MANEJO DA FISIOTERAPIA NO ÂMBITO HOSPITALAR NO PACIENTE PEDIÁTRICO COM COVID-19: RELATO DE CASOS

Hospital physical therapy management in pediatric patients with COVID-19: case reports

Camila Wohlgemuth Schaan a,*, Vanessa de Souza Vieira a, Cristina Miller a, Ana Paula Dattein Peiter a, Taciana Piccoli a, Gabriela Cavioni a, Janice Luisa Lukrakfa b, Renata Salatti Ferrari a

RESUMO

Objetivo: Relatar as condutas fisioterapêuticas dos dois casos de pacientes pediátricos com COVID-19 internados em hospital de referência estadual em Porto Alegre para tratamento da doença.

Descrição dos casos: Caso 1, sexo feminino, 10 meses de idade com doença crônica preexistente, internada desde o nascimento, utilizava ventilação mecânica via traqueostomia, evoluiu com hipoxemia, necessidade de oxigenoterapia e aumento dos parâmetros ventilatórios, sendo confirmada COVID-19. Foram realizadas técnicas de desobstrução brônquica e manutenção da expansão pulmonar. Além disso, a criança durante a internação adquiriu controle cefálico, sedestação sem apoio, rolar e alcance de objetos. Caso 2, sexo masculino, 9 anos, com doença psiquiátrica prévia e obesidade, evoluiu com quadro de rebaixamento do sensório e necessidade de tratamento intensivo, sendo o paciente colocado em ventilação mecânica invasiva na chegada à unidade e confirmada a infecção por SARS-CoV-2. Realizou fisioterapia para desobstrução brônquica, reexpansão pulmonar e mobilização precoce, mostrando melhora ventilatória durante a internação. O paciente foi extubado após 17 dias de internação. Durante a internação, o paciente recebeu orientações para manutenção de desenvolvimentos motores.

Comentários: A COVID-19 apresentou-se de forma distinta nos casos, todavia a fisioterapia foi essencial para a manutenção e melhora da saúde dos pacientes.
INTRODUÇÃO

Em dezembro de 2019, pacientes com pneumonia de causa desconhecida foram relacionados a um mercado de frutos do mar e animais vivos da cidade de Wuhan, na China.1 O novo coronavírus é o sétimo membro da família dos coronavírus que infectam seres humanos1 e cuja doença foi denominada de COVID-19.2 Com rápida disseminação, foi declarada pela Organização Mundial da Saúde (OMS) como pandemia,2 tendo seu primeiro caso confirmado no Brasil em 26 de fevereiro de 20203 e no Rio Grande do Sul no dia 10 de março de 2020.4

Relatos indicam padrão agressivo da COVID-19 especialmente na população idosa e com comorbidades quando comparada aos mais jovens.5 Todavia, em um estudo italiano, 65,1% dos casos pediátricos analisados necessitaram de internação hospitalar na Itália6 e 5% de tratamento intensivo em Madri, Espanha.7 Entre as manifestações clínicas, estão febre, tosse seca e fadiga,8 e mais de 90% não evolui para a forma grave da doença,9 entretanto fatores como idade mais jovem, doença pulmonar subjacente e imunossupressão não são descartados como predisponentes para casos mais graves de COVID-19 em crianças.8

Entre os recursos utilizados em casos moderados a graves, está a fisioterapia.10 Até o presente momento, não sabemos de estudos relatando o manejo fisioterapêutico em pacientes pediátricos com COVID-19 nem as repercussões cinético-funcionais após a internação hospitalar. Portanto, a fim de contribuir com evidências científicas e com a compreensão do processo de evolução e terapêutica, o objetivo do estudo foi relatar os dois casos de pacientes pediátricos com COVID-19 atendidos no Hospital de Clínicas de Porto Alegre (HCPA), centro de referência estadual no combate à doença.

DESCRição DOS CASOS

Caso 1

Paciente com dez meses de idade, sexo feminino, internada no HCPA havia nove meses, permaneceu em Unidade de Terapia Intensiva Neonatal (UTIN) por quatro meses para investigação genética, necessitando de ventilação mecânica invasiva (VMI) para estabilidade do quadro respiratório. Ao longo da internação, precisou de traqueostomia (TQT) e VMI para uso domiciliar. Para isso, a paciente foi adaptada ainda na UTIN ao ventilador mecânico Trilogy 100 (Philips Respironics, Estados Unidos), modo ventilatório com pressão controlada, pressão inspiratória (IPAP) de 25 cmH2O, pressão expiratória (EPAP) de 6 cmH2O, frequência respiratória (FR) de 22 irpm, sensibilidade auto-track e tempo inspiratório de 0,8 segundos.

Após sua adaptação, recebeu alta para a unidade de internação pediátrica, onde se encontrava clinicamente estável, sem necessidade de oxigenoterapia, aguardando liberação judicial para home care. Entretanto, no nono mês de internação, iniciou com febre e hipoxemia [saturação parcial de oxigênio (SpO2): 90%], sendo necessárias a colocação de oxigênio (2 L/min) e a transferência para leito de isolamento, em que realizou o teste de reação em cadeia da polimerase (PCR) para COVID-19, cujo resultado foi positivo.

A equipe de fisioterapia da unidade, a fim de prevenir a dispersão de aerossóis, instalou circuito de aspiração fechado, embora pouco efetivo, por se tratar de uma criança ativa e que frequentemente desconectava o circuito de VMI. Ainda, inseriu-se um filtro high efficiency particulate air (HEPA) na saída do respirador, seguido de filtro trocador de calor e umidade (HME) próximo à TQT. Utilizaram-se o heat and moisture exchanger filter (HMEF) no ressuscitador manual para a realização de técnicas de desobstrução brônquica e um filtro HEPA na saída do ar comprimido, com o objetivo de reduzir a dispersão de aerossol durante a aspiração das vias aéreas.

Na radiografia de tórax inicial ao quadro, não foram observadas alterações (Figura 1A). Já a gasometria venosa indicou presença de acidose respiratória (pH=7,27; pCO2=69,9; HCO3=31,7), com necessidade de ajustes nos parâmetros ventilatórios (IPAP=28 cmH2O; EPAP=5 cmH2O; FR=25 irpm), e uso de oxigenoterapia (1 L/min). Após sete dias do início dos sintomas, foi realizada nova radiografia de tórax (Figura 1B), com presença de infiltrado peri-hilar e aparente consolidação em lobo médio. Durante os atendimentos fisioterapêuticos, foram realizadas técnicas manuais, visando à manutenção da expansibilidade recuperação do quadro funcional dos pacientes. Estudos futuros são necessários para melhor compreensão do curso da doença e suas repercussões funcionais, a fim de traçar um tratamento eficiente para os pacientes pediátricos acometidos pela COVID-19.

Palavras-chave: Infeções por coronavírus; Hospitalização; Pediatria; Fisioterapia.

Keywords: Coronavirus infections; Hospitalization; Pediatrics; Physical therapy.
pulmonar e à promoção da higiene brônquica. As técnicas mais utilizadas foram: compressão/descompressão, expiração lenta prolongada (ELPr), hiperinsuflação manual (HM) com bolsa autoinflável e bag squeezing. A fim de manter a paciente ativa e prevenir a regressão do quadro motor, manteve-se a estimulação motora diária por meio da orientação do familiar.

Após 19 dias do início dos sintomas de COVID-19, a paciente recebeu alta hospitalar, clinicamente estável, com contraprova para SARS-CoV-2 negativa, gasometria sem alterações e retorno aos parâmetros ventilatórios utilizados previamente à infecção. Poucos dias antes da alta, foi concluída a investigação genética, confirmando síndrome de Ondine. Apesar de se tratar de uma internação prolongada (300 dias), a paciente apresentava controle cefálico, sentava-se sem apoio, rolava e realizava preensão e alcance de objetos sem dificuldades. Além disso, a avaliação funcional por meio da Functional Status Scale (FSS-Brasil) indicou grau moderado de disfunção (12 pontos), e o atendimento de fisioterapia motora e respiratória foi continuado no domicílio.

Caso 2

Paciente com nove anos e 11 meses, sexo masculino, diagnóstico prévio de transtorno de espectro autista (TEA), comportamento opositor, transtorno afetivo bipolar, déficit cognitivo, epilepsia de difícil controle e obesidade, internado via emergência e transferido de hospital de sua cidade por suspeita de COVID-19. História de febre até 39,5°C havia quatro dias associada a tosse esporádica, secreção hialina, escape convulsivo e redução do apetite e do volume urinário. Ao longo do dia, em 1º de abril, apresentou piora do sensório, sendo encaminhada à Unidade de Terapia Intensiva Pediátrica (UTIP), com escala de coma de Glasgow 3, pupilas mióticas, SpO₂=80%, e foi realizada imediata intubação traqueal. Fez-se tomografia computadorizada de tórax compatível com padrão em vidro fosco (Figura 2). A pesquisa de SARS-CoV-2 foi positiva.

Após quatro dias, iniciou fisioterapia três vezes ao dia, com os objetivos de desobstrução brônquica, melhora da troca gasosa e prevenção dos efeitos deletérios relacionados à restrição ao leito, como diminuição de amplitude de movimento e perda de massa muscular, com as seguintes condutas: compressão/descompressão, aspiração de tubo endotraqueal e vias aéreas superiores, cinesioterapia passiva, alongamentos de membros e posicionamento funcional no leito. Nesse mesmo dia, foram realizados ajustes na VMI para garantir volume de ar corrente de 7,5 mL/kg, e foi avaliado o índice de saturação de oxigênio (ISO), resultando em 6,5, caracterizando síndrome do desconforto respiratório agudo (SDRA) leve.

Depois de 14 dias do início da internação, paciente apresentou melhora clínica e hemodinâmica, boa resposta à terapia diurética e posição prona (realizada quatro vezes durante a internação),
progressiva melhora ventilatória, tolerando desmame ventilatório. Ele foi extubado após 17 dias de VMI. Permaneceu com oxigenoterapia via máscara não reinalante (7 L/min), mantendo SpO₂=96%, com necessidade de aspiração frequente das vias aéreas por acúmulo de secreção e tosse ineficaz. Na fisioterapia eram realizadas as manobras citadas anteriormente, bem como períodos de ventilação mecânica não invasiva (VMNI), modo bilevel IPAP=14 cmH₂O, EPAP=8 cmH₂O, FiO₂=40%, por causa da hipoexpansão pulmonar (Figura 3A), aspiração de vias aéreas, cinesioterapia passiva evoluindo para assistida, alongamentos e treino de transferências.

A fim de prevenir a dispersão de aerossóis, a aspiração durante a VMI se deu via sistema fechado e a VMNI por meio de ventilador mecânico com ramo duplo, interface total face (não ventilada), filtro HEPA no ramo expiratório e filtro HME proximal ao paciente. Ao longo dos dias, criança tolerou redução de oxigênio e transição para óculos nasal a 3 L/min. Manteve quadro estável e melhora progressiva, possibilitando alta da UTIP após 22 dias. Nesse momento, pontuou 17 na FSS-Brasil, escore caracterizado como disfunção grave.

No dia seguinte à alta da UTI, na unidade de internação pediátrica, paciente evoluiu com sonolência, hiporrempsonividade e dificuldade no manejo da secreção de vias aéreas. Realizou radiografia de tórax (Figura 3B), evidenciando atelectasia, e, além das condutas descritas anteriormente, foi utilizada a técnica de HM com bolsa autoinflável e filtro HEPA (duas vezes ao dia, três ciclos de 10 repetições cada um), a fim de evitar dispersão de aerossol. Após três dias, repetiu raio x de tórax com reabsorção total da atelectasia (Figura 3C), foi retirado o oxigênio suplementar e suspendeu-se a técnica de HM, não havendo necessidade de aspiração de vias aéreas. A ausculta pulmonar encontrava-se sem ruidos adventícios. Ainda, conforme tolerância e colaboração do paciente, eram realizados cinesioterapia assistida e ativa e treino de transferências.
(ortostase e deambulação no quarto com auxílio). Foi possível evoluir para cinesioterapia resistida e deambulação independente. A fisioterapia ocorria duas vezes ao dia.

Paciente recebeu alta após 41 dias de internação hospitalar com PCR negativo para SARS-CoV-2, 8 pontos na FSS-Brasil, escore caracterizado como disfunção leve, e 60 pontos na força muscular conforme avaliação pela Medical Research Council (MRC).

Em ambos os casos, as medidas de precaução da instituição para atendimento de pacientes suspeitos e confirmados com COVID-19 foram utilizadas pelos profissionais envolvidos no cuidado durante a internação.

DISCUSSÃO

O papel do fisioterapeuta inserido na equipe multiprofissional visa ao tratamento das alterações funcionais causadas pela COVID-19, auxiliando no manejo do suporte ventilatório e na desobstrução brônquica, a fim de melhorar as trocas gasosa e facilitar o desmame da ventilação mecânica. Além disso, por causa do tempo de internação hospitalar prolongado, em pacientes graves e com longo período em VMI, a fraqueza muscular torna-se um problema, podendo manifestar-se na criança pequena com quadro de perda dos marcos motores e atraso no desenvolvimento motor.

A avaliação da funcionalidade global foi realizada pela escala FSS-Brasil, com base na qual a paciente do caso 1 teve alta com disfunção moderada, sendo os domínios mais afetados alimentação e respiração, em função do uso de sonda nasoenteral e VMI. No caso 2, o grau de disfunção na alta foi leve pela maior pontuação no domínio alimentação, e a força muscular estava preservada. Nesse caso, a mobilização precoce foi realizada desde a estabilização cardiorrespiratória, a fim de prevenir e/ou minimizar perdas de amplitude de movimento, força.

Figura 3 Radiografia de tórax: (A) pulmões hipoexpandidos; (B) atelectasia de lobo superior direito e hipoexpansão bilateral; (C) pulmões hipoexpandidos.
Fisioterapia hospitalar no paciente pediátrico com COVID-19

muscular e condicionamento cardiorrespiratório.16 Além disso, os exercícios levaram em conta a condição funcional prévia do paciente, com evolução progressiva de intensidade e frequência, conforme condição clínica e tolerância do paciente.17

As técnicas respiratórias utilizadas seguiram os guidelines,18 a idade e a colaboração dos pacientes. Embora a maioria dos casos de COVID-19 evoluam com tosse seca,19 em ambos os casos descritos houve prejuízo da higiene brônquica, sendo aplicadas técnicas para esse objetivo. No caso 1, a aspiração foi realizada por intermédio de circuito aberto, por causa da não adaptação da traqueostomia ao sistema fechado. Todas as medidas de precaução da instituição para procedimentos que geram aeroesoses menores.10,21 Com relação ao circuito de VMNI, no caso 1, para reduzir a dispersão de aeroesol, a paciente utilizava circuito único. Portanto, a indicação é de filtro HMEF proximal à TQT (antes da válvula exalatória).22 Todavia, a paciente apresentou diminuição do volume de ar corrente e consequente queda de saturação (SpO2<82%), e houve a necessidade de utilizar aeroesol, tomadas pelos profissionais envolvidos, não havendo nenhuma contaminação da equipe. No caso 2, a técnica de hiperinsuflação manual com bolsa autoinflável e filtro HEPA, seguida de manobras de compressão torácica, foi usada na unidade de internação pediátrica, por ser uma técnica de desobstrução brônquica e reexpansão pulmonar alternativa à VMNI, já que os aparelhos disponíveis nas enfermarias são de ramo único, de interface valvulada e tem consequente eliminação de aeroesol, devendo ser evitado.20

A oxigenoterapia tem sido indicada nos casos de hipoxemia (SpO2<94%).10,21 No caso 1, a suplementação foi feita por meio de peça T-ayre via TQT para manter níveis SpO2>90%, por tratar-se de paciente com doença crônica prévia. No caso 2, foram utilizados máscara não reinalante para fluxos de oxigênio acima de 7 L/min e cateter nasal para fluxos menores.10,21 Com relação ao circuito de VMNI, no caso 1, para reduzir a dispersão de aeroesol, a paciente utilizava circuito único. Portanto, a indicação é de filtro HMEF proximal à TQT (antes da válvula exalatória).22 Todavia, a paciente apresentou diminuição do volume de ar corrente e consequente queda de saturação (SpO2<82%), e houve a necessidade de utilizar aeroesol, tomadas pelos profissionais envolvidos, não havendo nenhuma contaminação da equipe. No caso 2, o circuito de VMNI seguiu as recomendações20,23 e, apesar das controvérsias sobre o seu uso em pacientes com COVID-19, como o objetivo era terapêutico (reexpansão pulmonar), foi bem tolerado e utilizado com sucesso.

Como conclusão, os pacientes pediátricos acometidos pela COVID-19 apresentaram diferentes formas de manifestação da doença, e em ambos os casos a fisioterapia foi essencial para a manutenção e melhora do quadro funcional. O uso da ventilação não invasiva, apesar de ainda controvertido, foi essencial para a manutenção e melhora do quadro respiratório. Além disso, a precaução para casos confirmados e suspeitos da doença foi tomada por todos os profissionais. Estudos futuros são necessários para fundamentar as condutas fisioterapêuticas, pois a COVID-19 é uma doença nova, pouco prevalente entre crianças, tornando um desafio seu entendimento e seus desfechos nessa população.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declaram não haver conflito de interesses.

REFERÊNCIAS

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727-33. https://doi.org/10.1056/nejmoa2001017
2. World Health Organization [homepage on the Internet]. WHO Director-General’s opening remarks at the media briefing on COVID-19, 14 March 2020. Geneva: WHO; 2020 [cited 2020 Jun 2]. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
3. Brasil. Ministério da Saúde [homepage on the Internet]. Brasil confirma primeiro caso da doença. Brasília (DF): Ministério da Saúde; 2020 [cited 2020 Jun 2]. Available from: https://www.saude.gov.br/noticias/agencia-saude/46435-brasil-confirma-primeiro-caso-de-novo-coronavirus
4. Secretaria da Saúde do Estado do Rio Grande do Sul [homepage on the Internet]. Confirmado o primeiro caso de novo coronavírus no Rio Grande do Sul [cited 2020 Jun 2]. Available from: https://saude.rs.gov.br/confirmado-o-primeiro-caso-de-novo-coronavirus-no-rio-grande-do-sul
5. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0
6. Garazzino S, Montagnani C, Donà D, Meini A, Felici E, Vergine G, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as of 9 April 2020. Euro Surveill. 2020;25:2000600. https://doi.org/10.2807/1560-7917.ES.2020.25.18.2000600
7. García-Salido A, Leoz-Cordillo I, Azagra-Garde A, Nieto-Moro M, Iglesias-Bouzas MI, García-Teresa M, et al. Children in critical care due to severe acute respiratory syndrome coronavirus 2 infection: experience in a Spanish hospital. Pediatr Crit Care Med. 2020;10. https://doi.org/10.1097/PCC.0000000000002475

Rev Paul Pediatr. 2021;39:e2020238
8. Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Jin R, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;16:223-1. https://doi.org/10.1007/s12519-020-00343-7

9. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145:e20200702. https://doi.org/10.1542/peds.2020-0702

10. Associação Brasileira de Fisioterapia Cardiorrespiratória e Fisioterapia em Terapia Intensiva. COVID-19 - Manejo fisioterapéutico da população infantil. São Paulo: ASSOBRAFIR; 2020.

11. Lazzeri M, Lanza A, Bellini R, Bellofiore A, Cecchetto S, Colombo A, et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR). Monaldi Arch Chest Dis. 2020;90. https://doi.org/10.4081/monaldi.2020.1285

12. Pinto TF, Carvalho CR. SARS CoV-2 (COVID-19): lessons to be learned by Brazilian Physical Therapists. Braz J Phys Ther. 2020;24:185-6. https://doi.org/10.1016/j.bjpt.2020.04.004

13. Pancieri C, Pereira KR, Valentini NC, Sikilero RH. The influence of hospitalization on motor development of infants admitted to Hospital de Clínicas de Porto Alegre. Rev HCPA. 2012;32:161-8.

14. Pollack MM, Holubkov R, Glass P, Dean JM, Meert KL, Zimmerman J, et al. Functional Status Scale: new pediatric outcome measure. Pediatrics. 2009;124:e18-28. https://doi.org/10.1542/peds.2008-1987

15. Pereira GA, Schaan CW, Ferrari RS, Normann TC, Rosa NV, Ricachenevsky CP, et al. Functional Status Scale: cross-cultural adaptation and validation in Brazil. Pediatr Crit Care Med. 2019;20:e457-63. https://doi.org/10.1097/ pcc.0000000000002051

16. Associação Brasileira de Fisioterapia Cardiorrespiratória e Fisioterapia em Terapia Intensiva. COVID-19 - Mobilização precoce na insuficiência respiratória aguda - IRpA. São Paulo: ASSOBRAFIR; 2020.

17. Choong K, Canci F, Clark H, Hopkins RO, Kudchadkar SR, Lati J, et al. Practice recommendations for early mobilization in critically ill Children. J Pediatr Intensive Care. 2018;7:14-26. https://doi.org/10.1055/s-0037-1601424

18. Associação Brasileira de Fisioterapia Cardiorrespiratória e Fisioterapia em Terapia Intensiva. COVID-19. Recursos e técnicas que devem ser utilizadas com cautela ou evitadas. São Paulo: ASSOBRAFIR; 2020.

19. Hong H, Wang Y, Chung HT, Chen CJ. Clinical characteristics of novel coronavirus disease 2019 (COVID-19) in newborns, infants and children. Pediatr Neonatol. 2020;61:131-2. https://doi.org/10.1016/j.pedneo.2020.03.001

20. Associação Brasileira de Fisioterapia Cardiorrespiratória e Fisioterapia em Terapia Intensiva. Uso de filtros na ventilação mecânica. São Paulo: ASSOBRAFIR; 2020.

21. Associação de Medicina Intensiva Brasileira. Protocolo suplementação de oxigênio em paciente com suspeita ou confirmação de infecção por COVID-19. São Paulo: AMIB; 2020.

22. Sociedad Latinoamericana de Cuidados Intensivos Pediátricos [homepage on the Internet]. Recomendaciones del Comité Respiratorio en el Contexto de Infección por SARS-CoV-2 (COVID-19) [cited 15 Jun 2020]. Available from: https://www.slacip.org.

23. Associação de Medicina Intensiva Brasileira. Recomendações da Associação de Medicina Intensiva Brasileira para a abordagem do COVID-19 em medicina intensiva. São Paulo: AMIB; 2020.