WEAK COMPLETIONS OF PARATOPOLOGICAL GROUPS

TARAS BANAKH AND MIKHAIL TKACHENKO

This article is respectfully dedicated to Professor Jerzy Mioduszewski on the occasion of his 93rd anniversary

Abstract. Given a T_0 paratopological group G and a class C of continuous homomorphisms of paratopological groups, we define the C-semicompletion $C[G]$ and C-completion $C[G]$ of the group G that contain G as a dense subgroup, satisfy the T_0-separation axiom and have certain universality properties. For special classes C, we present some necessary and sufficient conditions on G in order that the (semi)completions $C[G]$ and $C[G]$ be Hausdorff. Also, we give an example of a Hausdorff paratopological abelian group G whose C-semicompletion $C[G]$ fails to be a T_1-space, where C is the class of continuous homomorphisms of sequentially compact topological groups to paratopological groups. In particular, the group G contains an ω-bounded sequentially compact subgroup H such that H is a topological group but its closure in G fails to be a subgroup.

1. Introduction

It is well known [1, §3.6] that each topological group G has the Raïkov completion, ϱG, which coincides with the completion of G with respect to the two-sided group uniformity of the group. The Raïkov completion has a nice categorial characterization. It turns out that ϱG is a unique topological group, up to topological isomorphism, that contains G as a dense subgroup and has the following extension property: Every continuous homomorphism $h: X \to G$ defined on a dense subgroup X of a topological group \tilde{X} admits a unique extension to a continuous homomorphism $\tilde{h}: \tilde{X} \to \varrho G$ (see [1, Proposition 3.6.12]). A topological group G is Raïkov complete if and only if it is complete in its two-sided uniformity if and only if $G = \varrho G$.

In [2] and [3], it is shown that a kind of the Raïkov completion can also be defined for paratopological groups. By a paratopological group we understand a group G endowed with a topology τ making the group multiplication $G \times G \to G$, $(x, y) \mapsto xy$ continuous. If, in addition, the inversion $G \to G$, $x \mapsto x^{-1}$, is continuous, then (G, τ) is a topological group. A topology τ on a group G is called a topological group topology on G if (G, τ) is a topological group.

2010 Mathematics Subject Classification. 22A15, 54D35, 54H11.

Key words and phrases. Paratopological group, pseudocompact, precompact, Raïkov completion, Bicompletion.

The second author was supported by grant number CAR-64356 of the Program “Ciencia de Frontera 2019” of the CONACyT, Mexico.
Let us recall that a topology \(\tau \) on a set \(X \) satisfies the \(T_0 \) separation axiom or, equivalently, \(\tau \) is a \(T_0 \)-\textit{topology} if for any distinct points \(x, y \in G \) there exists an open set \(U \in \tau \) such that \(U \cap \{x, y\} \) is a singleton. It is well known, on the one hand, that each topological group satisfying the \(T_0 \) separation axiom is automatically Tychonoff. On the other hand, the topology \(\tau = \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\} \) turns the additive group of the reals into a \(T_0 \) paratopological group which does not satisfy the \(T_1 \) separation axiom. So \(T_0 \) does not imply \(T_1 \) in paratopological groups. From now on we assume that all paratopological groups considered here satisfy the \(T_0 \) separation axiom.

Each paratopological group \(\langle G, \tau \rangle \) admits a stronger topological group topology \(\tau^\sharp \), whose neighborhood base at the identity \(e \) consists of the set \(U \cap U^{-1} \) where \(e \in U \in \tau \). So, \(\langle G, \tau^\sharp \rangle \) is topologically isomorphic to the subgroup \(\{\langle x, x^{-1} \rangle : x \in G\} \) of the product group \(G \times G \). The topological group \(G^\sharp = \langle G, \tau^\sharp \rangle \) is called the \textit{group coreflection} of the paratopological group \(G = \langle G, \tau \rangle \). If the topology \(\tau \) satisfies the \(T_0 \) separation axiom, then the topological group topology \(\tau^\sharp \) is Hausdorff and hence Tychonoff. A paratopological group \(\langle G, \tau \rangle \) is a topological group if and only if \(\tau = \tau^\sharp \). A paratopological group \(G \) is called \(\sharp \)-\textit{complete} if the topological group \(G^\sharp \) is Raïkov complete. The Sorgenfrey line \(\mathbb{S} \) is an easy example of a \(\sharp \)-complete paratopological group since \(\mathbb{S}^\sharp \) is the discrete group of the reals.

A subset \(D \) of a paratopological group \(\langle G, \tau \rangle \) is called \(\sharp \)-\textit{dense} in \(G \) if \(D \) is dense in \(\langle G, \tau^\sharp \rangle \). Since \(\tau \subseteq \tau^\sharp \), each \(\sharp \)-dense subset is dense (but not vice versa).

According to [4] or [3], each paratopological group \(G \) is a \(\sharp \)-dense subgroup of a \(\sharp \)-complete paratopological group \(\tilde{G} \) that has the following extension property: \textit{any continuous homomorphism} \(h : X \to G \) defined on a \(\sharp \)-dense subgroup \(X \) of a paratopological group \(\tilde{X} \) admits a unique extension to a continuous homomorphism \(h : \tilde{X} \to \tilde{G} \). This extension property of \(\tilde{G} \) implies that the \(\sharp \)-complete paratopological group \(\tilde{G} \) containing \(G \) as a \(\sharp \)-dense subgroup is unique up to a topological isomorphism. In [3] this unique paratopological group \(\tilde{G} \) is called the \textit{Raïkov completion} of \(G \) and in [4] it is called the \textit{bicompletion} of \(G \). By [3], a neighborhood base at the identity \(e \) of the paratopological group \(\tilde{G} \) consists of the sets \(\overline{U^\sharp} \), where \(U \) is a neighborhood of \(e \) in \(G \) and \(\overline{U^\sharp} \) is the closure of \(U \) in the Raïkov completion \(\emptyset G^\sharp \) of the topological group \(G^\sharp \). So as a group, \(\tilde{G} \) coincides with the Raïkov completion of \(G^\sharp \). If \(G \) is a topological group, then the Raïkov completion \(\tilde{G} \) of \(G \) as a paratopological group coincides with the usual Raïkov completion \(\emptyset G \) of \(G \).

By [3], for any regular paratopological group \(G \), its Raïkov completion \(\tilde{G} \) is regular and hence Tychonoff (for the latter implication, see [2]). However, the Raïkov completion of a Hausdorff paratopological group \(G \) is not necessarily Hausdorff (see [3] Example 2.9]). To bypass this pathology of \(\tilde{G} \), in this article we consider some weaker notions of completion of paratopological groups which preserve Hausdorffness in some special cases.

Our weaker notion of completion depends on a class \(\mathcal{C} \) of continuous homomorphisms between paratopological groups. For example, \(\mathcal{C} \) can be the class of all continuous homomorphisms of topological groups (possessing some property like precompactness, pseudocompactness, countable compactness, sequential compactness, etc.) to paratopological groups. So, we fix a class \(\mathcal{C} \) of continuous homomorphisms between paratopological groups.
A paratopological group \tilde{G} is called a \mathcal{C}-semicompletion of a paratopological group G if $G \subseteq \tilde{G}$ and any homomorphism $h: X \to G$ in the class \mathcal{C} has a unique extension $\tilde{h}: \tilde{X} \to \tilde{G}$ to the Raïkov completion \tilde{X} of the paratopological group X. The extension property of the Raïkov completion \tilde{G} ensures that \tilde{G} is a \mathcal{C}-semicompletion of G. So every paratopological group has at least one \mathcal{C}-semicompletion.

A \mathcal{C}-semicompletion \tilde{G} of a paratopological group G is called minimal if $\tilde{G} = H$ for any subgroup $H \subseteq G$ which is a \mathcal{C}-semicompletion of G. Every \mathcal{C}-semicompletion \tilde{G} of a paratopological group G contains a unique minimal \mathcal{C}-semicompletion of G, which is equal to the intersection $\bigcap S$ of the family S of subgroups $H \subseteq \tilde{G}$ such that H is a \mathcal{C}-semicompletion of G. The Hausdorffness of the group coreflections implies that $\bigcap S$ is indeed a \mathcal{C}-semicompletion of G.

The \mathcal{C}-semicompletion $\mathcal{C}(G)$ of a paratopological group G is defined to be the smallest \mathcal{C}-semicompletion of G in its Raïkov completion \tilde{G}. It is equal to the intersection $\bigcap S$ of the family S of all groups H with $G \subseteq H \subseteq \tilde{G}$ such that H is a \mathcal{C}-semicompletion of G. Let us note that the \mathcal{C}-semicompletion $\mathcal{C}(G)$ of G is topologically isomorphic to any minimal \mathcal{C}-semicompletion of G. Indeed, given a minimal \mathcal{C}-semicompletion H of G, consider the Raïkov completion \tilde{H} of the paratopological group H. Since $G \subseteq H \subseteq \tilde{H}$, the Raïkov completion \tilde{G} of G can be identified with the $\tilde{\pi}$-closure of G in \tilde{H}. Now the minimality of the \mathcal{C}-semicompletion H implies that $H = H \cap \tilde{G} \subseteq \tilde{G}$ and, finally, $H = \mathcal{C}(G)$.

Having defined the \mathcal{C}-semicompletions of paratopological groups, we can pose the following two general problems.

Problem 1.1. Explore the categorial properties of \mathcal{C}-semicompletions.

Problem 1.2. Characterize the paratopological groups G for which the \mathcal{C}-semicompletion $\mathcal{C}(G)$ of G is Hausdorff.

Some partial answers to these problems will be given in Sections 2 and 3.

Again, let \mathcal{C} be a class of continuous homomorphisms of paratopological groups. Now we introduce the notion of a \mathcal{C}-completion of a paratopological group. A paratopological group G is \mathcal{C}-complete if G is a \mathcal{C}-semicompletion of G. Equivalently, a paratopological group G is \mathcal{C}-complete if each homomorphism $h: X \to G$ in the class \mathcal{C} extends to a continuous homomorphism $\tilde{h}: \tilde{X} \to G$ defined on the Raïkov completion of X. By the extension property of Raïkov completions, each $\tilde{\pi}$-complete paratopological group G (hence, \tilde{G}) is \mathcal{C}-complete. In particular, the Sorgenfrey line S is \mathcal{C}-complete.

By the \mathcal{C}-completion, $\mathcal{C}(G)$, of a paratopological group G we understand the intersection $\bigcap S$ of the family S of all \mathcal{C}-complete subgroups $H \subseteq \tilde{G}$ that contain G. The Hausdorffness of the groups coreflections of paratopological groups implies that the \mathcal{C}-completion $\mathcal{C}(G)$ of any paratopological group G is \mathcal{C}-complete and, hence, $\mathcal{C}(G) \subseteq \mathcal{C}(G)$.

It is clear from the above definitions that if \mathcal{C} is the empty class (or, more generally, every homomorphism $h: X \to G$ with $h \in \mathcal{C}$, if exists, is trivial), then G is \mathcal{C}-complete and, therefore, $G = \mathcal{C}(G) = \mathcal{C}(G)$.

Problem 1.3. Explore the categorial properties of the operation of \mathcal{C}-completion in the category of paratopological groups and their continuous homomorphisms.

Problem 1.4. Characterize the paratopological groups G such that the \mathcal{C}-completion $\mathcal{C}[G]$ of G is Hausdorff.

Problem 1.5. For which paratopological groups (and classes \mathcal{C} of homomorphisms) do their \mathcal{C}-semicompletions coincide with their \mathcal{C}-completions?

2. Categorial properties of \mathcal{C}-completions and \mathcal{C}-semicompletions

A class \mathcal{C} of continuous homomorphisms between paratopological groups is called composable if for any homomorphism $f : X \to Y$ in the class \mathcal{C} and any continuous homomorphism $g : Y \to Z$ of paratopological groups, the composition $g \circ f$ is in \mathcal{C}. For example, for any class \mathcal{P} of paratopological groups, the class \mathcal{C} of continuous homomorphisms $h : X \to Y$ between paratopological groups with $X \in \mathcal{P}$ is composable.

The following proposition shows that for a composable class \mathcal{C}, the constructions of \mathcal{C}-semicompletion and \mathcal{C}-completion are functorial in the category of paratopological groups and their continuous homomorphisms.

Proposition 2.1. Let \mathcal{C} be a composable class of continuous homomorphisms of paratopological groups. For any continuous homomorphism $h : X \to Y$ of paratopological groups, its continuous extension $\tilde{h} : \tilde{X} \to \tilde{Y}$ satisfies $\tilde{h}[\mathcal{C}[X]] \subseteq \mathcal{C}[Y]$ and $\tilde{h}[\mathcal{C}[X]] \subseteq \mathcal{C}[Y]$.

Proof. To see that $\tilde{h}[\mathcal{C}[X]] \subseteq \mathcal{C}[Y]$, it suffices to check that the preimage $\tilde{h}^{-1}[\mathcal{C}[Y]]$ is a \mathcal{C}-semicompletion of X. Given any homomorphism $f : Z \to X$ in the class \mathcal{C}, consider its continuous homomorphic extension $\tilde{f} : \tilde{Z} \to \tilde{X}$. Then $\tilde{h} \circ \tilde{f} : \tilde{Z} \to \tilde{Y}$ is a continuous extension of the homomorphism $h \circ f : Z \to Y$. Taking into account that $\mathcal{C}[Y]$ is a \mathcal{C}-semicompletion of Y and the topology of the group reflection of \tilde{Y} is Hausdorff, we conclude that $(\tilde{h} \circ \tilde{f})[\tilde{Z}] \subseteq \mathcal{C}[Y]$ and hence $\tilde{f}[\tilde{Z}] \subseteq \tilde{h}^{-1}[\mathcal{C}[Y]]$. This implies that $\tilde{h}^{-1}[\mathcal{C}[Y]]$ is a \mathcal{C}-semicompletion of X and $\mathcal{C}[X] \subseteq \tilde{h}^{-1}[\mathcal{C}[Y]]$, by the minimality of $\mathcal{C}[X]$.

Next, we show that the preimage $\tilde{h}^{-1}[\mathcal{C}[Y]]$ is a \mathcal{C}-complete paratopological group. Given any homomorphism $f : Z \to \tilde{h}^{-1}[\mathcal{C}[Y]]$ in the class \mathcal{C}, consider its unique continuous extension $\tilde{f} : \tilde{Z} \to \tilde{X}$. Then $\tilde{h} \circ \tilde{f} : \tilde{Z} \to \tilde{Y}$ is a unique continuous extension of the homomorphism $h \circ f : Z \to \mathcal{C}[Y]$. Taking into account that the paratopological group $\mathcal{C}[Y]$ is \mathcal{C}-complete and the topology of the group reflection of \tilde{Y} is Hausdorff, we conclude that $(\tilde{h} \circ \tilde{f})[\tilde{Z}] \subseteq \mathcal{C}[Y]$, which implies the inclusion $\tilde{f}[\tilde{Z}] \subseteq \tilde{h}^{-1}[\mathcal{C}[Y]]$. Therefore, the paratopological group $\tilde{h}^{-1}[\mathcal{C}[Y]]$ is \mathcal{C}-complete and $\mathcal{C}[X] \subseteq \tilde{h}^{-1}[\mathcal{C}[Y]]$, by the minimality of $\mathcal{C}[X]$. □

3. The Hausdorff property of \mathcal{C}-completions of paratopological groups

In this section, we present some necessary and some sufficient conditions on a paratopological group G in order that the \mathcal{C}-semicompletion $\mathcal{C}[G]$ or \mathcal{C}-completion $\mathcal{C}[G]$ of G be Hausdorff. Let us recall that for a regular paratopological group G, its Raïkov completion \tilde{G} is regular and so are the paratopological groups $\mathcal{C}[G]$ and $\mathcal{C}[G]$.

Proposition 3.1. The C-completion $C[G]$ of a paratopological group G is Hausdorff if and only if G is a subgroup of a Hausdorff C-complete paratopological group.

Proof. The “only if” part is trivial. To prove the “if” part, assume that G is a subgroup of a Hausdorff C-complete paratopological group H. Taking into account that $G \subseteq H$ and $G^t \subseteq H^t$, we conclude that $\hat{G} \subseteq \hat{H}$. The C-completeness of the paratopological groups \hat{G} and H implies that the paratopological group $\hat{G} \cap H$ is C-complete and hence $C[G] \subseteq \hat{G} \cap H$ is Hausdorff, being a subgroup of the Hausdorff paratopological group H. \(\square\)

Let \mathcal{P} be a property. A paratopological group H is said to be projectively \mathcal{P} if every neighborhood of the identity element in H contains a closed invariant (equivalently, “normal” in the algebraic sense) subgroup N such that the quotient paratopological group H/N has \mathcal{P}. Similarly, a paratopological group X is said to be projectively Ψ if for every neighborhood U of the identity in X, there exists a continuous homomorphism $h: X \to Y$ to a Hausdorff paratopological group of countable pseudocharacter such that $h^{-1}(e_Y) \subseteq U$; here e_Y denotes the identity of the group Y.

It is easy to see that the projectively Ψ paratopological groups are exactly the projectively \mathcal{P} groups, where \mathcal{P} is the property of being a Hausdorff space of countable pseudocharacter. Indeed, let G be a projectively Ψ paratopological group and U be a neighborhood of the identity in G. By our assumption, there exists a continuous homomorphism $h: G \to H$ onto a Hausdorff paratopological group H_α of countable pseudocharacter such that $h^{-1}(e_H) \subseteq U$, where e_H is the identity of H. Let $N = h^{-1}(e_H)$ be the kernel of h and $p: G \to G/N$ be the quotient homomorphism. Clearly there exists a continuous one-to-one homomorphism $j: G/N \to H$ satisfying $h = j \circ p$. Thus j is a continuous bijection of G/N onto H and, hence, the quotient group G/N is Hausdorff and has countable pseudocharacter. Therefore, G is projectively \mathcal{P}. The inverse implication is evident.

According to [6, Proposition 2] every projectively Hausdorff paratopological group is Hausdorff. In particular, all projectively Ψ paratopological groups are Hausdorff. This fact also follows from the characterization of projectively Ψ groups presented in the next lemma.

Lemma 3.2. A paratopological group G is projectively Ψ if and only if G is topologically isomorphic to a subgroup of a product of Hausdorff paratopological groups of countable pseudocharacter.

Proof. The sufficiency is evident, so we verify only the necessity. Assume that G is a projectively Ψ paratopological group. Applying [6, Proposition 2] we conclude that G is Hausdorff. Let $\{U_\alpha : \alpha \in A\}$ be a neighborhood base at the identity e of G. For every $\alpha \in A$, take an open neighborhood V_α of e in G such that $V_\alpha^2 \subseteq U_\alpha$. By our assumption, there exists a continuous homomorphism f_α of G onto a Hausdorff paratopological group H_α of countable pseudocharacter such that $f_\alpha^{-1}(e_\alpha) \subseteq V_\alpha$, where e_α is the identity of H_α. Let N_α be the kernel of f_α and $p_\alpha: G \to G/N_\alpha$ be the quotient homomorphism. Clearly there exists a continuous one-to-one homomorphism $j_\alpha: G/N_\alpha \to H_\alpha$ satisfying $f_\alpha = j_\alpha \circ p_\alpha$. Thus j_α is a continuous bijection of G/N_α onto H_α and, hence, the quotient group G/N_α is Hausdorff and has countable pseudocharacter.
Denote by \(p \) the diagonal product of the family \(\{ p_\alpha : \alpha \in A \} \). Then \(p \) is a continuous homomorphism of \(G \) to \(P = \prod_{\alpha \in A} G/N_\alpha \). We claim that \(p \) is an isomorphic topological embedding. First, the kernel of \(p \) is trivial. Indeed, if \(x \in G \) and \(x \neq e_G \), take a neighborhood \(U \) of \(e_G \) such that \(x \notin U \). There exists \(\alpha \in A \) such that \(p^{-1}_\alpha(e_\alpha) \subseteq U_\alpha \subseteq U \), whence it follows that \(p_\alpha(x) \neq e_\alpha \). Hence \(p(x) \neq e_H \) and \(p \) is injective.

Further, let \(U \) be an arbitrary neighborhood of \(e \) in \(G \). Take \(\beta \in A \) with \(U_\beta \subseteq U \). Then \(f_\beta \{ f_\beta(V_\beta) = V_\beta N_\beta \subseteq V_\beta^2 \subseteq U_\beta \subseteq U \). Since \(j_\beta \) is one-to-one, it follows from \(f_\beta = j_\beta \circ p_\beta \) that \(p_\beta^{-1} p_\beta(V_\beta) = f_\beta^{-1} f_\beta(V_\beta) \subseteq U \). Thus the open neighborhood \(p_\beta(V_\beta) \) of the identity in \(H_\beta \) satisfies \(p_\beta^{-1} p_\beta(V_\beta) \subseteq U \). Denote by \(\pi_\beta \) the projection of \(\prod_{\alpha \in A} G/N_\alpha \) to the factor \(G/N_\beta \). Applying the equality \(p_\beta = \pi_\beta \circ p \) we deduce that the open neighborhood \(W = p(G) \cap \pi_\beta^{-1} p_\beta(V_\beta) \) of the identity in \(p(G) \) satisfies \(p^{-1}(W) = p_\beta^{-1}(p_\beta(V_\beta)) \subseteq U \). We have thus proved that for every neighborhood \(U \) of the identity in \(G \), there exists a neighborhood \(W \) of the identity in \(p(G) \) such that \(p^{-1}(W) \subseteq U \). This property of the continuous monomorphism \(p \) implies that \(p \) is an isomorphic topological embedding of \(G \) into \(\prod_{\alpha \in A} G/N_\alpha \) (see also [1, Section 3.4]).

A paratopological group \(G \) is called \(\omega \)-balanced if for any neighborhood \(U \) of the identity in \(G \), there exists a countable family \(\mathcal{V} \) of neighborhoods of the identity in \(G \) such that for each \(x \in G \), one can find \(V \in \mathcal{V} \) satisfying \(xVx^{-1} \subseteq U \).

The Hausdorff number \(Hs(G) \) of a Hausdorff paratopological group \(G \) is the smallest cardinal \(\kappa \geq 1 \) such that for every neighborhood \(U \subseteq G \) of the identity in \(G \), there exists a family \(\{ V_\alpha \}_{\alpha \in \kappa} \) of neighborhoods of the identity in \(G \) such that \(\bigcap_{\alpha \in \kappa} V_\alpha V_\alpha^{-1} \subseteq U \). The Hausdorff number was introduced and studied in [7].

According to [7, Theorem 2.7], every \(\omega \)-balanced paratopological group \(G \) with \(Hs(G) \leq \omega \) is a subgroup of a Tychonoff product of first-countable Hausdorff paratopological groups. By Lemma 3.2, the latter implies that the \(\omega \)-balanced paratopological groups with countable Hausdorff number are projectively \(\Psi \).

Theorem 3.3. Let \(\mathcal{C} \) be a subclass of the class of continuous homomorphisms from pseudocompact topological groups to paratopological groups. If a paratopological group \(G \) is projectively \(\Psi \), then its \(\mathcal{C} \)-completion \(\mathcal{C}[G] \) is Hausdorff. If \(G \) is \(\omega \)-balanced and satisfies \(Hs(G) \leq \omega \), then the paratopological group \(\mathcal{C}[G] \) is \(\omega \)-balanced, Hausdorff, and satisfies \(Hs(\mathcal{C}[G]) \leq \omega \).

Proof. Let \(G \) be a projectively \(\Psi \) paratopological group. By Lemma 3.2, \(G \) is topologically isomorphic to a subgroup of a Tychonoff product \(Y = \prod_{\alpha \in A} Y_\alpha \) of Hausdorff paratopological groups of countable pseudocharacter. We claim that the paratopological group \(Y \) is \(\mathcal{C} \)-complete. Consider any homomorphism \(f : Z \to Y \) in the class \(\mathcal{C} \). By the choice of \(\mathcal{C} \), \(Z \) is a pseudocompact topological group. For every \(\alpha \in A \), denote by \(\pi_\alpha : Y \to Y_\alpha \) the natural projection and consider the continuous homomorphism \(f_\alpha = \pi_\alpha \circ f : Z \to Y_\alpha \). Let \(e_\alpha \) be the identity of the group \(Y_\alpha \). Clearly \(Z_\alpha = f_\alpha^{-1}(e_\alpha) \) is a closed invariant subgroup of \(Z \) and the quotient topological group \(Z/Z_\alpha \) admits a continuous injective homomorphism to the group \(Y_\alpha \) of countable pseudocharacter. Hence \(Z/Z_\alpha \) has countable pseudocharacter as well and we can apply [8, Proposition 2.3.12] to conclude that \(Z/Z_\alpha \) is a compact
metrizable group. Let \(q_\alpha : Z \to Z/Z_\alpha \) be the quotient homomorphism and \(g_\alpha : Z/Z_\alpha \to Y_\alpha \) be a unique continuous injective homomorphism such that \(f_\alpha = g_\alpha \circ q_\alpha \). Since the compact topological group \(Z/Z_\alpha \) is Raïkov complete, the quotient homomorphism \(q_\alpha : Z \to Z/Z_\alpha \) admits a continuous homomorphic extension \(\tilde{q}_\alpha : \tilde{Z} \to Z/Z_\alpha \). Then \(\tilde{f}_\alpha = g_\alpha \circ \tilde{q}_\alpha : \tilde{Z} \to Y_\alpha \) is a continuous extension of the homomorphism \(f_\alpha \).

The diagonal product of the homomorphisms \(\tilde{f}_\alpha : \tilde{Z} \to Y_\alpha \) with \(\alpha \in A \) is a continuous homomorphism \(\tilde{f} : \tilde{Z} \to Y = \prod_{\alpha \in A} Y_\alpha \) extending the homomorphism \(f \) and witnessing that the paratopological group \(Y \) is \(C \)-complete. By Proposition 3.1, the \(C \)-completion \(C[X] \) of \(X \) is Hausdorff.

Now assume that the paratopological group \(G \) is \(\omega \)-balanced and satisfies \(Hs(G) \leq \omega \). By [7, Theorem 2.7], \(G \) is a subgroup of a Tychonoff product \(Y = \prod_{\alpha \in A} Y_\alpha \) of first-countable Hausdorff paratopological groups. Hence \(G \) is projectively \(\Psi \), by Lemma 3.2. By the above argument, the paratopological group \(Y \) is \(C \)-complete and, hence, \(C[G] \) can be identified with a subgroup of \(Y \). By Propositions 2.1–2.3 in [7], the subgroup \(C[G] \) of the Tychonoff product \(Y \) of first-countable Hausdorff paratopological groups is \(\omega \)-balanced and satisfies \(Hs(C[G]) \leq \omega \). \(\square \)

A topological group \(G \) is called precompact if its Raïkov completion \(\rho G \) is compact. This happens if and only if for any neighborhood \(U \) of the identity in \(G \), there exists a finite set \(F \subseteq G \) such that \(G = UF = FU \).

Proposition 3.4. Let \(\mathcal{C} \) be a subclass of the class of continuous homomorphisms from precompact topological groups to paratopological groups. A Hausdorff paratopological group \(G \) is \(\mathcal{C} \)-complete if and only if for any homomorphism \(h : X \to G \) in the class \(\mathcal{C} \), the image \(h[X] \) has compact closure in \(G \).

Proof. Sufficiency. Take any homomorphism \(h : X \to G \) in the class \(\mathcal{C} \) and assume that the image \(h[X] \) has compact closure \(\overline{h[X]} \) in \(G \). It follows from [1, Proposition 1.4.10] that \(H = \overline{h[X]} \) is a Hausdorff compact topological semigroup and \(H \), being a subsemigroup of a group, is cancellative. By Numakura’s theorem (see [5] or [1, Theorem 2.5.2]), \(H \) is a compact topological group. Since \(H \) is Raïkov complete, the homomorphism \(h : X \to H \) has a continuous homomorphic extension \(\tilde{h} : \tilde{X} \to H \subseteq G \), witnessing that the paratopological group \(G \) is \(\mathcal{C} \)-complete.

Necessity. Assume that the paratopological group \(G \) is \(\mathcal{C} \)-complete. Then every homomorphism \(h : X \to G \) in the class \(\mathcal{C} \) has a continuous homomorphic extension \(\tilde{h} : \tilde{X} \to G \) to the Raïkov completion \(\tilde{X} = \rho X \) of the topological group \(X \). The precompactness of \(X \) guarantees that the topological group \(\tilde{X} \) is compact and so is its image \(\tilde{h}[X] \) in \(G \). Since the space \(G \) is Hausdorff, the compact subspace \(\tilde{h}[\tilde{X}] \) is closed in \(G \) and the closure \(\overline{\tilde{h}[\tilde{X}]} \) of \(\tilde{h}[X] \) in \(G \), being a closed subset of the compact space \(\tilde{h}[\tilde{X}] \), is compact. \(\square \)

A subset \(F \) of a topological space \(X \) is called functionally closed (or else a zero-set) if \(F = f^{-1}(0) \) for some continuous function \(f : X \to \mathbb{R} \). A paratopological group \(G \) is said to be simply sm-factorizable if for every functionally closed set \(A \) in \(G \), there exists a
continuous homomorphism \(h : G \to H \) onto a separable metrizable paratopological group \(H \) such that \(A = h^{-1}[B] \), for some closed set \(B \subseteq H \) (see [11, Definition 5.6]).

A subspace \(X \) of a topological space \(Y \) is called \(C\)-embedded in \(Y \) if each continuous real-valued function on \(X \) has a continuous extension over \(Y \).

Proposition 3.5. Every regular simply \(\mathrm{sm} \)-factorizable paratopological group \(G \) is \(C\)-embedded in its \(C\)-completion \(C[G] \) provided \(C \) is a subclass of the class of continuous homomorphisms of pseudocompact topological groups to paratopological groups.

Proof. The space \(G \) is Tychonoff, by [2, Corollary 5]. We apply [9, Theorem 4.3] according to which the realcompactification \(\upsilon G \) of the space \(G \) admits the structure of paratopological group containing \(G \) as a dense paratopological subgroup. Since the closure of every pseudocompact subspace in \(\upsilon G \) is compact and every pseudocompact topological group is precompact, the paratopological group \(\upsilon G \) is \(C\)-complete according to Proposition 3.4. Then \(G \subseteq C[G] \subseteq \upsilon G \), which implies that \(G \) is \(C\)-embedded in \(C[G] \), being \(C\)-embedded in \(\upsilon G \). \(\square \)

Now we present a necessary condition on a paratopological group \(G \) for the Hausdorffness of its \(C\)-semicompletion \(C[G] \). In view of the inclusion \(C[G] \subseteq C[G] \), the same condition is necessary for the Hausdorffness of \(C[G] \).

Proposition 3.6. Let \(C \) be a subclass of the class of continuous homomorphisms from precompact topological groups to paratopological groups. If the \(C\)-semicompletion \(C[G] \) of \(G \) is Hausdorff, then for any homomorphism \(h : X \to G \) in \(C \), the closure of \(h[X] \) in \(G \) is a precompact topological group.

Proof. Let \(h : X \to G \) be any homomorphism in the class \(C \). By the definition of a \(C\)-semicompletion, the homomorphism \(h \) has a continuous extension \(\hat{h} : \hat{X} \to C[G] \). The precompactness of \(X \) ensures that \(\hat{X} = \rho X \) is a compact topological group. Assume that the paratopological group \(C[G] \) is Hausdorff. Then the compact subspace \(\hat{h}[\hat{X}] \) of \(C[G] \) is closed. It follows that \(\hat{h}[\hat{X}] \) is a compact topological group that is topologically isomorphic to a quotient group of the compact topological group \(\hat{X} \). Then the closure of \(h[X] \) in \(G \) is a precompact topological group, which is equal to the intersection \(G \cap \hat{h}[\hat{X}] \) of the group \(G \) with the compact topological group \(\hat{h}[\hat{X}] \subseteq C[G] \).

Finally we present an example of a Hausdorff paratopological group \(G \) with a non-Hausdorff \(C\)-semicompletion, where \(C \) is the class of all continuous homomorphisms from sequentially compact topological groups to paratopological groups. As usual, a space \(X \) is sequentially compact if each sequence in \(X \) contains a convergent subsequence. Also, \(X \) is said to be \(\omega\)-bounded if the closure in \(X \) of every countable set is compact.

Example 3.7. Let \(C \) be the class of continuous homomorphisms from sequentially compact topological groups to paratopological groups. There exists a Hausdorff paratopological abelian group \(G \) whose \(C\)-semicompletion \(C[G] \) fails to be a \(T_1 \)-space. In addition, \(G \) contains a subgroup \(H \) such that \(H \) is a sequentially compact \(\omega\)-bounded topological group but its closure in \(G \) is not a group.
Proof. Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ be the torus group with its usual topology and multiplication inherited from the complex plane. So the identity of \mathbb{T} is 1. Denote by Σ the subgroup of the Tychonoff product \mathbb{T}^{ω_1} defined as follows:

$$
\Sigma = \{x \in \mathbb{T}^{\omega_1} : |\{\alpha \in \omega_1 : x_\alpha \neq 1\}| \leq \omega\}.
$$

According to Corollaries 1.6.33 and 1.6.34 of [1], the space Σ is Fréchet-Urysohn and ω-bounded. Hence Σ is sequentially compact.

Take an element $c \in \mathbb{T}^{\omega_1}$ of infinite order such that $\langle c \rangle \cap \Sigma = \{c\}$, where e is the identity element of \mathbb{T}^{ω_1} and $\langle c \rangle$ is the cyclic group generated by c. For every open neighborhood U of e in \mathbb{T}^{ω_1}, we define a subset O_U of $G = \Sigma \times \mathbb{Z}$ by letting

$$
O_U = \bigcup_{n \in \omega} (c^n U \cap \Sigma) \times \{n\}.
$$

Here ω is identified with the subset $\{0, 1, 2, \ldots\}$ of \mathbb{Z}. A routine verification shows that the sets O_U with U as above, constitute a base at the identity $(e, 0) \in G$ for a Hausdorff paratopological group topology on G.

It turns out that the subgroup $H = \Sigma \times \{0\}$ of G has the required properties. Let us show that the closure of H of G is the set $\Sigma \times (-\omega)$, where $-\omega = \{0, -1, -2, \ldots\}$, so this closure is not a subgroup of G. First, we claim that any element $g = (x, k) \in G$ with $k > 0$ is not in the closure of H. Indeed, let U be an arbitrary open neighborhood of e in \mathbb{T}^{ω_1}. Then the set gO_U is an open neighborhood of g in G disjoint from H.

Further, consider an element $g = (x, -k) \in G$, where $x \in \Sigma$ and $k \in \omega$. If $k = 0$, then $g \in \Sigma \times \{0\} = H$. Assume that $k > 0$ and take a basic open neighborhood O_U of the identity in G, where U is an open neighborhood of e in \mathbb{T}^{ω_1}. Then

$$
g \cdot O_U = g \cdot \bigcup_{n \in \omega} ((c^n U \cap \Sigma) \times \{n\}) = \bigcup_{n \in \omega} (xe^n U \cap \Sigma) \times \{n - k\}.
$$

Therefore, $g \cdot O_U \cap H = g \cdot O_U \cap (\Sigma \times \{0\}) = (xe^k U \cap \Sigma) \times \{k\} \neq \emptyset$. Hence g is in the closure of H. We have thus shown that the closure of H in G is the asymmetric subset $\Sigma \times (-\omega)$ of G, which implies the second claim of the example.

The definition of the topology of the paratopological group G implies that the topology of the group coreflection G^\sharp coincides with the product topology on $\Sigma \times \mathbb{Z}$ and then the Raïkov completion ρG^\sharp can be identified with the product $\mathbb{T}^{\omega_1} \times \mathbb{Z}$, where \mathbb{Z} is endowed with the discrete topology. By [3] §2.2], a neighborhood base for the topology of the Raïkov completion \hat{G} at its identity consists of the closures $\overline{O_U}$ of the basic neighborhoods O_U in the product space $\mathbb{T}^{\omega_1} \times \mathbb{Z}$. It is easy to see that for any neighborhood U of e in \mathbb{T}^{ω_1}, the closure $\overline{O_U}$ of $O_U = \bigcup_{n \in \omega} (c^n U \cap \Sigma) \times \{n\}$ coincides with the set $\bigcup_{n \in \omega} (c^n U) \times \{n\}$. We see, therefore, that each neighborhood of the identity in \hat{G} contains the point $(c, 1)$, which means that the Raïkov completion \hat{G} of G does not satisfy the T_1 separation axiom.

It remains to prove that \hat{G} is the C-semicompletion of G. Since the subgroup Σ of \mathbb{T}^{ω_1} is sequentially compact, the continuous homomorphism

$$
h : \Sigma \to \Sigma \times \{0\} \subseteq G, \quad h : x \mapsto \langle x, 0 \rangle,
$$

...
extends to a continuous homomorphism $\bar{h}: T^{ω_1} \to \mathcal{C}(G) \subseteq \mathcal{G}$. Since $T^{ω_1}$ is a topological group, the homomorphism \bar{h} remains continuous with respect to the topology of the Raǐkov completion $\rho G^♯ = T^{ω_1} \times \mathbb{Z}$ of the topological group $G^♯$. Now the compactness of $T^{ω_1}$ implies that $T^{ω_1} \times \{0\} = \bar{h}|T^{ω_1}] \subseteq \mathcal{C}(G)$ and, hence, $\mathcal{C}(G) = \mathcal{G}$. □

References

[1] Alexander Arhangel’skii, Mikhail Tkachenko, Topological groups and related structures, Atlantis Press, Paris; World Sci. Publ., NJ, 2008.

[2] Taras Banakh, Alex Ravsky, Each regular paratopological group is completely regular, Proc. Amer. Math. Soc. 145:3 (2017), 1373–1382.

[3] Taras Banakh, Alex Ravsky, On feebly compact paratopological groups, Topol. Appl. 284 (2020) 107363.

[4] Josefa Marín, Salvador Romaguera, A bitopological view of quasi-topological groups, Indian J. Pure Appl. Math. 27:4 (1996), 393–405.

[5] Katsumi Numakura, On bicompact semigroups, Math. J. Okayama Univ. 1 (1952), 99–108.

[6] Manuel Sanchis, Mikhail Tkachenko, Completions of paratopological groups and bounded sets, Monatsh. Math. 183 (2017), 699–721.

[7] Mikhail Tkachenko, Embedding paratopological groups into topological products, Topol. Appl. 156 (2009), 1298–1305.

[8] Mikhail Tkachenko, Pseudocompact Topological groups, Section 2 in: M. Hrušák, Á. Tamariz-Mascarúa, M. Tkachenko (Eds.), Pseudocompact Topological Spaces, Developments in Mathematics, vol. 55. Springer, Cham, 2018.

[9] Li-Hong Xie, Mikhail Tkachenko, Simply sm-factorizable (para)topological groups and their completions, Monatsh. Math. 193 (2020), 507–529.

T.Banakh: Ivan Franko National University of Lviv (Ukraine) and Jan Kochanowski University in Kielce (Poland)
Email address: t.o.banakh@gmail.com

M.Tkachenko: Department of Mathematics, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340, Iztapalapa, Mexico City, Mexico
Email address: mich@xanum.uam.mx