Exemplifying parametric timed specifications
over signals with bounded behavior

Étienne André, Masaki Waga, Natsuki Urabe and Ichiro Hasuo

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
Kyoto University, Kyoto, Japan
National Institute of Informatics, Tokyo, Japan
The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
Outline

1. Motivation

2. A formalism for quantitative specifications

3. Exemplifying specifications

4. Proof of concept

5. Conclusions
Context: Specification

- **Formal methods**
 - Extremely useful for assessing the validity of specifications
 - Require some domain-specific technical expertise

Example:

```plaintext
request ≤ 10 ms
answer
```

É. André, M. Waga, N. Urabe, I. Hasuo
Context: Specification

- Formal methods
 - Extremely useful for assessing the validity of specifications
 - Require some domain-specific technical expertise

Problem: writing correct specifications

Even domain experts may do mistakes when writing models or properties.
Context: Specification

- Formal methods
 - Extremely useful for assessing the validity of specifications
 - Require some domain-specific technical expertise

Problem: writing correct specifications

Even domain experts may do mistakes when writing models or properties.

Example: “a request is followed by an answer exactly 10 ms later”
Context: Specification

- Formal methods
 - Extremely useful for assessing the validity of specifications
 - Require some domain-specific technical expertise

Problem: writing correct specifications

Even domain experts may do mistakes when writing models or properties.

Example: “a request is followed by an answer exactly 10 ms later”
Formal methods
- Extremely useful for assessing the validity of specifications
- Require some domain-specific technical expertise

Problem: writing correct specifications

Even domain experts may do mistakes when writing models or properties.

Example: “a request is followed by an answer exactly 10 ms later”
Formal methods

- Extremely useful for assessing the validity of specifications
- Require some domain-specific technical expertise

Problem: writing correct specifications

Even domain experts may do mistakes when writing models or properties.

Example: “a request is followed by an answer exactly 10 ms later”
Context: Specification

- **Formal methods**
 - Extremely useful for assessing the validity of specifications
 - Require some domain-specific technical expertise

Problem: writing correct specifications

Even domain experts may do mistakes when writing models or properties.

Example: “a request is followed by an answer exactly 10 ms later”

\[
\begin{align*}
x & \leftarrow 0 \\
x & \leq 10
\end{align*}
\]

\[
\begin{align*}
x & = 10 \text{ ms} \\
\text{answer}
\end{align*}
\]
Context: Specifying quantitative properties

specifications

collision airbag
Context: Specifying quantitative properties

Quantitative specifications

- Constants representing **time**
- Continuous **signals** (speed, temperature...)

Problem: timed formal methods have some restrictions

Need for more abstraction:

Timed constants can be known with only finite precision... or be even completely unknown

Idea: reason with parameters (unknown constants)

É. André, M. Waga, N. Urabe, I. Hasuo
Context: Specifying quantitative properties

Quantitative specifications

- Constants representing time
- Continuous signals (speed, temperature...)

Problem: timed formal methods have some restrictions

- Need for more abstraction
 - Timed constants can be known with only finite precision
 - ...or be even completely unknown
Context: Specifying quantitative properties

Quantitative specifications

- Constants representing time (possibly parametric)
- Continuous signals (speed, temperature...)

\[
\text{speed} > 20 \text{ km/h} \quad x \leftarrow 0 \quad x \leq p \text{ ms}
\]

Problem: timed formal methods have some restrictions

- Need for more abstraction
 - Timed constants can be known with only finite precision
 - ...or be even completely unknown

- Idea: reason with parameters (unknown constants)
 1. Verify a system featuring unknown constants
 2. Synthesize correct parameter valuations
Objectives: Assist designers

1	Propose a formalism for parametric timed specifications over signals
2	Automatically generate **concrete executions** exemplifying quantitative specifications
Outline

1 Motivation

2 A formalism for quantitative specifications

3 Exemplifying specifications

4 Proof of concept

5 Conclusions
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations)

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: *STOC*. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7

É. André, M. Waga, N. Urabe, I. Hasuo

Exemplifying parametric timed specifications
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations and actions)

\[\ell_1 \xrightarrow{\text{larger}} \ell_2 \xrightarrow{\text{check}} \ell_3 \xrightarrow{\text{satisfied}} \ell_T \]

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: *STOC*. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7

É. André, M. Waga, N. Urabe, I. Hasuo

Exemplifying parametric timed specifications
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations and actions) augmented with
 - a set of clocks
 - Real-valued variables evolving linearly at the same rate

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: *STOC*. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations and actions) augmented with
 - a set of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants
 - Location invariant: property to be verified to stay at a location

\[\ell_1 \xrightarrow{\text{larger}} \ell_2 \xrightarrow{\text{check}} \ell_3 \xrightarrow{\text{satisfied}} \ell_T \]

\[x \leq 15 \quad x \leq 20 \]

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: STOC. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7

É. André, M. Waga, N. Urabe, I. Hasuo
Exemplifying parametric timed specifications
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations and actions) augmented with
 - a set of clocks

 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: *STOC*. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7

É. André, M. Waga, N. Urabe, I. Hasuo

Exemplifying parametric timed specifications
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations and actions) augmented with
 - a set of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 along transitions

\[
\begin{align*}
\ell_1 & \xrightarrow{x \leftarrow 0} \ell_2 & x \leq 15 \\
\ell_2 & \xrightarrow{\text{larger}} \ell_3 & x \leq 20 \\
\ell_3 & \xrightarrow{x \leftarrow 0} \ell_T & x \leq 20
\end{align*}
\]

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: STOC. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7

É. André, M. Waga, N. Urabe, I. Hasuo
Exemplifying parametric timed specifications
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations and actions) augmented with
 - a set of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 along transitions
 - a set of continuous signals

```
\begin{align*}
\ell_1 & \rightarrow \ell_2 : & s_1 > 50 \\
& x \leftarrow 0 : & s_1 \geq 3 \times s_2 \\
& x \leq 15 : & x \leq 15 \\
\ell_2 & \rightarrow \ell_3 : & s_1 \geq 3 \times s_2 \\
& x \leftarrow 0 : & x \leq 20 \\
& x \leq 20 : & x \leq 20 \\
\ell_3 & \rightarrow \ell_T : & x \leq 20 \land s_1 = s_2
\end{align*}
```

“Whenever signal s_1 is larger than 50, then within at most 15 time units, it holds that $s_1 \geq 3 \times s_2$ and then, within at most 20 more time units, both signals are equal ($s_1 = s_2$).”

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: *STOC*. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7

É. André, M. Waga, N. Urabe, I. Hasuo

Exemplifying parametric timed specifications
PTAS: parametric timed automata over signals

- Finite-state automaton (sets of locations and actions) augmented with
 - a set of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 along transitions
 - a set of continuous signals
 - a set of (timing) parameters

\[
\begin{align*}
\ell_1 &\xrightarrow{x \leftarrow 0} \ell_2 &\xrightarrow{x \leq p} \ell_3 &\xrightarrow{x \leq 20} \ell_T \\
s_1 &> 50 &\text{larger} &\text{check} \\
\land s_1 &\geq 3 \times s_2 &x \leq p &\text{satisfied} \\
\land x &\leq 0 &s_1 &= s_2 \\
\end{align*}
\]

“Whenever signal \(s_1 \) is larger than 50, then within at most \(p \) time units, it holds that \(s_1 \geq 3 \times s_2 \) and then, within at most 20 more time units, both signals are equal \((s_1 = s_2) \).”

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: STOC. ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7

É. André, M. Waga, N. Urabe, I. Hasuo
Exemplifying parametric timed specifications
Outline

1. Motivation
2. A formalism for quantitative specifications
3. Exemplifying specifications
4. Proof of concept
5. Conclusions
Bounding behaviors

Looking for concrete behaviors:

- Do we want arbitrary behaviors, or more specific behaviors?
 - e.g., “look for a concrete run only in a scenario when a car decelerates”
Bounding behaviors

Looking for concrete behaviors:

- Do we want arbitrary behaviors, or more specific behaviors?
 - e.g., “look for a concrete run only in a scenario when a car decelerates”

Crux: **constrain** the evolution of each signal along the exhibited run using an automaton
Bounding behaviors

Looking for concrete behaviors:

- Do we want arbitrary behaviors, or more specific behaviors?
 - e.g., “look for a concrete run only in a scenario when a car decelerates”

Crux: *constrain* the evolution of each signal along the exhibited run using an automaton

Also useful for our approach to remain in the scope of *linear* constraints (polyhedra)
Signal bounding automata

Here, each signal may be constrained by a signal bounding automaton (SBA)

- Timed automata augmented with arbitrary (rational) rates for signals
- Subclass of rectangular hybrid automata [Hen96]

[Hen96] Thomas A. Henzinger. “The Theory of Hybrid Automata”. In: LICS. IEEE Computer Society, 1996, pp. 278–292
Signal bounding automata

Here, each signal may be constrained by a **signal bounding automaton (SBA)**

- Timed automata augmented with arbitrary (rational) rates for signals
- Subclass of rectangular hybrid automata [Hen96]

Example of SBA:

- Signal \(s_1 \) is always non-negative
- It can increase or decrease fast (\(\dot{s}_1 = \pm 3 \)) or slow (\(\dot{s}_1 = \pm 1 \))
- Changes of dynamics never occur faster than every 5 time units

[Hen96] Thomas A. Henzinger. “The Theory of Hybrid Automata”. In: LICS. IEEE Computer Society, 1996, pp. 278–292

É. André, M. Waga, N. Urabe, I. Hasuo

Exemplifying parametric timed specifications
Our general approach

Specification

A PTAS \mathcal{A} with n signals

Bounding behavior

n SBAs $\mathcal{A}_i, i \in \{1, \ldots, n\}$

Inputs

Exemplification

Set of concrete runs

Outputs

Formalisms manipulated

RHA = rectangular hybrid automata

PLMA = parametric linear multi-rate automata

PTAS = parametric timed automata with signals

SBA = signal bounding automata

$\mathcal{A} \parallel \mathcal{A}_1 \parallel \cdots \parallel \mathcal{A}_n$

$v_1 \checkmark$

$v_n \times$

$v_2 \cdots$
Methodology

1. Symbolic exploration of the state space
 - Underlying data structure: polyhedra over clocks, signals, parameters
2. Reachability analysis
3. Exhibition of a symbolic run
4. (Backward) reconstruction of a concrete run

Heuristics-based “best-effort” approach

(see paper for technical details)
Outline

1 Motivation

2 A formalism for quantitative specifications

3 Exemplifying specifications

4 Proof of concept

5 Conclusions
Implementation

Implementation in IMITATOR [And21]

- Model checker for extensions of parametric timed automata
- Our exemplification approach supports the full IMITATOR syntax including extensions (global variables, etc.)
- Polyhedra operations performed using the Parma Polyhedra Library [BMZ08]
- Output: set of runs in the JSON syntax + (basic) graphical outputs

Reproducibility artifact available on 10.5281/zenodo.6382893

(v. 3.3- alpha “Cheese Caramel au beurre salé”)

[And21] Étienne André. “IMITATOR 3: Synthesis of timing parameters beyond decidability”. In: CAV. vol. 12759. LNCS. Springer, 2021, pp. 1–14

[BMZ08] Roberto Bagnara, Hill Patricia M., and Enea Zaffanella. “The Parma Polyhedra Library: Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems”. In: Science of Computer Programming 72.1–2 (2008), pp. 3–21
Proof of concept

Specification: “Whenever signal s_1 is larger than 50, then within at most 15 time units, it holds that $s_1 \geq 3 \times s_2$ and then, within at most 20 more time units, both signals are equal”.

É. André, M. Waga, N. Urabe, I. Hasuo
Exemplifying parametric timed specifications
Proof of concept

Specification: “Whenever signal s_1 is larger than 50, then within at most 15 time units, it holds that $s_1 \geq 3 \times s_2$ and then, within at most 20 more time units, both signals are equal”.

Encoding:
Proof of concept

Specification: “Whenever signal s_1 is larger than 50, then within at most 15 time units, it holds that $s_1 \geq 3 \times s_2$ and then, within at most 20 more time units, both signals are equal”.

Encoding:

Signal bounding automata:
Proof of concept

Specification: “Whenever signal s_1 is larger than 50, then within at most 15 time units, it holds that $s_1 \geq 3 \times s_2$ and then, within at most 20 more time units, both signals are equal”.

Encoding:

Signal bounding automata:

Automatic generation of 3 possible runs:
Outline

1 Motivation

2 A formalism for quantitative specifications

3 Exemplifying specifications

4 Proof of concept

5 Conclusions
Conclusion

Best-effort (heuristic) approach to exemplify parametric specifications over signals

Input formalism: parametric linear multi-rate automata

- real-valued continuous variables with a piecewise-constant rate
- TA clocks
- timing parameters

Crux: signal bounding automata to limit the admissible continuous behavior

Implementation in IMITATOR

- Fully automated process

We also generate negative (impossible) executions (see paper)
Perspectives

- Enhance **efficiency** using heuristics (e.g., [AA22])
- Extension to **liveness/fairness**
- Extension to **logics** such as LTL, MITL or STL [RHM17][PLK18]
- **Expressiveness** of our input formalism
- Providing some **coverage** guarantees
 - sufficient number of positive and negative runs
 - “cornercase” runs
- Evaluation on students or engineers who are not familiar with formal specifications
 - Complexity of the automata theory?

[AA22] Johan Arcile and Étienne André. “Zone extrapolations in parametric timed automata”. In: *NFM*. vol. 13260. LNCS. Springer, 2022, pp. 451–469

[RHM17] Hendrik Roehm, Thomas Heinz, and Eva Charlotte Mayer. “STLInspector: STL Validation with Guarantees”. In: *CAV, Part I*. vol. 10426. LNCS. Springer, 2017, pp. 225–232

[PLK18] Pavithra Prabhakar, Ratan Lal, and James Kapinski. “Automatic Trace Generation for Signal Temporal Logic”. In: *RTSS*. IEEE Computer Society, 2018, pp. 208–217

É. André, M. Waga, N. Urabe, I. Hasuo
Bibliography
Johan Arcile and Étienne André. “Zone extrapolations in parametric timed automata”. In: NFM (May 24–27, 2022). Ed. by Klaus Havelund, Jyo Deshmukh, and Ivan Perez. Vol. 13260. LNCS. Caltech, Pasadena, CA, USA: Springer, 2022, pp. 451–469. DOI: 10.1007/978-3-031-06773-0_24.

Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8.

Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In: STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242.

Étienne André, Masaki Waga, Natsuki Urabe, and Ichiro Hasuo. “Exemplifying parametric timed specifications over signals with bounded behavior”. In: NFM (May 24–27, 2022). Ed. by Klaus Havelund, Jyo Deshmukh, and Ivan Perez. Vol. 13260. LNCS. Caltech, Pasadena, CA, USA: Springer, 2022. DOI: 10.1007/978-3-031-06773-0_25.

Étienne André. “IMITATOR 3: Synthesis of timing parameters beyond decidability”. In: CAV (July 18–23, 2021). Ed. by Rustan Leino and Alexandra Silva. Vol. 12759. LNCS. virtual: Springer, 2021, pp. 1–14. DOI: 10.1007/978-3-030-81685-8_26.
Roberto Bagnara, Hill Patricia M., and Enea Zaffanella. “The Parma Polyhedra Library: Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems”. In: Science of Computer Programming 72.1–2 (2008), pp. 3–21. DOI: 10.1016/j.scico.2007.08.001.

Thomas A. Henzinger. “The Theory of Hybrid Automata”. In: LICS (July 27–30, 1996). New Brunswick, New Jersey, USA: IEEE Computer Society, 1996, pp. 278–292. DOI: 10.1109/LICS.1996.561342.

Pavithra Prabhakar, Ratan Lal, and James Kapinski. “Automatic Trace Generation for Signal Temporal Logic”. In: RTSS (Dec. 11–Nov. 14, 2018). Nashville, TN, USA: IEEE Computer Society, 2018, pp. 208–217. DOI: 10.1109/RTSS.2018.00038.

Hendrik Roehm, Thomas Heinz, and Eva Charlotte Mayer. “STLInspector: STL Validation with Guarantees”. In: CAV, Part I (July 24–28, 2017). Ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10426. LNCS. Heidelberg, Germany: Springer, 2017, pp. 225–232. DOI: 10.1007/978-3-319-63387-9_11.
Licensing
License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)

(\LaTeX source available on demand)

Authors: Étienne André

creativecommons.org/licenses/by-sa/4.0/