Review

Gene Therapy Approaches to Functional Cure and Protection of Hematopoietic Potential in HIV Infection

Tetsuo Tsukamoto

Department of Immunology, Kindai University Faculty of Medicine, Osaka 5898511, Japan; ttsukamoto@med.kindai.ac.jp; Tel.: +81-723-66-0221

Abstract: Although current antiretroviral drug therapy can suppress human immunodeficiency virus (HIV) replication, a lifelong prescription is necessary to avoid viral rebound. The problem of persistent and ineradicable viral reservoirs in HIV-infected people continues to be a global threat. In addition, some HIV-infected patients do not experience sufficient T-cell immune restoration despite being aviremic during treatment, and this is likely due to altered hematopoietic potential. To achieve global eradication of HIV disease, a cure is needed. To this end, tremendous efforts have been made in the field of anti-HIV gene therapy. This review will discuss the concepts of HIV cure and relative viral attenuation and provide an overview of various gene therapy approaches aimed at a complete or functional HIV cure and protection of hematopoietic functions.

Keywords: human immunodeficiency virus; acquired immunodeficiency syndrome; hematopoietic stem/progenitor cells; gene therapy

1. Introduction

Human immunodeficiency virus (HIV) infection causes acquired immunodeficiency syndrome (AIDS). The depletion of memory CD4\(^+\) T cells preceding AIDS manifestation may be mainly due to the infection of these cells. However, HIV may also reduce the production of naïve T cells by infecting CD4\(^+\) thymocytes. On the other hand, although the dynamics of hematopoietic stem/progenitor cells (HSPCs) in HIV-infected settings is still unclear, it is well established that HIV infection is associated with hematological changes such as anemia and pancytopenia [1]. These hematological changes are likely due to modified HSPCs and hematopoietic potential of the host. Therefore, a cure for HIV disease should consider not only the absence of newly HIV-infected CD4\(^+\) cells but also the normal production rates of CD4\(^+\) T cells and other hematopoietic cells (Figure 1).

2. The idea of intracellular immunization

In 1988, Baltimore presented his idea of intracellular immunization by gene therapy [2], and his concepts are still valid today. First, he suggested expressing inhibitory molecules against HIV in target cells. Second, he proposed using retroviral vectors to transduce cells, although lentiviral vectors are widely used today. Third, he conceived the use of gene-modified HSPCs to replace the hosts’ immune system with an HIV-resistant one. These concepts may be summarized as intracellular artificial immune systems designed against HIV and working independently from HIV-specific CD4\(^+\) helper T cells, the most vulnerable HIV targets [3]. Since then, a number of candidate gene therapies have been proposed and tested and are described later in this article.
Figure 1. The concepts of human immunodeficiency virus (HIV) cure. A cure for the HIV disease is commonly interpreted as antiretroviral drug therapy (ART)-free life without viral rebound for prolonged periods. In addition, the cure of bone marrow dysfunctionalities observed in HIV-infected patients could be included in a stricter definition of HIV cure.

3. Evidence of modified CD34+ cell dynamics and functions in HIV infection

HIV-1 may cause the loss of primitive hematopoietic progenitors without directly infecting these cells [4]. However, HIV infection does not cause the complete loss of CD34+ stem cells, and it is, therefore, possible to harvest stem cells from HIV-infected patients suffering from lymphoma [5], albeit with reduced efficiencies in relation to the reduction of peripheral CD4+ T-cell counts [6] or reduced \textit{in vitro} lymphopoiesis capacities [7]. The recovery of CD4+ T-cell counts after successful antiretroviral drug therapy treatment may depend on the recovery of CD34+ cell counts [8].

A number of potential mechanisms involved in the changes of CD34+ cells in the presence of HIV have been suggested, such as reduced expression of the proto-oncogene \textit{c-mpl} on CD34+ cells [9] and elevated plasma stromal cell-derived factor 1 (SDF-1) levels [10]. HIV-1 infection causes upregulation of inflammatory cytokine production that may affect the dynamics and functions [11] or induces Fas-mediated apoptosis [12] of bone marrow CD34+ cells. On the other hand, HSPCs themselves may contribute to inflammation and allergies [13]. This may be partly because inflammatory signals are involved in HSPC development [14]. Recent evidence has suggested that CD34+CD226(DNAM-1)+CXCR4+ cells may represent a subset of common lymphoid progenitors associated with chronic HIV infection and inflammation, reflecting the altered dynamics of natural killer cells and α/β T cells [15].

Humanized mouse models are useful for analyzing bone marrow CD34+ loss or changes following HIV-1 challenge. In studies with humanized mice infected with CXCR4-tropic HIV-1$_{NL4-3}$, CD34+ hematopoietic progenitor cells were depleted and showed impaired \textit{ex vivo} myeloid/erythroid colony forming capacities after challenge [16,17]. Reduction of bone marrow CD34+ cell counts after CCR5-tropic HIV-1 infection was also detected in another study [18]. Interestingly, depletion of bone marrow CD34+ cells following CCR5-tropic HIV infection has been reported to depend on plasmacytoid dendritic cells [19] or to be associated with the expression of CXCR4 [20]. The latter implicates a potential role of the SDF-1/CXCR4 axis in the loss of CD34+ cells. Another recent \textit{in vitro} study suggested that CD34+CD7+CXCR4+ lymphoid progenitor cells may be depleted in the presence of CXCR4-tropic HIV-1 in the coculture of HIV-infected cord-derived CD34+ cells with OP9-DL1 [21].

4. The protection of bone marrow CD34+ cells by an anti-HIV gene therapy demonstrated \textit{in vivo}

There have been few reports testing the protection of CD34+ cells after HIV infection by gene therapy. This may be because viral suppression and CD4+ counts have been widely accepted as measures for the effect of gene therapies against HIV. However, the true goal for any gene therapy
against HIV should be the protection of hematopoietic potential because this is another arm of the
definition of AIDS, i.e., the loss of cellular immunity (Figure 1). We have recently reported that the
transcriptional gene silencing (TGS) approach using a short hairpin (sh) RNA, called shPromA,
resulted in limited CXCR4-associated depletion of bone marrow CD34+ cells following CCR5-tropic
HIV infection in humanized mice, suggesting that anti-HIV gene therapy can support the
preservation of hosts' hematopoietic potential [20].

5. Complete cure vs. functional cure of HIV infection

Strategies for the treatment of HIV infection include eliminating all the HIV DNA copies within
the host, termed a complete cure (Figure 1). In pursuing the feasibility of this goal, tremendous
efforts have been made to (1) find a method to detect all the latently infected HIV DNAs in viral
reservoirs, and to (2) eliminate all the detected HIV DNAs so that the host would become sterile in
terms of HIV infection [22]. Among the methods to achieve this, the so-called “shock and kill”
method, in which reactivation of the viral reservoir is attempted with a shock-inducing agent
followed by the immune-mediated killing of the reactivated cells, has been widely investigated
[23-27]. These efforts have been partly successful [22,28]. However, the difficulty of viral eradication
in vivo is not limited to HIV; other viruses such as herpes simplex viruses, varicella–zoster virus,
cytomegalovirus, and Epstein–Barr virus induce long-lasting latent infection, making them
inerradicable [29]. HIV may differ from other latently infecting viruses, as viral replication from the
latent reservoir can resume quickly, even if the host is not considered immunocompromized [30].
Moreover, even in the case of the so-called Berlin patient who exhibited no sign of HIV existence
following allogeneic transplantation with CCR5-Δ32/Δ32 hematopoietic stem cells, a complete cure
was assumed rather than being fully demonstrated [31,32].

Alternatively, some potential gene therapy methods aim at a functional cure that is evidenced
by the control of HIV replication below the limit of detection and the immune system being
functionally normal despite residual cells harboring HIV proviral DNAs in the host (Figure 1)
[28,33]. This approach might be more practical than the complete cure approach, given that many
successful vaccines for chronic viral infections so far exert a functional cure rather than elimination
of the targeted viruses [34]. In light of this, it could be stated that for those pathogens where an
effective vaccine has not been developed to date, researchers could, instead, develop gene therapies
aiming at a functional cure. In this way, there is an overlap between the concept of functional-cure
gene therapy and the concept of vaccines against chronic pathogens [35].

6. Connection between functional-cure gene therapies and live-attenuated vaccine approaches

Live-attenuated vaccines have been tested in macaque AIDS models using simian
immunodeficiency virus (SIV) strains [36]. After the infection of a host with a live-attenuated SIV or
simian-human immunodeficiency virus (SHIV), the vaccine strain is controlled by T-cell response
but remains slowly replicating in the infected host. This results in further immunization of the host
to prepare for subsequent superinfections of wild-type SIV or SHIV. Therefore, even if
live-attenuated vaccines are powerful, they provide a functional but not a complete cure. This means
that there is a scientific connection between live-attenuated vaccines and gene therapy approaches
for a functional cure (Figure 2). In other words, anti-HIV gene therapies make CD4+ cells more
resistant to HIV infection, and this can be interpreted as the relative attenuation of the infected virus
to the gene-modified host cells (Figure 2). Relative viral attenuation might, thus, help host immunity
to control the virus [37].
Figure 2. The concept of relative viral attenuation. (a) A schema describing direct and indirect viral attenuation. HIV usually infects host CD4⁺ cells efficiently and replicates rapidly. As a result, the host immune system fails to control viral replication (left). However, accumulating evidence in macaque AIDS models suggests that a live-attenuated virus, which infects and replicates slowly because of partial defects in the viral genome, can be controlled by the immune system and help further immunization for potential superinfection with immunodeficiency virus strains that are homologous to the vaccine strain (upper right). The live attenuation method cannot be directly applied to HIV infection in humans because of safety concerns. However, indirect viral attenuation can be achieved by rendering the host cells HIV-resistant by an “intracellular immunization” gene therapy (lower right). (b) The definition of relative viral attenuation. This idea can connect live-attenuated vaccine studies and gene therapy approaches to achieve a functional cure.

Given the following parameters:
- \(v_0 \) ... Virulence of the wild type virus
- \(v_1 \) ... Virulence of the live-attenuated virus
- \(r_0 \) ... Viral resistance of the unmanipulated host cells
- \(r_1 \) ... Viral resistance of the gene-modified host cells

"Relative viral attenuation \(f(t_1) \)" can be defined as follows, using the direct viral attenuation index \((v_0/v_1) \) and the indirect viral attenuation index \((r_1/r_0) \).

\[
f(t_1) = \frac{v_0}{v_1} \times \frac{r_1}{r_0}
\]
7. Gene therapy strategies against HIV

The so-called Berlin patient, an HIV-positive male United States citizen who was diagnosed with HIV while attending university in Berlin and later suffered from acute myelogenous leukemia, received a transplantation of allogeneic hematopoietic stem cells homozygous for CCR5-Δ32. This resulted in a subsequent functional HIV cure [31,32]. Because CCR5 is critical in HIV infection and transmission, as observed with CCR5-Δ32 homozygous cells resistant to HIV infection [38], the manipulation of CCR5 expression on HIV target cells has been intensively investigated and is considered effective [39-61]. CCR5 can be targeted by zinc finger nucleases [62,63], ribozymes [64], CRISPR/Cas9 methods [65], transcription activator-like effector nucleases [65], and shRNAs [42,66,67]. Among these, several gene therapy methods, including one using lentiviral vector LVsh5/C46, expressing shRNA against CCR5, and HIV-1 entry inhibitor C46 [68] have been tested in clinical trials [51]. While CCR5 is involved in numerous pathologic states including inflammatory and infectious diseases [69], a complete knockout of CCR5 can be related to an increased sensitivity to some viral infections [70,71]. Therefore, CCR5 gene editing should only be considered for HIV cure [69].

The targeting of HIV RNA sequences by ribozymes or RNAs [58,72-83] and HIV DNA sequences by the CRISPR/Cas9 system [84] have been investigated and are also considered major strategies [59,85]. The latter method has recently been of great interest especially, primarily because of its potential for targeting and disrupting integrated HIV DNA sequences to achieve a complete cure. A recent study targeted and inactivated the HIV-1 long terminal repeat (LTR) U3 region in vitro by Cas9 and guide RNAs (gRNAs), and no off-target gene editing to the host cells was detected [86]. Another study also successfully targeted the HIV-1 LTR U3 region using the CRISPR/Cas9 system. However, this study also detected the emergence of escape variant viruses mediated by the host cells’ error-prone non-homologous end joining (NHEJ) DNA repair following the CRISPR/Cas9 targeting [87]. The mutagenesis problem with CRISPR/Cas9 has also been observed in treatments of other diseases [88] but can be a serious problem when targeting the HIV DNAs because the strategy might require sustained expression of Cas9 and gRNA in the potential HIV target cells, meaning a sustained risk of mutagenesis [89]. Therefore, an improved method for disrupting HIV DNA while prohibiting the emergence of replication-competent escape variants caused by the NHEJ repair system might be necessary. Nevertheless, radical approaches can still be tested in cultured cells and animals. For example, a recent study demonstrated that in vivo gene delivery of multiplex single-gRNAs plus Staphylococcus aureus Cas9 to transgenic mice bearing HIV DNA using an adeno-associated virus (AAV) vector resulted in an efficient excision of HIV DNA in various tissues and organs [90]. If safety concerns are met, such a gene-delivery method can be a powerful tool to achieve systemic elimination of latent viral reservoirs in hematopoietic cells as well as nonhematopoietic cells such as astrocytes [91]. Wang et al. (2018) have written a thorough review of topics regarding the targeting of HIV DNA by CRISPR/Cas9 [84].

There is yet another strategy: the silencing approach, which aims to reduce the production rate of HIV viral particles per integrated HIV DNA copy [28]. Lentiviral gene delivery enables RNA-based gene silencing, including the previously characterized small interfering RNA (siRNA) called PromA [92,93]. PromA is a short RNA sequence specific for the two NF-κB binding sites in the HIV LTR U3 region. While specific mRNA cleavage by post-transcriptional gene silencing is the best-known mechanism for siRNAs, PromA triggers TGS mediated by epigenetic changes such as DNA methylation and heterochromatin formation [76,94]. In fact, PromA has been shown to induce chromatin compaction in the HIV-1 promoter region [94]. This means that, in contrast to methods attempting to eradicate HIV DNA, PromA locks and stabilizes latently infecting HIV provirus and prevents viral reservoirs from reactivation induced by stimuli such as tissue necrosis factor (Figure 3A) [95-97]. The efficacy of PromA in suppressing HIV-1 replication in vivo was first demonstrated by an HIV challenge study using humanized NOD/SCID/JAK3null (NOJ) mice transplanted with human peripheral mononuclear cells expressing shPromA [96]. Our recent study to extend the results using NOJ mice engrafted with shPromA-transduced CD34+ cells and their derivatives
further demonstrated that PromA could be an effective gene therapy for protecting bone marrow CD34+ cells and the hematopoietic potential of the host from HIV infection (Figure 3B) [20,98].

Other potential gene therapy methods include the secretion of soluble HIV entry inhibitors [99]; rescue of hematopoiesis including myelopoiesis, erythropoiesis, and megakaryopoiesis using c-mpl [100]; expression of a chimeric human-simian TRIM5α [101]; expression of p68 kinase [102]; and expression of HIV Gag mutants [103].

Figure 3. A schematic overview of PromA. (a) PromA induces chromatin compaction in the human immunodeficiency virus (HIV)-1 promoter. This prevents HIV-1 DNA from reactivation such as NF-κB-mediated reactivation by tissue necrosis factor (TNF). For details on the molecular mechanisms involved in transcriptional gene silencing induced by PromA, see Klemm et al., 2016 [92] and Mendez et al., 2018 [97]. (b) Summary of the humanized mouse study to test the efficacy of shRNA PromA (shPromA) [20,98]. Newborn NOD/SCID/Jak3null mice were intrahepatically transfused with unmanipulated cord-derived CD34+ cells or CD34+ cells lentivirally transduced with shPromA. Those mice showing engraftment of human cells were challenged with CCR5-tropic HIV-1JRFL. Two weeks after challenge, the mice were sacrificed, and their bone marrow (BM) CD34+ cells and peripheral T cells were analyzed. Interestingly, mice transplanted with unmanipulated CD34+ cells showed unexpectedly low BM CD34+ cell counts 2 weeks after HIV infection, with concomitant depletion of peripheral CD4+ T-cells. On the other hand, mice engrafted with shPromA-expressing CD34+ cells showed preserved BM CD34+ cell and peripheral CD4+ T-cell populations at 2-weeks post challenge.
8. Target cells for anti-HIV gene therapies

Recent studies indicate that ideal anti-HIV gene therapy targets should be hematopoietic stem cells rather than more differentiated cells such as peripheral CD4+ T cells because the transduced cells could engraft the host bone marrow and act as a lifelong source of HIV-resistant CD4+ cells [104,105]. Potential gene therapies using CD34+ cells have been investigated in vitro using cell culture experiments or in vivo using humanized mice. Furthermore, transplantation of macaques with gene-modified autologous CD34+ cells followed by infection with SIV has also been tested [106,107], although strategies may differ between gene therapies [105]. Based on such basic study results, clinical trials using transplantation of retrovirally or lentivirally gene-modified CD34+ cells in HIV-positive patients have been carried out [73,108,109]. Gene therapies of CD34+ cells have been considered as a cure for monogenic immune diseases. For example, patients with adenosine deaminase deficiency [110], Wiskott–Aldrich syndrome (WAS) [111], and X-linked severe combined immunodeficiency [112,113] were successfully treated in clinical trials by transplantation of autologous CD34+ cells retrovirally or lentivirally transduced with the wild-type gene. Lentiviral vectors may be more efficient in gene transfer into resting stem cells at the G0/G1 phase compared with murine retroviral vectors [114]. Both retroviral and lentiviral vectors, if applied to gene therapy of HSPCs, could have adverse effects including deregulation of gene expression [115] and triggering p53 [116]. However, lentiviral vectors may be safer than retroviral vectors because the latter may occasionally cause insertional mutagenesis near active start regions of genes, possibly leading to oncogenesis and cancers such as leukemias [112]. Self-inactivating retroviral or lentiviral vectors lacking the U3 region of 3′ LTRs have further safety advantages [117]. Moreover, recent evidence has shown that transplantation of WAS patients with autologous CD34+ cells transduced with lentiviral vectors encoding WAS protein results in long-term survival of genetically engineered hematopoietic stem cells and lymphoid-committed progenitors [118], giving hope for lifelong protection from HIV.

Induced pluripotent stem cells (iPSCs) may also be candidates for anti-HIV gene transfer. iPSCs can be generated from the patients’ somatic cells, differentiate to any cells in vitro, and are expected to be utilized for the treatment of a broad range of genetic diseases [119-122]. While CD34+ cells engraft in the bone marrow following transplantation and differentiate to hematopoietic cells in vivo, iPSCs may be more convenient for in vitro hematopoiesis than CD34+ cells because of their ease of culture [123]. Interestingly, the impact of shPromA-transduced iPSCs on the suppression of viral replication in vitro has recently been demonstrated, suggesting that the large-scale production of gene-modified monocytes or lymphocytes in vitro for adoptive therapy could be a future option [124]. Additionally, generation of iPSCs from HIV epitope-specific CD8+ cytotoxic T cells followed by their re-differentiation to the identical epitope-specific CD8+ T cells for adoptive transfer could be an effective immunotherapy [125].

9. Application of gene therapy methods to immunotherapies

Immunotherapy approaches based on gene therapy methods have been extensively investigated. Chimeric antigen receptor (CAR) T-cells are engineered T cells expressing CARs for the recognition and killing of target cells [126]. Most typical CARs are engineered to recognize an antigen with a monoclonal antibody-derived extracellular domain conjugated to T-cell receptor-derived transmembrane and intracellular domains. Therefore, despite the use of T-cell signaling pathways, such CAR T-cell therapies might be regarded as an enhancement of antibody-based therapies [127,128]. To date, most successful CAR T-cell therapies have been against cancers [129]. For example, the high efficacy of the adoptive transfer of CAR T-cells recognizing CD19 has been demonstrated for the treatment of patients with B-cell acute lymphoblastic leukemia [130] and diffuse large B-cell lymphoma [131]. In contrast, CAR T-cell therapies may require manufacturing autologous CAR T cells for each patient and, thus, are not yet widely available [131]. Several broadly neutralizing antibodies have been considered for generating CAR T cells against HIV infection. Despite the shared concern of escape mutations with antibody-based therapies, CAR T cells are MHC-independent and more potent than neutralizing antibody administration, so better
outcomes can be expected. A further improvement of HIV CAR gene therapy has been tested to make CAR T cells HIV-resistant by insertion of the HIV CAR gene expression cassette into the CCR5 locus, resulting in the disruption of CCR5 [132]. Finally, an adoptive transfer therapy using autologous CD34+ cells transduced with lentivirus expressing a CD4-based CAR able to bind the HIV envelope protein has been tested in pigtail macaques infected with a SHIV [133].

Another exciting gene transfer-based immunotherapy is programming the production of specific anti-HIV antibodies [134,135]. Compared with vaccination, passive immunization using a set of broadly neutralizing antibodies is customizable, MHC-independent, and provides instant and reliable protection against HIV [136,137]. However, neutralizing antibodies need repeated administration to provide prolonged protection [137]. Thus, the concept of antibody gene transfer is to overcome the limitation of passive immunization, which is only transiently effective [138]. It was demonstrated in a humanized mouse model that antibody gene transfer by intramuscular inoculation of an AAV vector encoding full-length antibody was able to induce production of the antibody by muscle cells and confer protection against intravenous HIV-1 challenge [139]. In another study, an adenovirus serotype 5 (Ad5) vector encoding an HIV-1-specific broadly neutralizing antibody PGT121 (Ad5.PGT121) afforded a more rapid and robust antibody response than an AAV encoding PGT121 (AAV1.PGT121) in HIV-1-infected bone marrow-liver-thymus humanized mice [140].

10. Biosafety and bioethics concerns regarding the application of anti-HIV gene therapies to human germline cells for pregnancy

In late 2018, it was reported that a Chinese researcher gave birth to two children bearing CRISPR/Cas9-mediated CCR5 double knockouts to confer HIV resistance [141]. However, inheritable gene modification of human germline cells culminating in human pregnancy is currently unacceptable [142]. CRISPR/Cas9, if applied to germline cells, could cause additional inheritable mutations to the host genome DNA [88,143-145], and the influence of this is not entirely predictable at this moment. Therefore, such investigation on human germline cells should be limited to nonclinical (i.e., in vitro) studies. Regarding the targeted gene, it should be emphasized that CCR5 knockout has not been proven safe. Even if a small population of people, mostly of Caucasian origin, is living without functional CCR5 alleles, this does not mean that the loss of CCR5 is universally harmless. This is partly because CCR5 has been reported to play important roles in some viral infections [70,71]. Moreover, there is an unexcluded possibility that the lack of CCR5 function among those carrying the CCR5-Δ32/Δ32 double mutations could be compensated by accompanying genetic variations that do not exist in the majority of human populations having the wild-type CCR5 alleles. We refer to the statement published in 2017 by an American Society of Human Genetics workgroup regarding human germline genome editing [146].

11. Conclusions

Evidence suggests that HIV infection alters the bone marrow hematopoietic potential of the host. This can lead to impaired CD4+ T-cell generation and contributes to the loss of peripheral CD4+ T cells and the manifestation of AIDS. Further investigations on the topics discussed in this review will collectively enhance our understanding of the important role that HIV gene therapy can contribute toward an HIV cure. Intracellular immunization gene therapies, including silencing approaches, are expected to confer relative viral attenuation without interfering with the HIV genome and assist cellular immunity to kill HIV-infected cells, leading to better viral control and a functional cure. In light of this, long-term preservation of bone marrow CD34+ cells and hematopoietic potential, in addition to aviremic states and restored peripheral CD4+ T-cell counts, may be an appropriate endpoint of future anti-HIV gene therapies. Furthermore, recent advances in gene therapy-based immunotherapy approaches against HIV have also been described in this review.
Funding: This work received no external funding.

Acknowledgments: I thank Enago (www.enago.jp) for the English language review.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Parinitha, S.; Kulkarni, M. Haematological changes in HIV infection with correlation to CD4 cell count. *Australas Med J* **2012**, *5*, 157-162, doi:10.4066/AMJ.20121008.

2. Baltimore, D. Gene therapy. Intracellular immunization. *Nature* **1988**, *335*, 395-396, doi:10.1038/335395a0.

3. Tsukamoto, T.; Yamamoto, H.; Okada, S.; Matano, T. Recursion-based depletion of human immunodeficiency virus-specific naive CD4(+) T cells may facilitate persistent viral replication and chronic viraemia leading to acquired immunodeficiency syndrome. *Med Hypotheses* **2016**, *94*, 81-85, doi:10.1016/j.mehy.2016.06.024.

4. Marandin, A.; Katz, A.; Oksenhendler, E.; Tulliez, M.; Picard, F.; Vainchenker, W.; Louache, F. Loss of primitive hematopoietic progenitors in patients with human immunodeficiency virus infection. *Blood* **1996**, *88*, 4568-4578.

5. Re, A.; Cattaneo, C.; Skert, C.; Balsalobre, P.; Michieli, M.; Bower, M.; Ferreri, A.J.; Hentrich, M.; Ribera, J.M.; Allione, B., et al. Stem cell mobilization in HIV seropositive patients with lymphoma. *Haematologica* **2013**, *98*, 1762-1768, doi:10.3324/haematol.2013.089052.

6. Schooley, R.T.; Mladenovic, J.; Sevin, A.; Chiu, S.; Miles, S.A.; Pomerantz, R.J.; Campbell, T.B.; Bell, D.; Ambruso, D.; Wong, R., et al. Reduced mobilization of CD34+ stem cells in advanced human immunodeficiency virus type 1 disease. *J Infect Dis* **2000**, *181*, 148-157, doi:10.1086/315168.

7. Nielsen, S.D.; Clark, D.R.; Hutchings, M.; Dam-Larsen, S.; Repping, S.; Nielsen, J.O.; Mathiesen, L.; Miedema, F.; Hansen, J.E. Treatment with granulocyte colony-stimulating factor decreases the capacity of hematopoietic progenitor cells for generation of lymphocytes in human immunodeficiency virus-infected persons. *J Infect Dis* **1999**, *180*, 1819-1826, doi:10.1086/315136.

8. Sauce, D.; Larsen, M.; Fastenackels, S.; Pauchard, M.; Ait-Mohand, H.; Schneider, L.; Guihot, A.; Boufassa, F.; Zaunders, J.; Iguertsira, M., et al. HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. *Blood* **2011**, *117*, 5142-5151, doi:10.1182/blood-2011-01-331306.

9. Koka, P.S.; Kitchen, C.M.; Reddy, S.T. Targeting c-Mpl for revival of human immunodeficiency virus type 1-induced hematopoietic inhibition when CD34+ progenitor cells are re-engrafted into a fresh stromal microenvironment in vivo. *J Virol* **2004**, *78*, 11385-11392, doi:10.1128/jvi.78.20.11385-11392.2004.

10. Ikegawa, M.; Yuan, J.; Matsumoto, K.; Herrmann, S.; Iwamoto, A.; Nakamura, T.; Matsushita, S.; Kimura, T.; Honjo, T.; Tashiro, K. Elevated plasma stromal cell-derived factor 1 protein level in the progression of HIV type 1 infection/AIDS. *AIDS Res Hum Retroviruses* **2001**, *17*, 587-595, doi:10.1089/08892201300119680.

11. Bordoni, V.; Bibas, M.; Viola, D.; Sacchi, A.; Cimin, E.; Tumino, N.; Casetti, R.; Amendola, A.; Ammassari, A.; Agrati, C., et al. Bone Marrow CD34(+) Progenitor Cells from HIV-Infected Patients Show an Impaired T Cell Differentiation Potential Related to Proinflammatory Cytokines. *AIDS Res Hum Retroviruses* **2017**, *33*, 590-596, doi:10.1089/AID.2016.0195.

12. Isgro, A.; Mezzaroma, I.; Aiuti, A.; Fantauzzi, A.; Pinti, M.; Cossarizza, A.; Aiuti, F. Decreased apoptosis of bone marrow progenitor cells in HIV-1-infected patients during highly active antiretroviral therapy. *AIDS* **2004**, *18*, 1335-1337.
13. Fischer, K.D.; Agrawal, D.K. Hematopoietic stem and progenitor cells in inflammation and allergy. *Front Immunol* 2013, 4, 428, doi:10.3389/fimmu.2013.00428.

14. Luis, T.C.; Tremblay, C.S.; Manz, M.G.; North, T.E.; King, K.Y.; Challen, G.A. Inflammatory signals in HSPC development and homeostasis: Too much of a good thing? *Exp Hematol* 2016, 44, 908-912, doi:10.1016/j.exphem.2016.06.254.

15. Bozzano, F.; Marras, F.; Ascierto, M.L.; Cantoni, C.; Cenderello, G.; Dentone, C.; Di Biagio, A.; Orofino, G.; Mantia, E.; Boni, S., et al. 'Emergency exit' of bone-marrow-resident CD34(+)DNAM-1(bright)CXCR4(+)committed lymphoid precursors during chronic infection and inflammation. *Nat Commun* 2015, 6, 8109, doi:10.1038/ncomms9109.

16. Koka, P.S.; Fraser, J.K.; Bryson, Y.; Bristol, G.C.; Aldrovandi, G.M.; Daar, E.S.; Zack, J.A. Human immunodeficiency virus inhibits multilineage hematopoiesis in vivo. *J Virol* 1998, 72, 5121-5127.

17. Jenkins, M.; Hanley, M.B.; Moreno, M.B.; Wieder, E.; McCune, J.M. Human immunodeficiency virus-1 infection interrupts thymopoiesis and multilineage hematopoiesis in vivo. *Blood* 1998, 91, 2672-2678.

18. Arainga, M.; Su, H.; Poluektova, L.Y.; Gorantla, S.; Gendelman, H.E. HIV-1 cellular and tissue replication patterns in infected humanized mice. *Sci Rep* 2016, 6, 23513, doi:10.1038/srep23513.

19. Li, G.; Zhao, J.; Cheng, L.; Jiang, Q.; Kan, S.; Qin, E.; Tu, B.; Zhang, X.; Zhang, L.; Su, L., et al. HIV-1 infection depletes human CD34+CD38- hematopoietic progenitor cells via pDC-dependent mechanisms. *PLoS Pathog* 2017, 13, e1006505, doi:10.1371/journal.ppat.1006505.

20. Tsukamoto, T. Transcriptional gene silencing limits CXCR4-associated depletion of bone marrow CD34+ cells in HIV-1 infection. *AIDS* 2018, 32, 1737-1747, doi:10.1097/QAD.0000000000001882.

21. Tsukamoto, T. HIV Impacts CD34+ Progenitors Involved in T-Cell Differentiation During Coculture With Mouse Stromal OP9-DL1 Cells. *Frontiers in Immunology* 2019, 10, 81, doi:10.3389/fimmu.2019.00081.

22. Huyghe, J.; Magdalena, S.; Vandekerckhove, L. Fight fire with fire: Gene therapy strategies to cure HIV. *Expert Rev Anti Infect Ther* 2017, 15, 747-758, doi:10.1080/14787210.2017.1353911.

23. Deeks, S.G. HIV: Shock and kill. *Nature* 2012, 487, 439-440, doi:10.1038/487439a.

24. Darcis, G.; Kula, A.; Bouchat, S.; Fujinaga, K.; Corazza, F.; Ait-Ammar, A.; Delacourt, N.; Melard, A.; Kabeya, K.; Vanhulle, C., et al. An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression. *PLoS Pathog* 2015, 11, e1005063, doi:10.1371/journal.ppat.1005063.

25. Archin, N.M.; Liberty, A.L.; Kashuba, A.D.; Choudhary, S.K.; Kuruc, J.D.; Crooks, A.M.; Parker, D.C.; Anderson, E.M.; Kearney, M.F.; Strain, M.C., et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. *Nature* 2012, 487, 482-485, doi:10.1038/nature11286.

26. Elliott, J.H.; Wightman, F.; Solomon, A.; Ghneim, K.; Ahlers, J.; Cameron, M.J.; Smith, M.Z.; Spelman, T.; McMahon, J.; Velayudham, P., et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. *PLoS Pathog* 2014, 10, e1004473, doi:10.1371/journal.ppat.1004473.

27. Rasmussen, T.A.; Tolstrup, M.; Brinkmann, C.R.; Olesen, R.; Eriksen, C.; Solomon, A.; Winckelmann, A.; Palmer, S.; Dinarello, C.; Buson, M., et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. *Lancet HIV* 2014, 1, e13-21, doi:10.1016/s2352-3018(14)70014-1.
28. Cary, D.C.; Peterlin, B.M. Targeting the latent reservoir to achieve functional HIV cure. *F1000Res* **2016**, 5, F1000 Faculty Rev-1009, doi:10.12688/f1000research.8109.1.

29. Chen, T.; Hudnall, S.D. Anatomical mapping of human herpesvirus reservoirs of infection. *Mod Pathol* **2006**, 19, 726-737, doi:10.1038/modpathol.3800584.

30. Sengupta, S.; Siliciano, R.F. Targeting the Latent Reservoir for HIV-1. *Immunity* **2018**, 48, 872-895, doi:10.1016/j.immuni.2018.04.030.

31. Hutter, G.; Nowak, D.; Mossner, M.; Ganepola, S.; Mussig, A.; Allers, K.; Schneider, T.; Hofmann, J.; Kucherer, C.; Blau, O., et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. *N Engl J Med* **2009**, 360, 692-698, doi:10.1056/NEJMoa0802905.

32. Allers, K.; Hutter, G.; Hofmann, J.; Loddenkemper, C.; Rieger, K.; Thiel, E.; Schneider, T. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. *Blood* **2011**, 117, 2791-2799, doi:10.1182/blood-2010-09-309591.

33. Archin, N.M.; Margolis, D.M. Emerging strategies to deplete the HIV reservoir. *Curr Opin Infect Dis* **2014**, 27, 29-35, doi:10.1097/qco.000000000000026.

34. Berzofsky, J.A.; Ahlers, J.D.; Janik, J.; Morris, J.; Oh, S.; Terabe, M.; Belyakov, I.M. Progress on new vaccine strategies against chronic viral infections. *J Clin Invest* **2004**, 114, 450-462, doi:10.1172/jci22674.

35. Noto, A.; Trautmann, L. Developing Combined HIV Vaccine Strategies for a Functional Cure. *Vaccines (Basel)* **2013**, 1, 481-496, doi:10.3390/vaccines1040481.

36. Whitney, J.B.; Ruprecht, R.M. Live attenuated HIV vaccines: pitfalls and prospects. *Curr Opin Infect Dis* **2004**, 17, 17-26.

37. Tsukamoto, T.; Yamamoto, H.; Matano, T. CD8(+) Cytotoxic-T-Lymphocyte Breadth Could Facilitate Early Immune Detection of Immunodeficiency Virus-Derived Epitopes with Limited Expression Levels. *mSphere* **2019**, 4, doi:10.1128/mSphere.00381-18.

38. Duarte, R.F.; Salgado, M.; Sanchez-Ortega, I.; Arnan, M.; Canals, C.; Domingo-Domenech, E.; Fernandez-de-Sevilla, A.; Gonzalez-Barca, E.; Moron-Lopez, S.; Nogues, N., et al. CCR5 Delta32 homozygous cord blood allogeneic transplantation in a patient with HIV: a case report. *Lancet HIV* **2015**, 2, e236-242, doi:10.1016/s2352-3018(15)00083-1.

39. Chattong, S.; Chaikomon, K.; Chaiya, T.; Tangkosakul, T.; Palavutitotai, N.; Anusornvongchai, T.; Manotham, K. Efficient ZFN-Mediated Stop Codon Integration into the CCR5 Locus in Hematopoietic Stem Cells: A Possible Source for Intrabone Marrow Cell Transplantation. *AIDS Res Hum Retroviruses* **2018**, 10.1089/aid.2018.0007, doi:10.1089/aid.2018.0007.

40. Khamaikawin, W.; Shimizu, S.; Kamata, M.; Cortado, R.; Jung, Y.; Lam, J.; Wen, J.; Kim, P.; Xie, Y.; Kim, S., et al. Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1. *Mol Ther Methods Clin Dev* **2018**, 9, 23-32, doi:10.1016/j.omtm.2017.11.008.

41. Xu, L.; Yang, H.; Gao, Y.; Chen, Z.; Xie, L.; Liu, Y.; Liu, Y.; Wang, X.; Li, H.; Lai, W., et al. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. *Mol Ther* **2017**, 25, 1782-1789, doi:10.1016/j.ymthe.2017.04.027.

42. Symonds, G.; Bartlett, J.S.; Kiem, H.P.; Tsie, M.; Breton, L. Cell-Delivered Entry Inhibitors for HIV-1: CCR5 Downregulation and Blocking Virus/Membrane Fusion in Defending the Host Cell Population. *AIDS Patient Care STDS* **2016**, 30, 545-550, doi:10.1089/apc.2016.0245.

43. Shi, B.; Li, J.; Shi, X.; Jia, W.; Wen, Y.; Hu, X.; Zhuang, F.; Xi, J.; Zhang, L. TALEN-Mediated Knockout of CCR5 Confers Protection Against Infection of Human Immunodeficiency Virus. *J Acquir Immune Defic Syndr* **2017**, 74, 229-241, doi:10.1097/qai.0000000000001190.
44. Petit, N.Y.; Baillou, C.; Burlion, A.; Dorgham, K.; Levacher, B.; Amiel, C.; Schneider, V.; Lemoine, F.M.; Gorochov, G.; Marodon, G. Gene transfer of two entry inhibitors protects CD4(+) T cell from HIV-1 infection in humanized mice. *Gene Ther* 2016, 23, 144-150, doi:10.1038/gt.2015.101.

45. Shimizu, S.; Yadav, S.S.; An, D.S. Stable Delivery of CCR5-Directed shRNA into Human Primary Peripheral Blood Mononuclear Cells and Hematopoietic Stem/Progenitor Cells via a Lentiviral Vector. *Methods Mol Biol* 2016, 1364, 235-248, doi:10.1007/978-1-4939-3112-5_19.

46. Sather, B.D.; Romano Ibarra, G.S.; Sommer, K.; Curinga, G.; Hale, M.; Khan, I.F.; Singh, S.; Song, Y.; Gwiazda, K.; Sahni, J., et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. *Sci Transl Med* 2015, 7, 307ra156, doi:10.1126/scitranslmed.aac5530.

47. Saydaminova, K.; Ye, X.; Wang, H.; Richter, M.; Ho, M.; Chen, H.; Xu, N.; Kim, J.S.; Papapetrou, E.; Holmes, M.C., et al. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. *Mol Ther Methods Clin Dev* 2015, 1, 14057, doi:10.1038/mtm.2014.57.

48. Myburgh, R.; Ivic, S.; Pepper, M.S.; Gers-Huber, G.; Li, D.; Audige, A.; Rochat, M.A.; Jaquet, V.; Regenass, S.; Manz, M.G., et al. Lentivector Knockdown of CCR5 in Hematopoietic Stem and Progenitor Cells Confers Functional and Persistent HIV-1 Resistance in Humanized Mice. *J Virol* 2015, 89, 6761-6772, doi:10.1128/jvi.00277-15.

49. Manotham, K.; Chattong, S.; Setpakdee, A. Generation of CCR5-defective CD34 cells from ZFN-driven stop codon-integrated mesenchymal stem cell clones. *J Biomed Sci* 2015, 22, 25, doi:10.1186/s12929-015-0130-6.

50. Burke, B.P.; Levin, B.R.; Zhang, J.; Sahakyan, A.; Boyer, J.; Carroll, M.V.; Colon, J.C.; Keech, N.; Rezek, V.; Bristol, G., et al. Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector. *Mol Ther Nucleic Acids* 2015, 4, e236, doi:10.1038/mtna.2015.10.

51. Wolstein, O.; Boyd, M.; Millington, M.; Impey, H.; Boyer, J.; Howe, A.; Delebecque, F.; Cornetta, K.; Rothe, M.; Baum, C., et al. Preclinical safety and efficacy of an anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46 fusion inhibitor. *Mol Ther Methods Clin Dev* 2014, 1, 11, doi:10.1038/mtm.2013.11.

52. Holt, N.; Wang, J.; Kim, K.; Friedman, G.; Wang, X.; Taupin, V.; Crooks, G.M.; Kohn, D.B.; Gregory, P.D.; Holmes, M.C., et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. *Nat Biotechnol* 2010, 28, 839-847, doi:10.1038/nbt.1663.

53. Li, L.; Krymskaya, L.; Wang, J.; Henley, J.; Rao, A.; Cao, L.F.; Tran, C.A.; Torres-Coronado, M.; Gardner, A.; Gonzalez, N., et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases targeted to CCR5 control HIV-1 in vivo. *Nat Biotechnol* 2013, 21, 1259-1269, doi:10.1038/nbt.1663.

54. Liang, M.; Kamata, M.; Chen, K.N.; Pariente, N.; An, D.S.; Chen, I.S. Inhibition of HIV-1 infection by a unique short hairpin RNA to chemokine receptor 5 delivered into macrophages through hematopoietic progenitor cell transduction. *J Gene Med* 2010, 12, 255-265, doi:10.1002/jgm.1440.

55. Shimizu, S.; Hong, P.; Arumugam, B.; Pokomo, L.; Boyer, J.; Koizumi, N.; Kittipongdaja, P.; Chen, A.; Bristol, G.; Galic, Z., et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. *Blood* 2010, 115, 1534-1544, doi:10.1182/blood-2009-04-215855.
56. Anderson, J.S.; Javien, J.; Nolta, J.A.; Bauer, G. Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5 alpha protein, a CCR5 shRNA, and a TAR decoy. *Mol Ther* 2009, 17, 2103-2114, doi:10.1038/mt.2009.187.

57. Anderson, J.; Akkina, R. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection. *Gene Ther* 2007, 14, 1287-1297, doi:10.1038/sj.gt.3302958.

58. Anderson, J.; Li, M.J.; Palmer, B.; Remling, L.; Li, S.; Yam, P.; Yee, J.K.; Rossi, J.; Zaia, J.; Akkina, R. Safety and Efficacy of a Lentiviral Vector Containing Three Anti-HIV Genes-CCR5 Ribozyme, Tat-rev siRNA, and TAR Decoy-in SCID-hu Mouse-Derived T Cells. *Mol Ther* 2007, 15, 1182-1188, doi:10.1038/sj.mt.6300157.

59. Li, M.J.; Kim, J.; Li, S.; Zaia, J.; Yee, J.K.; Anderson, J.; Akkina, R.; Rossi, J.J. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. *Mol Ther* 2005, 12, 900-909, doi:10.1016/j.ymthe.2005.07.524.

60. Bai, J.; Rossi, J.; Akkina, R. Multivalent anti-CCR ribozymes for stem cell-based HIV type 1 gene therapy. *AIDS Res Hum Retroviruses* 2001, 17, 385-399, doi:10.1089/088922201750102427.

61. Bai, J.; Gorantla, S.; Banda, N.; Cagnon, L.; Rossi, J.; Akkina, R. Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo. *Mol Ther* 2000, 1, 244-254, doi:10.1006/mthe.2000.0038.

62. Jamieson, A.C.; Miller, J.C.; Pabo, C.O. Drug discovery with engineered zinc-finger proteins. *Nat Rev Drug Discov* 2003, 2, 361-368, doi:10.1038/nrd1087.

63. Tebas, P.; Stein, D.; Tang, W.W.; Frank, I.; Wang, S.Q.; Lee, G.; Spratt, S.K.; Surosky, R.T.; Giedlin, M.A.; Nichol, G., et al. Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV. *New England Journal of Medicine* 2014, 370, 901-910, doi:10.1056/NEJMoa1300662.

64. Scarborough, R.J.; Gatignol, A. HIV and Ribozymes. *Adv Exp Med Biol* 2015, 848, 97-116, doi:10.1007/978-1-4939-2432-5_5.

65. Cornu, T.I.; Mussolino, C.; Cathomen, T. Refining strategies to translate genome editing to the clinic. *Nat Med* 2017, 23, 415-423, doi:10.1038/nm.4313.

66. Swamy, M.N.; Wu, H.; Shankar, P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. *Adv Drug Deliv Rev* 2016, 103, 174-186, doi:10.1016/j.addr.2016.03.005.

67. Symonds, G.P.; Johnstone, H.A.; Millington, M.L.; Boyd, M.P.; Burke, B.P.; Breton, L.R. The use of cell-delivered gene therapy for the treatment of HIV/AIDS. *Immunol Res* 2010, 48, 84-98, doi:10.1007/s12026-010-8169-7.

68. Ledger, S.; Howe, A.; Turville, S.; Aggarwal, A.; Savkovic, B.; Ong, A.; Wolstein, O.; Boyd, M.; Millington, M.; Gorry, P.R., et al. Analysis and dissociation of anti-HIV effects of shRNA to CCR5 and the fusion inhibitor C46. *J Gene Med* 2018, 20, e3006, doi:10.1002/jgm.3006.

69. Vangelista, L.; Vento, S. The Expanding Therapeutic Perspective of CCR5 Blockade. *Front Immunol* 2017, 8, 1981, doi:10.3389/fimmu.2017.01981.

70. Lim, J.K.; Louie, C.Y.; Glaser, C.; Jean, C.; Johnson, B.; Johnson, H.; McDermott, D.H.; Murphy, P.M. Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. *J Infect Dis* 2008, 197, 262-265, doi:10.1086/524691.
Glass, W.G.; McDermott, D.H.; Lim, J.K.; Lekhong, S.; Yu, S.F.; Frank, W.A.; Pape, J.; Cheshier, R.C.; Murphy, P.M. CCR5 deficiency increases risk of symptomatic West Nile virus infection. *J Exp Med* **2006**, *203*, 35-40, doi:10.1084/jem.20051970.

72. Liu, Y.P.; Westerink, J.T.; ter Brake, O.; Berkhout, B. RNAi-inducing lentiviral vectors for anti-HIV-1 gene therapy. *Methods Mol Biol* **2011**, *721*, 293-311, doi:10.1007/978-1-61779-037-9_18.

73. Mitsuyasu, R.T.; Merigan, T.C.; Carr, A.; Zack, J.A.; Winters, M.A.; Workman, C.; Bloch, M.; Lalezari, J.; Becker, S.; Thornton, L., et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. *Nat Med* **2009**, *15*, 285-292, doi:10.1038/nm.1932.

74. Kumar, P.; Ban, H.S.; Kim, S.S.; Wu, H.; Pearson, T.; Greiner, D.L.; Laouar, A.; Yao, J.; Haridas, V.; Habiro, K., et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. *Cell* **2008**, *134*, 577-586, doi:10.1016/j.cell.2008.06.034.

75. ter Brake, O.; Legrand, N.; von Eije, K.J.; Centlivre, M.; Spits, H.; Weijer, K.; Blom, B.; Berkhout, B. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(-/-)gammac(-/-)) mouse model. *Gene Ther* **2009**, *16*, 148-153, doi:10.1038/gt.2008.124.

76. Suzuki, K.; Shijuuku, T.; Fukamachi, T.; Zaunders, J.; Guillemin, G.; Cooper, D.; Kelleher, A. Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. *J RNAi Gene Silencing* **2005**, *1*, 66-78.

77. Santat, L.; Paz, H.; Wong, C.; Li, L.; Macer, J.; Forman, S.; Wong, K.K.; Chatterjee, S. Recombinant AAV2 transduction of primitive human hematopoietic stem cells capable of serial engraftment in immune-deficient mice. *Proc Natl Acad Sci U S A* **2005**, *102*, 11053-11058, doi:10.1073/pnas.0502902102.

78. Li, M.J.; Bauer, G.; Michienzi, A.; Yee, J.K.; Lee, N.S.; Kim, J.; Li, S.; Castanotto, D.; Zaia, J.; Rossi, J.J. Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. *Mol Ther* **2003**, *8*, 196-206.

79. Akkina, R.; Banerjea, A.; Bai, J.; Anderson, J.; Li, M.J.; Rossi, J. siRNAs, ribozymes and RNA decoys in modeling stem cell-based gene therapy for HIV/AIDS. *Anticancer Res* **2003**, *23*, 1997-2005.

80. Banerjea, A.; Li, M.J.; Bauer, G.; Remling, L.; Lee, N.S.; Rossi, J.; Akkina, R. Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages. *Mol Ther* **2003**, *8*, 62-71.

81. Bauer, G.; Valdez, P.; Kearns, K.; Bahner, I.; Wen, S.F.; Zaia, J.A.; Kohn, D.B. Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. *Blood* **1997**, *89*, 2259-2267.

82. Rosenzweig, M.; Marks, D.F.; Hempel, D.; Lisziewicz, J.; Johnson, R.P. Transduction of CD34+ hematopoietic progenitor cells with an antitat gene protects T-cell and macrophage progeny from AIDS virus infection. *J Virol* **1997**, *71*, 2740-2746.

83. Yu, M.; Leavitt, M.C.; Maruyama, M.; Yamada, O.; Young, D.; Ho, A.D.; Wong-Staal, F. Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. *Proc Natl Acad Sci U S A* **1995**, *92*, 699-703.

84. Wang, G.; Zhao, N.; Berkhout, B.; Das, A.T. CRISPR-Cas based antiviral strategies against HIV-1. *Virus Res* **2018**, *244*, 321-332, doi:10.1016/j.virusres.2017.07.020.

85. Herrera-Carrillo, E.; Berkhout, B. Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. *Biochem Soc Trans* **2016**, *44*, 1355-1365, doi:10.1042/bst20160060.
86. Hu, W.; Kaminski, R.; Yang, F.; Zhang, Y.; Cosentino, L.; Li, F.; Luo, B.; Alvarez-Carbonell, D.; Garcia-Mesa, Y.; Karn, J., et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. *Proc Natl Acad Sci U S A* **2014**, *111*, 11461-11466, doi:10.1073/pnas.1405186111.

87. Wang, Z.; Pan, Q.; Gendron, P.; Zhu, W.; Guo, F.; Cen, S.; Wainberg, M.A.; Liang, C. CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. *Cell Rep* **2016**, *15*, 481-489, doi:10.1016/j.celrep.2016.03.042.

88. Man, D.; Sansbury, B.; Bialk, P.; Bloh, K.; Kolb, E.A.; Kmiec, E.B. Target Site Mutagenesis during Crispr/ Cas 9/Single-Stranded- Oligonucleotide Directed Gene Editing for Sickle Cell Anemia. *Blood* **2016**, *128*, 4706.

89. White, M.K.; Kaminski, R.; Young, W.B.; Roehm, P.C.; Khalili, K. CRISPR Editing Technology in Biological and Biomedical Investigation. *J Cell Biochem* **2017**, *118*, 3586-3594, doi:10.1002/jcb.26099.

90. Yin, C.; Zhang, T.; Qu, X.; Zhang, Y.; Putatunda, R.; Xiao, X.; Li, F.; Xiao, W.; Zhao, H.; Dai, S., et al. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. *Mol Ther* **2017**, *25*, 1168-1186, doi:10.1016/j.ymthe.2017.03.012.

91. Kunze, C.; Borner, K.; Kienle, E.; Orschmann, T.; Rusha, E.; Schneider, M.; Radijovkova-Blagojevic, M.; Dukker, M.; Desbordes, S.; Grimm, D., et al. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. *Glia* **2018**, *66*, 413-427, doi:10.1002/glia.23254.

92. Klemm, V.; Mitchell, J.; Cortez-Jugo, C.; Cavalieri, F.; Symonds, G.; Caruso, F.; Kelleher, A.D.; Ahlenstiel, C. Achieving HIV-1 Control through RNA-Directed Gene Regulation. *Genes (Basel)* **2016**, *7*, doi:10.3390/genes7120119.

93. Ahlenstiel, C.L.; Suzuki, K.; Marks, K.; Symonds, G.P.; Kelleher, A.D. Controlling HIV-1: Non-Coding RNA Gene Therapy Approaches to a Functional Cure. *Front Immunol* **2015**, *6*, 474, doi:10.3389/fimmu.2015.00474.

94. Suzuki, K.; Juelich, T.; Lim, H.; Ishida, T.; Watanebe, T.; Cooper, D.A.; Rao, S.; Kelleher, A.D. Closed chromatin architecture is induced by an RNA duplex targeting the HIV-1 promoter region. *J Biol Chem* **2008**, 283, 23353-23363, doi:10.1074/jbc.M709651200.

95. Ahlenstiel, C.; Mendez, C.; Lim, S.T.; Marks, K.; Turville, S.; Cooper, D.A.; Kelleher, A.D.; Suzuki, K. Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing. *Mol Ther Nucleic Acids* **2015**, *4*, e261, doi:10.1038/mtna.2015.31.

96. Suzuki, K.; Hattori, S.; Marks, K.; Ahlenstiel, C.; Maeda, Y.; Ishida, T.; Millington, M.; Boyd, M.; Symonds, G.; Cooper, D.A., et al. Promoter Targeting shRNA Suppresses HIV-1 Infection In vivo Through Transcriptional Gene Silencing. *Mol Ther Nucleic Acids* **2013**, *2*, e137, doi:10.1038/mtna.2013.64.

97. Mendez, C.; Ledger, S.; Petoumenos, K.; Ahlenstiel, C.; Kelleher, A.D. RNA-induced epigenetic silencing inhibits HIV-1 reactivation from latency. *Retrovirology* **2018**, *15*, 67, doi:10.1186/s12977-018-0451-0.

98. Tsukamoto, T.; Kariya, R.; Marks, K.; Hattori, S.; Ahlenstiel, C.; Symonds, G.; Okada, S.; Kelleher, A. Transcriptional gene silencing limits CXCR4-associated depletion of bone marrow CD34+ cells in HIV-1 infection: Erratum. *AIDS* **2018**, *32*, 2857-2858, doi:10.1097/01.aids.0000547984.16868.93.

99. Falkenhagen, A.; Singh, J.; Asad, S.; Leontyev, D.; Read, S.; Zuniga-Pflucker, J.C.; Joshi, S. Control of HIV Infection In Vivo Using Gene Therapy with a Secreted Entry Inhibitor. *Mol Ther Nucleic Acids* **2017**, *9*, 132-144, doi:10.1016/j.omtn.2017.08.017.
100. Zhang, M.; Poh, T.Y.; Louache, F.; Sundell, I.B.; Yuan, J.; Evans, S.; Koka, P.S. Rescue of multi-lineage hematopoiesis during HIV-1 infection by human c-mpl gene transfer and reconstitution of CD34+ progenitor cells in vivo. *J Stem Cells* 2009, 4, 161-177.

101. Anderson, J.; Akkina, R. Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. *Hum Gene Ther* 2008, 19, 217-228, doi:10.1089/hum.2007.108.

102. Dimitrova, D.I.; Yang, X.; Reichenbach, N.L.; Karakasidis, S.; Sutton, R.E.; Henderson, E.E.; Rogers, T.J.; Suhadolnik, R.J. Lentivirus-mediated transduction of PKR into CD34(+) hematopoietic stem cells inhibits HIV-1 replication in differentiated T cell progeny. *J Interferon Cytokine Res* 2005, 25, 345-360, doi:10.1089/jir.2005.25.345.

103. Joshi, A.; Garg, H.; Ablan, S.; Freed, E.O.; Nagashima, K.; Manjunath, N.; Shankar, P. Targeting the HIV entry, assembly and release pathways for anti-HIV gene therapy. *Virology* 2011, 415, 95-106, doi:10.1016/j.virol.2011.03.028.

104. Savkovic, B.; Nichols, J.; Birkett, D.; Applegate, T.; Ledger, S.; Symonds, G.; Murray, J.M. A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. *PLoS Comput Biol* 2014, 10, e1003681, doi:10.1371/journal.pcbi.1003681.

105. Kitchen, S.G.; Shimizu, S.; An, D.S. Stem cell-based anti-HIV gene therapy. *Virology* 2011, 411, 260-272, doi:10.1016/j.virol.2010.12.039.

106. Rosenzweig, M.; Marks, D.F.; Hempel, D.; Heusch, M.; Kraus, G.; Wong-Staal, F.; Johnson, R.P. Intracellular immunization of rhesus CD34+ hematopoietic progenitor cells with a hairpin ribozyme protects T cells and macrophages from simian immunodeficiency virus infection. *Blood* 1997, 90, 4822-4831.

107. An, D.S.; Donahue, R.E.; Kamata, M.; Poon, B.; Metzger, M.; Mao, S.H.; Bonifacino, A.; Krouse, A.E.; Darlix, J.L.; Baltimore, D., et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. *Proc Natl Acad Sci U S A* 2007, 104, 13110-13115, doi:10.1073/pnas.0705474104.

108. DiGiusto, D.L.; Krishnan, A.; Li, L.; Li, H.; Li, S.; Rao, A.; Mi, S.; Yam, P.; Stinson, S.; Kalos, M., et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. *Sci Transl Med* 2010, 2, 36ra43, doi:10.1126/scitranslmed.3000931.

109. Podsakoff, G.M.; Engel, B.C.; Carbonaro, D.A.; Choi, C.; Smogorzewska, E.M.; Bauer, G.; Selandier, D.; Csik, S.; Wilson, K.; Betts, M.R., et al. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells. *Mol Ther* 2005, 12, 77-86, doi:10.1016/j.ymtme.2005.02.024.

110. Aiuti, A.; Cattaneo, F.; Galimberti, S.; Benninghoff, U.; Cassani, B.; Callegaro, L.; Scaramuzza, S.; Andolfi, G.; Mirolo, M.; Brigida, L., et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. *N Engl J Med* 2009, 360, 447-458, doi:10.1056/NEJMoa0805817.

111. Boztug, K.; Schmidt, M.; Schwarzer, A.; Banerjee, P.P.; Diez, I.A.; Dewey, R.A.; Bohm, M.; Nowrouzi, A.; Ball, C.R.; Glimm, H., et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. *N Engl J Med* 2010, 363, 1918-1927, doi:10.1056/NEJMoa1003548.
112. Hacein-Bey-Abina, S.; Hauer, J.; Lim, A.; Picard, C.; Wang, G.P.; Berry, C.C.; Martinache, C.; Rieux-Laucat, F.; Latour, S.; Belohradsky, B.H., et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. *N Engl J Med* 2010, 363, 355-364, doi:10.1056/NEJMoa1000164.

113. De Ravin, S.S.; Wu, X.; Moir, S.; Anaya-O’Brien, S.; Kwatema, N.; Littel, P.; Theobald, N.; Choi, U.; Su, L.; Marquesen, M., et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. *Sci Transl Med* 2016, 8, 335ra357, doi:10.1126/scitranslmed.aad8856.

114. Uchida, N.; Sutton, R.E.; Friera, A.M.; He, D.; Reitsma, M.J.; Chang, W.C.; Veres, G.; Scollay, R.; Weissman, I.L. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. *Proc Natl Acad Sci U S A* 1998, 95, 11939-11944.

115. Cattoglio, C.; Pellin, D.; Rizzi, E.; Maruggi, G.; Corti, G.; Miselli, F.; Sartori, D.; Guffanti, A.; Di Serio, C.; Ambrosi, A., et al. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. *Blood* 2010, 116, 5507-5517, doi:10.1182/blood-2010-05-283523.

116. Piras, F.; Riba, M.; Petrillo, C.; Lazarevic, D.; Cuccovillo, I.; Bartolaccini, S.; Stupka, E.; Gentner, B.; Cittaro, D.; Naldini, L., et al. Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. *EMBO Mol Med* 2017, 9, 1198-1211, doi:10.15252/emmm.201707922.

117. Yu, S.F.; von Ruden, T.; Kantoff, P.W.; Garber, C.; Seiberg, M.; Ruther, U.; Anderson, W.F.; Wagner, E.F.; Gilboa, E. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. *Proc Natl Acad Sci U S A* 1986, 83, 3194-3198.

118. Scala, S.; Basso-Ricci, L.; Dionisio, F.; Pellin, D.; Giannelli, S.; Salerio, F.A.; Leonardelli, L.; Cicalese, M.P.; Ferrua, F.; Aiuti, A., et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. *Nat Med* 2018, 24, 1683-1690, doi:10.1038/s41591-018-0195-3.

119. Nasimuzzaman, M.; Lynn, D.; Ernst, R.; Beuerlein, M.; Smith, R.H.; Shrestha, A.; Cross, S.; Link, K.; Lutzko, C.; Nordling, D., et al. Production and purification of high-titer foamy virus vector for the treatment of leukocyte adhesion deficiency. *Mol Ther Methods Clin Dev* 2016, 3, 16004, doi:10.1038/mtm.2016.4.

120. Vanhee, S.; Vandekerckhove, B. Pluripotent stem cell based gene therapy for hematological diseases. *Crit Rev Oncol Hematol* 2016, 97, 238-246, doi:10.1016/j.critrevonc.2015.08.022.

121. Li, Y.; Chan, L.; Nguyen, H.V.; Tsang, S.H. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells. *Adv Exp Med Biol* 2016, 854, 549-555, doi:10.1007/978-3-319-17121-0_73.

122. Ou, Z.; Niu, X.; He, W.; Chen, Y.; Song, B.; Xian, Y.; Fan, D.; Tang, D.; Sun, X. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human beta-thalassemia in Mice. *Sci Rep* 2016, 6, 32463, doi:10.1038/srep32463.

123. Carpenter, L.; Malladi, R.; Yang, C.T.; French, A.; Pilkington, K.J.; Forsey, R.W.; Sloane-Stanley, J.; Silk, K.M.; Davies, T.J.; Fairchild, P.J., et al. Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. *Blood* 2011, 117, 4008-4011, doi:10.1182/blood-2010-08-299941.

124. Higaki, K.; Hirao, M.; Kawana-Tachikawa, A.; Iriuchi, S.; Kumagai, A.; Ueda, N.; Bo, W.; Kamibayashi, S.; Watanabe, A.; Nakauchi, H., et al. Generation of HIV-Resistant Macrophages from iPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA. *Mol Ther Nucleic Acids* 2018, 12, 793-804, doi:10.1016/j.omtn.2018.07.017.
125. Nishimura, T.; Kaneko, S.; Kawana-Tachikawa, A.; Tajima, Y.; Goto, H.; Zhu, D.; Nakayama-Hosoya, K.; Iriguchi, S.; Uemura, Y.; Shimizu, T., et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. *Cell Stem Cell* 2013, 12, 114-126, doi:10.1016/j.stem.2012.11.002.

126. Zhen, A.; Kamata, M.; Rezek, V.; Rick, J.; Levin, B.; Kasparian, S.; Chen, I.S.; Yang, O.O.; Zack, J.A.; Kitchen, S.G. HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells. *Mol Ther* 2015, 23, 1358-1367, doi:10.1038/mt.2015.102.

127. Hammer, O. CD19 as an attractive target for antibody-based therapy. *MAbs* 2012, 4, 571-577, doi:10.4161/mabs.21338.

128. Pulsipher, M.A. Are CAR T cells better than antibody or HCT therapy in B-ALL? *Hematology Am Soc Hematol Educ Program* 2018, 2018, 16-24, doi:10.1182/asheducation-2018.1.16.

129. Miliotou, A.N.; Papadopoulou, L.C. CAR T-cell Therapy: A New Era in Cancer Immunotherapy. *Curr Pharm Biotechnol* 2018, 19, 5-18, doi:10.2174/1389201019666180418095526.

130. Davila, M.L.; Brentjens, R.J. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. *Clin Adv Hematol Oncol* 2016, 14, 802-808.

131. Quintas-Cardama, A. CD19 directed CAR T cell therapy in diffuse large B-cell lymphoma. *Onco target* 2018, 9, 29843-29844, doi:10.18632/oncotarget.25688.

132. Hale, M.; Mesojednik, T.; Romano Ibarra, G.S.; Sahni, J.; Bernard, A.; Sommer, K.; Scharenberg, A.M.; Rawlings, D.J.; Wagner, T.A. Engineering HIV-Resistant, Anti-HIV Chimeric Antigen Receptor T Cells. *Mol Ther* 2017, 25, 570-579, doi:10.1016/j.ymthe.2016.12.023.

133. Zhen, A.; Peterson, C.W.; Carrillo, M.A.; Reddy, S.S.; Youn, C.S.; Lam, B.B.; Chang, N.Y.; Martin, H.A.; Rick, J.W.; Kim, J., et al. Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. *PLoS Pathog* 2017, 13, e1006753, doi:10.1371/journal.ppat.1006753.

134. Luo, X.M.; Maarschalk, E.; O’Connell, R.M.; Wang, P.; Yang, L.; Baltimore, D. Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. *Blood* 2009, 113, 1422-1431, doi:10.1182/blood-2008-09-177139.

135. Poznansky, M.C.; La Vecchio, J.; Silva-Arietta, S.; Porter-Brooks, J.; Brody, K.; Olszak, I.T.; Adams, G.B.; Ramstedt, U.; Marasco, W.A.; Scadden, D.T. Inhibition of human immunodeficiency virus replication and growth advantage of CD4+ T cells and monocytes derived from CD34+ cells transduced with an intracellular antibody directed against human immunodeficiency virus type 1 Tat. *Hum Gene Ther* 1999, 10, 2505-2514, doi:10.1089/10430349950016843.

136. Prince, A.M.; Reesink, H.; Pascual, D.; Horowitz, B.; Hewlett, I.; Murthy, K.K.; Cobb, K.E.; Eichberg, J.W. Prevention of HIV infection by passive immunization with HIV immunoglobulin. *AIDS Res Hum Retroviruses* 1991, 7, 971-973, doi:10.1089/aid.1991.7.971.

137. Morris, L.; Mkhize, N.N. Prospects for passive immunity to prevent HIV infection. *PLoS Med* 2017, 14, e1002436, doi:10.1371/journal.pmed.1002436.

138. Balazs, A.B.; West, A.P., Jr. Antibody gene transfer for HIV immunoprophylaxis. *Nat Immunol* 2013, 14, 1-5, doi:10.1038/ni.2480.

139. Balazs, A.B.; Chen, J.; Hong, C.M.; Rao, D.S.; Yang, L.; Baltimore, D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. *Nature* 2011, 481, 81-84, doi:10.1038/nature10660.
140. Badamchi-Zadeh, A.; Tartaglia, L.J.; Abbink, P.; Bricault, C.A.; Liu, P.T.; Boyd, M.; Kirilova, M.; Mercado, N.B.; Nanayakkara, O.S.; Vrbanac, V.D., et al. Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice. *J Virol* **2018**, *92*, doi:10.1128/jvi.01925-17.

141. Cyranoski, D.; Ledford, H. Genome-edited baby claim provokes international outcry. *Nature* **2018**, *563*, 607-608, doi:10.1038/d41586-018-07545-0.

142. Frankel, M.S.; Chapman, A.R. Genetic technologies. Facing inheritable genetic modifications. *Science* **2001**, *292*, 1303.

143. Zhang, X.H.; Tee, L.Y.; Wang, X.G.; Huang, Q.S.; Yang, S.H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. *Mol Ther Nucleic Acids* **2015**, *4*, e264, doi:10.1038/mtna.2015.37.

144. Keep off-target effects in focus. *Nat Med* **2018**, *24*, 1081, doi:10.1038/s41591-018-0150-3.

145. Aryal, N.K.; Wasylishen, A.R.; Lozano, G. CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo. *Cell Death Dis* **2018**, *9*, 1099, doi:10.1038/s41419-018-1146-0.

146. Ormond, K.E.; Mortlock, D.P.; Scholes, D.T.; Bombard, Y.; Brody, L.C.; Faucett, W.A.; Garrison, N.A.; Hercher, L.; Isasi, R.; Middleton, A., et al. Human Germline Genome Editing. *Am J Hum Genet* **2017**, *101*, 167-176, doi:10.1016/j.ajhg.2017.06.012.