RECONSTRUÇÃO DO LIGAMENTO CRUZADO POSTERIOR COM ENXERTO AUTÓLÓGO DO TENDÃO DO MÚSCULO SEMITENDINOSO DUPLO E DO TERÇO MÉDIO DO TENDÃO DO QUADRÍCEPS EM DUPLO TÚNEL NO FÊMUR E ÚNICO NA TÍBIA: RESULTADOS CLÍNICOS EM DOIS ANOS DE SEGUIMENTO

Ricardo de Paula Leite Cury, Nilson Roberto Severino, Osmar Pedro Arbix Camargo, Tatsuo Aihara, Victor Marques de Oliveira, Roger Avakian

RESUMO
Objetivo: Avaliar os aspectos cirúrgicos que possam oferecer bons resultados anatômicos e funcionais na reconstrução do ligamento cruzado posterior (LCP) utilizando enxerto autólogo do tendão do quadríceps e duplo semitendinoso através de um túnel femoral duplo. Métodos: Quatorze pacientes com lesões isoladas do LCP, instabilidade e dor foram operados por artroscopia e avaliados de acordo com as escalas do International Knee Documentation Committee (IKDC) e de Lysholm. A lassidão foi examinada com o artrômetro KT 1000. Resultados: Na avaliação pós-operatória, a translação posterior comparando-se com joelho contralateral foi entre 0-2mm em 57,1% dos pacientes e entre 3 e 5mm em 35,7% dos casos. A média da escala de Lysholm foi de 93 pontos na avaliação final. Na avaliação pelo IKDC, três pacientes tiveram grau A, 10 grau B e 1 teve grau C. Conclusões: A reconstrução artroscópica do LCP com feixe duplo baseada no posicionamento anatômico dos túneis, com tendão duplo semitendinoso e único do quadríceps, oferece redução clinicamente evidente dos sintomas e recupera satisfatoriamente a estabilidade, embora diferença significativa não tenha sido encontrada devido ao pequeno tamanho da amostra.

Descritores – Ligamento Cruzado Posterior. Joelho. Artroscopia. Traumatismos do Joelho

ABSTRACT
Objective: To evaluate the surgical aspects that may offer good anatomic and functional results in posterior cruciate ligament (PCL) reconstruction using an autologous graft of the quadriceps tendon and double semitendinosus through a double femoral tunnel. Methods: Fourteen patients with isolated PCL lesions, instability and pain were operated on by arthroscopy and evaluated according to the International Knee Documentation Committee (IKDC) and Lysholm scales. Posterior knee laxity was examined with a KT 1000 arthrometer. Results: The mean postoperative posterior side-to-side difference was between 0-2 mm in 57.1% of patients and between 3 and 5 mm in 35.7% of cases. The average Lysholm score was 93 points in the final follow-up. In the IKDC evaluation, 3 patients were graded A, 10 were graded B, and 1 patient was graded C. Conclusions: Double bundle arthroscopic PCL reconstruction based on the anatomical positioning of the tunnels, with double semitendinosus tendon and single quadriceps, provides a clinically evident reduction in symptoms and restores satisfactory stability, although no statistically significant difference was found due to the small sample.

Keywords– Posterior Cruciate Ligament. Knee. Arthroscopy. Knee Injuries.
INTRODUÇÃO

A incidência de lesões do ligamento cruzado posterior (LCP) varia de 2 a 44% das lesões ligamentares do joelho, e lesões isoladas são menos frequentes e menos sintomáticas quando comparadas com lesões múltiplas(1,2). No entanto, indivíduos com lesões de grau II isoladas podem queixar-se de instabilidade e dor anterior no joelho, mesmo após os tratamentos conservadores, e, juntamente com lesões de grau III, estas lesões têm indicação para tratamento cirúrgico(1,2).

A literatura tem demonstrado resultados cirúrgicos variados, e em muitos casos não é possível restabelecer a estabilidade posterior do joelho. Para melhorar estes resultados, a reconstrução com feixe duplo visa alcançar uma maior semelhança com o LCP nativo, tanto em termos de características anatômicas como biomecânicas. Estudos biomecânicos demonstram a superioridade do feixe duplo sobre a reconstrução simples(3-8), embora esses resultados não sejam demonstrados em todos os estudos clínicos(9-11).

O correto posicionamento dos túneis durante a reconstrução do LCP é vital para o sucesso na reconstrução do ligamento, e a variação e a falta de padronização no posicionamento do feixe posteromedial (PM), bem como as diferentes espessuras dos enxertos, têm um impacto direto sobre o resultado da reconstrução com feixe duplo(5,12).

O objetivo deste estudo é avaliar o resultado do tratamento cirúrgico da lesão isolada do ligamento cruzado posterior, reconstruída com tendões do músculo semitendíneo duplo e terço central do tendão quadricipital utilizando duplo túnel femoral e túnel tibial único após dois anos de seguimento.

MÉTODOS

Este estudo é uma série de casos, prospectiva, envolvendo 14 pacientes consecutivos (14 joelhos), sendo nove homens e cinco mulheres, cada um com uma única lesão crônica com no mínimo quatro meses de lesão do ligamento cruzado posterior (LCP), que foram submetidos à reabilitação, mas permaneceram sintomáticos. Em seguida, foram submetidos à reconstrução do ligamento entre setembro de 2002 e março de 2008. O mesmo cirurgião realizou todas as cirurgias. O estudo foi aprovado pelo comitê de ética local (protocolo 142/06) e os pacientes assinaram termo de consentimento informado.

A idade média da cirurgia era de 31 anos (26-43 anos), e o tempo médio entre o trauma e a cirurgia foi de 4,4 anos (0,2-6,6). Cinco pacientes haviam sofrido o envolvimento em acidentes de motocicleta, quatro em acidentes de carro, e cinco haviam sofrido lesões desportivas (jogando futebol). Nenhum paciente tinha cirurgias de joelho anteriores e, ao exame, todas as lesões ligamentares foram consideradas como lesões únicas, após a exclusão de lesões associadas do ligamento colateral medial, canto posteromedial, ligamento cruzado anterior (LCA) e do canto posterolateral do joelho. Seis dos pacientes tinham instabilidade do joelho e, os oito restantes tinham instabilidade acompanhada de dor. O joelho direito foi acometido em sete pacientes, e o esquerdo nos outros sete.

Os 14 pacientes tinham pelo menos 10mm de deslocamento posterior da tíbia do lado lesado em relação ao contralateral, no teste de gaveta posterior. Todos os pacientes foram avaliados no período pré e pós-operatório pelo mesmo cirurgião. O exame físico incluiu o teste do alinhamento dos membros inferiores, a avaliação de anormalidades na marcha e amplitude de movimento do joelho afetado quando comparado com o contralateral.

O exame clínico para avaliar o LCP foi o teste de gaveta posterior, com o joelho posicionado a 90 graus em posição neutra. O resultado foi considerado normal quando não havia diferença na translação tibial posterior em comparação com o contralateral; grau 1, quando a margem anterior da tíbia medial mostrou translação posterior leve, mas permaneceu anterior ao côndilo femoral medial; grau 2, quando a margem tibial anterior ficou em linha com o cóndilo femoral medial; e, finalmente, grau 3, quando a margem anterior da tíbia estava posterior ao cóndilo femoral medial.

Esses dados também foram aferidos no pré e pós-operatório pelo artrômetro KT 1000™, sendo a diferença na translação tibial posterior em comparação com o contralateral considerada normal quando era inferior a 2mm. As lesões ligamentares associadas foram avaliadas e descartadas por meio dos testes de estresse em varo e valgo em zero e 30 graus de flexão para a frouxidão medial e lateral, o teste da gaveta posterior em rotação externa, a rotação externa tibial (ângulo de rotação externa da coxa e pé), e o pivot-shift reverso para lesões posterolaterais, e os testes de Lachman e pivot-shift para o ligamento cruzado anterior (LCA). Os 14 pacientes foram avaliados no pré e pós-operatório utilizando o International Knee Documentation Committee Form (IKDC)(13) e a escala de pontuação de Lysholm(14). Os
pacientes foram avaliados no pós-operatório de dois, quatro, seis, 12 e 24 meses.

A avaliação radiográfica antes da cirurgia consistiu em uma radiografia panorâmica dos membros inferiores na posição em pé para avaliar a necessidade de osteotomia da tíbia prévia, e radiografias de perfil do joelho e do eixo da patela. O mesmo estudo foi repetido no período pós-operatório, exceto pela vista panorâmica, que foi substituída pela radiografia do joelho anteroposterior (AP).

Técnica cirúrgica e posicionamento dos túneis

O procedimento começa com um exame clínico sob anestesia, para confirmar o grau de instabilidade e ausência de lesões associadas. O paciente é colocado em decúbito dorsal, com um garrota pneumático na coxa para auxiliar na confecção do túnel tibial e na passagem dos enxertos. O mesmo estudo foi repetido no período pós-operatório, exceto pela vista panorâmica, que foi substituída pela radiografia do joelho antero-posterior (AP).

A retirada do enxerto do tendão do quadríceps é realizada com o joelho flexionado em 90 graus, através de uma incisão longitudinal de 50mm a partir do pôlo superior da patela, no sentido proximal. O enxerto é retirado do terço central do tendão do quadríceps, com 10mm de largura, e comprimento máximo proximal em média de 130 a 150mm. Já o fragmento ósseo patelar é trapezoidal com 20 x 10 x 5mm de espessura. O tendão do semitendinoso é isolado e colhido por meio de uma segunda incisão longitudinal de 40mm na tíbia anteromedial, no ponto médio entre a margem posterior da tíbia e tuberosidade anterior.

Os portais artroscópicos anteromedial e anterolateral (AL) são utilizados após o fechamento da área doadora do tendão do quadríceps. O portal posteromedial (PM) é usado rotineiramente, com 15mm de comprimento, para auxiliar na confecção do túnel tibial e na passagem dos enxertos.

A preparação do enxerto é conseguida através da remoção de tecido muscular residual com o auxílio de uma cureta, e a preparação das extremidades tendinosas com fios de poliéster não-absorvíveis Ethibond nº 5, um em cada extremidade do tendão do semitendinoso, e dois para o tendão do quadríceps. Toma-se o cuidado de separar as três camadas do quadríceps, juntando-se as camadas superficiais e intermediárias (tendão do reto femoral, vasto medial e lateral) por um fio de sutura, e a camada profunda (tendão do vasto intermédio) com a segunda sutura. A parte tendinosa dos dois enxertos é preparada para um túnel tibial de 12mm, que foi realizado em todos os pacientes.

A artroscopia é realizada com um aparelho óptico obliquo a 30º, que é introduzido através do portal anterolateral, e o procedimento é iniciado pela remoção dos resíduos do LCP no fêmur através do portal anteromedial, e na tíbia, através do portal posteromedial. As lesões meniscais e condrais também são identificadas e tratadas neste procedimento cirúrgico.

O túnel tibial é preparado usando um guia com ângulo de 45 graus, colocado na região posterior na metade da parte inferior da faceta do LCP (Figura 1). A inserção correta é verificada através de um intensificador de imagem, e, depois da passagem do fio-guia, um túnel de 12mm de diâmetro é produzido. Para reduzir o risco de lesão de nervo ou vascular durante a perfuração do túnel tibial, o joelho é flexionado em um ângulo de cerca de 100º, e a parte final do túnel é feita por rotação manual do perfurador (Figura 1).

Os túneis femorais também são perfurados para fora para dentro da articulação do joelho através de uma incisão longitudinal no cóndilo femoral medial, no ponto médio entre a cartilagem articular e o epicôndilo femoral. O guia, com angulação de 45º através do portal anteromedial, é colocado do lado do cóndilo femoral medial para fazer o túnel correspondente ao feixe anterolateral. Um túnel de 10mm é feito, guiado pelos resíduos remanescentes do LCP, a uma posição de uma hora (joelho direito), com seu centro a 7mm de distância da cartilagem articular. O segundo túnel, de 7mm (feixe PM), é colocado mais posteriormente e proximalmente ao primeiro, mantendo uma ponte óssea entre eles de 2 a 3mm, com seu centro localizado a 9mm da cartilagem articular (Figura 2).

Os enxertos são inseridos através do portal anteromedial, em direção à tíbia, e reorientados para seus respectivos túneis. Assim, o tendão do semitendinoso, que é inserido primeiro, reproduz o feixe posteromedial, e o tendão do quadríceps, o anterolateral. A fixação femoral é executada com parafusos de interferência, fixados de fora para dentro, e a fixação da tíbia com parafuso cortical de 4,5mm com uma arruela para tecidos moles. O tendão do quadríceps é fixado sobre o joelho a 90º de flexão, após reduzir o desvio posterior, e o tendão do semitendinoso é fixado com o joelho em extensão, ambos após uma manobra pré-tensionamento do enxerto (Figuras 3 e 4). O tensionamento de cada enxerto foi feito manualmente durante 20 ciclos de flexão e extensão do joelho.
Figura 1 – A) Posicionamento do guia tibial. B) Passagem do fio-guia na tíbia. C) Posicionamento do fio-guia no ponto médio da metade inferior da faceta do ligamento cruzado posterior (perfil). D) Posicionamento do fio-guia na região central do ligamento cruzado posterior na tíbia.

Figura 2 – Posicionamento dos túneis femorais, o anterolateral a 7 milímetros, e o posteromedial a 9 milímetros a partir da cartilagem articular.

Figura 3 – Aparência radiográfica da fixação do enxerto. A) Incidência anteroposterior. B) Incidência de perfil.
Lesões articulares associadas

Nesta série, durante a artroscopia, lesões condrais foram encontradas em seis joelhos: três eram lesões grau II, envolvendo a articulação tibiofemoral medial, e duas foram lesões grau IV no cóndilo femoral medial, uma era também de grau IV afetando a tróclea femoral medial e tibia. Nas lesões grau IV localizadas no cóndilo femoral e tróclea, microfraturas foram produzidas, e as outras foram tratadas com utilização de *shaver* para regularização.

Seis lesões meniscais (seis joelhos) também foram encontradas, uma no corpo radial e outras três, mais complexas, no corpo posterior do menisco medial. Duas lesões complexas foram encontradas no corpo posterior do menisco lateral, e todas as lesões foram tratadas com meniscectomia parcial.

Pós-operatório

Carga parcial foi autorizada no início desta série durante as primeiras semanas, com o uso de duas muletas e um imobilizador bloqueado na posição estendida até a sexta semana. Mobilização passiva para aumentar a amplitude de movimento (ADM) foi feita numa fase precoce, evitando-se a flexão a mais de 70 graus até a quarta semana, 90 graus até a sexta semana e um ganho total de ADM depois. Flexão ativa do joelho foi iniciada a partir da sexta semana. Para analgesia, eletroterapia foi utilizada para alívio rápido, e crioterapia. Os exercícios de fortalecimento em cadeia cinética aberta (CCA) para os flexores do joelho foram iniciados na oitava semana pós-operatória e os exercícios em CCA para o quadríceps, na segunda semana (isométricos), com ângulos de 45 e 70 graus para proteger a articulação femoropatelar e o LCP. Os exercícios em cadeia cinética fechada (CCF) foram iniciados a partir da segunda semana, entre 0 e 70 graus de flexão, de acordo com a tolerância do paciente. A fisioterapia sensório-motora foi iniciada com exercícios em CCF, os exercícios de solo foram realizados até por volta do quinto mês, com o movimento anteroposterior, lateral-lateral e de estresse rotacional, respectivamente. As atividades esportivas foram autorizadas a partir do sexto mês pós-operatório.

ANÁLISE ESTATÍSTICA

Para as variáveis quantitativas foram calculadas as médias. Para as variáveis qualitativas, as frequências absoluta e relativa foram calculadas. A associação entre variáveis qualitativas foi analisada pelo teste do Qui-quadrado ou exato de Fisher. O progresso dos pacientes entre os períodos pré e pós-operatório deveria ter sido
avaliado pelo teste de McNemar, mas, devido à pequena amostra, esse teste não pôde ser realizado. A comparação das variáveis quantitativas entre os períodos pré e pós-operatório foi realizada utilizando o teste de Wilcoxon. O nível de significância foi fixado em 5%.

RESULTADOS

No pré-operatório, nove pacientes (64,3%) tiveram teste de gaveta posterior grau 3, e cinco (35,7%), gaveta posterior grau 2. Na avaliação pós-operatória, 13 pacientes apresentaram melhora na estabilidade do ligamento, e oito pacientes (57,1%) tiveram gaveta posterior grau 1, e apenas um paciente (7,1%) permaneceu com a mesma graduação no teste da gaveta posterior que antes da cirurgia (grau 2). Assim, a evolução clínica dos pacientes foi observada clinicamente, embora não tenha sido possível aplicar o teste estatístico (Tabela 1).

Na avaliação pré-operatória pelo KT 1000, nove pacientes (64,3%) tinham translação posterior acima de 10 mm e cinco (35,7%) entre 6 e 10 mm em comparação com o lado contralateral. Na avaliação pós-operatória pelo KT 1000, oito pacientes (57,1%) tinham translação posterior entre 0 e 2 mm, cinco (35,7%) tinham entre 3 e 5 mm, e um (7,1%) paciente tinha entre 6 e 10 mm.

No pré-operatório, quatro joelhos (28,6%) foram classificados como C (normal), e 10 (71,4%) como D (gravemente anormais) de acordo com a avaliação pelo IKDC. Na avaliação final, três pacientes (21,4%) foram classificados como A (normal), 10 (71,4%) como B (quase normal), e apenas um paciente (7,1%) manteve-se como C (Tabela 2). Tal como aconteceu com a avaliação da gaveta posterior, a estatística realizada para analisar a evolução dos pacientes de acordo com o IKDC não pôde ser calculada, apesar da visível melhora clínica.

Houve uma associação estatisticamente significativa entre o grau da gaveta posterior e os resultados obtidos pelo IKDC (p = 0,002), mas nenhuma associação significativa com a presença de lesões meniscais (p = 0,259) e lesões condrais (p = 0,259).

A avaliação subjetiva pela escala de Lysholm antes da cirurgia, a média foi de 66 pontos, com um paciente (7,1%) classificado como tendo bom resultado, nove (64,3%) razoáveis e quatro (28,6%), ruins. Na avaliação final, após a cirurgia, a pontuação média foi de 93 pontos, com oito (57,1%) pacientes classificados como tendo excelentes resultados e seis (42,9%) bons (Tabela 3). Novamente, apesar da melhora de acordo com a escala de Lysholm, o teste de McNemar não pôde ser aplicado, mas a diferença foi estatisticamente significativa pelo teste de Wilcoxon (p = 0,02). Não houve associação estatisticamente significativa entre os resultados da escala de Lysholm e do grau de gaveta posterior (p = 0,486), ou a presença de lesões do menisco (p = 0,139) e condrais (p = 0,999)

Dois pacientes (14,3%) necessitaram de uma segunda cirurgia, um devido à presença de dor um ano após a cirurgia (ele passou por artroscopia, que mostrou uma lesão no corpo posterior do menisco medial e condral grau 4 no cóndilo femoral, tratada com meniscectomia parcial e microfratura). O segundo paciente teve flexão limitada três meses após a cirurgia (ele passou por artroscopia e manipulação do joelho). Ambos os pacientes evoluíram satisfatoriamente, e foram classificados como tendo bons resultados na escala de Lysholm e B pelo IKDC. Apenas um paciente teve resultado ruim, com persistência de grau 2 na gaveta posterior, na avaliação final, e ele foi classificado como C, pelo IKDC, apesar da melhora subjetiva e de ser classificado como bom.
pela escala de Lysholm. Não houve associação estatisticamente significativa entre a necessidade de uma segunda cirurgia e o IKDC (p = 0,627) e Lysholm (p = 0,165). A avaliação radiográfica final não apresentou alterações comparadas à avaliação realizada no pré-operatório.

DISCUSSÃO

A reconstrução com duplo feixe é indicada como uma opção cirúrgica, devido à sua melhor reprodução do LCP nativo, tanto em termos de anatomia como de biomecânica. Estudos biomecânicos mostraram a superioridade da reconstrução com o feixe duplo, com controle posterior da tibia melhorado ao longo da amplitude de movimento e uma distribuição mais uniforme de forças entre os dois feixes durante o processo de integração dos enxertos. Entretanto, estudos clínicos não foram capazes de reproduzir esses resultados em séries de casos publicados na literatura. Para explicar esta diferença, alguns pontos devem ser considerados.

Um dos temas polêmicos na literatura, com influência direta sobre o resultado da reconstrução, é o posicionamento do feixe posteromedial. Mannor et al relataram, em um estudo biomecânico, a influência da posição dos túneis no resultado final. Segundo os autores, em comparação com a reconstrução com feixe superficial associada a outro posicionado profundamente (proximal), a reconstrução com dois feixes superficiais (distal) é superior no controle da posteriorização da tibia, mas com diferenças na distribuição de forças entre eles. No posicionamento mais superficial dos dois feixes, há resistência para a posteriorização da tibia, já que os dois feixes são tensos em flexão. Na segunda configuração, superficial e profunda, há uma distribuição igual de forças entre os dois feixes, o superficial em flexão e o profundo em extensão. Galloway et al (12) relatam que o posicionamento dos túneis femorais tem um maior efeito sobre a estabilidade posterior quando comparado com o posicionamento do túnel tibial. Diferenças no posicionamento femoral também modificam o resultado da reconstrução. Erros no posicionamento femoral nas direções superficial e profunda têm maior influência sobre a estabilidade posterior quando comparados com erros nas posições alta e baixa.

Shearn et al (4) tentaram demonstrar como o posicionamento do segundo feixe afeta a tensão sobre o feixe AL e da distribuição de forças entre os enxertos. Eles realizaram a reconstrução do segundo feixe em três situações: distal, média e proximal. Concluíram que os posicionamentos médio e distal reduzem a tensão sobre o feixe AL, e que há uma melhor distribuição de forças entre os enxertos. Harner et al (4) reconstruíram os dois feixes com base nos restos da inserção femoral do LCP, e o feixe PM em uma posição mais superficial. Harner et al (10) posicionam os dois feixes na posição anatômica, de acordo com a inserção de fibras femorais. Nyland et al (15) posicionam o feixe AL cinco milímetros a partir da cartilagem articular e do PM mais profundamente (proximal), a 12mm dele.

Estudos anatômicos procuram fornecer dados sobre o melhor posicionamento dos feixes. Lopes et al (4) demonstraram, em um estudo em cadáveres, que a reconstrução com feixe duplo reproduz melhor a biomecânica do joelho, em comparação com a estabilidade entre zero e 60 graus de flexão, de 7 ± 1,02mm e 8 ± 0,99mm, respectivamente. Em outro estudo anatômico, realizado em nosso hospital, avaliamos a distância entre o início do feixe AL próximo ao teto intercondilar e da borda proximal do feixe PM em sua porção posterior da cartilagem articular, com dificuldade em definir precisamente o centro dos dois feixes. As distâncias foram, respectivamente, de cerca de 2,1mm (0,8-3,2) e 12,4mm (9,5-26,4). Em nossa série, a fim de manter o posicionamento do feixe PM, e também para verificar o posicionamento adequado para o AL, fizemos os túneis com base nos remanescentes da inserção do LCP no fêmur, e verificando o posicionamento das medidas anatômicas acima. Assim, o centro do feixe AL foi posicionado a cerca de 7mm da cartilagem articular e o PM em torno de 9mm dele. Desta forma, recriamos um posicionamento anatômico dos feixes, que é essencial para o resultado cirúrgico final.

Outro aspecto importante durante a reconstrução, além do posicionamento dos túneis, ou da criação de um ou dois feixes, é a espessura dos enxertos. Harner et al (4) demonstraram, em um estudo em cadáveres, que a reconstrução com feixe duplo reproduz melhor a biomecânica do joelho, em comparação com a reconstrução com feixe único. No entanto, os autores utilizaram o tendão de Aquiles de 10mm para ambas as reconstruções, e usaram o tendão duplo do semitendinoso de 7 a 8mm para o feixe PM, fazendo com que o enxerto ficasse mais espesso. Race e Amis (3) também usaram tendões de diferentes espessuras em seu estudo em cadáveres. Para a reconstrução dupla eles usaram um enxerto de tendão patelar de 18mm, divididos em 10 e 8mm para os feixes AL e PM, respectivamente, e para a reconstrução com feixe único usaram um enxerto de 10mm. Eles encontraram que a reconstrução com feixe duplo é superior na restauração da estabilidade do joelho durante toda a sua amplitude de movimento, em comparação com a estabilidade entre zero e 60 graus de flexão para a reconstrução com feixe único.
Bergfeld et al.(17) não observaram diferença estatística nos resultados com a reconstrução simples ou dupla com enxertos do tendão de Aquiles com espessura semelhante em um estudo em cadáver. Da mesma forma, Wang et al.(9), em um estudo clínico de enxerto autólogo do semitendíneo e grácil da mesma espessura, tanto para a reconstrução com feixe simples como duplo, também não mostraram superioridade de uma técnica sobre a outra. Hatayama et al.(10) não demonstraram superioridade da reconstrução com feixe duplo com os tendões autólogos sobre a técnica com feixe único, com características semelhantes em termos de espessura. Pereira(18), a fim de avaliar a importância de espessura na reconstrução final, realizou estudo em cadáveres, que propunha três tipos de reconstrução: com um feixe (AL) do tendão do quadríceps, de 10mm, com dois feixes usando o tendão do quadríceps de 10mm para o AL, e tendão do semitendíneo duplo de 7mm para o PM em separado e, finalmente, a reconstrução com feixe único localizado no mesmo ponto, com o tendão do quadríceps de 10mm e semitendíneo duplo de 7mm. Ele concluiu que o uso de um segundo enxerto (semitendíneo duplo) reduziu significativamente o deslocamento posterior da tíbia em todos os ângulos medidos, mas não influenciou a rígidez do joelho. Ele questionou, porém, se essa estabilidade foi o resultado do segundo túnel ou do aumento do volume do enxerto com a adição do tendão duplo do semitendíneo. Na avaliação final, com enxertos da mesma espessura (semitendíneo duplo e quadríceps), a construção de dois túneis proporcionou melhores resultados que a reconstrução simples (quadríceps), mas não tão bons como a reconstrução simples com dois enxertos (quadríceps duplo e semitendíneo).

Uma crítica pode ser feita ao modelo proposto, que mais uma vez se relaciona com o posicionamento do feixe PM(18), muito profundo (proximal) no modelo de feixe duplo, anulando ou reduzindo a sua importância para a estabilidade final. Em nossa casuística, foi utilizado enxerto do tendão do quadríceps e semitendíneo duplo, visando um enxerto espesso, cobrindo uma área maior de inserção femoral, semelhante ao LCP original(19-22). Outros autores, com o mesmo objetivo, propuseram alternativas técnicas de reconstrução, como Zhao et al.(23), que utilizaram oito feixes de tendões isquiotibiais, na técnica conhecida como “estilo sanduíche” de reconstrução do LCP, e Chen e Gao(24), que também utilizaram oito feixes de tendões isquiotibiais. Em nossa opinião, também é importante o uso de dois feixes distintos, de modo que a espessura do enxerto melhore o resultado final, e também a ação independente de cada um dos feixes de diferentes graus de flexão oferece melhor estabilidade e uma melhor distribuição das forças durante o processo de integração dos enxertos.

Assim, em nossa série, 92,8% dos pacientes foram classificados como normais ou quase normais, de acordo com a avaliação IKDC, e 100% obtiveram resultados excelentes ou bons, de acordo com o escor de Lysholm, com uma pontuação final de 93 pontos. Dos 14 pacientes, 13 tiveram a estabilidade do joelho melhorada, avaliada pelo teste de gaveta posterior e KT 1000. Dos nossos pacientes, 92,8% tinham gaveta posterior negativa ou foram classificados como grau 1. Pelo KT 1000, 57,1% dos pacientes tiveram um desvio posterior entre 0 e 2mm, em comparação com o lado contralateral, e 35,7% entre 3 e 5mm. Apenas um paciente teve gaveta posterior grau 2, que foi difícil de reduzir, e ele não melhorou na avaliação final. Acreditamos que a indicação para a reconstrução neste paciente, com o joelho pouco redutível, levou ao insucesso da reconstrução.

Nossos resultados são comparáveis com e em alguns casos superiores aos de algumas séries publicadas de reconstrução do túnel duplo. Garofalo et al.(25), utilizando enxertos autólogos de tendão patelar e semitendíneo para tratar 15 pacientes com lesão do LCP isolada, obtiveram um resultado pelo IKDC de 63% normal ou quase normal (R: 7%; B: 54%). Na avaliação de Lysholm, todos os pacientes foram classificados como satisfatórios, 13% como excelentes e 87% como bons. A estabilidade avaliada pelo teste de gaveta posterior tornou-se negativa (20%) e grau 1 (67%) em 87% dos pacientes.

Nyland et al.(15) publicaram uma série de 19 pacientes portadores de lesão LCP, isolada em um e combinada com a instabilidade posterolateral graus 1 e 2 nos 18 restantes. Os pacientes foram submetidos à reconstrução do LCP apenas, com feixe duplo usando enxerto homólogo anterior da tíbia em 17 pacientes e semitendíneo em dois, sem tratamento de lesões periféricas. Eles obtiveram, na escala de Lysholm, 90% de resultados satisfatórios (63% excelentes e 27% bons). De acordo com o IKDC, encontraram 89% dos pacientes como normais (47%) ou quase normais (42%).

Wang et al.(9), em um estudo randomizado, compararam (não simultaneamente) 19 reconstruções com feixe único e 19 reconstruções com feixe duplo no tratamento de lesões isoladas do LCP, mas não demonstram superioridade de uma técnica sobre a outra. Eles usaram o tendão do semitendíneo e grácil, autólogos, para a reconstrução, e, na reconstrução do feixe duplo, eles obtiveram resultados, na avaliação IKDC, de 81,2% de pacientes normais (50%) ou quase normais (31,2%). A média de pontuação para a avaliação foi de 89 pontos na escala de Lysholm.

Outro estudo clínico, de Hatayama et al.(10), comparando reconstruções com feixes simples e duplos, não
demonstrou nenhuma diferença no resultado final. No entanto, a série de 20 pacientes submetidos à reconstrução com o tendão do semitendinoso e grácil incluiu tanto lesões isoladas como combinadas. A amostra foi, portanto, heterogênea, e não aleatoriamente selecionada para quaisquer tratamentos, e a amostra de joelhos não foi grande o suficiente para proporcionar diferenças estatísticas entre os grupos. Na série de 10 pacientes tratados com feixe duplo, os autores obtiveram 50% de normal ou quase normal nos resultados IKDC, e uma diferença média entre os lados, por radiografia simples, de 4,9mm. Os mesmos pesquisadores encontraram, em uma segunda artroscopia, rupturas do feixe PM em três pacientes. Eles acreditam que a magnitude das forças sobre o feixe PM é superior às do AL, e que a utilização de um tendão grácil fino (6mm) na reconstrução influencia a ruptura e a estabilidade final, que foi menor nos pacientes submetidos à técnica de feixe duplo.

Fanelli et al (11), em uma série de 33 pacientes com lesões combinadas do LCP, utilizando o tendão de Aquiles homólogo e anterior da tibia para a reconstrução do feixe duplo, obtiveram pontuação de Lysholm média de 89,6 pontos, enquanto a avaliação do KT 1000 mostrou uma diferença média entre os lados de 1,92mm.

Nosso estudo apresenta algumas limitações, como o curto período de acompanhamento, o número de pacientes com lesões isoladas e a ausência de um grupo controle. Um estudo prospectivo e randomizado não foi possível dado o elevado número de lesões associadas, e relativamente baixo de lesões isoladas – lesões combinadas foram excluídas para se obter homogeneidade. Além disso, esses pacientes foram operados pelo mesmo cirurgião, utilizando o mesmo enxerto para todos, com a mesma técnica cirúrgica e o mesmo protocolo de reabilitação, e todos foram examinados por outro médico. Estudos prospectivos randomizados são necessários para comprovar os resultados clínicos deste procedimento em comparação com a reconstrução com feixe único.

CONCLUSÕES
Embora o tamanho da amostra deste estudo não tenha permitido a observação de diferenças estatisticamente significativas, a experiência com estes pacientes mostrou que a reconstrução artroscópica do LCP com feixe duplo com base no posicionamento anatômico dos túneis, com o tendão do semitendinoso duplo e quadríceps único, provou redução dos sintomas, bem como uma melhoria na translação tibial posterior, que foi normalizada em 57,1% dos pacientes e apresentou desvio entre 3 e 5mm em 35,7% dos casos.

REFERÊNCIAS
1. Faustino CAC. Técnica cirúrgica de reconstrução do ligamento cruzado posterior com uso de enxerto de tendômpatela-Rev Bras Ortop. 1996;31(2):143-50.
2. Camargo OPA, Chamecki A, Lemos PEG, Pecora RAM. Lesão do ligamento cruzado posterior: Incidência e tratamento. Rev Bras Ortop. 1996;31(6):491-6.
3. Race A, Amis AA. PCL reconstruction. In vitro biomechanical comparison of “isometric” versus single and double-bundled ‘anatomic’ grafts. J Bone Joint Surg Br. 1998;80(1):173-9.
4. Harner CD, Janausheka MA, Kanamori A, Yagi M, Vrognin TM, Wuu SL. Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med. 2000;28(2):144-50.
5. Mannor DA, Shearn J, Grood ES, Noyes FR, Levy MS. Two-bundle posterior cruciate ligament reconstruction: how bundle tension depends on femoral placement. J Bone Joint Surg Am. 2004;86(1):1262-70.
6. Markolf KL, Feeley BT, Jackson SR, McAllister DR. Biomechanical studies of double-bundle posterior cruciate ligament reconstructions. J Bone Joint Surg Am. 2006;88(8):1788-94.
7. Wang CJ, Weng LH, Hsu CC, Chan YS. Arthroscopic single- versus double-bundle posterior cruciate ligament reconstructions using hamstring autograft. Injury. 2004;35(12):1293-9.
8. Hatayama K, Higuchi H, Kimura M, Kobayashi Y, Asagumo H, Takagishi K. A comparative study of the results of arthroscopic single- and double-bundle posterior cruciate ligament reconstructions with autograft and allograft: clinical results with a minimum of 2 years' follow-up. Arthroscopy. 2006;22(12):1331-8. e1.
9. Nyland J, Hester P, Caborn DN. Double-bundle posterior cruciate ligament reconstruc- tion with allograft tissue: 2-year postoperative outcomes. Knee Surg Sports Traumatol Arthrosc. 2002;10(5):274-9.
10. Lopes OV Jr, Ferretti M, Shen W, Ekkahal M, Smolinski P, Fu FH. Topography of the femoral attachment of the posterior cruciate ligament. J Bone Joint Surg Am. 2008;90(2):249-55.
11. Berfield JA, Graham SM, Parker RD, Valdevoir AD, Kambic H. A biomechanical comparison of posterior cruciate ligament reconstructions using single- and double-bundle tubial inlay techniques. Am J Sports Med. 2005;33(7):976-81.
12. Pereira JARM. Estudo biomecânico da influência da espessura do enxerto e da técnica de dois feixes na reconstrução do ligamento cruzado posterior [dissertação]. São Paulo: Faculdade de Medicina da Universidade de São Paulo; 2005. Disponível em: http://www.teses.usp.br/teses/disptese/5/5140/idec200520071736615. Acesso em 9 novembro de 2010.
13. Harner CD, Baek GH, Vrognin TM, Carlin GJ, Kashyawagushi S, Wuu SL. Quantitative analysis of human cruciate ligament insertions. Arthroscopy. 1999;15(7):741-9.
14. Mejia EA, Noyes FR, Grood ES. Posterior cruciate ligament femoral insertion site characterizations. Importance for reconstructive procedures. Am J Sports Med. 2002;30(5):643-51.
15. Morgan CD, Kalman VR, Grawil DM. The anatomic origin of the posterior cruci- ated ligament: where is it? Reference landmarks for PCL reconstruction. Arthroscopy. 1997;13(3):325-31.
16. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomi- cal, functional and experimental analysis. Clin Orthop Relat Res. 1975;(106):216-31.
17. Zhao J, Xiaqiao H, Ye Y, Yang X, Liu C, Lu Z. Sandwich-style posterior cruciate ligament reconstruction. Arthroscopy. 2008;24(6):650-9.
18. Chen B, Gao S. Double-bundle posterior cruciate ligament reconstruction using a non- hardware suspension fixation technique and 8 strands of autogenous hamstring tendons. Arthroscopy. 2009;25(7):777-82.
19. Garofalo R, Jolles BM, Moretti B, Siegrist O. Double-bundle transtibial posterior cruciate ligament reconstruction with a tendon-patellar bone-semitendinosus tendon autograft: clinical results with a minimum of 2 years’ follow-up. Arthroscopy. 2006;22(12):1331-8. e1.