Genomic characterization of clonal evolution during oropharyngeal carcinogenesis driven by human papillomavirus 16

Jeesoo Chae1,2, Weon Seo Park3, Min Jung Kim2, Se Song Jang1,2, Dongwan Hong4, Junsun Ryu5, Chang Hwan Ryu5, Ji-Hyan Kim5, Moon-Kyung Choi3, Kwan Ho Cho5, Sung Ho Moon5, Tak Yun5, Jong-Il Kim1,8,9,* & Yuh-Seog Jung5,*

1Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, 2Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, 3Department of Pathology, Center for Specific Organs Cancer, Hematologic Malignancy Branch, National Cancer Center, Goyang 10408, 4Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang 10408, 5Department of Otorhinolaryngology, Graduate School of Cancer Science and Policy, Department of Immunotherapeutics, National Cancer Center, Goyang 10408, 6Center for Proton Therapy, Center for Specific Organs Cancer, National Cancer Center, Goyang 10408, 7Hematologic Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang 10408, 8Cancer Research Institute, Seoul National University, Seoul 03080, 9Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea

Secondary prevention via earlier detection would afford the greatest chance for a cure in premalignant lesions. We investigated the exomic profiles of non-malignant and malignant changes in head and neck squamous cell carcinoma (HNSCC) and the genomic blueprint of human papillomavirus (HPV)-driven carcinogenesis in oropharyngeal squamous cell carcinoma (OPSCC). Whole-exome (WES) and whole-genome (WGS) sequencing were performed on peripheral blood and adjacent non-tumor and tumor specimens obtained from eight Korean HNSCC patients from 2013 to 2015. Next-generation sequencing yielded an average coverage of 94.3× for WES and 35.3× for WGS. In comparative genomic analysis of non-tumor and tumor tissue pairs, we were unable to identify common cancer-associated early mutations and copy number alterations (CNA) except in one pair. Interestingly, in this case, we observed that non-tumor tonsillar crypts adjacent to HPV-positive OPSCC appeared normal under a microscope; however, this tissue also showed weak p16 expression. WGS revealed the infection and integration of high-risk type HPV16 in this tissue as well as in the matched tumor. Furthermore, WES identified shared and tumor-specific genomic alterations for this pair. Clonal analysis enabled us to infer the process by which this transitional crypt epithelium (TrCE) evolved into a tumor; this evolution was accompanied by the subsequent accumulation of genomic alterations, including an ERBB3 mutation and large-scale CNAs, such as 3q27-qter amplification and 9p deletion. We suggest that HPV16-driven OPSCC carcinogenesis is a stepwise evolutionary process that is consistent with a multistep carcinogenesis model. Our results highlight the carcinogenic changes driven by HPV16 infection and provide a basis for the secondary prevention of OPSCC. [BMB Reports 2018; 51(11): 584-589]

INTRODUCTION

Worldwide, head and neck squamous cell carcinoma (HNSCC) affects more than 550,000 people and causes 380,000 deaths each year (1). Prolonged exposure of the upper aerodigestive tract to carcinogenic environmental factors, such as tobacco, alcohol, and human papillomavirus (HPV), can result in dysplastic or premalignant lesions in the mucosa, which eventually result in HNSCC. Recent epidemiological evidence from various western and Asian countries (2, 3) has shown that the incidence of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) is increasing and is predicted to surpass that of cervical cancer by 2020 in the USA (4); thus, this prediction necessitates a better understanding of its genomic and molecular characteristics to facilitate earlier detection and secondary prevention.

With recent advances in next-generation sequencing (NGS) technology, large-scale genomic analyses of HNSCC have revealed recurrently mutated molecular pathways, such as p53, RTK/PI(3)K and various differentiation pathways (5). However, the carcinogenic effects, including the effects of long-term HPV infection, remain elusive. HPV has been identified in circular extrachromosomal elements that are known as episomes during initial HPV infection, and viral-host
Evolution in HPV-driven oropharynx carcinogenesis
Jeesoo Chae, et al.

Fig. 1. Genomic characteristics of adjacent non-tumor and tumor tissues from eight HNSCC cases. (A) B allele frequency (BAF) and SCNAs according to WES analysis. Non-tumor mucosa did not show CNAs except for one p16-positive non-tumor, HNT-009N. LOH: Loss of heterozygosity; CN: Copy number. (B) The number of non-silent mutations (left panel) and the proportion of shared non-silent mutations from each pair of non-tumor and tumor tissues (right panel). HNT-005 and -008 were omitted because of the limited number of mutations. (C) A histogram of the AF distribution of somatic coding mutations.
Evolution in HPV-driven oropharynx carcinogenesis

Jeesoo Chae, et al.

Fig. 2. Description of the HNT-009 case with HPV16-positive (+) transitional crypt epithelium (TrCE). (A) Histopathological confirmation of TrCE in HNT-009. TrCE exhibited weaker immunoreactivity (H-score: 12) to p16 than did 009T (H-score: 26). This epithelium was confined within a grossly normal epithelial layer within the tonsillar crypt epithelium (box), in contrast to the adjacent tumor tissue (arrow). (B) Per-genome HPV16 viral load in the TrCE and 009T. (C) HPV16 integration into the human genome. Two integration sites accompanying CNA were observed in both the TrCE and 009T.

p16 expression and HPV16 integration in normal-appearing tonsillar crypt epithelium

Notably, we observed that non-tumor crypt epithelial tissue adjacent to the HPV(+)-tumor of HNT-009 case exhibited numerous somatic alterations when compared to seven other non-tumor samples, such as the amplification of 3q and the copy-neutral loss of heterozygosity (cnLOH) of 6p and somatic mutations (Fig. 1). The HNT-009 case was a 56-year-old female who neither smoked nor drank (Supplementary Table S4). H&E staining showed that the squamous epithelium of the tonsillar crypt was histologically indistinguishable from normal crypt epithelium. Interestingly, however, the tissue exhibited weak p16 immunoreactivity (H-score: 12), although it clearly differed from the neighboring established OPSCC based on its higher p16 expression (H-score: 26, Fig. 2A). Because this epithelium showed common genomic alterations in 009T (tumor from HNT-009) and p16 expression, we hereafter refer to this tissue as transitional crypt epithelium (TrCE).

Furthermore, WGS confirmed HPV16 infection in both the TrCE and 009T (Supplementary Table S5-7). The normalized per-genome HPV16 viral burden was 5.2 in the TrCE and was slightly higher at 6.1 in 009T (Fig. 2B). Although HPV16 in the early infectious stage is expected to exist mainly in the episomal form, two integration regions on chromosomes 2 and 20 were identified in the TrCE as well as in 009T. One integration site was located 7 kb upstream of PAX1 on chromosome 20, and the other was found 1.05 Mb downstream of CTNNA2 on chromosome 2 (Fig. 2C). The HPV16-integrated loci were accompanied by structural alterations, such as amplification of the region between the HPV16 insertion breakpoints and inverted duplication across the integration breakpoint (Supplementary Fig. S4).

Stepwise genomic alterations during HPV16-driven carcinogenesis

The genomic alterations found in the TrCE were more evident in the matched tumor, 009T. Of the coding sequence (CDS) mutations in the TrCE, 53% (27 of 51) showed significant increase of AF in 009T (t-test P-value = 2.1E-10), although the function of these mutations in cancer is unknown (Fig. 3A). In addition to these mutations, copy-neutral LOH of 6p21.1-25 was also more prominent in 009T (Fig. 3B).

Several tumor-specific features were also present. Mutational signature analysis (12) revealed the presence of two common signatures, signatures 1 and 2 (Fig. 3C), which were correlated with the age at cancer diagnosis and the APOBEC enzymatic activity, respectively. In addition, a new signature, 6, was identified in 009T and was associated with defects in the DNA mismatch repair (dMMR) system; however, mutations in dMMR-related genes such as MLH1, MSH2/6 and PMS2 were
Evolution in HPV-driven oropharynx carcinogenesis
Jeesoo Chae, et al.

Fig. 3. Comparative genomic features of the TrCE and matched tumor 009T and the proposed model of HPV-driven carcinogenesis. (A) Inferred subclonal architecture of the TrCE and 009T from HNT-009. Cluster 4 involved mutations acquired in the tumor, including an ERBB3 mutation. The AF of the shared mutations in clusters 1 and 2 were significantly increased in 009T (P = 2.1E-10). (B) Copy-neutral LOH of 6p. (C) Mutational signature analysis; Signature 1: age at diagnosis; Signature 2: APOBEC enzymatic activity; Signature 6: defective mismatch repair. (D) A series of SCNAs from the TrCE and the tumor. The Y axis shows the range from −2 to 2. (E) The proposed model of stepwise HPV16-driven oropharyngeal carcinogenesis.

DISCUSSION

Here, we provide a novel glimpse of the landscape of oropharyngeal carcinogenesis driven by longstanding HPV16 infection; this process occurs via the stepwise accumulation of genomic alterations and clonal evolution.

We screened genomic alterations in eight pairs of HNSCC and adjacent non-tumor tissues. Tumors exhibited somatic alterations that were distinct from those in non-tumor mucosa, indicating the generation of malignant clones during tumor progression. Although TP53 mutations were frequently reported in the tumor-free margin of HPV(−) HNSCC (13, 14), genetic aberrations, including TP53 mutations, were only observed in a tumor-specific manner in three of the HPV(−) cases.

Regarding the important role of HPV in OPSCC, several studies have investigated the presence of HPV infection in the non-malignant tonsil tissues of cancer-free individuals or in adjacent tumors (8-11) as well as in the genomic profiles of premalignant lesions prior to oral cancer (15). Attempts to detect HPV infection in almost 4,000 non-tumor tonsil tissue specimens in the UK did not find evidence of an association with HPV (10), and two other studies conducted in Finland and in the US found that only 1.0% and 3.1% of patients, respectively, had high-risk HPV infections (in 477 and 5,579
non-malignant tonsil tissues, respectively) (9, 11). Nevertheless, in-depth genomic characterization of the normal to pre-malignant to malignant transition process driven by persistent HPV16 infection in OPSCC has not been performed. Considering that the TrCE tissue was obtained from a 56-year-old female who neither smoked nor drank alcohol, we postulate that the molecular features of the TrCE might reflect a carcinogenetic process that is driven exclusively by HPV16 during the development of OPSCC.

p16 immunohistochemistry (IHC) has been reported as an adjunctive method for assessing dysplasia in genital skin lesions and the head and neck (16-18). However, in this study, despite the presence of microscopically normal tonsillar crypt epithelium without dysplasia, the TrCE showed weak p16 immunoreactivity, and HPV16 infection and integration was also identified. Ilmarinen et al. reported an epimorphic form of HPV in HPV-infected non-malignant tonsils using fluorescence in situ hybridization (FISH); however, since WGS offers sensitive detection of viral integration, it is possible that HPV integration is able to occur even prior to dysplasia. Because of the sponge- and fissure-like structures of the tonsillar crypts, it is difficult to detect early premalignant lesions. However, as therapeutic vaccines effectively treat high-grade precancerous cervical lesions caused by HPV (19), epithelium with TrCE-like features might also be a target for this type of immunotherapy and for surgical resection, if the lesions are localized.

In addition, the TrCE exhibited several other genomic features. Although Ilmarinen et al. demonstrated the presence of several sequence mutations in genes such as PIK3CA in HPV-infected chronic tonsillitis specimens using the targeted sequencing of 578 genes, our TrCE contained large-scale CNAs such as 3q amplification and 6p cnLOH as well as mutations. Amplification of 3q has been reported repeatedly in HNSCC, and 6p cnLOH has also been reported in 2 of 19 HNSCCs (20). Recurrent cnLOH of specific regions might indicate the presence of important genes with a role in disease pathogenesis.

Additionally, the subsequent acquisition of alterations in the TrCE is probably crucial for cancer progression due to their activation of cellular proto-oncogenes and preventative role against tumor suppressor genes. From the subclone analysis, we inferred that the TrCE diverged into two subclones from an initial precursor, and one subclone predominated in the progressed tumor with the acquisition of alterations such as an ERBB3 mutation and the amplification of 3q and deletion of 9p. The amplification of 3q and deletion of 9p, recurrently reported in HNSCCs, may be involved in the HPV-related progression of tonsillar carcinoma (21). Although ERBB3 mutations appear in approximately 3% of HNSCCs (5), a recent TCGA study of cervical cancer highlighted a significant recurrence of ERBB3 mutations (22), suggesting that this gene could be an HPV-related cancer driver. The observed increase in the AF of the ERBB3 mutation from 0.028 in the TrCE to 0.22 in 009T might reflect the enhanced fitness of the subclone.

Finally, we attempted to find more cases exhibiting TrCE-like features in the pathologic archives of HPV(+) HNSCCs (n = 93) among patients who had surgery-based treatment; however, we could not find any additional cases with TrCE features. Therefore, we assume that TrCE is very rare, consistent with previous observations, and that this study is meaningful as the first paper to report the detailed genomic profile of this lesion in matched tumors. Nevertheless, this study has several limitations: (1) common premalignant mutations were not identified, perhaps because of the small sample size and sampling bias; (2) changes in gene expression or in the epigenome of adjacent non-tumor tissues were not fully evaluated; (3) the expression of p16 in adjacent non-tumor tissue in one case and the derived carcinogenesis model should be further verified. Multi-region sequencing or single cell sequencing of the TrCE-like tissues would enable us to expand our understanding of clonal evolution during HPV-associated OPSCC carcinogenesis. This would enable the findings to be generalized and provide a basis for the screening and secondary prevention of OPSCC.

MATERIALS AND METHODS
Detailed materials and experimental procedures are available in Supplementary Data.

ACKNOWLEDGEMENTS
Conception and design: Y.-S. Jung, J.I. Kim. Development of methodology: J.S. Chae, W.S. Park. Acquisition of data: M.J. Kim, S.S. Jang, C.H. Ryu, J.-H. Kim, K.H. Cho, S.H. Moon, T. Yun. Analysis and interpretation of data: J.S. Chae, J.I. Kim, D.W. Hong. Writing, review, and/or revision of the manuscript: Y.-S. Jung, J.S. Chae. Administrative, technical, or material support: J.I. Kim.

This work was supported by grants from National Cancer Center Grant (grant numbers NCC-1810862-1, 1610450); the Korean Healthcare Technology R&D project through the Korean Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (grant number HI13C2148).

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1. Global Burden of Disease Cancer, Fitzmaurice C and Allen C (2016) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global
1. Goulder P, Mentzer KM, van der Merwe J, de Villiers E (2014) The feasibility of human papillomavirus DNA vaccine delivery in the setting of cervical cytology. J Clin Oncol 32, 295-298
2. Gooi Z, Chan JY and Fakhry C (2016) The epidemiology of human papillomavirus-related oropharyngeal head and neck cancer. Laryngoscope 126, 894-900
3. Chaturvedi K, Engels A and Pfeiffer M (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29, 4294-4301
4. Chaturvedi K, Anderson F and Loriot-Tieulent J (2013) Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol 31, 4550-4559
5. Cancer Genome Atlas Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576-582
6. Wentzensen N, Vinokurova S and von Knebel Doeberitz C (2015) P16(INK 4a) and Ki-67 expression in human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64, 3878-3884
7. Vogelstein B and Kinzler W (1993) The multistep nature of cancer. Trends Genet 9, 138-141
8. Rietbergen M, Braakhuis J and Moukhktari N (2014) No evidence for active human papillomavirus (HPV) in fields surrounding HPV-positive oropharyngeal tumors. J Oral Pathol Med 43, 137-142
9. Ilmarinen T, Munne P and Hagstrom J (2017) Prevalence of high-risk human papillomavirus infection and cancer gene mutations in nonmalignant tonsils. Oral Oncol 73, 77-82
10. Palmer E, Newcombe G and Green C (2014) Human papillomavirus infection is rare in nonmalignant tonsil tissue in the UK: implications for tonsill cancer precursor lesions. Int J Cancer 135, 2437-2443
11. Gillison L, Broutian T and Pickard K (2012) Prevalence of oral HPV infection in the United States, 2009-2010. JAMA Oncol 3, 693-703
12. Alexandrov B, Nik-Zainal S and Wedge C (2013) Signatures of mutational processes in human cancer. Nature 500, 415-421
13. Tabar P, Braekenhoff H, Ruijter-Schippers J, Kummer A, Leemans R and Braakhuis J (2004) Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. Clin Cancer Res 10, 3607-3613
14. Brennan N, Mao L and Hruban H (1995) Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med 332, 429-435
15. Wood M, Conway C and Daly C (2015) The clonal relationships between pre-cancer and cancer revealed by ultra-deep sequencing. J Pathol 237, 296-306
16. Ezaldein H, Lott P, McNiff M, Hu P, Buza N and Ko J (2015) Grading of atypia in genital skin lesions: routine microscopic evaluation and use of p16 immunostaining. J Cutan Pathol 42, 519-526
17. Gultekin E, Senguven B, Klussmann P and Dienes P (2015) P16(INK4a) and Ki-67 expression and impact on prognosis. J Clin Oncol 21, 3798-3807
18. Trimble L, Morrow P and Kraynyak A (2015) Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386, 2078-2088
19. Singh B, Stoffel A and Gogineni S (2002) Amplification of the 3q26.3 locus is associated with progression to invasive cancer and is a negative prognostic factor in head and neck squamous cell carcinomas. Am J Pathol 161, 365-371
20. Cancer Genome Atlas Research (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 545, 378-384
21. Holsinger C, McWhorter J, Menard M, Garcia D and Laccourreye O (2005) Transoral lateral oropharyngectomy for squamous cell carcinoma of the tonsillar region: I. Technique, complications, and functional results. Arch Otolaryngol Head Neck Surg 131, 583-591
22. Hirsch R, Varella-Garcia M and Bunn A (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21, 1297-1303
23. Cibulski K, Lawrence S and Carter L (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31, 1329-1335
24. Park WS, Ryu J and Cho KH (2012) Human papillomavirus in oropharyngeal squamous cell carcinomas in Korea: use of G1 cycle markers as new prognosticators. Head Neck 34, 1408-1417
25. Li H and Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1575-1576
26. Laccourreye O (2005) Transoral lateral oropharyngectomy for squamous cell carcinoma of the tonsillar region: I. Technique, complications, and functional results. Arch Otolaryngol Head Neck Surg 131, 583-591
27. Jeesoo Chae, et al. (2017) Evolution in HPV-driven oropharynx carcinogenesis. J Clin Oncol 35, e1352-e1360
28. McKenna A, Hanna M and Banks E (2010) The genome analysis toolkit: a mapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303
29. Cibulski K, Lawrence S and Carter L (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31, 213-219
30. Krumm N, Sudmant H and Ko A (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22, 1325-1332
31. Rosenthal R, McGranahan N, Herrero J, Taylor S and Swanton C (2016) DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol 17, 31
32. Larson B and Fridley L (2013) PurBayes: estimating tumor cellularity and subclonality in next-generation sequencing data. Bioinformatics 29, 1888-1889