EXPONENTIALS OF NON-SINGULAR SIMPLICIAL SETS

VEGARD FJELLBO AND JOHN Rognes

Abstract. A simplicial set is non-singular if the representing map of each non-degenerate simplex is degreewise injective. The simplicial mapping set X^K has n-simplices given by the simplicial maps $\Delta[n] \times K \to X$. We prove that X^K is non-singular whenever X is non-singular. It follows that non-singular simplicial sets form a cartesian closed category with all limits and colimits, but it is not a topos.

1. Introduction

Let $sSet$ be the category of simplicial sets, and let $nsSet$ denote its full subcategory of non-singular simplicial sets, i.e., those X such that for each non-degenerate simplex $x \in X_n$ the representing map $\bar{x}: \Delta[n] \to X$ is degreewise injective. The geometric realization $|X|$ of each non-singular simplicial set admits a well-defined PL (piecewise-linear) structure, and the category $nsSet$ plays a key role in the passage between simplicial sets and PL manifolds in the proof of the stable parametrized h-cobordism theorem [WJR13, Thm. 0.1, §3.4].

The inclusion $U: nsSet \to sSet$ admits a left adjoint $D: sSet \to nsSet$, called desingularization, and the adjunction unit $\eta_X: X \to UD X$ is degreewise surjective. The category $nsSet$ has all (small) limits and colimits, which are preserved by U and D, respectively. Let (Sd, Ex) denote Kan’s adjoint pair [Kan57] of endofunctors of $sSet$. The first author has exhibited a model structure on the category $nsSet$, and furthermore shown that the adjunction $DSDd_2: sSet \rightleftarrows nsSet: Ex^2U$ defines a Quillen equivalence from the standard model structure on simplicial sets [Fje]. The proofs of these two results depend on knowing that the endofunctor $X \mapsto X \times \Delta[1]$ of $nsSet$ preserves all colimits, and one purpose of the present paper is to establish this fact.

For any simplicial sets X and K let X^K be the simplicial mapping set, with n-simplices the set of maps $\Delta[n] \times K \to X$. Our main result follows.

Theorem 1.1. Let X and K be any two simplicial sets. If X is non-singular, then so is X^K.

It follows that $X \mapsto X^K$ restricts to an endofunctor of $nsSet$. This implies the following generalization of the aforementioned fact.

Proposition 1.2. Let K be any non-singular simplicial set. The endofunctor $X \mapsto X \times K$ of $nsSet$ preserves all colimits.

The proof of Theorem 1.1 follows easily from the following special case, which also directly implies the case $K = \Delta[1]$ of Proposition 1.2.

Proposition 1.3. If X is non-singular, then so is $X^{\Delta[1]}$.

Date: May 16th 2021.

2010 Mathematics Subject Classification. Primary 18D15, 55U10.
We may restate Theorem 1.1 by saying that the non-singular simplicial sets form an exponential ideal in the cartesian closed category \([ML98 \, \text{§IV.6}]\) of simplicial sets. The adjunction \((D, U)\) exhibits \(\text{sSet}\) as a reflective full subcategory \([ML98 \, \text{§IV.3}]\) of \(\text{nsSet}\), which is closed under exponentiation in the sense of \([Day72]\). In this situation, Day's reflection theorem \([Day72 \, \text{Thm. 1.2, Cor. 2.1}]\) shows that the reflector \(\text{D}: \text{sSet} \to \text{nsSet}\) preserves finite products, making \(\text{nsSet}\) a cartesian closed category.

Proposition 1.4. Desingularization \(\text{D}: \text{sSet} \to \text{nsSet}\) preserves finite products.

Remark 1.5. The category \(\text{nsSet}\) is not a topos in the sense of \([ML98 \, \text{§IV.10}]\), because it does not admit a subobject classifier \(t: \Delta[0] \to \Omega\). Here \(\Omega\) would have to consist of precisely two elements, so \(\Omega\) would be at most 1-dimensional, and could not classify all the subobjects of \(\Delta[2]\). This is related to the fact that desingularization does not in general preserve equalizers, as the example of the two maps \(\Delta[0] \rightrightarrows \Delta[2]/\delta_1 \Delta[1]\) illustrates.

We give the proof of Proposition 1.3 in Section 2 and deduce the remaining results in Section 3.

2. Rigidity of prisms

Informally, Proposition 1.3 asserts that maps \(\Phi: \Delta[n] \times \Delta[1] \to X\) from prisms to non-singular simplicial sets are very rigid.

We recall some terminology and notation before turning to the proofs. For each \(n \geq 0\) let \([n]\) denote the totally ordered set \(\{0 < 1 < \cdots < n\}\). Following \([FP90 \, \text{§4.1}]\), we shall refer to the functions \(\alpha: [m] \to [n]\) such that \(\alpha(i) \leq \alpha(j)\) for all \(i \leq j\) as operators. These are the objects and morphisms of the category \(\Delta\). For a simplicial set \(X: [n] \mapsto X_n\), we write \(x \in X_n\) for the value of the operator \(\alpha: [m] \to [n]\) on a simplex \(x \in X_n\). The standard \(n\)-simplex \(\Delta[n]\) is the simplicial set \([m] \mapsto \Delta([m],[n])\) represented by \([n]\).

An injective operator is said to be a face operator, and a surjective operator is said to be a degeneracy operator. Special face operators are the elementary face operators \(\delta^i: [n - 1] \to [n]\) that omit the element \(i\), and the vertex operators \(\varepsilon^i: [0] \to [n]\) that hit the element \(i\). Special degeneracy operators are the elementary degeneracy operators \(\sigma^i: [n + 1] \to [n]\) that send \(i\) and its successor \(i + 1\) to \(i\). Usually, we omit the superscript in the notation.

A face operator or degeneracy operator is proper if it is not the identity. A simplex \(x\) is a (proper) face of a simplex \(y\) if \(x = y\mu\) for a (proper) face operator \(\mu\). Analogously, \(x\) is a (proper) degeneracy of \(y\) if \(x = y\rho\) for a (proper) degeneracy operator \(\rho\). A simplex is degenerate if it is a proper degeneracy of some simplex. Otherwise, it is said to be non-degenerate.

By the Eilenberg–Zilber lemma \([FP90 \, \text{Thm. 4.2.3}]\) any simplex \(x\) in a simplicial set \(X\) can be uniquely expressed as a degeneration \(x = x^d x^d\) of a non-degenerate simplex. We call the non-degenerate simplex \(x^d\) the non-degenerate part of \(x\), and will refer to the degeneracy operator \(x^d\) as the degenerate part of \(x\). By the Yoneda lemma, the \(n\)-simplices \(x\) of a simplicial set \(X\) are in natural bijective correspondence with the simplicial maps \(\tilde{x}: \Delta[n] \to X\). The map \(\tilde{x}\) is the representing map of \(x\).

Lemma 2.1. Let \(x \in X_n\) be any simplex. The representing map \(\tilde{x}: \Delta[n] \to X\) is degreewise injective if and only if the \(n + 1\) vertices \(x \varepsilon_0, \ldots, x \varepsilon_n \in X_0\) are pairwise distinct.

Lemma 2.2. Let \(x\) be a simplex in a non-singular simplicial set \(X\), and suppose that \(x \varepsilon_k = x \varepsilon_l\) for some \(k < l\). Then the degenerate part \(x^d\) of \(x\) factors uniquely through the proper degeneracy operator \(\sigma_k \cdots \sigma_{l-1}\).
Proof. The representing map of the non-degenerate part x^2 is degreewise injective, since X is non-singular, so its vertices are pairwise distinct. It follows that $x^2(k) = x^2(l)$. Since x^2 is order-preserving, it also follows that $x^2(k) = x^2(j)$ for all $k \leq j \leq l$. Let $\rho = \sigma_0 \cdots \sigma_{l-1}$. Then $x^2(i) = x^2(j)$ whenever $\rho(i) = \rho(j)$, and this implies that $x^2 = (x^2 \rho)\mu$, where μ is any choice of section to ρ. Thus the asserted factorization exists. Its uniqueness is automatic, since ρ is surjective.

Proof of Proposition 1.3 Suppose that X is non-singular. We must show that each non-degenerate n-simplex Φ in the simplicial mapping set $X^{\Delta[1]}$ has $n + 1$ distinct vertices $\Phi_{\varepsilon_0}, \ldots, \Phi_{\varepsilon_n}$. Equivalently, we must show that if the k-th and l-th vertices of an n-simplex Φ are equal, for some $0 \leq k < l \leq n$, then Φ is degenerate. This follows from the two lemmas below.

Lemma 2.3. Suppose that X is non-singular and Φ is an n-simplex in $X^{\Delta[1]}$ such that $\Phi_{\varepsilon_k} = \Phi_{\varepsilon_l}$, for some $0 \leq k < l \leq n$. Then

$$\Phi_{\varepsilon_k} = \Phi_{\varepsilon_j} = \Phi_{\varepsilon_l}$$

for all $k \leq j \leq l$.

Lemma 2.4. Suppose that X is non-singular and Φ is an n-simplex in $X^{\Delta[1]}$ such that $\Phi_{\varepsilon_k} = \Phi_{\varepsilon_{k+1}}$, for some $0 \leq k < n$. Then there is an $(n - 1)$-simplex Ψ in $X^{\Delta[1]}$ for which $\Phi = \Psi_{\sigma_k}$, exhibiting Φ as a degenerate simplex.

We introduce some more notation before proving these lemmas. By definition, an n-simplex in $X^{\Delta[1]}$ is a simplicial map

$$\Phi: \Delta[n] \times \Delta[1] \rightarrow X.$$

Here, the prism $\Delta[n] \times \Delta[1]$ is generated by the non-degenerate $(n + 1)$-simplices

$$\gamma_j^{n+1}: \Delta[n + 1] \rightarrow \Delta[n] \times \Delta[1],$$

for $0 \leq j \leq n$, given by

$$\gamma_j^{n+1}(i) = \begin{cases} (i, 0) & \text{for } 0 \leq i \leq j, \\ (i - 1, 1) & \text{for } j + 1 \leq i \leq n + 1. \end{cases}$$

Viewing $\Delta[n] \times \Delta[1]$ as the nerve of the partially ordered set $[n] \times [1]$, these generators can be seen as maximal length paths in the diagram below.

$$\begin{array}{ccc}
(0, 1) & \cdots & (j, 1) & (j + 1, 1) & \cdots & (n, 1) \\
(0, 0) & \cdots & (j, 0) & (j + 1, 0) & \cdots & (n, 0)
\end{array}$$

In particular, they satisfy the relations

$$(2.1) \quad \gamma_j^{n+1} \delta_{j+1} = \gamma_j^{n+1} \delta_{j+1}$$

for $0 \leq j < n$. Conversely, to specify Φ it suffices to give its values $\Phi_{\gamma_j^{n+1}}$ on these $n + 1$ generators, subject to the n relations $(\Phi_{\gamma_j^{n+1}}) \delta_{j+1} = (\Phi_{\gamma_{j+1}^{n+1}}) \delta_{j+1}$.

Proof of Lemma 2.3. Let X be non-singular and let Φ be an n-simplex in $X^{\Delta[1]}$ with $\Phi_{\varepsilon_k} = \Phi_{\varepsilon_l}$, where $0 \leq k < l \leq n$. The vertex operators $\varepsilon_i: \Delta[0] \rightarrow \Delta[1]$ for $i \in \{0, 1\}$ induce maps $\varepsilon_i^*: X^{\Delta[1]} \rightarrow X^{\Delta[0]} \cong X$. Let $x_i = \varepsilon_i^* \Phi$ in X_n be represented by the composite

$$x_i: \Delta[n] \cong \Delta[n] \times \Delta[0] \xrightarrow{1 \times \varepsilon_i} \Delta[n] \times \Delta[1] \xrightarrow{\Phi} X,$$

restricting Φ to the bottom (for $i = 0$) or the top (for $i = 1$) of the prism. The hypothesis on Φ implies that $x_i \varepsilon_k = x_i \varepsilon_l$ in X_0, so by Lemma 2.2 we can factor
the degenerate part \(x_i^1 \) of \(x_i \) through \(\sigma_k \cdots \sigma_{l-1} \), so that \(x_i = y_i \sigma_k \cdots \sigma_{l-1} \) for some \((n + k - l)\)-simplices \(y_i \) of \(X \).

Consider any \(j \) with \(k \leq j < l \), let \(\mu : [1] \to [n] \) be the face operator given by \(\mu(0) = j \) and \(\mu(1) = j + 1 \), and view the 1-simplex \(\Phi \mu \) in \(X \Delta[1]\) as the map \(\Delta[1] \times \Delta[1] \to X \) indicated by the following square.

The factorization of \(\sigma_k \) shows that \(x_i \) through \(\sigma_k \) shows that \(x_i \delta_j = x_i \delta_{j+1} \), for each \(i \). Hence each 2-simplex \(z_i \) does not have pairwise distinct vertices, and must therefore be degenerate, since \(X \) is non-singular. By Lemma 2.2 we must have \(z_0 = w_0 \sigma_1 \) and \(z_1 = w_1 \sigma_0 \) for some 1-simplices \(w_i \). More precisely, we must have \(w_0 = z_0 \delta_2 = \Phi \varepsilon_j \) and \(w_1 = z_1 \delta_0 = \Phi \varepsilon_{j+1} \).

It follows that the diagonal 1-simplex in the figure is simultaneously equal to \(\delta_0 \delta_1 = (\Phi \varepsilon_j) \sigma_1 \delta_1 = \Phi \varepsilon_j \) and to \(z_1 \delta_1 = (\Phi \varepsilon_{j+1}) \sigma_0 \delta_1 = \Phi \varepsilon_{j+1} \). This proves that \(\Phi \varepsilon_j = \Phi \varepsilon_{j+1} \) are equal as vertices in \(X \Delta[1] \).

Proof of Lemma 2.4. Let \(X \) be non-singular and let \(\Phi \) be an \(n \)-simplex in \(X \Delta[1] \) with \(\Phi \varepsilon_k = \Phi \varepsilon_{k+1} \), where \(0 \leq k < n \). We will construct an \((n-1)\)-simplex \(\Psi \) in \(X \Delta[1] \) with \(\Phi = \Psi \sigma_k \). Equivalently, we must define \(\Psi : \Delta[n-1] \times \Delta[1] \to X \) so as to make the right hand triangle commute in the diagram below.

\[
\begin{array}{ccc}
\Delta[n+1] & \xrightarrow{\gamma_{n+1}} & \Delta[n] \times \Delta[1] \\
\downarrow{\sigma_k \times 1} & & \downarrow{\Phi} \\
\Delta[n-1] \times \Delta[1] & \xrightarrow{\Psi} & X
\end{array}
\]

The triangle will commute if \(\Phi \gamma_{n+1}^j = \Psi(\sigma_k \times 1) \gamma_{n+1}^j \) for each \(0 \leq j \leq n \), since the simplices \(\gamma_{n+1}^0, \ldots, \gamma_{n+1}^n \) generate the prism \(\Delta[n] \times \Delta[1] \). Here

\[
(\sigma_k \times 1) \gamma_{n+1}^j = \begin{cases}
\gamma_{n+1}^j \sigma_{k+1} & \text{for } 0 \leq j \leq k, \\
\gamma_{n+1}^{j-1} \sigma_k & \text{for } k < j \leq n.
\end{cases}
\]

Should \(\Psi \) exist, it must therefore satisfy

\[
\Phi(\gamma_{n+1}^j) = \begin{cases}
\Psi(\gamma_{n+1}^j) \sigma_{k+1} & \text{for } 0 \leq j \leq k, \\
\Psi(\gamma_{n+1}^j) \sigma_k & \text{for } k < j \leq n.
\end{cases}
\]

Observing that \(\delta_{k+1} \) is a section to both \(\sigma_k \) and \(\sigma_{k+1} \), we are led to define a function \(\psi : \{\gamma_{n+1}^0, \ldots, \gamma_{n+1}^n\} \to X_n \) by

\[
\psi(\gamma_{n+1}^j) = \begin{cases}
\Phi(\gamma_{n+1}^j) \delta_{k+1} & \text{for } 0 \leq j \leq k, \\
\Phi(\gamma_{n+1}^j) \delta_{k+1} & \text{for } k \leq j \leq n-1,
\end{cases}
\]

which specifies where \(\Psi \) must send the generators \(\gamma_{n+1}^0, \ldots, \gamma_{n+1}^{n-1} \) of \(\Delta[n-1] \times \Delta[1] \), should it exist. Note that for \(j = k \) the relation

\[
\Phi(\gamma_{n+1}^{n+1}) \delta_{k+1} = \Phi(\gamma_{n+1}^{n+1} \delta_{k+1}) = \Phi(\gamma_{n+1}^{n+1} \delta_{k+1}) = \Phi(\gamma_{n+1}^{n+1}) \delta_{k+1}
\]
holds, by (2.1), so $\psi(\gamma^k_j)$ is unambiguously defined. To verify that $\Psi(\gamma^k_j) = \psi(\gamma^k_j)$ for $0 \leq j \leq n - 1$ defines a map $\Psi : \Delta[n - 1] \times \Delta[1] \to X$, it is (necessary and) sufficient to confirm the relations

$$\Psi(\gamma^k_j) \delta_{j+1} = \psi(\gamma^k_{j+1}) \delta_{j+1}$$

for $0 \leq j < n - 1$. We separate the proof of (2.3) into two cases.

First, for $0 \leq j < k$ we use the general rule $\delta_{k+1} \delta_{j+1} = \delta_{j+1} \delta_k$ for $j < k$, together with (2.1), to see that

$$\Psi(\gamma^k_j) \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{k+1} \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{j+1} \delta_k$$

is equal to

$$\Psi(\gamma^k_{j+1}) \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{k+1} \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{j+1} \delta_k$$

Second, for $k \leq j < n - 1$ we use the general rule $\delta_{k+1} \delta_{j+1} = \delta_{j+2} \delta_{k+1}$ for $k \leq j$, together with (2.1), to see that

$$\Psi(\gamma^k_j) \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{k+1} \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{j+2} \delta_{k+1}$$

is equal to

$$\Psi(\gamma^k_{j+1}) \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{k+1} \delta_{j+1} = \Phi \gamma^k_{j+1} \delta_{j+2} \delta_{k+1}$$

This concludes the verification of (2.3), giving us a well-defined map Ψ.

It still remains to argue that $\Phi = \Psi(\sigma_k \times 1)$, and this is where we use the hypotheses on X and Φ. It suffices to check that the equation

$$\Phi \gamma^k_{j+1} = \Psi(\sigma_k \times 1) \gamma^k_{j+1}$$

holds for $0 \leq j \leq n$. Again, we separate the proof into two cases.

First, for $0 \leq j \leq k$ we must show that the $(n + 1)$-simplex $z_j = \Phi(\gamma^k_{j+1})$ in X is equal to

$$\Psi(\sigma_k \times 1) \gamma^k_{j+1} = \Psi \gamma^k_{j+1} \sigma_{k+1} = \Phi(\gamma^k_{j+1}) \delta_{k+1} \sigma_{k+1} = z_j \delta_{k+1} \sigma_{k+1}$$

where we have used the calculation (2.2). The vertices $z_j \in \Delta n + 1$ and $z_j \in \Delta n + 2$ in X are equal to $\varepsilon^j_0(\Phi \varepsilon_k)$ and $\varepsilon^j_1(\Phi \varepsilon_{k+1})$, respectively, hence are equal by the assumption that $\Phi \varepsilon_k = \Phi \varepsilon_{k+1}$. It follows by Lemma 2.2 that $z_j = w_j \sigma_{k+1}$ for some n-simplex w_j in X, since X is non-singular. This immediately implies that $z_j \delta_{k+1} \sigma_{k+1} = w_j \sigma_{k+1} \delta_{k+1} \sigma_{k+1} = w_j \sigma_{k+1} \sigma_{k+1} = z_j$, hence $z_j \delta_{k+1} \sigma_{k+1}$ is a section to σ_{k+1}.

Second, $k < j \leq n$ we must show that the $(n + 1)$-simplex $z_j = \Phi(\gamma^k_{j+1})$ in X is equal to

$$\Psi(\sigma_k \times 1) \gamma^k_{j+1} = \Psi \gamma^k_{j+1} \sigma_k = \Phi(\gamma^k_{j+1}) \delta_{k+1} \sigma_k = z_j \delta_{k+1} \sigma_k$$

The vertices $z_j \notin \Delta n$ and $z_j \notin \Delta n + 1$ in X are equal to $\varepsilon^j_0(\Phi \varepsilon_k)$ and $\varepsilon^j_1(\Phi \varepsilon_{k+1})$, respectively, hence are themselves equal. It follows by Lemma 2.2 that $z_j = w_j \sigma_k$ for some n-simplex w_j in X. This implies that $z_j \delta_{k+1} \sigma_k = w_j \sigma_k \delta_{k+1} \sigma_k = w_j \sigma_k = z_j$, hence $z_j \delta_{k+1} \sigma_k$ is a section to σ_k. This concludes our verification of (2.4), proving that Φ is a degenerate simplex of $X \Delta[1]$.

3. Outstanding proofs

Proof of Theorem 1.1. Let X be any non-singular simplicial set. By Proposition 1.3 and induction, $X \Delta[1]^n$ is non-singular, for each $n \geq 0$. The inclusion $i : \Delta[n] \to \Delta[1]^n$ sending $j \in [n]$ to $(1, \ldots, 1, 0, \ldots, 0) \in [1]^n$ (with j copies of 1) admits a retraction $r : \Delta[1]^n \to \Delta[n]$ sending (k_1, \ldots, k_n) to the largest index j such that $k_j = 1$. Hence $r^* : X \Delta[n] \to X \Delta[1]^n$ is split injective, and shows that $X \Delta[n]$ is non-singular.
For any simplicial set K, we can find a simplicial set $L = \coprod_{\alpha} \Delta[n_{\alpha}]$ and a degreewise surjection $s : L \to K$. The induced map $s^* : X^K \to X^L \cong \prod_{\alpha} X^{\Delta[n_{\alpha}]}$ is then degreewise injective, and exhibits X^K as a simplicial subset of a product of non-singular simplicial sets. It follows that X^K is non-singular. □

Proof of Proposition 1.2. When X, K, and Y are non-singular, so that $X \times K$ and Y^K are non-singular by Theorem 1.1, the natural bijection $\text{sSet}(X \times K, Y) \cong \text{sSet}(X, Y^K)$ restricts to a natural bijection $\text{nsSet}(X \times K, Y) \cong \text{nsSet}(X, Y^K)$. Hence the endofunctor $X \mapsto X \times K$ of nsSet is a left adjoint, and preserves all colimits. □

Proof of Proposition 1.4. Let X and Y be any simplicial sets. Recall that each adjunction unit $\eta_Z : Z \to DZ$ is degreewise surjective. Let $a : D(X \times Y) \to DX \times DY$ be induced by the two projections from $X \times Y$. The composite $X \times Y \xrightarrow{\eta_X \times \eta_Y} D(X \times Y) \xrightarrow{a} DX \times DY$ is then equal to $\eta_X \times \eta_Y$, so a is degreewise surjective. The right adjoint $X \to D(X \times Y)^Y$ of $\eta_X \times \eta_Y$ factors through $\eta_X : X \to DX$, since $D(X \times Y)^Y$ is non-singular by Theorem 1.1. Hence there is a unique factorization $X \times Y \xrightarrow{\eta_X \times 1} DX \times Y \xrightarrow{b} D(X \times Y)$ of $\eta_X \times \eta_Y$. Similarly, there is a unique factorization $DX \times Y \xrightarrow{1 \times \eta_Y} DX \times DY \xrightarrow{c} D(X \times Y)$ of b, again by Theorem 1.1. It follows that $\text{can}_{X \times Y} = c(\eta_X \times \eta_Y) = \eta_X \times \eta_Y$, so that $ca = 1$, which proves that a is an isomorphism. □

References

[Day72] Brian Day, A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), no. 1, 1–11, DOI 10.1016/0022-4049(72)90021-7. MR296126

[Fje] Vegard Fjellbo, Homotopy theory of non-singular simplicial sets. arXiv:2001.05032.

[FP90] Rudolf Fritsch and Renzo A. Piccinini, Cellular structures in topology, Cambridge Studies in Advanced Mathematics, vol. 19, Cambridge University Press, Cambridge, 1990. MR1074175

[Kan57] Daniel M. Kan, On c. s. s. complexes, Amer. J. Math. 79 (1957), 449–476, DOI 10.2307/2372558. MR90047

[ML98] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR1712872

[WJR13] Friedhelm Waldhausen, Bjørn Jahren, and John Rognes, Spaces of PL manifolds and categories of simple maps, Annals of Mathematics Studies, vol. 186, Princeton University Press, Princeton, NJ, 2013. MR3202834

Department of Mathematics, University of Oslo, Norway
Email address: vegard.fjellbo@gmail.com

Department of Mathematics, University of Oslo, Norway
Email address: rogenes@math.uio.no