Vitamin D receptor gene polymorphisms and the risk of the Type 1 diabetes: A meta-regression and updated meta-analysis

Na Zhai
Boading No. 1 Hospital

Ramtin Bidares
Universita degli Studi di Roma La Sapienza Facolta di Medicina e Psicologia

Masoud Hassanzadeh Makoui
Tehran University of Medical Sciences

Saeed Aslani
Tehran University of Medical Sciences

Payam Mohammadi
Tarbiat Modares University Faculty of Medical Sciences

Bahman Razi
Tarbiat Modares University Faculty of Medical Sciences

Danyal Imani
Tehran University of Medical Sciences

Mohammad Yazdchi
Tabriz University of Medical Sciences

Haleh Mikaeili
Tehran University of Medical Sciences

Research article

Keywords: Vitamin D receptor; Type 1 diabetes mellitus; polymorphism; meta-analysis

DOI: https://doi.org/10.21203/rs.2.20545/v3

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The association between the polymorphisms in the vitamin D receptor (VDR) gene and the risk of type 1 diabetes mellitus (T1DM) has been evaluated in several studies. However, the findings were inconclusive. Thus, we conducted a meta-analysis to comprehensively evaluate the effect of VDR gene polymorphisms on the risk of T1DM.

Methods: All relevant studies reporting the association between VDR gene polymorphisms and susceptibility to T1DM published up to May 2020 were identified by comprehensive systematic database search in ISI Web of Science, Scopus, and PubMed/MEDLINE. Strength of association were assessed by calculating of pooled odds ratios (ORs) and 95% confidence intervals (CIs). The methodological quality of each study was assessed according to the Newcastle–Ottawa Scale. To find the potential sources of heterogeneity, meta-regression and subgroup analysis were also performed.

Results: A total of 40 case–control studies were included in this meta-analysis. The results of overall population rejected any significant association between VDR gene polymorphisms and T1DM risk. However, the pooled results of subgroup analysis revealed significant negative and positive associations between FokI and BsmI polymorphisms and T1DM in Africans and Americans, respectively.

Conclusions: This meta-analysis suggested a significant association between VDR gene polymorphism and T1DM susceptibility in ethnic-specific analysis.

1. Background

Type 1 diabetes mellitus (T1DM) is a globally-widespread disease that is characterized by a reduction in insulin production or the production of ineffective insulin [1]. It is generally believed that the immune-associated destruction of beta cells of the islets of Langerhans causes the disease, resulting in lower insulin levels (that is called type 1a diabetes mellitus). In a smaller T1DM subset, no evidence of autoimmunity can be found (type 1b) [2]. T1DM constitutes roughly 5 to 10% of all diabetes cases, and its prevalence is still rising [3]. With more than half a million children living with T1DM, and almost 90000 children diagnosed each year, T1DM inflicts mostly children of under 15 years of age [4]. It is well known that T1DM is a multifactorial autoimmune disorder caused by interactions between genetic and environmental factors [5].

Vitamin D (VitD) is a steroid molecule that has many roles in the body, such as regulation of the immune cells. In addition to immune responses, VitD is also involved in the etiopathogenesis of several disorders, such as cancer, autoimmune disorders, cardiovascular disorders, asthma, and diabetes [6-8]. In animal model of T1DM, VitD suppresses the occurrence of diabetes, by regulating the T helper (Th) 1/Th2 cytokine balance in the local pancreatic lesions [9, 10]. Moreover, VitD inhibits T cell activation and secretion of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6, IL-12, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, which are involved in the pathogenesis of T1DM [11-13]. Mostly, VitD exerts its function through vitamin D receptor (VDR), which is found in the nuclei of target cells, such as lymphocytes, macrophages, and pancreatic cells. VDR is a member of the nuclear hormone receptors superfamily and has been linked to insulin sensitivity and secretion [14].
Four common single nucleotide polymorphisms (SNPs) of VDR gene are FokI (rs2228570), TaqI (rs731236), BsmI (rs1544410), and ApaI (rs7975232). Among them, ApaI, BsmI, and TaqI polymorphisms are located in the 3'-end of VDR gene which lead to silent mutation associated with increased VDR mRNA stability. In contrast, FokI SNP is located in the start codon that produces a protein with shorter size (424 amino acids), which is more active than the long form (427 amino acids) [15-17]. Over the course of past few decades, the VDR gene polymorphisms have been associated with susceptibility to numerous autoimmune disorders [17-19].

In recent years, several studies have investigated the association between VDR gene SNPs and T1DM in all over the world, which have yielded conflicting results. The reasons for these discrepancies might be small sample sizes, clinical heterogeneity, and low statistical power. Therefore, a comprehensive meta-analysis might be the best way to solve these problems. Two previous meta-analyses performed by Tizaouia et al. in 2014 [20] and Guo et al. in 2006 [21] reported that VDR gene polymorphisms were not associated with the susceptibility to T1DM. However, Zhang et al. in 2012 [22] demonstrated that BsmI polymorphism was significantly associated with the risk of T1DM. Furthermore, Sahin et al. in 2017 indicated that BsmI and TaqI polymorphisms were associated with T1DM risk in children with less than average 15 years old [23]. Qin et al. in 2014 evaluated the association of only BsmI SNP with T1DM risk and demonstrated its association in the overall analysis, as well as in Asians, Latino, and Africans [24]. In 2014, Wang et al., by including 20 studies, reported that BsmI polymorphism might be a risk factor for susceptibility to T1DM in the East Asian population, and the FokI polymorphism was associated with an increased risk of T1DM in the West Asian population [25].

Since several articles published after the last meta-analysis, here we conducted an updated meta-analysis with the aim of providing a much more reliable conclusion on the significance of the association between VDR gene polymorphisms and T1DM risk.

2. Methods

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, including search strategy, inclusion and exclusion criteria, data extraction and quality assessment, and statistical analysis [26].

2.1. Search Strategy

Three electronic databases (PubMed/MEDLINE, Scopus, and Web of Science) were systematically searched for studies regarding the association of VDR gene polymorphisms, including FokI (rs2228570) and/or TaqI (rs731236) and/or BsmI (rs1544410) and/or ApaI (rs7975232), and T1DM susceptibility, which were published before May 2020. The following combinations of search terms were used: (“T1D” OR “type 1 diabetes” OR “diabetes”) AND (“VDR” OR “vitamin D receptor”) AND (“polymorphisms” OR “SNP” OR “variation” OR “mutation”). The reference lists of review articles were also manually searched for additional pertinent publications. Original data in English language and human population studies were collected.

2.2. Inclusion and exclusion criteria
Eligible studies must meet the following criteria: a) All studies assessing the association of VDR gene polymorphisms and T1DM risk; b) All studies reporting sufficient data to calculate the odds ratio (OR) and its 95% confidence intervals (CIs); c) All studies with distinct case and control groups (case-control and cohort design). The exclusion criteria were: a) studies that their genotype or allele frequency could not be extracted; b) letters, non-English publications, animal studies, case reports, reviews, comments, book chapters, and abstracts; c) duplicate and republished studies. The application of these criteria recognized 40 studies eligible for the quantitative analysis.

2.3. Data extraction and quality assessment

According to a standardized extraction form, the following data were independently extracted by two reviewers: the author's name, journal and year of publication, country of origin, ethnicity, number of case and control for each gender separately, genotype and allele frequencies in cases and healthy groups, mean or range of age, genotyping method, total sample size of cases and controls. The third reviewer finalized the extracted data, and potential discrepancies were resolved by consensus. For quality assessment of the included publications, the Newcastle-Ottawa Scale (NOS) was applied [27]. In this respect, studies with 0–3, 4–6 or 7–9 scores were, respectively, of low, moderate, and high-quality.

2.4. Statistical analysis

Deviation from Hardy–Weinberg equilibrium (HWE) for distribution of the allele frequencies was analyzed by χ2-test in control groups. The strength of association between VDR gene polymorphisms and T1DM susceptibility was estimated by calculating pooled OR and its 95% CI. Different comparison model for FokI, TaqI, BsmI, and ApaI were as follows: FokI, dominant model (ff+Ff vs. FF), recessive model (ff vs. Ff+FF), allelic model (f vs. F), homozygote (ff vs. FF), and heterozygote (Ff vs. FF): TaqI, dominant model (tt+Tt vs. TT), recessive model (tt vs. Tt+TT), allelic model (t vs. T), homozygote (tt vs. TT), and heterozygote (Tt vs. TT): BsmI, dominant model (bb+Bb vs. BB), recessive model (bb vs. Bb+BB), allelic model (b vs. B), homozygote (bb vs. BB), and heterozygote (Bb vs. BB): ApaI, dominant model (aa+Aa vs. AA), recessive model (aa vs. Aa+AA), allelic model (a vs. A), homozygote (aa vs. AA), and heterozygote (Aa vs. AA). The heterogeneity among studies was measured by the χ2 test-based Q statistic, and I² value which quantify the degree of heterogeneity [28]. Accordingly, heterogeneity was considered significant if I² values exceeded 50% or the Q statistic had a P value of less than 0.1 and random-effects model (DerSimonian–Laird approach) was carried out [29]. Otherwise, the fixed-effects model (Mantel–Haenszel approach) was performed for combination of data [30]. In order to assess the predefined sources of heterogeneity among included studies, subgroup analysis and meta-regression analysis based on year of population, and ethnicity were performed. Stability of our results was assessed by sensitivity analysis. Potential publication bias was estimated by Egger's linear regression test, and also Begg's test was employed to estimate the funnel plot asymmetry (P value<0.05 considered statistically significant) [31, 32]. The data analyses were carried out using STATA (version 14.0; Stata Corporation, College Station, TX) and SPSS (version 23.0; SPSS, Inc. Chicago, IL).

3. Results
3.1. Study characteristics

Regarding to aforementioned keywords, a total of 1116 studies were initially retrieved. Of these studies, 456 publications were duplicate, 559 and 61 publications excluded by title & abstract and full text examination, respectively. Finally, 40 studies qualified for quantitative analysis. It should be noted that while the latest meta-analysis by Tizaouia et al. [20] in 2014 included 23 studies, we performed the updated meta-analysis by adding 17 more articles. Also, no studies were found by hand search (Figure 1). The eligible studies were published from 1998 to 2019 and had an overall good methodological quality with NOS scores ranging from 6 to 8. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and Taq-man were used by majority of included studies as genotyping method. Table 1 and 2 summarized the characteristics and genotype frequency of the included studies.

3.2. Quantitative synthesis

Meta-analysis of the association between FokI (rs2228570) polymorphism and T1DM risk

Overall, 29 case-control studies with 3723 cases and 5578 controls were analyzed for assessment of FokI polymorphism and T1DM risk. Of 29 studies, 15 studies were conducted in European countries [14, 33-43], 9 studies were in Asian countries [44-52], 3 studies were in African population [53-55] and eventually one study in Australia [56] and one study in American population [57]. Among studies were performed in Europe, Audi et al. [36] conducted an association study in different city of Spain (Barcelona and Navarra) and reported all data separately including genotype and allele frequency; thus we considered each population as a separate study. The pooled results revealed no significant association in overall population across all genotype models, meanwhile subgroup analysis according to ethnicity showed decreased risk of T1DM susceptibility in European population [dominant model (OR= 0.86, 95% CI, 0.74-1.00, P=0.05) and heterozygote contrast (OR= 0.86, 95% CI, 0.75-0.99, P=0.04)] and increased risk of T1DM susceptibility in African population under all genotype models; dominant model (OR= 2.06, 95% CI, 1.20-3.53, P=0.008), recessive model (OR= 2.14, 95% CI, 1.03-4.43, P=0.04), allelic model (OR= 1.17, 95% CI, 1.06-2.97, P=0.02), ff vs. FF model (OR= 3.11, 95% CI, 1.44-6.69, P=0.004), and Ff vs. FF model (OR= 1.81, 95% CI, 1.13-2.91, P=0.01). Besides, susceptibility to T1DM in Asians compared to Africans and Europeans were not affected by FokI polymorphism (Figure 2). The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.

Meta-analysis of the association between TaqI (rs731236) polymorphism and T1DM risk

There were 21 case-control studies with 1973 cases and 1995 controls concerning TaqI polymorphism and T1DM risk. Studies were performed in different population, 8 studies were in Europeans [14, 33, 34, 37, 40, 41, 58, 59], 9 studies in Asians [45, 47, 48, 52, 60-64], 2 studies in Africans [55, 65] and one study each was in Australia [56] and Americans [66]. Meta-analysis rejected any significant association between TaqI SNP and the risk of T1DM susceptibility. Moreover, the results of subgroup analysis by ethnicity were not significant under five genotype models. In subgroup analysis, since there was only one study for the Australians [56], Americans [66], and two studies for Africans [55, 65], these studies were excluded from the
analysis. The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.

Meta-analysis of the association between BsmI (rs1544410) polymorphism and T1DM risk

To examining the association between BsmI polymorphism and T1DM risk, 35 case-control studies with 4926 cases and 7259 controls subjects were included. It was detected that 15 studies with 1938 cases and 4450 controls were performed in European countries [14, 33-37, 39-41, 43, 58, 59] which among these 15 studies, Turpeinen et al. [35] conducted an association study in different city of Finland (Turku, Tampere and Oulu) and reported all data separately, including genotype and allele frequency; thus we considered each population as a separate study. Moreover, 14 studies out of 35 eligible studies were carried out in Asian populations [45, 47, 48, 51, 52, 60-64, 67-70], 3 studies were in Americans [57, 66, 71] and three studies were in Africans [53, 55, 65]. No significant association between BsmI polymorphism and T1DM risk were found under all genotype models for the overall population. However, pooled results of subgroup analysis indicated markedly significant negative associations between BsmI SNP and the risk of T1DM susceptibility in American populations across all genotype models; dominant model (OR= 0.57, 95% CI, 0.39-0.84, \(P=0.004\)), recessive model (OR= 0.62, 95% CI, 0.41-0.94, \(P=0.02\)), allelic model (OR= 0.66, 95% CI, 0.54-0.81, \(P<0.001\)), bb vs. BB model (OR= 0.52, 95% CI, 0.34-0.80, \(P=0.003\)), except Bb vs. BB model (OR= 0.66, 95% CI, 0.41-1.05, \(P=0.08\)) (*Figure 3*). No significant association was detected for European, Asian and African population. The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.

Meta-analysis of the association between ApaI (rs7975232) polymorphism and T1DM risk

Finally, 24 case-control studies with 2436 cases and 4074 controls were identified eligible for quantitative synthesis of the association between ApaI polymorphism and T1DM risk. Overall, 10 studies were conducted in Europe [14, 34, 35, 37, 40, 41, 58, 59], 10 studies were in Asia [45, 47-50, 52, 60-63], 2 studies in Africa [55, 65] and one study each was in Australia [56] and America [66]. Because of limited number of studies performed in Australia, America and Africa these studies were excluded from subgroup analysis. The results demonstrated no significant association between the ApaI polymorphism and risk of T1DM in the overall population and ethnic-specific analysis (*Figure 3*). The results of pooled ORs, heterogeneity tests and publication bias tests in different analysis models are shown in Table 3.

3.3. Evaluation of heterogeneity and publication bias

During the meta-analysis of VDR gene polymorphism evidence of substantial to moderate heterogeneity was detected. However, partial heterogeneity was resolved while the data were stratified by ethnicity. Publication bias was evaluated by funnel plot, Begg’s test and Egger’s test. There was no obvious evidence of asymmetry from the shapes of the funnel plots (*Figure 4*), and all \(P\) values of Begg’s test and Egger’s test were >0.05, which showed no evidences of publication biases.

3.4. Sensitivity analysis
The leave-one-out method was used in the sensitivity analysis to explore the effect of individual data on the pooled ORs. The significance of ORs was not altered through omitting any single study in the dominant model for FokI, TaqI, BsmI and ApaI SNPs, indicating that our results were statistically robust (Figure 5).

3.5. Bayesian meta-regression analysis

Meta-regression and subgroup analyses were performed to explore potential sources of heterogeneity among included studies (Table 4). The findings of meta-regression indicated that ethnicity can be the potential source of heterogeneity, therefore, subgroup analysis was performed to attenuate the effect of these parameters. (Figure 6).

4. Discussion

In this study, we performed a systematic review and meta-analysis to achieve a vivid and exact approximation of the associations between the VDR gene polymorphisms, including FokI (rs2228570), TaqI (rs731236), BsmI (rs1544410), and ApaI (rs7975232) and susceptibility to T1DM. The findings of meta-analysis on 40 case–control studies, containing 29 studies with 3723 cases and 5578 controls for FokI, 21 studies with 1973 cases and 1995 controls for TaqI, 35 studies with 4926 cases and 7259 controls for BsmI, and 24 studies with 2436 cases and 4074 controls for ApaI, indicated no significant association of VDR gene polymorphisms with T1DM risk in overall population. That notwithstanding, the subgroup analysis resulted in identification of significant associations between FokI and BsmI polymorphism and T1DM in African and American population. Our study provided some beneficial points over previous studies. First, this meta-analysis included further studies with more sample size compared with the previous studies, conferring more conclusive results. Second, we performed subgroup analysis by ethnicity to indicated association of VDR gene polymorphisms with T1DM risk in different ethnical groups.

Over the course of past years, a bulk of studies has addressed the association of VDR gene polymorphisms and risk of T1DM throughout various populations, resulting in conflicting findings [66, 67]. Such discrepancies might stem from diversity in detection methods, differences in diagnostic criterions, clinical heterogeneity, small sample sizes, low statistical power, and interactions between genetic and environmental contributing factors according to variations in the geo-epidemiological factors. As a consequence, three previous meta-analyses by Guo et al. [21] in 2006 [including 11 studies for FokI (1,424 cases and 3,301 controls), 13 studies for BsmI (1,601 cases and 4,207 controls), 9 studies for ApaI (1,101 cases and 2,805 controls), and 7 studies for TaqI (681 cases and 781 controls)], Zhang et al. [22] in 2012 [T1DM cases and 4049 controls in 21 studies for BsmI, 2167 T1DM cases and 3402 controls in 17 studies for FokI, 1166 T1DM cases and 2328 controls in 11 studies for ApaI, and 1041 T1DM cases and 1137 controls in 8 studies for TaqI], and Tizaouia et al. [20] in 2014 (13 studies for TaqI, 23 studies for BsmI, 15 studies for ApaI, and 18 studies for FokI) were carried out to resolved the conundrum and attain an exact approximation. They indicated that VDR gene SNPs were not associated with T1DM risk, except than BsmI polymorphism association with T1DM predisposition that was observed in Zhang et al. [22] study. Upon the latest meta-analysis published in 2014, several original association studies evaluated the role of VDR gene polymorphisms with T1DM risk. As a result, the necessity for performing an updated meta-analysis is
sensed to come up with resolution of the limitations of individual association studies and to gain a much more valid and comprehensive pooled estimation on the association of VDR gene polymorphisms with T1D risk.

Previous meta-analysis performed by Tizaouia et al. [20] in 2014 reported no significant association of VDR gene FokI polymorphism with risk of T1D. According to our meta-analysis, the pooled results in overall population across all genotype models demonstrated no significant association of VDR gene FokI polymorphism; nonetheless, subgroup analysis according to ethnicity showed a marginally-significant decreased susceptibility to T1DM in European population according to dominant genetic model and heterozygote comparison, while an increased risk of T1DM in African population according to all genotype models. In addition, our meta-analysis did not support any significant association between TaqI SNP and susceptibility to T1DM. Furthermore, the results of subgroup analysis according to ethnicity did not show any significant association in all genetic models. However, in the subgroup analysis, given that there was only one study in the Australian [56] and American [66] populations, and two studies in the African [55, 65] population, the subgroup analysis was not performed in these populations. In line with our findings, previous meta-analysis by Tizaouia et al. [20] also did not show significant association of VDR gene Taql polymorphism with risk of T1D. According to the previous meta-analysis, Bsml SNP was not the risk factor for T1D susceptibility. However, after excluding one study, a marginal significant ($P=0.051$) association was found in the homozygous model. On the other side, our meta-analysis also revealed that Bsml polymorphism was not a risk for T1DM in all genetic models when all of the population were analyzed. Nonetheless, subgroup analysis demonstrated a strong negative significant association between Bsml SNP and the risk of T1DM in American population in all of the genetic model comparisons. Finally neither our meta-analysis nor the previous one by Tizaouia et al. [20] found any significant association of Apal polymorphism and T1DM risk in overall as well as subgroup analyses. Taken together, although our meta-analysis included further studies compared to the previous study, the overall analysis was almost the same. Nonetheless, our subgroup analysis indicated association of VDR genetic polymorphisms with T1DM risk in different ethничal groups.

In their meta-analysis, Tizaouia et al. [20] indicated in the stratification analysis that publication year, age, gender, estimated VitD levels, and latitude modulated the association between VDR gene polymorphisms and T1D risk. Furthermore, another meta-analysis revealed a relationship between winter ultraviolet radiation (UVR) and VDR gene polymorphisms in T1DM, implying to the influence of the UVR on the association between VDR polymorphisms and T1DM susceptibility [72]. During the four cooler months, it was observed that latitude strongly determines the available levels of VitD producing UV. As latitude increases, the amount of VitD producing UV decreases, which may prevent VitD synthesis in humans [73]. As a result, the latitude of the locations in which the individuals live may impress the susceptibility to develop T1DM.

Despite we tried to conduct best meta-analysis of the VDR gene polymorphisms and susceptibility to RA, there was also a number of limitations that should be taken into account. First, there was significant heterogeneity across studies, which may lessen the certainty of the results. However, we tried to find and attenuate its effect by meta-regression and subgroup analysis. Consequently, heterogeneity was still an
unavoidable problem that may influence the accuracy of the overall results. Second, only articles published in the English language were included in this meta-analysis. Third, our meta-analysis was based on crude approximation of the genetic variations regardless of adjusting the analysis by gender, age, VitD intake, and other environmental factors like exposure to sunlight, as several studies noted the involvement of these parameters as well as gene-environment and gene-gene interactions in the susceptibility and of RA and we could not analyze it owing to a lack of published well-structured data.

5. Conclusion

In conclusion, this study was a systematic review and meta-analysis of 40 case–control association studies to come up with the clear estimation of the associations between the VDR gene SNPs [FokI (rs2228570), TaqI (rs731236), BsmI (rs1544410), and ApaI (rs7975232)] and susceptibility to T1DM. The findings of meta-analysis revealed no significant association of VDR gene SNPs with T1DM risk in the overall population. However, the subgroup analysis indicated significant associations between FokI and BsmI polymorphism and T1DM risk in African and American population. As a limitation, we did not evaluate a number of VDR gene SNPs that might act in interaction with environmental factors to determine the fate of T1DM pathogenicity. Further investigations on the VDR, above and beyond the genetic as well as traditional risk factors, may confer a possibility for identification of critical susceptibility factors in the disease development, which might be applicable in the personalized medicine for better and optimized therapy of T1DM patients.

Abbreviations

T1DM, type 1 diabetes mellitus; VDR, vitamin D receptor; Vitamin D, VitD; SNP, Single nucleotide polymorphisms; IL, Interleukin; PRISMA, Preferred Reporting Items for Systematic reviews and Meta-Analyses; NOS, Newcastle-Ottawa Scale; UVR, Ultraviolet radiation; Th, T helper; TNF, tumor necrosis factor; IFN, interferon; HWE, Hardy–Weinberg equilibrium; PCR- RFLP, Polymerase chain reaction-restriction fragment length polymorphism.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests
The authors declare that they have no competing interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions

NZ participated in study design and manuscript drafting. RB, participated in literature search and contributed to manuscript drafting. MHM analyzed the data and participated in drafting the manuscript. SA analyzed and interpreted the data and participated in manuscript drafting. PM contributed to data analysis and prepared the original draft. BR performed the literature search, analyzed data, and participated in manuscript drafting. DI performed the literature search, developed the main idea, and participated in manuscript drafting. MY performed the literature search and participated in manuscript drafting. HM performed data interpretation and participated in manuscript drafting. All authors read and approved the final manuscript.

Acknowledgement

The authors would like to thank Mrs. Maryam Izad for all her support.

Disclosure of conflict of interest

Not applicable

References

1. Gupta, G., et al., *A clinical update on metformin and lung cancer in diabetic patients*. Panminerva medica, 2018. **60**(2): p. 70-75.

2. Atkinson, M.A., G.S. Eisenbarth, and A.W. Michels, *Type 1 diabetes*. The Lancet, 2014. **383**(9911): p. 69-82.

3. Miettinen, M.E., et al., *Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child*. PloS one, 2017. **12**(10): p. e0184942.

4. Diaz-Valencia, P.A., P. Bougnères, and A.-J. Valleron, *Global epidemiology of type 1 diabetes in young adults and adults: a systematic review*. BMC public health, 2015. **15**(1): p. 255.

5. Todd, J.A., et al., *Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes*. Nature genetics, 2007. **39**(7): p. 857.

6. Vaidya, A. and J.S. Williams, *The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes*. Metabolism, 2012. **61**(4): p. 450-458.

7. Riek, A.E., et al., *Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients*. Journal of Biological Chemistry, 2012.
8. Makoui, M.H., et al., Vitamin D receptor gene polymorphism and susceptibility to asthma: meta-analysis based on 17 case-control studies. Annals of Allergy, Asthma & Immunology, 2019.

9. Bhalla, A.K., et al., 1, 25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. The Journal of Immunology, 1984. 133(4): p. 1748-1754.

10. Lemire, J.M., Immunomodulatory actions of 1, 25-dihydroxyvitamin D3. The Journal of steroid biochemistry and molecular biology, 1995. 53(1-6): p. 599-602.

11. Riachy, R., et al., 1, 25-Dihydroxyvitamin D 3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the Fas receptor. Apoptosis, 2006. 11(2): p. 151-159.

12. Trembleau, S., et al., The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunology today, 1995. 16(8): p. 383-386.

13. Uitterlinden, A.G., et al., Genetics and biology of vitamin D receptor polymorphisms. Gene, 2004. 338(2): p. 143-156.

14. Panierakis, C., et al., Vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Crete, Greece. Clinical immunology, 2009. 133(2): p. 276-281.

15. Wang, Q., et al., Quantitative assessment of the associations between four polymorphisms (FokI, ApaI, BsmI, TaqI) of vitamin D receptor gene and risk of diabetes mellitus. Molecular biology reports, 2012. 39(10): p. 9405-9414.

16. Ferrari, S., et al., Vitamin D receptor gene start codon polymorphisms (FokI) and bone mineral density: interaction with age, dietary calcium, and 3′-end region polymorphisms. Journal of Bone and Mineral Research, 1998. 13(6): p. 925-930.

17. Makoui, M.H., et al., Vitamin D receptor gene polymorphism and susceptibility to asthma: meta-analysis based on 17 case-control studies. Annals of Allergy, Asthma & Immunology, 2020. 124(1): p. 57-69.

18. Imani, D., et al., Association between vitamin D receptor (VDR) polymorphisms and the risk of multiple sclerosis (MS): an updated meta-analysis. BMC neurology, 2019. 19(1): p. 339.

19. Valdivielso, J.M. and E. Fernandez, Vitamin D receptor polymorphisms and diseases. Clinica Chimica Acta, 2006. 371(1-2): p. 1-12.

20. Tizaoui, K., et al., Contribution of VDR polymorphisms to type 1 diabetes susceptibility: systematic review of case-control studies and meta-analysis. The Journal of steroid biochemistry and molecular biology, 2014. 143: p. 240-249.

21. Guo, S.-W., et al., Meta-analysis of vitamin D receptor polymorphisms and type 1 diabetes: a HuGE review of genetic association studies. American Journal of Epidemiology, 2006. 164(8): p. 711-724.

22. Zhang, J., et al., Polymorphisms in the vitamin D receptor gene and type 1 diabetes mellitus risk: an update by meta-analysis. Molecular and cellular endocrinology, 2012. 355(1): p. 135-142.

23. Sahin, O.A., et al., Association of vitamin D receptor polymorphisms and type 1 diabetes susceptibility in children: a meta-analysis. Endocrine connections, 2017. 6(3): p. 159-171.

24. Qin, W.-H., et al., A meta-analysis of association of vitamin D receptor BsmI gene polymorphism with the risk of type 1 diabetes mellitus. Journal of Receptors and Signal Transduction, 2014. 34(5): p. 372-
25. Wang, G., et al., Associations between two polymorphisms (FokI and BsmI) of vitamin D receptor gene and type 1 diabetes mellitus in Asian population: a meta-analysis. PloS one, 2014. 9(3).

26. Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 2009. 151(4): p. 264-269.

27. Stang, A., Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology, 2010. 25(9): p. 603-605.

28. Huedo-Medina, T.B., et al., Assessing heterogeneity in meta-analysis: Q statistic or I^2 index? Psychological methods, 2006. 11(2): p. 193.

29. DerSimonian, R. and N. Laird, Meta-analysis in clinical trials Control Clin Trials 7: 177–188. Find this article online, 1986.

30. Mantel, N. and W. Haenszel, Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the national cancer institute, 1959. 22(4): p. 719-748.

31. Egger, M., et al., Bias in meta-analysis detected by a simple, graphical test. Bmj, 1997. 315(7109): p. 629-634.

32. Begg, C.B. and M. Mazumdar, Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994: p. 1088-1101.

33. Fassbender, W., et al., VDR gene polymorphisms are overrepresented in German patients with type 1 diabetes compared to healthy controls without effect on biochemical parameters of bone metabolism. Hormone and metabolic research, 2002. 34(06): p. 330-337.

34. Gyorffy, B., et al., Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. European journal of endocrinology, 2002. 147(6): p. 803-808.

35. Turpeinen, H., et al., Vitamin D receptor polymorphisms: no association with type 1 diabetes in the Finnish population. European Journal of Endocrinology, 2003. 149(6): p. 591-596.

36. Martí, G., et al., Asociación de los polimorfismos del gen del receptor de la vitamina D con la diabetes mellitus tipo 1 en dos poblaciones españolas. Medicina Clínica, 2004. 123(8): p. 286-290.

37. Pedro, J.S.-., et al., Heterogeneity of vitamin D receptor gene association with celiac disease and type 1 diabetes mellitus. Autoimmunity, 2005. 38(6): p. 439-444.

38. Zemunik, T., et al., FokI polymorphism, vitamin D receptor, and interleukin-1 receptor haplotypes are associated with type 1 diabetes in the Dalmatian population. The Journal of molecular diagnostics, 2005. 7(5): p. 600-604.

39. Capoluongo, E., et al., Slight association between type 1 diabetes and “ff” VDR FokI genotype in patients from the Italian Lazio Region. Lack of association with diabetes complications. Clinical biochemistry, 2006. 39(9): p. 888-892.

40. Lemos, M.C., et al., Lack of association of vitamin D receptor gene polymorphisms with susceptibility to type 1 diabetes mellitus in the Portuguese population. Human Immunology, 2008. 69(2): p. 134-138.

41. Yavuz, D.G., et al., Vitamin D receptor gene BsmI, FokI, ApaI, TaqI polymorphisms and bone mineral density in a group of Turkish type 1 diabetic patients. Acta Diabetologica, 2011. 48(4): p. 329-336.
42. Sahin, S.B., et al., *Fas, Fas Ligand, and vitamin D receptor FokI gene polymorphisms in patients with type 1 diabetes mellitus in the Aegean region of Turkey*. Genetic testing and molecular biomarkers, 2012. 16(10): p. 1179-1183.

43. Vedralová, M., et al., *Polymorphisms in the vitamin D receptor gene and parathyroid hormone gene in the development and progression of diabetes mellitus and its chronic complications, diabetic nephropathy and non-diabetic renal disease*. Kidney and Blood Pressure Research, 2012. 36(1): p. 1-9.

44. Ban, Y., et al., *Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population*. BMC medical genetics, 2001. 2(1): p. 7.

45. Israni, N., et al., *Interaction of Vitamin D receptor with HLA DRB1* 0301 in Type 1 diabetes patients from North India*. PloS one, 2009. 4(12): p. e8023.

46. Yokota, I., et al., *Association between vitamin D receptor genotype and age of onset in juvenile Japanese patients with type 1 diabetes*. Diabetes care, 2002. 25(7): p. 1244-1244.

47. Bonakdaran, S., et al., *Vitamin D receptor gene polymorphisms in type 1 diabetes mellitus: a new pattern from Khorasan province, Islamic Republic of Iran*. 2012.

48. Mohammadnejad, Z., et al., *Association between vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in Iranian population*. Molecular biology reports, 2012. 39(2): p. 831-837.

49. Nasreen, M., et al., *Serum vitamin D levels and gene polymorphisms (Fok1 and Apa1) in children with type I diabetes and healthy controls*. JPMA, 2016. 66(1215).

50. Mukhtar, M., et al., *Vitamin D receptor gene polymorphisms influence T1D susceptibility among Pakistanis*. International journal of genomics, 2017. 2017.

51. Ali, R., et al., *Evaluation of vitamin D receptor gene polymorphisms (Fok-I and Bsm-I) in T1DM Saudi children*. Journal of clinical laboratory analysis, 2018. 32(5): p. e22397.

52. Rasoul, M.A., et al., *Relationship of four vitamin D receptor gene polymorphisms with type 1 diabetes mellitus susceptibility in Kuwaiti children*. BMC pediatrics, 2019. 19(1): p. 71.

53. El-Kafoury, A.A., et al., *The association of polymorphic sites in some genes with type 1 diabetes mellitus in a sample of Egyptian children*. Egyptian Journal of Medical Human Genetics, 2014. 15(3): p. 265-272.

54. Hamed, E.O., et al., *Vitamin D level and Fok-I vitamin D receptor gene polymorphism in Egyptian patients with type-1 diabetes*. Egypt J Immunol, 2013. 20(2): p. 1-10.

55. Abd-Allah, S.H., et al., *Vitamin D status and vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Egyptian children*. Gene, 2014. 536(2): p. 430-434.

56. Greer, R.M., et al., *Serum vitamin D levels are lower in Australian children and adolescents with type 1 diabetes than in children without diabetes*. Pediatric diabetes, 2013. 14(1): p. 31-41.

57. Mory, D.B., et al., *Prevalence of vitamin D receptor gene polymorphisms FokI and Bsml in Brazilian individuals with type 1 diabetes and their relation to β-cell autoimmunity and to remaining β-cell function*. Human immunology, 2009. 70(6): p. 447-451.

58. Škrabić, V., et al., *Vitamin D receptor polymorphism and susceptibility to type 1 diabetes in the Dalmatian population*. Diabetes research and clinical practice, 2003. 59(1): p. 31-35.
59. Bianco, M., et al., *Vitamin D receptor polymorphisms: are they really associated with type 1 diabetes?* European journal of endocrinology, 2004. 151(5): p. 641-642.

60. Chang, T.J., et al., *Vitamin D receptor gene polymorphisms influence susceptibility to type 1 diabetes mellitus in the Taiwanese population.* Clinical Endocrinology, 2000. 52(5): p. 575-580.

61. Khalid, K.E., *Vitamin D receptor gene polymorphisms in Sudanese children with type 1 diabetes.* AIMS Genet, 2016. 3(3): p. 167-176.

62. Cheon, C.K., et al., *Vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in a Korean population.* Pediatrics International, 2015. 57(5): p. 870-874.

63. Iyer, A., et al., *Relationship between vitamin D receptor gene polymorphisms and type 1 diabetes mellitus in Saudi patients.* International Journal of Pharmacology, 2017. 13(8): p. 1092-1097.

64. Malik, R., et al., *Association of Vitamin D Receptor Gene Polymorphism in Adults With Type 2 Diabetes in the Kashmir Valley.* Canadian journal of diabetes, 2018. 42(3): p. 251-256.

65. Ahmed, A.E.-A., et al., *Vitamin D receptor rs7975232, rs731236 and rs1544410 single nucleotide polymorphisms, and 25-hydroxyvitamin D levels in Egyptian children with type 1 diabetes mellitus: effect of vitamin D co-therapy.* Diabetes, metabolic syndrome and obesity: targets and therapy, 2019. 12: p. 703.

66. García, D., et al., *VDR polymorphisms influence the immune response in type 1 diabetic children from Santiago, Chile.* Diabetes research and clinical practice, 2007. 77(1): p. 134-140.

67. Motohashi, Y., et al., *Vitamin D receptor gene polymorphism affects onset pattern of type 1 diabetes.* The Journal of Clinical Endocrinology & Metabolism, 2003. 88(7): p. 3137-3140.

68. Shimada, A., et al., *Evidence for association between vitamin D receptor BsmI polymorphism and type 1 diabetes in Japanese.* Journal of autoimmunity, 2008. 30(4): p. 207-211.

69. Tawfeek, M., F. Habib, and E.M. Saultan, *Vitamin D receptor BsmI gene polymorphisms and gestational diabetes mellitus: a Saudi study.* British Journal of Medicine and Medical Research, 2011. 1(4): p. 459-468.

70. Al-Moubarak Samah, H., *Gender-specific association of vitamin D receptor polymorphism Bsm-I with type 1 diabetes mellitus.* Int. J. Pharm. Sci. Rev. Res, 2013. 21(2): p. 254-257.

71. Hauache, O., et al., *Vitamin D receptor gene polymorphism: correlation with bone mineral density in a Brazilian population with insulin-dependent diabetes mellitus.* Osteoporosis International, 1998. 8(3): p. 204-210.

72. Ponsonby, A.-L., et al., *Variation in associations between allelic variants of the vitamin D receptor gene and onset of type 1 diabetes mellitus by ambient winter ultraviolet radiation levels: a meta-regression analysis.* American journal of epidemiology, 2008. 168(4): p. 358-365.

73. Kimlin, M.G., W.J. Olds, and M.R. Moore, *Location and vitamin D synthesis: is the hypothesis validated by geophysical data?* Journal of Photochemistry and Photobiology B: Biology, 2007. 86(3): p. 234-239.

Tables

Table 1. Characteristics of studies included in meta-analysis of overall T1DM.
Study author	Year	Country	Ethnicity	Sex cases/controls	Total cases/controls	Age case/control (Mean)	Genotyping method	Quality score		
Foki (rs2228570)										
Ban *et al.*	2001	Japan	Asian	M= 50/60 F= 100/150	108 / 250	26.0 ± 3.8 / NR	RFLP-PCR	7		
Fassbender *et al.*	2002	Germany	European	M= 42/33 F= 27/30	75 / 57	34.1 ± 11.1 / 33.5 ± 10.1	RFLP-PCR	6		
Gyorffy *et al.*	2002	Hungary	European	M= 57/50 F= 53/50	107 / 103	23.5 ± 5.11 / NR	RFLP-PCR	7		
Turpeinen (Turku) *et al.*	2003	Finland	European	M=NR F=NR	274 / 808	NR / NR	Mini sequencing	8		
Turpeinen (Tampere) *et al.*	2003	Finland	European	M=NR F=NR	55 / 457	NR / NR	Mini sequencing	8		
Turpeinen (Oulu) *et al.*	2003	Finland	European	M=NR F=NR	249 / 795	NR / NR	Mini sequencing	8		
Audi (barcelona) *et al.*	2004	Spain	European	M= 69/86 F= 153/122	155 / 275	NR / NR	Mini sequencing	7		
Audi (navarra) *et al.*	2004	Spain	European	M= 40/46 F= 58/58	86 / 116	NR / NR	Mini sequencing	7		
San Pedro *et al.*	2005	Spain	European	M=NR F=NR	71 / 88	14.5 ± 9.9 / NR	RFLP-PCR	6		
Zemunik *et al.*	2005	Croatia	European	M= 72/62 F=NR	134 / 232	8.6 ± 4.3 / NR	RFLP-PCR	7		
Capoluongo *et al.*	2006	Italy	European	M= 135/111 F= 135/111	246 / 246	39.3 ± 11.1 / 39.6 ± 9.1	RFLP-PCR	8		
Lemos *et al.*	2008	Portugal	European	M= 113/94 F= 143/106	207 / 249	27.5 ± 10.2 / 36.8 ± 13.8	RFLP-PCR	8		
Israni *et al.*	2009	India	Asian	M= 131/135 F= 116/81	236 / 197	15.1 ± 7.30 / 30.1 ± 10.2	RFLP-PCR	7		
Mory *et al.*	2009	Brazil	American	M=NR F=NR	177 / 182	17.2 ± 5.4 / 12.2 ± 8.1	RFLP-PCR	7		
Panierakis *et al.*	2009	Greece	European	M=NR F=52/44	100 / 96	NR / NR	Mini sequencing	6		
Yavuz *et al.*	2011	turkey	European	M= 60/57 F= 73/61	117 / 134	27.6 ± 7.3 / 26.2 ± 5.3	RFLP-PCR	6		
Study	Year	Country	Region	Gender	Genotype	M/NR	F/NR	Mean (± SD)	RFLP-PCR	Cell Count
------------------------------	------	-------------	--------	--------	-----------	------	------	-------------	----------	------------
Yokota et al.	2012	Japan	Asian	NR	M= NR	108	220	27.93 ± 10.86 / 28.58 ± 7.40	RFLP-PCR	6
Bonakdar an et al.	2012	Iran	Asian	NR	M= 28/41	69	45	NR / NR	RFLP-PCR	6
Sahin et al.	2012	Turkey	European	NR	M= NR	85	80	NR / NR	RFLP-PCR	6
Mohamed nejad et al.	2012	Iran	Asian	NR	M= 32/55	87	100	27.93 ± 10.86 / 28.58 ± 7.40	RFLP-PCR	6
Bonakdar an et al.	2012	Turkey	European	NR	M= NR	85	80	NR / NR	RFLP-PCR	6
Vedralova et al.	2012	Czech	European	NR	M= NR	116	113	67.0 ± 12.44 / 45.0 ± 7.31	RFLP-PCR	6
Greer et al.	2012	Australia	Australian	NR	M= NR	50	55	NR / NR	RFLP-PCR	6
Hamed et al.	2013	Egypt	African	NR	M= 64/68	132	40	8.5 ± 3.3 / 9.0 ± 1.5	RFLP-PCR	6
Abd-Allah et al.	2014	Egypt	African	NR	M= 42/78	120	120	11.7 ± 2.8 / 11.1 ± 2.6	RFLP-PCR	7
Kafoury et al.	2014	Egypt	African	NR	M= 25/35	60	60	11.2 ± 3.7 / 27.2 ± 6.4	RFLP-PCR	6
Nasreen et al.	2016	Pakistan	Asian	NR	M= 25/19	44	44	14.81 ± 2.7 / 17.92 ± 2.8	RFLP-PCR	6
Mukhtar et al.	2017	Pakistan	Asian	NR	M= NR	102	100	13/2 / 13/8	RFLP-PCR	6
Ali et al.	2018	Saudi Arabia	Asian	NR	M= 54/46	100	102	10.33 ± 3.15 / >35	RFLP-PCR	7
Rasoul et al.	2019	Kuwait	Asian	NR	M= NR	253	214	8.5 ± 5.5 / 8.9 ± 5.2	RFLP-PCR	8

TaqI (rs731236)

Study	Year	Country	Region	Gender	Genotype	M/NR	F/NR	Mean (± SD)	RFLP-PCR	Cell Count
Chang et al.	2000	China	Asian	NR	M= 71/86 F= 156/92	157/248	23.5 ± 5.11 / 32.4 ± 6.6	RFLP-PCR	8	
Fassbender et al.	2002	Germany	European	NR	M= 57/50 F= 53/50	75/57	5.8 ± 2.3 / NR	RFLP-PCR	6	
Gyorffy et al.	2002	Hungary	European	NR	M= 57/50 F= 53/50	107/103	23.5 ± 5.11 / NR	RFLP-PCR	7	
Skrabic et al.	2003	Croatia	European	NR	M= 72/62 F= 60/72	134/132	8.69 ± 4.3 / 8.24 ± 4.9	RFLP-PCR	7	
Bianco et al.	2004	Italy	European	NR	M= NR F= NR	31/36	NR / NR	RFLP-PCR	6	
San Pedro et al.	2005	Spain	European	NR	M= NR F= NR	71/88	14.5 ± 9.9 / NR	RFLP-PCR	6	
Garcia et al.	2007	Chile	American	NR	M= 120/96 F= 106/97	216/203	9.3 ± 4.2 / 10.3 ± 2.5	RFLP-PCR	8	
Study	Year	Country	Subgroup	Sex Distribution	Sex Distribution	Age (Mean ± SD)	Method	Study Number		
------------------------	------	-----------	--------------	-------------------	-------------------	-----------------	----------------	--------------		
Lemos et al.	2008	Portugal	European	M=NR F=NR	205 / 232	27.5 ± 10.2 / 36.8 ± 13.8	RFLP-PCR	8		
Israni et al.	2009	India	Asian	M=131/135 F=116/81	236 / 197	15.1 ± 7.30 / 30.1 ± 10.2	RFLP-PCR	7		
Panierakis et al.	2009	Greece	European	M=NR F=52/44	100 / 96	NR / NR	Mini sequencing	6		
Yavuz et al.	2011	Turkey	European	M=60/57 F=73/61	117 / 134	27.6 ± 7.3 / 26.2 ± 5.3	RFLP-PCR	6		
Bonakdar et al.	2012	Iran	Asian	M=28/41 F=19/26	69 / 45	NR / NR	RFLP-PCR	6		
Mohamednejad et al.	2012	Iran	Asian	M=32/55 F=50/50	87 / 100	27.93 ± 10.86 / 28.58 ± 7.40	RFLP-PCR	6		
Greer et al.	2012	Australia	Australian	M=NR F=NR	50 / 55	NR / NR	RFLP-PCR	6		
Abd-Allah et al.	2014	Egypt	African	M=42/78 F=42/78	120 / 120	11.7 ± 2.8 / 11.1 ± 2.6	RFLP-PCR	7		
Cheon et al.	2015	Korea	Asian	M=35/46 F=53/60	81 / 113	10.28 ± 3.73 / 9.98 ± 3.56	RFLP-PCR	6		
Khalid et al.	2016	Saudi Arab	Asian	M=NR F=NR	100 / 50	11.48 ± 3.39 / 9.50 ± 4.23	RFLP-PCR	6		
Iyer et al.	2017	Saudi Arab	African	M=25/25 F=25/25	50 / 50	25.37 ± 4.07 / 23.44 ± 5.38	RFLP-PCR	6		
Malik et al.	2017	India	Asian	M=NR F=NR	100 / 100	49.3 ± 9.25 / 11.2 ± 3.7	RFLP-PCR	7		
Rasoul et al.	2019	Kuwait	Asian	M=NR F=NR	253 / 214	8.5 ± 5.5 / 8.9 ± 5.2	RFLP-PCR	8		
Ahmed et al.	2019	Egypt	African	M=24/25 F=26/25	50 / 50	11.16±3.2 / 10.97±2.7	RFLP-PCR	6		

BsmI (rs1544410)

Study	Year	Country	Subgroup	Sex Distribution	Sex Distribution	Age (Mean ± SD)	Method	Study Number
Hauache et al.	1998	Brazil	American	M=31/63 F=31/63	78 / 94	15.5 ± 6.0 / 49 ± 11	RFLP-PCR	6
Chang et al.	2000	China	Asian	M=71/86 F=156/92	157 / 248	23.5 ± 5.11 / 32.4 ± 6.6	RFLP-PCR	8
Authors	Year	Country	Region	M	F	Mean (SD)	Method	Notes
--------------------	------	-----------	----------	--------------------	--------------------	--------------------	--------------------	--------
Fassbender et al.	2002	Germany	European	57/50	53/50	5.8 ± 2.3 / NR	RFLP-PCR	6
Gyorffy et al.	2002	Hungary	European	57/50	53/50	107 / 103	RFLP-PCR	7
Motohashi et al.	2002	Japan	Asian	96/107 / 101/121		203 / 222	RFLP-PCR	8
Skrubic et al.	2003	Croatia	European	72/62 / 60/72		134 / 132	RFLP-PCR	7
Turpeinen (Turku)	2003	Finland	European	NR / NR		220 / 844	Mini sequencing	8
Turpeinen (Tampere	2003	Finland	European	NR / NR		58 / 1175	Mini sequencing	8
Turpeinen (Oulu)	2003	Finland	European	NR / NR		226 / 818	Mini sequencing	8
Audi (barcelona)	2004	Spain	European	69/84 / 153/121		153 / 274	Mini sequencing	7
Audi (navarra)	2004	Spain	European	40/49 / 58/58		89 / 116	Mini sequencing	7
Bianco et al.	2004	Italy	European	NR / NR		31 / 36	RFLP-PCR	6
San Pedro et al.	2005	Spain	European	NR / NR		71 / 88	RFLP-PCR	6
Capoluongo et al.	2006	Italy	European	135/111 / 135/111		246 / 246	RFLP-PCR	8
Garcia et al.	2007	Chile	American	NR / 106/97		208 / 203	RFLP-PCR	8
Lemos et al.	2008	Portugal	European	NR / NR		207 / 248	RFLP-PCR	8
Shimada et al.	2008	Japan	Asian	NR / NR		774 / 599	RFLP-PCR	8
Israni et al.	2009	India	Asian	131/135 / 116/81		236 / 197	RFLP-PCR	7
Mory et al.	2009	Brazil	American	NR / NR		177 / 182	RFLP-PCR	7
Panierakis et al.	2009	Greece	European	NR / NR		100 / 96	Mini sequencing	6
Authors	Year	Region 1	Region 2	Gender	Age 1 (Mean ± SD)	Age 2 (Mean ± SD)	Method	NRS
-----------------------	------	----------	----------	--------	-------------------	-------------------	--------	-----
Yavuz et al.	2011	Turkey	European	M= 60/57 F= 73/61	117 / 134	27.6 ± 7.3 / 26.2 ± 5.3	RFLP-PCR	6
Tawfeek et al.	2011	Arabic	Asian	M= 0/30 F= 0/14	30 / 14	35.7 ± 5.33 / 33.2 ± 4.06	RFLP-PCR	6
Bonakdar et al.	2012	Iran	Asian	M= 28/41 F= 19/26	69 / 45	NR / NR	RFLP-PCR	6
Vedralova et al.	2012	Czech	European	M=NR F=NR	104 / 83	67.0 ± 12.44 / 45.0 ± 7.31	RFLP-PCR	6
Mohamednejad et al.	2012	Iran	Asian	M= 32/55 F= 50/50	87 / 100	27.93 ± 10.86 / 28.58 ± 7.40	RFLP-PCR	6
Moubarak et al.	2013	Syria	Asian	M= 25/30 F= 24/26	55 / 50	13.75 ± 6.91 / 39.86 ± 11.66	RFLP-PCR	6
Abd-Allah et al.	2014	Egypt	African	M= 42/78 F= 42/78	120 / 120	11.7 ± 2.8 / 11.1 ± 2.6	RFLP-PCR	7
Kafoury et al.	2014	Egypt	African	M= 25/35 F=NR	60 / 56	11.2 ± 3.7 / 27.2 ± 6.4	RFLP-PCR	6
Cheon et al.	2015	Korea	Asian	M= 35/46 F= 53/60	81 / 113	10.28 ± 3.73 / 9.98 ± 3.56	RFLP-PCR	6
Khalid et al.	2016	Saudi Arabia	Asian	M=NR F=NR	100 / 50	11.48 ± 3.39 / 9.50 ± 4.23	RFLP-PCR	6
Iyer et al.	2017	Saudi Arabia	Asian	M= 25/25 F= 25/25	50 / 50	25.37 ± 4.07 / 23.44 ± 5.38	RFLP-PCR	6
Malik et al.	2017	India	Asian	M=NR F=NR	100 / 100	49.3 ± 9.25 / 11.2 ± 3.7	RFLP-PCR	7
Ali et al.	2018	Saudi Arabia	Asian	M= 54/46 F= 43/59	100 / 102	10.33 ± 3.15 / >35	RFLP-PCR	7
Rasoul et al.	2019	Kuwait	Asian	M=NR F=NR	253 / 214	8.5 ± 5.5 / 8.9 ± 5.2	RFLP-PCR	8
Ahmed et al.	2019	Egypt	African	M= 24/25 F= 26/25	50 / 50	11.16±3.2 / 10.97±2.7	RFLP-PCR	6

ApaI (rs7975232)

Authors	Year	Region	Gender	Age 1 (Mean ± SD)	Age 2 (Mean ± SD)	Method	NRS			
Chang et al.	2000	China	Asian	M= 71/86	157 / 248	23.5 ±	RFLP-PCR	8		
al.	Year	Country	Region	Gender	Total M/F	M/F PCR	Total M/F	M/F PCR	Genotype	PCR
-----------------------------------	------	---------	--------	--------	-----------	---------	-----------	---------	----------	-----
Gyorffy et al.	2002	Hungary	European	M= 57/50	107 / 103	23.5 ± 5.11 / NR	RFLP-PCR	7		
Skrubic et al.	2003	Croatia	European	M= 72/62	134 / 132	8.69 ± 4.3 / 8.24 ± 4.9	RFLP-PCR	7		
Turpeinen (Turku) et al.	2003	Finland	European	M=NR	198 / 797	NR / NR	Mini sequencing	8		
Turpeinen (Tampere) et al.	2003	Finland	European	M=NR	56 / 450	NR / NR	Mini sequencing	8		
Turpeinen (Oulu) et al.	2003	Finland	European	M=NR	239 / 843	NR / NR	Mini sequencing	8		
Bianco et al.	2004	Italy	European	M=NR	31 / 36	NR / NR	RFLP-PCR	6		
San Pedro et al.	2005	Spain	European	M=NR	71 / 88	14.5 ± 9.9 / NR	RFLP-PCR	6		
Garcia et al.	2007	Chile	American	M=NR	213 / 203	9.3 ± 4.2 / 10.3 ± 2.5	RFLP-PCR	8		
Lemos et al.	2008	Portugal	European	M=NR	205 / 232	27.5 ± 10.2 / 36.8 ± 13.8	RFLP-PCR	8		
Israni et al.	2009	India	Asian	M= 131/135	236 / 197	15.1 ± 7.30 / 30.1 ± 10.2	RFLP-PCR	7		
Panierakis et al.	2009	Greece	European	M=NR	100 / 96	NR / NR	Mini sequencing	6		
Yavuz et al.	2011	Turkey	European	M= 60/57	117 / 136	27.6 ± 7.3 / 26.2 ± 5.3	RFLP-PCR	6		
Bonakdar et al.	2012	Iran	Asian	M= 28/41	69 / 45	NR / NR	RFLP-PCR	6		
Mohamednejad et al.	2012	Iran	Asian	M= 32/55	87 / 100	27.93 ± 10.86 / 28.58 ± 7.40	RFLP-PCR	6		
Greer et al.	2012	Australia	Australian	M=NR	50 / 55	NR / NR	RFLP-PCR	6		
Abd-Allah et al.	2014	Egypt	African	M= 42/78	120 / 120	11.7 ± 2.8 / 11.1 ± 2.6	RFLP-PCR	7		
Cheon et al.	2015	Korea	Asian	M= 35/46	81 / 113	10.28 ± 3.73 / 9.98 ± 3.56	RFLP-PCR	6		
Khalid et al.	2016	Saudi Arabia	Asian	M=NR	100 / 50	11.48 ± 3.39 /	RFLP-PCR	6		
Study	Year	Location	Ethnicity	Gender M/F	Sample Size	Genotype	Allele	Method	Replications	
-----------------------	------	----------	-----------	------------	-------------	----------	--------	------------	--------------	
Nasreen et al.	2016	Pakistan	Asian	M= 25/19	F= 23/21	44 / 44	9.50 ± 4.23	RFLP-PCR	6	
Iyer et al.	2017	Saudi Arabia	Asian	M= 25/25	F= 25/25	50 / 50	14.81 ± 2.7 / 17.92 ± 2.8	RFLP-PCR	6	
Mukhtar et al.	2017	Pakistan	Asian	M=NR	F=NR	102 / 100	25.37 ± 4.07 / 23.44 ± 5.38	RFLP-PCR	6	
Iyer et al.	2017	Saudi Arabia	Asian	M= 25/25	F= 25/25	50 / 50	25.37 ± 4.07 / 23.44 ± 5.38	RFLP-PCR	6	
Rasoul et al.	2019	Kuwait	Asian	M=NR	F=NR	252 / 214	11.16 ± 3.2 / 10.97 ± 2.7	RFLP-PCR	8	
Ahmed et al.	2019	Egypt	African	M= 24/25	F= 26/25	50 / 50	11.16 ± 3.2 / 10.97 ± 2.7	RFLP-PCR	6	

NR, not reported; M, male; F, female

Table 2. Distribution of genotype and allele among T1DM patients and controls.
Study author	T1DM cases	Healthy control	P-HWE	MAF											
	FF	Ff	ff	F	f	FF	Ff	Ff	F	f					
FokI (rs2228570)															
Ban et al.	50	52	6	152	64	82	138	30	302	198	0.01	0.39			
Fassbender et al.	35	30	10	100	50	19	30	8	68	46	0.48	0.40			
Gyurgyy et al.	32	56	19	120	94	34	47	22	115	91	0.44	0.44			
Turpeinen (Turku) et al.	50	150	74	250	298	102	414	292	618	998	0.01	0.61			
Turpeinen (Tampe re) et al.	7	28	20	42	68	61	226	170	348	566	0.29	0.61			
Turpeinen (Oulu) et al.	37	114	98	188	310	93	360	342	546	1044	0.9	0.65			
Audi (bar cello na) et al.	69	68	18	206	104	105	142	28	352	198	0.04	0.36			
Audi (nav arra) et al.	35	45	6	115	57	41	53	22	135	97	0.51	0.41			
San Pedro et al.	31	35	5	97	45	41	39	8	121	55	0.76	0.31			
Zemunik et al.	42	63	29	147	121	73	136	23	282	182	<0.01	0.39			
Capolongo et al.	89	112	45	290	202	91	127	28	309	183	0.09	0.37			
Author(s)	81	101	25	263	151	97	114	38	308	190	0.63	0.38			
---------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-------	-------			
Lemos et al.	142	79	15	363	109	116	76	5	308	86	0.06	0.21			
Isra ni et al.	80	81	16	241	113	91	67	24	249	115	0.04	0.31			
Mor y et al.	50	43	7	143	57	64	31	1	159	33	0.18	0.17			
Pan erakis et al.	61	46	10	168	66	60	63	11	183	85	0.32	0.31			
Yavu z et al.	50	46	12	146	70	59	20	141	138	302	<0.01	0.68			
Yoko ta et al.	38	25	6	101	37	18	20	7	56	34	0.71	0.37			
Bon akda ran et al.	54	31	0	139	31	43	28	9	114	46	0.19	0.28			
Sahi n et al.	49	33	5	131	43	55	40	5	150	50	0.5	0.25			
Moh ame dnej ad et al.	38	60	18	136	96	25	76	12	126	100	<0.01	0.44			
Vedr alov a et al.	21	21	8	63	37	28	22	5	78	32	0.82	0.29			
Gree r et al.	24	92	16	140	124	8	28	4	44	36	0.008	0.45			
Ham ed et al.	58	50	12	166	74	78	38	4	194	46	0.8	0.19			
Abd- Allah et al.	23	21	16	67	53	41	12	7	94	26	0.001	0.21			
Kafo ury et al.	32	12	0	76	12	25	19	0	69	19	0.06	0.21			
Nasr een et al.	84	13	5	181	23	100	0	0	200	0	<0.01	0			
Muk htar et al.	64	33	3	161	39	79	21	2	179	25	0.66	0.12			
Study authors	T1DM cases	Healthy control	\(P\)-HWE	MAF											
---------------	------------	-----------------	-----------	-----											
	TT	Tt	tt	T	t	TT	Tt	tt	T	t					
Rasouli et al.	178	30	45	386	120	146	67	1	359	69	0.02	0.16			
	2														
TaqI (rs731236)											0.13	0.03			
Chang et al.	142	15	0	299	15	233	14	1	480	16	0.13	0.03			
											2				
Fassbender et al.	34	31	10	99	51	19	20	18	58	56	0.02	0.49			
											1				
Gyorffy et al.	46	34	27	126	88	42	27	34	111	95	<0.01	0.46			
											1				
Skrabic et al.	54	55	25	163	105	48	72	12	168	96	0.04	0.36			
											3				
Bianco et al.	10	18	3	38	24	11	20	5	42	30	0.39	0.41			
											6				
San Pedro et al.	24	36	11	84	58	31	43	14	105	71	0.88	0.40			
											3				
Garcia et al.	115	79	22	309	123	121	69	13	311	95	0.23	0.40			
											3				
Lemos et al.	70	94	41	234	176	91	95	46	277	187	0.02	0.40			
											3				
Israni et al.	91	112	33	294	178	80	98	19	258	136	0.15	0.34			
											5				
Pani erakis et al.	34	59	7	127	73	10	64	22	84	108	<0.01	0.56			
											2				
Yavuz et al.	37	58	22	132	102	41	66	27	148	120	0.96	0.44			
											7				
Bonakdaran et al.	34	28	7	96	42	20	17	8	57	33	0.21	0.36			
											6				
Mohamadnejad et al.	32	52	3	116	58	59	41	0	159	41	<0.01	0.20			
											5				
Study author	BB	Bb	bb	B	b	BB	Bb	bb	B	b					
--------------	----	----	----	----	---	----	----	----	----	---					
BsmI (rs1544410)															
Hau ache *et al.*	13	39	26	65	91	12	43	39	67	121					
Chang *et al.*	4	16	137	24	290	1	16	231	18	478					
Fass bend er *et al.*	14	35	26	63	87	18	25	14	61	53					
Gyor ffy *et al.*	19	46	42	84	130	16	53	34	85	121					
Mot ohas hi *et al.*	12	64	127	88	318	1	49	172	51	393					
Skra bic *et al.*	24	58	52	106	162	17	74	41	108	156					
Turp eine n (Tur)	97	97	26	291	149	354	388	102	1096	592					
Author	Year	Country	Dataset	Method	Parameter										
------------------------------	------	---------------	---------	--------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------			
Ku et al.	2012	Finland	Turpe (Tampere) et al.	29	22	7	80	36	533	488	154	1554	796	0.01	0.33
Turpeine n (Oulu) et al.	2012	Finland	Turpe (Tampere) et al.	90	103	33	283	169	403	305	110	1111	525	<0.01	0.32
Audi (barcelo na) et al.	2012	Spain	Audi (barcelo na) et al.	21	73	59	115	191	46	147	81	239	309	0.13	0.56
Audi (nav arra) et al.	2012	Spain	Audi (barcelo na) et al.	20	43	26	83	95	19	53	44	91	141	0.65	0.60
Bianco et al.	2012	Italy	Bianco et al.	13	14	4	40	22	14	17	5	45	27	0.96	0.37
San Pedro et al.	2012	Spain	San Pedro et al.	15	40	16	70	72	17	44	27	78	98	0.9	0.55
Capolungo et al.	2012	Italy	Capolungo et al.	62	125	59	249	243	61	122	63	244	248	0.89	0.50
Garcia et al.	2012	Spain	Garcia et al.	21	110	77	152	264	14	74	115	102	304	0.65	0.74
Lemos et al.	2012	Spain	Lemos et al.	43	96	68	182	232	56	107	85	219	277	0.04	0.55
Shimada et al.	2012	Japan	Shimada et al.	32	165	577	229	1319	7	121	471	135	1063	0.8	0.88
Israni et al.	2012	India	Israni et al.	79	120	37	278	194	56	94	47	206	188	0.53	0.47
Mor et al.	2012	Spain	Mor et al.	60	57	60	177	177	38	74	70	150	214	0.62	0.58
Pani erak	2012	Spain	Pani erak	23	57	20	103	97	38	43	15	119	73	0.62	0.38
Study author	T1DM cases	Healthy control	P-HWE	MAF											
-------------------	------------	-----------------	-------	-----											
	AA	Aa	aa	A	a	AA	Aa	aa	A	a					
Yavuz et al.	20 57 40 97 137 14 59 61 87 181	0.96 0.67													
Tawfiek et al.	3 18 9 24 36 1 8 5 10 18	0.36 0.64	<0.01	0.52											
Bonakdaran et al.	14 26 29 54 84 16 11 18 43 47	<0.01 0.52													
Vedraova et al.	43 47 14 133 75 30 33 20 93 73	0.07 0.43													
Mohamednejad et al.	11 36 40 58 116 9 45 46 63 137	0.66 0.68													
Moubarak et al.	7 25 23 39 71 14 26 10 54 46	0.74 0.46													
Abd-Allah et al.	27 68 25 122 118 48 52 20 148 92	0.36 0.38	<0.01	0.97											
Kafari et al.	8 13 39 29 91 4 11 41 19 93	0.02 0.83													
Cheon et al.	0 13 68 13 149 1 4 108 6 220	<0.01 0.97													
Khalid et al.	51 32 17 134 66 19 21 10 59 41	0.35 0.41													
Iyer et al.	8 12 30 28 72 26 12 12 64 36	<0.01 0.36													
Malik et al.	79 16 5 174 26 40 22 38 102 98	0.000 0.28													
Ali et al.	30 45 25 105 95 62 28 12 152 52	0.25 0.28													
Rasoaul et al.	141 83 29 365 141 120 66 28 306 122	<0.01 0.28													
Ahmed et al.	8 35 7 51 49 32 18 0 82 18	<0.01 0.19													
Apal (rs7975232)	16	76	65	108	206	13	105	130	131	365	0.16	0.73			
--------------------------------------	----	----	----	-----	-----	----	-----	-----	-----	-----	------	------			
Cha ng et al.	23	27	57	73	141	33	45	25	111	95	0.21	0.46			
Gyorf fy et al.	66	52	16	184	84	51	66	15	168	96	0.35	0.36			
Skrab ic et al.	35	106	57	176	220	152	441	745	849	0.00	0.53				
Turp eine n (Tur ku) et al.	13	23	20	49	63	69	229	152	367	533	0.25	0.59			
Turp eine n (Ta mpe re) et al.	43	115	81	201	277	165	389	289	719	967	0.09	0.57			
Turp eine n (Oul u) et al.	18	11	2	47	15	11	20	42	30	0.39	0.41				
Bian co et al.	15	37	19	67	75	28	43	17	99	77	0.94	0.43			
San Pedr o et al.	54	115	44	223	203	43	125	35	211	195	<0.01	0.48			
Gar cia et al.	55	100	50	210	200	68	101	63	237	227	0.04	0.48			
Lem os et al.	85	133	18	303	169	60	110	27	230	164	0.03	0.41			
Isra ni et al.	37	57	6	131	69	23	58	15	104	88	0.03	0.45			
Pani erak is et al.	36	58	23	130	104	35	70	31	140	132	0.72	0.48			
Yavu z et al.	13	52	4	78	60	18	26	1	62	28	0.01	0.31			
Bon akda															
Author(s)	P-HWE	MAF, minor allele frequency of control group													
---------------------------	-------	---													
Mohamednejad et al.															
Gree r et al.															
Abd-Allah et al.															
Che on et al.															
Khal id et al.															
Nasr een et al.															
Iyer et al.															
Muk htar et al.															
Raso ul et al.															
Ahmed et al.															

P-HWE, P value for Hardy-Weinberg equilibrium; MAF, minor allele frequency of control group.

Table 3. Main results of pooled ORs in meta-analysis of Vitamin D Receptor gene polymorphisms.
Group	Genetic Model	Case/Control	Test of Association	Test of Heterogeneity	Test of publication bias						
			OR	95%CI (P value)	I^2 (%)	P	Z	P	T	P	
FokI (rs2228570)	Overall	Dominant model	3723 / 5578	0.92	0.79 - 1.08 (0.31)	<0.001	<0.001	0.28	0.78	0.79	0.43
		Recessive model	3723 / 5578	0.98	0.71 - 1.35 (0.91)	<0.001	<0.001	1.43	0.15	1.28	0.21
		Allelic model	3723 / 5578	0.96	0.81 - 1.14 (0.65)	<0.001	<0.001	0.71	0.47	0.87	0.39
		ff vs. FF	3723 / 5578	0.96	0.69 - 1.35 (0.83)	<0.001	<0.001	1.70	0.09	1.78	0.08
		Ff vs. FF	3723 / 5578	0.94	0.79 - 1.12 (0.49)	<0.001	<0.001	1.19	0.23	1.23	0.22
	European	Dominant model	3723 / 5578	0.86	0.74 - 1.00 (0.05)	0.268	0.268	-0.15	0.88	0.33	0.74
		Recessive model	2077 / 3849	1.00	0.77 - 1.30 (0.98)	0.011	0.011	0.60	0.54	1.15	0.27
		Allelic model	2077 / 3849	0.93	0.82 - 1.06 (0.28)	0.015	0.015	-0.05	0.96	0.69	0.50
		ff vs. FF	2077 / 3849	0.90	0.67 - 1.20 (0.46)	0.046	0.046	0.27	0.78	1.01	0.33
		Ff vs. FF	2077 / 3849	0.86	0.75 - 0.99 (0.04)	0.435	0.435	0.74	0.45	0.59	0.56
	Asian	Dominant model	2077 / 3849	0.76	0.55 - 1.05 (0.09)	0.015	0.015	-0.74	0.45	-0.31	0.76
		Recessive model	1107 / 1272	0.93	0.23 - 3.68 (0.91)	<0.001	<0.001	1.65	0.09	3.26	0.02
		Allelic model	1107 / 1272	0.78	0.46 - 1.33 (0.36)	<0.001	<0.001	-0.25	0.80	0.04	0.97
		ff vs. FF	1107 / 1272	0.87	0.25 - 3.01 (0.82)	<0.001	<0.001	1.95	0.05	3.01	0.03
		Ff vs. FF	1107 / 1272	0.84	0.53 - 1.34 (0.47)	<0.001	<0.001	0.49	0.62	0.50	0.63
	African	Dominant	1107 / 1272	2.06	1.20 - 3.53	0.225	0.225	-0.52	0.60	-0.19	0.88
model	312 / 220		(0.008)								
-----------	-----------	---	-----------	---	---	---	---	---	---		
recessive model	2.14	1.03 - 4.43 (0.04)	0.382	0.382	-0.52	0.60	-0.60	0.65			
allelic model	1.77	1.06 - 2.97 (0.02)	0.057	0.057	0.52	0.60	0.23	0.85			
ff vs. FF	3.11	1.44 - 6.69 (0.004)	0.493	0.493	-1.57	0.11	-1.65	0.34			
Ff vs. FF	1.81	1.13 - 2.91 (0.01)	0.337	0.337	-0.52	0.60	0.03	0.98			

TaqI (rs731236)

	1973 / 1995			77.2	<0.001	-0.45	0.65	-1.61	0.12
overall									
recessive model		1.03	0.81 - 1.45 (0.60)	57	0.001	-1.93	0.05	-1.93	0.07
allelic model		1.03	0.83 - 1.29 (0.77)	81.4	<0.001	-0.24	0.80	-0.96	0.34
tt vs. TT		0.93	0.62 - 1.41 (0.79)	71.3	<0.001	-2.14	0.03	-2.65	0.01
Tt vs. TT		1.13	0.86 - 1.49 (0.37)	69.1	<0.001	-0.39	0.69	-1.04	0.31

	840 / 878								
overall									
recessive model		0.78	0.50 - 1.21 (0.26)	55.1	0.029	-1.24	0.21	-0.95	0.38
allelic model		0.92	0.76 - 1.11 (0.36)	9.6	0.356	-1.73	0.08	-1.27	0.25
tt vs. TT		0.75	0.44 - 1.27 (0.28)	61.1	0.012	-1.73	0.08	-1.68	0.14
Tt vs. TT		0.87	0.64 - 1.20 (0.40)	39.8	0.114	-0.99	0.32	-1.10	0.31

	1133 / 1117			83.8	<0.001	0	1	-1.08	0.31	
overall										
recessive model		1.12	0.62 - 2.00 (0.71)	68.2	0.008	-2.44	0.01	-3.55	0.02	
allelic model		1.32	0.82 - 2.11 (0.25)	87.3	<0.001	0	1	-0.75	0.45	
tt vs.		1.12	0.49 -	81.7	<0.001	-1.69	0.09	-3.10	0.03	
	Tt vs.TT	1133 / 1117	1.46	0.89 - 2.41 (0.13)	77.4	<0.001	-0.83	0.40	-0.77	0.46
-------	----------	-------------	------	-------------------	------	---------	-------	-----	-------	------

BsmI (rs1544410)

	Overall	Domi	4926 / 7259	0.96	0.75 – 1.24 (0.75)	78.8	<0.001	-0.25	0.80	0.48	0.63
	Recessive model		4926 / 7259	0.91	0.77 – 1.08 (0.28)	60.3	<0.001	0.13	0.89	0.20	0.84
	Allelic model		4926 / 7259	0.95	0.81 – 1.11 (0.78)	82.2	<0.001	0.21	0.83	0.16	0.87
	bb vs. BB	4926 / 7259	0.91	0.70 – 1.18 (0.43)	64.7	<0.001	-0.59	-0.55	-0.69	0.49	
	Bb vs. BB	4926 / 7259	1.03	0.85 – 1.26 (0.76)	56.6	<0.001	-0.19	0.84	-0.58	0.56	
	European	Domi	1938 / 4450	0.94	0.71 – 1.24 (0.66)	71.0	<0.001	-0.25	0.80	0.89	0.39
	Recessive model		1938 / 4450	1.00	0.85 – 1.19 (0.95)	20.7	0.223	-0.25	0.80	-0.63	0.54
	Allelic model		1938 / 4450	1.00	0.89 – 1.13 (0.93)	41.7	0.046	-0.35	0.72	-0.75	0.46
	bb vs. BB	1938 / 4450	0.99	0.80 – 1.23 (0.92)	16.1	0.273	0.05	0.96	-0.57	0.57	
	Bb vs. BB	1938 / 4450	1.05	0.89 – 1.25 (0.56)	15.0	0.286	-0.45	0.65	-0.99	0.34	
	Asian	Domi	2295 /2104	0.86	0.48 – 1.54 (0.61)	83.5	<0.001	-0.12	0.90	-0.38	0.71
	Recessive model		2295 /2104	0.90	0.63 – 1.30 (0.57)	74.0	<0.001	-0.38	0.70	0.18	0.86
	Allelic model		2295 /2104	0.86	0.59 – 1.26 (0.44)	89.4	<0.001	0.38	0.70	0.24	0.81
	bb vs. BB	2295 /2104	0.85	0.42 – 1.72 (0.64)	80.4	<0.001	-0.12	0.90	-0.42	0.68	
	Bb vs. BB	2295 /2104	0.96	0.60 – 1.53 (0.85)	67.1	<0.001	0.12	0.90	-0.49	0.63	
	American	Domi	463 / 479	0.57	0.39 – 0.84 (0.004)	0.0	0.755	1.57	0.11	14.1	0.04
	Dominant model	Allelic model	Recessive model	Dominant model	Allelic model	Recessive model					
----------------	----------------	---------------	----------------	----------------	---------------	----------------					
Recessive model	463 / 479	0.62	0.41 - 0.94 (0.02)	50.5	0.133	0.52					
	Allelic model	0.66	0.54 - 0.81 (<0.001)	0.0	0.549	0.52					
	bb vs. BB	0.52	0.34 - 0.80 (0.003)	0.0	0.876	0.52					
	Bb vs. BB	0.66	0.41 - 1.05 (0.08)	13.2	0.316	0.52					
African											
	230 / 226	2.41	0.63 - 9.18 (0.19)	81	0.065	-0.52					
	Recessive model	230 / 226	0.99	0.52 - 1.89 (0.96)	26.8	0.242	-1				
	Allelic model	230 / 226	1.63	0.65 - 4.08 (0.29)	86.3	0.031	-0.52				
	bb vs. BB	230 / 226	1.18	0.26 - 5.25 (0.83)	67.0	0.082	-1				
	Bb vs. BB	230 / 226	2.40	0.81 - 7.17 (0.11)	63.9	0.141	-0.52				
ApaI (rs7975232)											
	2436 / 4074	1.03	0.82 - 1.29 (0.79)	66.2	<0.001	0.25					
	Recessive model	2436 / 4074	1.03	0.90 - 1.17 (0.68)	48.4	0.005	0.24				
	Allelic model	2436 / 4074	1.05	0.90 - 1.23 (0.52)	72.7	<0.001	0.99				
	aa vs. AA	2436 / 4074	1.02	0.77 - 1.33 (0.90)	52.9	0.002	-0.18				
	Aa vs. AA	2436 / 4074	0.91	0.80 - 1.04 (0.18)	25.5	0.355	-0.03				
European											
	1258 / 2913	0.91	0.70 - 1.18 (0.47)	49.1	0.039	-0.98					
	Recessive model	1258 / 2913	1.09	0.92 - 1.30 (0.32)	56.9	0.013	-0.63				
	Allelic model	1258 / 2913	0.99	0.81 - 1.21 (0.90)	68.6	0.001	-1.16				
	aa vs.	1258 / 2913	1.02	0.72 -	53.1	0.024	-1.70				
	2913	1.45 (0.91)	29.5	0.174	-1.70	0.08	-2.23	0.05			
----------	------	-------------	------	-------	-------	------	-------	------			
Aa vs. AA	1258/2913	0.90	0.75 - 1.09 (0.29)								
Asian											
	1178 / 1161	1.27	0.78 - 2.05 (0.34)	77.4	<0.001	1.70	0.08	0.90	0.39		
Dominant model	1178 / 1161	1.27	0.78 - 2.05 (0.34)	77.4	<0.001	1.70	0.08	0.90	0.39		
	1178 / 1161	0.91	0.71 - 1.15 (0.42)	52.0	0.027	1.88	0.06	1.26	0.24		
Recessive model	1178 / 1161	0.91	0.71 - 1.15 (0.42)	52.0	0.027	1.88	0.06	1.26	0.24		
	1178 / 1161	1.15	0.82 - 1.62 (0.40)	82.2	<0.001	1.34	0.18	1.69	0.13		
Allelic model	1178 / 1161	1.15	0.82 - 1.62 (0.40)	82.2	<0.001	1.34	0.18	1.69	0.13		
	1178 / 1161	1.14	0.63 - 2.04 (0.66)	64.8	0.002	1.34	0.18	0.23	0.82		
aa vs. AA	1178 / 1161	1.14	0.63 - 2.04 (0.66)	64.8	0.002	1.34	0.18	0.23	0.82		
	1178 / 1161	0.92	0.72 - 1.18 (0.52)	6.8	0.379	1.46	0.14	1.35	0.22		
Aa vs. AA	1178 / 1161	0.92	0.72 - 1.18 (0.52)	6.8	0.379	1.46	0.14	1.35	0.22		

Table 4: Meta-regression analyses of potential source of heterogeneity.
Functionality	Coefficient	SE	T	P-value	95% CI UL	95% CI LL
122857						
Dominant model	0.037	0.021	1.74	0.09	-0.006	0.082
Recessive model	0.763	0.313	2.44	0.02	0.117	1.410
Allelic model	0.037	0.018	2.07	0.04	0.001	0.074
ff vs. FF	0.631	0.242	2.60	0.01	0.130	1.131
Ff vs. FF	0.032	0.022	1.43	0.16	-0.014	0.078
31236						
Dominant model	0.322	0.081	3.97	0.001	0.155	0.489
Recessive model	-1.10	1.43	-0.77	0.44	-4.063	1.85
Allelic model	0.231	0.073	3.15	0.004	0.080	0.382
ff VS. FF	-0.591	1.134	-0.52	0.60	-2.932	1.749
Ff vs. FF	0.217	0.097	2.23	0.03	0.017	0.416
1						
Dominant model	0.069	0.037	1.83	0.08	-0.010	0.148
Recessive model	0.020	0.031	0.65	0.52	-0.046	0.087
Allelic model	0.038	0.026	1.47	0.15	-0.016	0.093
tt vs. TT	0.063	0.048	1.32	0.20	-0.039	0.166
Tt vs.TT	0.064	0.037	1.72	0.10	-0.014	0.142
1						
Dominant model	-0.249	0.207	-1.20	0.24	-0.684	0.185
Recessive model	-0.114	0.145	-0.79	0.44	-0.424	0.194
Allelic model	-0.145	0.123	-1.18	0.25	-0.404	0.113
tt vs. TT	-0.167	0.253	-0.66	0.51	-0.707	0.373
	Tt vs.TT					
---	---	---	---	---	---	---
aI	0.142	0.046	3.03	0.005	0.046	0.237
blicati	0.031	0.024	1.29	0.20	-0.018	0.081
Year	0.063	0.025	2.54	0.01	0.012	0.115
Recessive	0.103	0.047	2.17	0.03	0.006	0.200
Allelic	0.095	0.033	2.84	0.008	0.026	0.163
model						
bb vs. BB	0.163	0.026	0.008	2.84	0.033	0.026
Bb vs. BB	0.764	-0.002	0.203	0.188	0.05	-0.002
Dominant	0.069	-0.014	1.37	0.042	0.32	0.033
year						
Recessive	0.471	-0.733	0.471	0.027	0.137	0.069
Allelic	0.019	0.032	1.64	0.291	0.054	0.08
model	0.226	-0.785	0.226	0.291	0.054	0.08
aa vs. AA	-0.279	0.451	-1.15	0.243	-0.733	0.471
Aa vs. AA	0.027	0.019	1.37	0.18	-0.014	0.069
Allelic	0.007	0.171	0.04	0.96	-0.733	0.471
model						
aa vs. AA	0.054	0.030	0.18	0.290	0.08	-0.014
Aa vs. AA	0.005	0.032	1.64	0.291	0.054	0.08
Recessive	0.248	0.068	0.119	0.069	0.033	0.019
Figures
Figure 1

Flow diagram of study selection process.
Figure 2

Pooled OR and 95% CI of individual studies and pooled data for the association between ApaI gene polymorphism and T1DM risk in heterozygote contrast (Aa vs. AA).
Figure 3

Pooled odds ratio (OR) and 95% confidence interval of individual studies and pooled data for the association between FokI, BsmI gene polymorphism and T1DM risk in different ethnicity subgroups and overall populations for A; dominant model (FokI), B; Ff vs. FF Model (FokI), and C; Recessive Model (BsmI).
Figure 4

Begg’s funnel plot for publication bias test. A; dominant model FokI. B; dominant model TaqI. C; dominant model BsmI. D; dominant model Apal. Each point represents a separate study for the indicated association.
Figure 5

Sensitivity analysis in present meta-analysis investigates the single nucleotide polymorphisms of Vitamin D Receptor contribute to risk for T1DM (A, FokI; B, TaqI; C, BsmI; D, ApaI).
Figure 6

Meta-regression plots of the association between VDR gene polymorphisms and risk of CAD based on; A: Publication year (Dominant model), B: Ethnicity (Recessive model), C: Publication year (Allelic model), C: Ethnicity (aa vs. AA model).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMA2009checklist.doc
- FokI.xlsx
- Apal.xlsx
- Bsml.xlsx
- TaqI.xlsx