Carbon cycle and climate effects of forcing from fire-emitted aerosols

Supplementary Data

Jean-Sébastien Landry1,3, Antti-Ilari Partanen1,2 and H. Damon Matthews1

1Department of Geography, Planning and Environment, Concordia University, Montréal, Québec, Canada
2Climate Change, Finnish Meteorological Institute, Helsinki, Finland
3Currently at the Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Québec, Canada

E-mail: jean-sebastien.landry@usherbrooke.ca

\textbf{Figure S1.} Same as Figure 1 of the main text, but for the minimum (a and b; simulation TR-30-MIN) or maximum (c and d; simulation TR-30-MAX) estimates of fire-emitted aerosols amount.
Figure S2. Same as Figure 1 of the main text, but for the sensitivity simulation assessing the impact of nudging meteorology (simulation TR-30-BG-M).
Figure S3. Same as Figure 2 of the main text, but for the minimum (a and b; simulation TR-30-MIN) or maximum (c and d; simulation TR-30-MAX) estimates of fire-emitted aerosols amount.
Figure S4. Same as Figure 1 of the main text, but for year 1850 and the best guess (a and b; simulation EQ-1000-BG), minimum (c and d; simulation EQ-1000-MIN), or maximum (e and f; simulation EQ-1000-MAX) estimates of fire-emitted aerosols amount.
Figure S5. Same as Figure 3 of the main text, but for the minimum estimate of fire-emitted aerosols amount (simulations EQ-1000-MIN and TR-1170-MIN).
Figure S6. Same as Figure 3 of the main text, but for the maximum estimate of fire-emitted aerosols amount (simulations EQ-1000-MAX and TR-1170-MAX).
Figure S7. Assessment of potential feedbacks between fire-emitted aerosols and the carbon cycle for the best guess (a), minimum (b), and maximum (c) estimates of fire-emitted aerosols amount. For each panel, results are mean values over 1991–2020 for the differences between TR-1170-X-F and TR-1170-X, where X stands for BG, MIN, or MAX.