New taxa in Aspergillus section Usti

Samson, R. A.; Varga, J.; Meijer, M.; Frisvad, Jens Christian

Published in:
Studies in Mycology

Link to article, DOI:
10.3114/sim.2011.69.06

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Samson, R. A., Varga, J., Meijer, M., & Frisvad, J. C. (2011). New taxa in Aspergillus section Usti. Studies in Mycology, 69(1), 81-97. DOI: 10.3114/sim.2011.69.06

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
New taxa in Aspergillus section Usti

R.A. Samson1*, J. Varga1,2, M. Meijer1 and J.C. Frisvad3

1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands; 2Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Kizel fasor 52, Hungary; 3BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

*Correspondence: Robert A. Samson, r.samson@CBS.knaw.nl

Abstract: Based on phylogenetic analysis of sequence data, Aspergillus section Usti includes 21 species, including two teleomorphic species Aspergillus heterothallicus (= Emericella heterothallica) and Fennellia monodii. Aspergillus germanicus sp. nov. was isolated from indoor air in Germany. This species has identical ITS sequences with A. insuetus CBS 119.27, but is clearly distinct from that species based on β-tubulin and calmodulin sequence data. This species is unable to grow at 37 °C, similarly to A. keveii and A. insuetus. Aspergillus carlsbadensis sp. nov. was isolated from the Carlsbad Caverns National Park in New Mexico. This taxon is related to, but distinct from a clade including A. calidoustus, A. pseudodefectus, A. insuetus and A. keveii on all trees. This species is also unable to grow at 37 °C, and acid production was not observed on CREA. Aspergillus californicus sp. nov. is proposed for an isolate from chamise chapparral (Adenostoma fasciculatum) in California. It is related to a clade including A. subseissilis and A. kasanusenii on all trees. This species grew well at 37 °C, and acid production was not observed on CREA. The strain CBS 504.65 from soil in Turkey showed to be clearly distinct from the A. deflectus ex-type strain, indicating that this isolate represents a distinct species in this section. We propose the name A. turkensis sp. nov. for this taxon. This species grew, although rather restrictedly at 37 °C, and acid production was not observed on CREA. Isolates from stored maize, South Africa, as a culture contaminant of Bipolaris sorokiniana from indoor air in Finland proved to be related to, but different from A. ustus and A. puniceus. The taxon is proposed as the new species A. pseudostoutus. Although supported only by low bootstrap values, F. monodii was found to belong to section Usti based on phylogenetic analysis of either loci BLAST searches to the GenBank database also resulted in closest hits from section Usti. This species obviously does not belong to the Fennellia genus, instead it is a member of the Emericella genus. However, in accordance with the guidelines of the Amsterdam Declaration on fungal nomenclature (Hawksworth et al. 2011), and based on phylogenetic and physiological evidence, we propose the new combination Aspergillus monodii comb. nov. for this taxon. Species assigned to section Usti can be assigned to three chemical groups based on the extracellular products. Aspergillus ustus, A. granulosus and A. puniceus produce ustic acid, while A. ustus and A. puniceus also produce austocystins and versicolorins. In the second chemical group, A. pseudodefectus produced drimans in common with the other species in this group, and also several unique unknown compounds. Aspergillus californicus isolates produced ophiothelins in common with A. insuetus and A. keveii, but also produced austin. Aspergillus insuetus isolates also produced pergillin while A. keveii isolates produced nidulon. In the third chemical group, E. heterothallica has been reported to produce emetillicins, 5-hydroxysteranin, emehterone, emesterones, 5-hydroxyvaneranin.

Key words: Ascomycetes, Aspergillus section Usti, ITS, calmodulin, extratolutes, β-tubulin, polyphasic taxonomy.

Taxonomic novelties: Aspergillus carlsbadensis Frisvad, Varga & Samson sp. nov., Aspergillus californicus Frisvad, Varga & Samson sp. nov., Aspergillus germanicus Varga, Frisvad & Samson sp. nov., Aspergillus monodii (Locquin-Linard) Varga, Frisvad & Samson comb. nov., Aspergillus pseudostoutus Frisvad, Varga & Samson sp. nov., Aspergillus turkensis Varga, Frisvad & Samson sp. nov.

INTRODUCTION

Aspergillus ustus is a common filamentous fungus found in soils, soil and indoor air environments (Samson et al. 2004). This species was considered as a relatively rare human pathogen that can cause invasive infection in immunocompromised hosts (Weiss & Thiemke 1983, Stiller et al. 1994, Verweij et al. 1999, Nakai et al. 2002, Pavie et al. 2005, Panackal et al. 2006, Yildiran et al. 2006, Krishnan-Natesan et al. 2008, Florescu et al. 2008, Vagefi et al. 2008). However, recent studies clarified that infections attributed to A. ustus are caused in most cases by another species, A. calidoustus (Houbraken et al. 2007, Varga et al. 2008, Balajee et al. 2009, Pelaez et al. 2010). This species is also common in indoor air (Houbraken et al. 2007, Slack et al. 2009) and is able to colonise water distribution systems (Hageskal et al. 2011). Other species related to A. ustus can also cause human or animal infections; A. granulosus was found to cause disseminated infection in a cardiac transplant patient (Fakh et al. 1995), while A. deflectus has been reported to cause disseminated mycosis in dogs (Jang et al. 1986, Kahler et al. 1990, Robinson et al. 2000, Schultz et al. 2008, Krokenberger et al. 2011).

Raper & Fennell (1965) classified A. ustus to the Aspergillus ustus species group (Aspergillus section Usti according to Gams et al. 1985) together with four other species: A. panamensis, A. puniceus, A. conjunctus and A. deflectus. Later, Kozakiewicz (1989) revised the taxonomy of the group, and included A. ustus, A. pseudodefectus, A. conjunctus, A. puniceus, A. panamensis and A. granulosus in the A. ustus species group, and established the A. deflectus species group including A. deflectus, A. pulvinus and A. silvaticus based on morphological studies. Klich (1993) treated A. granulosus as member of section Versiculares, and found that A. pseudodefectus is only weakly related to this section based on morphological treatment of section Versiculares. Peterson (2000) transferred A. conjunctus, A. fumiculosus, A. silvaticus, A. panamensis and A. androspormis to section Sparsi. More recently, Peterson (2008) examined the relationships of the Aspergillus genus using phylogenetic analysis of sequences of four loci, and assigned 15 species to this section (see below).

We examined the evolutionary relationships among species assigned to section Usti. We have used a polyphasic taxonomic approach in order to determine the delimitation and variability of known and new species. For phenotypic analyses, macro- and micromorphology of the isolates was examined, and secondary
Species	Strain No.	Source
A. amylovorus	CBS 600.67 = NRRL 5813 = IMI 129961 = VKM F-906 = IBT 23158	Wheat starch, Ukraine
A. calidoustus	CBS 112452	Indoor air, Germany
	CBS 113228	ATCC 38849; IBT 13091
	CBS 114380	Wooden construction material, Finland
	CBS 121601; 677	Bronchoalveolar lavage fluid, proven invasive aspergillosis, Nijmegen, the Netherlands*
	CBS 121610; 91	Post-cataract surgery endophthalmitis, Turkey
A. californicus	CBS 123895T = IBT 16748	Ex chamise chaparral (Adenostoma fasciculatum), in the foothills of the San Gabriel Mountains on Baldy Mountain Road near Shinn Road Intersection, North of Claremont and near San Antonio Dam, California, USA, Jeff S. La Favre, 1978. A wildfire occurred here 31/8 1975.
A. carlsbadensis	CBS 123893 = IBT 16753	Soil, Galapagos Islands, Ecuador
	CBS 123894T = IBT 14493	Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico, USA, D.E. Northup, 1992
	CBS 123903 = IBT 18616	Soil, Carthage, Tunesia
	CBS 123903 = IBT 18616	Soil, cave wall, Romania
A. cavernicola	CBS 117.76T = NRRL 6327	Soil, Rio de Janeiro, Brazil
	CBS 109.55T = NRRL 2206 = IBT 24665	Potting soil
	CBS 4235 = IBT 25291	Unknown
	CBS 121601; 91	Post-cataract surgery endophthalmitis, Turkey
	NRRL 13131 = IBT 25254	Unknown
A. egyptiacus	CBS 123892 = IBT 16345 = RMF 9515	Soil, Iraq
	CBS 656.73T = NRRL 5920	Sandy soil, under Olea europaea, Ras-EHikma, Egypt
	CBS 991.72C	Bare ferruginous soil, Dahkla Oasis, Western desert, Egypt
	CBS 991.72A	Bare ferruginous soil, Dahkla Oasis, Western desert, Egypt
	CBS 991.72B	Bare ferruginous soil, Dahkla Oasis, Western desert, Egypt
	CBS 991.72F	Bare ferruginous soil, Dahkla Oasis, Western desert, Egypt
	CBS 991.72E	Bare ferruginous soil, Dahkla Oasis, Western desert, Egypt
A. elongatus	CBS 387.75T = NRRL 5176	Alkaline Usar soil, Lucknow, India
A. germanicus	CBS 123887T = DTO 27-D9 = IBT 29365	Indoor air, Stuttgart, Germany
A. granulosus	CBS 588.65T	Soil, Fayetteville, Arkansas, USA
	CBS 119.58	Soil, Texas, USA
A. heterothallicus	CBS 489.65T	Soil, Costa Rica
	CBS 488.65	Soil, Costa Rica
A. insuetus	CBS 107.25T = NRRL 279	South Africa
	CBS 119.27 = NRRL 4876	Soil, Iowa, USA
	CBS 102278	Subcutaneous infection, Spain
A. kassunensis	CBS 419.69T = NRRL 3752 = IMI 334938 = IBT 23479	Soil, Damascus, Syria
A. kevei	CBS 209.92	Soil, La Palma, Spain
	CBS 561.65 = NRRL 1974	Soil, Panama
	IBT 10524 = CBS 113227 = NRRL 1254	Soil, Panama
	IBT 16751	Soil at trail from Pelican Bay to inland, Isla Santa Cruz, Galapagos Islands, Ecuador, Tjtte de Vries and D.P. Mahoney, 1968
A. lucknowensis	CBS 449.75T = NRRL 3491	Alkaline Usar soil, Lucknow, India
A. monodii	CBS 434.93	Dung of Procavia sp. (daman), Darfur, Sudan
	CBS 435.93T	Dung of sheep, Ennedi, Chad
A. pseudodeflectus	CBS 596.65	Sugar, USA, Louisiana
	CBS 756.74T	Desert soil, Egypt, Western Desert
	NRRL 4846 = IBT 25256	Unknown
A. pseudostinus	ATCC 36063 = NRRL 5856 = CSIR 1128 = CBS 123904T = IBT 28161	Stored maize, South Africa
	MRC 096 = IBT 31044	Contaminant in a Bipolaris sorokiniana strain (MRC 093), South Africa
metabolite profiles were studied. For genotypic studies, partial sequences of the β-tubulin and calmodulin genes and the ITS region of the rRNA gene cluster were analysed.

MATERIALS AND METHODS

Isolates

The strains used in this study are listed in Table 1.

Morphological analysis

For macromorphological observations, Czapek Yeast Autolysate (CYA), Malt Extract Autolysate (MEA) agar, Yeast Extract Sucrose Agar (YES), Creatine Agar (CREA), and Oatmeal Agar (OA) were used (Samson et al. 2004). The isolates were inoculated at three points on each plate of each medium and incubated at 25 °C and 37 °C in the dark for 7 d. For micromorphological observations, microscopic mounts were made in lactic acid with cotton blue from MEA colonies and a drop of alcohol was added to remove air bubbles and excess conidia.

Extralite analysis

The isolates were grown on CYA and YES at 25 °C for 7 d. Extralites were extracted after incubation. Five plugs of each agar medium were taken and pooled together into same vial for extraction with 0.75 mL of a mixture of ethyl acetate/dichloromethane/methanol (3:2:1) (v/v/v) with 1 % (v/v) formic acid. The extracts were filtered and analysed by HPLC using alkylphenone retention indices and diode array UV-VIS detection as described by Frisvad & Thrane (1987), with minor modifications as described by Smedsgaard (1997).

Genotypic analysis

The cultures used for the molecular studies were grown on malt peptone (MP) broth using 1 % (w/v) of malt extract (Oxoid) and 0.1 % (w/v) bacto peptone (Difco), 2 mL of medium in 15 mL tubes. The cultures were incubated at 25 °C for 7 d. DNA was extracted from the cells using the Masterpure™ yeast DNA purification kit (Epicentre Biotechnol.) according to the instructions of the manufacturer. The ITS region and parts of the β-tubulin and calmodulin genes were amplified and sequenced as described previously (Houbraken et al. 2007, Varga et al. 2007, 2008).

RESULTS AND DISCUSSION

Phylogenetic analysis

For the molecular analysis of the isolates, three genomic regions, the ITS region, and parts of the calmodulin and β-tubulin genes were amplified and sequenced. Phylogenetic analysis of the data was carried out using parsimony analysis. For the analysis of part of the β-tubulin gene, 589 characters were analysed, 197 of which were found to be parsimony informative. One of the 78 MP trees based on partial β-tubulin genes sequences is shown in Fig. 1 (tree length: 661 steps, consistency index: 0.6445, retention index: 0.8922). The calmodulin data set included 475 characters, with 266 parsimony informative characters. One of the 119 MP trees based on partial calmodulin gene sequences is shown in Fig. 2 (tree length: 583.65).

Species	Strain No.	Source
A. pseudustus	IBT 22361	Indoor air, Finland
A. puniceus	CBS 495.65¹	Soil, Zarcero, Costa Rica
	CBS 128.62	Soil, Louisiana, USA
A. subassilis	CBS 502.65¹	Desert soil, Mojave desert, CA, USA
	CBS 988.72	Desert soil, USA
A. turkensis	CBS 504.65¹	Soil, Turkey
A. ustus	CBS 116057	Antique tapestries, Krakow, Poland
	CBS 114901	Carpet, The Netherlands
	CBS 261.67¹	Culture contaminant, USA
	CBS 133.55	Textile buried in soil, Netherlands
	CBS 239.90	Man, biopsy of brain tumor, Netherlands
	CBS 113233 = IBT 14495	Cave wall, Lechuguilla Cave, Carlsbad, New Mexico
	CBS 113232 = IBT 14932	Indoor air, Denmark

Table 1. (Continued).
Fig. 1. The single MP tree obtained based on phylogenetic analysis of β-tubulin sequence data of Aspergillus section Usti. Numbers above branches are bootstrap values. Only values above 70% are indicated.
Fig. 2. One of the MP trees obtained based on phylogenetic analysis of calmodulin sequence data of Aspergillus section Usti. Numbers above branches are bootstrap values. Only values above 70 % are indicated.
Fig. 3. One of the MP trees obtained based on phylogenetic analysis of ITS sequence data of Aspergillus section Usti. Numbers above branches are bootstrap values. Only values above 70% are indicated.
890, consistency index: 0.5753, retention index: 0.8788). The ITS data set included 541 characters with 100 parsimony informative characters. One of the 8 MP trees is shown in Fig. 3 (tree length: 224, consistency index: 0.7366, retention index: 0.9230).

Based on phylogenetic analysis of sequence data, Aspergillus section Usti includes now 21 species, at least two of which are able to reproduce sexually: Aspergillus heterothallicus (=Emericella heterothallica) and Fennellia monodii. Although supported only by low bootstrap values, F. monodii was found to belong to section Usti based on phylogenetic analysis of either loci (Figs 1–3). BLAST searches to the GenBank database also resulted in closest hits from section Usti (A. pseudodeflectus and A. calidoustus for the ITS and calmodulin sequence data, and A. ustus and A. insuetus for the β-tubulin sequences). Fennellia monodii was described in 1990 by Locquin-Linard from dung of herbivores in Tchad and Sudan. This species is characterised by two-valved ascospores with low, wrinkled equatorial crests. The anamorph of this species which was isolated outside Egypt.

Another new species in this section was isolated from indoor air in Germany. This species has identical ITS sequences with two-valved ascospores with low, wrinkled equatorial crests. The anamorph of this species which was isolated outside Egypt.

In agreement with the data of Peterson (2008), A. kassunensis, which was treated as a synonym of A. subsessilis (Samson 1979, Samson & Mouchaca 2004), is also a valid species, related to A. subsessilis and A. calidoustus (Figs 1–3). Aspergillus cavernicola was treated as a synonym of A. varians by Samson (1979); however, based on sequence data, it is conspecific with A. amylolvorus and belongs to section Usti, while the A. varians type strain belongs to Aspergillus section Nidulantes (data not shown). Aspergillus amylolvorus was invalidly described (nom. inval., Art. 37) from wheat stalk (Panasenko 1964), and subsequently validated by Samson (1979), while A. cavernicola was described in 1969 from cave wall from Romania. This species was validly described and hence is the correct name for A. cavernicola (= A. amylolvorus).

Extrolites

The mycotoxins and other secondary metabolites found to be produced by the examined species in this study are listed in Table 2. Species assigned to section Usti could clearly be assigned to three chemical groups based on the extrolites produced by them. Aspergillus ustus, A. granulosus and A. puniceus produced ustic acids in common. Aspergillus ustus and A. puniceus also produced austocystsins and versicorolins. In the second chemical group, A. pseudodeflectus produced drimans (Hayes et al. 1996) in common with the other species in this group, and also several unique unknown compounds. Aspergillus calidoustus isolates produced drimans and ophiobolins (Cutler et al. 1984) in common with A. insuetus and A. keveii, but also produced austins (Cheval et al. 1976) not identified in other species of section Usti. Aspergillus insuetus isolates also produced pergillin (Cutler et al. 1980), while A. keveii isolates produced nidulol. In the third chemical group, E. heterothallica has been reported to produce emethallicins A–F (Kawahara et al. 1989, 1990a, b), 5-hydroxyverrucarin (Yabe et al. 1991), emetherone (Kawahara et al. 1988), emesterones A & B (Hosoe et al. 1998), 5-hydroxyverrucarin (Yabe et al. 1991), Mer-NF8054X (Mizuno et al. 1995). This latter compound, an 18,22-cyclosterol derivative, is closely related to the emesterones, and was also identified in an isolate identified as A. ustus (Mizuno et al. 1995). Aspergillus deflectus produces several antibiotics, including desferritriacetylfusigen, which inhibits the growth of bacteria (Anke 1977), and deflectins, angular azaphilons, which have antibiotic properties, and exhibit lytic activities against bacteria and erythrocyes (Anke et al. 1981). Aspergillus egyptiacus has been suggested to be more closely related to E. nidulans than to A. versicolor based on its biochemical behavior (Zohn & Ismail 1994). Aspergillus egyptiacus produces fumitremorgins and verruculinog, thus resembling A. caespitosus in that aspect. However A. caespitosus is placed within Aspergillus section Nidulantes (Peterson 2008, J. Varga, unpubl. data). Aspergillus elongatus CBS 387.75 produced fumitremorgin C, but other fumitremorgins and verruculogen could not be detected in that strain. The same strain also produced a member of the norgeamide / notoamide / aspargamide / steptacidi family of secondary metabolites (notoamide E). This type of compound has also been found in a strain of A. versicolor (Greshock et al. 2008).

Of particular interest is A. pseudoustus NRRL 5856 = CSIR 1128, which was originally identified as A. ustus and the first strain from which austamides, austidols and austocystins (Table 2) were isolated (Steyn 1971, 1973, Steyn & Vleggar 1974, 1976a, b, Vleggar et al. 1974). This very toxic species has, however, only been isolated from maize in South Africa twice, and once in indoor...
Species Extrolites produced

A. amylovorus An asperugin, monascorubramin-like extrolites, (CANO, SCYT, SENSTER, STARM)
A. calidoustus Austins, drimans, ophiobolins G and H, (MTC-120B, ALTIN, FAAL, KNOK)
A. californicus An arugosin, (CANDU, SAERLO, SCAM, SEND, XANXU)
A. carlsbadensis Brevianamide A (only in IBT 14493), [An arugosin, DRI, TRITRA, TIDL (not in IBT 18753), GNI (only in IBT 18616), EMO (only in IBT 14493)]
A. deflectus Desferribacetylfuscigen, deflectins A & B, emerin, a shamianthaxone, (FUMU, RED2)
A. egypiticus Fumitremorgin A, fumitremorgin B, verruculogen, (FYEN, UTSCAB, TOPLA, FUMU, PRUD, HØJV)
A. elongatus Fumitremorgin C, notoamide E, (DYK, SEXT, TERRET)
A. germanicus Drimans, (DRUL, KNAT, SLOT, SNOF)
A. granulosus Asperugins, ustic acids, nidulol, drimans, (KMET, PUBO, SENSTER, SFOM)
A. heterothallicus Emethallicins A, B, C, D, E & F, emethelaterone, emetherones A & B and Mer-NF8054X, 5-hydroxyaveranthin, stellatin, sterigmatocystin, (DRI, NIDU)
A. insuetus Asperugins, drimans, ophiobolins G and H, pergillin-like compound, (AU, HETSCYT, INSU)
A. kastenateus Asperugins, Mer-NF8054X, (FYRT, SAERLO, SENSCAB, SENSTER)
A. keveii Asperugins, drimans, ophiobolins G and H, nidulol, (FUMU, HETSCYT, INSU, PUBO, SENSTER, UP)
A. lucknowensis An arugosin, (GULT, PULK, RED1)
A. monodii Terein, (DYVB, METK)
A. pseudodeflectus Drimans, (DRUL, SNOF, SLOT), asperugin in NRRL 4846
A. pseudodeflectus Asperugins, austamide, prolyl-2-(1',1'-dimethylallyl) tryptophyl diketopiperazine, 12,13-dihydroaustamide, 12,13-dehydroprolyl-2-1',1'-dimethylallyl)-tryptophyl diketopiperazine, 10,20-dehydro[12,13-dehydropropyl-2-1',1'-dimethylallyl]tryptophyl diketopiperazine, 12,13-dihydro-12-hydroxyaustamide, austidol, dihydrodeoxy-8-epi-austidol, austocystin A, B, C, D, E, F, G, H, I, norsolorinic acid, versicocerin C, averufin, (DRI, HETSCYT, SENSTER, UZ)
A. puniceus Ustic acids, austocystins (and versicolorins), phenylalanin, nidulol, (SENSCAB)
A. subsessilis Mer-NF8054X, (SENSCAB, VIRO)
A. turkensis An austocystin, deflectins, emerin, a shamianthaxone, (RED2)
A. ustus Ustic acids, austocystins (and versicolorins), austalides, nidulol, (SENSCER)

All designations in parenthesis with capital letters are secondary metabolites with characteristic chromophores (UV spectra) and retention-times, but their chemical structure is not yet known.

Aspergillus carlsbadensis Frisvad, Varga & Samson, sp. nov. MycoBank MB560399 Fig. 4.

Colonii flavo-brunnei, cum caespitulis ex conglomerationibus cellularum obtegentium (“Hülle”). Cellulis obtegentibus (“Hülle”) hyalinis, crassitunicatis, globosis vel late ellipsoidis, 15–30 μm. Conidiphoris biserialis, stipitibus plerunque levibus, brunnis, 4–5 μm latis. Vesiculis globosis, 10–14 μm diam. Conidios conspicue ornamentatis, echinulatis et verrucosis, ellipsoidis, 2.5–3.0 × 3.0–3.5 μm.

Typus: USA, from soil, Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico, isolated by D.E. Northup, 1992, (CBS H-30634 – holotypus, culture ex-type CBS 123894).

CYA, 1 wk, 25 °C: 30–32 mm (poor to medium sporulation, cream yellow to dark brown reverse, Hülle cells), MEA, 1 wk, 25 °C: 7–29 mm (rather poor sporulation, light yellow to cream reverse), YES, 1 wk, 25 °C: 35–45 mm (no sporulation, yellow to curry yellow), OA, 1 wk, 25 °C: 25–32 mm (Hülle cells), CYA, 1 wk, 37 °C: no growth, CREA: good growth (18–22 mm) and no acid production.

Colonies yellow brown with white tufts of conglomerates of Hülle cells. Hülle cells hyaline, thick-walled, globose to broadly ellipsoidal, 15–30 μm. Conidiphores biseriate with typical smooth-walled, brown, 4–5 μm wide stipes. Vesicles globose, 10–14 μm in diam. Conidia, distinctly ornamented with spines or warts, ellipsoidal 2.5–3.0 × 3.0–3.5 μm.
Fig. 4. Aspergillus carlsbadensis Frisvad, Varga & Samson sp. nov. A–C. Colonies incubated at 25 °C for 7 d. A. CYA, B. MEA, C. Tufts of Hülle cells. D–E, G–I. Conidiophores and conidia. F. Hülle cells. Scale bars = 10 μm.
Fig. 5. Aspergillus californicus Frisvad, Varga & Samson sp. nov. A–C. Colonies incubated at 25 °C for 7 d. A. CYA, B. MEA, C. CREA. D–I. Conidiophores and conidia. Scale bars = 10 µm.
The taxon is related to, but clearly distinct from a clade including *A. calidoustus, A. pseudodefectus, A. insuetus* and *A. kevei* on all trees. This species is also unable to grow at 37 °C, and acid production was not observed on CREA.

Aspergillus calidoustus Frisvad, Varga & Samson, sp. nov. MycoBank MB560400. Fig. 5.

Colonies clare flavis, cum caespitulis abidis ex conglomerationibus cellularum obtectegentium ("Hülle"). Cellulis obtectegentibus ("Hülle") hyalinis, crassitunicatis, globosis vel late ellipsoideis. Conidiophoris biseriatis, stipitibus levibus, clare brunneis, 3.5–5 μm latis. Vesiculis globosis, 11–16 μm in diam. Conidiospores vel subtiliter exasperati, subglobosis vel globosis, hyalinis vel viridibus, 2.5–3.0 μm.

Typus: **USA**, foothills of San Gabriel Mountains, California, ex chasmis chapparral (Adenostoma fasciculatum), Jeff S. La Favre, 1978 (CBS H-20635 — holotypus, culture ex-type CBS 123895).

CyA, 1 wk, 25 °C: 18–20 mm (poor sporulation, yellow brown reverse, Hüle cells), MEA, 1 wk, 25 °C: 6–9 mm (rather poor sporulation, yellow brown reverse), YES, 1 wk, 25 °C: 23–26 mm (no sporulation, cream yellow reverse), OA, 1 wk, 25 °C: 18–21 mm (Hüle cells), CYA, 1 wk, 37 °C: no growth, CREA: good growth and no acid production.

Colonies light yellow with white tufts of conglomerates of Hüle cells. Hüle cells hyaline, thick-walled, globose to broadly ellipsoidal, 25–50 μm. Conidiophores biseriate with smooth-walled, light brown, 3.5–5 μm wide stipes. Vesicles globose, 11–16 μm in diam. Conidia, smooth to finely roughened, subglobe to globose, hyaline to greenish, 2.5–3.0 μm.

This species grew well at 37 °C, and acid production was not observed on CREA. It was found to be related to species in a clade including *A. subsessilis* and *A. kassunensis*.

Aspergillus germanicus Varga, Frisvad & Samson, sp. nov. MycoBank MB560401. Fig. 6.

Colonies in agar **CyA** cinnamomeo-brunneis et in agar MEA flavo-brunneis, cellulis obtectegentibus ("Hülle") nullis. Conidiophoris biseriatis, stipitibus plerumque levibus, brunneis, 6–9 μm latis. Vesiculis spathuliformibus, 14–22 μm diam. Conídiospores echinulati, globosis, brunneis, 3.5–5.0 μm diam.

Typus: **Germany**, ex indoor air, Stuttgart. Isolated by U. Weidner (CBS H-20636 — holotypus, culture ex-type CBS 123887).

CyA, 1 wk, 25 °C: 22–26 mm (poor to medium sporulation, yellow brown to orange reverse, pigment diffusing, Hüle cells), MEA, 1 wk, 25 °C: 12–16 mm (good sporulation, light yellow to cream reverse), YES, 1 wk, 25 °C: 32–37 mm (some sporulation, yellow brown reverse), OA, 1 wk, 25 °C: 28–32 mm, **CyA**, 1 wk, 37 °C: 7–9 mm, CREA: good growth and no acid production.

Colonies on **CyA** brown, on MEA griseous brown. Hüle cells not observed. Conidiophores biseriate with typical smooth-walled, brown, 6–9 μm wide stipes. Vesicles spathulate, 14–22 μm diam. Conidia, distinctly echinulate, globose, brown, 3.5–5.0 μm.

This species has identical ITS sequences with *A. insuetus* CBS 119.27, but is clearly distinct from that species based on β-tubulin and calmodulin sequence data.

Aspergillus monodii (Locquin-Linard), Varga, Frisvad & Samson, comb. nov. MycoBank MB560402. Fig. 7.

Basionym: *Fennelia monodii* Locquin-Linard, *Mycotaxon* 39: 10, 1990.

CyA, 1 wk, 25 °C: 2–21 mm (no sporulation, white to cream reverse), MEA, 1 wk, 25 °C: 6–8 mm (ascomata, light yellow reverse), YES, 1 wk, 25 °C: 8–23 mm (no sporulation, yellow to red brown reverse, yellow obverse), OA, 1 wk, 25 °C: 9–19 mm (ascomata), CYA, 1 wk, 37 °C: 0–2 mm, CREA: poor growth and no acid production.

Colonies producing an orange brown crusts of stromata with ascomata 200–350 μm in diam. Hüle cells forming the structure of the stromata, globose to ellipsoidal, 8–40 μm diam. Asci 8–10 × 10–13 μm. Ascospores 3.0–3.5 × 4.5–5.0 μm, hyaline, smooth-walled with two equatorial rings. *Aspergillus* anamorph not observed on various media and after cultivation at different temperatures.

This species occurs on dung and found on sheep dung in Chad and daman dung in Soudan.

Aspergillus pseudoustus Frisvad, Varga & Samson, sp. nov. MycoBank MB560403. Fig. 8.

Colonies in agar **CyA** cinnamono-brunneis et in agar MEA flavo-brunneis, cellulis obtectegentibus ("Hülle") nullis. Conidiophoris biseriatis, stipitibus plerumque levibus, brunneis, 3.5–5 μm latis. Vesiculis globosis, 10–14 μm diam. Conidiospores levibus distinct echinulati, globosis, brunneis vel viridibus, 2.5–3.0 μm.

Typus: **South Africa**, ex stored maize (CBS H-20637 — holotypus, culture ex-type CBS 123904).

CyA, 1 wk, 25 °C: 30–32 mm (medium sporulation, yellow brown reverse), MEA, 1 wk, 25 °C: 15–25 mm (rather poor sporulation, light yellow reverse), YES, 1 wk, 25 °C: 35–45 mm (no sporulation, curry yellow to brown reverse), OA, 1 wk, 25 °C: 30–36 mm, **CyA**, 1 wk, 37 °C: no growth, CREA: 28–34 mm, no acid production.

Colonies on CYA cinnamon brown, on MEA yellow brown. Hüle cells not observed. Conidiophores biseriate with typical smooth-walled, brown, 3.5–5 μm wide stipes. Vesicles globose, 10–14 μm in diam. Conidia, smooth to distinctly echinulate, globose, brown to greenish, 2.5–3.0 μm.

Other strains: MRC 096 = IBT 31044, contaminant in *Bipolaris sorokiniana*, isolated from maize, South Africa; IBT 22361, indoor air; Finland

Aspergillus pseudoustus sp. nov., is related to, but clearly different from *A. ustus* and *A. punicicus* on all trees. This isolate came from stored maize, South Africa. Other isolates belonging to this species include a culture contaminant of *Bipolaris sorokiniana* from South Africa (IBT 31044), and one isolate came from indoor air in Finland (IBT 22361).

Aspergillus turkensis Varga, Frisvad & Samson sp. nov. MycoBank MB560404. Fig. 9.

Colonies in agar **CyA** clare brunneis et in agar MEA flavo-brunneis, cellulis obtectegentibus ("Hülle") nullis. Conidiophoris minute biseriatis, stipitibus plerumque levibus, brunneis, 6–9 μm latis. Vesiculis spathuliformibus, 14–22 μm diam. Conidiospores echinulati, globosis, brunneis, 3.5–5 μm diam.

Typus: **Turkey**, ex soil isolated by K.B. Raper in 1950 (CBS H-20638 — holotypus, culture ex-type CBS 504.65).

CyA, 1 wk, 25 °C: 13–18 mm (poor sporulation, red orange reverse), MEA, 1 wk, 25 °C: 4–10 mm (rather poor sporulation, cream yellow reverse), YES, 1 wk, 25 °C: 35–45 mm (no sporulation, orange

91
Fig. 6. Aspergillus germanicus Varga, Frisvad & Samson sp. nov. A–C. Colonies incubated at 25 °C for 7 d, A. CYA, B. MEA, C. Tufts of Hüße cells. D–E, G–I. Conidiophores and conidia. F. Hüße cells. Scale bars = 10 µm.
new taxa in *Aspergillus* section *Usti*

Fig. 7. *Aspergillus monodi* (Locquin-Linard) Varga, Fritsved & Samson comb. nov. A–B. Stromata containing ascomata, grown at 25 °C for 7 d, C. Mycelium with ascoma initials. D. Hüle cells, E–G. Asci and ascospores. Scale bars = 10 µm.

yellow reverse, yellow obverse), OA, 1 wk, 25 °C: 14–17 mm (yellow reverse and obverse), CYA, 1 wk, 37 °C: 6–14 mm, CREA: weak growth and no acid production.

Colonies on CYA light brown, on MEA pale yellow brown. Hüle cells not observed. Conidiophores small biseriate with typical smooth-walled, light brown, 2.5–3 µm wide stipes. Vesicles spathulate, 5–8 µm diam. Conidia, smooth-walled, globose, hyaline, 2.5–3.0 µm.

Isolate CBS 504.65 is distinct from the *A. deflectus* ex-type strain on all trees, indicating that this isolate represents a distinct species in this section. This species grew, although rather restrictedly at 37 °C, and acid production was not observed on CREA.

ACKNOWLEDGEMENTS

We thank Uwe Braun for the Latin diagnosis and advice on nomenclatural issues.

REFERENCES

Aletal-izquierdo A, Cuesta I, Houbraken J, Cuenca-Estrella M, Monzón A, Rodríguez-Tudela JL (2010). *In vitro* activity of nine antifungal agents against clinical isolates of *Aspergillus calidoustus*. *Medical Mycology* 48: 97–102.

Anke H (1977). Metabolic products of microorganisms. 163. Desferritriacetylfusigen, an antibiotic from *Aspergillus deflectus*. *Journal of Antibiotics* 30: 125–128.

Anke H, Kemmer T, Hülefe G (1981). Deflectins, new antimicrobial azaphilones from *Aspergillus deflectus*. *Journal of Antibiotics* 34: 923–928.

Baddley JW, Marr KA, Andes DR, Walsh TJ, Kauffman CA, et al. (2009). Patterns of susceptibility of *Aspergillus* isolates recovered from patients enrolled in the Transplant-Associated Infection Surveillance Network. *Journal of Clinical Microbiology* 47: 3271–3275.
Fig. 8. Aspergillus pseudoostus Frisvad, Varga & Samson sp. nov. A–C. Colonies incubated at 25 °C for 7 d. A. CYA, B. MEA, C. CREA. D–I. Conidiophores and conidia. Scale bars = 10 µm.
Fig. 9. *Aspergillus turkensis* Varga, Frisvad & Samson sp. nov. A–C. Colonies incubated at 25 °C for 7 d, A. CYA, B. MEA, C. CREA, D–I. Conidiophores and conidia. Scale bars = 10 µm.
Balajee SA, Kano R, Baddley JW, Moser SA, Maa KA, et al. (2009). Molecular identification of Aspergillus species collected for the Transplant-Associated Infection Surveillance Network. Journal of Clinical Microbiology 47: 3138–3141.

Cehalal KK, Springer JP, Clardy J, Cole RJ, Kirksey JW, et al. (1976). A novel polyisoprenoid mycoside from Aspergillus ustus. Journal of the American Chemical Society 98: 6748.

Cole RJ, Schweikert MA (2003). Handbook of secondary fungal metabolites. Vols. 1–3. Amsterdam: Elsevier Academic Press.

Cutler HG, Crumley FG, Cox RH, Cole RJ, et al. (1980). Pergilin: a nontoxic fungal metabolite with moderate plant growth inhibiting properties from Aspergillus ustus. Journal of Agricultural and Food Chemistry 28: 989–991.

Frisvad JC, Crumley FG, Cox RH, Springer JP, Amendale RF, et al. (1984). Ophiobolins G and H: new fungal metabolites from a novel source, Aspergillus ustus. Journal of Agricultural and Food Chemistry 32: 778–782.

Fahk MG, Barden GE, Oakes CA, Berenson CS (1995). First reported case of Aspergillus granulosus infection in a cardiac transplant patient. Journal of Clinical Microbiology 33: 471–473.

Florescu DF, Iwen PC, Hill LA, Dumitriu I, Quader MA, et al. (2008). Cerebral aspergillosis caused by Aspergillus ustus following orthotopic heart transplantation: case report and review of the literature. Clinical Transplantation 23: 116–120.

Frisvad JC, Skoube P, Samson RA (2005). Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, stigmatosporidin and 3-O-methylstigmatosporidin, Aspergillus rambelli sp. nov. Systematic and Applied Mycology 28: 442–453.

Frisvad JC, Thane U (1987). Standardized high performance liquid chromatography of 182 mycoxotins and other fungal metabolites based on alkylhyponen retention indices and UV-VIS spectra (diode array detection). Journal of Chromatography 404: 195–214.

Frisvad JC, Thane U (1993). Liquid chromatography of mycoxotins. Journal of Chromatography Library 54: 253–372.

Gams W, Christensen M, Onions AH, Pitt JI, Samson RA (1985). Infrageneric taxa of Aspergillus. In: Advances in Penicillium and Aspergillus Systematics. (Samson RA, Pitt JI, eds). New York: Plenum Press: 55–62.

Greshock TJ, Grubs AW, Jao P, Wicklow DT, Glover JB, Williams RM (2008). Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B, and the isolation of antipodal (-)-staphioladin and (+)-notomide B from Aspergillus versicolor NRRL 35000. Angewandte Chemie 47: 3573–3577.

Hagelgans G, Kristensen R, Frisvad BF, Skarer I (2011). Emerging pathogen Aspergillus calidoustus colonizes water distribution systems. Medical Mycology (in press). DOI: 10.1016/j.medmyco.2010.549155.

Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, et al. (2011). The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus 62: 443–446.

Hillis DM, Bull JJ (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192.

Hosoi T, Sameshima T, Dabashi K, Kawai K (1998). Structures of two new 18,22-cyclosterol, emesterones A and B, from Emericella heterothallica. Chemical and Pharmaceutical Bulletin 46: 850–852.

Houbenbar J, Due M, Varga J, Meijer M, Frisvad JC, Samson RA (2007). Polyphasic taxonomy of Aspergillus section Usi. Studies in Mycology 51: 107–128.

Hosoe T, Tsumeshima T, Tsumeshima K, Kawai K (1998). Structure of a novel dihydrofuro[3',2'-4,5]furo[3,2-B]xanthone from Aspergillus ustus. Journal of the Chemical Society Perkin Transactions 1 1998: 2250–2256.

Hosoe T, Tsumeshima T, Tsumeshima K, Kawai K (1998). Structure of a novel dihydrofuro[3',2'-4,5]furo[3,2-B]xanthone from Aspergillus ustus. Journal of the Chemical Society Perkin Transactions 1 1998: 2250–2256.

Hosoe T, Tsumeshima T, Tsumeshima K, Kawai K (1998). Structure of a novel dihydrofuro[3',2'-4,5]furo[3,2-B]xanthone from Aspergillus ustus. Journal of the Chemical Society Perkin Transactions 1 1998: 2250–2256.

Kahler JS, Leach MW, Jang S, Wong A (1990). Disseminated aspergillosis attributable to Aspergillus deflectus in a springer spaniel. Journal of the American Veterinary Medical Association 197: 871–873.

Kawahara N, Nakajima S, Yamazaki M, Kawai K (1987). Structure of a novel epithidiolipidoxopiperazine, emethallin A, a potent inhibitor of histamine release from Emericella heterothallica. Chemical and Pharmaceutical Bulletin 35: 2592–2595.

Kawahara N, Nozaka K, Nakajima S, Kawai K (1988). Emetherone, a pyrazinone derivative from Emericella heterothallica. Phytochemistry 27: 3022–3024.

Kawahara N, Nozaka K, Yamazaki M, Nakajima S, Kawai K (1990b). Structures of novel epoxylipidoxopiperazines, emethallins B, C, and D, potent inhibitors of histamine release, from Emericella heterothallica. Chemical and Pharmaceutical Bulletin 38: 73–78.

Kawahara N, Nozaka K, Yamazaki M, Nakajima S, Kawai K (1990a). Novel epithidiolipidoxopiperazines, emethallins E and F, from Emericella heterothallica. Heterocycles 30: 507–515.

Kich MA (1993). Morphological studies of Aspergillus section Versicolors and related species. Mycologia 85: 100–107.

Kozakiewicz Z (1989). Aspergillus species in stored products. Mycological Papers 181: 1–188.

Krishnan-Natesan S, Chandrasekhar PK, Manavathu EK, Revankar SG (2008). Successful treatment of primary cutaneous Aspergillus ustus infection with surgical debridement and a combination of voriconazole and terbinfine. Diagnostic Mycology and Infectious Disease 62: 443–446.
Varga J, Frisvad JC, Samson RA (2007). Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data. Studies in Mycology 59: 75–88.

Varga J, Frisvad JC, Samson RA (2009). A reappraisal of fungi producing aflatoxins. World Mycotoxin Journal 2: 263–277.

Varga J, Houbraken J, Van Der Lee HA, Verweij PE, Samson RA (2008). Aspergillus calidoustus sp. nov., causative agent of human infections previously assigned to Aspergillus ustus. Eukaryotic Cell 7: 630–638.

Verweij PE, Bergh MF van den, Rath PM, Pauw BE de, Voss A, Meis JF (1999). Invasive aspergillosis caused by Aspergillus ustus: case report and review. Journal of Clinical Microbiology 37: 1606–1609.

Vleggaar R, Steyn PS, Nagel DW (1974). Constitution and absolute configuration of austidol, the main toxic metabolite from Aspergillus ustus. Journal of the Chemical Society Perkin Transactions 1 1974: 45–49.

Weiss LM, Thiemke WA (1983). Disseminated Aspergillus ustus infection following cardiac surgery. American Journal of Clinical Pathology 80: 408–411.

Yabe K, Nakamura Y, Nakajima H, Ando Y, Hamasaki T (1991). Enzymatic conversion of norsolorinic acid to averufin in aflatoxin biosynthesis. Applied and Environmental Microbiology 57: 1340–1345.

Yildiran ST, Mutlu FM, Saracli MA, Uysal Y, Gonlum A, et al. (2006). Fungal endophthalmitis caused by Aspergillus ustus in a patient following cataract surgery. Medical Mycology 44: 665–669.

Zohri AA, Ismail MA (1994). Based on biochemical and physiological behavior, where is Aspergillus egyptiacus better placed? Folia Microbiologica 39: 415–419.