Low-temperature solid-state reduction approach to highly reduced titanium oxide nanocrystals

Yoshihiro TSUJIMOTO

1Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Considerable attention has been paid to reduced transition metal nanomaterials because they exhibit attractive properties for practical applications in fuel cells, memory or thermoelectric devices, and photocatalysts. In particular, a series of oxygen-nonstoichiometric titanium oxides has advantages such as abundance of the elements, non-toxicity, corrosion resistance, and high electrical conductivity. However, the control of nanostructures is not straightforward because a high-temperature reductive condition is required for the synthesis of highly reduced metal oxides. Recently, it has been demonstrated that the novel low-temperature reduction technique can afford highly reduced titania nanoparticles with different particle sizes ranging from 20 to 300 nm diameter. This review article is focused on the synthesis of corundum-type Ti$_2$O$_3$ nanoparticles, the reaction mechanism, and the correlation between structure and physical properties.

Key-words : Transition metal oxides, Nanocrystals, Low-temperature reduction, Ti$_2$O$_3$, Metal–insulator transition

I. Scope and policy

1. Introduction

Band gap insulators based on early transition metals, such as TiO$_2$ and WO$_3$, are of great interest because of their practical applications in photocatalysts, Li-ion battery anodes, pigments, and dielectric devices. Interestingly, oxygen removal from these insulators, which involves complex structure modification, drastically changes the physical properties. One of the most important examples is the family of Ti$_n$O$_{2n-1}$ (2 ≤ n), which has been extensively investigated over the last half century. The phase with 4 ≤ n ≤ 10 is termed the Magnéli phase. Ti$_2$O$_3$ (n = 2) is isostructural with corundum α-Al$_2$O$_3$. As shown in Fig. 1, the rutile structure is built up with one-dimensional chains of edge-sharing TiO$_6$ octahedra linked with another chains by sharing corners. In the corundum structure, each Ti-centered octahedron shares one face along the c axis and three edges in the ab plane with each other. Ti$_n$O$_{2n-1}$ (4 ≤ n ≤ 10) has rutile-like slabs with n octahedral thickness, each of which is connected by corner- and face-sharing. These oxygen-deficient phases exhibit high electrical conductivity at room temperature, which provides good opportunities for a new class of titania-based electronic devices, such as electrodes of fuel cells and resistance random access memory. For their practical applications, it is crucial to control the nanostructures of reduced titania. However, high-temperature reducing conditions are required to prepare highly reduced titania, which results in breaking of the nanostructures.

In this review paper, a novel approach to nanostructured reduced titania is presented: a low-temperature reduction method using binary metal hydride as a reducing agent. This reaction method was employed for the first time by Hayward and Rosseinsky in 1999 to synthesize LaNiO$_2$ with a square planar NiO$_4$. Metal hydrides such as NaH and CaH$_2$ exhibit strong reducing power even at temperatures as low as 500°C, which allows us to design in a topotactic manner complex metal oxides with unusual coordination environments. I successfully synthesized Ti$_2$O$_3$ of nanoparticles and nanorods by the reaction of TiO$_2$ nanocrystals with CaH$_2$ and systematically investigated the effects of size reduction on their structural and physical properties.

Corresponding author: Y. Tsujimoto; E-mail: TSUJIMOTO.Yoshihiro@nims.go.jp

©2018 The Ceramic Society of Japan
2. Low-temperature reduction for oxygen-deficient titanium oxide nanoparticles

Commercially available TiO$_2$ nanoparticles (average diameter: 20 nm) with rutile structure (space group, P4$_2$/mnm) were reduced to Ti$_2$O$_3$ with corundum structure (R3-c) by reaction with CaH$_2$ powder, maintaining the nanomorphology. TiO$_2$, which was preheated at 200°C for several hours, was thoroughly mixed with CaH$_2$ in a molar ratio of 1:4 in an Ar-filled glovebox. The mixture was pressed into a pellet, sealed in a Pyrex tube under vacuum without exposure to air, and then heated at 350°C in a tubular furnace for several days with intermediate grindings. Finally, the samples were washed with a 0.1 M solution of NH$_4$Cl in methanol to remove residual CaH$_2$ and the byproduct CaO. After filtration, bluish black powders were obtained.

Note that ‘bulk’ Ti$_2$O$_3$ prepared at elevated temperatures is dark brown. Complete removal of calcium species was confirmed by energy dispersive X-ray analysis.

Figure 3 shows the room-temperature synchrotron X-ray diffraction (SXRD) patterns of the rutile TiO$_2$ precursor and the product reduced for 4 or 10 days, measured using a Debye–Scherer camera installed on BL15XU at SPring-8 at a wavelength of 0.65298 Å. After reaction for 4 days, the SXRD patterns drastically changed: the rutile TiO$_2$ phase fully disappeared and new peaks appeared. The volume reduction involving the anisotropic volume change is attributed to the surface strain effects caused by particle-size reduction to a nanometric scale. In fact, transmission electron microscopy (TEM) observation revealed that no apparent particle growth occurred after the reduction [Figs. 4(a) and 4(c)]. In addition, the Brunauer–Emmett–Teller (BET) measurements revealed that the product retained 80% of the specific surface area of the precursor (80.72 m2/g). The high-resolution TEM (HRTEM) images of TiO$_2$ and Ti$_2$O$_3$ nanoparticles are shown in Figs. 4(b) and 4(d), respectively, and the insets show selected area electron diffraction (SAED) patterns. The SAED patterns of the samples are consistent with the diffraction patterns expected from the rutile and corundum structures. The HRTEM images exhibit good crystallinity and uniformly spaced lattice fringes in each particle, indicating that each particle maintains the single-domain structure even after the reduction. These results are very surprising because the reductive reaction proceeds in a non-topotactic manner involving displacement of titanium atoms.

Next, the consequence of using anatase nanoparticles with 20 nm diameter and the surface area of 61.72 m2/g as a precursor was explored. **Figure 5** shows the SXRD data of the products reduced at 350°C for 4, 8, or 12 days. As in the case of rutile, anatase reduced into Ti$_2$O$_3$ after 4 days, but the precursor remained in the products even after 8 days. No intermediate phases such as Ti$_4$O$_7$ are observed; however, the brookite phase formed together with Ti$_2$O$_3$, retaining the ratio of relative intensities. It is worth noting that the reduction of anatase with CaH$_2$ involves particle growth. The specific surface areas reduced with increasing reaction time, for example, by 40% with respect to the original surface area after 12 days. This result suggests that not only the low-temperature treatment, but also the structural framework of the precursor are important factors for elongated. Several weak reflections could be assigned to Ti$_4$O$_7$ (space group P-1), a member of the Magnéli phase. The volume reduction involving the anisotropic volume change is attributed to the surface strain effects caused by particle-size reduction to a nanometric scale. In fact, transmission electron microscopy (TEM) observation revealed that no apparent particle growth occurred after the reduction [Figs. 4(a) and 4(c)]. In addition, the Brunauer–Emmett–Teller (BET) measurements revealed that the product retained 80% of the specific surface area of the precursor (80.72 m2/g). The high-resolution TEM (HRTEM) images of TiO$_2$ and Ti$_2$O$_3$ nanoparticles are shown in Figs. 4(b) and 4(d), respectively, and the insets show selected area electron diffraction (SAED) patterns. The SAED patterns of the samples are consistent with the diffraction patterns expected from the rutile and corundum structures. The HRTEM images exhibit good crystallinity and uniformly spaced lattice fringes in each particle, indicating that each particle maintains the single-domain structure even after the reduction. These results are very surprising because the reductive reaction proceeds in a non-topotactic manner involving displacement of titanium atoms.

Figure 3 shows the room-temperature synchrotron X-ray diffraction (SXRD) patterns of the rutile TiO$_2$ precursor and the product reduced for 4 or 10 days, measured using a Debye–Scherer camera installed on BL15XU at SPring-8 at a wavelength of 0.65298 Å. After reaction for 4 days, the SXRD patterns drastically changed: the rutile phase fully disappeared and new peaks appeared. The major peaks of the product can be readily indexed to a hexagonal cell [$a = 5.0826(3)$ Å, $c = 13.6864(14)$ Å, $V = 306.19(4)$ Å3] with the space group R3-c, which is similar to Ti$_2$O$_3$ structure. Compared with the lattice constants of bulk Ti$_2$O$_3$ [$a = 5.15443(1)$ Å, $c = 13.60810(2)$ Å, $V = 313.1051(7)$ Å3], the a axis is contracted and the c axis is elongated. Several weak reflections could be assigned to Ti$_4$O$_7$ (space group P-1), a member of the Magnéli phase. The volume reduction involving the anisotropic volume change is attributed to the surface strain effects caused by particle-size reduction to a nanometric scale. In fact, transmission electron microscopy (TEM) observation revealed that no apparent particle growth occurred after the reduction [Figs. 4(a) and 4(c)]. In addition, the Brunauer–Emmett–Teller (BET) measurements revealed that the product retained 80% of the specific surface area of the precursor (80.72 m2/g). The high-resolution TEM (HRTEM) images of TiO$_2$ and Ti$_2$O$_3$ nanoparticles are shown in Figs. 4(b) and 4(d), respectively, and the insets show selected area electron diffraction (SAED) patterns. The SAED patterns of the samples are consistent with the diffraction patterns expected from the rutile and corundum structures. The HRTEM images exhibit good crystallinity and uniformly spaced lattice fringes in each particle, indicating that each particle maintains the single-domain structure even after the reduction. These results are very surprising because the reductive reaction proceeds in a non-topotactic manner involving displacement of titanium atoms.

Next, the consequence of using anatase nanoparticles with 20 nm diameter and the surface area of 61.72 m2/g as a precursor was explored. **Figure 5** shows the SXRD data of the products reduced at 350°C for 4, 8, or 12 days. As in the case of rutile, anatase reduced into Ti$_2$O$_3$ after 4 days, but the precursor remained in the products even after 8 days. No intermediate phases such as Ti$_4$O$_7$ are observed; however, the brookite phase formed together with Ti$_2$O$_3$, retaining the ratio of relative intensities. It is worth noting that the reduction of anatase with CaH$_2$ involves particle growth. The specific surface areas reduced with increasing reaction time, for example, by 40% with respect to the original surface area after 12 days. This result suggests that not only the low-temperature treatment, but also the structural framework of the precursor are important factors for
maintaining the nanomorphology. As described above, Ti₄O₇, which is observed as an intermediate phase in the reaction of rutile with CaH₂, has structural features common to both rutile and corundum structures. Thus, the formation of this phase plays a crucial role in suppressing the displacement of Ti atoms during the reductive reaction. Attempts were made to obtain Ti₄O₇ as a single phase by controlling the reaction time and temperature; however, mixed phases were always obtained with the precursor or corundum phase.

3. Nanoparticles and nanorods with different sizes

The low-temperature reduction is applicable to the synthesis of Ti₂O₃ nanoparticles and nanorods with different sizes. Figure 6 shows the XRD patterns (Cu Kα) of the reduced products, which exhibit a broadening of the diffraction peaks with decreasing particle size. For nanoparticles with 70 and 300 nm diameters, the corundum phase is also obtained as the main phase; however, some low-intensity uncharacterized peaks appeared as minor phases for nanoparticles with 300 nm diameter. It should be noted that the reaction time increases with increasing particle size or surface area. Reduction with CaH₂ proceeds through a solid-solid reaction between the reductant and precursors, and thus the physical contact between them is the key to promoting the reductive reaction. Indeed, TiO₂ nanoparticles with 20 and 70 nm diameters and high surface areas were completely reduced to Ti₂O₃ within 8 days. However, the nanoparticles with 300 nm diameter and a much lower surface area (6.36 m²/g) required 20 days.

Figure 7 shows the TEM and HRTEM images of TiO₂ and Ti₂O₃ nanoparticles with 300 nm diameter, which reveals that the nanomorphology and particle size are no longer maintained. The TiO₂ nanoparticles possess uniform size, spherical morphology, and a single-domain structure, while the nanoparticles after reduction broke into pieces, resulting in a 21% increase in surface area. The HRTEM images of the reduced phase exhibit lattice fringes running in different directions between each other. These results are in marked contrast to those of 20-nm-diameter nanoparticles. The observed multi-domain formation can be accounted for by considering the drastic structural rearrangement. In relatively large particles, the stress from the

Fig. 5. Synchrotron X-ray powder diffraction patterns of anatase TiO₂ nanoparticle and its reduced products.

Fig. 6. X-ray powder diffraction patterns of Ti₂O₃ nanoparticles with different sizes.¹³

Fig. 7. TEM and HRTEM images of (a, b) 300-nm-diameter TiO₂ nanoparticles and (c, d) their reduced samples.¹³

Fig. 8. SEM images of (a) TiO₂ nanorods and (b) Ti₂O₃ nanorods. (c), (d) TEM and HRTEM images of the reduced nanorods.
displacement of Ti atoms and shearing motion is too great to maintain the single-domain structure of the precursor. The formation of multi-domain structures and broken particles results from the release of this stress energy.

\[\text{T}_2\text{O}_3 \text{ nanorods with 100 nm diameter and } \sim 1 \mu\text{m length can also be obtained as a single phase by the low-temperature reduction. Figures 8(a) and 8(b) show the scanning electron microscopy (SEM) images of TiO}_2 \text{ and T}_2\text{O}_3 \text{ nanorods, and Figs. 8(c) and 8(d) show the TEM and HRTEM images, respectively. These TEM images reveal that the single domain structure is maintained; however, the size and morphology are not maintained. As seen in the SEM images, the precursor is greater than 1 } \mu\text{m in length, but the reductive reaction results in the breaking of the rods and roughing of the surfaces. The BET measurements reveal an increase in specific surface area from 10.6 to 13.2 m}^2/\text{g. These results are very similar to those of 300-nm-diameter nanoparticles. It should be noted that the morphological degradation observed in nanorods is caused by non-topotactic structural transformation, not by the grinding of TiO}_2 \text{ nanorods with CaH}_2 \text{ powders.}\]

4. Size dependence of structural and physical properties

The successful synthesis of Ti2O3 nanoparticles with different sizes enables us to systematically investigate the effects of particle size on structural and physical properties.\(^{12}\) Bulk Ti2O3 exhibits an unusual metal-to-insulator transition (MIT) in a wide temperature range from 420 (= TMIT) to 550 K.\(^{6,13,14}\) The sluggish transition of Ti2O3 is in sharp contrast to an abrupt MIT observed in Ti4O7 involving the charge ordering of Ti3+.15) Each TiO6 octahedron in Ti2O3 is subjected to a slight trigonal distortion, which results in the splitting of the three-fold degenerate \(t_{2g}\) orbitals into a low-lying \(a_{1g}\) orbital directed along the \(c\) axis and two \(e_{g}^*\) orbitals directed toward the next-nearest neighbor Ti ions in the basal plane.\(^{16,17}\) The MIT involves a gradual elongation of the Ti–Ti dimer along the \(c\) axis upon heating, which results in the narrowing of the energy gap between the bonding \(a_{1g}\) and anti-bonding \(a_{*1g}\) bands. Because the \(e_{g}^*\) and \(e_{g}^*\pi\) bands are located between the \(a_{1g}\) and \(a_{*1g}\) bands, the semiconducting gap between the \(a_{1g}\) and \(e_{g}^*\pi\) bands is closed across the MIT.\(^{16}\)

Given the strong correlation between the structure and the electronic properties of Ti2O3, the particle-size reduction can be expected to affect the MIT. Figure 9 shows the particle-size dependence of the volume, and the bond lengths of the Ti(1)–Ti(3) dimers in the basal plane and the Ti(1)–Ti(2) dimer along the \(c\) axis. The volume and the intradimer distances monotonically shrunk with decreasing particle size. It is worth noting that the shrinkage of the Ti(1)–Ti(2) bond increases the bandwidth of the Ti 3d bands. This is confirmed from the ultraviolet visible near infrared (UV–vis–NIR) spectra shown in Fig. 10, where two peaks centered at 378 and 514 nm corresponding to the \(a_{1g}^*-a_{1g}^*\) and \(a_{1g}^-e_{g}^{*\pi}\) interband transitions, respectively, broadened with decreasing particle size. The increasing bandwidth leads to narrowing of the semiconducting gap. Figure 11 shows the temperature dependence of the electrical resistivity (\(\rho\)) of 20-nm-diameter sample and bulk Ti2O3. Although the \(\rho\) of bulk Ti2O3 does not show any anomaly up to 400 K, the \(\rho\) vs \(T\) curve for the nanoparticles exhibits a steep drop at 350 K, which results from the onset of MIT. The reduction in \(T_{\text{MIT}}\) by particle-size reduction is the first observation for Ti2O3.

5. Summary

Corundum Ti2O3 nanoparticles and nanorods with different sizes have been successfully synthesized by low-temperature reduction using CaH2. The crystal structure, particle type and size of the parent materials play important roles in yielding homogeneous, high-quality Ti2O3 nanocrystals because of kinetics. Recently, similar tech-
niques have been applied not only to nanoparticles, but also to thin films and core–shell structures.20)–22) We expect that the low-temperature reduction will open up the possibility of designing nanostructures of highly reduced phases, leading to new functional properties that cannot emerge in the bulk form.

Acknowledgement The author thanks all the collaborators for contributing to his studies. A part of our work was supported by JSPS KAKENHI (15K17837, 25289233, 50584075, 16H04501).

References

1) J. Pan, G. Liu, G. Q. Lu and H.-M. Cheng, Angew. Chem. Int. Edit., 50, 2133–2137 (2011).
2) D.-D. Qin, C.-L. Tao, S. A. Friesen, T.-H. Wang, O. K. Varghese, N.-Z. Bao, Z.-Y. Yang, T. E. Mallouk and C. A. Grimes, Chem. Commun., 48, 729–731 (2012).
3) K. J. Griffith, A. C. Forse, J. M. Griffin and C. P. Grey, J. Am. Chem. Soc., 138, 8888–8899 (2016).
4) L. A. Bursill and B. G. Hyde, Prog. Solid State Chem., 7, 177–253 (1972).
5) S. Andersson, A. Sundholm and Magnéli, Acta Chem. Scand., 13, 989-997 (1959).
6) C. E. Rice and W. R. Robinson, Acta Crystallogr. B, 33, 1342–1348 (1977).
7) S. Ohkoshi, Y. Tsunobuchi, T. Matsuda, K. Hashimoto, A. Namai, F. Hakoe and H. Tokoro, Nat. Chem., 2, 539–545 (2010).
8) C. Yao, F. Li, X. Li and D. Xia, J. Mater. Chem., 22, 16560–16565 (2012).
9) D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim and C. S. Hwang, Nat. Nanotechnol., 5, 148–153 (2010).
10) M. A. Hayward, M. A. Green, M. J. Rosseinsky and J. Sloan, J. Am. Chem. Soc., 121, 8843–8854 (1999).
11) S. Tominaka, Y. Tsujimoto, Y. Matsushita and K. Yamaura, Angew. Chem. Int. Edit., 50, 7418–7421 (2011).
12) Y. Tsujimoto, Y. Matsushita, S. Yu, K. Yamaura and T. Uchikoshi, J. Asian Ceram. Soc., 3, 325–333 (2015).
13) C. E. Rice and R. Robinson, Mater. Res. Bull., 11, 1355–1360 (1976).
14) J. M. Honig and T. B. Reed, Phys. Rev., 174, 1020–1026 (1968).
15) M. Taguchi, A. Chainani, M. Matsunami, R. Eguchi, Y. Tanaka, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, S. Tsuda, S. Watanabe, C.-T. Chen, Y. Senba, H. Ohashi, K. Fujiwara, Y. Nakaura, H. Takagi and S. Shin, Phys. Rev. Lett., 104, 106401 (2010).
16) L. L. Van Zandt, J. M. Honig and J. B. Goodenough, J. Appl. Phys., 39, 594–595 (1968).
17) A. Mooradian and P. M. Raccach, Phys. Rev. B, 3, 4253–4256 (1971).
18) M. Uchida, J. Fujioka, Y. Onose and Y. Tokura, Phys. Rev. Lett., 101, 066406 (2008).
19) C. N. R. Rao, R. E. Loehman and J. M. Honig, Phys. Lett., 27A, 271–272 (1968).
20) A. Kitada, S. Kasahara, T. Terashima, K. Yoshimura, Y. Kobayashi and H. Kageyama, APEX, 4, 035801 (2011).
21) L. Seinberg, S. Yamamoto, R. Gallage, M. Tsujimoto, Y. Kobayashi, S. Isoda, M. Takano and H. Kageyama, Chem. Commun., 48, 8237–8239 (2012).
22) S. Yamamoto, G. Ruwan, Y. Tamada, K. Kohara, Y. Kusano, T. Sasano, K. Ohno, Y. Tsujii, H. Kageyama, T. Ono and M. Takano, Chem. Mater., 23, 1564–1569 (2011).

Yoshihiro Tsujimoto is a senior researcher of Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan. He received his PhD in 2009 from Kyoto University. He was a JSPS fellow at Kyoto University from 2008 to 2010. He joined NIMS as a postdoctoral fellow from 2010 to 2012 and became a researcher in 2012. He was appointed as a senior researcher of NIMS in 2015. His research interests are in the anion-directed chemistry which yields unprecedented coordination environments around metal cations.