Polarization sensitive solar-blind detector based on α-plane AlGaN.

Masihhur R. Laskar, A. Arora, A. P. Shah, A. A. Rahman, M. R. Gokhale, Arnab Bhattacharya

aDepartment of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.

Abstract

We report polarization-sensitive solar-blind metal-semiconductor-metal UV photodetectors based on (1120) α-plane AlGaN. The epilayer shows anisotropic optical properties confirmed by polarization-resolved transmission and photocurrent measurements, in good agreement with band structure calculations.

Solar blind UV (SBUV) detectors, with no photosensitivity above 280nm wavelength, have wide range of applications like – missile plume detection, UV astronomy, chemical/biological battlefield reagent detection etc.1–3. The wide-bandgap, high-temperature compatible AlGaN material system has been the workhorse for such SBUV detectors with many reports on high performance devices based on [0001] c-plane AlGaN layers. The inherent anisotropic optical properties and reduced crystal plane symmetry of “non-polar” (1120) α-plane AlGaN epilayers allows the fabrication of polarization sensitive (PS) detectors. Such PS detectors give additional advantages of selectivity and narrow band detection in a differential configuration consisting of two or four photo-detectors, without using filters4,5. We present, to the best of our knowledge, the first report of a PS SBUV detector.

About 0.5μm thick Al$_{0.6}$Ga$_{0.4}$N epilayers were grown on AlN buffer layers via metal organic vapour phase epitaxy (MOVPE) in a closed-coupled showerhead reactor using standard precursors. The details of the growth procedure, method to estimate the solid phase Al content and strain in the layer can be found in Refs.[6,7]. Metal-Semiconductor-Metal (MSM) type devices with interdigitated finger geometry Schottky contacts (metallization–200Å Ni/1000ÅAu) were fabricated using standard optical photolithography, electron-beam evaporation and lift-off techniques.

The III-nitride semiconductors have three closely-spaced valence bands near the center of k-space.

Figure 1: (a) Schematic diagram showing the three closely spaced valence band at k=0 of the III-nitrides. (b) Orientation of hexagonal unit cell for α-plane nitrides. The in-plane strains are ϵ_{yy} and ϵ_{zz}.
Figure 2: (a) Optical absorption spectra of a-plane Al$_{0.6}$Ga$_{0.4}$N showing difference in bandgap $E_4=60$ meV for two different polarizations. Inset: calculated E_4 as a function of in-plane strains, black dot represent the strain in our layer for which the calculated value is ~ 80 meV (b) Polarization resolved photocurrent measurement for $E \parallel c$ and $E \perp c$ polarization, confirming polarization sensitivity with sharp cut-off below 280 nm. Inset: different in responsivity as a function of wavelength.

the Brillouin-zone ($k=0$) as shown in Fig.1(a). The transition probabilities of electrons from each valence band to the conduction band are different and are strongly determined by the polarization of light. For (1120) a-plane epilayers, the in-plane strains are ϵ_{yy} and ϵ_{zz} as shown in Fig.1(b). Using HRXRD we estimate the in-plane anisotropic strain in our Al$_{0.6}$Ga$_{0.4}$N epilayer as $\epsilon_{yy}=-0.5\%$ and $\epsilon_{zz}=+0.2\%$, for which $E1$ transition is strongly z-polarized and $E2$ transition is strongly y-polarized, obtained from the band structure calculation by solving the Bir-Pikus Hamiltonian 8.9.

Fig.2(a) shows the absorption spectra of Al$_{0.6}$Ga$_{0.4}$N for two different polarizations, where the extrapolation of α^2 vs. energy plot gives the bandgaps of the epilayer as ~ 4.67 eV and ~ 4.73 eV for $E \parallel c$ and $E \perp c$ polarization directions respectively. So the valance band splitting $E_4=E2-E1$ is ≈ 60 meV. Fig.2 (a) inset shows the calculated E_4 as a function of in-plane strain and the the black dot represents the strain in the layer. The experimentally obtained value of E_4 fairly matches with the value 80 meV obtained from calculation.

The polarization-resolved photocurrent measurement on the device (geometry: finger width 10μm and gap 10μm; bias voltage=10 V) fabricated on Al$_{0.6}$Ga$_{0.4}$N shows different responsivity spectra Rc and Rm for different in-plane polarization $E \parallel c$ and $E \perp c$ respectively, as shown in Fig.2(b). Inset shows the difference in responsivity ($Rc - Rm$) as a function of wavelength. It shows a peak at ~ 265 nm with peak responsivity of $\sim 15\%$ to the maximum responsivity Rc and FWHM of ~ 10nm. The UV to visible rejection ratio is 10^2. The polarization sensitivity contrast (Rc/Rm) is about 1.2. Both the spectra shows cut-off below 280nm, fulfilling the solar-blind criteria, and making this perhaps the first demonstration polarization sensitive SBUV detectors reported so far.

In conclusion, we have successfully demonstrated polarization-sensitive SBUV detectors fabricated on non-polar a-plane AlGaN. Such devices will be helpful for civil and strategic applications.

References:
[1] E. Monroy et al. Semicond. Sci. Technol. 18 (2003) R33-R51.
[2] M.A. Khan et al. Jpn. J. Appl. Phys. 44 (2005) 7191-7206.
[3] M. Razeghi et al. J. Appl. Phys. 79 (1996) 7433.
[4] S. Ghosh et al. Appl. Phys. Lett. 90 (2007) 091110.
[5] A. Navarro et al. Appl. Phys. Lett. 94 (2009) 213512.
[6] M. R. Laskar, et al. Phys. Stat. Sol. (RRL) 4, (2010) 163.
[7] M. R. Laskar, et al. J. Appl. Phys. 109, (2011) 013107.
[8] J. Bhattacharya et al. Phys. Status Solidi B 246, 1184 (2009).
[9] M. R. Laskar, et al. Appl. Phys. Lett. 98, (2011) 181108.