This is the accepted manuscript made available via CHORUS. The article has been published as:

Impact of a nonuniform charge distribution on virus assembly
Siyu Li, Gonca Erdemci-Tandogan, Jef Wagner, Paul van der Schoot, and Roya Zandi
Phys. Rev. E **96**, 022401 — Published 7 August 2017
DOI: [10.1103/PhysRevE.96.022401](https://doi.org/10.1103/PhysRevE.96.022401)
Impact of a non-uniform charge distribution on virus assembly

Siyu Li,¹ Gonca Erdemci-Tandogan,¹ Jef Wagner,¹ Paul van der Schoot,²,³ and Roya Zandi¹

¹Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
²Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
³Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

(Dated: July 9, 2017)

Many spherical viruses encapsulate their genome in protein shells with icosahedral symmetry. This process is spontaneous and driven by electrostatic interactions between positive domains on the virus coat proteins and the negative genome. We model the effect of the non-uniform, icosahedral charge distribution from the protein shell instead using a mean-field theory. We find that this non-uniform charge distribution strongly affects the optimal genome length, and that it can explain the experimentally observed phenomenon of overcharging of virus and virus-like particles.

I. INTRODUCTION

The simplest viruses consist of two components: the genome, either an RNA or DNA polynucleotide that carries the genetic code, and the capsid, a protein shell that encloses the genome. The capsid consists of many identical (or nearly identical) copies of the coat protein subunit. Even though the coat proteins are highly irregular in shape, the protein shells of most spherical viruses are highly structured and obey icosahedral symmetry [1–4]. One of the consequences of icosahedral symmetry is that it puts restrictions on the number of proteins that can make up a spherical virus shell. It limits this number to 60 times the structural index T that almost always assumes certain “magic” integer values $T = 1, 3, 4, 7, \ldots$ [5–7].

Many small single-stranded RNA or ssRNA viruses have been shown to spontaneously self-assemble in vitro, that is, outside living cells in solutions containing virus coat protein subunits and genome. In fact, virus coat proteins are able to co-assemble with a variety of cargos, including RNAs of other and sometimes unrelated viruses, synthetic polyanions, and negatively charged nanoparticles [8–10]. The spontaneous assembly of properly structured viral capsids of many icosahedral RNA viruses with this variety of cargos, is due to the presence of a disordered RNA binding domain on the N- or C-terminal end of the protein subunits. These are rich in basic amino acids that potentially extend quite deep into the capsid interior. These basic amino acids are positively charged under most solution conditions, and typically bear a few to tens of positive charges depending on the species of virus. It is now widely accepted that electrostatic interactions between the positive charges on the coat protein tails and negative charges on the genome is the main driving force for the spontaneous assembly of simple viruses in solution [11–19].

Naïvely, one might expect that the total charge on the genome and the capsid would balance out, if not perfectly, then certainly approximately. However, in many ssRNA viruses the number of negative charges on the genome significantly exceeds the number of positive charges on capsid proteins. For example, the number of positive charges on capsids of Cowpea Chlorotic Mottle Virus (CCMV) and Brome Mosaic virus (BMV), both with $T = 3$ structures, is about 1800, yet their genome measures about 3000 nucleotides (nt) [20]. As each nucleotide bears a single charge, this suggests an overcharging of over 60 per cent. Furthermore, in a recent set of in vitro experiments, where shorter segments of BMV RNAs in the range of $500 – 2500$ nts were mixed with CCMV capsid proteins, the resulting virus-like particles (VLPs) had a mixed population of pseudo $T = 2$ and $T = 3$ shells that were all overcharged [20]. RNA molecules shorter than 2000 nts were packaged in multiple copies, e.g., four in the case of 500 nt RNAs or two for 1000 nt RNAs in pseudo $T = 2$ capsids and two 1500 nt RNAs in $T = 3$ capsids.

While the in vitro self-assembly studies show that RNA-based virus-like particles are overcharged, experiments with linear negatively charged polymers, rather than virus RNAs, are less conclusive. In fact, studies with linear polyanions, such as poly(styrene sulfonate) (PSS), have often focused attention more strongly on how the capsid size distribution is impacted upon by either the polymer length or the stoichiometry ratio of the capsid proteins and polymers [12, 21]. What is known, is that polymers, ranging in degree of polymerisation from...
rise to the phenomenon of overcharging even for linear compared to a uniform charge distribution. This can give a virus shell, results in a longer optimal genome length underlying icosahedral arrangement of the proteins part of non-uniform charge distribution, associated with the uncharged regions, as shown in Fig. 1. We show how a respectably, we model capsids with 60 and 180 positively T=3 capsids have 60 and 180 RNA binding domains, i.e., the thickness, height and charge density. This is consistent with the experimental findings of Ni et al. on Brome Mosaic virus (BMV), in which mutations in the RNA binding domains that keep the number of charges constant but change their length and charge density, impact upon the packaged RNA length [14]. These and many other experiments reveal the existence of intriguing results arising from the N-terminal domain topology [14, 19, 31, 32]. A satisfactory theoretical approach needs to treat the coat protein topology (N-terminal domains), RNA folding, electrostatic interactions and polymer confinement simultaneously. Our theoretical calculations allow us to single out the impact of length and charge density of the RNA binding domains, without considering other effects such as the impact of translational entropy and kinetic trapping that make the interpretation of experiments and simulations difficult.

The paper is organized as follows. In the next section, we introduce the model and derive the equations that we will employ later. In Section III, we present our results corresponding to the capsid non-uniform charge distribution as well as RNA branching. Section IV discusses the impact on the capsid stability and overcharging phenomena of the length and charge density of N-terminal tails and the capsid radius. Finally, we present our conclusion and summarize our findings.

II. MODEL

Our model consist of a mean-field theory that includes the entropic and steric contributions of the polyelectrolyte and the electrostatic interactions between the polyelectrolyte and the capsid. We initially model the genome as a flexible linear polyelectrolyte that interacts attractively with the positive charges residing on the binding domains and postpone the discussion of the impact of RNA secondary structure, to Section II.A.

The free energy of a confined polyelectrolyte confined in a salt solution interacting with an external charge distribution can, within the ground-state approximation, be
written as
\[
\beta F = \int d^3r \left[-\frac{1}{6} \varepsilon \nabla^2 \Psi(r)^2 + \frac{1}{2} \nu \Psi^4(r) \right. \\
\left. - \frac{1}{8\pi\lambda_B} \left| \nabla \beta e \Phi(r) \right|^2 - 2\mu \cosh \left(\beta \Phi(r) \right) \\
+ \beta \tau \Psi^2(r) \Phi(r) + \beta \rho_0(r) \Phi(r) \right], \tag{1}
\]
with \(\beta\) the reciprocal temperature in units of energy, \(\alpha\) the statistical step or Kuhn length of the polymer, \(\nu\) is effective excluded volume per monomer, \(\lambda_B = e^2/4\pi\varepsilon\) the Bjerrum length, \(\varepsilon\) the dielectric permittivity of the medium is presumed constant [33].

The fields \(\Psi(r)\) and \(\Phi(r)\) are the monomer density field and electrostatic potential of mean force respectively. The positive charge density \(\rho_0(r)\) is placed in an icosahedrally symmetric distribution either on the capsid surface as shown in Figs. 1(a) and 1(b) or extending into the interior of the capsid along the N-terminal tails as in Fig. 2(b). Extremizing the free energy with respect to the \(\Psi(r)\) and \(\Phi(r)\) fields subject to the constraint that the total number of monomers inside the capsid is constant [34], \(N = \int d^3r \Psi^2(r)\), results in two self-consistent non-linear field equations,
\[
\frac{a^2}{6} \nabla^2 \Psi = -E \Psi(r) + \beta \tau \Phi(r) \Psi(r) + \nu \Psi^3, \tag{2a}
\]
\[
\frac{\beta e^2}{2\pi\lambda_B} \nabla^2 \Phi(r) = +2\mu \varepsilon \sinh \left(\beta \varepsilon \Phi(r) - \tau \nabla^2(r) - \rho(r) \right), \tag{2b}
\]
with \(E\) the Lagrange multiplier enforcing the fixed number of monomers. Note \(\rho(r)\) here is the volume charge density that will be set to zero if there are no charges extended to the interior of capsid. The boundary conditions for the electrostatic potential inside and outside of the capsid that we model as a sphere of radius \(R\) are,
\[
\hat{n} \cdot \nabla \Phi_{\text{in}} |_{r=R} = -\hat{n} \cdot \nabla \Phi_{\text{out}} |_{r=R} = 4\pi \lambda_B \sigma(\theta, \phi)/\beta e^2 \tag{3a}
\]
\[
\Phi_{\text{in}}(r) |_{r=R} = \Phi_{\text{out}}(r) |_{r=R} \tag{3b}
\]
\[
\Phi_{\text{out}}(r) |_{r=\infty} = 0. \tag{3c}
\]
with \(\sigma(\theta, \phi)\) the surface charge density. In case of a space charge distribution \(\rho \neq 0\), but then we assume \(\sigma = 0\). If the charges are localized to the surface, then \(\sigma \neq 0\) but the volume charge density \(\rho = 0\). Thus, if the charges associated with the capsid are lying completely on the capsid wall, the volume charge density \(\rho(r) = 0\) in Eq. (2b), and the charge from the capsid is modeled as the surface charge \(\sigma(\theta, \phi)\) in Eq. (3a). We discuss the exact forms of \(\sigma(\theta, \phi)\) and \(\rho(r)\) in Section II.B.

We use Dirichlet \(\Psi(r) |_{r=R} = 0\) boundary conditions for the chain density at the capsid wall but our findings are robust and we found the same results for Neumann boundary condition \(\partial_r \Psi(r) |_{r=R} = 0\). While Eq. (2a) applies to a linear chain, a similar formalism can be employed to obtain the free energy of RNA modeled as a branched polymer trapped in a viral shell [25], as explained in the next section.

A. Branched Polymer

To examine the combined effect of the secondary structure of RNA and non-uniform capsid charge distribution in this paper, we model RNA as an annealed branched polymer and add to Eq. (1) the following terms
\[
- \frac{1}{\sqrt{a^3}} (f_e \Psi + \frac{a^3}{6} f_b \Psi^3), \tag{4}
\]
which describe the statistics of an annealed branched polymer [25, 26, 35–39] with \(f_e\) and \(f_b\) the fugacities of the end and branch points respectively [25]. The field equations (Eq. (2a)) become
\[
\frac{a^2}{6} \nabla^2 \Psi = -E \Psi(r) + \beta \tau \Phi(r) \Psi(r) + \nu \Psi^3 \tag{5}
\]
\[
- \frac{f_e}{2\sqrt{a^3}} - \frac{\sqrt{a^3}}{4} f_b \Psi^2, \tag{5}
\]
In this formalism, the stem-loops or hair-pins in RNA are considered as end points. The number of end and branch points \(N_e\) and \(N_b\) of the polymer depend on the fugacities \(N_e = -f_e \frac{\partial E}{\partial f_e}\) and \(N_b = -f_b \frac{\partial E}{\partial f_b}\). We consider only the case of a single encapsulated polymer with no closed loops, and thus we have the following constraint: \(N_e = N_b + 2\). The fugacity of branch points \(f_b\) determines the degree of branching.

B. Icosahedral Symmetric Based Function(ISBF)

To explicitly model the charged N-terminal tails, we employ Icosahedral Symmetric Based Functions (ISBFs) for \(T = 1\) and \(T = 3\) structures with 60 and 180 positively charged regions, respectively. These functions are real-valued, complete, and orthogonal and can be written as a sum over spherical harmonics [40],
\[
\text{ISBF}_{l,n}(\theta, \phi) = \sum_{m=-l}^{l} b_{l,n,m} Y_{l,m}(\theta, \phi). \tag{6}
\]
The ISBF functions are indexed by the integers \(l\) and \(n\), where \(l(l + 1)\) is the azimuthal separation constant. \(n \in \{0, 1, ..., N_l - 1\}\) indexes the different ISBFs and \(N_l\) denotes the number of linearly independent ISBFs that can be constructed for a given \(l\). The weights \(b_{l,n,m}\) can be computed for each \(l\) by comparing the expansion of icosahedrally symmetric set of delta functions in both spherical harmonics and ISBFs.

The coefficients, \(b_{l,n,m}\) given in Eq. (6) become nonzero only when \(m\) is a multiple of five, corresponding to five-fold symmetry of icosahedral group. As a function of the associated Legendre function \(P_l^m(x)\), ISBFs [40] can
uniformly distributed in the volume of protruded regions. Positions presenting peptide tails (Fig. 2(b)) with charges such that the capsid surface protrudes in 60 or 180 "bumpy" charged regions extended inside the capsid. To fix the total charge of the capsid, the charge density of the charged regions depends on the cut-off value equal to zero if the magnitude of the ISBF is smaller than that in the N-terminal domains, but still higher compared to the capsid center even though the capsid wall is not charged between the tails.

We solved the coupled equations given in Eqs. (2) for ψ and Ψ fields, subject to the boundary conditions given in Eqs. (3) through the finite element method (FEM). The polymer density profiles ψ² as a function of the distance from the center of the shell, r, are shown in Figs. 3(a) and 3(b) in three and one dimension(s) respectively. As illustrated in the figure, the polymer density is higher at the N-terminal regions. Note that the density at the wall in the regions between N-terminal tails is lower than that in the N-terminal domains, but still higher compared to the capsid center even though the capsid wall is not charged between the tails.

Assuming that there are no charges in the regions between N-terminal tails (see Fig. 2(a)), we set charge density equal to zero if the magnitude of the ISBFs is smaller than a certain cutoff value C. Thus, the distance between the charged regions depends on the cutoff, and, since we fix the total charge of the capsid, the charge density of the N-terminal domain changes as a function of the cutoff. We consider both the "thin capsid model" where the charges are smeared on the surface representing the thin capsid model. (b) A T=3 thick capsid. The black spots show the regions with a uniform charge density and N-terminal tail (dashed curve), the density is still maximum close to the wall. The polymer is branched with a non-uniform charge distribution. The figure shows the profiles along two directions. The solid line corresponds to the direction in which the N-terminal tail is located and the dashed line to the direction without N-terminal tail (inset graph). In the absence of surface charge density and N-terminal tail (dashed curve), the density is still maximum close to the wall. The polymer is branched with $f_b = 3$, total monomer number=2411, salt concentration $\mu = 100\text{mM}$, $R = 12\text{nm}$ and $Qc = 1800$.

We find that the optimal genome length increases for a non-uniform charge distribution as compared to that where the charge distribution is uniform. In fact, the free energy in addition becomes deeper indicating a higher efficiency of genome encapsulation. Furthermore, we find

III. RESULTS

![Image](a)

![Image](b)

TABLE I. The coefficients of $b_{l,n,m}$ for $ISBF_{15,0} (T = 1)$ and $ISBF_{27,0} (T = 3)$ structures, see Eq. (6) in the manuscript.

l	$b_{l,0.5}$	$b_{l,0.10}$	$b_{l,0.15}$	$b_{l,0.20}$	$b_{l,0.25}$
15	0.51655	0.39131	-0.28298		
27	0.44330	-0.23513	-0.02788	0.41768	-0.27011

FIG. 3. Genome density profile of a T=3 capsid in (a) 3D view. The protruded regions represent RNA (red). The density of RNA between N-terminals is very small and not shown in the figure. (b) 1D view as the function of capsid radius with non-uniform charge distribution. The figure shows the profiles along two different directions. The solid line corresponds to the direction in which the N-terminal tail is located and the dashed line to the direction without N-terminal tail (inset graph). In the absence of surface charge density and N-terminal tail (dashed curve), the density is still maximum close to the wall. The polymer is branched with $f_b = 3$, total monomer number=2411, salt concentration $\mu = 100\text{mM}$, $R = 12\text{nm}$ and $Qc = 1800$. We find that the optimal genome length increases for a non-uniform charge distribution as compared to that where the charge distribution is uniform. In fact, the free energy in addition becomes deeper indicating a higher efficiency of genome encapsulation. Furthermore, we find
that the optimal genome length increases if the cutoff \(C \) is increased, and that the distance between the charged regions correspondingly increases. That is, as the charges on the capsid are distributed more non-uniformly, the optimal genome length increases. Nevertheless, for the thin capsid model, we have not been able to observe the phenomenon of overcharging with linear chains, i.e., the number of charges on genome is always lower than those on the capsids for all the parameters values that we tested. This is not the case for the thick capsid model as explained below.

Figure 4 illustrates the encapsulation free energy as a function of genome length for a \(T = 3 \) virus: total capsid charges on capsid \(Q_c = 1800 \), \(a = 1.0 \) nm, \(v = 0.01 \) nm\(^3\), \(\mu = 100 \) mM, \(R = 12 \) nm, tail length = 4 nm.

The graphs in Fig. 4 corresponds to a linear and branched polymer. As illustrated in the figure, the minimum of the free energy moves towards longer chains if the charge concentration \(Q \) is increased, and that the distance between the charged regions correspondingly increases. That is, as the charges on genome is always lower than those on the capsids for all the parameters values that we tested. This is not the case for the thick capsid model as explained below.

Figure 4 also shows the impact of RNA secondary structures on the optimal length of encapsulated genome. The graphs in Fig. 4 corresponds to \(f_b = 0 \) for a linear polymer and \(f_b = 1.0 \) and \(f_b = 3.0 \) for branched ones. The polymer becomes more strongly branched as \(f_b \) increases. Note that in the figure the distance between dots or dashed lines increases as the fugacity or the number of branch points increases. The figure reveals that as the degree of branching increases, the length of encapsulated genome increases for a capsid with a uniform charge density. This effect becomes stronger if we consider a non-uniform charge distribution. The diamonds in the figure indicate the optimal length of genome. The ratios of the optimal length or number of charges on RNA to the capsid total charge \(Q_c = 1800 \) from left to right in the figure are 0.39, 0.52, 0.92, 1.07, 1.22, 1.66, which clearly shows a transition from undercharging towards overcharging. We note that we find the same behavior when employing a \(T = 1 \) instead of a \(T = 3 \) capsid.

IV. DISCUSSION AND SUMMARY

The reason for overcharging associated with the non-uniform charge distributions is twofold. A non-uniform charge distribution on the capsids obviously promotes a non-uniform genome density distribution. However, in order to have a more uniform polymer distribution with lower entropy cost, longer chains are preferably encapsulated to make the genome distribution more uniform in the regions between the N-terminal tails. Figure 5(a)
illustrates this effect for a \(T = 3 \) structure with 180 tails as a plot of the optimal length of genome \(\text{vs.} \) the capsid charge density. Note that since the total charge of capsid is fixed, as we increase the charge density, we lower the volume of the N-terminal regions, which is also shown in the axis on the top of the graph. The vertical axis on the right-hand side of the figure shows the degree of overcharging. The circles in the figure correspond to \(\mu = 100 \) mM salt concentration and squares to \(\mu = 500 \) mM. For the hollow symbols the radius of capsid is \(R = 9.5 \) nm but for the solid symbols \(R = 11.5 \) nm. As shown in the figure, if we increase the area between the N-terminals or the radius of capsid, the amount of overcharging increases at a given salt concentration.

However, the noted entropy effect cannot explain all the observations. At the physiological salt concentration of \(\mu = 100 \) mM, the genome only interacts with the capsid if it is sitting in vicinity of the capsid coat protein charges. This is due to the rather short range of electrostatic interactions at that salt concentration. The presence of N-terminals increases the region with which the genome interacts attractively through electrostatic interactions. Thus, the higher the salt concentration, the more important becomes the role of N-terminals. The figure shows that the overcharging is more pronounced at \(\mu = 500 \) mM. Also, the higher salt concentration, the lower is the electrostatic self-repulsion between genome monomers, which helps to the encapsidation of longer chains.

We also examined the impact of the length of N-terminal domains in the thick capsid model, which corresponds to how far the charged regions extend into the interior of the capsid. As illustrated in Fig. 5(b) for \(T = 3 \) capsids, more genome is encapsidated for longer N-terminal tails, which is again due to larger interacting region for a fixed total mumer of charges on the capsid. The effect becomes more pronounced for higher salt concentrations as illustrated in the figure.

In summary, we have studied the phenomena of overcharging observed in many viruses. Previous mean-field theories as well as the experimental studies of CCMV capsid proteins with short linear polymers have indicated the resulting VLPs are undercharged[25, 26, 41–44]. However, MD simulations revealed overcharging can happen even for linear polymers and the question is why[23]. In this paper, we showed that the non-uniform charge distribution increases both the stability and the amount of genome that can be assembled by CPs as a result of what in essence is entropy. For a thin capsid model with the charges smeared flatly on the surface, longer chains are encapsulated, but we have not been able to observe overcharging with linear polymers. This indicates that overcharging for linear systems is primarily due to the charged N-terminal regions that protrude into the interior of the capsid. The N-terminal regions increase the regions in which the genome can interact with the capsid proteins and thus resulting in the encapsidation of longer chains. This latter effect is stronger at higher salt concentrations. We find that the combined effect of RNA base-pairing, which gives rise to the genome branching, and non-uniform charge distribution can explain the pronounced charge inversion observed in viruses.

ACKNOWLEDGMENTS

The authors would like to thank Vladimir Lorman for useful discussions. This work was supported by the National Science Foundation through Grant No. DMR-1310687 (R.Z.).
[19] V. Sivanandam, D. Mathews, R. Garmann, G. Erdemci-Tandogan, R. Zandi, and A. L. N. Rao, Scientific Reports 6, 26328 (2016).
[20] M. Comas-Garcia, R. D. Cadena-Nava, A. L. N. Rao, C. M. Knobler, and W. M. Gelbart, J. Virol. 86, 12271 (2012).
[21] Y. F. Hu, R. Zandi, A. Anavitarte, C. M. Knobler, and W. M. Gelbart, Biophys. J. 94, 1428 (2008).
[22] R. D. Cadena-Nava, Y. F. Hu, R. F. Garmann, B. Ng, A. N. Zelikin, C. M. Knobler, and W. M. Gelbart, J. Phys. Chem. B 115, 2386 (2011).
[23] J. D. Perlmutter, C. Qiao, and M. F. Hagan, eLife 2 (2013), 10.7554/eLife.00632.
[24] S. W. Singaram, R. F. Garmann, C. M. Knobler, W. M. Gelbart, and A. Ben-Shaul, Accounts of Chemical Research 119, 13991 (2015).
[25] G. Erdemci-Tandogan, J. Wagner, P. van der Schoot, R. Podgornik, and R. Zandi, Phys. Rev. E 89, 032707 (2014).
[26] G. Erdemci-Tandogan, J. Wagner, P. van der Schoot, R. Podgornik, and R. Zandi, Phys. Rev. E 94, 022408 (2016).
[27] R. Zandi and P. van der Schoot, Biophys. J. 96, 9 (2009).
[28] A. L. Bozic, A. Siber, and R. Podgornik, J. Biol. Phys. 38, 657 (2012).
[29] P. van der Schoot and R. Bruinsma, Phys. Rev. E 71, 061928 (2005).
[30] P. van der Schoot and R. Zandi, J. Biol. Phys. 39, 289 (2013).
[31] D. Marshall and A. Schneemann, Virology 285, 165 (2001).
[32] S. B. Larson, R. W. Lucas, and A. McPherson, Journal of Molecular Biology 336, 815 (2005).
[33] M. Janssen, A. HärTEL, and R. van Roij, Phys. Rev. Lett. 113, 268501 (2014).
[34] H. Ji and D. Hone, Macromolecules 21, 2600 (1988).
[35] T. C. Lubensky and J. Isaacs, Phys. Rev. A 20, 2130 (1979).
[36] T. T. Nguyen and R. F. Bruinsma, Phys. Rev. Lett. 97, 108102 (2006).
[37] S. I. Lee and T. T. Nguyen, Phys. Rev. Lett. 100, 198102 (2008).
[38] K. Elleuch, F. Lequeux, and P. Pfeuty, J. Phys. I France 5, 465 (1995).
[39] J. Wagner, G. Erdemci-Tandogan, and R. Zandi, J. Phys.:Condens. Matter 27, 495101 (2015).
[40] Y. Zheng and P. C. Doerschuk, SIAM Journal on Mathematical Analysis 32, 538 (2000), http://dx.doi.org/10.1137/S0036141098341770.
[41] A. Siber and R. Podgornik, Phys. Rev. E 76, 061906 (2007), arXiv:0709.0418.
[42] A. Siber and R. Podgornik, Phys. Rev. E 78, 051915 (2008).
[43] C. L. Ting, J. Z. Wu, and Z. G. Wang, PNAS 108, 16986 (2011).
[44] A. Siber, R. Zandi, and R. Podgornik, Phys. Rev. E 81, 051919 (2010).