ALEKSIANDROV’S ESTIMATES FOR ELLIPTIC EQUATIONS WITH DRIFT IN A MORREY SPACES CONTAINING L_d

HONGJIE DONG AND N.V. KRYLOV

Abstract. In this note, we obtain a version of Aleksandrov’s maximum principle when the drift coefficients are in Morrey spaces, which contains L_d, and when the free term is in L_p for some $p < d$.

1. Introduction and main result

Let \mathbb{R}^d be a Euclidean space of points $x = (x^1, ..., x^d)$. Define

$$D_i = \partial/\partial x^i, \quad D = (D_i), \quad D_{ij} = D_i D_j, \quad D^2 = (D_{ij}),$$

$$B_r(x) = \{y \in \mathbb{R}^d : |x - y| < r\}, \quad B_r = B_r(0).$$

Let S be the set of symmetric $d \times d$ matrices and, for $\delta \in (0, 1]$, let

$$S_\delta = \{a \in S : \delta |\xi|^2 \leq a^{ij} \xi^i \xi^j \leq \delta^{-1} |\xi|^2, \quad \forall \xi \in \mathbb{R}^d\}.$$

We take a measurable S_δ-valued function a on B_1 and a measurable \mathbb{R}^d-valued function b on B_1 and set

$$L = a^{ij} D_{ij} + b^i D_i.$$

The goal of this article is to prove the following result in which $d_0 = d_0(d, \delta) \in (d/2, d)$ is specified later.

Theorem 1.1. Let $R \in (0, \infty)$, $d_0 < q < d$, $p \in (d_0 d/q, d)$, $v \in W^2_p(B_R)$ and assume that for any $x \in B_R$ and $\rho \leq 2R$

$$\frac{1}{|B_\rho(x)|} \int_{B_\rho(x)} I_{B_R}(y) |b|^q(y) dy \leq \bar{b} \rho^{-q}, \quad (1.1)$$

where $\bar{b} > 0$ is sufficiently small depending only on d, δ, p, q (independent of R). Then in B_R we have

$$v \leq \sup_{\partial B_R} v + N R^{2 - d/p} \|L v\|_{L_p(B_R)}, \quad (1.2)$$

where N depends only on d, δ, p, and q.

2010 Mathematics Subject Classification. 35B50, 35B45, 35J15.

Key words and phrases. Aleksandrov’s maximum principle, Morrey spaces.

H. Dong is partially supported by the Simons Foundation, grant # 709545.
The first results about estimates of the maximum of solutions of elliptic equations even not uniformly elliptic in terms of the L^d-norms of the free terms belong to A.D. Aleksandrov in 1960, see Theorem 8 in [2], where he already considered $b \in L^d$. The proofs are given in 1963 in [3].

There was considerable interest in reducing L^d-norm of the free term to L^{d_0} norm with $d_0 < d$. This was achieved by Cabré [5] for bounded b and by Fok in [6] for $b \in L^{d_0}$. In [12] the second named author allowed $b \in L^d$ and the free term in L^{d_0} with $d_0 < d$. This made it possible to develop in [10] a $W^{2,p}_d$-solvability theory for linear equations with $b \in L^d$ and $p < d$ (without assuming that the L^d-norm of b is small or the domain is small).

Applied to fully nonlinear equations we can now treat W^{2,d_0}_d-solvability with “the coefficients” of the first order terms in L^d (see [9]). In this paper we are doing the next step by reducing the integrability property of b further down.

Remark 1.1. Observe that (1.1) may be satisfied but $b \notin L^d$. There is a hope that once condition (1.1) is satisfied in all balls of fixed radius R (perhaps small) and arbitrary centers and $\rho \leq 2R$, estimate (1.2) will hold for all R with N that also depends on R. For R small and, say b with compact support, condition (1.1) is indeed satisfied if $b \in L^d$ because by Hölder’s inequality the left-hand side of (1.1) is less than $N(d)\|b\|_{L^d(B_R)}^d$. It is then tempting to claim that our Theorem 1.1 contains Aleksandrov’s result specified for uniformly nondegenerate equations with bounded a or contains the corresponding result of [11] (see Corollary 3.1 there) However in Aleksandrov’s result and in [11] the constants depend only on the L^d-norm of b and not on the rate with which $\|b\|_{L^d(B_R(x))} \to 0$ as $R \to 0$.

On the other hand, one cannot drop the smallness assumption of b. For instance, if $R = 1$, $a^{ij} = \delta^{ij}$, $b(x) = -cx/|x|^2$ and $v(x) = 1 - |x|^2$, then $Lu = -2d + 2c$ and if $c \geq d$, $Lu \geq 0$ and (1.2) is false.

It turns out that (1.2) is true for any $u \in W^{2,p}_d(B_1)$ if c is small enough. Indeed, observe that if $|x| \geq 2\rho$ the integral

$$\int_{B_\rho(x)} I_{B_1}(y)|y|^{-q} dy$$

is less than $\rho^{-q}|B_\rho(x)|$ and if $|x| \leq 2\rho$, the said integral is dominated by

$$\int_{B_{3\rho}} |y|^{-q} dy = N(d)\rho^{n-q}.$$

This example has a deep connection with the so-called form-boundedness condition from [7]. We also stress one more time that in this example $b \notin L^d$.

2. Proof of Theorem 1.1

By using change of scale we see that it suffices to concentrate on $R = 1$. However since we also need B_2, we keep R free for a while.
For $p \in [1, \infty)$ and $\mu \in (0, d/p)$ introduce Morrey’s space $E_{p,\mu}(B_R)$ as the set of $g \in L_p(B_R)$ such that
\[\|g\|_{E_{p,\mu}(B_R)} := \sup_{\rho \leq 2R, x \in B_R} \rho^\mu \|g\|_{L_p(B_R, \rho)} < \infty, \]
where $B_{R,\rho}(x) = B_R \cap B_\rho(x)$ and
\[\|g\|_{L_p(\Gamma)} = \left(\frac{1}{|\Gamma|} \int_\Gamma |g|^p \, dx \right)^{1/p}. \]

Let
\[E_{p,\mu}^2(B_R) = \{ u : u, Du, D^2 u \in E_{p,\mu}(B_R) \}. \]
and provide $E_{p,\mu}^2(B_R)$ with an obvious norm. The case $R = \infty$ is not excluded and we drop $B_\infty = \mathbb{R}^d$ from our notation.

Theorem 2.1. Let $1 < \mu \leq d/p$, $p > 1$. Define q ($> p$) from
\[\frac{1}{q} = \frac{1}{p} - \frac{1}{\mu p}. \]
Then for any $u \in W^1_p(\mathbb{R}^d)$
\[\|u\|_{E_{q,\mu p/q}} \leq N(d, p, \mu) \|Du\|_{E_{p,\mu}}. \tag{2.1} \]

Proof. As it follows from Secs. 1, 2, Ch. V of [13], for almost any x we have
\[|u(x)| \leq N(d) \int_{\mathbb{R}^d} |Du(y)||x - y|^{-d + 1} \, dy. \]
After that (2.1) follows from Theorem 3.1 of [1]. The theorem is proved.

This theorem is quite remarkable because it allows us to estimate higher powers of u compared with the usual Sobolev embedding theorem at the expense of requiring Du be slightly better. It is the first crucial point in the proof of Theorem 1.1. Another one, well expected, is Theorem 2.3.

Corollary 2.2. Let $1 < p < q < d$ and $b \in E_{q,1}(B_1)$. Set $\mu = q/p$ Then for any $u \in E_{p,\mu}^2(B_2)$ we have
\[\|b|Du|\|_{E_{p,\mu}(B_1)} \leq N\|b\|_{E_{q,1}(B_1)}\|u\|_{E_{p,\mu}^2(B_2)}, \]
where the constants N depend only on d, p, q.

Proof. Take $x \in B_1$, $\rho \leq 2$, and take $\zeta \in C^\infty_0(\mathbb{R}^d)$ such that $\zeta = 1$ on B_1, $\zeta = 0$ outside $B_{2\rho}$, and $|\zeta| + |D\zeta| + |D^2\zeta| \leq N = N(d)$. By using Hölder’s inequality we see that
\[\rho^\mu \|b|Du||_{L_p(B_{1,\rho}(x))} \leq N \rho \|b\|_{L_q(B_{1,\rho}(x))} \rho^{\mu - 1} \|D(\zeta u)||_{L_{q'}(B_{\rho}(x))}, \]
where $q' = pq/(q - p)$ and the constant N arose because $|B_{1,\rho}(x)|$ is not quite $|B_\rho(x)|$. Furthermore, since $\mu - 1 = \mu p/q'$ and $1/q' = 1/p - 1/(\mu p)$ by Theorem 2.1
\[\rho^{\mu - 1} \|D(\zeta u)||_{L_{q'}(B_{\rho}(x))} \leq N\|D^2(\zeta u)||_{E_{p,\mu}} \leq N\|u||_{E_{p,\mu}^2(B_2)}. \]
This obviously leads to the desired result.
For \(u'' \in S \) introduce a Pucci function

\[
P(u'') = \sup_{a \in \mathcal{S}_3} \text{tr}(a u'').
\]

In the following by \(d_0 \) we denote the constant called \(n_0 \) in [4] corresponding to the domain \(B_2 \) and the operator \(P(D^2 u) \). Note that \(d_0 = d_0(d, \delta) \in (d/2, d) \).

Theorem 2.3. Let \(d_0 < p < q < d \) and set \(\mu = q/p \). Assume that a nonnegative bounded \(b \in E_{q,1}(B_1) \) and \(b = 0 \) outside \(B_1 \). Then there is a \(\tilde{b} = \tilde{b}(d, \delta, q, p) > 0 \) such that if \(\|b\|_{E_{q,1}(B_1)} \leq \tilde{b} \), then for any \(f \in E_{p,\mu}(B_2) \) there exists a unique \(u \in E^2_{p,\mu}(B_2) \cap C(B_2) \) satisfying

\[
P(D^2 u) + b|Du| + f = 0
\]

in \(B_2 \) and equal zero on \(\partial B_2 \). Moreover, we have

\[
\|u\|_{E^2_{p,\mu}(B_2)} \leq N\|f\|_{E_{p,\mu}(B_2)},
\]

where \(N \) depends only on \(d, \delta, q, \) and \(p \).

Proof. The existence and uniqueness of solution follows directly from Theorem 4.1 of [4] due to the assumption that \(b \) is bounded. To prove (2.3) it suffices to observe that by the same Theorem 4.1 of [4]

\[
\|u\|_{E^2_{p,\mu}(B_2)} \leq N\|b\|_{E_{p,\mu}(B_2)} \leq N\|b\|_{E_{p,\mu}(B_2)} + N\|f\|_{E_{p,\mu}(B_2)},
\]

where, thanks to Corollary 2.2, the first term can be absorbed into the left-hand side if \(\|b\|_{E_{q,1}(B_1)} \) is sufficiently small. The theorem is proved.

Now we prove Theorem 1.1 in case \(R = 1 \) when it takes the following form.

Theorem 2.4. Let \(d_0 < q < d \), \(p \in (d_0 d/q, d) \), \(v \in W^2_p(B_1) \). Assume that \(b \in E_{q,1}(B_1) \) and \(\|b\|_{E_{q,1}(B_1)} \leq \tilde{b} \), where \(\tilde{b} \) is taken from Theorem 2.3. Then in \(B_1 \) we have

\[
v \leq \sup_{\partial B_1} v + N\|L(\nu - \nu)\|_{L_p(B_1)},
\]

where \(N \) depends only on \(d, \delta, q, \) and \(p \).

Proof. If we replace \(L \) in (2.4) with \(I_{|b|>n} + I_{|b|\leq n} L \) and assume that our assertion is true, then by passing to the limit as \(n \to \infty \) and using the dominated and monotone convergence theorems we obtain (2.4) as is. It follows that we may assume that \(b \) is bounded and then that \(v, b, \) and \(a \) are smooth. After that by subtracting from \(v \) the solution \(w \) of \(Lw = 0 \) in \(B_1 \) with boundary value \(w = v \), we reduce the situation to the one in which \(v = 0 \) on \(\partial B_1 \). Then set \(f = (Lv) - I_{B_1} \), extend \(b \) as zero outside \(B_1 \), and define \(u \) as a solution of (2.2) in \(B_2 \) with zero boundary data. According to [14] or [8] there is such solution \(u \) which belongs to \(W^2_p(B_2) \) for any \(r > 1 \). By the maximum principle, \(u \geq 0 \) in \(B_2 \) and, since \(L(u - v) \leq Lu + f \leq 0 \) in \(B_1 \), again by the maximum principle \(v \leq u \) in \(B_1 \).
Furthermore, in light of Hölder’s inequality, \(u \in E^2_{r,\nu}(B_2) \) for any \(r \in (1, \infty) \) and \(\nu \in (0, d/r) \). Now, by embedding theorems, (2.3), and again Hölder’s inequality, for \(d_0 < r < q \) and \(\nu = q/r \),

\[
 u \leq N \|u\|_{W^2_{r}(B_2)} \leq N \|u\|_{E^2_{r,\nu}(B_2)} \leq N \|f\|_{E^r_{r,\nu}(B_2)} \leq N \|f\|_{L^r_{d/q}(B_2)}.
\]

After that it only remains to note that \(rd/q = p \) for \(r = pq/d \) (\(r \in (d_0, q) \) with \(\nu = q/r = d/p > 1 \)). The theorem is proved.

Remark 2.1. As an intermediate result we have proved that if \(v, a, b \) are smooth and \(v = 0 \) on \(\partial B_1 \), then

\[
 v \leq N \|(Lv) - \|_{E^r_{q/p,d/p}(B_1)}.
\]

References

[1] D. Adams, *A note on Riesz potentials*, Duke Math. J., Vol. 42 (1975), No. 4, 765-778.

[2] A. D. Aleksandrov, *Certain estimates for the Dirichlet problem*, Dokl. Akad. Nauk SSSR, Vol. 134 (1960), 1001–1004 (Russian); translated as Soviet Math. Dokl., Vol. 1 (1961) 1151–1154.

[3] A. D. Aleksandrov, *Uniqueness conditions and estimates for the solution of the Dirichlet problem*, Vestnik Leningrad. Univ., Vol. 18 (1963), No. 3, 5-29 in Russian; English translation in Amer. Mat. Soc. Transl., Vol. 68 (1968), No. 2, 89-119.

[4] S.S. Byun, M. Lee, and D.K. Palagachev, *Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations*, J. Differential Equations, Vol. 260 (2016), No. 5, 4550-4571.

[5] X. Cabré, *On the Aleksandrov-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations*, Comm. Pure Appl. Math., Vol. 48 (1995), 539–570.

[6] K. Fok, *A nonlinear Fabes-Stroock result*, Comm. PDEs, Vol 23 (1998), No. 5-6, 967–983.

[7] D. Kinzebulatov and Yu.A. Semenov, *Brownian motion with general drift*, Stoch. Proc. Appl., Vol. 130 (2020), No. 5, 2737-2750.

[8] N.V. Krylov, *“Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations”*, Mathematical Surveys and Monographs, 233, Amer. Math. Soc., Providence, RI, 2018.

[9] N.V. Krylov, *Linear and fully nonlinear elliptic equations with \(L_d \)-drift*, Comm. PDE, Vol. 45 (2020), No. 12, 1778–1798.

[10] N.V. Krylov, *Elliptic equations with VMO a, b \(\in \ L_d \), and c \(\in \ L_{d/2} \)*, Trans. Amer. Math. Sci., Vol. 374 (2021), No. 4, 2805-2822.

[11] N.V. Krylov, *On stochastic equations with drift in \(L_d \)*, arXiv:2001.04008.

[12] N.V. Krylov, *On stochastic Itô processes with drift in \(L_d \)*, arXiv:2001.03660.

[13] E. Stein, *“Singular integrals and differentiability properties of functions”*, Princeton University Press, Princeton, NJ, 1970.

[14] N. Winter, *\(W^{2,p} \) and \(W^{1,p} \)-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations*, Z. Anal. Anwend., Vol. 28 (2009), No. 2, 129–164.

(H. Dong) Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA

Email address: Hongjie_Dong@brown.edu

(N. V. Krylov) 127 Vincent Hall, University of Minnesota, Minneapolis, MN, 55455

Email address: nkrylov@umn.edu