De novo Transcriptome Assembly and Comparison of C$_3$, C$_3$-C$_4$, and C$_4$ Species of Tribe Salsoleae (Chenopodiaceae)

Maximilian Lauterbach1,2*, Hanno Schmidt2,3, Kumari Billakurthi4,5, Thomas Hankeln2, Peter Westhoff4,5, Udo Gowik4,6 and Gudrun Kadereit1,2*

1 Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany, 2 Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany, 3 Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany, 4 Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany, 5 Cluster of Excellence on Plant Sciences, Düsseldorf, Germany, 6 Institute for Biology and Environmental Science (IBU), Plant Evolutionary Genetics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany

C$_4$ photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C$_4$ from ancestral C$_3$ photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C$_3$ and C$_4$ species have significantly increased our understanding of C$_4$ functioning and evolution. In Chenopodiaceae, a family that is rich in C$_4$ origins and photosynthetic types, the anatomy, physiology and phylogeny of C$_4$, C$_2$, and C$_3$ species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C$_3$, C$_2$ and C$_4$ species. All three analyzed C$_4$ species belong to the NADP-ME type as most genes encoding core enzymes of this C$_4$ cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C$_3$ and C$_2$ species. Like in other C$_4$ lineages of Caryophyllales, our results suggest that PEPC1 is the C$_4$-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C$_4$ syndrome, but also active in C$_2$ photosynthesis in Salsoleae. In the two populations of the C$_2$ species S. divaricata transcript abundance of several C$_4$ genes are slightly increased, however, a C$_4$ cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C$_2$ species compared to both C$_3$ and C$_4$ species, confirming a successful establishment of the C$_2$ photosynthetic pathway. Furthermore, a function of PEP-CK in C$_2$ photosynthesis appears likely, since PEP-CK gene expression is not only increased in S. divaricata but also in C$_2$ species of other groups.

Keywords: Caryophyllales, evolution, leaf, photorespiration, photosynthesis, RNA-Seq, Salsola
INTRODUCTION

The convergent evolution of complex traits challenges evolutionary biologists since evolutionary stable intermediate steps seem to be required to accomplish the transition to complex phenotypes (Washburn et al., 2016). In plants, one prime example of such a complex trait is \(\text{C}_4 \) photosynthesis. \(\text{C}_4 \) photosynthesis evolved more than 60 times in various angiosperm lineages including monocots and eudicots (Sage, 2016). These multiple independent origins of \(\text{C}_4 \) photosynthesis from the ancestral \(\text{C}_3 \) pathway allow investigating the acquisition of the \(\text{C}_3 \) syndrome in individual plant groups and, subsequently, to integrate all acquired components from the different plant groups for understanding the whole complexity and variability of \(\text{C}_4 \) evolution. Specifically, \(\text{C}_4 \) is a carbon-concentrating mechanism that evolved to cope with decreasing atmospheric \(\text{CO}_2 \) concentration (Ehleringer et al., 1991), a condition which would otherwise favor photorespiration particularly in subtropical regions (Bauwe et al., 2010). In mesophyll tissue, atmospheric \(\text{CO}_2 \) is initially fixed by phosphoenolpyruvate carboxylase (PEPC), yielding a compound consisting of four carbon atoms, the key and name-giving step of \(\text{C}_4 \) (Hatch, 1987). This \(\text{C}_4 \) compound is then modified, transported into the bundle sheath tissue and eventually decarboxylated to increase \(\text{CO}_2 \) concentration, allowing a high carboxylation:oxygenation ratio of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in the Calvin-Benson cycle, which results in drastically reduced photorespiration (Hatch, 1987).

The current model of \(\text{C}_4 \) evolution predicts a gradual establishment of the \(\text{C}_4 \) cycle from \(\text{C}_3 \) through a limited number of evolutionary steps (Sage et al., 2012; Bräutigam and Gowik, 2016). Here, the formation of a photorespiratory \(\text{CO}_2 \) pump—operating via glycine shuntling by restricting the combined glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) reactions to the bundle sheath—is a major landmark (Sage et al., 2012; Bräutigam and Gowik, 2016). Species exhibiting this glycine shuttle are characterized by lower \(\text{CO}_2 \) compensation points than \(\text{C}_3 \) plants, a leaf anatomy that is intermediate between \(\text{C}_3 \) and \(\text{C}_4 \) species, and no or low \(\text{C}_4 \) cycle activity (Edwards and Ku, 1987; Sage et al., 2012). The \(\text{C}_3-\text{C}_4 \) intermediate species of \textit{Flaveria} that mostly rely on the photorespiratory \(\text{CO}_2 \) pump and where \(\text{C}_4 \) cycle activity is low are called \(\text{C}_2 \) species (Sage et al., 2012). Whether \(\text{C}_3-\text{C}_4 \) intermediate phenotypes with or without a photorespiratory \(\text{CO}_2 \) pump represent true evolutionary intermediate states for the complex \(\text{C}_4 \) syndrome is still under debate and subject of recent investigations (Monson et al., 1984; Monson and Moore, 1989; Sage, 2004; Heckmann et al., 2013; Williams et al., 2013; Bräutigam and Gowik, 2016; Schlüter and Weber, 2016; Kadereit et al., 2017). Although rare in comparison to \(\text{C}_3 \) and \(\text{C}_4 \) species, the extant \(\text{C}_2 \) species clearly represent an established photosynthetic pathway by their mere existence, and also by their phylogenetic age (i.e., several million years) in some lineages (Christin et al., 2011; reviewed in Sage et al., 2012).

Evolution of \(\text{C}_4 \) or \(\text{C}_2 \) from \(\text{C}_3 \) photosynthesis requires many changes, including alterations in leaf anatomy, physiology and gene regulation (Gowik and Westhoff, 2011; Langdale, 2011). Analyses of leaf transcriptomes provided broad knowledge of gene expression in \(\text{C}_4 \) and \(\text{C}_2 \) photosynthesis by comparing closely related \(\text{C}_3 \), \(\text{C}_4 \) and/or \(\text{C}_2 \) species (Bräutigam et al., 2011; Külahoglu et al., 2014; Mallmann et al., 2014; van den Bergh et al., 2014; Ding et al., 2015; Aubry et al., 2016; Schlüter et al., 2016a,b), leading to the identification of many genes and proteins which function in \(\text{C}_4 \) or \(\text{C}_2 \) photosynthesis. One general trend, for example, seems to be that most of the key genes of photorespiration, while transcriptionally downregulated in \(\text{C}_4 \), are highly expressed in \(\text{C}_2 \) when compared to \(\text{C}_3 \) plants (reviewed in Bräutigam and Gowik, 2016). Besides genes encoding proteins of the \(\text{C}_4 \) cycle and photorespiration, genes related to photosynthesis strongly differ between \(\text{C}_3 \) and \(\text{C}_4 \) species, at least in the genera \textit{Cleome sensu lato} and \textit{Flaveria} (Bräutigam et al., 2011; Gowik et al., 2011; Aubry et al., 2014; Külahoglu et al., 2014; Kümpers et al., 2017). Gene expression analyses also revealed that \(\text{C}_4 \) genes were mostly recruited from expression domains with housekeeping functions (Külahoglu et al., 2014). Additionally, known and novel transporters could be identified, and transport processes in general seem to be very important in \(\text{C}_4 \) photosynthesis (Schlüter et al., 2016b).

The goosefoot family (Chenopodiaceae) is an outstanding system to study \(\text{C}_4 \) photosynthesis, because it comprises the largest number of both \(\text{C}_4 \) species and independent \(\text{C}_4 \) origins in the eudicots, with an outstanding diversity of the \(\text{C}_4 \) phenotype (Kadereit et al., 2003, 2010, 2014; Kadereit and Freitag, 2011; Sage, 2016). Additionally, Chenopodiaceae contain a number of unique study systems, e.g., single cell \(\text{C}_4 \) plants, like the genus \textit{Bienertia} (Freitag and Stichler, 2002) or \textit{Suaeda aralocaspica} (Freitag and Stichler, 2000), the stem succulent \(\text{C}_4 \) hydrohalophytes \textit{Tecticornia indica} and \textit{T. bibenda} (Shepherd and van Leeuwen, 2007; Voznesenskaya et al., 2008) and the species of tribe Salsoleae that conduct \(\text{C}_3 \) in cotyledons before they switch to \(\text{C}_4 \) in leaves or assimilating shoots (Voznesenskaya et al., 2013; Li et al., 2015; Lauterbach et al., 2016). Furthermore, Salsoleae seem particularly suitable to study the evolution of \(\text{C}_2 \) and \(\text{C}_4 \) photosynthesis because the tribe contains a comparatively large number of \(\text{C}_2 \) species (summarized in Voznesenskaya et al., 2013 and Schüssler et al., 2016), Salsoleae are widespread in semi-deserts, deserts and coastal regions of Eurasia and well-adapted to dry and saline conditions (Akhani et al., 2007). Their leaves and/or shoots show a central water storage tissue. Often the leaves are reduced and photosynthesis is taken over by the shoots (Schüssler et al., 2016). Leaves or assimilating shoots often have a multi-layered epidermis and a hypodermis. The chlorenchyma forms a continuous layer surrounding the entire leaf and consists of 2-3 mesophyll layers in \(\text{C}_3 \) species and one outer mesophyll layer and a Kranz layer in \(\text{C}_4 \) species (Salsoloid leaf anatomy), respectively (Carolin et al., 1975). In the \(\text{C}_3-\text{C}_4 \) intermediate species in general, the Kranz layer is either continuous or interrupted by water storage cells, and the mesophyll can consist of two layers (Voznesenskaya et al., 2013; Schüssler et al., 2016). Recently, a molecular phylogeny including the major lineages of Salsoleae has been published (Schüssler et al., 2016) which is the basis for the phylogenetically informed sampling of this study. Despite the high diversity in this group, large-scale genomic analyses of coding sequence information are
currently limited to two taxa, *Haloxylon ammodendron* (Li et al., 2015) and *Salsola soda* (Lauterbach et al., 2016).

Here we present transcriptome de novo assemblies and the analyses of differential gene expression of representative species of Salsoleae with different photosynthetic types, including C$_3$, C$_4$, and C$_2$ photosynthesis. In particular, we sequenced the transcriptomes of the main assimilating organs (i.e., leaf or assimilating shoot) of the C$_3$ species *Salsola webbii*, two distinct populations of the C$_2$ species *S. divaricata*, the C$_4$ species *S. oppositifolia*, and *Hammada scoparia*, which conducts C$_3$ in cotyledons, but C$_4$ in assimilating shoots. Additionally, we included publicly available leaf transcriptome data from *Salsola soda*, which also exhibits C$_3$ in cotyledons and C$_4$ in leaves (Lauterbach et al., 2016). Transcriptomes of all five species were assembled de novo and gene expression patterns between the species/populations were compared with a focus on genes involved in C$_4$ photosynthesis and photorespiration to address the question whether gene expression profiles of C$_3$, C$_2$, and C$_4$ species of Salsoleae are comparable to other study systems like *Cleome* or *Flaveria*.

MATERIALS AND METHODS

Plant Material

Seeds were taken from plants collected in the field, and vouchers of these collections are deposited at the herbarium of Johannes Gutenberg-University Mainz (MJG; see Table 1 for further information and a comment on taxonomic and nomenclatural issues in Salsoleae). Plants of *H. scoparia, Salsola divaricata* (from two different populations: population 184 (Pop-184) located in Lanzarote and population 198 (Pop-198) located in Gran Canaria), *S. oppositifolia*, and *S. webbii* were grown from seeds in potting soil (custom mixed soil from the Botanic Garden, Johannes Gutenberg-University Mainz) in a glasshouse with an additional light intensity of ca. 300 µmol m$^{-2}$ s$^{-1}$. Samples were harvested between 16th April and 16th May 2014 between 10:30 and 13:00, immediately frozen in liquid nitrogen and stored at −80°C for RNA extraction. A highly reduced phylogenetic tree based on the results of Schüssler et al. (2016) including only species of the current study is shown in Figure 1.

Carbon Isotope Discrimination Measurements

Leaves or, in case of *H. scoparia*, assimilation shoots of all five species were harvested and dried for several days in silica gel. Dry leaf samples were pulverized using the mixer mill MM 301 (Retsch). Approximately 200 mg of each sample were used to determine stable carbon isotope ratios (i.e., 13C/12C) relative to the Pee Dee belemnite standard (Craig, 1957) by the Institute for Geosciences at Johannes Gutenberg-University Mainz. For each sample, technical triplicates were measured.

RNA Sequencing

RNA extraction, library preparation and mRNA sequencing were performed as described in Lauterbach et al. (2016). In brief, total RNA was extracted from 9 to 90 mg cotyledon or leaf tissue using the RNeasy Plant Mini Kit (Qiagen), including DNase I digestion with RNase-Free DNase Set (Qiagen). After quality control of RNA using the 2100 Bioanalyzer (Agilent Technologies), NanoDrop (Thermo Fisher Scientific) and Qubit (Life Technologies), 500 ng of total RNA were used for cDNA library preparation with the TruSeq RNA Sample Preparation Kit (Illumina Inc.), following the Low Sample Protocol (TruSeq RNA Sample Preparation v2, May 2012). Sequencing of 101 bp single-end reads was performed on an Illumina HiSeq2000 platform.

For RNA-Seq, different tissues were sampled: (1) assimilation shoots of *H. scoparia*, (2) cotyledons and leaves of *S. divaricata* Pop-184, (3) cotyledons and leaves of *S. divaricata* Pop-198, (4) cotyledons and leaves of *S. oppositifolia*, (5) cotyledons and leaves of *S. soda* (RNA-Seq data taken from Lauterbach et al., 2016), (6) leaves of *S. webbii* (see Table 1 for further details). Three biological replicates (i.e., triplicates) per species/population and organ were sequenced, except for *S. webbii* where only two biological replicates and one technical replicate were sequenced due to the lack of a third individual in the living collection.

Species*	PS type	13C of leaf (n = 3)	Herbarium and voucher ID
Hammada scoparia (Poméll Iljin)**	C$_4$	−18.759	MJG living collection no. 87 (source MSB serial no. 89920; Morocco: Taroudannt)
Salsola divaricata Moq.; Population184	C$_2$	−32.208	MJG Herbarium no. 014225, living collection no. 184 (source: Canary Islands: Lanzarote, Orzola)
Salsola divaricata Moq.; Population198	C$_2$	−31.759	MJG living collection no. 198 (source: Canary Islands: Gran Canaria, Cuesta Ramón, Jinamar)
Salsola oppositifolia Desf.	C$_4$	−17.514	MJG Herbarium no. 013564, living coll. No. 173 (source: SW Morocco, 18 km N Agadir, near Tamrhakt)
Salsola soda L.	C$_4$	−15.434***	MJG no. 014562 (see Lauterbach et al., 2016)
Salsola webbii L.	C$_4$	−31.712	MJG living collection no. 67 (source: G. Edwards lab, Pullman, Washington, originally collected in S. Spain)

*The highly polyphyletic genus Salsola and also the Salsoleae are currently experiencing dramatic taxonomic and nomenclatural rearrangements (compare Akhani et al., 2007, 2016; Hernández-Ledesma et al., 2015; Mosyakin et al., 2017). For the sake of easy comparability for non-Salsoleae experts we therefore prefer to use the established names in this paper.

**sometimes treated as synonym of Hammada articulata O. Bolós and Vigo.

***measured in Lauterbach et al. (2016).
at Botanic Garden, Johannes Gutenberg-University Mainz. Additionally, for *H. scoparia* and *S. webbii* no seeds were available, thus only leaves could be sampled. Both cotyledons were sampled for cotyledon samples while a single leaf was sampled for leaf samples.

Processing of Raw Reads and De novo Transcriptome Assembly

Sequence reads were quality controlled with the FASTQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and filtered and trimmed using the tools “fastx_clipper” (option -M 15 -l 20) to remove adapter sequences, “fastx_trimmer” (option -f 15) to remove the first 14 bases of the 5′ end of all reads, “fastq_quality_trimmer” (option -t 20 -l 20) to remove low quality bases (below PHRED score of 20) from the 3′ end, and “fastq_quality_filter” (option -q 20 -p 80) to remove all reads with an overall PHRED score below 20. All tools are from the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and were used in the same order as listed.

Initially, we conducted de novo transcriptome assemblies for each species with two different tools, SOAPdenovo-Trans v1.04 (Xie et al., 2014) and Trinity v2.1.1 (Grabherr et al., 2011), since both were reported to perform well in de novo assembling transcriptome data (Honaas et al., 2016; Wang and Gribkov, 2016). Default parameters were used, except for kmer size = 73 in SOAPdenovo-Trans-127mer. The qualities of de novo transcriptome assemblies were assessed using three different approaches. Firstly, BUSCO v2.0 (Benchmarking Universal Single-Copy Orthologs; Simão et al., 2015) with the plant early release data set was used as a proxy for the completeness of the assembled transcriptomes. The BUSCO tool evaluates the completeness of the expected gene content with hidden Markov models (using HMMER v3.1; hmmer.org) and lineage-specific BUSCO profiles (Simão et al., 2015). Secondly, we mapped all quality controlled reads back to the corresponding de novo transcriptome assembly using bowtie2 v.2.1.0 (Langmead and Salzberg, 2012) for inferring the percentage of back-mapped reads as a measure of quality. Finally, we performed a sequential BLASTx search (cut-off e-value of 1e-10, and keeping only best hit) against coding sequences of the minimal *Arabidopsis thaliana* transcriptome (Bräutigam et al., 2011), the *Beta vulgaris* transcriptome (version “BeetSet-2”, Dohm et al., 2014) and the UniProtKB database (http://www.uniprot.org/) to see how many contigs were most similar to genes with a known function/annotation (i.e., putative genes). Here, all contigs firstly were mapped again Arabidopsis, the remaining unmapped contigs were mapped against *B. vulgaris*, and again remaining unmapped contigs were mapped against UniProtKB. *A. thaliana* was chosen because this species has the best-annotated plant genome, and *B. vulgaris* was chosen because this is the phylogenetically closest species to tribe Salsoleae with a sequenced genome.

After deciding to use the Trinity assemblies (see next paragraph), functional annotation of transcripts was performed via BLAST-based comparison (see above) against the Arabidopsis and *B. vulgaris* transcriptomes and the UniProtKB database. Sets of annotated transcripts served as reference transcriptomes for inferring differential gene expression (see below). Contigs from different species producing the same annotation match in either Arabidopsis, *B. vulgaris* or UniProtKB databases were defined as putative orthologs. As additional assessment for defined putative orthologs, pairwise reciprocal BLAST (tBASTx, cut-off e-value of 1e-10) between all six de novo assemblies were performed, and read counts especially of genes involved in C4 photosynthesis and photorespiration were manually double-checked. To exclude the presence of multiple putative loci per real locus and due to that erroneous read counts, unique presence of genes encoding proteins involved in C4 photosynthesis and photorespiration were manually checked. Venn diagrams showing the overlap of the putative orthologous contigs between all assemblies were calculated and drawn using the “venn” package (by Adrian Dusa, University of Bucharest, Romania) in R (R Core Team, 2016).

Quality Assessment of De novo Transcript Assemblies

De novo assemblies were conducted with at least 97.8 million (*S. webbii*) and up to 205 million (*S. oppositifolia*) quality-controlled reads. While we only used data from leaf samples for differential gene expression analysis, we included additional reads from cotyledon samples (Lauterbach et al., in preparation) for the de novo assemblies of *S. divaricata* Pop-184 and Pop-198, *S. oppositifolia*, and *S. soda* transcriptomes (see above).

Results of both assemblers, SOAPdenovo-Trans and Trinity, yielded partly different results (Table 2, Supplementary Table S1, Supplementary Figure S1). We decided to continue downstream analyses with the Trinity assemblies for several reasons. First, the number of assembled bases was at least twice as high in the Trinity assemblies compared to SOAPdenovo-Trans assemblies. Second, assessment with BUSCO showed that the completeness in terms of expected gene content was considerably higher in the Trinity assemblies (Supplementary Figure S2). Third, the amount of mappable reads was higher in the Trinity assemblies, which is an important metric to identify leading assemblers. Finally, contigs of the Trinity assemblies matched more proteins with known annotation of the three references (Supplementary Figure S3).
Statistics, Data Analysis, and Differential Gene Expression

For studying differential gene expression, processed reads were mapped against the respective de novo transcriptome reference assemblies using bwa-mem v.0.7.13 (Li and Durbin, 2009). To infer quantitative information about transcript abundance, reads that uniquely mapped to one contig (i.e., excluding unmapped reads and multi-mapped reads) were extracted by Samtools v.1.3 (Li and Durbin, 2009). These counts were further used for comparison between replicates and species. RNA-Seq data of the six leaf samples were comparatively analyzed to detect differential gene expression. Pairwise comparisons between all six samples were statistically evaluated using “edgeR” (Robinson et al., 2010) in R. After normalization using the trimmed mean of M-values (TMM) method in edgeR, only contigs that had at least five reads per million in at least three samples (including replicates) were considered. Log2 transcript ratios were calculated and a log2 fold change (log2FC) of ≥1 was applied as threshold to call differentially expressed genes. A significance threshold of 0.01 was defined after Benjamini-Hochberg correction to account for multiple testing (Benjamini and Hochberg, 1995) and applied to call differentially expressed genes. To further analyze and visualize the data, log2 transformed read counts (transcripts per million) were used for hierarchical clustering using Pearson correlation and average linking method (MultiExperiment Viewer, MeV v.4.9, http://mev.tm4.org/) and principal component analysis (PCA, MeV).

Additionally, hierarchical clusterings of transcript abundance of selected genes encoding known C4 cycle proteins (Lauterbach et al., 2016) and the eight core enzymes of photorespiration (Bauwe et al., 2010) were conducted (Pearson correlation, average linkage method; MeV).

RESULTS

Carbon Isotope Discrimination

Carbon isotope values varied between −15.434 and −32.208 (Table 1). Leaves of S. divaricata Pop-184, S. divaricata Pop-198, and S. webbii had values of −31.712, −32.208, and −31.759, respectively, indicating the absence of a high-activity C4 cycle, while leaves of H. scoparia, S. oppositifolia and S. soda had values of −18.759, −17.514, and −15.434, respectively, indicating a predominating C3 metabolism (Table 1). The values for S. oppositifolia and H. scoparia appear a bit too negative, maybe this is due to the fact that these were relatively young plants raised in the greenhouse. According to values in the literature (Schüssler et al., 2016, and references therein) both species are clearly C4 plants.

RNA Sequencing

In total, RNA sequencing yielded between 29.6 and 39.4 million single-end raw reads per replicate, with at least 97.8% reads remaining after quality filtering (Supplementary Table S1, Supplementary Figure S4). Raw data is available in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-5778.

Differences in Gene Expression between the Species

After deciding to use the annotated Trinity assemblies as reference transcriptomes, quality-filtered reads of the different RNA-Seq samples were mapped and counted using bwa-mem. 48,818 contigs had a reliable annotation in one of the six samples; of these, 15,064 contigs have an Arabidopsis annotation, 19,108 contigs have a B. vulgaris annotation, and 14,646 contigs have a UniProtKB annotation. Of the 48,818 contigs with a reliable annotation in one of the six samples (i.e., putative genes), 34,022 had at least five reads per million in at least three samples, and downstream analyses were limited to this subset.

According to their transcript profiles, replicates of each sample clearly grouped together in hierarchical clustering (Figure 2A). The trend in the hierarchical clustering also mostly reflected the phylogenetic relatedness of samples (Figure 1). Thus, the two different populations of the C2 species S. divaricata grouped together, a result that reflects both phylogenetic relationship and photosynthetic type. The same was observed for the three C4 species H. scoparia, S. oppositifolia, and S. soda, which grouped together (Figures 1, 2A). H. scoparia and S. soda share a similar photosynthetic phenotype (i.e., C4 in leaves/assimilation shoots but C3 in cotyledons), and based on their transcript expression profiles they group together (Figure 2A).

Results of the PCA in general supported the results of hierarchical clustering (Figure 2B). All replicates of the same species grouped closely together. The first two components explained 60.58% (Figure 2B), and the first three components explained 76.32% (Supplementary Figure S5) of the total variance (principal component 1: 36.56%; principal component 2: 24.01%; principal component 3: 15.74%; Figure 2B, Supplementary Figure S5). The samples of H. scoparia and S. soda showed close similarity. The two populations of S. divaricata grouped together in hierarchical clustering, results of PCA showed S. divaricata Pop-184 as somewhat closer to the C3 species S. webbii than the Pop-198 sample to S. webbii. As in the hierarchical clustering, S. oppositifolia was clearly distinct from the other two C4 species and also from both populations of S. divaricata and from S. webbii. The first component of the PCA separated the species based on the photosynthetic type (the three C4 species on the left

Table 2: Summary of de novo transcriptome assemblies using SOAPdenovo-Trans and Trinity (BUSCO, Benchmarking Universal Single-Copy Orthologs).

Assembly	No. of assembled contigs	Mean length (in bp)	No. of assembled bases (in million)	Complete BUSCOs (in %)	Fragmented BUSCOs (in %)	Missing BUSCOs (in %)	Back mapping rate (in %)
SOAPdenovo-Trans	56,756–186,466	333.87–682.05	37–84.4	47.9–87.4	6.3–37.8	6.3–17.5	84.9–96.3
Trinity	127,382–465,856	659.49–951.37	119.1–302	89.6–93.9	2.9–7.0	2.8–4.4	94.1–98.4

Li and Durbin, 2009.
side, C₃ species on the right, and the two samples of the C₃-C₄ intermediate species in between (Figure 2).

Transcript Abundance among Photosynthetic Types

Differentially expressed transcripts, defined by adjusted P-value ≤0.01 and log₂FC ≥1, were identified by pairwise comparisons between all samples. By comparing differentially expressed transcripts between *S. webbii* (C₃) and all three C₄ species *H. scoparia*, *S. oppositifolia* and *S. soda*, 4,436 genes were found significantly up-regulated in *S. webbii* while 1,907 genes were up-regulated in all three C₄ species (Supplementary Table S2). Comparing significantly differentially expressed transcripts between C₃ (*S. webbii*) and C₂ photosynthesis (*S. divaricata* populations), 6,304 genes were up- and 5,320 genes down-regulated in *S. webbii* (Supplementary Table S2), 1,714 genes were significantly up- and 856 down-regulated in C₂ *S. divaricata* when compared with all three C₄ species (Supplementary Table S2).

Transcript Abundance of C₄-Related Genes

Transcript abundances of 21 genes encoding known C₄ cycle proteins were analyzed between the species with focus on the different photosynthetic types (Figure 3A). As expected, transcripts encoding the C₄ cycle proteins alanine aminotransferase 1 (Ala-AT1), adenosine monophosphate kinase 2 (AMK2), aspartate aminotransferase 5 (Asp-AT5), bile acid:sodium symporter family protein (BASS) 2, BASS4,
FIGURE 3 | Hierarchical clustering and heatmap of relative transcript abundance of genes encoding (A) known C₄ cycle proteins and (B) the eight core enzymes of photosynthesis (C₄*, species with C₄ photosynthesis in leaves/assimilation shoots but C₃ in cotyledons; S. div. S. divaricata; for description of abbreviated genes see text).
beta carbonic anhydrase 3 (BCA3), NADP-dependent malate dehydrogenase (NADP-MDH), NADP-malic enzyme (NADP-ME), PEPC1, PEPC kinase (PEPC-K), pyruvate orthophosphate dikinase (PPDK), PEP/phosphate translocator (PPT) 1, and sodium:hydrogen antiporter 2 (NHD2) were significantly more abundant in all three C4 species compared to C3 S. webbii (log2FC between 1.26 and 7.33; Supplementary Table S2). In addition to the genes that were increased in all three C4 species when compared to C3 S. webbii (see above), several C4 related genes were increased in one or two of the three C4 species only: Transcripts of dicarboxylate transporter (DICT) 2 and pyrophosphatase 6 (PPase6) were more abundant in S. oppositifolia and S. soda (log2FC between 1.08 and 2.35), and transcripts of PPDK regulatory protein (PPDK-RP) were more abundant in H. scoparia and S. oppositifolia (log2FC ≥2.41; Supplementary Table S2). Further, transcripts encoding NADP-dependent malate dehydrogenase (NADP-MDH) were more abundant in S. soda (log2FC ≥1.41). As expected in C4 species, many of the genes encoding C4 cycle genes were among the most highly expressed transcripts in the three C4 species. For example, PPDK was the most highly expressed gene in S. oppositifolia and the second most highly expressed gene in H. scoparia. Other highly expressed genes in the three C4 species were Ala-AT, Asp-AT, NADP-ME, NADP-MDH, and PEPC. The NADP-ME subtype of C4 photosynthesis is known from C4 species of the Salsoleae (Akhani et al., 2007). In accordance, we have found high abundance of transcripts encoding NADP-ME in the three C4 species, while those of NAD-malic enzyme (NAD-ME) and PEPC-carboxykinase (PEPC-Ck) were low.

In the C2 species S. dicaricata, AMK2, BASS4, NHD2, PEPC1, PEPC-K, and PPT1 were significantly more abundant compared to S. webbii (log2FC between 1.12 and 4.43). Interestingly, PEPC-K was more abundant in S. divaricata compared to all other species (log2FC between 2.72 and 7.26). Additionally, in S. dicaricata Pop-184, transcripts of NAD-MDH, PPase6, and triose phosphate translocator (TPT) were significantly up-regulated when compared to S. webbii (log2FC ≥1.1), while NADP-ME and PPDK were up-regulated in S. dicaricata Pop-198 in comparison to S. webbii (log2FC ≥1.5) (Supplementary Table S2). The gene encoding the transporter protein TPT, which is known to function in the C4 cycle, was highly abundant in all six samples (between 51st and 82nd highest expressed gene).

In addition to the 21 genes known to be involved in C4 photosynthesis (see above), transcripts of genes currently described to have an alleged function related to C4 metabolism (Lauterbach et al., 2016) were analyzed. Transcripts encoding pyruvate dehydrogenase (PDH) kinase, probably controlling metabolite exit from the C4 pathway via pyruvate decarboxylation (Bräutigam et al., 2014), were significantly more abundant in S. soda (log2FC 1.29) when compared to S. webbii, but still abundant in all other species, including C3 S. webbii. Phosphate transporter4.1 (PHT4.1) was significantly more abundant in all species (in S. soda with log2FC of 0.8) compared to S. webbii. The gene encoding PHT4.4 was highly upregulated in all three C4 species compared to S. webbii (log2FC ≥1.85). Levels of mRNA coding for asparagine synthetase (ASN) were increased in S. oppositifolia and S. soda when compared to S. webbii (log2FC 1.45 and 5.89, respectively). Also, ASN was the 14th highest expressed gene in S. soda (Supplementary Table S2).

Transcript Abundance of Genes Encoding Key Enzymes of Photorespiration

Since photorespiration has been reported as strongly modified between closely related C3 and C4 species (e.g., Cleome, Bräutigam et al., 2011) and also between C3, C2, and C4 species (e.g., Flaveria; Gowik et al., 2011; Mallmann et al., 2014), the transcript abundance of the eight core enzymes of photorespiration was analyzed and compared between species (Figure 3B). Transcripts encoding phosphoglycolate phosphatase (PGP) were significantly more abundant in all three C4 species compared to S. webbii (log2FC between 1.12 and 4.73), and gene expression of seven genes were increased in S. webbii in comparison to all three C4 species: serine:glyoxy late aminotransferase (AGT/SGT), GDC P-protein (GDC-P), GDC L-protein (GDC-L), GDC T-protein (GDC-T), glutamate:glyoxy late aminotransferase (GGT), NADP-dependent hydroxy pyruvate reductase (HPR), and SHMT (Supplementary Table S2). The two genes encoding GDC H-protein (GDC-H) and PGP each were significantly up-regulated in S. divaricata compared to S. webbii (log2FC ≥1.96), the former also significantly up-regulated when compared to the three C4 species (log2FC ≥1.01). Further, S. divaricata Pop-184 showed an increase of transcripts encoding GDC-H, glycerate 3-kinase (GLYK) and PGP when compared to S. divaricata Pop-198 and S. webbii (Supplementary Table S2). In general, all eight genes encoding key enzymes of photorespiration were highly expressed in S. divaricata (Pop-184 and 198) and S. webbii. Interestingly, transcripts of GDC-P were not only highly abundant in the C2 and C3 species, but in all six samples.

DISCUSSION

Both C2 and C4 photosynthesis are complex and require many changes in gene expression patterns compared to the ancestral C3 photosynthesis (Sage, 2004). RNA-Seq strongly promoted the understanding of C2 and C4 evolution in the last few years. In eudicots, the flagship group to decipher differential gene expression leading to C2 or C4 photosynthesis is Flaveria (Asteraceae), which includes, besides C3 species, many C2 and C4 species (Edwards and Ku, 1987). Likewise, tribe Salsoleae (Chenopodiaceae) comprises C3, some C2 and an immense diversity of C4 lineages (Schüssler et al., 2016). However, it differs significantly in leaf anatomy and ecology from the model genus Flaveria, making Salsoleae a promising candidate for increasing our knowledge of convergent acquisition of C2 and C4 photosynthesis.
A Novel Transcriptome Data Resource for Salsoleae

Until now, no transcriptome assembly of tribe Salsoleae (Chenopodiaceae) has been available and large-scale gene expression studies based on RNA sequencing were for the most part absent in this group (Li et al., 2015; Lauterbach et al., 2016). Thus, we used a de novo assembly approach to produce reference transcriptomes of six samples representing five species of Salsoleae, thereby providing a novel and large mRNA data resource for this group. Initially applying two different tools, the Trinity assembler was selected because of superior results (see Results; Table 2). De novo assemblies of the two different populations of the same species, S. divaricata, yielded about the same amount of contigs, implying a consistent performance of Trinity. The number of cDNA contigs obtained did not correlate with the diversity of tissues included in the sequencing: While only stem or leaf tissue of adult plants was available for H. scoparia and S. webbii, respectively, the other four assemblies, which included cotyledon and adult leaf tissues, yielded fewer (S. soda) or more contigs (S. divaricata Pop-184, S. divaricata Pop-198, S. oppositifolia). Interestingly, we obtained more than twice as many contigs from S. oppositifolia compared to S. soda. This huge difference could potentially have been caused by different ploidy levels in these species: Salsola oppositifolia is octoploid (Lago and Castroviejo, 1992; Peruzzi and Cesca, 2004), while S. divaricata and S. webbii are tetraploid (G. Kaderfeit and D. Tefarikis; pers. observation; Padrón, 2012) and S. soda and H. scoparia are diploid (Löve, 1970, 1986; Tarnavski and Lungeanu, 1982; Zakharyeva, 1985).

Physiological studies (Voznesenskaya et al., 2013) identified S. webbii as a typical C₄ plant, which is why this species was selected as a C₃ reference and gene expression in leaves of S. webbii was taken as exemplary for C₃ in all downstream analyses. The transcriptome data of S. webbii differed strongly from all other species included (Figure 2), which reflects both phylogenetic position and photosynthetic type (Figure 1). Additionally, stable carbon isotope values of leaves (or in case of H. scoparia assimilation shoots) were measured since stable carbon isotopes can be used as an indicator of C₄ metabolism (O’Leary, 1981; Cernusak et al., 2013). All measurements of the species of the current study were consistent with published data (Akhani et al., 1997; Pyankov et al., 2001; Voznesenskaya et al., 2013; Schüssler et al., 2016): H. scoparia, S. oppositifolia, and S. soda showed C₄ values, while S. webbii and both populations of S. divaricata had C₃-like stable carbon isotope values. Based on anatomical findings and gas exchange measurements, S. divaricata was previously shown to conduct C₂ photosynthesis (Voznesenskaya et al., 2013), which is hardly detectable in stable carbon isotope measurements.

Gene Expression Broadly Reflects Photosynthesis Type in Salsoleae

Intriguingly, the first principal component of a PCA based on the gene expression data separated the species based on photosynthesis types, with both C₂ S. divaricata samples lying in between the three C₄ species and C₃ S. webbii. Thus, other variables, for instance different life cycles (S. soda: annual vs. all other included species: perennial) or sampled organ (H. scoparia: stem vs. leaf in all others), seemed to be of minor importance for differences in gene expression, whereas photosynthesis type was the dominant factor. By comparison, in a PCA of gene expression data of several closely related species of Flaveria with different photosynthesis types, the first three components explained only 27% of the total variance (Mallmann et al., 2014). In contrast, the first three components in our own PCA explained about 73% of the total variance. On the one hand this difference could imply a lower gene regulatory diversity among Salsoleae species than among species of Flaveria. However, the older evolutionary age of Salsoleae would argue against this assumption. Another explanation might be that other confounding factors influenced gene expression in the Flaveria study, while in Salsoleae the different photosynthesis types largely shaped the major gene expression pattern. This is even true for the C₄ taxa H. scoparia, S. oppositifolia, and S. soda, which differ from each other morphologically and physiologically: e.g., H. scoparia has completely reduced leaves and photosynthesis is taken over by the shoots, and S. soda has an annual life cycle while the other two are perennial. Also, H. scoparia and S. soda convert from C₃ during cotyledon stage to C₄ in mature stage (Lauterbach et al., 2016). In terms of C₄ photosynthesis, however, the three species are alike in most characters. All have Salsolid leaf (or stem) anatomy, which is the typical C₄ anatomy in this group (Voznesenskaya et al., 2013; Lauterbach et al., 2016; Schüssler et al., 2016). Also, all belong to the NADP-ME subtype (Akhani et al., 2007; current study). Gene expression levels of most C₄ genes were thus highly abundant, and at the same time expression of most of the major photorespiratory enzymes was significantly decreased in all three C₄ species compared to C₃ S. webbii. This important result is in full agreement with studies comparing closely related C₃ and C₄ species in spiderflowers (Cleome sensu lato, Bräutigam et al., 2011; Aubry et al., 2014; Külahgölu et al., 2014) and Flaveria (Gowik et al., 2011).

Transcriptome Analysis Reveals Specific Features of the Photosynthesis Phenotypes in Salsoleae

One key enzyme of C₄, PEPC, is known to be present in the plant genome in multiple copies, and while different isoforms function in different tissues, only one is recruited into the C₄ cycle (Westhoff and Gowik, 2004). Here, we provide evidence that PEPC1 is the C₄-specific isoform in Salsoleae. PEPC1 is one of the top-expressed genes in H. scoparia, S. oppositifolia, and S. soda and about 25-times less expressed in S. webbii, which is in accordance with high PEPC expression in other phylogenetically distant C₄ species like Flaveria bidentis (Gowik et al., 2011). In agreement with these findings, leaves of S. oppositifolia were recently shown to have high levels of PEPC protein (Schüssler et al., 2016). Only few amino acid changes in exon 9 of PEPC1 seem to play a major role in altering the efficiency of the enzyme toward its function in the C₄ pathway (Paulus et al., 2013). Inspection of the PEPC1 exon 9 amino acid sequence indicates that C₄-typical changes, e.g., alanine to serine at position 780 (Zea mays; Bläising et al., 2000) or 774 (Flaveria) and phenylalanine to valine at position 794 (Z. mays). Christin et al., 2007; Rosnow.
et al., 2014) are expectedly not present in the C₃ and C₂ Salsoleae species studied here, present in the two C₄ species H. scoparia and S. oppositifolia, but are surprisingly absent in the C₄ species S. soda. The entire amino acid sequence of PEPC1 exon 9 of S. soda is more similar to those of the C₃ and C₂ species than to the other studied Salsoleae C₄ taxa. This indicates that either the PEPC efficiency in C₄ function is improved by alternative amino acid changes (as described for Suaidoideae; Rosnow et al., 2015) or that the high expression of PEPC1 in the mesophyll cells is already sufficient for C₄ function. PEPC1 has also been shown to be the C₄-specific isoform in other C₄ lineages of Caryophyllales, while e.g., in Flaveria (Asterales) a different PEPC isoform was recruited into the C₄ cycle (Sunil et al., 2014).

Unexpectedly, the gene encoding the P-protein of the glycine cleavage system, GDC-P, which normally is involved in CO₂ release in photorespiration, was expressed at a considerable amount not only in the C₃ and C₂ species but in all five Salsoleae species irrespective of the photosynthetic type. We therefore hypothesize that while most enzymes of the photorespiratory cycle should be absent from the mesophyll of C₄ species because RuBisCO and the toxic products of its oxygenation reaction are lacking, others like GDC could still be present given their dual role also in C₁ metabolism (Parys and Jastrzebski, 2008; Schulze et al., 2016).

Based on gene expression data, Lauterbach et al. (2016) speculated that the proteins encoded by PHT4.1 and PHT4.4 might be involved in the C₄ syndrome, at least in S. soda. PHT4.1 and PHT4.4, which may function as ascorbate transporters, could play a role in protection against reactive oxygen species stress resulting from photostress in the mesophyll cells of NADP-ME C₄ species by providing cells with the antioxidant ascorbate (Miyaji et al., 2015; Lauterbach et al., 2016). Consistent with the high expression level of PHT4.1 and PHT4.4 in the C₄ species S. soda (Lauterbach et al., 2016), a significant increase of transcript abundance of these two genes was also observed in the two other C₄ species, H. scoparia and S. oppositifolia (current study). Intriguingly, PHT4.1 transcripts were highly and PHT4.4 transcripts slightly more abundant in C₄ S. divaricata, too. Thus, the results of the current study support a proposed function of the two PHT4 family proteins related to both C₄ and C₂ photosynthesis.

Asparagine synthetase, ASN, was found to be highly expressed in C₄ leaves of S. soda when compared to C₃ cotyledons of the same species (Lauterbach et al., 2016). ASN functions in ammonium metabolism, and asparagine is a key compound for nitrogen transport (Lam et al., 1996). Therefore, a possible functional connection between nitrogen metabolism and the switch from C₃ to C₄ was postulated (Lauterbach et al., 2016). In the current study, all C₄ species showed high levels of transcripts encoding ASN, nevertheless transcript abundance in S. soda was much higher compared to the other species. In Flaveria, however, no significant differences of ASN expression between C₃ F. pringlei and F. robusta, C₂ F. ramosissima, and C₄ F. bidentis and F. trinervia could be detected (see Supplementary Dataset 1, Gowik et al., 2011). In Cleomaceae on the other hand, ASN was also significantly upregulated in C₃ Gynandropsis gynandra from leaf stage 3 onwards (i.e., leaves of an age 6 days onwards) compared to closely related C₃ Tarenaya hassleriana (see Supplementary Datasets, Külahoglu et al., 2014). Thus, further investigation of up-regulation of ASN transcription in C₄ species of Salsoleae might be worthwhile.

The PCA showed S. divaricata Pop-198 somewhat closer to the C₄ species than S. divaricata Pop-184. Assuming that C₃ species are true evolutionary intermediates with a gradual increase of C₄-ness from C₃ to C₄ (Sage et al., 2012; Bräutigam and Gowik, 2016), gene expression profiles of the two populations of S. divaricata could imply that S. divaricata Pop-198 is closer to C₄ than Pop-184. However, only two populations were studied and the variation of transcript abundance might as well reflect a generally higher plasticity of photosynthetic gene expression in C₂ species. In a Flaveria study, a higher expression of NADP-ME was already present in more C₃-like intermediate species, which linearly increased in the more advanced intermediates and peaked in the C₄ species (Mallmann et al., 2014). This may be taken to indicate a more advanced C₄ cycle in Pop-198 than in Pop-184, because NADP-ME is significantly more abundant in Pop-198. Nevertheless, a wide range of C₄ genes, for example the first enzyme of the C₄ cycle, PEPC, were highly expressed in both populations, implying a low-level but detectable C₄ cycle in S. divaricata in general. However, a C₄ cycle should result in less negative carbon isotope values; a result that was not observed in the current study. Transcript abundance of most of the core enzymes of photorespiration were highly increased in S. divaricata compared to both C₃ and C₄ species, which is consistent with expression patterns in C₂ species of Flaveria (Gowik et al., 2011; Mallmann et al., 2014) and confirms the successful establishment of the C₄ cycle in S. divaricata. These gene expression results thus complement anatomical findings, results of in situ immuno-localization with an antibody against GDC-P, and results of gas exchange measurements of S. divaricata, that all together identified S. divaricata as C₂ species (Voznesenskaya et al., 2013).

C₄ photosynthesis has been subdivided into three subtypes based on the main acting decarboxylases: NAD-ME, NADP-ME and PEP-CK. Recently, it was suggested to consider the PEP-CK type as a supplementary pathway to either NAD-ME or NADP-ME (Wang et al., 2014) because PEP-CK-only decarboxylation could not be observed. In subfamily Salsoloideae, the NAD-ME subtype is known from C₄ species of the Caroxylinae, and the NADP-ME subtype is known from C₄ species of the Salsoleae (Akhanlı et al., 2007), whereas PEP-CK activity related to C₄ photosynthesis has so far not been reported in this group. Interestingly, while according to their transcript patterns all of the three studied Salsoleae C₄ species exclusively use NADP-ME as decarboxylase, we found PEP-CK abundant in both populations of S. divaricata. In Flaveria, PEP-CK was locally expressed in C₂ species and no differences in gene expression between the different photosynthetic types could be found (Gowik et al., 2011; Mallmann et al., 2014). In two C₂ species of Moricandia, however, transcripts encoding PEP-CK showed enhanced abundance compared to C₃ Moricandia moricandioides (Schlütter et al., 2016a). Also, Ala-AT transcripts were not increased in C₂ Moricandia and NADP-ME transcripts only slightly enhanced (Schlütter et al., 2016a). Likewise, we observed that Ala-AT transcript abundance was not higher in S. divaricata and augmented transcript abundance of the decarboxylase
NADP-ME was only observed in one population (Pop-198) when compared to S. webbii. It is tempting to speculate on a possible function of high PEP-CK abundance in a low level C\textsubscript{4} cycle in the C\textsubscript{3} species Moricandia arvensis, M. suffruticosa, and S. divaricata. One would expect, however, that genes encoding other proteins involved in the PEP-CK type C\textsubscript{4} cycle, such as Ala-AT and Asp-AT, were also highly abundant, which at least in case of S. divaricata was not observed. High abundance of PEP-CK is inconsistent with a study investigating the decarboxylation enzymes of several plant groups, including few species of Salsoleae (Koteyeva et al., 2015). In this study, only low PEP-CK activity and PEP-CK protein abundance (using immunostaining) were found in S. divaricata (Koteyeva et al., 2015). These contrasting results could have different reasons. First, neither of the three anti-PEP-CK antibodies (anti-Megathyrus maximum, anti-Oryza sativa, anti-Ananas comosus; Koteyeva et al., 2015) was able to bind to the PEP-CK gene that was upregulated in the current study. Second, post-transcriptional or post-translational regulation of PEP-CK could result in low abundance of PEP-CK protein. Third, variation in PEP-CK transcript abundance among populations of S. divaricata could occur. The latter explanation is at least partly supported because in the two studied populations transcript abundance of PEP-CK differed three-fold. Also, plasticity in the decarboxylation biochemistry of a supplemental PEP-CK pathway has been hypothesized (Furbank, 2011) and predicted in a modeling analysis (Wang et al., 2014) as well as observed in the C\textsubscript{3} species maize (Pick et al., 2011) and C\textsubscript{4} G. gynandra (Sommer et al., 2012). Information about the localization of PEP-CK within the leaf could clarify a possible function of PEP-CK in S. divaricata, and also in C\textsubscript{3}-C\textsubscript{4} Moricandia species.

CONCLUSION

The overall gene expression pattern, as visualized by PCA, showed photosynthetic type as the main factor separating the different Salsoleae species. C\textsubscript{2} type S. divaricata was intermediate between C\textsubscript{3} S. webbii and the three C\textsubscript{4} species. Despite major differences in life cycle, habit and photosynthesis during seedling stage, the C\textsubscript{4} species showed similar gene expression profiles of C\textsubscript{4} genes and photorespiratory genes. Most C\textsubscript{4} genes were highly abundant in all three C\textsubscript{4} species. Further, our results suggested that PEPC1 was the C\textsubscript{4}-specific isoform in Salsoleae, as found for other C\textsubscript{4} lineages of Caryophyllales. The protein, however, lacks C\textsubscript{4} typical amino acid changes in S. soda. Two recently proposed transporters from the PHT4 protein family might not only be involved in C\textsubscript{4} photosynthesis, but also be active in C\textsubscript{4} photosynthesis in Salsoleae. Here, they might be involved in protection against reactive oxygen species resulting from the absence of most photorespiratory reactions in the mesophyll. The transcript profile of the C\textsubscript{2} species S. divaricata was mostly comparable with that observed in C\textsubscript{3} species of Flaveria or Moricandia. Moreover, in one population of S. divaricata, Pop-198, the transcript pattern of C\textsubscript{2} genes implied a slightly more advanced C\textsubscript{4} cycle than in Pop-184. However, a C\textsubscript{4} cycle is not detectable in the carbon isotope values, and this species is not functioning as a C\textsubscript{4} plant physiologically (Voznesenskaya et al., 2013). Also, a function of PEP-CK in C\textsubscript{2} photosynthesis in S. divaricata is likely, because PEP-CK was highly increased compared to C\textsubscript{3} and C\textsubscript{4} species of Salsoleae, a result that was also observed in C\textsubscript{2} Moricandia, but needs further investigations.

AUTHOR CONTRIBUTIONS

MI. designed the research, performed experiments, analyzed and interpreted the data, and wrote the manuscript. HS analyzed and interpreted the data, and critically revised the manuscript. KB performed experiments. TH designed the research and critically revised the manuscript. PW designed the research and critically revised the manuscript. UG designed the research, analyzed and interpreted the data, and critically revised the manuscript. GK conceived and designed the research, interpreted the data, and critically revised the manuscript.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft with grants to GK (KA1816/7-1, KA1816/9-1) and the Cluster of Excellence on Plant Sciences (CEPLAS) to KB and PW. TH acknowledges support by the University Center for Computational Sciences in Mainz (CSM).

ACKNOWLEDGMENTS

We thank the Millenium Seed Bank (MSB Kew), Jaime Gil González (Lanzarote), Magui Olangua Corral (Gran Canaria), Helmut Freitag (Kassel) and Elena Voznesenskaya (St. Petersburg) for the contribution of seed samples. We thank the “Genomics and Transcriptomics laboratory” of the “Biologisch-Medizinisches Forschungszentrum” (BMFZ) at the Heinrich-Heine-University Duesseldorf (Germany) for technical support and conducting the Illumina sequencing. Parts of this research were performed using the supercomputer Mogen and/or advisory services offered by Johannes Gutenberg University Mainz (hpc.uni-mainz.de), which is a member of the AHRP and the Gauss Alliance e.V. We gratefully acknowledge the support of Dr. Christian Meesters and Benjamin Rieger (Johannes Gutenberg University Mainz, Germany) in providing tools and guidance through high parallel computing of de novo transcriptome assembly and data processing. We thank C. Wild (Botanical Garden Univ. Mainz) for cultivating the plants. We also thank three reviewers for their constructive comments which greatly helped to improve the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2017.01939/full#supplementary-material

Supplementary Table S1 | Details of de novo transcriptome assemblies using SOAPdenovo-Trans and Trinity.

Supplementary Table S2 | Mapping of reads, transcript abundance and statistical tests of differentially gene expression using edgeR. Key C4 genes and core enzymes of photorespiration are annotated in column B and C. Hs, Hammada scoparia; Sd184, S. divaricata Pop-184; Sd198, S. divaricata Pop-198; So, S. oppositifolia; Ss, S. sods; Sw, S. webbii.
Lam, H.-M., Coscigiano, K. T., Oliveira, I. C., Melo-Oliveira, R., and Coruzzi, G. M. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. *Annu. Rev. Plant Physiol. Plant Mol. Biol.*, 47, 569–593. doi: 10.1146/annurev.arplant.47.1.569

Langdale, J. A. (2011). C4 Cycles: past, present, and future research on C4 photosynthesis. *Plant Cell* 23, 3879–3892. doi: 10.1105/tpc.111.092988

Langmead, R., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat. Methods* 9, 357–359. doi: 10.1038/nmeth.1923

Lauterbach, M., Billakurthi, K., Kaderreit, G., Ludwig, M., and Westhoff, P. (2016). C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of *Salsoa* *soda* (Chenopodiaceae). *J. Exp. Bot.* 68, 161–176. doi: 10.1093/jxb/erw543

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment. *Bioinformatics* 25, 1754–1760. doi: 10.1093/bioinformatics/btp324

Li, Y., Ma, X., Zhao, J., Xu, J., Shi, J., Zbu, X.-G., et al. (2015). Developmental genetic mechanisms of C4 syndrome based on transcriptome analysis of *C* Cotyledons and *C4* Assimilating Shoots in *Haloxylon ammodendron*. *PLoS ONE* 10:e011715. doi: 10.1371/journal.pone.011715

Löve, A. (1970). IOPB chromosome number reports XXVI. *Taxon* 19, 264–269.

Lam, H.-M., Coscigiano, K. T., Oliveira, I. C., Melo-Oliveira, R., and Coruzzi, G. M. (2004). *Bemerkungen über einige* *Salsoa* *soda*: ein neues *C4* Samphire aus der Familie *Chenopodiaceae* Indicien. *J. Exp. Bot.* 55, 3583–3604. doi: 10.1093/jxb/eru021

van den Bergh, E., Külahoglu, C., Bräutigam, A., Hibberd, J. M., Weber, A. P. M., Tarnavschi, I. T., and Lungeanu, I. (1982). Bemerkungen über einige *Salsoa* *soda*: ein neues *C4* Samphire aus der Familie *Chenopodiaceae* Indicien. *J. Exp. Bot.* 55, 3583–3604. doi: 10.1093/jxb/eru021

Sunil, M., Hariharan, A. K., Nayak, S., Gupta, S., Nambisan, S. R., Gupta, R. P., et al. (2013). *Salicornia* (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. *Biotechnol. J.* 8, 1275–1287. doi: 10.1002/biot.201300078

Zhu, X.-G., et al. (2014). Gene and genome duplications and the origin of C4 photosynthesis: Birth of a trait in the Cleomaceae. *Curr. Plant Biol.* 64, 3583–3604. doi: 10.1093/jxb/eru028

Voznesenskaya, E. V., et al. (2016). Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. *J. Exp. Bot.* 67, 3574–3588. doi: 10.1093/jxb/erv431

Sage, R. F. (2004). The evolution of C4 photosynthesis. *New Phytol.* 161, 341–370. doi: 10.1046/j.1469-8137.2004.00974.x

Sage, R. F. (2016). A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: Species number, evolutionary lineages, and Hall of Fame. *J. Exp. Bot.* 67, 4039–4056. doi: 10.1093/jxb/erw156

Sage, R. F., Sage, T. L., and Kocacinar, F. (2012). Photosupiration and the Evolution of C4 Photosynthesis. *Annu. Rev. Plant Biol.* 63, 19–47. doi: 10.1146/annurev-arplant-042811-105511

Schlüter, U., Bräutigam, A., Gowik, U., Melzer, M., Christin, P.-A., Kurz, S., et al. (2016a). Photosynthesis in *C4*–*C3* intermediate *Moricandia* species. *J. Exp. Bot.* 68, 191–206. doi: 10.1093/jxb/erw391

Schlüter, U., Denton, A. K., and Bräutigam, A. (2016b). Understanding metabolite transport and metabolism in C4 plants through RNA-seq. *Curr. Opin. Plant Biol.* 31, 83–90. doi: 10.1016/j.copb.2016.03.007

Sage, R. F., and Weber, A. P. M. (2016). The Road to C4 Photosynthesis: evolution of a Complex Trait via Intermediary States. *Plant Cell Physiol.* 57, 881–889. doi: 10.1093/pcp/pcw009

Schultz, S., Westhoff, P., and Gowik, U. (2016). Glycine decarboxylase in *C3* and *C4*–*C3* intermediate species. *Curr. Opin. Plant Biol.* 31, 29–35. doi: 10.1016/j.copb.2016.03.011

Schüssler, C., Freitag, H., Koteyeva, N., Schmidt, D., Edwards, G., Voznesenskaya, E. V., et al. (2016). Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae). *J. Exp. Bot.* 68, 207–223. doi: 10.1093/jxb/erw432

Shepherd, K. A., and van Leeuwen, S. J. (2007). *Tecticornia* *biberna* (Chenopodiaceae: *Salicornioidae*), a new *C4* samphire from the Little Sandy Desert, Western Australia. *Nuytsia* 16, 383–391. Available online at: https://florabase.dpaw.wa.gov.au/nuytsia/article/471

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31, 3210–3212. doi: 10.1093/bioinformatics/btv351

Sommer, M., Bräutigam, A., and Weber, A. P. M. (2012). The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. *Plant Biol.* 14, 621–629. doi: 10.1111/j.1438-8677.2011.00539.x

Sunil, M., Hariharan, A. K., Nayak, S., Gupta, S., Nambisan, S. R., Gupta, R. P., et al. (2014). The draft genome and transcriptome of *Amaranthus hypochondriacus*: A *C*4 dicot producing high-lysine edible pseudo-cereal. *DNA Res.* 21, 585–602. doi: 10.1093/dnares/duu021

Tarnavski, I. T., and Lungeanu, I. (1982). Bemerkungen über einige Chromosomenszahlen wildwachsender Arten aus Rumänien. *Lud. Grad. Bot. Bucharest* 1981, 17–20.

van den Bergh, E., Külahoglu, C., Bräutigam, A., Hibberd, J. M., Weber, A. P. M., Zhu, X.-G., et al. (2014). Gene and genome duplications and the origin of C4 photosynthesis: Birth of a trait in the Cleomaceae. *Curr. Plant Biol.* 1, 2–9. doi: 10.1016/j.cpb.2014.08.001

Voznesenskaya, E. V., Akhani, H., Koteyeva, N. K., Chuong, S. D. X., Roalson, E. H., Kiirats, O., et al. (2008). Structural, biochemical, and physiological characterization of photosynthesis in two *C4* subspecies of *Tecticornia indica* and the *C3* species *Tecticornia* *pergranulata* (Chenopodiaceae). *J. Exp. Bot.* 59, 1715–1734. doi: 10.1093/jxb/ern028

Voznesenskaya, E. V., Koteyeva, N. K., Akhani, H., Roalson, E. H., and Edwards, G. E. (2013). Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. *J. Exp. Bot.* 64, 3583–3604. doi: 10.1093/jxb/ert191

Wang, S., and Gribkov, M. (2016). Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. *Bioinformatics* 33, 327–333. doi: 10.1093/bioinformatics/btw625
Wang, Y., Bräutigam, A., Weber, A. P. M., and Zhu, X.-G. (2014). Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis. *J. Exp. Bot.* 65, 3567–3578. doi: 10.1093/jxb/eru058

Washburn, J. D., Bird, K. A., Conant, G. C., and Pires, J. C. (2016). Convergent evolution and the origin of complex phenotypes in the age of systems biology. *Int. J. Plant Sci.* 177, 305–318. doi: 10.1086/686009

Westhoff, P., and Gowik, U. (2004). Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins: A case study with the genus Flaveria. *Ann. Bot.* 93, 13–23. doi: 10.1093/aob/mch003

Williams, B. P., Johnston, I. G., Covshoff, S., and Hibberd, J. M. (2013). Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis. *Elife* 2013, 1–19. doi: 10.7554/elife.00961.001

Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., et al. (2014). SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. *Bioinformatics* 30, 1660–1666. doi: 10.1093/bioinformatics/btu077

Zakharyeva, O. I. (1985). Chromosome numbers of some flowering plants from the Caucasus and Middle Asia. *Bot. Zhurn.* SSSR 70, 1699–1701.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.