This article can be cited before page numbers have been issued, to do this please use: Y. Huang, W. Iuan, M. Liu and L. Turyanska, J. Mater. Chem. C, 2020, DOI: 10.1039/C9TC06566K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
DDAB-Assisted Synthesis of Iodine-Rich CsPbI$_3$ Perovskite Nanocrystals with Improved Stability in Multiple Environments

Yihui Huang,a Weiling Luan,a,* Mengke Liu,a and Lyudmila Turyanskab

All-inorganic cesium lead halide perovskite (CsPbX$_3$, X = Cl, Br, I) nanocrystals (NCs) have attracted considerable attention due to their tunable optical properties and high optical quantum yield. However, their stability in various environments, such as exposure to different solvents, high temperature and UV light, remains to be addressed to enable their exploitation in devices. Here we report on synthesis of all inorganic CsPbI$_3$ perovskite nanocrystals capped with didodecyldimethylammonium bromide (DDAB). Monodispersed DDAB-capped CsPbI$_3$ NCs have enhanced stability with respect to their morphological and optical properties compared to conventional oleic acid (OA) / oleylamine (OLA) capped nanocrystals. The DDAB-CsPbI$_3$ NCs retain optical quantum yield >80% for at least 60 days. The enhanced stability is explained by binding of branched DDAB ligands to the NC surface, leading to the formation of halogen-rich surface, as confirmed by X-ray photoelectron spectroscopy, with the iodine to lead atomic ratio of I:Pb = 4:1. These perovskites were used in light-emitting diodes (LEDs) and had a maximum external quantum efficiency (EQE) of 1.25%, luminance of 468 cd/m2 and demonstrated improved operational performance. The enhanced stability of DDAB-CsPbI$_3$ in the environments relevant for device processing and operation is relevant for their exploitation in optoelectronics.

Introduction

All-inorganic cesium lead halide perovskite (CsPbX$_3$, X = Cl, Br, I) nanocrystals (NCs) could offer significant advantages for applications in optoelectronic devices due to their narrow photoluminescence lines, high optical quantum efficiency and higher stability, compared with hybrid organic-inorganic perovskites. However, their ionic nature, surface instability and the metastable structure leads to phase transition from cubic phase (α-phase) to orthorhombic phase (β-phase) and degradation, making them sensitive to environmental factors such as temperature, exposure to light and moisture.

To date different synthetic methods and post-synthesis modifications were proposed to improve the optical stability of these materials. The quality of surface passivation is known to be detrimental to the stability of NCs, and to affect their optical properties. Hence the choice of capping ligands is of paramount importance, with particular focus on strength of binding to the NC surface. Traditionally, tri-n-octylphosphine (TOP) is used in perovskite synthesis, as organolead compound TOP-PbI$_3$ is an active precursor and can improve the QY and stability of perovskites. To date, ammonium salts were successfully used to improve the optical properties of perovskites. Environmental stability of perovskites was also addressed by selection of ligands, e.g. the use of 2-aminoethanethiol (AET) was found to enhance the stability of CsPbI$_3$ NCs in water and under ultraviolet irradiation, while trimethylsilyl (TMSI) improves thermal stability (up to 130 °C). Surface passivation with inorganic layers, (e.g. PbS capped nanocrystals, ZnX$_2$/hexane) and with polymers with dense network structure (e.g. poly(maleic anhydride-alt-1-octadecene) (PMA)) have also been explored to enhance chemical, optical and environmental stability of NCs. However, despite a body of work, the instability of perovskites in various environments remains to be addressed.

Here we report on synthesis of all inorganic CsPbI$_3$ NCs capped with didodecyldimethylammonium bromide (DDAB). Since DDAB has stronger affinity to negative sites (e.g. I) and shorter branched chain, we expect that it will provide effective surface passivation and will facilitate transfer of photoexcited charges enabling use of these NCs in LEDs. We optimize the synthesis procedure to produce CsPbI$_3$ NCs and examine their long-term stability, thermal stability, photostability, and stability against polar solvent. The DDAB-capped CsPbI$_3$ NCs have narrow size distribution, high quantum yields up to >90% and are significantly more stable compared to those capped with oleic acid (OA) or oleylamine (OLA). We attribute enhanced stability to efficient passivation of the NCs by DDAB and the formation of iodine-rich surface as confirmed by our elemental analysis studies. We use these NCs in LED devices and achieve a maximum EQE and maximum luminance of 1.25% and 468 cd/m2, respectively. The LEDs produced with DDAB-capped perovskites also show enhanced operational stability. Our synthesis method and stability studies offer an alternative strategy for achieving long term stability of perovskite nanocrystals, and are relevant for their exploitation in functional devices.

a Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China. E-mail: lian@ecust.edu.cn
b Faculty of Engineering, University of Nottingham, University Park, NG72RD, UK.

† Electronic Supplementary Information (ESI) available: characterization data, and additional experimental procedures. See DOI: 10.1039/x0xx00000x
Experimental

Chemicals
Caesium carbonate (Cs₂CO₃, 99.9%), lead (II) iodide (PbI₂, 99%), 1-octadecene (ODE, 90%) and poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) were purchased from Adamas. Oleylamine (OLA, 80-90%) and oleic acid (OA, 85%) were purchased from Aladdin. Tempypb, LiF, and poly (4-butyl phenyl-diphenylamine) (poly-TPD) were purchased from Xi’an Polymer Light Technology Corporation. Tri-n-octylphosphine (TOP, Tech. 90%) was purchased from Alfa and didodecyl(dimethylammonium bromide (DDAB, 98%) was purchased from TCI. All the reagents were used as received without any purification.

Synthesis of DDAB-capped CsPbI₃ NCs
To prepare Cs-oleate precursor, 0.12 g (0.36 mmol) Cs₂CO₃ and 12 mL ODE were loaded into a three-necked flask and degassed at 120 °C for 10 min under nitrogen flow. Then 0.4 mL OA and 0.4 mL OLA with 0.2 M DDAB were added. The mixture was stirred for 1 h under nitrogen flow until all Cs₂CO₃ was dissolved. The Pb-precursor solution was prepared by mixing 2.5 mL of TOP with 2 mmol of PbI₂ under stirring at 100 °C until the solution turned clear. To synthesize the CsPbI₃ nanocrystals, the Pb-precursor was quickly injected into Cs-oleate precursor under stirring at 160 °C. A few seconds later (5s), the solution of DDAB-CsPbI₃ perovskites was cooled on ice-bath.

Synthesis of OA/OLA-CsPbI₃ NCs
CsPbI₃ nanocrystals were prepared following modified method from Reference.⁴ To prepare Cs-oleate precursor, 0.65 g (2 mmol) Cs₂CO₃, 2.5 mL OA and 18 mL ODE were loaded into a three-necked flask and degassed at 120 °C under nitrogen flow until Cs₂CO₃ was dissolved. The Pb-precursor was prepared by mixing 20 mL ODE, 2 mmol PbI₂, 3 mL OA and 3 mL OLA under stirring at 120 °C until clear solution is formed. Then the temperature of Pb-precursor was raised to 160 °C and 2 mL of Cs-oleate precursor was quickly injected under stirring. After 20 s of mixing, solution of CsPbI₃ perovskites was cooled on ice-bath.

Purification of perovskite nanocrystals
As-prepared crude solution of CsPbI₃ and DDAB-CsPbI₃ were centrifuged at 10000 rpm for 10 min. The precipitate was collected, dissolved in 20 mL of n-hexane and ethylacetate (1:3 v/v), and the solution was centrifuged at 10000 rpm for 10 min. The precipitate was collected and dissolved in n-hexane (10 mL) and centrifuged for 5 min at 10000 rpm. Finally, the supernatant was collected and stored at 4 °C.

Fabrication of CsPbI₃ based QLEDs
The ITO glass substrate was washed in ultra-pure water, acetone and isopropyl alcohol in an ultrasonic bath, followed by treatment in UV ozone cleaning machine for 10 min. The PEDOT: PSS was spin-coated on ITO glass at 4000 rpm for 40 s and annealed at 130 °C for 15 min in air. Then a solution of TPD was spin-coated onto the PEDOT: PSS film at 3000 rpm for 40 s and annealed at 130 °C for 15 min. The layer of CsPbI₃ was deposited by spin-coating onto the film of TPD at 1500 rpm for 40 s and heated at 40 °C for 10 min to evaporate excess hexane. The top layers of Tempypb, LiF and Al were thermally evaporated to form the QLED.

Characterization methods
We used to measure absorption and photoluminescence of CsPbI₃ NCs in a quartz cell cuvette (10 mm x 10 mm) at room temperature. The time-resolved PL spectra of the CsPbI₃ solution were measured using Edinburgh FLS1000 spectrometer. Powder X-ray diffraction (XRD) was recorded using Rigaku D/max2550 X-ray powder diffractometer equipped with Cu Kα radiation (λ=1.5406 Å). Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were collected using JEOL JEM 2100. Fourier-transformed infrared spectroscopy (FTIR) was recorded in an Aicoles Nexus470. X-ray photoelectron spectroscopy (XPS) was analyzed in a Thermo Scientific K-Alpha+. Zeta potentials were measured using Malvern Zetasizer Nano ZS 90. Luminance (L)-current density (J)-voltage (V) characteristics were recorded through a Keithley 2400 source.

Results and discussion

Synthesis of CsPbI₃ nanocrystals
We synthesize all-inorganic perovskite nanocrystals (NCs) CsPbI₃ capped with a mixture of OA/OLA ligands (molar ratio OA : OLA = 1 : 0.97), and with additional DDAB branched ligand (molar ratio OA : OLA : DDAB = 1 : 0.97 : 0.06) (Figure 1a). These CsPbI₃ and DDAB-CsPbI₃ NCs have optical emission centered at 680 nm and 685 nm, respectively. As-synthesized DDAB-CsPbI₃ NCs have narrower linewidth (FWHM = 95 meV), and ~15% higher optical quantum yield (QY) of 95%, compared to OA/OLA capped NCs (Figure 1b). The radiative recombination time is also increased for DDAB-capped NCs (inset in Figure 1b), suggesting lower density of surface defects. The TEM studies reveal the cubic shape of the NCs with an average size of 11.9±2.4 nm for OA/OLA-CsPbI₃ and 13.7±2.3 nm for DDAB-CsPbI₃. The observed larger size for DDAB-CsPbI₃ NCs is consistent with the use of TOP in their synthesis, which increases precursor activity accelerating the growth of NCs.¹⁷,²⁴ Presence of DDAB ligands provides more efficient passivation of the surface and reduces amount of surface defects, as evident from smaller size and high QY, compared with NCs only prepared by TOP (Figure 2a, and Supplementary Information, Figure S2).

To optimize the synthesis procedure, we examined the effect of DDAB amount on the optical properties of NCs. With increasing DDAB concentration from 0 M to 0.3 M, we observe broadening of the optical line by ~15 meV and a blueshift of PL emission from 691 nm to 677 nm (Figure 2a). The optical QY and nanocrystal shelf life were also affected by the DDAB concentration: for NCs synthesised...
with 0.2M DDAB, we observed the highest value of QY = 95% (Figure 2a) and long shelf life (Figure S1c). Our TEM studies show that with increasing amount of DDAB, the average size of the NCs decreases from 17.5±2.2 nm to 12.9±2.1 nm (Figure S2). Since XPS and EDX studies do not reveal measurable amount of Br, we envisage that the observed blueshift of PL is due to the size decrease. It is known that the stability and optical properties of the perovskites depend on the type of crystal lattice. Our X-ray diffraction (XRD) measurements revealed that all DDAB capped samples have interplanar distances of 0.62 nm, corresponding to (100) plane of cubic phase (Figure 2c). Crystal lattice spacing of 0.62 nm is also observed in HR TEM images, confirming the XRD results (Figure 3c, d).

Optical stability in different environment

Since the NCs with 0.2M DDAB have the highest value of QY = 95% and longest shelf life, we use them for further studies. To assess the stability of CsPbI₃ NCs synthesized with 0.2 M DDAB, their optical properties were continuously monitored over two months period. Stored in the dark, the DDAB-capped NCs maintained stable photoluminescence properties, with QY > 80%. In contrast, the QY of OA/OLA-capped CsPbI₃ NCs decreased dramatically after 10 days, with measured QY < 20% (Figure 3a). Changes in optical properties are also accompanied by changes in morphology of the NCs. The XRD measurements confirm stable cubic phase for DDAB capped perovskites and degradation of OA-OLA-capped nanocrystals to orthorhombic phase (Figure 3b). As-synthesized NCs have cubic shape and average sizes of 11.9±2.4 nm and 13.7±2.3 nm for OA/OLA and DDAB-capped CsPbI₃ NCs, respectively. However, following 30-day storage, we observe aggregation of OA/OLA capped nanocrystals into large nanorods with length of ~1 μm (Figure 3c). For the DDAB- CsPbI₃ NCs, we do not observe any significant changes in the NC shape and size over 60-day study (Figure 3d). The DDAB-CsPbI₃ NCs retain narrow size distribution and no phase transformation is observed.

It is known that OLA ligands are commonly used for surface passivation for the perovskite NCs,75-78 however, any excess of OLA could hinder nucleation and cause NCs to degradation.77-78 In our synthesis, we use reduced amount of OLA compared to reported values79 to ensure no ligand excess is present in the mixture. The binding of the OA and OLA ligands to the NC surface is weak and loss of ligands leads to formation of surface defects, such as halogen vacancies, resulting in decrease of PL QY and gradual agglomeration of the NCs.29-30 The long term stability of our DDAB capped NCs indicates that DDAB ligands provide efficient binding and enhance the perovskite optical and phase stability.

Fourier-transform infrared spectroscopy (FTIR) was performed to analyse ligand attachment to the NCs surface. As can be seen from Figure 4a, the spectrum of OA/OLA-CsPbI₃ NCs reveals broad resonances centred at 3323 cm⁻¹, corresponding to stretching vibrations of ammonium group (v(N-H)).31 For the DDAB-CsPbI₃ sample, this resonance is not detectable, indicating that the addition of DDAB into the ligand mixture leads to ligand replacement on the NC surface and/or preferential binding of DDAB.
over OA/OLA ligands. To further probe the composition of the ligand layer, we performed X-ray photoelectron spectroscopy. We observe comparable intensity of Cs 3d and Pb 4f resonances for both samples (Figure S4a-c), however an increase in the intensity of I 3d is observed for DDAB-capped NCs. We estimate the atomic ratio of I : Pb to be 4 : 1 for DDAB- and 3 : 1 for OA/OLA-capped NCs (Figure 4b). The high-resolution XPS spectra of the N 1s also reveal noticeable differences (Figure S4d,e): for OA/OLA-CsPbI$_3$ NCs, the N 1s spectrum can be fitted into two peaks at 399.9 eV and 401.8 eV, representing -NH$_2$ and -NH$_3^+$; for DDAB-CsPbI$_3$ we also observe a
Enhanced environmental stability of the DDAB-CsPbI₃ NCs makes them promising candidates for device applications. To confirm that enhanced stability of the NCs can be used to enhance the operational stability of devices, we use DDAB-CsPbI₃ to fabricate QLEDs (inset in Figure 6a). The QLED consists of multiple layers: indium tin oxide glass substrate, poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) (hole-injection layer), poly(4-butylphenyl-diphenylamine) (poly-TDP) (hole-transporting layer), DDAB-CsPbI₃ (0.2 M DDAB), Tmppyb (electron-transporting layer). The fabricated QLEDs emit red light with a peak centred at 689 nm and a narrow linewidth, FWHM = 36 nm (Figure 6a). We observe a small redshift of EL peak compared to the PL peak position, due to Stark effect. The comparison of device performance of QLED with a layer of DDAB-CsPbI₃ and OA/OLA-CsPbI₃ NCs is shown in Figure 6b-c. Higher current density is observed for LEDs based on DDAB-CsPbI₃, indicating better carrier injection and transport ability. This enhancement is related to lower density of surface defects and more efficient passivation of dangling bonds on the NCs by DDAB ligands. The turn-on voltage for DDAB-CsPbI₃ NCs is also lower (4 V) and maximum EQE is ~2 times higher (1.25%) compared to OA/OLA-CsPbI₃ (5.5 V). The luminance of DDAB-NCs is ~100 times improved (at V = 6 V), confirming advantages of our DDAB-capped NCs for device application. To fabricate efficient optoelectronic devices, perovskite NCs should have high optical quantum yield and should enable effective transfer of photoexcites into a charge transporting layer. Our feasibility studies demonstrate that DDAB-capped nanocrystals can be advantageous for long term stability of LEDs, however further studies are needed to enhance the device performance and can be achieved by optimization of the device architecture to improve charge transfer.

Conclusions

We developed and optimised a method to synthesis iodine-rich CsPbI₃ NCs with enhanced environmental stability (solar solvents, temperature up to 160 °C and long-term UV illumination). The use of DDAB as a ligand provides strong binding to the NC surface and efficient passivation of the surface defects which leads to long-term stability of optical properties and high PL quantum yields >80% for at least 60 days. We demonstrated that the achieved enhanced optical, phase and environmental stability of the NCs is translated into enhanced operational performance of the QLEDs based on DDAB-CsPbI₃. Our results are transferable to other perovskite

![Image](https://example.com/image.png)

Light-emitting diodes

Fig. 6 (a) Electroluminescence (EL) spectra of LED based on DDAB-CsPbI₃ NCs under different voltage. Insert in (a) is the device structure of CsPbI₃ LED. (b) EQE and (c) current density and luminance of LEDs based on DDAB-CsPbI₃ NCs and OA/OLA CsPbI₃ NCs as a function of voltage.
NCs and are relevant for their implementation of different optoelectronic devices.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The work was supported by East China University of Science and Technology. Authors acknowledge useful discussions and technical support from the staff at the Analysing & Testing Center of East China University of Science and Technology.

Notes and references
1. M. Lu, Y. Zhang, S. Wang, J. Guo, W. Yu, and A.-L. Rogach, *Adv. Funct. Mater.*, 2019, 29, DOI: 10.1002/adfm.201902008.
2. M. Jung, S. G. Ji, G. Kim, and S.-I. Seok, *Chem. Soc. Rev.*, 2019, 48, 2011-2038.
3. D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang and Q. Zhang, *J. Mater. Chem. C*, 2019, 4, 757-789.
4. L. Jiang, Z. Fang, H. Lou, C. Lin, Z. Chen, J. Li, H. He, and Z. Ye, *Phys. Chem. Chem. Phys.*, 2019, 21, 21996-22011.
5. V. Nandali, and P. Nair, *ACS Nano*, 2017, 11, 11505-11512.
6. H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, and A. L. Rogach, *ACS Energy Lett.*, 2017, 2, 2071-2083.
7. A. Swarnkar, W. J. Mir, and A. Nag, *ACS Energy Lett.*, 2018, 3, 286-289.
8. J. Sun, S. Huang, X. Liu, Q. Xu, Q. Zhang, W. Jiang, D. Xue, J. Xu, J. Ma, J. Ding, Q. Ge, L. Gu, X. Fang, H. Zhong, J. Hu, and L. Wan, *J. Am. Chem. Soc.*, 2018, 140, 11705-11715.
9. L. Protescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, *Nano Lett.*, 2015, 15, 3692-3696.
10. Q. A. Akkerman, V. Innocenzo, S. Accornaro, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, *J. Am. Chem. Soc.*, 2015, 137, 10276-10281.
11. C. Zhang, W. Luan, Y. Yin, F. Yang, *Beilstein J Nanotechnol.*, 2018, 9, 10383.
12. Y. Li, H. Huang, Y. Xiong, S. V. Kershaw, and A. L. Rogach, *Angew. Chem. Int. Ed. Engl.*, 2018, 57, 5833-5837.
13. X. Fu, C. Zhang, Z. Peng, Y. Xia, J. Zhang, W. Luo, R. Zhan, H. Li, Y. Wang and D. Zhan, *J. Mater. Chem. C*, 2018, 6, 1701-1708.
14. L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu, Q. Pan, H. Liu, M. Cao, Y. Xu, B. Sun, and Q. Zhang, *Langmuir*, 2017, 33, 12689-12696.
15. J. De Roo, I. Van Driessche, J. C. Martins, and Z. Hens, *Nat. Mater.*, 2016, 15, 517-521.
16. J. De Roo, M. Ibañez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, and Z. Hens, *ACS Nano*, 2016, 10, 2071-2081.
17. F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izузhi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, and Q. Shen, *ACS Nano*, 2017, 11, 10373-10383.
18. R. L. Z. Høyen, M. Lai, M. Anaya, Y. Tong, K. Galkowski, T. Doherty, W. Li, T. N. Huq, S. Mackowski, L. Polavarapu, J. Feldmann, J. L. MacManus-Driscoll, R. H. Friend, A. S. Urban, S. D. Stranks, *ACS Energy Lett.*, 2019, 4, 1181-1188.
DDAB-capped CsPbI$_3$