Retroelements are genetic mobile elements, expressed during male and female gamete differentiation. Retrotransposons are normally regulated by the methylation machinery, chromatin modifications, non-coding RNAs, and transcription factors, while retrotransposition control is of vital importance in cellular proliferation and differentiation process. Retrotransposition requires a transcription step, by a cellular RNA polymerase, followed by reverse transcription of an RNA intermediate to cDNA and its integration into a new genomic locus. Long interspersed elements (LINEs), human endogenous retroviruses (HERVs), short interspersed elements (SINEs) and SINE-VNTR-Alu elements (SVAs) constitute about half of the human genome, play a crucial role in genome organization, structure, and function during evolution, as they can relocate themselves from one locus to another using an RNA intermediate (2, 3). The retrotransposition process requires a transcription step, by a cellular RNA polymerase, followed by reverse transcription of an RNA intermediate to cDNA and its integration into a new genomic locus (4).

Retroelements are categorized, according to structural and functional criteria, in Long terminal repeats (LTR) and non-LTR as well as in autonomous and non-autonomous. LTR retrotransposons include Human endogenous retroviruses (HERVs), whereas non-LTR retrotransposons contain mainly the classes of Long interspersed elements (LINEs) and Short interspersed elements (SINES) (5, 6) (Figure 1). LINEs and HERVs are autonomous retroelements, as they are able to encode reverse transcriptase and proteins necessary for their retrotransposition (7, 8). On the contrary, SVA (SINE-VNTR-Alu) and Alu elements, as non-autonomous, use the LINE-1 protein machinery for their mobilization and relocation (9-11). LINE-1 retroelements move between loci through the target primed reverse transcription (TPRT) mechanism. LINE-1 retrotransposition starts with the binding of RNA polymerase on the promoter of the 5' UTR region and the production of LINE-1 mRNA in the cell nucleus. LINE-1, mRNA moves to the cytoplasm where the ORF1 and ORF2 proteins are expressed. LINE-1 mRNA, ORF1p, and ORF2p are reinserted into the nucleus as a ribonucleoprotein (RNP) complex. ORF2 acts as an endonuclease that breaks the target DNA in the new site of retrotransposons insertion, producing a single stranded edge.
The rich in thymine’s edge is hybridized with the poly-A region of LINE-1 mRNA. The single strand edge acts as a promoter template for the initiation of reverse transcription and the production of the complementary DNA. At the two ends of the LINE-1 copies there are target site duplications (TSDs) resulting from the duplication of the target site during retrotransposition (12) (Figure 2).

Despite the fact that the human genome is consisted of numerous mobile elements, the majority of them are inactive due to mutations acquired over long evolutionary processes. Nevertheless, several copies of LTR retroelements and LINEs are intact and competent for retrotransposition (13). Due to their capability to mobilize, retrotransposons need to be restrained and controlled to a certain extent, during cellular proliferation and differentiation, as they are found to be associated with several diseases. They are normally regulated by methylation and piwi RNAs and any imbalance in those mechanisms may lead to mutagenesis and disorders with serious consequences for the host cell (14-17).

In normal somatic cells, retroelement RNA expression is suppressed, while it appears to be unrestricted in the developing germ cells (18). Methylation of LINES at the CpG-rich 5’ UTR results in transcriptional repression in somatic cells, whereas aberrant hypomethylation leads to RNA expression in various tumors, causing genomic instability (19, 20).

Due to the retroelements’ nature and interference with several biological and genomic functions, this review is focused on the impact of retrotransposons in human gametes and early embryos, based on our previous work concerning this issue.

Human Oocytes. In oocytes, methylation is established during oogenesis and regulated by methyltransferases Dnmt3A, Dnmt3B, and DnmtL (21). Oocytes display a temporal hypomethylated profile. Georgiou et al. studied the RNA expression of LINE-1, HERV-K10, and SVA retroelements as well as the existence of de novo retrotransposition events at the germinal vesicle (GV) stage of the oocytes. The results showed that these retroelements, and unexpectedly, the HERV-K10-related human specific retrotransposons SVA, are expressed, and also that retrotransposition events occur in the human oocyte (22).

Expression of LINE-1, HERV-K10, and SVA retroelements in human oocytes was also investigated by Georgiou et al., by performing an RT PCR assay with two sets of primers for LINE-1 and HERV-K10, using HeLa cells and lymphocytes as controls (22-24). A different pattern of retrotransposon expression was documented in the oocytes compared to control cells (22). Interestingly, a higher LINE-1 RNA expression was observed in comparison with HERV-K10s and SVAs in HeLa cells and lymphocytes. These results could depict a retrotransposon expression hierarchy in somatic cells (LINE-1>HERV-K10>SVA). In contrast, oocytes indicated a reversed expression pattern with a higher
HERV-K10s and SVAs expression (22, 25). Increased RNA expression of HERV-K10 retrotransposons might concern envelope proteins contributing to the development of the oocyte immunosuppression, which is required for sperm-oocyte binding and fusion (22, 26).

Subsequently, a cassette based on the CMV promoter and EGFP expression in mouse VL30 and human LINE-1 was used, to investigate whether retrotransposition events occur in the human oocyte. In this cassette (kindly provided by Professor Kazazian), EGFP gene was transcriptionally regulated by a γ-globin intron and expressed only when the steps of transcription, splicing, reverse transcription, and integration into chromosomal DNA are completed, mirroring retrotransposition events.

Figure 3. Schematic presentation of retrotransposition cassette for human LINE-1. The EGFP retrotransposition cassette is tagged in the 3' UTR of LINE-1 in the antisense orientation. EGFP gene is disrupted by an γ-globin intron and expressed only when the steps of transcription, splicing, reverse transcription, and integration into chromosomal DNA are completed, mirroring retrotransposition events.

HERV-K10s and SVAs expression (22, 25). Increased RNA expression of HERV-K10 retrotransposons might concern envelope proteins contributing to the development of the oocyte immunosuppression, which is required for sperm-oocyte binding and fusion (22, 26).

Subsequently, a cassette based on the CMV promoter and EGFP expression in mouse VL30 and human LINE-1 was used, to investigate whether retrotransposition events occur in the human oocyte. In this cassette (kindly provided by Professor Kazazian), EGFP gene was transcriptionally regulated by a CMV promoter and its expression was interrupted by a γ-globin intron cloned in opposite orientation to that of EGFP (Figure 3) (27, 28). The cassette was cloned into the 3'UTR region of the retrotransposon. EGFP expression can be detected only when retrotransposon transcripts undergo splicing, reverse transcription, and integration into the chromosomal DNA. In order to find retrotransposition events, they performed a PCR analysis for the EGFP gene. The VL30 retrotransposition-positive oocytes exhibited ooplasm granulation. In addition to these results, abnormal oocyte morphology associated to LINE-1 retrotransposition was observed, potentially due to the high concentration of the microinjected unmethylated LINE-1 DNA. Probably, retrotransposition-mediated diseases are attributed to events that escape control mechanisms. On the contrary, controlled retrotransposition may benefit oocyte development (22, 29).

Human Spermatozoa. Lazaros et al. studied the phenomenon of exogenous DNA internalization in human spermatozoa. This investigation revealed that LINE-1, HERV-K10, and SVA retrotransposons are expressed in human spermatozoa. Furthermore, reverse transcriptase exists in human spermatozoa and de novo retrotransposition events can occur, while integration of exogenous retroelements can be incorporated in the sperm genome (30).

Human spermatozoa from normozoospermic and oligozoospermic men were collected and tested for the expression of LINE-1, HERV-K10, and SVA retrotransposons using RT PCR. The results showed that specific LINE-1, HERV-K10, and SVA transcripts were present in all samples regardless of semen sample quality (30).

The methylation of two CpG LINE-1 retrotransposon sites in spermatozoa of normozoospermic and oligozoospermic men was also studied using the COBRA LINE-1 assay previously described for cancer detection (31). Firstly, DNA from human spermatozoa was extracted and treated with bisulfide. Bisulfide treatment affects unmethylated cytosines of denaturated DNA but not including the methylated ones. Specifically, unmethylated cytosines are modified to uracils, while methylated cytosines remain unaltered. A PCR analysis for LINE-1 was conducted and restriction enzymes were used to cut the LINE-1 sequence in specific sites depending on the methylation pattern of the two CpG sites in each LINE-1 copy. The results indicated that LINE-1 CpG methylation levels are statistically different between normozoospermic and oligozoospermic men.

Retrotransposon expression is subjected to constant control in order to ensure normal cell function. Methyltransferases and piwi RNAs regulate retroelement expression (32) and are expected to be expressed at the highest level in human spermatozoa (33). Nevertheless, the study showed that LINE-1, HERV-K10, and SVA retroelements are expressed both in oligozoospermic and normozoospermic samples. Their expression is probably attributed to hypomethylation of specific sperm head loci and temporal genome hypomethylation of certain spermatozoa, or the retroelement transcripts may potentially represent RNA molecules expressed at an earlier developmental stage (30).

Subsequently, the human spermatozoa were incubated with EGFP-tagged retrotransposons as mentioned above (22, 34) and checked for retrotransposition events, using confocal microscopy, fluorescence-activated cell sorting (FACS) and PCR analysis. A ratio of 17% of the samples analysed by FACS were positive for retrotransposition, whilst 83% were negative (30). In human sperm samples, the limited population of EGFP-positive cells, is probably due to the highly compacted DNA of sperm cells, that does not favor the process of plasmid DNA integration (30).
LINE-1 in Early Human Embryos. Retrotransposable elements are known to produce DNA breaks (35, 36) through retrotransposition mechanisms, creating new integration sites in the genome. An immunohistochemistry analysis of LINE-1 injected embryos, revealed the presence of double strand DNA breaks, as early as in the 4-cell stage embryo. The presence of DNA double strand breaks at this early stage may affect the cleavage rate of mitotic cells (35, 37) and cause high levels of fragmentation in affected embryos, leading to developmental failure. LINE-1 expression is important for preimplantation embryo development as LINE-1 transcripts are expressed in early stage mouse embryos (38). Repression of these transcripts seems to interfere with the normal embryonic development (39).

Mouse Sperm and Preimplantation Embryo Development

The same EGFP-tagged cassettes for human LINE-1, HERV-K10, and mouse VL30 were used in order to study events of de novo retrotransposition in mouse spermatozoa and embryos. Once again, the presence of retrotransposition events was evaluated by a PCR analysis for the EGFP gene. Mouse spermatozoa were found positive for retrotransposition in a ratio of up to 53%, while the retrotransposition frequency was not statistically different between cassettes carrying retroelements (34).

In both human and mouse spermatozoa, EGFP expression indicated that retroelements can be internalized in sperm cells, irrespective of the sperm origin, penetrate the tightly packed chromatin, interfere with the genome, possibly influence the sequence of certain loci, and give rise to new retrotransposition events (30, 34).

In order to suspend reverse transcriptase activity, Lamivudine, an inhibitor of reverse transcriptase, was used. FACS analysis showed a significant reduction of retrotransposition events at the lower concentration of Lamivudine (15-50 μM) (34). Sperm samples were also screened for EGFP expression with confocal microscopy, where a fluorescent signal was detected in the heads of the spermatozoa positive for retrotransposition events (34).

These results indicated that sperm cells can integrate exogenous retroelements and favour retrotransposition. A part of the internalized DNA is probably integrated in specific sperm nuclear loci, within undermethylated retrotransposon sequences, suggesting a common site for integration and retrotransposition events (40, 41). Also, the ability of mouse epididymal spermatozoa to uptake and reversely transcribe RNA to cDNA indicated a reverse transcriptase activity (42).

Considering the above results and knowing that spermatozoa are able to bind spontaneously exogenous DNA and internalize a proportion of it into their nucleus (43, 44), Kitsou et al. investigated the possibility of mice sperm transferring exogenous human retroelements into the mouse oocyte and assessing the mouse embryo development. The results indicated that mouse spermatozoa not only integrate exogenous retroelements but they also transfer them into the oocyte during fertilization, affecting preimplantation embryo development (34).

Embryos were tested for retrotransposition events with confocal microscopy and PCR analysis (34). The in vitro preimplantation development of mouse embryos was scored daily until they entered the blastocyst stage. Embryos positive for retrotransposition events appeared to have accelerated asymmetric cell division, multiple fragments, and the majority of them were arrested and collapsed before blastocyst formation and expansion (34). Thus, the presence of retroelements carried from sperm to embryo can impair preimplantation embryo development.

Under normal conditions, retrotransposition events are potentially necessary for embryogenesis and are controlled by methylation and piwi RNAs (45, 46). Embryos with repressed LINE-1 expression show impaired embryonic development, suggesting that LINE-1 is part of the developmental program of early embryos (47). However, the induction of retrotransposition events from exogenous human and mouse retroelements, may dysregulate the control mechanisms and cause abnormal embryo preimplantation development (48).

Table I. Documented retrotransposition events in gamete cells and embryos.

Experiments	Gametes	Embryos		
	Human oocytes	Mouse oocytes	Human embryos	Mouse embryos
LINE-1, SVA, HERV-K10 RNA expression	+	Not tested	+	Not tested
De novo retrotransposition events	+	+	+	Not tested
Exogenous DNA integration	+	+	+	+

in vivo 35: 1921-1927 (2021)
Conclusion

The eukaryotic genome includes numerous retroelement copies (49, 50); however, the respective mobilization or transcription ability and retrotransposition activity are restricted to a minority of transposons due to 5' end truncation, point mutations, and sequence rearrangements (51). Retrotransposition events occur in early mouse and human development, in neuronal precursor and adult brain cells, while they are more frequent in germ cells and in embryos at early developmental stages compared to normal somatic cells (48, 52, 53). Retrotransposon transcripts have been also documented to play an important role in male and female gametes (43, 54).

The findings of retrotransposition events both in human spermatozoa and oocytes, indicate that reverse transcription, transcription, and translation machineries, as well as splicing are present in germ cells (4, 28), allowing the occurrence of retrotransposition events even for the non-human and non-autonomous retrotransposons such as VL30 (22, 30) (Table I).

Conflicts of Interest

The Authors declare that they have no conflicts of interest in relation to this study.

Authors’ Contributions

E.M., A.C. and I.G. have made substantial contributions to the conception of the work, the acquisition and interpretation of data, E.M. and A.C. have drafted the work, E.M., A.C., K.P., A.Z., and I.G. have made substantial contributions to the conception of the work, the acquisition and interpretation of data, and translation machineries, as well as splicing are present in germ cells (4, 28), allowing the occurrence of retrotransposition events even for the non-human and non-autonomous retrotransposons such as VL30 (22, 30) (Table I).

Acknowledgements

The Authors are grateful to Dr L. Lazaros and Dr C. Kitsou.

References

1 Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Gaffney D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones L, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shoneke R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Sle扎k T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Toh H, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Peltier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfeld M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzter M, Niyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis KW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedinha N, Blöcker H, Hornischer K, Nordiak G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kasprzyk A, Kennedy S, Kent WJ, Kitts P, Koorn EV, Korf I, Kulp D, Lancer D, Lowe TM, McLyshaght A, Mikkelsen T, Morian JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wills J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins P, Guyer MS, Peterson J, Felsenfeld A, Wetterstand KA, Patirinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowski J and International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409(6822): 860-921, 2001. PMID: 11237011. DOI: 10.1038/35075062
2 Kim YJ, Lee J and Han K: Transposable elements: No more 'Junk DNA'. Genomics Inform 10(4): 226-233, 2012. PMID: 23346034. DOI: 10.5808/GI.2012.10.4.226
3 Deininger PL, Moran JV, Batzer MA and Kazazian HH Jr: Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13(6): 651-658, 2003. PMID: 14638329. DOI: 10.1016/j.gde.2003.10.013
4 Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD and Kazazian HH Jr: Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1): 23-35, 2008. PMID: 18854152. DOI: 10.1016/j.cell.2008.09.022
5 Goodier JL and Kazazian HH Jr: Retrotransposon transposases revisited: the constraint and rehabilitation of parasites. Cell 135(1): 23-35, 2008. PMID: 18854152. DOI: 10.1016/j.cell.2008.09.022
6 Ostertag EM and Kazazian HH Jr: Biology of mammalian L1 retrotransposons. Annu Rev Genet 35: 501-538, 2001. PMID: 11700292. DOI: 10.1146/annurev.genet.35.102401.091032
7 Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science 330(6064): 1626-1632, 2003. PMID: 15016989. DOI: 10.1126/science.1089670
8 Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL and Moran JV: The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 3(2): MDNA3-0061-2014, 2015. PMID: 26104698. DOI: 10.1128/microbiolspec.MDNA3-0061-2014
9 Ostertag EM, Goodier JL, Zhang Y and Kazazian HH Jr: SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73(6): 1444-1451, 2003. PMID: 14628287. DOI: 10.1086/380207
10 Hancks DC, Goodier JL, Mandal PK, Cheung LE and Kazazian HH Jr: Retroposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20(17): 3386-3400, 2011. PMID: 21636526. DOI: 10.1038/hmg/ddr245

11 Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Lucifero D, La Salle S, Bourc'his D, Martel J, Bestor TH and Sanchez-Luque FJ, Kempen MHC, Gerdes P, Vargas-Landin DB, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigò R, Hubbard TJ, Kellis M, Paten B, Reynolds A, Tress ML and Flicek P: GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1): D766-D773, 2019. PMID: 30357393. DOI: 10.1093/nar/gky955

12 Kazazian HH Jr and Moran JV: The impact of L1 retrotransposons on the human genome. Nat Genet 19(1): 19-24, 1998. PMID: 9590283. DOI: 10.1038/ng0998-19

13 Stetson DB: Endogenous retroelements and autoimmune disease. Curr Opin Immunol 24(6): 692-697, 2012. PMID: 23062469. DOI: 10.1016/j.coi.2012.09.007

14 Bannett N and Kurth R: Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U.S.A. 101 Suppl 2: 14572-14579, 2004. PMID: 15310846. DOI: 10.1073/pnas.0404838101

15 Vandewege MW, Platt RN 2nd, Ray DA and Hoffmann FG: Transposable element targeting by piRNAs in Laurasiatherians with distinct transposable element history. Genome Biol 8(5): 1327-1337, 2016. PMID: 27060702. DOI: 10.1186/s12786-016-0785-7

16 Volkman HE and Stetson DB: The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15(5): 415-422, 2014. PMID: 2477712. DOI: 10.1038/ni.2872

17 Saleh A, Macia A and Muotri AR: Transposable elements, inflammation and neurological disease. Front Neurol 10: 894, 2019. PMID: 3148926. DOI: 10.3389/fneur.2019.00894

18 Bakshi A and Kim J: Retrotransposon-based profiling of mammalian epigenomes: DNA methylation of IAP LTRs in embryonic stem, somatic and cancer cells. Genomics 104(6 Pt B): 538-544, 2014. PMID: 25277772. DOI: 10.1016/j.ygeno.2014.09.009

19 Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D, Prosper F, Heiniger A and Torres A: Promoter epimethylation of the LINE-1 retrotransposable element activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24(48): 7213-7223, 2005. PMID: 16170379. DOI: 10.1038/sj.onc.1208866

20 Sanchez-Luque FJ, Kempen MHC, Gerdes P, Vargas-Landin DB, Richardson SR, Troskie RL, Jesuadian JS, Cheetham SW, Carreira PE, Salvador-Palomeque C, Garcia-Cañadas M, Muñoz-Lopez M, Sanchez L, Lundberg M, Aica H, Heras SR, Brennan PM, Lister R, Garcia-Perez JL, Ewing AD and Faulkner GJ: LINE-1 evasion of epigenetic repression in humans. Mol Cell 75(3): 590-604.e12, 2019. PMID: 31230816. DOI: 10.1016/j.molcel.2019.05.024

21 Lucifero D, La Salle S, Bourc'his D, Martel J, Bestor TH and Trasler JM: Coordinate regulation of DNA methyltransferase expression during oogenesis. BMC Dev Biol 7: 36, 2007. PMID: 17445268. DOI: 10.1186/1471-213X-7-36

22 Georgiou I, Noutsopoulos D, Dimitriadou E, Markopoulos G, Aperi G, Lazaros L, Vaxevanoglou T, Fantakis K, Syrrou M and Tzavaras T: Retrotransposon RNA expression and evidence for retrotransposition events in human oocytes. Hum Mol Genet 18(7): 1221-1228, 2009. PMID: 19147864. DOI: 10.1038/hmg/ddp022

23 Dombroski BA, Scott AF and Kazazian HH Jr: Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc Natl Acad Sci U.S.A. 90(14): 6513-6517, 1993. PMID: 8393568. DOI: 10.1073/pnas.90.14.6513

24 Ono M, Yasunaga T, Miyata T and Ushikubo H: Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. J Virol 60(2): 589-598, 1986. PMID: 3021993. DOI: 10.1128/JVI.60.2.589-598.1986

25 Orsicchio E, Sciamanna I, Beraldi R, Tolstonog GV, Schumann GG and Spadafora C: Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene 26(29): 4226-4233, 2007. PMID: 17237820. DOI: 10.1013/j.0968-6006.2014.120124

26 Nilsson BO, Jin M, Andersson AC, Sundström P and Larsson E: Expression of envelope proteins of endogenous C-type retrovirus on the surface of mouse and human oocytes at fertilization. Virus Genes 18(2): 115-120, 1999. PMID: 10403697. DOI: 10.1023/a:1008004332513

27 Ostertag EM, Prat ET, deBeberardinis RJ, Moran JV and Kazazian HH Jr: Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28(6): 1418-1423, 2000. PMID: 10684937. DOI: 10.1093/nar/28.6.1418

28 Noutsopoulos D, Varolomatos G, Koliatis N and Tzavaras T: SV40 large T antigen up-regulates the retrotransposition frequency of viral-like 30 elements. J Mol Biol 361(3): 450-461, 2006. PMID: 16859708. DOI: 10.1016/j.jmb.2006.06.030

29 Puschendorf M, Stein P, Oakeley EJ, Schultz RM, Peters AH and Svoboda P: Abundant transcripts from retrotransposons are unstable in fully grown mouse oocytes. Biochem Biophys Res Commun 347(1): 36-43, 2006. PMID: 16815300. DOI: 10.1016/j.bbrc.2006.10.106

30 Lazaros L, Kitsou C, Kostoulas C, Bellou S, Hatzi E, Markoula S, Zikopoulos K, Tzavaras T and Georgiou I: Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa. Fertil Steril 107(3): 821-830, 2017. PMID: 28139237. DOI: 10.1016/j.fertnstert.2016.12.027

31 Pboosk T, Subbalekha K, Sannikorn P and Mutirangura A: Improved measurement of LINE-1 sequence methylation for cancer detection. Clin Chim Acta 412(1-4): 314-321, 2011. PMID: 21078331. DOI: 10.1016/j.cca.2010.10.030

32 Lavie L, Kitova M, Maldener E, Meese E and Mayer J: CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 79(2): 876-883, 2005. PMID: 15613316. DOI: 10.1128/JVI.79.2.876-883.2005

33 Smallwood SA and Kelsey G: De novo DNA methylation: a germ cell perspective. Trends Genet 28(1): 33-42, 2012. PMID: 22019337. DOI: 10.1016/j.tig.2011.09.004

34 Kitsou C, Lazaros L, Bellou S, Vartholomatos G, Sakaloglou P, Hatzi E, Markoula S, Zikopoulos K, Tzavaras T and Georgiou I: Exogenous retroelement integration in sperm and embryos affects preimplantation development. Reproduction 152(3): 185-193, 2016. PMID: 27450800. DOI: 10.1530/REP-15-0174
Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S and Diamond MP: A survey of small RNAs in human sperm. Hum Reprod 26(12): 3401-3412, 2011. PMID: 21989093. DOI: 10.1093/humrep/det329

46 Jachowicz JW, Bing X, Pontabry J, Bošković A, Rando OJ and Torres-Padilla ME: LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 49(10): 1502-1510, 2017. PMID: 28846101. DOI: 10.1038/ng.3945

47 Dimitriadiou E, Noutsopoulos D, Markopoulos G, Vlaikou AM, Mantziou S, Traeger-Synodinos J, Kanavakis E, Chrrousos GP, Tzavaras T and Syprou M: Abnormal DLK1/MEG3 imprinting correlates with decreased HERV-K methylation after assisted reproduction and preimplantation genetic diagnosis. Stress 16(6): 689-697, 2013. PMID: 23786541. DOI: 10.3109/10253890.2013.817554

48 Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, Jesusian JS, Kempen MHC, Carreira PE, Jeddeloh JA, Garcia-Perez JL, Kazazian HH Jr, Ewing AD and Faulkner GJ: Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 27(8): 1395-1405, 2017. PMID: 28483779. DOI: 10.1101/gr.219022.116

49 Feuisher J, Watkins WS, Thomas J, Farrell A, Witherspoon DJ, Baird L, Ha H, Xing J and Jorde LB: Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res 29(10): 1567-1577, 2019. PMID: 31575651. DOI: 10.1101/gr.247965.118

50 Broura B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV and Kazazian HH Jr: Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U.S.A. 106(9): 3574-3579, 2009. DOI: 10.1073/pnas.0805879106

51 Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV and Kazazian HH Jr: Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U.S.A. 106(9): 3574-3579, 2009. DOI: 10.1073/pnas.0805879106

52 Tzavaras T, Efthaxia S, Tavoulari S, Hatzis P and Angelidis C: Factors influencing the expression of endogenous reverse transcriptases and viral-like 30 elements in mouse NIH3T3 cells. Int J Oncol 12(4): 1237-1243, 2003. PMID: 12964010

53 Liu W, Liu X, Wang C, Gao Y, Gao R, Kou X, Zhao Y, Li J, Wu Y, Xiu W, Wang S, Yin J, Liu W, Cai T, Wang H, Zhang Y and Gao S: Identification of key factors conferring developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov 2: 16010, 2016. PMID: 27462457. DOI: 10.1038/celldisc.2016.10

54 Miller D: Analysis and significance of messenger RNA in human ejaculated spermatozoa. Mol Reprod Dev 56(2 Suppl): 259-264, 2000. PMID: 10824980. DOI: 10.1002/(SICI)1098-2795(200006)56:2+<259::AID-MRD10>3.0.CO;2-R

Received April 12, 2021
Revised May 18, 2021
Accepted May 24, 2021