Gamma-aminobutyric acid transaminase genetic polymorphism is a candidate locus for responsiveness to opioid analgesics in patients with cancer pain: An exploratory study

Yaeko Yokoshima1 | Masahiko Sumitani2 | Daisuke Nishizawa3 | Makoto Nagashima4 | Kazutaka Ikeda3 | Ryoji Kato4 | Jun Hozumi1 | Hiroaki Abe2 | Kenji Azuma2 | Rikuhei Tsuchida1 | Yoshitsugu Yamada1 | Japanese TR-Cancer Pain Research Groupa

1Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
2Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
3Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
4Department of Surgery, Toho University Medical Center, Sakura Hospital, Chiba, Japan

Correspondence
Masahiko Sumitani, Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan.
Email: sumitanim-ane@h.u-tokyo.ac.jp

Funding Information
Ministry of Health, Labour, and Welfare Science Research Grant, Grant/Award Number: H21-Cancer-011, H26-Cancer-060

Abstract
Aim: Cancer pain impairs not only physical functions but also social functions and roles. Consequently, the overall health-related quality of life of patients with cancer pain deteriorates. Opioid analgesics are recommended for treating moderate to strong cancer pain. Advances in human genome research have fueled a growing interest to understand individual differences in responsiveness to opioid analgesics. This study aimed to explore and identify novel loci for genes predisposing an individual to opioid analgesic responsiveness.

Methods: A total of 71 cancer patients rated their pain on an 11-point numerical rating scale twice before and after increasing opioid analgesics. A genomewide association study focusing on single nucleotide polymorphisms (SNPs) was conducted to associate pain decrease with increased dosage of opioid analgesics based on weight (ie, responsiveness to opioid analgesics). A genomewide significance ($P < 5E-8$) was set for multiplicity of analyses to control for false positives.

Results: Two SNPs passed the genomewide threshold for significance. One exonic SNP (rs1641025) was located in the ABAT [4-aminobutyrate aminotransaminase (GABA transaminase)] gene on chromosome 16. The other SNP (rs12494691) was located on chromosome 3, which was not associated with any known genes. These SNPs were not associated with opioid-related adverse effects.

Conclusions: Our results preliminarily suggest that both SNPs might be potential candidate loci for responsiveness to opioid analgesics, and GABA transaminase might be a possible target for developing adjuvant pharmacotherapy with opioid analgesics in adjuvant pharmacotherapy. Our results should be validated in a large-scale study with a larger sample size.

See Appendix for the Japanese TR-Cancer Pain Research Group.

© 2018 The Authors. Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsychopharmacology

Neuropsychopharmacology Reports. 2018;38:175–181.
1 | INTRODUCTION

Pain is one of the most frequent symptoms among patients with terminal cancer, and the pain-associated distress experienced by those with cancer pain can cause anxiety, depression, and changes in social functions. Indeed, not only physical functions but also social functions and roles have been found to be lower in patients with cancer pain than in the general population; as a result, their overall health and quality of life (QOL) are severely impaired.1 As antineoplastics (ie, chemotherapy, radiotherapy, and surgery) become aggressive, the time patients spend with advanced stage disease increases; thus, the treatment of cancer pain is a chronic process. In addition to the advanced and terminal cancer periods in which the prevalence rate of cancer pain is 64%, pain has been reported in 33% of patients just after curative treatment and 59% of patients during anticancer treatment.2 However, apart from patients with cancer who are terminally ill, sufficient analgesic supplementation is still not provided to more than half of patients with cancer who have received and just completed anticancer treatment.3 A systematic review on barriers hindering adequate cancer pain management revealed inadequate assessment of pain and pain management as well as inadequate knowledge of pain management of healthcare professionals.4 In particular, inadequate knowledge of opioid analgesics (eg, effective dose, upper limits, and the likelihood of addiction or tolerance) has been reported by many physicians and nurses.

Anecdotal variation in opioid analgesia seems to be a likely factor contributing to inadequate pain management. Some variations can be explained by genetic predisposition affecting either pain perception/processing or analgesic responses.5 For example, among genetic polymorphisms associated with altered pain perception and processing, a mu-opioid receptor single nucleotide polymorphism (SNP) [OPRM1 118A>G (rs1799971)] has been shown to be associated with a 0.8-fold decrease in pressure pain intensity among carriers.6 A previous study on OPRM1 118A>G has demonstrated the association between genetic polymorphisms and opioid analgesic responsiveness; patients with the minor allele homozygosity were found to require higher morphine doses (more than twofold) to achieve pain control.7 Associations between human pain-related genotypes and variability in opioid analgesia have been well investigated.8 Nevertheless, as most previous studies were based on Caucasian populations, this study aimed to explore and identify novel loci for genes predisposing an individual with cancer pain to opioid analgesic responsiveness in a non-Caucasian population. The results of this study will be useful in developing not only potential testing panels for specific patients who require higher opioid doses but also targeted pharmacotherapy for all cancer pain patients.

2 | METHODS

2.1 | Participants

This study was approved by the appropriate institutional review boards of the respective hospitals, and written informed consent was obtained from all participants. The inclusion criteria were as follows: (a) diagnosis of cancer pain (irrespective of the organ and pathology of malignant lesions), (b) measurable pain intensity on an 11-point numerical rating scale (NRS) (0 = no pain, 10 = worst possible pain), (c) pain duration >1 week (recorded at inclusion), and (d) age >20 years. Both opioid-naive patients and patients in opioid use (irrespective of duration of opioid medication and single dosages and daily times of on-demand opioid use) could participate in this study. The exclusion criteria were as follows: (a) patients with slight or more severe cognitive dysfunction, (b) patients with clinically relevant brain metastases, and (c) suspicion of an origin of pain other than from cancer. We evaluated their pain intensity (NRS) and opioid-induced complications (ie, nausea, vomiting, constipation, and somnolence) on a 5-point numerical rating scale (responses were scored as 0 = absence of symptoms, 1 = mild, 2 = moderate, 3 = severe, and 4 = very severe) twice before and after prescribing firstly or increasing opioid analgesics. There were no protocols how to increase opioid dosages, and the attending physicians who have expertise in cancer pain management increased opioid dosages for individual patients at their discretion. The second survey was conducted a day after increasing opioid dosages. Decreases in pain intensity and respective complications from the first survey to the second survey were expressed in percentage terms. We recorded the increased and total daily dosage of opioid analgesics based on weight [mean intravenous fentanyl-equivalent dose (mg/kg/day)] on the days of pain evaluation. We did not discriminate opioid-naive patients from patients having opioid medication and analyzed them together.

In the first evaluation, 90 patients [age, 58.4 ± 13.4 years (mean ± SD); female, 50; pain duration, 11.2 ± 18.8 months] were enrolled, and 71 of these patients participated in the second evaluation. Therefore, we analyzed these 71 patients in this study.

2.2 | Genotyping

Venous blood samples were collected from all of the participants. Genomic DNA was isolated from peripheral blood lymphocytes using a standard salting-out method. The DNA was whole-genome amplified, fragmented, denatured, and hybridized to a prepared Omni1-Quad BeadChip (Illumina, San Diego, CA, USA), which contained 1,140,419 markers. All 71 patients were genotyped using the Omni1-Quad BeadChip. Normalized bead-intensity data obtained for
additive model, but no SNPs were found under both dominant and recessive models. One SNP (rs1641025, \(P < 0.0204 \times 10^{-6} \)) was located in the ABAT [4-aminobutyrate amino transaminase (GABA transaminase)] gene on chromosome 16 (locus 8777531). The other SNP (rs12494691, \(P < 0.0392 \times 10^{-6} \)) was located on chromosome 3 (locus 16658827) which was not associated with any known genes. For the rs1641025 SNP of the ABAT gene (Table 1), the increased dosage and total daily dosage at the first survey of opioid analgesics based on weight were comparable among the three groups according to the genotype of the SNP (Kruskal-Wallis test, \(P = 0.11 \) and 0.11, respectively; Table 1). The pain intensity before increasing opioid analgesics was similar among the three groups (Kruskal-Wallis test, \(P = 0.93 \)). The Kruskal-Wallis test and subsequent post hoc Bonferroni test revealed a significant association between genotypes and opioid responsiveness for cancer pain (Kruskal-Wallis test, \(P < 0.001 \); Figure 2A). Opioid-induced complications were not associated with increased opioid analgesics among the three groups (Kruskal-Wallis test, \(P = 0.12 \)). The linkage disequilibrium pattern and the locus zoom of the rs1641025 SNP are demonstrated in Supporting Information Figure S1.

For the rs12494691 SNP (Table 1), decreases in pain intensity were significantly different (Kruskal-Wallis test, \(P < 0.0001 \); Figure 2B). In comparison with patients with major allele homozygosity and heterozygosity, those with minor allele homozygosity demonstrated a lower decrease in pain intensity after increasing opioid analgesics. Patients with major allele homozygosity improved more than those with heterozygosity. Among patients with the three genotypes, increased opioid dosage, total opioid dosage before increasing opioid analgesics, and pain intensity before increasing opioids were not significantly different. Opioid-induced complications were not associated with increased opioid analgesics among the three groups (Kruskal-Wallis test: nausea, \(P = 0.45 \); vomiting, \(P = 0.81 \); constipation, \(P = 0.85 \); somnolence, \(P = 0.39 \)).

The linkage disequilibrium pattern and the locus zoom of the rs12494691 SNP are demonstrated in Supporting Information Figure S2.

4 | DISCUSSION

The present exploratory investigation was, to our best knowledge, the first GWAS to investigate possible associations between SNPs and responsiveness to opioid analgesics for cancer pain in a non-Caucasian population. This exploratory study revealed the associations of the rs1641025 SNP (located on the ABAT gene encoding GABA transaminase) and rs12494691 SNP (which was not associated with any known genes). Our results preliminarily suggest that both SNPs might be potential candidate loci for responsiveness to opioid analgesics, and GABA transaminase might be a possible target for developing adjuvant pharmacotherapy with opioid analgesics.

The prevailing principle for cancer pain treatment is the World Health Organization (WHO) three-step analgesic ladder, and strong opioids are recommended as the most potent analgesics for moderate

3 | RESULTS

We conducted a GWAS by evaluating the association between SNPs and opioid analgesic responsiveness. Table 1 shows the characteristics of participants with cancer pain. Figure 1 shows the distribution of the \(P \) values of each SNP for all chromosomes (Manhattan plot). Two SNPs passed the genomewide significance (\(P = 5 \times 10^{-8} \)) in the
Table 1: Characteristics of participants with cancer pain treated with opioid analgesics

SNP	Gene	Location	Minor allele frequency	Genotype	Age (years)	Pain duration (months)	Total opioid dosage before increasing opioid analgesics (mg/kg/day)	Increased opioid dosage (mg/kg/day)	Cancer pain intensity
rs1641025	ABAT	Chromosome 16	0.27	Major allele homozygosity	59.3 ± 12.5	16.0 ± 24.7	2.9 ± 3.3	1.1 ± 1.5	60 ± 20
				Heterozygosity	5.2 ± 9.5	6.5 ± 17.7	4.3 ± 16.4	59 ± 17	2.6 ± 17
				Minor allele homozygosity	5.7 ± 16.2	8.0 ± 9.5	55.2 ± 100.0	57 ± 14	3.2 ± 19
rs12494691	(no gene)	Chromosome 3	0.2	Major allele homozygosity	61.0 ± 11.4	4.8 ± 8.0	0.7 ± 0.9	4.9 ± 17	0.6 ± 1.7
				Heterozygosity	5.6 ± 12.4	8.0 ± 9.5	55.2 ± 100.0	57 ± 14	3.2 ± 19
				Minor allele homozygosity	6.2 ± 16.0	10.0 ± 12.7	3.2 ± 1.7	56.7 ± 12	0.4 ± 0.3

Base position was indicated in the Omni1-Quad BeadChip (Illumina, San Diego, CA, USA). Genotype data were defined by the Genome Reference Consortium human build 38.p7 (GRCh38.p7).

4 Base position was indicated in the Omni1-Quad BeadChip (Illumina, San Diego, CA, USA). Genotype data were defined by the Genome Reference Consortium human build 38.p7 (GRCh38.p7).
specify whether the genetic variant of the ABAT gene upregulates or downregulates the function of GABA transaminase in the present study. GABA transaminase might be a possible target for developing adjuvant pharmacotherapy with opioid analgesics.

There are two major limitations of this study. One is, the number of enrolled patients was limited and the number of patients with homozygosity for the minor allele of these SNPs was also small. The other is, the peaks of the SNPs were stand-alone in both the Manhattan plot and the locus zooms (Supporting Information Figures S1 and S2), although they passed the genomewide threshold for significance to adjust for multiplicity of analyses. Both of these limitations could increase the possibility of false-positive results, and therefore, our results should be validated in a large-scale study with a larger sample size. Our present findings should be considered as exploratory or hypothesis-generating rather than hypothesis-testing, and we possibly suggest that genetic variants of the ABAT gene and
the other SNP are potential candidate markers for responsiveness to opioid analgesics for cancer pain, and GABA transaminase might be a suitable marker for concomitant use with opioids in adjuvant pharmacotherapy.

ACKNOWLEDGMENTS
We wish to thank the Japanese TR-Cancer Pain research group for their collaborative research.

CONFLICT OF INTEREST
Authors (M.S., D.N., K.I., Y.Y. and Japanese TR-Cancer Pain research Group) were supported by a Ministry of Health, Labour, and Welfare Science Research Grant (H21-Cancer-011 and H26-Cancer-060). The other authors declare no conflict of interest.

DATA REPOSITORY
The authors cannot make our data open to the public because of our institutional ethics committee policy.

APPROVAL OF THE RESEARCH PROTOCOL
This study was approved by our institutional ethics committee (G2804-3).

INFORMED CONSENT
We obtained written informed consent from all of the participants.

REGISTRY
This study has been registered in a public trial registry, University Medical Information Network (UMIN000008595).

ANIMAL STUDIES
N/A.

AUTHOR CONTRIBUTIONS
The manuscript has been read and approved by all authors. Yaeko Yokoshima analyzed data and wrote a manuscript. Masahiko Sumitani directed and conducted the whole study. Daisuke Nishizawa and Kazutaka Ikeda assisted the present genomewide association analyses. Makoto Nagashima and Ryoji Kato collected mainly collected samples of the patients and the Japanese TR-Cancer Pain research Group also collected samples. Jun Hozumi, Hiroaki Abe, Kenji Azuma, and Rikuhei Tsuchida assisted Yaeko Yokoshima and Masahiko Sumitani to analyze the data. Yoshitsugu Yamada supervised the study.

REFERENCES
1. Klepstad P, Borchgrevink PC, Kaasa S. Effects on cancer patients’ health-related quality of life after the start of morphine therapy. J Pain Symptom Manage. 2000;20:19–26.
2. Van den Beucken-van Everdingen MH, De Rijke JM, Kessels AG, et al. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol. 2007;18:1437–49.
3. Arslan D, Koca T, Akar E, Tural D, Ozdogan M. Cancer pain prevalence and its management. Asian Pac J Cancer Prev. 2014;15:8557–62.
4. Oldemmenger WH, Sillevis Smitt PAE, van Dooren S, Stoter G, van der Rijt CCD. A systematic review on barriers hindering adequate cancer pain management and interventions to reduce them: a critical appraisal. Eur J Cancer. 2009;45:1370–80.
5. Lortsch J, Geisslinger G. Current evidence for a modulation of nociception by human genetic polymorphisms. Pain. 2007;132:1–18.
6. Lortsch J, Stuck B, Hummel T. The human mu-opioid receptor gene polymorphism 118A>G decreases cortical activation in response to specific nociceptive stimulation. Behav Neurosci. 2006;120:1218–24.
7. Klepstad P, Rakvag TT, Kaasa S, et al. The 118 A>G polymorphism in the human mu-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant diseases. Acta Anaesthesiol Scand. 2004;48:1232–9.
8. Nielsen LM, Olesen AE, Branford R, Christrup LL, Sato H, Drewes AM. Association between human pain-related genotypes and variability in opioid analgesia: an updated review. Pain Pract. 2015;15:580–94.
9. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
10. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.
11. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–6.
12. Pruim RJ, Welch RP, Sanna S, et al. Regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7.
13. World Health Organization. Cancer pain relief: with guide to opioid therapy. 3rd ed. Geneva, Switzerland: World Health Organization; 1996.
14. Nishizawa D, Fukuda K, Kasai S, et al. Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol Psychiatry. 2014;19:55–62.
15. Chen P, Wang X, Xu C, et al. Association of polymorphisms of A260G and A386G in DAZL gene with male infertility: a meta-analysis and systemic review. Asian J Androl. 2016;18:96–101.
16. Wegerer M, Adena S, Pfennig A, et al. Variants within the GABA transaminase (ABAT) gene region are associated with somatosensory evoked EEG potentials in families at high risk for affective disorders. Psychol Med. 2013;43:1207–17.
17. Barnby G, Abbott A, Sykes N, et al. International Molecular Genetics Study of Autism Consortium, candidate-gene specific and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am J Hum Genet. 2005;76:950–66.
18. Zellhofer HU, Mohler H, Di Lio A. GABAergic analgesia: new insights from mutant mice and subtype-selective agonists. Trends Pharmacol Sci. 2009;30:397–402.

ORCID
Masahiko Sumitani http://orcid.org/0000-0002-3662-8217
Kazutaka Ikeda http://orcid.org/0000-0001-8342-0278
19. Buckett WR. Irreversible inhibitions of GABA transaminase induce antinociceptive effects and potentiate morphine. Neuropharmacology. 1980;19:715–22.

20. Goodman LS, Brunton LL, Chabner BA, Knollmann BC. Goodman & Gilman's the pharmacological basis of therapeutics. 12th ed. New York, NY: McGraw-Hill; 2011: p. 491.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Yokoshima Y, Sumitani M, Nishizawa D, et al. Japanese TR-Cancer Pain Research Group. Gamma-aminobutyric acid transaminase genetic polymorphism is a candidate locus for responsiveness to opioid analgesics in patients with cancer pain: An exploratory study. Neuropsychopharmacol Rep. 2018;38:175–181. https://doi.org/10.1002/npr2.12030

APPENDIX

Japanese TR-Cancer Pain Research Group: Yoshitsugu Yamada and Masahiko Sumitani (The University of Tokyo Hospital), Setsuro Ogawa (Nihon University), Seiji Hattori and Junko Takarada (Cancer Institute Hospital), Yasuhiro Fujiwara (National Cancer Center Hospital), Kazutaka Ikeda and Daisuke Nishizawa (Tokyo Metropolitan Institute of Medical Science), Munetaka Hirose (Hyogo College of Medicine), Toyoshi Hosokawa and Hiroshi Ueno (Kyoto Prefectural University of Medicine), Takashi Mashimo, Youichi Saitoh, and Yoichi Matsuda (Osaka University), Hiroshi Ueda (Nagasaki University), Makoto Nagashima and Ryoji Kato (Toho University Sakura Medical Center), Teruo Yamauchi and Hideko Yamauchi (St. Luke International Hospital), Nobutake Shimojo (Tsukuba University), Shigeru Saitoh and Makiko Yamada (Gunma University), Toshio Shimokawa (Wakayama College of Medicine), and Toru Ogata (National Rehabilitation Center for Persons with Disabilities).