Revisiting the D-iteration method: runtime comparison

Dohy Hong
Alcatel-Lucent Bell Labs
Route de Villejust
91620 Nozay, France
dohy.hong@alcatel-lucent.com

Gérard Burnside
Alcatel-Lucent Bell Labs
Route de Villejust
91620 Nozay, France
gerard.burnside@alcatel-lucent.com

Philippe Raoult
4 rue Fabert
75007 Paris, France
philippe@chandra-conseil.fr

ABSTRACT
In this paper, we revisit the D-iteration algorithm in order to better explain different performance results that were observed for the numerical computation of the eigenvector associated to the PageRank score. We revisit here the practical computation cost based on the execution runtime compared to the theoretical number of iterations.

Categories and Subject Descriptors
G.1.3 [Mathematics of Computing]: Numerical Analysis—Numerical Linear Algebra; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms
Algorithms, Performance

Keywords
Numerical computation; Iteration; Fixed point; Gauss-Seidel; Eigenvector.

1. INTRODUCTION
In this paper, we assume that the readers are already familiar with the idea of the fluid diffusion associated to the D-iteration [6] to solve the equation:

\[X = P.X + B \]

and its application to PageRank equation [7].

For the general description of alternative or existing iteration methods, one may refer to [5, 9].

This paper investigates further the analysis done in [8]. The main results is that using the container vector for the iterators, we obtain better and more predictable performance.

2. ANALYSIS OF THE COMPUTATION COST

2.1 C++ Programming environment
For the evaluation of the computation cost, we used Linux (Ubuntu) machines:

- Intel(R) Core(TM)2 CPU, U7600, 1.20GHz, cache size 2048 KB (Linux1, g++ -4)

- Intel(R) Core(TM) i5 CPU, M560, 2.67GHz, cache size 3072 KB (Linux2, g++ -4).

The runtime has been measured based on the library time.h with the function clock() (with a precision of 10 ms). The runtime below measures the computation time from the time we start iterations (time to build the iterators are counted separately as Initialization time). Note that the initialization has not been optimized here. Using binary input format, we observed a gain factor of more than 5 compared to the loading time that are shown in this paper.

The iterators have been built based on the class vector from STD library:

```cpp
vector<int> l_out[N];
vector<int> l_in[N];
```

Compared to results presented in [8] where the class list was used, we realized that the use of vector class was in fact appropriate for the iteration schemes we use in the context of PageRank equations. The reason is indeed obvious for programmers: vector is meant to be used for variable size vector optimizing the access time to the iterator’s value (no pointer required as for list). The results in [8] were mainly biased by the fact that the list has been built naturally column by column and not per row, because of the input file structure:

```
#origin_node destination_node
0 993508
1 999978
2 999978
3 999978
5 4
6 4
6 962147
...
```

2.2 Java Programming environment
For the evaluation of the computation cost in Java, we used only the Linux2 (Ubuntu) machine and JDK version:

```
java version "1.6.0_23"
OpenJDK Runtime Environment (IcedTea6 1.11pre)
(6b23-pre11-Obuntu11.10.2)
OpenJDK 64-Bit Server VM (build 20.0-b11, mixed mode)
```

The runtime has been measured by calling the method:

```java
getCurrentThreadCpuTime()
```

and System.currentTimeMillis() which was enough precision compared to the C++ measurements). We used the same rules to start and stop measuring as was done in the C++ implementation.

For performance reasons we used arrays of primitive int TIntArrayList from [2] rather than a classic collection of Integer objects (ArrayList<ArrayList<Integer>>):
ArrayList<TIntArrayList> l_out;
ArrayList<TIntArrayList> l_in;

As opposed to the C++ implementation, the graph was read directly from a WebGraph compressed file (see [4] and [3]); we actually used the Java code to generate the text file parsed by the C++ implementation.

2.3 Algorithms for evaluation
The algorithms that we evaluated are:

- PI: Power iteration (equivalent to Jacobi iteration), using row vectors;
- PI': Power iteration (equivalent to Jacobi iteration), using column vectors;
- GS: Gauss-Seidel iteration (cyclic sequence);
- DI-CYC: D-iteration with cyclic sequence (a node \(i\) is selected, if \((F_n)_{ii} > 0\));
- DI-SOP (sub-optimal compromise solution): D-iteration with node selection, if \((F_n)_{ii} > r_n \times \#out_i/L\), where \(#out_i\) is the out-degree of \(i\) and \(r_n\) is computed per cycle \(n\).

2.4 Notations
- \(L\): number of non-null entries (links) of \(P\);
- \(D\): number of dangling nodes (0 out-degree nodes);
- \(E\): number of 0 in-degree nodes: the 0 in-degree nodes are defined recursively: a node \(i\), having incoming links from nodes that are all 0 in-degree nodes, is also a 0 in-degree node; from the diffusion point of view, those nodes are those who converged exactly in finite steps;
- \(O\): number of loop nodes \((p_{ii} \neq 0)\);
- \(\max_{in}\): max, \(#in_i\) (maximum in-degree, the in-degree of \(i\) is the number of non-null entries of the \(i\)-th row vector of \(P\));
- \(\max_{out}\): max, \(#out_i\) (maximum out-degree, the out-degree of \(i\) is the number of non-null entries of the \(i\)-th column vector of \(P\)).

2.5 Pseudo-codes
The target error we considered here is \(1/N\).

\[\text{out}[i] := \text{out-degree of node } i;\]
\[\text{in}[i] := \text{in-degree of node } i;\]
\[l_{out}[i] := \text{iterator for column } i;\]
\[l_{in}[i] := \text{iterator for row } i.\]

2.5.1 Power iteration per row: PI

for (int \(i = 0; \ i < N; \ i++\))
{\n \text{x}_\text{old}[i] = 1.0/N;\n}
Loop:
while (error > target_error)
{
 for (int \(i = 0; \ i < N; \ i++\))
 {\n \text{x}_\text{new}[i] = (1-d)/N;\n }
 \text{error} = 0.0;
 for (int \(i = 0; \ i < N; \ i++\))
 {\n \text{error} += \text{x}_\text{new}[i];\n }
 \text{error} = 0.0;
 for (int \(i = 0; \ i < N; \ i++\))
 {\n \text{error} += abs(\text{x}_\text{new}[i]-\text{x}_\text{old}[i]);\n }
 \text{error} *= d/(1-d);
}

2.5.2 Power iteration per column: PI'

for (int \(i = 0; \ i < N; \ i++\))
{\n \text{x}_\text{old}[i] = 1.0/N;\n}
Loop:
while (error > target_error*(1-d)/d)
{
 for (int \(i = 0; \ i < N; \ i++\))
 {\n \text{x}_\text{new}[i] = (1-d)/N;\n }
 \text{error} = 0.0;
 for (int \(i = 0; \ i < N; \ i++\))
 {\n \text{error} += \text{x}_\text{new}[i];\n }
 \text{error} = 0.0;
 for (int \(i = 0; \ i < N; \ i++\))
 {\n \text{error} += abs(\text{x}_\text{new}[i]-\text{x}_\text{old}[i]);\n }
 \text{error} *= d/(1-d);
}

2.5.3 Gauss-Seidel: GS

for (int \(i = 0; \ i < N; \ i++\))
{\n \text{x}[i] = (1-d)/N;\n}
while (error > target_error)
{
 \text{error} = 0.0;
 for (int \(i = 0; \ i < N; \ i++\))
 {\n prev\text{previous} = \text{x}[i];\n \text{x}[i] = (1-d)/N;\n \text{diag} = 1.0;
 for (vector<int>::iterator \(j=l_{in}[i].\begin{\}end(); \ j++\}\n {\n \text{if (*j == i)}\n {\n \text{x}_\text{new}[j] += d \times \text{x}_\text{old}[\text{x}[*j]]/\text{x}_\text{out}[\text{x}[*j]];\n \}\
 \text{error} += abs(\text{x}_\text{new}[i]-\text{x}_\text{old}[i]);\n }
 \text{error} *= d/(1-d);
}
\[x[i] += d \times x[j]/out[j]; \]
\}
\}
\}
x[i] /= diag;
error += x[i] - previous;
\}
\}
e = 0.0;
for (int i = 0; i < N; i++){
if (out[i] == 0)
e += x[i];
}
error = error*d/(1 - d - d*e);

2.5.4 D-iteration by cycle: DI-CYC

for (int i = 0; i < N; i++){
hist[i] = 0.0;
fluid[i] = (1-d)/N;
e = 0.0;
while (error > target_error){
for (int i = 0; i < N; i++){
if (fluid[i] > 0){
if (loop[i] == 1)
transit = fluid[i]*out[i]/(out[i]-d);
else {
transit = fluid[i];
}
hist[i] += transit;
fluid[i] = 0.0;
if (outgoing[i] == 0)
e += transit;
double sent = transit*d/out[i];
for (vector<int>::iterator j=l_out[i].begin();
j!=l_out[i].end(); j++){
if (*j != i){
fluid[*j] += sent;
}
}
}
}
error = error/d/(1 - d - d*e);
}

2.5.5 D-iteration based on the average diffusion cost: DI-SOP

Same as for DI-CYC, replacing the condition:

if (fluid[i] > 0)
by
\[r = 0.0; \]
\}
\}
r += fluid[i];
if (fluid[i] > r/L*out[i])

Table 1: Extracted graph: \(N = 10^3 \) to \(10^6 \).

N	L/N	D/N	E/N	O/N	max_in	max_out
10^3	12.9	0.041	0.032	0.236	716	130
10^4	12.5	0.008	0.145	0.114	7982	751
10^5	31.4	0.027	0.016	0.175	34764	3782
10^6	41.2	0.046	0.204	403441	4655	

2.6 Dataset 1

In this section, we use the web graph imported from the dataset uk-2007-05@1000000 (available on [1]) which has 41,247,159 links on \(10^6 \) nodes.

Below we vary \(N \) from \(10^3 \) to \(10^6 \) extracting from the dataset the information on the first \(N \) nodes. Few graph properties are summarized in Table [1]

In Table 2 and 3 we present the results obtained with Linux1 and Linux2:

- the prediction by the number of iterations is quite good for GS;
- the prediction by the number of iterations is quite good for DI-CYC and DI-SOP when the compiler optimization is not used;
- PI' is much better than GS with compiler optimization;
- PI' and GS are close without compiler optimization;
- the compiler optimization can bring a speed-up factor (time2/time1) 4-15; the gain factor (9-15 for Linux1, 6-17 for Linux2) for column-vector based methods (PI', DI-CYC, DI-SOP) is more important than the gain (4 for Linux1, 5 for Linux2) for row-vector based methods (PI, GS).

Using Java, we obtained similar results (Table 4).

2.7 Dataset 1bis

We considered here the same dataset than dataset 1 but for \(P^t \) (transposed matrix, which means we inverse incoming and outgoing links). In Table 5 and 6 we present the results obtained for \(P^t \) with Linux1 and Linux2:

- the prediction by the number of iterations is not bad for GS;
- the prediction by the number of iterations is still good for DI-CYC and DI-SOP when the compiler optimization is not used;
- PI' is still much better than GS with compiler optimization;
- PI' and GS are still close without compiler optimization;
- the compiler optimization can bring a speed-up factor (time2/time1) 4-16; the gain factor for column-vector based methods (PI': 11-16, DI-CYC and DI-SOP: 5-9) is more important than the gain for row-vector based methods (PI, GS).
| N = 10^3 | PI | PI' | GS | DI-CYC | DI-SOP |
|---------|----|-----|----|--------|--------|
| nb iter | 28 | 28 | 18.7 | 17.5 | 11.1 |
| speed-up| 1 | 1.0 | 1.5 | 1.6 | 2.5 |
| time1 (s) | 0.02 | 0.01 | 0.02 | 0.01 | 0.00 |
| time2 (s) | 0.05 | 0.03 | 0.05 | 0.03 | 0.02 |
| N = 10^4 | Init: 0.05s |
| nb iter | 43 | 43 | 30.7 | 26.4 | 12.0 |
| speed-up| 1 | 1.0 | 1.4 | 1.6 | 3.6 |
| time1 (s) | 0.15 | 0.04 | 0.12 | 0.06 | 0.02 |
| speed-up| 1 | 3.8 | 1.3 | 2.5 | 7.5 |
| time2 (s) | 0.64 | 0.43 | 0.52 | 0.35 | 0.16 |
| speed-up| 1 | 1.5 | 1.2 | 1.8 | 4.0 |
| time2/time1 | 4 | 11 | 4 | 6 | 8 |
| N = 10^5 | Init: 0.2s |
| nb iter | 52 | 52 | 36.8 | 34.7 | 14.3 |
| speed-up| 1 | 1.0 | 1.4 | 1.5 | 3.6 |
| time1 (s) | 4.5 | 0.83 | 3.5 | 1.1 | 0.52 |
| speed-up| 1 | 5.4 | 1.3 | 4.1 | 8.7 |
| time2 (s) | 18.0 | 12.1 | 14.1 | 9.8 | 4.2 |
| speed-up| 1 | 1.5 | 1.3 | 1.8 | 4.3 |
| time2/time1 | 4 | 15 | 4 | 9 | 8 |
| N = 10^6 | Init: 3s |
| nb iter | 66 | 66 | 41.8 | 39.8 | 14.6 |
| speed-up| 1 | 1.0 | 1.6 | 1.7 | 4.5 |
| time1 (s) | 75 | 13 | 51 | 16 | 6.3 |
| speed-up| 1 | 5.8 | 1.5 | 4.7 | 11.9 |
| time2 (s) | 296 | 199 | 207 | 144 | 54 |
| speed-up| 1 | 1.5 | 1.4 | 2.1 | 5.5 |
| time2/time1 | 4 | 15 | 4 | 9 | 9 |

Table 2: Linux1: Comparison of the runtime for a target error of 1/N. Speed-up: gain factor w.r.t. PI. time1: with compiler optimization. time2: no compiler optimization.

N = 10^3	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	28	28	18.7	17.5	11.1
speed-up	1	1.0	1.5	1.6	2.5
time1 (s)	0.01	0.00	0.01	0.00	0.00
time2 (s)	0.01	0.01	0.01	0.01	0.01
N = 10^4	Init: 0.05s				
nb iter	43	43	30.7	26.4	12.0
speed-up	1	1.0	1.4	1.6	3.6
time1 (s)	0.04	0.01	0.03	0.02	0.01
speed-up	1	4.0	1.3	2.0	4.0
time2 (s)	0.20	0.17	0.17	0.12	0.06
speed-up	1	1.2	1.2	1.7	3.3
time2/time1	5	17	6	6	6
N = 10^5	Init: 1s				
nb iter	52	52	36.8	34.7	14.3
speed-up	1	1.0	1.4	1.5	3.6
time1 (s)	1.3	0.32	0.98	0.46	0.23
speed-up	1	4.1	1.3	2.8	5.7
time2 (s)	6.1	4.7	4.5	3.5	1.6
speed-up	1	1.3	1.4	1.7	3.8
time2/time1	5	15	5	8	7
N = 10^6	Init: 11s				
nb iter	66	66	41.8	39.8	14.6
speed-up	1	1.0	1.6	1.7	4.5
time1 (s)	21	5.6	14	6.4	3.1
speed-up	1	3.8	1.5	3.3	6.8
time2 (s)	97	78	67	53	21
speed-up	1	1.2	1.4	1.8	4.6
time2/time1	5	14	5	8	7

Table 3: Linux2: Comparison of the runtime for a target error of 1/N. Speed-up: gain factor w.r.t. PI. time1: with compiler optimization. time2: no compiler optimization.
Table 4: Linux2 in Java: Comparison of the runtime for a target error of $1/N$. Speed-up: gain factor w.r.t. PI. Similar to table 3 but in Java!

- the gain factors are globally more stable than we expected compared to results for P (we expected worse results): this suggests that the performance of the D-iteration approaches are quite stable w.r.t. the variance of in-degree/out-degree.

The results with Java are shown in Table 4. In the Java implementation the init phase was almost constant (from 1.9s with $N = 10^3$ to 2.9s with $N = 10^6$) when varying N, because we always read the full graph file (10^6).

2.8 Dataset 2

Below, we used the web graph gr0.California (available on http://www.cs.cornell.edu/Courses/cs685/2002fa/). The main motivation was here to try to understand the unexpected (too much) gain observed in [7] for this graph. As it has been pointed out in [8] (Table 8), this graph is very specific in that more than 90% of nodes are 0 in-degree nodes. The runtime is here too short to make a comparison. Table 5 presents the results of the computation cost associated to the matrix P^t for comparison.

3. CONCLUSION

In this paper we revisited the D-iteration method with a practical consideration of the computation cost to solve the PageRank equation for web graphs: the use of the class vector for iterators produced much faster results with performance that are closer to expectations.

4. REFERENCES

[1] http://law.dsi.unimi.it/datasets.php.
[2] http://trove.starlight-systems.com/overview.
[3] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In
Table 6: P^t on Linux2: Comparison of the runtime for a target error of $1/N$. Speed-up: gain factor w.r.t. PI. Similar to table 4 but in Java!

$N = 10^3$. Init: 0.01s	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	30	30	22.6	21.1	12.2
speed-up	1	1.0	1.3	1.4	2.5
time (s)	0.01	0.00	0.00	0.00	0.00

$N = 10^4$. Init: 0.05s	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	40	40	30.7	28.3	11.5
speed-up	1.0	1.0	1.3	1.4	3.5
time (s)	0.04	0.01	0.01	0.01	0.01

$N = 10^5$. Init: 1s	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	51	51	37.8	35.2	17.1
speed-up	1.2	0.41	0.93	0.54	0.31
time (s)	1.23	0.50	0.92	0.46	0.38

$N = 10^6$. Init: 11s	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	78	78	45.8	43.1	17.1
speed-up	1.0	1.0	1.7	1.8	4.6
time (s)	24	8.8	15	8.4	4.3

Table 7: P^t on Linux2 in Java: Comparison of the runtime for a target error of $1/N$. Speed-up: gain factor w.r.t. PI. Similar to table 6 but in Java!

$N = 10^3$. Init: 2.1s	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	40	40	30.7	28.3	11.4
speed-up	1.0	1.0	1.3	1.4	3.5
time (s)	0.05	0.02	0.02	0.01	0.01

Table 8: $N = 9664$

L/N	D/N	E/N	O/N	max_en	max_out
1.67	0.48	0.91	0	199	164

Table 9: P^t. times1: with compiler optimization, time2: without compiler optimization.

$N = 9664$. Init: 0.1s	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	43	43	22	3.1	1.8
speed-up	1.0	1.0	2.0	14	24
time1	0.03	0.02	0.04	0.01	0.01
speed-up	1.5	0.8	3.0	3.0	3.0
time2	0.16	0.12	0.09	0.04	0.03
speed-up	1.3	1.8	4.0	5.3	3.7
time2/time1	5	6	2	4	3

Table 10: P^t. times1: with compiler optimization, time2: without compiler optimization.

$N = 9664$. Init: 0.1s	PI	PI'	GS	DI-CYC	DI-SOP
nb iter	28	28	16	5.6	2.0
speed-up	1.0	1.0	1.8	5.0	14
time1	0.04	0.01	0.03	0.01	0.01
speed-up	1.4	1.3	4	4	4
time2	0.11	0.07	0.08	0.04	0.03
speed-up	1.6	1.4	2.8	3.7	3
time2/time2	3	7	3	4	3
P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In Proc. of the Thirteenth International World Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

G. H. Golub and C. F. V. Loan. Matrix Computations. The Johns Hopkins University Press, 3rd edition, 1996.

D. Hong. D-iteration method or how to improve gauss-seidel method. arXiv, http://arxiv.org/abs/1202.1163, February 2012.

D. Hong. Optimized on-line computation of pagerank algorithm. submitted, http://arxiv.org/abs/1202.6158, 2012.

D. Hong. Revisiting the d-iteration method: from theoretical to practical computation cost. arXiv, http://arxiv.org/abs/1203.6030, March 2012.

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.