Résumé - La physique des plasmas est en fait une discipline assez récente qui trouve ses origines autour des années vingt. Elle s'intéresse aux ensembles macroscopiquement neutres de particules chargées; comme par exemple un gaz complètement ou partiellement ionisé.

Les plasmas représentent, très probablement, la presque totalité de la matière de notre univers; ils forment les étoiles et remplissent l'espace interstellaire. Notre planète est, elle-même, entourée d'un plasma à une distance comprise entre 90 et 500 km de sa surface; cette couche rend possible les communications radio au-delà de l'horizon et est responsable des aurores boréales.

L'expérience décrite dans cette notice nous donne un aperçu sur les phénomènes collectifs qui peuvent avoir lieu dans un plasma, et nous introduit à quelques techniques d'analyse utilisées dans ce domaine de la physique.

Fondamentalement, nous chercherons à mettre en évidence les caractéristiques d'un plasma, densité et température, et d'étudier la propagation des ondes ioniques acoustiques. Le diagnostique principal, que nous utiliserons pour explorer notre petit univers plasmatique, double plasma, sera une sonde de Langmuir.
TABLE DES MATIERES

A. DOSSIER SCIENTIFIQUE ... 2

A.1 Historique .. 2

A.2 Concept de plasma .. 2

A.3 Propriétés des plasmas .. 3

A.4 Eléments de théorie ... 4

A.4.1 Ecrantage de Debye .. 4

A.4.2 Sonde de Langmuir .. 6

A.4.3 Eléments de la théorie fluide ... 8

A.4.4 Dérivation des relations de dispersion .. 10

A.4.5 Ondes dans un plasma non magnétisé .. 13

A.4.5.1 Ondes transverses .. 13

A.4.5.2 Ondes longitudinales .. 14

A.4.6 Amortissement des ondes dans un plasma ... 15

A.5. Applications ... 19

B. DOSSIER TECHNIQUE ... 21

B.1 Montage expérimental ... 21

B.2 Mesure de T_e et n_e ... 23

B.3 Etude qualitative du profil longitudinal de n_e .. 24

B.4 Etude de la relation de dispersion des ondes ioniques acoustiques par temps de vol 25

B.5 Etude de la relation de dispersion et de l’amortissement des ondes ioniques acoustiques par interférométrie .. 26

B.6 Création et observation des “solitons” .. 27

B.7 Calculs divers .. 28

Bibliographie ... 29
A. DOSSIER SCIENTIFIQUE

A.1 Historique

Le mot *plasma*, qui désigne un ensemble de particules chargées macroscopiquement neutre, fut proposé par le physicien américain Langmuir en 1923. C'est dans les années 1920 que les premiers travaux avec des *plasmas* furent exécutés par Langmuir, Tonk et leurs collaborateurs. Le moteur de ces premières recherches, fut le besoin de développer des tubes à vide capables de supporter des hauts courants, et pour cela remplis avec du gaz ionisé. Le *plasma* était obtenu avec des faibles décharges ionisantes à partir d'une source incandescente, et avait typiquement une température électronique $k_B T_e \approx 2\ eV$, et une densité n comprise entre 10^8 et $10^{12}\ cm^{-3}$.

Les débuts de la physique des *plasmas* modernes sont situés autour de 1952, quand on proposa de contrôler, via des réacteurs, l'énorme quantité d'énergie dégagée par des processus de fusion thermonucléaire. Jusqu'à cette date les expériences de fusion furent quasi exclusivement menées avec des buts militaires; ce fut grâce à ces recherches qu'on arriva à la construction de la bombe H et aux essais de Bikini de 1948.

A.2 Concept de plasma

Dans tout gaz nous pouvons trouver un certain nombre d'atomes ionisés. Clairement, la présence de charges, en concentration faible par rapport aux neutres, ne modifie pas les propriétés macroscopiques du gaz. C'est seulement au moment où la concentration des particules chargées provoque une charge d'espace suffisante à limiter le libre mouvement des ions et des électrons, que les caractéristiques du gaz changent de façon importante.

En augmentant la concentration des charges les restrictions sur le mouvement deviennent de plus en plus pressantes; ainsi, si la densité des ions et des électrons est suffisamment grande par rapport aux neutres, nous aboutissons à une neutralité macroscopique stable dans un volume beaucoup plus petit de la taille du gaz.

Par ailleurs, il est compréhensible que toute perturbation affectant la neutralité d'un tel milieu provoque des forts champs électriques qui tendent à la restaurer. Un gaz présentant ces caractéristiques, c'est à dire une réponse collective des particules aux perturbations, due entre autre à la longue portée du champ coulombien, s'appelle *plasma*.

La façon la plus naturelle d'obtenir un *plasma* est de chauffer un gaz jusqu'à ce que l'énergie moyenne des particules soit comparable à l'énergie d'ionisation de l'espèce considérée. Cette méthode, chauffage d'un gaz (troisième état de la matière), a suggéré le nom de *quatrième état de la matière* pour désigner les *plasmas*, bien qu'aucun changement de phase ne soit véritablement présent.
A.3 Propriétés des plasmas

Nous allons caractériser notre plasma via sa température électronique, notée par commodité $k_B T_e$ (k_B = const. de Boltzmann) et sa densité n. Les différentes applications du quatrième état de la matière couvrent une plage extrêmement large en $k_B T_e$ et n; en effet n peut varier de 18 ordres de grandeur, de $1 \text{ à } 10^{18}$ cm$^{-3}$, tandis que $k_B T_e$ varie de 7 ordres de grandeur, de 0.1 à 10^6 eV.

Pour apprécier l’incroyable domaine couvert par la densité il suffit de penser que la différence de densité entre l’air et l’eau est de l’ordre d’un facteur 10^3, et qu’entre l’eau et une naine blanche (étoile très dense, résultant de la contraction d’une géante rouge à la fin de sa vie) la différence est de l’ordre de 10^5. Pour avoir une densité 10^{15} fois plus grande de l’eau il faut chercher loin, dans les étoiles à neutron. Ce qui est admirable c’est que tout ce domaine est décrit de façon acceptable par le même ensemble d’équations, dérivé à partir des lois de la physique classique, sans qu’un traitement quantique ne soit indispensable.

Mais comment faire la différence entre un simple gaz ionisé et un plasma?

Dans un plasma, nous l’avons dit précédemment, on aboutit à une neutralité macroscopique de la charge dans un volume suffisamment grand. La plus petite distance au-delà de laquelle le champ électrique produit par une charge est sérieusement écranté s’appelle longueur de Debye λ_D. On définit cette distance en résolvant l’équation de Poisson autour d’une charge, et en prenant une distribution de Boltzmann pour les électrons et les ions qui entourent la particule test.

Pour un plasma de densité n_0 et de température $k_B T_e$, cette distance vaut:

$$\lambda_D = \sqrt{\frac{\varepsilon_0 k_B T_e}{n_0 e^2}}$$

Naturellement, si L est une grandeur caractéristique de la dimension du plasma, la première condition pour avoir un plasma est:

$$\lambda_D << L$$

Par conséquent le nombre de particules chargées se trouvant dans une sphère de Debye doit être très grand:

$$N_D = n_0 \frac{4}{3} \pi \lambda_D^3 >> 1$$

De cette manière, les effets collectifs des particules seront plus importants que les effets
Il y a encore un critère pour qu'un gaz ionisé puisse s'appeler plasma; cela concerne les collisions des particules chargées avec les neutres. En effet dans un plasma, les effets dus à l'interaction électromagnétique doivent dominer sur les collisions binaires entre particules chargées et neutres. En d'autres mots, le mouvement d'une charge est déterminé en premier lieu par la présence d'une charge d'espace. Si ν est la fréquence caractéristique des oscillations dans un plasma et τ le temps de vol d'une charge entre une collision et l'autre avec des neutres, il faut que:

$$\nu \cdot \tau > 1$$

A.4 Éléments de théorie

A.4.1 Ecrantage de Debye

Considérons un plasma infini. Les électrons et les ions suivent des trajectoires aléatoires à des grandes vitesses.

Si nous plaçons une charge positive à l'origine de notre référentiel, son effet sera d'attirer les électrons et de repousser les ions, en créant un nuage électronique compensant sa charge.

On parle d'écrantage de Debye, car au-delà d'une certaine distance l'effet du champ crée par la charge test ne sera plus senti par les autres particules chargées.

Mathématiquement, on montre ce comportement en résolvant l'équation de Poisson pour le champ ϕ créé par les ions, les électrons, et la charge test q_T.

$$\nabla^2 \phi = \frac{\rho}{\varepsilon_0} = \frac{e}{\varepsilon_0} (n_e - n_i) - q_T \delta(r)$$

Où n_i et n_e sont les densités de ions et d'électrons en présence d'un potentiel.

$$n_e = n_0 \exp\left\{ \frac{e\phi}{2\pi k_b T} \right\} \quad n_i = n_0 \exp\left\{ -\frac{e\phi}{2\pi k_b T} \right\}$$

Où k_b est la constante de Boltzmann, T_a la température de l'espèce considérée, et n_0 la densité en l'absence de champ.

L'équation de Poisson en coordonnées sphériques est facile à résoudre pour $r \neq 0$, si on fait l'hypothèse que $|e| \phi << 2\pi k_b T_a$. Il suffit en effet de garder seulement les deux premiers termes du développement limité des densités. Ce qui nous donne:
En cherchant une solution de la forme $\phi = \phi(r)/r$, et en faisant l'hypothèse que pour $r \to 0$ le potentiel correspond à celui d'une charge dans le vide (variant $\propto q_r/r$), on trouve:

$$\phi = \frac{q_r}{4\pi\epsilon_0 r} \exp\left(-\frac{r}{\lambda_d}\right)$$

Où

$$\lambda_{de} = \sqrt{\frac{\epsilon_0 k_b T_e}{n_0 e^2}}; \quad \lambda_{di} = \sqrt{\frac{\epsilon_0 k_b T_i}{n_0 e^2}}; \quad \lambda_i^2 = \lambda_{di}^2 + \lambda_{de}^2$$

Nous remarquons que la décroissance du potentiel créé par une charge est plus rapide dans un plasma que dans le vide, c'est à dire qu'il y a écrantage.

![Figure 1: Potentiel d'une charge test de 1 C, dans le vide et dans un plasma](image)

Pour ce graphique, nous avons considéré que la particule test écrantée se trouve dans un plasma de densité $n_0=1.6 \times 10^{14}$ $[1/m^3]$, et de température $T_e=30800$ K.
A.4.2 Sonde de Langmuir

C’est sûrement la sonde la plus simple, couramment utilisée. Elle consiste en une électrode, dans notre cas une plaquette qui présente une seule face conductrice, que l’on immmerge dans un plasma. Cette sonde collecte un certain courant I_s, qui varie en fonction de sa polarisation par rapport au potentiel du plasma V_p. La courbe $I_s(U_i)$, où U_i est le potentiel appliqué à la sonde, s’appelle: caractéristique de la sonde.

Une caractéristique typique pour une sonde de Langmuir est représentée sur la figure 2.

![Caractéristique d'une sonde de Langmuir](image)

Figure 2. Caractéristique d'une sonde de Langmuir

Souvenons-nous que par convention le courant électrique est positif.

- région A: Le potentiel est négatif: les ions sont attirés vers la sonde où ils se neutralisent, le courant est ionique.

- potentiel V_f: Le potentiel flottant V_f est négatif: les ions se neutralisent autour de la sonde; mais les électrons, de par leur plus grande mobilité, arrivent à contrebalancer le courant ionique. Le courant total est nul.

- région B: On peut négliger dans les calculs le courant ionique par rapport au courant électronique.

- potentiel plasma V_p: Tous les électrons ont suffisamment d’énergie pour passer dans la sonde ⇒ saturation théorique.

Courant dans la région B

Pour qu’un électron soit collecté par la sonde, il faut que son énergie puisse lui permettre de surmonter la barrière de potentiel à la surface de la sonde $-eV_f$. L’énergie d’un élec-
tron se trouvant dans un plasma au potentiel V_p vaut:

$$E = \frac{1}{2} m_e v^2 - e V_p$$

La vitesse minimale que doit avoir un électron, pour passer la barrière de potentiel sera donc:

$$v_{\text{min}}^2 = \frac{2e}{m_e} (V_p - V_s)$$

Nous supposons maintenant, que la fonction de distribution en vitesses, des électrons, est une Maxwellienne.

$$f(v) = n_e \sqrt{\frac{m_e}{2\pi k_b T_e}} \exp\left\{ -\frac{m_e v^2}{2 k_b T_e} \right\}$$

Si A_s est la surface de la sonde, le courant collecté est donc:

$$I(V_s) = -e A_s \int_{v_{\text{min}}}^{\infty} v_z f(v_z) dv_z$$

Dans cette intégrale la vitesse v_z est la vitesse perpendiculaire à la surface de la sonde. La résolution de l'intégrale est immédiate, et nous donne:

$$I(V_s) = -e A_s n_e \sqrt{\frac{k_b T_e}{2\pi m_e}} \exp\left\{ -\frac{e(V_p - V_s)}{k_b T_e} \right\}$$

Deux simples développements nous permettent de trouver une expression pour la température et la densité du plasma en fonction de la caractéristique mesurée:

$$k_b T_e = \frac{e}{\ln(I(V_s))} \left[\frac{d \ln(I(V_s))}{dV_s} [J] \right]$$

$$n_e = \frac{I(V_p)}{e A_s \sqrt{\frac{k_b T_e}{2\pi m_e}} \left[\frac{1}{m^3} \right]}$$

Si $V_s \gg V_p$, tous les électrons ayant $v \geq 9$ vont être collectés contrairement au cas ci-dessus où seulement ceux ayant $v \geq v_{\text{min}}$ étaient collectés. Ainsi, le courant de saturation
électronique vaut

\[I_{\text{sat}} = -eA_y n_c \sqrt{\frac{k_B T_e}{2\pi m_e}} \]

A.4.3 Eléments de la théorie fluide

La théorie fluide considère le plasma comme un fluide se mouvant avec une vitesse \(\mathbf{u} \). Prenons un petit volume \(V \), dans un plasma de densité \(\rho \). La masse totale et la quantité de mouvement relié à ce volume sont:

\[M = \int_V \rho dV \quad P = \int \rho \mathbf{u} dV \]

Les équations fluides apparaissent en explicitant les lois de conservation de la masse et de l'impulsion.

\[\frac{d}{dt} M = \frac{d}{dt} \int_V \rho dV \quad \frac{d}{dt} P = \frac{d}{dt} \int \rho \mathbf{u} dV = \sum F \]

\(F \) représente les forces externes (pesanteur, pression, forces électriques) exercées sur le volume. Par exemple, sans forces électriques, la composante \(i \) de \(F \) vaut:

\[F_i = \sum_{k=1}^{3} \int_{\Sigma} p_{i,k} d\Sigma_k + \int_V \rho g_i dV \]

Où \(p_{i,k} \) est le tenseur des pressions et \(\Sigma \) la surface qui délimite le volume \(V \). Dans (1) nous ne pouvons pas commuter dérivation et intégration, car le volume, ou la surface qui l'entoure, se déplace avec le temps.

![Figure 3: Evolution d'un élément de surface](image)

Nous obtenons alors, à titre d'exemple, pour la dérivée totale sur la masse l'expression suivante:
En utilisant le théorème de la divergence nous obtenons ensuite:

\[\int_V \frac{\partial \rho}{\partial t} dV + \int_V \nabla \cdot (\rho \vec{u}) dV = 0 \]

Le volume \(V \) étant quelconque, la dernière équation est satisfaite si:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \]

C'est l'équation de continuité pour un fluide, qui représente la conservation de la masse.

La même démarche sur l'équation de Newton, suivie par l'application du théorème du gradient, nous donne, en l'absence des forces électromagnétiques:

\[\rho \left[\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \right] = -\nabla p + \rho \vec{g} \]

L'opérateur \(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \) s'appelle dérivée convective et on le note souvent, par commodité, \(\frac{d\vec{u}}{dt} \).

Si nous considérons aussi les forces électromagnétiques, chose tout à fait naturelle et indispensable dans un plasma, il faut rajouter un terme à l'équation de Newton.

Avec les forces de Lorentz l'équation devient, pour l'espèce \(\alpha \):

\[\frac{\partial \vec{u}_\alpha}{\partial t} + (\vec{u}_\alpha \cdot \nabla) \vec{u}_\alpha = \frac{q_\alpha}{m_\alpha}(E + \vec{u}_\alpha \times \vec{B}) - \frac{\nabla p}{m_\alpha n_\alpha} + \vec{g} \]

Dans notre système d'équation, Newton + continuité, nous avons cinq inconnues (\(\vec{u}, p, \rho, \vec{E} \) et \(\vec{B} \)), il faut donc le compléter avec trois équations supplémentaires pour que le problème soit défini. On utilise alors une équation d'état pour relier pression et densité, et les équations de Maxwell pour \(\vec{B} \) et \(\vec{E} \).

Nous obtenons finalement, pour la théorie fluide, le système d'équations suivant, où \(\alpha = i,e \) dénote l'espèce de particule:
CONTINUITE :
\[\frac{\partial n_a}{\partial t} + \nabla (n_a \vec{u}) = 0 \]

NEWTON :
\[\frac{\partial \vec{u}_a}{\partial t} + (\vec{u}_a \cdot \nabla) \vec{u}_a = \frac{q_a}{m_a} (\vec{E} + \vec{u}_a \times \vec{B}) - \frac{\nabla p}{m_a n_a} + \vec{g} \]

ETAT :
\[\frac{d}{dt} (p_a n_a^{\gamma_e}) = 0 \]

MAXWELL :
\[\nabla \times \vec{E} = -\frac{d}{dt} \vec{B} \quad \nabla \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{d\vec{E}}{dt} \]

Dans l’équation d’état, on voit apparaître le facteur \(\gamma \) qui s’écrit \(\gamma = (2 + N)/N \) où \(N \) est le nombre de degré de liberté du gaz considéré. Par la suite, nous considérerons que \(\gamma_e = 3 \) et \(\gamma_i = 1 \) car les électrons étant plus mobiles que les ions, ils ne subissent que peu l’effet de l’onde ionique acoustique (\(N_e = 3 \)) alors que les ions subissent complétement le mouvement de l’onde (\(N_i = 1 \)).

Les deux autres équations de Maxwell sont:
\[\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} ; \quad \nabla \cdot \vec{B} = 0 \]

où \(\rho \) est maintenant la densité de charge, n’apportant pas une information supplémentaire; on peut en effet les considérer comme conditions initiales des deux premières.

Le courant et la densité de charge sont facilement exprimables en fonction des densités des particules et des vitesses:
\[\rho = \sum_\alpha q_a n_a \rightarrow \left[\frac{C}{m^3} \right] \quad j = \sum_\alpha q_a n_a \vec{u}_a \rightarrow \left[\frac{A}{m^3} \right] \]

A.4.4. Dérivation des relations de dispersion

Comme n’importe quel autre milieu le plasma admet que certains types d’onde puissent s’y propager et que des instabilités aient lieu. Pour décrire ces phénomènes "il suffit" de résoudre le système des équations fluides que nous avons explicité au paragraphe précédent. Malheureusement une solution analytique simple n’existe pas, mais nous pouvons trouver une solution approchée du système en le linéarisant.
Dans le but de rendre linéaire les équations de Newton, de continuité et d’état, nous faisons l’hypothèse des petites perturbations, et d’un plasma infini et homogène à l’équilibre. La pesanteur est négligée.

A l’équilibre, sans perturbations, nous considérons les grandeurs suivantes constantes:

\[n_{eo} = n_{io} = n_0, \quad T_{eo} = T_{io} = T_0, \quad u_{eo} = u_{io} = 0, \quad p_0 = n_0 k_B T_0 \]

Nous introduisons une perturbation du premier ordre autour de l’équilibre, et nous supposons qu’elle varie comme \(\exp(-i(\omega t - k \cdot r)) \).

\[n_\alpha = n_0 + n_{\alpha 1} \]

\[p_\alpha = n_0 k_B T_0 + p_{\alpha 1} \quad \text{évidemment la grandeur perturbée} \]

\[u_\alpha = 0 + u_{\alpha 1} \quad \text{est << que la grandeur à l’équilibre,} \]

\[B = B_0 + B_1 \quad \text{pour ce qui concerne} \ n \text{ et} \ p. \]

Pour la linéarisation il suffit d’introduire les grandeurs perturbées dans les équations, et ensuite négliger les termes de deuxième ordre.

A titre d’exemple linéarisons l’équation d’état.

\[\frac{\partial}{\partial t}(p_\alpha n_\alpha^{-\gamma_\alpha}) + (u_\alpha \nabla)(p_\alpha n_\alpha^{-\gamma_\alpha}) = 0 \]

\[\frac{\partial}{\partial t}((n_0 k_B T_0 + p_{\alpha 1})(n_0 + n_{\alpha 1})^{-\gamma_\alpha}) + (u_{\alpha 1} \nabla)((n_0 k_B T_0 + p_{\alpha 1})(n_0 + n_{\alpha 1})^{-\gamma_\alpha}) = 0 \]

Lors du prochain passage nous négligeons les termes de deuxième ordre (i.e. les produits entre perturbations).

\[(n_0 + n_{\alpha 1})^{-\gamma_\alpha} \frac{\partial p_{\alpha 1}}{\partial t} + n_0 k_B T_0 \frac{\partial}{\partial t}(n_0 + n_{\alpha 1})^{-\gamma_\alpha} + (u_{\alpha 1} \nabla)(n_0 k_B T_0 n_0^{-\gamma_\alpha}) = 0 \]

Le dernier terme de cette équation est nul, car nous avons supposé le plasma infini et homogène. Il nous reste:

\[-i \omega n_0^{-\gamma_\alpha} p_{\alpha 1} + \gamma_\alpha n_0 k_B T_0 n_0^{-\gamma_\alpha - i \omega n_{\alpha 1}} = 0 \]

\[p_{\alpha 1} + \gamma_\alpha k_B T_0 n_{\alpha 1} \]
D'une façon analogue on linéarise les deux autres équations, Newton et continuité. Ce qui nous donne:

\[-i\omega \underline{u_{a1}} = \frac{q_{a}}{m_{a}} \left(\underline{E}_{1} + \left(\underline{u_{a1}} \times \underline{B}_{0} \right) \right) - \frac{\nabla p_{a1}}{m_{a} n_{0}}\]

\[n_{a1} = n_{0} \frac{k \cdot \underline{u_{a1}}}{\omega}\]

Ce système de trois équations nous donne finalement la relation suivante:

\[\underline{u_{a1}} = \frac{C_{a}^{2}}{\omega} k(\nabla \cdot \underline{u_{a1}}) + \frac{i}{\omega}(\underline{\Omega_{a}} \times \underline{u_{a1}}) = \frac{i q_{a}}{m_{a} \omega} \underline{E}\]

Où \(C_{a} \) est la \textit{vitesse du son} et \(\Omega_{a} \) la \textit{pulsation cyclotronique} (que nous allons appeler \textit{fréquence cyclotronique}).

\[C_{a} = \sqrt{\gamma_{a} k_{b} T_{a} \frac{m_{a}}{s}} \rightarrow \left[\frac{m}{s} \right] \underline{\Omega_{a}} = \frac{q_{a} B_{a}}{m_{a}} \rightarrow \left[\frac{1}{s} \right]\]

A partir des équations de Maxwell nous obtenons de façon simple une équation d'onde. Il suffit de prendre \(\nabla \times (\nabla \times \underline{E}) = -\partial t \partial (\nabla \times \underline{B}) \) et ensuite substituer le \(\nabla \times \underline{B} \) par son expression donnée dans l'autre équation de Maxwell. Nous obtenons:

\[\nabla \times (\nabla \times \underline{E}) = -\mu_{0} \frac{\partial j_{i}}{\partial t} - \frac{1}{c^{2}} \frac{\partial^{2} \underline{E}}{\partial t^{2}}\]

Souvenons-nous que le courant peut s'écrire en fonction de la polarisation \(P \), à son tour liée au champ électrique via la susceptibilité diélectrique \(\chi \) (tenseur). Avec cette définition nous avons que \(\underline{E}/\underline{E}_{0} = 1 + \chi \), où \(\underline{E} \) est la fonction diélectrique.

\[\underline{j}_{i} = \sum_{a} n_{a0} q_{a} \underline{u_{a1}} \quad ; \quad \sum_{a} n_{a1} q_{a} = -\nabla \cdot \underline{D}\]

\[\underline{j}_{i} = \frac{\partial P_{i}}{\partial t} \quad ; \quad \underline{P}_{i} = \underline{\chi} \cdot \underline{E}\]

L'expression finale de l'équation d'onde est:

\[\nabla \times (\nabla \times \underline{E}) = \frac{\omega^{2}}{c^{2}} (1 + \frac{\chi}{\epsilon_{0}}) \underline{E}\]
A.4.5. Ondes dans un plasma non magnétisé

Il est possible maintenant de dériver les relations de dispersion, des ondes se propageant dans un plasma, en résolvant le système formé par les équations (2) et (3). Considérons $B_0 = 0$ et donc $\Omega_\alpha = 0$, nous éliminons ainsi le produit vectoriel dans (2). L’équation (3) peut se diviser en une partie longitudinale ($k \parallel E$) et une partie transverse ($k \perp E$).

\[
\left(\frac{\omega^2}{c^2} (1 + \frac{\chi}{\varepsilon_0}) - k^2 \right) E = 0 ; \quad \left(1 + \frac{\chi}{\varepsilon_0} \right) E = 0
\]

La vitesse \vec{u} est dans ce cas toujours parallèle au champ électrique (simple à vérifier), ce qui nous permettra de réécrire (2).

A.4.5.1. Ondes transverses

$E \perp k \rightarrow u \perp k$ l’équation (2) devient simplement:

\[
\vec{u}_\alpha = \frac{i q_{\alpha} \vec{E}}{m_\alpha \omega}
\]

Il suffit maintenant d'explicitier le courant en fonction de u_α et d'injecter le résultat dans la partie transverse de l'équation d'onde.

\[
\vec{j} = \sum_\alpha q_\alpha n_\alpha \vec{u}_\alpha = \sum_\alpha \frac{i q_{\alpha}^2 n_\alpha}{m_\alpha \omega} \vec{E}
\]

\[
\vec{j} = \frac{\partial \vec{P}}{\partial t} = -i \omega \vec{P} = -i \omega \chi \vec{E} \Rightarrow \chi \vec{E} = -\sum_\alpha \frac{q_{\alpha}^2 n_\alpha}{m_\alpha \omega} \vec{E}
\]

Dans ce cas le tenseur χ est diagonal.

Si nous définissons la fréquence plasma de l’espèce α comme:

\[
\omega_{\alpha}^2 = \frac{n_\alpha q_{\alpha}^2 \varepsilon_0}{m_\alpha}
\]

Nous obtenons la relation de dispersion suivante:

\[
\omega^2 - \omega_{pe}^2 - \omega_{pi}^2 - k^2 c^2 = 0
\]
On en général que $\omega_{pe} \gg \omega_{pi}$ d’où $\omega = \sqrt{\omega_{pe}^2 + k^2c^2}$.
Il s’agit d’une onde électromagnétique car $B = (k \times E)/\omega$ est non nul (le champ magnétique perturbé n’est pas nul). On remarque qu’en dessous de ω_{pe} l’onde ne se propage pas, nous avons donc en ω_{pe} une fréquence de coupure.

A.4.5.2. Ondes longitudinales

Comme avant, on explicite la vitesse $u_\alpha//k$, via la relation (2), et on exprime le courant.

$$u_\alpha = \frac{i q_\alpha}{m_\alpha \omega} \left(\frac{E}{1 - \frac{C_\alpha^2 k^2}{\omega^2}} \right)^L$$

D’après l’expression du courant:

$$-\sum\frac{n_\alpha q_\alpha^2}{m_\alpha (\omega^2 - C_\alpha^2 k^2)} \left(\frac{E}{\omega^2 - C_\alpha^2 k^2} \right) = \chi^L \frac{E}{E}$$

En remplaçant dans l’équation d’onde:

$$1 - \frac{\omega_{pe}^2}{\omega^2 - C_\alpha^2 k^2} - \frac{\omega_{pi}^2}{\omega^2 - C_i^2 k^2} = 0$$

Il s’agit d’ondes purement électrostatiques, car $B = (k \times E)/\omega = 0$. Cette dernière relation admet deux racines dont les solutions approchées sont:

Onde de Langmuir :

$$\omega = \sqrt{\omega_{pe}^2 + C_i^2 k^2}$$

Onde ionique acoustique :

$$\omega = \frac{\sqrt{\gamma_i k_i T_i + \gamma_i k_i T_i}}{m_i} \frac{k}{\sqrt{1 + \gamma_i \lambda^2 m_i k^2}}$$

Rappelons que : $\gamma_e = 1$; $\gamma_i = 3$. On remarque que si $k_i T_i$ tend vers zéro, l’onde ionique acoustique existe encore, ce qui ne se produit jamais dans un gaz normal. Dans ce cas, la vitesse sonore vaut $c_s = (k_i T_i / m_i)^{1/2}$. La vitesse sonore dépend de T_e (car le champ électrique lui est proportionnelle) et de la masse des ions (car l’inertie du fluide lui est proportionnelle). En d’autre mots, la vitesse sonore est la vitesse thermique que les ions auraient si ils avaient la température électronique.
Si dans notre plasma nous avons un faisceau de particules chargées, alors la relation de dispersion se trouve modifiée\(^6\)\(^7\). Il faut dans ce cas utiliser une autre théorie, appelée théorie cinétique, pour décrire le plasma. Dans la figure (4.b) nous donnons une illustration de la relation de dispersion des ondes ioniques-acoustiques en présence d'un faisceau d'ions.

A.4.6 Amortissement des ondes dans un plasma

Amortissement par collisions

Dans le plasma nous avons différents types de collisions :

- ion-ion
- électron-électron
- ion-électron
- neutre-ion
- neutre électron
Figure 4.b: Relation de dispersion des ondes ioniques-acoustiques en présence d'un faisceau d'ions.

Le plasma de cette expérience étant ionisé à environ 1%, les deux derniers types de collisions sont les plus fréquents et sont responsables du transfert d'énergie de l'onde aux neutres.

La fréquence de collision dépend de la vitesse des particules et de la section efficace de collision charge-neutre σ_c.

Spitzer1 donne le résultat suivant pour la fréquence de collision charge-neutre:

$$V_{ma} = n_\alpha \sigma_c \frac{kT_\alpha}{m_\alpha}$$

Par exemple pour un plasma d'argon de densité $n_\alpha=10^{18}$ m$^{-3}$, une température entre 69600 et 174000 K, et une pression des neutres de l'ordre de 10$^{-5}$-10$^{-4}$ Torr, la fréquence de collision ion-neutre vaut environ 7 kHz, et celle électron-neutre environ 10 kHz.

Amortissement Landau

L'effet Landau décrit une interaction entre le potentiel de l'onde et les particules chargées. Intuitivement nous voyons, que l'interaction d'une onde avec une charge se fera au mieux si la différence de vitesse entre les deux est faible. Il faut donc utiliser ici une

1. L.Spitzer, Jr., "Diffuse Matter in Space", p.92, Wiley, New York, 1968.
théorie cinétique, qui au contraire de la théorie fluide considère une distribution des vitesses des particules chargées.
Nous aborderons ici le problème uniquement de façon phénoménologique.
Considérons deux ions, l’un légèrement plus rapide que l’onde et l’autre plus lent, et plaçons-nous dans le référentiel se mouvant à la vitesse de phase de l’onde \(v_\phi \).

Figure 5 : Schématisation de l’effet Landau

Zone 1 : les électrons sont en surnombre par rapport aux ions.
Zone 2 : les ions sont en surnombre par rapport aux électrons.

La flèche indique la direction du champ électrique.

Soit un ion de vitesse \(v < v_\phi \), se trouvant dans la zone (a). Sa vitesse étant plus petite que la vitesse de phase, dans notre référentiel nous le voyons aller vers la gauche, c’est à dire vers une région où le champ électrique est plus grand. Le ion sera donc accéléré loin de la zone à haut champ vers la droite jusqu’au point (1). C’est donc l’onde qui donne son énergie à la particule.

Soit un ion de vitesse \(v > v_\phi \), se trouvant dans la zone (b). Nous le voyons aller vers la droite, où il est repoussé par le potentiel de l’onde. Son mouvement est donc freiné, et nous assistons à un transfert d’énergie de la particule à l’onde.

En faisant un bilan énergétique (phénoménologique) sur les deux particules, nous pourrions arriver à la conclusion que globalement il n’y a pas de transfert d’énergie. Mais si nous considérons une distribution de particules où le nombre de particules plus rapides
que l'onde et celui des plus lentes sont différents, alors nous aurons selon les cas un amortissement ou une amplification de l'onde.

cas 1: distribution Maxwellienne.

Il y a plus de particules qui gagnent de l'énergie; globalement l'onde perd son énergie, elle est amortie.

cas 2: présence d'un faisceau.

Figure 6: Distribution Maxwellienne

Figure 7: Présence d'un faisceau dans le plasma
Il y a plus de particules qui perdent de l'énergie; globalement l'onde gagne de l'énergie, elle est amplifiée.

Nous constatons alors que l'amplification (instabilité) ou l'amortissement de l'onde dépend du signe de la grandeur:

\[\frac{\partial f(v)}{\partial v} \]

Ce résultat s'exprime de façon mathématique par la présence d'une partie imaginaire de la fréquence, qui s'écrit 1:

\[\omega = -\frac{\varepsilon(k,\omega)}{\partial \varepsilon(k,\omega)/\partial \omega}_{\omega=\omega_r} \]

où \(\varepsilon = \varepsilon_r + i\varepsilon_i \) est la fonction diélectrique du milieu considéré.

A.5. Applications

La physique des plasmas connaît des nombreuses applications, nous en donnons ici un bref aperçu.

- **Fusion thermonucléaire contrôlée.**
 Basée sur la réaction entre deutérium et tritium (la fusion entre ces deux isotopes de l'hydrogène est la plus abordable), elle sera très probablement parmi les plus importantes sources d'énergie du futur. L'idée est d'amener le mélange de combustible à une température supérieure aux 100 millions de degrés Kelvin, ce qui représente l'optimum de réactivité dans le cas tritium-deutérium. L'idée simple cache des difficultés techniques majeures. Il est extrêmement difficile, par exemple, de confiner suffisamment longtemps le plasma loin des parois du réacteur, pour empêcher son refroidissement, et d'atteindre ainsi des domaines de densité et de température suffisant pour que la fusion ait lieu. De plus, plusieurs instabilités peuvent se présenter, de façon souvent violente, dans le mélange avec comme effet la destruction de la configuration du plasma et du confinement.

Parmi les machines utilisées aujourd'hui pour mener ces recherches, nous trouvons les tokamaks. Dans ces appareils le plasma à une forme torique et le confinement est fait grâce à des champs magnétiques créés par plusieurs bobines. Le chauffage principal est ohmique (on induit un courant dans le plasma), mais des chauffages additionnels sont nécessaires pour atteindre le bon domaine de température.

- **Traitement de surface.**

1. Voir par exemple: Dwight R. Nicholson, "Introduction to plasma theory", p.80, Wiley, New York, 1983.
En substance, il s'agit d'introduire la surface qu'on veut traiter dans le plasma que nous avons choisi, et de la polariser. Une forte polarisation négative provoque une migration des ions vers notre pièce, les ions neutralisés peuvent ainsi former une couche plus ou moins épaisse sur la surface. Une polarisation positive attire les électrons, qui viennent déposer leur énergie sur la surface. Avec cette méthode, et quelques précautions, il est par exemple possible dans le cadre de cette manipulation de travaux pratiques, de nettoyer la sonde de Langmuir.

Communications via la ionosphère.
La ionosphère est en effet une couche de gaz qui entoure la terre à une altitude comprise entre 90 et 500 km. Cette couche est formée de particules chargées qui sont piégées par le champ magnétique terrestre, et par des gaz en partie ionisés par le vent solaire. Une onde électromagnétique envoyée contre ce plasma avec une fréquence plus basse de la coupure, \(\omega_p/2\pi \), ne peut pas s'y propager et est donc réfléchie. Ce phénomène permet d'envoyer des signaux au-delà de la courbure de la terre.

-Ennuyeux black-out
Au moment où une navette spatiale plonge dans l'atmosphère pour rentrer sur terre, la chaleur provoquée par les frottements des gaz crée un plasma tout autour de l'engin spatial. Au même titre que la ionosphère, cette couche de plasma forme un écran contre les ondes électromagnétiques, ce qui empêche toute communication avec les cosmonautes dans un moment particulièrement délicat.

Physique de l'espace.
-Plasmas de l'état solide.
Les électrons libres et les trous dans les semi-conducteurs, constituent un plasma qui présente les mêmes types d'oscillations et d'instabilités que ceux présents dans les plasmas gazeux.

-Lasers à gaz.
La pompe la plus répandue dans les lasers à gaz, pour effectuer l'inversion de population nécessaire au fonctionnement d'un laser, est la décharge électrique dans le gaz. Le plasma aura une basse pression dans les lasers DC où la décharge est effectuée via des fils incandescents, et il y aura une haute pression dans les lasers pulsés.
B. DOSSIER TECHNIQUE

B.1 Montage expérimental

Pour cette étude nous utilisons une machine dans laquelle nous pouvons créer un double plasma d’Argon. Celui de gauche est le driver, il agit comme une antenne et sert à perturber le plasma de droite.

Figure 8 : Enceinte pour double plasma

1) Enceinte à vide, métallique, qui permet de faire un vide allant jusqu'à 10^{-6}-10^{-7} Torr. L’enceinte est à terre.
2) Un ensemble formé d’une pompe à palette pour le vide grossier et d’une pompe turbomoléculaire pour le vide poussé.
3) Un système de jauges (Pirani + Penning) pour mesurer le vide.
4) Une microfuite qui garantit l’introduction continue d’Argon dans l’enceinte à vide. La pression idéale pour le travail se situe entre 10^{-4} et 10^{-3} Torr. Une pression plus haute peut entraîner l’arrêt de la pompe turbomoléculaire.
5) Deux filaments chauffés avec un courant maximal de 70 A, et polarisé à -60 V. Les électrons ainsi émis ionisent l’Argon.
6) Une grille polarisée négativement, qui sert à séparer les deux plasmas; elle constitue avant tout une barrière pour les électrons, et deuxièmement un puits pour les ions.
7) Une enceinte métallique intérieure servant à imposer au plasma un potentiel DC, différent de la masse.
8) Un ensemble de petits aimants, collés sur les parois, qui servent à confiner le plasma loin des parois de l'enceinte.
9) Une sonde de Langmuir formée par une plaquette plane (tungstène) conductrice d'un seul côté, à laquelle on peut imposer un potentiel variable, et que l'on peut déplacer à l'intérieur du plasma.

Sur la figure suivante nous pouvons identifier l'emplacement des différentes sources, et des boutons d'enclenchement.

![Figure 9 : Vue d'ensemble de la place de travail](image)

Pour la mise en marche de l'appareil il faut suivre les points suivants:

Si les pompes sont arrêtées (normalement elles doivent fonctionner nuit et jour pendant le semestre), il faut enclencher d'abord le système de refroidissement, ensuite la pompe à palette et la laisser travailler quelque temps. Quand le vide est suffisant nous pouvons lancer la pompe turbomoléculaire et faire le vide poussé.

Après un arrêt avec ouverture de la boîte à plasma, pour retrouver un bon vide il faudra attendre environ une semaine, ceci à cause du dégazage des parois de l'enceinte.
1) Au début de chaque journée il faut purger la conduite qui amène l'Argon pour éliminer l'air qui peut s'y trouver (pression bouteille <1.5 bar).

2) Porter la pression d'Argon à une valeur comprise entre 10^{-4} et 10^{-3} Torr.

3) Chauffer les filaments, en augmentant lentement le courant de chauffage (10 A/min, et 5 A/min après les 50 A), jusqu'à une valeur de 70 A.

4) Polariser les filaments jusqu'à 60 Volts (pas trop vite).

5) Enclencher le ventilateur qui empêche une surchauffe de la jauge Penning.

B.2. Mesure de T_e et n_e

Pour cette mesure nous utilisons le montage suivant.

![Montage pour la mesure de T_e et n_e](image)

Le Probe sweeper reçoit la tension de balayage en x de l'oscilloscope U_o et la transforme en tension de balayage pour la sonde $U_s = a U_o + b$ (nous pouvons régler a et b via les touches prévues à cet effet). Le courant recueilli par la sonde I_s est transformé en une tension proportionnelle U_{out} qui peut être représentée sur l'oscilloscope ou sur la table traçante.

$$U_{out} = \alpha I_s + \beta$$

Comment trouver le facteur α en utilisant une résistance connue R_c?
Expériences proposées:

a) Relever la caractéristique $I_d(U_d)$ de la sonde de Langmuir, et déduire la température électronique T_e et la densité du plasma n_e. Noter également le potentiel plasma V_p et le potentiel flottant V_f.
Pourquoi le potentiel plasma est-il positif?

b) Estimer le niveau de bruit dans le plasma en repérant à l’oscilloscope le niveau des fluctuations du potentiel flottant.

c) Répéter la mesure de densité et température, pour différentes positions de la sonde dans la chambre afin de tracer un profil de T_e et de n_e.

d) Répéter la mesure de densité et température, pour quelques valeurs de la pression du gaz neutre, du courant d’émission gauche ou droite et du chauffage des filaments. Expliquer les tendances mises en évidence.

B.3. Étude qualitative du profil longitudinal de n_e

Dans cette partie, nous allons appliquer un potentiel constant à la sonde de Langmuir à l’aide des piles de polarisation et nous allons tracer sur la table traçante le profil de courant récolté en fonction de la position de la sonde.
Le schéma de montage est représenté sur la figure 11. Le potentiel fourni par le potentiomètre pour le balayage en x est proportionnel au déplacement longitudinal de la sonde. Si le signal est trop bruité, filtrez le signal à l’aide d’un filtre passe-bas RC.

![Figure 11 : Montage pour la mesure du profil de T_e et n_e](image.png)
Expériences proposées:

a) Justifier l’utilisation de ce montage pour la mesure qualitative de n_c.

b) Tracer des profils longitudinaux en faisant varier les mêmes paramètres que dans l’expérience précédente. Interprétation.

c) Varier le potentiel de la grille centrale. Qu’observe-t-on au bord ?

B.4. Etude de la relation de dispersion des ondes ioniques acoustiques par temps de vol

Dans cette manipulation, nous allons créer une onde ionique acoustique en superposant au potentiel de l’enceinte de gauche un potentiel sinusoïdal (voir figure 12). Le potentiomètre permet d’ajuster le potentiel continu de l’enceinte, et par conséquent le potentiel plasma, à gauche de la grille. Le potentiel sinusoïdal va créer, dans le plasma de gauche, une onde progressive ionique-acoustique qui va se déplacer dans le plasma de droite. Le courant variable induit dans la sonde, que nous avons polarisée de manière à travailler dans le domaine du courant électronique, produit un potentiel variable aux bornes de la résistance 50 Ω, que nous allons représenter sur l’oscilloscope. En déplaçant la sonde de Langmuir d’une longueur d’onde, il est alors possible de tracer la relation de dispersion de l’onde.

Sur l’amplificateur, un filtre passe haut et un filtre passe bas permettent de réduire le bruit de fond présent dans le plasma. De plus, nous pouvons aussi étudier la propagation de pulses de forme sinusoïdale. En mesurant le temps de vol d’un pic du pulse, sur une distance connue, nous pouvons déduire la vitesse de phase de l’onde et donc la relation de dispersion. Une évaluation de la vitesse de groupe est aussi possible en observant le temps de vol du centre du pulse.

Figure 12: Mesure de la vitesse de phase par temps de vol
Expériences proposées:

a) En déplaçant la sonde, effectuer la mesure de la vitesse de phase et de la vitesse de groupe. Y-a-t-il une différence significative? Pourquoi?

b) Effectuer la même mesure pour différentes fréquences, et en déduire la relation de dispersion pratique des ondes ioniques acoustiques. Observez-vous l'onde ionique acoustique normale ou d'autres modes, lents ou rapides, associés à la présence d'un faisceau d'ions dans la boîte?

c) En changeant la différence de potentiel continu entre les deux plasmas, à l'aide du potentiomètre, pouvez vous supprimer ou changer les divers modes observés?

d) Quelle partie de la relation de dispersion explorez-vous? Etes-vous dans le domaine linéaire $\omega \ll \omega_p$ ou dans le domaine non linéaire?

e) Comparer votre relation de dispersion avec la courbe théorique. Pouvez vous mesurer la température électronique sans caractéristique de Langmuir?

B.5. Etude de la relation de dispersion et de l’amortissement des ondes ioniques acoustiques par interférométrie.

Cette méthode expérimentale peut nous livrer la relation de dispersion, et en même temps mettre en évidence l'amortissement des ondes ioniques acoustiques. La pièce maîtresse de cette manipulation est un mixer. Cet appareil, constitué essentiellement par un élément non-linéaire (diode semi-conductrice), est en pratique capable de multiplier deux signaux; dans notre cas une référence qui varie comme $\exp(i\omega t)$ et l'onde qui se propage dans le plasma ($\propto A(x)\exp(i\omega t - ikx)$). Cette opération nous permet d'obtenir, à la sortie du mixer, une tension qui ne varie plus en fonction du temps ($\propto A(x)\exp(ikx)$).

Le schéma de montage se trouve sur la figure 13. Le potentiel fourni par le potentiomètre pour le balayage en x étant proportionnel au déplacement longitudinal de la sonde, quelle sera la forme de la courbe obtenue sur la table traçante, et comment peut-on mesurer la relation de dispersion?

Expériences proposées:

a) A l'aide de la table traçante, effectuer la mesure de la dépendance en x de l'onde (dépendance spatiale du signal). Répéter l'expérience pour plusieurs fréquences et déduire la relation de dispersion des ondes ioniques acoustiques.

b) Reporter graphiquement le rapport k/k_r. De quel type d'amortissement s'agit-il?

c) Comparez votre résultat avec la relation de dispersion théorique, et avec les résultats de l'expérience précédente.
Quel mode observez-vous? Essayez d'observer d'autres modes.

d) Dans certaines conditions, en présence d'un faisceau d'ions, vous pouvez constater une amplification du faisceau par effet Landau. Cherchez expérimentalement et théoriquement ces conditions. Vérifiez la concordance des résultats.

Figure 13: Mesure par interférométrie

B.6. Création et observation des "solitons"

En utilisant le montage de la figure 12, et en augmentant l'amplitude du signal à la sortie du générateur de signaux, il est possible de créer une onde de choc. Cette perturbation donne lieu aux même modifications de potentiel et densité qu'une paroi conductrice qui se meut à la vitesse du son dans le plasma.

Expériences proposées

a) Essayez d'observer des solitons et mesurez leur vitesse par temps de vol. Comparez la vitesse mesurée à celle du son.

b) A l'aide d'un analyseur de spectre, observez ce qui se passe quand vous augmentez l'amplitude d'une onde ionique acoustique, jusqu'au moment où vous avez des solitons.

c) En vous basant aussi sur la littérature, cherchez une solution analytique approchée ou numérique des équations fluide, ou de la théorie cinétique, qui puisse décrire la propagation des solitons.

Pourquoi il y a un raidissement du front d'onde lorsque la distance entre la sonde et la grille augmente?

Conseils

Nous conseillons d'effectuer ces manipulations quand la boîte pour le double plasma est
encore bien froide. En effet, une haute température augmente le dégazage des parois de l'enceinte et donne lieu à une pollution du plasma qui rend difficile la création de solitons.

B.7. Calculs divers

Dans une telle expérience, il est toujours très utile, pour mieux cerner les phénomènes observés, de calculer diverses grandeurs théoriques et de faire quelques développements. Dans cet ordre d'idée, voici quelques suggestions :

1) Calculer \(\lambda_{De} \) et comparer avec les diverses grandeurs caractéristiques de l'expérience. Que peut-on conclure?
2) Calculer la densité d'Argon \(n_{Ar} \) et comparez-la avec \(n_e \).
3) Connaissant la section efficace de ionisation de l'Argon \(\sigma_{Ar} \), essayer d'estimer la durée de vie \(\tau \) du plasma.
4) Calculer le libre parcour moyen \(\lambda \) des électrons primaires
5) Qu'est-ce qui "chauffe" le plasma. Estimer la fraction de la puissance de chauffage effectivement transmise au plasma.
6) Autre …
Bibliographie

[1] V.E.Golant, A.P.Zhilinsky, I.E.Sakharov, *Fundamentals of plasma physics*, Wiley, New York, 1980

[2] F.F.Chen, *Introduction to plasma Physics*, Plenum, New York, 1974

[3] D.R.Nicholson, *Introduction to plasma Theory*, Wiley, New York, 1983

[4] I.H.Hutchinson, *Principles of Plasma Diagnostics*, Cambridge University Press, 1987

[5] M.Q.Tran, *Cours de physique des plasmas I et II*, EPFL, Lausanne, 1988-89

[6] T.Honzawa, Ch. Hollenstein et al., *Nonlinear mode coupling and saturation of decay instability in ion beam-plasma system*, Phys. Fluids 23 (5), May 1980

[7] D.Grésillon and F. Doveil, *Normal Modes in the Ion-Beam-Plasma System*, Physical Review Letters 34 (2), 1975