Materials Requirements of High-Speed and Low-Power Spin-Orbit-Torque Magnetic Random-Access Memory

XIANG LI1,2 (Student Member, IEEE), SHY-JAY LIN3, MAHENDRA DC1, YU-CHING LIAO4, CHENGYANG YAO2, AZAD NAEEMI4 (Senior Member, IEEE), WILMAN TSAI3, AND SHAN X. WANG1,2 (Fellow, IEEE)

1Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
2Electrical Engineering, Stanford University, Stanford, CA 94305, USA
3Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu 300-75, Taiwan
4Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

CORRESPONDING AUTHORS: X. LI AND S. X. WANG (e-mail: xiangsli@stanford.edu; sxwang@stanford.edu)

This work was supported in part by NSF Center for Energy Efficient Electronics Science (E3S) and TSMC, and in part by ASCENT, One of Six Centers in JUMP, a Semiconductor Research Corporation Program Sponsored by DARPA. This paper is based on a paper entitled “Materials Requirements of High-Speed and Low-Power Spin-Orbit-Torque Magnetic Random-Access Memory,” presented at the 2019 IEEE S3S Conference.

ABSTRACT As spin-orbit-torque magnetic random-access memory (SOT-MRAM) is gathering great interest as the next-generation low-power and high-speed on-chip cache memory applications, it is critical to analyze the magnetic tunnel junction (MTJ) properties needed to achieve sub-ns, and \(\sim fJ\) write operation when integrated with CMOS access transistors. In this paper, a 2T-1MTJ cell-level modeling framework for in-plane type Y SOT-MRAM suggests that high spin Hall conductivity and moderate SOT material sheet resistance are preferred. We benchmark write energy and speed performances of type Y SOT cells based on various SOT materials experimentally reported in the literature, including heavy metals, topological insulators and semimetals. We then carry out detailed benchmarking of SOT material Pt, \(\beta\)-W, and Bi\(_x\)Se\(_{1-x}\) with different thickness and resistivity. We further discuss how our 2T-1MTJ model can be expanded to analyze other variations of SOT-MRAM, including perpendicular (type Z) and type X SOT-MRAM, two-terminal SOT-MRAM, as well as spin-transfer-torque (STT) and voltage-controlled magnetic anisotropy (VCMA)-assisted SOT-MRAM. This work will provide essential guidelines for SOT-MRAM materials, devices, and circuits research in the future.

INDEX TERMS Magnetic tunnel junction, spin hall effect, spin-orbit-torque, 2T-1MTJ.

I. INTRODUCTION
Spin-orbit-torque magnetic random-access memory (SOT-MRAM) is a promising candidate to achieve faster and more energy-efficient read and write operation compared with the current in-production spin-transfer-torque MRAM (STT-MRAM). Besides, SOT-MRAM promises higher endurance and less read disturbance than STT-MRAM, which gives it great potential as an on-chip cache replacing SRAM.

Experimentally, the most advanced STT-MTJ now can achieve 1 ns switching with a current density of 10-20 MA/cm\(^2\) in sub-50nm perpendicular magnetic tunnel junctions (MTJs) [1], [2]. While the best SOT-MTJ at the research front now can already achieve 0.5 ns switching with a current density of 10-20 MA/cm\(^2\) in sub-500nm in-plane MTJs [3]–[5]. When scaled-down, in-plane SOT-MTJ can potentially achieve sub-ns, and \(\sim fJ\) write operation. Though the in-plane SOT-MRAM suffers from a rather large cell size due to the aspect ratio needed to reach thermal stability and 3-terminal configuration required to perform separate write and read functions, [6] the 6T-SRAM cell size which is scaling down more slowly at advanced nodes is still much larger than the in-plane SOT-MRAM cell [7].
Recently, abundant materials research has demonstrated SOT material that can generate close to and larger than one charge-to-spin conversion efficiency (ξ_{ST}). Among the various SOT materials, a heavy metal such as Pt and W [8], [9], and topological materials such as Bi$_2$Se$_3$, Bi$_{0.5}$Sb$_{0.1}$, and WTe$_2$ are of particular interest [10]–[12]. Nevertheless, no work has integrated these materials into a practical CMOS transistor-MTJ cell and studied the write energy-delay performance. Thus, the write power and energy benchmarking conducted thus far [13]–[15] remain rather qualitative, ignoring the impact from the access transistor such as limited current drive and finite transistor resistance, as well as the interdependence of write energy and write speed especially at sub-ns timescale. A better understanding of this interdependence is critical for the overall optimization of cell-level SOT-MRAM performance.

In this paper, we first introduce the framework used to model the 2T-1MTJ cell, SOT-induced switching current, and current distribution along the write path. Then, using a simplified version of this framework, we show that the write energy-delay performance of the SOT-MRAM cell depends on two critical properties of the SOT layer, i.e., the spin Hall conductivity, and sheet resistance. Based on this simplified analysis, we propose guidelines to achieve sub-ns and \simfJ operation of SOT-MRAM. Next, we benchmark the write current and energy performance of various SOT materials reported in the literature based on the simplified framework. Last, we utilize the framework to explore the best thickness and resistivity of any given SOT material for the lowest write current and energy. Sputtered Pt, β-W, and Bi$_{3}$Se$_{(1-x)}$ are explored as they are compatible with industrial production. Compared with the original paper presented at the 2019 IEEE S3S Conference [16], this paper includes a new figure (Fig. 3 and Table 2) to better illustrate the switching current and energy dependence on SOT layer sheet resistance and spin Hall conductivity, as well as to benchmark the write current and energy performance of various SOT materials reported in literature. Besides, we discuss how to expand this 2T-1MTJ modeling framework to account for other variations of SOT-MRAM cell by including new cell designs, physical terms, or full-blown micromagnetic simulations (Section V).

II. 2T-1MTJ CELL ANALYSIS FRAMEWORK

Because the significant benefits of in-plane SOT-MRAM over STT-MRAM cell. BE, TE, WL, SL, and BL refer to bottom electrode, top electrode, word line, source line, bit line respectively. FL, RL, SAF refer to free layer, reference layer, and synthetic antiferromagnetic layer respectively.

(b) Equivalent circuit resistor model of the strong and weak write paths of 2T-1MTJ architecture. (c) Top view of SOT-MTJ sitting on top of the SOT material.

![Image](438x562 to 462x573)

![Image](438x600 to 462x612)

![Image](470x347), and the transistor (R_{FE}). We also consider the write current shunting effect due to the ferromagnetic free layer (FL) sitting on top of the SOT layer, as shown in Fig. 1(a) inset. We use a square-shaped SOT-MTJ to approximate the in-plane elliptical SOT-MTJ, as shown in Fig. 1(c). The easy axis lies in the y-direction, and no external magnetic field is required to switch the magnetization. We here call this type Y SOT-MRAM. We use the PTM model of high performance 20 nm FinFET NMOS as an access transistor in Cadence Virtuoso [22].

Next, we model the maximal current drive when the transistor is in series with R_{SOT+FL}. As seen in Fig. 1(b) and Fig. 2, this will result in different current drives when the SOT current polarity flips [23]. In the strong write path case, the V_{GS} value is close to V_{DD}, while in the weak write path case, the V_{GS} is smaller than V_{DD} due to the voltage drop on R_{SOT+FL}. Note that we use NMOS as it provides a larger current than PMOS. In later analysis, we will thus consider the weak write case only to determine how many FinFET fins are needed to perform writing.

To model the damping-like SOT-driven switching current and speed of the in-plane magnetized free layer (FL), we...
employ the same model used for STT-MTJ [24] with experimentally observed values as listed in Table 1 [4], [25]. First, switching current \(I_s = I_{01} \left[1 + \ln(\frac{\alpha}{\Delta})/\ln \left(\frac{t_0}{t_0} \right) \right] \), where \(\theta_0 = 1/\Delta \) is the initial angle of the magnetization with respect to the easy axis, \(t_s \) is the FL switching time, and \(t_0 \) is the FL characteristic relaxation time. Here, \(\Delta = w_{SOT} l_{FL} H_{K} M_S/2k_B T \), \(H_K = 8 \pi M_S / (w_{SOT}/l_{FL} - 1)/w_{SOT} \), and \(t_0 = (1+\alpha^2)/\alpha H_K \) [26]. Next, critical switching current is expressed as \(I_{01}^{a} = \frac{4}{\pi} \mu_0 M_{SFL} w_{SOT} \alpha (H_{c} + M_{eff})^{2}/\xi_{ST}^{2} \). Consistent with [4], [25], to reduce the critical switching current, we use a rather small FL effective magnetization field \(\mu_0 M_{eff} \) of 0.2T which results from a large perpendicular anisotropy field at the CoFeB/MgO interface. We caution that the damping constant value 0.01 is taken from [4] and might change with the SOT material conditions. Note that the \(\Delta \) value of 49 is sufficient for 128MB SRAM using error correction code (ECC) [27]. We must note that to simplify the analysis, we do not consider the effects of field-like torque and the Oersted field on the magnetization switching process. We will discuss these effects in Section V later.

Last, we consider the effect of shunting due to the free layer sitting on top of the SOT layer. Using a simple parallel resistor model to provide critical current \(I_c \) in the SOT channel, the shunting current flowing through the FL is \(I_{c} = \frac{\rho_{SOT}}{w_{SOT} l_{SOT}} I_s = \frac{R_{FL}}{R_{c}} I_s \), where \(R_c \) refers to sheet resistance. The write energy in the SOT + FL line is: \(E_{SW}^{SOT+FL} = (I_c + I_s)^2 \frac{\rho_{SOT}}{w_{SOT} l_{SOT}} I_s + I_c^2 \frac{\rho_{FL}}{w_{FL} l_{FL}} I_s + I_s^2 \frac{\rho_{SOT}}{w_{SOT} l_{SOT}} I_s \) and the write energy in the FinFET is \(E_{SW}^{FET} = I_s^2 \frac{R_{FL}}{R_{FL} l_{FL}} I_s \). In practice, the write current and energy will be higher if driving the FinFET at maximum current.

III. OPTIMIZATION OF SHEET RESISTANCE AND SPIN HALL CONDUCTIVITY

To simplify the analysis, we assume the thermal stability and cell size determine the FL properties. Then, we can write down \(I_{sw} (= I_s + I_c) \) and \(E_{sw} \) as a function of only two variables: apparent spin Hall conductivity \(\sigma_s^a = \xi_{ST} / \rho_{SOT} \) of the SOT layer, and SOT material sheet resistance \(\rho_{SOT}/\rho_{SOT} \):

\[
I_{sw} \propto \left(1 + \frac{R_{SOT}}{R_{FL}} \right) \frac{1}{\sigma_s^a R_{SOT}} = \frac{1}{\sigma_s^a R_{FL}} \left(1 + \frac{R_{FL}}{R_{SOT}} \right);
\]

\[
E_{SW}^{SOT+FL} \propto I_s^2 \left(\frac{1 + R_{SOT}/R_{FL}}{\sigma_s^a R_{SOT}} \right) a + b \frac{R_{SOT}}{R_{FL}} + b \); \]

\[
E_{SW}^{FET} \propto I_s^2 \frac{R_{FL}}{R_{FL} l_{FL}} I_s \]

where \(a = \xi_{ST} / \rho_{SOT}, b = I_s \rho_{SOT} \).

There are two scenarios here. First, when \(R_{FET} \gg R_{SOT+FL} \), \(E_{sw} \propto I_s^2 \). Hence, we only need to consider optimizing for \(I_{sw} \). As seen in Fig. 3(a), large \(\sigma_s^a \) and \(R_{SOT} \) are preferred. Taking experimental data for SOT materials in literature, as shown in Table 2, we then conduct a simplified analysis using the above equations. We see that materials with too small \(R_{SOT} (< 200 \Omega/\square) \), such as Pt, Ta, and Pt-based alloys, result in a sharp increase in \(I_{sw} \), thus too large transistor size. Meanwhile, too large \(R_{FL} \) (> 2000 \(\Omega/\square \)) deteriorates the FinFET current drive, as shown in Fig. 2, thus leading to larger transistor size. Note that though the \(I_{sw} \) reduces, the decrease in the current drive is more severe leading to an increase in transistor fin numbers.
Second, when $R_{FET} \ll R_{SOT+FL}$, the criteria of I_{sw} optimization are similar to above. As shown in Fig. 3(b), when $R_{SOT} \frac{\rho_{SOT}}{T_{SOT}} R_{FL} \sim 1000 \ \Omega/\square$, E_{SOT+FL}^{SW} is minimized. Similar to the first scenario, materials with too small R_{SOT}^2 (<200 Ω/\square) result in a sharp increase in E_{SOT+FL}^{SW}. But because E_{SOT+FL}^{SW} is inversely proportional to σ_s^2, a conductive SOT material such as Pt with very large σ_s can still maintain a low E_{SOT+FL}^{SW}, as seen in Fig. 3(b).

Hence, in both scenarios, the goal is to find a SOT material with large σ_s and moderate R_{SOT}^2 of 500 – 2000 Ω/\square.

It is worthwhile to discuss briefly here the different materials and experimental parameters chosen in Table 2 [5], [9]-[11], [13], [15], [19]-[21] [28]–[34]. First, the experimental ξ_{ST} and σ_s values were measured using various techniques, as shown in Table 2. Hence, care must be taken when comparing the SOT-related values across different materials. Then, for each material, the ρ_{SOT}, R_{SOT}, ξ_{ST}, and σ_s values all change with the material thickness. Here, we list three Bi$_x$Sb$_{1-x}$ thicknesses cases so as to illustrate the impact of thickness better, while we do not show the 4 and 6 nm Bi$_x$Sb$_{1-x}$ cases with R_{SOT}^2 larger than 4000 Ω/\square. We will model the influence of t_{SOT} for Pt, β-W, and sputtered Bi$_x$Se$_{1-x}$ in detail in the following section. Next, we illustrate both sputtered materials and other MBE-grown or exfoliated materials in Figure 3 and Table 2. In particular, MBE-grown Bi$_x$Sb$_{1-x}$ shows very promising SOT performance [12] but sputtered Bi$_x$Sb alloys show similar performance as other heavy metals or topological materials [33], [34]. Last, it is further worth noting that there are reports on SOT of topological insulator/light metal bilayers such as (Bi$_{1-x}$Sb)$_2$Te$_3$/Ti, Bi$_2$Te$_3$/Mo, SnTe/Ti, and Bi$_2$Se$_3$/Mo [14], [35]. To simplify the analysis based on the single-layer SOT material/FL model, we do not include these bilayers in this work.

IV. BENCHMARKING WITH SEVERAL SOT MATERIALS

Based on the above framework, we model a 2T-1MTJ cell with several representative SOT materials, including Pt, β-W, and sputtered Bi$_x$Se$_{1-x}$. Using the model parameters listed in Table 1, we find the R_{FET} on the range of 5 kΩ dominates over R_{SOT+FL}, as shown in Fig. 2 and Table 3. Hence, the write energy in the transistor E_{FET}^{sw} also dominates over that in the SOT and FL E_{SOT}^{SW}. For heavy metal, we need to consider the effect of spin diffusion length λ_s: $\xi_{ST} = \theta_{ST}[1 – sech(t_{SOT}/\lambda_s)]$, where λ_s is the spin diffusion length of the SOT material, and θ_{ST} is the effective spin-torque efficiency when all spins diffuse into the FL adjacent to the SOT layer. From [5], we use a typical σ_s (=θ_{ST}/ρ_{SOT}) and λ_s value for β-W as listed in Table 3. Note that experimentally ρ_{SOT} can be tuned by sputtering conditions and remains relatively constant within a range of t_{SOT} [5]. We assume that σ_s
does not change over a limited range of ρ_{SOT} and t_{SOT}. Hence, we model ξ_{ST}, I_{sw}, E^{FET}_{SW}, E^{SOT+FL}_{SW} based on two independent variables ρ_{SOT} and t_{SOT}. As shown in Fig. 4(a-c), we obtain ξ_{ST}, fin number needed to provide I_{sw}, and E^{SOT+FL}_{SW} at switching speed of 0.5 ns. As $E^{FET}_{SW} \propto I_{sw}^2$, the E^{FET} dependence on ρ_{SOT} and t_{SOT} is similar to the fin number.

Similarly, we use published heavy metal Pt σ_y value and $\lambda_y \propto 1/\theta_{ST}$ relationship according to the Elliott-Yafet spin relaxation mechanism [8]. Though Pt has a higher σ_y than β-W, its much lower ρ_{SOT}, thus R_{SOT} value results in higher I_{sw} and E^{FET}_{SW}, while fin number of 2 can only be achieved when Pt is very resistive (relatively larger ρ) as shown in the insets of Fig. 4(d-f) and Table 3. Note that the higher σ_y^* of Pt brings down $E^{SOT+FL}_{SW}(\propto 1/\sigma_y^* g^2)$ compared with β-W.

For sputtered Bi$_x$Se$_{(1-x)}$, spin diffusion length cannot be defined because its resistivity and band structures change drastically as a function of thickness [10]. Hence, we can only plot a certain range of ρ_{SOT}, t_{SOT} as shown in Fig. 4(d-f), instead of the full 2D matrix as in the heavy metal case. As discussed above, 15 nm is preferred for low I_{sw} resulting from a tradeoff between the shunting factor and σ_y^*. Its relatively low σ_y^* results in around 2 times higher E^{SOT+FL}_{SW} (10.2 fJ) than that of Pt/β-W (3.7/2.7 fJ), as shown in Table 3.

Compared with Pt and Bi$_x$Se$_{(1-x)}$, β-W’s lower I_{sw} gives rise to the lowest E^{FET}_{SW}, thus the best cell-level write energy performance. This illustrates again that as transistor resistance dominates the total cell resistance, optimizing for write current directly translates into lowest cell-level write energy.

V. DISCUSSION

Last, we discuss how to expand our 2T-1MTJ modeling framework to study several variations of SOT-MRAM in addition to the type Y SOT-MRAM with a 2T-1MTJ cell above.

First, there are two additional types of SOT-MRAM: i.e., perpendicular SOT-MRAM (referred to as type Z) and in-plane SOT-MRAM with easy axis aligned in parallel to the current direction (referred to as type X). Note that the in-plane SOT-MRAM discussed above has an easy axis aligned orthogonal to the current direction (referred to as type Y) [25]. As discussed in this work, if we only consider the effect of damping-like SOT, in type Z and type X devices, the damping-like SOT needs to overcome the magnetic anisotropy barrier without any precession, whereas, in type Y device, the damping-like SOT only needs to balance the damping constant, thus resulting in switching via multiple precessions [36]. Hence, the critical switching current of type Y is much lower than type X and type Z. Though experimentally, this is true, only considering damping-like SOT is not sufficient for all three types of SOT-MRAM. For type Y, micromagnetic simulations indicate that the Oersted field might contribute to a much faster switching without incubation delay [37], which cannot be explained by the damping-like SOT-driven macrospin switching used in our model above. While for type X and type Z, experiments and micropin simulations, show that field-like torque can assist the switching and lower the switching current [25], [38]. To account for these caveats mentioned above, micromagnetic simulations considering Oersted field, field-like SOT, and damping-like SOT are required.

Second, to enable high-density and low-cost MRAM for cache applications with sub-ns write performance, it is highly desirable to build a two-terminal SOT-MRAM with one single access transistor. Recently, one experimental work shows that, indeed, SOT can drive magnetization switching in a two-terminal MRAM cell consisting of a perpendicular MTJ sitting on top of a Ta SOT channel [39]. More detailed micromagnetic simulations are needed to fully understand the impact of non-uniform current distribution at the MTJ/SOT channel cross-section on SOT-driven switching. Besides, it is crucial to consider the effect of STT in this two-terminal scheme, which can lower the SOT switching current, as well as facilitate deterministic switching in type X and type Z devices [38]. We can employ the well-known STT-induced switching current equations [24].

Third, utilizing the effect of voltage-controlled magnetic anisotropy (VCMA) can help temporarily lower the energy barrier during SOT switching, thereby further reducing the
write current and energy [40]. We can model this VCMA-assisted SOT switching by including the VCMA-induced change of perpendicular magnetic anisotropy into the above model. Also, VCMA that lowers the energy barrier for both voltage polarities [41] can assist SOT switching in the two-terminal scheme mentioned above.

VI. CONCLUSION
In this paper, we first introduce a 2T-1MTJ modeling framework, including practical transistor loading, SOT-induced switching, and current shunting of free layer over the SOT layer. The simplified framework shows that large spin Hall conductivity σ_s and moderate sheet resistance R_{SO} of 500 – 2000 Ω/\square are preferred for low switching current and energy. Using this framework, we benchmark the write current and energy performance of SOT-MRAM cells using SOT materials experimentally reported in the literature including heavy metals, topological insulators, and semimetals. A detailed benchmarking based on this framework further suggests β-W is a promising SOT material candidate for high-speed and low-power SOT-MRAM. We last discuss possible extensions beyond this 2T-1MTJ modeling framework for the modeling and design of various families of SOT-MRAM devices, circuits, and systems in the future.

ACKNOWLEDGMENT
The authors would like to thank Daniel Villamizar and Joseph Little for technical help.

REFERENCES
[1] H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno, “Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/MgO recording structure,” Appl. Phys. Lett., vol. 101, no. 2, 2012, Art. no. 022414.
[2] L. Thomas et al., “STT-MRAM devices with low damping and moment optimized for LLC applications at Ox nodes,” in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2018, pp. 1–4.
[3] A. V. Khvalkovskiy et al., “Efforts: Basic principles of SRT-MRAM cell operation in memory arrays,” J. Electron Devices Soc., vol. 8, pp. 1–5, 2020, doi: 10.1109/JEDS.2020.2984610.
[4] N. H. D. Khang, Y. Ueda, and P. N. Hai, “A conductive topological insulator/Mo/CoFeB/MgO spin-orbit torque memory with perpendicular magnetic anisotropy,” in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2017, pp. 1–4.
[5] L. Zhu, K. Sobottkiewich, X. Ma, X. Li, D. C. Ralph, and R. A. Buhrman, “Strong damping-like spin-orbit torque and tunable Dzyaloshinskii–Moriya interaction generated by low-resistivity Pd1-xPtx alloys,” Adv. Functional Mater., vol. 29, no. 16, 2019, Art. no. 1805822.
[6] X. Li et al., “Materials requirements of high-speed and low-power spin-orbit-torque magnetic random-access memory,” IEEE J. Electron Devices Soc., early access, Mar. 31, 2020, doi: 10.1109/JEDS.2020.2984610.
[7] H. Lee, A. Lee, F. Ebrahimi, P. K. Amiri, and K. L. Wang, “Array-level analysis of magneto-electric random-access memory for high-performance embedded applications,” IEEE Magn. Lett., vol. 8, pp. 1–5, 2017, doi: 10.1109/LMAG.2017.2693963.
[8] G. Jan et al., “Demonstration of ultra-low voltage and ultra low power SOT-MRAM work, including practical transistor loading, SOT-induced switching, and current shunting of free layer over the SOT layer,” in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2016, pp. 1–2.
[9] S. Shi, Y. Ou, S. V. Aradhya, D. C. Ralph, and R. A. Buhrman, “Spin-torque switching with the giant spin Hall effect of tantalum,” Science, vol. 356, no. 6081, pp. 555–558, May 2012.
[10] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring sub-20nm FinFET design with predictive technology models,” in Proc. Design Autom. Conf. (DAC), 2012, pp. 283–288.
[11] S. Fukami, T. Anekawa, C. Zhang, Z. Chaoliang, and H. Ohno, “A sub-nano three-terminal spin-orbit torque induced switching device,” in Proc. IEEE Symp. VLSI Technol., 2016, pp. 1–2.
[12] L. Thomas et al., “Verification of hybrid memory technologies using SOT-MRAM for on-chip cache hierarchy,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 3, pp. 367–380, Mar. 2015.
[13] F. Oberoi, R. Vishnoi, M. Ebrahimi, and M. B. Tahaoui, “Evaluation of hybrid memory technologies using SOT-MRAM for on-chip cache hierarchy,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 3, pp. 367–380, Mar. 2015.
[14] G. Jan et al., “Demonstration of ultra-low voltage and ultra low power STT-MRAM designed for compatibility with 0x node embedded LLC applications,” in Proc. IEEE Symp. VLSI Technol., 2018, pp. 65–66.
[15] M.-H. Nguyen, D. C. Ralph, and R. A. Buhrman, “Spin torque study of the spin hall conductivity and spin diffusion length in platinum thin films with varying resistivity,” Phys. Rev. Lett., vol. 116, no. 12, Mar. 2016, Art. no. 126601.
[16] C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, “Spin transfer torque devices utilizing the giant spin hall effect of tungsten,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. 122404.
[17] M. De et al., “Room-temperature high spin-orbit torque due to quantum confinement in sputtered BixSe(1-x) films,” Nat. Mater., vol. 17, no. 9, pp. 800–807, Sep. 2018.
[32] Y. Kato et al., “Improvement of write efficiency in voltage-controlled spintronic memory by development of a Ta-B spin hall electrode,” *Phys. Rev. Appl.*, vol. 10, no. 4, Oct. 2018, Art. no. 044011.

[33] Z. Chi, Y.-C. Lau, X. Xu, T. Ohkubo, K. Hono, and M. Hayashi, “The spin hall effect of Bi-Sb alloys driven by thermally excited dirac-like electrons,” 2019. [Online]. Available: https://arxiv.org/abs/1910.12433

[34] T. Gao, Y. Tazaki, A. Asami, H. Nakayama, and K. Ando, “Semimetallic bulk generated spin-orbit torques in disordered topological insulator,” 2019. [Online]. Available: https://arxiv.org/abs/1911.00413

[35] H. Wu et al., “Room-temperature spin-orbit torque from topological surface states,” *Phys. Rev. Lett.*, vol. 123, no. 20, Nov. 2019, Art. no. 207205.

[36] K.-S. Lee, S.-W. Lee, B.-C. Min, and K.-J. Lee, “Threshold current for switching of a perpendicular magnetic layer induced by spin hall effect,” *Appl. Phys. Lett.*, vol. 102, no. 11, 2013, Art. no. 112410.

[37] S. V. Aradhya, G. E. Rowlands, J. Oh, D. C. Ralph, and R. A. Buhrman, “Nanosecond-timescale low energy switching of in-plane magnetic tunnel junctions through dynamic oersted-field-assisted spin hall effect,” *Nano Lett.*, vol. 16, no. 10, pp. 5987–5992, Oct. 2016.

[38] M. Wang et al., “Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques,” *Nat. Electron.*, vol. 1, no. 11, pp. 582–588, Nov. 2018.

[39] N. Sato, F. Xue, R. M. White, C. Bi, and S. X. Wang, “Two-terminal spin–orbit torque magnetoresistive random access memory,” *Nat. Electron.*, vol. 1, no. 9, pp. 508–511, Sep. 2018.

[40] L. Liu, C.-F. Pai, D. Ralph, and R. Buhrman, “Gate voltage modulation of spin-hall-torque-driven magnetic switching,” 2012. [Online]. Available: https://arxiv.org/abs/1209.0962

[41] T. Nozaki et al., “Voltage-induced magnetic anisotropy changes in an ultrathin FeB layer sandwiched between two MgO layers,” *Appl. Phys. Exp.*, vol. 6, no. 7, 2013, Art. no. 073005.