Since the introduction of reverse total shoulder arthroplasty (RTSA) in 1987 (in Europe) and 2004 (in the United States), the number of RTSAs performed annually has increased. Although the main indication for RTSA has been rotator cuff tears, indications have expanded to include several shoulder conditions, many of which involve dysfunction of the rotator cuff. RTSA complications have been reported to affect 19% to 68% of patients and include acromial fracture, hematoma, infection, instability, mechanical baseplate failure, neurological injury, periprosthetic fracture and scapular notching. Current controversies in RTSA include optimal baseplate positioning, humeral neck-shaft angle (135° versus 155°), glenosphere placement (medial, lateral or bony increased offset RTSA) and subscapularis repair. Improvements in prosthesis design, surgeon experience and clinical results will need to occur to optimize this treatment for many shoulder conditions.

Keywords: reverse total shoulder arthroplasty; indications; contraindications; clinical outcomes; complications

Introduction
Traditionally, anatomical total shoulder arthroplasty (TSA) has been used to treat the shoulder joint with end-stage glenohumeral osteoarthritis (OA) and an intact rotator cuff. However, loosening of the glenoid component remains a common cause of failure after TSA, leading to revision surgery in 0.8% of TSAs per year.1–3 Alternatives to TSA are cup arthroplasty, hemi-arthroplasty (HA) and interpositional allografts with HA. For patients without a rotator cuff or with rotator cuff tear arthropathy, the traditional treatment was HA. Unfortunately, HA for these indications provided unpredictable pain relief and little improvement in range of motion (ROM) or function.4

In the 1970s, Beddow and Alloy were using a prototype reverse shoulder arthroplasty in Liverpool for patients with rheumatoid arthritis but did not publish the results. In 1987, Grammont et al5 introduced the reverse total shoulder arthroplasty (RTSA) to treat rotator cuff tear arthropathy. RTSA was approved by the US Food and Drug Administration in 2004,6 and the number of RTSAs performed annually increased dramatically.7 Approximately 10,000 RTSAs were performed in the USA in 2007, a fivefold increase over 2004. Estimates indicate that 30,000 RTSAs were performed in 2012.7 To assess the contribution of RTSA to overall use of primary shoulder arthroplasty, Jain and Yamaguchi8 used the Nationwide Inpatient Sample from 2009 through 2011. They found that the use of primary shoulder arthroplasty increased significantly during that period, with a major contribution from RTSA, which accounted for 42% of all primary shoulder arthroplasties in 2011.8

Indications and contraindications
Although the most common indication for RTSA is rotator cuff tear arthropathy (Fig. 1), indications have expanded to include several conditions and situations that were difficult to treat with anatomical shoulder arthroplasty, such as acute proximal humerus fracture, chronic locked dislocation, chronic pseudoparalysis caused by irreparable rotator cuff without arthritis, glenohumeral arthritis with severe glenoid bone loss, immunological arthritis with or without associated rotator cuff tears, malunited/nonunited proximal humerus fracture, failed shoulder arthroplasty and tumours.9–13 Many of these conditions involve dysfunction of the rotator cuff. Appropriate candidates for RTSA now include young patients, who have shown...
excellent clinical improvement with high implant surviv-

Contraindications to RTSA include axillary nerve dam-

Pre-operative deltoid impairment is not an absolute con-

Patients undergoing RTSA should be aware of its high

Clinical outcomes according to indication

Rotator cuff tear arthropathy

Several studies have reported results of RTSA in patients

Pseudoparalysis caused by massive, irreparable rotator cuff

tear without OA

Acute proximal humerus fracture

HA was traditionally the treatment of choice for three- and

Because of less than optimal results with this approach, open reduction and internal fixation (ORIF) gained popularity, especially for younger patients. However, the results of both HA and ORIF are unpredictable because of dependence on anatomical tuberosity healing. The complication and failure rates of ORIF to treat shoulder fractures can be high. RTSA may be a more reliable treatment for complex proximal humerus fractures because its functional outcomes appear to depend less on tuberosity healing and rotator cuff integrity (Fig. 3). However, some authors have suggested that tuberosity repair is associated with increased external rotation compared with no

Fig. 1 a) Anteroposterior (AP) radiograph of a shoulder with rotator cuff tear arthropathy showing superior joint space narrowing; b) post-operative radiograph of RTSA.
RTSA can also be a valuable salvage procedure after failed ORIF of a proximal humerus fracture, with a relatively low revision rate. Several studies have reported favourable results of RTSA to treat proximal humeral fractures. Two studies found no significant differences in the clinical results of patients with acute proximal humerus fractures treated with HA or RTSA. However, other authors reported that RTSA appears to achieve better clinical outcomes than HA. Ross et al. reported good clinical and radiographic outcomes of RTSA in elderly patients (mean age 79 years [range, 67 to 90 years]) with three- and four-part proximal humerus fractures and an extremely low complication rate (3.4%) with no dislocations, infections or prosthetic revisions. A recent meta-analysis showed that RTSA may produce more favourable clinical outcomes than HA for treating complex proximal humeral fractures.

Several studies have cautioned that RTSA may not be the optimal treatment for patients with acute proximal humerus fractures. Smith et al. reported that patients treated with RTSA had limited post-operative abduction (approximate range 90° to 100°), and that recovery of external rotation and internal rotation varied widely. Cazeneuve and Cristofari and Bufquin et al. showed various post-operative radiographic findings in patients with acute proximal humerus fractures treated with RTSA, and they cautioned that long-term results are required before RTSA can be recommended as a routine procedure for complex fractures of the proximal humerus in the elderly.

Malunited/nonunited proximal humerus fracture

Studies with short-term follow-up have reported high rates of patient satisfaction with RTSA for improving ROM, treating malunited proximal humerus fracture and reducing pain. Boileau et al. recommended the use of RTSA to treat type-4 malunions (severe tuberosity malunion) when a greater tuberosity osteotomy was required. In a retrospective review, Martinez et al. reported improvement in Constant-Murley scores and ROM, as well as a high patient satisfaction rate (86%). Before surgery, patients should be informed that active external rotation might not be restored after RTSA, particularly if an osteotomy of the greater tuberosity is performed. Another approach to patients with painful, malunited proximal humeral fractures is to leave the tuberosities in place and insert the RTSA into the existing anatomy. Willis et al. did not perform a tuberosity osteotomy when placing the RTSA and recommended using the largest possible glenosphere to tension the soft tissue and prevent bony impingement.

Raiss et al. reported on 42 patients treated with RTSA for post-traumatic sequelae of the proximal part of the humerus with malunion of the tuberosities. Of those patients, 43% rated their result as very good, 45% as
good, 10% as satisfactory and 2% as unsatisfactory. Complications were one intra-operative humeral shaft fracture, one traumatic dislocation, one periprosthetic humeral fracture and one aseptic loosening of the humeral and glenoid components. The authors concluded that RTSA is a good treatment option for type-4 proximal humeral fracture sequelae that cannot be treated with anatomical TSA. In a study at the same institution, the use of RTSA for the treatment of nonunion of the surgical neck of the proximal part of the humerus (type-3 fracture sequelae) produced improvement in functional outcome but a high complication rate. Dislocation was the most common complication and was associated with resection of the tuberosities of the proximal part of the humerus, which has been postulated to be necessary to provide a compressive force from the deltoid muscle. Another reason for instability may be the removal of the rotator cuff to gain exposure and place the implants. Therefore, the authors recommended that the tuberosities and the attached rotator cuff should be preserved if possible to reduce the risk of dislocation.

Glenohumeral OA with severe glenoid bone loss

The use of RTSA in patients with severe glenoid bone loss and OA has been reported. There are several classifications of glenoid bone loss that define various defects caused by OA. The most commonly used classification is that of Walch et al: type A2, central bone loss; type B2, posterior bone loss; and type C, severe retroversion of the glenoid (Fig. 5).

Although glenoid bone grafting has been recommended for type-B2 and type-C glenoid wear, it has been shown that use of RTSA without glenoid bone grafting can be successful for patients with severe glenoid bone loss. Excellent results have been reported in patients with OA, an intact rotator cuff and substantial glenoid bone loss treated with RTSA with or without bone grafting (Fig. 6). Long-term follow-up studies are needed before RTSA can be recommended in patients with severe glenoid bone loss.

Chronic locked glenohumeral joint dislocation

Chronic locked glenohumeral dislocation presents many challenges caused by humeral and glenoid bone loss, concomitant soft-tissue contractures and rotator cuff lesions. In these patients the failure rate for TSA has increased, with increasing follow-up because of recurrent instability, glenoid loosening and graft subsidence. Werner et al. reported on 21 patients treated with glenoid bone grafting with RTSA for neglected anterior dislocation with substantial glenoid bone loss at a mean follow-up of 4.9 years (range, 2 to 10 years). They reported an average 45% glenoid bone loss based on glenoid width measurements on pre-operative CT scans or MR images. Outcomes were rated as excellent by ten patients, good by eight patients and fair by three patients.

Rheumatoid arthritis with or without associated rotator cuff tears

The use of RTSA for patients with rheumatoid arthritis has been studied by several authors. Two studies have raised concerns about the high incidence of glenoid base-plate radiographic lucency at follow-up in this patient population. However, excellent to satisfactory results have been reported in up to 95% of patients with rheumatoid arthritis who were treated with RTSA.

Revision arthroplasty

The options for revision surgery after primary shoulder arthroplasty (i.e. HA, resurfacing arthroplasty or TSA) are limited by the challenges of rotator cuff deficiency, glenoid bone loss and soft-tissue contractures. RTSA has solved many of these challenges and produced high patient satisfaction (Fig. 8). However, although some of
the clinical results have been excellent, the use of RTSA in these patients is associated with higher complication and failure rates compared with RTSA for patients without previous arthroplasty.78

The outcomes of RTSA for failed shoulder arthroplasty have been favourable.12,13,16,79-81 Levy et al12 retrospectively reported on outcomes of 29 RTSAs for the treatment of failed HA performed after proximal humeral fracture. They found significant improvements in the simple shoulder test (SST) and ROM but a complication rate of 28%. Another study of outcomes of RTSA after failed HA in 19 shoulders of 18 patients with glenohumeral arthritis and rotator cuff deficiency reported significant improvement in ROM, with 32% of patients undergoing revision for prosthesis-related complications.13 Walker et al81 evaluated 24 patients who underwent RTSA after failure of TSA. They found significant improvements in SST scores and ROM but an overall complication rate of 23%. Similarly, Melis et al79 studied 34 patients who underwent revision RTSA for failed TSA and found that Constant-Murley scores and the ROM in forward flexion improved significantly. They reported a post-operative complication rate of 30%, and 22% of these patients underwent revision surgery. Patel et al80 reported on 28 patients who underwent RTSA for treatment of a failed shoulder arthroplasty (i.e. HA, RTSA or TSA). They reported significant improvements in all outcome measures, including ASES score, University of California Los Angeles score, SST score and the visual analogue scale, with an overall complication rate of 10.7%. Black et al16 reported on 32 patients aged younger than 65 years.
REVERSE TOTAL SHOULDER ARTHROPLASTY

treated with RTSA after failed shoulder arthroplasty. Results were compared with those of a similar cohort of 33 patients who underwent primary RTSA. Post-operatively, when comparing primary to revision RTSA, the visual analogue scale and ASES scores were not significantly different, whereas the subjective shoulder value was significantly better for the primary group. Although there were more complications in the revision group (28% versus 18%), the difference was not statistically significant.

Tumours

Several shoulder reconstruction techniques have been reported for patients after wide resection of the proximal humerus and rotator cuff tendons for malignant bone tumours, including allograft, arthrodesis and shoulder arthroplasties. However, a prerequisite for the ability to implant a RTSA in these cases requires preservation of the axillary nerve and deltoid muscle to be successful.

Bonneville et al reported on eight patients treated for malignant tumours of the proximal humerus with transtpheric resection of the tumour and shoulder reconstruction with RTSA. They reported improvement in all outcome scores and concluded that RTSA is an acceptable option to preserve function after resection of a malignant tumour of the proximal humerus.

Complications

Reported complication rates after RTSA are in the range of 19% to 68% and include acromial fracture, haematoma, infection, instability, mechanical baseplate failure, neurological injury, periprosthetic fracture and scapular notching. These rates are influenced by the indications for RTSA and the proportion of revision procedures included in each study. Other factors influencing complication rates include component design and surgeon experience. Wall and Walch reported a 13% complication rate for primary RTSA and a 37% complication rate for revision RTSA. Wierks et al reported 33 complications in 15 patients; the most frequent complications were neuropathy, intra-operative fracture and dislocation, with the primary cause for revision surgery being dislocation. Other authors have reported complication rates as high as 68% for primary RTSA. reported the incidence of complications to be 19% for primary RTSA and 24% for revision RTSA. For revision RTSA, the reported complication and revision rates in a meta-analysis by Zumstein et al were 24% and 10%, respectively. reported overall complication rates of 25% after primary RTSA and 69% after revision RTSA.

Instability

Dislocation after RTSA is a major concern (Fig. 9). The incidence of post-operative instability has been reported to be in the range of 2% to 31%. Patient risk factors for dislocation include body mass index > 30, male sex, previous surgery and subscapularis deficiency. Surgical factors contributing to instability include inadequate soft-tissue and deltoid tensioning, malpositioned implants, mechanical impingement, insufficiency of the subscapularis and use of the deltopectoral approach compared with the anterosuperior approach. The instability rate has also been associated with prosthesis design; prostheses with a head-neck angle of -155° have been shown to have a higher instability rate than those with a more horizontal head-neck angle of 135°.

Teusink et al reported that instability of RTSA often occurs within six months after surgery, with half of cases occurring within three months. When dislocation occurred within three months, a surgical error was considered the most likely cause and closed reduction was typically unsuccessful. Conversely, late dislocation (> 1 year after surgery) can usually be treated successfully with closed reduction.

Infection

Reported rates of infection after RTSA are in the range of 1% to 15%, which is higher than the infection rate after anatomical TSA. In one of the few comparison studies, Barco et al found the infection rate after primary RTSA to be significantly higher than that after primary TSA. In a systematic review including primary and revision RTSA, Zumstein et al reported a mean infection rate of
3.8%, with a higher rate of infection after revision surgery than after primary surgery. In a study of 3906 patients, Richards et al.102 reported a sixfold greater risk of infection after RTSA compared with an anatomical TSA. A history of shoulder trauma or failed HA has also been shown in some studies to be a risk factor for infection.102,103

Scapular notching

Scapular notching is a complication unique to RTSA, with a reported incidence of 50% to 96% (Fig. 11).14,30 Scapular notching typically occurs within six months after surgery and appears to stabilize in most cases.104,105 However, some studies report an apparent increase in incidence and severity of notching with increasing follow-up.100 The rate of notching in RTSAs with a medialized centre of rotation has been reported to be 47%; however, systematic review has reported rates of up to 97%.90 The reported rate of notching when using lateralized RTSAs (4.6%) is significantly lower compared with medialized designs.90 The major concern with notching is that it may lead to baseplate failure, but that concern remains controversial (Fig. 12).

Although some authors have suggested an increased risk of baseplate loosening with scapular notching,30,106-108 others have not found such a relationship.32,92,109-111 The clinical implications of notching are controversial; some authors have reported no associations with clinical outcomes,32,110,111 whereas others have reported that high grades of notching may be associated with worse clinical outcomes.32,104,110,111 The use of an anterosuperior approach, a high position of the baseplate on the glenoid and superior tilting have all been associated with higher rates of notching caused by mechanical impingement with the arm in adduction.110 Eccentric glenospheres with an inferior offset and glenoid components with a more lateral offset (bony or metal) can reduce the risk of notching.112,113 Mizuno et al.114 analysed the influence of an eccentric glenosphere in 47 consecutive cases compared with an historical group treated by the same surgeon. The rates of notching were not different but the severity of notching was less when using an eccentric glenosphere. Other authors have reported a negligible rate of notching when using an inferior offset component.115
Heterotopic ossification

Heterotopic ossification after RTSA is a relatively common finding of unknown clinical importance.116 In a 164-patient cohort of primary and revision RTSAs, Ko et al116 found an overall rate of heterotopic ossification of the long head of the triceps tendon of 62%. They found that men had a higher rate of heterotopic ossification than women, and that heterotopic ossification was associated with worse post-operative ROM.116 The exact cause of heterotopic ossification in the long head of the triceps tendon after RTSA is unknown. It has been postulated to be caused by releases, traction on the triceps and more extensive exposure of the glenoid than is typically done in anatomical TSA.116

Neurological injury

Neurological injury is a known complication of shoulder arthroplasty of all types, with reported incidence in the range of 1% to 4%.117,118 Nerves from the brachial plexus can undergo stretch injuries at the extremes of motion that occur during intra-operative positioning of the arm.118,119 Brachial plexus palsies have been shown to be more common in RTSA than in TSA, possibly because of the lengthening effect on the arm during RTSA and the need for greater glenoid exposure.120

Scapular fractures

Scapular fractures are a well-recognized complication of RTSA, and they have been reported in 0.8% to 7.2% of cases.121 Postulated causes include excessive tensioning of the deltoid,90 placement of a superior screw in the base-plate122 and stress of the implants on osteoporotic bone.123 Insufficiency fractures of the acromion or displacement of the os acromiale after RTSA can be painful and can limit ROM.90,100,124 Conversely, scapular spine fractures lead to painful dysfunction and may require ORIF.100 Post-operative scapular fractures have been associated with inferior clinical results and increased risk of revision.121 Bilateral scapular fractures125 and clavicle stress fractures126 after RTSA have also been reported.

Conclusions

RTSA has revolutionized the treatment of shoulder disorders that previously had no easy or acceptable solution. Patient satisfaction with RTSA can be high, and most patients experience pain relief and improved function. Although the short-term implant survival rate appears to be acceptable, the long-term results are unknown. RTSA is associated with a higher rate and more diverse spectrum of complications than is desirable. Improvements in prosthesis design, surgeon experience and clinical results will need to occur to optimize this treatment for many shoulder conditions.

REFERENCES

1. Bohsali KI, Wirth MA, Rockwood CA Jr. Complications of total shoulder arthroplasty. J Bone Joint Surg [Am] 2006;88:2279-92.
2. Papadonikolakis A, Neradilek MB, Matsen FA III. Failure of the glenoid component in anatomical total shoulder arthroplasty: A systematic review of the English-language literature between 2006 and 2012. J Bone Joint Surg [Am] 2013;95:2205-12.
3. Torchia ME, Cofield RH, Settgren CR. Total shoulder arthroplasty with the Neer prosthesis: long-term results. J Shoulder Elbow Surg 1997;6:495-505.
4. Sanchez-Sotelo J, Cofield RH, Rowland CM. Shoulder hemiarthroplasty for glenohumeral arthritis associated with severe rotator cuff deficiency. J Bone Joint Surg [Am] 2001;83-A:1814-22.
5. Grammont P, Trouillard P, Laffay J, Deries X. Concept study and realization of a new total shoulder prosthesis [in French]. Rhumatologie 1987;39:407-18.
6. Boileau P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elbow Surg 2005;14:475-615.
7. Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of shoulder arthroplasty in the United States. J Bone Joint Surg Am 2011;93:2249-54.
8. Jain NB, Yamaguchi K. The contribution of reverse shoulder arthroplasty to utilization of primary shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:905-12.
9. Austin L, Zmistowski B, Chang ES, Williams GR Jr. Is reverse shoulder arthroplasty a reasonable alternative for revision arthroplasty? Clin Orthop Relat Res 2011;469:2531-7.
10. Guery J, Favard L, Sirveaux F, et al. Reverse total shoulder arthroplasty. Survivorship analysis of eighty replacements followed for five to ten years. J Bone Joint Surg [Am] 2006;88:1742-7.

11. Hyun YS, Huri G, Garbis NG, McFarland EG. Uncommon indications for reverse total shoulder arthroplasty. Clin Orthop Surg 2013;5:243-55.

12. Levy J, Franklin M, Migelli M, Pupello D. The use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty for proximal humeral fracture. J Bone Joint Surg [Am] 2007;89:292-300.

13. Levy JC, Virani N, Pupello D, Franklin M. Use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty in patients with mild rotator cuff and rotator cuff deficiency. J Bone Joint Surg [Br] 2007;89:189-95.

14. Rittmeister M, Kerschbaumer F. Grammont reverse total shoulder arthroplasty in patients with rheumatoid arthritis and nonreconstructible rotator cuff lesions. J Shoulder Elbow Surg 2007;16:17-22.

15. Smith CD, Guyver P, Bunker TD. Indications for reverse shoulder replacement: A systematic review. J Bone Joint Surg [Br] 2012;94:577-83.

16. Black EM, Roberts SM, Siegel E, et al. Reverse shoulder arthroplasty as salvage for failed prior arthroplasty in patients 65 years of age or younger. J Shoulder Elbow Surg 2014;23:1036-42.

17. Ek ET, Neukom L, Catanzano S, Gerber C. Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: Results after five to fifteen years. J Shoulder Elbow Surg 2013;22:1199-208.

18. Muh SJ, Steiret JJ, Wanner JP, et al. Early follow-up of reverse total shoulder arthroplasty in patients sixty years of age and younger. J Bone Joint Surg [Am] 2013;95:1877-83.

19. Otto RJ, Clark RE, Franklin MA. Reverse shoulder arthroplasty in patients younger than 55 years: 2-12 year follow-up. J Shoulder Elbow Surg 2017;26:792-7.

20. Sershom RA, Van Thiels GS, Lin EC, et al. Clinical outcomes of reverse total shoulder arthroplasty in patients aged younger than 60 years. J Shoulder Elbow Surg 2014;23:395-400.

21. Walters JD, Barkoh K, Smith RA, Azmar FM, Throckmorton TW. Younger patients report similar activity levels to older patients after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2016;25:1418-24.

22. Drake GN, O’Connor DP, Edwards TB. Indications for reverse total shoulder arthroplasty in rotator cuff disease. Clin Orthop Relat Res 2010;468:1526-33.

23. Lademann A, Walch G, Denard PJ, et al. Reverse shoulder arthroplasty in patients with pre-operative impairment of the deltoid muscle. Bone Joint J 2013;95-B:1106-13.

24. Bade G, Nove-Josserand L, Garaud P, Walch G. Long-term outcomes of reverse total shoulder arthroplasty: A follow-up of a previous study. J Bone Joint Surg [Am] 2017;99:454-61.

25. Werner BC, Wong AC, Mahony GT, et al. Causes of poor postoperative improvement after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2016;25:2217-22.

26. Morris BJ, Haigler RE, Laughlin MS, et al. Workers’ compensation claims and outcomes after reverse shoulder arthroplasty. J Shoulder Elbow Surg 2015;24:453-9.

27. Boileau P, Gonzalez JF, Chuinard C, Bicknell R, Walch G. Reverse total shoulder arthroplasty after failed rotator cuff surgery. J Shoulder Elbow Surg 2009;18:600-6.

28. Favard L, Levigne C, Nerot C, et al. Reverse prostheses in arthropathies with cuff tear: Are survivorship and function maintained over time? Clin Orthop Relat Res 2011;469:2469-75.

29. Franklin M, Siegal S, Pupello D, et al. The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency. A minimum two-year follow-up study of sixty patients. J Bone Joint Surg [Am] 2005;87:1697-705.

30. Werner CML, Steinmann PA, Gilbart M, Gerber C. Treatment of painful pseudoparesis due to irreparable rotator cuff dysfunction with the Delta III reverse-ball-and-socket total shoulder prosthesis. J Bone Joint Surg [Am] 2005;87:1746-86.

31. Mulieri P, Dunning P, Klein S, Pupello D, Franklin M. Reverse shoulder arthroplasty for the treatment of irreparable rotator cuff tear without glenohumeral arthritis. J Bone Joint Surg 2010;92:2544-56.

32. Wall B, Nove-Josserand L, O’Connor DP, Edwards TB, Walch G. Reverse total shoulder arthroplasty: A review of results according to etiology. J Bone Joint Surg [Am] 2007;89:1476-85.

33. Sevivas N, Ferreira N, Andrade R, et al. Reverse shoulder arthroplasty for irreparable massive rotator cuff tears: A systematic review with meta-analysis and meta-regression. J Shoulder Elbow Surg 2017;26:1255-77.

34. Neer CS II. Displaced proximal humeral fractures. I. Classification and evaluation. J Bone Joint Surg [Am] 1970;52:1037-89.

35. Neer CS II. Displaced proximal humeral fractures. II. Treatment of three-part and four-part displacement. J Bone Joint Surg [Am] 1970;52:1090-103.

36. Solberg BD, Moon CN, Franco DP, Paiement GD. Surgical treatment of three- and four-part proximal humeral fractures. J Bone Joint Surg Am 2009;91:1689-97.

37. Boileau P, Krishnan SG, Tinsi L, et al. Tuberosity malposition and migration: Reasons for poor outcomes after hemiarthroplasty for displaced fractures of the proximal humerus. J Shoulder Elbow Surg 2002;11:401-12.

38. Chun YM, Kim DS, Lee DH, Shin SJ. Reverse shoulder arthroplasty for four-part proximal humerus fracture in elderly patients: Can a healed tuberosity improve the functional outcomes? J Shoulder Elbow Surg 2017;26:1216-21.

39. Jost B, Spross C, Grehn H, Gerber C. Locking plate fixation of fractures of the proximal humerus: Analysis of complications, revision strategies and outcome. J Shoulder Elbow Surg 2013;22:542-9.

40. Anakwenze OA, Zoller S, Ahmad CS, Levine WN. Reverse shoulder arthroplasty for acute proximal humerus fractures: A systematic review. J Shoulder Elbow Surg 2014;23:673-80.

41. Bufquin T, Hersan A, Hubert L, Masson P. Reverse shoulder arthroplasty for the treatment of three- and four-part fractures of the proximal humerus in the elderly: A prospective review of 43 cases with a short-term follow-up. J Bone Joint Surg [Br] 2007;89:516-20.

42. Dezfahi B, King JJ, Farmer KW, Struk AM, Wright TW. Outcomes of reverse total shoulder arthroplasty as primary versus revision procedure for proximal humerus fractures. J Shoulder Elbow Surg 2016;25:1133-7.

43. Grubhofer F, Wieser K, Meyer DC, et al. Reverse total shoulder arthroplasty for failed open reduction and internal fixation of fractures of the proximal humerus. J Shoulder Elbow Surg 2017;26:92-100.

44. Boyle MJ, Youn SM, Frampton CMA, Ball CM. Functional outcomes of reverse shoulder arthroplasty compared with hemiarthroplasty for acute proximal humeral fractures. J Shoulder Elbow Surg 2013;22:32-7.

45. Cazeneuve JF, Cristofari DJ. The reverse shoulder prosthesis in the treatment of fractures of the proximal humerus in the elderly. J Bone Joint Surg [Br] 2010;92:555-9.

46. Gallinet D, Clappaz P, Garbuto P, Tropet Y, Oberl T. Three or four parts complex proximal humerus fractures: Hemiarthroplasty versus reverse prosthesis: a comparative study of 40 cases. Orthop Traumatol Surg Res 2009;95:48-55.
47. Garrigues GE, Johnston PS, Pepe MD, et al. Hemiarthroplasty versus reverse total shoulder arthroplasty for acute proximal humerus fractures in elderly patients. Orthopedics 2012;35:6707-8.

48. Klein M, Juschkva M, Hinnenkajn B, Scherger B, Ostermann PAW. Treatment of comminuted fractures of the proximal humerus in elderly patients with the Delta III reverse shoulder prosthesis. J Orthop Trauma 2008;22:698-704.

49. Lenarz C, Shishani Y, McCrum C, et al. Is reverse shoulder arthroplasty appropriate for the treatment of fractures in the older patient? Early observations. Clin Orthop Relat Res 2011;469:324-31.

50. Ross M, Hope B, Stokes A, et al. Reverse shoulder arthroplasty for the treatment of three-part and four-part proximal humeral fractures in the elderly. J Shoulder Elbow Surg 2015;24:215-22.

51. Sebastia-Forcada E, Cebrian-Gomez R, Lizaur-Utrilla A, Gil-Guillen V. Reverse shoulder arthroplasty versus hemiarthroplasty for acute proximal humeral fractures: A blinded, randomized, controlled, prospective study. J Shoulder Elbow Surg 2014;23:1470-26.

52. Young SW, Segal BS, Turner PC, Poon PC. Comparison of functional outcomes of reverse shoulder arthroplasty versus hemiarthroplasty in the primary treatment of acute proximal humerus fracture. ANZ J Surg 2010;80:789-93.

53. van der Merwe M, Boyle MJ, Frampton CM, Ball CM. Comparison of functional outcomes of reverse shoulder arthroplasty versus hemiarthroplasty in the primary treatment of acute proximal humerus fracture. J Shoulder Elbow Surg 2015;24:36-47.

54. Shukla DR, McNany S, Kim J, Overley S, Parsons BO. Hemiarthroplasty versus reverse shoulder arthroplasty for treatment of proximal humeral fractures: A meta-analysis. J Shoulder Elbow Surg 2016;25:330-40.

55. Cazeneuve JF, Cristofari DJ. Grammont reversed prosthesis for acute complex fracture of the proximal humerus in an elderly population with 5 to 12 years follow-up. Orthop Traumatol Surg Res 2014;100:93-7.

56. Pinkas D, Wanich TS, DePalma AA, Gruson KL. Management of malunion of the proximal humerus: current concepts. J Am Acad Orthop Surg 2014;22:491-502.

57. Beredjiklian PK, Iannotti JP, Norris TR, Williams GR. Operative treatment of malunion of a fracture of the proximal aspect of the humerus. J Bone Joint Surg [Am] 1998;80:1484-97.

58. Martinez AA, Calvo A, Bejarano C, Carbonel I, Herrera A. The use of the Lima reverse shoulder arthroplasty for the treatment of fracture sequelae of the proximal humerus. J Orthop Sci 2012;7:147-7.

59. Willis M, Min W, Brooks JP, et al. Proximal humeral malunion treated with reverse shoulder arthroplasty. J Shoulder Elbow Surg 2012;21:507-13.

60. Boileau P, Chuinard C, Le Huec JC, Walch G, Trojani C. Proximal humerus fracture sequelae: Impact of a new radiographic classification on arthroplasty. Clin Orthop Relat Res 2008;464:121-30.

61. Rais P, Edwards TB, Collin P, et al. Reverse shoulder arthroplasty for malunions of the proximal part of the humerus (type-4 fracture sequelae). J Bone Joint Surg [Am] 2016;98:893-9.

62. Rais P, Edwards TB, da Silva MR, et al. Reverse shoulder arthroplasty for the treatment of nonunions of the surgical neck of the proximal part of the humerus (type-3 fracture sequelae). J Bone Joint Surg [Am] 2014;96:2070-6.

63. Franklin MA, Mighell MA. Techniques and principles of tuberosity fixation for proximal humeral fractures treated with hemiarthroplasty. J Shoulder Elbow Surg 2004;13:239-47.

64. Mizuno N, Denard PJ, Rais P, Walch G. Reverse total shoulder arthroplasty for primary glenohumeral osteoarthritis in patients with a biconcave glenoid. J Bone Joint Surg [Am] 2013;95:1297-304.

65. Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty 1999;14:756-60.

66. McFarland EG, Huri G, Hyun YS, Petersen SA, Srikumaran U. Reverse total shoulder arthroplasty without bone grafting for severe glenoid bone loss in patients with osteoarthritis and intact rotator cuff. J Bone Joint Surg [Am] 2016;98:1801-7.

67. Werner BS, Bohm D, Abdelkawi A, Gohlke F. Glenoid bone grafting in reverse shoulder arthroplasty for long-standing anterior shoulder dislocation. J Shoulder Elbow Surg 2014;23:1655-61.

68. Hill JM, Norris TR. Long-term results of total shoulder arthroplasty following bone-grafting of the glenoid. J Bone Joint Surg [Am] 2001;83:877-83.

69. Matsoukas J, Tabib W, Guiffault P, et al. Primary unconstrained shoulder arthroplasty in patients with a fixed anterior glenohumeral dislocation. J shoulder Surg [Am] 2006;22:547-52.

70. Scalice JJ, Iannotti JP. Bone grafting severe glenoid defects in revision shoulder arthroplasty. Clin Orthop Relat Res 2008;466:139-45.

71. Ekeland A, Hyberg R. Can reverse shoulder arthroplasty be used with few complications in rheumatoid arthritis? Clin Orthop Relat Res 2011;469:2483-8.

72. Holcomb JO, Hebert DJ, Mighell MA, et al. Reverse shoulder arthroplasty in patients with rheumatoid arthritis. J Shoulder Elbow Surg 2010;19:1076-84.

73. Woodruff MJ, Cohen AP, Bradley JG. Arthroplasty of the shoulder in rheumatoid arthritis with rotator cuff dysfunction. Int Orthop 2003;27:7-10.

74. Young AA, Smith MM, Bade G, Moraga C, Walch G. Early results of reverse shoulder arthroplasty in patients with rheumatoid arthritis. J Bone Joint Surg [Am] 2011;93:1915-23.

75. Gee EC, Hanson EK, Saithna A. Reverse shoulder arthroplasty in rheumatoid arthritis: A systematic review. Open Orthop J 2015;9:237-45.

76. Crosby LA, Wright TW, Yu S, Zuckerman JD. Conversion to reverse total shoulder arthroplasty with and without humeral stem retention: The role of a convertible-platform stem. J Bone Joint Surg [Am] 2017;99:736-42.

77. Ortmayer R, Resch H, Matis N, et al. Reverse shoulder arthroplasty in revision of failed shoulder arthroplasty-outcome and follow-up. Int Orthop 2013;37:67-75.

78. Farshad M, Grogli M, Catanzaro S, Gerber C. Revision of reversed total shoulder arthroplasty: Indications and outcome. BMC Musculoskelet Disord 2012;13:80.

79. Melis B, Bonneville A, Nepton L, et al. Glenoid loosening and failure in anatomical total shoulder arthroplasty. Is revision with a reverse shoulder arthroplasty a reliable option? J Shoulder Elbow Surg 2012;21:542-9.

80. Patel DN, Young B, Onyenkelue I, Zuckerman JD, Kwon YW. Reverse total shoulder arthroplasty for failed shoulder arthroplasty. J Shoulder Elbow Surg 2012;21:1478-83.

81. Walker M, Willis MP, Brooks JP, et al. The use of the reverse shoulder arthroplasty for treatment of failed total shoulder arthroplasty. J Shoulder Elbow Surg 2012;21:534-22.

82. Bonneville N, Mansat P, Lebon J, Laffosse JM, Bonneville P. Reverse shoulder arthroplasty for malignant tumors of proximal humerus. J Shoulder Elbow Surg 2015;24:36-44.
84. Affonso J, Nicholson GP, Frankle MA, et al. Complications of the reverse prosthesis: prevention and treatment. Instr Course Lect 2012;61:157-68.
85. Cheung E, Willis M, Walker M, Clark R, Frankle MA. Complications in reverse total shoulder arthroplasty. J Am Acad Orthop Surg 2011;19:439-49.
86. Clark JC, Ritchie J, Song FS, et al. Complication rates, dislocation, pain, and postoperative range of motion after reverse shoulder arthroplasty in patients with and without repair of the subscapularis. J Shoulder Elbow Surg 2012;21:36-41.
87. Edwards TB, Williams MD, Labriola JE, et al. Subscapularis insufficiency and the risk of shoulder dislocation after reverse shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:892-6.
88. Walch G, Bacle G, Laedermann A, Nove-Josserand L, Smithers CJ. The risk of shoulder dislocation after reverse shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:892-6.
89. Wierks C, Skolasky RL, Ji JH, McFarland EG. Reverse total shoulder replacement. Intraoperative and early postoperative complications. Clin Orthop Relat Res 2009;467:225-34.
90. Barco R, Savvidou OD, Sperling JW, Sanchez-Sotelo J, Cofield RH. Early dislocation after reverse total shoulder arthroplasty. EFORT Open Rev 2016;1:72-80.
91. Wall B, Walch G. Reverse shoulder arthroplasty for the treatment of proximal humeral fractures. Hand Clin 2007;23:425-30, v-vi.
92. Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: A systematic review. J Shoulder Elbow Surg 2011;20:146-57.
93. Saltzman BM, Chalmers PN, Gupta AK, Romeo AA, Nicholson GP. Complication rates comparing primary with revision reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:1647-54.
94. Gallo RA, Gamradt SC, Mattern CJ, et al. Instability after reverse total shoulder replacement. J Shoulder Elbow Surg 2011;20:584-90.
95. Kohan EM, Chalmers PN, Salazar D, et al. Dislocation following reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:1238-45.
96. Chalmers PN, Rahamn Z, Romeo AA, Nicholson GP. Early dislocation after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:737-44.
97. Teusink MJ, Pappou IP, Schwartz DG, Cottrell BJ, Frankle MA. Results of closed management of acute dislocation after reverse shoulder arthroplasty. J Shoulder Elbow Surg 2015;24:621-7.
98. Gutierrez S, Keller TS, Levy JC, Lee WE III, Luo ZP. Hierarchy of stability factors in reverse shoulder arthroplasty. Clin Orthop Relat Res 2008;466:670-6.
99. Stephenson DR, Oh JH, McGarry MH, Rick Hatch GF III, Lee TQ. Effect of humeral component version on impingement in reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2011;20:652-8.
100. Gerber C, Pennington SD, Nyffeler RW. Reverse total shoulder arthroplasty. J Am Acad Orthop Surg 2009;17:284-95.
101. Oh JH, Shin SJ, McGarry MH, et al. Biomechanical effects of humeral neck-shaft angle and subscapularis integrity in reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:1091-8.
102. Richards J, Inacio MCS, Beckett M, et al. Patient and procedure-specific risk factors for deep infection after primary shoulder arthroplasty. Clin Orthop Relat Res 2014;472:2809-15.
103. Trappey GJ, IV, O’Connor DP, Edwards TB. What are the instability and infection rates after reverse shoulder arthroplasty? Clin Orthop Relat Res 2017;469:2505-11.
104. Simovitch RW, Zumstein MA, Lohri E, Helmy N, Gerber C. Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J Bone Joint Surg [Am] 2007;89:588-600.
105. Sirveaux F, Favard L, Oudet D, et al. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg [Br] 2004;86:388-95.
106. Boulaia H, Edwards TB, Walch G, Baratta RV. Early results of a reverse design prosthesis in the treatment of arthritis of the shoulder in elderly patients with a large rotator cuff tear. Orthopedics 2002;25:129-33.
107. Nyffeler RW, Werner CML, Simmen BR, Gerber C. Analysis of a retrieved delta III total shoulder prosthesis. J Bone Joint Surg [Br] 2004;86:1187-91.
108. Vanhove B, Beugnies A. Grammont’s reverse shoulder prosthesis for rotator cuff arthropathy: A retrospective study of 32 cases. Acta Orthop Belg 2004;70:219-25.
109. Alentorn-Geli E, Guirro P, Santana F, Torrens C. Treatment of fracture sequelae of the proximal humerus. Comparison of hemiarthroplasty and reverse total shoulder arthroplasty. Arch Orthop Trauma Surg 2014;134:1545-50.
110. Levigne C, Boileau P, Favard L, et al. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2008;17:925-35.
111. Melis B, De Franco M, Ladermann A, et al. An evaluation of the radiological changes around the Grammont reverse geometry shoulder arthroplasty after eight to 12 years. J Bone Joint Surg [Br] 2011;93:1240-6.
112. Boileau P, Moineau G, Roussanne Y, O’Shea K. Sory increased-offset reversed shoulder arthroplasty: Minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res 2011;469:2558-67.
113. Cuff D, Clark R, Papello D, Frankle M. Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency: A concise follow-up, at a minimum of five years, of a previous report. J Bone Joint Surg [Am] 2012;94:1996-2000.
114. Mizuno N, Denard PJ, Raiss P, Walch G. The clinical and radiographical results of reverse total shoulder arthroplasty with eccentric glenosphere. Int Orthop 2012;36:1647-53.
115. De Biase CF, Delcogliano M, Borroni M, Castagna A. Reverse total shoulder arthroplasty: Radiological and clinical result using an eccentric glenosphere. Musculoskelet Surg 2012;96 Suppl 1:S27-34.
116. Ko JK, Thompson JD, Sholder DS, Black EM, Abboud JA. Heterotopic ossification of the long head of the triceps after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2016;25:1810-5.
117. Baulot E, Sirveaux F, Boileau P. Grammont’s idea: The story of Paul Grammont’s functional surgery concept and the development of the reverse principle. Clin Orthop Relat Res 2011;469:2425-31.
118. Ladermann A, Lubbeke A, Melis B, et al. Prevalence of neurologic lesions after total shoulder arthroplasty. J Bone Joint Surg [Am] 2011;93:1288-93.
119. Hillibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg [Am] 2004;86:1248-53.
120. Lenoir H, Dagneaux L, Canovas F, et al. Nerve stress during reverse total shoulder arthroplasty: A cadaveric study. *J Shoulder Elbow Surg* 2017;26:323-30.

121. Teusink MJ, Otto RJ, Cottrell BJ, Frankie MA. What is the effect of postoperative scapular fracture on outcomes of reverse shoulder arthroplasty? *J Shoulder Elbow Surg* 2014;23:782-90.

122. Kennon JC, Lu C, McGee-Lawrence ME, Crosby LA. Scapula fracture incidence in reverse total shoulder arthroplasty using screws above or below metaglene central cage: Clinical and biomechanical outcomes. *J Shoulder Elbow Surg* 2017;26:1023-30.

123. Otto RJ, Virani NA, Levy JC, et al. Scapular fractures after reverse shoulder arthroplasty: Evaluation of risk factors and the reliability of a proposed classification. *J Shoulder Elbow Surg* 2013;22:1514-21.

124. Familiari F, Huri G, Gonzalez-Zapata A, McFarland EG. Diagnosis: scapula fracture and os acromiale after reverse total shoulder arthroplasty. *Orthopedics* 2014;37:434, 492-5.

125. Stevens CG, Murphy MR, Stevens TD, Bryant TL, Wright TW. Bilateral scapular fractures after reverse shoulder arthroplasties. *J Shoulder Elbow Surg* 2015;24:e50-5.

126. Anakwenze OA, Piñer MA, Singh A. Clavicle stress fracture after reverse shoulder arthroplasty. *J Shoulder Elbow Surg* 2014;23:e170-2.