ORDERED FIELDS DENSE IN THEIR REAL CLOSURE AND DEFINABLE CONVEX VALUATIONS

LOTHAR SEBASTIAN KRAPP, SALMA KUHLMANN, AND GABRIEL LEHÉRICY

Abstract. In this paper, we undertake a systematic model and valuation theoretic study of the class of ordered fields which are dense in their real closure. We apply this study to determine definable henselian valuations on ordered fields, in the language of ordered rings. In light of our results, we re-examine the Shelah-Hasson Conjecture (specialised to ordered fields) and provide an example limiting its valuation theoretic conclusions.

§1. Introduction. Let $\mathcal{L}_r = \{+, -, \cdot, 0, 1\}$ be the language of rings and $\mathcal{L}_{or} = \mathcal{L}_r \cup \{<\}$ the language of ordered rings. There is a vast collection of results giving conditions on \mathcal{L}_r-definability of henselian valuations in fields, many of which are from recent years (cf. e.g. [3, 12, 13, 24, 14]). A survey on \mathcal{L}_r-definability of henselian valuations is given in [9]. In this paper, we undertake a systematic study of definable henselian valuations in ordered fields, which enables us to consider definability in the richer language \mathcal{L}_{or}. It is natural to expect from such a study to obtain strengthenings of existing \mathcal{L}_r-definability results. Ordered fields have been considered valuation theoretically mainly with respect to convex valuations. Note that due to [18, Lemma 2.1], henselian valuations in ordered fields are always convex. A general method for the construction of non-trivial \mathcal{L}_{or}-definable convex valuations in ordered fields which are not dense in their real closure is given in [15, Proposition 6.5]. By careful analysis of this method, we obtain sufficient conditions on the residue field and the value group of a henselian valuation v in order that v is \mathcal{L}_{or}-definable. These conditions motivate the study of the following two classes of structures: ordered abelian groups which are dense in their divisible hull, and ordered fields which are dense in their real closure. The former coincides with the elementary class of regular densely ordered abelian groups. We study the latter systematically, both from a model theoretic and an algebraic point of view. Finally, we apply our results

We started this research at the Model Theory, Combinatorics and Valued fields Trimester at the Institut Henri Poincaré in March 2018. All three authors wish to thank the IHP for its hospitality, and Immanuel Halupczok, Franziska Jahnke, Vincenzo Mantova and Florian Severin for discussions. We also thank Assaf Hasson for helpful comments on a previous version of this work and Vincent Bagayoko for giving an answer to a question leading to Proposition 4.7. Moreover, we thank the anonymous referee for providing several helpful comments and references.

The first author was supported by a doctoral scholarship of Studienstiftung des deutschen Volkes as well as of Carl-Zeiss-Stiftung and an Independent Research Grant of Zukunftskolleg, Universität Konstanz.

1Throughout this paper, definable means definable with parameters.
on definable valuations to strongly NIP ordered fields and hence provide a counterexample to a strengthening of the Shelah–Hasson Conjecture (specialised to ordered fields). This is of particular interest in light of W. Johnson’s recent work \cite{17}, in which the Shelah–Hasson Conjecture has been verified for dp-finite fields.

The structure of this paper is as follows. In Section 2 we gather some basic preliminaries on ordered and valued abelian groups and fields. In Section 3 we study the class of ordered abelian groups which are dense in their divisible hull. Noting that it coincides with the class of regular densely ordered abelian groups (see Fact 3.2), we present a recursive elementary axiomatisation (see Corollary 3.3). Moreover, in Proposition 3.7 we obtain a characterisation of this class in terms of \mathcal{L}_{or}-definability of convex subgroups (where $\mathcal{L}_{\text{or}} = \{+, 0, <\}$ is the language of ordered groups). Analogously, in Section 4 we study the class of ordered fields which are dense in their real closure, first model theoretically in Subsection 4.1. Our main result is Theorem 4.1 which gives us a general method to produce recursive axiomatisations of ordered structures dense in certain definable closures. In particular, Theorem 4.1 leads to both an axiomatisation of ordered abelian groups which are dense in their divisible hull as well as an axiomatisation of ordered fields which are dense in their real closure (see Corollary 4.3). In Subsection 4.2, we briefly review the connections between dense and immediate extensions of ordered fields (see Corollary 4.9) and complements to the valuation ring (see Fact 4.13). In Subsection 4.3 we relate normal integer parts of ordered fields to dense subfields regular over \mathbb{Q} (see Remark 4.15, Corollary 4.18). Finally, we obtain a characterisation of density in real closure in terms of absolute transcendence bases (see Corollary 4.19). In Section 5 we study \mathcal{L}_{or}-definable henselian valuations in ordered fields. In Subsection 5.1 we obtain our main result Theorem 5.3 and compare it to known conditions for \mathcal{L}_{r}-definability of specific henselian valuations. Special emphasis is put on definable valuations in almost real closed fields in Subsection 5.2. In Section 6 we relate our \mathcal{L}_{or}-definability results of henselian valuations in ordered fields to open questions regarding strongly NIP ordered fields. We exploit an equivalent reformulation of the Shelah–Hasson Conjecture specialised to ordered fields (see Conjecture 6.2) and examine further valuation theoretic strengthenings in the conclusion of this conjecture (see Question 6.3). In this regard, we construct a strongly NIP almost real closed field which fails to be almost real closed with respect to an \mathcal{L}_{or}-definable valuation (see Example 6.8). We conclude by motivating and collecting open questions inspired by results throughout this paper in Section 7.

§2. Preliminaries on ordered abelian groups and valued fields. We denote by \mathbb{N}_0 the set of natural numbers with 0 and by \mathbb{N} the set of natural numbers without 0. All notions on valued fields and groups can be found in \cite{21,10}. Throughout this work, we abbreviate the \mathcal{L}_{r}-structure of a field $(K, +, −, \cdot, 0, 1)$

\footnote{The property “strongly NIP” is often also called “strongly dependent”.}

\footnote{A preliminary version of this work is contained in our arXiv preprint \cite{19}, which contains also a systematic study of the class of strongly NIP almost real closed fields. This study, being of independent interest, will be the subject of the separate publication \cite{20}.}
by K, the \mathcal{L}_{or}-structure of an ordered field $(K, +, -, \cdot, 0, 1, <)$ by $(K, <)$ and the \mathcal{L}_{or}-structure of an ordered group $(G, +, 0, <)$ by G.

Let $G \subseteq H$ be an extension of ordered abelian groups. We say that G is dense in H or that the extension $G \subseteq H$ is dense if for any $a, b \in H$ with $a < b$ there is $c \in G$ such that $a < c < b$. If \mathbb{Z} is a convex subgroup of G, then we say that G is discretely ordered. Otherwise, G is densely ordered, i.e. G is dense in itself. We call two elements $a, b \in G$ archimedean equivalent (in symbols $a \sim b$) if there is some $n \in \mathbb{N}$ such that $|a| \leq n|b|$ and $|b| \leq n|a|$. Let $\Gamma = \{[a] \mid a \in G \setminus \{0\}\}$, the set of archimedean equivalence classes of $G \setminus \{0\}$. Equipped with addition $[a] + [b] = [ab]$ and the ordering $[a] < [b] :\iff a \not< b \wedge |b| < |a|$, the set Γ becomes an ordered set. Then $G \setminus \{0\} \rightarrow \Gamma, a \mapsto [a]$ defines a convex valuation on G. This is called the natural valuation on G, denoted by v. The value set Γ of G is denoted by vG. We say that an extension of ordered abelian groups $G \subseteq H$ is immediate if it is immediate with respect to the natural valuation.

Let $\gamma \in vG$, and let G^γ and G_γ be the following convex subgroups of G:

$$G^\gamma = \{g \in G \mid v(g) \geq \gamma\} \quad \text{and} \quad G_\gamma = \{g \in G \mid v(g) > \gamma\}.$$ \(\text{The archimedean component} \ B(G, \gamma) \text{ of } G \text{ corresponding to } \gamma \text{ is given by} \ B(G, \gamma) = G^\gamma/G_{\gamma}. \text{ If no confusion arises, we only write } B_\gamma \text{ instead of } B(G, \gamma). \text{ Note that } B_\gamma \text{ is an ordered abelian group with the order induced by } v. \text{ A valuation } w \text{ on } G \text{ is convex if for any } g_1, g_2 \in G \text{ with } 0 < g_1 \leq g_2, \text{ we have } w(g_1) \geq w(g_2). \text{ Note that there is a one-to-one correspondence between non-trivial convex subgroups of } G \text{ and final segments of } vG \text{ (cf. } [21 \text{ page } 50 \text{ f}]). \)

We also consider G as a topological subspace of H under the order topology. We say that G has a left-sided limit point g_0 in H if for any $g_1 \in H$ with $g_1 > 0$ the intersection of $(g_0 - g_1, g_0)$ with G is non-empty. Similarly, g_0 is a right-sided limit point if for any $g_1 \in H^{>0}$ we have $(g_0, g_0 + g_1) \cap G \neq \emptyset$. A limit point is a point which is a left-sided or a right-sided limit point. The divisible hull of G is denoted by G^{div}. Note that G and G^{div} have the same value set under v, i.e. $vG = vG^{\text{div}}$. The closure of G in G^{div} with respect to the order topology is denoted by $\text{cl}(G)$. Note that G is dense in G^{div} if and only if $\text{cl}(G) = G^{\text{div}}$. Note further that G has a limit point in $G^{\text{div}} \setminus G$ (i.e. there is some $a \in G^{\text{div}} \setminus G$ such that a is a limit point of G in G^{div}) if and only if G is not closed in G^{div}.

For any ordered abelian groups G_1 and G_2, we denote the lexicographic sum of G_1 and G_2 by $G_1 \oplus G_2$. This is the abelian group $G_1 \times G_2$ with the lexicographic ordering $(a, b) < (c, d)$ if $a < c$, or $a = c$ and $b < d$. Let $(\Gamma, <)$ be an ordered set and for each $\gamma \in \Gamma$, let $A_\gamma \neq \emptyset$ be an archimedean ordered abelian group. For any element s in the product group $\prod_{\gamma \in \Gamma} A_\gamma$, define the support of s by $\text{supp}(s) = \{\gamma \in \Gamma \mid s(\gamma) \neq 0\}$. The Hahn product $\mathbb{H}_{\gamma \in \Gamma} A_\gamma$ is the subgroup of $\prod_{\gamma \in \Gamma} A_\gamma$ consisting of all elements with well-ordered support. Moreover, $\mathbb{H}_{\gamma \in \Gamma} A_\gamma$ becomes an ordered group under the order relation $s > 0 :\iff s(\text{min supp}(s)) > 0$. We express elements s of $\mathbb{H}_{\gamma \in \Gamma} A_\gamma$ by $s = \sum_{\gamma \in \Gamma} s_\gamma 1_\gamma$, where $s_\gamma = s(\gamma)$ and 1_γ is the characteristic function of γ mapping γ to some fixed $1_\gamma \in A_\gamma$ with $1_\gamma > 0$ and everything else to 0. The Hahn

\begin{footnotesize}
\begin{itemize}
 \item [\footnote{See [21] pages 9 and 15}] for further details regarding the definition of the natural valuation.
 \item [\footnote{See [21] page 3}] for a definition of an immediate extension.
\end{itemize}
\end{footnotesize}
sum $\prod_{\gamma \in \Gamma} A_\gamma$ is the ordered subgroup of $H_{\gamma \in \Gamma} A_\gamma$, consisting of all elements with finite support.

Let K be a field and let v be a valuation on K. We denote the valuation ring of v in K by O_v, the valuation ideal, i.e. the maximal ideal of O_v, by M_v, the ordered value group by vK and the residue field O_v/M_v by K_v. For $a \in O_v$ we also denote $a + M_v$ by \overline{a}. For an ordered field $(K, <)$, a valuation is called convex (in $(K, <)$) if the valuation ring O_v is a convex subset of K. In this case, the relation $\overline{a} < \overline{b} :\iff \overline{a} \neq \overline{b} \land a < b$ defines an order relation on K_v making it an ordered field.

Let $\mathcal{L}_I = \mathcal{L}_r \cup \{O_v\}$ be the language of valued fields, where O_v stands for a unary predicate. Let (K, O_v) be a valued field. An atomic formula of the form $v(t_1) \geq v(t_2)$, where t_1 and t_2 are \mathcal{L}_r-terms, stands for the \mathcal{L}_I-formula $t_1 = t_2 = 0 \lor (t_2 \neq 0 \land O_v(t_1/t_2))$. Thus, by abuse of notation, we also denote the \mathcal{L}_I-structure (K, O_v) by (K, v). Similarly, we also call $(K, <, v)$ an ordered valued field. We say that a valuation v is \mathcal{L}-definable for some language $\mathcal{L} \in \{\mathcal{L}_r, \mathcal{L}_o\}$ if its valuation ring is an \mathcal{L}-definable subset of K.

Let K be a field and let v and w be valuations on K. We write $v \leq w$ if and only if $O_v \supseteq O_w$. In this case we say that w is finer than v and v is coarser than w. If $O_v \supseteq O_w$, we write $v < w$ and say that w is strictly finer than v and that v is strictly coarser than w. Note that \leq defines an order relation on the set of convex valuations of an ordered field. Since $(K, +, 0, <)$ is an ordered abelian group, the notion of archimedean equivalence classes and the natural valuation specialise to the ordered field K. We denote the natural valuation on K by v_{nat}. If not further specified, we say that an extension of ordered fields $(K, <) \subseteq (L, <)$ is immediate if it is immediate with respect to the natural valuation. The extension is dense if K is dense in L.

Let $(K, <)$ be an ordered field and G an ordered abelian group. We denote the ordered Hahn field with coefficients in k and exponents in G by $k((G))$. We denote an element $s \in k((G))$ by $s = \sum_{g \in G} s_g t^g$, where $s_g = s(g)$ and t^g is the characteristic function on G mapping g to 1 and everything else to 0.

The ordering on $k((G))$ is given by $s > 0 :\iff s(\text{min supps}) > 0$, where supps $= \{g \in G \mid s(g) \neq 0\}$ is the support of s. Let v_{min} be the valuation on $k((G))$ given by $v_{\text{min}}(s) = \text{min supps}$ for $s \neq 0$. Note that v_{min} is convex and henselian. Note further that if k is archimedean, then v_{min} coincides with v_{nat}.

We repeatedly use the Ax–Kochen–Ershov principle for ordered fields (cf. [8, Corollary 4.2(iii)]).

Fact 2.1 (Ax–Kochen–Ershov Principle). Let $(K, <, v)$ and $(L, <, w)$ be two ordered henselian valued fields. Then $(Kv, <) \equiv (Lw, <)$ and $vK \equiv wL$ if and only if $(K, <, v) \equiv (L, <, w)$.

§3. Regular densely ordered abelian groups. In this section, we study the class of ordered abelian groups which are dense in their divisible hull. In the light of ordered fields dense in their real closure and definable henselian valuations, this class is of interest for the following reasons:

\footnote{For the definition of an immediate extension of valued fields, see [21, page 27].}
ordered fields dense in their real closure

- The divisible hull G^{div} of a non-trivial ordered abelian group G is the smallest extension of G which is a model of the theory of divisible ordered abelian groups T_{doag}. The real closure $(K^{\text{rc}}, <)$ of an ordered field $(K, <)$ is the smallest extension of $(K, <)$ which is a model of the theory of real closed fields T_{rcf}. Thus, the divisible hull of an ordered abelian group can be seen as the group analogue to the real closure of an ordered field. Moreover, both T_{doag} and T_{rcf} share several model theoretic properties such as completeness, o-minimality and quantifier elimination. We are therefore interested in exploring algebraic and model theoretic similarities and differences between these two classes of ordered structures.

- The property of an ordered abelian group to be dense in its divisible hull can also be considered as a topological characteristic with respect to the order topology. To this end, for an ordered henselian valued field $(K, <, v)$, topological conditions on vK as a subspace of vK^{div} naturally arise in the context of the definability of v (see Theorem 5.3 and Corollary 5.7).

Throughout this section, we prove properties of ordered abelian groups dense in their divisible hull and point out the analogues for ordered fields in Section 4.

Regular ordered abelian groups have been studied model theoretically in [25] and algebraically in [30]. An ordered abelian group is regular if it satisfies one of the equivalent conditions in Fact 3.1 (cf. [30, Theorem 2.1] and [4, Proposition 1 & Proposition 4]).

Fact 3.1. Let G be an ordered abelian group. Then the following are equivalent:

1. For any prime $p \in \mathbb{N}$ and for any infinite convex subset $A \subseteq G$, there is a p-divisible element in A.
2. For any $n \in \mathbb{N}$ and any $a, b \in G$, if there are $g_1, \ldots, g_n \in G$ with $a \leq g_1 < \ldots < g_n \leq b$, then there is some $c \in G$ with $a \leq nc \leq b$.
3. For any non-trivial convex subgroup $H \subseteq G$, the quotient group G/H is divisible.

The following characterisation of regular densely ordered abelian groups is given in [30, Theorem 2.1. (a)].

Fact 3.2. Let G be an ordered abelian group. Then G is dense in G^{div} if and only if it is regular and densely ordered.

Fact 3.2 enables us to apply known results on regular densely ordered abelian groups to ordered abelian groups which are dense in their divisible hull.

Corollary 3.3. There is a recursive L_{og}-theory axiomatising the class of non-trivial ordered abelian groups which are dense in their divisible hull.

Proof. Let Σ be the L_{og}-theory consisting of the axioms for non-trivial densely ordered abelian groups plus the collection of the following sentences (one for each $n \in \mathbb{N}$):

$$ \forall a, b \ (3g_1, \ldots, g_n \ a \leq g_1 < \ldots < g_n \leq b \rightarrow \exists c \ a \leq nc \leq b) $$

By Fact 3.1 (2), Σ axiomatises the class of non-trivial regular densely ordered abelian groups, and thus also the class of non-trivial ordered abelian groups which are dense in their divisible hull by Fact 3.2.
In Corollary 4.3 (2) we will see the analogue of Corollary 3.3 for the class of ordered fields which are dense in their real closure. We deduce further properties of ordered abelian groups which are dense in their divisible hull from the following fact, which is due to [25] and [30].

Fact 3.4. Let G be an ordered abelian group. Then the following hold:
1. G is regular if and only if it has an archimedean model (i.e. there is some archimedean ordered abelian group H such that $H \equiv G$).
2. G is regular and discretely ordered if and only if it is a \mathbb{Z}-group (i.e. $G \equiv \mathbb{Z}$ as ordered groups).

Corollary 3.5. Let G be an ordered abelian group. Then G is dense in G^{div} if and only if G has a densely ordered archimedean model.

Proof. Both directions follow immediately from Fact 3.2 and Fact 3.4.

We will see in Corollary 4.6 that the analogue of the backward direction of Corollary 3.5 also holds for ordered fields, i.e. that any ordered field which has an archimedean model is dense in its real closure. However, the analogue of the forward direction of Corollary 3.5 does not hold for ordered fields, as there is an ordered field which is dense in its real closure but has no archimedean model (see Proposition 4.7).

In Section 5, we address the question what convex valuations are L_{or}-definable in ordered fields. In analogy to Construction 5.2, we will show in Proposition 3.7 that for any densely ordered abelian group which is not dense in its divisible hull, there exists a proper non-trivial convex L_{og}-definable subgroup. The following lemma is a useful characterisation of densely ordered abelian groups and will be applied several times.

Lemma 3.6. Let G be an ordered abelian group. Then the following are equivalent:
1. G is densely ordered.
2. 0 is a limit point of G in G.
3. 0 is a limit point of G in G^{div}.
4. Either vG has no last element, or vG has a last element γ and B_γ is densely ordered.

Proof. We may assume that $G \neq \{0\}$, as in the case $G = \{0\}$ the equivalences are clear. The equivalence of (1) and (2) is an easy consequence of the definition of a dense order on an abelian group. Obviously, (3) implies (2). In [30] Lemma 2.3 it is shown that (1) implies (3).

It remains to show that (1) and (4) are equivalent. Suppose that vG has a last element γ and B_γ is not densely ordered. By (2) applied to B_γ, there is some $g \in G$ with $g > 0$ and $v(g) = \gamma$ such that there is no element in B_γ strictly between $0 + G_\gamma$ and $g + G_\gamma$. Let $h \in G$ such that $0 < h \leq g$. Then $v(h) \geq v(g) = \gamma$. By maximality of γ, we have $v(h) = \gamma$. Thus, $0 + G_\gamma < h + G_\gamma \leq g + G_\gamma$. This implies $h + G_\gamma = g + G_\gamma$, i.e. $v(g - h) > \gamma$. Again, by maximality of γ, we obtain $g = h$. Hence, there is no element in G strictly between 0 and g, showing that G is not densely ordered. This shows that (1) implies (4). For the converse,
suppose that \(b\) holds. We will show that 0 is a limit point of \(G\) in \(G\). Let \(g \in G\) with \(g > 0\). If \(v(g)\) is not maximal, then let \(h \in G\) with \(h > 0\) and \(v(h) > v(g)\). Then \(0 < h < g\), as required. Otherwise, \(\gamma = v(g)\) is the maximum of \(vG\), and by assumption, \(B_\gamma\) is densely ordered. Thus, there is some \(h \in G\) with \(v(h) = \gamma\) such that \(0 + G_\gamma < h + G_\gamma < g + G_\gamma\), whence \(0 < h < g\).

Note that a divisible ordered abelian group \(G\) never admits a proper non-trivial \(\mathcal{L}_{\text{og}}\)-definable convex subgroup. Indeed, since \(G\) is o-minimal, any \(\mathcal{L}_{\text{og}}\)-definable convex subset of \(G\) is an interval with endpoints in \(G \cup \{\pm \infty\}\), and thus the only \(\mathcal{L}_{\text{og}}\)-definable convex subgroups of \(G\) are \(\{0\}\) and \(G\). The following dichotomy shows a strengthening of this observation.

Proposition 3.7. Let \(G\) be a densely ordered abelian group. Then exactly one of the following holds:

1. \(G\) is dense in \(G^{\text{div}}\).
2. \(G\) has a proper non-trivial \(\mathcal{L}_{\text{og}}\)-definable convex subgroup.

Moreover, if \(G\) is not dense in \(G^{\text{div}}\), then the proper non-trivial \(\mathcal{L}_{\text{og}}\)-definable convex subgroup of \(G\) can be defined by an \(\mathcal{L}_{\text{og}}\)-formula using one parameter.

Proof. First assume that \(G\) is not dense in \(G^{\text{div}}\). In the following, we will construct a proper non-trivial convex subgroup of \(G\).

Note that by [Corollary 3.5] \(G\) is non-archimedean. Thus, \(vG\) has more than one element. Let \(g_0 \in G^{\text{div}} \setminus \text{cl}(G)\) with \(g_0 > 0\). If \(\gamma = v(g_0)\) is the maximum of \(vG\), then let \(h \in G^{>0}\) with \(v(h) < \gamma\). Note that \(v(g_0 + h) = v(h) < \gamma\) and that \(g_0 + h\) is not a limit point of \(G\) in \(G^{\text{div}}\), as \(g_0\) is not a limit point of \(G\) in \(G^{\text{div}}\). Hence, \(g_0 + h \in G^{\text{div}} \setminus \text{cl}(G)\). Hence, by replacing \(g_0\) by \(g_0 + h\) if necessary, we may assume that \(v(g_0)\) is not the maximum of \(vG\).

Let \(g_1 \in G\) with \(g_1 > 0\) and \(N \in \mathbb{N}\) such that \(g_0 = \frac{2g_1}{N}\). Consider the set

\[
D = \{g \in G^{>0} \mid g < g_0\} = \{g \in G^{>0} \mid Ng < g_1\}.
\]

This set is \(\mathcal{L}_{\text{og}}\)-definable with the parameter \(g_1\). Let

\[
A = \{g \in G^{>0} \mid g + D \subseteq D\}.
\]

Again, \(A\) is \(\mathcal{L}_{\text{og}}\)-definable with the parameter \(g_1\). Note that \(A\) is convex. Obviously, \(A \neq G^{>0}\), as for any \(g \in D\) and \(h \in G^{>0}\) with \(h > g_0 - g\) we have \(g + h > g_0\) and thus \(h \notin A\). Assume that \(A = 0\). Then for any \(g \in G^{>0}\), let \(g' \in G^{>0}\) with \(g' < g_0\) and \(g + g' > g_0\) and set \(c_g = g + g'\). Then \(g_0 < c_g < g_0 + g\). Since by [Lemma 3.6 (iii)], \(0\) is a limit point of \(G\) in \(G^{\text{div}}\), for any \(h \in G^{\text{div}}\) with \(h > 0\), there exists some \(g \in G\) such that \(0 < g < h\). Thus, \(g_0 < c_g < g_0 + g < g_0 + h\). This shows that \(g_0\) is a limit point of \(G\) in \(G^{\text{div}}\), contradicting the choice of \(g_0 \notin \text{cl}(G)\).

Hence, \(A \neq 0\).

Now for any \(a, b \in A\) with \(0 < a < b\), we have \((a + b) + D \subseteq a + D \subseteq D\), whence \(a + b \in A\). Moreover, \(0 < b - a < b\) and \(-b < a - b < 0\). Thus, by convexity, \(b - a \in A\) and \(a - b \in -A\). Similarly, for any \(a, b \in -A\) with \(a < b < 0\), we have \(a \pm b \in -A\) and \(b - a \in A\). This shows that \(H = -A \cup A\) is closed under addition and thus an \(\mathcal{L}_{\text{og}}\)-definable convex subgroup of \(G\). Since \(0 \neq A \neq G^{>0}\), we also have that \(H\) is a proper non-trivial subgroup of \(G\).

Assume for the converse that \(G\) is dense in \(G^{\text{div}}\). By [Fact 3.2], \(G\) is regular. Thus, by [Fact 3.3 (i)] \(G\) has an archimedean model \(G'\), say. Let \(\varphi(x, y)\) be an
\(\mathcal{L}_{\text{og}} \)-formula and let \(\psi \) be the \(\mathcal{L}_{\text{og}} \)-sentence stating that for any \(y \), if \(\varphi(x, y) \) defines a proper convex subgroup, then it is the trivial one. Since \(\bar{G} \) is archimedean, its only convex subgroups are \(\{0\} \) and \(G' \). Thus, \(\psi \) holds in \(G' \). By elementary equivalence, \(\psi \) also holds in \(G \). Hence, for any \(b \in G \), the formula \(\varphi(x, b) \) does not define a proper non-trivial convex subgroup of \(G \).

Next we want to study the extension of ordered abelian groups \(G \subseteq G^{\text{div}} \) valuation theoretically. It is known that any dense extension of ordered fields is immediate (cf. [21 page 29 f.]). We will investigate when this is also the case for dense extensions of ordered abelian groups. Note that for any \(\gamma \in vG \), we have \(B(\gamma, G^{\text{div}}) = B(\gamma, G)^{\text{div}} \). Hence, the extension \(G \subseteq G^{\text{div}} \) is immediate if and only if all archimedean components of \(G \) are divisible.

Proposition 3.8. Let \(G \subseteq H \) be a dense extension of ordered abelian groups. Suppose that \(vG \) has no last element. Then the extension \(G \subseteq H \) is immediate.

Proof. In order to show that \(G \subseteq H \) is immediate, we need to show that for any \(a \in H \setminus \{0\} \) there exists \(b \in G \) such that \(v(a - b) > v(a) \). Note that the density of \(G \) in \(H \) implies \(vG = vH \). Let \(a \in H \) with \(a > 0 \). Since \(vG \) has no last element, there is some \(c \in G^{>0} \) such that \(v(c) > v(a) \). By density of \(G \) in \(H \), there is some \(b \in G \) such that \(a - c < b < a + c \). We obtain \(v(a - b) \geq v(c) > v(a) \), as required.

Corollary 3.9. Let \(G \subseteq G^{\text{div}} \) be a dense extension of ordered abelian groups such that \(vG \) has no last element. Then the extension \(G \subseteq G^{\text{div}} \) is immediate.

Proof. Apply Proposition 3.8 to \(H = G^{\text{div}} \).

Corollary 3.9 does not hold in general in the case where \(vG \) has a last element, as the following example will show.

Example 3.10. Let \(A = \{ \frac{a}{n} \mid a \in \mathbb{Z}, n \in \mathbb{N}_0 \} \). Note that \(A \) is dense in \(A^{\text{div}} = \mathbb{Q} \). For \(G = \mathbb{Q} \oplus A \) we have \(G^{\text{div}} = \mathbb{Q} \oplus \mathbb{Q} \). Moreover, \(G \) is dense in \(G^{\text{div}} \), as \(A \) is dense in \(\mathbb{Q} \). However, the extension is not immediate, as the archimedean components do not coincide.

We now consider the converse direction, that is, under what conditions an immediate extension of ordered abelian groups is dense.

Lemma 3.11. Let \(G, A_1, A_2, \ldots \) be non-trivial ordered abelian groups such that \(G \subseteq H = \mathbb{H}_{n \in \omega} A_n \) is immediate. Let \(a \in \mathbb{H}_{n \in \omega} A_n \). Then there exists a sequence \((d_n)_{n \in \omega} \) in \(G \) such that for any \(k \in \omega \) and any \(i \leq k \) we have \((d_0 + \ldots + d_k)(i) = a(i) \).

Proof. If \(a \in G \), then set \(d_0 = a \) and \(d_j = 0 \) for \(j \geq 1 \). Otherwise, since \(G \subseteq H \) is immediate, there is some \(d_0 \in G \) such that \(v(a - d_0) > v(a) \). Then \(d_0(0) = a_0 \). Suppose that \(d_0, \ldots, d_k \in G \) are already constructed such that \(d' = d_0 + \ldots + d_k \) satisfies \(d'(i) = a(i) \) for \(i \leq k \). Again, since \(G \subseteq H \) is immediate, there is some \(d_{k+1} \in G \) such that \(v((a - d') - d_{k+1}) = v(a - d') \geq k + 1 \). Thus, \(d_{k+1}(i) = (a - d')(i) = 0 \) for \(i \leq k \) and \(d_{k+1}(k + 1) = (a - d')(k + 1) \). We obtain \((d_0 + \ldots + d_{k+1})(i) = a(i) \) for \(i \leq k \) and \((d_0 + \ldots + d_{k+1})(k + 1) = (d' + d_{k+1})(k + 1) = a(k + 1) \), as required.
Proposition 3.12. Let $G \subseteq H$ be an immediate extension of ordered abelian groups such that H is densely ordered and $vH \subseteq \omega$. Then G is dense in H.

Proof. Let $\Gamma = vH$. By the Hahn Embedding Theorem (cf. [21 page 14]), we may consider H as a subgroup of the Hahn product $\mathbb{H}_{n \in \omega} B_n$, where we set $B_n = \{0\}$ for $n \notin \Gamma$. Note that $H \subseteq \mathbb{H}_{n \in \omega} B_n$ is an immediate extension. Let $a, b \in H$ with $0 < a < b$. By Lemma 3.11, there exists a sequence $(d_n)_{n \in \omega}$ in G such that for any $k \in \omega$ and any $i \leq k$ we have $(d_0 + \ldots + d_k)(i) = a(i)$.

Suppose that $k = v(b - a)$ is the last element of vG. Then by Lemma 3.6 (4), B_k is densely ordered. Let $c \in G$ with $v(c) = k$ and $a(k) < c(k) < b(k)$. Then $d' = d_1 + \ldots + d_{k-1} + c \in G$ and $a < d' < b$, as required. Now suppose that k is not the last element of vG. Then let $c \in G$ with $v(c) = m > k$ and $c(m) > a(m)$. Then $d' = d_1 + \ldots + d_{m-1} + c \in G$ and $a < d' < b$, as required.

Corollary 3.13. Let G be an ordered abelian group. Suppose that the extension $G \subseteq G^{\text{div}}$ is immediate and that $vG \subseteq \omega$. Then G is dense in G^{div}.

Proof. Apply Proposition 3.12 to $H = G^{\text{div}}$.

Note that without the condition $vG \subseteq \omega$ in Corollary 3.13, the conclusion that G is dense in G^{div} does not hold in general, as the following example shows.

Example 3.14. Let H be the Hahn product $\mathbb{H}_{\gamma \in \omega+1} \mathbb{Q}$. Let H' be the Hahn sum $H' = \coprod_{\gamma \in \omega+1} \mathbb{Q} \subseteq H$. Note that $H' \subseteq H$ is an immediate extension (cf. [21 page 3]). It follows that for any ordered abelian groups G_1 and G_2 with $H' \subseteq G_1 \subseteq G_2 \subseteq H$, also the extension $G_1 \subseteq G_2$ is immediate.

Let $G \subseteq H$ be given by

$$G = H' + a \mathbb{Z}, \text{ where } a = \sum_{\gamma \in \omega} 1_{\gamma}. $$

Now $G^{\text{div}} = H' + a \mathbb{Q} \subseteq H$, and the extension $G \subseteq G^{\text{div}}$ is immediate. Let $c = \frac{1}{2} a + \frac{1}{3} 1_{\omega}$ and $d = \frac{1}{2} a + \frac{1}{4} 1_{\omega}$. Then $c, d \in G^{\text{div}}$ with $0 < c < d$. However, there is no element in G strictly between c and d. Thus G is not dense in G^{div}.

Remark 3.15. By Corollary 3.9 and Corollary 3.13, we obtain the following: Let G be an ordered abelian group and $vG \subseteq \omega$. Then the extension $G \subseteq G^{\text{div}}$ is dense if and only if it is immediate.

The final results of this section are on ordered abelian groups which are not dense in their divisible hull. These will be used in Subsection 5.2 to compare \mathcal{L}_e- and \mathcal{L}_{or}-definability of henselian valuations with real closed residue field in almost real closed fields. We start by giving some useful examples of ordered abelian groups which are not regular and thus not dense in their divisible hull.

Example 3.16. 1. $\mathbb{Z} \oplus \mathbb{Z}$ is a discretely ordered group which is not regular.

2. Let A be as in Example 3.10. Consider $G = A \oplus A$. Since A is densely ordered, so is G by Lemma 3.6. Since there is no element in G between $(\frac{1}{3}, 0)$ and $(\frac{2}{3}, 1)$, which both lie in $G^{\text{div}} = \mathbb{Q} \oplus \mathbb{Q}$, it follows that G is not dense in G^{div} and thus not regular. However, G has limit points in $G^{\text{div}} \setminus G$, e.g. $(0, \frac{1}{3})$.

Example 3.16 (2) shows that it is possible for an ordered abelian group to have limit points in its divisible hull but not to be dense in it. We can go even further
and construct a non-divisible densely ordered abelian group G which does not have any limit points in $G^\div \setminus G$; or, in other words, G is closed in G^\div. We conclude this section by proving results on non-divisible densely ordered abelian groups which are closed in their divisible hull. A natural example of these are non-divisible Hahn products.

Proposition 3.17. Let $\Gamma \neq \emptyset$ be a totally ordered set without a last element, and for any $\gamma \in \Gamma$, let $A_\gamma \neq \{0\}$ be an archimedean ordered abelian group. Suppose that $G = \mathbb{H}_{\gamma \in \Gamma} A_\gamma$ is non-divisible. Then G is closed in G^\div.

Proof. Let $s \in G^\div \setminus G$, and let $\gamma_0 \in \Gamma$ with $\gamma_0 > \min\{\gamma \in \Gamma \mid s, \gamma \notin A_\gamma\}$. Such γ_0 exists, as Γ has no last element. Then the interval $(s - 1_{\gamma_0}, s + 1_{\gamma_0})$ does not contain any element of G. Hence, s is not a limit point of G. \qed

Proposition 3.17 shows in particular that any non-divisible Hahn product whose value set has no last element is not dense in its divisible hull. Thus, by **Fact 3.3 (i)**, any such Hahn product has no archimedean model. A similar result holds for ordered Hahn fields which are not real closed (see **Corollary 4.11**). The final results of this section gives us sufficient conditions for an ordered abelian group to be closed in its divisible hull.

Proposition 3.18. Let G be an ordered abelian group. Suppose that for every prime $p \in \mathbb{N}$, there is a p-divisible convex subgroup $G_p \neq \{0\}$ of G. Then G is closed in G^\div.

Proof. If G is divisible, then the conclusion is trivial. Otherwise, let $a \in G$ and $N \in \mathbb{N}$ such that $\frac{a}{N} \in G^\div \setminus G$. Let $N = p_1 \ldots p_m$ be the prime factorisation of N. Consider the non-trivial N-divisible convex subgroup $H = \bigcap_{i=1}^{m} G_{p_i}$. Let $h \in H$ with $h > 0$. Consider the interval $I = \left(\frac{a}{N} - h, \frac{a}{N} + h\right)$ in G^\div. Assume that $I \cap G \neq \emptyset$. Then for any $g \in I \cap G$ we have $v(Ng - a) = v(g - \frac{a}{N}) \geq v(h)$ and thus $Ng - a \in h$. Since H is N-divisible, we obtain $g - \frac{a}{N} \in H$ and thus $\frac{a}{N} \in G$, a contradiction. This gives us $I \cap G = \emptyset$, as required. \qed

Corollary 3.19. Let G be an ordered abelian group. Suppose that G has a convex divisible subgroup $H \neq \{0\}$. Then G is closed in G^\div.

Proof. For any prime p, let $G_p = H$. The conclusion follows from **Proposition 3.18**. \qed

The following example shows that the converse of **Proposition 3.18** does not hold.

Example 3.20. Let $2 = p_0 < p_1 < p_2 < \ldots$ be a complete list of all prime numbers. For $n \in \mathbb{N}$, let A_n be the following ordered abelian group

$$A_n = \left\{ \frac{a}{p_1^{m_1} \ldots p_n^{m_n}} \mid a \in \mathbb{Z}, m_1, \ldots, m_n \in \mathbb{N}_0 \right\}.$$

Then A_n is p_i-divisible for $i = 1, \ldots, n$. Let $G = \mathbb{H}_{n \in \mathbb{N}} A_n$. Note that $G^\div = \mathbb{H}_{n \in \mathbb{N} \setminus 2} A_n$. Since A_n is not 2-divisible for any $n \in \mathbb{N}$, there is no non-trivial 2-divisible convex subgroup of G. In particular G is not divisible and thus closed in G^\div by **Proposition 3.17**. Moreover, for any prime $p_i \neq 2$, the maximal p_i-divisible subgroup of G is $\mathbb{H}_{n \in \mathbb{N} \setminus 2} A_n$.
§4. Density in Real Closure. We now turn to ordered fields which are dense in their real closure.

4.1. Model theoretic properties. In this subsection, we study model theoretically the class of ordered fields which are dense in their real closure. At first, we change to a more general setting of complete theories which admit quantifier elimination. For a structure \(\mathcal{M} \) and a subset \(A \subseteq \mathcal{M} \), we denote the definable closure of \(A \) in \(\mathcal{M} \) by \(\text{dcl}(A; \mathcal{M}) \).

Theorem 4.1. Let \(\mathcal{L} \) be a language expanding \(\mathcal{L}_{\text{og}} \), let \(T \supseteq T_{\text{dlog}} \) be a complete \(\mathcal{L} \)-theory which admits quantifier elimination and let \(\Sigma \subseteq T \) be a theory extending the theory of ordered abelian groups. Then there is a theory \(\Sigma' \supseteq \Sigma \) such that for any \(\mathcal{M}' \models T \) and any \(\mathcal{M} \subseteq \mathcal{M}' \) with \(\text{dcl}(\mathcal{M}; \mathcal{M}') = \mathcal{M}' \), we have that \(\mathcal{M} \models \Sigma' \) if and only if \(\mathcal{M} \models \Sigma \) and \(\mathcal{M} \) is dense in \(\mathcal{M}' \). Moreover, if \(\Sigma \) and \(T \) are recursive, then we can also choose \(\Sigma' \) to be recursive.

Proof. For any 0-definable function \(f \) in \(T \), let \(\varphi_f(\underline{a}, z) \) be a quantifier-free formula which is equivalent to \(z < f(\underline{a}) \) in \(T \). Let \(A \) be the set of all pairs \((f, g)\) of 0-definable functions in \(T \) with the same arity such that

\[
T \models \forall \underline{a} \ (f(\underline{a}) = g(\underline{a}) \rightarrow \underline{a} = 0).
\]

In other words, \(A \) consists of all pairs of 0-definable functions which are distinct everywhere except possibly in 0. Set

\[
\Sigma' = \Sigma \cup \{ \forall \underline{a} \ (\underline{a} \neq 0 \rightarrow \neg \forall z \ (\varphi_f(\underline{a}, z) \leftrightarrow \varphi_g(\underline{a}, z))) \mid (f, g) \in A \}.
\]

Note that if \(\Sigma \) and \(T \) are recursive, then so is \(\Sigma' \), as it is decidable whether a given \(\mathcal{L} \)-formula defines a function.

Let \(\mathcal{M}' \models T \) and let \(\mathcal{M} \subseteq \mathcal{M}' \) with \(\text{dcl}(\mathcal{M}; \mathcal{M}') = \mathcal{M}' \). Suppose that \(\mathcal{M} \models \Sigma' \). We need to show that \(\mathcal{M} \) is dense in \(\mathcal{M}' \). Let \(\alpha, \beta \in \mathcal{M}' \) such that \(\alpha \neq \beta \). Let \(f \) and \(g \) be 0-definable functions and let \(\underline{a} \in \mathcal{M} \) such that \(f(\underline{a}) = \alpha \) and \(g(\underline{a}) = \beta \). Since also \(\text{dcl}(\mathcal{M} \setminus \{0\}; \mathcal{M}') = \mathcal{M}' \), we may assume that \(\underline{a} \neq 0 \). Moreover, we may assume that \((f, g) \in A\), as otherwise we can replace \(g \) by the 0-definable function

\[
\underline{x} \mapsto \begin{cases}
\frac{g(\underline{x})}{|\underline{x}| + |f(\underline{x})|} & \text{if } f(\underline{x}) \neq g(\underline{x}) \text{ or } \underline{x} = 0, \\
\frac{f(\underline{x})}{|\underline{x}| + |f(\underline{x})|} & \text{otherwise.}
\end{cases}
\]

Hence,

\[
\mathcal{M} \models \forall \underline{x} \ (\varphi_f(\underline{x}, z) \leftrightarrow \varphi_g(\underline{x}, z)).
\]

This implies that for some \(b \in \mathcal{M} \) we have

\[
\mathcal{M} \models \varphi_f(\underline{a}, b) \land \neg \varphi_g(\underline{a}, b) \text{ or } \mathcal{M} \models \neg \varphi_f(\underline{a}, b) \land \varphi_g(\underline{a}, b).
\]

Since \(\varphi_f \) and \(\varphi_g \) are quantifier-free, we obtain that either

\[
\mathcal{M}' \models \varphi_f(\underline{a}, b) \land \neg \varphi_g(\underline{a}, b) \text{ or } \mathcal{M}' \models \neg \varphi_f(\underline{a}, b) \land \varphi_g(\underline{a}, b).
\]

Hence, either

\[
\beta = g(\underline{a}) \leq b < f(\underline{a}) = \alpha \text{ or } \alpha = f(\underline{a}) \leq b < g(\underline{a}) = \beta.
\]

This implies that \(\mathcal{M} \) is dense in \(\mathcal{M}' \).
Conversely, suppose that \(M \models \Sigma \) and \(M \) is dense in \(M' \). Let \((f, g) \in A \) and \(\overline{a} \in M \) with \(\overline{a} \neq 0 \). We need to show that
\[
M \models \neg \forall z \ (\varphi_f(\overline{a}, z) \leftrightarrow \varphi_g(\overline{a}, z)).
\]
Let \(\alpha = f(\overline{a}) \) and \(\beta = g(\overline{a}) \). By assumption on \(A \), we have \(\alpha \neq \beta \), say \(\alpha < \beta \). Since \(M \) is dense in \(M' \), there is \(c \in M \) such that \(\alpha < c < \beta \). Hence, \(M' \models \neg \varphi_f(\overline{a}, c) \) but \(M' \models \varphi_g(\overline{a}, c) \). Since \(\varphi_f \) and \(\varphi_g \) are quantifier-free, we obtain \(M \models \neg \varphi_f(\overline{a}, c) \) and \(M \models \varphi_g(\overline{a}, c) \), as required.

Corollary 4.2. Let \(L \) be a language expanding \(\mathcal{L}_{og} \) and let \(M = (M, +, 0, <, \ldots) \) and \(N = (N, +, 0, <, \ldots) \) be ordered \(L \)-structures such that \((M, +, 0, <)\) is a non-trivial ordered abelian group and \(M \cong N \). Suppose that there exists a complete \(L \)-theory \(T \supseteq T_{\text{doag}} \) admitting quantifier elimination such that there are \(M', N' \models T \) with \(M \subseteq M' \), \(N \subseteq N' \), \(\text{dcl}(M; M') = M' \) and \(\text{dcl}(N; N') = N' \). Suppose further that \(M \) is dense \(M' \). Then \(N \) is also dense in \(N' \).

Proof. By applying [Theorem 4.1] to \(\Sigma = \text{Th}(M) \), we obtain a theory \(\Sigma' \) such that \(M \models \Sigma' \). Moreover, since \(M \cong N \), we obtain \(N \models \Sigma' \). Hence, \(N \) is dense in \(N' \).

Theorem 4.1 is applicable to both the \(\mathcal{L}_{og} \)-theory of divisible ordered abelian groups \(T_{\text{doag}} \) and the \(\mathcal{L}_{or} \)-theory of real closed fields \(T_{\text{ref}} \). Note that by o-minimality of \(T_{\text{doag}} \), for any extension of ordered abelian groups \(G \subseteq H \) where \(H \) is divisible, we have \(\text{dcl}(G; H) = G^{\text{div}} \). Similarly, for any extension of ordered fields \((K, <) \subseteq (F, <) \) such that \(F \) is real closed, we have \(\text{dcl}(K; (F, <)) = K^{\text{rc}} \).

Corollary 4.3. 1. There is a recursive \(\mathcal{L}_{og} \)-theory which axiomatises the class of non-trivial ordered abelian groups which are dense in their divisible hull.

2. There is a recursive \(\mathcal{L}_{or} \)-theory which axiomatises the class of ordered fields which are dense in their real closure.

Proof. 1. Let \(\Sigma \) be the recursive \(\mathcal{L}_{og} \)-theory of non-trivial ordered abelian groups. By applying [Theorem 4.1] to \(T = T_{\text{doag}} \), we obtain a recursive \(\mathcal{L}_{og} \)-theory \(\Sigma' \) such that for any non-trivial divisible ordered abelian group \(H \) and for any subgroup \(G \subseteq H \) with \(G^{\text{div}} = \text{dcl}(G; H) = H \) we have that \(G \models \Sigma' \) if and only if \(G \) is dense in \(H = G^{\text{div}} \). Hence, \(\Sigma' \) axiomatises the class of non-trivial ordered abelian groups which are dense in their divisible hull.

2. We can apply [Theorem 4.1] to \(T = T_{\text{ref}} \) and then argue as in (1) to obtain a recursive axiomatisation of the class of ordered fields which are dense in their real closure.

Remark 4.4. We have already shown in [Corollary 3.3] that there exists a recursive axiomatisation of non-trivial ordered abelian groups which are dense in their divisible hull and stated the axiomatisation explicitly. An explicit axiomatisation of ordered fields which are dense in their real closure is given in [11] Satz 13] as well as [22] Theorem 5] as the theory of ordered fields \(T_{\text{of}} \) plus the following axioms (one for each \(n \in \mathbb{N} \):
\[
\forall \epsilon_0, \ldots, \epsilon_n, a, b, \epsilon \\
[(a < b \wedge 0 < \epsilon \wedge F(a)F(b) < 0) \rightarrow \exists z \ (a < z < b \wedge |F(z)| < \epsilon)],
\]
where $F(x) = c_n x^n + \ldots + c_0$. We point out that Theorem 4.1 is applicable in a wider context than ordered abelian groups and ordered fields, as its proof gives a general procedure to obtain recursive axiomatizations of ordered structures which are dense in certain definable closures.

We now apply the results above to the o-minimal complete theory of real closed fields T_{rc}.

Corollary 4.5. Let $(K, <)$ and $(L, <)$ be ordered fields such that $(K, <) \equiv (L, <)$. Suppose that K is dense in K^{rc}. Then L is dense in L^{rc}.

Proof. This follows immediately from Corollary 4.3 [2].

Let $(K, <)$ be an archimedean ordered field. Then $\mathbb{Q} \subseteq K \subseteq K^{rc} \subseteq \mathbb{R}$. Since \mathbb{Q} is dense in \mathbb{R}, also K is dense in K^{rc}. In other words, any archimedean ordered field is dense in its real closure. We thus obtain the following.

Corollary 4.6. Let $(K, <)$ be an ordered field which has an archimedean model. Then K is dense in K^{rc}.

Proof. Since any archimedean ordered field is dense in its real closure, we obtain from Corollary 4.5 that K is dense in K^{rc}.

By Corollary 4.6, any ordered field with an archimedean model is dense in its real closure. We will use Corollary 4.3 to show that the converse does not hold, i.e. that there exists an ordered field which is dense in its real closure but has no archimedean model [7].

Let $(K, <)$ be an ordered field. An integer part of K is a discretely ordered subring $(Z, <) \subseteq (K, <)$ with 1 as least positive element such that for any $x \in K$ there exists $z \in Z$ with $z \leq x < z + 1$. The connections between integer parts and density in real closure are further explored in Subsection 4.3.

Proposition 4.7. There is an ordered field $(K, <)$ such that K is dense in K^{rc} but $(K, <)$ has no archimedean model. Moreover, $(K, <)$ does not admit a non-trivial L_{or}-definable convex valuation.

Proof. Let $\varphi(x)$ be an L_{or}-formula defining \mathbb{Z} in $(\mathbb{Q}, <)$ (cf. [26, Theorem 3.1]). Let Σ_1 be the L_{or}-theory Σ' from Corollary 4.3 and let Σ_2 be a set of axioms stating that $\varphi(x)$ defines an integer part. Moreover, let Σ_3 consist of all L_{or}-sentences stating that $\psi(x)$ does not define a non-trivial convex valuation ring, where $\psi(x)$ ranges over all L_{or}-formulas with one free variable. For any L_{or}-formula α, let $\bar{\alpha}$ be the formula in which all quantifiers $\exists x$ and $\forall x$ are bounded by $\varphi(x)$, that is, all instances of subformulas of the form $\exists x \theta(x, y)$ are replaced by $\exists x (\varphi(x) \land \theta(x, y))$ and all instances of subformulas of the form $\forall x \theta(x, y)$ are replaced by $\forall x (\varphi(x) \rightarrow \theta(x, y))$.

Let Σ be the deductive closure of $\Sigma_1 \cup \Sigma_2 \cup \Sigma_3$. Note that Σ is recursive and $(\mathbb{Q}, <) \models \Sigma$. If for every L_{or}-sentence $\alpha \in \text{Th}(\mathbb{Z}, +, -, 0, 1, <)$, we had $\Sigma \models \bar{\alpha}$, then $\text{Th}(\mathbb{Z}, +, -, 0, 1, <)$ would be decidable. Hence, there is an L_{or}-sentence σ such that $\neg \sigma \in \text{Th}(\mathbb{Z}, +, -, 0, 1, <)$ and $\bar{\sigma}, \neg \bar{\sigma} \notin \Sigma$. Let $\bar{\Sigma}$ be the consistent L_{or}-theory $\Sigma \cup \{\bar{\sigma}\}$ and let $(K, <) \models \bar{\Sigma}$. Assume that $(K, <)$ is

\footnote{In this regard, we thank Erik Walsberg for pointing out a related question.}
archimedean. Since \((K, <) \models \Sigma_2\), the formula \(\varphi(x)\) defines the integer part \(\mathbb{Z}\) of \(K\). But then \((K, <) \models \neg \hat{\sigma}\), a contradiction. Hence, \((K, <)\) cannot have any archimedean models. However, since \((K, <) \models \Sigma_1\), we have that \(K\) is dense in \(K^{rc}\). Moreover, since \((K, <) \models \Sigma_3\), it does not admit a non-trivial \(L_{or}\)-definable convex valuation.

4.2. Dense and immediate extensions. We now analyse algebraic properties of ordered fields which are dense in their real closure. As pointed out above, there is an intimate connection between integer parts and dense extensions of ordered fields. This connection is explored in \cite{2} and will further be addressed here. Throughout this section, we denote the natural valuation \(v_{\text{nat}}\) simply by \(v\).

We start by investigating the connection between dense and immediate extensions of ordered fields. Let \((K, <) \subseteq (L, <)\) be an extension of ordered fields and let \(w\) be a convex valuation on \(L\). We say that \(K\) is \(w\)-dense in \(L\) if for any \(a \in L\) and any \(\alpha \in wL\), there exists \(b \in K\) such that \(w(a-b) > \alpha\). The following result is due to the fact that the topology induced by a non-trivial convex valuation on an ordered field coincides with the order topology (cf. e.g. \cite[Section 7.63]{1}).

Fact 4.8. Let \((K, <) \subseteq (L, <)\) be an extension of non-archimedean ordered fields and let \(w\) be a non-trivial convex valuation on \(L\). Then \(K\) is \(w\)-dense in \(L\) if and only if \(K\) is dense in \(L\).

By \cite[Lemma 1.31]{21}, any \(w\)-dense extension of ordered fields is also immediate with respect to \(w\). We thus obtain the following corollary to **Fact 4.8**.

Corollary 4.9. Let \((K, <) \subseteq (L, <)\) be a dense extension of non-archimedean ordered fields. Then this extension is immediate with respect to any non-trivial convex valuation on \(L\).

Corollary 4.9 can be applied to ordered Hahn fields as follows: Let \((k, <)\) be an ordered field and \(G \neq \{0\}\) an ordered abelian group. Suppose that \(k\langle(G)\rangle\) is dense in \(k\langle(G)\rangle^{rc}\). By **Corollary 4.9**, \(k\langle(G)\rangle \subseteq k\langle(G)\rangle^{rc}\) is an immediate extension with respect to the valuation \(v_{\text{min}}\). Hence, \(k = k^{rc}\) and \(G = G^{\text{div}}\). This implies that \(k\langle(G)\rangle\) is real closed. Hence, if \(k\langle(G)\rangle\) is not real closed, then it is not dense in its real closure. This can be strengthened with the following proposition.

Proposition 4.10. Let \((k, <)\) be an ordered field and \(G \neq \{0\}\) an ordered abelian group. Then \(k\langle(G)\rangle\) is closed in \(k\langle(G)\rangle^{rc}\).

Proof. Let \(K = k\langle(G)\rangle\) and \(R = K^{rc}\). We need to show that \(R \setminus K\) is open in \(R\). If \(K = R\), then \(R \setminus K = \emptyset\). Hence, assume that \(K \subsetneq R\). Let \(at^{g_0}\) be the monomial of \(s\) of least exponent which is not contained in \(K\), and let \(g_1 \in G^{>g_0}\) be arbitrary. Then the open interval

\[I = (s - t^{g_1}, s + t^{g_1}) \subseteq R\]

contains \(s\). However, any element in \(I\) contains the monomial \(at^{g_0}\) and is thus not contained in \(K\). Hence, \(s\) is contained in an open neighbourhood in \(R \setminus K\), as required.

Corollary 4.11. Let \((k, <)\) be an ordered field and let \(G \neq \{0\}\) be an ordered abelian group. Suppose that \(k\langle(G)\rangle\) is not real closed. Then \((k\langle(G)\rangle, <)\) has no archimedean model.
Proof. By Proposition 4.10, \(k(G) \) is not dense in \(k((G))^{rc} \). Thus, by Corollary 4.6, \((k((G)),<) \) has no archimedean model.

We obtain the following result regarding the existence of henselian valuations in ordered fields which are dense in their real closure.

Corollary 4.12. Let \((K,<)\) be an ordered field which is not real closed but dense in \(K^{rc} \). Then \(K \) does not admit a non-trivial henselian valuation.

Proof. If \(K \) is archimedean, then the only possible henselian valuation on \(K \) is the trivial one. If \(K \) is non-archimedean, let \(w \) be a henselian valuation on \(K \). By Fact 2.1, we have \((K,<) \equiv (Kw((wK)),<)\). By Corollary 4.5, \(Kw((wK)) \) is dense in \(Kw((wK))^{rc} \). By Proposition 4.10, this is only possible if \(wK = \{0\} \), i.e. \(w \) is the trivial valuation.

We now focus on immediate extension with respect to the natural valuation \(v \).

For an ordered field \(K \), let \(A_K \) be a group complement to \(O_v \) in \(K \), i.e. \(A_K \) is an ordered subgroup of \(K \) such that \(K = A_K \oplus O_v \). Note that for an extension of ordered fields \((K,<) \subseteq (L,<)\), the group complement \(A_K \) can be extended to a group complement \(A_L \). The following is a useful characterisation of dense extensions of ordered field (cf. \[21, Lemma 1.32\]).

Fact 4.13. Let \((K,<) \subseteq (L,<)\) be an extension of ordered fields. Then \(K \) is dense in \(L \) if and only if \(A_K = A_L \).

Whenever the extension of ordered fields \((K,<) \subseteq (K^{rc},<)\) is dense and thus immediate, then \(Kv \) is real closed and \(vK \) is divisible. The converse holds under the additional assumption that \(vK \) is archimedean (cf. \[29, Proposition 9\]).

Fact 4.14. Let \((K,<)\) be an ordered field such that \(Kv \) is real closed and \(vK \) is divisible and archimedean. Then \(K \) is dense in \(K^{rc} \).

\[2\] Remark 3.5 provides an example of an ordered field \((K,<)\) such that \(Kv \) is real closed and \(vK \) can be chosen to be divisible and non-archimedean (i.e. \(K \subseteq K^{rc} \) is immediate) but \(A_K \neq A_{K^{rc}} \), whence \(K \) is not dense in \(K^{rc} \).

4.3. Normal integer parts. We now turn to normal integer parts in connection to ordered fields dense in their real closure. Due to \[23\], every real closed field admits an integer part. In \[2\] Remark 3.3 (iii)] the question is asked whether every real closed fields admits a normal integer part, i.e. an integer part \(Z \) which is integrally closed in its field of fractions \(ff(Z) \).

Remark 4.15. For an ordered field \((K,<)\), if \(Z \) is an integer part of \(K \), then \(ff(Z) \) is dense in \(K \). Moreover, if \(Z \) is normal, then \(Q \subseteq ff(Z) \) is regular, i.e. \(Q \) is relatively algebraically closed in \(ff(Z) \). Hence, if an ordered field admits a normal integer part, then it has a dense subfield which is regular over \(Q \). Note that any archimedean ordered field has \(Z \) as a normal integer part. Hence, the following question is closely related to the one in \[2\] Remark 3.3 (iii): Given a non-archimedean real closed field \((K,<)\), does it contain a dense subfield \(F \subseteq K \) such that \(F \) is regular over \(Q \)? In the following, we will give a positive answer to this in the case that the absolute transcendence degree of \(K \) is infinite.

For an ordered field \((K,<)\), we denote its absolute transcendence degree, i.e. its transcendence degree over \(Q \), by \(tf(K) \). We say that \(T \subseteq K \) is a transcendence
basis of \(K \) if it is a transcendence basis of \(K \) over \(\mathbb{Q} \). The following result is due to \cite{7}, Lemma 2.3.

Fact 4.16. Let \((K,\prec)\) be an uncountable ordered field. Then \(K \) admits a dense transcendence basis.

The arguments in \cite{7} can be generalised to countable ordered fields with countably infinite transcendence basis.

Proposition 4.17. Let \((K,\prec)\) be a countable ordered field with \(\text{td}(K) = \aleph_0 \). Then \(K \) admits a dense transcendence basis.

Proof. Let \((I_n)_{n \in \mathbb{N}}\) be an enumeration of all intervals \((a,b) \subseteq K\). We construct a transcendence basis \(\{t_1,t_2,\ldots\} \) of \(K \) over \(\mathbb{Q} \) such that \(t_k \in I_k \) for any \(k \). Let \(t_1 \in I_1 \) be an arbitrary element transcendental over \(\mathbb{Q} \). Suppose that \(t_1,\ldots,t_n \) have already been chosen for some \(n \). Assume, for a contradiction, that all elements in \(I_{n+1} \) were algebraic over \(\mathbb{Q}(t_1,\ldots,t_n) \). Then by \cite{7}, Lemma 2.2, \(K \) is algebraic over \(\mathbb{Q}(t_1,\ldots,t_n) \). This contradicts \(\text{td}(K) = \aleph_0 \). Hence, we can choose \(t_{n+1} \in I_{n+1} \) which is transcendental over \(\mathbb{Q}(t_1,\ldots,t_n) \).

Now \(T' = \{t_n \mid n \in \mathbb{N}\} \) is a dense subset of \(K \) and algebraically independent over \(\mathbb{Q} \) and can thus be extended to a dense transcendence basis \(T \supseteq T' \) of \(K \).

Corollary 4.18. Let \((K,\prec)\) be an ordered field with \(\text{td}(K) \geq \aleph_0 \). Then there is a dense subfield \(F \) of \(K \) such that \(\mathbb{Q} \subseteq F \) is regular.

Proof. By Fact 4.16 and Proposition 4.17, \(K \) has a dense transcendence basis \(T \). Then \(F = \mathbb{Q}(T) \) is dense in \(K \) and \(\mathbb{Q} \subseteq F \) is regular.

Note that the conclusion of Corollary 4.18 also holds for ordered fields of transcendence degree 0. Indeed, if \((K,\prec)\) is an ordered field with \(\text{td}(K) = 0 \), then \(K \) is algebraic over \(\mathbb{Q} \) and thus archimedean. We can then set \(F = \mathbb{Q} \). Thus, the question becomes whether the same conclusion can be made for non-archimedean ordered fields of non-zero finite transcendence degree (see Question 7.2).

As a final result of this section, we obtain the following characterisation of ordered fields dense in their real closure in terms of dense transcendence bases.

Corollary 4.19. Let \((K,\prec)\) be an ordered field. Suppose that \(\text{td}(K) \geq \aleph_0 \). Then \(K \) is dense in \(K^{\text{rc}} \) if and only if \(K \) has a transcendence basis \(T \) which is dense in \(K^{\text{rc}} \).

Proof. Note that any transcendence basis of \(K \) is a transcendence basis of \(K^{\text{rc}} \). If \(K \) has a transcendence basis \(T \) which is dense in \(K^{\text{rc}} \), then \(K \) has a proper subset dense in \(K^{\text{rc}} \) and thus \(K \) itself is dense in \(K^{\text{rc}} \). Conversely, suppose that \(K \) is dense in \(K^{\text{rc}} \). By Fact 4.16 and Proposition 4.17, \(K \) has a transcendence basis \(T \) which is dense in \(K \). Since \(K \) is dense in \(K^{\text{rc}} \), also \(T \) is dense in \(K^{\text{rc}} \).

§5. Definable Convex Valuations. In this section, we firstly investigate what convex valuations are \(\mathcal{L}_\text{ar} \)-definable in ordered fields and secondly we compare our results to known \(\mathcal{L}_r \)-definability results of henselian valuations with special focus on almost real closed fields.
5.1. \mathcal{L}_{or}-definability. We are going to analyse the construction method of \mathcal{L}_{or}-definable convex valuations from [15 Proposition 6.5].

FACT 5.1. Let (K, \prec) be an ordered field. Then at least one of the following holds.
1. K is dense in its real closure.
2. K admits a non-trivial \mathcal{L}_{or}-definable convex valuation.

Note that a real closed field (K, \prec) does not admit any non-trivial \mathcal{L}_{or}-definable convex valuation, as by o-minimality, any \mathcal{L}_{or}-definable convex subset of K must be an interval with endpoints in $K \cup \{ \pm \infty \}$. We will summarise the construction procedure of a non-trivial \mathcal{L}_{or}-definable convex valuation ring of an ordered field which is not dense in its real closure given in [15 page 163 f]. Recall that for an ordered field (K, \prec), we denote its topological closure in K^{rc} under the order topology by $cl(K)$.

CONSTRUCTION 5.2. Let (K, \prec) be an ordered field. Suppose that K is not dense in $R = K^{rc}$. Let $s \in R \setminus cl(K)$. Set $D_s := \{ z \in K \mid z \prec s \}$ and $A_s := \{ x \in K^{\geq 0} \mid x + D_s \subseteq D_s \}$. Set $G_s := \{ x \in K \mid |x|A_s \subseteq A_s \}$. Then G_s is a non-trivial \mathcal{L}_{or}-definable convex valuation ring of K.

THEOREM 5.3. Let (K, \prec) be an ordered field and v a henselian valuation on K. Suppose that at least one of the following holds.
1. vK is discretely ordered.
2. vK has a limit point in $vK^{div} \setminus vK$.
3. Kv has a limit point in $Kv^{rc} \setminus Kv$.

Then v is \mathcal{L}_{or}-definable in K. Moreover, in the cases (1) and (2), v is definable by an \mathcal{L}_{or}-formula with one parameter.

PROOF. Let $k = Kv$ and $G = vK$. Note that K is not real closed, as in each case either k is not real closed or G is non-divisible. By Fact 2.1 $(K, \prec, v) \equiv (k((G)), \prec, v_{min})$. Let $L = k((G))$, $w = v_{min}$ and $R = L^{rc}$. We will apply Construction 5.2 with some simplifications to define the valuation ring $k((G^{\geq 0}))$ of w in L. Proposition 4.10 shows that we can apply the construction procedure to any element in $s \in R \setminus L$.

First suppose that G is non-divisible. Let $g_0 \in G^{div} \setminus G$ and $s = t^{g_0}$. Consider the \mathcal{L}_{or}-definable set $D'_s = \{ x \in L^{\geq 0} \mid x < t^{g_0} \}$. Since $g_0 \in G^{div}$, there is some $h \in G$ and $N \in \mathbb{N}$ such that $g_0 = \frac{h}{N}$. Thus, the set D'_s is defined by the \mathcal{L}_{or}-formula with one parameter

$$x \geq 0 \land x^N < t^h.$$

Note that for any $x \in L^{\geq 0}$, we have $x \in D'_s$ if and only if $w(x) > g_0$. Thus, $D'_s = k((G^{>g_0}))^{\geq 0}$. Let $O_s = \{ x \in L \mid |x|D'_s \subseteq D'_s \}$. Note that this set is \mathcal{L}_{or}-definable with one parameter. By definition, O_s contains exactly those elements in L such that for any $y \in L^{\geq 0}$ with $w(y) > g_0$ we have

$$w(x) + w(y) = w(xy) > g_0.$$

* [15] Proposition 6.5] only states that K admits a non-trivial \mathcal{L}_{or}-definable valuation, but the proof indeed gives a construction method for a non-trivial \mathcal{L}_{or}-definable convex valuation.
In particular, for any \(x \in L \) with \(w(x) \geq 0 \), condition (1) holds. Thus, \(k(\langle G^{\geq 0} \rangle) \subseteq O_a \). To show the other set inclusion, we will make a case distinction, also specifying the element \(g_0 \) for the densely ordered case.

Suppose that \(G \) is discretely ordered. Let \(g_1 \in G \) be the least element greater than \(g_0 \) and let \(g_2 \in G \) be the least element greater than \(g_0 - g_1 \). Then \(g_2 + g_1 \) is the least element greater than \(g_0 \). By choice of \(g_1 \), this gives us \(g_2 + g_1 = g_1 \) and thus \(g_2 = 0 \). Let \(x \in O_a \). Since \(t^{g_1} \in D'_a \), we have \(w(x t^{g_1}) = w(x) + g_1 > g_0 \).

Hence, \(w(x) > g_0 - g_1 \). By choice of \(g_2 \) as the least element greater than \(g_0 - g_1 \), we obtain \(w(x) \geq g_2 = 0 \). This implies \(O_a \subseteq k(\langle G^{\geq 0} \rangle) \), as required.

Suppose that \(G \) has a limit point in \(G^{\text{div}} \setminus G \). In this case, we choose \(g_0 \in G^{\text{div}} \setminus G \) such that \(g_0 \) is a limit point of \(G \). We may assume that \(g_0 \) is a right-sided limit point, and as otherwise we can replace it by \(-g_0 \). Let \(x \in L \setminus k(\langle G^{\geq 0} \rangle) \), i.e. \(w(x) < 0 \). Since \(g_0 \) is a right-sided limit point of \(G \) in \(G^{\text{div}} \), the interval \((g_0, g_0 - w(x)) \subseteq G^{\text{div}} \) contains some element \(g_1 \in G \). Thus, \(g_1 > g_0 \) but \(w(x) + w(t^{g_1}) = w(x) + g_1 < g_0 \). This shows that \(x \) does not fulfil condition (1), whence \(x \notin O_a \). We thus obtain \(O_a \subseteq k(\langle G^{\geq 0} \rangle) \).

Now suppose that \(k \) is not real closed and has a limit point \(a \in k^{w} \setminus k \). We may assume that \(a \) is a left-sided limit point, as otherwise we can replace it by \(-a \). Then \(D'_a = \{ x \in L \mid a - 1 < x < a \} \) consists exactly of the elements of the form \(b + r \), where \(b \in k \) such that \(a - 1 < b < a \) and \(r \in k(\langle G^{>0} \rangle) \). In other words, \(D'_a = I + k(\langle G^{>0} \rangle) \), where \(I \) is the convex set \((a - 1, a) \) in \(k \). Note that \(I \) is non-empty, as \(a \) is a left-sided limit point of \(k \). Let \(A'_a \) be the \(\mathcal{L}_{\mathcal{O}} \)-definable set \(\{ x \in L^{\geq 0} \mid x + D'_a \subseteq D'_a \} \). Since \(k(\langle G^{>0} \rangle) \) is closed under addition, we have \(k(\langle G^{>0} \rangle) + D'_a \subseteq D'_a \). Thus, \(k(\langle G^{>0} \rangle) \cap D'_a \subseteq A'_a \). For the other inclusion, let \(x \in L^{\geq 0} \setminus k(\langle G^{>0} \rangle) \), i.e. \(w(x) \leq 0 \) and \(x \geq 0 \). If \(w(x) > 0 \), then \(x + b \notin D'_a \) for any \(b \in I \). Thus, \(x \notin A'_a \). Suppose that \(w(x) = 0 \). Then \(x \) is of the form \(c + r \) with \(c \in k^{>0} \) and \(r \in k(\langle G^{>0} \rangle) \). If \(c \geq 1 \), then \(x + b \notin D'_a \) for any \(b \in I \), whence \(x \notin A'_a \). If \(c < 1 \), let \(b \in k \cap (a - c, a) \), which exists, as \(a \) is a left-sided limit point of \(k \). Then \(x + b = (c + b) + r > a + r \). Thus, \(x + b \notin D'_a \) and \(x \notin A'_a \).

Hence, we have shown that \(A'_a \subseteq k(\langle G^{>0} \rangle) \). Now \((A'_a \cup A'_a) = k(\langle G^{>0} \rangle) \) is the maximal ideal of the valuation ring \(k(\langle G^{>0} \rangle) \). Thus, the valuation ring \(k(\langle G^{>0} \rangle) = \{ x \in L \mid x(-A'_a \cup A'_a) \subseteq (-A'_a \cup A'_a) \} \) is \(\mathcal{L}_{\mathcal{O}} \)-definable.

Now for any of the three cases, there is an \(\mathcal{L}_{\mathcal{O}} \)-formula \(\varphi(x, y) \) (where in the cases (1) and (2) \(y \) is just one free variable) such that \(\langle L, <, w \rangle \models \exists y \forall x (\varphi(x, y) \leftrightarrow w(x) \geq 0) \). By elementary equivalence, there is some \(\overline{k} \in K \) such that \(\langle K, <, v \rangle \models \exists x (\varphi(x, \overline{b}) \leftrightarrow v(x) \geq 0) \). In other words, \(\varphi(x, \overline{b}) \) defines \(v \) in \(K \), as required.

\textbf{Theorem 5.3} is not a full characterisation of all \(\mathcal{L}_{\mathcal{O}} \)-definable henselian valuations on an ordered field. Indeed, we can choose \(K = R(G) \) for \(G \) as in Example 3.20. Then \(v_{\text{min}} = v_0 \) (see page 20) satisfies neither of the conditions of Theorem 5.3 but \(v_0 \) is even \(\mathcal{L}_{\mathcal{O}} \)-definable by Fact 5.10 for \(p = 2 \). Moreover, not every ordered henselian valued field which is not dense in its real closure satisfies one of the conditions of Theorem 5.3. For instance, \((R(G), <, v_{\text{min}}) \), where \(G \) is as in Proposition 3.17, is not dense in its real closure by Proposition 4.10 and does not satisfy any of the conditions of Theorem 5.3.
Corollary 5.4. Let \((K, <)\) be an ordered field and \(v\) a henselian valuation on \(K\). Suppose that \(Kv\) is not real closed but dense in \(Kv^{rc}\). Then \(v\) is \(\mathcal{L}_{or}\)-definable in \(K\).

Proof. This follows immediately from Theorem 5.3(3), as any point in \(Kv^{rc}\) \(\setminus Kv\) is a limit point of \(Kv\) in \(Kv^{rc}\).

Remark 5.5. 1. Since any archimedean ordered field is dense in its real closure, a special case of Corollary 5.4 is the following: Let \((K, <)\) be a non-archimedean ordered field. Suppose that the natural valuation \(v_{nat}\) is henselian on \(K\) and that \((Kv_{nat}, <)\) is not real closed. Then \(v_{nat}\) is \(\mathcal{L}_{or}\)-definable in \(K\).

2. Theorem 5.3(2) implies a similar version of Corollary 5.4 if \(vK\) is non-divisible and dense in \(vK^{\text{div}}\). However, we will see in Subsection 5.2 that under this condition we already have that \(v\) is \(\mathcal{L}_r\)-definability without parameters.

3. The proof of Theorem 5.3 also shows the following: Let \((K, <)\) be an ordered field and \(v\) a non-trivial henselian valuation on \(K\). Suppose that \(vK\) is non-divisible. Then there exists a non-trivial \(\mathcal{L}_{or}\)-definable coarsening of \(v\) which is definable by an \(\mathcal{L}_{or}\)-formula with one parameter.

Comparison to \(\mathcal{L}_r\)-definability. We will give a brief account of the known \(\mathcal{L}_r\)-definability result of henselian valuations in the case that the value group is regular (cf. [12, Theorem 4]) and compare this to Theorem 5.3.

Fact 5.6. (See [12, Theorem 4].) Let \(K\) be a field and \(v\) a henselian valuation on \(K\). Suppose that \(vK\) is regular and non-divisible. Then \(v\) is parameter-free \(\mathcal{L}_r\)-definable in \(K\).

By Fact 3.2 we obtain the following.

Corollary 5.7. Let \((K, <)\) be an ordered field and \(v\) a henselian valuation on \(K\) such that \(vK\) is non-divisible but dense in \(vK^{\text{div}}\). Then \(v\) is parameter-free \(\mathcal{L}_r\)-definable in \(K\).

Example 3.16(1) shows that there are discretely ordered abelian groups which are not regular. Example 3.16(2) exhibits a densely ordered abelian group \(G\) which is not regular but has limit points in \(G^{\text{div}} \setminus G\). This shows that there are ordered fields such that the cases (1) and (2) of Theorem 5.3 are not already covered by Fact 5.6.

5.2. Almost real closed fields. The class of almost real closed fields has first been studied systematically with respect to algebraic and model theoretic properties in [3]. Moreover, [3, Theorem 4.4] completely characterises all \(\mathcal{L}_r\)-definable henselian valuations in almost real closed fields. In the following, we will compare \(\mathcal{L}_r\) and \(\mathcal{L}_{or}\)-definability of henselian valuations in almost real closed fields.

Definition 5.8. Let \((K, <)\) be an ordered field, \(G\) an ordered abelian group and \(v\) a henselian valuation on \(K\). We call \(K\) an **almost real closed field** (with respect to \(v\) and \(G\)) if \(Kv\) is real closed and \(vK = G\).

Depending on the context, we may simply say that \((K, <)\) is an almost real closed field without specifying the henselian valuation \(v\) or the ordered abelian...
group $G = vK$. In [3], almost real closed fields are considered as pure fields, i.e. as structures in the language \mathcal{L}_r. Note that due to the Baer–Krull Representation Theorem (cf. [3 page 37 f.]), any such field admits (possibly several distinct) orderings. We, however, consider almost real closed fields as ordered fields with a fixed order. By [3 Proposition 2.9], any convex valuation on an almost real closed field is already henselian. We thus make no distinction between convex and henselian valuations on almost real closed fields.

Let (K, \prec) be an almost real closed field. We denote by $V(K)$ the set of all henselian valuations on K with real closed residue field and by v_0 the minimum of $V(K)$, i.e. the coarsest valuation in $V(K)$. This exists by [3 Proposition 2.1 (iv)].

Moreover, [3 Proposition 2.1 (ii)] implies that v_{nat} is the maximum of $V(K)$, as the natural valuation is the finest convex and thus henselian valuation on K. By the remarks in [3 page 1147 f.], v_0 is the only possible \mathcal{L}_r-definable henselian valuation in $V(K)$. Also in the language \mathcal{L}_{or}, there is at most one definable valuation in $V(K)$.

Proposition 5.9. Let (K, \prec) be an almost real closed field and $v \in V(K)$. Suppose that v is \mathcal{L}_{or}-definable in K. Then v is the only \mathcal{L}_{or}-definable valuation in $V(K)$.

Proof. By Fact 2.1 we have

$$(K, \prec, v) \equiv (\mathbb{R}((vK)), \prec, v_{\text{min}}).$$

Since v is \mathcal{L}_{or}-definable in K, there exists an \mathcal{L}_{or}-formula $\varphi(x, y)$ such that

$$K \models \exists y \forall x \ (\varphi(x, y) \leftrightarrow v(x) \geq 0).$$

By elementary equivalence, there exists $b \in \mathbb{R}((vK))$ such that

$$\mathbb{R}((vK)) \models \forall x \ (\varphi(x, b) \leftrightarrow v_{\text{min}}(x) \geq 0).$$

Hence, v_{min} is \mathcal{L}_{or}-definable in $\mathbb{R}((vK))$.

Let $\psi(x, y)$ be an \mathcal{L}_r-formula and $c \in K$ such that $\psi(x, c)$ defines a convex valuation w in K. Assume, for a contradiction, that w is strictly finer than v, i.e. $O_w \subsetneq O_v$. This implies

$$(K, \prec, v) \models \forall x \ (\psi(x, c) \rightarrow v(x) \geq 0) \land \exists z \ (\neg \psi(z, c) \land v(z) \geq 0).$$

By elementary equivalence, there is some $d \in \mathbb{R}((vK))$ such that $\psi(x, d)$ defines a convex valuation w' in $\mathbb{R}((vK))$ with $O_{w'} \subsetneq O_{v_{\text{min}}}$. This contradicts the fact that v_{min} is the finest convex valuation on $\mathbb{R}((vK))$. Hence, v is the finest \mathcal{L}_{or}-definable convex valuation in K.

Let $v' \in V(K)$ be \mathcal{L}_{or}-definable. Arguing as above, v' is the finest \mathcal{L}_{or}-definable convex valuation on K. This gives us $v' = v$, as required.

Comparison of \mathcal{L}_r- and \mathcal{L}_{or}-definability of henselian valuations in almost real closed fields. Let p be a prime number. A valuation v on K is called p-Kummer henselian if Hensel’s Lemma holds for polynomials of the form $x^p - a$ for $a \in O_v$. A field L is called p-euclidean if $L = \pm L^p$. Let $V_p(K)$ be the set of all p-Kummer henselian valuations of K with p-euclidean residue field. Denote by v_p the minimum of $V_p(K)$ (cf. [3 page 1126]).
Fact 5.10. (See [3] Theorem 4.4.) Let \((K, <)\) be an almost real closed field and let \(v\) be a henselian valuation on \(K\). Then \(v\) is \(L_\text{r}\)-definable in \(K\) if and only if \(v_{\text{nat}}(O_v \setminus M_v)\) is \(L_\text{og}\)-definable in \(v_{\text{nat}}K\) and \(v \leq v_0\) for some prime \(p\). Moreover, \(v_0\) is \(L_\text{r}\)-definable if and only if there is a prime \(p\) such that \(v_0K\) has no non-trivial convex \(p\)-divisible subgroup.

Recall that \(v_0\) is the only possible \(L_\text{r}\)-definable valuation in \(V(K)\). If the ordering on an almost real closed field \((K, <)\) is \(L_\text{vt}\)-definable for \(v = v_0 \in V(K)\), then we obtain a complete characterisation of \(L_\text{or}\)-definable convex valuations in \(K\).

Lemma 5.11. Let \((K, <)\) be an ordered field and let \(v\) be a henselian valuation on \(K\) such that \(Kv\) is 2-euclidean (i.e. root-closed for positive elements) and \(vK\) is 2-divisible. Then the ordering \(<\) is parameter-free \(L_\text{vt}\)-definable in \(K\).

In particular, if \(v\) is \(L_\text{r}\)-definable in \(K\), then any \(L_\text{or}\)-definable subset of \(K\) is already \(L_\text{r}\)-definable.

Proof. Let \(k = Kv\) and \(G = vK\). Consider the \(L_\text{vt}\)-formula \(\varphi(x)\) given by
\[
x = 0 \lor \exists y \ v(x - y^2) > v(x).
\]
We will show that for any \(a \in k((G))\), the formula \(\varphi(a)\) holds if and only if \(a \geq 0\)

Let \(a = a_2 t^g + s \in k((G))\), where \(a_2 \in k^\times\), \(s \in k((G^{-2}))\) and \(g = v_{\min}(a)\). Suppose that \(\varphi(a)\) holds. Then there exists \(y \in K^\times\) such that \(v_{\min}(x - y^2) > g\).

Hence, \(a_2 y^2 > 0\), where \(y_2\) is the coefficient of the monomial \(t^g\) in \(y\). Thus, \(a > 0\). Now suppose that \(a > 0\). Let \(y = \sqrt{a_2} t^{g/2}\). Then \(v_{\min}(a - y^2) = v_{\min}(s) > g = v_{\min}(a)\).

By Fact 2.1, \((K, v) \equiv (Kv((vK)), <, v_{\min})\). Hence, we obtain \(K \models \forall x \ (x \geq 0 \leftrightarrow \varphi(x))\).

Proposition 5.12. Let \((K, <)\) be an almost real closed field. Suppose that \(v_0\) is \(L_\text{r}\)-definable and that \(v_0K\) is 2-divisible. Let \(w\) be a valuation on \(K\). If \(w\) is \(L_\text{or}\)-definable, then it is \(L_\text{r}\)-definable.

Proof. Since \(v_0K\) is real closed, it is 2-euclidean. By Lemma 5.11, any \(L_\text{or}\)-definable valuation on \(K\) is already \(L_\text{r}\)-definable.

Remark 5.13. We obtain the following characterisation of \(L_\text{or}\)-definable convex valuations in almost real closed fields with respect to a 2-divisible value group: Let \((K, <)\) be an almost real closed field. Suppose that the value group \(v_0K\) is 2-divisible and, for some prime \(p\), it has no non-trivial \(p\)-divisible convex subgroup. Let \(v\) be a convex (and thus henselian) valuation on \(K\). Hence, by Proposition 5.12 and Fact 5.10, \(v\) is \(L_\text{or}\)-definable in \(K\) if and only if \(v_{\text{nat}}(O_v \setminus M_v)\) is \(L_\text{og}\)-definable in \(v_{\text{nat}}K\) and \(v \leq v_0\) for some prime \(p\).

Proposition 5.12 shows in particular that for an almost real closed field, if \(v_0\) is \(L_\text{r}\)-definable, then so is any \(L_\text{or}\)-definable henselian valuation. The final result of this sections shows that any henselian valuation in an almost real closed field satisfying the hypothesis of Theorem 5.3 is already \(L_\text{r}\)-definable. Note that any discretely ordered abelian group does not have a non-trivial \(n\)-divisible convex subgroup for any \(n \geq 2\).
Proposition 5.14. Let \((K, <)\) be an almost real closed field with respect to a henselian valuation \(v\) such that either \(vK\) is discretely ordered or \(vK\) is not closed in \(vK^\text{div}\). Then \(v = v_0\) and \(v_0\) is \(\mathcal{L}_r\)-definable.

Proof. Recall that \(v_0\) is the unique henselian valuation on \(K\) such that \(Kv_0\) is real closed and \(v_0K\) has no non-trivial divisible convex subgroup. Moreover, \(v_0\) is \(\mathcal{L}_r\)-definable if and only if for some prime \(p\), there is no \(p\)-divisible non-trivial convex subgroup of \(v_0K\). If \(G = vK\) is discretely ordered, both conditions are satisfied, and thus \(v = v_0\) is \(\mathcal{L}_r\)-definable. If \(G\) is not closed in \(G^\text{div}\), then by Corollary 3.19 \(G\) has no non-trivial convex subgroup, whence \(v = v_0\). Moreover, by Proposition 3.18 there is a prime \(p\) such that \(G\) has no non-trivial \(p\)-divisible convex subgroup, whence \(v_0\) is \(\mathcal{L}_r\)-definable. \(\square\)

§6. Applications to definable valuations on strongly NIP ordered fields. The study of \(\mathcal{L}_r\)-definable henselian valuations in strongly NIP fields has been motivated by a conjecture due to Shelah–Hasson stating as follows (cf. [28, page 63] and [5, page 820]).

Conjecture 6.1 (Shelah–Hasson). Any infinite strongly NIP field is either real closed, algebraically closed or admits a non-trivial \(\mathcal{L}_r\)-definable henselian valuation.

In the past few years, a considerable amount of research activity dealing with this conjecture could be observed, in particular since it was proved by Johnson for the special case of dp-minimal fields (cf. [16, Theorem 1.6]) and more recently for dp-finite fields (cf. [17, Theorem 1.2]). Specialised to ordered fields, Conjecture 6.1 can be reformulated as follows:

Any strongly NIP ordered field which is not real closed admits a non-trivial \(\mathcal{L}_{ar}\)-definable henselian valuation.

(Note that we replaced \(\mathcal{L}_r\)-definability by \(\mathcal{L}_{ar}\)-definability, as definability in the language of ordered rings is more natural in the context of ordered fields.) Again, this has already been verified for the dp-minimal case (cf. [15, Corollary 6.6]) but is still open for general strongly NIP ordered fields.

In [19], it is shown that the statement above is equivalent to the following.

Conjecture 6.2 (Shelah–Hasson specialised to ordered fields). Any strongly NIP ordered field is almost real closed.

Comparing the original formulation of the Shelah–Hasson Conjecture to the formulation in Conjecture 6.2 it is tempting to ask the following question.

Question 6.3 (Strengthening of Conjecture 6.2). Any strongly NIP ordered field is almost real closed with respect to an \(\mathcal{L}_{ar}\)-definable henselian valuation.

Example 6.8 below provides a negative answer to Question 6.3.

As mentioned in the introduction, this conjecture is the main subject of a separate publication [20].
All notions on strongly NIP theories can be found in [27]. For the purpose of understanding how Fact 5.10 can be applied to strongly NIP ordered fields, the following two results are helpful.

Fact 6.4. [1] Theorem 1] Let G be an ordered abelian group. Then the following are equivalent:
1. G is strongly NIP.
2. G is elementarily equivalent to a Hahn sum of archimedean ordered abelian groups $\prod_{i \in I} G_i$, where for every prime p, we have $|\{i \in I \mid pG_i \neq G_i\}| < \infty$, and for any $i \in I$, we have $|\{p \text{ prime} \mid |G_i : pG_i| = \infty\}| < \infty$.

Lemma 6.5. [19] Lemma 6.11] Let G be a strongly NIP ordered abelian group. Then the almost real closed field $(\mathbb{R}((G)), <)$ is strongly NIP.

By Fact 6.4, the following are examples of strongly NIP non-divisible ordered abelian groups.

Example 6.6. 1. Let $G_1 = \left\{ \frac{a}{p_1^{i_1} \cdots p_m^{i_m}} \middle| m \in \mathbb{N}; a \in \mathbb{Z}, i_1, \ldots, i_m \in \mathbb{N}_0; p_1, \ldots, p_m \geq 3 \text{ prime} \right\}$. G_1 is p-divisible for any prime $p \geq 3$. Thus, $|\{p \text{ prime} \mid |G_1 : pG_1| = \infty\}| \leq 1$. This implies that G_1 is strongly NIP. Moreover, it is dense in its divisible hull \mathbb{Q} but not divisible, as $\frac{1}{2} \notin G_1$.

2. Let $2 = p_0 < p_1 < \ldots$ be a complete list of prime numbers. For every $n \in \mathbb{N}$, let $B_n = \left\{ \frac{a}{p_1^{i_1} \cdots p_k^{i_k}} \middle| k \in \mathbb{N}; i_1, \ldots, i_k \in \mathbb{N}_0 \setminus \{n\}; a \in \mathbb{Z}, m_1, \ldots, m_k \in \mathbb{N}_0 \right\}$. In other words, B_n is the smallest subgroup of \mathbb{Q} which is p_i-divisible for any $i \in \mathbb{N}_0 \setminus \{n\}$ (so in particular 2-divisible) but not p_n-divisible. Then $G_2 = \bigcup_{n \in \mathbb{N}} B_n$ is strongly NIP, as for any $i \in \mathbb{N}_0$, we have $|\{n \in \mathbb{N} \mid p_i B_n \neq B_n\}| \leq 1$, and for any $n \in \mathbb{N}$, we have $|\{p \text{ prime} \mid |B_n : pB_n| = \infty\}| \leq 1$. Note that G_2 is 2-divisible. Moreover, any convex subgroup of G_2 is of the form $\bigcup_{n \geq k} B_n = H_k$ for some $k \in \mathbb{N}$. Note that H_k is non-divisible but p_i-divisible for any $i < k$.

Let G_1 and G_2 be the strongly NIP ordered abelian groups defined in Example 6.6. By Lemma 6.5 we obtain strongly NIP almost real closed fields $(\mathbb{R}((G_1)), <)$ and $(\mathbb{R}((G_2)), <)$.

Example 6.7. Let $K_1 = \mathbb{R}((G_1))$. By Proposition 5.14, $v_0 = v_{\text{nat}}$ is L_r-definable in $(K_1, <)$, as G_1 is dense in its divisible hull. This shows that $(K_1, <)$ is a strongly NIP ordered field which is not real closed but almost real closed with respect to an L_r-definable (and hence L_{or}-definable) henselian valuation.

Example 6.8. Let $K_2 = \mathbb{R}((G_2))$. Since G_2 has no convex divisible subgroup, we have $v_0 = v_{\text{nat}}$. Thus by Fact 5.10 this valuation is L_r-definable in K_2 if and only if there is a prime p such that G_2 has no non-trival convex p-divisible subgroup. However, for any $i \in \mathbb{N}$, the non-trival convex subgroup H_{i+1} of G_2 is p_i-divisible, and G_2 itself is 2-divisible. This implies that v_{nat} is not L_r-definable. Moreover, since G_2 is 2-divisible, v_{nat} is also not L_{or}-definable.
by Proposition 5.12. As \(\nu_{\text{nat}} = \nu_0 \) (see page 20), it is the only valuation with respect to which \(K_2 \) is almost real closed. Thus, \((K_2,<)\) is a strongly NIP almost real closed field which is not almost real closed with respect to an \(\mathcal{L}_{\text{ar}} \)-definable henselian valuation.

§7. Open Questions. We conclude with open questions connected to results throughout this work.

In Proposition 3.7 we have seen the following dichotomy for ordered abelian groups: Any ordered abelian group \(G \) is (exclusively) either dense in \(G^{\text{div}} \) or admits a proper non-trivial \(\mathcal{L}_{\text{og}} \)-definable convex subgroup. For ordered fields, it is not known whether a similar dichotomy holds. Note that any archimedean ordered field \((K,<)\) does not admit a non-trivial valuation, as \(\mathbb{Z} \) must be contained in any convex subring of \(K \). Hence, any ordered field with an archimedean model does not admit a non-trivial \(\mathcal{L}_{\text{ar}} \)-definable convex valuation. However, we have seen in Proposition 4.7 that there are non-archimedean ordered fields which are dense in their real closure but do not have an archimedean model. In these ordered fields, it may be possible to find non-trivial \(\mathcal{L}_{\text{ar}} \)-definable convex valuations. Note that these cannot be henselian by Corollary 4.12. In [15], it is not investigated whether the two cases in Fact 5.1 are exclusive. We pose this as the following question.

Question 7.1. Is there an ordered field which is dense in its real closure and admits an non-trivial \(\mathcal{L}_{\text{ar}} \)-definable convex valuation?

In Fact 4.16 and Proposition 4.17 we have seen that any ordered field \(K \) of infinite transcendence degree admits a dense transcendence basis \(T \) and thus a dense subfield \(F = \mathbb{Q}(T) \) such that \(\mathbb{Q} \subseteq F \) is regular. Note that a non-archimedean ordered field \(K \) with \(\text{td}(K) < \aleph_0 \) cannot admit a transcendence basis dense in \(K \). However, it is still possible that \(K \) has a dense subfield \(F \) such that \(\mathbb{Q} \subseteq F \) is regular. We pose this as a question for a non-archimedean real closed field with transcendence degree 1.

Question 7.2. Let \(K = \mathbb{Q}(t)^{\text{rc}} \) ordered by \(t > \mathbb{N} \). Is there a dense subfield \(F \subseteq K \) such that \(\mathbb{Q} \subseteq F \) is regular?

We have seen in Proposition 5.14 that for any almost real closed field with respect to a henselian valuation \(\nu \), if \(\nu \) satisfies the hypothesis of Theorem 5.3, then it is not only \(\mathcal{L}_{\text{ar}} \)- but already \(\mathcal{L}_r \)-definable. Although we have shown that Theorem 5.3 generalises known \(\mathcal{L}_r \)-definability results of henselian valuations (see page 19), we have not provided an example of an ordered field \((K,<)\) and a henselian valuation \(\nu \) on \(K \) which is \(\mathcal{L}_{\text{ar}} \)- but not \(\mathcal{L}_r \)-definable. Since Fact 5.10 provides a full characterisation of \(\mathcal{L}_r \)-definable henselian valuations in almost real closed fields, we will pose the following more specific question.

Question 7.3. Is there an almost real closed field \((K,<)\) and a henselian valuation \(\nu \) on \(K \) such that \(\nu \) is \(\mathcal{L}_{\text{ar}} \)- but not \(\mathcal{L}_r \)-definable?
[1] N. L. Alling, *Foundations of Analysis over Surreal Number Fields*, North-Holland Mathematics Studies 141 (North-Holland Publishing Co., Amsterdam, 1987).

[2] D. Biljakovic, M. Kochetov and S. Kuhlmann, ‘Primes and irreducibles in truncation integer parts of real closed fields’, *Logic in Tehran*, Lect. Notes Log. 26 (eds A. Enayat, I. Kalantari and M. Moniri; Assoc. Symbol. Logic, La Jolla, CA, 2006) 42–65.

[3] F. Delon and R. Fárré, ‘Some model theory for almost real closed fields’, *J. Symb. Log.* 61 (1996) 1121–1152, doi:10.2307/2275808.

[4] P. F. Conrad, ‘Regularly ordered groups’, *Proc. Amer. Math. Soc.* 13 (1962), 726–731, doi:10.1090/S0002-9939-1962-0146272-9.

[5] K. Dupont, A. Hasson and S. Kuhlmann, ‘Definable valuations induced by multiplicative subgroups and NIP fields’, *Arch. Math. Logic* 58 (2019) 819–839, doi:10.1007/s00153-019-00661-2.

[6] A. J. Engler and A. Prestel, *Valued Fields*, Springer Monogr. Math. (Springer, Berlin, 2005).

[7] P. Erdős, L. Gillman and M. Henriksen, ‘An isomorphism theorem for real-closed fields’, *Ann. of Math. (2)* 61 (1955) 542–554, doi:10.2307/1969812.

[8] R. Fárré, ‘A transfer theorem for Henselian valued and ordered fields’, *J. Symb. Log.* 58 (1993) 915–930, doi:10.2307/2275104.

[9] F. Jahnke and J. Koenigsmann, ‘Definable non-divisible Henselian valuations’, *Bull. Lond. Math. Soc.* 46 (2014) 14–18, doi:10.1112/blms/bdt074.

[10] P. Simon and E. Walsberg, ‘Dp-minimal valued fields’, *J. Symb. Log.* 82 (2017) 151–165, doi:10.1017/jsl.2016.15.

[11] W. Johnson, ‘The canonical topology on dp-minimal fields’, *J. Math. Log.* 18 (2018) 1850007, doi:10.1142/S021906131850007

[12] M. Knebusch and M. J. Wright, ‘Bewertungen mit reeller Henselisierung’, *J. Reine Angew. Math.* 286/287 (1976) 314–321, doi:10.1515/crll.1976.286-287.314.

[13] L. S. Krapp, S. Kuhlmann and G. Lehéricy, ‘On Strongly NIP Ordered Fields and Definable Convex Valuations’, Preprint, 2019, arXiv:1810.10377v4.

[14] W. Johnson, ‘Dp-finite fields VI: the dp-finite Shelah conjecture’, Preprint, 2020, arXiv:2005.12895v1.

[15] M. Knebusch and M. J. Wright, ‘Bewertungen mit reeller Henselisierung’, *J. Reine Angew. Math.* 286/287 (1976) 314–321, doi:10.1515/crll.1976.286-287.314.

[16] L. S. Krapp, S. Kuhlmann and G. Lehéricy, ‘Strongly NIP almost real closed fields’, Preprint, 2019.

[17] S. Kuhlmann, *Ordered Exponential Fields*, Fields Inst. Monogr. 12 (Amer. Math. Soc., Providence, RI, 2000), doi:10.1090/fim/012.

[18] K. McKenna, ‘New facts about Hilbert’s seventeenth problem’, *Model Theory and Algebra: A Memorial Tribute to Abraham Robinson*, Lecture Notes in Math. 498 (eds D. H. Saracino and V. B. Weispfenning; Springer, Berlin, 1975) 220–230.

[19] M. H. Mourgues and J. P. Ressayre, ‘Every real closed field has an integer part’, *J. Symb. Log.* 58 (1993) 641–647, doi:10.2307/2275224.

[20] A. Prestel, ‘Definable Henselian valuation rings’, *J. Symb. Log.* 80 (2015) 1260–1267, doi:10.1017/jsl.2014.52.

[21] A. Robinson and E. Zaks, ‘Elementary properties of ordered abelian groups’, *Trans. Amer. Math. Soc.* 96 (1960) 222–236, doi:10.1090/S0002-9947-1960-0114855-0.
[26] J. Robinson, ‘Definability and decision problems in arithmetic’, *J. Symb. Log.* 14 (1949) 98–114, doi:10.2307/2266510.

[27] P. Simon, *A Guide to NIP Theories*, Lect. Notes Log. 44 (Assoc. Symbol. Logic, Cambridge Univ. Press, Cambridge, 2015), doi:10.1017/CBO9781107415133.

[28] S. Shelah, ‘Strongly dependent theories’, *Israel J. Math.* 204 (2014) 1–83, doi:10.1007/s11856-014-1111-2.

[29] T. M. Viswanathan, ‘Ordered fields and sign-changing polynomials’, *J. Reine Angew. Math.* 296 (1977) 1–9, doi:10.1515/crll.1977.296.1.

[30] E. Zakon, ‘Generalized archimedean groups’, *Trans. Amer. Math. Soc.* 99 (1961) 21–40, doi:10.1090/S0002-9947-1961-0120294-X.

FACHBEREICH MATHEMATIK UND STATISTIK
UNIVERSITÄT KONSTANZ
78457 KONSTANZ, GERMANY

E-mail: sebastian.krapp@uni-konstanz.de
URL: http://www.math.uni-konstanz.de/~krapp/

FACHBEREICH MATHEMATIK UND STATISTIK
UNIVERSITÄT KONSTANZ
78457 KONSTANZ, GERMANY

E-mail: salma.kuhlmann@uni-konstanz.de
URL: https://www.mathematik.uni-konstanz.de/kuhlmann/

FACHBEREICH MATHEMATIK UND STATISTIK
UNIVERSITÄT KONSTANZ
78457 KONSTANZ, GERMANY

Current address: École supérieure d’ingénieurs Léonard-de-Vinci, Pôle Universitaire Léonard de Vinci, 92 916 Paris La Défense Cedex, France

E-mail: gabriel.lehericy@uni-konstanz.de
URL: http://www.math.uni-konstanz.de/~lehericy/