Abstract: - The quality of training data for knowledge discovery in databases (KDD) and data mining depends upon many factors, but handling missing values is considered to be a crucial factor in overall data quality. Today real world datasets contains missing values due to human, operational error, hardware malfunctioning and many other factors. The quality of knowledge extracted, learning and decision problems depend directly upon the quality of training data. By considering the importance of handling missing values in KDD and data mining tasks, in this paper we propose a novel Hybrid Missing values Imputation Technique (HMiT) using association rules mining and hybrid combination of k-nearest neighbor approach. To check the effectiveness of our HMiT missing values imputation technique, we also perform detail experimental results on real world datasets. Our results suggest that the HMiT technique is not only better in term of accuracy but it also take less processing time as compared to current best missing values imputation technique based on k-nearest neighbor approach, which shows the effectiveness of our missing values imputation technique.

Key-Words: - Quality of training data, missing values imputation, association rules mining, k-nearest neighbor, data mining

1 Introduction

The goal of knowledge discovery in databases (KDD) and data mining algorithms is to form generalizations, from a set of training observations, and to construct learning models such that the classification accuracy on previously unobserved observations are maximized. For all kinds of learning algorithms, the maximum accuracy is usually determined by two important factors: (a) the quality of the training data, and (b) the inductive bias of the learning algorithm.

The quality of training data depends upon many factors [1], but handling missing values is considered to be a crucial factor in overall data quality. For many real-world applications of KDD and data mining, even when there are huge amounts of data, the subset of cases with complete data may be relatively small. Training as well as testing samples have missing values. Missing data may be due to different reasons such as refusal to responds, faulty data collection instruments, data entry problems and data transmission problems. Missing data is a problem that continues to plague data analysis methods. Even as analysis methods gain sophistication, we continue to encounter missing values in fields, especially in databases with a large number of fields. The absence of information is rarely beneficial. All things being equal, more data is almost always better. Therefore, we should think carefully about how we handle the thorny issue of missing data.

Due to the frequent occurrence of missing values in training observations, imputation or prediction of the missing data has always remained at the center of attention of KDD and data mining research community [13]. Imputation is a term that denotes the procedure to replace the missing values by considering the relationships present in the observations. One main advantage of imputing missing values during preprocessing step is that, the missing data treatment is independent of the learning algorithm. In [6, 7] imputing missing values using prediction model is proposed. To impute missing values of attribute \(X \), first of all a prediction model is constructed by considering the attribute \(X \) as a class label and other attributes as input to prediction model. Once a prediction model is constructed, then it is utilized for predicting missing values of attribute \(X \). The main advantages of imputing missing values using this approach are that, this method is very useful when strong attribute relationship exists in the training data, and secondly it is a very fast and efficient method as compared to
k-nearest neighbor approach. The imputation processing time depends only on the construction of prediction model, once a prediction model is constructed, then the missing values are imputed in a constant time. On the other hand, the main drawbacks of this approach are that, if there is no relationship exists among one or more attributes in the dataset and the attributes with missing data, then the prediction model will not be suitable to estimate the missing value. The second drawback of this approach is that, the predicted values are usually more accurate than the true values.

In [6] and [7] another important imputation technique based on k-nearest neighbor is used to impute missing values for both discrete and continuous value attributes. It uses majority voting for categorical attributes and mean value for continuous value attributes. The main advantage of this technique it that, it does not require any predictive model for missing values imputation of an attribute. The major drawbacks of this approach are the choice of using exact distance function, considering all attributes when attempting to retrieve the similar type of examples, and searching through all the dataset for finding the same type of instances, require a large processing time for missing values imputation in preprocessing step.

To overcome the limitations of missing values imputation using prediction model and decrease the processing time of missing values treatment in preprocessing step, we propose a new missing values imputation technique (HMiT) using association rules mining [2, 3, 9] and hybrid combination of k-nearest neighbor approach [6, 7]. Association rule mining is one of the major techniques of data mining and it is perhaps the most common form of local-pattern discovery in unsupervised learning systems. Before this, different forms of association rules have been successfully applied in the classification [9, 12], sequential patterns [4] and fault-tolerant patterns [14]. In [9, 12] different extensive experimental results on real world datasets show that classification using association rule mining is more accurate than neural network, Bayesian classification and decision tress.

In HMiT, the missing values are imputed using association rules by comparing the known attribute values of missing observations and the antecedent part of association rules. In the case, when there is no rule present or fired (i.e. no attributes relationship exists in the training data) against the missing value of an observation, then the missing value is imputed using k-nearest neighbor approach. Our experimental results suggest that our imputation technique not only increases the accuracy of missing values imputation, but it also sufficiently decrease the processing time of preprocessing step.

2 Hybrid Missing Values Imputation Technique (HMiT)

Let \(I = \{i_1, … i_n\} \) be the set of n distinct items. Let \(TDB \) represents the training dataset, where each record \(t \) has a unique identifier in the \(TDB \), and contains set of items such that \(\text{items} \subset I \). An association rule is an expression \(A \rightarrow B \), where \(A \) and \(B \) are items \(A \subset I, B \subset I, \) and \(A \cap B = \phi \). Here, \(A \) is called antecedent of rule and \(B \) is called consequent of rule.

The main technique of HMiT is divided into two phases- (a) firstly the missing values are impute on the basis of association rules by comparing the antecedent part of rules with the known attributes values of missing value observation, (b) For the case, when there is no association rule exist or fired against any missing value (i.e. no relations exist between the attributes of other observations with the attributes of missing value), then the missing values are imputed using the imputation technique based on k-nearest neighbor approach [6, 7]. The main reason why we are using k-nearest approach as a hybrid combination is that, it is considered to be more robust against noise or in the case when the relationship between observations of dataset is very small [7]. Figure 1 shows the framework of missing values imputation using our hybrid imputation framework.

At the start of imputation process a set of strong (with good support and confidence) association rules are created on the basis of given training dataset with support and confidence threshold. Once association rules are created, the HMiT utilizes them for missing values imputation. For each observation \(X \) with missing values, association rules are fired by comparing the known attributes values of \(X \) with the antecedent part of association rules one by one. If the know attributes values of \(X \) are the subset of any association rule \(R \), then \(R \) is added in the fired set \(F \). Once all association rules are checked against the missing value of \(X \), then the set \(F \) is considered for imputation. If the set \(F \) is non empty, then median and mod of the consequent part of the rules in set \(F \) is used for missing value imputation in case of numeric and discrete attributes. For the case, when
Fig. 1. The framework of our HMiT missing values imputation technique.

HybridImputation (Support min_sup, Confidence min_conf)

1. Generate frequent itemset (FI) on given min_sup.
2. Generate association rules (AR) using FI on given min_conf.
3. For each training observation X, which contains at least one attribute value missing.
 4. for each rule R in association rules set (AR).
 5. compare the antecedent part of R with the known attribute values of X.
 6. if antecedent part of $R \subseteq X$ [known attribute values].
 7. add R to fired set F
 8. if $F \neq \emptyset$
 9. if the missing value of X is discrete then use Mod in set F to impute missing value.
 10. if the missing value of X is continuous then take Median in set F to impute missing value.
 11. else
 12. impute missing value using k-nearest neighbor approach.

Fig. 2. Pseudo code of HMiT missing values imputation technique
3.1 Effect of Percentage of Missing Values on Missing Values Imputation Accuracy

The effect of percentage of missing values on imputation accuracy is shown in Figure 3 with HMiT and k-nearest neighbor approach. The results in Figure 3 are showing that as the level of percentage of missing values increases the accuracy of predicting missing values decreases. We obtain the Figure 3 results by fixing the support and confidence thresholds as 40 and 60% respectively and nearest neighbor size as 10. The reason behind why use nearest neighbor size = 10, is described in [1]. From the results it is clear, that our HMiT generates good results as compared to k-nearest neighbor approach on all levels.

3.2 Effect of Confidence Threshold on Missing Values Imputation Accuracy

The effect of confidence threshold on missing values imputation accuracy is shown in the Figure 4. We obtain the Figure 4 results by fixing the support threshold as 40 and insert random missing values with 20%, while the confidence threshold was varied from 20% to 100%. For clear understanding, we exclude the accuracy effect of k-nearest neighbor from Figure 4 results. By looking the results, it is clear that as the confidence threshold increases the accuracy of predicting correctly missing also increases. For higher level of confidence only strong rules are generated and they more accurately predict the missing values, but in case of less confidence more weak or exceptional rules are generated which results in very less accuracy. From our experiments
3.3 Effect of Support Threshold on Missing Values on Missing Values Imputation Accuracy

The effect of support threshold on missing values imputation accuracy is shown in the Figure 5. We obtain the Figure 5 results by fixing the confidence threshold as 60% and insert random missing values with 20%. Again for clear understanding, we exclude the accuracy effect of k-nearest neighbor from Figure 5 results. From the results it is clear that as the support threshold decreases more missing values are predicted with association rules, this is because more association rules are generated. But on the other hand as the support threshold increases less rules are generated and less number of missing values are predicted with association rules.
3.4 Performance Analysis of HMiT and k-nearest neighbor approach

The results of Figure 6 are showing that HMiT performs better in term of processing time as compared to k-nearest neighbor approach.

4 Conclusion

Missing value imputation is a complex problem in KDD and data mining tasks. In this paper we present a novel approach HMiT for missing values imputation based on association rule mining and hybrid combination of k-nearest neighbor approach. To analyze the effectiveness of HMiT we perform detail experiments results on benchmark datasets. Our results suggest that missing values imputation using our technique has good potential in term of accuracy and is also a good technique in term of processing time.

References:

[1] E. Acuna and C. Rodriguez, “The treatment of missing values and its effect in the classifier accuracy”, Clustering and Data Mining Application, Springer-Verlag Berlin-Heidelberg, pp.639-648 2004.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases”, In Proc. of ACM SIGMOD Int'l Conf. Management of Data, pp. 207-216, May 1993.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”, In Proc. of Int'l Conf. Very Large Data Bases, pp. 487-499, Sept. 1994.

[4] R. Agrawal and R. Srikant, “Mining Sequential Patterns”, In Proc. of Int'l Conf. Data Eng., pp. 3-14, Mar. 1995.

[5] S. Bashir and A. R. Baig, “Ramp: High Performance Frequent Item set Mining with Efficient Bit-vector Projection Technique”, In Proc. of 10th Pacific Asia Conference on Knowledge and Data Discovery (PAKDD2006), Singapore, 2006.

[6] G. Batista and M. Monard, “Experimental comparison of K-Nearest Neighbor and mean or mode Imputation methods with the internal strategies used by C4.5 and CN2 to treat missing data”, Tech. Report, ICMC-USP, Feb 2003.

[7] G. Batista and M. Monard, “K-Nearest Neighbour as Imputation Method: Experimental Results”, Tech. Report 186 ICMC-USP, 2002.

[8] I.Duntsch and G. Gediga, “Maximum consistency of incomplete data via non-invasive imputation”, Artificial intelligence Review, vol. 19, pp.93-107,2003.

[9] H. Hu and J. Li, “Using Association Rules to Make Rule-based Classifiers Robust”, In Proc. of 16th Australasian Database Conference (ADC), 2005.

[10] J. Han and M. Kamber, “Data Mining Concepts and Techniques”, 2002.

[11] W.Z Liu, A.P white, S.G Thompson and M.A Bramer, “Techniques for dealing with missing values in classification”, Lecture Notes in Computer Science, pp.1280, 1997.

[12] B. Liu, W. Hsu and Y. Ma, “Integrating classification and association rule mining”, In Proc. KDD’98, New York, NY, Aug. 1998.

[13] M. Magnani, “Techniques for dealing with missing data in Knowledge discovery tasks”, 40127 Bologna –ITALY.

[14] J. Pei, A.K.H. Tung and J. Han, “Fault-Tolerant Frequent Patter Mining, Problems and Challenges”, In Proc. of ACM-SIGMOD Int. Workshop on Research Issues and Data Mining and Knowledge Discovery (DMKD’01), 2001.

[15] UCI Repository of machine learning, www.ics.uci.edu.