Effects of Psychotropics on the Microbiome in Patients with Depression and Anxiety: Considerations in a Naturalistic Clinical Setting

Yoshihiro Tomizawa1†; Shunya Kurokawa, MD2‡; Daiki Ishii, BS1; Katsuma Miyaho, MD3; Chiharu Ishii, PhD4; Kenji Sanada, MD, PhD3; Shinji Fukuda, PhD4–6; Masaru Mimura, MD, PhD2; Taishiro Kishimoto, MD, PhD2*

1. Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
2. Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
3. Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
4. Institute for Advanced Biosciences, Keio University, Yamagata, Japan
5. Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
6. Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan

†Contributed equally to this work
*Corresponding author: Taishiro Kishimoto, Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. Tel: +81-3-5363-3829, Fax: +81-3-5379-0187 e-mail: taishiro-k@mti.biglobe.ne.jp
Significance Statement

Previous studies have shown a relationship between psychotropic medication and gut microbiome in animal studies and in vitro experiments. However, little is known about the evidence in human subjects. We prospectively followed up 40 patients with depression and/or anxiety disorders and collected 246 stool samples. We found that antipsychotics are likely to decrease microbial diversity. Moreover, there was a negative correlation between doses of antipsychotics and gut diversity when adjusted for BMI and depression and anxiety severity scores.

To the best of our knowledge, this is the first study to investigate whether various class of psychotropics affect the gut microbiome among patients with depression and anxiety longitudinally, suggesting medication may play an important role to influence microbial diversity.
ABSTRACT

Background: The antibacterial effects of psychotropics may be part of their pharmacological effects when treating depression. However, limited studies have focused on gut microbiota in relation to prescribed medication.

Method: We longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for patients with major depressive disorders and anxiety disorders. Patients were recruited and their stool was collected at three time points during their usual psychiatric treatments. Gut microbiota were analyzed using 16S rRNA gene sequencing. We examined the impact of psychotropics (i.e., antidepressants, anxiolytics, antipsychotics) on their gut microbial diversity and functions.

Result: We collected 246 stool samples from 40 patients. Despite no differences in microbial diversity between medication groups at the baseline, over the course of treatment, phylogenetic diversity (PD) whole tree diversity decreased in patients on antipsychotics compared to patients without (p=0.027), and beta diversity followed this trend. Based on a fixed-effect model, antipsychotics predicted microbial diversity; the higher doses correlated with less diversity based on the Shannon index and PD whole tree (Estimate = -0.00254, SE = 0.000595, p < 0.0001; Estimate = -0.02644, SE = 0.00833, p = 0.002, respectively).

Conclusion: Antipsychotics may play a role in decreasing the alpha diversity of the gut microbiome among patients with depression and anxiety, and our results indicate a relationship with medication dosage. Future studies are warranted and should consider patients’ types and doses of antipsychotics in order to further elucidate the mechanisms of gut-brain interactions in psychiatric disorders.

Keyword: Microbiome, Psychotropics, Depression, Anxiety, Microbial Diversity
INTRODUCTION

The number of microorganisms in the microbiome of the human gastrointestinal tract has been reported to be almost equal to the number of cells in the human body elsewhere (Sender R et al., 2016). These microorganisms assist in balancing our homeostasis by protecting us from pathogenic microbes, producing essential vitamins, strengthening gut integrity, and shaping the intestinal epithelium (Natividad JM and Verdu EF, 2013). Factors such as drugs (Maier L et al., 2018), food habits (Bruno Senghor et al., 2018), nationality (Kovatcheva-Datchary P et al., 2015), and age (Odamaki T et al., 2016) are known to influence the gut microbiota composition. Moreover, recent studies have shown relationships between the gut microbiome and the brain: the so-called "microbiome-gut-brain axis.” (Vuong HE et al., 2017) The dysregulation of the gut microbiota, known as dysbiosis, can affect the body’s immune response by activating the immune system or mediators that are able to penetrate the blood-brain barrier (BBB) or other chemical-related substances such as tryptophan, which can freely enter the brain (Maes M et al., 2012). The relationship between psychiatric disorders and gut microbiota is being actively investigated, with altered microbial compositions reported in disorders such as depression, schizophrenia, bipolar disorder, autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD) (Evans SJ et al., 2017; Kang D et al., 2018; Yuan X et al., 2018; Huang TT et al., 2019).

Regarding MDD, Sanada et al. (2020) meta-analyzed the microbial features in patients with MDD compared with non-depressive controls based on 10 observational studies. The abundances of Coprococcus, Faecalibacterium, Ruminococcus, Bifidobacterium, and Escherichia were decreased in patients with MDD compared with non-depressed controls, while Paraprevotella was increased in patients with MDD compared to controls. Regarding schizophrenia, Xu et al. (2019) reported that 19 gut microbiota taxonomies were associated, with dysbiosis positively correlated with the diversity of microbiota-associated epitopes and...
gut IgA levels. Shen et al. (2018) reported that the abundances of *Succinivibrio*, *Megasphaera*, *Collinsella*, *Clostridium*, *Klebsiella*, and *Methanobrevibacter* were significantly higher, whereas the abundances of *Blautia*, *Coprococcus*, *Roseburia* were decreased in patients with schizophrenia compared to health controls. They also conducted Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis and found that several metabolic pathways differed significantly between healthy controls and schizophrenia patients, including vitamin B6 and fatty acid.

In children with ASD, lower gut microbial diversity and reduced relative abundances of phylotypes most closely related to *Prevotella copri* were reported (Kang et al., 2017). A study in young patients with ADHD have shown decreased alpha diversity compared to controls, and that the beta diversity differed significantly between patients and controls (Prehn-Kristensen et al., 2018). In detail, the bacterial family *Prevotellaceae* was associated with controls, while patients with ADHD showed elevated levels of *Bacteroidaceae*, and both *Neisseriaceae* and *Neisseria* species were found as possible biomarkers for juvenile ADHD.

Gut microbial diversity is described in terms of “richness” and “evenness”; i.e., by the number of species in relation to the species’ abundance within a sample (alpha diversity). Decreased alpha diversity is generally observed in chronic disorders such as type 2 diabetes mellitus, obesity, and some psychiatric disorders such as ASD and ADHD (Cotillard A et al., 2013; Karlsson FH et al., 2013; Kang D et al., 2018; Prehn-Kristensen A et al., 2018).

However, for patients with depression, results from several studies (Jiang H et al., 2015; Kelly JR et al., 2016; Liu Y et al., 2016; Huang TT et al., 2019; Kenji Sanada et al., 2020) reporting the alpha diversity of patients’ gut microbiota as compared to that of healthy controls have been controversial. Results based on basic research by Macedo D et al. (2017) and Maier L et al. (2018) have shown that psychotropics drugs have antibacterial effects *in vitro* and have the
potential to alter microbial compositions. Additionally, the side effects of antidepressants and antipsychotics, such as weight gain and extrapyramidal symptoms, are related to microbial composition in mice (Morgan AP et al., 2014; Munhoz RP et al., 2017). Therefore, it is important to consider medication usage when looking at the gut microbiome of patients with psychiatric disorders. However, studies focused on the association between medication and the gut microbiome in human subjects are limited. In addition, longitudinal studies in clinical settings are scarce in this area.

One previous study by Liskiewicz P et al. (2019) focused longitudinally on the relationship between depression severity and gut microbial diversity among 17 patients in a hospital setting. A significant increase in alpha diversity in the Shannon index was observed after six weeks of pharmacotherapy, but not in the Chao1 index. However, medication usage was strictly limited to only escitalopram and other types of psychotropics such as antipsychotics and anxiolytics, which are widely used in patients with depression and anxiety, have not been investigated.

In order to further investigate the influence of psychotropics on the gut microbiome, we longitudinally investigated the relationship between patients’ prescribed medications and intestinal bacterial diversity in a naturalistic treatment course for Japanese patients with depression and anxiety. Our aim in this paper is to investigate the impact of antidepressants, anxiolytics, and antipsychotics on the intestinal microbiome.
METHODS

Patients

Patients were recruited from inpatients and outpatients at Keio University Hospital (Tokyo, Japan), Komagino Hospital (Tokyo, Japan), and Showa University Karasuyama Hospital (Tokyo, Japan), and all participants gave written informed consent before enrollment.

The inclusion criteria were adult patients clinically diagnosed with depression and/or anxiety as described in the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Exclusion criteria were: those with any organic gastrointestinal disorders; those taking antibiotic medication at the time of recruitment; those whose psychiatric symptoms could potentially worsen through participation in the study.

Psychiatric assessment and fecal collection

Study flow chart is presented in Figure 1. For inpatients, all the stool sampling and psychiatric assessments were performed during hospitalization. Baseline data were obtained within 10 days of hospitalization (including the day of hospitalization); midterm data were obtained from days 14 to 20; and endpoint data were obtained after day 21 until the day of discharge. A minimum interval of one week was required between each time point. As a side note, the typical duration of hospitalization at the participating hospitals is one to three months for depression and anxiety disorders. For outpatients, the baseline was defined as the time when consent was obtained; the midterm point was the patient’s next visit to the outpatient ward (two weeks to two months after baseline); and the endpoint was the patient’s third visit to the outpatient ward. A minimum interval of one week was required between each time point. For both settings, fecal samples were collected up to three times at each time
point: baseline, midterm, and endpoint. When more than one sample was collected, the mean value of the data was used.

The patients’ psychiatric symptoms were assessed by trained psychiatrists or psychologists using the Hamilton Depression Rating Scale (HAM-D) and Hamilton Anxiety Rating Scale (HAM-A) at each time point.

This study was carried out in accordance with the latest version of the Declaration of Helsinki. The study protocol was approved by the ethics committee of Keio University School of Medicine (#20150368). The study is registered at the University Hospital Medical Information Network (UMIN) Center (UMIN 000021833).

DNA Extraction and 16S rRNA Gene Sequence

Samples were immediately frozen after collection and transported within 48 hours. They were kept in a -80 degrees centigrade freezer until further analysis could be conducted.

Using universal primers described in previous studies (Furusawa Y et al., 2013; Kim SW et al., 2013), we performed DNA extraction and sequenced the V1-V2 hypervariable region of the 16S rRNA genes in the fecal samples. The 16S rRNA gene was analyzed using some modifications previously indicated (Murakami S et al., 2015). In short, half to one pellet of feces were washed with TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8.0). Next, fecal samples were lyophilized for approximately 18 h using a VD-800R lyophilizer (TAITEC, Nagoya, Aichi, Japan). Each freeze-dried fecal sample was combined with four 3.0-mm zirconia beads, approximately 100 mg of 0.1-mm zirconia/silica beads, 400μL DNA extraction buffer (TE containing 1% (w/v) sodium dodecyl sulfate), and 400μL of phenol/chloroform/isoamyl alcohol (25:24:1) and subjected to vigorous shaking (1500 rpm
for 15 min) using a Shake Master (Biomedical Science, Shinjuku, Tokyo, Japan). The resulting emulsion was subjected to centrifugation at 17,800× g for 10 min at room temperature, and bacterial genomic DNA was purified from the aqueous phase by a standard phenol/chloroform/isoamyl alcohol protocol. RNA was removed from the sample by RNase A treatment; the resulting DNA sample then was purified again by another round of phenol/chloroform/isoamyl alcohol treatment. Filter-passed reads were randomly selected from each sample and used for further analysis. Reads were then processed using the Quantitative Insights into Microbial Ecology (QIIME) pipeline (ver. 1.9.1) (Caporaso JG et al., 2010). Sequences were clustered into operational taxonomic units (OTUs) based on 97% sequence similarity, and OTUs were assigned to the SILVA 132 Database (Quast et al., 2013). Beta diversity measures, such as weighted and unweighted UniFrac distance metrics analysis and principal coordinate analysis, were performed in the samples between antidepressants +/-, antipsychotics +/-, and anxiolytics +/- pairs respectively. In the UniFrac analysis, phylogenetic distance is used to evaluate the comparative relationship of individuals in a group. The quantitative version of UniFrac that considers bacterial numbers is called weighted UniFrac, and the qualitative version that considers only the existence of the microbiota is called unweighted UniFrac. PICRUSt analysis was performed to predict the group difference in the contributions of various OTUs to known biological pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology groups (KOs) using the KEGG databases. 16S rRNA gene sequences were clustered into OTUs based on a 97%-similarity threshold and OTUs were assigned to taxonomies based on the Greengenes Database (ver. 13.5). The resultant OTU table was normalized with inferred 16S rRNA gene copy numbers and predicted microbial metagenomes using a script provided by PICRUSt (ver. 1.0.0) (Langille, M.G. et al., 2013). Further information about the analysis is reported in our previous study (Ishii C et al., 2018). As a post-hoc analysis we conducted a Neuroactive Gut-
Brain Modules (GBM) analysis, a metabolic reconstruction framework specific for translating metagenomic data into microbial neuroactive metabolic potential based on extensive literature (> 300 peer-reviewed papers) and database (MetaCyc73) review. From a set of 56 GBMs, each corresponding to a process of synthesis or degradation of a neuroactive compound by members of the gut microbiota, we chose six modules related to GABA and Tryptophan synthesis and degradation. We followed the method regarding GBM analysis previously reported (Valles-Colomer et al., 2019).

Patient grouping

We categorized patients in the following three ways: patients who were taking antidepressants or not (Antidepressants +/-), patients who were taking antipsychotics or not (Antipsychotics +/-), and patients who were taking anxiolytics or not (Anxiolytics +/-). We investigated and compared the gut microbial diversity between the groups defined above in terms of alpha diversity including Chao1 index, Shannon index, and phylogenetic diversity (PD) whole tree and the beta diversity.

Dosage assessment for antidepressants, antipsychotics, and anxiolytics

Information on prescribed medications was collected from patients’ medical records. Information regarding the duration of use for the current medication was collected, separately for each psychotropic class. In order to calculate the dosage equivalence of the prescribed medication, Imipramine equivalent (Imipramine-eq) doses, Chlorpromazine equivalent (CP-eq) doses, and Diazepam equivalent (Diazepam-eq) doses were used for antidepressants, antipsychotics, and anxiolytics, respectively (Hayasaka Y et al., 2015; Inada T and Inagaki A, 2015).
Statistical analysis

Means and standard deviations were calculated for normally distributed continuous variables, and numbers and percentages were calculated for categorical variables. All variables were inspected using histograms, q–q plots, and Kolmogorov-Smirnov tests before conducting statistical analyses in order to detect normal distribution. Mann-Whitney U-test was performed to assess the difference in the baseline microbial diversity between antidepressants +/-, antipsychotics +/-, and anxiolytics +/- pairs respectively, and multiple testing corrections were done by controlling the false discovery rate (FDR) through the Benjamini-Hochberg procedure (Yoav Benjamini and Hochberg Y, 2000). For alpha, 0.05 was chosen for significance in the false discovery rate. Analysis of Similarities (ANOSIM) was conducted to determine if the beta diversity differences between groups were more significant than the intra-group differences in each psychotropic class. The relationship between drug dosage and alpha diversity was determined using a fixed-effect model with a diagonal covariance matrix. The effect on each alpha diversity index was analyzed from repeated measures of CP-eq, Imipramine-eq, and Diazepam-eq doses, along with BMI, HAM-D and HAM-A scores across baseline, midterm and endpoint. All analyses were two-sided with alpha set at 0.05.

Statistical analyses were conducted using SPSS 25.0 software (SPSS Inc. Chicago, IL, USA), and R 3.5.3 and R Studio (Version 1.2.1335).

RESULTS

Demographic characteristics

A total of 45 patients with depression and/or anxiety participated in the study. Among them, five patients did not provide any stool and/or did not receive clinical assessment. Thus, 40 patients (17 males and 23 females) who provided at least one clinical severity assessment were included in our analyses, and a total of 246 fecal samples were collected.
Patients’ clinical characteristics are shown in Table 1. Twenty-four patients (60.0%) were diagnosed with major depressive disorder, eight (20.0%) with persistent depressive disorder, six (15.0%) with general anxiety disorder, one (3.0%) with social anxiety disorder, one (3.0%) with panic disorder; of these, twelve patients (30.0%) were diagnosed with both depression and anxiety. Twenty-one patients (52.5%) had HAM-D scores above the threshold of moderate depression (HAM-D ≥ 14). Nineteen (47.5%) had HAM-A scores above the threshold of moderate anxiety (HAM-A ≥ 15).

Regarding antidepressants, three patients were taking tricyclic antidepressants (amitriptyline; amoxapine); six were taking selective serotonin reuptake inhibitors (SSRI) (sertraline; paroxetine; escitalopram); six were taking serotonin noradrenaline reuptake inhibitors (SNRI) (duloxetine; milnacipran; venlafaxine); three were taking noradrenergic and specific serotonergic antidepressants (NaSSA) (mirtazapine); sixteen were taking two or more kinds of antidepressants; and six were taking no antidepressants. Regarding antipsychotics, one patient was taking olanzapine; four patients were taking quetiapine; three were taking aripiprazole; one was taking perospirone; and twenty-nine were taking no antipsychotics. All patients who were taking antipsychotics also took antidepressants. Regarding anxiolytics, three patients were taking etizolam; one was taking loflazepate; two were taking clonazepam; one was taking diazepam; two were taking alprazolam; three were taking lorazepam; one was taking etizolam and loflazepate; and twenty-seven were taking no anxiolytics. Some patients were taking the medication for a very long time (Shown in table 1). The median of the observation period from baseline sample collection to endpoint sample collection was 40 days (min 15, max 146). Seven patients in total (Four patients were taking antidepressants and three were not; One patient was taking antipsychotics and six were not; Seven patients were not taking anxiolytics) provided no stool sample at endpoint. Thus, total thirty-three patients are analyzed at endpoint.
Baseline alpha diversity between different drug treatments

There were no significant differences in the baseline alpha diversity between patients with and without each type of psychotropics (Table 2).

Alpha diversity change between baseline and endpoint

There was a significant difference in PD whole tree between patients who were taking antipsychotics and patients who were not taking antipsychotics (p=0.009). It remained significant after correction for multiple comparisons (p=0.027) (Figure 2, Supplementary Table S1).

Beta diversity and functional analysis between different drug treatments

Beta diversity using all samples grouped in each medication class are plotted in Figure 3. The PCoA plots based on weighted and unweighted UniFrac distances revealed significant compositional changes in the structure of the bacterial community between antipsychotics +/- (both weighted and unweighted Unifrac distances) and anxiolytics +/- (only weighted Unifrac distance) pairs by calculating ANOSIM. The PICRUSt analysis using all samples showed that there are no significant predicted KEGG pathways that are enriched or decreased in each psychotropic class after multiple testing corrections (Figure 4). GBM analysis regarding each type of psychotropic are shown in Supplementary Table S2, along with the correspondence table of individual enzymes in each function, which are shown in Supplementary Table S3. Patients who were taking antidepressants presented increased GABA III synthesis and GABA degradation. Patients who were taking antipsychotics presented increased and decreased tryptophan synthesis and degradation respectively, along with increased GABA II synthesis. Patients who were taking anxiolytics presented increased GABA II and III synthesis and decreased tryptophan synthesis though significance disappeared after correction for multiple comparisons.
Relationship between psychotropic dosage and microbial diversity

The relationships between doses of psychotropics and microbial diversity are shown in Table 3 using a fixed-effect model. There was a negative correlation between antipsychotic doses and gut diversity based on the Shannon index and PD whole tree when adjusted for BMI and depression and anxiety severities (Estimate = -0.00254, SE = 0.000595, p < 0.0001; Estimate = -0.02644, SE = 0.00833, p = 0.002, respectively). Other medication dosage parameters such as Imipramine-eq and Diazepam-eq did not show a significant relationship with microbial diversity.

Based on a fixed-effect model, only antipsychotics predicted microbial diversity, as higher doses correlated with less diversity.

DISCUSSION

In this study, the influence of psychotropics such as antidepressants, antipsychotics, and anxiolytics on the diversity of microbiota was examined during a naturalistic treatment course for 40 patients with depression and anxiety. Our study produced two main findings: 1) there was a significant difference in alpha diversity change in patients who were taking antipsychotics between the baseline and endpoint time points as compared to those not taking antipsychotics; 2) there was a significant difference in beta diversity between patients who were taking antipsychotics and those who not taking antipsychotics; 3) the dose of antipsychotics was negatively correlated to the alpha diversity indices of the gut microbiome when adjusted for the severity of depression and anxiety. As far as we know, this is the first study to investigate longitudinal microbial diversity change, as well as the relationship between psychotropics and gut microbial diversity in patients with depression and anxiety, with a focus on their prescribed medication types and dosage.
First, we investigated the baseline difference in gut microbial diversity in three different pairs: antidepressants +/-, antipsychotics +/- and anxiolytics +/- . At baseline, there were no significant differences between any pairs. However, during the period from baseline to endpoint, PD whole tree indices exhibited significant changes in diversity among patients taking antipsychotics compared to those who were not.

It is important to note that most of the previous studies on microbial diversity in patients with depression did not consider the patients’ prescribed psychotropic medications, despite increasing evidence in animal models that psychotropics could influence gut microbiota composition (Kanji S et al., 2018). Previous research by Macedo D et al. (2017) indicates that antidepressants and antipsychotics have an antimicrobial effect. For instance, aripiprazole may induce changes in the gut microbiota composition in vivo when taken at approx. 20 mg/kg/day (Cussotto S et al., 2019). Another study by Kanji S et al. (2018) indicated that female rats receiving 2 mg of olanzapine had a decrease in the total diversity of their microbiota as measured by the Shannon index.

In humans, there is one study by Yuan X et al. (2018) that reported that the diversity of specific species such as Bifidobacterium spp. and Escherichia coli changed after patients with first-episode schizophrenia took risperidone for 24 weeks, though the study investigated only a limited number of microbiota species with no reported alpha diversity indices. Another study by Flowers SA et al. (2019) investigating patients with bipolar disorder or schizophrenia showed that patients who were taking antipsychotics for at least six months had lower microbial diversity cross-sectionally compared with those not taking antipsychotics.
The results from our study, which suggest that patients who took antipsychotics may have decreased microbial diversity, could partly explain the controversial results of previous reports regarding alpha diversity among patients with depression and healthy controls (Jiang H et al., 2015; Kelly JR et al., 2016; Liu Y et al., 2016; Zheng P et al., 2016; Chen Z et al., 2018). Moreover, Xu et al. (2019) have shown that the diversity of gut microbiota in patients with schizophrenia was significantly lower when compared to healthy controls; again, this may be influenced by the oral antipsychotics taken by these patients, a factor that was not considered in the report. In general, the diversity of gut microbiota is known to be decreased in various physical and mental pathologies compared to healthy controls, and this decrease is thought to have a negative influence on the host. However, a recent meta-analysis (Ma et al., 2019) has shown that higher diversity is seen in some disease states compared to healthy controls, such as Parkinson’s disease and HIV. We can only note that our findings in this human study were in line with similar results from previous studies showing that psychotropics changed the gut microbiome in animals, and further research will be needed to determine whether our results correlate with a negative or positive influence on patients with depression/anxiety.

Regarding beta diversity, our findings indicated that the composition of the microbiome in antipsychotics group differed from each other, considering p-value and R-value in weighted and unweighted Unifrac distances, although the R-value was relatively small. A previous animal study reported a significant difference in specific species composition between rats treated with escitalopram and those receiving vehicle, while the beta diversity in principal coordinate analysis did not differ significantly (Cussotto, S et al., 2018). Moreover, a recent human study did not show a significant change regarding beta diversity after six weeks’ intake of escitalopram in a controlled hospital setting (Liskiewicz P et al., 2019). Our results
were in line with these previous studies. Larger controlled studies are needed to determine whether each psychotropic type affects beta diversity.

The PICRUSt analysis showed no significant difference between the psychotropic groups regarding the biological pathways predicted from the metagenomic data. Although evidence is scarce regarding the relationship between psychotropics and altered predicted function of the microbiome in MDD patients, there is some evidence showing altered function in patients with MDD compared to healthy controls in cross-sectional studies. Three reports (Zheng et al., 2016; Chen Z et al., 2018; Chung et al., 2019) have indicated the pentose phosphate pathway, and starch and sucrose metabolism pathway were enriched in patients with MDD. However, a previous report (Human Microbiome Project Consortium, 2012) indicates that it is possible to have similar predicted functions even if microbial composition is different in the group. Our results from the GBM analysis have shown that different types of psychotropic intake may influence the microbiome that is related to GABA and tryptophan metabolism in the host. A previous study (Valles-Colomer et al., 2019) has shown that GABA III synthesis was increased in patients with MDD compared to healthy controls. Since our subject groupings were based on pharmacotherapy and those by Valles-Colomer et al. were based on patients vs. healthy controls, we cannot directly compare the two cases, but our results suggest that the microbiome metabolism related to GABA and tryptophan may be influenced by antidepressant and antipsychotic intake, though there is no indication of causal relationship at this point.

Finally, we found that there was a negative correlation between antipsychotic dosage and alpha diversity indices. Previous research indicates that the concentration of antipsychotics is proportional to their antimicrobial effects (Morgan AP et al., 2014). The result indicating the relationship between the antipsychotic dose and alpha diversity is independent after controlling for antidepressant dose, because all patients taking antipsychotics were on
antidepressants as well. However, we cannot untangle the relative contribution of each drug class or draw any conclusions about antipsychotics themselves. The results from our findings suggest a correlation between antipsychotics and dysbiosis, although a causational relationship requires further study. For instance, antipsychotics generally induce side effects such as obesity, dyslipidemia, and gastrointestinal symptoms (Correll CU et al., 2015), which may secondarily induce dysbiosis in the gut (Dieterich W et al., 2018).

Regarding the influence of antipsychotics on each microbial diversity index, our results show that longitudinal alpha diversity change was seen in PD whole tree indices, while a relationship with dosage was seen in the Shannon and PD whole tree indices. A possible reason for these differences is due to how the Chao1, Shannon, and PD whole tree indices are calculated differently in terms of microbial composition. The Chao1 is an abundance-based estimator of species richness, while the Shannon index is an estimator of not only species richness but also species evenness (Kim BR et al., 2017). PD whole tree is defined as the minimum total length of all the phylogenetic branches required to span a given set of taxa on the phylogenetic tree (Faith DP and Baker AM, 2007).

The results of our study suggest that microbial diversity is altered not only by differences in study participants' cultural and dietary patterns (Kovatcheva-Datchary P et al., 2015), but also by differences in prescription backgrounds between subjects.

The potential mechanism of the relationships between psychiatric disorders and microbiota is still under investigation; therefore, it is difficult to interpret how the resulting antipsychotic microbial alterations could be counteracted to the host. In a recent animal study where transplantation of gut microbiota was done from patients with depression to germ-free mice, the mice showed depressive-like and/or anxiety-like behavior that was accompanied with a
down regulation of Stat5 a gene, which regulates the Hypothalamus-Pituitary-Adrenal (HPA) axis reaction (Luo Y et al., 2018).

Moreover, one study (Moya-Pérez et al., 2017) showed that after the level of cortisol increased in the depression model mice, it was then reduced after the administration of B. pseudocatenulatum CECT 7765 and the upregulated stress response of the HPA axis was suppressed. The above-mentioned effects on the HPA axis and inflammation are thought to be one of the mechanisms in the relationship between psychiatric disorders and microbiota, but the direct link is not fully understood in humans. Regarding psychotropics, a meta-analysis by McKay et al. (2010) evaluated antidepressant effects on cortisol in patients with unipolar depression, focusing on studies that measured pre- and post-treatment cortisol. The effect sizes for pre/post-depression severity reductions were positively correlated with cortisol effect sizes and similar results are reported for antipsychotics (Subramaniam, A et al., 2019).

The results of this study must be interpreted in the context of the following limitations.

First, this study’s sample size was small, which introduces the possibility that our results may demonstrate a false relationship. Second, we did not take into consideration the effect of prescribed medication taken before participating in this study, as we did not set a washout period using antibiotics. Third, to collect medication data, we referred only to the medical prescription records for each patient, which means there could possibly be effects from non-adherence that we did not take into account. Fourth, we investigated the patients with various psychotropics, which means our cohort should be interpreted as multi-psychotropics-treated patients’ cohort and we cannot tease apart the relative contribution of each drug class. Fifth, there is a possibility for selection bias; for example, patients with gastrointestinal symptoms may have been more interested in participating in this research. Sixth, many other factors
beyond medication are known to influence the diversity of the gut microbiome; one example of such a factor is dietary habits (Kovatcheva-Datchary P et al., 2015), which will be investigated in our next paper.

This is the first study to demonstrate that antipsychotics may decrease alpha diversity during the course of treatment, and that antipsychotic dosage has a negative relationship with alpha diversity in the gut microbiome among patients with depression and anxiety.

A failure to consider patients’ psychotropic medications may be one of the factors which made previous reports controversial. In future studies, it will be important to give consideration to the types and doses of psychotropic medications used by subjects in order to further elucidate the mechanisms of gut-brain interactions in human subjects.
FUNDING

This work was supported in part by Japan Society for the promotion of science KAKENHI (18H04805 to SF); Japan Science and Technology Agency Precursory Research for Embryonic Science and Technology (JPMJPR1537 to SF); Japan Agency for Medical Research and Development Core Research for Evolutioonal Science and Technology (JP19gm1010009 to SF); Japan Science and Technology Agency Exploratory Research for Advanced Technology (JPMJER1902 to SF); the Takeda Science Foundation (to SF); the Food Science Institute Foundation (to SF); the Program for the Advancement of Research in Core Projects under Keio University’s Longevity Initiative (to SF); and Japan Dairy Association J-milk (to KS).

ACKNOWLEDGEMENTS

We would like to thank Ms. Kelley Cortright for proofreading this manuscript.

Statement of Interest

SK has received grants and/or speaker’s honoraria from Dainippon-Sumitomo Pharma, Meiji-Seika Pharma and Mochida Pharmaceutical within the past 3 years. KS has received speaker’s honoraria from Eli Lilly, Dainippon Sumitomo Pharma, and Meiji Seika Pharma.

TK has received consultant fees from Dainippon Sumitomo, Novartis, Otsuka; speaker’s honoraria from Banyu, Eli Lilly, Dainippon Sumitomo, Janssen, MSD, Novartis, Otsuka and Pfizer; and grant support from Takeda, Dainippon-Sumitomo and Otsuka. MM has received
grants and/or speaker’s honoraria from Asahi Kasei Pharma, Astellas Pharmaceutical, Daiichi Sankyo, Dainippon-Sumitomo Pharma, Eisai, Eli Lilly, Fuji Film RI Pharma, Janssen Pharmaceutical, Kracie, Meiji-Seika Pharma, Mochida Pharmaceutical, MSD, Novartis Pharma, Ono Yakuhin, Otsuka Pharmaceutical, Pfizer, Shionogi, Takeda Yakuhin, Tanabe Mitsubishi Pharma, and Yoshitomi Yakuhin, and research funding from Nishikawa Sangyo, Otsuka Pharmaceutical, MSD, Meiji-Seika Pharma, and Shionogi & Co., Ltd within the past 3 years. For the remaining authors none were declared.

AUTHOR CONTRIBUTIONS

YT contributed to literature search, data entry, data analysis, and writing the report; SK contributed to designing the study, data collection, and writing the report; SK, DI, KM, and KS contributed to data collection and writing the report; CI and SF contributed to fecal microbiome analysis and writing the report; TK and MM contributed to designing the study and writing the report. The manuscript was reviewed by all authors before submission.
REFERENCES

Bruno Senghor, Cheikh Sokhna, Raymond Ruimy, Lagier J-C (2018) Gut microbiota diversity according to dietary habits and geographical provenance. Human Microbiome Journal.

Caporaso JG et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335-336.

Chen Z, Li J, Gui S, Zhou C, Chen J, Yang C, Hu Z, Wang H, Zhong X, Zeng L, Chen K, Li P, Xie P (2018) Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. Neuroreport 29:417-425.

Chung YE, Chen HC, Chou HL, Chen IM, Lee MS, Chuang LC, Liu YW, Lu ML, Chen CH, Wu CS, Huang MC, Liao SC, Ni YH, Lai MS, Shih WL, Kuo PH (2019) Exploration of microbiota targets for major depressive disorder and mood related traits. J Psychiatr Res 111:74-82.

Consortium HMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207-214.

Correll CU, Detraux J, De Lepelere J, De Hert M (2015) Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 14:119-136.

Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, Dore J, Zucker JD, Clement K, Ehrlich SD (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585-588.

Cussotto S, Strain CR, Fouhy F, Strain RG, Peterson VL, Clarke G, Stanton C, Dinan TG, Cryan JF (2018) Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology (Berl) 236:1671-1685.

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069-5072.

Dieterich W, Schink M, Zopf Y (2018) Microbiota in the Gastrointestinal Tract. Med Sci (Basel) 6.
Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, Young VB, Ellingrod VE, McInnis MG (2017) The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res 87:23-29.

Faith DP, Baker AM (2007) Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinform Online 2:121-128.

Flowers SA, Baxter NT, Ward KM, Kraal AZ, McInnis MG, Schmidt TM, Ellingrod VL (2019) Effects of Atypical Antipsychotic Treatment and Resistant Starch Supplementation on Gut Microbiome Composition in a Cohort of Patients with Bipolar Disorder or Schizophrenia. Pharmacotherapy 39:161-170.

Furusawa Y et al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446-450.

Hayasaka Y, Purgato M, Magni LR, Ogawa Y, Takeshima N, Cipriani A, Barbui C, Leucht S, Furukawa TA (2015) Dose equivalents of antidepressants: Evidence-based recommendations from randomized controlled trials. J Affect Disord 180:179-184.

Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH (2019) Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Front Genet 10:98.

Ishii C, Nakanishi Y, Murakami S, Nozu R, Ueno M, Hioki K, Aw W, Hirayama A, Soga T, Ito M, Tomita M, Fukuda S (2018) A Metabologenomic Approach Reveals Changes in the Intestinal Environment of Mice Fed on American Diet. Int J Mol Sci 19.

Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, Li L, Ruan B (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186-194.

Kang D, Ilhan Z, Isern N, Hoyt D, Howsmon D, Shaffer M, Lozupone C, Hahn J, Adams J, Krajmalnik-Brown R (2018) Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49:121-131.
Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts A, Geis E, Maldonado J, McDonough-Means S, Pollard EL, Roux S, Sadowsky MJ, Lipson KS, Sullivan MB, Caporaso JG, Krajmalnik-Brown R (2017) Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10.

Kanji S, Fonseka TM, Marshe VS, Siretnakumar V, Hahn MK, Muller DJ (2018) The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurosci 268:3-15.

Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99-103.

Kelly JR, Clarke G, Cryan JF, Dinan TG (2016) Brain-gut-microbiota axis: challenges for translation in psychiatry. Ann Epidemiol 26:366-372.

Kenji Sanada, Shinichiro Nakajima, Shunya Kurokawa, Alberto Barceló-Soler, Daisuke Ikuse, Akihito Hirata, Akira Yoshizawa, Yoshihiro Tomizawa, Montserrat Salas-Valero, Yoshihiro Noda, Masaru Mimura, Akira Iwanami, Kishimoto T (2020) Gut microbiota and major depressive disorder: A systematic review and meta-analysis. Journal of Affective Disorders 266:1-13.

Kim BR, Shin J, Guevarra R, Lee JH, Kim DW, Seol KH, Lee JH, Kim HB, Isaacson R (2017) Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J Microbiol Biotechnol 27:2089-2093.

Kim SW, Suda W, Kim S, Oshima K, Fukuda S, Ohno H, Morita H, Hattori M (2013) Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 20:241-253.

Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Bjorck I, Backhed F (2015) Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab 22:971-982.

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814-821.
Liskiewicz P, Pelka-Wysiecka J, Kaczmarczyk M, Loniewski I, Wronski M, Baba-Kubis A, Skonieczna-Zydecka K, Marlicz W, Misiak B, Samochowiec J (2019) Fecal Microbiota Analysis in Patients Going through a Depressive Episode during Treatment in a Psychiatric Hospital Setting. J Clin Med 8.

Liu Y, Zhang L, Wang X, Wang Z, Zhang J, Jiang R, Wang X, Wang K, Liu Z, Xia Z, Xu Z, Nie Y, Lv X, Wu X, Zhu H, Duan L (2016) Similar Fecal Microbiota Signatures in Patients With Diarrhea-Predominant Irritable Bowel Syndrome and Patients With Depression. Clin Gastroenterol Hepatol 14:1602-1611 e1605.

Luo Y, Zeng B, Zeng L, Du X, Li B, Huo R, Liu L, Wang H, Dong M, Pan J, Zheng P, Zhou C, Wei H, Xie P (2018) Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl Psychiatry 8:187.

Ma ZS, Li L, Gotelli NJ (2019) Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. Isme J 13:1911-1919.

Macedo D, Filho A, Soares de Sousa CN, Quevedo J, Barichello T, Junior HVN, Freitas de Lucena D (2017) Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord 208:22-32.

Maes M, Twisk FN, Kubera M, Ringel K, Leunis JC, Geffard M (2012) Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord 136:909-917.

Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, Patil KR, Bork P, Typas A (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623-628.

McKay MS, Zakzanis KK (2010) The impact of treatment on HPA axis activity in unipolar major depression. J Psychiatr Res 44:183-192.

Morgan AP, Crowley JJ, Nonneman RJ, Quackenbush CR, Miller CN, Ryan AK, Bogue MA, Paredes SH, Yourstone S, Carroll IM, Kawula TH, Bower MA, Sartor RB, Sullivan PF (2014) The
antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse. PLoS One 9:e115225.

Moya-Perez A, Perez-Villalba A, Benitez-Paez A, Campillo I, Sanz Y (2017) Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav Immun 65:43-56.

Munhoz RP, Bertucci Filho D, Teive HA (2017) Not all drug-induced parkinsonism are the same: the effect of drug class on motor phenotype. Neurol Sci 38:319-324.

Murakami S, Goto Y, Ito K, Hayasaka S, Kurihara S, Soga T, Tomita M, Abe F, Osawa R (2015) The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control. Evid Based Complement Alternat Med 2015:824395.

Natividad JM, Verdu EF (2013) Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res 69:42-51.

Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16:90.

Prehn-Kristensen A, Zimmermann A, Tittmann L, Lieb W, Schreiber S, Baving L, Fischer A (2018) Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 13:e0200728.

Sender R, Fuchs S, Milo R (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 14:e1002533.

Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, Zhang M, Hu S, Liang Y (2018) Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res 197:470-477.

Subramaniam A, LoPilato A, Walker EF (2019) Psychotropic medication effects on cortisol: Implications for research and mechanisms of drug action. Schizophr Res 213:6-14.

Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4:623-632.
Vuong HE, Yano JM, Fung TC, Hsiao EY (2017) The Microbiome and Host Behavior. Annu Rev Neurosci 40:21-49.

Xu R, Wu B, Liang J, He F, Gu W, Li K, Luo Y, Chen J, Gao Y, Wu Z, Wang Y, Zhou W, Wang M (2019) Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun.

Yoav Benjamini, Hochberg Y (2000) On the Adaptive Control of the False Discovery Rate in Multiple Testing with Independent Statistics. Journal of Educational and Behavioral Statistics, Vol.25:60-83.

Yuan X, Zhang P, Wang Y, Liu Y, Li X, Kumar BU, Hei G, Lv L, Huang XF, Fan X, Song X (2018) Changes in metabolism and microbiota after 24-week risperidone treatment in drug naive, normal weight patients with first episode schizophrenia. Schizophr Res 201:299-306.

Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X, Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry 21:786-796.
Figure 1

In-patient	Day 0	Day 10	Day 14	Day 20	Day 21	d/f
Patients' 1st visit	✔	✔	✔	✔	✔	

Out-patient	Day 0	Day 10	Day 14	Day 20	Day 21	d/f
Patients' 2nd visit	✔	✔	✔	✔	✔	

Fecal Collection	✔	✔	✔	✔	✔	
HAM-D & HAM-A Assessment	✔	✔	✔	✔	✔	
Med. Data Collection	✔	✔	✔	✔	✔	
Figure 2
Figure 3

Antidepressants
ANOSIM R = -0.114, p = 0.99

Antipsychotics
ANOSIM R = 0.102, p < 0.01

Anxiolytics
ANOSIM R = 0.053, p < 0.01

Weighted
PC1 (17.8%), PC2 (14.1%)

Unweighted
PC1 (31.9%), PC2 (18.0%)

Legend:
- Red circle: Medication +
- Blue triangle: Medication -
- White circle: Time point 1
- White square: Time point 2
- White triangle: Time point 3
Table 1: Sociodemographic data. (Total: N=40)\(^{1,2}\)

Variable	Value
Sex (male, %)\(^{1,2}\)	17 (42.5)
Age (years, mean ± SD)\(^{2}\)	54.4 ± 19.0
BMI (kg/m², mean ± SD)\(^{2}\)	22.06 ± 4.34
Duration since first episode (years, mean ± SD)\(^{2}\)	11.95 ± 10.70
HAM-D (mean ± SD)\(^{2}\)	14.53 ± 7.90
HAM-A (mean ± SD)\(^{2}\)	14.30 ± 8.10
Chaol index (median = IQR)\(^{2}\)	15519.53 ± 4060.31
Shannon index (median = IQR)\(^{2}\)	5.89 ± 1.36
PD whole tree index (median = IQR)\(^{2}\)	60.67 ± 9.28
Duration on the current antidepressant (median = IQR)\(^{2}\)	142 ± 364.50
Duration on the current antipsychotic (median = IQR)\(^{2}\)	63.5 ± 682.75
Duration on the current anxiolytics (median = IQR)\(^{2}\)	242 ± 618.75

BMI, Body Mass Index; HAM-D, Hamilton Rating Scale for Depression; HAM-A, Hamilton Rating Scale for Anxiety; SD, standard deviation; PD, phylogenetic diversity.

\(^{1}\) \(^\text{Downloaded from https://academic.oup.com/ijnp/advance-article/doi/10.1093/ijnp/pyaa070/5911526 by guest on 26 September 2020}\)
Table 2

	Table 2: Baseline Alpha diversity at baseline in each psychotropic +/- group. (N=40; Median ± IQR)
	Antidepressants††
	(n=33)
	p-value
Chao1†	15574.82±3442.53 ± 3442.53
Shannon†	5.99±1.48
PD whole tree†	59.73±15.9

BMI, Body Mass Index; HAM-D, Hamilton Rating Scale for Depression; HAM-A, Hamilton Rating Scale for Anxiety; PD, phylogenetic diversity; IQR, interquartile range. P-values were corrected by FDR for each medication category.

††
Table 3: The dose relationships of psychotropics to microbial alpha diversity using a fixed-effect model (N=40; Repeated covariance type: diagonal).

	Chao1 Index	Shannon Index	PD Whole Tree
	Estimate	SE	p-value
Intercept	16795.45	1150.77	<0.001
Imipramine-eq	5.705573	0.358251	<0.001
CP-eq	0.00052	0.000711	0.464
Diazepam-eq	-0.00254	0.000595	<0.001
HAM-D	0.018621	0.0524	0.67608
HAM-A	0.01281	0.020656	0.537
BMI	0.014021	0.016965	0.411

CP, Chlorpromazine; HAM-D, Hamilton Rating Scale for Depression; HAM-A, Hamilton Rating Scale for Anxiety; -eq, equivalency scale; SE, standard error; BMI, Body Mass Index. *p<0.05.