Visible light guided manipulation of liquid wettability on photoresponsive surfaces

Gibum Kwon1,†, Divya Panchanathan1, Seyed Reza Mahmoudi1, Mohammed A. Gondal2, Gareth H. McKinley1 & Kripa K. Varanasi1

Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil-water clean-up and demulsification technologies.
Photo-responsive surfaces are of great interest due to the wettability change induced upon exposure to incident light. One way to achieve photo-induced wettability change is utilizing photochromic molecules that display reversible transformations upon illumination between two chemical states. Such organic photochromic molecules typically exhibit low contact angle change upon contact with liquid droplets. Recently, it has been reported that photo-generated charge carriers (electron–hole pairs) can change the capacitance of semiconducting silicon dioxide which in turn change the wettability toward a contacting liquid. The wettability change is amplified when the semiconductor is subject to an externally applied voltage along with light illumination.

Photo-responsive titania (TiO$_2$) surfaces have demonstrated wettability change upon exposure to ultraviolet light. A great deal of work has been devoted to elucidating the origin of the well-documented unique ultraviolet light-induced wettability change on TiO$_2$ surfaces. Although this continues to remain an active area of research, it is widely accepted that photo-generated electrons and holes change the surface chemistry so that it is favourable for contacting liquids to spread either by photocatalytic oxidation of surface adsorbed organic species or by the increase of hydroxyl species due to dissociative water adsorption.

Photo-driven manipulation of liquid motion on a TiO$_2$ surface is highly attractive because it would eliminate any need for either direct electrical contact with liquids or complex electronic circuitry. However, their practical applications are often limited either by the inability to respond to the visible light spectrum of natural sunlight or by the slow kinetics and the need for special environments (that is, storage in dark or heat) to recover the original wetting state.

The strategy of sensitizing TiO$_2$ surfaces with dopants and visible light-absorbing materials (for example, organic dyes) has been utilized in photovoltaics to efficiently absorb solar radiation and convert it to electrical energy. Imbibition of a liquid dye or adsorption of dye to a TiO$_2$ surface is an alternative approach for generating charge carriers upon light illumination. On a dye-sensitized TiO$_2$ surface, the optical absorption and charge-generating functions are achieved by excitation of dye and subsequent injection of charge carriers (for example, electrons) into the conduction band of TiO$_2$.

The light absorption behaviour of a dye-sensitized TiO$_2$ surface can be readily tuned by careful consideration of the energy levels of the selected dye. Ruthenium (II) poly(pyridyl) complexes have received particular interest due to their wide absorption range from the visible to the near-infrared regime and high stability in the oxidized state. Furthermore, introduction of a textured roughness or porosity to the TiO$_2$ surface can dramatically increase the light absorption efficiency due to an increased specific surface area providing capillary stabilization of a surface adsorbed liquid film in which a large number of dye molecules can be directly adsorbed. Consequently, dye-sensitization may provide a versatile tool to tune the wettability of TiO$_2$ surfaces under visible light illumination.

In this work, we demonstrate that a dye-sensitized TiO$_2$ surface—fabricated using straightforward dip-coating method—can be engineered to have its wettability state optically modulated upon illumination by visible light. We show that this wettability change arises due to the electric potential difference established between the surface and the liquid upon incident illumination. A systematic study of the relationship between the energy levels of the dye and the contacting liquid reveals that the highest occupied molecular orbital (HOMO) energy level of the dye and the reduction potential of the liquid govern the ensuing wetting behaviours. Utilizing this photo-induced wetting of our dye-sensitized TiO$_2$ surface we demonstrate light-guided manipulation of liquid droplet motion along the surface. Furthermore, we show demulsification of surfactant-stabilized brine-in-oil emulsion via interfacial coalescence of brine droplets under visible light illumination. Such surfaces thus offer a wide range of potential applications including optically driven, microfluidic devices with customizable wettability and continuous solar-driven self-cleaning and oil–water separation technologies.

**Results**

**Wetting behaviours of liquids on an N3 dye-sensitized TiO$_2$.** We fabricated an N3 dye-sensitized TiO$_2$ surface. A thin, nanostructured and highly porous TiO$_2$ surface is prepared by layer-by-layer (LBL) deposition of negatively charged TiO$_2$ nanoparticles (average diameter $\approx 20$ nm) and positively charged poly(allylamine hydrochloride) (PAH) on an indium tin oxide (ITO)-coated glass slide followed by calcination (see Methods). A scanning electron microscopy image (see inset (i) in Fig. 1a) shows that the surface is highly porous with a large specific surface area. The ratio of the total surface area per unit projected area is estimated to be 56 (see Supplementary Note 1). The resulting porous TiO$_2$ surface is subsequently dip-coated in N3 dye solution. N3 dye molecules chemisorb to the surface via carboxylate groups. Adsorption of N3 dye molecules leads to a deep brown coloration of the surface (see inset (ii) in Fig. 1a).

In Figure 1b, we measured the visible light absorption spectra of an N3 dye-sensitized TiO$_2$ surface and, as shown in Fig. 1a, our surface absorbs a broad range of the incident visible spectrum ($390 \text{ nm} \leq \lambda \leq 700 \text{ nm}$). In contrast, an unsensitized LBL-deposited TiO$_2$ nanostructured surface displays negligible absorption in the visible regime due to the wide band gap energy of the TiO$_2$ particles ($\approx 3.2 \text{ eV}$).

To study the photo-induced wettability change of our N3 dye-sensitized TiO$_2$ surface, we measured the evolution in the contact angles in situ for three liquid droplets: deionized (DI) water, potassium iodide (KI, 10 wt% in water) and potassium chloride (KCl, 10 wt% in water). In situ contact angle measurements were conducted under oil (for example, dodecane) environment to minimize evaporation of a droplet due to the heat generated from the light source (see inset (i) in Fig. 1b and Methods) and to simulate the condition expected in oil–water separation operation. The visible light source with intensity ($I = 145 \text{ mW cm}^{-2}$) is projected from above the surface to minimize intensity loss along the light transmission path. Figure 1b shows the evolution in the macroscopic contact angles ($\theta^*$) for DI water, KI and KCl droplets as a function of illumination time. The equilibrium contact angles for DI water and KCl remain almost constant during illumination ($\Delta \theta_{\text{DIwater}} \approx 3^\circ$ and $\Delta \theta_{\text{KCl}} \approx 2^\circ$), while those for KI decrease progressively from $\theta_{\text{KI},t=0} = 119^\circ$ with increasing illumination time before finally approaching $\theta_{\text{KI},t=120 \text{ min}} = 77^\circ$ (see Fig. 1b). After it reaches $77^\circ$, the contact angle remains unchanged. Similar contact angle saturation is also typically observed in conventional electrowetting-on-dielectric applications. Very similar contact angle changes were also observed on a thicker N3 dye-sensitized TiO$_2$ film prepared with 45 bilayers of TiO$_2$ and PAH. We also observed that the negligible wettability change for KCl was independent of concentration (see Supplementary Table 1) while KI droplets with higher ionic concentration exhibited rapid decrease in contact angles (see Supplementary Fig. 1 and Supplementary Note 2). Note that unlike the conventional electrowetting or photoelectrowetting, where the contact angle change is effected within milliseconds upon (high) voltage application, our N3 dye-sensitized TiO$_2$
surface exhibits a wettability change for KI droplet over tens of minutes. However, the switchability does not require application of large voltages, and can be effected using droplets on surfaces that are immersed in alkane or other low surface tension organic liquids. The expected application areas will thus be very different to conventional electrowetting devices. Our selective photo-induced wetting response of KI over KCl droplets on an N3 dye-sensitized TiO2 surface under visible light illumination (see Supplementary Fig. 2 and Supplementary Note 3).

The origin of the photo-induced wettability change. On dye-sensitized TiO2 surfaces, photo-generated electrons from incident visible light illumination are injected and travel through the nanoporous TiO2 network. We can anticipate that this electron transfer results in the generation of an electric potential difference under light illumination.

Figure 2a shows a schematic and energy diagram of an N3 dye-sensitized TiO2 surface contacting either KI or KCl droplet. (b) A plot of measured voltages across the contacting liquids (KI or KCl) and the N3 dye-sensitized TiO2 surface under visible light illumination (intensity = 145 mW cm⁻²). Inset: a zoomed-in image showing voltages immediately after the onset of visible light illumination. (c) Evolution in the measured contact angles for KI and KCl droplets on the electrically grounded N3 dye-sensitized TiO2 surface. Inset: a schematic illustration of in situ contact angle measurement of a droplet on the electrically grounded dye-sensitized TiO2 surface.
The oxidized dye (D⁺) can be subsequently reduced by accepting an electron from the reducing agent (that is, the iodide, I⁻) in the KI from the chemical reaction (a process known as regeneration)⁴⁸,⁴⁹. An alternative pathway for reducing the oxidized dye is by recombining with an electron in the TiO₂ (that is, the process of recombination)⁴⁶,⁴⁷. While the regeneration is more favourable and orders of magnitude faster, the recombination also plays an important role in dye reduction process, especially under open-circuit conditions⁴⁸,⁴⁹.

To validate our hypothesis, we measured the in situ voltage across the contacting liquids and the N3 dye-sensitized TiO₂ surface while illuminating with visible light (see Fig. 2b). Immediately after the onset of illumination, a potential difference \( V_{v, r - o} \approx 0.42 \) V is observed between the KI and the lower ITO electrode. The voltage decreases gradually with increasing illumination time and eventually reaches zero after \( t \approx 45 \) min. Similar to photoelectrowetting⁹,⁴⁶ in which the voltage across the droplet and the surface during optical illumination, we observed a rapid decrease in the voltage between a KCl droplet and the surface (see Supplementary Fig. 3 and Supplementary Note 5). Furthermore, we observed that changes in the contact angle halt instantaneously and the droplet shape is well with equation (1) with \( \tau_r = 130 \) s and \( z = 0.42 \) (see Supplementary Note 4). Therefore, we observed that changes in the contact angle halt instantaneously and the droplet shape remains unchanged when the illumination is turned off (see Supplementary Fig. 3 and Supplementary Note 5).

Unlike the gradual decrease in voltage between the KI droplet and the surface during optical illumination, we observed a rapid decrease in the voltage between a KCl droplet and the surface after the onset of illumination (see Fig. 2b). Rapid decrease in the voltage highlights the importance of the dye reduction process in photo-induced voltage generation. As the reduction potential of iodide (I⁻, \( E_{\text{red}, I} = -0.53 \) V versus normal hydrogen electrode (NHE)) is above (that is, less positive than) the HOMO energy level of N3 dye (\( E_{\text{HOMO}, N3} = -1.0 \) V versus NHE)⁴⁹, it presents a driving force to reduce the oxidized dye. As a consequence, an N3 dye-sensitized TiO₂ surface contacting a KI droplet can maintain a prolonged voltage difference by suppressing the recombination process. In contrast, chloride (Cl⁻, \( E_{\text{red}, Cl} = -1.36 \) V versus NHE)⁴⁹ cannot effectively reduce the oxidized N3 dye due to its lower reduction potential resulting in a dominant recombination process.

To probe our hypothesis that suppressing the recombination process leads to prolonged photo-induced voltage generation, and subsequently extension of the wetting (that is, a larger change in contact angles), we fabricated an electrically grounded N3 dye-sensitized TiO₂ surface (see inset in Fig. 2c). In contrast to the previous surface where photo-generated electrons continue to accumulate and participate in the recombination process, the electrically grounded surface minimizes electron accumulation. Figure 2c shows an enhanced decrease in macroscopic contact angles for KI (\( \Delta \theta_{\text{KC}} \approx 72^\circ \)) and KCl (\( \Delta \theta_{\text{KC}} \approx 7^\circ \)) droplets on the electrically grounded N3 dye-sensitized TiO₂ surface after 120 min of illumination. We anticipate that this is a direct consequence of the suppression of the recombination process.

**Photo-induced wetting on various dyes-sensitized TiO₂ surfaces.** These findings described above provide us with design parameters to systematically manipulate the wettability of dye-sensitized TiO₂ surfaces towards different contacting liquids in response to visible light illumination. For effective wetting of specific liquids, it is preferential to regenerate the oxidized dye by a reducing agent within the contacting liquid (see Fig. 2a). This often requires careful consideration of the energy levels of the dye and different contacting liquids. As is well documented in the dye-sensitized solar cell literature⁵⁻,²³,²⁴, effective dye regeneration is typically achieved by using electrolytes that possess a reduction potential that is less positive than the HOMO energy level of dye. This enables us to create a design chart for photo-induced wetting of contacting liquids on a dye-sensitized TiO₂ surface. Figure 3a shows an energy diagram of various dyes and electrolytes. Here we chose D149 dye⁵⁰ and Chlorin dye⁵¹ as sensitizers (see Methods). Similar to our N3 dye-sensitized TiO₂ surface, a D149 dye-sensitized TiO₂ and a Chlorin dye-sensitized TiO₂ absorb across a broad range of the visible light spectrum.
Manipulating liquid droplet on a Chlorin dye-sensitized TiO2.

Our ability to photo-invoke the selective wetting of contacting liquids on a dye-sensitized TiO2 surface provides a versatile tool to manipulate liquid motion. Figure 4a shows visible light guided movement of a sodium chloride (NaCl; 10 wt% in water) droplet on a patterned Chlorin dye-sensitized TiO2 surface submerged in dodecane. By shining visible light at various locations between the droplets we can photo-invoke coalescence of all droplets resulting in a single continuous NaCl aqueous layer on the surface.

Demulsification of brine-in-oil emulsions. This photo-induced coalescence process is an ideal candidate to substitute for conventional electrostatic coalescence technique employed in demulsification (32–34) (that is, the conversion of an oil–water emulsion into two separate oil-free and water-free phases), especially for mixtures with high salt concentration (for example, brine–oil emulsions) that are typically generated in enhanced oil-recovery operations. The demulsification of brine–oil emulsions using our photo-induced coalescence is highly desirable because conductive emulsions resulting from ionized salts create a current path upon application of an external electric field that hinders generation of induced dipole moments (33). Here we demonstrate demulsification of a brine–oil emulsion utilizing photo-induced coalescence of water droplets containing salts on a dye-sensitized TiO2 surface. Figure 5a,b show demulsification of a brine (10 wt% NaCl in water)—in—dodecane emulsion stabilized by 0.1 wt% of Span80 surfactant (see Methods). The demulsification apparatus consists of a stainless steel membrane (pore size ≅ 2 μm) coated with Chlorin dye-sensitized TiO2 nanostructured film sandwiched between the two vertical glass tubes (see Fig. 5a). The emulsion is added to the upper tube and immediately visible...
light is illuminated on the membrane surface. Within minutes of illumination, the brine-in-dodecane emulsion demulsifies into brine-rich and dodecane-rich phases (see Fig. 5b). Similar to photo-induced coalescence of NaCl droplets (see Fig. 4b), brine droplets that contact the Chlorin dye-sensitized TiO2 mesh surface spread and coalesce with other droplets under white light illumination. Figure 5c shows a schematic illustrating our photo-induced demulsification of brine–oil emulsion. Figure 5d shows the brine droplet number size distribution of the dodecane-rich retentate after 4 min of demulsification. By comparing with the feed emulsion, it is evident that nearly all brine droplets above 25 μm (that is, >99.9 vol% of brine) are removed by photo-induced coalescence. Supplementary Movie 2 demonstrates the demulsification of a brine-in-oil emulsion using photo-induced coalescence of brine droplets on Chlorin dye-sensitized TiO2 mesh surface.

In summary, we have demonstrated that dye-sensitized nanoporous TiO2 surfaces can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage difference across the liquid and the surface. We have also shown that the HOMO energy level of the selected dye and the reduction potential of the contacting liquid droplet phase govern the effective dynamics of the photo-induced voltage difference. The photo-induced wettability change of a dye-sensitized TiO2 surface enables external manipulation of liquid droplet motion across a surface upon visible light illumination. We also demonstrated spontaneous demulsification and separation of surfactant-stabilized brine-in-oil emulsion using photo-induced coalescence of brine droplets on a dye-sensitized TiO2 surface. We anticipate that such abilities to remotely activate and control the wettability states of surfaces through optical illumination will enable new microfluidic separation technologies as well as result in new sunlight-driven oil–water clean-up and demulsification approaches.

**Methods**

**Fabrication of thin nanostructured TiO2 surfaces.** A thin, nanostructured TiO2 surface was fabricated using LBL deposition either on an ITO-coated glass slide (Sigma Aldrich, surface resistivity = 8–12 Ω cm) or stainless steel mesh (TWP Inc., pore size ≈ 2 μm) substrates. First, the substrates were sequentially dip-coated in PAH (Sigma Aldrich, average molecular weight = 15,000 g mol⁻¹) aqueous solution (1 mg ml⁻¹, pH = 7.5) and TiO2 nanoparticle (Svaya Nanotechnology, average diameter ≈ 20 nm) aqueous dispersion (0.03 wt%, pH = 9.0). After depositing desired number of bilayers (30 or 45 bilayers) of PAH and TiO2, the substrates were calcined at 400°C for 2 h to remove PAH from the surface. A scanning electron microscopy image shows that the surface is highly porous (see inset (i) in Fig. 1a).

**Fabrication of dye-sensitized TiO2 surfaces.** Solutions (0.3 mM) of N3 dye (Sigma Aldrich), D149 dye (Sigma Aldrich) and Chlorin dye (Frontier Scientific) were prepared in anhydrous ethanol (Fischer Scientific). Note that N3 dye, D149 dye and Chlorin dye denote cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylyato) ruthenium (II), 5-[[4-[4-(2,2-diphenylethenyl)phenyl]-1,2,3,3a,4,8b-hexahydrocyclopent[b][indol-7-yl][methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid and 13-carboxy-17-(2-carboxyethyl)-15-carboxymethyl-17,18-trans-dihydro-3-vinyl-8-ethyl-2,7,12,18 tetramethylporphyrin, respectively. Small pieces of substrates with TiO2 surface were dip-coated in the desired solution for 12 h followed by thorough rinsing with...
ethanol to remove any residual dye molecules from the surface. The substrates were then dried with nitrogen gas.

**In situ contact angle measurements.** A small volume (≈ 4 μl) of ionic aqueous droplet was placed onto a dye-sensitized TiO2 surface submerged in dodecane. Visible light (1 MW, Edmund Optics) was irradiated from the top of the droplet. Note that the intensity of the light was constant (I = 145 mW cm⁻²) in all measurements. The contact angle measurements were conducted using a Ramé–Hart 590-F1 goniometer.

**Fabrication of a patterned dye-sensitized TiO2 surface.** A glass slide was masked in a channel (5 mm wide × 15 mm long) by Kapton polyimide adhesive tape (UNILE) by manual application. A TiO2 film was prepared on the unmasked region using LBL deposition followed by calcination as described above. Subsequently, the substrate was dip-coated in a Chlorin dye solution for 12 h to obtain a Chlorin dye-sensitized TiO2 channel. The channel was then masked by attaching a croslinked polydimethylsiloxane (x-PDMS) film. The substrate was treated with heptadecafluoro-1,2,2-trihexyloxytrichlorosilane (Gelest) by vapour phase deposition at 90 °C for 1 h to obtain hydrophobic background.

**Demulsification of a brine-in-dodecane emulsion.** A brine-in-dodecane emulsion (30:70 v:v) was prepared by mixing water with 10 wt% NaCl and dodecane using a stir bar at 1,000 r.p.m. The concentration of Span80 surfactant was 0.1 wt% in the mixture. The solution (30:70 v:v) was prepared by mixing water with 10 wt% NaCl and dodecane using a stir bar at 1,000 r.p.m. The concentration of Span80 surfactant was 0.1 wt% in the mixture. The solution (30:70 v:v) was prepared by mixing water with 10 wt% NaCl and dodecane using a stir bar at 1,000 r.p.m. The concentration of Span80 surfactant was 0.1 wt% in the mixture.

**Data availability.** The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.

**References**

1. Wang, R. et al. Light-induced amphiphilic surfaces. *Nature* **388,** 431–432 (1997).
2. Sun, R. D., Nakajima, A., Fujishima, A., Watanabe, T. & Hashimoto, K. Photoinitiated surface wettability conversion of ZnO and TiO2 thin films. *J. Phys. Chem. B* **105,** 1984–1990 (2001).
3. Wang, R. et al. Photogeneration of highly amphiphilic TiO2 surfaces. *Adv. Mater.* **10,** 135–138 (1998).
4. Vlassiouk, I., park, C. D., Vail, S. A., Gutz, D. & Smirnov, S. Control of nanoscale wetting by a photochromic spiropyran: a light-controlled valve and electrical switch. *Nano Lett.* **6,** 1013–1017 (2006).
5. Ichimura, K., Oh, S. K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. *Science* **288,** 1624–1626 (2000).
6. Rosario, R. et al. Photon-modulated wettability changes on spiropyran-coated surfaces. *Langmuir* **18,** 8062–8069 (2002).
7. Moller, G., Harke, M., Motschmann, H. & Prescher, D. Controlling deposition at 90°. Chlorin dye-sensitized TiO2 channel. The channel was then masked by attaching a croslinked polydimethylsiloxane (x-PDMS) film. The substrate was treated with heptadecafluoro-1,2,2-trihexyloxytrichlorosilane (Gelest) by vapour phase deposition at 90 °C for 1 h to obtain hydrophobic background.

**In situ contact angle measurements.** A small volume (≈ 4 μl) of ionic aqueous droplet was placed onto a dye-sensitized TiO2 surface submerged in dodecane. Visible light (1 MW, Edmund Optics) was irradiated from the top of the droplet. Note that the intensity of the light was constant (I = 145 mW cm⁻²) in all measurements. The contact angle measurements were conducted using a Ramé–Hart 590-F1 goniometer.

**Fabrication of a patterned dye-sensitized TiO2 surface.** A glass slide was masked in a channel (5 mm wide × 15 mm long) by Kapton polyimide adhesive tape (UNILE) by manual application. A TiO2 film was prepared on the unmasked region using LBL deposition followed by calcination as described above. Subsequently, the substrate was dip-coated in a Chlorin dye solution for 12 h to obtain a Chlorin dye-sensitized TiO2 channel. The channel was then masked by attaching a croslinked polydimethylsiloxane (x-PDMS) film. The substrate was treated with heptadecafluoro-1,2,2-trihexyloxytrichlorosilane (Gelest) by vapour phase deposition at 90 °C for 1 h to obtain hydrophobic background.

**Demulsification of a brine-in-dodecane emulsion.** A brine-in-dodecane emulsion (30:70 v:v) was prepared by mixing water with 10 wt% NaCl and dodecane using a stir bar at 1,000 r.p.m. The concentration of Span80 surfactant was 0.1 wt% in the mixture. The solution (30:70 v:v) was prepared by mixing water with 10 wt% NaCl and dodecane using a stir bar at 1,000 r.p.m. The concentration of Span80 surfactant was 0.1 wt% in the mixture. The solution (30:70 v:v) was prepared by mixing water with 10 wt% NaCl and dodecane using a stir bar at 1,000 r.p.m. The concentration of Span80 surfactant was 0.1 wt% in the mixture.
49. Jeon, J., Goddard, W. A. & Kim, H. Inner-sphere electron-transfer single iodide mechanism for dye regeneration in dye-sensitized solar cells. J. Am. Chem. Soc. 135, 2431–2434 (2013).

50. Liu, Z. Y. et al. Solution-processed organic photovoltaics based on indoline dye molecules developed in dye-sensitized solar cells. Molecules 18, 3107–3117 (2013).

51. Wang, X. F. & Kitao, O. Natural chlorophyll-related porphyrins and chlorins for dye-sensitized solar cells. Molecules 17, 4484–4497 (2012).

52. Lightbourne, S. K. S., Gobeze, H. B., Subbaiyan, N. K. & D’Souza, F. Chlorin e6 sensitized photovoltaic cells: effect of co-adsorbents on cell performance, charge transfer resistance, and charge recombination dynamics. J. Photon. Energy 5, 053089 (2015).

53. Eow, J. S. & Ghadiri, M. Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem. Eng. J. 85, 357–368 (2002).

Acknowledgements
We acknowledge financial support from the King Fahd University of Petroleum and Minerals (KFUPM) through the Center for Clean Water and Clean Energy at MIT and KFUPM (project no. R15-CW-11).

Author contributions
K.K.V, G.H.M, G.K designed the research. G. K., D. P., S.R.M performed experiments. G.K., D.P., M.A.G., G.H.M., K.K.V., analysed the data and wrote the manuscript.