Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits

Yi-Xin He1,2,3,4,5,6*, Jin Liu1,2,3,4,5*, Baosheng Guo1,2,3,4,5,6*, Yi-Xiang Wang7, Xiaohua Pan1,2,3,4,8, Defang Li1,2,3,4,5,9, Tao Tang1,2,3,4,10, Yang Chen11, Songlin Peng8, Zhaoxiang Bian1,2,3,4,5, Zicai Liang5, Bao-Ting Zhang12, Aiping Lu1,2,3,4,5,9 & Ge Zhang1,2,3,4,5

1Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China, 2Hong Kong Baptist University Branch of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University, Hong Kong SAR, China, 3Shum Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong SAR, China, 4Institute of Integrated Bioinformatics and Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China, 5Academician Chen Xinzi Workroom for Advancing Translational Medicine in Bone & Joint Diseases, Kunshan RNAi Institute, Kunshan Industrial Technology Research Institute, Kunshan, Jiangsu, China, 6Hong Kong Baptist University - Northwestern Polytechnical University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Shenzhen, China, 7Department of Diagnostic Radiology and Organ Imaging, The Chinese University of Hong Kong, Hong Kong SAR, China, 8Department of Orthopedics, Second Hospital of Medical College of Ji Nan University, Shenzhen People’s Hospital, 518020 Shenzhen, China, 9Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China, 10Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China, 11Department of Orthopaedics and Traumatology, BaoAn Hospital affiliated to Southern Medical University & Shenzhen Bth People Hospital, Shenzhen, PR China, 12School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.

To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement & Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement & Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement & Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis.

Pulsed steroids are frequently prescribed for infectious diseases (e.g. Severe Acute Respiratory Syndrome, SARS) for life-saving and rheumatoid diseases (e.g. Systemic Lupus Erythematosus, SLE) for disease-modifying, respectively1,2. Inevitably, steroid-associated osteonecrosis commonly occurs3. Subchondral collapse is an advanced stage of osteonecrosis that is challenging to our orthopedic surgeons as surgical prognosis of total joint replacement for treatment of collapsed joint is poor4.
The subchondral collapse is directly attributed to the dominant destructive repair, whereas no subchondral collapse is found in osteonecrotic patients undergoing reparative osteogenesis without destructive repair. The clinical bioimaging data have demonstrated that the histopathological features of the destructive repair in steroid-associated osteonecrosis can be characterized as continuous marrow edema (vascular event) closely coupled with persistent bone resorption (skeletal event)\(^8\). Our previous work has already established a steroid-associated ON rabbit model with dominant destructive repair, and we observed high VEGF expression in the rabbits with dominant destructive repair\(^2\).

VEGF, first described as "vascular permeability factor", contributes to tissue edema, as it is expressed within hours following ischemic injury in mouse model\(^2\). Direct evidence was that intravascular injection of VEGF into healthy mice induced endothelial gaps and subsequent vascular permeability\(^9\). Also, the VEGF family plays a paramount role in promoting angiogenesis or vasculogenesis, which may be induced by local hypoxic conditions to promote survival, migration, and proliferation of endothelial cells (including EPCs)\(^9\). So, VEGF may not only be associated with positive revascularization of damaged tissue but also may contribute to edema. On the other hand, in a rat femoral head model of vessel deprivation-induced osteonecrosis, high VEGF expression accounted for the striking bone resorption-related remodeling of necrotic debris early during repair, with subsequent substitution by newly formed bone\(^2,12\). It is known that continuously high VEGF exposure, however, serves as a chemoattractant for osteoclasts to induce osteoclastogenesis for bone resorption \textit{in vitro} through a matrix metalloproteinase 9-dependent mechanism, which is similar to signaling pathways involving RANKL\(^3,14\).

Proto-oncogene tyrosine-protein kinase Src (encoded by the c-src gene) is a non-receptor tyrosine kinase localized to the cellular membrane, involved in the regulation of a range of cellular processes, including proliferation, adhesion, motility and survival\(^15\). For example, Src, as a downstream molecule of VEGF signaling, participates in mediating VEGF-induced vascular permeability in myocardial infarction mouse model\(^2\). Generally, Src family kinases (SFKs) representing a family of 9 similar proteins include Src, Blk, Fgr, Fyn, Hck, Lck, Lyn, Yes and York\(^15\). The reviewed evidence just demonstrated selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Briefly, mice lacking individual Src family kinases (e.g. Src) showed normal VEGF-induced angiogenesis, while mice deficient in Src showed no VEGF-induced vascular permeability. This suggests that VEGF-mediated angiogenesis requires SFK activity in general, whereas vascular permeability mediated by VEGF specifically depended on Src\(^16\). On the other hand, Src-deficient osteoclasts display decreased migration and fail to form a polarized ruffled membrane during bone resorption\(^17\). Furthermore, targeted disruption of Src in mice causes a defect in osteoclast-mediated bone resorption, leading to osteopetrosis\(^18\). Normal osteoclast function can be rescued by bone-specific expression of Src in Src knockout mice\(^19\). Similar results have been found \textit{in vitro}\(^20,21\). Suppression of Src also interferes with ion transport, which is required to solubilize bone mineral during bone resorption by osteoclasts\(^22\).

Our previous study showed that both VEGF and phosphorylated Src expression levels were elevated in ON rabbit model with destructive repair\(^2\). On the other hand, our unpublished clinical data demonstrated that the VEGF level in serum and the phosphorylated Src expression in bone specimen from patients with osteonecrosis (hip joint replacement due to femoral head avascular necrosis) were remarkably higher than those from patients without osteonecrosis (hip joint replacement due to fracture) (Supplement 1).

Based on the previous research, we put forward our hypothesis that Src inhibitor blocking aberrant VEGF-Src signaling could inhibit both vascular event (continuous marrow edema) and skeletal event (persistent bone resorption) of destructive repair but preserve VEGF-induced neovascularization in steroid-associated osteonecrosis. Our previously established steroid-associated ON rabbit model with dominant destructive repair was employed to test the hypothesis using our published bioimaging modalities and evaluation protocols, including perfusion MRI, microCT-based angiography and trabecular micro-architecture, light microscopy for bone histomorphometry, and immunoblotting of bone marrow tissue\(^23\).

Results

Incidence of the Destructive Repair in Osteonecrotic Lesions. At 2 weeks after administration (4 weeks post-induction), the incidence of the destructive repair in the Anti-VEGF Group (1/8), Src-Inhibition Group (2/8) and Supplement & Inhibition Group (2/8) was all lower than that in the Control Group (5/8), whereas it was higher in the VEGF-Supplement Group (7/8) when compared to the Control Group. However, due to the sample size limitation, the difference was not statistically significant. At 4 weeks after administration (6 weeks post-induction), 10 of those 15 rabbits in Control group had dominant destructive repair, whereas 1 of 15, 2 of 15, 15 of 15 and 3 of 15 rabbits had dominant destructive repair in Anti-VEGF Group, Src-Inhibition Group, VEGF-Supplement Group and Supplement & Inhibition Group, respectively. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group was all significantly lower than that in the Control Group, whereas it was significantly higher in the VEGF-Supplement Group (15/15) when compared to the Control Group. There are even 1 and 3 rabbits showed dominant reparative osteogenesis in the Src-Inhibition Group and Supplement & Inhibition Group respectively. The repair pattern in the rest of the rabbits can not be clearly identified. (Figure 1)

Measurement of Trabecular Structure in Osteonecrotic Lesions. For trabecular structure of osteonecrotic lesions by micro-CT measurement, there is no difference in quantities of either small-sized (0.036 ~ 0.2 mm) or large-sized (0.2 ~ 0.4 mm) trabecular bone between Anti-VEGF Group and Baseline Group. Compared to that at Baseline, less large-sized and more small-sized trabecular bones were found in Control Group and VEGF-Supplement Group, whereas more large-sized and less small-sized trabecular bone were found in Src-Inhibition Group and Supplement & Inhibition Group. Apparently, the size distribution of the trabeculae shifted toward thinning in the Control Group when compared to the baseline, and it further shifted toward thinning in the VEGF-Supplement Group when compared to the Control Group, whereas it hardly shifted in the Anti-VEGF Group or shifted toward moderately thickening in Src-Inhibition Group and Supplement & Inhibition Group when compared to the baseline. (Figure 2)

Vascular Function Index. Time-course changes in dynamic MRI-derived vasculature function index are shown in Figure 3. For the vascularization index (peak enhancement percentage, PEP), a significantly different pattern of PEP change over time in VEGF-Supplement Group, Supplement & Inhibition Group and Anti-VEGF Group compared to Control Group was evidenced by the Two-way repeat measures ANOVA (P < 0.05 for interaction between ’Time’ and ’Group’). The PEP in the VEGF-Supplement Group and Supplement & Inhibition Group increased continuously and significantly from baseline at 2 weeks and 4 weeks post-administration (25% for VEGF-Supplement Group, 30% for Supplement & Inhibition Group at week 2 and 32% for VEGF-Supplement Group, 35% for Supplement & Inhibition Group at week 4, P < 0.05 for all); while it decreased continuously from Baseline in Anti-VEGF Group at 2 weeks and 4 weeks post-administration (−20% at week 2 and −28% at week 4, P < 0.05 for all).
for both). It remained almost constant in the Control Group and increased gradually without significance in Src-Inhibition Group.

For the permeability index (‘permeability surface area product per unit volume of tissue’, PSp), a significantly different pattern of PSp change over time in VEGF-Supplement Group, Src-Inhibition Group, Supplement & Inhibition Group and Anti-VEGF Group compared to Control Group was evidenced by the General Linear Model (GLM) (P < 0.05 for interaction between ‘Time’ and ‘Group’). The PSp in the Src-Inhibition Group, Supplement & Inhibition Group and Anti-VEGF Group decreased continuously and significantly from baseline at 2 weeks and 4 weeks post-administration (−29% for Src-Inhibition Group, −21% Supplement & Inhibition Group and −30% for Anti-VEGF Group at week 2 and −39% for Src-Inhibition Group, −28% Supplement & Inhibition Group and −36% for Anti-VEGF Group P < 0.05 for all); while it increased continuously from Baseline in VEGF-Supplement Group at 2 weeks and 4 weeks post-administration (19% at week 2 and 23% at week 4, P < 0.05 for both). It remained almost constant in the Control Group (Figure 3).

Micro-CT based Angiography of Intraosseous Vasculature.

Figure 4 presents representative 3-D angiograms and histograms depicting the size of angiographic structures. The Control Group showed large-sized (400 ~ 600 μm) vessel-like structures (VLS) surrounded by both fewer small-sized (36 ~ 200 μm) VLS and many medium-sized (200 ~ 400 μm) disseminated leakage particle–like structures (DLPLS); The Anti-VEGF Group showed only dilated and large-sized VLS, but neither small-sized VLS nor medium-sized DLPLS; The Src-Inhibition Group showed some dilated and large-sized VLS surrounded by more small-sized VLS but no medium-sized DLPLS compared to Control Group; In the VEGF-Supplement Group, although there are more small-sized VLS, there are also more medium-sized DLPLS compared to the control; In the Supplement & Inhibition Group, there are more small-sized VLS with nearly no medium-sized DLPLS compared to Control Group (Figure 4A).

In the histogram, the Control Group showed neither a continuous increase in small-sized VLS nor a continuous decrease in DLPLS when compared with the baseline. A continuous decrease in medium-sized DLPLS after administration in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group was found with similar changing pattern. A continuous slight increase in small-sized VLS after administration was found in the Src-Inhibition Group, and a continuous significant increase in small-sized VLS after administration was found in both the VEGF-Supplement Group and Supplement & Inhibition Group, whereas a continuous decrease in small-sized VLS was only found in the Anti-VEGF Group (Figure 4B).
Histomorphometry of Marrow Circulation. Figure 5 presents histomorphometry of marrow circulation at 0, 2, 4 weeks post-administration, including micro-vessel density (MVD), edema area (EA), and leakage particle size distribution. EA in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group decreased continuously and significantly with similar changing pattern from the baseline after administration, whereas it was almost remained in the Control Group and increased continuously and significantly in the VEGF-Supplement Group (Figure 5B). MVD in the Anti-VEGF Group decreased continuously and significantly from the baseline after administration, whereas it was almost maintained in the Control Group and increased continuously and significantly in the VEGF-Supplement Group and Supplement & Inhibition Group (Figure 5C). In comparison with the Control Group, leakage particles were less found in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group, whereas there were a lot of leakage particles in the VEGF-Supplement Group (Figure 5D).

Expression of phosphorylated Src and total Src in Bone Marrow. Phosphorylated Src protein expression in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group was decreased continuously and significantly from the baseline with similar changing pattern after administration, whereas it did not change in the Control Group or further significantly increased in the VEGF-Supplement Group and Supplement & Inhibition Group (Figure 5E). In comparison with the Control Group, leakage particles were less found in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group, whereas there were a lot of leakage particles in the VEGF-Supplement Group (Figure 5D).

Discussion
This study specifically investigated the effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits with low-level marrow stem-cell-pool (MSCP) after initial osteonecrotic lesion formation. Results from the dynamic MRI perfusion function index, Micro-CT-based angiography, and histomorphometry of marrow circulation consistently demonstrated that anti-VEGF reduced both neovascularization and permeability, whereas a Src inhibitor did not reduce neovascularization but did reduce permeability. In addition, immunoblotting for phosphorylated Src also demonstrated significantly decreased Src phospho-Y418 levels in the Src-Inhibition, Anti-VEGF and Supplement & Inhibition Groups at each post-administration time point. Taken together, these results suggest that uncontrolled VEGF-Src signaling underlies the observed continuous increase in vascular permeability during inadequate repair of steroid-associated osteonecrosis, which is consistent with a recent consensus that normal vascular turnover requires precise spatiotemporal control of VEGF expression. Accordingly, it encourages use of a selective blockade strategy of Src signaling for both maintaining VEGF-mediated angiogenesis and abolishing VEGF-mediated permeability to facilitate repair.

The histopathological results from lesion classification in this study showed that anti-VEGF inhibited destructive repair after osteonecrotic lesion formation, as evidenced by both significantly reduced incidence of destructive repair and the no significantly shifted size distribution curve of trabecular thickness in Anti-VEGF Group compared to the Baseline. In contrast, VEGF promoted destructive repair as evidenced by 100% incidence of destructive repair and moderately left shifted size distribution curve of trabecular thickness in VEGF-Supplement Group compared to the Control. VEGF is a chemoattractant for osteoclasts to induce osteoclastogenesis in vitro and in vivo through a matrix metalloprotease-9–dependent mechanism, which is similar to signaling pathways involving receptor activator of NF-κB ligand (RANKL)13,29–31. These data suggest a potential link between uncontrolled VEGF signaling and destructive repair of steroid-associated osteonecrotic lesions for test-
ing a therapeutic strategy by blocking uncontrolled VEGF signaling, which not only challenges the traditionally held opinion that enhanced VEGF signaling might augment bone repair, but also raises an emerging concept that uncontrolled VEGF signaling could induce destructive repair when MSCP is at a continuously low level.

On the other hand, the study showed that a Src inhibitor moderately promoted reparative osteogenesis after osteonecrotic lesion formation, as evidenced by both the moderately increased incidence of reparative osteogenesis and moderately right-shifted size distribution curve of trabecular thickness in the Src-Inhibition and Supplement &

Figure 3 | Time course changes in dynamic magnetic resonance imaging (MRI)-derived vascular function indices in different groups. (A). The PEP (vascularization index) in the VEGF-Supplement Group and Supplement & Inhibition Group increased continuously and significantly from baseline at 2 weeks and 4 weeks post-administration; while it decreased continuously from baseline in Anti-VEGF Group at 2 weeks and 4 weeks post-administration. (B). The PsP (Permeability index) in the Src-Inhibition Group, Supplement & Inhibition Group and Anti-VEGF Group decreased continuously and significantly from baseline at 2 weeks and 4 weeks post-administration; while it increased continuously from baseline in VEGF-Supplement Group at 2 weeks and 4 weeks post-administration. N = 15, Two-way repeat measure ANOVA. *P < 0.05 vs Control at corresponding time point.

Figure 4 | Angiographic analyses of the size and thickness of the vessel structures in the bilateral proximal femora of rabbits. (A). Representative 3-D angiogram at 4 weeks post-administration in different groups. (B) Size distribution of angiographic structure 4 weeks post-administration in different groups. N = 8
Inhibition Groups as compared with the Control. This could be explained by the significantly reduced vascular permeability caused by the Src inhibitor to avoid diverting blood away from the lesion center towards its periphery and accordingly facilitating delivery of oxygen and nutrients to local lesions for tissue reconstructive repair\(^3\,^2\). These results also suggest a potential causal relationship between continuous hyperpermeability and inactive reparative osteogenesis for testing a therapeutic strategy via blockade of uncontrolled Src signaling.

This time, we used a Src inhibitor PP1 to modulate the phosphorylated Src expression level, and further examined the vascular and

Figure 5 | Histomorphometric analyses of the bone marrow circulation. (A). Analysis procedure of edema area (region I in the left image and indicated by green color in the right enlarged image), micro vessel density (region II in the left image and indicated by arrows in the right enlarged image) and size distribution of leakage particles (region III in the left image and indicated by arrow in the right enlarged image) in different groups using Image J software. (B). Time-course change in edema area post-administration in different groups. (C). Time-course change in micro vessel density post-administration in different groups. (D). Comparison of size distribution of leakage particles in different groups. N = 8, One-way ANOVA with Student-Newman-Keuls post hoc test, *P < 0.05 vs Control at corresponding time point.

Figure 6 | Expression of phosphorylated Src and total Src in bone marrow in different groups. (A). Representative electrophoresis bands for bone marrow phosphorylated Src and total Src expression at baseline and in each treatment group at 2 and 4 weeks post-intravenous injection. (B). Time-course changes in bone marrow phosphorylated Src expression and total Src expression in each group. N = 8, One-way ANOVA with Student-Newman-Keuls post hoc test, *P < 0.05 vs Control at corresponding time point.
skeletal impact of the intervention. PP1 (4-amino-5-(4-methylphenyl)-7-(1-butyl)pyrazolo(3,4-d)pyrimidine) is a cell-permeable pyrazolopyrimidine compound that inhibits Src activity with IC50 of 170 nM23. Dr. Weis et al. used it to block Src Y418 phosphorylation by intravenous injection in mice23. Dr.Zan et al. injected PP1 in to a focal cerebral ischemia rat model, and demonstrated that PP1 effectively decreased Src Y418 phosphorylation level and reduced the vascular permeability in the rat brain24. In the present study, PP1 was intravenously administrated at a dose of 0.3 mg/kg according to dose conversion principle among different animals25-27, which corresponded to the effective dose for anti-permeability in previous two studies. The efficacy of systemic administration of PP1 was also verified in this study, as evidenced by significantly decreased phosphorlated Src expression in Src-Inhibition Group and Supplement & Inhibition Group.

Putting together, we demonstrated Supplement & Inhibition Group showed sound repair outcome, as demonstrated by lower destructive repair incidence, thicker trabecular structure profile, better neovascularization, and lower permeability compared to Control Group. It suggested that supplement of VEGF while inhibiting Src could be a new therapeutic strategy for steroid-associated osteonecrotic patients with high risk of subchondral collapse.

Methods

Experimental Design. Male 28-week-old New-Zealand white rabbits with body weight of 4 – 5 kg were housed at the Animal house in Institute for Advancing Translational Medicine in Bone & Joint Diseases in Hong Kong Baptist University and received a standard laboratory diet and water ad libitum. All experimental protocols were approved by the Animal Experiment Ethics Committee of Institute for Advancing Translational Medicine in Bone & Joint Diseases in Hong Kong Baptist University (Ref No.TMB/12/11R). The methods were carried out in accordance with the approved guidelines and the surgical operation was officially approved by Hong Kong government (Ref No. (12-30) in DH/HAR&P/8/26 Pl.2). Based on our established protocol for inducing steroid-associated osteonecrosis development24-26, all the rabbits were intravenously injected once with 10 µg/kg body weight of lipopolysaccharide (Escherichia coli 0111:B4, Sigma-Aldrich, USA) on day 0. After 24 hours, bilateral proximal femora were exposed to a combined weight of 20 kg/kg body weight of methylprednisolone (Pharmacia & Upjohn, USA) were given intramuscularly at a 24-hour interval. At 0 (pre-induction/baseline) and 1 week after induction, bone marrow aspiration from iliac crest was conducted to determine size of marrow stem cell pool (SI-MSCP) in hematopoetic and mesenchymal compartment according to our published protocol27. At 2 weeks after induction, 21 rabbits with a declining dynamic MRI, cranial, euthanasia was also executed at 2 (n = 8) and 4 (n = 15) weeks after induction in each group. Bilateral proximal femora were dissected after sacrifice for the following study. Marrow edema zone was automatically traced by thresholding using ImageJ 1.32j, NIH, USA. For edema area (EA), the above count of micro-vessels per total examined optical fields in those successive sections may represent the emergence of a neoplastic clone with a higher angiogenic potential47. For each countable micro-vessel, an outline was traced to calculate the total count of micro-vessels per total examined optical fields in those successive sections from bilateral decalcified femoral samples in one rabbit (Micro-vessel Density) using image analysis software (ImageJ 1.32j, NIH, USA). For edema area (EA), the above histological sections were scanned to identify the interstitial marrow edema zone by OM. For each selected field, four quantifiable fields were examined. The marrow edema zone was automatically traced by thresholding using ImageJ 1.32j. The total area of the edema zone per total examined optical field area in those successive sections from bilateral decalcified femoral samples (Edema Area) in one rabbit were calculated accordingly. For size distribution of leakage particles, the above sections were examined with OM to identify leakage particles in the region corresponding to the scanned volume of interest using the aforementioned Micro-CT-based micro-angiography. An easily distinguished black radioopaque particle (perfused angiographic substance) outside of a blood vessel was defined as a leakage particle. For each leakage particle, the outline was manually traced to quantify its area and perimeter using ImageJ 1.32j. For histomorphometry, leakage particle size was calculated as follows: Thickness = 2000/1.199 (Area/Perimeter). A histogram to display the size distribution of leakage particles in those successive sections from bilateral decalcified femoral samples in one rabbit was generated using Excel 2007 (Microsoft, USA).

Pre-euthanasia Evaluation on Vascular Function. For Dynamic MRI-derived vascular function index, rabbits were anesthetized with 3% sodium pentobarbital (0.4 mg/kg) and then placed in the prone position with lower legs flexed for MRI scanning using a 1.5-T superconducting system (ACS-NT Interax; Philips Medical Systems, Best, The Netherlands) with a maximum gradient strength of 30 mT/m. A bolus of dimeglumine gadopentetate (Magnevist; Schering, Berlin, Germany) (0.3 mmol/kg/body weight) was rapidly injected by an automatic pump linked to a peristaltic pump, the outer diameter of the injection line (as an inner diameter of 500 µm) was inserted into the aorta artery. Blood samples were performed in the prescribed plane with the following parameters: short T1-weighted gradient echo sequence, TR/TE = 41/1.4 msec, flip angle = 15, slice thickness = 5 mm, in-plane resolution = 0.86 × 0.86 mm, average = 1. The temporal resolution was approximately 0.6 s per image acquisition. A series of dynamic images were obtained in 600 s to cover the wash-out phase28-30. The vasculature index ‘Peak Enhancement Percentage’ (PEP) and permeability index ‘Permeability Surface Area Product per Unit Volume of Tissue’ (PSA) were accordingly calculated using our established protocol31,32.

Post-euthanasia Evaluation. Under general and deep anesthesia with 2.5% sodium pentobarbital by intravenous instillation (0.4 ml/kg), the rabbit abdominal cavity was opened for perfusion with a conflated radiopaque silicone rubber with a combination of neutral buffered formalin (10%) and heparinized normal saline (50 U/ml) using our established protocol33-35. Then, trabecular structure of osteonecrotic lesion in bilateral proximal femoral samples was quantificationally differentiated by micro-CT. Then, trabecular bone samples were decalcified for 6 weeks at 4°C. In order to remove the decalcified proximal femoral samples by ethylenediaminetetraacetic acid were subjected to Micro-CT-based angiography. Thereafter, the decalcified proximal femur was embedded in paraffin and sectioned at 6 µm thickness along the coronal plane to classify the osteonecrosis lesion repair process with histomorphometry of marrow circulation by OM and local phosphorylated Src by expression by immunoblotting, respectively.

Quantificational Differentiation of Trabecular Structure in Osteonecrotic Lesion: Proximal parts of bilateral un-decalcified femoral samples were taken for measurement of trabecular structure in osteonecrotic lesion using our established protocol36-38. A histogram was generated to display the size (thickness) distribution of trabecular bone. A color-coding scale was mapped to the surface of the 3-D image to produce a visual representation of the size distribution of trabecular bone39,40. Classification of Osteonecrosis Lesion Repair: Classification of osteonecrosis lesion repair was blindly made by two pathologists using OM (Axioplan with Spot RT digital camera, Zeiss, Germany). Osteonecrosis lesion formation was identified based on diffuse presence of empty lacunae or pyknotic nuclei of osteocytes in bone trabeculae, accompanied by surrounding bone marrow necrosis41. Appositional bone formation with osteoblast-like cells around the osteonecrotic lesion was classified as ‘Reparative Osteogenesis’, whereas granulation tissue creep linked to necrotic bone resorption was classified as ‘Destructive Repair’42. Rabbits with no dominant ‘Reparative Osteogenesis’ and ‘Destructive Repair’ were termed ‘unclassified’. Rabbits with no dominant ‘Reparative Osteogenesis’, whereas granulation tissue creep linked to necrotic bone resorption was classified as ‘Destructive Repair’. Rabbits with no dominant ‘Reparative Osteogenesis’ and ‘Destructive Repair’ were termed ‘unclassified’.

Micro-CT-based Micro-angiography for Vascular Architecture: Proximal parts of bilateral decalcified femoral samples were taken for intraosseous 3-D Micro-CT-based micro-angiography using our established protocol43-45. A histogram was generated to display the size (thickness) distribution of angiographic structure. A color-coding scale was mapped to the surface of the 3-D image to produce a visual representation of the size distribution of angiographic structures46-48.

Histomorphometry of Marrow Circulation: For micro- vessel density (MVD), fifteen successive hematoxylin and eosin–stained 6-µm-thick sections from each decalcified sample were scanned initially at low magnification and then at high magnification to identify vascular ‘hot-spots’ using the Optical Microscope imaging system (Zeiss). Selection of the hot-spot was adopted as a standard procedure for angiogenesis studies in both solid neoplasms and for hematological oncology49. It is thought that such areas of increased concentration of micro-vessels may represent the emergence of a neoplastic clone with a higher angiogenic potential50. For each countable micro-vessel, an outline was traced to calculate the total count of micro-vessels per total examined optical fields. For micro-vessel density defined as the number of micro-vessels per unit volume of tissue (PSA).

Histomorphometry of Marrow Circulation: For micro- vessel density (MVD), fifteen successive hematoxylin and eosin–stained 6-µm-thick sections from each decalcified sample were scanned initially at low magnification and then at high magnification to identify vascular ‘hot-spots’ using the Optical Microscope imaging system (Zeiss). Selection of the hot-spot was adopted as a standard procedure for angiogenesis studies in both solid neoplasms and for hematological oncology49. It is thought that such areas of increased concentration of micro-vessels may represent the emergence of a neoplastic clone with a higher angiogenic potential50. For each countable micro-vessel, an outline was traced to calculate the total count of micro-vessels per total examined optical fields. For micro-vessel density defined as the number of micro-vessels per unit volume of tissue (PSA).
23. Zhang, G. et al. Epimedium-derived phytoestrogen exert beneficial effect on preventing steroid-associated osteonecrosis in rabbits with inhibition of both thrombosis and lipid-deposition. Bone 40, 685–92 (2007).

24. Qin, L. et al. Multiple bioimaging modalities in evaluation of an experimental osteonecrosis induced by a combination of lipopolysaccharide and methylprednisolone. Bone 39, 863–71 (2006).

Acknowledgments

We thank Dr. Ling Qin and Dr. James Griffith for discussion and providing technical support. This work was supported by the Hong Kong General Research Fund (12102914 and HKBU 478312), Interdisciplinary Research Matching Scheme (IRMS) of Hong Kong Baptist University (RC-IRMS/13-14/02 and RC-IRMS/13-14/03), the Science and Technology Innovation Commission of Shenzhen Municipality (SCTC-SC/01C), Natural Science Foundation Council (81272045 and 81471833), Technology Innovation Commission of Shenzhen Municipality (SCM-2013-SZTIC-001), Baptist University (RC-IRMS/13-14/02 and RC-IRMS/13-14/03), the Science and Technology Innovation Commission of Shenzhen Municipality (SCTC-SC/01C), Natural Science Foundation Council (81272045 and 81401833).

Author contributions

G.Z., A.P.L. and B.T.Z. designed the study; Y.X.H., J.L., B.S.G., Y.X.W., X.H.P., D.F.L. and T.T. conducted the experiment; Y.X.H., J.L., B.S.G. and S.L.P. analyzed the data; Y.X.H., J.L., B.S.G. wrote the manuscript; G.Z., A.P.L., B.T.Z., Z.C.L., Z.X.B., S.L.P. and Y.C. revised the manuscript; G.Z., A.P.L. and B.T.Z. approved final version of the manuscript and took responsibility for the integrity of the data.
Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: He, Y.-X. et al. Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits. Sci. Rep. 5, 8856; DOI:10.1038/srep08856 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/