Simulation of Transient Liquid Phase Bonding Process and the Influence of Interlayer Thickness

B. Benita
Assistant Professor, Department of Computer Science & Engineering, Francis Xavier Engineering College, Tirunelveli-627002

D.S. Samuvel Prem Kumar
Asst. Professor, Department of Mechanical Engineering, JP College of Engineering, Tenkasi

R. Pravin
Under Graduate Student, Department of Mechanical Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi.

N. Samuel Dinesh Hynes
Independent Researcher, & Former Part Time Lecturer, Department of Computer Science & Engineering, Government College of Engineering, Tirunelveli-627007.

J. Angela Jennifa Sujana
Associate Professor, Department of Information Technology, Mepco Schlenk Engineering College (Autonomous), Sivakasi.

Abstract. Ceramic/metal joints are possible with solid state joining techniques. Transient liquid phase bonding is a solid state joining process which is choice process. In this paper, numerical simulation of TLP bonding of ceramic/metal is done by Finite Element simulation. The finite element analysis of the TLP process provides the temperature and residual stress distribution during the bonding. Aluminium sheet as interlayer having high wettability is used. Transient thermal analysis is performed and discussed.

Keywords. TLP; Temperature Distribution; Transient Liquid Phase Bonding; Interlayer Thickness; Dissimilar Joints.

1. Introduction
In the present manufacturing scenario, the need for joining of dissimilar materials is drastically increasing and it can’t be ignored. Various conventional and unconventional joining processes are explored to find the joining possibility. Among them, transient liquid phase bonding is an effective process to join dissimilar materials with high integrity. The major drawback of the transient liquid phase bonding process is the thermal mismatch between the base materials. Transient Liquid Phase...
Bonding (TLPB) is applied to join materials of various combinations such as metal-metal, metal-ceramics and ceramics-ceramics, required in automotive and electronic industries [4,5].

The interlayer material is one of the important process parameter and it is placed between the base metals to be jointed [6-9]. The major consideration for the interlayer material is that it should possess a lower melting point than the substrate/base material. The whole specimen is placed in a furnace and heated to a temperature below the melting point of the substrate material and the assembly is held at the bonding temperature for a specific time period for isothermal solidification [10-13]. The resultant joint possesses a higher re-melting temperature than the initial melting temperature.

Friction stud welding [14-33], Friction Plug Welding [34-38], Diffusion bonding [39, 40], Friction Welding [41-55] Friction Drilling [56-67], and Friction Riveting [68-70] are few processes employed for joining of dissimilar metals. TLB technique overcomes most of the difficulties encountered by all these techniques. Arafin & Medraj (2006) said that the holding time decreases by increasing the bonding temperature & decreasing the interlayer thickness, using interlayers. Experimental work had good agreement with numerical simulation results generated through finite element based software [9].

2. Numerical Analysis

It is widely known that thermal mismatch is a major factor in determining joint mechanical behaviour because this may lead to the formation of residual stress at the bonded interfaces. These stresses are pre-induced on any stresses generated during subsequent thermal or mechanical loading, and thus strongly influence the strength of the joint. A three dimensional transient, isotropic solid with heat source finite element model was developed to simulate the transient liquid phase bonding process in Graphite/Copper using the commercial code ANSYS 15.0. As a first step in the analysis the transient temperature field T which is a function of time t and the spatial coordinates (x, y, z), is solved. Modelling heat evolution between the coil and bonded sheet is an important step in understanding how it affects material flow within and surrounding the joint. To compensate for the lack of a predicted temperature field, measured temperature values from the literature [6] are used to construct an approximate temperature field for the TLPB process. This temperature field is then used as input for the structural model for the same TLPB process. As such, a problem geometry that accommodates the simulation of the preceding TLPB test is used.

S.No	Material	Density Kg/m3	Thermal Conductivity W/mK	Specific Heat J/Kg/K
1	Graphite	2490	8.7	771
2	Aluminium	2700	173	896
3	Copper	8960	398	384.56

2.1. Assumptions
- The ambient temperature was assumed to be 20°C.
- Only thermal loading is applied.
- Bonding Temperature is kept constant as 700°C.
- Thickness of the interlayer is varied as 0.1mm, 0.2mm and 0.3mm
- Uniform cooling and dissimilar materials are perfectly bonded at the interface. The properties of Graphite, Aluminium and Copper are presented in table 1.
2.2. Material Modelling

The sheets of Graphite and Copper having dimensions of 0.015m*0.015m*0.06m is modelled. The Aluminium foil having dimensions of 0.015m*0.015m*0.001m issued as interlayer for the Graphite/Copper joint. Aluminium metal is taken as interlayer due to its high wettability and also it has a melting point of 660°C, which is lower than the melting point of the base materials. Figure 1 shows the modelled geometry and Table 1 gives the properties of materials.

SOLID70 which is a three-dimensional thermal solid is used as the element type for thermal analysis. SOLID70 has a three dimensional thermal conduction capability. The element possess eight nodes with a single degree of freedom and temperature, at each node. The element is applicable to a three dimensional, steady-state, or for transient thermal analysis. The element also can compensate for mass transport and heat flow from a constant velocity field. If the model which has a conducting solid element is also to be analyzed structurally, that element must be replaced by an equivalent structural element such as SOLID185. A free surface of the element (that is, not adjacent to another element and not subjected to a boundary constraint) is assumed to be adiabatic. Thermal transients having a fine integration time step and a severe thermal gradient at the surface will also be requiring a fine mesh at the surface. This element is not having the mass transport or fluid flow options.

SOLID185 Structural Solid is suitable for modelling general 3-D solid structures. It allows for prism, tetrahedral, and pyramid degenerations when used in irregular regions. Various element technologies such as B-bar, uniformly reduced integration, and enhanced strains are supported. Figure (2) shows the meshes generated for the present simulation. The shape of the mesh element is hexahedral shape. The meshes are composed of a total number of 2230 nodes and 10640 solid elements.The boundary conditions applied are convection coefficient of 1.33W/m2k around the surface of the plate and surface load of 901W/m2around the interface.

As the model is a symmetric geometry, it possess isotropic property. The mapped mesh is used to mesh the model. The fine mesh is obtained. The meshed model is shown in Figure 2.

3. Results and Discussion

The above numerical simulation is carried out to determine the temperature distribution of TLP joint for 700°C bonding temperature under various interlayer thickness as 0.1mm, 0.2mm and 0.3mm. The
result obtained shows that a high level of temperature distribution is obtained at 0.3mm interlayer thickness for the bonding temperature of $700^\circ C$. Since the temperature distribution is high at 0.3mm interlayer thickness, the stress created at that point is more which affects the strength of the TLP joint. Therefore it is preferable to go for a bonding temperature of $700^\circ C$ for graphite/copper joint with aluminium interlayer of 0.1mm interlayer thickness to get higher joint strength. Figure 3 shows the temperature distribution for 0.1 mm thick aluminium interlayer at $700^\circ C$. The minimum temperature value 88.95$^\circ C$ is obtained at Graphite side. This is because of the low thermal conductivity of the graphite. As the temperature at the Graphite is very much less than the melting point of Graphite, the properties of Graphite is not affected in this process.

Similarly, Figure 4 and Figure 5 shows the temperature distribution for 0.2 mm and 0.3mm thick aluminium interlayer at $700^\circ C$. The minimum temperature value for those models are also obtained at Graphite side. At this point, the temperature at the copper side is nearly around 600$^\circ C$. This is because of the high thermal conductivity of the copper. As the temperature at the copper is nearly the Glass Transition Temperature of copper, the possibility of affecting the properties of copper is more. To avoid that a cooling system is provided at the copper side in this process.

Figure 3: Temp distribution at IT=0.1mm Interlayer Thickness

Figure 4: Temp distribution at IT=0.2mm Interlayer Thickness

Figure 5: Temp distribution at IT=0.3mm Interlayer Thickness
4. Conclusion

The major problem encountered during transient liquid phase bonding process is the thermal mismatch that occurs during bonding. The thermal mismatch is the melting point difference between graphite and copper. This defect can be reduced by introducing an interlayer of aluminium. The main consideration about the interlayer is that it should possess high wettability and a melting point lower than the base materials. When an interlayer had been introduced in between the specimen, joining had been successively achieved. Numerical investigation shows that the interlayer acts as an interface of joint for the two materials. Because of this tendency, thermal mismatch becomes minimum and hence thermal stress becomes minimum. It is observed that when 0.1 mm thick aluminium sheet is used as an interlayer, thermal mismatch is minimized. This could eventually reduce the residual stress and thereby increase the joint efficiency between graphite and copper joints.

References

[1] M.A. Arfan, M. Medraj, D.P. Turner, P. Bocher “Transient liquid phase bonding of Inconel 718 and Inconel 625 with BNi-2: Modeling and experimental investigations” Journal of Materials Science and Engineering A 447(2007) 125–133.
[2] Rajesh N et al (2014) “Ultrasonic evaluation of friction stud welded AA6063/AISI1030 steel joints” Mater Des 62:118–123.
[3] Rajesh Jesudoss Hynes N, Shenbagavelu P, “Simulation of friction welding of alumina and steel with an aluminium interlayer”, Int J Adv Manuf Technol, Springer, DOI 10.1007/s00170-015-7874-8.
[4] Grant O. Cook, III, Cartersorenson “Overview of transient liquid phase and partial transient liquid phase bonding” Journal of Material Science (2011) 46:5305-5323 DOI 10.1007/s10853-011-5561-1.
[5] Hongsheng Chen, Chongsheng Long, TianGuo Wei Gao, Hongxing Xiao, Le Chen “Effect of Ni interlayer on partial transient liquid phase bonding of Zr–Sn–Nb alloy and stainless steel” Materials and Design 60 (2014) 358–362.
[6] Zhihong Zhong, Zhangjian Zhou, Changchun Gu “Brazing of doped graphite to Cu using stress relief interlayers” Journal of Materials Processing Technology 209 (2009) 2662–2670.
[7] Jin-Woo Park and Thomas W. Eager “Application of Transient Liquid Phase Bonding of Microelectronics and MEMS packaging” Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
[8] Rajesh Jesudoss Hynes N et al, “Numerical Simulation of Heat Flow in Friction Stud Welding of Dissimilar Metals”, Arabian Journal for Science and Engineering, 2014, 39, 3217–3224.
[9] V. JaiIvand, H. Omidvar, M.R. Rahimipour, H.R. Shakeri “Influence of bonding variables on transient liquid phase bonding behavior of nickel based superalloy EN-738LC” Materials and Design 52 (2013) 36–46.
[10] Rajesh N et al (2014) “Ultrasonic evaluation of friction stud welded AA6063/AISI1030 steel joints” Mater Des 62:118–123.
[11] Rajesh Jesudoss Hynes N, Shenbagavelu P, “Simulation of friction welding of alumina and steel with an aluminium interlayer”, Int J Adv Manuf Technol, Springer, DOI 10.1007/s00170-015-7874-8.
[12] Rajesh Jesudoss Hynes N et al, “Numerical Simulation of Heat Flow in Friction Stud Welding of Dissimilar Metals”, Arabian Journal for Science and Engineering, 2014, 39, 3217–3224.
[13] V. JaiIvand, H. Omidvar, M.R. Rahimipour, H.R. Shakeri “Influence of bonding variables on transient liquid phase bonding behavior of nickel based superalloy EN-738LC” Materials and Design 52 (2013) 36–46.
[14] Rajesh N et al (2014) “Investigation on joining of aluminum& mild steel by friction stud welding” MaterManuf Process 27:1409–1413.
[15] Rajesh et al (2014) “Numerical simulation on joining of ceramics with metal by friction welding technique” Int J Mod Phys Conf Ser 22:190–195.
[16] N. Rajesh Jesudoss Hynes N, Nagaraj, J.A.J. Sujana, “Ultrasonic Evaluation of Friction stud welded AA6063/AISI1030 steel joints,” Materials & Design, Elsevier publications, Volume 62, pp 118–123, October 2014
[17] Rajesh Jesudoss Hynes N, Nagaraj P, Palanichamy R, Arumugham CAK & Angela JennifaSujana J, “Numerical Simulation of heat flow of Friction stud Welding of Dissimilar metals,” The Arabian Journal for Science and Engineering, Springer Publications, DOI 10.1007/s13369-013-0932-3, 2014, Volume 39, Issue 4, pp 3217–3224
[18] Rajesh Jesudoss Hynes N, Nagaraj P & Angela JennifaSujana J, “Mechanical Evaluation and Microstructure of Friction welded Aluminium-Mild steel joints,” The Arabian Journal for Science and Engineering Springer Publications, DOI 10.1007/s13369-014-1082-y, June 2014, Volume 39, Issue 6, pp 5017–5023.
[19] Rajesh Jesudoss Hynes N, Nagaraj P & MebySelvaraj R (2013), “Finite Element based Thermal Modelling of Friction Welding of Dissimilar Materials,” International Journal of Modern Physics Conference Series,ISSN: 2010–1945 DOI: 10.1142/S201019451301012X, vol. 22, pp.196–202.
[20] Rajesh Jesudoss Hynes N, Nagaraj P & VivekPrabhu M (2013), “Evaluation of Bending Strength in Friction Welded Alumina/Mild Steel Joints by Applying Factorial Technique,” International Journal of Modern Physics Conference Series,ISSN: 2010–1945, DOI: 10.1142/S201019451301012X, vol. 22, pp.184–189.
[21] Rajesh Jesudoss Hynes N, Nagaraj P & Joshua Basil S (2013), “Numerical Simulation on Joining of Ceramics with Metal by Friction Welding Technique,” International Journal of Modern Physics Conference Series,ISSN: 2010–1945, DOI: 10.1142/S201019451301118, vol. 22, pp.190–195.
[22] Rajesh Jesudoss Hynes N, Nagaraj P and Thanga Kumar P, “Thermal Modeling of Friction Plug Welding,” International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 9 No.26 (2014) pp. 9031-9035.
[23] Rajesh Jesudoss Hynes N, Nagaraj P and Tharmaraj R, “Prediction of Thermal Profile During Friction Stud Welding of Aluminium - Mild Steel Joints,” International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 8 (2015), pp. 6107-6110.
[24] Rajesh Jesudoss Hynes N, Nagaraj P & Prakash P, “Numerical Modeling of Temperature Distribution in Friction Stud Welding of Dissimilar Metals,” International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 9 No.26 (2014) pp. 9023-9027.
Rajesh Jesudoss Hynes N, Nagaraj P & Prakash P, “Mathematical Model to Predict Heat Flow in Underwater Friction Stud Welding,” Advanced Materials Research, doi:10.4028/www.scientific.net/AMR.984-985.596, Vols.984-985 (2014), pp.596-599.

Rajesh Jesudoss Hynes N, Nagaraj P & Thanga P, “Mathematical Modeling of Friction Plug Welding with Preheating effect,” Advanced Materials Research, doi:10.4028/www.scientific.net/AMR. 984-985.600, Vols. 984-985 (2014), pp.600-603.

Rajesh Jesudoss Hynes N, Nagaraj P & Prakash P, “Thermal Analysis on Joining of Dissimilar Metals by Friction Stud Welding,” Advanced Materials Research, doi:10.4028/www.scientific.net/AMR.984-985.592, Vols. 984-985 (2014), pp.592-595.

Rajesh Jesudoss Hynes N, Tharmaraj R, “One Dimensional Thermal Model for Heat Flow in Friction Stud Welding,” Journal of Thermal Engineering and Applications, 2015; 2(2), pp. 22-27.

N Rajesh Jesudoss Hynes and P ShenbagaVelu, “Thermo Mechanical Modelling of Friction Welding using Finite Element Method,” European Journal of Advances in Engineering and Technology, 2015, 2(7), pp. 29-32.

N. Rajesh Jesudoss Hynes, P. ShenbagaVelu, “Simulation on Friction Welding Of MgAZ31 / AA 6061 T6 Joints,” Recent Advances in Computer Science, Recent Advances in Computer Engineering Series, ISSN: 1790-5109, Volume 32, 2015, pp. 524-528.

N. Rajesh Jesudoss Hynes, R. Tharmaraj, P. ShenbagaVelu, and R. Kumar, “Finite element based simulation on friction stud welding of metal matrix composites to steel,” American Institute of Physics (AIP) Conference Proceedings, doi:10.1063/1.4946607, ISSN: 0094-243X, Volume 1728 (2016); pp.020556-1 to 020556-4.

R. Meby Selvaraj, and N. Rajesh Jesudoss Hynes, Finite element approach in thermal modelling of friction stud welding, AIP Conference Proceedings 2142, 110006 (2019); https://doi.org/10.1063/1.5122466

R. Sankaranarayanan, and N. Rajesh Jesudoss Hynes, Friction riveting for joining of wide range of dissimilar materials, AIP Conference Proceedings 2142, 150004 (2019); https://doi.org/10.1063/1.5122553

N. Rajesh Jesudoss Hynes, P. ShenbagaVelu, R. Tharmaraj, R. Kumar, “Numerical investigation on friction welding of aluminium / AA 6063 T6 joints,” American Institute of Physics (AIP), doi:10.1063/1.4946601, ISSN: 0094-243X, Conference Proceedings, Volume 1728, (2016); pp 020550-1 to 020550-5.

N. Rajesh Jesudoss Hynes, M. AbyeyanNithin, “Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite”, American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946607, ISSN: 0094-243X, Volume 1728, (2016); pp 020556-1 to 020556-4.

N. Rajesh Jesudoss Hynes, R. Kumar, J. Angela JennifaSujana, “Modelling of Process Parameters of Friction Stud Welding Using Fuzzy Logic System”, International Journal of Advanced Engineering Technology-IIJET, E-ISSN 0976-3945, Volume 8, Issue 1, 2016; pp. 413-417.

N. Rajesh Jesudoss Hynes, P. ShenbagaVelu, “Simulation of friction welding of aluminium and steel with aluminium interlayer,” The International Journal of Advanced Manufacturing Technology, DOI:10.1007/s00170-015-8784-8, ISSN 0268-7878, October 2017, Volume 93, Issue 1–4, pp 121–127.

Rajesh Jesudoss Hynes N, Angela JennifaSujana J & Karuppasamy P, “Simulation of Friction Stud Welding Process with an inter-metallic layer,” International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 9 No.26 (2014) pp. 9028-9030.

R. Rajesh Jesudoss Hynes, P. ShenbagaVelu, R. Kumar, M. Karthick Raja, “Investigate the influence of bonding temperature in transient liquid phase bonding of SiC and copper”, Ceramics International, Volume 43, Issue 10, July 2017, Pages 7762–7767.

N. Rajesh Jesudoss Hynes, M. Karthick Raja, “Numerical simulation on influence of bonding temperature in transient liquid phase bonding,” American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946594, ISSN: 0094-243X, Volume 1728, (2016); pp 020543-1 to 020543-4.

P. ShenbagaVelu, N. Rajesh Jesudoss Hynes, “Numerical Analysis of Friction Welded Titanium Joints,” Journal of Achievements in Materials and Manufacturing Engineering, Vol. 76, Issue 1 (2016), pp. 26-29.

Dr.N.Rajesh Jesudoss Hynes, Mr.ShenbagaVelu, “Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints,” Elsevier, Journal of Manufacturing Processes, DOI: 10.1016/j.jmapro.2018.02.014, Volume No: 30, Issue No: -1; pp. 288-297.

Rajendran, T.P., Hynes, N.R.J., Nikolova, M.P. et al. Influence of heat treatment on friction-welded joints made of high-carbon high-chromium tool steel/low-carbon steel for tooling applications. J Braz. Soc. Mech. Sci. Eng. 42, 87 (2020).

PackiaraRajendran, T., Rajesh Jesudoss Hynes, N. & Christopher, T. Characterization of high-carbon high-chromium tool steel/low-carbon steel friction-welded joints for industrial tooling applications. J Braz. Soc. Mech. Sci. Eng. 40, 316 (2018).

Dr.N.Rajesh Jesudoss Hynes, Mr.ShenbagaVelu, “Friction push plug welding in airframe structures using Ti-6Al-4V plug,” Springer, Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI:10.1007/s40430-018-1088-6; Volume No: 40, Issue No: 3; pp. 158-165.

Mr.ShenbagaVelu, Dr.N.Rajesh Jesudoss Hynes, “Microstructural and Mechanical properties on Friction Welding of dissimilar metals used in motor vehicles,” Materials Research Express, DOI:10.1088/2053-1591/aaabeb, Volume No: 5, Issue No: 2; pp. 26521-26532.

N. Rajesh Jesudoss Hynes, R. Kumar, R. Tharmaraj, P. ShenbagaVelu, “Production of aluminium metal matrix composites by liquid processing methods,” American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946609, ISSN: 0094-243X, Volume 1728, (2016); pp 020558-1 to 020558-5.

Dr.N.Rajesh Jesudoss Hynes, Mr.VivekPrabhu&Dr.P Nagaraj, “Joining of hybrid AA6063-6SiCp-3Grp composite and AISI 1030 steel by friction welding,” Elsevier, Defence Technology, DOI: dx.doi.org/10.1016/j. Volume No: 13, Issue No: 1; pp. 338-345.

MebySelvaraj R, Rajesh Jesudoss Hynes N, “Assessment of Influencing Factors on Mechanical and Electrical Properties of Al/Cu Joints,” DOI: https://doi.org/10.1063/1.5033163; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1300191-1300195.

Rajesh Jesudoss Hynes N, Raja S, “Experimental Study on Joining of AA6063 and AISI 1040 steel,” DOI: https://doi.org/10.1063/1.5033164; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1300201-1300204.
[51] ShenbagaveluP, Rajesh Jesudoss Hynes N, “Numerical Modeling of Friction welding of Bi-metal joints for Electrical applications,” DOI: https://doi.org/10.1063/1.5033272; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1400971-1400975.

[52] Rajendran, T.P., Hynes, N.R.J., Nikolova, M.P. et al. Influence of heat treatment on friction-welded joints made of high-carbon high-chromium tool steel/low-carbon steel for tooling applications. J Braz. Soc. Mech. Sci. Eng. 42, 87 (2020).

[53] Packiaraj Rajendran, T., Rajesh Jesudoss Hynes, N. & Christopher, T. Characterization of high-carbon high-chromium tool steel/low-carbon steel friction-welded joints for industrial tooling applications. J Braz. Soc. Mech. Sci. Eng. 40, 316 (2018).

[54] Rajesh Jesudoss Hynes N, Nagaraj P & Angela Jennifa Sujana J (2013), “Controller for friction stud welding machine,” IEEE Conference proceedings on Energy Efficient Technologies for sustainability, pp.879-882.

[55] Rajesh Jesudoss Hynes N, Nagaraj P & Angela Jennifa Sujana J (2013), “Analytical Modeling of Temperature profile in friction stud welding of dissimilar metals,” IEEE Conference proceedings on Energy Efficient Technologies for sustainability, pp.827-829.

[56] N. Rajesh Jesudoss Hynes, M. V. Maheshwaran, “Numerical analysis on thermal drilling of aluminum metal matrix composite,” American Institute of Physics (AIP) Conference Proceedings, doi: 10.1063/1.4946597, ISSN: 0094243X, Volume 1728 (2016); pp.020546-1 to 020556-4.

[57] N. Rajesh Jesudoss Hynes, M. Muthukumaran, N. Rakesh and C. K. Gurubaran, “Numerical Analysis in Friction Drilling Of AISI 1020 Steel and AA 6061 T6 Alloy,” Recent Advancements in Environmental and Earth Sciences and Economics, Energy, Environmental and Structural Engineering Series, ISSN: 2227-4359, Volume 39, 2015, pp. 145-149.

[58] Mr.R.Kumar, Dr.N.Rajesh Jesudoss Hynes, “Finite-element simulation and validation of material flow in thermal drilling process,” Springer, Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI: 10.1007/s40430-018-1091-y; Volume No: 40, Issue No: 3; PageNo: 162-172.

[59] N. Rajesh Jesudoss Hynes et al, “Optimum Bushing Length in Thermal Drilling of Galvanized Steel Using Artificial Neural Network Coupled with Genetic Algorithm,” Materials in technology / Materials and technology, ISSN 1580-2949, doi:10.17222/mit.2016.290, 51 (2017) 5, pp. 813–822.

[60] Dr.N.Rajesh Jesudoss Hynes, R.Kumar, “Simulation and Experimental Validation of Al7075-T651 Flow Drilling Process,” Journal of the Chinese Society of Mechanical Engineers, 2017, Vol.38, No.4, pp. 413-420.

[61] Mr.R.Kumar, Dr.N.Rajesh Jesudoss Hynes, “Process optimization for maximizing bushing length in thermal drilling using integrated ANN-SA approach,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, DOI: 10.1007/s40430-017-0620-y; Volume No: 39, Issue No: 12; pp. 5097-5108.

[62] Kumar R, Rajesh Jesudoss Hynes N, “Numerical Analysis of Thermal Drilling Technique on Titanium sheet metal,” DOI: https://doi.org/10.1063/1.5033158; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1300141-1300144.

[63] Vijayabaskar P, Rajesh Jesudoss Hynes N, “Simulation of Friction Stir Drilling Process,” DOI: https://doi.org/10.1063/1.5033284; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1401091-1401094.

[64] Vignesh N J, Rajesh Jesudoss Hynes N, “Thermal Analysis of Friction Riveting of Dissimilar Materials,” DOI: https://doi.org/10.1063/1.5033285; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1401101-1401104.

[65] R Kumar, N Rajesh Jesudoss Hynes, J Angela Jennifa Sujana, “Multi-objective optimization of green technology thermal drilling process using grey-fuzzy logic method”, Journal of Cleaner Production (SCI Journal, IF 7.100), Volume 236, Available online 21 July 2019.

[66] R. Kumar, N. Rajesh Jesudoss Hynes, Anish Khan, Simulation of thermo-mechanical behaviour of friction drilling process, Int. J. Computational Materials Science and Surface Engineering, Vol. 9, No. 1, 2020, pp. 70-84.

[67] R. Kumar, N. Rajesh Jesudoss Hynes, “Thermal drilling processing on sheet metals: A Review”, Elsevier, International Journal of Lightweight Materials and Manufacture, Available online 19 August 2019.

[68] Vignesh N J, Rajesh Jesudoss Hynes N, “Thermal Analysis of Friction Riveting of Dissimilar Materials,” DOI: https://doi.org/10.1063/1.5033285; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 1401101-1401104.

[69] Sankaranarayanan R, Rajesh Jesudoss Hynes N, “Prospects of Joining Multi-Material Structures,” DOI: https://doi.org/10.1063/1.5033165; AIP Conference Proceedings, Volume 1953 D, Issue No: 1; pp. 130021-130025.

[70] R. Sankaranarayanan, and N. Rajesh Jesudoss Hynes, Friction riveting for joining of wide range of dissimilar materials, AIP Conference Proceedings 2142, 150004 (2019); https://doi.org/10.1063/1.5122553