Nutrigenomikler: Genoma Göre Beslenme ile Üreme Performansının İyileştirilmesi

Uğur ŞEN
Ahi Evran Üniversitesi, Ziraat Fakültesi, Tarımsal Biyoteknoloji Bölümü, 40100, Kırşehir
*Sorumlu yazar: ugur.sen@ahievran.edu.tr

Geliş Tarihi: 24.06.2015 Düzeltme Geliş Tarihi: 10.10.2015 Kabul Tarihi: 12.10.2015

Özet

Nutrigenomik bilimi, genom teknolojilerini (genomik, proteomik ve transkriptomik) kullanarak beslenme ve genom arasındaki ilişkileri araştırmaktadır. Başlangıçta insan genomunun beslenme eğilimleri ile olan etkileşimine odaklanan nutrigenomik bilimi, son zamanlarda çiftlik hayvanlarının üreme performansını ve fertilitelerini etkileyen genlerin beslenme durumu ile olan ilişkilerinin değerlendirilmesinde kullanılmaktadır. Bu yeni bilim dalı, çiftlik hayvanlarının üreme performansını ve fertilitelerini etkileyen beslenme ile ilgili azalana moleküler düzeyde ölçülabileceği için bu bölgelerde yeni bilgi sağlamanın hedefidir. Çiftlik hayvanlarında beslenmenin fertiliti ve üreme performansı üzerine olan etkileri.JSON bilimli bir bilim dalı, çiftlik hayvanlarının üreme performansını ve fertilitelerini etkileyen beslenme ile ilgili azalana moleküler düzeyde ölçülabileceği için bu bölgelerde yeni bilgi sağlamanın hedefidir. Çiftlik hayvanlarında beslenmenin fertiliti ve üreme performansı üzerine olan etkileri.JSON bilimli bir bilim dalı, çiftlik hayvanlarının üreme performansını ve fertilitelerini etkileyen beslenme ile ilgili azalana moleküler düzeyde ölçülabileceği için bu bölgelerde yeni bilgi sağlamanın hedefidir. Çiftlik hayvanlarında beslenmenin fertiliti ve üreme performansı üzerine olan etkileri.JSON bilimli bir bilim dalı, çiftlik hayvanlarının üreme performansını ve fertilitelerini etkileyen beslenme ile ilgili azalana moleküler düzeyde ölçülabileceği için bu bölgelerde yeni bilgi sağlamanın hedefidir. Çiftlik hayvanlarında beslenmenin fertiliti ve üreme performansı üzerinde etkili olabilen genlerin (ifadeleri) üzerine etkileri etkile olabilen genlerin (ifadeleri) üzerine etkileri.

Anahtar kelimeler: Nutrigenomik, Genom, Besleme, Fertilite

Nutrigenomics: Improving the Reproductive Performance by Feeding According to the Genome

Abstract

Nutrigenomics is the study of the interactions between nutrition and genome by using genome technologies (genomics, proteomics and transcriptomics). The nutrigenomics has focused on the interaction between nutrition pattern and the human genome at first; but now, it is used for the evaluation of relationship between factors, which have effects on livestock reproductive performance and fertility at the genomic level and nutritional status. This new branch of science provides an unprecedented amount of information to understand the symptom affecting the reproductive performance and fertility of farm animals related with the nutrition at the molecular level. As long with the effects of nutrition on fertility and reproductive performance in farm animals is partially known, the first nutrigenomic studies on farm animals show that different diets may have some effects on expression of genes associated with reproductive performance. For this reason, the nutrigenomics will play an important role in the development of new feeding strategies in order to prevent the factors that limiting the reproductive performance of farm animals at the genomic level.

Key word: Nutrigenomic, Genome, Feeding, Fertility

Giriş

Besin maddelerinin gen ifadeleri üzerine etkili olduğunu anlaşılmıştır (Zduńczyk ve Pareek, 2009). Genlerin dieta etkisindeki kimyasal bileşenler ile etkileşime girerek ortaya çıkardıkları gen ürününün fenotipik özellikler üzerinde nasıl bir farklılaşma gerçekleştirebileceği araştırılmaya başlanmıştır ve Nutrigenomik bilimi ortaya çıkmıştır (Kaput ve ark., 2005). Nutrigenomik bilimi bireysel beslenmenin en uygun formu için en iyi tanımlamanın yapılamasına olanak sağlayarak deneysel düzeyde yapılan uygulamaların pratikteki beslenme değerini daha gerçek bir şekilde ortaya
Nutrigenomik bilimi, bir bütün olarak beslenme metabolizmasına, genomedan fenotip alabilecek yönleri moleküler reaksiyonlarının anlaşılmasına olanak sağlamaktadır (Zdurczyk ve Pareek, 2009). Genomik, proteomik ve metabolomik teknolojilerinde kullanılan nutrigenomik sayesinde, tek bir deneyde, DNA dizilişleri, RNA transkriptleri, proteinler ve besin-metabolizma etkileşimini sonucu oluşan değişiklikler analiz edildiğinde, değerlendirme işlemlerinden birikim ve bireysel beslenme ve diyet rezetleri hazırlanabilir (Dawson, 2006). Hazırlanan özel rezetler sayesinde genetik belirleyicileri kontrol altında alınarak canlanmanın daha sağlıklı olması sağlanabilir. Böylece, beslenme ve üreme üzerine etkili olan besin kaynakları kronik hastalıkların ortadan kaldırılmasında ve bunlara karşı önlem alınması mümkün olacaktır (Dawson, 2006). Bu rezetler, üreme performansının beslenme ile nasıl ilişkilendirilebileceği konusunda değil, aynı zamanda yetersiz yani yanıklı beslenme ve düşük fiziksel aktivite gibi koşullarla ilişkili olan bazı özel hastalıklara yakalanma riskinin azaltılmasına da yardımcı olmaktadır (Dawson, 2006). Örneğin; bazı etkileşimlerde proteinler çiftlik hayvanlarında istenmeyen tepkilerin oluşumuna sebep olabilir, hazırlanılan diyet rezetleri üzerine söz konusu proteinler diyet içinde aktif olmayan hale getirilebilecek veya diyetten uzaklaştırılabilir (Dawson ve ark., 2005). Ayrıca beslenmeme ve fizyolojik işlev diyetten uzaklaşan proteinler ve besin maddelerinin, metabolik reaksiyonlar ve fenotip üzerindeki özel etkileri de dikkate alınması gerekmektedir (Dawson, 2006). Son zamanlarda hızla gelişen özel rezetler sayesinde genetik belirleyiciler kontrol altında alınarak canlanmanın daha sağlıklı olması sağlanabilir (Dawson, 2006). Bu rezetler, üreme performansının beslenme ile nasıl ilişkilendirilebileceği konusunda değil, aynı zamanda yetersiz yani yanıklı beslenme ve düşük fiziksel aktivite gibi koşullarla ilişkili olan bazı özel hastalıklara yakalanma riskinin azaltılmasına da yardımcı olmaktadır (Dawson, 2006). Örneğin; bazı etkileşimlerde proteinler çiftlik hayvanlarında istenmeyen tepkilerin oluşumuna sebep olabilir, hazırlanılan diyet rezetleri üzerine söz konusu proteinler diyet içerisinde aktif olmayan hale getirilebilecek veya diyetten uzaklaştırılabilir (Dawson, 2006). Son zamanlarda hızla gelişen özel rezetler sayesinde genetik belirleyiciler kontrol altında alınarak canlanmanın daha sağlıklı olması sağlanabilir (Dawson, 2006). Bu rezetler, üreme performansının beslenme ile nasıl ilişkilendirilebileceği konusunda değil, aynı zamanda yetersiz yani yanıklı beslenme ve düşük fiziksel aktivite gibi koşullarla ilişkili olan bazı özel hastalıklara yakalanma riskinin azaltılmasına da yardımcı olmaktadır (Dawson, 2006). Örneğin; bazı etkileşimlerde proteinler çiftlik hayvanlarında istenmeyen tepkilerin oluşumuna sebep olabilir, hazırlanılan diyet rezetleri üzerine söz konusu proteinler diyet içerisinde aktif olmayan hale getirilebilecek veya diyetten uzaklaştırılabilir (Dawson, 2006). Son zamanlarda hızla gelişen özel rezetler sayesinde genetik belirleyiciler kontrol altında alınarak canlanmanın daha sağlıklı olması sağlanabilir (Dawson, 2006). Bu rezetler, üreme performansının beslenme ile nasıl ilişkilendirilebileceği konusunda değil, aynı zamanda yetersiz yani yanıklı beslenme ve düşük fiziksel aktivite gibi koşullarla ilişkili olan bazı özel hastalıklara yakalanma riskinin azaltılmasına da yardımcı olmaktadır (Dawson, 2006). Örneğin; bazı etkileşimlerde proteinler çiftlik hayvanlarında istenmeyen tepkilerin oluşumuna sebep olabilir, hazırlanılan diyet rezetleri üzerine söz konusu proteinler diyet içerisinde aktif olmayan hale getirilebilecek veya diyetten uzaklaştırılabilir (Dawson, 2006). Son zamanlarda hızla gelişen özel rezetler sayesinde genetik belirleyiciler kontrol altında alınarak canlanmanın daha sağlıklı olması sağlanabilir (Dawson, 2006). Bu rezetler, üreme performansının beslenme ile nasıl ilişkilendirilebileceği konusunda değil, aynı zamanda yetersiz yani yanıklı beslenme ve düşük fiziksel aktivite gibi koşullarla ilişkili olan bazı özel hastalıklara yakalanma riskinin azaltılmasına da yardımcı olmaktadır (Dawson, 2006). Örneğin; bazı etkileşimlerde proteinler çiftlik hayvanlarında istenmeyen tepkilerin oluşumuna sebep olabilir, hazırlanılan diyet rezetleri üzerine söz konusu proteinler diyet içerisinde aktif olmayan hale getirilebilecek veya diyetten uzaklaştırılabilir (Dawson, 2006).
gelişimi ile ilgili gen ifade değişiklikleri sınıflandırılmaya başlanmıştır (Dawson, 2006).

Corcoran ve ark. (2006) sağır embriyoların gelişimleri boyunca gen ifadelerinin yapılması ve sonuçlanması ortaya koyarak embriyonal gelişimdeki önemli değişiklikler takip için kullanılabilecek bazı aday biyomarkerleri saptamışlardır. Bu gen ifade çalışmaları fizyolojik ve gelişme ile ilgili süreler hakkında önemli ipuçları sağlayabilecek bazı spesifik gen ifade değişikliklerinin sınıflandırılmasına büyük katkı sağlanmıştır. Fakat günümüzde kadar fertiliteli, embriyo gelişimi ve hayatta kalması ile spesifik ilişkisi hiçbir gen marker'i tam olarak aydınlatılamamıştır (Dawson, 2006). Bu çalışmalar sadece gen ifade eğilimlerinin ilgili süreleri olarak karmaşık ilişkisini vurgulamışlardır. Bu tür karmaşık ilişkiler ele alınan kas örneklerindeki gen ifade değişikliklerini analiz etmek için yapılan çalışmalar anahtar olarak olacaktır.

Çiftlik Hayvanlarında Besinsel Genomikler
Çiftlik hayvanlarının üreme performanslarının, besleme ve genom tarafından etkilendiği uzun zamandan beri bilinmektedir. Bu durum özellikle hayvanın beslenme dengesizliği duyarlı olduğu geçiş döneminde ve erken laktasyonu daha da önemli hale gelmektedir. Süt üretiminde yüksek süt verimli hayvanların seçilmesi ve bu hayvanların ihtiyaçlarının en iyi şekilde karşılanabilmesi için süt verimli verimli tanımlanması süt üretim sistemlerinde çok önemli olması rağmen gerektiğine vurgulanmıştır. Bu üç tür seçkinin seçilmesi ve bu hayvanların ihtiyaçlarının tam olarak karşılanmasını ve bu hayvanların ihtiyaçlarını unütreni yemlerdeki değişimleri takip etmek için yapılan çalışmalar araştırılacaktır.

Selenyumun Nutrigenomik Etkisi
Tiroid hormonlar triiodothyronine (T3) ve thyroxine (T4) embriyo gelişimi ve oluşumda önemli olan gen tranzkripsiyonlarını tetiklemektedir (Edens ve Gowdy, 2004). Selenyum, T3 ve T4 hormonlarının üretimini üzerine etkili olduğundan dolayi embriyondaki büyüme ve gelişimi, embriyondaki dokuların farklılaşmasını ve erken embriyondaki önemlidir. Bu hormon, embriyondaki gelişimdeki önemli değişiklikleri takip edebilmek için kullanılan genlerin analizinin önemini vurgulamaktadır. 

Çiftlik hayvanlarında nutrigenomik çalışmalarda çok kısıtlı olmakla birlikte besleme, genetik, doku büyümesi ve fertiliteli arasındaki ilgili nesneleri sınıflandırılmaya başlanmıştır. Bu çalışmalar büyük bir öneme şahit olmuştur. Reverter ve ark. (2003) çeşitli kitleye seminer ile beslenen bığazlarda alınan kas örneklerinde gen ifade değişiklikleri sınıflandırılrsa gen ifade değişikliklerini analiz etmek için kullanılan genlerin analizinin önemini vurgulamaktadır. Byrne ve ark. (2005) kalitesiz yem tüketiminden dolaylı yet tersiz beslenen danaların gen ifadeleri bazı özel proteinlerin miktarları ile ilişkilendirilmiş ve hücre iskeleti, yapılanması ve metabolik dengenin diyet ile etkilenlendiği bildirilmiştir. Jones ve ark. (2004) ticari rat mikroarrayini kullanarak çarşın otunun bakteriyel enfeksyonunun sağlardaki gen ifadeleri üzerine etkili olabileceğini bildirmiştir. Gen ifadelerindeki bazı değişikliklerin doğru beslenme seviyesinin veya şeklinin hayvanın büyümesi, fizyoloji ve üreme fonksiyonlarını değiştirebileceğini ortaya koymaktadır.

Selenyumun Nutrigenomik Etkisi
Tiroid hormonlar triiodothyronine (T3) ve thyroxine (T4) embriyo gelişimi ve oluşumda önemli olan gen tranzkripsiyonlarını tetiklemektedir (Edens ve Gowdy, 2004). Selenyum, T3 ve T4 hormonlarının üretimini üzerine etkili olduğundan dolayi embriyondaki büyüme ve gelişimi, embriyondaki dokuların farklılaşmasını ve erken embriyondaki önemlidir. Bu hormon, embriyondaki gelişimdeki önemli değişiklikleri takip edebilmek için kullanılan genlerin analizinin önemini vurgulamaktadır. 

Çiftlik Hayvanlarında Besinsel Genomikler
Çiftlik hayvanlarının üreme performanslarının, besleme ve genom tarafından etkilendiği uzun zamandan beri bilinmektedir. Bu durum özellikle hayvanın beslenme dengesizliği duyarlı olduğu geçiş döneminde ve erken laktasyonu daha da önemli hale gelmektedir. Süt üretiminde yüksek süt verimli hayvanların seçilmesi ve bu hayvanların ihtiyaçlarının en iyi şekilde karşılanabilmesi için süt verimli verimli tanımlanması süt üretim sistemlerinde çok önemli olması rağmen gerektiğine vurgulanmıştır. Bu üç tür seçkinin seçilmesi ve bu hayvanların ihtiyaçlarının tam olarak karşılanmasını ve bu hayvanların ihtiyaçlarını unütreni yemlerdeki değişimleri takip etmek için yapılan çalışmalar araştırılacaktır.

Selenyumun Nutrigenomik Etkisi
Tiroid hormonlar triiodothyronine (T3) ve thyroxine (T4) embriyo gelişimi ve oluşumda önemli olan gen tranzkripsiyonlarını tetiklemektedir (Edens ve Gowdy, 2004). Selenyum, T3 ve T4 hormonlarının üretimini üzerine etkili olduğundan dolayi embriyondaki büyüme ve gelişimi, embriyondaki dokuların farklılaşmasını ve erken embriyondaki önemlidir. Bu hormon, embriyondaki gelişimdeki önemli değişiklikleri takip edebilmek için kullanılan genlerin analizinin önemini vurgulamaktadır. 

Çiftlik Hayvanlarında Besinsel Genomikler
Çiftlik hayvanlarının üreme performanslarının, besleme ve genom tarafından etkilendiği uzun zamandan beri bilinmektedir. Bu durum özellikle hayvanın beslenme dengesizliği duyarlı olduğu geçiş döneminde ve erken laktasyonu daha da önemli hale gelmektedir. Süt üretiminde yüksek süt verimli hayvanların seçilmesi ve bu hayvanların ihtiyaçlarının en iyi şekilde karşılanabilmesi için süt verimli verimli tanımlanması süt üretim sistemlerinde çok önemli olması rağmen gerektiğine vurgulanmıştır. Bu üç tür seçkinin seçilmesi ve bu hayvanların ihtiyaçlarının tam olarak karşılanmasını ve bu hayvanların ihtiyaçlarını unütreni yemlerdeki değişimleri takip etmek için yapılan çalışmalar araştırılacaktır.

Selenyumun Nutrigenomik Etkisi
Tiroid hormonlar triiodothyronine (T3) ve thyroxine (T4) embriyo gelişimi ve oluşumda önemli olan gen tranzkripsiyonlarını tetiklemektedir (Edens ve Gowdy, 2004). Selenyum, T3 ve T4 hormonlarının üretimini üzerine etkili olduğundan dolayi embriyondaki büyüme ve gelişimi, embriyondaki dokuların farklılaşmasını ve erken embriyondaki önemlidir. Bu hormon, embriyondaki gelişimdeki önemli değişiklikleri takip edebilmek için kullanılan genlerin analizinin önemini vurgulamaktadır. 

Çiftlik Hayvanlarında Besinsel Genomikler
Çiftlik hayvanlarının üreme performanslarının, besleme ve genom tarafından etkilendiği uzun zamandan beri bilinmektedir. Bu durum özellikle hayvanın beslenme dengesizliği duyarlı olduğu geçiş döneminde ve erken laktasyonu daha da önemli hale gelmektedir. Süt üretiminde yüksek süt verimli hayvanların seçilmesi ve bu hayvanların ihtiyaçlarının en iyi şekilde karşılanabilmesi için süt verimli verimli tanımlanması süt üretim sistemlerinde çok önemli olması rağmen gerektiğine vurgulanmıştır. Bu üç tür seçkinin seçilmesi ve bu hayvanların ihtiyaçlarının tam olarak karşılanmasını ve bu hayvanların ihtiyaçlarını unütreni yemlerdeki改变し、表現されるため、リハビリテーションを必要としている人々にとって、これらの研究は非常に重要な役割を果たしています。
(Bilodeau ve ark., 2000) ve bu durumun dışlerde infertilitye yol açabileceği düşünülmemektedir (Shalini ve Bansal, 2005). Antioksidan sistemler ile ilgili çöğu proteinin diyet kaynaklı selenyumun miktarı ve diyet içerisindeki formu tarafından etkilenebilirliği bilinmektedir (Edens ve Gowdy, 2004). Yapılan çalışmalarla farelerdeki glutasyon peroksidad 1, 3 selenoproteinlerin diyet kaynaklı selenyumun mayası ve sodيوم selenit tarafından desteklenmesi sahaptanmıştır (Naziroğlu ve Gur, 2000). Bu iki protein pek çok dokuda antioksidan olarak görev yapmaktadır ve cihim sisteminin dokuları (Naziroğlu and Gur, 2000), sperm kalitesi (Bilodeau ve ark., 2000) ve embriyonal gelişimi (Baek ve ark., 2000) üzerine büyük bir etkiye sahip oldukları bilinmektedir. Bağırsak dokusundaki bu proteinlerin transkripsiyonel düzenlemesinin belirlenmesi cihim yapımında ve selenyumun etkilemektedir. Ayrıca ve sodyum selenit tarafından aşılmasına karşın, diyet formüllerinin cihim performansını arasındaki ilişkinin daha açık bir şekilde hayvanlarında beslenme, genom ve üreme korunması açısından önem arz etmektedir. Çiftlik özkiliklerini etkileyebilecek kronik hastalıkla şekilyle üreme performansını veya diğer verim hazırlamak, dolayısıyla çiftlik hayvanlarının bu alanlarda beslenme ve etkileşmelerinin özel diyet reçetelerinin etkileşen şekline ve bileşenlerine karşı verilen hücresel tepkilerdeki açıdan büyük önem taşımaktadır. Dahası diyet verdikleri tepkilerdeki farklılıkların aydınlatılması bilgiler çiftlik hayvanlarının diyet bileşenlerine karşı ilişkileri üzerine yapılan araştırmaların anlamı ortaya konulması için nutrigenomik alanında daha çok araştırma yapılmasına ihtiyaç duyulmaktadır.

Kaynaklar

Baek, I.J., Yon, J.M., Lee, B.J., Yun, Y.W., Yu, W.J., Hong, J.T., Ahn, B., Kim, Y.B., Kim, D.J., Kang, J.K., Nam, S.Y., 2005. Expression pattern of cystolic glutathione peroxidase (cGPx) mRNA during mouse embryogenesis. Anatomy and Embryology, 209: 315–321.
Bernal, A., DeMoraes, G.V., Thrift, T.A., Willard, C.C., Randel, R.D., 1999. Effects of induced hypothyroidism on ovarian response to superovulation in Brahman (Bos indicus) cows. Journal of Animal Science, 77: 2749–2756.
Bilodeau, J.F., Chatterjee, S., Sirard, M.A., Gagnon, C., 2000. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Molecular Reproduction and Development, 55: 282–288.
Butler, W.R., 1998. Review: effect of protein nutrition on ovarian and uterine physiology in dairy cattle. Journal of Dairy Science, 81: 2533–2539.
Byrne, K.A., Wang, Y.H., Lehnert, S.A., Harper, G.S., McWilliam, S.M., Bruce, H.L., Reverter, A., 2005. Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction. Journal of Animal Science, 83: 1–12.
Christensen, V.L., 1985. Supplemental thyroid hormones and hatchability of Turkey eggs. Poultry Science, 64: 2202–2210.
Corcoran, D., Fair, T., Park, S., Rizos, D., Patel, O.V., Smith, G.W., Coussens, P.M., Ireland, J.J., Boland, M.P., Evans, A.C., Lonergan, P., 2006. Suppressed expression of genes involved in transcription and translation in in vitro cultured bovine embryos. Reproduction, 131: 651–660.
Davies, C.J., Eldridge, J.A., Fisher, P.J., Schafer, D.H., 2006. Evidence for expression of both classical and non-classical major histocompatibility complex class I genes in bovine trophoblast cells. American Journal of Reproductive Immunology, 55: 188–200.
Dawson, K.A. 2006. Nutrigenomics: Feeding the genes for improved fertility. Animal Reproduction Science, 96: 312–322.
Deroo, B.J., Hewitt, S.C., Peddada, S.D., Korach, K.S., 2004. Estradiol regulates the thiorodoxin antioxidant system in the mouse uterus. Endocrinology, 145: 5485–5492.
Edens, F.W., Gowdy, K.M., 2004. Selenium sources and selenoproteins in practical poultry
production. In: Lyons, T.P., Jacques, K.A. (Eds.), Nutritional Biotechnology in the Feed and Food Industries. Proceedings of Alltech’s Twentieth Annual Symposium, 35–55.

Jones, K.L., King, S.S., Iqbal, M.J., 2004. Endophyte-infected tall fescue diet alters gene expression in heifer luteal tissue as revealed by interspecies microarray analysis. *Molecular Reproduction and Development*, 67: 154–161.

Kaput J., Ordovas J.M., Ferguson L., ve ark. 2005. The case for strategic international alliances to harness nutritional genomics for public and personal health. *British Journal of Nutrition*, 94: 623–632.

Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J., Taketo, M.M., 1996. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. *Developmental Biology*, 178: 179–185.

Muller M., Kersten S., 2003. Nutrigenomics: goals and strategies. *Nature Reviews Genetics*: 4, 315–322.

Naziroglu, M., Gur, S., 2000. Antioxidants and lipid peroxidation levels of blood and cervical mucus in cows in relation to pregnancy. *Dtsch Tierarztl Wochenschr*, 107: 374–376.

Reverter, A., Byrne, K.A., Bruket, H.L., Wang, Y.H., Dairymple, B.P., Lehnert, S.A., 2003. A mixture model-based cluster analysis of DNA microarray gene expression data on Brahman and Brahman composite steers fed high-, medium- and low-quality diets. *Journal of Animal Science*, 81: 1900–1910.

Robinson, J.J., Ashworth, C.J., Rooke, J.A., Mitchell, L.M., McEvoy, T.G., 2005. Nutrition and fertility in ruminant livestock. *Animal Feed Science and Technology*, 126: 259–276.

Shalini, S., Bansal, M.P. 2005. Role of selenium in regulation of spermatogenesis: involvement of activator protein 1. *Biofactors*, 23: 151–162.

Swanson, K.S., Schook, L.B., Fahey, G.C., 2003. Nutritional genomics: implications for companion animals. *Journal of Nutrition*, 133: 3033–3040.

Zduńczyk, Z., Pareek, Ch. S., 2009. Application of nutrigenomics tools in animal feeding and nutritional research. *Journal of Animal and Feed Sciences*, 18: 3–16.