Quantum mechanics on York slices

Philipp Roser
Department of Physics and Astronomy, Clemson University, Kinard Laboratory, Clemson, SC 29631-0978, USA
E-mail: proser@clemson.edu

Received 25 July 2015, revised 6 December 2015
Accepted for publication 26 January 2016
Published 23 February 2016

Abstract
For some time the York time parameter has been identified as a candidate for a physically meaningful time in cosmology. An associated Hamiltonian may be found by solving the Hamiltonian constraint for the momentum conjugate to the York time variable, although an explicit solution can only be found in highly symmetric cases. The Poisson structure of the remaining variables is not canonical. Here we quantise this dynamics in an anisotropic minisuperspace model via a natural extension of canonical quantisation. The resulting quantum theory has no momentum representation. Instead the position basis takes a fundamental role. We illustrate how the quantum theory and the modified representation of its momentum operators lead to a consistent theory in the presence of the constraints that arose during the Hamiltonian reduction. The quantised reduced Hamiltonian is Hermitian, although the momentum operators are not, the causes and implications of which we discuss. We are able to solve for the eigenspectrum of the Hamiltonian. Finally we discuss how far the results of this model extend to the general non-homogeneous case, in particular perturbation theory with York time.

Keywords: York time, Poisson structure, quantisation, anisotropic minisuperspace model

1. Introduction
The canonical quantisation of general relativity carries with it the notorious problem of time, one of whose facets is the existence of a Hamiltonian constraint in the classical theory, which manifests after quantisation in the form of the Wheeler–deWitt equation, leading to an apparently ‘frozen’ dynamics for the Universe [1–5]. The Hamiltonian constraint arises because of the time-reparameterisation invariance of the classical theory. One possibility to overcome this difficulty is to break this invariance by identifying a physically meaningful time parameter from among the spatial and/or matter variables. One particularly promising
suggestion has been the ‘York parameter’ T [6]—roughly speaking, equal to the fractional rate of spatial contraction of the local volume element—whose physical significance has been made apparent through its importance in the initial-value problem of general relativity [7–9]. Two further independent motivations for its use as a fundamental time parameter are found in [10] and [11]. The emerging time found in shape dynamics [12–14] also bears a close relationship to York time.

Having chosen York time as a preferred temporal parameter, one can obtain a physical, non-vanishing Hamiltonian H_{phys} by solving the Hamiltonian constraint for the momentum P_T conjugate to the York parameter T, a procedure known as Hamiltonian reduction. However, in the general case the equation is too difficult to solve by known methods [6]. In [15] we performed this procedure for the case of a homogeneous and isotropic minisuperspace model with scalar fields and analysed the subsequent quantum theory. However, the simplicity of the model used there hid another aspect of this theory: the fact that the dynamical variables left over after the extraction of the York parameter and conjugate momentum, namely the scale-free components $\tilde{g}_{ij} = g^{-2}g_{ij}$ of the metric and associated momentum $\tilde{\pi}^{ij} = g^2 \left(\pi^{ij} - \frac{1}{3} \text{Tr}(\pi) \right)$, are not canonical. Their Poisson brackets are [6]

$$\{ \tilde{g}_{ab}(\vec{x}), \tilde{\pi}^{cd}(\vec{y}) \} = \left(\frac{\delta^{(i}_{a} \delta^{(j)}_{b} - \frac{1}{3} \tilde{g}_{ab} \tilde{g}^{cd} \delta^{3}(\vec{x} - \vec{y}) \right)$$

$$\{ \tilde{\pi}^{ab}(\vec{x}), \tilde{\pi}^{cd}(\vec{y}) \} = \frac{1}{3} \left(\tilde{g}^{cd} \tilde{\pi}_{ab} - \tilde{g}^{ab} \tilde{\pi}_{cd} \right) \delta^{3}(\vec{x} - \vec{y}).$$

In this paper we explore this Poisson structure and the resulting quantum theory by using another pure-gravity minisuperspace model, which is homogeneous but anisotropic, and therefore displays the non-canonical Poisson brackets. In the classical theory the choice of York time may be seen as a mere gauge choice. However, since different choices of time parameter lead to the quantisation of different variables, different choices of time parameter can lead to physically distinct quantum theories. A cosmological constant is easily included in this model.

We show that a consistent quantum theory that incorporates all the constraints of the classical theory can indeed be formulated, and we solve the Hamiltonian eigenequation. An interesting aspect that emerges from the Poisson structure, in particular the non-commutativity of the momenta with each other, is the absence of a momentum representation.

We hope that by considering this analytically solvable model insights into the structure of the full quantum (not minisuperspace) theory may be gained. The full theory unfortunately remains unsolvable due to the aforementioned difficulty in solving the Hamiltonian constraint. However, the generalisation of the results to cosmological perturbation theory, where an approximate physical Hamiltonian can be derived, is discussed in section 4.

2. Classical theory

In order to study the consequences of this Poisson structure it is sufficient to consider a homogeneous anisotropic vacuum minisuperspace model with a spatial metric consisting of diagonal components only, $g_{ij} = \delta_{ij} Q$. It is easy to see that the associated momenta must also be diagonal, $\pi^{ij} = \delta^{ij} P_{i}$. The classical solution of the Einstein equations with these restrictions is the so-called Kasner models ([16] section 30.2). We furthermore assume a homogeneous frame of reference, so that the numerical values of the variables Q and P_{i}, as well as q_{i} and p^{i} introduced below, are themselves homogeneous and all dependence on position is eliminated.
Because of the ‘compression’ of two indices \((g_{ij}, \pi^{i})\) into one \((Q_{i}, P^{i})\) in our formulation of the dynamics, we employ the following summation convention: indices are summed over if they appear at least once as an upper and a lower index each. Indices may however appear multiple times as either upper or lower indices only without implying a summation. All indices are spatial indices only and have a range of 1, 2, 3. It is furthermore convenient to introduce the inverse metric variables, \(q^{a} \equiv (q_{ab})^{-1}\).

The York parameter is defined to be proportional to the fractional rate of contraction of space, \(T \equiv 2\pi/\sqrt{-g}\), with the constant of proportionality chosen such that its conjugate momentum is the negative of the local volume element, \(P_{T} = -\sqrt{-g}\), where \(g \equiv \det(g_{ab}) = Q_{1}Q_{2}Q_{3}\) is the metric determinant and \(\pi \equiv \text{Tr}(\pi^{ab}) = Q_{i}P^{i}\) is the trace of the momenta. That is, the York parameter and momentum extract the isotropic ‘scale’ component of the variables. The remaining scale-free variables are \(\tilde{g}_{ij}, \tilde{\pi}^{i}\) as defined above for the general case, or

\[
q_{a} \equiv g^{-\frac{1}{2}}Q_{a}, \quad p^{a} \equiv g^{\frac{1}{2}}\left(p^{a} - \frac{1}{3}\pi Q^{a}\right)
\]

in the case of the present model. By virtue of their definition they obey the constraints

\[
q_{1}q_{2}q_{3} = 1, \\
q_{a}p^{a} = 0.
\]

The tracelessness \((5)\) of \(p^{a}\) ensures that the first constraint \((4)\), the scale-free condition, is preserved. In fact, the constraints are both first class.

In terms of \(q_{a}, p^{a}\) the Hamiltonian constraint, obtained by following the ADM procedure \([17]\), takes the form

\[
0 = \mathcal{H} = 2\kappa \left[-\frac{\pi^{2}}{6\sqrt{g}} + \frac{1}{\sqrt{g}}q_{a}^{2}p^{a2} \right] = 2\kappa \left[\frac{3}{8} T^{2}P_{T} - \frac{1}{P_{T}}q_{3}^{2}p^{32} \right].
\]

where \(2\kappa \equiv 16\pi G\). The physical Hamiltonian associated with York time is given by \(H_{\text{phys}} = -P_{T}(q_{a}, p^{a}, T)\), where \(P_{T}(q_{a}, p^{a}, T)\) is the function obtained when solving the Hamiltonian constraint for \(P_{T}\) in terms of the other variables. In the full theory the analogous equation is a difficult elliptic equation with no known general solutions. Here however it is a simple quadratic, yielding

\[
H_{\text{phys}} = -P_{T} = \pm \left[\frac{8}{3T^{2}} q_{3}^{2} p^{32} \right]^{\frac{1}{2}}.
\]

The choice of sign is not physical. For any given physical trajectory corresponding to one sign choice there is a corresponding solution for the other sign choice, characterised by \(q_{3}(T) \rightarrow q_{3}(T), p^{3}(T) \rightarrow -p^{3}(T)\). Since the physical interpretation of the numerical value of \(H_{\text{phys}}\) is that of ‘volume’ however and volume is conventionally defined as positive, we assume the positive sign in \((7)\).

The Hamiltonian has the form \(N(T)(G_{ij}p^{i}p^{j})^{\frac{1}{2}}\), that is, it is of geodesic form for a configuration-space metric \(G_{ij} \propto q_{i}q_{j}\delta_{ij}\). The solutions may therefore be understood geometrically as geodesics in this metric. This is, in fact, a general feature of York-time reduced Hamiltonians.

1 In general, the York parameter can only function as a viable choice of time if an appropriate slicing condition is satisfied, ensuring that it is indeed constant across each slice. However, here its constancy is automatically guaranteed by spatial homogeneity.
The original variables Q_i, P^i are canonical, \(\{Q_a, P^b\} = \delta_a^b \) with other Poisson brackets vanishing. The new variables on the other hand have a more complicated Poisson structure, \[
\{q_a, p^b\} = \delta_a^b - \frac{1}{3} q_a q^b, \tag{8}
\]
\[
\{p^a, p^b\} = \frac{1}{3} (p^a q^b - p^b q^a), \tag{9}
\]
obtained by using the definitions of q_a and p^a in terms of Q_a and P^a and the canonical Poisson brackets $\{Q_a, P^b\}$. It is straightforward to verify that the motion generated by the momenta via the Poisson structure (8), (9), that is, $q_a \rightarrow q_a + \epsilon_b \{q_a, p^b\}$, $p^a \rightarrow p^a + \epsilon_b \{p^a, p^b\}$ for a small vector ϵ_b, preserves the constraints (4), (5).

At this point one may ask if the non-canonical structure of the Poisson brackets is necessary following the Hamiltonian reduction, or if it is only the result of a poor choice of coordinates and that a suitable coordinate transformation of the reduced variables will result in standard canonical Poisson brackets. However, no such variables exist. One way to see this is algebraically by performing a general coordinate transformation, demanding that the new coordinates satisfy canonical commutation relations and showing that no such coordinate transformations can be found. A more geometric way to see that the coordinates must be non-canonical is to look at the phase space constructed. Since the momenta all generate motion within the two-dimensional constraint surface the space spanned by the momenta is not the cotangent space of the kinematical configuration space, which is three dimensional. The underlying reason for this is that as part of the Hamiltonian reduction the momenta are constructed to generate motion within the constraint surface.

Motion generated by the Hamiltonian, \[
q_a \rightarrow q_a + \delta T \{q_a, H\},
\]
\[
p^a \rightarrow p^a + \delta T \{p^a, H\},
\]
also maintains the constraints, although the tracelessness constraint (5) is required to show that the scale-free condition (4) is preserved. Specifically, the equations of motion are
\[
q_a' = \{q_a, H\} = \sqrt{\frac{8}{3T^2 \cdot q_c^2 p_c^2}} \cdot q_c^2 p_c^b \delta_a^b, \tag{10}
\]
\[
p^a' = \{p^a, H\} = - \sqrt{\frac{8}{3T^2 \cdot q_c^2 p_c^2}} \cdot q_c p_c^b \delta_a^b, \tag{11}
\]
where a prime ('') denotes derivation with respect to York time T.

Explicit solutions to equations (10), (11) may be found by inspection using the fact that $p^b' = -q^b \delta^b_0 q_a'$. One finds solutions
\[
q_a(T) = (-4/3T)^2 (s_a - \frac{1}{3}), \quad p^a(T) = (s_a - \frac{1}{3})(-4/3T)^{-2} (s_a - \frac{1}{3}), \tag{12}
\]
with constant parameters s_a satisfying $s_1 + s_2 + s_3 = 1$, $s_1^2 + s_2^2 + s_3^2 = 1$. These solutions are exactly the Kasner models. In order to see this and to get a better intuition of the relation of York time T and standard cosmological time t in these models, recall that in the Kasner models $g = t^2$ and the general fact that T was defined as $-4/3$ times the fractional rate of change of volume, so that
\[
T = -\frac{4}{3t}. \tag{13}
\]
This makes it apparent that (12) are indeed the Kasner solutions. The value of H_{phys} is given by $-P_T = \sqrt{g}$, so $H_{\text{phys}} = t$—cosmological time is just the numerical value of the physical Hamiltonian.
The fact that one obtains exactly the same solutions illustrates the consistency of the reduced formalism.

A cosmological constant may be included in the above formalism, leading to the substitution \((8/3T^2) \rightarrow \left(\frac{2}{8}T^2 - 2\Lambda\right)^{-1}\) in \(H_{\text{phys}}\). The solutions of the equations of motion are then

\[
q_a(T) = \gamma_a \left| T + \sqrt{T^2 - \frac{16}{3}\Lambda} \right|^{\gamma_a \left(\frac{1}{2} - \frac{1}{T} \right)}
\]

\[
p^a(T) = \gamma_a^{-1} \left(\frac{s_a - \frac{1}{3}}{T} \right) \left| T + \sqrt{T^2 - \frac{16}{3}\Lambda} \right|^{-\gamma_a \left(\frac{1}{2} - \frac{1}{T} \right)}
\]

where the parameters \(s_a\) satisfy the same condition as in the Kasner model, \(\gamma_a\) are constants chosen to satisfy equation (4) and \(T\) is restricted to \(\frac{\sqrt{2}}{4}T^2 > 2\Lambda\). For a discussion of the appropriate range of values of \(T\) and the question of extending \(T\) over the entire real line, see [18].

3. Quantisation and representations

The canonical quantisation recipe provides a list of instructions for turning a classical theory with canonical variables into a viable quantum theory. In our case the Poisson brackets are not canonical. However, there is a natural extension of that recipe that one may consider to provide a good guess for what may constitute a viable quantised theory. A prescription for the quantisation of general Poisson brackets is found, for example, in [4].

As usual, we ‘promote’ variables to operators, which are to act on a space of kinematically allowed quantum states \(\Psi_{\text{kin}}\). Poisson brackets become commutator brackets and the right-hand sides of (8) and (9) gain a factor \(\hbar\) on dimensional grounds to match the ‘missing’ power of momentum as compared to the left-hand side. The proposed quantum theory is therefore defined by the commutator expressions

\[
[q_a, \hat{\rho}^b] = i\hbar \left(\frac{1}{3}q_a \hat{q}^b - \frac{1}{3} \hat{q}_a q^b\right),
\]

\[
[p_a, \hat{\rho}^b] = i\hbar \left[\frac{1}{3}[p_a q^b - \hat{q}_a \hat{q}^b]\right]
\]

and other commutators vanish. Constraints \(\phi(q_i, p^i) = 0\) act as operators on states as \(\phi(\hat{q}_i, \hat{\rho}^j)\Psi_{\text{phys}} = 0\), identifying the set of physically allowed states \(\Psi_{\text{phys}}\). That is, while the wavefunction is introduced mathematically as a function of the full kinematical configuration space, states \(\Psi_{\text{kin}}\) that lie off the constraint surface are mathematical artifacts only without a physical meaning.

One may now readily see why this theory does not allow for a momentum representation, that is, a representations of quantum states as functions \(\hat{\psi}(p')\) of space-time coordinates \(p'\) such that \(\hat{\rho}^a \hat{\psi}(p') = \hat{\rho}^a \hat{\psi}(p')\). The existence of such a representation directly contradicts the non-commutativity of the momenta. However, there is a position representation satisfying the commutation relations (16), (17), given by

\[
\hat{q}_a \Psi_{\text{kin}}(q_i) = q_a \Psi_{\text{kin}}(q_i),
\]
\[\hat{p}^b \Psi_{\text{kin}}(q_i) = \left[-i\hbar \left(\delta^b_a - \frac{1}{3} q_i^b q_a \right) \frac{\partial}{\partial q_a} \right] \Psi_{\text{kin}}(q_i). \]

We discuss the implications of the non-existence of a momentum representation in section 5. We are left to consider the constraints. The tracelessness requirement in operator form,

\[\hat{q}_a \hat{p}^a \Psi_{\text{phys}} = 0, \]

is satisfied identically in this representation, so it does not restrict the space of physical wavefunctions. On the other hand, the absence of absolute scale, taking the form of the self-adjoint quantum constraint

\[\hat{q}_1 \hat{q}_2 \hat{q}_3 \Psi_{\text{phys}} = \mathbb{I} \Psi_{\text{phys}}, \]

implies that physical wavefunctions must vanish off the two-dimensional surface \(\Sigma \) given by \(q_1 q_2 q_3 = 1 \). On the full configuration space physical wavefunctions are therefore discontinuous at \(\Sigma \). One may be worried that this is problematic given that one encounters expressions of the form \(\partial / \partial q_i \Psi_{\text{phys}} \), which are derivatives across the discontinuity. However, derivatives in the position representation only appear in the form of linear combinations as given by the momenta, which are directional derivatives tangent to the constraint surface. This is, of course, the quantum result corresponding to the fact that classically momenta generate motion within the constraint surface. Specifically, considering a basis for the tangent space to \(\Sigma \) at an arbitrary point by writing \(q_3 = (q_1 q_2)^{-1} \) and calculating the corresponding tangent vectors,

\[T_1 \equiv \left(\frac{\partial q_1}{\partial \hat{q}_1}, \frac{\partial q_2}{\partial \hat{q}_1}, \frac{\partial q_3}{\partial \hat{q}_1} \right) = (1, 0, -1/q_1^2 q_2), \]

\[T_2 \equiv \left(\frac{\partial q_1}{\partial \hat{q}_2}, \frac{\partial q_2}{\partial \hat{q}_2}, \frac{\partial q_3}{\partial \hat{q}_2} \right) = (0, 1, -1/q_2 q_3^2), \]

the momenta can be expressed in terms of this basis,

\[\hat{p}_1 = \left(\frac{2}{3} T_1 - \frac{q_2}{3q_1} T_2 \right) \cdot \nabla \]

\[\hat{p}_2 = \left(\frac{q_1}{3q_2} T_1 + \frac{2}{3} T_2 \right) \cdot \nabla \]

\[\hat{p}_3 = \left(\frac{-1}{3} q_1^2 q_2 T_1 + \frac{1}{3} q_2 q_3^2 T_2 \right) \cdot \nabla. \]

The evolution of the value of \(\Psi_{\text{phys}} \) at some point \(\vec{q} \) is therefore ‘blind’ to the properties of \(\Psi_{\text{phys}} \) outside the constraint surface. The dynamics of the quantum theory is determined by the quantised, time-dependent Hamiltonian,

\[\hat{H} = \sqrt{\frac{8}{3T^2}} \sqrt{\frac{q_i^2 p_i^2}{T^2}}. \]

Furthermore, one notes that the momenta are not linearly independent operators.
Since classically the numerical value of the Hamiltonian is ‘volume’, in the quantum theory \(\hat{H} \) defines a ‘volume spectrum’ with volume eigenfunctions and eigenvalues rather than the more conventionally encountered energy spectrum [15].

The obvious difficulty with \(\hat{H} \) is the appearance of a ‘square-root’ operator, whose meaning is not initially clear. Another question is the factor-ordering ambiguity in the radicand. Regarding the latter, one can show using the commutation relations that changing the ordering of \(\hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b \) either has no effect or merely corresponds to adding or subtracting a constant \(\frac{4}{3} \hbar^2 \) or \(\frac{8}{3} \hbar^2 \). A different ordering choice therefore corresponds to a shift in the Hamiltonian eigenvalues but does not change the eigenfunctions. Where necessary, we will therefore with minimal loss of generality assume the ordering ‘\(\hat{q}\hat{q}\hat{p}\hat{p} \)’, also expressible in the form

\[
\hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b \psi_{\text{phys}}(q) = \left(\hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b - \frac{1}{3} \hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b \right) \psi_{\text{phys}}(q).
\]

(28)

We wish to deal with the square-root operator explicitly. Since analysis of \(\hat{H}^2 \) is much easier than that of \(\hat{H} \) itself (as there is no square root and so the interpretation of the operator expression is clear) it is useful to establish the relationship between operators \(\hat{h} \equiv (\hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b)^{1/2} \) and \(\hat{f} \equiv \hat{h}^2 = \hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b \).

If \(\langle h \rangle \) is an eigenfunction of \(\hat{h} \) with eigenvalue \(h \), \(\hat{h} \langle h \rangle = h \langle h \rangle \), then it is also an eigenfunction of \(\hat{h}^2 \) with eigenvalue \(h^2 \), \(\hat{h}^2 \langle h \rangle = h^2 \langle h \rangle \). The converse is in general not true: there may be eigenfunctions of \(\hat{f} = \hat{h}^2 \) which are not eigenfunctions of \(\hat{h} \). However, if \(\hat{f} \) is diagonalisable with a complete set of eigenstates (this will follow from Hermiticity established below), then these also form a set of eigenstates for \(\hat{h} = \hat{f}^{1/2} \) with square-rooted eigenvalues.

Regarding Hermiticity, if \(\hat{h} \) is Hermitian, then so is \(\hat{h}^2 \). Again, for arbitrary operators the converse is not true: If \(\hat{A}^2 = \hat{B}^2 \) and \(\hat{B} \) is Hermitian, then it is not guaranteed that \(\hat{A} \) is Hermitian. However, if \(\hat{A} = \hat{B}^2 \) is defined in terms of the diagonalised operator, then \(\hat{A} \) will be Hermitian too (up to a subtlety also established below for the case of \(\hat{f} : \hat{B} \) must be positive semidefinite, that is, it must have only non-negative eigenvalues, so that their square roots are real). That is, not every square root of a Hermitian operator is Hermitian, but one can always find one via diagonalisation. This is how we intend to interpret \(\langle \hat{h} \rangle = (\hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b)^{1/2} \) in terms of \(\hat{f} \).

The operator \(\hat{f} \) is Hermitian only on \(\Sigma \), not on the full, unconstrained configuration space. In order to establish its Hermiticity it is useful to perform a change of coordinates \((q_1, q_2, q_3) \to (u \equiv q_1, v \equiv q_2, w \equiv q_3, q_4) \), so that \(w = 1 \) describes the constraint surface, facilitating the integration. With \(\partial_\mu \equiv \partial^\mu = \partial^\mu - (w/uv^2) \partial^1 \), \(\partial_\nu = \partial^\nu - (w/uv^2) \partial^3 \), \(\partial_\nu = (1/uv) \partial^3 \), the momenta are

\[
\hat{p}^1 = -i\hbar \left(\frac{1}{3} \partial_\mu - \frac{u}{3v} \partial_\nu \right)
\]

\[
\hat{p}^2 = -i\hbar \left(\frac{2}{3} \partial_\nu - \frac{v}{3u} \partial_\mu \right)
\]

(29)

(30)

3 It is possible to obtain a formal expression for the action of the square-root operator by assuming a series expansion and by Fourier expanding the state vector. However, this formal expression does not lead to any further insight and is therefore only of limited use.
\[
\hat{p}^3 = \frac{i\hbar}{3} \left(\frac{u^2v}{w} \partial_u + \frac{uv^2}{w} \partial_v \right).
\]

The volume element is \(dq_1 dq_2 dq_3 = (uv)^{-1} du dv dw \) and the operator \(\hat{f} \) is
\[
\hat{f} \equiv \hat{q}_a \hat{q}_b \hat{p}^a \hat{p}^b = -\frac{2\hbar^2}{3} \left[w^2 \partial_w^2 + v^2 \partial_v^2 - uv \partial_u \partial_v + v \partial_v + u \partial_u \right].
\]

In terms of these coordinates the Hermiticity of \(\hat{f} \) on the constraint surface,\(\int_\Sigma \psi_\text{phys}^\dagger \hat{f} \chi_\text{phys} \int_\Sigma \psi_\text{phys} \hat{f}^\dagger \chi_\text{phys} \)
is easily shown. Note, however, that the momenta themselves are not Hermitian and therefore do not constitute ‘observables’ in the conventional sense. For example,
\[
\int_\Sigma \psi_\text{phys}^\dagger \hat{p} \chi_\text{phys} = \int_\Sigma \left(\hat{p}^a \psi_\text{phys}^\dagger \right) \chi_\text{phys} - \int_0^\infty \int_0^\infty du \ dv \ \frac{1}{uv} \cdot \frac{i\hbar}{u} \psi_\text{phys}^\dagger \chi_\text{phys}.
\]

The origin of the non-Hermiticity of the momenta may be understood as follows. In the usual formal canonical quantisation procedure one constructs a commutative \(\mathbb{C}^* \)-algebra of complex functions and the action of complex vector fields on the configuration space (with its representation respecting an involution) in order to ensure that all phase-space functions become ‘observables’ in the quantum theory. For example, in loop quantum gravity this is implemented via the shift to the loop variables, which have the appropriate structure \(^4\). There one has a kinematical (i.e. prior to ‘knowledge’ of the constraints) phase space in the form of a cotangent bundle over the configuration space and can proceed accordingly. Loop quantum gravity is perhaps the most advanced approach to canonical quantum gravity (a phrase borrowed from [19]), with a rigorously defined quantisation and Hilbert space.

The present theory, as constructed via the Hamiltonian reduction, differs qualitatively from the procedure used for loop quantum gravity. The metric-derived variables \{q\} and associated momenta do not lead to the full structure of a \(\mathbb{C}^* \)-algebra. The set of position operators form their own (smaller) \(\mathbb{C}^* \)-algebra (with \(q^\dagger = q^\ast \), \(F(q^\dagger) = F(q^\ast) \) for the involution) and this ensures the existence of the position basis (e.g. Theorem 29.2.2 in [4]). What is not present here is the involution of the vector fields on configuration space. This leads to the momenta not being ‘observables’ and neither is the operator form of a general phase-space function involving the momenta (although some functions may be, including, fortunately, the Hamiltonian).

In contrast with conventional canonical quantisation such as employed in the construction of loop quantum gravity, the reduced momenta do not span the cotangent space of the kinematical configuration variables \{q\} since instead they maintain the constraint \(q_1 q_2 q_3 = 1 \) by construction, acting only tangentially to the constraint surface. The Poisson structure also ensures that the other constraint, \(q_i p^i = 0 \) is maintained by any generator constructed from the momenta and variables. In the quantum theory this is in effect the reason the analogous quantum constraint holds identically at the operator level.

Fortunately, the lack of momentum observables does not make the quantum theory unfeasible. Physically speaking, as has been pointed out by Feynman and Hibbs ([20] ch. 5) and repeatedly emphasised by Bell ([21] e.g. p. 196) all physical observation is ultimately that of positions, such as time-of-flight measurements for particle momenta or simply the position of an apparatus pointer that is appropriately coupled to the system.

\(^4\) We are indebted to an anonymous referee for encouraging this comparison.
Elaborating on this point, note that quantum theories may be viewed as theories of *positions*. In general, this requires one to view the position basis as preferred, although for our purposes this is already the case in light of the Poisson structure, as argued in the text. Particular types of position measurement can be interpreted as ‘momentum measurements’. For example, in the standard quantum mechanics of a single particle with the wavefunction initially localised in position space, the statistical spread of position-measurement outcomes after a fixed time interval corresponds to the probability distribution of potential momentum-measurement outcomes. The initial uncertainty in position becomes negligible at sufficiently long times of flight (see [20] sections 5–1 for a detailed analysis). Accepting that the observation of momentum is only a particular type of position measurement, it becomes clear that a quantum theory is not strictly required to have this structure. The absence of self-adjoint momentum operators implies that the theory lacks certain formal properties in contrast with conventional quantum theories, but it is not physically inconsistent or unviable.

One reason we chose to examine the simplest model in which the Poisson brackets are non-trivial is that it allows us to explore their quantisation without having to worry about too many other cumbersome notational or other details. Another is that the Hamiltonian eigen-equation, that is, the ‘volume eigenspectrum’, can be solved exactly. This is because \(\hat{f} \) is a homogeneous operator (equation (32)) whose eigenfunctions may be readily found by inspection,

\[
\phi_{n,m}(u, v) = A_{n,m} u^n v^m, \tag{35}
\]

with eigenvalues

\[
\hat{f} \phi_{n,m}(u, v) = \frac{2\hbar^2}{3} [n^2 + m^2 - nm] \phi_{n,m}(u, v). \tag{36}
\]

Naïvely \(m, n \in \mathbb{C} \), although the values will be restricted shortly. With the interpretation of the square-root operator discussed above, the Hamiltonian eigensolutions are

\[
\hat{H} \phi_{n,m}(u, v) = h_{n,m}(T) \phi_{n,m}(u, v), \quad h_{n,m}(T) = i \frac{4\hbar}{3|T|} \sqrt{n^2 + m^2 - nm}. \tag{37}
\]

The eigenfunctions \(\phi_{n,m}(u, v) \) are, however, not normalisable on \(u, v \in (0, \infty) \) for any values \(n, m \). But they are bounded (and, in fact, of constant magnitude) for purely imaginary \(n, m \), and divergent for all other values. That is, let \(n = i\beta, m = i\delta, \beta, \delta \in \mathbb{R} \). Then

\[
h_{i\beta,i\delta}(T) = -i \frac{4\hbar}{3|T|} \sqrt{\beta^2 + \delta^2 - \beta\delta}, \tag{38}
\]

where \(\beta^2 + \delta^2 - \beta\delta \geq 0 \) always, so that the eigenvalues are real. Thus the reality of eigenvalues is equivalent with the non-divergence of the eigenfunctions. This is closely analogous to the ‘plane wave’ eigenfunctions of a free particle in basic particle quantum mechanics. There the eigenfunctions are of the form \(\exp(ikx) \) for real \(k \) and therefore not normalisable either but bounded with constant magnitude. Imaginary values of \(k \) are excluded even though they solve the eigenvalue equation because they entail divergent eigenfunctions. The analogy can be made more apparent by writing \(\phi_{i\beta,i\delta} = e^{(i\frac{4\hbar}{3|T|} \sqrt{\beta^2 + \delta^2 - \beta\delta})} \). The eigenvalues are sign definite, that is, either all positive or all negative, depending on the choice of sign in the Hamiltonian. As we did in the classical theory we can choose ‘volume’ to be positive, so that the Hamiltonian is a positive-semidefinite operator. We see furthermore that there is a

\[\text{9} \]

\[\text{5 Some formulations, such as de Broglie–Bohm theory, do this at the fundamental level, whereas in the Everettian formulation, for example, an (approximate) position basis may be preferred as a result of decoherence.} \]
unique minimum-volume state, \(\phi_{0,0} \), which has constant eigenvalue zero, somewhat analogous to a ‘vacuum’ state.

One can also derive uncertainty relations. However, since the momenta are not observables the relevance of these relation is questionable and their meaning is obscure. Nonetheless we include them for completeness. One finds

\[
\sigma_{q_i} \sigma_{p_{i'}} \geq \frac{h}{3} \quad (i = j) \quad (39)
\]

but the other non-zero relations are not as well behaved and state dependent,

\[
\sigma_{q_i} \sigma_{p_{i'}} = \infty \quad (i \neq j) \quad \text{for } H\text{-eigenstates} \quad (40)
\]

\[
\sigma_{p_{i'}} \sigma_{p_{i'}} = 0 \quad \text{or } \infty \quad \text{depending on symmetry properties of chosen state.} \quad (41)
\]

Including a cosmological constant in the quantum theory is relatively straightforward since only the time-dependent pre-factor of the Hamiltonian changes, with the resulting Hamiltonian eigenvalues changing accordingly. The eigenfunctions remain the same.

4. Application to the general and perturbation theory

For a physically more relevant analysis one must, of course, abandon the assumption of homogeneity and consider the general Poisson brackets (1), (2). As discussed above, the associated Hamiltonian constraint cannot be solved for \(P_T \) as is required in order to derive the explicit functional form of the physical Hamiltonian associated with York time. While this ultimately presents a difficulty that would have to be overcome in order to derive the general non-linear theory, certain properties of the resulting quantum theory can already be described. In particular, analogously to the derivation above, there is no momentum basis but only a position basis (conformal superspace) where

\[
\tilde{g}_{ab}(x) \Psi[g_{ij}] = g_{ab}(x) \Psi[g_{ij}], \quad (42)
\]

\[
\tilde{\pi}^{ab}(x) \Psi[g_{ij}] = -i\hbar \left(\hat{g}^{(a b)} - \frac{1}{2} \hat{g}^{ab} g_{cd} \right) \frac{\delta}{\delta g_{cd}(x)} \Psi[g_{ij}] \quad (43)
\]

Just as in the homogeneous model above the ‘tracelessness’ constraint

\[
\tilde{g}_{ab} \tilde{\pi}^{ab} \Psi_{\text{phys}}[g_{ij}] = 0 \quad (44)
\]

is satisfied identically in the quantum theory and imposes no restriction on the physicality of states. On the other hand, the ‘scale-free’ constraint

\[
\tilde{g} \Psi_{\text{phys}}[g_{ij}] = \Psi_{\text{phys}}[g_{ij}] \quad (45)
\]

implies that physical states have support only on the classical constraint surface given by \(\det(g_{ij}) = 1 \). Momenta once again act tangentially, allowing for a consistent formulation of the quantum theory in the position basis.

While the explicit Hamiltonian is not known for the general theory, it is possible to construct cosmological perturbation theory based on York time [22]. Previously, a shape-dynamics-inspired perturbative expansion around solutions of the Lichnerowicz–York equation has been discussed in [19] and a perturbative expansion in \(2 + 1 \) dimensional shape dynamics on higher-genus surfaces (\(g > 1 \)) has been proposed in [23].

In the procedure we propose here one considers a homogeneous background on which one imposes gravitational and matter perturbations, which are assumed small. This allows one to solve for the physical Hamiltonian based on the York parameter of the homogeneous
background only. One then proceeds to exploit the gauge ambiguity (equivalently, the ambiguity of the original slicing at the perturbative level) of the perturbative degrees of freedom such that the originally chosen ‘background’ York time is, in fact, the exact slicing. Thus one obtains a perturbative Hamiltonian, which by virtue of the perturbative expansion consists of a sum of quadratic terms, albeit with strongly time-dependent coefficients as well as mixed momentum–position terms. The dynamics of the gravitational part of the perturbations is then determined by the Poisson structure discussed above.

In particular, suppose there is an approximately homogeneous background slicing and the exact ‘York gauge’ has been chosen, and the background coordinates have been fixed to be homogeneous also (in a homogeneous isotropic background these would take the form of the conformal part of the Friedmann metric appropriate to the global geometry). Then suppose we expand the reduced variables as

$$\tilde{g}_{ij} = \gamma_{ij} + h_{ij}, \quad \pi^{ij} = \tilde{\pi}^{ij} + \nu^{ij},$$

where γ_{ij} and $\tilde{\pi}^{ij}$ are the reduced ‘variables’ of the background, which are respectively constant and vanishing. By substituting these expressions into the Poisson brackets (1) and (2) one readily obtains brackets for the perturbation variables,

$$\{h_{ab}(x), \mu^{cd}(y)\} = \left[\delta^{(c \times d)}_{a \times b} - \frac{1}{3}\gamma^{ab}\gamma^{cd} + \frac{1}{3}\gamma^{ab}\gamma^{cd}h_{ab} - \frac{1}{3}\gamma^{ab}\gamma^{cd}h_{ab}\gamma^{ef}\gamma^{fg} \right] \delta^3(x - y)$$

$$+ (\text{2nd order terms}) \delta^3(x - y).$$

Terms of all orders in the perturbation variables appear because of the expansion of the inverse reduced metric, $\tilde{g}^{ij} = \gamma^{ij} - \gamma^{ab}h_{ab}\gamma^{ij} + \gamma^{ab}h_{ab}\gamma^{ij}h_{cd}\gamma^{cd} - \ldots$ only. Note that the momentum–momentum bracket (48) has no zero-order terms, so that this bracket is ‘almost canonical’ in a more concrete sense than that of [6]. This also implies that there is an ‘approximate momentum representation’. The position–momentum bracket (47) on the other hand is non-canonical even at zeroth order, although the terms are constant across all space and time by virtue of containing background variables only. The momenta are once again not Hermitian, although they are at leading order, consistent with the existence of the approximate momentum representation.

Further details of this procedure are discussed in [22]. Suffice to say, this does not, of course, constitute a fundamental theory but one may hope that the dynamics obtained in this manner resembles the perturbative limit of dynamics generated by the elusive solution to the Hamiltonian constraint of the complete, non-linear theory.

5. Conclusion

In this paper we have shown how a consistent quantum theory may be defined based on non-canonical brackets via an obvious extension of the canonical quantisation recipe. The model chosen to explore was complicated enough for the unusual Poisson structure to become apparent, yet simple enough to allow us to solve for the ‘volume spectrum’ of the Hamiltonian.

One particular aspect of this Poisson and commutator bracket structure is the absence of a momentum basis. Unlike the case in theories with canonical variables, ‘position’ and ‘momentum’ are therefore not equally valid bases for the state space of the quantum theory. Contingent on the idea that the York parameter does, in fact, constitute a physically preferred
time coordinate, this suggests that the position basis, that is, *configuration space*, is the natural arena in which to describe quantum physics. There may be an argument that this suggests taking more seriously ‘interpretations’ of quantum theory that already consider the configuration-space description as physically preferred, such as the de Broglie–Bohm ‘pilot-wave’ formulation \([21, 24–27]\). However, this is of no concern here. Furthermore, we note that in any case the preferred position basis arises only with respect to the gravitational degrees of freedom, not those of matter, so one must be careful not to overstate the significance of this ‘preferred basis’. The fact that the momentum–momentum bracket is ‘almost canonical’ in the case of perturbations is however not significant in this regard. While an approximate momentum representation may be found, it is merely a mathematical tool and not of fundamental significance.

Not only do the momentum operators of the quantum theory not commute with each other, they are not even Hermitian. In section 3 we argued that Hermiticity of the momenta is not essential for a viable quantum theory since momentum ‘observables’ should really be understood as corresponding to particular types of position measurement, whose existence is formally convenient but not strictly required. That the momenta are not observables is further related to the absence of a momentum basis. The fact that the momenta are not self-adjoint implies that there might not exist an orthogonal eigenbasis for each individual momentum operator. However, given that the non-commutativity of distinct momentum operators already implies that there is no joint eigenbasis of all three momentum operators, that is, there is no momentum basis anyway, comparatively little is lost by the non-Hermiticity of the momenta.

The cosmological model considered here is not a realistic approximation of our Universe, which appears to be extraordinarily isotropic on large scales. Anisotropies are instead a local phenomenon that can be treated perturbatively. How this may be done has been suggested in section 4 and full details are discussed in \([22]\). There the situation is more complicated, since the perturbations not only are inhomogeneous but also must include matter terms and therefore further degrees of freedom. However, the finite-dimensional model developed here already suggests the possibility of a consistent quantum theory for the non-canonical Poisson brackets arising in the York-time Hamiltonian reduction.

Acknowledgment

I am indebted to Antony Valentini for multiple discussions and a critical review of this manuscript.

References

[1] DeWitt B 1967 Quantum theory of gravity I: the canonical theory *Phys. Rev.* 160 1113
[2] Kuchar K 2011 Time and interpretations of quantum gravity *Int. J. Mod. Phys. D* 20 3–86
[3] Rovelli C 2007 *Quantum Gravity* (Cambridge University Press)
[4] Thiemann T 2007 *Modern Canonical Quantum General Relativity* (Cambridge University Press)
[5] Kiefer C 2012 *Quantum Gravity* (Oxford University Press)
[6] Choquet-Bruhat Y and York J 1980 The Cauchy problem *General Relativity and Gravitation* I ed A Held (Plenum)
[7] York J 1971 Gravitational degrees of freedom and the initial-value problem *Phys. Rev. Lett.* 26 1656–8
[8] York J 1972 Role of conformal three-geometry in the dynamics of gravitation *Phys. Rev. Lett.* 28 1082–5
[9] York J 1973 Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity J. Math. Phys. 14 456–64
[10] Qadir A and Wheeler J 1985 From SU(3) to Gravity (Cambridge University Press)
[11] Valentini A 1996 Pilot-wave theory of fields, gravitation and cosmology in Bohmian Mechanics and Quantum Theory: An Appraisal ed J T Cashing, A Fine and S Goldstein (Kluwer)
[12] Gomes H, Gryb S and Koslowski T 2011 Einstein gravity as a 3D conformally invariant theory Class. Quantum Grav. 28 045004 gr-qc: 1010.2481.
[13] Barbour J, Koslowski T and Mercati F 2013 The solution to the problem of time in shape dynamics gr-qc: 1302.6264.
[14] Mercati F 2014 A shape dynamics tutorial gr-qc: 1409.0105v1.
[15] Roser P and Valentini A 2014 Classical and quantum cosmology with York time Class. Quantum Grav. 31 245001
[16] Misner C, Thorne K and Wheeler J 1973 Gravitation (Freeman)
[17] Arnowitt R, Deser S and Misner C W 1962 The dynamics of general relativity Gravitation: an Introduction to Current Research ed L Witten (Wiley)
[18] Roser P 2015 An extension of cosmological dynamics with York time gr-qc: 1407.4005.
[19] Koslowski T 2013 Shape dynamics and effective field theory Int. J. Mod. Phys. A 28 1330017 gr-qc: 1305.1487.
[20] Feynman R and Hibbs A 1965 Quantum Mechanics and Path Integrals (McGraw-Hill)
[21] Bell J 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press)
[22] Roser P 2015 Cosmological perturbation theory with York time gr-qc: 1511.03320.
[23] Budd T and Koslowski T 2012 Shape dynamics in 2+1 dimensions Gen. Relativ. Gravit. 44 1615 gr-qc: 1107.1287.
[24] de Broglie L 1928 Électrons et Photons: Rapports et Discussions de Cinquième Conseil de Physique (Paris: Gauthier-Villars) English translation in Bacciagaluppi G and Valentini A Cambridge University Press Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference Cambridge University Press quant-ph: 0609184
[25] Bohm D 1952 A suggested interpretation of the quantum theory in terms of ‘hidden’ variables: I. Phys. Rev. 85 166–79
[26] Bohm D 1952 A suggested interpretation of the quantum theory in terms of ‘hidden’ variables: II. Phys. Rev. 85 180–94
[27] Holland P R 1993 The Quantum Theory of Motion: an Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics (Cambridge University Press)