Pulling Hairpinned Polymers

Andrea Montanari∗ and Marc Mézard ∗∗

∗ Scuola Normale Superiore and INFN – Sez. di Pisa
I-56100 Pisa, Italy

∗∗ Laboratoire de Physique Théorique et Modèles Statistiques
Université Paris Sud, Bat. 100, 91 405 Orsay cedex, France

(November 23, 2013)

We introduce a model of thermalized conformations in space of RNA - or single stranded DNA - molecules, which includes the possibility of hairpin formation. This model contains the usual secondary structure information, but extends it to the study of one element of the ternary structure, namely the end-to-end distance. The computed force-elongation characteristics is in good agreement with some recent measurements on single stranded DNA molecules.

87.15.-v, 87.14.Gg, 05.10.Gg, 61.41.+e

Recent progress in the manipulation of single biomolecules is making gradually accessible a wealth of interesting physical information. One of the basic investigations concerns the force-elongation characteristics: its measurement in double stranded DNA (dsDNA) molecules has provided very interesting results in the last few years, going from a detailed characterization of the elastic properties of the molecules to the existence of new phases of dsDNA in various regimes of tension and overcoiling [1–11].

While the force-elongation characteristics of dsDNA is rather well understood, the corresponding knowledge on single stranded DNA (ssDNA) is poorer: although in some ionic conditions it may be characterized by a simple freely jointed chain (FJC) with elastic bonds [6], this description is not valid when one changes the ionic concentrations [12]. This discrepancy is probably due to the formation of secondary structures in the ssDNA molecule [12], which can bend back onto itself and form local helices where complementary bases A-T and G-C are paired, gaining an energy of several kT per pair.

The formation of secondary structures is a crucial step in the folding of proteins and single stranded nucleic acid polymers. Its importance stems from the rather large values of the binding energy involved in this formation, compared to the much smaller energy scale of the interaction between secondary structures which govern the final three-dimensional shape of the molecules (the ternary structure). As discussed recently [13–15], the formation of secondary structures in RNA (which is very similar to the one in ssDNA) provides a wonderful laboratory for detailed studies of some of the basic mechanisms at work in heteropolymer folding.

In this paper we modify and extend the previous studies on RNA or ssDNA secondary structures in order to include one simple aspect of the ternary structure, namely the thermal fluctuations of the end-to-end distance, and its dependence on the pulling force. Our model, which is solved exactly with generating function techniques, provides a detailed description of the elastic properties of these polymers. It involves three parameters: the persistence length of the molecule, the elastic constant characteristic of bond stretching, and the pair binding energy.

In the simplest approximation, the backbone of the polymer is described by a FJC with N elastic bonds. At thermal equilibrium, the probability distribution of a bond to be equal to the vector \vec{r} is given by

$$\mu(\vec{r}) = C \exp\left(-\frac{(|\vec{r}|-b)^2}{2\ell^2}\right),$$

where b is the persistence length and ℓ is a length which characterizes the elasticity of the bond. For RNA or ssDNA, one expects b to be of the order of a few times the distance between successive bases, and ℓ/b to be much smaller than one. The spatial conformation is thus described by the positions $vec r_i$, ($i \in \{1, ..., N+1\}$) of the $N+1$ nodes which are the articulation points of the chain. The attraction between complementary bases creates an effective potential $\epsilon_{ij}(\vec{r}_i - \vec{r}_j)$ between nodes i and j (arbitrarily far away from each other along the backbone) which involves a short ranged attraction and a core repulsion. We perform a standard virial expansion of the partition function in terms of the quantities $f_{ij}(\vec{r}) = \exp(-\epsilon_{ij}(\vec{r})/kT) - 1$ which vanish for $|\vec{r}| > a$, where a is the range of the interaction. The secondary structure is characterized by the set of node pairs i, j such that $f_{ij} \neq 0$.

Our main approximation for describing the secondary structure is the standard one in which one keeps only the nested diagrams [16–19], which are defined as follows:

- Each node can be paired to at most one other node.
- Two node pairs \(i \leq j \) and \(k \leq l \) (with say \(i < k \)) can coexist only if they are either independent \((i < j < k < l)\) or nested \((i < k < l < j)\).

This condition neglects the formation of pseudo-knots, which are known to be rare in RNA folding. This is thus the simplest approximation, one in which one adds to the basic elastic model (here for instance the FJC) the possibility of formation of hairpins, consisting of helices, and helices within helices organised in a hierarchical way. In the future it should be possible to generalize our model in order to include some sets of pseudo-knots, as was done for instance in simulations in \([17,18]\). Including more refined potentials to get a better description of the secondary structure is also possible \([17,18]\).

\[\Xi(\zeta, \vec{p}) = \int d\vec{r} \left(\sum_{n=0}^{\infty} Z_n(\vec{r}) \zeta^n \right) e^{i \vec{p} \cdot \vec{r}}, \]

which is expressed in terms of the Fourier transforms:

\[\sigma(\vec{p}) = \int d\vec{r} \mu(\vec{r}) e^{i \vec{p} \cdot \vec{r}}\]

\[f(\vec{p}) = \int d\vec{r} \left[\exp(-\beta \epsilon(\vec{r})) - 1 \right] e^{i \vec{p} \cdot \vec{r}}. \]

Using \(Z_0(\vec{p}) \equiv 1\) and \(Z_1(\vec{p}) \equiv \sigma(\vec{p})\) one derives from the recursion relation \([2]\) the functional equation:

\[\Xi(\zeta, \vec{p}) = \frac{1}{\zeta} \frac{\omega(\zeta, \vec{p})}{1 - \sigma(\vec{p}) \omega(\zeta, \vec{p})}, \]
where the kernel ω satisfies the integral equation:

$$\omega(\zeta, \vec{p}) = \zeta + \zeta^3 \int \frac{d^3q}{(2\pi)^3} f(\vec{p} - \vec{q}) \sigma(\vec{q})^2 \Xi(\zeta, \vec{q}) .$$ \hfill (6)

The force-elongation characteristics for a chain with N bonds can be deduced from the partition function in presence of a force:

$$Z_N^F = \int d\vec{r} Z_N(\vec{r}) e^{βF \vec{r}} .$$ \hfill (7)

Its generating function is nothing but $\Xi(\zeta, \vec{p}_F)$, where \vec{p}_F is an imaginary momentum given by $\vec{p}_F = (0, 0, -iβF)$ for a force F pulling in the third direction. For a long chain, $N >> 1$, one expects a partition function behaving as $Z_N^F \sim A \exp(-βN \phi(F))/N^α$. The free energy per bond $\phi(F)$ determines the radius of convergence of the series defining the generating function $\Xi(\zeta, \vec{p}_F)$. It is thus equal to $\phi(F) = (1/β) \ln(ζ^∗)$, where $ζ^∗$ is the singularity of $\Xi(ζ)$ which is the nearest to the origin. From the free energy per bond one deduces the elongation L along the axis of the force: $L = -N\partial\phi/\partial F$, as well as the average fraction of pairings n_p (defined as the number of pairings divided by N): $n_p = \partial \ln(ζ^∗)/\partial \ln(γ)$.

The integral equation (6) is easily solved in the case where the range of the interaction potential is small compared to b (this approximation is again valid when b is much larger than the interbase distance). One can then neglect the momentum dependence of f and substitute $f(\vec{p})$ by the constant $γb^3$, where $γ$ is a dimensionless number characteristic of the strength of the pairing and defined by $γ = f(0)/b^3 = \int d^2q/b^3 [\exp(-βe(\vec{r})) - 1]$. The kernel $ω$ is then momentum independent. The relation between $ζ$ and $ω$ can be written as $ω = ζ + Ζ^2 A(ω)$, where the function $A(ω)$ is monotonously increasing and such that $A'(ω = 1) = \infty$. One can then show that $ω(ζ)$ has a second order branching point at $ζ_{bp}$ and is analytic for $|ζ| < ζ_{bp}$, where $ζ_{bp}$ is the maximum of the function $[-1 + \sqrt{1 + 4ωA(ω)})/2A(ω)]$.

The singularities of $ζ$ which control the large n behavior of Z_n are the branching point of $ω(ζ)$ at $ζ_{bp}$ and the pole at $ζ_p(\vec{p})$ determined by the vanishing of the denominator of equation (6), when the momentum is equal to \vec{p}_F: $ω(ζ_p) σ(\vec{p}_F) = 1$. For purely elastic bonds with $ℓ << b$, one finds $σ(\vec{p}) \approx |\sin(pb)/pb| \exp(-p^2ℓ^2/2)$, and the pole is located at:

$$ω(ζ_p) = \frac{βFb}{\sinh(βFb)} e^{-β^2F^2ℓ^2/2} .$$ \hfill (8)

To each of the two singularities is associated one phase of the model. The “hairpinned” phase corresponds to the branching point singularity. As far as we neglect the momentum dependence of $ω$ (i.e. for small interaction radius) the free energy per bond $\phi(F) = (1/β) \ln ζ_{bp}$ is force independent. The length of the polymer is thus of order N^0 in the long chain ($N \to \infty$) limit. A fraction n_p of nodes is paired with n_p independent on the applied force. The chain is bent in a few, i.e. $O(N^0)$, hairpins, each one involving $O(N)$ bonds. The “elongated” phase corresponds to the pole singularity. The free energy $ϕ(F) = (1/β) \ln ζ_p(\vec{p}_F)$ is force dependent and the elongation is extensive (proportional to N). This can be written as: $L(F) = n_{\text{free}}(F)L_{FJC}(F)$ where $L_{FJC}(F)$ is the elongation without interaction (i.e. in the case $γ = 0$) and $n_{\text{free}}(F)$ the fraction of nodes which do not belong to any hairpin. The fraction of pairings rapidly decreases with the applied force. The number of hairpins is $O(N)$.

In our model there exists a second order phase transition between the hairpinned phase at low force and the elongated phase at high force. This phase transition is a robust feature of the model which does not depend on the details of the interaction potential and of the bond stretching potential: the branched point singularity, associated with the hairpinned phase, is present as soon as $σ(\vec{p}) \approx 1 - κ\vec{p}^2$ for small $|\vec{p}|$, which is the generic situation. The pole singularity, associated with the elongated phase, is always present. The boundary between the two phases occurs at a critical force $F_c(γ)$ which increases monotonically with $γ$. Slightly above the threshold the elongation grows linearly with the force: $L(F) \propto F - F_c(γ)$. The asymptotic behaviors of the dimensionless critical force are:

$$βbF_c(γ) \sim \frac{1}{4} \log(γ) \quad \text{for} \quad 1 \ll γ \ll e^{βb^2/ℓ^2}$$

$$βbF_c(γ) \sim \frac{γ}{8πκ^2} \quad \text{for} \quad γ \ll 1$$ \hfill (9)

Notice that the linear dependence of F_c at small $γ$ a prediction which is independent of the detailed form of the bond probability distribution (1).

Equations (3) and (8) can be easily solved numerically. We compared our theoretical predictions with the experimental data presented in Ref. [12] on the ln force versus elongation characteristic for a charomid-ssDNA at room
temperature under different salinity conditions. Using the elastic model for bond stretching (1), our three fitting parameters are: the persistence length b, the elasticity ℓ, the interaction parameter γ.

As shown in fig.2, we obtain a good agreement with the experimental curve at the highest salt concentration (10 mM PB, 5 mM Mg). The small elongation region ($L/L_0 < .1$) of the experiment was not considered since the interactions of the molecule with the glass plate cannot be ignored (this forbids a study of the critical force region with the present data). The fitting parameters are: the persistence length b, the elasticity ℓ, the interaction parameter γ. The number of bonds was fixed as in [12] such that $Nb = 1.6875L_0$, where L_0 is the crystallographic length of the double stranded DNA. A least square fit, yields the following results: $b = 19.2\,\text{Å}$, $\gamma = 1.89$, $\ell = 1.01\,\text{Å}$. The orders of magnitudes of the various parameters are correct. The persistence length is of the order of three times the interbase distance b_0 (our approximation of a large value of $b > b_0$ is marginally self-consistent and should be improved upon in the future). The value of ℓ, when expressed in terms of the enthalpic elasticity S as in [12], corresponds to $S = b/(\beta\ell^2) \simeq 1000\,\text{pN}$, typical of the values measured at higher forces [10,11]; the approximation $\ell \ll b$ is valid. The value of γ is characteristic of the strength of the interaction. For a potential well of width a and depth ϵ_0, one has $\gamma \sim (a/b)^3 \exp(\beta\epsilon_0)$, which is compatible with some typical values such as $a \sim 4\,\text{Å}$, $\epsilon_0 \sim 2.9\,kT$.

![Figure 2](image2.png)

FIG. 2. Fit of the force-elongation characteristics of charomid ssDNA. The circles are the experimental data of Ref [12]. The continuous line is the best fitting curve obtained with our model model. The dashed curve is the FJC characteristics obtained by switching off the interaction. The difference between the two is due to the formation of hairpins.

![Figure 3](image3.png)

FIG. 3. The fraction of paired nodes in the secondary structure as a function of the external pulling force. The three curves refer to three different values of the interaction parameter γ. From top to bottom $\gamma = 3.9$, 1.9, 0.59. The other parameters of the model correspond to the experimental situation: they are fixed as in the fit of Fig. 2.
From our computation one can deduce the pairing fraction \(n_p \) in the conditions of the experiment. This is plotted in Fig. 3. It is clear that in the region of forces above 10 pN there is no pairing. This is consistent with the measurements of ref. [12] which showed that the characteristics of two different ssDNA's with different G-C concentration merge in that region. One should keep in mind that the two fitting parameters \(b \) and \(\ell \) are basically fixed by this high force region where there is no pairing. The low force part with pairing is the one which fixes the binding parameter \(\gamma \).

When the salinity is lowered some new physical effects become relevant. The electrostatic interactions between the bases are less effectively screened, and probably the FJC is not a good model. Our model should still give a reasonable account of the effect of secondary structures on the elongation. One possibility to test it is to use, instead of the elastic FJC, the experimental force elongation characteristics measured on a molecule exposed first to a chemical treatment (for instance glyoxal) which destroys the ability of the bases to pair. Our model should then allow to deduce from two experimental curves (one with glyoxal, the other without) the effect of the secondary structures [21].

In this paper we have introduced a solvable model of the structure of ssDNA or RNA molecules which includes, together with the secondary structure, one important element of its ternary structure. The model gives a general framework for including the effect of hairpin formation in the elongation properties of the molecules. When used with a simple FJC model for the polymer without hairpins, it is in good agreement with the experimental data at high ionic concentration. Several extensions of this study are natural. The description of data obtained at smaller ionic concentration requires to go beyond the FJC approximation. Another natural extension of our study, also possible within this model, is to study the effects of the disorder in the sequence of bases.

Acknowledgements: It is a pleasure to thank D. Bensimon and V. Croquette for many useful discussions and for providing us their data.

[1] S.B. Smith, L. Finzi and C. Bustamante, Science 258, 1122 (1992).
[2] T.T. Perkins and S.R. Quake and D.E. Smith and S. Chu, Science 264, 8222 (1994).
[3] T.R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon and V. Croquette, Science 271, 1835 (1996).
[4] C. Bustamante, J.F. Marko, E.D. Siggia and S. Smith, Science 265, 1599 (1994); A. Vologodskii, Macromolecules 27, 5623 (1994).
[5] P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.L. Viyv, D. Chatenay and F. Caron, Science 271, 792 (1996).
[6] S.B. Smith, Y. Cui and C. Bustamante, Science 271, 795 (1996).
[7] T.R. Strick, J.-F. Allemand, D. Bensimon and V. Croquette, Biophys. Jour 74 2016 (1998).
[8] T.R.Strick, V. Croquette, and D. Bensimon. Proc. Natl. Acad. Sci (USA) 95 10579, (1998).
[9] J.-F. Allemand, D. Bensimon, R. Lavery and V. Croquette, Proc. Natl. Acad. Sci (USA).95,14152 (1998).
[10] U. Bockelmann, B. Essevaz-Roulet and F. Heslot, Physical Review E58 (1998) 2386.
[11] M. Rief, H. Clausen-Schaumann and H.E. Gaub, Nature Structural Biology 6 (1999) 346.
[12] B. Maier, D. Bensimon and V. Croquette, 'Replication by a single DNA-polymerase of a stretched single stranded DNA', submitted to PNAS.
[13] P.G. Higgs, J. Phys. I France 3, 43; Phys. Rev. Lett. 76 (1996) 704.
[14] R. Bundschuh and T. Hwa, Phys. Rev. Lett. 83 (1999) 1479.
[15] A. Pagnani, G. Parisi and F. Ricci-Tersenghi, Phys. Rev. Lett. 84 (2000) 2025.
[16] J.S. McCaskill, Biopolymers 29 (1990) 1105.
[17] M.Zuker and D. Sankoff, Bull. Math. Biol. 46 (1984) 591.
[18] W. Fontana et al. Biopolymers 33 (1993) 1389.
[19] S.-J. Chen and K.A. Dill, J. Chem. Phys. 103 (1995) 5802.
[20] H. Isambert and E.D. Siggia, 'Modeling RNA folding paths including pseudoknots: the hepatitis Delta virus ribozyme case', preprint.
[21] M.-N. Dessinges, B. Maier, D. Bensimon, V. Croquette, A. Montanari and M. Mézard, in preparation.