N3LO fits to xF_3 data: α_s vs $1/Q^2$ contributions

A. L. Kataev a, G. Parente b and A. V. Sidorov c

aInstitute for Nuclear Research of the Academy of Sciences of Russia, 11312, Moscow, Russia

bDepartment of Particle Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

cBogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

The results of approximate N3LO and detailed NNLO fits to xF_3 data of the CCFR’97 collaboration are presented. We demonstrate that $1/Q^2$ non-perturbative corrections to xF_3 modeled by three independent procedures are shadowed by perturbative QCD effects, starting at the NNLQO. Special attention is paid to revealing the role of the recently calculated NNLO corrections to the anomalous dimensions and N3LO corrections to the coefficient functions of odd moments of xF_3 with $n \leq 13$. The related values of $\alpha_s(M_Z)$ are extracted.

It is known that the leading non-perturbative power suppressed corrections to DIS structure functions (SFs) have the dimension $1/Q^2$. However, it turned out that phenomenological value of non-perturbative effects depend crucially from the order of the corresponding perturbative contributions. It is worth to remind that in 1979, when the data for DIS neutrino-nucleon scattering was not precise enough, the authors of Ref. [1] were unable to separate perturbative $1/\ln(Q^2)$ source of scaling violation from the $1/Q^2$-effects. At present both the precision of xF_3 measurements [2] and the information on renormalization-group perturbative QCD evolution of Mellin moments became more precise. The latter ones enter into the Jacobi polynomial formula [3]

$$xF_3(x, Q^2) = w(\alpha, \beta) \sum_{n=0}^{n_{\text{max}}} \Theta_n^{(\alpha, \beta)}(x) \times$$

$$\sum_{j=0}^{n} c_j^{(n)}(\alpha, \beta) M_{j+2}^{\text{TMC}}(Q^2) + \frac{HT}{Q^2}$$

where $w(\alpha, \beta) = x^\alpha(1-x)^\beta$, $c_j^{(n)}(\alpha, \beta)$ contain Euler Γ functions from α and β and the moments $M_{n}^{\text{TMC}}(Q^2) = M_n(Q^2) + \frac{n(n+1)M_{\text{nucl}}^2}{(n+2)Q^2}$ take into account the leading order target mass corrections. The kinematic contributions of order $1/Q^4$ did not affect the results of our previous less detailed NNLO fits to CCFR’97 data (see Refs.[4, 5]) and the analysis of Ref.[6] described below.

In this talk we will concentrate on the results of the most recent analysis of the CCFR’97 data for xF_3 in the NLO, NNLO and approximate N3LO levels of perturbative QCD [6], paying special attention to the possibility of the detection of non-perturbative $1/Q^2$-contributions to xF_3. They will be modeled by three independent ways. First, is the infrared-renormalon (IRR) model of Ref. [7]

$$\frac{HT}{Q^2} = w(\alpha, \beta) \sum_{n=0}^{n_{\text{max}}} \Theta_n^{(\alpha, \beta)} \sum_{j=0}^{n} c_j^{(n)}(\alpha, \beta) M_{j+2}^{\text{IRR}}$$

where $M_n^{\text{IRR}} = \tilde{C} M_n(Q^2) A_2^/' Q^2$ and $\tilde{C} = -n + 4 + 2/(n+1) + 4(n+2) + 4S_1(n)$, calculated in Ref. [6] from the single chain of quark loop inser-
tions into the one-gluon contribution to the corresponding Born diagram and A'_2 is the arbitrary fitted parameter. Next, following the NNLO Bernstein polynomial fits to CCFR'97 data of Ref. \[11\] (see also Ref. \[8\]) we consider gradient model of twist-4 term, namely

$$M^{HT}_{n,xF_3}(Q^2) = n \frac{B'_n}{Q^2} M_n(Q^2)$$ \tag{4}$$

where B'_n is the free parameter. Another possibility is to choose

$$HT = h(x) \text{ in the model -- independent way}. \tag{5}$$

Here $h(x)$ is defined by free parameters $h_i = h(x_i)$, where x_i are the points in experimental data binning. In our work the following renormalization-group equation for the Mellin moments of xF_3 was used:

$$M_n(Q^2) = M_n(Q_0^2) \exp \left[-\int_{Q_0^2}^{Q^2} \frac{\gamma^{(n)}_{F_3}(t)}{\beta(t)} \, dt \right] \frac{C^{(n)}_{F_3}(A_s(Q_0^2))}{C^{(n)}_{F_3}(A_s(Q^2))} \tag{6}$$

where $A_s = \alpha_s/(4\pi)$ is the \overline{MS}-scheme coupling constant and $M_n(Q_0^2)$ is defined in the initial scale as $M_n(Q_0^2) = \int_0^1 x^{-n-2} A(Q_0^2) x^{3n} (1 + \gamma(Q_0^2)) dx$.

At the N3LO the expression for $C^{(n)}_{F_3}(A_s)$ can be presented in the following form

$$C^{(n)}_{F_3} = 1 + C^{(1)}(n) A_s + C^{(2)}(n) A_s^2 + C^{(3)}(n) A_s^3$$ \tag{7}$$

where the NNLO correction $C^{(2)}(n)$ can be obtained for any n from the results of Ref. \[10\], which were checked with the help of other methods in Ref. \[11\]. The N3LO contributions to Eq. \(6\) were analytically calculated in Ref. \[12\] for odd $n \leq 13$. The N3LO expansion of the anomalous dimension term has the following form

$$\exp \left[\int A_s(Q^2) \frac{\gamma^{(n)}_{F_3}(t)}{\beta(t)} \, dt \right] =$$

$$= (A_s(Q^2))^{\gamma^{(n)}_{F_3}/\beta_0} \left[1 + p(n) A_s(Q^2) + q(n) A_s(Q^2)^2 + r(n) A_s(Q^2)^3 \right]$$ \tag{8}$$

where $p(n)$, $q(n)$ and $r(n)$ are defined through coefficients of QCD β-function and anomalous dimension $\gamma^{(n)}_{F_3}$ (see Ref. \[13\]). Note, that on the contrary to the QCD β-function, analytically calculated in Ref. \[13\] at the N3LO level, the expression for $\gamma^{(n)}_{F_3}$ is known up to NNLO order. Moreover, its NNLO corrections were calculated in case of odd $n \leq 13$ only. In order to fix the numerical values of the NNLO corrections to $\gamma^{(n)}_{F_3}$ (and thus the term $q(n)$) for even n inside the interval $3 \leq n \leq 13$ we used the smooth interpolation procedure, proposed in Ref. \[15\], and supplemented it by fine-tuning of definite NNLO coefficients of $\gamma^{(n)}_{F_3}$. The application of this procedure for estimating NNLO coefficients of $\gamma^{(n)}_{F_3}$ with even n and $N_f = 4$ result in the numbers, which differ from the corresponding NNLO terms of non-singlet contributions to $\gamma^{(n)}_{F_3}$ \[15\] in the 4th significant digit. The NNLO correction to $\gamma^{(2)}_{F_3}$ was estimated by us using extrapolation technique, which has definite theoretical uncertainties. As to the applicability of the smooth interpolation procedure, we checked that it is reproducing the known even contributions to $C^{(2)}(n)$ with satisfactory precision \[13\]. That is why we consider the results of its application, including the estimates of even terms of $C^{(3)}(n)$, as really reliable.

Fixing by this way the N3LO coefficients $C^{(3)}(n)$ and estimating N3LO correction $r(n)$ to Eq. \(8\) by means of $[1/1]$ Padé approximation technique, previously used in perturbative QCD e.g. in Ref. \[16\], we can use Eq. \(1\) for performing approximate N3LO fits to xF_3 data. At the next page the results, obtained in Ref. \[8\] in the case of combining Eq. \(1\) with the IRR model of Eq. \(3\), are presented for $N_{max} = 6$, first studied in Refs. \[12\] \& \[1\], and $N_{max} = 9$ (see Table 1).

Looking at Table 1 we arrive at the following conclusions:

1) The NLO fits seem to support the IRR model of Ref. \[8\] by the foundation of the negative values of A_2.

These values are in agreement with the results of the previous fits of Refs. \[16\] \& \[1\] and with the ones, obtained in Ref. \[17\] using the NLO DGLAP analysis of the same set of CCFR'97 data and the parton distributions set (PDFs) of Ref. \[18\]. The similar value $A_2 = -0.104 \pm 0.005$ GeV2 was also found in the NLO fits to the combined
The cases of different Q_0^2 and N_{max} are considered.

order/N_{max}	$Q_0^2 = $	5 GeV2	20 GeV2	100 GeV2
NLO/6	$\Lambda^{(4)}_{\text{MS}}$	370\pm38	369\pm41	367\pm38
	χ^2/nep	80.2/86	80.4/86	79.9/86
	A_2^\prime	-0.121 ± 0.052	-0.121 ± 0.053	-0.120 ± 0.052
NNLO/6	$\Lambda^{(4)}_{\text{MS}}$	379\pm41	376\pm39	374\pm42
	χ^2/nep	78.6/86	79.5/86	79.0/86
	A_2^\prime	-0.125 ± 0.053	-0.125 ± 0.053	-0.124 ± 0.053
NNLO/9	$\Lambda^{(4)}_{\text{MS}}$	331\pm33	332\pm35	331\pm35
	χ^2/nep	73.1/86	75.7/86	76.9/86
	A_2^\prime	-0.013 ± 0.051	-0.015 ± 0.051	-0.016 ± 0.051
N3LO/6	$\Lambda^{(4)}_{\text{MS}}$	305\pm29	327\pm34	326\pm34
	χ^2/nep	76.0/86	76.2/86	78.5/86
	A_2^\prime	0.036 ± 0.051	0.033 ± 0.052	0.029 ± 0.052
N3LO/9	$\Lambda^{(4)}_{\text{MS}}$	333\pm34	328\pm33	328\pm38
	χ^2/nep	73.8/86	75.9/86	76.4/86
	A_2^\prime	0.038 ± 0.052	0.035 ± 0.052	0.034 ± 0.052

For F_2 data [19] using MRS(R2) PDFs [20].

2) At the NNLO the values of A_2 are comparable with zero within statistical error bars. The similar small value, namely $A_2 = -0.0065 \pm 0.0059$, was obtained from the NNLO fits to F_2 data in Ref. [19].

3) The inclusion of the N^3LO corrections make A_2 positive. However, it has the statistical uncertainties twice as large as the central value.

Thus we conclude that starting from the NNLO the IRR-model corrections to xF_3 can not be extracted from CCFR’97 data with reasonable precision and are shadowed by perturbative QCD effects.

4) The values of χ^2 decrease from NLO up to NNLO and at the N^3LO it almost coincide with the ones obtained at the NNLO. Moreover, χ^2 decreases with the increase of N_{max}. This is the welcome feature of including in the fits more detailed information on the perturbative theory contributions both to the coefficient functions and the anomalous dimensions of xF_3 moments.

5) For $N_{\text{max}} = 9$ $\Lambda^{(4)}_{\text{MS}}$ and A_2 are rather stable to variation of Q_0^2 not only at the NLO but at the NNLO and N^3LO as well. This property gives favor of our new results from Ref. [21] in comparison with the ones obtained in Ref. [5] for $N_{\text{max}} = 6$ and $Q_0^2 = 20$ GeV2 using more approximate model for $\gamma_F^{(2)}(n)$ and Padé approximation for $C_F^{(3)}(n)$.

To transform $\Lambda^{(4)}_{\text{MS}}$ into the values of $\alpha_s(M_Z)$ we first used the $\overline{\text{MS}}$-scheme matching condition of Ref. [22] with the matching point chosen as $m_b^2 \leq M_b^2 \leq 36m_b^2$ following the proposal of Ref. [22]. This gives us the possibility to estimate threshold uncertainties in $\alpha_s(M_Z)$. Varying the factorization and renormalization scales $\mu_R^2 = \mu_F^{2,\text{AC}} = \mu^2$ in the interval $\mu_F^{2,\text{MS}}/4 \leq \mu_F^{2,\text{MS}} \leq 4\mu_F^{2,\text{MS}}$ we estimated the scale-dependent uncertainties. As the result we obtained the following values of $\alpha_s(M_Z)$ extracted from the fits to xF_3...
CCFR’97 data with $1/Q^2$ non-perturbative corrections modeled using the IRR approach [6]:

$$NLO \quad \alpha_s(M_Z) = 0.120 \pm 0.002 \ (stat)$$
$$\pm 0.005 \ (syst) \pm 0.002 \ (thresh) \pm 0.010 \ (scale)$$

$$NNLO \quad \alpha_s(M_Z) = 0.119 \pm 0.002 \ (stat)$$
$$\pm 0.005 \ (syst) \pm 0.002 \ (thresh) \pm 0.004 \ (scale)$$

$$N^3LO \quad \alpha_s(M_Z) = 0.119 \pm 0.002 \ (stat)$$
$$\pm 0.005 \ (syst) \pm 0.002 \ (thresh) \pm 0.002 \ (scale)$$

The systematic errors are fixed from separate consideration of these experimental uncertainties of the CCFR’97 collaboration. Notice, that the inclusion of higher-order perturbative QCD corrections into Eq. (6) minimize essentially the scale-dependence uncertainties. They are in agreement with the similar estimates, obtained in Ref. [23] in the process of the fits to the definite model of xF_3 data. Our NNLO value of Eq. (10), obtained in Ref. [6], within existing error-bars is in agreement with the results of NNLO Bernstein polynomial fits to the CCFR’97 data, namely

$$\alpha_s(M_Z) = 0.1153 \pm 0.0041 \ (exp) \pm 0.0061 \ (theor)$$

and

$$\alpha_s(M_Z) = 0.1196^{+0.0027}_{-0.0031}$$

In Table 2 we present the outcomes of our NLO and NNLO fits to the subset of CCFR’97 data, analyzed in Ref. [8]. The twist-4 term was fixed with the help of the gradient model of Eq. (4).

Table 2
The results of the fits to the subset of CCFR’97 data with HT defined by the gradient model with the coefficient $B'_2 \ [\text{GeV}^2]$.

order	$\Lambda^{(Q)^2}_{\text{MS}} \ [\text{MeV}]$	$B'_2(\text{HT})$	χ^2/nep
NLO	371\pm72	-0.135\pm0.113	75\pm74
NNLO	316\pm51	-0.031\pm0.088	64\pm74

At the NLO the value of B'_2 is in agreement with the value of the IRR model parameter A'_2. At the NNLO B'_2 is comparable with zero. Thus we confirm the existence of the effect of the shadowing of the dynamical $1/Q^2$-corrections to xF_3 SF at the NNLO of perturbative QCD. This effect was first observed using the IRR model in Ref. [3].

If we use model-independent parameterization of the twist-4 contribution (see Eq. (5)), this effect is becoming even more vivid. The results of extraction of $h(x)$ in different orders of perturbative QCD and for different N_{max} are presented at Fig.1, taken from Ref. [8].

![Figure 1](image-url)

The x-shape of $h(x)$ extracted from the fits of CCFR’97 for $Q^2_0 = 20 \text{ GeV}^2$.

Several comments are in order.

1) The x-shape of $h(x)$, obtained at the LO and NLO, is in satisfactory agreement with the prediction of the IRR model of Ref. [7].

2) In all orders of perturbation theory the results are rather stable to the variation of N_{max}.

3) The x-shape of $h(x)$, obtained during the NNLO and approximate N^3LO fits, demonstrate oscillation-type behavior with large error-bars. Thus we conclude, that starting from the NNLO the x-shape of $h(x)$ is strongly correlated with higher-order perturbative QCD corrections to Eq. (6).

However, it is possible that more detailed understanding of the NNLO behavior of $h(x)/Q^2$ contribution to xF_3 will be obtained after NNLO analysis with taking into account systematic uncertainties of the data [24].
To conclude, we demonstrated that the inclusion into the fits to CCFR’97 xF_3 data of the NNLO perturbative QCD effects is leading to effective shadowing of the dynamical $1/Q^2$ corrections. However, it might be possible, that they will be detected in future even at the NNLO. This might happen in case more precise experimental data for the SFs of νN DIS will be obtained, say at the future neutrino factories (for detailed discussions see Ref. [25]).

Note also, that while considering massive-dependent perturbative series for the Adler function of e^+e^--scattering [26] and re-extracting the gluon condensate value from the charmonium sum rules [27] with the calculated in Ref. [28] three-loop massive corrections to their spectral function the effects of influence of higher-order perturbative QCD effects to the value of the gluon condensate, introduced in Ref. [29], were observed. Thus, the problems of correlations between perturbative and non-perturbative terms, discussed in our talk, seem to be typical to other cases also, when it is necessary to analyse the expansions in both α_s and inverse powers of Q. The similar point of view was expressed at this Symposium in the talk of Ref. [30].

Acknowledgments One of us (ALK) is grateful to the members of OC of RADCOR-02 and Loops-and-Legs in Quantum Field Theory Symposium for hospitality and financial support. We are grateful to S.I. Alekhin and A.A. Pivovarov for discussions.

REFERENCES

1. L. F. Abbott and R. M. Barnett, Annals Phys. 125 (1980) 276.
2. W. G. Seligman et al., Phys. Rev. Lett. 79 (1997) 1213.
3. G. Parisi and N. Sourlas, Nucl. Phys. B 151 (1979) 421.
4. A. L. Kataev, A. V. Kotikov, G. Parente and A. V. Sidorov, Phys. Lett. B 417 (1998) 374.
5. A. L. Kataev, G. Parente and A. V. Sidorov, Nucl. Phys. B 573 (2000) 405.
6. A. L. Kataev, G. Parente and A. V. Sidorov, hep-ph/0106221, to be published in Fiz. Elem. Chast. Atom. Yadra (2003).
7. M. Dasgupta and B. R. Webber, Phys. Lett. B 382 (1996) 273.
8. J. Santiago and F. J. Yndurain, Nucl. Phys. B 611 (2001) 447.
9. C. J. Maxwell and A. Mirjalili, Nucl. Phys. B 645 (2002) 298.
10. E. B. Zijlstra and W. L. van Neerven, Phys. Lett. B 297 (1992) 377.
11. S. Moch and J. A. Vermaseren, Nucl. Phys. B 573 (2000) 853.
12. A. Retey and J. A. Vermaseren, Nucl. Phys. B 604 (2001) 281.
13. T. van Ritbergen, J. A. Vermaseren and S. A. Larin, Phys. Lett. B 400 (1997) 379.
14. G. Parente, A. V. Kotikov and V. G. Kriwokhizhin, Phys. Lett. B 333 (1994) 190.
15. S. A. Larin, P. Nogueira, T. van Ritbergen and J. A. Vermaseren, Nucl. Phys. B 492 (1997) 338.
16. S. J. Brodsky, J. R. Ellis, E. Gardi, M. Karsner and M. A. Samuel, Phys. Rev. D 56 (1997) 6980.
17. S. I. Alekhin and A. L. Kataev, Phys. Lett. B 452 (1999) 402.
18. S. Alekhin, Eur. Phys. J. C 10 (1999) 395.
19. U. K. Yang and A. Bodek, Eur. Phys. J. C 13 (2000) 241.
20. A. D. Martin, R. G. Roberts and W. J. Stirling, Phys. Lett. B 387 (1996) 419.
21. K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79 (1997) 2184.
22. J. Blumlein and W. L. van Neerven, Phys. Lett. B 450 (1999) 417.
23. W. L. van Neerven and A. Vogt, Nucl. Phys. B 603 (2001) 42.
24. S. I. Alekhin, private communication.
25. M. L. Mangano et al., hep-ph/0105155.
26. S. Eidelman, F. Jegerlehner, A. L. Kataev and O. Veretin, Phys. Lett. B 454 (1999) 369.
27. B. L. Ioffe and K. N. Zyablyuk, hep-ph/0207183.
28. K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, Nucl. Phys. B 492 (1997) 190.
29. M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147 (1979) 385.
30. N. Glover, talk at this Symposium.