Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

Clinton Jones
School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Morrison Life Science Center, Lincoln, NE. Corresponding author email: cjones2@unl.edu

Abstract: α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency- reactivation cycle in their respective hosts.

Keywords: alpha-herpesviruses, latency in sensory neurons, apoptosis, non-coding RNAs
α-Herpesvirinae Subfamily Members are Important Pathogens in their Respective Hosts

Herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1) are both important pathogens in their respective natural hosts and both are α-herpesvirinae subfamily members. For example, HSV-1 is the cause of one of the most frequent and serious viral eye infections in the United States, with over 400,000 affected individuals. Following primary infection of the eye, latency is established in sensory neurons within trigeminal ganglia (TG). HSV-1 reactivates sporadically from TG and the infectious virus can be detected on surfaces of the eye, where it can cause recurrent ocular disease. Reactivation from latency is necessary for recurrent ocular HSV-1 infections. Long-term oral acyclovir treatment only reduces ocular HSV-1 recurrences by 41%. Herpes simplex virus type 2 (HSV-2) is the cause of the most common sexually transmitted disease, and sporadic recurrent genital lesions occur periodically. Two genital herpes vaccine trials failed indicating there is a need for new and effective therapies that will reduce the incidence of recurrent HSV-1 and HSV-2 disease.

Bovine herpes virus 1 (BHV-1) is an important pathogen of cattle as it induces clinical signs in the upper respiratory tract of cattle and is immune-suppressive. BHV-1 establishes latency in sensory neurons, but periodically reactivates from latency, and thus is widespread in cattle. BHV-1 infection inhibits cell-mediated immunity, CD8+ T cell recognition of infected cells, and induces apoptosis in CD4+ T cells. Two viral regulatory proteins, bICP0 and bICP27, inhibit interferon dependent transcription. Infection also erodes mucosal surfaces of the upper respiratory tract, which can allow bacterial pathogens to colonize the lower respiratory tract.

Acute Infection Results in High Levels of Infectious Virus and Apoptosis

Binding and entry of HSV-1 and BHV-1 to mammalian cells are mediated by viral glycoproteins and cellular factors. A cellular receptor (HveA or HVEM) is primarily expressed in activated T cells and belongs to the tumor necrosis factor receptor family. Entry of HSV-1 into epithelial and fibroblasts is mediated by another membrane glycoprotein, HveB or HveC. HveC is an entry mediator for HSV-1 and BHV-1 and is abundantly expressed in neurons. Additionally, soluble HveC blocks viral entry in neuronal-like cell lines. After uncoating, the viral genome enters the nucleus and productive infection is initiated.

HSV-1 and BHV-1 gene expression is tightly regulated in three distinct phases during productive infection of cultured cells: immediate early (IE), early (E), or late (L). IE RNA expression does not require protein synthesis and is stimulated by VP16, a viral structural protein. E gene expression requires at least one IE protein, and E genes encode nonstructural proteins that stimulate viral DNA replication. L gene expression is maximal after viral DNA replication, requires IE protein production, and L proteins comprise the virion particle. Although a vigorous immune response leads to viral clearance following primary infection, BHV-1 and HSV-1 establish a life-long latent infection in ganglionic sensory neurons, primarily TG, or sacral dorsal root ganglia. Approximately 40% of sensory neurons appear to harbor viral genomes during latency.
gene expression (REST/CoREST/HDAC repressor complex).73 Since ICP0 can remove histones from viral chromatin during productive infection,75 ICP0 may have similar functions during reactivation from latency. These activities of ICP0 promote virus replication in differentiated cells.76 BHV-1 encoded ICP0 (bICP0) has similar functions as ICP0.10

Viral infection routinely leads to apoptosis in cultured cells.77–80 Killing of infected cells by apoptosis in vivo can reduce inflammation, alter immune recognition, reduce burst size, and thus prevent virus spread. Premature apoptosis of infected cells limits production of infectious virus and limits viral spread. Members of the \(\alpha\)-herpesvirinae subfamily induce apoptosis after infection of cultured cells.81–86 HSV-183,84,87–89 and BHV-190 can also inhibit apoptosis in a cell type dependent manner after infection of cultured cells. HSV can induce DNA damage, and consequently apoptosis, even in the absence of productive infection.91–95 Two viral proteins, \(U_s\)1.5 and \(U_l\)13, activate caspase 3 in the absence of other viral proteins, indicating these viral proteins play an important role during virus mediated apoptosis.96 Finally, ICP0 is also a trigger for apoptosis in the context of productive infection, in part because it activates viral gene expression.

HSV-1 encodes several proteins (ICP27, \(U_3\), \(U_5\), \(gJ\), \(gD\), and LAT) that have anti-apoptosis activity.83–85,87,88,97–105 \(U_3\) is a serine/threonine protein kinase that inhibits cleavage and activation of the pro-apoptotic Bcl-2 family member, Bad. \(U_3\) protein expression in cultured cells, in the absence of other viral proteins, inhibits caspase 3 activation, a crucial executioner caspase that commits cells to apoptosis. As expected, \(U_3\) inhibits the pro-apoptotic activity of \(U_s\)1.5 and \(U_l\)13 by blocking caspase 3 activation.96 These anti-apoptotic genes play an important role in the pathogenic properties of HSV-1.

Viral Genes Expressed During Latency Regulate the Latency-Reactivation Cycle

The HSV-1 latency associated transcript is abundantly expressed during latency and regulates the latency-reactivation cycle. The HSV-1 latency associated transcript (LAT) is abundantly expressed in sensory gangionic neurons of mice, rabbits, or humans that are latently infected.106–114 LAT is predominantly expressed in the nucleus of latently infected neurons suggesting it is a non-protein coding regulatory RNA. LAT is antisense to ICP0 and overlaps ICP0 mRNA sequences (Fig. 1B), suggesting LAT inhibits ICP0 expression by an antisense mechanism. Although the ability of LAT to repress ICP0 expression may be important, LAT sequences that promote spontaneous reactivation in a rabbit ocular model of infection do not overlap ICP0 mRNA sequences.115

\textbf{Figure 1.} Location of genes within the HSV-1 repeats. (Panel A) \(U_L\) and \(U_S\) denote the unique sequences of the long (L) and short (S) components of the genome. The boxes depict repeat sequences. (Panel B) Transcription map of the repeat region. Location and orientation of LAT.111,112 ICP0, \(\gamma_34.5\), 253,254 ORFP,150 L/STs256 are indicated by solid lines.

\textbf{Note:} Partially mapped transcripts (\(\alpha X\) and \(\alpha X\)) are denoted by dashed arrows.256,257
Splicing of the 8.5 kb LAT transcript yields a stable 2 kb LAT and an unstable 6.5 kb LAT (Fig. 1B).107,111,116 Correct splicing of the 2 kb LAT is necessary for establishment and maintenance of latency.117,118 In general, the 2 kb LAT is not capped, is poly A-, appears to be circular, and is a stable intron.119,120 A subset of LAT is detected in the cytoplasm97,121,122 and is associated with polyribosomes or splicing factors.97,123 Small non-coding RNAs can regulate gene expression,124,125 promote neuronal differentiation,126 or inhibit apoptosis127 suggesting LAT is a non-coding regulatory RNA.

A study by Umbach et al128 concluded that LAT is a microRNA (miRNA) precursor which encodes four miRNAs, two within LAT promoter sequences (Fig. 2A and B). LAT miR-H6, reduces ICP4 protein steady state levels but not ICP4 RNA levels. Protein levels, not RNA levels, of ICP0 are inhibited by the LAT miRNA, miR-R2-3p. Within the first 1.5 kb of LAT coding sequences, two small RNAs (sRNAs), LAT sRNA1 and sRNA2, were identified (Fig. 2B). The sRNAs are larger than mature miRNAs (typically 23 nucleotides long) and the sequence of both possess extensive secondary structure. The sRNAs can be detected in TG of mice latently infected with wild-type HSV-1, but not in TG of mice latently infected with a LAT null mutant.79,129 LAT sRNA2, but not LAT sRNA1, reduced ICP4 protein levels in transient transfection assays. Both LAT sRNAs inhibit productive infection in mouse neuroblastoma cells, however LAT sRNA1 inhibited productive infection more efficiently than LAT sRNA2.130 Collectively, these

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Schematic of putative factors encoded within the LAT locus. (Panel A) Schematic of genes within the long repeats that contain the LAT locus. The large arrow indicates the primary LAT transcript. The solid rectangle represents the sTable 2 kb LAT intron. Initiation of LAT transcription is denoted by the arrow at +1 (genomic nucleotide 118801). Several restriction enzyme sites and the relative locations of the iCP0 and iCP34.5 transcripts are shown for reference. The location of the 6 microRNAs (miR-H1-6) that is located within the 8.5 kb LAT128 are shown. (Panel B) Partial restriction map of LAT and position of LAT open reading frames (L1-8) within the first 1.5 Kb of strain McKrae LAT coding sequences, which were based on previous studies.148 The numbering system of the ORFs was consistent with a previous study.148 Only the ORFs with at least 30 amino acids are shown (the number of amino acids in each ORF is denoted by the numbers in brackets). Open circles denote the position of two LAT small RNAs that are encoded within the first 1.5 kb LAT coding sequences.258 Positions of UOL transcript, AL transcript, and ORFs located on the opposite strand of LAT (AL2 and AL3) are shown. The number of amino acids of AL2 and AL3 are in brackets. Nucleotide positions relative to the start of LAT transcription are not shown in parenthesis.
\end{figure}
studies provide evidence that the LAT encoded miRNAs and sRNAs promote latency by interfering with expression of important viral transcriptional regulatory proteins.

The LAT locus encodes additional transcripts (Fig. 2B). More than one transcript, including UOL (Upstream of LAT) are located within LAT promoter sequences. Expression of the UOL transcript or protein does not reduce reactivation from latency in rabbits. An antisense to LAT (AL) transcript is expressed from the first 1.5 kb of LAT coding sequences and appears to encode a protein. Two additional small open reading frames (ORFs) that are antisense to LAT (AL2 and AL3) are present in LAT coding sequences. An AL3 transcript is expressed during productive infection and in TG of mice latently infected with wild-type HSV-1, but not a LAT null mutant virus. An AL3-specific polyclonal antibody detected a protein in a subset of TG neurons in latently infected mice. A transcript encompassing AL2 has not been detected during productive infection or latency (unpublished data).

LAT null HSV-1 mutants have been examined in various small animal models. Although two studies concluded that LAT does not play a role in latency, most have provided evidence that LAT is important. This discrepancy may be due to the strain of virus or mouse that was used for specific studies. LAT enhances the establishment of latency in mice and in rabbit ocular infection models, in part by reducing lytic cycle viral gene expression in TG of mice. By enhancing the establishment of latency, LAT would increase the pool of latently infected neurons; thus indirectly increasing the incidence of reactivation from latency.

As a result of stress or other external stimuli, reactivation from latency can occur, resulting in virus shedding (Fig. 4). The McKrae strain of wild-type HSV-1, however not a LAT null mutant, is consistently detected in tears of infected rabbits, due to spontaneous reactivation. These same LAT null mutants grow with wild-type efficiency in cultured cells and in acutely infected rabbits. When just the first 1.5 kb of LAT coding sequences (Fig. 2B) is expressed from the HSV-1 genome, wild-type levels of spontaneous reactivation from latency occur in rabbits. Similar results were observed using another virulent strain of HSV-1 (17 syn+) in a rabbit eye model.

The first 1.5 kb of LAT coding sequences does not overlap ICP0, suggesting that antisense repression of ICP0 expression by LAT is not important for spontaneous reactivation in the rabbit ocular model of infection. The factors encoded by the first 1.5 kb of LAT coding sequences that promote spontaneous reactivation have not been fully characterized.

Although certain studies suggested LAT does not encode a protein, other studies have concluded that a protein encoded within LAT sequences is expressed. These proteins were suggested to either substitute for ICP0 functions, interfere with binding of ICP4 to DNA, or their functions were not described. The proposed LAT proteins are mapped downstream of the critical first 1.5 kb of the primary LAT transcript, a region that appears both sufficient and necessary for the wild type spontaneous reactivation phenotype in rabbit models. Within the first 1.5 kb of LAT coding sequences, 8 potential ORFs have been identified in the McKrae strain (Fig. 2B). The L2 ORF (Fig. 2B) appears to be expressed in TG of latently infected mice. Although LAT is not absolutely required for the latency-reactivation cycle in small animal models, its importance may be underestimated using small animal models and measuring latency in terms of weeks or months, not decades.

The BHV-1 latency related RNA is abundantly expressed in sensory neurons and is necessary for reactivation from latency

Latency related (LR) RNA is abundantly expressed in TG neurons of calves that are latently infected. Two different start sites of LR-RNA transcription (Fig. 3A) have been identified suggesting this has functional significance. It is clear that the LR gene encodes more than one product. For example, the LR gene contains two-well defined ORFs (ORF2 and ORF1; Fig. 3B) and two reading frames that lack an initiating methionine (RF-B and RF-C). As a result of alternative splicing of polyA+ LR-RNA in TG of infected calves (Fig. 3A), ORF2 can be fused with ORF1 protein coding sequences or RF-B. The ORF2/ORF1 fusion protein stably interacts with the cellular transcription factor C/EBP-alpha. Viral anti-apoptosis genes promote latency
dexamethasone induced reactivation from latency. Over-expression of C/EBP-alpha enhanced productive infection, suggesting that ORF2 sequesters C/EBP-alpha and reduces the efficiency of productive infection during the latency-reactivation cycle.

One day after calves are infected and during latency, splicing of LR-RNA in TG is such that ORF2 is intact, suggesting ORF2 expression is important for the latency-reactivation cycle. ORF2 interacts with Notch1 and Notch3, components of the Notch signaling pathway. Mammalian Notch receptor family members (Notch1-4) are membrane tethered transcription factors that regulate many developmental and physiological processes. For example, Notch promotes neuronal maintenance, development, and differentiation. Notch3 and Notch1 promote cell survival by activating a protein kinase, (AKT) which inhibits apoptosis. Notch family members can also induce apoptosis, suggesting Notch influences cell survival by cell-type dependent mechanisms. When the Notch receptor is engaged by one of its five transmembrane ligands (Jagged1, Jagged2, Delta-like1, Delta-like3, or Delta-like4), the Notch intracellular domain (ICD) is cleaved by specific proteases, and subsequently translocates to the nucleus. In the nucleus, Notch ICD interacts with members of the CSL family of transcriptional factors, CBF1, Su(H), or Lag1 (also referred to as RBP-J binding proteins) subsequently activating downstream genes. Notch1, but not Notch3, enhances BHV-1 productive infection and Notch1 activates the BHV-1 immediate-early transcription unit 1 (IEtu1) and bICP0 early promoters. Notch1 and Notch3 trans-activated the late glycoprotein C (gC)
promoter. ORF2 interferes with the ability of Notch1 to trans-activate the bICP0 early promoter and Notch1 or Notch3 mediated activation of the gC promoter suggesting this function is important for establishing and/or maintaining latency. Notch3 RNA levels are higher during dexamethasone (DEX) induced reactivation from latency, suggesting Notch family members stimulate productive infection during reactivation from latency. Activation of Notch signaling in post-mitotic-neurons or neuroblastoma cells inhibits neurite sprouting and axon repair, which can lead to neuronal degeneration and apoptosis. Conversely, neurite sprouting correlates with regeneration of damaged axons and dendrites. ORF2 promotes neurite sprouting and neuronal differentiation of mouse neuroblastoma cells when Notch1 or Notch3 is over-expressed. Collectively, these studies suggest that ORF2 interactions with Notch family members promote the establishment and maintenance of latency by (1) interfering with viral gene expression necessary for productive infection, (2) supporting a mature neuronal phenotype, and (3) overcoming the deleterious effects of Notch expression during stress-induced reactivation from latency.

Although the results from the LR mutant virus suggested that proteins encoded by the LR gene are necessary for the latency-reactivation cycle, non-protein coding functions within LR-RNA have also been identified. For example, the intact LR gene inhibits the ability of bICP0 to stimulate productive infection in a dose-dependent manner. Insertion of three in-frame stop codons at the amino-terminus of the first ORF within the LR gene (ORF2) inhibited bICP0 repression with similar efficiency as the wild-type LR gene, suggesting expression of a LR protein is not required. LR gene products also inhibit mammalian cell growth, and the cell growth inhibitory function of the LR gene maps to a 463-bp fragment that lacks a significant open reading frame. Two miRNAs located upstream of ORF2 are expressed during latency. These miRNAs, or larger sRNAs containing these miRNAs, reduced bICP0 protein levels in transient transfection assays.

A small ORF located within the LR promoter is designated ORF-E (Fig. 3B). ORF-E is antisense to the LR transcript and is downstream of bICP0 coding sequences, but does not overlap bICP0. A transcript that encompasses ORF-E is expressed during productive infection and in TG of latently infected calves. The LR promoter contains multiple cis-acting motifs, has a neuronal specific binding domain, and contains a long AT-rich motif (40/53 nucleotides are A or T) that may promote ORF-E transcription. When ORF-E protein coding sequences are fused in frame with green fluorescent protein (GFP) sequences, GFP protein expression is detected in the nucleus of mouse or human neuroblastoma cells. In contrast, the ORF-E-GFP fusion protein is detected throughout rabbit skin cells. In transient transfection assays, ORF-E promotes neurite formation in mouse neuroblastoma cells, which may support a mature neuronal phenotype following infection.

LAT and LR Gene Products Inhibit Apoptosis

LAT inhibits apoptosis

LAT expressing plasmids interfere with apoptosis in transiently transfected cells, and LAT expressing viruses inhibit apoptosis in TG of infected mice or rabbits. The anti-apoptotic functions of LAT correlate with promoting spontaneous reactivation from latency. In the context of promoting spontaneous reactivation from latency in the rabbit model, inhibiting apoptosis is the most important function of LAT as three different anti-apoptosis genes restore wild-type levels of spontaneous reactivation from latency to a LAT null mutant. LAT may encode other functions because the LAT null mutants that express cellular anti-apoptosis genes have reduced virulence, in spite of reactivating from latency with wild-type frequency. LAT expressing plasmids, in the absence of other viral genes, inhibit caspase 8- and caspase 9-induced apoptosis, the two major apoptotic pathways in mammals. LAT also inhibits caspase 3 activation.

LAT sRNA1 and sRNA2 cooperate to inhibit cold-shock induced apoptosis in mouse neuroblastoma cells. Introduction of ATG→TTG mutations in ORFs within the first 1.5 kb of LAT coding sequences impairs the anti-apoptotic functions of LAT suggesting that LAT either encodes a functional protein or alters RNA structure. Two of these ATG→TTG mutations are within LAT sRNA1 and sRNA2, and introducing these mutations into the small RNAs inhibits
their ability to inhibit apoptosis. At this time, it is not clear how these sRNAs interfere with apoptosis. It will also be important to construct a recombinant virus with these same mutations and test whether the spontaneous reactivation incidence is affected.

LAT also inhibits GrzB induced apoptosis in transient transfection studies. GrzB is released from CD8+ T cells as well as other specific lymphocytes; GrzB has features similar to apical caspases, and can induce apoptosis in most cell types. Inhibiting GrzB induced apoptosis may be important for the latency-reactivation cycle because CD8+ T lymphocytes control HSV infection in sensory ganglia.

The LR gene encodes more than one product that inhibits apoptosis

A mutant BHV-1 strain with 3 stop codons after the initiating methionine codon of ORF-2 (LR mutant virus) does not express detectable levels of ORF-2 but expresses reduced levels of ORF1 in cultured cells during productive infection. The LR mutant virus grows less efficiently in the ocular cavity and TG, but grows almost as efficiently as wild-type BHV-1 in the nasal cavity, and does not reactivate from latency following DEX treatment. The LR mutant virus induces higher levels of apoptosis in TG neurons of infected calves, and a LR gene expressing plasmid with the same stop codon mutations does not effectively inhibit apoptosis. ORF2 expression in the absence of other viral genes inhibits apoptosis in transiently transfected cells, suggesting that ORF2 is a dominant function encoded by the LR gene. ORF2, like LAT, can inhibit caspase 8 and caspase 9 mediated apoptosis; however the mechanism by which it inhibits apoptosis is not known.

Two microRNAs encoded within the LR gene (Fig. 3A) interfere with bICP0 protein expression and cold shock induced apoptosis in transfected mouse neuroblastoma cells (Neuro-2A cells). Since cold shock induced apoptosis in Neuro-2A cells is inhibited by caspase 3 and caspase 9 inhibitors, the microRNAs must influence these apoptotic signaling pathways. The ability of the microRNAs to stimulate the anti-apoptotic transcription factor NF-αB seems to be important for inhibiting cold-shock induced apoptosis. In summary, these results provide additional evidence that interfering with apoptosis is crucial for a successful life-long latent infection.

Why is Inhibiting Neuronal Apoptosis Important During the Latency-Reactivation Cycle?

The latency-reactivation cycle has been operationally divided into three distinct steps: establishment, maintenance, and reactivation (Fig. 4). Following acute infection where high levels of infectious virus are produced, virus particles enter sensory neurons. Initial entry of the viral genome into a sensory neuron results in a burst of lytic cycle viral gene expression and infectious viruses are produced. Viral gene expression is then extinguished, with the exception of HSV-1 LAT and BHV-1 LR gene products. Neuronal cell factors, LAT encoded microRNAs plus sRNAs, and LR encoded functions interfere with various aspects of productive infection. During acute infection and establishment of latency, neuronal and satellite cells undergo apoptosis when small animal models are infected with HSV-2 or HSV-1. BHV-1 replication and gene expression also occur in TG of acutely infected calves, resulting in apoptosis of neurons and non-neuronal cells.

HSV-1 LAT and the LR gene enhance neuronal survival during the establishment of latency. The ability of LAT and the LR gene to promote a mature neuronal phenotype and sprout neurites may also promote establishment of latency by stimulating repair of damaged neurons following infection. Successful establishment correlates with an increase in the number of infected neurons that survive and enhances the probability that reactivation from latency occurs.

Maintenance of latency is a phase that lasts for the duration of the host’s life and is operationally defined as a period when infectious virus is not readily detected. In general, abundant expression of viral genes required for productive infection does not occur. LAT or LR gene products are abundantly expressed during the maintenance of latency. Expression of LAT correlates with an increase of latently infected neurons during the maintenance of latency, suggesting latently infected sensory neurons are exposed to apoptotic stimuli during the maintenance of latency. It is reasonable to predict that LAT and LR gene products...
actively participate in maintaining a latent infection in sensory neurons.

Reactivation from latency is initiated by external stimuli (stress, immunosuppression, or UV light for example), which ultimately must stimulate viral gene expression. Abundant viral gene expression can be detected in sensory neurons and infectious virus can be isolated from TG, ocular swabs, and/or nasal swabs. Stress leads to elevated corticosteroid levels, which has rapid effects on neural activity. DEX, a synthetic corticosteroid, induces viral gene expression, stimulates an HSV-1 origin of replication (Ori-L) in neuronal cells, and alters splicing patterns in the absence of protein synthesis. DEX and other apoptosis stimulators can also stimulate HSV-1 reactivation from latency. BHV-1 reactivation from latency is induced by DEX, in part because it stimulates expression of cellular transcription factors and viral gene expression while repressing expression of LR gene products. Prolonged exposure to corticosteroids can also induce immunosuppression, in part by inducing apoptosis in lymphocytes. A subset of neurons that successfully reactivate from latency to produce infectious virus may not survive; however it is not clear if this is the fate for all neurons that produce infectious virus during reactivation from latency. Most latently infected neurons that are exposed to reactivation stimuli re-establish latency and do not produce infectious virus. Given that sensory neurons are terminally differentiated cells, inhibiting apoptosis during the latency-reactivation cycle is crucial for life-long latent infections of herpesvirinae subfamily members.

Numerous studies have demonstrated that infiltrating lymphocytes in TG regulate the latency-reactivation cycle. For example, a persistent cell-mediated immune response occurs in TG during latency and CD8+ T lymphocytes inhibit reactivation from latency. Release of granzyme B from CD8+ T cells into latently infected neurons helps to inhibit reactivation from latency by cleaving the viral transcriptional trans-activator, ICP4. Since it is well established that granzyme B activates caspase 3 and the intrinsic pathway of apoptosis, the ability of LAT and perhaps LR gene products to inhibit apoptosis is important to overcome the effects of granzyme B. The ability of HSV-1 to inhibit major histocompatibility complex (MHC) class I presentation in sensory neurons correlates with successful reactivation providing further evidence that CD8+ T cells monitor latently infected neurons. In conclusion, the ability of HSV-1, HSV-2, and BHV-1 to reactivate from latency is regulated by complex virus-host interactions.

Perspectives

Although genetic and functional studies have demonstrated that LAT and the LR gene regulate the latency-reactivation cycle, there are many unanswered questions. For example, identifying the functions of various transcripts, the small non-coding RNAs, and the ORFs within LAT are crucial to understand the role these various factors play in the latency-reactivation cycle. It would not be surprising to find that one or more of these factors encoded within the LAT locus regulate certain neuronal specific functions that maintain normal functions. It will be difficult to make additional LAT mutant viruses as many of these factors overlap and deletion of these sequences would likely interfere with expression of more than one LAT encoded factor. Consequently, many of these studies will have to be performed in transient transfection assays in primary neurons or neuroblastoma cells. Finally, examining LAT in small animal models in terms of weeks after acute infection may not accurately reflect the latency-reactivation cycle in the context of life-long latency in humans.

With respect to the LR gene, there are no studies that have determined whether ORF1, ORF-E, or the microRNAs play a role in the latency-reactivation cycle. Furthermore, functional analysis of ORF-1 and ORF-E has not been performed. Identifying the cellular proteins that interact with ORF-1 and ORF-E may provide insight into their functions. In summary, the finding that sequences encompassing LAT and the LR gene encode for more than one transcript and/or small non-coding RNAs implies many functions are necessary to successfully regulate the life-long latency-reactivation in the natural host.

Author Contributions

Conceived and designed the experiments: CJ. Analyzed the data: CJ. Wrote the first draft of the manuscript: CJ. Contributed to the writing of the manuscript: CJ. Agree with manuscript results and conclusions: CJ. Jointly developed the structure and arguments for the paper: CJ. Made critical revisions and approved final version: CJ. All authors reviewed and approved of the final manuscript.
Funding
Research in the author’s laboratory is supported by a grant from the USDA, NIFA Competitive Grants Program (09-01653), a grant to the Nebraska Center for Virology (1P20RR15635), and the NE Research Initiative.

Competing Interests
Author disclose no potential conflicts of interest.

Disclosures and Ethics
As a requirement of publication the author has provided signed confirmation of compliance with ethical and legal obligations including but not limited to compliance with ICMJE authorship and competing interests guidelines, that the article is neither under consideration for publication nor published elsewhere, of their compliance with legal and ethical guidelines concerning human and animal research participants (if applicable), and that permission has been obtained for reproduction of any copyrighted material. This article was subject to blind, independent, expert peer review. The reviewers reported no competing interests. Provenance: the authors were invited to submit this paper.

References
1. Smith RE, McDonald HR, Nesburn AB, Minckler DS. Penetrating keratoplasty: changing indications, 1947 to 1978. Arch Ophthalmol. 1980;98(7): 1226–9.
2. Jones C. Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Micro Rev. 2003;16(1):79–95.
3. Wagner EK, Bloom DC. Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev. 1997;10(3):419–43.
4. Nesburn AB. Recurrent herpes simplex infection: pathogenesis and treatment. In: Barraquer J, Binder P, Buxton I, editors. Symposium on Medical and Surgical Disease of the Cornea. CV Mosby Company, St. Louis; 1980:48–68.
5. Nesburn AB, editor. Report of the Corneal Disease Panel: Vision Research: A National Plan 1983–1987, vol. II. CV Mosby Co., St. Louis; 1983.
6. Nesburn AB, Ghiasi H, Wechsler SL. Ocular safety and efficacy of an HSV-1 gD vaccine during primary and latent infection. Invest Ophthalmol Vis Sci. 1990;31(8):1497–502.
7. Cohen J. Painful failure of promoting genital herpes vaccine. Science. 2010; 330(6002):304.
8. Stanberry LR, Spruance SL, Cunningham AL, et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347(21):1652–61.
9. Jones C. Alphaherpesvirus latency: its role in disease and survival of the virus in nature. Adv Virus Res. 1998;51:81–133.
10. Jones C. Regulation of innate immune responses by bovine herpesvirus 1 and infected cell protein 0. Viruses. 2009;1(2):255–75.
11. Jones C, Geiser V, Henderson G, et al. Functional analysis of bovine herpesvirus 1 (BHV-1) genes expressed during latency. Vet Micro. 2006;113(3–4):199–210.
12. Carter JJ, Weinberg AD, Pollard A, Reeves R, Magnuson JA, Magnuson NS. Inhibition of T-lymphocyte mitogenic responses and effects on cell functions by bovine herpesvirus 1. J Virol 1989;63(4):1525–30.
13. Griebel P, Ohmann HB, Lawman MJ, Babiuk LA. The interaction between bovine herpesvirus type 1 and activated bovine T lymphocytes. J Gen Virol. 1990;71(Pt 2):369–77.
14. Griebel P, Qualtiere L, Davis WC, et al. T lymphocyte population dynamics and function following a primary bovine herpesvirus type-1 infection. Viral Immunol. 1987;1(4):287–304.
15. Griebel P, Qualtiere L, Davis WC, Lawman MJ, Babiuk LA. Bovine peripheral blood leukocyte subpopulation dynamics following a primary bovine herpesvirus-1 infection. Viral Immunol. 1987–1988;1(4):267–86.
16. Hariharan MJ, Natrajan C, Srikumaran S. Down regulation of murine MHC class I expression by bovine herpesvirus 1. Viral Immunol. 1993;6(4):273–84.
17. Jones S, Hill AB, Srikumaran S. Bovine herpesvirus-1 infection affects the peptide transport activity in bovine cells. Virus Res. 1998;53(1):91–6.
18. Koppers-Lalic EA, Reits AJ, Ressing ME, et al. Varicelloviruses avoid T cell recognition by UL45.5-mediated inactivation of the transporter associated with antigen processing. Proc Natl Acad Sci U S A. 2005;102(14):5144–9.
19. Natrajan C, Eidmann S, Hariharan MJ, Sur JH, Perry GA, Srikumaran S. Bovine herpesvirus 1 downregulates the expression of bovine MHC class I molecules. Viral Immunol. 1997;10(1):21–34.
20. Eskra L, Splinter GA. Bovine herpesvirus-1 infects activated CD4+ lymphocytes. J Gen Virol. 1997;78(Pt 9):2159–66.
21. Winkler MT, Doster A, Jones C. Bovine herpesvirus 1 can infect CD4+ T lymphocytes and induce programmed cell death during acute infection of cattle. J Virol. 1999;73:8657–68.
22. da Silva LF, Sinani D, Jones C. The ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-b1) and IFN-b3. Virus Res. 2012; 169(1):162–8.
23. Henderson G, Zhang Y, Jones C. The bovine herpesvirus 1 gene encoding infected cell protein 0 (bICP0) can inhibit interferon-dependent transcription in the absence of other viral genes. J Gen Virol. 2005;86(Pt 10):2697–702.
24. Saira K, Zhou Y, Jones C. The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 (IRF3), and consequently inhibits beta interferon promoter activity. J Virol. 2007;81(7):3077–86.
25. Saira K, Jones C. The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) associates with interferon regulatory factor 7 (IRF7), and consequently inhibits beta interferon promoter activity. J Virol. 2009;83(8): 3977–81.
26. Highlander SK. Molecular genetic analysis of virulence in Mannheimia (Pasteurella) haemolytica. Front Biosci. 2001;D1128–50.
27. Highlander SK, Fedorova ND, Dusek DM, Panciera R, Alvarez LE, Renhart C. Inactivation of Pasteurella (Mannheimia) haemolytica leukotoxin causes partial attenuation of virulence in a calf challenge model. Infect Immun. 2000;68(7):3916–22.
28. Zecchinon L, Fett T, Desmecht D. How Mannheimia haemolytica defeats host defense through a kiss of death mechanism. Vet Res. 2005;36(2):133–56.
29. Spear PG. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol. 2004;6(5):401–10.
30. Spear PG, Manoj S, Yoon M, Jogger CR, Zago A, Mysofski D. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology. 2006;344(1): 17–24.
31. Spear PG, Longnecker R. Herpesvirus entry: an update. J Virol. 2003; 77(19):10179–85.
32. Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996;87(3):427–36.
33. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science. 1998;280(5369):1618–20.
34. Honess RW, Roizman B. Regulation of herpes virus macromolecular synthesis: Cascade regulation of three groups of viral proteins. J Virol. 1974;14(1):8–19.
35. O’Hare P. The virion transactivator of herpes simplex virus. Seminars Virol. 1993;4:145–55.
36. Jones C, da Silva LF, Saniar D. Regulation of the latency-reactivation cycle by products encoded by the bovine herpesvirus 1 (BHV-1) latency-related gene. J Neurovirol. 2011;17(6):535–45.

37. Maggoncaldia J, Mehta A, Su YH, Fraser NW, Block TM. Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology. 1996;225(1):72–81.

38. Mehta A, Maggoncaldia J, Bagasra O, et al. In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology. 1995;206(1):633–40.

39. Ramakrishnan R, Fink DJ, Jiang G, Desai P, Glorioso JC, Levine M. Competitive quantitative PCR analysis of herpes simplex virus virus type 1 DNA and latency-associated transcript RNA in latently infected cells of the ratbrain. J Virol. Mar 1994;68(3):1864–73.

40. Ramakrishnan R, Levine M, Fink DJ. PCR-based analysis of herpes simplex virus type 1 latency in the rat trigeminal ganglion established with a ribonucleotide reductase-deficient mutant. J Virol. 1994;68:7083–91.

41. Sawtell NM. Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol. 1997;71(7):5423–31.

42. Carrozza MJ, DeLuca NA. Interaction of the viral activator protein ICP4 with TFIIID through TAF250, Mol Cell Biol. 1996;16(6):3085–93.

43. DeLuca NA, McCarthy AM, Schaffer PA. Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol. 1985;56(2):558–70.

44. DeLuca NA, Schaffer PA. Activation of immediate-early, early, and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4. Mol Cell Biol. 1985;5(8):1997–208.

45. Dixon RA, Schaffer PA. Fine-structure mapping and functional analysis of temperature-sensitive mutants in the gene encoding the herpes simplex virus type 1 immediate early protein VP175. J Virol. 1980;36(1):189–203.

46. McCarthy AM, McMahan L, Schaffer PA. Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J Virol. 1989;63(1):18–27.

47. McMahan L, Schaffer PA. The repressing and enhancing functions of the herpes simplex virus regulatory protein ICP27 map to C-terminal regions and are required to modulate viral gene expression very early in infection. J Virol. 1990;64(7):3471–85.

48. Sacks WR, Greene CC, Aschman DP, Schaffer PA. Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J Virol. 1985;55(3):796–805.

49. Gu B, DeLuca N. Requirements for activation of the herpes simplex virus glycoprotein C promoter in vitro by the viral regulatory protein ICP4. J Virol. 1994;68(12):7953–65.

50. Gu B, Rivera-Gonzalez R, Smith CA, DeLuca NA. Herpes simplex virus infected cell polypeptide 4 preferentially represses Sp1-activated over basal transcription from its own promoter. Proc Nat Acad Sci U S A. 1993;90(24):9528–32.

51. Michael N, Roizman B. Repression of the herpes simplex virus 1 alpha 4 gene by its product occurs within the context of the viral genome and is associated with all three identified cognate sites. Proc Nat Acad Sci U S A. 1993;90(6):2268–90.

52. O’Hare P, Hayward GS. Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback regulation. J Virol. 1985;56(3):723–33.

53. Roberts MS, Boundy A, O’Hare P, Puizorno MC, Cifou DM, Hayward GS. Direct correlation between a negative autoregulatory response element at the cap site of the herpes simplex virus type 1 IE175 (alpha 4) promoter and a specific binding site for the IE175 (ICP4) protein. J Virol. 1988;62(11):4307–20.

54. Smith CA, Bates P, Rivera-Gonzalez R, Gu B, DeLuca NA. ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIIB. J Virol. 1993;67(8):4676–87.

55. Hardwicke MA, Schaffer PA. Differential effects of nerve growth factor and dexamethasone on herpes simplex virus type 1 oral- and oris-dependent DNA replication in PC12 cells. J Virol. 1997;71(5):3580–7.

56. Hardy WR, Sandri-Goldin RM. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J Virol. 1994;68(12):7790–9.

57. Sandri-Goldin RM, Hibbard MK, Hardwicke MA. The C-terminal repressor region of herpes simplex virus type 1 ICP27 is required for the redistribution of small nuclear ribonucleoprotein particles and splicing factor SC35; however, these alterations are not sufficient to inhibit host cell splicing. J Virol. 1995;69(10):6063–76.

58. Sandri-Goldin RM, Mendoza GE. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 1992;6(5):848–63.

59. Hill A, Jugovic P, York I, et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature. 1995;375(6530):411–5.

60. Goldsmith K, Chen W, Johnson DC, Hendricks RL. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med. 1998;187(3):341–8.

61. Rice SA, Long MC, Lami V, Schaffer PA, Spencer CA. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J Virol. 1995;69(9):5550–9.

62. Jordan R, Schaffer PA. Activation of gene expression by herpes simplex virus type 1 ICP2 occurs at the level of mRNA synthesis. J Virol. 1997;71(9):6850–62.

63. Kawaguchi Y, Bruni R, Roizman B. Interaction of herpes simplex virus 1 alpha regulatory protein ICP0 with elongation factor 1 delta: ICP0 affects translational machinery. J Virol. 1997;71(12):1019–24.

64. Kawaguchi Y, Van Sant C, Roizman B. Herpes simplex virus 1 alpha regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol. 1997;71(10):7328–36.

65. Meredith M, Orr A, Elliott M, Everett R. Separation of sequence requirements for HSV-1 Vmw110 multimerisation and interaction with a 135-kDa cellular protein. Virology. 1995;209(1):174–87.

66. Meredith M, Orr A, Everett R. Herpes simplex virus type 1 immediate-early protein Vmw110 binds strongly and specifically to a 135-kDa cellular protein. Virology. 1994;202(2):457–69.

67. Everett R, O’Hare P, O’Rourke D, Barlow P, Orr A. Point mutations in the herpes simplex virus type 1 Vmw110 RING finger helix affect activation of gene expression, viral growth, and interaction with PML-containing nuclear structures. J Virol. 1995;69(11):7339–44.

68. Everett RD, Lomonte P, Sterenstorf t, van Driel R, Orr A. Cell cycle regulation of PML modification and ND10 composition. J Cell Sci. 1999;112(24):4581–8.

69. Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J. 1997;16(7):1519–30.

70. Hobbs WE, DeLuca NA. Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol. 1999;73(10):8245–55.

71. Poon AP, Liang Y, Roizman B. Herpes simplex virus 1 gene expression is accelerated by inhibitors of histone deacetylases in rabbit skin cells infected with a mutant carrying a DNA copy of the infected cell protein no. J Virol. 2003;77(23):12671–8.

72. Lomonte P, Seigneurin-Berry D, Everett RD, Khochbin S, Epstein AL. Presented at the 26th International Herpesvirus Workshop; 2001.

73. Gu H, Liang Y, Mandel G, Roizman B. Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Nat Acad Sci U S A. 2005;102(21):7571–6.

74. Poon APW, Gu H, Roizman B. ICP0 and the Us3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc Nat Acad Sci U S A. 2006;103(26):9993–8.

75. Cliffe AR, Knipe DM. Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral dna during lytic infection. J Virol. 2008;82(24):12030–7.

76. Cui W, Schaffer PA. A cellular function can enhance gene expression and plating efficiency of a mutant defective in the gene for ICP0, a transactivating protein of herpes simplex virus type 1. J Virol. 1991;65(8):4078–90.

77. Hardwicke JM. Viral interference with apoptosis. Semin Cell Dev Biol. 1998;9(3):339–49.
87. Ahmed M, Fraser NW. Herpes simplex virus type 1 2-kilobase latency-associated transcript intron associates with ribosomal proteins and splicing factors. J Virol. 2001;75(24):12070–80.

88. Aubert M, Blaho JA. Modulation of apoptosis during herpes simplex virus infection in human cells. Microbes Infect. 2001;3(10):859–66.

89. Jerome KR, Chen Z, Lang R, et al. HSV and Glycoprotein J inhibit caspase activation and apoptosis induced by Granovsky B or Fas. J Immunol. 2001;167(7):3928–35.

90. Jerome KR, Fox R, Chen Z, Sears AE, Lee H, Corey L. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol. 1999;73(11):8590–7.

91. Jiang Y, Inman M, Zhang Y, Posadas NA, Jones C. A mutation in the latency related gene of bovine herpesvirus 1 (BHV-1) inhibits protein expression of a protein from open reading frame 2 (ORF-2) and an adjacent reading frame during productive infection. J Virol. 2004;78(6):3184–9.

92. Kather A, Rayter MJ, Devi-Rao G, et al. Herpes simplex virus type 1 (HSV-1)-induced apoptosis in human dendritic cells as a result of downregulation of cellular FLICE-inhibitory protein and reduced expression of HSV-1 antiapoptotic latency-associated transcript sequences. J Virol. 2010;84(2):1034–46.

93. Munger J, Chee AV, Roizman B. The US3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol. 2001;75(12):5491–7.

94. Munger J, Roizman B. The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci U S A. 2001;98(18):10410–5.

95. Nguyen ML, Blaho JA. Cellular players in the herpes simplex virus dependent apoptosis balancing act. Viruses. 2009;1(3):965–78.

96. Croen KD, Ostrove JM, Dragovic LJ, Smialek JE, Strauss SE. Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene ‘anti-sense’ transcript by in situ hybridization. N Engl J Med. 1987;317(23):1427–32.

97. Deatly AM, Spivack JG, Lavi E, O’Boyle DR 2nd, Fraser NW. Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J Virol. 1988;62(3):749–56.

98. Deatly AM, Spivack JG, Lavi E, Fraser NW. RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci U S A. 1987;84(10):3204–8.

99. Krause PR, Croen KD, Strauss SE, Ostrove JM. Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia. J Virol. 1988;62(12):4819–23.

100. Mitchell WJ, Lirette RP, Fraser NW. Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. J Gen Virol. 1990;71(Pt 1):125–32.

101. Rock DL, Neshburn AB, Ghiasii H, et al. Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol. 1987;61(12):3820–6.

102. Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987;235(4792):1056–9.

103. Wagner EK, Devi-Rao G, Feldman LT, et al. Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol. 1988;62(4):1194–202.

104. Wagner EK, Flanagan WM, Devi-Rao G, et al. The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. J Virol. 1988;62(12):4577–85.

105. Pereng GC, Ghiasii H, Slanina SM, Neshburn AB, Wechsler SL. The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol. 1996;70(2):976–84.

106. Zwaagstra JC, Ghiasii H, Slanina SM, et al. Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol. 1990;64(10):5019–28.

107. Kang W, Mukerjee R, Fraser NF. Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology. 2003;312(1):233–44.

108. Mador N, Panet A, Latchman D, Steiner I. Expression and splicing of the latency-associated transcripts in a stable intron. Proc Natl Acad Sci U S A. 1991;88:790–4.

109. Krummenacher C, Zabolotny JM, Fraser NW. Selection of a nonconsensus branch point is influenced by an RNA stem-loop structure and is important to confer stability to the herpes simplex virus 2-kilobase latency-associated transcript. J Virol. 1997;71(8):5849–60.
Viral anti-apoptosis genes promote latency

121. Nicosia M, Zabolotny JM, Lirette RP, Fraser NW. The HSV-1 2-kb latency-associated transcript is found in the cytoplasm comigrating with ribosomal subunits during productive infection. *Virology*. 1994;204(2):717–28.

122. Thomas DL, Locket M, Zabolotny JM, Mohan BR, Fraser NW. The 2-kb kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. *J Virol*. 2002;76(2):532–40.

123. Goldenberg D, Mador N, Ball MJ, Panet A, Steiner I. The abundant latency-associated transcripts of herpes simplex virus type 1 are bound to polyribosomes in cultured neuronal cells and during latent infection in mouse trigeminal ganglia. *J Virol*. 1997;71(4):2897–904.

124. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. *Nat Rev Mol Cell Biol*. 2003;4(6):457–67.

125. Hannon GJ. RNA interference. *Nature*. 2002;418(6894):244–51.

126. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH. A small modulatory dsRNA specified the fate of adult neural stem cells. *Cell*. 2004;116(6):779–93.

127. Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. *Trends Genet*. 2004;20(12):617–24.

128. Umbach JL, Kramer MF, Jurak I, Kornowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus type 1 during latent infection regulate viral mRNAs. *Nature*. 2008;454(7205):780–5.

129. Perig GC, Maguen B, Jing L, et al. A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. *J Virol*. 2002;76(3):1234–35.

130. Shen W, Sa e Silva MSE, Jaber T, et al. Two small RNAs encoded within the first 1.5 kb of the herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) can inhibit productive infection, and to cooperate to inhibit apoptosis. *J Virol*. 2009;83(18):9131–9.

131. Naito J, Mukerjee R, Mott KR, et al. Identification of a protein encoded in the herpes simplex virus type 1 latency associated transcript promoter region. *Virus Research*. 2005;108(1–2):101–10.

132. Chan D, Cohen J, Naito J, et al. A mutant deleted for most of the herpes simplex virus type 1 UOL gene does not affect the spontaneous reactivation of herpes simplex virus type 1. *Virology*. 1999;73(8):6618–25.

133. Jaber T, Henderson G, Li S, et al. Identification of a novel herpes simplex virus type 1 (HSV-1) transcript (AL-RNA) antisense to the 5′ end of LAT (latency associated transcript) produces a protein in infected rabbits. *J Virol*. 2002;76(16):8003–10.

134. Block TM, Spivack JG, Steiner I, et al. A herpes simplex virus type 1 transcript (AL3) expressed during latency binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site. *Proc Natl Acad Sci U S A*. 1997;94:10379–84.

135. Thomas SK, Gough G, Latchman DS, Coffin RS. Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate-early gene expression, and is likely to function during reactivation from virus latency. *J Virol*. 1999;73(8):6618–25.

136. Randall G, Lagunoff M, Roizman B. Product of ORF O located within the domain of herpes simplex virus 1 genome transcribed during latent infection binds to and inhibits in vitro binding of infected cell protein 4 to its cognate DNA site. *Proc Natl Acad Sci U S A*. 1997;94:10379–84.

137. Ho DY, Mocarski ES. Beta-galactosidase as a marker in the peripheral transcript gene and restore wild-type reactivation levels. *J Virol*. 2006;12(1):5–16.

138. Jerning B, Cerveny S, Geiser V, Inman M, Jones C. A protein encoded in the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 is a functional protein. *Virology*. 1998;242(1):221–32.

139. Doerig C, Pizer LI, Wilcox CL. An antigen encoded by the latency-associated transcript is found in the cytoplasm comigrating with ribosomal subunits during productive infection. *Virology*. 1994;204(2):717–28.

140. Perig GC, Jones C. Alternative splicing of the latency-related transcript (AL-T) coterminal with the unspliced latency-associated transcript. *J Virol*. 1999;73(7):4314–26.

141. Perig GC, Dunkel EC, Geary PA, et al. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. *J Virol*. 1994;68(12):8045–55.

142. Perig GC, Grau SM, Ghiassi H, Neshburn AB, Wechsler SL. The effect of latency-associated transcript on the herpes simplex virus type 1 latency-reactivation phenotype is mouse strain-dependent. *J Gen Virol*. 2002;82(Pt 5):1117–22.

143. Perig GC, Ghiassi H, Jones C, et al. A herpes simplex virus type 1 latency-associated transcript mutant with increased virulence and reduced spontaneous reactivation. *J Virol*. 1999;73(2):920–9.

144. Perig GC, Ghiassi H, Neshburn AB, Wechsler SL. A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. *J Virol*. 1996;70(3):2014–8.

145. Lock M, Miller C, Fraser NW. Analysis of protein expression from within the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1. *J Virol*. 2001;75(7):3413–26.

146. Custer J, Steiner I, Jones C. Identification of a novel herpes simplex virus type 1 latency-associated transcript promoter region. *Virus Research*. 2005;108(1–2):101–10.

147. Jerning B, Cerveny S, Geiser V, Inman M, Jones C. A protein encoded in the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1 is a functional protein. *Virology*. 1998;242(1):221–32.

148. Doerig C, Pizer LI, Wilcox CL. An antigen encoded by the latency-associated transcript is found in the cytoplasm comigrating with ribosomal subunits during productive infection. *Virology*. 1994;204(2):717–28.

149. Lock M, Miller C, Fraser NW. Analysis of protein expression from within the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type 1. *J Virol*. 2001;75(7):3413–26.

150. Thomas SK, Gough G, Latchman DS, Coffin RS. A Protein Encoded by the Herpes Simplex Virus (HSV) Type 1 2-Kilobase Latency-Associated Transcript Is Phosphorylated, Localized to the Nucleus, and Overcomes the Repression of Expression from Exogenous Promoters When Inserted into the Quiescent HSV Genome. *J Virol*. 2002;76(8):4056–67.

151. Perig GC, Jones C, et al. Three herpes simplex virus type 1 latency-associated transcript mutants with distinct and asymptotic effects on virulence in mice compared with rabbits. *J Virol*. 2001;75(19):9018–28.

152. Henderson G, Jaber T, Carpenter D, Wechsler SL, Jones C. Identification of herpes simplex virus type 1 (HSV-1) proteins encoded within the first 1.5 kb of the latency-associated transcript (LAT). *J Neurovirology*. 2009;15(5–6):479–88.

153. Rock DL, Beam SL, Mayfield JE. Mapping bovine herpesvirus type 1 latency-related RNA in trigeminal ganglia of latently infected rabbits. *J Virol*. 1987;61(12):3287–31.

154. Devriedy L, Zhang Y, Jones C. Cloning and initial characterization of an alternatively spliced transcript encoded by the bovine herpes virus 1 latency related (LR) gene. *J Neurovirology*. 2003;9(6):612–22.

155. Devriedy LR, Jones C. Alternative splicing of the latency-related transcript of bovine herpesvirus 1 yields RNAs containing unique open reading frames. *J Virol*. 1998;72(9):2724–301.

156. Meyer F, Perez S, Geiser V, Sintek M, Imman M, Jones C. A protoen encoded by the bovine herpes virus 1 (BHV-1) latency related gene interacts with specific cellular regulatory proteins, including the CCAAT enhancer binding protein alpha (C/EBP-a). *J Virol*. 2007;81(1):59–67.
161. Meyer F, Jones C. C/EBP-alpha cooperates with btiF to activate the bovine herpesvirus 1 immediate early transcription unit 1 promoter. *J Neuro Virology*. 2008;2:1–8.

162. Workman A, Sinani D, Pittayakajhonwut D, Jones C. A Protein (ORF2) Encoded by the Latency Related Gene of Bovine Herpesvirus 1 Interacts with Notch1 and Notch3. *J Virol*. 2011;85:2536–46.

163. Bray SJ. Notch signalling: a simple pathway becomes complex. *Nat Rev Mol Cell Biol*. 2006;7(9):678–89.

164. Ebeauer M, Penelope P, Arias AM. Notch, a universal arbiter of cell fate decisions. *Science*. 2006;314(5804):1414–5.

165. Berezovska O, McLean P, Knowles R, et al. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. *Neuroscience*. 1999;93(2):433–9.

166. Cornell R, Eisen JS. Notch in the pathway: the roles of Notch signalling in neural crest development. *Semin Cell Dev Biol*. 2005;16(6):663–72.

167. Justice NJ, Jan YN. Variations on the Notch pathway in neural development. *Curr Op Neuropathol*. 2002;12(1):64–70.

168. Wang T, Holt CM, Xu C, et al. Notch 3 activation modulates growth behavior and cross talks to Wnt/TCF signalling pathway. *Cell Signal*. 2007;19(12):2458–67.

169. Nair P, Somasundaram K, Krishna S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papilloma virus type 16 E6 and E7 oncogenes through a PI3K–PKB/Akt-dependent pathway. *J Virol*. 2003;77(12):7106–12.

170. Sade H, Krishna S, Sarin A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, AKT/PKB-mediated signaling in T cells. *J Biol Chem*. 2004;279(4):2937–44.

171. Franklin JL, Berechid BE, Cutting FB, et al. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. *Curr Biol*. 1999;9(24):1448–57.

172. Levy OA, Lah JJ, Levey AI. Notch signaling inhibits PC12 cell neurite outgrowth via RBP-J-dependent and -independent mechanisms. *Dev Neurosci*. 2002;24:79–88.

173. Levy OA, Lah JJ, Levey AI. Notch signaling inhibits PC12 cell neurite outgrowth via RBP-J-dependent and -independent mechanisms. *Dev Neurosci*. 2002;24:79–88.

174. Sestan N, Artavanis-Tsakonas S, Rakic P. Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. *Science*. 1999;286(5440):741–6.

175. Coleman MP, Freeman MR. Wallerian degeneration, wld(S), and nmnat. *Cell Signal*. 2001;13(2):139–49.

176. Carpenter D, Henderson G, Miller CG, Fraser NW. Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. *J Virol*. 2002;76(2):717–29.

177. Inman M, Perg CG, Henderson G, et al. Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. *J Virol*. 2001;75(8):3636–46.

178. Perg GC, Jones C, Ciacci-Zanello J, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript (LAT). *Science*. 2000;287(5457):1500–3.

179. Jin L, Peng W, Perg GC, Nesburn AB, Jones C, Wechsler SL. Identification of herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. *J Virol*. 2003;77(11):6556–61.

180. Jin L, Carpenter D, Moerdyk-Schauwecker M, et al. Cellular FLIP can substitute for the herpes simplex virus type 1 LAT gene to support a wild type virus reactivation phenotype in mice. *J Neurovirology*. 2008;14(5):389–400.

181. Jin L, Perg GC, Nesburn AB, Jones C, Wechsler SL. The baculovirus inhibitor of apoptosis gene (crpAP) can restore reactivation of latency to a herpes simplex virus type 1 that does not express the latency associated transcript. *J Virol*. 2005;79(19):12286–95.

182. Mott K, Osorio N, Jin L, et al. The bovine herpesvirus 1 LR ORF2 is crucial for this gene’s ability to restore the high reactivation phenotype to a Herpes simplex virus-1 LAT null mutant. *J Gen Virol*. 2003;84:2975–85.

183. Henderson G, Peng W, Jin L, et al. Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus latency-associated transcript. *Dev Neurosci*. 2002;24:103–11.

184. Kruegger A, Baumann S, Krammer PH, Kirchhoff S. FLICE-Inhibitory proteins: regulators of death receptor-mediated apoptosis. *Molec Cell Biol*. 2001;21(24):8247–54.

185. Schmitz I, Kirchhoff’s S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. *Int J Biochem Cell Biol*. 2000;32(11–12):1123–36.

186. Wang X. The expanding role of mitochondria in apoptosis. *Gen Devel*. 2001;15(22):2922–33.

187. Carpenter D, Hsiang C, Jin L, et al. Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. *Virology*. 2007;369(1):12–8.

188. Jiang X, Chentoufi A, Hsiang C, et al. The herpes simplex virus type 1 latency associated transcript (LAT) can protect cells from Granzyme B induced apoptosis and CD8 T-cell killing. *J Virol*. 2011;85(5):2325–32.
223. Yang CH, Murti A, Pfeffer SR, Basu L, Kim JG, Pfeffer LM. IFNα/α/β promotes cell survival by activating NF-κB. Proc Natl Acad Sci U S A. 2000;97(25):13631–6.

224. Orazzi N, Sugiyra Y, Yamamoto M, Yokoyya S, Wanaaka A, Nishiyama Y. Apoptosis induced in the spinal cord and dorsal root ganglion by infection of herpes simplex virus type 2 in the mouse. Neurosci Lett. 1997; 228:99–102.

225. Knotts FB, Cook ML, Stevens JC. Pathogenesis of herpetic encephalitis in mice after ophthalmic inoculation. J Infect Dis. 1974;130(1):16–27.

226. Kramer MF, Chen SH, Kniipe DM, Coen DM. Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. J Virol. 1998;72(2):1177–85.

227. Speck PG, Simmons A. Divergent molecular pathways of productive and latent infection with a virulent strain of herpes simplex virus type 1. J Virol. 1991;65(8):4001–5.

228. Schang L, Jones C. Analysis of bovine herpesvirus 1 transcripts during a primary infection of trigeminal ganglia of cattle. J Virol. 1997;71(9): 6786–95.

229. Li S, Carpenter D, Hsiang C, Wechsler SL, Jones C. The herpes simplex virus type 1 latency-associated transcript (LAT) locus inhibits apoptosis and promotes neurite sprouting in neoblastoma cells following serum starvation by maintaining active AKT (protein kinase B). J Gen Virol. 2010;91:585–66.

230. Branco FJ, Fraser NW. Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol. 1993;79(14):9019–25.

231. Jones C, Chowdhury S. A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex, and development of improved vaccines. Adv Anim Health. 2007; 8(2):187–205.

232. Perng GC, Jones C. Towards an understanding of the Herpes Simplex Virus Type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis. 2010;2010:262415.

233. Joels M, de Kloet ER. Control of neuronal excitability by corticosteroid hormones. Trends Neurosci. 1992;15(1):25–30.

234. McEwen BS. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci. 1991;12(4):141–7.

235. Halford WP, Gebhardt BM, Carr DJ. Mechanisms of herpes simplex virus type 1 reactivation. J Virol. 1996;70(8):3051–60.

236. Collett JW, Steele RE. Alternative splicing of a neural-specific Src mRNA (Scev) is a rapid and protein synthesis-independent response to neural induction in Xenopus laevis. Dev Biol. 1993;158(2):487–95.

237. Du T, Zhou G, Roizman B. Induction of apoptosis accelerates reactivation from latent HSV-1 in ganglionic organ cultures and replication in cell cultures. Proc Natl Acad Sci U S A. 2012;109(36):14616–21.

238. Hunsperger EA, Wilcox CL. Caspase-3-dependent reactivation of latent herpes simplex virus type 1 in sensory neuronal cultures. J Neurovirology. 2003;9(3):390–8.

239. Dieken ES, Miesfeld RL. Transcriptional transactivation functions local to the herpes simplex virus type 1 latency inducer, hsp90, are necessary for productive infection in Xenopus laevis. J Virol. 1991;65(9):4001–5.

240. Shintom Y, Kato K, Suzuki K, Hara T, Sugiyama H, Futaki Y, et al. Suppression of TNF-α-induced apoptosis by NF-kB. Science. 1996;274(5288): 787–9.

241. Foehr ED, Lin X, O’Mahony A, Geleziunas R, Bradshaw RA, Greene WC. NF-kB signaling promotes both cell survival and neurite process formation in nerver growth factor-stimulated PC12 cells. J Neuroscience. 2000;20(20):7556–63.

242. Mattson MP, Neffert MK. Roles for NF-kB in nerve cell survival, plasticity, and disease. Cell Death Differentiation. 2006;13(5):852–60.

243. Yang CH, Murti A, Pfeffer SR, Basu L, Kim JG, Pfeffer LM. IFNα/β promotes cell survival by activating NF-kB. Proc Natl Acad Sci U S A. 2000;97(25):13631–6.

244. Rock D, Lokensgard J, Lewis T, Kutish P, Margolis TP. Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A. 2002;99(2):978–83.

245. Fieldman LT, Ellison AR, Votiek CC, Yang L, Krause P, Margolis TP. Characterization of dexamethasone-induced reactivation of latent bovine herpesvirus 1. J Virol. 1992;66(4):2484–90.

246. Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 2003;18(5):593–603.
246. Liu T, Khanna KM, Carriere BN, Hendricks RL. Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. *J Virol.* 2001;75(22):11178–84.

247. Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL. CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. *J Exp Med.* 2000;191(9):1459–66.

248. Liu T, Tang Q, Hendricks RL. Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. *J Virol.* 1996;70(1):264–71.

249. Prbhakaran K, Sheridan BS, Kinchington PR, et al. Sensory neurons regulate the effector functions of CD8+ T cells in controlling HSV-1 latency *ex vivo.* *Immunity.* 2005;23(5):515–23.

250. Simmons A, Tscharke DC. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. *J Exp Med.* 1992;175(5):1337–44.

251. Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. *Science.* 2008;322(5899):268–72.

252. Orr MT, Mathis MA, Lagunoff M, Sacks JA, Wilson CB. CD8 T cell control over HSV reactivation from latency is abrogated by viral infection of MHC Class I. *Cell Host Microbe.* 2007;2(3):172–80.

253. Chou J, Kern ER, Whitley RJ, Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. *Science.* 1990;250(4985):1262–6.