Phonon anomalies in some iron telluride materials

C.C. Homes

Submitted to Physical Review B

March 2016

Condensed Matter Physics and Material Science Department

Brookhaven National Laboratory

U.S. Department of Energy
[DOE Office of Science]

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Phonon anomalies in some iron-telluride materials

C. C. Homes, Y. M. Dai, J. Schneeloch, R. D. Zhong, and G. D. Gu

Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Dated: March 9, 2016)

The detailed temperature dependence of the infrared-active mode in Fe$_{1.03}$Te ($T_N \simeq 68$ K) and Fe$_{1.13}$Te ($T_N \simeq 56$ K) has been examined, and the position, width, strength, and asymmetry parameter determined using an asymmetric Fano profile superimposed on an electronic background. In both materials the frequency of the mode increases as the temperature is reduced; however, there is also a slight asymmetry in the line shape, indicating that the mode is coupled to either spin or charge excitations. Below T_N there is an anomalous decrease in frequency and the mode shows little temperature dependence, at the same time becoming more symmetric, suggesting a reduction in spin- or electron-phonon coupling. The frequency of the infrared-active mode and the magnitude of the shift below T_N are predicted reasonably well by first-principles calculations; however, the predicted splitting of the mode is not observed. In superconducting FeTe$_{0.55}$Se$_{0.45}$ ($T_c \simeq 14$ K) the infrared-active E_u mode displays asymmetric line shape at all temperatures, which is most pronounced between 100 – 200 K, indicating the presence of either spin- or electron-phonon coupling, which may be a necessary prerequisite for superconductivity in this class of materials.

PACS numbers: 63.20.e, 71.27.+a, 78.30.-j

I. INTRODUCTION

The discovery of superconductivity in the iron-based materials has prompted a thorough investigation of this class of materials in an effort to understand the mechanism responsible for the superconductivity, as well as the normal state from which it emerges [1]. While much of this work has focussed on the electronic and magnetic structure, lattice vibrations are also useful for probing electron-phonon coupling and the effects of chemical substitution [2]. Among the iron-based materials, iron telluride is of particular interest because it is thought to be among the most strongly correlated of the iron-chalcogenide materials [3]. At room temperature, the nearly stoichiometric Fe$_{1.0}$Te is a tetragonal, paramagnetic metal that undergoes a first-order structural and magnetic transition to a monoclinic, antiferromagnetic (AFM) metal at $T_N \simeq 68$ K [4, 5]. The introduction of excess iron leads to an increase in the resistivity and the suppression of T_N [11, 12]. The substitution of Se for Te in FeTe$_{1-x}$Se$_x$ suppresses the structural and magnetic transition and results in a superconducting phase for a broad range of compositions [12, 13], with a maximum critical temperature of $T_c \simeq 14$ K [14, 17]. The optical and transport properties of Fe$_{1.03}$Te and FeTe$_{1-x}$Se$_x$ have been investigated [17, 23] and in addition there have been a number of reports on the vibrational properties of these materials; however, only the Raman-active modes have been studied [24, 28], leaving the infrared-active modes largely unexplored.

In this work we examine the optical properties of Fe$_{1.03}$Te ($T_N \simeq 68$ K) and Fe$_{1.13}$Te ($T_N \simeq 56$ K) above and below T_N, as well as FeTe$_{0.55}$Se$_{0.45}$ ($T_c \simeq 14$ K), and determine the detailed temperature dependence of the position, width, strength and asymmetry parameter of the infrared-active mode using an asymmetric (Fano) line shape; in several cases the electronic properties of these materials have been previously discussed by us [19, 21]. In both Fe$_{1+x}$Te materials the infrared-active mode displays a slight asymmetry, suggesting either spin- or electron-phonon coupling, and increases in frequency with decreasing temperature, as expected for an anharmonic decay process; below T_N the mode undergoes an anomalous decrease in frequency at T_N and the asymmetry parameter decreases, indicating reduced coupling. The vibrational frequencies and atomic intensities have been calculated at the center of the Brillouin zone from first-principles methods for both the high-temperature tetragonal phase, and the low-temperature monoclinic phase. In the latter case, spin ordering is shown in some cases to alter the character of the mode resulting in a large predicted frequency shift below T_N. Interestingly, the predicted splitting of the infrared-active E_u mode below T_N is not observed. In FeTe$_{0.55}$Se$_{0.45}$ the E_u mode displays an asymmetry at all temperatures, which is most pronounced between 100 – 200 K. The asymmetric profile is a signature of either spin- or electron-phonon coupling, which may be necessary condition for superconductivity in this class of materials.

II. EXPERIMENT

Single crystals of Fe$_{1.03}$Te and Fe$_{1.13}$Te with good cleavage planes (001) have been grown by a unidirectional solidification process; these crystals undergo structural...
and magnetic transitions at $T_N \simeq 68$ K and $\simeq 56$ K, respectively. Single crystals with a nominal composition of FeTe$_{0.55}$Se$_{0.45}$ have also been grown using this similar process with $T_N \simeq 14$ K and a transition width of $\simeq 1$ K. The reflectance of these materials with the light polarized in the Fe–As (a-b) planes has been measured over a wide frequency range ($\simeq 2$ meV to over 3 eV) using an in situ evaporation technique for a wide range of temperatures. The complex optical properties have been calculated from a Kramers-Kronig analysis of the reflectance. The large-scale structure and temperature dependence of the optical conductivity of some of these materials have been previously discussed [19–21].

III. RESULTS AND DISCUSSION

Lattice vibrations in solids are often described using a Lorentzian oscillator superimposed on a linear (or polynomial) background. The complex dielectric function is

$$\tilde{\varepsilon}(\omega) = \frac{\Omega_0^2}{\omega^2 - \omega^2 - i\gamma_0\omega}. \quad (1)$$

where ω_0, γ_0 and Ω_0 are the position, width, and strength of the vibration, respectively. The complex conductivity is

$$\tilde{\sigma}(\omega) = \sigma_1 + i\sigma_2 = -2\pi i \omega \tilde{\varepsilon}(\omega)/Z_0,$$

where ω_0 is a high-frequency contribution to the real part, and $Z_0 \simeq 377 \Omega$ is the impedance of free space, yielding units for the conductivity of Ω^{-1} cm$^{-1}$. The real part of the optical conductivity for the oscillator may then be written as

$$\sigma_1(\omega) = \frac{2\pi}{Z_0} \frac{\gamma_0}{(\omega_0^2 - \omega^2)^2 + \gamma_0^2 \omega^2}, \quad (2)$$

While this approach accurately describes a symmetric line shape, the coupling of lattice vibrations to either the spin or electronic background may lead to an asymmetric line shape, often referred to as the Fano profile. The Fano line shape is written as $\sigma_1(\omega) = A \left(\frac{x + q^2}{1 + x^2}\right)$, where A is a constant, $x = (\omega - \omega_0)/\gamma_0$, and the asymmetry is described by the dimensionless parameter $1/q^2$. A more usefull expression,

$$\sigma_1(\omega) = \frac{2\pi}{Z_0} \frac{\gamma_0}{\gamma_0} \frac{(q^2 + 4qx - 1)}{(q^2 + 4qx - 1)^2}, \quad (3)$$

incorporates the oscillator strength; this from contains no information about $\sigma_2(\omega)$ and does not satisfiy the Kramers-Kronig relation. To resolve this issue a phenomenological dielectric function for a Fano-shaped Lorentz oscillator is employed in which is Kramers-Kronig consistent [32, 33],

$$\tilde{\varepsilon}(\omega) = \frac{\Omega_0^2}{\omega^2 - \omega^2 - i\gamma_0\omega} \left(1 + i\frac{\omega q}{\omega_0}\right)^2 + \left(\frac{\Omega_0^2}{\omega_0\omega}\right)^2 \quad (4)$$

where $1/q = \omega q/\omega_0$. Unlike the simple Fano profile, a complex conductivity may be calculated which satisfies

$$\tilde{\sigma}(\omega) = \sigma_1(\omega) = -\frac{2\pi}{Z_0} \frac{\gamma_0}{\omega_0^2 - \omega^2 - i\gamma_0\omega} \left(1 + i\frac{\omega q}{\omega_0}\right)^2 + \left(\frac{\Omega_0^2}{\omega_0}\omega\right)^2 \quad (4)$$

The real part of the optical conductivity of Fe$_{1.03}$Te in the region of the infrared-active phonon is shown in Fig. 1(a). The rapid increase in the low-frequency conductivity below T_N has been attributed to the closing of the pseudogap below T_N leading to an increase in the free-carrier concentration [19]. In the room-temperature tetragonal phase, the $P4/nmm$ space group with two formula units per unit cell yields the irreducible vibrational representation [24].

$$\Gamma_{HT} = A_{1g} + B_{1g} + 2E_g + A_{2u} + E_u.$$

Two infrared-active modes are expected, a doubly-degenerate E_u mode active in the planes, and an A_{2u}
mode active along the c axis. In the low-temperature monoclinic phase, the $P2_1/m$ space group with two formula units per unit cell yields the irreducible vibrational representation

$$
\Gamma_{LT} = 4A_g + 2B_g + A_u + 2B_u,
$$

where the A_u mode is infrared active along the c axis and the E_u modes split into two B_u modes that are active in the a-b plane.

The infrared-active mode is fit simultaneously to the real and imaginary parts of the complex conductivity using the asymmetric line shape described by the dielectric function in Eq. (1) superimposed on a free-carrier (Drude) response in combination with several symmetric Lorentz oscillators that describe the mid-infrared response. Because the iron-telluride compounds are multiband materials the minimal description of the dielectric function usually consists of at least two Drude components

$$
\hat{\varepsilon}(\omega) = \varepsilon_{\infty} - \sum_{j=1}^{2} \frac{\omega_p^2_{D,j}}{\omega^2 + i\omega/\tau_{D,j}}
$$

where ε_{∞} has been previously defined, $\omega_p^2_{D,j} = 4\pi n_j e^2/m^*_j$ and $1/\tau_{D,j}$ are the square of the plasma frequency and scattering rate for the delocalized (Drude) carriers, respectively, in the jth band, and n_j and m^*_j are the carrier concentration and effective mass. The values for $\omega_p_{D,j}$ and $1/\tau_{D,j}$ and the mid-infrared oscillators are initially fit to the complex conductivity up to at least 1 eV using a non-linear least-squares technique.

Fits to the infrared-active mode encompass only a narrow region around the mode (typically ± 50 cm$^{-1}$), and as a result in addition to the vibrational parameters, only the Drude components and the width and strength of the lowest mid-infrared oscillator are allowed to vary, while the other parameters remain fixed. The temperature dependence of $\omega_p_{D,1}$, $1/\tau_{D,1}$ and the mid-infrared oscillators in these materials have been previously discussed [19, 21]. As Figs. 1(b) and 1(c) illustrate, both the background and the line shape are reproduced quite well using this approach.

The temperature dependence of ω_0, γ_0, Ω_0, and the asymmetry parameter $1/q^2$ of the infrared-active mode in Fe$_{1.03}$Te are shown in Fig. 2. The frequency of the mode increases (hardens) in an almost linear fashion with decreasing temperature. At T_N there is an anomalous decrease (softening) in the frequency of the mode followed by a very weak temperature dependence; there is no evidence for a new infrared active B_n mode appearing below T_N. This is similar to the temperature dependence of the frequency of the B_{1g} mode in these materials [26, 28]. The width of this mode shows very little temperature dependence either above or below T_N. While strength of this mode may increase slightly as the temperature is lowered to T_N, it is also possible that, within error, it is constant; below T_N there is very little change. Above T_N, the asymmetry parameter $1/q^2 \approx 0.03$, suggesting weak spin- or electron-phonon coupling [2]. Below T_N the asymmetry parameter $1/q^2$ decreases and the line shape becomes almost perfectly symmetric; this inferred reduction in the electron-phonon coupling may be related to the fact that in the AFM state the spin fluctuations are observed to decrease [30] and most signs of correlations

![Figure 2](image-url)
Figure 2. (Color online) The temperature dependence of the (a) infrared-active mode compared with the anharmonic decay model (dotted line), (b) linewidth and predicted dependence (dotted line), (c) oscillator strength, and (d) asymmetry parameter in Fe$_{1.03}$Te ($T_N \approx 68$ K); the dotted lines in the last two panels are drawn as a guide to the eye.

![Figure 3](image-url)
Figure 3. (Color online) The temperature dependence of the (a) infrared-active mode compared with the anharmonic decay model (dotted line), (b) linewidth and predicted dependence (dotted line), (c) oscillator strength, and (d) asymmetry parameter in Fe$_{1.13}$Te ($T_N \approx 56$ K); the dotted lines in the last two panels are drawn as a guide to the eye.
Table I. Calculated frequencies and Fe atomic intensities in the high- and low-temperature phases of FeTe for the zone center modes. For each phase, the results based on the relaxed and experimental (shown in parenthesis) unit cell parameters are considered; for the low-temperature phase, non-spin polarized (NSP) and spin polarized (SP) calculations are performed. All units are in cm$^{-1}$ unless otherwise indicated.

Symmetry	Theory	Fe	Symmetry	Theory-NSP	Fe	Theory-SP	Fe	Expt.a
E_g	98 (77)	0.11 (0.12)	A_g	98 (57)	0.10 (0.17)	84 (81)	0.13 (0.11)	
A_{1g}	170 (141)	0.00 (0.00)	B_g	99 (72)	0.10 (0.13)	85 (79)	0.13 (0.08)	160
E_u	249 (203)	0.70 (0.70)	B_u	245 (203)	0.70 (0.70)	241 (195)	0.70 (0.70)	196
B_{1g}	272 (221)	1.00 (1.00)	A_g	300 (254)	0.70 (0.70)	306 (267)	0.70 (0.70)	203
E_g	292 (223)	0.89 (0.88)	B_g	292 (215)	0.90 (0.92)	287 (243)	0.87 (0.89)	
A_{2u}	304 (257)	0.70 (0.69)	A_u	248 (196)	0.70 (0.70)	244 (189)	0.70 (0.70)	

a The Raman results are taken from Ref. 27; infrared is from this work.

disappear.37

The temperature dependence of the infrared-active mode in Fe$_{1.13}$Te has been fit using procedure described above, and the results are shown in Fig. 3 (the temperature dependence of the optical conductivity and the fit at 30 K is shown in Fig. S1 in the Supplemental Material). The behavior of ω_0, γ_0, and Ω_0 are quite similar to those of Fe$_{1.03}$Te, although there does tend to be a bit more scatter in the data points. However, above T_N the asymmetry parameter $1/q^2 \simeq 0.1$, suggesting that the spin- or electron-phonon coupling is stronger in this material; as in Fe$_{1.03}$Te, below T_N the asymmetry parameter $1/q^2$ decreases, suggesting a decrease in correlations and a commensurate reduction in the coupling of the phonons to the spin or charge.

Above T_N the behavior of ω_0 can be described quite well assuming a symmetric anharmonic decay into two acoustic modes with identical frequencies and opposite momenta.$^{38, 39}$ A slightly modified functional form is employed here,

$$\omega_0(T) = \omega_B \left[1 - \frac{2C}{e^x - 1}\right], \quad (7)$$

$$\gamma_0(T) = \Gamma_0 \left[1 + \frac{2\Gamma}{e^x - 1}\right], \quad (8)$$

where ω_B is the bare phonon frequency, Γ_0 is a residual line width, C and Γ are constants, and $x = \hbar \omega_B/(2k_B T)$; an advantage of this form is that the bare phonon frequency (residual line width) is recovered in the $T \to 0$ limit. The model fits to the $T > T_N$ data are indicated by the dotted lines in Figs. 2 and 3, yielding nearly identical values of $\omega_B \simeq 196.5$ and 196.6 cm$^{-1}$ for Fe$_{1.03}$Te and Fe$_{1.13}$Te, respectively.

The behavior of the infrared-active mode at T_N is also reminiscent of the E_u mode in BaFe$_2$As$_2$ which also experiences an anomalous softening below the magnetic and structural transition at $T_N \simeq 138$ K.40; however, in that material the oscillator strength nearly doubles below T_N, whereas in Fe$_{1+\delta}$Te it remains more or less unchanged.

2. Lattice dynamics

The frequencies and atomic intensities (square of the vibrational amplitude of each atom that sum to unity) for the zone-center phonons have been calculated from first principles using the so-called frozen-phonon method, the details of which are described in the Appendix. The results for the high-temperature tetragonal phase using the relaxed (experimental) unit cell parameters (Table I in the Appendix) are shown in Table I and compared with experimental results; these results are in good agreement with other calculations.$^{24, 25}$ It has been remarked that in this material the frequencies calculated using the experimental unit cell parameters are in better agreement with the experimentally-observed frequencies than the values determined from a relaxed unit cell.24, and that is indeed the case here. In the relaxed unit cell the Fe–Te bond is shorter, which has the effect of scaling up all of the frequencies by 20–30%; however, we note that the character of the atomic intensities is essentially unaffected. The A_{1g} and B_{1g} Raman modes are calculated using the relaxed (experimental) unit cell parameters at 170 (141) and 272 (221) cm$^{-1}$, respectively, are pure Te and Fe vibrations, whereas the E_u mode is a mixture of the two. Using the experimental unit cell, the calculated frequency for the E_u mode of 203 cm$^{-1}$ is quite close to the measured value of $\simeq 196$ cm$^{-1}$, as are the values for the A_{1g} and B_{1g} modes.27

The frequencies and atomic intensities for the low-temperature monoclinic phase have also been calculated using the relaxed (experimental) unit cell parameters (Table III in the Appendix), and the results listed in Table I. As previously noted, the lower symmetry results in the splitting of the doubly-degenerate $E_g \to A_g + B_g$ and $E_u \to 2B_u$ modes. In the non-magnetic calculation (non-spin polarized), the calculated frequencies for the relaxed and experimental unit cells match quite well with their counterparts in the tetragonal phase, and the character of the modes does not change substantially. In the relaxed unit cell the splitting of the upper and lower
E_g modes is negligible (≈ 2 cm$^{-1}$); however in the experimental unit cell this splitting is much larger, ≈ 20 cm$^{-1}$. In both the experimental and relaxed geometries, the E_u mode is predicted to split by ≈ 50 cm$^{-1}$. A simple empirical force-constant model [11] reproduces the size of the splitting below T_N and indicates that the two B_u modes should have roughly the same strength. Using a splitting of ≈ 50 cm$^{-1}$, a new mode might be expected at ≈ 240 cm$^{-1}$; however, there does not appear to be any experimental evidence for a new mode below T_N [Fig. 4(a) and Fig. S1(a) in the Supplementary Material].

The non-spin polarized calculation does not take into consideration the antiferromagnetic ground state of this material [4]. Accordingly, the spins on the two Fe sites have been placed in an antiferromagnetic configuration while the Te atoms remain non-magnetic; the frequencies and atomic characters are then calculated for a spin-polarized case using both the relaxed and experimentally-determined unit cell parameters, and the results listed in Table I. The introduction of magnetic order has a significant effect on some modes changing both the frequency and the character of the vibration; however, we note that the E_u, upper E_g and A_{2u} modes experience only a small effect. The small predicted downward shift in the lower B_u mode of ≈ 4 - 7 cm$^{-1}$ for the spin-polarized case is in good agreement with the experimentally-observed softening of this mode of between 2 - 4 cm$^{-1}$ in Fe$_{1+x}$Te below T_N.

![Figure 4](image)

Figure 4. (Color online) (a) The real part of the optical conductivity of FeTe$_{0.55}$Se$_{0.45}$ above and below $T_c \approx 14$ K in the region of the infrared-active E_u mode at ≈ 213 cm$^{-1}$. (b) Fano oscillator fit (dashed line) to $\sigma_1(\omega)$ at 30 K with Drude-Lorentz background (long-dashed line), and (c) the simultaneous fit to $\sigma_2(\omega)$.

B. FeTe$_{0.55}$Se$_{0.45}$

The real part of the optical conductivity of superconducting FeTe$_{0.55}$Se$_{0.45}$ in the region of the infrared-active phonon at ≈ 213 cm$^{-1}$ is shown in Fig. 4(a) [21]. The substitution of Se for Te in this material has the effect of shifting the frequency of the E_u mode up about 10%. The temperature dependence of the E_u mode has been fit to the complex conductivity using the asymmetric Fano line shape in Eq. (4) superimposed on a Drude-Lorentz background; as Figs. 5(b) and 5(c) illustrate, both the background and the line shape are reproduced quite well. In several cases, it appears as though there is a weak sideband at ≈ 240 cm$^{-1}$; however, no new mode is predicted in this material, suggesting that such features are the result of an asymmetric line shape.

The temperature dependence of the frequency and line width of the mode, shown in Figs. 5(a) and 5(b), respectively, both agree quite well with the anharmonic decay model. The strength of the mode shown in Figs. 5(c) may be increasing somewhat with decreasing temperature, but within the accuracy of the fits it is also possible that it is temperature independent. The asymmetry parameter is small at room temperature, $1/q^2 \approx 0.05$, but increases with temperature, reaching a maximum of $1/q^2 \approx 0.13$ at ≈ 125 K before decreasing at low temperature, as shown in Fig. 5(d). This would tend to indicate that the spin- or electron-phonon coupling of the E_u mode is becoming significant, and indeed it is considerably larger than what is observed in related iron-pnictide materials [2]. The decrease in $1/q^2$ at low temperature is correlated with the rapid decrease in the Hall coefficient below 100 K [42], suggesting that the electron-
phonon coupling is related to a specific carrier pocket in this material. While electron-phonon coupling is present in this material at low temperatures, it is thought that the electron-phonon coupling constant \(\lambda \) in this material is quite small (\(\lambda \approx 0.01 \)) [43]. The low values for \(\lambda \) do not support the high \(T_N \)'s observed in iron-based superconductors, implying that these materials are not phonon-mediated superconductors [44]. However, a detailed analysis of the five-orbital Hubbard-Holstein model for iron pnictides has demonstrated that a relatively small electron-phonon interaction arising from the Fe-ion oscillation can induce substantial \(d \)-orbital fluctuations [45, 46], as well as the anion electronic polarization [47]. These orbital fluctuations give rise to a strong pairing interaction and mediate an \(s_+ \) superconducting state. In addition, a large Fe isotope effect has been reported in SmFeAsO\(_{1-x}\)Fe\(_x\) and Ba\(_{1-x}\)K\(_x\)Fe\(_2\)As\(_2\) [48], indicating that electron-phonon coupling likely plays some role in the pairing mechanism. Our experimental results in the Fe\(_{1+g}\)Te\(_{1−δ}\)Se\(_2\) system, in combination with the above theoretical and experimental studies, suggests that electron-phonon coupling may be a necessary prerequisite for superconductivity in this class of materials.

IV. CONCLUSIONS

The detailed temperature dependence of the infrared-active infrared-active mode has been fit in Fe\(_{1.03}\)Te and Fe\(_{1.13}\)Te using an asymmetric Fano line shape superimposed on a background of Drude free carriers and symmetric Lorentz oscillators. In both materials, above \(T_N \) the frequency increases as the temperature is lowered; this behavior is described quite well by an anharmonic decay process. Below \(T_N \), there is an abrupt softening of this mode in both materials, below which it displays little temperature dependence. While frequency of the mode and the size of the shift below \(T_N \) are predicted reasonably well from first-principles calculations (with some caveats), the predicted splitting of the infrared-active mode is not observed. In both materials, the phonon has a slightly asymmetric line shape above \(T_N \), suggesting that there is coupling of the phonons to either spin or charge; however, \(1/q^2 \) decreases and the profile becomes more symmetric below \(T_N \), suggesting this coupling is reduced. The \(E_u \) mode in superconducting FeTe\(_{0.55}\)Se\(_{0.45}\) has been fit in a similar fashion and displays an asymmetry at all temperatures, which is most pronounced between 100 – 200 K. The temperature dependence of this mode is once again described quite well by an anharmonic decay process over the entire temperature range. The asymmetric nature of the \(E_u \) mode is an indication of spin- or electron-phonon coupling to the electronic background, which may be a necessary prerequisite for superconductivity in the iron-based materials.

Table II. The experimental and theoretical lattice constants and atomic fractional coordinates for the relaxed structure of FeTe for the high-temperature tetragonal \(P4/nmm \) space group. The fractional coordinate for the Fe atom is \((\frac{1}{4}, \frac{1}{4}, 0)\). The Fe–Te bond lengths are also shown, while the Fe–Fe and Te–Te bond lengths, 2.6960 Å and 2.8126 Å, respectively, are essentially identical for the two structures.

Experiment\(^a\)	\(a \) (Å)	\(c \) (Å)	Te\((\frac{1}{4}, \frac{1}{2}, z)\)	Fe–Te (Å)
\(a \)	3.8127	6.2450	0.2813	2.5923
\(c \)	3.8126	6.2448	0.2569	2.4915

\(^a\) Ref [4] [Supplemental Material. Table I, Section (a)].

ACKNOWLEDGMENTS

We would like to acknowledge helpful discussions with T. Birol. We are indebted to S. V. Dordevic for referring us to a phenomenological Fano line shape, developed by A. Damascelli and A. Kuzmenko. This work is supported by the Office of Science, U.S. Department of Energy under Contract No. DE-SC0012704. J.S. and R.D.Z. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

Appendix: Lattice dynamics

1. \(P4/nmm \) (HT)

The total energy of FeTe was calculated with the generalized gradient approximation (GGA) using the full-potential linearized augmented plane-wave (FP-LAPW) method [50] with local-orbital extensions [51] in the WIEN2k implementation [52]. An examination of different Monkhorst-Pack \(k \)-point meshes indicated that 175 \(k \) points (\(6 \times 6 \times 4 \) mesh) and \(R_{\text{tot}}b_{\text{max}} = 7.5 \) was sufficient for good energy convergence. The geometry of the unit cell was refined through an iterative process whereby the volume was optimized with respect to the total energy while the \(c/a \) ratio remained fixed. The atomic fractional coordinates were then relaxed with respect to the total force, typically resulting in residual forces of less than 1 mRy/a.u. This procedure was repeated until no further improvement was obtained. A comparison of the experimental and calculated (relaxed) unit cell parameters are shown in Table II. Note that while the unit cell parameters are nearly identical to the experimentally-determined values, the position of the Te atom has shifted somewhat.

The phonons have been determined using the direct method. To determine the phonons at the zone center, a \(1 \times 1 \times 1 \) supercell is sufficient. To obtain a complete set of Hellmann-Feynman forces, a total of 4 independent displacements are required; because there are always some
residual forces at the atomic sites we have considered symmetric displacements, which doubles this number, resulting in a total of 8 atomic displacements. In this case, displacement amplitudes of 0.03 Å were used. The calculations have converged when the successive changes for the forces on each atom are less than 0.1 mRy/au. The residual forces are collected for each set of symmetric displacements and a list of the Hellmann-Feynman forces are generated. Using the program PHONON, the cumulative force constants deconvoluted from the Hellmann-Feynman forces are introduced into the dynamical matrix, which is then diagonalized in order to obtain the phonon frequencies; the atomic intensities are further calculated to describe the character of the vibration. The results are shown in Table III.

2. \(P2_1/m\) (LT)

The procedure that was used to calculate the geometry of the room-temperature tetragonal phase has been repeated for the low-temperature monoclinic phase; the same \(k\) point mesh and \(R_{\text{max}}\) were used. The optimized unit cell parameters are compared with the experimental values and shown in Table III. Once again, the calculated unit cell parameters are nearly identical to the experimental values, and shown in Table III. Once again, the calculated phonon frequencies and atomic intensities are less than 0.1 mRy/au. The forces on each atom are less than 0.1 mRy/au. The calculations have converged when the successive changes for the forces on each atom are less than 0.1 mRy/au. The residual forces at the atomic sites we have considered symmetric displacements, which doubles this number, resulting in a total of 8 atomic displacements. In this case, displacement amplitudes of 0.03 Å were used. The calculations have converged when the successive changes for the forces on each atom are less than 0.1 mRy/au. The residual forces are collected for each set of symmetric displacements and a list of the Hellmann-Feynman forces are generated. Using the program PHONON, the cumulative force constants deconvoluted from the Hellmann-Feynman forces are introduced into the dynamical matrix, which is then diagonalized in order to obtain the phonon frequencies; the atomic intensities are further calculated to describe the character of the vibration. The results are shown in Table III.

\[\delta \pi \leq x \leq 0.20\]: Neutron powder diffraction analysis, Phys. Rev. B 81, 094115 (2010)

[7] Igor A. Zaliznyak, Zhijun Xu, John M. Tranquada, Genda Gu, Alexis G. Teweld, and Matthew B. Stone, “Unconventional Temperature Enhanced Magnetism in Fe\(_{1+y}\)Te\(_2\), ” Phys. Rev. Lett. 107, 216403 (2011)

[8] I. A. Zaliznyak, Z. J. Xu, J. S. Wen, J. M. Tranquada, G. D. Gu, V. Solovyov, V. N. Glazkov, A. I. Zheludev, V. O. Garlea, and M. B. Stone, “Continuous magnetic and structural phase transitions in Fe\(_{1+y}\)Te\(_2\), ” Phys. Rev. B 85, 085105 (2012)

[9] David Fobes, Igor A. Zaliznyak, Zhijun Xu, Ruidan Zhong, Genda Gu, John M. Tranquada, Leland Harriger, Deepak Singh, V. Ovidiu Garlea, Mark Lumsden, and Barry Winn, “Ferro-orbital ordering transition in iron telluride Fe\(_{1+y}\)Te\(_2\), ” Phys. Rev. Lett. 112, 187202 (2014)

[10] X. Liu, C.-C. Lee, Z. J. Xu, J. S. Wen, G. Wu, W. Ku, J. M. Tranquada, and J. P. Hill, “X-ray diffuse scattering study of local distortions in Fe\(_{1+y}\)Te induced by excess Fe,” Phys. Rev. B 83, 184523 (2011)

[11] E. E. Rodriguez, C. Stock, P. Zajdel, K. L. Krycka, C. F. Majkrzak, P. Zavalij, and M. A. Green, “Magnetic-crystallographic phase diagram of the superconducting parent compound Fe\(_{1+y}\)Te\(_2\),”
Table III. The experimental and theoretical lattice constants and atomic fractional coordinates for the relaxed structure of FeTe for the low-temperature monoclinic $P2_1/m$ space group. The Fe–Fe and Fe–Te bond lengths are also shown. Note that the GGA calculation does not reproduce the experimentally-observed Fe–Fe bond modulation.

	Experimenta	GGA (NSP)	GGA (SP)
a (Å)	3.8346	3.8391	3.891
b (Å)	3.7836	3.7897	3.7897
c (Å)	6.2567	6.2649	6.2649
β (°)	89.21	89.24	89.24
Fe($\frac{1}{2}$ z)	0.7612 0.0003 0.7501 0.0013 0.7507 0.0011		
Te($\frac{1}{2}$ z)	0.2586 0.2822 0.2448 0.2559 0.2454 0.2717		
Fe–Fe (Å)	2.639/2.756	2.697/2.698	2.693/2.701
Fe–Te (Å)	2.582/2.603/2.604	2.487/2.495/2.496	2.552/2.559/2.562

a Ref 8.
“Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity,” Phys. Rev. B 78, 134514 (2008).

[35] D. Wu, N. Barisić, P. Kallina, A. Faridian, B. Gorshunov, N. Drichko, L. J. Li, X. Lin, G. H. Cao, Z. A. Xu, N. L. Wang, and M. Dressel, “Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides,” Phys. Rev. B 81, 100512(R) (2010).

[36] Y. Zhang, F. Chen, C. He, L. X. Yang, B. P. Xie, Y. L. Xie, X. H. Chen, Minghu Fang, M. Arita, K. Ishigaki, H. Namatame, M. Taniguchi, J. P. Hu, and D. L. Feng, “Strong correlations and spin-density-wave phase induced by a massive spectral weight redistribution in α-Fe₃.₀₆Te,” Phys. Rev. B 82, 165113 (2010).

[37] Ping-Hui Lin, Y. Texier, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, E. Giannini, M. Grioni, and V. Brouet, “Nature of the bad metallic behavior of Fe₃.₀₆Te inferred from its evolution in the magnetic state,” Phys. Rev. Lett. 111, 217002 (2013).

[38] P. G. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148, 845–848 (1966).

[39] José Menéndez and Manuel Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α–Sn: Anharmonic effects,” Phys. Rev. B 29, 2051–2059 (1984).

[40] A. Akrap, J. J. Tu, L. J. Li, G. H. Cao, Z. A. Xu, and C. C. Homes, “Infrared phonon anomaly in BaFe₂As₂,” Phys. Rev. B 80, 180502 (2009).

[41] E. Dowty, Software VIBRATZ (Shape Software, Kingsport, TN, 2001).

[42] I. Tsukada, M. Hanawa, Seiki Komiya, T. Akiike, R. Tanaka, Y. Imai, and A. Maeda, “Hall effect in superconducting Fe₃(Se₀.₅Te₀.₅) thin films,” Phys. Rev. B 81, 054515 (2010).

[43] C. W. Luo, T. H. Wu, P. C. Cheng, J.-Y. Lin, K. H. Wu, T. M. Uen, J. Y. Juang, T. Kobayashi, Y. C. Wen, T. W Huang, K. W. Yeh, M. K. Wu, D. A. Charre, O. S. Volkova, and A. N. Vasiliev, “Ultrafast dynamics and phonon softening in Fe₁₃₊₀.₅Se₁₋ₐTeₐ single crystals,” New J. Phys. 14, 103053 (2012).

[44] L. Boeri, O. V. Dolgov, and A. A. Golubov, “Is LaFeAsO₁₋ₓFₓ an Electron-Phonon Superconductor?” Phys. Rev. Lett. 101, 026403 (2008).

[45] Hiroshi Kontani and Seiichiro Onari, “Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein Model,” Phys. Rev. Lett. 104, 157001 (2010).

[46] Tetsuro Saito, Seiichiro Onari, and Hiroshi Kontani, “Orbital fluctuation theory in iron pnictides: Effects of As-Fe-As bond angle, isotope substitution, and Z²-orbital pocket on superconductivity,” Phys. Rev. B 82, 144510 (2010).

[47] Chao Ma, Lijun Wu, Wei-Guo Yin, Huaxin Yang, Honglong Shi, Zhiwei Wang, Jianqi Li, C. C. Homes, and Yimei Zhu, “Strong Coupling of the Iron-Quadrupole and Anion-Dipole Polarizations in Ba(Fe₁₋ₓCoₓ)₂As₂,” Phys. Rev. Lett. 112, 077001 (2014).

[48] R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Ying, Y. J. Yan, Q. J. Li, B. C. Shi, W. S. Chu, Z. Y. Wu, and X. H. Chen, “A large iron isotope effect in SmFeAsO₁₋ₓFₓ and Ba₁₋ₓKₓFe₂As₂,” Nature 459, 64–67 (2009).

[49] D. J. Singh, Planewaves, Pseudopotentials and the LAPW method (Kluwer Acadademic, Boston, 1994).

[50] David Singh, “Ground-state properties of lanthanum: Treatment of extended-core states,” Phys. Rev. B 43, 6388–6392 (1991).

[51] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties (Techn. Universität Wien, Austria, 2001).

[52] K. Parlinks, Software PHONON (2003).

[53] H. Grettarsson, A. Lupascu, Jungho Kim, D. Casa, T. Gog, W. Wu, S. R. Julian, Z. J. Xu, J. S. Wen, G. D. Gu, R. H. Yuan, Z. G. Chen, N.-L. Wang, S. Khim, K. H. Kim, M. Ishikado, I. Jarrige, S. Shamoto, J.-H. Chu, I. R. Fisher, and Young-June Kim, “Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy,” Phys. Rev. B 84, 100509(R) (2011).
Supplemental material:
Phonon anomalies in some iron-telluride materials

C. C. Homes, Y. M. Dai, J. Schneeloch, R. D. Zhong, and G. D. Gu
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
(Dated: March 9, 2016)

Optical and vibrational properties of Fe$_{1.13}$Te

The temperature dependence of the real part of the optical conductivity of Fe$_{1.13}$Te ($T_N \approx 56$ K) for light polarized in the a-b planes is shown in Fig. S1(a). The results are similar to those of Fe$_{1.03}$Te, except that the overall conductivity is slightly higher. The infrared-active mode has been fit using the asymmetric Fano line shape, described by frequency (ω_0), width (γ_0), strength (Ω_0), and an asymmetry parameter ($1/q^2$); the real and imaginary parts of the optical conductivity for the Fano profile are

$$\sigma_1(\omega) = \frac{2\pi \Omega_0^2}{Z_0} \frac{[\gamma_0 \omega^2 - 2(\omega^2 - \omega_0^2)]}{(\omega^2 - \omega_0^2)^2 + \gamma_0^2 \omega^2}.$$ \hspace{1cm} (S1)

and

$$\sigma_2(\omega) = \frac{2\pi \omega \Omega_0^2}{Z_0} \frac{[(\omega^2 - \omega_0^2) - 2\gamma_0 \omega/\omega_0 + (\omega^2 - \omega_0^2 + \gamma_0^2)/q^2]}{(\omega^2 - \omega_0^2)^2 + \gamma_0^2 \omega^2}.$$ \hspace{1cm} (S2)

Here, $Z_0 \approx 377 \Omega$, yielding units of $\Omega^{-1} \text{cm}^{-1}$ (Sec. III). This line shape is superimposed on a Drude-Lorentz background. The real and imaginary parts of the optical conductivity are fit simultaneously, with the results at 30 K shown in Figs. S1(b) and S1(c), respectively (summarized in Fig. 3).

![Figure S1](image_url)

Figure S1. (Color online) (a) The real part of the optical conductivity of Fe$_{1.13}$Te above and below $T_N \approx 56$ K in the region of the infrared-active E_u mode at ≈ 196 cm$^{-1}$. There is no evidence that this mode splits below T_N. (b) Fano oscillator fit (dashed line) to $\sigma_1(\omega)$ at 30 K with Drude-Lorentz background (long-dashed line), and (c) the simultaneous fit to $\sigma_2(\omega)$.