Proportional Integral Observer (PIO) Design for Linear Control Systems

Xiaonan Dong
University of Rhode Island, dong_xn@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation
Dong, Xiaonan, "Proportional Integral Observer (PIO) Design for Linear Control Systems" (2016). Open Access Master's Theses. Paper 955.
https://digitalcommons.uri.edu/theses/955

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
PROPORTIONAL INTEGRAL OBSERVER (PIO) DESIGN FOR LINEAR CONTROL SYSTEMS

BY

XIAONAN DONG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
MECHANICAL ENGINEERING AND APPLIED MECHANICS

UNIVERSITY OF RHODE ISLAND
2016
ABSTRACT

Proportional integral observer (PIO) has the ability to estimate state variables and disturbances in linear control systems. The observer gain can be obtained by traditional pole-placement methods, however, these methods may not provide good robustness bound for observer based regulators and tracking systems. In this thesis, an extended observer model is derived, and shown that PIO can be regarded as this extended observer. A parameterized method of calculating feedback gain and proportional observer gain is modified and applied to gain calculation of PIO using an extended model for observer, with good robustness for PIO based regulators and tracking systems. Examples of PIO and PIO based control systems in both continuous time and discrete time are provided to show the result of this design method.
ACKNOWLEDGMENTS

First and foremost I want to thank my advisor Dr. Richard Vaccaro. He has done so much help to me during the whole 2016, from mathematics, simulation to using LaTeX for thesis writing. Besides, this thesis is also built on the methods and MATLAB functions provided by Dr. Vaccaro in his previous research. I am very grateful for the time and efforts he spent working on this project with me, and also his kind personality.

I would like to thank Dr. Hongyan Yuan for all the help he provided during my graduate study, especially for giving me advises on course study, and providing the room and computer for me to study with.

I would also like to thank Dr. Musa Jouaneh for being my committee member, and Dr. Mustafa Kulenovic for being the defense chair. Your reviewing to the thesis and questions in the defense are very important for improving my works.

At last, I would like to give my gratitude to developers of www.draw.io, for developing an amazing tool for drawing all block diagrams in my thesis.
TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... v

CHAPTER

1 Introduction ... 1

2 State and Disturbance Estimation with PIO 3

3 Observer Gain Calculation for MIMO Systems 15

4 PIO for Regulators .. 29

5 PIO for Tracking Systems 45

6 Summary and Future Work 55

6.1 Summary .. 55

6.2 Future Work .. 56

LIST OF REFERENCES .. 57

BIBLIOGRAPHY .. 59
Figure	Description	Page
1	Block diagram of proportional observer	3
2	Block diagram of proportional integral observer	5
3	Estimated and actual state variables using PO	8
4	Estimated and actual system output using PO	9
5	Estimated and actual state variables using PIO	11
6	Estimated disturbance using PIO	12
7	Estimated and actual system output using PIO	13
8	Estimation error on state variables using PIO	20
9	Estimation error on disturbance using PIO	21
10	Estimated and actual state variables using PIO	22
11	Estimated and actual disturbance using PIO	23
12	Estimation error on state variables using PIO	24
13	Estimation error on disturbance using PIO	25
14	Estimated and actual state variables using PIO	26
15	Estimated and actual disturbance using PIO	27
16	Block diagram of PIO based regulator	29
17	Robustness analysis (δ_1) of PIO based regulator	30
18	Perturbed plant model using δ_2	32
19	Estimated and actual state variables for PO based regulator	34
20	Estimated and actual plant output for PO based regulator	35
21	Estimated and actual state variables for PIO based regulator	37
Figure	Description	Page
--------	-------------	------
22	Estimated and actual disturbance for PIO based regulator	38
23	Estimated and actual plant output for PIO based regulator	39
24	Estimated and actual state variables for PIO based regulator	41
25	Estimated and actual disturbance for PIO based regulator	42
26	Estimated and actual plant output for PIO based regulator	43
27	Block diagram of PIO based tracking system	45
28	Robustness analysis of PIO based tracking system	46
29	Estimated and actual plant output for PIO based tracking system	49
30	Estimated and actual plant output for PIO based tracking system	50
31	Estimated and actual state variables for PIO based tracking system	52
32	Estimated and actual disturbance for PIO based tracking system	53
33	Estimated and actual plant output for PIO based tracking system	54
CHAPTER 1

Introduction

In state feedback control systems, all state variables are needed for feedback to make the system stable. However, as is pointed out in [1, 2], state variables might not be available for the reason of inaccessibility of some variables, or the limitation on the number of sensors. Therefore, observers are designed to estimate the unmeasured state variables for feedback purpose. Proportional observer (PO) is first introduced by Luenberger [3, 4] and shown to have the ability of estimating state variables in general cases. However, in case of plant with disturbance, the estimated variables and outputs will not match the actual ones.

Proportional integral observer (PIO) was first proposed by S. Beale and B. Shafai to make the observer based controller design less sensitive to parameter variation of the system by adding an integration path to the observer, which provides additional degrees of freedom [5]. Compared with proportional observer, PIO may offer advantages such as: reducing the effect of disturbances on control system performance, more accurate state-variables estimation and improved stability robustness [2, 6]. PIO is used in several applications to estimate unknown state variables, like in battery charge estimation [7] and flight control [8, 9]. However, design methods for calculating the observer gains are not provided in these papers. Besides, some other applications of PIO are raised by Z. Gao et. al. [10, 11] and F. Bakhshande et. al. [12].

In Chapter 2, the stability and disturbance estimation of PIO will be discussed based on the state-space model provided in [2], and it will be shown that the disturbance observer (DO) model provided in [2] is a special case of PIO. Furthermore, the fact that PIO can be regarded as a higher order PO will also be
proved in this chapter.

For observer gain design, loop transfer recovery (LTR) method is a commonly used method [6, 13] to minimize the difference between estimated state variables and actual ones, and to provide guaranteed stability robustness for observer-based control systems. The shortcoming of this method is that the observer poles cannot be chosen on demand, and the settling time of observer cannot be directly controlled. In [14], an observer design method is introduced to minimize disturbance by noise on output measurement. However, this paper does not provide a design method with disturbance in plant. Duan et. al. introduced a parameterized design method of observer gain calculation with desired pole locations for both continuous-time and discrete-time proportional integral observers in [15, 16], but the reason for selecting proper parameters for better system behavior, such as norm of observer gain or system robustness for feedback control, is not given in these papers.

R. Vaccaro introduced an optimization approach to pole placement in [17] to design feedback and observer gain for control systems, with desired pole location and good system robustness. In Chapter 3, it will be shown that these methods can be modified to apply on gain calculation for PIO.

PIO can be applied to various types of control systems. PIO based regulator will be discussed in Chapter 4, and PIO based tracking system will be discussed in Chapter 5.
The state-space model of a \(n^{th} \) order, \(p \) input, \(q \) output plant with \(l \) independent disturbance of constant value is described as:

\[
\dot{x} = Ax + Bu + Ed \\
d = 0 \tag{1}
\]

In the previous equation, the plant state vector \(x \) is \(n \times 1 \), the plant input vector \(u \) is \(p \times 1 \), and the independent disturbance \(d \) is an \(l \times 1 \) vector. In case of the disturbance model is unknown, the matrix \(E \) can be assumed to be identity matrix with the same order of plant. The output \(y \), a \(q \times 1 \) vector, of the plant is:

\[
y = Cx \tag{2}
\]

Figure 1. Block diagram of proportional observer
Proportional observers are built to estimate state variables using the plant input and output, as is shown in Figure 1. The state-space model of proportional observer is shown as follows:

\[
\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})
\]

(3)

in which \(\hat{x} \) is the estimated state variables. Subtract equation (3) from (1), letting \(e = x - \hat{x} \), which is the error between actual and estimated variables and disturbances, so that:

\[
\dot{e} = \dot{x} - \dot{\hat{x}} = Ax + Ed - (A - LC)\hat{x} - Ly = (A - LC)e + Ed
\]

(4)

Therefore, if there is no disturbance in plant \((d = 0)\), a proportional observer has the ability to estimate the state variables, if \((A - LC)\) is Routh-Hurwitz stable \([18, 19]\), which means all eigenvalues of \((A - LC)\) have negative real parts. However, if \(d\) is a non-zero constant, there will be a constant steady-state error between the estimated and actual state variables.

In order to eliminate this error in estimation, disturbance observer (DO) \([2]\) is described as follows:

\[
\dot{\hat{x}} = A\hat{x} + Bu + L_P(y - C\hat{x}) + E\hat{d} \\
\dot{\hat{d}} = L_I(y - C\hat{x})
\]

(5)

According to the definition \([5]\), the state space mode of proportional integral observer is:

\[
\dot{\hat{x}} = A\hat{x} + Bu + Ev + G(y - C\hat{x}) \\
\dot{\hat{v}} = F(y - C\hat{x})
\]

(6)

Comparing equation (5) and equation (6), it is obvious that disturbance observer can be regarded as proportional integral observer in a special case. The block diagram of proportional integral observer is shown in Figure 2.
Recall the state space model of the plant with disturbance described by equation (1). These two equations can be combined together by defining $z = \begin{bmatrix} x \\ d \end{bmatrix}$, so that:

$$\dot{z} = \begin{bmatrix} A & E \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ d \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u = A_z z + B_z u \tag{7}$$

The output of the plant is given by the following equation:

$$y = C x = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ d \end{bmatrix} = C_z z \tag{8}$$

Similarly, the state space model of disturbance observer described by equation (5) can also be rewritten into the following equation by defining $\hat{z} = \begin{bmatrix} \hat{x} \\ \hat{d} \end{bmatrix}$:

$$\dot{\hat{z}} = \begin{bmatrix} A - L_P C & E \\ -L_I C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{d} \end{bmatrix} + \begin{bmatrix} L_P \\ L_I \end{bmatrix} y + \begin{bmatrix} B \\ 0 \end{bmatrix} u \tag{9}$$
By forming
\[A_Z(n+l \times n+l) = \begin{bmatrix} A & E \\ 0 & 0 \end{bmatrix}, \quad B_Z(n + l \times p) = \begin{bmatrix} B \\ 0 \end{bmatrix}, \quad C_Z(q \times n + l) = \begin{bmatrix} C \\ 0 \end{bmatrix}, \quad L_Z(n + l \times q) = \begin{bmatrix} L_P \\ L_I \end{bmatrix}, \]
equation (9) is equivalent to:
\[\dot{\hat{z}} = (A_Z - L_ZC_Z)\hat{z} + L_Zy + B_Zu \quad (10) \]

In this thesis, the state space model of plant with disturbance \((A_Z, B_Z, C_Z)\)
described by equation (7) will be called the extended plant model, and the state
space model of DO described by equation (10) will be called the extended observer,
which is similar to the extended observer described in [20].

Subtract equation (7) by equation (10), letting \(e = z - \hat{z}\), which is the error
between actual and estimated variables and disturbances, so that:
\[\dot{e} = A_Zz - (A_Z - L_ZC_Z)\hat{z} - L_Zy \quad (11) \]
Noticing that \(y = C_Zz\) in equation (8), the equation above can be rewritten as:
\[\dot{e} = A_Z\hat{z} - L_ZC_Zz - (A_Z - L_ZC_Z)\hat{z} = (A_Z - L_ZC_Z)e \quad (12) \]

Thus, as long as \(A_Z - L_ZC_Z\) is Routh-Hurwitz stable, the error between actual and estimated variables will become zero as \(t \to \infty\).

Recall equation (8) and (10):
\[\dot{\hat{z}} = (A_Z - L_ZC_Z)\hat{z} + L_Zy + B_Zu \\ y = C_Zz \quad (13) \]

Comparing the equations above with the state-space model of proportional
observer described by equation (2) and (3):
\[\dot{\hat{x}} = (A - LC)\hat{x} + Ly + Bu \\ y = Cx \quad (14) \]
It is obvious that the extended PIO model has the same formation with PO, by changing (A, B, C, L) into (A_Z, B_Z, C_Z, L_Z). Therefore, disturbance observer and proportional integral observer both can be regarded as a higher order proportional observer for the extended model, with $\hat{z} = \begin{bmatrix} \hat{x} \\ \hat{d} \end{bmatrix}$. Thus, design methods for proportional observers can be applied to observer gain L calculation for proportional integral observers with this extended observer model.

Examples

In this 3^{rd} order single-input, single-output (SISO) system, the state space model is given by:

$$A = \begin{bmatrix} -4 & 2 & 2 \\ 20 & -20 & -6 \\ -12 & 4 & -4 \end{bmatrix}, B = \begin{bmatrix} 10 \\ 1 \\ 0.1 \end{bmatrix}, C = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 1 \\ 1.414 \\ 1.732 \end{bmatrix}$$

The initial state of the system is $x_0 = \begin{bmatrix} 3.142 & 2.718 & 0.618 \end{bmatrix}^T$, and a constant disturbance $d = 10$ is added to the plant at $t = 2$ sec.

The observer gain for proportional observer can be obtained by using MATLAB command `>>L=place(A',C',o poles)'`, in which `o poles` are the chosen pole locations for the proportional observer. In this example, `o poles` for proportional observer is chosen to be $[-17.7516 \ -14.0572 \pm 13.4111i]$. A simulation for using proportional observer to estimate plant state variables is provided by `PO_SISO.m`.

The simulation result given by Figure 3 and 4 shows that proportional observer estimates the state variables and output correctly when there is no disturbance in the plant for $t < 2$ sec. However, there will be a constant steady-state error in estimation after leading a constant disturbance into the plant at $t = 2$ sec, for both state variables and plant output.
Figure 3. Estimated and actual state variables using PO
Figure 4. Estimated and actual system output using PO
For proportional integral observers, the observer gain L_Z for the extended model is given by MATLAB command $\gg Lz=\text{place}(Az',Cz',\text{opoles})'$, in which opoles are the chosen pole locations for the extended observer. In this example, opoles for proportional integral observer is chosen to be $[-52.6614 \ -12.2790 \ -10.8783 \pm 5.9727i]$. A simulation for using proportional observer to estimate plant state variables is provided by PIO_SISO.m

$L_Z = \begin{bmatrix} L_P \\ L_I \end{bmatrix}$ can be separated into two parts to fit equation (5) for the general form of PIO. The proportional observer gain L_P contains the first n rows of L_Z, and the integral observer gain L_I contains the remaining rows of L_Z. The proportional and integral gains calculated using place command are:

$L_P = \begin{bmatrix} -87.4296 \\ -111.3991 \\ -28.7325 \end{bmatrix}, \quad L_I = \begin{bmatrix} -359.3262 \end{bmatrix}$.

As is shown in Figure 5, 6 and 7, simulation result shows that PIO has the ability to estimate state variables, disturbance and system output correctly within 0.6 sec, with or without the disturbance in plant.
Figure 5. Estimated and actual state variables using PIO
Figure 6. Estimated disturbance using PIO
Figure 7. Estimated and actual system output using PIO
The results above are derived in continuous time, and the same process can be applied in discrete time. For a n^{th} order, p input, q output plant with l independent disturbance of constant value, the plant model is described as:

$$x[k+1] = Ax[k] + Bu[k] + Ed[k]$$
$$d[k+1] = d[k]$$
$$y[k] = Cx[k]$$

And the PIO model for this discrete time plant is:

$$\hat{x}[k+1] = A\hat{x}[k] + Bu[k] + LP(y[k] - C\hat{x}[k]) + Ed[k]$$
$$\hat{d}[k+1] = d[k] + LI(y[k] - C\hat{x}[k])$$

Similar to the extended model for plant and observer in continuous time, the extended model for this discrete time plant and observer is given by the following equations by making $z[k] = [x[k] \ d[k]]$:

$$z[k+1] = AZz[k] + BZu[k]$$
$$\hat{z}[k+1] = (AZ - LZCZ)\hat{z}[k] + LZy[k] + BZu[k]$$
$$y[k] = CZz[k]$$

In which

$$AZ_{(n+l\times n+l)} = \begin{bmatrix} A & E \\ 0 & I \end{bmatrix}, BZ_{(n+l\times p)} = \begin{bmatrix} B \\ 0 \end{bmatrix}, CZ_{(q\times n+l)} = \begin{bmatrix} C & 0 \end{bmatrix}, LZ_{(n+l\times q)} = \begin{bmatrix} LP \\ LI \end{bmatrix}$$

The extended model in discrete time described by equation (17) has the exact same form with equation (13) for the continuous time. The only difference between the extended model of continuous time and discrete time is that the A_Z matrix in continuous time model is $\begin{bmatrix} A & E \\ 0 & 0 \end{bmatrix}$. Therefore, the design method for observer in continuous time can be directly applied for discrete time systems.
CHAPTER 3
Observer Gain Calculation for MIMO Systems

As is shown in Chapter 2, MATLAB command \texttt{place} can be used for observer gain calculation with desired observer pole locations. For single-input, single-output (SISO) systems, \texttt{place} command will provide the unique result for feedback gain calculation, while for multiple-input, multiple-output (MIMO) systems, \texttt{place} will choose one from an infinite number of results with the eigenvectors of \((A - LC)\) to be most orthogonal. In this chapter, a parameterized method of observer gain calculation will be shown based on the method developed in [17, 21] for feedback gain calculation.

The plant model is assumed to be observable, which means the observer has the ability to estimate all state variables correctly from any initial state in finite time, for observer gain \(L\) design. Popov-Belevitch-Hautus (PBH) Test is a commonly used method for checking observability.

Assuming the original plant \((A, B, C)\) is observable, thus, the following equation holds for all eigenvalue \(\lambda\) of matrix \(A\), according to PBH test [22]:

\[
rank \left[\begin{array}{c}
\lambda I_n - A \\
C
\end{array} \right] = n
\]

(18)

Consider the \(n^{th}\) order system with \(q\) output and \(l\) disturbances, as is shown in Chapter 2, the extended model \(\dot{z} = A_Z z + B_Z u\) and \(y = C_Z z\) is observable if the following equation holds for all eigenvalue \(\lambda\) of matrix \(A_Z\):

\[
rank \left[\begin{array}{c}
\lambda I_{n+l} - A_Z \\
C_Z
\end{array} \right] = n + l
\]

(19)

For \(A_Z = \begin{bmatrix} A & E \\ 0 & 0 \end{bmatrix}\) in continuous time, eigenvalues of \(A_Z\) are all eigenvalues
of A and l zeros. For stable systems in continuous time, matrix A in plant model can not be zero, thus:

Case 1: $\lambda \neq 0$, which are the poles of the original plant:

$$
\begin{bmatrix}
\lambda I_n + A Z
\end{bmatrix}
$$

The rank will not be changed by making the following transformation:

$$
\begin{bmatrix}
I_n & E/L \\
0 & I_l \\
0 & 0 & I_q
\end{bmatrix}
\begin{bmatrix}
\lambda I_n - A \\
0 \\
C
\end{bmatrix}
=
\begin{bmatrix}
\lambda I_n - A \\
0 \\
C
\end{bmatrix}
$$

which is equivalent to:

$$
\begin{bmatrix}
\lambda I_n + A Z
\end{bmatrix}
=
\begin{bmatrix}
\lambda I_n - A \\
0 \\
C
\end{bmatrix}
$$

Noticing that the original plant is assumed to be observable, suggesting that the rank of $[\lambda I_n - A]_C$ is n as is shown in equation (18), and the rank of $[0 \lambda I_l T 0]^T$ is l, Thus:

$$
\begin{bmatrix}
\lambda I_n + A Z
\end{bmatrix}
= n + l
$$

Therefore, the poles of original plant are still observable for the extended model.

Case 2: $\lambda = 0$, which are the added poles of extended plant by letting $A Z = [A E]$

$$
\begin{bmatrix}
\lambda I_n + A Z
\end{bmatrix}
=
\begin{bmatrix}
-A & -E \\
0 & 0 \\
C & 0
\end{bmatrix}
$$

Therefore, the added poles to the extended plant are observable, if and only if

$$
\begin{bmatrix}
-A & -E \\
C & 0
\end{bmatrix}
= n + l
$$
Noticing that the only condition for $\text{rank} \begin{bmatrix} -A & -E \\ C & 0 \end{bmatrix} = n + l$ is that q is greater than or equal to l, which means that the extended system is observable only if the number of measured output is greater than or equal to the number of independent disturbances. In case the disturbance model is not known, E should be selected as I_n, and the system is observable if and only if the number of output is equal to the number of state variables, which is usually invalid for the observer is used when not all state variables are available. The prove process is similar in discrete time, as is shown in [8].

In conclusion, the extended system is observable if the following conditions stands: the original plant is observable, the number of measured output is greater than or equal to the number of independent disturbances, and $\text{rank} \begin{bmatrix} -A & -E \\ C & 0 \end{bmatrix} = n + l$ or equivalently, $\text{rank} \begin{bmatrix} A & E \\ C & 0 \end{bmatrix} = n + l$.

Now we consider parameterizing of observer gain matrices for systems with more than one measured output. Assuming the extended plant model (A_Z, B_Z, C_Z) is observable, λ_i is one of the eigenvalues of $A_Z - L_Z C_Z$, and u_i is the corresponding eigenvector, which satisfies the following equation:

$$ (A_Z^T - C_Z^T L_Z^T) u_i = \lambda_i u_i $$ (23)

The equation above can be rewritten as:

$$ \begin{bmatrix} (\lambda_i I - A_Z^T) & C_Z^T \end{bmatrix} \begin{bmatrix} u_i \\ L_Z^T u_i \end{bmatrix} = 0 $$ (24)

Letting $P(\lambda_i) = [(\lambda_i I - A_Z^T) \ C_Z^T]$, this $(n + l) \times (n + l + q)$ matrix has rank n for the extended model to be observable, according to the PBH test [22]. Thus $\begin{bmatrix} u_i \\ L_Z^T u_i \end{bmatrix}$ would be in the q-dimensional null space of $P(\lambda_i)$. Orthonormal bases $\begin{bmatrix} M_i \\ N_i \end{bmatrix}$ of this null space can be generated by using \texttt{null(P)} command in MATLAB.
Multiplying this orthonormal base by a \(q \times 1 \) parameter \(\alpha_i \), the following equation can be formed:

\[
\begin{bmatrix}
 u_i \\
 L_Z^T u_i
\end{bmatrix} = \begin{bmatrix}
 M_i \\
 N_i
\end{bmatrix} \alpha_i = \begin{bmatrix}
 M_i \alpha_i \\
 N_i \alpha_i
\end{bmatrix} \overset{\text{def}}{=} \begin{bmatrix}
 v_i \\
 w_i
\end{bmatrix}.
\] (25)

Thus, for any selected parameter \(\alpha_i \), there would be a corresponding pair of vectors \((v_i, w_i)\) satisfying \(L_Z^T w_i = v_i \). Apply this process to all \(n + l \) eigenvalues, the following equation will satisfy by forming \(V = [v_1 \ldots v_{n+l}] \) and \(W = [w_1 \ldots w_{n+l}] \):

\[
L_Z^T V = W
\] (26)

By choosing parameters \(\alpha_1, \ldots, \alpha_{n+l} \) to make matrix \(V \) to be nonsingular, the observer gain matrix is:

\[
L_Z = (WV^{-1})^T = V^T W^T
\] (27)

MATLAB function \texttt{obg.reg.m} is provided by R. Vaccaro [17] to calculate proportional observer gain for feedback control system with good stability robustness. A MATLAB function \texttt{OBGX.m} has been built by changing the cost function in \texttt{obg.reg.m}, making users able to pick out certain parameters \(\alpha_1, \ldots, \alpha_{n+l} \) and returns corresponding observer gain matrix \(L_Z \) for the extended model, with minimized cost function. As is mentioned in Chapter 2, this method can be applied to both continuous time and discrete time systems.

Observer gain for the extended model can be obtained by command

\texttt{>>Lz=OBGX(Az,Cz,opoles,minoption)}, with the extended plant model \((Az,Cz)\) and desired extended observer pole locations \((\texttt{opoles})\). \texttt{minoption} is the cost function to be minimized, such as norm of observer gain (‘\texttt{norm}’) or condition number of \((A_Z - L_Z C_Z)\) (‘\texttt{cond}’). This MATLAB function can also be used to
calculate proportional observer gains, by inputting the original plant model \((A, C)\) and proportional observer pole locations.

Examples

A simulation will be provided using example from [8]. The discrete time state space model of the disturbed plant is

\[
A = \begin{bmatrix}
0.9630 & 0.0181 & 0.0187 \\
0.1808 & 0.8195 & -0.0514 \\
-0.1116 & 0.0344 & 0.9586
\end{bmatrix},
C = \begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix},
E = \begin{bmatrix}
0.0996 & 0.0213 \\
0.0050 & 0.1277 \\
0.1510 & 0.0406
\end{bmatrix}
\]

The initial state of the system is \(x_0 = [0 \ 1 \ 0]^T\) and the constant disturbance \(d = \begin{bmatrix} 0.3 \sin(0.1k) + 0.5 \cos(0.03k) \\ 2 + 0.2 \cos(0.05k) \end{bmatrix} \). The initial state of observer is zero vector. A simulation for using proportional observer to estimate plant state variables provided by `PIO_MIMO.m` is shown in Figure 8, 9, 10 and 11, with the same pole locations in [8] and cost function to be condition number of \((A_Z - L_Z C_Z)\).

Figure 8 and 9 shows the estimation error on state variables and disturbance will comes to zero in short period. Figure 10 shows the estimated and actual state variables matches very well in long time period. Figure 11 shows that compared to the actual disturbance, there is a delay and error in amplitude for the estimated disturbance in long time period.

The proportional and integral observer gains can be obtained by separating the observer gain \(L_Z\) for extended observer with the same process in the previous chapter:

\[
L_P = \begin{bmatrix}
2.8404 & -3.5617 \\
2.6633 & 2.2444 \\
3.0767 & -2.1287
\end{bmatrix},
L_I = \begin{bmatrix}
18.5780 & 8.6146 \\
12.9513 & 16.2018
\end{bmatrix}
\]

The condition number of \((A_Z - L_Z C_Z)\) is \(6.568 \times 10^3\)
Figure 8. Estimation error on state variables using PIO
Figure 9. Estimation error on disturbance using PIO
Figure 10. Estimated and actual state variables using PIO
Figure 11. Estimated and actual disturbance using PIO
Compared with the proportional and integral gain in [8],

\[
L_P = \begin{bmatrix}
31.7392 & 19.6384 \\
1.8918 & 1.7307 \\
29.3767 & 18.9849
\end{bmatrix}, \quad L_I = \begin{bmatrix}
51.1873 & 34.5803 \\
-21.3249 & -10.6399
\end{bmatrix}
\]

The condition number of \((A_Z - L_ZC_Z)\) is \(3.9957 \times 10^4\), which is approximately 6 times higher than the result obtained from OBGX.m

Compared to the result in [8], as is shown in Figure 12, 13, 14 and 15, the result using OBGX.m shown in Figure 8, 9, 10 and 11 has smaller amplitude on the estimation error in short time period, but not that good result in disturbance estimation in long time period.

Figure 12. Estimation error on state variables using PIO
Figure 13. Estimation error on disturbance using PIO
Figure 14. Estimated and actual state variables using PIO
Figure 15. Estimated and actual disturbance using PIO
The reason that the observer can estimate state variables and constant disturbance correctly, while not that accurate on sinusoid disturbance is that this extended model of observer is built for the plant with the assumption that the unknown disturbance is constant. Matrix E can be assumed to be n^{th} order identity matrix if the exact disturbance model is unknown, but the extended observer model will still estimate disturbance with constant value correctly, if the extended system (A_Z, C_Z) is observable. For other types of disturbances, there will always exists an error on disturbance estimation, since the observer model does not fit the disturbance model. In the mean time, the estimation of state variables is still going to be correct, as long as the plant model (A, B, C) is known.
CHAPTER 4
PIO for Regulators

As is shown in Chapter 3, observer gain is not unique for MIMO system, and MATLAB function `OBG.m` was developed to calculate an observer gain to minimize a cost function, such as norm of observer gain or condition number of $(A_Z - L_Z C_Z)$. In this chapter, a similar method of calculating observer gain for PIO based regulators will be provided, by changing the cost function into robustness bound of the feedback control system.

Recall the plant and PIO model described by equation (1), (2) and (5):

\[
\begin{align*}
\dot{x} &= Ax + Bu + Ed \\
\dot{d} &= 0 \\
y &= Cx \\
\dot{x} &= A\hat{x} + Bu + L_P(y - C\hat{x}) + Ed \\
\dot{d} &= L_I(y - C\hat{x})
\end{align*}
\] (28)

Figure 16. Block diagram of PIO based regulator
As is shown in Figure 16, adding feedback to the system will make the input u to the plant equals to $-K\hat{x}$, and equation (28) can be rewritten into:

$$
\begin{bmatrix}
\dot{x} \\
\dot{\hat{x}} \\
\dot{d}
\end{bmatrix} =
\begin{bmatrix}
A & -BK & 0 \\
LPC & A - BK - LPC & E \\
LI & -LC & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\hat{x} \\
d
\end{bmatrix} +
\begin{bmatrix}
E \\
0 \\
0
\end{bmatrix} d
$$

(29)

For close loop systems, robustness is an important property of feedback gain and observer gain design. In case the plant is not correctly modeled, the perturbed plant is introduced using small gain theorem as is shown in Figure 17. If the system infinity norm of the unknown plant perturbation is less than a robustness bound δ_1, the perturbed control system is guaranteed to be stable, despite the error in modeling the plant. These robustness bounds are derived using the small-gain theorem [23]. This theorem says that the robustness bound δ_1 is the reciprocal of the system infinity norm of the system from w to v in Figure 17.

![Figure 17. Robustness analysis (δ_1) of PIO based regulator](image)
To calculate robustness bound δ_1 for the PIO based regulator, the model from w to v will be derived by adding a perturbation on plant as is shown in Figure 17. By letting $v = -K\hat{x}$ and $u = w + v = w - K\hat{x}$, equation (28) can be rewritten as:

$$
\dot{x} = Ax + B(w - K\hat{x}) + Ed = Ax - BK\hat{x} + Bw + Ed
$$
$$
\dot{x} = A\hat{x} - BK\hat{x} + L_P(y - C\hat{x}) + Ed = L_PCx + (A - BK - L_PC)\hat{x} + Ed
$$
$$
\dot{d} = L_ICx - L_IC\hat{x}
$$

(30)

In order to calculate close loop robustness, the disturbance is set to zero, making the equation above equivalent to:

$$
\begin{bmatrix}
\dot{x} \\
\dot{\hat{x}} \\
\dot{\hat{d}}
\end{bmatrix} =
\begin{bmatrix}
A & -BK & 0 \\
L_PC & A - BK - L_PC & E \\
L_IC & -L_IC & 0
\end{bmatrix}
\begin{bmatrix}
x \\
\hat{x} \\
\hat{d}
\end{bmatrix} +
\begin{bmatrix}
B \\
0 \\
0
\end{bmatrix} w
$$

(31)

By forming

$$
A_{Z(n+l\times n+l)} = \begin{bmatrix} A & E \\ 0 & 0 \end{bmatrix}, B_{Z(n+l\times p)} = \begin{bmatrix} B \\ 0 \end{bmatrix}, C_{Z(q\times n+l)} = \begin{bmatrix} C & 0 \end{bmatrix}
$$

and

$$
K_{Z(p\times n+l)} = \begin{bmatrix} K & 0 \end{bmatrix}, L_{Z(n+l\times q)} = \begin{bmatrix} L_P \\ L_I \end{bmatrix},
$$

equation (31) can be rewritten into the following equation by letting $\hat{z} = \begin{bmatrix} \hat{x} \\ \hat{d} \end{bmatrix}$:

$$
\begin{bmatrix}
\dot{x} \\
\dot{\hat{z}}
\end{bmatrix} =
\begin{bmatrix}
A & -BK_{Z} \\
L_IC \ ZC & A_{Z} - B_{Z}K_{Z} - L_IC \ ZC
\end{bmatrix}
\begin{bmatrix}
x \\
\hat{z}
\end{bmatrix} +
\begin{bmatrix}
B \\
0
\end{bmatrix} w
$$

(32)

Compared to equation (22) in [17]:

$$
\begin{bmatrix}
\dot{x} \\
\dot{\hat{x}}
\end{bmatrix} =
\begin{bmatrix}
A & -BK \\
LC & A - BK - LC
\end{bmatrix}
\begin{bmatrix}
x \\
\hat{x}
\end{bmatrix} +
\begin{bmatrix}
B \\
0
\end{bmatrix} w
$$

$$
v = \begin{bmatrix} 0 & -K \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}
$$

31
The equation above is equivalent to equation (32) by changing K into K_Z, L into L_Z, and \dot{x} into \dot{z}, which suggests that the design method for PIO based regulator would be the same as the PO based regulator, by changing the proportional observer to the extended observer.

\[
\begin{bmatrix}
\dot{x} \\
\dot{\hat{z}}
\end{bmatrix} = \begin{bmatrix}
A & -BK_Z \\
L_ZC & A_Z - B_ZK_Z - L_ZC_Z
\end{bmatrix} \begin{bmatrix} x \\ \hat{z} \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} w \\
v = \begin{bmatrix} 0 & -K_Z \end{bmatrix} \begin{bmatrix} x \\ \hat{z} \end{bmatrix} + w
\]

(33)

The objective of observer design for close loop system is to obtain the maximized robustness bound δ_1 and δ_2. By changing the cost function designed for PO based regulator in `obg_reg.m` provided by R. Vaccaro [17] into the corresponding cost function of robustness bound for PIO based regulator, with A_Z, B_Z, C_Z, K_Z, and L_Z, MATLAB function `OBGX_REG.m` is developed to calculate extended observer gain for PIO based feedback control system with good stability robustness. Observer gain for the extended model can be obtained by command

\[
>> Lz=OBGX_REG(Az,Bz,Cz,Kz,1,opoles,T),
\]

with the extended plant and regulator model (Az, Bz, Cz, Kz), number of independent disturbance (1), and desired extended observer pole locations ($opoles$). T is the sampling interval for discrete
systems, and should be set to zero for continuous systems. This MATLAB function can also be used to calculate proportional observer gains, by inputing the original plant and regulator model \((A, B, C, K)\) and proportional observer pole locations, with \(l\) set to be zero.

Examples

A simulation will be provided using the example of cart-pendulum system from [17]. The continuous time state space model of the disturbed plant is

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
23.1 & 0 & 0 & 0.1189 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -25
\end{bmatrix},
B = \begin{bmatrix}
0 \\
12.525 \\
0 \\
2633
\end{bmatrix},
C = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix},
E = \begin{bmatrix}
1 \\
1.414 \\
1.732 \\
2
\end{bmatrix}
\]

The initial state of the system is \(x_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T\), and a constant disturbance \(d = 5\) is added to the plant at \(t = 2\) sec. The initial state of observer is set to zero.

The feedback gain given by \(>>K=\text{place}(A,B,\text{poles})\) command with regulator poles equal to \(s_4/T_s\), in which \(s_4\) is the Bessel poles, and \(Ts\) is the settling time of the regulator equals to 1 sec.

\[
K = \begin{bmatrix}
1.7034 & 0.3610 & -0.0229 & -0.0040
\end{bmatrix}
\]

The simulation result given by Figure 19 and 20 shows that proportional observer estimates the state variables and output correctly when there is no disturbance in the plant for \(t < 2\) sec. However, there will be a constant steady-state error in estimation after leading a constant disturbance into the plant at \(t = 2\) sec, for both state variables and plant output.

The robustness bound of the regulator using PO is \(\delta_1 = 0.4354\) and \(\delta_2 = 0.6158\).
Figure 19. Estimated and actual state variables for PO based regulator
Figure 20. Estimated and actual plant output for PO based regulator
For PIO based regulators, choosing poles for observer to be $[-13.8600 \pm 20.2891i, -22.1123 \pm 6.6213i]$, the observer gain given by ‘OOGX_REG’ is:

$$L_P = \begin{bmatrix} 50.7569 & -0.2447 \\ -6385.6711 & 90.0240 \\ 794.5253 & 14.4522 \\ -315.5515 & 61.9187 \end{bmatrix}, L_I = \begin{bmatrix} 7642.0021 & -99.3259 \end{bmatrix}$$

The robustness bound of the regulator without observer is $\delta_1 = 0.3026$ and $\delta_2 = 0.3449$, and by using PIO, the robustness bound is $\delta_1 = 0.4114$ and $\delta_2 = 0.5318$

Compared to the simulation result shown in Figure 19 and 20, simulation result using PIO_REG.m shows that the estimated state variables, disturbance and plant output match the actual ones perfectly, with or without the disturbance in plant, as is shown in Figure 21, 22 and 23. As for the robustness bound, the result using PIO is a little bit worse than the result using PO.
Figure 21. Estimated and actual state variables for PIO based regulator
Figure 22. Estimated and actual disturbance for PIO based regulator
Figure 23. Estimated and actual plant output for PIO based regulator
The simulation above shows that PIO has the ability to estimate both state variables and disturbance correctly, while the feedback gain may not drive state variables and plant output to zero if there are disturbances in the plant. Noticing that the feedback gain $K_{Z(p×n+l)} = [K \ 0]$ is a combination of the feedback gain for the system without observer, and a zero matrix, suggesting that only the estimated state variables are used for feedback control. The state variables can be driven more closely to zero by setting a proper gain \hat{K} for feedback control using estimated disturbances, making $K_{Z} = [K \ \hat{K}]$.

For steady-state, $0 = \dot{x} = Ax + Bu + Ed$, the system input u is now $- [K \ \hat{K}] \dot{z} = -K\dot{x} - \hat{K}\dot{d}$, and estimation of state variables and disturbance using PIO is correct, which means $\dot{x} = x$ and $\dot{d} = d$, thus:

$$0 = Ax - BK\dot{x} - B\hat{K}\dot{d} + Ed = (A - BK)x + (E - B\hat{K})d \quad (34)$$

Therefore, the steady state variables will come to zero if and only if $BK = E$ holds for non-zero disturbances, which suggests that E must be in the column space of B. In case that E is not in the column space of B, MATLAB command $\gg B\backslash E$ will provide a proper feedback gain \hat{K} for estimated disturbance and make the estimated and actual state variables closer to zero in steady state.

A simulation with $E = B$, which means the disturbance is applied on the plant input, is shown in Figure 24, 25 and 26, and \hat{K} is equal to identity matrix according to the conclusion in previous paragraph. With the additional \hat{K}, the state variables and plant output can be driven to zero for steady-state, and the robustness bound of this regulator is $\delta_1 = 0.3951$ and $\delta_2 = 0.5764$.
Figure 24. Estimated and actual state variables for PIO based regulator
Figure 25. Estimated and actual disturbance for PIO based regulator
Figure 26. Estimated and actual plant output for PIO based regulator
For PIO based regulators in discrete time, the integral part of PIO, which is the only difference from that of continuous time, is described as \(\hat{d}[k+1] = L_I(y[k] - C\hat{x}[k]) + d[k] \). This modification will make equation (31) changed into:

\[
\begin{bmatrix}
 x[k+1] \\
 \hat{x}[k+1] \\
 \hat{d}[k+1]
\end{bmatrix}
=
\begin{bmatrix}
 A & -BK & 0 \\
 L_P C & A - BK - L_P C E & E \\
 L_I C & -L_I C & I
\end{bmatrix}
\begin{bmatrix}
 x[k] \\
 \hat{x}[k] \\
 \hat{d}[k]
\end{bmatrix}
+
\begin{bmatrix}
 B \\
 0 \\
 0
\end{bmatrix}
\begin{bmatrix}
 w
\end{bmatrix}
\] (35)

\[
v =
\begin{bmatrix}
 0 & -K & 0
\end{bmatrix}
\begin{bmatrix}
 x[k] \\
 \hat{x}[k] \\
 \hat{d}[k]
\end{bmatrix}
\]

The state-space model from \(w \) to \(v \) is not changed using extended observer, for \(A_Z = \begin{bmatrix} A & E \\ 0 & I \end{bmatrix} \) in discrete time is different from \(A_Z = \begin{bmatrix} A & E \\ 0 & 0 \end{bmatrix} \) in continuous time:

\[
\begin{bmatrix}
 x[k+1] \\
 \hat{z}[k+1]
\end{bmatrix}
=
\begin{bmatrix}
 A & -BK_Z \\
 L_Z C & A_Z - B_Z K_Z - L_Z C_Z
\end{bmatrix}
\begin{bmatrix}
 x[k] \\
 \hat{z}[k]
\end{bmatrix}
+
\begin{bmatrix}
 B
\end{bmatrix}
\begin{bmatrix}
 w
\end{bmatrix}
\] (36)

\[
v = [0 -K] \begin{bmatrix} x[k] \\ \hat{z}[k] \end{bmatrix}
\]
CHAPTER 5
PIO for Tracking Systems

In this chapter, a design method for PIO based tracking system will be provided with the similar process in the previous chapter.

As is shown in Figure 27, in tracking system, the additional dynamics has been added to the regulator to process the difference between system output y and reference input r. The state-space model for additional dynamics is $\dot{x}_a = A_a x_a + B_a (r - y)$, and the output is $K_2 x_a$. K_1 and K_2 can be obtained with the method provided in [17]. A_a is usually set to be zero matrix, and B_a to be identity matrix, which makes the additional dynamics to be an integrator of output error. For steady-state of tracking system, the additional dynamics will make the output equal to the reference input.

Figure 27. Block diagram of PIO based tracking system
The state-space model for the plant and PIO is described as:

\[
\begin{align*}
\dot{x} &= Ax + Bu + Ed \\
\dot{d} &= 0 \\
y &= Cx \\
\dot{\hat{x}} &= A\hat{x} + Bu + L_P(y - C\hat{x}) + Ed \\
\dot{\hat{d}} &= L_I(y - C\hat{x})
\end{align*}
\]

(37)

![Figure 28. Robustness analysis of PIO based tracking system](image)

To calculate robustness bound for the PIO based tracking system, the model from \(w \) to \(v \) will be derived by adding a perturbation on plant as is shown in Figure 28. Using the same process as in the previous chapter, the state-space model of PIO based tracking system is shown as the following equation, by letting \(v = K_2x_a - K_1\hat{x} \) and \(u = w + v = w + K_2x_a - K_1\hat{x} \):

\[
\begin{align*}
\dot{x} &= Ax + B(K_2x_a - K_1\hat{x}) + Bw + Ed = Ax + BK_2x_a - BK_1\hat{x} + Bw + Ed \\
\dot{x}_a &= A_a x_a + B(r - Cx) = -B_aCx + A_a x_a + B_ar \\
\dot{\hat{x}} &= A\hat{x} - BK_1\hat{x} + L_P(C(x - \hat{x}) + Ed = L_PCx + BK_2x_a + (A - BK_1 - L_PC)\hat{x} + Ed \\
\dot{\hat{d}} &= L_I Cx - L_I C\hat{x}
\end{align*}
\]

(38)

In order to calculate closed loop robustness, the reference input and disturbance are set to zero, making the equation above equivalent to:
\[
\begin{bmatrix}
\dot{x} \\
\dot{x}_a \\
\dot{x} \\
\dot{d}
\end{bmatrix}
= \begin{bmatrix} A & BK_2 & -BK_1 & 0 \\
-B_aC & A_a & 0 & 0 \\
L_pC & BK_2 & A - BK_1 - L_pC & E \\
L_I C & 0 & -L_I C & 0
\end{bmatrix}
\begin{bmatrix}
x \\
x_a \\
\dot{x} \\
\dot{d}
\end{bmatrix}
+ \begin{bmatrix} B \\
0 \\
0 \\
0
\end{bmatrix} w
\]

\[v = \begin{bmatrix} 0 & K_2 & -K_1 & 0 \\
x \\
x_a \\
\dot{x} \\
\dot{d}
\end{bmatrix}\]

By changing the cost function designed for PO based tracking system in `obg_ts.m` provided by R. Vaccaro [17] into the corresponding cost function of robustness bound for PIO based tracking system, MATLAB function `OBGX_TS.m` is developed to calculate extended observer gain for PIO based tracking system with good stability robustness as is provided in equation 39. Observer gain for the extended model can be obtained by command

\[>> Lz=OBGX_TS(Az,Bz,Cz,Ad,Bd,K1,K2,poles,T)\]

with the extended plant model \((Az,Bz,Cz)\), the design model \((Ad,Bd,K1,K2)\) as is provided in [17], and the desired extended observer pole locations \((poles)\). \(T\) is the sampling interval for discrete systems, and should be set to zero for continuous systems. This MATLAB function can also be used to calculate proportional observer gains, by inputing the original plant model \((A,B,C)\) and proportional observer pole locations.

Examples

A simulation will be provided using example from [17]. The continuous time state space model of the disturbed plant is

\[
A = \begin{bmatrix}
-0.322 & 0.0640 & 0.0364 & -0.9917 & 0.0003 & 0.0008 \\
0 & 0 & 1 & 0.0037 & 0 & 0 \\
-30.6492 & 0 & -3.6784 & 0.6646 & -0.7333 & 0.1315 \\
8.5395 & 0 & -0.0254 & -0.4764 & -0.0319 & -0.0620 \\
0 & 0 & 0 & 0 & -20.2 & 0 \\
0 & 0 & 0 & 0 & 0 & -20.2
\end{bmatrix},
\]

\[B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 20.2 & 0 \\ 0 & 20.2 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 57.2958 & 0 & 0 & 0 & 0 \\ 57.2958 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

In this example, matrix \(E \) of disturbance model is set equal to \(B \), which means the disturbance is applied on the plant input. The initial state of the system is \(x_0 = [0 \quad 0 \quad 0 \quad 0 \quad -2 \quad 2]^T \), and a constant disturbance \(d = [-0.2718 \quad 0.3142]^T \) is added to the plant at \(t = 3 \) sec. The initial state of observer is set to zero. The reference input of the plant is set to zero before \(t = 6 \) sec, and \(r = [1 \quad 0]^T \) after it.

Feedback gains \(K_1 \) and \(K_2 \) for tracking system without observer is obtained by using command \(>> Kd = \text{rbfg(Ad,Bd,poles,0)} \) provided in [17], with \(K_1 \) equals to the first \(n \) columns of \(K_d \), and \(K_2 \) equals to the remaining columns of \(K_d \). With the same pole locations in [17], the feedback gain given by MATLAB function \text{rfbg.m} is:

\[K_1 = \begin{bmatrix} 257.6083 & -86.3554 & -11.6249 & -53.0793 & 0.4393 & 0.0781 \\ 640.5502 & -2.2408 & 3.7307 & -165.0356 & 0.1082 & 0.4609 \end{bmatrix}, \quad K_2 = \begin{bmatrix} -2.8185 & 4.8288 \\ -0.9308 & 30.2860 \end{bmatrix}. \]

For tracking system with PO, as is shown in Figure 29 and 30, the simulation result shows that there would be a constant error in steady-state in both state variables and plant output. The robustness bound for tracking system without observer is \(\delta_1 = 0.8089 \) and \(\delta_2 = 1 \), and for the PO based tracking system is \(\delta_1 = 0.6192 \), and \(\delta_2 = 0.5733 \).
Figure 29. Estimated and actual plant output for PIO based tracking system
Figure 30. Estimated and actual plant output for PIO based tracking system
For PIO based regulators, by choosing poles for observer to be
\[[-79.1497 \quad -12.0223 \quad -9.5203 \pm 9.0827i \quad -9.6373 \pm 12.1735i \quad -13.2674 \pm 3.9728i], \]
the observer gain given by ‘OBGX_TS’ is:

\[
L_P = \begin{bmatrix}
-0.1455 & 1.0444 \\
0.8954 & -1.8155 \\
9.2596 & -18.4117 \\
-0.0989 & -7.9848 \\
-294.0415 & 990.1249 \\
-665.3529 & 2712.4852
\end{bmatrix},
L_I = \begin{bmatrix}
-146.9776 & 524.7721 \\
-104.7635 & 1154.8219
\end{bmatrix}.
\]

The robustness bound for PIO based tracking system is \(\delta_1 = 0.5410 \) and \(\delta_2 = 0.4937 \).

Compared to the simulation result shown in Figure 31 and 33, simulation result using PIO_TS.m shows that the estimated state variables, disturbance and plant output match the actual ones perfectly using PIO, with or without the disturbance in plant, as is shown in Figure 31, 32 and 33. As for the robustness bound, the result using PIO is worse than the result using PO.

For regulators, as is shown in Chapter 4, the system outputs may not come to zero for stable system if the disturbance exists. However, tracking system has the ability to drive the output equals to the reference input, discard the existence of disturbance.
Figure 31. Estimated and actual state variables for PIO based tracking system
Figure 32. Estimated and actual disturbance for PIO based tracking system
Figure 33. Estimated and actual plant output for PIO based tracking system
CHAPTER 6

Summary and Future Work

6.1 Summary

Observers are systems that estimate the values of unmeasured state variables from input-output measurements. The estimated state variables produced by proportional observers converge to the values of the actual ones if there are no disturbances acting on the plant. In the presence of disturbances, a proportional integral observer is needed to obtain correct estimations.

In Chapter 2, we showed that DO and PIO can be regarded as PO in an extended model, suggesting that design methods for PO can be applied on PIO. Derivation and example have shown that stable PIO is able to estimate state variables and disturbance correctly for a plant with unknown constant disturbance.

In Chapter 3, we showed that for observable systems, a parameterized method for proportional integral observer gain design with desired pole locations is derived based on the design method for feedback gain and proportional observer gain. This method provides observer gain of PIO using extended model with a cost function, such as norm of observer gain or condition number of \((A_Z - L_Z C_Z)\), to optimize system response. An example has shown that by minimizing norm or condition number, the observer will have better transient response, but not that good response for long time period, for the observer model only matches the constant disturbance model.

In Chapter 4, we applied the parameterized method shown in Chapter 3 to observer based regulators, with the cost function set to be closed loop robustness. Simulation result shows that this parameterized method will provide observer gain with good closed loop robustness, while estimating state variables and disturbances correctly. Furthermore, in case of \(E = B\), using estimated disturbance for feedback
control can drive all state variables to zero in steady-state. In Chapter 5, similar process is applied to an observer based tracking system.

6.2 Future Work

For all works in the thesis, the extended model \((A_Z, B_Z, C_Z)\) is assumed to be observable. However, as is mentioned in Chapter 3, in case the number of unknown disturbance is larger than measured output, the extended system would become unobservable. For observable systems, the observer gain \(L_Z\) is unique for certain selected parameters, while there would be infinite number of observer gain matrices for unobservable cases. This problem can be solved by using additional parameters in the gain calculation.

Finally, the design method used in this thesis to calculate observer gain using the feedback gain for an observer-based control system used a feedback gain matrix previously calculated for full-state feedback. A combined method for obtaining observer and feedback gain in the same time could be developed in the future, with cost function set to be robustness bound or other reasonable functions.
LIST OF REFERENCES

[1] R. J. Vaccaro, *Digital control: a state-space approach*. McGraw-Hill New York, 1995.

[2] B. Shafai and M. Saif, “Proportional-integral observer in robust control, fault detection, and decentralized control of dynamic systems,” in *Control and Systems Engineering*. Springer, 2015, pp. 13–43.

[3] D. Luenberger, “Observing the state of a linear system,” *IEEE Transactions on Military Electronics*, vol. 8, pp. 74–80, 1964.

[4] D. Luenberger, “An introduction to observers,” *IEEE Transactions on Automatic Control*, vol. 16, pp. 596–602, 1971.

[5] S. Beale and B. Shafai, “Robust control system design with a proportional integral observer,” *International Journal of Control*, vol. 50, no. 1, pp. 97–111, 1989.

[6] B. Shafai, S. Beale, H. Niemann, and J. Stoustrup, “Proportional-integral observers for discrete time systems,” in *European Control Conference (ECC95)*. Citeseer, 1995.

[7] J. Xu, C. C. Mi, B. Cao, J. Deng, Z. Chen, and S. Li, “The state of charge estimation of lithium-ion batteries based on a proportional-integral observer,” *IEEE Transactions on Vehicular Technology*, vol. 63, no. 4, pp. 1614–1621, 2014.

[8] J.-L. Chang, “Applying discrete-time proportional integral observers for state and disturbance estimations,” *IEEE Transactions on Automatic Control*, vol. 51, no. 5, pp. 814–818, 2006.

[9] D. Kang, “Design of a disturbance observer for discrete-time linear systems,” in *Control, Automation and Systems (ICCAS), 2014 14th International Conference on*. IEEE, 2014, pp. 1381–1383.

[10] Z. Gao and D. W. Ho, “Proportional multiple-integral observer design for descriptor systems with measurement output disturbances,” *IEE Proceedings-Control Theory and Applications*, vol. 151, no. 3, pp. 279–288, 2004.

[11] Z. Gao, T. Breikin, and H. Wang, “Discrete-time proportional and integral observer and observer-based controller for systems with both unknown input and output disturbances,” *Optimal Control Applications and Methods*, vol. 29, no. 3, pp. 171–189, 2008.
[12] F. Bakhshande and D. Söffker, “Proportional-integral-observer: A brief survey with special attention to the actual methods using acc benchmark,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 532–537, 2015.

[13] H. H. Niemann, J. Stoustrup, B. Shafai, and S. Beale, “Ltr design of proportional-integral observers,” International Journal of Robust and Non-linear Control, vol. 5, no. 7, pp. 671–693, 1995.

[14] K. K. Busawon and P. Kabore, “Disturbance attenuation using proportional integral observers,” International Journal of control, vol. 74, no. 6, pp. 618–627, 2001.

[15] G.-R. Duan, G.-P. Liu, and S. Thompson, “Eigenstructure assignment design for proportional-integral observers: continuous-time case,” IEE Proceedings-Control Theory and Applications, vol. 148, no. 3, pp. 263–267, 2001.

[16] G.-R. Duan, G.-P. Liu, and S. Thompson, “Eigenstructure assignment design for proportional-integral observers: the discrete-time case,” International Journal of Systems Science, vol. 34, no. 5, pp. 357–363, 2003.

[17] R. J. Vaccaro, “An optimization approach to the pole-placement design of robust linear multivariable control systems,” in 2014 American Control Conference. IEEE, 2014, pp. 4298–4305.

[18] E. J. Routh, A treatise on the stability of a given state of motion: particularly steady motion. Macmillan and Company, 1877.

[19] A. Hurwitz, “Ueber die bedingungen, unter welchen eine gleichung nur wurzeln mit negativen reellen theilen besitzt,” Mathematische Annalen, vol. 46, no. 2, pp. 273–284, 1895.

[20] A. H. El-Shaer, M. Al Janaideh, and I. S. Khalil, “Robust servo control using pi-luenberger observers with application to nonlinear piezo-electrically actuated systems,” in 2016 American Control Conference. ACC, 2016, pp. 1317–1322.

[21] B. C. Moore, “On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment,” in Decision and Control including the 14th Symposium on Adaptive Processes, 1975 IEEE Conference on. IEEE, 1975, pp. 207–214.

[22] B. K. Ghosh, J. Rosenthal, et al., “A generalized popov-belevitch-hautus test of observability,” IEEE transactions on automatic control, vol. 40, no. 1, pp. 176–180, 1995.

[23] J. B. Burl, Linear optimal control: H (2) and H (Infinity) methods. Addison-Wesley Longman Publishing Co., Inc., 1998.
BIBLIOGRAPHY

Antsaklis, P. and Michel, A., “Linear systems, 1997.”

Bakhshande, F. and Söffker, D., “Proportional-integral-observer: A brief survey with special attention to the actual methods using acc benchmark,” IFAC-PapersOnLine, vol. 48, no. 1, pp. 532–537, 2015.

Beale, S. and Shafai, B., “Robust control system design with a proportional integral observer,” International Journal of Control, vol. 50, no. 1, pp. 97–111, 1989.

Burl, J. B., Linear optimal control: H (2) and H (Infinity) methods. Addison-Wesley Longman Publishing Co., Inc., 1998.

Busawon, K. K. and Kabore, P., “Disturbance attenuation using proportional integral observers,” International Journal of control, vol. 74, no. 6, pp. 618–627, 2001.

Chang, J.-L., “Applying discrete-time proportional integral observers for state and disturbance estimations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 814–818, 2006.

Duan, G.-R., Liu, G.-P., and Thompson, S., “Eigenstructure assignment design for proportional-integral observers: continuous-time case,” IEE Proceedings-Control Theory and Applications, vol. 148, no. 3, pp. 263–267, 2001.

Duan, G.-R., Liu, G.-P., and Thompson, S., “Eigenstructure assignment design for proportional-integral observers: the discrete-time case,” International Journal of Systems Science, vol. 34, no. 5, pp. 357–363, 2003.

El-Shaer, A. H., Al Janaideh, M., and Khalil, I. S., “Robust servo control using piluenberger observers with application to nonlinear piezo-electrically actuated systems,” in 2016 American Control Conference. ACC, 2016, pp. 1317–1322.

Gao, Z., Breikin, T., and Wang, H., “Discrete-time proportional and integral observer and observer-based controller for systems with both unknown input and output disturbances,” Optimal Control Applications and Methods, vol. 29, no. 3, pp. 171–189, 2008.

Gao, Z. and Ho, D. W., “Proportional multiple-integral observer design for descriptor systems with measurement output disturbances,” IEE Proceedings-Control Theory and Applications, vol. 151, no. 3, pp. 279–288, 2004.

Ghosh, B. K., Rosenthal, J., et al., “A generalized popov-belevitch-hautus test of observability,” IEEE transactions on automatic control, vol. 40, no. 1, pp. 176–180, 1995.
Hurwitz, A., “Ueber die bedingungen, unter welchen eine gleichung nur wurzeln mit negativen reellen theilen besitzt,” *Mathematische Annalen*, vol. 46, no. 2, pp. 273–284, 1895.

Kang, D., “Design of a disturbance observer for discrete-time linear systems,” in *Control, Automation and Systems (ICCAS), 2014 14th International Conference on*. IEEE, 2014, pp. 1381–1383.

Koenig, D., Mammar, S., *et al.*, “Design of proportional-integral observer for unknown input descriptor systems,” *IEEE transactions on automatic control*, vol. 47, no. 12, pp. 2057–2062, 2002.

Linder, S. P., Shafai, B., and Saif, M., “Estimating and accommodating unknown actuator faults with pi observers,” in *Control Applications, 1998. Proceedings of the 1998 IEEE International Conference on*, vol. 1. IEEE, 1998, pp. 461–465.

Luenberger, D., “Observing the state of a linear system,” *IEEE Transactions on Military Electronics*, vol. 8, pp. 74–80, 1964.

Luenberger, D., “An introduction to observers,” *IEEE Transactions on Automatic Control*, vol. 16, pp. 596–602, 1971.

Moore, B. C., “On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment,” in *Decision and Control including the 14th Symposium on Adaptive Processes, 1975 IEEE Conference on*. IEEE, 1975, pp. 207–214.

Niemann, H. H., Stoustrup, J., Shafai, B., and Beale, S., “Ltr design of proportional-integral observers,” *International Journal of Robust and Nonlinear Control*, vol. 5, no. 7, pp. 671–693, 1995.

Routh, E. J., *A treatise on the stability of a given state of motion: particularly steady motion*. Macmillan and Company, 1877.

Shafai, B., Beale, S., Niemann, H., and Stoustrup, J., “Proportional-integral observers for discrete time systems,” in *European Control Conference (ECC95)*. Citeseer, 1995.

Shafai, B. and Saif, M., “Proportional-integral observer in robust control, fault detection, and decentralized control of dynamic systems,” in *Control and Systems Engineering*. Springer, 2015, pp. 13–43.

Vaccaro, R. J., *Digital control: a state-space approach*. McGraw-Hill New York, 1995.
Vaccaro, R. J., “An optimization approach to the pole-placement design of robust linear multivariable control systems,” in 2014 American Control Conference. IEEE, 2014, pp. 4298–4305.

Xu, J., Mi, C. C., Cao, B., Deng, J., Chen, Z., and Li, S., “The state of charge estimation of lithium-ion batteries based on a proportional-integral observer,” IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1614–1621, 2014.