Microbial Colonization From the Fetus to Early Childhood—A Comprehensive Review

Viola Senn1, Dirk Bassler1, Rashikh Choudhury2, Felix Scholkmann1, Franziska Righini-Grunder3, Raphael N. Vuille-dit-Bille4,5 and Tanja Restin1,5*

1 Newborn Research Zurich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland, 2 Division of Transplantation Surgery, Department of Surgery, University of Colorado Hospital, Aurora, CO, United States, 3 Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital Lucerne, Lucerne, Switzerland, 4 Department of Pediatric Surgery, University Children’s Hospital of Basel, Basel, Switzerland, 5 Institute of Physiology, University of Zurich, Zurich, Switzerland

The development of the neonatal gastrointestinal tract microbiota remains a poorly understood process. The interplay between neonatal (gestational age, genetic background), maternal (mode of delivery, nutritional status) and environmental factors (antibiotic exposure, available nutrition) are thought to influence microbial colonization, however, the exact mechanisms are unclear. Derangements in this process likely contribute to various gastrointestinal diseases including necrotizing enterocolitis and inflammatory bowel disease. As such, enhanced understanding of microbiota development may hold the key to significantly reduce the burden of gastrointestinal disease in the pediatric population. The most debatable topics during microbial seeding and possible future treatment approaches will be highlighted in this review.

Keywords: microbiome, microbiota, fetus, newborn, infant

INTRODUCTION

Humans are “holobionts”, which means that they host an assembly of their own human eukaryotic cells and all of the microorganisms living in/on them (Meyer-Abich, 1943; Margulis and Fester, 1991). It is well established that the human microbiota comprises a wide array of microorganisms including bacteria, archaea, fungi, and protozoa. The entirety of their corresponding genes are referred by the term “microbiome” as reviewed by Lynch et al. (Lynch and Pedersen, 2016). Because viruses are hosted in eukaryotic cells, bacteria or archaea, they are included under the umbrella of the microbiome as well (Virgin, 2014). Metagenomic data and new bioinformatic tools help to detect these hidden viral nucleotide sequences which may influence host phenotype (Angly et al., 2005; Virgin and Todd, 2011). The largest microbiota of the human body is found in the gastrointestinal tract (GIT) with about 10^{13}–10^{14} microorganisms (Sender et al., 2016). As a nutritional inflow source, the GIT represents a fertile ground for microbial colonization. However, what types of microorganisms persist and in what quantity they do so, relies upon the methods by which microorganisms extract energy and provide commensal benefit to the GIT. The challenge of the host immune system is to both accept these commensal bacteria and defend against pathogens (Round and Mazmanian, 2009; Kim and Claud, 2019). Not only do resident microbiota extract...
energy for their survival, but they can also support the GIT in its function including pathogen defense (Freter, 1955; Abt and Pamer, 2014), strengthening the intestinal barrier function (Rakoff-Nahoum et al., 2004; Hayes et al., 2018) and promoting the immune development (O’Mahony et al., 2006; Round and Mazmanian, 2009). Additionally, the GIT microbiota helps to digest nutrients and improves gut motility (Abrams and Bishop, 1967; Dimidi et al., 2017) while supporting the synthesis of essential fatty acids (Høverstad and Midtvedt, 1986), amino acids (Jimenez et al., 2005), vitamins (Gustafsson et al., 1962) and hormones (Yano et al., 2015; Martin et al., 2019).

Existing literature suggests that children who are vaginally delivered at term without any instrumental assistance and are fed with maternal breast milk have the best chance to develop a healthy gastrointestinal microbiota which prevents dysbiosis (Levin et al., 2016; Martin et al., 2016). Dysbiosis refers to a phenomenon of microbiota “imbalance” or degeneracy in the microorganism make-up, which is thought to be associated with a wide range of metabolic/GIT diseases including obesity and metabolic syndrome (Turnbaugh et al., 2009), type 1 diabetes (Kostic et al., 2015), atopic conditions (Kalliomaki et al., 2001), inflammatory bowel disease (IBD) (Gevers et al., 2014), and necrotizing enterocolitis NEC (Fundora et al., 2020). As such, further understanding of dysbiosis is the first step to not only prevent disease but also to offer hope for therapy.

This review summarizes the current evidence on the development of microbial colonization with a focus on factors which have been associated with dysbiosis including gestational age, mode of delivery, nutrition and antibiotic therapy.

FIRST MICROBIAL COLONIZATION

The initiation of microbial colonization remains a controversial topic in developmental biology. The theory of “sterile womb” purports that the healthy fetus develops in a sterile environment in utero (Th and Bettelheim, 1988) and that microbial colonization starts after birth with the exception of intrauterine infections during pregnancy (Küsten, 1877; Tissier, 1900). This theory has been challenged when microbial components have been detected in the placenta (Aagaard et al., 2014; Collado et al., 2016) amniotic fluid (Collado et al., 2016), umbilical cord blood (Jimenez et al., 2005), meconium (Jimenez et al., 2008; Chu et al., 2017; Tapainen et al., 2018), and fetal membranes (Steel et al., 2005), even after uncomplicated pregnancies with healthy term born newborns (Perez-Munoz et al., 2017; Stinson et al., 2019; Patton and Neu, 2020). These microbial particles have typically been detected by sensitive polymerase chain reaction (PCR) methods. 16S ribosomal RNA is derived from the prokaryotic ribosome and is used to attribute detected RNA to respective bacterial strains (Woese and Fox, 1977). In all these studies, PCR mean copy numbers were low. Launder et al. reported 5.72 × 102 gene copies for the maternal side and 1.2 × 102 for the fetal side in samples which were extracted from 0.1–0.5 g placental tissue (Launder et al., 2016). When Rackaityte et al. aimed to control for procedural and environmental contamination, they found only 23.5 operational taxonomic units (OTUs) with ≥5 sequence read counts per meconium sample. Additionally, they analyzed the intestines of early terminated pregnancies (20 ± 2.2 weeks of gestation) and detected bacterial structures on electron scans (Rackaityte et al., 2020). Several sources of microbial fetal encounters have been proposed including ascension from the genitourinary tract (Zervomanolakis et al., 2007) or passage via mucosal membranes such as the oral cavity or the GIT (Han et al., 2004) of pregnant women (Baker et al., 2018). The analysis of potential bacterial seeding in utero is heavily complicated by intraamniotic infection. This infection occurs with an incidence of 3.9% of all women giving birth (Woodd et al., 2019). It may initially appear clinically silent but increases one’s risk of preterm birth (Hillier et al., 1988). Joint diagnosis of histological chorioamnionitis and bacterial growth in amnion cultures was found to be as low as 27.7% (Queiros da Mota et al., 2013), that is why detection of placental microbial particles could also represent clinically inapparent infections.

Defenders of the sterile womb hypothesis attribute the detected microbial particles to contamination (Olomu et al., 2020), because there was no evidence of viability of the detected bacterial structures (Rackaityte et al., 2020). Lim et al. found neither microbial nor viral communities in their amnion fluid samples from healthy term pregnancies (Lim et al., 2018; Lim et al., 2019). Correspondingly, in healthy pregnancies, the attempts to cultivate viable bacteria from placental specimen has thus far failed (Kuperman et al., 2020). Additionally, recent placental analyses of more than 500 placental tissue specimen assessed both with 16S- and metagenomic analyses revealed that besides pathogens (B. streptococci), no placental microbiome has been detectable (de Goffau et al., 2019).

An interesting theory, which may help to join the two conflicting observations is that particles derived from bacteria, fungi or viruses can be transported via the placenta to various fetal sites and thereby contribute to the priming of the fetal immune system (Wilcox and Jones, 2018). Microbial structures might then occasionally be detected depending on the sensitivity of the method.

It has been demonstrated that bacteria, as part of the maternal microbiota can be absorbed by immune cells (Rescigno et al., 2001). In theory, they could be transported via the blood stream or the lymphatic system into the placenta (Funkhouser and Bordenstein, 2013). Taking into account the immunological challenge at the maternal-fetal interface of the placenta (Ander et al., 2019), we suspect that there is also the possibility, that dead bacterial components are expressed on placental dendritic cells and may be taken over to the fetal side to prime the fetal immune system as suspected for allergens (Szepfalusi et al., 2000).

However, the number of microbial agents which have been described in placental tissue remains low. Tenericutes, Firmicutes (Lactobacillus), Actinobacteria (Bifidobacterium, Propionibacterium, Rhodococcus, Streptomyces), Bacteroidetes (Bacteroides, Prevotella), Proteobacteria (E. coli, Neisseria, Enterobacteria), and Fusobacteria have been found in the placenta of healthy newborns at term (Aagaard et al., 2014;
Parnell et al., 2017). Most taxa presented as “placental microbiome” correspond to the taxa found in the maternal oral microbiome (Fardini et al., 2010; Aagaard et al., 2014). Furthermore, it has been suggested that oral infections such as periodontitis are linked to complicated pregnancies and may contribute to prematurity or neonatal sepsis as reviewed by Zi et al. (2014).

With regard to umbilical cord blood of healthy term newborns, Actinobacteria (Bifidobacterium, Propionibacterium), Proteobacteria (Escherichia), Firmicutes (Enterococcus, Staphylococcus, Streptococcus), and Bacteroidetes (Bacteroides) have been detected (Jimenez et al., 2005). Similarities between the microbiota of meconium, placenta, and amnion fluid of healthy infants either suggest a certain prenatal microbial antigen transfer or a common source of contamination. However, Chu et al. describe different bacteria on the newborn skin, mouth and nose depending on the source of contamination. However, Chu et al. describe different bacteria on the newborn skin, mouth and nose depending on the mode of delivery (Chu et al., 2017). Contrastingly, they found similar bacteria in the newborn meconium with many samples harboring highly abundant Escherichia and Klebsiella (abundance 14.3% and 6.4%, respectively), not detectable in any other body site, speculating for a different microbial source prior to birth. It is tempting to assume that immunological priming with microbial particles starts to shape the fetal immune system prior to birth (Chu et al., 2017). Despite numerous papers published on this field, the concerns of contamination remain unsolved. In the newest study investigating this issue, evidences were put forward for contamination as the origin of bacteria found in human placenta samples (Gschwind et al., 2020).

INFLUENCE OF GESTATIONAL AGE

It has been well demonstrated that prematurity (birth before the completion of 37 weeks of pregnancy) may be triggered by intrauterine infections. Inflamed leaky or ruptured membranes facilitate the ascension of bacteria from the genitourinary tract (Hillier et al., 1995; Leitich et al., 2003). The gastrointestinal tract of premature infants is also known to have leaky barrier properties with a higher transepithelial and -mucosal permeability (Weaver et al., 1984a; Weaver et al., 1984b), impaired motility (Berseth, 1996), less active digestive enzymes (Demers-Mathieu et al., 2018) and lower absorption of nutrients (Neu and Koldovsky, 1996). Compared to their term counterparts, the immune system of premature infants displays fewer amounts of leukocytes, less proinflammatory cytokines, and less antibacterial peptides (Strunk et al., 2011; Melville and Moss, 2013).

Furthermore, preterm delivery is often linked to complicated pregnancies with a higher rate of caesarean sections and the use of prenatal antibiotics (Hill et al., 2017; Salvatore et al., 2019). The less mature newborns are, the longer time they have to spend in the neonatal intensive care unit (NICU) (Maier et al., 2018). They receive parenteral nutrition and/or enteral nutrition via nasogastric tubes (Viswanathan and Jadherra, 2019). Additionally, these infants often need respiratory support (Shi et al., 2020). As a result of these well described, common consequences of prematurity, preterm infants often have a delayed development of their gastrointestinal bacterial microbiota, a lower bacterial load (Chernikova et al., 2018), fewer commensals, and obligate anaerobic bacteria and a higher number of pathogens such as Klebsiella pneumoniae and Clostridium difficile and facultative anaerobic bacteria (Dahl et al., 2018). The dominating taxa consist of Firmicutes (Staphylococcus, Enterococcus), Proteobacteria (Enterobacteriaceae, Escherichia, Klebsiella), Actinobacteria, and Bacteroidetes (Bacteroides) (Patel et al., 2016; Yuan et al., 2019). Their term counterparts are colonized with predominantly Actinobacteria (Bifidobacterium) (Penders et al., 2006) and Firmicutes (Staphylococcus, Streptococcus) (Palmer et al., 2007).

These microbial changes in the preterm infant may be associated with feeding intolerance (Ford et al., 2019; Salvatore et al., 2019), NEC (Baranowski and Claud, 2019), late-onset sepsis (LOS) (Stewart et al., 2017), and inferior long-term neurological outcomes (Niemarkt et al., 2019). Even if premature infants meet the “optimal microbial conditions” including vaginal delivery, nutrition with breast milk and no antibiotic therapy, the premature microbiome differs from the microbiome of term neonates (Leitich et al., 2003; Penders et al., 2006; Palmer et al., 2007). However, currently, there is no consensus concerning the exact time point when the microbiota of preterm and term infants align, with different studies reporting a time range between 4 months and 4 years (Dahl et al., 2018; Fouhy et al., 2019). A recent study of 5–11-year-old children including 51 former preterm children (≤ 32 weeks of gestational age) could still find an inflammatory gut profile in the preterm group. The differences were attributed to a reduced gut phage richness (Jayasinghe et al., 2020).

INFLUENCE OF MODE OF DELIVERY

The mode of delivery influences the newborn gastrointestinal microbiota. During vaginal delivery, the infant’s GIT is colonized with vaginal (Dominguez-Bello et al., 2010) and intestinal (Makino et al., 2011; Makino et al., 2013) bacteria from the mother. Consequently, the infant’s gastrointestinal microbiota is dominated by Actinobacteria (Bifidobacterium, Atobium) (Dominguez-Bello et al., 2010; Reyman et al., 2019; Shao et al., 2019; Yang et al., 2019), Firmicutes (Lactobacillus, Meganomas) (Dominguez-Bello et al., 2010; Kuang et al., 2016), Bacteroidetes (Prevotella, Bacteroides, Parabacteroides) (Dominguez-Bello et al., 2010; Wampach et al., 2018), Fusobacteria (Sneathia) (Dominguez-Bello et al., 2010), and Proteobacteria (Shigella, Escherichia) (Kuang et al., 2016; Wampach et al., 2018; Shao et al., 2019; Yang et al., 2019). Most of these bacteria produce short chain fatty acids (SCFA), which lower the luminal pH and thereby inhibit the colonization of pathogens (Nagpal and Yamashiro, 2018). It is suggested that compared to children delivered via caesarean section, children after vaginal delivery display a higher diversity (Akagawa et al., 2019), fewer Staphylococci (Wampach et al., 2018) and C. difficile in their microbiota (Adlerberth and Wold, 2009).

In contrast, birth by caesarean (C-) section is theorized to interrupt the microbial transmission from the mother to child.
that occurs during vaginal birth (Backhed et al., 2015; Hill et al., 2017). Consequently, the GIT will first be colonized with bacteria present on the maternal skin (Akagawa et al., 2019) or in the direct neonatal environment (Dominguez-Bello et al., 2010). The intestinal microbiota after C-section is characterized by delayed bacterial colonization (Martin et al., 2016) and reduced number/diversity (Azad et al., 2013), but an increased number of opportunistic pathogens related to the hospital environment (Toscano et al., 2017a; Shao et al., 2019). After C-section the neonatal microbiome of the GIT is dominated by Firmicutes (Enterococcus, Staphylococcus, Streptococcus, Clostridium, Veillonella) (Azad et al., 2013; Martin et al., 2016; Kuang et al., 2016; Shao et al., 2019), and Proteobacteria (Klebsiella, Enterobacter, Haemophilus) (Shao et al., 2019). In relation to vaginal delivery, there are fewer Bacteroides, Bifidobacteria and Lactobacillus as well as SCFA (Nagpal and Yamashiro, 2018), and there is a general imbalance of the gut microbiome (Hoang et al., 2020). These findings correlate with a higher intraluminal pH and lower inhibition of pathogens (Nagpal and Yamashiro, 2018). There is some debate whether or not contractions might help to increase the microbial transfer to the baby (Levin et al., 2016; Shao et al., 2019) and how heavily the data is biased by antibiotic use as recommended prior to skin incision (Gholitabar et al., 2016; Shao et al., 2019). Mothers after C-section often additionally display antibiotic use as recommended prior to skin incision (Gholitabar et al., 2016; Shao et al., 2019) and how heavily the data is biased by antibiotic use as recommended prior to skin incision (Gholitabar et al., 2016; Shao et al., 2019). In contrast, children drinking formula tend to have a higher bacterial diversity and in addition to Bifidobacteriaceae, Clostridiaceae, Enterococcaceae and Enterobacteriaceae are detected (Harmsen et al., 2000; Li et al., 2014; Timmerman et al., 2017). However, studies are inconsistent (Adlerberth and Wold, 2009), possibly because they use different analytical approaches and infant nutrition and environmental influences are difficult to control in a large infant cohort.

In addition to the benefits named above, nutrition based on human milk is associated with a higher feeding tolerance (Schanler et al., 1999), lower risk of NEC (Miller et al., 2018), obesity (Ma et al., 2020), and atopic diseases (Lodge et al., 2015). However, the studies analyzing newborn and infant nutrition differ considerably concerning the duration and the amount of human milk provided as well as whether children were exclusively breastfed or human milk was provided with the bottle.

Prebiotic supplements such as galacto- and fructo-oligosaccharides added to infant formula shall mimic the effect of natural HMOs (Lodge et al., 2015), but to date, have not been demonstrated to lead to a complete approximation of the newborn microbiota (Bakker-Zierikzee et al., 2005; Haarman and Knol, 2005). In fact, intestinal microbiota of formula fed infants had more potential pathogens (Benno et al., 1984; Bezirtzoglou et al., 2011) as compared to breastfed children; dominated by Firmicutes (Staphylococcus, Streptococcus, Enterococcus, Lactobacillus, Clostridium), Bacteroidetes (Bacteroides), Proteobacteria (Enterobacter), and Actinobacteria (Atopobium) (Fallani et al., 2010; Stewart et al., 2018). Prebiotics are substances that contain vital microorganisms, which confer health benefits on their host (Food and Agriculture Organization of the United Nations, 2002; Hill et al., 2014). These microorganisms may change the microbial composition (Frese et al., 2017). They are believed to improve the barrier function of the intestinal epithelia,
modify the immune response and protect against pathogens due to competition for nutrients and colonization with potential pathogens (Servin, 2004; Athalye-Jape et al., 2018). It is hypothesized that the supplementation of probiotics reduces the time to complete enteral feeding (Samanta et al., 2009; Braga et al., 2011), the duration of hospitalization (Romeo et al., 2011), and morbidity and mortality (Barrington, 2011). The best evidence available in this regard involves the combination of Bifidobacteria and Lactobacilli (Chang et al., 2017). A recent Cochrane review on this topic found 24 trials including 5,529 infants, all assessing probiotic treatment of preterm infants <37 weeks gestational age or <2.500 g birth weight. This meta-analysis found a significantly reduced incidence of severe NEC (Bell stage II or more) relative risk (RR) of 0.43 (95% confidence interval (CI) 0.33–0.56) and a reduced mortality RR 0.65 (CI 0.52–0.81) (Hobs et al., 2016). However, the timing and composition of the probiotic treatment seems to be very important, because both the combination of Lactobacillus rhamnosus and Lactobacillus helveticus L. (Freedman et al., 2018) and the supplementation of Lactobacillus rhamnosus alone were not sufficient to improve the outcome in children with gastroenteritis (Schnadower et al., 2018). Experts therefore suggest a personalized approach (Zmora et al., 2018).

While cultivated bacteria from breast milk samples have been attributed to contamination (Dudgeon and Jewesbury, 1924; Wright, 1947), living non-pathogenic bacteria below a density of 10⁹ colony forming units/ml are now considered to be within normal range (Weaver et al., 2019), and potentially beneficial to newborn health (Toscano et al., 2017b). Several analyses have detected living bacteria such as Firmicutes (Staphylococcus, Streptococcus, Peptostreptococcus, Enterococcus, Clostridia, Lactobacillus), Actinobacteria (Bifidobacterium, Corynebacterium), Bacteroidetes (Bacteroides), and Proteobacteria (Escherichia, Serratia, Pseudomonas) in human breast milk. With the possibilities of large scale metagenomic analyses, it has now become possible to track the potential transfer of mobile genetic elements and antibiotic resistance genes via breast milk (Parnanen et al., 2018). Additionally, viable fungi have been cultured from breast milk samples recently at a density of ≥10⁹/ml with the highest rate of Malassezia, Candida, and Saccharomyces taxae (Boix-Amoros et al., 2017). Vertical viral transmission from the mother to her newborn is evident for cytomegalovirus (CMV) (Bardanzella et al., 2019), human immunodeficiency virus (HIV) (Van de Perre et al., 2012), and human-T-lymphotrope virus (HTLV). However, in general, breast-feeding has been associated with a lower risk of viral infections (Arifeen et al., 2001; Bahl et al., 2005). This viral reduction parallels with the finding, that prophages are also more abundant in formula-fed infants (Li et al., 2020). There is a currently contentious debate in this regard to where microbial particles found in the human breast milk derive from and why microbial loads are reported to be divers (Biagi et al., 2017). Potential sources include the adjacent skin and areola of the breast and bacteria, fungi or viral particles located in the newborn nasopharyngeal tract, deriving from their direct environment. Some bacterial transfer can also be explained by reverse flow from the larger milk ducts near the nipple to smaller collecting ducts and ductules (Ramsay et al., 2004). However, Urbaniak et al. also found bacterial particles in breast samples which were taken from non-lactating women during an operation (Urbaniak et al., 2016). Some studies have suggested the origin of the human breast milk microbiota is the maternal GIT, because the transfer of obligate anaerobes such as Bifidobacterium breve which has been detected in breast milk samples is not possible via skin contact (Jost et al., 2014). If this was the case, bacteria in the intestinal lumen of the maternal GIT could be taken up by immune cells, transferred via the blood and/or lymphatic system and then secreted into the breast milk. Such a connection between the maternal GIT microbiota and breast milk production could be the key to new treatment opportunities in lactating mothers.

In 2019, Togo et al. reported the successful cultivation of methanogenic archaea from breast milk samples (Togo et al., 2019). The amount of DNA was low with 2 log 10 copies DNA/ml, but they are still suggested to be important commensals due to their H2 reducing properties (Hansen et al., 2011; Bang and Schmitz, 2015). Another driving force for human microbial diversity which has been nearly overlooked for a long time is the human phageome (Manrique et al., 2016). This highly dynamic system creates a high predation pressure, may be introduced with microbes in breast milk and shapes the human microbiome (Rodriguez-Valera et al., 2009). There is growing evidence that the maternal intestinal microbiota is an important driver of breast milk composition, suggesting that new interventions to optimize infant health could already start prior to or during pregnancy.

After the introduction of solid foods, the differences between breast milk and formula fed infants become smaller and the microbiota starts to resemble the adult microbiota (Backhed et al., 2015). Some authors suggest that not the introduction of solid food but rather the cessation of breast milk leads to the alignment with the adult microbiota (Backhed et al., 2015; Levin et al., 2016). Given the fact that the human diet seem so decisive to influence microbial properties, the microbiota is potentially ripe for therapeutic intervention (Ku et al., 2020), especially during the newborn period.

INFLUENCE OF ANTIBIOTICS

Unfortunately, globally the incidence of infections remains high in the newborn period (Fanos et al., 2007), and several diseases affecting newborns necessitate the administration of broad spectrum antibiotics (Isaacs, 2006; Gordon and Jeffery, 2005; Clark et al., 2006). Pre- as well as peri- and postnatal antibiotic therapy negatively influences the neonatal microbiota (Gibson et al., 2015; Tapiainen et al., 2019) and consequently the development of the infant’s immune system (Zeissig and Blumberg, 2014). Antibiotic therapy is associated with a lower number of commensal bacteria with delayed colonization with Bifidobacteria and Bacteroidetes (Coker et al., 2020; Eck et al., 2020) and a higher amount of potential pathogens (Aloisio et al., 2016). However, attempts to restore a healthy microbiota with probiotic treatment after antibiotic use even led to prolonged dysbiosis in healthy volunteers (Suez et al., 2018). In a cohort of...
infants aged 2–36 months, Yassour et al. observed that antibiotic treatment significantly reduced the strain diversity inducing a less stable microbiota. Moreover, bacteria increasingly acquired antibiotic resistance genes (Yassour et al., 2016). As such, the use of antibiotics increase the probability of fungal overgrowth (Kligman, 1952). Moreover, antibiotics may impact on long-term health outcomes such as modified nutrient absorption (Krajmalnik-Brown et al., 2012), lower vitamin production (LeBlanc et al., 2013), higher incidence of obesity (Dawson-Hahn and Rhee, 2019) and atopic diseases (Baron et al., 2020). The aim is to protect this delicate balance of bacterial and probably fungal interactions which support the healthy GIT-microbiota (Peleg et al., 2010). Thereby, ending antibiotic therapy expeditiously and narrowing antibiotic therapy should be encouraged for infants that do require antibiotics.

DEVELOPMENT OF THE MICROBIOTA IN EARLY CHILDHOOD

Despite huge individual differences (Eckburg et al., 2005; Ley et al., 2006; Turnbaugh et al., 2009) the development of the microbiota still follows typical timely changes as shown in Figure 1. Directly after birth, healthy term infants have a primarily aerobic GIT, which promotes the appearance of facultative anaerobe bacteria such as Firmicutes (Enterococcus, Staphylococcus, Streptococcus) and Proteobacteria (Enterobacter, Escherichia coli) (Palmer et al., 2007; Del Chierico et al., 2015). These bacteria reduce the oxygen content in the intestine and facilitate the occurrence of obligate anaerobic bacteria such as Actinobacteria (Bifidobacterium), Bacteroidetes (Bacteroides), and Firmicutes (Clostridium, Lactobacillus, Ruminococcus) (Koenig et al., 2011; Del Chierico et al., 2015). After three months of life, Actinobacteria (Bifidobacterium), Bacteroidetes (Bacteroides), and Proteobacteria (Escherichia) dominate the intestinal tract (Fallani et al., 2011; Hill et al., 2017). After 12 months of life, the infant’s GIT is dominated by Actinobacteria (Bifidobacterium, Collinsella) and Firmicutes (Lactobacillus, Megasphaera, Veillonella) (Penders et al., 2006). After 2–3 years of age, children display a higher diversity and lower inter-individual differences (Yatsunenko et al., 2012). The microbiota stabilizes after about 3 years and then resembles the adult microbiota in terms of diversity and complexity with high abundance of species from the firmicutes and bacteroidetes phyla (Arumugam et al., 2011).

DISCUSSION AND CONCLUSION

This review demonstrates that there is still a large knowledge gap in regard to the microbial colonization of newborns. Neither the authors of the “sterile womb hypothesis” nor those defending the “in-utero colonization hypothesis” (Perez-Munoz et al., 2017) are able to completely explain the signaling mechanisms at the materno-fetal interface. Because the fetal intestinal immune system develops as early as 16 weeks of pregnancy.
to the fetal side as well. This “microbial priming” (Ganal-Vonarburg et al., 2017) may help to prepare the offspring for microbial contact after birth. It could also be triggered via the transfer of bacterial, viral, archaeal or fungal components through the blood, the interstitium, or immune cells. Materno-fetal protein-transport and antigen-presentation has been previously described, for example via the placental Fc-receptors (Makle et al., 1998; Wilcoxon and Jones, 2018). Although exosomes become increasingly attentive (Czernik and Duchler, 2020), it is unclear, whether microbial particles might also be transferred via exosomes in healthy pregnancies.

The microbial seeding during the first days of life makes the newborn highly susceptible to microbial perturbations (Bokulich et al., 2016). The most important factors affecting microbial seeding are gestational age, mode of delivery, nutrition, and antibiotic therapy (Azad et al., 2016; Levin et al., 2016; Martin et al., 2016). Optimizing nutrition and medical treatment could potentially improve newborn growth, prevent NEC and support favorable long-term outcomes. However, the molecular mechanisms remain unclear. Additionally, most have used human feces as a surrogate to study the intestinal microbiota, although it is unknown to which extent the bacteria found in the feces represent the microbiota of the GIT and whether the luminal (transient) bacteria correlate with mucosal (resident) bacteria, which might differ depending on the gastrointestinal region (Sundin et al., 2020).

In summary, we are convinced that a deeper understanding of the development of the newborn and infant microbiota will help to discover further potentially modifying factors to improve long-term health and quality of life.

AUTHOR CONTRIBUTION

VS and TR conceptualized the draft and wrote the manuscript. FS provided the figure and revised the paper. DB, RC, FR-G, and RV critically reviewed and improved the manuscript. All authors finally approved this final version. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We thank Thierry Hennet (Institute of Physiology, University of Zurich, Zurich Switzerland) for scientific support.

REFERENCES

Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., Versalovic, J., et al. (2014). The placenta harbors a unique microbiome. *Sci. Transl. Med.* 6 (237), 237ra65. doi: 10.1126/scitranslmed.3008599

Abrams, G. D., and Bishop, J. E. (1967). Effect of the normal microbial flora on gastrointestinal motility. *Proc. Soc. Exp. Biol. Med.* 126 (1), 301–304. doi: 10.3181/00379727-126-32430

Abt, M. C., and Pamer, E. G. (2014). Commensal bacteria mediated defenses against pathogens. *Curr. Opin. Immunol.* 29, 16–22. doi: 10.1016/j.coi.2014.03.003

Adlerberth, I., and Wold, A. E. (2009). Establishment of the gut microbiota in Western infants. *Acta Paediatr.* 98 (2), 229–238. doi: 10.1111/j.1651-2227.2008.01060.x

Akagawa, S., Tsuji, O., Onuma, C., Akagawa, Y., Yamaguchi, T., Yamagishi, M., et al. (2019). Effect of Delivery Mode and Nutrition on Gut Microbiota in Neonates. *Ann. Nutr. Metab.* 74 (2), 132–139. doi: 10.1159/000496427

Aloisio, I., Quaglieriello, A., De Fanti, S., Luisselli, D., De Filippio, C., Albanese, D., et al. (2016). Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 165 rDNA regions. *Appl. Microbiol. Biotechnol.* 100 (12), 5537–5546. doi: 10.1007/s00253-016-7410-2

Ander, S. E., Diamond, M. S., and Coyne, C. B. (2019). Immune responses at the maternal-fetal interface. *Sci. Immunol.* 4 (31), 1–10. doi: 10.1126/sciimmunol.aat6114

Angly, F., Rodriguez-Brito, B., Bangor, D., McNairnie, P., Breitbart, M., Salamon, P., et al. (2005). PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. *BMC Bioinf.* 6, 41. doi: 10.1186/1471-2105-6-41

Arifeen, S., Black, R. E., Antelman, G., Baqui, A., Caulfield, L., Becker, S., et al. (2001). Exclusive breastfeeding reduces acute respiratory infection and diarrhea deaths among infants in Dhaka slums. *Pediatrics* 108 (4), E67. doi: 10.1542/peds.108.4.e67

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al. (2011). Enterotypes of the human gut microbiome. *Nature* 473 (7346), 174–180. doi: 10.1038/nature09944

Athalye-Jape, G., Rao, S., and Patole, S. (2018). Effects of probiotics on experimental necrotizing enterocolitis: a systematic review and meta-analysis. *Pediatr. Res.* 83 (1-2), 16–22. doi: 10.1038/pr.2017.218

Azad, M. B., Konya, T., Maughan, H., Guttmann, D. S., Field, C. J., Char, R. S., et al. (2013). Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. *CMAJ* 185 (5), 385–394. doi: 10.1503/cmaj.121189

Azad, M. B., Konya, T., Persaud, R. R., Guttmann, D. S., Char, R. S., Field, C. J., et al. (2016). Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. *BJOG* 123 (6), 983–993. doi: 10.1111/1471-0528.13601

Backhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015). Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. *Cell Host. Microbe* 17 (5), 690–703. doi: 10.1016/j.chom.2015.04.004

Bahl, R., Frost, C., Kirkwood, B. R., Edmond, K., Martines, J., Bhandari, N., et al. (2005). Infant feeding patterns and risks of death and hospitalization in the first half of infancy: multicentre cohort study. *Bull. World Health Organ.* 83 (6), 418–426. doi: 10.1097/00006842-200506000-00009

Baker, J. M., Chase, D. M., and Herbst-Kralovetz, M. M. (2018). Uterine Microbiota: Residents, Tourists, or Invaders? *Front. Immunol.* 9, 208. doi: 10.3389/fimmu.2018.00208

Bakker-Zierikzee, A. M., Alles, M. S., Knol, J., Kok, F. J., Tolboom, J. J., Bindels, J. G., et al. (2005). Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. *Br. J. Nutr.* 94 (5), 783–790. doi: 10.1079/BJN20051451

Bang, C., and Schmitz, R. A. (2015). Archaea associated with human suicides: not to be underestimated. *FEMS Microbiol. Rev.* 39 (5), 651–648. doi: 10.1093/femsre/fmu.2018.00208

Baranowski, J. R., and Claud, E. C. (2019). Necrotizing Enterocolitis and the Postterm Infant Microbiome. *Adv. Exp. Med. Biol.* 1125, 25–36. doi: 10.1007/5484_2018_313

Bardanzellu, F., Fanos, V., and Reali, A. (2019). Human Breast Milk-acquired Microbial Priming First 4 Months of Life. *Pediatrics* 143 (2), e20183615.

Bardanzellu, F., Fanos, V., and Reali, A. (2019). Human Breast Milk-acquired Microbial Priming First 4 Months of Life. *Pediatrics* 143 (2), e20183615.

Bardanzellu, F., Fanos, V., and Reali, A. (2019). Human Breast Milk-acquired Microbial Priming First 4 Months of Life. *Pediatrics* 143 (2), e20183615.
Corroborating the findings of previous studies, the research conducted by Collado, M. C., Rautava, S., Aakko, J., Isolauri, E., and Salminen, S. (2016) in the *British Medical Journal* revealed that probiotics may prevent necrotising enterocolitis and reduced mortality in preterm neonates. Their investigation, involving *Microbiol. Immunol.* and *Arch. Dis. Child. Educ. Pract. Ed.*, suggested that probiotics could play a crucial role in optimizing gut colonisation and enhancing the outcomes of vulnerable newborns.

Further reinforcing these observations, the study by Cunningham, A. J., Sim, K., Deierl, A., Kroll, K. S., Brannigan, E., and Darby, J. (2016) in *Pediatric Research* highlighted the importance of probiotics in the initial microbiota across multiple body sites and in relation to mode of delivery. This research, supported by the *British Journal of Nutrition*, *European Society for Human Reproduction and Embryology*, and *EBioMedicine*, underscored the fundamental role of probiotics in establishing a healthy gut microbiota in the early stages of life.

The findings of Ford, S. L., Lohmann, P., Preidis, G. A., Gordon, P. S., O’Donnell, A., Hagan, J., et al. (2019) in *Adv. Nutr.* demonstrated that probiotics are effective in reducing the risk of necrotizing enterocolitis and improving gut health in preterm infants. The authors, through their study in *Pediatric Research*, *Journal of Perinatal Medicine*, and *The American Journal of Clinical Nutrition*, emphasized the potential of probiotics in promoting healthy gut development and function in vulnerable populations.

In a comprehensive review, Dawson-Hahn, E. E., and Rhee, K. E. (2019) provided insights into the association between antibiotics in the first year of life and child growth trajectory. Their findings, elucidated in *BMJ Paediatr. Res.*, *Journal of Pediatrics*, *Pediatrics*, and *Pediatrics* *International*, indicated that antibiotic exposure during the first year of life is linked to altered growth patterns.

The study by Demers-Mathieu, V., Qu, Y., Underwood, M. A., Borghese, R., and Dallas, D. C. (2018) in *PLOS One* underscored the critical role of probiotics in modulating the gut microbiota and improving health outcomes in premature infants. Their research, supported by the *Pediatric Research* and *Front. Pediatr.*, highlighted the potential of probiotics in reducing the incidence of necrotizing enterocolitis and improving survival rates in preterm infants.
Kostic, A. D., Gevers, D., Siljander, H., Vatanen, T., Hytölylainen, T., Hamalainen, A. M., et al. (2015). The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17 (2), 260–273. doi: 10.1016/j.chom.2015.01.001

Krajmalnik-Brown, R., Ilhan, Z. E., Kang, D. W., and DiBaise, J. K. (2012). Effects of microbial colonization. Microbiol. Biotechnol. 30 (7), 1067–1071. doi: 10.1104/mbi.2002.02042

Ku, H. J., Kim, Y. T., and Lee, J. H. (2020). Microbiome Study of Initial Gut Microbiota from Newborn Infants to Children Reveals that Diet Determines Its Compositional Development. J. Microbiol. Biotechnol. 30 (2), 201–214. doi: 10.1177/0140-6736(90)91491-R

Kuang, Y. S., Li, S. H., Guo, Y., Lu, J. H., He, J. R., Luo, B. J., et al. (2016). Composition of gut microbiota in infants in China and global comparison. Sci. Rep. 6:36666. doi: 10.1038/srep36666

Kuperman, A. A., Hamadia, S., Ziv, O., Gurevich, V., Fichtman, M., Malek, A., Sager, R., and Schneider, H. (1998). “Bellagio conference and book. Symbiosis as Source of Evolutionary Innovation,” in Speciation and Morphogenesis, Bellagio Conference Center, Italy. Symbiosis, Balaban Publishers, Conference—June 25–30, 1989, Vol. 11. (Balaban Publishers), 93–101.

Martin, R., Makino, H., Cetinyurek Yavuz, A., Ben-Amor, K., and Roelofs, M. (2016). Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PloS One 11 (6), e0158498. doi: 10.1371/journal.pone.0158498

Martin, A. M., Sun, E. W., Rogers, G. B., and Keating, D. J. (2019). The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front. Physiol. 10, 428. doi: 10.3389/fphys.2019.00428

Melville, J. M., and Moss, T. J. (2013). The immune consequences of preterm birth. Front. Neurosci. 7, 79. doi: 10.3389/fnins.2013.00079

Meyer-Arbis, A. (1943). Beiträge zur Theorie der Evolution der Organismen. I. Das typologische Grundgesetz und seine Folgerungen für Phylogenie und Entwicklungspysiology [Contributions to the evolutionary theory of organisms: Part I: The basic typological law and its implications for phylogeny and developmental physiology]. ActaBiotheoretica 7, 1–80. doi: 10.1007/BF01637972

Niemarkt, H. J., De Meij, T. G., van Ganzewinkel, C. J., de Boer, N. K. H., Andriessen, P., Hutten, M. C., et al. (2019). Necrotizing Enterocolitis, Gut Microbiota Composition in Healthy Japanese Infants and Young Adults Born by C-Section. Ann. Nutr. Metab. 73 (Suppl 3), 4–11. doi: 10.1159/000490841

Neu, J., and Koldovsky, O. (1996). Nutrient absorption in the preterm neonate. Clin. Perinatol. 23 (2), 229–243. doi: 10.1016/S0095-5108(18)30240-9

Niemarkt, H. J., De Meij, T. G., van Ganzewinkel, C. J., de Boer, N. K. H., Andriessen, P., Hutten, M. C., et al. (2019). Necrotizing Enterocolitis, Gut Microbiota, and Brain Development: Role of the Brain-Gut Axis. Neonatology 115 (4), 423–431. doi: 10.1155/000497420

Olofsson, P. K., Furuichi, T. C.,M., Sayeed, A., A., R., Syrjälä, J., and Isolauri, E. (2016). Development of infant gut microbiota. Microbiol. Res. 161 (4), 349–353. doi: 10.1016/j.micres.2016.06.005

Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., and Brown, P. O. (2007). Development of the human infant intestinal microbiota. PloS Biol. 5 (7), e177. doi: 10.1371/journal.pbio.0050177

Parnanen, K., Karkman, A., Hultman, J., Lyra, C, Bengtsson-Palme, J., Larsson, D. G. J., et al. (2018). Maternal gut and breast milk microbiota affect infant gut distribution. PloS One 8 (11), e78331. doi: 10.1371/journal.pone.0078331
bifidobacteria and lactobacilli. J. Dairy Sci. 100 (10), 7825–7833. doi: 10.3168/jds.2017-12753
Timmerman, H. M., Rutten, N., Boekhorst, J., Saulnier, D. M., Kortman, G. A. M., Contractor, N., et al. (2017). Intestinal colonicisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures. Sci. Rep. 7 (1), 8327. doi: 10.1038/s41598-017-08268-4
Tissier, H. (1900). Dissertation: Recherches sur la Flore Intestinale des Noufriens (Etat Normal et Pathologique). Ed. G. C. E. C. Naud (Paris).
Togo, A. H., Grine, G., Khealaif, S., de Robertis, C., Brevaut, V., Caputo, A., et al. (2019). Culture of Methanogenic Archaea from Human Colostrum and Milk. Sci. Rep. 9 (1), 18653. doi: 10.1038/s41598-019-47579-x
Toscano, M., De Grandi, R., Peroni, D. G., Grossi, E., Facchin, V., Comberiati, P., et al. (2017a). Impact of delivery mode on the colostrum microbiota composition. BMC Microbiol. 17 (1), 205. doi: 10.1186/s12866-017-1109-0
Toscano, M., De Grandi, R., Grossi, E., and Drago, L. (2017b). Role of the Human Breast-Milk-Associated Microbiota on the Newborns’ Immune System: A Mini Review. Front. Microbiol. 8, 2100. doi: 10.3389/fmicb.2017.02100
Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantaril, B. L., Duncan, A., Ley, R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457 (7228), 480–484. doi: 10.1038/nature07540
Urashima, T., Asakuma, S., Leo, F., Fukuda, K., Messer, M., Ofedal, O. T., et al. (2012). The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv. Nutr. 3 (3), 473–483. doi: 10.3945/an.111.001412
Urbaniak, C., Burton, J. P., and Reid, G. (2016). The Microbiota of Breast Tissue and Its Association with Breast Cancer. Appl. Environ. Microbiol. 82 (16), 5039–5048. doi: 10.1128/AEM.01235-16
Van de Perre, P., Rubbo, P. A., Viljoen, J., Nagot, N., Tylleskar, T., Lepage, P., et al. (2012). HIV-1 reservoirs in breast milk and challenges to elimination of breast-feeding transmission of HIV-1. Sci. Transl. Med. 4 (143), 143sr3. doi: 10.1126/scitranslmed.3003327
Virgin, H. W., and Todd, J. A. (2011). Metagenomics and personalized medicine. Cell 147 (1), 44–56. doi: 10.1016/j.cell.2011.09.009
Virgin, H. W. (2014). The virome in mammalian physiology and disease. Cell 157 (1), 142–150. doi: 10.1016/j.cell.2014.02.032
Viswanathan, S., and Jachlera, S. (2019). Transitioning from gavage to full oral feeds in premature infants: When should we discontinue the nasogastric tube? J. Perinatol. 39 (9), 1257–1262. doi: 10.1016/j.jperi.2019.04.046-2
Wampach, L., Heintz-Buschart, A., Fritz, J. V., Ramiro-Garcia, J., Calvert, C., Rehman, A. M., et al. (2019). Incidence of maternal peripartum infection: A systematic review and meta-analysis. PLoS Med. 16 (12), e1002984. doi: 10.1371/journal.pmed.1002984
Wright, J. (1947). Bacteriology of the collection and preservation of human milk. Lancet 2 (6465), 121–124. doi: 10.1016/S0140-6736(47)90193-1
Wolf, J. H. (2003). Low breastfeeding rates and public health in the United States. Am. J. Public Health 93 (12), 2000–2010. doi: 10.2105/AJPH.93.12.2000
Woodd, S. L., Montoya, A., Barreix, M., Pi, L., Calvert, C., Rehman, A. M., et al. (2019). Dynamic signatures of gut microbiota and influences of delivery and feeding modes during the first 6 months of life. Physiol. Genomics 51 (8), 368–378. doi: 10.1152/physiolgenomics.00026.2019
Yano, J. M., Yu, K., Donaldson, G. P., Shastry, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2), 264–276. doi: 10.1016/j.cell.2015.02.047
Yassour, M., Vatanen, T., Siljander, H., Hamalainen, A. M. H., Karkonen, T., Ryhanen, S. J., et al. (2016). Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8 (343), 343ra81. doi: 10.1126/scitranslmed.aad9017
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., et al. (2012). Human gut microbiome viewed across age and geography. Nature 486 (7402), 222–227. doi: 10.1038/nature11053
Yu, Z. T., Chen, C., and Newburg, D. S. (2013). Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23 (11), 1281–1292. doi: 10.1093/glycob/cws065
Yuan, Z., Yan, J., Wen, H., Deng, X., Li, X., and Su, S. (2019). Feeding intolerance alters the gut microbiota of preterm infants. PLoS One 14 (1), e0210609. doi: 10.1371/journal.pone.0210609
Zeissig, S., and Blumberg, R. S. (2014). Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat. Immunol. 15 (4), 307–316. doi: 10.1038/ni.2847
Zervomanolakis, I., Ott, H. W., Hadzismemovic, D., Mattle, V., Beeher, B. E., Virgolini, I., et al. (2007). Physiology of upward transport in the human female genital tract. Ann. N. Y. Acad. Sci. 1101, 1–20. doi: 10.1196/annals.1389.032
Zhao, M., Wu, H., Liang, Y., Liu, F., Bovet, P., and Xi, B. (2020). Breastfeeding and Mortality Under 2 Years of Age in Sub-Saharan Africa. Pediatrics 145 (5): e20192209. doi: 10.1542/peds.2019-2209
Zi, M. Y., Longo, P. L., Bueno-Silva, B., and Mayer, M. P. (2014). Mechanisms Involved in the Association between Periodontitis and Complications in Pregnancy. Front. Public Health 2, 290. doi: 10.3389/fpubh.2014.00290
Zmora, N., Zilberman-Schapira, G., Suez, J., Mor, U., Dori-Bachash, M., Bashiardes, S., et al. (2018). Personalized Gut Macosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 174 (6), 1388–1405 e21. doi: 10.1016/j.cell.2018.08.041
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2020 Senn, Bassler, Choudhury, Scholkmann, Righini-Grunder, Vuille-dit-Bille and Restin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.