Experimental Investigation of Concrete with Glass Powder as Partial Replacement of Cement

S. Rahman*, M.N. Uddin
Department of Civil Engineering, Port City International University, Chittagong, Bangladesh

Abstract The effects of partially replacing of cement with glass powder in concrete were studied and therefore found that some extent could be replaced which contributes in strength development. Cement was partially replaced with glass powder at varying percentages such as 10%, 20% and 30% and several concrete cylinders were casted along with plain concrete specimen. The cylinders were tested for compressive strength and split tensile strength at the age of 7, 14 and 28 days and were compared with the results of plain concrete. The overall test results indicated that the waste glass powder could be utilized in concrete as a good substitute of cement up to particle size less than 75μm. In replacement of cement with glass powder of 10%, the compressive strength and split tensile strength were reduced in 7th days for all samples. The 20% replacement of cement by glass powder met maximum compressive strength as compared to that of plain concrete. At 28 days, 30% replacement of cement by glass powder met maximum split tensile strength as compared to that of plain concrete.

Keywords Concrete, Glass Powder, Compressive Strength, Split Tensile Strength

1. Introduction

Concrete is widely popular throughout the construction industry due to the various advantages of accessibility, availability and economy associated with it. It is made by the mixing of binding material, generally cement, fine aggregate and coarse aggregate with water. Cement is the main components of concrete, which works as a binder between coarse aggregate and fine aggregate, with the help of water. It has own environmental impacts and contributes largely to concrete. However, the production of cement leads to the release of significant amount of CO₂, a greenhouse gas. Environmental issues are playing an important role in the sustainable development of the cement and concrete industry. The recycling of each ton of glass saves over one ton of natural resources, and recycling of every six tons of container glass results in the reduction of one tone of CO₂ emission [1]. Numerous efforts have been made within the concrete industry to use waste glass (WG) as a partial replacement for natural aggregates or ordinary Portland cement (OPC) [2].

Rahman[3] found an inventive logical occurrence. The presence of the Pozzolanic Glass Powder in concrete could also intensify the plastic properties of concrete. Milled waste glass was also found to suppress alkali-silica reactions hence increase durability of concrete. Use of milled waste glass in concrete as partial replacement of cement represents an important step towards development of sustainable concrete-based infrastructure systems.

Milling of glass to micrometer scale particle size, for accelerating the reactions between glass and cement hydrates, can bring major energy, environmental and cost benefits when cement is partially replaced with milled waste glass for production of concrete [3].

1.1. Chemical Properties of Cement and Glass Powder

Chemical properties of cement and glass powder are quite similar, but the percentages are different. Chemical properties of glass powder and cement are given in Table 1 [4].

Properties	Waste glass powder	Cement
SiO₂ (%)	70.22	23.71
CaO (%)	11.13	57.27
MgO (%)	-	3.85
Al₂O₃ (%)	1.64	4.51
Fe₂O₃ (%)	0.52	4.83
SO₃ (%)	-	2.73
Na₂O (%)	15.29	-
K₂O (%)	-	0.37
Cl (%)	-	0.0068
Loss on ignition (%)	0.80	7.24
2. Materials and Methods

2.1. Materials Used

2.1.1. Cement

Ordinary Portland Cement (OPC) was used for casting of concrete. Specific gravity test was done as given in Fig. 1 and the result is given in Table 2.

Table 2. Test on cement

Name of test	Code Followed	Found value
Specific gravity	ASTM C188-16	3.13

2.1.2. Coarse aggregate (CA)

Stone chips were used to make the plain concrete and glass powder concrete. The size of the aggregate was maintained 1 inch passing, ¾ inches retained and ¾ inches passing, ½ inches retained. The conducted test results on coarse aggregate are given in the Table 3.

Table 3. Tests on CA

Name of tests	Code followed	Found value
Specific gravity	ASTM C127-15	2.42
Absorption capacity	ASTM C127-15	1.2%
Dry rodded unit weight	ASTM C29-C29M-17	1412.5 kg/m³ (102.95 lb/ft³)
Gradation	ASTM C33-C33M-16e1	Fineness Modulus 3.1

Fig. 2, Fig. 3 and Fig. 4 illustrates the experimental works done for the specific gravity and absorption capacity, gradation and dry rodded unit weight tests respectively. Again, the gradation curve of corase aggregate is given in Fig. 5.
2.1.3. Fine Aggregate (FA)

Sand collected from Sylhet, Bangladesh was used. The conducted test results on fine aggregate are given in the Table 4. Fig. 6 and Fig. 7 are showing the experimental works of specific gravity and absorption capacity and gradation tests of fine aggregates respectively.

Name of tests	Code followed	Found value
Specific gravity	ASTM C128-15 [8]	2
Absorption capacity	ASTM C128-15	21.95%
Gradation	ASTM C778-13 [9]	Fineness Modulus 2.1

2.1.4. Glass Powder

Waste glass bottles collected from local source were grinded manually and the size was maintained less than 0.075 mm. The waste glass bottles and the powdered form after grinding are shown in Fig. 8 and Fig. 9 respectively.
2.2. ACI Mix Design of Concrete

From the results of materials tests, ACI mix design was conducted and the ratio among cement (c), fine aggregate (FA) and coarse aggregate (CA) and water-cement ratio (W/C) were found as given in Table 5. The slump value was found as 25 mm.

Name	Value
C: FA: CA	1: 2.57: 3.39
W/C	0.61

2.3. Casting and Curing

Total 24 cylinders were casted as shown in Fig. 10. Among them, 6 cylinders was of cement replaced by 10% of glass powder, 6 of 20% and 6 of 30%. In addition, control cylinder was also casted with 0% glass powder to compare the strength with respect to replacement. After 24 hours of casting, the cylinders were demolded and submerged under water for curing as shown in Fig. 11.

2.4. Compressive and Split Tensile Strength Test

Compression Testing Machine (CTM) of capacity 2000 KN was used for both compressive strength test according to ASTM C39-C39M-17 [10] and split tensile strength test according to ASTM C496-C496M-11 [11] of concrete cylinder as shown in Fig. 12 and Fig. 13. Load values were measured from the load cell of CTM.
3. Result and Discussion

3.1. Compressive Strength

Fig. 14 is showing the comparison of compressive strength of concrete with different percentages of waste glass powder (GLP). Using 10% of GLP, the compressive strength at 7 days was nearly about that of plain concrete but at 14 days and 28 days, the strengths were not much increased and were remained almost stagnant. Using 20% of GLP, the compressive strength at 7 days and 14 days were much lower than that of plain concrete but at 28 days, the strengths was increased marginally and the compressive strength was more than that of plain concrete. Using 30% of GLP, the compressive strength at 7 days was much lower than that of plain concrete but at 14 days, the strength was nearly about that of plain concrete and at 28 days, the strength was 15% lower than plain concrete.

3.2. Split Tensile Strength

Fig. 15 is showing the comparison of split tensile strength of concrete with different percentages of waste GLP. Using 10% of GLP, the splitting tensile strength at 7 days and 14 days were nearly about that of plain concrete but at 28 days, the splitting tensile strength was slightly lower than that of plain concrete. Using 20% of GLP, split tensile strength at 7 days was slightly lower than that of plain concrete but at 14 days, the strength was increased marginally and the split tensile strength was more than
that of plain concrete. At 28 days, the split tensile strength was slightly lower than that of plain concrete. Using 30% of GLP, split tensile strength at 7 days was much lower than that of plain concrete but at 14 days and 28 days, the strength was significantly increased and the strengths were more than plain concrete.

4. Conclusions

The following conclusions were drawn from the above investigation:

- Compared to plain concrete, the concrete with cement replaced by glass powder has shown better result for compressive strength when the percentages of glass powder was 20, but has shown improved result for split tensile strength for 30% glass powder. By changing or modifying the various parameters, it is possible to improve the performance of these materials, which plays an important role for eco-friendly construction.

- The addition of recycled green building materials such as glass powder can increase the slump of concrete, but an excessive addition may result in surplus mixing water that could result in slight segregation that can reduce the overall strengths.

- Furthermore, these concrete with glass powder utilize the locally available materials for producing the binding material. So it can be considered as a sustainable material for green construction.

- In general, considering the similar performance with replaced material glass addition can reduce significant cost of cement production and CO₂ emission and save the environment by reducing greenhouse gas and particulate production.

Acknowledgements

The authors would like to acknowledge Department of Civil Engineering, Port City International University, Chittagong, Bangladesh for giving the opportunity for using the Engineering Materials Laboratory facilities for the experimental works.

REFERENCES

[1] Cattaneo, JUS. Glass recycling: market outlook, In Resource Conservation Challenge (RCC) 2008 Workshop, 2008, Arlington, Va, USA.

[2] Nasser Almesfer, Jason Ingham. Effect of Waste Glass on the Properties of Concrete, Journal of Materials in Civil Engineering, Vol.26, Issue 11, 2014.

[3] M. H. Rahman, A. A. Shames, G. M. S. Islam. POTENTIAL OF RECYCLED GLASS AS CEMENTITIOUS MATERIAL IN CONCRETE, 2nd International Conference on Advances in Civil Engineering 2014 (ICACE-2014), CUET, 2014.

[4] Dhanaraj Mohan Patil, Dr. Keshav K. Sangle. Experimental investigation of waste glass powder as partial replacement of cement in concrete, International Journal of Advanced Technology in Civil Engineering, ISSN: 2231-5721, Volume-2, Issue-1, 2013.

[5] ASTM C188-16 Standard Test Method for Density of Hydraulic Cement.

[6] ASTM C127-15 Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate.

[7] ASTM C29-C29M-17 Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate.

[8] ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.

[9] ASTM C778-13 Standard Specifications for Standard Sand.

[10] ASTM C39-C39M-17 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

[11] ASTM C496-C496M-11 Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.