COULOMB INTERFERENCE IN HIGH-ENERGY pp AND $\bar{p}p$ SCATTERING.

V. A. PETROVa, E. PREDAZZIb and A. PROKUDINa,b

(a) Institute For High Energy Physics, 142281 Protvino, RUSSIA

(b) Dipartimento di Fisica Teorica, Università Degli Studi Di Torino, Via Pietro Giuria 1, 10125 Torino, ITALY
and
Sezione INFN di Torino, ITALY

An analysis of the Coulombic amplitude and its interference with the nuclear amplitude which is driven by the three-component Pomeron [1] is presented. It is shown that different approaches towards the Coulomb phase evaluation give approximately uniform result at all energies and the difference is negligible at RHIC and LHC energies. We show that the use of the amplitude which was fitted to accomodate nucleon data only (in the region $0.01 \leq |t| \leq 14.5 (GeV^2)$) combined with the Coulomb amplitude, reproduces the existing data in the Coulomb interference domain quite accurately without any adjustment of the parameters. As a consequence, we predict the differential cross section in the region of the Coulomb nucleon interference for both RHIC and LHC energies.

1 INTRODUCTION

In Ref. [1] an eikonal model of a three-component Pomeron has been suggested and successfully used for describing the high energy pp and $\bar{p}p$ data in the region of large momentum transfer $0.01 \leq |t| \leq 14.5 (GeV^2)$. In this paper we apply the model to the region of small momentum transfer $0 \leq |t| \leq 0.01 (GeV^2)$.

1E-mail: petrov@mx.ihep.su

2E-mail: predazzi@to.infn.it

3E-mail: prokudin@to.infn.it
The problem is a proper account of the Coulomb interaction which is most important at the smallest \(|t|\). The standard way to do this is to represent the whole scattering amplitude \(T(s, t)\) which is dominated by the Coulomb force at low momentum transfer and by the hadronic force at higher momentum transfer as

\[
T(s, t) = T^N(s, t) + e^{i\alpha\Phi}T^C(s, t),
\]

where if we normalize the scattering amplitude so that

\[
\frac{d\sigma}{dt} = \frac{|T(s, t)|^2}{16\pi s^2},
\]

the Born Coulomb amplitude for \(pp\) and \(\bar{p}p\) scattering is

\[
T^C(s, t) = \mp \frac{8\pi\alpha s}{|t|}.
\]

The upper (lower) sign corresponds to the scattering of particles with the same (opposite) charges. \(T^N(s, t)\) stands for purely strong interaction amplitude, and the phase \(\Phi\) depends generally on energy, the momentum transfer and on the properties of \(T^N\). The study of the Coulomb nuclear interference is very important for extracting the real part of the strong interaction amplitude.

The issue of Coulombic amplitude and its interference with the nuclear component was addressed in many papers in the past. West and Yennie [2] examined the Coulomb-nuclear interference using Feynman diagrams. R. Cahn [3] considered the same task in the framework of the Eikonal model; his results were quite convincing (though the modifications were very small compared to [2]) and proved that the Eikonal model is a very convenient basis for analyzing the Coulomb-nuclear interference.

The Coulombic phase has attracted the attention of many authors. Using the WKB approach in potential theory, Bethe [4] derived, for proton-nucleus scattering, the expression

\[
\Phi = 2 \ln(1.06/|k_1|b\Theta),
\]

where \(|k_1|\) is the c.m. momentum, \(b\) is the range of strong-interaction forces defined by the size of the nucleus, and \(\Theta\) the c.m. scattering angle. Similar results were derived within potential theory by several authors [5], [6].
A relativistic derivation of the phase was attempted by Soloviev [7], who obtained
\[\Phi = 2 \ln(2/\Theta), \]
(5)
a result which differs considerably from the result of Bethe [4]. Utilizing the same technique, Rix and Thaler [8] derived a result quantitatively close to that of Bethe [4].

West and Yennie [2], as already mentioned, obtained the phase of Coulomb-nuclear interference using Feynman diagrams. For a conventional parametrization \(T_N(s, t) \sim \exp(-B|t|/2) \), the result of West and Yennie [2] reads
\[\Phi_{W-Y} = \mp \left[\ln(B|t|/2) + \gamma + O(B|t|) \right], \]
(6)
where \(\gamma = 0.577... \) is Euler’s constant. The upper (lower) sign corresponds to the scattering of \(pp (\bar{p}p) \).

Cahn [3] analyzed also the effect of the electromagnetic form factor and obtained a general expression for the phase. The results of [3] were in complete agreement with [2] and especially the formula (6) was derived from a rather different perspective.

The main difference from the result [2] is a shift of the Coulomb amplitude due to the form factor’s influence on the phase. If we introduce the electromagnetic form factor of the proton, the Born term of the Coulomb amplitude has the following form
\[T_C(s, t) = \mp \frac{8\pi\alpha s}{|t|} f^2(|t|), \]
(7)
where the form factor may be chosen as
\[f(|t|) = e^{-2|t|/\Lambda^2}, \ \Lambda^2 = 0.71 \text{ GeV}^2. \]
(8)
In this case the Coulomb phase has the following form
\[\Phi_{Cahn} = \mp \left[\ln \left(\frac{B|t|}{2} \right) + \gamma + \ln \left(1 + \frac{8}{B\Lambda^2} \right) + (4|t|/\Lambda^2) \ln(4|t|/\Lambda^2) + 2|t|/\Lambda^2 \right]. \]
(9)
All these results were obtained under the assumption that \(|t| \to 0 \). The derivation of the phase in a large domain of momentum transfer was attempted by Selyugin [9], and Kopeliovich and Tarasov [12]. In the region
of interest for the present paper \(0 \leq |t| \leq 0.01 \text{GeV}^2\), the latter results are similar to that of Cahn \[3\] and the main difference is in the dip region of the differential cross-sections. The phase obtained in \[9\] accurately takes into account the dipole form factor

\[
f(|t|) = \left[\frac{\Lambda^2}{\Lambda^2 + |t|} \right]^2, \quad \Lambda^2 = 0.71 \text{GeV}^2,
\]

and the complicated structure of the nucleon amplitude.

The phase has the following form

\[
\Phi_{\text{Selyugin}} = \pm \left[\ln \frac{|t|}{4} + 2\gamma - \nu_s - i \frac{8\pi s}{T_N(s, t)} \int_0^\infty bdbJ_0(b\sqrt{-t})\delta_C(s, b) \cdot \left(e^{2i\delta_N(s,b)} - 1 \right) \right],
\]

where

\[
\nu_s = 0.11 \log(1 + 400|t|)
\]

takes into account influence of the form factor on the pure coulombic phase, and

\[
\delta_C(s, b) = \ln b + K_0(b\Lambda) + \frac{11}{12}b\Lambda K_1(b\Lambda) + \frac{5}{24}b^2\Lambda^2 K_0(b\Lambda) + \frac{1}{48}b^3\Lambda^3 K_1(b\Lambda).
\]

The prescription of West and Yennie \[2\] was successfully used by several authors \[10\] and \[11\] for describing differential cross sections in low \(t\) region.

In what follows we will investigate four different cases of the Coulomb phase – the phase calculated with the nucleon amplitude of the model \[1\] (which does not acquire any additional parameter) with the prescription of West and Yennie \[2\], the phase calculated with prescription of Cahn \[3\], the prescription of Selyugin \[9\], and the phase equal to zero.

2 THE NUCLEAR AMPLITUDE

We believe that any nuclear amplitude that is capable of a high accuracy description of the combined set of high energy \(pp\) and \(\bar{p}p\) data (total and differential cross sections, \(\rho\) parameter etc.) over the entire \(|t|\) spectrum, if properly combined with the correct Coulomb amplitude must account well
for the data in the interference region. That this is so, we will prove using the
particular nuclear amplitude which has been derived in \cite{1} to describe total
and differential cross sections at high energies ($\sqrt{s} \geq 10 GeV$) in the range
of momentum transfer $0.01 < |t| < 14.5 GeV^2$ using the eikonal approach
(another one could have been the amplitude of \cite{13}). We just write the
nuclear amplitude of \cite{1}

$$T(s, \vec{b}) = e^{2i\delta(s, \vec{b})} - \frac{1}{2i}, \quad (13)$$

where the eikonal has the following form

$$\delta^{pp}(s, b) = \delta^+_p(s, b) + \delta^-_p(s, b) + \delta^+_R(s, b) \mp \delta_0(s, b) + \delta^+_f(s, b) \mp \delta^-_\omega(s, b). \quad (14)$$

We refer the reader to the original literature for details; let us simply recall
that here $\delta^+_p, \delta^-_p, \delta^+_R(s, b)$ are Pomeron contributions. The superscript '+' de-
notes C even trajectories (the Pomeron trajectories have quantum numbers
$0^+ J^{++}$), while '-' denotes C odd trajectories. $\delta_0(s, b)$ is the Odderon con-
tribution (i.e. the C odd partner of the Pomeron whose quantum numbers
are $0^- J^{--}$); δ^+_f and $\delta^-_\omega(s, b)$ are the contributions of secondary Reggeons, (f
as representative of the $C = +1$ families and ω of the $C = -1$).

In order to relate t- and b-spaces one proceeds via Fourier-Bessel trans-
foms

$$\hat{f}(t) = 4\pi s \int_0^{\infty} db J_0(b \sqrt{-t}) f(b),$$

$$f(b) = \frac{1}{16\pi s} \int_{-\infty}^0 dt J_0(b \sqrt{-t}) \hat{f}(t). \quad (15)$$

Using this parametrisation we obtain the following expressions for the
Coulomb phase

$$\Phi_{W-Y} = \mp \sum_i \delta_i(s, t = 0) \left[\ln \left(\frac{\rho_i(s)}{4} \right) + \gamma \right] \frac{\sum_i \delta_i(s, t = 0)}{\sum_i \delta_i(s, t = 0)}, \quad (16)$$

and

$$\Phi_{Cahn} = \mp \sum_i \delta_i(s, t = 0) \left[\ln \left(\frac{\rho_i(s)}{4} \right) + \gamma + \ln \left(1 + \frac{16}{\rho_i(s) \Lambda^2} \right) \right] \frac{\sum_i \delta_i(s, t = 0)}{\sum_i \delta_i(s, t = 0)}$$

$$\mp (4|t|/\Lambda^2) \ln(4|t|/\Lambda^2) \mp 2|t|/\Lambda^2, \quad (17)$$

5
where \(\rho_i^2 = 4\alpha'_i(0) \ln s/s_0 + r_i^2, \) \(i = P_1, P_2, P_3, O, f, \omega. \) The upper (lower) signs correspond to \(pp (\bar{p}p). \)

Crossing symmetry is restored by replacing \(s \rightarrow se^{-i\pi/2}. \) We introduce the dimensionless variable

\[
\tilde{s} = \frac{s}{s_0} e^{-i\frac{\pi}{2}},
\]

in terms of which we give each \(C^+ \) and \(C^- \) contribution with its appropriate signature factor in the form

\[
\delta^+(s, b) = i \frac{c}{s_0} \frac{s^{\alpha(0)-1} e^{-\frac{\rho^2}{4\pi}}}{4\pi \rho^2}, \quad \rho^2 = 4\alpha'(0) \ln \tilde{s} + r^2, \quad (C = +1);
\]

\[
\delta^-(s, b) = \frac{c}{s_0} \frac{s^{\alpha(0)-1} e^{-\frac{\rho^2}{4\pi}}}{4\pi \rho^2}, \quad \rho^2 = 4\alpha'(0) \ln \tilde{s} + r^2, \quad (C = -1).
\]

3 RESULTS

In [1], the adjustable parameters have been fitted over a set of 982 \(pp \) and \(\bar{p}p \) data of both forward observables (total cross-sections \(\sigma_{\text{tot}} \), and \(\rho - \) ratios of real to imaginary part of the amplitude) in the range \(8 \leq \sqrt{s} \leq 1800 \, \text{GeV} \) and angular distributions \(\frac{d\sigma}{dt} \) in the ranges \(23 \leq \sqrt{s} \leq 1800 \, \text{GeV}, 0.01 \leq |t| \leq 14 \, \text{GeV}^2. \) A good \(\chi^2/d.o.f. = 2.60 \) was obtained and the parameters are given in Table I.

4The data are available at

\begin{itemize}
 \item REACTION DATA Database \url{http://durpdg.dur.ac.uk/hepdata/reac.html}
 \item CROSS SECTIONS PPDS database \url{http://wwwppds.ihep.su:8001/c5-5A.html}
 \item \url{http://pdg.lbl.gov/2000/contents_plots.html}
\end{itemize}
	Pomeron\(_1\)	f-Reggeon		Pomeron\(_2\)	\(\omega\)-Reggeon		Pomeron\(_3\)		Odderon
\(\Delta_{P_1}\)	0.0578 ± 0.0020	\(\Delta_f\)	−0.31 (FIXED)	\(\Delta_{P_2}\)	0.1669 ± 0.0012	\(\Delta_\omega\)	−0.53 (FIXED)	\(s_0\)	1.0 (GeV\(^2\)) (FIXED)
\(c_{P_1}\)	53.007 ± 0.795	\(c_f\)	191.69 ± 2.12	\(c_{P_2}\)	9.6762 ± 0.1600	\(c_\omega\)	−174.18 ± 2.72		
\(\alpha'_{P_1}\)	0.5596 ± 0.0078 (GeV\(^{-2}\))	\(\alpha'_{f}\)	0.84 (GeV\(^{-2}\)) (FIXED)	\(\alpha'_{P_2}\)	0.2733 ± 0.0056 (GeV\(^{-2}\))	\(\alpha'_{\omega}\)	0.93 (GeV\(^{-2}\)) (FIXED)		
\(r^2_{P_1}\)	6.3096 ± 0.2522 (GeV\(^{-2}\))	\(r^2_{f}\)	31.593 ± 1.099 (GeV\(^{-2}\))	\(r^2_{P_2}\)	3.1097 ± 0.1817 (GeV\(^{-2}\))	\(r^2_{\omega}\)	7.467 ± 1.083 (GeV\(^{-2}\))		
	Pomeron\(_3\)	\(\omega\)-Reggeon		Pomeron\(_3\)		Odderon			
\(\Delta_{P_3}\)	0.2032 ± 0.0041			\(\Delta_{P_3}\)	1.6654 ± 0.0669			\(\Delta_{\odot}\)	0.19200 ± 0.0025
\(c_{P_3}\)	0.0937 ± 0.0029 (GeV\(^{-2}\))			\(c_{P_3}\)	2.4771 ± 0.0964 (GeV\(^{-2}\))			\(c_{\odot}\)	0.0166 ± 0.0022
\(\alpha'_{P_3}\)	0.0937 ± 0.0029 (GeV\(^{-2}\))			\(\alpha'_{P_3}\)	0.048 ± 0.0027 (GeV\(^{-2}\))			\(\alpha'_{\odot}\)	0.048 ± 0.0027 (GeV\(^{-2}\))
\(r^2_{P_3}\)	0.1398 ± 0.0570 (GeV\(^{-2}\))			\(r^2_{P_3}\)				\(r^2_{\odot}\)	0.1398 ± 0.0570 (GeV\(^{-2}\))

Table 1: Parameters obtained in [1].

We now consider the complete set of data including the Coulomb region which consists of 2158 data\(^5\). To these data, we apply the model including the Coulomb part with its phase and we simply plot the physical quantities without any additional fitting.

The total cross sections and the ratios of real to imaginary parts of the forward amplitude are presented in Figs. 1 and 2.

\(^5\)The data are available at
REACTION DATA Database http://durpdg.dur.ac.uk/hepdata/reac.html
CROSS SECTIONS PPDS database http://wwwppds.ihep.su:8001/c5-5A.html
http://pdg.lbl.gov/2000/contents_plots.html
Figure 1: Total cross sections of pp scattering (hollow circles) and $\bar{p}p$ scattering (full circles) and corresponding curves in the model of Ref. [1].

In order to compare different approaches to the Coulomb phase, we have calculated the χ^2 for the region of low $|t| : 0 \leq |t| \leq 0.01 (GeV^2)$ in four different cases:

1. The Coulomb phase is equal to zero.

2. The Coulomb phase is calculated with the prescription of West and Yennie [16].

3. The Coulomb phase is calculated with the prescription of Cahn [17].

4. The Coulomb phase is calculated with the prescription of Selyugin [11].

The results may be found in Table 2.
As is seen from the Table 2, the experimental data marginally “prefer” the Coulomb phase calculated with the prescription of Cahn [3] and Selyugin [9] over that of West and Yennie but taking the Coulomb phase equal to zero is excluded by the data and this is gratifying on physical grounds. The difference between the phases of [3] and [9] is negligible in the small $|t|$ region of the interest (as may be seen in Fig. 3), though the exact result obtained in [9] over the whole kinematical region of $|t|$ shows that the difference is drastic in the region of the diffractive dip (as seen in Fig. 4).

Apart from this, the Coulomb phase calculated in the Selyugin approach exhibits a non trivial behaviour of the real part (which has a zero in the point of the diffractive dip), and of the imaginary part (which has a minimum in the same point) Fig. 4.

The difference between the approaches of Cahn [3] and of West and Yennie [2] is more pronounced even in the region of low t as may be seen in Fig. 3.

It is of some interest to perform a more detailed comparison of the χ^2 derived for the region of low momentum transfer. This can be found in Table 3 for Φ_{W-Y}, Φ_{Cahn}, and $\Phi_{Selyugin}$.

With all due caution, a general pattern emerges; some data points have anomalously large χ^2 values and these are the same in all cases.

The $\bar{p}p$ differential cross section at $\sqrt{s} = 546$ GeV, for instance, sticks out conspicuously. The explanation is the normalisation of the cross section. The systematical error allows to change the normalisation of the data in the ±10% corridor. If we could multiply our predictions by a factor 1.06, we would have a good description of this set of data, as is seen in Fig. 5 and 6.
Figure 3: The Coulomb phase calculated in the framework of Selyugin \cite{9} (the solid line) and of Cahn \cite{3} (the dotted line) and of West and Yennie \cite{2} (the dashed line) in the region of small t. $\sqrt{s} = 52.8$ GeV.

Figure 4: The Coulomb phase calculated in the framework of Selyugin \cite{9}, real part (the solid line) and imaginary part (the dashed line) and in that of Cahn \cite{3} (the dotted line) in the region of high t.

Figure 5: Differential cross section of pp scattering and curves corresponding to its description in the model. The dashed line represents our predictions. The solid curve is our predictions normalized by a factor 1.06.

Figure 6: The same as in Fig. 5 for low t.
To appreciate the role of the Coulomb phase, we plot the angular distributions with the appropriate Coulomb phase and with the phase taken equal to zero in the following figures 7, 8. Even though the difference is minimal, the numerical conclusion is that the data, quite unambiguously, prefer the appropriate nonzero Coulomb phase.

The comparison with the West-Yennie and Cahn phases is not shown because the plot would be indistinguishable from the Selyugin one.

Let us remind that no additional fitting was done.

We do not report here any of the pp and $\bar{p}p$ angular distributions which one obtains over the full range of $|t|$ values because the original reproduction
of these quantities is left basically unchanged by the Coulomb amplitude and
the interested reader is referred to the original paper [1]. We simply report
here, for completeness, the predictions at RHIC and LHC energies both in
the interference region and over the entire $|t|$ range. Predictions of the model
and comparison with the nuclear amplitude for RHIC and LHC are shown
in figures [9, 10, 11, 12].

Figure 7: Differential cross section of pp scattering and curves corre-
sponding to its description in the model. The solid line corresponds to
the Coulomb phase calculated with prescription of Selyugin [11] and the
dashed line corresponds to the zero phase.

Figure 8: Differential cross section of $\bar{p}p$ scattering and curves corre-
sponding to its description in the model. The solid line corresponds to
the Coulomb phase calculated with prescription of Selyugin [11] and the
dashed line corresponds to the zero phase.
Figure 9: Prediction of the model for the pp scattering differential cross section at RHIC ($\sqrt{s} = 100$, 500 GeV) and LHC ($\sqrt{s} = 14$ TeV). A 10^{-4} factor between each successive set of data is omitted. The prediction for RHIC at the energy of $\sqrt{s} = 500$ GeV is multiplied by a factor of 10^{-4} and the prediction for LHC at the energy of $\sqrt{s} = 14$ TeV is multiplied by a factor of 10^{-8}.
Figure 10: Prediction of the model for the pp scattering differential cross section at RHIC ($\sqrt{s} = 100 \text{ GeV}$). The solid line corresponds to full amplitude including the Coulombic one and the dashed line corresponds to the nuclear amplitude \cite{1}.
Figure 11: Prediction of the model for the pp scattering differential cross section at RHIC ($\sqrt{s} = 500 \text{ GeV}$). The solid line corresponds to full amplitude including the Coulombic one and the dashed line corresponds to the nuclear amplitude [1].
Figure 12: Prediction of the model for the pp scattering differential cross section at LHC ($\sqrt{s} = 14$ TeV). The solid line corresponds to full amplitude including Coulombic one and the dashed line corresponds to the nuclear amplitude [1].

To show the influence of the interference between nucleon and Coulomb
amplitudes we show the ratio

\[R = \frac{\left| \frac{d\sigma}{dt} - \frac{d\sigma_{\text{nucleon}}}{dt} - \frac{d\sigma_{\text{coulomb}}}{dt} \right|}{\frac{d\sigma}{dt}} \text{, } \% \]

(21)

in figures 13 and 14 and we conclude that the interference term becomes negligible at RHIC and LHC energies at \(t \sim -0.01 \text{ GeV}^2 \) for RHIC and \(t \sim -0.005 \text{ GeV}^2 \) for LHC.

Figure 13: The interference term between hadron and Coulomb amplitudes for at the RHIC energy. The dashed line corresponds to the Coulomb phase calculated with the prescription of Selyugin [9] and the dotted line to the zero Coulomb phase.

Figure 14: The interference term between hadron and Coulomb amplitudes at the LHC energy. The dashed line corresponds to the Coulomb phase calculated with the prescription of Selyugin [9] and the dotted line to the zero Coulomb phase.

Now let us return to the problem of extracting the ratio \(\rho(s, t = 0) \) of the real to the imaginary parts of the scattering amplitude. A general theorem [14] shows that this ratio as a function of the momentum transfer could not have a constant sign in a strip \(s_M < s < \infty, -T < t \leq 0 \), for any \(s_M \) and \(T > 0 \). The method of extracting the ratio includes a simplification, the scattering amplitude is usually presented in the following form:
\[T(s, t) = \pm \frac{8\pi \alpha s}{|t|} f^2(|t|) + (i + \rho(s, 0)) s\sigma_{\text{tot}} e^{B(1 - i\alpha \Phi)} \] (22)

where the ratio \(\rho(s, t) \) is approximated by its value at \(t = 0 \). Should this simplification affect the measurement? The answer would be “yes” should the change of sign of \(\rho \) occur close to the region of the maximum of the Coulomb nuclear interference.

In our particular model, the zero of the real part of the scattering amplitude goes to zero with the increase of energy, but remains far from the region of the maximum of the interference. For example, at LHC energies \(\sqrt{s} = 14 \text{ TeV} \), the maximum occurs at \(|t_{\text{max}}| \sim 10^{-3} \text{ GeV}^2 \) (fig. 14) while the zero is at \(|t_{\text{zero}}| \sim 0.16 \text{ GeV}^2 \) (fig. 15, 16), so the situation is not too bad.

Figure 15: The position of the zero of the real part of the scattering amplitude in a three-component Pomeron model \[1\] (solid line) and in a “geometrical scaling” model \(t_{\text{zero}} = -1/(\lambda \ln s) \), \(\lambda = 0.25 \text{ GeV}^{-2} \) \[14\] (dashed line).

Figure 16: The real part of the scattering amplitude at the LHC energy in the model \[1\].
CONCLUSION

All the three choices of the Coulomb phase give good description of the existing data, though in terms of χ^2 per point the data “prefer” the phase calculated with the prescriptions of Cahn [3] and Selyugin [9]. We conclude that such prescriptions are a good basis for the evaluation of the Coulombic contribution in the full scattering amplitude. We expect that similar conclusion would apply to an analysis repeated along the lines of [12] but we have not performed this analysis.

As we have seen, the addition of the nuclear amplitude (with parameters fitted from total and differential cross sections) and of the Coulomb one (with its proper phase) gives a total amplitude which reproduces quite well the data in the interference region without any additional parameters and with no need to refit existing ones.

This allows us to predict the RHIC Coulomb interference which requires the measurements to start from $|t| \leq 0.005 \text{ GeV}^2$ at the energy of $\sqrt{s} = 100 \text{ GeV}$ and from $|t| \leq 0.004 \text{ GeV}^2$ at the energy of $\sqrt{s} = 500 \text{ GeV}$. Likewise, LHC will be able to cover the Coulomb region if the measurement starts from $|t| \leq 0.001 \text{ GeV}^2$.

ACKNOWLEDGMENTS

We would like to thank E. Martynov and O. Selyugin for useful discussions.
References

[1] V.A. Petrov, A.V.Prokudin, *Eur.Phys.J.* C 23, 135-143 (2002).
[2] G. B. West and D. R. Yennie, *Phys. Rev.* D 172, 1413 (1968).
[3] R. Cahn, *Z. Phys.* C 15, 253 (1982).
[4] H. Bethe, *Ann. Phys.* 3, 190 (1958).
[5] J. Rix and R. M. Thaler, *Phys. Rev.* D 152, 1357 (1966).
[6] M. M. Islam, *Phys. Rev.* D 162, 1426 (1967).
[7] L. D. Soloviev, *JETP* 22, 205 (1966).
[8] J. Rix and R. M. Thaler, *Phys. Rev.* D 172, 1414 (1968).
[9] O. V. Selyugin, *Phys. Rev.* D 60, 074028 (1999).
[10] P. Desgrolard, A. I. Lengyel, E. S. Martynov, *Nuovo Cimento A* 110, 251-266 (1997).
[11] C. Bourelly, J. Soffer, Tai Tsun Wu, *Z. Phys.* C 37, 369-375 (1988).
[12] B. Z. Kopeliovich and A. V. Tarasov, *Phys. Lett.* B 497, 44 (2001).
[13] P. Desgrolard, M. Giffon, E. Martynov and E. Predazzi, *Eur.Phys.J.* C 16, 499-511 (2000).
[14] A. Martin, *Phys. Lett.* B 404, 137 (1997).