Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review

Zhuqiu Sun1, Jinying Xi (✉)1,2, Chunping Yang3,4, Wenjie Cong1

1 Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
2 State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing 100084, China
3 Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525099, China
4 College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China

1 Introduction

The finding of quorum sensing (QS) has provided a new idea to regulate microbial growth (Sivasankar et al., 2019), and an increasing number of studies have been carried out to optimize biological waste treatment systems by QS regulation methods (Liu et al., 2015; Peng et al., 2018; Liu et al., 2020). QS signaling molecules includes N-acyl-homoserine lactones (AHLs), autoinducers-2 (AI-2), autoinducing peptides (AIPs), quinolone (PQS), etc. (Holban et al., 2016; Turan et al., 2017; Maddela et al., 2019). By different effects on QS signaling molecules, QS regulation methods can be classified into two groups: QS enhancement and QS inhibition. QS enhancement methods...
aim to increase QS signaling molecules concentrations in the systems while QS inhibition methods aim to decrease QS signaling molecules concentrations or interfering its function.

There are quite a few review articles about QS regulation in biological waste treatment systems in the literatures, covering different aspects and topics. Most of these reviews are on the roles of QS regulation and its distinctive performances in biological wastewater treatment systems (Maddela et al., 2019). Many reviews summarized the application of QS enhancement methods in specific biological wastewater treatment processes such as nitrification and denitrification, partial nitritation-anammox, granular sludge system (Huang et al., 2019; Wang et al., 2021b; Zhao et al., 2021). Besides QS enhancement, there are also some reviews targeting QS inhibition to mitigate biofouling in membrane bioreactors (MBRs) (Lade et al., 2014; Siddiqui et al., 2015). Most of the reviews focused on the effects of QS regulation on the system performance, while only a few considered the effects on biofilm formation from the microbiology perspective (Huang et al., 2016; Chen et al., 2018).

Although the reviews in the literature presented a comprehensive understanding on the development of QS regulation for wastewater treatment, there are still some questions to be answered: 1) What are the specific methods to achieve QS enhancement and inhibition in biological waste treatment systems? 2) What are the effects of QS regulation on biofilm in biological waste treatment systems? In this review, we summarized the methods of QS regulation in biological waste treatment systems. The effects of QS regulation on biofilm in terms of biofilm formation, extracellular polymeric substances (EPS) production, and microbial viability and community were also reviewed.

2 Theory of QS regulation on biofilm

The QS systems are mediated by some signaling molecules, and general signaling molecules mainly includes AHLs, AI-2, AIPs and PQS, and their mechanism to mediate QS are shown in Fig. 1.

As shown in Fig. 1, the processes for different QS signaling molecules are quite similar. QS bacteria produce signaling molecules and secrete them to the extracellular environment. When the extracellular QS signaling molecules accumulate to a certain level in the local environment, they can enter the bacterial cell again and activate the transcription and expression of specific genes (Whiteley et al., 2017). The most widely studied QS signaling molecules are AHLs, which have been found in 25 Gram-negative bacterial species (Turan et al., 2017). The first AHLs, N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL), was found in a marine bacterium *Vibrio fischeri* in the 1980s, and controls the expression of luminescence.

![Fig. 1 Schematic diagram of QS processes for different signaling molecules.](image-url)
(lux) genes through the LuxI/LuxR system (Eberhard et al., 1981; Engebrecht and Silverman, 1984; Whiteley et al., 2017). AHL-mediated QS affected sludge granulation and EPS production in bioreactors (Tan et al., 2014). Another important QS signaling molecule is AI-2, which was found in both Gram-positive and Gram-negative bacteria. AI-2 is produced by the participation of luxS gene, and can regulate biofilm adhesion (Buck et al., 2009). AIPs, always produced by Gram-positive bacteria with two-component regulatory systems, can affect the intercellular communication, biofilm formation and microbial resistance (Sturme et al., 2002; Peterson et al., 2004). PQS, belonging to the 4-quinolone (4Q) family, is produced by Pseudomonas aeruginosa (P. aeruginosa) and can regulate multicellular behaviors, denitrification and iron transport systems (Diggle et al., 2006; Fernández-Piñar et al., 2011; Maddela et al., 2019).

Quorum sensing regulation has a significant impact on biofilm formation. First, it can affect the bacterial swimming and attachment (Kjelleberg and Molin, 2002; Cui et al., 2020). For example, QS inhibition by adding porcine kidney acylase I, hampered the microbial colonization in a bioaugmented systems (Zhang et al., 2015). Second, QS signals can control the production of extracellular polysaccharide and rhamnolipid (Davey et al., 2003; Sakuragi and Kolter, 2007). The biofilm without QS signaling molecules was thin and lack of a three-dimensional structure (de Kievit and Iglewski, 2000). Finally, QS signaling molecules can regulate the activity and viability of bacterial cells (Lynch et al., 2002; Li et al., 2014). The effects of QS on biofilm have been commonly reported (Engebrecht and Silverman, 1984; Maddela et al., 2019; Zhang et al., 2021), which indicates its application in optimization of biological waste treatment systems.

3 QS regulation methods in biological waste treatment systems

3.1 QS enhancement methods

QS enhancement methods can increase the QS signaling molecule content in biofilm and then favor the start-up and operation of biological waste treatment systems. Three QS enhancement methods were introduced in Table 1.

3.1.1 Adding exogenous QS signaling molecules

The most common method to enhance QS is direct addition of exogenous QS signaling molecules, which provides immediate and accurate control of QS level (Hu et al., 2016a). AHLs is the most commonly-used QS signaling without QS signaling molecules was thin and lack of a three-dimensional structure (de Kievit and Iglewski, 2000). Finally, QS signaling molecules can regulate the activity and viability of bacterial cells (Lynch et al., 2002; Li et al., 2014). The effects of QS on biofilm have been commonly reported (Engebrecht and Silverman, 1984; Maddela et al., 2019; Zhang et al., 2021), which indicates its application in optimization of biological waste treatment systems.

Table 1 QS enhancement methods and their effects on performance of biological treatment systems

QS enhancement methods	Additives	Concentration	Bioreactor	Indicators	Performance*	Reference
Adding exogenous QS signaling molecules	C8-HSL	100 nmol/L	MBBR	NH4⁺-N removal	+	Huang et al., 2020
	Mixture of AHLs	1000 nmol/L	SBBR	COD removal	+ 3%	Hu et al., 2016a
	Quinolone	100 nmol/L	MFC	Power density	+ 30%	Monzon et al., 2016
	3OC6-HSL	10000 nmol/L	MEC	Current	–	Liu et al., 2015
	C6-HSL	100 nmol/L	MBBR	NH4⁺-N removal	– 20%	Fan et al., 2019
	Phenylethanol, tryptophol,	10 μmol/L	MFC	Current density and electrons transfer	+	Christwardana et al., 2019
	tyrosol					
Adding accelerator of QS signaling molecules synthesis	Boron	60 μmol/L	BEFC	Voltage output	+ 15 mV	Cevik et al., 2020
	Fulvic acid	0.5–1 mmol/L	Anammox system	Nitrogen removal	+	Liu et al., 2020
Cultivating QS bacteria	Pseudomonas aeruginosa,	NA	EGSB	COD removal	+	Ding et al., 2015
	Vibrio harveyi, Xanthomonas campestris					
	Sphingomonas rubra	10 mL bacterium solution with OD0 = 1.5	MBBR	COD and NH4⁺-N removal	+	Wang et al., 2019
Centrifugation residual Aeromonas sp. A-L3	Strain suspension with a volume ratio of 2%	Aerobic granular sludge reactors	COD removal	+ 7%		Gao et al., 2019

Notes: *“+”: Increase; “−”: Decrease; “%”: Absolute percentage.
molecules, and the adding concentration generally range from 10 to 10000 nmol/L. In most cases, direct addition of exogenous QS signaling molecules can promote the performance of bioreactors. For example, exogenous C6-HSL and C8-HSL were successfully used to enhance nitrogen transformation in anaerobic ammonium oxidation process and moving bed biofilm reactor (MBBR) (Zhang et al., 2019a; Huang et al., 2020). The organisms removal performance of electrochemical reactors were found to be enhanced after adding QS signaling molecules. Stable increase in electron transfer and power production capacity were observed in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) (Liu et al., 2015; Monzon et al., 2016; Christwardana et al., 2019).

However, not all biological treatment systems were optimized after the addition of signaling molecules. For example, 1000-nM AHL addition decelerated approximately 7% for COD removal and 2.6% for nitrifications of the ammonia nitrogen in sequencing biofilm reactor (SBRB) (Hu et al., 2016a) and addition of C6-HSL during the operation period of an MBBR significantly decreased 0.44%–20.29% after 16 days on the ammonia nitrogen removal (Fan et al., 2019). One disadvantage of direct addition of exogenous QS signaling molecules is its high expense. Another disadvantage is the unstable enhancement due to the quick degradation of exogenous QS signaling molecules by some quorum quenching (QQ) bacteria (Soler et al., 2018). The concentration of C6-HSL was found to decreased by more than 70% in 15 days after 500 nM AHLs (four different AHL mixtures) was directly added into biofilm reactors (Hu et al., 2016b).

3.1.2 Adding accelerators of QS signaling molecules synthesis

Another method to enhance QS is adding accelerators in biological treatment systems to promote synthesis of QS signaling molecules. The reported accelerators include precursors of QS signaling molecules and accelerators for its release. For example, Boron is a well-known enhancer of QS signaling molecules because AI-2 will be activated with the formation of boron complexed to (R)-4,5-dihydroxy-2,3-pentanedione (DHP) as its precursor (Chen et al., 2002; Cevik et al., 2020), and the adding of boron increased potential by almost 15 mV in a bioelectrochemical fuel cells (Cevik et al., 2020). In addition, fulvic acid is one of accelerators for the AHL release, and 1 mM fulvic acid can increased total inorganic nitrogen removal rates to 1.94 mg-N/L/h from 1.27 mg-N/L/h in an anammox system (Liu et al., 2020). The advantage of adding accelerators is that the cost of accelerator is usually cheaper than those of QS signaling molecules. However, compared to directly adding exogenous QS signaling molecules, it risks failure because the synthesis processes of signaling molecules are very complex.

3.1.3 Cultivating QS bacteria

QS bacteria which can produce signaling molecules are found in natural environments and cultivation of QS bacteria is another option to economically enhance QS in biological treatment systems. Soler et al. (2018) found that 5 of 99 bacterial strains isolated from the leachates were QS bacteria. Zhang et al. (2020) added the supernatant of 7 AHL-producing strains from mature aerobic granular sludge to sequencing batch reactors, thus increasing the maximum concentrations of C6-HSL, C8-HSL, and N-(3-oxoocatonyl)-l-homoserine lactone (3OC8-HSL) by 23%, 81%, and 27%, respectively. The performances of biological treatment systems for ammonia, nitrogen, and organic carbon removal were improved by adding P. aeruginosa, which can serve as both AHL producers and pollutant degraders (Yong and Zhong, 2010). However, QS bacteria that promote pollutant removal always work more difficult than other methods of QS enhancement. The short-term addition of a QS strain (Sphingomonas rubra sp. nov.) could not significantly improve the COD and NH₄⁺-N removal rates in MBBR (Wang et al., 2019). In addition, the increase of COD removal decreased to only 1% at 40-s day from 7% at seventh day after adding Aeromonas sp. A-L3 as an AHL-producing bacteria (Gao et al., 2019). The QS bacteria may be washed out with excess biomass or inhibited by bacteria competition in biological treatment systems.

3.2 QS inhibition methods

QS inhibition methods can suppress the effects of QS signaling molecule by degrading signaling molecule, inhibiting the signaling molecule synthesis, or interfering its functions in biological treatment systems. Typical QS inhibition methods applied in biological waste treatment systems were introduced in Table 2.

3.2.1 Cultivating QQ bacteria

One common QS inhibition method is cultivating QQ strains to degrade QS signaling molecules. Many QQ strains isolated from nature have been comprehensively studied, such as Rhodococcus sp. BH4, Bacillus licheniformis T-1, Penicillium restrictum CBS 367.48 and Pseudomonas sp. HS-18 (Oh et al., 2012; Chen et al., 2020; Maddela and Meng, 2020; Wang et al., 2020a; Fakhril et al., 2021). In particular, Rhodococcus sp. BH4 is one of the most popular QQ strain (Oh et al., 2012; Oh and Lee, 2018). Genetic engineering QQ strains were also constructed by plasmid transformation (Oh et al., 2017). These QQ strains can rapidly degrade QS signaling molecule. For example, 50 μM C6-HSL was completely degraded in 9 hours by a novel QQ-bacterium, Lactobacillus sp. SBR04MA, suspended in a solution (OD₆₀₀ =
1.0) (Kampouris et al., 2018). *Betaproteobacteria* and *Firmicutes* suspensions (OD$_{600} = 1.0$) could remove completely 200 nM AHL in 30–60 s (Yavuztürk Gül and Koyuncu, 2017). The isolation and evaluation of those QQ strains provide a promising QS inhibition method for large-scale system.

The addition of QQ strains showed no significant effects on performance of biological waste treatment systems in many researches (Kampouris et al., 2018; Ouyang et al., 2020). For example, the addition of *Lactobacillus* sp. SBR04MA, a QQ-strain did not affect the COD removal efficiency of 95% throughout the entire operating period of an MBR. In most cases, adding QQ strains was used to control biofouling in MBRs, which was first reported in 2009 (Yeon et al., 2009). In addition, the stable operation of bioreactors after adding QQ strains indicated that the control of excessive biomass accumulation or biofouling by this QS inhibition method does not need a performance recovery period compared to other physical or chemical methods (Jiang et al., 2013b; Lee et al., 2018a; Xiao et al., 2018; Liu et al., 2021a; Wang et al., 2021a).

3.2.2 Degrading QS signaling molecules by enzymes

Another emerging method is direct addition of enzymes to degrade the QS signaling molecules in biological treatment systems. Many enzymes for QS signaling molecules degradation have been found and studied, particularly the enzymes for AHL degradation. Lactonase, acylase, decarboxylase and deaminase were found to be four typical enzymes having AHL degradation capacity, and the pathways of AHL degradation under these enzymes are also reported (Siddiqui et al., 2015). Among the four enzymes, acylase is most frequently used and it was observed to effectively decrease the concentration of QS signaling molecules in a MBR with COD and ammonia removal efficiencies above 95% (Jiang et al., 2013b). Kim et al. (2011) also found that membrane flux of a nanofiltration system was increased by more than 30% after adding acylase. However, the enzymes also have a short lifetime in bioreactors and will loss activity easily, which limits their application.

3.2.3 Degrading QS signaling molecules by reactive oxygen species (ROS)

QS inhibition method by producing ROS including hydroxyl radicals and superoxide has gradually attracted interest in recent years (Lee et al., 2018b; Zhang et al., 2019b). For example, the ROS generated by short-time UV-TiO$_2$ photocatalysis inactivated AI-2 secreted from *Escherichia coli* and reduced the bacterial biomass by 42.6% (Xiao et al., 2016). Continuous UV photolysis or photocatalysis were also successfully applied to mitigate

Table 2 QS inhibition methods and their effects on performance of biological waste treatment systems

QS inhibition methods	Additives	Bioreactor	Indicators	Performance*	Reference
Cultivating quorum quenching (QQ) strains	Recombinant *E. coli. and Rhodococcus sp. BH4	MBR	Transmembrane pressure	–	Oh et al., 2012
	Rhodococcus sp. BH4	MBR	Chemical oxygen demand (COD) removal	–	Ouyang et al., 2020
	Penicillium restrictum CBS 367.48	MBR	Sulfamethoxazole and erythromycin	+	Fakhri et al., 2021
	Lactobacillus sp. SBR04MA	MBR	COD removal	=	Kampouris et al., 2018
	Bacillus sp. T5 and *Delftia lacustris* T6	MBR	Transmembrane pressure	–	Yavuztürk Gül and Koyuncu, 2017
Adding degrading enzymes	Acylase	MBR	COD removal	=	Yeon et al., 2009
	Porcine kidney acylase I	MBR	Transmembrane pressure	–	Jiang et al., 2013b
	Acylase	Nanofiltration	Flux profiles	+	Kim et al., 2011
Degrading QS signaling molecules by ROS	Long-wave UV	MBR	TOC, COD, TN, TP, and NH$_4^+$-N removal	=	Zhang et al., 2019b
	TiO$_2$ nanoparticles under UV irradiation	MBR	COD removal	+	Mehmood et al., 2021
	Electric field	EMBR	Phenol degradation rate	+	Jiang et al., 2020
Adding QS inhibitors	Vanillin	RO	Biofilm formation	–	Ponnusamy et al., 2009
	3,3′,4,5-tetrachlorosalicylanilide	MBR	Ammonium removal	=	Feng et al., 2020
	Piper betle extract	MBR	Transmembrane pressure	–	Siddiqui et al., 2012

Notes: *+*: Increase; “−”: Decrease; “≈”: No significant difference.
biofouling in MBR, performing more efficiently than adding QQ bacteria (Zhang et al., 2019b; Mehmood et al., 2021). In addition, the ROS generated by an electric field (0.4 V/cm) lowered the AHLs concentrations (13–23 ng/L) compared to the control group (24–37 ng/L) in a MBR (Jiang et al., 2020). Although these new approaches showed significantly capacity to inhibit QS, their exact role and the mechanisms of QS inhibition in biological waste treatment system are still unknown.

3.2.4 Adding QS inhibitors

Besides removing QS signaling molecules, adding QS inhibitors to interfere QS receptors or inactivate signaling molecules was also applied in biological waste treatment systems (Yates et al., 2002; Teplitski et al., 2011; Kalia, 2013). Many QS inhibitors were found including 3-amino-2-oxazolidinone YXL-13, homoserine lactone-like TGK-series, ε-polysine, aporphinoid alkaloids, cladodionen, gingerol, etc (Al-Shabib et al., 2020; Alibi et al., 2020; Brown et al., 2020; Cheng et al., 2020; Di Marco et al., 2020; Li et al., 2020; Parmar et al., 2020; Qin et al., 2020; Shen et al., 2020; Wang et al., 2020b). Vanillin (4-hydroxy-3-methoxybenzaldehyde) was used as the QS inhibitor and decreased the biofilm formation by over 45% on reverse osmosis (RO) membrane (Ponnusamy et al., 2009). The inhibitor 3,3′,4′,5-tetrachlorosalicylanilide (100 μg/L) decreased the average AI-2 concentration by 30%, and reduced the biofilm in MBR by 50% (Feng et al., 2020). The addition of easily-synthesized and economic QS inhibitors can reduce the operating cost, and thus may be more cost-effective than adding QQ strains or degrading enzymes.

4 Effects of QS regulation on biofilm

4.1 Biofilm formation

A quick biofilm formation is essential for the successful start-up of a biological waste treatment system (Xu et al., 2021). QS enhancement methods were applied to enhance biofilm formation in many researches. The biofilms formation in start-up phase and recovery from starvation on carriers was significantly accelerated in bioreactors in the presence of exogenous AHLs (Huang et al., 2016; Xiong et al., 2020). Besides AHLs, the exogenous PQS or some alcohol molecules (phenylethanol, tryptophol and tyrosol) also showed the positive effects on the biofilm growth in the MFC (Monzon et al., 2016; Christwardana et al., 2019). Laser scanning confocal microscopy (LSCM) is often used to observe biofilm formation in a QS enhancement system, but rarely giving quantitative results. We collected the LSCM images from some researches and calculated the pixels proportion of fluorescent biofilm with and without QS enhancement (Huang et al., 2016; Hu et al., 2017; Wang et al., 2018; Xiong et al., 2020). The result is shown in Fig. 2. The average percentage of biofilm in QS enhancement systems was significantly increased.

4.2 EPS production

EPS, which is dominated by polysaccharide (PS) and proteins (PN), are closely related to the microbial attachment and biofilms structure. The positive effect of AHLs on EPS production in different bioreactors such as SBBR, MBBR and MFC was the most frequently reported compared with other QS signaling molecule content (Chen et al., 2017; Fan et al., 2019). The adding of AHLs can even increase exponentially EPS production in biofilm. For example, the addition of AHLs caused increased the PS content by approximately more than 1 time during the stable operation of an MBBR (Liu et al., 2021b). Except
for AHLs, the adding Al-2 was found can promote EPS production in a bioreactor (Ding et al., 2015). However, the positive effect of QS enhancement for other QS signaling molecule content such as PQS and AIPs on EPS production is lack solid evidence. There are some QS signaling molecule such as diffusible signal factor (DSF), 3OC6-HSL, 3-oxo-C10-HSL might have no significant positive or negative effect on EPS production in biological treatment systems (Ding et al., 2015; Lv et al., 2018; Wang et al., 2018; Huang et al., 2019), and the reason why those QS signaling molecule had opposite EPS trends with increasing their content in bioreactors is still not understood. These molecules should be avoided in similar conditions if the aim is to increase the EPS production.

The general current consensus is that most of QS inhibition significantly decreases the EPS production by from less than 10% to more than 70% (see Table 3), and many studied were carried out in MBR to control biofouling on a laboratory scale (Shi et al., 2017; Iqbal et al., 2017; Yu et al., 2018). The AHLs is the main target signaling molecule of QS inhibition because its QQ et al., 2018; Yu et al., 2018). The AHLs is the main target signaling molecule of QS inhibition because its QQ bacteria might be more easily isolated and obtained. For example, when QQ strains that degrade C6-HSL, C8-HSL, and N-decanoyl-l-homoserine lactone (C10-HSL) were added to a laboratory-scale anaerobic MBR, the EPS production decreased by 72%, 36% and 66%, respectively (Xu et al., 2020). In addition, although the decreasing EPS production reduces the amount of biofouling, it also causes excessive shedding of the biofilm that destroyed the biofilm function, which may explain why QS inhibition is rarely used to solve the biomass accumulation in bioreactors with biofilms as the functional main body. Therefore, more accurate control of EPS production is required for widening the application scope of QS inhibition, and the quantitative relationship between EPS production and decreased content of different QS signaling molecules should be investigated more in other bioreactors, especially biofilm reactors.

4.3 Microbial viability

The positive effects of QS enhancement on microbial viability were found by semiquantitative analysis in several bioreactors. Pan et al. (2020) observed the double fluorescence stained biofilm on the anode of an MFC fed with C6-HSL and C-3-OXO-C12-HSL, and they found that its microbial viability was significantly higher than that without exogenous AHLs. Similar results were also observed in a mixed-culture MFC fed with C4-HSL, C6-HSL and 3-OXO-C12-HSL and a bioelectrochemical system fed with C6-HSL and 3-OXO-C12-HSL (Chen et al., 2017; Fang et al., 2018). Although these studies directly observed the live/dead bacteria and their local distributions, they could not accurately quantify the ratio of live to dead bacteria. Therefore, we recommend the use of flow cytometry and enzyme activity assays that quantify the live/dead bacteria ratio and metabolic activity in QS-enhanced systems.

Many previous studies suggested that the microbial viability of bacteria biofilm was always decreased by the QS inhibition methods. For example, the cell viability of Agrobacterium tumefaciens was decreased to 77%–80% of its original level by adding the QS-degrading acylase at concentrations of 0.1–10 μg/mL, indicating that the QS

Methods of QS inhibition	Target signal molecule	Bioreactor	Wastewater	Sampling time	EPS production*	Reference
QQ consortia	AHLs	MBR	Domestic	59 d	–5% (Protein)	Yu et al., 2018
Facultative QQ consortia	C6-HSL	MBR	Domestic	7 d	–72%	Xu et al., 2020
Facultative QQ consortia	C8-HSL	MBR	Domestic	–36%		
Facultative QQ consortia	C10-HSL	MBR	Domestic	–66%		
Rhodococcus sp. BH4	AHLs	MBR	Synthetic	100 d	–9% (Protein)	Iqbal et al., 2018
Rhodococcus sp. BH4	AHLs	MBR	Synthetic	80 d	–70% (Protein)	Weerasekara et al., 2016
Reombinant Escherichia coli TOP10-1iiO	AHLs	RO	Synthetic	109 h	–35% (Protein)	Oh et al., 2017
Acylase-Immobilized Nanofiltration Membrane	AHLs	Nanofiltration	Synthetic	5 d	–43% (Polysaccharides)	Kim et al., 2011
Rhodococcus sp. BH4	AHLs	MBR	Synthetic	30 d	–25% (Polysaccharides)	Ergön-Can et al., 2017

Notes: * “+”: Increase; “−”: Decrease; “%” Relative percentage.
inhibition had a negative impact on viability (Bao et al., 2020). A double mutant of \textit{P. aeruginosa} strain (ΔlasR ΔrhlR and ΔlasI ΔrhlI) showed lower survival ability than the wild-type strain (Lu et al., 2010). Interestingly, the effect of QS inhibition on microbial viability in mixed culture was opposite to that in pure culture. For example, fewer dead cells and more viable cells were observed in the biofilms in a QS-inhibited MBR by fluorescent staining method (Oh et al., 2017). The decrease in the number of dead cells was also observed in the biofilm samples in a seawater desalination RO membrane treated by Al-1 QS inhibitors (Katebian et al., 2016). Oh et al. (2017) suggested that the QS inhibition may result in slower maturation of biofilm.

4.4 Microbial community

Many genera were found that they would be prompted with the QS enhancement in biofilm. \textit{Pseudomonas} is one of the most common genera, and a significant increasing of its abundance has been found with AHL-mediated QS enhancement in many biological treatment reactors such as SBBR, MBBR, and MFC (Hu et al., 2017; Zhang et al., 2019a; Huang et al., 2020; Pan et al., 2020; Zhang et al., 2020), which is consistent with the results of studies on the effects of AHLs on this genus (Davies et al., 1998; Kjelleberg and Molin, 2002; Cellini et al., 2020). Meanwhile, the abundance of \textit{Nitrosomonas}, a major class of nitrifying bacteria (Phanwilai et al., 2020; Qiu et al., 2020), increases with increasing content of signaling molecules. This trend is thought to explain (at least partly) why QS enhancement can optimize biological treatment reactors for ammonia nitrogen removal (Li et al., 2015; Hu et al., 2017; Zhang et al., 2019a). In addition, the abundance of \textit{Methanoseta}, which can produce methane and degrade organic matter, is commonly increased by the addition of AHLs (Lv et al., 2018; Ma et al., 2019). Directly using an electron transfer mechanism, the relative abundance of \textit{Geobacter} was increased in some electrochemical reactors with biofilm by adding exogenous AHLs that promoted organic matter degradation (Chen et al., 2017; Pan et al., 2020).

Some of genera with significantly decreased relative abundances were also shown in the results of high-throughput sequencing for the microbial community in QS-enhanced systems. For example, significant decreases in the relative abundance of \textit{Pseudorhodoferax} and \textit{Thiobrix} as the dominant bacteria were found in an SBBR with the adding AHLs and cultivating AHL-producing strains, respectively, and the growth of \textit{Para- cococcus} was inhibited in two QS-enhanced SBBRs (Hu et al., 2016a; Zhang et al., 2020). These results further indicate that QS can effectively regulate the microbial community, and QS enhancement can optimize many biological treatment systems in the start-up stage.

Two commonalities of microbial community in biofilm with QS inhibition were found. First, in studies that monitored the bacterial composition, the effects of QS inhibition on the bacterial composition tended to weaken after long running times of the reactors. This result is probably because other types of signal molecules are constantly secreted, and QS inhibition cannot decrease the levels of all of them, which results in a complex environment in the middle and late phases of the QS-inhibited system operation and weakens the effects of QS inhibition on the microbial community (Ouyang et al., 2020). Second, endogenous QS and QQ bacteria are always sensitive to decreased levels of QS signaling molecules. Ouyang et al. (2020) reported that the abundance of QQ bacteria \textit{Comamonadaceae} increased from 24\% to 29\%, and that of QS bacteria \textit{Cytophagaceae} decreased from 13\% to 10\% in MBRs after QS inhibition. In another study, the increased abundance of QQ bacteria \textit{Rhodococcus} and \textit{Stenotrophomonas} and decreased abundance of QS bacteria \textit{Aeromonas} occurred in EMBRs as the levels of AHLs decreased (Jiang et al., 2020). Although many studies have reported decreased abundances of QS bacteria and increased abundance of QQ bacteria with QS inhibition in biological treatment systems, the mechanism of QS signaling molecules acting on QS bacteria and QQ bacteria remains unclear. Understanding the relationship between QS inhibition and the microbial community is important for optimizing biological treatment systems. It also provides an opportunity for controlling the microbial function of biofilm. The latent rules underlying the relationship between the microbial community and QS inhibition in biological treatment systems for pollutant removal hiding in previous studies need to be further excavated.

5 Conclusions and perspectives

Typical QS enhancement methods and inhibition methods employed in biological waste treatment systems are summarized in this review. The effects of QS regulation on biofilm are also introduced. Generally, QS enhancement can help to increase the biofilm formation and thus promote the pollutants removal performance of different types of bioreactors. Meanwhile, QS inhibition can help to mitigate biofouling in membrane bioreactors. Although there are great achievements in the field of QS regulation for biological waste treatment system, there are still many questions unknown and problems that should be solved. Thus, the demands for future study are listed as below:

1) The performances of different QS enhancement or inhibition methods in biological waste treatment systems should be compared. Comprehensive and quantitative evaluation on different QS regulation methods should be carried out on more types of bioreactors, such as waste gas or solid waste treatment systems.

2) The distribution, metabolism and fate of QS signaling molecules in different biological waste treatment
systems.

3) The changes in microbial community structure and functions by QS regulation should be comprehensively studied using the molecular tools such as metagenomics and metatranscriptomics analysis to understand its mechanisms.

4) Most studies on QS regulation in biological treatment systems have been conducted on laboratory scales rather than in large-scale applications. The effects and mechanisms of QS regulation in large-scale biological treatment systems should be further studied.

In the future, the QS regulation methods will function as a promising and eco-friendly options to optimize the performance of biological waste treatment systems.

Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant No. 52070113).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Al-Shabib N A, Husain F M, Rehman M T, Alyousef A A, Arshad M, Khan A, Masood Khan J, Alam P, Albalawi T A, Shahzad S A, Syed J B, Al-Ajmi M F (2020). Food color ‘Azorubine’ interferes with quorum sensing regulated functions and obliterates biofilm formed by food associated bacteria: An in vitro and in silico approach. Saudi Journal of Biological Sciences, 27(4): 1080–1090

Alibi S, Ben Selma W, Ramos-Vivas J, Smach M A, Touati R, Boukadida J, Navas J, Ben Mansour H (2020). Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Current Research in Translational Medicine, 68(2): 59–66

Bao Q, Hosoe A, Hosomi M, Terada A (2020). Quorum quenching acylase impacts the viability and morphological change of Agrobacterium tumefaciens cells. Journal of Bioscience and Bioengineering, 130(1): 82–88

Brown M M, Kwiecinski J M, Cruz L M, Shahbandi A, Todd D A, Cech N B, Horswill A R (2020). Novel peptide from commensal staphylococcus simulates blocks methicillin-resistant staphylococcus aureus quorum sensing and protects host skin from damage. Antimicrobial Agents and Chemotherapy, 64(6): e00172-20

Buck B L, Azcárate-Peril M A, Klaenhammer T R (2009). Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus. Journal of Applied Microbiology, 107(1): 269–279

Cellini A, Donati I, Fiorentini L, Vandelle E, Polverari A, Venturi V, Buriani G, Vanneste J L, Spinelli F (2020). N-acyl homoserine lactones and lux solos regulate social behaviour and virulence of pseudomonas syringae pv. actinidiae. Microbial Ecology, 79(2): 383–396

Cevik E, Tombuloglu H, Anil I, Senel M, Sabit H, Abdulazees S, Borgio J F, Barghouthi M (2020). Direct electricity production from Microalgae Choricystis sp. and investigation of the boron to enhance the electrogenic activity. International Journal of Hydrogen Energy, 45(19): 11330–11340

Chen B, Peng M, Tong W, Zhang Q, Song Z (2020). The quorum quenching bacterium bacillus licheniformis T-1 protects Zebrafish against aeromonas hydrophila infection. Probiotics and Antimicrobial Proteins, 12(1): 160–171

Chen H, Li A, Cui D, Wang Q, Wu D, Cui C, Ma F (2018). N-Acetylhomoserine lactones and autoinducer-2-mediated quorum sensing during wastewater treatment. Applied Microbiology and Biotechnology, 102(3): 1119–1130

Chen S, Jing X, Tang J, Fang Y, Zhou S (2017). Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosensors & Bioelectronics, 97: 369–376

Chen X, Schauder S, Potier N, Van Dorselaer A, Pelcer I, Bassler B L, Hughson F M (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415(6871): 545–549

Cheng W J, Zhou J W, Zhang P P, Luo H Z, Tang S, Li J J, Deng S M, Jia A Q (2020). Quorum sensing inhibition and tobramycin accumulation in Chromobacterium violaceum by two natural cinnamic acid derivatives. Applied Microbiology and Biotechnology, 104(11): 5025–5037

Christwardana M, Frattini D, Duarte K D Z, Accardo G, Kwon Y (2019). Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Applied Energy, 238: 239–248

Cui T, Bai F, Sun M, Lv X, Li X, Zhang D, Du H (2020). Lactobacillus crustorum ZHG 2–1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. Lebensmittel-Wissenschaft + Technologie, 117: 108696

Davvey M E, Ciaiaza N C, O’Toole G A (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PA01. Journal of Bacteriology, 185(3): 1027–1036

Davies D G, Parsek M R, Pearson J P, Iglewski B H, Greenberg E P (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(5361): 295–298

de Kievit T R, Iglewski B H (2000). Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 68(9): 4839–4849

Di Marco N I, Pungitore C R, Lucero-Estrada C S M (2020). Aporphinoid alkaloids inhibit biofilm formation of Yersinia enterocolitica isolated from sausages. Journal of Applied Microbiology, 129(4): 1029–1042

Diggle S P, Cornelis P, Williams P, Câmara M (2006). 4-quinolone signalling in Pseudomonas aeruginosa: Old molecules, new perspectives. International Journal of Medical Microbiology, 296 (2–3): 83–91

Ding Y, Feng H, Huang W, Shen D, Wang M (2015). A sustainable method for effective regulation of anaerobic granular sludge: Artificially increasing the concentration of signal molecules by cultivating a secreting strain. Bioresource Technology, 196: 273–278
Li Y, Hao W, Lv J, Wang Y, Zhong C, Zhu J (2014). The role of N-acyl homoserine lactones in maintaining the stability of aerobic granules. Bioresource Technology, 159: 305–310
Liu J, Sun F, Zhang P, Zhou Y (2021a). Integrated powdered activated carbon and quorum quenching strategy for biofouling control in industrial wastewater membrane bioreactor. Journal of Cleaner Production, 279: 123551
Liu L, Ji M, Wang F, Tian Z, Wang T, Wang S, Wang S, Yan Z (2020). Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylhomoserine lactones (AHLs) release in the anammox system. Science of the Total Environment, 704: 135285
Liu T, Xu J, Tian R, Quan X (2021b). Enhanced simultaneous nitrification and denitrification via adding N-acyl-homoserine lactones (AHLs) in integrated floating fixed-film activated sludge process. Biochemical Engineering Journal, 166: 107884
Liu W, Cai W, Ma A, Ren G, Li Z, Zhuang G, Wang A (2015). Improvement of bioelectrochemical property and energy recovery by acylhomoserine lactones (AHLs) in microbial electrolysis cells (MECs). Journal of Power Sources, 284: 56–59
Lu Q, Yu J, Yang X, Wang J, Wang L, Lin Y, Lin L (2010). Ambroxol interferes with Pseudomonas aeruginosa quorum sensing. International Journal of Antimicrobial Agents, 36(3): 211–215
Lv L, Li W, Zheng Z, Li D, Zhang N (2018). Exogenous acyl-homoserine lactones adjust community structures of bacteria and methanogens to ameliorate the performance of anaerobic granular sludge. Journal of Hazardous Materials, 354: 72–80
Lynch M J, Swift S, Kirke C W, Keevil C W, Dodd C E R, Williams P (2002). The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology, 4(1): 18–28
Ma H, Ma S, Luo W, Ding L, Wang J, Ren H (2019). Long-term exogenous addition of synthetic acyl homoserine lactone enhanced the anaerobic granulation process. Science of the Total Environment, 696: 133809
Maddela N R, Meng F (2020). Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. Science of the Total Environment, 713: 136402
Maddela N R, Sheng B, Yuan S, Zhou Z, Villamar-Torres R, Meng F (2019). Roles of quorum sensing in biological wastewater treatment: A critical review. Chemosphere, 221: 616–629
Meemood C T, Waheed H, Tan W, Xiao Y (2021). Photocatalytic quorum quenching: A new anti fouling and in-situ membrane cleaning strategy for an external membrane bioreactor coupled to UASB. Journal of Environmental Chemical Engineering, 9(4): 105470
Monzon O, Yang Y, Li Q, Alvarez P J J (2016). Quorum sensing autoinducers enhance biofilm formation and production in a hypersaline microbial fuel cell. Biochemical Engineering Journal, 109: 222–227
Oh H S, Lee C H (2018). Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. Journal of Membrane Science, 554: 331–345
Oh H S, Tan C H, Low J H, Rzeczowicz M, Siddiqui M F, Winters H, Kjelleberg S, Fané A G, Rice S A (2017). Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes. Water Research, 112: 29–37
Oh H S, Yeon K M, Yang C S, Kim S R, Lee C H, Park S Y, Han J Y, Lee J K (2012). Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environmental Science & Technology, 46(9): 4877–4884
Ouyang Y, Hu Y, Huang J, Gu Y, Shi Y, Yi K, Yang Y (2020). Effects of exogenous quorum quenching on microbial community dynamics and biofouling propensity of activated sludge in MBRs. Biochemical Engineering Journal, 157: 107534
Pan J, Hu J, Liu B, Li J, Wang D, Bu C, Wang X, Xiao K, Liang S, Yang J, Hou H (2020). Enhanced quorum sensing of anode biofilm for better sensing linearity and recovery capability of microbial fuel cell toxicity sensor. Environmental Research, 181: 108906
Parmar P, Shukla A, Rao P, Saraf M, Patel B, Goswami D (2020). The rise of gingerol as anti-QS molecule: Darkest episode in the LuxR-mediated bioluminescence saga. Bioorganic Chemistry, 99: 103823
Peng P, Huang H, Ren H, Ma H, Lin Y, Geng J, Xu K, Zhang Y, Ding L (2018). Exogenous N-acyl homoserine lactones facilitate microbial adhesion of high ammonia nitrogen wastewater on biocarrier surfaces. Science of the Total Environment, 624: 1013–1022
Peterson S N, Sung C K, Cline R, Desai B V, Snesrud E C, Luo P, Walling J, Li H, Mintz M, Tseng C, Gurr P C, Do Y, Ahn S, Gilbert J, Fleischmann R D, Morrison D A (2004). Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Molecular Microbiology, 51(4): 1051–1070
Phanvilai S, Kangwannarakul N, Noopan P, Kasahara T, Terada A, Munakata-Marr J, Figueroa L A (2020). Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD:N ratio. Frontiers of Environmental Science & Engineering, 14(6): 115
Ponnsamy K, Paul D, Kweon J H (2009). Inhibition of quorum sensing mechanisms and aeromas homodihyla biofilm formation by vanillin. Environmental Engineering Science, 26(8): 1359–1363
Qin X, Thota G K, Singh R, Balamurugan R, Goyocoolea F M (2020). Synthetic homoserine lactone analogues as antagonists of bacterial quorum sensing. Bioorganic Chemistry, 98: 103698
Qiu S, Liu J, Zhang L, Zhang Q, Peng Y (2020). Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox. Frontiers of Environmental Science & Engineering, 15(2): 26
Sakura Y, Kolter R (2007). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 189(14): 5383–5386
Shen C, Islam M T, Masuda Y, Honjoh K I, Miyamoto T (2020). Transcriptional changes involved in inhibition of biofilm formation by ε-polysine in Salmonella Typhimurium. Applied Microbiology and Biotechnology, 104(12): 5427–5436
Shi Y, Huang J, Zeng G, Gu Y, Chen Y, Hu Y, Tang B, Zhou J, Yang Y, Shi L (2017). Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere, 180: 396–411
Siddiqui M F, Rzechowicz M, Harvey W, Zularisam A W, Anthony G F (2015). Quorum sensing based membrane biofouling control for water treatment: A review. Journal of Water Process Engineering, 7: 112–122.

Siddiqui M F, Sakinah M, Singh L, Zularisam A W (2012). Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer. Journal of Biotechnology, 161(3): 190–197.

Sivasankar P, Poongodi S, Sivakumar M, Murugan T, Loganathan S (2019). Bioremediation of wastewater through a quorum sensing triggered MFC: A sustainable measure for waste to energy concept. Journal of Environmental Management, 237: 84–93.

Soler A, Arregui L, Arroyo M, Mendoza J A, Muras A, Álvarez C, García-Vera C, Marquina D, Santos A, Serrano S (2018). Quorum sensing versus quenching bacterial isolates obtained from MBR plants treating leachates from municipal solid waste. International Journal of Environmental Research and Public Health, 15(5): 1019.

Sturme M H J, Kleerebezem M, Nakayama J, Akkermans A D L, Soler A, Arregui L, Arroyo M, Mendoza J A, Muras A, Álvarez C, García-Vera C, Marquina D, Santos A, Serrano S (2018). Quorum sensing versus quenching bacterial isolates obtained from MBR plants treating leachates from municipal solid waste. International Journal of Environmental Research and Public Health, 15(5): 1019.

Sturme M H J, Kleerebezem M, Nakayama J, Akkermans A D L, Vaughan E E, de Vos W M (2002). Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie van Leeuwenhoek, 81: 231–243.

Tan C H, Koh K S, Xie C, Tay M, Zhou Y, Williams R, Ng W J, Rice S A, Kjelleberg S (2014). The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. The ISME Journal, 8(6): 1186–1197.

Teplitzki M, Mathuesis U, Rumbaugh K P (2011). Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chemical Reviews, 111(1): 100–116.

Turan N B, Chormey D S, Büyükpınar Ç, Engin G O, Bakirdere S (2017). Quorum sensing: Little talks for an effective bacterial coordination. Trends in Analytical Chemistry, 91: 1–11.

Wang H, Liao L, Chen S, Zhang L H (2020a). A quorum sensing based membrane biofouling control in an AnMBR. Water Research, 169: 115251.

Wang H, Liao L, Chen S, Zhang L H (2020a). A quorum sensing based membrane biofouling control for membrane bioreactors. Chemical Engineering Journal, 341: 610–617.

Xiong F, Zhao X, Wen D, Li Q (2020). Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors. Science of the Total Environment, 735: 139449.

Xu B, Albert Ng T C, Huang S, Shi X, Ng H Y (2020). Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. Water Research, 169: 115251.

Xu Y, Lu Z, Sun W, Zhang X (2021). Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics. Frontiers of Environmental Science & Engineering, 15(6): 131.

Yates E A, Philipp B, Buckley C, Atkinson S, Chhabra S R, Sockett R E, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P (2002). N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection and Immunity, 70(10): 5635–5646.

Yavuztürk Güll B, Koyuncu I (2017). Assessment of new environmental quorum sensing bacteria as a solution for membrane biofouling. Process Biochemistry, 61: 137–146.

Yeon K M, Lee C H, Kim J (2009). Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching. Environmental Science & Technology, 43(19): 7403–7409.

Yong Y C, Zhong J J (2010). N-Acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa. Process Biochemistry, 45(12): 1944–1948.

Yu H, Qu F, Zhang X, Wang P, Li G, Liang H (2018). Effect of quorum quenching on biofouling and ammonia removal in membrane bioreactor under stressful conditions. Chemosphere, 199: 114–121.

Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens P N L, Tay J H (2020). A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL-producing strains. Water Research, 169: 115193.

Zhang J, Li J, Zhao B H, Zhang Y C, Wang X J, Chen G H (2019a). Long-term effects of N-acylhomoserine lactone-based quorum sensing on the characteristics of ANAMMOX granules in high-loaded reactors. Chemosphere, 218: 632–642.

Zhang K, Zheng X, Shen D S, Wang M Z, Feng H J, He H Z, Wang S, Wang J H (2015). Evidence for existence of quorum sensing in a
bioaugmented system by acylated homoserine lactone-dependent quorum quenching. Environmental Science and Pollution Research International, 22(8): 6050–6056

Zhang Q, Fan N S, Fu J J, Huang B C, Jin R C (2021). Role and application of quorum sensing in anaerobic ammonium oxidation (anammox) process: A review. Critical Reviews in Environmental Science and Technology, 51(6): 626–648

Zhang X, Lee K, Yu H, Mameda N, Choo K H (2019b). Photolytic quorum quenching: A new anti-biofouling strategy for membrane bioreactors. Chemical Engineering Journal, 378: 122235

Zhao Z C, Xie G J, Liu B F, Xing D F, Ding J, Han H J, Ren N Q (2021). A review of quorum sensing improving partial nitritation-anammox process: Functions, mechanisms and prospects. Science of the Total Environment, 765: 142703