STUDIES ON ISOLATION AND OPTIMIZATION OF CELLULASE PRODUCING BACTERIA FROM ANIMAL DUNG.

Shanthanu M. Raikar and Shakeel Ahmed Adhoni.
P.G. Department of Biotechnology and Microbiology, Karnatak University Dharwad, Karnataka, India.

Abstract

The present investigation deals with the isolation, screening and characterization of cellulose producing bacteria from termite gut and animal dung, as these are good source of the cellulose digesting environment. The gut bacteria produces extra or intra cellular cellulase for degradation of the cellulose. The microorganisms were isolated and characterised by evaluation of colony morphology and biochemical tests. The organisms were futher screened by Congo red agar media selection for cellulase producing organisms. The organisms (which organism) showing maximum clear zones around the colonies were selected for further studies. Total of thirteen bacterial isolates found to be positive on screening media. Furthermore, a total of eight positive isolates (G2, G3, G4, G5, S1, S3, T1, and T4) were selected for enzyme production and their respective cellulolytic activity was estimated. Enzyme assay for cellulose activity was found to be highest for CMC S3 (EA=0.112μmol/ml/min) and for cellulose is (EA=0.078μmol/ml/min). The optimization of the isolated bacteria which as the potentiality for the production of cellulose was carried out. Results show that S3 strain was efficient organism for cellulase production with high enzyme activity which can be employed for cellulose degradation in industrial processes.

Introduction:

Cellulose is the most abundant biomass on the earth for its annual output as high as 1011 tons that is produced by the plants' photosynthesis (Shuler, 1980). The biological degradation and conservation of cellulose constitute a significant component of the natural carbon cycle (Sleat et al., 1984). Cellulose is known as an important reproducible resource for its vast existence and potential applications. However, due to their complicated and insoluble structures, most of them cannot be directly used and are usually discarded, resulting in a serious environmental pollution (Zhengang et.al. 2015). Cellulolytic is a biological process which controlled and processed with cellulase system. Cellulase system consists of three classes of soluble extracellular enzymes, i.e 1, 4-β-endoglucanases, 1,4-β-exoglucanases, and β-glucosidases (β-D-glucoside glucohydrolases or cellobiases) (Shewale 1982). These enzymes hydrolyze cellulose to glucose (Ryu and mandels 1980). One of the best sources for cellulolytic system is symbiotic microorganism in intestinal tract of organism with cellulose as source of metabolizable sugar (glucose). Termites had symbiotic microorganism in their intestinal tract which digests the cellulolytic food (Saxena S et.at., 1993). Cellulase used in various industrial processes, including biofuels such as...
bioethanol (Vaithanomsat et.al. 2009), plants and agriculture waste processing. To overcome this hindrance, significant efforts are under way to identify novel cellulases. A wide variety of microorganisms have the ability to degrade cellulose, which include aerobic and anaerobic bacteria, white-rot and soft-rot fungi. Fungi are the most studied organisms with respect to the production of cellulolytic enzymes (Humphrey AE 1979). Compared to fungi, bacteria have numerous advantages on an industrial view point like its high growth rate, easy handling and adaptability to various genetic manipulations. Production of extracellular enzymes, especially carboxymethyl cellulase (CMC) by bacteria like Bacillus and Cellulomonas are advantageous for large-scale applications (Noyola and Torre 2001). Most importantly thermophilic, psychrophilic, alkalophilic, acidophilic and halophilic bacteria inhabit a wide variety of environmental and industrial niches that are extremely resistant to environmental stress and they can produce enzymes which are stable under extremely harsh conditions (Sasidharan et.al. 2013). As a result, isolation and characterization of cellulase-producing bacteria will continue to be a principal component of enzyme research.

Materials And Methods:-

Sample collection and extraction

Sample was collected from different sites which includes (i) cellulose feeding organisms, such as termite (Family: Kalotermitidae) residing on woody habitat of botanical garden Karnataka University, Dharwad. (ii) Samples rich in cellulose content like fecal matter of livestock animal’s sheep and goat were collected from rural area. Organism *kalotermitidae* was crushed in 0.9% saline solution under sterile condition. Fresh faecal matter of sheep and goat was collected in a clean polythene bag. 1.0 gram of each sample is placed in 9 ml of 0.9% saline, mixed it rapidly and the solution was discarded to remove unwanted flora. The faecal is then again placed in the 9 ml saline solution and crushed, mixed and serial dilution techniques was followed and the dilutions from 10^{-1} to 10^{-3} were selected for further studies.

Isolation and Screening of cellulolytic micro-organisms

Samples were collected in a polyethylene bags and brought to the laboratory and stored under sterile conditions. One gram of the sample was crushed and transferred into 9 ml glass tube containing sterile saline. The mixture was mixed by vortex for 2-3 mins for removal of microorganisms. One ml of this sample was plated by serial dilution (up to 10^4) technique amended with CMC agar and incubated at 37°c for 24 -48 hours. Bacterial cultures grown on CMC slants were cultured on basal mineral salt medium (BSM).

Detection of cellulase activity was performed on the culture plate using Cong red solution (0.1mg/ml) was added to the each plate and the colonies surrounded by transparent zone were considered as positive for cellulase producing bacteria, the diameter of zone was also measured, the colonies showing maximum diameter was subsequently purified by repeated streaking on to new plate containing CMC agar medium for three times and used for further studies.

Biochemical tests

On the basis of the shape and Gram’s nature of the organism, biochemical tests were performed.

Indole test

These tests were performed by inoculating a loop-full of culture in trypotphan broth and then incubated at 37° C. After incubation for 24 hours kovacs reagent was added to the tubes. If the cherry red colour ring is formed indicates positive for indole production.

MR test

These tests were performed by inoculating a loop full of culture in MRVP media and then incubated at 37° C for 3-5 days. After incubation period half of the culture was transferred to a clean tube and other tube of culture was used to conduct VP test. After addition of methyl red to one tube, if red coloration occurs it indicates positive result for MR test to other, after addition of α-napthol and KOH pink coloration indicates positive test (Experiments in microbiology, plant pathology and biotechnology by K R Aneja 2003).
VP Test
These tests were performed by inoculating a loop full of culture to VP media and then incubated at 37°C for 24 hours. After incubation addition of α-naphthol and KOH, pink coloration indicates positive test (Johnson and Case, 2007).

Citrate
Two sterile test tubes with Simmon’s citrate agar media was prepared, one inoculated with the culture and one tube is kept as control incubated at 37°C for 24 hours, if the color of medium changes from green to blue it indicates positive test (Experiments in microbiology, plant pathology and biotechnology by K R Aneja 2003).

Catalase test
To 3 ml of hydrogen peroxide, add a loop full of culture using inoculating loop on a clean glass slide, evolution of effervescence indicates positive test (Experiments in microbiology, plant pathology and biotechnology by K R Aneja 2003).

Acid and gas production
In lactose fermentation broth, place durham’s tube in inverted position without any air bubble, inoculate a loop full of culture into it and incubate at 37°C for 24 hrs. If media turns yellow, it indicates acid production and if bubbles are formed in Durham’s tube it indicates gas production (Experiments in microbiology, plant pathology and biotechnology by K R Aneja 2003).

Starch hydrolysis
Starch Agar medium was prepared and inoculated with microorganism and incubated for 24 hrs at 37°C. After incubation, the plates were treated with iodine to conform the hydrolysis of starch.

Mannitol test
This test determines ability of organism to utilize mannitol as source of carbon. A slant of mannitol agar in clean and sterile test tube is streaked with a loop full of culture and incubated for 24 hrs. If the color changes from pink to yellow, it refers positive to mannitol test.

Urease test
These tests were performed by inoculating a loop full of culture in urease agar media and then incubated at 37°C for 24 hours. If the media turns into pink colour shows positive test for urease.

Optimisation of Cellulose

Effect of ph
To determine the optimum pH for cellulase production, Media containing 0.5% CMC with different pH, i.e., 4, 7 and 9 was inoculated and incubated at 37°C. Whole flask samples were withdrawn and cellulase activity in the supernatant was assayed.

Effect of temperature
To determine the optimum temperature for cellulase production media containing 0.5% CMC was prepared with optimum pH fixed earlier for each culture was incubated at 37°C and Room temperature. Whole-flask samples were used for the cellulase assay.

Enzyme assay (CMC and Cellulose substrate) by DNS method:
Culture broth was centrifuged at 5000rpm for 5min at 4°C and Cellulase activity in the supernatant was measured. The reaction mixture contains 1ml of 0.5% substrate (CMC and Cellulose), 0.1M Acetate Buffer pH 5.0 and 1 ml of crude enzyme was added to and incubated for 30 min at 37°C, than add 1ml of DNS Reagent (3, 5-dinitro salicylic acid) kept on boiling water bath for 5min and cooled. The absorbance was measured at 540nm. (UV visible spectrophotometer, Model: Hitachi-U2900). One unit of cellulase activity is defined as the quantity of cellulase required to liberate 1.0 μmol of glucose equivalents per min under the assay condition.

Results And Discussion:-
For isolation of cellulose degrading bacteria, termites were collected from woody habitat, as it contains cellulose degrading bacteria in its gut and digestive tract. Faecal matter of Sheep and Goat was so collected, because of their
grass diet and multiple stomach which also inhabits cellulitis bacteria in their digestive tract. The colony morphology was studied in detail and the results are presented in (Table.1), followed by biochemical tests performed for the isolated microorganisms (Table. 2). The collected samples were then subjected for serial dilution technique and were inoculated on to a plates containing CMC agar medium and incubated at 37⁰C for 24-48 hours (Figure. 1). After incubation Cong red test was performed for screening of the cellulolytic organisms. The organisms (which organism) showing maximum clear zones around the colonies were selected for further studies. Total of thirteen bacterial isolates found to be positive on screening media (cellulose Cong red agar) by producing clear zone around their colonies (Figure. 2). Furthermore, a total of eight positive isolates (G2, G3, G4, G5, S1, S3, T1, and T4) were selected for enzyme production and their respective cellulolytic activity was estimated. Enzyme assay for cellulose activity was found to be highest for CMC is S3 (EA=0.112μmol/ml/min) and for cellulose is (EA=0.078μmol/ml/min) (Graph.1). The optimization of the isolated bacteria which as the potentiality for the production of cellulose was carried out and results are shown in Table.3 and Table.4.

In recent years, more attention has been directed towards screening of novel microbial strain that has broad spectrum enzyme activity. The high cost of cellulase production and low enzyme activities limit their industrial use such as bio-fuel production, bio fertilizers, and textile industry. So effort are to be taken to economize and increase the yield of cellulase production by media optimization (Ma J et al., 2015) and hence isolation, characterization and media optimization for cellulase producing bacteria remain to be an important area of bio fuel research (P. Gupta et al., 2012)

In the present study, we focused on isolation of cellulase producing bacteria with an industrial and Agricultural perspective. So we collected faecal matter of livestock animals such as Sheep and Goat from rural area Haliyal and Malamaddi, Dharwad as our site for sample collection. We selected this source for our study because these animals feed on wide variety of plant biomass which is rich in cellulose diversity able to degrade different types of cellulose as they contain most of cellulase producing microorganisms able to degrade cellulose and we collected termite belonging to family kalotermitidae in woody habitat from Botanical Garden Karnataka University Dharwad. We selected these samples because termite has symbiotic microorganisms in Gut and digestive tract which helps in digesting the cellulose containing food. Collected samples were serially diluted and plated on minimal salt media (CMC agar media), (Shankar et al., 2011) pure cultures obtained were characterized morphologically screened on Cong red agar media for selection of cellulase producing organism. Out of 9 isolates 3 isolates (isolate1 S3, isolate2 G3, isolate 3 T4) showed maximum zone, further 3 cultures used for biochemical characterization. Pure culture obtained were inoculated in two broth containing two different substrates 1% CMC & 1% cellulose for cellulase enzyme assay, all 9 isolates were checked for enzyme activity for confirmation. Same 3 isolates (isolate S3, isolate G3, isolate T4) showed maximum enzyme activity, based on standard calibration curve by DNS method. We optimized isolated organisms by varying parameters such as pH (4, 5, 7, 9, 10) and Temperature (4, 18, 30, 37 ⁰C) by using different substrates CMC Cellulose at different time intervals 30 & 60 minutes. Earlier studies have shown maximum enzyme activity at pH 7 and at temperature from 20-50⁰ C for thermostable alkaline cellulase producing bacterium strain from garbage dump (Zhen gang Ma et al. 2015). Further crude samples subjected for SDS-PAGE. Overall isolate S3 showed maximum enzyme activity. Hence we can conclude that the isolate can be used for production and isolation of cellulose which can be used for industrial processes.

Table 1: Colony morphology of isolated organisms.

Sample	Size (mm)	Shape	Margin	Colour	Elevation	Optical property	Gram staining	Organism	
G1	4	Round	Regular	Watery	Raised	Shiny	Gm +ve	Cocci	
G2	3	Round	Regular	Creamy	Raised	Shiny	Gm –ve	Bacilli	
G3	2.5	Round	Regular	Yellow	Raised	Dull	Gm +ve	Cocci	
G4	3	Round	Regular	Yellow	Convex	Shiny	Gm +ve	Cocci	
G5	3	Round	Irregular	Brownish	Flat	Shiny	Gm –ve	Bacilli	
S1	3.5	Irregular	Irregular	Pink	Flat	Dull	Gm –ve	Bacilli	
S2	4	Round	Circular	White	Convex	Dense	Gm +ve	Cocci	
S3	2	Round	pinpoint	Circular	Light orange	Convex	Dense	Gm +ve	Cocci
S4	3	Irregular	Irregular	Light brown	Flat	Shiny	Gm +ve	Bacilli	

1289
		T1	T2	T4
		2	3.5	3
		Round	Irregular	Round
		Regular	Irregular	Regular
		Creamy	Yellow	Buff colour
		Raised	Flat	Flat
		Shiny	Opaque	Opaque
		Gm +ve	Gm –ve	Gm +ve
		Cocci	Cocci	Cocci

Table 2: Biochemical test of the selected organisms

Organism	S3	G3	T4
Gram’s staining	Gm +ve cocci	Gm +ve cocci	Gm +ve short rods
Endospore staining	Non sporulating	Non sporulating	Non sporulating
Indole test	+ve	+ve	+ve
Methyl red test	+ve	-ve	+ve
VP test	+ve	+ve	-ve
Citrate test	-ve	-ve	-ve
Catalase test	+ve	+ve	+ve
Acid and gas	+ve	+ve	-ve
Starch hydrolysis	+ve	+ve	+ve
Mannitol test	+ve	+ve	+ve
Urease test	+ve	+ve	-ve

Table 3: Enzyme activity on CMC as a substrate.

Sample	CMC (ml)	Buffer (ml)	Enzyme (ml)	Incubation (min.)	DNS	O.D
G2	1.0	1.0	1.0	30	1.0	0.139
G3	1.0	1.0	1.0	30	1.0	0.336
G4	1.0	1.0	1.0	30	1.0	0.20
G5	1.0	1.0	1.0	30	1.0	0.186
S1	1.0	1.0	1.0	30	1.0	0.281
S3	1.0	1.0	1.0	30	1.0	0.455
T1	1.0	1.0	1.0	30	1.0	0.245
T4	1.0	1.0	1.0	30	1.0	0.284

Table 4: Enzyme activity on Cellulose as a substrate.

Sample	Cellulose (ml)	Buffer (ml)	Enzyme (ml)	Incubation cellulose (mins)	DNS	O.D
G2	1.0	1.0	1.0	60	1.0	0.137
G3	1.0	1.0	1.0	60	1.0	0.194
G4	1.0	1.0	1.0	60	1.0	0.181
G5	1.0	1.0	1.0	60	1.0	0.139
S1	1.0	1.0	1.0	60	1.0	0.100
S3	1.0	1.0	1.0	60	1.0	0.212
T1	1.0	1.0	1.0	60	1.0	0.154
T4	1.0	1.0	1.0	60	1.0	0.206

Figure 1: Pure culture plates of the isolated microorganisms.
Figure 2: Bacterial isolates found positive on Congo red agar.

Graph 1: Comparative analysis of cellulase activity of isolates on different substrates

References:

1. Balamurugan, A., R. Jayanthi, P. Nepolean, R. Vidhya Pallavi and R. Premkumar. Studies on cellulose degrading bacteria in tea garden soils. African Journal of Plant Science Vol. 5 (1), pp. 22-27, 2011

2. Bhat, M.K. and Bhat, S., Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv., 15: 583–620. 1997

3. Bhat and MK and S.Bhat, “Cellulosedegradingenzymesandtheir potential industrial application,” Biotechnology Advances, vol. 15, no. 3-4, pp.583–620,1997.

4. Delalibera Jr., J. Handelsman, and K. F. Raffa, “Contrasts in cellulytic activities of gut microorganisms between the wood borer, Saperdavestita (Coleoptera: Cerambycidae), and the bark beetles, Ipsini and Dendroctonusfrontalis (Coleoptera: Curculionidae),” Environmental Entomology, vol. 34, no. 3, pp. 541–547, 2005.

5. Ekperigin MM. : Preliminary studies of cellulase production by Acinetobacteraniitatus and Branhamella sp. African Journal of Biotechnology Vol. 6 (1), pp. 028-033, 4 January 2015.

6. Ghose TK, “Mesurnment of cellulase activity,” Pure and Applied Chemistry, vol. 59, pp. 257–268, 1987.

7. Guilherme Pinheiro, Raqual F. Correa et al., Isolation of aerobic cultivable cellulytic bacteria from different regions of the gastrointestinal tract of giant Ind snail Achatinafulica :fronties microbiology, doi:10.3389?fmicmb.2015.00860.
8. HAN YW AND V. R. SRINIVASA, Isolation and Characterization of Cellulose-utilizing Bacterium. Appied microbiology, 1968.
9. Hatami S, H. A. Alikhsni, H. Besharati, N. salehrastin, M. Afrousheh, and Z. Y. Jahromi, “Investigation of aerobic cell-u-lytic bacteria in some of noth forest and farming soils,” The American-Eurasian Journal of Agricultural & Environmental Sciences, vol. 5, pp. 713–716, 2008.
10. Hendricks C W, J. D. Doyle, and B. Hugley, “A new solid medium for enumerating cellulose-utilizing bacteria in soil,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 2016–2019, 1995.
11. Hossain, S.M.Z. and M.N. Anwar. 1996b. Isolation of cellulytic microorganisms from forest and garbage soil and screening for cellulase activity. I. The cellulytic fungi. Chittagong University Studies, Part II: 20:83-88.
12. Immanuel G , R.Dhanusha, P.Prema,andA. Palavesam, “Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment,” International Journal of Environmental Science and Technology, vol.3, no.1, pp.25–34, 2006.
13. Karunai Selvi1 B and J. Arockia John Paul. Cellulolytic Efficiency of Forest Litter Microflora Isolated from Sirumalai Hills of Dindigul District. Asian Journal of Science and Applied Technology ISSN: 2249-0698 Vol. 4 No. 1, 2015.
14. Katsuhiko Fujii,* Kana Ikeda, Seo Yoshida: Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms. INTERNATIONAL MICROBIOLOGY (2012) 15:121-130 DOI: 10.2436/20.1501.01.165 ISSN: 1139-6709: e- ISSN 1618-190
15. Kena patel1, yati vaidya1, shriman patel1, chaitya joshi2, anjukunjadi. Isolation and Characterization of Cellulase Producing Bacteria from Rumen Fluid. : International journal of advanced research. 2015.
16. Lekh Ram1, Kuldeep Kaur2 and Sandeep Sharm.Screening Isolation and Characterization of Cellulase Producing Micro-Organisms from Soil.International Journal of Pharmaceutical Science Inventio. 2014.
17. Liang, Y J. Yesuf, S.Schmitt, K .Bender, and J.Bozzola, “Study of cellulases from anewlyisolated thermophilic and cellulolytic Brevibacillus sp. strain JXL,” Journal of Industrial Microbiology and Biotechnology,vol.36,no.7,pp.961–970,2009
18. Lu, W.J., Wang, H.T., & Nie, Y.F. Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process, Journal of Environmental Science and Health, 2004, Part B, 39 (5-6): 871–887.
19. Manmeet Kaur1 and Dr. S. Arora. Isolation and Screening of Cellulose Degrading Bacteria in Kitchen Waste and Detecting Their Degrading Potential.: IOSR Journal of Mechanical a
20. Miller GL, “Use of dinitrosalicylic acid reagent for determi nation of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959.
21. Monica SachdevaTaggar. Insect celluulytic enzymes: Novel sources for degradation of lignocellulosic biomass. : Journal of Applied and Natural Science 7 (2): 625 - 630 (2015)
22. Nyimekarasaptarini, Wiwiekindriyati. Isolation of cellulytic bacteria from termites with cellulose of corn cobs as a carbon source. International Journal of Pharmacy and Pharmaceutical Sciences ISSN0975-1491, Vol 6, Issue 4, 201, 2014.
23. Pordeli h.r.1*, hashemi s.j.1, jamshidian m.2 and bayat m. Isolation, molecular identification and evaluation of antifungal activity of soil streptomyces against dermatophytes. World Research Journal of Biotechnology Volume 1, Issue 1, 2013, pp.-04-06.
24. Pratima Gupta,Kalpanasaman, andavinishshau: Isolation of cellulose-degrading bacteria and determination of their cellulytic potential.: Hindavi publishing corporation. International journal of microbiology. Vol.2012, ID
25. Ryu DDY and M. Mandels, “Cellulases: biosynthesis and applications,” Enzyme and Microbial Technology, vol. 2, no. 2, pp. 91–102, 198.
26. Sahu NP, D. N. Kamra and S. S. Pau: Effect of cellulose degrading bacteria isolated from wild and domestic ruminants on in vitro dry matter digestibility of feed and enzyme production. Journal of veterinary research, microbial section vol.2, 2010.
27. Sanchez OJ and C. A. Cardona, “Trends in biotechnological production of fuel ethanol from different feed stocks,” Biore-source Technology,vol.99,no.13,pp.5270–5295,2008.
28. Sasidharan Sreedevi, SreedharanSajith, Saitas Benjamin : Cellulase Producing Bacteria from the Wood-Yards on Kallai River Bank, Advances in Microbiology, 2013, 3, 326-332. Journal of scientific research.
29. Saxena S, J. Bahadur, and A. Varma, “Cellulose and hemicellulase producing bacteria from termite gut and mould soils of India,” The Indian Journal of Microbiology, vol. 33, pp. 55–60, 1993.
30. Saxena, S., Bahadur, J. & Varma, A. Cellulose and hemicellulose degrading bacteria from termite gut and mould soils of India, The Indian Journal of Microbiology, 1993, 33: 55-60.
31. Shankar T, Mariappan and L. Isiarasu. (2011) Screening cellulolytic bacteria from the mid-gut of the popular composting earthworm, Eudrilus eugeniae. World Journal of Microbiology 6(2): 142-148, 2011; ISSN 1817-3098 IDOSI publications 2011.
32. Shuchi Singh, 1 Vijayanand S. Moholkar, 1, 2 and Arun Goya. Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung. Hindawi Publishing Corporation ISRN Microbiology Volume 2013, Article ID 728134. -2013.
33. Sumit Kumar Dubey, Rakesh Kumar Meena, Shweta Sao, Jitendra Patel, Sanket Thakur and Prashant Shukla. Isolation and Characterization of Cellulose Degrading Bacteria from Biogas Slurry and their RAPD profiling. Current Research in Microbiology and Biotechnology Vol. 2, No. 4 (2014): 416-421. 2014.
34. Tajima K., Aminov R.I., Nagamine T., Matsui H., Nakamura, M. and Benno, Y., “Diet dependent shifts in the bacterial population of the rumen revealed with real-time PCR,” Applied and Environmental Microbiology, vol. 67, pp.2766-2774, 2001.
35. Teather, R. M., and P. J. Wood. Use of Cong red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 1982, 43:777-780.
36. Wood, T.M. and Bhat, K.M., Methods of measuring cellulase activities. Methods in Enzymology. 1988, 160: 87-117.
37. Zhengang Ma, Jing Tang, Hongxiu Wen: Isolation of thermostable alkaline cellulose producing bacterium strain from a Garbage dump. International Journal of Agriculture & Biology. DOI:10.17957/IJAB/17.3.13.485.