Supplemental material

Scheme SM1. Synthesis of lacunar sodium phosphotungstate catalyst

Scheme SM2. Reaction pathway of Na₇PW₁₁O₃₉-catalyzed oxidation reaction of linalool with H₂O₂ (adapted refs. 1,2)
Figure SM1. FT-IR spectra of phosphomolybdic acid and its lacunar sodium salt

Figure SM2. FT-IR spectra of silicotungstic acid and its lacunar sodium salt
Figure SM3. Powdered XRD patterns of Na$_7$PMo$_{11}$O$_{39}$ lacunar salt and H$_3$PMo$_{12}$O$_{40}$ parent

Figure SM4. Powdered XRD patterns of Na$_8$SiW$_{11}$O$_{39}$ lacunar salt and H$_4$SiW$_{12}$O$_{40}$ parent
Figure SM5. TG/DSC curves: $\text{H}_3\text{PMo}_{12}\text{O}_{40}$ precursor (a) and $\text{Na}_7\text{PMo}_{11}\text{O}_{39}$ lacunar salt (b)

Figure SM6. TG/DSC curves: $\text{H}_4\text{SiW}_{12}\text{O}_{40}$ precursor (a) and $\text{Na}_8\text{SiW}_{11}\text{O}_{39}$ lacunar salt (b)
Figure SM7. Potentiometric titration curves with n-butylamine of H$_3$PMo$_{12}$O$_{40}$ and Na$_7$PMo$_{11}$O$_{39}$ salt.

Figure SM8. Potentiometric titration curves with n-butylamine of H$_4$SiW$_{12}$O$_{40}$ and Na$_8$SiW$_{11}$O$_{39}$ salt.
Figure SM9. Effect of oxidant load on kinetic curves of conversion (a) and products selectivity (b) of Na₇PW₁₁O₃₉-catalyzed oxidation reactions of linalool with H₂O₂

- Reaction conditions: Linalool (2.75 mmol); reaction time (4 h); Na₇PW₁₁O₃₉ (0.33 mol %); temperature (298 K); CH₃CN (10 mL)

Figure SM10. Terpenic alcohols evaluated as substrates in Na₇PW₁₁O₃₉-catalyzed oxidation reactions with H₂O₂
Spectroscopic data of the main products of Na$_7$PW$_{11}$O$_{39}$-Catalyzed linalool oxidation by hydrogen peroxide.

![Chemical Structure]

2-(5-methyl-5-vinyltetrahydrofuran-2-yl propan-2-ol) (1a)

1H NMR spectrum, δ, ppm (J, Hz): 1.11 (s, H7), 1.20 (s, H8), 1.29 (s, H11), 1.66-1.93 (m, H3 and H4), 3.78 (t, $J_{5,4}$=7, H5), 4.97 (dd, $J_{10cis,9cis}$=10.5, $J_{10cis,10trans}$=1.5, H10cis), 5.16 (dd, $J_{10trans,9cis}$=17.5, $J_{10cis,10trans}$=1.5, H10trans), 5.85 (dd, $J_{10trans,9cis}$=17.5, $J_{10cis,9cis}$=10.5, H9cis).

13C NMR spectrum, δ, ppm: 24.0 (CH$_3$), 26.3 (C4), 26.7 (CH$_3$), 27.1 (CH$_3$), 37.4 (C3), 71.1 (C6), 83.0 (C2), 85.5 (C5), 111.3 (C10), 143.6 (C9).

MS m/z (%) 170 (0.1), 155 (7), 137 (7), 111 (31), 94 (53), 93 (37), 68 (30), 59 (100), 55 (40), 43 (46).
Mass spectrum of product (1a)

1H NMR Spectrum of product (1a)
13C NMR Spectrum of product (1a)

DEPT 13C NMR Spectrum of product (1a)
2,2,6-Trimethyl-6-vinyltetrahydro-2H-pyran-3-ol (1b)

2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol, colorless crystals, IR (film) ν_{max} / cm$^{-1}$

3280, 2968, 1454, 1368, 1076, 975, 908.

1H NMR (600 MHz, CDCl$_3$) δ 1.17 (s, 3H, CH$_3$), 1.18 (s, 3H, CH$_3$), 1.25 (s, 3H, CH$_3$), 1.52 (s, OH), 1.62 (m, 1H5), 1.64-1.77 (m, 2H4), 2.12 (dt, $J = 13.7$ e 3.8 Hz, 1H5), 3.41-3.47 (m, 1H3), 4.97 (s, 1H$^{\text{trans}}$), 5.01 (d, $J = 6.1$ Hz, 1H$^{\text{cis}}$), 5.92-6.02 (m, 1H$^{7\text{cis}}$).

13C NMR (150 MHz, CDCl$_3$) δ 20.8 (C10), 25.7 (C4), 29.5 (C9), 31.6 (C11), 32.5 (C5), 73.4 (C6), 74.8 (C3), 75.9 (C2), 110.6 (C8), 146.3 (C7).

MS m/z (%) 170 (1), 155 (5), 94 (82), 79 (26), 68 (100), 67 (50), 59 (85), 43 (37)

IR Spectrum of product (1b)
\(^1\)H NMR Spectrum of product (1b)

\[^{13}\text{C} \text{ NMR Spectrum of product (1b)}\]
DEPT 13C NMR Spectrum of product (1b)

Diepoxide (1c)

MS m/z (%) 186 (0.1), 143 (17), 97 (22), 84 (100), 85 (55), 81 (53), 71 (40), 59 (93), 43 (97).
Mass Spectrum of product (1c)