On linearity of finitely generated R-analytic groups

A. Jaikin-Zapirain
Departamento de Matemáticas Facultad de Ciencias
Universidad Autónoma de Madrid

Abstract
We prove that if R is a commutative Noetherian local pro-p domain of characteristic 0 then every finitely generated R-standard group is R-linear.

1 Introduction
Let R be a commutative Noetherian local pro-p domain and m its maximal ideal. The concept of an R-analytic group is defined in [3, Chapter 13], where it is shown that if R satisfies some additional technical conditions, then every such group contains an open subgroup which is R-standard. To recall what this means, let G be an R-standard group. Then the underlying set of G may be “identified” with the cartesian product $(m^l)^{(d)}$ of d copies of m^l, for some $l \in \mathbb{N}$. The number $d \geq 0$ is the dimension of G and $l > 0$ is the level of G. The group operation is given by a formal group law, i.e. a d-tuple $F = (F_1, \ldots, F_d)$ of power series over R in $2d$ variables, as follows: for all $x, y \in G = (m^l)^{(d)}$ we have

$$x \cdot y = (F_1(x, y), \ldots, F_d(x, y)).$$

The neutral element of G is $e = (0, \ldots, 0)$. Without loss of generality we will always assume that the level of G is 1. We shall write $G(I)$ for $(I)^{(d)} \subset G$ and G_i will denote $G(m^i)$. Hence $G = G_1 = G(m)$.

The Z_p-analytic pro-p groups are well-understood (see [7, 8]) and they are linear over Z_p. It was conjectured that R-analytic pro-p groups are R-linear. Since compact Z_p-analytic groups are finitely generated, it is natural to consider first finitely generated R-analytic pro-p groups. In [5] it was proved that just infinite R-analytic groups are R-linear. As an R-analytic group contains an open R-standard subgroup, we can restrict our attention to R-standard groups. In [2] the linearity of $Z_p[[t]]$-perfect groups is shown. Recall that an R-standard

*This work has been partially supported by the FEDER, the MCYT Grants BFM2001-0201, BFM2001-0180 and the Ramón y Cajal Program.
group of level \(l \) is called \(R \)-perfect if \([G, G] = G_{2l}\). Note that \(R \)-perfect groups are finitely generated. In this work we prove:

Theorem 1.1. Let \(R \) be commutative Noetherian local pro-\(p \) domain of characteristic 0 and \(G \) a finitely generated \(R \)-standard group. Then \(G \) is \(R \)-linear.

Note that if a pro-\(p \) group is finitely generated and \(R \)-linear, then it is a closed subgroup of \(\text{GL}_n(R) \) for some \(n \). In the following we will use the notion \(R \)-linear only for closed subgroups of \(\text{GL}_n(R) \).

First at all in Section 2 we prove some new results about \(t \)-linear pro-\(p \)-groups. In Section 3 we shall describe the Lie algebra \(\mathbb{L} = \mathbb{L}(G) \) of an \(R \)-standard group \(G \). The typical definition is based on the formal group law of \(G \). We shall introduce another definition coming from the theory of algebraic groups and define \(\mathbb{L} \) as the set of left invariant derivations of \(A = R[[x_1, \ldots, x_d]] \). We shall prove that these two definitions are equivalent (it is a folklore result, however, I do not know any reference for it in the literature). In Section 4 assuming that the characteristic of \(R \) is 0, we use the BCHF to define on \(p\mathbb{L} \) (here \(p = p(p) = 4 \) if \(p = 2 \) and \(p = p \) if \(p \) is an odd prime) a group structure. We show that the obtained group is isomorphic to \(G(pR) \). In Section 5 we show that if an \(R \)-standard group is finitely generated, then the radical of \(\mathbb{L}(G) \) is nilpotent. It will permit us use the Weigel result about linearity of some Lie rings which we describe in Section 6. In Section 7 we finish the proof of Theorem 1.1.

2 Some results about \(t \)-linear pro-\(p \) groups

Recall the definition of \(t \)-linear pro-\(p \) groups from [5].

Definition. Let \(G \) be a pro-\(p \) group. We shall say that \(G \) is \(t \)-linear if it is a closed subgroup of \(\text{GL}_n(A) \) for some commutative profinite ring \(A \).

In [5 Theorem 4.1] it was shown that if \(G \) is a finitely generated \(t \)-linear pro-\(p \) group, then \(G \) is linear over some commutative Noetherian local pro-\(p \) ring. In this section we extend this result. If \(R \) is a ring, we denote by \(K \dim R \) the Krull dimension of \(R \).

Theorem 2.1. Let \(G \) be a finitely generated pro-\(p \) group and suppose that \(G \) is linear over some commutative Noetherian local pro-\(p \) domain \(R \). Then we have

1. If \(\text{char } R = 0 \) and \(K \dim R > 2 \), then \(G \) is linear over every commutative Noetherian local pro-\(p \) domain of characteristic zero and Krull dimension greater than 2.

2. If \(\text{char } R = 0 \) and \(K \dim R \leq 2 \), then \(G \) is linear over every commutative Noetherian local pro-\(p \) domain of characteristic zero and Krull dimension greater or equal than of \(R \).

3. If \(\text{char } R = p \) and \(K \dim R \geq 2 \), then \(G \) is linear over every commutative Noetherian local pro-\(p \) domain \(R \) of characteristic \(p \) and Krull dimension greater than 1.
We see that the last theorem reduces the study of linear over pro-p domains pro-p groups to study of R-linear pro-p groups, where $R = \mathbb{Z}_p[[t_1, t_2]]$ or $R = \mathbf{F}_p[[t_1, t_2]]$.

One of the main steps in the proof of the previous theorem is the following proposition. We also will use it in the proof of our main result.

Theorem 2.2. Let R be a commutative Noetherian local pro-p domain and W a finitely generated R-torsion-free R-module. Suppose $G \leq \text{Aut}_R(W)$. Then there exists a commutative Noetherian local pro-p domain S, satisfying $\text{char} S = \text{char} R$ and $K \text{dim} S = K \text{dim} R$, such that G is S-linear. Moreover, if R is regular, then $S = R$.

First we need some auxiliary results. In the following R is always a commutative Noetherian local pro-p domain.

Lemma 2.3. Let $a \neq 0, r \in R$ and $T = R[[t]]/(at - r)$. Then the Krull dimensions of R and T are the same.

Proof. First note that $K \dim R[[t]] = K \dim R + 1$ and since $R[[t]]$ is domain $K \dim R[[t]]/(at - r)$ is strictly less than $K \dim R[[t]]$. Hence $K \dim R[[t]]/(at - r) \leq K \dim R$.

On the other hand, $K \dim T$ is equal to the number of elements in a system of parameters of T (see [8, p.27]), and this number is at least $K \dim R[[t]] - 1$. This implies $K \dim R[[t]]/(at - r) \geq K \dim R$. \qed

Recall that a (multiplicative non-archimedean) valuation of a field D is a mapping $v: D \to \mathbb{R}_{\geq 0}$ such that for $a, b \in D$.

(i) $v(a) = 0$ if and only if $a = 0$.
(ii) $v(ab) = v(a)v(b)$.
(iii) $v(a + b) \leq \max(v(a), v(b))$.

We need the following proposition:

Proposition 2.4. ([8, Proposition 11.9]) Let R be a subring of a field D and m a non-trivial ideal of R. Then there exists a valuation v of D such that $v(r) \leq 1$ for every $r \in R$ and $v(m) < 1$ for every $m \in m$.

Lemma 2.5. Let S be the integrally closure of R. Then S is also a commutative Noetherian local pro-p ring of same characteristic and same Krull dimension as R.

Proof. First we want to see that S is local. Let D be the quotient field of R and v a valuation from Proposition 2.4. If $s \in S$ then $v(s) \leq 1$, because s is integral over R. In order to see that S is local it is enough to show that if $v(s) = 1$ then s is invertible in S. Let $f(t) = \sum_{i=0}^{n} a_i t^i$ be a monic irreducible over R polynomial such that $f(s) = 0$. Since $v(s) = 1$, there exists a_i, $i < n$, such that...
Proof of Theorem 2.2. Let $a \notin m$. Therefore, since R is a Henselian ring (see [5, Theorem 30.3]), we have that $a_0 \notin m$. Hence $s^{-1} \in S$.

Finally, by [5, Theorem 32.1], S is a finite extension of R, whence their Krull dimensions coincide.

Theorem 2.6. Let R be a commutative Noetherian local pro-p domain and $a \in R$. Then there are a commutative Noetherian local pro-p domain S and an injective homomorphism $\phi : R \to S$ such that

(i) $\phi(m^k) \subseteq \phi(a)S$ for some $k \in \mathbb{N}$;

(ii) S is integrally closed and its Krull dimension is the same as of R.

Moreover, if R is regular, then $S = R$.

Proof. Let D be the quotient field of R and v a valuation from Proposition 2.4. Let Ω be a completion of D respect to v. Since R is Noetherian, there exists $s = \max\{v(r) | r \in m\} < 1$ Let k be such that $s^k/v(a) < 1$ and put $S_1 = R[[m^k/a]] \subseteq \Omega$. It is clear that S_1 is a local pro-p ring. Moreover, if t_1, \ldots, t_m are generators of m^k as R-module, then $S_1 = R[[t_1/a, \ldots, t_m/a]]$. Hence S_1 is Noetherian. Applying several times Lemma 2.8, we obtain that its Krull dimension is the same as of R. Finally, let S be the integral closure of S_1. Theorem follows from Lemma 2.8.

If $R = A[[t_1, \ldots, t_j]]$, where A is equal to F_q or to a finite extension of \mathbb{Z}_p, then the homomorphism $\phi : R \to S$ is defined by means of $\phi(t_i) = at_i$. \square

Proof of Theorem 2.9. Let D be the field of quotients of R. Consider the D-module $M = D \otimes_R W$. Since W is R-torsion-free, we can see W as an R-submodule of M.

Let m_1, \ldots, m_r be a D-basis of M lying in W. Put $N = \sum Rm_i$. It is clear that N is a free R-module. Let $a \neq 0$ be such that $aW \subseteq N$. By the previous result, there are a commutative Noetherian local pro-p ring S and an injective homomorphism $\phi : R \to S$ such that $\phi(m^k) \subseteq \phi(a)S$ for some $k \in \mathbb{N}$. Moreover, if R is regular, then $S = R$.

Put $W_1 = m^k W$ and $G_1 = \{g \in G | gw \equiv w \pmod{W_1} \text{ for every } w \in W\}$. It is clear that G_1 is of finite index in G and G acts faithfully on W_1. Define $L = S \otimes_R N$. We have L is a free S-module.

Now we embed W_1 in L in the following way. Let $w \in W_1$. Then $w = \sum_{i=1}^r a^{-1}k_im_i$, where $k_i \in m^k$. Define $\psi(w) = \sum_{i=1}^r \phi(a)^{-1}\phi(k_i) \otimes m_i$ (since S is domain and $\phi(m^k) \subseteq \phi(a)S$, we can speak about $\phi(a)^{-1}\phi(k_i) \in S$). The map ψ is an R-homomorphism. So we can see W_1 as R-submodule of L.

Now, we explain how we can extend the action of G_1 on L. Let $g \in G_1$ and $l = \sum_{i=1}^r s_im_i$. Define $gl = \sum_{i=1}^r s_igm_i$. Note that, since $g \in G_1$, $gm_i \in W_1 + N$, so the definition is correct. This action gives an embedding $G_1 \leq \text{Aut}_S(L) \cong \text{GL}_r(S)$. Since G_1 is of finite index in G, G is also S-linear. \square
Proof of Theorem 2.1. By the structure theorem of complete local rings (see [8, Corollary 31.6]), R is a finite extension of a regular ring $T = \mathbb{Z}_p[[t_1, \ldots, t_k]]$ or $T = \mathbb{F}_p[[t_1, \ldots, t_k]]$ for some k. Hence, $G \in \text{Aut}_T(R^n)$ for some n, and Theorem 2.2 implies that G is T-linear. Note that the Krull dimensions of R and T are the same.

1. If $\text{char } T = 0$ and $K \dim T > 2$, then by Remark VII.10.4 of [11], we can embed $T = \mathbb{Z}_p[[t_1, \ldots, t_k]]$ into $\mathbb{Z}_p[[s_1, s_2]]$. On the other hand $\mathbb{Z}_p[[s_1, s_2]]$ can be embedded into every commutative Noetherian local pro-p domain S of characteristic zero and Krull dimension greater than 2, and so G is also S-linear.

The proofs of 2. and 3. follow the same ideas.

3 Lie algebra of an R-standard group

We use the notation of Section 1. So G is an R-standard group of level 1. The law F can be written in the form

$$F(x, y) = x + y + B(x, y) + O'(3),$$

where B is the sum of the all polynomials in x and y of degree 2 and the expression $O'(n)$ stands for any power series in which every term has total degree at least n and has degree at least 1 in each variable. We know, see, for example, [9, p.26], that if $C(x, y) = B(x, y) - B(y, x)$, then $(R^{(d)}, +, C)$ is a Lie R-algebra, and we shall denote this Lie algebra by $L = L(G)$.

Now, let $A = R[[x_1, \ldots, x_d]]$. Since G is identified with $m^{(d)}$, A can be considered as a subring of the ring of functions from G to R. Note that since R is domain, two different elements from A give us two different functions. Define two actions of G on A via left and right translation:

$$(\lambda_x f)(y) = f(x^{-1}y), \quad (\rho_x f)(y) = f(yx),$$

where $f \in A$, $x, y \in G$. Since the multiplication in G is given by an analytic function, we have that if $f \in A$ then $\lambda_x f$ and $\rho_x f$ also belong to A.

The bracket of two R-derivations of A is again a derivation. Therefore, Der A is a Lie algebra. So is the subspace of left invariant derivations Der$_l A = \{ w \in \text{Der } A \mid w\lambda_x = \lambda_x w \text{ for all } x \in G \}$, since the bracket of two derivations which commute with λ_x obviously does likewise. The next theorem is the main result of this section:

Theorem 3.1. The Lie R-algebras L and Der$_l A$ are isomorphic.

Before the proof of the theorem we need to do some preliminary work.
Lemma 3.2. Let $w_1, w_2 \in \text{Der}_l A$ and $f \in A$. Then we have

$$w_1(f)(y) = \sum_{i=1}^{d} \frac{\partial f(yx)}{\partial x_i} \bigg|_{x=e} w_1(x_i)(e),$$

$$w_2(w_1(f))(z) = \sum_{i,j=1}^{d} \frac{\partial^2 f(zyx)}{\partial x_i \partial y_j} \bigg|_{(x,y)=(e,e)} w_1(x_i)(e)w_2(x_j)(e).$$

Proof. We prove only the first equality, because the second one is obtained applying two times the first.

$$w_1(f)(y) = (\lambda_y^{-1} w_1(f(x)))(e) = w_1(\lambda_y^{-1} f(x))(e) = w_1(f(yx))(e)$$

$$= \sum_{i=1}^{d} \frac{\partial f(yx)}{\partial x_i} \bigg|_{x=e} w_1(x_i)(e).$$

Proof of Theorem 3.1. Define an R-homomorphism $\phi : \text{Der}_l A \rightarrow L$ as follows

$$\phi(w) = (w(x_1)(e), \ldots, w(x_d)(e)), w \in \text{Der}_l A.$$

First we will show that ϕ is a bijective map. Fix $(a_1, \ldots, a_d) \in L$ and define $w \in \text{End}_R(A)$ by means of

$$w(f)(y) = \sum_{i=1}^{d} \frac{\partial f(yx)}{\partial x_i} \bigg|_{x=e} a_i, f \in A.$$

If $f_1, f_2 \in A$, then

$$w(f_1f_2)(y) = \sum_{i=1}^{d} \frac{\partial f_1(yx)f_2(yx)}{\partial x_i} \bigg|_{x=e} a_i$$

$$= \sum_{i=1}^{d} \frac{\partial f_1(yx)}{\partial x_i} \bigg|_{x=e} f_2(y) a_i + \sum_{i=1}^{d} \frac{\partial f_2(yx)}{\partial x_i} \bigg|_{x=e} f_1(y) a_i$$

$$= w(f_1)(y)f_2(y) + f_1(y)w(f_2)(y).$$

This implies that w is a derivation of A. Now, if $z \in G$, then

$$w(\lambda_z f)(y) = \sum_{i=1}^{d} \frac{\partial (\lambda_z f)(yx)}{\partial x_i} \bigg|_{x=e} a_i$$

$$= w(f)(z^{-1}y) = (\lambda_z w(f))(y).$$

Hence, we obtain that w is really a left invariant derivation. Define the constructed map from L to $\text{Der}_l(A)$ by ψ. Note that if $w \in \text{Der}_l(A)$, then we
have
\[
\psi(\phi(w))(f)(y) = \psi(w(x_1)(e), \ldots, w(x_d)(e))(f)(y)
\]
\[
= \sum_{i=1}^d \frac{\partial f(yx)}{\partial x_i} \bigg|_{x=e} w(x_i)(e)
\]
\[
= w(\lambda_{y-1} f)(e) = \lambda_{y-1} w(f)(e) = w(f)(y).
\]

On the other hand if \(a = (a_1, \ldots, a_d) \in L\), then
\[
\phi(\psi(a)) = (b_1, \ldots, b_d),
\]
where \(b_k = \sum_{i=1}^d \frac{\partial F_k(y, x)}{\partial x_i} \bigg|_{x=e} a_i = a_k\). Hence \(\psi(\phi(a)) = a\). We conclude that \(\phi\) is a bijection.

We shall see now that \(\phi\) is also a homomorphism of Lie rings.

Let \(w_1, w_2 \in \text{Der}_l(A)\). From the previous lemma, we obtain that
\[
\phi([w_1, w_2]) = (c_1, \ldots, c_d),
\]
where
\[
c_k = \sum_{i,j=1}^d \frac{\partial^2 F_k(y, x)}{\partial x_i \partial y_j} \bigg|_{(x, y) = (e, e)} (w_2(x_i)(e)w_1(x_j)(e) - w_1(x_i)(e)w_2(x_j)(e)).
\]

We conclude that \(\phi([w_1, w_2]) = C(\phi(w_1), \phi(w_2))\). \(\square\)

Remark 3.3. Note that the previous proof also gives an identification of \(\text{Der}_l(A)\) with \((I/I^2)^* = \text{End}_R(I/I^2, R)\). The derivation \(w\) is identified with the map \(f \rightarrow w(f)(e)\).

In the rest of the work we shall use the letter \(L\) for \(\text{Der}_l(A)\).

4 An application of the Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorff Formula (BCHF) is \(H(x_1, x_2) = \log(e^{x_1}e^{x_2})\) regarded as a formal power series in two non-commuting variables. Equivalently, this is a formal power series \(H(x_1, x_2)\) such that
\[
e^{H(x_1, x_2)} = e^{x_1}e^{x_2}.
\]

The homogeneous component of \(H(x_1, x_2)\) of degree \(n\) is denoted by \(H_n(x_1, x_2)\), so that \(H(x_1, x_2) = \sum_{n=1} H_n(x_1, x_2)\). The main fact about the BCHF is that \(H_n(x_1, x_2)\) is a Lie word in \(x_1\) and \(x_2\) (see, for example, [5, Theorem 9.11]).

Let \(\{e_i\}\) be a \(\mathbb{Z}\)-basis of the free Lie algebra generated by \(x_1\) and \(x_2\), consisting of simple commutators. Then we can express \(H_n\) as \(H_n = \sum \lambda_{k,n} e_k\), for some
\(\lambda_{k,n} \in \mathbb{Q} \). We need the following fact about the coefficients \(\lambda_{k,n} \) (Proposition II.8.1):

\[
v_p(\lambda_{k,n}) \geq -(n-1)/(p-1),
\]

where \(v_p(ap^s) = s \) if \((a,p) = 1\).

Theorem 4.1. Let \(M \) be a Lie \(\mathbb{Z}_p \)-algebra without \(\mathbb{Z}_p \)-torsion and suppose that \(\cap_{i=0}^\infty p^i M = 0 \). If \(M \) is complete in the topology induced by the filtration \(p^i M \), then

(i) If \(a, b \in pM \), then \(H_n(a, b) \in pM \) and \(\lim_{n \to \infty} H_n(a, b) = 0 \) (in particular, we can compute \(H(a, b) \));

(ii) \((pM, H)\) is a group.

Proof. The first proposition of the theorem follows directly from the formula (1).

Since \(H(a, 0) = H(0, a) = a \) and \(H(a, -a) = 0 \) for any \(a \in pM \), then in order to prove the second statement, we only need to show that the operation \(H(x_1, x_2) \) is associative.

Let \(F \) be the \(\mathbb{Q}_p \)-algebra of formal power series in the non-commuting variables \(x_1, x_2, x_3 \). Then we have the following equalities in \(F \):

\[
H(H(x_1, x_2), x_3) = \log(e^{H(x_1, x_2) e^{x_3}}) = \log(e^{x_1 e^{x_2 e^{x_3}}}) = \log(e^{x_1 e^{H(x_2, x_3)} H(x_1, H(x_2, x_3)))}.
\]

In particular, we obtain

\[
H(H(p x_1, p x_2), p x_3) = H(p x_1, H(p x_2, p x_3)).
\]

Let \(L \) be the Lie \(\mathbb{Z}_p \)-subalgebra of \(F^{(-)} \), generated by \(x_1, x_2, x_3 \). It is clear that \(L \) is a free Lie \(\mathbb{Z}_p \)-algebra. Let \(\{ \lambda_k, k \in \mathbb{N} \} \) be a \(\mathbb{Z}_p \)-basis of \(L \) and \(\bar{L} \) be the Lie \(\mathbb{Z}_p \)-subalgebra of \(F^{(-)} \), consisting from the formal power series \(\sum \lambda_k e_k \) with \(\lambda_k \in \mathbb{Z}_p \) and \(\lim_{k \to \infty} (\lambda_k) = +\infty \). We have that \(\bar{L} \) is the completion of \(L \) in the topology induced by the filtration \(p^i L \). By (1), if \(y_1, y_2 \in p\bar{L} \), then \(H(p y_1, p y_2) \in p\bar{L} \).

Now, let \(a, b, c \in M \) and \(\phi : L \to M \) be a Lie \(\mathbb{Z}_p \)-algebra homomorphism defined by means of \(\phi(x_1) = a, \phi(x_2) = b, \phi(x_3) = c \). Since \(M \) is complete in the topology induced by the filtration \(p^i M \), this homomorphism can be extended to \(\phi : L \to M \). Furthermore, \(\phi \) is a continuous map. Then

\[
H(H(pa, pb), pc) = H(H(\phi(p x_1), \phi(p x_2)), \phi(p x_3)) = \phi(H(H(p x_1, p x_2), p x_3)) = H(H(p x_1, H(p x_2, p x_3))).
\]

We conclude that the operation \(H(x_1, x_2) \) is associative and, so, \((pM, H)\) is a group.

We will denote the group \((pM, H)\) by \(\Gamma(pM) \).
There exists $\log \phi$ in the topology induced by the filtration $p^i D$. If M is a closed Lie \mathbb{Z}_p-subalgebra of $D^{(-1)}$, then

(i) If $a \in pD$, then $a^n/n! \in pD$ for $n \geq 1$ and $\lim_{n \to \infty} a^n/n! = 0$ (in particular, we can compute $e^a \in 1 + pD$ and $\log(1 + a) \in pD$);

(ii) If $a \in pD$, then $\log(e^a) = a$ and $e^{\log(1+a)} = 1 + a$ (in particular, $e^a = 1$ if and only if $a = 0$);

(iii) $\{e^a | a \in pM\}$ is a group (with multiplication of D) isomorphic to $\Gamma(pM)$.

Proof. The first statement follows from the fact that $v_p(n!) \leq (n - 1)/(p - 1)$ (see [1, Lemma II.8.1]).

Let P be the subring of $\mathbb{Z}_p[[t]]$, consisting of the series

$$
\sum_i \alpha_i t^i \text{ with } \lim_{i \to \infty} v_p(\alpha_i) = +\infty.
$$

Suppose $f \in tP$. Since $v_p(n!) \leq (n - 1)/(p - 1)$, $e^f \in P$ and $\log(1 + f) \in P$. Let $a = pb$. Define a homomorphism of \mathbb{Z}_p-algebras $\phi : \mathbb{Z}_p[t] \to D$, by means of $\phi(t) = b$. Since P is isomorphic to the completion of $\mathbb{Z}_p[t]$ in the topology induced by $p^k\mathbb{Z}_p[t]$, we can extend ϕ on P. Note that in P, the equality $pt = \log(e^{pt})$ holds. Since ϕ is continuous, we have

$$
a = \phi(pt) = \phi(\log(e^{pt})) = \log(e^a).
$$

Analogically, $e^{\log(1+a)} = a$. This proves the second proposition.

Since M satisfies the hypothesis of the previous theorem, in order to prove the third statement we have to show that $e^a e^b = e^{H(a,b)}$, for any $a, b \in pM$. The proof of this equality is analogical of the proof of Theorem [1, Lemma II.8.1] and we omit it.

Lemma 4.3. Let D be an associative \mathbb{Z}_p-algebra without \mathbb{Z}_p-torsion and suppose that $\cap_i p^i D = 0$. Assume that D is complete in the topology induced by the filtration $p^i D$. Let ϕ be a \mathbb{Z}_p-automorphism of D and suppose $(\phi - 1)D \in pD$. Then $\log \phi \in p \text{End}_{\mathbb{Z}_p}(D)$ is well-defined and it is a derivation of D.

Proof. From the hypothesis on ϕ it follows that $\phi \in 1 + p \text{End}_{\mathbb{Z}_p}(D)$. Since D is complete in the topology induced by the filtration $p^i D$, $\text{End}_{\mathbb{Z}_p}(D)$ is complete in the topology induced by the filtration $p^i \text{End}_{\mathbb{Z}_p}(D)$. By the previous theorem there exists $\log \phi$.

Let

$$
f_n(t) = \sum_{i=1}^n \frac{(-1)^{i+1}(t-1)^i}{i} = \sum_i \alpha_i t^i.
$$

Define $d_n = f_n(\phi)$. Note that $\log \phi = \lim_{n \to \infty} d_n$. Then

$$
d_n(ab) = \sum_i \alpha_i \phi^i(a) \phi^i(b) = \sum_{j,k} \beta_{j,k}(\phi - 1)^j(a)(\phi - 1)^k(b),
$$

9
where $\beta_{j,k}$ are coefficients obtained from the following equality:

$$f_n(ts) = \sum_{j,k} \beta_{j,k}(t-1)^j(s-1)^k.$$

From the definition of f_n, it follows that

$$f_n(ts) - f_n(t) - f_n(s) = \sum_{j+k>n} \beta_{j,k}(t-1)^j(s-1)^k.$$

Hence

$$d_n(ab) - d_n(a)b - ad_n(b) = \sum_{j+k>n} \beta_{j,k}(\phi-1)^j(a)(\phi-1)^k(b)$$

and so

$$(\log \phi)(ab) - (\log \phi)(a)b - a(\log \phi)(b) = \lim_{n \to \infty} d_n(ab) - d_n(a)b - d_n(a)b = 0.$$

Hence $\log \phi$ is a derivation.

Using the similar argument we can prove the next lemma

Lemma 4.4. Let D be an associative \mathbb{Z}_p-algebra without \mathbb{Z}_p-torsion and suppose that $\bigcap_i p^iD = 0$. Assume that D is complete in the topology induced by the filtration p^iD. Let ϕ be a \mathbb{Z}_p-derivation of D and suppose $\phi(D) \in pD$. Then $\exp(\phi) \in 1 + p\text{End}_{\mathbb{Z}_p}(D)$ is well-defined and it is an automorphism of D.

Let R be a commutative Noetherian local pro-p domain of characteristic 0. We use the notation of the previous section. Suppose that $x \in G(pR)$. Then it is clear that the automorphism ρ_x satisfies the condition: $(\rho_x - 1)A \in pA$, whence $\rho_x \in 1 + p\text{End}_R(A)$. By Lemma 4.3 we have the well-defined derivation $\log(\rho_x) \in p\text{End}_R(A)$. Since λ_y and ρ_x commute, $\log(\rho_x) \in pL = p\text{Der}_l(A)$.

From the equality $\exp(\log(\rho_x)) = \rho_x$, we obtain, using Theorem 4.2(iii), that $G(pR)$ can be embedded into $\Gamma(pL)$. In fact, we can prove more:

Theorem 4.5. The groups $\{\rho_x|x \in G(pR)\}$ and group $\{e^a|a \in pL\}$ coincide. In particular, $G(pR) \cong \Gamma(pL)$.

Proof. Let V be the group of R-automorphisms of A, commuting with all λ_x, $x \in G$. We will show that $V = \{\rho_x|x \in G\}$.

Let $v \in V$ and put $x = (v(x_1)(e), \ldots, v(x_n)(e))$. It is easy to see that if $f \in A$, then $v(f)(e) = f(x) = \rho_x f(e)$. Hence if $y \in G$, we have

$$v(f)(y) = \lambda_{y^{-1}} \circ v(f)(e) = v \circ \lambda_{y^{-1}}(f)(e) = \rho_x \circ \lambda_{y^{-1}}(f)(e) = \rho_x(f)(y).$$

It implies that $v = \rho_x$.

Now, if $w \in pL$, then by Lemma 4.4, e^w is an automorphism of A. It is clear that $e^w \in V$. Since $e^w(x_i) \in x_i + pA$, we obtain from the previous paragraph that $e^w = \rho_x$ for some $x \in G(pR)$. This finishes the proof.

\[10\]
Corollary 4.6. If the Lie R-algebra $\mathbb{L} = \mathbb{L}(G)$ can be embedded in $\text{End}_R(W)^{(-)}$ for some finitely generated R-torsion-free R-module W, then $G(pR)$ can be embedded as a closed subgroup in $\text{Aut}_R(W)$.

Proof. Suppose \mathbb{L} is a R-subalgebra of $\text{End}_R(W)^{(-)}$. By Theorem 1.2 $H = \{e^a | a \in p\mathbb{L}\}$ is a group isomorphic to $\Gamma(p\mathbb{L})$ and, whence, by the previous theorem to $G(pR)$. Note that H is a closed subgroup of $\text{Aut}_R(W)$ because the exponential map is continuous on $p\text{End}_R(W)$ and $p\mathbb{L}$ is compact.

5 Soluble radical of a finitely generated R-standard group

Let R be a noetherian commutative domain, D its field of fractions and \mathbb{L} an R-Lie algebra which is a finitely generated free R-module. We call \mathbb{L} for short an R-lattice. Put $\mathbb{L}_D = D \otimes_R \mathbb{L}$. \mathbb{L}_D is a finite dimensional D-Lie algebra. In the following $R_n(\mathbb{L}_D)$ will denote the soluble radical of \mathbb{L}_D and $R_n(z(\mathbb{L}_D))$ will denote the nilpotent radical of \mathbb{L}_D. The purpose of this section is the next result:

Theorem 5.1. Let R be a commutative Noetherian local pro-p domain of characteristic 0 and Krull dimension greater than 1 and D its field of quotients. Let G be a finitely generated R-standard group and $\mathbb{L} = \mathbb{L}(G)$ its Lie algebra. Then $R_n(\mathbb{L}_D)$ is nilpotent.

We use the notation of the previous section. From Theorem 1.5 we know that if $x \in G(pR)$, then $\rho_x = e^a$ for some $a \in p\mathbb{L}(G)$. Recall that I is an ideal of A generated by x_1, \ldots, x_d. The conjugation by x which send $f(y) \in I$ to $f(x^{-1}yx) \in I$ is the map $\lambda_x \circ \rho_x$. We need an auxiliary lemma.

Lemma 5.2. Let G be a finitely generated R-standard group and $x \in G(pR)$. Let $a \in p\mathbb{L}(G)$ be such that $\rho_x = e^a$. Suppose $\lambda_x \circ \rho_x$ acts as an unipotent automorphism on (I/I^2). Then $a \in R_n(\mathbb{L}(G)_D)$.

Proof. Let $f \in I$ and $w \in \mathbb{L} = \mathbb{L}(G)$. We have

$$(\rho_x^{-1} \circ w \circ \rho_x)(f)(e) = (w \circ \rho_x)(f)(x^{-1}) = (w \circ \lambda_x \circ \rho_x)(f)(e).$$

Note that if a linear automorphism acts unipotently on V, it acts also unipotently on V^*. Since \mathbb{L} can be identified with $(I/I^2)^*$ (see Remark 3.2), we have that the automorphism of \mathbb{L}_D defined as $\tau(w) = \rho_x^{-1} \circ w \circ \rho_x$ is unipotent.

In order to prove that $ad a$ is nilpotent, we should to show that every $ad a$-invariant subspace W of \mathbb{L}_D has a nonzero element w such that $ad a(w) = 0$. So, let W be an $ad a$-invariant subspace of \mathbb{L}_D. Since we have

$$\tau(w) = \rho_x^{-1} \circ w \circ \rho_x = e^{-a} \circ w \circ e^a = \sum_{i=0}^{\infty} \frac{(ad a)^i(w)}{i!} = e^{a(ad a)(w)},$$

W is also τ-invariant. Hence there exists $0 \neq w \in W$ such that $\tau(w) = w$. Then $ad a(w) = 0$. We conclude that $ad a$ is nilpotent.

11
Proof of Theorem 5.1. We suppose the contrary. If \(v \in R_n(L_D) \setminus R_n(L_D^0) \), then \(Dv \cap R_n(L_D^0) = \{0\} \). Put \(T = pL \cap R_n(L_D^0) \) and \(T_1 = pL \cap Dv \). As in the previous section we see the elements from \(L(G) \) as left invariant derivations of \(A \), and the elements from \(G \) as left invariant automorphisms of \(A \) (so \(G \) coincides with \(\{\rho_x | x \in G\} \)).

Put \(H = \{ e^a | a \in T \} \) and \(H_1 = \{ e^a | a \in T_1 \} \). By Theorem 6.1, these two sets are subsets of \(L(G) = \{\rho_x | x \in G(pL)\} = \{e^a | a \in pL(G)\} \). Note also that \(H \) and \(H_1 \) are subgroups of \(G \).

If \(h = e^a \in H \) and \(g \in G \), then \(h^g = (e^{\text{Ad}(a)}) \). Hence \(H \) is a normal subgroup of \(G \). On the other hand since \(T \) is soluble, \(H \) is soluble.

In [5, Proposition 5.1] we proved that for some \(k \) the kernel of the action by conjugation on \(I/I^k \) is \(Z(G) \). If \(\Omega \) is the algebraic closure of \(D \), we can consider \(G/Z(G) \) as a subgroup of \(\text{GL}_m(\Omega) \), where \(m \) is the rank of \(I/I^k \) as \(R \)-module. Let \(\bar{G} \) and \(\bar{H} \) be the Zariski closures of \(G/Z(G) \) and \(HZ(G)/Z(G) \) respectively in \(\text{GL}_m(\Omega) \). Then \(\bar{H} \) is a normal soluble subgroup of \(\bar{G} \). By [4, Lemma 19.5], \([\bar{G}^0, \bar{G}^0] \cap \bar{H} \) is virtually unipotent.

Suppose \(h = e^a \), \(a \in pL \) acts as an unipotent automorphism on \(I/I^k \). Then by the previous lemma, \(a \in R_n(L) \). This implies that \(H_1 Z(G)/Z(G) \) does not have non-trivial unipotent elements and so \([\bar{G}^0, \bar{G}^0] \cap H_1 Z(G)/Z(G) \) is finite. Since \(Dv \cap R_n(L_D^0) = \{0\} \), we have \(H_1 \cap Z(G) = \{1\} \), whence \([\bar{G}^0, \bar{G}^0] \cap H_1 \) is finite.

On the other hand, since \(G \) is finitely generated, \(G^0 = G \cap \bar{G}^0 \) is finitely generated and so \(H_1 / ([G^0, G^0] \cap H_1) \) is abelian of finite rank. We obtain that \(H_1 \) has finite rank. We have a contradiction because \((R, +) \) can be embedded in \(H_1 \) and it is not of finite rank. \(\square \)

6 The Weigel theorem

Let \(R \) be a noetherian commutative domain, \(K \) its field of fractions and \(L \) an \(R \)-Lie algebra which is a finitely generated free \(R \)-module. \(L_K \) is a finite dimensional \(K \)-Lie algebra. The Ado-Iwasawa theorem states that \(L_K \) has a finite dimensional linear representation. The next result shows that if the soluble radical of \(L_K \) is nilpotent, then this representation can satisfy some additional nice properties.

Theorem 6.1. ([T. Weigel, Lemma 4.3, Proposition 4.4]) Let \(R \) be an integrally closed noetherian commutative domain and \(K \) its field of fractions. Assume that \(L \) is an \(R \)-lattice and that soluble radical of \(L_K \) is nilpotent. Then there exist a finitely generated \(R \)-torsion-free \(R \)-module \(W \) and a faithful \(R \)-linear representation \(\psi : L \to \text{End}_R(W) \).

7 Linearity of groups

In this section we finish the proof of Theorem 6.1.
Theorem 7.1. Let R be a commutative Noetherian local pro-p ring of characteristic 0 and G be a finitely generated R-standard group. Then G is R-linear.

Proof. The theorem is known in the case when $K \dim R = 1$. So we suppose that $K \dim R > 1$. Let $F = F(x, y) (x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n))$ be the formal law associated with G and $\phi: R \to S$ a homomorphism from Theorem 2.6 when $a = p$. Then we can extend this homomorphism to

$$\phi: R[[x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n]] \to S[[x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n]]$$

in obvious way. Put $H(x, y) = \phi(F(x, y))$. We have

$$H(H(x, y), z) = \phi(F(F(x, y), z)) = \phi(F(x, F(y, z))) = H(x, H(y, z)).$$

Hence H is also a formal group law. Let H be an S-standard group associated with H.

Let D be the ring of quotients of R. By Theorem 6.1 the radical of $D \otimes_R L(G)$ is nilpotent. Let E be the field of quotients of S. Then we have

$$E \otimes_S L(H) = E \otimes_S (S \otimes_R L(G)),$$

which clearly implies that the radical of $E \otimes_S L(H)$ is also nilpotent.

Applying ϕ, $G(m^k)$ is embedded as a closed subgroup into $H(pS)$:

$$(x_1, \ldots, x_d) \mapsto (\phi(x_1), \ldots, \phi(x_d)).$$

By Theorem 6.1, $L(H)$ acts faithfully on a finitely generated S-torsion-free module W. Hence, by Corollary 5.6 $G(m^k) \leq H(pS)$ acts faithfully on W. By Theorem 2.2 $G(m^k)$ is linear over some commutative Noetherian local pro-p domain T of characteristic 0 and same Krull dimension as R. By Theorem 2.1 $G(m^k)$ is R-linear. Finally, since the index of $G(m^k)$ in G is finite, G is also R-linear.

References

[1] N. Bourbaki, Lie groups and Lie algebras, Springer-Verlag, 1989.
[2] R. Camina, M du Sautoy, Linearity of $\mathbb{Z}_p[[\ell]]$-perfect groups, preprint.
[3] J. Dixon, M. du Sautoy, A. Mann, Y D. Segal, Analytic pro-p groups, 2nd ed., Cambridge University Press, Cambridge, 1999.
[4] J. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975.
[5] A. Jaikin Zapirain, On linear just infinite pro-p groups, J. Algebra 255 (2002), 392–404.
[6] E. I. Khukhro, *p-Automorphisms of Finite p-groups*, Cambridge University Press, Cambridge, 1998.

[7] M. Lazard, Groupes analytiques *p*-adiques, *Publ. Math. I.H.E.S.* 71(1968), 389–603.

[8] M. Nagata, *Local Rings*, R.E. Krieger Publishing Company, Huntington, New York, 1975.

[9] *New Horizons in pro-*p* Groups*, M. du Sautoy, D. Segal, A. Shalev (editors), Birkhauser 2000.

[10] T. Weigel, The Ado-Iwasawa Theorem, *J. Algebra* 212(1999), 613-625.

[11] O. Zariski, P. Samuel, *Commutative Algebra*, D. van Nostrand Company, Princeton, New Jersey, Toronto, London, 1967.