ABEL-JACOBI MAP AND CURVATURE OF THE PULLED BACK METRIC

INDRANIL BISWAS

Abstract. Let X be a compact connected Riemann surface of genus at least two. The Abel-Jacobi map $\varphi : \text{Sym}^d(X) \to \text{Pic}^d(X)$ is an embedding if d is less than the gonality of X. We investigate the curvature of the pull-back, by φ, of the flat metric on $\text{Pic}^d(X)$. In particular, we show that when $d = 1$, the curvature is strictly negative everywhere if X is not hyperelliptic, and when X is hyperelliptic, the curvature is nonpositive with vanishing exactly on the points of X fixed by the hyperelliptic involution.

1. Introduction

Let X be a compact connected Riemann surface of genus g, with $g \geq 2$. The gonality of X is defined to be the smallest integer γ_X such that there is a nonconstant holomorphic map from X to \mathbb{CP}^1 of degree γ_X. Consider the Abel-Jacobi map $\varphi : \text{Sym}^d(X) \to \text{Pic}^d(X)$

that sends an effective divisor D on X of degree d to the corresponding holomorphic line bundle $\mathcal{O}_X(D)$. If $d < \gamma_X$, then φ is an embedding (Lemma 2.1). On the other hand, $\text{Pic}^d(X)$ is equipped with a flat Kähler form, which we will denote by ω_0. So, $\varphi^*\omega_0$ is a Kähler form on $\text{Sym}^d(X)$, whenever $d < \gamma_X$. The Kähler metric $\varphi^*\omega_0$ on $\text{Sym}^d(X)$ is relevant in the study of abelian vortices (see [Ri], [BR] and references therein).

Our aim here is to study the curvature of this Kähler form $\varphi^*\omega_0$ on $\text{Sym}^d(X)$.

Consider the g–dimensional vector space $H^0(X, K_X)$ consisting of holomorphic one-forms on X. It is equipped with a natural Hermitian structure. Let

$$\mathbb{G} = \text{Gr}(d, H^0(X, K_X))$$

be the Grassmannian parametrizing all d dimensional quotients of $H^0(X, K_X)$. The Hermitian structure on $H^0(X, K_X)$ produces a Hermitian structure on the tautological vector bundle on \mathbb{G} of rank d; this tautological bundle on \mathbb{G} of rank d will be denoted by V. The Hermitian structure on $H^0(X, K_X)$ also gives a Fubini–Study Kähler form on \mathbb{G}.

There is a natural holomorphic map

$$\rho : \text{Sym}^d(X) \to \mathbb{G}$$

2000 Mathematics Subject Classification. 14C20, 32Q10.

Key words and phrases. Gonality, curvature, symmetric product, Abel-Jacobi map.
We prove that the holomorphic Hermitian vector bundle \(\rho^* V \rightarrow \text{Sym}^d(X) \) is isomorphic to the holomorphic cotangent bundle \(\Omega_{\text{Sym}^d(X)} \) equipped with the Hermitian structure given by \(\varphi^* \omega_0 \) (Theorem 3.1).

Since the curvature of the holomorphic Hermitian vector bundle \(V \rightarrow G \) is standard, Theorem 3.1 gives a description of the curvature of \(\varphi^* \omega_0 \) in terms of \(\rho \). In particular, we show that when \(d = 1 \), the curvature of \(\varphi^* \omega_0 \) is strictly negative if \(X \) is not hyperelliptic; on the other hand, if \(X \) is hyperelliptic, then the curvature of \(\varphi^* \omega_0 \) vanishes at the \(2(g+1) \) points of \(X \) fixed by the hyperelliptic involution; the curvature of \(\varphi^* \omega_0 \) is strictly negative outside these \(2(g+1) \) points (Proposition 3.2).

2. Gonality and flat metric

As before, \(X \) is a compact connected Riemann surface of genus \(g \), with \(g \geq 2 \). For any positive integer \(d \), let \(\text{Sym}^d(X) \) denote the quotient of the Cartesian product \(X^d \) under the natural action of the group of permutations of \(\{1, \cdots, n\} \). This \(\text{Sym}^d(X) \) is a smooth complex projective manifold of dimension \(d \). The component of the Picard group of \(X \) parametrizing the holomorphic line bundles of degree \(d \) will be denoted by \(\text{Pic}^d(X) \).

Let \(X^d \rightarrow \text{Pic}^d(X) \) be the map that sends any \((x_1, \cdots, x_d) \in X^d\) to the line bundle \(\mathcal{O}_X(x_1 + \cdots + x_d) \). It descends to a map

\[
\varphi : \text{Sym}^d(X) \rightarrow \text{Pic}^d(X).
\]

This map \(\varphi \) is surjective if and only if \(d \geq g \).

Consider the space of all nonconstant holomorphic maps from \(X \) to the complex projective line \(\mathbb{CP}^1 \). More precisely, consider the degree of all such maps. Since \(g \geq 2 \), the degree of any such map is at least two. The gonality of \(X \) is defined to the smallest integer among the degrees of maps in this space [Ei, p. 171]. Equivalently, the gonality of \(X \) is the smallest one among the degrees of holomorphic line bundles \(L \) on \(X \) with \(\dim H^0(X, L) \geq 2 \). The gonality of \(X \) will be denoted by \(\gamma_X \). Note that \(\gamma_X = 2 \) if and only if \(X \) is hyperelliptic. The gonality of a generic compact Riemann surface of genus \(g \) is \(\lceil \frac{2g+3}{2} \rceil \).

Lemma 2.1. Assume that \(d < \gamma_X \). Then the map \(\varphi \) in (2.1) is an embedding.

Proof. We will first show that \(\varphi \) is injective.

Take any point \(x := \{x_1, \cdots, x_d\} \in \text{Sym}^d(X) \); the points \(x_i \) need not be distinct. The divisor \(\sum_{i=1}^d x_i \) will be denoted by \(D_x \). If \(y := \{y_1, \cdots, y_d\} \in \text{Sym}^d(X) \) is another point such that the line bundles \(\mathcal{O}_X(D_x) \) and \(\mathcal{O}_X(D_y) \) are isomorphic, where \(D_y = \sum_{i=1}^d y_i \), then there is a meromorphic function on \(X \) with pole divisor \(D_y \) and zero divisor \(D_x \). In particular, the degree of this meromorphic function is \(d \). But this contradicts the given condition that \(d < \gamma_X \). Consequently, the map \(\varphi \) is injective.
We need to show that for $x \in \text{Sym}^d(X)$, the differential
\[d\varphi(x) : T_x\text{Sym}^d(X) \longrightarrow T_{\varphi(x)}\text{Pic}^d(X) = H^1(X, \mathcal{O}_X) \] (2.2)
is injective.

We will quickly recall a description of the tangent bundle $T\text{Sym}^d(X)$.

Let
\[D \subset \text{Sym}^d(X) \times X \]
be the tautological reduced effective divisor consisting of all $(\{y_1, \cdots, y_d\}, y)$ such that
$y \in \{y_1, \cdots, y_d\}$. The projection of $\text{Sym}^d(X) \times X$ to $\text{Sym}^d(X)$ will be denoted by p. Consider the quotient sheaf
\[\mathcal{O}_{\text{Sym}^d(X)\times X}(D)/\mathcal{O}_{\text{Sym}^d(X)\times X} \longrightarrow \text{Sym}^d(X) \times X. \]

Note that its support is the divisor D. The tangent bundle $T\text{Sym}^d(X)$ is the direct image
\[p_*(\mathcal{O}_{\text{Sym}^d(X)\times X}(D)/\mathcal{O}_{\text{Sym}^d(X)\times X}) \longrightarrow \text{Sym}^d(X). \]

Take any $x := \{x_1, \cdots, x_d\} \in \text{Sym}^d(X)$. Let
\[0 \longrightarrow \mathcal{O}_X(-D_x) \longrightarrow \mathcal{O}_X \longrightarrow \tilde{Q}(x) := \mathcal{O}_X/\mathcal{O}_X(-D_x) \longrightarrow 0 \] (2.3)
be the short exact sequence of sheaves on X, where D_x, as before, is the effective divisor given by x. Tensoring the sequence in (2.3) with the line bundle $\mathcal{O}_X(-D_x)^* = \mathcal{O}_X(D_x)$ we obtain the following short exact sequence of sheaves on X:
\[0 \longrightarrow \text{End}(\mathcal{O}_X(-D_x)) = \mathcal{O}_X \longrightarrow \text{Hom}(\mathcal{O}_X(-D_x), \mathcal{O}_X) = \mathcal{O}_X(D_x) \longrightarrow Q(x) := \text{Hom}(\mathcal{O}_X(-D_x), \tilde{Q}(x)) \longrightarrow 0. \] (2.4)

Let
\[0 \longrightarrow H^0(X, \mathcal{O}_X) \overset{\alpha}{\longrightarrow} H^0(X, \mathcal{O}_X(D_x)) \overset{\beta}{\longrightarrow} H^0(X, Q(x)) \overset{\delta_x}{\longrightarrow} H^1(X, \mathcal{O}_X) \] (2.5)
\[\overset{\nu}{\longrightarrow} H^1(X, \mathcal{O}_X(D_x)) \longrightarrow H^1(X, Q(x)) = 0 \]
be the long exact sequence of cohomologies associated to the short exact sequence of sheaves in (2.5). From the earlier description of $T\text{Sym}^d(X)$ we have the following:
\[T_x\text{Sym}^d(X) = H^0(X, Q(x)). \] (2.6)

Since $d < \gamma_X$, we have
\[H^0(X, \mathcal{O}_X(D_x)) = \mathbb{C}. \] (2.7)

Hence the homomorphism α in (2.5) is an isomorphism. This implies that the homomorphism δ_x in (2.5) is injective. So the exact sequence in (2.5) gives the exact sequence
\[0 \longrightarrow T_x\text{Sym}^d(X) = H^0(X, Q(x)) \overset{\delta_x}{\longrightarrow} H^1(X, \mathcal{O}_X). \] (2.8)

The tangent bundle of $\text{Pic}^d(X)$ is the trivial vector bundle over $\text{Pic}^d(X)$ with fiber $H^1(X, \mathcal{O}_X)$. The differential $d\varphi(x)$ in (2.2) coincides with the homomorphism δ_x in (2.5). Since δ_x in (2.8) is injective, it follows that $d\varphi(x)$ is injective. \[\square \]
Let K_X denote the holomorphic cotangent bundle of X. The vector space $H^0(X, K_X)$ is equipped with the Hermitian form

$$\langle \theta_1, \theta_2 \rangle := \int_X \theta_1 \wedge \overline{\theta_2} \in \mathbb{C}, \quad \theta_1, \theta_2 \in H^0(X, K_X).$$

This Hermitian form on $H^0(X, K_X)$ produces a Hermitian form on the dual vector space $H^0(X, K_X)^* = H^1(X, \mathcal{O}_X)$; this isomorphism is given by Serre duality. This Hermitian form on $H^1(X, \mathcal{O}_X)$ produces a Kähler structure on $\text{Pic}^d(X)$ which is invariant under the translation action of $\text{Pic}^0(X)$ on $\text{Pic}^d(X)$. This Kähler structure on $\text{Pic}^d(X)$ will be denoted by ω_0.

Now Lemma 2.1 has the following corollary:

Corollary 2.2. Assume that $d < \gamma_X$. Then $\varphi^* \omega_0$ is a Kähler structure on $\text{Sym}^d(X)$.

3. Mapping to a Grassmannian

We will always assume that $d < \gamma_X$. Since $\gamma_X \leq g$, we have $d < g$.

Let

$$G = \text{Gr}(d, H^0(X, K_X))$$

be the Grassmannian parametrizing all d dimensional quotients of $H^0(X, K_X)$. Let

$$V \rightarrow G$$

be the tautological vector bundle of rank d. So V is a quotient of the trivial vector bundle $G \times H^0(X, K_X) \rightarrow G$. Consider the Hermitian form on $H^0(X, K_X)$ defined in (2.9). It produces a Hermitian structure on the trivial vector bundle $G \times H^0(X, K_X) \rightarrow G$. Identifying the quotient V with the orthogonal complement of the kernel of the projection to V, we get a Hermitian structure on V. Let

$$H_0 : V \otimes \nabla \rightarrow G \times \mathbb{C}$$

be this Hermitian structure on V.

Take any $x := \{x_1, \cdots, x_d\} \in \text{Sym}^d(X)$. Consider the short exact sequence of sheaves on X

$$0 \rightarrow K_X \otimes \mathcal{O}_X(-D_x) \rightarrow K_X \rightarrow Q'(x) := K_X/(K_X \otimes \mathcal{O}_X(-D_x)) \rightarrow 0,$$

where D_x as before is the divisor on X given by x. Let

$$0 \rightarrow H^0(X, K_X \otimes \mathcal{O}_X(-D_x)) \xrightarrow{\nu'} H^0(X, K_X) \xrightarrow{\delta_x'} H^0(X, Q'(x))$$

$$\xrightarrow{\beta'} H^1(X, K_X \otimes \mathcal{O}_X(-D_x)) \xrightarrow{\alpha'} H^1(X, K_X) \rightarrow H^1(X, Q'(x)) = 0$$

be the long exact sequence of cohomologies associated to it. By Serre duality,

$$H^1(X, K_X \otimes \mathcal{O}_X(-D_x)) = H^0(X, \mathcal{O}_X(D_x))^*;$$

hence from (2.7) it follows that α' in (3.5) is an isomorphism. This implies that β' in (3.5) is the zero homomorphism, hence δ_x' is surjective. In other words, $H^0(X, Q'(x))$ is
a quotient of $H^0(X, K_X)$ of dimension d. Therefore, $H^0(X, Q'(x))$ gives a point of the Grassmannian G constructed in (3.1).

Let
\[
\rho : \text{Sym}^d(X) \rightarrow G
\]
be the morphism defined by $x \mapsto H^0(X, Q'(x))$.

Theorem 3.1.

1. The vector bundle $\rho^*V \rightarrow \text{Sym}^d(X)$, where V and ρ are constructed in (3.2) and (3.6) respectively, is holomorphically identified with the holomorphic cotangent bundle $\Omega_{\text{Sym}^d(X)}$.

2. Using the identification in (1), the Hermitian structure ρ^*H_0, where H_0 is constructed in (3.3), coincides with the Hermitian structure on $\Omega_{\text{Sym}^d(X)}$ given by $\varphi^*\omega_0$ in Corollary 2.2.

Proof. We will show that the homomorphisms $\alpha', \beta', \delta'_x$ and ν' in (3.5) are duals of the homomorphisms α, β, δ_x and ν respectively, which are constructed in (2.5). This actually follows from the fact that the complex in (3.4) is dual of the complex in (2.4). We will elaborate this a bit.

By Serre duality, we have
\[
H^1(X, \mathcal{O}_X)^* = H^0(X, K_X) \quad \text{and} \quad H^1(X, \mathcal{O}_X(D_x))^* = H^0(X, K_X \otimes \mathcal{O}_X(-D_x)).
\]
Using these isomorphisms, the homomorphism ν' in (3.5) is the dual of the homomorphism ν in (2.5). Therefore, from (3.5) and (2.5) we have
\[
H^0(X, Q(x))^* = H^0(X, Q'(x)).
\]
But $H^0(X, Q(x)) = T_x\text{Sym}^d(X)$ (see (2.6)). On the other hand, $H^0(X, Q'(x))$ is the fiber of V over the point $\rho(x) \in G$. Therefore, the first statement of the theorem follows from (3.3).

The isomorphism $H^1(X, \mathcal{O}_X)^* = H^0(X, K_X)$ in (3.7) is an isometry, because the Hermitian form on $H^1(X, \mathcal{O}_X)^*$ is defined using the Hermitian form on $H^0(X, K_X)$ in (2.9) and this isomorphism. This implies that the isomorphism in (3.8) is an isometry, after $H^0(X, Q(x))$ (respectively, $H^0(X, Q'(x))$) is equipped with the Hermitian structure obtained from the Hermitian structure on $H^1(X, \mathcal{O}_X)$ (respectively, $H^0(X, K_X)$) using (2.5) (respectively, (3.5)). This completes the proof. \[\Box\]

Take $d = 1$. Consider the Kähler form $\varphi^*\omega_0$ on X in Corollary 2.2. Let $\Theta = \varphi^*\omega_0$ be the curvature of $\varphi^*\omega_0$; so Θ is a smooth function on X.

Proposition 3.2. The curvature function Θ is nonpositive.

1. If X is not hyperelliptic, then Θ is strictly negative everywhere on X.

(2) If X is hyperelliptic, then Θ is strictly negative everywhere outside the $2(g + 1)$ points fixed by hyperelliptic involution of X. The function Θ vanishes on the $2(g + 1)$ fixed points of the hyperelliptic involution.

Proof. Take a complex vector space W equipped with a Hermitian form. Let $\mathbb{P}(W)$ be the projective space that parametrizes quotients of W of dimension one. The curvature of the Chern connection, [Ko, p. 11, Proposition 4.9], on the tautological line bundle on $\mathbb{P}(W)$ coincides with the Fubini–Study Kähler form on $\mathbb{P}(W)$. In other words, the curvature form is positive. Let μ denote the curvature of the line bundle $V \rightarrow G = \mathbb{P}(H^0(X, K_X))$ in (3.2) equipped with the Hermitian form H_0 constructed in (3.3). Since μ is positive, $\rho^*\mu$ is nonnegative, and it is strictly positive wherever the differential $d\rho$ is nonzero. Note that the curvature of the Chern connection on the line bundle ρ^*V equipped with the Hermitian structure ρ^*H_0 coincides with the pulled back form $\rho^*\mu$.

If X is not hyperelliptic, then ρ is an embedding [ACGH, p. 11–12], [GH, p. 247]. So $\rho^*\mu$ is a positive form on X. Since the curvature of the Chern connection on (ρ^*V, ρ^*H_0) coincides with $\rho^*\mu$, from Theorem 3.1 it follows that the curvature form $\Theta \cdot \varphi^*\omega_0$, for the Kähler structure $\varphi^*\omega_0$, coincides with $-\rho^*\mu$. So Θ is strictly negative everywhere on X.

Now take X to be hyperelliptic. Let $\iota : X \rightarrow X$ be the hyperelliptic involution. The map ρ factors as

$$X \rightarrow X/\iota \xrightarrow{\rho'} \mathbb{P}(H^0(X, K_X)),$$

and ρ' is an embedding [ACGH, p. 11]. In particular, the differential $d\rho$ vanishes exactly on the $2(g + 1)$ points of X fixed by the hyperelliptic involution ι. Hence the above argument gives that the function Θ vanishes exactly on the $2(g + 1)$ points of X fixed by ι, and it strictly negative outside these $2(g + 1)$ points. \square

References

[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer–Verlag, New York, 1985.

[BR] I. Biswas and N. M. Romão, Moduli of vortices and Grassmann manifolds, Comm. Math. Phys. 320 (2013), 1–20.

[Ei] D. Eisenbud, The geometry of syzygies. A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics, Vol. 229, Springer, New York, 2005.

[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons Inc., New York, 1978.

[Ko] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Publications of the Math. Society of Japan 15, Iwanami Shoten Publishers and Princeton University Press, 1987.

[Ri] N. A. Rink, Vortices and the Abel-Jacobi map, J. Geom. Phys. 76 (2014), 242–255.