by Anders Wikström¹, Dolores Pereira²*, Thomas Lundqvist³, Barry Cooper⁴

The Dala (Älvdalen) porphyries from Sweden

¹ retired from Geol. Surv. of Sweden, Uppsala. E-mail: andewik@tele2.se
² Department of Geology, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain. *Corresponding author E-mail: mdp@usal.es
³ retired from Geol. Surv. of Sweden, Uppsala. E-mail: thomaj@swipnet.se
⁴ Barbara Hardy Institute, School of Natural & Built Environments, University of South Australia, Mawson Lakes SA 5095 Australia. E-mail: barry.cooper@unisa.edu.au

(Received September 1, 2014; Revised accepted October 22, 2014)

handicrafts that catered for the poor as well as providing items of extravagant luxury.

Today a porphyry museum exists in Älvdalen. A few handicraft workers are active, and the abandoned old porphyry plants are open to visitors.

Introduction

The commercial stone industry in Älvdalen, northwest of Stockholm, commenced in the second half of the 18th century as a social need. The region had been plagued by severe famine and there was an urgent need for additional wealth-generating industry. At that time it was already known that the porphyry in the area was similar to the "porfido rosso antico" from Egypt which had played an important role in the Roman culture. Many ups and downs followed. During one period in the 19th century, the Swedish Royal family owned the industry. At the same time, several "porphyry" objects were presented to different courts around Europe (e.g. a 4 metre tall vase to the Russian czar, although of a more granitic variety). Otherwise most products have been smaller objects like urns, vases, candelabras, etc. The very hard Stone (with variable red or black colours) can be highly polished.

Many of the porphyry varieties were sourced from glacial boulders. These had been "mechanically tested" by nature and were free from joints which otherwise was a problem in the associated quarries.

Comagmatic granites also occur. The porphyries and granites have an age around 1700 Ma, and the former are amazingly well preserved with magnificent volcanic textures.

The porphyries and granites occupy a vast area and are in part covered with red, continental sandstones, which are quarried to-day.

In the middle of the 20th century, the ignimbritic character of the porphyry was discovered. Previously, the flattened "fiamme" (collapsed pumice) had been interpreted as some kind of flow structure in lava. The porphyry manufacturing plants in Älvdalen are a part of the Swedish industrial history. Over a significant historical period the porphyry-works produced good handcrafts that catered for the poor as well as providing items of extravagant luxury.

History of porphyry

The word “porphyry” derives from the Greek πορφυρος and means “purple”. In ancient times the stone was much sought after. The oldest porphyry quarries were to be found in Egypt near the Red Sea (Maxfield and Peacock, 2001). Cleopatra of Egypt, the Emperor of Rome, the Popes of the Middle Ages, the Medici of Florence, Cardinals Richelieu and Mazarin, Napoleon and many more famous figures surrounded themselves with beautiful objects made of porphyry, where the colour of the material, purple, would give an extra stress to mark the importance of the owner. The traditional royal
colour used to be blue, but Cleopatra changed the symbolic colour to red and had the walls of her banqueting hall in Alexandria adorned in porphyry. Roman Emperors continued the use of the red stone. Bathtubs of porphyry were popular. In the Eastern Roman (Byzantine) Empire the material was especially used to mark the importance of the Emperor. In the palace of Constantinople a special childbirth delivery-room was designed for the Empress where the walls and floors were covered in porphyry. A prince born in this room was bestowed with the extra title “born to the purple”.

The ancient mining of porphyry was concentrated on the Egyptian quarries, active from 20AD to 400AD. During the Middle Ages, the importation of porphyry to Europe was discontinued and alternatives had to be found leading to reuse of the existing material. Since the fashion was to bury ecclesiastical princes in sarcophagi of porphyry, a great number of Roman bathtubs were rebuilt and elevated to the new status of papal sarcophagi. The King of the Ostrogoths, Theodoric the Great, was also entombed in a porphyry bathtub. There are occurrences of porphyry in several places in Western Europe, but in the Älvdalen area in Sweden the porphyries display an unusually great variation in colour, texture, phenocryst size and content, which makes them favourable for use as ornamental stone.

The Swedish porphyry occurrences were discovered in the 1730s by a vicar in Älvdalen, but half a century was to pass before the working of porphyry objects was in progress. The Swedish counsellor of the realm formed, together with ten other men, a company for the working of porphyry. A huge grinding house (Figure 1), driven by waterpower, was constructed in 1796-97. It greatly facilitated the subsequent production. The first foreign agent was established in Hamburg, Germany, but it was soon followed by representatives in London, Paris and Vienna. A catalogue from Paris, 1805, (Sundblom et al, 1985) shows a variety of objects for sale. In France, there was also cooperation with skilful workers for bronze decorations. In

![Figure 1. Sketch of the porphyry grinding house, built 1796-97, driven by water power. Destroyed by fire in 1867 (Lagerqvist and Åberg, 1984).](image)
general. France was a good market, and Swedish porphyry objects can still be seen in French museums and homes.

Economic fluctuations were a feature of the porphyry enterprise. At the beginning of the 19th century, Napoleon’s general Bernadotte became King of Sweden under the name Karl XIV Johan. The Swedish Royal family owned the porphyry-works between 1818 and 1856 and it used porphyry items as gifts to various international luminaries. During this period, Sweden was economically poor and roads, bridges etc., were of inferior quality. Thus transportation of the larger manufactured porphyry objects created major challenges (see below).

Even though the Napoleonic wars curtailed activities between Sweden and France, the porphyry business soon recommenced after the wars. Much later in 1867, a severe fire destroyed the major grinding house and resulted in closure of the initial industrial enterprise. Soon after, it was reopened but never recovered its initial capacity.

Today a porphyry museum has been established in Älvdalen. A few handicraft workers are active, and the abandoned porphyry manufacturing plants are open to visitors. (http://www.geonord.org/shows/porph.html)

Geology

Figure 2 shows the location of Dala porphyry production area, where Dala volcanites occupy an area approximately 5000–6000 km² in size (Figure 3). These rocks are also present below a cover of continental sandstone (Dala Sandstone) to an unknown extent. They were subdivided into porphyries and porphyrites by Hjelmqvist (1966) where the former are mainly ignimbrites and the latter mainly lavas ranging from basalt to dacite in composition (Nyström 2004). The lavas have had limited interest for the stone industry. The continuation in Norway is known as the “Trysil porphyries” (Wolff et al., 1995).

Figure 2. Map showing the location of Dala Porphyry production area.

Figure 3. Bedrock map (Bergman et al. 2014). The porphyries are shown with dark yellow colour, the covering continental sandstones in pale violet colour, dolerites in dark violet, and granites in red.
has been manufactured under the name "granitell". The Garberg granite has many chemical similarities with rapakivi granites, including its high content of fluorine (Lundqvist and Persson 1999). Radiometric dating (U–Pb on zircon) of both porphyries and granites (e.g. Garberg granite) results in dates of around 1700 Ma (Lundqvist and Persson 1999). The metamorphic grade decreases from greenschist facies at the base of the porphyry complex to prehnite-pumpellyite facies near the top. The burial metamorphic pattern indicates that the original thickness of the deposit was several thousand meters (Lundqvist, 1968; Nyström, 2004).

Boulders and blocks of porphyry from this part of Sweden have been glacially transported for long distances due to their hardness. Both in Sweden and Central Europe, they have acted as tracers for ice movements (Hesemann 1936). Glacial boulders of a green tinguaite, with nepheline, cancrinite and aegirine phenocrysts, also attracted the stone workers early and were sometimes considered as "porphyry". This tinguaite is considerably younger, 280 Ma, than the true porphyries and have been further described by Lundqvist (1997).

Manufactured objects

The Älvdalen porphyries can take a high polish with a special lustre, but to attain this finish there is a need for time consuming handicraft work. As a result, prices have been very high over the years and the objects have been rated in the luxury category.

Although most of the raw materials have been extracted in bedrock quarries, much porphyry was also sourced from glacial boulders. These had been "mechanically tested" by nature and were free from joints, which otherwise caused problems in the quarries.

Large objects, like the 4 meter tall vase presented by the Swedish King Karl XIV Johan to the Russian Czar and the large sarcophagus for this king, were manufactured from the Garberg granite. This granite is more suitable for large objects because it has a lower frequency of fissures than the porphyries.

Special products included mosaic tables, often with many different porphyry varieties.

As mentioned above, the Swedish king Karl XIV Johan commenced giving porphyry gifts to prominent persons. The Royal Court continued with this custom, at least until the 1920s when the King of Siam (modern Thailand) was presented with a porphyry vase.

A list of known porphyry gifts noted from published sources, mainly Lagerqvist and Åberg (1989) follows. Large objects, manufactured from "granitell", are listed:

- 1838: Four meters tall vase presented to the Russian Czar Nikolaus I, installed in the garden of the Summer Palace in St. Petersburg.
- Large urn installed outside the small pavilion of Rosendal in Djurgarden in Stockholm (Figure 6).
- Sarcophagus of Karl XIV Johan.
- 1822: two large vases presented to King George IV of the United Kingdom.
- 1837: a large vase presented to King Maximilian of Bavaria.

Figure 4: Microphoto of ignimbritic, rhyolitic Dala Porphyry (Rännås Porphyry) showing well preserved glass-shard texture and more coarse-grained ignimbrite flames. Rännåsarna, 12 km north-northeast of Älvdalen. Photo by Thomas Lundqvist.

Figure 5: Different varieties of Swedish porphyries used in industry. From left to right and from top to bottom: Garberg granite, Blyberg porphyry with ignimbritic "flames", the most commonly used variety, Rännås porphyry, Kåtilla porphyry, Dysberg porphyry, Kåtilla porphyry, Rämma porphyry and Bredvad porphyry. Photos by J.-O. Svedlund.
Episodes Vol. 38, no. 2

1851: a large vase presented to Queen Victoria of the United Kingdom from King Oscar I.

Unspecified porphyry gift presented to the French monarch.

A number of urns and memorials (Figures 7 and 8).

Conclusion

Sweden’s Dala or Älvdalen porphyries have had major decorative and ornamental significance at an international scale for more than 200 years.

They have been utilised in the most prestigious vases, urns, sarcophagi, mosaic tables and other ornamental works especially as gifts from the Swedish monarchy during the early nineteenth century.

Their historic importance continues to be recognised in Sweden today with the establishment of a porphyry museum in the village of Älvdalen, about 350 km northwest of Stockholm and the maintenance of handicraft manufacture.

Dala or Älvdalen porphyries deserve to be considered as a potential “Global Heritage Stone Resource” from Sweden.

Acknowledgements

We thank Jan-Olov Svedlund for supplying us with photos of different porphyry varieties. We also thank the Bukowskis auction firm in Stockholm for their permission to use two photos from their catalogues. Tom Hendal and Benno Kathol provided useful reviews and comments to improve the manuscript. Björn Schouenborg provided the picture from inside Uppsala cathedral. Project 18KBGZ/463AC01, from the University of Salamanca, and ERASMUS Intensive Programme 2012-1-ES1-ERA10-54375 are acknowledged for financial support. This is a contribution of the HSTG.

References

Bergman, S., Stephens, M. B., Andersson, J., Kathol, B. and Bergman, T., 2012. Bedrock map of Sweden, scale 1:1million. Sveriges geologiska undersökning K 423.

Hesemann, J., 1936. Zur Petrographie einiger nordischer kristalliner Leitgeschiebe. Abhandlungen der Preussischen Geologischen Landesanstalt, Neue Folge, Heft 173, 167 p.

Hjelmqvist, S., 1956. On the occurrence of ignimbrite in the pre-Cambrian. Sveriges geologiska undersökning C 542, 12 p.

Hjelmqvist, S., 1966. Beskrivning till berggrundskarta över Köpparbergs län. Summary: Description to map of the Pre-Quaternary rocks of the Köpparberg County, Central Sweden. With map in two sheets, to the scale of 1:200 000. Sveriges geologiska undersökning C 39.

Hjelmqvist, S., 1982. The porphyries of Dalarna, Central Sweden. Sveriges geologiska undersökning C 782, 52 p.

Lagerqvist, L.O. and Åberg, N., 1989. Elvedals porfyrverk 1788-1885. Vincent förlag, Stockholm.

Lundqvist, T., 1968. Precambrian geology of the Los-Hamra region, central Sweden. Sveriges geologiska undersökning Ba 23, 255 p.

Lundqvist, T. and Persson, P.-O., 1999. Geochronology of porphryries and related rocks in northern and western Dalarna, south-central Sweden. GFF 121, 307-322.

Maxfield, V. and Peacock, D., 2001. The Roman Imperial Quarries: Survey and Excavation at Mons Porphyrtes, 1994–1998. Vol. I: Topography and Quarries. Sixty-Seventh Memoir, Leahy, A. (Editor), Egypt Exploration Society, London, 339 pp.

Nyström, J.O., 2004. Dala volcanism, sedimentation and structural setting. In Högdahl, K., Andersson, U.B. and Eklund, O., (eds.): The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, Special Paper no. 37, pp. 58-70.

Sundblom, H., Tunander, I. and Uggla, G., 1985. Porfyr. Catalogue to...
an exhibition of objects from the porphyry plant in Älvdalen. Text in Swedish, summaries in French and English. Bukowskis, Stockholm.

Wolff, F.C., Nystuen, J.P. and Heim, M., 1995. Geologisk kart over Norge, berggrunnskartOrsa, skala 1:250 000. Norgesgeologiske undersøkelse.

Anders Wikström was born in 1937, studied at Uppsala University Sweden, (fil.kand. 1961 in mathematics, chemistry and geology, fil.lic. 1968 in mineralogy and petrology, thesis dealing with retrograde reactions in eclogites). Student at Chulalongkorn university in Bangkok 1961-62. Between 1968 and 2000 employed as state geologist and senior state geologist at the Geological Survey of Sweden.

Dolores Pereira is professor at Geology and Engineering Geology degrees at the University of Salamanca. She is vicepresident of the IUGS Heritage Stone Task Group for southern Europe and Member of the network CONSTRUROCK. She is adviser and reviewer for UNESCO on World Heritage Sites. Her research interests include natural stones and their use in new building and restoration of architectonic heritage.

Thomas Lundqvist worked as a geologist with regional mapping at the Geological Survey of Sweden and as a professor of Bedrock geology at the Department of Geology, University of Gothenburg. Before employment, he studied geology at Stockholms Högskola (now Stockholm University), and volcanology with Professor Alfred Rittmann in Catania, Sicily. His main interests are, besides volcanology, petrology and regional geology in the Precambrian.

Barry Cooper holds an MSc from the University of Melbourne and a PhD from Ohio State University. During the 1980s and 1990s Barry commenced investigations first into the history of geology and later in dimension stone geology. In ‘retirement’ as Associate Professor at the University of South Australia, he has been one of the leaders in advocating formal designation of those natural stones that have achieved widespread recognition in human culture. Barry is currently Secretary General of both the Heritage Stone Task Group (HSTG) and the International Commission on the History of Geological Sciences (INHIGEO).