Detection of K-ras Mutations in Predicting Efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase (EGFR-TK) Inhibitor in Patients with Metastatic Colorectal Cancer

Ze Li, Xue-Wei Liu, Zhao-Cheng Chi, Bao-Sheng Sun, Ying Cheng*, Long-Wei Cheng*
Department of Gastrointestinal Surgery, Cancer Hospital of Jilin Province, Changchun, Jilin, China

* chenglongwei0509@163.com (L-WC); 18844151881@163.com (YC)

Abstract

Epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors are useful in treating different advanced human cancers; however, their clinical efficacy varies. This study detected K-ras mutations to predict the efficacy of EGFR-TK inhibitor cetuximab treatment on Chinese patients with metastatic colorectal cancer (mCRC). A total of 87 patients with metastatic colorectal cancer were treated with cetuximab for 2-16 months, in combination with chemotherapy between August 2008 and July 2012, and tissue samples were used to detect K-ras mutations. The data showed that K-ras mutation occurred in 27/87 (31%). The objective response rates and disease control rate in K-ras wild type and mutant patients were 42% (25/60) versus 11% (3/27) (p<0.05) and 60% (36/60) versus 26% (7/27) (p<0.05), respectively. Patients with the wild-type K-ras had significantly higher median survival times and progression-free survival, than patients with mutated K-ras (21 months versus 17 months, p=0.017; 10 months versus 6 months, p=0.6). These findings suggest that a high frequency of K-ras mutations occurs in Chinese mCRC patients and that K-ras mutation is required to select patients for eligibility for cetuximab therapy. Further prospective studies using a large sample size are needed to confirm these preliminary findings.

Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world and is one of the most significant health problems in China [1]. Although the incidence of CRC used to be lower in China than in Western countries, it has increased rapidly in recent years [2]. Surgery is the best treatment option for CRC, like most other cancers, but metastatic CRC needs combination therapy, such as surgery plus chemotherapy or target therapy. During the past decades, 5-fluorouracil (5-Fu) regimens have produced median survival of approximately 12 months for advanced CRC, while calcium folinate (CF) plus 5-Fu prolongs median survival to 14 months [3]. Furthermore, oxaliplatin and irinotecan have increased the median overall survival of patients to more than 20 months [4]. Most recently, target therapy, including anti-epidermal
growth factor receptor tyrosine kinase (EGFR-TK) has been shown to improve overall survival of patients with wild-type KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue) metastatic CRC [5]. However, anti-EGFR-TK therapy using gefitinib, erlotinib, or cetuximab produces different results in different human cancers. The reason may be because anti-EGFR-therapy in patients with mutated K-ras may not only be ineffective but also detrimental [5]. Thus, 2011 guidelines from the National Comprehensive Cancer Network (NCCN) have recommended cetuximab as first-line therapy for patients with the wild-type K-ras since EGFR and K-ras mutations are exclusive [6].

K-ras gene encodes a 21 kDa protein, which is a GTP/GDP binding protein with GTPase activity and is involved in transduction of mitogenic signals to link receptor tyrosine kinase activation to downstream effectors. After GDP binds to the p21 RAS protein, it will convert it into an inactive form, losing its function for signal transduction. Mutations of the RAS gene usually cause constitutive activation of RAS GTPase, leading to activation of the downstream signaling pathways and resulting in cell transformation and tumorigenesis [7–9]. In CRC, more than 90% of K-ras mutations occur in K-ras exon 1 codon 12 and codon 13 [7,8].

Cetuximab is a chimeric mouse/human monoclonal antibody against EGFR-TK and the development and use of cetuximab have improved survival of mCRC patients. Previous data indicated that the effect of cetuximab was tightly associated with K-ras mutations, so the US Food and Drug Administration recommended that patients should undergo K-ras mutation analysis before receiving cetuximab treatment. However, not all patients with wild-type K-ras will benefit from cetuximab treatment, as there was no association between EGFR expression and cetuximab efficacy. The overall response rate of patients with wild-type K-ras to cetuximab is only 40–60%, but the response rate of patients with K-ras mutations was only 10% or less [10,11], thus, in this study, we detected K-ras mutations to predict the efficacy of EGFR-TK inhibitor cetuximab in Chinese patients with metastatic colorectal cancer.

**Materials and Methods**

**Patients**

In this study, we recruited a total of 87 patients with histologically confirmed mCRC in Jilin Provincial Cancer Hospital between January 2008 and August 2010 who were treated with weekly cetuximab (400 mg/m² as an initial loading dose, and 250mg/m² subsequent dose) in combination with chemotherapy (standard dose). Specifically, 55 patients received cetuximab plus oxaliplatin-based chemotherapy and an additional 32 patients received cetuximab plus irinotecan-based chemotherapy for 2–16 months. Cetuximab was administered as first-line treatment in all 87 patients weekly until disease progression or the end of this study. The Cancer Hospital of Jilin Province review board approved this study and written informed consents were obtained from all the subjects. However, patients were excluded from this study if they had not received postoperative chemotherapy, or if they were < 25 or > 80 years old.

**Evaluation of treatment response and survival of patients**

Treatment response was estimated every two months by computed tomography (CT) of the site of the metastasis (the liver and lung) according to the Response Evaluation Criteria in Solid Tumors (RECIST) [12]. Patients were categorized as a complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD). The objective response rate was defined as (CR+PR)/Total, while the disease control rate was defined as (CR+PR+SD)/Total. Overall survival was defined as the time from histopathological diagnosis to death from any cause. The stable disease indicated that after treatment, the disease would persist for at least four weeks without significant change in tumor lesion. The last follow up of these patients was in
July 2012. However, all subjects in this study had stage IV disease and if the disease progressed, the treatment with cetuximab would be stopped. Thus, the study presents progression-free survival data.

**DNA extraction and detection of K-ras mutations**

Paraffin blocks from tumor tissues were re-assessed using H&E-stained tissue sections to ensure that the total number of tumor cells was similar for different samples. Selected tissue sections from CRC patients containing a high proportion of tumor cells (typically ≥ 60%) were identified by three experienced pathologists. After that, genomic DNA was then extracted from three 10 µm-thick sections of each tumor sample according to protocols described previously [13]. Briefly, the tissue sections were deparaffinized in xylene, washed in absolute ethanol, and incubated at room temperature with 150 µl of digestion buffer (1 mg/ml proteinase K; 0.05 M Tris-HCl, pH 8.5; 1 mM ethylenediaminetetra-acetic acid; 0.5% Tween 20; 2% sodium dodecyl sulphate) for 24 h. The next day, the reactions were centrifuged at 15 000 g for 15 min and DNA was extracted by using a QIAamp DNA FFPE Tissue Kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. After that, the DNA concentration was spectrophotometrically assessed using a wavelength of 280/260 nm and adjusted to a final concentration of 100 µg/ml and stored at −20°C until use.

To detect K-ras mutations, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was performed using primers and a PCR kit (Takara Biotechnology (Dalian) Co. Ltd, Dalian, China). Briefly, a 50-µl PCR mixture was prepared for each sample, which contained 2 µl genomic DNA, 1 µl of 10 µmol/l of each primer and 25 µl premix (1.5 U Takara Taq polymerase, 10x PCR buffer, 3.0 mmol/l Mg2+, 0.4 mmol/l deoxynucleotidetriphosphate). The primers to detect K-ras mutations at codons 12 and 13 were 5'-AGGCCTGCTGAAAATGACTGAATA-3' and 5'-CTGTATCAAAGAATGGTCCTGCAC-3', as described previously [14]. PCR was performed on a 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with an initial denaturing step at 94°C for 5 min, followed by 30 cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 30 sec, a final 72°C extension for 5 min, and then stored at 4°C indefinitely. After that, the PCR products were separated on 1.5% agarose gels and purified using a QIAquick PCR Purification Kit (Qiagen, Venlo, The Netherlands) and sent for DNA sequencing analysis of the K-ras mutations at the Shanghai Generay Biotech Co. Ltd. (Shanghai, China).

**Statistical analysis**

The association between K-ras mutations and the response to cetuximab treatment was analyzed by using Fisher’s exact test. Kaplan-Meier curves and the Log-rank test were used to analyze the association between K-ras mutations and the overall survival (OS) and progression-free survival (PFS) of patients. The Cox proportional hazard model was utilized to determine the factors related to overall survival. Statistical analysis was performed by using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). P<0.05 was considered as statistically significant.

**Results**

In this study, we treated a total of 87 mCRC patients with cetuximab plus oxaliplatin-based (55 patients) or irinotecan-based (32 patients) chemotherapy for 2 to 16 months. The tumor tissues were subjected to detection of K-ras mutations. We found 27 patients with a mutated K-ras and the overall K-ras mutation rate was 31%. The detailed patient characteristics are shown in Table 1.
The patients with wild-type K-ras tumor had better ORR and DCR than that of patients with mutated K-ras tumor, i.e., DCR, 60% vs. 26% ($\chi^2 = 23.582, p < 0.05$), ORR, 42% vs. 11% ($\chi^2 = 24.669, p < 0.05$, Table 2), indicating that detection of K-ras mutation can predict the response of the patients to cetuximab plus chemotherapy. Among 32 cases receiving irinotecan, nine cases had K-ras mutation, while among 55 cases receiving oxaliplatin, 18 cases had K-ras mutation; however, there was no significant difference of K-ras mutation between patients receiving irinotecan and those receiving oxaliplatin ($p > 0.05$, Table 3). Moreover, the patients treated with cetuximab plus irinotecan-based chemotherapy had better ORR and DCR than that of patients treated with cetuximab plus oxaliplatin-based chemotherapy, i.e., DCR, 66% vs. 40% ($\chi^2 = 13.569, p < 0.05$), ORR, 38% vs. 29% ($\chi^2 = 1.818, p > 0.05$, Table 3).

**Table 1. Clinicopathological characteristics of patients with metastatic colorectal cancer.**

| Clinicopathological characteristics | n = 87 | % |
|------------------------------------|--------|---|
| Gender                             |        |   |
| Male                               | 57     | 65.5 |
| Female                             | 30     | 34.5 |
| Age (yrs.) ≥ 63 (28–86)            |        |   |
| ≤ 63                               | 42     | 48.3 |
| > 63                               | 45     | 51.7 |
| Growth pattern                     |        |   |
| Polypoid                           | 26     | 29.9 |
| Ulcer                              | 61     | 70.1 |
| Tumor location                     |        |   |
| Colon                              | 58     | 66.7 |
| Rectum                             | 29     | 33.3 |
| Tumor differentiation              |        |   |
| Poor*                              | 30     | 34.5 |
| Well                               | 57     | 65.5 |
| Sites of metastatic CRC            |        |   |
| Liver                              | 65     | 74.7 |
| Lung                               | 12     | 13.8 |
| others**                           | 10     | 11.5 |
| Combined chemotherapy              |        |   |
| Oxaliplatin-based                  | 55     | 63.2 |
| Irinotecan-based                   | 32     | 36.8 |
| K-ras status                       |        |   |
| Wild                               | 60     | 69  |
| Mutation                           | 27     | 31  |

*Poor: including poorly differentiated adenocarcinoma, signet ring cell carcinoma and mucinous adenocarcinoma; **Including ovary, subcutaneous of abdominal wall, pelvic cavity.

doi:10.1371/journal.pone.0101019.t001

**Table 2. K-ras mutation prediction of the clinical response of patients after treatment with Cetuximab plus chemotherapy.**

| K-ras   | CR | PR | SD | PD | ORR | $\chi^2$ | p value | DCR | $\chi^2$ | p value |
|---------|----|----|----|----|-----|----------|---------|-----|----------|---------|
| WT (60) | 10 | 15 | 11 | 24 | 42% | 24.669   | <0.05   | 60% | 23.582   | <0.05   |
| MT (27) | 0  | 3  | 4  | 20 | 11% |          |         | 26% |          |         |

doi:10.1371/journal.pone.0101019.t002
Furthermore, we found that the median survival time was 21 months in patients with wild-type \textit{K-ras}, whereas the median survival time was 17 months in patients with mutated \textit{K-ras}. This difference was statistically significant ($\chi^2 = 5.703, P = 0.017; \text{Fig 1}$). The progression-free survival was 10 months in patients with wild-type \textit{K-ras}, whereas the progression-free survival was 6 months in patients with mutated \textit{K-ras}. This difference was not statistically significant.

Moreover, the median survival time was 22 months in patients treated with cetuximab plus irinotecan-based chemotherapy, while the median survival time was 18 months in patients treated with cetuximab plus oxaliplatin-based chemotherapy. This difference was also statistically significant ($\chi^2 = 3.957, p = 0.047; \text{Fig 2}$). After CT and nuclear magnetic resonance imaging, the mCRC patients received cetuximab plus irinotecan or cetuximab plus oxaliplatin chemotherapy and four mCRC patients were shown in \text{Fig 3}. Specifically, in Case 1, the CR (completely response) patient was treated with four cycles of cetuximab plus irinotecan-based chemotherapy. Case 2 was a CR patient who was treated with three cycles of cetuximab plus oxaliplatin-based chemotherapy. Case 3 was a PR (partial response) patient who received four cycles of cetuximab plus irinotecan-based chemotherapy. Case 4 was also a PR patient who was treated with four cycles of cetuximab plus oxaliplatin-based chemotherapy. The liver focus disappeared in Case 1 and 2, and the focus was greatly decreased in Case 3 and 4. The univariate analysis showed that \textit{K-ras} mutations and treatment choice were associated with poor prognosis in CRC patients ($p = 0.017$ and, $p = 0.047$, respectively), while the multivariate analysis showed that, \textit{K-ras} mutation, treatment choice, and poor tumor differentiation were

### Table 3. ORR and DCR in patients treated with Cetuximab plus irinotecan-based chemotherapy and Cetuximab plus oxaliplatin-based chemotherapy.

|             | CR | PR | SD | PD | ORR | $\chi^2$ | $P$ value | DCR | $\chi^2$ | $P$ value |
|-------------|----|----|----|----|-----|---------|----------|-----|---------|----------|
| Oxaliplatin-based (55) | 4  | 12 | 6  | 33 | 29% | 1.818   | >0.05    | 40% | 13.569  | <0.05    |
| Irinotecan-based (32)   | 6  | 6  | 9  | 11 | 38% | 6.613   | <0.05    | 66% |         |          |

Furthermore, we found that the median survival time was 21 months in patients with wild-type \textit{K-ras}, whereas the median survival time was 17 months in patients with mutated \textit{K-ras}. This difference was statistically significant ($\chi^2 = 5.703, P = 0.017; \text{Fig 1}$). The progression-free survival was 10 months in patients with wild-type \textit{K-ras}, whereas the progression-free survival was 6 months in patients with mutated \textit{K-ras}. This difference was not statistically significant.

Moreover, the median survival time was 22 months in patients treated with cetuximab plus irinotecan-based chemotherapy, while the median survival time was 18 months in patients treated with cetuximab plus oxaliplatin-based chemotherapy. This difference was also statistically significant ($\chi^2 = 3.957, p = 0.047; \text{Fig 2}$). After CT and nuclear magnetic resonance imaging, the mCRC patients received cetuximab plus irinotecan or cetuximab plus oxaliplatin chemotherapy and four mCRC patients were shown in \text{Fig 3}. Specifically, in Case 1, the CR (completely response) patient was treated with four cycles of cetuximab plus irinotecan-based chemotherapy. Case 2 was a CR patient who was treated with three cycles of cetuximab plus oxaliplatin-based chemotherapy. Case 3 was a PR (partial response) patient who received four cycles of cetuximab plus irinotecan-based chemotherapy. Case 4 was also a PR patient who was treated with four cycles of cetuximab plus oxaliplatin-based chemotherapy. The liver focus disappeared in Case 1 and 2, and the focus was greatly decreased in Case 3 and 4. The univariate analysis showed that \textit{K-ras} mutations and treatment choice were associated with poor prognosis in CRC patients ($p = 0.017$ and, $p = 0.047$, respectively), while the multivariate analysis showed that, \textit{K-ras} mutation, treatment choice, and poor tumor differentiation were
Discussion

In the current study, we detected K-ras mutations in tumor tissues to predict the response of Chinese patients with metastatic colorectal cancer to cetuximab plus oxaliplatin- or irinotecan-based chemotherapy. We found that patients with wild-type K-ras after these treatments had better ORR and DCR than patients with mutated K-ras (42% vs. 11% and 60% vs. 26%, respectively.) Moreover, we found that the median survival time of patients with wild-type K-ras was 21 months compared to 17 months in patients with mutated K-ras (p = 0.017). In addition, the median survival time of patients treated with Cetuximab plus irinotecan-based chemotherapy was 22 months compared to 18 months in patients treated with cetuximab plus oxaliplatin-based chemotherapy (p = 0.047). This study supports the observation that detection of K-ras mutation is a useful predictor for anti-EGFR-TK treatment in metastatic colorectal cancer. Further study should investigate the underlying molecular mechanism responsible for mutated K-ras in the progression of advanced colorectal cancer.

Colorectal cancer frequently metastasizes to the liver, which leads to difficulty in controlling it clinically. In our study, there were 65 of 87 patients (74.7%) who had metastatic disease in the liver, followed by metastasis to the lung, ovary, and skin. Without progressive treatment, patients with metastatic disease have a very poor prognosis [15]; thus, advances in treatment of metastatic colorectal cancer will save lives and improve the quality of life for patients. In this study, we assess K-ras mutations in 87 mCRC patients to predict the response of patients to cetuximab plus oxaliplatin- or irinotecan-based chemotherapy. We found 27 patients with mutated K-ras (31%), which was consistent with those in western CRC patients [16] and Chinese CRC patients [17]. Previous studies have demonstrated that patients with wild-type K-ras had a better response to cetuximab treatment than those with mutated K-ras [10,11]. In the current study, we also confirm these findings [10,11,18]. At a molecular level, other non-tyrosine
Fig 3. CT imaging of mCRC patients before and after treatment. Case 1 is a CR patient who was treated with four cycles of cetuximab plus irinotecan-based chemotherapy. Case 2 is a CR patient who was treated with three cycles of cetuximab plus oxaliplatin-based chemotherapy. Case 3 is a PR patient who received four cycles of cetuximab plus irinotecan-based chemotherapy. Case 4 is also a PR patient who was treated with four cycles of cetuximab plus oxaliplatin-based chemotherapy. CR, completely response; PR, partial response.

doi:10.1371/journal.pone.0101019.g003
kinases may also activate the EGFR signaling pathway that might explain why K-ras mutation is useful, but not perfect in predicting resistance to cetuximab. Moreover, we, or others, just detected the most common mutations in K-ras (i.e., exon codon 12 and 13), but other K-ras may also play a role in anti-EGFR-TK resistance. In addition, it is necessary to verify whether the subtypes or site of metastatic colorectal cancer play a role in response to anti-EGFR-TK therapy, like cetuximab.

Furthermore, the current study combined cetuximab with oxaliplatin- or irinotecan-based chemotherapy, which may also affect the response of the patients. The difference we show in this study may be due to the drug interaction between cetuximab and irinotecan or oxaliplatin; thus, further study is needed to clarify this issue. However, Van Cutsem et al. investigated chemotherapy outcome in K-ras patients with metastatic colorectal cancer and showed that there was no significant difference in progression-free survival or overall survival between patients who received cetuximab plus irinotecan, fluorouracil, and leucovorin (FOLFIRI) or FOLFIRI alone [19]. Therefore, it is possible that a different chemotherapy regimen may lead to different responses in patients.

Activated K-ras protein interacts with phosphatidylinositol-3 kinase (PI3K) to activate its downstream effectors (such as mammalian target of rapamycin) to indirectly modulate cell survival. Moreover, through the Braf/mitogen-activated kinase (MAPK) pathway, activated K-ras protein also influences cell proliferation [20]. To date, a number of targeted therapies against EGFR signaling have been established and cetuximab is a human/mouse chimeric IgG1 monoclonal antibody that binds to the extracellular domain of the EGFR and inhibits EGFR-mediated signaling [21]. A recent study showed that cetuximab treatment was effective in wild type K-ras and EGFR Chinese CRC patients, which provided evidence for efficacy-prediction of EGFR targeting therapeutic strategies [22,23].

However, much more is needed for successful cetuximab therapy of advanced CRC patients in the clinic. We could first assess K-ras mutations to select patients eligible for cetuximab treatment and then investigate how mutated K-ras antagonizes cetuximab efficacy or bypasses EGFR-TK inhibition. A novel drug combination may be needed to suppress activity of mutated K-ras protein.

**Author Contributions**

Conceived and designed the experiments: ZL. Performed the experiments: XWL. Analyzed the data: ZCC. Contributed reagents/materials/analysis tools: BSS LWC. Wrote the paper: YC.

---

**Table 4. Multivariate Cox proportion hazard model analysis of clinicopathological factor association with prognosis of 87 mCRC patients.**

| Characteristic                  | RR   | 95% CI       | p value |
|--------------------------------|------|--------------|---------|
| Age                            | 0.849| 0.473–1.524  | 0.583   |
| Sex                            | 0.261| 0.643–2.126  | 0.609   |
| K-ras                          | 0.390| 0.207–0.735  | 0.004   |
| Location of tumor              | 1.174| 0.463–2.974  | 0.735   |
| Growth pattern                 | 1.220| 0.635–2.343  | 0.551   |
| Differentiation                | 0.413| 0.015–0.413  | 0.015   |
| Combined chemotherapy          | 2.826| 1.356–5.892  | 0.006   |
| Sites of metastatic            | 1.494| 0.551–4.054  | 0.430   |

doi:10.1371/journal.pone.0101019.t004
References

1. Chiu BC, Ji BT, Dai Q, Gridley G, McLaughlin JK, et al. (2003) Dietary factors and risk of colon cancer in Shanghai, China. Cancer Epidemiol Biomarkers Prev 12: 201–208. PMID: 12646508

2. Cao KJ, Ma GS, Liu YL, Wan DS (2009) Incidence of colorectal cancer in Guangzhou City from 2000 to 2002. Ai Zheng 28: 441–444. PMID: 19622309

3. Piedbois P, Buyse M, Rustum Y, Machover D, Erlichman C, et al. (1992) Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. J Clin Oncol 10: 896–903. PMID: 1534121

4. Grothey A, Sargent D, Goldberg RM, Schmoll HJ (2004) Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 22: 1209–1214. PMID: 15051767

5. Souliers D, Greer W, Magliocco AM, Huntsman D, Young S, et al. (2010) KRAS mutation testing in the treatment of metastatic colorectal cancer with anti-EGFR therapies. Curr Oncol 17 Suppl 1: S31–40. PMID: 20680106

6. NCCN (2011) The National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Colon Cancer: 3.

7. Capella G, Cronauer-Mitra S, Pienado MA, Perucho M (1991) Frequency and spectrum of mutations at codons 12 and 13 of the c-K-ras gene in human tumors. Environ Health Perspect 93: 125–131. PMID: 1685441

8. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689. PMID: 2547513

9. Barbacid M (1987) ras genes. Annu Rev Biochem 56: 779–827. PMID: 3304147

10. Li Z, Chen Y, Wang D, Wang G, He L, et al. (2012) Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J Int Med Res 40: 1589–1598. PMID: 22971512

11. Alberts SR, Wagman LD (2008) Chemotherapy for colorectal cancer liver metastases. Oncologist 13: 1063–1073. doi: 10.1634/theoncologist.2008-0142 PMID: 18834838

12. Heinemann V, Stintzing S, Kirchner T, Boeck S, Jung A (2009) Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev 35: 262–271. doi: 10.1016/j.ctrv.2008.11.005 PMID: 19117687

13. Li Z, Chen Y, Wang D, Wang G, He L, et al. (2012) Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J Int Med Res 40: 1589–1598. PMID: 22971512

14. Park JH, Han SW, Oh DY, Im SA, Jeong SY, et al. (2011) Analysis of KRAS, BRAF, PTEN, IGF1R, EGFR intron 1 CA status in both primary tumors and paired metastases in determining benefit from cetuximab therapy in colon cancer. Cancer Chemother Pharmacol 68: 1045–1055. doi: 10.1007/s00280-011-1586-z PMID: 21340604

15. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, et al. (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360: 1408–1417. doi: 10.1056/NEJMoa0805019 PMID: 19339720

16. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7: 295–308. PMID: 17384584

17. Prewett M, Rockwell RF, Giorgio NA, Mendelsohn J, et al. (1996) The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol 19: 419–427. PMID: 9041461
22. Yunxia Z, Jun C, Guanshan Z, Yachao L, Xueke Z, et al. (2010) Mutations in epidermal growth factor receptor and K-ras in Chinese patients with colorectal cancer. BMC Med Genet 11: 34. doi:10.1186/1471-2350-11-34 PMID: 20184776

23. Gao J, Wang TT, Yu JW, Li YY, Shen L (2011) Wild-Type KRAS and BRAF Could Predict Response to Cetuximab in Chinese Colorectal Cancer Patients. Chin J Cancer Res 23: 271–275. doi:10.1007/s11670-011-0271-4 PMID: 23357879