Toward Measuring the Scaling of Genetic Programming

Mike Stimpson

January 12, 2013

Abstract

Several genetic programming systems are created, each solving a different problem. In these systems, the median number of generations \(G \) needed to evolve a working program is measured. The behavior of \(G \) is observed as the difficulty of the problem is increased. In these systems, the density \(D \) of working programs in the universe of all possible programs is measured. The relationship \(G \sim \frac{1}{\sqrt{D}} \) is observed to approximately hold for two program-like systems. For parallel systems (systems that look like several independent programs evolving in parallel), the relation \(G \sim n \ln n \) is observed to approximately hold. Finally, systems that are anti-parallel are considered.

1 INTRODUCTION

Most genetic programming experiments appear to evolve solutions to very small problems - small in terms of program size and/or the number of variables used. For example, people have evolved sorting programs. Nobody has evolved an operating system, a database, or a working air-traffic control system for the United States.

It seems, then, that genetic programming doesn’t scale well to larger, more difficult problems. But how do you measure how large or how difficult a problem is?

My initial approach was to keep the problem constant, and vary the set of statements that programs were implemented in. (It is a common observation that it is more difficult to write programs in a low-level language than in a high-level one. That is, the same problem is “harder” or “more complicated” when written in a low-level language, and the source code for the program to solve the problem is larger.) The difference in how many generations it took to evolve a working program would then be entirely due to the change of difficulty of implementing the program in the statement set, because the problem would be constant. This approach was used for the first two systems. As research progressed, it became apparent that other, sometimes system-specific parameters gave more precise control over the difficulty of the problem.

The rest of this paper is organized as follows: Section 2 describes the first system. Section 3 presents the results in the form of a number of datasets, each of which contains only one
varying parameter. Section 4 demonstrates the relationship between the density of working programs and the median number of generations needed to evolve a working program. Section 5 describes a second system that exhibits similar scaling behavior. Section 6 describes two parallel systems - systems that have multiple dimensions, where each dimension can be optimized independently. Section 7 describes three anti-parallel systems - systems that have multiple dimensions, but none of the dimensions can be optimized independently. Section 8 presents some conclusions, and section 9 presents some open questions.

2 THE FIRST SYSTEM: LINEAR PROGRAMS, SORTING INTEGERS

I chose sorting a list of integers as the first problem.

This system had a fixed number \(v \) of writable variables, numbered 1 through \(v \). ("Fixed" here means that it did not evolve; however, it could be changed between runs via a command-line parameter.) It also contained two read-only “variables”. Variable 0 always contained 0, and variable \(v + 1 \) always contained the number of integers in the list being sorted.

A program consisted of a series of statements. Within one run, all programs of all generations had the same length.

The initial programs contained random statements. The default population size was 20 programs. The most fit programs (default 4) were chosen to produce the next generation. If there was a tie among programs for which was most fit (or, more importantly, 4th-most-fit), a winner was randomly selected from the tied programs.

Fitness was tested by having each program attempt to sort three lists of numbers, which respectively contained 10, 30 and 50 values. The lists contained the values from 1 to the size of the list, in random order. After a program attempted to sort a list, the forward distance was computed as follows: For each location in the list, the absolute value was taken of the difference between the value at that location in the list as sorted by the program, and the value that would be at that location if the list were perfectly sorted. A perfectly sorted list therefore had a forward distance of zero. The reverse distance was identical, except that the "perfectly sorted" list was replaced by one that was perfectly sorted in reverse order. In general, the forward and backward distances were larger for the longer lists. To address this, a normalized metric was created for each list, which was the reverse distance minus the forward distance, divided by the sum of the forward and reverse distances. This evaluated to 1 for a perfectly sorted list, and to \(-1\) for a list that was perfectly sorted in reverse. Finally, the program’s fitness function was the average of the normalized metrics for the three lists.

A program was considered to be terminated when the last statement was executed, if the last statement was not a jump, or when a jump was executed to one past the last statement. (This is equivalent to saying that all programs had an End as the assumed last statement, and the End could not mutate.) If the program executed 10 times as many statements as were required for a bubble sort for the same list, the program was considered to be in an infinite loop, and terminated. No fitness penalty was imposed for this condition.
Cross-breeding was done by choosing two programs, randomly choosing a location within the list of statements of the programs (the same location for both), cutting each program into two pieces at that location, and swapping the pieces to create two child programs. This ensured that the children were the same length as the parents. Also, during this process, a statement in a child program could randomly mutate into another statement with some probability (default 0.2).

Programs were composed of statements (instructions) that were members of a set of statements.

Statement set 1 contained two statements: `CompareSwap` (compare two numbers in the list, and swap them if they are out of order), and `For` (a C-style for loop with a loop variable, a variable from which to initialize the loop variable, and a limit variable to compare the loop variable to). Programs with this statement set defaulted to 5 statements long, even though a bubble sort can be written with three such statements (two `For` statements and one `CompareSwap` statement). This “slack” in the number of statements gave more rapid evolution than a length that had no more statements than were absolutely necessary.

Statement set 2 contained `IfVarLess` (if the value in one register is less than the value in another register, execute the next statement), `IncrementVar` (increment a register), `AssignVar` (copy the value from one register to another), `GoTo`, and `CompareSwap`. With this statement set, I could write a bubble sort in 11 statements, but programs created from statement set 2 evolved better with 25 statements per program.

Statement set 3 contained `IfVarLess`, `IncrementVar`, `AssignVar`, `GoTo`, `IfListLess` (if the list entry at the index contained in the first variable is less than the list entry at the index contained in the second variable, execute the next statement), and `Swap` (an unconditional swap). With this statement set, I could write a bubble sort in 12 statements, but programs created from statement set 3 evolved better with 30 statements per program.

The unsorted lists of numbers were randomly created. New lists were created for each generation. (If the same lists were used for all generations, statement set 2 would sometimes be unable to evolve a working program.)

An evolution started with a random collection of programs, and proceeded until a program evolved that worked. An evolution was characterized by the number of generations required to evolve a working program. However, since evolution is a random process, a repeat of the evolution would take a completely different number of generations.

A run was a number of evolutions, all with the same statement set and the same parameters. It was characterized by the median of the number of generations required for each evolution in the run. (The distribution of the number of generations had a very long tail. The presence or absence of one anomalous evolution could significantly shift the average, so the median was the appropriate choice here.)

For statement set 1, runs consisted of 1000 evolutions, and the results were quite repeatable (within 10%, and often closer to 2%). For statement sets 2 and 3, runs were reduced to 100 evolutions, because the evolutions took far longer (both because it took more generations to evolve a solution, and because each program could execute many more statements before it
was declared to be in an infinite loop). Re-runs of statement sets 2 and 3 could give results that differ by as much as 30% from the first run.

I also measured the density of working programs in the universe of all possible programs, by generating a large number of random programs and seeing how many of them worked “as is”, that is, with no evolution. When measuring density for statement set 1, I made sure that the sample was large enough to contain at least 1000 working programs. For statement sets 2 and 3, I only tried for a sample large enough to contain 100 working programs, because otherwise the density run times became extremely long.

3 DATA AND ANALYSIS

Changing number of variables

Statement set 1:

Number of variables	Median generations
2	242
3	341
4	450
5	771.5
7	1238.5
10	2674.5
20	10580

Adding variables increased the size of the solution space. As the solution space got larger (and the number of programs that work increased, too, but not as fast, as we will see in the next section), the number of generations climbed dramatically.

Statement set 2:

Number of variables	Median generations
2	30101
3	39742.5
5	51648.5
7	167621.5
10	152464

As the statements became simpler, the problem became more complex in terms of the solution language, and the number of generations exploded. (Statement set 2 takes 11 statements to write a bubble sort in, versus 3 statements for statement set 1, that is, statement set 2 takes 3.67 times as many statements to implement one particular algorithm to solve this problem. But it took 124 times as many generations to evolve a working program with 2 variables, and 57 times as many generations to evolve one with 10 variables.)
Statement set 3:

Number of variables	Median generations
2	34934
3	53008
5	58697.5
7	83301.5
10	83301.5

This is quite surprising! Even though the problem grew more complex in terms of the statements, the median number of generations went down dramatically, especially with a larger number of variables.

A possible explanation would be the program length. (Statement set 3 defaulted to 30 statements per program, and statement set 2 to 25.) But with 10 variables and 25 statements per program, statement set 2 took 152464 generations, and statement set 3 took 115857. So program length doesn’t seem to be the reason that statement set 2 took more generations than statement set 3.

I see another possible explanation, however: In statement set 2, it was hard to build a loop - it took 5 statements. But one `CompareSwap` could give you, on average, *some* improvement. So a mutation from some other statement to a `CompareSwap` statement could destroy a working (or almost working) loop and actually improve the program’s score. Statement set 1 didn’t have this problem, since loops were only one statement long. Statement set 3 didn’t have this problem, either, since an unconditional `Swap`, on average, would not cause any improvement.

This may not be the correct explanation of this anomaly. But we are going to see in the next section that *something* is very wrong with statement set 2.

Since statement set 2 is somewhat suspect, let us repeat the previous comparison with statement set 3. Statement set 3 takes 12 statements to write a bubble sort in, versus 3 statements for statement set 1, so statement set 3 takes 4 times as many statements to implement one particular algorithm to solve this problem. But it took 144 times as many generations to evolve a working program with 2 variables, and 48 times as many generations to evolve one with 10 variables.

Changing Population Size (number of programs and number of parents)

Statement set 1, 2 variables:

Number of programs	Number of parents	Median generations
20	4	242
40	8	90.5
80	16	18
Statement set 1, 5 variables:

Number of programs	Number of parents	Median generations
20	4	771.5
40	8	384
80	16	156.5
160	32	25

For statement set 1, it seems that doubling the number of programs (and parents) halved the number of generations, as long as the number of generations didn’t get too small. When the number of generations got below about 100 or 200, doubling the number of programs resulted in less than half of the number of generations.

Statement set 2, 2 variables:

Number of programs	Number of parents	Median generations
20	4	33025
40	8	29454.5
80	16	18173
160	32	17886
320	64	7580
640	128	7062.5
1280	256	5544

Doubling the number of programs in statement set 2 seemed to give much less than 50% improvement in the number of generations. The only exception was going from 160 programs to 320, where the number of generations was reduced by 58%.

Changing Program Length

Statement set 1, 2 variables:

Number of statements	Median generations
3	331.5
4	271
5	242
6	240
8	267.5
10	313.5
12	278.5
15	302
20	368
Statement set 1, 3 variables:

Number of statements	Median generations
3	425
4	402.5
5	341
6	282.5
8	312
10	306.5
12	352.5
15	374
20	390.5

Statement set 1, 5 variables:

Number of statements	Median generations
3	976
4	819
5	771.5
6	626.5
8	525
10	557.5
12	604
15	552.5
20	614

Statement set 1, 7 variables:

Number of statements	Median generations
3	1654.5
4	1448
5	1238.5
6	1070
8	891
10	880.5
12	799.5
15	852
20	921
Statement set 1, 10 variables:

Number of statements	Median generations
3	3598.5
4	3032.5
5	2674.5
6	2057
8	1774
10	1569.5
12	1714
15	1677
20	1628.5

Statement set 1, 12 variables:

Number of statements	Median generations
3	5142.5
4	4207.5
5	3480.5
6	3050
8	2730
10	2378
12	2351.5
15	2278.5
20	2219

Here we see that the optimal length of the program increased slowly as the number of variables increased.

4 RELATIONSHIP BETWEEN SOLUTION DENSITY AND NUMBER OF GENERATIONS

By *density*, we mean the fraction of working programs within the universe of all possible programs for that statement set and number of variables.

Density data for statement set 1:

Variables	Density
2	\(1.313 \times 10^{-3}\)
3	\(6.78 \times 10^{-4}\)
5	\(1.911 \times 10^{-4}\)
7	\(7.54 \times 10^{-5}\)
10	\(2.3 \times 10^{-5}\)
20	\(2.11 \times 10^{-6}\)
Statement set 2:

Variables	Density
2	2.59×10^{-6}
3	1.683×10^{-6}
5	1.033×10^{-6}
7	4.96×10^{-7}
10	1.967×10^{-7}

Statement set 3:

Variables	Density
2	3.23×10^{-8}
3	1.867×10^{-8}

(All of the above densities were with the default number of programs, and with the default program length for the statement set.)

Combining these densities with the median number of generations to reach a working program, we observe a pattern: When we hold everything else constant and change the number of variables, the median number of generations needed to evolve a working program is almost proportional to the reciprocal of the square root of the density. That is, if G is the median number of generations and D is the density of working programs, then $K = G \times \sqrt{D}$ is almost constant. This value (K) rises slowly as the number of generations increases and the density decreases.

Statement set 1:

Variables	G	D	K
2	242	1.313×10^{-3}	8.77
3	341	6.78×10^{-4}	8.88
5	771.5	1.911×10^{-4}	10.67
7	1238.5	7.54×10^{-5}	10.75
10	2674.5	2.3×10^{-5}	12.84
20	10580	2.11×10^{-6}	15.37

Statement set 2:

Variables	G	D	K
2	30101	2.59×10^{-6}	48.4
3	39742.5	1.683×10^{-6}	51.6
5	51648.5	1.033×10^{-6}	52.5
7	167621.5	4.96×10^{-7}	118.1
10	152464	1.967×10^{-7}	67.6

Statement set 3:

Variables	G	D	K
2	34934	3.23×10^{-8}	6.28
3	53008	1.867×10^{-8}	7.24

Note how high the K values are for statement set 2 compared to either statement sets 1 or 3. This is why I said that something was wrong with statement set 2.
Statement set 2 didn’t completely follow the pattern. Looking more closely, we see an anomaly: 7 variables required more generations than 10 variables did. I reran both the evolution runs and the densities, and extended it to 12 variables. The new results were:

Variables	G	D	K
2	34501.5	2.35×10^{-6}	52.9
3	56712.5	1.917×10^{-6}	78.5
5	68639.5	8.3×10^{-7}	62.5
7	139623.5	4.87×10^{-7}	97.4
10	194577.5	1.85×10^{-7}	83.7
12	255380	1.31×10^{-7}	92.4

In the repeated run, the anomaly is gone, and the regularity we observed before is seen to approximately hold.

However, the same regularity did not hold for changing the program length. Here, though the density actually increased as the program length increased, the number of generations increased anyway.

Statement set 1, 2 variables:

Statements	G	D	K
3	331.5	5.7×10^{-4}	7.91
4	271	8.86×10^{-4}	8.07
5	242	1.313×10^{-3}	8.77
6	240	1.525×10^{-3}	9.37
10	313.5	2.43×10^{-3}	15.45
20	368	3.74×10^{-3}	22.5

Statement set 1, 7 variables:

Statements	G	D	K
3	1654.5	3.7×10^{-5}	10.06
4	1448	5.5×10^{-5}	10.74
5	1238.5	7.54×10^{-5}	10.75
6	1070	9.52×10^{-5}	10.44
8	891	1.339×10^{-4}	10.31
10	880.5	1.741×10^{-4}	11.62
12	799.5	2.19×10^{-4}	11.83
15	852	2.72×10^{-4}	14.03
20	921	3.59×10^{-4}	17.46

It appears, then, that we can say that $K = G \times \sqrt{D}$ is at best almost constant, but the number of generations could be considerably higher if the program length was not optimal.

Earlier, we saw that the optimal length of program for statement set 1 increased as the number of variables increased. What happens if, for each number of variables, we take the optimal length?
The difficulty was changed by increasing the number of bits, and by increasing the termination condition.

This system presented a new problem when measuring densities, because the universe of all possible programs was not a simple n-dimensional cube as it was in the first system. Instead, due to the variable length of the programs, and the fact that almost all non-leaf nodes took two arguments, there were about twice as many possible programs with 200 nodes (the maximum length for the system) as there were possible programs with 199 nodes. In turn, there were twice as many possible programs with 199 nodes as there were with 198 nodes, and so on. In fact, about half of the programs in the universe of all possible programs had the maximum length.

But the evolved programs had a very different length distribution, with nothing below a length of about 10, then a relatively uniform distribution up to about 50 nodes, then slowly tailing off, with only about 10% (range 0% to about 40%) having a length greater than 100 nodes. As noted in [1], programs of exceptional length rarely contribute much to the solution of a genetic programming problem. In fact, the longer programs had a lower density of working programs than shorter programs did.

Table 1: Properties of the Second System

Variables	Statements	G	D	K
2	6	240	1.493×10^{-3}	9.273
3	6	282.5	8.195×10^{-4}	8.087
5	8	525	3.472×10^{-4}	9.782
7	12	799.5	2.188×10^{-4}	11.826
10	10	1569.5	5.643×10^{-5}	11.79
12	20	2219	7.003×10^{-5}	18.57

5 THE SECOND SYSTEM: TREE-STRUCTURED PROGRAMS, n-BIT PARITY
As an evolution proceeds, the length distribution of the population of programs should become more and more similar to the distribution of working programs, and less and less similar to the distribution of the universe of all possible programs. Given, then, that the universe of all possible programs is structurally very different from both the working programs that are evolved and from the population during an evolution, how can we get meaningful density data? I chose the approach of trying to create self-consistent population distributions - that is, population distributions such that, when populations with that length distribution were evolved, the resulting working programs had the same distribution of lengths. (In practice, this could only be approximately achieved.) If we measure the density of a population of programs with the same length distribution as the working programs, we obtain density data that we can meaningfully combine with the median number of generations, to see if the relationship observed with the first system also holds here. (The alternative - the density data coming from populations that are unlike the population of working programs - clearly is less likely to provide meaningful data.) The same approach - finding self-consistent distributions - was also applied to the number of subroutines, when subroutines were allowed.

Statement set 1

Statement set 1 contained the following node types: **Xor, And, Or, and Not**. Also, there were constant nodes, which contained either 0 or 1. The results for this statement set were:

4 bits, no subroutines:

Termination condition	G	D	K
14	4	3.24×10^{-4}	0.072
16	5	2.1×10^{-4}	0.0725

5 bits, no subroutines:

Termination condition	G	D	K
24	3	4.48×10^{-4}	0.0635
28	12	3.75×10^{-5}	0.0735
32	36	1.971×10^{-5}	0.1598

6 bits, no subroutines:

Termination condition	G	D	K
40	2	5.31×10^{-4}	0.0461
48	11.5	5.07×10^{-5}	0.0819

Termination condition 75% (that is, the termination condition is 24 out of 32 for 5 bits, 48 out of 64 for 6 bits), no subroutines:

Bits	G	D	K
5	3	4.48×10^{-4}	0.0635
6	11.5	5.07×10^{-5}	0.0819
Termination condition 87.5%, no subroutines:

Bits	G	D	K
4	4	3.24×10^−4	0.072
5	12	3.75×10^−5	0.0735

Termination condition 100%, no subroutines:

Bits	G	D	K
4	5	2.1×10^−4	0.0725
5	36	1.971×10^−5	0.1598

4 bits, up to 4 subroutines:

Termination condition	G	D	K
14	5	2.03×10^−4	0.0712
16	6	1.65×10^−4	0.0771

5 bits, up to 4 subroutines:

Termination condition	G	D	K
24	4	3.2×10^−4	0.0716
28	16.5	2.5×10^−5	0.0825
32	32	1.7×10^−5	0.1319

6 bits, up to 4 subroutines:

Termination condition	G	D	K
40	4	3.95×10^−4	0.0795
48	13.5	4.17×10^−5	0.0871

Termination condition 75%, up to 4 subroutines:

Bits	G	D	K
5	4	3.2×10^−4	0.0716
6	13.5	4.167×10^−5	0.0871

Termination condition 87.5% up to 4 subroutines:

Bits	G	D	K
4	5	2.03×10^−4	0.0712
5	16.5	2.5×10^−5	0.0825

Termination condition 100% up to 4 subroutines:

Bits	G	D	K
4	6	1.65×10^−4	0.0771
5	32	1.7×10^−5	0.1319

Statement set 2

Statement set 2 contained the following node types: And, Or, Nand, Nor, and Not, plus the constant nodes. The results were:
4 bits, no subroutines:

Termination condition	G	D	K
10	7	3.67×10^{-5}	0.0424
11	53	1.512×10^{-7}	0.0206

4 bits, up to 4 subroutines:

Termination condition	G	D	K
10	7	2.7×10^{-5}	0.0364
11	66.5	1.09×10^{-7}	0.022

Statement set 3

Statement set 3 contained the following node types: **And**, **Or**, and **Not**, plus the constant nodes. The results were:

4 bits, no subroutines:

Termination condition	G	D	K
10	5	6.63×10^{-8}	0.0407
11	34	2.6×10^{-7}	0.01734

4 bits, up to 4 subroutines:

Termination condition	G	D	K
10	6	5.6×10^{-8}	0.0449
11	30	2.07×10^{-7}	0.01364

Statement set 4

Statement set 4 contained the following node types: **Plus**, **Minus**, **Times**, **Divide**, and **Negate**. The constant nodes could take any integral value from -3 to 3. Note that these operations treat variables as integers, not just as booleans. In particular, **Divide** could throw a runtime exception if the second operand evaluated to 0. If this occurred, the program being executed was terminated and regarded as having gotten the wrong answer for that set of inputs.

The results were:

4 bits, up to 4 subroutines:

Termination condition	G	D	K
10	4	2.94×10^{-4}	0.0686
11	7	8.15×10^{-5}	0.0632
12	89.5	4.79×10^{-7}	0.062

Statement set 5

Statement set 5 contained the following node types: **Plus**, **Minus**, **Times**, **Divide**, **Negate**, **And**, **Or**, and **Not**, plus the constant nodes from -3 to 3. The results were:
Statement sets 2, 3, 4, and 5 seemed to scale better than \(\frac{1}{\sqrt{D}} \), rather than worse. But a look at the evolved programs revealed that in each case, their length distribution departed from the expected length distribution (the distribution that was used to generate the programs). This is not surprising, since the expected length distribution of generated programs was created to match the distribution of working programs shown by statement set 1. Also, statement sets 2 and 4 departed from the expected distribution for the number of subroutines.

I created a new length distribution for statement set 5. I re-ran both the evolutions and the density measurements with this new length distribution, with the following results:

Termination condition	G	D	K
11	5	2.19 \times 10^{-4}	0.074
12	8	6.77 \times 10^{-5}	0.0658
13	32	9.33 \times 10^{-6}	0.0978
14	44	6.03 \times 10^{-6}	0.108
15	209	1.49 \times 10^{-6}	0.255

It must be noted, however, that at higher termination conditions, the length profile of the working programs still did not match the new length profile of the generated programs, so the validity of this data is suspect.

6 PARALLEL SYSTEMS

The first two systems (sorting and parity) are classic computer science problems. In each case, the output is a very complex function of the input. (Actually, in the sorting case, correct output is always the same, but the transformation from input to output is very complex.) For the third system, I chose a very smooth function - an \(n \)-dimensional Gaussian curve, centered at the origin in the \(n \)-dimensional cube which extended over the interval \([-1, 1)\) in each dimension. (The exclusion of 1.0 was an artifact of the means of generating random real numbers; it does not seem possible for it to affect the results.)

“Programs” were really data, represented as an \(n \)-vector lying within the \(n \)-dimensional cube. Obviously, programs were of fixed length. Unlike the previous system, this system (and all subsequent ones) mutated at most one element of the vector.

The first two systems were program-like - the programs looked like statements to be executed. In contrast, the third system was data-like - programs looked like coordinates at which a function was to be evaluated.

A program’s fitness function was \(e^{-r^2} \), where \(r \) was the Euclidean distance from the program’s vector to the origin. If the fitness function was equal to or greater than the termination value, the program was considered to be fully working. (Perfection - a fitness function of 1.0 - was not realistically achievable for this system.)
Unfortunately, sometimes the density became so low that it could not be measured by the standard Monte Carlo method that was used on previous systems (at least not within a reasonable amount of CPU time). However, the density can be calculated. If the termination threshold is \(t \), then all points in the \(n \)-dimensional space that lie inside the sphere with radius \(r = \sqrt{-\ln(t)} \) meet the termination condition. For \(n \) dimensions, the volume \(V \) of the sphere is given by

\[
V = \frac{(2\pi)^{n/2}}{2 \times 4 \times \ldots \times n} r^n \quad \text{for even } n,
\]

and

\[
V = 2^{\frac{n-1}{2}} \frac{(2\pi)^{n/2}}{1 \times 3 \times \ldots \times n} r^n \quad \text{for odd } n.
\]

The volume of the entire space is \(2^n \), since it extends from \(-1\) to 1 in all \(n \) dimensions. The density of working programs is then \(D = \frac{V}{2^n} \). These results use the calculated density exclusively.

Here are the results for this system:

Two dimensions:

Termination condition	\(G \)	\(D \)	\(K \)
0.99	26	7.89 \times 10^{-3}	2.31
0.999	320	7.86 \times 10^{-4}	8.97
0.9999	1036	7.85 \times 10^{-5}	9.18
0.99999	3702	7.85 \times 10^{-6}	10.37
0.999999	14812.5	7.85 \times 10^{-7}	13.13
0.9999999	40284	7.85 \times 10^{-8}	11.29

Four dimensions:

Termination condition	\(G \)	\(D \)	\(K \)
0.99	328.5	3.12 \times 10^{-5}	1.834
0.999	1262.5	3.09 \times 10^{-7}	0.701
0.9999	3968	3.08 \times 10^{-9}	0.22
0.99999	16427	3.08 \times 10^{-11}	0.0912
0.999999	47237.5	3.08 \times 10^{-13}	0.0262
0.9999999	140100	3.08 \times 10^{-15}	0.00778

Six dimensions:

Termination condition	\(G \)	\(D \)	\(K \)
0.8	26	8.97 \times 10^{-4}	0.779
0.9	120.5	9.44 \times 10^{-5}	1.171
0.99	825	8.2 \times 10^{-8}	0.236
0.999	2516	8.09 \times 10^{-11}	0.0226
0.9999	8562	8.08 \times 10^{-14}	2.43 \times 10^{-3}
0.99999	29224.5	8.07 \times 10^{-17}	2.63 \times 10^{-4}
0.999999	86167.5	8.07 \times 10^{-20}	2.45 \times 10^{-5}
0.9999999	276830.5	8.07 \times 10^{-23}	2.49 \times 10^{-6}
Eight dimensions:

Termination condition	G	D	K
0.6	7.5	1.08×10^{-3}	0.246
0.7	50.5	2.57×10^{-4}	0.809
0.8	117.5	3.93×10^{-5}	0.737
0.9	264.5	1.954×10^{-6}	0.37
0.99	1151.5	1.618×10^{-10}	0.01465
0.999	4343.5	1.589×10^{-14}	5.47 $\times 10^{-4}$
0.9999	13637.5	1.586×10^{-18}	1.717 $\times 10^{-5}$
0.99999	42908	1.586×10^{-22}	5.4 $\times 10^{-7}$
0.999999	147670.5	1.586×10^{-26}	1.859 $\times 10^{-8}$
0.9999999	440362.5	1.585×10^{-30}	5.54 $\times 10^{-10}$

Ten dimensions:

Termination condition	G	D	K
0.5	5	3.98×10^{-4}	0.0998
0.6	66.5	8.66×10^{-5}	0.619
0.7	147	1.438×10^{-5}	0.557
0.8	247	1.379×10^{-6}	0.29
0.9	449	3.23×10^{-8}	0.0807
0.99	1983	2.55×10^{-13}	1.002 $\times 10^{-3}$
0.999	6779	2.5×10^{-18}	1.071 $\times 10^{-3}$
0.9999	19896	2.49×10^{-23}	9.93 $\times 10^{-8}$
0.99999	60303	2.49×10^{-28}	9.52 $\times 10^{-10}$
0.999999	195696	2.49×10^{-33}	9.77 $\times 10^{-12}$
0.9999999	631803.5	2.49×10^{-38}	9.97 $\times 10^{-14}$

Obviously, this system did not demonstrate the “slightly worse than $\frac{1}{\sqrt{D}}$” behavior that the first two systems showed!

Other than smoothness, the Gaussian system has another difference from the first two systems: if all but one of the variables are held constant, the result is a one-dimensional Gaussian curve in the remaining variable. Further, the one-dimensional Gaussian curve and the multidimensional Gaussian curve are centered at the same value of the non-constant variable. This means that the Gaussian system can optimize each variable independently. In general, the first two systems could not do this.

The Gaussian system can therefore be considered a parallel system, in that it is conducting n essentially independent evolutions in parallel, with the results all multiplied together into one fitness function.

To explore such systems further, I built a second parallel system. The “program” for this system consisted of n variables, each of which could range from 1 to p. The fitness function was the number of variables that had value p (hence this system may be called the “highest” system). No termination condition was used for this system; an n-dimensional program had to have a fitness function equal to n to be considered working. The density is therefore $D = \frac{1}{p^n}$.
Here are the results for this system:

Two dimensions:

p	G	D	K
50	459	4.0×10^{-4}	9.18
100	1069.5	1.0×10^{-4}	10.7
200	2390.5	2.5×10^{-5}	11.95
500	5444.5	4.0×10^{-6}	10.89
1000	10124	1.0×10^{-6}	10.12
2000	22724.5	2.5×10^{-7}	11.36

Four dimensions:

p	G	D	K
50	1435	1.6×10^{-7}	0.574
100	3121.5	1.0×10^{-8}	0.312
200	7161	6.25×10^{-10}	0.179
500	17504.5	1.6×10^{-11}	0.07
1000	37920.5	1.0×10^{-12}	0.0379
2000	76007.5	6.25×10^{-14}	0.019

Six dimensions:

p	G	D	K
50	2794.5	6.4×10^{-11}	0.0224
100	5805.5	1.0×10^{-12}	5.81 $\times 10^{-3}$
200	12204.5	1.562×10^{-14}	1.524 $\times 10^{-3}$
500	32522	6.4×10^{-17}	2.6 $\times 10^{-4}$
1000	62569.5	1.0×10^{-18}	6.26 $\times 10^{-5}$
2000	136637.5	1.562×10^{-20}	1.707 $\times 10^{-5}$

Eight dimensions:

p	G	D	K
50	3899.5	2.56×10^{-14}	6.24 $\times 10^{-4}$
100	8705.5	1.0×10^{-16}	8.71 $\times 10^{-5}$
200	17692	3.91×10^{-19}	1.106 $\times 10^{-9}$
500	52573.5	2.56×10^{-22}	8.41 $\times 10^{-7}$
1000	93348.5	1.0×10^{-24}	9.33 $\times 10^{-8}$
2000	204464.5	3.91×10^{-27}	1.278 $\times 10^{-8}$

Ten dimensions:

p	G	D	K
50	5511	1.024×10^{-17}	1.764 $\times 10^{-9}$
100	13178	1.0×10^{-20}	1.318 $\times 10^{-9}$
200	26675.5	9.77×10^{-24}	8.34 $\times 10^{-8}$
500	66886	1.024×10^{-27}	2.14 $\times 10^{-9}$
1000	143047	1.0×10^{-30}	1.43 $\times 10^{-10}$
2000	268494	9.77×10^{-34}	8.39 $\times 10^{-12}$
Once again, this system did not demonstrate the “slightly worse than \(\frac{1}{\sqrt{D}} \)” behavior that the first two systems showed. But there is more to see here. Looking just at the median number of generations to evolve a working program, we see that the ratio between the number of generations for \(p = 2000 \) and the number of generations for \(p = 50 \) stayed remarkably consistent as the number of dimensions changed. It looks like \(G \) might be separable into a component that depends on \(p \) and a component that depends on the number of dimensions \((n) \), that is, \(G = f_1(p) \times f_2(n) \), for some \(f_1 \) and \(f_2 \).

Empirically, \(f_2(n) \approx \frac{1}{n' \ln(n')} \), where \(n' = n + 0.6 \).

If all the variation for the number of dimensions is in \(f_2 \), then \(f_1 \) must be the same for all values of \(n \). In particular, it must be the same for \(n = 2 \). So it seems reasonable for \(f_1 \) to depend only on the density for \(n = 2 \). Is \(f_1 \) the familiar “slightly worse than \(\frac{1}{\sqrt{D}} \)” behavior?

Let \(K'(\delta) = \frac{G \times \sqrt{D_2}}{(n+\delta) \ln(n+\delta)} \), where \(D_2 \) is the density for \(n = 2 \). That is, \(\frac{1}{\sqrt{D_2}} \) is a candidate for \(f_2 \). For this system, we get the following results:

Two dimensions:

\(p \)	\(G \)	\(D_2 \)	\(K'(0.6) \)
50	459	\(4.0 \times 10^{-4} \)	3.7
100	1069.5	\(1.0 \times 10^{-4} \)	4.3
200	2390.5	\(2.5 \times 10^{-5} \)	4.81
500	5444.5	\(4.0 \times 10^{-6} \)	4.38
1000	10124	\(1.0 \times 10^{-6} \)	4.08
2000	22724.5	\(2.5 \times 10^{-7} \)	4.57

Four dimensions:

\(p \)	\(G \)	\(D_2 \)	\(K'(0.6) \)
50	1435	\(4.0 \times 10^{-4} \)	4.09
100	3121.5	\(1.0 \times 10^{-4} \)	4.45
200	7161	\(2.5 \times 10^{-5} \)	5.1
500	17504.5	\(4.0 \times 10^{-6} \)	4.99
1000	37920.5	\(1.0 \times 10^{-6} \)	5.4
2000	76007.5	\(2.5 \times 10^{-7} \)	5.41

Six dimensions:

\(p \)	\(G \)	\(D_2 \)	\(K'(0.6) \)
50	2794.5	\(4.0 \times 10^{-4} \)	4.49
100	5805.5	\(1.0 \times 10^{-4} \)	4.66
200	12204.5	\(2.5 \times 10^{-5} \)	4.9
500	32522	\(4.0 \times 10^{-6} \)	5.22
1000	62569.5	\(1.0 \times 10^{-6} \)	5.02
2000	136637.5	\(2.5 \times 10^{-7} \)	5.49
Eight dimensions:

p	G	D_2	$K'(0.6)$
50	3899.5	4.0×10^{-4}	4.21
100	8705.5	1.0×10^{-4}	4.7
200	17692	2.5×10^{-5}	4.78
500	52573.5	4.0×10^{-6}	5.68
1000	93348.5	1.0×10^{-6}	5.04
2000	204464.5	2.5×10^{-7}	5.52

Ten dimensions:

p	G	D_2	$K'(0.6)$
50	5511	4.0×10^{-4}	4.4
100	13178	1.0×10^{-4}	5.27
200	26675.5	2.5×10^{-5}	5.33
500	66886	4.0×10^{-6}	5.35
1000	143047	1.0×10^{-6}	5.72
2000	268494	2.5×10^{-7}	5.36

Turning back to the Gaussian system, we find that it has a good fit with $f_2(n) \approx \frac{1}{n'' \ln(n'')}$, where $n'' = n + 0.05$. We get the following results for the Gaussian system:

Two dimensions:

Termination condition	G	D_2	$K'(0.05)$
0.99	26	7.89×10^{-3}	1.57
0.999	320	7.86×10^{-4}	6.1
0.9999	1036	7.85×10^{-5}	6.24
0.99999	3702	7.85×10^{-6}	7.05
0.999999	14812.5	7.85×10^{-7}	8.92
0.9999999	40284	7.85×10^{-8}	7.67

Four dimensions:

Termination condition	G	D_2	$K'(0.05)$
0.99	328.5	7.89×10^{-3}	5.15
0.999	1262.5	7.86×10^{-4}	6.25
0.9999	3968	7.85×10^{-5}	6.21
0.99999	16427	7.85×10^{-6}	8.13
0.999999	47237.5	7.85×10^{-7}	7.39
0.9999999	140100	7.85×10^{-8}	6.93
Six dimensions:

Termination condition	G	D_2	$K'(0.05)$
0.8	26	0.1753	0.999
0.9	120.5	0.0827	3.18
0.99	825	7.89×10^{-3}	6.73
0.999	2516	7.86×10^{-4}	6.48
0.9999	8562	7.85×10^{-6}	6.97
0.99999	29224.5	7.85×10^{-9}	7.52
0.999999	86167.5	7.85×10^{-7}	7.01
0.9999999	276830.5	7.85×10^{-8}	7.12

Eight dimensions:

Termination condition	G	D_2	$K'(0.05)$
0.6	7.5	0.401	0.283
0.7	50.5	0.28	1.592
0.8	117.5	0.1753	2.93
0.9	264.5	0.0827	4.53
0.99	1151.5	7.89×10^{-3}	6.09
0.999	4343.5	7.86×10^{-3}	7.25
0.9999	13637.5	7.85×10^{-6}	7.2
0.99999	42908	7.85×10^{-6}	7.16
0.999999	147670.5	7.85×10^{-9}	7.79
0.9999999	440362.5	7.85×10^{-8}	7.35

Ten dimensions:

Termination condition	G	D_2	$K'(0.05)$
0.5	5	0.544	0.1591
0.6	66.5	0.401	1.816
0.7	147	0.28	3.35
0.8	247	0.1753	4.46
0.9	449	0.0827	5.57
0.99	1983	7.89×10^{-3}	7.6
0.999	6779	7.86×10^{-4}	8.19
0.9999	19896	7.85×10^{-6}	7.6
0.99999	60303	7.85×10^{-6}	7.29
0.999999	195696	7.85×10^{-6}	7.48
0.9999999	631803.5	7.85×10^{-8}	7.63

These results are similar to those of the “highest” system, with the K' values relatively flat for the same termination condition, independent of dimension. Also, as the problem gets harder, K' exhibits the “slightly worse than $\frac{1}{\sqrt{D}}$” behavior - though it seems steeper than the first two systems for low termination conditions and flatter for high termination conditions.

At higher termination conditions, the usual “slightly worse than $\frac{1}{\sqrt{D}}$” behavior is clearer if we use the density from $n = 1$ (one dimension) rather than from $n = 2$. But the argument for why we can use the density from $n = 2$ may not be valid when applied to $n = 1$, since
a system with only one dimension can only evolve by mutation. While I suspect that this makes no difference for the density data, it seems safer to use the data from \(n = 2 \).

7 ANTI-PARALLEL (TWISTED) SYSTEMS

A parallel system is one where the fitness function can be optimized for each dimension independently. In contrast, a system where the fitness function must be optimized for all dimensions simultaneously may be called anti-parallel. (Attempting to optimize just one variable gives the wrong answer for that variable.) I built three such systems.

The “binary” system had \(n \) dimensions and \(b \) bits. Each dimension had an integer variable, with a range from 1 to \(2^b - 1 \). (In practice, it was implemented with the range from 0 to \(2^b - 2 \), to be able to use a 0-based lookup table for the fitness.) The fitness value of each dimension was the value of that dimension’s variable, reduced to just the least set bit. For example, with \(b = 4 \), the values were \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}. The value of the fitness function was the sum of the fitness values for each dimension. This system is a parallel system.

To make a parallel system into an anti-parallel system, we perform a rotation of axes. Given that in the binary system, the variables must be integers in the correct range, I could not use the obvious transformation, which is \(u = \frac{(x+y)}{\sqrt{2}} \), \(v = \frac{(x-y)}{\sqrt{2}} \). Instead, I used \(u = \frac{(x+y)}{2} \) (integer division, that is, discarding any remainder), and \(v = |x-y| \). (This is another place where using a range that starts at 0 helped the implementation.) I paired the dimensions to do this; this required that \(n \) be even. This means that this system was only anti-parallel for pairs of dimensions. As the investigation of this system did not proceed beyond \(n = 2 \), this was not an issue.

This system could not evolve. If it didn’t have a working program in the first generation, it almost always got permanently stuck. With 20 programs, about \(\frac{1}{3} \) of the time it could not evolve \(n = 2, b = 3 \) with a termination value of 8, even though there were only 49 programs possible with those values, and two of them met the termination criterion! (“Permanently stuck” is impossible to prove. However, it got stuck with the best program having a fitness value of 6 for 100,000,000 generations; at that point the evolution was terminated. That was as close to “permanent” as I had patience for.)

It is easy to see why the twisted binary system got stuck. With two dimensions and three bits, to get a fitness function of 6, \((x, y)\) must be one of \((0, 3), (3, 0), (3, 4), (4, 3), (1, 6), \) or \((6, 1)\). For a fitness function of 8, \((x, y)\) must be \((2, 5)\) or \((5, 2)\). (Note that these are 0-based \(x \) and \(y \), not 1-based.) If the entire population reaches a fitness function of 6, the evolution is stuck. It must change both \(x \) and \(y \) to reach a fitness function of 8, it cannot get either \(x \) or \(y \) to the right value by any combination of parents, it can only mutate \(x \) or \(y \) (but not both) in one generation, and the result of mutating either \(x \) or \(y \) is a less-fit offspring. Also, a fitness value of 7 is not possible in this system, so there is no way to reach 8 by taking two steps.

The only possible way forward would be for there to be at least seven programs with a mutation in the previous generation (probability \(10^{-2} \) for each one, so \(10^{-14} \) for all seven,
but it could be any seven out of the population of 20, which gives us 77520 ways that it could happen, for a total probability of 7.752×10^{-10}). Then all seven mutated programs would have to be chosen for the competition for a parent of a program in the next generation (one out of 77520, but there are 40 such competitions, so the probability is $\frac{40}{77520}$ - though this is not quite exact). Then the mutation would have to be passed on to the next generation (probability 0.5). Then there would have to be another mutation in the child program (probability 0.01). Finally, the mutations would have to give rise to the right values so that the resulting fitness function was 8 (probability $\frac{2}{7}$ for the first mutation, and $\frac{1}{7}$ for the second). This combination of events is immensely unlikely (total probability 8.16×10^{-17} per generation).

The second anti-parallel system I build was based on the “linear” system. This system had n dimensions. Each dimension had a real variable, in the range $[-1.0, 1.0)$. The fitness function was 1, minus the sum of the absolute values of the variable for each dimension. This “linear” system was a parallel system.

To convert the linear system into an anti-parallel system, I rotated it through 45 degrees in each of the Euler angles. I then scaled the rotated variables by different amounts: the first rotated variable was scaled by 1.0, the second by 1.5, the third by 1.5^2, and so on. The fitness function was 1, minus the sum of the absolute values of the rotated and scaled variables. This created, essentially, a diagonal “ridge”, with the fitness function falling away more steeply in other directions. This “twisted linear” system was anti-parallel.

It may be easier to see why this system is anti-parallel in the two-dimensional case. Holding one variable constant defines a line; optimizing the other variable means finding the highest point on the line, which is where the line intersects the ridge. But because the line is parallel to one of the axes and the ridge is diagonal, this gives a value for the optimized variable that is different from the coordinate of the peak (the highest point on the ridge).

This system could barely evolve at all. Starting at two dimensions with termination value 0.7, it occasionally took half a million generations to evolve a solution, even though the solution has a density that was greater than 1%. At termination value 0.8, it once only made it to fitness $= 0.67$ in 112 million generations. The evolution was terminated at that point. This was slightly better than the twisted binary system, but it still essentially could not evolve anything more than the most trivial problems. This happens because of the shape of the fitness function. The absolute values cause a discontinuous first derivative at the ridge. From a point on the ridge, moving in any direction parallel to an axis (that is, changing any one variable) reduces the fitness function. Also, from a point near the ridge, the only way to improve the fitness function is to move closer to the ridge.

The third anti-parallel system was created by applying the rotations and scaling of the twisted linear system to the Gaussian system. The fitness function was e^{-R^2}, where R was the Euclidean length of the vector composed of the rotated and scaled variables.

Like the Gaussian system, the density of this system was easy to calculate. It was the same as the density of the Gaussian system, except for the scaling. These results use the calculated density exclusively.

Here are the results for this system:
Two dimensions:

Termination condition	G	D	K	$K'(0.0)$	$K'(1.0)$
0.95	2	0.0269	0.328	0.688	0.289
0.99	10	5.26×10^{-3}	0.725	2.28	0.961

Four dimensions:

Termination condition	G	D	K	$K'(0.0)$	$K'(1.0)$
0.5	2	0.01301	0.228	0.329	0.227
0.6	3	7.07×10^{-3}	0.252	0.457	0.315
0.7	47.5	3.44×10^{-3}	2.79	6.62	4.56
0.8	99	1.348×10^{-4}	3.64	12.27	8.46
0.9	299.5	3.01×10^{-4}	5.19	30.8	21.2
0.95	637	7.12×10^{-3}	5.38	54.7	37.7
0.99	1595	2.74×10^{-6}	2.64	91.1	62.8

Six dimensions:

Termination condition	G	D	K	$K'(0.0)$	$K'(1.0)$
0.5	614.5	6.14×10^{-5}	4.82	52.2	41.2
0.6	972	2.46×10^{-8}	4.82	76.4	60.3
0.7	1341.5	8.37×10^{-6}	3.88	96.4	76.1
0.8	1825.5	2.05×10^{-6}	2.61	116.7	92.1
0.9	4782.5	2.16×10^{-6}	2.22	253	200
0.95	7144.5	2.49×10^{-8}	1.127	316	250
0.99	23444.5	1.872×10^{-10}	0.321	690	545

Eight dimensions:

Termination condition	G	D	K	$K'(0.0)$	$K'(1.0)$
0.5	10868.5	4.29×10^{-8}	2.25	596	501
0.6	12296	1.267×10^{-8}	1.384	625	526
0.7	22758	3.01×10^{-9}	1.249	1057	889
0.8	39954.5	4.61×10^{-10}	0.858	1651	1389
0.9	70855.5	2.29×10^{-11}	0.339	2430	2040
0.95	183781	1.288×10^{-12}	0.208	5260	4420
0.99	580747.5	1.898×10^{-15}	0.0253	11050	9300

Ten dimensions:

Termination condition	G	D	K	$K'(0.0)$	$K'(1.0)$
0.5	215107.5	4.75×10^{-12}	0.469	8520	7440
0.6	319606.5	1.032×10^{-12}	0.325	11730	10240
0.7	468323	1.712×10^{-13}	0.1938	15720	13720
0.8	947594.5	1.641×10^{-14}	0.1214	28300	24700
0.9	2717644	3.85×10^{-16}	0.0533	67200	58700
0.95	4389708.5	1.053×10^{-17}	0.01425	90700	79200
0.99	14162811.5	3.04×10^{-21}	7.81×10^{-4}	194800	170000

This system clearly scaled better than the first two systems. Even without knowing the appropriate value of δ to use, we can see that this system scaled worse than a parallel system.
Finally, it scaled much better than the twisted binary and twisted linear systems. This is because the twisted Gaussian system has continuous derivatives. The gradient is nonzero everywhere except at the peak. This means that, unlike the twisted linear and twisted binary systems, the twisted Gaussian system could always make progress by changing only one variable.

8 CONCLUSIONS

Genetic programming scales very well for data-like problems with continuous first derivatives (except for the problem of getting stuck on a sub-peak). But for program-like problems, genetic programming doesn’t seem to scale very well to larger, more difficult problems. As the size of the solution space increases, the number of working programs also increases, but more slowly. So the density of working programs decreases, and the number of generations required to evolve a working program increases.

For example, let us suppose that we have a simple programming language in which there are only ten possible statements - not types of statements, but ten statements total. Also, let us suppose that the number of working programs increases as the square root of the total number of possible programs. (My first system was rather different, in that the number of possible statements increased as the number of variables increased. But using my system as a rough guide, for a program that is 3 statements long - the minimum needed for statement set 1 - the density of solutions D was proportional to $\frac{1}{\sqrt{V}}$ for large V, where V is the number of variables. The size of the solution space was proportional to V^9, again for large V. So for large V, the number of working programs must be proportional to V^5. This is slightly more than the square root of the total number of possible programs.)

Then, in our hypothetical example, if the program is 20 statements long, the total solution space is 10^{20}, there are about 10^{10} possible working programs, and the density of working programs is 10^{-10}. The number of generations needed to evolve a solution is of the order of 10^5, which is quite doable. But if the problem requires a program that is only twice as long (40 statements), there are 10^{40} possible programs, only about 10^{20} of them work, and the number of generations is of the order 10^{10}. At this point, you need either a cluster of machines, or an uninterruptible power supply and some patience. Make the problem harder again, so that the program needs 80 statements, and the size of the solution space is 10^{80}, there are about 10^{40} working programs, and it will take of the order of 10^{20} generations to evolve a solution. Now you need a big cluster and a lot of patience. Make the problem harder once more, so that the program needs 160 statements, and the size of the solution space is 10^{160}, there are about 10^{80} working programs, and it will take of the order of 10^{40} generations to evolve a solution. This is hopeless - genetic programming simply isn’t a reasonable way of solving a problem of this size, on any hardware. And this is for a program that is only 160 statements long! As programs go, this is still a very small one. A competent programmer can write such a program in a day or two - if the problem is within the scope of the programmer’s competence. If it is a problem that the programmer has no idea how to approach, the literature will help - if the answer has been published.
It seems, then, that genetic programming is best for smaller problems that we don’t yet know how to solve. If the problem is a standard one, like parity or sorting, a human programmer will run rings around genetic programming. But for problems where the solution is not yet known to mankind, genetic programming beats both brute-force search and (at least sometimes) human ingenuity. Ironically, then, humans are better at the boring parts of programs, and genetic programming is better at the really interesting problems (as long as they are small).

For program-like problems, one way to keep the problem small is to use the most powerful statements that you can. “Small” really means that the universe of all possible programs is small. This in turn means that only a small number of statements is needed to write the program. Also, it seems to help if the statement set is all at the same level of abstraction.

9 FURTHER QUESTIONS

What is the formula for the “slightly worse” part of “slightly worse than $\frac{1}{\sqrt{D}}$”? Is it $\log(\frac{1}{D})$? If so, then we have $G = k(\frac{1}{\sqrt{D}}) \log(\frac{1}{D})$. What is the interpretation of $\frac{1}{D}$? Is it a valid measure of the difficulty of the problem for that statement set?

What is the proportionality “constant”? (It’s not really constant, since it varies with statement set, population size, and maybe other parameters.)

Perhaps the most interesting question: What is the density of working solutions for DNA-based biological systems in the total possible DNA space? Or, on a smaller scale, what is the density of working solutions for protein sequences that will bind at a specific site, when implemented in the “statements” of DNA?

References

[1] John R. Koza et. al.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kauffman, 1999