Parasitoids and hyperparasitoids (Hymenoptera) on aphids (Hemiptera) infesting citrus in east Mediterranean region of Turkey

Serdar Satar,1,2 Gül Satar,1 Mehmet Karacaoğlu,3 Nedim Uygun,1 Nickolas G. Kavallieratos,4 Petr Stary,3 and Christos G. Athanassiou6

Department of Plant Protection, Faculty of Agriculture, Çukurova University, 01330 Balıcalı, Adana, Turkey
Corresponding author, e-mail: hserhat@cu.edu.tr
Adana Biological Control Research Station, Kızıl Cad. 01321 Yüreğir, Adana, Turkey
Laboratory of Agricultural Entomology, Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 Stefanou Delta str., 14561, Kifissia, Attica, Greece
Laboratory of Aphidology, Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic
Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38443, Nea Ionia, Magnisia, Greece

Subject Editor: Nicolas Desneux

ABSTRACT. The aphids, aphid parasitoids, and hyperparasitoids found in citrus orchards, the parasitoids’ and hyperparasitoids’ seasonal abundance, and the plant–aphid–parasitoid relationships in Hatay, Osmaniye, Adana, and Mersin provinces of the east Mediterranean region of Turkey are presented in the present 2-yr study. Aphidius colemani Viereck, Binodoxys angelicae (Haliday), and Lysiphlebus confusus Tremblay and Eady (Hymenoptera: Braconidae: Aphidiinae) were encountered as the most common parasitoids among 10 identified aphidine and aphelinid taxa on different citrus species. Hyperparasitoids belonging to the genera Alloxystra, Phaenoglyphis, Asaphes, Pachyneuron, Syrphophagus, and Dendrocerus are reported for the first time emerging from aphids feeding on citrus in Turkey. Among them, Asaphes spp., Pachyneuron spp., and Syrphophagus spp. were recorded as the most common ones. Citrus reticulata Blanco and Citrus limon (L.) Burm. fil. were recorded as main hosts for the aphid parasitoids and their hyperparasitoids.

Key Words: citrus, aphid, Aphidiinae, Aphelinidae, hyperparasitoid

Aphids are considered as important pests of citrus causing serious damages directly and indirectly, i.e., loss of saps, deformities, change of color, not normal development, reduction in photosynthesis due to sooty mold growth, and transmission of plant viruses (Blackman and Eastop 2000; Hermoso de Mendoza et al. 2001, 2006; Satar et al. 2007). Despite that more than 25 aphid species have been reported to infest citrus worldwide, only few of them can cause economic injury (Uygun et al. 2012). In the Mediterranean area, Aphis gossypii Glover, Aphis spiraecola Patch, and Toxoptera auranti (Boyer de Fonscolomb) (Hemiptera: Aphiidae) are the major species occurring on citrus and form effective vectors of citrus tristeza virus, a harmful disease of citrus (Hermoso de Mendoza et al. 2001, 2006; Kavallieratos et al. 2002; Marroquin et al. 2004; Satar et al. 2007; Tena and Garcia Mari 2011). Furthermore, the recently detected aphidine and aphelinid taxa on different citrus species. Hyperparasitoids belonging to the genera Alloxystra, Phaenoglyphis, Asaphes, Pachyneuron, Syrphophagus, and Dendrocerus are reported for the first time emerging from aphids feeding on citrus in Turkey. Among them, Asaphes spp., Pachyneuron spp., and Syrphophagus spp. were recorded as the most common ones. Citrus reticulata Blanco and Citrus limon (L.) Burm. fil. were recorded as main hosts for the aphid parasitoids and their hyperparasitoids.

Materials and Methods

Samples were collected from citrus trees between January 2007 and December 2008 from 15 areas in Hatay (Dörtyol, Erzin, Iskendurun), Adana (Ceyhan, Karataş, Koza, Seyhan, Tapakale, Yüreğir), and Mersin (Kumluca, Kuyuluk, Merkez, Silifke, Toros, Yenice), all located in the east Mediterranean region of Turkey. Ten orchards were visited in each location and 100 shoots of 20 cm long from 25 trees (four shoots per tree) were visually inspected for the presence of aphid colonies with mummies (Bora and Karaca 1970). The shoots were collected once per month from all locations throughout the experimental period. Out of 360,000 inspected shoots 316, upon which one or more aphid mummies were observed, were collected from the citrus trees. The shoots bearing aphid colonies and mummies were gently cut with scissors, placed in

© The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work properly cited. For commercial re-use, please contact journals.permissions@oup.com
plastic bags, and were brought to the laboratory where aphids were identified to species. Living aphids were preserved in 90% ethyl alcohol plus 75% lactic acid (Eastop and van Emden 1972). Mummies were placed separately in plastic vials (50 ml) inside a growth room (22°C, 65% RH, 16:8 h [L:D]) for parasitoid and hyperparasitoid emergence (Kavalieratos et al. 2005b). The vials had a circular opening on their lid covered with muslin for ventilation in order to maintain conditions inside the vials similar to those existing in the growth room. Parasitoid adults were identified from ethanol-preserved samples, a part of them was point mounted or slide mounted for detailed examination. Specimens for slides were washed in distilled water, boiled in 10% KOH for about 2 min, rewashed, and then placed in a drop of Faure-Berlese medium (Krantz 1978) for dissection or whole mounting. External morphology was studied using an Olympus SZX9 (Olympus, Tokyo, Japan) or Carl Zeiss Microscopy GmbH SMXX (Carl Zeiss Microscopy GmbH, Jena, Germany) stereomicroscopes. Percentage of hyperparasitization was estimated by dividing the number of hyperparasitoid individuals to the total number of parasitoid and hyperparasitoid individuals. The voucher specimens are deposited in P. Stary’s personal collection at České Budějovice.

The chi-square analysis was performed to determine statistical differences in the following: 1) abundance of the most commonly identified parasitoid species on Citrus aurantium L., Citrus limon (L.) Burm. fil., Citrus reticulata Blanco, and Citrus sinensis (L.) Osbeck and 2) preference of each parasitoid species to C. aurantium, C. limon, C. reticulata and C. sinensis for the two years, 2007 and 2008, experimental period at P = 0.05 (Sokal and Rohlf 1995). Citrus paradoxis Macfad. was excluded from the analysis because only few parasitoid individuals were recorded on this plant species. All analyses were performed using the SPSS 17.0 software (Statistical Package for the Social Sciences (SPSS), Inc. 2008). Analysis was not conducted for hyperparasitoids because they were not identified in the species level and thus generalizations in higher taxonomic level (i.e., superfamilies) should be avoided.

Results

Aphids and Parasitoids. Seven aphid species were determined in the studied region, i.e., A. gossypii, A. spiraecola, Aphis craccivora Koch, Myzus persicae (Sulzer), T. aurantii, Brachycyclus helichrysi (Kaltenbach), and Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphiidae). Although there were seven aphid species on citrus, A. gossypii had the most diverse aphidine spectrum, while no parasitoids were obtained from A. spiraecola, Ma. euphorbiae, and T. aurantii (Table 1). M. persicae was parasitized by Ap. colemani and B. angelicae on C. aurantium and C. reticulata while A. craccivora was parasitized only by L. confusus on C. reticulata and by Ap. colemani and B. angelicae on C. limon (Table 1).

Of the 316 samples, totally 2,752 parasitoid individuals were recorded belonging to the following taxa: Aphielinesp. (Hymenoptera: Aphiiliniae), Ap. colemani, Ap. matricariae, B. angelicae, E. persicae, Lysiphlebus sp., L. fabarum, L. confusus, Diaeretiella rapae (M’Intosh), and P. volucre (Hymenoptera: Braconidae: Aphidiinae) (Tables 1–3). The exotic parasitoid L. testaceipes (Hymenoptera: Braconidae: Aphiinae) was only obtained from Aphis ruborum (Börner and Schilder) (Hemiptera: Aphiadinae) (1 ½) which was creeping or rambling to citrus tree probably due to the close vicinity of C. sinensis trees to Rubus fruticosus L. growing at the margin of the citrus orchard in Yüreğir (Adana).

Ap. colemani, B. angelicae, and L. confusus were the most numerous and frequently recorded parasitoids (Tables 2 and 3). From these three species, only B. angelicae was recorded in all citrus species (Table 2). Within the citrus species, on C. reticulata, 9 parasitoid taxa were found parasitizing A. craccivora, A. gossypii, and M. persicae (Table 1). Also, 46.19% of parasitoids were identified on this citrus species followed by C. limon (27.10%) and C. sinensis (13.95%) (Table 2).

Citrus plants	Aphids	Parasitoids	Number of parasitoid individuals
Citrus aurantium	Aphis gossypii	Aphidius matricariae	14
Citrus limon	Myzus persicae	Aphidius colemani	6
Citrus reticulata	A. gossypii	B. angelicae	28
Citrus sinensis	A. craccivora	A. colemani	18
Citrus paradisi	A. gossypii	B. angelicae	252
Citrus aurantium	A. gossypii	L. confusus	49
Citrus limon	A. craccivora	A. colemani	150
Citrus reticulata	A. gossypii	B. angelicae	18
Citrus sinensis	A. gossypii	L. confusus	38
Citrus paradisi	A. gossypii	B. angelicae	2
Citrus aurantium	A. gossypii	E. persicae	1
Citrus limon	A. gossypii	L. confusus	21
Citrus reticulata	A. gossypii	L. confusus	34
Citrus sinensis	A. gossypii	L. fabarum	2
Citrus paradisi	A. gossypii	L. confusus	38
Citrus sinensis	A. gossypii	L. fabarum	2
Citrus aurantium	A. gossypii	D. rapae	7
Citrus limon	A. gossypii	L. confusus	143
Citrus reticulata	A. gossypii	L. fabarum	57
Citrus sinensis	A. gossypii	L. confusus	130
Citrus paradisi	A. gossypii	L. fabarum	3
Citrus aurantium	A. gossypii	L. fabarum	18
Citrus limon	A. gossypii	L. fabarum	2
Citrus reticulata	A. gossypii	L. fabarum	3
Citrus sinensis	A. gossypii	L. fabarum	28
Citrus paradisi	A. gossypii	L. fabarum	13

There is a statistical significant preference of parasitoid species to citrus species (\(\chi^2 = 273.4, df = 12, P < 0.01 \)). The chi-square analysis showed that there are statistical differences in the abundances of Ap. colemani, Ap. matricariae, B. angelicae, L. confusus, and L. fabarum on C. aurantium (\(\chi^2 = 27.9, df = 3, P < 0.01, \) C. limon (\(\chi^2 = 423.8, df = 4, P < 0.01, \) C. reticulata (\(\chi^2 = 777.9, df = 4, P < 0.01, \) and C. sinensis (\(\chi^2 = 356.4, df = 4, P < 0.01, \)) Furthermore, the chi-square analysis showed that there are statistical differences in the preferences of Ap. colemani (\(\chi^2 = 206.3, df = 3, P < 0.01, \) B. angelicae (\(\chi^2 = 370.6, df = 3, P < 0.01, \) L. confusus (\(\chi^2 = 215.9, df = 2, P < 0.01, \) and L. fabarum (\(\chi^2 = 275.7, df = 3, P < 0.01, \) but not for Ap. matricariae (\(\chi^2 = 1.7, df = 3, P = 0.63, \) to C. aurantium, C. limon, C. reticulata, and C. sinensis. The statistical differences in the abundances of Ap. colemani, Ap. matricariae, B. angelicae, L. confusus, and L. fabarum found on C. aurantium, C. limon, C. reticulata, and C. sinensis compared in pairs are shown in Table 4.

Hyperparasitoids. Alloxysta spp., Phaeoglyphis spp. (Hymenoptera: Cynipoidea), Syrphophagus spp., Asaephes spp., Pachyneuron spp. (Hymenoptera: Chalcidoidea), Dendrocerus spp. (Hymenoptera: Ceraphronoidea) were recorded as hyperparasitoids that attack primary parasitoids of aphids infesting citrus (Tables 2 and 3). The hyperparasitoid spectrum was composed mainly by Chalcidoidea (84.8%) followed by Cynipoidea (13.3%) and

Table 1. Citrus–aphid–parasitoid associations in East Mediterranean region of Turkey from January 2007 to December 2008
Ceraphronoidea (1.9%) (Tables 2 and 3). The main period for hyperparasitoids’ activity was June (61.22%), although it was April (36.81) for parasitoids (Table 3). As in the case of parasitoids, *C. reticulata* also favored hyperparasitoids and assessed 33.42% composition of hyperparasitoids followed by *C. limon* (15.22%) (Table 2).

Discussion

Our study provides a rich parasitoid spectrum of *A. gossypii* feeding on citrus in the east Mediterranean region of Turkey which is composed of nine aphidiine taxa and *Aphelinus* sp. contrary to the rather narrow parasitoid complex provided by Yumruktepe and Uygun (1994). Given that previous studies have demonstrated that *A. gossypii* is a serious threat for citrus in southeastern Europe (Kavallieratos et al. 2002), in eastern Mediterranean (Yumruktepe and Uygun 1994, Yoldaş et al. 2011), and western Mediterranean (Hermoso de Mendoza et al. 1998 2001, 2006) makes the research on its natural enemies necessary not only in the studied geographical area but also in other citrus production areas. As in this study, the abundance of the parasitoids should also be estimated in order to distinguish which species is the most effective biocontrol agent in the target citrus area (Kavallieratos et al. 2002, 2004a).

Parasitoids	Citrus spp.	C. aurantium	C. limon	Citrus paradisi	C. reticulata	C. sinensis	Total
Aphelinus sp.	1	—	—	3	—	4	
Ap. colemani	140	6	162	—	140	35	483
Ap. matricariae	2	14	18	—	14	11	59
B. angelicae	90	34	270	3	409	140	946
D. rapae	—	—	—	—	1	2	3
E. persicae	3	1	—	—	1	7	15
Lysiphlebus sp.	—	—	—	—	—	1	1
L. confusus	13	—	273	—	552	187	1,025
L. fabarum	31	11	23	—	143	7	215
Praon volucre	—	—	—	—	—	—	1
Total	280	66	746	5	1,271	384	2,752
Total (%)	10.17	2.40	27.11	0.18	46.19	13.95	100

Hyperparasitoids

Cynipoidea	7	—	—	29	—	50	117
Chalcidoidea	21	6	101	9	585	26	748
Ceraphronoidea	1	4	4	—	3	5	17
Total	29	10	134	9	638	62	882
Total (%)	3.29	1.13	15.19	1.02	72.34	7.03	100

| Hyperparasitization (%) | 9.39 | 13.16 | 15.22 | 64.29 | 33.42 | 13.90 |

Cynipoidea includes the following genera: *Alloxysta* and *Phaenoglyphis*. Chalcidoidea includes the following genera: *Syrphophagus*, *Asaphes*, and *Pachyneuron*. Ceraphronoidea includes the genus *Dendrocerus*.

Table 3. Seasonal abundance of parasitoids and hyperparasitoids found on citrus in east Mediterranean region of Turkey, between January 2007 and December 2008

Months	Parasitoids	1	2	3	4	5	6	7	8	9	10	11	12	Total	
Aphelinus sp.	—	—	—	—	—	—	—	—	—	—	—	4			
Ap. colemani	—	—	—	—	—	186	278	16	—	—	3	1	2	1	483
Ap. matricariae	—	—	1	38	16	3	1	—	—	—	1	2	1		
B. angelicae	12	5	589	153	3	1	—	—	2	76	105	946			
D. rapae	—	—	—	2	1	—	—	—	—	—	—	—	3		
E. persicae	—	—	—	8	5	—	—	—	—	1	1	15			
Lysiphlebus sp.	—	—	—	—	1	—	—	—	—	—	—	—	—		
L. confusus	60	380	575	7	—	—	—	—	—	—	—	1,025			
L. fabarum	130	49	35	—	—	—	—	—	—	—	—	215			
P. volucre	—	—	—	—	—	—	—	—	—	—	—	—	1		
Total	12	6	1,013	887	633	9	—	—	2	83	107	2,752			
Total (%)	0.44	0.22	36.81	32.23	23.00	0.33	0.07	0.02	3.88						

Hyperparasitoids	Cynipoidea	—	—	—	—	—	—	1	9	2	117		
Chalcidoidea	—	—	—	—	—	121	73	537	—	—	5	7	748
Ceraphronoidea	—	—	—	—	13	1	—	—	—	—	—	—	17
Total	—	—	219	91	540	—	5	1	14	3	12	882	
Total (%)	—	—	24.83	10.32	61.22	—	0.57	0.11	1.59	1.36	100		

| Hyperparasitization (%) | 0.00 | 0.14 | 1.07 | 0.67 | 0.31 | 0.01 | 0.17 | 0.02 | 1.00 | 0.02 | 0.14 |

Each month includes the total number of identified individuals for 2007 and 2008. Cynipoidea includes the following genera: *Alloxysta* and *Phaenoglyphis*. Chalcidoidea includes the following genera: *Syrphophagus*, *Asaphes*, and *Pachyneuron*. Ceraphronoidea includes the genus *Dendrocerus*. The numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 correspond to January, February, March, April, May, June, July, August, September, October, November, and December, respectively.
Table 4. Differences in the abundances of parasitoids found on citrus in east Mediterranean region of Turkey between January 2007 and December 2008 (in all cases df = 1)

Parasitoids	Citrus	\(\chi^2 \)	P value	Citrus	Parasitoids	\(\chi^2 \)	P value
Ap. colemani	C. aurantium versus C. limon	144.9	<0.01	C. aurantium	Ap. colemani versus Ap. matricariae	3.2	0.07
	C. aurantium versus C. reticulata	123.0	<0.01	Ap. colemani versus B. angilaceae	19.6	<0.01	
	C. aurantium versus C. sinensis	20.5	<0.01	Ap. colemani versus L. confusus	—	—	
	C. limon versus C. reticulata	1.6	0.21	Ap. colemani versus L. fabarum	1.5	0.23	
	C. reticulata versus C. sinensis	63.0	<0.01	Ap. matricariae versus B. angilaceae	8.3	<0.01	
Ap. matricariae	C. aurantium versus C. limon	0.5	0.48	Ap. matricariae versus L. fabarum	0.4	0.55	
	C. aurantium versus C. reticulata	0.0	1.00	B. angilaceae versus L. confusus	—	—	
	C. aurantium versus C. sinensis	0.4	0.55	B. angilaceae versus L. fabarum	11.8	<0.01	
	C. limon versus C. reticulata	0.5	0.48	L. confusus versus L. fabarum	—	—	
	C. limon versus C. sinensis	1.7	0.19	C. limon	Ap. colemani versus Ap. matricariae	115.2	<0.01
	C. reticulata versus C. sinensis	0.4	0.55	Ap. colemani versus B. angilaceae	27.0	<0.01	
B. angilaceae	C. aurantium versus C. limon	183.2	<0.01	Ap. colemani versus L. confusus	28.3	<0.01	
	C. aurantium versus C. reticulata	317.4	<0.01	Ap. colemani versus L. fabarum	104.4	<0.01	
	C. aurantium versus C. sinensis	64.6	<0.01	Ap. matricariae versus B. angilaceae	220.5	<0.01	
	C. limon versus C. reticulata	28.5	<0.01	Ap. matricariae versus L. fabarum	223.5	<0.01	
	C. limon versus C. sinensis	41.2	<0.01	Ap. matricariae versus L. fabarum	0.6	0.44	
	C. reticulata versus C. sinensis	131.8	<0.01	B. angilaceae versus L. confusus	0.0	0.90	
L. confusus	C. aurantium versus C. limon	—	—	L. confusus versus L. fabarum	208.2	<0.01	
	C. aurantium versus C. reticulata	—	—	L. confusus versus L. fabarum	211.3	<0.01	
	C. aurantium versus C. sinensis	—	—	L. confusus versus L. fabarum	103.1	<0.01	
	C. limon versus C. reticulata	94.4	<0.01	Ap. colemani versus B. angilaceae	131.8	<0.01	
	C. limon versus C. sinensis	16.1	<0.01	Ap. colemani versus L. confusus	245.3	<0.01	
	C. reticulata versus C. sinensis	180.3	<0.01	Ap. colemani versus L. fabarum	0.0	0.86	
L. fabarum	C. aurantium versus C. limon	4.2	0.04	Ap. matricariae versus B. angilaceae	368.9	<0.01	
	C. aurantium versus C. reticulata	113.1	<0.01	Ap. matricariae versus L. confusus	511.4	<0.01	
	C. aurantium versus C. sinensis	0.9	0.35	Ap. matricariae versus L. fabarum	106.0	<0.01	
	C. limon versus C. reticulata	86.8	<0.01	B. angilaceae versus L. confusus	21.3	<0.01	
	C. limon versus C. sinensis	8.5	<0.01	B. angilaceae versus L. fabarum	128.2	<0.01	
	C. reticulata versus C. sinensis	123.3	<0.01	L. confusus versus L. fabarum	240.7	<0.01	
C. sinensis	Ap. colemani versus A. matricariae	12.5	<0.01	Ap. colemani versus B. angilaceae	63.0	<0.01	
	Ap. colemani versus B. angilaceae	104.1	<0.01	Ap. colemani versus L. fabarum	104.1	<0.01	
	Ap. colemani versus L. confusus	18.7	<0.01	Ap. matricariae versus B. angilaceae	110.2	<0.01	
	Ap. matricariae versus L. confusus	156.4	<0.01	Ap. matricariae versus L. fabarum	0.9	0.35	
	B. angilaceae versus L. confusus	6.8	<0.01	B. angilaceae versus L. fabarum	6.8	<0.01	
	B. angilaceae versus L. fabarum	120.3	<0.01	L. confusus versus L. fabarum	167.0	<0.01	

Dashes represent that no analysis was performed.

Tomanović et al. 2009, Pons et al. 2011). Furthermore, a possible alternation of these broadly oligophagous parasitoids to aphids on plants other than citrus may enhance the ecological friendly management of aphid infestations in the studied region, but further research is needed for the clarification of this issue. However, this hypothesis of possible exchange of parasitoid populations has been previously supported for different triotrophic systems of plants, aphids, and parasitoids in various geographical areas of the world (Starý and Pike 1998, Starý and Havelka 2008, Tomanović et al. 2009, Havelka et al. 2012).

Despite it has been demonstrated that Ma. euphorbiae, A. spiracola, and T. auranti are parasitized by a wide spectrum of parasitoids from the Mediterranean region (Starý 1976; Tremblay 1984; Kavallieratos et al. 2004, 2005), we did not record any parasitoids from these aphids during our study. This phenomenon has been previously documented in Greece for certain observational period (Kavallieratos et al. 2002). Different population density of aphids in citrus orchards or different climatic conditions depending on the area could be responsible for this issue (Starý 1970; Kavallieratos et al. 2002, 2004a).

Based on recent reports, the overall parasitoid fauna on citrus in the studied region is quite similar to the respective fauna in southeastern Europe and north Africa (Kavallieratos et al. 2005b, Boukhris Bouhachem 2011). Moreover, the main period for parasitoids’ highest population density was between April and June for both years of our study which stands in agreement with previous studies from Greece (Kavallieratos et al. 2002, 2004a). Generally, the period between March and June is the most suitable for aphids infesting citrus in east Mediterranean region of Turkey like in other Mediterranean countries, i.e., Greece, Italy, and Spain (Barbaggio and Patti 1983; Michenla and Sanchis 1997; Kavallieratos et al. 2002, 2004b). According to Tomanović et al. (2009), the Mediterranean climatic conditions favor the presence of host aphids on plants in that period and consequently the parasitoids’ activity.

The strong presence of hyperparasitoids could be the reason for the limitation of the numbers of the parasitoids rather late in the season (June). Despite the fact that the aphid densities and parasitism were not estimated in this study, our observations stand in accordance with previous reports from other geographical areas (Everhuis 1964; Latteur 1973; Starý 1988; Kavallieratos et al. 2002, 2005a). The high presence of hyperparasitoids is favored by the architecture of the citrus trees. The canopy of citrus plants offers a natural protection against the solar radiation and consequently the aphids suffered by high percentage of hyperparasitization (Brodeur and McNeill 1991, 1992; Kavallieratos et al. 2005a). Hyperparasitoids which attack primary parasitoids in citrus orchards are reported in Turkey for the first time. In our study, the individuals of the superfamily Chalcidoidea belonging to the genera Aphidicyrtus, Asaphes, and Pachyneuron constituted the 84.8% of the total number of the obtained hyperparasitoids and they stably
dominated upon the other groups of hyperparasitoids during the entire experimental period. Similar results for hyperparasitoids on citrus trees have been reported by Kavallieratos et al. (2002).

Our study suggests that different citrus species affect both the species composition and the parasitization preference of Aphidinae species. Thus, Ap. colemani is the main parasitoid for C. limon and C. reticulata; B. angelicola and L. confusus for C. limon, C. reticulata, and C. sinensis; and L. fabarum for C. reticulata. Kavallieratos et al. (2002) demonstrated the existence of significant differences in the percentages of Ap. colemani, Ap. matricariae, B. acalpephae, B. angelicola, D. rapae, E. persicae, or L. testaceipes, all emerged from A. gossypii infesting C. auranturn, C. deliciosa, and C. sinensis, and concluded that the factor plant species affects the parasitization preference of these aphidines. New evidences in the east Mediterranean region of Turkey showed that populations of A. gossypii are distinguished to one existing on cucumber, sweet pepper, citrus, eggplant, and okra and another one on cotton (Satar et al. 2013). It would be interesting to examine if different host races do exist for aphids feeding on different citrus species in the region and could influence the tritrophic (parasitoid–aphid–plant) associations.

Recent efforts for the introduction of L. testaceipes through augmentative releases in the east Mediterranean region of Turkey led to the recovery of this species on aphids feeding on cultivated and noncultivated plants, i.e., Capsella bursa-pastoris (L.) and citrus (Satar et al. 2011). The fact that we recorded L. testaceipes as a single specimen from A. ruborum is attributed to the timing of conducting this study which coincided with the commencement of the release of this species in 2008. Additionally, efforts are needed on aphids infesting citrus in the east Mediterranean area of Turkey and their parasitoids because the establishment of L. testaceipes causes changes in the native parasitoid–aphid associations (Starý et al. 1988, 2004; Cecilio 1994; Tomanović et al. 2009).

Acknowledgments

We would like to express our thanks to the Turkish Scientific and Technical Research Council for the financial support (TÜBITAK-TOVAG, 105-0-581). The contribution by P.S. was partially supported by the Technical Research Council for the financial support (TÜBİTAK).
Stary, P. 1976. Aphid parasites (Hymenoptera, Aphidiidae) of the Mediterranean area. Dr. W. Junk, The Hague.

Stary, P. 1988. Aphidiidae, pp. 171–184. In A. K. Minks and P. Harrewijn (eds.), Aphids, their biology, natural enemies and control. Elsevier, Amsterdam.

Stary, P., and J. Havelka. 2008. Fauna and associations of aphid parasitoids in an up-dated farmland area (Czech Republic). Bull. Insectol. 61: 251–276.

Stary, P., and K. S. Pike. 1998. Uses of beneficial insect diversity in agroecosystem management, pp. 49–67. In W. W. Collins and C. O. Qualset (eds.), Biodiversity in agroecosystems. Series: advances in agroecology. CRC Press, Boca Raton.

Stary, P., J. P. Lyon, and F. Leclant. 1988. Post colonization host range of Lysiphlebus testaceipes in Mediterranean area (Hymenoptera: Aphidiidae). Acta Entomol. Bohemoslov. 85: 1–11.

Tena, A., and F. Garcia Marí. 2011. Seasonal occurrence of aphids and their natural enemies in satsuma mandarin orchards in Izmir, Turkey. Turkish J. Entomol. 35: 59–74.

Tomanović, Ž., N. G. Kavallieratos, P. Stary, L. Ž. Stanisavljević, A. Ćetković, S. Stamenković, S. Jovanović, and C. G. Athanassiou. 2009. Regional tritrophic relationship patterns of five aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae) in agroecosystem-dominated landscapes of southeastern Europe. J. Econ. Entomol. 102: 836–854.

Tremblay, E. 1984. The parasitoid complex (Hymenoptera: Ichneumonoidea) of Toxoptera aurantii (Homoptera: Aphidoidea in the Mediterranean area. Entomophaga 29: 203–209.

Uygun, N., I. Karaca, M. R. Ulusoy, and D. Şenal. 2001. Citrus pests and their integrated control, pp. 11–57. In N. Uygun (ed.), Integrated pest management in Turkey citrus orchards. TÜBİTAK - TARP, Adana.

Uygun, N., A. Hermoso de Mendoza, and H. Başpinar. 2012. Aphidiidae, pp. 126–136. In V. Vacante and U. Gerson (eds.), Integrated control of citrus pests in the Mediterranean region. Bentham eBooks, Bussum.

Received 25 February 2013; accepted 28 June 2014.