The prevalence of various pollutants like nitrogenous, sulphurous, phosphorous compounds, heavy metals, and organic compounds has seriously threatened the sustainability of natural ecosystems and is thus interfering with the natural biogeochemical cycling. Chemical pollution of water bodies can cause serious damage to environmental quality because many of these pollutants are extremely toxic and can in the worst case scenario wipe out entire ecosystems. The world still has not come up with the adequate monitoring system despite the fact that the global chemical pollution continues to grow because of the many “new” pollutants which have entered in use recently. Many thousands of new chemicals are introduced annually in USA alone. The long lasting effects of these pollutants are too varied and diverse and are no more a mystery now. Although nature often has great ability to recover from environmental stresses, the growing demands on water resources and land necessitate the professional application of fundamental knowledge of environmental remediation to ensure the maintenance of environmental quality.

Heavy metal pollution is one of the most important environmental problems today [1]. Various industries produce and discharge wastes containing different heavy metals into the environment, such as mining and smelting of metalliferous, surface finishing industry, energy and fuel production, fertilizer and pesticide industry and application, metallurgy, iron and steel, electroplating, electrolysis, electroosmosis, leatherworking, photography, electric appliance manufacturing, metal surface treating, and aerospace and atomic energy installation. They are widely used in all fields of life, that is, batteries, dyes, alloys, chemical compounds, and pharmaceutical and cosmetic products thus suggesting that the risk of pollution is very high. Thus, metals as resource are becoming a short in supply and also cause serious environmental pollution, threatening human health and ecosystem and also brings about serious environmental pollution, threatening human health and ecosystem. Three kinds of heavy metals are of concern, including toxic metals (such as Hg, Cr, Pb, Cd, and As), precious metals (such as Pd, Pt, Ag, Au, and Ru), and radionuclides (such as U, Th, Ra, and Am). The presence of heavy metal in atmosphere, soil, and water, even in traces, represents a severe risk to all organisms for their long-term toxicological effects. Heavy metal bioaccumulation and biomagnifications in the food chain can be extremely dangerous to human health [1].

Wastewater irrigation is not only used due to scarcity of fresh water but it is also used for protection of environment and for its high nutritive values [2]. Water pollution is a great problem throughout the world and ground water pollution occurs due to disposal of industrial effluents and domestic sewage into watercourses [3]. Wastewater not only provides the supplemental irrigation but also provides the useful nutrients, especially organic matter phosphorous and nitrogen to improve physical properties and fertility of soil [4]. The continuous utilization of raw water for irrigation of leafy and nonleafy vegetables results in metal deposition in soil as well as in undercultivated crops well over the maximum permissible level [5]. Heavy metals enter
the human body mainly through two routes, namely, inhalation
and ingestion, ingestion being the main route of exposure
to these elements in human population. Heavy metals
intake by human populations through food chain has been
reported in many countries [6]. The health risks of various
heavy metals accumulated in these vegetables and crop plants
need to be carefully assessed.

PAHs mainly generate from incomplete combustion of
fossil fuels [7], oil refinery, and steelmaking [8]. PAHs
are widely present in environment and organisms owing
to high chemical stability, low water solubility, and high
lipid solubility [9]. Food ingestion intake of PAHs increases
with the higher trophic level of organisms in food chain
through accumulating and transmitting [10]. Research has
showed that PAHs have seriously damaged the health of
marine mammals on the coast of California [11]. PAHs
accumulated effectively in goats, intensifying the biotoxicity
[12] and threatening human health, especially for those
mainly depending on goat meat. The understanding of the
distributions and mother-child transmission of PAHs in
various food organisms is desirable and provides useful data
to decrease human exposure risk.

The anaerobic bioreactor applies the principles of biotechn-
ology and microbiology, and currently, it has been widely
used in the wastewater treatment plants due to high efficiency,
low energy use, and green energy generation. Anaerobic
digestion is an attractive option for waste treatment practice
in which both energy recovery and pollution control can be
achieved. The anaerobic processes have become increasingly
demanding in the treatment of complex industrial wastewaters,
which have the ability to treat high concentrations of organics,
and may contain toxic materials or complex substances and even
low concentrations of domestic wastewater [13, 14]. Regarding the ability to attain environmental protection
and resource preservation, anaerobic treatment process
and anaerobic bioreactors have received great attention [13,
15, 16].

Nitrogen pollution has caused severe environmental
problems. Since the first discovery of ANAMMOX in the
early 1990s, this related technology is developing rapidly. A
series of new and outstanding outcomes were achieved in the
discovery of new ANAMMOX bacterial species including
Brocadia sinica and sulfate-dependent ANAMMOX bacteria
(Anammoxoglobus sulfate and Bacillus benzoferans). Since
the discovery of the ANAMMOX process [17], it has been
regarded as a cost-effective and environment-friendly way to
treat wastewater containing high ammonium concentrations
[18]. By smart application of ANAMMOX in municipal treat-
ment, wastewater treatment plants could be converted from
energy-consuming into energy-producing systems [19]. It is
a hot topic in the fields of microbiology and environmental
science and engineering due to its merits of effective removal
of both ammonium and nitrite under anaerobic conditions
with high removal rate, little sludge production, and low
operational cost [20–22].

In the recent years, the wastewater treatment strategies
have been shifted to one of the most promising methods,
that is, biological anaerobic treatment with the adoption of
high rate anaerobic systems like up-flow anaerobic sludge
blanket (UASB) and other related treatment systems. The
outstanding characteristics of high rate anaerobic bioreactor
(ABR) include the anaerobic microorganisms capable of
aggregation, low operational and maintenance costs, energy
recovery in the form of biogas, low energy consumption,
and low production of digested sludge [23]. The ABR treated
effluents can be employed for irrigation of various crops.
However, such type of effluent may be high in chemical oxy-
gen demand (COD), biochemical oxygen demand (BOD),
and coliform [24]. As ABR effluents are anticipated to be
rich in various nutrients, they can be treated in Constructed
Wetlands (CW). CW is a low cost or economical on-site wastewater treatment technology which is not only effective
but also aesthetically pleasing. Since 1980, the utilization
of the CW for the treatment of a variety of wastewaters has
quickly become widespread. The amount of nutrients removed by plants and stored in their tissues is highly relative
which depends on the plant type, biomass, and nutrient
concentration in tissues [25]. A variety of macrophytes are
used in CW and most common are floating macrophytes (i.e.,
Lemna spp. or Eichhornia crassipes), submerged macrophytes
(i.e., Elodea canadiensis), and rooted emergent macrophytes
(i.e., Phragmites australis and Typha angustifolia). The plants
roots create conducive environment for the microbial growth
and in winter the plant litter acts as insulator. CW are
attached growth biological reactors, which tender higher
pollutant removal efficiency through physical, chemical, and
biological mechanisms. The common removal mechanisms
associated with wetlands include sedimentation, coagulation,
adsorption, filtration, biological uptake, and microbial trans-
formation [26, 27].

The role of bacteria in remediation of toxic compounds
has been documented over the years and would continue
to be a dominant technology for the remediation of organic
and inorganic compounds [28]. Bacteria with the ability to
tolerate, remove, or/and degrade several xenobiotics simulta-
neously are urgently needed for remediation of sites contam-
inated with more than one pollutant. Enzymatic reduction
of metals to less toxic, nonsoluble lower oxidation states is
employed by many bacteria for survival and can be used as a
tool for bioremediation of heavy metals.

We hope that readers of CBA will find in this special issue
accurate data and updated reviews on the various aspects of
the subject. Some useful information has been presented on
risk assessment of various pollutants, technological aspects of
metal treatments, and strategies of metal recovery.

Li-Yuan Chai
Chong-Jian Tang
Qaisar Mahmood
Xian-Wei Liu

References
[1] Q. Mahmood, A. Rashid, S. S. Ahmad, M. R. Azim, and M.
Bilal, "Current status of toxic metals addition to environment
and its consequences," in The Plant Family Brassicaceae: Contri-
bution Towards Phytoremediation, Environmental Pollution, N.
A. Anjum et al., Ed., Springer, 2012.
denitrifying fluidized bed reactor," \textit{FEMS Microbiology Ecology}, vol. 16, no. 3, pp. 177–184, 1995.

[18] M. S. M. Jetten, S. Logemann, G. Muyzer et al., "Novel principles in the microbial conversion of nitrogen compounds," \textit{Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology}, vol. 71, no. 1-2, pp. 75–93, 1997.

[19] B. Kartal, J. G. Kuenen, and M. C. M. Van Loosdrecht, "Sewage treatment with anammox," \textit{Science}, vol. 328, no. 5979, pp. 702–703, 2010.

[20] M. Strous, J. A. Fuert, E. H. M. Kramer et al., "Missing lithotroph identified as new plantomycete," \textit{Nature}, vol. 400, no. 6743, pp. 446–449, 1999.

[21] Y. Tao, D.-W. Gao, Y. Fu, W.-M. Wu, and N.-Q. Ren, "Impact of reactor configuration on anammox process start-up: MBR versus SBR," \textit{Bioresource Technology}, vol. 104, pp. 73–80, 2012.

[22] I. Tsushima, Y. Ogasawara, T. Kindaichi, H. Satoh, and S. Okabe, "Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors," \textit{Water Research}, vol. 41, no. 8, pp. 1623–1634, 2007.

[23] A. A. Khan, R. Z. Gaur, V. K. Tyagi et al., "Sustainable options of post treatment of UASB effluent treating sewage: a review," \textit{Resources, Conservation and Recycling}, vol. 55, no. 12, pp. 1232–1251, 2011.

[24] M. A. El-Khateeb and A. Z. El-Bahrawy, "Extensive post treatment using constructed wetland," \textit{Life Science Journal}, vol. 10, pp. 560–568, 2013.

[25] N. Korboulevsky, R. Wang, and V. Baldy, "Purification processes involved in sludge treatment by a vertical flow wetland system: focus on the role of the substrate and plants on N and P removal," \textit{Bioresource Technology}, vol. 105, pp. 9–14, 2012.

[26] A. K. Mungray, Z. V. P. Murthy, and A. J. Tirpude, "Post treatment of up-flow anaerobic sludge blanket based sewage treatment plant effluents: a review," \textit{Desalination and Water Treatment}, vol. 22, no. 1–3, pp. 220–237, 2010.

[27] C. Wendland, J. Behrendt, T. A. Elmitwalli et al., "ABR reactor followed by constructed wetland and UV radiation as an appropriate technology for municipal wastewater treatment in Mediterranean countries," in \textit{Proceedings of the 7th specialized conference on small water and wastewater systems in Mexico}, 2006.

[28] A. B. Moldes, R. Paradela, X. Vecino et al., "Partial characterization of biosurfactant from lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil," \textit{BioMed Research International}, vol. 2013, Article ID 961842, 6 pages, 2013.