Type 2 diabetes mellitus increases the mortality risk after acute coronary syndrome treated with coronary artery bypass surgery

Eilon Ram1,3*, Leonid Sternik1,3, Robert Klempfner2,3, Zaza Iakobishvili3,4, Enrique Z. Fisman3, Alexander Tenenbaum3, Elchanan Zuroff1,3, Yael Peled2,3 and Ehud Raanani1,3

Abstract

Background: Type 2 diabetes mellitus (DM) is a risk factor for cardiovascular diseases and is common among patients undergoing coronary artery bypass grafting (CABG) surgery. The main objective of our study was to investigate the impact of DM type 2, and its treatment subgroups, on short- and long-term mortality in patients with acute coronary syndrome (ACS) who undergo CABG.

Methods: The study included 1307 patients enrolled from the biennial Acute Coronary Syndrome Israeli Survey between 2000 and 2016, who were hospitalized for ACS and underwent CABG. Of them, 527 (40%) patients were with and 780 (60%) were without DM.

Results: Compared with the non-diabetic group, the diabetic group of patients comprised more women and had more comorbidities such as hypertension, dyslipidemia, renal impairment, peripheral vascular disease and prior ischemic heart disease. Overall 30-day mortality rate was similar between DM and non-DM patients (4.2% vs. 4%, \(p=0.976 \)). Ten-year mortality rate was higher in DM compared with non-diabetic patients (26.6% vs. 17.7%, log-rank \(p<0.001 \)), and higher in the subgroup of insulin-treated patients compared to non-insulin treated patients (31.5% vs. 25.6%, log-rank \(p=0.019 \)). Multivariable analysis showed that DM increased the mortality hazard by 1.61-fold, and insulin treatment among the diabetic patients increased the mortality hazard by 1.57-fold.

Conclusions: While type 2 DM did not influence the in-hospital mortality hazard, we showed that the presence of DM among patients with ACS referred to CABG, is a powerful risk factor for long-term mortality, especially when insulin was included in the diabetic treatment strategy.

Keywords: Diabetes mellitus, Coronary artery bypass grafting, Revascularization, Insulin

Background

Currently, overall cardiovascular disease affects approximately 32.2% of all type 2 diabetes mellitus (DM) patients worldwide, while cardiovascular disease is a major cause of mortality among people with type 2 DM, accounting for approximately half of all deaths [1]. Diabetic patients presenting with acute coronary syndrome (ACS) have poor prognoses due to the diffuse and rapidly progressive forms of atherosclerosis and multiple comorbidities [2].

Previous studies have demonstrated increased short- and long-term mortality in diabetic patients undergoing coronary artery bypass grafting (CABG) or even isolated valve surgery [3] compared with non-diabetic patients [4, 5], and more recent reports have shown a significant reduction in mortality among patients with diabetes [6]. However, none of these studies were performed on ACS patients.
The main objective of our study was to investigate the impact of DM type 2, and its treatment subgroups, on short- and long-term mortality in patients with ACS who undergo CABG.

Methods

Study design

The ACS Israeli Survey (ACSIS) is a voluntary biennial prospective national registry of all patients with ACS hospitalized in the 25 coronary care units and cardiology departments in all the public health hospitals in Israel over a 2-month period (from March to April) [7].

ACSIS is managed by the Working Group on Acute Cardiovascular Care of the Israel Heart Society, in participation with the Israeli Center for Cardiovascular Research. Demographic, historical, and clinical data from all patients were recorded on pre-specified forms. Patient management was at the discretion of the attending physicians. Admission and discharge diagnoses were recorded as determined by the attending physicians based on clinical, electrocardiographic, and biochemical criteria.

Study population

All patients in each medical center signed an informed consent form prior to participating in the ACSIS registry, and each center received approval from its institutional review board [8]. Between 2000 and 2016 (which included 8 consecutive registries), 1307 patients were hospitalized with ACS and underwent CABG and were included in the ACSIS registry. Of them, 527 (40%) patients had DM and 780 (60%) were without DM.

Clinical outcomes

Clinical outcomes included 30-day major adverse cardiovascular events (MACE: which included death, MI, and stroke), in-hospital complications, and long-term all-cause mortality.

Data collection and follow-up

All data from the 25 participating hospitals were collected and pooled into a designated database. All centers used standardized definitions for data collection, including demographic parameters, medical history, chronic and peri-procedural medical treatment, echocardiography measurements, procedure information and outcome measures. All patients were prospectively followed up for clinical events at 30 days and for late mortality. Mortality data were ascertained from the Israeli Ministry of Interior Population Registry through January 2018.

Statistical analysis

Data are presented as mean ± standard deviation for normal, or median for abnormal distribution. Continuous variables were tested with the Kolmogorov–Smirnov test for normal distribution. Categorical variables are given as frequencies and percentages. A Chi square test was used for comparison of categorical variables between the groups, a Student t-test was performed for comparison of normally distributed continuous variables, and a Mann–Whitney U test for non-normal distribution.

Multivariable logistic regression analysis was used to identify factors associated with 30-day mortality. All statistically different variables (p < 0.1) in Table 1 and pre-specified variables were entered into the model. Long-term survival analysis was carried out using the Kaplan–Meier method, and comparison by the groups

Table 1 Patient characteristics	Diabetes mellitus No. of patients (527) (%)	Non-diabetic No. of patients (780) (%)	p value
Age, years (mean ± SD)	65 ± 10	64 ± 12	0.096
Sex (male)	39 (76)	645 (83)	0.003
Hypertension	375 (71)	411 (53)	< 0.001
Current smokers	158 (30)	286 (37)	0.020
Dyslipidemia	399 (76)	486 (63)	< 0.001
COPD	21 (5)	27 (5)	0.641
Family history of CAD	118 (24)	190 (25)	0.632
BMI (kg/m²) (mean ± SD)	28.4 ± 8	28 ± 16.4	0.701
Prior MI	154 (29)	213 (27)	0.445
Prior PCI	157 (30)	156 (20)	< 0.001
Renal impairment	61 (12)	44 (6)	< 0.001
Peripheral vascular disease	63 (12)	60 (8)	0.013
CVA/TIA	54 (10)	59 (8)	0.108
Congestive heart failure	55 (10)	33 (4)	< 0.001
On-site cardiac surgery unit	274 (52)	417 (53)	0.642
Prior medications			
Insulin	89 (20)	0 (0)	< 0.001
Oral antihyperglycemic agents	320 (69)	0 (0)	< 0.001
Aspirin	297 (65)	294 (44)	< 0.001
Clopidogrel	43 (9)	37 (6)	0.015
ACE-I	148 (48)	97 (23)	< 0.001
ARBs	42 (13)	32 (8)	0.015
Beta blockers	197 (43)	217 (33)	0.001
Statins	266 (59)	262 (40)	< 0.001
Calcium channel blockers	122 (27)	113 (17)	< 0.001
Nitrates	67 (15)	78 (12)	0.169
Aldosterone receptor antagonist	2 (1)	2 (1)	1.000
Diuretics	75 (20)	70 (13)	0.004

SD standard deviation, COPD chronic obstruction pulmonary disease, CAD coronary artery disease, BMI body mass index, MI myocardial infarction, PCI percutaneous coronary intervention, CVA cerebrovascular accident, TIA transient ischemic attack, ACE-I angiotensin converting enzyme inhibitors, ARB angiotensin II receptor blockers
was tested using the log-rank test. Cox proportional hazard model was constructed to assess the association between DM and 10-year mortality adjusted to the following covariates: age, gender, hypertension, dyslipidemia, smoking, body mass index, renal impairment, prior myocardial infarction (MI), prior stroke, and congestive heart failure. Variables that were significant by the univariable analysis (p < 0.1) were included in the model. Results are presented as hazard ratio (HR), 95% confidence interval (CI) and p-value.

Statistical significance was assumed when the null hypothesis could be rejected at p < 0.05. All p-values reflect results of two-sided tests. Statistical analyses were conducted using R (version 3.4.1).

Results
Baseline characteristics
In our study cohort there were 780 non-diabetic patients, and 527 patients with DM type 2. Of them, 273 were treated with oral antihyperglycemic medications, 89 with insulin (with or without oral antihyperglycemic medications), and 165 with diet only. Presentation of the ACS was ST-segment elevation MI in 35%, non-ST-segment elevation MI in 45% and unstable angina pectoris in 20% (with no difference between DM and non-DM patients, p = 0.109). Compared with the non-diabetic group, the diabetic group of patients were more frequently women and had more comorbidities such as hypertension, dyslipidemia, renal impairment, peripheral vascular disease and prior ischemic heart disease (Tables 1 and 2). In addition to the antihyperglycemic medication, patients with DM were treated more frequently with platelet anti-aggregation therapy, angiotensin converting enzyme inhibitors or angiotensin II receptor blockers, calcium channel blockers, statins and diuretics (Table 1).

Early outcomes
Overall 30-day mortality rate was similar between the DM and non-DM patients (4.2% vs. 4%, p = 0.976), and between the subgroups of insulin-treated DM and non-insulin-treated DM (5.7% vs. 3.9%, p = 0.633). Other 30-day major events were similar between the DM and non-DM patients, such as stroke (0% vs. 0.3%, p = 0.658), recurrent MI (1.5% vs. 1.7%, p = 1.000) and MACE (p = 0.264). Major events were also similar between the non-insulin dependent and insulin-dependent DM patients: stroke (0% vs. 0%, p = 1.000), recurrent MI (0% vs. 1.8%, p = 0.415) and MACE (p = 0.615). These results were similarly consistent in the subgroups of the different

Table 2 Acute coronary syndrome presentation

ACS diagnosis	Diabetes mellitus No. of patients (527) (%)	Non-diabetic No. of patients (780) (%)	p-value
NSTEMI	253 (48)	333 (43)	0.109
STEMI	169 (32)	291 (37)	
UAP	105 (20)	156 (20)	
Left ventricle ejection fraction			<0.001
Normal (> 50%)	140 (31)	281 (44)	
Mild (40–50%)	158 (36)	177 (27)	
Moderate (30–40%)	97 (22)	133 (21)	
Severe (< 30%)	48 (11)	52 (8)	
Number of CAD			<0.001
1 Vessel	18 (5)	43 (8)	
2 Vessels	77 (20)	150 (29)	
3 Vessels	286 (75)	323 (63)	
Vital signs on admission			
Heart rate (bpm) (mean ± SD)	87 ± 21	81 ± 20	<0.001
Systolic blood pressure (mmHg) (mean ± SD)	144 ± 29	143 ± 29	0.569
Diastolic blood pressure (mmHg) (mean ± SD)	80 ± 16	83 ± 17	0.013
Normal sinus rhythm	417 (90)	615 (91)	0.795
Atrial fibrillation/VT	24 (6)	22 (4)	0.122
VT/VF	1 (0.3)	5 (0.9)	0.447
2-3-degree AV-Block	3 (1.2)	3 (0.8)	0.947

ACS acute coronary syndrome, NSTEMI non-ST-segment elevation myocardial infarction, STEMI ST-segment elevation myocardial infarction, UAP unstable angina pectoris, CAD coronary artery disease, SD standard deviation, SVT supraventricular tachycardia, VT ventricular tachycardia, VF ventricular fibrillation, AV atrioventricular
ACS presentations and were reported as counts and crude event rates (Table 3).

Multivariable logistic regression analysis demonstrated that DM was not a predictor for death at 30-days after CABG (OR 0.98 95% CI 0.53–1.78, p = 0.955). The only significant variables that were associated with 30-day mortality rate were older age, male gender and dyslipidemia (Fig. 1).

Long-term mortality rate

Kaplan–Meier survival analysis showed that mortality rates at 10 years of follow-up among patients with DM were significantly higher (26.6%) compared with those without DM who had ACS treated by CABG (17.7%; log-rank p-value < 0.001 for the overall difference during follow-up [Fig. 2a]). Consistent with the univariable findings, adjusted analysis, including a propensity score

Table 3 Early (30-day) crude counts and event rate by the acute coronary syndrome presentation

	STEMI	NSTEMI	UAP					
	DM	Non-DM	DM	Non-DM	p-value	DM	Non-DM	p-value
Death								
N = 169	10 (6)	15 (5)	9 (4)	14 (4)	0.900	3 (3)	2 (1)	0.653
Recurrent MI	4 (2)	7 (2)	4 (2)	5 (2)	1.000	0 (0)	1 (1)	1.000
CVA/TIA	0 (0)	1 (0)	0 (0)	1 (0)	1.000	0 (0)	1 (1)	1.000
MACE*	7 (4)	17 (6)	7 (3)	12 (4)	0.412	2 (2)	1 (1)	0.787

* MACE includes 30-day mortality, myocardial infarction, and stroke

Fig. 1 Forest plot: Predictors for 30-day mortality using logistic regression analysis. Odds ratio for 30-day mortality with 95% confidence interval. OR odds ratio, CI confidence interval, PCI percutaneous coronary intervention
Fig. 2 a Unadjusted 10-year survival curves by the presence of diabetes mellitus. b Hazard plot for survival at 10 years by the presence of diabetes mellitus, with propensity score adjustment. The covariates included in the model were: age, gender, hypertension, dyslipidemia, smoking, body mass index, renal impairment, prior MI, prior stroke and congestive heart failure. HR hazard ratio, MI myocardial infarction
for the presence of DM, using a propensity score for confounders, also demonstrated a significantly higher risk for 10-year mortality among patients with, compared to those without DM (Fig. 2b). Additional independent predictors for long-term mortality among all study patients included: age > 65 years, male gender, hypertension, dyslipidemia and renal impairment (Table 4).

Furthermore, long-term mortality was higher in the subgroup of insulin-treated patients compared to the subgroup of non-insulin treated patients with 10-year mortality rates of 31.5% vs. 25.6% (p = 0.019, Fig. 3). Interestingly, there were no significant differences in long-term mortality in DM patients treated with oral antihyperglycemic drugs or with diet only (Fig. 4).

Table 4 Multivariable Cox regression analysis—predictors for 10-year all-cause mortality

Predictor	HR	95% CI	p-value
Diabetes mellitus	1.34	1.03–1.76	0.032
Age > 65 years	2.22	1.61–3.08	<0.001
Sex (male)	0.68	0.51–0.92	0.014
Hypertension	1.57	1.14–2.17	0.006
Dyslipidemia	0.62	0.47–0.82	0.001
Current smoker	0.98	0.70–1.36	0.910
BMI	0.97	0.94–1.00	0.054
Renal impairment	1.59	1.07–2.35	0.020
Prior MI	1.22	0.91–1.63	0.190
Prior CVA/TIA	0.91	0.60–1.38	0.657
History of CHF	1.15	0.73–1.81	0.543

HR hazard ratio, CI confidence interval, BMI body mass index, MI myocardial infarction, CVA cerebrovascular accident, TIA transient ischemic attack, CHF congestive heart failure.

Discussion

Our observational real-world study investigated the impact of type 2 DM on early- and long-term mortality in patients after ACS treated by CABG. First, we found that diabetic and non-diabetic patients, and insulin-dependent and non-insulin-dependent DM patients, had similar in-hospital outcomes. Second, our principal finding was that the long-term mortality rate of diabetic patients was higher than that of non-diabetic patients, and mortality was even higher when the diabetic treatment strategy included insulin.
Long-term mortality
While not performed on an ACS population, prior studies of DM versus non-DM in patients who underwent CABG have shown inconsistent results regarding long-term mortality. As in our results, Marui et al. reported an increase in 3- and 5-year mortality rates (11% vs. 9.7% and 19.6% vs. 16.2%, respectively) [9], and Koshizaka et al. reported significant differences in 5-year mortality rates (15.5% vs. 8.5%) in diabetic compared to non-diabetic patients [10]. Wit et al. reported significantly higher 3-year mortality rates in patients with insulin-treated compared with non-insulin-treated DM and non-diabetic patients (16.7% vs. 8.7% vs. 6.3%) [11]. A previous report of our group among all CABG patients showed a 5-year mortality rate of 15.3% among diabetic patients and a 9.3% rate among non-diabetic patients [5]. In contrast, Onuma et al. reported slightly increasing mortality rates in diabetic compared with non-diabetic patients 5 years after CABG: 8.6% vs. 7.1% [12], and Kappetein et al. reported non-significant differences between diabetic and non-diabetic patients at 5 years: 12.9% vs. 10.9% [13]. While in the general population DM is associated with excess mortality, compared with the general population without DM, with a hazard ratio of 1.15 at 5 years [14], we reported a greater impact of DM on patients who underwent CABG (HR of 1.44 at 5 years and 1.61 at 10 years). We assume that this higher impact of DM in our cohort, compared to the natural history of DM in the general population, is due to accelerated coronary artery disease (CAD) [15].

Operative mortality
We report here that in-hospital mortality among diabetic and non-diabetic patients after ACS was 4.2% and 4%, respectively. Furthermore, we have shown that DM was not associated with short-term cardiovascular events after CABG. Although patients with stable CAD were also studied, other comparisons between DM and non-DM patients who underwent CABG showed no difference in early outcomes. Abizaid et al. reported similar in-hospital mortality rates between diabetic and non-diabetic patients (2.1% vs. 1.2%) [16]. Marui et al. found no differences in 30-day mortality (0.9% vs. 1.2%) [9], as did Carson et al. (3.7% vs. 2.7%) [4]. Likewise, Li et al. reported similar post-CABG mortality rates for diabetic and non-diabetic patients (2% vs. 1.9%) [17]. Although
diabetic patients in our series were older and had more comorbidities, differences in early mortality rates did not reach statistical significance.

Cardiovascular risk factors and ACS
The DM group in our study included patients who were treated either with insulin, oral antihyperglycemic drugs or with diet. Interestingly, not only overt diabetes, but also genetic predisposition to type 2 DM was significantly associated with a greater severity of coronary atheromatous burden in patients with ACS, independently of traditional risk factors [18]. There were substantial differences between the DM and non-DM groups in our cohort, with many of the unfavorable clinical characteristics (gender, comorbidities, and lower left ventricle ejection fraction) being more common in the DM group. We attempted to overcome some of the clinical differences through statistical adjustment of important variables.

We reported that the prevalence of women was higher in the DM group. The fact that diabetic women presented with more comorbidities is in keeping with recent findings showing that, in both percutaneous and surgical revascularization, women presented with worse outcomes at 1 year; albeit there were no gender differences at 5 years of follow-up [19]. Previous studies have shown that women were shown to have significantly smaller epicardial coronary arteries than men, even after adjustment for age, body habitus, and left ventricular mass [20, 21]. Consequently, diverse and gender-specific pathophysiological processes may contribute to different outcomes seen in women as compared to men.

While DM increases the risk of heart failure, mostly due to CAD, in some cases it is secondary to diabetic cardiomyopathy [22]. Insulin-dependent DM patients have more comorbidities than non-insulin dependent patients, as reported in this study. Although the presence of insulin treatment is indeed a marker for more advanced disease, its underlying biological mechanism has not been fully elucidated. It may be related to the impact of a procoagulant imbalance, chronic exposure to high glucose levels, and direct effects of hyperinsulinemia. Interestingly, endogenous hyperinsulinemia has been associated with increased long-term mortality following MI in patients without diabetes [23]. Further studies are required to examine whether insulin-dependent diabetic patients should be included in risk stratification algorithms for patients who undergo CABG, and also whether they require more intense cardiovascular protective therapies with the newly available anti-diabetic drugs.

Limitations
A selection bias could have been introduced by the fact that, while primarily the ACSIS registry included patients admitted only to cardiology wards and intensive cardiac care units nationwide, in the main it did not include patients hospitalized in internal medicine wards. There was insufficient anatomical information regarding the complexity of CAD, the specific artery involved, and the surgical techniques performed. Therefore, it is difficult to draw conclusions regarding the association between specific interventions in native arteries or grafts and clinical outcomes. Information regarding patients treated with insulin analogs compared with human insulin was lacking in the ACSIS registry, and therefore we could not draw any conclusions regarding specific treatment that could improve cardiovascular morbidity in insulin-dependent DM patients.

Conclusions and clinical implications
We have shown that the presence of DM among patients with ACS who are referred to CABG is a powerful risk factor for long-term mortality, especially if the diabetic treatment strategy includes insulin. Accordingly, the high-risk population of insulin-dependent DM may require specific and/or more intense cardiovascular protective therapies after CABG. Further studies are needed to examine whether novel interventions, such as GLP-1 analogs or SGLT2 inhibitors, could improve the long-term outcomes of these patients.

Abbreviations
DM: Diabetes mellitus; CAD: Coronary artery disease; ACS: Acute coronary syndrome; CABG: Coronary artery bypass grafting; ACSIS: The Acute Coronary Syndrome Israeli Survey; MACE: Major adverse cardiovascular events; MI: Myocardial infarction; HR: Hazard ratio; CI: Confidence interval.

Acknowledgements
Not applicable.

Authors’ contributions
ER: wrote the research project and the full manuscript; LS: study revision and interpretation; RK, ZI: data collection and interpretation; EZF, AT, EZ: study revision and editing; YP: study revision and interpretation; ER: wrote the research project and study revision. All authors read and approved the final manuscript.

Funding
None.

Availability of data and materials
Data collected from the ACSIS national registry.

Ethics approval and consent to participate
All patients in each medical center signed an informed consent form prior to participating in the ACSIS registry, and each center received approval from its institutional review board.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.
References

1. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83.

2. Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, Jaffe AS, Jones NH, Newby LK, Ornato JP, et al. 2014 AHA/ACC guidelines for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;130(25):2354–94.

3. Ram E, Kogan A, Levin S, Fisman EZ, Tenenbaum A, Raanani E, Sternik L. Type 2 diabetes mellitus increases long-term mortality risk after isolated surgical aortic valve replacement. Cardiovasc Diabetol. 2019;18(1):31.

4. Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH. Graft Engineering via Transfection IV trial. Am Heart J. 2015;169(1):175–84.

5. Ram E, Kogan A, Levin S, Fisman EZ, Tenenbaum A, Raanani E, Sternik L. Impact of type 2 diabetes mellitus on short- and long-term mortality after coronary artery bypass graft surgery. J Am Coll Cardiol. 2002;40(3):418–23.

6. Rawshani A, Rawshani A, Fransen S, Sattar N, Eliasson B, Svensson AM, Zethelius B, Miftaraj M, McGuire DK, Rosengren A, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–44.

7. Behar S, Battler A, Porath A, Leor J, Grossman E, Hasin Y, Mittelman M, Feigenberg Z, Rahima-Mazoz C, Green M, et al. A prospective national survey of management and clinical outcome of acute myocardial infarction in Israel. 2000. Isr Med Assoc J. 2003;5(4):249–54.

8. Komorowski R. The ACSIS Registry and primary angioplasty following coronary bypass surgery. Catheter Cardiovasc Interv. 2011;78(4):537–9.

9. Manu A, Kimura T, Nishiwaki N, Mitsujo K, Komiya T, Hanuy M, Shiomi H, Tanaka S, Sakata R. Investigators CR-KPCRC-. five-year outcomes of percutaneous versus coronary surgical revascularization in patients with diabetes mellitus (from the CREDO-Kyoto PCI/CABG Registry Cohort-2). Am J Cardiol. 2015;115(8):1063–72.

10. Koshizaka M, Lopes RD, Reyes EM, Gibson CM, Schulte PJ, Haflag GE, Hernandez AF, Green JB, Kouchoukos NT, Calif FM, et al. Long-term clinical and angiographic outcomes in patients with diabetes undergoing coronary artery bypass graft surgery: results from the Project of Ex-voivo Vein Graft Engineering via Transsection IV trial. Am Heart J. 2015;169(1):175–84.

11. Wit MA, de Mulder M, Jansen EK, Umans VA. Diabetes mellitus and its impact on long-term outcomes after coronary artery bypass graft surgery. Acta Diabetol. 2013;50(2):123–8.

12. Onuma Y, Wyrzykowski JA, Garg S, Vanek P, Serruys PW, Arts I, Investigators II. 5-Year follow-up of coronary revascularization in diabetic patients with multivessel coronary artery disease: insights from ARTS (arterial revascularization therapy study)-II and ARTS-I trials. JACC Cardiovasc Interv. 2011;4(3):317–23.

13. Kappetein AP, Head SJ, Morice MC, Banning AP, Serruys PW, Mohr FW, Dawkins KD, Mack MJ, Investigators S. Treatment of complex coronary artery disease in patients with diabetes: 5-year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur J Cardiothorac Surg. 2013;43(5):1006–13.

14. Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Guðbjörnsdóttir S, Wedel H, Clemmets M, Dahlqvist S, Lind M. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373(18):1720–32.

15. Lathief S, Inzucchi SE. Approach to diabetes management in patients with CVD. Trends Cardiovasc Med. 2016;26(2):165–79.

16. Abizaid A, Costa MA, Centemero M, Abizaid AS, Legrand VM, Limet RV, Schuler G, Mohr FW, Lindeboom W, Souza AG, et al. Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients: insights from the Arterial Revascularization Therapy Study (ARTS) trial. Circulation. 2001;104(5):533–8.

17. Li Z, Amsterdam EA, Young JH, Hoehn H, Armstrong EJ. Contemporary outcomes of coronary artery bypass grafting among patients with insulin-treated and non-insulin-treated diabetes. Ann Thorac Surg. 2015;100(6):2262–9.

18. Zheng Q, Jiang J, Hua Y, Chen D. Genetic predisposition to type 2 diabetes is associated with severity of coronary artery disease in patients with acute coronary syndromes. Cardiovasc Diabetol. 2019;18(1):131.

19. Huckaby LV, Seese LM, Sultan I, Gleason TG, Wang Y, Thoma F, Kilic A. The impact of sex on outcomes after revascularization for multivessel coronary disease. Ann Thorac Surg. 2020. https://doi.org/10.1016/j.athoracsur.2020.02.026.

20. Hiteshi AK, Li D, Gao Y, Chen A, Flores F, Mao SS, Budoff MJ. Gender differences in coronary artery diameter are not related to body habitus or left ventricular mass. Clin Cardiol. 2014;37(18):605–9.

21. Murthy VA, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, Dorbala S, Blankstein R, Rimoldi O, Camici PG, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27.

22. Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA. Heart failure with preserved ejection fraction in diabetes: mechanisms and management. Can J Cardiol. 2018;34(5):632–43.

23. Kragulj F, Snorgaard O, Kober L, Bengtsson B, Ottesen M, Holberg S, Olesen C, Kjaergaard JJ, Carlsen J, Torp-Petersen C, et al. Hypertension, insulin resistance and insulin treatment in patients with type 2 diabetes: five-year results comparing outcomes of bypass surgery and percutaneous coronary intervention in the SYNTAX trial. Eur J Cardiothorac Surg. 2013;43(5):1006–13.