A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives

Jasmin Hafner 1,4, James Payne 2,4, Homa Mohammadi-Peyhani 1, Vassily Hatzimanikatis 1✉ & Christina Smolke 2,3✉

Plant natural products (PNPs) and their derivatives are important but underexplored sources of pharmaceutical molecules. To access this untapped potential, the reconstitution of heterologous PNP biosynthesis pathways in engineered microbes provides a valuable starting point to explore and produce novel PNP derivatives. Here, we introduce a computational workflow to systematically screen the biochemical vicinity of a biosynthetic pathway for pharmaceutical compounds that could be produced by derivatizing pathway intermediates. We apply our workflow to the biosynthetic pathway of noscapine, a benzylisoquinoline alkaloid (BIA) with a long history of medicinal use. Our workflow identifies pathways and enzyme candidates for the production of (S)-tetrahydropalmatine, a known analgesic and anxiolytic, and three additional derivatives. We then construct pathways for these compounds in yeast, resulting in platforms for de novo biosynthesis of BIA derivatives and demonstrating the value of cheminformatic tools to predict reactions, pathways, and enzymes in synthetic biology and metabolic engineering.

1 Laboratory of Computational Systems Biotechnology, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. 2 Department of Bioengineering, Stanford University, Stanford, CA, USA. 3 Chan Zuckerberg Biohub, San Francisco, CA, USA. 4 These authors contributed equally: Jasmin Hafner, James Payne.✉ Email: vassily.hatzimanikatis@epfl.ch; csmolke@stanford.edu
Plants synthesize a remarkable range of complex and valuable molecules, known as plant natural products (PNPs), commonly used as flavors, fragrances, and medicines. However, production of these molecules via extraction from plant biomass is often limited by slow growth, low yield, laborious extraction and purification procedures, and variability due to weather and climate change. Furthermore, while many modern medicines are natural products, a higher fraction are derivatives of natural products. The range of PNP derivatives accessible to researchers is typically limited to those that can be readily produced via chemical synthesis from PNPs extracted from plants, while many more derivatives could potentially be made via regioselective enzymatic modification of PNPs and their intermediates. Microbial production of PNPs can potentially address these concerns, and additionally facilitates production of novel PNP derivatives by leveraging the genetic tractability of well-established microbial hosts to alter the heterologous biosynthetic pathway.

Since the landmark production of the antimalarial drug precursor artemisinic acid in *Saccharomyces cerevisiae* in 2006, there has been an increase in the size and complexity of pathways reconstructed in heterologous hosts. This progress is highlighted by the recent de novo biosynthesis in *S. cerevisiae* of noscapine, an antitussive benzisouquinoline alkaloid (BIA) and potential chemotherapeutic[6–8] from *Papaver somniferum* separated by 16 enzymatic steps from tyrosine. In that study, halogenated derivatives of tyrosine were fed to the engineered yeast strains to produce halogenated derivatives of noscapine intermediates. However, the non-native halogenated substrates were not tolerated as well as the native substrates of the pathway enzymes, and derivatives of only early intermediates in the pathway were detected. In such cases, an alternative strategy would be required to produce derivatives of more chemically complex downstream pathway intermediates or of noscapine itself.

An alternative approach to produce derivatives of PNPs and their intermediates is to integrate additional enzymes into microorganisms expressing heterologous PNP biosynthetic pathways. Enzymes that are able to accept and functionalize intermediates or products along a PNP pathway would thus produce novel products in vivo from the natural precursors. However, producing new-to-nature compounds necessarily entails the use of enzymes outside their natural functions, and in many cases an enzyme will not be known a priori with the desired non-native function. Given the wealth of enzymatic knowledge that has been accumulated, a computational method to predict enzymes that may catalyze a desired transformation will greatly expedite the development of biosynthetic pathways engineered to produce new-to-nature products.

Computational methods have been employed to guide the discovery of enzymatic functions and the design of biosynthetic pathways for the production of molecules with interesting pharmaceutical or industrial properties. These methods generate hypothetical pathways to compounds of interest by assuming that enzymes that perform similar, but not identical, reactions to those desired might be promiscuous or sufficiently evolvable to perform the desired reaction after engineering and/or optimization. The concept of substrate promiscuity is translated into generalized enzymatic reaction rules that mathematically describe the reactive site recognized by an enzyme as well as the molecular rearrangement performed during the biotransformation. Popular chemical informatics tools[9–11] for predictive biochemistry include BNICE.ch (Biochemical Network Integrated Computational Explorer)[12], enviPath[13], GEM-Path[14], novoPathFinder[15], NovoStoic[16], ReactPRED[17], RetroPath2.0[18], and Transform-Miner[19]. These tools have typically been used in retrobiosynthesis studies, where the aim is to determine potential bioproduction pathways by biochemically walking back from a target compound to the native metabolism of a chassis organism[20–22] via predicted enzymatic reaction steps. The prediction of novel reactions is subsequently followed by the search for suitable enzymes that can catalyze the predicted step. Enzyme prediction tools such as BridgIT[23], EC-BLAST[24], E-zyme[25], and Selenzyme[26] determine the structural similarity of a novel reaction to all well-characterized reactions in biochemical databases, and propose a list of enzyme candidates ranked by their likelihood to catalyze the desired transformation. Here, we develop a computational workflow to identify potential derivatives of intermediates of a given biosynthetic pathway and subsequently predict enzyme candidates that may carry out the desired transformation(s) (Fig. 1). Our workflow expands the chemical space around a pathway of interest using BNICE.ch to create a map of all compounds accessible with known or predicted biochemical reactions and then identifies enzymes capable of carrying out the desired transformations on the prioritized set of compounds using the enzyme prediction tool BridgIT. We apply this workflow to the reconstructed noscapine biosynthetic pathway in yeast. We narrow our search to enzyme candidates capable of producing (S)-tetrahydropalmatine, a PNP found in plants of the genus *Corydalis* that has been shown to possess analgesic and anxiolytic effects and has shown promise as a potential treatment for opiate addiction[27–29]. After experimental evaluation of seven of the top enzyme candidates in yeast strains engineered to produce the noscapine biosynthetic intermediate (S)-tetrahydropalmatidine de novo, we identify two enzymes that enabled production of (S)-tetrahydropalmatine. We then apply our workflow to identify three additional derivatives of pathway intermediates, predict enzymes for their biosyntheses, and then construct *S. cerevisiae* strains to produce these three products de novo. As the number of reconstructed heterologous pathways for PNPs continues to increase, we anticipate that the described workflow can be used to produce many chemically complex compounds spanning diverse therapeutic activities.

Results

Computational expansion of the noscapine pathway reveals thousands of potential target molecules. Each biosynthetic pathway presents an opportunity to produce numerous derivative compounds by chemically modifying functional groups of the pathway product and its intermediates. Computational reaction prediction tools, such as BNICE.ch, allow rapid exploration of the hypothetical chemical space of potential pathway derivatives. Their generalized enzymatic reaction rules mimic known enzymatic activities in silico by recognizing and transforming a specific functional group on a substrate to generate a product. Iterative application of these rules to biosynthetic pathway intermediates creates a reaction network to hypothetical derivatives of all pathway intermediates, offering targets for bioproduction.

We applied this computational expansion process on the noscapine pathway, which starts from (S)-norcoclaurine and involves 17 metabolites connected by 17 reactions (Fig. 2). BNICE.ch expanded the network around the 17 metabolites for four generations, generating both known and novel reactions to produce compounds known to any biological[30–39], bioactive[40,41], or chemical[42] database. This expansion yielded a network spanning 4838 compounds (Supplementary Data 1) and 17,597 reactions (Supplementary Data 2). As our analysis focused on BIAIs, we required the substrate and product to contain the minimal elemental composition of the 1-benzisouquinoline scaffold (i.e., at least 16 carbon atoms, 13 hydrogen atoms, and 1 nitrogen atom). The resultant trimmed BIA network spanned 1518 compounds, of which 99 were classified as biological or...
Fig. 1 Overall workflow integrating computational prediction of target compounds, pathways, and enzymes with experimental validation. a Applied design-build-test cycle. b Computational workflow. Circles represent compounds, edges represent biotransformations. Green is used to designate known biological reactions and compounds and blue circles are compounds from the chemical space without specific biological annotation. Red circles show compounds selected for their popularity in scientific literature and in the patent landscape, and red edges represent their corresponding biosynthesis pathways.

Fig. 2 Visualization of the expanded biosynthesis network of the noscapine pathway. The nodes and edges drawn in red show the original noscapine pathway. Around the original pathway, the predicted network of compounds (nodes) and reactions (edges) is visualized. The top 10 compounds in terms of popularity (total number of patents plus citations) are named and localized on the map. The color of the nodes shows in which iteration the compound was generated in the network reconstruction process, which is also the number of reaction steps between the original pathway and the compound. The size of the nodes is proportional to the popularity. The molecular structure of the pathway precursor, norcoclaurine, and the final product, noscapine, are shown.
bioactive, and the remaining 1419 as chemical compounds (Supplementary Table 1). The compounds in the network were connected by 7527 reactions, of which 49 were known to be catalyzed by well-characterized enzymes linked to a genetic sequence from at least one organism in our reference database, the Kyoto Encyclopedia of Genes and Genomes (KEGG)\(^3\). As an additional validation, we collected 13 secondary metabolites with known biosynthesis pathways around the noscapine pathway from external sources, and we could show that all but one were found in the BIA network (Supplementary Table 2).

Our network expansion was nonuniform across the noscapine biosynthetic pathway (Fig. 2). The upstream portion of the network is highly connected, whereas the downstream portion near noscapine is less populated. This likely results from the downstream intermediates and their derivatives increasing in size and complexity, complicating their experimental detection and structural characterization. Consequently, these compounds are less represented in biological or chemical databases, and therefore are not part of the predicted network despite their increased diversity of functional groups.

A ranking algorithm for candidate molecules highlights well-studied compounds. To guide experimental efforts toward interesting targets for bioproduction, the numerous candidate compounds were ranked and filtered. To focus on compounds with broader interest to biomedical researchers, we ranked the candidates by popularity, defined here as the sum of the number of citations and patents reported. We screened the 1501 potential target compounds (1518 satisfying the BIA requirement minus the 17 in the noscapine pathway) and found that 204 returned at least one citation, while 467 had at least one associated patent. In total, at least one annotation (citation or patent) was obtained for 545 distinct compounds, while 467 had at least one associated patent. In total, at least one annotation (citation or patent) was obtained for 545 distinct compounds (1518 satisfying the BIA requirement minus the 17 in the noscapine pathway) and found that 204 returned at least one citation, while 467 had at least one associated patent. In total, at least one annotation (citation or patent) was obtained for 545 distinct compounds, while 467 had at least one associated patent.

Table 1 Compounds ordered by descending popularity that are one reaction step away from intermediates in the noscapine pathway.

Popularity rank	Name	Best BridgIT score	Predicted EC	Number of citations	Number of patents	Citations + patents
1	Berberine	1.00	13.3.8	5430	6751	12154
2	Tetrahydropalmatine	1.00	2.11.89	530	355	885
3	Columbamine	0.99	13.3.8	131	235	366
4	Salutaridine	1.00	11.14.19.67	85	264	349
5	Norlaudanosoline	0.99	11.14.14.102	144	177	321
6	Stepholidine	0.78	11.14.13.32	157	140	297
7	Allocryptopine	0.32	11.14.13.239	111	159	270
8	Laudanine	1.00	2.11.291	23	112	135
9	Codamine	0.79	2.11.121	13	61	74
10	Norretriculine	0.09	1.5.3.10	33	40	73
11	Corytuberine	0.56	11.14.19.67	18	39	57
12	Lambertine	0.45	1.3.1.29	30	23	53
13	Armepavine	1.00	2.11.291	28	15	43
14	1,2-Dehydroreticuline	1.00	1.3.1.29	1	40	43
15	Nandinine	1.00	11.14.19.73	1	39	40

Computational pathway construction identifies tetrahydropalmatine as a high-priority target. While the application of a ranking algorithm to the potential compounds generated by BNICE.ch identifies top candidates, it does not prioritize those which can be feasibly produced experimentally. To maximize the probability of successful in vivo production of a target molecule, we applied additional filters to determine the best candidates for bioproduction. Four criteria were considered: (i) one or more production pathways toward the target compound are thermodynamically feasible; (ii) enzymes are available which natively perform similar transformations; (iii) the target compound is only one chemical transformation from an intermediate in the original pathway to focus experimental efforts on a single enzymatic step; and (iv) the target molecule is a potential or confirmed pharmaceutical.

We first examined the biological feasibility of the potential pathways to our target compounds. For the top 50 ranked candidates, we enumerated all possible pathways connecting a noscapine pathway intermediate to each target within a maximum of four reaction steps. Reaction directionality with a highly positive standard Gibbs free energy of reaction (i.e., reactions producing molecular oxygen, binding carbon dioxide to the substrate, or demethylating the substrate via S-adenosylhomocysteine) were excluded to avoid thermodynamic and catalytic bottlenecks. We identified feasible pathways for 42 of 50 targets, furnishing a total of 1338 pathways (Supplementary Data 4). All of the proposed pathways are listed and visualized online (https://lcst-databases.epfl.ch/pathways/GraphList).

To assess the availability of enzymes to catalyze the proposed reactions, we predicted enzymes for each novel reaction step using BridgIT\(^2\). BridgIT calculates a reactive-site centric similarity score (BridgIT score) between the novel reaction and a reference database of known, well-characterized reactions (KEGG). The output is a ranked list of candidate enzyme classes and associated similarity scores that indicate the probability that members of the candidate enzyme class will catalyze the novel reaction. As an overall metric for compound feasibility, we used the mean of the top BridgIT scores of each reaction in the pathway (available as part of the pathway visualization online).

We next examined the distance (i.e., number of reaction steps) of the target compounds from the original pathway. We restricted our search to candidates that are only one reaction from an intermediate, resulting in 15 candidates, each produced by a feasible reaction and associated with a ranked list of predicted, putative enzymes (Table 1, Supplementary Table 3). The highest ranked candidate was berberine, for which a heterologous biosynthetic pathway has already been established\(^4\). We therefore selected the second highest ranked candidate, (S)-tetrahydropalmatine, for...
experimental validation. (S)-Tetrahydropalmatine naturally occurs in a number of plants, especially those in the genus Corydalis and Stephania rotundula, which are traditionally used in Chinese herbal medicine\(^4\). (S)-Tetrahydropalmatine (i.e., levo-tetrahydropalmatine) has been used for its analgesic, anxiolytic, and sedative effects as an alternative to opiates and benzodiazepines, and has shown promise in treating opioid and methamphetamine addiction\(^29\).

BridgIT analysis indicates top enzyme candidates for tetrahydropalmatine bioproduction. Once a compound of interest is chosen, enzyme(s) catalyzing the desired transformation must be identified. BridgIT identifies known enzymes whose native reactions most closely resemble our desired reaction, and the BridgIT similarity score can be used to rank the candidates by their likelihood to catalyze the desired transformation.

(S)-Tetrahydropalmatine can be produced in one step via methylation of the 2-hydroxyl of the noscapine pathway intermediate (S)-tetrahydrocolumbamine with concomitant conversion of S-adenosylmethionine to S-adenosylhomocysteine (Fig. 3a). Because of the lack of sequence annotation for this reaction in KEGG, we used the BridgIT data described above to identify candidate enzymes. The BridgIT analysis produced a list of enzyme classes ranked by their likelihood to catalyze the desired transformation.

The top enzyme classes yielded promising candidates for in vivo testing. The first candidate, reticuline 7-O-methyltransferase (EC 2.1.1.291), has a BridgIT score of 0.98, making it a good candidate for in vivo testing; one variant occurs in Papaver somniferum. Ranked second (BridgIT score of 0.76) is the enzyme columbamine O-methyltransferase (EC 2.1.1.118; variant from Coptis japonica referred to here as CjColOMT), which converts (S)-columbamine to (S)-palmitine, a similar reaction to our target reaction. A literature search showed that CjColOMT has previously been found to exhibit promiscuous activity in vitro on (S)-tetrahydrocolumbamine\(^46\). However, while KEGG catalogues the methylation of (S)-tetrahydrocolumbamine to produce (S)-tetrahydropalmatine, it does not link it to CjColOMT or any other known gene sequence.

The analysis further showed that the O-methyltransferases (OMTs) in the noscapine pathway are among the top-ranked candidates for catalyzing the predicted reaction. It has been shown that the majority of metabolic reactions are catalyzed by promiscuous enzymes\(^47\), and enzymes that participate in specialized metabolism are even more likely to be promiscuous\(^48\). The potential promiscuity of the noscapine biosynthetic enzymes is thus unsurprising, especially if promiscuous activity is seen on other pathway intermediates that necessarily resemble their native substrates structurally. The enzymes 6OMT (EC 2.1.1.128) and 4’OMT (EC 2.1.1.116), which O-methylate the noscapine pathway intermediates (S)-norcoclaurine and (S)-3’-hydroxy-N-methylcoclaurine, respectively, are ranked third and fourth, with BridgIT scores of 0.75. The enzyme 9OMT (EC 2.1.1.117) is ranked tenth with a BridgIT score of 0.64. The high BridgIT scores associated with these three enzymes indicate their potential for promiscuous activity on (S)-tetrahydrocolumbamine. As variants of these three enzymes are already present in the noscapine pathway prior to (S)-tetrahydrocolumbamine, their potential to produce (S)-tetrahydropalmatine will necessarily be evaluated in vivo.

Two predicted enzymes enable tetrahydropalmatine production in vitro and in vivo. The preceding workflow generates a ranked list of candidate enzymes predicted to produce the target product. Validation of candidate enzymes can be performed in vitro and/or in vivo in the context of a heterologous pathway. The ranking of potential enzymes enables a smaller set of enzymes to be tested experimentally, thereby maximizing the success of the project.

We selected seven of the top 18 hits from BridgIT for experimental validation, with the objective to sample a broad range of BridgIT scores. As described above, three of these enzymes—Ps6OMT, Ps4’OMT, and PsS9OMT—are already present in the biosynthetic pathway upstream of (S)-tetrahydrocolumbamine. The other four enzymes were selected based on the diversity of their native substrates, which span a range of less than 300 Da (2,4’7-trihydroxyisoflavanone) to greater than 900 Da (caffeoyl-CoA) (Table 2). These four candidate enzymes—columbamine OMT from Coptis japonica (CjColOMT, ranked second), O-demethylpuromycin OMT from Streptomyces albogriseus (SaPurOMT, ranked 9th), 2,4’7-Trihydroxyisoflavanone OMT from Lotus japonica (LjFlaOMT, ranked 11th), and caffeoylcoenzyme A OMT from Arabidopsis thaliana (AtCaOMT, ranked 7th)—were codon-optimized for expression in S. cerevisiae, cloned into high-copy plasmids, and transformed into a de novo (S)-tetrahydrocolumbamine-producing S. cerevisiae strain. (S)-Tetrahydropalmatine was produced in every strain tested (Fig. 3b). However, the strain expressing the highest ranked candidate of those tested, CjColOMT, produced eight-fold more (S)-tetrahydropalmatine relative to an empty plasmid control. We hypothesized that the background (S)-tetrahydropalmatine in all strains was due to one or more of the other methyltransferases present in the heterologous (S)-tetrahydrocolumbamine-producing strain. As these enzymes’ native substrates are precursors of, and structurally similar to, (S)-tetrahydrocolumbamine, they may possess promiscuous activity on (S)-tetrahydrocolumbamine itself. In fact, the other four pathway methyltransferases—9OMT (acts natively on (S)-scoulerine), CNMT (acts natively on coclaurine), 6OMT (acts natively on norcoclaurine), and 4’OMT (acts natively on 6-methyl-(S)-laudanosoline)—were assigned high scores by BridgIT for their potential activity on (S)-tetrahydrocolumbamine, further supporting this hypothesis.

We next tested each pathway methyltransferase in vitro to determine their contribution to the background (S)-tetrahydrocolumbamine production. In the originally constructed heterologous (S)-tetrahydrocolumbamine pathway, the four methyltransferases were derived from Papaver somniferum, and thus were named Ps6OMT, Ps6NCMT, Ps4’OMT, and yPsS9OMT (the y prefix on the lattermost denotes that it has been codon optimized for expression in the yeast S. cerevisiae). Ps6OMT, Ps6NCMT, yPsS9OMT, and CjColOMT expressed well in E. coli, but no conditions tested afforded soluble Ps4’OMT. Accordingly, we examined 4’OMT variants from other species and codon optimized three for expression in E. coli—Cj’4’OMT from Coptis japonica, Ec’4’OMT from Eschscholzia californica, and Tf’4’OMT from Thalictrum flavum. These variants expressed well in E. coli and were purified for in vitro analysis. As these 4’OMT variants might not possess the same substrate promiscuity as the variant originally tested (Ps4’OMT), we created strains with Ps4’OMT replaced with each alternative 4’OMT codon optimized for expression in S. cerevisiae. We verified that, in each of these strains, (S)-tetrahydropalmatine was still observed and that expression of CjColOMT resulted in 3- to 7-fold increased production of (S)-tetrahydropalmatine (Fig. 3c).

We tested each pathway methyltransferase and CjColOMT in vitro to determine which convert (S)-tetrahydrocolumbamine to (S)-tetrahydropalmatine. In vitro reactions were performed with Ps6OMT, Ps6NCMT, Cj’4’OMT, Ec’4’OMT, Tf’4’OMT, yPsS9OMT, and CjColOMT. Ps6OMT, Ps6NCMT, and the 4’OMT variants produced no (S)-tetrahydropalmatine in vitro...
While PsCNMT does accept (S)-tetrahydrocolumbamine as a substrate, the product is presumably the N-methylated derivative, as the mass is consistent with a second methylation event, no (S)-tetrahydropalmatine production was observed, and the N-position is the only other available site likely to be methylated by a methyltransferase. Of the pathway enzymes, only PsS9OMT produced (S)-tetrahydropalmatine in vitro and thus is likely the sole source of the background (S)-tetrahydropalmatine observed in vivo. To further support this hypothesis, a strain lacking both yPsS9OMT and CjColOMT produced no (S)-tetrahydropalmatine (Fig. 3b). When tested in vitro, CjColOMT afforded over 11-fold higher conversion of (S)-tetrahydropalmatine.

Fig. 3d. While PsCNMT does accept (S)-tetrahydrocolumbamine as a substrate, the product is presumably the N-methylated derivative, as the mass is consistent with a second methylation event, no (S)-tetrahydropalmatine production was observed, and the N-position is the only other available site likely to be methylated by a methyltransferase. Of the pathway enzymes, only PsS9OMT produced (S)-tetrahydropalmatine in vitro and thus is likely the sole source of the background (S)-tetrahydropalmatine observed in vivo. To further support this hypothesis, a strain lacking both yPsS9OMT and CjColOMT produced no (S)-tetrahydropalmatine (Fig. 3b). When tested in vitro, CjColOMT afforded over 11-fold higher conversion of (S)-tetrahydropalmatine.

Fig. 3b. Enzyme activity of 4’OMT variants expressed in PsCNMT.

Fig. 3c. Enzyme activity of 4’OMT variants expressed in PsCNMT.

Fig. 3d. Enzyme activity of 4’OMT variants expressed in PsCNMT.
Fig. 3 In vivo and in vitro activity of predicted enzymes. a Biosynthetic pathway from \((S\)-norcooclaurine, the first dedicated intermediate in the pathway, to \((S\)-tetrahydrogalantamine. The specific enzyme(s) used in our assays are indicated above each reaction arrow, while below each arrow is the enzyme class and, for methyltransferases, the BridgIT score (in red) obtained for the likelihood of members of that class to perform our proposed reaction. Our proposed reaction, the methylation of \((S\)-tetrahydrocolumbamine to afford \((S\)-tetrahydrogalantamine, is shown in the box at the bottom left. Shown in dotted lines is the native reaction of \(Cj\)ColOMT, the enzyme which was predicted and demonstrated to perform our proposed reaction. The site of methylation of each methyltransferase is highlighted on its product in pink. b De novo production of \((S\)-tetrahydrogalantamine in yeast strains engineered to express members of the two most downstream O-methyltransferase classes \((S9OMT & ColOMT) predicted by B NicE.ch & BridgIT to accept \((S\)-tetrahydrocolumbamine as a substrate. \(Ps\)S9OMT is integrated into the yeast genome, while \(Cj\)ColOMT, \(AIC\)alOMT, \(Lj\)PlaOMT, and \(Sa\)purOMT were expressed from a high-copy plasmid; the first two strains shown contain an empty version of this plasmid. Strains were cultured in selective media \((YNB-Ura) with \(2\)% dextrose, \(2\) mM L-DOPA, and \(10\) mM ascorbic acid at \(30^\circ C\) for \(120\) h before LC-MS/MS analysis of the growth media. Data are presented as mean values ± the standard deviation of three biologically independent samples. Asterisks represent Student’s two-tailed \(t\)-test: \(*p < 0.05\), \(**p < 0.01\), \(***p < 0.001\). Exact \(p\)-values are given in Supplementary Table 8. c In vitro reactions of purified methyltransferases on \((S\)-tetrahydrocolumbamine to produce \((S\)-tetrahydrogalantamine (shown in pink) or the putative \(N\)-methyl-(\(S\)-tetrahydrocolumbamine product (shown in gray). BridgIT score denotes the score obtained by BridgIT for the enzyme class to which each enzyme belongs. Data are presented as mean values ± the standard deviation of three biologically independent samples. Asterisks represent Student’s two-tailed \(t\)-test: \(*p < 0.05\), \(**p < 0.01\), \(***p < 0.001\). Exact \(p\)-values are given in Supplementary Table 8. d De novo production of \((S\)-tetrahydrogalantamine in yeast strains engineered to express alternative \(4\)OMTs. Strains were cultured in selective media \((YNB-Ura) with \(2\)% dextrose, \(2\) mM L-DOPA, and \(10\) mM ascorbic acid at \(30^\circ C\) for \(72\) h before LC-MS/MS analysis. Data are presented as mean values ± the standard deviation of three biologically independent samples. Source data underlying Fig. 3b–d are provided as a Source Data file.

Our workflow guided production of three additional derivatives in vivo. In order to demonstrate the generality of our approach, we applied our workflow to the prediction and experimental validation of three additional derivatives of intermediates in the noscapine pathway. We reexamined our list of the top candidate products that are one enzymatic step away from an intermediate in the noscapine pathway and that possess a high combined number of associated citations and patents (Table 1, Supplementary Table 3) and selected three products for experimental validation: \((S\)-armepavine, \((S\)-laudanine, and \((S\)-nandinine (Fig. 4a). \((S\)-Armepavine and \((S\)-laudanine can each be produced via regioselective \(O\)-methylation of the 7-hydroxyl groups of \((S\)-N-methylcoclaurine and \((S\)-reticuline, respectively, while \((S\)-nandinine can be produced from \((S\)-scoulerine through methylenedioxy ring formation from vicinal hydroxyl and methoxyl groups performed by a cytochrome \(P450\). The top five candidate enzymes to perform each of these three reactions were determined by BridgIT (Supplementary Tables 4 and 5). The same five enzymes—\(Cj\)ColOMT, \(CjN6OMT\), \(Ps7OMT\), \(PsHNC4\)OMT, and \(Ps6OMT\) (this last enzyme was already integrated into both parent strains, but was also tested on a high-copy plasmid as it was one of the top hits identified by BridgIT)—were the top candidates for both \((S\)-armepavine and \((S\)-laudanine biosynthesis, likely because both are the result of \(N\)-methylations of structurally similar substrates. The top five candidate enzymes were \(Am\)CYP719A13, \(Ec\)CYP719A3, \(Nm\)SCNS, \(CYP719A21\), and \(ShCYP719A23\). Each gene was codon optimized for expression in \(S\). \(cerevisiae\) (Supplementary Data 5), cloned into a high-copy plasmid, and transformed into the strain that produces the substrate of its predicted product de novo: for \((S\)-armepavine biosynthesis (Fig. 4b), a de novo \((S\)-N-methylcoclaurine strain (\(CsY1322\)) was used as the parent; for \((S\)-laudanine biosynthesis (Fig. 4c), a de novo \((S\)-reticuline strain (\(CsY1171\)); and for \((S\)-nandinine biosynthesis (Fig. 4d), a de novo \((S\)-scoulerine strain (\(CsY1320\)) (Supplementary Table 6). Each candidate strain was grown and then analyzed by LC-MS/MS for production of the predicted products; for each product, two of the enzymes tested were found to produce the desired derivative.

Discussion

In silico tools for novel biosynthetic pathway design can guide and accelerate metabolic engineering to produce molecules of interest. In this work, we employed the biochemical reaction prediction tool B NicE.ch\(^\text{12}\) to explore potential biosynthesis targets that can be produced from the noscapine pathway. While multiple pathway prediction tools have been reported, most extract reaction rules automatically from biochemical databases\(^\text{15–18}\), risking the propagation of errors (e.g., unbalanced, orphan or hypothetical multistep reactions) from database entries to the rules. In contrast, B NicE.ch rules are created manually to ensure that the predicted reactions follow biochemical logic. Furthermore, typical retrobiosynthetic approaches focus on a single predetermined compound, whereas our workflow quickly identifies a large number of candidate molecules without requiring prior knowledge of their identities. The high number of available tools stands in contrast to the small number of reported experimental validations of novel, predicted reactions. The first successfully predicted novel bioproduction pathway was established for \(\text{1,4-butane}-\text{dioxol}^\text{51}\) using the commercial tool SimPheny which, like B NicE.ch, relies on expert-curated generalized reaction rules. Furthermore, novel reactions predicted by B NicE.ch in the ATLAS of Biochemistry\(^\text{52,53}\), a repository of hypothesised biochemical reactions, have only recently been experimentally tested and validated\(^\text{54}\). Both of the examples of successful implementation of predicted novel reactions to date have utilized expert-curated reaction rules.

Once a pathway has been designed, enzymes need to be found to catalyze the predicted biotransformations. Available tools for enzyme function prediction determine the structural similarity of the desired reaction’s reactants and products to substrates and products of known enzymes\(^\text{23–26}\). In contrast to other tools, BridgIT incorporates information encoded in the B NicE.ch reaction rules to identify the reactive site and then examines the atom connectivity around the reactive sites of the known and desired substrates. While all mentioned tools benchmarked their predictive capacity on datasets of known enzyme-reaction pairings, no direct experimental validation of an enzyme prediction tool has been reported to our knowledge.

In this study, B NicE.ch identified 15 potential compounds that are one reaction step from an intermediate of the noscapine biosynthetic pathway. We chose to rank these compounds by the
Rank	BridgIT score	Predicted EC	Native substrate	Type of substrate	Native organism	Enzymes tested	Activity on THCB
1	0.98	2.1.1.291	(S)-reticuline	BIA	*P. somniferum*		Not tested
2	0.76	2.1.1.118	Columbamine	BIA	*Coptis japonica*	CjColOMT	Active
3	0.75	2.1.1.128	(S)-norcoclarine	BIA	*P. somniferum*	Ps6OMT	Already in pathway, no activity
4	0.75	2.1.1.116	3′-Hydroxy-N-methyl-(S)-coclaurine	BIA	*P. somniferum*	Ps4′OMT	Already in pathway, no activity
5	0.72	2.1.1.146	Isoeugenol	Phenylpropanoid	*Ocimum basilicum* (basil)	SaPurOMT	Not tested
6	0.69	2.1.1.38	O-demethylpuromycin	Antibiotic	*Streptomyces alboniger*		No activity
7	0.68	2.1.1.6	Catechol	Phenol	*Diverse*	LjFlaOMT	Not tested
8	0.66	2.1.2.12	2′,4′,7-Trihydroxyisoflavone	Flavanoid	*Lotus japonica*		No activity
9	0.64	2.1.1.4	N-acetylserotonin	Neurotransmitter	*Homo sapiens* (human)		Not tested
10	**0.64**	**2.1.1.117**	**(S)-Scoulerine**	**BIA**	*P. somniferum*	**yPsS9OMT**	Already in pathway, active
11	0.63	2.1.2.31	4′-Hydroxyflavone	Flavonoid	*Glycine max* (soybean)		Not tested
12	0.63	2.1.1.68	(E)-caffetate	Phenylpropanoid	*Diverse*	AtCafOMT	Not tested
13	0.62	2.1.1.104	Caffeoyl-CoA	Phenylpropanoid	*Arabidopsis thaliana*		No activity
14	0.61	2.1.1.150	(E)-caffetate	Phenylpropanoid	*Medicago sativa* (alfalfa)		Not tested
15	0.61	2.1.1.222	3-Demethylubiquinol	Quinone	*Diverse bacteria*		Not tested
16	0.60	2.1.2.79	trans-Anol	Phenol	*Pimpinella anisum* (anise)		Not tested
17	0.60	2.1.1.94	16-Hydroxytabersonine	Terpene indole alkaloid	*Catharanthus roseus*		Not tested
18	0.59	2.1.1.114	3,4-Dihydroxy-5-all-trans-polyrenylbenzoate	Quinone	*Diverse, incl. S. cerevisiae*		Natively present in yeast

In bold: Enzymes that act on (S)-tetrahydrocolumbamine (THCB).
EC: Enzyme Commission classification number.
sum of their reports in the scientific literature and patents, in order to identify compounds of known biological interest. Alternatively, the ranking could be reversed to identify compounds for which no scientific reports are available, and to engineer the biosynthesis of these molecules to facilitate their further characterization. Literature-based ranking has the advantage that it can be used without defining a strict objective prior to the analysis, as it is the case in our study. For other applications of our work, alternative ranking algorithms could be used; for example, if searching for drug candidates, Lipinski’s five rules could be employed, prioritizing compounds over a given molecular mass, calculated partition coefficient, and/or number of hydrogen bond donors and acceptors. In a similar way, text mining techniques could be used to retrieve associations of a given compound with clinical data or pharmaceutical studies from literature. One could also prioritize the potential compounds’ chemical novelty in order to most effectively leverage the biosynthesis platform to manufacture molecules that cannot be synthesized chemically. Additional information could be integrated into our workflow as well; for example, transcriptomics data could be used to analyze a PNP biosynthetic pathway with enzymes missing for one or more steps. BNICE.ch could determine which enzyme classes are likely to perform the missing steps, then BridgIT could rank all enzymes that are co-expressed with known pathway enzymes to determine which candidates should be investigated by virus-induced gene silencing (VIGS) or functional assays.

The top two compounds in our ranking that are one biosynthetic step from a noscapine pathway intermediate were berberine and \((S)\)-tetrahydropalmatine. The heterologous biosynthesis of berberine has been previously reported\(^56\); however, the final reaction in its biosynthesis in this strain occurs spontaneously, as the enzyme thought to carry out its biosynthesis in plants appears to be inactive in \(S.\) cerevisiae, as is a related enzyme\(^57\). We
therefore chose to focus our efforts on (S)-tetrahydropalmatine, as numerous methyltransferases have been reported to be active in *S. cerevisiae*, thus decreasing the likelihood that we would encounter false negatives due to lack of expression or proper folding. We recently reported the de novo heterologous biosynthesis of (S)-tetrahydropalmatine in *S. cerevisiae* via an engineered variant of T89OMT, a homologue of PsS9OMT from *Thalictrum flavum*68. In particular, the biosynthesis of (S)-tetrahydrocolumbamine was observed with one of two native isoforms of T89OMT tested at a level of 0.7 µg/L, and was then increased over fivefold via structure-guided engineering, ultimately yielding a titer of 3.60 µg/L. In contrast, using BridgIT we identified a scoulerine 9-O-methyltransferase (PsS9OMT) and a columbamine O-methyltransferase (CjColOMT) that both perform this transformation, and their expression together in *Saccharomyces cerevisiae* led to a titer of 3.45 µg/L using only native, non-engineered enzymes, nearly matching the titer reported with the best engineered T89OMT variant. Replacement or supplementation of PsS9OMT with the engineered T89OMT variant could increase our titer of (S)-tetrahydrocolumbamine, or active-site mutagenesis, as was performed for T89OMT, could enhance the activity of PsS9OMT or CjColOMT.

The ability of CjColOMT and PsS9OMT to methylate (S)-tetrahydrocolumbamine may seem unsurprising, as the native substrates of both enzymes are chemically similar to (S)-tetrahydrocolumbamine (Fig. 3a). In fact, both of these enzymes have been reported to have promiscuous activity toward (S)-tetrahydrocolumbamine, as was performed for T89OMT, could enhance the activity of PsS9OMT or CjColOMT.

Methods
Computational exploration of the biochemistry surrounding the noscapine pathway. The computational workflow consists of three steps: (i) expansion of a biochemical reaction network around the original pathway, (ii) popularity assessment of compounds via annotation and ranking, and (iii) feasibility assessment via reaction annotation, pathway assembly, and pathway evaluation. The output of the computational analysis was directly used for the design of engineered yeast strains.

Expansion of a biochemical network. A hypothetical biochemical network using BNICE.eh12 was expanded around the input pathway, consisting of 17 metabolites connected by 17 reactions and catalyzed by a total of 11 generalized reaction rules, using a collection of 442 bidirectional generalized enzymatic reaction rules. In a first iteration, the integrated network generation algorithm applies the reaction rules on the input molecular structures (MDL molfiles), which generates all biochemically possible reactions according to the reaction mechanisms represented in BNICE.eh. The products of these reactions are stored, and used as input compounds for the next iterations of reaction generation. This iterative process generates hypothetical biochemical networks around any given set of input molecules.

BNICE.eh distinguishes between known and novel compounds by looking up the generated molecular structures in different databases: if the compound is part of any biological, bioactive, or chemical database it is considered as known and annotated with the corresponding database identifiers. The following databases are used: the Kyoto Encyclopedia of Genes and Genomes (KEGG)38, SEED64, KNApSAcK39 for biological compounds, ChEBI40 and ChEMBL41 for bioactive compounds, and PubChem42 for chemical compounds. In this workflow, only known molecular structures are allowed in the network generation. Reactions are classified as known if they are part of the KEGG reaction database or the noscapine pathway, and as novel if they are not.

Compound annotation and ranking. We assessed the popularity of the generated compounds in the second step of the workflow by determining how many times
each compound appears in scientific publications, and how many patents are associated with the molecule. The number of publications was derived from PubChem and the number of patents from an automated search from PubChem. We used the PUG-REST service to retrieve information on compounds from the PubChem website (https://pubchem.ncbi.nlm.nih.gov/) on the number of associated patents and citations. We also used the Entrez Pro- gramming Utilities (E-utils) API service to search the PubMed database for citations by compound name.

The maximal number of reaction steps allowed in a pathway was set to 4, and all possible pathways connecting the noscapine pathway intermediate to the target compound were extracted. Reaction directionalsities producing molecular oxygen and reverse decarboxylations were excluded from the pathway search because of their high energy demand.

To find enzymes for the predicted reactions in each pathway, we used the enzyme prediction tool BridgIT. BridgIT calculates a similarity score between the novel reaction and reactions from a reference database of known, enzyme annotated reactions. The reaction database was loaded in February (2018) by comparing the molecular fingerprints on and around the reactive sites of the participating reactants. The similarity between fingerprints is expressed as a score ranging from zero (no similarity) to one (the two reactions are identical up to seven atoms around the reactive site). A BridgIT score above 0.3 is considered as significant. For each reaction in the pathways, we performed BridgIT and we collected all the reactions from the reference database that had a score of 0.3 or higher. From the top score of each reaction in the pathway, we calculated the average to provide an overall metric for the enzymatic feasibility of the pathway.

Validation of predicted BIA network on known biosynthesis pathways. To validate the biochemical relevance of the BNICE.ch network prediction, we collected all known secondary metabolites and their biosynthetic pathways around noscapine pathway intermediates. The test metabolites had to fulfill the following criteria: (i) The compound is a 4-reaction step away from an intermediate, or it is the endpoint of the biosynthesis pathway. (ii) The compound fits the definition of a simple BIA (single BIA unit of at least 16 carbon atoms, 13 hydrogen atoms, and 1 nitrogen atom). (iii) The compound is not a stereoisomer of a noscapine pathway intermediate, since BNICE.ch does not consider stereochemistry. We found seven compounds in the KEGG map ‘Isoquinoline alkaloid biosynthesis’ that matched the criteria, and another eight compounds in the MetaCyc Pathways Class ‘Isoquinoline and Berberine Alkaloid Biosynthesis’. The compounds in the unified list were determined whether or not its biosynthesis pathway is present in the predicted BIA network (Supplementary Table 2).

Yeast strain construction. Strains used in this work are listed in Supplementary Table 6. All strains used are derived from the previously reported strain CSY117. Strains were grown nonselectively in yeast-peptone media supplemented with 2% w/v dextrose (YPD media), yeast nitrogen base (YNB) defined media (Becton, Dickinson and Company, BD) supplemented with synthetic complete amino acid mixture (YNB-SC; Clontech) and 2% w/v dextrose, or on agar plates made using the aforementioned media. Strains transformed with plasmids bearing the URA3 auctoxotic selection marker were grown selectively in YNB media supplemented with 2% w/v dextrose and uracil (YNB-Ura; Clontech) or on YNB-L-Ura plates with carbenicillin (100 μg/mL). Yeast genomic modifications were performed using the CRISPRm method. Oligonucleotides used in this work (Supplementary Data 6) were synthesized by the Stanford Protein and Nucleic Acid Facility (Stanford, CA). Synthetic genes used in this study (Supplementary Table 5) were codon optimized using GeneArt Gene Therapy software (Thermo Fisher Scientific, Cambridge, MA; nceiviae and E. coli (Supplementary Data 5) and then synthesized as either gBlock DNA fragments (Integrated DNA Technologies, IDT) or gene fragments (Twist Bioscience). All synthetic genes were synthesized with overhangs on both the 5’ end (5’–TCGACGATCCGATCAACTGGGATTCATATAA–gene–3’) and 3’ end (5’–CTCTAGACGACGAGGACCTAACTGAAT–gene–3’), and for ease of cloning, CRISPRm plasmids expressing Streptococcus pyogenes Cas9 (SpCas9) and a single guide RNA (sgRNA) targeting a locus of interest in the yeast genome were constructed by assembly PCR and Gibson assembly of DNA fragments encoding SpCas9 (pCS410), RNA promoter and HDV ribozyme (pCS411), a 20-nt guide RNA (sgRNA) targeting the end point of the biosynthesis pathway. The gene encoding the reporter (GFP) was amplified by PCR and cloned into pRS426 vector (Clontech). A mini-pheromone-inducible promoter (GAL1; And,1) and tracrRNA and terminator (pCS3411). For gene insertions, integration fragments containing the gene(s) of interest flanked by a promoter and terminator were constructed by PCR amplification such that they possessed 40 bp overhangs on either end with homology to the yeast genome surrounding the site targeted for insertion. The amplified fragment was ligated into the vector pET28a (with Ncol and EcoRI sites) and transformed into E. coli DH5α (or pET28) with 40 bp homologous overhangs. PCR amplifications were performed using Q5 DNA polymerase (NEB) and linear DNA fragments were purified using the DNA Clean and Concentrator-5 kit (Zymo Research). Assembled plasmids were propagated in chemically competent E. coli (TOP10; Thermofisher Scientific) using heat shock transformation and selection on Luria-Bertani (LB)-agar plates with carbenicillin (100 μg/mL) for pCS95262 plasmids or kanamycin (50 μg/mL) for pET28 derived plasmids. Plasmid DNA was isolated by alkaline lysis from overnight E. coli cultures grown at 37 °C and 250 rpm in selective LB media using Ecospin columns (Epoch Life Science) according to the manufacturer’s protocol.

Plasmid construction. Plasmids used in this study (Supplementary Data 7) were constructed through Gibson assembly. Gibson assembly was performed by amplifying the FokI-FokI restriction enzyme sites and the desired genomic variant with the double strand DNA plasmid (pET28 or pET28) with 40 bp homologous overhangs. PCR amplifications were performed using Q5 DNA polymerase (NEB) and linear DNA fragments were purified using the DNA Clean and Concentrator-5 kit (Zymo Research). All assembled plasmids were propagated in chemically competent E. coli (TOP10; Thermofisher Scientific) using heat shock transformation and selection on Luria-Bertani (LB)-agar plates with carbenicillin (100 μg/mL) for pCS95262 plasmids. Plasmid DNA was isolated by alkaline lysis from overnight E. coli cultures grown at 37 °C and 250 rpm in selective LB media using Ecospin columns (Epoch Life Science) according to the manufacturer’s protocol.

Growth conditions for metabolite assays. Metabolite production tests were performed in YNB-SC or YNB-Ura media with at least three replicates. Yeast colonies were inoculated into 300 μL of media and grown in 2 mL deep well-96-well plates covered with Aeroseal gas-permeable film (Ecell Scientific). Cultures were grown for 72–120 h at 25 °C or 30 °C (exact duration and temperature are specified in each figure), 460 rpm, and 80% relative humidity in a Lab-Therm LX-T shaker (Adolf Kuhner).

Analysis of metabolite production. Cultures were pelleted by centrifugation at 3500 × g for 5 min at 4 °C and 100 μL aliquots of the supernatant were removed for direct analysis. Metabolite production was analyzed by LC/MS/MS using an Agilent 1260 Infinity Binary HPLC and an Agilent 6420 Triple Quadrupole mass spectrometer. Chromatography was performed using a Zorbax EclipsePlus C18 column (2.1 × 50 mm, 1.8 μm; Agilent Technologies) with water with 0.1% v/v formic acid as solvent A and acetonitrile with 0.1% v/v formic acid as solvent B. The column was operated with a constant flow rate of 0.4 mL/min at 40 °C and a sample injection volume of 5 μL. Compound separation for the detection of (S)-tetrahydropalmatine, (S)-mannidihydroalcalaiine, and (S)-mannidihydroalcalaiine was performed using the following gradient: 0.00–0.10 min, 10% B; 0.10–5.00 min, 10–40% B; 5.00–5.50 min, 40% B; 5.50–6.00 min, 40–98% B; 6.00–10.00 min, 98% B; 10.00–10.10 min, 98–10% B; 10.10–13.00 min, equilibration with 10% B. Compound separation for the detection of (S)-arnempanine was performed using the following gradient: 0.00–0.20 min, 10% B; 0.20–10.00 min, 10-14% B; 10.00–11.00 min, 14-90% B; 11.00–12.00 min, 90% B; 12.00–12.20 min, 90-10% B; 12.20–12.70 min, equilibration with 10% B. The LC eluent was directed to the MS from 1–10 min operating with electrospray ionization (ESI) in positive mode, source gas temperature 350 °C, gas flow rate 11 L/min and nebulizer pressure 40 psi. Metabolites were quantified by integrated peak area in MassHunter Workstation software (Agilent) based on the multiple reaction monitoring (MRM) parameters in Supplementary Table 7. Integrated peak areas were converted to titers by comparison to standard curves prepared using a commercial standard of (S)-tetrahydropalmatine (Toronto Research Chemicals). Primary MRM transitions for (S)-tetrahydropalmatine were monitored by analysis of a 0.1 mM standard in methanol using the MassHunter Optimizer software package (Agilent); all other MRM transitions used were previously reported and are described in Supplementary Table 7.
Enzyme expression and purification. Plasmids containing the gene of interest in a pET28 expression vector (see Supplementary Data 7 for a full list of plasmids used in this work) were transformed into E. coli BL21(DE3) (Invitrogen) competent cells containing the pGRe7 chaperone expression plasmid (Takara) via heat shock. Briefly, 1 ng of plasmid DNA was added to a 50 µL aliquot of competent cells, the tube was chilled on ice for 15 minutes, placed in a 42 °C water bath for 35 seconds, then returned to ice for 2 minutes. Seven hundred fifty µL of SOC media were then added and the tube was rotated at 37 °C for 45 min before being plated on an LB agar plate containing 50 µg/mL kanamycin and 20 µg/mL chloramphenicol. A single colony was then picked and used to inoculate a primary culture of 5 mL of LB media containing 50 µg/mL kanamycin and 20 µg/mL chloramphenicol which was then used to inoculate a secondary or expression culture of 50 mL of TB medium grown at 30 °C (for all proteins except PsS9OMT) or 16 °C (for PsS9OMT) for 20 h at 250 rpm, after which, the culture was harvested by centrifugation (10 minutes at 3500 x g in a 50 mL Falcon tube) and stored at −20 °C until lysis and purification.

Frozen pellets were then thawed and resuspended in 25 mL of Ni-nitrilotriacetic (Ni-NTA) equilibration buffer (50 mM sodium phosphate, 300 mM NaCl, 300 mM NaCl, 10 mM imidazole, pH 7.4) and lysed by sonication while kept on ice (Branson Sonifier 450, 0.5” horn, 50% duty cycle, 4 x 1 min with 2 min rests). Lysed cultures were then clarified (30 min at 35,000 x g at 4 °C) and the clarified lysate was purified by Ni-NTA affinity chromatography. Briefly, 1 mL of Ni-NTA resin (Fisher Scientific) was equilibrated with at least 5 volumes of Ni-NTA equilibration buffer (described above) and then loaded with the clarified lysate. The loaded resin was then washed with at least 5 volumes of Ni-NTA wash buffer (50 mM sodium phosphate, 300 mM NaCl, 50 mM imidazole, pH 7.4) and then the bound protein was eluted with 5 volumes of Ni-NTA elution buffer (50 mM sodium phosphate, 300 mM NaCl, 250 mM imidazole, pH 7.4). The eluted fractions were then combined and concentrated using an Amicon® 30 kDa cutoff spin filter (EMD Millipore) at 5000 × g at 4 °C. The concentrated fractions were then exchanged into storage buffer (50 mM potassium phosphate, pH 7.5, split into separate aliquots, and stored at −20 °C until use.

In vitro biocorrections. Analytical reactions were carried out at the 50 µL scale in triplicate. To a 1.5 mL Eppendorf tube were added 5 nmol substrate (final concentration of 100 µM), 15 mmol sodium ascorbate (final concentration of 25 mM), 61 µM SAM (final concentration of 100 µM), and 73 nmol of purified T89OMT DS M111A58 (Sigma-Aldrich), and 150 pmol purified methyltransferase enzyme (3 µM final concentration) in 50 mM potassium phosphate, pH 8.0. The reactions were shaken at 600 rpm at 37 °C for 2 h before being quenched with an equal volume of methanol, spun down at 20,000 x g for 10 min, and filtered prior to LC-MS analysis (see ‘Analysis of metabolic production’ section above for details on LC-MS analysis conditions).

Metabolite purification. The large scale in vitro (S)-scoulerine conversion reaction was carried out on the 20 mg scale at a final reaction volume of 610 mL in a 2 L Erlenmeyer flask. To this flask were added 20 mg (61 µM) of (S)-scoulerine (final concentration of 100 µM), 15 mmol sodium ascorbate (final concentration of 25 mM), 61 µM SAM (final concentration of 100 µM), and 73 nmol of purified T89OMT DS M111A58 (final concentration of 0.12 µM) in 50 mM potassium phosphate, pH 8.0. The reaction was incubated at 37 °C at 250 rpm. The reaction was ultimately run for 15 h, but was monitored to ensure conversion had stopped by analytical LC-MS. To do so, 50 µL aliquots were pulled periodically, quenched with an equal volume of MeOH, spun down at 20,000 x g for 10 min, and filtered prior to LC-MS analysis (see ‘Analysis of metabolic production’ section above for details on LC-MS analysis conditions).

Once the reaction was complete, 30 g of Amberlite XAD resin were added and the flask was shaken overnight at 30 °C at 250 rpm. The Amberlite XAD resin was then filtered through a 50 mL Falcon tube, the supernatant was decanted off, and 50 mL total MeOH were then added to the four tubes containing resin. The resin in MeOH was then vortexed for 10 minutes, after which it had turned yellow. The MeOH was then pipetted into a 500 mL round-bottomed flask and was concentrated by rotary evaporation to ~2 mL, which was then pipetted into 4 tared 1.5 mL Eppendorf tubes and concentrated to dryness overnight on a speedvac. Approximately 400 mg of crude material were obtained from this process, which were then resuspended in H2O to a final concentration of 100 mg crude material/mL. This material was then purified by preparative LC (Agilent 1200 Series LC) with a Varian Pursuit XRs C18 250 × 10 mm column, 100 µm particle size (solvent A = H2O with 0.1% FA, solvent B = ACN with 0.1% FA). The following LC method was used: 0–4.0 min, 20% B, 20 µL/mL; 4.0–12.0 min, 20–100% B, 2.0 mL/min; 12–20 min, 100% B, 2.0 mL/min; 4 minute postrun. Fractions were analyzed by LC-MS to determine, which contained the desired products (see ‘Analysis of metabolic production’ section above for details on LC-MS analysis conditions). Fractions containing the desired product were concentrated and re-purified by preparative LC until the desired purity was obtained.

Software. MarvinView was used for displaying chemical structures. Marvin 6.2.2, ChemAxon (http://www.chemaxon.com). The graph visualization tool Gephi was used to visualize metabolic networks.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Data supporting the findings of this work are available within the paper and its Supplementary Information files. A reporting summary for this Article is available as a Supplementary Information file. All unique biological materials generated in this study are available from the authors upon reasonable request. Additional source data beyond those presented in this paper and Supplementary Information files are available from the corresponding authors upon request. The pathway visualization platform is available at https://lcb-databases.epfl.ch/pathways/GraphList upon request. Source data are provided with this paper.

Code availability. A publicly accessible version of the BNICE.ch framework including user instructions can be found at https://lcb-databases.epfl.ch/Atlas2. The platform is freely available to academia upon request. BridgIT is available as an online tool at https://lcb-databases.epfl.ch/Brigdit.

Received: 14 August 2020; Accepted: 24 February 2021; Published online: 19 March 2021

References
1. Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830, 3670–3695 (2013).
2. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335 (2012).
3. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).
4. Craven’s, A., Payne, J. & Smolke, C. D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 10, 2142 (2019).
5. Li, Y. et al. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl Acad. Sci. USA 115, E3932–E3931 (2018).
6. Ye, F. et al. Opium alkaloid noscapine is an antitumor agent that arrests metabolism and induces apoptosis in dividing cells. Proc. Natl Acad. Sci. USA 95, 1601–1606 (1998).
7. Israel, B., Geller, J. & Rogosnitzky, M. Noscapine inhibits human prostate cancer progression and metastasis in a mouse model. Anticancer Res. 28, 3701–3704 (2008).
8. Yosh, H. C., Sallis, A. & Bughani, U. N. P. in Medicinal Plant Biotechnology (ed. Arora, R.) (CAB e-Books) (2010).
9. Hadadi, N. & Hatzimanikatis, V. Design of computational rebiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28, 99–104 (2015).
10. Jeffryes, J. G., Seaver, S. M. D., Faria, J. P. & Henry, C. S. A pathway for every product? Tools to discover and design plant metabolism. Plant Sci. https://doi.org/10.1016/J.PLANTSCI.2018.03.025 (2018).
11. Lin, G.-M. M., Warden-Rothman, R. & Voigt, C. A. Retrosynthetic design of metabolic pathways to chemicals not found in nature. Curr. Opin. Syst. Biol. 14, 82–107 (2019).
12. Hatzimanikatis, V. et al. Exploring the diversity of complex metabolic networks. Bioinformatics 21, 1603–1609 (2005).
13. Wicker, J. et al. enviPath—The environmental contaminant biotransformation pathway resource. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1229 (2015).
14. Campodonico, M. A., Andrews, B. A., Asenjo, J. A., Palsson, B. O. & Feist, A. M. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab. Eng. 25, 140–158 (2014).
15. Ding, S. et al. novelPathFinder: a webserver of designing novel-pathway with integrating GEM-model. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa230 (2020).
16. Kumar, A., Wang, L., Ng, C. Y. & Maranas, C. D. Pathway design using de novo steps through uncharted biochemical spaces. Nat. Commun. 9, 184 (2018).

17. Sivakumar, T. V., Giri, V., Park, J. H., Kim, T. Y. & Bhaduri, A. ReactPRED: a tool to predict and analyze biochemical reactions. Bioinformatics https://doi.org/10.1093/bioinformatics/btw491 (2016).

18. Delépine, B., Duigou, T., Carbonell, P. & Faulon, J.-L. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).

19. Tyzack, J. D., Ribeiro, A. J. M., Borkakoti, N. & Thornton, J. M. Exploring chemical biosynthetic design space with transform-MineR. ACS Synth. Biol. 8, 2494–2506 (2019).

20. Toki, M. et al. Discovery and evaluation of biosynthetic pathways for the production of free fatty ethyl ketone precursors. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.8b00049 (2018).

21. Moura, M. et al. Evaluating enzymatic synthesis of small molecule drugs. Metab. Eng. 33, 138–147 (2016).

22. Wang, L., Ng, C. Y., Dash, S. & Maranas, C. D. Exploring the combinatorial space of complete pathways to chemicals. Biochem. Soc. Trans. 46, 513–523 (2018).

23. Hadadi, N., Mohammadipeyhani, H., Miskovic, L., Seijo, M. & Hatzipanagakis, V. Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites. Proc. Natl Acad. Sci. USA 116, 201818877 (2019).

24. Zahn, R. A. et al. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis. J. Biol. Chem. 287, 42972–42983 (2012).

25. Liang, M., Heide, F., Hsieh, M. & Chen, C. Antihypertensive effects of di-tetrahydropalmatine: an active principle isolated from corydalis. J. Ethnopharmacol. 573 (2008).

26. Galanie, S. & Smolke, C. D. Optimization of yeast-based production of medicinal protoberberine alkaloids. Microb. Cell Fact. 14, 14 (2015).

27. Dang, T. T. T. & Facchini, P. J. Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. Plant Physiol. 159, 618–631 (2012).

28. Sorokina, M., Stam, M., Médigue, C., Lespinet, O. & Vallenet, D. Profiling the orphan enzymes. Biol. Direct 9, 10 (2014).

29. Him, J., Fu, J., Seifert, A., Fieder, J. & Hatzimanikatis, V. Complexities of dihydrolycoglycine synthase involved in noscapine biosynthesis in opium poppy. PLoS ONE 9, e97250 (2014).

30. Ikekawa, N., Iwasa, K. & Sato, F. Molecular cloning and characterization of methylenedioxynbridge-forming enzymes involved in stylopine biosynthesis in Eschscholzia californica. FEBS J. 274, 1019–1035 (2007).

31. Díaz Chávez, M. L., Rolf, M., Gesell, A. & Kutsch, T. M. Characterization of two methylenedioxid bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana. Arch. Biochem. Biophys. 507, 186–193 (2011).

32. Dang, T. T. T. & Facchini, P. J. Cloning and characterization of canadine synthases involved in noscapine biosynthesis in opium poppy. FEBS Lett. 588, 3480–3485 (2014).

33. Fasan, R., Chen, M. M., Crook, N. C. & Arnold, F. H. Engineered alkane-oxidizing cytochrome P450BM3 exhibiting nativelike catalytic properties. Angew. Chem. Int. Ed. 54, 4236–4239 (2015).

34. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones available at sitagliflozin manufacture. Science 329, 305–309 (2010).

35. Galanie, S., Thouy, K., Trenchard, I. J., Interante, M. F. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1110 (2015).

36. Li, J. et al. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab. Eng. 52, 124–133 (2019).

37. Jones, J. A. et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35, 55–63 (2016).

38. Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature https://doi.org/10.1038/s41586-019-0978-9 (2019).

39. Zhang, C., Chen, X., Lindley, N. D. & Too, H.-P. A “plug-n-play” modular metabolic system for the production of apocarotenoids. Biotechnol. Bioeng. 115, 174–183 (2019).

40. Jensen, L., Placzek, S., Schomburg, I., Chang, A. & Schomburg, D. BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res. 47, D542–D549 (2019).

41. Schellenberger, J., Park, J. O., Conrad, T. M. & Palsson, B. Ø. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11, 213 (2010).

42. Boni, S., Thiessen, P. A., Oltramari, T., Yu, B. & Bolton, E. E. An update on PUG-REST: RESTful interface for programmatic access to PubChem. Nucleic Acids Res. 46, W563–W570 (2018).
76. Kim, M., Zorraquino, V. & Tagkopoulos, I. Microbial Forensics: predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles. PLoS Comput. Biol. 11, e1004127 (2015).
77. Hafner, J. & Hatzimanikatis, V. Finding metabolic pathways in large networks through atom-conserving substrate-product pairs. bioRxiv https://doi.org/10.1101/2020.11.25.398453 (2020).
78. Ryan, O. W. et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. elife 3, 1–15 (2014).
79. Srinivasan, P. & Smolke, C. D. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nat. Commun. 10, 3634 (2019).
80. Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. in Third international AAAI conference on weblogs and social media (2009).

Acknowledgements
We thank A. Cravens for the yeast CRISPRm Cas9 sgRNA plasmids (pCS3410, 3411, 3414, and 3702), T. Valentic for the pET28/Tf4OMT plasmid (pCS4661) and the de novo N-methylcoclaurine strain (CSY1322), and O. Jamil for the primers for the amplification of the pCS952 vector backbone. We thank P. Srinivasan and B. Kotopka for valuable feedback in the preparation of the manuscript. Funding for this work was provided by National Institute of Health Grants (grant to C.D.S., AT007886, fellowship to J.T.P., F32 AT009509-03), the Firmenich Stanford-EPFL Exchange Program, the Swiss National Science Foundation (SNSF) (Grant number 2013/158, MicroScapeX) and the École Polytechnique Fédérale de Lausanne (EPFL). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIHMS or NIH.

Author contributions
J.P., J.H., V.H., and C.D.S. conceived of the project and wrote the manuscript. J.H. and V.H. designed the computational workflow. J.H. implemented the workflow, performed the reaction network prediction and analyzed the results. H.M. designed and performed the enzyme prediction. J.P. and C.D.S. designed the experiments and analyzed the experimental results. J.P. performed the in vivo and in vitro experiments.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-22022-5.

Correspondence and requests for materials should be addressed to V.H. or C.S.

Peer review information Nature Communications thanks Vincent Courdavault and other, anonymous, reviewer(s) for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021