Development of a new quantitative structure–activity relationship model for predicting Ames mutagenicity of food flavor chemicals using StarDrop™ auto-Modeller™

Toshio Kasamatsu1, Airi Kitazawa1, Sumie Tajima2, Masahiro Kaneko2, Kei-ichi Sugiyama1, Masami Yamada1,3, Manabu Yasui1, Kenichi Masumura1, Katsuyoshi Horibata1 and Masamitsu Honma1,4*

Abstract

Background: Food flavors are relatively low molecular weight chemicals with unique odor-related functional groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative structure–activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to develop a new QSAR model.

Results: In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals’ Ames test datasets were used to develop the new QSAR models. We repeated the development and verification of prototypes by selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model “StarDrop NIHS 834_67” showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools.

Conclusions: A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the mutagenicity of food flavors without actual testing.

Keywords: Quantitative structure–activity relationship (QSAR), Food flavors, Mutagenicity Ames test, StarDrop™ auto-Modeller™, Machine learning

* Correspondence: honma@nihs.go.jp

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Introduction

Food flavor chemicals are used and/or present in foods at very low level. Human exposure to these flavor chemicals through foods is too low to raise concerns about general toxicity. Regarding mutagenicity, however, there are health concerns even with trace amounts because there is no threshold for mutagenicity, and even very low levels of exposure of mutagenic chemicals do not result in zero carcinogenic risk [1]. Therefore, the presence or absence of mutagenicity is an important point for risk assessment of flavor chemicals.

The bacterial reverse mutation test (Ames test) is an important mutagenicity test, but it requires approximately 2 g of sample for a dose-finding study and main study [2]. On the other hand, the amount of flavor produced industrially is extremely small, which often means that testing is impossible. Additionally, the peculiar odor of some flavors sometimes makes it difficult to perform the test in the laboratory. Recently, quantitative structure–activity relationship (QSAR) approaches instead of the Ames test have been frequently used for assessing the mutagenicity of chemicals [3]. Ono et al. assessed the viability of QSAR tools by using three QSAR tools to calculate the Ames mutagenicity of 367 flavor chemicals (for which Ames test results were available) [4]. Consequently, the highest sensitivity (the ability of a QSAR tool to detect Ames positives chemicals correctly) was 38.9% with the single tool and 47.2% even with the combination of three tools, which indicated that application of QSAR tools to assess the Ames mutagenicity of flavor chemicals was still premature. Therefore, it is necessary to improve or develop QSAR tools for predicting Ames mutagenicity of flavor chemicals.

Flavor chemicals are relatively low molecular weight chemical substances mainly composed of carbon, hydrogen, oxygen, nitrogen, and sulfur that often have specific functional groups. In Japan, most food flavors are classified into 18 types according to their chemical structure [5]. Therefore, with a focus on their characteristic chemical space, we thought that there was potential to increase the predictive performance by developing a local QSAR model customized for flavor chemicals. In recent years, computational software has been provided to assist with development of QSAR models by machine learning. We have tried to develop a QSAR model specialized for flavor chemicals using StarDrop™ software, which has a module (Auto-Modeller™) that can generate predictive models automatically.

Before developing the QSAR model, we developed a new robust Ames database of 406 food flavor chemicals that is based on Ono’s database [4]. We re-evaluated ambiguous data judged as “equivocal” in Ono’s database via literature review and incorporated Ames test data of flavor chemicals from other publicly available databases. In parallel, we performed the Ames test with key flavor chemicals of which Ames data is unknown and incorporated their results into the new database. This benchmark food flavor chemical database is useful for development of QSAR models and evaluation of QSAR model performance.

Materials & methods

Ames test database of food flavor chemicals

We utilized the Ames test database of food flavor chemicals reported by Ono et al. [4], but because the database includes 14 “equivocal” judgments (Table 1), we re-evaluated by reviewing the reference literature and re-classified them as positive, negative, or inconclusive. Ames test data of the “inconclusive” chemicals were excluded from the database. If there were any other flavor chemicals from publicly available Ames test database (Hansen database [6]), they were also added.

Ames test

Ames tests were performed for 45 flavor chemicals. The purities and suppliers of the test chemicals are shown in Table 2. The Ames tests were conducted by contract research organizations following Good Laboratory Practice compliance according to the Industrial Safety and Health Act test guideline with preincubation method [7]. The test guideline requires five strains (Salmonella thphimurium TA100, TA98, TA1535, TA1537, and Escherichia coli WP2 uvrA) under both the presence and absence of metabolic activation (rat S9 mix prepared from phenobarbital and 5,6-benzoflavone-induced rat liver), which is similar to the Organization of Economic Co-operation and Development guideline TG471 [8]. The positive criterion is when the number of revertant colonies increased more than twice as much as the control in at least one Ames test strain in the presence or absence of S9 mix. Dose dependency and reproducibility were also considered in the final judgment. The relative activity value (RAV), which is defined as the number of induced revertant colonies per mg, was calculated for the positive result.

Commercial QSAR tools

DEREK Nexus™ is a knowledge-based commercial software developed by Lhasa Limited, UK [9, 10]. The software includes knowledge rules created by considering insights related to structural alert, chemical compound examples, and metabolic activations and mechanisms. We used DEREK Nexus™ version 6.1.0 in this study. DEREK Nexus™ ranks the possibility of mutagenicity (certain, probable, plausible, equivocal, doubted, improbable, impossible, open, contradicted, nothing to report) by applying a “reasoning rule.” When it is “certain,”
“probable,” “plausible,” or “equivocal,” the query chemical is predicted to be positive in the Ames test.

CASE Ultra is a QSAR-based toxicity prediction software developed by MultiCASE Inc. (USA). CASE Ultra uses a statistical method to automatically extract alerts based on training data by using machine learning technology [11, 12]. The structural characteristics of the alert surroundings are called the “modulator,” and these are also learned automatically from the training data. In this algorithm, to construct a QSAR model with continuous toxicity endpoints, various physical chemistry parameters and descriptors are used. We used CASE Ultra version 1.8.0.2 with the GT1_BMUT module in this study. The prediction result of each module is ranked as “known positive,” “positive,” “negative,” “known negative,” “inconclusive,” or “out of domain.” A query chemical ranked “known positive,” “positive” or “inconclusive” is predicted to be positive in the Ames test.

Table 1: Re-evaluation of Ames test data, which were categorized as “equivocal” by Ono et al. [4]

No.	JECFA No.	Chemical Name	CAS No.	Judgement after review	Key reference*	Comments
1	252	isobutanal	78–84-2	Negative	[13]	The study condition did not meet current standard. Other available data indicative of negative.
2	690	phenol	108–95-2	Negative	[14]	Only one positive report of which response was weak. Other available data indicative of negative.
3	738	furfuryl alcohol	98–00-0	Negative	[15]	Only one report was positive among 6 reports reviewed in the key reference. Although no detail was available, the study condition is unlikely meet current standard.
4	744	furfural	98–01-1	Negative	[15]	Among 14 reports reviewed in the key reference, 4 reports indicative of positive were questionable. Other 10 reports were negative.
5	836	2-hydroxy-1,2-diphenylethanone	119–53-9	Inconclusive	[16]	Weak positive. Other available data are a mixture of positives/negatives. No conclusion drawn.
6	1168	3-propylidenecephthalide	17,369–59-4	Inconclusive	[17]	One positive report reviewed in the key reference raised a question about purity. Other available data were also unclear.
7	1172	6-methylcoumarin	92–48-8	Negative	[18]	Ambiguous response. Other available data indicative of negative.
8	1342	delta-3-carene	13,466–78-9	Inconclusive	[19]	Positive though not meeting current standard. Recent other data (Saverni, 2012) indicative of negative. No conclusion drawn.
9	1450	4-hydroxy-5-methyl-3(2H)-furanone	19,322–27-1	Positive	[20]	Confirmed positive response. No other data negate the conclusion was available.
10	1481	ethyl maltol	4940-11-8	Inconclusive	[21]	Two conflicting reports reviewed in the key reference. No conclusion drawn.
11	1560	allyl isothiocyanate	57–06-7	Positive	[22]	Weak positive. Other available data are a mixture of positives/negatives. “Isothiocyanate” structure adopted as “positive alert” in representative QSAR tools.
12	1561	butyl isothiocyanate	592–82-5	Positive	[23]	Confirmed positive response. No other data negate the conclusion was available.
13	1563	phenethyl isothiocyanate	2257–09-2	Positive	[22]	Weak positive. Other available data also indicate positive.
14	1776	ethyl 2-[(5-methyl-2-propan-2-yl cyclohexanecarbonyl)amino]acetate	68,489–14-5	Negative	[15]	Since the study report indicative of weak positive reviewed in the key reference was unpublished, no reliability confirmed. Recent GLP data submitted to MHLW under ANEI-HOU was negative (undisclosed).

* Reference that was considered as a basis to draw a conclusion of “equivocal.”
| No. | JECFA No. | Chemical Name | CAS No. | Purity (%) | Supplier | Category* | Ames test result | Comments for Ames test |
|-----|-----------|---------------|---------|------------|----------|-----------|------------------|-----------------------|
| 1 | 128 | hexyl acetate | 142–92-7| 99.7 | Inoue Perfumery MFG. Co., Ltd. | Esters | Negative | |
| 2 | 236 | delta-dodecalactone | 713–95-1| 98.5 | SODA AROMATIC Co., Ltd. | Lactones | Negative | |
| 3 | 255 | 2-methylbutyric acid | 116–53-0| 99.9 | Inoue Perfumery MFG. Co., Ltd. | Fatty acids | Negative | |
| 4 | 256 | 2-ethylbutanal | 97–96-1 | 99.4 | SODA AROMATIC Co., Ltd. | Aliphatic higher aldehydes | Negative | |
| 5 | 327 | (5S)-decanolic acid | 72,881–27-7| 83.8 | SODA AROMATIC Co., Ltd. | Fatty acids | Negative | |
| 6 | 410 | 2,3-pentanedione | 600–14-6| 99.7 | Frutarom Ltd | Ketones | Positive** | -S9mix: positive in TA100, TA98 +S9mix: positive in TA100 Maximum RAV: 323 (+S9, TA100) |
| 7 | 452 | dimethyl sulfide | 75–18-3 | 25 | Inoue Perfumery MFG. Co., Ltd. | Thioethers | Negative | |
| 8 | 470 | 2-[methylthio)methyl]-2-butenal | 40,878–72-6| 98.1 | T. HASEGAWA CO., LTD. | Aliphatic higher aldehydes | Positive | -S9mix: positive in TA100 +S9mix: positive in TA100, WP2uvrA Maximum RAV: 225 (+S9, TA100) |
| 9 | 520 | 2-mercaptopinanene | 23,832–18-0| 98.0 | SIGMA ALDRICH | Thioethers | Negative | |
| 10 | 687 | 4'-methoxycinnamaldehyde | 1903–36-6| 98 | Alfa Aesar | Aromatic aldehydes | Positive | +S9mix: weak positive in TA100 |
| 11 | 725 | 4-ethenyl-2-methoxyphenol | 7786–61-0| 99.8 | T. HASEGAWA CO., LTD. | Phenols | Negative | |
| 12 | 728 | raspberry ketone | 5471–51-2| 99.9 | Jiangxi Zhangshu Crown Capital Fragrance Limited | Ketones | Positive | +S9mix: positive in TA1535 Maximum RAV: 10 (+S9, TA1535) |
| 13 | 745 | 5-methylfurural | 620–02-0 | 99.8 | R.C. Treatt & Co. Ltd | Furfurals and its derivatives | Negative | |
| 14 | 866 | 4-methylenaldehyde | 104–87-0 | 99.6 | Penta International Corporation | Aromatic aldehydes | Negative | |
| 15 | 928 | hexanol propylene glycol acetal | 1599–49-1| 99.9 | San-Ei Gen F.F.J.,Inc. | Ethers | Negative | |
| 16 | 941 | acetaldehyde diethyl acetal | 105–57-7| 99.4 | Ogawa & Co., Ltd. | Ethers | Negative | |
| 17 | 1031 | 2-(4-methyl-5-thiazolyl)ethanol | 137–00-8| 99.9 | Inoue Perfumery MFG. Co., Ltd. | Aromatic alcohols | Negative | |
| 18 | 1072 | 2-furanmethanethiol | 98–02-2 | 99.5 | SIGMA ALDRICH | Thioethers | Negative | |
| 19 | 1208 | 4-methyl-2-pentenal | 5362–56-1| 99.2 | T. HASEGAWA CO., LTD. | Aliphatic higher aldehydes | Positive | -S9mix: positive in TA100 +S9mix: positive in TA100 Maximum RAV: 1340 (+S9, TA100) |
| 20 | 1256 | isoeugenyl methyl ether | 93–16-3 | 99.4 | Inoue Perfumery MFG. Co., Ltd. | Phenol ethers | Negative | |
| 21 | 1301 | indole | 120–72-9 | 99.7 | SIGMA ALDRICH | Indoles and its derivatives | Negative | |
| 22 | 1304 | skatole | 83–34-1 | 98 | SIGMA ALDRICH | Indoles and its derivatives | Negative | |
| 23 | 1340 | gamma-terpinene (p-Mentha-1,4-diene) | 99–85-4| 98.7 | Takata Koyo Co., Ltd. | Terpene hydrocarbons | Negative | |
| 24 | 1341 | 1,3,5-undecatriene | 16,356–11-9| 96.6 | Givaudan Japan K.K. | Aliphatic higher hydrocarbons | Negative | |
| 25 | 1354 | 2-hexenol | 2105–21-7| 96 | SODA AROMATIC Co., Ltd. | Aliphatic higher alcohols | Negative | |
| 26 | 1451 | 4-methoxy-2,5-dimethyl-3(2H)-furanone | 4077–47-8| 97 | Tokyo Chemical Industry Co., Ltd. | Ketones | Negative | |
| 27 | 1454 | limonoid oxide (furanoid) | 1365–19-1| 99.5 | T. HASEGAWA CO., LTD. | Aliphatic higher alcohols | Negative | |
| 28 | 1456 | 2,5-dimethyl-4-oxo-3(5H)-furan acetate | 4166–20-5| > 95 | Takata Koyo Co., Ltd. | Esters | Positive | -S9mix: positive in TA100 Maximum RAV: 77 (+S9, TA100) |
| 29 | 1472 | 5-methyl-2-phenyl-2-hexenal | 21,834–92-4| 96.5 | Frutarom Ltd | Aromatic aldehydes | Negative | |
| No. | JECFA No. | Chemical Name | CAS No | Purity (%) | Supplier | Category* | Ames test result | Comments for Ames test |
|-----|-----------|---------------|--------|------------|----------|-----------|-----------------|------------------------|
| 30 | 1506 | 3-acetyl-2,5-dimethylfuran | 10,599–70-9 | 98 | Tokyo Chemical Industry Co., Ltd. | Ketones | Positive | -S9mix: positive in TA100, WP2uvrA, TA98 +S9mix: positive in TA100 Maximum RAV: 1281 (−S9, TA100) |
| 31 | 1519 | 4,5-dihydro-2,5-dimethyl-4-oxofuran-3-yl butyrate | 114,099–96-6 | 97.0 | Tokyo Chemical Industry Co., Ltd. | Esters | Positive | +S9mix: positive in TA100 Maximum RAV: 38 (+S9, TA100) |
| 32 | 1560 | allyl isothiocyanate | 57–06-7 | >97 | Nippon Terpene Chemicals, Inc. | Isothiocyanates | Positive | -S9mix: weak positive in TA100, TA1535, TA98 +S9mix: weak positive in TA100, TA1535 |
| 33 | 1853 | 2-(l-menthoxy)ethanol | 38,618–23-4 | 98.7 | Takasago International Corporation | Aliphatic higher alcohols | Negative | |
| 34 | 1882 | vanillin propyleneglycol acetal | 68,527–74-2 | 98.8 | Inoue Perfumery MFG. Co., Ltd. | Phenols | Negative | |
| 35 | 1894 | 5-hexenyl isothiocyanate | 49,776–81-0 | 95.8 | T. HASEGAWA CO., LTD. | Isothiocyanates | Negative | |
| 36 | 2100 | furfural propyleneglycol acetal | 4,359–54-0 | 99.7 | Inoue Perfumery MFG. Co., Ltd. | Furfurals and its derivatives | Positive | -S9mix: positive in TA100 Maximum RAV: 302 (−S9, TA100) |
| 37 | 2101 | furfuryl formate | 13,493–97-5 | >98.9 | T. HASEGAWA CO., LTD. | Esters | Positive | -S9mix: positive in TA100, WP2uvrA, TA98 +S9mix: positive in TA100, TA98 Maximum RAV: 396 (−S9, TA100) |
| 38 | 2141 | butyl 2-naphthyl ether | 10,494–56-7 | 99.9 | Koyo Chemical | Phenol ethers | Negative | |
| 39 | 2144 | methyl beta-phenylglycidate | 37,161–74-3 | 99.8 | T. HASEGAWA CO., LTD. | Esters | Positive | -S9mix: positive in TA100, WP2uvrA +S9mix: positive in WP2uvrA Maximum RAV: 84 (−S9, TA100) |
| 40 | 2157 | 6-methoxyquinoline | 5,263–87-6 | 98.9 | Tokyo Chemical Industry Co., Ltd. | Ethers | Positive | -S9mix: positive in all strains +S9mix: positive in all strains Maximum RAV: 51,177 (−S9, TA100) |
| 41 | | 2,4-dimethyl-4-phenyltetrahydrofuran | 82,461–14-1 | 99.2 | Seikodo Ishida Co., Ltd. | Ethers | Negative | |
| 42 | | 2-butoxyethyl acetate | 112–07-2 | 99.4 | Tokyo Chemical Industry Co., Ltd. | Esters | Negative | |
| 43 | | 2-methyl-2-butanethiol | 1679–09-0 | 95 | Toronto Research Chemicals Inc. | Thiols | Negative | |
| 44 | | 2-methylquinoline | 91–63-4 | 98 | Tokyo Chemical Industry Co., Ltd. | Not classified *** | Positive | +S9mix: positive in TA100 Maximum RAV: 604 (+S9, TA100) |
| 45 | | 5-methyl methanethiosulfonate | 2,949–92-0 | 98.3 | Tokyo Chemical Industry Co., Ltd. | Esters | Positive | -S9mix: positive in TA100, WP2uvrA Maximum RAV: 2913 |

* Eighteen categories (and other than specified else) classified according to their substructures defined in the Japanese Food Sanitation Law
** Contradictory result to the existing data
*** Not categorized as "flavorchemical" in Japan
Development of a new Ames test database of food flavor chemicals

We developed a new Ames test database consisting of 406 food flavor chemicals (Table 4). The data source is Hansen data set [6]. The Ames test data are available in the Additional files. Among 45 flavors, 15 were positive and 30 were negative. Six chemicals, indole (120–72–9), 5-methylfurural (620–02–0), 2,3-pentanedione (600–14–6), allyl isocyanate (57–06–7), skatole (83–34–1), and gamma-terpinene (p-Mentha-1,4-diene) (99–85–4), are also present in Ono’s database. In Ono’s database [4], 2,3-pentanodione was judged as negative, but it clearly increased the mutant frequency in TA100 in the absence of S9 mix (Additional file (6)). The results of these Ames tests are reflected in the new database. Finally, 39 new food flavor chemicals were added to the database.

Prototypes of predictive models were built by using an automatic process. The study dataset was divided into training (70%) and validation (30%) data by using the cluster method, which uses an unsupervised non-hierarchical clustering algorithm developed by Butina [26]. Auto-Modeller™ has three modeling methods (Gaussian process, random forest, and decision tree) for the category model. In a pretest, the random forest model gave the best performance for our target. The descriptors were automatically generated, including whole molecule descriptors (e.g., molecular weight, logP, and polar surface area) and 2D structural descriptors from flavor chemicals (positive: 24, equivocal: 12, negative: 331) [4]. However, it actually contained 369 chemicals (positive: 24, equivocal: 14, negative: 331). Table 1 shows the 14 equivocal chemicals. We reviewed key references that led to “equivocal” and re-evaluated to determine if there was evidence of positivity or negativity in view of current testing criteria. Our final judgment and the supporting reasons are described in Table 1 [13–23]. If there was insufficient evidence or no detailed information available for the judgment, we concluded that they were “inconclusive.” Among 14 equivocal flavoring chemicals, four were positive, six were negative, and four were inconclusive. In total, 365 flavor chemicals (positive: 28, negative: 337), excluding four inconclusive chemicals, were added to the new database.

Two flavor chemicals, quinoline (91–22–5) and 4-methylquinoline (491–35–0) have been added to the new database. Their Ames test data were found in the Hansen data set [6].

We newly performed Ames tests for 45 flavor chemicals. The information of tested samples and the Ames test results are shown in Table 2. Ten of the 45 Ames test results were previously reported [24]. The raw Ames test data are available in the Additional files. Among 45 flavor chemicals, 15 were positive and 30 were negative. Six chemicals, indole (120–72–9), 5-methylfurural (620–02–0), 2,3-pentanedione (600–14–6), allyl isocyanate (57–06–7), skatole (83–34–1), and gamma-terpinene (p-Mentha-1,4-diene) (99–85–4), are also present in Ono’s database. In Ono’s database [4], 2,3-pentanodione was judged as negative, but it clearly increased the mutant frequency in TA100 in the absence of S9 mix (Additional file (6)). The results of these Ames tests are reflected in the new database. Finally, 39 new food flavor chemicals were added to the database.

Results
Development of a new Ames test database of food flavor chemicals

We developed a new Ames test database consisting of 406 food flavor chemicals (Table 4). The data source is Hansen data set [6]. The Ames test data are available in the Additional files. Among 45 flavors, 15 were positive and 30 were negative. Six chemicals, indole (120–72–9), 5-methylfurural (620–02–0), 2,3-pentanedione (600–14–6), allyl isocyanate (57–06–7), skatole (83–34–1), and gamma-terpinene (p-Mentha-1,4-diene) (99–85–4), are also present in Ono’s database. In Ono’s database [4], 2,3-pentanodione was judged as negative, but it clearly increased the mutant frequency in TA100 in the absence of S9 mix (Additional file (6)). The results of these Ames tests are reflected in the new database. Finally, 39 new food flavor chemicals were added to the database.

Development of a new QSAR model for predicting Ames mutagenicity

We developed a new QSAR model for predicting Ames mutagenicity by using StarDrop™ Auto-Modeller™. To develop the QSAR model, the available Ames test study dataset is essential. We used 406 datasets of flavor chemicals in the new Ames test database to develop the model. To further increase the size of the dataset (especially positive data), we added Ames test data of chemicals structurally similar to flavor chemicals. We previously developed a large Ames test database consisting of > 12,000 industrial chemicals [25]. We selected 428 chemicals (positive: 255; negative: 173) from the database that have molecular weights < 500 and possess a characteristic substructure of flavor chemicals defined in the Food Sanitation Law in Japan [5]. The Ames test data of 834 chemicals (positive: 299, negative: 535) were integrated as the study dataset for the development of the QSAR model.

Prototypes of predictive models were built by using an automatic process. The study dataset was divided into training (70%) and validation (30%) data by using the cluster method, which uses an unsupervised non-hierarchical clustering algorithm developed by Butina [26]. Auto-Modeller™ has three modeling methods (Gaussian process, random forest, and decision tree) for the category model. In a pretest, the random forest model gave the best performance for our target. The descriptors were automatically generated, including whole molecule descriptors (e.g., molecular weight, logP, and polar surface area) and 2D structural descriptors from...
| No. | IUPAC No. | Chemical name | CAS# | Ames Result | Genotoxic | Nongenotoxic | Known Negative | Known Positive | Known Neutral | Known Positive | Known Negative | Known Positive | Known Neutral | Known Negative | Known Positive | Known Neutral | Known Negative | Known Neutral | Known Negative | Known Negative|
No.	Chemical Name	Ames Test Result	QSAR Result	Note
70	octanol	Negative	INACTIVE	Negative
71	4-acetoxacetate	Negative	INACTIVE	Known Negative
72	tert-tert-butyl alcohol	Negative	INACTIVE	Known Negative
73	1,3-dimethylbenzene	Negative	INACTIVE	Known Negative
74	2,4-dimethylphenol	Negative	INACTIVE	Known Negative
75	4-tert-butylpicolyluride	Negative	INACTIVE	Known Negative
76	4-methyl-2-benzisothiazole	Negative	INACTIVE	Known Negative
77	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Negative
78	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
79	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
80	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
81	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
82	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
83	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
84	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
85	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
86	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
87	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
88	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
89	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
90	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
91	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
92	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
93	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
94	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
95	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
96	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
97	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
98	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
99	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
100	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
101	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
102	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
103	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
104	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
105	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
106	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
107	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
108	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
109	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
110	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
111	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
112	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
113	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
114	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
115	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
116	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
117	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
118	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
119	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
120	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
121	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
122	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
123	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
124	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
125	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
126	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
127	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
128	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
129	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
130	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
131	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
132	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
133	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
134	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
135	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
136	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
137	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
138	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
139	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
140	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive
141	5-methyl-2-benzisothiazole	Negative	INACTIVE	Known Positive

Note: Ames test was newly conducted (Table 2).
Table 4 406 food flavor chemicals assessed by Ames test and QSARs (Continued)

No.	Chemical Name	Ames Test Result	QSAR Result
142	3-methynitrotoluene acid	Negative	Negative
144	dimethyl diadile	Negative	Negative
145	ethyl diadile	Positive	Positive
147	phenyl diadile	Negative	Negative
149	benzyl diadile	Negative	Negative
150	ethyl isothionate	Positive	Positive
151	hydroxymethylfuran	Negative	Negative
152	hydroxymethylbenzal	Negative	Negative
153	trimethylamine	Negative	Negative
154	furanic acid	Negative	Negative
155	isonic acid	Negative	Negative
156	isonicic acid	Negative	Negative
157	ethylene diamine	Negative	Negative
158	acryl acid	Negative	Negative
159	3-hydroxypropanoic acid	Negative	Negative
160	3-chloromethyl aldehyde	Positive	Positive
161	isonic acid	Negative	Negative
162	ethyl isonic acid	Negative	Negative
163	ethyl isonic acid	Negative	Negative
164	3-hydroxypropenoic acid	Negative	Negative
165	ethyl isonic acid	Negative	Negative
166	alpha-amylcinnamoyl alcohol	Negative	Negative
167	alpha-methylcinnamaldehyde	Positive	Positive
168	alpha-hydroxycinnamaldehyde	Negative	Negative
169	o-methoxyanisaldehyde	Negative	Negative
170	alpha-functional methyl-cinnamaldehyde	Negative	Negative
171	benzaldehyde	Negative	Negative
172	2-methoxybenzaldehyde	Negative	Negative
173	2-ethylcinnamaldehyde	Positive	Positive
174	2-ethylanol	Negative	Negative
175	1-methyl-2-phenylethanol	Positive	Positive
176	2-ethylbenzaldehyde	Negative	Negative
177	3-ethylbenzaldehyde	Negative	Negative
178	3-ethylvaleraldehyde	Negative	Negative
179	4-ethylbenzaldehyde	Negative	Negative
180	3-pentalone	Negative	Negative
181	2,6-dimethoxyphenol	Negative	Negative
182	2,6-dimethoxybenzaldehyde	Negative	Negative
183	3-methylbenzaldehyde	Negative	Negative
184	3-methylcinnamaldehyde	Positive	Positive
185	3-methylcinnamaldehyde	Positive	Positive
186	3-methylcinnamaldehyde	Positive	Positive
187	3-methylcinnamaldehyde	Positive	Positive
188	3-methylcinnamaldehyde	Positive	Positive
189	3-methylcinnamaldehyde	Positive	Positive
190	3-methylcinnamaldehyde	Positive	Positive
191	3-methylcinnamaldehyde	Positive	Positive
192	3-methylcinnamaldehyde	Positive	Positive
193	3-methylcinnamaldehyde	Positive	Positive
194	3-methylcinnamaldehyde	Positive	Positive
195	3-methylcinnamaldehyde	Positive	Positive
196	3-methylcinnamaldehyde	Positive	Positive
197	3-methylcinnamaldehyde	Positive	Positive
198	3-methylcinnamaldehyde	Positive	Positive
199	3-methylcinnamaldehyde	Positive	Positive
200	3-methylcinnamaldehyde	Positive	Positive
201	3-methylcinnamaldehyde	Positive	Positive
202	3-methylcinnamaldehyde	Positive	Positive
203	3-methylcinnamaldehyde	Positive	Positive
204	3-methylcinnamaldehyde	Positive	Positive
205	3-methylcinnamaldehyde	Positive	Positive
206	3-methylcinnamaldehyde	Positive	Positive
207	3-methylcinnamaldehyde	Positive	Positive
208	3-methylcinnamaldehyde	Positive	Positive
209	3-methylcinnamaldehyde	Positive	Positive
210	3-methylcinnamaldehyde	Positive	Positive
211	3-methylcinnamaldehyde	Positive	Positive
212	3-methylcinnamaldehyde	Positive	Positive
213	3-methylcinnamaldehyde	Positive	Positive
214	3-methylcinnamaldehyde	Positive	Positive

Ames test was newly conducted (Table 2).
No.	Chemical Name	Test Results	QSAR Results	Notes
215	butyl isocyanate	Negative	Negative	Known Negative
216	4-methyl-2-pentanol	Negative	Negative	Known Negative
217	4-ethyl-2-pentanol	Negative	Negative	KNOWN NEGATIVE
218	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
219	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
220	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
221	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
222	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
223	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
224	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
225	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
226	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
227	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
228	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
229	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
230	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
231	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
232	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
233	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
234	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
235	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
236	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
237	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
238	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
239	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
240	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
241	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
242	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
243	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
244	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
245	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
246	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
247	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
248	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
249	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
250	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
251	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
252	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
253	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
254	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
255	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
256	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
257	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
258	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
259	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
260	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
261	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
262	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
263	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
264	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
265	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
266	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
267	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
268	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
269	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
270	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
271	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
272	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
273	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
274	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
275	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE
276	2,6-dimethylpyridine	Negative	Negative	KNOWN NEGATIVE

Note: The table continues with more entries. The test results and QSAR results are indicated as 'Negative' or 'Positive', and notes may include 'Known Negative', 'Known Positive', and other statuses.
No.	CAS Number	Chemical Name	Ames Test	QSARs	Known Negative
287	1230	4-chloroval	Negative	Inactive	Known Negative
288	1223	4-geraniol	Negative	Inactive	Known Negative
289	1225	citral	Negative	Inactive	Known Negative
290	1230	farnesol	Negative	Inactive	Known Negative
291	1234	nerolidol	Negative	Inactive	Known Negative
292	1245	borneol	Negative	Inactive	Known Negative
293	1243	3,4-pyrrolidone	Negative	Inactive	Known Negative
294	1244	4-propenal	Negative	Inactive	Known Negative
295	1248	1,2-dimethoxypropane	Negative	Inactive	Negative
296	1249	1,3-dimethoxypropane	Negative	Inactive	Negative
297	1250	1,4-dimethoxypropane	Negative	Inactive	Known Negative
298	1252	diphenyl ether	Negative	Inactive	Known Negative
299	1256	dibenzyl ether	Negative	Inactive	Known Negative
300	1377	2-methyl-ethyl ether	Negative	Inactive	Inconclusive
301	1358	2-methyl-ethyl ether	Negative	Inactive	Known Negative
302	1258	2-methyl-ethyl ether	Negative	Inactive	Inconclusive
303	1260	2-methyl-ethyl ether	Negative	Inactive	Known Negative
304	1260	2-methyl-ethyl ether	Negative	Inactive	Inactive
305	1264	propylglycol	Negative	Inactive	Known Negative
306	1266	trans-2-methyl-ethyl ether	Negative	Inactive	Known Negative
307	1268	trans-2-methyl-ethyl ether	Negative	Inactive	Known Negative
308	1289	3-methyl-2-methylbutan-1-ol	Negative	Inactive	Known Negative
309	1301	isocaprylitiol	Negative	Inactive	Known Positive
310	1302	hexylacetale	Negative	Inactive	Known Negative
311	1303	hexylacetale	Negative	Inactive	Known Negative
312	1314	p-nitrobenzyl	Negative	Inactive	Known Negative
313	1315	3-ethylpyridine	Negative	Inactive	Known Negative
314	1315	3-ethylpyridine	Negative	Inactive	Known Negative
315	1315	3-ethylpyridine	Negative	Inactive	Known Negative
316	1328	caproate	Negative	Inactive	Known Negative
317	1331	caproate	Negative	Inactive	Known Negative
318	1332	caproate	Negative	Inactive	Known Negative
319	1332	caproate	Negative	Inactive	Known Negative
320	1334	2-methyl-phenol	Negative	Inactive	Known Negative
321	1335	3-methyl-phenol	Negative	Inactive	Known Negative
322	1336	4-methyl-phenol	Negative	Inactive	Known Negative
323	1337	5-methyl-phenol	Negative	Inactive	Known Negative
324	1338	6-methyl-phenol	Negative	Inactive	Known Negative
325	1339	7-methyl-phenol	Negative	Inactive	Known Negative
326	1341	1,3,5-triazinae	Negative	Inactive	Known Negative
327	1351	ethyl acrylate	Negative	Inactive	Known Negative
328	1354	2-hexanol	Negative	Inactive	Known Negative
329	1360	2-hexanone	Negative	Inactive	Known Negative
330	1360	2-hexanone	Negative	Inactive	Known Negative
331	1360	2-hexanone	Negative	Inactive	Known Negative
332	1360	2-hexanone	Negative	Inactive	Known Negative
333	1360	2-hexanone	Negative	Inactive	Known Negative
334	1360	2-hexanone	Negative	Inactive	Known Negative
335	1375	1,2-dibromoethane	Negative	Inactive	Known Negative
336	1381	benzene	Negative	Inactive	Known Negative
337	1395	4-carvylketone	Negative	Inactive	Known Negative
338	1408	benzylamine	Negative	Inactive	Known Negative
339	1408	benzylamine	Negative	Inactive	Known Negative
340	1408	benzylamine	Negative	Inactive	Known Negative
341	1408	benzylamine	Negative	Inactive	Known Negative
342	1408	benzylamine	Negative	Inactive	Known Negative
343	1408	benzylamine	Negative	Inactive	Known Negative
344	1408	benzylamine	Negative	Inactive	Known Negative
345	1451	4-methylene-2,5-dimethyl-2(3H)-furanone	Negative	Inactive	Known Negative
346	1454	p-cuminal (p-cumaron)	Negative	Inactive	Inconclusive
347	1459	beta-methylphenyl acetate	Negative	Inactive	Known Negative
348	1467	2-phenylpropionaldehyde	Negative	Inactive	Known Negative
349	1468	2-phenylpropionaldehyde	Negative	Inactive	Known Negative
350	1470	2-phenylpropionaldehyde	Negative	Inactive	Known Negative
351	1472	2-phenyl-3-phenyl-2-hexenal	Negative	Inactive	Inconclusive
352	1482	2-phenylethanol	Negative	Inactive	Known Negative
353	1488	2,5-dimethoxyfuran	Negative	Inactive	Known Negative
354	1489	3-phenyl-2(3H)-furanone	Negative	Inactive	Known Negative
355	1489	3-phenyl-2(3H)-furanone	Negative	Inactive	Known Negative
356	1489	3-phenyl-2(3H)-furanone	Negative	Inactive	Known Negative
357	1489	3-phenyl-2(3H)-furanone	Negative	Inactive	Known Negative
358	1493	4-ethyl-2(3H)-furanone	Negative	Inactive	Known Negative
359	1526	4-ethyl-2(3H)-furanone	Negative	Inactive	Known Negative
360	1528	vanillin	Negative	Inactive	Known Negative

Table 4 406 food flavor chemicals assessed by Ames test and QSARs (Continued)
the training set. Because the accuracy of the prototype depends on the training data set and the data splitting process is not replicable, 80 prototypes were built to search for the best model. The prototypes that earned favorable prediction scores were selected for further performance evaluation by using the Ames test data of flavoring chemicals, and their performances were compared with those of the benchmarks. Finally, a new QSAR model “StarDrop NIHS 834_67” was developed. The prediction result is ranked as “positive” or “negative.”

Performance of the QSAR model
We evaluated the performance of StarDrop NIHS834_67 to predict the Ames mutagenicity. We calculated the Ames mutagenicity of 406 food flavors listed in the new

Table 5 Results of QSAR calculation of 406 flavor chemicals in 2X2 contingency matrix

	StarDrop NIHS 834_67	Derek Nexus 6.1.0	CASE Ultra 1.8.0.2 GT1_BMUT				
	P	N	P	N	P	N	OOD
Ames test							
P	35	9	31	13	31	12	1
N	13	349	14	348	28	327	7

P positive, N negative, OOD out of domain
Table 6 Performance of three QSARs for predicting Ames mutagenicity of 406 flavor chemicals

Model	Sensitivity (%)	Specificity (%)	Accuracy (%)	Applicability (%)
StarDrop NIHS 834_67	79.5	96.4	94.6	100.0
Derek Nexus 6.1.0	70.5	96.1	93.3	100.0
CASE Ultra 1.8.0.2 GT1_BMUT	70.5	90.3	88.2	98.0

Table 7 Ames positive chemicals, but predicted as negative by StarDrop NIHS 834_67 (False negative)

No.	JECFA No.	Chemical Name	CAS No.	Structure	Substructure Class	Note
1	429	menthone	89–80-5	![Menthone Structure](image)	Ketones	DEREK: INACTIVE
CASE Ultra: Known Negative						
2	656	trans-cinnamaldehyde	104–55-2	![Trans-Cinnamaldehyde Structure](image)	Aromatic aldehydes	DEREK: PLAUSIBLE
CASE Ultra: Known Positive						
3	728	raspberry ketone	5471-51-2	![Raspberry Ketone Structure](image)	Ketones	DEREK: INACTIVE
CASE Ultra: Negative						
4	767	2,6-dimethylpyrazine	108–50-9	![2,6-Dimethylpyrazine Structure](image)	Newly designated flavors	DEREK: INACTIVE
CASE Ultra: Known Positive						
5	820	4-phenyl-3-buten-2-one	122–57-6	![4-Phenyl-3-Buten-2-One Structure](image)	Ketones	DEREK: INACTIVE
CASE Ultra: Known Positive						
6	1208	4-methyl-2-pentenal	5362-56-1	![4-Methyl-2-Pentenal Structure](image)	Aliphatic higher aldehydes	DEREK: PLAUSIBLE
CASE Ultra: Known Positive						
7	1346	cadinene (mixture of isomers)	29,350–73-0	![Cadinene Structure](image)	Terpene hydrocarbons	DEREK: INACTIVE
CASE Ultra: Known Negative						
8	1503	2-Furyl methyl ketone	1192–62-7	![2-Furyl Methyl Ketone Structure](image)	Ketones	DEREK: EQUIVOCAL
CASE Ultra: Known Positive						
9	–	S-methyl methanethiosulfonate	2949-92-0	![S-Methyl Methanethiosulfonate Structure](image)	Esters	DEREK: INACTIVE
CASE Ultra: Out of Domain						
No.	JECFA No.	Chemical Name	CAS No.	Structure	Substructure Class	Note
-----	-----------	---------------------------	---------------	-----------	--------------------	---------------------------
1	413	3,4-hexanedione	4437-51-8		Ketones	DEREK: PLAUSIBLE
					CASE Ultra: Known	Positive
2	595	ethyl acetoacetate	141–97-9		Esters	DEREK: INACTIVE
					CASE Ultra: Known	Negative
3	736	phenyl salicylate	118–55-8		Esters	DEREK: INACTIVE
					CASE Ultra: Known	Negative
4	938	ethyl pyruvate	617–35-6		Esters	DEREK: INACTIVE
					CASE Ultra: Known	Negative
5	1124	3-penten-2-one	625–33-2		Ketones	DEREK: INACTIVE
					CASE Ultra: Negative	
6	1303	isoquinoline	119–65-3		Newly designated	DEREK: INACTIVE
					flavors	CASE Ultra: Known
					Negative	
7	1445	tetrahydrofurfurylpropionate	637–65-0		Esters	DEREK: INACTIVE
					CASE Ultra: Negative	
8	1513	ethyl 3-(2-furyl)propanoate	10,031–90-0		Esters	DEREK: INACTIVE
					CASE Ultra: Negative	
9	1526	O-ethyl S-(2-furylmethyl)thiocarbonate	376,595–42-5		Esters	DEREK: INACTIVE
					CASE Ultra: Negative	
10	1592	acetamide	60–35-5		Not classified	DEREK: INACTIVE
					CASE Ultra: Known	Negative
11	1716	dihydroxyacetone dimer	62,147–49-3		Ketones	DEREK: INACTIVE
					CASE Ultra: Known	Positive
12	1772	N-gluconyl ethanolamine	686,298–93-1		Not classified	DEREK: INACTIVE
					CASE Ultra: Negative	
Ames test database by using StarDrop NIHS 834_67, DEREK Nexus™, and CASE Ultra. Table 4 shows the results of the QSAR calculation. Table 5 is a 2 × 2 prediction matrix, and Table 6 shows the performance (sensitivity, specificity, accuracy, and applicability) of the three (Q)SARs. StarDrop NIHS 834_67 showed the best performance. Table 7 shows nine FN chemicals that were positive in the Ames test but were negatively predicted by NIHS834_67. Table 8 shows 13 FP chemicals that were negative in the Ames test but were positively predicted by NIHS834_67.

Discussion

We have developed new Ames database consisting of 406 types of food flavor chemicals. This benchmark food flavor chemicals database is open to the public and useful for risk assessment of food additives and developing QSAR models for predicting Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The main body of the database is derived from the database reported by Ono et al. [4]. We re-assessed 14 “equivocal” chemicals and classified them as negative, positive, or inconclusive. However, the positive and negative chemicals remaining in Ono’s database were not re-assessed. Some of these chemicals may also be misjudged. In fact, 2,3-pentanedione (600–14–6), which was negative in Ono’s database, was clearly positive in the present Ames test (Additional file (6)). To ensure database robustness, it is necessary to re-assess the test results reported as positive and negative. As will be described later, especially, the results of the Ames test that differ from the QSAR prediction results could be questioned.

In 2012, Ono et al. reported the performance of three commercial QSAR tools (DEREK for Windows, MultiCASE, and ADMERWorks) for predicting Ames mutagenicity of 367 food flavor chemicals [4]. Derek for Windows and MultiCASE are earlier models of DEREK Nexus™ and CASE Ultra, respectively. As a result, the sensitivity, specificity, and accuracy were 38.9, 93.4, and 88.0% (DEREK for Windows), 25.0, 94.3, and 87.5% (MultiCASE), respectively. In this study, we evaluated the performance of DEREK Nexus™ and CASE Ultra for 406 food flavors in the new Ames database. As a result, the sensitivity, specificity, and accuracy were 70.5, 96.1, and 93.3% (DEREK Nexus™) and 70.5, 90.3, and 88.2% (CASE Ultra), respectively. These results indicate that the performance of the QSAR prediction has improved significantly over the last decade. The improvement in sensitivity was particularly remarkable. Improvement of the QSAR models and accumulation of newly acquired Ames test training data may have contributed to the high performance. In particular, the NIH-sponsored Ames/QSAR International Challenge Project has contributed significantly to improving the performance of commercial QSAR tools, such as DEREK Nexus™ and CASE Ultra, which have acquired over 12,000 unique chemical Ames datasets [24]. The newly developed StarDrop NIHS 834_67 outperformed DEREK Nexus™ and CASE Ultra. StarDrop NIHS 834_67 also acquired 428 chemicals (positive: 255, negative: 173) selected from the 12,000 unique chemical Ames datasets. Despite incorporating the same training data, StarDrop NIHS 834_67 provided higher prediction, probably due to differences in the target chemical space. Flavor chemicals are relatively low molecular weight and have unique functional groups that allow them to focus on the chemical space of interest and develop highly predictable models with relatively small size training data. Our attempt to develop a local QSAR model that focused on flavor chemicals has been somewhat successful. However, it is not surprising that that StarDrop NIHS 834_67 showed higher performance than other QSAR tools. It may be because StarDrop NIHS 834_67 used the results of 39 new flavor chemical datasets and revised existing flavor chemical data for training and validation data.

Considering that the estimated interlaboratory reproducibility of the Ames test has been reported to be approximately 85% [27, 28], the performance of the prediction may be approaching the upper limit. Nonetheless, FN and FP analysis points to improvements in the database and QSAR models. Of the nine FN flavor chemicals by StarDrop NIHS 834_67, menthone (89–80–5), raspberry ketone (54–51–2), and cadinene (29350–73–0) were also predicted as negative by DEREK Nexus™ and CASE Ultra (Table 7). The Ames mutagenicity of these chemicals, which were predicted to be negative by the three QSARs, may actually be negative chemicals. We need to perform actual Ames tests to confirm.

In this study, we examined the Ames tests for raspberry ketone (54–51–2) and the result was positive (Table 4). However, the mutagenic activity was very weak (RAV: 10) (Additional file (12)). Structural features
found in FN chemicals include the \(\alpha, \beta\)-unsaturated carbonyl structures, trans-cinnamaldehyde (104–55–2), 4-phenyl-3-buten-2-one (122–57–6), 4-methyl-2-pentenal (5362–56–1), and 2- furyl methyl ketone (1192–62–7), which were predicted to be positive by DEREK Nexus™ and/or CASE Ultra. The \(\alpha, \beta\)-unsaturated carbonyl structure is a typical alert for Ames mutagenicity [29–31]. These predictions indicate that the alert is incorporated in DEREK Nexus™ and CASE Ultra but not in StarDrop NIHS 834_67. By incorporating \(\alpha\) and \(\beta\)-unsaturated carbonyl chemicals as training data, it is expected that the FN rate of StarDrop NIHS 834_67 will be reduced and the predictability will be improved.

On the other hand, of the 13 FP chemicals, 3,4-hexanediene (4437–51–8) was also predicted as positive by DEREK Nexus™ and CASE Ultra. The Ames mutagenicity of this chemical may actually be positive. Interestingly, 12 other FP flavor chemicals were correctly predicted as negative by DEREK Nexus™ and CASE Ultra, which highlights the different characteristics between StarDrop NIHS 834_67 and other QSAR tools and indicates the potential for further improvement.

Conclusions
We developed a new Ames database of 406 food flavor chemicals. Using this database and other Ames datasets of chemicals that are structurally similar to flavor chemicals, we also developed a new QSAR model for predicting Ames mutagenicity. The local QSAR model, StarDrop NIHS 834_67, is customized to efficiently predict the mutagenicity of food flavors and other low molecular weight chemicals, delivering performance superior to that of other commercial QSAR tools. By further improving the model, it can be used to assess the mutagenicity of food flavors without actual testing.

Abbreviations
QSAR: Quantitative structure–activity relationship; TP: True positive; TN: True negative; FP: False positive; FN: False negative

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s41021-021-00182-6.

Additional file 1: Raw data for the Ames tests.

Acknowledgments
We appreciate the companies and the Japan Flavor and Fragrant Materials Association for providing flavor chemicals for the Ames test.

Authors’ contributions
Conceived and designed the studies: MH, QSAR model development: ST and MK, QSAR calculation: AK, Analyzed the data: TK, Ames test management: KS, MY, MY, KM, and KH, Wrote the paper: MH and TK. The authors read and approved the final manuscript.

Funding
This work was supported by the Ministry of Health, Labor, and Welfare under Grant Numbers H30-Food-General-003 and H30-Chemistry-Destination-005 and by the Japan Agency for Medical Research and Development under Grant Number 20am0101123j0104.

Availability of data and materials
All generated data are included in this manuscript. Raw data for the Ames tests are available in the Additional files.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki city, Kanagawa, Japan. 2HULINKS Inc., Chuo city, Tokyo, Japan.
3Department of Applied Chemistry, National Defense Academy, Yokosuka city, Kanagawa, Japan. 4Division of General Affairs, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan.

Received: 28 December 2020 Accepted: 24 February 2021
Published online: 30 April 2021

References
1. Honma M. Threshold of toxicological concern for genotoxic impurities in pharmaceuticals. In: Nohmi T, Fukushima S, editors. Thresholds of genotoxic carcinogens. UK: Academic Press; 2016. p. 103–15.
2. Mortelmans K, Zeiger E. The Ames Salmonella/microsone mutagenicity assay. Mutat Res. 2000;455:29–60.
3. Honma M. An assessment of mutagenicity of chemical substances by (quantitative) structure–activity relationship. Genes Environ. 2020;42:23.
4. Ono A, Takahashi M, Hirose A, Kamata E, Kawamura T, Yamazaki T, Sato K, Yamada M, Fukumoto T, Okamura H, Mikojuki Y, Honma M. Validation of the (Q) SAR combination approach for mutagenicity prediction of flavor chemicals. Food Chem Toxicol. 2012;50:1538–46.
5. Okamura H, Abe H, Hasegawa-Baba Y, et al. The Japan flavour and fragrance materials Association’s (JFFMA) safety assessment of acetal food flavouring substances uniquely used in Japan. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32:1384–96.
6. Hansen K, Mika S, Schroeter T, et al. Benchmark data set for in silico prediction of Ames mutagenicity. J Chem Inf Model. 2009;49:2077–81.
7. Mutagenicity test in under the industrial safety and health act. Test guideline and GLP (in Japanese). Tokyo: Japan Industrial Safety & Health Association (JISHA); 1991.
8. OECD. Guideline for Testing of Chemicals Test Guideline No. 471: bacterial reverse mutation test. Paris: OECD; 1997. https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf
9. Williams RV, Amberg A, Brigo A, Coquin L, Giddings A, Glowienke S, Greene N, Jolly R, Kemper R, O’Leary-Steele C, Parenty A, Spirkl HP,Stafford SA, Weiner SK, Wichard J. It’s difficult, but important, to make negative predictions. Regul Toxicol Pharmacol. 2016;76:79–86.
10. Barber C, Cayley A, Hansen T, Harding A, Hughes C, Vessey JD, Werner S, Weiner SK, Wichard J, Giddings A, Glowienke S, Parenty A, Brigo A, Spirkl HP, Amberg A, Kemper R, Greene N. Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained. Regul Toxicol Pharmacol. 2016;76:7–20.
11. Klopmann G, Frierson MR, Rosenkranz HS. The structural basis of the mutagenicity of chemicals in Salmonella typhimurium: the gene-Tox data base. Mutat Res 1990;228(1):1–50.
12. Landry C, Kim MT, Kruhak NL, Cross KP, Saikov R, Chakravarti S, Stavitskaya L. Transitioning to composite bacterial mutagenicity models in ICH M7 (Q) SAR analyses. Regul Toxicol Pharmacol. 2019;109:104488.
13. McMahon RE, Cline JC, Thompson CZ. Assay of 855 test chemicals in ten tester strains using a new modification of the Ames test for bacterial mutagens. Cancer Res. 1979;39:682–93.
14. Gocke E, King MT, Eckhardt K, Wild D. Mutagenicity of cosmetics ingredients licensed by the European Communities. Mutat Res. 1981;90:91–109.
15. WHO Food Additives Series 59. Safety evaluation of certain food additives. 2008.
16. Zeiger E, Haworth S. Tests with a preincubation modification of the Salmonella/microsome assay. Progress in Mutation Research (J. Ashby, F.J. Seres et al. Eds.), Vol. 5, World Health Organization. 1985.
17. WHO Food Additives Series 52. Safety evaluation of certain food additives and contaminants. 2004.
18. Wild D, King MT, Gocke E, Eckhardt K. Study of artificial flavouring substances for mutagenicity in the Salmonella/microsome, Basc and micronucleus tests. Food Chem Toxicol. 1983;21:707–19.
19. Kurtto P, Kallikoski P, Lampelo S, Jantunen MJ. Mutagenic compounds in wood-chip drying fumes. Mutat Res. 1990;242:9–15.
20. Hiramoto K, Sekiguchi K, Ayuha K, et al. DNA breaking activity and mutagenicity of soy sauce: characterization of the active components and identification of 4-hydroxy-5-methyl-3(2H)-furanone. Mutat Res. 1996;359:119–32.
21. WHO Food Additives Series 56. Safety evaluation of certain food additives. 2006.
22. Kasie F, Kasrulmller S. Genotoxic effects of allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC). Chem Biol Interact. 2000;127:163–80.
23. Yamauchi T. Mutagenicity of Isothiocyanates, Isocyanates and Thioureas on Salmonella typhimurium. Agric Biol Chem. 1980;44:3017–8.
24. Honma M, Kitazawa A, Cayley A, Williams RV, Barber C, Hanser T, Saiakhov R, Chaikravarti S, Myatt GJ, Cross RP, Benfenati E, Raitano G, Mekenyan O, Petkov P, Bossa C, Benigni R, Battistelli CL, Giuliani A, Tcheremenskaja O, DeNero C, Norinder U, Koga H, Jose C, Jelladikova N, Kochev N, Paskaleva V, Yang C, Daga PR, Clark RD, Rathman J. Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project. Mutagenesis. 2019;34:3–16.
25. Honma M, Kitazawa A, Kasamatsu T, Sugiyama KI. Screening for Ames mutagenicity of food flavor chemicals by (quantitative) structure-activity relationship. Genes Environ. 2020;42:32.
26. Butina D. Unsupervised Data Base clustering based on Daylight's fingerprint and Tanimoto similarity: a fast and automated way to cluster small and large data set. J Chem Inf Comput Sci. 1999;39:747–50.
27. Piegorsch WW, Zeiger E. Measuring intra-assay agreement for the Ames Salmonella assay. In: Hothorn L, editor. Lecture notes in Medical informatics, vol. 43. Heidelberg: Springer; 1991. p. 35–41.
28. Kamber M, Fluckiger-Iser I, Engelhardt G, Jaech J, Zeiger E. Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity. Mutagenesis. 2000;24:359–66.
29. Eder E, Hoffmann C, Bastian H, Deininger C, Scheckenbach S. Molecular mechanisms of DNA damage initiated by alpha, beta-unsaturated carbonyl compounds as criteria for genotoxicity and mutagenicity. Environ Health Perspect. 1990;89:99–106.
30. Koleva YK, Madden JC, Cronin MT. Formation of categories from structure-activity relationships to allow read-across for risk assessment: toxicity of alpha,beta-unsaturated carbonyl compounds. Chem Res Toxicol. 2008;21:2300–12.
31. Benigni R, Bossa C. Mechanisms of chemical carcinogenicity and mutagenicity: a review with implications for predictive toxicology. Chem Rev. 2011;111:2507–36.