Synthesis and therapeutic potential of imidazole containing compounds

Ankit Siwach and Prabhakar Kumar Verma*

Abstract: Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. The imidazole name was reported by Arthur Rudolf Hantzsch (1857–1935) in 1887. 1, 3-diazole is an amphoteric in nature i.e. it shows both acidic and basic properties. It is a white or colorless solid that is highly soluble in water and other polar solvents. Due to the presence of a positive charge on either of two nitrogen atom, it shows two equivalent tautomeric forms. Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. Imidazole has become an important synthon in the development of new drugs. The derivatives of 1, 3-diazole show different biological activities such as antibacterial, antymycobacterial, anti-inflammatory, antitumor, antidiabetic, anti-allergic, antipyretic, antiviral, antioxidant, anti-amoeobic, antihelminthic, antifungal and ulcerogenic activities, etc. as reported in the literature. There are different examples of commercially available drugs in the market which contains 1, 3-diazole ring such as clemizole (antihistaminic agent), etonitazene (analgesic), astemizole (antihistaminic agent), omeprazole, pantoprazole (antiulcer), thia bendazole (antihelminthic), nocardazole (antimycobacterial), metronidazole, nitroso-imidazole (bactericidal), megalazol (trypanocidal), azathioprine (anti rheumatoid arthritis), dacarbazine (Hodgkin’s disease), tinidazole, ornidazole (antiprotozoal and antibacterial), etc. This present review summarized some pharmacological activities and various kinds of synthetic routes for imidazole and their derived products.

Keywords: 1, 3-diazole, Antibacterial, Antitumor, Antioxidant, Antitubercular

Background
Nowadays, Public health problems were increasing due to AMR in drug therapy. So, there is necessary for the development of a new drug that overcomes the AMR problems [1].

In past, those drugs which contain heterocyclic nuclei give high chemotherapeutic values and act as a remedy for the development of novel drugs [2]. There are lots of heterocyclic compounds that are in clinical use to treat infectious diseases. So, there is a great importance of heterocyclic ring containing drugs [3].

In heterocyclic chemistry, imidazole containing moiety occupied a unique position [4]. It is a five-membered nitrogenous heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds having general molecular formula is C₃H₄N₂ (Fig. 1). The nitrogen atoms present at the first and third positions (non–adjacent position) of the ring [5], position four and five are equivalent [6]. It is also known as 1,3-diazole. It contains two nitrogen atoms, one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen [7]. 1,3-diazole ring is a bioester of the pyrazole ring [8]. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. [4]. The imidazole name was first reported by Arthur Rudolf Hantzsch (1857–1935) in 1887 [6].
1,3-diazo shows an amphoteric phenomenon i.e. it can behave like acid as well as a base. Two types of lone pair are present in the imidazole ring, delocalized and non-delocalized (non-Huckle) lone pair, i.e. both nitrogen of 1,3-diazo shows different dissociation constant. The dissociation constant (pKa) of delocalized lone pair and non-delocalized lone pair is 7 and 14.9 respectively. 1,3-diazo ring is susceptible to both electrophilic and nucleophilic attacks due to its amphoteric phenomenon [7]. For an acid imidazole, the dissociation constant is 14.5, which makes it less acidic than phenol, imides, and carboxylic acid except for alcohols (which is less acidic than imidazole). For a basic imidazole, the dissociation constant (pKa) is approximately 7 (which makes imidazole 60 times more basic than pyridine). The acidic proton is present on the first nitrogen atom of the imidazole ring [6].

Due to the presence of a positive charge on either of the two nitrogen atoms, 1,3-diazo ring shows two equivalent tautomeric forms (Fig. 2) [9]. The presence of a sextet of π-electrons on the ring makes it an aromatic compound. The nitrogen atom on the third position in the imidazole ring is more reactive to the electrophilic compound due to the availability of unshared pairs of electron on the second nitrogen atom since the second nitrogen is a part of aromatic sextet [6].

It is a white or colorless solid. The imidazole ring shows excellent solubility in water and other polar solvents [10]. The dipole moment, melting point, and boiling point of the imidazole ring is 4.8 D in dioxane [6], 88.9 °C, and 267.8 °C [7] respectively. It possesses intramolecular hydrogen bonding [9].

Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia [9]. There is a different kind of synthetic route from which we can synthesize 1,3-diazoles, and its derivatives. Common methods are Debus-Radziszewski synthesis, Wallach synthesis, from dehydrogenation of imidazolines, from alpha halo-ketones, Marckwald synthesis, and amino nitrile [11].

Due to the polar nature of the imidazole ring, the pharmacokinetic parameters of the imidazole containing compounds should be improved to a great extent. Thus, this moiety helps to overcome the solubility problems of poorly soluble drug entities [12].

The 1,3-diazo and its containing compounds shows a lot of therapeutic activities such as analgesics, antifungal, antihypertensive, antiobesity, antioxidant [3], antiviral, antihelminthic, antitubercular [4], antiulcer, antihistaminic [13], anti-inflammatory, antidepressant [14], antidiabetic [15], anticonvulsant [16], antiallergic [7], antihematemic [17], antiasthmatic, alpha-blockers [18], antiprotozoal [19], antiaging, anticoagulant, antimalarial [20], and antiamoebic activity [21] etc.

There are different examples of commercially available drugs which consist 1,3,4-oxadiazole ring (Table 1) such as clemizole (antihistaminic agent), etonitazene (analgesic), enviroxime (antiviral), irtemazole, astemizole (antihistamine), omeprazole, pantoprazole (antiulcer), thiabendazole (antihelminthic), nocardazole (antimetabolot) [22], metronidazole and nitrosoimidazole (bactericidal), megazol (trypanocidal) [12], azathioprime (anti-rheumatoid arthritis), tinidazole, ornidazole (antiprotozoal and antibacterial), satranidazole (amoebiosis), cimetidine (gastric ulcer), carbimazole (against thyroid disorder), tolazoline (vasodilator action), naphazoline (vasoconstrictor), tetrahydrozoline (vasoconstrictor) [16], etomidate, lansoprazole, flumazenil, methimazole, pimobendan (calcium sensitizer and phosphodiesterase inhibitor) [25], fenbendazole [26].

The mechanism for the formation of 2,4,5-trisubstituted imidazole
The Debus-Radziszewski reaction mechanism for the formation of the 2,4,5-trisubstituted imidazole is given by (Scheme 1) [27].

Main text

Antibacterial activity
Jain et al. [28] synthesized 2-(4-substituted phenyl)-1-substituted-4, 5-diphenyl-1H-imidazole (Scheme 2) and evaluated their antimicrobial activity against S. aureus, E. coli, and B. subtilis by cylinder wells diffusion method using Norfloxacin as a reference drug. Among the different derivatives, compounds 1a and 1b showed good antimicrobial potential. The conclusion of antibacterial activity was presented in (Table 2, Jain et al. [28]).
S. No.	Name	Structure	Activity
1	Clemizole	![Clemizole Structure](image1)	Anti-histaminic agent
2	Etonitazene	![Etonitazene Structure](image2)	Analgesic
3	Enviroxime	![Enviroxime Structure](image3)	Antiviral
4	Irtemazole	![Irtemazole Structure](image4)	For the promotion of excretion of uric acid
5	Astemizole	![Astemizole Structure](image5)	Anti-histaminic agent
6	Omeprazole	![Omeprazole Structure](image6)	Antiulcer
7	Pantoprazole	![Pantoprazole Structure](image7)	Antiulcer
8	Thiabendazole	![Thiabendazole Structure](image8)	Anti-helmintic
9	Nocodazole	![Nocodazole Structure](image9)	Antinematodal
10	Metronidazole	![Metronidazole Structure](image10)	Antibacterial
11	Nitrosoimidazole	![Nitrosoimidazole Structure](image11)	Antibacterial
12	Megazol	![Megazol Structure](image12)	Trypanocidal
	Chemical Name	Molecular Structure	Function
---	---------------	---------------------	----------
13.	Azathioprine	![Azathioprine](attachment:azathioprine.png)	Anti-rheumatoid arthritis
14.	Tinidazole	![Tinidazole](attachment:tinidazole.png)	Anti-protozoal and antibacterial
15.	Ornidazole	![Ornidazole](attachment:ornidazole.png)	Antiprotozoal and antibacterial
16.	Satranidazole	![Satranidazole](attachment:satranidazole.png)	Anti-amoebic
17.	Cimetidine	![Cimetidine](attachment:cimetidine.png)	Antiulcer
18.	Carbimazole	![Carbimazole](attachment:carbimazole.png)	Antithyroid
19.	Tolazoline	![Tolazoline](attachment:tolazoline.png)	Vasodilator
20.	Naphazoline	![Naphazoline](attachment:naphazoline.png)	Vaso-constrictor
21.	Tetra-hydrozoline	![Tetra-hydrozoline](attachment:tetra-hydrozoline.png)	Vaso-constrictor
22.	Etomidate	![Etomidate](attachment:etomidate.png)	Anesthetic agent
Narasimhan et al. [1] synthesized pyridin-3-yl (2-(2,3,4,5-tetra substituted phenyl)-1H-imidazol-1-yl) methanone (Scheme 3). The tube dilution method was used for the determination of antimicrobial potential against *S. aureus*, *B. subtilis*, and *E. coli* using ciprofloxacin as a reference drug. The antifungal activity of these derivatives was also evaluated against *A. niger* and *C. albicans* using Fluconazole as a reference standard. The conclusion of antimicrobial potential was presented in (Table 3, Narasimhan et al. [1]).
Siwach and Verma BMC Chemistry (2021) 15:12

Brahmbhatt et al. [2] synthesized 3-(2,4-disubstituted phenyl)-1-(4-substituted phenyl)-4-(4,5-diphenyl-1H-imidazol-2-yl)-1H-pyrazole (Scheme 4). The antibacterial activity of these derivatives was evaluated against *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli*, and *Pseudomonas aeruginosa* using amikacin sulfate, ampicillin, and chloramphenicol as a reference drug. Compound 4 h shows the most potent activity compared to the rest of the synthesized compounds. The conclusion of antibacterial activity was presented in (Table 4, Brahmbhatt et al. [2]).

Parab et al. [29] synthesized (Z)-4-((6-Bromo-2-chloroquinolin-3-yl) methylene)-2-phenyl-1-(2, 3, 4-trisubstituted phenyl)-1H-imidazol-5(4H)-one by using Scheme 5. The antibacterial activity of synthesized derivatives was evaluated against *E. coli*, *P. aeruginosa*,

Scheme 1 Plausible mechanism for the synthesis of imidazoles catalyzed by (4–SB)T(4–SPh)PHSO₄
B. subtilis, and B. megaterium by agar cup borer method using streptomycin as a reference drug. The antymycotic potential was evaluated for these derivatives against Candida albicans and Aspergillus niger using imidil as a reference drug and the conclusion of activity was presented in (Table 5, Parab et al. [29]).

![Scheme 2 Synthesis of 2-(4-substitutedphenyl)-1-substituted-4,5-diphenyl-1H-imidazole](image)

Compounds

\[
\begin{align*}
& R_1 = \\
1a &= p-\text{NO}_2 \\
1b &= m-\text{NO}_2 \\
1c &= p-\text{Cl} \\
1d &= o-\text{Cl} \\
1e &= m-\text{Br}
\end{align*}
\]

\[R_2 = \text{Butyl}\]

Table 2 Antibacterial activity of synthesized derivatives (1a-e)-zone of inhibition (mm,%) Jain et al. [28]

Compounds	Zone of inhibition		
	S. aureus	B. subtilis	E. coli
	50(µg/mL) 150(µg/mL)	50(µg/mL) 150(µg/mL)	50(µg/mL) 150(µg/mL)
1a	5 (23.09) 9 (42.85)	4 (19.04) 8 (38.09)	7 (33.33) 9 (42.85)
1b	3 (14.28) 7 (33.33)	4 (19.04) 7 (33.33)	6 (28.57) 9 (42.85)
1c	5 (23.09) 6 (28.57)	6 (28.57) 7 (33.33)	5 (23.09) 8 (38.09)
1d	5 (23.09) 6 (28.57)	6 (28.57) 6 (28.57)	5 (23.09) 8 (38.09)
1e	4 (19.04) 7 (33.33)	4 (19.04) 7 (33.33)	5 (23.09) 8 (38.09)

Norfloxacin Norfloxacin at concentration 50(µg/mL)

Sharma et al. [17] synthesized 2,3-disubstituted-3, 4-dihy droimidazo [4,5-b] indole (Scheme 6) and evaluated for antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumoniae by Kirby-Bauer disc technique using ciprofloxacin as reference drug. The conclusion
Scheme 3 Synthesis of pyridin-3-yl(2-(2,3,4,5-tetrasubstituted phenyl)-1H-imidazol-1-yl)methanone (2a-k)

Table 3 Antimicrobial activity of titled compounds (2a-k) Narasimhan et al. [1]

Compounds	MIC (µM/mL)	S. aureus	B. subtilis	E. coli	C. albicans	A. niger
2a		0.012	0.003	0.003	0.025	0.050
2b	ND	ND	ND	0.022	0.005	0.005
2c	ND	ND	ND	0.005	0.005	
2d	0.044	0.044	0.044	0.022	0.044	
2e	0.022	0.044	0.006	0.022	0.044	
2f	0.044	0.044	0.011	0.342	0.044	
2g	ND	ND	ND	0.004	0.019	
2h	0.010	0.010	0.040	0.020	0.040	
2i	0.040	0.002	0.040	0.020	0.040	
2j	0.013	0.005	0.002	0.025	0.025	
2k	0.002	0.002	0.002	0.020	0.040	
Ciprofloxacin		0.004	0.004	–	–	–
Fluconazole		–	–	0.005	0.005	

MIC Minimum inhibitory concentration, ND not detected
of antimicrobial potential was presented in (Table 6, Sharma et al. [17]).

Ahsan et al. [30] synthesized N-(4-substituted phenyl)-2-(2-(2-(2-hydroxyphenyl)-4, 5-diphenyl-1H-imidazol-1-yl)acetyl) hydrazine carbothioamide (Scheme 7). The antibacterial activity of synthesized derivatives was evaluated against *Escherichia coli*, *Bacillus subtilis*, and *Staphylococcus aureus* using Ofloxacin as a reference drug. The antymycotic potential was evaluated for these derivatives against *C. albicans* using Voriconazole as a positive control. Compounds 8a, 8b, and 8d showed good antifungal activity against *C. albicans*. The conclusion of antimicrobial activity was presented in (Table 7, Ahsan et al. [30]).

Bhade et al. [18] synthesized 2,4-dichloro-6-(2-substituted-2,5-dihydro-1H-imidazol-4-yl)phenol, 6-(3, 5-dichloro-2-hydroxyphenyl)-2-substituted-2H-imidazo[1,2-a]imidazol-3(5H)-one, 1-acetyl-4-(3, 5-dichloro-2-hydroxyphenyl)-1H-imidazol-2(5H)-one, (Z)-4-(3,5-dichloro-2-hydroxyphenyl)-1-(3-(2, 3-dichlorophenyl) acryloyl)-1H-imidazol-2(5H)-one and 4-(3,5-dichloro-2-hydroxyphenyl)-1-(5-(2,3-dichlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-1H-imidazol-2(5H)-one by using (Scheme 8). The antibacterial activity of these derivatives was evaluated against *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Salmonella typhi* and *Pseudomonas aeruginosa* using chloramphenicol as a reference control. The conclusion of antimicrobial activity was presented in (Table 8, Bhade et al. [18]).

Desai et al. [31] synthesized (Z)-(4-((2-chloroquinolin-3-yl)methylene)-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl)sutituted carbamic (Scheme 9) and evaluated for antimicrobial potential against *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa*, and *Streptococcus pyogenes* by serial broth dilution method using ampicillin as a reference standard and the results were summarized in (Table 9a, Desai et al. [30]).
Scheme 5 Synthesis of (Z)-4-((6-bromo-2-chloroquinolin-3-yl)methylene)-2-phenyloxazol-5(4H)-one

Table 5 Antimicrobial activity of synthesized compounds (5a-h) Parab et al. [29]

Compounds	Zone of inhibition (mm)					
	E. coli	P. aeruginosa	B. subtilis	B. megaterium	A. niger	C. albicans
5a	15	19	21	19	20	19
5b	11	9	19	20	10	11
5c	20	22	22	22	13	13
5d	11	15	19	13	15	12
5e	10	8	15	19	12	9
5f	6	18	25	20	14	16
5g	14	9	24	15	10	11
5h	8	13	21	13	16	17
Streptomycin	28	32	31	29	33	33
Imidil	–	–	–	–	34	34

Antimicrobial activity of compounds at 10 mg% in DMSO
Scheme 6
Synthesis of 2,3-disubstituted-3,4-dihydroimidazo[4,5-b]indole

\[
\text{R-NH}_2 + \text{O-R'} \xrightarrow{a} \text{R-N=C-R'} + \text{CH}_3\text{COONH}_4 + \text{indoline-2,3-dione}
\]

Reagents and conditions: (a) Conv. AcOH, Reflux 5-6 hr, MW: Activated silica gel, 1000 W, 10 min
(b) Ammonium acetate, conv. reflux 12-15 h, MW; 1000 W, 14-22 min.

Scheme 6 Synthesis of 23-disubstituted-3,4-dihydroimidazo[4,5-b]indole
The antimycotic potential of these derivatives was evaluated against *A. niger*, *C. albicans*, and *A. clavatus* using griseofulvin as a reference standard. The results of the activity were summarized in (Table 9b, Desai et al. [31]).

Shobhashana et al. [32] synthesized 6-substituted-3-(4,5-diphenyl-1H-imidazol-2-yl)-2-(4-substituted phenoxy) quinoline by using (Scheme 10) and evaluated for antimicrobial activity against *Bacillus subtilis*, *Escherichia coli*, *Clostridium tetani*, *Streptococcus pneumoniae*, and *Salmonella typhi* by using the broth dilution method. Ampicillin, chloramphenicol, and ciprofloxacin were used as a positive control. The antifungal activity of these derivatives was evaluated against *Candida albicans* and *Trichophyton rubrum* using Nystatin and Griseofulvin as reference drugs. The conclusion of antimycotic activity was presented in (Table 10a, b, Shobhashana et al. [32]).

Selvan et al. [33] developed N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)substituted formimidoyl by using (Scheme 11). The disc diffusion technique was used for the determination of antimicrobial activity against *S. aureus* using ciprofloxacin as a positive control. The antimycotic activity of these derivatives was evaluated against *A. niger* using Nystatin as a reference drug and the conclusion of antimicrobial potential was presented in (Table 11, Selvan et al. [33]).

Zala et al. [8] synthesized 2-(substituted amino)-1-(2,4,5-triphenyl-1H-imidazol-1-yl) ethanone (Scheme 12) and evaluated for antimicrobial potential against *Staphylococcus aureus* and *Escherichia coli* using ciprofloxacin as a reference drug. The antimycotic potential of these derivatives was evaluated against *C. albicans* using Clotrimazole as a reference drug. The conclusion of antibacterial activity was presented in (Table 12, Zala et al. [8]).

Yadav et al. [34] synthesized 2-((1H-benzo[d]imidazol-2-yl)thio)-N-(4-oxo-2-(2,3,4,5,6-Penta substituted phenyl)thiazolidin-3-yl)acetamide and 2-((1H-benzo[d]imidazol-2-yl)thio)-N-(2-substituted-4-oxothiazolidin-3-yl) acetamide by using (Scheme 13). The antibacterial activity of these derivatives was evaluated against different bacterial strains (*Staphylococcus aureus*, *Escherichia coli*, and *Bacillus subtilis*) using Norfloxacin as a reference drug. The antimycotic activity of these derivatives was evaluated against different fungal (*Candida albicans* and *Aspergillus niger*) strains using Fluconazole as a reference drug. The conclusion of the activity was presented in (Table 13, Yadav et al. [34]).

Anticancer activity

Yurttas et al. [35] developed 2-((1-((4-substituted phenyl) amino)-2,4,5-triphenyl-1H-imidazol-2-yl)thio)-N-(6-substituted phenyl)imidazolidin-2-yl)acetamide and 2-((1-((4-substituted phenyl) amino)-2,4,5-triphenyl-1H-imidazol-2-yl)thio)-N-(2-substituted-4-oxothiazolidin-3-yl)acetamide by using (Scheme 13). The antibacterial activity of these derivatives was evaluated against different bacterial strains (*Staphylococcus aureus*, *Escherichia coli*, and *Bacillus subtilis*) using Norfloxacin as a reference drug. The antimycotic activity of these derivatives was evaluated against different fungal (*Candida albicans* and *Aspergillus niger*) strains using Fluconazole as a reference drug. The conclusion of the activity was presented in (Table 13, Yadav et al. [34]).

Table 6 Antimicrobial activity of the synthesized aryl imidazole compounds (7a-t) Sharma et al. [17]

Compounds	Diameter of zone of inhibition (mm)	Bacterial strains			
		Gram positive bacteria	Gram negative bacteria		
		S. aureus	*B. subtilis*	*E. coli*	*K. pneumoniae*
7a	5.9 (50)	6.9 (50)	7.2 (50)	8.1 (50)	
7b	5.1 (25)	5.5 (25)	8.1 (50)	8.9 (50)	
7c	8.6 (25)	8.4 (25)	9.2 (12.5)	9.5 (12.5)	
7d	13.1 (50)	12.5 (25)	11.9 (25)	12.5 (6.2)	
7e	9.1 (25)	8.8 (50)	7.6 (100)	7.8 (100)	
7f	5.7 (100)	5.9 (100)	6.6 (50)	6.9 (50)	
7g	12.5 (50)	12.1 (25)	11.9 (25)	11.6 (25)	
7h	11.9 (50)	11.3 (25)	10.9 (100)	10.7 (50)	
7i	12.1 (25)	13.8 (50)	14.3 (25)	12.5 (50)	
7j	13.1 (25)	12.3 (25)	15.4 (12.5)	11.8 (25)	
7k	11.2 (50)	12.4 (25)	13.5 (12.5)	9.1 (50)	
7l	6.2 (100)	7.2 (100)	9.2 (50)	7.5 (50)	
7m	7.2 (100)	8.7 (50)	10.2 (50)	10.3 (25)	
7n	10.3 (25)	12.4 (12.5)	14.5 (6.2)	13.3 (12.5)	
7o	12.3 (50)	13.6 (25)	14.6 (25)	14.6 (25)	
7p	9.1 (100)	8.3 (100)	9.1 (50)	10.2 (50)	
7q	6.1 (100)	7.4 (100)	8.3 (50)	6.9 (50)	
7r	7.3 (100)	7.4 (100)	9.5 (50)	9.7 (50)	
7s	13.2 (25)	14.5 (12.5)	14.6 (12.5)	11.5 (25)	
7t	12.4 (25)	12.7 (25)	13.1 (50)	11.1 (50)	
Ciprofloxacin	18 (12.5)	19 (6)	19 (12.5)	17 (6)	

Values in brackets are MIC values (µg/mL)

Scheme 7

Scheme 7 Synthesis of N-(4-substitutedphenyl)-2-(2-(2-(2-hydroxyphenyl)-4,5-diphenyl-1H-imidazol-1-yl)acetyl)hydrazinecarbothioamide (8a-e)

Compounds 8a-e; R =

8a = H, 8b = OCH, 8c = CH, 8d = F, 8e = Cl

Table 7 Antibacterial and antifungal activity of titled compounds (8a-8e) Ahsan et al. [30]

Compounds	Antibacterial activity	Antifungal activity						
	E. coli	% inhibition	B. subtilis	% inhibition	S. aureus	% inhibition	C. albicans	% inhibition
Zone of inhibition (mm)								
8a	22	61.11	14	43	14	48	20	75
8b	22	61.11	15	47	21	72	–	–
8c	23	67	15	47	20	69	17	58.6
8d	22.5	62.5	20	62	19	65.5	20	69
8e	19	52	12	50	22	75	20	68.5
Ofloxacin	36	100	32	100	29	100	–	–
Voriconazole	–	–	–	–	–	–	29	100
Scheme 8 Synthesis of imidazole derivatives

1-(3,5-dichloro-2-hydroxyphenyl)ethanone

2-bromo-1-(3,5-dichloro-2-hydroxyphenyl)ethanone

2,4-dichloro-6-(2-substituted-2,5-dihydro-1H-imidazol-4-yl)phenol

R = O, N (9a, 9b)

1-acetyl-4-(3,5-dichloro-2-hydroxyphenyl)-1H-imidazol-2(5H)-one (11a)

6-(3,5-dichloro-2-hydroxyphenyl)-2-substituted-2H-imidazo[1,2-α]imidazol-3(5H)-one

R = H/Me (10a-10b)

(Z)-4-(3,5-dichloro-2-hydroxyphenyl)-1-(3-(2,3-dichlorophenyl)acryloyl)-1H-imidazol-2(5H)-one (12a)

4-(3,5-dichloro-2-hydroxyphenyl)-1-(5-(2,3-dichlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-1H-imidazol-2(5H)-one (13a)
Compounds	Gram negative	Gram positive																		
	P. aeruginosa (MTCC-424)	*S. typhi* (ATCC-25812)	*S. aureus* (ATCC-33591)	*S. epidermidis* (MTCC-3086)																
	AB	SP	ABSP	CL																
9a	23	16	26	00	26	19	32	00	16	18	18	00	27	16	28	00	17	20	18	00
9b	23	16	26	00	27	18	33	00	17	19	17	00	27	15	29	00	17	15	29	00
10a	23	17	26	00	27	17	33	00	17	20	18	00	27	15	29	00	17	20	18	00
10b	23	16	25	00	27	18	32	00	17	20	18	00	27	16	28	00	17	17	18	00
11a	23	12	24	00	27	16	29	00	17	17	18	00	27	15	28	00	17	17	18	00
12a	22	11	23	00	27	16	30	00	17	16	19	00	27	13	27	00	17	16	19	00
13a	22	10	23	00	27	15	28	00	16	15	16	00	27	12	28	00	16	15	16	00

Diameter of inhibition zone (mm) AB: Antibiotic Disc (Chloramphenicol-10), SP: Sample, ABSP: Antibiotic + Sample, CL: Control (DMSO), Values were represented as the mean.
Scheme 9 Synthesis of (Z)-(4-((2-chloroquinolin-3-yl)methylene)-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl)substitutedcarbamic (14a-l)
Table 9 (a) Antibacterial activity of the synthesized derivatives (14a-l); (b) Antifungal activity of titled compounds (14a-l) Desai et al. [31]

(a)

Compounds	R	MIC (µg/mL) ± SD	E. coli MTCC-443	P. aeruginosa MTCC-1688	S. aureus MTCC-96	S. pyogenes MTCC-442
14a	−C₆H₅	100 ± 2.03**	500 ± 2.64*	1000 ± 3.78	500 ± 3.64	
14b	C₆H₅-CH₂-	500 ± 3.46*	500 ± 3.46	250 ± 3.21**	250 ± 3.04***	
14c	−3-Cl-C₆H₄	50 ± 2.64***	100 ± 1.21**	200 ± 2.08*	1000 ± 4.51	
14d	−4-Cl-C₆H₄	25 ± 1*	100 ± 1.51*	200 ± 2.08**	250 ± 2.64**	
14e	−2,5-(Cl)₂-C₆H₃	100 ± 1	250 ± 2.51**	1000 ± 4.04	1000 ± 2.51**	
14f	−4-F-C₆H₄	200 ± 1.62*	100 ± 1.60	100 ± 2.78**	1000 ± 3.78**	
14g	−3-NO₂-C₆H₄	100 ± 1**	100 ± 1.72	500 ± 3.05	250 ± 2.51***	
14h	−4-NO₂-C₆H₄	25 ± 1.62***	50 ± 1.05*	250 ± 2.16*	100 ± 1.78**	
14i	−2-OH-C₆H₄	100 ± 2.15*	100 ± 1***	100 ± 2.04*	500 ± 4.50	
14j	−3-OH-C₆H₄	100 ± 2.05*	50 ± 1.16**	500 ± 4.50	200 ± 2.05*	
14k	−2-OH,4-Cl-C₆H₃	200 ± 2.21*	100 ± 2.15**	250 ± 2.64**	500 ± 3.08	
14l	C₅H₄N	500 ± 3.05**	500 ± 3.78	250 ± 3.21*	100 ± 1.51*	
Ampicillin		100 ± 2.05	100 ± 1.0	250 ± 1.52	100 ± 2.06	

(b)

Compounds	R	MIC (µg/mL) ± SD	C. albicans MTCC-227	A. niger MTCC-282	A. clavatus MTCC-1323
14a	−C₆H₅	500 ± 2.64*	500 ± 3.05*	1000 ± 3.21	
14b	C₆H₅-CH₂-	1000 ± 1.04**	1000 ± 2.51*	500 ± 4.05*	
14c	−3-Cl-C₆H₄	100 ± 1.51*	1000 ± 4.50	100 ± 1.64*	
14d	−4-Cl-C₆H₄	200 ± 2.64*	100 ± 1.21**	500 ± 4.16	
14e	−2,5-(Cl)₂-C₆H₃	100 ± 2.51**	500 ± 2.08***	500 ± 3.78**	
14f	−4-F-C₆H₄	100 ± 1.78*	1000 ± 3.05	100 ± 2.78***	
14g	−3-NO₂-C₆H₄	200 ± 3.51	500 ± 4.05*	100 ± 1.51*	
14h	−4-NO₂-C₆H₄	100 ± 3.78**	100 ± 1***	200 ± 3.05**	
14i	−2-OH-C₆H₄	500 ± 4.50*	250 ± 3.78**	500 ± 4.58	
14j	−3-OH-C₆H₄	1000 ± 2.05***	100 ± 2.05***	500 ± 3.21**	
14k	−2-OH,4-Cl-C₆H₃	500 ± 2.08	250 ± 2.05	500 ± 3.46	
14l	C₅H₄N	200 ± 3.51**	500 ± 2.64*	100 ± 1.12*	
Griseofulvin		500 ± 2.58	100 ± 1	100 ± 1.15	

± SD = Standard deviation
* Significant P < 0.05
** Moderately significant P < 0.01
*** Extremely significant P < 0.001
Scheme 10 Synthesis of 6-substituted-3-(4,5-diphenyl-1H-imidazol-2-yl)-2-(4-substitutedphenoxy)quinoline

\[
\begin{align*}
\text{R}_1 \quad \text{CHO} & \quad \text{Cl} \quad \text{CHO} \quad \text{R}_1 \quad \text{NH}_4\text{OAC} \\
\text{R}_2 \quad \text{4-substituted phenol} & \quad \text{R}_2 \quad \text{6-substituted-2-(4-substitutedphenoxy) quinoline-3-carbaldehyde} \\
\text{R}_1 = \text{H, CH}_3, \text{OCH}_3 & \\
\text{R}_2 = \text{H, Cl} \\
\text{CAN} & \quad \text{Acetic acid, Reflux} \\
\end{align*}
\]
Table 10 (a) Antibacterial activity of the synthesized compounds (15a-f); (b) Antifungal activity of the synthesized compounds (15a-f) Shobhashana et al. [32]

(a)

Compounds	Minimum inhibitory concentration in µg/mL					
	Antibacterial activity					
	Gram positive bacteria	Gram negative bacteria				
15a	100	250	500	100	250	250
15b	250	500	250	250	200	500
15c	62.5	100	500	62.5	200	250
15d	250	100	125	100	125	100
15e	500	500	500	250	100	500
15f	100	250	100	100	100	250
Ampicillin	250	250	100	100	100	100
Chloramphenicol	50	50	50	50	50	50
Ciprofloxacin	50	100	50	25	25	25

(b)

Compounds	MIC	
	C.albicans MTCC227	T. rubrum MTCC296
15a	>1000	1000
15b	500	>1000
15c	1000	1000
15d	1000	1000
15e	1000	>1000
15f	500	1000
Nystatin	100	500
Griseofulvin	500	500

Scheme 11 Synthesis of N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)substitutedformimidoyl
tutedbenzo[d]thiazol-2-yl)acetamide by using (Scheme 14) and evaluated for antitumor potential by MTT assay against two different cancer cell lines such as C6 (rat glioma) and HepG2 (human liver) using cisplatin as a reference drug. Among the synthesized derivatives compound 20g shows good cytotoxic potential. The conclusion of antitumor potential was presented in (Table 14, Yurttas et al. [35]).

Hsieh et al. [25] synthesized (E)-1-(1-allyl-1H-benzo[d]imidazol-2-yl)-3-(4-substituted phenyl) prop-2-en-1-one by using (Scheme 15) and evaluated for anticancer activity against different cell lines such as A549, MCF-7, HepG2, and OVCAR-3 by MTT assay using cisplatin as a reference drug. The conclusion of anticancer activity was presented in (Table 15, Hsieh et al. [25]).

Roopashree et al. [36] synthesized 2-(5-butyl-3-chloro-1-substituted-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (Scheme 16) and evaluated for antitumor activity against HeLa cancer cell line by using MTT assay. Each compound was tested to calculate the inhibitory concentration and the results of the activity were presented in (Table 16, Roopashree et al. [36]).

Romagnoli et al. [37] developed 2-substituted-1-(3,4,5-trimethoxyphenyl)-1H-imidazole (Scheme 17) and evaluated for anticancer activity against different cancer cell lines such as HeLa, HT-29, A549, MCF-7, Jurkat, and HL-60 using C-A4 as a reference standard. Compounds 28k, 28n, and 28o showed maximum cytotoxicity as compared to others. The conclusion of antitumor potential was presented in (Table 17, Romagnoli et al. [37]).

Rajendran et al. [38] synthesized 1-substituted-2-(5-substituted-1-phenyl-1H-pyrazol-3-yl)-1H-benzo[d]imidazole and 4-(1-chloro-1H-benzo[d]imidazol-2-yl)-6-fluoropyrimidin-2-amine by using (Scheme 18) and evaluated for antitumor potential against different cell lines such as MCF-7 and CaCo-2 using Fluorouracil as reference drug. Each compound was tested to calculate inhibitory concentration and the conclusion of activity was presented in (Table 18a, b, Rajendran et al. [38]).

Meenakshisundaram et al. [39] synthesized 3-(4-substitutedbenzyl)-6,7-disubstituted-2-(4-(6,7-disubstituted-3-(4-substitutedbenzyl)imidazo[1,2-a]pyridin-2-yl)phenyl)imidazo[1,2-a]pyridine, 3-(4-substituted benzyl)-2-(3-(6,7-disubstituted-3-(4-substitutedbenzyl)imidazo[1,2-a]pyridin-2-yl)phenyl)-6,7-disubstitutedimidazo[1,2-a]pyridine and 6,7-disubstituted-3-(4-substitutedbenzyl)-2-phenylimidazo[1,2-a] pyridine (Scheme 19a–c) and evaluated for antitumor potential against different cell lines such as HeLa, MDA-MB-231 and ACHN by SRB method using adriamycin as a reference drug. The conclusion of antitumor potential was presented in (Table 19, Meenakshisundaram et al. [39]).

Sharma et al. [40] synthesized 1,2-disubstituted-4,5-diphenyl-1H-imidazole (Scheme 20), and evaluated for antitumor potential by using the tryphan blue dye exclusion technique against different cancer cell lines such as DLA and EAC at different concentration. The conclusion of antitumor potential was presented in (Table 20, Sharma et al. [40]).

Antioxidant activity

Naureen et al. [41] synthesized 3-(4,5-diphenyl-1-(substituted phenyl)-1H-imidazol-2-yl)-substituted-2-(substituted phenyl)-1H-indole (Scheme 21) and evaluated for antioxidant potential by DPPH method using Quercetin as reference drug. Compound 61d shows the highest antioxidant activity as compared to others. The conclusion of antioxidant potential was presented in (Table 21, Naureen et al. [41]).

Rajasekaran et al. [42] synthesized (E)-(1H-benzo[d]imidazol-1-yl)(4-((substituted benzylidene)amino)phenyl)methanone (Scheme 22a), 2-(1H-benzo[d]

Table 11 Antimicrobial activity of titled compounds (16a-b) Selvan et al. [33]

Compounds	Zone of inhibition in mm	Antibacterial activity	Antifungal activity
		S. aureus (NCIM-2079)	A. niger (NCIM-105)
16a		22	18
16b		16	20
Solvent		–	–
Ciprofloxacin		35	–
Nystatin		–	35

Standard—Ciprofloxacin 5 mg/disc for bacteria. Nystatin 100 units/disc for fungi; Solvent-DMSO.
Scheme 12 Synthesis of 2-(chloroamino)-1-(2,4,5-triphenyl-1H-imidazol-1-yl)ethanone

Benzil + Benzaldehyde + NH$_4$OAc $\xrightarrow{\text{Reflux}}$ 2,4,5-triphenyl-1H-imidazole

2-(substitutedamino)-1-(2,4,5-triphenyl-1H-imidazol-1-yl)ethanone

(17a-17f)

Compounds 17a-f; R =

17a

17b

17c

17d

17e

17f

Scheme 12 Synthesis of 2-(chloroamino)-1-(2,4,5-triphenyl-1H-imidazol-1-yl)ethanone
imidazol-1-yl)-N-(5-phenyl-1,3,4-oxadiazol-2-yl)acetamide (Scheme 22b) and 1-(1H-benzo[d]imidazol-1-yl)-2-((substituted-1,3,4-oxadiazol-2-yl)thio)ethanone (Scheme 22c) and evaluated for antioxidant potential by using DPPH assay. All the synthesized derivatives showed good scavenging potential as compared to ascorbic acid (positive control) and the conclusion of activity was presented in (Table 22, Rajasekaran et al. [42]).

Subramaniam et al. [43] synthesized (Z)-3-(2-(5-(3-methyl benzylidene)-4-oxo-2-phenyl-4, 5-dihydro-1H-imidazol-1-yl) ethyl)-2-phenyl quinazolin-4(3H)-one derivatives (Scheme 23) and evaluated for antioxidant potential by using DPPH assay. These compounds showed good scavenging potential as compared to ascorbic acid (positive control). The conclusion of scavenging potential was presented in (Table 23, Subramaniam et al. [43]).

Katikireddy et al. [21] developed (E)-N’-(7-methyl-2-propyl-1H-benzo[d]imidazole-5-carbonyl) substituted formohydrasonoyl (Scheme 24) and evaluated for antioxidant activity using ascorbic acid as a reference drug.

Compounds	Concentration (µg/mL)	Zone of inhibition (mm)		
		S. aureus	E. coli	C. albicans
Gram positive	Gram negative			
17a	750	9	10	9
	500	8	9	7
	250	5	6	5
17b	750	16	15	15
	500	12	11	11
	250	10	8	9
17c	750	26	25	21
	500	24	23	19
	250	20	19	18
17d	750	15	16	17
	500	13	14	15
	250	11	10	12
17e	750	17	13	19
	500	14	11	13
	250	12	9	10
17f	750	9	10	15
	500	7	8	13
	250	5	6	10
Ciprofloxacin	750	27	28	–
	500	26	27	–
	250	24	25	–
Clofibrate	750	–	–	22
	500	–	–	20
	250	–	–	19
Scheme 13 Synthesis of benzimidazole-substituted-1,3-thiazolidin-4-ones

Reagents and conditions: (a) EtOH, ethyl chloroacetate, stirring, 24 h, (b) EtOH, NH₂NH₂ H₂O, reflux, (c) Aryl aldehyde, EtOH, glacial acetic acid, (d) Cinnamaldehyde, EtOH, glacial acetic acid, (e) 4-hydroxy-napthaldehyde, EtOH, glacial acetic acid, (f) Dioxane, thioglycollic acid, anhydrous zinc chloride, reflux
Table 13 MIC of benzimidazole-substituted-1,3-thiazolidin4-ones (18a-r) in µM/ml Yadav et al. [34]

Compounds	MIC (µM/ml)	S. aureus	B. subtilis	E. coli	C. albicans	A. niger
18a	0.030	0.030	0.030	0.060	0.030	
18b	0.060	0.030	0.030	0.030	0.030	
18c	0.030	0.030	0.030	0.030	0.030	
18d	0.028	0.014	0.028	0.028	0.028	
18e	0.031	0.031	0.031	0.031	0.031	
18f	0.030	0.030	0.030	0.030	0.030	
18g	0.030	0.015	0.015	0.030	0.030	
18h	0.031	0.031	0.031	0.031	0.031	
18i	0.027	0.027	0.013	0.027	0.027	
18j	0.029	0.029	0.015	0.007	0.029	
18k	0.058	0.029	0.007	0.029	0.029	
18l	0.028	0.028	0.028	0.028	0.028	
18m	0.061	0.030	0.030	0.030	0.030	
18n	0.031	0.031	0.008	0.031	0.031	
18o	0.029	0.029	0.029	0.029	0.029	
18p	0.027	0.027	0.027	0.027	0.027	
18q	0.030	0.030	0.030	0.030	0.030	
18r	0.028	0.028	0.028	0.028	0.028	
Norfloxacin	0.47	0.47	0.47	–	–	0.50
Fluconazole	–	–	–	0.50	0.50	

Compound 64n shows the most potent antioxidant activity as compared to others and the results of activity were presented in (Table 24, Katikireddy et al. [21]).

Subhashini et al. [44] synthesized 4-((4-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1-(2,3,4-trisubstituted phenyl)-1H-1,2,3-triazole derivatives (Scheme 25a, b) and evaluated for antioxidant activity by using four different methods such as Hydrogen peroxide scavenging, Nitric oxide scavenging, DPPH, and FRAP assay. The conclusion of antioxidant potential was presented in (Table 25a–d, Subhashini et al. [44]).

Antihypertensive activity
Navarrete-Vazquez et al. [45] synthesized 5-(trifluoromethyl)-2-(2,3,4-trisubstituted phenyl)-1H-benzo[d] imidazole and 5-nitro-2-(2,3,4-trisubstituted phenyl)-1H-benzo [d] Imidazole (Scheme 26) and evaluated for antihypertensive potential in SHR by using the tail-cuff method and the results of antihypertensive activity were summarized in (Table 26, Navarrete-Vazquez et al. [45]).

Hadizadeh et al. [46] synthesized 2-(2-(1H-imidazol-1-yl)ethyl)-4-(1-benzyl-2-(substituted thio)-1H-imidazol-5-yl)-5-(substituted carbonyl)-6-methyl-1, 4-dihydropyridine-3-substituted carboxylic acid (Scheme 27) and evaluated for antihypertensive potential in rats and the results of antihypertensive activity were summarized in (Table 27, Hadizadeh et al. [46]).

Goyal et al. [22] synthesized 2-substituted-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazole derivatives (Scheme 28) and evaluated for antihypertensive potential and the
Antitubercular activity
Amini et al. [47] synthesized N3-(substituted phenyl)-N5-(substituted phenyl)-4-(4,5-dichloro-1H-imidazol-2-yl)-2-methyl-1, 4-dihydropyridine-3,5-dicarboxamide (Scheme 29) and evaluated for anti-tubercular activity against *Mycobacterium tuberculosis* strain using rifampicin as reference drug. The conclusion of the antitubercular activity was presented in (Table 29, Amini et al. [47]).
Scheme 15 Synthesis of imidazole derivatives

Reagents and conditions: (i) Lactic acid, 4N HCl, Reflux (ii) permanganate, solid aluminium oxide, no solvent, r.t. 10 min, (iii) Benzaldehyde, 40% KOH, EtOH, r.t. 10 min, (iv) potassium carbonate, acetonitrile, reflux overnight
Table 15 Anticancer activity of titled compounds (21a-26d) against different cancer cell lines Hsieh et al. [25]

Compounds	Cancer cells (IC₅₀ µM)			
	A549	MCF-7	HEP-G2	OVCAR-3
21a	119.3±29.9	13.49±0.16	24.2±0.32	16.91±0.37
21b	19.17±0.43	18.09±0.28	59.13±0.92	24.7±1.69
21c	17.41±0.16	16.04±0.24	140.85±0.88	16.09±0.39
21d	35.89±0.84	32.55±3.26	36.54±1.35	36.48±1.36
22a	12.47±0.18	12.12±0.10	15.44±0.25	16.09±0.39
22b	41.05±1.61	53.54±1.12	117.28±2.42	59.01±8.91
22c	>314	254.9±13.6	>314	299.52±9.27
22d	15.79±0.49	13.42±0.24	17.6±0.25	16.13±0.32
23a	10.3±0.13	9.65±0.06	10.16±0.08	10.5±0.10
23b	54.12±1.20	53.19±0.77	64.91±0.24	28.71±1.44
23c	56.21±0.96	56.09±0.14	36.61±1.89	11.4±0.24
23d	19.53±0.71	14.73±0.09	15.49±0.16	14.04±0.29
24a	10.73±0.58	9.73±0.16	10.33±0.06	10.34±0.19
24b	11.64±0.25	11.14±0.07	32.16±1.83	12.55±0.12
24c	22.36±0.54	21.12±0.53	58.74±0.75	13.29±0.47
24d	50.45±0.82	54.41±0.72	56.45±0.86	33.13±0.14
25a	14.59±1.20	10.38±0.08	36.13±0.75	22.44±0.47
25b	10.76±0.29	10.15±0.06	42.05±0.91	16.32±0.45
25c	10.27±0.15	11.12±0.20	50.24±0.88	14.88±0.67
25d	24.06±0.08	22.93±0.49	21.38±0.68	0.1422±0.33
26a	9.73±0.07	8.91±0.07	10.93±0.10	10.76±0.12
26b	11.79±0.27	11.34±0.17	47.88±0.76	13.76±0.27
26c	16.92±0.61	11.93±0.14	32.92±0.38	13.4±0.33
26d	81.48±1.40	35.69±0.47	95.7±2.44	42.2±2.43
DOX	0.46±0.01	0.42±0.01	0.72±0.01	3.95±0.09
Cisplatin	7.31±0.44	11.7±0.12	3.97±0.04	16.04±0.74

Pandey et al. [48] synthesized (E)-3-(4-(7-substituted-3-(substituted amino)imidazo[1,2-a]pyridin-2-yl)phenyl)-1-(substituted phenyl)prop-2-en-1-one (Scheme 30) and evaluated for anti-tubercular potential against Mycobacterium tuberculosis strain by MB 7H10 agar medium using Ethambutol and Pyrazinamide as a reference drug. The conclusion of the activity was presented in (Table 30, Pandey et al. [48]).

Makwane et al. [49] synthesized 10-(2-(substituted phenyl)imidazo[2,1-b][1,3,4]thiadiazol-6-yl)-10H-phe-nothiazine by using (L.J) agar method against Mycobacterium tuberculosis H37Rv strain using Isoniazid as reference drug and MIC values of these derivatives were calculated. The conclusion of anti-tubercular activity was presented in (Table 31, Makwane et al. [49]).

Nandha et al. [23] synthesized 2-((1H-imidazol-1-yl) methyl)-6-substituted-5-fluoro-1H-benzo[d]imidazole (Scheme 32) and evaluated for anti-tubercular activity against Mycobacterium tuberculosis strain by MABA assay using Isoniazid as a reference drug. The antitubercular activity by (L.J) agar method against Mycobacterium tuberculosis H37Rv strain using Isoniazid as reference drug and MIC values of these derivatives were calculated. The conclusion of anti-tubercular activity was presented in (Table 31, Pandey et al. [48]).
Scheme 16 Synthesis of 2-(5-butyl-3-chloro-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (27a-j)

Table 16 IC₅₀ values of the synthesized compounds (27a-j) Roopashree et al. [36]

Compounds	R-X-S	R(6)	IC₅₀(µM) ± SD
27a	CH₃I	CH₃	> 50
27b	EtBr	Et	> 50
27c	CH₃(CH₂)₂CH₂Br	CH₃(CH₂)₂CH₂	> 50
27d	CH₃(CH₂)₃CH₂Br	CH₃(CH₂)₃CH₂	25.3 ± 4.18
27e	3-MeC₆H₄CH₂Br	3-MeC₆H₄CH₂	30.2 ± 2.27
27f	3-MeOC₆H₄CH₂Br	3-MeOC₆H₄CH₂	> 50
27g	4-ClC₆H₄CH₂Br	4-ClC₆H₄CH₂	> 50
27h	3,4-Cl₂C₆H₄CH₂Br	3,4-Cl₂C₆H₄CH₂	31.9 ± 4.77
27i	4-FC₆H₄CH₂Br	4-FC₆H₄CH₂	30.0 ± 5.12
27j	C₆H₅CH₂Br	C₆H₅CH₂	> 50
Sorafenib			4.1 ± 0.9

SD Standard deviation, IC₅₀ Inhibitory concentration 50%
Scheme 17 Synthesis of 2-substituted-1-(3,4,5-trimethoxyphenyl)-1H-imidazole

Reagents and conditions: (a) 1-bromo-3,4,5-trimethoxybenzene, Cs₂CO₃, CuI, DMF, 120°C, 40 h (b) NBS, CH₃CN (c) PdCl₂ (DPPF), ArB(OH)₂, CsF, 1,4-dioxane, 65°C
Table 17 Antitumor activity of the synthesized compounds (28a-q) Romangoli et al. [37]

Compounds	IC$_{50}$ (µM)	HeLa	HT-29	A549	MCF-7	Jurkat	RS4-11	HL-60
28a	1260 ± 172	1915 ± 354	4733 ± 328	2800 ± 721	760 ± 136	> 10,000	2100 ± 252	
28b	1985 ± 126	1400 ± 200	7000 ± 1153	2090 ± 374	7569 ± 758	5678 ± 259	4800 ± 451	
28c	337 ± 48	330 ± 36	5600 ± 352	1363 ± 349.8	407 ± 24	800 ± 58	333 ± 41	
28d	51 ± 6.5	112 ± 15	121 ± 56	74 ± 17	90 ± 23	217 ± 46	29 ± 9.5	
28e	263 ± 39	647 ± 83	2600 ± 422	666 ± 231	365 ± 25	715 ± 148	413 ± 14	
28f	330 ± 25	377 ± 83	4717 ± 509	509 ± 25	136 ± 38	475 ± 106	195 ± 27	
28g	623 ± 98	> 10,000	> 10,000	> 10,000	4933 ± 536	2567 ± 784	> 10,000	
28h	9157 ± 1593	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	3466 ± 467	
28i	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	3933 ± 517	
28j	> 10,000	> 10,000	> 10,000	> 10,000	6633 ± 338	> 10,000	> 10,000	
28k	3.7 ± 0.12	1.8 ± 0.8	1.9 ± 1.0	1.5 ± 0.2	1.2 ± 0.5	34.7 ± 0.0	4.8 ± 1.9	
28l	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	
28m	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	> 10,000	
28n	1.5 ± 0.32	7.5 ± 1.2	14 ± 2.3	3.4 ± 0.38	12 ± 0.6	6.8 ± 1.1	3.5 ± 0.73	
28o	3.8 ± 0.7	0.4 ± 0.06	0.57 ± 0.17	0.7 ± 0.06	0.9 ± 0.2	1.2 ± 0.7	1.8 ± 0.6	
28p	48 ± 2.5	174 ± 16	228 ± 81	69 ± 7.0	127 ± 27	85 ± 20	12 ± 2.5	
28q	2.9 ± 0.8	15 ± 1.3	63 ± 18.1	1.7 ± 0.6	42 ± 3.9	91 ± 8.9	63.0 ± 17.6	
CA-4	4 ± 1	180 ± 30	3100 ± 100	5 ± 0.6	0.8 ± 0.2	370 ± 100	1 ± 0.2	

Conclusion of anti-tubercular activity was presented in (Table 32, Nandha et al. [23]).

Nandha et al. [50] synthesized 6-(benzo[d][1,3]dioxol-5-yloxy)-2-substituted-5-fluoro-1H-benzo[d] imidazole (Scheme 33) and evaluated for anti-tubercular activity against *Mycobacterium tuberculosis* (ATCC27294) by MABA assay using streptomycin, ciprofloxacin, and pyrazinamide as a reference drug. The conclusion of the activity was presented in (Table 33, Nandha et al. [50]).

Gising et al. [51] synthesized 2,5-disubstituted-4-(6-methoxynaphthalen-2-yl)-1H-imidazole by using (Scheme 34). The anti-tubercular potential of these derivatives was evaluated against *Mycobacterium tuberculosis* strain and MIC values of these derivatives were calculated. The conclusion of anti-tubercular activity was presented in (Table 34, Gising et al. [51]).

Syed et al. [52] synthesized 6-(4-substituted phenyl)-2-(3,5-dimethyl-1H-pyrazol-1-yl)imidazo [2,1-b][1,3,4] thiadiazole (Scheme 35) and evaluated for anti-tubercular potential against *Mycobacterium tuberculosis* strain. Compounds 80a, 80b, 81a, 82a, and 83a showed the most potent anti-tubercular activity as compared to others. The conclusion of anti-tubercular activity was presented in (Table 35, Syed et al. [52]).
Scheme 18 Synthesis of 1-substituted-2-(5-substituted-1-phenyl-1H-pyrazol-3-yl)-1H-benzo[d]imidazole and 4-(1-chloro-1H-benzo[d]imidazole-2-yl)-6-fluoropyrimidin-2-amine

1-(1-substituted-1H-benzo[d]imidazol-2-yl)ethanone

\[R = H \]
\[R = \text{CH}_3 \]

EtOH, KOH \[\rightarrow \] \(R_1 \)-CHO

(Z)-1-(1-substituted-1H-benzo[d]imidazo 1-2-yl)-3-substitutedprop-2-en-1-one

C\(_6\)H\(_5\)NHNHNH\(_2\)
C\(_2\)H\(_5\)OH \[\rightarrow \]

1-substituted-2-(5-substituted-1-phenyl-1H-pyrazol-3-yl)-1H-benzo[d]imidazole

\((30\text{a-j})\)

\[R = \text{H} \]
\[R = \text{CH}_3 \]

4-(1-substituted-1H-benzo[d]imidazol-2-yl)-6-substitutedpyrimidin-2-amine

\((29\text{a-j})\)
Table 18 (a) IC₅₀ of the titled compounds (29a-j) against of MCF-7 and CaCo-2 cell line—benzo [d] imidazole pyrimidine derivatives; (b) IC₅₀ of the titled compounds (30a-j) against of MCF-7 and CaCo-2 cell line—benzo [d] imidazole pyrazole derivatives Rajendran et al. [38]

Compounds	Substituent R	Substituent R₁	Molecular formula	IC₅₀ ± SD (µM)	
				MCF-7	CaCo-2
(a)					
29a	H	[苯基]	C₁₁H₁₁N₅	8.22 ± 1.48	5.67 ± 1.25
29b	H	[吡啶]	C₁₆H₁₂N₆	10.43 ± 1.45	9.56 ± 1.33
29c	H	[甲氧基]	C₁₉H₁₇N₅O₂	> 30	28.40 ± 2.48
29d	H	[氯]	C₁₈H₁₄ClN₅O	13.05 ± 2.07	12.33 ± 1.80
29e	H	[甲基]	C₂₅H₁₇N₅	> 30 ± 2.87	> 30 ± 2.98
29f	CH₃	[苯基]	C₁₈H₁₃N₅	> 30 ± 2.66	> 30 ± 2.43
29g	CH₃	[苯基]	C₁₉H₁₄N₆	18.56 ± 2.82	16.23 ± 1.24
29h	CH₃	[氯]	C₁₉H₁₅ClN₅O	> 30 ± 2.19	25.50 ± 2.74
29i	CH₃	[氯]	C₂₀H₁₉N₅O₂	25.11 ± 2.44	21.89 ± 2.35
29j	CH₃	[甲基]	C₂₆H₁₉N₅	> 30 ± 2.80	> 30 ± 2.06
Fluorouracil				7.26 ± 2.30	5.23 ± 2.36
---	---	---	---	---	
30a	H	C_{22}H_{16}N_{4}	22.65 ± 2.32	28.45 ± 2.59	
30b	H	C_{21}H_{15}N_{5}	12.79 ± 2.20	9.788 ± 1.48	
30c	H	C_{13}H_{13}ClN_{4}O	> 30 ± 2.86	> 30 ± 2.48	
30d	H	C_{24}H_{20}N_{4}O_{2}	15.34 ± 2.67	13.27 ± 1.56	
30e	H	C_{30}H_{20}N_{4}	> 30 ± 2.52	> 30 ± 2.33	
30f	CH_{3}	C_{33}H_{18}N_{4}	> 30 ± 2.41	> 30 ± 2.69	
30g	CH_{3}	C_{22}H_{17}N_{5}	19.04 ± 2.56	17.32 ± 2.27	
30h	CH_{3}	C_{24}H_{19}ClN_{4}O	> 30 ± 2.38	29.76 ± 2.64	
30i	CH_{3}	C_{25}H_{22}N_{4}O_{2}	21.73 ± 2.46	18.35 ± 2.54	
30j	CH_{3}	C_{31}H_{22}N_{4}	> 30 ± 2.58	> 30 ± 2.62	

Fluorouracil

7.26 ± 2.30

5.23 ± 2.36
Scheme 19

a Synthesis of substituted Schiff base; **b** Synthesis of substituted imidazole derivatives; c. Synthesis of substituted phenyl imidazole pyridine derivatives

Reagents and conditions: Ethanol, reflux, 3 hr.

Reagents and conditions: (i) p-toluenesulfonyl methylisocyanide, K_2CO_3, DMF, 36 hr

Scheme 19 a Synthesis of substituted Schiff base, **b** Synthesis of substituted imidazole derivatives, c. Synthesis of substituted phenyl imidazole pyridine derivatives
Scheme 19 continued

Reagents and conditions: (i) EtOH, 10 min, CuSO$_4 \cdot 5$H$_2$O, D-glucose, reflux, 10hr

| 49, 54, 59 | R$_1$, R$_2$, R$_3$ = H
| 50, 55 | R$_1$ = CH$_3$, R$_2$, R$_3$ = H
| 51, 56 | R$_2$ = CH$_3$, R$_1$, R$_3$ = H
| 52, 57 | R$_1$ = Cl, R$_2$, R$_3$ = H
| 53, 58 | R$_3$ = CH$_3$, R$_1$, R$_2$ = H |
Table 19 Anticancer activity of the synthesized derivatives (31–59) against three different cancer cell lines Meenakshisundaram et al. [39]

Compounds	HeLa	MDA-MB-231	ACHN						
	IC₅₀ (μM)	TGI (μM)	GI₅₀ (μM)	IC₅₀ (μM)	TGI (μM)	GI₅₀ (μM)	IC₅₀ (μM)	TGI (μM)	GI₅₀ (μM)
31	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
32	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
33	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
34	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
35	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
36	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
37	> 10	9.47	> 10	> 10	> 10	> 10	> 10	> 10	> 10
38	> 10	9.79	8.23	> 10	> 10	> 10	> 10	> 10	> 10
39	> 10	9.67	> 10	> 10	8.45	> 10	> 10	> 10	> 10
40	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
41	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
42	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10
43	> 10	9.76	4.23	> 10	> 10	5.14	> 10	> 10	8.24
44	> 10	9.76	1.86	> 10	> 10	1.16	> 10	> 10	3.78
45	> 10	> 10	> 10	> 10	> 10	6.88	> 10	> 10	9.88
46	> 10	9.76	6.85	> 10	> 10	4.26	> 10	> 10	7.15
47	> 10	> 10	> 10	> 10	> 10	1.20	> 10	> 10	2.24
48	> 10	> 10	> 10	> 10	> 10	1.90	> 10	> 10	3.86
49	> 10	> 10	> 10	> 10	> 10	0.43	> 10	> 10	0.55
50	> 10	> 10	> 10	> 10	> 10	0.88	> 10	> 10	1.16
51	> 10	> 10	> 10	> 10	> 10	2.05	> 10	> 10	1.90
52	> 10	3.73	5.24	> 10	> 10	4.50	> 10	> 10	7.72
53	> 10	9.76	0.96	> 10	> 10	1.30	> 10	> 10	1.32
54	> 10	> 10	> 10	> 10	> 10	0.30	> 10	> 10	0.38
55	> 10	> 10	> 10	> 10	> 10	0.65	> 10	> 10	0.98
56	> 10	> 10	> 10	> 10	> 10	0.58	> 10	> 10	0.85
57	> 10	9.74	4.00	> 10	> 10	1.60	> 10	> 10	1.82
58	> 10	9.76	0.73	> 10	> 10	1.59	> 10	> 10	0.62
59	> 10	> 10	> 10	> 10	> 10	0.51	> 10	> 10	0.58
Adriamycin	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10	> 10

GI₅₀: Concentration of drug causing 50% inhibition of cell growth
IC₅₀: Concentration of drug causing 50% cell kill
TGI: Concentration of drug causing total inhibition of cell growth
Italic values indicate the activity best compounds
Inhibitory activity was expressed in micromolar
Scheme 20

Synthesis of 1,2-disubstituted-4,5-diphenyl-1H-imidazole

Reagents and conditions:-(a) Conc. AcOH, Reflux 7hr. MW; Activated silica gel, 1000 W, 8 min
(b) Ammonium acetate, conc: Reflux 12 hr. MW; 1000 W, 13-16 min.

1,2-disubstituted-4,5-diphenyl-1H-imidazole

(60a–60j)
Table 20 Antitumor activity of the synthesized derivatives (60a-j) Sharma et al. [40]

Compounds	Substituent R	Substituent R’	DLA cells CTC₅₀ µg/mL	EAC cells CTC₅₀ µg/mL
60a	\(-\text{NH}\)	\(-\text{Me}\)	190.26	60.50
60b	\(-\text{NH}\)	\(-\text{OH}\)	114.00	240.00
60c	\(-\text{NH}\)	\(-\text{NCH}_{3}\)	98.56	31.25
60d	\(-\text{NH}\)	\(-\text{Cl}\)	309.67	200.22
60e	\(-\text{COOH}\)	\(-\text{NO}_{2}\)	>500	489.34
60f	\(-\text{COOH}\)	\(-\text{Cl}\)	207.60	115.31
60g	\(-\text{COOH}\)	\(-\text{Cl}\)	238.50	31.25
60h	\(-\text{COOH}\)	\(-\text{OH}\)	>500	>500
60i	\(-\text{OH}\)	\(-\text{Cl}\)	405.68	305.91
60j	\(-\text{OH}\)	\(-\text{Cl}\)	150.26	94.63

CTCs The cytotoxic concentration (which inhibited 50% of total cells)
Scheme 21 Synthesis of 3-(4,5-diphenyl-1-(substitute phenyl)-1H-imidazol-2-yl)-substituted-2-(substituted phenyl)-1H-indole (61a-j)

Table 21 Antioxidant activity of the synthesized derivatives (61a-j) Naureen et al. [41]

Compounds	R₁	R₂	R₃	Antioxidant activity	
				Inhibition (%) at 0.5 mM	IC₅₀ (µM)
61a	H	Cl	CH₃	62.58 ± 0.7	175.26 ± 1.24
61b	H	Cl	Br	71.74 ± 0.2	146.27 ± 1.09
61c	Br	H	F	71.87 ± 0.5	181.26 ± 1.1
61d	H	Br	CH₃	90.39 ± 0.5	148.26 ± 1.2
61e	H	Br	Cl	20.97 ± 0.5	–
61f	H	CH₃	H	67.61 ± 0.3	162.27 ± 1.2
61g	H	CH₃	CH₃	44.21 ± 0.7	–
61h	H	CH₃	Br	7.11 ± 0.2	–
61i	H	CH₃	F	18.91 ± 0.6	–
61j	H	CH₃	OCH₃	23.03 ± 0.5	–
Thiourea	–	–	–	–	–
Quercetin	–	–	–	93.21 ± 0.9	16.96 ± 0.1
Scheme 22

a Synthesis of (E)-(1H-benzo[d]imidazole-1-yl)(4-(substituted benzylidene)amino)phenyl)methanone.
b Synthesis of 2-(1H-benzo[d]imidazole-1-yl)-N-(5-phenyl-1,3,4-oxadiazol-2-yl)acetamide.
c Synthesis of substituted imidazole linked 1,3,4-oxadiazole derivatives
Table 22 Antioxidant activity of the synthesized compounds (62a-f) Rajasekaran et al. [42]

Compounds	% Inhibition			
	10 µg/ml	20 µg/ml	30 µg/ml	40 µg/ml
62a	7.20	12.30	37.65	39.42
62b	34.77	34.66	37.65	39.42
62c	7.08	15.61	21.04	22.26
62d	17.71	29.34	30.34	40.86
62e	34.77	37.76	47.17	52.16
62f	18.98	24.67	28.90	34.34
Ascorbic acid	56.03	58.80	65.33	68.55

Scheme 23 Synthesis of (Z)-3-(2-(5-(benzylidene)-4-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl)ethyl)-2-phenylquinazolin-4(3H)-one (63a-e) and 3-(3-mercapto-5-(substituted phenyl)-4H-1,2,4-triazol-4-yl)-2-phenylquinazolin-4(3H)-one (63f-h)
Compounds	Concentration (μg/ml)	10	20	30	40	50	60	70	80	90	100
63a		2.54	8.47	14.61	20.97	27.86	33.36	42.37	45.12	51.58	56.25
63b		2.11	10.06	19.17	29.34	33.15	40.57	48.62	52.43	62.5	69.70
63c		1.80	10.48	17.05	25.42	33.30	40.57	48.19	55.82	65.36	71.61
63d		1.37	7.41	15.14	20.65	27.33	33.89	39.72	47.35	51.37	59.42
63e		1.80	6.88	14.83	21.29	27.22	33.47	40.25	47.98	51.48	57.83
63f		7.94	21.5	34.32	46.29	59.11	71.61	84.53	97.35	97.98	98.83
63g		12.71	27.54	40.99	55.40	73.83	84.21	93.53	94.91	95.65	96.71
63h		10.91	22.77	37.07	51.16	65.14	68.32	89.72	92.37	92.69	95.85
Standard	Concentration (μg/ml)	01	02	03	04	05	06	07	08	09	10
Ascorbic acid		8.76	15.34	26.08	37.65	41.23	59.29	67.43	76.53	80.21	87.76
Scheme 24 Synthesis of \((E)-N'-(7\text{-methyl-2-propyl-1H-benzo[}d\text{]imidazole-5-carbonyl})\text{substituted formohydranonoyl (64a-r)}

Compounds Ar

\begin{align*}
64a &= C_6H_5 \\
64b &= 4\text{-OCH}_3C_6H_4 \\
64c &= 2\text{-OHC}_6H_4 \\
64d &= 3\text{-ClC}_6H_4 \\
64e &= 3\text{-BrC}_6H_4 \\
64f &= 3\text{-OCH}_3C_6H_4 \\
64g &= 3,4\text{-}(OCH}_3)_3C_6H_3 \\
64h &= 4\text{-CNC}_6H_4 \\
64i &= 2\text{-furyl} \\
64j &= 2\text{-thienyl} \\
64k &= 1\text{-napthyl} \\
64l &= 2\text{-CH}_3C_6H_4 \\
64m &= 4\text{-NO}_2C_6H_4 \\
64n &= 5\text{-Br,2-OHC}_6H_3 \\
64o &= 2,4\text{-}(Cl)_2C_6H_3 \\
64p &= 3,5\text{-Cl}_2,2\text{-OHC}_6H_2 \\
64q &= 4\text{-OH C}_6H_4 \\
64r &= 4\text{-OH,3-OCH}_3C_6H_3
\end{align*}

Reagents and conditions: (i) \(Na_2S_2O_4, H_2O\), reflux. 4 h (ii) \(N_2H_4\cdot H_2O\), ethanol, reflux, 10 h (iii) \(Ar\text{-CHO}, gla. AcOH, MeOH\), reflux, 4-6 h.

Scheme 24 Synthesis of \((E)-N'-(7\text{-methyl-2-propyl-1H-benzo[}d\text{]imidazole-5-carbonyl})\text{substituted formohydranonoyl}

Patel et al. [53] synthesized 6-(substituted phenyl)-2-(1-methyl-1H-imidazol-2-yl) imidazo [2,1-b] [1,3,4] thiadiazole (Scheme 36) and evaluated for anti-tubercular activity against *Mycobacterium tuberculosis* and MIC values of these derivatives were calculated. The conclusion of anti-tubercular activity was presented in (Table 36, Patel et al. [53]).

Yadav et al. [54] synthesized 2-((1-benzoyl-1H-benzo[d] imidazol-2-yl) thio)-N-(substituted phenyl) acetamide (Scheme 37) and evaluated for anti-tubercular activity against *Mycobacterium tuberculosis* strain and MIC values of these derivatives were calculated. Streptomycin was used as a reference drug and the results of anti-tubercular activity were presented in (Table 37, Yadav et al. [54]).

Conclusion

In this present review article, we have summarized different pharmacological activities of 1,3-diazole containing compounds. From this study, we have found that 1,3-diazole containing compounds can be synthesized by various kinds of synthetic routes, and these derivatives having a wide range of biological activities such as antitumor, antitubercular, antimicrobial, antihypertensive and

Compounds	IC$_{50}$ (μg/ml)
64a	49.28 ± 3.03
64b	32.17 ± 2.87
64c	29.10 ± 1.60
64d	18.31 ± 1.38
64e	26.81 ± 2.10
64f	29.96 ± 2.81
64g	24.79 ± 3.03
64h	30.83 ± 2.93
64i	23.19 ± 1.72
64j	30.08 ± 2.60
64k	20.05 ± 1.27
64l	25.97 ± 2.18
64m	13.60 ± 1.37
64n	9.40 ± 1.04
64o	12.39 ± 1.26
64p	16.27 ± 1.39
64q	24.70 ± 2.29
64r	38.28 ± 3.07
Ascorbic acid	7.50 ± 0.89
Scheme 25 a Synthesis of 4-((4-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1-(2, 3, 4-trisubstituted phenyl)-1H-1,2,3-triazole; b Synthesis of 4-((4-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1-(2, 3, 4-trisubstituted phenyl)-1H-1,2,3-triazole
Table 25 (a) DPPH radical scavenging activity of (65a-h) and (66a-h); (b) Hydrogen peroxide radical scavenging activity of (65a-h) and (66a-h); (c) Nitric oxide radical scavenging activity of (65a-h) and (66a-h); (d) FRAP oxide radical scavenging activity of (65a-h) and (66a-h) Subhashini et al. [44]

Compounds	Concentration	10 μg/ml	50 μg/ml	100 μg/ml	250 μg/ml
(a)					
65a		57	71	81	94
65b		49	55	59	63
65c		42	53	65	69
65d		53	59	64	93
65e		35	42	55	63
65f		44	61	79	90
65g		41	49	53	61
65h		67	75	83	91
66a		55	63	71	87
66b		60	69	76	89
66c		69	78	81	95
66d		48	67	79	85
66e		71	79	85	96
66f		33	44	55	61
66g		41	47	59	62
66h		66	74	81	90
Standard		85	89	93	97
(b)					
65a		49	67	75	87
65b		59	73	81	92
65c		40	49	55	57
65d		47	65	72	89
65e		31	43	49	56
65f		52	73	81	92
65g		35	43	51	63
65h		57	68	75	88
66a		51	63	78	91
66b		54	71	82	90
66c		71	88	91	96
66d		57	73	85	94
66e		37	45	52	59
66f		65	78	86	94
66g		38	45	53	55
66h		57	65	78	86
Standard		83	91	95	98
(c)					
65a		49	55	63	78
65b		54	69	75	89
65c		31	37	44	51
65d		56	68	79	85
65e		29	36	41	47
65f		48	56	67	74
65g		23	32	39	43
65h		61	77	86	95
	66a	65	75	82	89
-----	-----	------	------	------	------
66b	57	69	79		87
66c	68	79	88		91
66d	57	68	75		88
66e	25	37	42		46
66f	48	55	67		78
66g	21	27	33		39
66h	67	65	77		86
Standard	81	86	91		96

	65a	64	78		87
65b	51	67	79		93
65c	31	39	43		47
65d	63	77	83		92
65e	22	27	32		38
65f	57	68	77		85
65g	27	33	40		45
65h	49	58	69		87
66a	56	63	75		89
66b	49	58	67		85
66c	65	71	84		97
66d	64	79	86		91
66e	30	37	45		50
66f	45	53	62		85
66g	31	39	42		48
66h	60	69	78		87
Standard	88	92	95		99
Scheme 26 Synthesis of 5-(trifluoromethyl)-2-(2,3,4-trisubstituted phenyl)-1H-benzo[d] imidazole and 5-nitro-2-(2,3,4-trisubstituted phenyl)-1H-benzo[d]imidazole

Reagents and conditions: (i) H₂, Ni-Raney, EtOH, (ii) Na₂S₂O₅, DMF, reflux, (iii) Na₂S₂O₅, DMF, reflux, mw, 70°C

Table 26 Antihypertensive activity of the synthesized derivatives (67a-o) in SHR Navarrete-Vázquez et al. [45]

Compounds	R1	R2	R3	R4	Ex vivo vasorelaxant effect	
					With endothelium (+E)	
					EC₅₀ (μM)	Eₘₐₓ (%)
67a	−CF₃	−H	−H	−H	369.37 ± 10.2	91.2 ± 1.18
67b	−CF₃	−OMe	−H	−H	210.33 ± 11.3	75.14 ± 33.5
67c	−CF₃	−OEt	−H	−H	548.5 ± 27.8	90.97 ± 2.30
67d	−CF₃	−NO₂	−H	−H	3.18 ± 0.30	93.16 ± 3.52
67e	−CF₃	−H	−H	−OH	219.20 ± 14.1	51.15 ± 20.6
67f	−CF₃	−H	−H	−OPr	524.49 ± 25.4	51.0 ± 7.33
67g	−CF₃	−H	−H	−N (Me)₂	550.27 ± 30.1	63.2 ± 4.81
67h	−CF₃	−H	−OMe	−OH	34.84 ± 5.43	99.55 ± 1.23
67i	−CF₃	−H	−OCH₂O	−	38.53 ± 2.35	101.17 ± 5.83
67j	NO₂	−H	−H	−H	4.93 ± 0.30	73.82 ± 5.37
67k	NO₂	−OEt	−H	−H	3.71 ± 0.10	84.82 ± 3.73
67l	NO₂	−OPr	−H	−H	4.89 ± 0.29	80.71 ± 9.41
67m	NO₂	−H	−OMe	−OH	1.81 ± 0.08	91.74 ± 2.35
67n	NO₂	−H	−OMe	−OMe	2.5 ± 0.10	75.0 ± 9.35
67o	NO₂	−OMe	−OMe	−OMe	3.23 ± 0.20	90.0 ± 4.56
Pimobendan					4.67 ± 0.83	93.22 ± 5.23
Carbachol					0.51 ± 1.9	106.3 ± 9.71
Nitrendipine					N.T	N.A

NT Not tested, N.A Not active
Scheme 27 Synthesis of 2-(2-(1H-imidazol-1-yl)ethyl)-4-(1-benzyl-2-(substituted thio)-1H-imidazol-5-yl)-5-(substituted carbonyl)-6-methyl-1,4-dihydropyridine-3-substituted carboxylic acid

R₁ = CH₃, C₂H₅, CH₂C₆H₅
R₂ = CH₃, C₂H₅,
Table 27: Antihypertensive activity of titled compounds (68a-f) in normotensive and hypertensive rats Hadizadeh et al. [46]

Compounds	MABP fall (SEM) in rats in doses C, in mg/kg b.w., i.v					
	Normotensive	Hypertensive				
	0.3	3	30	0.3	3	30
68a	26.00(2.00)	42.00(3.00)	47.20(3.03)	38.40(5.37)	46.40(2.19)	50.00(2.00)
68b	Nd	Nd	Nd	Nd	Nd	Nd
68c	22.00(2.00)	42.00(2.00)	57.2(2.16)	29.60(4.56)	54.00(7.79)	58.00(2.73)
68d	18.00(2.00)	42.00(2.00)	47.00(1.67)	22.40(3.58)	48.00(1.78)	49.20(1.78)
68e	Nd	Nd	Nd	Nd	Nd	Nd
68f	Nd	Nd	Nd	Nd	Nd	Nd
69a	17.20(2.68)	41.60(20.60)	53.20(2.28)	28.00(6.20)	52.80(11.79)	55.20(2.28)
69b	26.40(5.80)	37.20(1.55)	38.60(3.83)	29.00(2.9)	45.75(8.87)	50.80(6.60)
69c	23.20(7.69)	44.80(3.34)	56.80(3.34)	35.20(3.35)	56.00(4.00)	56.80(3.34)
69d	27.60(1.82)	37.40(1.15)	36.80(3.63)	29.00(5.10)	42.00(7.30)	44.5(7.60)
69e	15.40(0.27)	28.60(1.09)	33.00(1.41)	28.00(4.70)	36.80(1.60)	51.00(8.70)
69f	17.40(1.03)	26.00(3.19)	36.80(5.30)	24.80(4.56)	42.00(5.40)	48.00(7.40)
Nifedipine	27.20(2.68)	59.60(3.84)	Nd	42.40(5.36)	61.20(14.46)	Nd
DMSO	12.00(5.65)	12.00(3.65)	12.00(5.65)	14.80(6.72)	14.80(6.72)	14.80(6.72)

MABP: Mean arterial blood pressure fall, SEM: Standard error the mean are indicated in the parenthesis. All results were analyzed for statistically significant differences from control DMSO (0.3 mL/kg b.w., i.v) by analysis of variance and all showed significant difference. (p < 0.05), Nd: not determined.
Scheme 28: Synthesis substituted imidazole derivatives
Table 28 Antihypertensive activity of the synthesized compounds (70a-j) Goyal et al. [22]

Compounds	SAP (mmHg)	DAP (mmHg)	MAP (mmHg)	HR (bpm)
70a	B 189±7	129±5	159±6	311±19
	A 161±9*	105±6*	121±5*	298±11
70b	B 189±7	124±8	154±5	310±18
	A 188±6	122±4	151±7	320±19
70c	B 206±15	124±8	151±6	357±15
	A 198±18	119±6	146±5	337±21
70d	B 217±8	128±6	160±8	339±17
	A 213±7	132±8	157±9	330±14
70e	B 221±6	130±5	157±9	363±16
	A 213±3	129±4	155±8	347±17
70f	B 178±2	146±7	151±6	413±28
	A 176±3	144±11	148±9	402±32
70g	B 194±5	165±8	180±7	416±18
	A 187±7	155±6	168±6	409±11
70h	B 158±6	151±9	155±6	453±29
	A 144±5*	141±8*	142±9*	459±21
70i	B 198±7	154±7	176±7	410±19
	A 197±6	148±6	183±8	405±14
70j	B 140±6	118±7	127±5	511±45
	A 138±5	115±4	125±4	465±28
Control	B 169±6	145±3	154±6	415±23
	A 168±9	140±4	149±7	407±29
Prazocin (3 mg/kg)	B 199±7	156±6	168±6	418±17
	A 176±8*	138±4*	141±3*	411±15

Haemodynamic effects shown on systolic blood pressure (SAP), Diastolic blood pressure (DAP), Mean arteriolar pressure (MAP) and Heart rate (HR) on SHRs treated with vehicle control and test compounds. Values were represented as mean ± SEM; n = 5; * p < 0.05
Scheme 29 Synthesis of N^3-(substituted phenyl)-N^5-(substituted phenyl)-4-(4,5-dichloro-1H-imidazo[2-yl]-2-methyl-1,4-dihydropyridine-3,5-dicarboxamide

Table 29 Antitubercular activity of the synthesized compounds (71a-j) against *Mycobacterium tuberculosis* (H$_3$Rv strain) Amini et al. [47]

Compounds	R	Inhibition %
71a	H	9
71b	3-F	0
71c	4-F	13
71d	3-Cl	50
71e	4-Cl	12
71f	3,4-Cl$_2$	34
71g	3-Br	1
71h	4-Br	0
71i	3-NO$_2$	43
71j	4-NO$_2$	43
Rifampicin		> 98
Scheme 30 Synthesis of (E)-3-(4-(7-substituted-3-(substituted amino)imidazo[1,2-α]pyridin-2-yl)phenyl)-1-(substituted phenyl)prop-2-en-1-one

4-substituted pyridin-2-amine + 4-(diethoxymethyl) benzaldehyde + NC

p-TSA, MeOH, r.t, 10-15 h → 7-chloro-2-(4-(diethoxymethyl)phenyl) -N-methylimidazo[1,2-α]pyridin-3-amine

Acetic acid, 90°C, 30 min

KOH, EtOH, r.t, 3-4 h → (E)-3-(4-(7-substituted-3-(substituted amino)imidazo[1,2-α]pyridin-2-yl)phenyl)-1-(substituted phenyl)prop-2-en-1-one

Substituted benzaldehyde

4-(7-chloro-3-(methylamino)imidazo[1,2-α]pyridin-2-yl)benzaldehyde

(72a-q)
Table 30 Antitubercular activity of synthesized compounds (72a-q) against *M. tuberculosis* H37Rv Pandey et al. [48]

Compounds	Structure	MIC* (μg/mL)	MIC (μM)	CC50 in C1008\(^b\)	CC50 in MBMDMφ\(^c\)	SI\(^d\)	SP*
72a	![Structure](image1)	3.12	7.40	<25	ND*	NA	
72b	![Structure](image2)	12.50	25.04	ND	ND	ND	
72c	![Structure](image3)	12.50	27.46	ND	ND	ND	
72d	![Structure](image4)	12.50	27.70	ND	ND	ND	
72e	![Structure](image5)	12.50	25.98	ND	ND	ND	
72f	![Structure](image6)	3.12	6.10	<25	ND	ND	
7g	![Structure](image7)	25.00	53.62	ND	ND	ND	
72h	![Structure](image8)	12.50	28.72	ND	ND	ND	
72i	![Structure](image9)	25.00	48.71	ND	ND	ND	
72j	![Structure](image10)	12.50	23.79	ND	ND	ND	
72k	![Structure](image11)	12.50	26.03	ND	ND	ND	
Table 30 (continued)

Compound	MIC	C1008	MBMDMφ	SI	ND
72l	3.12	7.89	>100	47.47	>10
72m	25.00	61.09	ND	ND	ND
72n	25.00	58.79	ND	ND	ND
72o	6.25	13.72	ND	ND	ND
72p	3.12	6.42	>100	<25	>10
72q	3.12	6.59	>100	>100	>10
Ethambutol	2.00	9.78			
Pyrazinamide	12.5	101.53			

*MIC: Minimum inhibitory concentration, *C1008: vero cell lines, *MBMDMφ: Mouse bone marrow derived macrophages, *SI: Selectivity index, *ND: not done.
Scheme 31 Synthesis of 10-(2-(substituted phenyl)imidazo[2,1-b][1,3,4]thiadiazol-6-yl)-10H-phenothiazine (73a-j)

Compounds	Ar1	Antitubercular activity inhibition (%) (ppm) M. tuberculosis H37Rv strain	Antitubercular activity MIC* (μg/mL) M. tuberculosis H37Rv strain
73a	C6H5	22	12
73b	2-ClC6H4	32	7.5
73c	3-ClC6H4	36	6.5
73d	4-ClC6H4	32	7
73e	2-BrC6H4	29	10
73f	3-BrC6H4	30	8.5
73g	4-BrC6H4	30	9
73h	2-NO2C6H4	28	5.5
73i	3-NO2C6H4	27	4
73j	4-NO2C6H4	32	5

Table 31. Antitubercular activity of the synthesized compounds (73a-j) Makwane et al. [49]
Scheme 32 Synthesis of 2-((1H-imidazol-1-yl)methyl)-6-substituted-5-fluoro-1H-benzo[d]imidazole

Compounds R =

Compound	MIC (μg/mL)	MABA
74a; R = Cl	100	
74b;	50	
74c;	25	
74d;	50	
74e;	12.5	
Isoniazid	0.78	

MIC Minimum inhibitory concentration, MABA Microplate Alamar Blue Assay (visual)
Synthesis of 6-(benzo[d][1,3]dioxol-5-yloxy)-2-substituted-5-fluoro-1H-benzo[d]imidazole and 2-(((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)thio)-6-substituted-5-fluoro-1H-benzo[d]imidazole

Scheme 33
Table 33 Antitubercular activity of synthesized derivatives (77a-f) and (78a-i) Nandha et al. [50]

Compounds	Ar	MIC (μg/mL) MABA
77a		50
77b		50
77c		50
77d		25
77e		50
77f		50
78a	-Cl	100
78b		50
78c		50
78d		50
78e		50
78f		50
78g		50
78h		25
78i		50
Streptomycin		6.25
Pyrazinamide		3.12
Ciprofloxacin		3.12

MIC: Minimum inhibitory concentration, MABA: Microplate Alamar Blue Assay (visual).
Reagents and conditions: (a) ethynyltrimethylsilane, Pd(PPh₃)₂Cl₂, CuI, MeCN, diethylamine, microwave 120ºC, 15 min, then K₂CO₃, MeOH, rt, 2h, 85%, (b) bromoaryl/heteroaryl, Pd(PPh₃)₂Cl₂, CuI, MeCN, diethylamine, microwave 80-120ºC, 15 min, 22-63%, (c) KMnO₄, phosphate buffer, (d) aldehyde, ammonium acetate, n-butanol, 50-65ºC, 0.5-5 h, 10-63%.

Scheme 34 Synthesis of 2,5-disubstituted-4-(6-methoxynaphthalen-2-yl)-1H-imidazole
Table 34: Antitubercular activity of synthesized derivatives (79a-m) Gising et al. [51]

Compounds	R5	R2	IC₅₀ (μM)
79a	![Structure](image1)	![Structure](image2)	3.1 ± 0.1
79b	![Structure](image3)	![Structure](image4)	>25
79c	![Structure](image5)	![Structure](image6)	>25
79d	![Structure](image7)	![Structure](image8)	>25
79e	![Structure](image9)	![Structure](image10)	2.2 ± 0.3
79f	![Structure](image11)	![Structure](image12)	>25
79g	![Structure](image13)	![Structure](image14)	>25
79h	![Structure](image15)	![Structure](image16)	>25
79i	![Structure](image17)	![Structure](image18)	>25
79j	![Structure](image19)	![Structure](image20)	>25
79k	![Structure](image21)	![Structure](image22)	>25
79l	![Structure](image23)	![Structure](image24)	>25
79m	![Structure](image25)	![Structure](image26)	>25
Scheme 35 Synthesis of substituted phenyl imidazole derivatives

Reagents and conditions: (a) dry ethanol, Na₂CO₃, reflux 12 h, (b) Morpholine, HCHO, AcOH, Methanol, reflux 8 h; (c) pyrrolidine, HCHOIO, AcOH, Methanol, reflux 8 h; (d) piperidine, HCHO, AcOH, methanol, reflux.
This review article established the fact that 1,3-diazole act as useful templates for further modification or derivatization to design more potent biologically active compounds.

Table 35 Antitubercular activity of synthesized compounds (80a-83e) Syed et al. [52]

Compounds	MIC (μg/mL) MABA
80a	10
80b	10
81a	10
81b	25
82a	10
82b	25
83a	10
83b	25
83c	25
83e	25
Streptomycin	7.5

Abbreviations

AMR: Antimicrobial resistance; DNA: Deoxyribonucleic acid; DMF: Dimethylformamide; TEBA: Triethyl benzyl ammonium chloride; MTT: 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; C-A4: Combretastatin-A4; SRB: Sulforhodamine B assay; DLA: Dalton's Lymphoma Ascites cell line; EAC: Ehrlich's ascites carcinoma cell lines; DPPH: 2,2-Diphenyl-1-picrylhydrazyl; FRAP: Ferric reducing ability of plasma; SHR: Spontaneously hypertensive rats; MB: Middlebrook; MABA: Microplate Alamar blue assay; L.J Lowenstein-Jensen; I_{50}: Half maximal inhibitory concentration; HeLa: Henrietta Lacks; TEA: Triethanolamine; DMSO: Dimethyl sulphoxide; MIC: Minimum inhibitory concentration; TBAB: Tetrabutylammonium bromide; NCFT: National Centre of Fungal Taxonomy; MLC: Minimum Lethal concentration; p-TSA: P-Toluenesulfonic acid; MW: Microwave; CAN: Ceric ammonium nitrate; (4-SB) T (4-SPh)PHSO4: (4-Sulfobutytris(4-sulfophenyl) phosphonium hydrogen sulfate.

Reagents and conditions: (a) 4-N,N-Dimethylaminopyridine, DMF, Cyanogen bromide, stirred 15 h; (b) thiosemicarbazide, trifluoroacetic acid, reflux 15 h; (c) refluxed in dry ethanol for 18 h.

Scheme 36 Synthesis of 6-(substituted phenyl)-2-(1-methyl-1H-imidazol-2-yl) imidazo[2,1-b][1,3,4] thiazazole (84a-j)
Table 36 Antitubercular activity of synthesized compounds (84a-j) Patel et al. [53]

Compounds	R	Inhibition %	Activity	MIC (μg/mL)	IC₅₀	SI
84a	3-Nitro	91	+	4.34	10.56	2.43
84b	4-Bromo	94	+	5.78	11.4	1.97
84c	4-Chloro	95	+	5.48	12.3	2.24
84d	4-Fluoro	90	+	4.86	8.5	1.74
84e	H	16	−	>6.25	−	−
84f	4-Nitro	98	+	3.14	9.8	3.12
84g	4-Methyl	18	−	>6.25	−	−
84h	3-Methyl	30	−	>6.25	−	−
84i	2,4-Dichloro	92	+	5.66	103	1.81
84j	2,4-Dihydroxy	92	−	>6.25	−	−
Rifampicin				0.125–0.25		>10
Scheme 37 Synthesis of 2-((1-benzoyl-1H-benzo[d]imidazol-2-y1)thio)-N-(substituted phenyl) acetamide

\[
\begin{align*}
&\text{Substituted aniline} + \text{ClCH}_2\text{COCl} \xrightarrow{\text{cold condition}} \text{2-chloro-N-}
\end{align*}
\]

\[
\begin{align*}
&\text{(substituted phenyl) acetamide} + \text{1H-benzo[d] imidazole-2-thiol}
\end{align*}
\]

\[
\begin{align*}
&\text{Methanol, KOH}
\end{align*}
\]

\[
\begin{align*}
&\text{CHCl}_3, \text{TEA}
\end{align*}
\]

\[
\begin{align*}
&\text{2-((1-benzoyl-1H-benzo[d]imidazol-2-yl)thio)-N-}
\end{align*}
\]

\[
\begin{align*}
&\text{(substituted phenyl) acetamide (85a-t)}
\end{align*}
\]

Compounds 85a-t; R =
85a: R = H
85b: R = 2-F
85c: R = 4-F
85d: R = 2-Cl
85e: R = 3-Cl
85f: R = 2-Cl, 5-Cl
85g: R = 2-Br
85h: R = 3-Br
85i: R = 4-Br
85j: R = 3-NO_2
85k: R = 2-NO_2, 4-Cl
85l: R = 4-CH_3
85m: R = 2-CH_3, 6-CH_3
85n: R = 3-OCH_3
85o: R = 4-Cl
85p: R = 2-CH_3
85q: R = 2-OCH_3
85r: R = 4-OCH_3
85s: R = 3-CH_3
85t: R = 2-CH_3, 4-CH_3
Acknowledgements
Thanks to Head Prof. Sanju Nanda, Department of Pharmaceutical Sciences, M.D.U, Rohtak for providing library and internet facilities, etc.

Authors’ contributions
PKV—endeavored and accomplished the scheme; AS—completed review work and wrote the manuscript. Both authors read and approved the final manuscript.

Funding
No funding was obtained for this study.

Availability of data and materials
All data are provided in the manuscript or cited in the references.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors have no conflicts of interest.

Received: 28 January 2020 Accepted: 15 December 2020

Published online: 18 February 2021

References
1. Narasimhan B, Sharma D, Kumar P, Yogeewari P, Sriram D (2011) Synthesis, antimicrobial and antimycobacterial evaluation of 2-(substituted phenyl)-imidazol-1-yl]-pyridin-3-yl-methanones. J Enzyme Inhib Med Chem 26(5):720–727
2. Brahmbhatt H, Molnar M, Pavić V (2018) Pyrazole nucleus fused trisubstituted imidazole derivatives as antioxidant and antibacterial agents. Karbala Int J Mod Sci 4(2):200–206
3. Reyes-Arellano A, Gómez-García Q, Torres-Jaramillo J (2016) Synthesis of azolines and imidazoles and their use in drug design. Med Chem (Los Angeles) 6:561–570
4. Verma A, Joshi S, Singh D (2013) Imidazole: having versatile biological activities. New J Chem. https://doi.org/10.1155/2013/529412
5. Bhatnagar A, Sharma PK, Kumar N (2011) A review on “imidazoles”: Their chemistry and pharmacological potentials. Int J Pharm Tech Res 3(1):268–282
6. Gueiffier A, Mavel S, Lhassani M, Elhakmaoui A, Snoeck R, Andrei G, Chavignon O, Teulade JC, Witvrouw M, Balzarini J, De Clercq E (1998) Synthesis of imidazo [1, 2-a] pyridines as antiviral agents. J Med Chem 41(25):5108–5112
7. Kumar M, Kumar D, Raj V (2017) Studies on Imidazole and its derivatives with particular emphasis on their chemical/biological applications as bioactive molecules/intermediated to bioactive molecule. Curr Synth Syst Biol 5(01):1–10
8. Zala SP, Badmanaban R, Sen DJ, Patel CN (2012) Synthesis and biological evaluation of 2,4,5-triphenyl-1H-imidazole-1-yl derivatives. J Appl Pharm Sci 2(7):22
9. Atanasova-Stamova SY, Georgieva SF, Georgieva MB (2018) Reaction strategies for synthesis of imidazole derivatives: a review. Scr Sci Pharm 5(2):7–13
10. Gupta P, Gupta JK (2015) Synthesis of bioactive imidazoles: a review. Int J Modern Chem 7(2):60–80
11. Shrivastava TP, Patil UK, Garg S, Singh MA (2013) Diverse pharmacological significance of imidazole derivatives-a review. Res J Pharm Tech 6(1):5
12. Manocha P, Wakode DS, Kaur A, Anand K, Kumar H (2016) A review: Imidazole synthesis and its biological activities. Int J Pharm Sci Res 7(1):12–16
13. Srestha N, Banerjee J, Srivastava S (2014) A review on chemistry and biological significance of benzimidazole nucleus. IOSR J Pharm 4(12):28–41
14. Romero OR, Heredia VET, García-Barradas O, López MEB, Pavón ES (2014) Synthesis of imidazole derivatives and their biological activities. J Chem Biochem 2(2):45–83

Table 37 Antitubercular activity of synthesized compounds (85a-t) Yadav et al. [54]

Compounds	Diameter of zone of inhibition (mm) against H37Rv (NCFT/TB/537)	MIC (μg/mL)	MLC (μg/mL)
85a	> 20	12.5	25
85b	> 20	12.5	25
85c	> 20	12.5	25
85d	> 20	12.5	25
85e	08	17.8	28.12
85f	> 20	12.5	25
85 g	10	15	28
85 h	> 20	12.5	25
85 i	08	17.8	28.12
85 j	20	12.5	25
85 k	10	15	28
85 l	> 20	12.5	25
85 m	> 20	12.5	25
85 n	NA	NA	NA
85 o	> 20	12.5	25
85 p	10	15	28
85 q	> 20	12.5	25
85 r	> 20	12.5	25
85 s	NA	NA	NA
85 t	10	15	28
Streptomycin	> 20	12.5	25
15. Anand K, Wadode S (2017) Development of drugs based on benzimi-
dazole heterocycle: recent advancement and insights. J Chem Biol 5(2):350–362
16. Verma BK, Kapoor S, Kumar U, Pandey S, Arya P (2017) Synthesis of new imida-
zole derivatives as effective antimicrobial agents. Indian J Pharm Res 5(1):1–9
17. Sharma GK, Pathak D (2010) Microwave-assisted, solvent-free and parallel syn-
thesis of some novel substituted imidazoles of biological interest. Chem Pharm Bull 58(3):375–380
18. Bhade MW, Rajput PR (2016) Design and synthesis of some imidazole deri-
vatives containing 4-(3, 5-dichloro-2-hydroxyphenyl) imidazole moiety as antibacterial agents. Int J Appl Pure Sci Agric 2(11):80–84
19. Salman AS, Abdel-Azim A, Alkubbat MJ (2015) Design, synthesis of some new thio-substituted imidazole and their biological activity. Am J Org Chem 5:57–72
20. Behmaram B, Foroughifar N, Foroughifar N, Hallajian S (2017) Synthesis of some derivatives of 4-phenyl-1, 3-dihydro-2H-imidazole-2-thion using ionic liquid as catalyst and evaluation of their antimicrobial activity. Int J Chem 9(2):45–51
21. Katikeyreddy RK, Kakkerla R, Krishna MW, Durgasha G, Reddy VN, Satyanaray-
a (2019) Synthesis and biological evaluation of (E)-N’-benzylidene-
7-methyl-2-propyl-1H-benzo[d] imidazole-5-carboxylic acids as anti-
oxidant, anti-inflammatory and analgesic agents. Heterocycl Commun 25(1):27–38
22. Goyal A, Singh J, Pathak DP (2013) Synthesis and pharmacological evalu-
ation of some novel imidazoles for their potential anti-hypertens-
ive activity. J Pharm Tech Res Manag 1:69–79
23. Nandha B, Nargund LG, Nargund SL, Bhat K (2017) Design and synthesis of some novel fluorobenzimidazoles substituted with structural motifs present in physiologically active natural products for antitubercular activi-
ty. Iran J Pharm Res 16(3):929
24. El-Aal EA, Fathah HA, Osman N, Seliem I (2015) Synthesis of novel imi-
idazole and fused imidazole derivatives as cytotoxic and antimicrobial: molecular docking and biological evaluation. Int J Pharm Sci 7(10):36–45
25. Hsieh CY, Ko PW, Chang YJ, Kapoor S, Horng JC, Hsu MH (2019) Design and synthesis of benzimidazole-chalcone deriva-
tives as potential anti-cancer agents. Molecules 24(18):3259
26. Subrahmanyam RS, Ramesh P, Krishna BS, D. Swaroop S, Khan MA, Darla MM, Adeeka K, Bhashar BV, Devi W and Anna VR, (2017) Synthesis and biological evaluation of some new class of chromenoimidazole deriva-
tives as probable anti-cancer agents. Rasayan J Chem 10(4):1194–1212
27. Banothu J, Gali R, Velpula R, Bavantula R (2013) Bronsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2, 4, 5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab J Chem 6(2):218–224
28. Jain AK, Ravichandran V, Sisodiya M, Agrawal RK (2010) Synthesis and biological evaluation of some new class of chromenoimidazole derivatives and their antiurease and antioxidant activities. J Chil Chem Soc 5(2):350–362
29. Parab RH, Dixit BC, Desai DJ (2017) Synthesis, characterization and antimi-
dazole activity of imidazole derivatives. Bioorg Med Chem 25(17):2384–2393
30. Naureen S, Ijaz F, Munawar MA, Asif N, Chaudhry F, Ashraf M, Khan MA (2017) Synthesis of tetrasubstitutedimidazoles containing indole and their antitumor and antioxidant activities. J Enzyme Inhib Med Chem 32(4):680–688
31. Meenakshisundaram S, Manickam M, Pillayar T (2019) Exploration of imidazole and imidazopyridine dimers as anticancer agents: Design, synthesis, and structure–activity relationship study. Arch Pharm. https://doi.org/10.1002/ardp.201900011
32. Goyal A, Singh J, Pathak DP (2013) Synthesis and pharmacological evalu-
ation of some novel imidazoles for their potential anti-hypertensive activi-
ty. J Pharm Tech Res Manag 1:69–79
33. Nandha B, Nargund LG, Nargund SL, Bhat K (2017) Design and synthesis of some novel fluorobenzimidazoles substituted with structural motifs present in physiologically active natural products for antitubercular activity. Iran J Pharm Res 16(3):929
34. El-Aal EA, Fathah HA, Osman N, Seliem I (2015) Synthesis of novel imi-
idazole and fused imidazole derivatives as cytotoxic and antimicrobial: molecular docking and biological evaluation. Int J Pharm Sci 7(10):36–45
35. Hsieh CY, Ko PW, Chang YJ, Kapoor S, Horng JC, Hsu MH (2019) Design and synthesis of benzimidazole-chalcone deriva-
tives as potential anti-cancer agents. Molecules 24(18):3259
36. Subrahmanyam RS, Ramesh P, Krishna BS, D. Swaroop S, Khan MA, Darla MM, Adeeka K, Bhashar BV, Devi W and Anna VR, (2017) Synthesis and biological evaluation of some new class of chromenoimidazole derivatives as probable anti-cancer agents. Rasayan J Chem 10(4):1194–1212
37. Banothu J, Gali R, Velpula R, Bavantula R (2013) Bronsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2, 4, 5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab J Chem 6(2):218–224
38. Parab RH, Dixit BC, Desai DJ (2011) Synthesis, characterization and antimi-
dazole activity of imidazole derivatives. Bioorg Med Chem 23(12):3784–3791
39. Naureen S, Ijaz F, Munawar MA, Asif N, Chaudhry F, Ashraf M, Khan MA (2017) Synthesis of tetrasubstitutedimidazoles containing indole and their antitumor and antioxidant activities. J Enzyme Inhib Med Chem 32(4):680–688
40. Rajasekaran S, Rao G, Chattejee A (2012) Synthesis, anti-inflammatory and anti-oxidant activity of some substituted benzimidazole derivatives. Int J Drug Res Rev 4:303–309
41. Subramaniam R, Rao G, Pai S, Vinay GA, Sodhi GS (2010) Synthesis and in vitro study of biological activity of 2, 3-substituted quinazolin-4(3H)-iones. J Chem Pharm Res 2(2):462–468
42. Subhashini NJP, Kumar EP, Gurrapu N, Yerraguntla V (2019) Design and synthesis of imidazole–1, 2, 3-triazole hybrids by microwave-
assisted method: evaluation as an antioxidant and antimicrobial agents and molecular docking studies. J Mol Struct 1180:618–628
43. Navanrete-Vazquez G, Hidalgo-Figueroa S, Torres-Piedra M, Vergara-Galicia J, Rivera-Leyva JC, Estrada-Soto S, Lodén-Rivera I, Aguilar-Guardarrama B, Rios-Gómez Y, Villalobos-Molina R, Ibarra-Barajas, (2010) Synthesis, vasorelaxant activity and anti-oxidative effect of benzo [d] imidazole derivatives. Bioorg Med Chem 18(11):3985–3991
44. Haddadz F, Hassanabad ZF, Barmash M, Poorogohat H, Hassanabad MF (2005) Synthesis and anti-tumor activity of new 1, 4-dihydropyri-
dines. Indian J Chem 44B:2343–2347
45. Amini MO, Navidpour L, Shaheef A (2008) Synthesis and antitubercular activity of new N, N-diaryl-4(4, 5-dichloroimidazo[2,1-\beta \gamma]-1, 4-dihydro-2-
dimethyl-3, 5-pyridine dicarbamoxides. Daru J Pharm Sci 16(1):9–12
46. Pandey AK, Sharma B, Purohit P, Dwived R, Chaturvedi V, Chauhan P (2016) Synthesis of pyrido [1,2-a] imidazo-chalcone via 3-component Groebke-Blackburn-Bienaymé reaction and their bioevaluation as potent anticancer agents. Bioorg Med Chem 24(6):2894–2898
47. Syed MA, Ramappa AK, Alegaon S (2013) Synthesis and evaluation of antitubercular and antifungal activity of some novel 6-(4-substituted ary1)-2-(3, 5-dimethyl-1H-pyrazol-1-yl)imidazo[2,1-b][1,3,4]-thiadiazole derivatives. Asian J Pharm Clin Res 6(3):47–51
53. Patel HM, Noolvi MN, Sethi NS, Gadad AK, Cameotra SS (2017) Synthesis and antitubercular evaluation of imidazo[2,1-b][1,3,4]-thiadiazole derivatives. Arab J Chem 10:S996–S1002
54. Yadav S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Mathur A, Narasimhan B (2018) Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ythio)-N-substituted acetamides. Chem Cent J 12(1):66

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.