Resuscitative Endovascular Balloon Occlusion of the Aorta for Hemorrhagic Shock Due to a Gastric Ulcer: A Case Report

Shigeto ISHIKAWA*, Masao NARITA, Makiko TAMUNE, Koki UMEDA, Michiaki KAKU and Toshihiko MAYUMI

The Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Japan. Yahatanishi-ku, Kitakyushu 807-8555, Japan

Abstract: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an adjunct procedure designed to sustain the circulation until definitive hemostasis is obtained. The device is indicated in trauma patients with abdominal trauma and/or pelvic fractures, but there is limited evidence for its use in gastrointestinal bleeding. A 76-year-old woman was admitted to the emergency department of our hospital because of shock, manifesting as hematemesis. We performed emergency endoscopy and detected active bleeding from a gastric ulcer. Achieving hemostasis was difficult, and she experienced shock again during the procedure, leading to cardiopulmonary arrest. REBOA was performed after the return of spontaneous circulation because she continued to be in a state of shock. Her blood pressure rose, and endoscopic hemostasis was continued with balloon inflation, but it didn’t stop the bleeding completely, so we shifted to emergency laparotomy and performed suture hemostasis. The patient developed no postoperative complications and was transferred to another hospital. REBOA can be effective at improving the hemodynamic status in patients with uncontrollable gastrointestinal bleeding.

Keywords: endoscopy, gastrointestinal bleeding, hemorrhagic shock, hemostasis, resuscitative endovascular balloon occlusion of the aorta.

Introduction

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an effective resuscitation option for hemorrhagic shock due to severe trauma, pelvic fractures, and obstetric diseases. There are only a few reports on the presence of gastrointestinal bleeding, but we successfully performed emergency open surgical hemostasis with REBOA to rescue a patient who had experienced shock and cardiopulmonary arrest due to gastric ulcer bleeding. Here, we report the case and review the relevant literature.

Case presentation

A 76-year-old woman was admitted to our hospital because of hematemesis (Figure 1). The patient was undergoing chemoradiotherapy for extramammary Paget’s disease. Her blood pressure was 77/40 mmHg and heart rate was 125 beats/min on arrival at our hospital. Massive fluid replacement therapy aided in maintaining her blood pressure, and emergency endoscopy was performed. Upper endoscopy revealed bleeding from a gastric ulcer in the upper posterior wall with exposed blood vessels (Figure 2). The bleeding could not be stopped with endoscopic treatment with hemo-
clipping, and the patient became hypotensive during endoscopic hemostasis. She had cardiopulmonary arrest, despite rapid resuscitation with blood transfusion.

Although spontaneous circulation immediately returned after 6 min of cardiopulmonary cerebral resuscitation, she experienced shock again. We immediately inserted a 7-Fr Rescue Balloon®-ER (Tokai Medical Products, Aichi, Japan). The REBOA catheter was inserted 45 cm into the femoral artery. Since the procedure was performed in the endoscopy room, it was placed into zone I under non-fluoroscopy. After we inflated the balloon, she recovered from the shock and her blood pressure rose to 128 mmHg. Endoscopic hemostasis was continued, but it was difficult to stop the bleeding and we decided on emergency open surgical hemostasis.

Surgical Findings: A 4-cm-long incision was created in the anterior gastric wall under the upper abdominal midline incision. A large amount of coagulated blood was aspirated. Sustained hemorrhage was observed in the exposed blood vessels. We sutured the incision and stopped the bleeding. The incision was closed with an Albert–Lembert suture (operation time: 1 h 58 min; bleeding, 665 g).

Postoperatively, she was transferred to the intensive care unit. She was extubated on postoperative day 1 and moved to the general ward on postoperative day 2. She was transferred to a rehabilitation hospital on postoperative day 10 without complications.

Discussion

Resuscitative endovascular balloon occlusion of the aorta (REBOA) was first described by Hughes CW in 1954, when it was used as a tamponade device for three wounded soldiers experiencing intra-abdominal hemorrhage during the Korean War [1]. The device is currently indicated in trauma patients with abdominal trauma and/or pelvic fractures. There is little evidence that REBOA can be used for gastrointestinal bleeding. REBOA increases coronary and cerebral blood flow, prevents circulatory collapse at the time of laparotomy, and secures the visual field intraoperatively [2].

There are very few reports in which REBOA was used for gastrointestinal bleeding. A literature search of the PubMed and Japan Centra Revuo Medicina Web databases using the keywords “intra-aortic balloon occlusion” OR “resuscitative endovascular balloon occlusion of the aorta” AND “gastrointestinal bleeding” yielded 14 case reports (Table 1). Although the details are unknown, seven cases were reported by Matsuura et al, and three cases were reported by Hoehn et al [3–11]. In our case, we switched to open surgical hemostasis with REBOA when we encountered difficulties in performing hemostasis. According to the reported cases, although blood pressure increases
after performing REBOA, there are very few cases of complete hemostasis using endoscopy. In most cases, progression to surgery or interventional radiology was noted.

Several complications are associated with REBOA. Prolonged ballooning may result in organ ischemia and lower limb ischemia. Avaro et al reported that a 40-min endovascular aortic occlusion procedure performed once was safe [12]. In our case, the total interruption time was 71 min, including the time for preparing and moving the patient to the operating room. There were no complications such as organ ischemia. The total inflation time was successfully extended, with a few minutes of deflation every 20 min and partial occlusion of the aorta arranging the infusion volume to 10–20 ml.

The risk of ischemia can be reduced by reducing the sheath size at the time of REBOA insertion relative to the diameter of the vessel [13]. In most cases, REBOA interventions are performed using a 12- or 14-Fr sheath, but 7-Fr sheaths for REBOA are currently available and frequently used in Japan.

The other complications include aortic damage and extravasation by catheters [14], stenosis of the arteries at the insertion site, and arterial thrombosis [15]. In emergency cases like ours, the procedure should be performed carefully if the balloon catheter is inserted without radiological assistance.

There is limited evidence of the use of REBOA for gastrointestinal bleeding. In cases in which endoscopic hemostasis is difficult or the blood pressure is uncontrollable, despite performing massive blood transfusion, REBOA may be useful as bridging therapy to interventional radiology and surgery.

Table 1. Literature review of the cases of REBOA used for gastrointestinal bleeding

Author	Year of Publication	Age	Sex	Diagnosis	Total occlusion time (min)	Hemodynamics (SBP)	complications	Definitive hemostatic control	Outcome
Low et al [3]	1986	NA	NA	mesenteric thrombosis	NA	improved	NA	NA	Dead
Karkos et al [4]	2001	36	female	duodenum ulcer	30	7 → 140mmHg	none	surgery	Alive
Hill et al [5]	2010	9	female	aortoesophageal fistula	NA	improved	none	stent graft	Alive
Shigesato et al [6]	2015	79	female	duodenum ulcer	150	4 → 240mmHg	none	surgery	Alive
Lee et al [7]	2016	53	male	Diulaofy ulcer Duodenal varix	15	5 → 108mmHg	none	IVR	Dead
Sano et al [8]	2016	69	male	Gastric ulcer	57	60 → 97mmHg	none	endoscopy	Alive
Sano et al [8]	2016	36	male	Gastric ulcer	20	90 → 111mmHg	none	endoscopy	Alive
Sano et al [8]	2016	83	male	Duodenum ulcer	140	9 → 206mmHg	none	endoscopy	Alive
Sano et al [8]	2016	64	male	Anastomotic bleeding	54	54 → 74mmHg	none	angioembolization	Alive
Sano et al [8]	2016	78	male	Duodenum ulcer	145	41 → 82mmHg	none	angioembolization (failed endoscopy)	Died<24h
Sano et al [8]	2016	69	male	Left gastric artery aneurysm	95	63 → 112mmHg	none	angioembolization (failed endoscopy)	Alive
Sano et al [8]	2016	50	male	Duodenum ulcer	50	6 → 140mmHg	none	angioembolization (failed endoscopy)	Alive
Sano et al [8]	2016	79	male	Esophageal cancer Failure	NA	NA	none	angioembolization	Died<24h
Hara et al [11]	2020	62	male	Gastric ulcer	NA	NA	none	endoscopy	Alive
Present case	2021	76	female	Gastric ulcer	71	0 → 128mmHg	none	surgery	Alive

Definitive hemostatic control. Transition to Interventional radiology (IVR) and surgery in almost all cases. Systolic blood pressure (SBP) rose after Resuscitative endovascular balloon occlusion of the aorta (REBOA) insertion in all cases.
Conclusions

We experienced a case of emergency laparotomy with REBOA for hemorrhagic shock in a gastric ulcer. REBOA may aid in controlling gastrointestinal bleeding when endoscopic hemostasis is difficult or hemorrhagic shock persists.

Conflict of Interest
None.

References
1. Hughes CW (1954): Use of an intra-aortic balloon catheter tamponade for controlling intra-abdominal hemorrhage in man. Surgery 36(1): 65–68
2. Kako H, Tsubouchi H, Nishida O et al (2008): A successful case of hemorrhagic shock due to a penetrating abdominal wound treated by intra-aortic balloon occlusion (IABO). J Jpn Soc Intensive Care Med 15(2): 219–222
3. Low RB, Longmore W, Rubinstein R, Flores L & Wolvek S (1986): Preliminary report on the use of the Percluder occluding aortic balloon in human beings. Ann Emerg Med 15(12): 1466–1469
4. Karkos CD, Bruce IA & Lambert ME (2001): Use of the intra-aortic balloon pump to stop gastrointestinal bleeding. Ann Emerg Med 38(3): 328–331
5. Hill SJ, Zarroug AE, Ricketts RR & Veeraswamy R (2010): Bedside placement of an aortic occlusion balloon to control a ruptured aorto-esophageal fistula in a small child. Ann Vasc Surg 24(6): 822.e7–822.e9
6. Shigesato S, Shimizu T, Kittaka T & Akimoto H (2015): Intra-aortic balloon occlusion catheter for treating hemorrhagic shock after massive duodenal ulcer bleeding. Am J Emerg Med 33(3): 473.e1–473.e2
7. Lee J, Kim K, Jo YH et al (2016): Use of resuscitative endovascular balloon occlusion of the aorta in a patient with gastrointestinal bleeding. Clin Exp Emerg Med 3(1): 55–58
8. Sano H, Tsurukiri J, Hoshiai A, Oomura T, Tanaka Y & Ohta S (2016): Resuscitative endovascular balloon occlusion of the aorta for uncontrollable nonvariceal upper gastrointestinal bleeding. World J Emerg Surg 11: 20
9. Matsumura Y, Matsumoto J, Idoguchi K et al (2018): Non-traumatic hemorrhage is controlled with REBOA in acute phase then mortality increases gradually by non-hemorrhagic causes: DIRECT-IABO registry in Japan. Eur J Trauma Emerg Surg 44(4): 503–509
10. Hoehn MR, Hansraj NZ, Pasley AM et al (2019): Resuscitative endovascular balloon occlusion of the aorta for non-traumatic intra-abdominal hemorrhage. Eur J Trauma Emerg Surg 45(4): 713–718
11. Hara K, Toba T, Iwata S et al (2020): A case of hemorrhagic gastric ulcer treated by endoscopic hemostasis with IABO. Prog Dig Endosc 97(1): 66–68
12. Avaro JP, Mardelle V, Roch A et al (2011): Forty-minute endovascular aortic occlusion increases survival in an experimental model of uncontrolled hemorrhagic shock caused by abdominal trauma. J Trauma 71(3): 720–726
13. Okada Y, Narumiya H, Ishi W & Ryoji I (2016): Lower limb ischemia caused by resuscitative balloon occlusion of aorta. Surg Case Rep 2: 130
14. Gupta BK, Khaneja SC, Flores L, Eastlick L, Longmore W & Shaftan GW (1989): The role of intra-aortic balloon occlusion in penetrating abdominal trauma. J Trauma 29(6): 861–865
15. Greenberg JI, Suliman A, Iranpour P & Angle N (2007): Prophylactic balloon occlusion of the internal iliac arteries to treat abnormal placentaion: a cautionary case. Am J Obstet Gynecol 197(5): 470.e1–470.e4

J UOEH 43(3): 363–366 (2021)