EPV1107

Dynamics of Psychopathological Disorders and Changes in the Functional Activity of Neutrophils in Mercury Intoxication

D. Labunskiy*, V. Podsevatkin, S. Kiryukhina and N. Kolmykova

Ogarev Mordovia State University, Neurology And Psychiatry, Saransk, Russian Federation

*Corresponding author.

doi: 10.1192/j.eurpsy.2022.1799

Introduction: The overall goal was to determine the degree of mental, neuromuscular and statodynamic functions disorders resulting from toxic effect of mercury and its compounds, to study relationship between the degree of loss of professional ability to work as a result of occupational disease with the presence of complications due to concomitant diseases.

Objectives: The relevance of studying the degree of violations of the main indicators of vital activity due to the toxic effect of mercury and its compounds is due to the persisting high level of loss of professional ability to work, and in some cases, and disability of this contingent. Analysis of indicators of primary and repeated disability due to occupational diseases showed that a sufficiently high number of persons recognized as disabled.

Methods: We studied the dynamics of psychopathological disorders: violation of the emotional sphere, thinking, perception, attention, volitional activity and cognitive functions. The functional and metabolic activity of segmented neutrophils in the peripheral blood of 42 patients, men and women aged 43 to 64 years, and 22 healthy donors were studied.

Results: Long-term exposure to chronic industrial mercury intoxication led to persistent disorders of mental functions, suppression of phagocytic activity of neutrophils up to 42.3±4.7 per cent and inhibition of the reaction with nitro blue cytosol 4.2±0.1 per cent.

Conclusions: The revealed violations of the emotional-volitional sphere and cognitive mental functions are possibly associated with the suppression of nonspecific cellular reactions of microphages. Violations of neuroimmune interactions in mercury intoxication require further study.

Disclosure: No significant relationships.

EPV1107

Association between markers of inflammation and indicators of systemic endotoxemia in endogenous psychosis

S. Zozulya*1, I. Oleichik2, I. Otman1, M. Yakovlev1 and T. Klyushnik1

1Mental Health Research Centre, Laboratory Of Neuroimmunology, Moscow, Russian Federation; 2Mental Health Research Centre, Department Of Endogenous Mental Disorders And Affective Conditions, Moscow, Russian Federation and 3Research Institute of General Pathology and Pathophysiology, Laboratory Of Systemic Endotoxemia And Shock, Moscow, Russian Federation

*Corresponding author.

doi: 10.1192/j.eurpsy.2022.1801

Introduction: The clinical and biological studies indicate the involvement of inflammation in the pathogenesis of endogenous mental disorders. The inflammation markers leukocyte elastase, α1-proteinase inhibitor, and autoantibodies to neuroantigens reflect the severity of the pathological process in the brain. Systemic endotoxemia is a pathological process caused by an excess of endotoxins in the systemic circulation, can be considered as one of the components of the inflammatory process in endogenous psychosis.

Objectives: To evaluate the association between systemic inflammation markers and indicators of systemic endotoxemia in patients with endogenous psychosis.

Methods: The study included 25 patients aged 23-49 with endogenous psychoses (F20, F25) and 25 healthy people. The severity of symptoms was assessed using PANSS. We detected the activity of leukocyte elastase and α1-proteinase inhibitor, antibodies to neuroantigens, endotoxin (ET) concentration, and antibodies to endotoxin (aET) in serum.

Results: In 24% of cases, an increase of inflammation markers activity, ET concentration, and aET deficiency were observed (p<0.05), which is an unfavorable factor that aggravates the clinical course of the disease. In 76% of cases, ET concentration remained within control values (p>0.05) but associated with different levels of
Immunoregulatory and neuroprotective activity of ovocystatin

B. Stańczykiewicz1,*, J. Gburék2, K. Gołąb3, B. Konopska2 and A. Zablocka3

1Wrocław Medical University, Department Of Psychiatry, Wrocław, Poland; 2Wrocław Medical University, Department Of Pharmaceutical Biochemistry, Wrocław, Poland and 3Hirschfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department Of Microbiology, Wrocław, Poland

*Corresponding author.

doi: 10.1192/j.eurpsy.2022.1802

Introduction: Ovocystatin has beneficial properties for cognitive function in young rats and might prevents aging-related cognitive impairment in older animals, as well as reduces memory decline in APP/PS1 mice model.

Objectives: Our study aimed at assessing the impact of ovocystatin on microglia activation and neurogenesis.

Methods: Immunoactivation: Mouse wild type microglia were stimulated with ovocystatin at dose of 100 micrograms/ml. The effect of ovocystatin on nitric oxide production and interleukin 1 beta secretion were determined. Neurogenesis: Primary rat hippocampal neurons of H19-7 cell line was used. The impact of ovocystatin on proliferation, nitric oxide production, and expression of markers of neurogenesis: microtubule-associated protein 2 (MAP2, isoforms A/B and C/D) and Synapsin 1, were determined.

Results: It was shown that ovocystatin does not stimulate microglial cells to produce inflammatory mediators. Whereas, no toxic effect of ovocystatin (1-100 ug/ml) on H19-7 cells viability, and dose-dependent down-regulation of proliferation were demonstrated. It was also shown that in primary hippocampal neurons of H19-7 cells incubated with ovocystatin (100 micrograms/ml), the expression level of MAP2 C/D (75kDa) - characteristic form of immature neurons is unchanged. However, the increased expression of MAP2 A/B protein (280 kDa) – characteristic for mature neurons was observed after 6 and 24h incubation with ovocystatin. Relatively to MAP2 A/B, increased expression of synapsin 1 was observed.

Conclusions: The ovocystatin might be a potential activator of molecular mechanisms in primary hippocampal neurons, participating in regulation of neurogenesis. Nevertheless, further studies are needed.

Disclosure: No significant relationships.

Keywords: ovocystatin; Immunoactivation; Neurogenesis