Negative Surgical Exploration in Patients Suspected GIP: Trend, Preoperative Predictors, Etiologies, and Outcomes

Xuan Liu
Zhong Shan Hospital: Zhongshan Hospital Fudan University

Bo Zhang (✉ zhang.bo@zs-hospital.sh.cn)
Zhongshan Hospital Fudan University https://orcid.org/0000-0002-6214-4267

Yuda Gong
Zhong Shan Hospital: Zhongshan Hospital Fudan University

Research article

Keywords: Gastrointestinal perforation, Emergency laparotomy, Negative laparotomy, Preoperative predictors

DOI: https://doi.org/10.21203/rs.3.rs-126135/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

BACKGROUND AND OBJECTIVE: Despite the rapid improvement of clinical science and imaging technology including computed tomography, the entity of negative surgical exploration in suspected gastrointestinal perforation (N-GIP) remains existing. However, few studies have focused on this issue and most studies are case reports. We undertook this study to investigate the rates of N-GIP, and explore a set of possible preoperative predictors associated with N-GIP.

METHODS: This was a retrospective study performed at the department of general surgery in our treatment center. All patients included were suspected GIP cases, aged 14 years and over, and underwent emergency surgery between 2009 and 2019. A predictive multivariable model of the presence of N-GIP was developed using logistic regression analysis.

RESULTS: A total of 973 patients were identified and 30 (3.1%) were found to have no evidence of perforated gastrointestinal tract. The mean age of patients was 59.74 (range 14–97) years and 67.2 percent of the patients were males. The rates of N-GIP did not have a significant change over time (P =0.212 for trend). In multivariable analysis, absence of generalized peritonitis, duration of abdominal pain > 19.6 hours, and neutrophil-to-lymphocyte ratio < 3.80 were significant predictors of N-GIP. N-GIP was more common in patients with gastrointestinal tumors and foreign bodies. Five patients (16.7%) in N-GIP group experienced complications and the 90-day mortality rate was 6.7%.

CONCLUSION: The rates of N-GIP did not change significantly over time. N-GIP was associated with the absence of generalized peritonitis, duration of abdominal pain > 19.6 hours, and neutrophil-to-lymphocyte ratio < 3.80.

Introduction

Gastrointestinal perforation (GIP) is defined as the destruction of integrity of the gastrointestinal tract. GIP is usually presented as an acute abdominal condition, with localized or generalized peritonitis. A large percentage of all hospital admissions for emergency-surgery in General Surgery Department are secondary to perforation of abdominal viscera(1). GIP is a surgical emergency that carries high risk for mortality (30 ~ 50%) in spite of improvements in antibiotics, radiographic imaging, resuscitation therapy, and surgical technique(2, 3). Many individuals who suffer from GIP develop SIRS or severe sepsis accompanied by hemodynamic compromise, coagulopathy, acidosis, and hypothermia(4, 5). As a life-threatening disease, (especially in elderly patients), GIP usually needs emergency surgery and active rescue in surgical ICU. GIP can occur secondary to various conditions such as iatrogenic and traumatic causes, neoplasms, inflammation, or peptic ulcers. In general, many factors may contribute to GIP, including older age, diabetes, glucocorticoid therapy, antecedent diverticulitis, and usage of bevacizumab, tofacitinib, tocilizumab, non-steroidal anti-inflammatory drugs (NSAIDs) or other biologic agents(6–8). Successful treatment requires a complete understanding of the pathophysiology, anatomy, and
microbiology of the disease process and thorough knowledge of the therapy, such as antibiotics, source control, physiologic support and resuscitation(2).

Laparotomy and laparoscopic surgery for patients clinically suspected of having GIP are the most effective and important treatment methods(9, 10). However, such procedures are rarely performed in the absence of perforation upon macroscopic or microscopic examination, a circumstance called as negative surgical exploration in suspected GIP (N-GIP). N-GIP may lead to a palpable degree of morbidity and mortality, an appreciable prolongation of hospital stay, and complications because of postoperative infection. It is also a main contributor to medical conflict and healthcare costs.

Radiographic evaluation of GIP traditionally began with upright and supine abdominal radiographs. Currently, helical CT has become a preferred tool to assess patients suspected of having GIP(11). Oral or intravenous contrast agents are used to facilitate identification of perforation when feasible. Accurate and confirmative preoperative diagnosis of GIP remains challenging despite proper history taking, clinical examination, and improvement in new imaging techniques like ultrasound imaging and computed tomography. Preoperative diagnosis of GIP is very crucial to minimize the morbidity and mortality in densely populated countries like China. As management errors can be significantly reduced by correct preoperative diagnosis, clinical acumen plays a pivotal role in the diagnosis and management of GIP and ensures definitive per-operative surgical treatment, which in turn minimizes negative laparotomy or laparoscopy. Thus, surgeons need to build up diagnostic acumen and decision-making in the management of GIP.

Regardless to the development of evidence-based guidelines and medical technology, it remains unclear whether a reduction in rates of N-GIP has been achieved over time. Until recently, far too little attention has been drawn to this issue and the overall problem of N-GIP has remained refractory. The aim of the present study was thus to analyze the characterization of its prevalence and clinical predictors, summarize the causes of N-GIP so as to provide objective basis for surgeons' decision-making.

Methods

The approval of the study was obtained from the Hospital Ethical Committee before starting. We performed a retrospective analysis of clinical suspected GIP cases that underwent an emergency surgery on the same admission to Zhongshan hospital of Fudan university between 2009 and 2019. Patients who either had an elective surgical exploration or were younger than 14 years of age at the time of operation were excluded from this study.

The preoperative data recorded were as follows: demographic information (age and sex), clinical symptoms at presentation (abdominal pain) and clinical signs (sign of peritonitis), duration of abdominal pain, reports from abdominal US, abdominal radiographs, CT, MRI, Endoscope. The white blood cell count (WBC), percentage of neutrophils, percentage of lymphocytes, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein (CRP), procalcitonin (PCT), D-dimer, and preoperative vital signs (temperature, shock), ASA grades were also collected. Operative factors such as surgical approach and operative findings were
obtained as well by reviewing of the operative notes. Postoperative data included any complications recorded within the 90-day postoperative period and histopathological findings.

Considering laboratory results and vital signs fluctuating of patients during the course of medical attention, we used the highest recorded value before surgical exploration for our analysis, or “peak preoperative” value, rather than using presented values at certain times.

In this study, N-GIP was defined as a macroscopically and/or microscopically scrutinized normal Gastrointestinal tract in a patient who underwent emergency operation based on clinical diagnosis and imaging suspicious for GIP.

Statistical Analysis

Descriptive statistics are reported as means and standard deviation, median with interquartile range, or as otherwise indicated. Differences in continuous and categorical data between groups were analyzed by means of Student’s t-test, Chi-square test and Mann–Whitney U-test respectively. Rates of outcomes were tested for changes over time using χ² test for trend.

Multivariable model predicting the presence of N-GIP was performed with demographic and clinical factors found to be statistically significant in univariable analysis in a machine learning model by gradient boosting decision tree model (catboost) from our model development cohort (70% of patients). A validation set of the remaining 30% of patients was built to test the model. After the model training was completed, the SHAP value of each feature was calculated to reflect the importance of the feature, and the relationship between the feature and the outcome variable was explored. The SHAP value can guide the grouping of continuous variables, which can be incorporated into the logistic regression model.

The predictors of N-GIP were identified using a binary logistic regression modelling technique. Odds ratios (OR) and 95% confidence intervals (CI) were determined in the regression models. Overall model fit was assessed by estimating the overall likelihood ratio χ², the Hosmer–Lemeshow goodness-of-fit test, and the C-statistic to measure the discrimination of the model.

A significance level of α = 0.05 was used for all tests. All P values were two-sided. All demographic and clinical data of each patient were analyzed by SPSS, version 20.0 for Windows (IBM, Analytics, Armonk, NY, United States) and Python programming language, version 3.6 (Python Software Foundation, https://www.python.org/).

Results

Patients and Population

From 2009 to 2019, 973 patients were admitted to our department with a preoperative diagnosis of GIP. The mean age at the time of the procedure was 59.74 (range 14–97) years and 67.2 percent of the
patients were males. Median ASA grade was II (range I–IV). In all patients, GIP or N-GIP was finally proved by operative and/or histopathological findings. All patients suffered from abdominal pain. Most of the patients (91.6%) were treated by traditional open surgery. Of the patients included, 30 (3.1%) were found to have N-GIP.

Rate and Position of N-GIP

During 2009–2019, the number of GIP cases showed an upward trend with an increase of N-GIP cases in recent five years. The rate of N-GIP changed insignificantly over time, from 0 percent in 2009 to 2.86 percent in 2019 (P = 0.212, Chi-square test for trend) (Fig. 1).

Locations of GIP and sites of N-GIP revealed during surgery and/or in histopathological findings are displayed in Fig. 2. N-GIP appeared to occur more frequently in duodenum and right-sided colon.

Preoperative Data

Of the 973 patients, 898 (92.3%) patients underwent CT scanning and 68 patients underwent abdominal radiographs (among them 16 patients also underwent CT scanning) during the initial evaluation before surgery, and pneumoperitoneum was found in 890 patients. Other examinations in some patients including ultrasonography, MRI, diagnostic abdominal puncture and findings in endoscope were similarly helpful to diagnosis preoperationally. According to the outcome, the sensitivity of CT and abdominal radiographs were 95.6% and 92.3%. But in 29 patients with N-GIP who underwent CT scanning, only one patient had surely no indications of GIP on CT images while others all had a pneumoperitoneum, focal wall defect or bowel wall thickening.

As CRP, PCT and D-dimer were applied universally and normally in clinical work in recent years, missing data does exist in patients admitted at earlier time points in the observation period, significant rates of missing data were 18.3%, 48.1%, 31.6% respectively. These three variables were excluded from the analysis. Table 1 details the demographic and baseline clinical data of the 973 patients who met the inclusion criteria for our study. Percentage of neutrophils, NLR were frequently decreased and signs of peritonitis were less serious for patients with N-GIP. The N-GIP group had statistically significant higher percentage of lymphocytes and longer duration of abdominal pain than patients with GIP. We found no statistically significant differences between the N-GIP and GIP groups for age, sex, ASA grade, shock, temperature and white blood cell count.
Table 1
The characteristics of 973 patients with GIP and N-GIP

	GIP (n = 943)	N-GIP (n = 30)	P
Age	60(17.98)	58(18.47)	0.549
Male sex [n (%)]	633(67.1)	21(70.0)	0.741*
ASA grade [n (%)]			0.539*
	408(43.3)	16(53.3)	
	371(39.3)	11(36.7)	
	60(6.4)	2(6.7)	
	104(11.1)	1(3.3)	
Duration of abdominal pain [median (IQR)]	17.0(7.90–48.90)	48.0(20.75–120.00)	< 0.001**
Peritonitis [n (%)]			< 0.001*
No peritonitis	21(2.2)	16(53.3)	
Localized peritonitis	253(26.8)	10(33.3)	
Generalized peritonitis	669(70.9)	14(13.3)	
Shock [n (%)]	124(13.1)	1(3.3)	0.192*
Temperature	37.43(0.84)	37.41(0.78)	0.918
WBC	12.96(6.22)	12.96(5.59)	1.000
Percentage of neutrophils	85.35(8.90)	81.35(9.24)	0.016
Percentage of lymphocytes	9.37(7.67)	12.23(7.57)	0.044
NLR	16.11(13.92)	11.07(10.09)	0.049

Values are means and values in parentheses are standard deviations unless indicated otherwise. N (%), number (percentage). IQR, interquartile range. ASA, American Society of Anesthesiologists. WBC, white blood cell count. NLR, Neutrophil-to-lymphocyte ratio. P, Student’s t-test. P*, Chi-square test. P**, Mann–Whitney U-test.

Multivariable Predictors for N-GIP

Training dataset included 681 patients (22 negative) and test dataset included 292 patients (8 negative). Because the proportion of negative samples is too low, the model training was weighted according to the ratio of positive: negative = 1:12 (i.e., the harm of misjudging one negative sample as positive = the harm of misjudging 12 positive samples as negative), which improves the detection of negative samples. In the test dataset, 284 positive patients were detected 100%, and 3 of 8 negative patients were detected. Figure 3 shows the relationship between the value of each feature (blue is low, red is high) and the
outcome variable. The importance of the features is ranked from high to low. Signs of peritonitis is the most important, and shock is the least important.

By calculating the Shap value of each continuous variable exceeding 0 point (Fig. 4), the risk interval of each variable can be calculated as follows: duration of abdominal pain: > 19.6 hours, percentage of neutrophils: < 68.89, percentage of lymphocytes: > 6.48, NLR: < 3.80. These risk intervals can further guide the grouping of continuous variables, so as to convert continuous variables into categorical variables, and then perform logistic regression to calculate the OR value.

Absence of generalized peritonitis, duration of abdominal pain > 19.6 hours, and neutrophil-to-lymphocyte ratio < 3.80 were all significant predictors of N-GIP (Table 2). The multivariable models demonstrated good model fit and high discrimination (likelihood ratio χ² = 95.31, P < 0.001; the Hosmer–Lemeshow goodness-of-fit test P = 0.964). ROC curve showed that the area under the ROC curve of the preoperative multivariable model to distinguish GIP or N-GIP is 0.90.

Multivariable logistic regression	OR	P value	95% CI
Duration of abdominal pain > 19.6 h	3.39	0.024	1.17–9.80
Sign of peritonitis (versus generalized peritonitis)	< 0.001		
Localized peritonitis	4.9	0.009	1.49–16.09
No peritonitis	92.17	< 0.001	27.51-308.81
NLR < 3.80	2.9	0.019	1.19–7.10

Emergency Surgical Procedures and Postoperative Outcome

Of the 30 patients with N-GIP, 15 (50.0%) had a therapeutic operation with the finding of intra-abdominal diseases which required management, but only 9 needed an emergency surgical treatment, such as removal of the foreign bodies from gastrointestinal tract. 4 patients lacked the indications for emergency surgical treatment and could be managed by selective operation after perfect preoperative preparation. 2 patients underwent a gastrostomy or enterostomy because of unresectable advanced tumor. The remaining 15 patients (50.0%) had a non-therapeutic laparotomy (10), laparoscopy (3) or conversion to laparotomy (2).

Interestingly, the N-GIP group did not have a significantly lower rate of complications and mortality than the GIP group (P = 0.131 and 1). Five of the 30 patients (16.7%) with N-GIP and 277 of the 943 patients
(29.4%) with GIP had complications. The 90-day mortality in the N-GIP group and GIP group was 6.7% and 6.5%, respectively.

Etiology of N-GIP

We thoroughly reviewed the whole process of disease progression, treatment and postoperative recovery, searched and studied similar case series and eventually identify the causes of N-GIP (Table 3). N-GIP were most often due to tumor and foreign body of the gastrointestinal tract.

Etiologies of N-GIP	Number	Percentage
Tumor	7	23.3%
Foreign body	5	16.7%
Appendicitis	3	10.0%
Gastrointestinal wall inflammation	3	10.0%
Spontaneously sealed small perforation	3	10.0%
Primary peritonitis	2	6.7%
Trauma	2	6.7%
Therapeutic colonoscopy	2	6.7%
Peptic ulcer	1	3.3%
Diverticulitis	1	3.3%
Abdominal hematoma	1	3.3%

Discussion

Precise diagnosis of GIP is still challenging despite improvement in clinical examinations and investigative procedures. If the preoperative diagnosis is indecisive it is suggested by clinical experience to operate for exploration immediately rather than waiting and observation. However, such a strategy will certainly raise the unnecessary surgical exploration rate and the morbidity. Most of the previous researches merely focused on reviewing the causes of nonsurgical pneumoperitoneum and numerous studies were case reports(12–17).

As early as 1983, Roh and his colleagues(18) reported that 14 percent of patients in their study who had abdominal pain and pneumoperitoneum on plain abdominal radiographs underwent an unnecessary laparotomy owing to the fact that pneumoperitoneum was from sources other than a perforated hollow viscus. They believed that the clinical manifestations of their patients who had surgical versus nonsurgical causes of pneumoperitoneum was indistinguishable. In reality, pneumoperitoneum reflects
perforation of abdominal viscus in 85–95% of total occurrences. Whereas in 5–15% of cases, pneumoperitoneum does not reflect visceral perforation and arises from another source that does not demand emergency surgery(19). Nonsurgical pneumoperitoneum is defined by the existence of air in the peritoneal space that is detectable by roentgenogram and either is treated successfully by observation and supportive care alone or leads to a nondiagnostic laparotomy(20). In this study, the rate of nonsurgical pneumoperitoneum was 2.9%. Case reports and small series(21–24) have established the entity of nonsurgical pneumoperitoneum and the corresponding indication for conservative treatment in selected cases.

This analysis of 973 patients undergoing surgical exploration for suspected GIP provides compelling evidence. The overall rate of N-GIP at our hospital has not decreased over time with the development of evidence-based guidelines and medical technology. N-GIP cases have been encountered more frequently in clinical work in recent five years and caused a myriad of unexpected troubles. Since this study and other studies(25–27) had reported such high diagnostic sensitivity of CT or KUB, it is crucial to pay attention to the issue of misdiagnosis and mistreatment.

It is a good choice to consider some clinical features when selecting appropriate surgical candidates in patients with suspected GIP. Our findings regard that the association of signs of peritonitis, duration of abdominal pain, percentage of neutrophils, percentage of lymphocytes, NLR, and negative laparotomy were notable. These associations indicated that the clinical characteristics of patients with GIP versus patients with N-GIP may be different. Patients with N-GIP had a slow process of the disease, minimal signs of peritonitis, and lower level of inflammatory indexes due to no destruction of integrity of the gastrointestinal tract and no gastrointestinal contents in the abdominal cavity. Absence of generalized peritonitis, duration of abdominal pain > 19.6 hours, and neutrophil-to-lymphocyte ratio < 3.80 were identified as significant predictors of N-GIP in the final analyses. The most common sites of N-GIP were duodenum and right-sided colon. Gastrointestinal cancer was the commonest cause of N-GIP in this study, which comprised 23.3% of the total patients. Foreign body in gastrointestinal tract accounted for 16.7% of the total patients. Appendicitis, gastrointestinal inflammation and spontaneously sealed small perforation respectively constituted 10% of the causes. Therefore, we suggest that when duration of abdominal pain is long-lasting, generalized peritonitis is absent, and neutrophil-to-lymphocyte ratio is in a lower level, the possibility of negative surgical exploration should be considered in preoperative assessment for patients suspected GIP, especially in patients with gastrointestinal cancer. We should implement subsequent investigation with additional preoperative diagnostics for selected patients with risk factors for N-GIP, for example, repeated paracentesis judging for presence of GIP. From our perspective, it is indispensable to perform careful and thorough history and physical examination, and to make judgments based on clinical symptoms and signs, laboratory values, imaging and other examinations.

Unexpectedly, our study demonstrated that there were nearly no differences in the rate of complications and mortality between patients who had GIP versus N-GIP. Five patients (16.7%) in the 30 patients with negative finding in operation experienced a complication and two in them later succumbed to
postoperative complications. Four patients in N-GIP group underwent laparoscopic surgery, all had no complications in postoperative period. With the rapid development of minimally invasive concept and techniques in recent years, the application of laparoscopy in the diagnosis and treatment of patients with gastrointestinal perforation has become more frequent (28–30). However, there are few high-quality clinical studies and many researches are biased. When the difficulty of the clinical decision making for patients suspected of having GIP is unsolved, laparoscopic exploration may be a simply good management and of great help to surgeons.

A major limitation of this study is that it was retrospective and patients were selected from a single center, which made the evidence level for this study relatively low. The event rate of only 30 patients with N-GIP over a 11-year period is low and reflective of the relative rarity of this presentation in the worldwide context. However, there is a possibility that patients who did not proceed to laparotomy or laparoscopy may have been presented later to another institution, thereby lessening the rate. Moreover, it is likely that the rate of negative surgical exploration in patients with GIP is lower than other areas with incomparable standards of care as well as the availability of CT. A further limitation is that C-reactive protein, procalcitonin and D-dimer were not analyzed, which are regarded as infection index (31–33) and might be significant predictors of N-GIP. At last, as the number of individuals in GIP group was extremely different from that in N-GIP group, robust identification of predictors for N-GIP is limited by the sample size of patients who had negative surgical exploration. Thus, future studies with more universal laboratory testing and larger sample size are needed to verify and generalize our findings.

Despite these limitations, the present study had many strengths. It is the largest retrospective study evaluating the rate of negative surgical exploration in patients with suspected GIP. Second, the data span an interval of 11 years, longer than in most previous investigations. Finally, the model developed had high predictive value and has good generalizability to other patients undergoing laparotomy and laparoscopy for GIP.

Conclusions

The overall rate of negative surgical exploration in patients with suspected GIP was 3.1% with no significant decrease over time. Applicating a multivariable logistic regression, we can easily identify predictive factors of N-GIP and help surgeons select a small portion of patients suspected of having GIP to minimize unnecessary emergency surgery, provide a unique opportunity for conservative management in stable patients, and expedite appropriate care.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication
Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

We have no sources of funding for the research.

Authors' contributions

Liu X analyzed and interpreted the patient data and was a major contributor in writing the manuscript. Gong Y.D. curated the patient data and prepares the manuscript. Zhang B administrated the project and reviewed and edited the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. McCaig LF, Burt CW. National Hospital Ambulatory Medical Care Survey: 2002 emergency department summary. Adv Data. [Comparative Study; Journal Article]. 2004 2004-03-18(340):1–34.
2. Langell JT, Mulvihill SJ. Gastrointestinal perforation and the acute abdomen. Med Clin North Am. [Journal Article; Review]. 2008 2008-05-01;92(3):599–625.
3. Del GA, Lall C, Allen BC, Leyendecker JR. From esophagus to rectum: a comprehensive review of alimentary tract perforations at computed tomography. ABDOM IMAGING. [Journal Article; Review]. 2014 2014-08-01;39(4):802–23.
4. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med. [Journal Article]. 2004 2004-04-01;30(4):536–55.
5. Ordonez CA, Puyana JC. Management of peritonitis in the critically ill patient. Surg Clin North Am. [Journal Article; Research Support, N.I.H., Extramural; Review]. 2006 2006-12-01;86(6):1323–49.
6. Hapani S, Chu D, Wu S. Risk of gastrointestinal perforation in patients with cancer treated with bevacizumab: a meta-analysis. LANCET ONCOL. [Journal Article; Meta-Analysis; Research Support, Non-U.S. Gov't; Review; Systematic Review]. 2009 2009-06-01;10(6):559–68.
7. Xie F, Yun H, Bernatsky S, Curtis JR. Brief, Report. Risk of Gastrointestinal Perforation Among Rheumatoid Arthritis Patients Receiving Tofacitinib, Tocilizumab, or Other Biologic Treatments. ARTHRITIS RHEUMATOL. [Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov’t]. 2016 2016-11-01;68(11):2612–7.

8. Zavada J, Lunt M, Davies R, Low AS, Mercer LK, Galloway JB, et al. The risk of gastrointestinal perforations in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the BSRBR-RA. ANN RHEUM DIS. [Comparative Study; Journal Article; Research Support, Non-U.S. Gov’t]. 2014 2014-01-01;73(1):pp. 252–5.

9. Søreide K, Thorsen K, Harrison EM, Bingener J, Møller MH, Ohene-Yeboah M, et al. Perforated peptic ulcer. The Lancet. 2015;386(10000):1288–98.

10. Holmer C, Mallmann CA, Musch MA, Kreis ME, Grone J. Surgical Management of Iatrogenic Perforation of the Gastrointestinal Tract: 15 Years of Experience in a Single Center. WORLD J SURG. [Journal Article]. 2017 2017-08-01;41(8):1961–5.

11. Ahn SH, Mayo-Smith WW, Murphy BL, Reinert SE, Cronan JJ. Acute nontraumatic abdominal pain in adult patients: abdominal radiography compared with CT evaluation. RADIOLOGY. [Comparative Study; Journal Article]. 2002 2002-10-01;225(1):159–64.

12. Tang A, Huddleston P, Attaluri P, Cruz A, Joseph S, Lavy D. Clinical cases of nonsurgical pneumoperitoneum: categorizing the disease and treatment options. Am Surg. [Case Reports; Journal Article]. 2015 2015-05-01;81(5):E206-8.

13. Johnson EK, Choi YU, Jarrard SW, Rivera D. Pneumoperitoneum after rough sexual intercourse. Am Surg. [Case Reports; Journal Article]. 2002;68(5):430–3. 2002-05-01.

14. Mularski RA, Ciccolo ML, Rappaport WD. Nonsurgical causes of pneumoperitoneum. West J Med. [Case Reports; Journal Article]. 1999 1999-01-01;170(1):41–6.

15. Rowe NM, Kahn FB, Acinapura AJ, Cunningham JJ. Nonsurgical pneumoperitoneum: a case report and a review. Am Surg. [Case Reports; Journal Article; Review]. 1998 1998-04-01;64(4):313–22.

16. Sambursky JA, Kumar S, Orban M, Janolo E, Neychev V. Non-surgical Pneumoperitoneum in the Setting of Gram-negative Sepsis. Cureus. 2018 2018-04-17;10(4):e2493.

17. Iflazoglu N, Gokce ON, Kivrak MM, Kocamer B. Spontaneous idiopathic pneumoperitoneum with acute abdomen. Turkish Journal of Surgery. 2015 2015-06-24;31(2):110–2.

18. Roh JJ, Thompson JS, Hamed RK, Hodgson PE. Value of pneumoperitoneum in the diagnosis of visceral perforation. AM J SURG. [Journal Article]. 1983 1983-12-01;146(6):830–3.

19. Winek TG, Mosely HS, Grout G, Luallin D. Pneumoperitoneum and its association with ruptured abdominal viscus. Arch Surg. [Journal Article; Review]. 1988 1988-06-01;123(6):709–12.

20. Mularski RA, Sippel JM, Osborne ML. Pneumoperitoneum. A review of nonsurgical causes. CRIT CARE MED. 2000 2000-01-01;28(7):2638–44.

21. Hoover EL, Cole GD, Mitchell LS, Adams CJ, Hassett J. Avoiding laparotomy in nonsurgical pneumoperitoneum. AM J SURG. [Journal Article; Research Support, Non-U.S. Gov’t; Review]. 1992 1992-08-01;164(2):99–103.
22. Eisenbach C, Blaker H, Stremmel W, Sauer P, Schaible A. Pneumoperitoneum following endoscopic mucosal resection without perforation of the colon. ENDOSCOPY. [Case Reports; Journal Article]. 2008 2008-09-01;40 Suppl 2:E64-5.

23. Alassaf M. Recurring spontaneous aseptic pneumoperitoneum presenting secondary to an unrelated chief complaint: A case report. Int J Surg Case Rep. 2015 2015-01-20;7C:96 – 8.

24. Napolitano L, Waku M, Maggi G, Ciarelli F. Cystic intestinal pneumatosis of the small gut: Etiopathogenesis and review of literature. ANN ITAL CHIR. 2018 2018-03-19;7.

25. Fultz PJ, Skucas J, Weiss SL. CT in upper gastrointestinal tract perforations secondary to peptic ulcer disease. Gastrointest Radiol. [Journal Article]. 1992 1992-06-01;17(1):5–8.

26. Ahn SH, Mayo-Smith WW, Murphy BL, Reinert SE, Cronan JJ. Acute nontraumatic abdominal pain in adult patients: abdominal radiography compared with CT evaluation. RADIOLOGY. [Comparative Study; Journal Article]. 2002 2002-10-01;225(1):159–64.

27. Urban BA, Fishman EK. Tailored helical CT evaluation of acute abdomen. RADIOGRAPHICS. [Journal Article; Review]. 2000 2000-05-01;20(3):725–49.

28. Omori H, Asahi H, Inoue Y, Tono C, Irinoda T, Saito K. Selective application of laparoscopic intervention in the management of isolated bowel rupture in blunt abdominal trauma. J Laparoendosc Adv Surg Tech A. [Comparative Study; Journal Article]. 2003 2003-04-01;13(2):83–8.

29. An SB, Kim BC, Kim JY, Kim JW, Lee SJ. Results of Laparotomy and Laparoscopy for Perforated Colonic Diverticulitis. JSLS. [Journal Article]. 2019 2019-07-01;23(3).

30. Branicki FJ. Abdominal emergencies: diagnostic and therapeutic laparoscopy. Surg Infect (Larchmt). [Journal Article; Review]. 2002 2002-07-01;3(3):269–82.

31. Schlattmann P, Brunkhorst FM. Procalcitonin as a diagnostic marker for sepsis. LANCET INFECT DIS. [Letter; Comment]. 2014 2014-03-01;14(3):189.

32. Hu L, Shi Q, Shi M, Liu R, Wang C. Diagnostic Value of PCT and CRP for Detecting Serious Bacterial Infections in Patients With Fever of Unknown Origin: A Systematic Review and Meta-analysis. Appl Immunohistochem Mol Morphol. [Journal Article; Meta-Analysis; Review; Systematic Review]. 2017 2017-09-01;25(8):e61-9.

33. Mikula T, Sapula M, Jablonska J, Kozlowska J, Stanczak W, Krankowska D, et al. Significance of Heparin-Binding Protein and D-dimers in the Early Diagnosis of Spontaneous Bacterial Peritonitis. Mediators Inflamm. [Journal Article]. 2018 2018-01-20;2018:1969108.

Figures
Figure 1

Numbers of GIP and N-GIP cases and rates of N-GIP, 2009–2019.

Figure 2
The locations of GIP and sites where N-GIP takes place. Undetermined locations in cases of GIP: Due to the special intraoperative conditions, no further exploration is possible to identify the perforation location though gastrointestinal contents were found in abdomen. Undetermined sites in cases of N-GIP: There were no clear indications of gastrointestinal abnormalities with repeating scrutinization.

Figure 3

The relationship between the value of each feature and the outcome variable. The abscissa represents the contribution of the feature to the outcome variable: less than 0 represents a protective effect, and greater than 0 represents a dangerous effect.
Figure 4

The shap box of duration of abdominal pain, neutrophils, lymphocytes and NLR.