FUNCTIONAL OUTCOME FOLLOWING OPERATIVE TREATMENT OF ANKLE FRACTURES
Vivian R. D’Almeida¹, Abey Thomas², Thomas Devasia³, Nikku Mathew⁴, Ashwin Kamath⁵, Raghuveer Adiga⁶

HOW TO CITE THIS ARTICLE:
Vivian R. D’Almeida, Abey Thomas, Thomas Devasia, Nikku Mathew, Ashwin Kamath, Raghuveer Adiga. "Functional Outcome Following Operative Treatment of Ankle Fractures". Journal of Evolution of Medical and Dental Sciences 2015; Vol. 4, Issue 63, August 06; Page: 10937-10955, DOI: 10.14260/jemds/2015/1580

ABSTRACT: BACKGROUND & OBJECTIVES: Ankle fractures are among the most common injuries treated by orthopaedic surgeons. However very few investigators have examined the functional recovery following operative treatment of ankle fractures. Anatomic restoration with open reduction and internal fixation is the goal of management in ankle fractures. The purpose of this study is to analyse the functional outcome following operative treatment of ankle fractures using subjective as well as objective criteria. METHODS: 45 patients with ankle fractures who fulfilled the inclusion criteria were included in the study. All patients underwent surgical fixation of the fractures. The follow-up assessment which consisted of subjective (Pain, Walking, activity, Radiographs, Ankle and Subtalar Joint function) and objective (Olreud and Molander Ankle Score) evaluations, were performed at 6 weeks, 3 months and 6 months postoperatively. RESULTS: Out of 45 patients, the commonest injury pattern seen was supination external rotation followed by supination adduction. The most common modality of fixation for the lateral malleolus was 1/3rd tubular plate and for the medial malleolus was 4 mm cannulated cancellous screws with washer. Syndesmotic screws were not applied in any of the cases. At 6 weeks follow-up 40% (n=18) had complications of persistent swelling, residual pain. We found a statistically significant improvement in the subjective assessment of pain, walking, activity levels, ankle and subtalar joint function from 3rd month to 6 month postoperatively. However subjective radiographic assessment failed to show any statistically significant improvement. The mean Olreud and Molander Ankle Score was statistically significant 47.5±19.7 at 3rd month post-op and, 81.7±16.2 at 6th month post-op. Age was a significant predictor of final outcome, with younger patients having a better functional outcome. CONCLUSIONS: Operative treatment for ankle fractures results in good functional outcome postoperatively. Anatomical reduction of the fracture is associated with better functional outcome. Early treatment without delay, anatomic reduction and fracture fixation, stringent postoperative mobilization and rehabilitation should help improve outcome in an operated ankle fracture.

KEYWORDS: Ankle, Operative, Outcome.

INTRODUCTION: Ankle is a precisely aligned joint with little soft tissue coverage. As a result, severe injury combined with inadequate or inappropriate treatment can lead to severe complications and major disability.

As a weight-bearing joint, the ankle is exposed to forces that transiently exceed 1.25 times body weight with normal gait, and that may exceed 5.5 times body weight with vigorous activities. Normal gait requires adequate dorsiflexion and plantar flexion. Inversion and eversion, as well as accommodation to rotational stresses, are provided by the subtalar joint, whose function is linked closely with that of the ankle. The ankle is not intrinsically stable in any position and requires support from the muscles that cross it.
Anatomic restoration of the joint is the goal of management in fractures about the ankle. Open reduction and internal fixation is the standard of care for unstable ankle fractures.\(^2\)

However very few investigators have examined the functional recovery following operative treatment of ankle fractures.\(^3\)

The purpose of this study is to analyze the patterns and causes of ankle fractures as well as functional outcome of surgically treated ankle fractures.

MATERIALS AND METHODS: A prospective randomized study was carried out in Father Muller Medical College, Mangalore, from June 2012 to February 2014 and all closed bimalleolar and trimalleolar ankle fractures surgically managed were taken into the study. Fractures were classified according to the Lauge-Hansen system and operated within 24hrs of presentation. Surgery was performed under pneumatic tourniquet control. Open reduction and internal fixation of the malleolar fractures were performed by tension band wiring, 4 mm cannulated cancellous screws with washers, semitubular plating with screws or with an intra-medullary device. Post-operatively, patients were put on a posterior plaster of paris (POP) slab. Post-operative antibiotics were continued for a period ranging from 3 to 5 days depending on the presence of other injuries and therapy was prolonged if there were signs of infection. Once pain-free, patient was trained in non-weight bearing crutch walking. The splint was continued till suture removal following which the patients were advised dorsiflexion and plantarflexion exercises.

At six weeks both groups of patients were reviewed, specific complaints were sought and check X-rays were taken. Ankle girths were measured to assess the amount of swelling in both groups and the range of dorsiflexion and plantar flexion were also assessed.

The patients were further reviewed at three and six months postoperatively and subjective and objective assessment of the patients’ ankles were done using a modification of the scoring system proposed by Olerud and Molander.

Table 1: The modified ankle score of Olerud and Molander (1984)
PARAMETER
1. Pain
2. Stiffness
3. Swelling
4. Stair-climbing
5. Running
6. Jumping
7. Squatting
8. Supports
9. Work, activities of daily life

Table 1: The modified ankle score of Olerud and Molander (1984)
A score of 90 to 100 is considered Excellent; 70 to 89 - Good; 50 to 69 points - Fair and less than 50 is considered Poor.

Subjectively patients were assessed with respect to pain, gait, activity, radiographs, ankle joint function and subtalar joint function. A total score of 18-24 was considered good, 12-18 fair and below 12 poor.

Internal Fixation of the Lateral Malleolus: The lateral malleolus was approached through a posterolateral incision. The incision was put about 12cm proximal to the tip of lateral malleolus and extended distally along the posterior margin of the fibula to the tip of malleolus and curved it anteriorly for 2.5cm in line of peroneal tendons. The fibula was exposed subperiosteally by deepening the incision through subcutaneous tissue and deep fascia. Full thickness skin flaps were retracted anteriorly and posteriorly.

The foot was externally rotated to separate fracture fragments, blood clots and intervening soft tissue was removed with a small curette from the fracture site. Reduction of the fracture was now done by reversing the force that caused the fracture.

Fixation of the fracture was done using 1/3 tubular plate with or without a lag screw, with lag screws alone or with an intramedullary device namely a Rush pin. Rush pin was used in case of undisplaced pronation-abduction or pronation-external rotation injuries and was passed through an incision made at the tip of the lateral malleolus and passed retrograde under C-arm guidance.

Fixation of the Medial Malleolus: A medial longitudinal incision of 8cm was put over the medial malleolus between its anterior and posterior borders with the lower end curving anteriorly at the tip of medial malleolus. The incision was deepened to the bone protecting the long saphenous vein over the anterior part of the incision. The skin and subcutaneous tissue was retracted without undue pressure over the skin. The fracture site was exposed and cleared of blood clots and intervening periosteum with a curette exposing small serrations of the fracture. The distal fragment was held with a towel clip and pulled proximally, reducing the small serrations of the fracture. The fracture was fixed by passing one or two 4 mm cannulated cancellous screws with washer, or by tension band wiring depending on the configuration and size of the fracture fragment.

Posterior Lip Fractures: Reduction of posterior lip fragments was done indirectly through either posteromedial or posterolateral incisions. The choice was made by the location of the fragment on the AP radiograph. Posterior lip fragments were reattached with one or two lag screws, occasionally supplemented with K-wires, washers. The most secure fixation was provided by interfragmentary fixation with lag screws, which glide through the fragment adjacent to their head and be threaded only into the opposite fragment. Such screws were placed from posterior to anterior if the fragment is exposed using a poster lateral incision.

Syndesmotic injury: Syndesmosis stability was checked by laterally displacing the distal fibula from the tibia while observing the relationship of the two bones under fluroscopic guidance. If more than 3 to 4mm of lateral shift of the talus occurs, instability is present.

However in this study none of the patients had syndesmotic fixation done.
OPERATIVE PHOTOGRAPHS

Fig. 1: Skin incision over lateral malleolus

Fig. 2: Exposure of fracture site

Fig. 3: Fixation of fracture using 1/3rd tubular plate

Fig. 4: Intraoperative C-arm picture

Fig. 5: Skin incision for medial malleolus

Fig. 6: Exposure of fracture site
RESULTS: The study consisted of 45 patients aged between 17-73 years, of which 17 were females and 28 were males. The most common mode of injury was road traffic accidents. Eighteen patients had left ankle fracture, twenty-six had right ankle fracture, whereas one patient had bilateral involvement. 36 patients (80%) had medial malleolus fracture, while 37(82.2%) had their lateral malleolus fractured.

Eight patients had local wounds in the form of abrasions and lacerations. Skin condition was not found to be healthy in 5 patients. 37.8% patients (number = 17) sustained supination external rotation followed by supination adduction and pronation external rotation (22.2%, 10 in number). The most common modality of fixation for the lateral malleolus was one-third tubular plate (86.5%) and for the medial malleolus was 4-mm cannulated cancellous screws with washers (80.6%). Syndesmotic screws were not used in any of the cases.

Eight patients had superficial wound infection, which was managed with appropriate antibiotics and dressings. The infection resolved in all cases. The average duration of hospital stay was 13 days.

On follow up at 6 weeks, 11 out of 45 patients had persistent swelling and residual pain, 9 patients had only residual pain and 6 patients had only persistent swelling. One patient was found to have loss of reduction, which was attributed to early weight bearing against medical advice. He went on to have a malunion of the fracture and had to undergo a corrective surgery.

There was a statistically significant improvement in the subjective assessment of pain, walking, activity levels, ankle joint function and subtalar joint function from 3 months post-op to 6 months post-op. However subjective radiographic assessment failed to show any statistically significant improvement from 3 months post-op to 6 months post-op.

The mean Olreud and Molander Ankle score at 3rd month post op was 47.5±17.9 and at 6th month post op was 81.7±16.2. There was a statistically significant improvement in the scores from 3rd month to 6th month post-op (p value 0.000).

It was noted that advanced age was associated with a lower OMA score both at 3rd month and 6th month post-op (p value 0.002).

In our study we also found that patients who had post-op complications were found to have lower OMA scores at 3 months and 6 months follow up (p value 0.001).

The study had the following limitations: The study group was relatively small, with a shorter duration of follow up. Variations in surgical techniques and experience, fracture patterns, errors of measurement and patient adherence to postoperative mobilization regimens could not be accounted for in this study.

Frequency	Percent	
1	18	40.0
2	18	40.0
3	3	6.7
4	6	13.3
Total	45	100.0

Table 1: Mechanism of Injury
Frequency	Percent
0	37
1	8
Total	**45**
100.0	

Table 2: Early Complications

Frequency	Percent
absent	18
present	27
Total	**45**
100.0	

Table 3: Late Complications

Frequency	Percent
1, 5	1
2	6
2, 4	11
4	9
Total	**27**
100.0	

Table 4: Types of Late Complication

6mpain - 3mpain
Wilcoxon signed rank test z value

6.02

Inference: Significant improvement in pain from 3rd month post-op to 6th month post op.
Table 6: Subjective Walking Measurement at 3 Months and 6 Months Post-Op

6mgait	3mgait	Total
2	2	4
3	2	4
4	0	0

6mgait	3mgait	Total
2	2	4
3	2	4
4	0	0

Table 7: Subjective Activity Measurement at 3 Months and 6 Months Post-Op

6activity	3activity	Total
2	2	4
3	2	4
4	0	0

Table 8: Subjective Radiographic Assessment at 3 Months and 6 Months Post-Op

INFEERENCE: Significant improvement in walking from 3rd month post-op to 6th month post-op.

INFEERENCE: Significant improvement in activity levels from 3rd month post-op to 6th month post-op.
INFEERENCE: No significant improvement in the radiographic assessment from 3rd month to 6th month post-op.

INFEERENCE: Significant improvement in ankle joint function from 3rd month to 6th month post-op.

INFEERENCE: Significant improvement in subtalar joint function from 3rd month post-op to 6th month post-op.
INFE药ENCE: Significant improvement in total subjective score from 3rd month post-op to 6th month post-op.

Table 11: Total Score (Subjective) at 3 Months and 6 Months Post-Op Post-Op

	bad	fair	good	Total
3mtotsc				
bad	1	5	0	6
fair	0	5	19	24
good	0	0	15	15
Total	1	10	34	45

INFE药ENCE: Significant improvement in the OMA scores from 3rd month post-op to 6th month post-op.

Table 12: Oma Score at 3 Months and 6 Months Post-Op

	poor	fair	good	excellent	Total
3momsc					
poor	2	7	13	6	28
fair	0	0	2	6	8
good	0	0	0	9	9
Total	2	7	15	21	45

INFE药ENCE: Significant improvement in the OMA scores from 3rd month post-op to 6th month post-op.
Fishers exact test p=.022, sig.

INFERENCE: There is a significant association between age and 3 month OMA score with lower age groups having higher scores.

Table 13: Olreud and Molander Scores

Table 14: Association between age and 3 Month Oma Score

Fishers exact test p=.002, HS

Table 15: Association between age and 6 Month Oma Score
ORIGINAL ARTICLE

INFERENCE: There is a significant association between age and 6 month OMA score with lower age groups having higher scores.

![Table 16: Association between Presence of Complications and 3 Month OMA Score](image)

Table 16: Association between Presence of Complications and 3 Month OMA Score

Complication	3m OMA Score	Total
Nil		
Present		
Total		

Fisher's exact test $p = 0.002$, HS

INFERENCE: There is a significant association between presence of complications and 3 month OMA score with patients with complications having lower scores.

![Table 17: Association between Presence of Complications and 6 Month OMA Score](image)

Table 17: Association between Presence of Complications and 6 Month OMA Score

Complication	6m OMA Score	Total
Nil		
Present		
Total		

Fisher's exact test $p = 0.000 < 0.001$, HS

INFERENCE: There is a significant association between presence of complications and 6 month OMA score with patients with complications having lower scores.
Case No. 26: Radiographs

Case No. 24:

Case No. 12:
Case No. 13:

DISCUSSION: The aim of operative treatment for fractures of the ankle is to allow early movement after stable internal fixation. In this prospective, randomized study we have used both subjective and objective methods to assess the functional outcome of the operative treatment of these injuries.

The study consisted of 45 patients aged between 17-73 years, of which 17 were females and 28 were males. Eighteen patients had left ankle fracture, twenty-six had right ankle fracture, whereas one patient had bilateral involvement. The most common mode of injury was road traffic accidents.

The most common injury pattern seen was supination external rotation followed by supination adduction and pronation external rotation.

The most common modality of fixation for the lateral malleolus was 1/3rd tubular plate, and for the medial malleolus was with 4 mm cannulated cancellous screws with washers. Syndesmotic screws were not used in any of the cases.

Kortekangas et al in 2014 in their study compared the functional and radiologic results of syndesmotic transfixation with no fixation in supination external rotation ankle fractures and found no significant difference in functional outcome or radiologic findings after a minimum follow up of 4 years. The average duration of hospital stay was 13 days.

In 2011, Hafiz et al conducted a study on 'Ankle Fractures: The operative Outcome' and concluded that operative treatment for ankle fractures results good functional outcome post operatively, and restores sufficient stability and good mobility of the ankle joint. Egol et al in 2006 conducted a study on short term functional outcome following ankle fracture surgery and stated that one year after ankle fracture surgery, most patients experience little or mild pain and few restrictions in functional activities. Kumar et al in 1999 described that internal fixation and early mobilization in displaced ankle fractures are difficult to treat conservatively. However, open reduction and rigid internal fixation affords the most predictable way to carry out an absolute anatomical reduction of fractures. They also noted that displaced ankle fractures should be operated to avoid drawbacks of closed manipulation and for early mobilization to achieve functional, painless ankle.

Ehrenfreund et al in 2013 studied the results of operative management of ankle fractures in the elderly, with regard to functional outcome and complication rates. They did not observe any
serious complications such as skin necrosis, deep infection, osteomyelitis and failure of metalwork. They recommended that there should not be any delays in treatment, that the reduction is anatomical, that the fracture fixation is satisfactory and that the rehabilitation is commenced early. Schepers et al in 2013 studied the literature regarding the effect of timing of ankle surgery on infectious complications. They recommend that every effort should be made to operate on closed ankle fractures as soon as reasonable possible. A delay in surgery is associated with a significant rise in infectious wound complications, which significantly lowers outcome and patient satisfaction. These fractures should preferably be treated within the first day. However in our study, 8 patients had superficial wound infection, which was managed with appropriate antibiotics and dressings. The infection resolved in all cases. Korim et al in 2014 studied patient- and surgery-related risk factors for surgical site infection following open reduction and internal fixation of an ankle fracture. They found that diabetes, nursing home residence and Weber C fractures were significant risk factors for infection. Both superficial and deep infections result in lower functional scores as assessed using the Olreud and Molander Ankle Score.

Our study demonstrated that on follow up at 6 weeks, 11 out of 45 patients had persistent swelling and residual pain, 9 patients had only residual pain and 6 patients had only persistent swelling. One patient was found to have loss of reduction, which was attributed to early weight bearing against medical advice. He went on to have a malunion of the fracture and had to undergo a corrective surgery. This is in concordance with a similar study done by Hong et al in 2014 in which he reported residual pain, swelling and ankle stiffness as the most common complications at 1 year follow up.

There was a statistically significant improvement in the subjective assessment of pain, walking, activity levels, ankle joint function and subtalar joint function from 3 months post-op to 6 months post-op. However subjective radiographic assessment failed to show any statistically significant improvement from 3 months post-op to 6 months post-op.

Leeds et al in 1984 based on the findings in his series concluded that adequate reduction of syndesmosis is necessary to achieve stable ankle following supination external rotation, pronation external rotation fractures of the ankle and that the reduction of syndesmosis will be unsatisfactory if lateral malleolus is not well reduced. Weening et al conducted a study in 2005 on the predictors of functional outcome following transsyndesmotic screw fixation of ankle fractures. Of 425 ankle fractures treated, 51 fractures had syndesmotic screw fixation. 70% of the injuries were pronation external rotation and 30% were supination external rotation injuries. The most common constructs for fixation included lateral plates with syndesmotic screws (45%). At final follow up, patients achieved good function and quality of life (mean Olreud and Molander score 74.1). The only significant predictor of functional outcome was reduction of the syndesmosis. They however felt 16% of the syndesmotic screws may have been unnecessary. Tucker et al in 2013 studied the functional outcome following syndesmotic fixation in Weber Type C injuries. Out of 63 patients, 43 underwent screw removal while 20 retained the screws. The ‘retained’ group scored higher mean Olreud and Molander scores. The authors advocate that syndesmosis screws be left in situ and should only be removed in case of symptomatic implants beyond 6 months postoperatively. Kortekangas et al in 2014 in their study compared the functional and radiologic results of syndesmotic transfixation with no fixation in supination external rotation ankle fractures with intraoperatively confirmed syndesmosis disruption. 13 patients underwent syndesmotic screw fixation while 11 did not. The
authors found no significant difference in functional outcome or radiologic findings after a minimum follow up of 4 years.4

Ali et al in 1987 reviewed 100 consecutive patients over the age of 60 years with unstable ankle fractures. Fifty were treated operatively and fifty non-operatively. The mean follow up was 7 years. Patient satisfaction with regard to pain, deformity and stability was significantly better in the operated group.14 Belcher et al in 1997 conducted a retrospective study on 40 patients who had undergone open reduction and internal fixation of an uncomplicated, closed malleolar fracture. He concluded that the patients had measurable functional impairment 8-24 months postoperation when compared with controls, despite adequate treatment and no evidence of degenerative changes.15 Makwana et al in 2001 compared 22 cases of open reduction and internal fixation and 21 cases of conservatively treated patients with ankle fractures and found that ORIF treatment yielded a significantly higher functional outcome score and a significantly better range of movement of ankle.16 Bhandari et al in 2004 conducted a prospective observational cohort study to evaluate health-related quality of life in 30 patients with unstable ankle fractures treated operatively. They found that patients experienced significant improvement in all domains of SF-36 questionnaire. Smoking history, presence of a medial malleolar fracture and lower levels of education were significant independent predictors of lower physical function upto 3 months postoperation.17 Hancock et al in 2005 conducted a prospective cohort study on prediction of outcome after ankle fracture and concluded that fractures managed surgically tended to have poorer outcomes. They further explained this result by the high percentage of surgical patients who had bimalleolar or trimalleolar fractures.18 Shivarahre et al in 2011 studied the results of operative fixation for unstable ankle fractures in patients aged over 80 years. The most common fracture pattern was Danis-Weber B type. 86% of the patients were able to return back to their pre injury mobility at the last follow up.19 Sanders et al in 2012 conducted a randomized multicenter trial to compare clinical and functional outcomes after operative and non-operative treatment of undisplaced, unstable, isolated fibula fractures and concluded that patients managed operatively had equivalent functional outcomes compared with non-operative treatment; however, the risk of displacement and problems with union was substantially lower in patients managed with surgery.20 Berkес et al in 2013 examined the impact of articular surface congruity on the functional outcomes of operative treatment of supination external rotation IV ankle fractures. Post-operative CT scans were used to assess ankle joint congruity. At the time of final follow up, the group with articular incongruity had a significantly worse Foot and Ankle Outcome Score with regard to symptoms and activities of daily living. They recommended that surgeons should scrutinize ankle fracture reductions and strive for perfection to allow for the best possible clinical outcome.21 Hoelsbrekken et al in 2013 in his study compared internal fixation with no fixation of the medial malleolus after open reduction and internal fixation of the lateral malleolus and if needed, the posterior malleolus. They concluded that nonoperative treatment of minimally displaced fractures of the medial malleolus after operative fixation of the fibula yields satisfactory results. However long-term follow-up is needed due to increased risk of nonunion and uncertainty regarding the development of posttraumatic arthritis.22 Hong et al in 2014 evaluated the clinical and functional outcome of trimalleolar fractures and the ability of patients to return to sporting activities. In their retrospective study of 31 patients they found that 11 patients had residual pain, 13 patients had persistent ankle stiffness, 10 patients had swelling at 1 year follow up. Only 4 patients were able to return to sports. Increasing posterior
malleolar fragment size was associated with poorer functional outcomes. Thakore et al in 2014 in their study on ankle fracture and employment: a life-changing event for patients found that ankle fracture patients are likely to suffer high rates of unemployment or disability shortly after their injury. They suggested that improving patient compliance with attendance for rehabilitation may improve employment outcomes.

Ponzer et al in 1999 studied 53 patients with type B ankle fracture who were treated operatively. They found that about 60 percent of the patients had an excellent OMA score and a good clinical outcome. Only a few had radiographic postoperative dislocation or signs of arthritis. Lash et al in 2002 studied 74 patients operated for ankle fractures. At a 2 year follow up, all fracture types averaged Olreud and Molander ankle scores of 71.1. Lifestyle outcomes were reflected in the patients’ ankle function outcomes. Nilsson et al in 2003 evaluated 54 patients, aged 17-64 years, 14 months post-operatively following ankle fractures. The median OMA score obtained was 75. Only 10 of the patients reported complete recovery and 16 scored > 90, indicating good function. They attributed poor results following surgery to insufficient rehabilitation.

Syed et al in 2011 studied 12 patients who had Weber type-C injury treated with syndesmosis only fixation. The treatment plan was followed only if the fibular length could be restored and if the syndesmosis could be anatomically reduced. Through a percutaneous or mini open reduction and clamp stabilization of the syndesmosis, all but one patient had a single tricortical screw fixation across the syndesmosis. Excellent to good outcomes were noted in 83% of the patients assessed using Olreud and Molander scale. Hong et al in 2013 evaluated the functional outcome and limitation of sporting activities after bimalleolar and trimalleolar ankle fractures. At 1 year follow up most patients gained good function and had good to excellent Olreud and Molander scores. However, out of the 47 patients, 26(55.3%) had residual pain, 29(61.7%) complained of stiffness and 21(44.7%) had ankle swelling. Of the 33(70.2%) patients who were involved in sporting activities prior to the ankle injury, 9(27.3%) were able to return to preinjury level of sporting activities with no difficulties.

CONCLUSION: In this study of 45 patients with ankle fractures who were treated operatively, the following salient findings were noted:

- Operative treatment for ankle fractures results in good functional outcome post-operatively.
- Anatomical reduction of the fracture was associated with better functional outcomes.
- A significant improvement was noted in the ankle function from 3rd month to 6th month post-op, assessed using subjective criteria as well as the Olreud and Molander Ankle score.
- Age was a significant predictor of the final outcome, with younger patients having a better outcome.
- No significant wound complications were noted.
- The most common late complications reported were persistent swelling and residual pain.
- Early treatment without delay, anatomical reduction and fracture fixation, stringent postoperative mobilization and rehabilitation should help improve outcome in an operated ankle fracture.
SUMMARY: Ankle fractures are among the most common injuries treated by orthopaedic surgeons. However very few investigators have examined the functional recovery following operative treatment of ankle fractures. The purpose of this study was to analyze the causes and the patterns of ankle fractures as well as functional outcomes of surgically treated ankle fractures.

A significant improvement was noted in the ankle function from 3rd month to 6th month post-op, assessed using subjective criteria as well as the Olreud and Molander Ankle score. Age was a significant predictor of the final outcome, with younger patients having a better outcome.

Operative treatment for ankle fractures results in good functional outcome post-operatively. Anatomical reduction of the fracture leads to a better functional outcome.

BIBLIOGRAPHY:
1. Mann RA. Surgical implications of biomechanics of the foot and ankle. Clin Orthop Relat Res. 1980 Jan-Feb; (146): 111-8.
2. Bonasia DE, Rossi R, Saltzman CL, Amendola A. The role of arthroscopy in the management of fractures about the ankle. J Am Acad Orthop Surg. 2011 Apr; 19(4): 226-35.
3. Egol KA, Tejwani NC, Walsh MG. Predictors of Short-Term Functional Ankle Fracture Surgery. J Bone Joint Surg Am.2006 May01; 88(5): 974-979.
4. Kortenkangas TH, Pakarinen HJ, Savola O, Niinimaki J, Lepojarvi S, Ohtonen P et al., Syndesmotic Fixation in Supination-External Rotation Ankle Fractures: A Prospective Randomised Study. Foot Ankle Int. 2014"; 35(10): 988-95.
5. Hafiz ZA, Nazri MY, Azril MA Kassim NA, Nordin N, Daraup S et al., Ankle Fractures: The Operative Outcome. Malaysian Orthopaedic Journal, 2011 Vol 5 No 1.
6. Kumar P, Shukla JC, Mehrotra A, N Srivastava. Internal Fixation and Early Mobilisation in Displaced Ankle Fracture. Indian Journal of Orthopaedics, 1999 Volume 33 Issue No 4 Page 256-259.
7. Ehrenfreund T, Haluzan D, Dobric I, Zigman T, Rajacic D, Antolijak T et al., Operative management of unstable ankle fractures in the elderly: our institutional experience. Injury. 2013 Sep; 44 Suppl 3: S20-2.
8. Schepers T, De Vries MR, Van Lieshout EM, Van der Elst M. The timing of ankle fracture surgery and the effect on infectious complications; a case series and systematic review of the literature. Int Orthop. 2013 Mar; 37(3): 489-94.
9. Korim MT, Payne R, Bhatia M. A case-control study of surgical site infection following operative fixation of fractures of the ankle in a large U.K. trauma unit. Bone Joint J. May 2014 vol. 96-B no. 5: 636-640.
10. Hong CC, Nashi N, Prasad RS. Impact of trimalleolar ankle fractures: how do patients fare post operatively? Foot Ankle Surg. 2014; 20(1): 48-51.
11. Leeds HC, Ehrlich MG. Instability of the distal tibiofibularsyndesmosis after bimalleolar and trimalleolar ankle fractures. J Bone Joint Surg Am. 1984; 66: 490-503.
12. Weening B, Bhandary M. Predictors of Functional Outcome Following Transsyndesmotic Screw Fixation of Ankle Fractures. Journal of Orthopaedic Trauma 2005, 19(2): 102-108.
13. Tucker A, Street J, Kealey D, McDonald S, Stevenson M. Functional Outcomes following syndesmotic fixation: A comparison of screws retained in situ versus routine removal – Is it really necessary? Injury. 2013 Dec; 44(12): 1880-4.
14. Ali MS, McLaren CA, Rouholamin E, O’Connor BT. Ankle Fractures in the Elderly. J Orthop Trauma. 1987; 1(4): 275-280.
15. Belcher GL, Radomisli TE, Abate JA, Stabile LA, Trafton PG. Functional Outcome Analysis of Operatively Treated Malleolar Fractures. J Orthop Trauma 1997; 11(2): 106-109.
16. Makwana NK, Bhowal B, Harper WM, Huj AW. Conservative versus operative treatment for displaced ankle fractures in patients over 55 years of age. J Bone Joint Surg [Br] 2001; 83-B: 525-529.
17. Bhandari M, Sprague S, Hanson B, Busse JW, Moro JK et al., Health-Related Quality of Life Following Operative Treatment of Unstable Ankle Fractures. J Orthop Trauma. 2004; 18: 338-345.
18. Hancock MJ, Herbert RD, Stewart M. Prediction of Outcome after Ankle Fracture. J Orthop Sports Phys Ther 2005; 35: 786-792.
19. Shivarthre DG, Chandran P, Platt SR. Operative Fixation of unstable ankle fractures in patients aged over 80 years. Foot Ankle Int. 2011 Jun; 32(6): 599-602.
20. Sanders, David W. Operative versus Nonoperative Treatment of Unstable Lateral Malleolar Fractures: A Randomised Multicenter Trial. Journal of Orthopaedic Trauma. March 2012, 26(3); 129-134.
21. Berkes MB, Little MT, Lazaro AE, Pardee NC, Schottel PC, Helfet DL et al., Articular Congruity is associated with short-term clinical outcomes of operatively treated SER IV ankle fractures. J Bone Joint Surg AM. 2013 Oct 2; 95(19): 1769-75.
22. Hoelsbrekken SE, Kaul-Jensen K, Morch T, Vika H, Clementsen T, Paulsrud O et al., Nonoperative treatment of the medial malleolus in bimalleolar and trimalleolar ankle fractures: a randomized control trial. J Orthop Trauma. 2013 Nov; 27(11): 633-7.
23. Thakore RV, Hooe BS, Considine P, Sathiyakumar V, Onuoha G 2nd, Hinson JK et al., Ankle Fractures and Employment: a life-changing event for patients. Disabil Rehabil. 2014 May 26: 1-6.
24. Ponzer S, Nasell H, Bergman B, Tornkvist H. Functional Outcome and Quality of Life in Patients with Type b Ankle Fractures: A Two-Year Follow-Up Study. J Orthop Traumatol 1999, 13(5): 363-368.
25. Lash N, Horne G, Fielden J. Ankle Fractures: Functional and lifestyle outcomes at 2 years. ANZ Journal of Surgery 2002, 72: 724-730.
26. Nilsson G, Nyberg P, Ekdahl C. Performance after surgical treatment of patients with ankle fractures – 14- month follow up. Physiother. Res. Int. 2003, 8: 69-82.
27. Syed RM, Metikala S, Ali SA. Evaluation of the syndesmotic only fixation for Weber-C ankle fractures with syndesmotic injury. Indian Journal of Orthopaedics, September 2011, 45(5): 454-458.
28. Hong CC, Roy SP, Nash N, Tan KJ. Functional outcome and limitation of sporting activities after bimalleolar and trimalleolar ankle fractures. Foot Ankle Int. 2013 Jun; 34(6): 805-10.
| AUTHORS: | PARTICULARS OF CONTRIBUTORS: |
|---------|-----------------------------|
| 1. Vivian R. D’Almeida, | 1. Assistant Professor, Department of Orthopaedics, Father Muller Medical College, Mangalore. |
| 2. Abey Thomas, | 2. Resident, Department of Orthopaedics, Father Muller Medical College, Mangalore. |
| 3. Thomas Devasia, | 3. Senior Resident, Department of Orthopaedics, Father Muller Medical College, Mangalore. |
| 4. Nikku Mathew, | 4. Resident, Department of Orthopaedics, Father Muller Medical College, Mangalore. |
| 5. Ashwin Kamath | 5. Senior Resident, Department of Orthopaedics, Father Muller Medical College, Mangalore. |
| 6. Raghuveer Adiga | 6. Professor, Department of Orthopaedics, Father Muller Medical College, Mangalore. |

FINANCIAL OR OTHER COMPETING INTERESTS:	NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
None	Dr. Vivian R. D’Almeida, Assistant Professor, Department of Orthopaedics, Father Muller Medical College, Mangalore. E-mail: v_dal1981@yahoo.com

Date of Submission: 13/03/2015.
Date of Peer Review: 14/03/2015.
Date of Acceptance: 09/07/2015.
Date of Publishing: 05/08/2015.