Type III Neutrino Seesaw, Freeze-In Long-Lived Dark Matter, and the W Mass Shift

Ernest Ma
Department of Physics and Astronomy,
University of California, Riverside, California 92521, USA

Abstract

In the framework of seesaw neutrino masses from heavy fermion triplets ($\Sigma^+, \Sigma^0, \Sigma^-$), the addition of a light fermion singlet N and a heavy scalar triplet (ρ^+, ρ^0, ρ^-) has some important consequences. The new particles are assumed to be odd under a new Z_2 symmetry which is only broken softly, both explicitly and spontaneously. With $N - \Sigma^0$ mixing, freeze-in long-lived dark matter through Higgs decay becomes possible. At the same time, the W mass is shifted slightly upward, as suggested by a recent precision measurement.
Introduction: The well-known seesaw mechanism for tiny Majorana neutrino masses has three simple tree-level realizations \([1]\), depending on the heavy intermediary particles involved. Whereas Type I [heavy fermion singlet \(N\)] and Type II [heavy scalar triplet \((\xi^+, \xi^0, \xi^0)\)] are routinely considered in numerous papers, Type III [heavy fermion triplet \((\Sigma^+, \Sigma^0, \Sigma^-)\)] is rather less studied \([2,3]\). In this paper, in addition to three copies of heavy \(\Sigma\) for obtaining three light Majorana neutrinos, a new \(Z_2\) symmetry is assumed under which one new light singlet fermion \(N\) and one new heavy scalar triplet \((\rho^+, \rho^0, \rho^-)\) are odd, and all other fields are even. Whereas all dimension-four terms of the resulting Lagrangian must respect \(Z_2\) [which forbids \(N\) from coupling to lepton doublets through the usual Higgs doublet \(\Phi\) of the standard model of quarks and leptons (SM)], this symmetry is broken explicitly by the dimension-three soft term \(\Phi^\dagger \rho \Phi\), resulting thus in a small nonzero vacuum expectation value \(v_\rho\) for \(\rho^0\).

Three important consequences follow. (A) The \(W\) mass gets a slight upward shift \([4]\). (B) The \(\phi^0 - \rho^0\) and \(\Sigma^0 - N\) mixings allow the SM Higgs boson \(h\) to decay to \(NN\). (C) \(N\) decays through its mixing with the heavy \(\Sigma^0\) which couples to \(\nu \phi^0\), converting thereby to \(\nu \bar{f} f\), where \(f\) is the heaviest fermion kinematically allowed. Hence \(N\) is possibly a long-lived dark-matter candidate, produced in a freeze-in scenario \([5]\) through rare \(h\) decay \([6]\).

Higgs Potential: The Higgs potential \(V\) of this proposal consists of the SM Higgs doublet \(\Phi\) and the new real scalar triplet \(\rho\) which is odd under the assumed \(Z_2\), i.e.

\[
V = -\mu_0^2(\Phi^\dagger \Phi) + \frac{1}{2} m_1^2 (\vec{\rho} \cdot \vec{\rho}) + \frac{1}{2} \lambda_1 (\Phi^\dagger \Phi)^2 + \frac{1}{8} \lambda_2 (\vec{\rho} \cdot \vec{\rho})^2 + \frac{1}{2} \lambda_3 (\Phi^\dagger \Phi)(\vec{\rho} \cdot \vec{\rho}) + \sqrt{2} \mu_1 (\Phi^\dagger (\vec{\sigma} \cdot \vec{\rho}) \Phi, \tag{1}\]

where the \(\mu_1\) trilinear term breaks \(Z_2\) softly. Let

\[
\phi^0 = \frac{1}{\sqrt{2}} (v_0 + h), \quad \rho^0 = v_1 + s, \tag{2}\]
Then $v_{0,1}$ are determined by

$$0 = -\mu_0^2 + \frac{1}{2} \lambda_1 v_0^2 + \frac{1}{2} \lambda_3 v_1^2 - \frac{\mu_1 v_1}{\sqrt{2}},$$

(3)

$$0 = v_1 \left(m_1^2 + \frac{1}{2} \lambda_2 v_1^2 + \frac{1}{2} \lambda_3 v_0^2 \right) - \frac{\mu_1 v_0^2}{2 \sqrt{2}}.$$

(4)

For large and positive m_1^2, the scalar seesaw solution [7] is

$$v_0^2 \simeq 2 \frac{\mu_0^2}{\lambda_1}, \quad v_1 \simeq \frac{\mu_1 v_0^2}{2 \sqrt{2} m_1^2}.$$

(5)

The 2×2 mass-squared matrix spanning h and s is then

$$\mathcal{M}_{hs}^2 \simeq \begin{pmatrix} \frac{\lambda_1 v_0^2}{\sqrt{2}} & -\frac{\mu_1 v_0}{\sqrt{2}} \\ -\frac{\mu_1 v_0}{\sqrt{2}} & m_1^2 \end{pmatrix},$$

(6)

with $h - s$ mixing given by

$$\theta_{hs} \simeq \frac{\mu_1 v_0}{\sqrt{2} m_1^2} \simeq \frac{2 v_1}{v_0}.$$

(7)

To explain the new precision measurement of the W mass [4], i.e.

$$M_W = 80.4335 \pm 0.0094 \text{ GeV},$$

(8)

which is several standard deviations above the prediction of the SM ($v_1 = 0$), a central value of $v_1 \simeq 3.68$ GeV may be extracted from the analysis of Ref. [8].

Singlet-Triplet Fermion Mixing: Neutrinos obtain seesaw masses through the heavy fermion triplets from the Yukawa couplings

$$\mathcal{L}_Y = \sqrt{2} f_{\nu} (\bar{\nu}, \bar{l})_L (\bar{\sigma} \cdot \bar{\Sigma})_R \left(\begin{array}{c} \phi^0 \\ -\phi^- \end{array} \right),$$

(9)

resulting in the Dirac mass $m_{\nu \Sigma} = f_{\nu} v_0 / 2$, and then the usual seesaw Majorana neutrino mass $m_\nu = f_{\nu}^2 v_0^2 / 4 m_\Sigma$. The $\nu - S$ mixing is $\sqrt{m_\nu / m_\Sigma}$, and the coupling of Σ to νh is $\sqrt{m_\nu m_\Sigma} / v_0$.

Since N is odd under Z_2, it does not couple to ν through ϕ^0. However, it does couple to Σ through ρ, i.e.

$$\mathcal{L}'_Y = f_N \bar{N}_L (\bar{\rho} \cdot \bar{\Sigma})_R.$$

(10)
The $N - \Sigma^0$ mixing is then $f_N v_1 / m_\Sigma$ and the s coupling to $N N$ is $f_N^2 v_1 / m_\Sigma$.

Higgs Decay to NN : Since N is a singlet fermion, the Higgs boson h does not couple to NN directly. It does so first through $h - s$ mixing, then through $N - \Sigma^0$ mixing, as shown in Fig. 1.

![Figure 1: Decay of h to NN.](image)

The effective coupling is then

$$f_h \approx \left(\frac{2v_1}{v_0} \right) \left(\frac{f_N^2 v_1}{m_\Sigma} \right) = \frac{2f_N^2 v_1^2}{v_0 m_\Sigma}. \quad (11)$$

The decay rate of $h \to NN + \bar{N}\bar{N}$ is [9]

$$\Gamma_h = \frac{f_h^2 m_h}{8\pi} \sqrt{1 - 4r^2(1 - 2r^2)}, \quad (12)$$

where $r = m_N / m_h$. Now N is assumed light and a candidate for long-lived dark matter. The correct relic abundance is obtained [10] if $f_h \sim 10^{-12} r^{-1/2}$, provided that the reheat temperature of the Universe is above m_h but well below m_ρ and m_Σ.

Long-Lived Dark Matter : The singlet fermion N is assumed light and decays only through its mixing with Σ^0 which couples to νh. Through the virtual Higgs, its coupling to $\nu\bar{f}f$ is then given by

$$G_N = \frac{f_N v_1}{m_\Sigma} \left(\frac{\sqrt{m_\nu m_\Sigma}}{v_0} \right) \frac{1}{m_h^2} \left(\frac{m_f}{v_0} \right), \quad (13)$$

where f is a fermion allowed kinematically in the decay, as shown in Fig. 2. The decay rate is analogous to that of muon decay, i.e.

$$\Gamma_N = \frac{G_N^2 m_N^5}{48(4\pi)^3}. \quad (14)$$
Consider for example $m_N = 0.1$ GeV, then $f_h \sim 10^{-12}(0.1/125)^{-1/2}$ from freeze-in Higgs decay implies

$$m_\Sigma/f_N^2 \sim 3.1 \times 10^9 \text{ GeV}$$

(15)

for $v_1 = 3.68$ GeV. In $N \rightarrow \nu \bar{f} f$ decay, only an electron-positron pair is possible, hence $m_f = m_e$ and

$$G_N \sim 3.5 \times 10^{-22} \text{ GeV}^{-2}$$

(16)

for $m_\nu = 0.1$ eV. The N lifetime is then

$$\tau_N \sim 5.1 \times 10^{28} \text{ s},$$

(17)

many orders of magnitude greater than the age of the Universe and satisfies bounds from all cosmological considerations [11].

Conclusion: In this paper, a first example of long-lived freeze-in dark matter is presented in the context of Type III seesaw neutrino masses using heavy fermion triplets Σ. The key is the addition of a light fermion singlet N and a real scalar triplet ρ, both odd under a softly broken Z_2 symmetry. The rare decay of the SM Higgs to NN accounts for the dark matter relic abundance of the Universe, with N having a lifetime many orders of magnitude greater than the age of the Universe. This is accomplished with $m_N = 0.1$ GeV, $m_\Sigma \sim 10^9$ GeV, and $\langle \rho^0 \rangle = 3.68$ GeV, which also explains the shift in the W boson mass, observed recently.

Acknowledgement: This work was supported in part by the U. S. Department of Energy Grant No. DE-SC0008541.
References

[1] E. Ma, Phys. Rev. Lett. 81, 1171 (1998).

[2] R. Foot, H. Lew, X. G. He, and G. C. Joshi, Z. Phys. C44, 441 (1989).

[3] E. Ma, AIP Conf. Proc. 1116, 239 (2009) [hep-ph/0810.5574].

[4] T. Aaltonen et al. (CDF Collaboration), Science 376, 170 (2022).

[5] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, JHEP 1003, 080 (2010).

[6] E. Ma, LHEP 2, 103 (2019) [DOI:10.31526/LHEP.1.2019.103].

[7] E. Ma, Phys. Rev. Lett. 86, 2502 (2001).

[8] O. Popov and R. Srivastava, arXiv:2204.08568 [hep-ph].

[9] E. Ma and V. De Romeri, Phys. Rev. D104, 055004 (2021).

[10] G. Arcadi and L. Covi, JCAP 1308, 005 (2013).

[11] T. R. Slatyer and C.-L. Wu, Phys. Rev. D95, 023010 (2017).