Bacillus anthracis' lethal toxin induces broad transcriptional responses in human peripheral monocytes

Kassidy M Chauncey1, M Cecilia Lopez2, Gurjit Sidhu1, Sarah E Szarowicz1, Henry V Baker2, Conrad Quinn3 and Frederick S Southwick*1

Abstract

Background: Anthrax lethal toxin (LT), produced by the Gram-positive bacterium Bacillus anthracis, is a highly effective zinc dependent metalloprotease that cleaves the N-terminus of mitogen-activated protein kinase kinases (MAPKKs or MEKs) and is known to play a role in impairing the host immune system during an inhalation anthrax infection. Here, we present the transcriptional responses of LT treated human monocytes in order to further elucidate the mechanisms of LT inhibition on the host immune system.

Results: Western Blot analysis demonstrated cleavage of endogenous MEK1 and MEK3 when human monocytes were treated with 500 ng/mL LT for four hours, proving their susceptibility to anthrax lethal toxin. Furthermore, staining with annexin V and propidium iodide revealed that LT treatment did not induce human peripheral monocyte apoptosis or necrosis. Using Affymetrix Human Genome U133 Plus 2.0 Arrays, we identified over 820 probe sets differentially regulated after LT treatment at the p < 0.001 significance level, interrupting the normal transduction of over 60 known pathways. As expected, the MAPKK signaling pathway was most drastically affected by LT, but numerous genes outside the well-recognized pathways were also influenced by LT including the IL-18 signaling pathway, Toll-like receptor pathway and the IFN alpha signaling pathway. Multiple genes involved in actin regulation, signal transduction, transcriptional regulation and cytokine signaling were identified after treatment with anthrax LT.

Conclusion: We conclude LT directly targets human peripheral monocytes and causes multiple aberrant gene responses that would be expected to be associated with defects in human monocyte's normal signaling transduction pathways and function. This study provides further insights into the mechanisms associated with the host immune system collapse during an anthrax infection, and suggests that anthrax LT may have additional downstream targets outside the well-known MAPK pathway.

Background

Bacillus anthracis, the causative agent of anthrax, is a gram-positive bacterium that is naturally found in the soil, and rarely affects the human population. Unfortunately, deliberate dissemination of anthrax spores is capable of delivering a highly potent and lethal air-borne bioterrorist agent, as documented in the 2001 U.S. anthrax attacks. Inhalation anthrax is a highly fatal, acute disease characterized by a rapid onset of systemic shock and ultimately death [1].

The most virulent strains of B. anthracis contain two plasmids, pXO2 and pXO1, encoding an antiphagocytic poly-D-glutamic acid capsule and three exotoxins: lethal factor, edema factor and protective antigen [2]. Protective antigen is an 83 kDa protein that is known to bind to two host cell receptors, TEM-8 and CMG-2, facilitating the entry of edema and/or lethal factor into host cells [3]. Lethal factor is a 90 kDa zinc-dependent metalloprotease that cleaves the N-terminus of mitogen-activated protein kinase kinases (MAPKKs or MEKs) [4,5]. Edema
factor is an 89 kDa adenylate cyclase that increases intracellular cAMP levels [6].

Previous studies using anthrax animal models have documented resistance to anthrax lethal toxin (LT) through depletion of host macrophages, suggesting that these cells play a critical role in anthrax LT induced lethality [7,8]. LT has also been shown to suppress cytokine responses by peripheral blood mononuclear cells, induce macrophage apoptosis, and prevent monocyte proliferation and differentiation [1,9,10]. Inhalation anthrax cases present clinical manifestations indicative of host immune collapse in humans and in nonhuman primate studies [11-13]. However, more recent studies investigating human monocytes and macrophages have suggested human alveolar macrophages are resistant to LT, and undifferentiated human monocytic cell lines are resistant to LT-induced death [10,14]. LT’s targeting of human monocytes/macrophages could help to explain the rapid onset of fatal symptoms and host demise during an inhalation anthrax infection, but the exact effects LT exerts on human peripheral monocytes, along with the mechanisms underlying the impairment of the host immune cell’s responses, have yet to be fully determined.

Previous studies investigating LT treated murine macrophages have shown a broad range in transcriptional effects induced by LT. These studies concluded LT-induced changes in macrophage inflammation, signaling, and transcription factors, along with changes in the immune response by macrophages. This study discovered the down regulation of CD-137 after LT treatment, shown to play a role in monocyte proliferation in response to LPS, and up regulation of plasminogen activator inhibitor type I, which results in fibrin deposits, massive imbalances in coagulation, and, in some instances, multi-organ failure [15,16]. Another study has measured the transcriptional responses of THP-1 cells after B. anthracis spore exposure, finding toxigenic B. anthracis strains suppress the cell signaling responses to infection [17].

Blood monocytes are mononuclear cells that play a major role in the host immune response through regulation of inflammatory responses, secretion of cytokine and antimicrobial factors, and direct pathogen clearance [18]. Monocytes are derived from monoblasts in the bone marrow, and circulate in the blood for 1-2 days before they migrate into tissues where they replenish the macrophage and dendritic pools [19-21]. Here, we determined human monocyte susceptibility to LT by demonstrating cleavage of MEKs, and utilized Affymetrix GeneChip® Human Genome U133 Plus 2.0 Arrays in order to identify additional mechanisms of LT impairment on the transcriptional responses of human peripheral monocytes. The arrays contained 54,675 probe sets representing over 22,000 of the best characterized human genes, providing extensive insights into the mechanisms behind LT induced dysfunction of human peripheral monocytes.

This study is the first to determine direct human monocyte susceptibility via cleavage of MEKs, along with the analysis of the transcriptional responses, to anthrax LT. The mechanisms of LT impairment on human peripheral monocytes will help elucidate the roles monocytes contribute during the host immune system collapse documented during an anthrax infection. The transcriptional analysis will serve to not only unravel the mechanisms behind the rapid onset of death in anthrax victims, but will also potentially provide new targets for controlling inflammation and enhancing host defense.

Results and discussion

Monocyte purity, apoptosis and susceptibility to anthrax LT

In order to first determine monocyte cell purity, isolated cells were analyzed using flow cytometry and gated using forward and side scatter, along with the monocytic marker, CD14. It was found that monocytes were isolated with a >85% purity (Figure 1A and 1B). Because previous reports have documented LT induced cell apoptosis, it was important to assure the transcriptional response of LT treated monocytes were independent of apoptosis. This was assured by the analysis of the necrosis and apoptosis markers, propidium iodide (PI) and annexin V, on human peripheral monocytes. Nearly all (99%) human peripheral monocytes showed no evidence of necrosis or apoptosis after a 4 h treatment of LT (Figure 1C and 1D). There has been some conflicting data suggesting monocytes, along with monocyte-derived cells, are not susceptible to the actions of anthrax LT. One study utilized human monocytic cell lines and found that undifferentiated monocytic cells did not undergo LT-induced cytotoxicity, while the differentiated cells were susceptible [10]. Another study investigating human alveolar macrophages (AM) found that these cells were relatively resistant to the actions of LT. It was ascertained that LT failed to suppress human AM cytokine responses, cleave MEKs, and induce apoptosis [14].

In order to explore the actions of LT on human peripheral monocytes, a Western Blot analysis was performed and MEK1, along with MEK3, cleavage was determined after a 4-hour treatment with LT. Human peripheral monocytes were found to be susceptible to the actions of LT as evidenced by cleavage of MEK1 and MEK3 (Figure 1E). HeLa cells were used as a positive control and β-actin was used to assure equal loading controls. We conclude that human peripheral monocytes are a direct target of anthrax LT.
Microarray analysis and results

Human peripheral monocytes were treated with LT or media alone, and microarray analysis was performed using four biological replicates from healthy volunteers. A total of 8 microarray hybridizations were employed and analyzed on Affymetrix Gene Chips® (HG U133 plus 2.0). The chips contained 54,675 probe sets and identified multiple differentially regulated pathways and genes by human peripheral monocytes after LT treatment. Unsupervised hierarchical analysis was used to assess the noise in the array experiments. First, probe sets whose signal intensity varied most in the data set were selected by applying a variation filter. Probes sets that displayed a coefficient of variation of greater than 0.5 were subjected to hierarchical analysis. The
clustering dendrogram showed the major node of separation between control and LT treated samples (Figure 2A).

To identify specific genes responsive to LT treatment, a paired t-test (by donor) was performed at a significance threshold of $p < 0.001$. Genes specified by 820 probe sets were found to be significant among the treatment groups (Table 1). The hierarchical cluster pattern of the significant probe sets is shown (Figure 3A). Of these probe sets, multiple gene products known to play a role in monocyte function were discovered (Figure 2B). The ability of probe sets significant at $p < 0.001$ to function as a classifier between treatment groups (LT treated vs. control) was established by leave-one-out-cross-validation and Monte Carlo simulations. Using 4 different prediction models, the classifier performed flawlessly. Of the significant genes identified, many are known to play a role in monocyte function (Figure 2C).

Using the Gene Set Expression Comparison Analysis, as implemented in BRB Array tools, the Biocarta pathways that were associated with the differentially regulated genes were identified. Over 60 differentially regulated pathways were discovered in monocytes in response to LT treatment. As expected, the most significant pathway affected by LT treatment was the MAPK signaling pathway, with the p38 MAPK signaling pathway being most impacted with 103 genes affected (Figure 3B). Additional pathways altered by LT at the $p < 0.001$ significance level included the IL-18, Toll-Like Receptor, IFN alpha, and G-Protein Family signaling pathways. It is interesting to note that a previous study measuring the transcriptional response of human alveolar macrophages to anthrax spores detected an activation of the TLR pathways [22], and our results indicated anthrax LT targets 87 genes within the TLR signaling pathway (Figure 3B).

RGS14 is a protein involved in the regulation of G-protein signaling through attenuation of G-protein heterotrimer signaling, thereby inactivating this signaling cascade. The Affymetrix microarrays revealed that RGS14 expression in LT treated monocytes showed a 6 fold increase in expression (Table 2). This is a potentially significant finding in that RGS14 inhibits G-proteins important for chemotaxis. Therefore LT could be impairing chemotaxis not only by blocking Hsp27 phosphorylation through disruption of the p38 pathway [23], but also by causing

Figure 2 Unsupervised microarray analysis. A) Hierarchical clustering dendrogram showing similarities between expression patterns within each condition. Specimens were paired based on donor, using 4 separate donors as indicated in replica r1 through r4. B) Significant genes ($p < 0.001$) up or down regulated after LT treatment, along with their fold change, p-value and probe ID. C) Leave-one-out-cross validation was used to calculate mis-classification rate that yielded a 100% correct classification between pairs.
Paramet. p-value	Geometric mean of intensities	Probe set	Gene symbol	Description
1.78	222001_x_at	FAM91A2	family with sequence similarity 91, member A2	
1.25	218734_at	NAT11	N-acetyltransferase 11	
1.6	230350_at	NA	NA	
1.56	228930_at	NA	NA	
1.58	208661_s_at	TTC3	tetraicopeptide repeat domain 3	
1.16	218716_x_at	MTO1	mitochondrial translation optimization 1 homolog (S. cerevisiae)	
1.15	238538_at	ANKRD11	ankyrin repeat domain 11	
2.92	225896_at	NA	NA	
3.87	227450_at	ERP27	endoplasmic reticulum protein 27 kDa	
1.23	226602_s_at	BCR	breakpoint cluster region	
1.65	209123_at	QDPR	quinoid dihydrorotidine reductase	
1.73	213934_s_at	ZNF23	zinc finger protein 23 (KOX 16)	
1.56	226419_s_at	SFR51	splicing factor, arginine/serine-rich 1	
2.91	227946_at	OSBPL7	oxysterol binding protein-like 7	
1.84	242989_at	NA	NA	
1.92	242590_at	NA	NA	
1.36	204599_s_at	LSM7	LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae)	
1.68	225902_at	NA	NA	
1.29	220939_s_at	DPP8	dipetidyl-peptidase 8	
1.2	218682_s_at	SLC4A1AP	solute carrier family 4 (anion exchanger), member 1, adaptor protein	
2.21	212056_at	KIAA0182	KIAA0182	
2.87	222477_s_at	TM7SF3	transmembrane 7 superfamily member 3	
2.01	202512_s_at	ATG5	ATG5 autophagy related 5 homolog (S. cerevisiae)	
1.52	209042_s_at	UBE2G2	ubiquitin-conjugating enzyme E2G 2 (UBC7 homolog, yeast)	
5.25	232181_at	LOC153346	hypothetical protein LOC153346	
1.79	1554452_a_at	HIG2	hypoxia-inducible protein 2	
2.11	228772_at	HNMT	histamine N-methyltransferase	
1.3	221501_x_at	LOC339047	hypothetical protein LOC339047	
1.81	239038_at	C1orf52	chromosome 1 open reading frame 52	
1.95	203839_s_at	TNK2	tyrosine kinase, non-receptor, 2	
1.89	227558_at	CBX4	chromobox homolog 4 (Pc class homolog, Drosophila)	
1.4	214691_x_at	FAM63B	family with sequence similarity 63, member B	
1.32	228301_x_at	NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa	
1.8	1556302_at	NA	NA	
3.27	229016_s_at	TRERF1	transcriptional regulating factor 1	
3.85	223741_s_at	TTYH2	tweety homolog 2 (Drosophila)	
5.6	49306_at	RASSF4	Ras association (RalGDS/AF-6) domain family member 4	
1.49	32209_at	FAM89B	family with sequence similarity 89, member B	
2.83	225208_at	PNKD	paroxysmal nonkinesigenic dyskinesia	
1.59	228726_at	NA	NA	
1.17	1562984_at	NA	NA	
1.6	201639_s_at	CPSF1	cleavage and polyadenylation specific factor 1, 160kDa	
1.47	221649_s_at	PPAN	pet pan homolog (Drosophila)	
1.94	225360_at	TRABD	TraB domain containing	
1.27	221005_s_at	PTSD52	phosphatidylycerine synthase 2	
2.13	228914_at	NA	NA	
Rank	P-value	Fold Change	Gene ID	Description
------	-------------	-------------	---------	---
47	6.47E-005	1.65	208206_s_at	RASGRP2 RAS guanyl releasing protein 2 (calcium and DAG-regulated)
48	6.49E-005	1.64	209198_s_at	SYT11 synaptotagmin XI
49	6.55E-005	1.7	221575_s_at	SLY selenocysteine lyase
50	6.74E-005	1.82	229969_at	NA
51	6.76E-005	2.22	235513_at	NA
52	6.77E-005	1.93	236922_at	NA
53	6.78E-005	1.14	204364_s_at	RASGRP1 receptor accessory protein 1
54	6.87E-005	1.55	227025_at	PHLN1 peripherin 1
55	7.02E-005	1.78	227288_at	SFRS12P1 SFRS12-interacting protein 1
56	7.13E-005	2.55	205075_at	SERPINF2 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 2
57	7.16E-005	2.29	229988_s_at	TMEM9 transmembrane protein 9
58	7.35E-005	1.39	231831_at	COX19 COX19 cytochrome c oxidase assembly homolog (S. cerevisiae)
59	7.37E-005	1.88	221788_at	NA
60	7.66E-005	1.61	236004_at	NA
61	7.68E-005	1.85	219751_at	SETD6 SET domain containing 6
62	7.92E-005	1.74	227273_at	NA
63	8.67E-005	1.56	235787_at	NA
64	8.91E-005	1.42	212888_at	DICER1 dicer 1, ribonuclease type III
65	8.93E-005	1.93	1568593_a_at	NUDT16P nudix (nucleoside diphosphate linked moiety X)-type motif 16 pseudogene
66	9.00E-005	1.92	226721_at	DPY19L4 dpy-19-like 4 (C. elegans)
67	9.02E-005	1.39	227159_at	GHDC GH3 domain containing
68	9.14E-005	2.36	225982_at	UBTF upstream binding transcription factor, RNA polymerase I
69	9.25E-005	1.62	220341_s_at	Csof4S chromosome 5 open reading frame 45
70	9.51E-005	1.36	214501_s_at	H2AFY H2A histone family, member Y
71	9.96E-005	7.6	226186_at	NA
72	0.0001001	2.59	224946_s_at	CCDC115 coiled-coil domain containing 115
73	0.0001056	1.66	237059_at	NA
74	0.0001076	3.11	38671_at	PLXND1 plexin D1
75	0.0001083	1.92	231912_s_at	DNF2P34B0335 DNF2P34B0335 protein
76	0.0001087	1.55	238492_at	NA
77	0.0001088	2.05	228548_at	NA
78	0.0001089	1.9	225757_s_at	CLMIN calmin (calponin-like, transmembrane)
79	0.0001093	1.15	203926_s_at	ATP5D ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit
80	0.0001100	1.41	232520_s_at	NSFL1C NSFL1 (p97) cofactor (p47)
81	0.0001101	2.06	238012_at	DPP7 dipeptidyl-peptidase 7
82	0.0001101	1.38	211101_s_at	LILRA2 leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2
83	0.0001109	1.35	210128_s_at	LTBP4 leukotriene B4 receptor
84	0.0001115	1.34	223393_s_at	TSHZ3 teashirt zinc finger homeobox 3
85	0.0001123	1.46	213628_at	CLCC1 chloride channel CLIC-like 1
86	0.0001152	1.27	214870_s_at	LOC100132540 similar to LOC339047 protein
87	0.0001171	2.41	221756_at	PFK3P1 phosphoinositide-3-kinase interacting protein 1
88	0.0001171	1.62	222478_at	VPS36 vacuolar protein sorting 36 homolog (S. cerevisiae)
89	0.0001192	1.99	225719_s_at	MPRL55 mitochondrial ribosomal protein 15
90	0.0001206	1.87	212959_s_at	GNPTAB N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits
91	0.0001210	7.64	238520_at	TRERF1 transcriptional regulating factor 1
92	0.0001235	3.04	226974_at	NA
Gene ID	Fold Change	P-value	Description	
-----------	-------------	-----------	--	
93	2.06	0.0001269	farnesyltransferase, CAAX box, beta	
94	2.04	0.0001288	hypothetical protein LOC84792	
95	1.46	0.0001306	membrane protein, palmitoylated 5 (MAGUK p55 subfamily member 5)	
96	1.5	0.0001312	chromosome 1 open reading frame 85	
97	1.19	0.0001336	purine-rich element binding protein A	
98	1.73	0.0001350	spindlin family, member 3	
99	1.8	0.0001354	phosphatidylinositol glycan anchor biosynthesis, class M	
100	2.61	0.0001371	kelch repeat and BTB (POZ) domain containing 6	
101	1.44	0.0001408	LOC154761	
102	3.15	0.0001408	v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived (avian)	
103	2.65	0.0001409	protein phosphatase 1H (PP2C domain containing)	
104	1.61	0.0001414	WD repeat domain 91	
105	2.07	0.0001418	chromosome 9 open reading frame 140	
106	1.92	0.0001426	phosphoglucomutase 2	
107	1.74	0.0001451	chromosome 2 open reading frame 68	
108	1.49	0.0001454	chromosome 5 open reading frame 44	
109	1.8	0.0001462	zinc finger protein 302	
110	1.17	0.0001537	transducer of ERBB2, 1	
111	1.69	0.0001561	golgi phosphoprotein 3-like	
112	1.32	0.0001565	peroxiredoxin 5	
113	2.19	0.0001590	interleukin 16 (lymphocyte chemoattractant factor)	
114	1.47	0.0001593	protein phosphatase 2, regulatory subunit Bg#5%& beta isoform	
115	1.48	0.0001599	NA	
116	1.14	0.0001599	NA	
117	1.54	0.0001646	ARP1 actin-related protein 1 homolog B, centrinactin beta (yeast)	
118	1.73	0.0001669	NA	
119	1.88	0.0001709	chromosome 2 open reading frame 68	
120	1.57	0.0001738	anaphase promoting complex subunit 5	
121	1.37	0.0001748	mitogen-activated protein kinase kinase kinase 4	
122	2.81	0.0001762	angiotensin II receptor-associated protein	
123	3.66	0.0001767	TBC1 domain family, member 4	
124	2.06	0.0001784	NOL1/NOP2/Sun domain family, member 5	
125	1.69	0.0001787	hematological and neurological expressed 1-like	
126	1.85	0.0001789	zinc finger protein 589	
127	2.25	0.0001799	tumor necrosis factor (ligand) superfamily, member 13	
128	2.07	0.0001836	pre-B-cell leukemia homeobox interacting protein 1	
129	1.64	0.0001843	DEAD (Asp-Glu-Ala-Asp) box polypeptide 51	
130	1.99	0.0001852	unc-119 homolog (C. elegans)	
131	1.43	0.0001878	fucokinase	
132	3.32	0.0001878	plexin D1	
133	1.67	0.0001902	small nuclear RNA activating complex, polypeptide 4, 190kDa	
134	1.84	0.0001983	dehydrogenase/reductase (SDR family) member 4	
135	1.76	0.0001987	family with sequence similarity 91, member A2	
136	1.27	0.0001990	general transcription factor IIIC, polypeptide 2, beta 110kDa	
137	1.81	0.0002007	NA	
138	1.31	0.0002010	tripartite motif-containing 59	
139	1.36	0.0002032	NA	
Control vs Toxin corresponding P-value	Gene Expression	Description		
--------------------------------------	-----------------	-------------		
0.0002081 4.03	LGR4	leucine-rich repeat-containing G protein-coupled receptor 4		
0.0002087 1.93	KSR1	kinase suppressor of ras 1		
0.0002093 1.45	NA	NA		
0.0002165 1.57	NA	NA		
0.0002167 1.4	AKR7A3	aldo-keto reductase family 7, member A3 (aflatoxin aldehyde reductase)		
0.0002197 1.79	ANO8	anoctamin 8		
0.0002219 1.79	SLC19A1	solute carrier family 19 (folate transporter), member 1		
0.0002234 1.35	PIGC	phosphatidylinositol glycan anchor biosynthesis, class C		
0.0002246 2.17	RUNX2	runt-related transcription factor 2		
0.0002281 1.24	VAMP4	vesicle-associated membrane protein 4		
0.0002334 1.35	ZNF763	zinc finger protein 763		
0.0002348 1.87	NA	NA		
0.0002362 1.53	ANAPC5	anaphase promoting complex subunit 5		
0.0002367 2.73	TBC1D4	TBC1 domain family, member 4		
0.0002416 1.35	NIP30	NEFA-interacting nuclear protein NIP30		
0.0002420 2.35	ATP2B4	ATPase, Ca++ transporting, plasma membrane 4		
0.0002425 1.4	BCS1L	BCS1-like (yeast)		
0.0002450 1.85	NA	NA		
0.0002478 2.1	ANKDD1A	ankyrin repeat and death domain containing 1A		
0.0002509 1.29	LOC399491	LOC399491 protein		
0.0002517 1.66	NA	NA		
0.0002521 1.74	LOC100128223	hypothetical protein LOC100128223		
0.0002522 1.54	NA	NA		
0.0002531 2.4	CD47	CD47 molecule		
0.0002559 1.53	NA	NA		
0.0002582 2.08	KCTD15	potassium channel tetramerisation domain containing 1S		
0.0002606 4.49	CYP5A	cytochrome b5 type A (microsomal)		
0.0002633 2.1	ROGDI	rogdi homolog (Drosophila)		
0.0002634 1.86	NSUN5B	NOL1/NOP2/Sun domain family, member 5B		
0.0002641 1.4	ABR	active BCR-related gene		
0.0002648 2.01	DKFZP434B0335	DKFZP434B0335 protein		
0.0002678 2.59	CP	ceruloplasmin (ferrooxidase)		
0.0002697 1.78	NA	NA		
0.0002698 1.69	EPRS	glutamyl-prolyl-tRNA synthetase		
0.0002699 2.67	IKZF1	IKAROS family zinc finger 1 (Ikaros)		
0.0002715 1.44	LOC100137047-PLA2G4B	hypothetical protein LOC100137047-PLA2G4B		
0.0002762 1.68	SLCO3A1	solute carrier organic anion transporter family, member 3A1		
0.0002768 4.48	RASSF4	Ras association (RalGDS/AF-6) domain family member 4		
0.0002796 1.37	TMEM80	transmembrane protein 80		
0.0002806 1.49	TIMM51	transmembrane 4 L six family member 19		
0.0002817 1.66	NA	NA		
0.0002826 1.28	NA	NA		
0.0002838 2.77	NA	NA		
0.0002839 2.47	FJL20674	hypothetical protein FJL20674		
0.0002845 2.56	TOR3A	torsin family 3, member A		
0.0002870 1.73	SFRS2B	splicing factor, arginine/serine-rich 2B		
Gene ID	P-value	Fold Change	Description	
--------------	---------	-------------	--	
187	0.0002872	2.1	203317_at PSD4 pleckstrin and Sec7 domain containing 4	
188	0.0002969	1.32	238263_at LOC285965 hypothetical protein LOC285965	
189	0.0003005	2.64	235159_at NA NA	
190	0.0003043	1.24	218388_at PGLS 6-phosphogluconolactonase	
191	0.0003057	1.3	206729_at TNFRSF8 tumor necrosis factor receptor superfamily, member 8	
192	0.0003121	1.28	231130_at NA NA	
193	0.0003123	1.4	1552257_a_at TTLL12 tubulin tyrosine ligase-like family, member 12	
194	0.0003129	1.29	219175_s_at SLC41A3 solute carrier family 41, member 3	
195	0.0003162	1.41	204786_s_at IFNAR2 interferon (alpha, beta and omega) receptor 2	
196	0.0003216	1.35	227127_at TMEM110 transmembrane protein 110	
197	0.0003219	3.64	202341_s_at TRIM2 tripartite motif-containing 2	
198	0.0003243	2.09	210731_s_at LGALS8 lectin, galactoside-binding, soluble, 8	
200	0.0003251	1.77	213374_s_at HIBCH 3-hydroxyisobutyryl-Coenzyme A hydrolase	
201	0.0003260	1.38	200931_s_at VCL vinculin	
202	0.0003264	1.45	230304_at NA NA	
203	0.0003271	2.03	235105_at FBXW2 F-box and WD repeat domain containing 2	
204	0.0003290	4.23	215726_s_at CYB5A cytochrome b5 type A (microsomal)	
205	0.0003300	2.01	242794_at MAML3 mastermind-like 3 (Drosophila)	
206	0.0003304	2.18	225961_at KCHDC5 kelch domain containing 5	
207	0.0003309	1.48	212556_at SCRIB scribbled homolog (Drosophila)	
208	0.0003322	2.66	220494_s_at NA NA	
209	0.0003337	2.38	242297_at RREB1 ras responsive element binding protein 1	
210	0.0003349	1.9	228771_s_at ADRBK2 adrenergic, beta, receptor kinase 2	
211	0.0003390	1.19	227465_at KIAA0892 KIAA0892	
212	0.0003390	1.37	228667_at AGPAT4 1-acylglycerol-3-phosphate O-acyltransferase 4 (lysophosphatidic acid acyltransferase, delta)	
213	0.0003408	1.72	202161_at KPN1 protein kinase N1	
214	0.0003417	1.32	AFXX-LysX-M_at NA NA	
215	0.0003429	1.57	223314_at TSPAN14 tetraspanin 14	
216	0.0003438	2.51	204610_s_at CCDC85B coiled-coil domain containing 85B	
217	0.0003438	2.03	218027_at MRPL15 mitochondrial ribosomal protein L15	
218	0.0003450	2.45	204718_at EPHB6 EPH receptor B6	
219	0.0003454	2.06	227313_at CNPY4 canopoly 4 homolog (zebrafish)	
220	0.0003454	1.52	228600_s_at C7orf46 chromosome 7 open reading frame 46	
221	0.0003472	1.28	226335_at RPS5CA3 ribosomal protein 56 kinase, 90kDa, polypeptide 3	
222	0.0003481	1.48	219147_s_at C9orf95 chromosome 9 open reading frame 95	
223	0.0003492	1.41	219801_s_at ZNF34 zinc finger protein 34	
224	0.0003534	1.37	224865_s_at FAR1 fatty acyl CoA reductase 1	
225	0.0003534	1.25	209450_at OSGEP O-sialoglycoprotein endopeptidase	
226	0.0003535	1.8	239016_s_at NA NA	
227	0.0003567	1.44	228670_at TEP1 telomerase-associated protein 1	
228	0.0003600	1.87	210580_s_at SULT1A3 sulfotransferase family, cytosolic, 1A, phenol-prefering, member 3	
229	0.0003607	1.38	213945_s_at NUP210 nucleoporin 210kDa	
230	0.0003644	1.32	218505_s_at WDR59 WD repeat domain 59	
231	0.0003661	2.32	230343_at NA NA	
232	0.0003663	2.08	230888_at WDR91 WD repeat domain 91	
233	0.0003691	1.87	226368_at CHST11 carbohydrate (chondroitin 4) sulfotransferase 11	
P-value	Gene Name	Description		
---------	-----------	-------------		
2.34	213364_s_at	SNX1 sorting nexin 1		
2.35	213626_at	CBR4 carbonyl reductase 4		
2.36	AFFX-PheX-3_at	NA NA		
2.37	206567_s_at	PHF20 PHD finger protein 20		
2.38	221090_s_at	OGFCO1 2-oxoglutarate and iron-dependent oxygenase domain containing 2		
2.39	44040_at	FBXO41 F-box protein 41		
2.40	226238_at	MCEE methylmalonyl CoA epimerase		
2.41	204562_at	IRF4 interferon regulatory factor 4		
2.42	226241_s_at	MRPL52 mitochondrial ribosomal protein L52		
2.43	220178_at	C19orf28 chromosome 19 open reading frame 28		
2.44	209263_x_at	TSPAN4 tetraspanin 4		
2.45	232228_at	ZNF530 zinc finger protein 530		
2.46	208760_at	UBE2I ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast)		
2.47	224562_at	WASF2 WAS protein family, member 2		
2.48	213485_s_at	ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), member 10		
2.49	202942_at	ETFB electron-transfer-flavoprotein, beta polypeptide		
2.50	AFFX-LysX-3_at	NA NA		
2.51	212135_s_at	ATP2B4 ATPase, Ca++ transporting, plasma membrane 4		
2.52	217828_at	SLTM SAFB-like, transcription modulator		
2.53	212875_s_at	C2CD2 C2 calcium-dependent domain containing 2		
2.54	1557411_s_at	SLC25A43 solute carrier family 25, member 43		
2.55	227117_at	NA NA		
2.56	207124_s_at	GNB5 guanine nucleotide binding protein (G protein), beta 5		
2.57	227607_at	STAMBPL1 STAM binding protein-like 1		
2.58	204538_x_at	NPIP nuclear pore complex interacting protein		
2.59	244619_at	BCL10 B-cell CLL/lymphoma 10		
2.60	223239_at	C14orf129 chromosome 14 open reading frame 129		
2.61	201087_at	PXN paxillin		
2.62	219149_x_at	DBR1 debranching enzyme homolog 1 (S. cerevisiae)		
2.63	229905_at	RAP1GDS1 RAP1, GTP-GDP dissociation stimulator 1		
2.64	222111_at	NA NA		
2.65	23052_s_at	ZNF792 zinc finger protein 792		
2.66	225748_at	LTV1 LTV1 homolog (S. cerevisiae)		
2.67	241741_at	CRLS1 cardiolipin synthase 1		
2.68	221504_s_at	ATP6VIH ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H		
2.69	213448_at	NA NA		
2.70	201949_y_at	CAPZB capping protein (actin filament) muscle Z-line, beta		
2.71	234295_at	DBR1 debranching enzyme homolog 1 (S. cerevisiae)		
2.72	217608_at	SFRS12P1 SFRS12-interacting protein 1		
2.73	215737_x_at	USF2 upstream transcription factor 2, c-fos interacting		
2.74	215873_s_at	ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), member 10		
2.75	1552256_a_at	SCARB1 scavenger receptor class B, member 1		
2.76	208657_s_at	9-Sep septin 9		
2.77	228066_at	C1orf151 chromosome 1 open reading frame 151		
2.78	222471_s_at	KCMF1 potassium channel modulatory factor 1		
2.79	48808_at	DHFR dihydrofolate reductase		
2.80	227228_s_at	CCDC88C coiled-coil domain containing 88C		
2.81	1558445_at	NA NA		
Table 1 Control vs Toxin corresponding P-value \(p < 0.001 \) (Continued)

P-value	Gene ID/Description				
282	0.0004641	1.13	205540_s_at	RRAGB	Ras-related GTP binding B
283	0.0004670	1.48	227239_at	FAM126A	family with sequence similarity 126, member A
284	0.0004673	1.72	220246_at	CAMK1D	calcium/calmodulin-dependent protein kinase ID
285	0.0004677	3.38	226478_at	NA	NA
286	0.0004700	1.41	230235_at	NA	NA
287	0.0004709	1.22	220790_s_at	LEPRE1	leucine proline-enriched proteoglycan (leprecan) 1
288	0.0004727	2.69	223455_at	TCHP	trichoplein, keratin filament binding
289	0.0004736	1.31	238552_at	NA	NA
290	0.0004739	1.47	200827_at	PLOD1	procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1
291	0.0004751	1.28	227700_s_at	NA	NA
292	0.0004785	4.77	238552_at	NA	NA
293	0.0004788	1.88	242824_at	NA	NA
294	0.0004793	1.08	215845_at	NA	NA
295	0.0004795	1.92	211385_x_at	SULT1A2	sulfotransferase family, cytosolic, 1A, phenol-prefering, member 2
296	0.0004800	1.38	226358_at	LOC145842	hypothetical protein LOC145842
297	0.0004832	1.95	218854_s_at	PASK	PAS domain containing serine/threonine kinase
298	0.0004841	5.65	205698_s_at	MAP2K6	mitogen-activated protein kinase kinase 6
299	0.0004850	1.53	222611_at	AGGF1	angiogenic factor with G patch and FHA domains 1
300	0.0004855	1.43	212036_s_at	PNN	pinin, desmosome associated protein
301	0.0004858	1.6	244534_at	NA	NA
302	0.0004876	1.58	1555751_a_at	GEMIN7	gem (nuclear organelle) associated protein 7
303	0.0004879	1.87	203063_at	PPM1F	protein phosphatase 1F (PP2C domain containing)
304	0.0004973	1.16	205922_at	VNN2	vanin 2
305	0.0004975	1.23	202797_at	SACML1	SAC1 suppressor of actin mutations 1-like (yeast)
306	0.0005017	2.46	202826_at	SPINT1	serine peptidase inhibitor, Kunitz type 1
307	0.0005059	1.73	226073_at	TMEM218	transmembrane protein 218
308	0.0005077	1.55	238523_at	KLHL36	kelch-like 36 (Drosophila)
309	0.0005080	1.78	231843_at	DDX5S	DEAD (Asp-Glu-Ala-Asp) box polypeptide 55
310	0.0005094	2.26	219714_s_at	CACNA2D3	calcium channel, voltage-dependent, alpha 2/delta subunit 3
311	0.0005097	2.02	229202_at	NA	NA
312	0.0005114	3.54	290948_s_at	ZMYND8	zinc finger, MYND-type containing 8
313	0.0005132	1.64	218473_s_at	GLT2D1	glycosyltransferase 25 domain containing 1
314	0.0005172	1.71	65493_at	HEATR6	HEAT repeat containing 6
315	0.0005179	2.03	236194_at	NA	NA
316	0.0005179	2.28	225331_at	ORAI1	ORAI calcium release-activated calcium modulator 1
317	0.0005201	1.58	219311_at	TRAPPC2	trafficking protein complex 2
318	0.0005244	1.26	220036_s_at	LMBR1L	limb region 1 homolog (mouse)-like
319	0.0005321	4.22	217997_at	TM7SF3	transmembrane 7 superfamily member 3
320	0.0005335	1.26	211759_s_at	TBCB	tubulin folding cofactor B
321	0.0005359	1.4	242155_s_at	NA	NA
322	0.0005397	2	209377_s_at	HMGN3	high mobility group nucleosomal binding domain 3
323	0.0005401	2.12	230653_at	LOC100132218	hypothetical protein LOC100132218
324	0.0005504	1.77	224708_at	KIAA2013	KIAA2013
325	0.0005504	1.9	204000_at	GNBS	guanine nucleotide binding protein (G protein), beta 5
326	0.0005559	1.32	244346_at	NA	NA
327	0.0005568	1.9	225108_at	AGPS	alkylglycerone phosphate synthase
328	0.0005599	1.85	236626_at	NA	NA
329	0.0005615	1.85	228314_at	LRRRC8C	leucine rich repeat containing 8 family, member C
Table 1 Control vs Toxin corresponding P-value p<0.001 (Continued)

#	P-value	Gene Symbol	Description
330	0.0005636	ZNF763	zinc finger protein 763
331	0.0005650	FAM160B1	family with sequence similarity 160, member B1
332	0.0005679	NA	NA
333	0.0005686	C9orf164	chromosome 9 open reading frame 164
334	0.0005708	C9orf25	chromosome 9 open reading frame 25
335	0.0005724	C12orf47	chromosome 12 open reading frame 47
336	0.0005724	ALKBH8	alkB, alkylation repair homolog 8 (E. coli)
337	0.0005728	VKORC1	vitamin K epoxide reductase complex, subunit 1
338	0.0005746	DAPP1	dual adaptor of phosphotyrosine and 3-phosphoinositides
339	0.0005748	GRB2	growth factor receptor-bound protein 2
340	0.0005792	FBX09	F-box protein 9
341	0.0005793	ATR	ataxia telangiectasia and Rad3 related
342	0.0005805	PSMC2	proteasome (prosome, macropain) 265 subunit, ATPase, 2
343	0.0005806	NHP2L1	NH-P2 non-histone chromosome protein 2-like 1 (S. cerevisiae)
344	0.0005811	NA	NA
345	0.0005820	DTD1	D-tyrosyl-tRNA deacetylase 1 homolog (S. cerevisiae)
346	0.0005858	C12orf47	chromosome 12 open reading frame 47
347	0.0005877	SLC26A11	solute carrier family 26, member 11
348	0.0005893	TGLN2	trans-golgi network protein 2
349	0.0005911	SH3TC1	SH3 domain and tetratricopeptide repeats 1
350	0.0005950	NA	NA
351	0.0005992	C21orf70	chromosome 21 open reading frame 70
352	0.0006007	ERAP2	endoplasmic reticulum aminopeptidase 2
353	0.0006025	ABCD4	ATP-binding cassette, sub-family D (ALD), member 4
354	0.0006028	DBI	diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A binding protein)
355	0.0006039	CCDC69	coiled-coil domain containing 69
356	0.0006041	C2orf68	chromosome 2 open reading frame 68
357	0.0006052	TAF1	TGFBI-induced anti-apoptotic factor 1
358	0.0006058	LPCAT4	lysophosphatidylcholine acyltransferase 4
359	0.0006135	GSTK1	glutathione S-transferase kappa 1
360	0.0006135	GALNT6	UDP-N-acetyl-alpha-D-galactosaminopolypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6)
361	0.0006147	VEZF1	vascular endothelial zinc finger 1
362	0.0006161	C1orf85	chromosome 1 open reading frame 85
363	0.0006190	SULT1A2	sulfotransferase family, cytosolic, 1A, phenol-prefering, member 2
364	0.0006205	FLJ3046	hypothetical gene supported by AK057608
365	0.0006228	MICAL2	microtubule associated monoxygenase, calponin and LIM domain containing 2
366	0.0006241	C2orf64	chromosome 2 open reading frame 64
367	0.0006246	SULT1A1	sulfotransferase family, cytosolic, 1A, phenol-prefering, member 1
368	0.0006275	SULF2	sulfatase 2
369	0.0006277	GOPC	golgi associated PDZ and coiled-coil motif containing
370	0.0006282	USF2	upstream transcription factor 2, c-fos interacting
371	0.0006311	FIGNL1	fidgetin-like 1
372	0.0006313	MBP	myelin basic protein
373	0.0006322	FAM120C	family with sequence similarity 120C
374	0.0006326	LONP1	ion peptidase 1, mitochondrial
375	0.0006333	NA	NA

Chauncey et al. BMC Immunology 2012, 13:33
http://www.biomedcentral.com/1471-2172/13/33
Table 1 Control vs Toxin corresponding P-value p<0.001 (Continued)

s_at	0.0006351	1.44	222294	RAB27A, member RAS oncogene family
376	0.0006411	3.49	210986_s	tropomyosin 1 (alpha)
377	0.0006490	1.28	209932_s	deoxyuridine triphosphatase
378	0.0006513	1.28	227656_s	chromosome 6 open reading frame 70
379	0.0006514	1.63	228131_at	excision repair cross-complementing rodent repair deficiency, complementation group 1 (includes overlapping antisense sequence)
380	0.0006519	1.11	212848_s	chromosome 9 open reading frame 3
381	0.0006526	2.3	1552540_s	IQ motif containing D
382	0.0006530	2.09	239698_at	NA
383	0.0006586	1.62	1553102_a	coiled-coil domain containing 69
384	0.0006622	1.77	228542_at	MRS2 magnesium homeostasis factor homolog (S. cerevisiae)
385	0.0006623	1.37	208956_s	deoxyuridine triphosphatase
386	0.0006635	2.14	223528_s	METT11D1 methyltransferase 11 domain containing 1
387	0.0006636	1.38	201234_at	ILK integrin-linked kinase
388	0.0006637	1.57	228694_at	NA
389	0.0006659	1.36	225136_at	pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 2
390	0.0006723	1.55	212567_s	MAP4 microtubule-associated protein 4
391	0.0006726	1.52	219549_s	reticulin 3
392	0.0006730	1.89	232681_at	NA
393	0.0006742	2.21	219627_at	ZNF767 zinc finger family member 767
394	0.0006762	2.7	231449_at	NA
395	0.0006771	1.58	239035_at	MTHFR S,10-methyltetrahydrofolate reductase (NADPH)
396	0.0006773	1.39	205256_at	ZBTB39 zinc finger and BTB domain containing 39
397	0.0006786	1.51	205945_at	IL6R interleukin 6 receptor
398	0.0006802	4.26	230032_at	O-sialoglycoprotein endopeptidase-like 1
399	0.0006837	1.56	225888_at	chromosome 12 open reading frame 30
400	0.0006840	1.35	227767_at	casein kinase 1, gamma 3
401	0.0006879	1.76	205060_at	PARG poly (ADP-ribose) glycohydrolase
402	0.0006921	1.37	239730_at	DiGeorge syndrome critical region gene 14
403	0.0006924	1.58	201029_s	CD99 CD99 molecule
404	0.0006928	1.63	211709_s	CLEC11A C-type lectin domain family 11, member A
405	0.0006952	1.95	201985_at	KIAA0196 KIAA0196
406	0.0006964	2.17	204995_at	cyclin-dependent kinase 5, regulatory subunit 1 (p35)
407	0.0007029	1.52	217521_at	NA
408	0.0007045	1.35	1558184_s	zinc finger protein 17
409	0.0007099	1.24	218167_at	archaelysin family metallopeptidase 2
410	0.0007119	1.52	226712_at	SSR1 signal sequence receptor, alpha
411	0.0007129	1.22	238668_at	NA
412	0.0007138	1.16	221651_s	immunoglobulin kappa constant
413	0.0007143	1.85	64064_at	GIMAP5 GTPase, IMAP family member 5
414	0.0007160	1.24	234734_s	trinucleotide repeat containing 6A
415	0.0007165	1.34	213582_at	ATP11A ATPase, class VI, type 11A
416	0.0007176	1.34	226165_at	chromosome 8 open reading frame 59
417	0.0007186	2.61	205565_s	frataxin
418	0.0007225	1.21	220251_at	chromosome 1 open reading frame 107
419	0.0007231	2.16	225980_at	chromosome 14 open reading frame 43
420	0.0007247	1.69	238379_s	NA
421	0.0007275	1.63	213698_s	NA
Table 1 Control vs Toxin corresponding P-value $p<0.001$ (Continued)

P-value	Symbol	Gene Symbol	Description
0.0007266	1.72	1559034_at	SIRPB2 signal-regulatory protein beta 2
0.0007273	1.21	201053_s_at	PSMF1 proteasome (prosome, macropain) inhibitor subunit 1 (PI31)
0.0007318	1.1	40225_at	GAK cyclin G associated kinase
0.0007329	2.14	209729_at	GAS2L1 growth arrest-specific 2 like 1
0.0007344	1.55	221027_s_at	PLA2G12A phospholipase A2, group XIIA
0.0007348	1.28	209724_s_at	ZFP161 zinc finger protein 161 homolog (mouse)
0.0007380	1.4	214494_s_at	SPG7 spastic paraplegia 7 (pure and complicated autosomal recessive)
0.0007392	1.58	205131_x_at	CLEC11A C-type lectin domain family 11, member A
0.0007393	2.07	204019_s_at	SH3YL1 SH3 domain containing, Ysc84-like 1 (S. cerevisiae)
0.0007417	1.42	214861_at	JMJD2C jumonji domain containing 2C
0.0007421	1.69	242965_at	NA NA
0.0007485	1.99	228167_at	KLHL6 kelch-like 6 (Drosophila)
0.0007547	2.15	209269_s_at	SYK spleen tyrosine kinase
0.0007563	1.5	244663_at	NA NA
0.0007563	2.14	203802_x_at	NSUN5 NOL1/NOP2/Sun domain family, member 5
0.0007578	1.62	242108_at	NA NA
0.0007655	1.46	205632_s_at	PI3K1B phosphatidylinositol-4-phosphate 5-kinase, type I, beta
0.0007691	2.28	230925_at	APBB1IP amyloid beta (A4) precursor protein-binding, family B, member 1
0.0007712	2.99	212757_s_at	CAMK2G calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma
0.0007796	1.29	223716_s_at	ZRANB2 zinc finger, RAN-binding domain containing 2
0.0007811	1.3	206881_s_at	LILRA3 leukocyte immunoglobulin-like receptor, subfamily A (without TM domain), member 3
0.0007841	2.01	214861_at	NA NA
0.0007848	1.59	222622_at	PGP phosphoglycolate phosphatase
0.0007851	1.62	218231_at	NAGK N-acetylglucosamine kinase
0.0007878	1.79	1554544_a_at	MBP myelin basic protein
0.0007894	2.2	1554250_s_at	TRIM73 tripartite motif-containing 73
0.0007896	2.19	216199_s_at	MAP3K4 mitogen-activated protein kinase kinase 4
0.0007925	1.3	223249_at	TROVE2 TROVE domain family, member 2
0.0007966	1.65	226671_at	PRR12 proline rich 12
0.0007989	1.67	202534_x_at	DHFR dihydrofolate reductase
0.0007995	2.43	202369_s_at	TRAM2 translocation associated membrane protein 2
0.0008009	2.59	218112_at	MRPS34 mitochondrial ribosomal protein S34
0.0008035	1.48	230925_s_at	APBB1IP amyloid beta (A4) precursor protein-binding, family B, member 1
0.0008086	1.16	213027_at	TROVE2 TROVE domain family, member 2
0.0008124	2.99	1562289_at	NA NA
0.0008148	1.41	202615_at	GNAQ guanine nucleotide binding protein (G protein), q polypeptide
0.0008150	1.71	219151_s_at	RABL2B RAB, member of RAS oncogene family-like 2B
0.0008158	2.1	1559214_at	NA NA
0.0008161	1.84	203711_s_at	HIBCH 3-hydroxyisobutanyl-Coenzyme A hydrolase
0.0008187	1.87	233955_x_at	CXXCS CXXC finger 3
0.0008205	1.26	201804_x_at	TBCB tubulin folding cofactor B
0.0008207	1.44	211100_s_at	LILRA2 leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2
0.0008229	5.13	212757_s_at	CAMK2G calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma
0.0008252	1.76	214202_at	NA NA
Table 1 Control vs Toxin corresponding P-value \(p < 0.001 \) (Continued)

Gene ID	P-value	Fold Change	Description	
468	0.0008255	2.01	UBL4A ubiquitin-like 4A	
469	0.0008277	1.35	PRDX5 peroxiredoxin 5	
470	0.0008278	1.41	DBI diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A binding protein)	
471	0.0008279	1.53	KCME1 potassium channel modulatory factor 1	
472	0.0008283	1.29	ANXA11 annexin A11	
473	0.0008318	1.72	INPP5F inositol polyphosphate-5-phosphatase F	
474	0.0008344	1.9	LRP8 low density lipoprotein receptor-related protein 8, apolipoprotein e receptor	
475	0.0008347	1.42	INSI2 insulin induced gene 2	
476	0.0008361	1.54	EBPL emopamil binding protein-like	
477	0.0008444	3.9	TLR5 toll-like receptor 5	
478	0.0008451	1.44	ZNF512 zinc finger protein 512	
479	0.0008463	1.9	NA	
480	0.0008510	1.22	HTRA2 HtrA serine peptidase 2	
481	0.0008526	1.9	ERMP1 endoplasmic reticulum metalloproteinase 1	
482	0.0008590	1.42	RPUSD1 RNA pseudouridylate synthase domain containing 1	
483	0.0008602	1.89	DDB2 damage-specific DNA binding protein 2, 48kDa	
484	0.0008607	1.79	CXXC5 CXXC finger 5	
485	0.0008619	1.42	WDFY4 WDFY family member 4	
486	0.0008625	1.21	SMPD1 sphingomyelin phosphodiesterase 1, acid lysosomal	
487	0.0008648	2.16	MDH2 malate dehydrogenase 2, NAD (mitochondrial)	
488	0.0008654	1.57	ANAPC4 anaphase promoting complex subunit 4	
489	0.0008674	1.63	FLJ27365 FLJ27365 protein	
490	0.0008682	2.88	PHF15 PHD finger protein 15	
491	0.0008701	2.47	SYT11 synaptotagmin XI	
492	0.0008755	1.49	NOL5A nucleolar protein SA (56kDa with KRE/D repeat)	
493	0.0008868	5.04	IL8RB interleukin 8 receptor, beta	
494	0.0008925	1.33	HSPA1L heat shock 70kDa protein 1-like	
495	0.0008958	1.35	C16orf80 chromosome 16 open reading frame 80	
496	0.0008961	1.64	PPP2R5E protein phosphatase 2, regulatory subunit 8g@#%&£, epsilon isoform	
497	0.0008967	1.56	MOBKL1A MOB1, Mps One Binder kinase activator-like 1A (yeast)	
498	0.0009020	1.98	KIAA1609 KIAA1609	
499	0.0009056	1.82	SIGIRR single immunoglobulin and toll-interleukin 1 receptor (TIR) domain	
500	0.0009103	1.06	NA	
501	0.0009114	1.51	NA	
502	0.0009136	1.47	IL6R interleukin 6 receptor	
503	0.0009154	1.68	LOC285965 hypothetical protein LOC285965	
504	0.0009189	3.86	KBTBD11 kelch repeat and BTB (POZ) domain containing 11	
505	0.0009197	1.67	RER1 retention in endoplasmic reticulum 1 homolog (S. cerevisiae)	
506	0.0009228	1.32	C7orf42 chromosome 7 open reading frame 42	
507	0.0009245	1.91	KIAA1609 KIAA1609	
508	0.0009272	1.24	NA	
509	0.0009308	5.94	RGS14 regulator of G-protein signaling 14	
510	0.0009357	3.85	ZNF362 zinc finger protein 362	
511	0.0009370	1.35	NA	
512	0.0009378	1.73	PTCD3 Pentatricopeptide repeat domain 3	
513	0.0009417	1.63	PON2 paraoxonase 2	
ID	log2foldchange	Log2_P_value	Gene Symbol	Gene Description
------	----------------	--------------	-------------	------------------
514	1.44	0.0009436	SHCBP1	SHC SH2-domain binding protein 1
515	1.38	0.0009471	MLLT10	myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to 10
516	1.67	0.0009526	NLRP1	NLR family, pyrin domain containing 1
517	1.42	0.0009562	SRPK1	SFRS protein kinase 1
518	1.63	0.0009575	PRKACB	protein kinase, cAMP-dependent, catalytic, beta
519	1.43	0.0009592	NA	NA
520	1.25	0.0009614	FXYD5	FXYD domain containing ion transport regulator 5
521	1.45	0.0009626	CUTA	cutA divalent cation tolerance homolog (E. coli)
522	1.7	0.0009634	DBT	dihydrolipoamide branched chain transacylase E2
523	1.17	0.0009679	C7orf44	chromosome 7 open reading frame 44
524	1.14	0.0009703	NA	NA
525	1.7	0.0009717	RN1F70	ring finger protein 170
526	1.31	0.0009730	GPSM2	G-protein signaling regulator 2 (AGS3-like, C. elegans)
527	1.73	0.0009732	CTSD	cathepsin D
528	1.41	0.0009734	MGC27345	hypothetical protein MGC27345
529	1.29	0.0009738	POLR2K	polymerase (RNA) II (DNA directed) polypeptide K, 7.0kDa
530	1.58	0.0009760	NUFIP2	nuclear fragile X mental retardation protein interacting protein 2
531	2.26	0.0009764	MAP3K4	mitogen-activated protein kinase kinase kinase 4
532	1.93	0.0009776	CALM1	calmodulin 1 (phosphorylase kinase, delta)
533	2.65	0.0009778	GARNL4	GTPase activating Rap/RanGAP domain-like 4
534	1.48	0.0009805	NA	NA
535	1.84	0.0009828	NA	NA
536	1.58	0.0009900	LDHB	lactate dehydrogenase B
537	1.81	0.0009925	MBOAT1	membrane bound O-acyltransferase domain containing 1
538	-1.19	0.0009997	NA	NA
539	-1.6	0.0009983	B9D2	B9 protein domain 2
540	-1.71	0.0009949	KIAA0999	KIAA0999 protein
541	-1.23	0.0009891	SSBP1	single-stranded DNA binding protein 1
542	-1.47	0.0009868	TME167A	transmembrane protein 167A
543	-1.75	0.0009825	IFIT5	interferon-induced protein with tetraticopeptide repeats 5
544	-1.67	0.0009805	DDX60	DEAD (Asp-Glu-Ala-Asp) box polypeptide 60
545	-1.52	0.0009758	HUS1	HUS1 checkpoint homolog (S. pombe)
546	-2.4	0.0009746	ETNK1	ethanolamine kinase 1
547	-1.24	0.0009745	PPP1R12B	protein phosphatase 1, regulatory (inhibitor) subunit 12B
548	-1.26	0.0009737	NA	NA
549	-1.33	0.0009681	RAB27A	RAB27A, member RAS oncogene family
550	-2.54	0.0009661	RASAL2	RAS protein activator like 2
551	-1.49	0.0009592	FCR2C	Fc fragment of IgG, low affinity IIc, receptor for (CD32)
552	-3.72	0.0009568	VRK2	vaccinia related kinase 2
553	-1.22	0.0009560	LOC338809	hypothetical protein LOC338809
554	-2.66	0.0009506	CCN5	chemokine (C-C motif) receptor 5
555	-1.47	0.0009500	UBX7	UBX domain protein 7
556	-1.25	0.0009443	NA	NA
557	-1.21	0.0009406	KIAA1632	KIAA1632
558	-1.12	0.0009366	COL1	collagen
559	-2.95	0.0009338	LIPA	lipase A, lysosomal acid, cholesterol esterase
Gene Symbol	P-value	Fold Change	Description	
-------------	---------	-------------	-------------	
MYST4	0.0009309	-1.3	MYST histone acetyltransferase (monocytic leukemia) 4	
HPSE	0.0009278	-2.58	heparanase	
2-Sep	0.0009220	-1.58	septin 2	
CNOT4	0.0009134	-1.08	CCR4-NOT transcription complex, subunit 4	
SDCCAG8	0.0009077	-1.25	serologically defined colon cancer antigen 8	
ITGA6	0.0009071	-1.7	integrin, alpha 6	
MYST4	0.0009063	-3.06	MYST histone acetyltransferase (monocytic leukemia) 4	
GSTZ1	0.0009031	-1.27	glutathione transferase zeta 1	
DDR1	0.0008974	-1.42	discoidin domain receptor tyrosine kinase 1	
FANCc	0.0008959	-1.19	Fanconi anemia, complementation group C	
EML4	0.0008945	-1.16	echinoderm microtubule associated protein like 4	
RAB28	0.0008922	-1.32	RAB28, member RAS oncogene family	
DHR9S	0.0008910	-3.14	dehydrogenase/reductase (SDR family) member 9	
N4BP1	0.0008877	-1.67	NEDD4 binding protein 1	
U2AF1	0.0008870	-1.29	U2 small nuclear RNA auxiliary factor 1	
GSTZ1	0.0008861	-1.35	glutathione transferase zeta 1	
SP2	0.0008869	-1.32	Sp2 transcription factor	
ZNF1X	0.0008859	-1.87	zinc finger, NF1-type containing 1	
SIPATL2	0.0008850	-1.13	signal-induced proliferation-associated 1 like 2	
RGR	0.0008857	-1.28	retinoid G protein coupled receptor	
KPN4A	0.0008853	-1.22	karyopherin alpha 4 (importin alpha 3)	
GMF1	0.0008843	-1.07	G elongation factor, mitochondrial 1	
ARFGAP2	0.0008840	-1.33	ADP-ribosylation factor GTPase activating protein 2	
NA	0.0008835	-1.24	NA	
SEC14L1	0.0008834	-1.49	SEC14-like 1 (S. cerevisiae)	
ARL17	0.0008824	-1.34	ADP-ribosylation factor-like 17	
NA	0.0008819	-1.33	NA	
EMP1	0.0008816	-2.91	epithelial membrane protein 1	
YPEL5	0.0008817	-1.42	yippee-like 5 (Drosophila)	
SFQ	0.0008814	-1.3	splicing factor proline/glutamine-rich (polypyrimidine tract binding protein associated)	
THEM4	0.0008810	-1.35	thioesterase superfamily member 4	
CDC42S1	0.0008803	-1.53	CDC42 small effector 1	
SEH1L	0.0007993	-1.38	SEH1-like (S. cerevisiae)	
NA	0.0007951	-1.4	NA	
TRIM25	0.0007921	-3.08	tripartite motif-containing 25	
ACTR2	0.0007824	-1.55	ARP2 actin-related protein 2 homolog (yeast)	
PCTIK1	0.0007777	-1.32	PCTAIRE protein kinase 1	
KAT5	0.0007732	-1.36	K(lysine) acetyltransferase 5	
NAPA	0.0007729	-1.47	N-ethylmaleimide-sensitive factor attachment protein, alpha	
DNAJC21	0.0007690	-1.16	DnaJ (Hsp40) homolog, subfamily C, member 21	
CACNA1G	0.0007673	-1.31	calcium channel, voltage-dependent, T type, alpha 1G subunit	
SYNCRIP	0.0007657	-1.53	synaptotagmin binding, cytoplasmic RNA interacting protein	
CD164	0.0007625	-1.85	CD164 molecule, sialomucin	
SH3GLB1	0.0007608	-1.45	SH3-domain GRB2-like endophilin B1	
NA	0.0007426	-1.25	NA	
XRN1	0.0007405	-2.01	5'->3' exoribonuclease 1	
Table 1 Control vs Toxin corresponding P-value p<0.001 (Continued)

P-value	log2FoldChange	probe_set_id	description
0.00007371	-1.41	236961_at	NA
0.00007346	-1.14	204080_at	TOE1 target of EGR1, member 1 (nuclear)
0.00007341	-1.29	243852_at	LUC7L2 LUC7-like 2 (S. cerevisiae)
0.00007227	-1.29	210317_s_at	YWAHE tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide
0.00007183	-1.14	209284_s_at	C3orf63 chromosome 3 open reading frame 63
0.00007193	-1.29	243852_at	LUC7L2 LUC7-like 2 (S. cerevisiae)
0.00007184	-1.09	202814_s_at	HEXIM1 hexamethylene bis-acetamide inducible 1
0.00006943	-1.35	226710_at	C8orf82 chromosome 8 open reading frame 82
0.00006932	-3.2	209969_s_at	STAT1 signal transducer and activator of transcription 1, 91kDa
0.00006882	-1.56	225242_s_at	CCDC80 coiled-coil domain containing 80
0.00006875	-1.5	214121_s_at	PDIM7 PDZ and LIM domain 7 (enigma)
0.00006868	-1.41	203916_at	N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 2
0.00006826	-1.32	208901_s_at	TOP1 topoisomerase (DNA) I
0.00006769	-2.95	200028_s_at	MERTK c-mer proto-oncogene tyrosine kinase
0.00006749	-1.35	205724_at	PKP1 plakophilin 1 (ectodermal dysplasia/skin fragility syndrome)
0.00006737	-1.23	228121_at	NA
0.00006701	-1.04	226928_s_at	SLC25A37 solute carrier family 25, member 37
0.00006670	-1.37	1553301_at	DIP2A DIP2 disco-interacting protein 2 homolog A (Drosophila)
0.00006616	-1.27	1566301_at	PPPR11 protein phosphatase 1, regulatory (inhibitor) subunit 11
0.00006570	-1.46	234519_at	NOBOX NOBOX oogenesis homeobox
0.00006553	-1.24	218520_at	TBK1 TANK-binding kinase 1
0.00006552	-1.55	201878_at	ARIH1 ariadne homolog, ubiquitin-conjugating enzyme E2 binding protein, 1 (Drosophila)
0.00006495	-1.3	1564131_at	NA
0.00006472	-1.49	209102_s_at	HBP1 HMG-box transcription factor 1
0.00006450	-1.18	238586_at	LOC731489 hypothetical protein LOC731489
0.00006425	-1.03	216231_s_at	B2M beta-2-microglobulin
0.00006398	-1.79	1552772_at	CLEC4D C-type lectin domain family 4, member D
0.00006384	-1.42	201586_s_at	SFPQ splicing factor proline/glutamine-rich (polypyrimidine tract binding protein associated)
0.00006373	-1.74	41644_at	SASH1 SAM and SH3 domain containing 1
0.00006346	-1.11	216652_s_at	DR1 down-regulator of transcription 1, TBP-binding (negative cofactor 2)
0.00006313	-1.23	212436_at	TRIM33 tripartite motif-containing 33
0.00006284	-1.57	212264_s_at	WAPAL wings apart-like homolog (Drosophila)
0.00006259	-1.2	226481_at	VPRBP Vpr (HIV-1) binding protein
0.00006104	-1.35	217490_at	NA
0.00006091	-1.29	1557463_at	NA
0.00005929	-1.35	238273_at	PL-5283 PL-5283 protein
0.00005927	-1.77	203840_at	BLZF1 basic leucine zipper nuclear factor 1
0.00005896	-1.17	237604_at	LOC415056 hypothetical gene LOC415056
0.00005883	-1.9	222881_at	HPSE hepanase
0.00005855	-1.25	220634_at	TBPX4 T-box 4
0.00005853	-1.3	200669_s_at	UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, yeast)
0.00005801	-1.05	232017_at	TJP2 tight junction protein 2 (zona occludens 2)
0.00005772	-1.35	213918_s_at	NIPBL Nipped-B homolog (Drosophila)
0.00005770	-1.62	215357_s_at	POLDIP3 polymerase (DNA-directed), delta interacting protein 3
0.00005750	-1.4	1561354_at	NA

Chauncey et al. BMC Immunology 2012, 13:33
http://www.biomedcentral.com/1471-2172/13/33
Table 1 Control vs Toxin corresponding P-value p<0.001 (Continued)

P-value	Symbol	Gene Name
0.0005678	654	206516_at AMH
0.0005652	655	211030_s_at SLC6A6
0.0005634	656	222651_s_at TRPS1
0.0005618	657	57703_at SENPS
0.0005604	658	211372_s_at IL1R2
0.0005584	659	156724_at ORSH1
0.0005488	660	205003_at DOCK4
0.0005371	661	222262_s_at ETNK1
0.0005358	662	201684_s_at TOX4
0.0005357	663	206011_at CASP1
0.0005349	664	211505_s_at STAU1
0.0005342	665	1554049_s_at WDR42A
0.0005321	666	225978_at FAM80B
0.0005228	667	215056_s_at NA
0.0005162	668	202066_at PPFIA1
0.0005087	669	226128_at NA
0.0005005	670	215056_s_at NA
0.0004997	671	217847_s_at THRAP3
0.0004992	672	229845_at MAPKAP1
0.0004955	673	211806_s_at KCN15
0.0004947	674	217503_s_at NA
0.0004946	675	221147_s_at WWOX
0.0004897	676	1552684_a_at SENP8
0.0004707	677	206251_s_at AVPR1A
0.0004609	678	223546_s_at LUC7L
0.0004595	679	208576_s_at HIST1H3B
0.0004582	680	202684_s_at RNMT
0.0004567	681	201378_s_at UBP2L
0.0004553	682	202178_s_at PRKCI
0.0004545	683	1555139_a_at OTUD7B
0.0004543	684	244595_s_at NA
0.0004511	685	210592_s_at 04/01/12
0.0004444	686	1554327_s_at CANT1
0.0004435	687	223430_at SNF1LK2
0.0004430	688	223437_at CPSF3L
0.0004418	689	202230_s_at CHERP
0.0004358	690	211782_s_at IDS
0.0004288	691	208869_s_at GABARAP1
0.0004258	692	1554646_at OSBPL1A
0.0004189	693	224410_s_at LMBR1
0.0004130	694	201698_s_at SFRS9
0.0004109	695	218578_s_at CDC73
0.0003904	696	1566456_s_at NA
0.0003884	697	226026_at DIRC2
0.0003884	698	222035_s_at PAPOLA
0.0003882	699	240313_at DMRTB1

Anti-Mullerian hormone
TRPS1, trichorhinophalangeal syndrome I
ORSI-H, olfactory receptor, family S, subfamily H, member 1
DOCK4, dedicator of cytokinesis 4
ETNK1, ethanolamine kinase 1
TOX high mobility group box family member 4
CASP1, caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase)

Chauncey et al. BMC Immunology 2012, 13:33
http://www.biomedcentral.com/1471-2172/13/33
Table 1 Control vs Toxin corresponding P-value p<0.001 (Continued)

Gene ID	P-value	Log2 Fold Change	Description
700	0.0003880	-1.65	ST8SJ_A4 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4
701	0.0003868	-2.87	NA
702	0.0003850	-1.43	NXF2 nuclear RNA export factor 2
703	0.0003839	-1.93	CASP1 caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta,
			convertase)
704	0.0003823	-1.24	LYRM2 LYR motif containing 2
705	0.0003803	-1.63	UBAP2L ubiquitin associated protein 2-like
706	0.0003785	-1.4	TYMP thymidine phosphorylase
707	0.0003695	-1.53	ATXN3 ataxin 3
708	0.0003684	-2.46	SLC23A2 solute carrier family 23 (nucleobase transporters), member 2
709	0.0003661	-1.25	PPAT phosphoribosyl pyrophosphate amidotransferase
710	0.0003575	-1.29	BMP7 bone morphogenetic protein 7
711	0.0003529	-3.5	GK3P glycerol kinase 3 pseudogene
712	0.0003527	-1.22	TOM1 target of myb1 (chicken)
713	0.0003455	-1.18	PSMD1 proteasome (prosome, macropain) 265 subunit, non-ATPase, 1
714	0.0003409	-3.97	LDLR low density lipoprotein receptor
715	0.0003389	-1.07	KTN1 kinectin 1 (kinesin receptor)
716	0.0003355	-1.77	FAM120AOS family with sequence similarity 120A opposite strand
717	0.0003300	-1.17	PTBP1 polyripyridine tract binding protein 1
718	0.0003300	-1.38	EIF3J eukaryotic translation initiation factor 3, subunit J
719	0.0003231	-1.15	NHLS2 NHS-like 2
720	0.0003229	-1.41	FAS Fas (TNF receptor superfamily, member 6)
721	0.0003210	-2	TOR1B torsin family 1, member B (torsin B)
722	0.0003206	-1.3	SORBS2 sorbin and SH3 domain containing 2
723	0.0003169	-1.19	VAPB VAMP (vesicle-associated membrane protein)-associated protein B and C
724	0.0003084	-1.34	MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2
725	0.0003068	-1.11	U18309_at NA
726	0.0002955	-1.14	L24F2 U2 small nuclear RNA auxiliary factor 2
727	0.0002940	-1.11	PIP4K2A phosphatidylinositol-4-phosphate 4-kinase, type II, alpha
728	0.0002921	-1.28	MXRCC5 X-ray repair complementing defective repair in Chinese hamster cells
729	0.0002910	-1.24	PEX16 peroxisomal biogenesis factor 16
730	0.0002863	-1.21	LOC541469 hypothetical protein LOC541469
731	0.0002857	-2.02	ZCCHC2 zinc finger, CCHC domain containing 2
732	0.0002808	-1.2	KBTBD4 kelch repeat and BTB (POZ) domain containing 4
733	0.0002799	-1.16	FANCDD2 Fanconi anemia, complementation group D2
734	0.0002764	-1.34	SUGT1P suppressor of G2 allele of SKP1 pseudogene (S. cerevisiae)
735	0.0002736	-1.53	FGR1OP2 FGR1 oncogene partner 2
736	0.0002703	-1.66	SASH1 SAM and SH3 domain containing 1
737	0.0002699	-1.87	SFT2D2 SFT2 domain containing 2
738	0.0002674	-1.26	FOXD1 forkhead box D1
739	0.0002668	-1.41	AVPR2 arginine vasopressin receptor 2
740	0.0002632	-1.21	KNSL2 threonine synthase-like 2 (S. cerevisiae)
741	0.0002619	-1.76	RBBM33 RNA binding motif protein 33
742	0.0002577	-1.25	NDUF51 NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75KDa (NADH-
			coenzyme Q reductase)
743	0.0002569	-3.7	SIGLEC9 sialic acid binding Ig-like lectin 9
744	0.0002547	-1.33	CYBB cytochrome b-2,45, beta polypeptide
745	0.0002484	-1.44	CYBB cytochrome b-2,45, beta polypeptide
Table 1 Control vs Toxin corresponding P-value p<0.001 (Continued)

Gene ID	Gene Symbol	Description	Fold Change	P-value
746	220012_at	ERO1LB	-1.33	0.0002482
747	236106_at	NA	-2.41	0.0002373
748	242834_at	NA	-1.34	0.0002362
749	220498_at	ACTL7B	-1.2	0.0002316
750	240873_s_at	DAB2	-1.44	0.0002303
751	221471_at	SERINC3	-1.19	0.0002296
752	213236_at	SASH1	-1.74	0.0002267
753	204098_s_at	NA	-1.62	0.0002262
754	239372_at	NA	-1.2	0.0002220
755	240079_at	ZNF81	-1.35	0.0002182
756	205227_at	IL1RAP	-1.65	0.0002197
757	223751_x_at	TLR10	-1.5	0.0002197
758	1553677_a_at	TIPRL	-1.35	0.0002197
759	AFFX-HUMISGF3A/M97935_5_at	STAT1	-1.44	0.0002197
760	202240_at	PLK1	-1.11	0.0002197
761	1556281_at	NA	-1.28	0.0002197
762	222989_s_at	UBQLN1	-1.53	0.0002197
763	204682_at	LTBP2	-1.16	0.0002197
764	225830_at	PDZD8	-1.37	0.0002197
765	229208_at	CEP27	-1.34	0.0002197
766	202211_at	ARFGAP3	-1.38	0.0002197
767	208696_at	CCT5	-1.21	0.0002197
768	219207_at	EDC3	-1.71	0.0002197
769	221348_s_at	WHSC1L1	-1.31	0.0002197
770	211781_x_at	NA	-1.59	0.0002197
771	226037_s_at	TAF9B	-1.36	0.0002197
772	200901_s_at	M6PR	-1.14	0.0002197
773	213173_s_at	PCNX	-1.67	0.0002197
774	206038_s_at	NR2C2	-2.06	0.0002197
775	225397_at	C1Sorf57	-1.24	0.0002197
776	211367_s_at	CASP1	-2.14	0.0002197
777	222810_s_at	RASAL2	-1.66	0.0002197
778	231718_s_at	SLU7	-1.23	0.0002197
779	223905_at	CCDC135	-1.32	0.0002197
780	211672_s_at	ARPC4	-1.28	0.0002197
781	200828_s_at	ZNF207	-1.38	0.0002197
782	244211_at	NA	-1.29	0.0002197
783	205403_at	IL1R2	-1.22	0.0002197
784	209970_x_at	CASP1	-1.83	0.0002197
785	217502_at	IFIT2	-6.35	0.0002197
786	237867_s_at	PID1	-2.07	0.0002197
787	218516_s_at	IMPAD1	-1.26	0.0002197
788	226312_at	RICTOR	-1.64	0.0002197
789	210940_s_at	GRM1	-1.2	0.0002197
over-expression of RGS14, thereby inhibiting G-protein mediated signaling required for actin-based motility.

RGS14 expression is down-regulated during the maturation of monocytes to dendritic cells [24] and over-expression of this G-protein regulator would be expected to block monocyte maturation. RGS14 levels are also known to decrease in dendritic cells exposed to *Leishmania major* or *Toxoplasma gondii*, suggesting that RGS14 down-regulation may be an important step in a normal immune response, and up-regulation of RGS14 by LT could be contributing to LT’s immunosuppressive effects [25].

Three chemokine receptors were also altered after LT treatment, suggesting that LT may be inducing functional defects in monocyte response signaling. IL-8 receptor beta (CXCR2) was up-regulated after LT treatment (Table 2). CXCR2 transduces signaling through a G-protein activated second messenger system. This receptor is important for monocyte transendothelial migration, and up-regulation of CXCR2 could serve to enhance the delivery of monocytes to tissues. Anthrax spores must be phagocytosed by macrophages in order to germinate into viable bacteria. An increase in the macrophage pool may aid in a reservoir for increased germination of viable bacteria. IL-1 receptor type II (IL-1R2), was found to be markedly down-regulated. IL-1R2 is a decoy receptor for IL-1 that functions either at the cell surface or in a soluble form [26]. The decreased expression of the decoy receptor would presumably increase IL-1a levels and increase the febrile response of the host potentially at least in part explaining the high fever that commonly accompanies systemic anthrax [27].

CCR5 is a receptor for the monocyte chemokines

Table 1	Table 1 Control vs Toxin corresponding P-value p<0.001 (Continued)				
790	9.02E-005	-1.36	1554556_a_at	ATP11B	ATPase, class VI, type 11B
791	8.89E-005	-1.14	226735_at	TAPT1	transmembrane anterior posterior transformation 1
792	8.70E-005	-3.84	213006_at	CEBPD	CCAAT/enhancer binding protein (C/EBP), delta
793	8.35E-005	-1.31	207787_at	KRT33B	keratin 33B
794	8.34E-005	-1.29	207410_s_at	TLX2	T-cell leukemia homeobox 2
795	8.21E-005	-1.6	223596_at	SLC12A6	solute carrier family 12 (potassium/chloride transporters), member 6
796	7.98E-005	-1.23	231859_at	C14orf132	chromosome 14 open reading frame 132
797	7.81E-005	-1.25	228277_at	FBX19	F-box and leucine-rich repeat protein 19
798	7.75E-005	-1.35	210470_x_at	NONO	non-POU domain containing, octamer-binding
799	7.52E-005	-1.29	222432_s_at	CCDC47	coiled-coil domain containing 47
800	7.19E-005	-1.8	238496_at	NA	NA
801	7.11E-005	-1.38	208698_s_at	NONO	non-POU domain containing, octamer-binding
802	7.08E-005	-4.66	203946_s_at	ARG2	arginase, type II
803	7.03E-005	-1.17	1559552_x_at	LOC100132923	similar to hCG1993470
804	6.19E-005	-2.35	220104_at	ZC3HAV1	zinc finger CCCH-type, antiviral 1
805	5.57E-005	-2.43	203595_s_at	IFIT5	interferon-induced protein with tetratricopeptide repeats 5
806	5.53E-005	-1.33	1569859_at	NA	NA
807	5.31E-005	-1.5	224359_s_at	HOOK3	hook homolog 3 (Drosophila)
808	4.19E-005	-2.51	205921_s_at	SLC6A6	solute carrier family 6 (neurotransmitter transporter, taurine), member 6
809	3.18E-005	-2.18	205749_at	CYP1A1	cytochrome P450, family 1, subfamily A, polypeptide 1
810	2.93E-005	-1.38	1566136_at	NA	NA
811	2.02E-005	-1.51	210992_x_at	FCG2C	Fc fragment of IgG, low affinity IIc, receptor for (CD32)
812	1.61E-005	-1.22	207801_s_at	RNF10	ring finger protein 10
813	1.32E-005	-2.03	222816_s_at	ZCCHC2	zinc finger, CCHC domain containing 2
814	1.29E-005	-1.25	211884_s_at	CIITA	class II, major histocompatibility complex, transactivator
815	8.60E-006	-1.68	212664_at	TUBB4	tubulin, beta 4
816	4.60E-006	-1.16	212081_s_at	BAT2	HLA-B associated transcript 2
817	3.60E-006	-1.21	1554177_s_at	ATP5S	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit s (factor B)
818	7.00E-007	-1.82	224783_at	FAM100B	family with sequence similarity 100, member B
819	6.00E-007	-1.57	208840_s_at	G3BP2	GTPase activating protein (SH3 domain) binding protein 2
820	4.00E-007	-1.59	206717_at	MYH8	myosin, heavy chain 8, skeletal muscle, perinatal
RANTES and MIP. The down-regulation of CCR5 by LT could reflect an inability of toxin-treated monocytes to differentiate into macrophages [28] (Table 2). During the early stages of infection, macrophages play a critical role in assisting *B. anthracis* pathogenesis by providing a place for bacteria germination from their spore form to viable bacteria. An increase in monocyte trafficking to allow an increase in spore uptake and subsequent germination would prove beneficial for *B. anthracis*. During later stages of infection, after release of viable bacteria, limiting monocyte differentiation to macrophages would assist in preventing clearance of viable bacteria.

In addition to an alteration in the chemokine response by LT, an additional enzyme, heparanase (HPSE), was found to be decreased in LT-treated human monocytes. This enzyme is an endoglycosidase that degrades heparin sulfate, resulting in disassembly of extracellular barriers required for cell migration [29]. Heparanase has also been postulated to play a role in inflammation [30] and our results showed a 2.6 fold decrease in heparanase gene expression (Table 2). One study has concluded that an *in vivo* siRNA against heparanase, along with an inhibitor of its enzymatic activity, results in a diminished inflammatory response [31]. Thus LT- mediated inhibition of heparanase expression could also contribute to the inhibition of the host immune response during an anthrax infection.

Table 2 Predicted effects of LT on monocyte function.

Gene	Microarray	Effects
RGS-14	5.61	Blockade of monocyte maturation to dendritic cells, inhibition of chemotaxis
CXCR2	5.04	Increased monocyte transendothelial migration into tissues
HPSE	-2.58	Diminished inflammatory response
CCR5	-2.33	Reduced responsiveness to the inflammatory mediators RANTES, MIP1 beta
ILIR2	-12.5	Increased IL1 alpha responsiveness and increased fever

1 Calculated fold changes compared to mock treated samples.

Figure 3 Supervised microarray analysis. A.) Hierarchical cluster analysis showing the 820 probe sets which were differentially expressed at the 0.001 significance level. The arrays clustering on the left are from control samples, whereas the cluster on the right shows the LT treated samples. Up-regulated genes are shown in red and down-regulated genes are shown in blue. B.) Biocarta pathway analysis showing the pathways most significantly affected by LT, along with the number of genes and p-value within each pathway that were affected. C.) Correlation of genes altered after treatment with anthrax LT using microarray analysis versus RT-PCR. Spearman correlation coefficient = 0.885.
An external verification method using quantitative real-time PCR was utilized to confirm the microarray data. The eight genes corresponding to RGS14, IL8RB, TLR5, PPM1H, CD47, SYK, CCR5, and IL1R2 were chosen for microarray confirmation in monocytes. CCR5 and IL1R2 were confirmed to be down-regulated at 4 h after LT treatment, reinforcing the microarray data, while the other six genes were up-regulated, again confirming the microarray data (Table 3). A correlation curve was plotted (Figure 3C) and analyzed, showing a linear relationship between the microarray results and RT-PCR with a correlation coefficient of 0.885. Results were performed in duplicates and fold values were normalized to GAPDH. To exclude the possibility the lymphocyte contamination might be contributing to our microarray findings, a higher purity monocyte population (98% purity), obtained by adherence followed by washing off non-adherent lymphocytes, was treated with 500 ng/mL LT for 4 h and gene expression was assessed using real-time PCR. These experiments verified 3 genes to be increased after LT treatment: RGS14, TLR5, and CD47 (1.21-1.70), as observed by the microarray of suspended cells. These findings suggest that the changes in messenger RNA observed are primarily contributed by monocytes, but we cannot entirely exclude a contribution by lymphocytes.

Conclusions
Our investigations show human peripheral monocytes are susceptible to the actions of anthrax LT and do not undergo LT-mediated cytotoxicity after a four hour toxin treatment. We also find that LT induces changes in several genes involved in previously unidentified pathways including the TLR pathway, IFN alpha pathway, and G-Protein family signaling pathways. The identification of several previously unappreciated gene products including RGS14, IL8 receptor beta, CD47, TNF ligand, IL-16, Syk, CCR5, and IL-1 receptor II adds to our understanding of how LT impacts the immune response. Our pathway analysis reveals that anthrax LT targets multiple normal immune-regulatory pathways that would be expected to protect the host against anthrax infection. The increase in RGS14 levels and decrease in CCR5, along with IL-1R2, would likely impair monocyte functions and help to facilitate bacteria survival. B. anthracis maintains a selective advantage by impairing the host immune responses, thereby allowing for invasion and dissemination of the highly fatal bacilli. Our findings encourage further investigations into how these pathways converge functionally to impair normal monocyte function, along with providing new insights into the regulation of the host defense system and inflammation.

Table 3 q-RTPCR confirmation of LT-induced genes.1

Probe	Microarray	q-RT-PCR	Gene name	Primer sequence
38290_at	5.61	7.40	RGS14	CAGGGATCTGTTAGAAGGCAGG
			RGS14-R	AGGTGATCCTGTTTCCAGC
207008_at	5.04	7.50	IL8RB	GTCTAAACAGCTCTGACTCACCAC
			IL8RB-R	TTAACCTCCGACTGTCGTCGC
210166_at	3.90	2.24	TLR5	TTTTCAAGAGCGGCGGCGCGG
			TLR5-R	AGCCGAGATGGTGTCAGCTG
212686_at	2.65	3.85	PPM1H	GAGTACAGAGAAAGGAGAGTTCG
			PPM1H-R	TCAATATGTCGCTTACCCGAC
226016_at	2.38	1.60	CD47	TTTGCTATCTCCTGTTCTGGG
			CD47-R	TGGGAGCAAAGAATGGGCTC
209269_at	2.15	1.60	SYK	CAAAGTTCAGCAAAAGGCG
			SYK-R	CATCCGCTTCCCTTCCTCAAC
206991_at	-2.66	-2.33	CCR5	CCAAAACGACATGCGCAAGCG
			CCR5-R	ACTGGGACGTGCGTCAAGCC
205403_at	-1.25	-2.80	IL1R2	TGGCAGCTACTGCTGACTACT
			IL1R2-R	TTGGGATATGAGATGAAACG

1 Calculated fold changes compared to mock treated samples.
20 min., centrifuged 1700 × g for 25 min at RT, no brake over Ficoll, re-suspended in 10 mL RPMI (Mediatech) complete media, centrifuged at 250 × g for 9 min. to remove platelets, and re-suspended to 7-9 × 10^5 cells/mL in RPMI. Monocytes were inverted at 37°C with 500 ng/mL LF and 500 ng/mL PA for 4 h. Additional qRT-PCR experiments were performed using higher monocyte purities (98%), obtained by first using a negative selection antibody cocktail (Stem Cell Technologies) isolation technique, followed by plastic adherence for 4 h, as described previously [32].

Toxin purification

LF and PA were purified as previously described [33]. Briefly, *Bacillus anthracis* culture media was filtered through a 0.22 uM filter, followed by diethylaminoethyl cellulose (DEAE) anion exchange chromatography. The toxins were then subjected to gel filtration and hydrophobic interaction fast protein liquid chromatography (FPLC) and highly purified toxin components were confirmed by Coomassie Blue staining.

Monocyte purity and apoptosis analysis

Monocytes were inverted at 37°C with 500 ng/mL LF and 500 ng/mL PA for 4 h, stained with CD-14 Pac Blue (BD Biosciences), Annexin-V-Fluorescein and propidium iodide (Roche). The cell population was gated first for CD14-Pac-Blue followed by analysis of the relative amount of Annexin (FL1) and PI (FL2) using flow cytometry FACScan (BD), and analyzed by FCS Express (De Novo).

MEK cleavage

Purified monocytes were incubated at 37°C with 500 ng/mL lethal toxin for 4 h. Cells were lysed, run on a 10% SDS-PAGE gel (Pierce), transferred to a PVDF membrane (Bio-rad) and probed for MEK1 (Upstate). Membranes were then stripped and probed for MEK3 (Santa Cruz). β-actin (Sigma) was used to check consistent loading amounts.

RNA isolation

Purified monocytes from 4 healthy volunteers were incubated at 37°C with media alone or with 500 ng/mL LT for 4 h. Total RNA was collected using RNAeasy mini kit (Qiagen) and RNA quantity and quality was assessed using NanoDrop (Thermo Scientific) technology.

Microarray procedure

100 ng total RNA was labeled using Affymetrix GeneChip® 3’ IVT Express Kit for each replicate. Amplified labeled RNA was purified, fragmented, then hybridized for 16 h on Affymetrix GeneChips® (HG U133 plus 2.0) representing approximately 22,000 well-characterized human genes. Arrays were washed using Affymetrix GeneChip® Fluidics Station FS450 and scanned using GeneChip® Scanner 3000 7 G.

Microarray analysis

Low-level analysis was performed using dChipmodeled-based expression matrix (dChip 2007 (DNA-Chip Analyzer), Build date: Jan 4, 2008). Unsupervised analysis - probes sets whose hybridization signal intensity exhibited a coefficient of variation of greater than 0.5 were analyzed by unsupervised hierarchical cluster analysis using algorithms implemented in dChip. Supervised analysis - significant probe sets between the treatment groups were identified using a paired t-test (by donor) at a significance threshold of p < 0.001. Leave-one-out-cross-validation using 4 prediction models was used to test the ability of probe sets significant at p < 0.001 to distinguish between the treatment groups. Microarray analyses were done using dCHIP and BRB-ArrayTools by Richard Simon (http://linus.nci.nih.gov/BRB-ArrayTools.html). The microarray data for this study was deposited in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) [30] with accession numbersGSM848717 through GSM 848724. The microarray data is also available in a series with accession number GSE34407.

Quantitative real time-PCR (qRT-PCR)

RNA was collected using RNAeasy mini kit (Qiagen), quantitated using a Nanodrop system (Thermo Scientific), and 233 μg total RNA was used for cDNA synthesis using SuperScript III First-Strand Synthesis (Invitrogen). cDNA was quantitated using SYBR Green JumpStart TaqReady-Mix (Sigma) and 10 mM forward and 10 mM reverse primers were used for each indicated reaction. Primers used were as follows ACTB-F TCACCCGACGCGCCGT,ACTB-R TAATGTCAAGCAGATTCCC,GAPDH-F GGTCGGAGTCAACG, and GAPDH-R AGAGTTAAAA GCAGCCCTTGTT. All other primers are listed in Table 2. Reactions were run on the MJR Opticon Continuous Fluorescence detector (Bio-Rad) and analyzed with Opticon Monitor Software 1.08 (Bio-Rad).

Authors’ contributions

KC performed the experiments, analyzed data, interpreted study, drafted, and wrote the manuscript. CL performed the gene expression profiling, biostatistical analysis, and helped design the study. SZ participated in the study design and interpreted the study, as well as edited the manuscript. HB participated in the design and analyses of the study. CQ supplied the purified toxin and assisted in data interpretation. FS conceived the study and interpretation of the study, as well as edited the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Dr. Lyle Moldawer for his guidance and assistance in the flow cytometry analysis. The study was supported by the National Institutes of Health RO1AI064891. Publication of this article was funded in part by the University of Florida Open-Access Publishing Fund.
References

1. Fukao T: Immune system paralysis by anthrax lethal toxin: the roles of innate and adaptive immunity. Lancer Infect Dis 2004, 4:166–170.
2. Mock M, Fouet A. Anthrax. Annu Rev Microbiol 2001, 55:647–671.
3. Collier RJ, Young JA: Anthrax toxin. Annu Rev Cell Dev Biol 2003, 19:49–70.
4. Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C. Lethal factor of Bacillus anthracis cleaves the N-terminus of MAPKs: analysis of the intracellular consequences in macrophages. Int J Med Microbiol 2000, 290:421–427.
5. Duesbery NS, Webb CP, Leppilä SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Pauli KD, et al: Proteolytic inactivation of MAP-Kinase-kinase by anthrax lethal factor. Science 1998, 280:734–737.
6. Leppilä SH: Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A 1998, 79:3162–3166.
7. Hana PC, Acosta D, Collier RJ: On the role of macrophages in anthrax. Proc Natl Acad Sci U S A 2001, 99:10198–10201.
8. Hana PC, Kuuskal BA, Ezewuzo RA, Bloom BR, Collier RJ: Role of macrophage oxidative burst in the action of anthrax lethal toxin. Mol Med 1994, 1:12–18.
9. Popov SG, Villasril R, Bernardi J, Gene E, Cardwell J, Popova T, Wu A, Alibek D, Bailey C, Alibek K: Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEMS Lett 2002, 3:2721–215.
10. Kassam A, Der SD, Mogridge J: Differentiation of human monocytic cell lines confers susceptibility to Bacillus anthracis lethal toxin. Cell Microbiol 2005, 7:281–292.
11. Stearns-Kurosawa DJ, Lupu F, Taylor FB Jr, Kinewitz G, Kurosawa S: Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am J Pathol 2006, 169:433–444.
12. Guerner J, Jemigan JA, Shieh WJ, Tatti K, Flannagan LM, Stephens DS, Popovic T, Astford DA, Perkins BA, Zaki SR: Pathogenesis of bioterrorism-related inhalational anthrax. Am J Pathol 2003, 163:701–709.
13. Tewenhafel NA, Leffel E, Pitt MJ: Pathology of inhalational anthrax infection in the african green monkey. Vet Pathol 2007, 44:716–721.
14. Wu W, Mehta H, Chakrabarty K, Booth J, Duggan ES, Patel KB, Ballard JD, Coggeshall KM, Metcalf JP: Resistance of human alveolar macrophages to Bacillus anthracis lethal toxin. J Immunol 2009, 183:5799–5806.
15. Comer JE, Galindo CJ, Chopra AK, Peterson JW: GeneChip analyses of global transcriptional responses of murine macrophages to the lethal toxin of Bacillus anthracis. Infect Immun 2005, 73:1879–1885.
16. Mesters RM, Florke N, Ostermann H, Kienast J: Increased of plasminogen activator inhibitor levels predicts outcome of leucotyperopic patients with sepsis. Throm Haemost 1996, 75:902–907.
17. Bradburne C, Chung MC, Zeng Q, Schlauch K, Liu D, Popova T, Popova A, Bailey C, Soppe D, Popov S: Transcriptional and apoptotic responses of THP-1 cells to challenge with toxicogenic, and non-toxicogenic Bacillus anthracis. BMC Immunol 2008, 9:67.
18. Serbina NV, Jia T, Hohl TM, Palmer EG: Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 2008, 26:421–452.
19. Mosser DM: The many faces of macrophage activation. J Leukoc Biol 2003, 73:209–212.
20. Koski GK, Lyytik LA, Rice NR: Rapid lipopolysaccharide-induced differentiation of CD14(+) monocytes into CD83(+), dendritic cells is modulated under serum-free conditions by exogenously added IFN-gamma and endogenously produced IL-10. Eur J Immunol 2001, 31:3773–3781.
21. van Furth R: Origin and turnover of monocytes and macrophages. Curr Top Pathol 1989, 79:125–150.
22. Dozormov M, Wu W, Chakrabarty K, Booth JI, Hurst RE, Coggeshall KM, Metcalf JP: Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-alpha and NF-kappab are key components of the innate immune response to the pathogen. BMC Infect Dis 2009, 9:152.