Pharmacokinetic evaluation of cefquinome in febrile goats following intravenous administration

RASHMI SAGAR1,2, MUDASIR SULTANA1, VINOD K. DUMKA2 and PRITAM K. SIDHU3

Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir 180 009 India

Received: 21 December 2019; Accepted: 29 January 2020

ABSTRACT

Pharmacokinetics of cefquinome was studied in febrile female goats following its intravenous (IV) administration at the dose rate of 2 mg/kg body weight. The fever was induced by administration of Escherichia coli lipopolysaccharide (µg/kg body weight). Cefquinome concentration in plasma of goats was estimated using HPLC. The drug was detected up to 24 h in febrile goats. The disposition kinetics of the drug was described by two-compartment open model. PK-PD indices; AUC24h/MIC, Cmax/MIC, T>MIC were calculated by integrating in-vivo PK data with earlier generated MIC data against Pasteurella (P.) multocida. A favourable PK and PK-PD indices suggested that the dose of 2 mg/kg/24 h of cefquinome would be effective clinically to treat goats affected with P. multocida infections.

Keywords: Cefquinome, E. coli LPS, Fever, Goats, Intravenous, Pharmacokinetics, PK-PD

Cefquinome, an aminothiazolyl fourth generation cephalosporin has been developed exclusively for veterinary use to treat infections caused by gram positive and gram negative bacteria. The chemical modifications of the basic cephalosporin structure provide a zwitter-ionic property to cefquinome that facilitates rapid penetration across biological membranes including porins of the bacterial cell wall, enhances bioavailability and spectrum of antibacterial activity compared to the second and third generation cephalosporins (Guerin-Faublee et al. 2003, Thomas et al. 2006, Shantier 2018). As a result of molecular structure, cefquinome is stable against chromosomally and plasmid-encoded β-lactamases that are produced by a majority of clinically important bacteria (Shantier 2018).

Appropriate dosing of the antimicrobial agent is determined by considering the pharmacokinetic (PK)–pharmacodynamics (PD) relationships of the antimicrobial agent. In general, these studies are conducted in healthy animals and dosing determined from these trials is frequently extrapolated for use in sick animals. However, pathophysiologial changes in sick animals can affect PK-PD properties of drugs and extrapolation of dosing in sick animals compared to healthy animals may become inadequate because of alterations in physiological parameters due to disease. Suboptimal concentrations of antimicrobials are clinically relevant as they lead to reduced antimicrobial activity and hence, compromise clinical efficacy and trigger the development of drug resistance (Lees et al. 2006, Ambrose et al. 2007, Mouton et al. 2011).

The veterinarians are facing the challenge of managing infectious disease outbreaks in goats due to increasing trend of goat population and production in India and other countries including China and United States. Respiratory tract infections associated with Pasteurella (P.) multocida are one of the leading causes of mortality and morbidity in sheep and goats (Mominet et al. 2011, Sirous et al. 2011, Salaheddin and Hanan 2012). Use of antimicrobials is the only effective alternative to treat sick animals affected with Pasteurellosis. Several publications have reported emerging resistance of various antibiotics against P. multocida from different parts of the world (Jamali 2014, Sarangi et al. 2015, Pipoz et al. 2016). To combat threat of resistance emergence, there is urgent need to develop optimal dosing regimen of antimicrobial to guarantee successful clinical outcome and minimizing the risk of selection and amplification of resistant mutants. Therefore, it is important to establish PK data of antimicrobial agents in healthy and febrile animals. The study was carried out to extend our previous findings of cefquinome PK in healthy goats to febrile goats to generate comparative PK data for optimization of dosing regimen of cefquinome in diseased goats.

MATERIAL AND METHODS

Animals: The study was performed on four adult female
goats (20±4 kg) of approximately 2–3 years of age, purchased from the local farmer. The goats were acclimatized for 2 weeks in the department animal shed prior to the commencement of experiment. During this period, all animals were dewormed and subjected to regular clinical examination. The animals were maintained on green pasture and concentrate mixture. Goats were healthy and didn’t receive any antimicrobial treatment during a month prior to the study. Water was provided ad lib. The study protocol followed the institutional ethical guidelines on the proper care and use of experimental animals.

Induction of fever: Four female goats were administered with lipopolysaccharide (LPS) derived from Escherichia coli (E. coli) 0127:B8 (Sigma-Aldrich, USA) intravenously (IV) at the dose rate of 1 µg/kg body weight to induce fever. The dose of LPS used for induction of fever was on the basis of a pilot study (data not shown) using three doses (0.5, 1, 2 µg/kg) of LPS. Once fever was induced, ceftiofur was used as stationary phase. The binary-gradient mobile phase (A): acetonitrile (mobile phase B): (Merck, Germany) was used as a stationary phase. The binary-gradient mobile phase consisted of water containing 0.1% TFA (mobile phase A); acetonitrile (mobile phase B): (Merck, Germany) in the ratio (80:20, v/v). The detection of ceftiofur was performed by UV detection at the wavelength of 268 nm. The detection of ceftiofur was spiked with concentration range of 0.02–40 µg/ml of LPS. The plasma from control goats (20±4 kg) of approximately 2–3 years of age, purchased from the local farmer. The goats were acclimatized for 2 weeks in the department animal shed prior to the commencement of experiment. During this period, all animals were dewormed and subjected to regular clinical examination. The animals were maintained on green pasture and concentrate mixture. Goats were healthy and didn’t receive any antimicrobial treatment during a month prior to the study. Water was provided ad lib. The study protocol followed the institutional ethical guidelines on the proper care and use of experimental animals.

Induction of fever: Four female goats were administered with lipopolysaccharide (LPS) derived from Escherichia coli (E. coli) 0127:B8 (Sigma-Aldrich, USA) intravenously (IV) at the dose rate of 1 µg/kg body weight to induce fever. The dose of LPS used for induction of fever was on the basis of a pilot study (data not shown) using three doses (0.5, 1, 2 µg/kg) of LPS. Once fever was induced, ceftiofur sulfate powder with solvent for injection (Intas Pharmaceuticals Ltd, Ahmedabad, India) was administered IV into the right jugular vein at a dose of 2 mg/kg. Blood samples (~ 9–10 mL/each sample) were collected from the left jugular vein by venipuncture in heparinized sterile test tubes at time points: 0, 1, 2.5, 5, 10, 20, 30, 60 min and 2, 4, 6, 8, 12 and 24 h after drug administration. Blood samples were immediately transferred on ice for no longer than 2 h prior to centrifugation for 10 min at 1,500 g. Plasma was separated and stored at −20°C in Eppendorf tubes till further analysis.

Determination of ceftiofur concentration: Plasma concentrations of ceftiofur were determined using high performance liquid chromatography (HPLC) with UV/VIS detector (Perkin Elmer 200 series) following the method of Uney et al. (2011), details have been described in our companion paper (Sagar et al. 2015). The HPLC system (Perkin Elmer) consists of a single pump (mode series 200) and auto-sampler injector with 200 µl loop, dual wavelength UV detector (model 200 series) and Total Chrome software® for analysis. A reverse phase C18 column (Merck® Particle size 5 µ, and 4.6×150 mm, Waters USA) was used as a stationary phase. The binary-gradient mobile phase consisted of water containing 0.1% TFA (mobile phase A); acetonitrile (mobile phase B): (Merck, Germany) in the ratio (80:20, v/v). The detection of ceftiofur was performed by UV detection at the wavelength of 268 nm. The retention time of ceftiofur was about 6.1 min with a total run time of 15 min. The plasma from control goats was spiked with concentration range of 0.02–40 µg/ml of ceftiofur for preparation of calibration curve. The standard curve of ceftiofur was linear in the range of 0.04–40 µg/ml with regression coefficient (r²) of 0.999. The limit of quantitation (LOQ) for the method was found to be 0.04 µg/ml for ceftiofur in goat plasma. The limit of detection (LOD) was 0.02 µg/ml with 92.8% recovery of ceftiofur. The coefficients of variation for repeatability and reproducibility of ceftiofur were 2.75% and 4.15%, respectively. The accuracy and coefficient of variation for precision of ceftiofur were 96.4% and 3.97%, respectively.

Pharmacokinetic analysis: The plasma concentration versus time data for each goat following IV administration of ceftiofur was subjected to PK analysis using WinNonlin Software (Phoenix® WinNonlin® 7.0, Certara, Inc. Princeton, NJ, USA) based on least square non-linear regression method. The mean PK parameters were obtained by averaging the parameters calculated for drug disposition in each goat. The PK parameters, viz. elimination rate constant and half-life (β and t½β), area under the plasma concentration-time curve from time 0 extrapolated to infinity (AUC0–∞), volume of distribution (Vd), total body clearance which is the sum of all clearance processes in the body (Clint) were calculated using compartment modelling. The best fitting model was chosen using Minimum Akaike Information Criterion Estimates. Data of ceftiofur plasma levels vs. time was subject to non-compartment analysis using the statistical moment approach (Gibaldi and Perrier 1982). The AUC and area under the first moment curve (AUMC) were determined by linear trapezoidal method. The mean residence time (MRT) was calculated from AUMC/AUC.

Statistical analysis: The PK data are presented as arithmetic mean±SD, except for t½β where harmonic mean was used as a measure of accuracy (Lam et al. 1985). The SD for means is provided to give an indication of the variation in the data. Plasma concentrations versus time data of ceftiofur following IV administrations in febrile goats were collected in a spread sheet (Microsoft Excel® 2016, Microsoft Corporation) for subsequent calculations. Differences between two means based on individual observations were evaluated using ANOVA with the assumption that data were not normally distributed. The statistical significance was assayed at 5% (P<0.05) levels. All calculations were done using SPSS® 16.0 (IBM) software package.

RESULTS AND DISCUSSION

Pharmacokinetic studies of ceftiofur have been conducted in healthy animals of various species including cattle (Ehinger et al. 2006, Shan et al. 2014), buffaloes (Dinakaran et al. 2013), camel (Al-Taher 2010), goat (Dumka et al. 2013, Sagar et al. 2015), pig (Li et al. 2008), sheep (Tohamy et al. 2011, Uney et al. 2011), horse (Allan and Thomas 2003) and rabbits (Shalaby et al. 2014). However, there is no information on PK-PD of ceftiofur in diseased animals; therefore, we attempted to establish PK of ceftiofur in febrile goats and applied PK-PD principles for optimization of dosage regimen. In all goats, the LPS dose (1 µg/kg) was precise enough to produce fever in quantifiable degrees which was reversible and gave minimum discomfort to goats. The LPS had been used previously to induce fever in buffalo calves and pigs (Dardi et al. 2005, Balaje et al. 2013).

The pyrexia (~1.5–2°C) in goats was maintained up to 12 h and body temperature returned to normal at 24 h after...
LPS administration. There was no rise in temperature in control animals at any time point. All the goats were alert and normal at 24 h after LPS administration. No animal showed any adverse reaction following IV administration of ceftazidime @ 2 mg/kg body weight. Table 1 shows the mean plasma concentrations of ceftazidime at various time intervals following its single IV administration. The PK parameters which describe the distribution and elimination of ceftazidime following a single IV administration in goats have been presented in Table 2. Semi-logarithmic plot of mean plasma concentrations of ceftazidime versus time has been shown in Fig. 1. At 1 min, average plasma concentration±SD of ceftazidime was 9.067±0.052 µg/mL, after that a gradual decrease in drug concentrations resulted into a level of 0.387±0.022 µg/mL at 24 h following ceftazidime administration. Data showed a biphasic curve and it gave fitting to two compartmental model with a first order kinetics in all animals (Fig. 1). Pharmacokinetic parameters of ceftazidime indicated rapid distribution of drug in the central compartment and moderately rapid into peripheral/tissue compartment. The drug was eliminated with mean t1/2β of 6.139 h with elimination rate constant (β) of 0.113/h. The mean total body clearance (CL B) was 0.047 L/kg/h and Vdss of ceftazidime was 0.395 L/kg. The PK data of ceftazidime obtained by compartmental modelling were consistent with the PK parameters calculated with non-compartment method (Data not shown). The mean AUC0–∞ and AUMC0–∞ were 42.48 µg/ml×h & 357.3 µg/ml×h2, respectively. Mean residence time from time 0 extrapolated to infinity (MRT 0–∞) was 8.408 h in febrile goats.

The ceftazidime PK-PD indices, AUC24h/MIC, Cmax/MIC, T>MIC were calculated by integrating in vivo PK data with earlier generated MIC data against P. multocida from Schwarz et al. (2004) and Thomas et al. (2006) (Table 3). PK-PD data showed that ceftazidime concentration in febrile goats were T>MIC 90 (0.030–0.125 µg/ml) of P. multocida for 24 h following IV administration. However, T>MIC 90 for ceftazidime was 18 h against staphylococci isolated from equines suffering from respiratory infections.

Mean plasma concentrations of ceftazidime in febrile goats were slightly greater in febrile animals at all time-

Table 1. Plasma concentrations (µg/ml) of ceftazidime following its single IV administration at the dose rate of 2 mg/kg in febrile goats

Time (h)	Goat 1	Goat 2	Goat 3	Goat 4	Mean	SD
0.017	9.140	9.070	9.030	9.030	9.067	0.051
0.042	8.800	8.620	8.830	8.830	8.770	0.100
0.083	8.010	8.210	8.120	8.120	8.115	0.082
0.167	7.530	7.890	7.701	7.710	7.707	0.147
0.333	7.360	7.421	7.011	7.010	7.201	0.221
0.500	5.630	6.040	5.720	5.721	5.777	0.180
1.000	4.700	4.640	4.410	4.410	4.540	0.152
2.000	3.530	3.620	3.541	3.539	3.557	0.042
4.000	3.310	3.238	3.310	3.311	3.293	0.035
6.000	2.022	2.290	2.631	2.330	2.318	0.249
8.000	1.800	1.748	1.750	1.752	1.763	0.025
12.00	0.918	0.920	0.882	0.884	0.901	0.021
24.00	0.415	0.365	0.378	0.402	0.390	0.022

Table 2. Pharmacokinetics parameters of ceftazidime in febrile goats following single IV administration at the dose rate of 2 mg/kg body weight

Parameter	Unit	Goat 1	Goat 2	Goat 3	Goat 4	Mean	SD
A	µg/mL	4.701	4.549	4.596	4.715	4.640	0.080
B	µg/mL	4.444	4.568	4.643	4.503	4.539	0.085
α	h⁻¹	1.983	1.775	2.288	2.166	2.053	0.224
β	h⁻¹	0.111	0.115	0.113	0.112	0.113	0.002
t1/2α	h	0.349	0.390	0.303	0.319	0.341	0.038
t1/2β	h	6.220	6.014	6.118	6.204	6.139	0.094
K10	h⁻¹	0.216	0.216	0.215	0.216	0.216	0.001
K12	h⁻¹	0.857	0.727	0.981	0.945	0.877	0.112
K21	h⁻¹	1.021	0.947	1.206	1.115	1.072	0.112
t1/2K10	h	3.202	3.208	3.225	3.194	3.207	0.013
AUC0–∞	µg/ml	42.254	42.203	42.990	42.492	42.492	0.359
aAUMC0–∞	µg²/ml	359.100	345.400	362.600	361.800	357.200	8.052
aMRT0–∞	h	8.498	8.183	8.434	8.516	8.408	0.154
CL	mL/h/kg	47.330	47.380	46.520	47.060	47.070	0.396
CLss	mL/h/kg	187.400	159.600	212.300	205.100	191.100	23.470
V1	mL/kg	218.700	219.300	216.500	217.000	217.900	1.372
V2	mL/kg	183.580	168.500	175.940	183.910	178.000	7.316
Vss	mL/kg	402.300	387.800	392.400	400.900	395.800	6.892

A, intercept of the distribution phase; B, intercept of the elimination phase; α, distribution rate constant; β, elimination rate constant; t1/2α, distribution phase half-life; t1/2β, elimination phase half-life; CL, total body clearance; CLss, distribution clearance; AUC0–∞, area under the plasma concentration-time curve extrapolated to infinity; K10, elimination rate constant from central compartment; K12, rate of transfer of drug from central to peripheral compartment; K21, rate of transfer of drug from peripheral to central compartment; V1, volume of central compartment; V2, volume of peripheral compartment; Vss, volume of distribution at steady state. *Values obtained using non-compartment model; *AUMC, area under first moment curve; *MRT, mean residence time.
reported previously for healthy goats following IV administration of cefquinome was approximately similar to the values (5.76–6.21 h) for elimination half-life (6.13 h) obtained in the present study. The point estimates (Uney > 6 times compared to value reported for sheep (0.78 h) (Tohamy et al. 2013). This indicates that interspecies difference exists within ruminant species. The interval has been proposed as a minimum requirement to achieve clinical success, however, T>MIC =100% has been considered as an important predictor of efficacy for cefquinome (Lees et al. 2006, Roberts et al. 2006, Shan et al. 2013). Therefore, cefquinome may be most effective for time when serum concentrations are maintained above the MIC of the target pathogen, therefore, T>MIC has been considered as an important predictor of efficacy for cefquinome (Lees et al. 2006, Roberts et al. 2007). The T>MIC >=50% of dosage interval has been proposed as a minimum requirement to achieve clinical success, however, T>MIC =100% has been correlated with better therapeutic efficacy of cephalosporins (Roberts et al. 2007). In human studies, AUC24h/MIC and T > MIC were PK-PD indices that accurately predicted the points but statistically significant (P<0.05) differences were obtained at 8 h, 12 h and 24 h after IV administration of cefquinome compared to the values obtained in healthy goats. The plasma concentrations (0.36–0.41 µg/ml) in febrile goats at 24 h were ~ two folds higher than concentration (0.20 µg/ml) of healthy goats (Sagar et al. 2015). In febrile goats, increased influx of drug due to endothelial damage that promotes diffusion of drug across capillary walls might have resulted into elevated plasma drug concentrations (Washburn et al. 2005). The lower serum concentrations in febrile buffalo calves than healthy calves have been reported for enrofloxacin after LPS administration (Balaje et al. 2013). Elimination half-life (6.139 h) of cefquinome was two folds longer than buffalo calves, yellow cattle (2.40–3.91 h) (Tohamy et al. 2011, Dinakaran et al. 2013, Shan et al. 2014) but difference was > 6 times compared to value reported for sheep (0.78 h) (Uney et al. 2011). This indicates that interspecies difference in PK of cefquinome exists within ruminant species. The elimination half-life (6.13 h) obtained in the present study was approximately similar to the values (5.76–6.21 h) reported previously for healthy goats following IV administration (Table 4, Dumka et al. 2013, Sagar et al. 2015). A significantly higher clearance of cefquinome was observed in treated calves compared to untreated buffalo calves (Dinakaran and Dunka 2015). The mean volume of distribution (Vdss=0.395 L/kg) in febrile goats was in accordance to the value of 0.320 L/kg reported in previous study conducted in healthy goats (Sagar et al. 2015). Limited distribution of cefquinome following IV administration had been obtained in other ruminant species including buffalo, cattle, sheep (Uney et al. 2011, Dinakaran et al. 2013, Shan et al. 2014, Dinakaran and Dunka 2015). Cefquinome is hydrophilic in nature and its pKa is 2.51–2.91. Limited ability of cefquinome to cross lipophilic membranes can be the reason for restricted distribution of the drug to tissues and extravascular fluids.

Application of PK-PD concepts for optimization of dosage regimens of antimicrobials can minimize the risk of emerging problem of bacterial resistance in human and veterinary medicine (Lees et al. 2006, Levison and Levison 2009). Cefquinome is classified as an antimicrobial producing time-dependent antibacterial activity against P. multocida (Thomas et al. 2006, Shan et al. 2014). Therefore, cefquinome may be most effective for time when serum concentrations are maintained above the MIC of the target pathogen, therefore, T>MIC has been considered as an important predictor of efficacy for cefquinome (Lees et al. 2006, Roberts et al. 2007). The T>MIC >=50% of dosage interval has been proposed as a minimum requirement to achieve clinical success, however, T>MIC =100% has been correlated with better therapeutic efficacy of cephalosporins (Roberts et al. 2007). In human studies, AUC24h/MIC and T > MIC were PK-PD indices that accurately predicted the
clinical outcome of patients treated with ceftazidime or cefepime for treatment of serious infections (Levison and Levison 2009, Roberts et al. 2007). In agreement to these studies, Sidhu and co-workers suggested the use of AUC24h/MIC and T>MIC as predictors of therapeutic outcome of ceftriaxone in goats (Sidhu et al. 2018). Using MIC90=0.125 µg/mL for P. multocida determined previously for clinical isolates (Thomas et al. 2006), T>MIC (24 h) was 100% for a 24 h dosage interval and AUC24h/MIC (340 h) exceeded the predictive effective values (Table 3). This suggests that ceftiofur at the dose rate of 2 mg/kg at the dosage interval of 24 h can be used successfully in febrile goats to treat respiratory infections associated with P. Multocida or other pathogens having MIC≤0.125 µg/mL. Similar dosage regimen of 2 mg/kg/24 h against susceptible bacteria of MIC (range 0.035–0.39 µg/mL) had been calculated for ceftiofur used IV in healthy goats (Sagar et al. 2015). However, 2 mg/kg/24 h dose of ceftiofur is not adequate to treat Staphylococci or other pathogens with MIC90=0.50 µg/mL because both indices; AUC24h/MIC (85) and T>MIC (12 h) fell short of predictive required values (Thomas et al. 2006). The findings should be used carefully for further clinical testing because MIC90 values of P. Multocida and Staphylococci used for determination of dosage regimen had been obtained from bovine/equine isolates. For future studies, it would be our preference to determine MIC90 values of ceftiofur against P. multocida strains and other pathogens of caprine origin.

From the study, it can be concluded that the PK of ceftiofur following IV administration was not much different in febrile goats as compared to healthy goats. The PK of ceftiofur was characterized by moderate elimination half-life and slow and limited distribution to the tissues. A favourable PK and PK-PD indices suggested that the dose of 2 mg/kg/24 h of ceftiofur would be effective clinically to treat goats affected with P. multocida or other infections caused by sensitive bacteria. The study indicated that the dose of 2 mg/kg/24 h will not only assure therapeutic success against P. multocida infections but will minimize the risk of resistance emergence for ceftiofur in goats.

ACKNOWLEDGEMENTS

The authors are grateful to the Certara USA, Inc. (Princeton, NJ) for providing the software license for Phoenix® Winnonlin as part of their Centers of Excellence Program.

REFERENCES

Allan M J and Thomas E. 2003. Pharmacokinetics of ceftiofur after parenteral administration of an aqueous solution in the horse. Journal of Veterinary Pharmacology and Therapeutics 26(1): 82–307.

Al-Taheera Y. 2010. Pharmacokinetics of ceftiofur in camels. Journal of Animal and Veterinary Advances 9(4): 848–52.

Ambrose P G, Bhavnani S M, Rubino C M, Louie A, Gumbo T, Forrest A and Drusano G L. 2007. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clinical Infectious Diseases 44(1): 79–86.

Balaje R M, Sidhu P K, Kaur G and Rampal S. 2013. Mutant prevention concentration and PK–PD relationships of enrofloxacin for Pasteurella multocida in buffalo calves. Research in Veterinary Science 95(3): 1114–24.

Chaudhary R K, Srivastava A K and Rampal S. 1999. Modification of the pharmacokinetics and dosage of cefuroxime by endotoxin-induced fever in buffalo calves. Veterinary Research Communications 23(6): 361–68.

Dardi M S, Sharma S K and Srivastava A K. 2005. Pharmacokinetics and dosage regimen of ceftriaxone in E. coli lipopolysaccharide induced fever in buffalo calves. Journal of Veterinary Science 6: 147–50.

Dinakaran V, Dumka V K, Ranjan B, Balaje R and Sidhu P K. 2013. Pharmacokinetics following intravenous administration and pharmacodynamics of ceftiofur in buffalo calves. Tropical Animal Health and Production 45: 1509–12.

Dinakaran V and Dumka V K. 2015. Pharmacokinetic profile of ceftiofur after oral subchronic flubendiamide exposure and in vitro plasma protein binding in buffalo calves. Environmental Toxicology and Pharmacology 39(1): 321–26.

Dumka V K, Dinakaran V, Bibhuti R and Satyavan R. 2013. Comparative pharmacokinetics of ceftiofur following intravenous and intramuscular administration in goats. Small Ruminant Research 113: 273–77.

Ehinger A M, Schmidt H and Kietzmann M. 2006. Tissue distribution of ceftiofur after intramammary and systemic administration in the isolated perfused bovine udder. Veterinary Journal 172(1): 147–53.

Guerin-Faublee V, Carret G and Houffschmitt P. 2003. In vitro activity of 10 antimicrobial agents against bacteria isolated from cows with clinical mastitis. Veterinary Record 152(15): 466–71.

Jamali H, Rezagholipour M, Fallah S, Dadrasnia A, Chelliah S, Velappan R D, Wei K S C and Ismail S. 2014. Prevalence, characterization and antibiotic resistance of Pasteurella multocida isolated from bovine respiratory infection. Veterinary Journal 202(2): 381–83.

Lam F C, Hung C T and Perrier D G. 1985. Estimation of variance for harmonic mean half lives. Journal of Pharmaceutical Sciences 74(2): 229–31.

Lees P, Concordet D, Toutain P L and Aliabadi F S. 2006. Drug selection and optimization of dosage schedules to minimize antimicrobial resistance. Antimicrobial Resistance in Bacteria of Animal Origin. American Society of Microbiology 49–72.

Levison M E and Levison J H. 2009. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infectious Disease Clinics 23(4): 791–815.

Momin M A, Islam M A, Khatun M M, Rahman M M and Islam M A. 2011. Characterization of bacteria associated with pneumonia in black bengal goats. Bangladesh Journal of Veterinary Medicine 9(1): 67–71.

Mouton J W, Ambrose P G, Canton R, Drusano G L, Harbarth S, MacGowan A, Theuretzbacher U and Turndige J. 2011. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resistance Updates 14(2): 107–17.

Perrier D and Gibaldi M. 1974. Clearance and biologic half-life as indices of intrinsic hepatic metabolism. Journal of Pharmacology and Experimental Therapeutics 191(1): 17–24.
Pipoz F, Perreten V and Meylan M. 2016. Bacterial resistance in bacteria isolated from the nasal cavity of Swiss dairy calves. *Schweizer Archiv fur Tierheilkunde* 158(6): 397–403.

Ranjan R, Roy B K, Ranjan A and Singh S K. 2011. Effect of *E. coli* endotoxin induced fever on the pharmacokinetic profile and dosage regimen of ceftriaxone in sheep (*Ovis aries*). *Veterinarski Arhiv* 81(4): 423–32.

Roberts J A, Webb S A and Lipman J. 2007. Cefepime versus ceftazidime: considerations for empirical use in critically ill patients. *International Journal of Antimicrobial Agents* 29(2): 117–28.

Sagar R, Sultana M, Dumka V K, Mir A H, Daundkar P and Chirag S. 2015. Pharmacokinetics and dosage regimen of cefquinome in febrile female goats following intravenous administration. *Journal of Veterinary Pharmacology and Toxicology* 14(2): 74–78.

Salaheddin O H and Hanan M E. 2012. Pneumonia in goats in Sudan. *International Journal of Animal and Veterinary Advances* 4: 144–45.

Sarangi L N, Thomas P, Gupta S K, Priyadarshini A, Kumar S, Nagaleekar V K, Kumar A and Singh V P. 2015. Virulence gene profiling and antibiotic resistance pattern of Indian isolates of *Pasteurella multocida* of small ruminant origin. *Comparative Immunology, Microbiology and Infectious Diseases* 38: 33–39.

Schwarz S, Kehrenberg C, Salmon S A and Watts J L. 2004. *In vitro* activities of spectinomycin and comparator agents against *Pasteurella multocida* and *Mannheimia haemolytica* from respiratory tract infections of cattle. *Journal of Antimicrobial Chemotherapy* 53(2): 379–82.

Shlaby M A, Goudah A, Gihan M K and Hassan A S. 2014. Disposition kinetics of cefquinome in healthy rabbits following intramuscular and oral administration. *World Journal of Pharmacy and Pharmaceutical Sciences* 4(1): 263–74.

Shan Q, Yang F, Wang J, Ding H and Zeng Z. 2014. Pharmacokinetic/pharmacodynamic relationship of cefquinome against *Pasteurella multocida* in a tissue cage model in yellow cattle. *Journal of Veterinary Pharmacology and Therapeutic* 37(2): 178–85.

Shantier S W. 2018. A review on the characteristic, properties and analytical methods of cefquinome sulphate: β-lactam veterinary drug, *Infect Disorders Drug Targets*. doi: 10.2174/1871526518666181001122010.

Sidhu P K, Waraich G S, Kaur G, Daundkar P S, Sharma S K and Gehring R. 2018. Difference in the PK of ceftiofur in the presence and absence of nimesulide and implications for dose determination through PK/PD integration. *Small Ruminant Research* 159: 18–25.

Sirous S, Mohammed R M D, Gholam A K, Taghi T B and Abbas T. 2011. *Pasteurella multocida* pneumatic infection in goat: Hematological, biochemical, clinical and pathological studies. *Small Ruminant Research* 100: 189–94.

Thomas E, Thomas V and Wilhelm C. 2006. Antibacterial activity of cefquinome against equine bacterial pathogens. *Veterinary Microbiology* 115: 140–47.

Tohamy M A. 2011. Age-related intramuscular pharmacokinetics of cefquinome in sheep. *Small Ruminant Research* 99: 72–76.

Uney K, Altn F and Emel M. 2011. Development and validation of a high-performance liquid chromatography method for determination of cefquinome concentrations in sheep plasma and its application to pharmacokinetic studies. *Antimicrob Agents Chemotherapy* 55: 854–59.