Impact of intraoperative blood loss on survival after curative resection for gastric cancer

Yue-Xiang Liang, Han-Han Guo, Jing-Yu Deng, Bao-Gui Wang, Xue-Wei Ding, Xiao-Na Wang, Li Zhang, Han Liang

Yue-Xiang Liang, Jing-Yu Deng, Bao-Gui Wang, Xue-Wei Ding, Xiao-Na Wang, Li Zhang, Han Liang, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
Yue-Xiang Liang, Jing-Yu Deng, Bao-Gui Wang, Xue-Wei Ding, Xiao-Na Wang, Li Zhang, Han Liang, Department of Gastric Cancer, Tianjin Medical University Cancer institute and hospital, Tianjin 300060, China
Han-Han Guo, Department of Cardiovascular Surgery, the First Hospital of Tianshui City, Tianshui 741000, Gansu Province, China

Author contributions: Liang YX, Guo HH and Liang H performed the majority of the study; Guo HH, Deng JY, Wang BG, Ding XW, Wang XN and Zhang L designed the study and analyzed data; Liang YX, Guo HH, Wang BG and Liang H wrote the manuscript; Wang BG, Deng JY, Ding XW and Wang XN revised the manuscript.

Correspondence to: Dr. Han Liang, Department of Gastric Cancer, Tianjin Medical University Cancer institute and hospital, Huanhuxi Road, Hexi District, Tianjin 300060, China. tjlianghan@sohu.com

Telephone: +86-22-23340123 Fax: +86-22-23340123
Received: May 16, 2013 Revised: July 10, 2013
Accepted: July 17, 2013
Published online: September 7, 2013

Abstract

AIM: To elucidate the potential impact of intraoperative blood loss (IBL) on long-term survival of gastric cancer patients after curative surgery.

METHODS: A total of 845 stage I-III gastric cancer patients who underwent curative gastrectomy between January 2003 and December 2007 in our center were enrolled in this study. Patients were divided into 3 groups according to the amount of IBL: group 1 (< 200 mL), group 2 (200-400 mL) and group 3 (> 400 mL). Clinicopathological features were compared among the three groups and potential prognostic factors were analyzed. The Log-rank test was used to assess statistical differences between the groups. Independent prognostic factors were identified by the Cox proportional hazards regression model. Stratified analysis was used to investigate the impact of IBL on survival in each stage. Cancer-specific survival was also compared among the three groups by excluding deaths due to reasons other than gastric cancer. Finally, we explored the possible factors associated with IBL and identified the independent risk factors for IBL ≥ 200 mL.

RESULTS: Overall survival was significantly influenced by the amount of IBL. The 5-year overall survival rates were 51.2%, 39.4% and 23.4% for IBL less than 200 mL, 200 to 400 mL and more than 400 mL, respectively (< 200 mL vs 200-400 mL, P < 0.001; 200-400 mL vs > 400 mL, P = 0.003). Age, tumor size, Borrmann type, extranodal metastasis, tumour-node-metastasis (TNM) stage, chemotherapy, extent of lymphadenectomy, IBL and postoperative complications were found to be independent prognostic factors in multivariable analysis. Following stratified analysis, patients staged TNM I-II and those with IBL less than 200 mL tended to have better survival than those with IBL not less than 200 mL, while patients staged TNM III, whose IBL was less than 400 mL had better survival. Tumor location, tumor size, TNM stage, type of gastrectomy, combined organ resection, extent of lymphadenectomy and year of surgery were found to be factors associated with the amount of IBL, while tumor location, type of gastrectomy, combined organ resection and year of surgery were independently associated with IBL ≥ 200 mL.

CONCLUSION: IBL is an independent prognostic factor for gastric cancer after curative resection. Reducing IBL can improve the long-term outcome of gastric cancer patients following curative gastrectomy.

© 2013 Baishideng. All rights reserved.

Key words: Gastric carcinoma; Intraoperative blood loss; Blood transfusion; Postoperative complication; Prognosis
The surgical and pathological data of 845 patients with gastric cancer patients after curative surgery in a single high-volume center in China. We suggest that meticulous surgery and new surgical methods such as the application of an ultrasonic scalpel in lymph node dissection should be used to decrease the amount of IBL and improve the long-term outcome of gastric cancer patients following curative gastrectomy.

INTRODUCTION
Radical gastrectomy with regional lymph node dissection is the only possible curative treatment for gastric cancer[1]. Even after R0 resection, a significant number of patients suffer from recurrence, especially those with advanced gastric cancer[2-4]. Tumor depth and lymph node status are well-known prognostic factors, and patient age and performance status have also been reported to have an impact on the long-term outcome of patients[5,6]. Besides these factors, a number of potential prognostic factors have been reported in recent years, such as perioperative blood transfusion and intraoperative blood loss (IBL)[8-11].

The impact of IBL on long-term outcome has previously been reported in patients with colorectal cancer, prostate cancer and pancreas cancer[12-14]. However, there are few reports assessing the relationship between IBL and long-term outcome in gastric cancer patients. Dhar et al[8] reported that more than 500 mL blood loss during surgery was an independent predictor of survival in gastric cancer patients with transmural depth invasion. Kamei et al[9] demonstrated that IBL was a crucial risk factor for peritoneal recurrence after curative resection for advanced gastric cancer. Unfortunately, the numbers of patients included in these aforementioned studies were small, and no further meticulous analysis was performed to explore the correlation between the prognosis of gastric cancer patients and the accurate amount of IBL.

The aim of the present study is to elucidate the potential impact of IBL on the long-term survival of gastric cancer patients after curative surgery in a single high-volume center in China.

MATERIALS AND METHODS

Patients
The surgical and pathological data of 845 patients with gastric cancer who had undergone curative gastrectomy (R0 resection) with lymph node dissection and had been followed up between January 2003 and December 2007 at Tianjin Medical University Cancer Institute and Hospital were reviewed in this study. All the patients had been histologically diagnosed with adenocarcinoma of the stomach. Patients who previously underwent gastric surgery or received preoperative chemotherapy were excluded. Patients with distant metastasis were also excluded. The study population consisted of 845 patients, 607 males (71.8%) and 238 females (28.2%) with a median age of 62 years (range, 23-89 years).

Surgical treatment and perioperative management
All the patients underwent gastrectomy with D1 or D2 lymph node dissection. The choice of surgical procedure for reconstruction was made by the surgeon. Resection margin was pathologically confirmed as negative. Postoperative adjuvant chemotherapy was administered according to tumor stage, physical condition and the patient’s willingness. Chemotherapeutics consisted of 5-fluorouracil, leucovorin and oxaliplatin. Radiotherapy was not administered in the present study.

IBL was visually estimated according to the weight or volume of blood absorbed by gauze and suction pump by anesthesiologists immediately after surgery. We obtained this information from anesthesia records. IBL ranged from 50 to 1500 mL and the median IBL was 200 mL for the whole group. The patients were divided into 3 groups according to the amount of IBL: group 1 (< 200 mL), group 2 (200-400 mL) and group 3 (> 400 mL). The entire transfusion history during hospital stay for surgery was recorded. Patients whose perioperative hemoglobin was less than 70 g/L or who lost a lot of blood during surgery were routinely given a red blood cell transfusion. Of the 845 patients, 211 had a perioperative red blood cell transfusion, and the remaining 634 did not receive a transfusion. Postoperative complications during hospitalization only included these directly associated with surgery, such as hemorrhage, wound dehiscence, anastomotic leak, pancreatic fistula, lymphatic fistula and abdominal or wound infection.

Evaluation of clinicopathological variables and survival
The clinicopathological features studied included gender, age, tumor location, tumor size, Borrmann type, histology, extranodal metastasis (EM), type of gastrectomy, combined organ resection, postoperative chemotherapy, tumour-node-metastasis (TNM) stage, extent of lymphadenectomy, postoperative complications, perioperative transfusion, and IBL. Clinicopathological features were first compared among the three groups and the impact of each factor on survival was evaluated to identify independent prognostic factors. We next determined whether IBL influenced cancer-specific survival by comparing overall survival among the three groups by excluding deaths due to reasons other than gastric cancer. Finally, we explored the possible factors associated with IBL and identified
Table 1 Case characteristics \(n \) (%)

Characteristics	IBL (mL)	\(\chi^2 \)	\(P \) value
IBL (mean ± SD)			
Gender			
Male	269 (70.2)	285 (71.6)	53 (71.8)
Female	114 (29.8)	113 (28.4)	11 (28.2)
Age (yr)			
\(< 65\)	230 (60.1)	227 (57.0)	32 (50.0)
\(\geq 65\)	153 (39.9)	171 (43.0)	32 (50.0)
Tumor location			
Lower 1/3	205 (53.5)	148 (37.2)	14 (21.9)
Middle 1/3	36 (9.4)	41 (10.3)	6 (9.4)
Upper 1/3	98 (25.6)	164 (41.2)	34 (53.1)
2/3 or more	44 (11.5)	45 (11.3)	10 (15.6)
Tumor size			
\(< 5\) cm	180 (47.0)	155 (38.9)	13 (20.3)
\(\geq 5\) cm	203 (53.0)	243 (61.1)	51 (79.7)
Borrmann type			
I / II	169 (44.1)	153 (38.4)	33 (51.6)
II / III	214 (55.9)	245 (61.6)	31 (48.4)
Histology			
Differenced	121 (31.6)	139 (34.9)	21 (32.8)
Undifferenced	262 (68.4)	259 (65.1)	43 (67.2)
Extramodal metastasis			
Positive	59 (15.4)	71 (17.8)	14 (21.9)
Negative	824 (44.6)	327 (62.2)	50 (78.1)
Depth of invasion			
pT1	14 (3.7)	11 (2.8)	0 (0.0)
pT2	53 (13.8)	44 (11.1)	0 (0.0)
pT3	21 (5.5)	28 (7.0)	6 (9.4)
pT4	295 (77.0)	315 (79.1)	58 (90.6)
Lymph node metastasis			
pN0	173 (45.2)	146 (36.7)	19 (29.7)
pN1	56 (14.6)	82 (20.6)	9 (14.1)
pN2	85 (22.2)	87 (21.9)	15 (23.4)
pN3	69 (18.0)	83 (20.9)	21 (32.8)
TNM stage			
I	53 (13.8)	43 (10.8)	0 (0.0)
II	132 (34.5)	118 (29.6)	19 (29.7)
III	198 (51.7)	237 (59.9)	43 (70.3)
Chemotherapy			
Yes	104 (27.2)	119 (29.9)	14 (21.9)
No	279 (72.8)	279 (70.1)	50 (78.1)
Type of gastrectomy			
Total	51 (13.3)	117 (29.4)	24 (37.5)
Subtotal	332 (86.7)	281 (70.6)	40 (62.5)
Combined organ resection			
Yes	16 (4.2)	38 (9.5)	13 (20.3)
No	367 (95.8)	360 (90.5)	51 (79.7)
Extent of lymphadenectomy			
D2 and D2+	189 (49.3)	188 (47.2)	20 (31.3)
D1	194 (50.7)	210 (52.8)	44 (68.8)
Postoperative complications			
Present	20 (5.2)	34 (8.5)	9 (14.1)
Absent	363 (94.8)	364 (91.5)	55 (85.9)

IBL: Intraoperative blood loss; TNM: Tumour-node-metastasis.
Prognostic value of IBL in gastric cancer

Data from univariate and multivariate survival analyses are shown in Table 2. A total of 14 factors evaluated in the univariate analysis had a significant effect on survival: age (≤ 65 years vs > 65 years), tumor location, tumor size, Borrmann type (types I and II vs types III and IV), histology, EM, TNM stage, postoperative chemotherapy, type of gastrectomy, combined organ resection, extent of lymphadenectomy, IBL, perioperative transfusion and postoperative complications. Gender did not influence survival. In multivariate analysis, age, tumor size, Borrmann type, EM, TNM stage, postoperative chemotherapy, extent of lymphadenectomy, postoperative complications and IBL were found to be independent prognostic factors for overall survival (OS). The 5-year OS rates were 51.2%, 39.4% and 23.4% for IBL < 200, 200-400, and > 400 mL, respectively, (< 200 mL vs 200-400 mL, \(P < 0.001 \); 200-400 mL vs > 400 mL, \(P = 0.001 \) (Figure 1A). When deaths due to factors other than gastric cancer were excluded, cancer-specific survival was still sig-

Table 2 Survival analysis of all patients with gastric cancer

Characteristics	n (%)	5-yr OS	Univariate analysis	Multivariate analysis		
			\(\chi^2 \)	\(P \) value	HR (95%CI)	\(P \) value
Gender						
Male	607 (71.8)	42.20%	1.609	0.205		
Female	238 (28.2)	47.10%				
Age (yr)						
< 65	489 (57.9)	50.10%	21.037	< 0.001	1 (ref)	
> 65	356 (42.1)	36.40%	1.372 (1.140-1.652)	0.001		
Tumor location						
Lower 1/3	367 (43.4)	50.10%	1 (ref)			
Middle 1/3	83 (9.8)	45.80%	0.978 (0.680-1.407)	0.905		
Upper 1/3	296 (35.0)	39.50%	0.931 (0.741-1.169)	0.538		
2/3 or more	99 (11.7)	29.30%	1.149 (0.832-1.586)	0.398		
Tumor size						
< 5 cm	348 (41.2)	57.80%	58.693	< 0.001	1 (ref)	
≥ 5 cm	497 (58.8)	33.60%	1.411 (1.152-1.730)	0.001		
Borrmann type						
I / II	355 (42.0)	50.40%	13.517	< 0.001	1 (ref)	
III / IV	490 (58.0)	38.60%	1.285 (1.062-1.556)	0.010		
Histology						
Differentiated	281 (33.3)	49.80%	6.783	0.009		
Undifferentiated	564 (66.7)	40.40%	1.151 (0.939-1.412)	0.176		
Extranodal metastasis						
Negative	701 (83.0)	47.50%	52.773	< 0.001	1 (ref)	
Positive	144 (17.0)	24.50%	1.543 (1.236-1.925)	< 0.001		
TNM stage						
I	96 (11.4)	82.30%	147.103	< 0.001	1 (ref)	
II	269 (31.8)	58.40%	2.253 (1.363-3.727)	0.002		
III	480 (56.8)	27.50%	4.736 (2.896-7.740)	< 0.001		
Chemotherapy						
Yes	237 (28.0)	50.60%	10.999	0.001	1 (ref)	
No	608 (72.0)	40.80%	1.357 (1.093-1.684)	0.006		
Extent of lymphadenectomy						
D2 and D2+	397 (47.0)	48.40%	6.668	0.010	1 (ref)	
D1	448 (53.0)	39.30%	1.372 (1.126-1.671)	0.002		
Type of gastrectomy						
Subtotal	653 (77.3)	47.00%	21.400	< 0.001	1 (ref)	
Total	192 (22.7)	31.80%	1.102 (0.849-1.430)	0.466		
Combined organ resection						
No	778 (92.1)	44.60%	10.310	0.001	1 (ref)	
Yes	67 (7.9)	51.30%	1.116 (0.811-1.536)	0.501		
Intraoperative blood loss						
< 200 mL	383 (45.3)	51.20%	29.175	< 0.001	1 (ref)	
200-400 mL	398 (47.1)	39.40%	1.242 (1.017-1.516)	0.033		
> 400 mL	64 (7.6)	23.40%	1.590 (1.140-2.217)	0.006		
Perioperative transfusion						
No	634 (75.0)	45.70%	6.145	0.013	1 (ref)	
Yes	211 (25.0)	37.00%	0.962 (0.748-1.180)	0.708		
Postoperative complications						
Absent	782 (92.5)	44.90%	28.320	< 0.001	1 (ref)	
Present	65 (7.5)	27.00%	2.096 (1.525-2.881)	< 0.001		

OS: Overall survival; TNM: Tumour-node-metastasis.

patients in group 1.

Prognostic value of IBL in gastric cancer

Data from univariate and multivariate survival analyses are shown in Table 2. A total of 14 factors evaluated in the univariate analysis had a significant effect on survival: age (≤ 65 years vs > 65 years), tumor location, tumor size, Borrmann type (types I and II vs types III and IV), histology, EM, TNM stage, postoperative chemotherapy, type of gastrectomy, combined organ resection, extent of lymphadenectomy, IBL, perioperative transfusion and postoperative complications. Gender did not influence survival. In multivariate analysis, age, tumor size, Borrmann type, EM, TNM stage, postoperative chemotherapy, extent of lymphadenectomy, postoperative complications and IBL were found to be independent prognostic factors for overall survival (OS). The 5-year OS rates were 51.2%, 39.4% and 23.4% for IBL < 200, 200-400, and > 400 mL, respectively, (< 200 mL vs 200-400 mL, \(P < 0.001 \); 200-400 mL vs > 400 mL, \(P = 0.001 \) (Figure 1A). When deaths due to factors other than gastric cancer were excluded, cancer-specific survival was still sig-
In patients with TNM stage less than 200 mL had significantly better survival than those with IBL ≥ 200 mL or more than 400 mL (Figure 3B). For patients staged TNM II, OS did not differ significantly between those with IBL less than 200 mL and 200-400 mL, while there were no statistical differences in OS between those with IBL 200-400 mL and more than 400 mL (Figure 3B). For patients staged TNM III, OS did not differ significantly between those with IBL less than 200 mL and 200-400 mL, however, these patients had significantly higher 5-year OS than those with IBL more than 400 mL (Figure 3C).

Risk factors associated with IBL

Univariate analysis of factors associated with the amount of IBL is shown in Table 4. Following one-way ANOVA analysis or t-test, tumor location, tumor size, TNM stage, type of gastrectomy, combined organ resection, extent of lymphadenectomy and year of surgery were found to be significant factors associated with the amount of IBL. Factors which had no influence on IBL were gender, age, Borrmann type, histology, and EM. As patients with IBL less than 200 mL had the best survival, we further identified the independent risk factors for IBL ≥ 200 mL. Factors significant in the univariate analysis were included in the multivariate analysis. Tumor location, type of gastrectomy, combined organ resection and year of surgery were found to be independent risk factors for IBL ≥ 200 mL in the multivariate analysis (Table 5).

Table 3 Tumour-node-metastasis-stratified analysis of the overall survival

TNM	Group 1	Group 2	Group 3	χ²	P
I	53 88.7	43 74.4	42.1	4.538	0.037
II	132 68.2	118 50.0	45 15.6	10.763	0.005
III	198 29.6	237 27.8	8.035	0.018	

Group 1	Group 2	Group 3	χ²	P	
A: IBL < 200 mL, transfusion (−)	307	76	327	135	0.279
B: IBL < 200 mL, transfusion (+)	0.001				
C: IBL ≥ 200 mL, transfusion (−)	0.006				
D: IBL ≥ 200 mL, transfusion (+)	0.001				

| Table 3 Tumour-node-metastasis-stratified analysis of the overall survival

n	5-yr OS	n	5-yr OS	n	5-yr OS	χ²	P
TNM I	53 88.7	43 74.4	42.1	4.538	0.037		
II	132 68.2	118 50.0	45 15.6	10.763	0.005		
III	198 29.6	237 27.8	8.035	0.018			
DISCUSSION

The prognosis of gastric cancer is mainly associated with tumor depth and lymph node status\(^5\). To improve the outcome of gastric cancer, standard surgery with D2 lymph node dissection is recommended\(^\text{[5,16]}\). However, even after curative gastrectomy with D2 dissection, the prognosis remains poor. In the present study, we evaluated the potential prognostic factors and found that IBL was significantly associated with the survival of patients operated.

Table 4 Association between clinicopathologic factors and the amount of intraoperative blood loss: univariate analysis

Characteristics	n (%)	Amount of IBL (mL) (mean ± SD)	t/F	P value
Gender				
Male	607	191.4 ± 128.6	1.770	0.097
Female	238	175.2 ± 92.5	-1.128	0.260
Age (yr)				
≤ 65	489	182.9 ± 121.8	12.455	<0.001
> 65	336	192.3 ± 116.7	0.128	0.599
Tumor location				
Lower 1/3	367	160.9 ± 87.8	0.128	0.592
Middle 1/3	83	179.5 ± 103.0	0.592	0.592
Upper 1/3	296	213.2 ± 127.5	-0.592	0.592
2/3 or more	99	210.6 ± 177.5	0.128	0.592
Tumor size				
< 5 cm	348	166.7 ± 92.8	-0.128	0.873
≥ 5 cm	497	200.9 ± 133.7	0.128	0.873
Borrmann type				
I / II	355	187.5 ± 127.0	0.128	0.899
III / IV	490	186.4 ± 114.3	0.128	0.899
Histology				
Differentiated	281	185.9 ± 107.7	-0.160	0.873
Undifferentiated	564	187.3 ± 125.3	-0.160	0.873
Extramedal metastasis				
Negative	701	184.9 ± 119.7	-1.040	0.299
Positive	144	196.3 ± 119.6	-1.040	0.299
TNM stage				
I	96	154.2 ± 67.1	4.974	0.007
II	269	183.3 ± 135.9	-5.329	<0.001
III	480	195.4 ± 117.1	-5.963	<0.001
Type of gastrectomy				
Subtotal	653	173.8 ± 102.3	-5.329	<0.001
Total	192	231.2 ± 158.1	-5.329	<0.001
Combined organ resection				
Absent	778	180.5 ± 110.9	-2.676	0.008
Present	67	260.4 ± 180.0	-2.676	0.008
Extent of lymphadenectomy				
D2 and D2+	397	175.2 ± 95.4	2.501	0.001
D1	448	197.2 ± 136.9	2.501	0.001
Year of surgery				
2003-2005	489	195.1 ± 133.6	-2.494	0.013
2006-2007	356	174.3 ± 97.6	-2.494	0.013

Table 5 Multivariate analysis of risk factors for intraoperative blood loss ≥ 200 mL

Feature	HR	95% CI	P value
Tumor location			
Upper 1/3 vs 2/3 vs lower and middle 1/3	1.717	1.272-2.317	<0.001
Tumor size			
≥ 5 cm vs < 5 cm	1.129	0.833-1.513	0.434
TNM stage			
I vs II	1.174	0.872-1.580	0.290
Extent of gastrectomy			
D1 vs D2 and D2+	1.161	0.860-1.566	0.330
Type of gastrectomy			
Total vs subtotal	2.501	1.707-3.663	<0.001
Combined organ resection			
Present vs absent	1.996	1.089-3.659	0.025
Year of surgery			
2003-2005 vs 2006-2007	1.452	1.080-1.954	0.014

TNM: Tumour, node, metastasis; IBL: Intraoperative blood loss.

Figure 3 Overall survival curves. A: 96 patients staged tumour-node-metastasis (TNM) I; B: 269 patients staged TNM II; C: 480 patients staged TNM III. IBL: Intraoperative blood loss.
with gastric cancer after curative resection.

IBL has been reported to be associated with the prognosis of many malignant tumors[12-14], Mölner\textit{ et al.}[15] reported that the degree of IBL in colon cancer influenced long-term survival. In their study, blood loss of 250 mL or more during surgery was a risk factor for overall mortality in both univariate and multivariate analyses. Nagai\textit{ et al.}[16] demonstrated that IBL greater than 2000 mL was related to poor prognosis in patients with pancreatic cancer. These authors suggested that successful curative resection with limited blood loss can contribute to improved survival. With regard to gastric cancer, few studies have focused on IBL. Dhar\textit{ et al.}[17] reported that IBL more than 500 mL was an independent prognostic factor. Kamei\textit{ et al.}[18] demonstrated that the cumulative survival rate was significantly lower in patients with IBL ≥ 475 mL than in patients with IBL < 475 mL (P = 0.0038), and IBL was a critical risk factor for peritoneal recurrence after curative resection of advanced gastric cancer. Our data are consistent with those results and strongly suggest that IBL, rather than transfusion, was an independent prognostic factor for gastric cancer after curative resection.

In previous studies, blood loss of 475 or 500 mL was proposed as a threshold for prognostic significance[10,11]. To date, no study has conducted a detailed statistical analysis by classifying patients into groups based on the level of IBL during resection for gastric cancer. When the thresholds were set at 200 and 400 mL, the OS was significantly affected based on a comparison between these 3 groups. The 5-year OS rates were 51.2\%, 39.4\% and 23.4\% for IBL < 200 mL, 200-400 mL and > 400 mL, respectively (< 200 mL vs 200-400 mL, P < 0.001; 200-400 mL vs > 400 mL, P = 0.003; < 200 mL vs > 400 mL, P < 0.001). Even when deaths due to factors other than gastric cancer were excluded, the differences in cancer-specific survival among the three groups were still significant. This clearly demonstrated the negative influence of IBL on survival after curative gastrectomy. Pathological stage is assumed to be the most important prognostic factor for gastric cancer following curative gastrectomy. Therefore, we stratified patients by TNM stage. Even after stratification, the same trend, i.e., better outcomes in patients with a small amount of IBL, was still observed in each stage. Thus, reducing IBL in resectable gastric cancer may provide further improvements in survival. According to the results of the present study, for patients staged TNM I and II, IBL should be controlled within 200 mL to achieve a better outcome. In patients staged TNM III, IBL should be no more than 400 mL.

Blood transfusion is needed when performing complex surgery with a large amount of IBL. Although many studies[19-25] have confirmed that perioperative blood transfusion leads to poor outcome in gastric cancer, some studies[26-28] do not support this. In the present study, perioperative transfusion was a prognostic factor, but not an independent prognostic factor in the multivariate analysis. When the influence of IBL was excluded, OS did not differ significantly between patients with and without transfusion, although 5-year OS was higher in patients without transfusion than in patients with transfusion if the IBL was similar. However, when excluding the influence of transfusion, patients whose IBL was less than 200 mL had significantly better survival than those with IBL of 200 mL or more. The effect of IBL on survival was more pronounced than that of red blood transfusion.

It is still unclear why IBL affects the long-term outcome of patients. It is thought that excessive IBL reduces the body’s immunity and thus its ability to fight cancer cells[29]. In a study conducted by Bruns\textit{ et al.}[10], IBL more than 700 mL following gastrointestinal surgery was associated with a significant decrease in natural killer cell activity, producing an unfavorable effect on patient survival. However, the degree of immune suppression was not assessed in this study. This should be examined in a future trial to clarify whether patients with excessive IBL have severe immune suppression resulting in a poor overall survival rate. Another possible explanation is that IBL is associated with peritoneal recurrence which leads to poor survival. It has been reported that operative blood loss is an independent risk factor for peritoneal recurrence of curatively resectable advanced gastric cancer[30]. In open abdominal surgery, most operative blood loss accumulates in the abdominal cavity, and thus, the peritoneal surface is considered to have direct contact with blood components. As extravascular blood cells, such as leukocytes and platelets, are activated, they may produce a number of soluble factors that may produce a favorable microenvironment for malignant cells. In fact, activated neutrophils, macrophages, and platelets are capable of producing a large amount of angiogenic factors, such as vascular endothelial growth factor, on the peritoneal surface, which is critical for the survival of isolated cancer cells[28,29]. Unfortunately, recurrence data was not obtained in our study.

IBL has been shown to be correlated with postoperative complications[30]. In the present study, the incidence of postoperative complications increased when the amount of IBL was high. Previous studies have affirmed the negative influence of postoperative complications on survival for many malignancies[31-35]. Sierzego\textit{ et al.}[35] reported that anastomotic leakage was an independent prognostic factor for gastric adenocarcinoma following total gastrectomy. Tokunaga\textit{ et al.}[35] found that postoperative intra-abdominal infectious complications had an adverse effect on 5-year OS and relapse-free survival rate. Our results were in accordance with those reports and showed that the presence of postoperative complications was an independent prognostic factor for OS. As a higher rate of complications was associated with a larger amount of IBL, we consider that the difference in the incidence of postoperative complications among the three groups was a possible contributing factor to the survival difference among the three groups.

As IBL is an independent prognostic factor and patients with IBL less than 200 mL had the best outcome,
it is necessary to explore the potential factors influencing IBL and to develop new surgical methods to reduce IBL. It is obvious that IBL could be affected by the type of gastrectomy and combined organ resection. Patients with tumors located in the upper 1/3 or more than 2/3 the area usually undergo a total gastrectomy or combined spleen resection, which may result in a larger amount of IBL. Lymph node dissection is considered to be a complex procedure and can easily lead to bleeding, especially dissection of the lymph nodes around the celiac trunk. We have used an ultrasonic scalpel for lymph node dissection of gastric cancer since 2006. Ultrasonic surgical devices have been reported to provide advantages in terms of operative time and blood loss\(^\text{[36,37]}\). A study conducted by Inoue K and colleagues showed that blood loss was significantly lower in patients using ultrasonic scalpel than in those not using the ultrasonic scalpel (median 351.0 mL vs 569.5 mL; \(P = 0.016\))\(^{[38]}\). From this point of view, it is actually the application of the ultrasonic scalpel that leads to reduced IBL rather than the year, although year of surgery was found to be an independent risk factor for IBL in the present study.

In conclusion, IBL was found to be an independent prognostic factor for gastric cancer after curative resection. It can be used to stratify the risk for gastric cancer prognosis. Meticulous surgery is needed and new methods should be considered to decrease the amount of IBL and improve the long-term outcome of patients following curative gastrectomy.

COMMENTS

Background

Intraoperative blood loss (IBL) has been shown to be associated with poor outcome in various types of malignancy. However, the relationship between the amount of IBL and outcome of gastric cancer is still unclear.

Research fronts

IBL cannot be avoided in surgery. Excessive blood loss may result in more postoperative complications and poorer prognosis. Research has shown the negative association between IBL and prognosis of many malignancies. Few researchers have focused on IBL during resection of gastric cancer. In this study, the authors demonstrated that IBL was an independent prognostic factor for gastric cancer after curative resection.

Innovations and breakthroughs

Many studies have affirmed that perioperative blood transfusion leads to poor outcome in gastric cancer. However, when performing complex surgery, blood transfusion is required due to a large amount of IBL, which was also reported to have an adverse effect on survival. The impact of IBL on survival may be confounded by blood transfusion. This study evaluated the prognostic value of both factors on survival in gastric cancer patients after curative resection and found that IBL influenced the prognosis of gastric cancer rather than blood transfusion.

Applications

By understanding the negative association between the amount of IBL and prognosis of gastric cancer, this study may stimulate surgeons to pay attention to decreasing the amount of IBL during curative gastrectomy.

Terminology

IBL is the amount of blood loss during surgery which is visually estimated by anesthesiologists immediately after surgery. Extramedul metastasis was defined as the presence of tumor cells in extramedul soft tissue that was discontinuous with either the primary lesion or locoregional lymph nodes.

Peer review

The IBL and perioperative transfusion have been the topics concerned by surgeons. And IBL has been shown to be associated with poor outcome in various types of malignancy. This study shows that IBL is an independent prognostic factor for gastric cancer patients after curative resection. This conclusion has some significance for guiding clinical work.

REFERENCES

1. Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM. Gastric adenocarcinoma: review and considerations for future directions. *Ann Surg* 2005; 241: 27-39 [PMID: 15621988]

2. Maehara Y, Hasuda S, Koga T, Tokunaga E, Kakeji Y, Sugimachi K. Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. *Br J Surg* 2000; 87: 353-357 [PMID: 10718807 DOI: 10.1046/j.1365-2168.2000.01358.x]

3. Shiraiishi N, Inomata M, Osawa N, Yasuda K, Adachi Y, Kitano S. Early and late recurrence after gastrectomy for gastric carcinoma. Univariate and multivariate analyses. *Cancer* 2000; 89: 255-261 [PMID: 10918153]

4. Adachi Y, Oshiro T, Mori M, Maehara Y, Sugimachi K. Prediction of early and late recurrence after curative resection for gastric carcinoma. *Cancer* 1996; 77: 2445-2448 [PMID: 8640961]

5. Maruyama K, Kaminishi M, Hayashi K, Isobe Y, Honda I, Kaitai H, Arai K, Koder Y, Nashimoto A. Gastric cancer treated in 1991 in Japan: data analysis of nationwide registry. *Gastric Cancer* 2006; 9: 51-66 [PMID: 16767357 DOI: 10.1007/s10120-006-0370-y]

6. Isobe Y, Nashimoto A, Akazawa K, Oda I, Hayashi K, Miyashiro I, Kaitai H, Tsujitami S, Koder Y, Seto Y, Kaminishi M. Gastric cancer treatment in Japan: 2008 annual report of the JGCA nationwide registry. *Gastric Cancer* 2011; 14: 301-316 [PMID: 21894577 DOI: 10.1007/s10120-011-0085-6]

7. Sierzega M, Kolodziejczyk P, Kulig J. Impact of anastomotic leakage on long-term survival after total gastrectomy for carcinoma of the stomach. *Br J Surg* 2010; 97: 1035-1042 [PMID: 20632269 DOI: 10.1002/bjs.7038]

8. Hyung WJ, Noh SH, Shin DW, Huh J, Huh BJ, Choi SH, Min JS. Adverse effects of perioperative transfusion on patients with stage III and IV gastric cancer. *Ann Surg Oncol* 2002; 9: 5-12 [PMID: 11829431 DOI: 10.1245/aso.2002.9.1.5]

9. Ojima T, Iwahashi M, Nakamori M, Nakamura M, Nakata T, Katsuda M, Iida T, Hayata K, Yamaue H. Association of allo- geneic blood transfusions and long-term survival of patients with gastric cancer after curative gastrectomy. *J Gastrointest Surg* 2009; 13: 1821-1830 [PMID: 19655208 DOI: 10.1016/j.jgia.2009.0047-9]

10. Dhar DK, Kubota H, Tachibana M, Kotok T, Tabara H, Watanabe R, Kohno H, Nagase N. Long-term survival of transmural advanced gastric carcinoma following curative gastrectomy: multivariate analysis of prognostic factors. *World J Surg* 2000; 24: 588-593; discussion 593-594 [PMID: 10787082 DOI: 10.1007/s00268910099]

11. Kameti T, Kitayama J, Yamashita H, Nagawa H. Intraoperative blood loss is a critical risk factor for peritoneal recurrence after curative resection of advanced gastric cancer. *World J Surg* 2009; 33: 1240-1246 [PMID: 19308640 DOI: 10.1007/s00268-009-9979-4]

12. Mörner ME, Gunnarsson U, Jestin P, Svanfeldt M. The importance of blood loss during colon cancer surgery for long-term survival: an epidemiological study based on a population based register. *Ann Surg* 2012; 255: 1126-1128 [PMID: 22498893 DOI: 10.1097/SLA.0b013e318251d260]

13. Nagai S, Fujii T, Koder Y, Kanda M, Sahin TF, Kanazaki A, Yamada S, Sugimoto H, Nomoto M, Takeda S, Morita S, Nakao A. Impact of operative blood loss on survival in invasive ductal adenocarcinoma of the pancreas. *Pancras* 2011; 40: 3-9 [PMID: 20881897 DOI: 10.1007/MPEJ.0b013e3181f17447]

14. Oefelein MG, Colangelo LA, Rademaker AW, McVary KT.
Intraoperative blood loss and prognosis in patients undergoing radical retroperitoneal prostatectomy. J Urol 1995; 154: 442-447 [PMID: 7609106]

Sasako M, Sano T, Yamamoto S, Kurokawa Y, Nashimoto A, Kurita A, Hiratsuka M, Tsujinaka T, Kinoshita T, Arai K, Yamamura Y, Okajima K. D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N Engl J Med 2008; 359: 453-462 [PMID: 18669424 DOI: 10.1056/NEJMoa0707035]

Songun I, Putter H, Kransberg EM, Sasako M, van de Velde CJ. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol 2010; 11: 439-449 [PMID: 20409751 DOI: 10.1016/S1470-2045(10)70070-X]

Dhar DK, Kubota H, Tachibana M, Kotoh T, Kinugasa S, Shibakita M, Kohno H, Nagasue N. A tailored perioperative blood transfusion might avoid undue recurrences in gastric carcinoma patients. Dig Dis Sci 2000; 45: 1737-1742 [PMID: 11052313]

Kaneda M, Horimi T, Ninomiya M, Nagae S, Mukai K, Takeda I, Shimoyama H, Chouho S, Okabayashi T, Kagawa S. Adverse effect of blood transfusions on survival of patients with gastric cancer. Transfusion 1987; 27: 375-377 [PMID: 3629666 DOI: 10.1046/j.1537-2995.1987.27s7320526.x]

Fong Y, Karpeh M, Mayer K, Brennan MF. Association of perioperative transfusions with poor outcome in resection of gastric adenocarcinoma. Am J Surg 1994; 167: 256-260 [PMID: 8135315 DOI: 10.1016/0002-9610(94)90087-6]

Maeta M, Shimizu N, Oka A, Kondo A, Yamashiro H, Tsujitani S, Ikeguchi M, Kaibara N. Perioperative allogeneic blood transfusion exacerbates surgical stress-induced postoperative immunosuppression and has a negative effect on prognosis in patients with gastric cancer. J Surg Oncol 1995; 54: 149-153 [PMID: 8176923 DOI: 10.1002/jso.2930550304]

Miki C, Hiro J, Ojima E, Inoue Y, Mohri Y, Kusunoki M. Perioperative allogeneic blood transfusion, the related cytokine response and long-term survival after potentially curative resection of colorectal cancer. Clin Oncol (R Coll Radiol) 2006; 18: 60-66 [PMID: 16477921]

Kampschör GH, Maruyama K, Sasako M, Kinoshita T, van de Velde CJ. The effects of blood transfusion on the prognosis of patients with gastric cancer. World J Surg 1989; 13: 637-643 [PMID: 2683404 DOI: 10.1007/BF01688991]

Moriguchi S, Maehara Y, Akazawa K, Sugimachi K, Nose Y. Lack of relationship between perioperative blood transfusion and survival time after curative resection for gastric cancer. Cancer 1990; 66: 2331-2335 [PMID: 2245388]

Choi JH, Chung HC, Yoo NC, Lee HR, Lee KH, Kim JH, Roh JK, Min JS, Lee KS, Kim BS. Perioperative blood transfusions and prognosis in patients with curatively resected locally advanced gastric cancer. Oncology 1995; 52: 170-175 [PMID: 7854780 DOI: 10.1159/000227432]

Bortul M, Calligaris L, Roseano M, Leggeri A. Blood transfusions and results after curative resection for gastric cancer. Suppl Tumori 2003; 2: S27-S30 [PMID: 12194386]

Sánchez-Bueno F, García-Marcilla JA, Pérez-Abad JM, Vicente R, Aranda F, Lujan JA, Parrilla P. Does perioperative blood transfusion influence long-term prognosis of gastric cancer? Dig Dis Sci 1997; 42: 2072-2076 [PMID: 9365137]

Bruns CJ, Schäfer H, Wollgarten B, Engert A. Effect of intraoperative blood loss on the function of natural killer cells in tumors of the upper gastrointestinal tract. Langenbecks Arch Surg 1996; 113: 146-149 [PMID: 9101816]

McCourt W, Wang JH, Sookhai S, Redmond HP. Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg 1999; 134: 1325-1331; discussion 1331-1332 [PMID: 10593330 DOI: 10.1001/archsurg.134.12.1325]

Seo KH, Ko HM, Choi JH, Jung HH, Chun YH, Choi IW, Lee HK, Im SY. Essential role for platelet-activating factor-induced NF-kappaB activation in macrophage-derived angiogenesis. Eur J Immunol 2004; 34: 2129-2137 [PMID: 15259010 DOI: 10.1002/eji.200424957]

Sah BK, Zhu ZG, Chen MM, Chen J, Yan M, Lin YZ. Effect of surgical work volume on postoperative complication: superiority of specialized center in gastric cancer treatment. Langenbecks Arch Surg 2009; 394: 41-47 [PMID: 18584204 DOI: 10.1007/s00423-008-0358-7]

Branagan G, Finnis D. Prognosis after anastomotic leakage in colorectal surgery. Dis Colon Rectum 2005; 48: 1021-1026 [PMID: 15789125 DOI: 10.1017/s0010508406002163]

Bell SW, Walker KG, Rickard MJ, Sinclair G, Dent OF, Chapuis PH, Bokey EL. Anastomotic leakage after curative anterior resection results in a higher prevalence of local recurrence. Br J Surg 2003; 90: 1261-1266 [PMID: 14515297 DOI: 10.1002/bjs.4219]

Hirai T, Yamashita Y, Mukaida H, Kuwahara M, Inoue H, Toge T. Poor prognosis in esophageal cancer patients with postoperative complications. Surg Today 1998; 28: 576-579 [PMID: 9681604 DOI: 10.1007/s005900500187]

Rizk NP, Bach PB, Schrag D, Bains MS, Turnbull AD, Karpeh M, Brennan MF, Rusch VW. The impact of complications on outcomes after resection for esophageal and gastroesophageal junction carcinoma. J Am Coll Surg 2004; 198: 42-50 [PMID: 14698510 DOI: 10.1016/j.jamcollsurg.2003.08.007]

Tokunaga M, Tanizawa Y, Bando E, Kawamura T, Terrashima M. Poor survival rate in patients with postoperative intra-abdominal infectious complications following curative gastrectomy for gastric cancer. Ann Surg Oncol 2013; 20: 1575-1583 [PMID: 23076557 DOI: 10.1245/s10434-012-2720-9]

Litta P, Fantinato S, Calonaci F, Cosmi E, Filippeschi M, Zerbetto I, Petraglia F, Florio P. A randomized controlled study comparing harmonic versus electrosurgery in laparoscopic myomectomy. Fertil Steril 2010; 94: 1882-1886 [PMID: 19819439 DOI: 10.1016/j.fertnstert.2009.08.049]

Targaron DM, Balague C, Marin J, Neto RB, Martinez C, Garriga J, Trías M. Energy sources for laparoscopic colectomy: a prospective randomized comparison of conventional electrosurgery, bipolar computer-controlled electrosurgery and ultrasonic dissection. Operative outcome and costs analysis. Surg Innov 2009; 12: 339-344 [PMID: 16624055 DOI: 10.1177/1553350609340249]

Bornstein RF, Greengen RP, Leone DJ, Galley DJ. Defense mechanism correlates of orality. J Am Acad Psychiatry 1999; 18: 654-666 [PMID: 2283344 DOI: 10.1007/s11605-012-1970-y]

P-Reviewers Hajifathalian K, Ji JF, Mann O S-Editor Gou SX L-Editor A E-Editor LJ
