Case Report

Intraosseous Lipoma of the Sphenoid: A Case Study

Zygmunt Jamrozik, 1 Grzegorz Rosiak, 2 Biruta Kierdaszuk, 1 Krzysztof Milczarek, 2 Anna Kamińska, 1 Dorota Dziewulska, 1 and Antoni Krzeski 3

1 Department of Neurology, Medical University of Warsaw, Banacha 1A Street, 02-097 Warsaw, Poland
2 Department of Radiology, Medical University of Warsaw, Poland
3 Department of Otolaryngology, Czerniakowski Hospital, Warsaw, Poland

Correspondence should be addressed to Zygmunt Jamrozik; zygmun.t.jamrozik@wum.edu.pl

Received 2 April 2013; Accepted 3 May 2013

Copyright © 2013 Zygmunt Jamrozik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Intraosseous lipoma is very rare, usually benign tumor of flat bones, harderv in the long bones. Most often reported localizations include calcaneus, rib, and frontal and basal skull [1–3]. Lipoma originates from mesenchymal tissue and might resemble other benign tumors. Incidence of sphenoid bone and sphenoid sinus lipoma seems to be very rare although precise epidemiological data are not known [4–6]. It has been postulated that intraosseous lipomas grow as a result of infarct, end stage of infection, fibrous dysplasia, fibro- and angiolipoma, or liposclerosing myxofibrous tumors (LSMFT). All those should be included in the differential diagnosis of the intraosseous lipoma.

1. Introduction

Intraosseous lipoma (IL) is a rarely diagnosed, usually benign tumor placed in the flat bones, hardly ever in the long bones. Most often reported localizations include calcaneus, rib, and frontal and basal skull [1–3]. Lipoma originates from mesenchymal tissue and might resemble other benign tumors. Incidence of sphenoid bone and sphenoid sinus lipoma seems to be very rare although precise epidemiological data are not known [4–6]. It has been postulated that intraosseous lipomas grow as a result of infarct, end stage of infection, fibrous dysplasia, fibro- and angiolipoma, or liposclerosing myxofibrous tumors (LSMFT). All those should be included in the differential diagnosis of the intraosseous lipoma.

2. Case Report

A patient, 23-year-old woman, has been referred to neurological department by an ophthalmologist with suspected papilledema. Two weeks earlier, she suffered from the first generalized tonic-clonic seizure after unexpected sudden pain. Medical history includes 2 attacks of unconsciousness after acute pain. A CT scan revealed a hypodense mass with central calcifications within sphenoid sinus and clivus. Density of the hypodense portion of mass ranged from −30 to −90 Hounsfield units suggesting presence of fat which surrounded central, scattered calcifications. Multilobulated margins of the lesion were sharp and sclerotic suggesting nonaggressive growth (Figure 1). MR scans showed a sphenoclival mass hyperintense in both T1WI (SE) and T2WI (TSE) with sharp and thin margin of low signal intensity corresponding with sclerotic rim. Cortex of sella turcica and clivus were intact. Fat suppressed sequence confirmed fat containing lesion; incomplete signal suppression was due to central calcifications. The lesion showed no contrast enhancement (Figure 2). Upon findings in both imaging modalities, a diagnosis of intraosseous lipoma was made.

Clinical neurological examination was normal except for a bilateral Babinski sign. All biochemical tests were normal, as well as EEG pattern. Patient has not been treated with antiepileptic drugs due to the first seizure and finally unrecognized cause of the epileptic event; besides that, reflex epilepsy was taken into account. Cerebrospinal fluid (CSF) examination revealed increased level of protein (59 mg%). Other components of the CSF were normal. MRI of the brain and angio-MRI were normal. Cerebral intravenous thrombosis was excluded. A month later, she was admitted
Figure 1: Routine CT scan revealed intraosseous lipoma within the sphenoid bone and sinus with small intratumor calcifications.

(a) T1-weighted

(b) T2-weighted

Figure 2: MR scans showed a high signal intensity in sphenoclival mass in both T1WI (SE) and T2WI (TSE) with sharp and thin margin of low signal intensity.

3. Discussion

The presented case with radiological and clinical picture resembles cases described by MacFarlane et al. and Lanišnik et al. [7, 8]. According to Milgram classification, our patient belongs to stage III with focal calcification and cystic degeneration but without bone expansion and bone destruction [9, 10]. Recent reports revealed that sphenoid localisation is...
Intraosseous lipoma represents 0.1% of the primary bone tumours. Skull location of lipoma is estimated as about 4% of all of them but the incidence of the sphenoid localisation has not been established [12].

Recently, noninvasive followup has been proposed in case of the intraosseous lipoma due to low possibility of transforming into malignant forms, a relatively precise diagnosis based on neuroimaging tests and sometimes spontaneous involution [11, 13–15].

Our patient underwent invasive procedure because of the additional neurological symptoms as seizure and elevated CSF protein level. However, the relation of these symptoms to lipoma seems to be coincidental.

References

[1] P. Palczewski, J. Świątkowski, M. Gołębiowski, and K. Błasińska-Przerwa, “Intraosseous lipomas: a report of six cases and a review of literature,” Polish Journal of Radiology, vol. 76, no. 4, pp. 52–59, 2011.
[2] T. Goto, T. Kojima, T. Iijima et al., “Intraosseous lipoma: a clinical study of 12 patients,” Journal of Orthopaedic Science, vol. 7, no. 2, pp. 274–280, 2002.
[3] E. Eyzaguirre, W. Liqiang, G. M. Karla, K. Rajendra, A. Alberto, and Z. Gatalica, “Intraosseous lipoma. A clinical, radiologic, and pathologic study of 5 cases,” Annals of Diagnostic Pathology, vol. 11, no. 5, pp. 320–325, 2007.
[4] M. Dogan, A. S. Kahraman, C. Firat, B. Kahraman, E. Karatas, and A. Kizilay, “Intraosseous lipoma presenting as a sphenoid sinus mass,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 11, pp. 1339–1342, 2011.
[5] G. Bower, S. Hosny, and S. I. Umari, “Intraosseous lipoma of the scaphoid,” Journal of Hand Surgery E, vol. 37, no. 8, pp. 799–800, 2012.
[6] D. Solari, V. F. Angel, S. R. Barcelo et al., “Intraosseous lipoma of the skull base, involving the sphenoclival region: case report,” Clinical Neurology and Neurosurgery, vol. 114, no. 10, pp. 1368–1370, 2012.
[7] M. R. MacFarlane, S. S. Soule, and P. J. Hunt, “Intraosseous lipoma of the body of the sphenoid bone,” Journal of Clinical Neuroscience, vol. 12, no. 1, pp. 105–108, 2005.
[8] B. Lanišnik and V. Didanović, “Sphenoclival intraosseous lipoma: case report and literature review,” Skull Base, vol. 17, no. 3, pp. 211–214, 2007.
[9] T. Propeck, M. A. Bullard, J. Lin, K. Doi, and W. Martel, “Radiologic-pathologic correlation of intraosseous lipomas,” American Journal of Roentgenology, vol. 175, no. 3, pp. 673–678, 2000.
[10] J. W. Milgram, “Intraosseous lipomas: radiologic and pathologic manifestations,” Radiology, vol. 167, no. 1, pp. 155–160, 1988.
[11] A. Rubik, A. Silage, D. Timely, L. Kalisz, M. R. Quiz, and R. J. Harvey, “Radiological features of the intraosseous lipoma of the sphenoid,” Otolarngology, vol. 144, no. 4, pp. 617–622, 2011.
[12] R. S. D. Campbell, A. J. Grainger, D. C. Mangham, I. Beggs, J. Teh, and A. M. Davies, “Intraosseous lipoma: report of 35 new cases and a review of the literature,” Skeletal Radiology, vol. 32, no. 4, pp. 209–222, 2003.
[13] A. E. Bagatur, M. Yalcinkaya, A. Dogan, S. Gur, E. Mumcuoglu, and M. Albayrak, “Surgery is not always necessary in intraosseous lipoma,” Orthopedics, vol. 33, no. 5, p. 306, 2010.
[14] C. Ulucay, F. Altintas, N. K. Ozkan, M. Inan, and E. Ugutmen, “Surgical treatment for calcaneal intraosseous lipomas,” Foot, vol. 19, no. 2, pp. 93–97, 2009.
[15] J. W. Milgram, “Intraosseous lipomas. A clinicopathologic study of 66 cases,” Clinical Orthopaedics and Related Research, vol. 231, pp. 277–302, 1988.