Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature

Lulu Ding1 · Hezhou Huang1 · Fengning Lu1 · Jian Lu1 · Xiangshan Zhou2,3 · Yuanxing Zhang1,4 · Menghao Cai1,*

1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China

2China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, China

3China Resources Biopharmaceutical Co., Ltd., 1301-84 Sightseeing Road, Shenzhen, China

4Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China

*Correspondence to M. Cai (Email: cmh022199@ecust.edu.cn; Tel./fax: 86-21-64253306)
Abstract

Polar regions are rich in microbial and product resources. *Geomyces* sp. WNF-15A is an Antarctic psychrotrophic filamentous fungus producing high quality red pigment with potential for industrial use. However, efficient biosynthesis of red pigment can only realize at low temperature, which brings difficult control and high cost for the large-scale fermentation. This study aims to develop transposon insertion mutation method to improve cell growth and red pigment production adaptive to normal temperature. Genetic manipulation system of this fungus was firstly developed by antibiotic marker screening, protoplast preparation and transformation optimization, by which transformation efficiency of ~50% was finally achieved. Then transposable insertion systems were established using Helitron, Fot1 and Impala transposons. The transposition efficiency reached 11.9%, 9.4% and 4.6%, respectively. Mutant MP1 achieved the highest red pigment production (OD$_{520}$ of 39) at 14°C, which was 40% higher than the wild-type strain. Mutant MP14 reached a maximum red pigment production (OD$_{520}$ of 14.8) at 20°C, which was about 2-fold of the wild-type strain. Mutants MP2 and MP10 broke the repression mechanism of red pigment biosynthesis in the wild-type and allowed production at 25°C. For cell growth, 8 mutants grew remarkably better (12%~30% biomass higher) than the wild-type at 25°C. This study established an efficient genetic manipulation and transposon insertion mutation platform for polar filamentous fungus. It provides reference for genetic breeding of psychrotrophic fungi from polar and other regions.

Keywords Natural red pigment · Antarctic fungus · *Geomyces* sp. · Protoplast transformation · Transposon mutagenesis
Introduction

Polar regions represent various extreme environments covering ultra-low temperature, acid-base stress, oligotrophic restriction, repeated freeze-thaw cycles, high salinity, seasonal dryness, multiple strong winds, high radiation and long time without sunshine, etc. (Hayward et al., 2021). Therefore, most terrestrial flora and fauna cannot live under these extreme conditions (Jesus et al., 2021). Polar species are dominated by lichens, mosses, algae, microorganisms and some marine organisms that can adapt to the extreme conditions (Rosa et al., 2019). Different microorganisms in polar regions interact with other species and form a complex ecological network, including saprophytic, reciprocal and parasitic ecological relationships (Godinho et al., 2015).

Studies have shown the diversity of microorganisms in polar regions, especially the psychrophiles and psychrotrophs (Ogaki et al., 2020; Harding et al., 2011). The unique physiological mechanism enables these microorganisms to produce novel compounds and enzymes and adapt to extreme environments (Gomes et al., 2018). Accordingly, polar microorganisms are reported to be promising producers of bioactive secondary metabolites with potential use for the development of new drugs and chemicals (Rosa et al. 2019). Polar fungi can produce various bioactive metabolites, including antibacterial, antifungal, tripanocidal, herbicidal and antitumoral activities, etc. (Furbino et al., 2014; Henríquez et al., 2014; Gonçalves et al., 2015; Gomes et al., 2018; Poveda et al., 2018; Purić et al., 2018; Vieira et al., 2018). Nevertheless, to present marketed products derived from polar microorganisms are quite limited. The special physiological characteristics of polar microorganisms make it difficult for artificial culture especially in large-scale culture. For
example, *Geomycetes* sp. WNF-15A is a typical cold-adapted filamentous fungus isolated from Antarctic soil, producing red pigment when cultured at low temperatures (Wang et al., 2013). The major content of this Antarctic *Geomycetes* red pigment is geomycamine (Fig. S1, Wang, Zhao, & Zhang, 2015). It shows similar carbon skeleton structure to rubropunctamine and monascorubramine from *Monascus* spp. (Akihisa et al., 2005). The red pigment is easily soluble in water and its extinction coefficient is higher than that of cochineal red pigment (Jin et al., 2014). Also, it is more stable than cochineal red pigment in reducing agents, food additives, acid and alkali environments, and has good tolerance to ultraviolet rays, oxidants and most metal ions (Jin et al., 2014). Besides, median lethal dose (LD$_{50}$) of the Antarctic *Geomycetes* red pigment was over than 15,000 mg/kg, which meets level 1 of the acute toxicity dose classification of food toxicology (defined as non-toxic) in China (Wang et al., 2013). Also, citrinin content was not detected from *Geomycetes* sp. WNF-15A culture (Fig. S2). Of note, *Geomycetes* sp. WNF-15A produced high-level red pigment below 14°C, but the production decreased by 60%~70% at above 20°C and almost blocked at 25°C (Huang et al., 2020).

Microbial breeding by genome modification is of great significance to biotechnology research and industry. In nature, spontaneous mutation and natural selective pressure lead to the continuous evolution and diversity of the life (Lee et al., 2012). Until today, many artificial mutagenesis strategies, including chemical and physical methods, have been extensively applied to improve mutation rates and screen beneficial varieties (Kodym et al., 2003). Nevertheless, these mutagenesis methods generally create mutant strains through random mutation, which is not easy to track the mutation sites that are useful for direction of
rational modification. Transposon insertion mutation has become an effective tool for gene mutation and function analysis. Transposons can inactivate genes and cause changes in host phenotypes by random insertion. Then the mutant gene will be easily targeted by tracking transposon (Krishnan et al., 2018; Opijnen & Levin, 2020).

Till now, various fungal transposons have been reported. For example, Impala transposon was first identified in *Fusarium oxysporum* and is considered to be an ancient component of the *F. oxysporum* genome (Hua et al., 2001a). Impala is an active "cut-paste" transposon in the Tcl/Mariner family, which is about 1280 bp in length containing transposase coding gene flanked with 37 bp length of terminal inverted repeats (TIRs). Studies have shown that Impala can transpose in multiple heterologous hosts, including *Fusarium moniliforme* (Hua et al., 2001b), *Magnaporthe grisea* (Villalba et al., 2001) and *Aspergillus nidulans* (Nicosia et al., 2001). Fot1 transposon is also a "cut-paste" transposon found in *F. oxysporum* with a length of 1928 bp; and its structure is similar with the Impala transposon (Nicosia et al., 2001). Helitron transposons belong to "copy-paste" DNA transposons and is ubiquitous in eukaryotes, which can transpose by rolling-circle replication (Kapitonov & Jurka, 2007). The length of Helitron transposon in *F. oxysporum* was 6265 bp and the size of the recognition sequence at both sides was 322 bp and 94 bp, respectively (Thomas & Pritham, 2015). Helitron transposase does not contain RNase-H catalytic domain but with helicase domain and HUH endonuclease domain (Dyda & Hickman, 1994; Kapitonov & Jurka, 2001; Grabundzija et al., 2016). It has been proved to be heterologously transposable in *Fusarium graminearum* (Wang et al., 2018).

This study aims to develop transposon insertion mutation method for red pigment
production in *Geomyces* sp. WNF-15A adaptive to normal temperature. We first established genetic manipulation system of this wild type psychrotrophic fungus. Then transposon insertion mutation method was developed based on the three transposons of *Impala, Fot1* and *Helitron*. Screened by colony growth and color, mutants that can grow and synthesize red pigment at room temperature were successfully obtained and further evaluated in submerged culture. This work provides a new strategy for strain improvement of polar *Geomyces* sp. WNF-15A. It also offers enlightenment for genetic breeding of other polar psychrophiles and psychrotrophs.

Materials and methods

Strains and culture conditions

Geomyces sp. WNF-15A was donated by Dr. Nengfei Wang, First Institute of Oceanography, Ministry of Natural Resources, China. *Geomyces* sp. WNF-15A and its mutant strains were stored in 20% (w/v) glycerol at -80°C. *Escherichia coli* Top 10 was preserved in our laboratory. The composition of various media is listed in Table 1.

For culture of *Geomyces* sp. strains, 100 μL spore suspension was inoculated into 5 mL seed medium and cultured in dark at 20°C and 130 r/min for 36 h. Then 1 mL inoculum was inoculated in 50 mL seed medium with 20 glass beads (diameter of 4 mm), and cultured for 3 days under the same conditions to prepare the first-order seed. It was transferred to 50 mL seed medium at 10% inoculation and cultured under the same conditions for 36 h to prepare the second-order seed. Afterwards, 200 μL second-order seed was evenly spread on agar seed medium, and cultured in an incubator with 80% humidity and at 20°C for 3 days.
For shake flask culture, the second-order seed was inoculated in 75 mL medium S by 6% (v/v), and 20 glass beads with a diameter of 4 mm were added. It was then cultured in dark at 130 r/min for 16 days (Huang et al., 2020). Three biological replicates were set for each experiment.

Construction of plasmids

The backbone vector pFC000 was constructed by removing the open reading frame of Cas9 protein on the pFC332 (Christina et al., 2015), which was donated by Prof. Reinhard Fischer of the Karlsruhe Institute of Technology, Germany. Then transposable plasmids of pFC001 and PFC002 were constructed by inserting the complete transposable elements of Impala and Fot1 between the promoter and terminator of PFC000. Based on pFC332, donor plasmid with hygromycin B phosphotransferase (hph) gene inserted between the Helitron recognition sequences (TIRs) as well as the helper plasmid containing Helitron transposase were constructed. The complete transposon of Impala (GenBank: AF282722.1) and Fot1 (GenBank: AF443562.1) were synthesized by Suzhou Genewiz Biological Technology Co., Ltd. The Helitron transposon (Wang et al., 2018) was donated by Prof. Xiaoping Hu, State Key Laboratory of Crop Stress Biology in Arid Zone, College of Plant Protection, Northwest A&F University. Primers used for plasmids construction were listed in Table S1 and synthesized by Shanghai Tsingke Biotechnology Co., Ltd. Construction of plasmids was mainly based on standard protocols of PCR (Cat. No. R011, TaKaRa) and seamless cloning (ClonExpressTM II one-step cloning kit, Vazyme Biotech Co., Ltd., China). The plasmid was purified from *E. coli* using routine procedures and dialyzed against distilled water prior to use. Transformation and other standard recombinant DNA operations for *E. coli* were performed
as described previously (Green & Sambrook, 2012).

Preparation and transformation of protoplasts

Mycelia preparation: The mycelia on the plate were gently washed and scraped off with 5 mL YPD medium, and inoculated into 50 mL YPD medium for culture at 20°C and 130 r/min. The inoculum was pumped and filtered with a sand core funnel G1 covered with mirror paper. Mycelia of 1.5 g was weighed and put into a clean centrifugal tube for use.

Protoplast preparation: Add 20 mL sterile deionized water to a centrifuge tube containing mycelia, and repeatedly blow and wash the mycelia (centrifuged at 4°C and 3000 g for 5 min). The mycelia were washed with 10 mL solution B, centrifuged at 4°C and 3000 g for 5 min, discarded supernatant and repeated it again. Then 10 mL solution A was added to the mycelia, blow and mix until there were no apparent large mycelial clusters in the enzymolysis solution, followed by placed on a rotary mixer for enzymolysis at a specific temperature. During the enzymolysis process, samples can be taken every 30 min to observe the release conditions of protoplasts. After enzymolysis, the enzymatic hydrolysate was filtered with glass wool (Hunan Yisi Technology Co., Ltd). The filtrate was centrifuged at 4°C and 700 g for 5 min (adjust both acceleration and deceleration to 1), then the supernatant was discarded. Solution B of 20 mL was added to wash the protoplasts and centrifuged at the same conditions and the supernatant was discarded and repeated. Then it was washed with solution C for one time. The protoplasts were suspended with 1 mL solution C to a final concentration of 10^{10}mL^{-1}. Then solution D was added by 20% volume and the final liquid transferred into 2 mL Eppendorf tubes (200 μL for each tube) for the following transformation experiments.

The solution used in the protoplast preparation and transformation was as follows.
Solution A: dissolve 0.2 g/L cellulase (Shanghai Yuanye Bio-Technology Co., Ltd) and 0.15 g/L snailase (Beijing Solarbio Technology Co., Ltd) in solution C, mix well and filter sterilization through 0.2 µm filters (Millex® GP, EMD Millipore, USA). Solution B: 52.596 g/L NaCl sterilized by autoclaving. Solution C: 52.596 g/L NaCl, 5.549 g/L CaCl₂ and 1.2114 g/L Tris (Shanghai Sangon Biotech Co., Ltd), pH was adjusted to 7.0 with HCl and sterilized by autoclaving. Solution D: 45% PEG3500 (Shanghai Macklin Biochemical Co., Ltd) was dissolved in solution C and filter sterilized through 0.2 µm filters.

Protoplast regeneration: The freshly prepared protoplasts were gradient-diluted by 10,000 times with solution C, and the concentration of protoplasts in the final dilution solution was controlled at about 10^4 mL⁻¹. Then 10 µL protoplasts was added to 2 mL medium R, and then incubated at 20°C and 80% humidity for 2 days in dark. The medium was poured into a lukewarm agar medium R, mixed well and poured it into a clean plate, and cultured at 20°C and 80% humidity for 3 days. The control group was cultured on a standard PDB medium (without mannitol) to eliminate the influence of unbroken hyphae and spores. The number of colonies grown on medium R was denoted as R, the number of colonies grown on the standard PDB medium (without mannitol) was denoted as R_0, and the rate of protoplast regeneration r was calculated as Equation 1:

$$r (%) = \frac{R - R_0}{\text{protoplasts number}} \times 100\% \quad \text{Equation 1}$$

Protoplast transformation: Add the plasmid to 200 µL protoplast solution and place the mixture on ice for 30 min. Add 700 µL solution D and leave for 20 min at room temperature. The obtained transformation solution was directly coated on the substrate medium and
cultured at 20°C and 80% humidity without light. After a while, the second layer of soft agar medium containing antibiotics was added into the culture medium for 4~10 days. The number of colonies growing on the soft agar medium was recorded as T_1. After continuous culture for two generations, spore PCR was carried out with resistance primer and the number of colonies with the correct bands was recorded as T_2. The transformation efficiency of protoplasts t was calculated as Equation 2:

$$t\, (\%) = \frac{T_2}{T_1} \times 100\% \quad \text{Equation 2}$$

Analytical methods

For spore PCR, the colonies were picked out and sucked in 50 μL TE buffer (Tiangen) repeatedly and mixed thoroughly. After heated in a microwave oven at high heat level for 2 min, the spore solution was placed on ice immediately for 5 min. Centrifuge the solution and then use supernatant as the template for PCR reaction. Genomic DNA of the positive mutant identified by spore PCR was further extracted and used as the template for further PCR verification. The 2× Taq PCR MasterMix (GenStar) was used for the PCR reaction system. In each 15 μL reaction volume, 5 μL of supernatant was used as the template.

For liquid growth, 10 mL of inoculum was extracted and filtered to the weighing filter paper every 24 h, and the mycelia were repeatedly washed until the filtrate turned to colorless. Then, the filter paper with mycelia was dried (70°C) to constant weight. Record the initial weight of the filter paper as w_0 and the total weight after drying as w_1. The dry weight of the cell, w, was calculated according to Equation 3:

$$w\, (\text{g/L}) = (w_1-w_0) \times 100 \quad \text{Equation 3}$$
For colony growth, the spore solution (10^5 mL^-1) was vertically dropped into the middle of the agar medium, and cultured at 20°C and 80% humidity for 8 days without light. Measure the diameter of the colony in three different directions to calculate the average value every 24 h.

The production of red pigment was monitored by OD_{520} using a UV-2102PC spectrophotometer (UNICO [Shanghai] Instruments Co., Ltd, China). The measurement method of red pigment production was performed as described previously (Huang et al., 2020). The number of protoplasts and spores was determined using a cytometer (Shanghai Titan Technology Co., Ltd). Denote the total number of the target object in the counting cell as \(M \), the dilution factor is \(n \), and the concentration \(m \) can be calculated according to *Equation 4*:

\[
m (\text{mL}^{-1}) = M \times 2 \times 10^7 \times n \tag{Equation 4}
\]

Optimization of genetic manipulations

Different conditions for genetic manipulations of *Geomycys* sp. WNF-15A were investigated. Different antibiotics were tested, including hygromycin B (300, 200, 100, 50, 30, 10, 5 \(\mu \)g/mL), oligomycin (200, 100, 10, 5 \(\mu \)g/mL), zeocin (100, 75, 50, 25 \(\mu \)g/mL), geneomycin G418 (200, 100, 50, 30, 5 \(\mu \)g/mL) and oxalidosine (150, 100, 50, 25 \(\mu \)g/mL). Spore solution with a concentration of 1.07\times10^6 mL^-1 was coated on the agar seed medium supplemented with different concentrations of antibiotics and incubated at 20°C for 3 days.

The effects of culture time (12, 24, 30, 36, 48, 56, 60, 72, 84, 144 h), enzyme content (3% C, 1.5% S, 3% C+1.5% S, 2% C+1.5% S, 1.5% C+1.5% S, 1% C+1.5% S; C-Cellulase, S-Snailase), enzymolysis temperature (20, 22, 24, 26, 28, 30, 32°C), enzymolysis time (0.6, 1,
1.5, 2, 2.5, 3, 4 h), enzymolysis pH (5.5, 6, 6.5, 7, 7.5, 8, 8.5) on the number and regeneration rate of protoplasts were investigated. Besides, the parameters of protoplast transformation, such as incubation time (0, 12, 24, 36, 48, 72, 96 h), exogenous vector concentration (0.5, 1, 2, 2.5, 3, 3.5, 4 μg DNA) and PEG concentration (30%, 45%, 50%, 60%, 65%, 70%) were also optimized.

Molecular analysis of mutants

Spore PCR was performed with primers Am-F/Am-R to verify whether plasmids were lost. Transformants not carrying the plasmids were used for further genotype verification. Genomic DNA was extracted using the Fungi Genomic DNA Extraction Kit (Solarbio). DNA samples was detected by PCR using primers listed in Table S1. The theoretical PCR product size was 1,253 bp (Impala transposon validated using primers of Im-F/Im-R), 1,203 bp (Fot1 transposon validated using primers of Ft-F/Ft-R) and 889 bp (Helitron transposon validated using primers of He-F/He-R), respectively. Sequencing results of PCR products were submitted as supplementary data.

Statistical analysis

Each trial was performed in triplicate. The significances of the differences between treatments were determined by p-values using one-way analysis of variance (ANOVA). The result was recognized as significant at p<0.05.
Results and discussion

Development of Geomyces sp. WNF-15A genetic manipulation system

As a newly isolated polar fungus, Geomyces sp. WNF-15A is lack of reported genetic information and transformation methods. To implement transposon insertion mutation, we need to develop genetic manipulation system of this fungus firstly.

Antibiotic sensitivity analysis

Effective antibiotic resistance markers can increase the efficiency of genetic manipulation, so we first tested the sensitivity of Geomyces sp. WNF-15A towards commonly used antibiotics against filamentous fungi (Ruiz-Díez, 2002). The growth of Geomyces sp. WNF-15A was completely inhibited at 30 µg/mL hygromycin B and 200 µg/mL G418 (Fig. S3), which can be used for the following screening of transformants. Accordingly, the hph and neo were selective as the marker gene against hygromycin B and G418, respectively. Commonly, oligomycin, phosphinothricin and bleomycin may inhibit fungal growth at concentrations of 5~300 µg/mL, but we did not observe growth repression of Geomyces sp. WNF-15A with these three kinds of antibiotics.

Protoplast preparation and regeneration of Geomyces sp. WNF-15A

The genetic transformation of filamentous fungi is usually achieved by modification of protoplasts (Timberlake & Marshall, 1989). Enzymolysis has been proved to be a preferred method for protoplast preparation due to its high efficacy, safety and mildness. However, many factors during the preparation process will affect the quantity and quality of protoplasts
Rehman et al., 2016). Therefore, we optimized protoplast preparation process in detail by mycelia harvest, enzyme composition, enzymolysis temperature, time and pH, etc.

In different growth stages, mycelia accumulation and fungal physiological activity are different, which will affect the enzymatic hydrolysis of cell wall (Wang & Zhao, 2007). We first tested the effects of mycelial age on protoplast preparation. As shown in Fig. 1a, the same amount of fungal biomass of various ages generated different amount of protoplasts. Generally, the number of protoplasts increased fast with cells cultured from 24 h to 56 h, after which it decreased slowly until the end point. Cell wall of mycelia in the early stage is relatively weak, which made it sensitive to the enzymolysis reaction. To shorten the preparation period, we selected culture time of 36 h for mycelia collection and protoplast preparation in the following experiments. Cell wall composition is complex and strain dependent, so mixed enzymes are necessary for cell wall lysis (Wang & Zhao, 2007). We tested the effects of different combinations of cellulase and snailase on protoplast formation and regeneration. The results indicated that 3% cellulase + 1.5% snailase produced the maximum protoplasts and the regeneration rate also reached a high level (Fig. 1b). Enzymolysis temperature, pH, and duration may also affect the enzymatic reaction and the quality of protoplasts (Ma et al., 2014; Wu et al., 2019). Thus we investigated the changes in the number and regeneration rate of protoplasts under different enzymolysis conditions (Fig. 1c-e). The results finally suggested the optimal enzymolysis temperature of 28°C, optimal time of 1.5 h and optimal pH of 7.5, respectively. Under the optimized conditions, protoplasts of 3.96×10^{10} mL$^{-1}$ and regeneration rate of 36% were achieved finally. Microscopic photograph showed that the produced protoplasts were full in shape, evenly dispersed and
mycelia well digested (Fig. S4).

PEG-mediated protoplast transformation

Incubation culture is an essential process of protoplast self-repair and recovery of broken cell wall after transformation, which will directly affect the efficiency of transformation. With the extension of incubation time, the transformation efficiency increased gradually and reached the highest level of 46% at 36 h (Fig. 2a). Extension of the incubation time would reduce the selective pressure, produce more incorrect phenotypes and decrease transformation efficiency (Table S2, Fig. 2a). Researchers usually used 2~12 μg DNA for PEG-mediated fungal transformation (Fincham, 1989; Wang et al., 2018). In this study, we tested 0.5~4 μg DNA for the transformation. Increase of DNA amount from 0.5 to 2 μg increased the number of transformants (Table S3) and transformation efficiency slightly (Fig. 2b), but the number of transformants and transformation efficiency both decreased with DNA over 2 μg. Therefore, we confirmed the optimal DNA level of 2 μg. PEG is a polymer of ethylene glycol with high water solubility. During protoplast transformation, the ether bond carried by PEG has a negative charge, which can form an electrostatic attraction with Ca\(^{2+}\) in the buffer and the negative charge on the surface of the protoplast. It helps to reduce the polarity on the cellular surface and promote the aggregation of cells to form DNA-Ca\(^{2+}\) complexes to enter the cell efficiently (Wang et al., 2020). Fig. 2c and Table S4 showed the effect of PEG concentrations on the transformation efficiency of *Geomyces* sp. WNF-15A. PEG concentrations of 60% (w/v) brought an optimal transformation efficiency of 51%. With these efforts, we finally established genetic manipulation system of polar fungus *Geomyces* sp. WNF-15A, which built up a good basis for the following construction of transposon insertion mutation systems.
Screening and construction of transposable systems

Stable and controllable engineering transposons are essential for transposon mutagenesis methods. Till now, scientists have characterized several transposons and identified the necessary elements for transposon DNA excision and integration (Opjijnen & Levin, 2020). Here we employed three transposons, i.e., *Impala*, *Fot1* and *Helitron*, for development of transposon insertion mutation method in *Geomyces* sp. WNF-15A.

Impala and *Fot1* transposons are both "cut-paste" transposons composed of a coding gene and terminal inverted repeats (TIRs) on the sides. The transposase recognizes the TIRs, excises the DNA, inserts it into the new genome position (Munoz & Garcia, 2010). We constructed single plasmid system for *Impala* (1280 bp) and *Fot1* (1928 bp) transposons (Fig. 2). Expression of transposase by P_{trpC} promoter will recognize TIRs, cut the entire transposable elements, and insert them into the host genome. *Helitron* transposon is "copy-paste" transposon that is different from *Impala* and *Fot1*. It proceeds through a circular intermediate, for which the sequence between left terminal sequence (LTS) and right terminal sequence (RTS) is duplicated by rolling-circle replication to produce a new copy and then insert into the host genome (Kapitonov & Jurka, 2007). The coding gene of *Helitron* transposase is big (6265 bp), so we constructed a dual plasmid system for the *Helitron* transposon. The donor plasmid carries hygromycin B resistance cassette flanked by the recognition sequences, and the helper plasmid carries the expression cassette of *Helitron* transposase. Then, with the transposase expressed by the helper plasmid, the resistance marker expression cassette with LTS and RTS copied from the donor plasmid will be inserted into the host genome (Fig. 3).
With the recognition sequences in the transposable element, the inserted fragment may be transposed again under the action of the transposase. Therefore, after transposition, the self-replicating-free plasmids need to be lost by passage cultivation to ensure the stability of the transposon insertion mutants. On the other hand, if there was endogenous homologous transposase in *Geomycetes* sp. WNF-15A, it might also transpose inserted fragment continuously. So we compared the protein sequences of “cut-paste” or “copy-paste” transposases from different species, designed degenerate primers from the conserved sequences and amplified DNA sequences using genome of *Geomycetes* sp. WNF-15A as the template. BLAST research of 64 obtained DNA fragments indicated no conserved sequence related to coding genes of the three kinds of transposases (data not shown). Therefore, we speculated that the three exogenous transposons used in this study would not be affected by cross-talk from endogenous transposase of the host.

Screening of transposon insertion mutants

After transformation with transposable plasmids, the mutant colonies with bigger diameter or deeper red color were screened and further cultured in liquid seed medium without hygromycin B for 3 consecutive generations (3 days for each generation). Then most transformants can lose the transposable plasmids. Genotype verification showed that a total of 33 transposable mutant strains were obtained, including 21 *Helitron*, 6 *Impala* and 6 *Fot1* mutants (Fig. S5). We then tested colony growth and colony color (related with red pigment biosynthesis) of mutant strains in agar plate culture.

The mutants cultured at 20°C were shown in Fig. S6a. A total of 15 mutants were screened as red pigment related mutants, including 14 positive mutants (MP1~MP14) and 1
negative mutant (MP15). The positive mutants contain 2 Impala, 3 Fot1 and 9 Helitron mutants. Compared with the wild-type, the positive mutants all showed prominent preponderance in the accumulation of red pigment. The negative mutant MP15 came from the Helitron transposon insertion mutation. At 25°C, we did not obtain the positive production mutant strains of red pigment production, but harvested several strains with growth advantage (Fig. S6b). A total of 18 mutants with obvious growth advantage were obtained, including 3 Impala, 3 Fot1 and 12 Helitron mutants. The colony growth of these mutants in agar plate was further determined by maintaining the same number of spores and inoculation volume (Fig. S7). After ten days of culture, colony size of the mutants stopped extending but the continuous growth of aerial hyphae kept increasing the colony thickness. Nine mutants with significant growth improvement ($p<0.01$ at all the three time points) was selected for further liquid culture analysis, including MG2, MG3, MG4, MG5, MG8, MG9, MG13, MG14, and MG15. Generally, the maximum diameter of mutant strains was $8\sim 9$ mm, comparing with $7\sim 8$ mm of the wild-type colonies.

Analysis of the mutant strains in liquid culture

The 14 positive red pigment mutants were fully verified by shake flask fermentation (Fig. S8, Table 2). Among them, red pigment production of MP1, MP2, MP3, MP4, MP5, MP7, MP8 and MP9 were obviously enhanced as compared with the wild strain when cultured at 14°C (Fig. 4a-b). For the mutants and wild-type, the red pigment production reached about a vertex after 10 days of liquid fermentation and then began to fall down. The MP1 achieved the highest level red pigment (OD$_{520}$ of 39), which increased by 40% as compared to the wild-type strain. Some mutants such as MP1, MP2, MP3, MP6, MP7, MP8, MP9 and MP12
also showed better cell growth than the wild-type at 14°C.

We then investigated the shake flask fermentation of these mutants at normal temperature (Fig. 4c-d). The red pigment production of the 14 mutants decreased by 45%~77% at 20°C compared to 14°C. The MP14 achieved the highest level of red pigment (OD_{520} of 14.8), which reached about two-fold of the wild-type strain. The MP1, MP2, MP4 and wild-type strain grew better at 20°C than 14°C. When cultured at 25°C, most of the mutants showed no obvious synthesis of red pigment just as the wild-type, except that the culture medium color of MP2 and MP10 turned to red when cultured at room temperature. The red pigment production in liquid culture (OD_{520} of 2.2 for MP2 and OD_{520} of 3.2 for MP10) also proved the effectiveness of the mutation (Fig. S9).

We also evaluated the 9 strains with growth advantage at 25°C selected from agar plate in liquid culture. All the mutants grew better than the wild-type except the MG13 (Fig. 5). Generally, the wild-type strain reached a vortex cell weight after 10-day culture and then turned to decrease, but the mutants kept growing for 2~4 more days as compared to the wild-type. However, none of these mutants produced red pigment at 25°C. After culture for 14 days, the highest dry weight of MG3 reached 7.03 g/L, which was 30% higher than the wild-type strain at 25°C (Fig. S10). It also reached almost the same dry weight as that of the wild-type at 14°C.

The efficiency of three transposable systems was then summarized in Table 3. The insertion efficiency of Helitron, Impala and Fot1 reached 11.9%, 9.4% and 4.6% respectively in Geomyces sp. WNF-15A. To analyze the positive mutation efficiency, the mutants with variation percentage over 10% in red pigment production and over 15% in cell growth were
recorded as positive mutants. Accordingly, the positive mutation rate in red pigment production was calculated as Helitron 3.6%, Fot1 1.3%, and Impala 3.5%; and the positive mutation rate in cell growth was calculated as Helitron 5.8%, Fot1 1.3%, and Impala 1.2%, respectively.

Our previous studies have shown that atmospheric and room temperature plasma (ARTP) is highly lethal to Geomyces sp. WNF-15A, with a fatality rate of up to 90% (Huang et al., 2020). We obtained a dominant mutant M210 using ARTP. Compared with the wild type, the red pigment production of M210 increased by 24.4% and the fermentation time was shortened by 33.3% when it was cultured at 14 °C. Besides, red pigment production of M210 was increased by 292% when cultured at 20 °C. Superficially, compared with the random physical mutagenesis of ARTP, the phenotypic advantage of the mutants obtained by transposon mutation is relatively weak. However, transposons can inactivate genes and cause changes in host phenotypes by random insertion, for which the mutant gene will be easier targeted by tracking transposon than random physical mutagenesis (Krishnan et al., 2018; Opijnen & Levin, 2020).

We summarized the reported transposition efficiency of the three transposons in the heterologous hosts (Table 4). Impala and Fot1 transposons showed great transposable activity and efficiency in a variety of filamentous fungi. In these cases, the transposon element was inserted upstream of the nitrate reductase gene niaD. After the transposition, the nitrate reductase activity was restored so that the colony could grow on the medium containing nitrate. For Geomyces sp. WNF-15A, Impala and Fot1 elements could be engineered into a dual plasmid system to improve transposition efficiency by hygromycin resistance. Although
transposition efficiency was relatively low, it is more suitable for the wild-type strains from various habitats. Carr et al. (2010) demonstrated that the transposition of Impala could be induced by incubation at low temperatures, and the low temperatures clearly enhanced the transcript level of Impala transposase. High concentrations of copper sulfate (Ikeda et al., 2001), nutritional restriction (Morillon et al., 2000, Naas et al., 1995), trace antibiotics (Tomich et al., 1980) and cold or heat shock (Hey et al., 2008, Kretschmer et al., 1979, Pfeifer et al., 1990) can also enhance the transposition. Helitron is a DNA transposon isolated from the Arabidopsis genome and widely exist in eukaryotes. There are several genes encoding Helitron transposase specific domains in Fusarium oxysporum, which can also transpose in Fusarium graminearum, but the transposition efficiency has not been clearly demonstrated (Wang et al., 2018). Generally, the transposon activity varies greatly among different hosts.

After over ten years of development, transposon insertion mutation has been applied in many fields and successfully revealed much biological information, including gene function, pathogenic mechanism, drug targets, etc. Most of these studies focused on the bacteria field. Compared with fungi, the relatively small and dense genome of bacteria has more advantages in transposon identification and insertion site sequencing. Due to the few available transposons and the low activity of bacteria transposons in fungi, it is challenging to involve transposon insertion mutations in filamentous fungi (Opijnen & Levin, 2020). The unique physiological characteristics of polar microorganisms allows them as the potential source of novel and active natural products. However, the unknown genetic background and the lack of suitable genetic tools severely limited the research and application of these fungi (Díaz et al., 2019). In this study, we developed a stable genetic manipulation system for the polar
filamentous fungus *Geomyces* sp.WNF-15A. Also, the activities of three exogenous transposons were tested and confirmed in this fungus, which provided a reference for the mutation breeding of filamentous fungi based on transposon technology. The obtained mutants adapted to room temperature also laid a foundation for studying the low-temperature regulation mechanism of cold-adapted microorganisms.

Conclusions

Genetic manipulation system for polar psychrotrophic fungus *Geomyces* sp. WNF-15A was developed with ~50% transformation efficiency. Transposon insertion mutation methods were then established using *Helitron*, *Fot1* and *Impala* transposons in this fungus. Mutants with cell growth and red pigment biosynthesis adapted to normal temperature were obtained and analyzed, proving the efficiency of the transposable systems. It provided a new strategy for the mutation breeding and industrial application of *Geomyces* sp.WNF-15A.

Acknowledgments

We thank Dr. Nengfei Wang, First Institute of Oceanography, Ministry of Natural Resources, China, for providing the wild-type fungal strain. We also thank Prof. Reinhard Fischer, Karlsruhe Institute of Technology, Germany, for giving the pFC332 plasmid.

Author contributions

M. Cai conceived the project. L. Ding, H. Huang and F. Lu conducted the experiments. J. Lu participated in the fermentation experiments. L. Ding and M. Cai analyzed the data and drafted the manuscript. Y. Zhang and X. Zhou reviewed the manuscript.
Conflicts of interest

The authors declare that they have no competing interests.

Data availability

There is no data for submission in a public repository. Experimental materials and datasets for the current study are available from the corresponding author on reasonable request.

Funding statement

This work was supported by the National Key R&D Program of China (Grant number 2018YFC1406706, 2018YFC1406700) and the 111 Project of China (Grant number B18022).
References

Akihisa, T., Tokuda, H., Yasukawa, K., Ukiya, M., Kiyota, A., Sakamoto, N., Suzuki, T., Yanabe, N., & Nishino, H. (2005). Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus -fermented rice (red-mold rice) and their chemopreventive effects. *J Agr Food Chem*, 53(3), 562-565. http://dx.doi.org/10.1021/jf040199p

Carr, P. D., Tuckwell, D., Hey, P. M., Simon, L., d'Enfert, C., Birch, M., Oliver, J. D., & Bromley, M. J. (2010). The transposon impala is activated by low temperatures: use of a controlled transposition system to identify genes critical for viability of Aspergillus fumigatus. *Eukaryotic Cell*, 9(3), 438-448. https://doi.org/10.1128/EC.00324-09

Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R., & Davies, D.R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. *Science*, 266, 1981-1986. DOI: 10.1006/jmbi.1998.2002

Díaz, A., Villanueva, P., Oliva, V., Gil-Durán, C., Fierro, F., Chávez, R., & Vaca, I. (2019). Genetic transformation of the filamentous fungus Pseudogymnoascus verrucosus of Antarctic origin. *Front Microbiol*, 10, 2675. https://doi.org/10.3389/fmicb.2019.02675

Fincham, J. R. (1989). Transformation in fungi. *Microbiol Rev*, 53(1), 148-170. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372721/

Firon, A., Villalba, F., Beffa, R., & d'Enfert, C. (2003). Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. *Eukaryotic Cell*, 2(2), 247-255. https://doi.org/10.1128/EC.2.2.247-255.2003

Furbino, L. E., Godinho, V. M., Santiago, I. F., Pellizari, F. M., Alves, T. M., Zani, C. L.,
Junior, P. S., Romanha, A. J., Carvalho, A. O., Gil, L. G., Rosa, C. A., Minnis, A. M., & Rosa, L. H. (2014). Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic peninsula. *Microb Ecol*, 67, 775–787. https://doi.org/10.1007/s00248-014-0374-9

Godinho, V. M., Gonçalves, V. N., Santiago, I. F., Figueiredo, H. M., Vitoreli, G. A, Schaefer, C. R., Barbosa, E. C., Oliveira, J. G., Alves, T. A., Zani, C. L., Junior, P. S., Murta, S. F., Romanha, A. J., Kroon, E. G., Cantrell, C.L., Wedge, D. E., Duke, S. O., Ali, A., Rosa, C. A., & Rosa, L. H. (2015). Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. *Extremophiles*, 19, 585-596. https://doi.org/10.1007/s00792-015-0741-6

Gomes, E. Q., Godinho, V. M., Silva, D. S., de Paula, M. R., Vitoreli, G. A., Zani, C. L., Alves, T. A., Junior, P. S., Murta, S. F., Barbosa, E. C., Oliveira, J. G., Oliveira, F. S., Carvalho, C. R., Ferreira, M. C., Rosa, C. A., & Rosa, L. H. (2018). Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. *Extremophiles*, 22, 381-393. https://doi.org/10.1007/s00792-018-1003-1

Gonçalves, V. N., Carvalho, C. R., Johann, S., Mendes, G., Alves, T. A., Zani, C. L., Junior, P. S., Murta, S. F., Romanha, A. J., Cantrell, C. L., Rosa, C. A., & Rosa, L. H. (2015). Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. *Polar Biol.*, 38, 1143-1152. https://doi.org/10.1007/s00300-015-1672-5

Grabundzija, I., Messing, S. A., Thomas, J., Cosby, R. L., Bilic, I., Miskey, C., Gogol-Döring,
A., Kapitonov, V., Diem, T., Dalda, A., Jurka, J., Pritham, E. J., Dyda, F., Izsvák, Z., & Ivics, Z. (2016). Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. *Nat Commun*, 7(1), 10716. https://doi.org/10.1038/ncomms10716

Green, M., Sambrook, J., & Russell, D. (2012). Molecular Cloning: A Laboratory Manual (Fourth Edition). Cold Spring Harbor, New York. ISBN: 978-1-936113-42-2

Harding, T., Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2011). Microbes in high arctic snow and implications for the cold biosphere. *Appl Environ Microbiol*, 77, 323-3243. https://aem.asm.org/content/aem/77/10/3234.full-text.pdf

Hayward, M. K., Dewey, E. D., Shaffer, K. N., Huntington, A. M., Burchell, B. M., Stokes, L. M., Alexander, B. C., George, J. E., Kempher, M. L., Joye, S. B., Madigan, M. T., & Sattley, W. M. (2021). Cultivation and characterization of snowbound microorganisms from the South Pole. *Extremophiles*, 25, 159-172. https://doi.org/10.1007/s00792-021-01218-z

Henríquez, M., Vergara, K., Norambuena, J., Beiza, A., Maza, F., Ubilla, P., Araya, I., Chávez, R., San-Martín, A., Darias, J., Darias, M. J., & Vaca, I. (2014). Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. *World J Microbiol Biotechnol*, 30, 65-76. https://doi.org/10.1007/s11274-013-1418-x

Hey, P., Robson, G., Birch, M., & Bromley, M. (2008). Characterisation of Aft1 a Fot1/Pogo type transposon of *Aspergillus fumigatus*. *Fungal Genet Biol*, 45(2), 117-126. http://dx.doi.org/10.1016/j.fgb.2007.10.009
Huang, H. Z., Ding, L. L., Lu, J., Wang, N. F., & Cai, M. H. (2020). Combinatorial strategies for production improvement of red pigment from antarctic fungus *Geomycetes* sp. *J Food Sci.*, 85, 3061-3071. https://doi.org/10.1111/1750-3841.15443

Hua-Van, A., Thierry, L., & Daboussi, M. (2001). Evolutionary history of the *impala* transposon in *Fusarium oxysporum*. *Mol Biol Evol.*, 18(10), 1959-1969. https://doi.org/10.1093/oxfordjournals.molbev.a003736

Hua-Van, A., Pamphile, J., Langin, T., & Daboussi, M. (2001). Transposition of autonomous and engineered *impala* transposons in *Fusarium oxysporum* and related species. *Mol Gen Genet Mgg*, 264, 724-731. https://doi.org/10.1007/s004380000395

Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y., & Mayama, S. (2001). Heat shock, copper sulfate and oxidative stress activate the retrotransposon *MAGGY* resident in the plant pathogenic fungus *Magnaporthe grisea*. *Mol Gen Genomics*, 266(2), 318-325. http://dx.doi.org/10.1007/s004380100560

Jesus, H. E., Carreira, R. S., Paiva, S. M., Massone, C., Enrich-Prast, A., Peixoto, R. S., Rodrigues, J. M., Lee, C. K., Cary, C., & Rosado, A. S. (2021) Microbial succession under freeze–thaw events and its potential for hydrocarbon degradation in nutrient-amended antarctic soil. *Microorganisms*, 9(3), 609. https://doi.org/10.3390/microorganisms9030609

Jin, B. B., Wang, N. F., Zhang, M., Zhao, Q., Zuo-Hao, W., Wang, Y. B, & Zang, J. Y. (2014). The stability comparision of Antarctic red pigment and cochineal pigment. *Food Ferment Ind*, 40(2), 164-169. DOI: 10.13995/j.cnki.11-1802/ts.2014.02.043

Kapitonov, V. V., Jurka, J. (2007). *Helitrons* on a roll: eukaryotic rolling-circle transposons.
Kapitonov, V. V., Jurka, J. (2001). Rolling-circle transposons in eukaryotes. *Proc Natl Acad Sci U S A.*, 98(15), 8714-8719. https://dx.doi.org/10.1073%2Fpnas.151269298

Kodym, A., Afza, R. (2003). Physical and chemical mutagenesis. *Methods Mol Biol*, 236, 189-203. https://doi.org/10.1385/1-59259-413-1:189

Kretschmer PJ, Cohen SN (1979) Effect of temperature on translocation frequency of the Tn3 element. *J Bacteriol*, 139, 515-519. doi: 10.1128/JB.139.2.515-519.1979

Krishnan, P., Meile, L., Plissonneau, C., Ma, X., Hartmann, F., Croll, D., McDonald, B. A., & Sánchez-Vallet, A. (2018). Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. *BMC Biol*, 16(78), 2-20. https://doi.org/10.1186/s12915-018-0543-2

Lee, H., Popodi, E., Tang, H. X., & Foster, P. L. (2012). Rate and molecular spectrum of spontaneous mutations in the bacterium *Escherichia coli* as determined by whole-genome sequencing. *Proc Natl Acad Sci U S A.*, 109(21), e2774-2783. https://doi.org/10.1073/pnas.1210309109

Ma, Z., Liu, J. X., Lin, X. Z., Shentu, X. P., Bian, Y. L., & Yu, X. (2014). Formation, regeneration, and transformation of protoplasts of *Streptomyces diastatochromogenes* 1628. *Folia Microbiol*, 59, 93-97. https://doi.org/10.1007/s12223-013-0271-5

Migheli, Q., Steinberg, C., Davière, J. M., Olivain, C., Gerlinger, C., Gautheron, N., Alabouvette, C., & Daboussi, M. J. (2000). Recovery of mutants impaired in pathogenicity after transposition of *Impala* in *Fusarium oxysporum f.* sp. *melonis*. *Phytopathology*, 90(11), 1279-1284. https://doi.org/10.1094/phyto.2000.90.11.1279
Migheli, Q., Laugé, R., Davière, J., Gerlinger, C., Kaper, F., Langin, T., & Daboussi, M. J. (1999). Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum. Genetics, 151(3), 1005-1013. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1460518/

Morillon, S., Springer, M., & Lesage, P. (2000). Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol, 20(15), 5766-5776. http://dx.doi.org/10.1128/MCB.20.15.5766-5776.2000

Munoz-Lopez, M., Garcia-Perez, J. L. (2010). DNA transposons: Nature and applications in genomics. Curr Genomics, 11(2), 115-128. https://doi.org/10.2174/138920210790886871

Naas, T., Blot, M., Fitch, W. M., & Arber, W. (1995). Dynamics of is related genetic rearrangements in resting Escherichia coli K-12. Mol Biol Evol, 12(2), 198-207. http://dx.doi.org/10.1093/oxfordjournals.molbev.a040198

Nicosia, M. D., Brocard-Masson, C., Demais, S., Hua-Van, H., Daboussi, M. J., & Scazzocchio, C. (2001). Heterologous transposition in Aspergillus nidulans. Mol Microbiol, 39(5), 1330-1344. https://doi.org/10.1111/j.1365-2958.2001.02323.x

Nødvig, C. S., Nielsen, J. B., Kogle, M. E., & Mortensen, U. H. (2015). A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One, 10(7), e0133085. https://doi.org/10.1371/journal.pone.0133085

Ogaki, M. B., Vieira, R., Muniz, M. C., Zani, C. L., Alves, T. A., Junior, P. S., Murta, S. F., Barbosa, E. C., Oliveira, J. G., Ceravolo, I. P., Pereira, P. O., Rosa, C. A., & Rosa, L. H.
(2020). Diversity, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic activities in maritime Antarctica. *Extremophiles*, 24, 637-655. https://doi.org/10.1007/s00792-020-01183-z

Opjinen, T. V., Levin, H. L. (2020). Transposon insertion sequencing, a global measure of gene function. *Ann Rev Genet*, 54, 337-365. https://doi.org/10.1146/annurev-genet-112618-043838

Pfeifer, F., Blaseio, U. (1990). Transposition burst of the Ish27 insertion element family in *Halobacterium halobium*. *Nucleic Acids Res*, 18(23), 6921-6925. http://dx.doi.org/10.1093/nar/18.23.6921

Poveda, G., Gil-Durán, C., Vaca, I., Levicán, G., & Chávez, R. (2018). Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. *Biol Res*, 51, 28. https://doi.org/10.1186/s40659-018-0177-4

Purić, J., Vieira, G., Cavalca, L. B., Sette, L. D., Ferreira, H., Vieira, M. C., & Sass, D. C. (2018). Activity of Antarctic fungi extracts against phytopathogenic bacteria. *Lett Appl Microbiol*, 66(6), 530-536. https://doi.org/10.1111/lam.12875

Queiroz, M. V., Daboussi, M. J. (2003). Impala, a transposon from *Fusarium oxysporum*, is active in the genome of *Penicillium griseoroseum*. *FEMS Microbiol Lett*, 218(2), 317-321. https://doi.org/10.1111/j.1574-6968.2003.tb11535.x

Rehman, L., Su, X. F., Guo, H. M., Qi, X. L., Cheng, H. M. (2016). Protoplast transformation as a potential platform for exploring gene function in *Verticillium dahliae*. *BMC Biotechnol*, 16, 57. https://doi.org/10.1186/s12896-016-0287-4

Rosa, L. H., Zani, C. L., Cantrell, C. L., Duke, S. O., Dijck, P. V., Desideri, A., & Rosa, C. A.
(2019). Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa, L. (eds), Fungi of Antarctica (pp. 1-17). Springer, Cham.

Ruiz-Díez, B. (2002). Strategies for the transformation of filamentous fungi. *J Appl Microbiol*, 92(2), 189-195. https://doi.org/10.1046/j.1365-2672.2002.01516.x

Thomas, J., Pritham, E. J. (2015). *Helitrons*, the eukaryotic rolling-circle transposable elements. *Microbiol Spectrum*, 3(4), 893-926. http://dx.doi.org/10.1128/microbiolspec.MDNA3-0049-2014

Timberlake, W., Marshall, M. (1989). Genetic engineering of filamentous fungi. *Science*, 244(4910), 1313-1317. DOI: 10.1126/science.2525275

Tomich, P. K., An, F. Y., Clewell, D. B. (1980). Properties of erythromycin-inducible transposon Tn917 in *Streptococcus faecalis*. *J Bacteriol*, 141(3), 1366-1374. http://dx.doi.org/10.1128/JB.141.3.1366-1374.1980

Vieira, G., Purić, J., Morão, L. G., Dos Santos, J. A., Inforsato, F. J., Sette, L. D., Ferreira, H., & Sass, D. C. (2018). Terrestrial and marine Antarctic fungi extracts active against *Xanthomonas citri subsp. citri*. *Lett Appl Microbiol*, 67(1), 64-71. https://doi.org/10.1111/lam.12890

Villalba, F., Lebrun, M. H., Hua-Van, A., Daboussi, M. J., & Grosjean-Cournoyer, M. C. (2001). Transposon impala, a novel tool for gene tagging in the rice blast fungus *Magnaporthe grisea*. *Mol Plant-Microbe Inter*, 14(3), 308-315. https://doi.org/10.1094/MPMI.2001.14.3.308

Wang, F. Q., Xu, B., Sun, Y. F., Zang, J. Y., Li, X. M., & Wang, N. F. (2013). Identification of
an Antarctic fungus and property analysis of its secretory pigment. *J Chin Inst Food Sci Technol*, 13(3), 189-195. DOI: 10.16429/j.1009-7848.2013.03.035

Wang, J. H., Fan, S. H., Yu, H. Y., Shen, R. Q., & Hu, X. P. (2018). Structural characteristics and functional identification of *FoHeli* transposable element in *Fusarium oxysporum*. *Mycosystema*, 37(3), 325-334. DOI: 10.13346/j.mycosystema.170195

Wang, J. H., Zhao, X. H. (2007). Effects of media component and age on Aspergilli mycelia protoplast release. *Ind Microbiol*, 2, 49-51. https://www.cnki.com.cn/Article/CJFDTotal-GYWS200702010.htm

Wang, M., Zhang, J., Wang, L. Y., Han, L. R., Zhang, X., & Feng, J. T. (2018). Optimization of production conditions for protoplasts and polyethylene glycol-mediated transformation of *Gaemmannomyces tritici*. *Molecules* 23(6), 1253-1266. https://doi.org/10.3390/molecules23061253

Wang, N. F., Zhao, Q., & Zhang P. (2015). Antarctic fungus coloring compound. Patent. People's Republic of China: CN 104804007 A, 2015.07.29.

Wang, Y., Li, Y. N., Qu, X. L., Wang X. T. (2020). The research progress on genetic transformation system and screening techniques of filamentous fungi. *Forest by-product and Speciality in China*, 169(6), 73-79. DOI: 10.13268/j.cnki.fbsic.2020.06.028

Wu, J. D., Chou, J. C. (2019). Optimization of protoplast preparation and regeneration of a medicinal fungus *Antrodia cinnamomea*. *Mycobiology*, 47(4), 483-493. https://doi.org/10.1080/12298093.2019.1687252
Table 1 Composition of various media used for protoplast preparation and cell culture.

Seed medium (g/L)	PDB medium^a (g/L)	Medium R^a (g/L)	YPD medium (g/L)	LB medium (g/L)	Substrate medium (g/L)	Soft agar medium (g/L)	Medium S (g/L)
Glucose 10	Potato extract 8	Potato extract 8	Tryp lone 2	NaCl 10	Glucose 10	Glucose 10	Soluble starch^b 28
Mannitol^b 20	Glucose 20	Yeast extract^c 1	Tryptone^c 10	Mannitol^b 20	Mannitol^b 20	Typtone^c 1.85	
Maltose^b 20	Agar (solid) 10	Agar (solid) 10	Yeast extract^c 5	Maltose^b 20	Maltose^b 20		
Sodium glutamate^b 10	Agar (solid) 10	Agar (solid) 10	Sodium glutamate^b 10				
Yeast extract paste^b 6			Yeast extract paste^b 6				
MgSO₄·7H₂O 0.3					MgSO₄·7H₂O 0.3		
KH₂PO₄ 0.5					KH₂PO₄ 0.5		
Agar (solid) 30					Agar (solid) 20		7.5

^a Potato dextrose broth (PDB) medium was purchased from Hangzhou Microbial Reagent Co., Ltd., China.
^b These reagents were purchased from Sinopharm Chemical Reagent Co., Ltd., China.
^c These reagents were purchased from OXOID.
Table 2 The summary of the mutants by three transposons.

Mutants	Transposons
MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8, MP9	*Helitron*
MP10, MP11, MP12	*Fotl*
MP13, MP14	*Impala*
MP15, MG1, MG2, MG3, MG4, MG5, MG6, MG7, MG8, MG9, MG10, MG11, MG12	*Helitron*
MG13, MG14, MG15	*Impala*
MG16, MG17, MG18	*Fotl*
Table 3 The efficiency of three transposons in *Geomycetes* sp. WNF-15A.

Transposon	Helitron	Impala	Fot1
Total number of transformants	1863	1629	1687
Total number of transposition mutants	223	154	86
Transposition efficiency (%)	11.9	9.4	4.6
Total number of positive mutants in red pigment^a	8	2	3
Positive mutation rate in red pigment (%)	3.6	1.3	3.5
Total number of positive mutants in growth^b	13	2	1
Positive mutation rate in growth (%)	5.8	1.3	1.2

^aThe mutants with variation percentage over 10% in red pigment production were considered as positive mutants, including MP1, MP2, MP3, MP4, MP5, MP7, MP8, MP9, MP10, MP11, MP12, MP13, MP14.

^bThe mutants with variation percentage over 15% in cell growth were considered as positive mutants, including MP1, MP2, MP3, MP4, MP6, MP7, MP8, MP9, MP12, MG2, MG3, MG4, MG8, MG9, MG14, MG15.
Table 4 The transposition efficiency of three transposons in other filamentous fungi.

Transposon	Transposition efficiency a (%)	Host	Reference
Impala	25–54	*Fusarium oxysporum*	Hua-Van et al., 2001
	1.2	*Aspergillus fumigatus*	Firon et al., 2003
	90	*Aspergillus nidulans*	Nicosia et al., 2004
	77	*Magnaporthe grisea*	Villalba et al., 2001
	70	*Penicillium griseoroseum*	Queiroz et al., 2003
	80	*Fusarium moniliforme*	Hua-Van et al., 2001
	70	*Fusarium oxysporum f. sp. melonis.*	Migheli et al., 2000
	11.9	*Geomyces sp. WNF-15A*	This study
Fot1	70–75	*Fusarium oxysporum*	Migheli et al., 1999
	50	*Aspergillus nidulans*	Nicosia et al., 2004
	4.6	*Geomyces sp. WNF-15A*	This study
Helitron	N.A.	*Fusarium graminearum*	Wang et al., 2018
	11.9	*Geomyces sp. WNF-15A*	This study

a Transposition efficiency refers to the proportion of strains with correct transposable elements to all transformants. Selective marker gene was hygromycin B resistance gene *hyg* in this study but nitrate reductase gene *niaD* in other reported studies.
Fig. 1 The protoplast preparation of *Geomyces* sp. WNF-15A. (a) Effects of mycelial culture time on protoplast preparation. Wet mycelia (1.5 g) were digested for 1.5 h at 26°C by 2% cellulase and 1.5% snailase with pH adjusted to 7.0. (b) Effects of enzyme compositions on protoplast preparation. C, cellulase, S, snailase. Mycelia were digested for 1.5 h at 26°C with different enzymes with pH adjusted to 7.0. (c) Effects of digesting temperature on protoplast preparation. Mycelia were digested for 1.5 h by 3% cellulase and 1.5% snailase with pH adjusted to 7.0.
(d) Effects of digesting time on protoplast preparation. The mycelia were digested at 28°C by 3% cellulase and 1.5% snailase pH adjusted to 7. (e) Effects of digesting pH on protoplast preparation. Mycelia were digested for 1.5 h at 28°C by 3% cellulase and 1.5% snailase.
Fig. 2 Optimization of protoplast transformation in *Geomyces* sp. WNF-15A. (a) Effects of incubation time on protoplast preparation. 2 μg DNA was transformed with 45% PEG. (b) Effects of DNA amount on protoplast preparation. The protoplasts were transformed with 45% PEG and incubated for 36 h. (c) Effects of PEG concentration on protoplast preparation. 2 μg DNA was transformed and incubated for 36 h. The calculation of transformation efficiency is shown as *Equation 2*.
Fig. 3 Construction diagram of transposable systems. Promoter of P_{hyg} was used. TIRs, terminal inverted repeats of transposons. The transposase recognizes the TIRs to excise the sequence and insert it into a new genomic locus. LTS, left terminal sequence of transposons. RTS, right terminal sequence of transposons. The transposase recognizes the LTS and RTS to carry the rolling-circle transposition. hyg, hygromycin resistance gene. The short arrows represent the primer locations used for verification. Box lengths in the figure do not represent actual relative motif sizes.
Fig. 4 Liquid culture of mutants for red pigment production in shake flask. (a) The highest red pigment yield and culture time of mutant strains at 14°C. (b) The maximum cell growth and culture time of mutant strains at 14 °C. (c) The highest red pigment yield and culture time of mutant strains at 20 °C. (d) The maximum cell growth and culture time of mutant strains at 20 °C. Red pigment production was presented as absorbance at OD$_{520}$.
Fig. 5 Liquid culture of mutants for mycelial growth in shake flask. WT, wild type; Mutants of MG2, MG3, MG4, MG5, MG8, MG9, MG13, MG14 and MG15 were analyzed.