Here we present equilibrium data for the cross-metathesis of methyl oleate (MO) with cinnamaldehyde (CA) obtained experimentally from liquid-phase catalytic tests conducted at 323 K. The reaction was carried out in batch reactors, using different reactant molar ratios and the 2nd generation Ru Hoveyda-Grubbs complex as catalyst. Reaction mixtures at the equilibrium were analyzed by gas chromatography. Equilibrium constants were determined by assuming unitary activity coefficients for a cinnamaldehyde/methyl oleate equimolar ratio, and the validity of that approximation was evaluated by calculating the equilibrium conversions for different reactant molar ratios.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The equilibrium in the cross-metathesis of methyl oleate with cinnamaldehyde was achieved in a Schlenck-type reactor under inert atmosphere at 323 K and different cinnamaldehyde/methyl oleate initial molar ratios.

Catalytic tests in batch reactor, monitored by gas chromatography

INCAPE (Instituto de Investigaciones en Catálisis y Petroquímica), Santa Fe, Argentina
https://goo.gl/maps/K8UENtWYqUK

Data are accessible with the article

P. Nieres, A.F. Trasarti, C.R. Apesteguía, Valorisation of plant oil derivatives via metathesis reactions: study of the cross-metathesis of methyl oleate with cinnamaldehyde, Mol. Catal. (2018) in press

Value of the data

- The cross metathesis of methyl oleate with cinnamaldehyde is an attractive route for the synthesis of various useful intermediates and compounds for fine chemistry and polymer industry [1].
- Equilibrium data for MO/cinnamaldehyde reaction (unpublished to date) are relevant to improve the yield in cross-metathesis products, in competition with the MO self-metathesis reaction.
- Theoretical and experimental equilibrium conversions presented here allow other researchers to extend analyses for cross metathesis of unsaturated fatty acid methyl esters with functionalized olefins.

1. Data

Table 1 lists the retention times and flame ionization detector (FID) response factors relative to n-dodecane (internal standard) for all the reactants and products detected during the catalytic tests. Fig. 1 shows a typical gas chromatogram identifying the reactants methyl oleate (MO) and cinnamaldehyde (CA), and the products 2-undecenal (2UAL), methyl 11-oxo-9-undecenoate (11UDE), 1-decenylbenzene (1DB), 9-octadecene (9OCT), methyl 10-phenyl-9-decenoate (10DE), dimethyl 9-octadecen-1,18-dioate (9OD).

Table 2 shows the reactions involved in the MO/CA cross-metathesis, while the expressions of the corresponding equilibrium constants K_{eq} are given in Table 3. The experimental values obtained at 323 K for each compound at equilibrium for different initial reactant molar ratios ($R_{CA/MO}$) are collected in Table 4. The values of reaction equilibrium constants at 323 K and $R_{CA/OM} = 1$ were calculated using the experimental data of Table 4 and are presented in Table 5. Finally, we used the K_{eq} values of

Substance	Retention time (min)	Response factor a
n-dodecane (STD)	13.55	1
cinnamaldehyde (CA)	14.39	0.62
2-undecenal (2UAL)	15.92	0.83
methyl 11-oxo-9-undecenoate (11UDE)	20.14	1.13
1-decenylbenzene (1DB)	21.10	0.80
9-octadecene (9OCT)	21.46	1.38
methyl 10-phenyl-9-decenoate (10DE)	24.51	1.11
methyl oleate (MO)	24.66	1.28
dimethyl 9-octadecen-1,18-dioate (9OD)	27.69	1.20

a Relative to n-dodecane (internal standard)
Table 5 to calculate the theoretical MO equilibrium conversions (X_{OM}^{eq}) for $R_{CA/OM}$ ratios between 2 and 20 by employing the equilibrium equation system presented in Table 6. The obtained (X_{OM}^{eq})T values are compared in Table 7 with the experimental MO equilibrium conversions (X_{OM}^{eq})E calculated from data of Table 4.
Table 4
Experimental values obtained at 323 K for the number moles of reactants and products at equilibrium.

Component	CA/OM (initial CA/OM molar ratio)									
	1	2	3	4	5	6	7	8	9	10
n-dodecane	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
CA	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
2UAL	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
11UDE	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
10DB	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
9OCT	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
MO	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
9OD	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
BC	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0

\[c_0^{OM} = 0.00725 \text{ mol/L, } W_{catalyst} = 2.24 \text{ mg, catalyst/MO ratio} = 2.38\% \text{ molar, solvent: toluene (10 mL)} \]

\(^a\) Internal standard

\(^b\) Carbon balance, calculated at equilibrium

Table 5
Equilibrium constants at 323 K calculated using the values of Table 4 at RCA/OM = 1.

Reaction	K\(^{\text{Eq}}\) value
\(OM \overset{\text{K1}}{\leftrightarrow} \frac{1}{2} 9OCT + \frac{1}{2} 9OD\)	\(K1^{\text{Eq}} = 0.53\)
\(OM + CA \overset{\text{K2}}{\leftrightarrow} \frac{1}{2} 2UAL + \frac{1}{2} 11UDE + \frac{1}{2} 1DB + \frac{1}{2} 10DE\)	\(K2^{\text{Eq}} = 0.71\)
\(9OCT + CA \overset{\text{K3}}{\leftrightarrow} 2UAL + 1DB\)	\(K3^{\text{Eq}} = 1.58\)
\(9OD + CA \overset{\text{K4}}{\leftrightarrow} 11UDE + 10DE\)	\(K4^{\text{Eq}} = 1.13\)

Table 6
Equilibrium equations used to validate experimental \(K^{\text{Eq}}\) values.

Mass Balance	\(K^{\text{Eq}}\) equations
\(n_{OM}^{\text{eq}} = n_{OM}^0 - \epsilon_1 - \epsilon_2\)	\(K1^{\text{Eq}} = \frac{(\epsilon_2/2 - \epsilon_1)^2 (\epsilon_2/2 - \epsilon_4)^2}{n_{OM} - \epsilon_1 - \epsilon_2}\)
\(n_{CA}^{\text{eq}} = n_{CA}^0 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5\)	\(K2^{\text{Eq}} = \frac{(\epsilon_2/2 + \epsilon_1)^2}{(\epsilon_1/2 - \epsilon_3)R_{CA/OM} n_{OM}^{eq} - \epsilon_1 - \epsilon_2 - \epsilon_4 - \epsilon_5}\)
\(n_{9OD}^{\text{eq}} = \epsilon_1/2 - \epsilon_4\)	\(K3^{\text{Eq}} = \frac{(\epsilon_2/2 + \epsilon_1)^2}{(\epsilon_1/2 - \epsilon_4)R_{CA/OM} n_{OM}^{eq} - \epsilon_1 - \epsilon_2 - \epsilon_4 - \epsilon_5}\)
\(n_{UAL}^{\text{eq}} = \epsilon_2/2 + \epsilon_3\)	\(K4^{\text{Eq}} = \frac{(\epsilon_2/2 + \epsilon_1)^2}{(\epsilon_1/2 - \epsilon_4)R_{CA/OM} n_{OM}^{eq} - \epsilon_1 - \epsilon_2 - \epsilon_4 - \epsilon_5}\)
\(n_{11UDE}^{\text{eq}} = \epsilon_2/2 + \epsilon_4\)	\(X_{MO}^{\text{eq}} = \frac{\epsilon_1 + \epsilon_2}{n_{OM}^{eq}}\)
\(n_{10DB}^{\text{eq}} = \epsilon_2/2 + \epsilon_4\)	\(X_{OM}^{\text{eq}} = \frac{n_{OM} - \epsilon_1 - \epsilon_2}{n_{OM}^{eq}}\)

\(\epsilon_i\): reaction extent for reaction \(i\) (see Table 2)

\(X_{OM}^{\text{eq}}\): MO conversion at equilibrium
2. Experimental design, materials, and methods

2.1. Materials

Methyl oleate (Aldrich, 99%), cinnamaldehyde (Aldrich, 99%), n-dodecane (Aldrich, > 99%), toluene (Sigma-Aldrich, 99.8%), HG2 complex (Aldrich, 97%), benzophenone (Aldrich, 99%), metallic Na (Tetrahedron, 99%), methanol, absolute (Merck).

2.2. Catalytic tests

MO/CA cross-metathesis catalytic tests were performed under argon in a Schlenk flask at atmospheric pressure and 323 K. The solvent (toluene) was previously dehydrated under reflux with sodium/benzophenone in dry argon atmosphere. The reactor was loaded with 10 ml of solvent, the internal standard and suitable amounts of reactants (methyl oleate and cinnamaldehyde). After heating the reaction mixture to the reaction temperature (thermostatic bath) the catalyst (2nd generation Hoveyda-Grubbs complex, 2.24 mg) was added to start the reaction. Samples taken from the reactor after reaching the equilibrium were collected into an ice-cooled vial containing methanol, to ensure that the reaction was quenched. The thermodynamic equilibrium was verified by introducing into the reactor an additional amount (1.2 mg) of fresh catalyst at the end of the 7-h catalytic run and checking that MO conversion was not modified by the addition of catalyst.

Table 7
Theoretical and experimental MO equilibrium conversions for the MO/CA cross-metathesis reaction.

Reactant ratio (molar) R_{CA/OM}	Equilibrium MO conversion (%)	
	Theoretical (X_{eq}^{MO})	Experimental (X_{eq}^{MO})
1	79	79
2	86	87
3	93	91
4	94	94
5	95	96
7	96	97
9	96	99
10	96	100

$C_{MO}^{eq} = 0.00725$ mol/L, $W_{catalyst} = 2.24$ mg, catalyst/MO ratio = 2.38% molar, solvent: toluene (10 mL) $T = 323$ K

Table 8
Chromatographic conditions used in the analysis of samples from catalytic tests.

Inyector (split/splitless)	Detector (FID)	Oven
Mode: split	Temperature: 583 K	Column: HP-1
Temperature: 573 K	H₂ flow: 60 cc/min	Length: 50 m
Split ratio: 40	Air flow: 450 cc/min	Diameter: 0.32 mm
Purge flow: 60 cc/min	Make up gas: N₂	Film thickness: 1.50 μm
Purge time: 0.75 min	Make up gas flow: 50 cc/min	Mode: temperature ramp

Initial T: 373 K
Initial time: 0 min
Temperature rate: 10 K/min
Final T: 973 K
Final time: 15 min
Carrier gas: N₂
Carrier gas flow: 1.61 cc/min
2.3. Chromatographic analysis

Samples from catalytic test were analyzed by gas chromatography using an Agilent 6850 equipped with a Flame Ionization Detector (FID). Chromatographic conditions are summarized in Table 8.

3. Data analysis

Response factors \((f_i) \) relative to the internal standard (n-dodecane) were calculated from chromatographic analysis according to Eq. (1):

\[
f_i = \frac{n_i \cdot A_{\text{std}}}{A_i \cdot n_{\text{std}}} \tag{1}
\]

where \(n_i \) and \(n_{\text{std}} \) are the moles of component \(i \) and the standard, respectively, while \(A_{\text{std}} \) and \(A_i \) are the integrated chromatographic areas of the standard and the \(i \) component, respectively. When chromatographic standards were not commercially available, \(f_i \) was determined from the carbon balance using samples with different compositions.

The number of moles of component \(i \) at equilibrium was calculated from Eq. (2):

\[
n_i^{\text{eq}} = f_i \cdot \frac{A_{i}^{\text{eq}}}{A_{\text{std}}} \cdot n_{\text{std}} \tag{2}
\]

where \(n_i^{\text{eq}} \) and \(A_{i}^{\text{eq}} \) are the moles and the integrated chromatographic area of component \(i \) in the reaction mixture at equilibrium, respectively.

Carbon balance was calculated according to Eq. (3):

\[
BC = \frac{\alpha_{\text{OM}} \cdot n_{\text{OM}} + \gamma_{\text{CA}} \cdot n_{\text{CA}} + \sum \omega_i \cdot n_i}{\alpha_{\text{OM}} \cdot n_{\text{OM}}^{\text{eq}} + \gamma_{\text{CA}} \cdot n_{\text{CA}}^{\text{eq}}} \cdot 100 \tag{3}
\]

where \(\alpha_{\text{OM}} \) are the number of C atoms in MO molecule, \(\gamma_{\text{CA}} \) the number of C atoms in CA molecule, and \(\omega_i \) the number of C atoms in the \(i \)-product molecule; \(n_{\text{OM}}^{\text{eq}} \) and \(n_{\text{OM}} \) are moles of MO at time 0 and at equilibrium, respectively, while \(n_{\text{CA}}^{\text{eq}} \) and \(n_{\text{CA}} \) indicate the corresponding moles of CA.

Acknowledgements

The authors acknowledge the Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, for the financial support of this work.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.07.064.

Reference

[1] P. Nieres, A.F. Trasarti, C.R. Apesteguía, Valorisation of plant oil derivatives via metathesis reactions: study of the cross-metathesis of methyl oleate with cinnamaldehyde, Mol. Catal. (2018), in press https://doi.org/10.1016/j.mcat.2018.06.10