An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli

Piyatip Khuntayaporn1,2*, Krit Thirapanmethee1,2 and Mullika Traidej Chomnawang1,2

1 Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand, 2 Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand

Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.

Keywords: colistin resistance, mcr genes, Acinetobacter, Pseudomonas, polymyxin

1 INTRODUCTION

Presently, beta-lactams, cephalosporins, carbapenems, fluoroquinolones, aminoglycosides, and macrolides are frequently used to treat bacterial infections. However, the emergence of drug-resistant microorganisms, particularly Gram-negative pathogens, has become a public health threat. In 2017, the World Health Organization classified carbapenem-resistant (CR) Acinetobacter baumannii and Pseudomonas aeruginosa as priority pathogens in critical need of alternative treatment options (World Health Organization, 2017). P. aeruginosa, A. baumannii, Stenotrophomonas maltophilia, and Burkholderia cepacia complex are non-fermentative Gram-negative bacteria that cause significant problems in healthcare settings. Because these bacteria are highly adaptable and have various intrinsic and acquired resistance mechanisms, they are typically resistant to major classes of antimicrobial agents, leaving only a few therapeutic options (Enoch et al., 2007). Among these, P. aeruginosa and A. baumannii are the most common causes of nosocomial infections (Mancuso et al., 2021). P. aeruginosa is the most common pathogen in the Pseudomonas genus. This bacterium is an opportunistic pathogen that causes skin, wound, and lung infections. Respiratory infections caused by P. aeruginosa are often associated with defective
respiratory systems or ventilation, such as in cystic fibrosis (Bassetti et al., 2018). In contrast, *A. baumannii* is one of the most common causes of nosocomial infections, such as bloodstream infections and pneumonia (Garnacho-Montero and Timsit, 2019). This organism is part of what is known as the *Acinetobacter calcoaceticus–baumannii* complex, which also includes *Acinetobacter pittii*, *Acinetobacter nosocomialis*, and *Acinetobacter calcoaceticus* (Ramirez et al., 2020).

With the limitations of new drug development, many outdated antibiotics have been reintroduced into the clinical setting despite their high toxicity, including the polymyxin drug group (Hermsen et al., 2003). As there are no other options available, this drug group has become crucial to combat antibiotic resistance (Bialvaei and Samadi Kafil, 2015). Modern therapeutic drug monitoring of colistin is prone to have a lower incidence rate of toxicity when compared to the past.

The polymyxin group contains many drugs, but polymyxin E, also known as colistin, is recognized as the main agent (Rhouma et al., 2016b). Colistin is one of the remaining treatment options for life-threatening infections caused by multidrug and extensively drug-resistant *A. baumannii* and *P. aeruginosa* (Bialvaei and Samadi Kafil, 2015). Moreover, colistin resistance mechanisms are quite rare and chromosomally encoded, which makes transfer difficult (Olaitan et al., 2014). Therefore, the resistance rate against colistin in Gram-negative pathogens appears to be lower than that of other antibiotic classes. However, the increasing trend of colistin resistance in Enterobacteriaceae led to the discovery of the transmissible resistance mechanism of colistin in 2015 (Liu et al., 2016). Since then, the resistance rate of last-resort drugs has been closely monitored; the more the antibiotic resistance rate increases, the fewer treatment options are available. Transferable polymyxin resistance has been extensively reported worldwide. To date, at least ten variations in mcr genes have been described and are currently ongoing. This problem is critical, especially for pathogens with limited treatment options, such as *A. baumannii* and *P. aeruginosa*. Therefore, this review focuses on colistin drug resistance and its epidemiology among the non-fermentative Gram-negative bacilli, *Acinetobacter* spp., and *P. aeruginosa*.

2 THE POLYMIXINS

Colistin (polymyxin E) belongs to the polymyxin drug group and appears commercially in two forms as inactive prodrugs: colistin methanesulfonate for parenteral use and colistin sulfate for topical use and use in animal production in some countries (Rhouma et al., 2016b). Another type of polymyxin used in clinical practice is polymyxin B, which is administered in its active form (Tsuji et al., 2019). These antibiotics have been described as old-generation antibiotics, but because of the limitations of antibiotic options, colistin was reintroduced as a last resort for multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterial infection treatment. Polymyxins were discovered in the 1940s from *Bacillus polymyxa*, later known as *Paenibacillus polymyxa*, and were approved by the United States Food and Drug Administration before being used in hospitals in the 1950s (Lim et al., 2010). Polymyxins are polypeptide antibiotic groups that include five different chemical compounds: polymyxins A, B, C, D, and E; however, only polymyxin B and polymyxin E are used in clinical settings (Bialvaei and Samadi Kafil, 2015). Polymyxin B consists of two compounds, polymyxins B1 and B2, whereas colistin contains polymyxins E1 and E2. Colistin differs from polymyxin B in its amino acid composition (Figure 1) (Hermsen et al., 2003; Nation and Li, 2009; Bialvaei and Samadi Kafil, 2015). It has a molecular weight of 1,750 Da and consists of a polycationic cyclic heptapeptide attached to a lipophilic fatty acid side chain (Bialvaei and Samadi Kafil, 2015). The structure of colistin is amphipathic, containing both aqueous and non-aqueous soluble parts (Hermsen et al., 2003).

![chemical structures of polymyxin B and E](image-url)

Figure 1 | Chemical structures of polymyxin B and E.
Colistin has demonstrated to have a concentration-dependent bactericidal effect, but its mechanism of action is unclear (Nation and Li, 2009; Bialvaei and Samadi Kafil, 2015). The proposed mechanism of action is based on the chemical structure of colistin, which destabilizes lipopolysaccharide (LPS), increases membrane permeability, and leads to bacterial cell leakage (Hermsen et al., 2003; Nation and Li, 2009). The antibiotic spectrum of colistin is narrow, but it is active against many important MDR Gram-negative bacteria, including P. aeruginosa, A. baumannii, Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., and some other bacteria in Enterobacteriales (Hermsen et al., 2003; Nation and Li, 2009; Bialvaei and Samadi Kafil, 2015). Colistin is generally not recommended for Gram-positive pathogens because they lack an outer membrane structure.

Its prominent toxicity, including nephrotoxicity and neurotoxicity, is a drawback of colistin use (Nation and Li, 2009). However, toxicity is usually reversible upon discontinuing the medication and is believed to be dose dependent (Li et al., 2006). In the early 2000s, when a resurgence of colistin use occurred, the lack of information on appropriate colistin dosage was the main problem. The International Consensus Guidelines for the Optimal Use of Polymyxins were published in 2020, making colistin safer for use. The recommended PK/PD therapeutic target for efficacy maximization of colistin is a target plasma colistin C_{max} of 2 mg/L, which can provide an area under the plasma concentration–time curve across 24 h at a steady state (AUC_{ss24 h}) of approximately 50 mg h/L (Tsujii et al., 2019). This concentration is considered the maximum tolerable exposure. Higher concentrations can increase the nephrotoxicity incidence and severity (Tsujii et al., 2019). Patients with renal impairment should have their colistin dosage adjusted based on creatinine clearance (Tsujii et al., 2019).

3 THE LABORATORY DETECTION OF COLISTIN RESISTANCE

The phenotypic detection of colistin resistance is usually based on antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute (CLSI) guidelines recommend that the broth dilution method be used for colistin because the disc diffusion method is unreliable (Falagas et al., 2010). As a result, the CLSI-EUCAST Working Group recommended a reference method for polymyxin susceptibility testing using broth microdilution without additives (Dafopoulou et al., 2019). The microbe is considered colistin or polymyxin B resistant when the minimum inhibitory concentration (MIC) is equal to or greater than 4 mg/ml in tested organisms, including in Enterobacteriales, P. aeruginosa, and Acinetobacter spp. (Clinical and Laboratory Standards Institute, 2022). Colistin resistance in Enterobacteriales and Acinetobacter spp. is when the MIC is greater than 2 mg/ml, but resistance in P. aeruginosa is when the MIC is greater than 4 mg/ml, according to the EUCAST breakpoints table (The European Committee on Antimicrobial Susceptibility Testing, 2022). Additionally, sulfate salts of polymyxins must be used instead of colistin methanesulfonate because of their slow breakdown from the inactive prodrug form (Tsujii et al., 2019). Agar dilution is another antimicrobial susceptibility method based on dilution techniques. However, the reliability of the MICs obtained using this method remains inconclusive. Therefore, the CLSI-EUCAST Working Group advised to avoid using the agar dilution method until more data are available (Dafopoulou et al., 2019). Notably, the phenotypic detection method cannot distinguish between colistin resistance mechanisms. To identify the resistance mechanisms, analyses at the genotypic level should be applied subsequent to the antimicrobial susceptibility test. Genotypic detection is based on polymerase chain reaction (PCR) and whole-genome sequencing (WGS) methods. WGS seems to be the most effective strategy for collecting these data because it can identify all targeted antimicrobial resistance genes, including acquired colistin resistance genes (World Health Organization, 2020). The PCR detection method has limitations owing to its selective amplification of only the known sequence. If suspected organisms carry novel mcr genes or mutations, the PCR method alone may not detect that information (World Health Organization, 2021).

Since the presence of mcr genes on transmissible plasmids was reported, the colistin resistance rate has increased significantly, especially in Asia, Africa, and Europe. Therefore, rapid screening methods for mcr-harboring microorganisms are necessary. The only recommended phenotypic detection method is broth dilution, which is laborious compared to the disc diffusion or gradient diffusion methods. Although genetic-based detection methods are the gold standard, they require sophisticated instruments and experienced users. It is also difficult to detect all the responsible colistin resistance genes, especially the acquired genes. Therefore, a more practical method for routine laboratory screening is required (World Health Organization, 2021). Phenotypic detection methods that are still under development have been proposed, such as agar-based screening media (CHROMID® Colistin R agar, Superpolymyxin™, CHROMAgar™ COL/APSE), the Rapid Polymyxin NP test, Colispot, and disc prediffusion (Boyen et al., 2010; Nordmann et al., 2016a; Nordmann et al., 2016b; Abdul Momin et al., 2017; Jouy et al., 2017; Garcia-Fernandez et al., 2019).

4 COLISTIN RESISTANCE SURVEILLANCE

Public health awareness of the increasing prevalence of antimicrobial-resistant microorganisms has led to the implementation of antimicrobial stewardship programs worldwide. One strategy is to monitor the resistance of bacteria to slow the spread of resistant microorganisms. Therefore, many surveillance programs have been initiated to monitor antimicrobial resistance in all countries, including the Global Antimicrobial Resistance and Use Surveillance System (GLASS), Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR), Latin American and
Caribbean Network for Antimicrobial Resistance Surveillance (ReLAVRA), and the European Antimicrobial Resistance Surveillance Network (EARS-Net). A report of colistin resistance in bloodstream infections from the SENTRY program from 2009 to 2016 showed a resistance rate of less than 1% in P. aeruginosa, 3.1% in A. baumannii, and more than 10% in Enterobacteriaceae (Diekema et al., 2019). In Canada, the CANWARD surveillance study showed that between 2007 and 2016, Enterobacter cloacae, P. aeruginosa, and A. baumannii were the top three microorganisms with the highest colistin resistance rates of approximately 18.1%, 5.0%, and 2.5%, respectively (Zhanel et al., 2019). Similar results were obtained by Bialvaei and Kafil, who also detected a high resistance rate of colistin among Enterobacteriaceae, especially from Enterobacter spp. and K. pneumoniae, in the Asia-Pacific and Latin American regions (Bialvaei and Samadi Kafil, 2015). The abrupt increase in colistin resistance in Asian countries has led to the discovery of mobile colistin resistance (MCR). In Thailand, the National Antimicrobial Resistance Surveillance Center, Thailand (NARST) also monitors colistin resistance in clinically important microorganisms. Fortunately, the resistance rates to colistin in E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii in Thailand in 2019 were less than 5% (National Antimicrobial Resistant Surveillance Center, 2020).

5 THE IMPORTANCE OF THE POLYMIXYNS IN NON-FERMENTATIVE BACTERIA TREATMENT

Polymyxins and carbapenems are considered last-resort antibiotics for the treatment of Gram-negative bacteria; however, owing to their misuse, the problem of antibiotic resistance is worsening, particularly in low- to middle-income countries (de Carvalho et al., 2022). A multicenter surveillance study in Taiwan found that the incidence of MDR, XDR, and CR P. aeruginosa infections in hospitalized patients increased from 25.1% to 27.5%, 7.7 to 8.4%, and 19.7% to 27.5%, respectively, between 2016 and 2018 (Jean et al., 2022). In the past decade, hospital-associated P. aeruginosa has showed high MDR/CR numbers in Europe, with prevalence rates of more than 30% (Micek et al., 2015). In 2020, more than half of the countries in Europe showed carbapenem resistance of more than 25% among invasive isolates (European Centre for Disease Prevention and Control, 2022). A meta-analysis found that colistin is the most effective antibiotic for the treatment of Pseudomonas spp. Throughout the study period, colistin was the only antibiotic with a resistance rate of less than 10% (Bonyadi et al., 2022).

In China, Acinetobacter spp. showed a high level of resistance to all carbapenems caused by plasmids carrying various carbapenemase genes (Jean et al., 2022). In a 2022 report from Europe, healthcare-associated isolates of CR-Acinetobacter spp. were >50% in at least 20 countries, especially in southern and eastern Europe (European Centre for Disease Prevention and Control, 2022). Data from many surveillance studies have indicated that carbapenem resistance has been increasing over the last decade, suggesting that carbapenems may not be a suitable standard treatment for MDR, XDR, and CR non-fermentative Gram-negative bacteria. Therefore, polymyxin-based therapy has become the recommended treatment option for CR A. baumannii (CRAB) and XDR P. aeruginosa infections (de Carvalho et al., 2022). In clinical practice, colistin or polymyxin has always been used in combination therapy with at least one additional antibiotic from a different class against CR microorganisms or in patients with risk factors (Bassetti et al., 2018; Dui 2019).

The “Guidelines Recommendations for Evidenced-based Antimicrobial use in Taiwan” (GREAT) working group has launched recommendations and guidelines for the treatment of infections caused by MDR organisms (Sy et al., 2022). In bloodstream infections caused by CRAB, the recommended treatment is colistin 5 mg/kg IV loading dose, followed by IV every 12 h of 2.5 mg × (1.5 × creatine clearance + 30) and/or imipenem/cilastatin 500 mg IV every 6 h or meropenem 2 g IV every 8 h. In pneumonia caused by CRAB, the recommended treatment is colistin 5 mg/kg IV loading dose, then IV every 12 h of 2.5 mg × (1.5 × creatine clearance + 30) and/or imipenem/cilastatin 500 mg IV every 6 h or meropenem 2 g IV every 8 h and adjunctive colistin inhalation 1.25–15 MIU/day in 2–3 divided doses. For any clinical symptoms caused by difficult-to-treat P. aeruginosa, one of the recommended regimens is colistin 5 mg/kg IV loading dose, followed by IV every 12 h at 2.5 mg × (1.5 × creatine clearance + 30) or combination therapy for 5–14 days. Colistin plays a crucial role in MDR microorganism treatment. Therefore, if colistin resistance mechanisms can be transmitted more easily like MCR, it would significantly impact non-fermentative bacterial treatment.

6 CHROMOSOMAL RESISTANCE OF COLISTIN

Before the 2000s, reports of resistance to colistin were quite rare, which might have been caused by its low usage over the last 30 years (Nation and Li, 2009). The main mechanism of polymyxin resistance in Gram-negative bacteria is the modification of lipid A, which reduces electrostatic interactions with polymyxins (Cai et al., 2012). Some Gram-negative bacteria, such as Proteus spp. and Burkholderia spp., demonstrated resistance to polymyxins naturally by modifying LPS with 4-amino-4-deoxy-L-arabinose (L-Ara4N) (Olaitan et al., 2014). Chromosomal encoding enzymes (EptA, EptB, and EptC) have been identified in some Gram-negative bacteria, such as Salmonella. EptA, also known as PmrC, is a complex operon. These enzymes, encoded by phosphoethanolamine (pEtN) transferases, can add pEtN to LPS (Zhang et al., 2019; Hamel et al., 2021).

The acquired resistance mechanisms of chromosomally encoded polymyxins are mainly caused by modification of the LPS charge (Olaitan et al., 2014). These resistance mechanisms have been reported in many Gram-negative microorganisms, such as Salmonella enterica, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli. They are involved in the two-component system genes phoP/phoQ and pmrA/pmrB (Needham and Trent, 2013; Olaitan...
et al., 2014). PhoQ and PmrB proteins possess tyrosine kinase activity, which phosphorylates the regulator protein (PhoP or PmrA), activates the pmrHIJKLM operon, and finally modifies the surface of bacteria by adding L-Ara4N or pEtN to lipid A (Ayoub Moubareck, 2020). PhoP/PhoQ is also regulated by the ColR/ColS and CprR/CprS systems. Mutations in these regulatory systems can lead to overexpression of PhoP/PhoQ in P. aeruginosa (Gutu et al., 2013). ParR/ParS is also involved in colistin resistance in P. aeruginosa, with upregulation of the LPS modification operon at sub-inhibitory concentrations of polymyxins (Fernandez et al., 2010). The two-component systems found in P. aeruginosa are PhoP/PhoQ and PmrA/PmrB, but only PmrA/PmrB has been reported in A. baumannii (McPhee et al., 2003; Adams et al., 2009; Beceiro et al., 2011). In addition, in A. baumannii, the insertion of ISAba11 into the biosynthesis genes lpxA, lpxC, and lpxD leads to the complete loss of LPS and colistin resistance (Moffatt et al., 2010; Moffatt et al., 2011).

Additional resistance mechanisms, such as overexpression of efflux pumps, outer membrane remodeling, and lack of LPS formation, have also been reported to be involved in colistin resistance (Olaitan et al., 2014; Ayoub Moubareck, 2020). However, these resistance mechanisms appear to be located on the chromosome. Therefore, the transmission of these mechanisms is difficult, and the horizontal gene transfer of these mechanisms has never been reported (Liu et al., 2016).

7 TRANSMISSIBLE RESISTANCE OF COLISTIN

Although the use of colistin in human clinical settings was reduced in the 1970s and was reintroduced in the late 1990s, colistin is commonly consumed in animal farming to prevent E. coli and Salmonella spp. infections (Kempf et al., 2013; Rhouma et al., 2016a). Prior to the discovery of MCR-1, surveillance of antimicrobial resistance revealed a significant increase in colistin resistance. In 2015, the first mobilized colistin resistance gene, mcr-1, was discovered in E. coli in a Chinese pig farm using a routine antimicrobial resistance surveillance program (Liu et al., 2016). MCR-1 encodes pEtN-lipid A transferase, which can modify the lipid A portion of LPS by the addition of pEtN. MCR-1 also demonstrates transmission and maintenance properties in K. pneumoniae and P. aeruginosa (Liu et al., 2016). Moreover, the microorganisms that harbored MCR-1 showed an increase in the MIC values of colistin. Furthermore, researchers have identified the mcr-1 gene in clinical isolates from inpatients in the same area of a pig farm (Liu et al., 2016). Therefore, awareness of this gene’s transferable properties is of great concern because colistin is currently considered one of the last-resort treatments for XDR microorganisms.

7.1 The Variation of MCR

After the MCR-1 discovery, many surveillance programs discovered MCR variation. The nomenclature of mcr genes was proposed in 2018 (Partridge et al., 2018). As of January 2022, ten mcr-gene families with more than 100 variants have been reported in GenBank. The highest number of MCR variants was found in MCR-3 followed by MCR-1, with 42 and 32 variants, respectively (Medicine, 2022). Only MCR-6 and MCR-7 showed one variant each. MCR-5, MCR-8, and MCR-10 all had four variants. The rest of the MCR families, i.e., MCR-2, MCR-4, and MCR-9, have 8, 6, and 3 variants, respectively. The phylogenetic tree of the MCR families is shown in Figure 2.

FIGURE 2 | The phylogenetic tree of MCR-gene variants using the Neighbor-Joining method alignment. Multiple sequence alignment was calculated by the clustal omega (Madeira et al., 2019), and the results were illustrated by the Interactive Tree of Life (Letunic and Bork, 2021).
7.2 The Epidemiology of the mcr Gene

The discovery of the mcr gene occurred from a surveillance study in China before it spread around the world (Liu et al., 2016). In 2016, many countries across all continents except Australia reported the discovery of MCR-1 (Table 1). Most MCR-harboring microorganisms belong to the Enterobacterales order, such as E. coli, Salmonella spp., and K. pneumoniae. Apart from Enterobacterales, colistin was also considered a last-resort antibiotic option for non-fermentative Gram-negative bacteria, Acinetobacter spp., and P. aeruginosa. Pseudomonas spp. and Acinetobacter spp. are the most common microorganisms that cause nosocomial infections. They have many intrinsic resistance mechanisms and readily acquire transmissible antibiotic resistance genes, which limit antibiotic treatment options. These organisms belong to ESKAPE (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacteriaceae), a group of bacteria that are considered an emerging threat in this century (Boucher et al., 2009). Transferable colistin resistance

Continent	Country	List of organisms	Source of specimens	Reference
Africa	Algeria	E. coli A, C		(Berrazeg et al., 2016; Olaitan et al., 2016)
	Egypt	E. coli A, C		(Elahinezhad et al., 2016; Khalifa et al., 2016)
	South Africa	E. coli A, C		(Perreten et al., 2016; Poirel et al., 2016)
	Tunisia	E. coli A		(Grami et al., 2016)
Asia	Bahrain	E. coli C		(Sonnevend et al., 2016)
	Cambodia	E. coli C		(Stoesser et al., 2016)
	China	E. coli A, C, K. pneumonia A, C E. aerogenes C E. cloacae C Kluvyera ascorbata C S. enterica A	(Li et al., 2016; Liu et al., 2016; Zeng et al., 2016; Zhao and Zong, 2016)	
	Japan	E. coli A		(Kusumoto et al., 2016; Suzuki et al., 2016)
	Laos	E. coli A, C		(Olaitan et al., 2016)
	Malaysia	E. coli A, E, C		(Yu et al., 2016)
	Pakistan	E. coli C		(Mohsin et al., 2017)
	Singapore	E. coli C		(Teo et al., 2016a; Teo et al., 2016b)
	Saudi Arabia	E. coli C		(Sonnevend et al., 2016)
	South Korea	E. coli A		(Lim et al., 2016)
	Thailand	E. coli C		(Olaitan et al., 2016)
	United Arab Emirates	E. coli C		(Sonnevend et al., 2016)
	Vietnam	E. coli A	Shigella sonnei C	(Malhotra-Kumar et al., 2016b)
	–			(Pham Thanh et al., 2016)
Australia	Denmark	E. coli A, C		(Hasman et al., 2015)
	Estonia	E. coli A		(Brauer et al., 2016)
	Germany	E. coli A, C		(Falgenhauer et al., 2016)
	France	Salmonella spp. A	E. coli A	(Webb et al., 2016)
			K. pneumoniae C	(Haenni et al., 2016)
	Belgium	E. coli A		(Poilain et al., 2016)
	Italy	E. coli A, C		(Cannatelli et al., 2016; Carnevali et al., 2016; Di Paolo et al., 2016; Zogg et al., 2016)
	Lithuania	E. coli A		(Ruzauskas and Vaskieviciute, 2016)
	Netherlands	E. coli A, C		(Arcilla et al., 2016; Kuyttmans-van den Bergh et al., 2016; Veldman et al., 2016)
	Norway	Salmonella spp. A	E. coli A	(Solheim et al., 2016)
	Poland	E. coli A		(Zdebiski et al., 2016)
	Portugal	E. coli E		(Campos et al., 2016; Figueiredo et al., 2016; Jones-Dias et al., 2016)
	Russia	Salmonella spp. A	E. coli A	(Castanheira et al., 2016)
	Spain	E. coli A, C		(Prim et al., 2016; Quesada et al., 2016)
	Sweden	E. coli A		(Vading et al., 2016)

(Continued)
mechanisms in these organisms are a serious problem in the healthcare setting. Therefore, monitoring the \textit{mcr} gene in non-fermentative Gram-negative bacteria is necessary to combat multidrug resistance.

7.2.1 The Epidemiology of the \textit{mcr} Gene in \textit{Pseudomonas} spp.

MCR-1 is the major MCR family member found in \textit{Pseudomonas} spp. (Table 2). \textit{Pseudomonas} spp. harboring the \textit{mcr}-gene have been reported by at least one country in all continents, except Australia (Figure 3). \textit{P. aeruginosa} is a major species of \textit{Pseudomonas} that harbors the \textit{mcr} gene. There are also some reports of \textit{mcr} genes in \textit{Pseudomonas putida} (Caselli et al., 2018; Ara et al., 2021). PCR is used as the primary detection method for \textit{mcr} genes in \textit{Pseudomonas} spp. However, the first report of \textit{Pseudomonas} spp. carrying the \textit{mcr} gene by Snesrud et al. used the WGS method combining short-read and long-read sequences (Snesrud et al., 2018). Moreover, they also

Continent	Country	List of organisms	Source of specimens	Reference
North America	Canada	E. coli	A, C	(Mulvey et al., 2016)
North America	United States of America	E. coli	A, C	(McGann et al., 2016; Meinersmann et al., 2016)
South America	Argentina	E. coli	A, C	(Liakopoulos et al., 2016; Rapoport et al., 2016)
South America	Brazil	E. coli	A	(Fernandes et al., 2016)
South America	Ecuador	E. coli	C	(Ortega-Paredes et al., 2016)
South America	Venezuela	E. coli	A, C	(Delgado-Blas et al., 2016)

A, animal sources; C, clinical sources; E, environmental sources; *mcr1.2 gene reported; #mcr-1 and mcr-2 gene reported.

TABLE 2 | Summary of the \textit{mcr} gene identified in \textit{Pseudomonas} spp., specimen description, MCR family, and susceptibility profile.

Country	Sources of samples [details (if any)]	Detection method	Year of sample collection	Genus species	MCR family	Number of detected samples	Susceptibility profile (\text{\mu g/ml}) (determination method)	Reference	
Bangladesh	Clinical samples (urine)	PCR	2017–2018	P. putida	MCR-1	3	32–128 (Agar dilution)	(Ara et al., 2021)	
Brazil	Clinical sample (urine)	PCR	2015–2016	P. aeruginosa	MCR-1	1	8–16	(Vitek R 2 Compact)	(Nitz et al., 2021)
Brazil	Animal samples (ear swabs from cat and dog)	PCR	2018–2020	Pseudomonas spp.	MCR-1	11	n/a	(Disk diffusion)	(Martins et al., 2022)
Egypt	Clinical samples	PCR	No data	P. aeruginosa	MCR-1	8	8–256 (Agar dilution)	(Ahmed et al., 2019)	
Egypt	Animal samples (bird feces)	PCR	2017–2018	P. aeruginosa	MCR-1	6	n/d		(Ahmed et al., 2019)
Egypt	Animal samples (milk from dairy cows)	PCR	2018–2020	P. aeruginosa	MCR-1	3	32–128 (Broth microdilution)	(Tartor et al., 2021)	
Iran	Clinical sample (burn and wound)	PCR	2017–2018	P. aeruginosa	MCR-1	3	4–128	(E-test®)	(Tahmassebi et al., 2020a)
Iran	Clinical samples (blood)	PCR	2018–2019	P. aeruginosa	MCR-1	10	4–128	(E-test®)	(Tahmassebi et al., 2020a)

(Continued)
found that the mcr-5 gene was located within a Tn3-like transposon structure on the chromosome (Snesrud et al., 2018). Considering a health approach, animal and environmental sources may also be reservoirs of mcr genes. Ahmed et al. collected fecal samples from migratory birds in Egypt during the winter season and detected MCR-1 in *P. aeruginosa* (Ahmed et al., 2019). Some studies have detected mcr genes in cow’s milk, animal meat, and soil (Fujihara et al., 2015; Javed et al., 2020; Tartor et al., 2021). It is noteworthy that the oldest specimen was retrieved from the environment in 1983 but was never recognized until the WGS era (Fujihara et al., 2015). Therefore, dissemination of the mcr gene in the environment via animal hosts is another issue that needs to be considered.

TABLE 2 | Continued

Country	Sources of samples [details (if any)]	Detection method	Year of sample collection	Genus species	MCR family	Number of detected samples	Susceptibility profile (μg/ml) (determination method)	Reference
Italy	Environment sample (hospital surfaces)	PCR	2016–2017	*P. aeruginosa*	MCR-1	1	4 (Broth microdilution)	(Caselli et al., 2018)
				P. putida	MCR-1	1	8 (Broth microdilution)	
Japan	Environment sample (soil)	WGS	1983	*P. aeruginosa*	MCR-5^a	1	n/a	(Fujihara et al., 2015)
Pakistan	Clinical sample (urine)	PCR	2017–2018	*P. aeruginosa*	MCR-1	1	16 (Broth microdilution)	(Hameed et al., 2019)
Pakistan	Animal sample	PCR	No data (18 months)	*P. aeruginosa*	MCR-1	1	≥8 (SensiTest™ Colistin)	(Javed et al., 2020)
Pakistan	Clinical samples (urine, wound)	PCR	No data (6 months)	*P. aeruginosa*	MCR-1	2	≥4 (SensiTest™ Colistin)	(Ejaz et al., 2021)
United States of America	Clinical sample (wound)	WGS (short read and long read)	2012	*P. aeruginosa*	MCR-5	1	4 (Broth microdilution)	(Snesrud et al., 2018)

^aAntimicrobial resistance gene database (NCBI). n/d, not determined; n/a, no data available.

FIGURE 3 | The worldwide dissemination of the mcr gene in *Pseudomonas* spp. Countries that reported only one type of mcr gene were colored to represent the mcr gene. The country that reported more than one type of mcr gene was filled with gray background containing color bands of the reported mcr gene.
Because of the low incidence of the \(mcr \) gene in *Pseudomonas* compared to other microorganisms in ESKAPE pathogens, this raises the question of the fitness barrier or transferability properties of the \(mcr \) gene among *Pseudomonas*. The transmissibility of \(mcr \) genes in *P. aeruginosa* was demonstrated by Tartor et al. via conjugation with *E. coli* J53 (Tartor et al., 2021). Four \(mcr \) genes, \(mcr-1, mcr-2, mcr-3, \) and \(mcr-7 \), were able to transfer into the recipient bacteria and increased the MIC of the recipient cells up to 64 \(\mu \)g/ml (Tartor et al., 2021). Cervoni et al. also demonstrated that MCR-1 increases colistin resistance in recipient cells. Moreover, the expression of MCR-1 in *Pseudomonas* does not affect bacterial growth or cell envelope homeostasis (Cervoni et al., 2021).

7.2.2 The Epidemiology of the \(mcr \) Gene in *Acinetobacter* spp.

MCR-1 and MCR-4 are the major MCR families reported in *Acinetobacter* spp. (**Table 3**). Other \(mcr \) genes found in *A. baumannii* include \(mcr-2 \) and \(mcr-3 \) (Al-Kadmy et al., 2020). Reports of MCR harboring *Acinetobacter* spp. have been obtained from all continents, except North America and Australia (**Figure 4**). The oldest *Acinetobacter* specimen in which \(mcr \) genes were identified was from a stored clinical sample retained from a patient in Brazil in 2008, indicating that the \(mcr \) gene circulated for quite a period prior to its discovery by Liu et al. in 2015 (Martins-Sorensen et al., 2020). PCR has been used in *Acinetobacter* spp. for \(mcr \) gene detection, but short- and long-read WGS has been

Country	Sources of samples [details if any]	Detection method	Year of sample collection	Genus species	MCR family	Number of detected samples	Susceptibility profile (\(\mu \)g/ml) (determination method)	Reference
Brazil	Clinical sample (cerebrospinal fluid)	WGS	2008	A. baumannii	MCR-4.3	1	64 (Broth dilution)	(Martins-Sorensen et al., 2020)
China	Clinical sample	PCR	2018	A. baumannii	MCR-1.1	1	8 (Broth microdilution)	(Fan et al., 2020)
China	Animal sample (pig feces)	WGS	2018	A. baumannii	MCR-4.3	1	8 (Broth dilution)	(Hamidian et al., 2019)
China	Animal sample (pig lung)	WGS	2018\(^a\)	A. pittii	MCR-1\(^b\)	1	n/a	(Yang and Zhang, 2018)
Czech Republic	Animals sample (imported aquaculture products)	WGS	2019	A. baumannii	MCR-4.3	1	>16 (Broth microdilution)	(Kalová et al., 2021)
Czech Republic	Animal sample (imported raw turkey liver)	WGS	2017	A. baumannii	MCR-4.5	1	16 (Broth microdilution)	(Bitar et al., 2019)
Egypt	Clinical samples	PCR	2019	A. baumannii	MCR-4.3	1	16 (Broth microdilution)	(Hamidian et al., 2020)
Finland	Environment sample (paper pulp mill)	WGS	2020\(^a\)	A. baumannii	MCR-4\(^a\)	1	>4 (E-test\(^b\))	(Shabban et al., 2020)
Iraq	Clinical samples	PCR	2014–2018	A. baumannii	MCR-1	22	>4 (Broth microdilution)	(Kareem, 2020)
Iraq	Clinical and environmental samples	PCR	2016–2018	A. baumannii	MCR-1	89	>2 (Broth microdilution)	(Al-Kadmy et al., 2020)
Italy	Environment samples (hospital surfaces)	PCR	2016–2017	A. lwofii	MCR-1	4	4-8 (Broth microdilution)	(Caselli et al., 2018)
Pakistan	Clinical sample (blood)	PCR	2017–2018	A. baumannii	MCR-1	1	16 (Agar dilution and broth microdilution)	(Hamidian et al., 2019)
Pakistan	Clinical samples (pus, wound, tracheal)	PCR	No data (6 months)	A. baumannii	MCR-1	3	>4 (SensiTest™ colistin)	(Ejaz et al., 2021)
Republic of Korea	Animal sample (imported pork)	WGS	2019	A. baumannii	MCR-4.3	1	16 (Broth microdilution)	(Cha et al., 2021)
South Africa	Clinical sample PCR, WGS	2017	A. baumannii	MCR-4.3	1	16 (Broth microdilution)	(Snyman et al., 2021)	
Thailand	Clinical sample	WGS	2010	A. nosocomialis	MCR-4.3\(^b\)	1	n/a	(Kamolvit et al., 2014)

\(^a\)Year of genome assembly.

\(^b\)Antimicrobial resistance gene database (NCBI); n/a, no data available.

Table 3 | Summary of the \(mcr \) gene identified in *Acinetobacter* spp., specimen description, MCR family, and susceptibility profile.
applied in *Acinetobacter* spp. genome studies and many mobile genetic elements involved in gene transfer have been identified (Table 4). While *A. baumannii* has been shown to harbor a plasmid carrying the *mcr* gene, plasmids in *A. nosocomialis* have also been reported (Cha et al., 2021; Kalova et al., 2021; Snyman et al., 2021). The *mcr*-4.3 gene in *Acinetobacter* spp. was found on a plasmid surrounding the transposon Tn3-family and/or insertion sequence. These mobile genetic elements are important for the transfer of many antibiotic resistance genes. Interestingly, some of these plasmids were unable to conjugate and/or were transferable between bacterial species.

8 CONCLUDING REMARKS

Colistin is recognized as a highly toxic old-generation antimicrobial agent. Owing to the shortage of antibiotic options in fighting against MDR Gram-negative bacteria, this...
drug was reintroduced into the clinical setting and has been recognized as one of the last-resort drugs. Non-fermentative Gram-negative bacteria such as *A. baumannii* and *P. aeruginosa* are already recognized as major threats in this century; when combined with resistance to last-resort antibiotics, the severity of the situation is critical. The resistance mechanism against colistin is considered to be chromosomally encoded and difficult to transfer. MCR was discovered in 2015, and several investigations have been subsequently published. To date, ten families of the mcr gene with more than 100 variants have been registered. More efforts are now being made to address this issue, and rapid detection with a high-sensitivity method is essential to track the resistance pattern. A sophisticated approach, such as WGS, is also needed to enhance the knowledge of resistance mechanisms. While waiting for the discovery of a rapid detection technique and more information, a strategy to control the resistant pathogens should be implemented along with the antibiotic stewardship program, which is recognized as a good practice in hospital settings.

REFERENCES

Abd El-Baky, R. M., Masoud, S. M., Mohamed, D. S., Waly, N. G., Shafik, E. A., Mohareb, D. A., et al. (2020). Prevalence and Some Possible Mechanisms of Colistin Resistance Among Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas Aeruginosa. *Infect. Drug Resist.* 13, 323–332. doi: 10.2147/IDR.S288811

Abdul Momin, M. H. F., Bean, D. C., Hendriksen, R. S., Haenni, M., Phee, L. M., and Wardam, D. W. (2017). CHROMagar COL-APSE: A Selective Bacterial Culture Medium for the Isolation and Differentiation of Colistin-Resistant Gram-Negative Pathogens. *J. Med. Microbiol.* 66 (11), 1554–1561. doi: 10.1099/jmm.0.000002

Adams, M. D., Nickel, G. C., Bajaksouzian, S., Lavender, H., Murthy, A. R., Jacobs, M. R., et al. (2009). Resistance to Colistin in *Acinetobacter Baumannii* Associated With Mutations in the PmrAB Two-Component System. *Antimicrob. Agents Chemother.* 53 (9), 3628–3634. doi: 10.1128/AAC.00284-09

Ahmed, Z. S., Elsha, E. A., Khalefa, H. S., Kadry, M., and Hamza, D. A. (2019). Evidence of Colistin Resistance Genes (*Mcr-1 and Mcr-2*) in Wild Birds and its Public Health Implication in Egypt. *Antimicrob. Resist. Infect. Control* 8, 197. doi: 10.1186/s13756-019-0657-5

Al-Kadmy, I. M. S., Ibrahim, S. A., Al-Saryi, N., Aziz, S. N., Besinis, A., and Hetta, H. F. (2020). Prevalence of Genes Involved in Colistin Resistance in *Acinetobacter Baumannii*: First Report From Iraq. *Microb. Drug Resist.* 26 (6), 616–622. doi: 10.1089/mdr.2019.0243

Ara, B., Urmi, U. L., Haque, T. A., Nahar, S., Rumnaz, A., Ali, T., et al. (2021). Detection of Mobile Colistin-Resistance Gene Variants (*Mcr-1 and Mcr-2*) in Urinary Tract Pathogens in Bangladesh: The Last Resort of Infectious Disease Management Colistin Efficacy is Under Threat. *Expert Rev. Clin. Pharmacol.* 14 (4), 513–522. doi: 10.1080/17512433.2021.1901577

Arcilla, M. S., van Hemt, J. M., Matamoros, S., Melles, D. C., Penders, J., de Jong, M. D., et al. (2016). Dissemination of the *Mcr-1* Colistin Resistance Gene. *Lancet Infect. Dis.* 16 (2), 147–149. doi: 10.1016/S1473-3099(15)00541-1

Ayoub Moubareck, C. (2020). Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. *Membranes (Basel)* 10 (8), 181. doi: 10.3390/membranes10080181

Bassetti, M., Vena, A., Croxatto, A., Righi, E., and Guery, B. (2018). How to Manage *Pseudomonas Aeruginosa* Infections. *Drugs Context* 7, 212527. doi: 10.7573/dic.212527

Becerro, A., Llobet, E., Aranda, J., Bengoechea, J. A., Doumith, M., Hornsey, M., et al. (2011). Phosphoethanolamine Modification of Lipid A in Colistin-Resistant Variants of *Acinetobacter Baumannii* Mediated by the pmrAB Two-Component Regulatory System. *Antimicrob. Agents Chemother.* 55 (7), 3370–3379. doi: 10.1128/AAC.0079-11

AUTHOR CONTRIBUTIONS

PK wrote the manuscript and conceived the figures. MC and KT reviewed the manuscript draft. All authors contributed to the article and approved the submitted version.

FUNDING

This work is financially supported by MU-Talents program and Specific League Funds from Mahidol University.

ACKNOWLEDGMENTS

The authors wish to thank the staff from the Department of Microbiology, Faculty of Pharmacy, Mahidol University for suggestions on this work. Their support and collaboration are gratefully acknowledged.

Berrazeg, M., Hadjadi, L., Ayad, A., Drissi, M., and Rolain, J. M. (2016). First Detected Human Case in Algeria of *Mcr-1* Plasmid-Mediated Colistin Resistance in a 2011 *Escherichia Coli* Isolate. *Antimicrob. Agents Chemother.* 60 (11), 6996–6997. doi: 10.1128/AAC.01117-16

Bialvaei, Z. A., and Samadi Kafi, H. (2015). Colistin, Mechanisms and Prevalence of Resistance. *Curr. Med. Res. Opin.* 31 (4), 707–721. doi: 10.1185/03007995.2015.1018989

Bitar, I., Medvecky, M., Gelbickova, T., Jakubu, V., Hrabak, J., Zemlickova, H., et al. (2019). Complete Nucleotide Sequences of *Mcr-4.3*-Carrying Plasmids in *Acinetobacter Baumannii* Sequence Type 345 of Human and Food Origin From the Czech Republic, the First Case in Europe. *Antimicrob. Agents Chemother.* 63 (10), e01166-19. doi: 10.1128/AAC.01166-19

Bonyadi, P., Saleh, N. T., Dehghani, M., Yamini, M., and Amini, K. (2022). Prevalence of Antibiotic Resistance of *Pseudomonas Aeruginosa* in Cystic Fibrosis Infection: A Systematic Review and Meta-Analysis. *Microb. Pathog.* 165, 105461. doi: 10.1016/j.micpath.2022.105461

Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., et al. (2009). Bad Bugs, No Drugs: No ESKAPE! An Update From the Infectious Diseases Society of America. *Clin. Infect. Dis.* 48 (1), 1–12. doi: 10.1086/595011

Boyer, F., Vangroenweghe, F., Butaye, P., De Graef, E., Castrhyck, F., Heylen, P., et al. (2010). Disk Prediffusion is a Reliable Method for Testing Colistin Susceptibility in Porcine *E. Coli* Strains. *Vet. Microbiol.* 143 (3–4), 359–362. doi: 10.1016/j.vetmic.2010.01.010

Brauer, A., Telling, K., Laht, M., Kalmus, P., Lutsar, I., Remm, M., et al. (2016). Plasmid With Colistin Resistance Gene *Mcr-1* in Expanded-Spectrum-Beta-Lactamase-Producing *Escherichia Coli* Strains Isolated From Pig Slurry in Estonia. *Antimicrob. Agents Chemother.* 60 (11), 6933–6936. doi: 10.1128/AAC.00443-16

Cai, Y., Chai, D., Wang, R., Liang, B., and Bai, N. (2012). Colistin Resistance of *Acinetobacter Baumannii*: Clinical Reports, Mechanisms and Antibimicrobial Strategies. *J. Antimicrob. Chemother.* 67 (7), 1607–1615. doi: 10.1093/jac/dks084

Campos, J., Cristina, L., Peixe, L., and Antunes, P. (2016). MCR-1 in Multidrug-Resistant and Copper-Tolerant Clinically Relevant *Salmonella* 1,4,[5],12:i:- and *S. Rissen Clones in Portugal to 2015. *Euro Surveill* 21 (26), pii=30270. doi: 10.2807/1560-7917.ES.2016.21.26.30270

Cannatelli, A., Giani, T., Antonelli, A., Principe, L., Luzzaro, F., and Rossolini, G. M. (2016). First Detection of the *Mcr-1* Colistin Resistance Gene in *Escherichia Coli* in Italy. *Antimicrob. Agents Chemother.* 60 (5), 3257–3258. doi: 10.1128/AAC.00246-16

Carnevali, C., Morganti, M., Scalfriti, E., Bolzoni, L., Pongolini, S., and Casadei, G. (2016). Occurrence of *Mcr-1* in Colistin-Resistant *Salmonella Enterica* Isolates
MCR in Acinetobacter and Pseudomonas

Javed, H., Saleem, S., Zafar, A., Ghafoor, A., Shahzad, A. B., Ejaz, H., et al. (2020). Emergence of Plasmid-Mediated Mcr Genes From Gram-Negative Bacteria at the Human-Animal Interface. Gut Pathog. 12 (3), 54. doi: 10.1186/s13099-020-00392-3

Jean, S. S., Harnod, D., and Hsueh, P. R. (2022). Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infection Microbiol. 12, 125. doi: 10.3389/fmicb.2022.823684

Kareem, S. M. (2020). Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 16 (2), 161–168. doi: 10.1016/S1473-3099(15)00424-7

Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., et al. (2019). The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acids Res. 47 (W1), W636–W641. doi: 10.1093/nar/gkz268

Malhotra-Kumar, S., Xavier, B. B., Das, A. J., Lammens, C., Butaye, P., and GoosSENS, H. (2016a). Colistin Resistance Gene Mcr-1 Harboured on a Multidrug Resistant Plasmid. Lancet Infect. Dis. 16 (3), 283–284. doi: 10.1016/S1473-3099(16)00112-8

Malhotra-Kumar, S., Xavier, B. B., Das, A. J., Lammens, C., Hoang, H. T., Pham, N. T., et al. (2016b). Colistin-Resistant Escherichia Coli Harboring MCR-1 Isolated From Food Animals in Hanoi, Vietnam. Lancet Infect. Dis. 16 (3), 286–287. doi: 10.1016/S1473-3099(16)00041-4

Mancuso, G., Midiri, A., Gerace, E., and Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 10 (10), 1310. doi: 10.3390/pathogens10101310

Martins, E., Maboni, G., Battisti, R., da Costa, L., Selva, H. L., Levitizi, E. D., et al. (2022). High Rates of Multidrug Resistance in Bacteria Associated With Small Animal Otitis: A Study of Cumulative Microbiological Culture and Antimicrobial Susceptibility. Microb. Pathog. 165, 105399. doi: 10.1016/j.micpath.2022.105399

McPhee, J. B., Lenwenza, S., and Hancock, R. E. (2003). Cationic Antimicrobial Peptides Activate a Two-Component Regulatory System. PmRN-A-PmR, That Regulates Resistance to Polymyxin B and Cationic Antimicrobial Peptides in Pseudomonas Aeruginosa. Mol. Microbiol. 50 (1), 205–217. doi: 10.1046/j.1365-2958.2003.03673.x

Meinersmann, R. J., Ladely, S. R., Plumblee, J. R., Hall, M. C., Simpson, S. A., Ballard, L. L., et al. (2016). Colistin Resistance Mcr-1-Gene-Bearing Escherichia Coli Strain From the United States. Genome Announc. 4 (5), e00898-16. doi: 10.1128/genomea.00898-16

Mick, S. T., Wunderink, R. G., Kollef, M. H., Chen, C., Rello, J., Chastre, J., et al. (2015). An International Multicenter Retrospective Study of Pseudomonas Aeruginosa Nosocomial Pneumonia: Impact of Multidrug Resistance. Crit. Care. 19, 219. doi: 10.1186/s13054-015-0926-5

Moffatt, J. H., Harper, M., Adler, B., Nation, R. L., Li, J., and Boyce, J. D. (2011). Resurgence of Colistin: A Review of Resistance, Toxicity, Pharmacodynamics, and Dosing. Antimicrob. Agents Chemother. 54 (12), 4971–4977. doi: 10.1128/AAC.00834-10

Mohsin, M., Raza, S., Roschanski, N., Guenther, S., Ali, A., and Schierack, P. (2017). Description of the First Escherichia Coli Clinical Isolate Harboring the Colistin Resistance Gene Mcr-1 From the Indian Subcontinent. Antimicrob. Agents Chemother. 61 (9), e01945-16. doi: 10.1128/AAC.01945-16

Murphy, M. R., Mataseje, L. F., Robertson, J., Nash, J. H., Boelrin, P., Toyé, B., et al. (2016). Dissemination of the Mcr-1 Colistin Resistance Gene. Lancet Infect. Dis. 16 (3), 289–290. doi: 10.1016/S1473-3099(16)00067-0

National Antimicrobial Resistance Surveillance Center, T (2020). AntibioticGRAM (Jan - Dec). Available at: http://narst.dmsc.moph.go.th/antibiograms.html [Accessed January 20, 2022].

National Library of Medicine (2022). NCBI National Database of Antibiotic Resistant Organisms (NDARO). Available at: https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/ [Accessed January 31, 2022].

Nation, R. L., and Li, J. (2009). Colistin in the 21st Century. Curr. Opin. Infect. Dis. 22 (6), 535–543. doi: 10.1097/QCO.0b013e3283236767

Needham, B. D., and Trent, M. S. (2013). Fortifying the Barrier: The Impact of Lipid A Remodelling on Bacterial Pathogenesis. Nat. Rev. Microbiol. 11 (7), 467–481. doi: 10.1038/nrmicro3047
Veldman, K., van Essen-Zandbergen, A., Rapallini, M., Wit, B., Heymans, R., van Pelt, W., et al. (2016). Location of Colistin Resistance Gene Mcr-1 in Enterobacteriaceae From Livestock and Meat. J. Antimicrob. Chemother. 71 (8), 2340–2342. doi: 10.1093/jac/dkw181

Webb, H. E., Granier, S. A., Marault, M., Millemann, Y., den Bakker, H. C., Nightingale, K. K., et al. (2016). Dissemination of the Mcr-1 Colistin Resistance Gene. Lancet Infect. Dis. 16 (2), 144–145. doi: 10.1016/S1473-3099(15)00538-1

WHO Regional Office for Europe/European Centre for Disease Prevention and Control (2022). Antimicrobial Resistance Surveillance in Europe 2022 - 2020 data. Copenhagen: WHO Regional Office for Europe.

World Health Organization (2017) WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. Available at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (Accessed December 19, 2021).

World Health Organization (2020). GLASS Whole-Genome Sequencing for Surveillance of Antimicrobial Resistance. Available at: https://www.who.int/publications/i/item/glass-whole-genome-sequencing-for-surveillance-of-antimicrobial-resistance [Accessed January 20, 2022].

World Health Organization (2021). GLASS: The Detection and Reporting of Colistin Resistance. Available at: https://www.who.int/publications/i/item/glass-the-detection-and-reporting-of-colistin-resistance-2nd-ed [Accessed January 20, 2022].

Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., et al. (2016). Identification of a Novel Plasmid-Mediated Colistin-Resistance Gene, Mcr-2, in Escherichia Coli, Belgium, June 2016. Euro Surveill 21 (27), 30280. doi: 10.2807/1560-7917.ES.2016.21.27.30280

Yang, Y., and Zhang, A. (2018). Acinetobacter Pittii Strain SCsI25, Whole Genome Shortgun Sequencing Project. https://www.ncbi.nlm.nih.gov/nuccore/VDIH00000000.1 [Accessed January 31, 2022].

Yu, C. Y., Ang, G. Y., Chin, P. S., Ngeow, Y. F., Yin, W. F., and Chan, K. G. (2016). Emergence of Mcr-1-Mediated Colistin Resistance in Escherichia Coli in Malaysia. Int. J. Antimicrob. Agents 47 (6), 504–505. doi: 10.1016/j.ijantimicag.2016.04.004

Zeng, K. J., Doi, Y., Patil, S., Huang, X., and Tian, G. B. (2016). Emergence of the Plasmid-Mediated Mcr-1 Gene in Colistin-Resistant Enterobacter Aerogenes and Enterobacter Cloacae. Antimicrob. Agents Chemother. 60 (6), 3862–3863. doi: 10.1128/AAC.00345-16

Zhand, G. G., Adam, H. J., Baxter, M. R., Fuller, J., Nichol, K. A., Denisuk, A. J., et al. (2019). 42936 Pathogens From Canadian Hospitals: 10 Years of Results, (2017-16) From the CANWARD Surveillance Study. J. Antimicrob. Chemother. 74 (Suppl 4), iv5–iv21. doi: 10.1093/jac/dkx283

Zhang, H., Srinivas, S., Xu, Y., Wei, W., and Feng, Y. (2019). Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated With Polymyxin Resistance. Trends Biochem. Sci. 44 (11), 973–988. doi: 10.1016/j.tibs.2019.06.002

Zhao, F., and Zong, Z. (2016). Kluyvera Ascorbata Strain From Hospital Sewage Carrying the Mcr-1 Colistin Resistance Gene. Antimicrob. Agents Chemother. 60 (12), 7498–7501. doi: 10.1128/AAC.01165-16

Zogg, A. L., Zurfuhr, K., Nuesch-Inderbinen, M., and Stephan, R. (2016). Characteristics of ESBL-Producing Enterobacteriaceae and Methicillinresistant Staphylococcus Aureus (MRSA) Isolated From Swiss and Imported Raw Poultry Meat Collected at Retail Level. Schweiz Arch. Tierheilkd 158 (6), 451–456. doi: 10.17236/sat00071

Zurfuhr, K., Poirel, L., Nordmann, P., Nuesch-Inderbinen, M., Hachler, H., and Stephan, R. (2016). Occurrence of the Plasmid-Borne Mcr-1 Colistin Resistance Gene in Extended-Spectrum-Beta-Lactamase-Producing Enterobacteriaceae in River Water and Imported Vegetable Samples in Switzerland. Antimicrob. Agents Chemother. 60 (4), 2594–2595. doi: 10.1128/AAC.00066-16

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Khuntayaporn, Thirapanmethee and Chomnawang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.