A 65-year-old male patient with an end-stage renal disease was diagnosed with coronavirus disease 2019 (COVID-19) by reverse transcription polymerase chain reaction. The patient complained of cough, sputum, and respiratory distress that worsened three days ago. The patient required mechanical ventilation and extracorporeal membrane oxygenation. On day 9, convalescent plasma collected from a 34-year old man who recovered from COVID-19 45 days ago was administered. The patient showed immediate clinical improvement. However, on day 14, the patient's clinical course worsened again. On day 19 and day 24, vancomycin-resistant Enterococcus faecium bacteremia and methicillin-resistant Staphylococcus aureus pneumonia were found. After long-term supportive care, he slowly recovered. He was discharged on day 91 without any oxygen requirement. This case report suggests that convalescent plasma therapy might just provide a short-term relief and that persistent effort for critical care is necessary to save patients from severe COVID-19.

**Keywords:** Convalescent plasma; Coronavirus disease 2019; Therapy

**INTRODUCTION**

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). About 14% of patients with COVID-19 have severe pneumonia [1]. Old age and comorbidities such as diabetes mellitus, malignancy, cardiovascular disease, and chronic kidney disease are known as risk factors for
Convalescent plasma therapy in a patient with COVID-19

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

**ORCID IDs**

Ae-Rin Baek  
https://orcid.org/0000-0003-1550-610X  
Eun Ju Choo  
https://orcid.org/0000-0003-2842-7041  
Ji-Yeon Kim  
https://orcid.org/0000-0002-8773-1497  
Tae Sun Ha  
https://orcid.org/0000-0003-3683-6929  
Sung Woo Park  
https://orcid.org/0000-0002-1348-7909  
Hee Bong Shin  
https://orcid.org/0000-0001-5602-5723  
Seong Kyu Park  
https://orcid.org/0000-0002-3055-3621  
Joo Hyun Park  
https://orcid.org/0000-0002-6382-0642  
Tark Kim  
https://orcid.org/0000-0002-8829-4183

**Funding**

This work was supported by Soonchunhyang University Research Fund.

**Ethics statement**

This study was approved by the Institutional Review Board (IRB) of Soonchunhyang University Bucheon Hospital (IRB 2020-04-016). Written informed consent was obtained from the patient for the publication of this case.

**Conflict of Interest**

No conflict of interest.

**Author Contributions**

Conceptualization: JHP, TK. Data curation: ARB, EJC, JYK, TSH, SWP, HBS, SKP, JHP.  
TK. Writing—original draft: ARB, TK. Review & editing: ARB, HBS, JHP.

Convalescent plasma of a patient recovering from COVID-19 is expected to include immunoglobulins such as neutralizing antibodies against SARS-CoV-2. This kind of convalescent plasma therapy has been tried to treat various viral infections such as severe acute respiratory virus syndrome [7], middle east respiratory virus syndrome [8], and influenza [9]. Based on these experiences, convalescent plasma therapy has also been tried to treat COVID-19 [10]. Case series have shown that convalescent plasma therapy seems to be a successful therapeutic option [11, 12]. Recently, a case report published in Korea also shows that this therapy has a good outcome [13]. However, unlike previous reports, we experienced a transient effect of convalescent plasma therapy in a patient with severe COVID-19 who required extracorporeal membrane oxygenation (ECMO) therapy.

**CASE REPORT**

A 65-year-old male patient was diagnosed with COVID-19 by real-time reverse transcription polymerase chain reaction (PCR) (AllplexTM 2019-nCoV Assay, Seegene, Seoul, Korea) in another hospital's emergency room one day before he was transferred to the negative pressure isolation room of our hospital. The patient had cough, sputum, and respiratory distress that worsened three days ago. The patient was diagnosed with hypertension and end-stage renal disease 17 years ago. He had been maintaining hemodialysis three times a week in a local clinic, doing relatively well without any significant problem in daily life. After arriving at our hospital, he had blood pressure of 218/116 mmHg, pulse rate of 108 times/minute, respiratory rate of 26 times/minute, peripheral oxygen saturation of 81% (with non-rebreathing reservoir mask of 15 L/min applied). The patient spit out bloody and frothy sputum with severe respiratory distress while using accessory muscles. However, his consciousness was alert. Even after applying an oxygen concentration of 100% and an oxygen flow rate of 60 L/min using a high-flow nasal cannula, the patient’s oxygen saturation was still below 90%. His respiratory distress using accessory respiratory muscles was also sustained. Thus, intubation was immediately performed. Given the rapid worsening course of COVID-19, we immediately decided to apply venovenous ECMO to achieve ultra-protective ventilation with continuous renal replacement therapy.

Owing to this critical situation, we administered all possible therapeutic options such as hydroxychloroquine, lopinavir/lopinavir, nafamostat, and methylprednisolone (Fig. 1). We also considered convalescent plasma therapy as another therapeutic option. A donor was recruited with the help of the Expert Committee of Gyeonggi COVID-19 Emergency Response Task Force. The donor was a 34 year-old man with Rh+ O blood type who was diagnosed as COVID-19 45 days ago. After allogeneic donor screening according to enforcement rules of the Blood Management Act in Korea, apheresis was performed with a Spectra Optia apheresis system (CMNC software; Spectra Optia ILD tubing set; Terumo BCT, Lakewood, CO, USA) and 500 mL of convalescent plasma was collected. Anti-SARS-CoV-2 IgG antibody in plasma was measured by enzyme-linked immunosorbent assay (EDTM™ Novel Coronavirus COVID-19 IgG ELISA Kit; Eagle Biosciences, Nashua, NH, USA). It was detected as shown in Table 1.
On day 9, convalescent plasma was administered into the patient. Optical density for IgG in the patient’s plasma increased to be as high as that in the donor plasma (Table 1). After administration of convalescent plasma, as shown in Fig. 1 and 2, immediate clinical improvement was shown. The setting of the fraction of inspired O₂ concentration (FiO₂) on ECMO was tuned from 0.7 to 0.5. However, on day 14, oxygen requirement was increased again until the setting of FiO₂ was increased up to 1.0. On day 18, bronchoscopy-guided tracheostomy was done. On day 19, vancomycin-resistant Enterococcus faecium (VRE) was isolated from blood culture. On day 25, methicillin-resistant Staphylococcus aureus (MRSA) pneumonia was isolated from sputum culture. After two weeks of linezolid 600 mg iv q 12hr administration, the patient showed clinical improvement. He was weaned from ECMO on day 44. Negative results of
PCR (AllplexTM 2019-nCoV Assay, Seegene, Korea) from both nasopharyngeal and sputum specimen were found on day 49. On day 61, pneumothorax occurred. It was resolved after chest tube thoracostomy. The patient’s lung function was slowly recovered. He was finally transferred to a long-term care facility for supportive care on day 91. Chest X-ray at the time of discharge is shown in Figure 2. The patient no longer needed supplemental oxygen therapy.

DISCUSSION

This case report showed that the effect of convalescent plasma therapy might last for only a few days in patients with severe COVID-19. A similar transient effect following by worsening of clinical course has also been shown in a recent case report [14]. In that previous report, definite clinical improvement was maintained only for three days and the patient needed ECMO at five days after the convalescent plasma therapy [14]. Several reasons for this short-term effect of convalescent plasma therapy can be assumed. Firstly, passive antibody may rapidly wane and offer only short-term immunity. However, this hypothesis cannot explain the previous result about passive antibody therapy and immune formation in patients with COVID-19. It seems to take weeks to a few months for passive antibodies to wane, not a few days [15]. Also, two weeks of illness was enough to get the patient’s own neutralization antibody [16]. In our case, we were unable to evaluate this hypothesis, because we only checked the antibody titer just on a day after convalescent plasma therapy (10 days from hospitalization). Further studies on the humoral dynamics after convalescent plasma therapy should be followed. Secondly, bacterial infection such as bacteremia and ventilator-associated pneumonia as complications of severe COVID-19 might have made the clinical course worse again. Indeed, VRE bacteremia occurred after a few days from clinical worsening and the patient suffered from ventilator-associated pneumonia. It is well-established that seasonal viral respiratory infection is linked to increased risk of bacterial infection [17]. This is also possible in patients with COVID-19 [18]. A recent systemic analysis showed that 14% (95% confidence interval: 5 – 26%) of patients with COVID-19 in intensive care unit had bacterial co-infection [19]. In a recent report on critically ill patients with COVID-19, bacterial pneumonia was complicated at two to three weeks after the time of diagnosis [20], similar to our case report.

This case report on a transient effect of convalescent plasma therapy for COVID-19 has therapeutic implications. Therapeutic approach using passive immunity such as convalescent plasma or monoclonal antibody might need to be repeated during the illness of COVID-19. Whether a similar phenomenon will occur using convalescent plasma and
monoclonal antibody should be observed in clinical trials. This case report also suggests that convalescent plasma therapy alone might be insufficient for treating COVID-19. Further studies on a combination therapy using antiviral agents and/or anti-inflammatory drug with convalescent plasma therapy should be performed. Finally, this case report demonstrates that a persistent effort of competent experts in preventing and treating bacterial co-infection and complication in critical care can save patients from severe COVID-19.

This case report has limitations that make it difficult to interpret the efficacy of a convalescent plasma therapy. Effects of co-administered antiviral agents and corticosteroid on transient improvement could be biased for interpreting the effect of convalescent plasma therapy. Also, lowered viral titer and IgG formation after convalescent plasma therapy might be a natural prognosis, not due to the effect of the convalescent plasma therapy itself.

In conclusion, this case report suggests that convalescent plasma therapy might be just a booster shot rather than a Messiah who can save severe patients from COVID-19. Further well-controlled trials should be performed to prove the role of convalescent plasma therapy in treating COVID-19.

REFERENCES

1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323:1239-42.

2. Kim DW, Byeon KH, Kim J, Cho KD, Lee N. The correlation of comorbidities on the mortality in patients with COVID-19: an observational study based on the Korean National Health Insurance big data. J Korean Med Sci 2020;35:e243.

3. Kim SB, Huh K, Heo JY, Joo EL, Kim YJ, Choi WS, Kim YJ, Seo YB, Yoon YK, Ku NS, Jeong SJ, Kim SH, Peck KR, Yeom JS. Interim guidelines on antiviral therapy for COVID-19. Infect Chemother 2020;52:281-304.

4. Hoang T, Anh TTT. Treatment options for severe acute respiratory syndrome, Middle East respiratory syndrome, and coronavirus disease 2019: a review of clinical evidence. Infect Chemother 2020;52:317-34.

5. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castillo D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh MD, Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane HC; ACTT-1 Study group members. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med 2020;383:1813-26.

6. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, Hu Y, Luo G, Wang K, Lu Y, Li H, Wang S, Ruan S, Yang C, Mei C, Wang Y, Ding D, Wu F, Tang X, Ye X, Ye Y, Liu B, Yang J, Yin W, Wang A, Fan G, Zhou F, Liu Z, Gu X, Xu J, Shang L, Zhang Y, Cao L, Guo T, Wan Y, Qin H, Jiang Y, Jaki T, Hayden FG, Horby PW, Cao B, Wang C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:1569-78.

7. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, Chan P, Wong KC, Leung CB, Cheng G. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005;24:44-6.

8. Ko JH, Seok H, Cho SY, Ha YE, Baek YJ, Kim YJ, Park JK, Chung CR, Kang ES,Cho D, Müller MA, Drosten C, Kang CI, Chung DR, Song JH, Peck KR. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther 2018;23:617-22.
9. Adadi N, Sahli M, Egéa G, Ratbi I, Taoudi M, Zaïber L, Jdioui W, El Moutassim S, Sefiani A. Post-mortem diagnosis of Pompe disease by exome sequencing in a Moroccan family: a case report. J Med Case Rep 2018;12:322.

10. Choi JY. Convalescent plasma therapy for coronavirus disease 2019. Infect Chemother 2020;52:307-16.

11. Abraham J. Passive antibody therapy in COVID-19. Nat Rev Immunol 2020;20:401-3.

12. Farrugia A, MacPherson J, Busch MP. Convalescent plasma - this is no time for competition. Transfusion 2020;60:1644-6.

13. Ahn JY, Sohn Y, Lee SH, Cho Y, Hyun JH, Baek YJ, Jeong SJ, Kim JH, Ku NS, Yoom IS, Roh J, Ahn MY, Chin BS, Kim YS, Lee H, Yong D, Kim HO, Kim S, Choi JY. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci 2020;35:e149.

14. Im JH, Nahm CH, Baek JH, Kwon HY, Lee JS. Convalescent plasma therapy in coronavirus disease 2019: a case report and suggestions to overcome obstacles. J Korean Med Sci 2020;35:e239.

15. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters IL, van Buskirk C, Grossman BJ, Joyner M, Henderson JP, Pekosz A, Lau B, Wesolowski A, Katz L, Shan H, Auwaerter PG, Thomas D, Sullivan DJ, Paneth N, Gehrie E, Spitalnik S, Hod EA, Pollack L, Nicholson WT, Pirofski LA, Bailey JA, Tobian AA. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757-65.

16. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020;323:2249-51.

17. Beadling C, Slifka MK. How do viral infections predispose patients to bacterial infections? Curr Opin Infect Dis 2004;17:185-91.

18. Hughes S, Troise O, Donaldson H, Mughal N, Moore LSP. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clin Microbiol Infect 2020;26:1395-9.

19. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect 2020;81:266-75.

20. Fu Y, Yang Q, Xu M, Kong H, Chen H, Fu Y, Yao Y, Zhou H, Zhou J. Secondary bacterial infections in critical ill patients with coronavirus disease 2019. Open Forum Infect Dis 2020;7:ofaa220.