Supporting Information for

On the diastereoselectivity of the addition of propargylic magnesium reagents to fluorinated aromatic sulfinyl imines

Alberto Llobat, Jorge Escorihuela, Santos Fustero and Mercedes Medio-Simón*

Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.

Email: Mercedes.Medio@uv.es
Table of Contents.

I. General methods. ... S3
II. General procedure for the condensation of N-tert-butanesulfinyl aldmines 1. S3
III. General procedure for the diastereoselective propargylation of sulfinyl imines. S5
IV. General procedure for the propargylation reaction in DCM. S9
V. X-ray structure of compound 3b. .. S14
VI. X-ray structure of compound 3'b. ... S20
VII. Computational methods. .. S26
VIII. Natural bond orbital (NBO) analysis of charges of the different atoms in sulfinyl imines. S26
IX. Cartesian coordinates of optimized structures. S33
X. References. .. S47
XI. ¹H, ¹³C and ¹⁹F NMR spectra of new compounds. S48
I. General Methods.

Reactions were carried out under nitrogen atmosphere unless otherwise indicated. As a heat source oil baths were used. CH$_2$Cl$_2$ (DCM) was used without further purification. The reactions were monitored with the aid of TLC on 0.25 mm pre-coated silica-gel plates. Visualization was carried out with UV light and aqueous ceric ammonium molybdate solution or potassium permanganate stain. Flash column chromatography was performed with the indicated solvents on silica gel 60 (particle size: 0.040–0.063 mm). 1H, 13C and 19F NMR spectra were recorded on a 300 MHz Bruker Avance III 300 spectrometer. Chemical shifts are given in ppm (δ), referenced to the residual proton resonances of the solvents. Coupling constants (J) are given in Hertz (Hz). The letters m, s, d, t, and q stand for multiplet, singlet, doublet, triplet, and quartet, respectively. The letters br indicate that the signal is broad. DEPT experiments were performed to assign CH, CH$_2$ and CH$_3$. A QTOF mass analyzer system has been used for HRMS measurements. Melting points were measured on a Büchi B–540 apparatus and are uncorrected. Optical rotations were measured on a Jasco P–1020 polarimeter at 25 °C.

II. General procedure for the condensation of N-tert-butanesulfinyl aldimines 1.

![Reaction scheme]

The corresponding aldehyde (5 mmol) was dissolved in DCM (0.1 M) at room temperature in a round-bottomed flask. Titanium tetroxide (IV) (20 mmol) and (R)-tert-butylsulfinamide (6 mmol) were added and the mixture was stirred at room temperature overnight. Once the reaction was complete (TLC analysis), an aqueous saturated solution of NaHCO$_3$ was added and the mixture was filtered on Celyte® in order to remove the titanium salts. Finally, the filtered organic phase is dried over anhydrous Na$_2$SO$_4$, concentrated under reduced pressure and the crude mixture was purified by column chromatography using deactivated silica gel (n-hexane:EtOAc).
(R,E)-2-Methyl-N-((perfluorophenyl)methylene)propane-2-sulfinamide (1a). According to general procedure from 1.00 g (5.1 mmol) of 2,3,4,5,6-pentafluorobenzaldehyde, compound 1a was obtained as a yellow solid after column chromatography on silica gel using n-hexane:EtOAc (4:1) as eluent (1.28 g, 84% yield). Mp: 96–98 °C; [α]^{25}_D = -55.1 (c 1.0, CHCl₃); \(^1\)H NMR (300 MHz, CDCl₃): δ (ppm) 8.71 (s, 1H), 1.27 (s, 9H); \(^{19}\)F NMR (282 MHz, CDCl₃): δ (ppm) -139.90 – -140.05 (m, 2F), -147.20 – -147.38 (m, 1F), -160.75 – -160.96 (m, 2F); \(^{13}\)C \(^1\)H NMR (75 MHz, CDCl₃): δ (ppm) 151.2, 148.1 – 144.3 (m, 2C – F), 145.3 – 141.5 (m, 1C – F), 139.8 – 135.9 (m, 2C – F), 109.7 – 109.4 (m, 1C), 58.5, 22.5. HRMS (ESI) m/z: [M + H\(^+\)] Calcd for C₁₁H₁₁F₅NOS 300.0403; Found 300.0409.

(R,E)-2-Methyl-N-(2,3,5,6-tetrafluorobenzylidene)propane-2-sulfinamide (1b). According to general procedure from 500 mg (2.81 mmol) of 2,3,5,6-tetrafluorobenzaldehyde, compound 1b was obtained as a white solid after column chromatography on silica gel using n-hexane:EtOAc (4:1) as eluent (636 mg, 80% yield). Mp: 74–76 °C; [α]^{25}_D = -50.6 (c 1.0, CHCl₃); \(^1\)H NMR (300 MHz, CDCl₃): δ (ppm) 8.69 (s, 1H), 7.24 – 7.13 (m, 1H), 1.20 (s, 9H); \(^{19}\)F NMR (282 MHz, CDCl₃): δ (ppm) -138.03 – -138.17 (m, 2F), -141.02 – -141.16 (m, 2F); \(^{13}\)C \(^1\)H NMR (75 MHz, CDCl₃): δ (ppm) 151.9, 147.9 – 144.19 (m, 2C – F), 147.3 – 143.7 (m, 2C – F), 114.4 (t, \(J = 10.8 \) Hz), 109.1 (t, \(J = 22.6 \) Hz), 58.4, 22.4. HRMS (ESI) m/z: [M + H\(^+\)] Calcd for C₁₁H₁₂F₄NOS 282.0579; Found 282.0570.

(R,E)-2-Methyl-N-(2,4,6-trifluorobenzylidene)propane-2-sulfinamide (1c). According to general procedure, from 500 mg (3.12 mmol) of 2,4,6-trifluorobenzaldehyde, compound 1c was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (4:1) as eluent (612 mg, 72% yield); [α]^{25}_D = -64.2 (c 1.0, CHCl₃); \(^1\)H NMR (300 MHz, CDCl₃): δ (ppm) 8.68 (s, 1H), 6.76 – 6.68 (m, 2H), 1.22 (s, 9H); \(^{19}\)F NMR (282 MHz, CDCl₃): δ (ppm) -99.93 (t, \(J = 9.7 \) Hz, 1F), -106.89 (d, \(J = 9.7 \) Hz, 2F); \(^{13}\)C \(^1\)H NMR (75 MHz, CDCl₃): δ (ppm) 164.8 (dt, \(^3\)J\(_{CF} = 257.0 \) Hz, \(^3\)J\(_{CF} = 15.8 \) Hz), 162.7 (ddd, \(^3\)J\(_{CF} = 257.0 \) Hz, \(^3\)J\(_{CF} = 15.8 \) Hz, \(J = 8.5 \) Hz), 152.3, 101.3 (td, \(J = 25.7, 3.9 \) Hz), 58.0, 22.5. HRMS (ESI): m/z Calcd for C₁₁H₁₃F₃NOS [M+H\(^+\)]: 264.0661; Found 264.0664.
(R,E)-N-(2,6-Difluorobenzylidene)-2-methylpropane-2-sulfinamide (1d). According to general procedure, from 500 mg (3.52 mmol) of 2,6-difluorobenzaldehyde, compound 1d was obtained as a white solid after column chromatography on silica gel using n-hexane:EtOAc (4:1) as eluent (783 mg, 91% yield). Mp: 49–51 °C; [α]25o = −61.7 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3): δ (ppm) 8.77 (s, 1H), 7.45–7.35 (m, 1H), 6.98–6.91 (m, 2H), 1.23 (s, 9H); 19F NMR (282 MHz, CDCl3): δ (ppm) -110.72 (s, 2F); 13C {1H} NMR (75 MHz, CDCl3): δ (ppm) 163.8 (d, JCF = 5.8 Hz), 160.3 (d, JCF = 5.8 Hz), 153.3, 133.7 (t, J = 11.0 Hz), 112.2 (d, J = 25.2 Hz), 58.0, 22.5. HRMS (ESI) m/z: [M + H]+ Calcd for C11H14F2NOS 246.0759; Found 246.0758.

(R,E)-N-(2-Fluorobenzylidene)-2-methylpropane-2-sulfinamide (1e). According to general procedure, from 500 mg (4.03 mmol) of 2-fluorobenzaldehyde, compound 1e was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (4:1) as eluent (611 mg, 67% yield); [α]25D = −78.3 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3): δ (ppm) 8.76 (s, 1H), 7.86 (td, J = 7.6 Hz, 1H), 7.39–7.32 (m, 1H), 7.09 (t, J = 7.6 Hz, 1H), 7.03–6.97 (m, 1H), 1.13 (s, 9H); 19F NMR (282 MHz, CDCl3): δ (ppm) -118.18 (s, 1F); 13C {1H} NMR (75 MHz, CDCl3): δ (ppm) 160.4 (d, JCF = 256.9 Hz), 156.4 (d, J = 5.4 Hz), 134.2 (d, J = 8.8 Hz), 128.6 (d, J = 2.0 Hz), 124.5 (d, J = 3.7 Hz), 122.0 (d, J = 9.4 Hz), 116.2 (d, J = 20.8 Hz), 57.8, 22.6. HRMS (ESI) m/z: [M + H+] Calcd for C13H15FNOS 228.0853; Found 228.0853.

(R,E)-N-benzylidene-2-methylpropane-2-sulfinamide (1f). Spectroscopic data of compound 1f were in agreement with those previously reported.[1]

III. General procedure for the diastereoselective propargylation of sulfinyl imines.

III.a. General procedure for the propargylation reaction to sulfinamides 3 in THF.

First, a 1 M solution of Grignard reagent in diethyl ether was prepared by adding magnesium turnings (214 mg, 11 mmol), mercury chloride (II) (19 mg, 1.7 mol%), two iodine balls and Et₂O (5 mL, 1 M) to a sealed tube under a nitrogen atmosphere. This mixture was cooled to 0 °C and propargyl bromide was added slowly (0.56 mL, 5 mmol). The mixture was then heated an oil
bath and stirred at 35 °C for 1.5 h. After this time, the mixture was cooled to room temperature, the stirring stopped, and the solution was used as a reagent in the next step without purification.

Next, for the asymmetric propargylation, a solution of the corresponding fluorinated imine 1 (1 mmol) in THF (0.1 M) was cooled to −78 °C. The freshly prepared Grignard reagent (1.5 mmol) was slowly added, and the reaction mixture was stirred at this temperature until the reaction was complete (TLC analysis, typically 24 h). The reaction mixture was then quenched with a saturated aqueous solution of NH₄Cl and extracted with EtOAc. The combined organic phases were dried over anhydrous Na₂SO₄, concentrated and the crude mixture was purified by flash column chromatography using deactivated silica gel (n-hexane:EtOAc).

(RS,R)-2-Methyl-N-(1-(perfluorophenyl)but-3-yn-1-yl)propane-2-sulfinamide (3a). According to general procedure, from 506 mg (0.91 mmol) of 1a, compound 3a was obtained as a yellowish oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (383 mg, 67% yield); [α]25°D = +45.4 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 4.89–4.80 (m, 1H), 3.99 (d, J = 10.6 Hz), 2.81 (ddd, J = 16.7, 6.8, 2.6 Hz, 1H), 2.71 (ddd, J = 16.7, 8.2, 2.6 Hz, 1H) 1.98 (t, J = 2.6 Hz, 1H), 1.18 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -142.77 – -142.90 (m, 2F), -154.15 – -154.30 (m, 1F), -161.19 – -161.38 (m, 2F); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ (ppm) 146.6–143.1 (m, 2C–F), 142.9–139.2 (m, 1C–F), 139.0–135.6 (m, 2C–F), 115.2–114.8 (m, 1C), 78.4, 71.6, 56.7, 51.0, 26.3, 22.3 HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₄H₁₅F₅NOS 340.0790; Found 340.0791.

(RS,R)-2-Methyl-N-(1-(2,3,5,6-tetrafluorophenyl)but-3-yn-1-yl)propane-2-sulfinamide (3b). According to general procedure, from 103 mg (0.37 mmol) of 1b, compound 3b was obtained as a white solid after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (71 mg, 61% yield). Mp: 82–84 °C; [α]25°D = +51.2 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.07–6.96 (m, 1H), 4.97–4.88 (m, 1H), 4.04 (d, J = 10.5 Hz), 2.84 (ddd, J = 16.7, 7.0, 2.6 Hz, 1H), 2.74 (ddd, J = 16.7, 7.9, 2.6 Hz, 1H) 1.99 (t, J = 2.6 Hz, 1H), 1.22 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) 138.15 – -138.27 (m, 2F), -143.32 – -143.45 (m, 2F); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ (ppm) 147.8–143.1 (m, 2C–F), 142.9–139.2 (m, 1C–F), 139.0–135.6 (m, 2C–F), 115.2–114.8 (m, 1C), 78.7, 71.4, 56.7, 51.4, 26.4, 22.4 HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₄H₁₆F₄NOS 322.0879; Found 322.0883.
III.b. General procedure for the propargylation reaction to sulfinamides 3’ in DCM.

First, a 1 M solution of Grignard reagent in diethyl ether was prepared by adding magnesium turnings (214 mg, 11 mmol), mercury chloride (II) (19 mg, 1.7 mol%), two iodine balls and Et₂O (5 mL, 1 M) to a sealed tube under a nitrogen atmosphere. This mixture was cooled to 0 °C and propargyl bromide was added slowly (0.56 mL, 5 mmol). The mixture was then stirred at 35 °C for 1.5 h. After this time, the mixture was cooled to room temperature, the stirring stopped, and the solution was used as a reagent in the next step without purification.

Next, for the asymmetric propargylation, a solution of the corresponding fluorinated imine 1 (1 mmol) in DCM (0.1 M) was cooled to −48 °C. The freshly prepared Grignard reagent (1.5 mmol) was slowly added, and the reaction mixture was stirred at this temperature until the reaction was complete (TLC analysis, typically 18–24 h). The reaction mixture was then quenched with a saturated aqueous solution of NH₄Cl and extracted with EtOAc. The combined organic phases were dried over anhydrous Na₂SO₄, concentrated and the crude mixture was purified by flash column chromatography using deactivated silica gel (n-hexane:EtOAc).

(Rₛ,S)-2-Methyl-N-(1-(perfluorophenyl)but-3-yn-1-yl)propane-2-sulfinamide (3’a). According to general procedure, from 51 mg (0.17 mmol) of 1a, compound 3’a was obtained as a yellowish solid after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (46 mg, 80% yield). Mp: 83–85 ºC; [α]²⁵,D = −50.3 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.08–6.97 (m, 1H), 4.99 (q, J = 7.8 Hz, 1H), 4.00 (d, J = 7.4 Hz), 2.97 (ddd, J = 16.6, 6.4, 2.6 Hz, 1H), 2.84 (ddd, J = 16.6, 8.2, 2.6 Hz, 1H) 2.04 (t, J = 2.6 Hz, 1H), 1.18 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -141.91 -142.04 (m, 2F), -153.65 -153.81 (m, 1F), -161.10 -161.30 (m, 2F); ¹³C (¹H) NMR (75 MHz, CDCl₃): δ (ppm) 146.8–143.1 (m, 2C–F), 142.8–139.5 (m, 2C–F), 136.2–135.7 (m, 1C–F), 114.4–113.9 (m, 1C), 78.3, 72.1, 56.4, 50.9, 26.5, 22.3. HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₄H₁₅F₅NOS 340.0790; Found 340.0788.
(R,S)-2-Methyl-N-(1-(2,3,5,6-tetrafluorophenyl)but-3-yn-1-yl)propane-2-sulfinamide (3’b).

According to general procedure, from 517 mg (0.91 mmol) of 1b, compound 3’b was obtained as a white solid after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (405 mg, 68% yield). Mp: 58–60 °C; [α]25D = −49.4 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3): δ (ppm) 7.08–6.97 (m, 1H), 5.01 (q, J = 7.8 Hz, 1H), 4.04 (d, J = 7.8 Hz), 2.97 (dd, J = 16.6, 6.4, 2.6 Hz, 1H), 2.84 (ddd, J = 16.6, 8.1, 2.6 Hz, 1H) 2.02 (t, J = 2.6 Hz, 1H), 1.16 (s, 9H); 19F NMR (282 MHz, CDCl3): δ (ppm) -138.28 – -138.41 (m, 2F), -142.64 – -142.77 (m, 2F); 13C (1H) NMR (75 MHz, CDCl3): δ (ppm) 147.7–144.06 (m, 2C–F), 146.2–142.7 (m, 2C–F), 119.9 (t, J = 14.7 Hz, 1C), 105.8 (t, J = 22.6 Hz, 1C), 78.4, 71.9, 56.4, 51.3, 26.5, 22.3. HRMS (ESI) m/z: [M + H+] Calcd for C14H16F3NOS 322.0879; Found 322.0883.

(R,S)-2-Methyl-N-(1-(2,4,6-trifluorophenyl)but-3-yn-1-yl)propane-2-sulfinamide (3’c).

According to general procedure, from 282 mg (0.91 mmol) of 1c, compound 3’c was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (290 mg, 89% yield); [α]25D = −53.4 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3): δ (ppm) 6.66–6.56 (m, 2H), 4.89 (q, J = 7.3 Hz, 1H), 3.97 (d, J = 7.3 Hz, 1H), 2.90 (dd, J = 16.6, 6.8, 2.6 Hz, 1H), 2.75 (dd, J = 16.6, 8.0, 2.6 Hz, 1H), 1.96 (t, J = 2.6 Hz, 1H), 1.10 (s, 9H); 19F NMR (282 MHz, CDCl3): δ (ppm) -107.66 (t, JFF = 6.7 Hz, 1F), -110.12 (d, JFF = 6.7 Hz, 2F); 13C (1H) NMR (75 MHz, CDCl3): δ (ppm) 162.2 (dt, JCF = 250 Hz, 3JCF = 15.9 Hz, C-F), 161.2 (dd, JCF = 250 Hz, 3JCF = 14.8, 11.0 Hz, C-F) 112.8 (td, J = 17.1, 4.9 Hz), 101.0–100.2 (m, 1C), 79.1, 71.5, 56.1, 50.3, 26.4, 22.3. HRMS (ESI) m/z: [M + H+] Calcd for C14H12F3NOS 304.0974; Found 304.0977.

(R,S)-N-(1-(2,6-Difluorophenyl)but-3-yn-1-yl)-2-methylpropane-2-sulfinamide (3’d).

According to general procedure, from 223 mg (0.91 mmol) of 1d, compound 3’d was obtained as a white solid after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (179 mg, 70% yield). Mp: 70–72 °C; [α]25D = −44.9 (c 1.0, CHCl3); 1H NMR (300 MHz, CDCl3): δ (ppm) 7.24–7.14 (m, 1H), 6.87–6.78 (m, 2H), 4.94 (dd, J = 14.8, 7.7 Hz, 1H), 4.00 (d, J = 7.7 Hz, 1H), 2.93 (ddd, J = 16.6, 6.7, 2.6 Hz, 1H), 2.77 (ddd, J = 16.6, 8.0, 2.6 Hz, 1H), 1.93 (t, J = 2.6 Hz, 1H), 1.09 (s, 9H); 19F NMR (282 MHz, CDCl3): δ (ppm) -113.52 (s, 2F); 13C (1H) NMR (75 MHz, CDCl3): δ (ppm) 161.0 (d, JCF = 248.7 Hz, 3JCF = 8.1 Hz), 129.8 (t, J = 10.7 Hz), 116.5 (t, J = 16.7 Hz), 111.8 (d, J = 26.2 Hz), 79.3, 71.3, 56.1, 50.8, 26.6, 22.3. HRMS (ESI) m/z: [M + H+] Calcd for C14H12F2NOS 286.1072; Found 286.1073.
(R,S)-N-(1-(2-Fluorophenyl)but-3-yn-1-yl)-2-methylpropane-2-sulfinamide (3′e). According to general procedure, from 74 mg (0.33 mmol) of 1e, compound 3′e was obtained as a white solid after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (76 mg, 86% yield). Mp: 100–102 °C; [α]D = −47.6 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.31 (td, J = 7.5, 1.2 Hz, 1H), 7.25–7.17 (m, 1H), 7.06 (td, J = 7.5, 1.2 Hz, 1H), 6.97 (ddd, J = 10.6, 8.2, 1.2 Hz, 1H), 4.81 (dd, J = 12.2, 5.1 Hz, 1H), 3.95 (d, J = 5.1 Hz, 1H), 2.82–2.64 (m, 2H), 2.02 (t, J = 2.6 Hz, 1H), 1.15 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -117.85 (s, 1F); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ (ppm) 160.4 (d, JCF = 247.3 Hz), 129.5 (d, J = 8.4 Hz), 128.7 (d, J = 4.1 Hz), 127.6 (d, J = 12.5 Hz), 124.1 (d, J = 3.5 Hz), 115.7 (d, J = 21.8 Hz), 79.5, 72.2, 56.0, 51.9, 27.3, 22.5. HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₄H₁₈FNOS 268.1166; Found 268.1163.

(R,S)-N-(1-Phenylbut-3-yn-1-yl)-2-methylpropane-2-sulfinamide (3′f). Spectroscopic data of compound 3′f were in agreement with those previously reported.[¹]

IV. General procedure for the propargylation reaction in DCM.

First, a 1 M solution of Grignard reagent in diethyl ether was prepared by adding magnesium turnings (214 mg, 11 mmol), mercury chloride (II) (19 mg, 1.7 mol%), two iodine balls and Et₂O (5 mL, 1 M) to a sealed tube under a nitrogen atmosphere. This mixture was cooled to 0 °C and the corresponding bromide was added slowly (0.56 mL, 5 mmol). The mixture was then heated an oil bath and stirred at 35 °C for 1.5 h. After this time, the mixture was cooled to room temperature, the stirring stopped, and the solution was used as a reagent in the next step without purification.

For the next asymmetric propargylation, a solution of the corresponding fluorinated imine 1 (1 mmol) in DCM (0.1 M) was cooled to −48 °C. The freshly prepared Grignard reagent (1.5 mmol) was slowly added, and the reaction mixture was stirred at this temperature until the reaction was complete (TLC analysis, typically 18–24 h). The reaction mixture was then quenched with a saturated aqueous solution of NH₄Cl and extracted with EtOAc. The combined
organic phases were dried over anhydrous Na₂SO₄, concentrated and the crude mixture was purified by flash column chromatography using deactivated silica gel (n-hexane:EtOAc).

(R,s)-2-Methyl-N-(1-(perfluorophenyl)-2-phenyl-3λ³-buta-2,3-dien-1-yl)propane-2-sulfinamide (4ab). According to general procedure from 51 mg (0.17 mmol) of 1a, compound 4ab was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (51 mg, 72% yield); [α]²⁰⁰ = −90.9 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.38–7.29 (m, 5H), 5.95–5.92 (m, 1H), 5.44–5.32 (m, 2H), 4.19 (d, J = 4.8 Hz, 1H), 1.17 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -141.48 – -141.58 (m, 2F), -147.20 – -153.90 (t, J = 21.0 Hz, 1F), -161.46 – -161.64 (m, 2F); ¹³C [¹H] NMR (75 MHz, CDCl₃): δ (ppm) 207.4, 147.6–144.0 (m, 2C–F), 146.5–143.0 (m, 2C–F), 132.9, 128.8, 127.8, 126.6, 120.5 (t, J = 13.8 Hz, C–F), 106.6, 105.7 (t, J = 22.6 Hz, C), 83.0, 56.5, 49.0, 22.4. HRMS (ESI) m/z: [M + H⁺]
Calcd for C₂₀H₁₂F₃NOS 416.1099; Found 416.1102.

(R,s)-2-Methyl-N-(2-methyl-1-(perfluorophenyl)-3λ³-buta-2,3-dien-1-yl)propane-2-sulfinamide (4ac). According to general procedure from 53 mg (0.18 mmol) of 1a, compound 4ac was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (54 mg, 85% yield); [α]²⁰⁰ = -93.1 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 5.20–5.15 (m, 1H), 4.99–4.86 (m, 2H), 4.09 (d, J = 6.4 Hz, 1H), 1.73 (t, J = 3.1 Hz, 3H), 1.16 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -142.44 – -142.56 (m, 2F), -147.20 – -154.45 – -154.60 (m, 1F), -161.58 – -161.76 (m, 2F); ¹³C [¹H] NMR (75 MHz, CDCl₃): δ (ppm) 205.0, 146.7–143.0 (m, 2C–F), 142.6–142.1 (m, 1C–F), 139.4–135.6 (m, 2C–F), 115.1–114.6 (m, 1C), 99.0, 79.9, 56.4, 52.4, 22.4, 16.2. HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₅H₁₂F₃NOS 354.0943; Found 354.0946.

(R,s)-2-Methyl-N-(2-phenyl-1-(2,3,5,6-tetrafluorophenyl)-3λ³-buta-2,3-dien-1-yl)propane-2-sulfinamide (4bb). According to general procedure from 50 mg (0.18 mmol) of 1b, compound 4bb was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (48 mg, 68% yield); [α]²⁰⁰ = -61.6 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.39–7.28 (m, 5H), 7.01–6.90 (m, 1H), 5.98–5.94 (m, 1H), 5.44–5.32 (m, 2H), 4.22 (d, J = 5.3 Hz, 1H), 1.17 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) -138.64 – -138.76 (m, 2F), -142.19 – -142.32 (m, 2F); ¹³C [¹H] NMR (75 MHz, CDCl₃): δ (ppm) 207.3, 147.7–144.0 (m, 2C–F), 146.4–143.0 (m, 2C–F), 132.9, 128.8, 127.8, 126.6, 120.5.
(t, J = 13.8 Hz, C), 106.6, 105.7 (t, J = 22.6 Hz, CH), 83.0, 56.5, 49.0, 22.4. HRMS (ESI) m/z: [M + H'] Calcd for C_{20}H_{20}F_{2}NOS 398.1203; Found 398.1196.

(R,s)-2-Methyl-N-(2-methyl-1-(2,3,5,6-tetrafluorophenyl)-3λ^5-buta-2,3-dien-1-yl)propane-2-sulfinamide (4bc). According to general procedure from 50 mg (0.18 mmol) of 1b, compound 4bc was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (60 mg, 88% yield); [α]^{25}_{D} = −79.4 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.06–6.95 (m, 1H), 5.23–5.19 (m, 1H), 4.98–4.86 (m, 2H), 4.15 (d, J = 6.9 Hz, 1H), 1.73 (t, J = 3.1 Hz, 3H), 1.15 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) −138.70 (m, 2F), 145.8 (m, 2C); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ (ppm) 205.1, 147.1–144.4 (m, 2C–F), 145.8–143.1 (m, 2C–F), 120.7 (t, J = 14.4 Hz, C), 105.3, 99.1, 79.8, 56.4, 52.8, 22.4, 16.2. HRMS (ESI) m/z: [M + H'] Calcd for C_{19}H_{19}F₄NOS 336.1040; Found 336.1040.

(R,s)-2-Methyl-N-(2-phenyl-1-(2,4,6-trifluorophenyl)-3λ^5-buta-2,3-dien-1-yl)propane-2-sulfinamide (4cb). According to general procedure, from 55 mg (0.19 mmol) of 1c, compound 4cb was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (53 mg, 72% yield); [α]^{25}_{D} = −96.4 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.38–7.26 (m, 5H), 6.61–6.55 (m, 2H), 5.91–5.86 (m, 2H), 4.16 (d, J = 5.1 Hz, 1H), 1.15 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) −107.78 (t, J_{CF} = 6.9 Hz, 1F), −109.61 (d, J_{CF} = 6.2 Hz, 2F); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ (ppm) 207.5, 162.2 (dt, J_{CF} = 250 Hz, J_{CF} = 10.6 Hz, C–F), 161.4 (ddd, J_{CF} = 250 Hz, J_{CF} = 14.8, 10.6 Hz, C–F), 131.7, 128.6, 127.6, 126.6, 113.3 (td, J = 16.0, 4.9 Hz), 107.1, 101.0–100.2 (m, 1C), 82.5, 56.3, 48.1, 22.4. HRMS (ESI) m/z: [M + H'] Calcd for C_{20}H_{21}F₃NOS 380.1298; Found 380.1290.

(R,s)-2-Methyl-N-(2-methyl-1-(2,4,6-trifluorophenyl)-3λ^5-buta-2,3-dien-1-yl)propane-2-sulfinamide (4cc). According to general procedure, from 53 mg (0.20 mmol) of 1c, compound 4cc was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (43 mg, 68% yield); [α]^{25}_{D} = −153.1 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 6.68–6.62 (m, 2H), 5.18–5.13 (m, 1H), 4.96–4.85 (m, 2H), 4.12 (d, J = 6.5 Hz, 1H), 1.71 (t, J = 3.1 Hz, 3H), 1.15 (s, 9H); ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) −108.31 (t, J_{CF} = 6.6 Hz, 1F), −110.59 (d, J_{CF} = 6.6 Hz, 2F); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ (ppm) 205.0,
162.0 (dt, $^{1}J_{CF} = 250$ Hz, $^{3}J_{CF} = 15.8$ Hz, C–F), 161.2 (ddd, $^{1}J_{CF} = 250$ Hz, $^{3}J_{CF} = 14.8$, 10.8 Hz, C–F), 113.4 (td, $J = 16.6$, 4.9 Hz), 100.9–100.2 (m, 1C), 99.7, 79.4, 56.2, 51.7, 22.4, 16.2. HRMS (ESI) m/z: [M + H$^+$] Calcd for C$_{15}$H$_{19}$F$_{3}$NOS 318.1135; Found 318.1134.

(R$_{S,S}$)-N-(1-(2,6-Difluorophenyl)-2-phenyl-3λ^3-buta-2,3-dien-1-yl)-2-methylpropane-2-sulfinamide (4db). According to general procedure, from 55 mg (0.22 mmol) of 1d, compound 4db was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (59 mg, 73% yield); [α]$^{25}_{D} = -96.5$ (c 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$): δ (ppm) 7.38–7.23 (m, 5H), 7.20–7.12 (m, 1H), 6.82–6.76 (m, 2H), 5.94–5.90 (m, 1H), 5.38–5.26 (m, 2H), 4.21 (d, $J = 5.8$ Hz, 1H), 1.13 (s, 9H); 19F NMR (282 MHz, CDCl$_3$): δ (ppm) -112.94 (s, 2F); 13C {^1H} NMR (75 MHz, CDCl$_3$): δ (ppm) 207.6, 161.2 (dd, $J = 250$, 7.8 Hz, 2C–F), 133.5, 131.7, 129.6 (t, $J = 10.7$ Hz, 1C), 128.5, 127.4, 126.7, 117.0 (t, $J = 15.8$ Hz, C–F), 111.7 (d, $J = 26.0$ Hz, CH), 82.5, 56.3, 48.6, 22.4. HRMS (ESI) m/z: [M + H$^+$] Calcd for C$_{20}$H$_{22}$F$_2$NOS 362.1380; Found 362.1385.

(R$_{S,S}$)-N-(1-(2,6-Difluorophenyl)-2-methyl-3λ^3-buta-2,3-dien-1-yl)-2-methylpropane-2-sulfinamide (4dc). According to general procedure, from 60 mg (0.24 mmol) of 1d, compound 4dc was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (6:1) as eluent (51 mg, 70% yield); [α]$^{25}_{D} = -128.7$ (c 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$): δ (ppm) 7.24–7.18 (m, 1H), 6.88–6.82 (m, 2H), 5.22–5.17 (m, 1H), 4.94–4.82 (m, 2H), 4.17 (d, $J = 7.1$ Hz, 1H), 1.69 (t, $J = 3.1$ Hz, 3H), 1.13 (s, 9H); 19F NMR (282 MHz, CDCl$_3$): δ (ppm) -113.89 (s, 2F); 13C {^1H} NMR (75 MHz, CDCl$_3$): δ (ppm) 205.0, 161.0 (dd, $J = 250$, 8.0 Hz, 2C–F), 129.3 (t, $J = 10.6$ Hz, 1C), 117.1 (t, $J = 16.3$ Hz, C–F), 111.6 (d, $J = 26.0$ Hz, CH), 99.9, 79.2, 56.2, 52.2, 22.4, 16.2. HRMS (ESI) m/z: [M + H$^+$] Calcd for C$_{20}$H$_{22}$F$_2$NOS 300.1228; Found 300.1228.

(R$_{S,S}$)-N-(1-(2-Fluorophenyl)-2-phenyl-3λ^3-buta-2,3-dien-1-yl)-2-methylpropane-2-sulfinamide (4eb). According to general procedure, from 51 mg (0.22 mmol) of 1e, compound 4eb was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (10:1) as eluent (46 mg, 61% yield); [α]$^{25}_{D} = -81.7$ (c 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$): δ (ppm) 7.33–7.29 (m, 2H), 7.23–7.08 (m, 5H), 7.02–6.92 (m, 2H), 5.79–5.75 (m, 1H), 5.31–5.18 (m, 2H), 3.83 (d, $J = 4.3$ Hz, 1H), 1.10 (s, 9H); 19F NMR (282 MHz, CDCl$_3$): δ (ppm) -117.63 (s, 1F); 13C {^1H} NMR (75 MHz, CDCl$_3$): δ (ppm) 208.4, 160.8 (d, $J = 250$ Hz, C–F), 133.5, 129.5 (d, $J = 8.4$
Hz), 129.4 (d, J = 3.6 Hz), 128.6, 127.7 (d, J = 12.8 Hz), 127.4, 126.6, 124.1 (d, J = 3.6 Hz), 115.5 (d, J = 21.9 Hz), 108.4, 82.5, 56.2, 51.0, 22.5. HRMS (ESI) m/z: [M + H⁺] Calcd for C₃₀H₂ₙNOS 344.1475; Found 344.1479.

(Rₛ,S)-N-(1-{2-Fluorophenyl}-2-methyl-3λ³-buta-2,3-dien-1-yl)-2-methylpropane-2-sulfinamide (4ec). According to general procedure, from 53 mg (0.22 mmol) of 1e, compound 4ec was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (10:1) as eluent (55 mg, 84% yield); [α]²⁵_D = −133.4 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.34–7.22 (m, 2H), 7.14–7.00 (m, 2H), 5.12–5.08 (m, 1H), 4.98–4.88 (m, 2H), 3.88 (d, J = 3.7 Hz, 1H), 1.63 (t, J = 3.1 Hz, 3H), 1.16 (s, 9H); ¹³C [¹H] NMR (75 MHz, CDCl₃): δ (ppm) 133.4 (c 1.0, CHCl₃): δ (ppm) 129.3 (d, J = 2.6 Hz), 127.6 (d, J = 12.7 Hz), 124.1 (d, J = 3.6 Hz), 115.5 (d, J = 22.0 Hz), 101.4, 79.2, 56.1, 53.4, 22.6, 16.3. HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₅H₁₁FNOS 282.1324; Found 282.1322.

(Rₛ,R)-N-(1,2-Diphenyl-3λ³-buta-2,3-dien-1-yl)-2-methylpropane-2-sulfinamide (4fb). According to general procedure, from 55 mg (0.26 mmol) of 1f, compound 4fb was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (10:1) as eluent (44 mg, 52% yield); [α]²⁵_D = −124.4 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.36–7.28 (m, 5H), 4.91–4.87 (m, 2H), 4.87 (m, 1H), 3.88 (d, J = 3.5 Hz, 1H), 1.11 (s, 9H); ¹³C [¹H] NMR (75 MHz, CDCl₃): δ (ppm) 208.2, 140.2, 133.8, 128.5, 128.4, 127.9, 127.3, 126.8, 109.4, 81.9, 57.2, 56.1, 22.6. HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₅H₁₂NOS 326.1572; Found 326.1573.

(Rₛ,R)-2-Methyl-N-(2-methyl-1-phenyl-3λ³-buta-2,3-dien-1-yl)propane-2-sulfinamide (4fc). According to general procedure, from 76 mg (0.36 mmol) of 1f, compound 4fc was obtained as a colorless oil after column chromatography on silica gel using n-hexane:EtOAc (10:1) as eluent (64 mg, 67% yield); [α]²⁵_D = −128.5 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ (ppm) 7.28–7.23 (m, 5H), 4.91–4.87 (m, 2H), 4.68–4.65 (m, 1H), 3.83 (d, J = 2.0 Hz, 1H), 1.50 (t, J = 3.0 Hz, 3H), 1.11 (s, 9H); ¹³C [¹H] NMR (75 MHz, CDCl₃): δ (ppm) 204.5, 140.0, 128.4, 128.3, 128.0, 102.1, 78.7, 59.3, 55.9, 22.6, 16.2. HRMS (ESI) m/z: [M + H⁺] Calcd for C₁₅H₁₂NOS 264.1416; Found 264.1417.
V. X-ray structure of compound 3b (Deposition Number 2067822).

Experimental
Single crystals of C_{14}H_{15}F_{4}NOS [CCDC 2067822] were obtained by slow evaporation method at room temperature using chloroform as solvent. A suitable crystal was selected and mounted on a SuperNova, Single source at offset, Atlas diffractometer. The crystal was kept at 150.00(10) K during data collection. Using Olex2,[2] the structure was solved with the ShelXS[3] structure solution program using Direct Methods and refined with the ShelXL[4] refinement package using Least Squares minimization. Displacement ellipsoids are drawn at the 50% probability level.
Table S1. Crystal data and structure refinement for CCDC 2067822.

Description	Value
Identification code	CCDC 2067822
Empirical formula	C_{14}H_{15}F_{4}NOS
Formula weight	321.33
Temperature/K	150.4(5)
Crystal system	monoclinic
Space group	P2_1
a/Å	7.8963(3)
b/Å	10.1860(3)
c/Å	10.2163(4)
α/°	90.0
β/°	107.419(4)
γ/°	90.0
Volume/Å³	784.04(5)
Z	2
ρ_{calc}/g/cm³	1.361
μ/mm⁻¹	2.221
F(000)	332.0
Crystal size/mm³	0.343 × 0.272 × 0.114
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	9.072 to 137.984
Index ranges	-9 ≤ h ≤ 9, -12 ≤ k ≤ 12, -12 ≤ l ≤ 11
Reflections collected	14341
Independent reflections	2909 [R_{int} = 0.0352, R_{sigma} = 0.0300]
Data/restraints/parameters	2909/2/196
Goodness-of-fit on F²	1.046
Final R indexes [I>2σ (I)]	R₁ = 0.0378, wR₂ = 0.0932
Final R indexes [all data]	R₁ = 0.0431, wR₂ = 0.0977
Largest diff. peak/hole / e Å⁻³	0.21/-0.40
Flack parameter	-0.007(10)
Friedel coverage	99%
Flack x	-0.007(10)
Hooft y	-0.013(5)
P2(wrong)	<10⁻⁹⁹
Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for CCDC 2067822. U(eq) is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	y	z	U(eq)
S1	3522.0(11)	6708.1(9)	2607.7(8)	33.6(2)
F4	4687(3)	5356(2)	6429(2)	50.3(6)
F1	2501(3)	2462(2)	2698(2)	48.8(6)
F2	248(3)	1452(3)	3927(3)	66.0(8)
F3	2387(4)	4366(3)	7621(3)	62.5(8)
O1	1894(3)	6848(3)	3034(3)	45.9(7)
N1	4058(4)	5140(3)	2522(3)	33.4(7)
C5	3694(5)	3926(4)	4536(4)	33.8(8)
C10	3599(6)	4386(4)	5788(4)	39.1(9)
C1	4966(5)	4525(4)	3852(4)	34.1(8)
C3	7718(5)	4199(4)	3220(5)	39.9(9)
C6	2532(5)	2917(4)	3947(4)	39.5(9)
C9	2411(6)	3876(4)	6411(4)	46.0(11)
C7	1363(5)	2402(4)	4579(5)	45.8(10)
C11	2858(6)	7089(4)	767(4)	48.6(11)
C8	1272(5)	2878(4)	5804(5)	47.7(11)
C2	6338(5)	3519(4)	3664(4)	39.2(9)
C4	8790(6)	4789(4)	2885(5)	46.5(10)
C14	1323(7)	6221(6)	-14(5)	66.2(15)
C12	4480(7)	6912(6)	264(5)	69.5(15)
C13	2295(10)	8533(6)	710(6)	81.0(18)
Table S3. Anisotropic Displacement Parameters ($\text{Å}^2\times10^3$) for CCDC 2067822. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^*2U_{11}+2hka^*b^*U_{12}+...].$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
S1	34.7(4)	36.1(4)	34.8(4)	1.8(4)	17.5(3)	-0.4(4)
F4	64.6(15)	46.1(13)	45.6(14)	-8.6(11)	24.8(12)	-6.9(12)
F1	49.3(14)	52.3(14)	45.9(14)	-7.0(11)	15.7(11)	-10.5(11)
F2	55.8(15)	66.2(19)	74.6(18)	7.5(15)	17.3(13)	-25.9(14)
F3	77(2)	72.7(19)	53.9(16)	5.8(14)	43.4(15)	13.5(14)
O1	44.4(14)	52.7(16)	50.1(16)	1.9(15)	28.4(12)	5.7(13)
N1	36.3(16)	35.7(16)	30.7(16)	0.9(13)	13.9(13)	1.2(13)
C5	32.9(18)	35.1(18)	36.3(19)	6.8(16)	14.8(16)	4.6(15)
C10	43(2)	39(2)	41(2)	7.1(18)	21.2(19)	7.3(17)
C1	36(2)	35.6(18)	34.4(19)	2.2(15)	16.4(17)	0.1(15)
C3	37(2)	44(2)	41(2)	-0.3(18)	16.0(18)	4.3(17)
C6	41(2)	40(2)	39(2)	5.2(17)	14.1(17)	2.1(16)
C9	49(3)	52(2)	45(3)	14(2)	27(2)	15(2)
C7	36(2)	44(2)	57(3)	9(2)	15.3(19)	-4.5(18)
C11	57(3)	53(3)	40(2)	10.6(18)	20(2)	6.8(19)
C8	36(2)	58(3)	56(3)	23(2)	25(2)	8.8(18)
C2	36(2)	43(2)	43(2)	5.2(18)	17.7(18)	3.1(17)
C4	41(2)	50(2)	57(3)	-2(2)	27(2)	1.7(18)
C14	61(3)	89(4)	41(2)	-1(2)	4(2)	8(3)
C12	79(3)	95(4)	47(3)	14(3)	38(2)	1(3)
C13	119(5)	61(3)	58(3)	30(3)	19(3)	27(3)

Table S4. Bond Lengths for CCDC 2067822.

Atom	Atom	Length/Å
S1	O1	1.482(2)
S1	N1	1.662(3)
S1	C11	1.837(4)
F4	C10	1.344(5)
F1	C6	1.350(5)
F2	C7	1.343(5)
F3	C9	1.338(5)
N1	C1	1.473(5)
C5	C10	1.385(5)
C5	C1	1.513(5)
C5	C6	1.390(5)

---S17---
Table S5. Bond Angles for CCDC 2067822.

Atom	Atom	Atom	Angle/˚	Atom	Atom	Atom	Angle/˚
O1	S1	N1	111.37(16)	C7	C6	C5	121.8(4)
O1	S1	C11	105.90(18)	F3	C9	C10	119.0(4)
N1	S1	C11	98.53(17)	F3	C9	C8	120.3(4)
C1	N1	S1	114.9(2)	C8	C9	C10	120.8(4)
C10	C5	C1	121.2(4)	F2	C7	C6	118.3(4)
C10	C5	C6	116.0(3)	F2	C7	C8	120.3(4)
C6	C5	C1	122.8(3)	C8	C7	C6	121.4(4)
F4	C10	C5	119.6(3)	C14	C11	S1	110.7(3)
F4	C10	C9	118.4(3)	C14	C11	C12	111.9(4)
C9	C10	C5	122.0(4)	C14	C11	C13	111.2(4)
N1	C1	C5	112.9(3)	C12	C11	S1	108.0(3)
N1	C1	C2	109.5(3)	C12	C11	C13	111.3(4)
C5	C1	C2	112.2(3)	C13	C11	S1	103.4(3)
C4	C3	C2	177.1(5)	C7	C8	C9	118.0(4)
F1	C6	C5	119.1(3)	C3	C2	C1	109.7(3)
F1	C6	C7	119.1(4)	C3	C2	C1	109.7(3)

Table S6. Torsion Angles for CCDC 2067822.

A	B	C	D	Angle/˚	A	B	C	D	Angle/˚
S1	N1	C1	C5	88.9(3)	C5	C1	C2	C3	-170.3(4)
S1	N1	C1	C2	-145.3(3)	C5	C6	C7	F2	178.2(4)
F4	C10	C9	F3	0.1(5)	C5	C6	C7	C8	1.2(6)
F4	C10	C9	C8	-179.7(4)	C10	C5	C1	N1	-117.2(4)
F1	C6	C7	F2	0.7(6)	C10	C5	C1	C2	118.5(4)
F1	C6	C7	C8	-176.3(4)	C10	C5	C6	F1	177.2(3)
F2	C7	C8	C9	-178.2(4)	C10	C5	C6	C7	-0.4(5)
F3	C9	C8	C7	-179.2(4)	C10	C9	C8	C7	0.5(6)
O1	S1	N1	C1	-79.2(3)	C1	C5	C10	F4	-1.9(6)
O1	S1	C11	C14	-55.3(4)	C1	C5	C10	C9	178.2(3)
O1	S1	C11	C12	-178.0(3)	C1	C5	C6	F1	-1.4(5)
O1	S1	C11	C13	63.9(4)	C1	C5	C6	C7	-178.9(4)
N1	S1	C11	C14	59.9(3)	C6	C5	C10	F4	179.6(3)
N1	S1	C11	C12	-62.8(4)	C6	C5	C10	C9	-0.4(6)
N1	S1	C11	C13	179.1(4)	C6	C5	C1	N1	61.2(4)
N1	C1	C2	C3	63.5(4)	C6	C5	C1	C2	-63.1(5)
C5	C10	C9	F3	-179.9(4)	C6	C7	C8	C9	-1.3(6)
C5	C10	C9	C8	0.3(6)	C11	S1	N1	C1	169.9(3)
Table S7. Hydrogen Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å^2×10^3) for CCDC 2067822.

Atom	x	y	z	U(eq)
H1A	5638.4	5232.15	4471.87	41
H8	448.01	2530.47	6225.37	57
H2A	6888.9	3056.96	4540.74	47
H2B	5738.85	2859.15	2968.33	47
H4	9660.65	5267.34	2612.2	56
H14A	1730.49	5309.89	10.25	99
H14B	880.82	6517.29	-968.6	99
H14C	366.81	6275.22	413.08	99
H12A	5480.32	7409.25	857.29	104
H12B	4209.18	7234.84	-679.71	104
H12C	4792.5	5979.41	293.06	104
H13A	1300.73	8622.97	1092.41	121
H13B	1926.56	8833.03	-244.99	121
H13C	3295.96	9065.04	1246.76	121
H1	3250(60)	4590(50)	1970(50)	97
VI. X-ray structure of compound 3’b (Deposition Number 2067817).

Experimental
Single crystals of $\text{C}_{14}\text{H}_{15}\text{F}_4\text{NOS}$ [CCDC 2067817] were obtained by vapour diffusion method using dichloromethane and n-hexane (1:1) and slow evaporation in glass vial. A suitable crystal was selected and mounted on a SuperNova, Single source at offset, Atlas diffractometer. The crystal was kept at 150.00(10) K during data collection. Using Olex2,[2] the structure was solved with the ShelXS[3] structure solution program using Direct Methods and refined with the ShelXL[4] refinement package using Least Squares minimization. Displacement ellipsoids are drawn at the 50% probability level.
Table S8. Crystal data and structure refinement for CCDC 2067817.

Property	Value
Identification code	CCDC 2067817
Empirical formula	C_{14}H_{15}F_{4}NOS
Formula weight	321.33
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P2_1
a/Å	8.87345(12)
b/Å	5.57753(8)
c/Å	15.18268(19)
α/°	90.0
β/°	101.7056(13)
γ/°	90.0
Volume/Å³	735.793(18)
Z	2
\(\rho_{\text{calc}}\)/cm³	1.450
\(\mu\)/mm⁻¹	2.372
F(000)	332.0
Crystal size/mm³	0.297 × 0.165 × 0.067
Radiation	CuKα (\(\lambda = 1.54184\))
2Θ range for data collection/°	10.18 to 137.99
Index ranges	-10 ≤ h ≤ 10, -6 ≤ k ≤ 6, -18 ≤ l ≤ 18
Reflections collected	13571
Independent reflections	2686 [\(R_{\text{int}} = 0.0408, R_{\text{sigma}} = 0.0263\)]
Data/restraints/parameters	2686/2/196
Goodness-of-fit on \(F^2\)	1.039
Final R indexes [\(I \geq 2\sigma (I)\)]	\(R_1 = 0.0330, wR_2 = 0.0877\)
Final R indexes [all data]	\(R_1 = 0.0342, wR_2 = 0.0891\)
Largest diff. peak/hole / e Å⁻³	0.30/-0.16
Flack parameter	0.00(2)
Friedel coverage	99%
Flack x	-0.007(10)
Hooft y	-0.013(5)
P2(wrong)	<10⁻⁹⁹
Table S9. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\text{Å}^2 \times 10^3$) for CCDC 2067817. U_{eq} is defined as $1/3$ of the trace of the orthogonalised UIJ tensor.

Atom	x	y	z	U(eq)
S1	1263.3(7)	2075.0(13)	7843.6(3)	21.78(18)
F1	4575(2)	3228(4)	6268.6(11)	34.6(4)
F2	3720(2)	3291(4)	4482.7(12)	41.0(5)
F3	805(2)	-3727(4)	4576.9(12)	38.8(5)
F4	1643(2)	-3832(4)	6358.7(11)	32.2(4)
O1	2023(2)	3790(4)	8548.6(14)	32.2(5)
N1	2294(3)	-413(5)	7835.4(15)	25.9(5)
C1	3632(3)	-290(6)	7400.3(17)	24.4(6)
C5	3122(3)	-275(5)	6386.3(17)	22.4(6)
C6	3617(3)	1498(5)	5867.7(18)	24.7(6)
C7	3181(3)	1532(6)	4941.6(18)	28.5(7)
C8	2227(3)	-206(6)	4488.9(18)	30.0(6)
C9	1735(3)	-1983(6)	4989.3(18)	27.4(6)
C10	2172(3)	-2034(6)	5917.2(19)	23.9(6)
C11	4663(3)	-2477(6)	7726.4(18)	28.9(7)
C12	5386(3)	-2250(6)	8678(2)	32.1(7)
C13	5926(4)	-1967(7)	9452(2)	39.6(8)
C14	-322(3)	646(5)	8275.5(17)	23.2(6)
C15	298(4)	-538(6)	9182.5(18)	29.5(6)
C16	-1418(3)	2689(6)	8373(2)	32.4(7)
C17	-1090(4)	-1150(6)	7569(2)	32.0(7)
Table S10. Anisotropic Displacement Parameters (Å²×10³) for CCDC 2067817. The Anisotropic displacement factor exponent takes the form: -2π²[h²a*²U11+2hka*b*U12+...].

Atom	U11	U22	U33	U23	U13	U12
S1	26.0(3)	21.8(3)	16.7(3)	1.2(2)	2.3(2)	-1.9(3)
F1	39.9(9)	33.8(10)	30.9(9)	-2.9(8)	9.1(7)	-13.8(8)
F2	46.7(11)	44.8(12)	31.9(9)	11.2(8)	8.8(8)	-11.4(9)
F3	41.3(10)	43.8(12)	28.5(9)	-6.7(8)	0.0(7)	-15.1(9)
F4	39.4(9)	29.7(9)	26.7(8)	1.0(7)	4.7(7)	-11.5(8)
O1	33.9(10)	30.5(13)	29.8(10)	-7.1(9)	0.4(8)	-6.0(9)
N1	31.4(12)	27.1(14)	21.0(11)	5.1(9)	9.5(9)	2.8(10)
C1	26.5(12)	26.7(16)	20.4(12)	-1.1(11)	5.5(9)	-3.4(11)
C5	21.2(11)	27.5(16)	18.7(12)	-0.2(11)	4.8(9)	1.3(10)
C6	23.0(12)	26.3(18)	25.6(13)	-1.1(10)	6.3(10)	-1.4(10)
C7	28.1(13)	33(2)	25.2(13)	7.1(11)	8.3(10)	1.2(11)
C8	29.0(13)	40.3(18)	20.3(13)	1.8(12)	4.0(10)	1.4(12)
C9	24.4(13)	32.0(17)	24.4(13)	-5.4(12)	1.7(10)	-2.8(11)
C10	22.9(12)	25.7(15)	23.2(13)	0.8(10)	4.4(10)	-0.4(10)
C2	24.6(12)	37(2)	24.3(12)	-0.9(12)	2.3(10)	1.2(12)
C3	25.5(13)	41(2)	28.9(15)	3.0(12)	3.1(11)	1.4(11)
C4	36.4(16)	52(2)	27.8(15)	4.0(14)	-0.1(12)	1.6(15)
C11	27.4(13)	22.7(15)	19.8(12)	0.5(10)	5.3(10)	-2.1(11)
C12	38.8(15)	31.2(16)	20.1(12)	4.7(11)	9.5(11)	2.0(13)
C13	32.4(14)	32(2)	34.6(14)	4.1(12)	10.2(11)	3.4(12)
C14	34.5(15)	30.1(18)	29.7(14)	-1.8(12)	2.3(12)	-8.5(13)

Table S11 Bond Lengths for CCDC 2067817.

Atom	Atom	Length/Å
S1	O1	1.491(2)
S1	N1	1.664(3)
S1	C11	1.849(3)
F1	C6	1.347(3)
F2	C7	1.346(3)
F3	C9	1.345(3)
F4	C10	1.343(3)
N1	C1	1.473(3)
C1	C5	1.514(3)
C1	C2	1.545(4)
C5	C6	1.390(4)
Table S12. Bond Angles for CCDC 2067817.

Atom	Atom	Atom	Angle/°	Atom	Atom	Angle/°	
O1	S1	N1	111.80(12)	C9	C8	C7	117.7(2)
O1	S1	C11	106.71(12)	F3	C9	C8	119.9(2)
N1	S1	C11	95.86(13)	F3	C9	C10	118.5(3)
C1	N1	S1	117.3(2)	C8	C9	C10	121.6(3)
N1	C1	C5	110.8(2)	F4	C10	C5	120.5(2)
N1	C1	C2	107.4(2)	F4	C10	C9	118.0(3)
C5	C1	C2	111.4(2)	C9	C10	C5	121.5(3)
C6	C5	C1	121.1(3)	C3	C2	C1	111.2(3)
C6	C5	C10	116.1(2)	C4	C3	C2	176.6(4)
C10	C5	C1	122.8(3)	C12	C11	S1	110.23(19)
F1	C6	C5	119.8(2)	C13	C11	S1	105.0(2)
F1	C6	C7	118.14(18)	C12	C11	C12	110.9(2)
C7	C6	C5	122.1(3)	C14	C11	S1	107.33(18)
F2	C7	C6	118.8(3)	C14	C11	C12	112.2(3)
F2	C7	C8	120.2(2)	C14	C11	C13	110.9(2)
C8	C7	C6	121.1(3)				

Table S13. Torsion Angles for CCDC 2067817.

A	B	C	D	Angle/°	A	B	C	D	Angle/°
S1	N1	C1	C5	-75.3(3)	C1	C5	C6	C7	179.3(3)
S1	N1	C1	C2	162.84(18)	C1	C5	C10	F4	1.0(4)
F1	C6	C7	F2	-0.5(4)	C1	C5	C10	C9	-179.5(3)
F1	C6	C7	C8	178.8(3)	C5	C1	C2	C3	169.2(2)
F2	C7	C8	C9	178.8(3)	C5	C6	C7	F2	-179.2(2)
F3	C9	C10	F4	0.1(4)	C5	C6	C7	C8	0.1(4)
F3	C9	C10	C5	-179.5(3)	C6	C5	C10	F4	179.6(2)
O1	S1	N1	C1	-78.4(2)	C6	C5	C10	C9	-0.9(4)
O1	S1	C11	C12	-56.4(2)	C6	C7	C8	C9	-0.5(4)
O1	S1	C11	C13	63.1(2)	C7	C8	C9	F3	-179.8(3)
O1	S1	C11	C14	-178.9(2)	C7	C8	C9	C10	0.3(4)
N1	S1	C11	C12	58.5(2)	C8	C9	C10	F4	-180.0(3)
N1	S1	C11	C13	177.96(19)	C8	C9	C10	C5	0.5(4)
N1	S1	C11	C14	-64.0(2)	C10	C5	C6	F1	-178.1(2)
N1	C1	C5	C6	126.9(3)	C10	C5	C6	C7	0.6(4)
N1	C1	C5	C10	-54.6(4)	C2	C1	C5	C6	-113.7(3)
N1	C1	C2	C3	-69.3(3)	C2	C1	C5	C10	64.8(3)
C1	C5	C6	F1	0.5(4)	C11	S1	N1	C1	171.0(2)
Table S14 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å²×103) for CCDC 2067817.

Atom	x	y	z	U(eq)
H1A	4220.77	1212.23	7595.31	29
H8	1918.92	-177.81	3852.08	36
H2A	4033.17	-3955.75	7635.3	35
H2B	5470.56	-2615.51	7364.99	35
H1	2510(40)	-1210(70)	8348(16)	38
H4	6358.76	-1741.01	10072.09	48
H12A	861.91	-1997.97	9091.41	44
H12B	-561.45	-951.47	9470.08	44
H12C	991.46	573.53	9568.43	44
H13A	-870.71	3900.06	8784.8	49
H13B	-2284.86	2061.8	8612.87	49
H13C	-1804.17	3418.83	7782.83	49
H14A	-1445.88	-322.49	6995.27	48
H14B	-1970.65	-1886.65	7764.1	48
H14C	-348.34	-2396.79	7493.96	48
VII. Computational details.

All DFT geometry optimizations were performed with the dispersion-corrected B97D functional\(^5\) and 6-311+G(2d,2p) basis set as implemented within the Gaussian 16 series of programs.\(^6\) Solvent effects were included with the conductor-like polarizable continuum model (CPCM)\(^7\) to mimic the solvent (CH_2Cl_2 or THF) during both geometry optimizations and vibrational analysis. All energies presented for the reactant complex (RC), transition state (TS), and product (P) are given in Hartree. All energies have been corrected with zero-point energies (ZPE). Vibrational frequency calculations were performed at the same level of theory used for optimization. All transition states were verified to have only one negative eigenvalue in the Hessian matrix, describing the motion along the reaction coordinate. In addition, intrinsic reaction coordinate (IRC)\(^8\) calculations were performed at the wB97D/6-311+G(2d,2p) level to verify the expected connections of the first-order saddle points with the local minima found on the potential energy surface. Natural bond orbital (NBO)\(^9\) analysis of charges was performed at TPSS-D3/def2-TZVPP level of theory.\(^10,11\) Optimized structures were illustrated using CYLview20.3.\(^12\)

VIII. Natural bond orbital (NBO) analysis of charges of the different atoms in sulfinyl imines.

![Sulfinyl imine structure](image)

Table S15. NBO charges on different atoms of experimentally studied sulfinyl imines based on TPSS-D3/def2-TZVPP calculations.

Entry	R	S	O	N	C
1a	C_6F_5	1.1809	-0.8474	-0.5275	0.0766
1b	2,3,5,6-C_6H_4F_4	1.1808	-0.8478	-0.5243	0.0772
1c	2,6-C_6H_2F_3	1.1805	-0.8530	-0.5367	0.0816
1d	2,6-C_6H_4F_2	1.1802	-0.8538	-0.5339	0.0824
1e	2-C_6H_4F	1.1868	-0.8561	-0.5688	0.1005
1f	C_6H_5	1.1863	-0.8569	-0.5658	0.1016
Sulfanyl imine 1a

![Structure of Sulfanyl imine 1a](image)

Summary of Natural Population Analysis:

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
N	1	-0.52755	1.99940	5.50854	0.01961	7.52755
S	2	1.18094	9.99904	4.70637	0.11364	14.81906
C	3	-0.15636	1.99943	4.13596	0.02098	6.15636
C	4	-0.60940	1.99935	4.60103	0.00901	6.60940
H	5	0.22397	0.00000	0.77454	0.00149	0.77603
H	6	0.22779	0.00000	0.77047	0.00173	0.77221
C	7	0.20369	0.00000	0.79457	0.00174	0.79631
C	8	-0.60653	1.99936	4.59962	0.00755	6.60653
H	9	0.20244	0.00000	0.79555	0.00202	0.79756
H	10	0.21865	0.00000	0.77967	0.00167	0.78135
C	12	-0.60605	1.99937	4.59853	0.00815	6.60605
H	13	0.20997	0.00000	0.78826	0.00176	0.79003
H	14	0.22317	0.00000	0.77532	0.00151	0.77683
C	15	0.20350	0.00000	0.79484	0.00167	0.79650
O	16	-0.84736	1.99990	6.83647	0.01099	8.84736
C	17	0.07656	1.99932	3.89635	0.02777	5.92344
H	18	0.18011	0.00000	0.81322	0.00667	0.81989
C	19	-0.21310	1.99893	4.19613	0.01804	6.21310
C	20	0.34252	1.99846	3.63559	0.02343	5.65748
C	21	0.35462	1.99845	3.62306	0.02387	5.64538
C	22	0.23930	1.99833	3.73755	0.02503	5.76070
C	23	0.24104	1.99837	3.73551	0.02508	5.75896
C	24	0.27950	1.99839	3.69661	0.02550	5.72050
F	25	-0.24398	1.99994	7.23662	0.00742	9.24398
F	26	-0.26552	1.99994	7.25872	0.00686	9.26552
F	27	-0.24256	1.99994	7.23531	0.00731	9.24256
F	28	-0.25102	1.99994	7.24404	0.00706	9.25102
F	29	-0.25102	1.99994	7.24399	0.00708	9.25102

S Total
-0.00000
45.98582
105.59778
0.41640
152.00000
Sulfinyl imine 1b

![Molecular structure of Sulfinyl imine 1b]

Summary of Natural Population Analysis:

Atom No	Charge	Core	Valence	Rydberg	Total
N 1	-0.52432	1.99940	5.50552	0.01940	7.52432
S 2	1.18080	9.99904	4.70662	0.11354	14.81920
C 3	-0.15635	1.99943	4.13594	0.02099	6.15635
C 4	-0.60951	1.99935	4.60115	0.00901	6.60951
H 5	0.22460	0.00000	0.77391	0.00149	0.77540
H 6	0.22765	0.00000	0.77062	0.00173	0.77235
H 7	0.20328	0.00000	0.79498	0.00175	0.79672
C 8	-0.60652	1.99936	4.59964	0.00752	6.60652
H 9	0.20231	0.00000	0.79568	0.00202	0.79769
H 10	0.21907	0.00000	0.77928	0.00165	0.78093
H 11	0.21231	0.00000	0.78589	0.00180	0.78769
C 12	-0.60601	1.99937	4.59849	0.00815	6.60601
H 13	0.20965	0.00000	0.78857	0.00177	0.79035
H 14	0.23303	0.00000	0.77545	0.00152	0.77697
H 15	0.20334	0.00000	0.79499	0.00168	0.79666
O 16	-0.84778	1.99990	6.83690	0.01098	8.84778
C 17	0.07725	1.99932	3.89577	0.02766	5.92275
H 18	0.17984	0.00000	0.81349	0.00667	0.82016
C 19	-0.20065	1.99893	4.18410	0.01761	6.20056
C 20	0.33312	1.99842	3.64586	0.02260	5.66688
C 21	0.34220	1.99842	3.63418	0.02521	5.65780
C 22	0.30021	1.99840	3.67778	0.02360	5.69979
C 23	0.30231	1.99844	3.67545	0.02380	5.69769
C 24	-0.28618	1.99900	4.27453	0.01265	6.28638
H 25	0.25047	0.00000	0.74807	0.00146	0.74953
F 26	-0.27038	1.99994	7.26376	0.00668	9.27038
F 27	-0.24710	1.99994	7.24010	0.00706	9.24710
F 28	-0.26823	1.99994	7.26161	0.00667	9.26823
F 29	-0.26841	1.99994	7.26172	0.00674	9.26841

* Total * | -0.00000 | 43.98657 | 99.62005 | 0.39338 | 144.00000
Sulfinyl imine 1c

![Sulfinyl imine 1c](image)

Summary of Natural Population Analysis:

Atom	No	Charge	Core	Valence	Rydberg	Total
N	1	-0.53669	1.99940	5.51790	0.01939	7.53669
S	2	1.18053	9.99904	4.70635	0.11408	14.81947
C	3	-0.15723	1.99943	4.13670	0.02110	6.15723
C	4	-0.60942	1.99936	4.60103	0.00903	6.60942
H	5	0.22430	0.00000	0.77419	0.00151	0.77570
H	6	0.22743	0.00000	0.77081	0.00176	0.77257
H	7	0.20186	0.00000	0.79637	0.00177	0.79814
C	8	-0.60613	1.99936	4.59922	0.00756	6.60613
H	9	0.20181	0.00000	0.79614	0.00205	0.79819
H	10	0.21898	0.00000	0.77934	0.00168	0.78102
H	11	0.21079	0.00000	0.78739	0.00182	0.78921
C	12	-0.60561	1.99937	4.59808	0.00816	6.60561
H	13	0.20837	0.00000	0.78984	0.00179	0.79163
H	14	0.22290	0.00000	0.77557	0.00153	0.77710
H	15	0.20280	0.00000	0.79550	0.00169	0.79720
O	16	-0.85303	1.99990	6.84219	0.01093	8.85303
C	17	0.08156	1.99932	3.89156	0.02757	5.91844
H	18	0.17716	0.00000	0.81595	0.00689	0.82284
C	19	-0.24232	1.99887	4.22625	0.01719	6.24232
C	20	0.42325	1.99855	3.55602	0.02217	5.57679
C	21	0.43353	1.99854	3.54504	0.02288	5.56674
C	22	-0.34303	1.99893	4.33144	0.01265	6.34303
C	23	-0.33947	1.99896	4.32803	0.01249	6.33947
C	24	0.40405	1.99854	3.57468	0.02273	5.59595
H	25	0.24854	0.00000	0.75005	0.00141	0.75146
H	26	0.24797	0.00000	0.75065	0.00137	0.75203
F	27	-0.27832	1.99994	7.27183	0.00655	9.27832
F	28	-0.28461	1.99994	7.27814	0.00653	9.28461
F	29	-0.25999	1.99994	7.25317	0.00688	9.25999

* Total *
-0.00000 | 41.98740 | 93.63945 | 0.37314 | 136.00000
Sulfynyl imine 1d

![Image of a chemical structure](image)

Summary of Natural Population Analysis:

Atom	No.	Natural Charge	Core	Valence	Rydberg	Total
N	1	-0.53394	1.99941	5.51543	0.01910	7.53394
S	2	1.18025	9.99904	4.70671	0.11399	14.81975
C	3	-0.15723	1.99943	4.13668	0.02113	6.15723
C	4	-0.09454	1.99936	4.60116	0.00903	6.60954
H	5	0.22500	0.00000	0.77349	0.00151	0.77500
H	6	0.22724	0.00000	0.77099	0.00176	0.77276
H	7	0.20131	0.00000	0.79691	0.00178	0.79869
C	8	-0.06111	1.99936	4.59922	0.00753	6.60611
H	9	0.20166	0.00000	0.79630	0.00204	0.79834
H	10	0.21948	0.00000	0.77886	0.00166	0.78052
H	11	0.21029	0.00000	0.78788	0.00183	0.78971
C	12	-0.60553	1.99937	4.59800	0.00816	6.60553
H	13	0.20792	0.00000	0.79027	0.00181	0.79208
H	14	0.22275	0.00000	0.77572	0.00154	0.77725
H	15	0.20259	0.00000	0.79570	0.00170	0.79741
O	16	-0.85383	1.99990	6.84301	0.01091	8.85383
C	17	0.08242	1.99932	3.89086	0.02740	5.91758
H	18	0.17701	0.00000	0.81614	0.00685	0.82299
C	19	-0.23216	1.99889	4.21566	0.01761	6.23216
C	20	0.41033	1.99853	3.56952	0.02162	5.58967
C	21	0.41863	1.99852	3.55915	0.02370	5.58137
C	22	-0.28274	1.99908	4.27033	0.01334	6.28274
C	23	-0.27862	1.99910	4.26610	0.01341	6.27862
C	24	-0.15005	1.99925	4.13767	0.01313	6.15005
H	25	0.21752	0.00000	0.78145	0.00103	0.78248
F	26	-0.29127	1.99994	7.28505	0.00627	9.29127
F	27	-0.26628	1.99994	7.25966	0.00667	9.26628
H	28	0.23176	0.00000	0.76697	0.00127	0.76824
H	29	0.23114	0.00000	0.76756	0.00130	0.76886

* Total * 0.00000 39.98844 87.65247 0.35909 128.00000
Sulfinyl imine 1e

Summary of Natural Population Analysis:

Atom	No	Charge	Core	Valence	Rydberg	Total
N	1	-0.56879	1.99939	5.54981	0.01960	7.56879
S	2	1.18683	9.99904	4.69913	0.11499	14.81317
C	3	-0.15785	1.99942	4.13724	0.02118	6.15785
C	4	-0.60803	1.99936	4.59966	0.00901	6.60803
H	5	0.21824	0.00000	0.78013	0.00163	0.78176
H	6	0.22855	0.00000	0.76965	0.00180	0.77145
H	7	0.20194	0.00000	0.79627	0.00179	0.79806
C	8	-0.60540	1.99936	4.59846	0.00758	6.60540
H	9	0.20211	0.00000	0.79583	0.00206	0.79789
H	10	0.21684	0.00000	0.78148	0.00167	0.78316
H	11	0.21040	0.00000	0.78777	0.00183	0.78960
C	12	-0.60567	1.99937	4.59812	0.00817	6.60567
H	13	0.20786	0.00000	0.79033	0.00181	0.79214
H	14	0.22327	0.00000	0.77520	0.00153	0.77673
H	15	0.20285	0.00000	0.79544	0.00171	0.79715
O	16	-0.85610	1.99990	6.84528	0.01091	8.85610
C	17	0.10053	1.99930	3.87314	0.02702	5.89947
H	18	0.15530	0.00000	0.83757	0.00713	0.84470
C	19	-0.13575	1.99909	4.11843	0.01823	6.13575
C	20	-0.14344	1.99918	4.13158	0.01269	6.14344
C	21	-0.13538	1.99915	4.12301	0.01322	6.13538
C	22	-0.26750	1.99908	4.25523	0.01319	6.26750
C	23	-0.26039	1.99909	4.24849	0.01281	6.26039
C	24	0.37958	1.99853	3.60014	0.02175	5.62042
H	25	0.21105	0.00000	0.78754	0.00141	0.78895
H	26	0.23229	0.00000	0.76613	0.00158	0.76771
H	27	0.22854	0.00000	0.77008	0.00137	0.77146
H	28	0.22053	0.00000	0.77013	0.00134	0.77147
F	29	-0.29043	1.99994	7.28417	0.00612	9.29043

* Total * | -0.00000 | 37.98921 | 81.66546 | 0.34532 | 120.00000
Sulfinyl imine 1f

Summary of Natural Population Analysis:

Atom	No	Charge	Core	Valence	Rydberg	Total
N	1	-0.56578	1.99939	5.54678	0.01961	7.56578
S	2	1.18627	9.99904	4.69976	0.11493	14.81373
C	3	-0.15787	1.99942	4.13724	0.02120	6.15787
C	4	-0.60817	1.99980	5.59980	0.00901	6.60817
H	5	0.21388	0.00000	0.77948	0.00164	0.78112
H	6	0.22839	0.00000	0.76981	0.00180	0.77161
H	7	0.20138	0.00000	0.79682	0.00180	0.79862
C	8	-0.60547	1.99936	4.59853	0.00758	6.60547
H	9	0.20193	0.00000	0.79601	0.00206	0.79807
H	10	0.21732	0.00000	0.78100	0.00168	0.78268
H	11	0.20988	0.00000	0.78828	0.00184	0.79012
C	12	-0.60559	1.99957	4.59804	0.00818	6.60559
H	13	0.20742	0.00000	0.79076	0.00182	0.79258
H	14	0.22310	0.00000	0.77536	0.00154	0.77690
H	15	0.20265	0.00000	0.79564	0.00171	0.79735
O	16	-0.85690	1.99990	6.84611	0.01089	8.85690
C	17	0.10165	1.99930	3.87201	0.02703	5.89835
H	18	0.15432	0.00000	0.83850	0.00718	0.84568
C	19	-0.12263	1.99909	4.10481	0.01873	6.12263
C	20	-0.15928	1.99916	4.14746	0.01265	6.15928
C	21	-0.15193	1.99914	4.13971	0.01309	6.15193
C	22	-0.20418	1.99923	4.19164	0.01331	6.20418
C	23	-0.19908	1.99923	4.18677	0.01308	6.19908
C	24	-0.17726	1.99924	4.16492	0.01310	6.17726
H	25	0.20605	0.00000	0.79248	0.00146	0.79395
H	26	0.22724	0.00000	0.77116	0.00160	0.77276
H	27	0.20982	0.00000	0.78895	0.00124	0.79018
H	28	0.20979	0.00000	0.78899	0.00121	0.79021
H	29	0.20804	0.00000	0.79078	0.00118	0.79196

* Total * -0.00000 35.99024 75.67760 0.33216 112.00000
IX. Cartesian coordinates of optimized structures.

Sulfinyl imine 1a

Center Number	Atomic Number	Atomic Type	Coordinates (Ångstroms)	X	Y	Z
1	7	0	0.342465	-0.039253	0.216642	
2	16	0	1.091084	-0.723996	-0.683629	
3	6	0	2.345806	0.505719	0.064579	
4	6	0	2.368183	0.307130	1.578933	
5	1	0	1.422124	0.614701	2.031106	
6	1	0	2.549447	-0.744536	1.823001	
7	1	0	3.180282	0.908737	2.006624	
8	6	0	1.910076	1.912545	-0.354711	
9	1	0	1.805373	1.994725	-1.443441	
10	1	0	0.968721	2.193435	0.118813	
11	1	0	2.680549	2.632838	-0.042914	
12	6	0	3.678828	0.099926	-0.579581	
13	1	0	4.474504	0.750836	-0.197897	
14	1	0	3.932422	-0.935335	-0.332647	
15	9	0	3.650373	0.204705	-1.670741	
16	8	0	1.370382	-2.076792	-0.045401	
17	6	0	1.419528	-0.144100	-0.485098	
18	1	0	1.417911	-0.536147	-1.510179	
19	6	0	2.739848	0.240098	0.019369	
20	6	0	3.860698	0.050325	-0.811943	
21	6	0	2.988470	0.798512	1.288986	
22	6	0	5.153378	0.381092	-0.419795	
23	6	0	4.276195	1.136736	1.700281	
24	6	0	5.360584	0.929166	0.846262	
25	9	0	6.596086	1.255385	1.241394	
26	9	0	3.697723	-0.477046	-2.042556	
27	9	0	-1.991418	1.030196	2.150208	
28	9	0	-6.193821	0.179686	-1.242935	
29	9	0	-4.482311	1.667347	2.915486	

Sulfinyl imine 1b

Center Number	Atomic Number	Atomic Type	Coordinates (Ångstroms)	X	Y	Z
1	7	0	-3.40409	-0.052449	0.221949	
2	16	0	1.094104	-0.731373	-0.680845	
3	6	0	2.344526	0.504962	0.065041	
4	6	0	2.370003	0.306907	1.579111	
5	1	0	1.422610	0.608704	2.032364	
6	1	0	2.557382	-0.743647	1.823005	
7	1	0	3.179076	0.913445	2.005681	
8	6	0	1.905363	1.909606	-0.354118	
9	1	0	1.792608	1.990492	-1.442566	
10	1	0	0.960401	2.186866	0.122308	
11	1	0	2.669819	2.633444	-0.045490	
12	6	0	3.678275	0.105312	-0.581442	
13	1	0	4.471814	0.759362	-0.200588	
14	1	0	3.938414	-0.929013	-0.335423	
15	1	0	3.647734	0.210472	-1.672520	
16	8	0	1.380839	-2.082096	-0.041484	
17	6	0	-1.409375	-0.147200	-0.483455	
18	1	0	-1.412214	-0.530412	-1.511802	
19	6	0	-2.737324	0.237810	0.020676	
20	6	0	-3.855051	0.048683	-0.815544	
21	6	0	-2.984974	0.795495	1.290735	
22	6	0	-5.142972	0.385287	-0.410659	
23	6	0	-4.279972	1.129573	1.685257	
24	6	0	-5.369498	0.931157	0.846083	
25	1	0	-6.371570	1.194430	1.166138	
26	9	0	-3.686005	-0.478424	-2.047419	
27	9	0	-1.986097	1.025533	2.152651	
28	9	0	-6.176594	0.177965	-1.252141	
29	9	0	-4.471986	1.661075	2.910214	
Sulfinyl imine 1c

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	7	0	-0.335417	-0.056567	0.238513
2	16	0	1.090869	-0.741536	-0.660484
3	6	0	2.344662	0.505690	0.061514
4	6	0	2.377625	0.328195	1.578062
5	1	0	1.431417	0.634705	2.030696
6	1	0	2.567026	-0.719102	1.834659
7	1	0	3.188024	0.940971	1.993324
8	6	0	1.902911	1.904778	-0.373087
9	1	0	1.786017	1.971803	-1.462068
10	1	0	0.958734	2.185719	0.102697
11	1	0	2.667424	2.633583	-0.076080

Sulfinyl imine 1d

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	7	0	-0.332951	-0.069477	0.242257
2	16	0	1.094187	-0.747044	-0.660177
3	6	0	2.343379	0.505381	0.061810
4	6	0	2.378251	0.326514	1.578141
5	1	0	1.430699	0.627606	2.031486
6	1	0	2.572956	-0.720184	1.833294
7	1	0	3.185902	0.942839	1.993648
8	6	0	1.894987	1.902937	0.089081
9	1	0	1.775074	1.970211	-1.459571
10	1	0	0.950468	2.173930	0.106871
11	1	0	2.656935	2.634854	-0.074740
12	6	0	3.676109	0.105700	-0.586196
13	1	0	4.468967	0.766962	-0.216134
14	1	0	3.941324	-0.925127	-0.330910
15	1	0	3.639603	0.199034	-1.677236
16	8	0	3.185902	0.942839	1.993648
17	6	0	1.894987	1.902937	-0.370830
18	1	0	1.775074	1.970211	-1.459571
19	1	0	0.950468	2.173930	0.106871
20	1	0	2.656935	2.634854	-0.074740
21	1	0	3.676109	0.105700	-0.586196
22	1	0	4.468967	0.766962	-0.216134
23	1	0	3.941324	-0.925127	-0.330910
24	1	0	3.639603	0.199034	-1.677236
25	1	0	1.401596	-2.089152	0.000960
26	8	0	1.401596	-2.089152	0.000960
27	9	0	1.997057	1.007648	2.156461
28	1	0	5.966015	0.215000	-1.131261
29	1	0	-4.430854	1.555804	2.693991
Sulfinyl imine 1e

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	7	0	-0.364759	-0.130948	0.260239
2	16	0	1.086566	-0.823530	-0.567465
3	6	0	2.303938	0.507253	0.067891
4	6	0	2.335404	0.438640	1.593080
5	1	0	1.382815	0.760513	2.021360
6	1	0	2.540388	-0.584825	1.923470
7	1	0	3.133426	1.092819	1.967033
8	6	0	1.831012	1.860122	-0.467321
9	1	0	1.719108	1.845479	-1.558766
10	1	0	0.867482	2.151359	-0.018969
11	1	0	2.574922	2.627972	-0.220498
12	6	0	3.648597	0.089086	-0.542762
13	1	0	4.425854	0.791958	-0.219149
14	1	0	3.932884	-0.914596	-0.211324
15	1	0	4.613322	0.101034	-1.638801
16	8	0	1.424641	-2.106184	0.180088
17	6	0	-1.417594	-0.211875	-0.475184
18	1	0	-1.387202	-0.596464	-1.507055
19	6	0	-2.741808	0.199482	0.002132
20	6	0	-3.856070	0.136732	-0.877470
21	6	0	-2.943646	0.655334	1.318804
22	6	0	-5.109732	0.522786	-0.465194
23	6	0	-4.207501	1.041744	1.746309
24	6	0	-5.267131	0.969040	0.842232
25	1	0	-3.686933	-0.219222	-1.894502
26	1	0	-2.095338	0.692768	1.995489
27	1	0	-5.965603	0.480781	-1.130940
28	1	0	-4.386514	1.392236	2.757842
29	9	0	-6.503151	1.347440	1.258240

Sulfinyl imine 1f

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	7	0	-0.361295	-0.143824	0.268626
2	16	0	1.090122	-0.832038	-0.562295
3	6	0	2.303043	0.506255	0.066830
4	6	0	2.339212	0.440426	1.592060
5	1	0	1.386001	0.757608	2.022399
6	1	0	2.550576	-0.581443	1.923420
7	1	0	3.134791	1.099522	1.962728
8	6	0	1.821888	1.855921	-0.469062
9	1	0	1.705913	1.838677	-1.560064
10	1	0	0.867482	2.143455	-1.642870
11	1	0	2.563149	2.627737	-0.226473
12	6	0	3.648017	0.093814	-0.546894
13	1	0	4.423032	0.800439	-0.225934
14	1	0	3.937605	-0.908328	-0.215311
15	1	0	3.617274	0.104548	-1.642870
16	8	0	1.437211	-2.111178	0.187450
17	6	0	-1.413277	-0.217076	-0.468448
18	1	0	-1.382079	-0.596646	-1.502258
19	6	0	-2.738996	0.197632	0.007830
20	6	0	-3.827056	0.142711	-0.879361
21	6	0	-2.944897	0.646644	1.325215
22	6	0	-5.099163	0.533289	-0.462605
23	6	0	-4.215300	1.032830	1.738217
24	6	0	-5.294196	0.978995	0.846338
25	1	0	-3.669473	-0.208842	-1.897191
26	1	0	-2.098938	0.677265	2.005536
27	1	0	-5.935832	0.488219	-1.154525
28	1	0	-4.372241	1.375620	2.757858
29	1	0	-6.285100	1.281930	1.174751
RC for Si attack in DCM of 1a with 2a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
1	12	0	X 1.752059 Y 0.993972 Z 1.338645
2	6	0	X 0.168084 Y 0.976086 Z 2.770136
3	6	0	X -0.508465 Y -0.099134 Z 2.991829
4	6	0	X -1.144228 Y -1.244342 Z 3.141462
5	6	0	X -0.464268 Y -1.365487 Z 0.052405
6	7	0	X 0.694645 Y -0.824521 Z 0.013671
7	1	0	X -0.593773 Y -2.414239 Z 0.308682
8	16	0	X 2.004027 Y -1.808736 Z 0.482680
9	8	0	X 2.804406 Y -0.775112 Z 1.253745
10	6	0	X -1.687624 Y -0.640647 Z -0.252089
11	6	0	X -2.908015 Y -1.284560 Z -0.032947
12	6	0	X -1.737088 Y 0.662058 Z -0.753997
13	6	0	X -4.118286 Y -0.669696 Z -0.274392
14	6	0	X -2.939964 Y 1.292082 Z -1.006002
15	6	0	X -4.130850 Y 0.626986 Z -0.762093
16	35	0	X 2.984442 Y 2.860563 Z 0.251230
17	6	0	X 2.845665 Y -2.002998 Z -1.153502
18	6	0	X 3.046930 Y -0.651062 Z -1.818994
19	1	0	X 3.605494 Y 0.029918 Z -1.177971
20	1	0	X 3.621608 Y -0.802819 Z -2.733265
21	1	0	X 2.099500 Y -1.853932 Z -2.083553
22	6	0	X 1.960228 Y -2.934008 Z -1.976311
23	1	0	X 1.758235 Y -3.871048 Z -1.455633
24	1	0	X 1.014943 Y -2.462675 Z -2.243370
25	1	0	X 2.483257 Y -3.174884 Z -2.901885
26	6	0	X 4.179822 Y -2.663355 Z -0.804593
27	1	0	X 4.039726 Y -3.618937 Z -0.297716
28	1	0	X 4.722853 Y -2.850674 Z -1.730925
29	1	0	X 4.789025 Y -2.014336 Z -0.177321
30	1	0	X -0.769050 Y -2.007781 Z 3.811315
31	1	0	X -2.095398 Y -1.429544 Z 2.660040
32	1	0	X -0.041888 Y 1.826008 Z 3.419160
33	9	0	X -5.256914 Y -1.302805 Z -0.043301
34	9	0	X -5.278246 Y 1.228102 Z -0.999210
35	9	0	X -2.924366 Y -2.525256 Z 0.438106
36	9	0	X -0.632691 Y 1.333327 Z -1.031033
37	9	0	X -2.962142 Y 2.525526 Z -1.483921

TS for Si attack in DCM of 1a with 2a

Imaginary frequency: -362.8069

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	12	0	X 1.935766 Y 0.978448 Z 1.031645		
2	6	0	X 0.807175 Y 0.950552 Z 2.953043		
3	6	0	X -0.075306 Y 0.058769 Z 3.020668		
4	6	0	X -0.928905 Y -0.969125 Z 2.822759		
5	6	0	X -0.473307 Y -1.183641 Z 0.600035		
6	7	0	X 0.720036 Y -0.722492 Z 0.271613		
7	1	0	X -0.609878 Y -2.242822 Z 0.776230		
8	16	0	X 2.012215 Y -1.770958 Z 0.523472		
9	8	0	X 3.064002 Y -0.758491 Z 0.971005		
10	6	0	X -1.685083 Y -0.490808 Z 0.129041		
11	6	0	X -2.879861 Y -1.206445 Z 0.080273		
12	6	0	X -1.733346 Y 0.832060 Z -0.297301		
13	6	0	X -4.058501 Y -0.653717 Z -0.377023		
14	6	0	X -2.903404 Y 1.408759 Z -0.757673		
15	6	0	X -4.069076 Y 0.664835 Z -0.800020		
16	35	0	X 2.752482 Y 2.860665 Z -0.352488		
17	6	0	X 2.454561 Y -2.199635 Z -1.22586		
18	6	0	X 2.655936 Y -0.936672 Z -2.043990		
19	1	0	X 3.437770 Y -0.307977 Z -1.619939		
20	1	0	X 2.961162 Y -1.224264 Z -3.050788		
21	1	0	X 1.738444 Y -0.355316 Z -2.117334		
Center	Atomic Number	Atomic Type	X	Y	Z
--------	---------------	-------------	-------------	-------------	-------------
1	12	0	2.221079	0.606913	1.256903
2	6	0	0.679391	1.482991	3.341757
3	6	0	0.081226	0.488502	3.032821
4	6	0	-0.620642	-0.746915	2.693747
5	6	0	-0.463193	-1.180705	1.206702
6	7	0	0.820327	-0.796832	0.661370
7	1	0	-0.568945	-2.264982	1.216033
8	16	0	1.939639	-1.957246	0.468345
9	8	0	3.204152	-1.156817	0.867364
10	6	0	-1.582275	-0.669652	0.313139
11	6	0	-2.516304	-1.545714	-0.217455
12	6	0	-1.694017	0.658234	-0.071792
13	6	0	-3.510355	-1.137811	-1.090690
14	6	0	-2.675107	1.096940	-0.941737
15	6	0	-3.589857	0.193077	-1.454204
16	35	0	3.115901	2.876001	0.948192
17	6	0	2.119627	-2.142623	-1.366917
18	6	0	2.381984	-0.790856	-2.008459
19	1	0	3.324784	-0.365676	-1.665598
20	1	0	2.440363	-0.914244	-3.090821
21	1	0	1.574287	-0.091359	-1.791136
22	6	0	0.796000	-2.737878	-1.890057
23	1	0	0.549146	-3.656446	-1.303070
24	1	0	-0.020390	-2.026956	-1.710730
25	1	0	0.869124	-2.980861	-2.899717
26	6	0	3.279421	-3.110342	-1.583244
27	1	0	3.097287	-4.069029	-1.094462
28	1	0	3.400674	-3.297050	-2.651229
29	1	0	4.211072	-2.694699	-1.200844
30	1	0	-0.203028	-1.540002	3.315576
31	1	0	-1.673406	-0.652707	2.961404
32	1	0	1.161332	2.385254	3.637837
33	9	0	-2.467073	-2.844561	0.091762
34	9	0	-4.379012	-2.014081	-1.581330
35	9	0	-4.535205	0.602640	-2.287553
36	9	0	-2.746767	2.376849	-1.286663
37	9	0	-0.836669	1.567775	0.392115

PRODUCT for Si attack in DCM of 1a with 2a
RC for Re attack in DCM of 1a with 2a

Center	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	12	0	-2.095113	1.332956	0.402503
2	6	0	-1.080424	1.065005	2.257687
3	6	0	-0.245928	0.104134	2.480627
4	6	0	0.578434	-0.909065	2.643881
5	6	0	0.169037	-1.194897	-1.135451
6	7	0	-0.894131	-0.609008	-0.756357
7	1	0	0.159116	-2.053101	-1.803639
8	16	0	-2.419814	-1.091634	-1.346055
9	8	0	-3.236096	0.053696	-0.780086
10	6	0	1.480768	-0.774374	-0.650833
11	6	0	2.463196	-1.743153	-0.471756
12	6	0	1.798657	0.539053	-0.314621
13	6	0	3.702737	-1.437583	0.053102
14	6	0	3.037719	0.868719	0.197345
15	6	0	3.987001	-0.123814	0.388943
16	35	0	-2.665424	3.631879	-0.397325
17	6	0	-2.813948	-2.570840	-0.281662
18	6	0	-2.742421	-2.206267	1.190624
19	1	0	-3.439059	-1.405902	1.434677
20	1	0	-3.024992	-3.085235	1.771181
21	1	0	-1.738244	-1.906800	1.487430
22	6	0	-1.838779	-3.682944	-0.649222
23	1	0	-1.781415	-3.845778	-1.726813
24	1	0	-0.840450	-3.498179	-0.255390
25	1	0	-2.196743	-4.607935	-0.196962
26	6	0	-4.240654	-2.922204	-0.709045
27	1	0	-4.295100	-3.184950	-1.765839
28	1	0	-4.565649	-3.786104	-0.129228
29	1	0	-4.928190	-2.101539	-0.509431
30	1	0	1.628591	-0.829046	2.390286
31	1	0	0.239665	-1.842714	3.076280
32	1	0	-1.201858	1.780006	3.072896
33	9	0	2.195931	-3.009626	-0.772111
34	9	0	4.610869	-2.382064	0.239217
35	9	0	5.168277	0.185970	0.884702
36	9	0	3.327666	2.123445	0.498998
37	9	0	0.934220	1.519829	-0.519746

TS for Re attack in DCM of 1a with 2a

Imaginary frequency: -346.1914
Center Number	Atomic Number	Atomic Type	X	Y	Z
1	12	0	-2.024246	0.209499	-0.219732
2	6	0	0.480012	2.361783	-1.081365
3	6	0	-0.944980	2.679260	-1.029076
4	6	0	-2.121675	2.907204	-0.955783
5	6	0	0.847290	1.442630	0.107109
6	7	0	0.050877	0.217641	0.171443
7	1	0	0.563471	1.953696	1.002319
8	16	0	0.297441	-0.895894	0.999033
9	8	0	-1.163621	-1.130240	-1.478646
10	6	0	2.341260	1.193021	0.247696
11	6	0	2.865299	1.059980	1.528047
12	6	0	3.234225	1.007692	-0.797218
13	6	0	4.191844	0.760280	1.769794
14	6	0	4.570559	0.706827	0.587392
15	6	0	5.052647	0.580950	0.701230
16	35	0	-4.313261	0.441874	0.669293
17	6	0	0.686473	-2.459737	-0.081321
18	6	0	-0.402944	-2.770371	0.930774
19	1	0	-1.365754	-2.920228	0.443234
20	1	0	-0.144229	-3.689658	1.457988
21	1	0	-0.492716	-1.972611	1.668142
22	6	0	2.030289	-2.232088	0.602518
23	1	0	2.797494	-1.907225	0.103168
24	1	0	1.942909	-1.491218	1.395033
25	1	0	2.364553	-3.169683	1.048158
26	6	0	0.786815	-3.543381	-1.152570
27	1	0	1.555790	-3.306708	1.889697
28	1	0	1.054557	-4.489450	-0.680263
29	1	0	-0.163575	-3.675595	-1.667949
30	1	0	-3.155975	3.155301	-0.905517
31	1	0	1.058650	3.285792	-1.038958
32	1	0	0.699627	1.883191	-2.033530
33	9	0	6.327408	0.292150	0.912550
34	9	0	4.640908	0.635191	3.012120
35	9	0	2.065105	1.193564	2.586473
36	9	0	5.387184	0.555182	-1.619454
37	9	0	2.837156	1.094738	-2.069103
RC for Si attack in THF of 1a with 2a

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	16	0	-1.305457	1.969138	-1.216155
2	7	0	-0.164330	0.737919	-0.639880
3	8	0	-0.660448	2.682255	-2.344182
4	6	0	1.020257	0.951419	-1.054390
5	1	0	1.204419	1.807815	-1.703601
6	6	0	2.199201	0.180738	-0.664814
7	6	0	2.208941	-1.175937	-0.372722
8	6	0	3.401541	0.869354	-0.526474
9	6	0	3.343603	-1.822900	0.067265
10	6	0	4.551391	0.248544	-0.079122
11	6	0	4.518827	-1.103130	0.221743
12	12	0	-1.119260	-1.057832	0.301214
13	8	0	-2.984338	-0.270746	0.781290
14	6	0	-4.114626	-0.097815	-0.094298
15	6	0	-5.173172	-1.076663	0.417642
16	6	0	-4.712359	-1.422227	1.851330
17	6	0	-3.539858	-0.482477	2.092429
18	1	0	-5.201758	-1.967794	-0.204500
19	1	0	-2.751237	-0.878890	2.724806
20	1	0	-5.495502	-1.278172	2.591721
21	1	0	-4.378807	-2.456494	1.906602
22	1	0	-6.159793	-0.619661	0.402058
23	1	0	-4.444404	0.940262	-0.011644
24	1	0	-3.866464	0.483217	2.485735
25	1	0	-3.778457	-0.297768	-1.106285
26	6	0	-1.165209	3.144654	0.242758
27	6	0	-2.069854	4.303506	-0.181798
28	1	0	-2.099717	5.032023	0.628822
29	1	0	-1.692250	4.797186	-1.075408
30	1	0	-3.091460	3.968027	-0.367896
31	6	0	0.274938	3.604110	0.404540
32	1	0	0.286809	4.450615	1.092349
33	1	0	0.903884	2.824724	0.833516
34	1	0	0.695061	3.940181	-0.543103
35	6	0	-1.699031	2.479080	1.502455
36	1	0	-2.737386	2.176139	1.382200
37	1	0	-1.105459	1.615584	1.799054
38	1	0	-1.655769	3.208886	2.312605
39	35	0	-1.901979	-2.497354	-1.610212
40	6	0	1.598259	0.699781	2.697453
41	1	0	1.290858	1.616093	3.191568
42	1	0	2.629946	0.599063	2.413886
43	6	0	0.728338	-0.273495	2.486622
44	6	0	-0.136478	-1.187383	2.191079
45	1	0	-0.285214	-1.967542	2.973983
46	9	0	1.111556	-1.905935	-0.561627
47	9	0	3.448037	2.170793	-0.784476
48	9	0	5.673448	0.933831	0.070059
49	9	0	5.609183	-1.709201	0.647260
50	9	0	3.320888	-3.117686	0.333766

TS for Si attack in THF of 1a with 2a

Imaginary frequency: -355.8269

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	16	0	-1.101403 1.938963 -1.312504		
2	7	0	-0.099495 0.802764 -0.493841		
3	8	0	-0.215086 2.729292 -2.211897		
4	6	0	1.040362 1.258378 -0.009311		
5	1	0	1.242377 2.320915 -0.060906		
6	6	0	2.276497 0.450167 -0.013085		
7	6	0	2.359642 -0.897582 -0.327698		
8	6	0	3.485870 1.089670 0.257808		
Center	Atomic Number	Atomic Type	Coordinates (Ångstroms)		
--------	---------------	-------------	------------------------		
			X	Y	Z
1	6	0	3.558147	-1.584397	-0.365931
10	6	0	4.698785	0.432915	0.228786
11	6	0	4.735640	-0.916146	-0.083665
12	6	0	-0.967432	-1.077293	0.027058
13	8	0	-2.963672	-0.507837	0.075989
14	6	0	-3.836899	-0.505429	-1.082288
15	6	0	-5.171907	-1.026695	-0.582146
16	6	0	-5.170294	-0.578481	0.878690
17	6	0	-3.724565	-0.804782	1.272739
18	1	0	-5.200030	-2.114406	-0.644285
19	1	0	-3.539500	-1.844818	1.547054
20	1	0	-5.426622	0.478840	0.957235
21	1	0	-5.854363	-1.147911	1.502800
22	1	0	-6.003614	-0.623722	-1.154602
23	1	0	-3.900130	0.521585	-1.441489
24	1	0	-3.362916	-0.149498	2.061456
25	1	0	-3.385349	-1.131960	-1.848468
26	6	0	-1.711336	3.189113	-0.054083
27	6	0	-2.771788	3.951966	-0.895814
28	1	0	-3.248252	4.683053	-0.201247
29	1	0	-2.326189	4.484039	-1.695431
30	1	0	-3.547784	3.285255	-1.235325
31	6	0	-0.600896	4.142009	0.366276
32	1	0	-1.050921	5.018101	0.836024
33	1	0	0.077709	3.696227	1.088477
34	1	0	-0.031516	4.475483	-0.500392
35	6	0	-2.355535	2.469760	1.121068
36	1	0	-3.213598	1.883996	0.792766
37	1	0	-1.660737	1.804627	1.630776
38	1	0	-2.707259	3.213321	1.838024
39	35	0	-1.429826	-3.455952	-0.637949
40	6	0	0.983167	1.333264	2.305229
41	1	0	0.485830	2.263053	2.551968
42	1	0	2.048526	1.308633	2.483974
43	6	0	0.268312	0.187181	2.386681
44	6	0	-0.437656	-0.830451	2.181745
45	1	0	-0.866230	-1.529807	2.883450
46	9	0	1.261901	-1.607055	-0.634441
47	9	0	3.485492	2.382128	0.573837
48	9	0	5.821774	1.080428	0.499426
49	9	0	5.888362	-1.559976	-0.111597
50	9	0	3.582267	-2.871833	-0.671281

PRODUCT for Si attack in THF of 1a with 2a
Center	Atomic Number	Atomic	Type	X	Y	Z
1	16	0	-1.587562	2.185817	-0.689007	
2	7	0	-0.300648	1.100072	-0.159539	
3	8	0	-0.944492	3.314874	-1.406107	
4	6	0	0.853655	1.513225	-0.512054	
5	1	0	0.931858	2.440484	-1.080774	
6	6	0	2.105187	0.828234	-0.210463	
7	6	0	3.211118	1.061568	-1.025662	
8	6	0	2.281250	-0.030531	0.869826	
9	6	0	4.426387	0.445552	-0.799848	
10	6	0	3.485829	-0.650927	1.121900	
11	6	0	4.560417	-0.414907	0.277474	
12	12	0	-0.789307	-1.122237	0.183258	
13	35	0	-1.768029	-1.961444	2.328130	
14	8	0	-2.421677	-0.956797	-1.058505	
15	6	0	-3.722878	-1.514116	-0.734991	
16	6	0	-4.512772	-1.444497	-2.027802	
17	6	0	-3.421433	-1.627600	-3.081344	
18	6	0	-2.277908	-0.824268	-2.495561	
19	1	0	-4.987182	-0.468618	-2.134603	
20	1	0	-2.355997	0.235231	-2.742152	
21	1	0	-3.135773	-2.676674	-3.158922	
22	1	0	-3.709362	-1.266329	-4.065550	
23	1	0	-5.282961	-2.210627	-2.06970	
24	1	0	-3.574263	-2.540338	-0.400590	
25	1	0	-1.295619	-1.201259	-2.769245	
26	1	0	-4.141314	-0.928941	0.079578	
27	6	0	0.732667	-2.189890	-0.909195	
28	1	0	1.475983	-2.609218	-0.227008	
29	1	0	1.255608	-1.564906	-1.637452	
30	6	0	-2.067474	2.839352	0.990244	
31	6	0	-3.074627	3.940961	0.654354	
32	1	0	-3.457918	4.351375	1.588789	
33	1	0	-2.610109	4.746086	0.088121	
34	1	0	-3.922022	3.552950	0.086850	
35	6	0	-0.848418	3.400007	1.701040	
36	1	0	-1.181484	3.967653	2.573200	
37	1	0	-0.180523	2.616304	2.045209	
38	1	0	-0.297833	4.084699	1.051024	
39	6	0	-2.737763	1.711929	1.761985	
40	1	0	-3.536536	1.245938	1.829434	
41	1	0	-2.033427	0.941749	2.068502	
42	1	0	-3.184926	2.126743	2.666280	

RC for Re attack in THF of 1a with 2a
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
			X
			Y
			Z

TS for Re attack in THF of 1a with 2a

Imaginary frequency: -378.6744

43 6 0 0.010556 -3.242064 -1.576214
44 6 0 -0.677488 -4.081346 -2.105582
45 1 0 -1.244904 -4.841182 -2.584847
46 9 0 3.620971 -1.469744 2.151352
47 9 0 1.272204 -0.264466 1.706479
48 9 0 3.102100 1.877270 -2.064971
49 9 0 5.713626 -1.010271 0.503035
50 9 0 5.455361 0.668645 -1.608014

-543-
PRODUCT for Re attack in THF of 1b with 2a

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
1	16	0	-1.493695, -1.787799, -0.890716
2	7	0	-0.639590, -0.700378, -0.014670
3	8	0	-1.478148, -3.126434, -0.207258
4	6	0	0.553866, -1.154841, 0.668070
5	1	0	0.664397, -2.231483, 0.544631
6	6	0	1.840697, -0.511780, 0.166614
7	6	0	3.009244, -1.260607, 0.132304
8	6	0	1.950103, 0.799083, -0.268200
9	6	0	4.211390, -0.759544, -0.331555
10	6	0	3.136337, 1.333539, -0.739633
11	6	0	4.274560, 0.549482, -0.773959
12	12	0	-1.604622, 1.024482, 0.362375
13	35	0	-2.247511, 3.052248, -0.868504
14	8	0	-3.248015, 0.434110, 1.413391
15	6	0	-4.572755, 1.018362, 1.310797
16	6	0	-5.390643, 0.317841, 2.378965
17	6	0	-4.751722, -1.072394, 2.412463
18	6	0	-3.282870, -0.761003, 2.237889
19	1	0	-6.448773, 0.300669, 2.130339
20	1	0	-2.724321, -1.540179, 1.724788
21	1	0	-4.949181, -1.608748, 3.338330
22	1	0	-5.116878, -1.677126, 1.580093
23	1	0	-5.267971, 0.816824, 3.340440
24	1	0	-4.474479, 2.091100, 1.452801
25	1	0	-2.798618, -0.522086, 3.185369
26	1	0	-4.950949, 0.818987, 0.308277
27	6	0	0.405545, -0.934463, 2.193119
28	1	0	1.338876, -1.158500, 2.710951
29	1	0	-0.353501, -1.626037, 2.559038
30	6	0	-0.542664, -2.076530, -2.475661
31	6	0	-1.511929, -2.877544, -3.346072
32	1	0	-1.064760, -3.049616, -4.326644
33	1	0	-1.733301, -3.845184, -2.896521
34	1	0	-2.450732, -2.340952, -3.494396
35	6	0	0.728509, -2.873463, -2.224576
36	1	0	1.119715, -3.243236, -3.174450
37	1	0	1.504403, -2.262072, -1.769386
38	1	0	0.524426, -3.729001, -1.581288
39	6	0	-0.259150, -0.714773, -3.095237
40	1	0	-1.173471, -0.128040, -3.206982
41	1	0	0.440076, -0.140508, -2.489524
42	1	0	0.174403, -0.847868, -4.088298
43	6	0	-0.007840, 0.430989, 2.505285
44	6	0	-0.364532, 1.556588, 2.723579
45	1	0	-0.644405, 2.556173, 2.963545
46	9	0	2.988462, -2.529655, 0.547334
47	9	0	5.296717, -1.522064, -0.357518
48	9	0	5.416687, 1.049989, -1.220035
49	9	0	0.895888, 1.630116, -0.254745
50	9	0	3.187107, 2.593327, -1.351500

RC for Re attack in DCM of 1a with 2b

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	12	0	1.807659, 0.815041, 1.294378		
2	6	0	0.094691, 0.763026, 2.612256		
3	6	0	-0.517636, -0.537733, 2.693562		
4	6	0	-0.989892, -1.650533, 2.707015		
5	6	0	-0.540527, -1.218928, -0.272330		
6	7	0	0.653413, -0.761220, -0.324605		
7	1	0	-0.633209, 1.515930, 2.298253		
8	1	0	0.470615, 1.063458, 3.594621		
Center Number	Atomic Number	Atomic Type	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
---------------	---------------	-------------	---------------	---------------	---------------
1	12		-1.195957	-1.072022	1.186858
2	6	0	0.286690	-0.941042	2.833340
3	6	0	1.283999	0.007394	2.591112
4	6	0	2.068530	0.868136	2.215407
5	6	0	1.043296	1.057439	0.019568
6	6	0	-0.175394	0.593812	0.012236
7	7	0	0.661466	-1.961773	2.912485
8	1	0	-0.362582	-0.687118	3.672162
9	1	0	1.233967	2.111679	0.184229
10	16	0	-1.375651	1.669892	0.526791
11	8	0	-2.285647	0.692423	1.258696
12	6	0	2.138089	0.313709	-0.612599
13	6	0	3.202560	1.022211	-1.161726
14	6	0	2.185064	-1.072725	-0.714976
15	6	0	4.261855	0.393617	-1.788112
16	6	0	3.233762	-1.723584	-1.332742
17	6	0	4.276621	-0.987215	-1.872530
18	35	0	-2.328426	-2.983072	0.086442
19	6	0	-2.212781	2.013108	-1.087895
20	6	0	-2.598580	0.710626	-1.770563
21	1	0	-3.241033	0.103687	-1.134031
22	1	0	-3.151189	0.949223	-2.680096
23	1	0	-1.722848	0.125943	-2.045804
24	6	0	-1.227027	2.833184	-1.914748
25	1	0	-0.865687	3.721488	-1.380583
26	1	0	-0.360913	2.242863	-2.211779
27	1	0	-1.730141	3.165955	-2.822844
28	6	0	-3.443286	2.836198	-0.707218
29	1	0	-3.170116	3.758146	-0.192133
30	1	0	-3.976988	3.106122	-1.618716
31	1	0	-4.119007	2.263484	-0.073514
32	6	0	3.218368	1.780277	2.215076

TS for Re attack in DCM of 1a with 2b

Frequency
-214.275
PRODUCT for Re attack in DCM of 1a with 2b

Center Number	Atomic Number	Atomic Type	Coordinates (Ångstroms)	X	Y	Z
1	12	0	-1.962037	-0.328538	0.494381	
2	6	0	-1.436526	-2.674506	1.868483	
3	6	0	-0.228755	-2.175052	1.826008	
4	6	0	0.971725	-1.681959	1.770249	
5	6	0	1.223969	-0.323419	1.119953	
6	7	0	0.025679	0.284873	0.586754	
7	1	0	-1.795521	-3.339335	1.091681	
8	1	0	-2.093437	-2.485456	2.710547	
9	1	0	1.662118	0.301391	1.903926	
10	16	0	-0.386678	1.738056	1.183912	
11	8	0	-1.926021	1.564987	1.251220	
12	6	0	2.285379	-0.453161	0.034727	
13	6	0	3.519991	0.161616	0.149201	
14	6	0	2.039071	-1.147006	-1.140877	
15	6	0	4.470996	0.109782	-0.855887	
16	6	0	2.968128	-1.217177	-2.162184	
17	6	0	4.191535	-0.583908	-2.018307	
18	35	0	-3.747362	-1.403638	-0.801111	
19	6	0	-0.174512	2.927300	-0.222369	
20	6	0	-0.937309	2.441901	-1.443061	
21	1	0	-2.008781	2.399283	-1.249967	
22	1	0	-0.770982	3.138438	-2.266201	
23	1	0	-0.588064	1.458980	-1.760408	
24	6	0	1.326548	2.984735	-0.489947	
25	1	0	1.894698	3.191778	0.420342	
26	1	0	1.683044	2.049413	-0.918679	
27	1	0	1.534432	3.784629	-1.200520	
28	6	0	-0.703414	4.268304	0.279426	
29	1	0	-0.167967	4.601731	1.170004	
30	1	0	-0.565183	5.022784	-0.496341	
31	1	0	-1.765915	4.207942	0.512055	
32	6	0	2.162350	-2.392832	2.355558	
33	1	0	2.682179	-1.737991	3.057280	
34	1	0	1.866269	-3.298899	2.877374	
35	1	0	2.870647	-2.661089	1.570015	
36	9	0	3.822218	0.853736	1.251000	
37	9	0	5.640619	0.721481	-0.711666	
38	9	0	5.090080	-0.645905	-2.990378	
39	9	0	2.699377	-1.889007	-3.275234	
40	9	0	0.876679	-1.774066	-1.317745	
X. References.

[1] Llobat, A.; Escorihuela, J.; Sedgwick, D. M.; Rodenes, M.; Román, R.; Soloshonok, V. A.; Han, J.; Medio-Simón, M.; Fustero, S. The Ruthenium-Catalyzed Domino Cross Enyne Metathesis/Ring-Closing Metathesis in the Synthesis of Enantioenriched Nitrogen-Containing Heterocycles. Eur. J. Org. Chem. 2020, 4193−4207.

[2] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339−341.

[3] Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112−122.

[4] Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3−8.

[5] Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615−6620.

[6] Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.;Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparrini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Mont-gomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

[7] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378−6396.

[8] a) Gonzalez, C.; Schlegel, H.B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154; b) Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523−5527.

[9] Weinhold, F. Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. J. Comput. Chem. 2012, 33, 2363−2379.

[10] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: Nonempirical meta-generalized gradient/ent approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91, 146401−146404.

[11] a) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297−3305; b) Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057−1065.

[12] CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org).
XI. 1H, 13C and 19F NMR spectra of new compounds.

1H NMR spectrum of compound 1a (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 1a (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 1a (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 1b (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 1b (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 1b (75 MHz, CDCl$_3$)
1H NMR spectrum of compound 1c (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 1c (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 1c (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 1d (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 1d (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 1d (75 MHz, CDCl$_3$)
1H NMR spectrum of compound 1e (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 1e (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 1e (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 3a (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 3a (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 3a (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 3'a (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 3'a (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 3'a (75 MHz, CDCl₃)

1H NMR spectrum of compound 3'b (300 MHz, CDCl₃)
19F NMR spectrum of compound 3b (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 3b (300 MHz, CDCl$_3$)
1H NMR spectrum of compound 3'b (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 3'b (282 MHz, CDCl$_3$)
13C NMR spectrum of compound $3'b$ (75 MHz, CDCl$_3$)

1H NMR spectrum of compound $3'c$ (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 3’c (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 3’c (75 MHz, CDCl$_3$)
1H NMR spectrum of compound 3'd (300 MHz, CDCl₃)

19F NMR spectrum of compound 3'd (282 MHz, CDCl₃)
13C NMR spectrum of compound $3'd$ (75 MHz, CDCl$_3$)

1H NMR spectrum of compound $3'e$ (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 3'e (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 3'e (75 MHz, CDCl$_3$)
1H NMR spectrum of compound 4ab (300 MHz, CDCl₃)

1F NMR spectrum of compound 4ab (282 MHz, CDCl₃)
13C NMR spectrum of compound 4ab (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 4ac (300 MHz, CDCl$_3$)
1H NMR spectrum of compound 4ac (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 4ab (75 MHz, CDCl$_3$)

19F NMR spectrum of compound 4ac (282 MHz, CDCl$_3$)
1H NMR spectrum of compound 4bb (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 4bb (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 4bb (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 4bc (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 4bc (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 4bc (75 MHz, CDCl$_3$)
1H NMR spectrum of compound 4cb (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 4cb (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 4cb (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 4cc (300 MHz, CDCl$_3$)
\(^{19}\text{F}\) NMR spectrum of compound 4cc (282 MHz, CDCl\(_3\))

\[\text{Diagram of compound 4cc with its \(^{19}\text{F}\) NMR spectrum} \]

\(^{13}\text{C}\) NMR spectrum of compound 4cc (75 MHz, CDCl\(_3\))

\[\text{Diagram of compound 4cc with its \(^{13}\text{C}\) NMR spectrum} \]

- S74
1H NMR spectrum of compound 4db (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 4db (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 4db (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 4dc (300 MHz, CDCl$_3$)
19F NMR spectrum of compound 4dc (282 MHz, CDCl$_3$)

13C NMR spectrum of compound 4dc (75 MHz, CDCl$_3$)
1H NMR spectrum of compound 4eb (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 4eb (282 MHz, CDCl$_3$)
13C NMR spectrum of compound $4eb$ (75 MHz, CDCl$_3$)

1H NMR spectrum of compound $4ec$ (300 MHz, CDCl$_3$)
\[^{19}F \text{NMR spectrum of compound 4ec (282 MHz, CDCl}_3) \]

\[^{13}C \text{NMR spectrum of compound 4ec (75 MHz, CDCl}_3) \]
1H NMR spectrum of compound 4fb (300 MHz, CDCl$_3$)

19F NMR spectrum of compound 4fb (282 MHz, CDCl$_3$)
13C NMR spectrum of compound 4fb (75 MHz, CDCl$_3$)

1H NMR spectrum of compound 4fc (300 MHz, CDCl$_3$)
\(^{19}F \text{ NMR spectrum of compound 4fc (282 MHz, CDCl}_3 \)