INTRODUCTION

Plantar Fasciitis is a common foot disorder in which symptoms may become chronic and functionally disabling (Theodore, G. H. et al., 2016). About 10% of people experience Plantar Fasciitis during globally their life, and 20%-30% of cases have a bilateral involvement (Rahbar, M. et al., 2018). The Plantar fascia is a thick fibrous tissue on the bottom of the foot that protects sensitive plantar structures such as nerves, vessels, muscles and tendons, and in addition, is responsible for maintaining the plantar arch (Kudo, P. et al., 2006). Plantar Fasciitis usually diagnosed clinically based on the history of morning heel pain made worse with ambulation on hard surfaces and by the physical findings of pain over the medial aspect of the plantar fascia (Fouda, K. Z., & El Laithy, M. H. 2016). There is maximal tenderness at the Plantar fascial origin on the medial process of the calcaneal tuberosity, and pain increases with passive stretching of the plantar fascia (Buchbinder, R. et al., 2002). A Calcaneal spur may be present in 50% of patients with painful heel (Lapidus, P. W., & Guidotti, F. P. 1965).

The conservative treatment approach to the plantar fasciitis is focused at decreasing the pain and improving the foot function and easy weight bearing with different treatment strategies from prescribing Non-Steroidal anti-inflammatory drugs to the orthotic support to correct the foot wear and maintain good arch support, Physical therapy which has a major role in management of PF is considered to be a cost effective option throughout the world which includes different modalities and prescribing remedial exercises to stretch the tightened fascia and improve joint mobility and function. The results from such treatment vary considerably and there is no consensus of the opinion on the best method (Gill, L. H., & Kiebzak, G. M. 1996; & Wolgin, M. et al., 1994).

The use of extra corporeal shock wave therapy in alleviation of pain has been widely postulated and advocated by many researchers during the recent years though the duration/frequency of treatment and beneficial outcome in these patients still remains uncertain. The first paper

Short term Effectiveness of Extra Corporeal Shock Wave Therapy for Plantar Fasciitis: A Systematic Review and Meta-analysis

Rayan Mohammed Al Fadani1, Ibrahim Bin Hamza Al Tobaigy1 and Mohammed Amjad Khan1

1Comprehensive Rehabilitation Centre, Medina Al Munawwarah, Kingdom of Saudi Arabia

Abstract: Background: The argument on whether extracorporeal shock-wave therapy (ESWT) proves to be beneficial in short-term intervention in adults with plantar fasciitis. It is important and necessary to conduct a meta-analysis to make a comparatively more reliable and overall assessment about the outcomes of ESWT in the less than 6 months. METHODS: we conducted A Systematic Review and meta-analysis of randomized control trials from MEDLINE, Embase and CINAHL database from 2000 to 2020. We included randomized trials which evaluated extracorporeal shock wave therapy used to treat plantar heel pain. Trials comparing extra corporeal shock wave therapy with placebo were considered for inclusion in the review. We independently applied the inclusion and exclusion criteria to each identified randomized controlled trial, extracted data and assessed the methodological quality of each trial. Results: Four studies involving 645 patients were included. 3 RCTs (n=605) permitted a pooled estimate of effectiveness based on overall success rate and composite score of visual analogue scales for pain at the follow-up 1 (12 Weeks). The pooled data showed no significant heterogeneity at three-month follow-up (p-value of chi-square = 0.61 P=0.74 and I² = 0%). The ESWT group had a better success rate than the control group at three-month follow-up (OR = 2.26, 95% CI = 1.62-3.15, p < 0.00001). For reduction of pain the pooled data showed no significant heterogeneity (P Value of chi-Square 0.28 and I² 22%) There were significant differences between the ESWT and control groups for all the follow-up visits (random-effect model, three trials, MD = 15.14, 95% CI = 13.86 to 16.42, P <0.00001 at three-month). Conclusion: A meta-analysis of data from three randomized-controlled trials that included a total of 605 patients was statistically significant in favour of extracorporeal shock wave therapy at follow-up 1(12 weeks).

Keywords: Plantar Fasciitis; Pain; Extra Corporeal Shockwave Therapy; Visual Analog Scale;Meta-Analysis.

Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.
reporting the favorable results after application of shock wave for the treatment of painful heel syndrome was published in Rompe, J. D. et al., (1996). Since then, numerous studies have reported the promising outcome of shock wave in PF. According to recent systemic reviews by Crawford et al., (2001) and Odgen et al., (2000) evidence is accumulating to support the use of ESWT as an effective treatment for heel pain. The results of Meta-analysis by Odgen et al., (2002) demonstrated that, of various application of ESWT on musculoskeletal conditions, the use of ESWT for treating plantar fasciitis was most credible.

The purpose of this systematic review and meta-analysis was to conduct a rigorous evaluation using a quantitative synthesis of evidence from randomized controlled trials Evaluate the effectiveness of ESWT in short term. Our aim was to determine if ESWT is effective in the treatment of patients with plantar heel pain when compared with a control group at short term duration.

METHODS

Literature Search

This systematic review and meta-analysis, was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (see Fig. 1 for flow diagram) (Moher, D. et al., 2009; & Loke, Y. K. et al., 2007)

| Records identified through database searching (n =250) |
| Additional records identified through other sources (n = 0) |
| duplicates removed (n=48) |
| Records screened (n =202) |
| Records excluded (n = 183) |
| Full-text articles excluded, with reasons (n =16) |
| -Long term duration for decrease in pain > 6 Months(n=2) |
| -Ultra Sound Guided Studies(n=1) |
| Ultrasoundographic outcome Measurement(n=1) |
| -Comparison Studies(n=1) |
| -Plantar Fasciitis in Running Athletes(n=1) |
| Different Energy level Trials(n=6) |
| -No Result(n=2) |
| local cortisone injection (n=1) |
| Full-text articles assessed for eligibility (n =19) |
| Studies included in qualitative synthesis (n = 4) |
| Studies included in quantitative synthesis (Meta analysis) (n=3) |

![Flow chart of the results of the search strategy](image)

Search strategy

Using a PICO (P: patients with plantar fasciitis, I: ESWT, C: compared with placebo, O: effective in decreasing the pain in less than 6 months of duration) MEDLINE, Embase and CINAHL database were used to search for relevant literature from the year 2000 to 2020. The text words "Extracorporeal shockwave therapy or ESWT AND Plantar fasciopathy OR plantar fasciitis or heel pain" " Randomised controlled trials(RCTs) "

Inclusion and exclusion criteria

Pre-selection criteria of inclusion: Humans, year of publication from 2000 to 2020 full text available in English language : the title and abstracts mentioning
the "Extra Corporeal Shock wave Therapy in Plantar fasciitis" randomized, placebo-controlled trials and decrease in pain not more than 6 months after the plantar fasciitis treated with Extra Corporeal shockwave therapy. Non human trials, case studies/case reports, meta-Analysis equipment guided interventions, pre-defined energy dosage, PF in running Athletes were excluded.

Type of Outcomes

The success treatment rate and reduction in the Composite VAS score were the two outcome measures that were adopted to assess the efficacy of ESWTs in our meta-analysis Table 1. The definition of successful treatments was varied among articles, such as 60% improvement in pain for at least 2/3 of pain measurements, 60% reduction in morning pain. A previous study has confirmed that 50% decrease of VAS score can be defined as successful pain management (Martin, W. J. et al., 2013). The VAS score is that 50% decrease of VAS score can be defined as successful pain management (Martin, W. J. et al., 2013). The VAS score is widely used to measure a patient’s pain level (Hawker, G. A. et al., 2011). The score is self-reported measures of symptoms.

Source	SW intensity (mJ/mm²)	Treatment dose	Group	Characteristic of pain for analysis	VAS at Base Line(cm)	VAS after Intervention	Difference in VAS	Use of LA
Gerdesmeyer et al., 17	0.16	2000 pulses x 3 sessions	RSW Placebo	Morning pain when taking first steps	7.5(1.49)	NA	-4.2(2.9)	No
Gollwitzer et al., 18	0.25	Total 1.5 mJ/mm²	FSW Placebo	Morning pain when taking first steps	7.5(1.5)	NA	NA	No
Kudo et al., 3	0.64	Total 3800 pulses 2330mJ/mm²	FSW Placebo	Pain during initial walking	7.5(1.5)	3.9(3.2)	-3.6(2.7)	Yes
A. Moghtaderi et al., 20	0.2	Total 3000 pulses	ESWT Placebo	Modified Roles and Maudsley score	7 ±(1.3)	3±(-0.9)	-4±	No

Study selection and data extraction

Two reviewers R.M.A and M.A.K completed the same search in the databases and article extraction independently using Rayyan QCRI web App to remove duplicate entries. Published randomized, placebo-controlled trials on the intervention of extra corporeal shock wave therapy for plantar fasciitis fulfilling criteria were included.

The following data was extracted and screened.

Study Identification/Name of the author/type of study/year of publication.

Population/Participants

Diagnosis

Intervention and duration of treatment

Primary Outcome measures

Risk of bias in individual studies

Selected studies were evaluated independently for risk of bias assessment using Cochrane risk of bias tool (Sterne, J. A. et al., 2019) by two authors (R.M.A and M.A.K) to assess the 'internal validity'. Following the Cochrane risk of bias tool, we assessed the literature for:

Selection, Performance, detection, attrition, and reporting bias Figure 3 & Figure 4.
Data Synthesis and Statistical Analysis

In the studies by Gerdesmeyer et al. (2019), Gollwitzer et al., (2008) and Kudo et al., (2006), the treatment success rate in ESWT and Placebo Group and the change in composite VAS for 3 months and 12 months was evaluated using meta-analysis. The Meta-analysis and forest plotting were conducted using the Review Manager 5.3 software (Cochrane Collaboration, Oxford, UK). A p-value smaller than 0.05 was considered significant for all the tests. The effect sizes for outcome measures between ESWT and control groups for the selected articles were estimated. For Continues data, the effect size was calculated using odds ratio (OR) with 95% CI. Heterogeneity among articles was evaluated using the chi-squared test and I^2 statistic, while a p-value of the chi-squared test 0.05 indicated no significant heterogeneity and < 0.05 indicated significance. The I^2 statistic was used to evaluate the level of heterogeneity. Heterogeneity was considered low, moderate, high, or very high when I^2 was <25%, 25%–50%, 50%–75%, or >75%, respectively.

The study by Moghtaderi et al., 2014 reported the outcome in decreasing the VAS score in plantar fasciitis with the intervention of ESWT on heel and on each trigger point of gastroc-soleus muscle. The results were evaluated with the comparison of pain score (100 mm Visual analog Score and modified Roles and Maudsley Score) this study is not considered for meta-analysis and will be analyzed descriptively.

Success Rate

The pooled data showed no significant heterogeneity at three-month follow-up (p-value of chi-square = 0.61 P=0.74 and I^2 = %). The ESWT group had a better success rate than the control group at three-month follow-up (OR = 2.26, 95% CI = 1.62-3.15, p < 0.00001) Fig 2A. Pooled data for Heterogeneity from the available results for overall effect for 12 month follow-up showed (p-value of chi-square = 0.03 P=0.85 and I^2 = %) with (OR = 2.13, 95% CI = 1.39-3.27, p < 0.0005) Heterogeneity for other sub-group could not be because this only had two article that reported a success rate Fig 2B.

Fig 2A. 3–month (12 weeks) Follow-up

Fig 2B. 12-Month Follow-up

Figure 2. Forest plots of treatment success rates in extracorporeal shockwave therapy (ESWT) and placebo-controlled groups at 3-month (a) and 12-month (b) follow-ups.

© East African Scholars Publisher, Kenya 42
VAS Score

3 included studies reported VAS score to assess the patient’s pain level at 3 month follow up periods. There were 300 in ESWT and 291 placebo controlled group. The pooled data showed no significant heterogeneity (P Value of chi-Square 0.28 and I² 22%) There were significant differences between the ESWT and control groups for all the follow-up visits (random-effect model, three trials, MD = 15.14, 95% CI = 13.86 to 16.42, P <0.00001 at three-month; for 12 months the pooling data was not possible because of insufficient data to assess will be discuss descriptively. The overall effect of one study Z=2.69 (P=0.007) random-effect model, three trials, MD = 15.40, 95% CI = -4.17 to 26.63, p = 0.38 at 12 months) Fig 3 A and Fig 3 B.

Gerdesmeyer18 and Gollwitzer19 et al., demonstrated the efficacy of ESWT by measuring the percentage change of the VAS composite score twelve weeks after last intervention compared with baseline defined as the sum of three single VAS Scales (1) Heel pain while taking the first step in the morning (2) Heel pain while doing daily activities (3) heel pain while applying standardized local pressure with the dolor meter and F-Meter respectively. Kudo et al.,19 Reported the improvement on VAS score from baseline during the first few minutes of walking. Score of none or mild on the pain portion of the AOFAS Ankle-hind foot scale, this study considered deliver the focused ESWT 0.64 mJ/mm2 with the frequency of releasing the shock waves initially at 60 shocks/min at level 1 with increment of 30 shocks/minute at every subsequent level till level 6, reaching approximately 3800 (±10) shocks/minute at level 7 delivering total energy of 1300 mJ/mm2(ED+) in a single session versus placebo with the administration of medial calcaneal nerve block using 5ml of 1% xylocaine,15-20 mins prior to the procedure.

Study or Subgroup	ESWT	Control	Mean Difference	Mean Difference				
	Mean	SD	Total Mean	SD	Total	Weight	N, Random, 95% CI	N, Random, 95% CI
GERDESMEYER ET AL 2008	56.5	39.3	123	44.1	41.8	118	1.5%	11.90 [1.65, 22.15]
HANG GOLLWITZER ET AL 2015	54.5	6.9	124	40.3	7.2	121	37.6%	14.20 [12.43, 15.97]
KUDO ET AL 2008	49.1	3.6	53	33.3	26	52	60.9%	15.60 [14.60, 17.00]
Total (95% CI)	300	291	100.0%	15.14 [13.86, 16.42]				
Heterogeneity: Tau2 = 0.33, Chi2 = 2.57, df=2 (P = 0.38), P= 22%								
Test for overall effect: Z = 23.12	(P = 0.0001)							

Fig 5A

Study or Subgroup	ESWT	Control	Mean Difference	Mean Difference				
	Mean	SD	Total Mean	SD	Total	Weight	N, Random, 95% CI	N, Random, 95% CI
GERDESMEYER ET AL 2008	81.9	43.6	125	48.5	45.6	118	100.0%	15.40 [14.17, 26.63]
Total (95% CI)	125	118	100.0%	15.40 [14.17, 26.63]				
Heterogeneity: Not applicable								
Test for overall effect: Z = 26.9	(P = 0.007)							

Fig 5B

Figure 3. Forest plots of visual analog scale (VAS) scores ESWT and placebo-controlled groups at 3-month (a) and 12-month (b) follow-ups

ESWT compared with control treatment: results of descriptive analysis

A.Moghtaderi et al., 2014 reported that combination of ESWT for both plantar fasciitis and gastrosoleus trigger points in treating patients with plantar fasciitis is more effective than utilization it solely for plantar fasciitis. The comparison of visual analog scale score and the modified Roles and Maudsley score had improved groups however, the results were significantly better in the case group compared to control group in mean reduction of score of VAS from 7±/1.3 to 3±/0.9 at eight weeks after treatment with P-Value <0.001 in ESWT and P=0.02 in control group. This reduction was also seen on modified Roles and Maudsley score with p Value of <0.001 ESWT and <0.01 in Control group.
The optimal non-operative treatment for plantar fasciitis is unclear. Many studies documented good clinical results with different regimens of nonsurgical treatment (Wolgin, M. et al., 1994). Over the years the use of extra corporeal shock wave therapy has been largely accepted to treat wide range of Musculoskeletal problems including plantar fasciitis, many RCTs reported the efficacy of ESWT when compared to sham therapy / control group. However, Some studies questioned the role of ESWT in acute conditions (Rompe, J. D. et al., 2007) while some other researchers reported controversies in the effectiveness of different intensity levels of ESWT in plantar fasciitis (Speed, C. A. et al., 2003; & Chang, K. V. et al., 2012). Many studies reported good results in treating plantar fasciitis with long term intervention of ESWT (Ibrahim, M. I. et al., 2017; & Wang, C. J. et al., 2012). To our knowledge this is first meta analysis focusing on effectiveness of ESWT within 6 months post treatment of Plantar fasciitis. In our analysis ESWT had favorable results on overall success rate and reduction in VAS score within 6 months of intervention from the baseline. Longer term follow-up data in two studies were not sufficient or comparable enough for meta-analysis. Gerdesmeyer et al., (2008), Gollwitzer et al., (2015) and Kudo et al., (2006) found success rate > 60% reduction in VAS score at follow-up 1(12 weeks). The overall success rate showed significant results p < 0.00001 at 12 weeks follow-up as compared with p < 0.0005 at 12 month follow-up. In the study of Gerdesmeyer et al., (2008), reductions in mean VAS composite scores by 44.7% at 12 weeks and 43.2% at 12 months from baseline. Gollwitzer et al., (2015) demonstrated the percentage change of the VAS composite score from baseline increased from -84.0% at the time of follow up 1(12 weeks) to -96.0% at the time of follow up 2 in the ESWT group compared with -84.0% at follow up 1(12 weeks) to 96.3% at the time of follow-up 2 in the placebo group. Consequently, the outcome shows there was significant improvement at short term intervention of ESWT in patients with Plantar Fasciitis.
Ibrahim et al., (2010) concluded the success in the treatment of chronic PF only with two sessions with 2,000 impulses performed 1 week apart. The Mean VAS scores was reduced after ESWT(Radial) from 8.5 ± 0.3 (mean ± SEM) at baseline to 0.6 ± 1.5 at 4 weeks, 1.1 ± 0.3 at 12 weeks and 0.5 ± 0.1 at 24 weeks from baseline.

There are some limitations to our study First, the types of shock waves administered in the included studies were not the same. One trial used radial shock wave whereas two trials used focus shockwave. The number of shocks delivered varied among the trials, the overall success rate analyzed showed no significant heterogeneity at three-month follow-up. There could be a possibility of reporting bias when interpreting these results due to less number of studies included in the meta-analysis as there was insufficient comparative data available from the studies for 12 month follow-up.

The main strength of our review includes the inclusion criteria of improvement in less than 6 months from the intervention of ESWT in plantar fasciitis. Only RCTs meeting the criteria added to the validity of the statistical results.

CONCLUSION
We believe that patients with plantar fasciitis can be treated successfully and effectively with ESWT in less than 6 months. More Randomized Placebo-Controlled trials needed to evaluate the efficacy of shockwaves in short term as conservative treatment of Plantar Fasciitis.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES
1. George H; Theodore; Matthias Buch; Annuzziato Amendola; Christine Bachman; Lamar L; Fleming; Christopher Zingas: "Extra Corporeal Shock wave therapy for the Treatment of Plantar Fasciitis. "Journal Foot &Ankle International;2016.
2. Mohammed Rahbar; Fariba Eslamian; Vahideh Toopchizadeh; Fatemeh Jahanjoo; Ali Kargar; Neda Dolatkhani:"A Comparison of the efficacy of Dry needling and Extracorporeal Shockwave Therapy for plantar fasciitis: A Randomized Clinical Trial. " Iran Red Crescent Med Journal, 2018.
3. Patricia Kudo; Katie Dainty; Michael Clarfield, Larry Coughlin, Pauline Lavoie, Constance Lebrun: "Randomized, Placebo-Controlled, Double-Blind Clinical Trial evaluating the treatment of Plantar Fasciitis with an Extracorporeal Shockwave Therapy Device: A North American Confirmatory Study. " Journal of Orthopedic Research 2006.
4. Khaled Z. Fouda; MonaH; ElLaithy: "Effect of Low energy versus Medium energy radial shock wave therapy in the treatment of chronic plantar fasciitis." International Journal Physiotherapy.Vol 3(1),5-10, February 2016,10.15621/jiphys2016v3i1/89890.
5. Rachelle Buchbimer; Ronnie Ptasznik; Jeanine Gordon; Joylene Buchanan; Vasuki Prabaharan; Andrew Forbes:"Ultrasound-Guided Extracorporeal Shockwave therapy for plantar fascitis. " JAMA, Vol 288, No.11, September 2002.
6. lapidus P; Guidotti F. "Painful heel: Report of 323 patients with 364 painful heels." Clinical orthopedics.1965;39:178-186.
7. Gill LH; Kiebzak GM; "Outcome of nonsurgical treatment for plantar fasciitis." Foot Ankle international,1996;17:527-532.
8. Wolgin M, Cook Graham C, Mauldin D: "Conservative treatment of plantar heel Pain: long-term follow- up. "Foot Ankle international,1994;15:97-102.
9. Rompe JD, HopfIC, NafeB, Burger R."Low-energy Extracorporeal Shockwave therapy for painful heel: A prospective controlled single-blinded study." Arch orthop Trauma Surg.1996; 115:75-9.
10. Crawford Atkins D, Edwards J. "Interventions for treating plantar heel pain (Cochrane Review). " In: Cochrane Library, Issue 4. Oxford, Uk: Updated Software Ltd: 2001.
11. Maier M, Steinborn M, Schmitz C, et al. "Extracorporeal Shockwave application for chronic plantar fasciitis associated with heel spur: prediction of outcome by Magnetic resonance imaging." Rheumatol.2000;27(10):2455-2462.
12. Odgen JA, Alvarez RG, Marlow M. "Shockwave therapy for Chronic proximal plantar fasciitis: A meta-analysis. " foot ankle international.2002;23(4):301-308.
13. D. Moher, A. Liberati, J. Tetzlaff, et al., "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition) " J. Chin. Integr. Med. 7 (2009) 889e896.
14. Y.K. Loke, D. Price, A. Herxheimer.Systematic reviews of adverse effects: framework for a structured approach, BMC Med. Res. Methodol. 7 (2007) 32.
15. Martin, W.J.J.M.; Ashton-James, C.E.; Skorpil, N.E.; Heymans, M.W.; Forouzanfar, T. "What constitutes a clinically important pain reduction in
patients after third molar surgery?" Pain Res. Manag. 2013, 18, 319–322.

16. Hawker, G.A.; Mian, S.; Kendzerska, T.; French: M. " Measures of Adult Pain Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP)." Arthritis Care Res. 2011, 63, S240–S252.

17. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Hernán MA, Hopewell S, Hróbjartsson A, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Stewart LA, Tilling K, White IR, Higgins JPT. RoB 2: "A revised tool for assessing risk of bias in randomized trials." BMJ 2019; 366: l4898.

18. Gerdesmeyer, L., Frey, C., Vester, J., Maier, M., Lowell, W., Weil, L., Gollwitzer, H. (2008). "Radial Extracorporeal Shock Wave Therapy is Safe and Effective in the Treatment of Chronic Recalcitrant Plantar Fasciitis: Results of a Confirmatory Randomized Placebo-Controlled Multicenter Study." The American Journal of Sports Medicine, 36(11), 2100–2109. https://doi.org/10.1177/009132008324176.

19. Gollwitzer H, Saxena A, DiDomenico LA, et al. "Clinically relevant effectiveness of focused extracorporeal shock wave therapy in the treatment of chronic plantar fasciitis: a randomized, controlled multicenter study." J Bone Joint Surg Am. 2015;97(9):701-708. doi:10.2106/JBJS.M.01331.

20. Lou, J.; Wang, S.; Liu, S.; Xing, G. Electiveness of Extracorporeal Shock Wave Therapy without Local Anesthesia in Patients with Recalcitrant Plantar Fasciitis: A Meta-Analysis of Randomized Controlled Trials. Am. J. Phys. Med. Rehabil. 2017, 96, 529–534. [CrossRef] [PubMed].

21. Moghtaderi, Alireza & Khosrawi, Saeid & Dehghan, Farnaz. (2014). "Extracorporeal shock wave therapy of gastroc-soleus trigger points in patients with plantar fasciitis: A randomized, placebo-controlled trial." Advanced Biomedical Research. 3. 99. 10.4103/2277-9175.129369.

22. Ogden JA, Alvarez R, Levitt R et al. (2001) "Shock wave therapy for chronic proximal plantar fasciitis." Clinical Orthop Relat Res, 387, 47–59.

23. Wolgin M, Cook C, Graham C, Mauldin D. "Conservative treatment of plantar heel pain: long-term follow-up." Foot Ankle Int. 1994;15:97-102.

24. Rompe JD,Furia J,Weil L,Maffulli N."Shock wave therapy for chronic plantar fasciopathy." Br Med Bull.2007;81:82:183-208.

25. Speed CA, Nichols D, Wies J et al. (2003) "Extracorporeal shock wave therapy for plantar fasciitis. A double blind randomized controlled trial". J Orthop Res, 21, 937–940.

26. Chang KV,Chen SY WS,TU YK,CHEN KL."Comparative effectiveness of focused shock wave therapy different intensity levels and radial shock wave therapy for treating of plantar fasciitis: a systemic review and network meta-analysis". Arch Phys Med Rehabil.2012;93:1259-1268.

27. Mahmoud I. Ibrahim, Robert A. Donatelli, Madeleine Hellman, Ahmed Z. Hussein, John P. Furia, Christoph Schmitz: "Long-Term Results of Radial Extracorporeal Shock Wave Treatment for Chronic Plantar Fasciopathy: A Prospective, Randomized, Placebo-Controlled Trial With Two Years Follow-Up."J Orthop Res 35:1532–1538, 2017.

28. Ching-Jen Wang, Feng-Sheng Wang,Kuender D. Yang, Lin-Hsiu Weng,Jih-Yang Ko: "Long-term Results of Extracorporeal Shockwave Treatment for Plantar Fasciitis." The American Journal of Sports Medicine, Vol. 34, No. 4,592-596.

29. Ibrahim MI,Donatelli RA,Schmiz C,Hellman MA,Buxbaum F."Chronic Plantar Fasciitis Treated with Two Sessions of Radial Extracorporeal Shock Wave Therapy." Foot Ankle Int.2010;31:391-397.