The large-\(j \) limit for certain 9-\(j \) symbols—power law behaviour

L. Zamick and A. Escuderos

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

In a previous work, certain unitary 9-\(j \) symbols were shown to go asymptotically to zero in the large-\(j \) limit. In this work, we examine this in more detail and find an approximate power law for some unitary 9-\(j \)'s in the large-\(j \) limit and exponential decrease for others in this same limit.

PACS numbers:

I. INTRODUCTION

A unitary 9-\(j \) (U9-\(j \)) coefficient is related to a 9-\(j \)-symbol via

\[
\langle (j_1 j_2)^{J_{12}} (j_3 j_4)^{J_{34}} (j_1 j_3)^{J_{13}} (j_2 j_4)^{J_{24}} \rangle = ([2 J_{12} + 1](2 J_{34} + 1)(2 J_{13} + 1)(2 J_{24} + 1))^{1/2} \times \left\{ \begin{array}{ccc} j_1 & j_2 & J_{12} \\ j_3 & j_4 & J_{34} \\ J_{13} & J_{24} & J \end{array} \right\}
\]

(1)

We first note the well-known normalization relation

\[
\sum_{J_{12},J_{24}} \left| \langle (j_1 j_2)^{J_{12}} (j_3 j_4)^{J_{34}} (j_1 j_3)^{J_{13}} (j_2 j_4)^{J_{24}} \rangle \right|^2 = 1.
\]

Another useful relation is:

\[
\sum_{J_{12},J_{24}} (-1)^{(J_{13}+J_{24})} \times \left| \langle (j_1 j_2)^{J_{12}} (j_3 j_4)^{J_{34}} (j_1 j_3)^{J_{13}} (j_2 j_4)^{J_{24}} \rangle \right|^2 = 0
\]

(3)

if \(J_{12} \) does not equal \(J_{34} \). When \(J_{12} \) is equal to \(J_{34} \), one gets \((-1)^J\).

In a previous work, we noted that the “coupling” U9-\(j \) \(\langle (j j)^{2j}(jj)^{2j}(jj)^{2j-2}\rangle^{I=2} \) decreased rapidly with increasing \(j \) and went asymptotically to zero. Indeed the decrease is roughly exponential in \(j \). This will be discussed later.

The motivation for considering this class of U9-\(j \)'s was that they enter into the overlap of the approximate wave functions for two \(I = 2 \) states. The components of these wave functions are the following U9-\(j \)'s:

\[
\langle (jj)^{2j}(jj)^{2j}(jj)^{I=2} \rangle
\]

(4a)

\[
\langle (jj)^{2j}(jj)^{2j-2}(jj)^{I=2} \rangle
\]

(4b)

It was found that the overlap was very small and so (4a) and (4b) are good approximations to the lowest two \(I = 2^+ \) states when the E(9) interaction is used. In this interaction for the \(g_{9/2} \) shell, all two-body matrix elements are set equal to zero except the one for \(J = J_{\text{max}} = 9 \).

If there were no restriction on the integers \(J_p \) and \(J_n \), (4a) and (4b) would be orthogonal. However, we were considering a system of two protons and two neutrons in the single \(j \) shell. To satisfy the Pauli principle, \(J_p \) and \(J_n \) had to be even. As shown in Ref. [1], the overlap, with this restriction, is:

\[
-1/2 \langle (jj)^{2j}(jj)^{2j}(jj)^{I=2} \rangle
\]

The relation, generalized to any even total angular momentum \(I \), is

\[
\sum_{J_p,J_n} \langle (jj)^{2j}(jj)^{2j}(jj)^{I=2} \rangle \times \langle (jj)^{2j}(jj)^{2j-2}(jj)^{I=2} \rangle = -1/2 \langle (jj)^{2j}(jj)^{2j-2}(jj)^{I=2}(jj)^{2j-2} \rangle.
\]

(5)

For odd total angular momentum \(I \), the appropriate relation is

\[
\sum_{J_p,J_n} \langle (jj)^{2j}(jj)^{I=2}(jj)^{I=2} \rangle \times \langle (jj)^{2j}(jj)^{I=2}(jj)^{I=2} \rangle = -1/2 \langle (jj)^{2j}(jj)^{I=2}(jj)^{I=2}(jj)^{I=2} \rangle.
\]

(6)

Regardless of the motivation, we here consider the behavior of the U9-\(j \)'s \(\langle (jj)^{2j}(jj)^{2j}(jj)^{2j-2}\rangle^{I=2} \) for even \(I \) and \(\langle (jj)^{2j}(jj)^{2j-1}(jj)^{2j-3}\rangle^{I=2} \) for odd \(I \). For the sake of convenience, we will use the notation \(M_{\text{even}}^j(I) \) and \(M_{\text{odd}}^j(I) \) for the latter even-\(I \) and odd-\(I \) U9-\(j \)'s, respectively.

II. RESULTS

A. Even \(I \)

We will here adopt a very simple approach. We just calculate a number of U9-\(j \)'s and make reasonable guesses at the extrapolations. We start by giving in Table II the values of \(M_{\text{even}}^j(I) \) for the \(g_{9/2} \) shell, i.e., we consider

\[
M_{\text{even}}^j(I) = \langle (jj)^{2j}(jj)^{2j}(jj)^{2j-2}\rangle^{I=2}.
\]

A striking result is that all the U9-\(j \)'s are small except for the one with the maximum value of \(I \), namely \(I = 16 \). A reasonable speculation is that \(M_{\text{even}}^j(I) \) will vanish in the limit of large \(j \) for all \(I \) except \(I_{\text{max}} = 4j - 2 \). We can even dare to speculate that the last one approaches a value of 1/2 in the large-\(j \) limit.
Table I: Values of $M_j^{\text{even}}(I)$ (see text) for all even total angular momenta I in the $g_{9/2}$ shell.

I	$M_j^{\text{even}}(I)$
2	-0.000182
4	0.000173
6	-0.000260
8	0.000536
10	-0.001513
12	0.006055
14	-0.037896
16	0.491530

To test this in our simple approach, we go to a much higher j shell: $j = 21/2$. The values of $M_j^{\text{even}}(I)$ for selected angular momenta that we find are shown in Table II.

Table II: Selected values of $M_j^{\text{even}}(I)$ (see text) for the $j = 21/2$ shell.

I	$M_j^{\text{even}}(I)$
2	-3.57861×10^{-11}
34	-8.35524×10^{-5}
36	9.27451×10^{-4}
38	-1.52261×10^{-2}
40	0.496870

These results strongly support our speculations. The $I = 2$ value is now extremely small (of the order of 10^{-11}) and all the others are small except for $I = 40$. The value for $I = 40$ in the $21/2$ shell is closer to 1/2 than is the $I = 16$ result in the $9/2$ shell: 0.496870 vs. 0.491530.

The $U9$-j's that go to a finite value in the large-j limit are said to exhibit classical behaviour and those that go to zero, non-classical behaviour. Thus, we have only one $U9$-j exhibiting classical behaviour, the one with $I = 2j + (2j - 2) = 4j - 2$. We can gain some insight into this behavior by noting that the relation of Eq. (5) for the case $I = I_{\text{max}} = 4j - 2$ involves only one term:

$$\langle (jj)^{2j}(jj)^{2j}(jj)^{(2j-2)} \rangle_{\text{max}} =$$

$$= -2\langle (jj)^{2j}(jj)^{2j}(jj)^{(2j-1)}(jj)^{(2j-1)} \rangle_{\text{max}} \times$$

$$\times \langle (jj)^{(2j)}(jj)^{(2j-2)}(jj)^{(2j-1)}(jj)^{(2j-1)} \rangle_{\text{max}}. \quad (7)$$

The first $U9$-j on the right hand side approaches $1/\sqrt{2}$ in the large-j limit. The second one approaches $-1/(2\sqrt{2})$ in the same limit.

B. Odd I

We can also consider odd total angular momentum. In that, we use Eq. (6). For $I = 4j - 3$ (the largest odd I), we again have that there is only one term in the sum:

$$\langle (jj)^{2j}(jj)^{(2j-1)}(jj)^{2j}(jj)^{(2j-3)}(4j-3) \rangle =$$

$$= -2\langle (jj)^{2j}(jj)^{(2j-1)}(jj)^{(2j-1)}(jj)^{(2j-1)}(4j-3) \rangle \times$$

$$\times \langle (jj)^{2j}(jj)^{(2j-3)}(jj)^{(2j-1)}(jj)^{(2j-1)}(4j-3) \rangle. \quad (8)$$

For $j = 9/2$, the largest odd angular momentum is $I = 15$, and the left hand side of Eq. (8) is equal to 0.42564827. We expect that this will approach 1/2 in the large-j limit.

Just as in the even-I case, for odd I less than 15, the values are small and go to zero in the large-j limit, as we can see in Table III.

Table III: Values of $M_j^{\text{odd}}(I)$ (see text) for all odd total angular momenta I in the $g_{9/2}$ shell.

I	$M_j^{\text{odd}}(I)$
3	1.410648 $\times 10^{-3}$
5	-1.002940 $\times 10^{-3}$
7	1.325594 $\times 10^{-3}$
9	-2.673475 $\times 10^{-3}$
11	8.145222 $\times 10^{-3}$
13	-4.025313 $\times 10^{-2}$
15	0.425648

We briefly compare with $j = 21/2$. The $U9$-j is now $M_{21/2}^{\text{odd}}(I) = \langle (\frac{21}{2} \frac{21}{2} \frac{21}{2} \frac{21}{2} \frac{21}{2} \frac{21}{2} \frac{21}{2} \frac{21}{2} \frac{21}{2} \frac{21}{2}) \rangle_{\text{max}}$. We show in Table IV some relevant selected values.

Table IV: Selected values of $M_j^{\text{odd}}(I)$ (see text) for the $j = 21/2$ shell.

I	$M_j^{\text{odd}}(I)$
15	9.084676 $\times 10^{-10}$
35	9.407980 $\times 10^{-4}$
37	-1.424514 $\times 10^{-2}$
39	0.430223

Thus, we see that the odd-I case is similar to the even-I case in the sense that the $U9$-j approaches zero in the large-j limit for all I except for the largest possible value $I = 4j - 3$.

III. POWER LAW BEHAVIOUR NEAR $I = I_{\text{max}}$

We again consider even I. We re-examine the $U9$-j $\langle (jj)^{2j}(jj)^{2j}(jj)^{2j}(jj)^{(2j-2)} \rangle$ close to $I = I_{\text{max}}$. We already noted that for $I = I_{\text{max}}$ this $U9$-j increases asymptotically to 1/2 in the large-j limit. We next consider $I = I_{\text{max}} - 2$, $I_{\text{max}} - 4$, $I_{\text{max}} - 6$, $I_{\text{max}} - 8$, and $I_{\text{max}} - 10$. We find numerically that the first one goes slowly to zero approximately as $1/j$, the second one as $1/j^2$, and so
on. All these intriguing and varying behaviors deserve further study. We here give the details.

We evaluate the selected U_9-j’s for $j = 25/2$ and $j = 41/2$. Then we use $j = 25/2$ to predict what happens for $j = 41/2$ via the formula

$$ U_{\text{predicted}}(j = 41/2) = U(j = 25/2) \left(\frac{25}{41} \right)^n, \quad (9) $$

such that $I = I_{\text{max}} - 2n$. We see in Table V that there is close but not perfect agreement with the power law behaviour $1/j^n$. The ratios predicted/actual for $j = 41/2$ for $n = 1, 2, 3, 4, 5$ are shown in the last column. The agreement is best for small n, i.e. as I gets closer to I_{max}.

IV. EXPONENTIAL BEHAVIOUR FOR $I = 2$

We now come back to the $I = 2$ case. We again consider the U9-j symbol $U(j) = \langle (jj) | (jj) \rangle | (jj) \rangle (jj)^{(2j-2)} > I = 2$. We speculate that the asymptic form is $C e^{(-aj)}$. To put this to the test we consider 3 values - j, $j+1$ and $j+2$. If it were striickly exponential then the ratio $R_1[U(j)]/U(j+1)$ would be the same as the ratio $R_2[U(j+1)]/U(j+2)$. We present results for 3 values of j, $40.5, 60.5,$ and 100.5.

I	n	$U(j = 25/2)$	$U(j = 41/2)$	$U_{\text{predicted}}(j = 41/2)$	Ratio
80	0	0.497390	0.498435	0.497390	
78	1	-0.126985×10^{-1}	-0.763220×10^{-2}	-0.774296×10^{-2}	1.0145
76	2	0.641513×10^{-3}	0.22983×10^{-3}	0.238516×10^{-3}	1.0405
74	3	-0.47053×10^{-4}	-0.100101×10^{-4}	-0.108152×10^{-4}	1.0804
72	4	0.471819×10^{-5}	0.589299×10^{-6}	0.652293×10^{-6}	1.1069
70	5	-0.579665×10^{-6}	-0.427933×10^{-7}	-0.488858×10^{-7}	1.1423

For $j = 100.5$, $U(j) = -0.426386 \times 10^{-117}$, $R_1 = 0.157652 \times 10^2$, $R_2 = 0.157675 \times 10^2$, $R_2-R_1 = 0.231934 \times 10^{-2}$.

We see that the difference R_2-R_1 gets smaller and smaller with increasing j. The agreement is remarkable. For $j = 100.5$ it is better than 1 part in 6000.

We now try a more elaborate form $C j^m e^{(-aj)}$ and look for m. Consider the ratio R_2/R_1. For the functional form just given it is equal to

$$ (j+1)^{2m}/(j(j+2))^m $$

For $m=0$ this has a value of one. By comparing with the exact value of R_2/R_1 obtained from explicit values of U_9-j’s we conclude that $m=1.5$. For example for $j=40.5$ the values of R_2/R_1 is 1.00089299679 for $m=1.5$ whereas the exact value is 1.0008477742. The corresponding values for $j=80.5$ are 1.00022864342 and 1.00022150836.

Early works on 3-j, 6-j and 9-j symbols were performed by atomic and nuclear physicists, especially Wigner [2] and Racah [3]. More recently, there have been extensive works by researchers in chemistry and quantum gravity [4, 5]. Very recently Van Isacker and Macchiavelli [6] have considered the large j limit of shell model matrix elements in the context of the problem of shears mechanisms in nuclei. This involved 12-j symbols. In this work we have shown that one can get a variety of behaviors of unitary 9-j’s in the large j limit. Some go to a finite value, some go to zero exponentially and others go to zero via power laws i.e. $1/j^n$ with varying n. We have here found the results numerically. It will be a challenge to get a better and perhaps more analytic understanding of these behaviors.

[1] L. Zamick and A. Escuderos, Phys. Rev. C 87, 044302 (2013).
[2] E.P. Wigner, unpublished notes and Group theory and its applications to quantum mechanics of atomic spectra (Academic Press, New York, 1958).
[3] G. Racah, Phys. Rev. 62, 438 (1942).
[4] R.W. Anderson, V. Aquilanti, and C. da Silva Ferreira, J. Chem. Phys. 129, 161101 (2008).
[5] H.M. Haggard and R.G. Littlejohn, Class. Quantum Grav. 27, 135010 (2010).
[6] L. Yu and R.G. Littlejohn, Phys. Rev. A 83, 052114 (2011).
[7] P. Van Isacker and A.O. Macchiavelli, Phys. Rev. C87, 061301 (2013).