Spin-wave frequency combs

T. Hula,1,2 K. Schultheiss,1 F. J. T. Gonçalves,1 L. Körber,1,3 M. Bejarano,1 M. Copus,4 L. Flacke,5,6 L. Liensberger,5,6 A. Buzdakov,1 A. KáKay,1 M. Weiler,5,6,7 R. Camley,4 J. Fassbender,1,3 and H. Schultheiss1

1Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
2Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
3Fakultät Physik, Technische Universität Dresden, Dresden, Germany
4Center for Magnetism and Magnetic Nanostructures, University of Colorado, Colorado Springs, USA
5Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching, Germany
6Physik-Department, Technische Universität München, Munich, Germany
7Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany

We experimentally demonstrate the generation of spin-wave frequency combs based on the nonlinear interaction of propagating spin waves in a microstructured waveguide. By means of time- and space-resolved Brillouin light scattering spectroscopy, we show that the simultaneous excitation of spin waves with different frequencies leads to a cascade of four-magnon scattering events which ultimately results in well-defined frequency combs. Their spectral weight can be tuned by the choice of amplitude and frequency of the input signals. Furthermore, we introduce a model for stimulated four-magnon scattering which describes the formation of spin-wave frequency combs in the frequency and time domain.

Frequency combs have been attracting interest in multiple fields of research in the last decades. For example, optical frequency combs have had great impact on metrology as they have led to a significant enhancement in the precision of frequency measurements. In solid state magnetism, several mechanisms are known to cause frequency spectra with equidistantly spaced spinwave (SW) modes, by means of nonlinear interactions known as modulation instabilities. These were often discussed in the time domain as they were found to cause soliton formation. In addition, frequency mixing of two independently excited quasi-uniform modes has been studied in magnetic thin films leading to the generation of additional equidistantly spaced modes. Very recently, micromagnetic simulations have shown the generation of magnonic frequency combs by nonlinear three-magnon scattering of spin waves interacting with the intrinsic modes of magnetic skyrmions.

In microstructured magnetic waveguides, the process of four-magnon scattering (4MS) has been reported to populate a continuum of SW states in frequency ranges of up to several GHz around a strongly driven mode. 4MS commonly describes the decay of two initial magnons, the quanta of SWs, into a pair of secondary magnons with different energies and momenta while conserving total energy and momentum. 4MS is often considered parasitic and undesirable since it leads to additional damping of a strongly populated SW mode by coupling to the continuum of thermally populated states within the SW band.

In this letter, we take active control of 4MS in order to create tunable SW frequency combs. Those have significant impacts for both fundamental and applied physics as the superposition of frequencies, and associated wavevectors, allows one to create specific high-wavevector magnons which could not be readily created with typical geometries. In terms of applications, this frequency comb creates a series of microwave pulses in the time domain where the width of each pulse can be significantly adjusted by changing the amplitude of the initial signals. Furthermore, our results experimentally demonstrate the efficient down-conversion of spin-wave frequencies which is important for the integration of magnonic devices into CMOS environments, an issue currently addressed by multiple complex approaches including modulation of optical frequency combs, superconducting qubits in cavities, and electronic circuits. Finally, we explore the time-scale of the nonlinear responses, a topic not substantially addressed in earlier works.

We experimentally demonstrate the generation of such a frequency comb by exciting SWs in a Co$_{42}$Fe$_{58}$ microconduit with a width of 2 µm, a length of 60 µm and a thickness of 30 nm, as shown in Fig. 1(a). Two 1 µm wide microwave antennas, referred to as RF1 and RF2, are patterned on top of the magnetic waveguide. Connecting the antennas to two microwave sources allows for the independent excitation of SWs at potentially different power levels P_1 and P_2. In the following, SWs generated by RF1 (RF2) will be referred to as mode a_1 (a_2) with frequency f_1 (f_2) and wave vector k_1 (k_2). In all measurements, an external in-plane magnetic field of 46 mT is applied which is not sufficient to fully saturate the waveguide perpendicular to the transport direction but still yields long SW decay lengths, as reported for a similar geometry. Note, however, that the non-collinearity at the edges of the sample is not essential for the emergence of 4MS, which is possible also in fully saturated specimens.

Figure 1(b) schematically shows the process of sponta-
Using the notation of nonlinear SW theory \cite{18,30}, we describe the current state (phase and oscillation magnitude) of a SW mode as a time-dependent complex amplitude variable $a_i(t)$ (with some mode index i), classical analogs to bosonic creation and annihilation operators \hat{a}_{\pm} in second quantization. When a mode a_i is excited above a certain threshold amplitude, its energy redistributes within the SW band via scattering of two initial magnons a_i characterized by f_i and k_i into a pair of secondary magnons $a_\pm (f_\pm, k_\pm)$ and $a_- (f_-, k_-)$ under conservation of energy and momentum.

The rates $\frac{da_k}{dt}$ for these scattering processes, displayed in Fig. (b), describe the change in amplitudes of the participating modes a_k over time and can be derived using the Hamiltonian formalism for nonlinear SW dynamics \cite{18,30}.

\begin{equation}
\frac{da_k}{dt} = -i\omega(k)a_k - \Gamma(k)(a_k - a_{k,\text{th}}) + i\gamma b_{\text{RF}} e^{-i\omega_{\text{RF}}t} - \frac{1}{i\hbar} \frac{\partial H_{\text{int}}}{\partial a_k} \tag{1}\end{equation}

In Eq. (1) the SW dispersion $\omega(k)$, the linear damping $\Gamma(k)$, the phenomenological term for thermal population $a_{k,\text{th}} = T_e\sqrt{N_{e,\text{th}}e^{-\omega(k)/kT}}$, the pump field b_{RF}, and the interaction Hamiltonian H_{int} are included. Since in our experiments $f_i/2$ is located in the SW band gap, resonant three-magnon scattering is prohibited and is therefore excluded \cite{15,18}. Therefore, the lowest order of interaction to be considered for our calculations is the decay of the initial mode a_i into the final states a_+ and a_- and the corresponding Hamiltonian is written as:

\begin{equation}
H_{\text{int}} \simeq \mathcal{H}^{(4)} = \sum_{i=+} W_i a_i a_+ a_+ a_- \tag{2}\end{equation}

The rates given in Eq. (1) depend on the coupling coefficients $W_{i,\pm}$ between the different modes as well as the amplitudes of the three modes a_i, a_+, and a_-. As the coupling coefficients are inversely proportional to the wave-vector mismatch of the participating modes \cite{17,18}, the delay time for populating secondary modes via 4MS scales with the frequency spacing $\Delta f = |f_\pm - f_i|$, as illustrated by dashed lines in Fig. (c). This delay time can be understood as the time needed to compensate for the intrinsic damping of the secondary states.

In order to study stimulated 4MS experimentally, we employ Brillouin light scattering microscopy (μBLS) \cite{31}. Figure (d) shows the anti-Stokes side of μBLS spectra that we measured when exciting SWs with antenna RF1 at a fixed frequency $f_1 = 9.25$ GHz but at two different pumping powers. At low powers (orange line), the SW spectrum shows a single symmetric peak at f_1. When increasing the pumping power above the threshold for 4MS (black line), a broadening of the peak is measured as a consequence of the energy redistribution caused by spontaneous 4MS.

If aiming at the generation of a SW frequency comb with a well-defined frequency spectrum, we need to actively increase the scattering rate for one specific scattering channel. Looking at Eqs. (1,2), this can be achieved by populating one of the secondary modes (e.g., a_-) as a seed mode using antenna RF2 in addition to the excitation of the initial mode a_i using antenna RF1 (or vice versa). As energy and momentum have to be conserved under 4MS, a third mode a_+ with $f_+ = f_1 + \Delta f$ is generated simultaneously, as indicated in Fig. (e). Thus, by actively populating the seed mode (a_-) we control all frequency channels of the scattering process. We refer to this process as stimulated 4MS, similar to the process of stimulated three-magnon scattering as shown in (2).

As depicted in Fig. (f), higher order scattering processes then lead to the formation of a SW frequency comb. The secondary modes a_- and a_+ themselves take the role of initial and seed modes in new scattering events. Therefore, higher order processes are stimulated, e.g., with two magnons $a_2 = a_-$. scattering into modes a_3 and a_4 (with $f_4 = f_2 - \Delta f$). In Fig. (f), this is illustrated by an additional mode (violet circle) which appears with equidistant frequency spacing but at a later time. The higher order processes need to compensate the intrinsic damping of the participating states, which causes an increasing delay time, as indicated by

![FIG. 1. (a) Scanning electron micrograph of the SW waveguide and the microwave antennas RF1 and RF2. The arrows k_1 and k_2 illustrate the wave vectors of the SWs excited by RF1 and RF2, respectively. All measurements were performed in 1 µm distance to the left edge of RF1 as indicated by the green dot. (b) Schematic illustration of four-magnon scattering: two magnons with (f_i, k_i) scatter into magnons with (f_+, k_+) and (f_-, k_-), at a rate defined by da_k/dt. (c) Energy-time diagram illustrating how spontaneous 4MS populates the SW band. (d) μBLS spectra measured in the SW waveguide only exciting with RF1 at two different powers. (e) Energy-time diagram for stimulated 4MS. (f) μBLS spectrum measured when exciting with RF1 and RF2 simultaneously.](image-url)
mechanisms of spontaneous and stimulated 4MS take place at the same time. We note that, in addition to the coupling efficiency discussed earlier, the experimental observation of the continuum of SW states is limited towards lower frequencies by the SW band-gap (in our case at around 7 GHz) and towards higher frequencies by the scattering geometry of the μBLS setup [16, 17, 31].

Previous studies have shown that the population of the magnon states excited via spontaneous 4MS increases with increasing pumping power [16, 17]. In order to investigate the power dependence of stimulated 4MS, we fix the excitation frequencies of a_1 and a_2 at $f_1 = 10$ GHz and $f_2 = 9.5$ GHz, respectively. In addition, we fix the pumping power of mode a_1 at $P_1 = 4.6$ dBm whereas mode a_2 is pumped with varying microwave powers P_2 ranging from 4.6 to 23 dBm. The measured μBLS spectra as a function of P_2 are shown in Fig. 3(a) with the BLS intensity color coded on a logarithmic scale. As expected, the intensity of a_2 continuously grows with increasing pumping power P_2 whereas only a minor increase of the intensity of a_1 can be observed. Besides the increase of intensity of a_2, additional modes at 8.5, 9, and 10.5 GHz appear in the spectra, especially for larger values of P_2.

The dependence of the SW spectra with respect to P_2 is discussed further with Fig. 3(b), where the intensities extracted at 10 (a_1, crosses), 9.5 (a_2, circles), 9 (triangles), and 9.25 GHz (4MS, squares) are plotted. The signal at 9.25 GHz represents states in the continuum of the SW band that are only excited by spontaneous 4MS.

Interestingly, the intensity of mode a_1 (crosses) is
not constant despite its fixed excitation power of $P_1 = 4.6 \text{ dBm}$. Its intensity remains on the same level up to $P_2 = 11.5 \text{ dBm}$ and then increases to values larger than those initially measured for $P_2 = 4.6 \text{ dBm}$. This development of the intensity of a_1 shows that we can distinguish different scattering regimes.

For $P_2 < 11.5 \text{ dBm}$, spontaneous 4MS of both modes a_1 and a_2 into the continuum of the SW band is the dominant scattering channel. Since a_2 is provided with more and more energy by the increasing microwave power, its intensity rises rapidly which directly leads to a strong increase of the intensity of the continuum of the SW band [squares in Fig. 3(b)].

For $P_2 > 11.5 \text{ dBm}$, stimulated 4MS is the pronounced scattering channel and spontaneous 4MS plays a minor role only. Since mode a_2 [circles in Fig. 3(b)] is pumped much stronger than a_1 (crosses), a_2 can be assigned as the initial mode and a_1 the seed mode. As a result, two magnons at $f_i = f_2 = 9.5 \text{ GHz}$ scatter in one magnon at $f_+ = f_1 = 10 \text{ GHz}$ and one at $f_- = 9 \text{ GHz}$ (triangles). This not only leads to a rapid increase of the intensity at 9 GHz above the level of 4MS but also to an increase of the intensity of a_1. Even though the intensity of a_2 continues to increase due to the larger pumping powers, it never exceeds the intensity of mode a_1. This is quite remarkable since at $P_2 = 23 \text{ dBm}$, a_2 is pumped significantly stronger than a_1 ($P_1 = 4.6 \text{ dBm}$) and still their intensities remain on the same level. This demonstrates the high efficiency of stimulated 4MS: most of the energy of mode a_2 is redistributed within the modes of the SW frequency comb. Hence, spontaneous 4MS is less pronounced as for $P_2 < 11.5 \text{ dBm}$ and the intensity of the continuum [squares in Fig. 3(b)] increases at a much lower rate.

The mechanism of stimulated 4MS, outlined in Fig. 3(c), presumes that the SW frequency comb is generated via a temporal cascade of 4MS events that populate discrete modes in the SW band. To investigate this temporal evolution experimentally, we use time-resolved BLS microscopy (TR μBLS) [31].

First, we investigated the temporal response of the system to a single microwave pulse at $f_1 = 8.5 \text{ GHz}$. The pulse width was set to 150 ns with a rise time of 3 ns and a repetition period of 200 ns. The first 40 ns of the measurement are shown in Fig. 3(a). The microwave pulse sets in after 17 ns, accompanied by the characteristic frequency broadening of 4MS. Interestingly, it takes up to 6 ns after the onset of the SW pulse for the frequency distribution to reach a dynamic equilibrium and fill states of the continuum with frequencies ranging from 7 to almost 10 GHz. The diagonal dashed lines highlight that modes in the continuum with smaller frequency spacing to the directly excited mode are populated much faster than modes with larger frequency spacing [also see Fig. 3(c)].

Figure 4(b) shows a TR μBLS spectrum measured for a continuously excited initial mode at $f_1 = f_i = 8 \text{ GHz}$ and a pulsed seed mode at $f_2 = f_+ = 8.5 \text{ GHz}$ starting at 15 ns with respect to the displayed time window. Here, the additional secondary mode a_{-9} at 7.5 GHz is measured simultaneously to the seed mode. Higher order modes at 7, 9, and 9.5 GHz are measured with larger time delays, depending on their frequency spacing to the initial mode.

These measurements demonstrate that in both cases a certain time is needed to populate additional states via nonlinear interactions. The shorter delay times for the case of stimulated 4MS in Fig. 4(b) suggest that the efficiency of energy transfer is enhanced when only discrete modes are excited using two RF sources.

Figure 4(c) shows the results of the calculations based on Eq. 1 for a continuously driven initial mode at 8 GHz (black line) and a pulsed secondary mode at 8.5 GHz setting in after 10 ns. A set of seven rate equations was solved, referring to SW modes ranging from 6.5 to 9.5 GHz in 0.5 GHz steps. For simplicity, only five of these modes are shown by the modulus square $|a_i|^2$, which corresponds to the SW intensity and is proportional to the photon counts in our time-resolved BLS experiments. We note that the delay times obtained analytically are in qualitative agreement with those obtained experimentally in Fig. 4(b).

In the time domain, a superposition of several modes translates into a time modulated amplitude which en-
ables e.g. optical frequency combs to bridge the gap between optical and microwave frequencies [1, 2]. In order to demonstrate a similar behaviour for the observed magnon frequency combs, we investigated the temporal evolution of the magnetization in micromagnetic simulations using MuMax3 [11, 53] with material parameters and grid size listed in [34].

In the simulations, the excitation field was strictly localized to the area of the two antennas in order to investigate the interaction of propagating waves and avoid any far-field excitations of the antennas. The excitation frequencies of RF1 and RF2 were set to 8 and 8.5 GHz, respectively, with field amplitudes of 1 mT. The temporal representation of the simulated SW frequency comb is displayed in Fig. 4(d) in form of the amplitude of the dynamic component of the magnetization, \(m_z(t) \). Here, we confirm a temporal modulation of the amplitude by 80% with a 2 ns period, which corresponds to the inverse of the 0.5 GHz frequency spacing between the two input frequencies. Figure 4(e) shows the fast Fourier transform (FFT) of \(m_z(t) \). The resulting spectrum exhibits multiple SW modes in addition to the directly excited modes at 8 and 8.5 GHz, resembling the measured SW frequency comb.

In conclusion, we observed the formation of spin-wave frequency combs generated by the nonlinear interaction of propagating spin waves excited at two different frequencies in a magnon conduit. A variety of spin-wave modes can be observed, whose frequency spacing and amplitudes were manipulated exemplarily by varying the frequency and power of one of the applied microwave currents. The underlying mechanism can be understood in terms of stimulated four-magnon scattering, which was found to be the dominant process in the performed experiments. We propose that this effect can be utilized in any magnetic material and/or geometry as long as four-magnon scattering occurs.

ACKNOWLEDGEMENT

This work was supported by the Deutsche Forschungsgemeinschaft within program SCHU 2922/1-1. MW, LL and LF acknowledge funding by the German research foundation (DFG) via projects WE5386/4-1 and WE5386/5-1.

* h.schultheiss@hzdr.de

[1] M. Bellini and T. W. Hänsch, Optics Letters 25, 1049 (2000).
[2] D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L.-S. Ma, and J. L. Hall, Optics Letters 25, 308 (2000).
[3] T. Fortier and E. Baumann, Communications Physics 2, 152 (2019).
[4] H. Benner, B. A. Kalininikos, N. G. Kovshikov, and M. P. Kostylev, JETP Letters 72, 306 (2000).
[5] M. Wu, B. A. Kalininikos, and C. E. Patton, Physical Review Letters 93, 1 (2004).
[6] J. W. Boyle, S. A. Nikitov, A. D. Boardman, and K. Xie, Journal of Magnetism and Magnetic Materials 173, 241 (1997).
[7] B. A. Kalininikos, N. G. Kovshikov, and A. N. Slavin, Journal of Applied Physics 69, 5712 (1991).
[8] M. A. Tsankov, M. Chen, and C. E. Patton, Journal of Applied Physics 76, 4274 (1994).
[9] A. N. Slavin, Phys. Rev. Lett. 77, 4464 (1996).
[10] R. A. Staudinger, P. Kabos, Hua Xia, B. T. Faber, and C. E. Patton, IEEE Transactions on Magnetics 34, 2334 (1998).
[11] Y. Khivintsev, J. Marsh, V. Zagorodnii, I. Harward, J. Lovejoy, P. Krivosik, R. E. Camley, and Z. Celinski, Applied Physics Letters 98, 042505 (2011).
[12] J. Marsh, V. Zagorodnii, Z. Celinski, and R. E. Camley, Applied Physics Letters 100, 102404 (2012).
[13] J. Marsh and R. E. Camley, Physical Review B - Condensed Matter and Materials Physics 86, 224405 (2012).
[14] Z. Wang, H. Y. Yuan, Y. Cao, Z.-X. Li, R. A. Dunn, and P. Yan, Physical Review Letters 127 (2021), 10.1103/PhysRevLett.127.047203.
[15] H. Suhl, Journal of Physics and Chemistry of Solids 1, 209 (1957).
[16] H. Schultheiss, K. Vogt, and B. Hillebrands, Physical Review B 86, 054414 (2012).
[17] T. Hula, K. Schultheiss, A. Buzdakov, L. Körber, M. Bejarano, L. Flacke, L. Liensberger, M. Weiler, J. M. Shaw, H. T. Nembach, J. Fassbender, and H. Schultheiss, Applied Physics Letters 117, 042404 (2020).
[18] P. Krivosik and C. E. Patton, Physical Review B - Condensed Matter and Materials Physics 82, 184412 (2010).
[19] M. M. Scott, C. E. Patton, M. P. Kostylev, and B. A. Kalininikos, Journal of Applied Physics 95, 6294 (2004).
[20] V. E. Demidov, J. Jersch, K. Rott, P. Krzyżteczko, G. Reiss, and S. O. Demokritov, Physical Review Letters 102, 177207 (2009).
[21] H. G. Bauer, P. Majchrak, T. Kachel, C. H. Back, and G. Woltersdorf, Nature Communications 6, 8274 (2015).
[22] A. Venugopal, T. Qu, and R. H. Victora, IEEE Transactions on Microwave Theory and Techniques 68, 602 (2020).
[23] K. Moon and S. M. Givrin, Physical Review Letters 95, 140504 (2005).
[24] X. Fang, M. Bai, X. Ye, J. Miao, and Z. Zheng, Optics Express 23, 17111 (2015).
[25] C. I. Yeh, W. S. Feng, and C. Y. Hsu, Electronic Letters 50, 186 (2014).
[26] M. A. Schoen, D. Thonig, M. L. Schneider, T. J. Silva, H. T. Nembach, O. Eriksson, O. Karis, and J. M. Shaw, Nature Physics 12, 839 (2016).
[27] H. S. Korner, M. A. W. Schoen, T. Mayer, M. M. Decker, J. Stigloher, T. Weindler, T. N. G. Meier, M. Kronseder, and C. H. Back, Applied Physics Letters 111, 132406 (2017).
[28] L. Flacke, L. Liensberger, M. Althammer, H. Huebl, S. Geprägs, K. Schultheiss, A. Buzdakov, T. Hula, H. Schultheiss, E. R. J. Edwards, H. T. Nembach, J. M. Shaw, R. Gross, and M. Weiler, Applied Physics Letters 115, 122402 (2019).
[29] The stripe of Co$_2$Fe$_{25}$ was processed on Si/SiO$_2$ using electron beam lithography, magnetron sputtering and...
subsequent lift-off. The metallic thin film was deposited with a thickness of 30 nm. Two shorted-CPW gold antennas, processed via e-beam lithography, thermal evaporation and lift-off, were used as the microwave inputs RF1 and RF2.

[30] V. S. L’vov, Wave Turbulence under Parametric Excitation (Springer-Verlag, New York, 1994).

[31] T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands, and H. Schultheiss, Frontiers in Physics 3, 35 (2015).

[32] K. Schultheiss, R. Verba, F. Wehrmann, K. Wagner, L. Körber, T. Hula, T. Hache, A. Kálay, A. A. Awad, V. Tiberkevich, A. N. Slavin, J. Fassbender, and H. Schultheiss, Physical Review Letters 122, 097202 (2019).

[33] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. García-Sanchez, and B. Van Waeyenberge, AIP Advances 4, 107133 (2014).

[34] We modelled the conduit using 4096 cells along the long axis, 64 cells along the short axis and 1 cell along the film normal. For excitation we defined two rectangular regions across the stripe where dynamic out-of-plane fields could be applied. The position of these areas was similar to the fabricated sample. The following material parameters were used: $A_{ex} = 26 \cdot 10^{-12} \text{ J/m}^3$, $M_{sat} = 1700 \cdot 10^3 \text{ A/m}$ and $\alpha = 0.01$.