Sequencing and analysis of the complete mitochondrial genome of *Changeondelphax velitchkovskyi* (Hemiptera: Fulgoroidea)

Yi-Xin Huang and Dao-Zheng Qin

Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education Entomological Museum, Northwest A&F University, Yangling, Shaanxi, China

ABSTRACT We determined the complete mitochondrial genome sequence of *Changeondelphax velitchkovskyi* (Melichar 1913). The complete mitogenome sequence of *C. velitchkovskyi* was observed to be a circular molecule 16,449 bp long and consists of 13 protein-coding genes (PCG), two ribosomal RNA (rRNA) genes and 22 transfer RNA (tRNA) genes (GenBank accession no. MG049916). This nucleotide composition is biased toward adenine and thymine (75.7% A+T). The A+T-rich region is found between *rrnS* and *trnI*, and this entire region was 1781 bp long.

Changeondelphax velitchkovskyi (Melichar 1913) is widely distributed in the Palaearctic Region. Unlike most delphacids that feed on Poaceae, it feeds on both Poaceae and Typhaceae (Kwon 1982; Ding 2006). However, the mitogenome sequence of *C. velitchkovskyi* remain unknown so far. Here, we sequenced the complete mitochondrial DNA genome of *C. velitchkovskyi* to provide more comprehensive data toward establishing its relationship within the family Delphacidae.

Adult *C. velitchkovskyi* males were collected from LONGFENG wetland in Daqing City (N 46°30'41.54" and E 125°06'58.78"), Heilongjiang, China in August of 2014. Voucher specimens were deposited in the Key Laboratory of Plant Protection Resources and Pest Management of the...
Ministry of Education, Entomological Museum, Northwest A&F University (NWAFU).

The complete mitochondrial genome of *C. velitchkovskyi* was sequenced using an Illumina HiSeq2000 system made by the Shanghai Personal Biotechnology Limited Company (Shanghai, China). The annotation was carried out in Geneious 8.1.3 (Kearse et al. 2012). Protein-coding genes (PCG) were determined by the open reading frames; rRNAs and tRNAs were identified using MITOS (Bernt et al. 2013).

The *C. velitchkovskyi* mitochondrial genome is 16,449 bp (GenBank accession no. MG049916) in length with a total A+T content of 75.7% that is heavily biased toward the A and T nucleotides. It encodes the complete set of 37 genes which are usually found in animal mitogenomes. The gene arrangement in the mitochondrial genome of *C. velitchkovskyi* is conserved, similar to other mitogenomes in the Delphacidae, with the exception of *Nilaparvata lugens* (Zhang et al. 2013). In the mitogenome of *C. velitchkovskyi*, a total of 19 bp overlaps have been found at six gene junctions (*trnQ* and *trnM* share a nucleotide; *atp8* and *atp6* share seven nucleotides; *nad3* and *trnA* share two nucleotides; *trnN* and *trnS1* share one nucleotide; *trnS1* and *trnE* share one nucleotide, and *nad4* and *nad4L* share seven nucleotides). The mitogenome is loose and has a total of 486 bp intergenic sequences without the putative A+T-rich region. The intergenic sequences are at 15 locations ranging from 1 to 217 bp, with the longest one located between *trnS2* and *nad1*. The A+T-rich region of the *C. velitchkovskyi* is 1781 bp long and located between the *rrnS* and *trnl* genes.

All 22 tRNA genes usually found in the mitogenomes of insects are present in *C. velitchkovskyi*. The nucleotide length of tRNA genes ranges from 58 bp (*trnS2*) to 71 bp (*trnK*), and A+T content ranges from 66.7% (*trnI*) to 86.7% (*trnE*). These two rRNA genes have been identified on the N-strand in the *C. velitchkovskyi* mitogenome.

We analyzed the nucleotide sequences of 13 PCGs using the maximum likelihood (ML) method to understand the phylogenetic relationship of *C. velitchkovskyi* with other Auchenorrhyncha species. The mitogenome sequence of *Aphis gossypii* was used as the outgroup. Our results show that *C. velitchkovskyi* belongs to the superfamily Fulgoroidea and is clustered into a branch of Delphacidae (Figure 1). The family Delphacidae is monophyletic and *C. velitchkovskyi* is nested within the delphacids.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 30970387 and 31172126).

ORCID

Dao-Zheng Qin http://orcid.org/0000-0001-8219-6753

References

Bernt M, Donath A, Jühlhing F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69:313–319.

Ding JH. 2006. Fauna Sinica Insecta Vol. 45, Homoptera Delphacidae. Hong Kong: Science Press; p. 529–530.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647–1649.

Kwon YJ. 1982. New and little known planthoppers of the Family Delphacidae (Homoptera: Auchenorrhyncha). Korean J Entomol. 12:1–11.

Melichar L. 1913. Faune du district de Walouyki du gouvernement de Woroniež (Russie). Cracovie, 7:1–11.

Zhang KJ, Zhu WC, Rong X, Zhang YK, Ding XL, Liu J, Chen DS, Du Y, Hong XY. 2013. The complete mitochondrial genomes of two rice planthoppers, *Nilaparvata lugens* and *Laodelphax striatellus*: conserved genome rearrangement in Delphacidae and discovery of new characteristics of *atp8* and tRNA genes. BMC Genomics. 14:417.