Summary: In this paper we study topological properties of maps constructed by Thimm’s trick with Guillemin and Sternberg’s action coordinates on a connected Hamiltonian G-manifold M. Since these maps only generate a Hamiltonian torus action on an open dense subset of M, convexity and fibre-connectedness of such maps does not follow immediately from Atiyah-Guillemin-Sternberg’s convexity theorem, even if M is compact. The core contribution of this paper is to provide a simple argument circumventing this difficulty.

In the case where the map is constructed from a chain of subalgebras we prove that the image is given by a list of inequalities that can be computed explicitly in many examples. This generalizes the fact that the images of the classical Gelfand-Zeitlin systems on coadjoint orbits are Gelfand-Zeitlin polytopes. Moreover, we prove that if such a map generates a completely integrable torus action on an open dense subset of M, then all its fibres are smooth embedded submanifolds.

MSC:
53D20 Momentum maps; symplectic reduction

Keywords:
Hamiltonian G-manifold; Hamiltonian torus action; Gelfand-Zeitlin systems; coadjoint orbits

Full Text: DOI arXiv

References:
[1] I. Alamiddine, \textit{Géométrie de systèmes hamiltoniens intégrables: Le cas du systemème de Gelfand-Cetlin}, PhD thesis, Université Toulouse, 2009.
[2] Alekseev, A.; Malkin, A.; Meinrenken, E., Lie group valued moment maps, J. Differential Geom., 48, 445–495, (1998) · Zbl 0948.53045 · doi:10.4310/jdg/1214460860
[3] Atiyah, MF, Convexity and commuting Hamiltonians, Bull. London Math. Soc., 14, 1-15, (1982) · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[4] Audin, Michèle, Symplectic Manifolds, 43-69, (2004), Basel · Zbl 1148.53030 · doi:10.1007/978-3-0348-7960-6
[5] V. Baldoni, M. Vergne, \textit{Multiplicity of compact group representations and applications to Krönecker coefficients}, arXiv:1506.02472v1 (2015).
[6] Berenstein, A.; Sjamaar, R., Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc., 13, 433-466, (2000) · Zbl 0979.53092 · doi:10.1090/S0894-0347-00-00327-1
[7] Birtea, P.; Ortega, J-P; Ratiu, TS, A local-to-global principle for convexity in metric spaces, J. Lie Theory, 18, 445-469, (2008) · Zbl 1148.53030
[8] Birtea, P.; Ortega, J-P; Ratiu, TS, Openness and convexity for momentum maps, Trans. Amer. Math. Soc., 2, 603-630, (2009) · Zbl 1183.53053
[9] Bjornhái, C.; Karshon, Y., Revisiting Tietze-Nakajima: local and global convexity for maps, Canad. J. Math., 62, 975-993, (2010) · Zbl 1198.53094 · doi:10.4153/CJM-2010-052-5
[10] D. Bouloc, \textit{Singular fibres of the bending flows on the moduli space of 3d polygons}, arXiv:1505.04748 (2015) · Zbl 1431.53091
[11] A. Caviedes Castro, \textit{Upper bound for the Gromov width of coadjoint orbits of compact Lie groups}, arXiv:1404.4674v4 (2014) · Zbl 1353.53091
[12] M. Condevaux, P. Dazord, P. Molino, \textit{Géométrie du moment}, Travaux du Séminaire Sud-Rhodanien de Géométrie, I, Publ. Dép. Math. Nouvelle Sér. B, Vol. 88, Univ. Claude-Bernard, Lyon, 1988, pp. 131-160.
[13] Delzant, T., Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France, 116, 315-339, (1988) · Zbl 0676.58029 · doi:10.24033/bsmf.1200
[14] X. Fang, P. Littelmann, M. Pabiniak, \textit{Simplexes in Newton-Okounkov bodies and the Gromov width of coadjoint orbits}, arXiv:1607.01163 (2016) · Zbl 1400.14118
[15] H. Flaschka, T. Ratiu, \textit{A convexity theorem for Poisson actions of compact Lie groups}, Ann. Sci. École Norm. Sup. (4) \textbf{29} (1996), no. 6, 787-809. · Zbl 0877.58025 · doi:10.24033/asens.1754
[16] Gromov, M., Pseudo holomorphic curves in symplectic manifolds, Inventiones Mathematicae, 82, 307-347, (1985) - Zbl 0592.53025 · doi:10.1007/BF01388806
[17] Gualtieri, V.; Sternberg, S., Convexity properties of the moment mapping, Invent. Math., 67, 491-513, (1982) - Zbl 0503.58017 · doi:10.1007/BF01398933
[18] Gualtieri, V.; Sternberg, S., The Gel'fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal., 52, 106-128, (1983) - Zbl 0522.58021 · doi:10.1016/0022-1236(83)90092-7
[19] Gualtieri, V.; Sternberg, S., On collective complete integrability according to the method of Thimm, Ergodic Theory Dynam. Systems, 3, 219-230, (1983) - Zbl 0511.58024 · doi:10.1017/S0143385700001930
[20] Gualtieri, V.; Sternberg, S., Multiplicity free spaces, J. Differential Geom., 19, 31-56, (1984) - Zbl 0548.58017 · doi:10.4310/jdg/1214384422
[21] V. Gualtieri, Sh. Sternberg, \textit{Symplectic Techniques in Physics}, Cambridge University Press, Cambridge, 1984. - Zbl 0576.58012
[22] I. Halacheva, M. Pabiniak, \textit{The Gromov width of coadjoint orbits of the symplectic group}, arXiv:1601.02825 (2016). - Zbl 06862826
[23] J.-C. Hausmann, A. Knutson, \textit{Polygon spaces and Grassmannians}, Enseign. Math. (2) \textbf{43} (1997), no. 1-2, 173-198. - Zbl 0888.58007
[24] Harada, M., \textit{The symplectic geometry of the Gel'fand-Cetlin-Molev basis for representations of} Sp(2n\mathbb{R}), J. Symplectic Geom., 4, 1-41, (2006) - Zbl 1105.53055 · doi:10.4310/jsg.2006.v4.n1.a1
[25] Harada, M.; Kaveh, K., Integrable systems, toric degenerations and Okounkov bodies, Invent. Math., 202, 927-985, (2015) - Zbl 1348.141122 · doi:10.1007/s00222-014-0574-4
[26] J. Hilgert, Ch. Manou, J. Martens, \textit{Contraction of Hamiltonian K-spaces}, Internat. Math. Research Notices, doi:10.1093/imrn/rnw191 (2016).
[27] V. Guillemin, Sh. Sternberg, \textit{Symplectic Techniques in Physics}, Cambridge University Press, Cambridge, 1984.
[28] V. Guillemin, A. Mandini, M. Pabiniak, \textit{Gromov width of polygon spaces}, arXiv:1501.00298 (2015). - doi:10.1007/BF02096964
[29] J.-C. Hausmann, A. Knutson, \textit{Polygon spaces and Grassmannians}, Enseign. Math. (2) \textbf{43} (1997), no. 1-2, 173-198.
[30] Kapovich, M.; Millson, JJ, The symplectic geometry of polygons in Euclidean space, J. Differential Geom., 44, 479-513, (1996) - Zbl 0889.58017 · doi:10.4310/jdg/121459218
[31] Karshon, Y.; Tolman, S., The Gromov width of complex Grassmannians, Geometry and Topology, 5, 911-922, (2001) - Zbl 1101.53054
[32] Kirwan, F., \textit{Convexity properties of the moment mapping}, III, Invent. Math., 77, 547-552, (1984) - Zbl 0511.58024
[33] K. Kaveh, \textit{Toric degenerations and symplectic geometry of smooth projective varieties}, arXiv:1508.00316 (2016).
[34] Kirwan, F., \textit{Convexity properties of the moment mapping}, III, Invent. Math., 77, 547-552, (1984) - Zbl 0561.58016 · doi:10.1007/BF01388838
[35] Knop, F., Automorphisms of multiplicity-free Hamiltonian manifolds, J. Amer. Math. Soc., 24, 567-601, (2011) - Zbl 1226.53082 · doi:10.1090/S0894-0347-2010-00686-8
[36] J. Lane, \textit{On the topology of collective integrable systems}, PhD thesis, University of Toronto, 2017.
[37] J. Lane, \textit{A completely integrable system on} G \{ U \}, \textit{Collective coadjoint orbits}, arXiv:1605.01676 (2016).
[38] Lerman, E.; Meinrenken, E.; Tolman, S.; Woodward, C., Nonabelian convexity by symplectic cuts, Topology, 37, 245-259, (1998) - Zbl 0913.58023
[39] Lu, G., Symplectic capacities of toric manifolds and related results, Nagoya Math. J., 181, 149-184, (2006)
[40] A. Mandini, M. Pabiniak, \textit{Gromov width of coadjoint orbits of} Sp(2n\mathbb{R}), \textit{Hamiltonian K-spaces}, Internat. Math. Research Notices, doi:10.1093/imrn/rnw191 (2016).
[41] V. Guillemin, A. Mandini, M. Pabiniak, \textit{Gromov width of complex Grassmannians}, Geometry and Topology, 5, 911-922, (2001) - Zbl 1101.53054 · doi:10.1017/S0027763000002570
[42] S. V. Manakov, \textit{Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body}, Funct. Anal. Appl. \textbf{10} (1976), no. 4, 328-329.
[43] M. Pabiniak, \textit{Gromov width of coadjoint orbits of} U(n\mathbb{R}), SO(2n\mathbb{R}), \textit{Hamiltonian K-spaces}, Internat. Math. Research Notices, doi:10.1093/imrn/rnw191 (2016).

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH Page 2
References

Sjamaar, Reyer, Convexity Properties of the Moment Mapping Re-examined, Advances in Mathematics, 138, 46-91, (1998) · Zbl 0915.58036 · doi:10.1006/aima.1998.1739

R. Sjamaar, E. Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2) 134 (1991), no. 2, 375-422 · Zbl 0759.58019 · doi:10.2307/2944350

A. Thimm, Integrable geodesic flows on homogeneous spaces, Ergodic Theory Dynamical Systems 1 (1981), no. 4 · Zbl 0491.58014

Tolman, S., Examples of non-Kähler Hamiltonian torus actions, Invent. Math., 131, 299-310, (1998) · Zbl 0901.58018 · doi:10.1007/s002220050205

Traynor, L., Symplectic packing constructions, J. Differential Geom., 41, 735-751, (1995) · Zbl 0830.52011 · doi:10.4310/jdg/1214456483

B. V. Trofimov, Уравнения Эйлера на борелевских подалгебрах полупростых алгебры Ли, Изв. АН СССР. Сер. матем. 43 (1979), вып. 3, 714-732. Engl. transl.: V. V. Trofimov, Euler equations on Borel subalgebras of semisimple Lie algebras, Math. USSR-Izv. 14 (1980), no. 3, 653-670.

San Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy, Adv. Math. 208 (2007), no. 2, 909-934 · Zbl 1118.53051

Woodward, C., The classification of transversal multiplicity-free group actions, Ann. Global Anal. Geom., 14, 3-42, (1996) · Zbl 0877.58022 · doi:10.1007/BF00128193

Woodward, C., Multiplicity free Hamiltonian actions need not be Kähler, Invent. Math., 131, 311-319, (1998) · Zbl 0902.58014 · doi:10.1007/s002220050206

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.