Oxygen: viral friend or foe?

Esther Shuyi Gan¹* and Eng Eong Ooi¹,²,³

Abstract

The oxygen levels organ and tissue microenvironments vary depending on the distance of their vasculature from the left ventricle of the heart. For instance, the oxygen levels of lymph nodes and the spleen are significantly lower than that in atmospheric air. Cellular detection of oxygen and their response to low oxygen levels can exert a significant impact on virus infection. Generally, viruses that naturally infect well-oxygenated organs are less able to infect cells under hypoxic conditions. Conversely, viruses that infect organs under lower oxygen tensions thrive under hypoxic conditions. This suggests that in vitro experiments performed exclusively under atmospheric conditions ignores oxygen-induced modifications in both host and viral responses. Here, we review the mechanisms of how cells adapt to low oxygen tensions and its impact on viral infections. With growing evidence supporting the role of oxygen microenvironments in viral infections, this review highlights the importance of factoring oxygen concentrations into in vitro assay conditions. Bridging the gap between in vitro and in vivo oxygen tensions would allow for more physiologically representative insights into viral pathogenesis.

Keywords: Hypoxia, Viruses

Background

Viral infections are heavily dependent on host cells for energy, enzymes and metabolic intermediates for successful replication [134]. Factors that influence the state of a cell, including differential gene expression and pathway activation, could all impact the outcome of viral pathogenesis. One such factor is the oxygen level in the microenvironment in which cells reside. Oxygen plays key roles in respiration, metabolism and energy production. Given the key role of oxygen in cell function, cells have evolved oxygen sensors that regulate the expression of a suite of genes in response to lowered oxygen levels. For this discovery, William Kaelin, Gregg Semenza and Peter Ratcliffe were awarded the 2019 Nobel Prize for Physiology and Medicine. Here, we elaborate upon our understanding of how cells react to different oxygen levels and review how oxygen affects the outcome of viral infection and disease pathogenesis. In general, viruses that naturally infect and replicate in tissues with high oxygen content are impaired by hypoxic environments. Conversely, hypoxia has been shown to increase the infection of viruses that naturally infect organs with lower oxygen tensions.

Main text

Oxygen cascade

Although oxygen is needed by all human cells, not all cells in our bodies receive similar amounts of oxygen. Oxygen levels in most organs, with a few exceptions, are lower than that of atmospheric oxygen (20–21% or 152–160 mmHg). This disparity is largely due to blood transportation through the vascular anatomy and subsequently vascular beds in tissues [55]. Due to its poor solubility in liquids, oxygen is transported around the body by hemoglobin in red blood cells. Each hemoglobin molecule carries up to a maximum of 4 oxygen molecules with its affinity for each oxygen molecule increasing as each of its binding sites is occupied [120]. Oxygen delivery in the human respiratory system depends on several factors such as the partial pressure of oxygen,
efficiency of gas exchange, concentration and affinity of hemoglobin to oxygen and cardiac output [92]. The highest oxygen concentration is typically found in the respiratory tract. As inspired air enters the trachea and is humidified in the upper respiratory tract, the pressure of oxygen decreases while concentration of water increases, thus altering the partial pressure of oxygen in this gas mixture [92]. Further dilution occurs as oxygen diffuses in and out of arteries. This is best exemplified in organs such as the spleen and liver. In spleens, oxygen concentrations are highest nearest the splenic artery (~6%) as compared to locations in the spleen distant from the splenic artery (~1%) [16]. In the liver, oxygen tensions range from approximately 12% oxygen surrounding the portal vein to 1% oxygen in the proximity of the central vein [137]. The average oxygen concentrations of different organs observed in humans and animal models are summarized in Table 1. Taken collectively, with the exception of the lungs which are exposed to ambient air, median physiological oxygen tensions of organs are significantly lower than that of atmospheric oxygen tensions. This is known as the oxygen cascade. Thus, physiological oxygen concentrations in which viral infection and replication occur can be significantly different to the level of oxygen in normal air. It is therefore useful to understand how cells adapt to physiological oxygen tension.

The HIF family and molecular mechanisms of oxygen sensing

In microenvironments with lowered oxygen levels, cells regulate the expression of genes, such as those involved in controlling angiogenesis, iron metabolism and glycolysis, to adapt and survive. To understand the cellular response to lowered oxygen levels, investigators focused on the regulation of erythropoietin (EPO), that is known to be induced in response to lowered oxygen to stimulate erythropoiesis. Analysis of the cis-acting sequences involved in EPO induction led to the identification of hypoxia inducible factor (HIF) [130, 143, 144].

The HIF family

HIF transcription factors are basic helix-loop-helix DNA binding proteins of the PER-ARNT-SIM family [143]. HIFs form heterodimers, where alpha subunits HIF1α, HIF2α, HIF3α [39, 49, 130] interact with a constitutively expressed beta subunit HIF1β, also known as the aryl hydrocarbon receptor nuclear translocator 1 (ARNT1) [145]. HIF1α and HIF2α are oxygen sensitive subunits that share 48% genetic sequence homology [63]. Both dimerize with HIF1β during hypoxic conditions to induce gene transcription [39]. HIF3α is distantly related, sharing less sequence homology and function with HIF1α or HIF2α. It has 6 splice variants [49]. Its function remains understudied in comparison to HIF1α and HIF2α although in vitro studies suggest that the prevailing actions of HIF3α variants are inhibitory and constitutes a negative feedback loop for HIF1α and HIF2α [59, 98].

Both HIF1α and HIF2α proteins have multiple conserved domains involved in DNA binding, protein interaction and dimerization, oxygen-dependent degradation (ODD) and transcriptional activity (N-TAD and C-TAD). HIF3α isoforms are shorter and carry only a N-TAD domain together with a leucine zipper motif with unknown function [99, 115]. HIF1β contains no transcriptional activation domains and requires dimerization with HIF1α to induce transcription. With 70, 85 and 100% homology between their basic helix-loop-helix DNA binding and remaining basic domains, it is not surprising that HIF1α and HIF2α binds DNA indistinguishably [136]. While extremely similar in both homology and function, there are subtle differences between HIF1α and HIF2α. The C-TAD domains of HIF1α and HIF2α control target gene transcription through the recruitment of co-factors but target gene selectivity between the 2 proteins have been postulated to arise from the N-TAD domains which recognize distinct transcriptional co-factors [3, 32, 88, 67]. Besides differences in protein domains, the expression of this protein is variable in

Table 1 Summary of oxygen concentrations in various organs

Tissue	O₂ (%)	mmHg	Species	Reference
Atmospheric Air	21.1	160	Human	[17]
Trachea	19.7	150	Human	[17]
Arterial Blood	13.2	100	Human	[17]
Venous Blood	5.3	40	Human	[17]
Brain	4.4 ± 0.3	33.8 ± 2.6	Human	[4, 102]
Normal Lung	5.6	42.8	Human	[93]
Lung Tumor	0.1–6.1	0.7–46	Human	[93]
Skin (Epidermis)	1.1 ± 0.42	8 ± 3.2	Human	[147]
Skin (Dermal Papillae)	3.15 ± 0.8	24 ± 6.4	Human	[147]
Liver	7.5 ± 0.7	40.6 ± 5.4	Human	[13, 94]
Kidney	6.8 ± 0.8	52 ± 6	Human	[108]
Kidney	5.9–6.6	45–50	Rat	[129]
Placenta	7.4 ± 0.4	56.2 ± 3.2	Human	[76]
Umbilical cord	2.7–3.9	20–30	Human	[47]
Umbilical artery	1.3–1.9	10–15	Human	[47]
Bone Marrow	7.22 ± 0.1	54.9 ± 0.98	Human	[60]
Ovaries	11.6	88	Human	[43]
Spleen	10 ± 2.4	80 ± 18	Rats	[65]
Lymphoid organs	0.5–4.5	3.8–34.2	Mice	[16]
Skeletal muscle	3.3 ± 0.58	25 ± 4.4	Human	[8]
Adipose tissue	4.7–8.9	36–68	Human	[40]
different cell types. HIF1α is expressed in almost all immune cell types including neutrophils [142], monocytes [12, 131], macrophages [29], dendritic cells [11, 75] and lymphocytes [9, 101]. HIF2α however is only expressed in certain cell types such as endothelial cells [66] and tumor associated macrophages [72].

Immune cells in the circulatory system are exposed to a gradient of oxygen concentrations in the blood, lymphoid organs and areas of inflammation [120, 121]. It is therefore essential for immune cells such as monocytes, macrophages and dendritic cells to rapidly adapt to fluctuating oxygen. HIF1α has indeed been implicated in all facets of the immune response including inflammation [113], responses to bacterial and viral infections [46, 104, 126, 135], immune cell metabolism [28, 103, 111] and lymphoid cell development [19]. HIF1α could thus be a major regulator of infection outcome.

Oxygen sensing mechanisms of HIF1α

HIF1α sensitivity to cellular oxygen tension is largely dependent on post-translational modifications. While HIF1α is constitutively expressed, it is highly regulated by oxygen and has a short half-life of approximately 5 mins [125]. Sufficient oxygen in the cellular environment, such as those in most in vitro experiments, will result in rapid proteasomal degradation of HIF1α in the cytoplasm [38]. An overview of these processes is shown in Fig. 1.

In oxygen rich environments, a family of prolyl hydroxylase domains (PHD1–3) hydroxylate highly conserved proline residues (Pro402 and Pro564) in the ODD domain of HIF1α in an iron-, α-ketoglutarate-, ascorbate- and oxygen-dependent manner [12, 29]. This hydroxylation enables the binding of the von-hippel Lindau (VHL) E3 ubiquitin ligase complex to HIF1α. Ubiquitination of HIF1α then initiates the process of proteasomal degradation. In addition to PHDs, an independent regulatory hydroxylation step by Factor Inhibiting HIF (FIH) hydroxylates an asparagine (Asn803) to promote the hydroxylation dependent step by Factor Inhibiting HIF (FIH) hydroxylates an asparagine (Asn803) to

HIF1α does not bind to DNA in a typical homodimeric fashion, but rather as heterodimers with HIF1β. Formation of heterodimers with HIF1β is oxygen independent, any decrease in oxygen levels would lead to stabilization and nuclear translocation of HIF1α. This transport occurs when importin-α binds to the nuclear localization signal in the C-terminal NLS of HIF1α, recruits importin-β and initiates nuclear translocation [35]. In the nucleus, HIF1α forms heterodimers with HIF1β. It has been postulated that HIF1β preferentially binds to HIF1α phosphorylated by MAPK243, therefore increasing transcriptional activity of HIF1α. However transcriptional activity requires N-TAD and C-TAD domains to recruit co-factors CBP/p300, SRC-1 and TIF2 to induce efficient transcription of target genes [18, 91]. Through its interaction with CBP/p300, S-nitrosation on cysteine800 has also been shown to increase HIF1α transcription activity [151]. Other co-factors for HIF1α include pyruvate kinase M2 isoform [97] and mediator associated kinase CD8K [45], ATPase/helicase chromatin remodeling factor Pontin [95] and SWI/SNF nucleosome remodeling complex [82].

Transcription of hypoxia-inducible genes occurs when HIF1α/HIF1β heterodimer bind to a core consensus sequence 5′ – (A/G) CGTG – 3′ within the hypoxia response element (HRE) at the proximal promoters of target genes [128]. Though the HRE sequence is abundant throughout the human genome, HIF1α only binds to approximately 1% of such sequence [128]. In addition to the HRE, several HIF1α target genes contain a HIF1α destabilization leading to proteasomal degradation of HIF1α, which prevents transcription of hypoxia inducible genes [77, 107, 149]. Clinically, patients with von Hippel-Lindau syndrome, where VHL is defective, have an overproduction of hypoxia-inducible genes encoding for angiogenesis leading to the development of multiple tumors [122].

As PHD and FIH hydroxylation of HIF1α is oxygen-dependent, any decrease in oxygen levels would lead to stabilization and nuclear translocation of HIF1α. This transport occurs when importin-α binds to the nuclear localization signal in the C-terminal NLS of HIF1α, recruits importin-β and initiates nuclear translocation [35]. In the nucleus, HIF1α forms heterodimers with HIF1β. It has been postulated that HIF1β preferentially binds to HIF1α phosphorylated by MAPK243, therefore increasing transcriptional activity of HIF1α. However transcriptional activity requires N-TAD and C-TAD domains to recruit co-factors CBP/p300, SRC-1 and TIF2 to induce efficient transcription of target genes [18, 91]. Through its interaction with CBP/p300, S-nitrosation on cysteine800 has also been shown to increase HIF1α transcription activity [151]. Other co-factors for HIF1α include pyruvate kinase M2 isoform [97] and mediator associated kinase CD8K [45], ATPase/helicase chromatin remodeling factor Pontin [95] and SWI/SNF nucleosome remodeling complex [82].

Transcription of hypoxia-inducible genes occurs when HIF1α/HIF1β heterodimer bind to a core consensus sequence 5′ – (A/G) CGTG – 3′ within the hypoxia response element (HRE) at the proximal promoters of target genes [128]. Though the HRE sequence is abundant throughout the human genome, HIF1α only binds to approximately 1% of such sequence [128]. In addition to the HRE, several HIF1α target genes contain a HIF1α destabilization leading to proteasomal degradation of HIF1α, which prevents transcription of hypoxia inducible genes [77, 107, 149]. Clinically, patients with von Hippel-Lindau syndrome, where VHL is defective, have an overproduction of hypoxia-inducible genes encoding for angiogenesis leading to the development of multiple tumors [122].

As PHD and FIH hydroxylation of HIF1α is oxygen-dependent, any decrease in oxygen levels would lead to stabilization and nuclear translocation of HIF1α. This transport occurs when importin-α binds to the nuclear localization signal in the C-terminal NLS of HIF1α, recruits importin-β and initiates nuclear translocation [35]. In the nucleus, HIF1α forms heterodimers with HIF1β. It has been postulated that HIF1β preferentially binds to HIF1α phosphorylated by MAPK243, therefore increasing transcriptional activity of HIF1α. However transcriptional activity requires N-TAD and C-TAD domains to recruit co-factors CBP/p300, SRC-1 and TIF2 to induce efficient transcription of target genes [18, 91]. Through its interaction with CBP/p300, S-nitrosation on cysteine800 has also been shown to increase HIF1α transcription activity [151]. Other co-factors for HIF1α include pyruvate kinase M2 isoform [97] and mediator associated kinase CD8K [45], ATPase/helicase chromatin remodeling factor Pontin [95] and SWI/SNF nucleosome remodeling complex [82].

Transcription of hypoxia-inducible genes occurs when HIF1α/HIF1β heterodimer bind to a core consensus sequence 5′ – (A/G) CGTG – 3′ within the hypoxia response element (HRE) at the proximal promoters of target genes [128]. Though the HRE sequence is abundant throughout the human genome, HIF1α only binds to approximately 1% of such sequence [128]. In addition to the HRE, several HIF1α target genes contain a HIF1α destabilization leading to proteasomal degradation of HIF1α, which prevents transcription of hypoxia inducible genes [77, 107, 149]. Clinically, patients with von Hippel-Lindau syndrome, where VHL is defective, have an overproduction of hypoxia-inducible genes encoding for angiogenesis leading to the development of multiple tumors [122].

Hypoxia as a consideration for in vitro studies

Stabilization of HIF in cells residing in low oxygen micro-environments drives cellular reprogramming that also affects the availability of pro-viral and anti-viral host factors that collectively determine the outcome of viral infections. For instance, increase in glycolysis has been shown to be favorable for dengue virus (DENV) [41], herpes simplex virus (HSV) [1], human immunodeficiency virus (HIV) [62], rubella virus [7], hepatitis C virus (HCV) [80], influenza [133] and norovirus [116] infection.

A growing body of evidence suggests that, besides glycolysis, many other hypoxia-driven changes will also have important implications not only in the study of viral pathogenesis.

Viruses which lifecycle is inhibited by hypoxia

Viruses that infect the respiratory tract are generally restricted by hypoxia [36]. This restriction potentially
impacts the use of recombinant adenoviruses as a vector for cancer vaccine. Hypoxia is an important feature of solid tumors and the ability of oncolytic viruses such as adenoviruses or vesicular stomatitis virus (VSV) to replicate under these low oxygen conditions could be a critical determinant to the success of these therapies. However, in vitro, significantly reduced synthesis of adenovirus (wildtype strain Ad309) viral protein was observed when cells were cultured at 1% oxygen, ultimately leading to lower production of infectious Ad309 compared to experiments in normal air [119]. As tumor hypoxia has been shown (8-10 mmHg) [64], this restriction of adenovirus infection could be a factor in poor intratumoral spread resulting in the limited efficacy observed in clinical trials [150].

Perhaps a more promising oncolytic virus is VSV, which has been shown to overcome hypoxia-induced restrictions in viral protein translation during early infection in vitro [27]. However, renal carcinoma cells (RCC) lacking pVHL, resulting in constitutive HIF activity, showed greater resistance to the cytolytic effect of VSV as compared to wildtype RCC. Gene expression profiling under these conditions indicates that HIF enhances IFNβ upon VSV infection. This suggests that HIF could play an antiviral response against VSV, and should be an important consideration when used as an oncolytic viral therapy [70] (Table 2).

Viruses enhanced by hypoxia

On the other hand, a multitude of viruses replicate in organs with oxygen microenvironments significantly

Fig. 1 The oxygen sensing pathway of HIF1α. HIF is the master regulator of the cellular hypoxic response. Under normoxic conditions, HIF1α is hydroxylated in an oxygen dependent manner and tagged for degradation by VHL complexes. In low oxygen environments, HIF1α is stabilized due to the lack of oxygen, translocate to the nucleus and forms a heterodimer with HIF1β and other cofactors to activate transcription of hypoxia inducible genes. Viruses that are able to stabilize HIF1α under atmospheric conditions by inhibiting PHD or VHL interactions are shown in the top panel.
lower than that of atmospheric air. To establish successful infection, these pathogens would have evolved to thrive in cells adapted to such oxygen microenvironments. Indeed, low oxygen levels have been shown to be advantageous to a number of viruses (Table 1). Under hypoxic conditions, cells develop a metabolic response to ensure their survival, in part by upregulating anaerobic glycolysis for energy production. In hepatocytes, this increase in anaerobic glycolysis directly correlated with increases in DENV replication [42]. Similarly, hypoxia enhances parvovirus B19 replication [15, 24, 118] by upregulating cellular Epo/EpoR receptor signaling in erythroid progenitor cells (EPCs) [24] which have been shown to be vital for parvovirus B19 replication [23]. This could be a contributory factor to the specificity of parvovirus B19 for infecting EPCs, which reside in the bone marrow that has oxygen concentrations of 0–4% [114].

Another virus, Kaposi’s sarcoma-associated herpesvirus (KSHV) was the first virus identified to have a functional HRE in its Rta gene. As activation of Rta results in induction of the lytic replication of the virus, this suggests that hypoxia can directly stimulate KSHV replication via HIF1α [58, 140]. Indeed, it has previously been shown that hypoxia induces the lytic replication of KSHV in primary effusion lymphoma cell lines [31].

More recently, dengue virus (DENV) infection and replication has been shown to be enhanced in monocytes at oxygen levels comparable to that within the lymph nodes (3%). This enhancement was observed both in a context of a DENV-only infection as well as antibody-dependent infection that simulates clinical secondary infection with a DENV serotype heterologous to the primary infection [52–54, 57]. DENV exists as 4 antigenically distinct serotypes. Antibodies produced after infection with one DENV serotype are able to enhance infection with the remaining 3 serotypes. Binding of cross-reactive or sub-neutralizing levels of antibodies to DENV enables viral entry into myeloid-derived cells via the fragment crystallizable gamma receptor (FcγR) [5, 10, 20–22, 26, 33, 146]. This route of infection is also commonly referred to as antibody dependent enhancement (ADE). When monocytes are incubated at 3% oxygen, HIF1α directly binds to and upregulates transcription of FcγRIIA. Moreover, hypoxia-dependent but HIF1α-independent changes in cellular membrane lipid composition further complement the increase in FcγRIIA to increase uptake of antibody-opsonized DENV. This synergistic effect is attributed to the increased proportion of ether phosphatidylethanolamine (ether-PE) in membranes of

| Table 2 Summary of viruses inhibited and augmented by hypoxia |

Mechanism	Cell Line	Conditions	Reference	
Inhibited				
Adenovirus	Cell arrest	H1299 / A549	1% oxygen	[119, 132]
SV40	Blocks replication	CV1	0.02% oxygen	[124]
H1 parvovirus	ND	Constitutive expression of HIF1α	[25]	
VSV	Increase in innate immune responses	RCC	Constitutive expression of HIF1α	[69]
Augmented				
DENV	Increased antibody dependent uptake via upregulation of FcγRIIA and membrane ether lipid concentrations	THP-1, Primary Monocytes	3% oxygen	[46]
	Correlated with increased anaerobic glycolysis for increased ATP production	Huh7	3% oxygen	[42]
EBV	Induce reactivation of EBV	Burkitt lymphoma Sal	Deferoxamine (DFX)	[90]
HSV	Hypoxia induced GADD34	U87	5% oxygen	[2]
HCV	ATP increase due to the induction of anaerobic glycolysis	Huh7.5	3% oxygen	[139]
Sendai Virus	ND	Rhabdomyosarcoma	3 Kpa	[37]
KSHV	HIF1α induction of viral Rta promoter	Hep3B	Expression of reporter plasmids containing Rta promoter	[58]

ND Not determined
cells cultured under hypoxic conditions [46]. Taken together, such hypoxia induced changes increase myeloid cells susceptibility to antibody-dependent DENV infection. It also suggests that assessment of virus neutralizing antibodies should be conducted in myeloid cells incubated at oxygen levels that reflect the microenvironment of the lymph nodes, where these cells reside and function.

Viruses that stabilize HIF1α in an oxygen independent manner

Besides relying on the level of oxygen to modulate host cell responses via the HIF pathway, some viruses have evolved the ability to interact with components of this pathway for its benefit. Pathogens such as influenza virus [123], vaccinia virus (VACV) [100], Epstein-Barr virus (EBV) [141] and hepatitis B virus (HBV) [153] have been shown to stabilize HIF1α after infection to stimulate the transcription of hypoxia inducible genes, even under normoxic conditions (Fig. 1, Table 3).

One strategy employed by viruses to stabilize HIF is to inhibit its interaction with PHDs and VHLs (Fig. 1). VACV protein C16 stabilizes HIF1α by directly binding to PHD2 and inhibiting hydroxylation and subsequent degradation of HIF1α. This results in rapid stabilization of HIF1α early post infection activation of HIF1α response genes [100]. HIF1α is similarly stabilized during EBV infection indirectly via latent membrane protein 1 (LMP1), inducing proteasome degradation of PHD1 and 3. As a result, LMPs prevents the formation of HIF/VHL complexes which are required for HIF1α degradation [89, 141]. Importantly, as HIF1α activation induces angiogenesis, its stabilization during EBV infection may play important roles in EBV-mediated tumorigenesis and tumor progression. In another example, KSHV employs several strategies to stabilize HIF1α such as the expression of a miRNA cluster within the viral genome that binds PHD1 mRNA to downregulate its expression. In addition, the KSHV protein LANA targets VHL for degradation [14, 152]. Together, these result in the stabilization and increased activity of HIF1α during KSHV infection.

Viruses such as HCV and RSV are also known to reprogram cellular metabolism to stabilize HIF1α under normoxic conditions. Oxidative stress induced by HCV infection results in HCV-stabilized HIF1α which subsequently leads to synthesis and secretion of VEGF [109]. Similarly, RSV infection in bronchial airway epithelial cells induce the release of nitric oxide (NO), which results in HIF1α stabilization and expression of HIF1α target genes [84]. This is likely due to increased oxygen consumption via oxidative phosphorylation, which results in redistribution of intracellular oxygen away from PHDs to respiratory enzymes, so that the cell senses internal hypoxia [36].

Similarly, viruses that attenuate the VHL and HIF1α interaction results in the induction of the hypoxic response. During HBV infection, the HBV X protein (HBx) increases the expression, stabilization and transcriptional activity of HIF1α by binding to and inhibiting their interaction with VHL [68, 96, 106, 153]. In HPV infections, the oncoprotein E6 forms a complex with HIF1α to inhibit its association with VHL and thus protect HIF1α from proteasome dependent degradation [51]. This directly leads to HIF1α induced glycolysis, which contributes to the Warburg effect seen in cancer cells.

Although influenza virus naturally infects respiratory epithelial cells that are exposed to atmospheric conditions (20–21% O₂ or 152–160 mmHg), recent studies suggest that H1N1 virus infection can trigger a hypoxic response. Under normoxic conditions, H1N1 influenza virus infection stabilizes HIF1α by inhibiting proteasomal activity, resulting in the activation of the HIF1α pathway [123]. Nuclear accumulation of HIF1α resulted in enhanced proinflammatory cytokines secreted from infected cells that could thus play a role in the development of severe inflammation during H1N1 infection [50].

HIF1α inhibitor as a potential anti-viral strategy

The identification of the role of HIF1α in viral infection suggests a unique opportunity for HIF1α inhibitors to be used as anti-viral drugs. HIF1α inhibitors may be

| Table 3 Viruses that induces a pseudohypoxic state |
|------------------|------------------|------------------|------------------|
| Induces Hypoxia Response | Effect | Mechanism | Cell Line | Reference |
| Influenza | HIF1α stabilization | Impaired proteasome function results in decreased degradation of HIF1α | AS49 | [123] |
| Hepatitis B Virus (HBV) | HIF1α stabilization | HBx inhibits binding of VHL to HIF2α | HepG2, L02 | [68] |
| Hepatitis A Virus (HAV) | HIF1α stabilization | HBx activates MAPK pathway which in turns induces the activity of HIF1α | Chang X-34, HepG2 | [153] |
| VACV | HIF1α stabilization | C16 inhibition of PHD2 | Hek293T | [100] |
| EBV | Increased protein synthesis of HIF1α | LMP induced | KR-4 | [141] |
effective against viral infections that have exhibited the ability to induce HIF1α and thrive under its activity. To date, HIF1α inhibitors have been developed primarily for cancer tumor therapy. These inhibitors act on various processes [112], including HIF1α mRNA expression, protein translation, protein degradation, DNA binding and transcriptional activity (Table 4).

While an increase in mRNA expression does not necessarily equate an increase in protein expression, HIF1α mRNA levels have been suggested to be a rate-limiting factor for its translation [154]. A highly specific RNA antagonist EZN-2968 is an antisense oligonucleotide that has been shown to bind to HIF1α mRNA to reduce its translation both in vitro and in vivo. This then resulted in the reduction of HIF1α transcriptional targets [48]. Phase I clinical trials showed safety in patients and further studies are required to investigate EZN-2968 modulation of HIF1α transcriptional targets [78, 117].

To inhibit HIF1α protein translation and accumulation in cells, agents such as inhibitors of topoisomerases I and II, receptor tyrosine kinase, cyclin dependent kinases and signaling pathways are all possible candidates. As studies have shown that mTOR plays a role in HIF1α translation, inhibiting mTOR signaling could lead to downregulation of HIF1α. Indeed mTOR inhibitors such as temsirolimus [34], everolimus [138], metformin and MLN0128 [73] have all been shown to inhibit HIF1α protein translation. Stabilization of HIF1α in the cytosol requires interaction with the chaperone protein HSP90. In the presence of HSP90 inhibitors, HIF1α undergoes proteasomal degradation [74]. Therefore HSP90 inhibitors such as 17-AAG and 17-DMAG are currently in development for cancer therapy [110]. In addition, small molecules may also downregulate the activity of HIF1α by inhibiting its ability to bind to HRE and initiate transcription of target genes. Recently, a compound DJ12 was identified from a screen of 15,000 compounds to inhibit HIF1α activity by blocking its binding to HRE sequences [79]. The development of such HIF1α inhibitors provide unique and hitherto unexplored opportunities to expand our anti-viral pharmacopoeia.

Conclusion

Collectively, differences between atmospheric oxygen tensions in which in vitro experiments are generally conducted differs drastically from that of physiological tissue oxygen microenvironments. In light of the growing body of evidence on the relationship between oxygen tensions and viral replication, the application of tissue oxygen tensions should be an important consideration when studying viral pathogenesis.

Abbreviations

EPO: Erythropoietin; HIF: Hypoxia Inducible Factor; ARNT1: Aryl hydrocarbon receptor nuclear transporter 1; ODD: Oxygen dependent degradation; VHL: Von-hippel lindeau; PHD: Prolyl hydroxylase domains; FIH: Factor inhibiting HIF; PMK2: Pyruvate kinase M2 isofrom; HRE: Hypoxia response element; HAS: Hypoxia ancillary sequene; DENV: Dengue virus; HSV: Herpes simplex virus; HIV: Human immunodeficiency virus; HCV: Hepatitis C virus; VSV: Vesicular stomatitis virus; KSHV: Kaposi’s sarcoma-associated herpervirus; ADE: Antibody dependent enhancement; RCC: Renal carcinoma cells; VACV: Vaccinia virus; DFO: Deferoxamine

Acknowledgements

Not applicable.

Authors’ contributions

ESG and EEO wrote the manuscript. The author(s) read and approved the final manuscript.

Funding

ESG is supported by the Estate of Tan Sri Khoo Teck Puat under its Khoo Postdoctoral Fellowship Award (Duke-NUS-KPFA/2018/0023) administered by Duke-NUS Medical School.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Table 4 Summary of HIF1α inhibitors

Mode of inhibition	Compound	Target	Reference
HIF1α mRNA	EZN-2968	HIF1α	[117]
HIF1α Translation	Topotecan / AZN-2208	Topoisomerase 1	[6, 127]
	PX-478	HIF1 / HIF2 Protein	[88]
	Digoxin	HIF1α protein	[156]
	Temsirolimus / Everolimus / MLN0128 / Metformin	mTOR	[73, 157]
	Wortmannin	PI3K	[155]
HIF1α Degradation	17-AAG / 17-DMAG	HSP90	[110]
	Romidepsin / Trichostatin	HDAC	[71, 81]
	LW6	HDAC / VHL	[85]
HIF1α DNA Binding	DJ12	HRE	[79]
HIF1α transcriptional activity	DJ12	CH1 domain pf p300	[83]
Competing interests
The authors declare no financial or non-financial competing interest.

Author details
1Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. 2Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. 3Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.

Received: 14 February 2020 Accepted: 30 June 2020

Published online: 27 July 2020

References
1. Abrantes JL, Alves CM, Costa J, Almeida FCL, Solla-Penna M, Fonts CEFL, Souza TML. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Biochem Biophys Acta. 2012;1822:1198–206. https://doi.org/10.1016/j.bbadis.2012.04.011.
2. Aghi MK, Liu T-C, Rabkin S, Martuza RL. Hypoxia enhances the replication of oncolytic herpes simplex virus. Mol Ther. 2009;17:51–6. https://doi.org/10.1038/mt.2008.232.
3. Apreliozova O, Wood M, Tackett S, Chandramouli GVR, Barrett JC. Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res. 2006;66:5641–7. https://doi.org/10.1158/0008-5472.CAN-05-3345.
4. Assaf F, Schultheiss R, Leniger-Follert E, Wüllenweber R. Measurement of local oxygen partial pressure (PO2) of the brain cortex in cases of brain tumors. In: CNS metastases neurosurgery in the aged, advances in neurosurgery. Berlin, Heidelberg Springer Berlin Heidelberg. 1984. p. 263–70.
5. Ayala-Nunez NV, Hoornweg TE, van de Pol DM, Sollema KA, Flipsen S, van der Schaar HM, Smit JM. How antibodies alter the cell entry pathway of dengue virus particles in macrophages. Sci Rep. 2016;6:28768. https://doi.org/10.1038/srep28768.
6. Beppu K, Nakamura K, Linehan WM, Rapisarda A, Thiele CJ. Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res. 2005;65:4775–81. https://doi.org/10.1158/0008-5472.CAN-04-3332.
7. Bilc NC, Jahn K, Lorenz M, Lüdtke A, Hubschen JM, Geyer H, Mankertz A, Hübner D, Liebert UG, Claus C. Rubella viruses shift cellular bioenergetics to a more oxidative and glycolytic phenotype with a strain-specific requirement for glutamine. J Virol. 2018;92:13. https://doi.org/10.1128/JVI.00934-18.
8. Boekstegers P, Riessen R, Seyde W. Oxygen partial pressure distribution within skeletal muscle: Indicator of whole body oxygen delivery in patients? J Physiol. 2012;1822:1198–206. https://doi.org/10.1016/j.bbadis.2012.04.011.
9. Bollinger T, Bollinger A, Gies S, Feldhoff L, Sochbach W, Rupp J. Transcription regulates HIF-1[alpha] expression in CD4[+]/[null] T cells. Immunol Cell Biol. 2016;94:109–13. https://doi.org/10.1038/icb.2015.64.
10. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
11. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
12. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
13. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
14. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
15. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
16. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
17. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
18. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
19. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
20. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
21. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
22. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
23. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
24. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
25. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
26. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
27. Boonnak K, Slike BM, Donoho GC, Marovich MA. Human Fc[gamma]RIIA-mediated antibody-dependent enhancement of infection. J Immunol. 2010;184:5273–8. https://doi.org/10.4049/jimmunol.2010021290.
34. Del Bufalo D. et al. Antiangiogenic Potential of the Mammalian Target of Rapamycin Inhibitor Temsirolimus. Cancer Res. 2006;66(11):5549–54.
35. Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen B, Hartmann E, Köhler M. Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin α/B pathway. Biochimica et Biophysica Acta (BBA) - Mol Cell Res. 2006;1763:394–404.
36. Dominguez O, Rojo P, Las Heras d S, Folgueira D, Contreras JR. Clinical presentation and characteristics of pharyngeal adenovirus infections. Pediatr Infect Dis J. 2005;24:733–4. https://doi.org/10.1097/01.inf.0000192942.96436.4d.
37. Ebbesen P, Toth FD, Viladsen JA, Nørskov-Lauritsen N. In vitro interferon induction by influenza a (H1N1) infection is dependent on the metabolic phenotype of activated human macrophages. J Virol. 2001;75:8245–50. https://doi.org/10.1128/JVI.75.14.8245-8250.2001.
38. Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Kuriyama YF. Molecular mechanisms of transcription activation by HIF and HIFα in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 1999;18:1905–14. https://doi.org/10.1093/emboj/18.7.1905.
39. Ema M, Taya S, Kotani N. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular. ... in: Presented at the Proceedings of the... 1997.
40. Fleischmann E, Kurz A, Niedermayr M, Schebesta K, Kimberger O, Sessler DI, DeWitt LD, Fedorowicz A, Huthoff H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–8. https://doi.org/10.1056/NEJM198910263211174.
41. Frakaloki E, Kaimou P, Moraiti M, Kalliapakou KI, Karampetou K, Dottika E, Liakos P, Vassilacopoulou D, Mavromara P, Bartschäger L, Vassilakli N. The role of tissue oxygen tension in dengue virus replication. Cells. 2018;7:241. https://doi.org/10.3390/cells70200241.
42. Friedman SJ, Sun Z-YJ, Kung AL, France DS, Wagner G, Eck MJ. Structural basis for negative regulation of hypoxia-inducible factor-1α(IjNab) by CITED2. Nat Struct Mol Biol. 2003;10:504–12. https://doi.org/10.1093/nsmb/699.
43. Galbraith MD, Allen MA, Mensard CL, Wang X, Schiwinn MK, Qin B, Long HW, Daniels DL, Hahn WC, Dowell RD, Espinosa JA. HIF1α employs CDB6-mediated to stimulate RAN polymerase elongation in response to hypoxia. Cell. 2013;153:1327–39.
44. Gan ES, Cheong WF, Chan KR, Ong EZ, Chai X, Tan HC, Ghosh S, Wenk MR, Ooi EE. Hypoxia enhances antibody-dependent dengue virus infection. EMBO J. 2017;36:16954–62. https://doi.org/10.15252/embj.201695642.
45. Gluckman E, Bromley HA, Auerbach AD, Friedman HS, Douglas GW, Davenport A, Espinosa JA, Thierry D, Scois G, Lehn P. Hypoxia-induced reconstitution in a patient with Fanconi’s anemia due to umbilical cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–8. https://doi.org/10.1056/NEJM198910263211174.
46. Greenberger LM, Horak ID, Filippula D, Sapra P, Westergaard M, Frydenlund HF, Albeck C, Schieder H, Oltum H. A RNA antagonist of hypoxia-inducible factor-1α, EZN-2986, inhibits tumor cell growth. Mol Cancer Ther. 2008;7:599–608. https://doi.org/10.1158/1535-7163.MCT-07-0510.
47. Guo YZ et al. Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF3α. Gene Expr J Liver Res. 1998;7(9):205–13.
48. Guo X, Zhu Z, Zhang W, Meng X, Zhu Y, Han P, Zhou X, Hu Y, Wang R. Nuclear translocation of HIF-1α induced by influenza a (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg Microbes Infect. 2017;6:89–98. https://doi.org/10.1016/j.emiqi.2017.01.
49. Guo Y et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction. Cells. 2014;15:7974–86.
50. Guzman MG, Alvarez M, Halsted SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol. 2013;158:1445–59. https://doi.org/10.1007/s00705-013-1645-3.
51. Guzman MG, Kouri G, Martinez E, Bravo J, Riverón R, Soler M, Vazquez S, Morier L. Clinical and serologic study of Cuban children with dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Bull Pan Am Health Organ. 1987;21:270–9.
75. Jantsch J, Chakravortty D, Turza N, Prechtl AT, Buchholz B, Gerlach RG, Volke M, Glaesner J, Warnecke C, Wiesener MS, Eckardt K-U, Serkeiser A, Hensel M, William C. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol. 2008;180:4697–705. https://doi.org/10.4049/jimmunol.180.7.4697.

76. Jauiaux E, Watson AL, Hemplestok J, Bao YP, Skepper JN, Burton GT. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111–22. https://doi.org/10.1016/S0002-9440(08)44849-3.

77. Jeong J-W, Bae M-K, Ahn S-H, Kim S-H, Ohn T-K, Bae M-H, Yoo S-M, Song EJ, Lee K-J, Kim K-W. Regulation and destabilization of HIF-1a by ARD1-mediated acetylation. Cell. 2002;111:709–20.

78. Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A, Melillo G, Turkbey B, Meixensberger J, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GT. Hypoxia-inducible factor-1alpha through Siah1-mediated down-regulation of prolyl hydroxylase 2. FASEB J. 2004;18:382–3. https://doi.org/10.1096/fj.03-2820.

79. Jones DT, Harris AL. Identification of novel small-molecule inhibitors of hypoxia-inducible factor-1 transcription and DNA binding. Mol Cancer Ther. 2006;5:2193–202. https://doi.org/10.1158/1535-7163.MCT-05-0943.

80. Jung G-S, Jeon J-H, Choi Y-K, Jang SY, Park SY, Kim S-W, Byun J-K, Kim M-K, Lee S, Shin E-C, Lee I-K, Yang YN, Park K-G. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication. Sci Rep. 2016;6:30846–13. https://doi.org/10.1038/srep30846.

81. Kang F-W, Que L, Wu M, Wang Z-L, Sun J. Effects of trichostatin a on HIF-1a and VEGF expression in human tongue squamous carcinoma cells in vitro. Oncol Rep. 2012;28:193–9. https://doi.org/10.3829/orn.2012.1.784.

82. Kenneth NS, Mudie S, van Uden P, Rocha S. SWI/SNF regulates the cellular response to hypoxia. J Biol Chem. 2009;284:14213–3. https://doi.org/10.1074/jbc.M808491200.

83. Kessler J, Hahnel A, Wichmann H, Rot S, Kappler M, Bache M, Vordermark D. alpha-HIF-1 promotes breast cancer proliferation and tumor growth. Cancer Res. 2010;70:10424–5. https://doi.org/10.1158/0008-5472.CAN-10-2272.

84. Kilani MM, Mohammed KA, Nasreen N, Tepper RS, Antony VB. RSV causes α-HIF-1 mediated acetylation of the pontin chromatin remodeling factor. Proc Natl Acad Sci U S A. 2011;108:13150–5. https://doi.org/10.1073/pnas.1106106108.

85. Kraus RJ, Yu X, Cordes B-LA, Sathiamoorthi S, Iempridee T, Nawandar DM, Thibiriirana R, Mitchell JD, Richardson D, OBryne KJ, Koong AC, Giaccia AJ. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006;12:1507–14. https://doi.org/10.1158/1078-0432.CCR-05-2049.

86. Leary TS, Klinck JR, Hayman G, Friend P, Jamieson NV, Gupta AK. Measurement of liver tissue oxygenation after orthotopic liver transplantation using a multiparameter sensor. Anaesthesia. 2002;57:1128–33. https://doi.org/10.1096/fj.04-2064m.2002.0782_5.x.

87. Lee JS, Kim Y, Bijn J, Shin H-J, Nam HJ, Lee SH, Yoon J-R, Binda O, Gozani Q, Hwang D, Baik SH. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci U S A. 2011;108:3150–5. https://doi.org/10.1073/pnas.1007168110.

88. Liu LP, Hu B-G, Ye C, Ho RLK, Chen GG, Lai PBS. HBx mutants differentially affect the activation of hypoxia-inducible factor-1α in hepatic cell carcinoma. Br J Cancer. 2014;110:1066–73. https://doi.org/10.1038/bjc.2013.787.

89. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–44. https://doi.org/10.1016/j.cell.2011.05.027.

90. Mazzon M, Peters NE, Loezarz C, Krysztofinska EM, Ember SWJ, Ferguson BJ, Smith GL. A mechanism for induction of a hypoxic response by vaccinia virus. Proc Natl Acad Sci U S A. 2013;110:12444–9. https://doi.org/10.1073/pnas.1302140110.

91. McNamee EN, Johnson DK, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res. 2013;55:58–70. https://doi.org/10.1007/s12026-012-8394-8.

92. McNamee EN, Johnson DK, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res. 2013;55:58–70. https://doi.org/10.1007/s12026-012-8394-8.

93. Melsom AW, Kyrklund K, Folling M, Lightowler C, Fredriksson L, Ostman A, Forsberg L. Hypoxia-inducible factor-1α regulates hepatitis C virus replication. Sci Rep. 2016;6:30846–13. https://doi.org/10.1038/srep30846.

94. Meixensberger J, Dings J, Kuhnigk H, Roosen K. Studies of tissue PO2 in small cell lung cancers. Proc Natl Acad Sci U S A. 2006;103:1899–904. https://doi.org/10.1073/pnas.0507877103.

95. Moller DR, Blancher C, Copley RR, Pollard PJ. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009;284:16767–75. https://doi.org/10.1074/jbc.M107902020.

96. Mottet D, Dumont V, Decache Y, Demazy C, Ninane N, Raes M, Michiels C. Effects of Muller M, Schück R, Erkens U, Sticher J, Haase C, Hempelmann GA. Effects of hypoxia on hypoxia-inducible factor-1α. FASEB J. 2004;18:382–3. https://doi.org/10.1096/fj.03-0153fj.

97. Moon E-J, Jeong C-H, Jeong J-W, Kim KR, Yu D-Y, Murakami S, Kim CW, Kim K-W. Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor-1α. J Biol Chem. 2007;282:9072–9. https://doi.org/10.1074/jbc.M608838200.

98. Mounaima S, Gonçalves D, Barnich N, Darfeuille-Michaud A, Hofmann P, Voutet-Craviari V. Cohr disease-associated Escherichia coli promote gastrointestinal inflammatory disorders by activation of HIF-dependent responses. Gut Microbes. 2011;2:335–46. https://doi.org/10.4161/gmic.18771.

99. Murdock IM, Brandt J, Zilbermann MD, Balow JD, Rappaport MJ, Randle RJ, Randle RJ. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009;284:16767–75. https://doi.org/10.1074/jbc.M107902020.

100. Murrell M, Schück R, Erkens U, Sticher J, Haase C, Hempelmann GA. Effects of hypoxia on hypoxia-inducible factor-1α. FASEB J. 2004;18:382–3. https://doi.org/10.1096/fj.03-0153fj.
148. Xia X, Kung AL. Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol. 2009;10: R113. https://doi.org/10.1186/gb-2009-10-10-r113.

149. Xu D, Yao Y, Lu L, Costa M, Dai W. Pkl3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1-alpha. J Biol Chem. 2010;285:38944–50. https://doi.org/10.1074/jbc.M110.160325.

150. Yamamoto M, Curiel DT. Current issues and future directions of oncolytic adenoviruses. Mol Ther. 2010;18:243–50. https://doi.org/10.1038/mt.2009.266.

151. Yasinska IM, Sumbayev VV. S-nitrosation of Cys-800 of HIF-1alpha protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett. 2003;549:105–9. https://doi.org/10.1016/S0014-5793(03)00807-X.

152. Yogev O, Lagos D, Ervert T, Boshoff C. Kaposi's sarcoma herpesvirus-microRNAs induce metabolic transformation of infected cells. PLoS Pathog. 2014;10(9):e1004400. https://doi.org/10.1371/journal.ppat.1004400.

153. Yoo Y-G, Oh SH, Park ES, Cho H, Lee N, Park H, Kim DK, Yu D-Y, Seong JK, Lee M-O. Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1alpha through activation of mitogen-activated protein kinase pathway. J Biol Chem. 2003;278:39076–84. https://doi.org/10.1074/jbc.M305101200.

154. Young RM, Wang SJ, Gordan JD, Ji X, Liebhaber SA, Simon MC. Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J Biol Chem. 2008;283:16309–19. https://doi.org/10.1074/jbc.M710079200.

155. Zeng L, Zhou H-Y, Tang N-N, Zhang W-F, He G-J, Hao B, Feng Y-D, Zhu H. Wortmannin influences hypoxia-inducible factor-I alpha expression and glycolysis in esophageal carcinoma cells. World J Gastroenterol. 2016;22: 4868–80. https://doi.org/10.3748/wjg.v22.i20.4868.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.