Using GANs To Augment Data For Cloud Image Segmentation Task

Mayank Jain1,2, Conor Meegan2, and Soumyabrata Dev1,2

1 The ADAPT SFI Research Centre, Dublin, Ireland
2 School of Computer Science, University College Dublin, Ireland

Send correspondence to S.Dev, e-mail: soumyabrata.dev@ucd.ie
Introduction

- Determining cloud coverage and distribution helps in analysis and forecasting of key weather related parameters like solar irradiance, rainfall and humidity
- WSIs provide cloud images with high temporal and spatial resolution than satellites at low cost
- Supervised methods superior than unsupervised methods for cloud image segmentation
- But, supervised methods need vast amount of labelled data for training
- GANs proven useful for data augmentation
- Must generate ground-truth maps along with raw sky/cloud images to make them useful in this case
Introduction

- Determining cloud coverage and distribution helps in analysis and forecasting of key weather related parameters like solar irradiance, rainfall and humidity
- WSIs provide cloud images with high temporal and spatial resolution than satellites at low cost
- Supervised methods superior than unsupervised methods for cloud image segmentation
- But, supervised methods need vast amount of labelled data for training
- GANs proven useful for data augmentation
- Must generate ground-truth maps along with raw sky/cloud images to make them useful in this case
Introduction

- Determining cloud coverage and distribution helps in analysis and forecasting of key weather related parameters like solar irradiance, rainfall and humidity.
- WSIs provide cloud images with high temporal and spatial resolution than satellites at low cost.
- Supervised methods superior than unsupervised methods for cloud image segmentation.
- But, supervised methods need vast amount of labelled data for training.
- GANs proven useful for data augmentation.
- Must generate ground-truth maps along with raw sky/cloud images to make them useful in this case.
Introduction

- Determining cloud coverage and distribution helps in analysis and forecasting of key weather related parameters like solar irradiance, rainfall and humidity
- WSIs provide cloud images with high temporal and spatial resolution than satellites at low cost
- Supervised methods superior than unsupervised methods for cloud image segmentation
- But, supervised methods need vast amount of labelled data for training
 - GANs proven useful for data augmentation
 - Must generate ground-truth maps along with raw sky/cloud images to make them useful in this case
Determining cloud coverage and distribution helps in analysis and forecasting of key weather related parameters like solar irradiance, rainfall and humidity.

- WSIs provide cloud images with high temporal and spatial resolution than satellites at low cost.
- Supervised methods superior than unsupervised methods for cloud image segmentation.
- But, supervised methods need vast amount of labelled data for training.
- GANs proven useful for data augmentation.
 - Must generate ground-truth maps along with raw sky/cloud images to make them useful in this case.
Introduction

- Determining cloud coverage and distribution helps in analysis and forecasting of key weather related parameters like solar irradiance, rainfall and humidity
- WSIs provide cloud images with high temporal and spatial resolution than satellites at low cost
- Supervised methods superior than unsupervised methods for cloud image segmentation
- But, supervised methods need vast amount of labelled data for training
- GANs proven useful for data augmentation
- Must generate ground-truth maps along with raw sky/cloud images to make them useful in this case
Dataset and Pre-processing

- **SwinSeg**\(^1\) dataset contains 115 images with \(500 \times 500\) pixel resolution
- All images are accompanied with ground truth binary maps
- Contain night-time cloud/sky images only
- Extracted \(R - B\) channel only to diminish the blur between cloud edges and night sky\(^2\)
- To train image segmentation model, data splitting was done as follows:
 - Training Set: 69 Images (60%)
 - Validation Set: 18 Images (15.65%)
 - Test Set: 28 Images (24.35%)

\(^1\) S. Dev et al., “Nighttime sky/cloud image segmentation,” in *IEEE International Conference on Image Processing (ICIP)*, 2017.

\(^2\) S. Dev et al., “Systematic study of color spaces and components for the segmentation of sky/cloud images,” in *IEEE International Conference on Image Processing (ICIP)*, 2014, pp. 5102–5106.
Dataset and Pre-processing

- SWINSEG\(^1\) dataset contains 115 images with \(500 \times 500\) pixel resolution
- All images are accompanied with ground truth binary maps
- Contain night-time cloud/sky images only
- Extracted \(R - B\) channel only to diminish the blur between cloud edges and night sky\(^2\)
- To train image segmentation model, data splitting was done as follows:
 - Training Set: 69 Images (60%)
 - Validation Set: 18 Images (15.65%)
 - Test Set: 28 Images (24.35%)

1. S. Dev et al., “Nighttime sky/cloud image segmentation,” in *IEEE International Conference on Image Processing (ICIP)*, 2017.

2. S. Dev et al., “Systematic study of color spaces and components for the segmentation of sky/cloud images,” in *IEEE International Conference on Image Processing (ICIP)*, 2014, pp. 5102–5106.
Dataset and Pre-processing

- **SWINSEG\(^1\)** dataset contains 115 images with \(500 \times 500\) pixel resolution
- All images are accompanied with ground truth binary maps
- Contain night-time cloud/sky images only
- Extracted \(R - B\) channel only to diminish the blur between cloud edges and night sky\(^2\)
- To train image segmentation model, data splitting was done as follows:
 - Training Set: 69 Images (60%)
 - Validation Set: 18 Images (15.65%)
 - Test Set: 28 Images (24.35%)

\(^1\) S. Dev et al., “Nighttime sky/cloud image segmentation,” in *IEEE International Conference on Image Processing (ICIP)*, 2017.

\(^2\) S. Dev et al., “Systematic study of color spaces and components for the segmentation of sky/cloud images,” in *IEEE International Conference on Image Processing (ICIP)*, 2014, pp. 5102–5106.
Dataset and Pre-processing

- SWINSEG\(^1\) dataset contains 115 images with 500 × 500 pixel resolution
- All images are accompanied with ground truth binary maps
- Contain night-time cloud/sky images only
- Extracted $R - B$ channel only to diminish the blur between cloud edges and night sky\(^2\)
- To train image segmentation model, data splitting was done as follows:
 - Training Set: 69 Images (60%)
 - Validation Set: 18 Images (15.65%)
 - Test Set: 28 Images (24.35%)

\(^1\)S. Dev et al., “Nighttime sky/cloud image segmentation,” in IEEE International Conference on Image Processing (ICIP), 2017.

\(^2\)S. Dev et al., “Systematic study of color spaces and components for the segmentation of sky/cloud images,” in IEEE International Conference on Image Processing (ICIP), 2014, pp. 5102–5106.
SWINSEG\(^1\) dataset contains 115 images with 500 × 500 pixel resolution

- All images are accompanied with ground truth binary maps
- Contain night-time cloud/sky images only
- Extracted \(R - B\) channel only to diminish the blur between cloud edges and night sky\(^2\)

To train image segmentation model, data splitting was done as follows:

- **Training Set:** 69 Images (60%)
- **Validation Set:** 18 Images (15.65%)
- **Test Set:** 28 Images (24.35%)

\(^1\) S. Dev et al., “Nighttime sky/cloud image segmentation,” in *IEEE International Conference on Image Processing (ICIP)*, 2017.

\(^2\) S. Dev et al., “Systematic study of color spaces and components for the segmentation of sky/cloud images,” in *IEEE International Conference on Image Processing (ICIP)*, 2014, pp. 5102–5106.
Sample images from the used SWINSEG dataset. *First column:* original RGB images. *Second column:* extracted $R - B$ channel. *Last column:* corresponding ground-truth binary segmentation maps.
Process Pipeline

1. **Generate Sky/Cloud Image using GAN**
2. **Estimate Segmentation Map using Unsupervised Clustering**
3. **Train supervised image segmentation model (PLS Regression Model)**
 - **Validation Loss (VL1)**
 - **VL1 ≥ VL2?**
 - Yes: **Select the augmented image/segmentation map pair**
 - No: **Discard the augmented image/segmentation map pair**
4. **Train supervised image segmentation model (PLS Regression Model)**
 - **Augmented Dataset**
Results

Cases	R^2 (Training)	R^2 (Test)
Without Augmentation	0.568	0.372
After Augmentation	0.539	0.377

Coefficient of determination (R^2) as calculated when the PLS model was trained without augmenting the training set and after augmenting the training set.
• Augmenting images using GANs helps in reducing the problem of overfitting
• PLS, being a relatively simple segmentation model, can be trained quickly and hence can be used to discard poorly generated image-segmentation map pairs
• Augmentation by basic image transformation techniques can still be applied to GAN augmented images
• In future, we would like to
 • use the augmentation method to improve the accuracy of state-of-the-art cloud/sky image segmentation models
 • modify the GAN architecture such that they may generate the corresponding segmentation maps too
Augmenting images using GANs helps in reducing the problem of overfitting.

PLS, being a relatively simple segmentation model, can be trained quickly and hence can be used to discard poorly generated image-segmentation map pairs.

Augmentation by basic image transformation techniques can still be applied to GAN augmented images.

In future, we would like to:

- use the augmentation method to improve the accuracy of state-of-the-art cloud/sky image segmentation models.
- modify the GAN architecture such that they may generate the corresponding segmentation maps too.
Augmenting images using GANs helps in reducing the problem of overfitting.

PLS, being a relatively simple segmentation model, can be trained quickly and hence can be used to discard poorly generated image-segmentation map pairs.

Augmentation by basic image transformation techniques can still be applied to GAN augmented images.

In future, we would like to:
- use the augmentation method to improve the accuracy of state-of-the-art cloud/sky image segmentation models.
- modify the GAN architecture such that they may generate the corresponding segmentation maps too.
Augmenting images using GANs helps in reducing the problem of overfitting.

PLS, being a relatively simple segmentation model, can be trained quickly and hence can be used to discard poorly generated image-segmentation map pairs.

Augmentation by basic image transformation techniques can still be applied to GAN augmented images.

In future, we would like to:

1. Use the augmentation method to improve the accuracy of state-of-the-art cloud/sky image segmentation models.
2. Modify the GAN architecture such that they may generate the corresponding segmentation maps too.
Augmenting images using GANs helps in reducing the problem of overfitting.

PLS, being a relatively simple segmentation model, can be trained quickly and hence can be used to discard poorly generated image-segmentation map pairs.

Augmentation by basic image transformation techniques can still be applied to GAN augmented images.

In future, we would like to:
- use the augmentation method to improve the accuracy of state-of-the-art cloud/sky image segmentation models
- modify the GAN architecture such that they may generate the corresponding segmentation maps too.
Conclusion & Future Work

- Augmenting images using GANs helps in reducing the problem of overfitting.
- PLS, being a relatively simple segmentation model, can be trained quickly and hence can be used to discard poorly generated image-segmentation map pairs.
- Augmentation by basic image transformation techniques can still be applied to GAN augmented images.
- In future, we would like to
 - use the augmentation method to improve the accuracy of state-of-the-art cloud/sky image segmentation models.
 - modify the GAN architecture such that they may generate the corresponding segmentation maps too.
Thank you for your attention!

https://github.com/jain15mayank/GAN-augmentation-cloud-image-segmentation.