Bromfenac-induced neurotrophic keratitis in a corneal graft

Nimmy Raj, Arnav Panigrahi, Mahboob Alam, Noopur Gupta

CASE PRESENTATION

A male patient in his fourth decade presented to our outpatient department with complaints of redness, pain and watering associated with diminution of vision in his left eye (LE) for the past 4 days. There was no history of any trauma to the eye. His previous history was significant with penetrating keratoplasty (PK), primarily for viral keratitis, presented with pain, redness and diminution of vision in his left eye of 4 days duration. Postoperatively, he was prescribed oral antibiotics, topical steroid eyedrops, lubricants and antiglaucoma medications. Eight months after transplantation, an epithelial defect with heaped up margins was noted on anterior segment evaluation on a routine follow-up visit. On checking his medications, it was found that the patient was unknowingly using bromfenac drops in place of brimonidine tartrate for the past month. A diagnosis of neurotrophic keratitis was made in the setting of PK performed for viral keratitis, incited by use of topical bromfenac. The patient was prescribed preservative-free lubricants with immediate discontinuation of bromfenac drops. Topical steroid drops were withheld till the epithelial defect healed. Complete healing of the defect was noted after 4 weeks of therapy.

BACKGROUND

Topical non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in ophthalmic practice, especially following cataract surgery to control inflammation and prevent occurrence of cystoid macular oedema. However, they can act as a double-edged sword with deleterious effects in patients with compromised ocular surface due to previous surgeries, presence of viral keratitis, chronic use of preserved topical drops or presence of systemic disease like rheumatoid arthritis. Accidental use of NSAIDs for a short duration may incite unwanted consequences in such patients. This may occur due to easy availability and over-the-counter use of these drugs, complicated by illegible medical prescriptions. Illustrating this problem, we report a case of neurotrophic keratitis (NK) due to overt-the-counter use of topical bromfenac, dispensed by mistake, in place of a similar sounding antiglaucoma medication (brimonidine).

INVESTIGATIONS

Serial anterior segment optical coherence tomography imaging helped in documenting the clinical course of neurotrophic keratitis in our patient. It confirmed the presence of the persistent epithelial defect (PED) with denuded epithelium (figure 2A) and heaped up margins. Reduction in size of the defect was noted at follow-up visits (figure 2B,C) followed by complete healing of the defect with residual corneal opacity (figure 2D).
Microbiological investigations were performed aided by gentle corneal scrapings from the edge of the corneal epithelial defect. Gram stain, Giemsa stain, KOH (potassium hydroxide) mount, bacterial culture on blood agar, fungal culture on Sabouraud dextrose agar and thioglycollate broth were performed. Microbiological analysis did not reveal growth of any microorganism on culture.

DIFFERENTIAL DIAGNOSIS
Viral keratitis.
Neurotrophic keratopathy (no-Bromfenac-related).

TREATMENT
The inciting agents for development of neurotrophic keratitis in our patient, bromfenac eyedrops, were immediately stopped. Topical steroid drops were withdrawn temporarily to enhance wound healing. The patient was managed with topical lubricants (preservative-free carboxymethylcellulose 1% every 2 hours), prophylactic topical antibiotic (chloramphenicol 0.5% three times a day), oral vitamin C (500 mg two times a day) and night time taping of lids after instilling lubricating ointment (carbomer and vitamin A palmitate gel). Antiglaucoma medication (combination of brimonidine tartarate and timolol maleate along with oral glycerol six teaspans) two times a day was started to control the intraocular pressure.

OUTCOME AND FOLLOW-UP
Reduction in the size of the epithelial defect was noted with treatment and the epithelial defect eventually healed completely by the end of 4 weeks. It resulted in anterior stromal scarring leading to formation of a macular corneal opacity (figure 3A, B). At the last follow-up visit, he achieved a visual acuity of 0.50 LogMAR units with a refractive correction of −3D sphere and −3D cylinder at 130° in the LE. The suboptimal BCVA in the LE was attributed to early development of cataract.

DISCUSSION
Topical NSAIDs have proved their efficacy in many conditions like controlling postoperative pain and inflammation, preventing development of cystoid macular oedema following cataract surgery, maintaining intraoperative mydriasis and also off-label use for ocular inflammatory conditions like allergic conjunctivitis, pingueculitis and episcleritis.1-3 Being an effective alternative to topical steroids, absence of side effects like cataract and glaucoma makes its use quite prevalent in ophthalmic practice. Topical NSAIDs and steroids have shown similar efficacy in controlling inflammation after cataract surgery, hence making the former a safer, but not inferior, alternative.4

As with almost all available medications, they are not devoid of adverse reactions, which range from mild symptoms like redness, transient burning and stinging sensation to more serious ones like superficial punctate keratitis, epithelial defects, corneal melts, ulcerations and perforations.5 Mechanisms for such inadvertent side effects associated with topical NSAIDs are not clearly elucidated; speculated hypothesis includes activation of matrix metalloproteinases, impairment of wound healing and neurotrophic effect, resulting from analgesic action of these drugs, the latter being unlikely in the absence of ocular surface disease.2,3,5

Bromfenac is a phenylacetic acid derivative that has been approved by the Food and Drug Administration as 0.09% ophthalmic solution for two times per day instillation in the treatment of pain and inflammation after cataract surgery.5 Bromfenac is considered comparatively safer than other NSAIDs like diclofenac and ketorolac.5 9 10 Although the use of NSAIDs is implicated in corneal melts in many case reports, development of neurotrophic keratitis following use of these agents has not reported as yet. Risk factors like...
concurrent use of topical steroids, undiagnosed dry eye disease, previous history of ocular surgery like pterygium surgery using bare sclera technique, preservatives present in topical medications, immunological disorders like rheumatoid arthritis or Sjogren’s syndrome and systemic diseases like diabetes mellitus can all contribute to the multifactorial pathogenesis of PED in these cases.

Neurotrophic keratitis is characterised by epithelial breakdown that progresses from punctate keratitis and focal epithelial loss in early stages (stage 1) to persistent non-healing epithelial defects (stage 2), stromal ulceration and melting in late stages (stage 3). The very fact that the anterior stroma was affected indicated an advanced stage of neurotrophic keratitis in our patient, which warranted immediate intervention with cessation of the inciting bromfenac eyedrops. The possible factors that led to the development of NK in our patient can be attributed to trigeminal damage secondary to iatrogenic injury, chronic use of preserved eyedrops for glaucoma with the concurrent use of topical steroids and bromfenac solution adding to the mishap. Reduced corneal sensation, secondary to healed viral keratitis and multiple corneal transplantation, added a neurotrophic component to the epithelial defect. The cascade of inflammatory events accompanying the PED and the healing response which followed eventually led to a central macular corneal opacity.

The very first step in management of neurotrophic keratitis involves cessation of all topical medications, and starting the patient on preservative-free lubricants. The rationale behind the former is to avoid potential toxicity to the epithelium by the active compound and/or preservatives used in various eye drops. If drug-induced, as in our case, cessation of the inciting agent brings the destructive pathogenic processes to a halt, allowing repair of the damaged regions by normal healing response of the eye. Topical medications, like antibiotics and antiglaucoma medications in our patient, should be used in preservative-free formulations, if deemed absolutely necessary. These medications were started in our patient considering the high risk of infection, owing to advanced stage of disease and stromal involvement. Topical steroids should not be used in an attempt to control the inflammatory damage, as it impairs stromal healing and increases the risk of corneal melt and perforation. Surgical modalities like tarsorrhaphy, use of conjunctival flap, tissue adhesive or amniotic membrane transplantation have been described to improve tissue healing and prevent perforation. These methods were not considered in our patient, owing to the satisfactory response seen with conservative management, including topical lubrication, antibiotics and night time eye patching.

This unfortunate complication could easily have been avoided by proper communication between the three parties involved: the patient, the practitioner and the pharmacist. The very fact that doctors are stereotyped and take the brunt of jokes for their illegible handwriting is nothing to be laughed at or felt proud of; it may sometimes lead to improper qualification and unethical practices not uncommon in India. Patients need to be aware of these fallacies prevalent in medical practice, as it is them who use these medications, reap their benefits and suffer their deleterious effects. Doctors need to educate the patients regarding the medications and their use; this will go a long way in preventing such avoidable mishaps, alleviating some load off the healthcare system.

Contributors NR, AP, MA, NG: substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; NR, AP, MA, NG: drafting the work or revising it critically for important intellectual content; NR, AP, MA, NG: final approval of the version to be published; NR, AP, MA, NG: agreement to be accountable for all parts of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s)

Provenance and peer review Not commissioned; externally peer reviewed.

Case reports provide a valuable learning resource for the scientific community and can indicate areas of interest for future research. They should not be used in isolation to guide treatment choices or public health policy.

ORCID iDs
Nimmy Raj http://orcid.org/0000-0002-3921-3615
Arnav Panigrahi http://orcid.org/0000-0003-3626
Noopur Gupta http://orcid.org/0000-0001-8022-6556

REFERENCES

1 Kim SJ, Flach AJ, Jampol LM. Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv Ophthalmol 2010;55:108–33.
2 Miyake-Kashima M, Takano Y, Tanaka M, et al. Comparison of 0.1% bromfenac sodium and 0.1% pimecolimus potassium for the treatment of allergic conjunctivitis. Jpn J Ophthalmol 2004;48:587–90.
3 Uchio E, Itoh Y, Kadono K. Topical bromfenac sodium for long-term management of vernal keratoconjunctivitis. Ophthalmologica 2007;221:153–8.
4 Roberts CW, Brennan KM. A comparison of topical diclofenac with prednisolone for postcataract inflammation. Arch Ophthalmol 1995;113:725–7.
5 Guidara AC, Luchs JJ, Udell U. Keratitis, ulceration, and perforation associated with topical nonsteroidal anti-inflammatory drugs. Ophthalmology 2001;108:936–44.
Case report

6 Donnenfeld ED, Donnenfeld A. Global experience with Xibrom (bromfenac ophthalmic solution) 0.09%; the first twice-daily ophthalmic nonsteroidal anti-inflammatory drug. Int Ophthalmol Clin 2006;46:21–40.

7 Yanai K, Huang J, Kadonosono K, et al. Corneal sensitivity after topical bromfenac sodium eye-drop instillation. Clin Ophthalmol 2013;7:741–4.

8 Asai T, Nakagami T, Mochizuki M, et al. Three cases of corneal melting after instillation of a new nonsteroidal anti-inflammatory drug. Cornea 2006;25:224–7.

9 Flach AJ. Corneal melts associated with topically applied nonsteroidal anti-inflammatory drugs. Trans Am Ophthalmol Soc 2001;99:205–10.

10 Gokhale NS, Vemuganti GK. Diclofenac-induced acute corneal melt after collagen crosslinking for keratoconus. Cornea 2010;29:117–9.

11 Ting DSI, Ghosh S. Acute corneal perforation 1 week following uncomplicated cataract surgery: the implication of undiagnosed dry eye disease and topical NSAIDs. Ther Adv Ophthalmol 2019;11:251584141986950.

12 Prasher P. Acute corneal melt associated with topical bromfenac use. Eye Contact Lens 2012;38:260–2.

13 Murtagh P, Comer R, Fahy G. Corneal perforation in undiagnosed Sjögren’s syndrome following topical NSAID and steroid drops post routine cataract extraction. BMJ Case Rep 2018;118:bcr-2018-225428.

14 Mackie I. Neuroparalytic keratitis. In: Roy FH, Meyer SM, Fraunfelder F, eds. Current ocular therapy. Philadelphia: WB Saunders, 1995: 452–4.

15 Sacchetti M, Lambiase A. Diagnosis and management of neurotrophic keratitis. Clin Ophthalmol Auckland NZ 2014;8:571–9.

16 Lambiase A, Rama P, Aloe L, et al. Management of neurotrophic keratopathy. Curr Opin Ophthalmol 1999;10:270–6.

17 Sokol DK, Hettige S. Poor handwriting remains a significant problem in medicine. J R Soc Med 2006;99:645–6.

18 Charatan F. Family compensated for death after illegible prescription. BMJ 1999;319:1456.

19 Porter G, Grills N. Medication misuse in India: a major public health issue in India. J Public Health 2016;38:e150–7.