Spin-relaxation and magnetoresistance in FM/SC/FM tunnel junctions

S. Takahashi*, T. Yamashita*, H. Imamura, and S. Maekawa

*Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

The effect of spin relaxation on tunnel magnetoresistance (TMR) in a ferromagnet/superconductor/ferromagnet (FM/SC/FM) double tunnel junction is theoretically studied. The spin accumulation in SC is determined by balancing of the spin-injection rate and the spin-relaxation rate. In the superconducting state, the spin-relaxation time \(\tau_s \) becomes longer with decreasing temperature, resulting in a rapid increase of TMR. The TMR of FM/SC/FM junctions provides a useful probe to extract information about spin-relaxation in superconductors.

Spin-polarized tunneling plays an important role in the spin-dependent transport of magnetic nanostructures [1]. The spin-polarized electrons injected from ferromagnets (FM) into nonmagnetic metals (NM) such as a normal metal, semiconductor, and superconductor creates a nonequilibrium spin polarization in NM [2, 3]. The efficient spin injection and weak spin-relaxation during transport across the junctions are required for practical applications. A number of experiments for observing the spin relaxation time \(\tau_s \) in SCs has been reported by using a spin-injection device [4] and by the conduction electron spin resonance [5, 6].

A double tunnel junction FM/SC/FM containing superconductor (SC) sandwiched between two FMs is a unique system to investigate nonequilibrium phenomena caused by spin injection, especially the magnetoresistive effects by competition between superconductivity and spin accumulation [1, 7]. The pronounced magnetoresistance effects is brought about by a long spin relaxation time \(\tau_s \) in SC, which corresponds to a long spin-diffusion length. In this article, we take into account the coherence effect of superconductivity on the spin-relaxation due to spin-orbit scattering by impurities [8].

Spin-relaxation in SCs has been reported [9, 10], particularly the magnetoresistive effects by competition between superconductivity and spin accumulation [11, 12]. In the following we consider the case that the bias voltage \(V \) is much smaller than the superconducting gap parameter \(\Delta \). In this case, the shift of chemical potential \(\delta \mu \) for up-spin (down-spin) electrons due to spin accumulation is much smaller than \(\Delta \), so that the tunnel current \(I_s \) across the junction \((i = 1, 2) \) becomes

\[
\begin{align*}
I_s^1(V) &= G_s^1 \chi(T) \left[V/2 - \delta \mu/e \right], \\
I_s^2(V) &= G_s^2 \chi(T) \left[V/2 + \delta \mu/e \right], \\
I_s^3(V) &= G_s^3 \chi(T) \left[V/2 + \delta \mu/e \right], \\
I_s^4(V) &= G_s^4 \chi(T) \left[V/2 - \delta \mu/e \right].
\end{align*}
\]

Here, \(G_i^\sigma \chi(T) \) \((i = 1, 2)\) is the tunnel conductance for electrons with spin \(\sigma \) in the superconducting state, \(G_i^\sigma \) is that in the normal state, and \(\chi(T) \) is given by

\[
\chi(T) = 2 \int_\Delta^\infty \frac{E_k}{\sqrt{E_k^2 - \Delta^2}} \left(-\frac{\partial f_0}{\partial E_k} \right) dE_k,
\]

where \(f_0(E_k) \) is the Fermi distribution function and \(E_k = \sqrt{\xi_k^2 + \Delta^2} \) the dispersion of quasiparticles, \(\xi_k \) being one-electron energy relative to the chemical potential.

The spin density \(S \) accumulated in SC is determined by balancing the spin injection rate \((dS/dt)_{\text{inj}} \) with the spin relaxation rate \(S/\tau_s \):

\[
(I_{1\uparrow} - I_{1\downarrow}) - (I_{2\uparrow} - I_{2\downarrow}) = 2eS/\tau_s,
\]
where τ_s is the spin relaxation time and

$$S = \frac{1}{2} \sum_k [f_\uparrow(E_k) - f_\downarrow(E_k)] \approx N(0) \chi(T) \delta \mu,$$ \hspace{1cm} (7)

where $f_\sigma(E_k) \sim f_\sigma(0) - (\partial f_\sigma/\partial E_k) \sigma \delta \mu$ is the distribution function of quasiparticles with spin σ and $N(0)$ is the normal-state density of states in SC.

It follows from Eqs. (1)-(7) that the tunnel currents for the parallel (P) and antiparallel (AP) alignments are given by

$$I_P = \chi(T)V/R_T,$$ \hspace{1cm} (8)

$$I_{AP} = \left[1 - \frac{P^2 + x_s}{1 + x_s}\right] \chi(T)V/R_T,$$ \hspace{1cm} (9)

where $R_T = 1/G_T$ is the tunnel resistance and Γ_s is the relaxation parameter

$$\Gamma_s = e^2 N(0) R_T A d / \tau_s,$$ \hspace{1cm} (10)

with A being the junction area. Therefore, we have the TMR ratio at low bias ($V \ll \Delta$)

$$TMR = \frac{I_P - I_{AP}}{I_{AP}} = \frac{P^2}{1 - P^2 + \Gamma_s},$$ \hspace{1cm} (11)

where $P = (G_1^\uparrow - G_1^\downarrow)/(G_1^\uparrow + G_1^\downarrow)$ is the tunneling spin polarization. For a weak spin relaxation ($\Gamma_s \ll 1$), $TMR = P^2/(1 - P^2)$, while for a strong spin-relaxation ($\Gamma_s \gg 1$), $TMR = P^2/\Gamma_s \ll 1$.

In SC, the spin relaxation is caused by the spin-orbit scattering from impurities or grain boundaries. The spin-orbit interaction H_{so} via impurity potential $V_{\text{imp}}(r)$ is given by

$$H_{\text{so}} = -i \hbar/(2mc)^2 \hat{\sigma} \cdot [\nabla V_{\text{imp}}(r) \times \nabla],$$ \hspace{1cm} (12)

where $\hat{\sigma}$ is the Pauli spin matrix. The scattering matrix elements over quasiparticle states $|k\sigma\rangle$ have the form:

$$\langle k'\sigma'\mid H_{\text{so}} \mid k\sigma\rangle = i \lambda_{\text{so}} \vec{V}_{k'k} \left[\hat{\sigma}_{\sigma'\sigma} \cdot (\vec{k} \times \vec{k'} \mid) \right],$$ \hspace{1cm} (13)

where λ_{so} is the spin-orbit coupling parameter, $\vec{V}_{k'k} = (u_{k'k} u_k - v_{k'k} v_k) V_{\text{imp}}$, $|u_k|^2 = 1 - |v_k|^2 = k^2/(1 + \xi_k/E_k)$, and $\vec{k} = \vec{k}/|k|$. Using the golden rule formula, we obtain the spin-relaxation rate due to the spin-flip scattering by H_{so}:

$$\frac{\partial S}{\partial t}_s \approx \frac{2\pi}{\hbar} n_i \sum_{k'k} |\langle k'\downarrow\mid H_{\text{so}}\mid k\uparrow\rangle|^2 \delta(E_k - E_{k'})$$

$$\times \int_\Delta \left[f_\uparrow(E_{k'}) - f_\downarrow(E_k) \right] dE,$$ \hspace{1cm} (14)

where $1/\tau_{\text{imp}} = (2\pi/\hbar) n_i V_{\text{imp}}^2 N(0)$ is the scattering rate by impurities and n_i is the impurity concentration.

From Eqs. (12) and (13), we determine the relaxation time τ_s from $(\partial S/\partial t)_s = -S/\tau_s$, and obtain

$$\tau_s = \tau_{sf} \frac{\int_\Delta E \epsilon - \Delta S}{\epsilon - \Delta \int_\Delta \left[f_\uparrow(E) - f_\downarrow(E) \right] dE},$$ \hspace{1cm} (15)

where $\tau_{sf} = 9 \tau_{\text{imp}}/8\lambda_{\text{so}}^2$ is the spin-flip scattering time in the normal state. Note that the expression of Eq. (15) is valid for $\epsilon - \Delta \gg \hbar \omega$. For $\delta \mu \ll \Delta$, Eq. (15) reduces to

$$\tau_s = \left[\chi(T) / 2f_0(\Delta) \right] \tau_{sf},$$ \hspace{1cm} (16)

which is the same as the result of Yafet [15], but differs from the result of Zhao and Hershfield [16].

Equation (15) is a generalization of Yafet to the case of arbitrary value of $\delta \mu$.

The temperature dependence of the spin-relaxation parameter Γ_s is scaled to the normalized spin-relaxation time τ_s/τ_{sf} by the relation $\Gamma_s = (\tau_{sf}/\tau_s)^N$, where $\Gamma_s = e^2 N(0) R_T A d / \tau_{sf}$ is the relaxation parameter in the normal state. Figure 1 shows the temperature dependence of τ_s/τ_{sf}.
\[\frac{\tau_s}{\tau_{sf}}. \] Above \(T = T_c \), the spin relaxation time \(\tau_s \) becomes longer with decreasing \(T \) and behaves as \(\tau_s \sim (\pi \Delta / 2 k_B T)^{1/2} \tau_{sf} \) at low \(T \).

Figure 2 shows the temperature dependence of the normalized TMR for different values of \(\Gamma_N^S \). The inset shows the TMR versus \(\Gamma_N^S \) in the normal state. In the case of \(\Gamma_N^S > 1 \), which corresponds to the case that the spin-relaxation rate is larger than the spin-injection rate in the normal state, the TMR above \(T_c \) is suppressed compared with the optimal value 33% for \(\Gamma_N^S = 0 \) and \(P = 0.5 \) as shown in the inset of Fig. 2. However, in the superconducting state below \(T_c \), the TMR increases rapidly with decreasing \(T \) due to the increase of \(\tau_s \), and recovers the optimal TMR in the limit of \(T \to 0 \). If one uses the values of \(R_T A = 100 \Omega \mu m^2 \), \(\tau_{sf} = 10^{-10} \text{sec} \), \(d = 10 \text{ nm} \), and \(N(0) = 10^{22}/(eV\text{cm}^3) \), then one obtains \(\Gamma_N^S = 10 \). Notice that in the case of strong spin-relaxation \((\Gamma_N^S \gg 1) \), the TMR becomes proportional to \(\tau_s \), so that the temperature dependence of \(TMR/TMR(T_c) \) coincides with that of \(\tau_s/\tau_{sf} \) as shown by the dashed curve in Fig. 2. The result indicates that the TMR of FM/SC/FM junctions provides a method to extract important information about spin-relaxation in superconductors.

The authors are grateful to A. Fert and M. Johnson for fruitful discussions. A part of this work was done during stay (S.T.) in CNRS/Thomson-CSF, France. This work is supported by a Grant-in-Aid for Scientific Research from Ministry of Education. S.M. acknowledges support of the Humboldt Foundation.

REFERENCES

1. Spin dependent transport in magnetic nanostructures, edited by S. Maekawa and T. Shinjo (Gordon and Breach Sci. Pub., London) (in press).
2. M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55 (1985) 1790.
3. T. Varet and A. Fert, Phys. Rev. B 48 (1993) 7099.
4. M. Jemeda et al., Nature 410 (2001) 345.
5. M. Johnson, Appl. Phys. Lett. 65 (1994) 1460.
6. V. A. Vas’ko et al., Phys. Rev. Lett. 78 (1997) 1134.
7. Z. W. Dong et al., Appl. Phys. Lett. 71 (1997) 1718.
8. T. Daibo et al. (unpublished).
9. D.C. Vier and S. Schultz, Phys. Lett. 98 (1983) 283.
10. N. M. Nemes et al., Phys. Rev. B 61 (2000) 7118.
11. S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82 (1999) 3911.
12. S. Takahashi et al., J. Appl. Phys. 87 (2000) 5227; ibid. 89 (2001) 7505.
13. S. Takahashi, H. Imamura, and S. Maekawa, Physica C 341-348 (2000) 1515.
14. K. Maki, Phys. Rev. B 8 (1973) 191; L. R. Tagirov et al., J. Phys. F 17 (1987) 605.
15. Y. Yafet, Phys. Lett. A 98 (1983) 287.
16. H. L. Zhao and S. Hershfield, Phys. Rev. B 52 (1995) 3632. In their result, \(\chi(T) \) is missing in Eq. (14).