New Oral Diabetes Drugs are more effective than Older Agents: Real or a Fraud?

Opinion

Recently, a question was raised in a debate regarding the utility of Sulfonylureas (SU) in comparison with new oral agents [1,2]. Dr. Ganuth affirms that new agents are as or more effective than SUs [2]. Proponents of SGLT2 inhibitors claim similar assertions [3-12]. An equal or greater lowering of HbA1c by new agents compared to SUs and even Metformin in subjects with prolonged duration of diabetes may be attributed to several reasons. Many published clinical trials have compared the efficacy of the maximum daily dose of new agents; DPP4 inhibitors, GLP1 analogs and SGLT2 inhibitors with either a minimally effective or sub maximal recommended daily dose of SUs [13-30]. The reason for administration of SUs in a minimally effective or sub maximal daily dose, e.g. Glimepiride, 1-6 mg in these comparative trials may be explained by the selection of subjects with average baseline HbA1c between 8 to 8.5 % prior to initiation of drugs because the maximal daily dose of new agents is established to lower HbA1c by 7-15 % whereas the maximum daily dose of Glimepiride was documented to lower HbA1c by approximately 25 % [30,31] and therefore a much lower than the maximum daily dose is adequate to obtain a comparable reduction in HbA1c.

Moreover, many of these recent comparative clinical trials are conducted by using generic SU, e.g Glimepiride, glipzide etc. probably with variable bioavailability and variable efficacy. Also, many of these studies are conducted in ‘clinical trial mills’ with same cadre of subjects in their collective databases as recently documented and hence the accuracy and validity of the results and conclusions derived from these studies has been recently questioned [32,33]. These authors suggest that recycling of the same subjects hopping from one trial to another may have skewed the ‘true and accurate’ comparative efficacy in these studies. Alternatively, reduced efficacy of old drugs in these ‘comparative efficacy’ trials when compared to the efficacy documented in their ‘premarketing’ trials may be attributed to ‘drug receptor interaction’. Previous long term or repeated exposure to old drugs is likely to induce ‘down regulation’ as well as decreased affinity of the receptors of old drugs resulting in decreased efficacy whereas lack of exposure causes ‘up regulation’ and maximal affinity of the receptors for the new agents at their initiation with consequential maximum efficacy. Finally, the efficacy in clinical trials with new drugs is determined by examination of the changes in glycemic parameters as compared to changes with placebo rather than the basal concentrations and therefore exaggerates the efficacy since rise in these parameters often occurs in the placebo group [3-29]. Moreover, these trials are conducted with the sponsorship and funding by the manufacturers of new drugs who are also fully cognizant of the reality that the old drugs are now ‘generic’ and pharmaceuticals producing the old agents are absolutely unlikely to conduct competitive trials to refute the findings of the trials with the new drugs.

Finally, the reliability and accuracy of the results of the comparative clinical trials conducted by the manufacturers of the new drugs are likely to be biased and hence need scrutiny and confirmation by independent investigators with no contact with these manufacturers. Therefore, the optimal and appropriate methodology is the comparative trials in drug naïve subjects with the drugs being used as monotherapy conducted by independent investigators devoid of any sponsorship or funding by any pharmaceutical company. In fact, such an independent recent study documented a relatively superior efficacy of mono therapy with Glipizide over the regimen consisting of combination of Saxagliptin and Metformin thus exposing the biased nature of results provided by the studies conducted by the manufacturers of new drugs [34]. However, the findings of this study also need confirmation and it may be provided by the ongoing ‘Grade’ trial, in which the efficacies of the new and the old drugs as a second line agents added to Metformin are being examined [35]. Finally, even if the efficacies of new agents are noninferiority to old drugs, e.g. SUs and Metformin, the markedly lower costs are likely to render therapy with old drugs distinctly more cost effective than new agents.

The efficacy of old drugs reported in the recent comparative clinical trials sponsored and funded by the manufacturers of new drugs is in stark contrast to the data described in the original premarketing clinical trials with old drugs, SU and Metformin [3-12,36-46]. These studies documented a markedly greater decline (25 – 30 %) in HbA1c from baseline level in comparison to many new agents (7-12%) including DPP4 inhibitors and SGLT 2 inhibitors in drug naïve subjects [3-25,30,31,36-46]. The greater efficacy of SUs in drug naïve subjects may be attributed to their ability to lower both the fasting and postprandial plasma glucose levels by stimulating both 1st and 2nd phase postprandial insulin secretion whereas DPP4 inhibitors and GLP1 analogs stimulate only the 1st phase insulin secretion and thus are devoid of a significant effect on fasting plasma glucose levels [19-25,47]...
54]. Several studies suggest the major mechanism of lowering post prandial glycaemia by DPP4 inhibitors to be the decrease in glucagon secretion rather than enhancement of insulin release by beta cells [19,22,24,54]. Moreover, SUs improve post prandial glycaemia to a greater degree when compared with DPP4 inhibitors and GLP 1 analogs because of their effect in lowering fasting plasma glucose and postprandial glycaemia is closely correlated to fasting plasma glucose [55]. Therefore, therapy with SUs results in superior efficacy in lowering overall diurnal glycaemia with a greater reduction in HbA1c as described previously [31]. Finally, Glimepiride induces a rise in both 1st and 2nd phase postprandial insulin secretion as well as improvement in insulin sensitivity and therefore appears to be more effective than other SUs [31,52,53].

In conclusion, the old drugs are more effective and far less expensive than the new agents and therefore must remain in the armamentarium of choices in management of type 2 diabetes in ‘developed’ countries. Moreover, the old drugs remain the major therapy of choice in developing countries because of the easier availability and greater affordability.

References

1. Abrahamson MJ (2015) Should sulfonylureas remain an acceptable first-line add-on to metformin therapy in patients with type 2 diabetes? Yes, they continue to serve us well! Diabetes Care 38(1): 166-169.
2. Genuit S (2015) Should sulfonylureas remain an acceptable first-line add-on to metformin therapy in patients with type 2 diabetes? No, it’s time to move on! Diabetes Care 38(1): 170-175.
3. Gerich JE, Bartien A (2011) Development of the sodium-glucose co-transporter inhibitor dapagliflozin for the treatment of patients with type 2 diabetes mellitus. Expert Review of Clinical Pharmacology 4(6): 669-683.
4. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, et al. (2012) Dose-ranging effects of canagliflozin, a sodium-glucose co-transporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35(6): 1232-1238.
5. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, et al. (2012) Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 156(6): 405-415.
6. Stenlöf K, Cefalu W, Kim K, Alba M, Usiskin K, et al. (2013) Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 15(4): 372-382.
7. Cefalu W, Leiter L, Yoon K, Arias P, Niskanen L, et al. (2013) Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382(9896): 941-950.
8. Scherthanner G, Gross JL, Rosenstock J, Guarrisco M, Pu M, et al. (2013) Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulphonylurea: A 52-week randomized trial. Diabetes Care 36(9): 2508-2515.
9. Bolinder J, Ljunggren O, Johansson L, Wilding J, Langküde AM, et al. (2016) Dapagliflozin maintains glycemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 16(2): 159-169.
10. Bailey CJ, Gross JL, Henrickson D, Iqbal N, Mansfield TA, et al. (2013) Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: A randomized, double-blind, placebo-controlled trial. BMC Med 11: 43.
11. Vasiliouk D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, et al. (2013) Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 159(4): 262-274.
12. Kabadi UM (2013) How Low do we fall to lower Hemoglobin A1c? SGLT2 Inhibitors: Effective Drugs or Expensive Toxins! Journal of Diabetes Mellitus 3(4): 199-201.
13. Ferrannini E, Fonseca V, Zinman B, Matthews D, Ahrán B, et al. (2009) Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes Metab 11(2): 157-166.
14. Mathews DR, Dejager S, Ahren B, Fonseca V, Ferrannini E, et al. (2010) Vildagliptin add-on to metformin produces similar efficacy and reduced hypoglycaemic risk compared with glimepiride, with no weight gain: results from a 2-year study. Diabetes Obes Metab 12(9): 780-789.
15. Arechavala R, Seck T, Chen Y, Kroboth KJ, O’Neill EA, et al. (2011) Efficacy and safety of treatment with sitagliptin or glimepiride in patients with type 2 diabetes inadequately controlled on metformin monotherapy: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 13(2): 160-168.
16. Jeon HJ, Oh TK (2011) Comparison of vildagliptin-metformin and glimepiride-metformin treatments in type 2 diabetic patients. Diabetes Metab 35(5): 529-535.
17. Srivastava S, Saxena GN, Keshwani P, Gupta R (2012) Comparing the efficacy and safety profile of sitagliptin versus glimepiride in patients of type 2 diabetes mellitus inadequately controlled with metformin alone. J Assoc Physicians India 60: 27-30.
18. Galwitz B, Rosenstock J, Rauch T, Bhattacharya S, Patel S, et al. (2012) 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet 380(9840): 475-483.
19. Muscelli E, Cosalomo A, Gastaldelli A, Mari A, Seghieri G, et al. (2012) Mechanisms for the antihyperglycemic effect of sitagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab 97(8): 2818-2826.
20. Derosa G, Carbone A, Franzetti I, Querci F, Fogari E, et al. (2012) Effects of a combination of sitagliptin plus metformin vs metformin monotherapy on glycemic control, β-cell function and insulin resistance in type 2 diabetic patients. Diabetes Res Clin Pract 98(1): 51-60.
21. Kim HS, Shin JH, Jeon HJ, Kim ES, Cho JL, et al. (2013) A comparative study of the effects of a dipetidyl peptidase-IV inhibitor and sulfonylurea on glucose variability in patients with type 2 diabetes with inadequate glycemic control on metformin. Diabetes Technol Ther 15(10): 810-816.
22. Solis-Herrera C, Triplitt C, Garduno-Garcia Jde J, Adams J, D’eonzo RA, et al. (2013) Mechanisms of glucose lowering of dipetidyl peptidase-4 inhibitor sitagliptin when used alone or with metformin in type 2 diabetes: a double-tracer study. Diabetes Care 36(9): 2756-2762.

Citation: Kabadi UM (2016) New Oral Diabetes Drugs are more effective than Older Agents: Real or a Fraud? J Diabetes Metab Disord Control 3(3): 00071. DOI: 10.15406/jmdmc.2016.03.00071
New Oral Diabetes Drugs are more effective than Older Agents: Real or a Fraud?

23. Vardarli I, Arndt E, Deacon CF, Holst JJ, Nauck MA (2014) Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes 63(2): 663-674.

24. Sjöstrand M, Igbal N, Lu, Hirshberg B (2014) Saxagliptin improves glycemic control by modulating postprandial glucagon and C-peptide levels in Chinese patients with type 2 diabetes. Diabetes Res Clin Pract 105(2): 185-191.

25. Zhang Y, Chi J, Wang W, Hong J, Gu W, et al. (2015) Different effects of two dipeptidyl peptidase-4 inhibitors and glimepiride on β-cell function in a newly designed two-step hyperglycemic clamp. J Diabetes 7(2): 213-221.

26. Schernthaner G, Durán-García S, Hanefeld M, Langset G, Niskanen L, et al. (2015) Efficacy and tolerability of saxagliptin compared with glimepiride in elderly patients with type 2 diabetes: a randomized, controlled study (GENERATION). Diabetes Obes Metab 17(7): 630-638.

27. Ahren B, Johnson SL, Stewart M, Cirkel DT, Yang E, et al. (2014) HARMONY 3: 104-Week Randomized, Double-Blind, Placebo- and Active-Controlled Trial Assessing the Efficacy and Safety of Albiglutide Compared with Placebo, Sitagliptin, and Glipizide in Patients with Type 2 Diabetes Taking Metformin. Diabetes Care, 37(8): 2141-2146.

28. Celulu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, et al. (2013) Efficacy and Safety of Canagliflozin versus Glimepiride in Patients with Type 2 Diabetes Inadequately Controlled with Metformin (CANTATA-SU): 52 Week Results from a Randomised, Double-Blind, Phase 3 Non-Inferiority Trial. The Lancet 382(9896): 941-950.

29. Ridderstråle M, Andersson KR, Zeller C, Kim G, Woerle HJ, et al. (2014) EMPA-REG H2O-SU Trial Investigators Comparison of Empagliflozin and Glimepiride as Add-On to Metformin in Patients with Type 2 Diabetes: A 104-Week Randomised, Active-Controlled, Double-Blind, Phase 3 Trial. Lancet Diabetes Endocrinol. 2(9): 691-700.

30. Saulsbury WJ, Coleman CI, Mearns ES, Zaccaro E, Doleh Y, et al. (2015) Comparative Efficacy and Safety of Antidiabetic Drug Regimens Added to Stable and Inadequate Metformin and Thiazolidinedione Therapy in Type 2 Diabetes. Int J Clin Pract 69(11): 1221-1235.

31. Kabadi UM (2004) Cost-effective Management of Hyperglycemia in Patients with Type 2 Diabetes Using Oral Agents. Manag Care 13(7): 48-59.

32. Holleman F, Uijldert M, Donswijk LF, Gale EA (2015) Productivity of Authors in the Field of Diabetes: Bibliographic Analysis of Trial Publications. BMJ 351.

33. Wagner E (2015) Are prolific authors too much of a good thing? BMJ 351:h2782.

34. Amblee A, Lious D, Fogelfeld L (2016) Combination of Saxagliptin and Metformin Is Effective as Initial Therapy in New-Onset Type 2 Diabetes Mellitus with Severe Hyperglycemia. J Clin Endocrinol Metab 101(6): 2528-2535.

35. Nathan DM, Buse JB, Kahn SE, Krause-Steinrueff H, Larkin ME, et al. (2013) GRADE Study Research Group. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care 36(8): 2254-2261.

36. Simonson DC, Kourides IA, Feinglos M, Shamoan H, Fischette CT (1997) Efficacy, safety, and dose-response characteristics of glipizide gastrointestinal therapeutic system on glycemic control and insulin secretion in NIDDM. Results of two multicenter, randomized, placebo-controlled clinical trials. The Glipizide Gastrointestinal Therapeutic System Study Group. Diabetes Care 20(4): 597-606.

37. Schade DS, Jovanovic L, Schneider J (1998) A placebo-controlled, randomized study of glimepiride in patients with type 2 diabetes mellitus for whom diet therapy is unsuccessful. J Clin Pharmacol 38(7): 636-641.

38. DeFronzo RA, Goodman AM (1995) Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med 333(9): 541-549.

39. Goldberg RB, Einhorn D, Lucas CP, Rendell MS, Dambsbo P, et al. (1998) A randomized placebo-controlled trial of repaglinide in the treatment of type 2 diabetes. Diabetes Care 21(11): 1897-1903.

40. Holman RR, Cull CA, Turner RC (1999) A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 22(6): 960-964.

41. Horton ES, Clinkingbeard C, Gatto L, Foley J, Mallows S, et al. (2000) Nateglinide alone and in combination with metformin improves glycemic control by reducing mealtime glucose levels in type 2 diabetes. Diabetes Care 23(11): 1660-1665.

42. Aronoff S, Rosenblatt S, Braitwaite S, Egan JW, Mathiesen AL, et al. (2000) Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 23(11): 1605-1611.

43. Phillips LS, Grunberger G, Miller E, Patwardhan R, Rappaport EB, et al. (2000) Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care 24(2): 308-315.

44. Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR, et al. (2004) Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN221): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 27(6): 1335-1342.

45. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, et al. (2005) Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28(5): 1092-100.

46. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, et al. (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia. 49(11): 2564-2571.

47. Kolhnerman OG, Gray RS, Shapiro G, Scarlett JA, Griffin J, et al. (1984) The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes 33(4): 346-354.

48. Groop L, Luzi L, Melander A, Groop PH, Ratheiser K, et al. (1987) Different effects of glyburide and gliptide on insulin secretion and hepatic glucose production in normal and NIDDM subjects. Diabetes 36(11): 1320-1328.

49. Btává PO, Melander A, Scherstén B, Wålhn-Boll E (1998) The influence of gliptide on early insulin release and glucose disposal before and after dietary regulation in diabetic patients with different degrees of hyperglycaemia. Eur J Clin Pharmacol 35(1): 31-37.
New Oral Diabetes Drugs are more effective than Older Agents: Real or a Fraud?

50. Groop LC, Ratheiser K, Luzi L, Melander A, Simonson DC, et al. (1991) Effect of sulphonylurea on glucose-stimulated insulin secretion in healthy and non-insulin dependent diabetic subjects: a dose-response study. Acta Diabetol 28(2): 162-168.

51. van Haeften TW, Veneman TF, Gerich JE, van der Veen EA (1991) Influence of gliclazide on glucose-stimulated insulin release in man. Metabolism 40(7): 751-755.

52. Korytkowski M, Thomas A, Reid L, Tedesco MB, Gooding WE, et al. (2002) Glimepiride improves both first and second phases of insulin secretion in type 2 diabetes. Diabetes Care 25(9): 1607-1611.

53. Kabadi MU, Kabadi UM (2004) Effects of glimepiride on insulin secretion and sensitivity in patients with recently diagnosed type 2 diabetes mellitus. Clin Ther 26(1): 63-69.

54. Gudipaty L, Rosenfeld NK, Fuller CS, Gallop R, Schutta MH, et al. (2014) Effect of exenatide, sitagliptin, or glimepiride on β-cell secretory capacity in early type 2 diabetes. Diabetes Care 37(9): 2451-2458.

55. Schade DS, Eaton RP, Mitchell W, Ortega T (1980) Glucose and Insulin Response to High Carbohydrate Meals in Normal and Maturity-Onset Diabetic Subjects. Diabetes Care 3 (2): 242-244.