Phenotypic and Genotypic Identification of Ticks Sampled from Wildlife Species in Selected Conservation Sites of Kenya

Carolyn Wanjira Muruthi1*, Olivia Wesula Lwande2, Joseph Njungu Makumi3, Steven Runo1, Moses Otieno3 and Wycliffe Arika Makori1

1Department of Biochemistry and Biotechnology, Kenyatta University, Kenya
2Department of Clinical Microbiology, Virology, Umea University, Sweden
3Forensic and Genetics Laboratory, Veterinary Services Department, Kenya Wildlife Service, Kenya

Corresponding author: Carolyn Wanjira Muruthi, Department of Biochemistry and Biotechnology, Kenyatta University, P.O BOX 43844-00100, Kenya, Tel: +254 790 466; E-mail: mwcarolyn@gmail.com

Rec date: Dec 14, 2015; Acc date: Jan 08, 2016; Pub date: Jan 11, 2016

Abstract

Hard ticks are blood feeding ectoparasites that infest humans and animals and are vectors of pathogenic microorganisms that cause severe infectious diseases. Morphological identification has been the main approach of identifying ticks but the technique is considered inaccurate and difficult. Molecular techniques have recently been considered to be appropriate approaches for accurate and rapid identification and Internal Transcribed Spacer 2 (ITS 2) has been shown to differentiate genus of hard ticks. Currently, genetic identification of ticks using ITS 2 has not been carried out in Kenya. In this study, 80 tick samples were collected from Lake Nakuru and Tsavo National Parks and were identified morphologically using appropriate identification keys. DNA was extracted from the appendages using DNA extraction kit followed by partial amplification of ITS 2 gene. The PCR products were then analyzed by gel electrophoresis and positive PCR products were sequenced. Of the tick samples four genera were identified morphologically: Amblyomma, Hyalomma, Rhipicephalus and Dermacentor. Of the tick samples identified and compared with the sequences in the GenBank, six and seven samples showed 98-100% homology with A. variegatum and R. pulchellus respectively and they clustered in their respective monophyletic group in the phylogeny tree with a bootstrap of 99%. Two samples showed 92% homology with H. dromedarii and the study sequences clustered with the reference sequence with a bootstrap of 99% while six samples showed 95% homology with H. marginatum rufipes, however, only four of these samples clustered together with the reference sequence in the phylogeny with a bootstrap of 95%. One sample showed 91% homology with A. humerali and did not cluster together in the phylogeny tree. Congruency between both techniques was high with a correlation coefficient of 0.941. This is the first report of phenotypic and genotypic traits of tick species in Kenya and the findings will add value to the existing knowledge of identification of ticks.

Keywords: Ixodidae; ITS 2; Kenya

Background

Ticks are ubiquitous blood feeding ectoparasites of humans and animals and are vectors of a plethora of pathogens that cause severe infectious diseases in humans and livestock. Tick infestation and the diseases they transmit result in huge economic losses in livestock production and continue to cripple the industry, especially in sub-Saharan Africa. The diversity and number of wildlife species is enormous all over the world and this diversity sustain a large and diverse tick- borne vectors of pathogens. Most wild herbivores, including buffaloes and elephants are believed to be significant reservoirs of tick-borne pathogens that affect humans and animals as they support a large population of tick species.

Reliable and quick identification of ticks is therefore, important in the control of spread of tick-borne diseases. Morphological characterization based on phenotypic traits has been the traditional method of identifying ticks. Morphological identification method is further weakened by the fact that traits used to differentiate species tend to overlap between species or vary within species or according to age and size. Additionally, morphological identification of physically damaged ticks due to poor handling and preservation is often inaccurate. The advent of molecular techniques and development of markers that can identify ticks have revolutionized our understanding of other insect vectors and may be useful in studies of tick taxonomy and diversity.

To comprehend the epidemiology of tick-borne pathogens and develop effective strategies for controlling the diseases, accurate identification of the vector is vital. Currently, the tick diversity in Kenya is based on historical records that were determined by morphological methods and yet the method has inherent challenges and weakness that weaken accuracy of species identification. Although, ticks can be identified directly using genetics, it is important to describe its distinctive phenotypic features and test for congruency with genetic classification. Currently, genetic identification techniques have not been effectively used in identification of tick in Kenya. Still, there is no evidence that the phenotypic and genotypic traits of tick species in Kenya are congruent. Therefore, incongruency in identification based on the two techniques will justify the need for taxonomic re-classification. Additionally, the information generated will quicken future identification of tick species. As such, the purpose of this study is to genetically identify tick samples and confirm whether the distinctive phenotypic traits for tick species differentiation are congruent with genetic traits.
Methods

Ethics statement

The ethics committee of the Kenya Wildlife Service (KWS) approved the study as it was based on opportunistic tick collection from immobilized elephants, buffaloes and rhinoceroses during translocation, collaring and veterinary exercises in Lake Nakuru and Tsavo National Parks. KWS guidelines on Wildlife Veterinary Practice-2006 were followed and all KWS veterinarians follow the Veterinary Surgeons and Veterinary Para-Professionals Act 2011, Laws of Kenya, which regulates veterinary practices in Kenya.

Tick collection

A total number of 80 ticks were collected randomly during scheduled veterinary management activities within the Lake Nakuru and Tsavo National parks. The animals were immobilized by the Kenya Wildlife Service veterinarians using a combination of etorphine and xylazine (Norvatis, PTY, Ltd, South Africa). Ticks were pulled manually from the animals by hands and with forceps and placed in sterile loosely capped plastic vials and transported to the laboratory in dry ice. In the laboratory the ticks were stored at -80°C.

Morphological identification of ticks

Sampled ticks were kept at room temperature to thaw, and then washed twice with sterile water to remove excess particulate contamination from animal skin, rinsed once with 70% ethanol. They were mounted on slides and examined using a stereo microscope at a magnification of × 40, × 80, and × 100. Identification of the ticks was by sex and species using appropriate identification keys [8]. The identified ticks were transferred to sterile vials, and stored at -80°C until processing at the KWS Veterinary Laboratory, Nairobi.

Molecular analyses of ticks

DNA isolation and PCR: DNA was extracted from each sample using DNA extraction kit (DNasey blood & Tissue Kit, QIAGEN (Germany) following the manufacturer’s protocol. Genomic DNA extracted from the 28 ticks’ tissues was amplified. Each species identified morphologically was represented by more than one sample. A pair of degenerate primers designed for ITS 2 amplification [9] were used; forward 5’-YTGGGARACTTTGATGGAAT-3’ and reverse 5’-TATGCTTAARTTYAGSGGT-3’.

Amplification of DNA was carried out in a final volume of 25 μl containing 15.8 μl of dH2O, 2 μl of the genomic DNA, 2 μl of each primer (forward and reverse), 5 μl PCR buffer, 0.2 μl of Taq DNA polymerase. The tubes were then placed into a programmed Applied Biosystems Veriti 96 well thermocycler (Germany) where the reactions mixture was subjected to 2.5 min DNA denaturization at 94°C, 35 cycles of denaturization at 94°C for 30 sec, annealing at 50°C for 1 min and elongation at 72°C for 1 min. The reaction was completed by a further 30 min step at 72°C. The procedure was repeated twice for each sample in order to yield a final volume of 50 μl.

Electrophoresis and purification of PCR products

The amplified products were analyzed by electrophoresis on 1% Agarose gel by aliquoting 4 μl of PCR products and 1 kb DNA ladder and run on the gel stained with ethidium bromide for 1 hour at 80 volts. The PCR products were purified using QIAGEN PCR Purification Kit (Germany) following the manufacturer’s protocol.

Sequencing and analysis

Purified DNA products were sent to Biosciences Eastern and Central Africa (BecA-ILRI) for sequencing. Sequencing was carried out through ABI310 DNA sequences. Sequences were taken through Bioedit, and aligned using multiple alignment program ClustalX. The default 6.66 and 15 values for gap extension and gap opening respectively were used. Maligned nucleotides were detected and realigned manually. BLASTN searches were done in the GenBank so as to identify matches to the sample sequences.

Congruency test

Correlation statistic were computed to test for congruency between morphological and phenotypic traits at P=0.01.

Results

Morphological identification

Tick species that were correctly identified morphologically by genus from Lake Nakuru and Tsavo National Parks from elephants, buffaloes and rhinoceroses. Four genera were correctly identified namely Amblyomma, Hyalomma, Rhipicephalus and Dermacentor (Table 1). Some of tick species identified morphologically include; Hyalomma arboinatum, Amblyomma tholloni, Rhipicephalus pulchellus, Amblyomma gemma, Amblyomma variegatum, Hyalomma marginatum rufipes (Figures 1A, 1B, 1C, 1D, 1E and 1F).

Name	Stage	Number	Host	Location
Amblyomma gemma	Adult	13	(Loxondota Africana africana) Elephant	Tsavo National Park
Amblyomma variegatum	Adult	7	(Syncerus caffer) Buffaloes	L. Nakuru National Park
Amblyomma thollonia	Adult	1	(Loxondota Africana africana) Elephant	Tsavo National Park
Rhipicephalus pulchellus	Adult	24	(Loxondota Africana)	Tsavo National Park
Table 1: Number of tick species that were correctly identified morphologically from diverse animal species by genus from Lake Nakuru and Tsavo National Parks. Four genera were correctly identified namely Amblyomma, Hyalomma, Rhipicephalus and Dermacentor.

Species	Stage	Count	Genus	Host	Park
Hyalomma marginatum rufipes	Adult	7	Loxondota Africana Africana	Elephant	Tsavo National Park
Hyalomma Truncatum	Adult	17	Loxondota Africana Africana	Elephant	Tsavo National Park
Hyalomma Dromedarii	Adult	3	Loxondota Africana Africana	Elephant	Tsavo National Park
Hyalomma Atbiparmatum	Adult	5	Loxondota Africana Africana	Elephant	Tsavo National Park
Dermacentor rhinocerinus	Adult	3	Diceros bicornis	Rhinoceros	L. Nakuru National Park

Figure 1A: Rhipicephalus pulchellus (male) **A**: Dorsal region: 1) Flat eyes; 2) Punctuation on the lateral grooves; 3) Festoons and; 4) a caudal appendage at the central festoon; 5) Enamel ornamentation white enamel in a dark background; **B**: ventral region 1) Adanal plates that curve posteriorly inwardly,

Figure 1B: Amblyomma gemma (male); **A**: Dorsal region: 1) broad posteriomedian stripe; 2) 6 out of 11 festoons enamelled; 3) elongated ornamented mesial region; 4) slightly convex eyes; **B**: Ventral region: 1) Genital aperture; 2) Anal groove posterior to the anus.
Genetic Identification

DNA was isolated from 28 tick samples and after partial amplification of the PCR products, 22 samples were positive and yielded products of approximately 900-1200 bp. Different species could be discriminated from the ITS 2 fragment size. The fragment size markers of *R. pulchellus* was estimated at 1100 bp, *A. variegatum* 1200 bp, *H. marginatum* 1500 bp and *H. dromedarii* 1200 bp. A comparison of the ITS 2 sequence identified in this study with sequences deposited in the GenBank registered different homology with different genera. From the data, six samples showed between 98-100% homology with *R. pulchellus* sequences obtained from Australia. Another seven samples showed 98% homology with *A. variegatum* sequences obtained from the U.S.A. Two Samples showed 92% homology with *H. dromedarii* while sample one showed 91% homology with ITS 2 sequence of *A. humerali* from Brazil in the GenBank. The study sequences were deposited in the GenBank with the following accession numbers; KM819710 for *R. pulchellus*, KM819712 for *A. variegatum*, KM819713 and KM819711 for *H. marginatum rufipes* and *H. dromedarii* respectively (Table 2).

Sequence from this study and reference sequence obtained from the GenBank were aligned using multiple alignment program Clustal X. Maximum Composite Likelihood method was used in computing the evolutionary distance. Figure 1 shows the Phylogenetic tree generated from partial ITS sequence data. The branch length represents evolutionary changes that have taken place over time and the amount of genetic change is represented by a scale of 0.1. The number of substitution which is related to the clustering together of the taxa as a bootstrap test, is represented by a percentage value; that is, the number of substitution per 100 nucleotide sites and is shown above the branches. The tree was rooted to the genus *Ixodes*.

From the figure, *R. pulchellus* and *A. variegatum* haplotypes clustered together at their respective group with a high bootstrap value of 99%. *H. marginatum rufipes* also clustered together with the reference sequence while sample 39s and 40s which shared recent ancestor origin with *H. anatolicum* with a bootstrap support of 79%. *H. dromedarii* clustered together with the reference *H. dromedarii* ITS.
2 sequence deposited in the GenBank with a high bootstrap (99%) while *A. humerali* is clustered together with *A. tuberculatum* than *A. humerale* with a low bootstrap support of 51%. *Oxidix dammini* was used as an outgroup making the tree is a rooted one (Figure 2).

Table 2: Identity of tick species and their bp sizes, and percentage similarity value with the references sequences.

Genus	Accession Number	Tick species	ITS fragment Size	% Identity	Reference sequence	Origin Country
Rhipicephalus	KM819710	R. pulchelus	1100	100	AF271275	Australia
		R. puchellus	1100	100	AF271275	Australia
		R. pulchelus	1200	98	AF271275	Australia
		R. pulchelus	1200	98	AF271275	Australia
		R. pulchelus	1100	99	AF271275	Australia
		R. pulchelus	1100	99	AF271275	Australia
Amblyomma	KM819712	A. variegatum	1200	98	HQ856759	U.S.A
		A. variegatum	1200	98	HQ856759	U.S.A
		A. variegatum	1200	98	HQ856759	U.S.A
		A. variegatum	1200	98	HQ856759	U.S.A
		A. variegatum	1200	97	HQ856759	U.S.A
		A. variegatum	1200	98	HQ856759	U.S.A
		A. variegatum	1200	98	HQ856759	U.S.A
		A. humerali	800	91	AY887111	Brazil
Hyalomma	KM819713	H. marginatum rufipes	1500	95	JQ737104	China
		H. marginatum	1500	95	JQ737104	China
		H. marginatum rufipes	1500	95	JQ737104	China
		H. marginatum	1500	95	JQ737104	China
		H. marginatum rufipes	1600	95	JQ737104	China
		H. marginatum	1600	95	JQ737104	China
	KM819711	H. dromedarii	1200	95	JQ733570	India
		H. dromedarii	1200	92	JQ733570	India

Morphological and molecular characterization of tick samples

Diverse ticks were identified using each technique were compared. The number of *R. pulchelus*, *A. variegatum* and *H. dromedarii* identified both morphologically and genetically were the same; that is, 6, 7 and 2 respectively. Under the genus *Hyalomma* 4 species were identified *H. marginatum rufipes* morphologically and 6 genetically. Two ticks were first identified as *H. marginatum rufipes* based on morphology but then by genotyping and comparison with reference sequences they were reclassified as *H. truncatum* and *H. albiparmatum*. Similarly, one tick was morphologically identified as *D. rhinocerinus* but by genotyping the tick was reclassified as *A. humerali* (Table 3). Congruency between morphological and genetic traits was high as depicted by correlation co-efficient of 0.941 (P<0.01).
An increase and more novel microbial associations have continued to be described [10].

Amblyomma species are associated with viruses noted to be mosquito-borne. Tsavo National Park was used for this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.

In this study, ticks collected from wild herbivores in L. Nakuru and Tsavo National Park was identified both morphologically and genetically. More importantly, the impact of ticks on human health is on the rise and more novel microbial associations have continued to be described [10]. There is need therefore, for accurate identification of ticks in order to develop better control measures.
This was also noted in *H. dromedarii*, with a low similarity value (92%) while the study sequence clustered together with the reference sequence with a high bootstrap of 99%. Such similarity value could be associated with the cryptic hybridization factor which according to Rees et al. results to nucleotide substitution [13]. Two samples considered *H. marginatum rufipes* failed to cluster together with the rest of the species in the phylogenetic tree. Phenotypically, the tick samples were identified as *H. truncatum* and *H. albiparmatum*; and therefore, the high dissimilarity value and failure to cluster together with the rest of *H. marginatum rufipes* could be attributed to lack of corresponding sequences in the GenBank. This could also be the case in *A. humerale* which had been identified as *D. rhinocerinus* phenotypically.

Figure 2: Sequence from the study and reference sequence obtained from the GenBank aligned using multiple alignment programs Clustal X. Evolutionary distance computed using the Maximum Composite Likelihood. The amount of genetic change is represented by a scale of 0.1. The number of substitution is represented by a percentage value; that is the number of substitution per 100 nucleotide sites and is shown above the branches. The reference sequences are in bold. The tree was rooted to the genus *Ixodes*.

Citation: Muruthi CW, Lwande OW, Makumi JN, Runo S, Otiende M, et al. (2016) Phenotypic and Genotypic Identification of Ticks Sampled from Wildlife Species in Selected Conservation Sites of Kenya. *J Veterinar Sci Technol* 7: 293. doi:10.4172/2157-7579.1000293
In this study, congruency between morphology and genetic traits was high as the correlation coefficient was high at 0.942. Congruency was observed in *Rhipicephalus* and *Amblyomma* species as they had samples matching between morphological and genetical traits. Similar findings have been reported by Lu et al. who observed consistency in their morphological and molecular characteristic of identifying tick species in Japan [22]. Inconsistency was observed in genus *Hyalomma* and this could be attributed to lack of or few corresponding sequences deposited in the GenBank. It could also have been contributed by several nucleotides mismatches and insertion which could be as a result of geographical separation and hybridization among the species.

Conclusions

From the findings of the study, genus *Rhipicephalus* and *Amblyomma* were easily identified using morphologically characteristics while some *H. marginatum rupes* and *H. truncatum* could not be easily identified morphologically. Partial amplification of ITS 2 was successful in differentiating tick species in Kenya. Further studies should be done on a wide collection of Ixodidae from Kenya to contribute to the existing ITS nucleotide database in order to have sufficient genetic database to cover tick species.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

Vincent Obanda, Carolyn Wanjira Muruthi, Moses Otiende, J.N. Makumi conceived and designed experiments. Carolyn Wanjira Muruthi, Vincent Obanda, Moses Otiende, Olivia Wesula Lwande, Steven Runo conducted the experimental work. Carolyn Wanjira Muruthi, Vincent Obanda, Moses Otiende, Olivia Wesula Lwande analyzed the data. Carolyn Wanjira Muruthi, Vincent Obanda, Moses Otiende, J.N. Makumi, Olivia Wesula Lwande, Steven Runo contributed to the manuscript. All authors approved the final version for submission.

Acknowledgements

The project was supported financially by the Kenya Wildlife Services. We acknowledge Samuel Mutura (Institute of Primate Research Kenya) and the KWS Forensic and Genetics laboratory staff including Anthony Businei, Sam Muthemba and Asenath Omondi and Elsie Maina. The authors wish to acknowledge the late Joseph Njuguna Makumi.

References

1. Jongejans F, Uilenberg G (2004) The global importance of ticks. Parasitology129: S3-S14.
2. Horak I, Vos V D, Brown MR (1983) Parasites of domestic and wild animals in South Africa. Helminth and arthropod parasites of blue and black wildebeest (*Connochaetes taurinus* and *Connochaetes gnou*). Onderstepoort Journal of Veterinary Research 50: 243-255.
3. Lanfranchi P, Ferroglio E, Poglaven G, Guberti V (2003) Wildlife veterinarian, conservation and public health. Vet Res Commun 27 Suppl 1: 567-574.
4. Bengis RG, Leighton FA, Fischer JR, Artois M, Mörner T, et al. (2004) The role of wildlife in emerging and re-emerging zoonoses. Rev Sci Tech 23: 497-511.
5. Tonetti N, Berggoetz M, Rühle C, Pretorius AM, Gern L (2009) Ticks and tick-borne pathogens in wildlife in the Free Province, South Africa. J Wildl Dis 45: 437-446.
6. Peter TF, Anderson EC, Burridge MJ, Mahan SM (1998) Demonstration of a carrier state for Cowdria ruminantium in wild ruminants from Africa. J Wildl Dis 34: 567-575.
7. Abbigoudarzi M (2011) rDNA-ITS2 Identification of *Hyalomma, Rhipicephalus, Dermacentor* and *Boophilus* spp. (*Acari: Ixodidae*) collected from different geographical regions of Iran.
8. Walker AR (2003) Ticks of domestic animals in Africa: a guide to identification of species. Bioscience reports Edinburgh.
9. Lwande OW (2003) Isolation of tick and mosquito-borne arboviruses from ticks sampled from livestock and wild animal hosts in Iljara District, Kenya. Vector-Borne and Zoonotic Diseases 13: 637-642.
10. Jwenskas A, Zhong J, Barbourn AG (2007) Highly prevalent Coxiella sp. bacterium in the tick vector *Amblyomma americanum*. Applied and environmental microbiology 73: 334-336.
11. Beati L, Keirans JF (2009) Analysis of the systematic relationships among ticks of the genera *Rhipicephalus* and *Boophilus* (*Acari: Ixodidae*) based on mitochondrial 125 ribosomal DNA gene sequences and morphological characters. J Parasitol 87: 32-48.
12. Piazak N (2005) The First Report of *Amblyomma lepidum* (Donitz, 1909) in IRAN. Iranian Journal of Public Health 34: 70-73.
13. Rees DJ, Dioli M, Kirkendall LR (2003) Molecules and morphology: evidence for cryptic hybridization in African *Hyalomma* (*Acari: Ixodidae*). Molecular phylogenetics and evolution 27: 131-142.
14. Cwilich R, Hadani A (1963) Inter-specific hybridization of ticks of the genus *Hyalomma*. Acta Trop 20: 178-180.
15. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66: 411-453.
16. Rumor L (2011) Differentiation of medically important Euro-Asian tick species *Ixodes ricinus*, *Ixodes persulcatus*, *Ixodes hexagonus*, and *Dermacentor reticulatus* by polymerase chain reaction. Vector-Borne and Zoonotic Diseases 11: 899-905.
17. Lv J, Wu S, Zhang Y, Chen Y, Feng C, et al. (2014) Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the *Ixodida* (*Acari: Ixodidae*). Parasit Vectors 7: 93.
18. Zahler M, Gothe R, Rinder H (1995) Genetic evidence against a morphologically suggestive conspecificity of *Dermacentor reticulatus* and *D. marginatus* (*Acari: Ixodidae*). International journal for parasitology 25: 1413-1419.
19. Murrell AN, Campbell, S. Barker (2001) Recurrent gains and losses of large (84–109 bp) repeats in the rDNA internal transcribed spacer 2 (ITS2) of rhipicephaline ticks. Insect molecular biology 10: 587-596.
20. Taberlet P, Meyer A, Bouvet J (1992) Unusual mitochondrial DNA polymorphism in two local populations of blue tit *Parus caeruleus*. Mol Ecol 1: 27-36.
21. Avise JC, Walker D (1999) Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. Proceedings of the National Academy of Sciences 96: 992-995.
22. Lu X, Lin XD, Wang JB, Qin XC, Tian JH, et al. (2013) Molecular survey of hard ticks in endemic areas of tick-borne diseases in China. Ticks Tick Borne Dis 4: 288-296.