Listeria monocytogenes Invades the Epithelial Junctions at Sites of Cell Extrusion

Mickey Pentecost¹, Glen Otto², Julie A. Theriot¹,³, Manuel R. Amieva¹,⁴,∗

1 Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America, 2 Department of Comparative Medicine, Stanford University, Stanford, California, United States of America, 3 Department of Biochemistry, Stanford University, Stanford, California, United States of America, 4 Department of Pediatrics, Stanford University, Stanford, California, United States of America

Listeria monocytogenes causes invasive disease by crossing the intestinal epithelial barrier. This process depends on the interaction between the bacterial surface protein InlA and the host protein E-cadherin, located below the epithelial tight junctions at the lateral cell-to-cell contacts. We used polarized MDCK cells as a model epithelium to determine how *L. monocytogenes* breaches the tight junctions to gain access to this basolateral receptor protein. We determined that *L. monocytogenes* does not actively disrupt the tight junctions, but finds E-cadherin at a morphologically distinct subset of intercellular junctions. We identified these sites as naturally occurring regions where single senescent cells are expelled and detached from the epithelium by extrusion. The surrounding cells reorganize to form a multicellular junction that maintains epithelial continuity. We found that E-cadherin is transiently exposed to the luminal surface at multicellular junctions during and after cell extrusion, and that *L. monocytogenes* takes advantage of junctional remodeling to adhere to and subsequently invade the epithelium. In intact epithelial monolayers, an anti-E-cadherin antibody specifically decorates multicellular junctions and blocks *L. monocytogenes* adhesion. Furthermore, an *L. monocytogenes* mutant in the Internalin A gene is completely deficient in attachment to the epithelial apical surface and is unable to invade. We hypothesized that *L. monocytogenes* utilizes analogous extrusion sites for epithelial invasion in vivo. By infecting rabbit ileal loops, we found that the junctions at the cell extrusion zone of villus tips are the specific target for *L. monocytogenes* adhesion and invasion. Thus, *L. monocytogenes* exploits the dynamic nature of epithelial renewal and junctional remodeling to breach the intestinal barrier.

Citation: Pentecost M, Otto G, Theriot JA, Amieva MR (2006) *Listeria monocytogenes* invades the epithelial junctions at sites of cell extrusion. PLoS Pathog 2(1): e3.

Introduction

Listeria monocytogenes, a Gram-positive, facultative intracellular bacterial pathogen, is a source of human foodborne illness [1,2]. It was first discovered as a causative agent of septicemia in rabbits [3]. In humans it causes a range of clinical manifestations from asymptomatic intestinal carriage and gastroenteritis to invasive and disseminated disease. Septicemia, meningoencephalitis, and infection of the fetus in pregnant women are the most serious manifestations of listeriosis [1]. The gastrointestinal tract is the primary site of entry for pathogenic *Listeria* species, and contaminated food is the major source of infection in both epidemic and sporadic cases [4,5]. After invasion of the small intestine, *L. monocytogenes* can spread to and infect the liver, spleen, central nervous system, and, in pregnant women, the placenta [1].

Invasion of non-phagocytic cells by *L. monocytogenes* is mediated by at least two bacterial surface proteins, Internalin A (InlA) and Internalin B (InlB) [6–8]. InlA binds an extracellular domain of E-cadherin, a transmembrane cell-to-cell adhesion molecule [9–13]. InlA is necessary for invasion of epithelial cells and is sufficient to reconstitute invasion when expressed in the non-pathogenic and non-invasive species, *Listeria innocua* [6,9,11]. InlB binds the extracellular domain of c-Met, a receptor tyrosine kinase [14]. Although InlB is unrelated by sequence or structure to the endogenous c-Met ligand, hepatocyte growth factor, it acts as an exogenous c-Met agonist and mediates *L. monocytogenes* invasion of multiple cell types [8,14–23]. InlB acts synergistically with InlA during invasion of cultured epithelial cells through an unknown mechanism [8,17,24].

The anatomical site and the mechanism by which *L. monocytogenes* breaches the intestinal epithelial barrier are controversial. In mice, *L. monocytogenes* invasion and replication within the gastrointestinal tract is independent of InlA and is restricted to the Peyer’s patches, suggesting a predominant role for specialized phagocytic M-cells in bacterial uptake [13,25–28]. Similarly in rats, intestinal translocation rates are low and independent of the inlAB locus, suggesting a passive process that does not involve InlA or InlB [29]. However, mice and rats are not natural hosts for *L. monocytogenes*. Furthermore, mouse and rat E-cadherin differ from human E-cadherin at an important amino acid residue that renders cells resistant to InlA-mediated invasion [13]. In contrast, *L. monocytogenes* can directly invade enterocytes in guinea pigs, which are naturally susceptible to listeriosis [27,30]. In transgenic mice, enterocytes expressing human E-cadherin are also susceptible to invasion by *L. monocytogenes* [27].

Editor: Pascale Cossart, Institut Pasteur, France

Received October 18, 2005; Accepted December 19, 2005; Published January 27, 2006

DOI: 10.1371/journal.ppat.0020003

Copyright: © 2006 Pentecost et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations: CFU, colony forming unit; GFP, green fluorescent protein; IM, intramuscular; InlA, Internalin A; InlB, Internalin B; MDCK, Madin-Darby canine kidney; MOI, multiplicity of infection; PBS, phosphate-buffered saline; Wt, wild-type

* To whom correspondence should be addressed. E-mail: amieva@stanford.edu

† These authors contributed equally to this work.
How *L. monocytogenes* gains access to E-cadherin in vivo remains an important and unresolved issue, since E-cadherin is present primarily on the lateral membranes, but not on the apical surface of intestinal epithelial cells [31–33]. Several lines of evidence suggest that *L. monocytogenes* invade polarized epithelial cells most efficiently from the basolateral side [34,35]. First, *L. monocytogenes* preferentially infect the lateral edges of islets of cultured epithelial cells [34,35]. Second, *L. monocytogenes* invasion decreases with epithelial monolayer maturity. Third, *L. monocytogenes* invasion of a confluent epithelial monolayer can be increased by disrupting the intercellular junctions, thereby exposing lateral cell membranes [34]. It has been proposed that *L. monocytogenes* gain access to E-cadherin during an apical infection through the activation of c-Met by InlB [36]. However, c-Met is also a basolateral receptor and is not known to be exposed or activated by hepatocyte growth factor on the apical side of epithelia [37,38].

We used Madin-Darby canine kidney (MDCK) cells to investigate how *L. monocytogenes* breaches the apical surface of an epithelial barrier. We chose this cell line because MDCK cells form a polarized epithelium with tight junctions when grown on permeable filter supports [39], and because MDCK cells are permissive for *L. monocytogenes* invasion [40]. Moreover, canine E-cadherin is identical to human E-cadherin in the critical InlA binding region, and InlB activates c-Met signaling in MDCK cells [14]. We show here that apical invasion of an MDCK epithelium by *L. monocytogenes* regularly occurs and is critically dependent on the interaction between InlA and E-cadherin. Detailed microscopic analyses of adhesion and entry reveal that *L. monocytogenes* has a specific tropism for the junctions at cell extrusion sites where E-cadherin is transiently exposed to the apical surface. This mode of entry suggested that *L. monocytogenes* invasion and translocation of the small intestine might occur at the apical tips of the intestinal villi, where enterocytes apoptose and are expelled into the intestinal lumen by a normal mechanism of cell extrusion. We confirmed this hypothesis in a rabbit ileal loop infection model [41].

Results

L. monocytogenes Invades the Epithelium at Distinct Multicellular Junction Sites

We infected polarized MDCK monolayers on Transwell filters from the apical or basal side to determine whether *L. monocytogenes* differentially invade these two membrane domains. After 10 min, the monolayers were washed to remove non-adherent bacteria, and the cell-associated *L. monocytogenes* were allowed to invade the epithelium for 1 h. Any remaining extracellular bacteria were killed with gentamicin for 20 min, and viable intracellular *L. monocytogenes* were quantified. Bacterial infection in these conditions did not disrupt the integrity of the monolayer (Figure S1). Basal invasion of a polarized MDCK epithelium is 5-fold more efficient than apical invasion (Figure 1A), despite the fact that the filter support masks 85% of the basal surface area. We tested a range of multiplicity of infections (MOIs) from 1 to 150 bacteria per cell and found that the higher level of basal invasion is independent of the infectious dose (p < 0.01). However, at all inocula tested, there was a detectable level of apical invasion.

We analyzed the sites of apical versus basal invasion by confocal immunofluorescence microscopy. At various time points after internalization, monolayers were fixed and probed with antibodies to *L. monocytogenes*. The infected monolayers were counterstained for the tight junctions (anti–ZO-1). We observed that sites of basal infection were distributed throughout the monolayer (Figure 1B). In contrast, we noted that after apical infection, *L. monocytogenes* concentrate at distinct sites where multiple (five or more) elongated cells join at a central multicellular junction (Figure 1C–1F). By 3 h of infection, small foci of replicating bacteria are found within cells at multicellular junction sites (Figure 1D), and by 5 h, large foci of bacteria are localized at the original sites of entry (Figure 1E). These bacteria were viable and replicative, since they had acquired actin-based intracellular motility as indicated by the associated tail of polymerized actin (Figure 1D, inset) [40,42–44]. Virtually all *L. monocytogenes* foci (97% ± 1.1%, mean ± SD; 3 h post-infection) are centered at multicellular junctions made by five or more MDCK cells. However, multicellular junctions are specialized sites of invasion only from the apical side. In contrast to apical infection, less than 1% of basally infected cells were associated with a multicellular junction joining five or more cells (Figure 1B).

To confirm that cells with multicellular junctions are the primary sites of apical invasion, we used a mutant of *L. monocytogenes* that invades host cells normally but is unable to spread to adjacent cells because it lacks the *actA* gene, which is necessary for actin-based cell-to-cell spread (ΔactA, Figure 1F) [43,45]. At 3 h post-infection, ΔactA *L. monocytogenes* infected cells are members of multicellular junction sites with a frequency of 97% ± 0.8%.

Apical Attachment to Multicellular Junctions Is Dependent on Internalin A

We infected polarized MDCK monolayers with wild-type (WT) *L. monocytogenes*, an *inlA*-deletion mutant (Δ*inlA*), or an *inlB*-deletion mutant (Δ*inlB*) to determine which invasins are needed for apical invasion. Following a period of internalization, the infected monolayers were treated with gentami-
cin and then the number of viable intracellular bacteria was determined (Figure 2). Apical invasion requires InlA, since ΔinlA L. monocytogenes invasion is almost eliminated (2% of Wt, Figure 2A). Invasion by ΔinlB L. monocytogenes is also reduced (43% of Wt, Figure 2A). However, when ΔinlB invasion was analyzed by confocal microscopy, the tropism for multicellular junction sites remained (98% ± 1.4% of foci; 3 h post-infection).

To determine whether the defects in invasion are due to defects in attachment, we infected polarized MDCK monolayers for 10 min, removed non-adherent bacteria, and quantified attachment by confocal immunofluorescence.
adhesion, we counted the number of *L. monocytogenes* to determine whether there is a preferred junction type for infection but not attachment. Each cell in an epithelium joins more than one cell through a cell-to-cell junction. However, a fraction of cell junctions joins a group of cells at a single point to form a multicellular junction. The number of cells that come together to form a junction can be used to define a “junction type.” In Figure 3 we plotted the frequency of each junction type in the form of a bar graph, noting that junctions joining an increasing number of cells (Figure 3, Pearson correlation coefficient for Wt *L. monocytogenes* $r = 0.95$, $p = 0.0001$; *ΔinlB* *L. monocytogenes* $r = 0.85$, $p = 0.0037$). This correlation between increasing multicellularity at a junction and bacterial attachment is striking, given that the frequency of multicellular junctions rapidly decreases. Overall, 74% of *L. monocytogenes* were adhered at multicellular junctions joining five or more cells, which represent only 2% of all junctions.

We found no indication that *L. monocytogenes* induce these sites through alterations of cellular or junctional morphology, since infected and uninfected monolayers have the same frequencies of junctional types, and since *L. monocytogenes* are associated with these sites rapidly, within 5 to 10 min of infection. We therefore concluded that *L. monocytogenes* take advantage of preexisting multicellular junctions as a special site on the epithelial surface that permits adhesion and invasion.

Multicellular Junctions Form and Persist at Sites of Cell Extrusion

Since junctions are dynamic structures, we asked when and where multicellular junctions form in an MDCK epithelium. Sites with similar morphology were shown to develop when apoptotic cells are extruded from the epithelial monolayer into the apical media [46,47]. We confirmed that multicellular junctions form during cell extrusion in uninfected MDCK monolayers and analyzed the kinetics of this process by time-lapse video microscopy (Figure 4A, Video S1). A cell targeted for extrusion is initially morphologically indistinguishable from the surrounding cells (Figure 4A, 0 h). Once the extrusion process is initiated, it occurs rapidly, within approximately 40 min (Figure 4A, 1 h), leaving a characteristic rosette-like arrangement of the surrounding cells with a central multicellular junction. This pattern of cellular and junctional organization is maintained for several hours longer than the actual extrusion event (Figure 4A, 6 h). No monolayer defects were detected at these sites, since the adjacent cells reorganize to maintain epithelial continuity.

To examine entire monolayers for sites of cell extrusion, we stained extruding cells with Sytox green and examined them by confocal immunofluorescence microscopy. This high affinity nucleic acid dye stains the nuclei of dying or dead cells but cannot cross the impermeable membranes of live cells. Sytox staining revealed cells in various stages of the extrusion process. Before a dying cell is extruded, the tight junctions surrounding the cell dip toward the basal side of the monolayer (Figure 4B–4D). When a cell is nearly extruded from the monolayer, the surrounding cells form a funnel-shaped multicellular junction below the plane of the Sytox-positive cell nucleus (Figure 4C). Even after the loss of Sytox-positive cells, staining of the epithelial monolayer nuclei can pinpoint extrusion sites since there is always a conspicuously missing nucleus at multicellular junctions joining five or more cells. Furthermore, the funnel-like rearrangement of junctions persists after extrusion has completed (Figure 4D).

L. monocytogenes Attachment Sites Are Sites of Cell Extrusion

To determine whether *L. monocytogenes* sites of adhesion are equivalent to sites of cell extrusion, we reexamined bacterial adhesion sites with regard to 1) the presence of extruding cells (Sytox), 2) missing nuclei (toto-3), and 3) the funnel-like microscopy. The vast majority of Wt *L. monocytogenes* (98% ± 1.5%) attach to polarized MDCK monolayers directly above ZO-1 staining, the site of the tight junctions (Figure 2C, 2D), and adhesion, like invasion, is concentrated at multicellular junction sites (Figure 2C, 2D). Adhesion is entirely dependent on InlA, since we did not find any *ΔinlA* *L. monocytogenes* associated with the epithelium using an equivalent inoculum (Figure 2B). In contrast, *ΔinlB* *L. monocytogenes* adheres to polarized MDCK monolayers as frequently (Figure 2B) and as specifically to the junctions (98% ± 1.2%) as Wt. These results suggest that InlA is the major adhesion, that adhesion is required for entry, and that InlB contributes to internalization but not attachment.

Quantitative Analysis of *L. monocytogenes* Adhesion Sites

To quantitatively define the tropism between *L. monocytogenes* and multicellular junctions, we first characterized the frequency and distribution of multicellular junctions throughout the monolayer, and then related this to sites of bacterial attachment. Each cell in an epithelium joins more than one cell through a cell-to-cell junction. However, a fraction of cell junctions joins a group of cells at a single point to form a multicellular junction. The number of these cells that come together to form a junction can be used to define a “junction type.” In Figure 3 we plotted the frequency of each junction type in the form of a bar graph, noting that junction types with increasing multicellularity are less common. To determine whether there is a preferred junction type for *L. monocytogenes* adhesion, we counted the number of *L. monocytogenes* associated with each junction type, and plotted these, too, in Figure 3. We find an increasing number of bacteria colocalize with junctions joining an increasing number of
rearrangement of the tight junctions (anti–ZO-1). Figure 5A shows that *L. monocytogenes* adheres to the junctions at sites where cells are in the process of extrusion (also see Video S2). These sites represent a small subset of multicellular junctions since the extrusion process occurs rapidly. All *L. monocytogenes* adhesion sites at multicellular junctions joining five or more cells have the characteristic absence of a nucleus (Figure 5B) and funnel-like rearrangement of the tight junctions (Figure 5A). Therefore, these are also sites where cell extrusion has occurred recently.

L. monocytogenes Adheres to Transiently Exposed E-cadherin at Sites of Cell Extrusion

We hypothesized that the molecular basis of apical adhesion might be E-cadherin exposed at cell extrusion sites, since ΔinlA *L. monocytogenes* do not adhere to the apical surface of polarized MDCK monolayers, whereas Wt and ΔinlB *L. monocytogenes* adhere primarily at multicellular junctions. Non-permeabilized polarized MDCK monolayers were incubated on the apical side with a monoclonal antibody that detects the extracellular domain of E-cadherin [48,49]. Apical E-cadherin is readily detected at the multicellular junctions associated with cells in the process of extrusion (Figure 6A) as well as at multicellular junction sites where an extruded cell has already been lost (Figure 6B). Adhered *L. monocytogenes* are commonly found over regions of apical E-cadherin exposure at cell junctions (Figure 6C). Furthermore, incubating polarized MDCK monolayers in low calcium medium, which disrupts the intercellular junctions, increases *L. monocytogenes* adherence to the epithelium specifically at intercellular regions where E-cadherin is exposed (Figure S2).

To confirm that the receptor for *L. monocytogenes* at multicellular junctions is E-cadherin and not a novel InlA receptor, we blocked apical E-cadherin by pretreating live MDCK monolayers with the anti–E-cadherin antibody, or the equivalent amount of antibody for the apical glycoprotein gp135 as a control [50]. To ensure that equal amounts of anti–E-cadherin and anti-gp135 antibodies were used, we determined the relative antibody concentrations using a quantitative dot blot analysis of the antibody solutions (Figure 6D).
The anti-E-cadherin antibody, which only stains multicellular junctions, blocks adhesion by 70%. In contrast, the anti-gp135 antibody, which decorates the entire apical surface, has no effect on L. monocytogenes adhesion (Figure 6D and 6E). These results suggest that there exists a temporal window of junctional reorganization during cell extrusion that transiently exposes E-cadherin for adhesion of L. monocytogenes.

L. monocytogenes Invades Multicellular Junctions at the Villus Tip Extrusion Zone

In the small intestine, enterocytes are generated within the crypts and migrate up the lateral sides of the villi [51]. The apex of the villus is defined as the extrusion zone, where enterocytes undergo programmed cell death and are expelled into the intestinal lumen [51,52]. Therefore, in contrast to an MDCK epithelium, where cell extrusion occurs throughout the monolayer, cell turnover in vivo is temporally and spatially regulated.

Our cell culture results predicted that L. monocytogenes’ invasion of intestinal epithelium would occur preferentially at the tips of the villi. We infected rabbit ileal loops with Wt L. monocytogenes and examined the sites of in vivo attachment and entry to test this hypothesis. This experimental system was used because rabbits are natural hosts for L. monocytogenes and rabbits have InLA-permissive E-cadherin [3,13]. Figure 7 shows three-dimensional confocal reconstructions of villi from a rabbit ileal loop infected with \(4 \times 10^7\) CFU/ml of Wt-GFP L. monocytogenes for 4 h. By imaging multiple 40X fields, we estimate that at least 50% of villi had L. monocytogenes associated with the villus tips (Figure 7B and Video S3). Although L. monocytogenes were embedded in the mucus above and between villi, we did not find L. monocytogenes associated with the epithelium along the lateral sides of the villi, or with cells of the intestinal crypts (Figures 7A and S2A). The same result was observed in ileal loops infected with Wt L. monocytogenes that do not express GFP visualized with anti-L. monocytogenes antibodies (unpublished data). We did not find L. monocytogenes associated with Peyer’s patches (Figure S3), although there were L. monocytogenes associated with the tips of villi surrounding Peyer’s patches (Figure S3C).

We determined that L. monocytogenes invasion preferentially occurs at the tips of the intestinal villi, since intracellular
bacteria could only be found at the villus tips after the 4-h infection (Figure 7A). Some intracellular \textit{L. monocytogenes} had already accumulated actin on their surfaces, indicating that they were viable and had escaped from the internalization vacuole (Figure 7C). As an additional control for the viability of internalized bacteria, we infected a rabbit ileal loop with a strain of \textit{L. monocytogenes} carrying a transgene with monomeric red fluorescent protein fused to ActA (ActA-RFP) [53]. Since the ActA protein is expressed only after bacteria enter the host cell cytoplasm [54,55], these bacteria express ActA-RFP only after successful invasion [53]. ActA-RFP–expressing \textit{L. monocytogenes} were only found at the tips of the villi (Figure S3D).

\textbf{Discussion}

Many pathogenic microbes preferentially interact with constituents of basolateral epithelial cell membranes for invasion [33,56]. For example, the parasite \textit{Toxoplasma gondii} somehow breaches the tight junctions to migrate between cells [57]. Rotaviruses bind integrins, a class of adhesion and signaling molecules found solely on the basolateral sides of enterocytes [58]. The bacterium \textit{Shigella flexneri}, like \textit{Listeria monocytogenes}, preferentially invades the basolateral membranes of polarized epithelial cells [34,59]. Paradoxically, the basolateral aspect of epithelial cells is not readily accessible to most microbes. In addition to the mechanical clearing mechanisms and immune defenses of the luminal compartment, the tight junctions of epithelia restrict access to the basolateral membrane domain. Some pathogens have evolved mechanisms to undermine, modify, or bypass the epithelial tight junctions. For example, \textit{Vibrio cholerae} secretes a protease...
that can degrade the tight junction protein occludin [60]. *Helicobacter pylori* and enteropathogenic *E. coli* disrupt the junctions from the inside out by injecting effector proteins into epithelial cells [61,62]. Yersinia circumvent the tight junctions of enterocytes by accessing β1-integrin receptors exposed on the apical surface of M-cells [63–67]. In this study we asked how *L. monocytogenes* gains access to its basolateral receptors E-cadherin and c-Met in an intact epithelium since this bacterial pathogen is not known to actively disrupt the epithelial tight junctions.

We found that *L. monocytogenes* is able to invade a polarized epithelium from the apical side essentially only at vulnerable points formed by extrusion of senescent cells. As the first step of invasion, *L. monocytogenes* adhere almost exclusively over multicellular junctions, and adhesion is dependent on expression of InLA, suggesting that its receptor is available at these junctions. Indeed, when we pretreated the apical side of monolayers with an anti-E-cadherin blocking antibody, adhesion was significantly reduced, demonstrating that *L. monocytogenes* does access E-cadherin at junctional sites.

How does *L. monocytogenes* encounter E-cadherin across the tight junctions? It has been hypothesized that *L. monocytogenes* could breach the junctions though the activation of c-Met by InlB, since c-Met signaling modulates junction assembly [38,68]. However, we found that active disruption of the junctions was not necessary, since attachment occurs rapidly, since an inlB-mutant was not impaired for adhesion, and since E-cadherin is transiently exposed apically at normally occurring multicellular junction sites. Multicellular junctions represent only 2% of all junctions in a monolayer but are the sites of adhesion for 74% of all *L. monocytogenes*. Interestingly, invasion is even more specific for these sites than adhesion, since foci of intracellular *L. monocytogenes* are associated with multicellular junctions 97% of the time. These data compelled us to determine the nature of the multicellular junctions susceptible to *L. monocytogenes* invasion, identifying them as sites of apoptotic cell extrusion. During this process, senescent cells are released apically while the adjoining cells rapidly move in to seal the epithelial defect [46,47], forming a multicellular junction that persists for many hours.

Biochemical studies have shown that both tight junction proteins and adherens junction proteins are degraded in apoptotic cells, which may facilitate their detachment from neighboring cells [69–72]. Junctional remodeling creates a transient breach of the epithelial barrier, as it has been shown that cell extrusion produces localized defects in trans-epithelial electrical resistance [73]. We also documented junction remodeling and disruption, since the tight junctions at extrusion sites are reorganized basally in a funnel-like shape and since E-cadherin is exposed at these sites. These structural rearrangements render the multicellular junctions susceptible to apical invasion by *L. monocytogenes*. The sites of *L. monocytogenes* attachment to polarized monolayers are spatially closely associated with tight junctions, as marked by the scaffolding protein ZO-1. Previous work using freeze fracture and electron microscopy has shown that the tight junction strands surrounding extruding cells are in the process of being remodeled [74]. Several possibilities exist to explain the availability of E-cadherin to *L. monocytogenes* at these sites. For instance, tight junction strand remodeling could result in a local loss in fence function, and localization of E-cadherin above the tight junctions. Alternatively, the process of tight junction formation and remodeling may involve interactions between tight junction proteins, the scaffolding protein ZO-1, and the E-cadherin complex that could result in E-cadherin exposure on the apical surface [75].

The tropism of *L. monocytogenes* for extrusion sites is not exclusive to cultured cells but also occurs in vivo. Cell production within the intestinal crypts is balanced by cell shedding from the extrusion zone at the villus tips [51]. Therefore, we predicted this anatomical site would be the target for *L. monocytogenes* invasion in vivo. Studies exploring the initial site of *Listeria* entry in mice suggest that *L. monocytogenes* cannot invade enterocytes, but rather crosses the epithelium through M-cells of the Peyer’s patches [26,28,76]. Although this may represent an important site of entry at very high inocula, it is unlikely to be the primary site of epithelial invasion because mice and rats are not naturally susceptible to listeriosis due to differences in E-cadherin in the InLA binding region [13]. In contrast, an early electron microscopy study of intestinal tissue from orally inoculated guinea pigs found intracellular *L. monocytogenes* within enterocytes near the tips of the intestinal villi [30]. In another study using guinea pigs and transgenic mice expressing human E-cadherin in enterocytes, foci of *L. monocytogenes* were found within the intestinal villi near the apical tips [27]. Consistent with these observations, we found that *L. monocytogenes* adhere to and invade exclusively at the villus tips and found no bacteria invading lateral sides of villi, the intestinal crypts, or the Peyer’s patches. Examining the villus tips more closely, we readily found that the invading bacteria were associated with multicellular junctions and the junctions underlying protruding cells at the extrusion zone. Our results suggest that E-cadherin, and possibly other basolateral proteins, become exposed at the extrusion zone. We believe that cell extrusion sites will prove to be utilized by other pathogens as a general mechanism for accessing basolateral receptors.

Cell extrusion from the villus tips is a rapid and continuous process [51]. Therefore, in addition to providing a means for *L. monocytogenes* to evade the immune system [77], actin-based cell-to-cell spread within the villus tip may be beneficial to maintain an intracellular replicative niche in the face of a dynamically renewing system. The ability of *L. monocytogenes* to thrive and spread intracellularly is clearly responsible for its capacity to cause severe invasive disease and to disseminate to distant organs. However, *L. monocytogenes* causes invasive disease in immunocompetent individuals only rarely, after ingestion of very high numbers of bacteria [1], and instead is shed asymmetrically by at least 1% of healthy humans [78,79]. The mechanisms of asymptomatic carriage of *Listeria* have only recently come under investigation. One study in a murine model of infection found that *L. monocytogenes* survive intracellularly in the lumen of the gall bladder [80]. Since colonization of this anatomic site did not involve any of the known *L. monocytogenes* adaptations for intracellular survival, we speculate that an alternative mechanism of asymptomatic carriage may involve local invasion of the villus tips, intracellular replication, and cell-to-cell spread balanced by villus cell renewal.

Materials and Methods

MDCK cell culture. MDCK GI1 cells were kindly provided by Dr. W. James Nelson (Stanford University, Stanford, California) and were
maintained at 37 °C in 5% CO₂ atmosphere in Gibco DMEM (Invitrogen, San Diego, California, United States) supplemented with 10% Gibco fetal bovine serum (Invitrogen). To culture polarized MDCK monolayers, cells were trypsinized and seeded on 12-mm polycarbonate tissue culture inserts (Transwell filters; Costar, Cambridge, Massachusetts, United States) at a density of 10⁵ cells/cm² and supplemented with fresh MEM containing 0.1% non-essential amino acids and 0.1% thymidine and 10% FBS. For all other experiments, cells were cultured on 0.4-μm-pore Transwell filters. To disrupt calcium-dependent intercellular junctions, immediately prior to infection, MDCK monolayers were incubated in low calcium media (5 μM Ca²⁺; [81]) for 30 min, and then switched back to DMEM (1.8 mM Ca²⁺).

L. monocytogenes strains and culture conditions. 10403S, a WT L. monocytogenes strain; Dr. Diego A. Portnoy (University of California, Berkeley, California, United States) was utilized for construction of ΔinlA filter. ΔinlA was kindly provided by Dr. Daniel A. Portnoy (University of California, Berkeley, California, United States) and have been described previously [45,82]. GFP-L. monocytogenes were grown in DMEM supplemented with 1% FBS or in BHI broth (BDIC Biosciences, California). Cultures of ΔinlA-RFP and WT-GFP were supplemented with chloramphenicol. For infection, L. monocytogenes strains were inoculated with a loop from a fresh plate into 3-ml BHI-broth and grown at 37 °C in 5% CO₂ atmosphere up to 5:00. At appropriate time points, the above infection sequence was interrupted in order to assay for L. monocytogenes adhesion, invasion, or intracellular replication as described below.

Assays of L. monocytogenes cell adherence and invasion. Bacterial cells were harvested at 10,000 g for 1 min and resuspended to 0.5 OD₅₅₀ (7 × 10⁶ CFU/ml) in room temperature DMEM. Immediately prior to infection, MDCK cells were transferred to 37 °C DMEM. *L. monocytogenes* were added to polarized MDCK cells at an MOI of 140:1 bacteria/cell in 500 μl of DMEM and were allowed to adhere for 10 min at 37 °C in 5% CO₂ atmosphere. Cell-growth media and by pipeting with 3 changes of fresh 37 °C DMEM to remove non-adhered *L. monocytogenes*. This point was considered time 0:00 for all analyses. Invasion of cells was allowed to proceed for 1 h in DMEM at 37 °C in 5% CO₂ atmosphere (1:90). The medium was replaced with DMEM containing 50 μg/ml gentamicin and incubated for 20 min to kill extracellular *L. monocytogenes* (1:20). Finally, the medium was replaced with DMEM containing 10 μg/ml gentamicin and incubated at 37 °C in 5% CO₂ atmosphere up to 5:00. At appropriate time points, the above infection sequence was interrupted in order to assay for *L. monocytogenes* adhesion, invasion, or intracellular replication as described below.

To assay for cell adhesion, at 0:00, monolayers were either fixed and analyzed by microscopy or dispersed and plated for colony forming units (CFUs). Adhesion by microscopic analysis was determined by three independent experiments from each of at least three infected monolayers per blocking condition. For adhesion by CFU counts, the entire Transwell-monolayer excised from the frame was dispersed by 15 s of vortex agitation in 500 μl of phosphate-buffered saline (PBS) 1% saponin. Appropriate dilutions of the suspension were plated onto BHI-agar. Short-term PBS incubation and the presence of saponin were determined not to affect *L. monocytogenes* viability (unpublished data). To assay for cell invasion, at 1:20, monolayers were washed by pipeting with three changes of fresh 37 °C DMEM to remove gentamicin. Intracellular *L. monocytogenes* were visualized by 15 s of vortex agitation in 500 μl of PBS 1% saponin. Appropriate dilutions of the suspension were plated onto BHI-agar for CFU determination. For analysis of intracellular replication, at various time points, cell monolayers were fixed and analyzed by immunofluorescence microscopy. To determine the percentage of invasion sites, at intracellular junctions, monolayers were fixed at 3:00. At least 100 randomly observed *L. monocytogenes* foci (or ΔinlA infected cells) were analyzed from each of at least three infected monolayers for each strain tested. Experiments were performed at least three times. Prism software (GraphPad, San Diego, California, United States) was used with a one-way analysis of variance (ANOVA) of each group of data. The Student’s t-test was used to compare two sample groups. ANOVA with Bonferroni post-tests were used to analyze three or more sample groups. Pearson product-moment correlation coefficient was used to analyze distributions.

Listeria Targets Remodeling Cell Junctions

To normalize the concentration of these antibodies, a dilution series of each was blotted under vacuum suction onto nitrocellulose using a 96-well biotid apparatus (Bio-Rad, Hercules, California, United States). The blot was allowed to dry fully, and then incubated for 1 h at room temperature in blocking solution containing a 1:1 mixture of Li-Cor blocking buffer (Li-Cor Biosciences, Lincoln, Nebraska) and PBS. The blot was incubated with L. monocytogenes antibodies (Molecular Probes, Eugene, Oregon, United States) diluted 1:5000 in blocking solution for 1 h. The blot was washed 3X for 5 min in PBS 0.1% Tween-20, 5X for 2 min in PBS, then imaged with a Li-Cor Odyssey infrared imaging system. The integrated intensity for each dot was quantified using Li-Cor Odyssey software.

Polarized MDCK cells were blocked at 4 °C for 30 min in 100 μl of apically applied DMEM 10% FBS (Mock), gp135 antibody in undiluted hybridoma supernatant, or mouse monoclonal anti-E- cadherin antibody diluted in DMEM 10% FBS to the same effective concentration (equivalent integrated fluorescence intensity) as the gp135 antibody. Cell monolayers were washed by pipeting with two changes of DMEM. *L. monocytogenes* were added to polarized MDCK cells at an MOI of 140:1 in 500 μl of media and were allowed to adhere for 5 min at room temperature. Cell monolayers were washed by pipeting with three changes of fresh room temperature DMEM to remove non-adhered *L. monocytogenes*. Cells and adherent *L. monocytogenes* were fixed and adhesion was quantified by microscopy analysis of at least 40 fields from each of three infected monolayers.

L. monocytogenes infection of rabbit ileal loops. The animal experimental protocol was reviewed and approved by the institutional animal care and use committee of Stanford University. Methods for ileal loop preparation and inoculation were modified from previous descriptions [41,85]. A New Zealand White rabbit weighing 15–35 kg was anesthetized with 10 μg/kg fentanyl and 0.2 mg/kg xylazine (5 mg/kg IM). An intravenous catheter was placed to allow fluid administration during the surgery (20 ml/kg/hr lactated Ringer’s solution), an endotracheal tube was placed and anesthesia was maintained using isoflurane gas. A midline celiotomy was performed to expose the bowel. The ileocecal junction was identified, and the ileum was double ligated with silk ties just proximal to the sacculus rotundus. A series of ligated loops were then prepared starting with the terminal ileum and working retrograde along the small intestine with particular care taken to preserve the vasculature and keep the gut moist. Infected loops ranged in length from 4.5–5 cm in length. A non-inoculated “spacer” loop of 2–3 cm was left between all inoculated loops. Loops were stretched and measured after preparation and then inoculated with 4 × 10⁸ CFU/ml Wt-GFP, Wt, ΔinlA, Acta-A-RFP *L. monocytogenes* in BHI broth using a 25-gauge needle to a volume of 0.1 ml per cm of loop to provide a uniform initial distention. After inoculation, the small intestine was returned to its normal anatomical position and the abdomen and skin incisions were sutured closed. Isoflurane administration was discontinued and the animal was moved to a recovery area and placed on a warm-water heating pad. The endotracheal tube was removed when the animal regained consciousness, and pain control was provided by the administration of hydromorphone post-operatively at a dose of 0.2 mg/kg IM, which was repeated every 2 h as needed. At the planned endpoint of 4 h post-inoculation, the animal was euthanized with an intravenous overdose of pentobarbital. Individual loops were harvested by incisions through spacer loops, and then opened, washed gently by pipeting with 20 ml/kg/hr lactated Ringer’s solution to remove adherent bacterial cells and stained with 1% aqueous toluidine blue for microscopic examination.

Microscopy and antibodies. Time-lapse microscopy was performed essentially as described in [86]. For immunofluorescence microscopy, samples were fixed with 2% paraformaldehyde in 100 mM phosphate buffer (pH 7.4) (15 min for cell monolayers, and 1 h for tissues), and were permeabilized in PBS 3% saponin 3% bovine serum albumin or left unpermeabilized by blocking samples and diluting antibodies probes in PBS 3% BSA. After incubation with appropriate antibody/probes, samples were mounted with Vectashield mounting medium (Vector Laboratories, Burlingame, California, United States) and observed with a confocal laser scanning microscope (Bio-Rad, Cambridge, United States) with a 60X water immersion objective. Images were captured using Velocity software (Improvision, Lexington, Massachusetts, United States). Figures were assembled with Photoshop software (Adobe, San Jose, California, United States).
L. monocytogenes were detected by incubation of samples with Listeria O antisera (rabbit) poly types 1 and 4, Difco, 1:600 dilution (BD Biosciences, San Jose, California, United States). Tight junctions were detected by incubating samples with mouse anti-ZO-1 antibodies (Zymed, South San Francisco, California, United States) at 1:300 dilution, and see [81]. E-cadherin was detected by incubating samples with mouse mAb r1, an antibody that recognizes an extracellular epitope of E-cadherin at 1:50 to 1:100 dilution [48,49]. GP135 was detected with mouse mAb anti-gp135 (clone 3F2/DB, undiluted hybridoma supernatant) [50]. Anti-IgG Alexa-fluor conjugated antibodies of appropriate species reactivity and fluorescence spectra were used for secondary detection (Molecular Probes). An immunofluorescence inside/outside staining that distinguishes extracellular from intracellular L. monocytogenes was modified from [87] with appropriate antibodies for this study. Actin was visualized by incubation with anti-acetylated tubulin antibodies with Alexa-fluor conjugated phalloidin (Molecular Probes). To visualize all nuclei, permeabilized samples were incubated with toto-3 (Molecular Probes). To visualize senescent cells, live samples were incubated with Sytox green (Molecular Probes).

Supporting Information

Figure S1. Preservation of Barrier Function during L. monocytogenes Infection of MDCK Cells Polarized on Transwell Filters

Triplicate samples of filters without cells, uninfected monolayers, and infected monolayers were examined. Confluent MDCK cells were polarized for 4 d on 0.4-μm Transwell filters prior to starting the experiments. At time zero, a set of monolayers was infected through the apical compartment, as described in Materials and Methods. After washing unattached bacteria, 500 ng of fluorescent dextran (conjugated to Alexa647 dye from Molecular Probes) diluted in media was added to the apical chambers. Samples from the basolateral compartment were collected at different timepoints, and the fluorescence intensity measured in a Li-Cor Odyssey scanner. A dilution series of dextran solution was used to generate a standard curve of fluorescence intensity relative to dextran concentration, and to determine the linear range of our measurements (top graph). A linear best-fit of the dilution series was used to calculate the background level (Y-intercept). The experimental samples were measured at 1 h intervals after start of infection. The fluorescence intensity was background subtracted, converted to a dextran quantity. Negative values were normalized to zero. The amount of dextran found in the basolateral compartment was plotted over time (bottom graph). Error bars represent one standard deviation from the mean of three independent samples.

Found at DOI: 10.1371/journal.ppat.0020003.sg001 (42 KB PDF).

Figure S2. Increased E-cadherin Exposure and L. monocytogenes Adhesion in Calcium-Depleted MDCK Monolayers

Polarized MDCK monolayers were untreated (Control) or incubated in low calcium medium (Low Ca2+) prior to apical infection with Wt L. monocytogenes and an MOI of 1:40:1 for 4 h. (A) Adhesion was determined by dispersion and plating for CFUs. Means and standard deviations of CFU/1000 cells from triplicate samples are shown. Sample groups are significantly different: unpaired t-test p < 0.001. (B) Region of a low Ca2+ monolayer stained for L. monocytogenes (green) and ZO-1 (red). (C) Region of a low Ca2+ monolayer left unpermeabilized and stained for L. monocytogenes (green) and E-cadherin (red). Scale bars 10 μm.

Figure S3. Lack of Association of L. monocytogenes Invasion with the Intestinal Crypts or the Peyer’s Patch

A rabbit ileal loop was infected with 4 × 10^6 CFU/ml of Wt L. monocytogenes expressing GFP (Wt-GFP) for 4 h. Optical sections through crypt-villus axis did not reveal L. monocytogenes associated with the intestinal crypts (arrows). L. monocytogenes were found at the tips of the villi (inset). Tissue was stained with antibodies to ZO-1 (red) and with toto-3 for nuclei (blue).

(B) A rabbit ileal loop with a Peyer’s patch was infected with 4 × 10^6 CFU/ml of Wt-GFP L. monocytogenes for 4 h. Tissue was stained with phalloidin for F-actin (red). L. monocytogenes were not found associated with the follicle associated epithelium overlaying the Peyer’s patch, (C) but were found at the tips of adjacent villi.

(B) A rabbit ileal loop was infected with 4 × 10^6 CFU/ml of ActA-RFP L. monocytogenes for 4 h. Red fluorescent bacteria were only found within cells at the tips of the villi stained with phalloidin for F-actin (blue).

(E) A rabbit ileal loop was infected with 4 × 10^6 CFU/ml of ΔinlA L. monocytogenes for 4 h. Tissue was stained with antibodies to L. monocytogenes (green), with fluorescent phalloidin for F-actin (red) and with toto-3 for nuclei. Optical section through a three-dimensional reconstruction of villus tips is shown. No intracellular ΔinlA L. monocytogenes were found.

Found at DOI: 10.1371/journal.ppat.0020003.sgs003 (1.7 MB JPG).

Video S1. Cell Extrusion

QuickTime DIC time-lapse video of cell extrusion from MDCK monolayer, shown in Figure 4A. Viewing requires QuickTime (free download from: http://www.apple.com/quicktime/download).

Found at DOI: 10.1371/journal.ppat.0020003.sv001 (555 KB MOV).

Video S2. L. monocytogenes Adhesion at Site of Cell Extrusion

QuickTime Virtual reality video of Figure 5A.

Found at DOI: 10.1371/journal.ppat.0020003.sv002 (7.1 MB MOV).

Video S3. Villus Tip Infected with Wt L. monocytogenes

QuickTime movie of a complete optical scan through a rabbit intestinal villus tip infected with Wt-GFP L. monocytogenes (green), and counterstained with phalloidin (red) to visualize the cytoskeleton, and with toto-3 (blue) to visualize nuclei.

Found at DOI: 10.1371/journal.ppat.0020003.sv003 (574 KB MOV).

Video S4. Villus Tip Infected with ΔinlA L. monocytogenes

QuickTime movie of an intestinal villus tip processed as in Video S3, but infected with 10X the amount (4 × 10^6 CFU/ml) of ΔinlA L. monocytogenes (green) than shown for Wt-GFP L. monocytogenes. Cells were counterstained with phalloidin (red) to visualize the cytoskeleton and toto-3 (blue) to visualize nuclei.

Found at DOI: 10.1371/journal.ppat.0020003.sv004 (417 KB MOV).

Acknowledgments

We are indebted to Roger Vogelmann, Susanne Rafelski, Alex Nielsen, Denise Monack, Stanley Falkow, W. James Nelson, Michael Howitt, and Fabio Bagnoli for technical assistance, experimental suggestions, and helpful discussions, and to Daniel A. Portnoy and Darren E. Higgins for providing bacterial strains. We thank Stanley Falkow, Denise Monack, and Roger Vogelmann for comments on the manuscript. A Cell and Molecular Biology Training Grant from the National Institutes of Health (T32 GM07276) supported MP. This work was supported by a grant from the National Institutes of Health (RO1 AI36929) awarded to JAT, and grants PO3 DK56339 and MedImmune Career Development Award to MRA.

Author contributions. MP, GO, JAT, and MRA conceived and designed the experiments. MP, GO, and MRA performed the experiments. MP, JAT, and MRA analyzed the data and wrote the manuscript. A Cell and Molecular Biology Training Grant from the National Institutes of Health (T32 GM07276) supported MP. This work was supported by a grant from the National Institutes of Health (RO1 AI36929) awarded to JAT, and grants PO3 DK56339 and MedImmune Career Development Award to MRA.

Competing interests. The authors have declared that no competing interests exist.

References

1. Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, et al. (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584–640.
2. Mead PS, Slutsker L, Dietz V, McGeer LF, Bresee JS, et al. (1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607–625.
3. Murray EDG, Webb RA, Swann MBR (1926) A disease of rabbits characterized by a large mononuclear leukocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J Pathol Bacteriol 29: 407–439.
4. Pinner RW, Schuchat A, Swaminathan B, Hayes PS, Deaver KA, et al. (1992) Role of foods in sporadic listeriosis. II. Microbiologic and epidemiologic investigation. The Listeria Study Group. JAMA 267: 2046–2050.
5. Farber JM, Peterkin PJ (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55: 476–511.
6. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein
ressence of surface antigens from gram-positive cocci. Cell 65: 1127–1141.

7. Cabanes D, Dehoux I, Fraigneau L, Grau G, Giron P, Sirotin D, et al. (2001) Multimeric adhesion is maintained by interactions between non-phagocytic mammalian cells and the surface of other mammalian cells. Mol Microbiol 43: 577–580.

8. Bergmann B, Dändliker E, Zheng Z, Hartl M, Rodricks P, et al. (1992) A novel bacterial virulence gene in Listeria monocytogenes is essential for adhesion and mediates the invasion of target cells. Mol Microbiol 6: 527–537.

9. Boller K, Vestweber D, Kemler R (1985) Cell-adhesion molecule uvomorulin is a component of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol 2: 11–17.

10. da Silva Tatley F, Aldwell FE, Dunbier AK, Guilford PJ (2003) N-terminal E-cadherin peptides act as decoy receptors for Listeria monocytogenes. Infect Immun 71: 1580–1583.

11. Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P (1997) Internalin of Listeria monocytogenes is essential for adhesion and mediates the invasion of target cells. Mol Microbiol 6: 527–537.

12. Lecuit M, Ohayon H, Mengaud J, Cossart P (1997) Internalization of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to activate invasion. Infect Immun 65: 5306–5319.

13. Lecuit M, Dramsi S, Fedor-Chaiken M, Gumbiner B, et al. (1999) A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18: 3565–3566.

14. Shen Y, Naujokas M, Park M, Ireton K (2000) InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103: 501–510.

15. Li N, Xiang GS, Dokainish H, Ireton K, Elferink LA (2005) The listeria internalin A single amino acid in E-cadherin responsible for host specificity towards Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect Immun 64: 1299–1308.

16. Temm-Grove CJ, Kucksh BM, Rohde L, Siebke C, Gorbach C, et al. (2000) Exploitation of microfilament proteins by Listeria monocytogenes. Microvillus-like composition of the comet tails and vectorial spreading in polarized epithelial sheets. J Cell Sci 107 (Pt 10): 2951–2960.

17. Cossart P, Pizarro-Cerda J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes. Functional mimicry to subvert cellular functions. Trends Microbiol 11: 377–383.

18. Crepaldi T, Palladini C, Prati M, Zorbor M, Mostov K, et al. (2004) Targeting of the SFHGF receptor to the basolateral domain of polarized epithelial cells. J Cell Biol 165: 313–320.

19. Balkovetz DF, Palladini C, Mostov KE (1997) Hepatocyte growth factor alters the polarity of Madin-Darby canine kidney cell monolayers. J Biol Chem 272: 3471–3477.

20. Ning W (2003) Adaptation of core mechanisms to generate cell polarity. Nature 426: 766–774.

21. Robbins JR, Barth AL, Marquin H, de Hostos EL, Ning WJ, et al. (1999) Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J Cell Biol 146: 1335–1350.

22. Bokelkert DF, Palladini C, Mostov KE (1997) Hepatocyte growth factor alters the polarity of Madin-Darby canine kidney cell monolayers. J Biol Chem 272: 3471–3477.

23. Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109: 1597–1604.

24. Kocks C, Gounin E, Tabouret M, Berche P, Ohayon H, et al. (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68: 521–531.

25. Domann E, Wehland J, Rohde M, Hauer K, Rock M, Nichterlein T, et al. (1995) Expression of the Listeria monocytogenes EGD in L. mono- cytogenes. Nature 422: 766–774.

26. Bergmann B, Raffelsbauer D, Kuhn M, Goetz M, Hom S, et al. (2002) The actin A gene product, a SH3-like and proline-rich region containing protein internalin B, concerns the interaction of intercellular adhesion molecule 1. Proc Natl Acad Sci U S A 97: 5625–5628.

27. Skoble J, Portnoy DA, Welch MD (2000) Three regions within actA promote invasion of Listeria monocytogenes into hepatocytes. J Cell Biol 150: 527–538.

28. Corfe BM, Dave C, Garrod DR (2000) Changes in intercellular junctions during apotosis precede nuclear condensation or phospholipidase A2 exposure on the cell surface. Cell Death Differ 7: 234–235.

29. Rosenblatt J, Raff MC, Cramer LP (2001) An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 11: 1847–1857.

30. Gumbiner B, Simons K (1986) A functional assay for proteins involved in the establishment of an epithelial occluding barrier: Identification of a uvomorulin-like polypeptide. J Cell Biol 102: 457–468.

31. Gumbiner B, Simons K (1987) The role of uvomorulin in the formation of tight junctions. Curr Opin Cell Biol 16: 86–93.

32. Okjian GK, Schimmel R (1988) The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. J Cell Biol 107: 2377–2387.

33. Balabanovs MW, Podolsky DK (2003) Growth and Development of the Gastrointestinal Tract. In: Yamada T, editor. Textbook of gastenterology. Philadelphia: Lippincott Williams & Wilkins. pp. 521–556.

34. Sancho E, Battle C, Clevies H (2004) Signaling pathways in intestinal epithelial cell development and cancer. Curr Opin Cell Biol 16: 105–111.

35. Barragan A, Brossier F, Sibley LD (2005) Trans epithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MEC2. Cell Microbiol 7: 561–568.

36. Rafelski SM, Theriot JA (2005) Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility. Biophys J 89: 2146–2158.

37. Freitag NE, Jacobs KE (1999) Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect Immun 67: 1844–1852.

38. Shettron-Rama LM, Marquis H, Bouver HY, Freitag NE (2002) Intra- cellular induction of Listeria monocytogenes actA expression. Infect Immun 70: 1087–1096.

39. Vogelmann R, Amievka M, Falkow S, Ning WJ (2004) Breaking into the intestinal barrier. Curr Opin Cell Biol 16: 86–93.

40. Barragan A, Brossier F, Sibley LD (2005) Trans epithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MEC2. Cell Microbiol 7: 561–568.

41. Guerrero CA, Mendez E, Zarrate S, Isla P, Lopez S, et al. (2006) Integrin alpha(v)beta3 mediates rotavirus cell entry. Proc Natl Acad Sci U S A 97: 14404–14409.

42. Mounier J, Vasselon T, Helfio R, Lessourd M, Sanmestoni PJ (1992) Phagocytosis of Listeria monocytogenes by epithelial cells through the basolateral pole. Infect Immun 69: 237–248.

43. Wu Z, Nybom P, Magnusson KE (2000) Different effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction component ZO-1. Cell Microbiol 2: 11–17.

44. Amievka M, Vogelmann R, Cavacci A, Tompkins LS, Ning WJ, et al. (2003) Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300: 1430–1434.

45. Dean P, Kebby B (2004) Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by HACEK bacteria and a bacterial surface protein. Mol Microbiol 54: 665–675.

46. Isberg RR, Leong JM (1990) Multiple beta 1 chain integrins are receptors for Listeria monocytogenes. J Cell Biol 109: 1957–1964.
for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60: 861–871.

64. Isberg RR, Voorhis DL, Falkow S (1987) Identification of invasin: A protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50: 769–778.

65. Autenrieth IB, Firsching R (1996) Penetration of M cells and destruction of Peyer’s patches by Yersinia enterocolitica: An ultrastructural and histological study. J Med Microbiol 44: 285–294.

66. Clark MA, Hirst BH, Jepson MA (1998) M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer’s patch M cells. Infect Immun 66: 1237–1243.

67. Marra A, Isberg RR (1997) Invasin-dependent and invasin-independent pathways for translocation of Yersinia pseudotuberculosis across the Peyer’s patch intestinal epithelium. Infect Immun 65: 3412–3421.

68. Grisendi S, Arpin M, Crepaldi T (1998) Effect of hepatocyte growth factor on assembly of zonula occludens-1 protein at the plasma membrane. J Cell Physiol 176: 465–471.

69. Bojarski C, Weiske J, Schoneberg T, Schroder W, Mankertz J, et al. (2004) The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 117: 2097–2107.

70. Schmeiser K, Grand RJ (1999) The fate of E- and P-cadherin during the early stages of apoptosis. Cell Death Differ 6: 377–386.

71. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, et al. (2001) Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276: 4972–4980.

72. Keller SH, Nigam SK (2003) Biochemical processing of E-cadherin under cellular stress. Biochim Biophys Res Commun 307: 215–223.

73. Gitter AH, Bendfeldt K, Schulzke JD, Fromm M (2000) Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. FASEB J 14: 1749–1755.

74. Madara JL (1990) Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: Physiological rearrangement of tight junctions. J Membr Biol 116: 177–184.

75. Rajasekaran AK, Hojo M, Haima T, Rodriguez-Boulan E (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 132: 451–463.

76. Marco AJ, Altimira J, Prats N, Lopez S, Dominguez I, et al. (1997) Penetration of Listeria monocytogenes in mice infected by the oral route. Microb Pathog 25: 255–263.

77. Portnoy DA, Auerbuch V, Glomski J (2002) The cell biology of Listeria monocytogenes infection: The intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol 158: 409–414.

78. Bojen-Moller J (1972) Human listeriosis. Diagnostic, epidemiological and clinical studies. Acta Pathol Microbiol Scand [B] Microbiol Immunol (Suppl) 229: 1–157.

79. Muller HE (1990) Listeria isolations from feces of patients with diarrhea and from healthy food handlers. Infection 18: 97–99.

80. Hardy J, Francis KP, DeBoer M, Chu P, Gibbs K, et al. (2004) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303: 851–853.

81. Vogelmann R, Nelson WJ (2005) Fractionation of the epithelial apical junctional complex: Reassessment of protein distributions in different substructures. Mol Biol Cell 16: 701–716.

82. Bakardjieva A, Stacy BA, Fisher SJ, Portnoy DA (2004) Listeriosis in the pregnant guinea pig: A model of vertical transmission. Infect Immun 72: 489–497.

83. Shen A, Higgins DE (2005) The 5’ untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol Microbiol 57: 1460–1473.

84. Agaisse H, Burzack LS, Philips JA, Rubin EJ, Perrimon N, et al. (2005) Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309: 1248–1251.

85. De SN, Chatterjea DN (1953) An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. J Pathol Bacteriol 66: 559–562.

86. Bagnoli F, Buti L, Tompkins LS, Covacci A, Amieva MR (2005) Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A 102: 16339–16344.

87. Amieva MR, Salama NR, Tompkins LS, Falkow S (2002) Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell Microbiol 4: 677–690.