Therapeutic Cancer Vaccines—T Cell Responses and Epigenetic Modulation

Apriliana E. R. Kartikasari¹, Monica D. Prakash¹, Momodou Cox¹, Kirsty Wilson¹-², Jennifer C. Boer¹, Jennifer A. Cauchi¹ and Magdalena Plebanski¹*

¹ Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia, ² Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia

There is great interest in developing efficient therapeutic cancer vaccines, as this type of therapy allows targeted killing of tumor cells as well as long-lasting immune protection. High levels of tumor-infiltrating CD8⁺ T cells are associated with better prognosis in many cancers, and it is expected that new generation vaccines will induce effective production of these cells. Epigenetic mechanisms can promote changes in host immune responses, as well as mediate immune evasion by cancer cells. Here, we focus on epigenetic modifications involved in both vaccine-adjuvant-generated T cell immunity and cancer immune escape mechanisms. We propose that vaccine-adjuvant systems may be utilized to induce beneficial epigenetic modifications and discuss how epigenetic interventions could improve vaccine-based therapies. Additionally, we speculate on how, given the unique nature of individual epigenetic landscapes, epigenetic mapping of cancer progression and specific subsequent immune responses, could be harnessed to tailor therapeutic vaccines to each patient.

Keywords: cancer vaccine-adjuvants, T cells, epigenetics, DNA methylation, histone modifications, microRNAs, long non-coding RNAs, biomarkers

INTRODUCTION

To address the possibility of designing therapeutic cancer vaccines to work optimally in patients whose immune system may have been epigenetically modified, either by cancer cell-driven immunomodulation or by other external cues such as previous chemotherapy, it is first necessary to understand the different types of epigenetic imprinting that may be induced by vaccine therapy. Herein, we will firstly introduce fundamental concepts, and then review in depth: (1) the epigenetic mechanisms involved in vaccine-induced T cell mediated immunity, (2) T cell responses and epigenetic modulations induced by adjuvant systems to promote an anti-cancer environment, and (3) the epigenetic mechanisms involved in cancer immune escape, and possible ways to counteract them. On this basis, the potential use of the knowledge in epigenetic mechanisms to improve vaccine-based therapy will be discussed. Additionally, given epigenetics are both heritable and flexible following environmental cues (1), the epigenetic profile of each individual is unique. Based on this fact we also discuss the potential use of epigenetic biomarkers to diagnose cancer and predict an individual’s immune response to therapeutic cancer vaccines.
Vaccines Can Induce Effective Tumor-Specific T Cell-Mediated Immunity

Tremendous scientific advances have been made in the last decade in therapeutic cancer vaccine development, with many entering phase II and phase III clinical trials (2). Most cancer vaccines in development aim to promote tumor-associated antigens to be presented by antigen presenting cells (APCs) to generate long-lasting T cell immunity against cancer (3). Because dendritic cells (DCs) are the most efficient APCs, effective presentation of tumor antigens by DCs is considered a key determinant for cancer vaccine development (4).

Usually, the immune system identifies and destroys neoplastically-transformed cells. This immune surveillance mechanism functions as the body's primary defense against cancer. CD8+ T lymphocytes are the primary player in the recognition and destruction of cancer cells (5, 6). Following stimulation through tumor antigen recognition presented by DCs, naive CD8+ T cells are stimulated to proliferate and differentiate into effector cells, namely cytotoxic T lymphocytes (CTLs). Following recognition of major histocompatibility complex (MHC) class I-antigen complexes on tumor cell surface, activated CTLs induce tumor cell lysis by secreting perforin, granulysin and granzyme, as well as producing the death ligands including Fas Ligand (FasL) and tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) (7). A subset of antigen-specific T cells will differentiate into memory cells for long-lived anti-tumor protection. DCs also activate CD4+ T helper (Th) cells, that are critical for CD8+ T cell activation (8). This cross-priming is required to produce effective and durable CTL responses by breaking cross-tolerance and providing protection of CTLs from activation-induced cell death (AICD) (8, 9). Additionally, Th cells are also capable of eradicating tumor cells following activation (10, 11).

Several conditions, however, result in the failure of the immune system to destroy malignant cells (Figure 1). These include having a low number of tumor-specific T cells, suppression of T cell infiltration into tumor microenvironments, and T cell dysfunction/exhaustion (5, 6, 12–14). A low number of tumor-specific T cells results in a reduced number of cells capable of recognizing and killing neoplastic cells, hence tumor immune escape (6). Both failure in tumor antigen presentation and the development of immune tolerance contribute to this condition (5, 6). As tumor cells develop into a solid tumor mass, they create an immunosuppressive local microenvironment by secretion of specific factors that may restrict T cell infiltration, inactivate CTLs, and induce T cell apoptosis (13), further hampering cancer elimination. Due to chronic antigen exposure, T cells can also become dysfunctional and exhausted (12, 14). These T cells exhibit loss of the effector functions and upregulation of their immune checkpoint receptors such as PD1 and LAG3, the receptors that promote tolerance induction that subsequently prevents T cell activation upon stimulation.

To create neoplastic immunity, patients need to increase both the number and functionality of their cancer-specific T cells. This currently can be achieved by de novo generation of T cell-mediated immunity (15–18), through presentation by DCs (19, 20). One strategy utilizes a patient's own DCs as the therapeutic vaccine. DCs are maturated ex vivo using stimulatory cytokines and toll-like receptor (TLR) agonists, such as a combination of interferon (IFN)γ and lipopolysaccharide (LPS), and then loaded with patient-specific tumor antigens or proteins (21). The cells are then intradermally injected back into the patient together with adjuvants with the aim of generating a prolonged host immune response (22). In 2010, this strategy resulted in the first US Food and Drug Administration (FDA)-approved cancer vaccine, called Sipuleucel-T for prostate cancer patients (23). Increased survival in patients who received this personalized DC vaccine was achieved, suggesting successful long-lasting T cell immunity (24). Whilst this strategy has been successful in some patients, it has generally been inefficient. This is because the ex vivo DC vaccine preparation alters DC viability and functionality, is laborious and the output is of variable quality (19, 20). Moreover, the autologous DC generated from the patient's peripheral blood DC precursors, may have already been the subject of epigenetic imprinting by chemotherapy, radiation, immunotherapy or immune dysregulation by cancer cells, as such therapies have been shown to induce phenotypic alterations in immun cells (25). Understanding and modifying the epigenetic imprint of DC ex vivo (26), for example by the use of epigenetic modulators during tumor antigen loading, offers an intriguing avenue for future therapeutic exploration. Another strategy that currently holds promise in cancer vaccine development includes...
the injection of antigenic peptides or genetic material encoding for these peptides, in combination with adjuvants, to target DCs in vivo. However, despite appropriate antigen and adjuvant selections, many therapeutic cancer vaccines still fail to provide sustained T cell immunity, due to the many immune escape mechanisms available to neoplastic cells.

Examining Epigenetic Involvement in T Cell Immunity Against Cancer

Recently several studies, as discussed in (27–31) show that epigenetic mechanisms drive phenotypic changes in both immune and cancer cells during their interactions. Epigenetics examines chemical modifications to a cell’s deoxyribonucleic acid (DNA) that alters gene expression and thus the properties and behavior of cells, without changing their DNA sequence. These modifications include DNA methylation, histone modifications and ribonucleic acid (RNA)-associated mechanisms, via microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) which mediate alterations in chromatin accessibility at regulatory regions that determine cell fate (32–35). For example, DNA methylation results in a closed conformation of the chromatin, inhibiting binding of the transcription machinery and thus preventing gene expression (32). Various histone modifications, on the other hand, regulate cellular gene expression by modifying the polarity of the nucleosome particle, and/or by recruiting protein complexes, to result in either a closed or open chromatin conformation (33). Similarly, lncRNAs regulate gene expression by direct binding to chromatin remodeling complexes and targeting them to specific genomic loci to alter DNA methylation or histone marks (35). Additionally, miRNAs are able to regulate gene expression post-transcriptionally (34). In the following section we will discuss epigenetic changes in both immune and cancer cells that may be induced by cancer vaccine therapy.

EPIGENETIC MECHANISMS INVOLVED IN VACCINE-INDUCED T CELL IMMUNITY

Epigenetic Mechanisms Involved in Vaccine-Induced CD8+ T Cell Differentiation Into Effector Cells

Therapeutic cancer vaccines commonly utilize tumor-associated antigens presented by DCs to expand naive CD8+ T cells and drive their differentiation into both effector and memory cells. Activation of CTLs requires three signals (Figure 2): the first originates from the engagement of the T cell receptors (TCRs) with antigens as complexes with the MHC class I molecules on the surface of DCs; the second is the interactions of costimulatory molecules of DCs with cognate receptors of T cells including interactions between CD80/CD86 and CD28, CD70 and CD27, 41BB and 41BB, OX40L and OX40, as well as GITR and GITRL (8, 36); and the third derives from cytokines including interleukin (IL)2 and IL12 secreted by DCs (37). Additionally, the tumor specific DCs activate Th cells through the interactions between TCRs and MHC class II-antigen complexes as well as the binding between their costimulatory molecules, such as the binding between CD80/CD86 and CD28. The activated Th cells in turn license DCs by upregulating their CD40L and LTβR to interact with CD40 and LTβR on DCs, respectively (36). The licensed DCs then produce polarizing factors such as IL12 to further differentiate CD4+ helper cells. The licensed DCs also increase the expression of CD80, CD70, OX40L, 41BB, and GITRL, and secrete stimulatory cytokines such as IL2, IL12 and IFNγ, to generate CTLs with prolonged life-span with more effective effector function as reviewed in (8, 9, 36) (Figure 2).

Existing effector memory T cells can rapidly expand upon effective vaccination and differentiate into effector T cells
to further mediate specific tumor destruction (15, 16). The vaccine-induced generation of antigen-specific T cells with distinct cellular phenotypes from genetically identical naïve cells is mostly mediated by global epigenetic reprogramming. Recent work shows that epigenetic mechanisms control gene expression during CD8+ T cell differentiation following activation (27, 31). Epigenetic profiles also provide heritable maintenance of the phenotype of the differentiated T cells, following signal withdrawal (27, 31, 38, 39).

DNA methylation plays a significant role in CD8+ T cell differentiation into both effector and memory cells. In mammals, DNA methylation occurs mostly on CG dinucleotides (CpG). DNA methylation in CpG islands, short regions in the genome with high frequency of CpGs, is associated with transcriptional repression (32). During CD8+ differentiation, CpG islands become highly methylated at the promoters of silenced genes, and demethylated at the promoters of expressed genes (40–42). This alteration in methylation pattern dictates lineage-specific changes during differentiation following antigen-induced activation (43).

Like DNA methylation, promoters and other regulatory regions in the genome also undergo histone modifications during CD8+ T cell differentiation. Multiple studies show that in effector cells at the gene loci that are reduced in expression such as the memory cell-associated genes, activating histone marks including acetylation at lysine 9 on the histone 3 tail (H3K9Ac) and trimethylation at lysine 4 on the histone 3 tail (H3K4me3) are lost (41, 44–52). At the same gene loci, repressive marks including DNA methylation and trimethylation at lysine 27 on the histone 3 tail (H3K27me3) are gained. On the other hand, in the same cells, the effector cell-associated genes are upregulated and demonstrate decreased repressive and increased activating epigenetic marks (41, 44–52).

Importantly, in the absence of antigen presentation, memory cell subsets maintain their epigenetic patterns in order to retain their cellular phenotype (53). DNA methylation patterns of memory cells for example are preserved after antigen is withdrawn. This indicates involvement of epigenetic regulation in the maintenance of cellular phenotype to promote long-lasting vaccine-induced immunity. Similarly, di-acetylated histone H3 (diAcH3) is highly present in the expressed gene loci of activated effector CTLs, and this epigenetic mark remains present in the acquired memory cells (54). Additionally, several gene loci in naive and memory T cells remain poised in a resting state by the presence of bivalent epigenetic marks; the activating H3K4me3 and the repressive H3K27me3. This bivalency has been shown to be a crucial mechanism in regulating T cell fate, since following antigen stimulation, the activated gene loci are readily resolved into a monovalent H3K4me3 state subsequently allowing rapid differentiation into effector cells (45).

Recently, epigenetic enhancers have been shown to regulate CD8+ T cell differentiation in response to antigen presentation. The activation of the enhancers during differentiation was mapped based on genome-wide analysis of several epigenetic marks including H3K4me3, H3K27ac, H3K4me1 and the binding of histone acetyltransferase p300 (49, 55). These regions display striking epigenetic specificity in naive, effector, and memory T cells. Distinct transcription factors have also been shown to bind specifically to the enhancers of different subsets of CD8+ T cells (40). Similarly, chromatin accessibility profiles indicate unique regulatory regions in different CD8+ T cell subsets that also correspond to the expression of subset-specific genes (56, 57).

Furthermore, the levels of epigenetic modifier and transcription factor expression are distinct amongst T cell subsets. These may influence the capacity of T cells to react upon antigen stimulation. Indeed, the lack of DNA methyltransferase 3A (DNMT3A), a de novo methylating enzyme, promotes bias toward memory cell differentiation (58). Absence of the epigenetic modifier methyl-CpG-binding domain protein 2 (MBD2) causes impaired T cell differentiation into the effector phenotype (59). The epigenetic modifier BM1, a reader of H3K27me3, and EZH2, a writer of H3K27me3 are both highly expressed upon T cell stimulation and differentiation into effector cells (60, 61). Histone deacetylases, SIRT1 (50) and HDAC7 (54) as well as BRD4, a reader of acetylated lysines (62) epigenetically repress gene expression and have been shown essential in directing differentiation of CD8+ T cells to gain their effector function.

In effector T cells, transcription factor PRDM1/Blimp1 (63), TBX21/Tbet (64, 65), and ID2 (66) are highly expressed to control CTL function via epigenetic regulations. PRDM1 for example, has been shown to recruit the repressive epigenetic modifier G9A and HDAC2 to both IL2RA and CD27 loci, promoting differentiation of CD8+ T cells into effector cells (51). TBX21 is necessary to induce the expression of IFNy, granzyme B, and perforin, by inducing rapid DNA demethylation and histone acetylation at the promoters of these gene loci (67–69). Furthermore, in both naïve and memory cells, EOMES (65, 70), TCF1 (71), and FOXO1 (72–75) are highly expressed and have been shown to readily promote differentiation of these cells into CTLs, although their mode of action in regulating epigenetic changes in T cells remains unexplored.

Epigenetic Modifications in T Cell Exhaustion

Another benefit of therapeutic cancer vaccines is their potential to revitalize exhausted T cells, by promoting de novo generation of T cell-mediated immunity (15–18). Exhausted T cells are a hallmark of cancer and the result of persistent antigen stimulation (76). They exhibit defective proliferation capacities, impaired stimulatory cytokine secretion, increased checkpoint receptor expression, and impaired effector functions (76). Recent studies show direct involvement of epigenetic mechanisms in T cell exhaustion. For example, compared to functional T cells, exhausted T cells exhibit reorganization of chromatin accessibility and activation of the exhaustion-specific enhancers (77, 78). Exhausted T cells also exhibit lower levels of diacetylated histone H3 (diAcH3) in comparison to functional T cells (79).

Both DNA methylating enzymes, DNMT1 and DNMT3B are upregulated in exhausted T cells (80), whilst DNMT3A has been demonstrated to functionally establish de novo exhaustion-specific DNA methylation patterns (81). Indeed, by blocking de novo DNA methylation, exhausted T cells retained their effector function (81). In exhausted T cells however, the expression
levels of checkpoint/coinhibitory receptors, including PD1 and LAG3 were highly elevated (78, 82), which correlated with demethylation (83) and binding of transcription factor GATA3, BLIMP1, IRF4, BATF, and NFATc1 to the gene loci (51, 82, 84).

Additionally, lncRNAs including lncRNA-CD244 and lncRNA-Tim3 (85, 86) and miRNAs including miR-720, miR-31, miR-92a-3p, miR-21-5p, miR-16-5p, miR-126, and miR-182-5p (87–89) are capable of inducing exhaustion phenotypic changes by targeting specific pathways that impair T cell effector function. Therapies targeting these regulatory RNAs therefore may help restore T cell anti-tumor functions.

Potential Epigenetic Interventions to Improve Vaccines

Therapeutic cancer vaccines are able to direct the proliferation and differentiation of naive and memory CD8⁺ T cells into CTLs through epigenetic modifications. As previously discussed, the involvement of epigenetic modifiers and transcription factors have been observed in directing T cell differentiation. This knowledge could potentially be used to improve the efficacy of therapeutic cancer vaccines.

For instance, BRD4 and SIRT1 are known to regulate differentiation of naive T cells into CTLs (50, 62). The absence of these two epigenetic modifiers promotes T cell differentiation into memory cells. Inhibition of these two epigenetic modifiers using the pharmacological inhibitor JQ1, results in the differentiation of naive CD8⁺ T cells into memory T cells that are long-lived, self-renewing and provide maintenance of acquired functional immunity, indicating that this pharmacological agent can be used to help create long-lasting immune response (62).

Another example is histone acetylation in Tbet-mediated IFNγ expression in CTLs. An HDAC inhibitor, trichostatin-A (TSA), can bypass the control of Tbet in inducing IFNγ expression (90). As IFNγ is critical for CTLs to exert their tumor killing activities, this pharmacological epigenetic modifier could potentially be used to enhance the efficacy of cancer vaccines.

Recently generation of CTLs was shown to depend on T cell receptor-mediated let-7 miRNAs downregulation. Decrease of let-7 miRNAs is necessary for the acquisition of effector function through derepression of the let-7 targets (91). On the other hand, miR-155 is necessary to generate effector CD8⁺ T cells (92). Therefore, it has been suggested since that modulation of let-7 miRNAs or miR-155 can be used to potentiate immunotherapies for cancer.

Furthermore, as previously mentioned, therapeutic vaccines can reverse systemic exhaustion by promoting de novo generation of functional T cells. This T cell exhaustion phenomenon is dependent on the host DNA methylation profile. Recently, in mice, T cell exhaustion was successfully reversed by inhibition of de novo methylation using Decitabine, an FDA-approved DNA demethylating agent (81). Moreover, as exhausted T cells overexpress checkpoint receptors that prevent them from killing tumor cells, the use of checkpoint inhibitors has proven useful to remove such molecular breaks. Thus, these pharmacological agents could potentially be used in combination with therapeutic cancer vaccines to rejuvenate exhausted T cells, whilst effectively promoting new T cell-mediated immunity.

The magnitude of T cell activation and the accompanying epigenetic modulations dictate the efficacy of a vaccine being developed. The strength of the immune response elicited by vaccines is also highly dependent on the chosen antigens. Several strategies have been recently implemented to optimize this selection. These include personalized peptide vaccines that utilize multiple cancer peptides to complement pre existing host immunity (93). Another strategy is using neoantigens, that is, antigens that arise because of mutations in tumor cell DNA. Once identified, patient’s T cells are used to screen which neoantigens harness the potential for effective antitumor responses. Vaccines are then developed based on these screening results. Recently, cancer-specific epigenetic marks have been explored to be used as therapeutic target antigens in vaccines. For instance, several miRNAs have been used in cancer vaccine development (94). Such strategies may provide significant additional resources for individualized cancer treatment.

T CELL RESPONSES AND EPIGENETIC MODULATIONS INDUCED BY ADJUVANT SYSTEMS TO PROMOTE AN ANTI-CANCER ENVIRONMENT

Adjuvants have long been an integral component of vaccines to elicit a strong antigen-specific T cell-mediated immune response. Classically, adjuvants allow gradual antigen release or increase antigen recognition by innate cells to create a prolonged immune response elicited by the vaccine. Alternatively, delivery systems may be used to efficiently deliver a specific antigen to APCs. Nowadays, adjuvants in therapeutic cancer vaccines are not only used to improve anti-tumor immunity, but they are also selected based on their properties that directly promote tumor cell killing and induce an anti-tumor microenvironment. Additionally, adjuvants and delivery systems that promote CD8⁺ T cells are optimal for cancer vaccine development, though historically many adjuvants have been poor inducers of a CD8⁺ T cell response. Here, we describe key adjuvants and delivery systems that have progressed to investigation in human clinical trials in cancer patients. Subsequently, we discuss the epigenetic modulations induced by adjuvants, and how such modifications may facilitate vaccine-based therapies in cancer patients.

Vaccine Adjuvants

In most cancer vaccines, adjuvants and immunostimulants are chosen to facilitate generation of CD8⁺ T cell responses to MHC class I-presented tumor antigens. For this reason, the adjuvant should activate APCs such as DCs, promote antigen presentation and subsequent presentation to induce secretion of stimulatory cytokines, such as IFNγ, IL12, and IL2 (Figure 2). Adjuvants that promote cytokine production and Th1 differentiation (95) are desired as Th1 cells costimulate native CD8⁺ T cells to differentiate into CTLs (8) (Figure 2). Moreover, following the stimulation, Th1 cells produce IFNγ that in turn increase antigen presentation on cancer cells (10), to enhance direct killing
of tumor cells (11) as well as create an immunogenic tumor microenvironment (96), thus further helping tumor control. Adjuvants additionally can be selected based on their ability to induce specific innate cells such as natural killer (NK) cell-mediated tumor killing. NK cells are the effector cells of the innate immune system that upon stimulation can directly lyse tumor cells via perforin and granzyme (7). They also have a main role as rapid and potent cytokine producing cells, such as IFNγ and TNFα, that stimulate killing through the death receptor pathways (7, 96). Moreover, NK cells induce DC maturation and amplify T cell anti-tumor responses (97).

One of the main antigen recognition and activation pathways utilized by APCs are TLRs. TLRs are receptors expressed by APCs that can recognize conserved structures derived from pathogens, namely MAMPs (microbe-associated molecular patterns). The same receptors can also recognize DAMPs (damage-associated molecular patterns) that are expressed by cells under conditions of stress. TLR ligands/agonists are widely used to stimulate innate immune responses. TLR agonists, especially those targeting endosomal TLRs, have been shown to generate anti-tumor immunity (98). Thus, cancer vaccines targeting TLR activation could result in the generation of a range of cytokines that stimulate a Th1 bias, as well as promote CTL induction and NK cell-mediated killing that can then be utilized for directed tumor treatment strategies (99).

TLR3, TLR7, TLR8, and TLR9 are predominantly endosomal. It is known that different subsets of DCs have been shown to express distinct arrays of TLRs (100). TLR3 for example is predominantly expressed in conventional DCs (101). This subset of DCs are especially efficient in activating CD8+ T cells and inducing adaptive immune responses against tumor cells (100). Additionally, several cancer cells have been shown to express TLR3 at various levels, including hepatocellular carcinoma (102), breast cancer (103), and neuroblastoma (104). Polyinosinic-polycytidylic acid (Poly I:C) and polyadenylic-polypuridylic acid (Poly A:U) are synthetic analogs of viral dsRNAs which are recognized by TLR3 (105) that have been extensively used as an adjuvant in many clinical trials for cancer vaccines (106). The agonists of TLR3 are capable of activating APCs and cancer cells to induce secretion of inflammatory cytokines including type1 interferons that in turn activate T cell responses against cancer cells (107, 108). Poly I:C is also capable of reversing the pro-cancer innate immune response to anti-cancer immunity, especially within the tumor microenvironment (109). In clinical trials, albeit with limited numbers of patients, both Poly I:C12C and Poly I:C12C, modified versions of Poly I:C, were shown to boost anti-tumor activity by inducing potent tumor-specific CTL and NK responses (110, 111).

TLR8 is expressed by conventional DCs and monocytes, whereas TLR7 is expressed predominantly in plasmacytoid DCs (101). Plasmacytoid DCs are a major producer of stimulatory cytokines in response to many viral infections (100). The ligands of TLR7 and TLR8 have been exploited as adjuvants. Their receptors are similar in structure but promote secretion of distinct sets of proinflammatory cytokines by APCs. TLR7 induces the secretion of type I interferons such as IFNα, while TLR8 promotes secretion of TNFα and IL12 (112). Both receptors are endosomal and recognize viral ssRNA (105) and also bind their synthetic analogs, including imiquimod and resiquimod (113, 114). In clinical studies, TLR7/8 agonists enhanced CD8+ T cell responses of a vaccine to prostate-specific peptide and NY-ESO-1, an tumor-specific antigen (115). Additionally, imiquimod has been approved for the treatment of basal cell carcinoma by the FDA (116).

TLR9 agonists are also potent adjuvants. TLR9 itself is predominantly endosomal, and present abundantly in DCs, especially plasmacytoid DCs. It binds microbial DNA, recognizing in particular the unmethylated CpG motifs in viral and bacterial genomes (105). The synthetic TLR9 ligand, CpG oligodeoxynucleotide (CpG-ODN), a short unmethylated ssDNA, activates DCs to secrete type I interferons, and promotes a strong CTL response (117). When used in combination with DC-based cancer vaccines, CpG-ODN enhances CD8+ T cell activity. In combination with tumor-specific-peptide-based vaccines, such as NY-ESO-1 and MART1, CpG-ODN resulted in elevated CD8+ T cell responses, however tumor eradication was rarely achieved (115).

Unlike their endosomal counterparts, TLRs expressed on the cell surface typically recognize extracellular foreign microbes. TLR4, one of the surface TLRs, recognizes LPS molecules of gram-negative bacteria (105). In humans, LPS can cause septic shock syndrome, due to its potent immune stimulatory activity (118). A derivative of LPS, monophosphoryl lipid A (MPL) in combination with the classical adjuvant alum, was licensed by the FDA for use as part of the human papillomavirus vaccine in 2009 (119). In clinical trials, MPL has also been used as an adjuvant for cancer vaccines to promote Th1-specific immune responses (120, 121).

Other adjuvants that have been used to induce T cell responses have included classic formulations/emulsions including oil or saponin. QS-21 is a potent saponin-based adjuvant that is isolated from Quillaja Saponaria (122). Although its mechanism of action is largely unknown, QS-21 has been shown to activate the secretion of IL2 and IFNγ, stimulate the proliferation of CTLs and induce Th1 bias (123). Formulations of QS-21 has been tested in human clinical trials for various cancer vaccines (124, 125). Another strong adjuvant that has been trialed for cancer vaccines is Montanide. The aim of this classical adjuvants is to allow sustained antigen release from the immunization site. This strategy is used to create a prolonged and higher amplitude of CTL-mediated immune response. Montanide-based adjuvants are water-in-oil emulsions that promote slow release of antigens and thus prolong antigen presentation to the immune system (126). In clinical trials, montanide ISA720 and ISA51 promote Th1 immune responses and significant CTL activation (127, 128).

Delivery Systems

Several delivery systems, including virosomes, liposomes, viral-like proteins (VLPs), and immune-stimulating complexes (ISCOMs) have been developed and used in clinical trials to improve the efficacy of cancer vaccines. Virosomes are empty viral particles that can carry tumor-specific antigens as vaccines (129). In metastatic breast cancer patients, the
modified influenza virosomes containing the breast cancer peptide (Her/neu\(^+\)) are well tolerated and not only promote secretion of proinflammatory cytokines, including IL2, TNF\(\alpha\) and IFN\(\gamma\) but also promote T cell immunity (130). Liposomes are synthetic phospholipid vesicles that work similarly to virosomes. They are often used to deliver messenger RNA (mRNA) encoding for a specific antigen (131). They have shown promise in delivering mRNA to APCs in clinical trials for non-small cell lung cancer, prostate cancer and follicular lymphoma patients (132, 133), and inducing antigen-specific CD8\(^+\) T cell responses. Liposomes that carry DNA have also been developed to stimulate TLR9, activate DCs and subsequently CTLs (134). VLPs are multimeric structures of viral proteins devoid of viral genetic material. Similar to native viruses, specific epitopes on VLPs can be recognized and presented by APCs to promote immune responses as reviewed in Ong et al. (135). VLPs have been developed for use in vaccines for various forms of cancer, including liver, cervix, lung, skin, breast, and prostate, as they not only promote antigen-specific immunity, but also counteract the immunosuppressive microenvironment created by a tumor mass (135). Finally, ISCOMs are composed of saponin, cholesterol and phospholipid. They are regularly used as a vaccine delivery system, however saponin can also stimulate the immune system by activating DCs and inducing robust antigen-specific T cell responses (136). Furthermore, ISCOMATRIX\(^\circledR\) has been used with the recombinant NY-ESO-1 protein in cancer patients to induce T cell immune responses (137, 138), however this vaccine failed to promote an adequate immune response in advanced melanoma patients (139).

Several adjuvants currently used in cancer vaccines are indeed capable of altering immune cell interactions with cancer cells by inducing stable epigenetic modifications in both host immune and cancer cells. These adjuvants could therefore be harnessed as promising candidates to promote beneficial epigenetic modifications in vaccine-based therapies. The use of TLR-ligand adjuvants could indeed be promising, as studies have shown that epigenetic reprogramming can be achieved via TLR stimulation. For instance, stimulating TLR3 with Poly I:C activates the epigenetic machinery causing a global change in the expression of epigenetic modifiers that in turn promotes chromatin remodeling and nuclear reprogramming (142). In addition, TLR3 receptor combined with Poly I:C directly promoted global DNA methylation in peripheral blood mononuclear cells (PBMCs) in pigs (143). Poly I:C promotes the expression of pro-inflammatory cytokines IL23 and IL33 by direct modification of the epigenetic marks on the promoters of these gene loci (144, 145). Furthermore, it reactivates the expression of several silenced miRNAs in tumor cells that subsequently leads to its direct anti-tumor activity (146). Such direct epigenetic modifications by Poly I:C are highly beneficial to improve the efficacy of therapeutic cancer vaccines.

Another advantageous cancer vaccine adjuvant candidate could be CpG-ODN, a ligand for TLR-9. Although there is less data available regarding the effects of CpG-ODN on global epigenetic reprogramming, it has been shown to promote chromatin changes in specific gene loci. For example CpG DNA induced production of IL12 due to its ability to elicit epigenetic modifications on the IL12p40 promoter, including histone acetylation and nucleosomal remodeling, which leads to gene activation (147). In cancer cells, CpG-ODN has been shown to directly exert its anticancer potential. For instance, in chronic lymphocytic leukemia (CLL), CpG-ODN promotes epigenetic changes associated with active transcription, namely, H3K9/K14 acetylation and H3K4 trimethylation at the promoter of PRDM1 (148). PRDM1 expression promotes terminal differentiation of CLLs (149, 150), which is established as a potent therapy for CLL.

Epigenetic-modulating activities of TLR4 ligand adjuvants may mimic those exerted by LPS. This classical TLR4 ligand promotes innate immune responses by reprogramming monocytes to accumulate active histone marks such as H4Ac, at promoters of genes involved in inflammation and phagocytic pathways (151). However, further stimulation of innate immune cells by LPS can promote tolerance, by removal of H4Ac at promoters of inflammatory gene loci, such as IL6 and TNF\(\alpha\) (152, 153). It was further identified that Trichostatin A, a deacetylase inhibitor could reverse the repression of IL6 and restore H4Ac (152).

Additionally, adjuvants that deliver genetic materials can also potentially be used to promote beneficial epigenetic modifications during vaccine-based cancer therapies. RNA-LPX, a liposome-based adjuvant for example, has been shown to efficiently target DCs and promote strong antigen-specific T cell responses in melanoma patients (131). Since the expression of many miRNAs are altered in various cancer cells, such form of adjuvant could potentially be used to target miRNAs to both alter epigenetic imprinting in the cancer cells and promote cancer elimination.
Despite progression in the knowledge of adjuvants for cancer therapy, their mode of action and the precise epigenetic mechanisms involved are still largely unmapped. As discussed earlier, all types of adjuvants may exert direct and indirect effects, which might result in epigenetic modifications in the cells of the immune system and the associated cancer cells. The accumulating evidence highlighted above provides a rationale to investigate more broadly the potential use of epigenetic modifications by vaccine-adjuvants in the context of cancer therapy.

EPIGENETIC MECHANISMS INVOLVED IN CANCER IMMUNE ESCAPE AND WAYS TO COUNTERACT SUCH MECHANISMS

Disruption of epigenetic regulatory mechanisms is prevalent in cancerous cells leading to altered gene expression, perturbed functionality and malignant transformation. Due to the reversible nature of epigenetic modifications and their involvement in cancer, several epigenetic-modifying drugs have now been approved by the FDA for cancer treatment (154). Several mechanisms including downregulation of antigen presentation machinery, upregulation of coinhibitory/checkpoint ligands and establishment of a pro-cancer environment are involved in immune evasion by cancer cells (Figure 3). In this section, we will discuss epigenetic mechanisms involved in cancer escape from T cell-mediated immunity, and epigenetic drugs that may be able to counteract such mechanisms.

To escape from CTL-mediated killing, cancer cells commonly downregulate the expression of their antigens. This is achieved by epigenetically modifying their DNA, through methylation, commonly observed for MHC class I antigens, and via histone deacetylation, often seen for MHC class II antigens (155, 156). In vitro, the HDAC inhibitor misonidazole increases antigen presentation by MHC class II molecules (157). Other available epigenetic drugs that may modulate the level of expression of antigens in cancer cells include histone methyltransferase (HMT) and demethylase (HDM) inhibitors (158, 159) (Figure 3). In patients, reduced expression of antigens and the components of antigen presentation machinery, such as MHC class I molecule has been shown to correlate with malignancy (160–162). Epigenetic-modifying drugs, such as DNMT and HDAC inhibitors have been widely used to reverse this downregulation of tumor antigens (154). DNMT inhibitors for example, including 5-azacytidine (5-AC) and 5-aza-2’-deoxycytidine (DAC) have been approved by the FDA for the pre-leukemic disorder myelodysplasia (MDS) (163).

The components of the cellular antigen presentation machinery including MHC class I, TAP1, TAP2, LMP2, and LMP7 are epigenetically downregulated in many cancers (164–166). Similarly, tumor cell downregulation of co-stimulatory molecules including CD40, CD80, CD86, and ICAM1 have been observed and associated with the rapid progression of various cancers as reviewed in (167). Additionally, cancer cell escapes from CTL-induced apoptosis by downregulating the expression of their death receptors, such as TRAIL-R and Fas (168). In vitro and animal models, both DNMT and HDAC inhibitors have been shown to induce the expression of the antigen presentation molecules (164–166), surface costimulatory molecules and death receptors (166, 169–174), which then increases the sensitivity of tumor cells to immune-mediated cell killing.

Another known mechanism of immune evasion by cancer cells is to increase their expression of checkpoint ligands, such as PD-L1, CD80, and CD86 (Figure 3) and promote T cell tolerance. The use of DNMT and HDAC inhibitors in such cancer cells may synergistically upregulate the expression of the checkpoint ligands on the surface of cancer cells (175). This is however argued to be beneficial since these epigenetic-modifying agents will sensitize tumor cells for checkpoint inhibitor therapy and allow CTL-mediated killing (176, 177). On the other hand, a BET bromodomain inhibitor (JQ1), has been shown to directly downregulate the expression of checkpoint receptors on cancer cells, rendering them sensitive to CTL-mediated cell death (178, 179).

Many cancer cells suppress certain miRNA expression, in order to increase the expression of checkpoint ligands on their cell surface. These miRNAs include miR-34 (180), miR-29 (181), and miR-200 (182) in lung cancers, miR-138 in glioma (183), miR-187 in renal cell carcinoma (184) and miR424(322) in ovarian carcinoma (185). Based on this knowledge, therapeutic miRNAs could be developed to repress checkpoint ligand expression on the surface of cancer cells. However, their use as therapeutic treatment agents will require rigorous clinical testing as miRNAs may not be specific and thus pose significant concerns regarding non-specific adverse effects in patients.

Another recently identified mechanism of tumor immune escape is the repression of chemokine expression. Chemokines are required for T cell infiltration into the tumor microenvironment (Figure 3). For example, in ovarian cancer, tumor cell production of chemokines CXCL9 and CXCL10 are epigenetically repressed by EZH2-mediated H3K27me3 and DNMT1-mediated DNA methylation (186). Inhibition of EZH2 methyltransferase increases chemokine production and improves T cell infiltration in patients with ovarian cancers (186). Similarly HDAC inhibitors have been used to increase chemokine expression and T cell infiltration in lung cancer patients (187).

Although epigenetic drugs are mainly used to target cancer cells, they may also exert their effects on host immune cells. For example, HDAC inhibitors can increase histone acetylation on several gene promoters in NK cells, including the death-induced receptors Fas and TRAIL-R2, which potentiate NK cell-mediated immune surveillance against cancer cells (173, 174, 188, 189). However, the global modulating effects of these drugs on T cells and other cells than cancer, are currently unknown.

Extensive clinical research has been carried out that has resulted in FDA approval for the use of seven epigenetic drugs for cancer treatment (154), though the role of such epigenetic inhibitors or modulators in altering the epigenetic landscapes of cells other than cancer cells is currently largely unknown. This is an important issue since epigenetic-modifying drugs as well as miRNA therapies, may not be specific, and thus may cause
multiple unknown effects in patients. However, further clinical studies are certainly warranted to fully investigate potential treatment side-effects, especially when the epigenetic therapy is used in combination with immunotherapy, such as in cancer vaccines.

EPIGENETICS AS CANCER BIOMARKERS IN VACCINE IMMUNOTHERAPY

Epigenetic marks including DNA methylation, histone modification, and RNA-associated mechanisms, such as miRNAs and lncRNAs are found to be heritable mitotically from cell to cell and meiotically from generation to generation. Epigenetics has explained how gene activity can be modulated by external environmental factors, such as lifestyle and diet. Due to this unique characteristic, epigenetic marks gained from external environmental cues that shape the parent's DNA are heritable, thus allowing the transfer of experiences from the parents to offspring (190). A person's own lifestyle also shapes that individual's epigenetic profiles. As these profiles dictate cell identity and function, they also dictate individual susceptibility to diseases including cancer (191) and the capacity of their immune system to respond to different challenges. Such profiles can thus be exploited as non-invasive markers for cancer susceptibility, diagnosis and prognosis (192) and possibly predicting the effectiveness of vaccine therapy.

Epigenetic alterations can be readily detected as circulating biomarkers and may prove useful in clinical cases where surgery is contraindicated and biopsy results are inconclusive, such as in gliomas (193). Many circulating epigenetic biomarkers have been developed based on specific DNA methylation pattern of the cancerous cells, as reviewed in (194, 195). For example, in prostate cancer, methylated MCAM detects early stage of cancers with 66% sensitivity and 73% specificity, which is an improvement from PSA with only 42.8% sensitivity and 41.1% specificity (196). Circulating nucleosomes and histone modifications may also serve as markers to increase specificity and sensitivity of current diagnostic and prognostic tests as reviewed in (197, 198). Other attractive circulating epigenetic biomarkers in cancer are the circulating miRNAs, as reviewed in (199). For example, in pancreatic ductal carcinoma, miR-155-5p in plasma is a marker for cancer presence, and increased expression levels in cancerous tissues are associated with a more advanced tumor stage and poorer prognosis (200–202).

Importantly, such non-invasive biomarkers would also be effective tools for both choosing and monitoring the effectiveness of cancer vaccines for each individual case. For example, in gastric cancer, an increased plasma miR-222 level is significantly correlated with a more advanced tumor stage and a lower overall survival (203). This marker can thus be used to predict the outcome of the disease and in combination with T cell functional markers such as IL2, TNFα, and IFNγ could predict patient's response to specific cancer vaccine. Certainly, epigenetic marks identified in a person's immune cells, such as the levels of
specific miRNAs involved in T cell effector function and T cell exhaustion, may be used as functional biomarkers to predict T cell activity following vaccine therapy and additionally to help create an effective combination therapy for that particular person.

THE FUTURE OF THERAPEUTIC CANCER VACCINES AS IMMUNOTHERAPY

As therapeutic cancer vaccines evolve and additional knowledge of their mode of action is established, more effective personalized treatment strategies will be developed. Combination therapies for cancer using complementary vaccine-based therapy with epigenetic inhibitors and/or checkpoint inhibitors will also become more widely used. As the nature of both cancer cell and the associated host immune response is dependent on host epigenetic profiles, additional detailed knowledge of the epigenetic modulations involved in vaccine-generated T cell immunity against cancer cells could prove instrumental to the development of effective vaccine-based immunotherapy. Whilst the epigenetic landscape of cells is unique amongst individuals, specific epigenetic profiles of cancerous cells, as well as of immune cells may be harnessed as biomarkers for early detection of tumors, and also to guide the selection of a targeted therapy.

AUTHOR CONTRIBUTIONS

AK and MP contributed to the conception and design of the review study. AK wrote the first draft of the manuscript. AK, MDP, MC, KW, JB, JC and MP wrote sections of the manuscript. All authors contributed to manuscript revision, read and approved the submitted version.

ACKNOWLEDGMENTS

MP is an Australian National Health and Medical Research Council (NHMRC) Senior Research Fellow.

REFERENCES

1. Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. *Hum Genomics* (2015) 9:17. doi: 10.1186/s40246-015-0041-3
2. Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: from initial findings to prospects. *Immunol Lett.* (2018) 196:11–21. doi: 10.1016/j.imlet.2018.01.011
3. Appay V, Dowek DC, Price DA. CD8+ T cell efficacy in vaccination and disease. *Nat Med.* (2008) 14:623–8. doi: 10.1038/nm.f.1774
4. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. *Nature* (1998) 392:245–52. doi: 10.1038/32588
5. Garrido F, Perea F, Bernal M, Sánchez-Palencia A, Aptsiauri N, Ruiz-Cabello F. The escape of cancer from T cell-mediated immune surveillance: HLA class I loss and tumor tissue architecture. *Vaccines* (2017) 5:7. doi: 10.3390/vaccines5010007
6. Topfer K, Kempe S, Muller N, Schmitz M, Bachmann M, Cartellieri M, et al. Tumor evasion from T cell surveillance. *J Biomed Biotechnol.* (2011) 2011:918471. doi: 10.1155/2011/918471
7. Martinez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? *Clin Cancer Res.* (2015) 21:5047–56. doi: 10.1158/1078-0432.CCR-15-0685
8. Kurtz C, Robinson BWS, Knolle PA. Cross-priming in health and disease. *Nat Rev Immunol.* (2010) 10:403. doi: 10.1038/nri2780
9. Kennedy R, Celis E. Multiple roles for CD4+ T cells in antitumor immune responses. *Immunol Rev.* (2008) 222:129–44. doi: 10.1111/j.1600-065X.2008.00616.x
10. Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. *J Exp Med.* (2010) 207:637–50. doi: 10.1084/jem.20091918
11. Haabeth OAW, Tveita AA, Fauskanger M, Schjervold F, Lorvik KB, Hofgaard PO, et al. How do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? *Front Immunol.* (2014) 5:174. doi: 10.3389/fimmu.2014.00174
12. Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. *Clin Cancer Res.* (2016) 22:1856–64. doi: 10.1158/1078-0432.CCR-15-1849
13. Frey AB. Suppression of T cell responses in the tumor microenvironment. *Vaccine* (2015) 33:7393–400. doi: 10.1016/j.vaccine.2015.08.096
14. Cosma G, Eisenlohr L. CD8+ T-cell responses in vaccination: reconsidering targets and function in the context of chronic antigen stimulation [version 1; referees: 2 approved]. *F1000Research* (2018) 7:508. doi: 10.12688/f1000research.14115.1
15. Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C, Janic B, et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8(+). T cells induced by melanoma vaccines. *Cancer Res.* (2014) 74:1045–55. doi: 10.1158/0008-5472.CAN-13-2908
16. Palmer DC, Balasubramaniam S, Hanada KI, Wrzesinski C, Yu Z, Farid S, et al. Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. *J Immunol.* (2004) 173:7209–16. doi: 10.4049/jimmunol.173.12.7209
17. Provine NM, Larocca RA, Aid M, Penalozza-MacMaster P, Badamchi-Zadeh A, Borduccchi EN, et al. Immediate dysfunction of vaccine-elicited CD8+ T cells primed in the absence of CD4(+) T cells. *J Immunol.* (2016) 197:1809–22. doi: 10.4049/jimmunol.1600591
18. Carreno BM, Magrini V, Becker-Hapak M, Kaibinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy, a dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. *Science* (2015) 348:803–8. doi: 10.1126/science.aaa3828
19. Le Gall CM, Weiden J, Eggermont MJ, Fidgors CG. Dendritic cells in cancer immunotherapy. *Nat Mater.* (2018) 17:474–5. doi: 10.1038/s41563-018-0093-6
20. Dumauthoiz LB, Labiano S, Romero P. Tumor resident memory T cells: new players in immune surveillance and therapy. *Front Immunol.* (2018) 9:2076. doi: 10.3389/fimmu.2018.02076
21. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. *Nat Rev Cancer* (2012) 12:265–77. doi: 10.1038/nrc3258
22. Pizzuroza GA, Barrio MM. Dendritic cell-based vaccine efficacy: aiming for hot spots. *Front Immunol.* (2015) 6:91.
23. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. (2010) 363:411–22. doi: 10.1056/NEJMoa1001294
24. Santos PM, Butterfield LH. Dendritic cell–based cancer vaccines. *J Immunol.* (2018) 200:443–9. doi: 10.4049/jimmunol.1701024
25. Chacon JA, Schitsky K, Powell DJ. The impact of chemotherapy, radiation and epigenetic modifiers in cancer cell expression of immune inhibitory and stimulatory molecules and anti-tumor efficacy. *Vaccines* (2016) 4:4.
27. Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8(+) T cell differentiation. *Nat Rev Immunol.* (2018) 18:340–56. doi: 10.1038/nri.2017.146

28. Odunsi K, Matsuoki J, James SR, Mhawech-Fauceglia P, Tsuji T, Miller A, et al. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. *Cancer Immunol Res.* (2014) 2:37–49. doi: 10.1158/2326-6066.CIR-13-0126

29. Dunn J, Rao S. Epigenetics and immunotherapy: the current state of play. *Mol Immunol.* (2017) 87:227–39. doi: 10.1016/j.molimm.2017.04.012

30. García-Gomez A, Rodriguez-Ureña B, Ballesta E. Epigenetic interplay between immune, stromal and cancer cells in the tumor microenvironment. *Clin Immunol.* (2018) 196:64–71. doi: 10.1016/j.clim.2018.02.013

31. Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8(+) T-cell differentiation. *Immunol Rev.* (2014) 261:157–68. doi: 10.1111/imm.12205

32. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. *Nat Rev Genet.* (2012) 13:844–92. doi: 10.1038/nrg3230

33. Kouzarides T. Chromatin modifications and their function. *Cell* (2007) 128:693–705. doi: 10.1016/j.cell.2007.02.005

34. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, et al. Functions of DNA methylation: islands, start sites, gene bodies and beyond. *Nat Rev Immunol.* (2007) 27:281–95. doi: 10.1038/nri2125

37. Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8(+)T cells: dissociating proliferation and development of effector function. *J Exp Med.* (2003) 197:1141–51. doi: 10.1084/jem.20021910

38. Abdelsamed HA, Zebley CC, Youngblood B. Epigenetic maintenance of acquired gene expression programs during memory CD8 T cell homeostasis. *Front Immunol.* (2018) 9:6. doi: 10.3389/fimmu.2018.00006

39. Dogra P, Ghoneim HE, Abdelsamed HA, Prier JE, et al. Dynamic regulation of histone acetylation in CD8(+) T lymphocytes reactivates Th1 lineage commitment from hematopoietic progenitors. *Nat Immunol.* (2015) 16:157–66. doi: 10.1038/ni.3290

42. Shin MS, You S, Kang Y, Lee N, Yoo S-A, Park K, et al. DNA methylation remodeling accompanies CD8 T cell effector function. *J Exp Med.* (2016) 215:1187–98. doi: 10.1084/jem.20151760

45. Russ BE, Olshanksy M, Smallwood HS, Li J, Denton AE, Prier JE, et al. Dynamic regulation of permissive histone modifications and GATA3 binding underpin acquisition of granulocyte A expression by virus-specific CD8(+) T cells. *Eur J Immunol.* (2016) 46:307–18. doi: 10.1002/eji.201545875

48. Denton AE, Russ BE, Doherty PC, Rao S, Turner SJ. Differentiation-dependent functional and epigenetic landscapes for cytokine genes in virus-specific CD8(+) T cells. *Proc Natl Acad Sci USA.* (2011) 108:15306–11. doi: 10.1073/pnas.1112520108

49. He B, Xing S, Chen C, Gao P, Teng L, Shan Q, et al. CD8(+) T cells utilize highly dynamic enhancer repertoire and regulatory circuitries in response to infections. *Immunity* (2016) 45:1341–54. doi: 10.1016/j.immuni.2016.11.009

52. Nguyen ML, Hatton I, Li J, Olshansky M, Kelso A, Russ BE, et al. Dynamic regulation of permissive histone modifications and GATA3 binding underpin acquisition of granulocyte A expression by virus-specific CD8(+) T cells. *Eur J Immunol.* (2016) 46:307–18. doi: 10.1002/eji.201545875

57. Scott-Browne JP, Lopez-Moyado IF, Trifari S, Wong V, Chavez L, Rao IA, Meffre E, et al. Transcriptional repressor Blimp-1 promotes acquisition of virus-specific CD8(+) T cell-lineage-specific function. *Cell Rep.* (2017) 21:3624–36. doi: 10.1016/j.celrep.2017.11.097

58. Ladle BH, Li KP, Phillips MJ, Pucek AB, Haile A, Powell JD, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8(+) T-cell fate decisions following activation. *Proc Natl Acad Sci USA.* (2011) 108:10631–6. doi: 10.1073/pnas.1008951113

59. Kersh EN. Impaired memory CD8 T cell development in the absence of methyl-CpG-binding domain protein 2. *J Immunol.* (2006) 177:3821–6. doi: 10.4049/jimmunol.177.6.3821

60. Heffner M, Fearn DT. Loss of T cell receptor-induced Bmi-1 in the KLRG1(+) senescent CD8(+) T lymphocytes. *Proc Natl Acad Sci USA.* (2007) 104:13414–9. doi: 10.1073/pnas.0706040104

61. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. *Nat Immunol.* (2016) 17:95–103. doi: 10.1038/ni.3313

63. Koga Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anzucrowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. *J Clin Invest.* (2016) 126:3479–94. doi: 10.1172/JCI86437

64. Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, et al. Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. *Immunity* (2009) 31:29–38. doi: 10.1016/j.immuni.2009.05.014

65. Sauvageau G, Cailleau R, Reisert M, et al. Correlation of ongoing expression with transcriptional factor binding. *Nat Immunol.* (2005) 6:463–70. doi: 10.1038/ni.981

66. Koga Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anzucrowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. *J Clin Invest.* (2016) 126:3479–94. doi: 10.1172/JCI86437
Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, et al. Transcription factor IRF4 promotes CD8(+) T cell exhaustion and limits the development of memory-like T cells during chronic infection. *Immunity* (2017) 47:1129–41.e1125. doi: 10.1016/j.immuni.2017.11.021

Wang Y, Zhong H, Xie X, Chen CY, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8(+) T-cell immune responses in tuberculosis infection. *Proc Natl Acad Sci USA*. (2015) 112:E3883–92. doi: 10.1073/pnas.1501662112

Ji J, Yin Y, Ju H, Xu X, Liu W, Fu Q, et al. Long non-coding RNA Lnc-Tim3 exacerbates CD8(+) T cell exhaustion via binding to Tim-3 and inducing nuclear translocation of Bat3 in HCC. *Cell Death Dis.* (2018) 9:478. doi: 10.1038/s41419-018-0528-7

Wang Y, Zhang Z, Ji D, Chen GF, Feng X, Gong LL, et al. Regulation of T cell function by microRNA-7. *Sci Rep.* (2015) 5:12159. doi: 10.1038/srep12159

Moffett HF, Cartwright ANR, Kim HJ, Godec J, Pyrdol J, Aijo T, et al. The microRNA mir-31 inhibits CD8(+) T cell function in chronic viral infection. *Nat Immunol.* (2017) 18:791–9. doi: 10.1038/ni.3755

Cui J, Li Q, Luo M, Zhong Z, Zhou S, Jiang L, et al. Leukemia cell-derived microvesicles induce T cell exhaustion via miRNA delivery. *Oncoimmunology* (2017) 7:e1448330. doi: 10.1080/2162402X.2016.1484330

Chang S, Collins PL, Aune TM. T-cell dependent removal of Sin3A-histone deacetylase complexes at the Ifng locus drives Th1 differentiation. *Immuno*. (2008) 181:8372–81. doi: 10.4049/jimmunol.181.12.8372

Wells AC, Daniels KA, Angelou CC, Fagerberg E, Burnside AS, Markstein M, et al. Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells. *Life* (2017) 6:26398. doi: 10.7553/Life/26398

Dudda JC, Salsaun B, Li J, Palmer DC, Monnot GC, Merck E, et al. MicroRNA-155 is required for effector CD8(+) T cell responses to virus infection and cancer. *Immunity* (2013) 38:742–53. doi: 10.4049/jimmunol.2012.12.006

Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. *Nat Rev Urol.* (2017) 14:501–10. doi: 10.1038/nrurrol.2017.77

de Rosa F, Fanini F, Guidoboni M, Vannini I, Amadori D, Ridolfi R, et al. MicroRNAs and dendritic cell-based vaccination in melanoma patients. *Melanoma Res.* (2014) 24:181–9. doi: 10.1097/CMR.0000000000000058

Zhu J, Yamane H, Paul WE. Differentiation of Effector CD4 T Cell Populations. *Ann Rev Immunol.* (2010) 28:445–89. doi: 10.1146/annurev-immunol-030409-101212

Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ, et al. Cytokines in immunogenic cell death: applications for cancer immunotherapy. *Cytokine* (2017) 97:123–32. doi: 10.1016/j.cyt.2017.05.024

Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, et al. Recognition of tumors by the innate immune system and natural killer cells. *Adv Immunol.* (2014) 122:91–128. doi: 10.1016/B978-0-12-800267-4.00003-1

Klein JC, Moses K, Zelinskiy G, Sody S, Buer J, Lang S, et al. Toll-like receptor 3 expression inhibits cell invasion and their association with metastasis. *J Virol.* (2005) 79:17.

Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. *Immunity* (2010) 33:492–503. doi: 10.1016/j.immuni.2010.10.002

Manh T-PV, Alexandre Y, Baranek T, Crozat K, Dalod M. Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. *Eur J Immunol.* (2013) 43:1706–15. doi: 10.1002/eji.201243106

McKenna K, Beignon A-S, Bhardwaj N. Plasmacytoid dendritic cells: links innate and adaptive immunity. *J Virol.* (2005) 79:17. doi: 10.1128/JVI.79.1.17-27.2005

Yoneya K, Sugimoto K, Shiraki K, Tanaka J, Beppu T, Fuke H, et al. Dual topology of functional Toll-like receptor 3 expression in human hepatocellular carcinoma: differential signaling mechanisms of TLR3-induced NF-kappaB activation and apoptosis. *Int J Oncol.* (2008) 33:929–36. doi: 10.3892/ijo_00000880

Gonzalez-Reyes S, Marin L, Gonzalez L, Gonzalez LO, del Casar JM, Lamelas ML, et al. Study of TL3R, TL4R and TL9R in breast carcinomas and their association with metastasis. *BMC Cancer* (2010) 10:665.

Hsu WM, Huang CW, Wu PY, Lee H, Huang MC, Tai MH, et al. Toll-like receptor 3 expression inhibits cell invasion and migration and predicts a favorable prognosis in neuroblastoma. *Cancer Lett.* (2013) 364:338–46. doi: 10.1016/j.canlet.2013.03.024
105. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. *Nat Immunol.* (2010) 11:373–84. doi: 10.1038/nl1863

106. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. *J Immunother Cancer* (2016) 4:51. doi: 10.1186/s40428-016-0076-7

107. Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly(IC) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. *Vaccine* (2006) 24:5119–32. doi: 10.1016/j.vaccine.2006.04.010

108. Stahl-Hennig C, Cribier B, Requena L, Reifenberger J, Ferrandiz C, Schulze HJ, Cribier B, Requena L, Reifenberger J, Ferrandiz C. Novel urine hepcidin assay by mass spectrometry. *Drug Discov. Adv Exp Med Biol.* (2010) 667:111–23. doi: 10.1007/s10549-009-0666-9

109. Wiedermann U, Wiltschke C, Jasinska J, Kundi M, Zurbriggen R, Garner-Adamina M, Guller U, Bracci L, Heberer M, Spagnoli GC, Schumacher. Small molecule modulators of toll-like receptors. *J Med Chem.* (2008) 51:6621–6. doi: 10.1021/jm080057k

110. Shirato H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, Trumpfheller C, et al. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. *PLoS Pathogens* (2009) 5:e1000373. doi: 10.1371/journal.ppat.1000373

111. Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. *Nat Rev Drug Discov.* (2006) 5:471–84. doi: 10.1038/nrd2059

112. Schulze HJ, Cribier B, Requena L, Reifenberger J, Ferrandiz C, Schulze HJ, Cribier B, Requena L, Reifenberger J, Ferrandiz C. Small molecule modulators of toll-like receptors. *J Med Chem.* (2008) 51:6621–6. doi: 10.1021/jm080057k

113. Kemna E, Tjalshma H, Laarakkers C, Nemeth E, Willems H, Swinkels D. Novel urine hepcidin assay by mass spectrometry. *Blood.* (2005) 106:3268–70. doi: 10.1182/blood-2005-05-1873

114. Chmiel JS, Cribier B, Requena L, Reifenberger J, Ferrandiz C. Small molecule modulators of toll-like receptors. *J Med Chem.* (2005) 48:111–23. doi: 10.1021/jm047660a

115. Kozbiel A, Therapeutic potential of Toll-like receptor 8 agonists as vaccine adjuvants. *Expert Rev Vaccines* (2013) 12:809–19. doi: 10.1586/14712598.13.811208

116. Roggen KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X, et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. *J Immunol.* (2005) 174:1259–68. doi: 10.1074/jimmunol.174.3.1259

117. Bashir A, T №, Reifenberger J, Ferrandiz C, Cribier B, Requena L, Reifenberger J, Ferrandiz C. Small molecule modulators of toll-like receptors. *J Med Chem.* (2008) 51:6621–6. doi: 10.1021/jm080057k

118. North S, Butts C. Vaccination with BL2P5 liposome vaccine to treat non-small cell lung and prostate cancers. *Expert Rev Vaccines* (2005) 4:249–57. doi: 10.1586/14760584.4.3.249

119. Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. *Ther Adv Vaccines* (2014) 1:219–82. doi: 10.1177/2051013614541440

120. Davis ID, Chen W, Jackson H, Parente P, Luke T, Rizkalla M, Tai TY, et al. ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. *J Immunol.* (2009) 182:1253–9. doi: 10.4049/jimmunol.182.3.1253

121. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins M, et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD8+ T cell responses in humans. *Proc Natl Acad Sci USA.* (2004) 101:10697–702. doi: 10.1073/pnas.0403572101

122. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins M, et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD8+ T cell responses in humans. *Proc Natl Acad Sci USA.* (2004) 101:10697–702. doi: 10.1073/pnas.0403572101

123. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins M, et al. Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD8+ T cell responses in humans. *Proc Natl Acad Sci USA.* (2004) 101:10697–702. doi: 10.1073/pnas.0403572101

124. Slovin SF, Ragupathi G, Muselli C, Fernandez C, Dianz M, Verbel D, et al. Thomsen-Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (-) KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. *Cancer Immunol Immunother CII* (2005) 54:794–702. doi: 10.1007/s00262-004-0598-5

125. Bartrop G, Gardner JR, Livingston PO, Gin DY. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. *Expert Rev Vaccines* (2011) 10:663–70. doi: 10.1586/erv.11.18

126. Miles AP, McClellan HA, Rausch KM, Zhu D, Whitmore MD, Singh S, et al. Montanide ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. *Vaccine* (2005) 23:2530–9. doi: 10.1016/j.vaccine.2004.08.049

127. Karikasari et al. Cancer Vaccines, T Cells, and Epigenetics
through the induction of cytokines associated with trained immunity. *Cell Host Microbe* (2018) 23:89–90.10.1016/j.chom.2017.12.010

141. Fuge O, Vasdev N, Allchorne P, Green JS. Immunotherapy for bladder cancer. *Res Rep Urol.* (2015) 7:65–79.

142. Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, et al. Activation of innate immune receptors by histone demethylating agents for efficient nuclear reprogramming. *Cell* (2012) 151:547–58. doi: 10.1016/j.cell.2012.09.034

143. Wang H, Wang J, Ning C, Zheng X, Fu J, Wang A, et al. Genome-wide DNA methylation and transcriptome analyses reveal genes involved in immune responses of pig peripheral blood mononuclear cells to polI IC. *Sci Rep.* (2017) 7:9709. doi: 10.1038/s41598-017-10468-9

144. Garrett S, Fitzgerald MC, Sullivan KE. LPS and Poly I:C induce chromatin modifications at a novel upstream region of the IL-23 p19 promoter. *Inflammation* (2008) 31:235–46. doi: 10.1016/j.inflammm.2007.09-7070-6

145. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Saki T. Histone deacetylation, but not hypermethylation, promotes immunological tolerance. *PLoS ONE* (2011) 6:e26251. doi: 10.1371/journal.pone.0026211-11137-9

146. Maeda T, Towatari M, Kosugi H, Saito H. Up-regulation of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. *Oncogene* (2009) 28:2370–82. doi: 10.1038/onc.2009.117

147. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. *Cancer Res.* (2005) 65:6321–9. doi: 10.1158/0008-5472.CAN-04-4252

148. Frohlich LF, Mrakovcic M, Smole C, Lahiri P, Zatloukal K. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells. *PLoS ONE* (2014) 9:e91558. doi: 10.1371/journal.pone.0091558

149. Siebenkas C, Chiappinelli KB, Guzzetta AA, Sharma A, Jeschke J, Vatapalli R, et al. Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. *PLoS ONE* (2017) 12:e0179501. doi: 10.1371/journal.pone.0179501

150. Brier D, Sudhaker N, Woods DM, Hallin J, Engstrom LD, Aranda R, et al. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. *Cancer Immunol Immunother* (2018) 67:381–92. doi: 10.1007/s00262-017-2091-y

151. Rao M, Chinnasamy N, Hong JA, Zhang Y, Zhang M, Xi S, et al. Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. *Cancer Res.* (2011) 71:4192–204. doi: 10.1158/0008-5472.CAN-10-2442
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature* (2014) 515:563–7. doi: 10.1038/nature14011

Wang H, Cheng F, Xing L, Zhao X, Villagira A, Pinilla-Ibarz J, et al. IQ1, a Selective bromodomain inhibitor, decreased the expression of the tolerogenic molecule PD-L1 in antigen-presenting cells (APCs) and restores the responsiveness of anergic CD4+ T cells. *BLOOD* (2014) 124:2749. Available online at: http://www.bloodjournal.org/content/124/21/2749

Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG, Allegrezza MJ, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. *Cell Rep.* (2016) 16:2829–37. doi: 10.1016/j.celrep.2016.08.032

Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, et al. PD-L1 Regulation by p53 via miR. *J Natl Cancer Institute* (2016) 1081. doi: 10.1093/jnci/djv303

Xu H, Cheung IY, Guo H-F, Cheung N-KV. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. *Cancer Res.* (2009) 69:6275–81. doi: 10.1158/0008-5472.CAN-08-4517

Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn Y-H, Byers LA, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumor cell PD-L1 expression and intratumoral immunosuppression. *Nat Commun.* (2014) 5:5241. doi: 10.1038/ncomms6241

Wei J, Nduom EK, Kong LY, Hashimoto Y, Xu S, Gaurusiewicz K, et al. MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. *Neuro-oncology* (2016) 18:639–48. doi: 10.1093/neuonc/nov292

Zhao J, Lei T, Xu C, Li H, Ma W, Yang Y, et al. MicroRNA-187, downregulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration through targeting B7-H3. *Biochem Biophys Res Commun.* (2013) 438:439–44. doi: 10.1016/j.bbrc.2013.07.095

Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang T, et al. miR-424 reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. *Nat Commun.* (2016) 7:11406. doi: 10.1038/ncomms11406

Peng D, Kryczek I, Nagarsenkh N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. *Nature* (2015) 527:249–53. doi: 10.1038/nature15520

Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M, et al. HDAC inhibitors enhance T cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. *Clin Cancer Res.* (2016) 22:4119–32. doi: 10.1158/1078-0432.CCR-15-2584

Yang D, Torres CM, Bardhan K, Zimmerman M, McGaha TL, Liu K. Decitabine and vorinostat cooperate to sensitize colon carcinoma cells to Fas ligand-induced apoptosis in vitro and tumor suppression in vivo. *J Immunol.* (2012) 188:4441–9. doi: 10.4049/jimmunol.1103035

Lundqvist A, Abrams SL, Schrump DS, Alvarez G, Saffredini D, Berg M, et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. *Cancer Res.* (2006) 66:7317–25. doi: 10.1158/0008-5472.CAN-06-0680

Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F, et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation. *Biol Psychiatry* (2016) 80:372–80. doi: 10.1016/j.biopsych.2015.08.005

Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. *Nat Rev Genet.* (2007) 8:253–62. doi: 10.1038/nrg2045

Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. *Nat Rev Cancer* (2011) 11:726–34. doi: 10.1038/nrc3130

Santangelo A, Tamanini A, Cabrini G, Dehecche MC. Circulating microRNAs as emerging non-invasive biomarkers for gliomas. *Ann Trans Med.* (2017) 5:277. doi: 10.21037/atm.2016.06.15

Le yogo C, Williams M, Jin HC, Chan MWY, Chu WK, Grusch M, et al. DNA methylation as a noninvasive epigenetic biomarker for the detection of cancer. *Dis Markers* (2017) 2017:3726595. doi: 10.1155/2017/3726595

ML, Marcati P. Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the cancer care continuum. *Cancers* (2018) 10:4. doi: 10.3390/cancers10041010

Brait M, Banerjee M, Maldonado L, Okki A, Loyo M, Guida E, et al. Promoter methylation of MCM4, ESRalpha and Erbeta in serum of early stage prostate cancer patients. *OncoTarget* (2017) 8:15431–40. doi: 10.18632/oncotarget.14873

McAner P, Brown JAL, Kerin MJ. Circulating nucleosomes and nucleosome modifications as biomarkers in cancer. *Cancers* (2017) 9:5. doi: 10.3390/cancers9010005

Kurdistani SK. Histone modifications in cancer biology and prognosis. *Prog Drug Res Fortschritte der Arzneimittelfororschung Progres des Recherches Pharmaceutiques* (2011) 67:91–106. doi: 10.1007/978-3-7643-8999-5_5

Wang H, Peng R, Wang J, Qin X, Zue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. *Clin Epigenet.* (2018) 10:59. doi: 10.1186/s13148-018-0492-1

Papaconstantinou IG, Manta A, Gazouli M, Lyberopoulou A, Lykoudis PM, Polyneas G, et al. Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. *Pancreas* (2013) 42:67–71. doi: 10.1097/MPA.0b013e3182592ba7

Greither T, Grochola LF, Udelnow A, Lautschlager C, Warl P, Taubert H. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. *Int J Cancer* (2010) 126:73–80. doi: 10.1002/ijc.24687

Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. *Cancer Prevent Res.* (2009) 2:807–13. doi: 10.1158/1940-6207.CAPR-09-0094

Fu Z, Qian F, Yang X, Jiang H, Chen Y, Liu S. Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer. *Med Oncol.* (2014) 31:164. doi: 10.1186/s12032-014-0164-8

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.