Overfishing and climate change elevate extinction risk of endemic sharks and rays in the southwest Indian Ocean hotspot

Riley A. Pollom, Jessica Cheok, Nathan Pacourea, Katie S. Gledhill, Peter M. Kyne, David A. Ebert, Rima W. Jabado, Katelyn B. Herman, Rhett H. Bennett, Charlene da Silva, Stela Fernando, Baraka Kuguru, Robin Leslie, Meaghen E. McCord, Melita Samoilys, Henning Winker, Sean Fennessy, Caroline M. Pollock, Cassandra L. Rigby, Nicholas K. Dulvy

1Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6

2IUCN SSC Global Center for Species Survival, Indianapolis Zoo, 1200 West Washington Street, Indianapolis, Indiana, USA

3Fish Ecology Lab, School of the Environment, University of Technology Sydney, PO Box 123, Broadway 2007, NSW, Australia

4Molecular Breeding and Biodiversity Research Group, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa

5South African Shark Conservancy, Old Harbour Museum, Hermanus 7200 South Africa

6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia

7Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA

8South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa

9Elasmo Project, PO Box 29588, Dubai, United Arab Emirates

10Georgia Aquarium, 225 Baker Street Northwest, Atlanta, Georgia, USA, 30313

11Wildlife Conservation Society, Villa Ifanomezantsoa, Soavimbohaoaka, PO Box 8500, Antananarivo 101, Madagascar

12Department of Agriculture, Forestry and Fisheries; Branch: Fisheries Research and Development, Foretrust Building, Martin Hammerschlag Way, Foreshore, Cape Town, 8000, South Africa

13National Institute of Fishery Research, PO Box 389, Maputo, Mozambique

14Tanzania Fisheries Research Institute (TAFIRI), PO Box 9750, Dar es Salaam, Tanzania

15CORDIO East Africa, PO Box 10135, Mombasa 80101, Kenya

16Oceanographic Research Institute, Durban, South Africa

17IUCN Red List Unit, The David Attenborough Building, Pembroke Street, Cambridge, UK CB2 3QZ
Abstract

The southwest Indian Ocean (SWIO) is a hotspot of endemic and evolutionarily distinct sharks and rays. We summarise the extinction risk of the sharks and rays endemic to coastal, shelf, and slope waters of the SWIO (Namibia to Kenya, including SWIO islands). Thirteen of 70 species (19%) are threatened: one is Critically Endangered, five are Endangered, and seven are Vulnerable. A further seven (10%) are Near Threatened, 33 (47.1%) are Least Concern, and 17 (24.2%) are Data Deficient. While the primary threat is overfishing, there are the first signs that climate change is contributing to elevated extinction risk through habitat reduction and inshore distributional shifts. By backcasting their status, few species were threatened in 1980, but this changed soon after the emergence of targeted shark and ray fisheries. South Africa has the highest national conservation responsibility, followed by Mozambique and Madagascar. Yet, while fisheries management and enforcement have improved in South Africa over recent decades, drastic improvements are urgently needed elsewhere. To avoid extinction and ensure robust populations and future food security, there is an urgent need for the strict protection of Critically Endangered and Endangered species and sustainable management of all species, underpinned by species-level data collection and bycatch reduction.

Keywords: marine conservation, Convention on Biological Diversity, elasmobranch, IUCN Red List Index, biodiversity indicator, Sustainable Development Goals.
Introduction

Anthropogenic pressures are mounting in the global oceans, and extinction risk appears to be increasing mainly through overfishing. There are nearly 1,400 marine species threatened globally; over one-quarter of these are threatened due to overfishing, more than double the risk caused by the next most-cited threat. The international community has formally agreed through the Convention on Biological Diversity that extinctions need to be prevented. Although society failed to meet the 2020 marine targets, namely Aichi Targets 6 (fisheries sustainability), 11 (avoiding extinction risk), and 14 (life under water), work is well underway to establish a more effective post-2020 Global Framework for Biodiversity with goals for 2030 and beyond. The IUCN Red List of Threatened Species provides a robust view of fisheries sustainability and extinction risk, especially when tracked over time through the Red List Index. To date, the only marine Red List Index available to report on the status of marine life is that for the hard stony corals (Family Scleractinia), which are threatened primarily by global climate change. There is, therefore, a need to expand the Red List Index for marine species that are threatened by overfishing, which is the primary cause of population reductions in the oceans.

Marine taxa particularly threatened by fisheries include the sharks and rays (subclass Elasmobranchii), many of which are captured incidentally as bycatch in fisheries targeted at more productive species or are directly targeted. Sharks and rays represent an ancient lineage of over 400 million years of evolution. Further, they often function as apex and mesopredators in pelagic, benthic, and nearshore environments. Understanding how changes in fisheries management are affecting sharks and rays through the Red List Index is crucial to gauging progress towards international biodiversity targets. The first comprehensive assessment of this unique radiation of fishes, published in 2014, estimated that over one-quarter are threatened; recent work reflecting new information reveals that over one third are in fact threatened. Globally, some progress has been made with taxonomic and regional species subsets to track change through reassessment and Red List Index development.
The southwest Indian Ocean and the adjacent Benguela Current (hereafter SWIO) have one of the most distinctive shark and ray faunas globally, comprised of high richness and endemicity with a large number of evolutionarily distinct species11,12. This area exhibits a rich diversity of over 250 species from at least 47 families, in part due to the variety of habitats, including warm-water tropical coral reefs, kelp and mangrove forests, and warm-temperate and cool-water rocky reefs and sand flats12,13. This biogeography is influenced in the south by the unique ecological conditions created by the confluence of the warm southward-flowing Agulhas Current along the east and south coasts of South Africa and the cold northward-flowing Benguela Current on the west coast of South Africa and Namibia14.

Coastal regions of the SWIO are under considerable fishing pressure. Approximately one-quarter of the human population lives within 100 km of the coast; population growth is among the highest worldwide, with a projected doubling of the human population by 205015. Coastal communities in the region are heavily dependent on fisheries as the primary source of protein, livelihoods, and food security. The pressure and scale of artisanal fisheries are significant and could pose an equivalent if not greater threat than industrialized fleets to sharks in the region. For example, in Mozambique, the total small-scale fisheries catch is estimated to be as much as three times that of the industrial sector16. Several nations in the SWIO face significant socio-economic challenges and rank in the lowest quartile of the Human Development Index (HDI)17, limiting their ability to manage marine resources effectively. This includes sharks and rays, which are subject to generally unregulated take in parts of the SWIO, particularly in artisanal fisheries.

Here, we provide an assessment of extinction risk status of 70 sharks and rays endemic to the SWIO. Specifically, we: (1) assess the extinction risk of these sharks and rays using the IUCN Red List Categories and Criteria, (2) compare the change in extinction risk over ~40 years against a retrospective assessment for 1980 using the Red List Index, and (3) determine the countries with the most significant national conservation responsibility. Finally, we propose some general policies that, if implemented, will help to safeguard shark and ray populations in the SWIO.
RESULTS

Taxonomic diversity and species richness

This study comprised 70 endemic species (38 sharks and 32 rays, the latter comprising guitarfishes, electric rays, and skates) from 7 orders, 20 families, and 39 genera (Table 1). Families with the highest species richness were Rajidae (hardnose skates, \(n = 12 \), 17.1% of all species) and Pentanchidae (deepwater catsharks, \(n = 15 \), 21.4%), collectively comprising more than a third (38.5%) of the regional endemic fauna. Species richness was greatest along the South African and southern Mozambican coastlines, with a maximum number of 19 species occurring in each country (Fig. 1a). The richness of threatened (Critically Endangered, CR; Endangered, EN; or Vulnerable, VU) shark and ray species also suggested an inverse latitudinal gradient (\(n = 13 \); Fig. 1b). The high concentration of threatened endemics in South Africa is driven by the threatened sharks (\(n = 8 \)), whereas threatened rays (\(n = 5 \)) were more disparately distributed across the region (Fig. 1c & d).

Taxonomic patterns in extinction risk

Nearly one-fifth (\(n = 13 \), 19%) of assessed endemic sharks and rays in the region are threatened with extinction (Table 1). One species, the Shorttail Nurse Shark (*Pseudoginglymostoma brevicaudatum*), is CR and at an extremely high risk of extinction. It is assessed under Criterion A2cd as it has undergone a suspected population reduction of >80% over the past three generations (30 years) due to a decline in habitat quality and actual and potential levels of exploitation. Five species (7%) are EN and face a very high risk of extinction, and seven species (10%) are VU, facing a high risk of extinction (Table 1). A further seven species (10%) are Near Threatened (NT), indicating they may become threatened soon if countries don’t implement management and conservation.

Most threatened and NT species were assessed as such using Criterion A (population reduction). For example, the Tiger Catshark (*Halaelurus natalensis*) declined by 39% in the commercially fished area in the last 27 years, consistent with a population reduction...
of 56.5% (CI: -97.3, 83.3) in 3 GL (60 years); however, there has been an expected range shift away from trawl grounds reducing catchability in the surveys, and experts agreed that the appropriate Category for this species is VU. The Twin-eye Skate (*Raja ocellifera*) declined by 65.5% in the commercially fished area in the last 27 years, consistent with a population reduction of 65.5% (CI: -89.2, -17.1) in 3 GL (27 years) and is EN (Fig. 2).

There were two cases of small-range species, found in few locations and undergoing a continuing decline, which met threatened categories under criterion B: the Natal Shyshark (*Haploblepharus kistnasamyi*) and the Flapnose Houndshark (*Scylliogaleus quecketti*), are assessed as VU.

Nearly half of species showed slight increases or did not decrease substantially enough to meet the thresholds to be assessed as threatened or NT and were thus assigned a status of Least Concern (LC; n = 33, 47%) (Table 2). For example, the Softnose Skate (*Bathyraja smithii*) occurs primarily in Namibia, where fishing pressure is low. The Whitecheek Lanternshark (*Etmopterus alphus*) occurs between 472 and 792 m depth along a narrow strip of the Mozambique coastline, and it has refuge at depth in the absence of fishing deepwater fishing activities. There were eight species for which indices of abundance were available and revealed either stability or an increase in population index (Fig. 2, left column) and these are assessed as LC.

Finally, almost a quarter of species are Data Deficient (DD; n = 17, 24%) because there is insufficient information to accurately assess their extinction risk (i.e., data are so sparse for these species that assessors were not able to determine whether they are CR, LC, or somewhere between). Three of the six species of guitarfishes from the family Rhinobatidae require further information to assign a risk category. One of five endemic scyliorhinid catsharks and three of 15 pentanchid catsharks are DD. There are fewer data available regarding the status of rays overall, and nearly one-third are DD (10 of 32 species). Three species previously assessed as DD are now LC due to new information: the Saldanha Catshark (*Apristurus saldanha*), the Black Legskate (*Indobatis ori*), and the Whitespotted Smoothhound (*Mustelus palumbes*).
All changes in Red List status since the previous assessments are non-genuine changes except for the Shorttail Nurse Shark (which had its population further reduced since the 2005 assessment). These non-genuine changes are due to new information becoming available since the previous assessments. This new knowledge can be used to retrospectively correct previously published assessments for the development of a Red List Index. Thus, the newly stated retrospective statuses can be considered more accurate than the previously published assessments (Table 1).

Key threats

Red List assessments for all 13 threatened and seven NT species reported ‘Biological Resource Use’ and, more specifically, ‘Fishing and Harvesting Aquatic Resources’ as threatening processes, while other threats (habitat loss and degradation, pollution) caused reductions or a continuing decline in population size in fewer species (Fig. 3). We include climate change in the threat rationale of seven threatened and NT species. Although not the leading cause of population reductions, it has induced a significant distributional shift in the populations of six of these seven species (grey bar, Fig. 3). Coastal development and pollution contributed to localized extinction risk for three species, but overfishing is the primary threat for all of them.

Overfishing is the main threat

Overfishing is the primary threat to all threatened elasmobranchs in the SWIO region through targeted and incidental catches (bycatch), including commercial, recreational, and artisanal fisheries using fishing gears such as gillnets, longlines, handlines, trawls, and seine nets. Furthermore, all 20 threatened and NT species are exposed to overfishing through incidental catches, where fisheries target other species such as teleost fishes or shrimps but catch and retain other valuable species such as sharks and rays.

Overfishing is compounded by climate change

There are two impact pathways by which climate change may be elevating extinction risk of sharks and rays. Firstly, the increasing frequency and severity of coral bleaching are
implicated in the elevated extinction risk of the Shorttail Nurse Shark. This tropical shark has declined significantly over the past 15 years, resulting in a genuine change in status from VU to CR. This population reduction is suspected to be caused by a combination of overfishing, destructive fishing practices, and a continuing decline in habitat quality due to coral bleaching and rising sea temperatures. Live capture for the aquarium trade may further exacerbate risk. Secondly, there has been a north-easterly shift in the distribution of thermal habitat across the southern Cape of South Africa. This shift has resulted in simultaneous northeastward shifts of many teleost and elasmobranch species distributions toward the narrower shelf area off the Eastern Cape and KwaZulu-Natal. Three species undergoing notable range shifts are the Lesser Guitarfish (*Acroteriobatus annulatus*), Bluntnose Spurdog (*Squalus acutipinnis*), and Twin-eye Skate (*Raja ocellifera*) (Fig. 4).

In addition to fishing pressure and climate change, habitat degradation from coastal development and pollution further exacerbates overfishing for two South African endemic catsharks. The Brown Shyshark (*Haploblepharus fuscus*) and the Natal Shyshark both inhabit nearshore waters at depths of less than 50 m. They are endemic to South Africa near several large urban centers (Port Elizabeth, East London, and Durban) and are thus subject to the associated localised urban development and pollution.

The Red List Index and national conservation responsibilities

Almost all species were retrospectively assessed as LC (*n* = 52) or DD (*n* = 17) in 1980 (Table 1), except one NT species (Natal Sleeper Ray *Heteronarce garmani*), resulting in a regional Red List Index (RLI) value of 0.996 (where a value of 1 represents all assessed species being LC; Fig. 5a). The regional RLI decreased slightly to 0.917 by 2005 and further to 0.849 in the most recent assessment (2020) presented here. This decreasing trend in RLI results from the increased numbers of species in threatened and NT categories by 2005 and 2020 (13 and 20, respectively; Table 1). When disaggregating the RLI down to country-level, the most significant decline in RLI is from 1980 to 2005 in Madagascar (a decline from 0.999 to 0.672; Fig. 5b). Between 2005 and 2020, the
The greatest decline in country-level RLI occurred in Madagascar (0.672 to 0.558; Fig. 5c).

Nine range countries bear some responsibility for conserving the 70 endemic SWIO species that have been assessed using the IUCN Red List Categories and Criteria (Table 3). Consistent with the inverse latitudinal richness trend, South Africa had the highest national conservation responsibility (NCR) of all nine range countries (NCR = 1), followed by relatively high responsibilities for Mozambique (NCR = 0.442) and Madagascar (NCR = 0.407; Fig. 6). Collectively, these three countries represent 93% of all conservation responsibility in the region.

Discussion

Here, we provide the first comprehensive reassessment of extinction risk in sharks and rays that are endemic to waters of the SWIO. Of 70 species herein assessed for the IUCN Red List, nearly one-fifth are threatened and thus have a high to extremely high risk of extinction (1 CR, 5 EN, 7 VU). Despite a lack of data from parts of the region, it is clear that excessive fishing activity and limited management capacity are substantial barriers to ensuring robust shark and ray populations into the future. A further quarter of species are DD and could potentially be listed as threatened as additional data become available. Furthermore, this assessment of endemic species belies the overall status of sharks and rays in the region. If we include the wider-ranging coastal, pelagic, and deepwater species, there are 75 additional globally threatened sharks and rays that occur in the region, including 26 that are EN and 12 that are CR. Including these groups would also add another 21 DD species. We next (1) compare these findings to threat patterns globally and in other regions, and identify measures to (2) avoid extinctions, (3) ensure sustainability, (4) maintain robust functional populations, (5) drive down data deficiency gaps, and (6) cope with prevalent and emerging threats.

The percentage of threatened endemic species in this region (19%) is considerably lower than that observed globally (37%)\(^1\). At the regional level, 42% of species (\(n=50\)) are threatened or predicted to be threatened in the Northwest Atlantic and two-thirds of species (67%, \(n=48\)) in the Mediterranean Sea\(^9\). A regional assessment (including all species, not only endemics) of the Arabian Sea and its adjacent waters region found
50.9% of species are threatened19. Although we find extinction risk in SWIO to be lower than in these regions, many of the most threatened families found in this region are not included in this assessment, including the sawfishes, wedgefishes, hammerheads, and thresher sharks8,10,20,21, and if non-endemics are included, there are 82 of 227 species (36% threatened). In any case, there are at least six endemic species that are endangered (EN or CR) and require urgent conservation action to prevent further declines and extinction.

The most severe and prevalent threat to the endemic species assessed in this region is heavy fishing pressure and bycatch mortality, resulting in population reductions for threatened and NT species22. This threat is particularly problematic for species inhabiting shallow inshore and continental shelf waters to approximately 200 m depth, such as the Shorttail Nurse Shark (the only CR species), and the Happy Eddie Catshark (\textit{Haploblepharus edwardsii}), Greyspot Guitarfish (\textit{Acroteriobatus leucospilus}), and Twin-eye Skate (all EN). In the specific case of the Shorttail Nurse Shark, extensive landings surveys in Madagascar (2007–2012)23 have not recorded any individuals, and only one individual has been observed there in 270 hours of baited remote underwater video (BRUV) surveys24. Sightings of this species have also not been reported from extensive visual census surveys in Tanzania, Mozambique, or Madagascar (2009–2015)25, although since this assessment, its range has been extended to include Mozambique26.

We recommend that governments implement management interventions for CR and EN species without delay. These interventions should involve strict prohibitions on landings where they are not yet in place and capacity for enforcement of laws. Highly impactful fishing gears, such as large-mesh (shark-directed) gillnets and longlines, should be regulated, and legislation against destructive fishing practices such as reef nets and blast fishing, which damage habitats such as coral reefs, should be enforced to ensure the continued presence of these threatened species in the wild. If threats are not mitigated rapidly, species such as the Shorttail Nurse Shark could become extinct in the very near future. This situation could follow that of at least one, possibly two, sawfish species which are already considered locally extinct in South Africa (Largetooth Sawfish \textit{Pristis pristis}...
and Green Sawfish *P. zijsron*). Although they are the first rays protected in the region, protection was implemented too late, two years before the last sighting of a sawfish\(^{27}\).

For species in this region that are VU due to small geographic range sizes, occurring in few locations, and inferred to have declining populations (e.g., Flapnose Houndshark *Scylliogaleus quecketti*, Natal Shyshark), there is an opportunity to implement spatial closures of important habitat to complement catch and fishing effort reduction approaches. Establishing closures will require the identification of overlap between the existing protected area network and key habitat features and understanding movement behaviour and potential aggregation sites\(^{28,29}\). Marine Protected Areas might prove to be a suitable approach for conserving threatened endemic sharks\(^{30}\). Even a modest expansion of the protected areas network has significant potential to contribute to the conservation of these species\(^{31}\).

Madagascar, South Africa, and Seychelles are the only nations to implement a National Plan of Action for the Conservation and Management of Sharks, although most countries in the region are developing these\(^ {32,33} \). From our analyses, Mozambique and Madagascar had the most significant national conservation responsibility after South Africa, with these three nations representing 93% of all responsibility in the region. These should be priority nations to effectively implement National Plans of Action to set the stage for sustainable catch of species in their national waters. Further, such plans should include legislative mechanisms for protection of CR and EN species, explicit actions on catch limits for VU or NT species, strategies for managing bycatch in fisheries and, where needed, actions on protecting habitats or areas known as important during critical life stages\(^ {32} \). Increased efforts to accurately assess fishing pressure are also paramount. Underreporting and discrepancies in fisheries data are prevalent in reports provided to Regional Fisheries Management Organisations (RFMOs) and the Food and Agriculture Organization of the United Nations (FAO). Furthermore, where data are collected, discards are not reported, and post-release mortality is unknown, even in South Africa, where data collection is relatively robust\(^ {32} \).
Encouragingly, almost half of the species assessed here are LC, which means their populations are stable or declining slowly such that population reduction thresholds are not triggered. In many cases, these species are not exposed to the pressures to which threatened species are. For example, the geographic or bathymetric ranges of some species mean they are sparsely or never fished. Even when such a species is fished, resilience to this pressure is indicated by relatively stable population trends over time. For example, the Whitespotted Smoothhound Mustelus palumbes has shown a modest estimated increase of 8% over 27 years across the South African hake trawl grounds (Fig. 2). Whitespotted Smoothhounds are caught in trawl, line, and demersal shark longline fisheries, but given their increase in abundance, they appear robust to moderate levels of fishing activity (< 50 t per annum), although further management measures will be needed to ensure sustainability if catches increase. Some other targeted or retained bycatch species (e.g., Bluntnose Spurdog, Slime Skate Dipturus pullopectatus) also exhibit some level of resilience to fishing pressure. However, it is essential that these LC species be monitored in terms of abundance and catch to maintain robust, ecologically functional populations that yield ecosystem services to humanity and contribute to food security.

A quarter of the species assessed had insufficient data available for an accurate assessment and were evaluated as DD. Many countries are still reporting catches as “sharks”, and species-level monitoring of rays has been particularly neglected in the region. Catch reconstructions reveal serious discrepancies where reported catches are far lower than the reconstructions, around 200% in Madagascar and Mauritius, and >75% in Tanzania. While there has been progress in assessing the species composition and monitoring of fisheries, there remains a lack of species-specific population trend and time-series data, particularly in countries other than South Africa. The lack of species-specific fisheries data means that declines in sensitive species (e.g., angelsharks, guitarfishes) could go unnoticed. More information may reveal other species that are threatened. Further, more detailed information will be needed to provide effective spatial planning and fisheries management while minimizing impacts and conflicts with resource users.
Emerging threats in this region include the expansion of deepwater fisheries and climate change impacts on sharks and rays. Two deepwater species affected by fishing pressure are EN catsharks: the Honeycomb Izak Catshark (*Holohalaelurus favus*) and the African Spotted Catshark (*H. punctatus*), which occur in waters greater than 200 m. Despite the potential for refuge at depth, populations of these deepwater catsharks are suspected of having undergone reductions of more than 50% over the past three generations due to deepwater trawl and longline fisheries operating within their ranges. These declines will continue if deepwater fisheries are further developed in the absence of management. We caution that as deepwater fisheries increase, particularly in Mozambique, Madagascar, and Tanzania, including fishing by distant water nations, many of the deepwater LC species may be at greater risk of extinction. Monitoring fisheries expansions into deeper or more remote waters overlapping with the geographic ranges of deepwater LC species will be important (along with species-level catch data).

Although declines in VU species are mainly due to fishing, one of these species, the Tiger Catshark is unique in that it has undergone a population reduction (including a reduction in area of occupancy) that is at least partially related to an ecological shift in currents due to climate change. For this catshark, mortality due to fisheries does not appear substantial enough to be the only factor causing this reduction, highlighting the importance of considering climate change in future Red List assessments of sharks and rays. As species distribution models for sharks and rays become available, future assessments could consider using climate projections. Trait-based approaches are already available to evaluate the potential risk of climate change and will be helpful for future reassessment.

Conclusion

Here, we find that 13 of the 70 (19%) endemic shark and ray species in the SWIO are threatened with an elevated risk of extinction. There is thus a need for a collaborative regional improvement in shark and ray conservation to reduce risk for these endemic species. However, this limited species sample belies the actual risk to the elasmobranch fauna in the SWIO region, as some of the most highly threatened cosmopolitan elasmobranch groups, including sawfishes, wedgefishes, and hammerhead sharks, are
not endemic to this region and were thus not included in this study (the vast majority of which are CR globally). There is a great urgency to act to avoid further extinctions, ensure sustainability, maintain robust functional populations, reduce data deficiency, and secure livelihoods and food security for coastal people. On-going monitoring and data collection at the species level are essential, particularly for threatened and NT species. Species-specific annual fisheries-independent population monitoring needs to take place. In the absence of such data, species-specific monitoring of catches and landings (taking into account fishing effort) can provide a reliable index of the trend in abundance. Although there has been an improvement in fisheries management in South Africa, this has not yet resulted in improved conservation status, but it may well have maintained populations and prevented more severe declines than those observed. Many other countries in the region have a long way to go to effectively monitor, manage, and protect their shark and ray species and play their part to ensure the global viability of elasmobranch fauna. Nations are currently negotiating new biodiversity and sustainability targets to bend the curve on biodiversity to halt and reverse declines in populations and minimize extinctions44,45. This study provides evidence that extinction risk has increased in the SWIO region due to overfishing and climate change and that action is needed to bend the curve for elasmobrachs there.

Methods
We first describe the geographic and taxonomic scope of the regional endemic elasmobranch extinction risk assessment, followed by the application of the IUCN Red List Categories and Criteria, species mapping and spatial analyses, and the calculation of a Red List Index.

Geographic and taxonomic scope. We focus on the assessment of extinction risk in endemic sharks and rays of the SWIO that inhabit the continental and insular shelves and slopes off Africa from the Angola–Namibia border, around the Cape of Good Hope, and east and north to the Kenya–Somalia border. The region also includes Madagascar and the islands of the southwest Indian Ocean. The geographic scope thus comprised nine range countries: Namibia, South Africa, Mozambique, Tanzania, Kenya, Madagascar,
Comoros, Seychelles, and Mauritius). The Namibia–Angola border was chosen as the western boundary of the region because of the oceanographic and faunal break at the interface between the Benguela and Guinea Currents14. The Kenya–Somalia border was chosen as the northeastern-most limit of this assessment as it abuts the boundary of the Arabian Sea and its adjacent waters region, the subject of a separate recent extinction risk assessment19. Reunion is not included here because no regionally endemic sharks or rays exist there.

A comprehensive list of all elasmobranch species known to occur in the region was based on the work of Ebert and van Hees46. We evaluated 70 shark and ray species considered endemic to the region and did not include those that inhabit wider-ranging coastal, pelagic, or deepwater areas. For nomenclature and taxonomy, we followed the online electronic version of the Catalog of Fishes47 for sharks and *Rays of the World*48 for rays.

Application of the IUCN Red List Categories and Criteria. We assessed species at the global level by applying the IUCN Red List Categories and Criteria (Version 3.1) and the associated guidelines49,50. Existing data and information on each species, including taxonomy, geographic distribution, population trends, habitat and ecology, significant threats, and conservation measures were compiled by the IUCN Species Survival Commission Shark Specialist Group (SSG) and regional experts. Information was obtained from published peer-reviewed scientific literature, government reports, unpublished fisheries data, grey literature, anecdotal information, and expert observations and data.

A four-day workshop was convened at the National Research Foundation’s South African Institute for Aquatic Biodiversity (SAIAB) in Grahamstown in April 2018, facilitated by the SSG. Workshop participants included regional fisheries, biodiversity, and taxon-specific experts, including representatives of non-governmental organizations, fisheries agencies, and government staff from countries across the region. During the workshop, participants shared data, reports, and anecdotal information for each species and threats from the region. This group systematically assessed 70 species against each of five quantitative
IUCN Red List Criteria A–E: A, population reduction; B, geographic range; C, small population size and decline; D, very small or restricted population; and, E, quantitative analysis.

Each species was assigned to one of the following Red List Categories: Extinct (EX), Extinct in the Wild (EW), Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT), Least Concern (LC), or Data Deficient (DD) (for definitions, see49). The categories CR, EN, and VU are collectively termed ‘threatened’ categories. A species qualifies for one of the three threatened categories by meeting the quantitative threshold for that category within one of the five criteria (A–E). The NT category is applied to species that come close to, but do not meet, a threshold for a threatened category. The LC category is applied to species that have been assessed against the Red List criteria but do not qualify for CR, EN, VU, or NT. There were two ways species were assessed as LC: i) data show that the species has a stable or increasing population size over 3 GL, or ii) because they inhabit remote or deepwater areas that are not subject to threats and therefore it can be inferred that the population is not undergoing reduction. The DD category is applied to a species when there is inadequate information to make a direct or indirect assessment of the risk of extinction based on its distribution and/or population status50. The Red List assessment process includes a structured approach to classifying threats into 11 primary classes, such as human intrusions and disturbance, pollution, biological resource use, and climate change and severe weather51 and appropriate threats were selected for each species.

Red List Criterion A uses a set of quantitative thresholds to classify population reduction scaled over three generation lengths (3 GL)49. One primary source of long-term abundance data for 17 species was demersal research trawl surveys conducted in South Africa during summer along the west coast and autumn and spring along the south coast by the Fisheries Branch of the South African Department of Agriculture, Fisheries and Forestry52. All datasets underwent extensive checks before analyses, and their reliability was reviewed by experts during the workshop. Annual density estimates (kg per nm² area swept) were estimated using the geostatistical delta-generalized linear mixed model.
(GLMM) developed by Thorson et al.53. Applications of the delta-GLMM to South African trawl survey index standardization have been described elsewhere18,54 and the spatial patterns in density over time are shown for species for which there were data available. Although demersal trawl surveys commenced in 1984, we only considered the period from 1991 onwards due to improvements in species identification following the initial survey years. For the analysis, each survey season was treated as an individual index i.

To analyze trend data, we used a Bayesian population state-space model designed specifically for IUCN Red List assessments (Just Another Red List Assessment, JARA)20,55, which builds on the Bayesian state-space tool for averaging relative abundance indices56 and is available open-source on GitHub (www.github.com/henning-winker/JARA). Each relative abundance index (or time-series) was assumed to follow an exponential growth defined through the state process equation:

$$\mu_{t+1} = \mu_t + r_t$$

where μ_t is the logarithm of the expected abundance in year t, and r_t is the normally distributed annual rate of change with mean \bar{r}, the estimable mean rate of change for a time-series, and process variance σ^2. We linked the logarithm of the observed relative abundance indices to the logarithm of the true expected population trend using the observation equation (eqn. 16) from Winker et al.56. We used a non-informative normal prior for $\bar{r} \sim N(0,1000)$, and an approximately uniform prior on the log scale for the process variance $\sigma^2 \sim \frac{1}{\text{gamma}(0.001,0.001)}$.

We ran two Monte Carlo Markov chains for each dataset with different initial values. Each Markov chain was initiated by assuming a prior distribution on the initial condition centred around the first data point in each abundance time-series. In each chain, the first 1,000 iterations were discarded (‘burn-in’), and of the remaining 10,000 iterations, 5,000 were selected for posterior inference (‘thinning rate’ = 2). Thus, posterior distributions were estimated from 20,000 iterations. Convergence was diagnosed using Geweke’s diagnostic57 with thresholds of $p = 0.05$ via the ‘coda’ library (v0.19-1)58. Analyses were performed using R Statistical Software v3.5.059 and via the interface from R (‘R2jags’ package v0.5-7)60 to JAGS (‘Just Another Gibbs Sampler’ v4.3.0)61. The Highest Posterior Density interval was used as the interval estimator of 95% credible intervals.
While there are many demographic approaches to calculating generation length50, these are generally data-intensive and have been applied to relatively few sharks and rays. Therefore, to derive generation length (GL), a simple measure that requires only female age-at-maturity and maximum age was used:

\[GL = \text{maximum age} + ([\text{maximum age} - \text{age-at-maturity}] \times z), \]

where \(z \) depends on the mortality rate of adults and is typically around 0.3 for mammals but we assume \(z \) is 0.5 to account for the truncation of age-structure due to overfishing and underestimateion of age in chondrichthyans. This value represents the median age of parents of the current cohort. To derive population reduction over 3 GL, the proportional decline over the \(x \) years of available catch rate or landings datasets was calculated, and this was used to calculate annual proportional change, which was then scaled across the 3 GL period.

If a species qualified for a change in conservation status from a previously published assessment (a ‘downlisting or ‘uplisting’ in status), changes were classified as either \textit{Genuine} or \textit{non-genuine} changes. Genuine changes are assigned due to actual increases or decreases in the level of extinction risk that a species faces based on change in the threatened processes. In contrast, non-genuine changes are assigned due to new information, taxonomic changes, and/or errors in the application of criteria or incorrect data used in the previous assessment50.

Assessments were drafted after the workshop’s conclusion and the category and criteria and the assessment rationale sections were initially sent to all workshop participants to solicit feedback before circulation to the full membership of the SSG comprising 177 members from 55 countries for their input. Each assessment was peer-reviewed by at least two experts with knowledge of the species and the IUCN Red List categories and criteria. Completed assessments were submitted to the IUCN Red List Unit in Cambridge, UK, for final review and publication on the IUCN Red List1.
Species distribution mapping. Draft species range maps were primarily based on the original maps published in the previous Red List assessments augmented by revised distributions from those in *Sharks of the World* and *Rays of the World* and maps were reviewed and validated by regional experts and taxonomists. The final distribution maps were prepared using ArcGIS 10.6. The ranges of each species were clipped to their known depth range based on the highest-resolution bathymetry dataset available across the region (15 arc seconds). One species, Kaja’s Sixgill Sawshark (*Pliotrema kajae*), was excluded from all spatial analyses, as it was not possible to map its range due to a lack of data.

Red List Index. We derived retrospective assessments for two earlier periods, 2005 and 1980 (with the current assessments set at 2020), in order to calculate a Red List Index (RLI). Before this current reassessment, all except 15 newly described species had assessments published on the IUCN Red List. All changes in Red List category except one were considered non-genuine changes due to new information. In other words, if what is currently understood was known during the previous assessments, the assigned status of those species would likely have been different. For example, if a species was assessed as DD in 2005 but is now LC in the current assessment, the older status would be retrospectively corrected to be LC. For species assessed as NT or in one of the threatened categories, ‘backcasting’ was undertaken by retrospectively assigning status based on current understanding of the spatial and temporal pattern of coastal human population growth, the development of general fishing pressure, the availability of fishing gear capable of capturing sharks and rays, and the development of the international trade demand for shark and shark-like ray fins.

The RLI for all 70 endemic species was also disaggregated to each of the nine SWIO range countries. The disaggregation of RLI to country level, which considers the relative proportions of all species’ ranges occurring in each country, allows a more nuanced understanding of which range countries contribute most to the change in Red List statuses across all species and the region. This is an important consideration because different range countries can potentially contain highly differing proportions of an
individual species’ distribution range, impacting driving or preventing extinction risk in this species. For calculating country-specific RLI values, the equation is amended such that:

\[
RLI_{(t,u)} = 1 - \left[\frac{\sum \left(W_{(t,s)} \times \frac{r_{su}}{R_s} \right)}{WEX \times \sum \left(\frac{r_{su}}{R_s} \right)} \right]
\]

where \(t \) is the year of assessment, \(u \) is the country and \(W_{(t,s)} \) is the Red List threat at year \(t \) for each species, multiplied by \(\frac{r_{su}}{R_s} \), representing the proportion of each species’ total range found within the Exclusive Economic Zone (EEZ) of each country\(^6\). This is summed across all species that occur in each country’s EEZ and divided by the maximum threat score (\(WEX = 5 \)), multiplied by the sum of proportional species’ ranges. The final country-specific RLI value is derived by subtracting from 1. Higher RLI values indicate fewer negative changes in Red List status across species and vice versa (as with the global RLI). Finally, we calculated national conservation responsibilities for all range countries, which are based on the sum of all threat scores across species within a country, multiplied by each of the species’ proportional ranges for that country\(^4\).

Acknowledgements

The assessment workshop was graciously hosted by the South African Institute for Aquatic Biodiversity (SAIAB), and organizers are particularly indebted to Angus Paterson and Sally Schramm for their support during the workshop. The authors would like to acknowledge Kerry Sink and Megan van der Bank from SANBI for attending the workshop and providing valuable insight. Tracey Fairweather from South Africa’s Department of Agriculture, Forestry and Fisheries (now Department of Environment, Forestry and Fisheries) and Gareth Jordaan and Bruce Mann from the Oceanographic Research Institute of South Africa (ORI) provided data and insight into assessments. Benedict Kiilu, Andrew Temple, Jeremey Kiszka, and Sabine Wintner also provided input into species assessments. Wade J. VanderWright provided assistance with data collation.

Author Contributions

RAP, PMK, and NKD designed the study and organized and led the workshop. RAP, KSG, and NKD wrote the manuscript. JC, NP, and NKD analyzed the data and produced
the figures. KSG, DAE, RWJ, KBH, RHB, CDS, SF, BK, RL, MEM, MS, and HW attended the workshop and provided valuable insight into Red List assessments. KBH provided mapping support. SF provided data and insight electronically. CLR and CMP reviewed Red List assessments. All authors reviewed the manuscript and provided critical insight.

Funding

This contribution is part of the IUCN SSC Shark Specialist Group’s Global Shark Trends Project and was funded by the Shark Conservation Fund, a philanthropic collaborative that pools expertise and resources to meet the threats facing the world’s sharks and rays. The Shark Conservation Fund is a project of Rockefeller Philanthropy Advisors.

PMK was supported by the Marine Biodiversity Hub, a collaborative partnership supported through funding from the Australian Government’s National Environmental Science Program (NESP).

DAE was supported by the South African Institute for Aquatic Biodiversity, Save Our Seas Foundation, and the South African Shark and Ray Protection Project, implemented by the WILDTRUST and funded by the Shark Conservation Fund.

RHB was supported by a grant (FED/2016/382-097/SVC-019 BIS) from the Indian Ocean Commission.

CDS and HWK were supported by DAFF SA and funded by the Marine Living Resources Fund.

NKD was supported by Discovery and Accelerator grants from Natural Science and Engineering Research Council and a Canada Research Chair.

The National Research Foundation South African Institute for Aquatic Biodiversity provided in-kind support for the assessment workshop.
Figure 1. Endemic species richness of (a) sharks and rays ($n = 70$), (b) threatened (Critically Endangered, Endangered or Vulnerable, according to the IUCN Red List Categories) sharks and rays ($n = 13$), (c) threatened sharks ($n = 8$), and (d) individual distributions of threatened rays ($n = 5$) across the SWIO region.

Figure 2. Species population time-series (expressed as a proportion) modelled from demersal research trawl surveys in commercially fished areas (line) and shore-based research angling surveys (dashed line) off the west and south coasts of South Africa. Lines and dashed lines denote the mean, and shaded regions represent the 95% credible intervals. Time-series are divided by their initial values and start at one. Silhouette colours indicate Red List status: dark green is Least Concern, light green is Near Threatened, yellow is Vulnerable, orange is Endangered.

Figure 3. Count of reported threat categories in the 20 threatened (Critically Endangered, Endangered and Vulnerable) and Near Threatened SWIO shark and ray species.

Figure 4. Spatial and temporal change in density (\ln kg per km2) between 20°E and 27°E longitude for 1991 and 2016 for (a) Lesser Guitarfish (*Acroteriobatus annulatus*; Vulnerable), (b) Bluntnose Spurdog (*Squalus acutipinnis*; Near Threatened), and (c) Twin-eye Skate (*Raja ocellifera*; Endangered).

Figure 5. Red List Index (RLI) for Sub-equatorial Africa endemic sharks and rays ($n = 70$). (a) The decline in RLI across assessment years 1980, 2005, and 2020. Country-specific declines in RLI from (b) 1980—2005 and (c) 2005—2020. Calculations of RLI exclude Data Deficient (DD) species.

Figure 6. National conservation responsibility of nine range countries for all 70 endemic shark and ray species in the SWIO region for which Red List Status is known.
Table 1. Original, retrospectively backcasted (for years 1980 and 2005), and current assessments of IUCN Red List categories for all endemic shark and ray species of the sub-equatorial Africa region (n = 70). Differences in original past assessments and backcast assessments arise due to new information about a species’ status from the better informed, more recent assessments. (CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near Threatened; LC, Least Concern; DD, Data Deficient). Species marked with * have been recently described for which previously published assessments do not exist.

ORDER: Family	Common name	Original IUCN Red List status	Red List status for RLI				
	Species name	2000	Mid-2000s	Late-2010s	1980	2005	2020
SHARKS							
PRISTIOPHORIFORMES: Pristiophoridae	Sawsharks						
Pliotrema annae*	Anna’s Sixgill Sawshark	DD₂₀₂₀	DD	DD	DD		
Pliotrema kajae*	Kaja’s Sixgill Sawshark	DD₂₀₂₀	DD	DD	DD		
Pliotrema warreni*	Warren’s Sixgill Sawshark	LC₂₀₁₉	LC	LC	LC		
SQUATINIFORMES: Squatinidae	Angel Sharks						
Squatina africana	African Angelshark	DD₂₀₀₄	NT₂₀₁₇	LC	LC	NT	
SQUALIFORMES: Centrophoridae	Gulper Sharks						
Centrophorus seychellorum	Seychelles Gulper Shark	DD₂₀₀₈	LC₂₀₁₈	LC	LC	LC	
SQUALIFORMES: Squalidae	Houndsharks						
Squalus acutipinnis*	Bluntnose Spurdog	NT₂₀₁₉	LC	LC	NT		
Squalus bassi*	African Longnose Spurdog	LC₂₀₁₉	LC	LC	LC		
Squalus lalannei	Seychelles Spurdog	DD₂₀₀₈	LC₂₀₁₈	LC	LC	LC	
SQUALIFORMES: Etmopteridae	Lantern Sharks						
Etmopterus alphus*	Whitecheek Lanternshark	LC₂₀₁₈	LC	LC	LC		
Etmopteruscompagnoi*	Brown Lanternshark	LC₂₀₁₈	LC	LC	LC		
Species name	Common name	Original IUCN Red List status	Red List status for RLI				
--------------	-------------	------------------------------	------------------------				
Etmopterus sculptus	Sculpted Lanternshark	LC to LC	LC to LC to LC				
Etmopterus sentosus	Thorny Lanternshark	LC to LC	LC to LC to LC				
ORECTOLOBIFORMES: Ginglymostomatidae	Nurse Sharks						
Pseudoginglymostoma brevicaudatum	Shorttail Nurse Shark	VU to CR	LC to VU to CR				
ORECTOLOBIFORMES: Hemiscylliidae	Longtailed Carpetsharks						
Chiloscyllium caeruleopunctatum	Bluespotted Bambooshark	DD to DD	DD to DD to DD				
CARCHARHINIFORMES: Pentanchidae	Deepwater Catsharks						
Apristurus saldanha	Saldanha Catshark	LC to LC	LC to LC to LC				
Bythaelurus clevai	Broadhead Catshark	DD to DD	DD to DD to DD				
Bythaelurus lutarius	Mud Catshark	DD to DD	DD to DD to DD				
Bythaelurus tenuicephalus	Narrowhead Catshark	LC to LC	LC to LC to LC				
Halaelurus lineatus	Lined Catshark	DD to LC	LC to LC to LC				
Halaelurus natalensis	Tiger Catshark	DD to LC	LC to NT to VU				
Haploblepharus edwardsii	Happy Eddie Catshark	NT to NT	LC to NT to EN				
Haploblepharus fuscus	Brown Shyshark	NT to VU	LC to VU to VU				
Haploblepharus kistnasamyi	Natal Shyshark	CR to VU	LC to NT to VU				
Haploblepharus pictus	Dark Shyshark	LC to LC	LC to LC to LC				
Holohalaelurus favus	Honeycomb Izak Catshark	EN to EN	LC to EN to EN				
Holohalaelurus gremmian	Grinning Izak Catshark	DD to DD	DD to DD to DD				
Holohalaelurus melanostigma	Crying Izak Catshark	DD to LC	LC to LC to LC				
Holohalaelurus punctatus	African Spotted Catshark	EN to EN	LC to EN to EN				
Species name	Common name	Original IUCN Red List status	Red List status for RLI				
--	-------------------------	-------------------------------	-------------------------				
Order: Family							
Common name	**2000**	**Mid-2000s**	**Late-2010s**	**1980**	**2005**	**2020**	
Holohalaelurus regani	Izak Catshark	LC2007	LC2019	LC	LC	LC	
CARCHARHINIFORMES: Scyliorhinidae	Catsharks						
Cephaloscyllium sufflans	Balloon Shark	LC2004	NT2019	LC	LC	NT	
Poroderma africano	Pyjama Shark	NT2005	LC2019	LC	LC	LC	
Poroderma pantherinum	Leopard Catshark	DD2004	LC2019	LC	LC	LC	
Scyliorhinus capensis	Yellowspotted Catshark	NT2004	NT2019	LC	LC	NT	
Scyliorhinus comoroensis	Comoro Catshark	DD2007	DD2018	DD	DD	DD	
CARCHARHINIFORMES: Proscyllidae	Finback Catsharks						
Eridacnis sinuans	African Ribbontail Catshark	LC2004	LC2018	LC	LC	LC	
CARCHARHINIFORMES: Triakidae	Houndsharks						
Mustelus palumbes	Whitespot Smoothhound	DD2006	LC2019	LC	LC	LC	
Scylliogaleus quecketti	Flapnose Houndshark	VU2005	VU2018	LC	NT	VU	
Triakis megalopterus	Spotted Gully Shark	NT2005	LC2019	LC	LC	LC	
Rays							
RAJIFORMES: Anacanthobatidae	Legskates						
Anacanthobatis marmorata	Spotted Legskate	DD2004	NT2019	LC	LC	NT	
Indobatis ori	Black Legskate	DD2004	LC2019	LC	LC	LC	
RAJIFORMES: Arhynchobatidae	Softnose Skates						
Bathyraja smithii	Softnose Skate	DD2008	LC2019	LC	LC	LC	
RAJIFORMES: Guriesiellidae	Pygmy Skates						
Cruriraja durbanensis	Smoothnose Pygmy Skate	DD2008	DD2018	DD	DD	DD	
Cruriraja hulleyi	Hulley's Pygmy Skate	LC2007	LC2018	LC	LC	LC	
Species name	Common name	Original IUCN Red List status	Red List status for RLI				
-----------------------------	----------------------------	-------------------------------	-------------------------				
Cruriraja parcomaculata	Roughnose Pygmy Skate	DD2007 LC2018 LC2018 LC2018	LC2018 LC2018 LC2018 LC2018				
Fenestraja maceachrani	Madagascar Pygmy Skate	DD2008 DD2018 DD2018 DD2018	DD2018 DD2018 DD2018 DD2018				
RAJIFORMES: Rajidae	Hardnose Skates						
Dipturus campbelli	Blackspot Skate	NT2004 NT2019 LC2019 LC2019	LC2019 LC2019 LC2019 LC2019				
Dipturus crosnieri	Madagascar Skate	VU2006 VU2018 LC2018 VU2018 VU2018	LC2018 VU2018 VU2018 VU2018				
Dipturus lanceorostratus	Rattail Skate	DD2004 DD2018 DD2018 DD2018	DD2018 DD2018 DD2018 DD2018				
Dipturus pullopunctatus	Slime Skate	LC2004 LC2019 LC2019 LC2019	LC2019 LC2019 LC2019 LC2019				
Dipturus stenorhynchus	Prownose Skate	DD2004 DD2018 DD2018 DD2018	DD2018 DD2018 DD2018 DD2018				
Leucoraja compagnoi	Tigertail Skate	DD2004 DD2018 DD2018 DD2018	DD2018 DD2018 DD2018 DD2018				
Leucoraja wallacei	Yellowspotted Skate	LC2008 VU2019 LC2018 VU2019 VU2019	LC2019 VU2019 VU2019 VU2019				
Neoraja stehmanni	South African Dwarf Skate	DD2004 LC2018 LC2018 LC2018	LC2018 LC2018 LC2018 LC2018				
Okamejei heemstrai	Narrow Skate	DD2004 LC2018 LC2018 LC2018	LC2018 LC2018 LC2018 LC2018				
Raja ocellifera	Twineye Skate	EN2019 LC2019 LC2019 LC2019	LC2019 LC2019 LC2019 LC2019				
Rajella caudaspinosa	Munchkin Skate	NT2004 LC2018 LC2018 LC2018	LC2018 LC2018 LC2018 LC2018				
Rajella paucispinosa	Sparseothorn Skate	LC2018 LC2018 LC2018 LC2018	LC2018 LC2018 LC2018 LC2018				
TORPEDINIFORMES: Narkidae	Sleeper Rays						
Electrolux addisoni	Ornate Sleeper Ray	CR2008 LC2018 LC2018 LC2018	LC2018 LC2018 LC2018 LC2018				
Heteronarce garmani	Natal Sleeper Ray	VU2007 NT2019 NT2019 NT2019 NT2019	NT2019 NT2019 NT2019 NT2019				
Narke capensis	Cape Sleeper Ray	DD2007 LC2018 LC2018 LC2018	LC2018 LC2018 LC2018 LC2018				
TORPEDINIFORMES: Torpedinidae	Torpedo Rays						
Tetronarce cowleyi	South African Torpedo		LC2018 LC2018 LC2018 LC2018				
Torpedo fuscomaculata	Blackspotted Torpedo	DD2004 DD2018 DD2018 DD2018	DD2018 DD2018 DD2018 DD2018				
TORPEDINIFORMES: Narcinidae	Numbfishes						
Species name	Common name	Original IUCN Red List status	Red List status for RLI				
---------------------------	-----------------------------	------------------------------	-------------------------				
Narcine insolita	Madagascar Numbfish	DD2004 DD2018	DD DD DD				
Rhinobatidae	Guitarfishes						
Acroteriobatus annulatus	Lesser Guitarfish	LC2006 VU2019	LC NT VU				
Acroteriobatus blochii	Bluntnose Guitarfish	LC2006 LC2018	LC LC LC				
Acroteriobatus leucospilus	Greyspot Guitarfish	DD2008 EN2018	LC VU EN				
Acroteriobatus ocellatus	Speckled Guitarfish	DD2008 DD2018	DD DD DD				
Rhinobatos austini	Austin’s Guitarfish	DD2008 DD2018	DD DD DD				
Rhinobatos holcorhynchus	Slender Guitarfish	DD2008 DD2018	DD DD DD				
MYLIOBATIFORMES: Gymnuridae	Butterfly Rays						
Gymnura natalensis	Diamond Ray	DD2006 LC2018	LC LC LC				
Table 2. Endemic SWIO shark and ray species and their observed and projected (over 3 GL) population trends (observed change in % in fisheries trawl surveys and shore-based research angling surveys off the west and south coasts of South Africa), for which JARA has been used as a decision-support tool to undertake extinction risk assessments based on the IUCN Red List Categories and Criteria.

Species	Common Name	RL Category	Survey	Years	GL	Population trend (%)
Acroteriobatus annulatus	Lesser Guitarfish	VU	trawl surveys	1991–2017	5	-87 (-34.1, -76.7, 62.7)
Dipturus pullopunctatus	Slime Skate	LC	trawl surveys	1991–2017	11.5	71 (10.1, 288.6)
Halaelurus natalensis	Tiger Catshark	VU	trawl surveys	1991–2017	20	-39 (-74.8, -98.9, 36.2)
Haploblepharus edwardsii	Happy Eddie	EN	angling surveys	1996–2017	20	-72 (-92.3, -99.6, -60.0)
Haploblepharus fuscus	Brown Shyshark	VU	angling surveys	1996–2017	20	-21 (32.4, -99.3, 550.6)
Holohalaelurus regani	Izak Catshark	LC	trawl surveys	1991–2017	20	39 (78.4, -42.6, 199.4)
Leucoraja wallacei	Whitespotted Skate	VU	trawl surveys	1991–2017	12	-37 (-40.4, -78.6, 32.4)
Mustelus palumbes	Warren’s Sixgill Sawshark	LC	trawl surveys	1991–2017	14	15 (26.7, -36.8, 108.4)
Pliotrema warreni	Pyjama Catshark	LC	angling surveys	1996–2017	25	30 (172.8, -91.4, 702.0)
Poroderma africanum	Leopard Catshark	LC	angling surveys	1996–2017	18	64 (332.6, -87.4, 1425.1)
Raja ocellifera	Twineye Skate	EN	trawl surveys	1991–2017	9	-70 (-65.5, -89.2, -17.1)
Scyliorhinus capensis	Yellowspotted Catshark	NT	trawl surveys	1991–2017	21	-28 (-36.3, -93.4, 115.5)
Squalus acutipinnis	Bluntnose Spurdog	NT	trawl surveys	1991–2017	23.5	-12 (-21.3, -78.9, 95.5)
Species	Common Name	Category	Survey	Years	GL	Population trend (%)
---------------------	---------------------	----------	---------------------	--------------	-----	----------------------
Squalus bassi	African Longnose Spurdog	LC	trawl surveys	1991–2017	23.5	146.3 (−33.7, 370.7)
Triakis megalopterus	Spotted Gully Shark	LC	angling surveys	1996–2017	20	117.7 (55.8, 195.7)
Table 3. Nine range countries in the southwest Indian Ocean and their national conservation responsibilities for all 70 endemic shark and ray species across the region, where Red List statuses are known. Responsibility for each country is calculated based on the numbers of species occurring in the country’s Exclusive Economic Zone (EEZ), the most recent Red List assessment category, and the proportion of each species’ range area occurring in the EEZ (values were normalized to range from 0 to 1).

Country	National Conservation Responsibility
South Africa	1.000
Mozambique	0.442
Madagascar	0.407
Tanzania	0.057
Namibia	0.053
Kenya	0.014
Mauritius	0.002
Comoros	0.001
Seychelles	0.000

References

1. IUCN. The IUCN Red List of Threatened Species. Version 2021-2. https://www.iucnredlist.org.

2. Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. *Science* **321**, 560–563 (2008).

3. Reynolds, J. D., Dulvy, N. K., Goodwin, N. B. & Hutchings, J. A. Biology of extinction risk in marine fishes. *Proc. Royal Soc. B* **272**, 2337–2344 (2005).

4. Dulvy, N.K., Pacoureau, N., Rigby, C.L., Pollom, R.A., Jabado, R.W., Ebert, D.A., Finucci, B., Pollock, C.M., Cheok, J., Derrick, D.H. and Herman, K.B. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. *Curr. Biol.* (2021). https://doi.org/10.1016/j.cub.2021.08.062

5. Stein, R. W. et al. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. *Nat. Écol. Evol.* **2**, 288–298 (2018).

6. Heithaus, M. R., Wirsing, A. J. & Dill, L. M. The ecological importance of intact top-predator populations: A synthesis of 15 years of research in a seagrass ecosystem. *Mar. Freshw. Res.* **63**, 1039–1050 (2012).
7. Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. *eLife* **2014**, (2014).

8. Kyne, P. M. et al. The thin edge of the wedge: Extremely high extinction risk in wedgeshishes and giant guitarfishes. *Aquat. Conserv. Mar. Freshw. Ecosyst.* **30**, 1337–1361 (2020).

9. Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. *Biol. Conserv.* **246**, 108459 (2020).

10. Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. *Nature* **589**, 567–571 (2021).

11. Derrick, D. H., Cheok, J. & Dulvy, N. K. Spatially congruent sites of importance for global shark and ray biodiversity. *PLOS One* **15**, e0235559 (2020).

12. Ebert, D. A., Wintner, S. P. & Kyne, P. M. An annotated checklist of the chondrichthyans of South Africa. *Zootaxa* **4947**, 1–127 (2021).

13. Griffiths, C. L., Robinson, T. B., Lange, L. & Mead, A. Marine biodiversity in South Africa: An evaluation of current states of knowledge. *PLoS ONE* **5**, e12008 (2010).

14. Briggs, J. C. & Bowen, B. W. A realignment of marine biogeographic provinces with particular reference to fish distributions. *J. Biogeogr.* **39**, 12–30 (2012).

15. Samoilys, M. et al. *Resilience of Coastal Systems and Their Human Partners in the Western Indian Ocean*. (2015).

16. Blythe, J. L., Murray, G. & Flaherty, M. S. Historical perspectives and recent trends in the coastal Mozambican fishery. *Ecol. Soc.* **18**, 65 (2013).

17. UNDP. Human Development Report 2020. The next frontier: Human development and the Anthropocene. xi + 398 pp. (2020).

18. Currie, J. C. et al. A novel approach to assess distribution trends from fisheries survey data. *Fish. Res.* **214**, 98–109 (2019).

19. Jabado, R. W. et al. Troubled waters: Threats and extinction risk of the sharks, rays and chimaeras of the Arabian Sea and adjacent waters. *Fish Fish.* **19**, 1043–1062 (2018).

20. Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA—A decision-support tool applied to pelagic sharks. *Conserv. Lett.* **13**, e12688 (2020).
21. Yan, H. F. et al. Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction. *Sci. Adv.* 7, 6026 (2021).

22. van der Elst, R. et al. Fish, fishers and fisheries of the Western Indian Ocean: Their diversity and status. A preliminary assessment. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 363, 263–284 (2005).

23. Humber, F. et al. Assessing the small-scale shark fishery of Madagascar through community-based monitoring and knowledge. *Fish. Res.* 186, 131–143 (2017).

24. Wildlife Conservation Society. Unpublished Data (2018).

25. Samoilies, M. Unpublished Data (2018).

26. Bennett, R. H. et al. Range extension of the Critically Endangered shorttail nurse shark *Pseudoginglymostoma brevicaudatum* (Orectolobiformes: Ginglymostomatidae) to include Mozambique, with implications for management. *Mar. Biodivers.* 51, 7 (2021).

27. Everett, B. I., Cliff, G., Dudley, S. F. J., Wintner, S. P. & van der Elst, R. P. Do sawfish *Pristis* spp. represent South Africa’s first local extirpation of marine elasmobranchs in the modern era? *African J. Mar. Sci.* 37, 275–284 (2015).

28. Daly, R. et al. Refuges and risks: Evaluating the benefits of an expanded MPA network for mobile apex predators. *Divers. Distrib.* 24, 1217–1230 (2018).

29. Osgood, G. J., McCord, M. E. & Baum, J. K. Chondrichthyans as an umbrella species-complex for conserving South African biodiversity. *African J. Mar. Sci.* 42, 81–93 (2020).

30. Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. *Nat. Ecol. Evol.* 1, 1–6 (2017).

31. Cheok, J., Jabado, R. W., Ebert, D. A. & Dulvy, N. K. Post-2020 Kunming 30% target can easily protect all endemic sharks and rays in the Western Indian Ocean and more. Preprint at https://www.biorxiv.org/content/10.1101/2021.03.08.434293v1 (2021).

32. da Silva, C. et al. The current status and management of South Africa’s chondrichthyan fisheries. *African J. Mar. Sci.* 37, 233–248 (2015).

33. Seychelles Fishing Authority. Seychelles National Plan of Action for the Conservation and Management of Sharks (2016). 127 pp.
34. Boistol, L., Harper, S., Booth, S. & Zeller, D. Reconstruction of marine fisheries catches for Mauritius and its outer islands, 1950–2008. In Harper, S. & Zeller, D. (eds.), *Fisheries Catch Reconstructions: Islands, Part II*, 39–59 (2011).

35. Le Manach, F. *et al.* Unreported fishing, hungry people and political turmoil: The recipe for a food security crisis in Madagascar? *Mar. Policy* **36**, 218–225 (2012).

36. Bultel, E. *et al.* An update of the reconstructed marine fisheries catches of Tanzania with taxonomic breakdown. In Le Manach, F. & Pauly, D. (eds.) *Fisheries Catch Reconstructions in the Western Indian Ocean, 1950–2010*, 151–161.

37. Lawson, J. M. *et al.* Extinction risk and conservation of critically endangered angel sharks in the Eastern Atlantic and Mediterranean Sea. *ICES Journal of Marine Science* **77**, 12–29 (2020).

38. Simpfendorfer, C. A. & Kyne, P. M. Limited potential to recover from overfishing raises concerns for deep-sea sharks, rays and chimaeras. *Environ. Conserv.* **36**, 97–103 (2009).

39. Georgeson, L. *et al.* Ecological risks of demersal fishing on deepwater chondrichthyan populations in the Southern Indian and South Pacific Oceans. *ICES J. Mar. Sci.* **77**, 1711–1727 (2020).

40. Blamey, L. K. *et al.* Ecosystem change in the southern Benguela and the underlying processes. *Journal of Marine Systems* **144**, 9–29 (2015).

41. Feitosa, L. M., Martins, L. P., de Souza Junior, L. A. & Lessa, R. P. Potential distribution and population trends of the smalltail shark *Carcharhinus porosus* inferred from species distribution models and historical catch data. *Aquat. Conserv. Mar. Freshw. Ecosyst.* **30**, 882–891 (2020).

42. Foden, W. B. *et al.* Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. *PLOS One* **8**, e65427 (2013).

43. Pacifici, M. *et al.* Assessing species vulnerability to climate change. *Nature Climate Change* **5**, 215–225 (2015).

44. Mace, G. M. *et al.* Aiming higher to bend the curve of biodiversity loss. *Nature Sustainability* **1**, 448–451 (2018).

45. Rounsevell, M. D. A. *et al.* A biodiversity target based on species extinctions. *Science* **368**, 1193–1195 (2020).
46. Ebert, D. A. & van Hees, K. E. Beyond jaws: rediscovering the ‘lost sharks’ of southern Africa. *African J. Mar. Sci.* **37**, 141–156 (2015).

47. Eschmeyer, W. N., Fricke, R. & van der Laan, R. Catalog of Fishes (2018). (Accessed: 20 April 2018).

48. Last, P. *et al.* *Rays of the World.* (CSIRO Publishing, 2016).

49. IUCN. IUCN Red List Categories and Criteria: Version 3.1. Second edition (IUCN, 2012).

50. IUCN Standards and Petitions Committee. *Guidelines for Using the IUCN Red List Categories and Criteria. Version 14* (IUCN, 2019).

51. Salafsky, N. *et al.* A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. *Conserv. Biol.* **22**, 897–911 (2008).

52. South Africa Department of Agriculture, Fisheries and Forests (DAFF). Unpublished data (2018).

53. Thorson, J. T. *et al.* Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. *Methods Ecol. Evol.* **6**, 627–637 (2015).

54. Thorson, J. T., Rindorf, A., Gao, J., Hanselman, D. H. & Winker, H. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes. *Proc. R. Soc. B Biol. Sci.* **283**, 20161853 (2016).

55. Winker, H., Pacoureaux, N. & Sherley, R.B. JARA: ‘Just Another Red-List Assessment’. Preprint at https://www.biorxiv.org/content/10.1101/672899v3 (2019).

56. Winker, H., Carvalho, F. & Kapur, M. JABBA: Just Another Bayesian Biomass Assessment. *Fish. Res.* **204**, 275–288 (2018).

57. Geweke, J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. in *Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting* 169–193 (Clarendon Press, 1992).

58. Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC - Open Research Online. *R News* 7–11 http://oro.open.ac.uk/22547/ (2006).

59. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2018).
60. Su, Y.-S. and Yajima, M. R2jags: Using R to Run 'JAGS'. R package version 0.5-7. https://CRAN.R-project.org/package=R2jags. (2015).

61. Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing. https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf (2003).

62. Ebert, D. A., Fowler, S., Compagno, L. & Dando, M. Sharks of the World: A Fully Illustrated Guide. (Wild Nature Press, 2013).

63. GEBCO Compilation Group. GEBCO 2020 Grid (doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9) (2020).

64. Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS One 2, e140 (2007).

65. Rodrigues, A. S. L. et al. Spatially explicit trends in the global conservation status of vertebrates. PLoS One 9, e113934 (2014).