Ground state optimization and hysteretic demagnetization: the random-field Ising model

Mikko J. Alava,1 Vittorio Basso,2 Francesca Colaiori,3 Lorenzo Dante,3,4 Gianfranco Durin,2 Alessandro Magni,2 and Stefano Zapperi3

1Helsinki University of Technology, Laboratory of Physics, FI-02150 Finland
2Istituto Elettronecnico Nazionale Galileo Ferraris, strada delle Cacce 91, I-10135 Torino, Italy
3INFM unità di Roma I and SMC, Dipartimento di Fisica, Università "La Sapienza", P.le A. Moro 2 00185 Roma, Italy
4CNR Istituto di Acustica “O. M. Corbino”, via del fosso del Cavaliere 100, 00133 Roma, Italy

We compare the ground state of the random-field Ising model with Gaussian distributed random fields, with its non-equilibrium hysteretic counterpart, the demagnetized state. This is a low energy state obtained by a sequence of slow magnetic field oscillations with decreasing amplitude. The main concern is how optimized the demagnetized state is with respect to the best-possible ground state. Exact results for the energy in \(d = 1\) show that in a paramagnet, with finite spin-spin correlations, there is a significant difference in the energies if the disorder is not so strong that the states are trivially almost alike. We use numerical simulations to better characterize the difference between the ground state and the demagnetized state. For \(d \geq 3\) the random-field Ising model displays a disorder induced phase transition between a paramagnetic and a ferromagnetic state. The locations of the critical points \(R^{(DS)}\) and \(R^{(GS)}\) differ for the demagnetized state and ground state. Consequently, it is in this regime that the optimization of the demagnetized state is the worst whereas both deep in the paramagnetic regime and in the ferromagnetic one the states resemble each other to a great extent. We argue based on the numerics that in \(d = 3\) the scaling at the transition is the same in the demagnetized and ground states. This claim is corroborated by the exact solution of the model on the Bethe lattice, where the \(R_c\)'s are also different.

PACS numbers:

I. INTRODUCTION

The relation between equilibrium and non-equilibrium states is a central problem in the physics of disordered systems. Disorder induces a multitude of metastable states in which the system can easily be trapped. The dynamics is usually very slow, or glassy, and on observational timescales the system is basically always out of equilibrium. On the other hand, from the theoretical point of view it is easier to consider equilibrium properties, since in this case it is possible to use all the machinery of statistical physics to tackle the problem. The question is whether the equilibrium properties of disordered systems provide a faithful representation of the non-equilibrium states in which the system is likely to be found in practice. This dichotomy is at the core of many unsolved issues in the field of disordered systems. Typical quantities that one could compare are the energy, the geometric characterization of the state (as domains in magnets), and the energy cost of excitations.

A simplification of the problem is obtained considering only athermal processes, in which the temperature of the system plays no role and can be ignored. The equilibrium state is in this case just the ground state (GS), the state of minimal energy \(E_{\text{GS}}\). A zero temperature, non-equilibrium dynamics is purely relaxational: the system falls simply in the closest metastable state. A convenient way to allow the system to explore the various metastable states is by applying an external magnetic field. Different field histories typically result in hysteresis and lead to different metastable configurations \(E_{\text{DS}}\).

The demagnetization process consists in applying a slowly varying AC field with decreasing amplitude, and provides a simple way to access low energy states \(E_{\text{DS}}\). It has been studied for more than a century, but until recently the question how close the demagnetized state (DS) is to the true GS was not addressed. This is the concern of our work, the problem of how such an optimization process works in the case of a random magnet. Recently, Pazmándy et al. have proposed the demagnetization process as the basis for a new optimization algorithm for disordered systems \(E_{\text{DS}}\). The idea behind such “hysteretic optimization”, is that demagnetization leads to a low energy state, sufficiently close to the GS, which can then be reached by applying other methods using the DS as an input. The method was tested for different models like spin glasses and NP-hard problems.

Here we will concentrate on the random-field Ising model (RFIM), that, while retaining some complex features characteristic of disordered systems, still allows for a theoretical analysis \(E_{\text{DS}}\). In the RFIM, due to the absence of frustration, the equilibrium state is relatively simple, however, the non-equilibrium dynamics is far from trivial. Due to the coupling of the local disorder to the order parameter, even the GS presents a variety of phenomena, which can be studied numerically \(E_{\text{GS}}\) and solved exactly in \(d = 1\) and on the Bethe lattice \(E_{\text{DS}}\). The equilibrium critical exponents for ran-
dom field magnets have been measured experimentally in Fe$_{0.93}$Zn$_{0.07}$F$_2$.11,12

The hysteretic properties of non equilibrium RFIM have been widely studied in the recent literature. The hysteresis loops display a disorder induced phase transition: for low disorder the loop has a macroscopic jump at the coercive field, while at high disorder the loop is smooth, at least on the macroscopic scale.13,14,16 At smaller scale the magnetization curve is highly discontinuous, showing Barkhausen-type bursts, in correspondence to jumps between different metastable states.16 A disorder induced non-equilibrium phase transition in the hysteresis loop has been studied experimentally in Co-CoO films17 and Cu-Al-Mn alloys.18

Extensive numerical simulations have been used to characterize disorder induced transitions in the non-equilibrium RFIM and critical exponents have been estimated in several dimensions13,15,20. The model has been studied by the renormalization group and the exponents have been computed in a $\epsilon = 6 - d$ expansion14. In addition the hysteresis loop has been computed exactly in $d = 1$ and on the Bethe lattice, where the disorder induced transition is present for sufficiently large coordination number. While in $d = 1$ there is definitely no transition, the situation in $d = 2$ is less clear. Recently the problem of minor loops has been tackled analytically and numerically. In particular, the magnetization curve has been computed exactly in $d = 1$ and on the Bethe lattice22, extending previous calculations23,24,25,27 of minor loops.

The equilibrium properties of the RFIM are governed by a zero-temperature fixed point, and in finite dimensions ($d < 5$ in practice) GS calculations have elucidated the properties of the phase diagram. In $d \geq 3$ the GS displays a ferromagnetic phase transition induced by the disorder. As domain wall energy arguments and exact mathematical results indicate, in $d = 2$ there is no phase transition but an effective ferromagnetic regime for small systems, while in $d = 1$ the RFIM is trivially paramagnetic. It has been suggested that the transition in the GS is ruling the transition in the non-equilibrium hysteresis loop, also because mean-field calculations give the same results in and out of equilibrium28. Numerical values of the exponents are close but not equal, but one must consider the difficulties in extrapolating values from the finite size scaling28,29. More recently, the question of the universality of the exponents, with respect to the shape of the disorder distribution, was discussed in $d = 3$ simulations, mean-field theory, and on the Bethe lattice30,31,32.

Below we report a detailed comparison of the zero temperature equilibrium and non-equilibrium properties of the RFIM with Gaussian distribution of the random fields. We first analyze the problem in $d = 1$, where exact results can be obtained. The average value of the energy is computed as a function of the disorder strength for the DS and the GS. A direct comparison of the two values shows that for weak disorder the differences become more substantial, while for strong disorder, where each spin basically aligns with the random field, the difference tends to vanish. Numerical studies using the same disorder realizations reveal that the main difference between the two states comes from the complete reversal of GS domains in the DS. This is also visible in the overlap between the GS and DS.

We then study the $d = 3$ case in which both paramagnetic and ferromagnetic behavior exist. The question of whether the transitions appearing in the GS and in the hysteresis loop is universal has often been debated in the literature23,24. At the mean-field level it is not possible to distinguish the equilibrium and the non-equilibrium case and the transition if thus trivially the same. In addition, the ϵ expansion for the equilibrium and hysteretic transitions is the same to all orders, but one should always consider the possibility of non-perturbative corrections to the field theory. Numerical simulations in $d = 3$ indicate that the critical exponents and the critical disorder in the two transitions are reasonably close, but the numerical uncertainties do not allow for a conclusive statement about their identity. Here we directly compare the behavior of the GS and the DS in $d = 3$ close to the disorder induced phase transitions. We show that while the non universal critical parameter R_c differs in the two cases, the universal finite-size scaling curve for the order parameter can be collapsed on the same curve. This suggests some kind of universality in the GS and the DS transitions. The numerical simulations for the GS and DS are done for the same disorder realizations for the both cases, for cubic lattices of linear sizes $L = 10, 20, 40, 80$. The results are averaged over several realizations of the quenched random fields. In both cases, we compute the average magnetization as a function of the disorder width.

A difference in the location of the critical point for equilibrium and non-equilibrium behavior of the same model may appear rather peculiar and one could be tempted to ascribe it to finite size corrections. In order to clarify this issue, we have solved exactly the model on the Bethe lattice and compared the results for GS and DS. While the exponents, as expected, are the same, coinciding with the results of mean-field theory, the critical disorder differs in the two cases. Namely the transition in the DS occurs at a lower disorder value. Thus there is an intermediate parameter region where the GS is ferromagnetic but the DS is paramagnetic. In conclusion, the solution on the Bethe lattice corroborates the picture obtained from simulations in $d = 3$. From the optimization viewpoint, the $d = 3$ case shows an intermediate phase of “bad” correspondence between the GS and DS, exactly as in $d = 1$. This however stops as the $R_c^{(DS)}$ is approached: naturally if both the states are ferromagnetic the optimization of the DS is much easier. To further explore the question of universality of the two transitions in the GS and in the DS, we have computed the distribution of the magnetization at the respective critical point, $R_c^{(DS)}$ and $R_c^{(GS)}$ for different lattice sizes. The distribu-
tions can again all be collapsed into the same curve.

Finally, we consider the question of when is it actually possible to reach the exact GS via demagnetization. To this end, we consider a reverse field history (RFH) algorithm that allows in principle to construct a field history to get to the GS, if possible at all. Studies of the $d = 1$ case illuminate the difficulty of optimizing since it turns out that for anything but very strong disorders R the probability to reach the GS rapidly decays to zero.

Our main conclusion is that, in general, demagnetization is not a good technique for reaching states that are truly close to the equilibrium, except in cases where the outcome is clearly similar from the very beginning (FM states and PM states where the disorder is strong). This holds for both the energy of the states and also for the spin configurations. A simple formulation is that, since the DS is not optimized well in terms of the locations of domain walls, it has an excess random field (Zeeman) energy.

The paper is organized as follows: in section II we define the model and discuss its numerical treatment. In sec. III we analyze the one-dimensional case, analytically and numerically. Section IV is devoted to the behavior around the disorder induced transition in $d = 3$ and on the Bethe lattice. Section V demonstrates the RFH algorithm, together with numerical studies. Conclusions are reported in section VI. An account of some of these results was briefly reported in Ref. 34.

II. THE RANDOM-FIELD ISING MODEL

In the RFIM, a spin $s_i = \pm 1$ is assigned to each site i of a d-dimensional lattice. The spins are coupled to their nearest-neighbors spins by a ferromagnetic interaction of strength J and to the external field H. In addition, to each site of the lattice it is associated a random field h_i taken from a Gaussian probability $\rho(h) = \exp(-h^2/2R^2)\sqrt{2\pi R}$, with variance R. The Hamiltonian thus reads

$$H = -\sum_{(i,j)} Js_is_j - \sum_i (H + h_i)s_i,$$

where the first sum is restricted to nearest-neighbors pairs.

In this paper we will consider only the case of zero temperature, both in equilibrium and out of equilibrium. The $T = 0$ equilibrium problem amounts to find the minimum of H for a given realization of the random-fields (i.e. the GS) and then eventually perform the thermodynamic limit. This problem has been solved exactly in a number of simple cases, namely in $d = 1$ and on the Bethe lattice, for particular disorder distributions and studied numerically in generic dimensions.

The RFIM GS is solvable in a polynomial CPU-time, with exact combinatorial algorithms. For the one-dimensional case, the solution can be found via a mapping to a “shortest path problem” which effectively places the domain walls in optimal positions, corresponding to the global minimum of H. For higher dimensions, one starts by noticing that finding the RFIM GS is equivalent to the min-cut/max-flow problem of combinatorial optimization. This can be solved in a variety of ways. We use a so-called push-relabel variant of the preflow algorithm 56. Such methods, properly implemented, are in general slightly sub-linear in their performance as a function of the number of spins in the problem.

For the out of equilibrium case, we need to specify an appropriate dynamics, ruling the evolution of the spins. We will consider the dynamics proposed in Ref. 37 and used in Refs. 13, 14, 17 to study the hysteresis loop. At each time step the spins align with the local field

$$s_i = \text{sign}(J \sum_j s_j + h_i + H),$$

until a metastable state is reached. This dynamics can be used to obtain the hysteresis loop. The system is started from a state with all the spin down $s_i = -1$ and then H is ramped slowly from $H \to -\infty$ to $H \to \infty$. The limit of $dH/dt \to 0$ can be conveniently obtained by increasing the field precisely of the amount necessary to flip the first unstable spin. A single spin flip increases the local field of the nearest neighboring spins, generating an avalanche of flippings. When the systems finds another metastable state, the field is increased again. This dynamics obeys return-point memory 13: if the field is increased adiabatically the magnetization only depends on the state in which the field was last reversed. This property has been exploited in $d = 1$ 21, 24 and in the Bethe lattice 22, 27 to obtain exactly the saturation cycle and the minor loops.

The main hysteresis loop selects a series of metastable states, which in principle are not particularly close to the ground state. To obtain low energy states, we perform a demagnetization procedure: the external field is changed through a nested succession $H = H_0 \to H_1 \to H_2 \to \ldots H_n \to 0$, with $H_2 > H_2 + 2 > 0$, $H_2n-1 < H_2n+1 < 0$ and $dH \equiv H_2n - H_2n+2 \to 0$. A perfect demagnetization can be performed numerically using the prescription discussed above to obtain $dH/dt \to 0$. Such a perfect demagnetization is quite expensive computationally and it is convenient to perform an approximate demagnetization using $dH = 10^{-3}$. A comparison of the states obtained under approximate and perfect demagnetization shows negligible differences.

III. GROUND STATE AND DEMAGNETIZED STATE IN ONE DIMENSION

A. Exact results: ground state

The GS energy can be computed exactly in $d = 1$ using transfer matrix methods 6 The free energy of a chain of
length N is given by

$$F_N = -\frac{1}{\beta} \ln(Z_N) = -\frac{1}{\beta} \ln(Z_N^+ - Z_N^-) \simeq -\frac{1}{\beta} \ln(Z_N^+ Z_N^-)$$ \hspace{1cm} (3)$$

where Z_N is the partition function with free boundary conditions and Z_N^\pm are the partition functions with the spin at site 1 fixed up(down). These functions satisfy the following recursive relation:

$$Z_N^\pm = e^{\pm \beta h}(Z_{N-1}^+ e^{\pm \beta J} + Z_{N-1}^- e^{\mp \beta J})$$ \hspace{1cm} (4)$$

The last step in eq. (3) uses the approximation $Z_N^+ + Z_N^- \simeq \sqrt{Z_N^+ Z_N^-}$ which holds in the large N limit since Z_N^\pm both diverge with the ratio Z_N^+ / Z_N^- being finite. From Eq. (4), it follows

$$Z_N^+ Z_N^- = Z_{N-1}^+ Z_{N-1}^-(2 \cosh(\beta J) + 2 \cosh(2\beta x_N))$$ \hspace{1cm} (5)$$

where $x_N = \frac{1}{2\beta} \ln(Z_N^+ / Z_N^-)$, which gives for the total free energy

$$F_N = F_{N-1} - \frac{1}{2\beta} \ln(2 \cosh(\beta J) + 2 \cosh(2\beta x_N))$$ \hspace{1cm} (6)$$

where $x_N = \frac{1}{2\beta} \ln(Z_N^+ / Z_N^-)$, so that one can define a free energy per site

$$f = -\frac{1}{2\beta} \ln(2 \cosh(\beta J) + 2 \cosh(2\beta x_N)).$$ \hspace{1cm} (7)$$

x_N is a stochastic quantity satisfying the equation

$$x_N = h_1 + g(x_{N-1})$$ \hspace{1cm} (8)$$

where $g(x) = \frac{1}{2\beta} \ln \left(\frac{e^{2\beta J} e^{2\beta h} + e^{-2\beta J}}{e^{2\beta J} e^{2\beta h} + e^{-2\beta J}}\right).$ When $R \to 0$ Eq. (8) has a fixed point solution of $x_\infty = g(x_\infty)$. It is easy to check that $x_\infty = 0$ is the only solution for any J and β finite, corresponding to the absence of a phase transition.

When R is non-zero x_N is a random variable with an associated distribution $W_N(x)$, where

$$W_N(x)dx = \text{Prob}(x < x_N < x + dx).$$ \hspace{1cm} (9)$$

$W_N(x)$ satisfies the recursive functional equation

$$W_{N+1}(x) = \int_{-\infty}^{\infty} dh P(h) \times \int_{-\infty}^{\infty} dx_1 W_N(x_1) \delta(x - h - H - g(x_1))$$ \hspace{1cm} (10)$$

so that in the thermodynamic limit W_∞ is given by the fixed point equation

$$W_\infty(x) = \int_{-\infty}^{\infty} dx_1 W_\infty(x_1) P(x - h - H - g(x_1)).$$ \hspace{1cm} (11)$$

Once W_∞ is known, any thermodynamic quantity can be computed. In particular, the free energy per spin, which is given by

$$\langle f \rangle = -\frac{1}{\beta} \int_{-\infty}^{\infty} dx W_\infty(x) \left(\cosh(2\beta) + \cosh(2\beta x)\right).$$ \hspace{1cm} (12)$$

The magnetization at a site 0 of an infinite lattice, is given by

$$\langle s_0 \rangle = \frac{Z_0^+ - Z_0^-}{Z_0^+ + Z_0^-} = \sqrt{\frac{Z_1^+/Z_1^- - \sqrt{Z_1^+/Z_1^+}}{\sqrt{Z_1^+/Z_1^-} + \sqrt{Z_1^+/Z_1^+}}} = \tanh \left(\frac{1}{2} \ln(Z_1^+/Z_1^-)\right).$$ \hspace{1cm} (13)$$

where Z_1^\pm are respectively the partition functions with the spin at 0 fixed up(down). These are given by

$$Z_1^\pm = e^{\pm \beta h_0} (e^{\pm \beta J} Z_r^+ + e^{\mp \beta J} Z_r^-) \left(e^{\pm \beta J} Z_l^+ + e^{\mp \beta J} Z_l^-\right)$$ \hspace{1cm} (14)$$

where $Z_{r,l}^\pm$ are the partition functions for the semi-infinite right(left) lattice, with the spin at site 1 (-1) fixed up(down). This gives

$$\langle s_0 \rangle = \tanh(\beta(h_0 + g(x_r) + g(x_l))).$$ \hspace{1cm} (15)$$

Finally, the magnetization for the infinite lattice is obtained averaging over the quenched variables x_r,l:

$$m = \int_{-\infty}^{\infty} dh P(h) \int_{-\infty}^{\infty} dx_r W_N(x_r) \int_{-\infty}^{\infty} dx_l W_N(x_l) \tanh(h + g(x_r) + g(x_l)).$$ \hspace{1cm} (16)$$

B. Exact results: Demagnetized state

In $d = 1$ the magnetization and the energy per spin as a function of the external field can be derived explicitly through a probabilistic reasoning. We show how to get these results on the saturation loop, focusing on the lower branch. (The results on the upper branch can be obtained by symmetry considerations.) Similar but much more involved reasoning can be repeated for any minor loop.

The central quantity to consider, in order to solve for the magnetization as a function of the external field H on the hysteresis loop, is the conditional probability for a spin to be up, conditioned to one of its nearest neighbors being down. To calculate this quantity, one can reason as follows: fix the spin at site i to be up. Define $p_m(H)$ as the probability for a spin to be up, given that exactly m ($m = 0, 1, 2$) of its neighbors are up:

$$p_m(H) = P(h_i = 0) = \int_{(z - 2m)J - H}^{\infty} dh \rho(h),$$ \hspace{1cm} (17)$$

where z is the coordination number ($z = 2$ in $d = 1$). Fix for a moment the spin at site i down as well and look at the spin at site $i+1$. It will be up with probability U_0 and down with probability $1 - U_0$. The spin at site i will flip up with probability p_1 when the spin at $i+1$ is up and p_0 when it is down. Ultimately, the spin at i will be up (conditioned to the spin at $i-1$ being down) with probability $U_0 = U_0 p_1 + (1 - U_0) p_0$. It follows

$$U_0 = \frac{p_0}{1 - p_1 + p_0}.$$ \hspace{1cm} (18)$$
Once U_0 is known, a similar reasoning leads to the (unconditioned) probability $p(H)$ for a spin to be up: Fix the spin at site i down. The spin at site $i-1$ will be up with probability U_0 and down with probability $1-U_0$. The same holds for the spin at site $i+1$. Thus

$$p(H) = U_0^2 p_2 + 2U_0(1-U_0)p_1 + (1-U_0)^2 p_0,$$

from which the magnetization is obtained as $m(H) = 2p(H) - 1$.

To calculate the spin–spin correlation $\langle s_i s_{i+1} \rangle$ we introduce the probabilities $\Phi^{++, \phi^{+-}, \Phi^{-+}, \Phi^{--}}$ for adjacent spins to be respectively up–up, up–down, down–up, and down–down. These quantities are not independent, since they have to satisfy the obvious identities: $\Phi^{+-} = \Phi^{-+}$, $\Phi^{++} + \Phi^{+-} = p(H)$, and $\Phi^{-+} + \Phi^{--} = 1-p(H)$. Thus it is sufficient to calculate one of them, for example Φ^{--}. This is done by separating the four contributions from the possible boundary conditions determined by the values of the spins at sites $i-1$ and $i+2$: When they are both down, the probability for the couple of spins at sites i and $i+1$ to be both down is $U_0^2 (1-p_1(H))^2$, when one is up and the other is down it is $2U_0(1-U_0)(1-p_1(H))(1-p_0(H))$, and when both of them are up it is $(1-U_0)^2 (1-p_0(H))^2$. Adding up the four contributions one gets $\Phi^{--} = (1-U_0)^2$. This fixes the other probabilities to be $\Phi^{++} = 1-\Phi^{--}$, $\Phi^{-+} = 1-p-(1-U_0)^2$, and $\Phi^{+-} = 1-p-(1-U_0)^2$. Thus, the spin–spin correlation is

$$\langle s_i s_{i+1} \rangle = \Phi^{++} + \Phi^{-+} - 2\Phi^{--} = 4(p-(1-U_0)^2) - 3. \quad (21)$$

The average value $\langle h_i s_i \rangle$ can be obtained by averaging over the field h the product of h times the average value of the spin s_i over the local fields other then h_i, once the field at i is fixed at the value h:

$$\langle h_i s_i \rangle = \int_{-\infty}^{+\infty} dh' \rho(h') h' \langle s_i | h' \rangle. \quad (22)$$

The conditional average $\langle s_i | h' \rangle$ is given by $2p(H|h') - 1$ where $p(H|h')$ is the conditional probability for a spin to be up at an external field H, given that its local random field is fixed at the value h'. From Eq. (19) this is trivially given by

$$p(H|h') = U_0^2 \theta(h' + H + 2J) + 2U_0(1-U_0) \theta(h' + H) + (1-U_0)^2 \theta(h' + H - 2J), \quad (23)$$

which finally gives

$$\langle h_i s_i \rangle = 2U_0^2 \int_{-H-2J}^{+\infty} dh' \rho(h') h' \langle s_i | h' \rangle$$

$$+ 4U_0(1-U_0) \int_{-H}^{+\infty} dh' \rho(h') h'$$

$$+ 2(1-U_0)^2 \int_{-H+2J}^{+\infty} dh' \rho(h') h' - \tilde{h}'. \quad (24)$$

In particular, for a Gaussian distribution with $\tilde{h}' = 0$ and variance R the integrals can be performed analytically and the result is

$$\langle h_i s_i \rangle = \sqrt{\frac{2}{\pi}} Re^{-\frac{h'}{2R^2}} [2U_0^2 \theta(h') \cosh(2JH/R^2)$$

$$+ e^{2J(h'-H/2R^2)} (1-2U_0^2) + 2U_0(1-U_0)]. \quad (25)$$
The energy per site on the lower branch of the saturation loop is in general given by

\[
E(H) = -4J \left(\rho(H) - (1 - U_0)^2 \right) + 3J - H(2\rho(H) - 1)
\]

\[
- 2U_0^2 \int_{-H}^{+\infty} dh' \rho(h') h' + 4U_0(1 - U_0) \int_{-H}^{+\infty} dh' \rho(h') h' + 2(1 - U_0)^2 \int_{-H+2J}^{+\infty} dh' \rho(h') h' - \tilde{h}'.
\]

(26)

Similar but much more involved reasonings can be repeated for any minor loop – eventually for a series of nested loops leading to the demagnetized state – providing a series of recursive equations for the magnetization, the spin–spin, and the spin–field correlations, which are the quantities needed to compute the energy. If the external field is changed through a nested loop is in general given by

\[
Z,_{DS} = \left(\frac{\rho(H)}{\rho(H_0)} \right) \tau^{-1} \left(1 + \int_{H_0}^{H} dh \rho(h) \right).
\]

The second one is more detrimental if the energy difference to the GS is considered. In addition to the cost of the two domain walls it subtracts a contribution from the Zeeman energy of the domain that persists and surrounds (in the GS) the one that is not created in the DS. The third one would make the largest change to the total energy, since for \(l_d \gg 1 \) the energy of a domain consists mostly of its Zeeman energy.

\[
\begin{align*}
+ & + + - - - - - - + + + \quad \text{groundstate} \\
+ & + + [+ + - - - - + +] \quad \text{DW shift} \\
+ & + + - - - - - - + + + \quad \text{nucleated droplet} \\
+ & + + [+ + + + + + + + + +] + + + \quad \text{destroyed GS domain}
\end{align*}
\]

FIG. 3: An illustration of the possible mechanisms for the deviations between GS and DS.

\[
\begin{align*}
\Delta q & = \Delta q_{\text{dest}} \\
\Delta q_{\text{dest}} & = \Delta q
\end{align*}
\]

FIG. 4: The average change in the spin-spin overlap between the GS and the DS (\(\Delta q \)) and the contribution to that from completely “destroyed” GS domains (\(\Delta q_{\text{dest}} \)), as a function of \(R \).

Numerical studies of the DS domain structure indicate that with decreasing \(R \) the average domain size increases faster than in the GS, while the size distribution \(P(l_d) \) remains exponential. This is accompanied by a reduction in the overlap \(q = (\langle \sigma_{GS} \sigma_{DS} \rangle + 1)/2 \) between these two states. For \(R \) large the overlap is close to unity; strong local fields \(h_i \) align the spins in the same way regardless of the mechanism by which the spin state is created. For \(R \) small the local field is no longer strongly correlated with the orientation of the spin, and thus whether the

C. Simulations: how optimized is the demagnetized state?

In one dimension the comparison of the DS and the GS is the easiest since the domain walls are just point-like. For the GS we know that it is optimized such that all the large enough local random field fluctuations nucleate domains of the same sign. The rest of the random landscape is split up into regions that align themselves with such fluctuations depending on the sign of the random field excess, \(\sum_i \langle h_i \rangle \). As a result the Zeeman energy of domains is linear in domain size, \(E_Z \sim l_d \), and the asymptotic mean domain length follows the Imry-Ma prediction \(\langle l_{GS} \rangle \sim 1/R^2 \). Moreover since the random landscape has a finite correlation length the domain size distribution is exponential.

Any qualitative differences in the DS will follow from three separate mechanisms: 1) shifts of domain walls, 2) creation of domains inside intact GS domains and 3) destruction of GS domains (Fig. 3). From the point of view of “optimization” the first one is of trivial concern, since it would have little effect e.g. on the scaling of \(E_Z,_{DS} \). The second one is more detrimental if the energy difference to the GS is considered. In addition to the cost of the two domain walls it subtracts a contribution from the Zeeman energy of the domain that persists and surrounds (in the GS) the one that is not created in the DS. The third one would make the largest change to the total energy, since for \(l_d \gg 1 \) the energy of a domain consists mostly of its Zeeman energy.
GS and DS are locally aligned depends on how optimized the latter is.

The fundamental mechanism for the deviations between the states seems for R small to be the “destruction” of GS domains (see Fig. 3 again). This is demonstrated in Fig. 4 by depicting the change Δq in the overlap that comes solely from missing GS domains. The conclusion from this dominance is that the demagnetized states typically miss regions in which the integrated field fluctuation is large which as such leads in the GS to the formation of GS domain. Therefore the overlap should get smaller the larger the scale-length on which one compares the DS and GS is, and this is confirmed by Fig. 5 which shows the overlap between a DS domain and the GS as a function of the length of the DS domain.

The importance of such destroyed domains can also be seen in the total contribution to the energy difference between the DS and GS. For R small this is again dominated by the missing GS domains. In general the difference between the energies of the GS and DS derives from the combination of domain walls and Zeeman energy. Fig. 6 shows that for l_d small the DS domains do not have much Zeeman energy. This changes if l_d is larger, in which regime the scaling approaches the Imry-Ma-like scaling ($l_d^{d(2)}$). The implication is that the field energy of large domains in the DS self-averages, and comes from a sum of random contributions (ie. the domains contain regions where the actual random field sum is opposite to the spin orientation, such as the missing GS domains). The cross-over between the small l_d-behavior and the asymptotic scaling is located close to $\langle l_d \rangle_{DS}$.

IV. AROUND THE DISORDER INDUCED TRANSITION

A. Simulations in $d = 3$

The RFIM displays a disorder induced phase transition both in the GS and in the hysteresis loop, which can also be observed analyzing the DS [21, 22, 39]. If the GS and the DS are always paramagnetic, the transition is absent and thus we perform numerical simulations in $d = 3$. Our aim is to characterize the difference between DS and GS around the disorder induced transition.

In $d = 3$ for low disorder, the GS is ferromagnetic, while for higher disorder it becomes paramagnetic. For Gaussian disorder, the transition point has been located numerically at $R_c^{(GS)} \approx 2.28$. It is possible to define the usual set of critical exponents characterizing the phase transition and compute the values by exact GS calculations. For instance, the magnetization $M \equiv \langle |m| \rangle$, with $m \equiv \sum_i s_i/N$, scales close to the transition point as

$$M = A r^\beta,$$

where $r \equiv (R - R_c)/R_c$ is the reduced order parameter and A is a non-universal constant. The correlation length defines another exponent $\xi = (Br)^{-\nu}$ –where B is another non-universal constant– which rules the finite size scaling of the model

$$M = A L^{-\beta/\nu} f \left(B L^{1/\nu} (R - R_c)/R_c \right).$$

Simulations yield $\nu^{(GS)} \approx 1.17$ and $\beta^{(GS)} = 0.02$.

A disorder induced transition is also found in the hysteresis loop. At low disorder the loop shows a macroscopic jump, which disappears at a critical value for the disorder. This transition reflects itself in the DS, which is ferromagnetic when the main loop has a jump and is paramagnetic otherwise. The transition point has been
obtained numerically in $d = 3$ as $R_c^{(DS)} \simeq 2.16$ and the critical exponents have been measured. In particular, Ref. 39 reports data collapses with $\beta_{(DS)} = 0.04$ and $\nu_{(DS)} = 1.41$. While there is strong evidence that the exponents measured in the DS should be equal to those measured on the main loop, the relation with the equilibrium transition is not clear.

We notice first that numerical simulations reported in the literature indicate that the transition appears at slightly different locations in the GS and in the DS. Hartmann and Nowak report $R_c^{(GS)} = 2.29 \pm 0.04$ for the GS with system size up to $L = 80$, Hartmann and Young refine this value to $R_c^{(GS)} = 2.28 \pm 0.01$ with sizes up to $L = 96$, which is also confirmed by Middleton and Fisher which estimate $R_c^{(GS)} = 2.27 \pm 0.04$. For the hysteresis loop the best estimate is $R_c = 2.16 \pm 0.03$, with system sizes up to $L = 320$ and a similar value for the DS $[21, 39]$. Thus, unless strong finite size effects take place, one is tempted to conclude that the two transitions take place at two different values of R_c.

Here we analyze the problem again by numerical simulations, computing the GS and the DS numerically, using the same disorder realizations for the two cases. Simulations are performed for cubic lattices of linear sizes $L = 10, 20, 40, 60, 80$ and the results are averaged over several realizations of the random fields. The GS is found exactly using a min-cut/max-flow algorithm, while demagnetization is performed approximately with the algorithm discussed in Ref. [21] with $dH \equiv 10^{-3}$ (see section II). In both cases, we compute the average magnetization as a function of the disorder width (see Fig. 7). In Fig. 8 we collapse the two sets of data into a single curve, using two different values for R_c (i.e. $R_c^{(GS)} = 2.28$ and $R_c^{(DS)} = 2.16$) but the same values for the exponents (i.e. $1/\nu = 0.73$ and $\beta = 0.03$). The best value for the ratio of the non-universal constant is found to be $A_{DS}/A_{GS} \simeq 1$ and $B_{DS}/B_{GS} = 0.68 \pm 0.02$. The fact that the scaling function is the same for the two cases is a strong indication for universality, going beyond the simple numerical similarity of the exponents. There is always the possibility that in the limit $L \rightarrow \infty$, $R_c^{(GS)} = R_c^{(DS)}$. At the present stage this hypothesis is not supported by the data, since we were not able to collapse all the data into a single curve using the same R_c.

Next, we compare the statistical properties of the GS and the DS around the transitions. In Fig. 9 we report the value of the overlap as a function of R for different system sizes. When the disorder is decreased from the

FIG. 7: The magnetization of the GS and the DS in $d = 3$ for different system sizes L and disorder R.

FIG. 8: Numerical results in $d = 3$: The magnetization can be collapsed using $R_c = 2.28$ (GS) and $R_c = 2.16$ (DS), $1/\nu = 0.73$ and $\beta = 0.03$. The scaling curve is the same for DS and GS indicating universal behavior. The values for the ratios of the non-universal constants are $A_{DS}/A_{GS} = 1$ and $B_{DS}/B_{GS} = 0.68$.

FIG. 9: The overlap between the GS and the DS in $d = 3$ for different system sizes.
paramagnetic region, the overlap decreases as for \(d = 1 \). However for low disorder the overlap rapidly increases and reaches 1 in the ferromagnetic state. The minimum of the overlap is located in the parameter region corresponding to the transitions (i.e. \(R \sim 2.2 - 2.3 \)). A decrease in the overlap around the transition can be expected, since for \(R_{c}^{DS} < R < R_{c}^{GS} \) the GS is ferromagnetic \((M > 0)\) and the DS is paramagnetic \((M = 0)\) as it is also apparent plotting the difference in the magnetization (see Fig. 10).

In summary, three dimensional simulations indicate that the transitions in the GS and DS are universal, but the critical parameter seems to differ. Consequently the GS and DS differ mostly around the transition, while the difference is smaller in the paramagnetic and ferromagnetic phases.

B. The Bethe lattice

The RFIM can be solved exactly in the Bethe lattice, displaying a disorder induced transition in the GS and in the DS \(\Phi \). It is thus an interesting case to compare the two states around the respective transition directly in the thermodynamic limit. We consider here a Bethe lattice with coordination \(z \) and obtain the GS generalizing the \(d = 1 \) case as in Ref. \(38 \). In this case \(N \) refers to the generation of the lattice, and \(Z_{n}^{\pm} \) are the partition functions of a branch of generation \(n \) with a fixed up (down) spin at the central site. The recursion relation for the \(Z_{n}^{\pm} \) is

\[
Z_{n}^{\pm}(i) = e^{\pm \beta h_i} \prod_{j \in I(i)} (Z_{n-1}^{+}(j)e^{\pm \beta J} + Z_{n-1}^{-}(j)e^{\mp \beta J})
\]

(30)

where for any given site \(i \) the sum over \(j \) runs over the \(z - 1 \) nearest neighbors of \(i \) away from the center of the lattice. Then, following the \(d = 1 \) case, one can write

\[
F_{n}(i) = \sum_{j \in I(i)} \left[F_{n-1}(j) - \frac{1}{2 \beta} \ln 2 (\cosh(\beta J) + \cosh(2 \beta x_{n}(j))) \right]
\]

(31)

where

\[
x_{n}(i) = \frac{1}{2 \beta} \ln (Z_{n}^{+}(i)/Z_{n}^{-}(i)),
\]

(32)

so that the contribution at the free energy from site \(i \) is

\[
f(i) = -\frac{1}{2 \beta} \ln(2 \cosh \beta J + 2 \cosh(2 \beta x_{n}(i))).
\]

(33)

\(x_{n}(i) \) is a stochastic quantity satisfying the equation

\[
x_{n}(i) = h_i + \sum_{j \in I(i)} g(x_{n-1}(j))
\]

(34)

When \(R \to 0 \) Eq. \(34 \) has a fixed point solution of \(x_{\infty} = (z - 1)g(x_{\infty}) \). \(x_{\infty} = 0 \) is a solution for any \(J \) and \(\beta \). For \(\beta < \beta_{c} = \frac{1}{z} \ln \frac{z+1}{z-1} \) there are also two stable solutions \(\pm x_{\infty} \neq 0 \) corresponding to the appearance of a ferromagnetic phase.

To perform quenched averages one has to solve for the probability distribution of \(W_{n}(x_{n}) \), where \(W_{n}(x)dx = \text{Prob}(x < x_{n} < x + dx) \), which satisfies the recursive functional equation

\[
W_{n+1}(x) = \int_{-\infty}^{\infty} dh P(h) \int_{-\infty}^{\infty} dx_{1} W_{n}(x_{1}) \cdots \int_{-\infty}^{\infty} dx_{z-1} W_{n}(x_{z-1}) \delta(x - h - H \sum_{k=1}^{z-1} g(x_{k})),
\]

(35)
so that in the thermodynamic limit W_∞ is given by the fixed point equation

$$W_\infty(x) = \int_{-\infty}^{\infty} dx_1 W_\infty(x_1) \cdots$$

$$\cdots \int_{-\infty}^{\infty} dx_{z-1} W_\infty(x_{z-1}) P(x - h - H \sum_{k=1}^{z-1} g(x_k)).$$

Once W_∞ is known, any thermodynamic quantity can be computed. In particular, the free energy per spin is given again by (34) and the magnetization at the central site of an infinite lattice, is given by Eq. (13) where $Z^{\uparrow \downarrow}$ are respectively the partition function with the spin at 0 fixed up (down). These are given by

$$Z^{\uparrow \downarrow} = e^{\pm \beta h_0} \prod_{k=1,z} (e^{\pm \beta J} Z_k^{\uparrow} + e^{\mp \beta J} Z_k^{\downarrow})$$

and Z_k^{\pm} for $k = 1, \cdots, z$ are the partition functions of the z branches attached to the central site 0, with the boundary spin fixed up (down). This gives for the magnetization at the central site (s_0)

$$\langle s_0 \rangle = \tanh(\beta h_0 + \sum_{k=1,z} g(x_k))$$

The magnetization for the infinite lattice can then be obtained averaging over the quenched variables $x_{r,1}$:

$$M = \int_{-\infty}^{\infty} dh P(h) \int_{-\infty}^{\infty} dx_1 W_N(x_1) \cdots$$

$$\cdots \int_{-\infty}^{\infty} dx_{z} W_N(x_{z}) \tanh(\beta(h + \sum_{k=1,z} g(x_k))).$$

For a Gaussian random-field distribution the fixed point equation can not be solved explicitly and we thus resort to a numerical integration. We obtain $W_\infty(x)$ for $z = 4$, and for different values of R, and compute the magnetization using Eq. (35). In Fig. 11 we compare the magnetization of the GS with the one of the remnant magnetization in the DS, computed in Ref. 22. As observed in the simulations in $d = 3$, the transition occurs at two different locations (see the inset of Fig. 11), for $z = 4$ $R^{\text{DS}}_c = 1.781258 \ldots$ 22 and $R^{\text{GS}}_c \simeq 1.8375$, with the mean-field exponent ($\beta = 1/2$). When plotted against $(R - R_c)/R_c$ the two curves superimpose close to the critical point. This indicates that, though not required by universality, in the Bethe lattice $A_{GS} = A_{DS}$, as also found in $d = 3$.

To investigate possible finite size scaling we have performed numerical simulations in the Bethe lattice, following the method of Ref. 22. Collapsing the order parameter curve as in $d = 3$, using a scaling form similar to Eq. (24), does not appear to be possible in the Bethe lattice, because the scaling region is very narrow. Thus to test finite size scaling, we have computed the distribution of the magnetization m at the respective critical point, R^{DS}_c and R^{GS}_c for different lattice sizes N. The distributions can all be collapsed into the same curve (see Fig. 12), using the form $P(|m|) = f(|m|/M)/M$.

V. REACHING THE GROUND STATE BY NON-EQUILIBRIUM DYNAMICS

After having shown that the GS and the DS correspond to different microscopic configurations, we investigate now if the GS spin configuration may be reached by a field history other then the ac-demagnetization. The answer to this question requires a clarification on the relation existing between locally stable states (given by the solutions of Eq.(2)), and the spin configurations visited along the non-equilibrium dynamics induced by the varying field. In fact, not all stable configurations may be reached by a field history from saturation. The problem has been treated in [14] where it has been shown that, given a spin configuration obtained by a field history, supposed unknown, the sequence of reversal fields that applied to saturation gives back the original state can be recovered. For spin systems this inverse function is given by an algorithm which is able to construct the reverse field history (RFH) [14]. This method is applied then to investigate if a given spin configuration may be reached by field history from saturation: if a field history leading to the state exists the algorithm produce a sequence of reversal fields; if no field history exists the algorithm enters a recursive loop. The investigation of the properties of unreachable states has been recently performed and leads to a classification of stable states on oriented graphs [11]. The study is performed here for the GS spin configuration that, for the RFIM at finite size and for a given disorder realization, can be indepen-
dently derived by exact combinatorial algorithms (as the max-flow min-cut).

A. RFH Algorithm

Consider the final spin configuration \(\mathbf{s} \) (the set of \(N \) Ising spins) resulting after the application of a field history ending at \(H = 0 \) and consisting in a sequence of reversal fields \(\{H\} = \{H_1, \ldots, H_n\} \) from the saturated state and let us define the function \(\mathbf{s} = f(\{H\}) \). The set of all states obtained this way is defined as the hysteresis states (H-states). Due to adiabatic dynamical response and return point memory, this state \(\mathbf{s} \) will contain the memory of a subset of the reversal fields. In fact not all the reversal fields determine the final state \(\mathbf{s} \). For example, in terms of average magnetization, the reversal fields which give rise to closed minor loops do not influence the final state, i.e. their memory is erased, while the memory of the set of reversal fields \(\{H_S\} \) which are not erased is contained in the final state. The inverse function \(\{H_S\} = g(\mathbf{s}) \) allows, starting from a spin configuration \(\mathbf{s} \) belonging to the H-states ensemble, to obtain the set of reversal fields \(\{H_S\} \) which have been actually stored in the state and that - if applied as a field history - will reproduce the original state, i.e. \(\mathbf{s} = f(g(\mathbf{s})) \). We define this set of reversal fields \(\{H_S\} \) as minimal field history.

The RFH algorithm takes as input a configuration \(\mathbf{s} \) at \(H = 0 \) and gives as output - when it exists - the reversal field history from saturation to the state \(\mathbf{s} \). The formulation of the algorithm is based on the order-preserving character of the dynamics \[13\], and is therefore, applicable to a wide range of models beyond the RFIM. An interesting result of the RFH algorithm is obtained when it is applied to a state \(\mathbf{s} \) not belonging to the H-states (i.e. where no field history exists). The iterated search for the reversal field sequence enters an iteration and, in this case, it can be shown that no field history leading to the state exists.

B. Simulation results in 1d

The RFH algorithm was applied to explore the possibility to reach the GS by non equilibrium dynamics by the numerical study of the RFIM in one dimension with periodic boundary conditions. We performed our investigations on systems having \(N = 5000 \) spins, averaging the results for 100 different realizations of the same disorder \(R \). The GS was obtained by the max-flow min-cut procedure for each realization and the RFH algorithm was applied. At each disorder value \(R \), the fraction \(f_{GS} \) of the realizations in which the GS resulted to be reachable was computed. For comparison the same procedure was applied starting from locally stable states generated by random sampling the set of local minima. The results are shown in Fig.13.

As a first finding the GS does not result to be systematically field reachable and the fraction depends on the disorder. One may conclude that the fact that the GS is sometimes reachable is a pure effect of the finite system size. However, also for the random states the fraction of found states \(f_{RND} \) sensibly changes with \(R \), but following a different curve. If there was no correlation between GS and the H-states the two curves would be coincident. The dependence of \(f_{RND} \) on \(R \) reflects the fact that the number of H-states depends on the disorder value and the system size \[12\], and only at large disorder, where the number of locally stable states decreases, the ratio between H-states and stable states is significantly greater then zero.

![FIG. 13: Fraction of reachable states (averages over 100 realizations of disorder) diamonds: fraction \(f_{RND} \); circles: fraction \(f_{GS} \)](image-url)

VI. CONCLUSIONS

For disordered systems like the random field Ising model one would be interested in both universality in statistical properties and in the question how to “optimize” in the case of a sample with a given distribution of the impurities. In this paper we have studied this problem in detail, by comparing the demagnetized and ground states. Our main findings are the following: First, the character of the GS is such that it is globally optimized, and the demagnetization procedure does not perform well unless the optimization problem is rather trivial. This is slightly surprising since the conclusion holds in particular if the RFIM GS is paramagnetic. Then the DS does not manage to find the right spin configuration, so that as seen in the \(d = 1 \) case many of the domains of the GS do not appear in the DS.

Second, in \(d = 3 \) (and with the aid of the Bethe
lattice solution), it can be demonstrated that the existence of a phase transition for both the DS and GS makes the “phase diagram” of optimization to show a regime where the outcome is less optimal: in the paramagnetic phase of the DS, where the GS is already ferromagnetic since the critical thresholds are ordered such that $R_c^{(GS)} > R_c^{(DS)} = 1.84$. In this regime DS and GS are expected to differ strongly in the thermodynamic limit. We also provide numerical evidence that the $d = 3$ transition appears to have the same critical exponents in both the GS and DS. This can be considered both surprising – there being no exact field theoretical way of treating the $d = 3$ phase transition – and expected, since the functional renormalization calculations in spite of their shortcomings indicate that the actions are the same. It seems intriguing that such universality is met exactly in the limit where the “optimized” character of the DS changes.

The results indicate that for the particular system at hand, where the disorder couples directly to the expected magnetization, “local” optimization methods have difficulties. Of course, as in “hysteretic optimization”, one can perturb or “shake” the state obtained from the DS procedure to try to still lower the energy. These attempts are of course usually just heuristic. In the case of the RFIM, the joint approach of optimizing by the DS and computing the GS exactly allows to understand better similarities and differences between equilibrium and low energy non-equilibrium states.

In addition to the ferromagnetic RFIM model, one can consider other systems where two disorder induced phase transitions exist. Numerical simulations and analytical results have shown that a disorder induced transition in the hysteresis loop can be observed in the random bond Ising model, in the random field O(N) model, in the random anisotropy model and in the random Blume-Emery-Griffith model. All these systems display as well a transition in equilibrium and it would be interesting to compare their DS and GS.

Interfaces in quenched disorder would provide another interesting example, since the roughness exponent typically differs in and out of equilibrium (i.e. at the depinning threshold). It would be interesting to measure the roughness of an interface after a demagnetization cycle (i.e. after the field driving the interface is cycled with decreasing amplitude), and compare its properties with those of the ground state interface. Finally, there is the issue of energetics of excitations in the respective ensembles: the universality of exponents and scaling functions would seem to imply that these also scale similarly.

[1] M. Alava, P. Duxbury, C. Moukarzel, and H. Rieger, in Phase transitions and critical phenomena, Vol 18, edited by C. Domb and J. Lebowitz (Academic Press, San Diego, 2001).
[2] G. Bertotti, Hysteresis in Magnetism (Academic Press, San Diego, 1998).
[3] G. Zarand, F. Pazmandi, K. F. Pal, and G. T. Zimanyi, Phys. Rev. Lett. 89, 150201 (2002).
[4] T. Nattermann, in Spin Glasses and Random Fields edited by A.P. Young (World Scientific, Singapore, 1997).
[5] A. T. Ogielski, Phys. Rev. Lett. 57, 1251 (1986).
[6] A. K. Hartmann and U. Nowak, Eur. Phys. J. B 7, 105 (1999).
[7] A. K. Hartmann and A. P. Young Phys. Rev. B 64, 214419 (2001).
[8] A. A. Middleton and D. S. Fisher, Phys. Rev. B 65, 134441 (2002).
[9] R. Bruinsma, Phys. Rev. B 30, 289 (1984).
[10] M. R. Swift, A. Maritan, M. Cieplak, and J. R. Banavar, J. Phys. A 27, 1525 (1994).
[11] Z. Slanin, D. P. Belanger, and J. A. Fernandez-Baca Phys. Rev. Lett. 82, 426 (1999).
[12] F. Ye et al., Phys. Rev. Lett. 89, 157202 (2002).
[13] J. P. Sethna et. al, Phys. Rev. Lett. 70, 3347 (1993)
[14] K. Dahmen and J. P. Sethna, Phys. Rev. B 53, 14872 (1996)
[15] O. Perkovic, K. A. Dahmen, and J. P. Sethna, Phys. Rev. B 59, 6106 (1999).
[16] J.P. Sethna, K. A. Dahmen, and C. R. Myers, Nature 410 242 (2001).
[17] A. Berger, A. Inomata, J. S. Jiang, J. E. Pearson, and S. D. Bader, Phys. Rev. Lett. 85, 4176 (2000).
[18] J. Marcos, et. al. Phys. Rev. B 67, 224406 (2003).
[19] F. J. P´erez-Reche and E. Vives Phys. Rev. B 67, 134421 (2003).
[20] F. J. P´erez-Reche and E. Vives preprint cond-mat/0403754.
[21] L. Dante, G. Durin, A. Magni, and S. Zapperi, Phys. Rev. B 65, 144441 (2002).
[22] F. Colaiori, A. Gabrielli, and S. Zapperi, Phys. Rev. B 65, 224404 (2002).
[23] P. Shukla, Physica A 233, 235 (1996).
[24] P. Shukla, Phys. Rev. E 62, 4725 (2000).
[25] D. Dhar, P. Shukla, and J. P. Sethna, J. Phys. A 30, 5259 (1997).
[26] S. Sabhapandit, P. Shukla, and D. Dhar, J. Stat. Phys. 98, 103 (2000).
[27] P. Shukla, Phys. Rev. E 63, 027102 (2001).
[28] A. Maritan, M. Cieplak, M. R. Swift, and J. R. Banavar, Phys. Rev. Lett. 72, 946 (1994)
[29] J. P. Sethna et al., Phys. Rev. Lett. 72, 947 (1994)
[30] J.-C. Anglès d’Auriac and N. Sourlas Europhys. Lett. 39, 473 (1997).
[31] P. M. Duxbury and J. M. Meinke Phys. Rev. E 64, 036112 (2001).
[32] R. Dobrin, J. M. Meinke, and P. M. Duxbury, J. of Phys. A: Math. Gen. 35, L247 (2002).
[33] J. H. Carpenter et al., J. Appl. Phys. 89, 6799 (2001).
[34] F. Colaiori, M. J. Alava, G. Durin, A. Magni, and S. Zapperi, Phys. Rev. Lett. 92, 257203 (2004)
[35] G. Schröder, T. Knetter, M. J. Alava and H. Rieger, Eur. Phys. J. B 24, 101-105 (2001).
[36] E. Seppälä, PhD thesis, HUT, Helsinki, 2001.
[37] G. Bertotti and M. Pasquale, J. Appl. Phys. 67, 5255
(1990).
[38] R. Bruinsma, Phys. Rev. B, 30, 289 (1984).
[39] J. H. Carpenter and K. A. Dahmen Phys. Rev. B 67, 020412 (2003)
[40] V. Basso and A. Magni, Physica B 343, 275 (2004).
[41] A. Magni and V. Basso, submitted to JEMS 04 Conference, (J. Magn.Magn.Mat.).
[42] V. Basso and A. Magni, to be published.
[43] A similar suggestion was made independently in Ref. 20.
[44] E. Vives and A. Planes, Phys. Rev. B 50, 3839 (1994).
[45] R. da Silveira and M. Kardar, Phys. Rev. E 59, 1355 (1999).
[46] E. Vives and A. Planes, Phys. Rev. B 63, 134431 (2001).
[47] R. da Silveira and S. Zapperi, Phys. Rev. B 69, 212404 (2004)
Ground state optimization and hysteretic demagnetization: the random-field Ising model

Mikko J. Alava,1 Vittorio Basso,2 Francesca Colaiori,3 Lorenzo Dante,3,4 Gianfranco Durin,2 Alessandro Magni,2 and Stefano Zapperi3
1Helsinki University of Technology, Laboratory of Physics, HUT-02105 Finland
2Istituto Eletrotecnico Nazionale Galileo Ferraris, strada delle Cacce 91, I-10135 Torino, Italy
3INFN unità di Roma 1 and SMC, Dipartimento di Fisica, Università "La Sapienza", P.le A. Moro 2 00185 Roma, Italy
4CNR Istituto di Acustica “O. M. Corbino”, via del foso del Cavaliere 100, 00133 Roma, Italy

We compare the ground state of the random-field Ising model with Gaussian distributed random fields, with its non-equilibrium hysteretic counterpart, the demagnetized state. This is a low energy state obtained by a sequence of slow magnetic field oscillations with decreasing amplitude. The main concern is how optimized the demagnetized state is with respect to the best-possible ground state. Exact results for the energy in $d = 1$ show that in a paramagnet, with finite spin-spin correlations, there is a significant difference in the energies if the disorder is not so strong that the states are trivially almost alike. We use numerical simulations to better characterize the difference between the ground state and the demagnetized state. For $d \geq 3$ the random-field Ising model displays a disorder induced phase transition between a paramagnetic and a ferromagnetic state. The locations of the critical points R_c^{DS}, R_c^{GS} differ for the demagnetized state and ground state. Consequently, it is in this regime that the optimization of the demagnetized state is the worst whereas both deep in the paramagnetic regime and in the ferromagnetic one the states resemble each other to a great extent. We argue based on the numerics that in $d = 3$ the scaling at the transition is the same in the demagnetized and ground states. This claim is corroborated by the exact solution of the model on the Bethe lattice, where the R_c’s are also different.

PACS numbers:

I. INTRODUCTION

The relation between equilibrium and non-equilibrium states is a central problem in the physics of disordered systems. Disorder induces a multitude of metastable states in which the system can easily be trapped. The dynamics is usually very slow, or glassy, and on observational timescales the system is basically always out of equilibrium. On the other hand, from the theoretical point of view it is easier to consider equilibrium properties, since in this case it is possible to use all the machinery of statistical physics to tackle the problem. The question is whether the equilibrium properties of disordered systems provide a faithful representation of the non-equilibrium states in which the system is likely to be found in practice. This dichotomy is at the core of many unsolved issues in the field of disordered system. Typical quantities that one could compare are the energy, the geometric characterization of the state (as domains in magnets), and the energy cost of excitations.

A simplification of the problem is obtained considering only athermal processes, in which the temperature of the system plays no role and can be ignored. The equilibrium state in this case just the ground state (GS), the state of minimal energy [1]. A zero temperature, non-equilibrium dynamics is purely relaxational: the system falls simply in the closest metastable state. A convenient way to allow the system to explore the various metastable states is by applying an external magnetic field. Different field histories typically result in hysteresis and lead to different metastable configurations [2].

The demagnetization process consists in applying a slowly varying AC field with decreasing amplitude, and provides a simple way to access low energy states [2]. It has been studied for more than a century, but until recently the question how close the demagnetized state (DS) is to the true GS was not addressed. This is the concern of our work, the problem of how such an optimization process works in the case of a random magnet. Recently, Pazmány et al. have proposed the demagnetization process as the basis for a new optimization algorithm for disordered systems [3]. The idea behind such “hysteretic optimization”, is that demagnetization leads to a low energy state, sufficiently close to the GS, which can then be reached by applying other methods using the DS as an input. The method was tested for different models like spin glasses and NP-hard problems.

Here we will concentrate on the random-field Ising model (RFIM), that, while retaining some complex features characteristic of disordered systems, still allows for a theoretical analysis [4]. In the RFIM, due to the absence of frustration, the equilibrium state is relatively simple, however, the non-equilibrium dynamics is far from trivial. Due to the coupling of the local disorder to the order parameter, even the GS presents a variety of phenomena, which can be studied numerically [5–8]. In fact the GS of the RFIM can be found in a polynomial CPU-time, with exact combinatorial algorithms [1] and solved exactly in $d = 1$ and on the Bethe lattice [9, 10]. The equilibrium critical exponents for ran-
The hysteretic properties of non equilibrium RFIM have been widely studied in the recent literature. The hysteresis loops display a disorder induced phase transition: for low disorder the loop has a macroscopic jump at the coercive field, while at high disorder the loop is smooth, at least on the macroscopic scale [13–15]. At smaller scale the magnetization curve is highly discontinuous, showing Barkhausen-type bursts, in correspondence to jumps between different metastable states [16]. A disorder induced non-equilibrium phase transition in the hysteresis loop has been studied experimentally in Co-CoO films [17] and Cu-Al-Mn alloys [18].

Extensive numerical simulations have been used to characterize disorder induced transitions in the non-equilibrium RFIM and critical exponents have been estimated in several dimensions [15, 19, 20]. The model has been studied by the renormalization group and the exponents have been computed in a $\epsilon = 6 - d$ expansion [14]. In addition the hysteresis loop has been computed exactly in $d = 1$ and on the Bethe lattice, where the disorder induced transition is present for sufficiently large coordination number. While in $d = 1$ there is definitely no transition, the situation in $d = 2$ is less clear. Recently the problem of minor loops has been tackled analytically and numerically. In particular, the demagnetization curve has been computed exactly in $d = 1$ [21] and on the Bethe lattice [22], extending previous calculations [23–26] of minor loops.

The equilibrium properties of the RFIM are governed by a zero-temperature fixed point, and in finite dimensions ($d < 5$ in practice) GS calculations have elucidated the properties of the phase diagram. In $d \geq 3$ the GS displays a ferromagnetic phase transition induced by the disorder. As domain wall energy arguments and exact mathematical results indicate, in $d = 2$ there is no phase transition but an effective ferromagnetic regime for small systems, while in $d = 1$ the RFIM is trivially paramagnetic. It has been suggested that the transition in the GS is ruling the transition in the non-equilibrium hysteresis loop, also because mean-field calculations give the same results in and out of equilibrium [28]. Numerical values of the exponents are close but not equal, but one must consider the difficulties in extrapolating values from the finite size scaling [28, 29]. More recently, the question of the universality of the exponents, with respect to the shape of the disorder distribution, was discussed in $d = 3$ simulations, mean-field theory, and on the Bethe lattice [30–32].

Below we report a detailed comparison of the zero-temperature equilibrium and non-equilibrium properties of the RFIM with Gaussian distribution of the random fields. We first analyze the problem in $d = 1$, where exact results can be obtained. The average value of the energy is computed as a function of the disorder strength for the DS and the GS. A direct comparison of the two values shows that for weak disorder the differences become more substantial, while for strong disorder, where each spin basically aligns with the random field, the difference tends to vanish. Numerical studies using the same disorder realizations reveal that the main difference between the two states comes from the complete reversal of GS domains in the DS. This is also visible in the overlap between the GS and DS.

We then study the $d = 3$ case in which both paramagnetic and ferromagnetic behavior exist. The question of whether the transitions appearing in the GS and in the hysteresis loop are universal has often been debated in the literature [28, 29]. At the mean-field level it is not possible to distinguish the equilibrium and the non-equilibrium case and the transition if thus trivially the same. In addition, the ϵ expansion for the equilibrium and hysteretic transitions is the same to all orders, but one should always consider the possibility of non-perturbative corrections to the field theory. Numerical simulations in $d = 3$ indicate that the critical exponents and the critical disorder in the two transitions are reasonably close, but the numerical uncertainties do not allow for a conclusive statement about their identity. Here we directly compare the behavior of the GS and the DS in $d = 3$ close to the disorder induced phase transitions. We show that while the non universal critical parameter R_c differs in the two cases, the universal finite-size scaling curve for the order parameter can be collapsed on the same curve. This suggests some kind of universality in the GS and the DS transitions. The numerical simulations for the GS and DS are done for the same disorder realizations for the both cases, for cubic lattices of linear sizes $L = 10, 20, 40, 80$. The results are averaged over several realizations of the quenched random fields. In both cases, we compute the average magnetization as a function of the disorder width.

A difference in the location of the critical point for equilibrium and non-equilibrium behavior of the same model may appear rather peculiar and one could be tempted to ascribe it to finite size corrections. In order to clarify this issue, we have solved exactly the model on the Bethe lattice and compared the results for GS and DS. While the exponents, as expected, are the same, coinciding with the results of mean-field theory, the critical disorder differs in the two cases. Namely the transition in the DS occurs at a lower disorder value. Thus there is an intermediate parameter region where the GS is ferromagnetic but the DS is paramagnetic. In conclusion, the solution on the Bethe lattice corroborates the picture obtained from simulations in $d = 3$. From the optimization viewpoint, the $d = 3$ case shows an intermediate phase of “bad” correspondence between the GS and DS, exactly as in $d = 1$. This however stops as the R_c^{DS} is approached: naturally if both the states are ferromagnetic the optimization of the DS is much easier. To further explore the question of universality of the two transitions in the GS and in the DS, we have computed the distribution of the magnetization at the respective critical point, R_c^{DS} and R_c^{GS} for different lattice sizes. The distribu-
Finally, we consider the question of when is it actually possible to reach the exact GS via demagnetization. To this end, we consider a reverse field history (RFH) algorithm that allows in principle to construct a field history to get to the GS, if possible at all. Studies of the $d = 1$ case illuminate the difficulty of optimizing since it turns out that for anything but very strong disorders R the probability to reach the GS rapidly decays to zero.

Our main conclusion is that, in general, demagnetization is not a good technique for reaching states that are truly close to the equilibrium, except in cases where the outcome is clearly similar from the very beginning (FM states and PM states where the disorder is strong). This holds for both the energy of the states and also for the spin configurations. A simple formulation is that, since the DS is not optimized well in terms of the locations of domain walls, it has an excess random field (Zeeman) energy.

The paper is organized as follows: in section II we define the model and discuss its numerical treatment. In sec. III we analyze the one-dimensional case, analytically and numerically. Section IV is devoted to the behavior around the disorder induced transition in $d = 3$ and on the Bethe lattice. Section V demonstrates the RFH algorithm, together with numerical studies. Conclusions are reported in section VI. An account of some of these results was briefly reported in Ref. [34].

II. THE RANDOM-FIELD ISING MODEL

In the RFIM, a spin $s_i = \pm 1$ is assigned to each site i of a $d-$dimensional lattice. The spins are coupled to their nearest-neighbors spins by a ferromagnetic interaction of strength J and to the external field H. In addition, to each site of the lattice it is associated a random field h_i taken from a Gaussian probability $\rho(h) = \exp(-h^2/2R^2)/\sqrt{2\pi R}$, with variance R. The Hamiltonian thus reads

$$\mathcal{H} = -\sum_{\langle i,j \rangle} J s_i s_j - \sum_i (H + h_i) s_i, \quad (1)$$

where the first sum is restricted to nearest-neighbors pairs.

In this paper we will consider only the case of zero temperature, both in equilibrium and out of equilibrium. The $T = 0$ equilibrium problem amounts to find the minimum of \mathcal{H} for a given realization of the random-fields (i.e. the GS) and then eventually perform the thermodynamic limit. This problem has been solved exactly in a number of simple cases, namely in $d = 1$ and on the Bethe lattice, for particular disorder distributions and studied numerically in generic dimensions.

The RFIM GS is solvable in a polynomial CPU-time, with exact combinatorial algorithms. For the one-dimensional case, the solution can be found via a mapping to a “shortest path problem” [35] which effectively places the domain walls in optimal positions, corresponding to the global minimum of \mathcal{H}. For higher dimensions, one starts by noticing that finding the RFIM GS is equivalent to the min-cut/max-flow problem of combinatorial optimization. This can be solved in a variety of ways. We use a so-called push-relabel variant of the preflow algorithm [36]. Such methods, properly implemented, are in general slightly sub-linear in their performance as a function of the number of spins in the problem.

For the out of equilibrium case, we need to specify an appropriate dynamics, ruling the evolution of the spins. We will consider the dynamics proposed in Ref. [37] and used in Refs. [13–15] to study the hysteresis loop. At each time step the spins align with the local field

$$s_i = \text{sign}(J \sum_j s_j + h_i + H), \quad (2)$$

until a metastable state is reached. This dynamics can be used to obtain the hysteresis loop. The system is started from a state with all the spin down $s_i = -1$ and then H is ramped slowly from $H \rightarrow -\infty$ to $H \rightarrow \infty$. The limit of $dH/dt \rightarrow 0$ can be conveniently obtained by increasing the field precisely of the amount necessary to flip the first unstable spin. A single spin flip increases the local field of the nearest neighboring spins, generating an avalanche of flippings. When the systems finds another metastable state, the field is increased again. This dynamics obeys return-point memory [13]: if the field is increased adiabatically the magnetization only depends on the state in which the field was last reversed. This property has been exploited in $d = 1$ [21, 24] and in the Bethe lattice [22, 27] to obtain exactly the saturation cycle and the minor loops.

The main hysteresis loop selects a series of metastable states, which in principle are not particularly close to the ground state. To obtain low energy states, we perform a demagnetization procedure: the external field is changed through a nested succession $H = H_0 \rightarrow H_1 \rightarrow H_2 \rightarrow \ldots \rightarrow 0$, with $H_{2n} > H_{2n+2} > 0$, $H_{2n-1} < H_{2n+1} < 0$ and $dH = H_{2n} - H_{2n+2} \rightarrow 0$. A perfect demagnetization can be performed numerically using the prescription discussed above to obtain $dH/dt \rightarrow 0$. Such a perfect demagnetization is quite expensive computationally and it is convenient to perform an approximate demagnetization using $dH = 10^{-3}$. A comparison of the states obtained under approximate and perfect demagnetization shows negligible differences.

III. GROUND STATE AND DEMAGNETIZED STATE IN ONE DIMENSION

A. Exact results: ground state

The GS energy can be computed exactly in $d = 1$ using transfer matrix methods [9] The free energy of a chain of
length N is given by

$$F_N = \frac{1}{\beta} \ln(Z_N) = \frac{1}{\beta} \ln(Z_N^+ - Z_N^-) \simeq -\frac{1}{\beta} \ln(Z_N^+ Z_N^-)$$ \hspace{1cm} \text{(3)}$$

where Z_N is the partition function with free boundary conditions and Z_N^\pm are the partition functions with the spin at site 1 fixed up(down). These functions satisfy the following recursive relation:

$$Z_N^\pm = e^{\pm \beta h} (Z_{N-1}^\pm e^{\pm \beta J} + Z_{N-1}^\mp e^{\mp \beta J}) \hspace{1cm} \text{(4)}$$

The last step in eq. (3) uses the approximation $Z_N^+ + Z_N^- \simeq \sqrt{Z_N^+ Z_N^-}$ which holds in the large N limit since Z_N^\pm both diverge with the ratio Z_N^+ / Z_N^- being finite. From Eq. (4) it follows

$$Z_N^+ Z_N^- = Z_{N-1}^+ Z_{N-1}^- (2 \cosh(\beta J) + 2 \cosh(2\beta x_N)) \hspace{1cm} \text{(5)}$$

where $x_N = \frac{1}{2\beta} \ln(Z_N^+ / Z_N^-)$, which gives for the total free energy

$$F_N = F_{N-1} - \frac{1}{2\beta} \ln(2 \cosh(\beta J) + 2 \cosh(2\beta x_N)) \hspace{1cm} \text{(6)}$$

where $x_N = \frac{1}{2\beta} \ln(Z_N^+ / Z_N^-)$, so that one can define a free energy per site

$$f = -\frac{1}{2\beta} \ln(2 \cosh(\beta J) + 2 \cosh(2\beta x_N)). \hspace{1cm} \text{(7)}$$

x_N is a stochastic quantity satisfying the equation

$$x_N = h_1 + g(x_{N-1}) \hspace{1cm} \text{(8)}$$

where $g(x) = \frac{1}{2\beta} \ln \left((e^{2\beta x} + 1) / (e^{2\beta x} + e^{2\beta J}) \right)$. When $R \rightarrow 0$ Eq. (8) has a fixed point solution of $x_\infty = g(x_\infty)$. It is easy to check that $x_\infty = 0$ is the only solution for any J and β finite, corresponding to the absence of a phase transition.

When R is non-zero x_N is a random variable with an associated distribution $W_N(x)$, where

$$W_N(x) dx = \text{Prob}(x < x_N < x + dx). \hspace{1cm} \text{(9)}$$

$W_N(x)$ satisfies the recursive functional equation

$$W_{N+1}(x) = \int_{-\infty}^{\infty} dh P(h) \times \int_{-\infty}^{\infty} dx_1 W_N(x_1) \delta(x - h - H - g(x_1)) \hspace{1cm} \text{(10)}$$

so that in the thermodynamic limit W_∞ is given by the fixed point equation

$$W_\infty(x) = \int_{-\infty}^{\infty} dx_1 W_\infty(x_1) P(x - h - H - g(x_1)). \hspace{1cm} \text{(11)}$$

Once W_∞ is known, any thermodynamic quantity can be computed. In particular, the free energy per spin, which is given by

$$\langle f \rangle = -\frac{1}{\beta} \int_{-\infty}^{\infty} dx W_\infty(x) \left(\cosh(2\beta) + \cosh(2\beta x) \right). \hspace{1cm} \text{(12)}$$

The magnetization at a site 0 of an infinite lattice, is given by

$$\langle s_0 \rangle = \frac{Z_0^+ - Z_0^-}{Z_0^+ + Z_0^-} = \frac{\sqrt{Z_1^+/Z_1^-} - \sqrt{Z_2^+/Z_2^-}}{\sqrt{Z_1^+/Z_1^-} + \sqrt{Z_2^+/Z_2^-}}, \hspace{1cm} \text{(13)}$$

where Z_1^\pm are respectively the partition functions with the spin at site 0 fixed up (down). These are given by

$$Z_1^+ = e^{\pm \beta h_0} (e^{\pm \beta J} Z_r^+ + e^{\mp \beta J} Z_r^-) \hspace{1cm} \text{(14)}$$

where Z_r^\pm are the partition functions for the semi-infinite right(left) lattice, with the spin at site 1 (-1) fixed up(down). This gives

$$\langle s_0 \rangle = \tanh(\beta (h_0 + g(x_r) + g(x_l))). \hspace{1cm} \text{(15)}$$

Finally, The magnetization for the infinite lattice is obtained averaging over the quenched variables $x_{r,l}$:

$$m = \int_{-\infty}^{\infty} dh P(h) \int_{-\infty}^{\infty} dx_r W_N(x_r) \int_{-\infty}^{\infty} dx_l W_N(x_l) \tanh(\beta (h + g(x_r) + g(x_l)) \hspace{1cm} \text{(16)}$$

B. Exact results: Demagnetized state

In $d = 1$ the magnetization and the energy per spin as a function of the external field can be derived explicitly through a probabilistic reasoning. We show how to get these results on the saturation loop, focusing on the lower branch. (The results on the upper branch can be obtained by symmetry considerations.) Similar but much more involved reasoning can be repeated for any minor loop.

The central quantity to consider, in order to solve for the magnetization as a function of the external field H on the hysteresis loop, is the conditional probability for a spin to be up, conditioned to one of its nearest neighbors being down. To calculate this quantity, one can reason as follows: fix the spin at site $i - 1$ down. Define $p_m(H)$ as the probability for a spin to be up, given that exactly m ($m = 0, 1, 2$) of its neighbors are up:

$$p_m(H) = P(h^e_{i} > 0) = \int_{(z-2m)J-H}^{\infty} dh p(h) \hspace{1cm} \text{(17)}$$

where z is the coordination number ($z = 2$ in $d = 1$). Fix for a moment the spin at site i down as well and look at the spin at site $i + 1$. It will be up with probability U_0 and down with probability $1 - U_0$. The spin at site i will flip up with probability p_1 when the spin at $i + 1$ is up and p_0 when it is down. Ultimately, the spin at i will be up (conditioned to the spin at $i - 1$ being down) with probability $U_0 = U_0 p_1 + (1 - U_0) p_0$. It follows

$$U_0 = \frac{p_0}{1 - p_1 + p_0} \hspace{1cm} \text{(18)}$$
Once U_0 is known, a similar reasoning leads to the (unconditioned) probability $p(H)$ for a spin to be up: Fix the spin at site i down. The spin at site $i-1$ will be up with probability U_0 and down with probability $1-U_0$. The same holds for the spin at site $i+1$. Thus

$$p(H) = U_0^2 p_2 + 2U_0(1-U_0)p_1 + (1-U_0)^2 p_0,$$

from which the magnetization is obtained as $m(H) = 2p(H) - 1$.

To calculate the spin–spin correlation $\langle s_is_{i+1} \rangle$ we introduce the probabilities $\Phi^+, \Phi^-, \Phi^+, \Phi^-$ for adjacent spins to be respectively up–up, up–down, down–up, and down–down. These quantities are not independent, since they have to satisfy the obvious identities: $\Phi^+ = \Phi^-, \Phi^+ + \Phi^- = p(H)$, and $\Phi^+ - \Phi^- = 1-p(H)$. Thus it is sufficient to calculate one of them, for example Φ^-. This is done by separating the four contributions from the possible boundary conditions determined by the values of the spins at sites $i-1$ and $i+2$.

When they are both down, the probability for the couple of spins at sites i and $i+1$ to be both down is $U_0^2(1-p_1(H))^2$, when one is up and the other one is down it is $2U_0(1-U_0)(1-p_1(H))(1-p_0(H))$, and when both of them are up it is $(1-U_0)^2(1-p_0(H))^2$. Adding up the four contributions one gets $\Phi^- = (1-U_0)^2$. This fixes the other probabilities to be $\Phi^+ = \Phi^- = 2p-1+(1-U_0)^2$, and $\Phi^+ - \Phi^- = 1-p - (1-U_0)^2$. Thus, the spin–spin correlation is

$$\langle s_is_{i+1} \rangle = \Phi^+ + \Phi^- - 2\Phi^- = 4 \left(p - (1-U_0)^2 \right) - 3.$$ \hspace{1cm} (21)

The average value $\langle h_is_i \rangle$ can be obtained by averaging over the field h' the product of h' times the average value of the spin s_i over the local fields other then h_i, once the field at i is fixed at the value h':

$$\langle h_is_i \rangle = \int_{-\infty}^{+\infty} dh' \rho(h') h' \langle s_is_i \rangle. \hspace{1cm} (22)$$

The conditional average $\langle s_i | h' \rangle$ is given by $2p(H|h') - 1$ where $p(H|h')$ is the conditional probability for a spin to be up at an external field H, given that its local random field is fixed at the value h'. From Eq. (19) this is trivially given by

$$p(H|h') = U_0^2 \theta(h' + H + 2J)
+ 2U_0(1-U_0) \theta(h' + H)
+ (1-U_0)^2 \theta(h' + H - 2J), \hspace{1cm} (23)$$

which finally gives

$$\langle h_is_i \rangle = 2U_0^2 \int_{-H-2J}^{+\infty} dh' \rho(h') h'
+ 4U_0(1-U_0) \int_{-H}^{+\infty} dh' \rho(h') h'
+ 2(1-U_0)^2 \int_{-H+2J}^{+\infty} dh' \rho(h') h' - \tilde{h}'. \hspace{1cm} (24)$$

In particular, for a Gaussian distribution with $\tilde{h}' = 0$ and variance R the integrals can be performed analytically and the result is

$$\langle h_is_i \rangle = \sqrt{\frac{2}{\pi}} Re^{-\frac{\tilde{h}'^2}{2R^2}} \left[2U_0^2 e^{-\frac{\tilde{h}'^2}{2R^2}} \cosh (2JH/R^2)
+ e^{2(J-\frac{\tilde{h}'^2}{2R^2})}(1-2U_0^2) + 2U_0(1-U_0) \right]. \hspace{1cm} (25)$$
The energy per site on the lower branch of the saturation loop is in general given by

\[
E(H) = -4J \left(p(H) - (1 - U_0)^2 \right) + 3J - H(2p(H) - 1) \\
- 2U_0^2 \int_{-H_{-2J}}^{+\infty} dh' \rho(h') h' \\
+ 4U_0(1 - U_0) \int_{-H}^{+\infty} dh' \rho(h') h' \\
+ 2(1 - U_0)^2 \int_{-H_{-2J}}^{+\infty} dh' \rho(h') h' - \tilde{h}' .
\]

(26)

Similar but much more involved reasonings can be repeated for any minor loop – eventually for a series of nested loops leading to the demagnetized state – providing a series of recursive equations for the magnetization, the spin–spin, and the spin–field correlations, which are the quantities needed to compute the energy. If the external field is changed through a nested loop is in general given by

\[
\tilde{h} = U_0 \rho(\tilde{h}) + 2U_0(1 - U_0) \rho(\tilde{h}) \tilde{h}.
\]

(26)

where \(U_k \) and \(D_k \) are respectively the probabilities for a spin to be up(down) conditioned to one of its neighbors being down, and satisfy in turn a set of recursive equations. Similar equations hold for magnetization and spin–field correlation, leading to a complicated recursive formula for the energy. The results of such calculations are shown in Figs. (1, 2), where the energy of the demagnetized state is compared with the energy of the ground state evaluated in the previous section.

C. Simulations: how optimized is the demagnetized state?

In one dimension the comparison of the DS and the GS is the easiest since the domain walls are just point-like. For the GS we know that it is optimized such that all the large enough local random field fluctuations nucleate domains of the same sign. The rest of the random landscape is split up into regions that align themselves with such fluctuations depending on the sign of the random field excess, \(\sum_{i \in \text{region}} h_i \). As a result the Zeeman energy of domains is linear in domain size, \(E_Z \sim l_d \), and the asymptotic mean domain length follows the Imry-Ma prediction \(\langle l_{GS} \rangle \sim 1/R^2 \). Moreover since the random landscape has a finite correlation length the domain size distribution is exponential [35].

Any qualitative differences in the DS will follow from three separate mechanisms: 1) shifts of domain walls, 2) creation of domains inside intact GS domains and 3) destruction of GS domains (Fig. 3). From the point of view of "optimization" the first one is of trivial concern, since it would have little effect e.g. on the scaling of \(E_{Z,DS} \). The second one is more detrimental if the energy difference to the GS is considered. In addition to the cost of the two domain walls it subtracts a contribution from the Zeeman energy of the domain that persists and surrounds (in the GS) the one that is not created in the DS. The third one would make the largest change to the total energy, since for \(l_d \gg 1 \) the energy of a domain consists mostly of its Zeeman energy.

\[
\begin{align*}
\text{groundstate} & \quad + + + + - - - - - - + + + + \\
\text{DW shift} & \quad + + + [+ +] - - - - + + + + \\
\text{nucleated droplet} & \quad + + + [+ + + + +] - + + + \\
\text{destroyed GS domain} & \quad + + + [+ + + + + + + + + +] + + + + \\
\end{align*}
\]

FIG. 3: An illustration of the possible mechanisms for the deviations between GS and DS.

\[
\begin{align*}
\Delta Q &= \Delta Q_{\text{overlap}} + \Delta Q_{\text{magn}} + \Delta Q_{\text{distr}} \\
\Delta Q_{\text{overlap}} &= \langle q_{\text{GS}}^2 - q_{\text{DS}}^2 \rangle \\
\Delta Q_{\text{magn}} &= \langle |\langle p_{\text{GS}} - p_{\text{DS}} \rangle|^2 \rangle \\
\Delta Q_{\text{distr}} &= \langle \sigma_{\text{GS}}^2 - \sigma_{\text{DS}}^2 \rangle
\end{align*}
\]

(27)

FIG. 4: The average change in the spin-spin overlap between the GS and the DS (\(\Delta q \)) and the contribution to that from completely “destroyed” GS domains (\(\Delta q_{\text{distr}} \)), as a function of \(R \).

Numerical studies of the DS domain structure indicate that with decreasing \(R \) the average domain size increases faster than in the GS, while the size distribution \(P(l_d) \) remains exponential. This is accompanied by a reduction in the overlap \(q = (\langle \sigma_{\text{GS}} \sigma_{\text{DS}} \rangle + 1)/2 \) between these two states. For \(R \) large the overlap is close to unity; strong local fields \(h_i \) align the spins in the same way regardless of the mechanism by which the spin state is created. For \(R \) small the local field is no longer strongly correlated with the orientation of the spin, and thus whether the
GS and DS are locally aligned depends on how optimized the latter is.

The fundamental mechanism for the deviations between the states seems for R small to be the “destruction” of GS domains (see Fig. 3 again). This is demonstrated in Fig. 4 by depicting the change Δq in the overlap that comes solely from missing GS domains. The conclusion from this dominance is that the demagnetized states typically miss regions in which the integrated field fluctuation is large which as such leads in the GS to the formation of GS domain. Therefore the overlap should get smaller the larger the scale-length on which one compares the DS and GS is, and this is confirmed by Fig. 5 which shows the overlap between a DS domain and the GS as a function of the length of the DS domain.

The importance of such destroyed domains can also be seen in the total contribution to the energy difference between the DS and GS. For R small this is again dominated by the missing GS domains. In general the difference between the energies of the GS and DS derives from the combination of domain walls and Zeeman energy. Fig. 6 shows that for l_d small the DS domains do not have much Zeeman energy. This changes if l_d is larger, in which regime the scaling approaches the Imry-Ma-like scaling (l_d^{-5}). The implication is that the field energy of large domains in the DS self-averages, and comes from a sum of random contributions (ie. the domains contain regions where the actual random field sum is opposite to the spin orientation, such as the missing GS domains). The cross-over between the small l_d-behavior and the asymptotic scaling is located close to $(l_d)_{DS}$.

IV. AROUND THE DISORDER INDUCED TRANSITION

A. Simulations in $d = 3$

The RFIM displays a disorder induced phase transition both in the GS and in the hysteresis loop, which can also be observed analyzing the DS [21, 22, 39]. If the GS and the DS are always paramagnetic, the transition is absent and thus we perform numerical simulations in $d = 3$. Our aim is to characterize the difference between DS and GS around the disorder induced transition.

In $d = 3$ for low disorder, the GS is ferromagnetic, while for higher disorder it becomes paramagnetic. For Gaussian disorder, the transition point has been located numerically at $R_c^{(GS)} \approx 2.28$. It is possible to define the usual set of critical exponents characterizing the phase transition and compute the values by exact GS calculations. For instance, the magnetization $M \equiv \langle |m| \rangle$, with $m = \sum_i s_i/N$, scales close to the transition point as

$$M = Ar^\beta,$$

where $r \equiv (R - R_c)/R_c$ is the reduced order parameter and A is a non-universal constant. The correlation length defines another exponent $\xi = (B\nu)^{-\nu}$ – where B is another non-universal constant – which rules the finite size scaling of the model

$$M = AL^{-\beta/\nu}f\left(BL^{1/\nu}(R - R_c)/R_c\right).$$

Simulations yield $\nu^{(GS)} \approx 1.17$ and $\beta^{(GS)} = 0.02$.

A disorder induced transition is also found in the hysteresis loop. At low disorder the loop shows a macroscopic jump, which disappears at a critical value for the disorder. This transition reflects itself in the DS, which is ferromagnetic when the main loop has a jump and is paramagnetic otherwise. The transition point has been
obtained numerically in $d = 3$ as $R_c^{(DS)} \simeq 2.16$ and the critical exponents have been measured. In particular, Ref. [39] reports data collapses with $\beta^{(DS)} = 0.04$ and $\nu^{(DS)} = 1.41$. While there is strong evidence that the exponents measured in the DS should be equal to those measured on the main loop, the relation with the equilibrium transition is not clear.

We notice first that numerical simulations reported in the literature indicate that the transition appears at slightly different locations in the GS and in the DS. Hartmann and Nowak report $R_c^{(GS)} = 2.29 \pm 0.04$ for the GS with system size up to $L = 80$, Hartmann and Young refine this value to $R_c^{(GS)} = 2.28 \pm 0.01$ with sizes up to $L = 96$, which is also confirmed by Middleton and Fisher which estimate $R_c^{(GS)} = 2.27 \pm 0.04$. For the hysteresis loop the best estimate is $R_c = 2.16 \pm 0.03$, with system sizes up to $L = 320$ and a similar value for the DS [21, 39]. Thus, unless strong finite size effects take place, one is tempted to conclude that the two transitions take place at two different values of R_c.

Here we analyze the problem again by numerical simulations, computing the GS and the DS numerically, using the same disorder realizations for the two cases. Simulations are performed for cubic lattices of linear sizes $L = 10, 20, 40, 60, 80$ and the results are averaged over several realizations of the random fields. The GS is found exactly using a min-cut/max-flow algorithm, while demagnetization is performed approximately with the algorithm discussed in Ref. [21] with $dH = 10^{-3}$ (see section II). In both cases, we compute the average magnetization as a function of the disorder width (see Fig. 7). In Fig. 8 we collapse the two sets of data into a single curve, using two different values for R_c (i.e. $R_c^{(GS)} = 2.28$ and $R_c^{(DS)} = 2.16$) but the same values for the exponents (i.e. $1/\nu = 0.73$ and $\beta = 0.03$). The best value for the ratio of the non-universal constant is found to be $A_{DS}/A_{GS} \simeq 1$ and $B_{DS}/B_{GS} = 0.68 \pm 0.02$. The fact that the scaling function is the same for the two cases is a strong indication for universality, going beyond the simple numerical similarity of the exponents. There is always the possibility that in the limit $L \to \infty R_c^{(GS)} = R_c^{(DS)}$. At the present stage this hypothesis is not supported by the data, since we were not able to collapse all the data into a single curve using the same R_c.

Next, we compare the statistical properties of the GS and the DS around the transitions. In Fig. 9 we report the value of the overlap as a function of R for different system sizes. When the disorder is decreased from the
paramagnetic region, the overlap decreases as for \(d = 1 \). However for low disorder the overlap rapidly increases and reaches 1 in the ferromagnetic state. The minimum of the overlap is located in the parameter region corresponding to the transitions (i.e. \(R \sim 2.2 - 2.3 \)). A decrease in the overlap around the transition can be expected, since for \(R_{c}^{DS} < R < R_{c}^{GS} \) the GS is ferromagnetic \((M > 0)\) and the DS is paramagnetic \((M = 0)\) as it is also apparent plotting the difference in the magnetization (see Fig. 10).

In summary, three dimensional simulations indicate that the transitions in the GS and DS are universal, but the critical parameter seems to differ. Consequently the GS and DS differ mostly around the transition, while the difference is smaller in the paramagnetic and ferromagnetic phases.

B. The Bethe lattice

The RFIM can be solved exactly in the Bethe lattice, displaying a disorder induced transition in the GS and in the DS \([22]\). It is thus an interesting case to compare the two states around the respective transition directly in the thermodynamic limit. We consider here a Bethe lattice with coordination \(z \) and obtain the GS generalizing the \(d = 1 \) case as in Ref. \([38]\). In this case \(N \) refers to the generation of the lattice, and \(Z_{n}^{\pm} \) are the partition functions of a branch of generation \(n \) with a fixed up (down) spin at the central site. The recursion relation for the \(Z_{n}^{\pm} \) is

\[
Z_{n}^{\pm}(i) = e^{\pm \beta h_{n}} \prod_{j \in I(i)} (Z_{n-1}^{+}(j)e^{\pm \beta J} + Z_{n-1}^{-}(j)e^{\mp \beta J}) \tag{30}
\]

where for any given site \(i \) the sum over \(j \) runs over the \(z - 1 \) nearest neighbors of \(i \) away from the center of the lattice. Then, following the \(d = 1 \) case, one can write

\[
F_{n}(i) = \sum_{j \in I(i)} \left[F_{n-1}(j) - \frac{1}{2 \beta} \ln 2 (\cosh(\beta J) + \cosh(2 \beta x_{n}(j))) \right] \tag{31}
\]

where

\[
x_{n}(i) = \frac{1}{2 \beta} \ln(Z_{n}^{+}(i)/Z_{n}^{-}(i)), \tag{32}
\]

so that the contribution at the free energy from site \(i \) is

\[
f(i) = -\frac{1}{2 \beta} \ln(2 \cosh \beta J + 2 \cosh(2 \beta x_{n}(i))). \tag{33}
\]

\(x_{n}(i) \) is a stochastic quantity satisfying the equation

\[
x_{n}(i) = h_{i} + \sum_{j \in I(i)} g(x_{n-1}(j)) \tag{34}
\]

When \(R \to 0 \) Eq. (34) has a fixed point solution of \(x_{\infty} = (z - 1)g(x_{\infty}). \) \(x_{\infty} = 0 \) is a solution for any \(J \) and \(\beta \). For \(\beta < \beta_{c} = \frac{1}{z} \ln \frac{2}{c(\infty)} \) there are also two stable solutions \(\pm x_{\infty} \neq 0 \) corresponding to the appearance of a ferromagnetic phase.

![FIG. 10: The difference in magnetization between the GS and the DS in \(d = 3 \) for different system sizes.](image)

![FIG. 11: The magnetization of the GS and the DS computed exactly on the Bethe lattice with \(z = 4 \) in the thermodynamic limit, showing the ordering of the critical point (see inset). When the data are plotted against the reduced parameter \((R - R)/R_{c} \), the curves superimpose. The result implies that for the Bethe lattice \(A_{GS} = A_{DS} \).](image)

To perform quenched averages one has to solve for the probability distribution \(W_{n}(x_{n}) \), where \(W_{n}(x)dx = \text{Prob}(x < x_{n} < x + dx) \), which satisfies the recursive functional equation

\[
W_{n+1}(x) = \int_{-\infty}^{\infty} dh P(h) \int_{-\infty}^{\infty} dx_{1} W_{n}(x_{1}) \cdots \int_{-\infty}^{\infty} dx_{z-1} W_{n}(x_{z-1}) \delta(x - h - H \sum_{k=1}^{z-1} g(x_{k})). \tag{35}
\]
so that in the thermodynamic limit \(W_\infty \) is given by the fixed point equation

\[
W_\infty(x) = \int_{-\infty}^{\infty} dx_1 W_\infty(x_1) \ldots \\
\ldots \int_{-\infty}^{\infty} dx_{z-1} W_\infty(x_{z-1}) P(x - h - H - \sum_{k=1}^{z-1} g(x_k)). (36)
\]

Once \(W_\infty \) is known, any thermodynamic quantity can be computed. In particular, the free energy per spin is given again by (12) and the magnetization at the central site of an infinite lattice, is given by Eq. (13) where \(Z_{11} \) are respectively the partition function with the spin at 0 fixed up (down). These are given by

\[
Z_{11} = e^{\pm \beta h_0} \prod_{k=1,z} (e^{\pm \beta J Z_k^+} + e^{+\beta J Z_k^-}) \quad (37)
\]

and \(Z_k^\pm \) for \(k = 1, \ldots, z \) are the partition functions of the \(z \) branches attached to the central site 0, with the boundary spin fixed up (down). This gives for the magnetization at the central site \(\langle s_0 \rangle \)

\[
\langle s_0 \rangle = \tanh(\beta(h_0 + \sum_{k=1,z} g(x_k))) \quad (38)
\]

The magnetization for the infinite lattice can then be obtained averaging over the quenched variables \(x_{r,1} \):

\[
M = \int_{-\infty}^{\infty} dh_P(h) \int_{-\infty}^{\infty} dx_1 W_N(x_1) \ldots \\
\ldots \int_{-\infty}^{\infty} dx_z W_N(x_z) \tanh(\beta(h + \sum_{k=1,z} g(x_k))). (39)
\]

For a Gaussian random-field distribution the fixed point equation can not be solved explicitly and we thus resort to a numerical integration. We obtain \(W_\infty(x) \) for \(z = 4 \), and for different values of \(R_c \) and compute the magnetization using Eq. (39). In Fig. 11 we compare the magnetization of the GS with the one of the remnant magnetization in the DS, computed in Ref. [22]. As observed in the simulations in \(d = 3 \), the transition occurs at two different locations (see the inset of Fig. 11), for \(z = 4 \) \(R_c^{(DS)} = 1.781258 \ldots [22] \) and \(R_c^{(GS)} \simeq 1.8375 \), with the mean-field exponent \((\beta = 1/2) \). When plotted against \((R - R_c)/R_c \) the two curves superimpose close to the critical point. This indicates that, though not required by universality, in the Bethe lattice \(A_{GS} = A_{DS} \), as also found in \(d = 3 \).

To investigate possible finite size scaling we have performed numerical simulations in the Bethe lattice, following the method of Ref. [25]. Collapsing the order parameter curve as in \(d = 3 \), using a scaling form similar to Eq. (29), does not appear to be possible in the Bethe lattice, because the scaling region is very narrow. Thus to test finite size scaling, we have computed the distribution of the magnetization \(m \) at the respective critical point, \(R_c^{(DS)} \) and \(R_c^{(GS)} \) for different lattice sizes \(N \). The distributions can all be collapsed into the same curve (see Fig. 12), using the form \(P(|m|) = f(|m|/M)/M \).

![Fig. 12: The distributions of the magnetization in the DS and the GS at their respective critical points on the Bethe lattice, obtained numerically for different lattice sizes \(N \), can be all collapsed together.](image)

V. REACHING THE GROUND STATE BY NON-EQUILIBRIUM DYNAMICS

After having shown that the GS and the DS correspond to different microscopic configurations, we investigate now if the GS spin configuration may be reached by a field history other than the ac-demagnetization. The answer to this question requires a clarification on the relation existing between locally stable states (given by the solutions of Eq. (2)), and the spin configurations visited along the non-equilibrium dynamics induced by the varying field. In fact, not all stable configurations may be reached by a field history from saturation. The problem has been treated in [40] where it has been shown that, given a spin configuration obtained by a field history, supposed unknown, the sequence of reversal fields that applied to saturation gives back the original state can be recovered. For spin systems this inverse function is given by an algorithm which is able to construct the reverse field history (RFH) [40]. This method is applied then to investigate if a given spin configuration may be reached by field history from saturation: if a field history leading to the state exists the algorithm produce a sequence of reversal fields; if no field history exists the algorithm enters a recursive loop. The investigation of the properties of unreachable states has been recently performed and leads to a classification of stable states on oriented graphs [41].
the set of reversal fields \(\{H\} = \{H_1, \ldots, H_n\} \) from the saturated state and let us define the function \(s = f(\{H\}) \). The set of all states obtained this way is defined as the hysteresis states (H-states). Due to adiabatic dynamical response and return point memory, this state \(s \) will contain the memory of a subset of the reversal fields. In fact not all the reversal fields determine the final state \(s \). For example, in terms of average magnetization, the reversal fields which give rise to closed minor loops do not influence the final state, i.e. their memory is erased, while the memory of the set of reversal fields \(\{H_s\} \) which are not erased is contained in the final state. The inverse function \(\{H_s\} = g(s) \) allows, starting from a spin configuration \(s \) belonging to the H-states ensemble, to obtain the set of reversal fields \(\{H_s\} \) which have been actually stored in the state and that - if applied as a field history - will reproduce the original state, i.e. \(s = f(g(s)) \). We define this set of reversal fields \(\{H_s\} \) as minimal field history.

The RFH algorithm takes as input a configuration \(s \) at \(H = 0 \) and gives as output - when it exists - the reversal field history from saturation to the state \(s \). The formulation of the algorithm is based on the order-preserving character of the dynamics \([13]\), and is therefore, applicable to a wide range of models beyond the RFIM. An interesting result of the RFH algorithm is obtained when it is applied to a state \(s \) not belonging to the H-states (i.e. where no field history exists). The iterated search for the reversal field sequence enters an iteration and, in this case, it can be shown that no field history leading to the state exists.

B. Simulation results in 1d

The RFH algorithm was applied to explore the possibility to reach the GS by non equilibrium dynamics by the numerical study of the RFIM in one dimension with periodic boundary conditions. We performed our investigations on systems having \(N = 5000 \) spins, averaging the results for 100 different realizations of the same disorder \(R \). The GS was obtained by the max-flow min-cut procedure for each realization and the RFH algorithm was applied. At each disorder value \(R \), the fraction \(f_{GS} \) of the realizations in which the GS resulted to be reachable was computed. For comparison the same procedure was applied starting from locally stable states generated by random sampling the set of local minima. The results are shown in Fig.13.

As a first finding the GS does not result to be systematically field reachable and the fraction depends on the disorder. One may conclude that the fact that the GS is sometimes reachable is a pure effect of the finite system size. However, also for the random states the fraction of found states \(f_{RND} \) sensibly changes with \(R \), but following a different curve. If there was no correlation between GS and the H-states the two curves would be coincident. The dependence of \(f_{RND} \) on \(R \) reflects the fact that the number of H-states depends on the disorder value and the system size \([42]\), and only at large disorder, where the number of locally stable states decreases, the ratio between H-states and stable states is significantly greater then zero.

VI. CONCLUSIONS

For disordered systems like the random field Ising model one would be interested in both universality in statistical properties and in the question how to “optimize” the GS. In this paper we have studied this problem in detail, by comparing the demagnetized and ground states. Our main findings are the following: First, the character of the GS is such that it is globally optimized, and the demagnetization procedure does not perform well unless the optimization problem is rather trivial. This is slightly surprising since the conclusion holds in particular if the RFIM GS is paramagnetic. Then the DS does not manage to find the right spin configuration, so that as seen in the \(d = 1 \) case many of the domains of the GS do not appear in the DS.

Second, in \(d = 3 \) (and with the aid of the Bethe
lattice solution), it can be demonstrated that the existence of a phase transition for both the DS and GS makes the “phase diagram” of optimization to show a regime where the outcome is less optimal: in the paramagnetic phase of the DS, where the GS is already ferromagnetic since the critical thresholds are ordered such that $R_{c, GS} > R_{c, DS} = 1.84$. In this regime DS and GS are expected to differ strongly in the thermodynamic limit. We also provide numerical evidence that the $d = 3$ transition appears to have the same critical exponents in both the GS and DS [43]. This can be considered both surprising – there being no exact field theoretical way of treating the $d = 3$ phase transition – and expected, since the functional renormalization calculations in spite of their shortcomings indicate that the actions are the same [14]. It seems intriguing that such universality is met exactly in the limit where the “optimized” character of the DS changes.

The results indicate that for the particular system at hand, where the disorder couples directly to the expected magnetization, “local” optimization methods have difficulties. Of course, as in “hysteretic optimization”, one can perturb or “shake” the state obtained from the DS procedure to try to still lower the energy. These attempts are of course usually just heuristic. In the case of the RFIM, the joint approach of optimizing by the DS and computing the GS exactly allows to understand better similarities and differences between equilibrium and low energy non-equilibrium states.

In addition to the ferromagnetic RFIM model, one can consider other systems where two disorder induced phase transitions exist. Numerical simulations and analytical results have shown that a disorder induced transition in the hysteresis loop can be observed in the random bond Ising model [44], in the random field O(N) model [45], in the random anisotropy model [46, 47] and in the random Blume-Emery-Griffith model [44]. All these systems display as well a transition in equilibrium and it would be interesting to compare their DS and GS.

Interfaces in quenched disorder would provide another interesting example, since the roughness exponent typically differs in and out of equilibrium (i.e. at the depinning threshold) [4]. It would be interesting to measure the roughness of an interface after a demagnetization cycle (i.e. after the field driving the interface is cycled with decreasing amplitude), and compare its properties with those of the ground state interface. Finally, there is the issue of energetics of excitations in the respective ensembles: the universality of exponents and scaling functions would seem to imply that these also scale similarly.
[38] R. Bruinsma, Phys. Rev. B, 30, 289 (1984).
[39] J. H. Carpenter and K. A. Dahmen Phys. Rev. B 67, 020412 (2003).
[40] V. Basso and A. Magni, Physica B 343, 275 (2004).
[41] A. Magni and V. Basso, submitted to JEMS 04 Conference, (J. Magn. Magn. Mat.).
[42] V. Basso and A. Magni, to be published.
[43] A similar suggestion was made independently in Ref. [20].
[44] E. Vives and A. Planes, Phys. Rev. B 50, 3839 (1994).
[45] R. da Silveira and M. Kardar, Phys. Rev. E 59, 1355 (1999).
[46] E. Vives and A. Planes, Phys. Rev. B 63, 134431 (2001).
[47] R. da Silveira and S. Zapperi, Phys. Rev. B 69, 212404 (2004).