ORIGINAL ARTICLE

DISTAL END RADIUS FRACTURE TREATED BY EXTRA FOCAL PERCUTANEOUS PINNING AND CLOSED REDUCTION AND PLASTER APPLICATION

Ritul Agrawal¹, Anil V. Golhar², Sidharth Yadav³

HOW TO CITE THIS ARTICLE:
Ritul Agrawal, Anil V. Golhar, Sidharth Yadav. "Distal End Radius Fracture Treated by Extra Focal Percutaneous Pinning and Closed Reduction and Plaster Application". Journal of Evolution of Medical and Dental Sciences 2014; Vol. 3, Issue 15, April 14; Page: 4001-4012, DOI: 10.14260/jemds/2014/2391

ABSTRACT: BACKGROUND: Distal radius fracture is one of the most common fractures. Acute distal radius fracture results in pain, tenderness, swelling and potential deformity. Patients may be faced with substantial morbidity if fracture healing is delayed. The recovery period for distal radius fracture can be substantial and the impact of the method of fixation on activities and daily living can be significant. The majority of osteoporotic fractures in old age occur as the result of a fall, while the majority of injuries in the younger patients are secondary to motor vehicle accidents and sports. The Purpose of this study was to assess the functional outcome of stable distal end radius fractures treated by extra focal percutaneous pinning versus closed reduction and plaster application.

METHOD: A comparative randomized study of functional outcome of Distal End Radius fracture treated by extra focal percutaneous pinning and closed reduction and plaster application of 12 months duration and comprised of 50 subjects 25 from each group, who were evaluated on second week, sixth week & after six months. The functional outcome of both groups was assessed at end of 6 months from the initiation of the treatment as per patient rated wrist evaluation criteria. Stable types of distal end radius fractures were taken into consideration for this study.

RESULTS: Patients who were treated by extra focal percutaneous pinning had no better functional outcome than the patients who were treated by closed reduction and plaster application the average scores for both the groups that is closed reduction and cast was127.28 at the end of two weeks, 74.68 at the end of six weeks and 26.68 at the end of six months. As for the group treated by closed reduction and percutaneous pinning and slab application was 103.52 at the end of second week, 69.80 at the end of six weeks and 23.64 at the end of six months. CONCLUSION: Both methods are equally effective method in treatment of Stable distal end radius fractures as functional outcome is nearly same.

KEYWORDS: Distal end Radius fracture, Closed reduction.

INTRODUCTION: Distal end radius fractures are the commonest occurring fractures occurring in upper extremity they represent one-sixth of all fractures treated in emergency department.¹ Although it was described more than 199 years ago controversies still exist regarding the best mode of treatment, immobilization & prediction of results.

Closed reduction and cast immobilization has been the mainstay of treatment of these fractures, but invariably it results in malunion, poor functional and cosmetic outcome.² The treatment options for the displaced distal radius fracture are closed reduction with plaster cast immobilization,³ pins and Plaster,⁴ and by closed reduction.⁵

In younger patients (those under 40 years of age), considerable forces are necessary to cause this fracture, which is defined as being localized within 3 cm of the distal end of the radius as described by Bacorn and Kurtzke.⁶ ⁷
There is a sharp increase in incidence above the age of 30 years, which apparently is associated with postmenopausal and age-related osteopenia. In the USA and northern Europe, this fracture is the most common one in women under 75 years old.8,9 Studies looking at radial bone density failed to demonstrate significant reductions in bone density when radius fracture patients were compared with age-matched control subjects.8

Sparado et al10 showed that both the cortical and the trabecular bone contribute to the overall strength of the osteopenic distal radius. In effect, both the cortical comminution and the metaphyseal cancellous bone defect may contribute to the inherent instability of a distal radius fracture.

The residual deformity of the wrist as a result of malunion is unsightly. It adversely affects wrist motion and hand function by interfering with the mechanical advantage of the extrinsic hand musculature.11,12,13

In many cases there is weakness of handgrip and return to pre injury activity level becomes impossible.

Closed reduction and cast immobilization15,16 often leads to collapse of the radius. Percutaneous K-wire fixation provides additional stability and is one of the earliest forms of internal fixation.17,18,19

Depalma described ulno-radial pinning drilled at 45° angle, 4 cm proximal to ulnar styloid. Kapandji20 described double intrafocal pinning into the fracture surface and Rayhack21 described ulno-radial pinning with fixation of distal radioulnar joint.

Bridging external fixators22,23 and ligamentotaxis indirectly reduce the fracture. Ruch et al24 and many others described open reduction and internal fixation of distal radius fracture. Doi et al. recommended it for comminuted intra-articular fractures.25

Most of the work done with percutaneous pinning emphasizes that there is significant residual stiffness of the hand and wrist.26,27 The acute palmar flexed position of the wrist during the postoperative immobilization period was blamed as the main reason for stiffness.28

Some surgeons advocate treatment by manipulation and plaster immobilization.29 Many recommend operative intervention as the only methods to obtain anatomical reduction, and some have proposed that the best functional result will only be achieved by obtaining as near an anatomical radiographic result as possible.30

Although a study by Young and Rayan31 found favorable outcomes in low-demand older-aged patients despite deformity, most authors agreed that radial shortening more than 4 mm and radial dorsal angulation of more than 11° would reduce range of motion of the wrist. Furthermore, wrist pain was the most complaint among those patients.30,32,33

MATERIALS AND METHODS: The present study comprised of 50 subjects 25 from each group.

One group consisted of patients who were treated by closed reduction and percutaneous pinning and dorsoradial slab application and other group consisted of patients treated by closed reduction and cast immobilization. These patients were evaluated on second week, sixth week & after six months for functional outcome.

METHOD OF REDUCTION: All procedures were done in the operating room using either regional or general anesthesia. Local anesthesia was not used. The upper extremity was prepared and draped.
As a principle, the first step in reduction is to disimpact the distal fragment by increasing the dorsal angulation, this was achieved by using a so called handshake grip to distract the fracture while counter traction was applied proximal to elbow by the assistant.

Then, with traction applied, the distal fragment is pushed distally, and flexed, in order to reduce the palmar cortex and to restore palmar inclination. Any traction is then released.

The grip is changed to allow free application of the plaster. One hand holds the thumb fully extended. The other holds three fingers (avoiding cupping of the hand) maintaining slight traction.

The limb should be in full pronation, full ulnar deviation at the wrist and slight palmar flexion.

The application of 3-point moulding of the cast, as shown, will serve to resist late redisplacement. The wrist should be placed in 20-30° of flexion, 15° ulnar deviation and 20° pronation. A below elbow cast is applied as above elbow cast has no advantage.

If a surgical procedure has been chosen, percutaneous fixation is preferred for fractures which can be reduced by closed manipulation.

In this study cross pinning was used to stabilize the distal end radius fracture, the first Kirschner wire is loaded on the drill and radial styloid is palpated clinically and under fluoroscopic guidance the wire is inserted through the radial styloid just dorsal to the first extensor compartment, aiming to cross the fracture line in both the planes.

This requires about 45 degrees angle with the long axis of the radius on the postero anterior view and aiming the wire 10 degrees dorsally on the lateral view and is extended till it crosses the medial cortex of the radius shaft.

The second Kirchner wire was inserted into the dorsal ulnar column of the distal radius between the fourth and fifth extensor compartment. This required about a 45 degrees angle with the fracture line on the postero anterior view and 30 degree volarward on the lateral view into the anterior cortex of the radial shaft.
The accuracy of reduction and of the placement of the Kirschner wires was assessed and the wires were then bend and cut.

A sterile dressing using the povidone iodine solution was kept at pin site, well-padded volar splint was applied while keeping wrist in neutral position. The splint extended from metacarpophalangeal joint to proximal part of the forearm.

Postoperatively limb elevation for about 12 hours was advised with monitoring of the distal neuro vascular status.

Early mobilization of the digits, elbow and shoulder was encouraged. Patient was discharged and followed up at the end of second week, sixth week and six months.

At the end of second week the surgical site was inspected and cleaning and dressing was done.

At the end of six weeks the splint and Kirschner wires were removed after doing radiological evaluation and active range of motion exercises for wrist were started, exercises consisted of wrist movements, supination, pronation, finger grip were started.

OUTCOMES CONSIDERED: Only patient oriented outcomes were included, and surrogate /intermediate outcomes were not considered. Surrogate outcome measures are laboratory measurements or another physical sign used as substitutes for a clinically meaningful end point that measures directly how a patient feels, functions, or survives.

Radiographic results are an example of a surrogate outcome.

Outcomes were being measured using:
- Patient - Rated Wrist Evaluation

OBSERVATION & RESULTS:

Age group	No. of Subject	
	CR + Cast	CR + K wire + slab
20-29	5	6
30-39	8	6
40-49	8	7
50-59	2	2
60-69	2	4

Table 1: Distribution of subject according of age

Graphical representation of the age groups involved in the study.

This graph clearly shows that 29 out of 50 patients i.e. 58% of the patients belonged to age group between 30 and 50 years of age.
There is a significant difference in the score after end of two weeks and it is statistically significant.
At the end of six weeks there is still a difference in the score but it is not statistically significant.

Table 3: Significance of PRWE Score on second follow-up after 6 weeks

Group	N	Mean	Std. Deviation	Std. Error Mean
CR + Cast	25	74.68	11.029	2.206
CR + K wire + slab	25	69.80	8.139	1.628

$t = 1.78 \ p = 0.081$

Table 4: Significance of PRWE Score on third follow-up after 6 months

Group	N	Mean	Std. Deviation	Std. Error Mean
CR + Cast	25	26.68	6.355	1.271
CR + K wire + slab	25	23.64	8.892	1.778

$t = 1.39 \ p = 0.17$
DISCUSSION: Percutaneous pinning techniques are an attempt to bridge the therapeutic gap between various modality of treatment available for distal end radius fracture. Although there is no doubt that other mode of treatment of distal end radius fracture such as external fixator, plates have a role in treatment of unstable distal end radius fracture but stable distal end radius fractures can be treated adequately with far less complicated and intrusive methods.

Accurate reduction of the fracture is the first step in the treatment of distal radial fractures. The most common traditional method is closed reduction and cast immobilization, but this often fails to prevent early radial collapse and is associated with a high risk of malunion, joint stiffness and painful wrist. Hence, this method is for low-demand elderly patients.\(^{35,36}\)

Percutaneous pinning with K-wires was first recommended by Green\(^{37}\) as a simple and inexpensive procedure. Various techniques of percutaneous pinning are available. Most studies attribute poor results of this technique to radial shortening, wrist stiffness and reflex sympathetic dystrophy.\(^{26,27}\)

In the present series the number of males was equal to the number of females may be indicative of the fact that distal end radius fractures are more commonly due to high energy trauma such as in motor vehicular accidents so there is no male or female predominance.

There was a right sided dominance of the fractures as compared to the left side in our series.

The mean age of patients in our series was 39.8 years as compared to 41.4 years in study conducted by Das et al,\(^{38}\) the decreasing age group may be suggestive of the fact that there is an increase in number of patients who had this fracture due to high energy trauma such as motor vehicular accidents.
Various types of casts and positions have been recommended\(^{39, 40}\) the maximally flexed and ulnar deviated position of the wrist impairs the function of the hand and increases pressure in the carpal tunnel. Neuropathies, ischemic complications and stiffness are most often related to the type and position of the cast. There were negligible complications in this study.

All the patients were followed for duration of 6 months and were reviewed on second week afterwards on sixth week and six months.

At each visit patient was evaluated clinically and PRWE questionnaire was given to evaluate about the functional outcome. Patients in our study were not evaluated radiologically as only functional outcome was compared.

Out of 50 patients of this study which were evaluated on the basis of functional outcome the average scores for both the groups that is closed reduction and cast was 127.28 at the end of two weeks, 74.68 at the end of six weeks and 26.68 at the end of six months. As for the group treated by closed reduction and percutaneous pinning and slab application was 103.52 at the end of second week, 69.80 at the end of six weeks and 23.64 at the end of six months.

P value at the end of six months was 0.17 which is statistically not significant, hence proving that in stable distal end radius fracture closed reduction with cast application has a functional outcome similar to closed reduction percutaneous pinning and slab application, which is comparable with the results published by Warwick et al\(^{41}\) in 1993, Stoffelen and Broos\(^{42}\) in 1998, Simic and Weiland,\(^{43}\) Beumer and McQueen,\(^{44}\) Handoll and Madhok\(^{45}\) in 2003. Similar results were shown by Anzarut et al\(^{46}\) in 2004, Wong et al\(^{47}\) in 2010, Mirhamidi and Bayat\(^{48}\) in 2013 & by Kvernmo and Krukhaug\(^{49}\) in 2013.

Gartland and Werley\(^{36}\) obtained a 68.3% satisfactory result, and Sarmiento et al. reported an 82% satisfactory result treated with the casting technique In our study we found that closed reduction and cast application had good results in the six months in which they were evaluated.

Closed reduction and percutaneous pinning relies on manual traction, reduction, and pinning, to hold the fracture in an appropriate anatomic alignment. In our study the functional outcome of the patients treated with pinning showed better results as compared to the closed reduction and plaster application but this difference was not statistically significant.

As for the complications, there were 10 cases in which complication occurred there were 5 cases in each group which had complication, in the group of patients who were treated by closed reduction and cast application there were 5 cases which developed excessive swelling for which in 2 cases recasting was done.

In the other group who were treated by closed reduction and percutaneous pinning 3 patients developed pin tract infection and 2 developed excessive swelling. In none of the patients revision surgery was required and infection subsided with regular dressings.

There was no incidence of breakage of Kirschner wire, carpal tunnel syndrome, tendon rupture. In none of the patients there was loss of reduction and none of them developed sudeck's osteodystrophy.

The elbow, fingers, and the thumb should be left free to avoid stiffness.

As concluded by Handoll HH, Vaghela MV, Madhok\(^{50}\) in their Cochrane review of 2007 for stable distal end radius fractures no one modality can be accepted as guidelines for treatment as both the modality of treatment shows good result.
From the patient’s point of view, the final result is largely determined by the presence or absence of pain while performing daily living activities. In patients, the pain level was significantly less in the group treated non operatively in the study published by Arora et al in 2011, in our study both the groups had good results at the end of six months

Many papers have been published on the treatment of distal radius fractures, but the quality of the studies is variable. A general problem is that they often include very heterogeneous groups. The patients may range from 18 to 100 years of age without differentiation between younger and older patient groups.

There are also many different classification systems for distal radius fractures, and the fractures are grouped somewhat differently. Different measuring methods are used for outcomes in some of the comparisons. Grading systems commonly used for functional testing frequently include anatomical and clinical outcomes, and modified versions of existing grading systems are often used.

The Shortcoming of this study are as it is a short term study, long term randomized control studies with a large pool of patients is recommended for more statistically significant result.

Heterogeneity reduces the strength of the outcomes and conclusions are difficult to draw. This is the reason why none of the included studies was able to provide an unambiguous answer to the question of which patient groups benefit from surgical rather than conservative treatment.

Results in this study suggest that in either of the group of patients of stable distal end radius fracture there was very little change in the functional outcome in patient in terms of modality of treatment as the patient treated with percutaneous pinning showed slightly better results as compared to the patients who were treated conservatively, but they were statistically not significant.

Rather than yet more small, single-centre studies that do not satisfy the requirements for high quality evidence, good prospective randomized, controlled, multi-centre trials are needed. There is also a need to establish registers and analyze register data to capture changes in the incidence of complications when new methods are introduced.

BIBLIOGRAPHY:
1. Bucholz RW, Heckman JD, Brown Charles M. Fractures of distal end radius and Ulna. Vol. 1. Philadelphia: Lippincot Williams and Wilkins; 2006. Rockwood and Green's Fractures in Adults; p. 910-962.
2. Gofton W, Liew A. Distal radius fractures: Non-operative and percutaneous pinning treatment options. Orthop Clin North Am. 2007; 38:175–85.
3. Pennig D, Gausepohl T, Mader K, Wulke A. The use of minimally invasive fixation in fractures of the hand-the minifixator concept. Injury. 2000; 31 Suppl 1:102-12.
4. Robertsson GO, Jonsson GT, Sigursjonsson. Epidemiology of distal radius fractures in Iceland in 1985. Acta Orthopedica Scandinavica, 1990, 457.
5. Steinmann R, Spier W. Operative Behandlung distaler Radiusfrakturen. Aktuelle Traumatologie 1980; 10:185.
6. Bacorn RW, Kurtzke JF. Colles’ fracture: A study of two thousand cases from the New York State Workman's Compensation Board. Journal of Bone and Joint Surgery 1953; 35:643.
7. Boyd LG, Horne JG. The outcome of fractures of the distal radius in young adults. Injury 1988; 19:97.
8. Alffram PA, Bauer GC. Epidemiology of fractures of the forearm. A biomechanical investigation of bone strength. Journal of Bone and Joint Surgery [Am] 1962;44:105-114
9. Thorn BJ. Colles’ fractures in the over sixty group. Journal of Bone and Joint Surgery 1984;66:613.
10. Pennig D. Dynamic external fixation of distal radius fractures. Hand Clinics 1993;9:587-602.
11. Fernandez DL, Jupiter JB. Fracture of distal radius -A practical approach to management. First ed. New York: Springer and Verlag; 1996. p. 23-52.
12. Fernandez DL. Correction of post-traumatic wrist deformity in adults by osteotomy, bone grafting and internal fixation. J Bone Joint Surg Am. 1982;64:1164-78. [PubMed].
13. Fernandez DL. Radial osteotomy and Bowers arthroplasty for malunited fractures of the distal end of radius. J Bone Joint Surg Am. 1988;70:1538-51.
14. Colles A. On the fracture of the carpal extremity of the radius. Edinburgh Med Surg 1814;10:182-186.
15. Slagel BE, Luenam S, Pichora DR. Management of post-traumatic malunion of fractures of distal radius. Orthop Clin North Am. 2007;38:203–16. [PubMed].
16. Arora J, Kapoor H, Malik A, Bansal M. Closed reduction and plaster cast immobilization Vs external fixation in comminuted intra-articular fractures of distal radius. Indian J Orthop. 2004;38:113–7.
17. Castaing J. Recent fractures of the inferior extremity of the radius in the adult. Rev Chir Orthop French. 1964;50:582–696. [PubMed]
18. Mah ET, Atkinson RN. Percutaneous Kirschner wire stabilization following close reduction of Colles’ fracture. J Hand Surg Br. 1992;17:55–62. [PubMed].
19. DePalma A. Comminuted fractures of the distal end of the radius treated by ulnar pinning. J Bone Joint Surg Am. 1952;34:651–62. [PubMed].
20. Kapandji A. Internal fixation by double intrafocal pinning: Functional treatment of non-articular fractures of the distal radius [French] Ann Chir Main. 1987;6:57.
21. Rayhack J, Langworthy J, Belsole R. Transulnar percutaneous pinning of displaced distal radial fractures: A preliminary report. J Orthop Trauma. 1989;3:107. [PubMed]
22. Edwards GS., Jr Intra-articular fractures of the distal part of the radius treated with the small AO external fixators. J Bone Joint Surg Am. 1991;73:1241–50. [PubMed].
23. Nagi ON, Dhillon MS, Aggarwal S, Deogaonkar KJ. External fixators for intra-articular distal radius fractures. Indian J Orthop. 2004;38:19–22.
24. Ruch DS, Ginn TA. Open reduction and internal fixation of distal radius fractures. Op Tech Orthop. 2000;13:138–43.
25. Doi K, Hattori Y, Otsuka K, Abe Y, Yamamoto H. Intra-articular fractures of the distal aspect of the radius: Arthroscopically assisted reduction compared with open reduction and internal fixation. J Bone Joint Surg Am. 1999;81:1093–110. [PubMed].
26. Field J, Atkins RM. Algodystrophy is an early feature after Colles’ fracture. What are the implications? J Hand Surg Br. 1997; 22:178–82. [PubMed].
27. Atkins RM, Duckworth T, Kanis JA. Features of Algodystrophy after Colles’ fracture. J Bone Joint Surg Br. 1990;72: 105–10. [PubMed].
28. Rajan S, Jain S, Ray A, Bhargava P. Radiological and functional outcome in extra-articular fractures of lower end radius treated conservatively with respect to its position of immobilization. Indian J Orthop. 2008;42: 201–22. [PMC free article] [PubMed].

29. Stewart HD, Innes AR, Burke FD. Factors affecting the outcome of Colles’ fracture: an anatomical and functional study. Injury. 1985;16: 289–95. [PubMed].

30. McQueen M, Caspers J. Colles’ fracture: does the anatomical result affect the final function? J Bone Jt Surg Br. 1988; 70 : 649–51. [PubMed].

31. Young BT, Rayan GM. Outcome following nonoperative treatment of displaced distal radius fractures in low-demand patients older than 60 years. J Hand Surg Am. 2000;25 :19–28. [PubMed].

32. Fu YC, Chien SH, Huang PJ, et al. Use of an external fixation combined with the buttress-maintain pinning method in treating comminuted distal radius fractures in osteoporotic patients. J Trauma. 2006;60: 330–3. [PubMed].

33. Jenkins NH, Mintowt-Czyz W. Mal-union and dysfunction in Colles’ fracture. J Hand Surg Br. 1988; 13:291–3. [PubMed].

34. Trumble TE, Schmitt SR, Vedder NB. Factors affecting functional outcome of displaced intra-articular distal radius fractures. J Hand Surg Am. 1994; 19:325–40.

35. Jupiter JB, Ring D, Weitzel PP. Surgical treatment of redisplaced fracture of the distal radius in patients older than 60 years. J Hand Surg Am. 2002; 27:714–23.

36. Ark J, Jupiter JB. The rationale for precise management of distal radius fractures. Orthop Clin N Am. 1993; 24:205–10.

37. Green DP. Pins and plaster treatment of comminuted fractures of distal end radius. J Bone Joint Surg Am. 1975; 57:304–10.

38. Das AK, Sundaram N, Prasad Tg, Thanaravelu Sk. Percutaneous pinning of non-comminuted extra articular fractures of distal radius. Indian J Orthop 2011; 45:422-6.

39. Gupta Ajay: treatment of Colle's fracture: Immobilization with wrist dorsiflexed. J.B.J.S 73 B, 1991: 312-317.

40. Augusto Sarmiento: Colle's fracture, J.B.J.S 57A no. 3 April 1972, 311-317.

41. Warwick D, Field J, Prothero D, Gibson A, Bannister GC. Function ten years after Colles’ fracture. Clin Orthop Relat Res. 1993; 295: 270–274.

42. Stoffelen DV, Broos PL. Kapandji pinning or closed reduction for extra-articular distal radius fractures. J Trauma. 1998 Oct; 45(4):753-7.

43. Simic PM, Weiland AJ. Fractures of the distal aspect of the radius: changes in treatment over the past two decades. Instr Course Lect. 2003; 52: 185–195. [PubMed].

44. Beumer A, McQueen MM. Fractures of the distal radius in low-demand elderly patients: closed reduction of no value in 53 of 60 wrists. Acta Orthop Scand. 2003;74(1):98–100. [PubMed].

45. Handoll HH, Madhok R. Conservative interventions for treating distal radial fractures in adults. Cochrane Database Syst Rev. 2003;2: CD000314. [PubMed].

46. Anzarut A, Johnson JA, Rowe BH, Lambert RG, Blitz S, Majumdar SR. Radiologic and patient-reported functional outcomes in an elderly cohort with conservatively treated distal radius fractures. J Hand Surg Am. 2004;29(6):1121–1127.
47. T. C. Wong, Y. Chiu, W. L. Tsang, W. Y. Leung, S. K. Yam, S. H. Yeung. Casting versus percutaneous pinning for extra-articular fractures of the distal radius in an elderly Chinese population: a prospective randomized controlled trial. J Hand Surg Eur Vol March 2010 vol. 35 no. 3 202-208.

48. Seyed Mehdi Mirhamidi and Farzad Merrikh Bayat. A prospective comparison between Kapandji and percutaneous extra-focal fixation in extra articular distal radius fractures. Int J Clin Exp Med. 2013; 6(2): 133–139.

49. Kvernmo HD, Krukhau Y. Treatment of distal radius fractures. Tidsskr Nor Laegeforen. 2013 Feb 19;133(4):405-11. doi: 10.4045/tidsskr.12.0297. [Article in English, Norwegian].

50. Handoll HH, Vaghela MV, Madhok R. Percutaneous pinning for treating distal radial fractures in adults. Cochrane Database Syst Rev. 2007 Jul 18;(3):CD006080..

51. Rohit Arora, Markus Gabl, Stefanie Erhart, Gernot Schmidle, Christian Dallapozza and Martin Lutz. Aspects of Current Management of Distal Radius Fractures in the Elderly Individuals. Geriatr Orthop Surg Rehabil. 2011 Sep-Nov; 2(5-6): 187–194.