FAST TRACK COMMUNICATION

GW quasiparticle bandgaps of anatase TiO$_2$ starting from DFT + U

Christopher E Patrick and Feliciano Giustino

Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

E-mail: feliciano.giustino@materials.ox.ac.uk

Received 16 February 2012, in final form 19 March 2012
Published 18 April 2012
Online at stacks.iop.org/JPhysCM/24/202201

Abstract

We investigate the quasiparticle band structure of anatase TiO$_2$, a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO$_2$. The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO$_2$ and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO$_2$ and suggests an optimal Hubbard parameter for future calculations.

The wide gap semiconductor TiO$_2$ is the subject of a vast research effort owing to its importance in many areas of technology, ranging from photovoltaics and photocatalysis to sensing devices, protective coatings and batteries [1]. As an example, nanostructured anatase TiO$_2$ films sensitized with molecular dyes are the fundamental building blocks of dye-sensitized solar cells [2]. In order to understand and optimize the photovoltaic and photocatalytic properties of TiO$_2$ it is important to complement experimental spectrosopies with reliable calculations of electronic excitations in this material and its interfaces.

Band structures calculated within standard DFT underestimate the fundamental bandgap of anatase TiO$_2$ by about 1 eV. The underestimation of the bandgap is accompanied by errors of similar magnitude in the individual addition and removal energies, and raises concerns about the calculation of energy-level alignments and charge injection dynamics at interfaces involving TiO$_2$ [3].

In this context accurate quasiparticle methods for studying electronic excitations, such as the GW approximation in its various implementations [4–8], still face two limitations. (i) On the one hand, these methods are computationally demanding and cannot be used yet for complex systems such as defects and interfaces. For example, the minimal atomistic models required to describe donor/acceptor interfaces for solar cells involve several hundreds of atoms [9–11], which are beyond the reach of current GW implementations. (ii) On the other hand, there is the issue of whether GW calculations should be performed at the G$_0$W$_0$ level or include some form of self-consistency [8, 12] or off-diagonal matrix elements of the self-energy [12].

In this work we attempt to address the latter point by combining DFT + U and G$_0$W$_0$ calculations, in the spirit of Kioupakis et al [13]. The rationale for this approach is that the use of DFT + U as the non-interacting Hamiltonian should provide a better starting point for perturbation theory, thereby legitimizing the use of the G$_0$W$_0$ approximation. The Hubbard parameter is determined in such a way that a G$_0$W$_0$ calculation starting from the DFT + U band structure yields a vanishing correction to the fundamental bandgap. This is achieved through an iterative procedure consisting of
Our optimized lattice parameters are a = 3.83 Å and c = 9.84 Å and the internal parameter is u = 0.206.

We perform DFT calculations using the generalized gradient approximation of Perdew et al [14] and norm-conserving pseudopotentials [15]. We explicitly include the 3s and 3p semicore states of Ti in our calculations. The electronic wavefunctions are expanded in a plane waves basis set with a kinetic energy cutoff of 200 Ryd, and the Brillouin zone of TiO2 is sampled using a 6 × 6 × 6 Monkhorst–Pack mesh. All DFT calculations are performed using the Quantum ESPRESSO software package [16]. For definiteness we set the lattice parameters and atomic positions within the unit cell to the experimental values[1][17]. In order to perform DFT+U calculations [18] we adopt the simplified rotationally invariant formulation of Cococcioni and de Gironcoli [19], with the Hubbard-like corrections included using the atomic Ti 3d pseudo-wavefunctions for the projectors. It is worth stressing that, as in every DFT+U calculation, the value of U determined in this work is linked to the particular choice of the projectors [20]. Quasiparticle GW calculations are performed using the scheme of Hybertsen and Louie [5]. The frequency dependence of the screened Coulomb interaction is described using the Godby–Needs plasmon-pole model [21] by evaluating the static polarizability as well as the polarizability at the imaginary frequency of 23 eV. For the screened Coulomb interaction we use a uniform and unshifted 4 × 4 × 4 Brillouin zone mesh. The exchange and the correlation components of the self-energy are described using plane wave basis sets with kinetic energy cutoffs of 80 Ryd and 10 Ryd, respectively. In the expansion over conduction states we include 568 unoccupied bands for calculating both the polarizability and the Green’s function. The energy denominator cutoff, i.e. the energy of the topmost band used in this expansion referred to the valence band maximum, is 16.6 Ryd. Figure 1 shows the convergence of the fundamental gap with the denominator cutoff. Increasing the denominator cutoff from 10.6 Ryd (296 conduction bands) to 16.6 Ryd (568 bands) reduces the bandgap by 0.02 eV. The individual corrections to the band edges converge more slowly, as shown in figure 1 for the highest occupied state at the X-point. All the GW calculations are performed using the SaaX code [22].

The calculation of GW quasiparticle energies using DFT + U as the starting non-interacting Hamiltonian is performed as follows. We calculate the G0W0 self-energy Σ using eigenstates and eigenvalues obtained from a DFT + U calculation. Then, for each Kohn–Sham state ψ of energy ϵ,

\[E = \epsilon + Z(\epsilon) \langle \psi | \hat{\Sigma}(\epsilon) - V_{xc} - \hat{V}_{U} | \psi \rangle, \]

where Z is the quasiparticle renormalization, V_{xc} is the DFT exchange and correlation potential and V_{U} is the Hubbard term in the Kohn–Sham Hamiltonian. The Hubbard contribution to the quasiparticle shift is conveniently evaluated as

\[\langle \psi | \hat{V}_{U} | \psi \rangle = \epsilon - \langle \psi | \hat{H}_0 | \psi \rangle, \]

where \(\hat{H}_0 \) is the Kohn–Sham Hamiltonian without the Hubbard term (but with the DFT + U density). In the following we will refer to this procedure simply as the GWU method. We have compared the present approach with the method described by Jiang et al [23], where the dynamical contributions are evaluated at the energy \(\epsilon - \langle \psi | \hat{V}_{U} | \psi \rangle \) and found the differences to be negligible. In the case of \(U = 0 \) equation (1) yields the standard GW quasiparticle energies obtained by using perturbation theory on top of the DFT.

The use of DFT + U as the starting Hamiltonian for the perturbation expansion introduces an additional arbitrariness in the procedure, relating to the choice of the Hubbard parameter U. Since we are using GW within the framework of perturbation theory, the natural choice for the starting Hamiltonian (and hence the value of U) is the one leading to the smallest quasiparticle corrections. This observation can be formalized into a criterion for choosing the Hubbard parameter: our optimal U is determined by the condition that, upon performing a GWU calculation, the fundamental bandgap does not change. This approach has been demonstrated for the case of bcc hydrogen [13]. The optimal Hubbard parameter is determined by using an iterative procedure consisting of successive GWU and DFT + U calculations, until self-consistency is achieved.

Figure 2 shows that the bandgap of anatase TiO2 is indirect, with the top of the valence band located near the X-point of the Brillouin zone and the bottom of the conduction band at the Γ-point. Since the top of the valence band lies very close to the fundamental bandgap, the quasiparticle corrections are small. We can therefore approximate the quasiparticle shift as \(\Delta E_{qp} \approx E_{qp} \approx U \), where \(E_{qp} \) and \(U \) are the quasiparticle and Hubbard parameters, respectively. The use of this approximation in the calculation of the GW contribution to the quasiparticle shift is thus justified.

\[\frac{E_{qp}}{U} \approx 1 \]

where 1 Our optimized lattice parameters are a = 3.83 Å and c = 9.84 Å and the internal parameter is u = 0.206.

\[\frac{E_{qp}}{U} \approx 1 \]

Figure 1. Convergence of GWU calculations with the energy denominator cutoff in the sum-over-states expansions of the polarizability and the Green’s function of anatase TiO2: X_{32v}–Γ_{25c} gap (circles, left scale), and quasiparticle correction to the X_{25c} state (squares, right scale). The quasiparticle corrections were obtained by starting from a DFT + U calculation with U = 7.5 eV. The lines are guides to the eyes.
close in energy with the states at the X-point (~60 meV), for convenience in our analysis we take the states at the X-point as representative of the valence band top. We denote the band extrema as X_{24v} and \Gamma_{25c}, respectively [24]. The values of the X_{24v}−\Gamma_{25c} gap calculated within DFT + U for a range of values of U between 0 and 10 eV are shown in figure 3, and are in good agreement with previous work [25]. For U = 0 we recover the standard DFT bandgap of 2.08 eV (indicated by A in figure 3).

Now we go through the iterative calculation of the bandgap. We calculate the GW quasiparticle corrections starting from the DFT eigenstates and eigenvalues (i.e. from point A in figure 3), and obtain a corrected bandgap of 3.70 eV (point B in figure 3). The latter value is in good agreement with previous works using the same methodology, 3.6–3.8 eV [24, 26–28]. We note that the Godby–Needs plasmon-pole model [21] used in our calculations produces a bandgap in good agreement (only 0.08 eV larger) with previous works using the contour deformation method [26] and does not suffer from the overestimation of the bandgap reported for other plasmon-pole models [26]. The success of the Godby–Needs approach in reproducing contour deformation results has recently also been demonstrated for ZnO [30]. From figure 3 we see that the same bandgap as in B can be obtained by using DFT + U and the Hubbard parameter U = 9.5 eV (point C). By repeating the previous procedure and applying GW corrections to the DFT + U eigenstates and eigenvalues obtained with U = 9.5 eV, we find that the quasiparticle corrections slightly reduce the bandgap to 3.20 eV (point D in figure 3). We iterate this procedure until the quasiparticle correction to the bandgap becomes negligible. The iterations generate the converging series of Hubbard parameters 0.0 → 9.5 → 7.0 → 7.5 eV and the series of bandgaps 2.08 → 3.70 → 3.20 → 3.29 → 3.27 eV. By the fourth iteration the DFT + U and GWU bandgaps are both 3.27 eV and the Hubbard parameter is U = 7.5 eV.

This value of the Hubbard parameter is compatible with the range of values 2–8 eV reported in the literature for oxides containing Ti, cf Nolan et al [29] and references therein. It is interesting to check whether the optimal Hubbard parameter U_{\text{opt}} = 7.5 eV here determined for anatase TiO_2 is transferable, i.e. (i) whether it generates a band structure in agreement with GWU and (ii) whether it can also be used for other TiO_2 polymorphs.

In order to address the first point we compare in figure 2 the band structures calculated using DFT + U and those calculated using the GWU method, both with U = U_{\text{opt}}. Near the band extrema the two methods yield similar results, although differences in energy of up to 0.3 eV are observed for several bands. We also estimate that the GWU calculation yields a valence bandwidth which is 0.3 eV larger than the starting DFT + U band structure. These differences are rather small when compared with the broadening of the valence photoemission spectra reported by Li et al [31], corresponding to ~1 eV. While the bandgaps and bandwidth obtained using DFT + U and GWU are in reasonable agreement, table 1 shows that the corrections to the individual eigenvalues differ significantly. In particular, DFT + U consistently yields energies which are ~0.6 eV higher than in GWU.

In order to address the second point we consider the rutile structure. In our DFT and GWU calculations the fundamental gap is direct at the \Gamma-point. Therefore in table 1 we only report our results for the \Gamma_{24v} and \Gamma_{25c} states. We note, however, that the energies of the conduction band minima of rutile at \Gamma, M, and R are within 60 meV from each other, and that the location of the minimum is dependent upon the calculation method. Given the small energy difference between direct and indirect gaps in rutile, in order to establish the precise nature of the gap it would be necessary to investigate the magnitude of the phonon-induced renormalization [32–35].
DFT + U and GWU calculations on rutile using U_{opt} lead to very similar bandgaps, 2.83 eV and 2.85 eV, respectively. This suggests that the optimal Hubbard parameter U_{opt} determined for anatase is reasonably transferable to rutile TiO$_2$. Similarly to the case of anatase TiO$_2$, in the rutile polymorph the corrections to the individual eigenvalues calculated in DFT + U are \sim0.5 eV higher than in GWU.

In the case of anatase TiO$_2$ we are not aware of published inverse photoemission data on single crystals of anatase. Therefore it is not possible yet to perform a quantitative comparison between our calculated quasiparticle energies and experiment. We note, however, that the measured optical gap of anatase (3.2 eV [37]) is compatible both with our GW bandgap (3.75 eV) and our GWU bandgap (3.27 eV). In the case of rutile TiO$_2$ the quasiparticle bandgap has been measured in the range 3.3±0.5 eV [38]. This indicates that our GW result (3.40 eV) and our GWU calculation starting from DFT + U (2.85 eV) are both compatible with experiment. The measured optical gap of rutile (3.0 eV [37]) is slightly larger than our calculated quasiparticle gap.

A key result of the present work is that, in the case of anatase and rutile TiO$_2$, the use of DFT + U as a starting Hamiltonian for calculating quasiparticle energies leads to bandgaps which are 0.4 eV smaller than standard GW calculations starting from DFT ([24, 26] and table 1). This relatively large difference between GW and GWU raises the question of which Hamiltonian is a better starting point for many-body perturbation theory in strongly correlated systems.

Before concluding we note that, since in the approach described here the optimal Hubbard parameter is determined through an iterative procedure, this scheme carries some similarities with self-consistent GW methods [8]. In the present work the self-consistent potential is constrained to be the DFT exchange and correlation potential plus an additional Hubbard-like term. It would be interesting to apply the same concept to the case of GW calculations starting from hybrid-functional calculations [14, 39], where instead of the Hubbard U we would optimize the fraction α of Hartree–Fock exchange.

In conclusion, we investigate the use of DFT + U as a starting point for performing many-body perturbation theory calculations on TiO$_2$. We determine the Hubbard parameter of the non-interacting Hamiltonian in such a way that a GW calculation starting from the DFT + U band structure leaves the fundamental bandgap unchanged. We find that the optimal Hubbard parameter of 7.5 eV yields the same bandgap of 3.27 eV in DFT + U and GWU. This value is considerably smaller than the value of 3.70 eV obtained when applying GW corrections to the DFT band structure. The Hubbard parameter determined for anatase is transferable to the rutile polymorph of TiO$_2$, and also in this case the calculated bandgap is smaller than in standard GW calculations starting from DFT. The difference between GW and GWU bandgaps reported here calls for detailed photoemission experiments to establish whether DFT + U represents a better starting point with respect to DFT for computing the GW quasiparticle energies of TiO$_2$.

We acknowledge support from the Engineering and Physical Sciences Research Council and from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 239578.

References

[1] Diebold U 2003 Surf. Sci. Rep. 48 53–229
[2] O’Regan B and Grätzel M 1991 Nature 353 737–40
[3] Martinsovich N and Troisi A 2011 Energy Environ. Sci. 4 4473–95
[4] Hedin L 1965 Phys. Rev. 139 A796–823
[5] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390–413
[6] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 3–87
[7] Rinke P, Qteish A, Neugebauer J, Freysoldt C and Scheffler M 2005 New J. Phys. 7 126
[8] van Schaftingen M, Kotani T and Faleev S 2006 Phys. Rev. Lett. 96 226402
[9] Patrick C E and Giustino F 2011 Phys. Rev. B 84 085330
[10] Patrick C E and Giustino F 2011 Adv. Funct. Mater. 21 4663–7
[11] De Angelis F, Fantacci S, Mosconi E, Nazeeruddin Md K and Grätzel M 2011 J. Phys. Chem. C 115 8825–31
[12] Bruneval F, Vast N and Reining L 2006 Phys. Rev. B 74 045102
[13] Kioupakis E, Zhang P, Cohen M L and Louie S G 2008 Phys. Rev. B 77 155114
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865–8
[15] Fuchs M and Scheffler M 1999 Comput. Phys. Commun. 119 67–98
[16] Giannozzi P et al 2009 J. Phys.: Condens. Matter 21 395502
[17] Horn M, Schwerdtfeger C F and Meagher E P 1972 Z. Kristallogr. 136 273–81
[18] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943–54
[19] Cococcioni M and De Gironcoli S 2005 Phys. Rev. B 71 035105
[20] Pickett W E, Erwin S C and Ethridge E C 1998 Phys. Rev. B 58 1201–9
[21] Godby R W and Needs R J 1989 Phys. Rev. Lett. 62 1169–72
[22] Martin-Samos L and Bussi G 2009 Comput. Phys. Commun. 180 1416–25
[23] Jiang H, Gomez-Abal R I, Rinke P and Scheffler M 2010 Phys. Rev. B 82 045108
[24] Chiodo L, Garcia-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H and Rubio A 2010 Phys. Rev. B 82 045207
[25] Arroyo-de Dompablo M E, Morales-Garcia A and Taravillo M 2011 J. Chem. Phys. 135 054503
[26] Kang W and Hybertsen M S 2010 Phys. Rev. B 82 085203
[27] Mowbray D J, Martinez J I, García Lastra J M, Thygesen K S and Jacobsen K W 2009 J. Phys. Chem. 113 12301–038
[28] Thulin L and Guerra J 2008 Phys. Rev. B 77 195112
[29] Nolan M, Elliott S D, Mulley J S, Bennett R A, Basham M and Mulheran P 2008 Phys. Rev. B 77 235424
[30] Stankovski M, Antonius G, Waroquiers D, Miglio A, Dixit H, Sankaran K, Giantomassi M, Gonze X, Côté M and Rignanese G-M 2011 Phys. Rev. B 84 241201
[31] Li S-C, Losovyj Y, Paliwal V K and Diebold U 2011 J. Phys. Chem. C 115 10173–9
[32] Marini A 2008 Phys. Rev. Lett. 101 106405
[33] Giustino F, Louie S G and Cohen M L 2010 Phys. Rev. Lett. 105 265501
[34] Gonze X, Boulanger P and Côté M 2011 Ann. Phys. 523 168
[35] Cannuccia E and Marini A 2011 Phys. Rev. Lett. 107 255501
[36] Abrahams S C and Bernstein J L 1971 J. Chem. Phys. 55 3206–11
[37] Kavan L, Grätzel M, Gilbert S E, Klemenz C and Scheel H J 1996 J. Am. Chem. Soc. 118 6716–23
[38] Tezuka Y, Shin S, Ishii T, Ejima T, Suzuki S and Sato S 1994 J. Phys. Soc. Japan 63 347–57
[39] Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982