Design of An Ultra-Thin and Broadband Absorption Materials For Middle-Temperature Applications

Yanmin Jia (jiayanminxupt@163.com)
Xi’an University of Posts and Telecommunications

Zhaoning Yang
Xi’an University of Posts and Telecommunications

Lu Gao
Xi’an University of Posts and Telecommunications

Wei Ren
Xi’an University of Posts and Telecommunications

Ruiduan Zhang
Xi’an University of Posts and Telecommunications

Qian Zhou
Xi’an University of Posts and Telecommunications

Weijun Li
Xi’an University of Posts and Telecommunications

Yangyang Chen
Xi’an University of Posts and Telecommunications

Yunguang Zhang
Xi’an University of Posts and Telecommunications

Kai Sun
Xi’an University of Posts and Telecommunications

Ziqi Jie
Xi’an University of Posts and Telecommunications

Research Article

Keywords: Dielectric constant, Absorption property, Magnetic ceramic, Electrical properties

DOI: https://doi.org/10.21203/rs.3.rs-200487/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

A radar absorbing material (RAM) is designed based on the magnetic ceramic and frequency selective surface (FSS). The phase composition and micromorphology were characterized, respectively. The complex permittivity and complex permeability of magnetic ceramic were tested and studied from 25 °C to 500 °C temperature. Based on the experimental and simulation results, the changes of reflection loss along with the structure parameters of RAM are analyzed at 500 °C. The relationship of reflection loss varies with temperature are studied. The analytical results show that the absorption property of the RAM increases with the increase of temperature. An optimal absorption of RAM is obtained at 500°C. When the thickness of RAM is 1.5 mm, the reflection loss lower than -10 dB can be obtained in the frequency range from 8.2 ~ 16 GHz. More than 90% microwave energy can be consumed in the RAM which may be applied in the high temperature environment.

1. Introduction

With the development of radar detection technology, the survival ability of aircraft or other weapons and equipment are facing a great threat in the war. In order to improve the survivability of weapons and equipment, stealth technology as a means to effectively reduce the radar cross section (RCS) of weapons and equipment, has been highly valued by military powers in the world [1-3]. Generally, stealth technology can be divided into two types: structural stealth technology and absorbing material technology. Radar absorbing materials (RAM) play an auxiliary role in the stealth for the shape structure, which can absorb the incident electromagnetic wave and convert it into other forms of energy attenuation. The RAM must have the characteristics of "thin", "wide", "light" and "strong" [4-8]. In addition, restricted by the working environment of aviation weapon components, it is necessary to develop new RAM which can adapt to the high temperature environment. For traditional RAM, their absorbing properties mainly depend on the adjustment of the content of absorbers [9-11]. At present, the absorbents used to study the absorption properties of magnetic coatings include: metallic iron powder, ferrite, hydroxy iron, iron wire fiber and other magnetic materials. The absorption of electromagnetic wave mainly depends on the magnetic polarization effects such as hysteresis loss, eddy current loss, domain wall resonance, aftereffect loss and residual loss [12-15]. The absorbents used in dielectric absorbing coating include graphite powder, carbon nanotube, carbon fiber, calcium titanate, magnesium titanate, barium titanate, spinel, zinc oxide and other dielectric materials. The dielectric loss is mainly caused by electric conductivity, ion transition, ion vibration and ion deformation, etc. [16-20].

In recent years, RAM composed of absorbing material and frequency selective surface (FSS), which are highly valued by many researchers due to their unique electromagnetic resonance coupling characteristics. The researches show that the transmission and reflection characteristics of electromagnetic wave can be effectively controlled by changing the shape, size and period of the FSS, which can not only be used to improve the electromagnetic properties of antennas and microwave devices, but also provide a new technical way for the development of new absorbing materials [21-23]. At present, most of researches on the properties of RAM are focused on the room temperature. The
researches on electromagnetic coupling of the FSS at high temperature is few. It makes the absorption performance of RAM difficult to control and affect the research progress of RAM [24-27].

In this work, the effects of structural parameters of FSS on the absorption performance of RAM are studied, the researches on electromagnetic coupling of RAM at high temperature environment are studied. The change of energy loss density of RAM is analyzed at different temperatures.

2. Design And Experiment

Fig. 1 shows the structure schematic diagram of RAM. The structure is divided into three parts. The upper part is FSS layer which composits of periodic structure metal patches, the middle part is magnetic ceramic layer synthesized through using Aluminum Oxide (chemical formula Al₂O₃, purity 99.9%) and Lanthanum Strontium Cobaltite (chemical formula LaSrCoO₃, purity 99.9%) powders with the mass ratio of 1:1. The magnetic ceramic used in this work is provided by Shaanxi Huaqin Technology Co., Ltd, Xi’an, China. The lower part is metal plate, the FSS pattern is printed on a metal backed magnetic ceramic substrate. As shown in Fig. 1, the radius of the circular patches is \(a\). The period length of circular periodic structure patches is \(C\). The thickness of the dielectric layer is \(t\). The thickness of the FSS layer is \(t₀\). The RAM is simulated and studied using the commercial software CST Microwave Studio based on electromagnetic parameters of magnetic ceramic [28-30]. The geometry and size of the unit cell is optimized by numerical simulation to obtain a good microwave absorption performance. The initial parameters dimensions of the absorber are \(C = 10\text{mm}, \ a = 2\text{mm}\) and \(t = 2\text{mm}, \ t₀ = 0.01\text{mm}\).

The phases of the magnetic ceramic were characterized through X-ray diffraction (XRD, D/MAX2500 diffractometer, Japan). The surface morphology of the magnetic ceramic was characterized by scanning electron microscopy (SEM, Model JSM-6360, Japan) [31-32]. The electromagnetic parameters (complex permittivity and complex permeability) of were measured through using a vector network analyzer (Agilent Technologies E8362B PNA, USA).

3. Results And Discussion

Fig. 2 (a) ~ Fig. 2 (b) exhibits the X-ray diffraction (XRD) patterns and Scanning electron microscope (SEM) photographs of magnetic ceramic layer, respectively. In Fig. 2 (a), it is observed that the magnetic ceramic layer contains two phases of Al₂O₃ and LaSrCoO₃. From Fig. 2 (b), it is observed that the magnetic ceramic has higher density and a few pores.

Fig. 3 shows the measured electromagnetic parameters of magnetic ceramic in the frequency range of 8.2 ~ 12.4 GHz under the tempurate of 25 °C to 500 °C. Fig. 3. (a) ~ (d) are the real parts and imaginary parts of the complex permittivity and the complex permeability, respectively. It is observed that both the complex permittivity and complex permeability of the ceramic increase with the increase of temperature. The complex permittivity and the complex permeability will directly affect the electromagnetic wave loss of the materials. The bigger of the complex permittivity and complex permeability, the greater loss [33-35].
Thus, the changes of dielectric constant and magnetic permeability may affect the electromagnetic absorption properties of materials.

Fig. 4 shows the reflection loss of the RAM versus frequency for different C. The influences of period length C of the FSS on reflection loss (RL) of the RAM are calculated based on electromagnetic parameters of magnetic ceramic at $500\,^\circ\text{C}$, while the other parameters remain unchanged. The RL is an effective evaluation standard of the microwave absorbance capacity of metal backed slabs of material, and low RL corresponds to high absorption. From the results in Fig. 4, an absorption peak is observed between the frequency of the 8.2 GHz and 12.4 GHz (X-band). The position of absorption peak shifts to high frequency and the intensity of absorption peaks decreased with the increase of C. When the period length C is equal to 10 mm, the reflection loss less than -10 dB can be obtained in the frequency range from 8.5 ~ 10.4 GHz and the minimum value of the reflection loss is -15 dB. Therefore, the optimal period length may be about 10 mm.

Fig. 5 shows the influences of radius a of the FSS on the reflection loss of absorber while the other parameters are unchanged. As shown in Fig. 5, an resonance absorption peak appears at different frequencies with variable a. The results show that the minimum reflection loss of the designed RAM first decreases and then increases with the increase of radius a, while the reflection loss increases gradually in the frequency range from 15 GHz to 18 GHz. When the radius length a is equal to 2 mm, the minimum reflection loss is -16 dB, the absorption band-width with reflection loss less than -10 dB is the largest. Therefore, the optimal radius of the FSS patch may be about 2 mm.

Fig. 6 shows the effects of ceramic layer thickness t on the absorbing properties of RAM while the other parameters remain unchanged. The results show that the resonance absorption peak increased firstly and then decreased with the increase of thickness t. The frequency of the absorption peak moves to the low-frequency region and the absorption bandwidth below -5 dB also increases gradually. Therefore, the absorption of all peaks of absorbing materials are enhanced with increasing thickness t. When the ceramic thickness t is equal to 2 mm, the absorption bandwidth with reflection loss below -10 dB is the largest in the X-band. When the thickness t is equal to 1.6 mm, the minimum value of the reflection loss is -19 dB at about 12.5 GHz. Therefore, the optimal thickness may be about 1.6 mm.

In order to make the absorbing performance of RAM the best, the genetic algorithm is employed to solve the optimization problem. According to the above research results, the initial values are redesigned as follows: $C = 10\,\text{mm}$, $a = 2\,\text{mm}$, $t = 1.6\,\text{mm}$. Fig. 7 shows the optimized reflection loss results of RAM under the temperature from 25 $^\circ\text{C}$ to 500 $^\circ\text{C}$. From Fig. 7, it is observed that the reflection loss of the RAM below -5 dB can be obtained in Ku-band under the temperature from 25 $^\circ\text{C}$ to 500 $^\circ\text{C}$. As the temperature increases from 25 $^\circ\text{C}$ to 500 $^\circ\text{C}$, the reflection loss of the RAM gradually decreases, the absorption peak gradually moves to the low frequency. When the temperature is 500 $^\circ\text{C}$, the reflection loss below -10 dB can be obtained in the whole X-band. The reflection loss curve of RAM shows a double absorption peak structure in the frequency range of 8.2 ~18 GHz, the absorption frequency peaks are located at 9 GHz and 13.2 GHz, respectively. The minimum value of reflection loss is -39 dB at 13.2 GHz. Thus, a broad
bandwidth is obtained with a reflectance lower than -10 dB in the frequency range from 8 ~16 GHz which cover the entire X-band. More than 90% microwave energy can be consumed in the RAM which can fill the requirement of practical application. The optimal structural parameters are as follows: \(C = 10.31 \) mm, \(a = 1.59 \) mm and \(t = 1.50 \) mm.

In order to further study the absorption mechanism with different temperature of the designed RAM, the volume power loss density distribution of RAM are given in Fig. 8 under different temperatures. From Fig. 8, it is observed that the power loss density of the RAM increases as the temperature increases from 25 °C to 500 °C. Power loss density is directly related to the absorption efficiency of the RAM. The bigger of the loss, the greater absorption efficiency [36, 37]. Thus, this result is consistent with the results in Fig. 3. and Fig. 7. When the temperature was raised between 25 °C and 200 °C, the loss is mainly caused by the FSS layer, as shown in Fig. 8 (a) ~ (c). As the temperature was raised between 300 °C and 500 °C, the complex permittivity and the complex permeability of ceramic layer increase gradually, the loss is mainly caused by the FSS and ceramic layer, as shown in Fig. 8 (d) ~ (f). Thus, two absorption peaks are very strong when the temperatures are 300°C, 400 °C and 500 °C, as show in Fig. 7. So, the concept of resonant coupling is realized using the FSS layer and magnetic ceramic for wide-band absorption.

Conclusions

In summary, a new ultra-thin and wide-band radar absorbing material is designed based on magnetic ceramic layer and FSS structure. The temperature and frequency corresponding laws of the complex permittivity and the complex permeability of magnetic ceramic in the frequency of X-band (8.2 ~ 12.4 GHz) and Ku-band (12.4 ~18 GHz) are analyzed in the temperature range of 25 ~ 500 °C. The structure parameters of FSS and ceramic thickness are studied. Results indicate that the complex permittivity and the complex permeability of magnetic ceramic gradually increase and the reflectivity of absorber decrease with the increase of temperature. The improvement of electromagnetic absorption performance comes from the continuous strengthening of resonance coupling in FSS and magnetic ceramic at high temperature. When the temperature is 500 °C, the reflectivity of the RAM less than -10 dB can be obtained in the 8.2 -16 GHz band.

This work was supported by the National Natural Science Foundation of China (Grants NO. 51904218, 12004302), Nature Science Foundation of Shaanxi (Grants NO. 2020JQ-848, 2019JQ-105, 2020JM-579), the Natural Science Foundation and Department of Education of Shaanxi (Grants No.19JK0800).

References

1. R. Magisetty, A.B. Raj, S. Datar, et al. Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application, Journal of Alloys and Compounds 2020, 848: 1-16.

2. J. Haystead, Passive Radar Technology - A Response to Stealth?, Journal of Electronic Defense 2019, 42: 24-30.
3. N. Aggarwal, S.B. Narang, Magnetic characterization of Nickel-Zinc spinel ferrites along with their microwave characterization in Ku band, Journal of Magnetism and Magnetic Materials 2020, 513: 1-7.

4. Z. Zhang, C. Wang, H. Yang, et al. Broadband radar absorbing composites: Spatial scale effect and environmental adaptability, Composites Science and Technology 2020, 197: 1-9.

5. H. Huang, W. Wang, M. Hua, et al. Broadband radar absorbing characteristic based on periodic hollow truncated cone structure, Physica B-Condensed Matter 2020, 595: 1-8.

6. Y. Yunasfi, M. Mashadi, A. Mulyawan, et al. Synthesis of NiLa(x)Fe((2-x))O(4) System as Microwave Absorber Materials by Milling Technique, Journal of Electronic Materials 2020 49: 7272-7278.

7. V. Pratap, A.K. Soni, A.M. Siddiqui, et al. Dielectric and Radar-Absorbing Properties of Exfoliated Graphite Dispersed Epoxy Composites, Journal of Electronic Materials 2020, 49: 3972-3981.

8. J. Yang, Y. Li, Y. Cheng, et al. Design and analysis of 2-bit matrix-type coding metasurface for stealth application, Journal of Applied Physics 2020, 127: 235304.

9. Q. Shang, H. Feng, J. Liu, et al. Constructing and optimizing hollow ZnxFe3-xO4@polyaniline composites as high-performance microwave absorbers, Journal of Colloid and Interface Science 2021, 584: 80-91.

10. M. Zhang, C. Han, W.-Q. Cao, et al. A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor, Nano-Micro Letters 2021, 13: 1-12.

11. W.P. Li, L.Q. Zhu, J. Gu, et al. Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power, Composites Part B Engineering 2011, 42: 626-630.

12. L. Yuan, B. Wang, W. Gao, et al. An effective methodology to design scale model for magnetic absorbing coatings based on ORL, Results in Physics 2017, 7: 1698-1704.

13. Q. Yuchang, W. Qinlong, L. Fa, et al. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band, Journal of Materials Chemistry C 2016, 4: 4853-4862.

14. J. Zhou, L. Huo, W. Li, et al. A Magnetic-Controlled Detection System for Radar Absorbing Coatings, Advanced Materials Research 2013, 718-720: 393-398.

15. F. Chen, H. Luo, Y. Cheng, et al. Fe/Fe3O4@N-Doped Carbon Hexagonal Plates Decorated with Ag Nanoparticles for Microwave Absorption, Acs Applied Nano Materials 2019, 2: 7266-7278.

16. Y. Wang, F. Luo, W. Zhou, et al. Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range, Ceramics International 2014, 40: 10749-10754.

17. Jia H , Zhou W , Nan H , et al. Enhanced high temperature dielectric polarization of barium titanate/magnesium aluminum spinel composites and their potential in microwave absorption - ScienceDirect[J]. Journal of the European Ceramic Society 2020, 40: 728-734.

18. Z. Xu, Y. Chen, W. Li, et al. Preparation of boron nitride nanosheet-coated carbon fibres and their enhanced antioxidant and microwave-absorbing properties, Rsc Advances 2018, 8: 17944-17949.
19. X.J. Yuan, B.L. Zha, H.G. Wang, Dielectric and Infrared Properties of Plasma Sprayed Nano β-SiC/Al2O3 Agglomerate Composite Absorbing Coatings, Advanced Materials Research 2013, 634-638: 1901-1905.

20. G. Wu, Y. He, H. Zhan, et al. A novel Fe3O4/carbon nanotube composite film with a cratered surface structure for effective microwave absorption, Journal of Materials Science Materials in Electronics 2020, 31: 11508-11519.

21. Z. Yang, F. Luo, W. Zhou, et al. Design of a thin and broadband microwave absorber using double layer frequency selective surface, Journal of Alloys & Compounds 2017, 699: 534-539.

22. Z. Yang, W. Ren, L. Zhu, et al. Electromagnetic-wave absorption property of Cr2O3–TiO2 coating with frequency selective surface, Journal of Alloys & Compounds 2019, 803: 111-117.

23. Qing Yuchang, Yang Zhaoning, Wen Qinlong, et al. CaCu3Ti4O12 particles and MWCNT-filled microwave absorber with improved microwave absorption by FSS incorporation, Applied Physics A Materials Science & Processing 2016, 122.

24. Q. Wang, X.Z. Tang, D. Zhou, et al. A dual-layer radar absorbing material with fully embedded square-holes frequency selective surface, IEEE Antennas & Wireless Propagation Letters PP (2017) 1-1.

25. NeerajGill, SmithaPuthucheri, DharmendraSingh, et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8GHz, Journal of Materials Science Materials in Electronics 28(2) (2017) 1259–1270.

26. Liao Z , Gong R , Nie Y , et al. Absorption enhancement of fractal frequency selective surface absorbers by using microwave absorbing material based substrates[J]. Photonics and Nanostructures - Fundamentals and Applications, 9 (3) (2011) 287-294.

27. N. Mcguigan, G. Conway, R. Cahill, et al. Experimental Characterisation of Near Field Backscatter from Thin Resistively Loaded FSS Absorbers, Electronics Letters 53 (24) (2017) 1561-1562.

28. Jiu-Sheng, Li. High absorption terahertz-wave absorber consisting of dual-C metamaterial structure[J]. Microwave & Optical Technology Letters, 55 (5) (2013) 1185-1189.

29. A.A. Khurram, S.A. Rakha, N. Ali, et al. Microwave Absorbing Properties of Lightweight Nanocomposite/Honeycomb Sandwich Structures, Journal of Nanotechnology in Engineering & Medicine 6(1) (2015) 011006.

30. Ren W , Nie Y , Xiong X , et al. Enhancing and broadening absorption properties of frequency selective surfaces absorbers using FeCoB-based thin film[J]. Journal of Applied Physics, 2012, 111 (7pt.3):44-849.

31. Y. Zheng, Y. Jia, H. Li, et al. Enhanced piezo-electro-chemical coupling of BaTiO 3 /g-C 3 N 4 nanocomposite for vibration-catalysis, Journal of Materials Science 55(30) (2020) 14787-14797.

32. X. Xu, L. Xiao, Z. Wu, et al. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite, Nano Energy 78 (2020) 1-9.

33. H.B. Zhao, Z.B. Fu, H.B. Chen, et al. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route, Acs Applied Materials & Interfaces 8(2) (2016) 1468-1477.
34. H. Liu, H. Cheng, Design, Preparation and Microwave-Absorbing Properties of Sandwich-Structure Radar-Absorbing Materials Reinforced by Glass and SiC Fibres, Materials Science Forum, 788 (2014) 573-579.

35. L. Yang, H. Liu, Z. Mei, Enhanced microwave-absorbing property of precursor infiltration and pyrolysis derived SiCf/SiC composites at X band: Role of carbon-rich interphase, Journal of the American Ceramic Society 101(8) (2018) 3402-3413.

36. Yuchang, Qing, Hanyi, Nan, Hongyao, Jia, et al. Aligned Fe microfiber reinforced epoxy composites with tunable electromagnetic properties and improved microwave absorption, Journal of Materials Science 54(6) (2019) 4671–4679.

37. Q.W. Liu, L.Z. Wang, P.Z. Zhong, et al. Research on a New Method of Windshield Microwave Heating, Advanced Material Science & Engineering- International Conference, (2016) 139-144.