Phosphinated Poly(aryl ether)s with Acetic/Phenyl Methacrylic/Vinylbenzyl Ether Moieties for High-\(T_g\) and Low-Dielectric Thermosets

Chien-Han Chen,† Chan-Hua Liu,† Mathivathanan Ariraman,† Ching-Hsuan Lin,*†§ and Tzong-Yuan Juang‡

†Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
‡Department of Cosmeceutics, China Medical University, 91 Hsueh-Shih Road, Taichung 402, Taiwan

ABSTRACT: To achieve insulating materials with a low-dielectric characteristic for high-frequency communication applications, three phosphinated poly(aryl ether)s: P1-act (with acetic moiety), P1-mma (with phenyl methacrylic moiety), and P1-vbe (with vinylbenzyl ether moiety) were modified from a phenol-functionalized phosphinated poly(aryl ether) (P1). P1-act and P1-mma, both with active ester linkages (Ph−O−(C==O)−), were reacted with three commercial epoxy resins (diglycidyl ether of bisphenol A, HP7200, and cresol novolac epoxy) to obtain secondary hydroxyl-free epoxy thermosets. Because of the secondary hydroxyl-free structure, epoxy thermosets cured by P1-act and P1-mma show an 11–15% reduction in dielectric constant than those cured by P1. P1-vbe, with reactive vinylbenzyl ether moieties, was self-cured to a high-performance thermoset with a \(T_g\) value as high as 302 °C and a dielectric constant as low as 2.64\(U\). High-\(T_g\) and low-dielectric thermosets have been developed in this work.

INTRODUCTION

Epoxy resins are widely used in the electronic field such as encapsulation and printed circuit boards (PCBs) because of their good chemical resistance, adhesion, insulation, and dimensional stability after thermally curing. It is known that the propagating speed in an integrated circuit is inversely proportional to the square root of dielectric constant (\(D_s\)); the dielectric loss (\(L\)) is proportional to the product of square root of frequency, dielectric constant (\(D_s^{1/2}\)), and dissipation factor (\(D_f\)). Therefore, a material with a low dielectric value will exhibit a high signal propagating speed and a low signal propagating loss. Generally, epoxy resins are cured by reacting the epoxy groups with active hydrogen-containing compounds such as phenol novolac, diamine, or thiol. The reaction of active hydrogens with epoxy leads to secondary alcohol-free epoxy thermosets. Nishikubo et al. studied thermo-cross-linking reactions of active esters with epoxy-containing polymers. The resulting epoxy thermosets show better dielectric properties than those cured by active hydrogen-containing compounds. DIC (Dainippon Ink and Chemicals) has produced EPICLON HPC-8000, a dicyclo-di-pentadiene phenol novolac-based active ester for low-dielectric epoxy thermosets. Japan Epoxy Resins has developed DC808, a phenol novolac-based active ester for the same purpose. SABIC (Saudi Basic Industries Corporation) has developed a phenyl methacrylate end-capped oligo(2,6-dimethyl phenylene oxide), NORYL SA9000 (Figure 1a), for the low-dielectric PCB. The key application areas of NORYL SA9000 are in electronic packaging including PCB laminates, copper clad laminates, nonepoxy prepregs, and adhesives. NORYL SA9000 is designed to react with unsaturated monomers, styrenic, allylic, acrylic, maleimide, methacrylic, and unsaturated polyesters through free-radical reactions. It has an advantage in insulating materials, where very low dielectric constant and moisture absorption are required. Except phenyl methacrylate end capping, MGC (Mitsubishi gas chemical) has developed a vinylbenzyl ether end-capped oligo(2,6-dimethyl phenylene oxide), OPE-2st (Figure 1b). The thermostat of the OPE-2st exhibits a low dielectric constant of 2.65\(U\) and a very low dissipation factor of 0.005\(U\).

In our previous work, we have reacted phenyl methacrylate and glycidyl phenyl ether in the presence of 4-dimethylamino-pyridine (DMAP), and the reaction product is exclusive 1,3-diphenoxo-2-methacrylatepropane (Figure 2). On the basis of

Received: March 31, 2018
Accepted: May 21, 2018
Published: June 4, 2018

DOI: 10.1021/acsomega.8b00615
ACS Omega 2018, 3, 6031–6038

© 2018 American Chemical Society
Figure 2, we understand the reaction mechanism of phenyl methacrylate and with epoxy in the presence of DMAP.

![Figure 1: Structure of (a) SA9000 and (b) OPE-2st.](image1)

For the low-dielectric PCB, poly (aryl ether)s also have low-dielectric characteristics compared to other polymer materials. For example, Wang et al. prepared a series of poly(aryl ether)s, and their dielectric constants are in the range of 2.5–3.0. In our previous work, we have successfully prepared a phenol-functionalized phosphinated poly (aryl ether) (P1). P1, with phenolic linkages, can react with cresol novolac epoxy (CNE) to get a transparent and flexible thermosetting film with a high Tg value (250 °C), a moderate dielectric constant (3.10), and flame retardancy (VTM-0). However, the secondary alcohols, resulted from the reaction of an epoxy group and the phenolic hydroxyl of P1, hinder P1-cured epoxy thermoset to be low-dielectric. To prepare epoxy thermosets with better dielectric properties, we modify P1 to polyether with acetic moieties (P1-act), with phenyl methacrylic moieties (P1-mma), and with vinylbenzyl ether moieties (P1-vbe) by respectively reacting P1 with acetic anhydride, methacrylic anhydride, and 4-chloromethyl styrene. P1-act, with an acetic structure, is definitely an active ester-type curing agent. P1-mma, with a phenyl methacrylic structure, can also react with epoxy resins (based on the finding of Figure 2). Therefore, in this work, P1-act and P1-mma are applied to react with epoxy resin to form secondary hydroxyl-free epoxy thermosets. P1-vbe, with reactive vinylbenzyl ether moiety, was self-cured to a low-dielectric thermoset. Detailed synthetic procedures, structure analysis, and thermal and dielectric properties of the resulting thermosets are provided.

RESULTS AND DISCUSSION

Synthesis of P1-act. P1-act was synthesized from the reaction of P1 and acetic anhydride in the presence of a catalyst. Sodium acetate, DMAP, and pyridine have been tested as the catalyst for the synthesis (Table 1). We found that the optimal reaction is reacting in N,N-dimethyl acetamide (DMAc) at 130 °C for 12 h in the presence of 1 wt % sodium acetate (run 5). 1H NMR spectrum of P1-act (Figure 3b) shows the disappearance of the hydroxyl peak at 9.4 ppm and appearance of the acetic peak at 2.2 ppm. IR spectrum (Figure S1) shows

![Figure 2: Reaction of glycidyl phenyl ether with phenyl methacrylate in the presence of DMAP.](image2)

![Figure 3: 1H NMR spectra of (a) P1, (b) P1-act, (c) P1-mma, and (d) P1-vbe.](image3)

run	catalyst (amount)	temperature (°C)	time (h)	solvent	ratio of integral area	result
1	sodium acetate (1 wt %)	130	8	acetic anhydride	16/8.8	some impurities and insoluble products
2	sodium acetate (1 wt %)	90	8	DMAc	11.9/10.0	some impurities
3	DMAP (2 mol %)	90	12	DMAc	13.8/8.4	incomplete reaction
4	DMAP (100 mol %)	90	12	DMAc	16.8/6.8	incomplete reaction
5	sodium acetate (1 wt %)	130	12	DMAc	14.4/7.2	pure P1-act (90% yield)
6	pyridine (4 wt %)	90	12	DMAc	14.8/7.6	pure P1-act (85% yield)

*Based on P1. †The ratio of integral area between CH₃ signals of isopropyldiene and acetyl. The theoretical ratio is 2/1.
an obvious C=O absorption at 1761 cm$^{-1}$. Both NMR and IR spectra support the structure of P1-act.

Synthesis of P1-mma. P1-mma was prepared from the reaction of P1 with methacrylic anhydride in the presence of a catalyst. Table 2 lists the influence of reaction conditions on the preparation of P1-mma. The suitable reaction conditions are using sodium acetate (run 5) or DMAP (run 6) at 45 °C. 1H NMR spectrum of P1-mma (Figure 3c) shows the disappearance of the hydroxyl peak at 9.4 ppm and the appearance of new peaks at 6.2, 5.8, and 1.9 ppm, which evidences the methacrylic protons. IR spectrum (Figure S2) shows an obvious C=O and C=CH absorption at 1734 and 1649 cm$^{-1}$, respectively. Both NMR and IR spectra support the structure of P1-mma.

Table 2. Effect of Reaction Conditions on the Preparation of P1-mma

run	catalyst (amount)b	temperature (°C)	result
1	pyridine (4 wt %)	45	no reaction
2	pyridine (4 wt%)	90	incomplete reaction
3	sodium acetate (1 wt %)	90	gelation at 12 h
4	DMAP (2 mol %)	90	gelation at 12 h
5	sodium acetate (1 wt %)	45	pure P1-mma (85% yield)
6	DMAP (2 mol %)	45	pure P1-mma (85% yield)

aThe reaction solvent is DMAc, and the reaction time is 24 h for 1, 2, 5, and 6 runs. bBased on P1.

Thermomechanical Property of Thermosets. Figure 4 shows the photos of (a) P1-act/epoxy, (b) P1-mma/epoxy, and (c) P1-vbe thermosets. All the films show flexibility. Because all the films are flexible, dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA) are used to measure their thermal properties.

Figure 5a shows the DMA thermograms of P1-act/epoxy. The results are listed in Table 3. Recall that P1-act/epoxy cured at each temperature for 1 h is named P1-act/epoxy-1, while thermosets cured at each temperature for 2 h is named P1-act/epoxy-2. The T_g values are dependent on the curing program. For example, the T_g value of P1-act/CNE-2 is 238 °C, which is 15 °C higher than that of P1-act/CNE-1. Similar results are found for HP7200 and diglycidyl ether of bisphenol A (DGEBA) systems. **Figure 5b** shows TMA thermograms of P1-act/epoxy. The T_g value of P1-act/CNE-2 is 214 °C, which is 17 °C higher than that of P1-act/CNE-1. The trend is similar to DMA data. The value in parenthesis is the data of P1/epoxy. 34 P1-act/epoxy displays lower T_g values than P1/epoxy. This is the penalty of epoxy thermosets cured by active ester compared with those cured by active hydrogens because the secondary alcohol resulting from the reaction of active hydrogens provides the intermolecular interaction.

Figure 5a shows DMA thermograms of P1-mma/epoxy. An obvious increase in T_g (25–36 °C) was observed when comparing with P1-act/epoxy. For example, the T_g value of P1-mma/CNE is 274 °C, which is 36 °C higher than that of P1-act/CNE-2. This result suggests that the curing of methacrylic moiety contributes to the rigidity of epoxy thermosets.

Figure 7a shows DMA thermograms of P1-vbe-220 and P1-vbe-240. P1-vbe-240 exhibits a T_g value as high as 302 °C, which is 55 °C higher than that of P1-vbe-220. In addition, the height of tan δ of P1-vbe-240 is much smaller than that of P1-vbe-220. Compared with the high modulus of P1-vbe-240 after T_g, the modulus of P1-vbe-220 after T_g decreases rapidly. In

Figure 4. Photos of (a) P1-act/epoxy, (b) P1-mma/epoxy, and (c) P1-vbe thermosets.
addition, the height of tan δ of P1-vbe-220 is 1.7. Both the modulus and tan δ indicate that a further curing is necessary. The height of tan δ of P1-vbe-240 is only 0.4, indicating that a rigid network was formed. Figure 7b shows TMA thermograms of P1-vbe-220 and P1-vbe-240. The T_g value of P1-vbe-240 is 263 °C, which is also much higher than that (219 °C) of P1-vbe-220. The coefficient of thermal expansion (CTE) of P1-vbe-240 is 49 ppm/°C, which is much smaller than that (61 ppm/°C) of P1-vbe-220. Both DMA data (T_g value and height of tan δ) and TMA data (T_g value and CTE) suggest that curing at 240 °C leads to better thermal properties. However, to avoid thermal degradation, a further increase in curing temperature is not performed and discussed.

Thermal Stability. Table 3 lists the thermal stability data of the resulting thermosets. For P1-act/epoxy and P1-mma/epoxy, the 5 wt % degradation temperatures (T_{d5}) in a nitrogen atmosphere are in the range of 372−391 °C, and char yields range from 32 to 50%. These values are similar or slightly higher than typical epoxy thermosets. P1-vbe-240 is the only thermoset with T_{d5} higher than 400 °C, demonstrating the best thermal stability.
Refractive Index and Dielectric Constant. Figure 8a shows the ellipsometry curves of P1-act/epoxy at various wavelengths. Table 3 lists the refractive index (n) at 633 nm. Table 3 also lists the dielectric constant (ε), calculated from the Maxwell’s equation, $\varepsilon = 1.1n^2$. P1-act/epoxy shows smaller dielectric constant than P1/epoxy. For example, the dielectric constant of P1-act/HP7200-2 is 2.71, which is much lower than that (3.07) of P1/HP7200. The value of 2.71, which is very low compared with general polyimide (Katpon around 3.2) and epoxy thermosets (around 3.5). The results in Table 3 indicate the low-dielectric characteristic of P1-act as a curing agent. Hougham et al. reported that the dielectric constant can be reduced by increasing the free volume and molecule’s hydrophobicity and by decreasing polarization. The less polarity of ester moiety in P1-act/epoxy than the secondary alcohol moiety in P1/epoxy is thought to be responsible for the lower dielectric constant. Moreover, the T_g corresponding to the dielectric constant of 2.71 is as high as 225 °C, indicating that our approach can achieve epoxy thermosets with a low-dielectric and high-T_g characteristic. Table 3 also shows the refractive index and the corresponding dielectric constant of P1-mma/epoxy (Figure 8b). Compared with P1-act/epoxy, a further reduction in refractive index was observed, probably because of the cross-linking and the aliphatic polymeric structure. The corresponding dielectric constant of P1-vbe-240 is as low as 2.64 (Figure 8c). The dielectric constant and dissipation factor of P1-vbe-240 have been measured by using an Agilent E5071C network analyzer at 10 GHz with a sample size of 9.0 cm × 9.0 cm × 80 μm. The value for dielectric constant and dissipation factor is 2.83U and 0.008U, respectively. The dielectric properties of P1-vbe-240 are not as good as those (2.65U and 0.005U) of thermoset of OPE-2st of MGC, probably because of the biphenylene phosphinate moiety, which exhibits a polar P=O moiety. Therefore, the values of 2.83U and 0.008U for a material with a built-in flame retardant element are still attractive.

CONCLUSIONS

Epoxy thermosts cured from phenolic hydroxyls lead to highly polar secondary alcohols, which hinder epoxy thermosts to be low-dielectric. To solve this problem, we have successfully prepared three phosphinated poly(aryl ethers): P1-act, P1-mma, and P1-vbe with acetic, phenyl methacrylic, and vinylbenzyl ether moiety, respectively, from a phenolic hydroxyl-containing polyether (P1). P1-act, exhibiting active
ester structures, can react with epoxy to form a secondary alcohol-free epoxy thermoset. Therefore, P1-act/epoxy shows a lower dielectric constant than P1/epoxy, indicating that the conversion of phenol OH to acetic moiety is a successful approach to prepare an epoxy thermoset with a low dielectric constant. However, compared with the T_g of P1/epoxy, a penalty in T_g (about 15 °C reduction) is found for P1-act/epoxy. Through the cross-linking of methacrylate linkage, P1-mma/epoxy shows an obvious increase in T_g (25−36 °C) when comparing with P1-act/epoxy. A T_g value as high as 274 °C can be achieved for P1-mma/CNE from the DMA thermogram. Furthermore, compared with the P1-act/epoxy, a further reduction in the dielectric constant is found for P1-mma/epoxy. A D_k value as low as 2.71 U is found for P1-mma/CNE.

As to the self-curing of P1-vbe, P1-vbe-240 exhibits a T_g as high as 302 °C (DMA data), a moderate-to-low CTE of 49 ppm/°C, and a low dielectric constant of 2.64 U. These properties make P1-act, P1-mma, and P1-vbe attractive for electronic application, especially in preparing high-performance PCBs.

EXPERIMENTAL SECTION

Materials. The phenol-functionalized phosphinated polyether (P1) was prepared according to the procedure in our previous work. Acetic anhydride, DMAP, and sodium acetate were purchased from TCI. Methacrylic anhydride, t-butyl cumyl peroxide (TBCP), and 4-chloromethyl styrene were purchased from Acros. DGEBA with an epoxy equivalent weight (EEW) of 187 g/equiv, and CNE with an EEW of 200 g/equiv were kindly supplied by Chang Chun Plastics, Taiwan. Dicyclopentadiene epoxy (HP7200, DIC) with an EEW of 269 g/equiv was kindly supplied by Dainippon Ink and Chemicals Corporation under the commercial name of HP-7200. N-Methylpyrrolidone (NMP; HPLC grade from Showa) and DMAC (HPLC grade from Showa) were purified by distillation under reduced pressure over calcium hydride (from Acros) and stored over molecular sieves.

Synthesis of P1-act. P1 (10.0 g, repeat unit 14.3 mmol), sodium acetate (0.10 g), and DMAC (100 mL) were added into 250 mL flask and stirred under nitrogen. Acetic anhydride (10.22 g, 0.1 mol) was added gradually. The reaction was stirred at 130 °C for 12 h (Scheme 1) under a nitrogen atmosphere. The obtained mixture was poured into methanol. The light white precipitate was filtered and dried in a vacuum oven at 60 °C for 8 h. The isolated yield is 90%.

Synthesis of P1-mma. P1 (5 g, repeat unit 0.07 mol), methacrylic anhydride (1.76 g, 0.17 mol), DMAC (50 mL), and DMAP (0.025g) were added into a 100 mL flask and stirred at 45 °C for 12 h under a nitrogen atmosphere (Scheme 1). The obtained mixture was poured into methanol. The light white precipitate was filtered and dried in a vacuum oven at 60 °C for 8 h. The isolated yield is 85%.

Synthesis of P1-vbe. P1 (5 g, 0.07 mol), K$_2$CO$_3$ (1.310 g, 0.08 mol), 4-chloromethyl styrene (1.18 g, 0.08 mol), and DMAC (50 mL) were added into the 100 mL flask and stirred at 80 °C for 12 h under a nitrogen atmosphere (Scheme 1). The obtained mixture was poured into methanol. The off-white precipitate was filtered and dried in a vacuum oven at 60 °C for 8 h. The isolated yield is 90%.

Curing Procedure of P1-act with Epoxy. P1-act was thermally cured with DGEBA, HP7200, and CNE, respectively. The molar ratio of acetic moiety to oxirane (epoxy moiety) is 1. P1-act, epoxy resin, and 0.5 wt % of DMAP (based on the weight of epoxy) were dissolved in NMP to make a solution with solid content with 30%. The viscous solution was applied on an automatic film applicator to make a thin film on a glass substrate. The resulting thin films were dried at 80 °C for 1 h. Then, under a nitrogen atmosphere, two curing processes were applied. The first process is 160, 180, 200, and 220 °C for each 1 h, and the second process is 160, 180, 200, and 220 °C for each 2 h. Epoxy thermosets cured by P1-act is generally named P1-act/epoxy. The thermosets cured from the first process are named P1-act/DGEBA-1, P1-act/HP7200-1, and P1-act/CNE-
Curing Procedure of P1-mma with Epoxy. P1-mma was thermally cured with DGEBA, HP7200, and CNE, respectively. The molar ratio of the phenyl methacrylic moiety to oxirane (epoxy moiety) is 1. P1-mma, epoxy resin, 0.5 wt % of DMAP (based on the weight of epoxy), and TBCP (based on the weight of P1-mma) were dissolved in NMP to make a solution with a solid content of 30%. An automatic film applicator was used to cast a thin film on a glass substrate. The resulting thin films were dried at 80 °C for 12 h. Then, under a nitrogen atmosphere, the curing process is 160, 180, 200, and 220 °C for each 2 h. Epoxy thermosets cured by P1-mma is generally named P1-mma/epoxy. The names P1-mma/DGEBA, P1-mma/HP7200, and P1-mma/CNE are applied if the epoxy is specified.

Curing Procedure of P1-vbe. P1-vbe, with reactive vinylbenzyl ether moiety, was self-cured to P1-vbe thermoset. P1-vbe and 1.0 wt % of TBCP (based on the weight of P1-vbe) were dissolved in dioxane to make a solution with a solid content of 30%. The viscous solution was cast by an automatic film applicator to make a thin film on a glass substrate. The resulting thin films were dried at 80 °C for 12 h. Then, cured by the process 160, 180, 200, and 220 °C for each 2 h under a nitrogen atmosphere. The thermoset is named P1-vbe-X, in which X is the final curing temperature. For example, if the final curing temperature is 220 °C, it is named P1-vbe-220. If the final curing temperature is 240 °C, it is named P1-vbe-240.

Characterization. NMR measurements were performed by using a Varian Inova 600 NMR in DMSO-d_6. DMA was performed by using a PerkinElmer Pyris Diamond DMA. The test was performed by a tension mode with an amplitude of 5 mm and with a sample size of 5.0 cm × 1.0 cm × 0.2 cm. The storage modulus and tan δ were recorded with a frequency of 1 Hz at a heating rate of 5 °C/min. The dielectric constant was performed by using an Agilent E5071C network analyzer at 10 GHz. The sample size was 9.0 cm × 9.0 cm × 80 μm. TMA was performed with a SII TMA/SS6100 at a heating rate of 5 °C/min. The CTE was recorded at the temperature range of 50–150 °C. Thermal gravimetric analysis (TGA) was performed with a PerkinElmer Pyris1. The relationship between the temperature and the sample weight was recorded at a heating rate of 20 °C/min in a nitrogen or air atmosphere. The refractive index (n) at various wavelengths was obtained by using an Ellipsometry GES-SE. The dielectric constant (D_n) was calculated from the Maxwell’s equation of D_n = 1.1n^2, in which n is the refractive index at 633 nm.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b00615.

IR spectra of P1-act, P1-mma, and P1-vbe (PDF)

AUTHOR INFORMATION

Corresponding Author
E-mail: linch@nchu.edu.tw. Phone: 886-4-22850180, +886-2-2840510-407. Fax: 886-4-22854734 (C.-H.L.).

ORCID
Ching-Hsuan Lin: 0000-0003-0381-2736

Present Address
Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (Ching-Hsuan Lin).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the Ministry of Science and Technology (MOST 106-2218-E-005-019 and 107-3017-F-002-001) and Advanced Research Center of Green Materials Science and Technology (10719006) is highly appreciated.

REFERENCES

1. Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65.
2. Kaji, M.; Nakahara, K.; Ogami, K.; Endo, T. Synthesis of a novel epoxy resin containing diphenylether moiety and thermal properties of its cured polymer with phenol novolac. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3687–3693.
3. Endo, T.; Sudo, A. Development and application of novel ring-opening polymerizations to functional networked polymers. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4847–4858.
4. Jin, K.; Wilmot, N.; Heath, W. H.; Torkelson, J. M. Phase-Separated Thiol–Epoxy–Acrylate Hybrid Polymer Networks with Controlled Cross-Link Density Synthesized by Simultaneous Thiol–Acrylate and Thiol–Epoxy Click Reactions. Macromolecules 2016, 49, 4115–4123.
5. Liu, J.-g.; Ueda, M. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 2009, 19, 8907–8919.
6. Konuray, A. O.; Fernández-Francos, X.; Ramis, X. Analysis of the reaction mechanism of the thiol-epoxy addition initiated by nucleophilic tertiary amines. Polym. Chem. 2017, 8, 5934–5947.
7. Fernández-Francos, X.; Konuray, A.-O.; Belmonta, A.; De la Flor, S.; Serra, A.; Ramis, X. Sequential curing of off-stoichiometric thiol-epoxy thermosets with a custom-tailored structure. Polym. Chem. 2016, 7, 2280–2280.
8. Ivan, X.-Y.; An, X.-P.; Li, Y.-D.; Chen, J.-H.; Wang, M.; Zeng, J.-B. All Plant Oil Derived Epoxy Thermosets with Excellent Comprehensive Properties. Macromolecules 2017, 50, 5729–5738.
9. Jones, B. H.; Wheeler, D. R.; Black, H. T.; Stavig, M. E.; Sawyer, P. S.; Giron, N. H.; Celina, M. C.; Lambert, T. N.; Alam, T. M. Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent. Macromolecules 2017, 50, 5014–5024.
10. Wang, S.; Ma, S.; Xu, C.; Liu, Y.; Dai, J.; Wang, Z.; Liu, X.; Chen, J.; Shen, X.; Wei, J.; Zhu, J. Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties. Macromolecules 2017, 50, 1892–1901.
11. Liu, T.; Hao, C.; Wang, L.; Li, Y.; Liu, W.; Xin, J.; Zhang, J. Eugenol-Derived Bio-Based Epoxy: Shape Memory, Repairing, and Recyclability. Macromolecules 2017, 50, 8588–8597.
12. Zhao, S.; Abu-Omar, M. M. Renewable Thermoplastics Based on Lignin-Derived Polyphenols. Macromolecules 2017, 50, 3573–3581.
13. Zhao, S.; Abu-Omar, M. M. Renewable Epoxy Networks Derived from Lignin-Based Monomers: Effect of Cross-Linking Density. ACS Sustainable Chem. Eng. 2016, 4, 6082–6089.
14. Zhao, S.; Abu-Omar, M. M. Synthesis of Renewable Thermoset Polymers through Successive Lignin Modification Using Lignin-Derived Phenols. ACS Sustainable Chem. Eng. 2017, 5, 5059–5066.
15. Yu, Q.; Liang, Y.; Cheng, J.; Chen, S.; Zhang, A.; Miao, M.; Zhang, D. Synthesis of a Degradable High-Performance Epoxy-Ended Hyperbranched Polyether. ACS Omega 2017, 2, 1350–1359.
16. Tanaka, S.; Hojo, F.; Takezawa, Y.; Kanie, K.; Muramatsu, A. Highly Oriented Liquid Crystalline Epoxy Film: Robust High Thermal-Conductive Ability. ACS Omega 2018, 3, 3562–3570.
(17) Nishikubo, T.; Saita, S. New thermo-crosslinking reactions of copolymers of phenyl methacrylates by use of polyfunctional epoxy compounds. *Macromol. Chem. Phys.* 1987, 188, 799−809.

(18) Nishikubo, T.; Shimokawa, T.; Hirano, T.; Shina, A. A novel insertion reaction of epoxy compounds into phenyl ester linkages in polymer chains. *J. Polym. Sci., Part A: Polym. Chem.* 1989, 27, 2519−2530.

(19) Nishikubo, T.; Saita, S.; Fujii, T. New thermo-crosslinking reactions of polymers containing pendant epoxide groups with various polyfunctional active esters. *J. Polym. Sci., Part A: Polym. Chem.* 1987, 25, 1339−1351.

(20) Nishikubo, T.; Izawa, T.; Saita, S. Addition reactions of pendant epoxide group in poly (glycidyl methacrylate) with various active esters. *J. Polym. Sci., Part A: Polym. Chem.* 1986, 24, 1685−1695.

(21) Nishikubo, T.; Izawa, T.; Takahashi, E.; Nono, F. Study of photopolymers. 26. Novel synthesis of self-sensitized photosensitive polymers by addition reactions of poly (glycidyl methacrylate) with nitroaryl cinnamate. *Macromolecules* 1985, 18, 2131−2135.

(22) Nishikubo, T.; Tanaka, K. A novel reaction of epoxy resins with polyfunctional active esters. *J. Appl. Polym. Sci.* 1987, 33, 2821−2831.

(23) Nishikubo, T.; Shimokawa, T. A novel insertion reaction of epoxy compounds into the pendant ester linkage of poly [4-(4-nitrobenzoyloxy) styrene]. *Macromol. Rapid Commun.* 1986, 7, 179−181.

(24) Funahashi, K. New preparation of polyethers with pendant ester groups and a poly (ether-carbonate). *Macromol. Chem. Phys.* 1997, 180, 501−503.

(25) Sukeaki, U.; Satoshi, D.; Katsui, T. Epoxy resin composition for low-dielectric material. JP 2002-012650 A, 2002.

(26) Perece, V. Crosslinkable difunctionalized poly(phenylene oxide) and process for preparation thereof. U.S. Patent 4,665,137, 1987.

(27) Peters, E. N.; Fisher, S. M.; Guo, H. *Polyphenylene Ether Macromonomers. XI. Use in Nonepoxy Printed Wiring Boards.* SABIC, 2012; Vol. 2, pp 818−838.

(28) Ishii, K.J.; Norisue, Y.; Ohno, D.; Miyamoto, M. Vinyl compound and cured product thereof. U.S. Patent 6,995,195 B2, 2006.

(29) Chen, C.-H.; Lee, K.-W.; Lin, C.-H.; Ho, M.-J.; Hsu, M.-F.; Hsiang, S.-I.; Huang, N.-K.; Juang, T.-Y. High-Tg, Low-Dielectric Epoxy Thermosets Derived from Methacrylate-Containing Polyimides. *Polymers* 2018, 10, 27.

(30) Wang, C.; Xu, C.; Li, Q.; Chen, W.; Zhao, X. Synthesis of new fluorene-based poly(aryl ether) containing pendant tert-butyl groups for low dielectric materials. *Colloid Polym. Sci.* 2015, 293, 313−318.

(31) Wang, C.-y.; Chen, W.-t.; Xu, C.; Zhao, X.-y.; Li, J. Fluorinated polyimide/POSS hybrid polymers with high solubility and low dielectric constant. *Chin. J. Polym. Sci.* 2016, 34, 1363−1372.

(32) Wang, C.; Chen, W.; Chen, Y.; Zhao, X.; Li, J.; Ren, Q. New fluorinated poly(ether sulfone imide)s with high thermal stability and low dielectric constant. *Mater. Chem. Phys.* 2014, 143, 773−776.

(33) Wang, C.; Chen, W.; Chen, Y.; Zhao, X.; Li, J.; Ren, Q. Synthesis and properties of new fluorene-based polyimides containing trifluoromethyl and isopropyl substituents. *Mater. Chem. Phys.* 2014, 144, 553−559.

(34) Lin, C. H.; Wang, Y. R.; Feng, Y. R.; Wang, M. W.; Juang, T. Y. An approach of modifying poly(aryl ether ketone) to phenol-containing poly(aryl ether) and its application in preparing high-performance epoxy thermosets. *Polymers* 2013, 5, 1612−1620.

(35) Tao, Z.; Yang, S.; Ge, Z.; Chen, J.; Fan, L. Synthesis and properties of novel fluorinated epoxy resins based on 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroo-ethane. *Eur. Polym. J.* 2007, 43, 550−560.

(36) Zhao, X.-Y.; Liu, H.-J. Review of polymer materials with low dielectric constant. *Polym. Int.* 2010, 59, 597−606.

(37) Lin, C. H.; Jiang, Z. R.; Wang, C. S. Low dielectric epoxy. *J. Polym. Sci., Part A: Polym. Chem.* 2002, 40, 4084−4097.

(38) Lin, C. H.; Hsiao, C. N.; Li, C. H.; Wang, C. S. Low dielectric thermoset. IV. Synthesis and properties of a dipentene-containing cyanate ester and its copolymerization with bisphenol A dicyanate ester. *J. Polym. Sci., Part A: Polym. Chem.* 2004, 42, 3986−3995.