Gaussian Reciprocal Sequences from the Viewpoint of Conditionally Markov Sequences

Reza Rezaie and X. Rong Li
Department of Electrical Engineering
University of New Orleans
New Orleans, LA 70148
rrezaie@uno.edu and xli@uno.edu

Abstract

The conditionally Markov (CM) sequence contains several classes, including the reciprocal sequence. Reciprocal sequences have been widely used in many areas of engineering, including image processing, acausal systems, intelligent systems, and intent inference. In this paper, the reciprocal sequence is studied from the CM sequence point of view, which is different from the viewpoint of the literature and leads to more insight into the reciprocal sequence. Based on this viewpoint, new results, properties, and easily applicable tools are obtained for the reciprocal sequence. The nonsingular Gaussian (NG) reciprocal sequence is modeled and characterized from the CM viewpoint. It is shown that a NG sequence is reciprocal if and only if it is both CM_L and CM_F (two special classes of CM sequences). New dynamic models are presented for the NG reciprocal sequence. These models (unlike the existing one, which is driven by colored noise) are driven by white noise and are easily applicable. As a special reciprocal sequence, the Markov sequence is also discussed. Finally, it can be seen how all CM sequences, including Markov and reciprocal, are unified.

Keywords: Conditionally Markov (CM) sequence, reciprocal sequence, Markov sequence, Gaussian sequence, dynamic model, characterization.

1 Introduction

The CM process is a very large set and it contains reciprocal and Markov processes as two important special cases. Reciprocal processes have been used in many different areas of science and engineering (e.g., [1]–[10]), where stochastic processes more general than Markov processes are needed. Applications of reciprocal processes in image processing were discussed in [3]–[4]. Based on quantized state space, [5]–[6] used finite-state reciprocal sequences for detection of anomalous trajectory pattern and intent inference. The idea of the reciprocal process was utilized in [7] for intent inference in intelligent interactive displays of vehicles. [8]–[9] proposed some classes of CM sequences (including reciprocal) for trajectory modeling. In [10], the behavior of acausal systems was described using reciprocal processes.

This paper looks at the reciprocal sequence from the viewpoint of the CM sequence, which is a larger set of sequences. This point of view, which is different from that of the literature on the reciprocal sequence, reveals more properties of the reciprocal sequence and leads to a better insight and easily applicable results.

The notion of CM processes was introduced in [11] for Gaussian processes based on mean and covariance functions. Also, some Gaussian CM processes were defined based on conditioning at
the first index (time) of the CM interval. [11] considered Gaussian processes being nonsingular on the interior of the time interval. Also, stationary Gaussian CM processes were characterized, and construction of some non-stationary Gaussian CM processes was discussed. [12] extended the definition of Gaussian CM processes (presented in [11]) to the general (Gaussian/non-Gaussian) case. In addition, it was shown how continuous time Gaussian CM processes can be represented by a Wiener process and an uncorrelated Gaussian random vector [12], [11]. In [13], different (Gaussian/non-Gaussian) CM sequences based on conditioning at the first or the last time of the CM interval were defined, and (stationary/non-stationary) NG CM sequences were studied. Also, dynamic models and characterizations of NG CM sequences were presented in [13]. Based on a valuable observation, [12] commented on the relationship between the Gaussian CM process and the Gaussian reciprocal process. Following the comment of [12], [14]–[15] obtained some results about continuous time Gaussian reciprocal processes.

The notion of reciprocal processes was introduced in [14] connected to a problem posed by E. Schrodinger [17]–[18]. Later, reciprocal processes were studied more in [19–43] and others. A dynamic model and a characterization of the NG reciprocal sequence were presented in [39] (which is the most significant paper on the Gaussian reciprocal sequence related to our work). It was shown that the evolution of the NG reciprocal sequence can be described by a second-order nearest-neighbor model driven by locally correlated dynamic noise [39]. That model can be considered a generalization of the Markov model. However, due to the correlation of the dynamic noise as well as the nearest-neighbor structure, it is not necessarily easy to apply [8]–[9]. Based on this second-order model, a characterization of the NG reciprocal sequence in terms of its covariance matrix was obtained in [39].

Consider stochastic sequences defined over the interval $[0, N] = \{0, 1, \ldots, N\}$. For convenience, let the index be time. A sequence is Markov if and only if (iff) conditioned on the state at any time k, the subsequences before and after k are independent. A sequence is reciprocal iff conditioned on the states at any two times k_1 and k_2, the subsequences inside and outside the interval $[k_1, k_2]$ are independent. In other words, inside and outside are independent given the boundaries. A sequence is CM over $[k_1, k_2]$ iff conditioned on the state at any time k_1 (k_2), the sequence is Markov over (k_1, k_2) ($[k_1, k_2]$). The Markov sequence and the reciprocal sequence are two important classes of the CM sequence.

The contributions of this paper are as follows. The reciprocal sequence is viewed as a special CM sequence. Studying, modeling, and characterizing the reciprocal sequence from this viewpoint are different from those of [39] and in the literature. This fruitful angle has several advantages. It provides more insight into the reciprocal sequence and its relation to other CM sequences. New results regarding the reciprocal sequence, as a special CM sequence, are obtained. More specifically, the relationship between the (Gaussian/non-Gaussian) reciprocal sequence and the CM sequence is presented. It is shown that a NG sequence is reciprocal iff it is both CM_L and CM_F. In other words, it is discussed how different classes of CM sequences contribute to the construction of the reciprocal sequence. New dynamic models for the NG reciprocal sequence are obtained based on CM models. These models driven by white (rather than colored) noise are easily applicable. Also, it is discussed under what conditions these models govern NG Markov sequences.

The paper is organized as follows. Section 2 reviews definitions of CM, reciprocal, and Markov sequences as well as some results required for later sections. Results obtained in Section 3 and Section 4 are for NG sequences except Theorem 3.1 which is for the general (Gaussian/non-Gaussian) case. In Section 3 the reciprocal sequence is studied from the CM viewpoint. In Section 4 based on CM models, new dynamic models for the NG reciprocal sequence are obtained. Section 5 contains a summary and conclusions.

2 Definitions and Preliminaries

2.1 Conventions

Throughout the paper we consider stochastic sequences defined over the interval $[0, N]$, which is a general discrete index interval. For convenience this discrete index is called time. The following conventions are used throughout the paper.

$$[i, j] \equiv \{i, i + 1, \ldots, j - 1, j\}$$
\((i,j) \triangleq \{i+1,i+2,\ldots,j-2,j-1\}\)
\[x_k^j]_i \triangleq \{x_k, k \in [i,j]\}
[x_k] \triangleq [x_k^N]_1^0
i,j,k_1,k_2,l_1,l_2 \in [0,N], k_1 < k_2, i < j
\]
where \(k\) in \([x_k]^j_i\) is a dummy variable. The symbol "\{-\}" is used for set subtraction. \(C_{1,t_2}\) is a covariance function. \(C\) is the covariance matrix of the whole sequence \([x_k]\). Also, 0 may denote a zero scalar, vector, or matrix, as is clear from the context. \(F(\cdot|\cdot)\) denotes the conditional cumulative distribution function (CDF). For a matrix \(A\), \(A_{[r_1:r_2,c_1:c_2]}\) denotes its submatrix consisting of (block) rows \(r_1\) to \(r_2\) and (block) columns \(c_1\) to \(c_2\) of \(A\).

The abbreviations ZMNG and NG are used for “zero-mean nonsingular Gaussian” and “nonsingular Gaussian”, respectively.

2.2 Definitions and Notations

Formal definitions of CM sequences can be found in [13]. Here we present the definitions in a simple language. A sequence \([x_k]\) is \([k_1,k_2]-CM_c, c \in \{k_1,k_2\}\) iff conditioned on the state at any time \(k_1(k_2)\), the sequence is Markov over \((k_1,k_2) ([k_1,k_2])\). The above definition is equivalent to the following lemma [13].

Lemma 2.1. \([x_k]\) is \([k_1,k_2]-CM_c, c \in \{k_1,k_2\}\), iff
\[\begin{align}
F(\xi_k|\{x_k^j\}_{i}^{j-1}) &= F(\xi_k|x_j, x_c) (1) \\
F(\xi_k|\{x_k^{j+1}\}_{i}^{j-1}) &= F(\xi_k|x_j, x_c) (2)
\end{align}\]
for every \(j, k \in [k_1,k_2], j < k, or equivalently,

The interval \([k_1,k_2]\) of the \([k_1,k_2]-CM_c\) sequence is called the CM interval of the sequence.

Remark 2.2. For the forward direction, we have
\[\begin{align}
[k_1,k_2]-CM_c &= \begin{cases} [k_1,k_2]-CM_{F} & \text{if } c = k_1 \\
[k_1,k_2]-CM_{L} & \text{if } c = k_2 \end{cases}
\end{align}\]
where the subscript “\(F\)” or “\(L\)” is used because the conditioning is at the first or last time of the CM interval.

Remark 2.3. The CM interval of a sequence is dropped if it is the whole time interval: our shorthand for the \([0,N]-CM_c\) sequence is \(CM_c\).

In the forward direction, a \(CM_0\) (\(CM_N\)) sequence is called a \(CM_{F}\) (\(CM_{L}\)) sequence.

Corresponding to different values of \(k_1,k_2 \in [0,N]\), and \(c \in \{k_1,k_2\}\), there are different classes of CM sequences. For example, \(CM_{F}\) and \((0,N]-CM_{L}\) are two classes. By a \(CM_{F} \cap (0,N]-CM_{L}\) sequence we mean a sequence which is both \(CM_{F}\) and \((0,N]-CM_{L}\).

The reciprocal sequence is as follows. A sequence is reciprocal iff the subsequences inside and outside the interval \([k_1,k_2]\) are independent conditioned on the boundaries \(x_{k_1}\) and \(x_{k_2}\) (\(\forall k_1,k_2 \in [0,N]\)). The above definition is equivalent to the following lemma.

Lemma 2.4. \([x_k]\) is reciprocal iff
\[\begin{align}
F(\xi_k|\{x_i^j\}_{0}^{j-1}) &= F(\xi_k|x_j, x_i) (3) \\
F(\xi_k|\{x_i^N\}_{0}^{N}) &= F(\xi_k|x_i) (4)
\end{align}\]
for every \(j, k, l \in [0,N], j < k < l, and\ every \(\xi_k \in \mathbb{R}^d, where d is the dimension of \(x_k\).

Lemma 2.5. \([x_k]\) is Markov iff
\[\begin{align}
F(\xi_k|\{x_i^0\}_{0}^{0}) &= F(\xi_k|x_j) (4) \\
F(\xi_k|\{x_i^N\}_{0}^{N}) &= F(\xi_k|x_j) (5)
\end{align}\]
for every \(k, j \in [0,N], k < j, and\ every \(\xi_k \in \mathbb{R}^d, where d is the dimension of \(x_k\).
2.3 Preliminaries

We review some results required later [13].

Definition 2.1. A symmetric positive definite matrix is called CM_L if it has form (6) and CM_F if it has form (7).

\[
\begin{bmatrix}
A_0 & B_0 & 0 & \cdots & 0 & 0 & D_0 \\
B'_0 & A_1 & B_1 & 0 & \cdots & 0 & D_1 \\
0 & B'_1 & A_2 & B_2 & \cdots & 0 & D_2 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & B'_{N-3} & A_{N-2} & B_{N-2} & D_{N-2} \\
0 & \cdots & 0 & B'_{N-2} & A_{N-1} & B_{N-1} & D_{N-1} \\
D'_0 & D'_1 & \cdots & D'_{N-2} & D'_{N-1} & A_N
\end{bmatrix}
\] (6)

\[
\begin{bmatrix}
A_0 & B_0 & D_2 & \cdots & D_{N-2} & D_{N-1} & D_N \\
B'_0 & A_1 & B_1 & 0 & \cdots & 0 & 0 \\
D'_2 & B'_1 & A_2 & B_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
D'_{N-2} & \cdots & 0 & B'_{N-3} & A_{N-2} & B_{N-2} & 0 \\
D'_{N-1} & \cdots & 0 & B'_{N-2} & A_{N-1} & B_{N-1} & 0 \\
D_N & 0 & 0 & \cdots & 0 & B'_{N-1} & A_N
\end{bmatrix}
\] (7)

\(A_k, B_k,\) and \(D_k\) are matrices in general.

To refer to both CM_L and CM_F matrices we call them CM_c. A CM_c matrix for \(c = N\) is CM_L and for \(c = 0\) is CM_F.

Theorem 2.6. A NG sequence with covariance matrix \(C\) is CM_c iff \(C^{-1}\) has the CM_c form.

Proposition 2.7. A NG \([x_k]\) with \(A\) being the inverse of its covariance matrix is

(i) \([0, k_2]\)-CM_c \((k_2 \in [1, N - 1])\) iff \(\Delta_{A_{22}}\) has the CM_c form, where

\[
\Delta_{A_{22}} = A_{11} - A_{12}A_{22}^{-1}A_{12}'
\] (8)

\(A_{11} = A_{[1:k_2+1,1:k_2+1]}, \ A_{22} = A_{[k_2+2:N+1,k_2+2:N+1]},\ and \ A_{12} = A_{[1:k_2+1,k_2+2:N+1]}\).

(ii) \([k_1, N]\)-CM_c \((k_1 \in [1, N - 1])\) iff \(\Delta_{A_{11}}\) has the CM_c form, where

\[
\Delta_{A_{11}} = A_{22} - A_{12}A_{11}^{-1}A_{12}'
\] (9)

\(A_{11} = A_{[1:k_1,1:k_1]}, \ A_{22} = A_{[k_1+1:N+1,k_1+1:N+1]},\ and \ A_{12} = A_{[1:k_1,k_1+1:N+1]}\).

A positive definite matrix \(A\) is called a \([0, k_2]\)-CM_c \(([k_1, N]\)-CM_c\) matrix if \(\Delta_{A_{22}}(\Delta_{A_{11}})\) in (8) (9) has the CM_c form.

Theorem 2.8 and Proposition 2.9 present forward and backward CM_c dynamic models.

Theorem 2.8. A ZMNG \([x_k]\) with covariance function \(C_{1,1}\) is CM_c iff it is governed by

\[
x_k = G_{k,k-1}x_{k-1} + G_{k,c}x_c + e_k, \quad k \in (0, N) \setminus \{c\}
\] (10)

where \([c]\) is a zero-mean white Gaussian sequence with nonsingular covariances \(G_k\), along with boundary condition\(1\)

\[
x_0 = e_0, \quad x_c = G_{c,0}x_0 + e_c \ (for \ c = N)
\] (11)

or equivalently

\[
x_c = e_c, \quad x_0 = G_{0,c}x_c + e_0 \ (for \ c = N)
\] (12)

\(e_0\) and \(e_N\) in (11) are not necessarily the same as \(e_0\) and \(e_N\) in (12). Just for simplicity we use the same notation.
Proposition 2.9. A ZMNG \([x_k]\) with covariance function \(C_{t_1,t_2}\) is CM iff its evolution is governed by
\[
x_k = G_{k,k+1}^{B} x_{k+1} + G_{k,c}^{B} x_c + e_k^B, \quad k \in [0, N) \setminus \{c\}
\] (13)
where \([e_k^B]\) is a zero-mean white Gaussian sequence with nonsingular covariances \(G_{k}^{B}\), along with the boundary condition
\[
x_N = e_N^B, \quad x_c = G_{c,N}^{B} x_N + e_c^B \text{ (for } c = 0)\] (14)
or equivalently
\[
x_c = e_c^B, \quad x_N = G_{N,c}^{B} x_c + e_c^B \text{ (for } c = 0)\] (15)

3 Reciprocal Sequence Characterization

The relationship between the CM sequence and the reciprocal sequence is presented in Theorem 3.1 for the general (Gaussian/non-Gaussian) case. Proofs can be found in [43].

Theorem 3.1. \([x_k]\) is reciprocal iff it is

(i) \([k_1, N]\)-CMF, \(\forall k_1 \in [0, N]\), and CMF

or equivalently

(ii) \([0, k_2]\)-CMF, \(\forall k_2 \in [0, N]\), and CMF

In [12] a part of the conditions of Theorem 3.1 (i.e., \([k_1, N]\)-CMF, \(\forall k_1 \in [0, N]\)) was mentioned, but the other part (i.e., CMF) was overlooked. The condition presented in [12] is not sufficient for a Gaussian process to be reciprocal [43].

From the proof of Theorem 3.1 (see [43]), a sequence that is \([k_1, N]\)-CMF \(\forall k_1 \in [0, N]\) and CMF or equivalently is \([0, k_2]\)-CML \(\forall k_2 \in [0, N]\) and CMF is actually \([k_1, N]\)-CMF and \([0, k_2]\)-CMF \(\forall k_1, k_2 \in [0, N]\). It means that a (Gaussian/non-Gaussian) sequence is reciprocal iff it is \([k_1, N]\)-CMF and \([0, k_2]\)-CMF \(\forall k_1, k_2 \in [0, N]\). This was pointed out for the Gaussian case in [14]. However, [14] did not discuss if the condition presented in [12] is sufficient even for the Gaussian case.

A characterization of the NG reciprocal sequence was presented in [39]. Below that characterization is obtained from the CM viewpoint, which is simple and different from the proof presented in [39].

Theorem 3.2. A NG sequence with covariance matrix \(C\) is reciprocal iff \(C^{-1}\) is cyclic tri-diagonal as (16).

\[
\begin{bmatrix}
A_0 & B_0 & 0 & \cdots & 0 & 0 & D_0 \\
B_0' & A_1 & B_1 & 0 & \cdots & 0 & 0 \\
0 & B_1' & A_2 & B_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & \cdots & 0 & B_{N-3}' & A_{N-2} & B_{N-2} & 0 \\
0 & \cdots & 0 & 0 & B_{N-2}' & A_{N-1} & B_{N-1} \\
D_0' & 0 & 0 & \cdots & 0 & B_{N-1}' & A_N
\end{bmatrix}
\] (16)

Proof. Necessity: By Theorem 3.1 characterization of the NG reciprocal sequence is the same as that of the NG sequence being \([0, k_2]\)-CMF, \(\forall k_2 \in [0, N]\) and CMF. Let \([x_k]\) be a NG sequence (with the covariance matrix \(C\)), which is \([0, k_2]\)-CMF, \(\forall k_2 \in [0, N]\) and CMF. By Theorem 2.6 \(C^{-1}\) is cyclic (block) tri-diagonal, because a matrix being both CMF and CMF is cyclic tri-diagonal.

Sufficiency: Assume that the inverse of the covariance matrix \((C^{-1})\) of a NG \([x_k]\) is cyclic (block) tri-diagonal. A cyclic tri-diagonal matrix has the CMF and the \([0, k_2]\)-CMF forms \(\forall k_2 \in [0, N]\). Therefore, by Theorem 2.6 and Proposition 2.7 \([x_k]\) is CMF and \([0, k_2]\)-CMF, \(\forall k_2 \in [0, N]\). Thus, by Theorem 3.1 \([x_k]\) is reciprocal.

The following corollary of Theorem 3.2 has an important implication about the relationship between the NG CM sequence and the NG reciprocal sequence. In addition, Corollary 3.1 demonstrates the significance of studying the reciprocal sequence from the CM viewpoint.
Corollary 3.1. A NG sequence is reciprocal if it is both CM_L and CM_F.

By Corollary 3.1, a NG sequence being both CM_L and CM_F is $[k_1, k_2]CM_L$ and $[k_1, k_2]CM_F$, $\forall k_1, k_2 \in [0, N]$.

Note that a characterization of the NG Markov sequence is as follows.

Remark 3.3. A NG sequence with covariance matrix C is Markov iff C^{-1} is tri-diagonal as (17).

\[
\begin{pmatrix}
A_0 & B_0 & 0 & \cdots & 0 & 0 & 0 \\
B_0' & A_1 & B_1 & 0 & \cdots & 0 & 0 \\
0 & B_1' & A_2 & B_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & B_{N-3}' & A_{N-2} & B_{N-2} & 0 \\
0 & \cdots & 0 & 0 & B_{N-2}' & A_{N-1} & B_{N-1} \\
0 & 0 & 0 & \cdots & 0 & B_{N-1}' & A_N
\end{pmatrix}
\]

By Theorem 2.6 and Proposition 2.7 we have

- **Special case:** A NG sequence with covariance matrix C is $CM_L \cap [N-3, N]-CM_F$ iff C^{-1} is given by (10) with $D_{N-2} = 0$.
- **Special case:** A NG sequence with covariance matrix C is $CM_L \cap [N-4, N]-CM_F$ iff C^{-1} is given by (10) with $D_{N-3} = D_{N-2} = 0$.
- **General case:** A NG sequence with covariance matrix C is $CM_L \cap [k_1, N]-CM_F$ iff C^{-1} is given by (10) with

\[
D_{k_1+1} = D_{k_1+2} = \cdots = D_{N-3} = D_{N-2} = 0
\]

- **Important special case:** A NG sequence with covariance matrix C is $CM_L \cap CM_F$ iff C^{-1} is given by (10) with

\[
D_1 = D_2 = \cdots = D_{N-2} = 0
\]

which is actually the reciprocal characterization (Corollary 3.1).

It is thus seen how the characterizations (i.e., C^{-1}) gradually change from CM_L to reciprocal.

4 Reciprocal CM_c Dynamic Models

The reciprocal sequence is a special CM_c sequence. Thus, it can be modeled by a CM_c model. Also, one can find conditions for a CM_c model to govern a reciprocal sequence. In the following, some models are presented for the NG reciprocal sequence based on CM_c models.

Theorem 4.1. A ZMNG $[x_k]$ with covariance function $G_{1,1}c$ is reciprocal if it is governed by (11) along with (11) or (12), and

\[
G_k^{-1}G_{k,c} = G'_{k+1,k}G_{k+1,c}^{-1}G_{k+1,c}
\]

for $c = N$, or $\forall k \in (1, N)$ for $c = 0$. Moreover, $[x_k]$ is Markov iff additionally we have, for $c = N$,

\[
G_N^{-1}G_{N,0} = G'_{1,N}G_1^{-1}G_{1,0}
\]

for (11) or equivalently

\[
G_0^{-1}G_{0,N} = G'_{1,0}G_1^{-1}G_{1,N}
\]

for (12); for $c = 0$, we have

\[
G_{N,0} = 0
\]

The Markov sequence is a subset of the reciprocal sequence, and the reciprocal sequence is a subset of the CM_c sequence. A CM_c model is a complete description (i.e., necessary and sufficient) for the CM_c sequence (Theorem 2.8). Theorem 4.1 shows under what conditions a CM_c model is a complete description of the reciprocal sequence, and under what conditions a CM_c model is a complete description of the Markov sequence. Thus, Theorem 4.1 unifies CM_c, reciprocal, and Markov sequences.

Theorem 4.1 can be presented in another way.
Corollary 4.1. Model (10) along with (11) or (12) governs a ZMNG reciprocal sequence iff the matrix
\[
A = G^BG^{-1}G
\]
is cyclic tridiagonal, where \(g = \text{diag}(G_0, G_1, \ldots, G_N)\), for \(c = N\) the matrix \(G\) is, for (11).

\[
\begin{bmatrix}
I & 0 & 0 & \cdots & 0 & 0 \\
-G_{1,0} & I & 0 & \cdots & 0 & -G_{1,N} \\
0 & -G_{2,1} & I & 0 & \cdots & -G_{2,N} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & -G_{N-1,N-2} & I & -G_{N-1,N} \\
-G_{N,0} & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
\] (23)

\(G\) is, for (12).

\[
\begin{bmatrix}
I & 0 & 0 & \cdots & 0 & -G_{0,N} \\
-G_{1,0} & I & 0 & \cdots & 0 & -G_{1,N} \\
0 & -G_{2,1} & I & 0 & \cdots & -G_{2,N} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & -G_{N-1,N-2} & I & -G_{N-1,N} \\
0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
\] (24)

and for \(c = 0\), \(G\) is

\[
\begin{bmatrix}
I & 0 & 0 & \cdots & 0 & 0 \\
-2G_{1,0} & I & 0 & \cdots & 0 & 0 \\
-G_{2,0} & -G_{2,1} & I & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-G_{N-1,0} & 0 & \cdots & -G_{N-1,N-2} & I & 0 \\
-G_{N,0} & 0 & 0 & \cdots & -G_{N,N-1} & I
\end{bmatrix}
\] (25)

In addition, the sequence is Markov iff \(A\) is tri-diagonal.

A \(CM_c\) model governing a reciprocal (Markov) sequence is called a reciprocal (Markov) \(CM_c\) model.

The following proposition presents backward models for the reciprocal sequence.

Proposition 4.2. A ZMNG sequence \([x_k]\) with covariance function \(C_{1,t_2}\) is reciprocal iff it is governed by (13) along with (14) or (15) and

\[
(G_{k+1}^B)^{-1}g_{k+1,c} = (G_{k,k+1}^B)^t(G_k^B)^{-1}G_{k,c}^B
\]

(26)

\(\forall k \in (0, N-1)\) for \(c = 0\), or \(\forall k \in [0, N-2]\) for \(c = N\). Moreover, \([x_k]\) is Markov iff additionally we have, for \(c = 0\),

\[
(G_{0}^B)^{-1}G_{0,N} = (G_{N-1,0})^t(G_{N-1}^B)^{-1}G_{N-1,N}^B
\]

(27)

for (14), or equivalently

\[
(G_N^B)^{-1}G_{N,0} = (G_{N-1,N})^t(G_{N-1}^B)^{-1}G_{N-1,0}^B
\]

(28)

for (15); for \(c = N\), we have

\[
G_{0,N}^B = 0
\]

(29)

Proposition 4.2 can be presented as follows.

Corollary 4.2. Backward model (13) along with (14) or (15) govern a ZMNG reciprocal sequence iff the matrix \(A\) is cyclic tri-diagonal with

\[
A = (G_B^B)^t(G_B^B)^{-1}G_B^B
\]

(30)
where $G^B = \text{diag}(G^B_0, G^B_1, \ldots, G^B_N)$ and for $c = 0$ the matrix G^B is

$$
\begin{bmatrix}
 I & 0 & 0 & \cdots & 0 & -G^B_{0,N} \\
 -G^B_{0,0} & I & -G^B_{1,2} & \cdots & 0 & 0 \\
 -G^B_{1,0} & I & -G^B_{2,3} & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 -G^B_{N-1,0} & 0 & \cdots & 0 & I & -G^B_{N-1,N} \\
 0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
$$

(31)

for (14), and G^B is

$$
\begin{bmatrix}
 I & 0 & 0 & \cdots & 0 & 0 \\
 -G^B_{0,0} & I & -G^B_{1,2} & \cdots & 0 & 0 \\
 -G^B_{1,0} & I & -G^B_{2,3} & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 -G^B_{N-1,0} & 0 & \cdots & 0 & I & -G^B_{N-1,N} \\
 -G^B_{N,0} & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
$$

(32)

for (15), and for $c = N$, G^B is

$$
\begin{bmatrix}
 I & -G^B_{0,1} & 0 & \cdots & 0 & -G^B_{0,N} \\
 0 & I & -G^B_{1,2} & \cdots & 0 & -G^B_{1,N} \\
 0 & 0 & I & -G^B_{2,3} & \cdots & -G^B_{2,N} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & 0 & I & -2G^B_{N-1,N} \\
 0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
$$

(33)

In addition, the sequence is Markov iff A in (30) is tri-diagonal.

In order to derive a recursive estimator for the NG reciprocal sequence, [40] manipulated the reciprocal model of [39] to obtain simple recursive models. It can be seen that the resultant models in [40] are actually in the form of the CM_c models presented above. It, once more, demonstrates the significance of studying the reciprocal sequence from the CM viewpoint.

5 Summary and Conclusions

As an important special conditionally Markov (CM) sequence, the reciprocal sequence has been studied from the CM viewpoint. This fruitful angle, which is different from that of the literature, has advantages. It reveals several properties of the reciprocal sequence. Also, it leads to easily applicable results. As a result, Markov, reciprocal, and other CM sequences are unified.

The relationship between the CM sequence and the reciprocal sequence for the general (Gaussian/non-Gaussian) case has been presented. It was shown that a NG sequence is reciprocal iff it is both CM_L and CM_F. It demonstrates the key role of the CM_L and CM_F sequences in the study of the reciprocal sequence from the CM viewpoint.

Based on CM_c models, several models have been presented for the evolution of the NG reciprocal sequence. Unlike the existing reciprocal model of [39], these models are driven by white noise, which leads to simplicity and easy applicability.

The significance and benefits of studying the reciprocal sequence as a special CM sequence have been demonstrated by the obtained results.

CM dynamic models (including the reciprocal CM_L model) were studied further in [41]–[42], where some approaches for their parameter design in application were presented.

Acknowledgments

Research is partly supported by NASA/LEQSF Phase03-06 through grant NNX13AD29A.

8
References

[1] B. Levy and A. J. Krener. Dynamics and Kinematics of Reciprocal Diffusions,” *Journal of Mathematical Physics.* Vol. 34, No. 5, pp. 1846-1875, 1993.

[2] B. Levy and A. J. Krener. Stochastic Mechanics of Reciprocal Diffusions. *Journal of Mathematical Physics.* Vol. 37, No. 2, pp. 769-802, 1996.

[3] A. Chiuso, A. Ferrante, and G. Picci. Reciprocal Realization and Modeling of Textured Images. *44th IEEE Conference on Decision and Control,* Seville, Spain, Dec. 2005.

[4] G. Picci and F. Carli. Modelling and Simulation of Images by Reciprocal Processes. *Tenth International Conference on Computer Modeling and Simulation,* Cambridge, UK, Apr. 2008.

[5] M. Fanaswala, V. Krishnamurthy, and L. B. White. Destination-aware Target Tracking via Syntactic Signal Processing. *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),* Prague, Czech Republic, May 2011.

[6] M. Fanaswala and V. Krishnamurthy. Detection of Anomalous Trajectory Patterns in Target Tracking via Stochastic Context-Free Grammar and Reciprocal Process Models. *IEEE Journal of Selected Topics in Signal Processing,* Vol. 7, No. 1, pp. 76-90, 2013.

[7] B. I. Ahmad, J. K. Murphy, S. J. Godsill, P. M. Langdon, and R. Hardy. Intelligent Interactive Displays in Vehicles with Intent Prediction: A Bayesian framework. *IEEE Signal Processing Magazine,* Vol. 34, No. 2, 2017.

[8] R. Rezaie and X. R. Li. Destination-Directed Trajectory Modeling and Prediction Using Conditionally Markov Sequences. *IEEE Western New York Image and Signal Processing Workshop,* Rochester, Oct. 2018.

[9] R. Rezaie and X. R. Li. Trajectory Modeling and Prediction with Waypoint Information Using a Conditionally Markov Sequence. *56th Allerton Conference on Communication, Control, and Computing,* Illinois, Oct. 2018.

[10] A. J. Krener. Reciprocal Processes and the Stochastic Realization Problem for Acausal Systems. *Modeling, Identification, and Robust Control,* C. I. Byrnes and A. Lindquist (editors), Elsevier, 1986.

[11] C. B. Mehr and J. A. McFadden, Certain Properties of Gaussian Processes and their First-Passage Times. *Journal of Royal Statistical Society (B),* Vol. 27, pp. 505-522, 1965.

[12] J. Abraham and J. Thomas. Some Comments on Conditionally Markov and Reciprocal Gaussian Processes. *IEEE Trans. on Information Theory,* Vol. 27, No. 4, July 1981.

[13] R. Rezaie and X. R. Li. Nonsingular Gaussian Conditionally Markov Sequences. *IEEE Western New York Image and Signal Processing Workshop,* Rochester, Oct. 2018.

[14] J-P Carmichael, J-C Masse, and R. Theodorescu. Representations for Multivariate Reciprocal Gaussian Processes. *IEEE Trans. on Information Theory,* Vol. 34, No. 1, pp. 155-157, 1988.

[15] J-P Carmichael, J-C Masse, and R. Theodorescu. Multivariate Reciprocal Stationary Gaussian Processes. *Journal of Multivariate Analysis,* 23, pp. 47-66, 1987.

[16] S. Bernstein. Sur les liaisons entre les grandeurs aleatoires. *Verh. des intern. Mathematikerkongr I,* Zurich, 1932.

[17] E. Schrodinger. Uber die Umkehrung der Naturgesetze. *Sitz. Ber. Preuss. Akad. Wissen., Berlin Phys. Math.* 144, 1931.

[18] E. Schrodinger. Theorie relativiste de l’électron et l’interpretation de la mecanique quantique. *Ann. Inst. H. Poincare* 2, 269-310, 1932.

[19] D. Slepian. First Passage Time for a Particular Gaussian Process. *Annals of Mathematical Statistics,* Vol. 32, pp. 610-612, 1961.

[20] B. Jamison. Reciprocal Processes: The Stationary Gaussian Case. *Annals of Mathematical Statistics,* Vol. 41, No. 5, pp. 1624-1630, 1970.

[21] S. C. Chay, On Quasi-Markov Random Fields, *Journal of Multivariate Analysis,* Vol 2, pp. 14-76, 1972.
[22] J-P Carmichael, J-C Masse, and R. Theodorescu, Processus Gaussiens Stationnaires Reciproques sur un Intervalle, *C. R. Acad. Sc. Paris*, t. 295 (27 Sep. 1982).

[23] B. Jamison. Reciprocal Processes. *Zeitschrift für Wahrscheinlichkeitstheorie verw. Gebiete*, vol. 30, pp. 65-86, 1974.

[24] C. Leonard, S. Roelly, and J-C Zambrini. Reciprocal Processes. A Measure-theoretical Point of View. *Probability Surveys*, Vol. 11, pp. 237–269, 2014.

[25] G. Conforti, P. Dai Pra, and S. Roelly. Reciprocal Class of Jump Processes. *Journal of Theoretical Probability*, June 2014.

[26] R. Murr, *Reciprocal Classes of Markov Processes. An Approach with Duality Formulas*, Ph.D. thesis, Universität Potsdam, 2012.

[27] S. Roelly. *Reciprocal Processes. A Stochastic Analysis Approach*. In V. Korolyuk, N. Limnios, Y. Mishura, L. Sakhno, and G. Shevchenko, editors, Modern Stochastics and Applications, volume 90 of Optimization and Its Applications, pp. 53–67. Springer, 2014.

[28] A. J. Krener. Reciprocal Diffusions and Stochastic Differential Equations of Second Order. *Stochastics*, Vol. 24, No. 4, pp. 393-422, 1988.

[29] A. J. Krener, R. Frezza, and B. C. Levy. Gaussian Reciprocal Processes and Self-adjoint Stochastic Differential Equations of Second Order. *Stochastics and Stochastic Reports*, Vol. 34, No. 1-2, pp. 29-56, 1991.

[30] B. C. Levy, A. Beghi, Discrete-time Gauss-Markov Processes with Fixed Reciprocal Dynamics. *Journal of Mathematical Systems, Estimation, and Control*, Vol. 4, No. 3, pp. 1-25, 1994.

[31] A. Beghi, Continuous-time Gauss-Markov Processes with Fixed Reciprocal Dynamics. *Journal of Mathematical Systems, Estimation, and Control*, Vol. 4, No. 4, pp. 1-24, 1994.

[32] J. Chen and H. L. Weinert, A New Characterization of Multivariate Gaussian Reciprocal Processes. *IEEE Trans. on Automatic Control*, Vol. 38, No. 10, pp. 1601-1602, 1993.

[33] F. Carravetta and L. B. White. Modelling and Estimation for Finite State Reciprocal Processes. *IEEE Trans. on Automatic Control*, Vol. 57, No. 9, pp. 2190-2202, 2012.

[34] F. Carravetta. Nearest-neighbour Modelling of Reciprocal Chains. *An International Journal of Probability and Stochastic Processes*, Vol. 80, No. 6, pp. 525-584, 2008.

[35] L. B. White and F. Carravetta. Optimal Smoothing for Finite State Hidden Reciprocal Processes. *IEEE Trans. on Automatic Control*, Vol. 56, No. 9, pp. 2156-2161, 2011.

[36] L. B. White and H. X. Vu. Maximum Likelihood Sequence Estimation for Hidden Reciprocal Processes. *IEEE Trans. on Automatic Control*, Vol. 58, No. 10, pp. 2670-2674, 2013.

[37] E. Baccarelli and R. Cusani. Recursive Filtering and Smoothing for Gaussian Reciprocal Processes with Dirichlet Boundary Conditions. *IEEE Trans. on Signal Processing*, Vol. 46, No. 3, pp. 790-795, 1998.

[38] E. Baccarelli, R. Cusani, and G. Di Blasio. Recursive filtering and smoothing for reciprocal Gaussian processes pinned boundary case. *IEEE Trans. on Information Theory*, Vol. 41, No. 1, pp. 334-337, 1995.

[39] B. C. Levy, R. Frezza, and A. Krener. Modeling and Estimation of Discrete-Time Gaussian Reciprocal Processes. *IEEE Trans. on Automatic Control*, Vol. 35, No. 9, pp. 1013-1023, 1990.

[40] D. Vats and J. M. F. Moura. Recursive Filtering and Smoothing for Discrete Index Gaussian Reciprocal Processes. *43rd Annual Conference on Information Sciences and Systems*, Baltimore, MD, USA, Mar. 2009.

[41] R. Rezaie and X. R. Li. Models and Representations of Gaussian Reciprocal and Conditionally Markov Sequences. *International Conference on Vision, Image and Signal Processing (ICVISP)*, Las Vegas, Aug. 2018.

[42] R. Rezaie and X. R. Li. Explicitly Sample-Equivalent Dynamic Models for Gaussian Conditionally Markov, Reciprocal, and Markov Sequences. *International Conference on Control, Automation, Robotics, and Vision Engineering*. Nov. 2018.

[43] R. Rezaie and X. R. Li. Gaussian Conditionally Markov Sequences: Reciprocal Sequences. To be submitted.

[44] R. Ackner, T. Kailath. Discrete-Time Complementary Models and Smoothing. *International Journal of Control*, Vol. 49, No. 5, pp. 1665-1682, May 1989.