail by puncturing the caudal vein using a sterile needle. Blood drop was put in contact with the glucometer to measure the blood glucose level.

After 14 d of treatment (day 15), the animals were anesthetized using diethyl ether. The technique of cervical dislocation was performed after the animals were deeply anesthetized. The whole pancreas carefully dissected out. Pancreas was removed quickly and performed after the animals were deeply anesthetized.

Histopathological assessment

The excised pancreas tissues were processed for light microscopy study to substantiate the biochemical findings and to ascertain the cause of pancreatic cell injury. The pancreas tissues were fixed in 10% neutral buffered formalin solution, embedded in paraffin blocks, sectioned, trimmed into 5-6 μm in thickness sections in a rotator microtome and stained with hematoxylin and eosin (H and E). Section was examined by a pathologist who had prior knowledge of the sample assignment to experimental groups for pathological symptoms of pancreatic toxicity.

Table 1: Effect of *L. microphyllum* aqueous extract on body weight

Treatment (n=6)	Body weight (g)			
	-3day	0 d	7 d	14 d
Normal Saline	242.5±11.41	244.1±13.31	251.6±14.12	241.3±10.74
Alloxan treated with normal saline	146.8±23.05*	125.0±17.95*	121.1±23.9*	118.5±30.4*
Plant extract 400 mg/kg body weight	219.5±7.97**	238.8±12.00**	225.8±14.49**	219.3±2.72
Alloxan treated with plant extract 400 mg/kg body weight	231.2±29.45**	223.9±26.69**	230.5±20.21**	235.9±25.10**
Alloxan treated with plant extract 200 mg/kg body weight	273.0±16.20**	238.9±8.99**	230.0±7.99**	212.3±15.68**
Alloxan treated with plant extract 100 mg/kg body weight	298.3±17.14**	260.1±36.15**	223.8±17.80**	223.5±33.42**

Data represented as mean±SEM. *Significant value at P<0.05 compared normal saline. **Significant value at P<0.05 compared to the alloxan treated with normal saline.

Effect of *L. microphyllum* aqueous extract on fasting blood glucose levels

Fasting Blood Glucose (FBG): table 2 shows the effect of *L. microphyllum* aqueous extract on FBG of experimental animals. There was a significant increase in FBG level in alloxan-induced diabetic rats (P<0.05), compared to the treatment groups. The extract proved to be effective in lowering FBG levels as the reading significantly lowered over time.
study. Alloxan induced diabetes caused a marked decrease in the oxidative stress, which is consistent with the results obtained in this study. Diabetes is closely associated with reactive oxygen species and LPO, GR, GST, and CAT.

Table 2: Effect of L. microphyllum aqueous extract on fasting blood glucose (FBG)

Treatment (n = 6)	Fasting blood glucose (mmol/l)			
	Day 3	Day 0	Day 7	Day 14
I Normal saline	5.0±0.65	4.1±0.18	5.1±0.73	4.7±0.48
II Alloxan treated with normal saline	3.9±0.05**	13.3±1.8*	18.2±0.45*	25.2±1.7*
III Plant extract 400 mg/kg of body weight	4.6±0.43**	3.6±0.24**	3.5±0.19**	3.8±0.24**
IV Alloxan treated with plant extract 400 mg/kg of body weight	2.8±0.46**	12.5±1.04**	8.6±2.09**	6.9±1.59**
V Alloxan treated with plant extract 200 mg/kg of body weight	4.4±0.80**	26.7±2.23**	18.3±2.77**	17.5±1.70**
VI Alloxan treated with plant extract 100 mg/kg of body weight	3.4±0.64**	24.5±1.52**	19.3±2.62**	16.6±4.62**

Data represented as mean±SEM, *Significant value at P<0.05 compared normal saline, **Significant value at P<0.05 compared to the alloxan treated

Effect of L. microphyllum aqueous extract on pancreatic GSH, LPO, GR, GST, and CAT

Diabetes is closely associated with reactive oxygen species and oxidative stress, which is consistent with the results obtained in this study. Alloxan induced diabetes caused a marked decrease in the antioxidant enzyme activities (GSH, GR, GST, and CAT) of the diabetic rats. Furthermore, the MDA level in the diabetic rats was slightly increased in comparison to the normal control group. In contrast, L. microphyllum aqueous extract significantly increased the activities of the antioxidant enzymes and decreased the pancreatic levels of MDA in the treated diabetic rats as summarized in the table 3.

Table 3: Effect of L. microphyllum aqueous extract on pancreatic GSH, LPO, GR, GST, and CAT

Treatment (n = 6)	Biochemical assays				
	GSH (µmol reduced GSH/g tissue)	LPO (nmol MDA formed/g tissue)	GR (nmol NADPH oxidized/min/mg protein)	GST (nmol CDNB conjugate formed/min/mg protein)	CAT (nmol H2O2 consumed/min/mg protein)
I Normal saline	11.18±0.53	28.9±1.54	59.70±0.95	76.5±1.75	18.3±2.8
II Alloxan treated with normal saline	6.7±0.54*	60.41±1.27**	25.30±6.70*	33.28±0.75*	8.94±0.68*
III Plant extract 400 mg/kg of body weight	10.8±3.95**	33.6±5.95**	55.4±1.13**	65.0±1.33**	17.2±2.97**
IV Alloxan treated with plant extract 400 mg/kg of body weight	10.7±2.68**	33.88±5.37**	37.15±0.91**	62.8±1.10**	15.3±2.23**
V Alloxan treated with plant extract 200 mg/kg of body weight	9.3±0.59**	36.8±4.19**	36.09±1.14**	56.89±1.26**	14.8±0.81**
VI Alloxan treated with plant extract 100 mg/kg of body weight	7.2±0.50**	42.5±3.67**	34.25±1.01**	42.23±0.68**	12.3±2.80**

Data represented as mean±SEM, *Significant value at P<0.05 compared normal saline, **Significant value at P<0.05 compared to the alloxan treated

Effect of L. microphyllum aqueous extract on pancreatic histopathological findings

Assessment of histopathological alteration of H and E staining pancreatic tissue sections were observed to support the biochemical studies and demonstrate the morphological changes between the control group and group treated with plant extract with different dose. The histopathology of rat pancreas from the different experimental group was shown in fig. 1-6. The pancreas section of normal rats treated with normal saline microscopic investigation...
showed normal cellular architecture which means that the normal
appearance of the islet of Langerhans. The acinar cells are formed of
pyramidal cells as shown in fig. 1. The islet cells are seen
interspersed between the acinar cells. The islet appeared lightly
stained than the surrounding acinar cells. However, fig. 2 the
diabetic rats treated with normal saline showed pathological
changes. The islet displayed marked atrophy. No significant lesion in
the exocrine tissue was observed. The group of normal rat treated
with plant extract does not show any changes (fig. 3). The islet is
similar to the normal cells. On the other hand, the diabetic group
treated with plant aqueous extract 400 mg/kg and 200 mg/kg (fig. 4
and 5) showed that the pancreas has a depicted evidence of cellular
regeneration among the islet of Langerhans. No significant changes
in cells architecture compared to the normal control group. B-cells
were evenly distributed. Since a dose of 100 mg/kg is the lowest
dose, it shows mild atrophy of the islet of Langerhans (fig. 6).

DISCUSSION

This present study focused on the evaluation of the anti-hyper-
glycemic and antioxidative effects of *L. microphyllum* aqueous
extract in alloxan-induced diabetic rats. Diabetes which is
synonymous to hyperglycemia as a result of insulin deficiency or
insensitivity of the body to insulin or both. The defect in the
metabolism and energy regulation of the body due to the insulin
resistance or deficit leading to high blood sugar levels is the main
cause of various complications developed in diabetes. Alloxan
induced diabetes resulting in a decrease in endogenous insulin
release. This happened as the damage of insulin-secreting pancreatic
beta cells. The destruction of beta cells of the islets of Langerhans
inducing hyperglycemia. Reduction in FPG levels in rats treated
with the plant extract was observed and indicates that the plant has
antidiabetic and antihyperglycemic potentials. It could improve the
utilization of glucose in alloxan-induced diabetic rats. The
plant extract is also possibly protecting the cells by preventing the
decrease of insulin secretion and competing for glucose associated
receptors on beta cells membrane [18]. The results of the study
indicate that aqueous extract of *L. microphyllum* has anti-
hyperglycemic, antioxidative, and tissue protective properties.

Diabetes is marked by the increased production of free radicals or
impaired antioxidant defenses [19]. Glucose oxidation and
dismutation to hydrogen peroxide were a generation of superoxide
anion radicals. This was leads to the formation of reactive hydroxyl
radicals. In the present study, LPO levels were increased and
reduction in GSH, GR, GST, and CAT levels in alloxan-induced diabetic
rats compared to the control group. The changes might be due to the
glucose oxidation and formation of free radical generation.
Administration of the plant extract significantly showed a positive
result on the levels of LPO, GSH, GR, GST, and CAT. The plant extracts
functionally restoring the altered antioxidant enzymes in
alloxan-induced diabetic rats. This indicates that the plant has its free radical
scavenging potential.

Beta cells were responsible for producing insulin, and the depletion
of beta cells will cause insulin deficiency and hyperglycemia. In this
study, the positive control group showed normal structure while the
negative control diabetic group showed destruction which obvious
atrophy is seen. Reduction in size could alter the release of insulin
and hinder glucose uptake [20, 21]. The groups administered with
the plant extract showed the normal cell architecture and no
atrophy. This may be caused by the regeneration and rejuvenation of
beta cells in the pancreas. The results obtained from this study
revealed the effectiveness of the plant extract in pancreatic cell
damage.

CONCLUSION

The aqueous extract of *L. microphyllum* showed a decrease in fasting
glucose level and effectively counter back the reaction of
alloxan-induced changes in the beta cell population of the pancreas.
The extract also showed in vivo efficacy against the mediated
manifestation of oxidative stress in the pancreas. Significant
restoration in non-enzymatic (GSH) and enzymatic (LPO, GR, GST,
CAT) antioxidant was clearly seen in a dose-dependent manner. In
the light of the above experimental results, the plant may become a

potential anti-diabetic drugs derivative. However, further investigation is necessary with respect to the toxicological
evaluation of this plant.

ACKNOWLEDGMENT

This research works was financially supported by Grants-in-Aid for
research priority area scheme Universiti Malaysia Sabah (SBK0192-
SKK-2015). The authors are grateful to Dr. Zarina Amin, Director of
Biotechnology Research Institute, for her support and
encouragement. The authors also express gratitude to all who
contribute in this project.

AUTHORS CONTRIBUTIONS

Dg Syahidah Nadiah binti Abdull Majid- Conducted the experiment
and prepared the manuscript. Dr. Mohamad Iqbal-Helped in
designing and conducting the experiment.

CONFLICTS OF INTERESTS

The authors declare that there are no conflicts of interest.

REFERENCES

1. Kalsaslewan M, Gopalan RT. Ethnobotanical studies on selected
wild medicinal plants used by Irula tribes of bola patty valley,
iligiri biosphere reserve (NBR), and Southern Western ghats.
Asia. Asian J Pharm Clin Res 2014;7:22-6.

2. Nazeeba BB, Julie J, Abrami J, Kumaresan R, Muthukumaran T,
Rajarasee S, et al. Anti-cancer activity of *Datura metel* on MCF-7
cell line. Asian J Pharm Clin Res 2014;7:181-3.

3. Chen CY, Chiu FY, Lin Y, Huang WJ, Hsieh PS, Hsu FL. Chemical
constituent analysis and antioxidative activity validation of four
fenn species from taiwan. Int J Mol Sci 2015;16:2497-516.

4. Zhang XF, Tan BK. Effects of an ethanolic extract of *Gynura
procumbens* on serum glucose, cholesterol and triglyceride
levels in normal and streptozotocin-induced diabetic rats.
Singapore Med J 2000;41:9-13.

5. Ashraduzzaman MD, Shahanan K, Shabnam B, Nurul A. *Vigna
unguiculata* Linn. *Wulp*. Seed oil exhibiting antioxidative effects in
alloxan-induced diabetic rats. Malay J Pharm Sci 2011;9:13-23.

6. Hussin Z, Taher SW, Gichandran Singh HK, Skee WC. Diabetes
care in malayasia: problems, new models, and solutions. Ann
Glob Health 2015;81:851-62.

7. Gungwu A, Thon CC, Lian CW. Predictors of diabetes self-
management among type 2 diabetes patients. J Diabetes Res
2016;1:7. Doi:10.1155/2016/9158943

8. Mafauzy M, Diabetes mellitus in Malaysia. Med J Malaysia
2006;61:397-8.

9. Mir MS, Darzi MM, Musadiq KH, Kamil SA, Sohi AH, Wani SA.
Pathomorphological effects of alloxan-induced acute hypoglycinia in
rabbits. Alex J Med 2013;49:34-53.

10. Cryic B, Eswaran K. Anti-hyperglycemic effect of aqueous
effect of *Kappaphycus alvarezii* (Doty) doty ex. P. Silva in
alloxan-induced diabetic rats. J Appl Physiol 2015;28:1-7.

11. Azwadana NN. A review on the extraction methods uses in
medicinal plants, principle, strength, and limitation. Med
Aromat Plants J 2015;4:196-202.

12. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR.
Bromobenzene-induced liver necrosis: protective role of
glutathione and evidence for 3,4-bromobenzeneheptapotic
toxic intermediate. Pharm 1974;11:151-69.

13. Buege JA, Aust SD. Microsomal lipid peroxidation. Method
Enzyme 1978;5:302-10.

14. Carlberg I, Mannervik B. Purification and characterization of
the flavone enzyme glutathione reductase from rat liver. J Bio
Chem 1975;250:5475-80.

15. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase:
the first enzymatic step in mercapturic acid formation. J Bio Chem
1974;249:71-9.

16. Clai borne A. Catalase activity. In: Green Wald RA. (ed.) CRC
handbook of methods for oxygen radical research. CRC Press:
Boca Raton; 1985. p. 283-4.

17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein
measurement with the folin phenol reagent. J Bio Chem
1951;193:265-75.
18. Sangeetha MS, Priyanga S, Hemmalakshmi S, Devaki K. *In vivo* antidiabetic potential of *Cyclea peltate* in streptozotocin-induced diabetic rats. *Asian J Pharm Clin Res* 2015;8:103-8.

19. Mohan Y, Jesuthankaraj GN, Thangavelu NR. Antidiabetic and antioxidant properties of *Triticum aestivum* in streptozotocin-induced diabetic rats. *Adv Pharmacol Sci* 2013;1-9. http://dx.doi.org/10.1155/2013/716073.

20. Sunday JI, Spencer NCO, Kingsley O, Akintola AA, Binyelum N, Favour AO. Possible revival of atrophied islets cells of the pancreas by *Vernonia amygdalina* in alloxan induced diabetic rats. *J Appl Pharm Sci* 2012;2:127-31.

21. Nugent DA, Smoth DM, Jones HW. A review of islets of langerhans degeneration in rodent models of type 2 diabetes. *Toxic Path* 2008;36:529-51.