LncRNAs GIHCG and SPINT1-AS1 Are Crucial Factors for Pan-Cancer Cells Sensitivity to Lapatinib

Zhen Xiang¹†, Shuzheng Song¹†, Zhenggang Zhu¹, Wenhong Sun²*, Jaron E. Gifts³, Sam Sun³, Qiu Shi Shauna Li³, Yingyan Yu¹* and Keqin Kathy Li³*

¹ Department of Surgery of Ruijin Hospital, and Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ² Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Research Center for Optoelectronic Materials and Devices, School of Physical Science Technology, Guangxi University, Nanning, China, ³ Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States

Lapatinib is a small molecule inhibitor of EGFR (HER1) and ERBB2 (HER2) receptors, which is used for treatment of advanced or metastatic breast cancer. To find the drug resistance mechanisms of treatment for EGFR/ERBB2 positive tumors, we analyzed the possible effects of lncRNAs. In this study, using CCLE (Cancer Cell Line Encyclopedia) database, we explored the relationship between the lncRNAs and Lapatinib sensitivity/resistance, and then validated those findings through in vitro experiments. We found that the expression of EGFR/ERBB2 and activation of ERBB pathway was significantly related to Lapatinib sensitivity. GO (Gene Oncology) analysis of top 10 pathways showed that the sensitivity of Lapatinib was positively correlated with cell keratin, epithelial differentiation, and cell-cell junction, while negatively correlated with signatures of extracellular matrix. Forty-four differentially expressed lncRNAs were found between the Lapatinib sensitive and resistant groups (fold-change > 1.5, \(P < 0.01 \)). Gene set variation analysis (GSVA) was performed based on 44 lncRNAs and genes in the top 10 pathways. Five lncRNAs were identified as hub molecules. Co-expression network was constructed by more than five lncRNAs and 199 genes in the top 10 pathways, and three lncRNAs (GIHCG, SPINT1-AS1, and MAGI2-AS3) and 47 genes were identified as close-related molecules. The three lncRNAs in epithelium-derived cancers were differentially expressed between sensitive and resistant groups, but no significance was found in non-epithelium-derived cancer cells. Correlation analysis showed that SPINT1-AS1 (\(R = −0.715, P < 0.001 \)) and GIHCG (\(R = 0.557, P = 0.013 \)) were correlated with the IC50 of epithelium-derived cancer cells. In further experiments, GIHCG knockdown enhanced cancer cell susceptibility to Lapatinib, while high level of SPINT1-AS1 was a sensitive biomarker of NCI-N87 and MCF7 cancer cells to Lapatinib. In conclusions, IncRNAs GIHCG and SPINT1-AS1 were involved in regulating Lapatinib sensitivity. Up-regulation of GIHCG was a drug-resistant biomarker, while up-regulation of SPINT1-AS1 was a sensitive indicator.

Keywords: pan-cancer, computational analysis, LncRNAs, lapatinib, targeted therapy
INTRODUCTION

Lapatinib is a small molecular drug that has been shown to be a dual tyrosine kinase inhibitor, which is involved in the EGFR/HER1 and ERBB2/HER2 pathways and suppresses the autophosphorylation of these receptors. Clinically, it has been used in combination therapy with capecitabine in patients with advanced or metastatic breast cancer that overexpressed ERBB2/HER2 in the cases of previous treatment with anthracyclines, taxanes, or trastuzumab (Herceptin) (Geyer et al., 2006). In addition, a satisfactory response rate has also been found with Lapatinib treatment for ERBB2-positive progressive gastric cancer (Cetin et al., 2014; Satoh et al., 2014). However, in patients with head and neck squamous cell carcinoma, Lapatinib combined with radiotherapy did not show therapeutic effects (Harrington et al., 2015). Similarly, in ERBB2/EGFR positive metastatic bladder cancer patients who underwent first-line chemotherapy didn't get benefit from Lapatinib maintenance treatment (Powles et al., 2017). Therefore, uncovering the drug-resistant mechanism of Lapatinib targeted therapy and find new sensitive biomarkers.

Long non-coding RNAs (lncRNAs) are a large class of transcribed RNA molecules that are longer than 200 nucleotides but do not encode proteins. In addition to the regulation of diverse cellular processes, such as epigenetics, cell cycle, and cell differentiation, they have been found to play important roles in carcinogenesis, tumor development, and treatment resistance (Heery et al., 2017; Peng et al., 2017; Hahne and Valeri, 2018; Wang et al., 2018; Wu et al., 2018). For instance, Ma et al. found that lncRNAs CASC9 and EWSAT1 were two crucial molecules associated to EGFR-TKIs resistant in non-small cell lung cancer (Ma et al., 2017).

The Cancer Cell Line Encyclopedia (CCLE) database (https://portals.broadinstitute.org/ccle) is an open access resource with the most completely integrated datasets of cancer cells genomes and drug effectiveness. It includes the experimental datasets of drug treatment of 24 kinds of chemical compounds in almost 1,000 cancer cell lines of various human cancers (Barretina et al., 2012). Kim et al. used CCLE database in their recent publication. They found that high levels of FGFR and integrin β3 are resistant to crizotinib treatment, suggesting that FGFR, and integrin β3 could be predictive markers for Met-targeted therapy (Kim et al., 2015). To date, there is a limited number of studies (Jiang et al., 2014; Niknafs et al., 2016; Bester et al., 2018; Li D. et al., 2018; Sun et al., 2018) to explore lncRNAs by CCLE database. In this study, we analyzed the lncRNAs of whole-genome datasets of CCLE after treatment with Lapatinib on pan-cancer cell lines, and proposed crucial lncRNAs GIHCG and SPINT1-AS1 involved in regulating Lapatinib sensitivity.

MATERIALS AND METHODS

Data Extraction From CCLE

There are 5,344 IncRNA probes and 49,331 non-IncRNA probes in the whole-genome gene expression profile chip used in CCLE (Barretina et al., 2012). There are 1,037 cell lines of various cancer types in the database. Among those, 504 cell lines had been treated with Lapatinib and got IC50 (half maximal inhibitory concentration) data and 501 cell lines were examined by microarrays. Since the study focused on solid tumors, we deleted cell lines of hematopoietic and lymphoid cell lines. Finally, 420 solid tumor cell lines were enrolled in the study (Table 1).

Cancer Cell Lines and Cell Culture

Nineteen cancer cell lines were used for validating experiments in vitro. Four of those were gastric cancer cell lines (NCI-N87, SGC-7901, AGS, and MKN-45), three were melanoma cell lines (MuM-2C, MV3, and A-375), three were hepatocarcinoma cell lines (LM3, 97L, and Huh7), three were thyroid cancer cell lines (KHM-5M, CAL-62, and C643), two were breast cancer cell lines (MCF7 and SK-BR-3), two were pancreatic cancer cell lines (TCC-PAN2 and BxPC3), and two were colorectal cancer lines (DLD-1 and NCI-H-747). Cell lines NCI-N87, MuM-2C, LM3, MV3, Huh7, SGC-7901, CAL-62, AGS, MCF7, C643, 97L, SK-BR-3, KHM-5M, A-375, TCC-PAN2, MKN-45, and BxPC3 were purchased from The Cell Bank of Type Culture Collection of Chinese Academy of Sciences (Shanghai, China). Cell lines DLD-1 and NCIH-747 were purchased from The Global Bioresource Center ATCC (Maryland, USA). The cell lines were cultured in RPMI-1640 supplemented with 10% fetal bovine serum in a humidified incubator at 37°C with 95% air and 5% CO2.

Transient Transfection of siRNAs

SPINT1-AS1 and GIHCG siRNAs were transfected into cancer cells by Lipofectamine 2000 (Invitrogen, Carlsbad, California).

TABLE 1	The distribution of 420 cancer cell lines of solid tumors.	
Cancer types	Count	
Autonomic ganglia	10	
Biliary tract	1	
Bone	11	
Breast	29	
Central nervous system	29	
Endometrium	20	
Kidney	9	
Large intestine	23	
Liver	19	
Lung	91	
Esophagus	15	
Ovary	28	
Pancreas	28	
Pleura	7	
Prostate	3	
Salivary gland	1	
Skin	40	
Soft tissue	12	
Stomach	18	
Thyroid	5	
Upper aerodigestive tract	7	
Urinary tract	14	
CCLE cell line names	Cell type	IC50 (µM)*
----------------------	-------------------	------------
SNU1	Stomach	8
KMRC2	Kidney	8
HEY8	Ovary	8
NCIH1915	Lung	8
SH10TC	Stomach	8
JMSU1	Urinary tract	8
UACC62	Skin	8
SKLU1	Lung	8
ES2	Ovary	8
SNU398	Liver	8
MSTO211H	Pleura	8
HMC18	Breast	8
HS229T	Lung	8
HS895T	Skin	8
NCIH1092	Lung	8
8505C	Thyroid	8
RKO	Large intestine	8
SW1573	Lung	8
NCIH2172	Lung	8
IGR37	Skin	8
T24	Urinary tract	8
NCIH1581	Lung	8
HLF	Liver	8
MG63	Bone	8
HS840T	Upper aerodigestive tract	8
DMS114	Lung	8
HS936T	Skin	8
FU37	Stomach	8
NCIH2052	Pleura	8
3050C	Thyroid	8
RERFLCAI	Lung	8
SW579	Thyroid	8
TOV112D	Ovary	8
HS729	Soft tissue	8
KMRC1	Kidney	8
SJSA1	Bone	8
HUH1	Liver	8
1321N1	Central nervous system	8
TC71	Bone	8
KELLY	Autonomic ganglia	8
NCIH520	Lung	8
IGR39	Skin	8
EN	Endometrium	8
U118MG	Central nervous system	8
639V	Urinary tract	8
HGC27	Stomach	8
UMUC3	Urinary tract	8
42MGBC	Central nervous system	8
SKNBE2	Autonomic ganglia	8

(Continued)

CCLE cell line names	Cell type	IC50 (µM)*
CALU1	Lung	8
NCIH2111	Lung	8
HEC59	Endometrium	8
BFTC909	Kidney	8
RPMI17951	Skin	8
IPC298	Skin	8
NCIH1651	Lung	8
MDA-MB-436	Breast	8
SKN72	Autonomic ganglia	8
DKMG	Central nervous system	8
IALM	Lung	8
NCIH1702	Lung	8
JHH6	Liver	8
PSN1	Pancreas	8
HOS	Bone	8
CAL78	Bone	8
U87MG	Central nervous system	8
G11	Central nervous system	8
NCIH1155	Lung	8
SBC5	Lung	8
IMR32	Autonomic ganglia	8
NCIH4140	Lung	8
WM2664	Skin	8
MEWO	Skin	8
BT549	Breast	8
SKMEL30	Skin	8
NCIH1703	Lung	8
HEP3B217	Liver	8
TT2609C02	Thyroid	8
HEPG2	Liver	8
SKNAS	Autonomic ganglia	8
NCIH1944	Lung	8
SW1271	Lung	8
COLO679	Skin	8
DAOY	Central nervous system	8
SHP77	Lung	8
NCIH1299	Lung	8
VMRCRC2	Kidney	8
LOXIMVI	Skin	8
NCIH1339	Lung	8
HS746T	Stomach	8
SKHEP1	Liver	8
NCIH1694	Lung	8
COV504	Ovary	8
NCIH1793	Lung	8
SNU423	Liver	8
JHUEM2	Endometrium	8
CALU6	Lung	8
JB2	Urinary tract	8
CCLE cell line names	Cell type	IC50 (µM)*
----------------------	--------------------	------------
UACC257	Skin	8
G402	Soft tissue	8
MESSA	Soft tissue	8
HT1080	Soft tissue	8
MPP89	Pleura	8
OVTOKO	Ovary	8
SUIT2	Pancreas	8
SIMA	Autonomic ganglia	8
H4	Central nervous system	8
WM1799	Skin	8
A673	Bone	8
NCIH1975	Lung	8
MDAMB157	Breast	8
SKMEL5	Skin	8
SKE31	Bone	8
NCIH2452	Pleura	8
NCIH647	Lung	8
SAOS2	Bone	8
NCIH2023	Lung	8
NCIH226	Lung	8
SF295	Central nervous system	8
SW620	Large intestine	8
NCIH661	Lung	8
HS939T	Skin	8
HS758T	Breast	8
HCC44	Lung	8
EFO21	Ovary	8
KPNS19S	Autonomic ganglia	8
SF126	Central nervous system	8
HS739T	Breast	8
NCIH19693	Lung	8
TOV21G	Ovary	8
KALS1	Central nervous system	8
A375	Skin	8
CHP212	Autonomic ganglia	8
SW1990	Pancreas	8
LOUNH91	Lung	8
OV90	Ovary	8
SKMEL2	Skin	8
NCIH23	Lung	8
YKG1	Central nervous system	8
WM88	Skin	8
ACHN	Kidney	8
SKNRF	Autonomic ganglia	8
DU145	Prostate	8
GAMG	Central nervous system	8
MDAMB435S	Skin	8
NCIH2087	Lung	8
NCIH1563	Lung	8
HEC06	Endometrium	8

(Continued)
CCLE cell line names	Cell type	IC50 (µM)*
SW480	Large intestine	8
NCIH522	Lung	8
NCIH650	Lung	8
OC314	Ovary	8
COV318	Ovary	8
HS852T	Skin	8
NCIH727	Lung	8
EFO27	Ovary	8
SJRH30	Soft tissue	8
KNS81	Central nervous system	8
SNU449	Liver	8
A2058	Skin	8
HS294T	Skin	8
SNU182	Liver	8
COLO205	Large intestine	8
HUCCT1	Biliary tract	8
WIKAWAHERAKLIO02ER	Endometrium	8
LS411N	Large intestine	8
PATU8902	Pancreas	8
PC3	Prostate	8
SKMEL24	Skin	8
C3A	Liver	8
AN3CA	Endometrium	8
SN3M	Endometrium	8
TE1	Esophagus	8
NCIH1573	Lung	8
HCT116	Large intestine	8
NCIH1568	Lung	8
HPAc	Pancreas	8
HEC151	Endometrium	8
OVMANA	Ovary	8
HCC56	Large intestine	8
HEC1A	Endometrium	8
CAK2	Kidney	8
CAPAN2	Pancreas	8
NCIH1373	Lung	8
NCIH1048	Lung	8
CAS1	Central nervous system	8
HCC1569	Breast	8
SNU475	Liver	8
LS123	Large intestine	8
NCIH1341	Lung	8
PANC0403	Pancreas	8
MOG0066	Central nervous system	8
IM95	Stomach	8
ONCODG1	Ovary	8
NCIH747	Large intestine	8
WM115	Skin	8
D853105MG3	Central nervous system	8
EFE184	Endometrium	8

(Continued)
CCLE cell line names	Cell type	IC50 (µM)*
KYSE150	Esophagus	8
UACC812	Breast	8
ONS76	Central nervous system	8
KNS62	Lung	8
PANC1005	Pancreas	7.987659
ISTMES2	Pleura	7.889111
NOCIH1355	Lung	7.860067
KYSE30	Esophagus	7.858886
22RV1	Prostate	7.847305
MIAAPCA2	Pancreas	7.469959
JHOS4	Ovary	7.408363
A2780	Soft tissue	7.399833
HCC70	Breast	7.36332
NOCIH2286	Lung	7.359588
MALME3M	Skin	7.325411
GCY	Stomach	7.255416
PK1	Pancreas	7.236271
786O	Kidney	7.170835
T3M10	Lung	7.170651
A2780	Ovary	7.146877
SKLMS1	Soft tissue	7.136584
HT1376	Urinary tract	7.080406
HUPT4	Pancreas	7.0557
PANCO3273	Pancreas	6.904092
SW1088	Central nervous system	6.737086
SNU16	Stomach	6.697771
PLCPRF5	Liver	6.669433
HARA	Lung	6.656741
MELHO	Skin	6.552444
RT112	Urinary tract	6.525924
K029AX	Skin	6.444433
EBC1	Lung	6.372372
MCAS	Ovary	6.3241
COLO320	Large intestine	6.295312
PK9	Pancreas	6.190494
HT29	Large intestine	5.884947
TE9	Esophagus	5.855279
WM963B	Skin	5.68912
KClIM0H1	Pancreas	5.619114
TYKNJ	Ovary	5.343411
8MGGA	Central nervous system	5.226626
PANCO2003	Pancreas	5.197284
NOCIH1650	Lung	5.152449
NIHOCAR3	Ovary	5.117735
OVCAR8	Ovary	5.095931
JHH7	Liver	4.92477
HMCB	Skin	4.767848
MKN74	Stomach	4.689733
HCT15	Large intestine	4.666833
WM793	Skin	4.641666

(Continued)
TABLE 2 Continued

CCLE cell line names	Cell type	IC50 (µM)*
FAU	Upper aerodigestive tract	0.823073
SKCO1	Large intestine	0.71562
KYSE140	Esophagus	0.68893
CAL27	Upper aerodigestive tract	0.688771
CHL1	Skin	0.675993
TE11	Esophagus	0.63775
JHH5	Liver	0.569108
CALU3	Lung	0.494588
MDAMB157	Breast	0.488741
NCIH1668	Lung	0.386496
NCIH1648	Lung	0.373409
HCC287	Lung	0.372134
NCIH2255	Lung	0.333763
NCIH2170	Lung	0.300981
TE617T	Soft tissue	0.242928
CCK81	Large intestine	0.240195
SKBR3	Breast	0.196392
AU665	Breast	0.18321
NUGC4	Stomach	0.171543
ZR7530	Breast	0.166593
BT474	Breast	0.116183
NCIN87	Stomach	0.066107

*Extracted from CCLE database (https://portals.broadinstitute.org/ccle).

IC50 (µM) is half maximal inhibitory concentration (IC50), which is defined as a drug concentration producing absolute 50% inhibition of growth in cell proliferation assay. By definition, this metric relies on the assumption, that at a high concentration of the drug, 100% effect is achieved as all cells die in a proliferation assay.

RESULTS

Lapatinib IC50 From Pan-Cancer Cell Lines Analysis

The CCLE data of Lapatinib IC50 of the selected 420 cell lines was shown in Table 2. The upper limit of IC50 was originally determined as 8 µM for those cancer cell lines in the database. There were 302 cancer cell lines with IC50 higher than 8 µM, which were insensitive to Lapatinib drug. There were 118 cancer cell lines with IC50 lower than 8 µM, which were relatively sensitive to Lapatinib drug. Taking 8 µM of IC50 as a threshold, we categorized 420 cancer cell lines into two groups, high_IC50 (n = 302) and low_IC50 (n = 118). Since EGFR and ERBB2 are the targets of the Lapatinib drug, the expression levels of EGFR, and ERBB2 in high_IC50 and low_IC50 groups were analyzed. The expression levels of EGFR and ERBB2 were significantly higher in low-IC50 group than in high_IC50 (Figure 1A, P = 0.006 and P < 0.001, respectively). The distribution tendency of 22 types of solid cancer cell lines in high-IC50 (up to 8 µM) and low_IC50 (lower than 8 µM) groups is presented in Figure 1B. GSEA analysis showed that ERBB pathway-related genes were enriched in low_IC50 group (Figure 1C, ERBB signaling pathway NES = −1.81, P < 0.002, p. adjust = 0.064; regulation of ERBB signaling pathway NES = −1.69, P < 0.002, p. adjust = 0.064).

Pathway Analysis Involved in Lapatinib Sensitivity

To illustrate the mechanism of Lapatinib resistance, we selected genes with fold-change >1.5 times to perform GO analysis (Table S2). In the top 10 involved pathways, Lapatinib sensitivity was positively associated with cell keratin, epithelial differentiation,
FIGURE 1 | The correlation of mRNA expression levels of EGFR and ERBB2 and Lapatinib IC50. (A) The bar charts of mRNA expression levels of EGFR (left) and ERBB2 (right) of cancer cell lines between the high IC50 and low IC50 groups of Lapatinib drug. The expression levels of EGFR and ERBB2 are significantly higher in the low IC50 group than that in the high IC50 group (p < 0.01). (B) The distribution tendency of 22 types of solid cancer cell lines in high IC50 (up to 8 µM) and low IC50 (lower than 8 µM). The red lines represent mean value of Lapatinib IC50. (C) The enrichment analysis of ERBB signaling pathway reveals that ERBB signaling pathway is significantly enriched in Lapatinib low IC50 group. "Y" axis indicates the enrichment score (ES) value, and "X" axis indicates genes according to differential expression value between high IC50 and low IC50 groups. The blue and red dot curves represent ES value. The bottom barcodes represent the leading gene set that strongly contributed to ES value. The positive ES value represents positive correlation to Lapatinib IC50, and minus ES value represents negative correlation to Lapatinib IC50.
and cell-cell junction, while negatively related to signatures of extracellular matrix (Figure 2, $P < 0.001$, P adjust < 0.001).

Analysis of LncRNAs Involved in Lapatinib Sensitivity

We further screened the differentially expressed lncRNAs, and 44 lncRNAs were identified between the high IC50 group and low IC50 group (Figure 3A and Table 3, fold-change > 1.5, $P < 0.01$). Then, we selected genes in the top 10 pathways and 44 differential lncRNAs for the construction of the co-expression network. The enrichment scores of the top 10 pathway genes in every cancer cell lines were calculated and determined by GSVA analysis. Five lncRNAs were highlighted as the hub factors in the top 10 regulating pathways (Figure 3B). The association of the 5 lncRNAs with 199 genes in the top 10 pathways was further analyzed, and a molecular network of co-expression was established, which included top 50 key molecules closely associated to Lapatinib sensitivity. Three crucial lncRNAs, GHIHG, SPINT1-AS1, and MAGI2-AS3, still remained in the co-expression network (Figure 3C).

Differential Expressing Analysis of Three LncRNAs Between Epithelial and Non-epithelial Cancer Groups

We divided the 420 cancer cell lines into epithelium derived group ($n = 278$) and non-epithelium derived group ($n = 142$; including nervous system, bone, cartilage, and pleura). The differential expression levels of the three lncRNAs between the
two groups are presented in Figure 4A. In the epithelium-derived group, the differential expression levels of the three IncRNAs between Lapatinib high IC50 and low IC50 groups were significantly different (Figure 4B, P < 0.05). In the non-epithelium groups, there was no significant difference of the three IncRNAs between Lapatinib high IC50 and low IC50 groups. Higher expressing level of SPINT1-AS1 was found in epithelium-derived cancer cells, and higher expressing levels of MAGI2-AS3 and GIHCG were observed in the non-epithelium group.

Differentially expressed genes (1.5-fold change) between the Lapatinib high IC50 and low IC50 groups in epithelial group (Table S3) were utilized to perform GO analysis. Enhanced signatures of cell keratin, epithelial differentiation, and cell-cell junction were observed in Lapatinib low IC50 group, and decreased signature of extracellular matrix were observed in Lapatinib high IC50 group (Figure 5, P < 0.001, P adjust < 0.001).

Correlation of LncRNAs SPINT1-AS1, GIHCG, or MAGI2-AS3 and Lapatinib Sensitivity in Epithelial Group

Correlation analysis revealed that Lapatinib IC50 of the non-epithelial group was higher than that of the epithelial group (Figure 6A). Of the three critical IncRNAs, SPINT1-AS1, and GIHCG were the IncRNAs most correlated to Lapatinib sensitivity (Figure 6B). SPINT1-AS1 and GIHCG were selected as key factors of affecting Lapatinib sensitivity of epithelial cancers. The up-regulation of SPINT1-AS1 was found in low IC50 group and increased GIHCG was found in high IC50 group (Figure 6C).

Validating Study of GIHCG and SPINT1-AS1 on Regulating Lapatinib Sensitivity in vitro

In validating experiments, we examined expression levels of GIHCG and SPINT1-AS1 in seven types of cancer cell lines (thyroid cancer, pancreatic cancer, liver cancer, melanoma, gastric cancer, breast cancer, and colorectal cancer) and Lapatinib IC50 of the same cancer cell lines. Correlation analysis showed that higher expression levels of SPINT1-AS1 were significantly associated with lower Lapatinib IC50 (Figure 7A, R = −0.715, P < 0.001), while higher expression levels of GIHCG were significantly related to higher Lapatinib IC50 (Figure 7A, R = 0.557, P = 0.013).

The sensitive cancer cell lines of NCI-N87 (gastric cancer) and MCF7 (breast cancer), as well as the resistant cancer cell lines of NCIH-747 (colon cancer) and BxPC3 (pancreatic cancer)
TABLE 3 | Differentially expressed lncRNAs between Lapatinib high_IC50 and low_IC50 groups of 420 cancer cell lines (fold-change > 1.5, \(P < 0.01 \)).

Probes	Title	Symbol	Ensemble transcript id version	Log FC	\(P \)-value	Adj. \(P \)-value
225381_at	mir-100-let-7a-2 cluster host gene (non-protein coding)	MIR100HG	ENSG00000255248.7	1.399024	4.98E-08	1.48E-05
226546_at	uncharacterized LOC100506844	G1HCG	ENSG00000257698.1	1.19665	1.52E-15	8.13E-12
228564_at	Long intergenic non-protein coding RNA 1116	LINCO1116	ENSG00000163634.9	1.12280	4.24E-06	0.000493
227554_at	MAGI2 antisense RNA 3	MAGI2-AS3	ENSG00000234456.7	1.096172	2.73E-07	5.84E-05
1566482_at	NA	RP11-305O6.3	ENSG00000250280.2	0.961776	3.96E-08	1.24E-05
213156_at	Zinc finger and BTB domain containing 20	ZBTB20	ENSG00000259976.3	0.942404	6.68E-06	0.000649
213158_at	Zinc finger and BTB domain containing 20	ZBTB20	ENSG00000259976.3	0.908785	1.6E-05	0.001179
224741_s_at	ZNF667 antisense RNA 1 (head to head)	ZNF667-AS1	ENSG00000166770.10	0.873077	0.000703	0.019471
229480_at	MAGI2 antisense RNA 3	MAGI2-AS3	ENSG00000234456.7	0.870971	4.07E-07	8.05E-05
229493_at	HOXD cluster antisense RNA 2	HOXD-AS2	ENSG00000237380.6	0.795366	2.89E-07	5.94E-05
227082_at	Zinc finger and BTB domain containing 20	ZBTB20	ENSG00000259976.3	0.780225	5.64E-05	0.003174
226587_at	Prader Willi/Angelman region RNA 8	PWAR6	ENSG00000257151.1	0.777959	0.0002	0.008638
242358_at	RASSF8 antisense RNA 1	RASSF8-AS1	ENSG00000246695.7	0.770905	9.02E-08	2.29E-05
236075_s_at	Uncharacterized LOC101928000	LOC101928000	ENSG00000234327.7	0.76675	6.6E-06	0.000649
221974_at	Imprinted in Prader-Willi syndrome (non-protein coding) /// uncharacterized LOC101930404 /// Prader Willi/Angelman region RNA, SNRPN neighbor /// small nucleolar RNA, C/D box 107 /// small nucleolar RNA, C/D box 115-13 /// small nucleolar RNA, C/D box 115-26 /// small nucleolar RNA, C/D box 116-22 /// small nucleolar RNA, C/D box 116-28 /// small nucleolar RNA, C/D box 116-4 /// small nuclear ribonucleoprotein polypeptide N	IPW /// LOC101930404 /// PWARSN /// SNORD115-13 /// SNORD115-26 /// SNORD115-7 /// SNORD116-22 /// SNORD116-28 /// SNORD116-4 /// SNRPN	ENSG00000224078.13	0.719911	0.000535	0.016616
227099_s_at	Chromosome 11 open reading frame 96	C11orf96	ENSG00000254409.2	0.688826	0.001963	0.037596
217520_x_at	Uncharacterized LOC101929232 /// PDCD6IP pseudogene 2	PDCD6IP2	ENSG00000274253.4	0.671638	1.03E-05	0.000862
226591_at	Prader Willi/Angelman region RNA 6	PWAR6	ENSG00000257151.1	0.665136	0.000597	0.018108
233562_at	Long intergenic non-protein coding RNA 839	LINCO0839	ENSG00000185904.11	0.644287	0.000226	0.009658
228370_at	Imprinted in Prader-Willi syndrome (non-protein coding) /// uncharacterized LOC101930404 /// Prader Willi/Angelman region RNA, SNRPN neighbor /// small nucleolar RNA, C/D box 107 /// small nucleolar RNA, C/D box 115-13 /// small nucleolar RNA, C/D box 115-26 /// small nucleolar RNA, C/D box 115-7 /// small nucleolar RNA, C/D box 116-22 /// small nucleolar RNA, C/D box 116-28 /// small nucleolar RNA, C/D box 116-4	IPW /// LOC101930404 /// PWARSN /// SNORD115-13 /// SNORD115-26 /// SNORD115-7 /// SNORD116-22 /// SNORD116-28 /// SNORD116-4	ENSG00000224078.13	0.63548	0.004004	0.056605
230272_at	Long intergenic non-protein coding RNA 461 /// microRNA 9-2	LINCO0461 /// MIR9-2	ENSG00000245526.10	0.633241	0.000333	0.011874
TABLE 3 | Continued

Probes	Title	Symbol	Ensemble transcript id version	Log FC	P-value	Adj. P-value																				
227121_at	Zinc finger and BTB domain containing 20	ZBTB20	ENSG00000259976.3	0.622039	6.47E-05	0.003438																				
228438_at	Uncharacterized LOC100132891	LOC100132891	ENSG00000235351.9	0.610992	0.00111	0.026335																				
213447_at	Imprinted in Prader-Willi syndrome (non-protein coding)	IPW		LOC101930404		PWARN		SNORD107		SNORD115-13		SNORD115-26		SNORD115-7		SNORD116-22		SNORD116-28		SNORD116-4		SNRPN	ENSG00000224078.13	0.603999	0.000792	0.021388
224646_x_at	H19, imprinted maternally expressed transcript (non-protein coding)		microRNA 675	ENSG00000260265.1	−0.58771	0.000615	0.089285																			
235921_at	Uncharacterized LOC100506119	RP11-44F21.5	ENSG00000130600.18	−0.66521	0.008633	0.089285																				
232202_at	Family with sequence similarity 83, member B	RP11-747H7.3	ENSG00000260711.2	−0.68534	2.63E-09	1.08E-06																				
227985_at	Uncharacterized LOC100506098	LOC10273721	ENSG000002233834.6	−1.04243	7.5E-08	2.0E-05																				
232202_at	Family with sequence similarity 83, member B	FAM83B	ENSG00000261111.6	−1.07231	2.29E-10	1.22E-07																				
227985_at	Uncharacterized LOC100506098	LOC100506098	ENSG00000260711.2	−0.92003	9.63E-11	6.43E-08																				
213447_at	Imprinted in Prader-Willi syndrome (non-protein coding)	LOC100506098	ENSG000002333834.6	−1.04243	7.5E-08	2.0E-05																				
227985_at	Uncharacterized LOC100506098	LOC100506098	ENSG00000260711.2	−0.92003	9.63E-11	6.43E-08																				
229223_at	Uncharacterized LOC100506098	LOC100506098	ENSG00000260711.2	−0.92003	9.63E-11	6.43E-08																				

log FC, log2 of fold-change. Positive value indicates increased expression in high IC50 group, and negative value indicates decreased expression in high IC50 group. NA, Not available.

were selected for a subsequent validating study. After knocking-down expression levels of GIHCG and SPINT1-AS1 by small interfering RNAs, Lapatinib IC50, and inhibitory rate of cancer cells were detected. Among three small interference sequences of GIHCG and SPINT1-AS1 mRNAs, siRNA sequence 3 of GIHCG (Si3, Figure 7B), and siRNA sequence 1 of SPINT1-AS1 (Si1, Figure 7C) were identified as effective siRNAs for further experiments.

Knocking-down of GIHCG could significantly enhance the sensitivity to Lapatinib in MCF7 and BxPC3 cancer cell lines (Figure 7D), while down-regulation of SPINT1-AS1 could promote resistance to Lapatinib in NCI-N87 and MCF7 cancer cell lines (Figure 7E). To clarify whether there is a mutual regulatory relationship between GIHCG and SPINT1-AS1, we detected the expression level of SPINT1-AS1 after GIHCG knockdown and vice versa. As shown in Figures 7F,G...
suppression of GIHCG in Lapatinib resistant cancer cell lines NCIH-747 and BxPC3 could induce up-regulation of SPINT1-AS1 \((P < 0.05)\), while knockdown of SPINT1-AS1 did not change the expression level of GIHCG \((P > 0.05)\).

DISCUSSION

LncRNA is an important regulatory molecule in drug resistance during chemotherapy or gene targeted therapy (Li et al., 2016; Dong et al., 2018; Wu et al., 2018; Zhou et al., 2018). In this study, we analyzed Lapatinib sensitivity to EGFR and ERBB2 targeted therapy pan-cancer cell line wide. We noticed that Lapatinib sensitivity was not only positively correlated to the activation of EGFR and ERBB2 signaling pathways, but also positively associated to cell keratin, epithelial differentiation, and cell-cell junction. The Lapatinib sensitivity of cancer cell lines was negatively associated to extracellular matrix signature. By screening differentially expressed lncRNAs and establishing co-expression network between Lapatinib high IC50 and low IC50 groups, three key lncRNAs, SPINT1-AS1, GIHCG, and MAGI2-AS3, were found. Of those, GIHCG and SPINT1-AS1 were only differentially expressed in epithelial derived cancers. SPINT1-AS1 was negatively related to Lapatinib IC50, whereas GIHCG was positively associated to Lapatinib IC50. By siRNAs treatment, downregulation of SPINTA-AS1 could promote Lapatinib resistance, while downregulation of GIHCG promoted Lapatinib sensitivity. The combination of bioinformatical approach and experimental study confirmed that lncRNAs were involved in regulating sensitivity to Lapatinib targeted therapy.

PI3K/Akt, Ras/Raf/MEK/ERK1/2, and PLCγ pathways are downstream pathways of EGFR and ERBB2 and play important roles in cell proliferation and survival of multiple cancers.
FIGURE 5 | Pathway analysis of Lapatinib sensitivity related genes. The genes in the top 10 pathways with fold-change more than 1.5 are used between Lapatinib high, IC50 and low, IC50 groups. The middle brown dot of each network indicates the name of a gene set, and the small dots surrounding it indicate the genes of the gene set. The red dots represent the up-regulated genes in the high, IC50 group, and the green dots represent the up-regulated genes in the low, IC50 group. The darker red or green spot are the larger fold-change of differential genes. The black spots with different sizes and numbers on the right side indicate the gene numbers in the gene clusters.

(Roskoski, 2014). The expression levels of EGFR and ERBB2 are positively correlated to Lapatinib sensitivity (Rusnak et al., 2007; Xiang et al., 2018). Trastuzumab (Herceptin) is a molecular targeted drug of ERBB2-positive metastatic/advanced breast cancer and gastric cancer (Bang et al., 2010; Loibl and Gianni, 2017). Lapatinib is a small molecule chemical, which proved effective for ERBB2-positive advanced or metastatic breast cancer when combined with capecitabine after previous treatment with anthracyclines, paclitaxel, or trastuzumab (Geyer et al., 2006). In gastric cancer, treatment with Lapatinib plus capecitabine and oxaliplatin also revealed anti-cancer effects on HER2-amplified gastroesophageal adenocarcinoma, especially in Asian and younger patients (Hecht et al., 2016). LncRNAs emerged as one of the new resistance mechanisms to chemotherapy or molecule targeted therapy. By bioinformatics analysis, Lapatinib sensitive cancer cells exhibited enrichment of genes related to cell keratin, epithelial differentiation, and cell-cell junction. The ERBB family plays an important role in regulating cell differentiation (Pellat et al., 2017). We noticed that Lapatinib sensitivity is positively correlated to ERBB pathway activation. It means that cancer cells sensitive to Lapatinib drug often showed enrichment of cell differentiation-related genes, while Lapatinib-resistant cancer cells are often accompanied by enrichment of extracellular matrix pathway (D’Amato et al., 2015; Khan et al., 2016; Lin et al., 2017; Watson et al., 2018). Furthermore, increases of extracellular matrix could further induce epithelial-mesenchymal transition of cancer cells (Tzanakakis et al., 2018).
Although the role of lncRNAs in cancer progression and Lapatinib resistance have been reported in other studies (Russell et al., 2015; Li et al., 2016; Liang et al., 2018; Ma et al., 2018), this is the first study that proved that lncRNAs GIHCG and SPINT1-AS1 are involved in regulating therapeutic sensitivity to Lapatinib. Based on pan-cancer cell lines analysis, Lapatinib IC50 is significantly different between non-epithelial cancer cell lines, and epithelial cancer cell lines. As the inhibitor of miR-200b/200a/429, LncRNA GIHCG was shown effectively promoting the progression of liver cancer through inducing methylation of miR-200b/200a/429 promoter (Sui et al., 2016). GIHCG is also involved in promoting cancer proliferation and migration in tongue and renal cancers (D’Aniello et al., 2018; Ma et al., 2018). However, there is no study on whether or not GIHCG could regulate Lapatinib drug sensitivity in cancers. LncRNA SPINT1-AS1 is a Kunitz type 1 antisense RNA1, belonging to serine peptidase inhibitor. An increased expression of SPINT1-AS1 has been observed in colorectal cancer (Li C. et al., 2018). It is also the first time that lncRNA SPINT1-AS1 has been found regulating Lapatinib drug sensitivity on multiple cancer cells. In validating experiments, the knockdown of SPINT1-AS1 did not result in the up-regulation of GIHCG. We speculated that GIHCG may regulate SPINT1-AS1 expression through regulating promoter methylation or by manner of competitive endogenous RNA (ceRNA) (Zhang G. et al., 2018; Zhang L. et al., 2018). However, the mutual regulatory mechanisms of lncRNA GIHCG and SPINT1-AS1 remain to be studied in the future.

CONCLUSION

In conclusion, the current study proposed a group of lncRNAs related to Lapatinib sensitivity based on pan-cancer cell lines analysis. By subsequent experimental study, lncRNAs GIHCG and SPINT1-AS1 were firstly identified as crucial lncRNAs in regulating Lapatinib resistance or sensitivity in epithelial-derived cancer cell lines. SPINT1-AS1 is a Lapatinib sensitivity predictor, while GIHCG is a predictive molecule for Lapatinib resistance.

ETHICS STATEMENT

The protocols used in this study were approved by Rui Jin Hospital Ethics Review Boards. Written
informed consents were obtained from all human material donors in accordance with the Declaration of Helsinki. Animals were used according to the protocols approved by Rui Jin Hospital Animal Care and Use Committee.

AUTHOR CONTRIBUTIONS

KL and YY conceived and designed the experiments. ZX, ShS, ZZ, JG, and QL performed the experiments. ZX, ZZ, SaS, WS, YY, and KL analyzed the data. ZX, ShS, ZZ, SaS, WS, YY, and KL...
contribute reagents, materials, and analysis tools. ZX, YY, and KL wrote the paper.

FUNDING

This project was supported by the National Natural Science Foundation (NSF 81270622 and 81772505), Bagui Talent Foundations (T3120097921, T3120099202, A3120099201, and C31200992001), Innovation Foundation for Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (AE339003605), National Key R&D Program of China (2017YFC0908300, 2016YFC1303200), China 973 Program (2013CB733700 and 2011CB510102), Shanghai Science and Technology Committee (18411953100), the Cross-Institute Research Fund of Shanghai Jiao Tong University (YG2017ZD01, YG2015MS62), Innovation Foundation of Translational Medicine of Shanghai Jiao Tong University School of Medicine (15ZH4001, TM201617, and TM 201702), and Technology Transfer Project of Science & Technology Dept. Shanghai Jiao Tong University School of Medicine.

ACKNOWLEDGMENTS

We acknowledge open database of CCLE.

REFERENCES

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29. doi: 10.1038/75566
Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chiarug, H. C., Shen, L., Sawaki, A., et al. (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697. doi: 10.1016/S0140-6736(10)61121-X
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., et al. (2012). The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607. doi: 10.1038/nature10103
Bester, A. C., Lee, J. D., Chavez, A., Lee, Y. R., Nachmani, D., Vora, S., et al. (2018). An integrated genome-wide CRISPRa approach to functionalize IncRNAs in drug resistance. Cell 173, 649–664 e620. doi: 10.1016/j.cell.2018.03.052
Cetin, B., Benekli, M., Turker, I., Koral, L., Ulas, A., Danc, F., et al. (2014). Lapatinib plus capecitabine for HER2-positive advanced breast cancer: a multicentre study of anatolian society of medical oncology (ASMO). J. Chemother. 26, 300–305. doi: 10.1179/1799374813Y.0000000147
D’Amato, V., Raimondo, L., Formisano, L., Giuliani, M., De Placido, S., Rosa, R., et al. (2015). Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat. Rev. 41, 877–883. doi: 10.1016/j.ctrv.2015.08.001
D’Aniello, C., Pisconti, S., Facchini, S., Imbimbo, C., and Cavaliere, C. (2018). Long noncoding RNA GIHCG is a potential diagnostic and prognostic biomarker of breast cancer stem cells. Cancers 9, 369. doi: 10.3390/cancers9040386
Jiang, M., Huang, O., Xie, Z., Wu, S., Zhang, X., Shen, A., et al. (2014). A novel long non-coding RNA ARA: adriamycin resistance-associated. Biochem. Pharmacol. 87, 254–283. doi: 10.1016/j.bcp.2013.10.020
Khan, I. A., Yao, B. H., Masson, O., Baron, S., Corkery, D., Dellaire, G., et al. (2016). ErbB2-dependent downregulation of a pro-apoptotic protein Perp is required for oncogenic transformation of breast epithelial cells. Oncogene 35, 5759–5769. doi: 10.1038/onc.2016.109
Kim, B., Wang, S., Lee, J. M., Jeong, Y., Ahn, T., Son, D. S., et al. (2015). Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy. Oncogene 34, 1083–1093. doi: 10.1038/onc.2014.51
Li, C., Li, W., Zhang, Y., Zhang, X., Liu, T., Yang, Y., et al. (2018). Increased expression of antisense lncRNA SPINT1-AS1 predicts a poor prognosis in colorectal cancer and is negatively correlated with its sense transcript. Oncotargets Ther. 11, 3969–3978. doi: 10.2147/OT Sutton.168838
Li, D., Zhang, J., Wang, M., Li, X., Gong, H., Tang, H., et al. (2018). Activity dependent Lona regulates translation by coordinating rRNA transcription and methylation. Nat. Commun. 9, 1726. doi: 10.1038/s41467-018-04072-4
Li, W., Zhai, L., Wang, H., Liu, C., Zhang, J., Chen, W., et al. (2016). Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7, 27778–27786. doi: 10.18632/oncotarget.8413
Liang, Y., Chen, X., Wu, Y., Li, J., Zhang, S., Wang, K., et al. (2018). LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ 25, 1980–1995. doi: 10.1038/s41418-018-0084-9
Lin, C. H., Jokela, T., Gray, J., and LaBarge, M. A. (2017). Combinatorial microenvironments impose a continuum of cellular responses to a single pathway-targeted anti-cancer compound. Cell Rep. 21, 533–545. doi: 10.1016/j.celrep.2017.09.058
Loibl, S., and Gianni, L. (2017). HER2-positive breast cancer. Lancet 389, 2415–2428. doi: 10.1016/S0140-6736(16)32417-5
Ma, L., Wang, Q., Gong, Z., Xue, L., and Zuo, Z. (2018). Long noncoding RNA GIHCG enhanced tongue squamous cell carcinoma progression through regulating miR-429. J. Cell. Biochem. 119, 9064–9071. doi: 10.1002/jcb.27164
Ma, P., Zhang, M., Nie, F., Huang, Z., He, J., Li, W., et al. (2017). Transcriptome analysis of EGFR tyrosine kinase inhibitors resistance associated long noncoding RNA in non-small cell lung cancer. Biomed. Pharmacother. 87, 20–26. doi: 10.1016/j.biopha.2016.12.079
Niknafs, Y. S., Han, S., Ma, T., Speers, C., Zhang, C., Wilders-Romans, K., et al. (2016). The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat. Commun. 7:12791. doi: 10.1038/ncomms12791
Pellat, A., Vaquerio, J., and Fouassier, L. (2017). Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology 67, 762–773. doi: 10.1002/hep.29350

Peng, W. X., Koirala, P., and Mo, Y. Y. (2017). LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36, 5661–5667. doi: 10.1038/onc.2017.184

Powles, T., Huddart, R. A., Elliott, T., Sarker, S. J., Ackerman, C., Jones, R., et al. (2017). Phase III, double-blind, randomized trial that compared maintenance lapatinib versus placebo after first-line chemotherapy in patients with human epidermal growth factor receptor 1/2-positive metastatic bladder cancer. J. Clin. Oncol. 35, 48–55. doi: 10.1200/JCO.2015.66.3468

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Roskoski, R. Jr. (2014). The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 79, 34–74. doi: 10.1016/j.phrs.2013.11.002

Russnak, D. W., Alligood, K. J., Mullin, R. J., Spehar, G. M., Arenas-Elliott, C., Martin, A. M., et al. (2007). Assessment of epidermal growth factor receptor (EGFR, ErbB1) and HER2 (ErbB2) protein expression levels and response to lapatinib (Tykerb, GW572016) in an expanded panel of human normal and tumour cell lines. Cell Prolif. 40, 580–594. doi: 10.1111/j.1365-2184.2007.00455.x

Russell, M. R., Penikis, A., Oldridge, D. A., Alvarez-Dominguez, J. R., McDaniel, L., Diamond, M., et al. (2015). CASC15-S is a tumor suppressor IncRNA at the 6p22 neuroblastoma susceptibility locus. Cancer Res. 75, 3155–3166. doi: 10.1158/0008-5472.CAN-14-3613

Satoh, T., Xu, R. H., Chung, H. C., Sun, G. P., Doi, T., Xu, J. M., et al. (2014). Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN—a randomized, phase III study. J. Clin. Oncol. 32, 2039–2049. doi: 10.1200/JCO.2013.53.6136

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550. doi: 10.1073/pnas.0506581102

Sui, C. J., Zhou, Y. M., Shen, W. F., Dai, B. H., Lu, J. J., Zhang, M. F., et al. (2016). Long noncoding RNA GIHGCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J. Mol. Med. 94, 1281–1296. doi: 10.1007/s00109-016-1442-z

Sun, Q., Tripathi, V., Yoon, J. H., Singh, D. K., Hao, Q., Min, K. W., et al. (2018). MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res. 46, 10405–10416. doi: 10.1093/nar/gky696

Tzanakakis, G., Kovasi, R. M., Voudouri, K., Berdiaki, A., Spyridaki, I., Tsatsakis, A., et al. (2018). Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Dev. Dyn. 247, 368–381. doi: 10.1002/dvdy.25357

Wang, Q., Li, C., Tang, P., Ji, R., Chen, S., and Wen, J. (2018). A minimal lncRNA-mRNA signature predicts sensitivity to neoadjuvant chemotherapy in triple-negative breast cancer. Cell. Physiol. Biochem. 48, 2539–2548. doi: 10.1002/cphb.2018018498

Watson, S. S., Dane, M., Chin, K., Tatarova, Z., Liu, M., Liby, T., et al. (2018). Microenvironment-mediated mechanisms of resistance to HER2 inhibitors differ between HER2+ breast cancer subtypes. Cell Syst. 6, 329–342 e326. doi: 10.1016/j.cels.2018.02.001

Wu, L., Pan, C., Wei, X., Shi, Y., Zheng, J., Lin, X., et al. (2018). LncRNA KRAL reverses 5-fluorouracil resistance in hepatocellular carcinoma cells by acting as a ceRNA against miR-141. Cell Commun. Signal. 16:47. doi: 10.1186/s12964-018-0266-z

Xiang, Z., Huang, X., Wang, J., Zhang, J., Ji, J., Yan, R., et al. (2018). Cross-database analysis reveals sensitive biomarkers for combined therapy for ERBB2+ gastric cancer. Front. Pharmacol. 9:861. doi: 10.3389/fphar.2018.00861

Xu, T., Xu, R. H., Chung, H. C., Sun, G. P., Doi, T., Xu, J. M., et al. (2014). Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN—a randomized, phase III study. J. Clin. Oncol. 32, 2039–2049. doi: 10.1200/JCO.2013.53.6136

Zhang, G., Kang, W., Xu, H., Dong, L., and Zou, B. (2018). LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol. Cancer 17:87. doi: 10.1186/s12943-018-0829-6

Zhao, Z., Lin, Z., He, Y., Pang, X., Wang, Y., Ponnusamy, M., et al. (2018). The long non-coding RNA D63785 regulates chemotherapy sensitivity in human gastric cancer by targeting miR-422a. Mol. Ther. Nucleic Acids. 12, 405–419. doi: 10.1016/j.omtn.2018.05.024

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.