Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function.

Olga Vasieva*, Sultan Cetiner, Abigail Savage, Gerald G. Schumann, Vivien J Bubb, John P Quinn*

1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K
2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany

* Corresponding author

Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, ovasieva@liverpool.ac.uk; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406

John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, jquinn@liverpool.ac.uk; Tel: (+44) 151 794 5498.

Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders
Abstract

Background

The hominid-specific non-LTR retrotransposon termed SINE VNTR Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. There are about 2700 insertions of the SVAs in human genome that are responsible for gene structural polymorphisms and modulation of gene expression, however functional and evolutionary significance of these insertions is not clear.

Results

Functional enrichment analysis of genes associated with SVA insertions demonstrated their link to multiple ontological categories attributed to brain function and the disorders. Moreover, SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human. The SVA-associated genes were highly cross-linked in functional networks suggesting an accumulative impact of functional alterations potentially caused by SVA insertions. The analysis of functional networks also pointed to a relevance of SVA-associated genes to a hormonal and immune modulation of behaviour and a crosstalk between behaviour and reproduction, that would effects inheritable propagation of SVAs and their accumulation in the genome. The presence of functional positive and negative feedbacks in the SVA-associated functional network is discussed in relation to a role of suggested waves of SVA and potentially other mobile elements propagation in evolution of human cognitive features.

Conclusion

Our analysis suggests a potential role of SVAs in evolution of human CNS and especially emergence of functional trends relevant to social and parental behaviour. It also supports models which explain in part how brain function can be modulated by both the immune and reproductive systems based on the gene expression patterns and gene pathways potentially altered by SVA insertions.
Background

Genetic studies have been successful at determining the changes that alter pathways involved in evolution. Transposable elements (TEs), despite long being thought of as ‘junk’ DNA, have impacted the human genome during its evolution through a variety of mechanisms causing structural variation such as exon disruption, generation of deletions and integration sites, 3’ or 5’ transduction, non-allelic homologous recombination and exonisation (Beck, et al. 2011; Goodier and Kazazian 2008; Muotri, et al. 2007). Furthermore, TE insertions can supply the cell with novel splice sites, polyadenylation signals, promoters and regulatory domains, epigenetic marks and secondary structures that can reorganise gene expression and build new transcription modules which could underpin the process of evolution (Beck, et al. 2011; Hancks, et al. 2009; Hancks and Kazazian 2010; Piriyaapongs, et al. 2007; Quinn and Bubb 2014; Savage, et al. 2013; Savage, et al. 2014) but also cause disease (Kaer and Speek 2013). Estimates have suggested over 1.5 million TEs in the human genome (Cordaux and Batzer 2009). Non-LTR retrotransposons constitute ~34% of the human genome (Beck, et al. 2011), and a subset of these elements have retained the ability to be mobilised within the genome generating new insertions. They have the potential to cause both “de-novo” germline mutations and somatic mutations which are implicated in disease progression, particularly in cancer and the CNS (Erwin, et al. 2014; Reilly, et al. 2013).

More than 10,000 TE insertions occurred in the human genome since human-chimpanzee divergence (Mills, et al. 2006). The large number of such TEs in the genome makes an analysis of their specific contribution to evolution very difficult. However, to address this contribution we have focused on building networks of pathways based on the proximity of genes to the integration sites of the hominoid-specific retrotransposons termed SINE–VNTR–Alu (SVA) elements. SVA elements are the youngest of the retrotransposons, and there are approximately 2700 of these elements in the human genome (Cordaux and Batzer 2009; Savage, et al. 2013; Wang, et al. 2005). They stand out from the group of human non-LTR retrotransposons due to their composite structure. Starting at the 5’-end, a full-length SVA element is composed of a (CCCTCT) hexamer repeat region, an Alu-like region consisting of three antisense Alu fragments adjacent to an additional sequence of unknown origin, at least one variable number of tandem repeats (VNTR) region (Ostertag, et al. 2003), and a short interspersed element of retroviral origin (SINE-R) (Ono 1986). A poly(A) tail is positioned downstream of the predicted conserved polyadenylation signal AATAAA (Ostertag, et al. 2003). Others and we have demonstrated that these SVA domains, in addition to mobilisation, have the properties of transcriptional regulators of gene expression both in vivo and in vitro (Savage, et al. 2013; Savage, et al. 2014; Zabolotneva, et al. 2012), and that a significant number of SVAs are within
10kb of the major transcriptional start site of many genes (Savage, et al. 2013). Therefore, SVA insertions established in the hominoid lineage could be responsible for altering the transcriptome in a developmental, tissue specific or stimulus inducible manner. The relatively low number of SVAs established in the genome allows for a model to determine the gene pathways likely to be affected by the SVA integrations.

SVAs are divided into subtypes A to F and F1, and their age was estimated at 13.56 million years (Myrs) for the oldest subtype (A) and 3.18 Myrs for the youngest subtype (F). Subtype D is by far the largest and encompasses 44% of all SVAs in the human genome. The most recent F1 subtype is the smallest group at 3%. Subtypes E, F and F1 are human-specific and correspond to the period since the human-chimpanzee divergence ~6 million years ago (Mills, et al. 2006). Implication of SVAs in evolution of hominoid lineages leaves no doubts. After the human-chimpanzee divergence, the SVAs continued to expand within the chimpanzee genome creating a subtype unique to chimpanzees called SVA PtA (Wang, et al. 2005). More recently, the family of gibbon-specific LAVA retrotransposons, derived from an SVA subtype A element, has been implicated in the molecular mechanism underpinning genome plasticity of the gibbon lineage (Carbone, et al. 2014). It was reported that LAVA-induced premature transcriptional termination of chromosome segregation genes caused the high rate of chromosomal rearrangements experienced by the gibbon lineage since it diverged from the other apes about 17 Myrs. An analysis of the human and chimpanzee genomes revealed that 46537bp have been deleted from the human genome through the processes of SVA insertion-mediated deletions and SVA recombination associated deletions (Lee, et al. 2012).

In this communication, we focus on the SVAs that are part of the human genome and address the functional relevance of human SVA-associated genes to neurological and cognitive processes to demonstrate SVA insertion and subtype appearance in evolution with the correlation of behavioural traits. Our data also support evidence that SVA insertions can have an impact in normal and pathological brain functioning (Richardson, et al. 2014; Upton, et al. 2015).

Methods

Generation of the list of genes associated with SVA insertions

Genomic coordinates of all SVA loci in the human genome (Hg19 sequence) were extracted from the UCSC genome browser (http://genome.ucsc.edu/index.html). This included many SVA sequences that were fragmented in the Repeat Masker track; therefore this list was manually annotated to generate a list of coordinates of complete SVA sequences resulting in a total of 2676 of these elements encompassing the seven subtypes (Savage, et al. 2013). The coordinates of all known
genes and their transcripts were extracted from the UCSC genome browser, and Galaxy software (http://galaxyproject.org/) was used to generate coordinates of the 10-kb genomic regions flanking all known transcripts. Finally, the SVA loci were intersected with the three lists of genomic coordinates (all known genes, 10kb upstream and 10kb downstream of known genes). Duplicates were removed from each list individually. For functional enrichment analysis, the defined SVA coordinates have been used to produce a shorter list of GRch38 genes directly mapped via Blomart Martview service (www.biomart.org/biomart/martview/).

Ingenuity Pathway Analysis (IPA)

Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Inc.) was used to investigate biological pathways and networks as well as disease functions associated with the data set (Gietzen 2010; IPA 2013; Jiménez-Marín, et al. 2009). The IPA database is composed of comprehensive information on genes and pathway ontologies. The database contains approximately 200 canonical pathways as well as 27 higher-order disease and function categories for ‘Core’ functional enrichment analysis. Right-tailed Fishers Exact statistical tests was used to calculate whether the likelihood of associations between a set of focus genes and a category was due to a random chance. This enabled evaluation of enriched functions in a pathway or higher order ontological categories and provided a hypergeometric distribution based network score and p-Values conveyed as the –log (Fisher’s Exact Test). The tool enabled production of graphical networks that illustrated mapped genes as shadowed objects. Un-shadowed objects were added as connectors within a network, identified by the software. The behavioural categories used by IPA are largely originate from experiments on rodents and may seem as irrelevant to human. However, parallels between mice and human behavioural features are widely used in neurobiology, and we try to provide these parallelisms/explanations of relevance to human were appropriate.

Meta-analysis of gene expression.

‘Genevestigator’ (Grennan 2006; Hruz, et al. 2008; Zimmermann, et al. 2005) software was used to perform a meta-analysis of gene expression in different tissues and areas of the human brain. For each gene/tissue an average level of expression is determined via automated cross-analysis of normalised published Agilent microarray data, filtered for statistically significant values and stored in the Genevestigator database. The highest and lowest detected average expression levels define a 100-unit scale that is used for presentation of each gene/tissue related average expression value.

Results
Relevance of SVA-associated genes for functional categories of the neural system

Having coordinates of SVA insertions in human genome we aimed to identify if there are any functional biases in the associated gene set. We have confined our functional enrichment analysis to those genes, which imbed an SVA insertion. Though without significant enrichment, the top (from 2nd to 6th positions) ranked ‘Canonical pathways’ were uniformly relevant to neuronal functions including: ‘Synaptic Long Term Potentiation’, ‘Synaptic Long Term Depression’, ‘Axonal Guidance Signalling’, ‘Neuropathic Pain Signalling in Dorsal Horn Neurons’ and ‘CREB Signalling in Neurons’ (Table S3A). The gene functions contributing to these canonical pathways were associated with the top five ‘Functions and Diseases’ categories, where ‘Guidance of axons’ and ‘Synaptic processes’ were significantly enriched (Table S3B). The presence of multiple top ranked neural system links was indicative of a potential impact of SVA insertions on neural system function at different stages of human cognitive and behavioural evolution. Moreover, significant enrichment of genes in a particular pathway or functional category could mean evolutionary functional stratification of the SVA insertions via positive selection of the relevant phenotypes. The results of our analysis overall do not suggest that neural system was the main target of SVA attack, as the significant enrichment was observed only for two relevant functional categories. However, it was still interesting to see if we could uncover any specific functional trends of potential SVA impact on human cognitive function.

Analysis of the functional enrichment of SVA-associated genes with neuronal functions.

To focus on potential significance of SVA insertions in function and evolution of neural system only genes representing relevant to CNS categories (‘Behaviour’, ‘Nervous System Development & Function’, ‘Neurological Diseases’ and ‘Psychological Diseases’) were selected (Tables S1 and S2) and ontologically classified by means of IPA (Table S4). The analysis of their biological functions showed a significant enrichment in categories of ‘Morphology of nervous system’ (-log(p-value)=17.9) (forebrain, and telencephalon, particularly), ‘Development of central neural system’ (-log(p-value)=16.3) (forebrain, and telencephalon, particularly), ‘Formation of cellular protrusions’ (-log(p-value)=12.2) and multiple categories relevant to axon growth and synaptic processes (-log(p-value)>5). From all the mapped Behavioural categories, ‘Learning’ and ‘Social behaviour’ were the most enriched (-log(p-value)>4.6) (Table S4), and ‘Nest building behaviour’, ‘Nursing’, ‘Sexual behaviour’, ‘Sexual receptivity of female organism’, ‘Grooming’, ‘Emotional behaviour’, ‘Aggressive behaviour’, ‘Vocalisation’ and ‘Walking’ significantly enriched in the SVA B and/or SVA D associated sets of genes. ‘Social behaviour’ was the only significantly enriched category attributed to the gene sets associated with the youngest, F and F1 SVAs. Many
categories across the sets were mapped by one or two genes (Table S5) and were not considered as significant. All the defined behavioural categories were presented against the timeline of occurrence of insertions of the different SVA subtypes in the human genome as shown on Figure 1.

![Behavioural categories attributed to genes associated with SVAs at different time points during evolution.](image)

Fig.1. Behavioural categories attributed to genes associated with SVAs at different time points during evolution.

Our results suggest a functional relevance of SVA-mediated modification of individual genes, which could be attributed to the evolutionary behavioural changes. Some categories used by IPA (such as nest building) and consequently, functional meaning of potential modification of gene activity due to SVA insertion may be not obvious at first glance. Nevertheless, without going through all the genes in this list, we have outlined below using few examples how SVAs could be involved in evolution. It can be seen that the gene ATG7 (Autophagy related 7 homolog), that contains an SVA F1 insertion, is associated in the database with the ‘Walking’ functional category (Table S5), supporting the hypothesis that younger SVA subtypes could affect the particular locomotor patterns of pre-modern human favouring emergence of the new characteristics. The walking-category-associated group of genes (AGTPBP1 (ATP/GTP binding protein 1), CACNB4 (Calcium channel, voltage-dependent, B4 subunit), FXN (Frataxin), SCN8A (Sodium channel, voltage gated, type VIII alpha subunit) also contain SVA D insertions (Table S5) which potentially reflects their involvement in
development of erect walking, characteristic of a chimpanzee-hominid phylogenetic branch (Figure 1). Conversely, the functions of climbing activity-associated genes KCNJ6 (Potassium inwardly-rectifying channel, J6) and HTT (Huntingtin) could be modulated or suppressed by SVA A and B insertions very early in hominoid evolution (Table S5). Alteration of the functionality of these genes overall could have had a strong impact on changing from climbing to the walking moving mode. Mother preference associated gene OMP (Olfactory marker protein) was present in the SVA F subtype group as were the nursing and feeding associated genes ACOT11 (Acyl-CoA thioesterase) and MKL1 (Megakaryoblastic leukaemia (translocation) (Table S5). These latter genes may be proposed for a role in the progression of maternal behaviour and neotenic features in human evolution (Figure 1). Behavioural characteristics encoded by genes containing younger SVA elements are generally of a more executive nature (Table S5): for instance, CREB1 (cAMP responsive element binding protein 1), associated with an SVA E insertion, is involved in both vertical and spatial learning and place preference, while PSEN1 (Presenilin-1) is associated with an SVA F element and plays a role in social order recognition, memory and social behaviour.

Several genes in our list are associated with multiple categories, e.g. the genes HTT (SVA B subtype group) or BRCA1 (Breast cancer type 1 susceptibility protein) (SVA F subtype group) could have been especially significant at particular evolutionary stages whilst having largely pleiotropic effects (Figure 2). Related functional networks enriched in genes with SVA insertions and belonging to neuronal/behavioural categories (Figure 2A, B) showed that genes harbouring different SVA subtypes interact and the changes in gene expression caused by SVA insertions may be synergistic with an accumulative or compensatory impact on particular phenotypes. Interestingly, 13 functions have been found to be associated with multiple different (at least 3) SVA subtypes (Table 1), from which six genes occurred to be connected in one functional network (Figure 3). The network connectivity of this gene set (Figure 3) demonstrates direct links from the genes BCYRN1 and MAP4 to X-chromosome fragility susceptibility gene FMR1, and functional association with the PGR (Progesterone receptor) and ZNF640 (Zink finger 640) via mir-548 family of regulatory RNAs. Interestingly, 24 additional genes attributed to X-linked mental retardation were present in our SVA-associated data set (Table 2). Categories relevant to X-linked mental retardation were significantly enriched in several gene sets (Figure 4); it was also shown for ‘Seizure’, ‘Movement’ and ‘Mood’, Alzheimer, Parkinson CNS disorders and Schizophrenia in association with different SVA types (Figure 4).
Table 1. Genes associated with 3 and more SVA insertions. The presence of a particular SVA type in a gene or in 10kb gene proximity is indicated by ‘+’.

Gene	Function	A	B	C	D	E	F	F1
BCYRN1	Brain cytoplasmic RNA 1	+	+	+				
DLEC1	Deleted in lung and esophageal cancer 1		+	+				
EIF4G3	Eukaryotic translation initiation factor 4 gamma, 3		+	+				
TAF1	TAF1 RNA polymerase II, (TBP)-associated factor				+	+		
SIMC1	SUMO-interacting motifs containing 1		+	+				
CCDC109B	Coiled-coil domain containing 109B		+	+				
WDR70	WD repeat domain 70	+	+	+				
DSYT1	Dystonin		+	+				
UBR1	Ubiquitin protein ligase E3 component n-recognition 1					+	+	
KDM4C	Lysine (K)-specific demethylase 4C		+	+				
MAP4	Microtubule-associated protein 4		+	+				
mir-548	MicroRNA 548c		+	+				
PTPN9	Protein tyrosine phosphatase, non-receptor type 9		+	+				

Fig.2. Functional networks reconstructed from SVA-associated genes classified in neuronal and behavioural categories. The initial networks reconstructed by IPA from uploaded dataset (coloured blocks) have been refined by deletion of automatically added low-connected nodes. Fx-labels correspond to gene-attributed functions and diseases. Solid lines reflect experimentally validated functional interactions, and dashed lines indicate protein binding. A) A network of genes...
associated with HTT (Huntingtin), who’s connections are highlighted in blue. The colour intensities of blocks correspond to different SVA-subtypes increasing in the order: B, C, D, F1. Presence of multiple SVA subtypes is indicated in associated textboxes. The majority of interacting genes has intragenic SVA insertions; presence of upstream or downstream insertions is indicated by blue lettering.

B) A top-ranked network with assigned relevance to DNA recombination and repair associated with BRCA1 (Breast cancer associated 1), who’s connections are highlighted in blue. The colour intensities of blocks correspond to types of intragenic SVA insertions increasing in the order: B, D, F. Blue lettering indicates the genes associated with neuronal and behavioural categories. ACOT11-Acyl-CoA thioesterase 11, CDK5RAP2-CDK5 regulatory subunit associated protein 2, DIXDC1-DIX domain containing 1, E2F-Elongation factor 2, ESR1-Estrogen receptor1, FANCA-Fanconi anemia protein A, FANCD2-Fanconi anemia protein D2, HdaC-Histone deacetylase, MSH2-MutS homolog 2, NPM1-Nucleophosmin, POLA1-Polymerase (DNA directed), alpha 1, catalytic subunit, RBL1-Retinoblastoma-like 1, VPS35-Vacuolar protein sorting 35 homolog.
Fig. 3. A network reconstructed from genes (red objects) with three and more different intragenic SVA insertions. Associated genes containing less than three SVA insertions are presented in pink and linking genes - in white. X-chromosome fragility gene FMR1 and the KRAB-family ZNF680 are highlighted in blue and green, respectively. Linked text labels (connected by orange lines) correspond to gene-attributed functions and diseases. Solid lines reflect experimentally validated functional interactions and dashed lines correspond to protein binding. Shortest paths from SVA-associated genes to FMR1 are highlighted in blue. BCYRN1 - Brain cytoplasmic RNA 1, lncRNA, TAF1 - TATA box binding protein, DLEC1 - Deleted in lung and oesophageal cancer 1, EIF4G3 - Eukaryotic translation initiation factor 4 gamma, Map4 - Microtubule-associated protein, mir-548 - micro RNA.
Fig. 4. Link of genes associated with SVA insertions to neural and psychiatric diseases. Colours correspond to particular types of SVA (columns) in genes from certain disease categories (rows). A significant enrichment (p-value<0.05) of the neuronal/behavioural gene dataset in the a category is highlighted in blue, light blue corresponds to a higher (p<0.01) significance of the functional enrichment.

Meta-analysis of anatomical relevance of SVA-associated behavioural gene expression.

The forebrain and hindbrain were confirmed to be the sites of high expression of the majority of the genes attributed to behavioural phenotypes. High expression levels of the majority of genes associated with all 7 SVA subtypes were also found outside of the CNS. Potential positive selection of SVA-associated genes could be attributed among other factors to their direct effect on an organism’s reproduction. Nearly all genes associated with members of the SVA A and B subtypes were highly expressed in placental chorion. All genes were expressed in testis at above average levels. A number of the behavioural SVA-associated genes exhibited in oocytes the highest expression levels (TIMD4, OXT, KALRN, MKL1, ATG7, cyp7B1) with noticed enrichment of such genes in SVA F1 and SVA F associated. Some genes whose expression results in a validated, strong ‘neural’ phenotype, such as GABBR2 (SVA A) and CREB1 (SVA E), are also highly expressed in oocytes. Interestingly, the germline cells are reported to be sites of increased mobilisation of endogenous retrotransposons in general (Levin and Moran 2011), and attribution of SVAs to genes expressed in these tissue might therefore...
be relevant to the SVA inheritable propagation. Analysis of attribution of the gene set with neuronal and behavioural functions in phenotypic reproductive categories (IPA analysis) also highlighted their link to: spermatogenesis (sperm motility (ADCY10), atrophy of testis and seminiferous tubules (HTT), in particular), infertility in both genders (STAR, ABCA1, MKKS, NPEPPS), maturation (LFNG) and fertilisation (CLIC4) of oocytes. Several genes, such as Cyp19A1, ESR1, ABL2, CREB1, NPEPPS and SHANK1 also have an association in the IPA knowledgebase with behavioural aspects of reproduction: sexual receptivity of female organism, mating behaviour, intromission, mounting and pup retrieval.

High expression levels of the SVA-associated genes, in particular of those with the youngest SVA subtypes (APL2, OMP, PSEN1, and ATG7, for instance) and few with older subtipes (Hpp) were also observed in the immune system. This was of interest given the current attention to the immune–CNS axis and how interactions between the immune system and CNS may not only regulate normal physiology but are also be associated with mental health issues. HTT was the only gene of the gene group associated with SVA A or SVA B elements that was strongly expressed in cells of the immune system.

Discussion

Retrotransposons have been suggested to be major drivers of genome evolution, both through structural variations such as insertional mutagenesis and modulation of the transcriptome. For the latter, retrotransposons are a source of regulatory elements providing promoters (sense and antisense), binding sites for transcription factors and polyadenylation signals that could affect gene expression (Rebollo, et al. 2012). SVAs can also induce an alternative splicing and exon skipping which can result in the generation of alternative transcripts of a gene as documented by disease causing insertions (Hancks and Kazazian 2012; Kaer and Speek 2013; Nakamura, et al. 2015). Furthermore, the SVA encoded SINE-R module contains human endogenous retrovirus HERV-K10 LTR sequences that are suggestively involved in the regulation of gene expression (Fairbanks, et al. 2012; Xing, et al. 2006); and at least in case of SVA D, they indeed supported reporter gene expression in vivo and in vitro (Savage, et al. 2013; Savage, et al. 2014). Thus, SVA insertions may generate new interactions between what would otherwise be distinct pathways (Quinn and Bubb 2014).

SVAs share many DNA sequence homologies across subtypes and, as a result, could respond to related or similar stimuli giving a concerted gene response to the environment or challenge. We have therefore focused on pathways involved in CNS function and predicted to be modulated by
human genes encompassing or adjacent to SVA insertions. Our data has established that more primitive behavioural characteristics are prominent in the genes associated with the older SVA subtypes A, B and C. Results revealed a striking correlation between the timing of SVA insertions and functional significance of these associated genes at particular stages of hominoid evolution. For example, genes associated with SVA A and B insertions (which expanded contemporary to the divergence of the orang-utan and the great apes (Wang, et al. 2005)), influence climbing ability. In contrast, genes containing SVA F insertions (which expanded after the human and chimpanzee divergence(Wang, et al. 2005)) were found to affect more advanced motor skills such as walking (Figure 1). Similarly, the analysis revealed that complex behavioural characteristics (such as discriminatory learning, sexual, social and especially maternity care) correlated with the more recent SVA insertions (Figure 1). Meta-analysis of gene expression data revealed that genes associated with older SVA insertions are more strongly expressed in structures of the brain that evolved earlier, such as the pyramidal regions. It is also noteworthy that SVA F and F1 insertions were strongly associated with genes involved in the immune system which is considered a major modulator of CNS function, and in neuropsychiatric disorders such as autism, schizophrenia and depression [TC Network (2015)]. Interestingly, increased brain size in mammals was also shown to be also associated with size variations in immune system-involved gene families (Castillo-Morales, et al. 2014). Late age-related phenotypes of SVA insertions could also play a role in reduction of the reproductive age and general neotenisation of the human population.

SVA insertions could also have an influence on human gender-specific brain function via sensing hormonal backgrounds. The BRCA1 gene (Figure 2B), which is associated with an SVA F insertion, was shown to be in a functional cross talk with the oestrogen receptor ESR1 (Gorrini, et al. 2014; Kang, et al. 2012). It is also known to have a strong role in a control of brain size (Pao, et al. 2014; Pulvers and Huttner 2009), especially in regions responsible for learning, memory, muscle control and balance. Interestingly, progesterone-dependent transcription factor, PGR, which binding sites were shown to be enriched in ancient mammalian TEs (Lynch, et al. 2015), was also associated with a network of genes with multiple intragenic SVA insertions (Figure 3).

There is an intriguing correlation in expression of many SVA-associated genes in brain and testis, and a very strong expression of some of these genes with behavioural phenotypes in oocytes. It may be relevant to regulation of the genes via putative alternative promoters (PAPs)(Kimura, et al. 2006) especially enriched in those tissues and potentially associated with SVA elements. Moderate expression of the majority of behavioural- SVA-associated genes in male germ cells (in contrast to only few, though strongly, expressed in oocyte) could make this cell type a particular source of
mobilized SVAs and also a place for their inheritable trans-mobilisation. It would be supported by a strong expression in this niche (as well as in an early embryo) of retroviruses and L1 retrotransposons as the required providers of the reverse transcriptase (Han, et al. 2004; Levin and Moran 2011; Zamudio and Bourc’his 2010). The observed correlation means that certain behavioural trends caused by SVA insertions could be genetically linked to a higher rate of an inheritable SVA trans-mobilisation. Being subjected to positive or negative selection at particular stages of hominoid evolution those behavioural trends therefore could be associated with waves of inheritable SVA propagation in the genome. Such activated trans-mobilisation of SVAs in its turn could lead to increased genome instability and chromosome fragility affecting also the rates of somatically-driven CNS disorders. It would finally suppress a positive selection of genotypes favouring such inheritable trends. The presence of the hypothesised feedbacks is supported by a number of our observations. DNA recombination and repair were amongst the top categories in functional groupings enrichment analysis of all SVA associated functions (Figure 2B, Table S3), and X-fragility-relevant genes populated the list of behavioural SVA-associated ones (Figure 3, Table 2), which may reflect on the mechanisms of how SVAs can affect their propagating properties. This is also consistent with reported genome instability caused by mobile elements (Kim and Hahn 2011).

Genes associated with both neuronal and reproductive phenotypes as well as with SVA trans-mobilisation properties (for instance, BRCA1 or the KRAB proteins (ZNF680 & ZNF91/93) (Jacobs, et al. 2014; Thomas and Schneider 2011) could be in the first line of the SVA-driven evolutionary changes in the hominoid lineage (Figure 4). The network reconstructed from those genes, that are especially enriched in SVA insertions (Figure 3), highlights interacting negative (KRABs, miRNAs) and positive (BCYRN1, miRNA) pathways, which could be extended to gene silencing and RNA interference by the piwiRNA pathway (Figure 5) (Bao and Yan 2012; Kapusta, et al. 2013; Zamudio and Bourc’his 2010) in regulation of SVA propagation.

SVAs are present in genes, which have been linked to different psychiatric conditions ranging from intellectual disability (mental retardation) to epilepsy and bipolar disorder (Figure 4). Human specific SVA insertions are known to be polymorphic for their presence or absence (Bennett, et al. 2004), and with continued retrotransposition there are likely to be many private insertions within a population. The polymorphic nature of SVA elements is also exhibited in terms of the number of repeats within their central VNTR region and hexamer domains (Savage, et al. 2013). VNTRs, as individual elements, are associated with the differential expression of genes involved in human behaviour such as those found with the genes encoding monoamine oxidase A, serotonin and dopamine transporters (Hill, et al. 2013; Lovejoy, et al. 2003; Michelhaugh, et al. 2001) and constitute risk factors for a variety of behavioural disorders and psychiatric diseases dependent on
the copy number of the repeat present (Savage, et al. 2013) (Ali, et al. 2010; Breen, et al. 2008; Galindo, et al. 2011; Hill, et al. 2013; Klenova, et al. 2004; Paredes, et al. 2012; Pickles, et al. 2013; Roberts, et al. 2007; Vasiliou, et al. 2012). Furthermore, the VNTR domain plays a major role in the trans-mobilisation of SVA elements by the L1-encoded protein machinery (Han, et al. 2004; Hancks and Kazazian 2010; Raiz, et al. 2012).

Fig.5. Schematic presentation of regulatory and evolutionary functional interactions involved in SVA trans-mobilisation. Bold arrows correspond to inhibitory (blue) or activatory (red) effects. Functions targeted by SVA insertions are highlighted in purple. RT-reverse transcriptase, Rb-Retinoblastoma protein, HDAC-histone deacetylase, piRNA-piwiRNA, APOBEC-Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like. Regulators of L1 expression are not shown.

Conclusions

Our systems analysis suggests an impact of SVA retrotransposition on evolution and performance of human cognitive functions. It has revealed that insertions of members of the older SVA subtypes A-C occurred in genes involved in more primitive characteristics whereas younger SVA D-F1 insertions were present in genes linked to more sophisticated human-specific traits. SVA
insertions were also found to be enriched in genes involved in networks and pathways relevant to neuronal function and CNS disorders. The presence of SVAs in multiple genes within a network may allow for a concerted response to an environmental stimulus modulated by factors targeting SVA regulatory sequences. Potential positive feedbacks in functional interactions of genes with inserted SVAS would have a larger impact on phenotype compared to if only a single gene within a pathway contained an SVA insertion. Negative feedbacks in these functional networks and co-evolution of factors that limit SVA propagation, from the other side, would play a genome-stabilising role. Taking in consideration genetic polymorphisms in human population associated with SVA insertions and documented somatic mobility of the youngest SVAs in human brain and germ tissues, one can suggest that SVAs also have a strong modulatory impact on recent human behavioural trends and human susceptibilities to psychiatric disorders.

Availability of Data and Materials.

Table S2 presents Gene Bank IDs for all the genes mentioned in the paper. Genomic coordinates of all SVA loci in the human genome (Hg19 sequence) were extracted from the UCSC genome browser (http://genome.ucsc.edu/index.html) (Please see Methods for the details).

List of abbreviations

CNS- Central Nervous System. IPA-Ingenuity software. All Gene abbreviations are explained in Table S2.

Competing interests

There are no any competing interests regarding this manuscript.

Authors’ contributions

OV conceived of the study, designed and coordinated the systems analysis, and drafted the manuscript. SC took part in the analysis and drafting of the manuscript, AS has performed the retrieval of SVA–associated gene sets and helped to draft the manuscript, GS participated in data analysis and helped in drafting the manuscript, VB participated in retrieval of SVA-associated gene sets and helped in drafting the manuscript, JQ conceived of the study, coordinated SVA-associated gene set retrieval and took part in drafting the manuscript. All authors read and approved the final manuscript.

Acknowledgements.
We would like to express our gratitude to Dr. Nathan Jeffery (University of Liverpool) for his very useful comments on evolutionary relevance of the discussed behavioural functions.

Supplementary material (attached below)

Table S1 (Genes associated with SVAs classified to 4 categories relevant to neural system function) and Table S2 (SVA-associated genes with neuronal function and their SVA insertion locations (Upstr.-within 10kb upstream, Downst.-within 10Kb downstream a gene). The tables provide the lists of SVA-associated genes, Gene Bank IDs and information on a particular type of a gene-associated SVA.

Table S3. Enrichment of SVA-associated gene functions in IPA knowledge base categories. Functional groups directly attributed to neuronal function are highlighted. A. Canonical pathways. B. Diseases and Functions.

Table S4. Link of SVA-associated genes to neural system related ontological categories. Shading represents an association between genes with particular types of SVAs (columns) with certain categories (rows). An enrichment in a category with (-log(p-value)>2.9) is highlighted in purple and (-log(p-value)> 4.6), in blue.

Table S5. Genes grouped by their associated behavioural categories and the SVA-types (a (SVA_A)-g(SVA_F1)).

References:

Ali FR, et al. 2010. Combinatorial interaction between two human serotonin transporter gene variable number tandem repeats and their regulation by CTCF. J Neurochem 112: 296-306.

Bao J, Yan W 2012. Male germline control of transposable elements. Biology of reproduction 86: 162.

Beck CR, Garcia-Perez JL, Badge RM, Moran JV 2011. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12: 187-215.

Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE 2004. Natural genetic variation caused by transposable elements in humans. Genetics 168: 933-951.

Breen G, Collier D, Craig I, Quinn J 2008. Variable number tandem repeats as agents of functional regulation in the genome. IEEE Eng Med Biol Mag 27: 103-104.

Carbone L, et al. 2014. Gibbon genome and the fast karyotype evolution of small apes. Nature 513: 195-201.
Castillo-Morales A, Monzon-Sandoval J, Urrutia AO, Gutierrez H 2014. Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions. Proc Biol Sci 281: 20132428.

Cordaux R, Batzer MA 2009. The impact of retrotransposons on human genome evolution. Nat Rev Genet 10: 691-703.

Erwin JA, Marchetto MC, Gage FH 2014. Mobile DNA elements in the generation of diversity and complexity in the brain. Nature Reviews Neuroscience 15: 497-506.

Fairbanks DJ, Fairbanks AD, Ogden TH, Parker GJ, Maughan PJ 2012. NANOGP8: evolution of a human-specific retro-oncogene. G3 (Bethesda) 2: 1447-1457.

Galindo CL, et al. 2011. A long AAAG repeat allele in the 5’ UTR of the ERR-gamma gene is correlated with breast cancer predisposition and drives promoter activity in MCF-7 breast cancer cells. Breast Cancer Res Treat 130: 41-48.

Ingenuity Pathways Analysis (IPA) [Internet]. 2010 [cited 2013. Available from: http://www.usc.edu/hsc/nml/assets/bioinfo/IPA/Data%20Analysis%20training%20Handouts.pdf (Accessed May, 2013)

Goodier JL, Kazazian HH, Jr. 2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135: 23-35.

Gorrini C, et al. 2014. Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway. Proceedings of the National Academy of Sciences of the United States of America 111: 4472-4477.

Grennan AK 2006. Genevestigator. Facilitating web-based gene-expression analysis. Plant physiology 141: 1164-1166.

Han JS, Szak ST, Boeke JD 2004. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429: 268-274.

Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH, Jr. 2009. Exon-trapping mediated by the human retrotransposon SVA. Genome Res 19: 1983-1991.

Hancks DC, Kazazian HH, Jr. 2012. Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22: 191-203.

Hancks DC, Kazazian HH, Jr. 2010. SVA retrotransposons: Evolution and genetic instability. Semin Cancer Biol 20: 234-245.

Hill J, Breen G, Quinn J, Tibu F, Sharp H, Pickles A 2013. Evidence for interplay between genes and maternal stress in utero: monoamine oxidase A polymorphism moderates effects of life events during pregnancy on infant negative emotionality at 5 weeks. Genes Brain Behav 12: 388-396.

Hruz T, et al. 2008. Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics. 2008: 420747.

Jacobs FM, et al. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature. 516: 242–245.
Jiménez-Marín Á, Collado-Romero M, Ramirez-Boo M, Arce C, Garrido J editors 2009. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC proceedings. 3 (Suppl 4): S6.

Kaer K, Speek M 2013. Retroelements in human disease. Gene 518: 231-241.

Kang HI, Yi YW, Kim HJ, Hong YB, Seong YS, Bae I 2012. BRCA1 negatively regulates IGF-1 expression through an estrogen-responsive element-like site. Cell Death & Disease 3: e336.

Kapusta A, et al. 2013. Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs. Plos Genetics 9: e1003470.

Kim DS, Hahn Y 2011. Identification of human-specific transcript variants induced by DNA insertions in the human genome. Bioinformatics 27: 14-21.

Kimura K, et al. 2006. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome research 16: 55-65.

Klenova E, et al. 2004. YB-1 and CTCF differentially regulate the 5-HTT polymorphic intron 2 enhancer which predisposes to a variety of neurological disorders. J Neurosci 24: 5966-5973.

Lee J, Ha J, Son SY, Han K 2012. Human Genomic Deletions Generated by SVA-Associated Events. Comp Funct Genomics 2012: 807270.

Levin HL, Moran JV 2011. Dynamic interactions between transposable elements and their hosts. Nature Reviews Genetics 12: 615-627.

Lovejoy EA, Scott AC, Fiskerstrand CE, Bubb VJ, Quinn JP 2003. The serotonin transporter intronic VNTR enhancer correlated with a predisposition to affective disorders has distinct regulatory elements within the domain based on the primary DNA sequence of the repeat unit. Eur J Neurosci 17: 417-420.

Lynch VJ, et al. 2015. Ancient Transposable Elements Transformed the Uterine Regulatory Landscape and Transcriptome during the Evolution of Mammalian Pregnancy. Cell Reports 10: 551-561.

Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP 2001. The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 79: 1033-1038.

Mills RE, et al. 2006. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 78: 671-679.

Muotri AR, Marchetto MC, Coufal NG, Gage FH 2007. The necessary junk: new functions for transposable elements. Hum Mol Genet 16 Spec No. 2: R159-167.

Nakamura Y, et al. 2015. SVA retrotransposition in exon 6 of the coagulation factor IX gene causing severe hemophilia B. Int J Hematol. 102: 134-139.

O'Dushlaine C, Rossin L, Lee P, Durk d 2015. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 18: 199-209.

Ono M 1986. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes. J Virol 58: 937-944.
Ostertag EM, Goodier JL, Zhang Y, Kazazian HH, Jr. 2003. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73: 1444-1451.

Pao GM, et al. 2014. Role of BRCA1 in brain development. Proceedings of the National Academy of Sciences of the United States of America 111: E1240-E1248.

Paredes UM, Bubb VJ, Haddley K, Macho GA, Quinn JP 2012. Intronic tandem repeat in the serotonin transporter gene in Old World monkeys: a new transcriptional regulator? J Mol Neurosci 47: 401-407.

Pickles A, et al. 2013. Evidence for interplay between genes and parenting on infant temperament in the first year of life: monoamine oxidase A polymorphism moderates effects of maternal sensitivity on infant anger proneness. J Child Psychol Psychiatry 54: 1308-1317.

Piriyapongsa J, Rutledge MT, Patel S, Borodovsky M, Jordan IK 2007. Evaluating the protein coding potential of exonized transposable element sequences. Biol Direct 2: 31.

Pulvers JN, Huttner WB 2009. Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Development 136: 1859-1868.

Quinn JP, Bubb VJ 2014. SVA retrotransposons as modulators of gene expression. Mob Genet Elements 4: e32102.

Raiz J, et al. 2012. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40: 1666-1683.

Rebollo R, et al. 2012. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol 13: R89.

Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH 2013. The role of transposable elements in health and diseases of the central nervous system. The Journal of Neuroscience 33: 17577-17586.

Richardson SR, Morell S, Faulkner GJ 2014. L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48: 1-27.

Roberts J, et al. 2007. Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. J Neurosci 27: 2793-2801.

Savage AL, Bubb VJ, Breen G, Quinn JP 2013. Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns. BMC Evol Biol 13: 101.

Savage AL, et al. JP 2014. An evaluation of a SVA retrotransposon in the FUS promoter as a transcriptional regulator and its association to ALS. PLoS ONE 9: e90833.

Thomas JH, Schneider S 2011. Coevolution of retroelements and tandem zinc finger genes. Genome Res 21: 1800-1812.

Upton KR, et al. 2015. Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161: 228-239.
Vasiliou SA, et al. 2012. The SLC6A4 VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine in vitro. Addict Biol 17: 156-170.

Wang H, et al. 2005. SVA elements: A hominid-specific retroposon family. Journal of Molecular Biology 354: 994-1007.

Xing J, et al. 2006. Emergence of primate genes by retrotransposon-mediated sequence transduction. Proc Natl Acad Sci U S A 103: 17608-17613.

Zabolotneva AA, et al. 2012. Transcriptional regulation of human-specific SVAF(1) retrotransposons by cis-regulatory MAST2 sequences. Gene 505: 128-136.

Zamudio N, Bourc'his D 2010. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap&quest. Heredity 105: 92-104.

Zimmermann P, Hennig L, Gruissem W 2005. Gene-expression analysis and network discovery using Genevestigator. Trends in plant science 10: 407-409.

Supplementary materials:

Table 1. Genes associated with SVAs classified to 4 categories relevant to neural system function.

SVA_A	SVA_B	SVA_C	SVA_D	SVA_E	SVA_F	SVA_F1
BEHAVIOUR						
GABBR2	KCNJ6, PLCB4	CLCN3, HDAC4, HTT, MAPK1, RCAM, NRXN1, OXT, SEC24D, TACR3, TMD4, UBR1, USF1	ABCA1, ABHD12, ATOF2, FGF12, LRRK2, MKKS, NPEPPS, SLC16A2	ABL2, AGTPBP1, ATP7A, ATP8A2, CAONB4, CNTNAP2, CYP19A1, ESR1, F2RL1, FTO, FXN, GABRA2, GABRG3, GFRalpha2, GNAQ, GPHN, IL1RN, LEPR, LPPAP1, MOS, MTO, NFATC3, NIPBL, NRXN1, OCLN, PARK7, PBX3, PRKG1, SCN8A, SHANK2, SYTL4, TRPV1, UBR1, VAMP7, VEZT	CREB1, OPN1, UBR1	APLP2, KALRN, LEF1, MYH10, OMP, PARK2, PDE11A, PSEN1

| NERVOUS SYSTEM DEVELOPMENT & FUNCTION |
| ADCY10, AKAP9, CASP6, GABBR2, KCNJ6, PHB, PLCB4, SMO, TRA, ULK4, UNC13B | ARHGAP5, CLCN3, CNTN4, DCLK1, DSTD, FXB1, GRD1, HDAC2, HDAC4, HTT, MAPK1, MYO5A, NCO1, NR1H2, NRCAM, NRXN1, OXT, | ALPL, APBB2, ATOF2, HEY2, HYOU1, LAMA2, LRRK2, MKKS, PARG, PTNP9, RORA, S1L1, STAR | ABL2, ADAM19, AGTPBP1, AIH1, ALOX5, ANK2, ARHGAP35, ASPA, ATP7A, ATP8A2, ATRX, ATXN2, BRAF, C2CD3, CABC4, CAMK1D, CNTNAP2, CRB1, CYP19A1, DDIT3, DIXDC1, EIP283, EIF4G3, ELMO1, ERBB2IP, ESRI, F2RL1, FAIM2, FER, FG4D, FTO, FXN, GFRalpha2, GNAQ, GPHN, IL1RAPL1, IL1RN, JARID2, KIF15, LEPR, LILRB3, LRPA4, LRPA5, LRPAP1, MOS, MTO, MYH9, NCO1, NFATC3, NIPBL, NRXN1, NRXN2, OCLN, | ADIPOQ, ANX2A, ATP2C1, CYP8B, CLIC4, CREB1, D1, LFING, OPN1, UBR1, VAV2 | APAF1, APLP2, BRCA1, CLIC4, EIF2B4, ERBB3, FSTL1, KALRN, LEF1, LRP2, LRRPC4, MYH10, NPM1, OMP, | ATG7, CDK5RAP2, CYP7B1, HTR1E, PTNP9, SV2C |
PAR03, PDSSB, PRPH2, RPRGRI1L, SMAD2, TACR3, TRPM6, UBR1, UBR2, UTRN	PARK7, PBX3, PCMT1, PDGFRα, PDSSB, PEX5, POR, PRKG1, PTPN8, RBL1, RGS11, RPRGRI1L, SCN8A, SHANK2, SIL1, SLC17A5, SNTB2, SPTBN1, SYN2E, SYLT4, TACC2, TNNM4, TRPV1, TRPV3, UBE4B, UBR1, ULX1, ULK4, UTRN, VAMP7, VEGT, YWHAe	PARK2, PDE11A, PPARD, PSEN1, RBL1, ROBO2, TNNM4, ZEB1
NEUROLOGICAL DISEASE	**PSYCHOLOGICAL DISEASE**	
AARSS2, ARL13B, BB9, CASP6, CLN6, DYX1C1, FA1, GABRB2, KCNJ6, MKS1, PHB, PLCB4, REEP1, RTTN, SMO, TAF1, TRA, ULK4, UNC13B	ACSL4, CACNA2D4, CCM2, CLCN3, DCT, FAF1, GRID1, HDAC4, HDAC8, HLA-DRB1, HTT, IGBP1, IGBP1, NR1H2, NRCAM, NRXN1, OX1, PAR3, PARP1, PSD5B, PRPH2, PTPRD, RPRGRI1L, SMAD2, TACR3, TRPM6, UBR1, YARS, ZDHHC15	AECA1, ABHD12, APBB2, ARNT, ATF2, CFLAR, DNAJC1, DISF, FGFR2, HYOU1, KDM6a, LAMA2, LOC440040, LPI1, LRK2, MEF2, MKKS, PARG, PIGL, PNKD, PTPN9, RAB7A, RORA, SIL1, SLC16A2, SLC25A12, STAR, TFAP2B, VAMP1, WDR62
ADAM19, ADORA3, AHI1, AIP, ALOX5, ANKRDI1, ARHGAP35, ASPA, ATP7A, ATRX, ATXN2, BB5S, BFAF, BRWD3, C9, CACNB4, CAMTA1, CASK, CFB, CNTNAP2, CPA6, CRB1, CYP19A1, DDIT3, EIF2B3, ELMO1, ESR1, F2RL1, FGD4, FUS, FXN, GABRA, GABRG3, GFRA2, GLRA3, GNAQ, GOLPH3, GPR98, IL1RAPL1, IL1RN, LEPR, LRP4, LRPAP1, MSH2, MTO, MYH9, NRXN1, OCLN, OTOGL, PK7, PCTM1, PDE4D, PDGFRα, PDSSB, PEX5, PHF8P1G, VNPT1PQ, PTPN8, PUS1, RAB7A, RBL1, RMND1, RPRGRI1L, SCN8A, SIL1, SNTB2, SPRN, SPTBN1, SYLT4, TAF1, TAOK1, TENM4, TROBP, TRPV1, UBE4B, UBR1, ULK4, VAMP7, VPS35, XK, YWHAe, ZDHHC9	ADIPOQ, ANXK2, AQP2C1, BRAT1, CASP8, CREB1, DHT, HMBOX1, HUWE1, MYOB1, NBAS, OPHN1, PDE9A, PDDX2P, RNF135, SNX2, UBR1, VAV2	ALDH7A1, APAF1, APLP2, BRCA1, CECR2, CTSS, E1F2B4, ERBB3, IFT140, KDM6a, LRP2, MS4A1, NEU1, ORC6, PARK2, PCS5K, PPARD, PSEN1, RANBP2, SERAC1, SLC30A10, SPTLC1, TMC1, VAPB, VPS35
PSYCHOLOGICAL DISEASE		ACOT11, ATG7, CDK5, CKP7B1, POLA1, PTPN9, RADS4L, SLMAP, SV2C
GABRB2, ULK4		
Table S2. SVA-associated genes with neuronal function and their SVA insertion locations
(Upstr.-within 10kb upstream, Downst.-within 10Kb downstream a gene).

Symbol	Gene Entrez Gene Name	Gene SVA-insertion location	Protein location	Molecular function	Entrez Gene ID for Human	Entrez Gene ID for Mouse					
	Vesicle-Associated Membrane Protein 1 (Synaptobrevin 1)	--	VAMP1	Vesicle membrane	other	6843	22317				
	Fus fused in sarcoma RNA binding protein	--	FUS	Cytoplasm	other	2521	233908				
	alanyl-tRNA synthetase 2, mitochondrial	--	AARS2	Cytoplasm	enzyme	57505	224805				
	ATP-binding cassette, subfamily A (ABC1), member 1	ABCA1	--	Plasma Membrane transporter	19	11303					
	abhydrolase domain containing 12	ABHD12	--	Other	enzyme	26090	76192				
	ABL proto-oncogene 2, non-receptor tyrosine kinase	ABL2	--	Cytoplasm	kinase	27	11352				
	atypical chemokine receptor 2	ACKR2	--	CCBP2	Plasma Membrane	G-protein coupled receptor	1238	59289			
	acyl-CoA thioesterase 11	ACOT11	--	Cytoplasm	enzyme	26027	329910				
	acyl-CoA synthetase long-chain family member 4	ACSL4	--	Cytoplasm	enzyme	2182	50790				
	ADAM metalloproteinase domain 19	ADAM19	--	Plasma Membrane	peptidase	8728	11492				
	adenylate cyclase 10 (soluble)	ADCY10	--	ADCY10	Cytoplasm	enzyme	55811	271639			
	adhesion G protein-coupled receptor V1	ADGRV1	--	GPR98	Plasma Membrane	G-protein coupled receptor	84059	110789			
	adiponectin, C1Q and collagen domain containing	ADIPOQ	--	ADIPOQ	Extracellular Space	other	9370	11450			
	Adenosine A3 Receptor	ADORA3	--	ADORA3	Plasma Membrane	G-protein coupled receptor	121933	562			
	ATP/GTP binding protein 1	AGTPBP1	--	AGTPBP1	Nucleus	peptidase	23287	67269			
	Abelson helper integration site 1	AHI1	--	AHI1	Cytoplasm	other	54806	52906			
	aminoacl tRNA synthetase complex-interacting multifunctional protein 1	AIMP1	--	AIMP1	Extracellular Space	cytokine	9255	13722			
	arachidonate 5-lipoxygenase	ALOX5	--	ALOX5	Cytoplasm	enzyme	240	11689			
	alkaline phosphatase, liver/bone/kidney	ALPL	--	ALPL	Plasma Membrane	phosphatase	249	11647			
	ankyrin 2, neuronal	ANK2	--	ANK2	Plasma Membrane	other	287	109676			
	ankyrin repeat domain 11	ANKRD11	--	ANKRD11	Nucleus	other	29123	77087			
	annexin A2	ANXA2	--	ANXA2	Plasma Membrane	other	302	12306			
	apoptotic peptidase activating factor 1	APAF1	--	APAF1	Cytoplasm	other	317	11783			
	amyloid beta (A4) precursor protein-binding	APBB2	--	APBB2	Cytoplasm	other	323	11787			
Gene	Description	Location 1	Location 2	Location 3	Location 4	Location 5	Location 6	Location 7	Location 8	Location 9	Location 10
------------	--	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
APLP2	amyloid beta (A4) precursor-like protein 2	Cytoplasm	other	334	11804						
ARHGAP5	Rho GTPase activating protein 5	Cytoplasm	enzyme	394	11855						
ARHGAP3	Rho GTPase activating protein 35	Nucleus	transcrip	2909	232906						
ARL13B	ADP-ribosylation factor-like 13B	Nucleus	transcript	200894	68146						
ARNT	aryl hydrocarbon receptor nuclear translocator	Nucleus	transcript	405	11863						
ASPA	aspartoacylase	Cytoplasm	enzyme	443	11484						
ATF2	activating transcription factor 2	Nucleus	transcrip	1386	11909						
ATG7	autophagy related 7	Cytoplasm	enzyme	10533	74244						
ATP2C1	ATPase, Ca++ transporting, type 2C, member 1	Cytoplasm	transporter	27032	235574						
ATP7A	ATPase, Cu++ transporting, alpha polypeptide	Plasma Membrane	transporter	538	11977						
ATP8A2	ATPase, aminophospholipid transporter, class I, type 8A, member 2	Plasma Membrane	transporter	51761	50769						
ATRX	alpha thalassemia/mental retardation syndrome X-linked	Nucleus	transcrip	546	22589						
ATXN2	ataxin 2	Nucleus	other	6311	20239						
BBS5	Bardet-Biedl syndrome 5	Cytoplasm	other	129880	72569						
BBS9	Bardet-Biedl syndrome 9	Extracellular Space	other	27241	319845						
BRAF	B-Raf proto-oncogene, serine/threonine kinase	Cytoplasm	enzyme	673	109880						
BRAT1	BRCA1-associated ATM activator 1	Nucleus	other	221927	231841						
BRCA1	breast cancer 1, early onset	Nucleus	transcript	672	12189						
BRWD3	bromodomain and WD repeat domain containing 3	Other	other	254065	382236						
C9	complement component 9	Extracellular Space	other	735	12279						
C2CD3	C2 calcium-dependent domain containing 3	Cytoplasm	other	26005	277939						
CACNA2D	calcium channel, voltage-dependent, alpha 2/delta subunit 4	Plasma Membrane	ion channel	93589	466912						
CACNB4	calcium channel, voltage-dependent, beta 4 subunit	Plasma Membrane	ion channel	785	12298						
CAMK1D	calcium/calmodulin-dependent protein kinase ID	Cytoplasm	kinase	57118	227541						
CAMTA1	calmodulin binding transcription activator 1	Other	other	23261	100072						
CASK	calcium/calmodulin-dependent serine protein kinase (MAGUK family)	Plasma Membrane	kinase	8573	12361						
CASP6	caspase 6, apoptosis-related cysteine peptidase	Cytoplasm	peptidase	839	12368						
CASP8	caspase 8, apoptosis-related cysteine peptidase	Nucleus	peptidase	841	12370						
CCM2	cerebral cavernous malformation 2	Cytoplasm	other	83605	216527						
CDK5RAP2	CDK5 regulatory subunit associated protein 2	Cytoplasm	other	55755	214444						
CECR2	cat eye syndrome chromosome region, candidate 2	Nucleus	other	27443	330409						
gene	description	location	compartment	protein	Fasta	UniProt	GeneID	TranscriptID	Reference		
------	-------------	----------	-------------	---------	-------	---------	--------	--------------	-----------		
CFB	complement factor B		Extracellular Space	peptidase	629	14962					
CFLAR	CASP8 and FADD-like apoptosis regulator	CFLAR	Cytoplasm	other	8837	12633					
CLCN3	chloride channel, voltage-sensitive 3	CLCN3	Plasma Membrane	ion channel	1182	12725					
CLIC4	chloride intracellular channel 4	CLIC4	Plasma Membrane	ion channel	25932	29876					
CLN6	ceroid-lipofuscinosis, neuronal 6, late infantile, variant	CLN6	Cytoplasm	other	54982	76524					
CNTN4	contactin 4	CNTN4	Plasma Membrane	enzyme	152330	269784					
CNTNAP2	contactin associated protein-like 2	CNTNAP2	Plasma Membrane	other	26047	66797					
CPA6	carboxypeptidase A6	CPA6	Extracellular Space	peptidase	57094	329093					
CRB1	crumbs family member 1, photoreceptor morphogenesis associated	CRB1	Plasma Membrane	other	23418	170788					
CREB1	cAMP responsive element binding protein 1	CREB1	Nucleus	transcript regulator	1385	12912					
CTSS	cathepsin S	CTSS	Cytoplasm	peptidase	1520	13040					
CYP19A1	cytochrome P450, family 19, subfamily A, polypeptide 1	CYP19A1	Cytoplasm	enzyme	9420	13123					
CYP7B1	cytochrome P450, family 7, subfamily B, polypeptide 1	CYP7B1	Cytoplasm	enzyme	9201	140580					
CYSLTR1	cysteiny1 leukotriene receptor 1	CYSLTR1	Plasma Membrane	G-protein coupled receptor	10800	58861					
DCLK1	doublecortin-like kinase 1	DCLK1	Other	kinase	9201	13175					
DDIT3	DNA-damage-inducible transcript 3	DDIT3	Nucleus	transcript regulator	1649	13198					
DIXDC1	DIX domain containing 1	DIXDC1	Cytoplasm	other	85458	330938					
DNAJC1	DnaJ (Hsp40) homolog, subfamily C, member 1	DNAJC1	Cytoplasm	other	64215	13418					
DST	dystonin	DST	Plasma Membrane	other	667	13518					
DYSF	dysferlin	DYSF	Plasma Membrane	other	8291	26903					
DYX1C1	dyslexia susceptibility 1 candidate 1	DYX1C1	Nucleus	other	161582	67685					
EDEM2	ER degradation enhancer, mannosidase alpha-like 2	EDEM2	Cytoplasm	enzyme	55741	108687					
EIF2B3	eukaryotic translation initiation factor 2B, subunit 3 gamma, 58kDa	EIF2B3	Cytoplasm	other	8891	108067					
EIF2B4	eukaryotic translation initiation factor 2B, subunit 4 delta, 67kDa	EIF2B4	Cytoplasm	other	8890	13667					
EIF4G3	eukaryotic translation initiation factor 4 gamma, 3	EIF4G3	Cytoplasm	translation regulator	8672	230861					
ELMO1	engulfment and cell motility 1	ELMO1	Cytoplasm	other	9844	140580					
ENTPD1	ectonucleoside triphosphatase diphosphohydrolase 1	ENTPD1	Plasma Membrane	enzyme	953	12495					
ERBB3	erb-b2 receptor tyrosine kinase 3	ERBB3	Plasma Membrane	kinase	2065	13867					
ERBB2IP	erb-b2 interacting protein	ERBB2IP	Plasma Membrane	other	55914	59079					
ESR1	estrogen receptor 1	ESR1	Nucleus	ligand-dependent nuclear receptor	2099	13982					
Gene Symbol	Description	Tissue/Location	Function/Characteristics								
-------------	-------------	----------------	-------------------------								
F2RL1	coagulation factor II (thrombin) receptor-like 1	Membrane	G-protein coupled receptor								
FA1	Fas (TNFRSF6) associated factor 1	Membrane	Other								
FAIM2	Fas apoptotic inhibitory molecule 2	Membrane	Other								
FBXL20	F-box and leucine-rich repeat protein 20	Cytoplasm	Other								
FER	fer (fps/les related) tyrosine kinase	Cytoplasm	Kinase								
FG4D	FYVE, RhoGEF and PH domain containing 4	Cytoplasm	Other								
FG12	fibroblast growth factor 12	Extracellular Space	Other								
FSTL1	follistatin-like 1	Extracellular Space	Other								
FTO	fat mass and obesity associated	Nucleus	Other								
FUCA1	fucosidase, alpha-L-1, tissue	Cytoplasm	Enzyme								
FXN	frataxin	Cytoplasm	Kinase								
GABBR2	gamma-aminobutyric acid (GABA) B receptor, 2	Membrane	G-protein coupled receptor								
GABRA2	gamma-aminobutyric acid (GABA) A receptor, alpha 2	Membrane	Ion channel								
GABRG3	gamma-aminobutyric acid (GABA) A receptor, gamma 3	Membrane	Ion channel								
GFRA2	GDNF family receptor alpha 2	Membrane	Transmembrane receptor								
GLRA3	glycine receptor, alpha 3	Membrane	Ion channel								
GNAQ	guanine nucleotide binding protein (G protein), q polypeptide	Membrane	Enzyme								
GOLPH3	golgi phosphoprotein 3 (coat-protein)	Cytoplasm	Other								
GPHN	gephrin	Membrane	Enzyme								
GRID1	glutamate receptor, ionotropic, delta 1	Membrane	G-protein coupled receptor								
HDAC2	histone deacetylase 2	Nucleus	Transcription regulator								
HDAC4	histone deacetylase 4	Nucleus	Transcription regulator								
HDAC8	histone deacetylase 8	Nucleus	Transcription regulator								
HEY2	hes-related family BHLH transcription factor with YRPW motif 2	Nucleus	Transcription regulator								
HLA-DRB1	major histocompatibility complex, class II, DR beta 1	Other	Other								
HLA-E	major histocompatibility complex, class I, E	Membrane	Transmembrane receptor								
HMBOX1	homeobox containing 1	Nucleus	Transcription regulator								
HTR1E	5-hydroxytryptamine (serotonin) receptor 1E, G protein-coupled	Membrane	G-protein coupled receptor								
HTT	huntingtin	Cytoplasm	Transcription regulator								
HUWE1	HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase	Nucleus	Transcription regulator								
Gene	Description	Location	Function	Gene Accession							
--------	--	---------------------------	---	-----------------							
HYOU1	hypoxia up-regulated 1	--	Cytoplasm	10525, 12282							
IFT140	intraflagellar transport 140	IFT140 --	Extracellular Space	9742, 106633							
IGBP1	immunoglobulin (CD79A) binding protein 1	IGBP1 --	Cytoplasm	3476, 18518							
IL1RAPL1	interleukin 1 receptor accessory protein-like 1	IL1RAPL1 --	Plasma Membrane	11141, 331461							
IL1RN	interleukin 1 receptor antagonist	IL1RN --	Extracellular Space	3557, 16181							
JARID2	jumonji, AT rich interactive domain 2	JARID2 --	Nucleus	3720, 16468							
KALRN	kalinin, RhoGEF kinase	KALRN --	Cytoplasm	8997, 545156							
KCNJ6	potassium channel, inwardly rectifying subfamily J, member 6	KCNJ6 --	Plasma Membrane	3763, 16522							
KDM6A	lysine (K)-specific demethylase 6A	KDM6A --	Nucleus	7403, 22289							
KIF15	kinesin family member 15	KIF15 --	Nucleus	56992, 209737							
LAMA2	laminin, alpha 2	LAMA2 --	Extracellular Space	3908, 16773							
LEF1	lymphoid enhancer-binding factor 1	LEF1 --	Nucleus	51176, 16842							
LEPR	leptin receptor	LEPR --	Transmembrane receptor	3953, 16847							
LFNG	LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase	LFNG --	Cytoplasm	3955, 16848							
LILRB3	leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), 3	LILRB3 --	Plasma Membrane	11025, 004116							
LOC4400	glutamate receptor, metabotropic 5 pseudogene	LOC4400 40 --	Other	440040							
LPAR4	lysophosphatidic acid receptor 4	LPAR4 --	Plasma Membrane	2846, 78134							
LPIN1	lipin 1	LPIN1 --	Nucleus	23175, 14245							
LRP2	low density lipoprotein receptor-related protein 2	LRP2 --	Plasma Membrane	4036, 14725							
LRP4	low density lipoprotein receptor-related protein 4	LRP4 --	Extracellular Space	4038, 228357							
LRPAP1	low density lipoprotein receptor-related protein associated protein 1	LRPAP1 --	Plasma Membrane	4043, 16976							
LRRAC	leucine rich repeat containing 4C	LRRAC4 --	Plasma Membrane	57689, 241568							
LRRK2	leucine-rich repeat kinase 2	LRRK2 --	Cytoplasm	120892, 66725							
MAPK1	mitogen-activated protein kinase 1	MAPK1 --	Cytoplasm	5594, 26413							
MFN2	mitofusin 2	MFN2 --	Plasma Membrane	9927, 170731							
MKS	McKusick-Kaufman syndrome	--	Cytoplasm	8195, 59030							
MKL1	megakaryoblastic leukemia (translocation) 1	MKL1 --	Nucleus	57591, 223701							
MKS1	Meckel syndrome, type 1	MKS1 --	Cytoplasm	54903, 380718							
MOS	v-mos Moloney murine sarcoma viral oncogene homolog	MOS --	Cytoplasm	4342, 17451							
MS4A1	membrane-spanning 4-domains, subfamily A,	MS4A1 --	Plasma Membrane	931, 12482							
Gene	Description	Location	Other	Ref(s)							
--------	--	------------	-------------	-----------							
MSH2	mutS homolog 2	Nucleus	enzyme	4436, 17685							
MTR	mechanistic target of rapamycin (serine/threonine kinase)	Nucleus	enzy...	2475, 56717							
MYH9	myosin, heavy chain 9, non-muscle	Cytoplasm	other	4627, 17886							
MYH10	myosin, heavy chain 10, non-muscle	Cytoplasm	other	4628, 77579							
MYO1B	myosin IB	Cytoplasm	other	4430, 17912							
MYOSA	myosin VA (heavy chain 12, myosin)	Cytoplasm	enzyme	4644, 17918							
NBAS	neuroblastoma amplified sequence	Nucleus	other	51594, 71169							
NCO1	nuclear receptor corepressor 1	Nucleus	transcriptio...	9611, 20185							
NDUFA9	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa	Cytoplasm	enzyme	4704, 66108							
NEU1	sialidase 1 (lysosomal sialidase)	Cytoplasm	enzyme	4758, 18010							
NFATC3	nuclear factor of activated T-cells, cytoplasmic calcineurin-dependent 3	Nucleus	transcriptio...	4775, 18021							
NIPBL	Nipped-B homolog (Drosophila)	Nucleus	transcriptio...	25836, 71175							
NPEPS	aminopeptidase puromycin sensitive	Cytoplasm	peptidase	9520, 19155							
NPM1	nucleophosphosin (nucleolar phosphoprotein B23, numatrin)	Nucleus	transcriptio...	4869, 18148							
NR1H2	nuclear receptor subfamily 1, group H, member 2	Nucleus	ligand-dependent nuclear receptor	7376, 22260							
NRCAM	neuronal cell adhesion molecule	Plasma Membrane	other	4897, 319504							
NRXN1	neurexin 1	Plasma Membrane	transporter	9378, 18189							
NRXN2	neurexin 2	Plasma Membrane	transporter	9379, 18190							
NUSAP1	nucleolar and spindle associated protein 1	Nucleus	other	51203, 108907							
OCLN	occludin	Plasma Membrane	enzyme	1005066, 58, 18260							
OMP	olfactory marker protein	Cytoplasm	other	4975, 18378							
OPHN1	oligophrenin 1	Cytoplasm	other	4983, 94190							
ORC6	origin recognition complex, subunit 6	Nucleus	other	23594, 56452							
OTGOL	otogelin-like	Other	other	283310, 628870							
OXT	oxytocin/neurophysin 1 prepropeptide	Extracellula r Space	other	5020, 18429							
PARD3	par-3 family cell polarity regulator	Plasma Membrane	other	56288, 93742							
PARG	poly (ADP-ribose) glycohydrolase	Cytoplasm	enzyme	8505, 26430							
PARK2	parkin RBR E3 ubiquitin protein ligase	Cytoplasm	enzyme	5071, 50873							
PARK7	parkinson protein 7	Nucleus	enzyme	11315, 57320							
PARP1	poly (ADP-ribose) polymerase 1	Nucleus	enzyme	142, 11545							
PBX3	pre-B-cell leukemia homeobox 3	Nucleus	transcriptio...	5090, 18516							
PCMT1	protein-L-isosapartate (D-aspartate) O-methyltransferase	Cytoplasm	enzyme	5110, 18537							
PCSK5	proprotein convertase	Extracellula r	peptidase	5125, 18552							
Gene	Description	Location	Enzyme	Other							
-------	--	-----------	--------	----------------							
PDE11A	phosphodiesterase 11A	Cytoplasm	enzyme	50940 241489							
PDE4D	phosphodiesterase 4D, cAMP-specific	Other	enzyme	5144 238871							
PDE9A	phosphodiesterase 9A	Cytoplasm	enzyme	5152 18585							
PGFRA	platelet-derived growth factor receptor, alpha polypeptide	Plasma Membrane	kinase	5156 18595							
PDS5B	PDS5 cohesin associated factor B	Nucleus	other	23047 100710							
PDX2	pyridoxal-dependent decarboxylase domain containing 2, pseudogene	Other	transmembrane regulator	283970							
PEX5	peroxisomal biogenesis factor 5	Cytoplasm	enzyme	5830 19305							
PHB	prohibitin	Nucleus	transcription regulator	5245 18673							
PHC2	polyhomeotic homolog 2 (Drosophila)	Nucleus	other	1912 54383							
PHF8	PHD finger protein 8	Nucleus	enzyme	23133 320595							
PIGL	phosphatidylinositol glycan anchor biosynthesis, class L	Cytoplasm	enzyme	9487 327942							
PIGV	phosphatidylinositol glycan anchor biosynthesis, class V	Cytoplasm	enzyme	55650 230801							
PLCB4	phospholipase C, beta 4	Cytoplasm	enzyme	5332 18798							
PNKD	paroxysmal nonkinesinogenic dyskinesia	Nucleus	other	25953 56695							
PNPT1	polyribonucleotide nucleotideyltransferase 1	Cytoplasm	enzyme	87178 71701							
POLA1	polymerase (DNA directed), alpha 1, catalytic subunit	Nucleus	enzyme	5422 18968							
POR	P450 (cytochrome) oxidoreductase	Cytoplasm	enzyme	5447 18984							
PPARD	peroxisome proliferator-activated receptor delta	Nucleus	ligand-dependent	5467 19015							
PRKG1	protein kinase, CGMP-dependent, type I	Cytoplasm	kinase	5592 19091							
PRPH2	peripherin 2 (retinal degeneration, slow)	Plasma Membrane	transmembrane regulator	5961 19133							
PSEN1	presenilin 1	Plasma Membrane	peptidase	5663 19164							
PTPN9	protein tyrosine phosphatase, non-receptor type 9	Cytoplasm	phosphatase	5780 56294							
PTPN12	protein tyrosine phosphatase, non-receptor type 12	Cytoplasm	phosphatase	5782 19248							
PTPRD	protein tyrosine phosphatase, receptor type, D	Plasma Membrane	phosphatase	5789 19266							
PUS1	pseudouridylation synthase 1	Nucleus	enzyme	80324 56361							
RAB7A	RAB7A, member RAS oncogene family	Cytoplasm	enzyme	7879 19349							
RADS4L	RADS4-like (S. cerevisiae)	Nucleus	enzyme	8438 19366							
RANBP2	RAN binding protein 2	Other	other	5903 19386							
RBL1	retinoblastoma-like 1	Nucleus	transcripti	5933 19650							
REEP1	receptor accessory protein 1	Cytoplasm	other	65055 52250							

Columns: Gene, Description, Location, Enzyme, Other
Gene Symbol	Description	Location	Type	Accession	Accession		
RGS11	regulator of G-protein signaling 11	--	RGS11	Plasma Membrane	enzyme	8786	50782
RLBP1	retinaldehyde binding protein 1	--	RLBP1	Cytoplasm	transporter	6017	19771
RMND1	required for meiotic nuclear division 1 homolog (S. cerevisiae)	RMND1	RMND1	Cytoplasm	other	55005	66084
RNF135	ring finger protein 135	RNF135	--	Cytoplasm	enzyme	84282	71956
ROBO2	roundabout, axon guidance receptor, homolog 2 (Drosophila)	ROBO2	--	Plasma Membrane	transmembrane receptor	6092	268902
RORA	RAR-related orphan receptor A	RORA	--	Nucleus	ligand-dependent nuclear receptor	6095	19883
RPGRIP1L	RPGRIP1-like	RPGRIP1L	--	Cytoplasm	other	23322	244585
RTTN	rotatin	RTTN	--	Other	other	25914	246102
SCNBA	sodium channel, voltage gated, type VIII alpha subunit	SCNBA	--	Plasma Membrane	ion channel	6334	20273
SEC24D	SEC24 family member D	SEC24D	--	Cytoplasm	transporter	9871	69608
SERAC1	serine active site containing 1	SERAC1	--	Extracellular Space	other	84947	321007
SHANK2	SH3 and multiple ankyrin repeat domains 2	SHANK2	--	Plasma Membrane	other	22941	210274
SIL1	SIL1 nucleotide exchange factor	SIL1	--	Cytoplasm	transporter	64374	81500
SLC16A2	solute carrier family 16, member 2 (thyroid hormone transporter)	SLC16A2	--	Plasma Membrane	transporter	6567	20502
SLC17A5	solute carrier family 17 (acidic sugar transporter), member 5	SLC17A5	SLC17A5	Plasma Membrane	transporter	26503	235504
SLC25A12	solute carrier family 25 (aspartate/glutamate carrier), member 12	SLC25A12	SLC25A12	Cytoplasm	transporter	8604	78830
SLC30A10	solute carrier family 30, member 10	SLC30A10	--	Other	transporter	55532	226781
SLMAP	sarclemma associated protein	SLMAP	--	Plasma Membrane	other	7871	83997
SMAD2	SMAD family member 2	SMAD2	--	Nucleus	transcript regulator	4087	17126
SMO	smoothened, frizzled class receptor	SMO	--	Plasma Membrane	G-protein coupled receptor	6608	319757
SNTB2	syntrophin, beta 2 (dystrophin-associated protein A1, 59kDa, basic component 2)	SNTB2	--	Plasma Membrane	other	6645	20650
SNX2	sorting nexin 2	SNX2	--	Cytoplasm	transporter	6643	67804
SPRN	shadow of prion protein homolog (zebrafish)	SPRN	--	Other	other	503542	212518
SPTBN1	spectrin, beta, non-erythrocytic 1	SPTBN1	--	Plasma Membrane	other	6711	20742
SPTLC1	serine palmitoyltransferase, long chain base subunit 1	SPTLC1	--	Cytoplasm	enzyme	10558	268656
STAR	steroidalogenic acute regulatory protein	STAR	--	Cytoplasm	transporter	6770	20845
SV2C	synaptic vesicle glycoprotein 2C	SV2C	--	Plasma Membrane	other	22987	75209
SYNE2	spectrin repeat containing, nuclear envelope 2	SYNE2	--	Nucleus	other	23224	319565
SYTL4	synaptotagmin-like 4	SYTL4	--	Cytoplasm	transporter	94121	27359
TACC2	transforming, acidic coiled-coil containing protein 2	TACC2	--	Nucleus	other	10579	57752
Gene	Description	Location	G-protein coupled receptor				
--------	--	-------------------	---------------------------				
TACR3	Tachykinin receptor 3	--	Plasma Membrane				
TAF1	TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor,	TAF1 TAF1 TAF1	Nucleus				
	250kDa	Nucleus	transcriptor regulator				
TAO1	TAK kinase 1	--	Cytoplasm kinase				
TDRD7	Tudor domain containing 7	--	Cytoplasm other				
TENM4	Teneurin transmembrane protein 4	TENM4 TENM4	Plasma Membrane				
	Transcription factor AP-2 beta (activating enhancer binding protein 2 beta)	Nucleus	transcriptor regulator				
TIMD4	T-cell immunoglobulin and mucin domain containing 4	TIMD4 TIMD4	Plasma Membrane				
	Transmembrane immunoglobulin and mucin domain containing 4	Nucleus	other				
TRP1	T-cell receptor alpha locus	TRA TRA	Plasma Membrane				
	Transient receptor potential cation channel, subfamily M, member 6	TRPM6 TRPM6	Nucleus				
	Transient receptor potential cation channel, subfamily V, member 1	--	Plasma Membrane				
	Transient receptor potential cation channel, subfamily V, member 3	--	Plasma Membrane				
	Transient receptor potential cation channel, subfamily V, member 3	--	Plasma Membrane				
UBE4B	Ubiquitin factor E4B	--	Cytoplasm other				
UBR1	Ubiquitin protein ligase E3 component n-recognition 1	UBR1 UBR1	Cytoplasm enzyme				
UBR2	Ubiquitin protein ligase E3 component n-recognition 2	UBR2 UBR2	Other				
	UDP glucuronosyltransferase 1 family, polypeptide A3	--	Cytoplasm enzyme				
UGT1A3	Unc-51 like autopropy activating kinase 1	--	Other				
ULK1	Unc-51 like kinase 1	--	Cytoplasm kinase				
ULK4	Unc-51 like kinase 4	--	Other				
UNC13B	Unc-13 homolog B (C. elegans)	UNC13B UNC13B	Cytoplasm other				
USF1	Upstream transcription factor 1	--	Nucleus				
UTRN	Urotokin	UTRN UTRN	Plasma Membrane				
VAMP7	Vesicle-associated membrane protein 7	VAMP7 VAMP7	Cytoplasm transporter				
VAPB	VAMP (vesicle-associated membrane protein)-associated protein B and C	VAPB VAPB	Plasma Membrane				
VAV2	Vav 2 guanine nucleotide exchange factor	VAV2 VAV2	Cytoplasm				
VEZT	Vezatin, adherens junctions transmembrane protein	VEZT VEZT	Plasma Membrane				
VPS35	Vacular protein sorting 35 homolog (S. cerevisiae)	VPS35 VPS35	Cytoplasm transporter				
WDR62	WD repeat domain 62	WDR62 WDR62	Nucleus				
XK	X-linked Xk blood group	XK XK	Plasma Membrane				
YARS	Tyrosyl-tRNA synthetase	YARS YARS	Cytoplasm enzyme				
YWHAЕ	Tyrosine 3-	YWHAЕ YWHAЕ	Cytoplasm other				
Table S3. Enrichment of SVA-associated gene functions in IPA knowledge base categories. Functional groups directly attributed to neuronal function are highlighted. A. Canonical pathways. B. Functional Networks. C. Diseases and Functions.

Ingenuity Canonical Pathways	p-value	A. Molecules in Pathways	
Cardiac β-adrenergic Signaling	1.04E-01	CACNA1D, PDE3A, PPP2R3B, CACNA1C, AKAP6, PPP1R3A, PDE4B, PPP1R14B, PDE4D, PPP2R5A, AKAP13, ADCY1, PDE8B, GNG2, PPP2R5E, GNG12	
Synaptic Long Term Potentiation	1.14E-01	MAPK1, GRM1, GRM3, CACNA1C, PPP1R3A, GRM4, CREB5, PPP1R14B, ADCY1, PRKCE, PRKD3, CAMK2B, GRIA3	
Synaptic Long Term Depression	9.46E-02	NOS1, GRID1, MAPK1, GRM3, GRM1, PLA2R1, GUCY2F, PRKCE, PPP2R3B, PPP2R5E, GRM4, PRKD3, PPP2R5A, GRIA3	
Axonal Guidance Signaling	6.98E-02	FYN, LRRC4C, GLI2, MAPK1, EPHB2, NFATC3, PIK3R1, SEMA4F, WNT2, EIF4E, EPHB1, WASL, SRGAP1, UNC5D, PRKCE, ROBO2, SHANK2, PRKD3, GNG12, GLI1, ITGB1, SEMA3E, SRGAP3, SEMA6D, FZD3, PIK3CB, GNG2, SEMA4B, WNT5A, NRP1	
Neuropathic Pain Signaling In Dorsal Horn Neurons	1.07E-01	CAMK1D, MAPK1, GRM1, GRM3, PIK3R1, PRKCE, KCNQ3, PIK3CB, GRM4, PRKD3, GRIA3, CAMK2B	
CREB Signaling in Neurons	7.96E-02	MAPK1, GRM1, GRM3, PIK3R1, GRIK3, GRM4, CREB5, GRID1, ADCY1, PRKCE, PIK3CB, GNG2, PRKD3, GNG12, CAMK2B, GRIA3	
Amyotrophic Lateral Sclerosis Signaling	9.17E-02	CAPN5, NOS1, CACNA1D, GRID1, HECW1, PIK3R1, GRIK3, CACNA1C, PIK3CB, NAIP, GRIA3	
TR/RXR Activation	1.04E-01	RAB3B, AKR1C1/ AKR1C2, SLC2A1, PIK3R1, NCOA1, THRA, PIK3CB, THRb, NCOA3, PPARGC1A	
Hypoxia Signaling in the Cardiovascular System	1.23E-01	BIRC6, UBE2V2, UBE2E2, UBE2E3, CREB5, UBE2E1, PTEN, ARNT	
Pathway Description	Score		
---	--------		
Breast Cancer Regulation by Stathmin1	7.69E-02		
Renal Cell Carcinoma Signaling	1.08E-01		
PKCθ Signaling in T Lymphocytes	7.75E-02		
Dopamine-DARPP32 Feedback in cAMP Signaling	7.49E-02		
Glutamate Receptor Signaling	1.01E-01		
AMPK Signaling	7.23E-02		
Actin Cytoskeleton Signaling	7.05E-02		
Clathrin-mediated Endocytosis Signaling	7.69E-02		
ERK/MAPK Signaling	7.35E-02		
Virus Entry via Endocytic Pathways	9E-02		
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes	8.82E-02		
Antiproliferative Role of Somatostatin Receptor 2	9.86E-02		
cAMP-mediated signaling	7.31E-02		
Pathway	Score	Genes	
--	---------	--	
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	6.67E-02	MAP3K15, APOB, MAPK1, PIK3R1, PPP2R3B, PPP1R3A, NCF4, PPP1R14B, PPP2R5A, RHO1, PRKCE, PIK3CB, PPP2R5E, PRKD3	
Glioma Signaling	8.04E-02	CAMK1D, MAPK1, PIK3R1, PRKCE, PIK3CB, RBL1, PRKD3, PTEN, CAMK2B	
DNA Double-Strand Break Repair by Homologous Recombination	1.76E-01	ATRX, RAD52, BRCA1	
Semaphorin Signaling in Neurons	1.15E-01	ITGB1, MET, FYN, MAPK1, RHO1, NRP1	
Macropinocytosis Signaling	9.21E-02	ITGB1, MET, PIK3R1, PRKCE, PIK3CB, ITGB8, PRKD3	
Relaxin Signaling	7.01E-02	MAPK1, PDE3A, PIK3R1, ADCY1, GUCY2F, PDE8B, PIK3CB, PDE4B, GNG2, PDE4D, GNG12	
Rac Signaling	7.38E-02	ITGB1, NOX4, MAPK1, PIP5K1C, PIK3R1, PIK3CB, PAR3, IQGAP3, ANK1	
CDK5 Signaling	8.51E-02	ITGB1, MAPK1, ADCY1, PPP2R3B, PPP1R3A, PPP2R5E, PPP1R14B, PPP2R5A	
CDK5 Signaling	8.51E-02	ITGB1, MAPK1, ADCY1, PPP2R3B, PPP1R3A, PPP2R5E, PPP1R14B, PPP2R5A	
Categories	Diseases or Functions Annotation	p-Value	B. Molecules in Diseases and Functions
---	----------------------------------	----------	--
Cardiovascular Disease	coronary artery disease	1.77E-06	AGPAT5, AKAP13, ASTN2, CACNA1C, CACNA1D, CACNA2D1, CAMTA1, CNTN5, CSMD1, CSMD2, CTNNBL1, EIF4G3, ESR2, GABRA2, GABRB1, KDM1A, KIAA0319L, LRP1 (includes EG:16971), MEF2A, OGDH, P2RY12, PDE3A, PDE4B, PDE4D, PPARG, SGCD, TMEM163, WWOX
Endocrine System Development and Function	glucose tolerance	1.42E-05	ABC9, ARNT, CACNA1D, CADPS2, CASP8, CREB5, EIF2AK3, FAM3B, LRP1 (includes EG:16971), MGA4A, NOS1, PAM, PDK4, PIK3CB, PIK3R1, PPARG, PPARGC1A, PP1R3A, PRKAA2, PTEN, RPH3AL, SERPINA12, SGK3, SLC30A8, THRA (includes EG:21833)
Category	Functional Expression	p-value	Genes
---	--	-----------	--
Cell Morphology, Cellular Assembly and Organization, Cellular Development, Cellular Function and Maintenance, Embryonic Development, Nervous System Development and Function, Tissue Development, Tissue Morphology	morphology of dendritic spines	1.93E-05	CTNNA2, EPHB1, EPHB2, LRRC7, MAGI2, OPHN1
Cellular Movement, Nervous System Development and Function	guidance of axons	6.93E-05	ALCAM, APBB2, CDH4, CNTN4, EPHB1, EPHB2, FEZ2, GLI2, LRRC4C, MAPK1, NRP1 (includes EG:18186), OPHN1, PLXNA4, RELN, ROBO2, RUNX3, SEMA4F, VAV3
Cellular Function and Maintenance	function of enterocytes	7.37E-05	ESR2, MYD88, THRA (includes EG:21833)
Connective Tissue Disorders	Dupuytren contracture	1.69E-04	ADAMTS16, ADAMTS18, ADAMTS19, ADAMTS3, ADAMTS6, ADAMTS9, COL14A1, COL19A1 (includes EG:12823), COL21A1, COL22A1, COL24A1
Nervous System Development and Function	development of central nervous system	1.70E-04	ABR, APBB2, ATG7, ATRX, CDCA7L, CTNNA2, DAB1, EPHB2, ESR2, FOXI3, FYN, FZD3, GLI2, HESX1, IL1RAPL1, IL1RAPL2, KHDRBS1, KIF2A, MAPK1, MCPH1 (includes EG:244329), MET, NDST3, NDUFS4, NPAS2, NPAS3, PARD3, PCSK6, PLXNA4, PPARG, PTEN, RBL1, RELN, REST, ROBO2, RORA, SHROOM4, SLC4A7, SOX6, SPTBN1, ST8SIA4, STK4, THRA (includes EG:21833), TOP2B, TRIO, VSNL1, WASF2, WNT5A, ZEB1
Cardiovascular Disease, Organismal Injury and Abnormalities	variant angina	1.88E-04	CACNA1C, CACNA1D, CACNA2D1, SGCD
Cell-To-Cell Signaling and Interaction	synaptic depression	2.24E-04	ADCY1, CAMK2B, EPHB1, EPHB2, GRIA3, GRM1, GRM3, HIP1 (includes EG:176224), LRRC7, Pclo, PIP5K1C, ST8SIA4, SYN3
Neurological Disease	radiculopathy	2.85E-04	CACNA2D1, CACNA2D2, CACNA2D3
Organismal Survival	organismal death	3.14E-04	ABCC9, ALCY, ADAR, ANKH, ANXA1, APBB2, APOB, ARNT, ATG7, BIRC6, BMPR1A, BRCA1, BRD4, C4B (includes others), CACNA2D2, CASP8, CELF1, CFTR, CLIC4, CUZD1, DAB1, DMD, EHMT2, EIF2AK3, ENG, EPHB2, ESR2, ETS1, ETV6, FBN1, FLNB, FYN, GABRA2, GPR98, HIP1 (includes EG:176224), HMGA2, IL4R, IRGM, ITGB1, ITGB8, KAT2B, KCNJ6, KIDINS220, LRR7C, MAD1L1, MADD, MAGI2, MAPK1, MCPH1 (includes EG:244329), MEF2A, MET, MGMT, MYBL2, MYD88, NCOA1, NCOA3, NDUFS4, NFATC3, NOS1, NOVA1, NRP1 (includes EG:18186), OPHN1, PARP1, PCLO, PCSK6, PHC1, PHC2, PIK3CB, PIK3R1, PIP5K1C, POU2F1, PPARG, PPARG1A, PPARG1B, PTEN, PTAN, PTAN3, PTAN2, RBL1, REST, REV3L, SIAH1, SLC2A1, SPEN, SPRED2, SPTBN1, ST8SIA4, STK4, TCF12, TFCP2L1, TFEB, THRA (includes EG:19365), RBL1, REST, REV3L, SGCD, SIAH1, SLC2A1, SPEN, SPRED2, SPTBN1, ST8SIA4, STK4, TCF12, TFCP2L1, TFEB, THRA (includes EG:19365), RBL1, REST, REV3L, SGCD, SIAH1, SLC2A1, SPEN, SPRED2, SPTBN1, ST8SIA4, STK4, TCF12, TFCP2L1, TFEB, THRA (includes EG:19365), RBL1, REST, REV3L, SGCD, SIAH1, SLC2A1, SPEN, SPRED2, SPTBN1, ST8SIA4, STK4, TCF12, TFCP2L1, TFEB, THRA (includes EG:19365), RBL1, REST, REV3L, SGCD
Cellular Function and Maintenance, Nervous System Development and Function	function of outer hair cells	3.27E-04	CACNA1D, GPR98, THRA (includes EG:21833), THR1B
Cancer, Hereditary Disorder, Reproductive System Disease	tumorigenesis of prostatic carcinoma	3.27E-04	HIP1 (includes EG:176224), PPARG, PRKCE, PTEN
DNA Replication, Recombination, and Repair	breakage of DNA	3.66E-04	BRCA1, NOS1, PARP1, PTEN, RAD52 (includes EG:19365), REV3L, TOP2B
Cardiovascular Disease, Organismal Injury and Abnormalities	angina pectoris	4.31E-04	CACNA1C, CACNA1D, CACNA2D1, P2RY12, PDE3A, PDE4B, PDE4D, PPARG, SGCD
Cellular Assembly and Organization, Cellular Function and Maintenance	**organization of cytoplasm**	**4.49E-04**	ABR, ADCY1, ALMS1, ANTXR1, ARHGAP24, ARHGAP32, ARHGAP6, ARHGAP8/PRRS- ARHGAP8, ATG7, ATP7A, CAMK1D, CDH4, CNTN4, CNTNA2, CTNND2, DAB1, DIAPH2, EIF2AK3, ENG, EPHB1, EPHB2, FHT, FLNB, FYN, GRM4, HYDIN, ITGB1, ITGB8, KIDINS220, KIF20B, KIF2A, LRP1 (includes EG:16971), LRRRC4C, LRRRC7, MAGI2, MAP4, MAPK1, MET, MPRIP, MTO1, MYD88, MYO6, NCKAP1L, NOS1, NPOC4, NRP1 (includes EG:18186), OPBN1, PACSIN2, PAM, PARD3, PCDH15, PCLO, PIK3R1, PIP5K1C, PKHD1, PLXNA4, PPAR, PPARC1A, PPARC1B, PRKCE, PTEN, PTPRO, RALB, RELN, ROBO2, RRBP1, RUNX3, SEC16B, SEMA3E, SEMA4F, SEPT7, SEPT9, SHROOM3, SHROOM4, SIAH1, SSH2, STRN, TFCP2L1, TOP2B, TRIM54, TRIO, TTK, VAV3, VPS54, WASF2, WASL, WNT5A
Nervous System Development and Function	**morphology of nervous system**	**5.03E-04**	ABR, ADCY1, ALPL, APBB2, APOB, BRCA1, CACNA1D, CACNA2D2, CADPS2, CD86, CLIC4, CNTN4, CNTNA2, CUX2, DAB1, ECE1, EPHB1, EPHB2, ERBB2IP, ESP2, FAT3, FSHR, FYN, GLI2, GRID1, HESX1, IL1RAPL1, IL4R, ITGB1, ITGB8, KIDINS220, KIF2A, LRRRC7, MADD, MAGI2, MCPH1 (includes EG:244329), MET, NCOA1, NDST3, NDUFS4, NFAT3, NFATC3, NOS1, NPS3, NRP1 (includes EG:18186), OPHN1, PCSK6, PLXNA4, PPARC1A, PTEN, RBL1, RELN, ROBO2, SEMA5B, ST8SIA4, THRA (includes EG:21833), THR3, TOP2B, TRIO, VAV3, WNT5A
Molecular Transport	**transport of Mg2+**	**5.28E-04**	MAGT1, NIPAL1, TUSC3, ZDHHC17
Neurological Disease	hydrocephalus	**5.75E-04**	APOB, DAB1, ENG, GLI2, ITGB8, OPHN1, PTEN, RELN, ST8SIA4, USP18
Category	Description	p-value	
--	---	----------	
Cellular Assembly and Organization, Cellular Function and Maintenance	organization of cytoskeleton	5.85E-04	
	ABR, ADCY1, ALMS1, ANTXR1, ARHGAP24, ARHGAP32, ARHGAP6, ARHGAP8/PRR5-		
	ARHGAP8, ATG7, ATP7A, CAMK1D, CDH4, CTNNA4, CTNNA2, CTNND2, DAB1, DIAPH2,		
	ENG, EPHB1, EPHB2, FHIT, FLNB, FYN, GRM4, HYDIN, ITGB1, ITGB8, KIDINS220,		
	KIF20B, KIF2A, LRP1 (includes EG:16971), LRR4C, LRR7C, MAGI2, MAP4, MAPK1,		
	MRT, MPRIP, MYD88, MYO6, NCKAP1L, NOS1, NRP1 (includes EG:18186), OPN1,		
	PACSIN2, PAM, PAR3, PCDH15, PCLO, PIK3R1, PI5K1C, PKHD1, PLXNA4, PPARG,		
	PPARGC1B, PRK1E, PTEN, PTORQ, RALB, RELN, ROBO2, RRPB1, RUNX3, Sema3E,		
	Sema4F, Sept7, Sept9, Shroom3, Shroom4, SSH2, STRN, TOP2B, TRIM54, TRIO,		
	VAV3, VPS54, WASF2, WASL, WNT5A		
Cell Cycle, Cellular Movement	cytokinesis of tumour cell lines	5.86E-04	
	BRD4, KIF20B, MASTL, NEDD4L, Sept7, Sept9, SIAH1, VAV3		
Cardiovascular System Development and Function	abnormal morphology of vasculature	6.59E-04	
	ARNT, BIRC6, CLIC4, FBN1, ITGB8, MAPK1, NDUFS4, NFATC3, NPS3, PPARG, PTEN,		
	SLCA4A7, STK4, UBP1 (includes EG:100136855), WASF2, WNT2		
Cardiovascular System Development and Function, Embryonic Development,	vascularization of yolk sac	8.02E-04	
Organismal Development, Tissue Development			
	ARNT, ITGB8, NRP1 (includes EG:18186), STK4		
Cell Cycle, DNA Replication, Recombination, and Repair	abnormal morphology of chromosomes	9.14E-04	
	BRCA1, HELL5, MCPH1 (includes EG:244329), PARP1, RAD52 (includes EG:19365)		
Infectious Disease	infection by Retroviridae	1.07E-03	ACACB, AKAP13, ANKRD30A, ARHGAP32, ATG7, BRCAl, CACNA2D1, CACNA2D2, CACNA2D3, CALCOCO1, CAMK1D, CD86, CFR, CLOCK, DAPK2, DMXL1, DYSF, E2F2C3, FDPS, GABR81, HCP5, IL4R, KHDRBS1, KIAA0922, MAP4, NDUFAF2, PCSK6, PDE3A, PDE4B, PDE4D, PHF12, PHF3, PIP5K1C, PPARG, PPP2R5E, PPVR, PV1, RALB, RANBP17, RNF170, SEMA5B, SLC2A1, SLC2A13, SLC4A7, SPEN, SPTBN1, ST3GAL3, SUCLG2, TATD1N, TMEM163, TOP2B, TRIM5, UBE2E1, USP26, WDT1C, XKR4, ZNF292
-------------------	--------------------------	----------	--
Developmental Disorder, Neurological Disease	mental retardation	1.15E-03	ATP7A, ATRX, AUTS2, CTNND2, GRIA3, IL1RAPL1, MAGT1, OPHN1, SHROOM4, TSPAN7, TUSC3, ZNF599
Behaviour	nest building behaviour	1.16E-03	LRRC7, MAPK1, NDUF54, NPAS3
Cardiovascular System Development and Function, Organ Morphology	abnormal morphology of heart	1.23E-03	ACACB, CASP8, ECE1, ERS2, ITGB8, MAPK1, NFATC3, NOX4, PHC1, PPARGC1A, PPARGC1B, SGC, SNX27, SPTBN1, TRIM54, UBP1 (includes EG: 100136855), WASF2, WASL
Digestive System Development and Function, Endocrine System Development and Function, Organ Morphology	morphology of pancreas	1.25E-03	CACNA1D, CADPS2, CFT, E2F2AK3, ERS2, GPR39, MGMT, MYD88, NFATC3, PKHD1, PPARG, PTEN, THRA (includes EG: 21833)

Table S4. Link of SVA-associated genes to neural system related ontological categories. Shading represents an association between genes with particular types of SVAs (columns) with certain categories (rows). An enrichment in a category with (-log(p-value)>2.9) is highlighted in purple and (-log(p-value)> 4.6), in blue.

SVA type	A	B	C	D	E	F	F1						
Behavioral features													
behavior	-		3.754903399	88501	1.667197019	29576	7.697397238	39598	-	2.344704794	37986	2.23	
head tossing	-		2.226348280	65468	-	-	-	-	-	-	-	-	
abnormal initiation of locomotion	-		-	-	-	-	-	-	-	-	-	-	-

41
Behavior	Value 1	Value 2	Value 3	Value 4	Value 5		
aggressive behavior							
aggressive behavior toward females							
associative memory							
auditory brainstem response							
barbering behavior							
climbing ability							
climbing behavior							
coordination							
coordination of limb							
discriminator learning							
facial expression							
feeding							
grooming							
learning							
limb clasping							
locomotor activity							
long-term spatial reference memory							
mating							
mating behavior							
memory							
mother preference							
motor learning							
mounting							
movement of rodents							
	A	B	C	D	E	F	F1
----------------------	------------	------------	------------	------------	------------	------------	-------------
nest building behavior	3.122032899 94915	-	-	3.812587935 44142	-	-	-
nursing	-	-	-	-	-	-	1.82
olfactory discrimination	3.486212788 45036	-	-	-	-	-	
parental behavior	-	-	-	-	-	-	-
passive avoidance learning	1.330430037 45532	2.291582038 99342	-	-	1.351140766 01387	-	
place preference	-	-	-	-	-	-	1.362182345 21848
pup retrieval	-	-	-	-	-	-	-
sexual behavior	-	-	-	-	-	-	-
sexual receptivity of female organism	-	-	-	-	-	-	-
short-term memory	-	-	-	-	1.595707552 44453	-	
social behavior	-	-	4.475180901 65667	-	3.926022584 6134	-	3.262127805 30914
social exploration	-	-	2.313689067 98083	-	-	-	
social odor recognition memory	-	-	3.124030123 97743	-	-		
somatosensory discriminatio n learning	-	-	-	-	-	-	-
spatial learning	-	-	3.810127181 76609	-	-	2.896269857 82354	-
stress response of mice	-	-	3.69074572 10718	-	-	-	
stretching behavior	-	-	2.562014300 10179	-	-	-	
vocalization	-	-	-	-	3.080642679 48655	-	
walking	-	-	-	-	3.486585023 79951	-	1.5
Diseases SVA type	**A**	**B**	**C**	**D**	**E**	**F**	**F1**
Alzheimer's disease	2.955157664 3813	2.521850717 54049	-	-	-		
Bipolar disorder	2.381137923 37015	-	-	-	-	-	
Condition	Description	Value 1	Value 2				
--	---	-----------	-----------				
Central nervous system tumor		4.207456202 72873					
Cerebellar ataxia		3.6330254367 49913					
Dementia		2.741710319 10954					
Depressive disorder		3.689838655 24415					
Epilepsy		2.6799998431 54644 2.621328301 31439					
Familial Parkinson disease		3.512129272 59493 3.302217920 79955					
Generalized seizures		6.087333935 96778 2.398010081 87586 5.395796572 47572					
Glioma		4.986058936 35909 4.986058936 35972					
Hereditary CNS demyelinating disease		2.674987725 53459					
Huntington's disease		2.964897725 53459					
Localization-related epilepsy		8.160379619 88186					
Malformation of brain		2.263952234 02463 6.180379619 88186					
Mental retardation		3.917836339 40726 2.51843370 92726					
Mood Disorders		6.087333935 96778 2.398010081 87586 5.395796572 47572					
Movement Disorders		8.005333475 70778 7.875985859 04657 1.96275796725 47572					
neuromuscular disease		3.757674324 94131 3.667637361 37556 1.485696747 13159 2.3					
Parkinson disease		2.702633240 98405 2.144207046 61376 2.621328301 31439					
Progressive motor neuropathy		3.749694263 46343					
Schizophrenia		2.562014300 10179 2.282254651 94161					
Seizures		4.542329338 58452					
Syndromic X-linked mental retardification		5.590850662 37035 3.383827396 38322 1.39275796725 47572					
familial Parkinson disease		3.512129272 59493 3.302217920 79955					
Hereditary CNS demyelinating disease		2.674987725 53459					
Huntington's disease		2.964897725 53459					
Localization-related epilepsy		8.160379619 88186					
Malformation of brain		2.263952234 02463 6.180379619 88186					
Mental retardation		3.917836339 40726 2.51843370 92726					
Mood Disorders		6.087333935 96778 2.398010081 87586 5.395796572 47572					
Movement Disorders		8.005333475 70778 7.875985859 04657 1.96275796725 47572					
neuromuscular disease		3.757674324 94131 3.667637361 37556 1.485696747 13159 2.3					
Parkinson disease		2.702633240 98405 2.144207046 61376 2.621328301 31439					
Progressive motor neuropathy		3.749694263 46343					
Schizophrenia		2.562014300 10179 2.282254651 94161					
Seizures		4.542329338 58452					
Syndromic X-linked mental retardification		5.590850662 37035 3.383827396 38322 1.39275796725 47572					
X linked mental retardation syndromic	2.911719696	7.109893944	2.933082162				
--------------------------------------	--------------	-------------	--------------				
60	71727	72082	39815				
anxiety-like behavior	3.925029459	50205					

Biological functions	**SVA type**	**A**	**B**	**C**	**D**	**E**	**F**	**F1**		
assembly of axon initial segments	-	-	-	3.816861309	09647	-	-	-		
axonogenesis	-	-	-	-	-	-	-	4.188167765	02243	
concentration of norepinephrine	-	-	-	-	-	-	-	3.382008035	78627	
dendritic growth/branching	-	-	-	4.717507994	3237	-	-	-		
development of brain	-	7.983344490	39365	13.49993295	86417	-	6.544090761	47706	1.31	
development of central nervous system	-	-	-	16.26946445	44585	-	9.614785024	02455	-	
development of forebrain	-	6.534064123	30348	5.832836449	43782	1.489640392	29991	7.019431365	00185	
electrophysiology of nervous system	-	-	-	4.339685048	6171	-	-	-		
formation of cellular protrusions	-	3.475098411	94994	12.24694532	53689	-	2.516623853	6187	-	
long-term potentiation	-	2.373604818	13443	2.750895576	68827	1.499506127	06148	-	-	
morphology of axons	-	4.010246590	91482	-	-	-	-	-	-	
morphology of brain	1.552518156	1587	5.744631250	89947	4.084370551	95381	10.34069165	60822	7.378516704	96971
morphology of forebrain	-	5.353185212	68852	4.951243884	67946	-	4.615401827	88052	-	
Table S5. Genes grouped by their associated behavioural categories and the SVA-types (a (SVA_A)-g(SVA_F1)).

a. SVA_A

Diseases or Functions Annotation	Molecules
Climbing Ability	KCNJ6
Anxiety	GABBR2,KCNJ6,PLCB4
Passive Avoidance Learning	GABBR2

b. SVA_B

Diseases or Functions Annotation	Molecules
Learning	HDAC4,HTT,MAPK1,NRCAM,NRXN1,OXT,TACR3,UBR1
Social Behaviour	HTT,MAPK1,NRXN1,OXT
Motor Learning	HTT,NRCAM,NRXN1
Anxiety-Like Behaviour	HTT,MAPK1,OXT
Spatial Learning	HDAC4,HTT,NRCAM,TACR3,UBR1
Behaviour	CLCN3,HDAC4,HTT,MAPK1,NRCAM,NRXN1,OXT,SEC24D,TA CR3,UBR1,F1
Discriminatory Learning	HTT,UBR1
Olfactory Discrimination	HTT,OXT
Grooming	HTT,NRXN1,OXT
Emotional Behaviour	HTT,MAPK1,NRXN1,OXT,TACR3
Aggressive Behaviour	HTT,MAPK1,OXT
Nest Building Behaviour	MAPK1,NRXN1
Invasive Behaviour	NRCAM, SEC24D
--	-------------------------------
Vertical Rearing	HTT, NRCAM, UBR1
Circadian Rhythm	HTT, MAPK1, OXT
Apathy	HTT
Choreiform Movement	HTT
Facial Expression	HTT
Irritability Of Organism	HTT
Somatosensory-Discrimination Learning	HTT
Spasmodic Movement	HTT
Stretching Behaviour	HTT
Memory	HDAC4, HTT, MAPK1, OXT
Hyperactivity	HTT, TIMD4
Social Exploration	NRCAM, OXT
Passive Avoidance Learning	TACR3, UBR1
Climbing Behaviour	HTT
Executive Functioning	HTT
Barbering Behaviour	USF1

c.SVA_C

Diseases or Functions Annotation	Molecules
Grooming	LRRK2, SLC16A2
Head Tossing	ATF2
Mounting	NPEPPS
Emotional Behaviour	LRRK2, MKKS, SLC16A2
Behaviour	ABHD12, ATF2, LRRK2, MKKS, NPEPPS, SLC16A2
Locomotion	ABCA1, FGF12, LRRK2

d.SVA_D

Diseases Or Functions Annotation	Molecules
Behaviour	ABL2, ATP8A2, CACNB4, CNTNAP2, CYP19A1, ESR1, F2RL1, FTO, GFRA2, GNAQ, GPHN, IL1RN, LEPR, LRPAP1, MOS, MTOR, NFATC3, NRXN1, OCLN, PARK7, PRKG1, SCN8A, SHANK2, SYTL4, TRPV1, UBR1, VEZT
Cognition	ABL2, CNTNAP2, CYP19A1, ESR1, IL1RN, LEPR, LRPAP1, MTOR, NIPBL, NRXN1, PARK7, SHANK2, UBR1, VEZT
Learning	ABL2, CNTNAP2, CYP19A1, ESR1, IL1RN, LEPR, LRPAP1, MTOR, NRXN1, PARK7, SHANK2, UBR1, VEZT
Locomotion	ABL2, AGTPBP1, ATP7A, CACNB4, CYP19A1, ESR1, FXN, NFATC3, PARK7, PBX3, SCN8A
Social Behaviour	CNTNAP2, IL1RN, NFATC3, NRXN1, SHANK2
Nest Building Behaviour	CNTNAP2, NRXN1, SHANK2
Walking	AGTPBP1, CACNB4, FXN, SCN8A
Emotional Behaviour	ABL2, CNTNAP2, CYP19A1, ESR1, LEPR, NRXN1, SHANK2, TRPV1
Aggressive Behaviour Toward Females	CYP19A1, ESR1
Sexual Behaviour	ABL2, CYP19A1, ESR1, SYTL4
Grooming	CNTNAP2, CYP19A1, NRXN1, SHANK2
Sexual Receptivity Of Female	CYP19A1, ESR1
Organism	Molecules
--------------------------------	--
Vocalization	CNTNAP2,GPHN,SHANK2
Aggressive Behaviour	ABL2,CYP19A1,ESR1,LEPR
Parental Behaviour	CYP19A1,ESR1,SHANK2
Feeding	ATP8A2,ESR1,FTO,GPHN,IL1RN,LEPR,OCLN
Pup Retrieval	ESR1,SHANK2
Mating Behaviour	ABL2,CYP19A1,ESR1
Anxiety	GABRA2,GABRG3,NFATC3,SHANK2,TRPV1, VAMP7
Mating	CYP19A1,ESR1
Panic-Like Anxiety	GABRA2,GABRG3
Memory	ABL2,CYP19A1,ESR1,IL1RN,LEPR,MTOR
Abnormal Initiation Of Locomotion	CYP19A1,NSATC3,PARK7

e. SVA_E

Diseases or Functions Annotation	Molecules
Spatial Learning	CREB1,OPHN1,UBR1
Vertical Rearing	CREB1,UBR1
Discriminatory Learning	UBR1
Aggressive Behaviour Toward Mice	OPHN1
Anxiety	CREB1,OPHN1
Short-Term Memory	CREB1
Addiction Behaviour	CREB1
Memory	CREB1,OPHN1
Place Preference	CREB1
Passive Avoidance Learning	UBR1

f. SVA_F

Diseases or Functions Annotation	Molecules
Social Behaviour	KALRN,OMP,PDE11A
Long-Term Spatial Reference Memory	PSEN1
Mother Preference	OMP
Social Odour Recognition Memory	PDE11A
Behaviour	APLP2,KALRN,LEF1,MYH10,OMP,PARK2,PDE11A,PSEN1
Associative Memory	PSEN1

g. SVA_F1

Diseases or Functions Annotation	Molecules
Behaviour	ACOT11,ATG7,CYP7B1,MKL1
Limb Clasping	ATG7
Feeding	ACOT11,MKL1
Nursing	MKL1
Walking	ATG7