Pharmacogenomics and Personalized Medicine

Atsushi Watanabe
Department of Molecular and Medical Genetics, Graduate School of Medicine, Nippon Medical School
Division of Personalized Genetic Medicine, Nippon Medical School Hospital

Abstract

Great advances in genomic research on the susceptibility to multifactorial genetic diseases and drug sensitivities have broadened the use of genetic information in clinical practice. In the United States, pharmacogenomic information is included in drug package inserts (labels). The United States Food and Drug Administration releases a list of drugs and valid genomic biomarkers for public use. Also in Japan in June 2008 information on the relationship between UGT1A1 variants and the anticancer drug irinotecan was included in the drug label, followed by insurance coverage of genetic testing for UGT1A1 in November of the same year. Such developments signal the start of the age of personalized medicine. Appropriate application of genetic information to personalized medicine in Japan requires different approaches to genetic information, as the current way of handling genetic information regarding single gene disorders in research and clinical practice is based solely on genetic exceptionalism. However, specific issues in introducing pharmacogenomics (PGx) to clinical practices remain unclear. Large differences exist in the implementation of personalized medicine among institutions. The number of genes related to personalized medicine will surely increase in the coming years. The issues that surround personalized medicine will need to be specified and clarified.

Key words: personalized medicine, pharmacogenetics, genetic information

果、副作用）や疾患のなりやすさは個人差があることが知られていた。近年、個々人の多様性に基づき最適な医療を行う「オーダーメイド医療」が提唱されている。オーダーメイド医療は和製英語であり、欧米では、テーラーメイド医療（tailor-made medicine）、個別化医療（personalized medicine）とも表現される。
多様性を引き起こす原因の1つとして、「個人により異なる遺伝子情報」が挙げられる。DNA配列の解析技術が進み、遺伝子情報の個人差と「病気のなりやすさ（疾患易罹患性）の違い」や「薬に対する応答性（効き方、副作用）の違い（薬剤感受性）」との関連性が指摘。「オーダーメイド医療」は実現の可能性を帯びてきた。「オーダーメイド医療」の実現は、患者が無用の副作用によって苦しむことが減り、不適切な投薬を減らし、また疾患の予防にも関わることから医療費削減の効果も期待されている。

個人によって違う遺伝子情報とは：
遺伝子多型

「個人により異なる遺伝子情報」とはどのようなものだろうか。

ヒトのゲノムの全塩基配列を解析するヒトゲノム計画（Human Genome Project）は、1953年のDNAの二重らせん構造の発見から50周年となる2003年に完了した。ヒトゲノム計画では、ヒトゲノムの約30億塩基を構成するA（アデニン）、G（グアニン）、C（シトシン）、T（チミン）の4種類の塩基が、染色体上にどのような順番で並んでいるかを明らかにした。塩基配列を比べると、約1000塩基に1塩基（0.1%）で個人間に異なる配列の違いが存在し、「塩基多型 single nucleotide polymorphisms：SNPs、スニップス」と命名された。例えば常染色体上にある1つのCとAによるSNPでは、CC、CA、AAの3種類のパターン（遺伝型）に分かれ、SNPは遺伝情報でもあるのでそれぞれの塩基は両親から受け継ぐ（図1）。SNPパターンの頻度は人種により異なる。

これらのSNPsの一部は、さまざまな個人の多様性すなわち疾患易罹患性や薬剤感受性との関連が予測され、活発に進められた研究の成果はこれまでに数多く公表され医療の現場へ還元されつつあり、本稿では薬剤感受性を中心にオーダーメイド医療の現状と課題について報告する。

ファーマコゲノミクス（PGx）とは
薬物治療の個別適正化（オーダーメイド投薬）に向けて
表1 PGxの具体例（2011年4月現在）

| 効果（効き方）の違い | 副作用の違い |
|-------------------|-------------|
| 薬剤 | ペゲインターフェロン+リバビリン | セッキシマブ |
| 対象疾患 | C型肝炎 | 大腸癌 |
| 対象遺伝子 | IL28B | KRAS |
| 遺伝子変化 | 生殖細胞 | 生殖細胞 |
| 報告年 | 2009 | 1998 |
| 米国 | 添付文書 | — |
| | — | 2009.7 |
| | — | 2005.8 |
| | — | 2008.6 |
| 日本 | ガイドライン | — |
| | — | — |
| 検査 | 先進医療 | 2010.4 |
| | 2010.8 | 2008.11 |

く量や効くヒトと効かないヒトを区別し)や副作用(出現する量や副作用の出るヒトと出ないヒトを区別し)を予測し、薬剤の種類や投与量を変えることが可能となる。

PGxの現状

近年、PGx遺伝子研究の成果が診療へ結びつく薬剤-遺伝子が増えてきている。しかし、薬剤の変異や副作用が分かっており、ここでは診療に結びつける薬剤-遺伝子の効果と副作用(ペゲインターフェロン+リバビリン併用療法)の例としてこれまでの動向を紹介する（表1）。

1) 薬剤による副作用の違い

—UGT1A1遺伝子多型とイリノテカン：日本で最初に保険適用になったPGx

イリノテカン（CPT-11）は日本で開発された抗がん剤で、1994年日本で、1996年米国で発売された。肺がん、乳がん、子宮頸がん、卵巣がん、胃がん、大腸がん、悪性リンパ腫などの広範なガン用に開発された。副作用が確認される一方で、副作用も強く、重篤な下痢、骨髄抑制による白血球減少を含む薬剤である。イリノテカンは体内で活性分子「SN-38」に変換され、これが抗腫瘍活性を示す。SN-38は、体質性黄疸を来すGilbert症候群の原因遺伝子でもあるUDP-グルクロン酸転移酵素（UGT）によって解毒され、排出される。このUGTの活性が低い患者にイリノテカンを通常量で投与すると、SN-38が過剰となり重篤な副作用を来す。UGT遺伝子のプロモーター領域の多型の一つであるUGT1A1*28では、UGT遺伝子の発現量が低下し、酵素活性が低下するために、UGT1A1*28をもつ患者では、重篤な副作用が発現するリスクが上昇することが見出された。

米国ではイリノテカン添付文書におけるUGT遺伝子に関する記載追加はFDAにより2005年6月に行われた。この記載の変更により、その薬剤の使用は治療の選択肢を増加するよう推奨している。日本においても2008年11月にはイリノテカン添付文書が改訂され、①使用上の注意に「UGT1A1における2つの遺伝子多型（UGT1A1*28，*6）をもつ患者またはいずれもヘテロ接合体としても重篤な副作用が発現する可能性が高くなる」ことが報告されているため、十分注意すること」と追記された。同年6月UGT1A1*28*6検出用KITが2008年6月医薬品として保険適用されており、2008年11月にUDPグルクロン酸転移酵素遺伝子多型検査が保険適用となった。しかしながら、日本において現在のところは、ヘテロ接合体に対する対処法（減量など）について定説はなく、現在市販製薬は臨床研究が進められている。

2) 薬剤の効果（効き方）の違い

—IL28B 遺伝子多型とペゲインターフェロン+リバビリン併用療法

C型肝炎ウイルス（HCV）の感染によって起こるC型肝炎の治療として、1992年に抗ウイルス療法としてインターフェロンが認可された。インターフェロン治療の有効性は感染ウイルス（HCV）の遺伝子型（ジェノタイプ）や血中ウイルス量により差があった。インターフェロン単独療法から、インターフェロン+リバビリン併用療法、さらに体内滞留時間が持続する
表2 PGx遺伝子検査の対象となる遺伝情報の比較

| 遺伝子変異 | 遗伝子発現情報 |
|------------|---------------|
| 生殖細胞系列情報の多様性 (遺伝子多型: SNP) | 体細胞変異 | 一部（主としてがん）細胞 |
| 遺伝子変異を認める細胞 | すべての細胞 | 一部（主としてがん）細胞 |
| 解析対象（ヒト検体） | 血液（白血球）で可能 | 一部（主としてがん）細胞 |
| 解析対象（核酸） | ゲノムDNA | ゲノムDNA |
| 変化持続期間 | 一生変化しない | その対象細胞のみ |
| 次世代との情報共有 | 共有する | 共有しない |
| 対象遺伝子変化 | 質（変異・多型） | 質（変異・量） |
| 解析対象遺伝子数 | 1つことが多い | 1つことが多い |

例

PGxの適用指針

- 適用（保険適用あるいは先進医療であれば）
- 適用外

ポリエチレングリコールを付加したベクチン・ フェロン＋リパビリンの併用療法が開発された。しかし、 ベクチンとリパビリンの併用療法においても約 20% はベクチン＋リパビリン併用療法が全く効かない。

2009年にベクチン・リパビリン併用療法の治療効果に関与する遺伝子多型の同定に成功した。インタフェロンの関連遺伝子である IL28B 遺伝子の SNP（rs809991）に対して、そのリスク遺伝子多型パターン（マイナーアリル：TG, GG）を持つ HCV 患者はリスク遺伝子多型パターンを持たない（メジャーアリル：TT）患者群に比較しベクチン・フェロン＋リパビリン併用療法の治療効果が低いことが明らかになった。厚生労働省治療標準化研究班による「C型慢性肝炎の治療ガイドライン 2011」では、IL28B 遺伝子多型（rs809991）パターンと治療選択肢の関連性との関連を明確にした。

わが国では、IL28B 遺伝子は2010年8月に「IL28B の遺伝子診断によるインターフェロン治療効果の予測評価」という名称で先進医療に承認され、2011年4月現在7施設が登録し実施している。

PGxにおける遺伝情報の特徴

PGxは医療情報の中で遺伝情報を取り扱うが、従来遺伝子診断として想定される単一遺伝子病の遺伝情報とは質が異なる。以下にPGxにおける遺伝子検査の特徴を臨床検査、単一遺伝子病の遺伝子診断と比べながら検討したい。

1）遺伝情報であるが扱い方には違いがある
PGxでは遺伝情報を扱うが、対象により（1）生殖細胞系列情報の検査、（2）体細胞変異の検査、（3）遺伝子発現情報の検査に分類される（表2）。ヒトゲノム・遺伝子特有の倫理問題などが存在する可能性があるのは、世代を超えて伝えられる情報である（1）の生殖細胞系列情報であり、オーガーメイド（テーラーメイド）治療に関わる遺伝情報も、単一遺伝子病の遺伝情報と同じく遺伝子の変化は生じず、家系内で情報を共有する。（1）以外の検査については通常の臨床検査と同様の取り扱いが適用される。

2）表現型の出現は遺伝情報だけでは決まらない
PGxにおいて表現型の出現は、単一遺伝性疾患とは異なり、1つ以上の遺伝情報だけでは決まらない。なんち、遺伝子情報ともにほかの遺伝子情報、遺伝子外情報（年齢、性別、投与量、ほかの併用薬物、嗜好品など）などの多因子で構成される（図2）。このような遺伝情報は、誰かが持っている遺伝子の多様性である。

3）遺伝情報は薬剤を投与するときに初めて関わる
リスクのある遺伝型を持っているにもかかわらず、特定の薬物の服用や生活習慣により初めて表現型が生じるものであり、その薬を避けたり、生活習慣を改善することにより表現型を回避できる。

4）同じ遺伝情報はさまざまな薬剤に影響することある
薬剤の代謝経路は、異なる薬剤でも同じ経路を共有することが多い。例えば、PGxの解析対象となっている代表的な遺伝子である薬物代謝酵素遺伝子群 CYP（チトクロームP450）では複数の薬剤の代謝に関わっている。例えば、CYP2C19はプロトンポンプ
5) 日本人での知見が重要となる
遺伝子多型の頻度は人種によっても異なり、また生活習慣や投与する薬剤量も異なる場合もあるため、欧米の情報が役立たないことがある。

6) ときに、遺伝性疾患との連続性がある場合がある
PGxの対象となる遺伝子において、部位や質が異なる遺伝子変化（遺伝子変異）を来すことにより症状を呈する遺伝性疾患を来すことがある。

7) 家族への影響は少ない
ある薬剤の重篤な副作用の原因が遺伝子にあると確定し、親族も同様の可能性があると判定されており、親族はその特定の薬剤の服用を避けることが出来る。実際にその対象薬剤を一生の間に服用しなければならない場合はそれほど多くない。

オーガニシッド医療では、「遺伝情報」を扱うが、その情報はほかの親族への影響は小さく、「個の医療」と考えてよいのではないだろうか。オーガニシッド医療で扱う遺伝情報の倫理的問題の程度は、単一遺伝子疾患の場合より相当に低く、血液型に近い医療情報ともいえる（表3）。

PGxを診療へ活用するための課題
＜情報管理の点から＞
PGx情報は遺伝情報であるため、倫理的、法的、社会的課題（ELSI: Ethical, Legal, Social Issues）を有している。上述した内容を踏まえ、PGxの実現に向け得られた情報を診療へ活用するための課題を情報管理の面から考えてみたい。

1) 遺伝情報をどのように扱うか 2つの遺伝情報
PGx検査を行う過程での遺伝情報には、採血から結果報告までに、血液から抽出する「ゲノムDNA」と「検査結果（遺伝子配列・多型パターン）」の2種類あり、それぞれを区別して対応する必要がある（図3）。

個々の遺伝情報を扱うには、「究極のプライバシー」に代表されるように遺伝情報のもつ“個体固有性”、“予測性”、“世代共有性”、“有害性”の特性の内に「個人遺伝情報は特殊であり、保護すべき」（遺伝子例外主義、genetic exceptionalism）という考え、それらの特性はほかの医療情報でも同様に有することがあり、遺伝情報は以降の医療情報を実質的に区別することができないという遺伝子例外主義という考えもある。特に、前項で示したようにPGx検査の結果は、単一遺伝子病とは遺伝情報の質は異なる、一般的な臨床検査と同様に対応してもよいかもしれない。しかしながら、PGx検査で扱うゲノムDNAは単一遺伝子疾患
表3 生殖細胞系遺伝子情報の用途による比較

| 遺伝子研究 | 遺伝病の診断 | オーダーメイド医療 | 血液型検査 |
|-----------|-------------|-------------------|-----------|
| 対象疾患 | すべて | 単一遺伝子病 | すべて（多因子疾患） | 様々 |
| 検査目的 | 研究 | 確定診断 | 疾患感受性 | 薬剤反応性 |
| 検査依頼者 | 研究者 | 本人、家族 | 本人 | 本人、担当医 |
| 結果開示 | 原則しない | 本人 | 本人、担当医 | 担当医、本人 |
| 本人の利益 | - | + | (+子防) | + (治療) |
| 本人の不利益 | - | 時に+ | 小 | 小 |
| 家系内への影響 | - | ? | 小 | 小 |
| ガイドライン | 3省指針 | 日本医学会 (前10学会) | 日本医学会 (前10学会) | PGx適用指針 |

図3 PGx検査に関わる2つの遺伝情報

と同様で、すべての遺伝情報が含まれているため、ゲノムDNAは単一遺伝子疾患と同様な取扱いが必要である。

2）個人情報の管理をどうするか「匿名化」と「検査結果へのアクセス」

PGxに関する遺伝情報は、2004年8月に遺伝医学関連10学会より制定された「遺伝学的検査に関するガイドライン」で、単一遺伝子疾患と同様に扱うように記載されていた。

その後、上述した日本で初めてのPGx遺伝子多型検査であるUGT1A1多型検査が2008年11月保険収載され、UGT1A1 *28 *6検出用KITが2009年3月24日発売されるに伴い、発売同時に関連検査に関わる3学会（日本臨床検査検査学会、日本人類遺伝学会、日本臨床検査標準議会）により「ファーマコゲノミクス検査の運用指針」（以下指針）が策定された。本指針の適用範囲は診療（保険診療、先進医療）においてPGx検査として実施する遺伝学的検査（生殖細胞系列遺伝子検査）とし、K-ras遺伝子検査のような体細胞遺伝子検査（主としてがん細胞のみにみられる遺伝子変化に基づいたPGx検査）（表1，2）やヒトゲノム・遺伝子解析研究および薬事法に従い実施される治験（市販後調査を含む）は対象外としている。

本指針では、PGx検査は単一遺伝子疾患における診断と異なる遺伝学的検査（生殖細胞系列遺伝子検査）
産業
製薬会社
診断薬マーケター
検査会社

医療機関
検査部
臨床検査技師

担当医
患者さん

薬剤師
看護師

官
厚労省/PMDA
経産省
文部科学省

学界

学会・研究者
（遺伝子・薬剤・経済など）

図4 オーガニゼイドに関わる様々な立場

であることを明確にした。PGx 検査実施に際し、1. 検査実施時のインフォームド・コンセント、2. 検査前後の説明、3. 個人の遺伝情報の保護、4. 検査に用いた生体試料（検体）の取扱いの 4 項を要件として定めた。PGx 検査を取扱く者等の業務の形態が非常に早いことから、本指針はすでに 2009 年 11 月、2010 年 12 月に 2 回改定され、PGx の進展を計っている。

2004 年 8 月に制定された遺伝学的検査を取り扱う際のガイドラインは、2011 年 2月日本医学会「医療における遺伝学的検査・診断に関するガイドライン」に改訂され、薬理遺伝学検査は「ファーマコゲノミクス検査の運用指針」に準ずるとされた。

PGx 実現に向けて
医療機関で起きている課題を解決するには...※

PGx 実現に向けてこれまでの医療と異なる枠組みが求められる。医療機関で起きている課題に対する解決への道筋を考えてみたい (図 4)。

1) PGxにおける Key person は誰か？

PGx では、遺伝情報を診療に活用することになる。患者個人にとり最適な治療法を提案するには、得られた遺伝子情報とともにその他の検査データ、患者の容態を総合的に判断され、ときに結果によっては、治療や薬剤への変更など治療内容が変わることがある。したがって、PGx 情報を有効に活用するには治療に直接関わる「主治医」が扱いを理解して対応することが重要である。一方で、「主治医」の多くは遺伝情報の扱いには慣れておらず、「主治医」をサポートできるシステムが求められる。

2) 医療機関でのサポート

PGx は、単に検査を行うだけでなく、主治医や患者へのサポートを医療機関内の様々な領域が協力し合って病院全体としての取り組みが必要となる。医療機関での課題について以下に述べる。

1) PGx 検査は遺伝情報を取り扱うため、「どのように扱えば」がわからない場合がある。ときに、説明内容などで不明な点、現場での倫理面での対応や遺伝カウンセリングへのアクセスも求められ、臨床遺伝専門医・認定遺伝カウンセラーとの連携などが想定される。

2) 一方で、PGx 検査は他の遺伝学的検査とは扱いが異なり、臨床検査と同様に「匿名化をしなくてもよい」検査であることを施設内で周知する。遺伝情報ではあるが、特定の薬物を使用しなければ実際上の影響はなく、今後件数が多くなると、匿名化・匿名化解除というステップは返ってヒューマンエラーを惹起する可能性がある。

3) 主治医が検査結果を解釈する際に懸念されるのは、得られた情報をどのように主治医に提供されるかという点である。検査結果による減量の程度などの薬剤の投与方針はまだ決まっていないこともあり (case by case)、報告書への付加情報の記載や最新の情報をアセスが必要となる場合があるため薬剤部・薬剤会社との連携が必要である。

4) 検査結果情報の扱いについては、2) から、ほかの臨床検査と同じく、「カルテに」貼付・記載できる
情報として扱い、主治医に返却した後の他医療者、特に関連機関（薬剤師・検査機）との院内での情報共有（特に薬剤師は服薬指導という面からも重要な役割を担うと期待される）やさらに不安であるため、将来に渡る有用な活用を目指した情報共有ができるよう電子カルテへの対応や患者本人が情報を持つ等の方策の検討が必要である。

5）ほかの遺伝学的検査と異なる検査であることを施設内で周知（教育）する機会を設けることが重要である。医療施設内に導入する際に、主治医だけでなく医療者間、一般市民への教育、倫理委員会への働きかけなどに向けて、PGxを含めた遺伝情報の幅（生殖細胞系列、体細胞変異）に詳しい遺伝子医療部門担当者が関わることが望ましい。

6）今後、医療現場を通さず直接消費者に提供される遺伝学的検査であるDTC遺伝学的検査（Direct-to-Consumer Genetic Testing）としてオーダーメイド医療の遺伝子が対象となっている、結果解釈に様々な要因があるため、直接消費者に提供されるにはさらなる検討が必要であり、困惑している被検者への対応も必要である。

上記すべてを「主治医」が行うことは難しく、薬剤により異なる複数の診療科が関わることから、医療機関では先進医療として扱うことも考慮すると、施設内でPGxに関わる部署（例えば、検査部、診断診療科、薬剤部）が求められる。

3）医療機関外からのサポート

施設間でPGxへの対応に幅を生じており、一施設内での検討は難しい場合も多いため、医療機関へのサポートはどのようにすれば良いだろうか、教育コンテツ、ガイドラインやインフォームド・コンセントの共通フォームをダウンロードできる信頼できる情報源の構築が早急に求められる。臨床研究が進み、エビデンスが集積することで、PGxの意義や費用対効果が明確になり、添付文書やガイドラインへの記載やPGx検査が在院診療になることもオーダーメイド医療の進展する要因になる。どの医療機関で検査を行う者が異なっても同じような結果が得られるように、検査の標準化、自動化（診断薬メーカーによるキットや専用機器の開発など）が求められる。医薬品開発時にゲノム情報が利用されるように、製薬会社と診断薬メーカーが連携して医薬品と診断薬の同時開発を目指すコンバインサインダグノスティックスという動きもみられている。

4）人にに関する遺伝教育の充実

PGxで扱う遺伝情報は遺伝子の多様性であり、まだ我々も検査を受ける可能性があることからも臨床検査と同じように扱われる場面も多く見られている。また、单一遺伝子病の遺伝学的検査結果も臨床現場で活用され、主治医が扱う機会が増えている。しかしながら日本における医療者のみならず、一般国民の遺伝医療（認知度）には幅があるa。今後PGxの普及によりわれわれ誰もが有するゲノムを臨床現場で扱う機会が増え、PGx情報を有効に活用するためにも人に関する遺伝教育の充実が求められる。

PGx実現に向けて
日本医科大学附属病院の試みa

遺伝子研究の成果が臨床に反映できることになる一方で遺伝情報を含んでいるPGx情報は臨床に活用するためには上記に挙げた課題を検討する必要がある同様薬剤でも複数の診療科に関わる一つの診療科で対応するには難しい場合がある。2008年4月オーダーメイド遺伝子医療を実現するため、附属病院に「ゲノム先端医療部」が開設された。臨床医・遺伝診療・解析部門・薬剤部のメンバーからなるworking groupを発足し、候補薬剤を含め検討を行った。最初に抗がん剤であるイリノテカンによる副作用関連のUGT1A1遺伝子多型検査を検討し、担当臨床科（呼吸器内科、消化器外科、女性診療科、消化器内科）、薬剤部とともに連携をし、附属病院倫理委員会における承認を得た後、院内で検査施行し結果報告するシステムを構築し、2008年9月より検査を開始した。2009年5月からは保険適用となった診療薬が販売され、『ゲノム先端医療部』でも保険診療としてUGT1A1の遺伝子検査を行い迅速な結果報告とともに最新の情報を提供することを可能とした。ベガインフォメーション＋リハビリ検査に対するIL28B遺伝子多型を担当臨床科（肝臓内科、消化器内科）と連携し、2011年11月から開始した。PGxの対象となる薬剤は増えつつあり、関連臨床科とともに臨床応用の候補につき検討を進めていく。

病気のなりやすさ（疾患易罹患性）に関する研究成果
日本からの発信

病気のなりやすさ（疾患易罹患性）に関する研究も近年大きく進展している。日本においても、「個人の遺伝情報に応じた医療の実現化プロジェクト」が行われ
(re)れている。2003年度に開始されたオーダーメイド医療実現化プロジェクトでは、日本大学医学研究所・理化学研究所ゲノム医科学研究所センターが47疾患を対象とし日本医科大学を含む66協力医療機関病院で収集された約30万症例（約20万人）のDNA・血清試料・臨床情報のバイオバンクを構築した。バイオバンクを特定の個人が全ゲノム中にどのようなSNPパターンをもつのかを網羅的に関連する多因子の検査を容易にしたゲノムワイド関連解析（genome-wide association study；GWAS）手法を用いて解析が進められた。これまでに、医薬品の副作用だけではなく、心筋梗塞、川崎病、関節リウマチ、変形性関節症、気管支喘息、2型糖尿病、大腸がん、子宮内膜症、ケロイドなどの関連SNPsが同定されている。発見された候補SNPについて、臨床応用に向けて疾患との関連の再現性や疾患の病期（重症度）・病型との関連性について、さらに検討が行われている。

おわりに

PGxを中心としたオーダーメイド医療実現に向けた現状ならびに課題を示した。この数年の状況をみると、PGxが現実味を帯び、身近になりつつある。近年、薬物遺伝子学も含めた遺伝学的検査結果の臨床での活用機会も増えてきている。今後、オーダーメイド医療を実現するには、基礎医学研究の成果を臨床へと潤滑に橋渡しする道筋の構築とともに、医療に関する様々な立場による産学（医療機関）・官間における連携（図4）が推進され、課題を解決し、医療現場に還元されることが期待される。

謝辞：日本医科大学附属病院におけるオーダーメイド医療実現に向けて、先端的にご指導いただいております日本医科大学附属病院ゲノム先端医療部大学院分子遺伝医学系教授島田隆先生、日本医科大学老人病研究所所長南史則先生に心よりお礼申し上げます。

文 献
1. Nussbaum R et al: Thompson & Thompson Genetics in Medicine (7th ed), 2007; Saunders (福島義光監訳「トーマス&トーマス遺伝医学」メディカル・サイエンスインターナショナル, 2009).
2. CIOMS: Pharmacogenetics—Towards Improving Treatment with Medicines. 2005; CIOMS（津谷喜一郎監訳「ファーマコジェネティクスー薬物治療の改善を目指して」テクノミック, 2005).
3. OECD: Pharmacogenetics: Opportunities and Challenges for Health Innovation. 2009; OECD.
4. Nebert DW, Zhang G, Vesell ES: From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 2008; 40: 187-224.
5. 澤田純一：ゲノム薬理学の医薬品安全性予測への応用. 国立衛生研究所報告 2008; 126: 34-50.
6. Wang L, McLeod HL, Weinshilboum RM: Genomics and drug response. N Engl J Med 2011; 364: 1144-1153.
7. Tanaka Y, Nishida N, Sugiyama M et al: Genomewide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009; 41: 1105-1109.
8. 厚生労働省治療標準化研究班：C型慢性肝炎の治療ガイドライン2011. 2011.3 http://www.jsjh.or.jp/medical/documents/HVC1.7.pdf
9. 渡邊 浩、島田 隆：オーダーメイド遺伝子医療の現 状・課題と展望 医療の現場では問題提起 オー ダーメイド医療で遺伝情報を適切に利用するための課 題. 日本遺伝カウンセリング学会誌 2009; 30: 69-72.
10. 額賀淑郎、津谷喜一郎：「遺伝子情報主義」問題の動 向 医師会aub素雑誌 2006; 134: 2385-2390.
11. 遺伝学的検査に関するガイドライン, 2004; 遺伝関連 10学会.
12. 「ファーマコゲノミクス検査の運用指針」. 2010 http://www.jsjh.or/other/news/genomics101201. pdf
13. 日本医学会：「医療における遺伝学的検査・診断に関 するガイドライン」. 2011 http://jams.med.or.jp/ guideline/genetics-diagnosis.html
14. 渡邊 浩：ファーマコジェネティクスへの対応. 第8 回全国遺伝子医療部門連絡会講演報告書. 2010. pp 92-97.
15. 鈴木洋史、山本武人、太 省次：病院診療システムへ のファーマコゲノミクスの導入. 日本医師会雑誌 2010; 1391: 609-613.
16. 成 倫慶、津谷喜一郎：ファーマコジェネティクスと 氏経済. ヘノム医学 2007; 7: 187-191.
17. 中谷 中、登 勉：ファーマコゲノミクス検査に よるオーダーメイド医療の動向. 医療検査 2010; 54: 1607-1613.
18. 渡邊 浩、島田 隆：遺伝学教育の現状と課題. 遺伝子診療学遺伝子診断の進歩とゲノム治療の展望. 日本臨床 2010; 68 (Suppl 8): 335-339.
19. 渡邊 浩、島田 隆：ゲノム情報を臨床現場で適切に 利用するための課題ー日本医科大学附属病院での試み. ファミリア 2010; 46: 415-420.
20. オーダーメイド医療実現化プロジェクト http://www.biobankj.org/work/resultht.html
21. Hamburg MA, Collins FS: The path to personalized medicine. New Engl J Med 2010; 363: 301-304.

（受付: 2011年12月8日）
（受理: 2012年1月11日）