Successful management of extramedullary plasmacytoma of the larynx in a patient with advanced radiation therapy techniques

Mark A. D’Andrea and G. Kesava Reddy*

University Cancer and Diagnostic Centers, Houston, TX, USA

Abstract

Objective: Extramedullary plasmacytoma (EMP) is a rare variant of plasma cell myeloma that affects soft tissues. The most affected sites of EMP are primarily the head and neck regions. In this study, we report a case of this rare neoplasm in the larynx and its management using an advanced radiation therapy protocol.

Methods: A 42-year-old Hispanic female presented with a history of progressive hoarseness for several weeks. Initially the patient underwent endoscopic evaluation of her throat to find any tumour lesion in the region of her false vocal cord. The patient was diagnosed with the presence of EMP of the larynx using microscopic laryngoscopy followed by computed tomography (CT)/positron emission tomography (PET)/magnetic resonance imaging (MRI) and pathological evaluations.

Results and discussion: The findings of the endoscopic evaluation and microscopic laryngoscopy of the patient’s throat indicated a submucosal mass in the region of her false vocal cord that was keeping the true vocal cords from adequately apposing. The CT/PET/MRI and pathology evaluations revealed the presence of a stage I EMP of the larynx. Following the diagnosis of her disease, the patient was administered a course of conformal 3-Dimensional intensity modulated radiation therapy (IMRT)/image-guided radiation therapy (IGRT) to a total dose of 5,040 cGy in 28 fractions over 44 calendar days. A post-operative treatment evaluation after more than 7 years indicated no evidence of a recurrent neoplasm or distant metastasis.

Conclusion: The findings of this case study demonstrated that conformal 3-D IMRT/IGRT is clinically effective in managing the EMP of the larynx successfully.

Introduction

Plasmacytoma is a rare neoplastic disorder of a monoclonal plasma cell proliferation of B lymphocyte lineage that originates in bone or soft tissues [1,2]. This rare neoplasm can occur in the form of either a solitary plasmacytoma or progresses to multiple myeloma. A solitary plasmacytoma is a single localized mass of neoplastic plasma cells occurring in either bone (medullary) or soft tissue predominantly in the head and neck area (extramedullary). Extramedullary plasmacytoma (EMP) is uncommon, accounting for only 3% of all plasma cell neoplasms [3]. Most lesions occur in the head and neck [4], primarily in the upper aerodigestive tract including the nasal cavity, paranasal sinuses, or nasopharynx; only a minority occurs in the larynx [5]. EMP of the larynx represents from 0.04% to 0.45% of the malignant tumours of the larynx, with an incidence of less than 1% of all head and neck malignancies [5,6].

EMP occurs approximately three times more often in men than in women. It is predominantly found in males between 50 and 70 years, but there are cases reported in the second decade of life [7]. The most common sites for laryngeal EMP are, in order of decreasing frequency, the epiglottis, true vocal cords, false vocal cords, ventricles, arytenoids, and subglottic space [3]. The clinical presentation of EMP varies according to its location, which includes hoarseness, cough, dyspnoea, and stridor. These symptoms can last from months to years before a diagnosis is made [8]. The diagnosis of EMP is based primarily on the histopathological evaluations that demonstrate the presence of neoplastic monoclonal plasma cells [9,10]. In addition, the diagnosis of EMP is made by the exclusion of multiple myeloma. A computed tomography (CT) or magnetic resonance imaging (MRI) examination is necessary to define the margins of the homogeneous laryngeal mass [11].

Due to the rarity of this neoplasm, there are no generally accepted guidelines for the treatment of patients with EMP and most recommendations remain a consensus of expert opinion. In general, these neoplasms are radiosensitive; therefore, radiation therapy is considered the treatment of choice for patients with EMP [9,10]. However, the optimal dosage regimen for radiotherapy is a matter of debate. Innovations in radiation therapy techniques have led to the introduction of intensity modulated radiation therapy (IMRT) and image-guided radiation therapy (IGRT) for the treatment of various cancers [12-15]. IMRT is an advanced form of high-precision radiotherapy that uses computer-controlled multiple small radiation beams of varying intensities to deliver precise radiation doses to the target tissues while sparing adjacent healthy tissues [16]. By incorporating 3-dimensional (3-D) CT or positron emission tomography (PET) imaging technology, IMRT allows the radiation dose to conform more precisely to the three-dimensional shape of the tumour while modulating the intensity of the radiation beam and...
minimizing its dose to those sensitive and unaffected organs. IGRT uses a variety of 2-D, 3-D and 4-D imaging techniques that improve the precision and accuracy of the delivery of the radiation dose to the targeted tumour tissue while minimizing the dose to the surrounding normal tissue during the course of radiation therapy (Figure 1).

At the University of Cancer Centres, IMRT/IGRT techniques have used to successfully manage a variety of tumours including this malignant tumour [17,18]. In this report, we present a challenging case of EPM and describe our experience in managing this disease using an IMRT/IGRT based 3-D conformal radiation therapy protocol.

Case presentation and methods

In October 2012, a 42-year-old Hispanic woman presented with a history of progressive hoarseness for several weeks. At presentation, the patient reported that she had not been exposed to hazardous materials and denies ever using controlled substances. Prior to the diagnosis, the patient had history of occasional cigarette smoking at social gatherings. However, currently she did not smoke or use tobacco products. The patient complained of seasonal sinusitis. She reported no problems with her muscles, bones, or joints. A bone survey was performed and was negative for bone disease. Both serum and urine protein electrophoresis were performed and had no laboratory abnormalities suggestive of multiple myeloma. Further endoscopic evaluation and PET imaging of the patient’s throat revealed the presence of a submucosal mass in the region of her false vocal cord that was keeping the true vocal cords from adequately apposing (Figure 2).

During surgery, microscopic suspension laryngoscopy was performed under anaesthesia, and a submucosal mass was found in the area of the false vocal cord. During this procedure, the mass was gently moved away from the right anterior true vocal cord, it was apparent at that time that this mass extended down to the true vocal cord. Post-operative CT/MRI of the neck showed no residual disease or metastasis. Pathology revealed the presence of EMP of the larynx. Immunohistochemical evaluation and Hematoxylin-Eosin (H and E) staining indicated cells were positive for CD138, Kappa (Figure 3) and an atypical plasma cell infiltrate was seen consistent with plasmacytoma. The patient underwent a course of post-operative IMRT/IGRT delivered in 28 fractions over 44 calendar days to a total dose of 5,040 cGy. Post-treatment evaluation after more than 7 years indicated no evidence of a recurrent neoplasm or development of multiple myeloma.

Discussion and conclusion

EMP is a rare neoplasm of plasma cells that occurs in the soft tissue outside of the bone marrow [19]. The first EMP report was made in 1905 by Schridde [20]. The most frequently affected sites are the submucosal lymphoid tissue of the nose and sinuses [19]. The larynx is rarely reported but it appears that the incidence of involvement appears to be increasing with 4.5% to 18% of the reported cases of the head and neck occurring in the larynx [10]. Currently, information is limited regarding its diagnosis, staging and natural history [21]. In general, the diagnosis of EMP of larynx is often delayed. Presenting symptoms are usually limited and non-specific, slowly progressive hoarseness over the period of months to years appears to be its most common feature.

Figure 2. Positron emission tomography (PET) Imaging of the patient’s primary tumour site reveal slight uptake in the area of the larynx but negative for metastasis. A. Axial view of the PET imaging. B. Coronal view of PET imaging.

During surgery, microscopic suspension laryngoscopy was performed under anaesthesia, and a submucosal mass was found in the area of the false vocal cord. During this procedure, the mass was gently moved away from the right anterior true vocal cord, it was apparent at that time that this mass extended down to the true vocal cord. Post-operative CT/MRI of the neck showed no residual disease or metastasis. Pathology revealed the presence of EMP of the larynx. Immunohistochemical evaluation and Hematoxylin-Eosin (H and E) staining indicated cells were positive for CD138, Kappa (Figure 3) and an atypical plasma cell infiltrate was seen consistent with plasmacytoma. The patient underwent a course of post-operative IMRT/IGRT delivered in 28 fractions over 44 calendar days to a total dose of 5,040 cGy. Post-treatment evaluation after more than 7 years indicated no evidence of a recurrent neoplasm or development of multiple myeloma.
D’Andrea MA (2019) Successful management of extramedullary plasmacytoma of the larynx in a patient with advanced radiation therapy techniques

potentially mitigates treatment-related toxicities. For example, the use of advanced radiation therapy techniques has been associated with increased preservation of parotid salivary flow [27-29].

In this study, we have demonstrated that by using conformal 3-D IMRT/IGRT we were able to treat the EMP of the larynx while sparing adjacent critical structures that were not involved by the disease, and reduce many of the detrimental side effects associated with the radiation therapy. Therefore, an IMRT/IGRT should be considered as the standard of care for the management of the EMP of the larynx. However, long-term follow-up is also important, because of the high long-term risk for the development of malignant myeloma. In our patient's case after more than 7 years from her treatment, the patient has or laboratory evidence of systemic disease.

References

1. Rutherford K, Parsons S, Cordes S (2009) Extramedullary plasmacytoma of the larynx in an adolescent: a case report and review of the literature. Ear Nose Throat J 88: E1-E7. [Crossref]

2. Soni NK, Trivedi KA, Kumar A, Prajapati JA, Goswami JV, et al. (2002) Solitary extramedullary plasmacytoma - larynx. Indian J Otolaryngol Head Neck Surg 54: 309-310. [Crossref]

3. Ramirez-Anguiano J, Lara-Sanchez H, Martinez-Banos D, Martinez-Benitez B (2012) Extramedullary plasmacytoma of the larynx: a case report of subglottic localization. Case Rep Otolaryngol 2012: 437264. [Crossref]

4. Wax MK, Yun KJ, Omar RA (1993) Extramedullary plasmacytomas of the head and neck. Otolaryngol Head Neck Surg 109: 875-885. [Crossref]

5. Velez D, Hinojaz-Gutierrez A, Nam-Cha S, Acevedo-Barbera A (2007) Laryngeal plasmacytoma presenting as amyloid tumour: a case report. Eur Arch Otorhinolaryngol 264: 959-961. [Crossref]

6. Ahmad S, Dogra P, Iyengar S, Tiwari R, Khurana S, Narayanan J, et al. (2015) Extramedullary plasmacytoma of the larynx: a case report. Indian J Otolaryngol Head Neck Surg 67: E268-E273. [Crossref]

7. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]

8. Velez D, Hinojaz-Gutierrez A, Nam-Cha S, Acevedo-Barbera A (2007) Laryngeal plasmacytoma presenting as amyloid tumour: a case report. Eur Arch Otorhinolaryngol 264: 959-961. [Crossref]

9. Pino M, Farri F, Garofalo P, Taranto F, Toso A, et al. (2015) Extramedullary plasmacytoma of the Larynx Treated by a Surgical Endoscopic Approach and Radiotherapy. Case Rep Otolaryngol 2015: 951583. [Crossref]

10. Saad R, Raab S, Liu Y, Police P, Silverman JF (2001) Plasmacytoma of the larynx diagnosed by fine-needle aspiration cytology: a case report. Otolaryngology-Head and Neck Surg 124: 408-411. [Crossref]

11. D’Andrea MA, Reddy GK (2019) The systemic immunostimulatory effects of radiation therapy producing overall tumor control through the abscopal effect. J Radiation Oncol 8: 143-156.

12. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]

13. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]

14. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]

15. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]

16. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]

17. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]

18. Rajan P, Lang H, Beer K, Becker M (1995) Plasma cell granuloma of the supraglottic larynx. J Laryngol Otol 109: 895-898. [Crossref]
D'Andrea MA (2019) Successful management of extramedullary plasmacytoma of the larynx in a patient with advanced radiation therapy techniques

19. Lewis K, Thomas R, Grace R, Moffat C, Manjaly G, et al. (2007) Extramedullary plasmacytomas of the larynx and parapharyngeal space: imaging and pathologic features. *Ear Nose Throat J* 86: 567-569. [Crossref]

20. Schridde H (1905) Weitere Untersuchungen über die Kornelungen der Plasmazellen. *Centralbl Allg Pathol Anat* 16: 433-435.

21. Liebross RH, Ha CS, Cox JD, Weber D, Delasalle K, et al. (1999) Clinical course of solitary extramedullary plasmacytoma. *Radiother Oncol* 52: 245-249. [Crossref]

22. Nofsinger YC, Mirza N, Rowan PT, Lanza D, Weinstein G (1997) Head and neck manifestations of plasma cell neoplasms. *Laryngoscope* 107: 741-746. [Crossref]

23. Kapadia SB, Desai U, Cheng VS (1982) Extramedullary plasmacytoma of the head and neck. A clinicopathologic study of 20 cases. *Medicine (Baltimore)* 61: 317-329. [Crossref]

24. Husain M, Nguyen GK (1996) Primary pulmonary plasmacytoma diagnosed by transthoracic needle aspiration cytology and immunocytochemistry. *Acta Cytol* 40: 622-624. [Crossref]

25. Holland J, Trenkner DA, Wasserman TH, Fineberg B (1992) Plasmacytoma. Treatment results and conversion to myeloma. *Cancer* 69: 1513-157. [Crossref]

26. Corwin J, Lindberg RD (1979) Solitary plasmacytoma of bone vs. extramedullary plasmacytoma and their relationship to multiple myeloma. *Cancer* 43: 1007-1013. [Crossref]

27. Little M, Schüpper M, Feng FY, Vinea K, Cornwall C, et al. (2012) Reducing xerostomia after chemo-IMRT for head-and-neck cancer: beyond sparing the parotid glands. *Int J Radiat Oncol Biol Phys* 83: 1007-1014. [Crossref]

28. Eisbruch A (2007) Reducing xerostomia by IMRT: what may, and may not, be achieved. *J Clin Oncol* 25: 4863-4864. [Crossref]

29. Pow EH, Kwong DL, McMillan AS, Wong MC, Sham JS, et al. (2006) Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. *Int J Radiat Oncol Biol Phys* 66: 981-991. [Crossref]

Copyright: ©2019 D’Andrea MA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.