COMPARATIVE STUDY OF THE SECRETORY RESPONSE TO DOPAMINE AND SEVEN AMINO ACID CONJUGATED DERIVATIVES ON THE BLOOD-PERFUSED CANINE PANCREAS

Kazuhiko IWATSUKI and Shigetoshi CHIBA
Department of Pharmacology, Faculty of Medicine, Shinshu University, Matsumoto 390, Japan
Accepted April 10, 1980

Abstract—The secretory responses to seven dopamine amino acid conjugated derivatives were compared with those to dopamine, using blood-perfused canine pancreas preparations. Each of these dopamine derivatives produced a dose dependent increase in the secretion of pancreatic juice. The rank order of the secretory responses and relative potency (dopamine =1) was: N-Ileu-dopamine (0.4)>N-Ala-Glu-dopamine (0.2) > N-γ-Glu-dopamine (0.1)= N-Gly-Pro-dopamine (0.1) > N-Gly-Gly-dopamine (0.01)>N-Gly-Gly-Leu-dopamine (0.005)=N-Gly-Gly-Pro-dopamine (0.005). The duration of action of doses of the derivatives which produced approximately equal secretory responses was about 1.2–2.7 times longer than that of dopamine. Dopamine and N-Ileu-dopamine which has the most potent secretagogue property among seven dopamine derivatives produced a secretin-like secretion of the pancreatic juice containing a high concentration of bicarbonate but had little effect on protein output with lower amylase activity.

Dopamine is a precursor of noradrenaline and has characteristics which form other catecholamines, on systemic blood pressure (1, 2), in the renal or mesenteric vascular bed (1, 3) and in the coronary circulation (4). These effects of dopamine may be the result of actions on specific dopamine receptors (5).

It has been reported that dopamine produced an increase in the secretion of pancreatic juice in dogs but that noradrenaline had no effect on pancreatic secretion (6). As the secretagogue effect of dopamine was antagonized by haloperidol it was suggested that there were specific dopamine receptors in the dog pancreas (7).

Recently, several dopamine derivatives were synthesized and were found to protect the molecule at its metabolically vulnerable sites (8–12). In the present study, secretory responses to dopamine and seven amino acid conjugated derivatives of dopamine were compared, using the blood-perfused dog pancreas preparation. Moreover, we attempted to determine among the seven dopamine derivatives, compositions of the pancreatic juice induced by secretin, dopamine and N-Ileu-dopamine which had the most potent secretagogue properties.

MATERIALS AND METHODS

Ten mongrel dogs of either sex, weighing from 14 to 17 kg, were fasted for 24 hr and anaesthetized with sodium pentobarbital (30 mg/kg, i.v.). During the experimental pro-
cures, anaesthesia was maintained by the additional injection of sodium pentobarbital (5 mg/kg, i.m.) hourly. The dogs were respired artificially with room air using a Harvard respirator (Model 607). The upper abdomen was opened by a midline incision, and a polyethylene tube was inserted into the main pancreatic duct for collection of the pancreatic juice. The accessory pancreatic duct was ligated. Polyethylene cannulae were inserted into the gastroduodenal arteries through which the pancreas was perfused with the animal’s own blood conducted from the left femoral artery by means of a Harvard peristaltic pump (Model 1215). The splenic artery was also cannulated and perfused retrogradely with blood from the femoral artery. All experiments were performed under constant perfusion pressure at 100 mmHg. The experimental setup has been previously described in detail (6, 7). A dose of 500 units/kg of sodium heparin was given at the beginning of perfusion and maintenance doses of 2000 units were given hourly.

Drug solutions were injected into a rubber tube connected to the shank of the arterial cannula. The flow of pancreatic juice was measured by a drop counter and the volume of pancreatic juice by a graduated cylinder. The concentration of bicarbonate in mEq/liter was measured by the method of Natelson (13), amylase activity by the method of Caraway (14) and protein concentration by the method of Lowry et al. (15).

Drugs used in this study were dopamine hydrochloride (ICN), N-glycyglycylidopamine hydrochloride (D-1, Eisai Co.), N-glycylprolyldopamine hydrobromide (D-2, Eisai Co.), N-alanylglutamylidopamine methansulphonate (D-3, Eisai Co.), N-glycylglycylidopamine hydrochloride (D-4, Eisai Co.), N-glycylglycyleucydopamine hydrochloride (D-5, Eisai Co.), N-isoleucydopamine hydrochloride (D-6, Abbott), N-(y-glutamyl) dopamine (D-7, Abbott) and secretin (Eisai Co.). All drugs were freshly dissolved in 0.9% w/v NaCl solution (saline) and doses refer to the salt. The volume of drugs injected was 0.01–0.1 ml over a period of 4 sec. For all experimental values, means and standard errors of means (s.e.m.) were calculated.

RESULTS

Intra-arterial injections of secretin (0.03–0.3 units), dopamine (1–10 μg) or one of amino acid conjugated derivatives (3–1000 μg) produced a prompt increase in the rate of the

![Fig. 1. Typical secretory responses of the canine pancreas to secretin, dopamine, N-Gly-Pro-dopamine (D-2), N-Gly-Gly-Pro-dopamine (D-4) and N-Ileu-dopamine (D-6) injected intra-arterially.](image-url)
secretion of the pancreatic juice which was dose-dependent. The secretory effects by these compounds continued for 2–20 min. Successive injections were given as the response to each preceding injection wore off completely; there was no evidence of tachyphylaxis. As demonstrated in Fig. 1, a drop of pancreatic juice was produced at about a 1.5 min intervals

Compounds	No. of exp	Pancreatic juice (μl) mean ± s.e.m.	Duration (sec) mean ± s.e.m.
Secretin (unit)			
0.03	10	150 47	151 16
0.1	10	437 76	345 35
0.3	10	1117 196	643 46
Dopamine (μg)			
1.0	10	237 53	177 12
3.0	10	442 62	250 21
10.0	10	987 172	426 28
N-Gly-Gly-dopamine (μg)			
100	6	108 30	181 21
300	6	332 45	238 32
1000	5	829 91	456 39
N-Gly-Pro-dopamine (μg)			
30	5	192 21	158 18
100	5	322 47	263 27
300	5	885 111	416 33
N-Ala-Glu-dopamine (μg)			
10	6	244 30	384 11
30	6	424 41	661 19
100	6	1024 164	936 26
N-Gly-Gly-Pro-dopamine (μg)			
100	3	30 4	40 7
300	4	85 7	153 12
1000	4	292 18	300 23
N-Gly-Gly-Leu-dopamine (μg)			
100	3	100 20	95 8
300	4	240 28	175 10
1000	4	370 32	402 25
N-Ileu-dopamine (μg)			
3	6	217 33	290 18
10	6	397 42	662 22
30	6	922 96	1240 36
N-γ-Glu-dopamine (μg)			
30	5	109 22	284 13
100	5	345 51	651 24
300	5	760 105	983 45
during the resting state of the perfused pancreas. Figure 1 shows typical secretory responses to secretin, dopamine, N-Gly-Pro-dopamine (D-2), N-Gly-Gly-Pro-dopamine (D-4) and N-Ileu-dopamine (D-6). Other dopamine derivatives also produced the secretory effects in the same manner, although their potencies and durations were different. The results are summarized in Table 1. The secretory activity of dopamine (3 \(\mu g \)) was approximately equivalent to that of secretin (0.1 unit) but the duration of action was shorter.

Relative potencies of dopamine and the derivatives on the pancreatic secretion and the duration of action are compared in Table 2. As shown in Table 2, dopamine was the most

Table 2. Comparison of dopamine and amino acid conjugated derivatives for secretory responses and the durations on the blood-perfused dog pancreas. Relative activity is the reciprocal of the dose producing a response matching that to 1–3 \(\mu g \) of dopamine

Compounds	Relative activity	Volume of pancreatic juice	Duration
Dopamine	1		1
N-Ileu-dopamine (D-6)	0.4	2.70	
N-Ala-Glu-dopamine (D-3)	0.2	2.54	
N-\(\gamma \)-Glu-dopamine (D-7)	0.1	1.86	
N-Gly-Pro-dopamine (D-2)	0.1	1.60	
N-Gly-Gly-dopamine (D-1)	0.01	1.48	
N-Gly-Gly-Leu-dopamine (D-5)	0.005	1.20	
N-Gly-Gly-Pro-dopamine (D-4)	0.005	1.40	

Table 3. Concentration of bicarbonate, protein and amylase in the pancreatic juice

Compounds	Bicarbonate (mEq/liter)	Protein (mg/ml)	Amylase (unit/ml)
Resting state	16.2 \(\pm \) 3.6	55.6 \(\pm \) 4.5	1620 \(\pm \) 52.3
Secretin (unit)			
0.03	27.4 \(\pm \) 4.2	19.1 \(\pm \) 1.2	495 \(\pm \) 32.0
0.1	44.9 \(\pm \) 3.7	20.3 \(\pm \) 1.7	310 \(\pm \) 13.5
0.3	75.3 \(\pm \) 5.8	17.6 \(\pm \) 3.5	213 \(\pm \) 12.8
Dopamine (\(\mu g \))			
1	21.6 \(\pm \) 7.6	21.1 \(\pm \) 7.1	450 \(\pm \) 52.5
3	39.5 \(\pm \) 6.5	18.5 \(\pm \) 4.9	224 \(\pm \) 12.4
10	60.1 \(\pm \) 7.6	17.7 \(\pm \) 6.1	207 \(\pm \) 9.8
N-Ileu-dopamine (\(\mu g \))			
3	19.5 \(\pm \) 1.2	9.8 \(\pm \) 0.7	325 \(\pm \) 11.7
10	32.8 \(\pm \) 3.8	7.4 \(\pm \) 0.6	250 \(\pm \) 7.8
30	51.6 \(\pm \) 4.4	6.2 \(\pm \) 0.5	190 \(\pm \) 4.3

Results are expressed as mean \(\pm \) standard error of 5 experiments. Pancreatic juice was collected for 15 min in the resting state and from the beginning until the end of the secretory response when each compound was injected intra-arterially. The amylase unit is defined as the amount of enzyme that will hydrolyse 10 mg of starch in 30 min at 37°C.
potent among the seven derivatives in producing the pancreatic juice. The rank order of the potency to secrete the pancreatic juice was dopamine > N-Ileu-dopamine > N-Ala-Glu-dopamine > N-γ-Glu-dopamine = N-Gly-Pro-dopamine > N-Gly-Gly-dopamine > N-Gly-Gly-Leu-dopamine = N-Gly-Gly-Pro-dopamine. On the other hand, the duration of action of the derivatives was 1.2–2.7 times longer than that of dopamine. The rank order of the duration was the same as the potency of the secretory response in seven dopamine derivatives.

Concentrations of bicarbonate, protein and amylase in the pancreatic juice which was collected for 15 min in the resting state and in the juice induced by secretin, dopamine and one of the most potent amino acid derivatives, N-Ileu-dopamine, were determined. The data are summarized in Table 3. In the resting state, bicarbonate, protein and amylase concentrations were 16.2 mEq/liter, 55.6 mg/ml and 1620 units/ml, respectively. The composition of the pancreatic juice induced by N-Ileu-dopamine was quite similar to that of dopamine and secretin, causing an increase in the volume of juice with higher concentration of bicarbonate and little effect in the protein output with lower amylase activity.

Each amino acid itself (1 mg, i.a.) had no effect on the secretion.

DISCUSSION

The secretory effects of dopamine in dogs have been well documented as follows. Dopamine stimulated the secretion of pancreatic juice with a high content of bicarbonate while the protein content was low. On the other hand, noradrenaline and adrenaline did not induce the pancreatic secretion as previously reported (6, 16, 17). This response to dopamine was similar to that of secretin, and the site of action of dopaminergic receptors at the ductural cells was suggested (16, 18). L-dopa, a precursor of dopamine, also stimulated the secretion of pancreatic juice, that was blocked by a dopa decarboxylase inhibitor (7). The effect of either L-dopa or dopamine was significantly attenuated by haloperidol, a dopamine receptor antagonist (7, 17). These observations strongly suggested that there were specific receptors to secrete the pancreatic juice by dopamine in the canine pancreas.

In the present study, the effects of dopamine and seven amino acid conjugated derivatives of dopamine were compared, with respect to secretion of pancreatic juice, on the blood-perfused dog pancreas. Each of these dopamine derivatives caused a prompt and profuse increase in the secretion of pancreatic juice as did dopamine. The most potent one of seven dopamine derivatives tested was N-Ileu-dopamine, although it was 2.5 times less potent than dopamine. It was 4 times more potent than the other derivative with a single amino acid (N-γ-Glu-dopamine). Next in order of potency were the conjugates with dipeptides. The least potent were the conjugates with tripeptides. Although dopamine was the most potent in producing the secretory effects, the duration of action was the shortest of all the dopamine derivatives. The canine pancreas was also observed to be secreting the enzyme rich juice even in the resting state (18).

Since amino acid itself had no effect on the secretion of the pancreatic juice and the pancreas is the second richest organ in aminoacylaryl amidase activity after the kidney (19), free dopamine seems to cause the pharmacological responses. Therefore, the mode of
action of dopamine derivatives as well as dopamine on the pancreas was quite similar to that of secretin, as reported previously (7). Slow hydrolysis by the enzyme (8), appears to be responsible for the weak action of the secretion and long duration by dopamine derivatives.

McDonald and Goldberg (1) reported that dopamine produced a dilatation of the renal vascular bed, and they suggested dopamine for clinical application. In fact, dopamine had been used in the treatment of shock, congestive heart failure, cirrhosis oliguric renal failure and drug intoxication (5). However, the interaction of dopamine with α-adrenergic receptors can lead to undesirable side effects (20). Recently, N-Ileu-dopamine (8) and γ-Glu-dopamine (21) have been reported to have a specific and prolonged renal effect and to increase the renal blood flow. In the endocrine system of the pancreas, dopamine stimulated glucagon release and inhibited insulin release, and then produced hyperglycemia (22). But γ-glu-dopamine was less effective in causing hyperglycemia (23). Therefore, dopamine aminoacyl derivatives may be drugs of choice where greater renal perfusion is desired without untoward effects.

Acknowledgements: We are grateful to Eisai Pharmaceutical Co. Ltd., Tokyo, Japan for their supply of dopamine derivatives, and to Mrs. Yumiko Itoh for preparing the manuscript.

REFERENCES

1) McDONALD, R.H. AND GOLDBERG, L.I.: Analysis of the cardiovascular effects of dopamine in the dog. J. Pharmacol. exp. Ther. 140, 60–66 (1963)
2) EBBLE, J.N.: A proposed mechanism for the depressor effect of dopamine in the anesthetized dog. J. Pharmacol. exp. Ther. 145, 64–70 (1964)
3) YEH, B.K., MCNAY J.L. AND GOLDBERG, L.I.: Attenuation of dopamine renal and mesenteric vasodilation by haloperidol: Evidence for a specific dopamine receptor. J. Pharmacol exp. Ther. 168, 303–307 (1969)
4) SCHUELKE, D.M., MARK, A.L., SCHMID, P.G. AND ECKSTETTIN, J.W.: Coronary vasodilation produced by dopamine after adrenergic blockade. J. Pharmacol. exp. Ther. 176, 320–327 (1971)
5) GOLDBERG, L.I.: Cardiovascular and renal actions of dopamine: potential clinical application. Pharmacol. Rev. 24, 1–29 (1972)
6) HASHIMOTO, K., SATOH, S. AND TAKEUCHI, O.: Effect of dopamine on pancreatic secretion in the dog. Brit. J. Pharmacol. 43, 739–746 (1971)
7) FURUTA, Y., HASHIMOTO, K., IWATSUKI, K. AND TAKEUCHI, O.: Effects of enzyme inhibitors of catecholamine metabolism and of haloperidol on the pancreatic secretion induced by L-dopa and dopamine in dogs. Brit. J. Pharmacol. 47, 77–84 (1973)
8) BIEL, H.H., SOMANI, P., JONES, P.H., MINARD, F.N. AND GOLDBERG, L.I.: Aminoacyl derivatives of dopamine as orally effective renal vasodilators; in: Frontiers in Catecholamine Research, Edited by USDIN, E. AND SNYDER, S.H. p. 901–903 Pergamon Press Inc., New York (1973)
9) TUTTLE, R.R.: The inotropic and chronotropic effects of dobutamine and isoproterenol on cat atria and papillary muscles at different temperature. Fedn. Proc. 33, 503 (1974)
10) DREYER, A.C.: Investigation of the positive inotropic and chronotropic activities of a number of dopamine derivatives. Abstracts Sixth Int. Congress of Pharmacology p. 115 (1975)
11) JEWITT, D., BIRKHEAD, J., METCHELL, T., MARTINES, E. AND DOLLERY, C.: The cardiovascular effects of dobutamine a selective inotropic catecholamine. Clin. Sci. Mol. Med. 49, 7 (1975)
12) CHIBA, S.: Comparative study of chronotropic and inotropic effects of dopamine and seven derivatives on the isolated, blood-perfused dog atrium. *Clin. exp. Pharmacol. Physiol.* 5, 23–29 (1978)

13) NATELSON, S.: Routine use of ultramicro methods in the clinical laboratory. *Amer. J. clin. Path.* 21, 1153–1172 (1951)

14) CARAWAY, W.T.: A stable starch substrate for the determination of amylase in serum and other body fluids. *Amer. J. clin. Path.* 32, 97–99 (1959)

15) LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L. AND RANDALL, R.J.: Protein measurement with the Folin phenol reagent. *J. biol. Chem.* 193, 265–275 (1951)

16) FURUTA, Y., IWATSUKI, K., TAKEUCHI, O. AND HASHIMOTO, K.: Secretin-like activity of dopamine on canine pancreatic secretion. *Tohoku J. exp. Med.* 108, 353–360 (1972)

17) BASTIE, M.J., VAYSSE, N., BRENAC, B., PASCAL, J.P. AND RIBET, A.: Effect of catecholamines and their inhibitors on the isolated canine pancreas. II. Dopamine. *Gastroenterology* 72, 719–723 (1977)

18) IWATSUKI, K. AND HASHIMOTO, K.: Effects of calcitonin on the secretion of pancreatic juice induced by dopamine, secretin and pancreozymin. *Clin. exp. Pharmacol. Physiol.* 3, 159–165 (1976)

19) ORLOWSKI, M. AND SZEWCZUK, A.: Colorimetric determination of γ-glutamyl transpeptidase activity in human serum and tissues with synthetic substrates. *Acta Biochim. Polon.* 8, 189–199 (1961)

20) ALEXANDER, C.S., SAKO, Y. AND MIKULIC, E.: Pedal gangrene associated with the use of dopamine. *N. Engl. J. Med.* 293, 591 (1975)

21) JONES, P.H., OURS, C.W., BIEL, J.H., MINARD, F.N., KNYCYL, J. AND MARTIN, Y.C.: γ-Glutamyl amides of dopamine as selective renal vasodilators, Abstracts of Paper, American Chemical Society, Medicine 17 (1976)

22) WOODS, S.C. AND PORTE, JR.: Neural control of the endocrine pancreas. *Physiol. Rev.* 54, 596–619 (1974)

23) MIZOGUCHI, H., ORLOWSKI, M., WIJK, S. AND GREEN, J.P.: γ-Glutamyl DOPA and γ-glutamyl dopamine: effect on plasma glucose levels. *Europ. J. Pharmacol.* 57, 239–245 (1975)