INTRODUCTION

According to the recent world health organization survey, an estimated 17.7 million people died from to cardiovascular disease (CVDs) in 2015, representing 31% of all global deaths. Of these deaths, an estimated 80% were due to myocardial infarctions (MI) and strokes. According to the same survey, over three quarters of CVDs deaths occurred in low- and middle-income countries. MI is followed by several biochemical alterations, such as lipid peroxidation, free radical damage, hyperglycemia, hyperlipidemia, elevation in cardiac markers and pro-inflammatory cytokines leading to qualitative and quantitative alterations of myocardium. Catecholamines at low concentrations are beneficial in regulating heart functions by exerting a positive inotropic action on the myocardium, whereas high concentrations of catecholamines or chronic exposure to catecholamines over a prolonged period produces deleterious effects on the cardiovascular system. Isoproterenol (ISO) is a

ABSTRACT

Objectives: The present study was undertaken to evaluate the effects of Harungana madagascariensis on electrocardiographical, biochemical and histopathological changes in isoproterenol (ISO)-induced myocardial infarction in rats.

Methods: Male Wistar albino rats were randomly divided and treated with the aqueous extract of Harungana madagascariensis stem bark (AEHM, 200 and 400 mg/kg per os), or normal saline or vitamin E for 7 days with concomitant administration of ISO (85 mg/kg, subcutaneously) on 8th and 9th days, at 24 h interval.

Results: The ISO injections to the rats caused cardiac dysfunction evidenced by a marked (P<0.01) elevation in ST-segment, a reduction in R wave amplitude (P<0.01), decrease in endogenous antioxidant reduced glutathione (GSH), increase in malondialdehyde (MDA), a lipid peroxidation marker, increase of cardiac marker enzymes lactate dehydrogenase (LDH), aspartate amino transferase (AST) and alanine amino transferase (ALT). All these changes in cardiac function as well as GSH, MDA and the enzymes (LDH, AST and ALT) were ameliorated when the rats were pretreated with AEHM. Additionally, the protective effects were strengthened by improved histopathological changes, which specify the protection of cardiomyocytes from the deleterious effects of ISO.

Conclusion: This study demonstrates the cardioprotective effect of Harungana madagascariensis on isoproterenol-induced myocardial infarction in rats. The mechanism might be associated with the enhancement of antioxidant defense, reduction of lipid peroxidation and it is confirmed by amending electrocardiographic pattern, improvement of cardiac markers and less histopathological damages following ISO-induced myocardial infarction. It could provide experimental evidence to support the use of Harungana madagascariensis used in traditional medicine to treat cardiovascular disorders.

Keywords: Antioxidants, electrocardiography, Harungana madagascariensis, isoproterenol, myocardial infarction.
synthetic catecholamine, a non-selective β-adrenoreceptor agonist, which causes severe stress in the myocardium and produces infarct like lesions, when injected in rats. The ISO model is a well standardized and most reliable model for assessing the cardioprotective activity of several drugs. Since its pathophysiological and morphological changes following ISO administration are comparable to those taking place in human MI. Nowadays, a number of pharmacological interventions such as beta-blockers, angiotensin-converting enzyme inhibitors, antiplatelet agents, thrombolytics, calcium antagonists, nitrates, antioxidants have been shown to counteract the ill effect of myocardial ischemic injury and to reduce morbidity and mortality in patients with ischemic heart disease. However, their chronic usage is often associated with adverse effects. Therefore, the development of new and safer drugs for the treatment and prevention of ischemic heart disease is still a major concern. There is increasing trend towards the application of herbal medicines to treat the cardiovascular diseases. Harungana madagascariensis is one of the most popular trees in the African traditional medicine system. It is used as an abortifacient and antiseptic, in the treatment of cardiovascular disorders, anemia, tuberculosis, fever, angina, diarrhea, dysentery, syphilis, gonorrhea, malaria, parasitic skin diseases and wounds, as a natural source of dermatological agents and cosmetics. Its benefits have also been reported in liver diseases, diabetes, pancreatic and biliary problems. Biological studies on the barks or leaves of this plant revealed antihelminthiase properties, anti-plasmodial, antidiabetic, antimicrobial activities, analgesic and anti-inflammatory activities. Some of the constituents and isolated compounds from H. madagascariensis includes flavonoids, alkaloids, saponins, terpenes, cardiac glycosides, and tannins. A prenylated 1,4-anthraquinone isolated from the hexane extract of the stem-bark of H. madagascariensis possess alpha-glucosidase inhibition and antioxidant activities. In this context, an attempt has been made to investigate the effect of an aqueous extract of H. madagascariensis on maintaining the myocardial integrity in animals employing electrocardiographical, biochemical and histopathological parameters in ISO-induced myocardial infarction.

MATERIALS AND METHODS

Plant material collection and extraction

Fresh H. madagascariensis stem barks were collected at Essezok, Mbalmayo (Center Region, Cameroon) in June 2016. The identification of the plant was done at the Cameroon National Herbarium where voucher sample were deposited under the registration number NO. 4224 HNC. Bark pieces were dried under room temperature and powdered with the help of electrical grinder. 500 g of powder was introduced into 3.5 L of distilled water and boiled for 20 minutes. The resulting decoction was filtered through Whatman paper No. 3 and further lyophilized. A crude brown extract powder (HM extract, 31.73g) was obtained, giving a yield of 6.35%.

Experimental animals

Male albino *Wistar* rats (150-200g) were obtained from the Animal House of the Faculty of Science at the University of Yaoundé I (Cameroon). They were kept at standard laboratory conditions under natural light and dark cycles, at constant room temperature (20±5°C) and were allowed to have standard food and tap water freely. This study was approved by the Cameroonian National Ethical Committee (Ref NO. FW-IRB00001954).

Drugs and chemicals

Isoproterenol hydrochloride was purchased from Sigma Aldrich, USA. Lactate dehydrogenase (LDH) kit for enzyme estimation was purchased from Hospitex Diagnostics, Aspartate amino transferase (AST) and alanine amino transferase (ALT) kits were from Fortress Diagnostics Biosystems. All chemicals used in the present study were of analytical grade.

Induction of experimental myocardial infarction

Isoproterenol was freshly dissolved in 0.9% saline and injected (85 mg/kg) subcutaneously to the rats for two successive days (on days 8th and 9th respectively) at an interval of 24h. Animals were sacrificed 48h after the first injection of isoproterenol.

Experimental design

The animals were randomly divided into 7 groups consisting of 7 rats each. HM extract was dissolved in distilled water. Vitamin E was used as standard drug. Rats in group 1 (normal control) received distilled water (10 ml/kg) orally, for 9 days. Rats in group 2 (ISO control) received distilled water for 9 days and were injected isoproterenol (85 mg/kg, SC) on the 8th and 9th days at an interval of 24 hour. Animals of groups 3 to 5 were pretreated with the aqueous extract of HM (200 and 400 mg/kg/day) or vitamin E (100 mg/kg/day) orally for 9 days and on the 8th and 9th days they received isoproterenol SC at an interval of 24h. Rats in groups 6 and 7 were treated with the aqueous extract of HM (400 mg/kg/day) and vitamin E (100 mg/kg/day) orally for 9 days and on the 8th and 9th days they were injected saline (0.1ml/100g SC) at an interval of 24h. Changes in body weight in all groups were noted every 2 days during the experimental period.

Electrocardiogram measurement

Twenty four hours (24h) after the last administration of the drugs, the animals were anesthetized by intraperitoneal injection of urethane (15 mg/kg). Needle electrodes were inserted under the skin of the animals in lead II position. Electrocardiogram recordings were made using Biopac Student Lab Experiment system (BSL 3.7, USA).

Blood collection and assessment of cardiac hypertrophy

After recording the ECG, blood was collected from the abdominal aorta and allowed to clot for 1 h at room temperature. It serum was subsequently separated by centrifugation at 3000 rpm for 15 min at 4°C and stored at -20°C for biochemical assays. After the blood collection, the animals were euthanized. Their hearts were removed, rinsed in ice-cold normal saline and...
weighed. The wet heart weight to body weight ratio was calculated to assess the degree of myocardial weight gain.

Assay of cardiac marker enzymes

Activities of lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum were measured using commercial kits (from Hospitex Diagnostics for LDH and Fortress Diagnostics for AST and ALT).

Estimation of lipid peroxidation product and reduced glutathione in myocardium

After weighing, the heart tissue was divided into two longitudinal parts. One part was homogenized in Mc Even physiological ice-cold solution (pH 7.4, 1:5 w/v). The homogenate was centrifuged at 3000 rpm for 30 min at 4°C and the supernatant was stored at -20°C for biochemical assays. Malondialdehyde (MDA), a thiobarbiturate reactive substance, was measured as a marker for oxidative stress in myocardial homogenates using trichloroacetic acid (TCA, 20%) and thiobarbituric acid (TBA, 0.67%). The level of reduced glutathione (GSH) was estimated as previously described.

Histopathological examination

After weighing, the second part of the heart was fixed in 10% buffered formalin. The fixed tissues were embedded in paraffin, sectioned at 5 μm and stained with hematoxylin and eosin (Hand E). The sections were examined under a light microscope (Scientifico STM-50) and photomicrographs were taken by a photomicroscope (Minisee 1.0) at x200 magnification.

Statistical analysis

Results are shown as mean ± SEM. The statistical comparisons among the groups were performed with Student’s t-test using Sigma Stat 3.5 statistical package. Mann Whitney post-test was employed to compare the mean values between the treated groups and the control. P-values less than 0.05 were considered as statistically significant.

Table 1: Effect of *Harungana madagascariensis* aqueous extract on heart weight, body weight and heart weight/body weight ratio in rats

Groups	Body weight (g) at the end of the experimental period	Heart weight (g)	Heart weight/body weight ratio (%)
Control	193.57±8.69	0.61±0.03	0.31±0.01
ISO	185.01±7.88	0.74±0.03*	0.40±0.01***
HM 200+ISO	178.71±4.20	0.71±0.02*	0.39±0.01***
HM 400+ISO	179.57±2.42	0.73±0.02*	0.40±0.01***
Vit E+ISO	190.29±6.75	0.56±0.02**##*	0.30±0.01##*
Vit E	192.86±4.47	0.60±0.04##*	0.31±0.01##*

Values are given as mean±SEM (n = 7). *P<0.05 and **P<0.01 as compared to the control group; ##P<0.05 and ###P<0.001 as compared to the isoproterenol (ISO)-treated group. HM 200 or HM 400: *Harungana madagascariensis* aqueous extract (200 or 400 mg/kg); Vit E: vitamin E (100 mg/kg).

Table 2: Effect of *Harungana madagascariensis* aqueous extract on serum marker enzymes

Groups	AST (IU/L)	ALT (IU/L)	LDH (IU/L)
Control	88.44±5.77	32.37±6.89	556.50±50.31
ISO	109.13±2.55	49.70±4.40	831.42±55.94**
HM 200+ISO	64.79±5.17**##***	32.05±2.35**###	208.29±40.92**###
HM 400+ISO	68.88±3.26**##**	31.30±2.40##**	370.61±22.82**##**
Vit E+ISO	72.96±3.96##**	31.73±2.87##**	373.39±49.90##*
HM 400	89.24±2.65	29.10±3.20	418.56±49.01
Vit E	90.42±3.13	29.24±3.90	569.06±61.39

Values are given as mean±SEM (n = 7). *P<0.05 and **P<0.01 as compared to the control group; ##P<0.05 and ###P<0.001 as compared to the isoproterenol (ISO)-treated group. HM 200 or HM 400: *Harungana madagascariensis* aqueous extract (200 or 400 mg/kg); Vit E: vitamin E (100 mg/kg).

RESULTS

Effect of *Harungana madagascariensis* on electrocardiogram

The Lead II electrocardiograms obtained from the animals are shown in Figure 1. The rats receiving distilled water (control group) showed normal patterns of ECG, while those treated with isoproterenol alone (ISO group) demonstrated significant changes in ECG pattern. The changes included a marked elevation of ST segment from 0.11±0.01 mv in control group to 0.18 ± 0.01 mv in ISO-treated group (P<0.01) and a reduction in R wave amplitude from 0.63 ± 0.03 mv in control group to 0.3±0.02 mv in ISO-treated group (P<0.01) which both are indicative of myocardial infarction (Figure 2). Oral treatment with *H. madagascariensis* at a dose of 200 mg/kg or vitamin E (100 mg/kg) resulted in a significant increase in the R wave amplitude from 0.37±0.02 mv in ISO-treated group to 0.52±0.01 and 0.51±0.02 mv in extract-treated group and vitamin E, respectively (P<0.01), Figure 2A). However, treatment with all doses of *H. madagascariensis* resulted in a non-significant decrease in the ST-elevation as compared to the rats treated with isoproterenol alone (Figure 2B).

Effects of *Harungana madagascariensis* on the heart weight to body weight ratio and body weight

The mean body weight of the rats at the end of the experiment in all experimental groups had no significant change (Table 1). The heart weight and the ratio of heart weight to body weight were increased significantly (P<0.05 and P<0.001 respectively) in ISO-administered groups when compared with control group. The extract of *H. madagascariensis* when given alone, significantly reduce the heart weight and the ratio of heart weight to body weight (P<0.001) as compared to the ISO-treated group.

Effect of *Harungana madagascariensis* on serum marker enzymes
As shown in Table 2, there was a significant rise observed in the levels of diagnostic marker enzymes (LDH (P<0.01), AST (P<0.05) and ALT (P<0.05)) in the serum of the ISO-treated rats. Pre-treatment with *H. madagascariensis* (200 and 400 mg/kg) as well as vitamin E (100 mg/kg) showed a significant reduction in the levels of all serum diagnostic marker enzymes compared to ISO group.

Effects of *Harungana madagascariensis* on lipid peroxidation and reduced glutathione level

To determine the lipid peroxidation, MDA levels were measured in myocardial homogenates. Heart MDA levels increased insignificantly in isoproterenol alone treated rats as compared to the control group (Table 3). Pre-treatment with the *H. madagascariensis* (200 and 400 mg/kg) extract induced a dose-dependent but non-significant decrease of MDA levels of myocardium. There was a significant (P<0.001) decrease in GSH level in the heart of ISO-treated rats as compared to the control group. Pre-treatment with *H. madagascariensis* (200 and 400 mg/kg) significantly increased (P<0.001) the myocardial GSH level.

![Electrocardiogram tracings](image)

Figure 1: Representative electrocardiogram tracings of control and experimental animals receiving isoproterenol (ISO), *Harungana madagascariensis* aqueous extract (200 or 400 mg/kg) + isoproterenol (HM 200 + ISO or HM 400 + ISO), vitamin E + isoproterenol (Vit E + ISO), the extract alone at 400 mg/kg (HM 400) and vitamin E alone (Vit E).

The arrow indicates the decrease of the R wave amplitude. The ECG was recorded from II limb leads with recorder speed 0.5 s/div.
Figure 2: Effects of oral administration of Harungana madagascariensis on R-amplitude (A) and ST segment (B) (recorded from limb lead II).

Data are reported as mean±SEM (n = 7). *P<0.05 and **P<0.01 as compared to the control group; ***P<0.01 as compared to the isoproterenol (ISO)-treated group. HM 200 or HM 400: Harungana madagascariensis aqueous extract (200 or 400 mg/kg); Vit E: vitamin E (100 mg/kg).

Figure 3: Effect of Harungana madagascariensis stem bark aqueous extract (HM) on histopathological changes in heart tissue.

A: Normal group received saline showing normal structure of myocardium; B: Diseased group received two subcutaneous injections of isoproterenol (ISO, 85 mg/kg) showing necrosis of myofibrils and edema through penetration of inflammatory cells; C, D: HM 100 mg/kg and 200 mg/kg treated group showing lesser myocardial necrosis and edema following ISO administration. Heart tissues were stained with hematoxylin and eosin and visualized under light microscope at x200 magnification.

Histopathological examination of the cardiac tissue

In the control group, myocardial fibers were arranged regularly with clear striation, without any damage (Figure 3A). Histopathological sections of the isoproterenol alone treated hearts displayed hypertrophy, degeneration of myocytes, infiltration of neutrophilic granulocytes and increased edematous inter-muscular space and myofibroblasts (Figure 3B), whereas, the rats treated with H. madagascariensis extract (200 and 400 mg/kg) showed protection from...
myocardial injury evidenced by decreased myocytes degeneration as well as edema and minimal inflammation (Figure 3C, D).

DISCUSSION

The purpose of this work was to evaluate the potential cardioprotective role of *Harungana madagascariensis* aqueous extract stem bark aqueous extract (AEHM) in isoproterenol-induced myocardial damage model in rats. ISO in high doses induces morphological and functional alterations in the heart which closely resembles local myocardial infarction-like pathological changes seen in human myocardial infarction. It has been reported that auto-oxidation of excess catecholamines such as ISO results in free radical mediated peroxidation of membrane phospholipids and consequently leading to permeability changes in the myocardial membrane, intracellular calcium overload and irreversible damages.

The present study also demonstrated that increased formation of MDA increases with increase in inflammatory cells and amended the ST segment, which results in increasing the cell membranes permeability allowing cardiac enzymes to leak out into the bloodstream. Increased activities of these marker enzymes in the serum are indicative of cellular damage and loss of functional integrity. In the present study, the significant increase observed in the activities of LDH, AST, ALT in the serum of ISO-induced rats may be due to the leakage of them from the heart as a result of necrosis induced by ISO. The aqueous extract of *H. madagascariensis* seems to preserve the structural and functional integrity and/or permeability of the cardiac membrane and thus restricting the leakage of these indicative enzymes from the myocardium, as evident from the markedly blunted levels of these enzymes in the extract pre-treated groups when compared to the ISO-treatment group, thereby establishing the cardioprotective effect of the aqueous extract of *H. madagascariensis*. Malondialdehyde (MDA), a product of the reaction of polyunsaturated fatty acids with reactive oxygen species, is a biomarker of oxidative stress. Since the major constituents of biological membranes are lipids, their peroxidation can lead to cell damage and death. The concentration of MDA increases in response to the free radical production in myocardial infarction, and decreases by antioxidant systems. Increased formation of MDA of 49% as compared to the control group, suggests the antioxidant properties of the extract. Pre-treatment with the plant extract or vitamin E did not modify this increase. These results suggest that AEHM does not affect the gain or loss of weight of this organ. However, the short duration of the preventive treatment (seven days) could be responsible for the observed result. It would be wise to consider a longer duration in future experiments to better elucidate the effects of the plant extract on this parameter.

Myocardium contains many diagnostic marker enzymes like lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Upon administration of isoproterenol, the oxygen demand of the heart increases with increase in

Table 3: The effects of *Harungana madagascariensis* treatment on reduced glutathione (GSH) and malondialdehyde (MDA) levels in the heart tissue of rats.

Groups	GSH (µmol/g tissue)	MDA (µmol/g tissue)
Control	0.17±0.01	0.42±0.08
ISO	0.10±0.01**	0.85±0.16
HM 200+ISO	0.14 ±0.01***	0.62±0.07
HM 400+ISO	0.21±0.01***	0.43±0.06
Vit E+ISO	0.15 ±0.01***	0.50±0.07
HM 400	0.19 ±0.01***	0.54±0.06
Vit E	0.18±0.01***	0.47±0.04

Values are given as mean±SEM (n = 7). **P<0.01 and ***P<0.001 as compared to the control group; "P<0.1 and "P<0.01 as compared to the isoproterenol (ISO)-treated group. HM 200 or HM 400: *Harungana madagascariensis* aqueous extract (200 or 400 mg/kg) ; Vit E: vitamin E (100 mg/kg).
Glutathione (GSH) is a tripeptide which has a direct antioxidant function by reacting with superoxide radicals, peroxy radicals and singlet oxygen followed by the formation of oxidized GSH and other disulfides. It plays an important role in the regulation of variety of cell functions and in cell protection against free radical mediated injury. Depressed GSH levels may be associated with an enhanced protective mechanism to oxidative stress in myocardial infarction. In this study, ISO administration was found to reduce the levels of GSH. This observation concurs with several earlier findings. Pre-treatment with *H. madagascariensis* (400 mg/kg) significantly improved the level of GSH. This points to the potential antioxidant and free radical scavenging activity of *H. madagascariensis*. In previous studies, *H. madagascariensis* has been described as an antioxidant and free radical scavenger. The current study shows the antioxidant activity of *H. madagascariensis* and endorses its cardioprotective effect mediated by its antioxidant effect in myocardium. Histopathological examination of myocardial tissue in the control rats illustrated clear integrity of the myocardial cell when compared to the hearts of ISO treated rats. ISO-induced rats showed separations of cardiac muscle fibers, edema and extensive infiltration of neutrophil granulocytes. Pre-treatment with the aqueous extract of *H. madagascariensis* (200 and 400 mg/kg) considerably attenuated the edema, reduced inflammatory cell infiltration and preserved normal cardiac muscle fibers structure, further confirming the cardioprotective effect of *H. madagascariensis*.

CONCLUSION

In conclusion, our study reveals that pre-treatment of rats with the aqueous extract of *H. madagascariensis* exerts a remarkable protective potential against damages caused by isoproterenol-induced myocardial infarction. This cardioprotective effect could be associated with the enhancement of antioxidant defense, reduction of lipid peroxidation and is confirmed by amending electrocardiographic pattern, improvement of cardiac markers and less histopathological damage following isoproterenol-induced myocardial infarction. Although this study has provided a possible new therapeutic tool for myocardial infarction, more studies are required to elucidate the precise mechanism of *H. madagascariensis* in reversing the pathogenesis of myocardial infarction.

ACKNOWLEDGMENTS

The authors would like to thank the International Foundation for Science (IFS) for the research grant No. P/5882-1 awarded to Dr. Ngo Lembra Tom Esther.

AUTHOR’S CONTRIBUTION

The manuscript was carried out, written, and approved in collaboration with all authors.

CONFICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

1. WHO media Center. Cardiovascular diseases (CVDs) Fact sheet. Updated May 2017. http://www.who.int/mediacentre/factsheets/fs317/en/
2. Kumar JS, Menon VP. Changes in levels of lipid peroxides and activity of superoxide dismutase and catalase in diabetes associated with myocardial infarction. Indian J Exp Biol 1992; 30(2):122-127. PMID: 1521861
3. Opie LH. The heart: Physiology, from cell to circulation. Philadelphia: Lippincott-Raven 1998; 3rd ed, 637.
4. Rahmathulla MSB, Lakshmi KD. Origination and development of isoproterenol-induced myocardial infarction in male Wistar rats. Int Res J Pharm 2013; 4(5):26-35. https://doi.org/10.7897/220-5407.04508
5. Song L, Jiang W, Qing Y, Hu X, Li Y, Tong QY, Xu WH. The antagonistic effect of P3K-gamma inhibitor AS605240 on cardiac hypertrophy and cardiac fibrosis induced by isoproterenol in rats. Sichuan Da Xue Xue Bao Yi Xueban 2011; 42(4): 471-474. PMID: 21866628
6. Nichotva Z, Novotova M, Kralova E, Stankovicova T. Morphological and functional characteristics of models of experimental myocardial injury induced by isoproterenol. Gen Physiol Biophys 2012; 31(2): 141–151.
7. Verma S, Maitland A, Weisel RD, Li SH, Fedak PW, Pomonry NC, Mickle DA, Li RK, Ko L, Rao V. Hyperglycemia exaggerates ischemia-reperfusion-induced cardiomyocyte injury: reversal with endothelin antagonism. J Thorac Cardiovasc Surg 2002; 123(6):1120-1124. https://doi.org/10.1067/mct.2002.121973
8. Moens AL, Claes YJ, Wuys FL, Vooraerts I, Van Herbruggen E, Wendelen LC, Van Hoof VO, Vrints CJ. Effect of folic acid on endothelial function following acute myocardial infarction. Am J Cardiol 2007; 99(4):476-481. https://doi.org/10.1016/j.amjcard.2006.08.057
9. Rajadurai M, Prince PSM. Comparative effects of Aegle marmelos extract and alpha-tocopherol on serum lipids, lipid peroxides and cardiac enzyme levels in rats with isoproterenol-induced myocardial infarction. Singapore Med J 2005; 46(2):78-81. PMID: 15678289
10. Xiong X, Borrelli F, de Sá Ferreira I, Asohaf T, Feng B. Herbal medicines for cardiovascular diseases. Evid Based Complement Alternat Med. 2014, DOI: 10.1155/2014/809741
11. Ojha S, Golechha M, Kumari S, Arya DS. Protective effect of Emblica officinalis (amla) on isoproterenol-induced cardiotoxicity in rats. Toxicol Ind Health 2011; 28(5): 399–411. https://doi.org/10.1080/10443215.2010.517825
12. Burkill, HM. The useful plants of west tropical Africa. 1985; Vol. 2.
13. Tona L, Kambu K, Ngimbì N, Cimanga K, Vlietinck AJ. Histopathological and antioxidant activity of superoxide dismutase and catalase in diabetes associated with myocardial infarction. Complement Alternat Med. 2014, PMID: 15678289
14. EME. Committee for Veterinary Medical Products Harungana madagascariensis. The European Agency for the Evaluation of Medicinal Products, 1999. https://doi.org/10.14302/issn.2328-0182/jepst-18-2341
15. Erah PO, Asonye CC, Okahamae AO. Response of Trypanosoma brucei-induced anaemia to a commercial pharmaceutical preparation. Afr J Biotech 2003; 2(9): 307–311.
16. Kamanzhi AK, Schmid C, Brun R, Koné MW, Traore D. Antitrypanosomal and antiplasmodial activity of medicinal plants from Cote d’Ivoire. J Ethnopharmacol 1998; 61: 57–65. https://doi.org/10.1016/s0378-777x(98)00015-5
17. Adeneye AA, Olajunju JA, Elias SO, Olatunbosun DO, Mustafa AO, Adeshile OI, Aishaolu AO, Laosy TA, Bamigboye AO, Adebaje BO. Harungana madagascariensis in acute and repeated acetaminophen hepatotoxic rats. Int J Appl Res Na Prod 2008; 1(3): 29–42.
18. Nicolas JP. Plantes médicinales du nord de Madagascar ethnobotanique antakarana et informations scientifiques. Jardins du Monde 2012; 295: 134-135.
19. Koné MW, Kamanzi AK. Inventaire ethnomédical et évaluation de l’activité anthelmintique des plantes médicinales utilisées en Côte d’Ivoire contre les helmintiases intestinales. Pharm Méd Trad Afr 2004; 14:55–72.

20. Lenta NB, Ngouela S, Boyom MM, Tantangmo F, Tchouya FGR, Tsoon E, Gut J, Rosenthal PJ, Connolly JD. Anti-plasmodial activity of some constituents of the root bark of *Harungana madagascariensis* Lam. (Hypericaceae). Chem Pharmocol Bull 2007; 55(3):464–447. https://doi.org/10.1248/cpb.55.464

21. Mangambu M. Contribution à l’étude phytochimique de quelques plantes médicinales antidiabétiques de la ville de Bukavu et ses environs (Sud-Kivu, R. D. Congo). J Appl Biosci 2014; 75: 6211–6220. https://doi.org/10.4314/cajeb.v7i1.69788

22. Etchiké CA, Aristide Sassa AM, Abba A, Nonbourg E. Evaluation in vitro de l’activité antibactérienne de cinq plantes de la pharmacopée traditionnelle de l’Adamaoua (Cameroon) Cameroon J Exp Biol 2011, 7(1): 22-27. https://doi.org/10.4314/cajeb.v7i1.69788

23. Nwodo OFC. Antibiotic and anti-inflammatory analgesic activities of *Harungana madagascariensis* stem bark. Int J Crude Drug Res 1989; 27(3): 137–140. https://doi.org/10.3109/1388028909053953

24. Antia BS, Ita BN, Udo UE. Nutrient composition and in vitro antioxidant properties of *Harungana madagascariensis* stem bark extracts. J Med Food 2015; 18(5):609–614. https://doi.org/10.1089/jmf.2014.0084

25. Kouam SF, Yapna DB, Krohn K, Ngajui BT, Ngoupayo J, Choudhary MI, Schulz B. Antimicrobial prenylated anthracene derivatives from the leaves of *Harungana madagascariensis*. J Nat Prod 2007; 70(4): 600–603. https://doi.org/10.1021/jp060556l

26. Wilbur KM, Bernheim F, Shapiro OW. Determination of lipid peroxidation. Arch Biochem Biophysics 1949; 24(2): 305–310.

27. Ellman GL. Tissue sulfhydryl group. Arch Biochem Biophysics 1959; 82(1): 70–77. https://doi.org/10.1016/0003-9861(59)90090-6

28. Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol 17(4):291–300. https://doi.org/10.1016/s0022–2828(85)80130-9

29. Li H, Xie YH, Yang Q, Wang SW, Zhang BL, Wang JB, Cao W, Bi LL, Sun YJ, Miao S. Cardioprotective effect of paownol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS One 2012; 7(11): e48872. https://doi.org/10.1371/journal.pone.0048872

30. Bahit MC, Criger DA, Ohman EM, Granger CB, Wagner GS. Thresholds for the electrocardiographic change range of biochemical markers of acute myocardial infarction (GUSTO-IIa data). Am J Cardiol 2002; 90(3):233–237. https://doi.org/10.1016/S0002–9149(02)02460-8

31. Khorrami A, Mojtaba M, Mehraveh G, Nafrd MI, Alireza G. Tacrolimus ameliorates functional disturbances and oxidative stress in isoproterenol-induced myocardial infarction. DARU J Pharm Sci 2014; 22(1):68. https://doi.org/10.1186/40199-014-0068-3

32. Patel V, Upaganlawar A, Zalawadia R, Balaraman R. Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: A biochemical, electrocardiographic and histochunctural evaluation. Eur J Pharmocol 2010; 644(1-3):160–168. https://doi.org/10.1016/j.ejphar.2010.06.065

33. Wang SB, Tian S, Yang F, Yang HG, Yang XY, Du GH. Cardioprotective effect of salvianolic acid on isoproterenol-induced myocardial infarction in rats. Eur J Pharmocol 2009; 615(1-3): 125–132. https://doi.org/10.1016/j.ejphar.2009.04.061

34. Sabeena FKH, Anandan R, Kumar SH, Shiny KS, Sankar TV, Thankappan TK. Effect of squalene on tissue defense biochemical markers of acute myocardial infarction. Pharmacol Res 2004; 50(3):231–236. https://doi.org/10.1016/j.phrs.2004.03.004

35. Tappel AL. Dillard CJ. In vivo lipid peroxidation: measurement via exhaled pentane and protection by vitamin E. Fed Proc 1981; 40(2):174–178. PMID: 7461141

36. Rathore N, John S, Kale M, Bhatnagar D. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacol Res 1998; 38(4): 297–303. https://doi.org/10.1016/s0887–3572(97)00247-9

37. Wattanapitayakul SK, Bauer JA. Oxidative pathways in cardiovascular disease roles, mechanisms, and therapeutic implications. Pharmacol Therapeut 2001; 89:187–206. https://doi.org/10.1016/S0163–7258(00)00114-5

38. Wu J, Hecker JG, Chiamvimonvat N. Antioxidant enzyme gene transfer for ischemic diseases. Adv Drug Deliver Rev 2009; 61(4):351–363. https://doi.org/10.1016/j.addr.2009.01.005

39. Iwalewa EO, Adewale IO, Taiwo BJ, Arogundade T, Osinowo A, Daniyen OM, Adetogun R. Effects of *Harungana madagascariensis* stem bark extract on the antioxidant markers in alloxan induced diabetic and carrageenan induced inflammatory disorders in rats. J Compl Integr Med 2008; 5:1. https://doi.org/10.2202/1553–840.1088