STOCHASTIC GALERKIN METHODS FOR LINEAR STABILITY ANALYSIS OF SYSTEMS WITH PARAMETRIC UNCERTAINTY

BEDŘICH SOUSEDÍK† AND KOOKJIN LEE‡

Abstract. We present a method for linear stability analysis of systems with parametric uncertainty formulated in the stochastic Galerkin framework. Specifically, we assume that for a model partial differential equation, the parameter is given in the form of generalized polynomial chaos expansion. The stability analysis leads to the solution of a stochastic eigenvalue problem, and we wish to characterize the rightmost eigenvalue. We focus, in particular, on problems with nonsymmetric matrix operators, for which the eigenvalue of interest may be a complex conjugate pair, and we develop methods for their efficient solution. These methods are based on inexact, line-search Newton iteration, which entails use of preconditioned GMRES. The method is applied to linear stability analysis of Navier–Stokes equation with stochastic viscosity, its accuracy is compared to that of Monte Carlo and stochastic collocation, and the efficiency is illustrated by numerical experiments.

Key words. linear stability, eigenvalue analysis, uncertainty quantification, spectral stochastic finite element method, Navier–Stokes equation, preconditioning, stochastic Galerkin method

AMS subject classifications. 35R60, 60H15, 65F15, 65L07, 65N22, 65N25

1. Introduction. The identification of instability in large-scale dynamical system is important in a number of applications such as fluid dynamics, epidemic models, pharmacokinetics, analysis of power systems and power grid, or quantum mechanics and plasma physics. A steady solution \(u \) is stable, if when in a transient simulation it is introduced with a small perturbation as initial data and the simulation reverts to \(u \), and it is unstable otherwise. This is of fundamental importance since unstable solutions may lead to inexplicable dynamic behavior. Linear stability analysis entails computing the rightmost eigenvalue of the Jacobian evaluated at \(u \), and thus it leads to solution of, in general, large sparse generalized eigenvalues problems see, e.g. [4, 6, 8, 13, 16, 27] and the references therein. Typically, a complex pair of rightmost eigenvalues leads to a Hopf bifurcation, and a real rightmost eigenvalue may lead to a pitchfork bifurcation. The analysis is further complicated if the parameters in the systems are functions of one or more random variables. This is quite common in many real-world applications, since the precise values of model coefficients or boundary conditions are often not known. A popular method for this type of problems is Monte Carlo, which is known for its robustness but also slow convergence. In this study, we use spectral stochastic finite element methods [12, 17, 33, 34] with the main focus on the so-called stochastic Galerkin method, for the linear stability analysis of Navier–Stokes equation with stochastic viscosity. Specifically, we consider the parameterized viscosity given in the form of generalized polynomial chaos (gPC) expansion. In the first step, we apply the algorithms developed in [18, 30], see also [24], to find a gPC expansion of the solution of the Navier–Stokes equation. In the second step, we use the expansions of the solution and viscosity to set up a generalized eigenvalue problem with a nonsymmetric matrix operator, and in the assessment of linear stability of this problem we identify the gPC expansions of the rightmost eigenvalue. The main contribution in this study is development of stochastic Galerkin method for non-

*This work was supported by the U. S. National Science Foundation under grant DMS1913201.
†Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (sousedik@umbc.edu)
‡The School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281 (klee263@asu.edu).
symmetric eigenvalue problems. Our approach is based on inexact Newton iteration: the linear systems with Jacobian matrices are solved using GMRES, for which we also develop several preconditioners. The preconditioners are motivated by our prior work on (truncated) hierarchical preconditioning [32, 19], see also [2]. For an overview of literature on solving eigenvalue problems in the context of spectral stochastic finite element methods we refer to [1, 19, 29] and the references therein. Recently, Hakula and Laaksonen [15] studied crossing of eigenmodes in the stochastic parameter space, and Elman and Su [9] developed a low-rank inverse subspace iteration. However, to the best of our knowledge, there are only a few references addressing nonsymmetric stochastic eigenvalue problems: by Sarrouy et al. [25, 26], but there is no discussion of efficient solution strategies, and also by Sonday et al. [28], who studied distribution of eigenvalues for the Jacobian in the context of stochastic Galerkin method. Most recently, the authors with collaborators also compared surrogate learning strategies based on a sampling method, Gaussian process regression and a neural network in [31].

A study of linear stability of Navier–Stokes equation under uncertainty was conducted by Elman and Silvester [5]. The study was based on a judiciously chosen perturbation of the state variable and a stochastic collocation method was used to characterize the rightmost eigenvalue. Our approach here is different. We consider parametric uncertainty (of the viscosity), and the solution strategy is based on the stochastic Galerkin method. In fact, also the variant of the collocation method used here is based on the stochastic Galerkin projection (sometimes called a nonintrusive stochastic Galerkin method in the literature, see [33, Chapter 7] for a discussion). From this perspective, our study can be viewed as an extension of the setup from [6] to problems with viscosity given in the form of stochastic expansion and their efficient solution using stochastic Galerkin method. However, more importantly, we illustrate that the inexact methods for stochastic eigenvalue problems proposed recently by Lee and Sousédík [19] can be also applied to problems with nonsymmetric matrix operator\(^1\). This in general allows to perform a linear stability analysis for other types of problems as well. We do not address eigenvalue crossing here, which is a somewhat delicate task for gPC-based techniques. We assume that the eigenvalue of interest is sufficiently separated from the rest of the spectrum and no crossing occurs. This is often the case for outliers and other eigenvalues that may be of interest in applications. A suitability of the algorithm we propose in this study can be assessed, e.g., by running first a low-fidelity (quasi-)Monte Carlo simulation. We also note that from our experience with the problem at hand indicates that the rightmost eigenvalue remains relatively well separated from the rest of the spectrum, and it is less prone to switching unlike the other eigenvalues, even with moderate values of coefficient of variation, which in turn allows its efficient characterization by a gPC expansion.

The rest of the paper is organized as follows. In Section 2 we recall the basic elements of linear stability analysis and link it to an eigenvalue problem for a specific model given by Navier–Stokes equation, in Section 3 we introduce the stochastic eigenvalue problem, in Section 4 we formulate the sampling methods and in Section 5 the stochastic Galerkin method and inexact Newton iteration for its solution, in Section 6 we apply the algorithms to linear stability analysis of Navier–Stokes equation with stochastic viscosity, in Section 7 we report the results of numerical experiments, and finally in Section 8 we summarize and conclude our work.

\(^1\)Specifically, the methods based on inexact Newton iteration, since in our experience the stochastic Rayleigh quotient and inverse iteration methods are less effective for nonsymmetric problems.
2. Linear stability and deterministic model problem. Following [6], let us consider the dynamical system

\[
Mu_t = f(u, \nu),
\]

where \(f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \) is a nonlinear mapping, \(u \in \mathbb{R}^n \) is the state variable (velocity, pressure, temperature, deformation, etc.), in the finite element setting \(M \in \mathbb{R}^{n \times n} \) is the mass matrix, and \(\nu \) is a parameter. Let \(u \) denote the steady-state solution to (2.1), i.e., \(u_t = 0 \). We are interested in the stability of \(u \): if a small perturbation \(\delta(0) \) is introduced to \(u \) at time \(t = 0 \), does \(\delta(t) \) grow with time, or does it decay? For a fixed value of \(\nu \), linear stability of the steady-state solution is determined by the spectrum of the eigenvalue problem

\[
Jv = \lambda Mv,
\]

where \(J = \frac{\partial f}{\partial u}(u(\nu), \nu) \) is the Jacobian matrix of \(f \) evaluated at \(\nu \). The eigenvalues have a general form \(\lambda = \alpha + i\beta \), where \(\alpha = \text{Re} \lambda \) and \(\beta = \text{Im} \lambda \). Then \(e^{\lambda t} = e^{\alpha t} e^{i\beta t} \), and since \(|e^{\lambda t}| = |e^{\alpha t}| \), there are in general two cases: if \(\alpha < 0 \) the perturbation decays with time, and if \(\alpha > 0 \) the perturbation grows. We refer, e.g., to [4, 13] and the references therein for a detailed discussion. That is, if all the eigenvalues have strictly negative real part, then \(u \) is a stable steady solution, and if some eigenvalues have nonnegative real part, then \(u \) is unstable. Therefore, a change of stability can be detected by monitoring the rightmost eigenvalues of (2.2). A steady-state solution may lose its stability in one of two ways: either the rightmost eigenvalue of (2.2) is real and passes through zero from negative to positive as \(\nu \) varies, or (2.2) has a complex pair of rightmost eigenvalues and they cross the imaginary axis as \(\nu \) varies, which leads to a Hopf bifurcation with the consequent birth of periodic solutions of (2.1).

Consider a special case of (2.1), the time-dependent Navier–Stokes equations governing viscous incompressible flow,

\[
\bar{u}_t = \nu \nabla^2 \bar{u} - (\bar{u} \cdot \nabla) \bar{u} - \nabla p,
0 = \nabla \cdot \bar{u},
\]

subject to appropriate boundary and initial conditions in a bounded physical domain \(D \), where \(\nu \) is the kinematic viscosity, \(\bar{u} \) is the velocity and \(p \) is the pressure. Properties of the flow are usually characterized by the Reynolds number

\[
Re = \frac{UL}{\nu},
\]

where \(U \) is the characteristic velocity and \(L \) is the characteristic length. For convenience, we will also sometimes refer to the Reynolds number instead of the viscosity. Mixed finite element discretization of (2.3) gives the following Jacobian and the mass matrix, see [6] and [8, Chapter 8] for more details,

\[
J = \begin{bmatrix} F & B^T \end{bmatrix} \in \mathbb{R}^{n_x \times n_x}, \quad M = \begin{bmatrix} -G & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{n_x \times n_x},
\]

where \(n_x = n_u + n_p \) is the number of velocity and pressure degrees of freedom, respectively, \(n_u > n_p \), \(F \in \mathbb{R}^{n_u \times n_u} \) is nonsymmetric, \(B \in \mathbb{R}^{n_p \times n_u} \) is the divergence matrix, and the velocity mass matrix \(G \in \mathbb{R}^{n_p \times n_p} \) is symmetric positive definite. The matrices are sparse and \(n_x \) is typically large. We note that the mass matrix \(M \) is
singular, and (2.2) has an infinite eigenvalue. As suggested in [3], we replace the singular mass matrix M with the nonsingular, shifted mass matrix

$$M_{\sigma} = \begin{bmatrix} -G & \sigma B^T \\ \sigma B & 0 \end{bmatrix},$$

which is symmetric but in general indefinite, and it maps the infinite eigenvalues of (2.2) to σ^{-1} and leaves the finite ones unchanged. Then, the generalized eigenvalue problem (2.2) can be transformed into an eigenvalue problem

$$Jv = \lambda M_{\sigma} v.$$ \hspace{1cm} (2.6)

The flow is considered stable if $\text{Re} \lambda < 0$, and we wish to detect the onset of instability, that is to find when the rightmost eigenvalue crosses the imaginary axis. Efficient methods for finding the rightmost pair of complex eigenvalues of (2.2) (or (2.6)) were studied in [6]. Here, our goal is different. We consider parametric uncertainty in the sense that the parameter $\nu \equiv \nu(\xi)$, where ξ is a set of random variables and which is given by the so-called generalized polynomial chaos expansion. To this end, we first recast the eigenvalue problem (2.6) in the spectral stochastic finite element framework, then we show how to efficiently solve it, and finally we apply the stability analysis to Navier–Stokes equation with stochastic viscosity.

3. Stochastic eigenvalue problem

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a complete probability space, that is Ω is the sample space with σ-algebra \mathcal{F} and probability measure \mathcal{P}. We assume that the randomness in the mathematical model is induced by a vector $\xi : \Omega \rightarrow \Gamma \subset \mathbb{R}^{m_c}$ of independent random variables $\xi_1(\omega), \ldots, \xi_{m_c}(\omega)$, where $\omega \in \Omega$. Let $B(\Gamma)$ denote the Borel σ-algebra on Γ induced by ξ and μ the induced measure. The expected value of the product of measurable functions on Γ determines a Hilbert space $T_\Gamma \equiv L^2(\Gamma, B(\Gamma), \mu)$ with inner product

$$\langle u, v \rangle = \mathbb{E}[uv] = \int_\Gamma u(\xi)v(\xi)d\mu(\xi),$$

where the symbol \mathbb{E} denotes the mathematical expectation.

In computations we will use a finite-dimensional subspace $T_p \subset T_\Gamma$ spanned by a set of multivariate polynomials $\{\psi_\ell(\xi)\}$ that are orthonormal with respect to the density function μ, that is $\mathbb{E}[\psi_\ell \psi_k] = \delta_{\ell k}$, and ψ_1 is constant. This will be referred to as the gPC basis [34]. The dimension of the space T_p, depends on the polynomial degree. For polynomials of total degree p, the dimension is $n_\xi = (m_c + p)$.

Suppose that we are given an affine expansion of a matrix operator, which may correspond to the Jacobian matrix in (2.2), as

$$K(\xi) = \sum_{\ell=1}^{n_\xi} K_\ell \psi_\ell(\xi),$$

where each $K_\ell \in \mathbb{R}^{n_x \times n_x}$ is a deterministic matrix, and K_1 is the mean-value matrix $K_1 = \mathbb{E}[K(\xi)]$. The representation (3.2) is obtained from either Karhunen-Loève or, more generally, a stochastic expansion of an underlying random process; a specific example is provided in Section 7.

We are interested in a solution of the following stochastic eigenvalue problem: find a specific eigenvalue $\lambda(\xi)$ and possibly also the corresponding eigenvector $v(\xi)$, which satisfy in D almost surely (a.s.) the equation

$$K(\xi)v(\xi) = \lambda(\xi)M_{\sigma}v(\xi),$$

where D is the domain of interest.
where $K(\xi) \in \mathbb{R}^{n_x \times n_x}$ is a nonsymmetric matrix operator, $M_\sigma \in \mathbb{R}^{n_x \times n_x}$ is a deterministic mass matrix, $\lambda(\xi) \in \mathbb{C}$ and $v(\xi) \in \mathbb{C}^{n_x}$ along with a normalization condition

$$(v(\xi))^* v(\xi) = \text{constant},$$

which is further specified in Section 5.

We will search for expansions of the eigenpair $(\lambda(\xi), v(\xi))$ in the form

$$\lambda(\xi) = \sum_{k=1}^{n_\xi} \lambda_k \psi_k(\xi), \quad v(\xi) = \sum_{k=1}^{n_\xi} v_k \psi_k(\xi),$$

where $\lambda_k \in \mathbb{C}$ and $v_k \in \mathbb{C}^{n_x}$ are coefficients corresponding to the basis $\{\psi_k\}$. We note that the series for $\lambda(\xi)$ in (3.5) converges for $n_\xi \to \infty$ in the space T_T under the assumption that the gPC polynomials provide its orthonormal basis and provided that $\lambda(\xi)$ has finite second moments see, e.g., [10] or [33, Chapter 5]. Convergence analysis of this approximation for self-adjoint problems can be found in [1].

4. Monte Carlo and stochastic collocation. Both Monte Carlo and stochastic collocation are based on sampling. The coefficients are defined by a discrete projection

$$\lambda_k = \langle \lambda, \psi_k \rangle, \quad v_k = \langle v, \psi_k \rangle, \quad k = 1, \ldots, n_\xi.$$ (4.1)

The evaluations of coefficients in (4.1) entail solving a set of independent deterministic eigenvalue problems at a set of sample points $\{\xi(q)\}$, $q = 1, \ldots, n_{MC}$ or n_q,

$$K(\xi(q))v(\xi(q)) = \lambda(\xi(q)) M_\sigma v(\xi(q)).$$ (4.2)

In the Monte Carlo method, the sample points $\xi(q)$, $q = 1, \ldots, n_{MC}$, are generated randomly following the distribution of the random variables ξ_i, $i = 1, \ldots, m_\xi$, and moments of solution are computed by ensemble averaging. In addition, the coefficients in (3.5) could be computed using Monte Carlo integration as

$$\lambda_k = \frac{1}{n_{MC}} \sum_{q=1}^{n_{MC}} \lambda(\xi(q)) \psi_k(\xi(q)), \quad v_{mk} = \frac{1}{n_{MC}} \sum_{q=1}^{n_{MC}} v(x_m, \xi(q)) \psi_k(\xi(q)).$$

For stochastic collocation, which is used here as the so-called nonintrusive stochastic Galerkin method, the sample points $\xi(q)$, $q = 1, \ldots, n_q$, consist of a predetermined set of collocation points, and the coefficients λ_k and v_k in the expansions (3.5) are determined by evaluating (4.1) in the sense of (3.1) using numerical quadrature as

$$\lambda_k = \sum_{q=1}^{n_q} \lambda(\xi(q)) \psi_k(\xi(q)) w(q), \quad v_{mk} = \sum_{q=1}^{n_q} v(x_m, \xi(q)) \psi_k(\xi(q)) w(q),$$

where $\xi(q)$ are the quadrature (collocation) points and $w(q)$ are quadrature weights. Details of the rule we use in our numerical experiments are discussed in Section 7, and we refer to monograph [17] for a detailed discussion of quadrature rules.

\footnote{In numerical experiments, we avoid this approximation of the gPC coefficients and directly work with the sampled quantities.}
5. Stochastic Galerkin method and Newton iteration. The stochastic Galerkin method is based on the projection

\[\langle Kv, \psi_k \rangle = (\lambda M_s v, \psi_k), \quad k = 1, \ldots, n_\xi, \quad (5.1) \]
\[\langle v^* v, \psi_k \rangle = \text{const} \delta_{k1}, \quad k = 1, \ldots, n_\xi, \quad \text{const} \in \mathbb{R}, \quad (5.2) \]

Let us introduce the notation

\[[H_\ell]_{jk} = h_{\ell,jk}, \quad h_{\ell,jk} = \mathbb{E}[\psi_\ell \psi_j \psi_k], \quad \ell = 1, \ldots, n_\nu, \quad j, k = 1, \ldots, n_\xi. \quad (5.3) \]

In order to formulate an efficient algorithm for eigenvalue problem (3.3) with non-symmetric matrix operator using the stochastic Galerkin formulation, we introduce a separated representation of the eigenpair using real and imaginary parts,

\[v(\xi) = v_{\text{Re}}(\xi) + iv_{\text{Im}}(\xi), \quad \lambda(\xi) = \lambda_{\text{Re}}(\xi) + i\lambda_{\text{Im}}(\xi), \]

where \(v_{\text{Re}}(\xi), v_{\text{Im}}(\xi) \in \mathbb{R}^{n_s} \) and \(\lambda_{\text{Re}}(\xi), \lambda_{\text{Im}}(\xi) \in \mathbb{R} \). Then, replacing \(v(\xi) \) and \(\lambda(\xi) \) in eigenvalue problem (3.3) results in

\[K(\xi)(v_{\text{Re}}(\xi) + iv_{\text{Im}}(\xi)) = (\lambda_{\text{Re}}(\xi) + i\lambda_{\text{Im}}(\xi)) M_s (v_{\text{Re}}(\xi) + iv_{\text{Im}}(\xi)). \quad (5.4) \]

Expanding the terms in (5.4) and collecting the real and imaginary parts yields a system of equations that can be written in a separated representation as

\[
\begin{bmatrix}
K(\xi)v_{\text{Re}}(\xi) \\
K(\xi)v_{\text{Im}}(\xi)
\end{bmatrix} =
\begin{bmatrix}
\lambda_{\text{Re}}(\xi)M_s & -\lambda_{\text{Im}}(\xi)M_s \\
\lambda_{\text{Im}}(\xi)M_s & \lambda_{\text{Re}}(\xi)M_s
\end{bmatrix}
\begin{bmatrix}
v_{\text{Re}}(\xi) \\
v_{\text{Im}}(\xi)
\end{bmatrix},
\]

and the normalization condition corresponding to the separated representation in (5.5) is taken as

\[v_{\text{Re}}(\xi)^T v_{\text{Re}}(\xi) = 1, \quad v_{\text{Im}}(\xi)^T v_{\text{Im}}(\xi) = 1. \quad (5.6) \]

Now, we seek expansions of type (3.5) for \(v_{\text{Re}}(\xi), v_{\text{Im}}(\xi), \lambda_{\text{Re}}(\xi), \) and \(\lambda_{\text{Im}}(\xi) \), that is

\[v_s(\xi) = (\Psi(\xi)^T \otimes I_{n_s}) \tilde{v}_s, \quad \lambda_s(\xi) = \Psi(\xi)^T \tilde{\lambda}_s, \quad s = \text{Re, Im}, \quad (5.7) \]

where the symbol \(\otimes \) denotes the Kronecker product, \(\Psi(\xi) = [\psi_1(\xi), \ldots, \psi_{n_s}(\xi)]^T \), \(\tilde{\lambda}_s = [\lambda_{s,1}, \ldots, \lambda_{s,n_\xi}]^T \in \mathbb{R}^{n_s \times n_\xi} \), and \(\tilde{v}_s = [v_{s,1}, \ldots, v_{s,n_\xi}]^T \in \mathbb{R}^{n_s \times n_\xi} \) for \(s = \text{Re, Im} \).

Let us consider expansions (5.7) as approximations to the solution of (5.5)–(5.6). Then, we can write the residual of (5.5) as

\[
\tilde{F}(\tilde{v}_{\text{Re}}, \tilde{v}_{\text{Im}}, \tilde{\lambda}_{\text{Re}}, \tilde{\lambda}_{\text{Im}}) =
\begin{bmatrix}
(\Psi(\xi)^T \otimes K(\xi)) \tilde{v}_{\text{Re}} - (\lambda_{\text{Re}}(\xi) \Psi(\xi)^T \otimes M_s) \tilde{v}_{\text{Re}} + (\lambda_{\text{Im}}(\xi) \Psi(\xi)^T \otimes M_s) \tilde{v}_{\text{Im}} \\
(\Psi(\xi)^T \otimes K(\xi)) \tilde{v}_{\text{Im}} - (\lambda_{\text{Im}}(\xi) \Psi(\xi)^T \otimes M_s) \tilde{v}_{\text{Re}} - (\lambda_{\text{Re}}(\xi) \Psi(\xi)^T \otimes M_s) \tilde{v}_{\text{Im}}
\end{bmatrix},
\]

and the residual of (5.6) as

\[
\tilde{G}(\tilde{v}_{\text{Re}}, \tilde{v}_{\text{Im}}) =
\begin{bmatrix}
\tilde{v}_{\text{Re}}^T (\Psi(\xi) \Psi(\xi)^T \otimes I_{n_s}) \tilde{v}_{\text{Re}} - 1 \\
\tilde{v}_{\text{Im}}^T (\Psi(\xi) \Psi(\xi)^T \otimes I_{n_s}) \tilde{v}_{\text{Im}} - 1
\end{bmatrix}.
\]

Imposing the stochastic Galerkin orthogonality conditions (5.1) and (5.2) to \(\tilde{F} \) and \(\tilde{G} \), respectively, we get a system of nonlinear equations

\[r(\tilde{v}_{\text{Re}}, \tilde{v}_{\text{Im}}, \tilde{\lambda}_{\text{Re}}, \tilde{\lambda}_{\text{Im}}) = \begin{bmatrix}
F(\tilde{v}_{\text{Re}}, \tilde{v}_{\text{Im}}, \tilde{\lambda}_{\text{Re}}, \tilde{\lambda}_{\text{Im}}) \\
G(\tilde{v}_{\text{Re}}, \tilde{v}_{\text{Im}})
\end{bmatrix} = 0 \in \mathbb{R}^{2(n_s+1)n_\xi}, \quad (5.8) \]
where

\[F(\bar{v}_{\mathrm{Re}}, \bar{v}_{\mathrm{Im}}, \bar{\lambda}_{\mathrm{Re}}, \bar{\lambda}_{\mathrm{Im}}) = \begin{bmatrix} E[\Psi \otimes K] \bar{v}_{\mathrm{Re}} - E[(\bar{\lambda}_{\mathrm{Re}} T \Psi) \Psi T \otimes M_{\sigma}] \bar{v}_{\mathrm{Re}} + E[(\bar{\lambda}_{\mathrm{Im}} T \Psi) \Psi T \otimes M_{\sigma}] \bar{v}_{\mathrm{Im}} \\ E[(\bar{\lambda}_{\mathrm{Re}} T \Psi) \Psi T \otimes M_{\sigma}] \bar{v}_{\mathrm{Re}} - E[(\bar{\lambda}_{\mathrm{Im}} T \Psi) \Psi T \otimes M_{\sigma}] \bar{v}_{\mathrm{Im}} \end{bmatrix}, \]

and

\[G(\bar{v}_{\mathrm{Re}}, \bar{v}_{\mathrm{Im}}) = \begin{bmatrix} E[\Psi \otimes ((\bar{v}_{\mathrm{Re}} T (\Psi T \otimes I_{n_x}) \bar{v}_{\mathrm{Re}}) - 1)] \\ E[\Psi \otimes ((\bar{v}_{\mathrm{Im}} T (\Psi T \otimes I_{n_x}) \bar{v}_{\mathrm{Im}}) - 1)] \end{bmatrix}. \]

We will use Newton iteration to solve system of nonlinear equations (5.8). The Jacobian matrix \(D J(\bar{v}_{\mathrm{Re}}, \bar{v}_{\mathrm{Im}}, \bar{\lambda}_{\mathrm{Re}}, \bar{\lambda}_{\mathrm{Im}}) \) of (5.8) can be written as

\[D J(\bar{v}_{\mathrm{Re}}, \bar{v}_{\mathrm{Im}}, \bar{\lambda}_{\mathrm{Re}}, \bar{\lambda}_{\mathrm{Im}}) = \begin{bmatrix} \frac{\partial F}{\partial \bar{v}_{\mathrm{Re}}} & \frac{\partial F}{\partial \bar{v}_{\mathrm{Im}}} & \frac{\partial F}{\partial \bar{\lambda}_{\mathrm{Re}}} & \frac{\partial F}{\partial \bar{\lambda}_{\mathrm{Im}}} \\ \frac{\partial F}{\partial \bar{v}_{\mathrm{Re}}} & \frac{\partial F}{\partial \bar{v}_{\mathrm{Im}}} & \frac{\partial F}{\partial \bar{\lambda}_{\mathrm{Re}}} & \frac{\partial F}{\partial \bar{\lambda}_{\mathrm{Im}}} \end{bmatrix} \in \mathbb{R}^{2(n_x+1)n_{\xi} \times 2(n_x+1)n_{\xi}}, \]

where

\[\frac{\partial F}{\partial \bar{v}_{\mathrm{Re}}} = \begin{bmatrix} E[\Psi \otimes K] - E[(\bar{\lambda}_{\mathrm{Re}} T \Psi) \Psi T \otimes M_{\sigma}] \\ -E[(\bar{\lambda}_{\mathrm{Im}} T \Psi) \Psi T \otimes M_{\sigma}] \end{bmatrix}, \quad \frac{\partial F}{\partial \bar{\lambda}_{\mathrm{Re}}} = \begin{bmatrix} -E[\Psi \otimes (\Psi T \otimes M_{\sigma})] \bar{v}_{\mathrm{Re}} \\ -E[\Psi \otimes (\Psi T \otimes M_{\sigma})] \bar{v}_{\mathrm{Im}} \end{bmatrix}, \]

\[\frac{\partial F}{\partial \bar{v}_{\mathrm{Im}}} = \begin{bmatrix} E[(\bar{\lambda}_{\mathrm{Im}} T \Psi) \Psi T \otimes M_{\sigma}] \\ E[(\bar{\lambda}_{\mathrm{Re}} T \Psi) \Psi T \otimes M_{\sigma}] \end{bmatrix}, \quad \frac{\partial F}{\partial \bar{\lambda}_{\mathrm{Im}}} = \begin{bmatrix} -E[\Psi \otimes (\Psi T \otimes M_{\sigma})] \bar{v}_{\mathrm{Re}} \\ -E[\Psi \otimes (\Psi T \otimes M_{\sigma})] \bar{v}_{\mathrm{Im}} \end{bmatrix}, \]

and

\[\frac{\partial G}{\partial \bar{v}_{\mathrm{Re}}} = \begin{bmatrix} 2E[\Psi \otimes (\bar{v}_{\mathrm{Im}} T \Psi T \otimes I_{n_x})] \\ 0 \end{bmatrix}, \quad \frac{\partial G}{\partial \bar{\lambda}_{\mathrm{Re}}} = 0, \quad \frac{\partial G}{\partial \bar{\lambda}_{\mathrm{Im}}} = 0, \]

\[\frac{\partial G}{\partial \bar{v}_{\mathrm{Im}}} = \begin{bmatrix} 2E[\Psi \otimes (\bar{v}_{\mathrm{Im}} T \Psi T \otimes I_{n_x})] \\ 0 \end{bmatrix}, \quad \frac{\partial G}{\partial \bar{\lambda}_{\mathrm{Re}}} = 0, \quad \frac{\partial G}{\partial \bar{\lambda}_{\mathrm{Im}}} = 0. \]

However, for convenience in the formulation of the preconditioners presented later, we formulate Newton iteration with rescaled Jacobian matrix \(D J^{(n)}(\bar{v}_{\mathrm{Re}}^{(n)}, \bar{v}_{\mathrm{Im}}^{(n)}, \bar{\lambda}_{\mathrm{Re}}^{(n)}, \bar{\lambda}_{\mathrm{Im}}^{(n)}) \), which at step \(n \) entails solving a linear system

\[\begin{bmatrix} \frac{\partial F^{(n)}}{\partial \bar{v}_{\mathrm{Re}}} & \frac{\partial F^{(n)}}{\partial \bar{v}_{\mathrm{Im}}} & \frac{\partial F^{(n)}}{\partial \bar{\lambda}_{\mathrm{Re}}} & \frac{\partial F^{(n)}}{\partial \bar{\lambda}_{\mathrm{Im}}} \\ -\frac{1}{2} \frac{\partial G^{(n)}}{\partial \bar{v}_{\mathrm{Re}}} & -\frac{1}{2} \frac{\partial G^{(n)}}{\partial \bar{v}_{\mathrm{Im}}} & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta \bar{v}_{\mathrm{Re}}^{(n)} \\ \delta \bar{v}_{\mathrm{Im}}^{(n)} \\ \delta \bar{\lambda}_{\mathrm{Re}}^{(n)} \\ \delta \bar{\lambda}_{\mathrm{Im}}^{(n)} \end{bmatrix} = - \begin{bmatrix} F^{(n)} \\ -\frac{1}{2} G^{(n)} \end{bmatrix}, \]

followed by an update

\[\begin{bmatrix} \bar{v}_{\mathrm{Re}}^{(n+1)} \\ \bar{v}_{\mathrm{Im}}^{(n+1)} \\ \bar{\lambda}_{\mathrm{Re}}^{(n+1)} \\ \bar{\lambda}_{\mathrm{Im}}^{(n+1)} \end{bmatrix} = \begin{bmatrix} \bar{v}_{\mathrm{Re}}^{(n)} \\ \bar{v}_{\mathrm{Im}}^{(n)} \\ \bar{\lambda}_{\mathrm{Re}}^{(n)} \\ \bar{\lambda}_{\mathrm{Im}}^{(n)} \end{bmatrix} + \begin{bmatrix} \delta \bar{v}_{\mathrm{Re}}^{(n)} \\ \delta \bar{v}_{\mathrm{Im}}^{(n)} \\ \delta \bar{\lambda}_{\mathrm{Re}}^{(n)} \\ \delta \bar{\lambda}_{\mathrm{Im}}^{(n)} \end{bmatrix}. \]

Remark 5.1. We used the rescaling of the Jacobian in [19] in order to symmetrize the matrix in (5.13), however we note that here it is still in general nonsymmetric.

Linear systems (5.13) are solved inexact by using a preconditioned GMRES method. We refer to Appendix A for the details of evaluation of the right-hand side and of the matrix-vector product, and to [18] for a discussion of GMRES in a related context.
5.1. Inexact Newton iteration. As in [19], we consider a line-search modification of this method following [23, Algorithm 11.4] in order to improve global convergence behavior of Newton iteration. Denoting
\[
\bar{v}^{(n)} = \left[(\bar{v}_{\text{Re}}^{(n)})^T, (\bar{v}_{\text{Im}}^{(n)})^T \right]^T \quad \text{and} \quad \bar{\lambda}^{(n)} = \left[(\bar{\lambda}_{\text{Re}}^{(n)})^T, (\bar{\lambda}_{\text{Im}}^{(n)})^T \right]^T,
\]
we define the merit function as the sum of squares,
\[
f(\bar{v}^{(n)}, \bar{\lambda}^{(n)}) = \frac{1}{2} \| \hat{r}(\bar{v}^{(n)}, \bar{\lambda}^{(n)}) \|^2,
\]
where \(\hat{r}(\bar{v}^{(n)}, \bar{\lambda}^{(n)}) = \left[-\frac{1}{2} G^{(n)} \right] \),
that is \(\hat{r}(\bar{v}^{(n)}, \bar{\lambda}^{(n)}) \) is the negative right-hand side of (5.13), i.e., it is a rescaled residual of (5.8), and we also denote
\[
f_n = f(\bar{v}^{(n)}, \bar{\lambda}^{(n)}), \quad \hat{r}_n = \hat{r}(\bar{v}^{(n)}, \bar{\lambda}^{(n)}), \quad \widehat{D}J_n = \widehat{D}J(\bar{v}^{(n)}, \bar{\lambda}^{(n)}).
\]
As the initial approximation of the solution, we use the eigenvectors and eigenvalues of the associated mean problem
\[
K_1 \left([v_{\text{Re}}^{(0)}]_1 + i [v_{\text{Im}}^{(0)}]_1 \right) = \left([\lambda_{\text{Re}}^{(0)}]_1 + i [\lambda_{\text{Im}}^{(0)}]_1 \right) M_\sigma \left([v_{\text{Re}}^{(0)}]_1 + i [v_{\text{Im}}^{(0)}]_1 \right), \quad (5.15)
\]
concatenated by zeros, that is
\[
\bar{v}^{(0)} = \left[([v_{\text{Re}}^{(0)}]_1)^T, 0, \ldots, ([v_{\text{Im}}^{(0)}]_1)^T, 0, \ldots \right]^T, \\
\bar{\lambda}^{(0)} = \left[[\lambda_{\text{Re}}^{(0)}]_1, 0, \ldots, [\lambda_{\text{Im}}^{(0)}]_1, 0, \ldots \right]^T,
\]
and the initial residual is
\[
\hat{r}_0 = \left[F(\bar{v}^{(0)}, \bar{\lambda}^{(0)}) \right].
\]
The line-search Newton method is summarized in our setting as Algorithm 1, and the choice of parameters \(\rho \) and \(c \) in the numerical experiments is discussed in Section 7.

The inexact iteration entails in each step a solution of the stochastic Galerkin linear system in Line 4 of Algorithm 1 given by (5.13) using a Krylov subspace method. We use preconditioned GMRES with the adaptive stopping criteria,
\[
\frac{\| \hat{r}_n + \widehat{D}J_n p_n \|_2}{\| \hat{r}_n \|_2} < \tau \| \hat{r}_{n-1} \|_2, \quad (5.16)
\]
where \(\tau = 10^{-1} \). The for-loop is terminated when the convergence check in Line 12 is satisfied; in our numerical experiments we check if \(\| \hat{r}_n \|_2 < 10^{-10} \).

Our implementation of the solvers is based on the so-called matricized formulation, in which we make use of isomorphism between \(\mathbb{R}^{n_x \times n_x} \) and \(\mathbb{R}^{n_x \times n_x} \) determined by the operators vec and mat: \(\bar{v} = \text{vec}(\bar{V}) \), \(\bar{V} = \text{mat}(\bar{v}) \), where \(\bar{v} \in \mathbb{R}^{n_x \times n_x} \), \(\bar{V} \in \mathbb{R}^{n_x \times n_x} \).

The upper/lower case notation is assumed throughout the paper, so \(\bar{R} = \text{mat}(\bar{r}) \), etc. Specifically, we define the matricized coefficients of the eigenvector expansion
\[
\bar{V} = \text{mat}(\bar{v}) = [v_1, v_2, \ldots, v_{n_x}] \in \mathbb{R}^{n_x \times n_x}, \quad (5.17)
\]
where the column \(k \) contains the coefficients associated with the basis function \(\psi_k \).

A detailed formulation of the GMRES in the matricized format can be found, e.g., in [18]. We only describe computation of the matrix-vector product (Appendix A), and in the next section we formulate several preconditioners.
Algorithm 1 [23, Algorithm 11.4] Line-search Newton iteration

1: Given \(\rho, c \in (0, 1) \), set \(\alpha^* = 1 \).
2: Set \(\bar{\psi}(0) \) and \(\bar{\lambda}(0) \).
3: for \(n = 0, 1, 2, \ldots \) do
4: \(\hat{\mathcal{D}}_n p_n = -\mathcal{r}_n \) \((\text{Solve inexactly to find the Newton update } p_n.\)\)
5: \(\delta \bar{\psi}(n) = p_n \)
6: \(\delta \bar{\lambda}(n) = p_n \)
7: while \(f(\bar{\psi}(n) + \alpha_n \delta \bar{\psi}(n), \bar{\lambda}(n) + \alpha_n \delta \bar{\lambda}(n)) > f_n + c \| \alpha_n \| \mathcal{F}^T p_n \) do
8: \(\alpha_n \leftarrow \rho \alpha_n \)
9: end while
10: \(\bar{\psi}(n+1) \leftarrow \bar{\psi}(n) + \alpha_n \delta \bar{\psi}(n) \)
11: \(\bar{\lambda}(n+1) \leftarrow \bar{\lambda}(n) + \alpha_n \delta \bar{\lambda}(n) \)
12: Check for convergence.
13: end for

5.2. Preconditioners for the Newton iteration. In order to allow for an efficient iterative solution of linear systems in Line 4 of Algorithm 1 given by (5.13) using a Krylov subspace method, it is necessary to provide a preconditioner. In this section, we adapt the mean-based preconditioner and two of the constraint preconditioners from [19] to the formulation with separated real and complex parts, and we write them in the matricized format. The idea can be motivated as follows. The preconditioners are based on approximations of the blocks in (A.2). The mean-based preconditioner is inspired by the approximation

\[
\begin{bmatrix}
\mathcal{A} & 0 \\
0 & \mathcal{S}
\end{bmatrix},
\]

where \(\mathcal{A} \approx [A_{Re} A_{Im}] \) and the Schur complement \(\mathcal{S} \approx -\frac{1}{2} [C_{Re} C_{Im}] [A_{Re} A_{Im}]^{-1} [B_{Re} B_{Im}] \).

The constraint preconditioners are based on the approximation

\[
\begin{bmatrix}
\mathcal{A} & \mathcal{B} \\
\bar{\mathcal{C}} & 0
\end{bmatrix},
\]

where \(\mathcal{B} \approx [B_{Re} B_{Im}] \) and \(\bar{\mathcal{C}} \approx -\frac{1}{2} [C_{Re} C_{Im}] \). Next, considering the truncation of the series in (A.3)–(A.8) to the very first term, we get

\[
\begin{bmatrix}
K_1 - \lambda_{Re,1} M_\sigma & \lambda_{Im,1} M_\sigma \\
-\lambda_{Im,1} M_\sigma & K_1 - \lambda_{Re,1} M_\sigma
\end{bmatrix}
\]

see left columns in (5.9)–(5.10) and (A.3)–(A.4),

\[
\begin{bmatrix}
-M_\sigma v_{Re,1} & M_\sigma v_{Im,1} \\
-M_\sigma v_{Im,1} & -M_\sigma v_{Re,1}
\end{bmatrix}
\]

see right columns in (5.9)–(5.10) and (A.5)–(A.6),

\[
\begin{bmatrix}
-v_{Re,1}^T & 0 \\
0 & -v_{Im,1}^T
\end{bmatrix}
\]

see (5.11)–(5.12) and (A.7)–(A.8).

The precise formulations are listed for the mean-based preconditioner as Algorithm 2 and for the constraint mean-based preconditioner as Algorithm 3. Finally, the constraint hierarchical Gauss-Seidel preconditioner is listed as Algorithm 4. It can be viewed as an extension of Algorithm 3, because the solves with stochastic Galerkin matrices (5.22) are used also in this preconditioner, but in addition the right-hand
consider two matrices \(Y \) and \(v \) vectors the latest approximations of the eigenvector mean coefficients represented by the application of the constraint mean-based preconditioner in order to incorporate \(X \). Specifically, for the initial step of the Newton iteration, and let us denote its application by \(X_n \) and \(t = 0 \) is available, e.g., as the LU decomposition. That is, we have the preconditioner \(\text{cMB} \):

\[
\begin{align*}
M_{\text{cMB}} & : (R^{\text{Re}}, R^{\text{Im}}, R^{\lambda \text{Re}}, R^{\lambda \text{Im}}) \rightarrow (\bar{V}^{\text{Re}}, \bar{V}^{\text{Im}}, \bar{V}^{\lambda \text{Re}}, \bar{V}^{\lambda \text{Im}})
\end{align*}
\]

Above

\[
M_{\text{cMB}} = \begin{bmatrix}
\bar{A} & 0_{2n_x \times 2n_x} \\
0_{2n_x \times 2n_x} & 0_{n_x \times 1} & 0_{n_x \times 1}
\end{bmatrix}
\begin{bmatrix}
-w^{(0)T}_{\text{Re}} \\
-w^{(0)T}_{\text{Im}}
\end{bmatrix}
\begin{bmatrix}
0_{2n_x \times 2} \\
0_{2n_x \times 2}
\end{bmatrix}
\begin{bmatrix}
\bar{A}^{-1} & 0_{2n_x \times 2} \\
0_{2n_x \times 2} & \bar{A}^{-1}
\end{bmatrix}
\begin{bmatrix}
M_{\sigma} w^{(0)}_{\text{Re}} \\
M_{\sigma} w^{(0)}_{\text{Im}}
\end{bmatrix}
\],

(5.19)

where \(w^{(0)}_{\text{Re}} \) and \(w^{(0)}_{\text{Im}} \) are the real and imaginary components of eigenvector \(w \) of the stencil \((K_1, M_\sigma)\) with corresponding eigenvalue \(\mu = \mu_{\text{Re}} + i\mu_{\text{Im}}, \) cf. (5.15), and

\[
\bar{A} = \begin{bmatrix}
K_1 - \epsilon_{\text{Re}} \mu_{\text{Re}} M_\sigma & \epsilon_{\text{Im}} \mu_{\text{Im}} M_\sigma \\
-\epsilon_{\text{Im}} \mu_{\text{Im}} M_\sigma & K_1 - \epsilon_{\text{Re}} \mu_{\text{Re}} M_\sigma
\end{bmatrix},
\]

(5.20)

with constants \(\epsilon_{\text{Re}}, \epsilon_{\text{Im}} \) further specified in the numerical experiments section.

5.2.1. Updating the constraint preconditioner.

It is also possible to update the application of the constraint mean-based preconditioner in order to incorporate the latest approximations of the eigenvector mean coefficients represented by the vectors \(w_{\text{Re}}^{(n)}, w_{\text{Im}}^{(n)} \) in (5.22). Suppose the inverse of the matrix \(M_{\text{cMB}} \) from (5.22) for \(n = 0 \) is available, e.g., as the LU decomposition. That is, we have the preconditioner for the initial step of the Newton iteration, and let us denote its application by \(X^{-1} \). Specifically, \(X^{-1} = U^{-1} L^{-1} \), where \(L \) and \(U \) are the factors of \(M_{\text{cMB}} \). Next, let us consider two matrices \(Y \) and \(Z \) such that

\[
YZ^T = \begin{bmatrix}
0_{2n_x \times 2n_x} & -M_\sigma \Delta w_{\text{Re}}^{(n)} & M_\sigma \Delta w_{\text{Im}}^{(n)} \\
-M_\sigma \Delta w_{\text{Re}}^{(n)} & 0_{n_x \times 1} & 0_{n_x \times 1} \\
-M_\sigma \Delta w_{\text{Im}}^{(n)} & 0_{n_x \times 1} & -M_\sigma \Delta w_{\text{Re}}^{(n)}
\end{bmatrix} + \begin{bmatrix}
0_{2 \times 2}
\end{bmatrix},
\]

(5.25)

where

\[
\Delta w^{(n)}_{\text{Re}} = w^{(n)}_{\text{Re}} - w^{(0)}_{\text{Re}}, \quad \Delta w^{(n)}_{\text{Im}} = w^{(n)}_{\text{Im}} - w^{(0)}_{\text{Im}}.
\]
we compute \(U \) available, e.g., in [20]. In implementation, using iteration, and the matrices \(Y \) and \(Z \), specifically, \(YZ^T \).

The preconditioner \(M \) is defined as

\[
M_{\text{cMB}} = \begin{bmatrix}
V^{\text{Re}}_{\text{Re}} \\
V^{\text{Im}}_{\text{Re}} \\
V^{\text{Re}}_{\text{Im}} \\
V^{\text{Im}}_{\text{Im}}
\end{bmatrix} = \begin{bmatrix}
\tilde{A} \\
-M_\sigma w^{(0)}_{\text{Re}} & M_\sigma w^{(0)}_{\text{Im}} \\
-M_\sigma w^{(0)}_{\text{Im}} & -M_\sigma w^{(0)}_{\text{Re}} \\
0_{n_x \times 1} & 0_{n_x \times 1}
\end{bmatrix},
\]

Above

\[
M_{\text{cMB}} = \begin{bmatrix}
\tilde{A} \\
-M_\sigma w^{(0)}_{\text{Re}} & M_\sigma w^{(0)}_{\text{Im}} \\
-M_\sigma w^{(0)}_{\text{Im}} & -M_\sigma w^{(0)}_{\text{Re}} \\
0_{n_x \times 1} & 0_{n_x \times 1}
\end{bmatrix},
\]

with \(u^{(0)}_{\text{Re}}, u^{(0)}_{\text{Im}} \) and \(\tilde{A} \) set as in Algorithm 2.

Specifically, \(YZ^T \) is the rank 4 update of the preconditioner at step \(n \) of Newton iteration, and the matrices \(Y \) and \(Z \) can be computed using a sparse SVD, which is available, e.g., in [20]. In implementation, using MATLAB notation with \(YZ^T = YZt \), we compute \([U, S, V] = \text{svds}(YZt, 4)\) and set \(Y = U \cdot S \) and \(Z^T = V \). Finally, a solve \(M_{\text{cMB}} v = u \) at step \(n \) of Newton iteration may be facilitated using the Sherman-Morrison-Woodbury formula see, e.g., [14], or [22, Section 3.8], as

\[
v = (X + YZ^T)^{-1} u = \left(X^{-1} - X^{-1} Y (I + Z^T X^{-1} Y)^{-1} Z^T X^{-1}\right) u.
\]

6. Bifurcation analysis of Navier–Stokes equations with stochastic viscosity. Here, we follow the setup from [30] and assume that the viscosity \(\nu \) is given by a stochastic expansion

\[
\nu(x, \xi) = \sum_{\ell=1}^{n_\nu} u_\ell(x) \psi_\ell(\xi),
\]

where \(\{\nu(x)\} \) is a set of given deterministic spatial functions. We note that there are several possible interpretations of such setup [24, 30]. Assuming fixed geometry, the stochastic viscosity is equivalent to Reynolds number being stochastic and, for example, to a scenario when the volume of fluid moving into a channel is uncertain. Consider the discretization of (2.3) by a div-stable mixed finite element method, and let the bases for the velocity and pressure spaces be denoted \(\{\phi_i\}_{i=1}^{n_\phi} \) and \(\{\varphi_j\}_{j=1}^{n_\varphi} \), respectively. We further assume that we have a discrete approximation of the steady-state solution of the stochastic counterpart of (2.3), given as

\[
\bar{u}(x, \xi) \approx \sum_{k=1}^{n_\ell} \sum_{i=1}^{n_\phi} u_{ik} \phi_i(x) \psi_k(\xi) = \sum_{k=1}^{n_\ell} \bar{u}_k(x) \psi_k(\xi),
\]

\[
p(x, \xi) \approx \sum_{k=1}^{n_\ell} \sum_{j=1}^{n_\varphi} p_{jk} \varphi_j(x) \psi_k(\xi) = \sum_{k=1}^{n_\ell} p_k(x) \psi_k(\xi).
\]

\(^3\)Techniques for computing these approximations were studied in [18, 30].
Algorithm 4 Constraint hierarchical Gauss-Seidel preconditioner (chGS)

The preconditioner $M_{\text{chGS}} : (R^{\Re I}_{\text{Re}}, R^{\Im I}_{\text{Im}}, R^{\Re I}_{\text{Re}}, R^{\Im I}_{\text{Im}}) \rightarrow (V^{\Re I}_{\text{Re}}, V^{\Im I}_{\text{Im}}, V^{\Re I}_{\text{Re}}, V^{\Im I}_{\text{Im}})$ is defined as follows.

1. Set the initial solution $(V^{\Re I}_{\text{Re}}, V^{\Im I}_{\text{Im}}, V^{\Re I}_{\text{Re}}, V^{\Im I}_{\text{Im}})$ to zero and update as:

$$
\mathcal{M}_{\text{chGB}} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} = \begin{pmatrix}
R^{\Re I}_{\text{Re}}
R^{\Im I}_{\text{Im}}
R^{\Re I}_{\text{Re}}
R^{\Im I}_{\text{Im}}
\end{pmatrix} - \mathcal{F}_1 \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix},
$$

(5.23)

where $\mathcal{M}_{\text{chGB}}$ is set as in Algorithm 3, and

$$
\mathcal{F}_1 \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} = \sum_{t \in I_1} \begin{pmatrix}
\mathcal{F}_A^I [h_{t,(2n_e)\ell}] \\
\mathcal{F}_B^I [h_{t,(2n_e)\ell}]
\end{pmatrix} - \begin{pmatrix}
\tau^{(n)}_{\text{Re},t} T V^{\Re I}_{\text{Re}} [h_{t,(2n_e)\ell}]
\tau^{(n)}_{\text{Im},t} T V^{\Im I}_{\text{Im}} [h_{t,(2n_e)\ell}]
\end{pmatrix},
$$

(5.24)

where

$$
\mathcal{E}_{d+1} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} = \sum_{t \in I_1} \begin{pmatrix}
\mathcal{E}_A^I [h_{t,(1n_e)\ell}] \\
\mathcal{E}_B^I [h_{t,(1n_e)\ell}]
\end{pmatrix} - \begin{pmatrix}
\tau^{(n)}_{\text{Re},t} T V^{\Re I}_{\text{Re}} [h_{t,(1n_e)\ell}]
\tau^{(n)}_{\text{Im},t} T V^{\Im I}_{\text{Im}} [h_{t,(1n_e)\ell}]
\end{pmatrix},
$$

$$
\mathcal{F}_{d+1} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} = \sum_{t \in I_1} \begin{pmatrix}
\mathcal{F}_A^I [h_{t,(1n_e)\ell}]
\mathcal{F}_B^I [h_{t,(1n_e)\ell}]
\end{pmatrix} - \begin{pmatrix}
\tau^{(n)}_{\text{Re},t} T V^{\Re I}_{\text{Re}} [h_{t,(1n_e)\ell}]
\tau^{(n)}_{\text{Im},t} T V^{\Im I}_{\text{Im}} [h_{t,(1n_e)\ell}]
\end{pmatrix},
$$

(5.25)

and $\tau^{(n)}_{\text{Re},t}$, $\tau^{(n)}_{\text{Im},t}$ the tth gPC coefficients of eigenvector $v^{(n)}$ at step n of Algorithm 1.

3. for $d = 1, \ldots, p - 1$
do

4. Set $\ell = (n_t + 1 : n_u)$, where $n_t = \frac{n_e + d - 1}{d - 1}$ and $n_u = \frac{n_e + d}{d}$.
5. Solve

$$
\mathcal{M}_{\text{chGB}} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} = \begin{pmatrix}
R^{\Re I}_{\text{Re}}
R^{\Im I}_{\text{Im}}
R^{\Re I}_{\text{Re}}
R^{\Im I}_{\text{Im}}
\end{pmatrix} - \mathcal{E}_{d+1} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} - \mathcal{F}_{d+1} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix},
$$

(5.24)

where

$$
\mathcal{E}_{d+1} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} = \sum_{t \in I_1} \begin{pmatrix}
\mathcal{E}_A^I [h_{t,(1n_e)\ell}]
\mathcal{E}_B^I [h_{t,(1n_e)\ell}]
\end{pmatrix} - \begin{pmatrix}
\tau^{(n)}_{\text{Re},t} T V^{\Re I}_{\text{Re}} [h_{t,(1n_e)\ell}]
\tau^{(n)}_{\text{Im},t} T V^{\Im I}_{\text{Im}} [h_{t,(1n_e)\ell}]
\end{pmatrix},
$$

$$
\mathcal{F}_{d+1} \begin{pmatrix}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
V^{\Re I}_{\text{Re}}
V^{\Im I}_{\text{Im}}
\end{pmatrix} = \sum_{t \in I_1} \begin{pmatrix}
\mathcal{F}_A^I [h_{t,(n_e+1)\ell}]
\mathcal{F}_B^I [h_{t,(n_e+1)\ell}]
\end{pmatrix} - \begin{pmatrix}
\tau^{(n)}_{\text{Re},t} T V^{\Re I}_{\text{Re}} [h_{t,(n_e+1)\ell}]
\tau^{(n)}_{\text{Im},t} T V^{\Im I}_{\text{Im}} [h_{t,(n_e+1)\ell}]
\end{pmatrix},
$$

(5.25)

and $\tau^{(n)}_{\text{Re},t}$, $\tau^{(n)}_{\text{Im},t}$ the tth gPC coefficients of eigenvector $v^{(n)}$ at step n of Algorithm 1.

6: end for
Algorithm 5 Constraint hierarchical Gauss-Seidel preconditioner (chGS), continued

7: Set \(\ell = (n_u + 1 : n_\xi) \).
8: Solve
\[
\mathcal{M}_{\text{emb}} \begin{pmatrix}
V^{\text{Re}}_{\ell} \\
V^{\text{Im}}_{\ell} \\
\hat{J}^{\text{Re}}_{\ell} \\
\hat{J}^{\text{Im}}_{\ell}
\end{pmatrix} = \begin{pmatrix}
R^{\text{Re}}_{\ell} \\
R^{\text{Im}}_{\ell} \\
F^{\text{Re}}_{\ell} \\
F^{\text{Im}}_{\ell}
\end{pmatrix} - \mathcal{E}_{p+1} \begin{pmatrix}
V^{\text{Re}}_{\ell} \\
V^{\text{Im}}_{\ell} \\
\hat{J}^{\text{Re}}_{\ell} \\
\hat{J}^{\text{Im}}_{\ell}
\end{pmatrix},
\]

where
\[
\mathcal{E}_{p+1} \begin{pmatrix}
V^{\text{Re}}_{\ell} \\
V^{\text{Im}}_{\ell} \\
\hat{J}^{\text{Re}}_{\ell} \\
\hat{J}^{\text{Im}}_{\ell}
\end{pmatrix} = \sum_{t \in \mathcal{T}_t} \begin{pmatrix}
\mathcal{E}^A_{p+1} [h_{t,(1:n_u)}(\ell)] \\
\mathcal{E}^B_{p+1} [h_{t,(1:n_u)}(\ell)] \\
-(v^{(n)}_{\text{Re},t})^T V^{\text{Re}}_{(1:n_u)} [h_{t,(1:n_u)}(\ell)] \\
-(v^{(n)}_{\text{Im},t})^T V^{\text{Im}}_{(1:n_u)} [h_{t,(1:n_u)}(\ell)]
\end{pmatrix},
\]

\[
\mathcal{E}^A_{p+1} = \left((K_t - \lambda^{(n)}_{\text{Re},t,M_\sigma}) V^{\text{Re}}_{(1:n_u)} - \lambda^{(n)}_{\text{Im},t,M_\sigma} V^{\text{Im}}_{(1:n_u)} - v^{(n)}_{\text{Re},t,M_\sigma} V^{\text{Re}}_{(1:n_u)} + v^{(n)}_{\text{Im},t,M_\sigma} V^{\text{Im}}_{(1:n_u)} \right),
\]
\[
\mathcal{E}^B_{p+1} = \left((K_t - \lambda^{(n)}_{\text{Re},t,M_\sigma}) V^{\text{Im}}_{(1:n_u)} - \lambda^{(n)}_{\text{Im},t,M_\sigma} V^{\text{Re}}_{(1:n_u)} - v^{(n)}_{\text{Re},t,M_\sigma} V^{\text{Im}}_{(1:n_u)} + v^{(n)}_{\text{Im},t,M_\sigma} V^{\text{Re}}_{(1:n_u)} \right).
\]

9: for \(d = p - 1, \ldots, 1 \) do
10: Set \(\ell = (n_\xi + 1 : n_u) \), where \(n_\xi = (n_\xi + d - 1) \) and \(n_u = (n_u + d) \).
11: Solve (5.24).
12: end for
13: Solve (5.23).

We are interested in a stochastic counterpart of the generalized eigenvalue problem (2.2), which we write as
\[
\mathcal{J}(\xi)v = \lambda M_\sigma v,
\]

where \(M_\sigma \) is the deterministic (shifted) mass matrix from (2.5), and \(\mathcal{J}(\xi) \) is the stochastic Jacobian matrix operator given by the stochastic expansion
\[
\mathcal{J}(\xi) = \sum_{\ell=1}^{\widehat{n}} \mathcal{J}_\ell \psi_\ell(\xi).
\]

The expansion is built from matrices \(\mathcal{J}_\ell \in \mathbb{R}^{n_x \times n_x}, \ell = 1, \ldots, \widehat{n} \), such that
\[
\mathcal{J}_1 = \begin{bmatrix} F_1 & B^T \\ B & 0 \end{bmatrix}, \quad \mathcal{J}_\ell = \begin{bmatrix} F_\ell & 0 \\ 0 & 0 \end{bmatrix}, \quad \ell = 2, \ldots, \widehat{n},
\]

where \(\widehat{n} = \max(n_\nu, n_\xi) \), and \(F_\ell \) is a sum of the vector-Laplacian matrix \(A_\ell \), the vector-convection matrix \(N_\ell \), and the Newton derivative matrix \(W_\ell \),
\[
F_\ell = A_\ell + N_\ell + W_\ell.
\]
where

\[A_\ell = [a_{\ell,ab}], \quad a_{\ell,ab} = \int_D \nu_\ell(x) \nabla \phi_b : \nabla \phi_a, \quad \ell = 1, \ldots, n_\nu, \]

\[N_\ell = [n_{\ell,ab}], \quad n_{\ell,ab} = \int_D (\vec{u}_\ell \cdot \nabla \phi_b) \cdot \phi_a, \quad \ell = 1, \ldots, n_\xi, \]

\[W_\ell = [w_{\ell,ab}], \quad w_{\ell,ab} = \int_D (\phi_b \cdot \nabla \vec{u}_\ell) \cdot \phi_a, \quad \ell = 1, \ldots, n_\xi, \]

and if \(n_\nu > n_\xi\), we set \(N_\ell = W_\ell = 0\) for \(\ell = n_\xi + 1, \ldots, n_\nu\), and if \(n_\nu < n_\xi\), we set \(A_\ell = 0\) for \(\ell = n_\nu + 1, \ldots, n_\xi\). In the numerical experiments, we use the stochastic Galerkin method from [30] to calculate the terms \(\vec{u}_\ell\) for the construction of the matrices \(N_\ell\).

The divergence matrix \(B\) is defined as

\[B = [b_{cd}], \quad b_{cd} = -\int_D \varphi_c (\nabla \cdot \phi_d), \]

and the velocity mass matrix \(G\) is defined as

\[G = [g_{ab}], \quad g_{ab} = \int_D \phi_b \phi_a. \]

7. Numerical experiments. We implemented the method in MATLAB using IFISS 3.5 package [7], and we tested the algorithms using two benchmark problems: flow around an obstacle and an expansion flow around a symmetric step. The stochastic Galerkin methods were used to solve both the Navier–Stokes problem (see [18, 30] for full description) and the eigenvalue problem (3.3), which was solved using the inexact Newton iteration from Section 5. The sampling methods (Monte Carlo and stochastic collocation) entail generating a set of sample viscosities from (6.1), and for each sample solving a deterministic steady-state Navier–Stokes equation followed by a solution of a deterministic eigenvalue problem (4.2) with a matrix operator corresponding to sampled Jacobian matrix operator (6.3), where the deterministic eigenvalue problems at sample points were solved using function \texttt{eigs} in MATLAB. For the solution of the Navier–Stokes equation, in both sampling and stochastic Galerkin methods, we used a hybrid strategy in which an initial approximation was obtained from solution of the stochastic Stokes problem, after which several steps of Picard iteration were used to improve the solution, followed by Newton iteration. A convergent iteration stopped when the Euclidean norm of the algebraic residual was smaller than \(10^{-8}\), see [30] for more details. Also, when replacing the mass matrix \(M\) by the shifted mass matrix \(M_\sigma\), see (2.4) and (2.5), we set \(\sigma = -10^{-2}\) as in [6]. The 300 eigenvalues with the largest real part of the deterministic eigenvalue problem with mean viscosity \(\nu_1\) for each of the two examples are displayed in Figure 7.1.

7.1. Flow around an obstacle. For the first example, we considered flow around an obstacle in a similar setup as studied in [30]. The domain of the channel and the discretization are shown in Figure 7.2. The spatial discretization used a stretched grid with 1008 \(Q_2 - Q_1\) finite elements. We note that these elements are referred to as \textit{Taylor-Hood} in the literature. There were 8416 velocity and 1096 pressure degrees of freedom. The viscosity \(\nu(x, \xi)\) was taken to be a truncated lognormal process transformed from the underlying Gaussian process [11]. That is, \(\psi_\ell(\xi), \ell = 1, \ldots, n_\nu,\) is a set of Hermite polynomials and, denoting the coefficients of the Karhunen-Loève
expansion of the Gaussian process by \(g_j(x) \) and \(\eta_j = \xi_j - g_j, \) \(j = 1, \ldots, m_\xi, \) the coefficients in expansion (6.1) were computed as

\[
\nu_\ell(x) = \frac{\mathbb{E}[\psi_\ell(\eta)]}{\mathbb{E}[\psi_0^2(\eta)]} \exp \left[g_0 + \frac{1}{2} \sum_{j=1}^{m_\xi} (g_j(x))^2 \right].
\]

The covariance function of the Gaussian field, for points \(X_1 = (x_1, y_1) \) and \(X_2 = (x_2, y_2) \) in \(D, \) was chosen to be

\[
C(X_1, X_2) = \sigma_g^2 \exp \left(-\frac{|x_2 - x_1|}{L_x} - \frac{|y_2 - y_1|}{L_y} \right), \quad (7.1)
\]

where \(L_x \) and \(L_y \) are the correlation lengths of the random variables \(\xi_i, \) \(i = 1, \ldots, m_\xi, \) in the \(x \) and \(y \) directions, respectively, and \(\sigma_g \) is the standard deviation of the Gaussian random field. The correlation lengths were set to be equal to 25% of the width and height of the domain. The coefficient of variation CoV of the lognormal field, defined as \(\text{CoV} = \sigma_\nu/\nu_1, \) where \(\sigma_\nu \) is the standard deviation and \(\nu_1 \) is the mean viscosity, was 1% or 10%. The viscosity (6.1) was parameterized using \(m_\xi = 2 \) random variables. According to [21], in order to guarantee a complete representation of the lognormal process by (6.1), the degree of polynomial expansion of \(\nu(x, \xi) \) should be twice the degree of the expansion of the solution. We followed the same strategy here. Therefore, the values of \(n_\xi \) and \(n_\nu \) are, cf., e.g. [12, p. 87] or [33, Section 5.2], \(n_\xi = \frac{(m_\xi+p)!}{m_\xi!p!}, \) \(n_\nu = \frac{(m_\xi+2p)!}{(2p)!}. \) For the gPC expansion of eigenvalues/eigenvectors (3.5), the maximal degree of gPC expansion is \(p = 3, \) so then \(n_\xi = 10 \) and \(n_\nu = 28. \) We used \(1 \times 10^3 \) samples for the Monte Carlo method and Smolyak sparse grid with Gauss-Hermite quadrature points and grid level 4 for collocation see, e.g., [17] for discussion of quadrature rules. With these settings, the size of \(\{H_\ell\}_{\ell=1}^{n_\nu} \) in (5.3) was \(10 \times 10 \times 28 \) with 203 nonzeros, and there were \(n_\eta = 29 \) points in the sparse grid. As a consequence, the size of the stochastic Galerkin matrices is \(n_\xi(n_u + n_p) = 95120, \) the matrix associated with the Jacobian is fully block dense and the mass matrix is block diagonal, but we note that these matrices are never formed in implementation. For the solution of the Navier–Stokes problem we used the hybrid strategy with 6 steps of Picard iteration followed by at most 15 steps of Newton iteration. We used mean
viscosity $\nu = 5.36193 \times 10^{-3}$, which corresponds to Reynolds number $Re = 373$, and the rightmost eigenvalue pair is $0.0085 \pm 2.2551i$, see the left panel in Figure 7.1. The Figure 7.3 displays Monte Carlo realizations of the 25 eigenvalues with the largest real part for the values $CoV = 1\%$ and $CoV = 10\%$. It can be seen that the rightmost eigenvalue is relatively less sensitive to perturbation comparing to the other eigenvalues, and since its real part is well separated from the rest of the spectrum, it can be easily identified in all runs of a sampling method. Figure 7.4 displays the probability density function (pdf) estimates of the rightmost eigenvalue with the positive imaginary part obtained directly by Monte Carlo, the stochastic collocation and stochastic Galerkin methods, for which the estimates were obtained using MATLAB function `ksdensity` (in 2D) for sampled gPC expansions. Figure 7.5 shows plots of the estimated pdf of the real part of the rightmost eigenvalue. In both figures we can see a good agreement of the plots in the left column corresponding to $CoV = 1\%$ and in the right column corresponding to $CoV = 10\%$. In Table 7.1 we tabulate the coefficients of the gPC expansion of the rightmost eigenvalue with positive imaginary part computed using the stochastic collocation and Galerkin methods. A good agreement of coefficients can be seen, in particular for coefficients with value much larger than zero, specifically with $k = 1, 2, 4, 6, 7$ and 9. Finally, in Table 7.2 we examine the inexact line-search Newton iteration from Algorithm 1. For the line-search method, we set $\rho = 0.9$ for the backtracking and $c = 0.25$. The initial guess is set using the rightmost eigenvalue and corresponding eigenvector of the eigenvalue problem (5.15) concatenated by zeros. The nonlinear iteration terminates when the norm of the residual $\|\hat{r}_n\|_2 < 10^{-10}$. The linear systems in Line 4 of Algorithm 1 are solved using GMRES with the mean-based preconditioner (Algorithm 2), constraint mean-based preconditioner (Algorithm 3) and its updated variant discussed in Section 5.2.1, and the constraint hierarchical Gauss-Seidel preconditioner (Algorithm 4–5), which was used without truncation of the matrix-vector multiplications and also with truncation, setting $p_t = 2$, as discussed in Section 5.2. For the mean-based preconditioner we used $\epsilon_{Re} = \epsilon_{Im} = 0.97$, which worked best in our experience, and $\epsilon_{Re} = \epsilon_{Im} = 1$ otherwise. For the constraint mean-based preconditioner the matrix M_{cMB} from (5.22) was factored using LU decomposition, and the updated variant from Section 5.2.1 was used also in the constraint hierarchical Gauss-Seidel preconditioner. First, we note that the performance of the algorithm with the mean-based preconditioner was very sensitive to the choice of ϵ_{Re} and ϵ_{Im}, and it can be seen that it is quite sensitive also to CoV. On the other hand, the performance of all variants of the constraint preconditioners appear to be far less sensitive, and we see only a mild increase in numbers of both nonlinear and GMRES iterations. Next, we see that updating the constraint mean-based preconditioner reduces the numbers of GMRES iterations in particular in the latter steps of the nonlinear method. Finally, we see that using the constraint hierarchical Gauss-Seidel preconditioner further decreases the number of GMRES iterations, for smaller CoV it may be suitable to truncate the matrix-vector multiplications without any change in iteration counts and even though we see with $CoV = 10\%$ an increase in number of nonlinear steps, the overall number of GMRES iterations remains smaller than when the two variants of the constraint mean-based preconditioner were used.

7.2. Expansion flow around a symmetric step.

For the second example, we considered an expansion flow around a symmetric step. The domain and its discretization are shown in Figure 7.6. The spatial discretization used a uniform grid with $976 \, Q_2-P_{-1}$ finite elements, which provided a stable discretization for the
rectangular grid, see [8, p. 139]. There were 8338 velocity and 2928 pressure degrees of freedom. For the viscosity we considered a random field with affine dependence on the random variables ξ given as

$$\nu(x, \xi) = \nu_1 + \sigma_\nu \sum_{\ell=2}^{n_\nu} \nu_\ell(x) \xi_{\ell-1},$$

(7.2)

where ν_1 is the mean and $\sigma_\nu = \text{CoV} \cdot \nu_1$ the standard deviation of the viscosity, $n_\nu = m_\nu + 1$, and $\nu_{\ell+1} = \sqrt{3} \lambda_\ell v_\ell(x)$ with $\{(\lambda_\ell, v_\ell(x))\}_{\ell=1}^{m_\xi}$ are the eigenpairs of the eigenvalue problem associated with the covariance kernel of the random field. As in the previous example, we used the values $\text{CoV} = 1\%$, and 10%. We considered the same form of the covariance kernel as in (7.1),

$$C(X_1, X_2) = \exp \left(-\frac{|x_2 - x_1|}{L_x} - \frac{|y_2 - y_1|}{L_y} \right),$$

and the correlation lengths were set to 12.5% of the width and 25% of the height of the domain. We assume that the random variables $\{\xi_\ell\}_{\ell=1}^{m_\xi}$ follow a uniform distribution over $(-1, 1)$. We note that (7.2) can be viewed as a special case of (6.1), which consists of only linear terms of ξ. For the parametrization of viscosity by (7.2) we used the same stochastic dimension m_ξ and degree of polynomial expansion p as in the previous example: $m_\xi = 2$ and $p = 3$, so then $n_\xi = 10$ and $n_\nu = m_\xi + 1 = 3$. We used 1×10^3 samples for the Monte Carlo method and Smolyak sparse grid with Gauss-Legendre quadrature points and grid level 4 for collocation. With these settings, the size of $\{H_\ell\}_{\ell=1}^{n_\nu}$ in (5.3) was $10 \times 10 \times 3$ with 34 nonzeros, and there were $n_q = 29$ points on the sparse grid. As a consequence, the size of the stochastic Galerkin matrices is
Fig. 7.4. Plots of the pdf estimate of the rightmost eigenvalue with positive imaginary part obtained using Monte Carlo (top), stochastic collocation (middle) and stochastic Galerkin method (bottom) for the flow around an obstacle with CoV = 1% (left) and CoV = 10% (right).

112660, and the matrix associated with the Jacobian has in this case a block-sparse structure see, e.g., [17, p. 88]. For the solution of the Navier–Stokes problem we used the hybrid strategy with 20 steps of Picard iteration followed by at most 20 steps of Newton iteration. We used mean viscosity $\nu_1 = 4.5455 \times 10^{-3}$, which corresponds to Reynolds number $Re = 220$, and the rightmost eigenvalue is 5.7963×10^{-4} (the second largest eigenvalue is -8.2273×10^{-2}), see the right panel in Figure 7.1. Figure 7.7 displays Monte Carlo realizations of the 25 eigenvalues with the largest real part. As in the previous example, it can be seen that the rightmost eigenvalue is relatively less sensitive to perturbation comparing to the other eigenvalues, and it can be easily
identified in all runs of a sampling method. Figure 7.8 displays the probability density function (pdf) estimates of the rightmost eigenvalue obtained directly by Monte Carlo, the stochastic collocation and stochastic Galerkin methods, for which the estimates were obtained using MATLAB function ksdensity for sampled gPC expansions. We can see a good agreement of the plots in the left column corresponding to CoV = 1\% and in the right column corresponding to CoV = 10\%. In Table 7.3 we tabulate the coefficients of the gPC expansion of the rightmost eigenvalue computed using the stochastic collocation and stochastic Galerkin methods. A good agreement of coefficients can be seen, in particular for coefficients with larger values. Finally, we examine the inexact line-search Newton iteration from Algorithm 1. For the line-search method, we used the same setup as before with \(\rho = 0.9 \) and \(c = 0.25 \). The initial guess is set using the rightmost eigenvalue and corresponding eigenvector of the eigenvalue problem (5.15), just with no imaginary part, concatenated by zeros. The nonlinear iteration terminates when the norm of the residual \(\| \hat{r}_n \|_2 < 10^{-10} \). The linear systems in Line 4 of Algorithm 1 are solved using right-preconditioned GMRES method as in the complex case. However, since the eigenvalue is real, the generalized eigenvalue problem as written in eq. (5.5) has the (usual) form given by eq. (3.3) and all algorithms formulated in this paper can be adapted by simply dropping the the components corresponding to the imaginary part of the eigenvalue problem: for example, the constraints mean-based preconditioner (Algorithm 3), and specifically (5.22) reduces to

\[
\mathcal{M}_{cMB} = \begin{bmatrix}
K_1 - \epsilon_{\Re} \mu_{\Re} M_{\sigma} & -M_{\sigma} w^{(0)}_{\Re} \\
-M_{\sigma} w^{(0)}_{\Re} & 0
\end{bmatrix},
\]

and in the mean-based preconditioner (Algorithm 2) we also modified (5.19) as

\[
\mathcal{M}_{cMB} = \begin{bmatrix}
K_1 - \epsilon_{\Re} \mu_{\Re} I & 0 \\
0 & w^{(0)}_{\Re} (K_1 - \epsilon_{\Re} \mu_{\Re} I)^{-1} w^{(0)}_{\Re}
\end{bmatrix},
\]

that is we used \(I \) instead of \(M_{\sigma} \) in the shift of the matrix \(K_1 \). We also adapted the constraint hierarchical Gauss-Seidel preconditioner (Algorithm 4–5), which was used as before without truncation of the matrix-vector multiplications and also with truncation, setting \(p_t = 2 \), as discussed in Section 5.2. For the mean-based preconditioner
we used $\epsilon_{Re} = 0.97$, but the preconditioner appeared to be far less sensitive to a specific value of ϵ_{Re}, and $\epsilon_{Re} = 1$ otherwise. We note that this way the algorithms are still formulated for a generalized nonsymmetric eigenvalue problem unlike in [19], where we studied symmetric problems and in implementation we used a Cholesky factorization of the mass matrix in order to formulate a standard eigenvalue problem. From the results in Table 7.4 we see that for all preconditioners the overall number of nonlinear steps and GMRES iterations increases for larger CoV, however all variants of the constraint preconditioner outperform the mean-based preconditioner the total number of iterations remains relatively small. Next, the performance with constraint preconditioners seem not improve with the updating discussed in Section 5.2.1, which is likely since the numbers of iterations are already low. Finally, using the constraint hierarchical Gauss-Seidel preconditioner reduces the number of GMRES iterations, which is slightly more significant for larger values of CoV. The computational cost of preconditioner may be reduced by using the truncation of the matrix-vector multiplications; specifically we see that the overall iteration counts with and without the truncation are the same.

8. Conclusion. We studied inexact stochastic Galerkin methods for linear stability analysis of dynamical systems with parametric uncertainty and a specific application: the Navier–Stokes equation with stochastic viscosity. The model leads to a generalized eigenvalue problem with a symmetric mass matrix and nonsymmetric stiffness matrix, which was given by an affine expansion obtained from a stochastic expansion of the viscosity. For the assessment of linear stability we were interested.
in characterizing the rightmost eigenvalue using the generalized polynomial chaos expansion. Since the eigenvalue of interest may be complex, we considered separated representation of the real and imaginary parts of the associated eigenpair. The algorithms for solving the eigenvalue problem were formulated on the basis of line-search Newton iteration, in which the associated linear systems were solved using right-preconditioned GMRES method. We proposed several preconditioners: the mean-based preconditioner, the constraint mean-based preconditioner, and the constraint hierarchical Gauss-Seidel preconditioner. For the two constraint preconditioners we also proposed an updated version, which adapts the preconditioners to the linear system using Sherman-Morrison-Woodbury formula after each step of Newton iteration. We studied two model problems: one when the rightmost eigenvalue is given by a complex conjugate pair and another when the eigenvalue is real. The overall iteration count of GMRES with the constraint preconditioners was smaller compared to the mean-based preconditioner, and the constraint preconditioners were also less sensitive to the value of CoV. Also we found that updating the constraint preconditioner after each step of Newton iteration and using the off-diagonal blocks in the action of the constraint hierarchical Gauss-Seidel preconditioner may further decrease the overall iteration count, in particular when the rightmost eigenvalue is complex. Finally, for both problems the probability density function estimates of the rightmost eigenvalue closely matched the estimates obtained using the stochastic collocation and also with the direct Monte Carlo simulation.

Acknowledgement. We would like to thank the anonymous reviewers for their insightful suggestions. Bedřich Sousedík would also like to thank Professors Pavel Burda, Howard Elman, Vladimír Janovský and Jaroslav Novotný for many discussions about bifurcation analysis and Navier–Stokes equations that inspired this work.

Appendix A. Computations in inexact Newton iteration.

The main component of a Krylov subspace method, such as GMRES, is the computation of a matrix-vector product. First, we note that the algorithms make use of the identity

\[(V \otimes W) \text{vec}(U) = \text{vec}(WUV^T).\]

(A.1)
Let us write a product with Jacobian matrix from (5.13) as

$$
\tilde{D}J(\tilde{v}^{(n)}_R, \tilde{v}^{(n)}_I, \tilde{\lambda}^{(n)}_R, \tilde{\lambda}^{(n)}_I) \begin{bmatrix}
\delta \tilde{v}^{(n)}_R \\
\delta \tilde{v}^{(n)}_I \\
\delta \tilde{\lambda}^{(n)}_R \\
\delta \tilde{\lambda}^{(n)}_I
\end{bmatrix},
$$

where

$$
\tilde{D}J(\tilde{v}^{(n)}_R, \tilde{v}^{(n)}_I, \tilde{\lambda}^{(n)}_R, \tilde{\lambda}^{(n)}_I) = \begin{bmatrix}
A_{\text{Re}} & A_{\text{Im}} & B_{\text{Re}} & B_{\text{Im}} \\
-\frac{1}{2}C_{\text{Re}} & -\frac{1}{2}C_{\text{Im}} & 0 & 0
\end{bmatrix}, \quad (A.2)
$$

with $A_{\text{Re}}, A_{\text{Im}}, B_{\text{Re}}, B_{\text{Im}}$ and $C_{\text{Re}}, C_{\text{Im}}$ denoting the matrices in (5.9)–(5.12). Then, using (5.17) and (A.1), the matrix-vector product entails evaluating

$$
A_{\text{Re}}\delta \tilde{v}^{(n)}_R = \begin{bmatrix}
E[\Psi \Psi^T \otimes K] - E[(\tilde{\lambda}^{(n)}_R)^T \Psi]\Psi^T \otimes M_{\sigma} \\
- E[(\tilde{\lambda}^{(n)}_I)^T \Psi]\Psi^T \otimes M_{\sigma}
\end{bmatrix} \delta \tilde{v}^{(n)}_R = \begin{bmatrix}
\text{vec} \left(\sum_{\ell=1}^{n_{\omega}} K_{\ell} \delta \tilde{V}_{\text{Re}} H_{\ell}^T \right) - \text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \lambda^{(n)}_{\text{Re},\ell} M_{\sigma} \delta \tilde{V}_{\text{Re}} H_{\ell}^T \right) \\
- \text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \lambda^{(n)}_{\text{Im},\ell} M_{\sigma} \delta \tilde{V}_{\text{Re}} H_{\ell}^T \right)
\end{bmatrix}, \quad (A.3)
$$

$$
A_{\text{Im}}\delta \tilde{v}^{(n)}_I = \begin{bmatrix}
E[\Psi \Psi^T \otimes M_{\sigma}] \\
E[\Psi \Psi^T \otimes K] - E[(\tilde{\lambda}^{(n)}_I)^T \Psi]\Psi^T \otimes M_{\sigma}
\end{bmatrix} \delta \tilde{v}^{(n)}_I = \begin{bmatrix}
\text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \lambda^{(n)}_{\text{Im},\ell} M_{\sigma} \delta \tilde{V}_{\text{Re}} H_{\ell}^T \right) \\
\text{vec} \left(\sum_{\ell=1}^{n_{\omega}} K_{\ell} \delta \tilde{V}_{\text{Re}} H_{\ell}^T \right) - \text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \lambda^{(n)}_{\text{Re},\ell} M_{\sigma} \delta \tilde{V}_{\text{Re}} H_{\ell}^T \right)
\end{bmatrix}, \quad (A.4)
$$

$$
B_{\text{Re}}\delta \tilde{\lambda}^{(n)}_R = \begin{bmatrix}
- E[\Psi^T \otimes (\Psi \Psi^T \otimes M_{\sigma})]\tilde{v}^{(n)}_R \\
- E[\Psi^T \otimes (\Psi \Psi^T \otimes M_{\sigma})]\tilde{v}^{(n)}_I
\end{bmatrix} \delta \tilde{\lambda}^{(n)}_R = \begin{bmatrix}
- \text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \delta \lambda_{\text{Re},\ell} M_{\sigma} \tilde{V}_{\text{Re}}^{(n)} H_{\ell}^T \right) \\
- \text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \delta \lambda_{\text{Re},\ell} M_{\sigma} \tilde{V}_{\text{Im}}^{(n)} H_{\ell}^T \right)
\end{bmatrix}, \quad (A.5)
$$

$$
B_{\text{Im}}\delta \tilde{\lambda}^{(n)}_I = \begin{bmatrix}
E[\Psi^T \otimes (\Psi \Psi^T \otimes M_{\sigma})]\tilde{v}^{(n)}_I \\
E[\Psi^T \otimes (\Psi \Psi^T \otimes M_{\sigma})]\tilde{v}^{(n)}_R
\end{bmatrix} \delta \tilde{\lambda}^{(n)}_I = \begin{bmatrix}
\text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \delta \lambda_{\text{Im},\ell} M_{\sigma} \tilde{V}_{\text{Im}}^{(n)} H_{\ell}^T \right) \\
- \text{vec} \left(\sum_{\ell=1}^{n_{\sigma}} \delta \lambda_{\text{Im},\ell} M_{\sigma} \tilde{V}_{\text{Re}}^{(n)} H_{\ell}^T \right)
\end{bmatrix}, \quad (A.6)
$$
and the right-hand side of (5.13) is evaluated using

\[
-\frac{1}{2} C_{\text{Re}} \delta \tilde{v}_{\text{Re}} = - \begin{bmatrix}
 \mathbb{E} [\psi^T (\tilde{v}_{\text{Re}}^{(n)T} \psi \psi^T \otimes I_{n_x})]
 \\
 0
\end{bmatrix} \delta \tilde{v}_{\text{Re}} = - \begin{bmatrix}
 \tilde{v}_{\text{Re}}^{(n)T} (H_1 \otimes I_{n_x}) \delta \tilde{v}_{\text{Re}} \\
 \vdots \\
 \tilde{v}_{\text{Re}}^{(n)T} (H_{n_\epsilon} \otimes I_{n_x}) \delta \tilde{v}_{\text{Re}} \\
 0
\end{bmatrix},
\]

(A.7)

\[
-\frac{1}{2} C_{\text{Im}} \delta \tilde{v}_{\text{Im}} = - \begin{bmatrix}
 0 \\
 \mathbb{E} [\psi^T (\tilde{v}_{\text{Im}}^{(n)T} \psi \psi^T \otimes I_{n_x})]
\end{bmatrix} \delta \tilde{v}_{\text{Im}} = - \begin{bmatrix}
 0 \\
 \tilde{v}_{\text{Im}}^{(n)T} (H_1 \otimes I_{n_x}) \delta \tilde{v}_{\text{Im}} \\
 \vdots \\
 \tilde{v}_{\text{Im}}^{(n)T} (H_{n_\epsilon} \otimes I_{n_x}) \delta \tilde{v}_{\text{Im}}
\end{bmatrix},
\]

(A.8)

and the right-hand side of (5.13) is evaluated using

\[
F^{(n)} = \left[\mathbb{E} [\psi^T \otimes (\tilde{v}_{\text{Re}}^{(n)T} \psi) \psi^T \otimes I_{n_x}] \right] \tilde{v}_{\text{Re}}^{(n)} - \left[\mathbb{E} [\tilde{v}_{\text{Re}}^{(n)T} \psi \psi^T \otimes I_{n_x}] \right] \tilde{v}_{\text{Re}}^{(n)} + \mathbb{E} [(\tilde{v}_{\text{Re}}^{(n)T} \psi \psi^T \otimes M_\sigma) \tilde{v}_{\text{Re}}^{(n)}] =
\left[\mathbb{E} [\psi^T \otimes (\tilde{v}_{\text{Im}}^{(n)T} \psi) \psi^T \otimes I_{n_x}] \right] \tilde{v}_{\text{Im}}^{(n)} - \left[\mathbb{E} [\tilde{v}_{\text{Im}}^{(n)T} \psi \psi^T \otimes I_{n_x}] \right] \tilde{v}_{\text{Im}}^{(n)} + \mathbb{E} [(\tilde{v}_{\text{Im}}^{(n)T} \psi \psi^T \otimes M_\sigma) \tilde{v}_{\text{Im}}^{(n)}]
\]

\[
= \begin{bmatrix}
 \text{vec} \left(\sum_{i=1}^{n_\epsilon} K_i \delta \tilde{v}_{\text{Re}}^{(n)T} H_i \right) - \text{vec} \left(\sum_{i=1}^{n_\epsilon} \lambda^{(n)}_{\text{Re},i} M_\sigma \tilde{v}_{\text{Re}}^{(n)T} H_i \right) + \text{vec} \left(\sum_{i=1}^{n_\epsilon} \lambda^{(n)}_{\text{Im},i} M_\sigma \tilde{v}_{\text{Im}}^{(n)T} H_i \right)
 \\
 \text{vec} \left(\sum_{i=1}^{n_\epsilon} K_i \delta \tilde{v}_{\text{Im}}^{(n)T} H_i \right) - \text{vec} \left(\sum_{i=1}^{n_\epsilon} \lambda^{(n)}_{\text{Im},i} M_\sigma \tilde{v}_{\text{Im}}^{(n)T} H_i \right) - \text{vec} \left(\sum_{i=1}^{n_\epsilon} \lambda^{(n)}_{\text{Re},i} M_\sigma \tilde{v}_{\text{Re}}^{(n)T} H_i \right)
\end{bmatrix},
\]

and

\[
G^{(n)} = \left[\mathbb{E} [\psi^T \otimes ((\tilde{v}_{\text{Re}}^{(n)T} (\psi \psi^T \otimes I_{n_x}) \tilde{v}_{\text{Re}}^{(n)}) - 1)] \right]
\]

\[
= \left[\mathbb{E} [\psi^T \otimes ((\tilde{v}_{\text{Im}}^{(n)T} (\psi \psi^T \otimes I_{n_x}) \tilde{v}_{\text{Im}}^{(n)}) - 1)] \right],
\]

where, using \star for either Re or Im, the ith row of $G^{(n)}$ is

\[
\left[G^{(n)} \right]_i = \mathbb{E} [\psi_i (\tilde{v}_{\star}^{(n)T} (\psi \psi^T \otimes I_{n_x}) \tilde{v}_{\star}^{(n)}) - \psi_i],
\]

\[
= \tilde{v}_{\star}^{(n)T} \mathbb{E} [\psi_i \psi^T \otimes I_{n_x}] \tilde{v}_{\star}^{(n)} - \delta_{i1},
\]

and the first term above is evaluated as

\[
\tilde{v}_{\star}^{(n)T} \mathbb{E} [\psi_i \psi^T \otimes I_{n_x}] \tilde{v}_{\star}^{(n)} = \tilde{v}_{\star}^{(n)T} (H_i \otimes I_{n_x}) \tilde{v}_{\star}^{(n)},
\]

or, denoting the trace operator by tr, this term can be also evaluated as

\[
\tilde{v}_{\star}^{(n)T} \mathbb{E} [\psi_i \psi^T \otimes I_{n_x}] \tilde{v}_{\star}^{(n)} = \text{tr}(\tilde{v}_{\star}^{(n)} H_i \tilde{v}_{\star}^{(n)T}) = \text{tr}(\tilde{V}_{\star}^{(n)T} \tilde{V}_{\star}^{(n)H_i}).
\]

Appendix B. Parameters used in numerical experiments.

In addition to the description in Section 7, we provide in Table B.1 an overview of the main parameters used in the numerical experiments. Besides that, we used the following settings in both experiments. The gPC parameters: $m_\epsilon = 2, p = 3, n_\epsilon = 10$; for the sampling methods: $n_{MC} = 1 \times 10^3, n_q = 29$; for the inexact Newton iteration: $p = 0.9, c = 0.25$, stopping criterion $\|r_n\|_2 < 10^{-10}$; for the preconditioners: $\epsilon_{\text{Re}} = \epsilon_{\text{Im}} = 0.97$ (the mean-based preconditioner) and $\epsilon_{\text{Re}} = \epsilon_{\text{Im}} = 1$ (otherwise).
The 10 coefficients of the gPC expansion of the rightmost eigenvalue with positive complex part for the flow around an obstacle problem with CoV = 1% and 10% computed using stochastic collocation (SC), and stochastic Galerkin method (SG). Here d is the polynomial degree and k is the index of basis function in expansion (3.5).

d	k	SC	SG
0		8.5726E-03 + 2.2551E+00i	8.5726E-03 + 2.2551E+00i
1	2	-6.5686E-03 - 2.2643E-03i	-6.5686E-03 - 2.2643E-03i
1	3	1.1181E-16 - 2.0817E-14i	2.6512E-17 + 8.3094E-17i
2	4	-1.1802E-06 - 2.4274E-05i	-1.2055E-06 - 2.4200E-05i
2	5	3.8351E-15 - 4.9645E-15i	8.9732E-20 - 2.0565E-19i
2	6	-3.3393E-06 + 4.0603E-05i	-3.3527E-06 + 4.0641E-05i
3	7	-1.0635E-07 + 4.1735E-07i	-8.5671E-08 + 3.5926E-07i
3	8	7.8055E-16 + 6.1617E-15i	-4.3191E-22 - 8.3970E-21i
3	9	-4.6791E-07 + 4.1735E-07i	-4.4762E-07 + 3.5926E-07i
3	10	2.2155E-15 + 4.0907E-15i	1.2691E-15 + 2.9181E-16i
CoV = 10%			
0		1.3420E-02 + 2.2577E+00i	1.3419E-02 + 2.2576E+00i
1	2	-6.6200E-02 - 2.2034E-02i	-6.6243E-02 - 2.2018E-02i
1	3	1.6011E-15 - 1.0297E-14i	1.1672E-15 + 8.8396E-16i
2	4	-2.2415E-04 - 2.5416E-03i	-1.0889E-04 - 2.4178E-03i
2	5	8.5809E-17 - 1.0547E-15i	1.1865E-17 + 6.5559E-17i
2	6	-2.7323E-04 + 4.1219E-03i	-2.1977E-04 + 4.1437E-03i
3	7	-4.8106E-05 + 3.5560E-04i	1.3510E-04 + 9.1486E-05i
3	8	2.8365E-15 + 6.1062E-15i	8.0683E-19 + 5.3753E-18i
3	9	-4.5696E-04 + 2.7795E-06i	-4.1149E-04 + 1.8160E-04i
3	10	1.7408E-15 + 1.3101E-14i	1.3975E-15 + 3.5152E-16i

The number of GMRES iterations in each step of inexact line-search Newton method (Algorithm 1) for computing the rightmost eigenvalue and corresponding eigenvectors of the flow around an obstacle problem with CoV = 1% (left) and 10% (right) and with the stopping criteria \(\| \mathbf{r}_n \|_2 < 10^{-10} \) and different choices of preconditioners: mean-based (MB) from Algorithm 2, constraint mean-based (cMB) from Algorithm 3 and its updated variant (cMB_u) from Section 5.2.1, and the constraint hierarchical Gauss-Seidel preconditioner (chGS) from Algorithm 4–5 and also with truncation, setting \(p_t = 2 \) (chGS_2).

step	MB	cMB	cMB_u	chGS	chGS_2	MB	cMB	cMB_u	chGS	chGS_2
1	2	1	1	1	1	7	1	1	1	1
2	2	1	1	1	1	6	3	2	3	3
3	6	3	2	1	1	13	4	4	3	4
4	9	6	3	2	2	10	8	7	3	4
5	15	10	6	3	3	15	16	13	4	5
6	7									
7	8									
9	9									
Table 7.3
The 10 coefficients of the gPC expansion of the rightmost eigenvalue for the expansion flow around a symmetric step problem with CoV = 1% and 10% computed using stochastic collocation (SC), and stochastic Galerkin method (SG). Here d is the polynomial degree and k is the index of basis function in expansion (3.5).

	SC	SG	SC	SG
	CoV = 1%	CoV = 10%	CoV = 1%	CoV = 10%
0	1.5894E-04	1.5894E-04	1.5890E-03	1.5877E-03
1	2.3689E-04	2.3689E-04	2.3619E-03	2.3605E-03
2	-2.4179E-07	-2.4179E-07	-2.4472E-05	-2.6501E-05
3	-8.2562E-07	-8.2562E-07	-8.3136E-05	-8.8911E-05
4	-5.6059E-07	-5.6059E-07	-5.6429E-05	-5.9831E-05
5	-5.9203E-07	-5.9203E-07	-5.9831E-05	-5.9831E-05
6	7.918E-10	7.918E-10	5.7810E-07	8.5057E-07
7	-2.5941E-09	-2.5941E-09	2.8439E-06	4.022E-06
8	3.8788E-09	3.8788E-09	4.0315E-06	5.6217E-06
9	1.3002E-09	1.3002E-09	1.6668E-06	2.3171E-06
10	2.2685E-09	2.2685E-09	1.6668E-06	2.3171E-06

Table 7.4
The number of GMRES iterations in each step of inexact line-search Newton method (Algorithm 1) for computing the rightmost eigenvalue and corresponding eigenvectors of the expansion flow around a symmetric step problem with CoV = 1% (left) and 10% (right) and with the stopping criteria $\|r_n\|_2 < 10^{-10}$ and different choices of preconditioners: mean-based (MB) from Algorithm 2, constraint mean-based (cMB) from Algorithm 3 and its updated variant (cMBu) from Section 5.2.1, and the constraint hierarchical Gauss-Seidel preconditioner (chGS) from Algorithm 4–5 and also with truncation, setting $p_t = 2$ (chGS2).

step	MB	cMB	cMB	chGS	chGS	MB	cMB	cMB	chGS	chGS
1	19	4	4	2	2	23	6	6	3	3
2	17	4	4	3	3	20	6	6	4	4
3	15	3	3	3	3	19	6	6	4	4
4	15	5	5	4	4	15	5	5	3	3
5	14	5	5	3	3	14	5	5	3	3
6	23	8	8	5	5	23	8	8	5	5

Table B.1
The main parameters used in the numerical experiments.

problem	Section 7.1	Section 7.2
FEM	Flow around an obstacle	Expansion flow around a symmetric step
nelem/nu/n_p	Q_2 - Q_1	Q_2 - P_1
Re	1008/8416/1096	976/8338/2928
λ	373	220
nu	0.0085 ± 2.551i	5.7963 × 10^{-4}
quadrature (in SC)	Gauss-Hermite	Gauss-Legendre
max Picard steps	6	20
max Newton steps	15	20
nltol	10^{-8}	10^{-8}
REFERENCES

[1] R. Andreev and C. Schwab. Sparse tensor approximation of parametric eigenvalue problems. In Numerical Analysis of Multiscale Problems, volume 83 of Lecture Notes in Computational Science and Engineering, pages 203–241, Berlin, Heidelberg, 2012. Springer.

[2] Alex Bespalov, Daniel Loghin, and Rawin Youngnoi. Truncation preconditioners for stochastic galerkin finite element discretizations. SIAM Journal on Scientific Computing, pages S92–S116, 2021. (to appear).

[3] K. A. Cliffe, T. J. Garratt, and A. Spence. Eigenvalues of block matrices arising from problems in fluid mechanics. SIAM Journal on Matrix Analysis and Applications, 15(4):1310–1318, 1994.

[4] K. A. Cliffe, A. Spence, and S. J. Taverner. The numerical analysis of bifurcation problems with application to fluid mechanics. Acta Numerica, 9:39–131, 2000.

[5] H. Elman and D. Silvester. Collocation methods for exploring perturbations in linear stability analysis. SIAM Journal on Scientific Computing, 40(4):A2667–A2693, 2018.

[6] H. C. Elman, K. Meerbergen, A. Spence, and M. Wu. Lyapunov inverse iteration for identifying Hopf bifurcations in models of incompressible flow. SIAM Journal on Scientific Computing, 34(3):A1584–A1606, 2012.

[7] H. C. Elman, A. Ramage, and D. J. Silvester. IFISS: A computational laboratory for investigating incompressible flow problems. SIAM Review, 56:261–273, 2014.

[8] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, second edition, 2014.

[9] H. C. Elman and T. Su. Low-rank solution methods for stochastic eigenvalue problems. SIAM Journal on Scientific Computing, 41(4):A2657–A2680, 2019.

[10] Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, and Elisabeth Ullmann. On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2):317–339, 2012.

[11] R. G. Ghanem. The nonlinear Gaussian spectrum of log-normal stochastic processes and variables. Journal of Applied Mechanics, 66(4):964–973, 1999.

[12] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag New York, Inc., New York, NY, USA, 1991. (Revised edition by Dover Publications, 2003).

[13] W. Govaerts. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia, 2000.

[14] W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221–239, 1989.

[15] H. Hakula and M. Laaksonen. Multiparametric shell eigenvalue problems. Computer Methods in Applied Mechanics and Engineering, 343:721–745, 2019.

[16] W. Kenner. Large-scale complex eigenvalue problems. Journal of Computational Physics, 85(1):1–85, 1989.

[17] O. Le Maître and O. M. Knio. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation. Springer, New York, 2010.

[18] K. Lee, H. C. Elman, and B. Sousedík. A low-rank solver for the Navier-Stokes equations with uncertain viscosity. SIAM/ASA Journal on Uncertainty Quantification, 7(4):1275–1300, 2019.

[19] K. Lee and B. Sousedík. Inexact methods for symmetric stochastic eigenvalue problems. SIAM/ASA Journal on Uncertainty Quantification, 6(4):1744–1776, 2018.

[20] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.10.0.1684407 (R2021a Update 3, 2021.

[21] H. G. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 194(12–16):1295–1331, 2005.

[22] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, first edition, 1999.

[24] C. E. Powell and D. J. Silvester. Preconditioning steady-state Navier-Stokes equations with random data. SIAM Journal on Scientific Computing, 34(5):A2482–A2506, 2012.

[25] E. Sarrouy, O. Dessombz, and J.-J. Sinou. Stochastic analysis of the eigenvalue problem for mechanical systems using polynomial chaos expansion—application to a finite element rotor. Journal of Vibration and Acoustics, 134(5):1–12, 2012.

[26] E. Sarrouy, O. Dessombz, and J.-J. Sinou. Piecewise polynomial chaos expansion with an application to brake squeal of a linear brake system. Journal of Sound and Vibration,
[27] P. J. Schmid and D. S. Henningson. *Stability and Transition in Shear Flows*. Springer, New York, 2001.

[28] Benjamin E. Sonday, Robert D. Berry, Habib N. Najm, and Bert J. Debusschere. Eigenvalues of the Jacobian of a Galerkin-projected uncertain ode system. *SIAM Journal on Scientific Computing*, 33(3):1212–1233, 2011.

[29] B. Sousédík and H. C. Elman. Inverse subspace iteration for spectral stochastic finite element methods. *SIAM/ASA Journal on Uncertainty Quantification*, 4(1):163–189, 2016.

[30] B. Sousédík and H. C. Elman. Stochastic Galerkin methods for the steady-state Navier-Stokes equations. *Journal of Computational Physics*, 316:435–452, 2016.

[31] B. Sousédík, H. C. Elman, K. Lee, and R. Price. On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity. *Applications of Mathematics*, 2022. (Accepted.) Preprint available at arXiv:2103.00622.

[32] B. Sousédík and R. G. Ghanem. Truncated hierarchical preconditioning for the stochastic Galerkin FEM. *International Journal for Uncertainty Quantification*, 4(4):333–348, 2014.

[33] D. Xiu. *Numerical Methods for Stochastic Computations: A Spectral Method Approach*. Princeton University Press, 2010.

[34] D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations. *SIAM Journal on Scientific Computing*, 24(2):619–644, 2002.