Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season

M Galvagno1, G Wohlfahrt2, E Cremonese1, M Rossini3, R Colombo3, G Filippa1, T Julitta3, G Manca4, C Siniscalco5, U Morra di Cella1 and M Migliavacca6

1 Environmental Protection Agency of Aosta Valley, ARPA VdA, Climate Change Unit, Aosta, Italy
2 Institute of Ecology, University of Innsbruck, Innsbruck, Austria
3 Remote Sensing of Environmental Dynamics Laboratory, University of Milano-Bicocca, Milano, Italy
4 European Commission—Joint Research Centre, Institute for Environment and Sustainability, Air and Climate Unit, Ispra (VA), Italy
5 Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
6 European Commission—Joint Research Centre, Institute for Environment and Sustainability, Climate Risk Management Unit, Ispra (VA), Italy

E-mail: m.galvagno@arpa.vda.it

Received 23 December 2012
Accepted for publication 25 March 2013
Published 18 April 2013
Online at stacks.iop.org/ERL/8/025008

Abstract
Changes in snow cover depth and duration predicted by climate change scenarios are expected to strongly affect high-altitude ecosystem processes. This study investigates the effect of an exceptionally short snow season on the phenology and carbon dioxide source/sink strength of a subalpine grassland. An earlier snowmelt of more than one month caused a considerable advancement (40 days) of the beginning of the carbon uptake period (CUP) and, together with a delayed establishment of the snow season in autumn, contributed to a two-month longer CUP. The combined effect of the shorter snow season and the extended CUP led to an increase of about 100% in annual carbon net uptake. Nevertheless, the unusual environmental conditions imposed by the early snowmelt led to changes in canopy structure and functioning, with a reduction of the carbon sequestration rate during the snow-free period.

Keywords: carbon uptake period, snowmelt, eddy covariance, net ecosystem exchange, extreme events

Online supplementary data available from stacks.iop.org/ERL/8/025008/mmedia

1. Introduction
Understanding the processes affecting the carbon dioxide (CO2) exchange between the ecosystems and the atmosphere is crucial to evaluate the future impacts of climate change on the biosphere and the consequent feedbacks on climate system (Cao and Woodward 1998, Denman et al 2007, Heimann and Reichstein 2008).

Mountain ecosystems in the European Alps are expected to be particularly impacted by future rising temperatures, changes in precipitation patterns, duration of the snow-pack
located a few kilometres from the village of Torgnon in the northwestern Italian Alps, from January 2009 to December 2011. The site is an abandoned pasture located a few kilometres from the village of Torgnon in the Aosta Valley region at an elevation of 2160 m asl (45°50'40"N, 7°34'41"E).

Dominant vegetation consists of Nardus stricta L., Festuca nigrescens All., Arnica montana L., Carex sempervirens Vill., Geum montanum L., Anthoxanthum alpinum L., Potentilla aurea L., Trifolium alpinum L. The terrain slopes gently (4°) and the soil is classified as Cambisol (FAO/ISRIC/ISS). The site is characterized by an intra-alpine semi-continental climate, with mean annual temperature of 3.1 °C and mean annual precipitation of about 880 mm. On average, from the end of October to late May, the site is covered by a thick snow cover (90–120 cm) which limits the growing period to an average of five months.

2.2. Eddy covariance data

The eddy covariance technique was used to measure the fluxes of CO₂ and H₂O between the ecosystem and the atmosphere. Measurement of wind speed in the three components (u, v, w) was performed by a CSAT3 three-dimensional sonic anemometer (Campbell Scientific, Inc.), while CO₂ and H₂O vapour air densities were measured by a LI-7500 open-path infrared gas analyzer (LI-COR, Inc.). Instruments were placed 2.5 m above the ground and measurements were performed at a frequency of 10 Hz.

Eddy fluxes were obtained by computing the mean covariance between vertical wind velocity and CO₂ fluxes observed during a year (2011) marked by one of the shortest snow seasons on record (83 years) compared to those observed during average years (2009, 2010).

The following main questions were addressed: did the extremely short snow season increase the length of the carbon uptake period in the investigated ecosystem? If so, what is the effect on the ecosystem carbon uptake?

To answer these questions, (i) phenological indicators were extracted from the CO₂ flux time-series, (ii) the relationships between timing and length of the phenophases and the carbon balance of the ecosystem were investigated, and (iii) a modelling approach was used to disentangle the influence of functional changes from the direct effect of weather on the ecosystem carbon uptake.

2. Materials and methods

2.1. Site description

The study was carried out in a subalpine unmanaged grassland, in the northwestern Italian Alps, from January 2009 to December 2011. The site is an abandoned pasture located a few kilometres from the village of Torgnon in the• grassland, in the northwestern Italian Alps, from January 2009 to December 2011. The site is an abandoned pasture located a few kilometres from the village of Torgnon in the Aosta Valley region at an elevation of 2160 m asl (45°50'40"N, 7°34'41"E).

Dominant vegetation consists of Nardus stricta L., Festuca nigrescens All., Arnica montana L., Carex sempervirens Vill., Geum montanum L., Anthoxanthum alpinum L., Potentilla aurea L., Trifolium alpinum L. The terrain slopes gently (4°) and the soil is classified as Cambisol (FAO/ISRIC/ISS). The site is characterized by an intra-alpine semi-continental climate, with mean annual temperature of 3.1 °C and mean annual precipitation of about 880 mm. On average, from the end of October to late May, the site is covered by a thick snow cover (90–120 cm) which limits the growing period to an average of five months.

2.2. Eddy covariance data

The eddy covariance technique was used to measure the fluxes of CO₂ and H₂O between the ecosystem and the atmosphere. Measurement of wind speed in the three components (u, v, w) was performed by a CSAT3 three-dimensional sonic anemometer (Campbell Scientific, Inc.), while CO₂ and H₂O vapour air densities were measured by a LI-7500 open-path infrared gas analyzer (LI-COR, Inc.). Instruments were placed 2.5 m above the ground and measurements were performed at a frequency of 10 Hz.

Eddy fluxes were obtained by computing the mean covariance between vertical wind velocity and CO₂ fluxes observed during a year (2011) marked by one of the shortest snow seasons on record (83 years) compared to those observed during average years (2009, 2010).

The following main questions were addressed: did the extremely short snow season increase the length of the carbon uptake period in the investigated ecosystem? If so, what is the effect on the ecosystem carbon uptake?

To answer these questions, (i) phenological indicators were extracted from the CO₂ flux time-series, (ii) the relationships between timing and length of the phenophases and the carbon balance of the ecosystem were investigated, and (iii) a modelling approach was used to disentangle the influence of functional changes from the direct effect of weather on the ecosystem carbon uptake.

2. Materials and methods

2.1. Site description

The study was carried out in a subalpine unmanaged grassland, in the northwestern Italian Alps, from January 2009 to December 2011. The site is an abandoned pasture located a few kilometres from the village of Torgnon in the Aosta Valley region at an elevation of 2160 m asl (45°50'40"N, 7°34'41"E).

Dominant vegetation consists of Nardus stricta L., Festuca nigrescens All., Arnica montana L., Carex sempervirens Vill., Geum montanum L., Anthoxanthum alpinum L., Potentilla aurea L., Trifolium alpinum L. The terrain slopes gently (4°) and the soil is classified as Cambisol (FAO/ISRIC/ISS). The site is characterized by an intra-alpine semi-continental climate, with mean annual temperature of 3.1 °C and mean annual precipitation of about 880 mm. On average, from the end of October to late May, the site is covered by a thick snow cover (90–120 cm) which limits the growing period to an average of five months.

2.2. Eddy covariance data

The eddy covariance technique was used to measure the fluxes of CO₂ and H₂O between the ecosystem and the atmosphere. Measurement of wind speed in the three components (u, v, w) was performed by a CSAT3 three-dimensional sonic anemometer (Campbell Scientific, Inc.), while CO₂ and H₂O vapour air densities were measured by a LI-7500 open-path infrared gas analyzer (LI-COR, Inc.). Instruments were placed 2.5 m above the ground and measurements were performed at a frequency of 10 Hz.

Eddy fluxes were obtained by computing the mean covariance between vertical wind velocity and CO₂ fluxes observed during a year (2011) marked by one of the shortest snow seasons on record (83 years) compared to those observed during average years (2009, 2010).

The following main questions were addressed: did the extremely short snow season increase the length of the carbon uptake period in the investigated ecosystem? If so, what is the effect on the ecosystem carbon uptake?

To answer these questions, (i) phenological indicators were extracted from the CO₂ flux time-series, (ii) the relationships between timing and length of the phenophases and the carbon balance of the ecosystem were investigated, and (iii) a modelling approach was used to disentangle the influence of functional changes from the direct effect of weather on the ecosystem carbon uptake.

2. Materials and methods

2.1. Site description

The study was carried out in a subalpine unmanaged grassland, in the northwestern Italian Alps, from January 2009 to December 2011. The site is an abandoned pasture located a few kilometres from the village of Torgnon in the Aosta Valley region at an elevation of 2160 m asl (45°50'40"N, 7°34'41"E).

Dominant vegetation consists of Nardus stricta L., Festuca nigrescens All., Arnica montana L., Carex sempervirens Vill., Geum montanum L., Anthoxanthum alpinum L., Potentilla aurea L., Trifolium alpinum L. The terrain slopes gently (4°) and the soil is classified as Cambisol (FAO/ISRIC/ISS). The site is characterized by an intra-alpine semi-continental climate, with mean annual temperature of 3.1 °C and mean annual precipitation of about 880 mm. On average, from the end of October to late May, the site is covered by a thick snow cover (90–120 cm) which limits the growing period to an average of five months.

2.2. Eddy covariance data

The eddy covariance technique was used to measure the fluxes of CO₂ and H₂O between the ecosystem and the atmosphere. Measurement of wind speed in the three components (u, v, w) was performed by a CSAT3 three-dimensional sonic anemometer (Campbell Scientific, Inc.), while CO₂ and H₂O vapour air densities were measured by a LI-7500 open-path infrared gas analyzer (LI-COR, Inc.). Instruments were placed 2.5 m above the ground and measurements were performed at a frequency of 10 Hz.

Eddy fluxes were obtained by computing the mean covariance between vertical wind velocity and CO₂ fluxes observed during a year (2011) marked by one of the shortest snow seasons on record (83 years) compared to those observed during average years (2009, 2010).

The following main questions were addressed: did the extremely short snow season increase the length of the carbon uptake period in the investigated ecosystem? If so, what is the effect on the ecosystem carbon uptake?

To answer these questions, (i) phenological indicators were extracted from the CO₂ flux time-series, (ii) the relationships between timing and length of the phenophases and the carbon balance of the ecosystem were investigated, and (iii) a modelling approach was used to disentangle the influence of functional changes from the direct effect of weather on the ecosystem carbon uptake.
and the uncertainty associated with flux calculations are described in the supplementary data (available at stacks.iop.org/ERL/8/025008/mmedia). The gap-filling method (www.bgc-jena.mpg.de/~MDIwork/eddyproc/) described in Reichstein et al (2005) was used to produce daily, seasonal and annual sums of CO₂ exchange.

2.3. Meteorological, radiometric and ancillary measurements

Air (Tair) and soil (Tsoil) temperature were measured respectively by a HMP45 (Vaisala Inc.) and with temperature probes type therm107 (Campbell Scientific, Inc.) at different depths (2, 10, 25, and 35 cm). Soil water content (SWC) was assessed with soil water reflectometers, model CS616 (Campbell Scientific, Inc.), and soil heat flux (G) was measured by HFP01 plates (Hukseflux). Net radiation was measured with a CNR4 (Kipp and Zonen Corp.) net radiometer. Photosynthetically active radiation (PAR) was assessed by a LI-190 (LI-COR, Inc.) sensor. Snow height (HS) was measured with a sonic snow depth sensor (SR50A, Campbell Scientific, Inc.), which was used to determine snowmelt and snow season onset dates for years 2009–2011. Long-term snowmelt, snow season onset and Tair averages were computed on the basis of data collected since 1928 at a site (Cignana, 45°52′31″N, 7°35′19″E) located nearby the Torgnon site, and at the same altitude.

An automatic spectrometric system (HyperSpectral Irradiometer, Meroni et al 2011) was installed to collect high temporal resolution spectral signatures of canopy-reflected radiation. The instrument hosts a spectrometer (HR4000, OceanOptics) operating in the visible and near-infrared region of the solar spectrum (range 400–1000 nm) with a spectral resolution of 1 nm, which allows the computation of different vegetation indices. In this study the meris terrestrial chlorophyll index (MTCI) (Dash and Curran 2004) was used to infer the variation of chlorophyll content (Chl) during the growing season. MTCI values were converted to Chl concentrations using a linear regression model calibrated using Chl concentrations extracted from leaf samples collected every ten days at 12 plots during 2010 (Rossini et al 2012). The relationship ($R^2 = 0.83$) between MTCI and total Chl, used to estimate chlorophyll content for the three years, was:

$$\text{Chl}(\mu g \text{ g}^{-1}) = 1.16 \text{MTCI} - 1.17.$$

Finally, leaf area index (LAI) was determined as described in Migliavacca et al (2011).

2.4. Extraction of grassland phenophases

Information about the phenology of net CO₂ uptake was extracted from the seasonal time-series of NEE (Richardson et al 2010). We focused on different phases of the vegetative period: the beginning of the carbon uptake period (BGS$_\text{cup}$), the peak season, the end of the carbon uptake period (EGS$_\text{cup}$) and the derived length of carbon uptake period (CUP).

BGS$_\text{cup}$ and EGS$_\text{cup}$ represent the dates in which the ecosystem switched from a source to a sink in spring and vice versa in autumn. Three different approaches were used to identify these dates: in the first approach we identified BGS$_\text{cup}$ and EGS$_\text{cup}$ as the first zero-crossing date after which NEE turned from daily positive values to negative ones in spring and from negative to positive values in autumn; in the second approach, zero-crossing dates were defined as above but using a moving average with a 5-day window (Richardson et al 2009); in the last approach a regression line was fitted between NEE and DOYs (day of the year) using a subset of spring and autumn data (15 days for each period). The BGS$_\text{cup}$ or EGS$_\text{cup}$ date was identified by the DOY at which the fitted line passed through 0 (Baldocchi et al 2005). The average of the BGS$_\text{cup}$ and EGS$_\text{cup}$ extracted applying the three methods was used in the analysis.

2.5. Analysis of light–response curve of photosynthesis

In order to evaluate the impact of the anomalous 2011 snowmelt on NEE, we used a modelling approach to disentangle the effect of biotic response to early spring environmental conditions from the direct effect of the growing season weather (e.g. Richardson et al 2007, Marcolla et al 2011, Wu et al 2012). The light–response curve of photosynthesis was analysed to describe the relationship between NEE and PAR in the different years. The rectangular hyperbolic light–response function (Falge et al 2001) was used:

$$\text{NEE} = \frac{A_{\text{max}}\alpha \text{PAR}}{\alpha \text{PAR} + A_{\text{max}}} + R_{\text{eco}}$$

where PAR ($\mu \text{mol}\text{photons m}^{-2} \text{s}^{-1}$) is the incident photosynthetically active radiation, A_{max} ($\mu \text{mol CO}_2 \text{ m}^{-2} \text{s}^{-1}$) is the light-saturated rate of CO₂ uptake, α ($\mu \text{mol CO}_2/\mu \text{mol photons}$) is the apparent quantum yield, and R_{eco} ($\mu \text{mol CO}_2 \text{ m}^{-2} \text{s}^{-1}$) is the ecosystem respiration. $A_{\text{max}}, \alpha,$ and R_{eco} were estimated by fitting equation (2.3) to non gap-filled, half-hourly NEE with a 15-days moving window shifted each 5 days. The model parameters estimated for each year were compared and used to model NEE. In detail, by running the model with one year’s PAR and the model parameters of the other years, and vice versa, using fixed model parameters and varying PAR datasets, we evaluated the biotic response (embedded in the values of the parameters) against direct effects of weather (i.e. PAR). In particular, NEE simulated during a summer period representing for all the three years a portion of the BGS$_\text{cup}$–peak phase (DOY 176–190) was analysed.

3. Results

3.1. Long-term climatic conditions and weather during the study period

Figure 1 shows the mean annual course of HS and Tair averaged over the period 1928–2010, and the annual courses of HS, Tair, Tsoil, PAR, and SWC observed during the study period 2009–2011.

The snow season lasted on average 7 months during the 1928–2010 period and less than 5 months in 2011 (figure 1(a)). In detail, in spring 2011 snowmelt (14 April,
Figure 1. Annual course of the major meteorological variables. The following colour codes are used: black line for long-term data (average of the period 1928–2010) and grey area for the variability range; green line, light-green line and red line for the study years 2009, 2010 and 2011 respectively. (a) Snow height (cm) long-term data are presented as the daily median and the variability range is computed as 25th and 75th percentiles; (b) daily air temperature (°C) variability range is computed as standard deviation and data for the 3 study years are presented as 5 day running mean; (c) daily mean soil temperature (°C); (d) midday PAR (μmol m⁻² s⁻¹) presented as 5 day running mean; (e) daily SWC (%).

DOY 104) occurred 33 days earlier than the long-term mean (17 May, DOY 137) and was the earliest snowmelt since 1945. Instead, the 2009 and 2010 snowmelt dates (26–24 May, DOY 146–144, in 2009 and 2010 respectively) fell well within the variability range of the long-term period, and therefore are considered as average years. In autumn 2011 the snow season onset (establishment of continuous winter snow cover) occurred 29 days later compared to the long-term average and 32–35 days later compared to 2009 and 2010, leading to the longest snow-free period on record (83 years).

Specifically, the snow-free period lasted on average 170 days during the 1928–2010 period, 160 days in 2009, 159 days in 2010 and 234 days in 2011. Maximum HS differed across study years: maximum height measured in 2009 was 1.74 m, while in both 2010 and 2011 was similar ranging around 0.90 m. Winter 2009 was particularly snowy compared to the long-term average (1.07 m for the period 1928–2010).

As expected for an alpine ecosystem, Tair (figure 1(b)) showed large fluctuations from winter to summer and varied from a minimum of −10 ± 4.0 °C (1928–2010 average ± sd) in January to a maximum of 17 ± 3.9 °C in July (1928–2010 average ± sd). Regarding 2011, the main discrepancies compared to previous years were observed in the period March–April, characterized by a mean temperature 2.2 °C warmer than the 1928–2010 average and 2.7–3.0 °C warmer than the mean temperature of previous study years—a difference that was very likely responsible for the early snowmelt.

Soil temperature (figure 1(c)) under snow cover showed constant values above 0 °C. Immediately after snowmelt Tsoil exhibited a characteristic rise. In spring 2009 and 2010 this rise was fast and in a few days Tsoil reached temperature values similar to those of Tair. In 2011, the increase in Tsoil after snowmelt was slower.

The seasonal pattern of midday (11:00–13:00) mean values of incident PAR (figure 1(d)) was similar among the different years.

The snow-free period SWC (figure 1(e)) showed mean values of 26.3 and 25.1% in 2011 and 2010 respectively, and a lower mean of 16.4% in 2009. SWC in all years exhibited a typical peak around the day of snowmelt, when the highest seasonal value was reached.

3.2. Phenology and CO₂ source/sink strength

Figure 2 shows the time course of cumulative NEE in the three years analysed in this study. The seasonal variation of CO₂ fluxes (see also figure 1 in supplementary data available at stacks.iop.org/ERL/8/025008/mmedia) exhibited different dynamics in 2009 and 2010 as compared to 2011: NEE in 2009 and 2010 sharply increased in spring, just after snowmelt, Tsoil exhibited a characteristic rise. In spring 2009 and 2010 this rise was fast and in a few days Tsoil reached temperature values similar to those of Tair. In 2011, the increase in Tsoil after snowmelt was slower.

The seasonal pattern of midday (11:00–13:00) mean values of incident PAR (figure 1(d)) was similar among the different years.

The snow-free period SWC (figure 1(e)) showed mean values of 26.3 and 25.1% in 2011 and 2010 respectively, and a lower mean of 16.4% in 2009. SWC in all years exhibited a typical peak around the day of snowmelt, when the highest seasonal value was reached.
Table 1: NEE sums (gC m$^{-2}$ ± uncertainty range, see supplementary data available at stacks.iop.org/ERL/8/025008/mmedia) and average rates (i.e. NEE sum in each phenophase divided by number of days) partitioned by phenophase and associated with the corresponding averages of the meteorological variables (Tair °C, SWC%, PAR µmol m$^{-2}$ s$^{-1}$, Tsoil °C).

	Snowmelt-	BGS$_{cup}$	BGS$_{cup}$–peak	Peak–EGS$_{cup}$	EGS$_{cup}$–snow onset	Snow onset–31 Dec
Days	Days	Days	Days	Days	Days	Days
2009	146	13	41	83	26	60
2010	144	9	43	85	26	63
2011	104	16	67	116	39	28

	NEE Sum	Rate	Sum Rate	Sum Rate	Sum Rate	Sum Rate
Tair Mean	2009	-1.73	7.60	10.25	9.99	2.81
	2010	-2.96	7.13	10.42	9.00	2.13
	2011	-1.13	1.60	7.65	8.92	1.75

	SWC	Mean	Mean	Mean	Mean	Mean
2009	27.8	18.0	14.0	15.7	—	—
2010	34.5	30.5	22.0	22.8	—	—
2011	30.4	28.7	23.9	27.9	—	—

	PAR	Mean	Mean	Mean	Mean	Mean
2009	—	1428.8	1547.0	1361.7	897.1	608.5
2010	—	1325.9	1393.5	1307.0	921.7	550.7
2011	—	1237.0	1370	1251.5	697.7	488.3

	Tsoil	Mean	Mean	Mean	Mean	Mean
2009	0.69	8.15	12.0	11.24	3.9	0.25
2010	-0.08	8.1	11.9	11.16	4.3	0.59
2011	0.44	4.95	10.24	10.9	0.76	-0.12

2009, 2010 and 2011 respectively). NEE peaked 40 days after BGS$_{cup}$ in 2009 and 2010 and 65 days in 2011. The ecosystem turned to a net source on 7 October (DOY 281), 4 October (DOY 278) and 26 October (DOY 300) in 2009, 2010 and 2011 respectively. In 2011 the CUP lasted 55 and 59 days longer than the two previous years.

Annual cumulative NEE in 2011 (-118 ± 31 gC m$^{-2}$ yr$^{-1}$) doubled 2009 (-62 ± 52 gC m$^{-2}$ yr$^{-1}$) and 2010 (-55 ± 60 gC m$^{-2}$ yr$^{-1}$) values. In contrast, despite the two-month longer CUP observed in 2011, seasonal cumulative NEE between BGS$_{cup}$ and EGS$_{cup}$ (i.e. the CUP cumulative) were similar among years: -230 ± 6 gC m$^{-2}$ in 2009, -218 ± 8 gC m$^{-2}$ in 2010 and -215 ± 4 gC m$^{-2}$ in 2011. Moreover, in 2011 NEE did not reach the peak daily values of previous years (-5.0 gC m$^{-2}$ d$^{-1}$, -4.7 gC m$^{-2}$ d$^{-1}$, -3.4 gC m$^{-2}$ d$^{-1}$ in 2009, 2010 and 2011 respectively).

Table 1 shows the differential contributions of the considered phenophases to the annual cumulative NEE in terms of sums and average rates (i.e. NEE sum in each phenophase divided by the number of days). The averages of the environmental variables measured in each period are also reported. The peculiarities of 2011 were: the overall shorter snow season, lower respiration during the January-snowmelt and snowmelt-BGS$_{cup}$ periods, a longer time for net CO$_2$ uptake (i.e. longer CUP), but the latter was associated with reduced rates during the developing phases (i.e. BGS$_{cup}$ to peak).

The lower cumulative NEE from January to snowmelt in 2011 was mainly a result of the shorter duration of that period and of the slightly lower (16%) respiration rate (figure 2, table 1) compared to the same period in 2009 and 2010. Lower rates of CO$_2$ losses in 2011, together with lower mean Tair, Tsoil and midday PAR, were also observed in the period between snowmelt and BGS$_{cup}$ (in figure 2 the maximum cumulative NEE after snowmelt reached lower positive values in 2011). Less CO$_2$ was taken up in 2011 compared to 2009/2010 during the longer period between the BGS$_{cup}$ in 2011). Less CO$_2$ was taken up in 2011 compared to 2009/2010 during the longer period between the BGS$_{cup}$ and 2010, while it was lower in 2011 compared to 2009/2010. LAI showed maximum values of 2 gC m$^{-2}$.
and 2.8 m² m⁻² in 2009 and 2010 respectively and only 2.18 m² m⁻² in 2011. Not only leaf area but also maximum chlorophyll content attained in 2011 was lower, with a peak value of 2.2 and 2.1 µg g⁻¹ in 2009 and 2010 and of 1.7 µg g⁻¹ in 2011.

During the long period separating the peak value and the EGS_max in 2011, the ecosystem CO₂ uptake was higher than in previous years, even if the average rate remained slightly lower (table 1, figure 3(b)).

Finally, respiratory rates after EGS_max were similar among years (table 1) as highlighted in figure 2 by the similar slopes of NEE. The lower cumulative CO₂ loss in 2011 during this phase was therefore mainly related to the shorter period.

The results of the modelling analysis (table 2) clarified whether in 2011 the ecosystem was unable to reach NEE values and rates similar to previous years as a consequence of changes in canopy structural and physiological properties (e.g. lower Chl and LAI) due to the early development or as a direct effect of unfavourable summer weather conditions. The analysis showed that: (i) model parameters (i.e. α, A_max and R_eco) obtained from light–response curve in 2011 were significantly lower compared to 2009 and 2010 (p < 0.05 Wilcoxon–Mann–Whitney test); (ii) using fixed PAR and varying physiology parameters (i.e. using PAR data of one year for all three physiology parameter sets), predicted NEE sums using the 2011 parameters were always lower (i.e. higher uptake) than those obtained using 2009 or 2010 (from −60.73 to −66.63 g C m⁻²) or 2010 (from −57.93 to −62.38 g C m⁻²) parameters; (iii) using fixed physiology parameters with varying PAR dataset, NEE sums simulated using the 2011 PAR dataset were always lower (i.e. higher uptake) than those obtained using 2009 or 2010 PAR dataset. This underlined that the NEE reduction observed in 2011 can be attributed to changes in grassland structural and physiological properties rather than to direct limiting weather conditions in this period.

4. Discussion

In seasonally snow-covered ecosystems, earlier snowmelt and later establishment of snow cover potentially reduce the continuous off-season CO₂ losses and may result in longer periods of CO₂ uptake and growth. In this study we took advantage of a natural experiment (i.e. an exceptionally short snow season) to test the hypothesis that shorter snow-covered periods may enhance the CUP and the annual net CO₂ uptake of subalpine grasslands. Results confirmed this assumption. Nevertheless, two different effects were observed: less CO₂

Table 2. Summary of light–response curve analysis results.

Year	α	A_max	R_eco
2009	0.027 ± 0.01	24.28 ± 2.1	2.46 ± 0.13
2010	0.022 ± 0.01	20.56 ± 0.9	1.70 ± 0.12
2011	0.017 ± 0.01	16.30 ± 1.53	1.62 ± 0.28

Year	PAR 2009	PAR 2010	PAR 2011
2009	−60.73	−61.05	−66.63
2010	−57.93	−58.54	−62.38
2011	−41.2	−41.71	−44.29
losses took place during the shorter snow season and lower CO$_2$ uptake rates occurred during the longer CUP.

Did the extremely short snow season increase the CUP in the investigated ecosystem?

We observed that a variation of more than one month (43 days) in the date of snowmelt caused a similar shift (35–40 days) in the beginning of the CUP. However, the earlier snowmelt was followed by a slower increase of the biological activity compared to years with average snowmelt. This observation was supported by the larger time lag between the date of snowmelt and the beginning of the subsequent phenological phases in 2011, i.e.: the ecosystem processes were slower in reaching the different thresholds considered.

The date of snowmelt imposes a clear physical limit to canopy spring development of high-altitude grasslands. When the snowpack-imposed decoupling between vegetation, ambient light and temperature finishes, biological processes quickly take advantage of favourable weather conditions optimizing the short snow-free period available for growth (Körner 2003, Monson et al. 2005). This dynamic pattern is typical of warm-season vegetation types, for which photosynthesis in spring recovers generally faster than the senescence at the end of the season (Gu et al. 2009). In alpine ecosystems, extreme climate events, such as particularly warm spring spells and the subsequent early snowmelt, could change this typical pattern. The result is a lengthening of the CUP but also an exposure of the vegetation to early spring unfavourable weather conditions (e.g. lower PAR and temperature colder than usual) and an increased risk of cold damage. When snowmelt occurred around the end of May in 2009 and 2010, weather conditions (Tair and Tsoil, photoperiod, PAR) at the study site were already at optimal level and, as a consequence, the up-regulation of photosynthetic activity was fast. On the contrary, the early snowmelt recorded at the beginning of April 2011 led to the advancement of each phenophase, but caused the ecosystem to face less favourable weather conditions, typical of an earlier time of the year, characterized by shorter day-length, lower PAR and colder temperatures.

While the effect of recent warming trends on the onset of plant activity in spring has been outlined in several works (Richardson et al. 2013), uncertainties exist on how climate change may affect autumn phenology and CO$_2$ fluxes (e.g. Wu et al. 2013, Piao et al. 2008). Moreover, the end of CUP variability and its environmental drivers are poorly investigated within grassland sites. In 2011 we observed a late snow onset in autumn, due to a prolonged period of warm temperatures and absence of precipitation. As a consequence, the ecosystem turned to a source about 20 days later than in previous years, further contributing to the increase of the CUP duration.

What is the effect on the ecosystem CO$_2$ uptake?

The two-month longer CUP observed in 2011 (figure 5(a)) did not lead to higher, but rather similar seasonal cumulative carbon uptake compared to average years, as a result of the compensation between a longer CUP and a lower NEE rate (figure 5(c), table 1). In 2011 daily NEE rate during the CUP was generally lower compared to previous years, especially during the spring development, and reached a peak value lower than other years. We observed that environmental conditions during the summer period were fairly similar among years and, thus, unlikely to account for the observed differences in physiology parameters and photosynthetic rates. The lower summer CO$_2$ uptake appears to be the result of the biotic response of the ecosystem to an exceptional climate event: the early spring weather that the ecosystem experienced as a consequence of early snowmelt, changed the typical trajectory of canopy development and physiological responses of the ecosystem to environmental conditions. Compared to previous years, plants developed in unusual spring conditions may have adjusted their physiological...
responses to lower PAR, shorter day-length and lower temperature experienced during the early development and were unable to capitalize on later growing season weather conditions (Monson et al. 2005). The snowmelt observed in 2011 is the third earliest snowmelt in 83 years and hence represents an unusual event for plants that are very likely acclimated to a narrower range of weather conditions. This observation was also supported by LAI and Chl data, since the ecosystem modifies its photosynthetic capacity through variations in LAI and chlorophyll content in relation to changes in limiting factors (Dawson et al. 2003). To our knowledge there are few studies highlighting similar findings. Indeed, although shifts in structural or reproductive phenology as a result of variations in snow cover depth and duration have clearly been described in several experimental studies of snow manipulation (e.g. Wipf and Rixen 2010), results concerning the effects on growth and productivity are less clear and differ among species, growth forms and habitats (snowbeds, fellfields, meadows...). Moreover, most studies have focused on the effect of a delayed rather than an earlier snowmelt (Wipf and Rixen 2010). For example Wipf and Rixen (2010) found that a delayed snowmelt decreased productivity (peak season biomass). On the contrary there is evidence (Walker et al. 1995, Wipf et al. 2009) that the growth of some alpine species was reduced in years with advanced snowmelt as a consequence of unfavourable conditions that plants experienced in early spring. Moreover, if reproductive and vegetative phases are partially influenced by different environmental factors, an early snowmelt can determine in some species an early flowering causing differences in reproductive and vegetative resource allocation compared to standard snowmelt date (Inouye 2008, Körner and Basler 2010), resulting in a decrease in vegetative development.

Changes in snow cover amount and duration cause also a change in nutrient supply in spring (Körner 2003). Our results suggest that the timing of soluble N availability may be more likely of concern than the total amount of N in melted water (Smith et al. 2012): 2010 and 2011 had indeed similar HS and SWC at the time of snowmelt, but different NEE rates and canopy properties (LAI and Chl) during the CUP. Since there is evidence that plants may take up N maximally after snowmelt (Jaeger et al. 1999, Bardgett et al. 2007), nutrient uptake in 2011 may have been limited by the low Tsoil following early snowmelt (Karlsson and Nordell 1996). Moreover, Brooks and Williams (1999) suggested that the availability of soil N is strongly regulated by the timing and duration of the snow cover, with higher N immobilization under long-lasting snowpacks and consequent higher N conservation in the soil pool. Following this interpretation, less N may have been immobilized in soil during shorter winter 2011 and subsequently available in early spring 2011, thus contributing to suboptimal conditions for plant development.

We hypothesized that shorter snow seasons potentially enhance the annual net CO2 uptake of seasonally snow-covered ecosystems. Since the two-month longer CUP alone cannot explain the twice as high annual uptake observed in 2011 (figure 5(b)), explanations were found in the short 2011 off-season period (i.e. snow-covered and non-snow-covered periods with continuous respiration, i.e. NEE > 0) during which the ecosystem lost less CO2 than in previous years. The off-season period lasted 245 and 242 days in 2009 and 2010 and was 58–52 days shorter in 2011 (figure 5(a)). The shortened snow season translated in a 40% reduction of the off-season cumulative CO2 loss compared to average years. Conversely, differences in CUP cumulative NEE amounted to less than 5%, since, despite the longer CUP, the average 2011 NEE rate was lower (figure 5(c)) compared to 2009/2010. Taken together, these observations confirm that the higher annual net CO2 uptake in 2011 was mainly caused by a shorter period of off-season respiration rather than by an enhanced CO2 uptake during a longer CUP.

5. Conclusion

During a year characterized by an extremely short snow season, a 100% increase in the annual net CO2 uptake was observed at a subalpine grassland. The larger carbon sink was attributable to smaller cumulative CO2 loss during the shorter snow season, as lower CO2 uptake rates during the longer CUP resulted in similar cumulative NEE during the vegetation period as compared to average years. If an increase of future occurrence of events such as the observed is assumed, this trade-off between reduced CO2 losses during shorter winters and lower uptake during longer summers will be crucial in determining the annual NEE.

Acknowledgments

This study was supported by the PhenoALP project, an Interreg project co-funded by the European Regional Development Fund, under the operational program for territorial cooperation Italy–France (ALCOTRA) 2007–13. We thank the staff of the Remote Sensing of Environmental Dynamics Laboratory (DISAT, UNIMIB), and Martina Petey (ARPA VdA) for their support during the field campaigns. We acknowledge the Centro Funzionale della Regione Autonoma Valle d’Aosta for providing access to the Cignana long-term weather data and the people who contributed to collect them.

References

Alcamo J, Moreno J, Nováky B, Bindi M, Corobov R, Devoy R, Giannakopoulos C, Martin E, Olesen J and Shvidenko A 2007 Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed M L Parry, O F Canziani, J P Palutikof, P J van der Linden and C E Hanson (Cambridge: Cambridge University Press) pp 541–80

Aubinet M et al. 2000 Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology Adv. Ecol. Res. 30 113–75

Baldocchi D 2003 Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future Glob. Change Biol. 9 479–92
Baldocchi D et al 2005 Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data Int. J. Biometeorol. 49 377–87

Bardgett R, Van Der Wal R, Jønsdóttir I, Quirk H and Dutton S 2007 Temporal variability in plant and soil nitrogen pools in a high-arctic ecosystem Soil Biol. Biochem. 39 2129–37

Beniston M 2005a Mountain climates and climatic change: an overview of processes focusing on the European Alps Pure Appl. Geophys. 162 1587–606

Beniston M 2005b Warm winter spells in the Swiss Alps: strong heat waves in a cold season? A study focusing on climate observations at the Saentis high mountain site Geophys. Res. Lett. 32 L01812

Brooks P and Williams M 1999 Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments Hydrol. Process. 13 2177–90

Burba G, McDermitt D, Grelle A, Anderson D and Xu L 2008 Addressing the influence of instrument surface heat exchange on the measurements of CO₂ flux from open-path gas analyzers Glob. Change Biol. 14 1854–76

Cao M and Woodward F 1998 Dynamic responses of terrestrial ecosystem carbon cycling to global climate change Nature 393 249–52

Ciais P et al 2005 Europe-wide reduction in primary productivity caused by the heat and drought in 2003 Nature 437 529–33

Dash J and Curran P 2004 The MERIS terrestrial chlorophyll index Int. J. Remote Sens. 25 5403–13

Dawson T, North P, Plummer S and Curran P 2003 Forest ecosystem chlorophyll content: implications for remotely sensed estimates of net primary productivity Int. J. Remote Sens. 24 611–7

Denman K L et al 2001 Couplings between changes in the climate system and biogeochemistry Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor and H L Miller (Cambridge: Cambridge University Press) pp 499–587

Falge E et al 2001 Gap filling strategies for defensible annual sums of net ecosystem exchange Agric. Forest Meteorol. 107 43–69

Foken T and Wichura B 1996 Tools for quality assessment of eddy covariance data to model grassland phenology and photosynthetic CO₂ uptake Agric. Forest Meteorol. 151 1325–37

Monson R, Sparks J, Rosenstiel T, Scott-Denton L, Huxman T, Harley P, Turnipseed A, Burns S, Backlund B and Hu J 2005 Climatic influences on net ecosystem CO₂ exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest Oecologia 146 130–47

Piao S et al 2008 Net carbon dioxide losses of northern ecosystems in response to autumn warming Nature 451 49–52

Reichstein M et al 2005 On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm Glob. Change Biol. 11 1424–39

Richardson A, Hollinger D, Aber J, Ollinger S and Braswell B 2007 Environmental variation is directly responsible for short-but not long-term variation in forest-atmosphere carbon exchange Glob. Change Biol. 13 788–803

Richardson A, Hollinger D, Dail D, Lee J, Munger J and Okeefe J 2009 Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests Tree Physiol. 29 321

Richardson A et al 2010 Influence of spring and autumn phenological transitions on forest ecosystem productivity Phil. Trans. R. Soc. B 365 3227

Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O and Toomey M 2013 Climate change, phenology, and phenological control of vegetation feedbacks to the climate system Agric. Forest Meteorol. 169 156–73

Rossini M et al 2012 Remote sensing-based estimation of gross primary production in a subalpine grassland Biogeosciences 9 1711–58

Schuepp P, Leclerc M, MacPherson J and Desjardins R 1990 Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation Bound.-Layer Meteorol. 50 355–73

Smith J, Sconiers W, Spasojevic M, Ashton I and Suding K 2012 Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen Arctic, Antarc. Alpine Res. 44 135–42

Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M and Miller H L (ed) 2007 Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) pp 377–498

Walker M, Ingersoll R and Webber P 1995 Effects of interannual climate variation on phenology and growth of two alpine forbs Ecology 76 1067–83
Webb E, Pearman G and Leuning R 1980 Correction of flux measurements for density effects due to heat and water vapour transfer Q. J. R. Meteorol. Soc. 106 85–100

Wipf S and Rixen C 2010 A review of snow manipulation experiments in Arctic and alpine tundra ecosystems Polar Res. 29 95–109

Wipf S, Stoeckli V and Bebi P 2009 Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing Clim. Change 94 105–21

Wu C et al 2013 Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn Glob. Ecol. Biogeogr. at press (doi:10.1111/geb.12044)

Wu J, van der Linden L, Lasslop G, Carvalhais N, Pilegaard K, Beier C and Ibrom A 2012 Effects of climate variability and functional changes on the interannual variation of the carbon balance in a temperate deciduous forest Biogeosciences 9 13–28

Yi C et al 2012 Climate extremes and grassland potential productivity Environ. Res. Lett. 7 035703