SUE: A Special Purpose Computer for Spin Glass Models

A. Cruza, J. Pecha,b, A. Tarancóna, P. Téllezc, C. L. Ulloda and C. Ungila.

aDepartamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
e-mail: tarancon@sol.unizar.es
bInstitute of Physics, Academy of Sciences, 180 40 Prague, Czech Republic
cServicio de Instrumentación Científica Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain

Abstract

The use of last generation Programmable Electronic Components makes possible the construction of very powerful and competitive special purpose computers. We have designed, constructed and tested a three-dimensional Spin Glass model dedicated machine, which consists of 12 identical boards. Each single board can simulate 8 different systems, updating all the systems at every clock cycle. The update speed of the whole machine is 217ps/spin with 48 MHz clock frequency. A device devoted to fast random number generation has been developed and included in every board. The on-board reprogrammability permits us to change easily the lattice size, or even the update algorithm or the action. We present here a detailed description of the machine and the first runs using the Heat Bath algorithm.

Key words: Ising model, spin-glass, +/-J, 3d, special purpose machine, programmable logic.
PACS: 07.05.Bx, 02.70.Lq, 05.50.+q.

DFTUZ/2000/02 cond-mat/0004080
1 Introduction

Two approaches have become popular in the field of computer design for scientific calculations: special or general purpose computers. Lattice Monte Carlo in Quantum Field Theory and Statistical Mechanics requires large computational power in relatively general purpose computers and the processing can often be parallelized. Various groups have developed their own parallel machines for those simulations [1] [2] [3] [4]. Those general purpose computers require continuous technological upgrading and investment to obtain competitive results. On the other hand, special purpose computers can approach very specific problems, achieving better performance than general computers.

The emergence in the market of Complex Programmable Logic Devices (CPLD) makes it possible to design dedicated machines with low cost and high performance. In this paper we describe a CPLD-based machine, dedicated to three-dimensional spin glass models with variables belonging to \(\mathbb{Z}^2 \) and couplings to first neighbours, and report on the reliability tests which have been carried out.

Our machine is called SUE, for Spin Updating Engine, because its task is to generate sets of updated spin configurations in the Monte Carlo simulation. In a previous work [5], we presented the prototype for the two-dimensional model, and introduced the first ideas about the final version. After checking that the 2d version worked properly, we have designed, constructed and tested the 3d version, which differs in some aspects from the 2d version as we will see below. The performance of the 3d machine is improved due to the fact that it can run more than a single model: the lattice size or the action of the physical model can be easily changed using the on-board reprogrammability of the CPLDs. A device devoted to generate a 32-bit random number has been developed and included in every SUE board. This device (described below) enables SUE to operate with both canonical and microcanonical algorithms.

At present, spin glass models [6] are a progressing area of Statistical Mechanics. They are related to neural networks, spin models, some High \(T_c \) superconductivity models, etc. There is large activity in the 3d models because of the uncertainty in the vacuum structure at low temperature. Monte Carlo simulations of spin glass systems have been used to study the phase transition, the ultrametric structure and the dynamics out of equilibrium [7]. Only sizes up to \(L = 16 \) have been simulated [8][9][10], due to the slow dynamics of the systems and the strong slowing-down as the size grows. Yet, those simulations requiring very simple calculations, they are easily implementable in a dedicated machine. That way the computational power needed to obtain results in larger lattices is obtained.
A standard way of studying spin glasses is the use of independent lattices with the same quenched couplings, called *replicas*. The overlap between two *replicas* acts as the order parameter in that model. A great improvement on the usual Monte Carlo scheme is the parallel tempering method [7]. The basic idea is to move in temperature space: the system changes its temperature, goes up to the paramagnetic phase and eventually goes back to lower temperature. With high probability in its motion through temperature the system will visit new local minima. That scheme has been implemented in SUE: *Replicas* at different temperatures are simulated, and systems running at adjacent levels can be swapped according to an appropriate probability distribution.

An essential tool for the analysis of results is Finite Size Scaling [11], which requires the use of different volumes. In that sense, SUE is capable of working with different lattice sizes by reprogramming its CPLD devices.

The main differences with respect to the 2d prototype presented in [5] are:

- Larger and faster devices.
- Multi-Layer instead of Double-Layer Printed Circuits.
- On-board reprogrammability.
- Dedicated device for 32-bit random number generation.
- Demon and Heat Bath algorithm support.
- Parallel Tempering implementation.
- Driver and Software development for easy (transparent) use.

At present we have built 12 boards and tested them using the Demon and Heat Bath algorithms in different lattice sizes. Each board simulates 8 lattices, updating 8 spins every 20.8 ns cycle. The update speed of a single board is therefore 2.6 ns/spin. The cost of each board is 2400 Euros (500 for PCB and mounting, and 1900 for components.)

The summary of this paper is as follows: We start introducing the physical model in the next section. In section 3 We describe the electronic architecture of SUE, design considerations and software support. The development process is outlined in section 4. Last section is devoted to discuss the performance.

2 The Physical Model

We want to simulate the 3D Edwards-Anderson model with first neighbour couplings (see [6] for a detailed description of the model). The action of this model is given by

$$ E = \sum_{i,j} \sigma_i \sigma_j J_{ij}, \quad (1) $$
where the value of the Ising spins σ can be 1 or -1, and the couplings J_{ij} are random variables taking the values ± 1 with equal probability. For a fixed set of couplings $\{J_{ij}\}$ the partition function is
\[
Z(\beta, \{J_{ij}\}) = \sum_{\{\sigma\}} \exp \beta E(\{J_{ij}\}, \{\sigma\}).
\] (2)

We study the existence of phase transitions using as order parameter the overlap between two independent systems (replicas) with the same set of couplings J_{ij}. We should finally average over different realizations of the disorder (J_{ij}) to obtain physical results about the system.

To calculate (2) we must sum over 2^V possible configurations, where V is the volume of the lattice, which is a very large number for any computer. The standard way to compute the partition function is to run an algorithm that selects only a representative set of configurations. There are different appropriate algorithms, see for instance the chapter by Sokal in [12]. For pure spin systems (all J_{ij} equal to 1) some cluster algorithms are very efficient, but for a general spin glass model only local algorithms achieve good efficiency.

Typically, we must run the algorithm and generate millions of different representative configurations in order to obtain accurate results. The autocorrelation time τ is a measure of the correlation between configurations: a run of length n provides only $\sim n/\tau$ effectively independent samples. Near the critical point, τ diverges as $\tau \sim L^z$, where L is the size of the system and z, the dynamical critical exponent, has been found to be around 6 (while in the pure Ising model it is close to 2). This strong slowing-down, due to the existence of many pure and metastable states, and the absence of non local algorithms, makes this problem really hard from a computational point of view.

Two different updating algorithms have been implemented in our design, one microcanonical (Demon) and one canonical (Heat Bath).

The Demon algorithm [13][14] keeps the sum of the lattice energy and a demon energy constant. In order to generate the representative set of samples, we start from a spin configuration with an action S and a demon energy equal to zero. Now we use the algorithm to change the spins to generate new configurations (one for every V updates). The update of a spin is as follows: if the flip lowers the spin energy, the demon takes that energy and the flip is accepted. On the other hand, if the flip increases the spin energy, the change is only made if the demon energy is sufficient to transfer that energy to the system. The conservation of the total energy (lattice plus demon), has been useful in the programming/test stage, allowing fast tests of proper function.
In the Heat Bath algorithm [12], the new spin value for each site σ_i is independent from the old one, and its probability distribution is that of a single Ising spin σ_i in the effective magnetic field produced by the fixed neighbouring spins σ_j:

$$P(\sigma_i | \{\sigma_j\}_{j \neq i}) = \frac{\exp (\beta \sigma_i \sum_j J_{ij} \sigma_j)}{\exp (\beta \sum_j J_{ij} \sigma_j) + \exp (\beta \sum_j J_{ij} \sigma_j)}.$$ \hfill (3)

The drawback of this canonical algorithm is the necessity of a random number to decide the acceptance of the new spin.

The algorithms being local, to update a spin only the nearest neighbours are needed. Because of simplicity in the electronic design, we use helicoidal boundary conditions. Let us consider a lattice of side L and volume $V = L^3$ with sites labelled in the standard way: the site $[x, y, z]$ (with $0 \leq x, y, z \leq L - 1$) gets the index $n = x + yL + zL^2$. We will call x_+ (y_+, z_+) the neighbour in the positive direction along the x (y, z) axis. With our helicoidal boundary conditions the neighbours of the site n are simply:

$$x_+ = (n + 1) \mod V$$
$$y_+ = (n + L) \mod V$$
$$z_+ = (n + L^2) \mod V$$ \hfill (4)

We define in an analogous manner the remaining neighbours x_-, y_- and z_-.

Fig. 1. Schematic view of the full $d=3$ machine.
3 Operation and General Structure of SUE

The SUE machine is connected to a Host Computer (HC) running under Linux. SUE performs the update of the configurations, but the measurements and analysis are made by the HC. SUE is set up with initial spin configurations, couplings and several simulation parameters. Then SUE is started and simulation begins. After a certain number of iterations, SUE is stopped to download the configuration to the HC and SUE keeps the updating process. In this sense, SUE and the HC work in parallel: while SUE is updating the system the HC processes the previously read configurations.

Fig. 1 shows a simple diagram of the whole machine which consists of the HC and \(n \) SUE boards (the figure is for \(n = 8 \), but the final system consists of 12 processing modules). They are connected to the HC through a PCI Data Acquisition Card. Every processing module contains the hardware to store and update eight lattices in parallel. Note that there are two degrees of parallelism: inside the processing module and between the modules.

Every clock cycle, the random number generator device included in each board provides a pseudo-random number which is shared for the update of the eight lattices, so the replicas (systems with the same couplings \(J_{ij} \)) must be simulated in different boards. We can then think of each pair of boards as a unit, allowing us to simulate eight pairs of replicas (corresponding to eight realizations of disorder \(J_{ij} \)). Periodically, the configurations are read and the relevant measurements carried out and stored.

Parallel tempering requires the simulation of pairs of replicas with the same couplings at different values of \(\beta \). With 12 boards we could then simulate replicas corresponding to eight sets of couplings at 6 values of \(\beta \) at once. Parallel tempering requires more temperature levels, so each time the configuration is read the \(\beta \) is changed (the corresponding probability table is loaded), and the configuration to be updated is loaded onto the board (in the meantime it was stored in the HC). Different temperatures are then sequentially simulated.

The HC controls this mechanism, and is responsible for deciding whether the configurations being simulated at adjacent temperatures are interchanged. Given the configurations \(X \) at temperature \(\beta \) and \(X' \) at temperature \(\beta' \), we compute

\[
\Delta = (\beta' - \beta)(E(X) - E(X'))
\]

and use a Metropolis like test: if \(\Delta < 0 \) we accept the change, otherwise we swap the configurations with probability \(\exp(-\Delta) \).
By processing 8 spins in parallel on 12 modules (96 spins in total) within one clock cycle (clock period of 48 MHz), we obtain an update speed of 217 $ps/spin$. The time spent reading, writing and processing (Measurement and Parallel Tempering) the configurations is around 4% of the computation time in the smallest simulable lattice ($L = 20$), and decreases steeply with size (it is less than 1% of the total time for $L = 30$).

Let us describe the main characteristics of a SUE board. Devices used are listed in table 1, apart from passive components (resistors, diodes, capacitors, leds, etc.). The main electronic devices are the Altera 10K CPLDs [15].

The photograph of one of the boards can be seen in fig. 2. It contains four devices FLEX 10K30 responsible for the core of the Monte Carlo simulation (UPDATE area on the figure). That four devices have the same electronic logic inside, which is prepared to update two lattices in parallel.

On the right of these chips are the static memory devices (SRAM) which store the couplings of the lattices (J-MEMORY). On the left, each UPDATE device has two SRAM devices which store the spin variables ($SPIN MEMORY$). Latch devices are used as tristate devices to manage the polarity of the data buses at high frequency.

The RNG device is a FLEX 10K50 where a random number generator is programmed, allowing the use of canonic simulations. Addressing of the memories and synchronization between the devices are the main tasks of the fifth FLEX 10K30 ($ADDRESS$). The coupling memories are addressed through latch devices to avoid fan-out problems.

External communication is provided by three EPM7032 chips placed near the 68-pin connector. One of them controls the board when the on-board pro-

Qty	Type	Component	Manufacturer
5	CPLD	FLEX 10K30	ALTERA
1	CPLD	FLEX 10K50	ALTERA
2	PLD	EPM 7032-10	ALTERA
1	PLD	EPM 7032-7	ALTERA
26	SRAM	CY7C1031	CYPRESS
11	LATCH	CY162841	CYPRESS
6	PLL	CY2308-4	CYPRESS
1	OSCILLATOR	SG615P	SEIKO EPSON

Table 1
Active Components in SUE
grammable devices are not yet programmed. It responds to basic commands sent from the HC, allowing to select and program the board. The programmed logic establishes 4 control lines in each direction allowing communication between the HC and the ADDRESS device, and a 32-bit data bus common to the HC and the UPDATE and RNG devices. The two lower bits in this bus reach ADDRESS too, and act as extra control lines when needed.

The clock signal is distributed to all the synchronous devices in the board through Cypress 2308-4 PLL devices. In the upper right corner, a set of leds
permits us to visualize the state of the machine. The connection to the HC is made through a 68 pin (SCSI-2 type) connector. The SUE boards can share the same bus for an easy management from the HC.

Once the general architecture of a SUE board has been outlined, the internal details are explained more deeply in the next subsections.

3.1 Updating Logic

Four Altera 10K30 devices are responsible for the update. To each one of those devices lines are assigned to access the spin and coupling memories and the 32-bit bus through which the random number is provided. That bus is used also to write and read the memories, the demon energy or the probability table from the HC.

In order to obtain an updated spin every clock cycle we have designed a pipeline structure that performs the algorithm step by step: A state machine runs over a 10 states cycle during the simulation, one spin being put into the updating pipeline at each step.

We have already mentioned that both algorithms are local. Indeed, the devices that actually perform the updating ignore where in the lattice is the site being updated, or the size of the system. They just process their input data and output the updated spins. There is another device (ADDRESS) which takes care of the geometry and addresses the memories accordingly. That component is also responsible for stopping the simulation when the desired number of configurations has been calculated.

3.2 Memory Scheme

Two different memory banks, for spins and couplings, are available to each UPDATE device (SPIN MEMORY and J-MEMORY areas in fig. 2).

Couplings are not dynamic variables (their values remain constant during the simulation), so the coupling memories are always in reading mode during update. When a site is to be updated, the couplings with its neighbours \(x_+, x_-, y_+, y_-, z_+, z_-\) must be supplied to the updating engine. We organize therefore the 18 SRAM devices as a single bank of width \(3 \times 16\) bits and depth \(6 \times 64K\). Each lattice takes 6 of the 48 bits to store the six needed couplings. The maximum simulable volume is then limited by the depth to \(L=73\).

The spins changing during the simulation, an appropriate mechanism is needed
in order to read and write the configurations simultaneously: The spin memory is duplicated (P and Q banks), and while one memory bank is read from the other is written on. Because of that, two memory devices are connected to every UPDATE component, each one capable to store $64K \times 18$ bits.

In order to understand how the spin memory is managed, let us consider each column along the x axis of the lattice divided in blocks of fixed length l.

To update one of the blocks, the block itself and its four y and z neighbours have to be supplied. So, five blocks must be read to update one, implying that, if an updated spin every clock cycle is wanted, the block length has to be at least five (see subsection 3.3 below).

Each spin memory device of 18 bit words stores two lattices, so 9 bits are available for each lattice. Each block can contain from 5 to 9 spins, and the maximum lattice size $L \sim (l \times 64K)^{1/3}$ that can be stored is 68, 73, 77, 80 or 84, depending on the selected block size. This limitation, together with the one we found from the coupling memory and the fact that the number of blocks must be even, yields the range of simulable sizes shown in table 2.

l	5	6	7	8	9
20	24	28			
30	32				
36	36				
40	42				
48	48				
50	54				
56					
60	60	64			
70	72				
72					

Table 2
Simulable lattice sizes

The spin memories are arranged in the following way: Each 9-bit word contains l consecutive spins ($5 \leq l \leq 9$), being consecutive (along x axis) lattice blocks stored in consecutive memory addresses. The V/l words are not read consecutively, but following a pattern that makes the block to be updated and its neighbouring blocks available to the UPDATE component, as explained in the next subsection.

On the other hand, the coupling memories store in the n^{th} 6-bit word the
couplings of the \(n^{th} \) spin with its six neighbours, and is read sequentially as the \(V \) spins are updated.

3.3 Pipelined Updating

In this subsection we describe the logic programmed in every \(UPDATE \) device. We consider the case in which the demon algorithm is used with a block length \(l = 5 \) (see fig. 3). In this case, the algorithm runs over a state machine with ten states. In each of those states a block is read from bank Q, which is in reading mode, and stored in one of the internal registers A...J. Let us suppose we have already been in states 0...4, and some registers are already loaded: A (\(z_- \) neighbouring block), B (\(y_- \) neighbouring block), C (block to be updated), D (\(y_+ \) neighbouring block) and E (\(z_+ \) neighbouring block).

In state 5, we send for update the first spin in the block stored in C. The \(x_+ \) neighbour is in the same block, the \(x_- \) neighbour is the previous updated spin, which is still in the updating process (and will not be needed until the last step), and the rest of the neighbours are stored in blocks A,B,D,E. We read simultaneously the \(z_- \) neighbouring block of the next block to be updated and store it in register F.

In states 6 to 8, we continue sending for update the spins second to fourth in block C, and loading registers G (next block \(y_- \) neighbour), H (next block to be updated) and I (next block \(y_+ \) neighbour). In state 9, the last spin in block C is sent into the update pipeline. It is no longer true that the \(x_+ \) neighbour is in the same block, but it is in the block we have already stored in register H. Register J (next block \(z_+ \) neighbour) is loaded. When we return to state 0, the updating of the block registered in H starts.
After some cycles, the updated value of the block that was stored in C has been calculated and is written on the appropriate memory position in bank P, in writing mode. Writing follows the same scheme as reading, not only the updated values are written but also the unchanged neighbours.

When a whole column (containing L/l blocks of l spins each) has been updated, we change the role of the memories: we will now write on bank Q, the memory bank we were previously reading from, and read from bank P, the bank we were writing on. Bank P stores now the correct new configuration. Bank Q stores the old configuration, which shall be overwritten with the result of updating the column read from bank P.

We have seen that the writing and reading sequences are equal, although writing is obviously delayed with respect to reading several cycles. Due to this delay, to avoid problems in the change of role of the spin memory banks the first block of the updated column, which should be read while its bank is still in writing mode, is stored in a cache memory inside the UPDATE devices. This mechanism requires at least four blocks, making the minimum simulable size to be $L = 20$.

3.4 Addressing Logic

The ADDRESS device in fig. 2 controls and addresses the memories, establishes the functioning mode of the UPDATE and RNG devices and takes charge of the communications with the HC. As we said above, The board is accessed through a communication port with 32 bidirectional lines devoted to data transfer and 8 control lines (4 in each direction). Data lines are connected through tri-state circuits to the bus connecting the UPDATE and RNG devices. Control lines are connected to the ADDRESS chip, which controls the board according to the commands sent from the HC.

The implemented instruction set allows us to:

- program the devices.
- read/write the spin and coupling configurations.
- read/write the demon energies.
- load the number generator initialization table.
- load the probability tables used in the Heat Bath algorithm.
- set the number of iterations to run.
- start the simulation.

The ADDRESS device controls the UPDATE and RNG devices to carry out that operations. A 3-bit wide bus is used to encode the instructions for the UPDATE devices.
3.5 Random Number Generator

The Altera 10K50 device (RNG chip in fig. 2) is a 32-bit pseudo-random number generator of the R250 kind. Those generators are known to suffer some problems in Monte Carlo simulations, but only with non-local algorithms [16].

In the C implementation, a vector is initialized with a conventional pseudo-random number generator. Using the macro instruction RANDOM we run over the wheel, getting a new number and changing one of the values in the wheel:

```c
#define RANDOM ( (irr[ip++]=irr[ip1++]=irr[ip2++]=)^irr[ip3++] )
```

The variables involved need to be properly initialized before using the defined macro:

```c
/* random number generator initialization */

unsigned int irr[256];
unsigned char ip, ip1, ip2, ip3;

ip=128;
ip1=ip-24;
ip2=ip-55;
ip3=ip-61;

for(i=0; i<256; i++)
    irr[i]=(unsigned int) rand();
```

In the RNG device (see Fig. 4), the irr[i] wheel becomes a 32-bit wide shift register, reproducing that way the effect of incrementing ip, ip1, ip2 and ip3. An adder sums the words WordA and WordB and stores the result in the first position IN_SR. This result also serves as input to a XOR function, together with the value in the last register WordC. The result of this function provides us with the pseudo-random number, every clock cycle.

The seeds loading process is controlled by the ADDRESS component, which also enables the random number generation during the simulation.

3.6 Software

The boards are connected to the HC through a data acquisition card PCI-DIO32HS from National Instruments. To access the DAQ, a Linux driver has
been programmed, and also a user library allowing to operate with the boards in an easy way.

The functions available to the user are the following:

- **dioinit**: initializes the DAQ boards to be used by the HC.
- **boardsel**: selects one board among those connected to the HC.
- **ws**: writes the spin configuration corresponding to one of the UPDATE devices in the selected board.
- **rs**: reads the spin configuration.
- **wj**: writes the couplings of the lattices in the selected board.
- **rj**: reads the couplings in the selected board.
- **rd**: reads the Demon energy.
- **wd**: writes the Demon energy.
- **wmesfr**: sets the number of iterations in each run.
- **wrng**: writes the initial random number table.
- **wprob**: writes the probability table 2 on UPDATE.
- **startsue**: starts the simulation in the selected board.
- **waitsue**: waits for one of the boards to finish.

The functions to access the memories get the arguments as arrays of bytes, where each element corresponds to one site in the lattice and the eight bits in the element to each one of the lattices in the board, as is usual in multi-spin code. The user needs not worry about SUE internal details.

3.7 Design considerations
3.7.1 Programming method

CPLDs are electronic devices which can be programmed as many times as needed. They lose their program code every time the board is switched off, so they have to be reprogrammed after switch on. To manage the programming task, these devices are connected sequentially creating a JTAG chain which is controlled by the HC through the communication port described above. No extra cables are needed, providing easy on-board reprogrammability controlled from the HC. This feature was extremely important during the debugging process of the boards.

3.7.2 Printed Circuit Board

The printed circuit board surface is $24.5 \times 30.5 \, cm^2$, and it is $2\, mm$ thick. Manufactured in FR4 fiber, it consists of eight layers (four dedicated to signal transmission and the others to powering).

The board satisfies the ATX standard. In the final version, the 12 boards are mounted in a rack and are fed by a 800 Watt source at 5 V. Current, voltage and temperature are monitored. Full operation values are 90 Amp at 5 V.

3.7.3 Frequency

The proper working of the circuit requires perfect synchronization between the active devices. The working frequency is 48 MHz, and the clock signal should reach the 32 components spread over a $747\, cm^2$ surface.

The clock distribution is made through CY2308-4 devices (3.3V Zero Delay Buffers), provided with a PLL mechanism (Phase Locked Loop) that allows to double the input frequency and supply eight outputs.

A 12 MHz oscillator is connected to a PLL device that doubles its frequency. Five outputs are driven into PLL components that double the frequency again and feed the neighbouring components. In this way, the clock is distributed across the circuit at low frequency, and the frequency doubled near the final components.

3.7.4 Transmission lines

As a consequence of the large size of the circuit, there exist connections with a large total trace length. The rise times of the signals determine whether the transmission line behaves like a distributed circuit or not.
The effective length associated with the rise time of a signal is

\[l = \frac{T_r}{D} \]

where \(T_r \) is the rise time and \(D \) the propagation delay, characteristic of the material. We must consider a distributed circuit if the length of the transmission line is greater than a quarter of the effective length.

In our board, diode barriers protect the traces addressing the coupling memories, the data bus connecting \textit{UPDATE} and \textit{RNG} devices, and the connector for external communication. The rest of the signals, generated by memory devices or Altera 10K components (the latter allow the user to set the rise time), have rise times short enough for the system to behave in a lumped fashion.

4 Development Process

Initially, only one board was manufactured. In a first stage, we tested its general performance. After being able to communicate with the machine, the programming mechanism was implemented. Different test programs were written and compiled to program the CPLDs, using Altera’s MAXPlus-II development environment. Once we checked that all the components worked properly (fixing some electrical bugs in the way), the Demon algorithm was progressively implemented. We chose the demon algorithm because it is microcanonical, so the random number generator is not needed and the conservation of the total energy provides a fast test mechanism. Additional functionalities were added and the algorithm scheme was fine-tuned, until the program was complete.

When the rest of the boards were available, they were tested with this Demon program, and the Heat Bath algorithm was then implemented. The structure of the algorithm remained almost the same, although some details in the algorithm had to be changed and some new functions were added to the user library. The main novelty was the random number generator usage, which worked finally with an appropriate pipelining scheme both in RNG and UP-DATE chips.

In the early debugging stage, development had been carried at 24 MHz, so we switched to high frequency. Some fine-tuning in the programs was needed and the CPLD logic layout was carefully studied in order to reach the design-goal of 48 MHz.

To make sure of the proper working of the machine beyond any doubt, an
emulator was developed to run in a PC, so the machine configurations can be compared with those obtained with the PC emulation. This test proved that both the updating algorithm and the random number generator worked as intended.

5 Performance

Table 3 compares the update speed achieved by SUE with that of some simulations run by our group in different computers, and with the performance obtained running highly optimized multi-spin code in a Cray T3E supercomputer as reported in [17]. We can see that the whole machine matches the computational power of one hundred processors of a Cray T3E.

System	Update speed (ns/spin)
Pentium Pro 200 MHz	170
Pentium II 500 MHz	102
Alpha 133 MHz	215
Alpha 400 MHz	58
Alpha 500 MHz	44
APE (tower)	6
Alpha EV5, 600 Mhz [17]	22
SUE (single board)	2.6
SUE (twelve boards)	0.22

Table 3
SUE performance

6 Preliminary Physical Results

In this section we present some preliminary results obtained with SUE. We have run an $L = 20$ lattice in 4 boards at 48 Mhz. We have simulated 1600 sets of $\{J_{i,j}\}$, with 2 replicas at 12 different values of β, which previously have been controlled to have a correct transfer probability between them with the parallel tempering method. We measure every 16384 sweeps, collecting 800 measurements. These results have been obtained in 60 days.

In Fig. 5 we plot the value of the average squared overlap.
Fig. 5. Overlap in $L = 20$, as a function of T. The points correspond to the 12 simulated T, and the lines are obtained from the spectral density method.

The errors are plotted only at the simulations points. We are working around the critical region, as we reach high values for q^2. The extrapolated lines connect properly and the different values evolve smoothly for different T values, as corresponds to a good thermalization and a high transition probability from parallel tempering.

At the moment of writing, we are running $L = 20$ in 12 boards and almost finished the runs. Afterwards we will start the simulation in the $L = 30$ system, and estimate that the time needed to obtain good results is around one year.

Acknowledgements

We wish to thank H.G. Ballesteros, J.M. Carmona, L.A. Fernández, D. Iniguez, and J.J. Ruiz-Lorenzo for useful discussions. Partially supported by DGA (P46/97) and CICyT (AEN97-1768 and AEN99-0990).

References

[1] The APE Collaboration, Comp. Phys. Com. 57 (1989) 285.

[2] N. H. Christ and A. E. Terrano, IEEE Trans. Comput. 33 (1984) 344.
[3] The RTN Collaboration, *Procc. of CHEP 92* CERN 92-07.

[4] A. Hoogland, J. Spaa, B. Selman and A. Compagner, *J. Comp. Phys.* 51 (1983) 250.

[5] J. Pech, A. Tarancón and C.L. Ullod, *Comp. Phys. Com.* 106 (1997) 10, [hep-lat/9611014].

[6] M. Mezard, G. Parisi and M. A. Virasoro, *Spin Glass Theory and Beyond* (World Scientific, Singapore 1987).

[7] E. Marinari, G. Parisi and J.J. Ruiz-Lorenzo, in *Spin Glasses and Random Fields* (World Scientific, Singapore 1998), [cond-mat/9701010].

[8] E. Marinari, G. Parisi and J.J. Ruiz-Lorenzo, *Phys. Rev. B* 58 (1998) 14852, [cond-mat/9802211].

[9] B.A. Berg and W. Janke, *Phys. Rev. Lett.* 80 (1998) 4771.

[10] N. Kawashima and A. P. Young, *Phys. Rev. B* 53 (1996) R484, [cond-mat/9510009].

[11] M. E. Fischer and A. Nihat Baker, *Phys. Rev. B* 26 (1982) 2507.

[12] M. Creutz, *Quantum Fields on the Computer* (World Scientific, Singapore 1992).

[13] M. Creutz, Microcanonical Monte Carlo Simulation. *Phys. Rev. Lett.* 50-19 (1993).

[14] J.J. Ruiz-Lorenzo and C.L. Ullod, *Comp. Phys. Com.* (125) 1-3 (2000) 210, [cond-mat/9812378].

[15] Altera Corporation, *Altera Data Book* 1995.

[16] H.G. Ballesteros and V. Martin-Mayor, *Phys. Rev. E* 58 (1998) 6787, [cond-mat/9806059].

[17] M- Palassini, S. Caracciolo, *Phys. Rev. Lett.* 82 (1999) 5128, [cond-mat/9911449].