Condensation Reactions of Methyl Derivatives of Quinoxaline-1,4-Dioxide with 4,4'-Biphenyl Carboxaldehyde

Mohamad Alkhudari

1Chemistry Department, Science Faculty, AlBaath University, Homs, Syria.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJOCS/2021/v10i119083

Editor(s):
(1) Dr. SungCheal Moon, Korea Institute of Materials Science (KIMS), Republic of Korea.

Reviewer(s):
(1) FASIULLA, Manipal Institute of Technology, INDIA.
(2) Salwa Razzaq Abdulameer, Iraq.
(3) Rudy Situmeang, University of Lampung, Indonesia.

Complete Peer review History: http://www.sdiarticle4.com/review-history/70477

Received 24 April 2021
Accepted 28 June 2021
Published 29 June 2021

Original Research Article

ABSTRACT

Aims: To synthesis new compounds via condensation reactions between 2-methyl quinoxaline-1,4-dioxide derivatives 4,4'-biphenyl carboxaldehyde.

Methodology: The Quinoxalines derivatives were prepared from 2-nitroaniline derivatives using the Beirut reaction, and the condensation reaction was carried out at room temperature in absolute methanol. Based on IR and NMR spectroscopic techniques, the structures of all products have been suggested. For their synthesis, suitable mechanisms have been suggested.

Results: In this work, condensation reactions involving 2-methyl quinoxaline-1,4-dioxide derivatives and 4,4'-biphenyl carboxaldehyde were performed.

Conclusion: The final compounds, we suppose, have considerable applications in fluorescent and chromophoric activities. In all known solvents, the products were just slightly soluble. Products have been subjected to sulfonation reactions, although with limited success.

Keywords: 2-methylquinoxaline-1,4-dioxid; 4,4'-biphenyl carboxaldehyde; 2-nitroaniline derivatives; Beirut reaction; condensation reaction.

*Corresponding author: E-mail: mohcompany@gmail.com;
1. INTRODUCTION

The last few decades witness many publications and research about Quinoxaline derivatives and their biological activities [1], industrial processes, dyes, fluorescent, and many other uses.

Many of Quinoxalines were published in “Chemistry of Heterocyclic Compounds Series” several times since 1953 [2].

And several Quinoxaline and Quinoxaline-1,4-dioxide Derivatives have biological activities [3].

A recent review study (2021) shows reviews from the previous two decades for 'Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives.' [4], this study refers to Quinoxaline derivatives, which have a wide range of therapeutic applications and have become an important component in drugs used to treat cancerous cells, AIDS, plant viruses, and schizophrenia, indicating that they have a bright future in medicinal chemistry. Because of the current SARS-COVID 19 pandemic, another study (April 2019) looked at the effects of quinoxaline-1,4-dioxide, 2-methylquinoxaline-1,4-dioxide, 2-amino-3-cyanquinoxaline-1,4-dioxide, 3-methyl-2-quinoxalinecarboxamide-1,4-dioxide, and 2-hydroxyphenazine-N,N-dioxide (2HF) in the migration, viability, and proliferation of nonmalignant and malignant cell lines [5].

The derivatives of Quinoxaline have important antimicrobial activity (against Bacterial and yeast strains) [6], also show antitumoral activity [7].

The Quinoxaline and Quinoxaline-1,4-dioxide derivatives show Antibacterial activity [8], (including such 2-Chloro-3-methylquinaxoline [9] and 2-hydroxy methyl-3-methyl quinoxaline-1,4-dioxide [10]) along with many others. Furthermore, antifungal activity (such as 3-phenyl-7-trifluoro methyl quinoxaline-1-oxide [11]) and others, antiviral activity (pyrroloquinoxaline derivatives [12]), antineoplastic (2-ciano quinoxaline-1,4-dioxide derivatives [13]), and many biological activities are present.

Some Quinoxaline 1,4-Di-N-Oxide esters have anti-Mycobacterium tuberculosis activity [14].

Recent research (2021), synthesis new Quinoxaline-1,4-Dioxides Derived from Beirut Reaction of Benzofoxuran with Active Methylene Nitriles [15].

A new fluorescent chemosensor based on quinoxaline has been successfully synthesized using a simple and environmentally friendly catalytic reaction of ortho-phenylenediamine (O-PDA) and acenaphthylene-1,2-dione [16]. And 6-nitroquinoxaline was used to produce some fluorescent quinoxaline derivatives [17].

In our study, we used the Beirut reaction [18] to synthesize quinoxaline-1,4-dioxide derivatives from benzofurazan oxide derivatives in alcohol [19], followed by condensation reaction with aromatic dialdehyde such as 4,4’-biphenyl carboxaldehyde (in a similar study the condensation of 2-methy quinoxaline-1,4-dioxide with benzaldehyde was performed [20]).

We made the 2-methyl quinoxaline-1,4-dioxide derivatives (were not commercially available) and then used aromatic dialdehyde in an alcoholic KOH condensation process (the result compounds may have fluorescent and chromophoric activities).

2. MATERIALS AND METHODS

2.1 Chemicals and Reagents

All chemicals used were laboratory reagent grade and were not purified further (Merck, Sigma-Aldrich). For thin-layer chromatography, a pre-coated silica gel plate (Merk Co. Inc, Kiesel gel 60 F256) was used.

2.2 Instruments

FT-IR spectrometer (Jasco, Japan), Rotary vapor器 (4.91Model, Normschiff, Germany), Melting point meter (Bruker, 400MHz, CDCl3), Nuclear Magnetic Resonance (Bruker, 400MHz, CDCl3) (Electrothermal, with mercury thermometer).

3. RESULTS AND DISCUSSION

The purpose of this research was to perform a condensation reaction between 2-methyl quinoxaline-1,4-dioxide and (4,4’-biphenyl carboxaldehyde), Scheme 1.
A. Preparing Benzofurazan Oxide and 5-chloro benzofurazan oxide:

The oxidation of ortho-nitroaniline with sodium hypochlorite (commercial) in cooled ethanolic KOH produced Benzofurazan oxide (95 percent) Scheme 2.

Melting Point (benzofurazan oxide) was 59-60 °C.

Melting point (5-chloro benzofurazan oxide) was 43-45 °C.

B. Preparation of 2-methyl quinoxaline-1,4-dioxide and 6-chloro-2-methyl quinoxaline-1,4-dioxide via Beirut Reaction:

The pyrrolidine was added just after benzofurazan oxide and 5-chloro benzofurazan oxide were refluxed with acetone (acetonitrile solvent). Scheme 3

• 2-methyl quinoxaline-1,4-dioxide:
 Yield:59%, Melting point: 170-172 °C and Rf=0.77 with Methanol: Chloroform (3:97).

• 6-chloro-2-methyl quinoxaline-1,4-dioxide:
 Yield:62%, Melting point: 174-176 °C and Rf=0.8 with Methanol: Chloroform (3:97).

C. Condensation of 2-methyl quinoxaline-1,4-dioxide with 4,4’-biphenyl carboxaldehyde Scheme 4:

The reaction was carried out with 95% methanolic KOH (absolute methanol as a solvent) and allowed to stand for 24 hours (at room temperature). The result was dark yellowish, any Purification process was difficult because insoluble in common solvents (water, methanol, ethanol, benzene, ethyl acetate, petroleum ether, DMF, 1-propanol, 2-propanol, acetone, and others), but only sparingly soluble in chloroform.

With yield: 57.8%, melting point>250 °C(decompose).
Fig. 1. FT-IR(KBr): the band around 3050 cm⁻¹ (sp² carbons), the band around 1698 cm⁻¹ (conjugated C=C), the strong band 1370 cm⁻¹ for N-O bond

Fig. 2. ¹H-NMR (CDCl₃): δ=7.64 ppm (s, 8H), 7.96 ppm (d, 2H), 8.11 ppm (d, 2H), 8.65 ppm (s, 2H)

D. Condensation of 6-Chloro-2-methyl quinoxaline-1,4-dioxide with 4,4'-biphenyl carboxaldehyde Scheme 5:
The reaction was carried out with 95% methanolic KOH (absolute methanol as a solvent) and allowed to stand for 24 hours (at room temperature). The result had a dark color, was insoluble in most common solvents (water, methanol, ethanol, benzene, ethyl acetate, petroleum ether, DMF, 1-propanol, 2-propanol, acetone, and others), but was only sparingly soluble in chloroform, making purification a difficult task.

with yield: 30.55%, melting point>230-233 °C (decompose).
The suggested mechanism of condensation reaction was:

Scheme 6.
4. CONCLUSION

We prepared 2-methyl quinoline-1,4-dioxide and 6-chloro-2-methyl quinoline-1,4-dioxide (these compounds were not commercially available) and used them to perform condensation reactions with 4,4′-biphenyl carboxaldehyde to obtain two products (A, B), which were identified by 1H-NMR and FT-IR, and a mechanism was suggested for them.

Because of their hard insolubility in common solvents but sparingly soluble in chloroform, we had difficulty purifying the final products.

5. RECOMMENDATIONS

Due to the resulting compounds are important as fluorescent and chromophores, we advise doing the condensation processes with quinoxaline derivatives and aromatic dialdehydes, which have more soluble functional groups.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Rushdi Madwar (Organic Chemistry, Science Faculty Dean, Albaath University, Syria) and Prof. Adnan Atfeh (Organic Chemistry, Damascus University) for their valuable guidance in this research work. I would also like to thank Dr. AbdulRahman Wahoud (Physical Chemistry, Hadramout University) for providing valuable recommendations.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Deepika Y, Nath PS, Sachin K, Shewta S. Biological activity of quinoxaline derivatives. International Journal of Current Pharmaceutical Review and Research. 2011;2:33-46. Available:https://www.researchgate.net/publication/279894850_Biological_activity_of_quinoxaline_derivatives
2. Taylor EC, Wipe F. Quinoxalines. The Chemistry Of Heterocyclic Compounds series. John Wiley & Sons, USA. 2004;61.
3. Bonilla-Ramírez L, Galiano S, Quiliano M, Aldana I, Pabón A. Primaquine–quinoline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species. Malar J. 2019;18:201. Available:https://malariajournal.biomedcentral.com/articles/10.1186/s12936-019-2825-8
4. Khatoon H, Abdulmalek E. Novel synthetic routes to prepare biologically active quinoxalines and their derivatives: A synthetic review for the last two decades. Molecules. 2021;26:1055. Available:https://www.mdpi.com/1002062
5. Silva L, Coelho P, Soares R, Prudêncio C, Vieira M. Quinoxaline-1,4-dioxide derivatives inhibitory action in melanoma and brain tumor cells. Future Med Chem. 2019;11(7):645-657. Available:https://doi.org/10.4155/fmc-2018-0251
6. Vieira M, Pinheiro C, Fernandes R, Noronha JP, Prudêncio C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiological Research. 2014;169(4):287-293.
7. Montana M, Mathias F, Terme T, Vanelle P. Antitumoral activity of quinoxaline derivatives: A systematic review. European Journal of Medicinal Chemistry. 2019;163:136-147. Available:https://doi.org/10.1016/j.ejmech.2018.11.059
8. Xin ZJ, Liang JP, Li XH, Tao L, Lu XH. Synthesis and antibacterial activity of some new quinoxaline-1,4-dioxide derivatives. AMR. 2013;634-638:1376–1379. Available:https://doi.org/10.4028/www.scientific.net/AMR.634-638.1376
9. Singh D, Deivedi S, Hashim S, Singhal R. Synthesis and antimicrobial activity of some new quinoxaline derivatives. Pharmaceuticals. 2010;3. DOI: 10.3390/ph3082416 Available:https://www.researchgate.net/publication/45647698_Synthesis_and_Antimicrobial_Activity_of_Some_New_Quinoxaline_Derivatives
10. Francis J, Landquist JK, Levi AA, Silk JA, Thorpe JM, Biochem J. 1956;64:455.
11. Loriga M, Nuvole A, Paglihei G, Fadda G, Zanetti S. Eur, J. Med. Chem. 1990;25:527.
12. Campiani G, Fabbrini, Nacci M, V. J.Med.Chem. 2001;44:305.
13. Monge A, Martinez – Grespo FJ, Ceralin Al, Palop JA, Narro S, Senador V, et al. J. Med.Chem. 1995;38:4488.
14. Palos I, Luna-Herrera J, Lara-Ramírez EE, Loera-Piedra A, Fernández-Ramírez E, Aguilera-Arreola MG, et al. Anti-mycobacterium tuberculosis activity of esters of quinoxaline 1,4-Di-N-oxide. Molecules. 2018;23:1453. Available:https://www.mdpi.com/305326

15. Dotsenko VV, Khalatyan KV, Russkih AA, Semenova AM. New quinoxaline-1,4-dioxides derived from beirut reaction of benzofuroxane with active methylene nitriles. Chem. Proc. 2021;3:14. Available:https://www.mdpi.com/1052730

16. Darroudi M, Ziarani Gh M, Ghasemi JB, Badiei A. Acenaphtoquinaxaline as a selective fluorescent sensor for Hg (II) detection: Experimental and theoretical studies. Heliyon. 2020;6(9).

17. Vijay S Satam, Rajkumar N Rajule, Amit R Jagtap, Samir R Bendre, Hari N Pati, Vinod R Kanetkar. Synthesis and characterization of novel fluorescent compounds derived from 1,4-diethyl-1,2,3,4-tetrahydro-6-nitroquinoxaline. J. of Heterocyclic compounds. 2010;47(5):1066-1072. Available:https://doi.org/10.1016/j.heliyon.2020.e04986

18. Haddadin M J, Issidorides CH. Heterocycles. 1976;4(4).

19. Atfeh A. American University of Beirut, Lebanon; 1974.

20. Rowe. Green, Journa of Chemistry Socoity. 1912;101:2451.

21. Haddadin MJ, Issidorodes CH. Tetrahedron Letters. 1965;3253.

© 2021 Alkhudari; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/70477