On operators with bounded approximation property

Oleg Reinov

ABSTRACT. It is known that any separable Banach space with BAP is a complemented subspace of a Banach space with a basis. We show that every operator with bounded approximation property, acting from a separable Banach space, can be factored through a Banach space with a basis.

§1. Lemmas

Definition 1.1. Let \(T \in L(X, W) \), \(C \geq 1 \). We say that \(T \) has the \(C \)-BAP (\(C \)-bounded approximation property) if for every compact subset \(K \) of \(X \), for any \(\varepsilon > 0 \) there exists a finite rank operator \(R : X \to W \) such that \(||R|| \leq C ||T|| \) and \(\sup_{x \in K} ||Rx - Tx|| \leq \varepsilon \). The operator \(T \) has the BAP if it has the C-BAP for some \(C \in [1, \infty) \).

Lemma 1.1. \(T \) has C-BAP iff for any finite family \((x_k)_{k=1}^N \subset X \), for any \(\varepsilon > 0 \) there exists a finite rank operator \(R : X \to W \) such that \(||R|| \leq C ||T|| \) and \(\sup_{1 \leq k \leq N} ||Rx_k - Tx_k|| \leq \varepsilon \).

Proof. We may (and do) assume that \(||T|| = 1 \). Fix a compact subset \(K \subset X \) and \(\varepsilon > 0 \). Let \(\varepsilon_0 := \varepsilon/(2 + C) \), \((x_k)_{k=1}^M \) be an \(\varepsilon_0 \)-net for \(K \) in \(X \), \(R \in X^* \otimes W \), \(||R|| \leq C \) and \(\sup_{1 \leq k \leq M} ||Rx_k - Tx_k|| \leq \varepsilon_0 \). Take an \(x \in K \), and let \(x_k \) be such that \(||x - x_k|| \leq \varepsilon_0 \). Then \(||T x - R x|| \leq ||x - x_k|| + ||T x_k - Rx_k|| + ||x_k - Rx|| \leq \varepsilon_0 + \varepsilon_0 + C \varepsilon_0 = \varepsilon \).

Lemma 1.2. Let \(X, W \) be Banach spaces, \(X \) being separable, and \(T \in L(X, W) \). \(T \) has C-BAP iff there exists a sequence \((Q_l)_{l=1}^\infty \) of finite rank operators from \(X \) to \(W \) such that

1) for every \(x \in X \) the series \(\sum_{l=1}^\infty Q_l x \) converges and

\[
Tx = \sum_{l=1}^\infty Q_l x, \quad x \in X;
\]

2) \(\sup_N ||\sum_{l=1}^N Q_l|| \leq C ||T|| \).

Proof. Since \(X \) is separable, there exists a sequence \((x_k)_1^\infty \) which is dense in the closed unit ball \(\bar{B}_1(0) \) of \(X \). Suppose as above that \(||T|| = 1 \) and \(T \) has the C-BAP, that is for any finite set \(F \subset X \), for every \(\varepsilon > 0 \) there is a finite rank operator \(R : X \to W \) such that \(||R|| \leq C \) and \(\sup_{f \in F} ||Rf - Tf|| \leq \varepsilon \). Put, for \(N = 1, 2, \ldots \),

AMS Subject Classification 2010: 46B28 Spaces of operators; tensor products; approximation properties.

Key words: 46B28 Approximation of operators; bounded approximation property.
For each N, let R_N be a finite rank operator from X to W with the properties that

(i) $\|R_N\| \leq C$

(ii) $\sup_{1 \leq n \leq N} \|R_N x_n - T x_n\| \leq 1/2^{N+1}$.

If $n \in \mathbb{N}$ then for every $N \geq n$ one has

(iii) $\|R_N x_n - T x_n\| \leq \frac{1}{2^{N+1}}$

and, therefore, for a fixed x_n

$$R_N x_n \to T x_n$$

as N tends to ∞.

Now, fix $\varepsilon > 0$ and let $\delta > 0$ be such that $C\delta + \delta < \varepsilon$. For $x \in B_1(0)$, take an x_n with $\|x_n - x\| < \delta$. Then there is an N_0 so that for $N \geq N_0$

$$\|R_N x - T x\| \leq \|R_N\| \|x_n - x\| + \|R_N x_n - T x_n\| + \|T x_n - T x\| \leq C\delta + \|T\|\delta < \varepsilon.$$

Thus, if $x \in X$ then $R_N x \to T x$ as $N \to +\infty$.

To finish the proof of the "only if" part, we apply

Lemma 1.3. Let X, W be any Banach spaces, $C \geq 1$ and $T \in L(X, W)$. Suppose that

(*) there exists a sequence $(S_N)_{N=1}^{\infty}$ of finite rank operators from X to W such that if $x \in X$ then $S_N x \to T x$ as $N \to +\infty$ and $\|S_N\| \leq C \|T\|$ for every N.

Then there exists a sequence $(Q_l)_{l=1}^{\infty}$ of finite rank operators from X to W such that

1) for every $x \in X$ the series $\sum_{l=1}^{\infty} Q_l x$ converges and

$$Tx = \sum_{l=1}^{\infty} Q_l x, \quad x \in X;$$

2) $\sup_N \|\sum_{l=1}^{N} Q_l\| \leq C \|T\|$.

Proof. We assume again that $\|T\| = 1$. Put $Q_1 := S_1, Q_l := S_l - S_{l-1}$ for $l > 1$, so that

$$S_N = S_1 + (S_2 - S_1) + \cdots + (S_{N-1} - S_{N-2}) + (S_N - S_{N-1}) = Q_1 + Q_2 + \cdots + Q_N.$$

It follows that

$$\sum_{l=1}^{\infty} Q_l x \forall x \in X$$

and

$$\sum_{l=1}^{N} Q_l x = \sup_N \|\sum_{l=1}^{N} Q_l\| = \sup_N \|S_N\| \leq C.$$

The "if" part of the proof of Lemma 1.2 follows from

Lemma 1.4. Let X, W be any Banach spaces, $C \geq 1$ and $T \in L(X, W)$. If there exists a sequence $(R_N)_{N=1}^{\infty}$ of finite rank operators from X into W which converges pointwise to T and such that $\|R_N\| \leq C \|T\|$ for all N then T has the C-BAP.
and a compact subset $K \subset X$. Put $\varepsilon_0 := \varepsilon(\|T\| + 1 + C\|T\|)^{-1}$. Take a finite ε_0-net $F \subset X$ for K and consider R_{N_0} such that $\sup_{f \in F} \|R_{N_0} f - T f\| \leq \varepsilon_0$. Then, for any $x \in K$ there is an $f_0 \in F$ with $\|f_0 - x\| \leq \varepsilon_0$, and one has:

$$
\|T x - R_{N_0} x\| \leq \|T\| \varepsilon_0 + \varepsilon_0 + \|R_{N_0}\| \varepsilon_0 \leq \varepsilon_0(\|T\| + 1 + C\|T\|) = \varepsilon.
$$

Corollary 1.1. If X is separable and $T \in L(X,W)$, then T has the C-BAP iff there exists a sequence $(R_N)_1^\infty$ of finite rank operators from X into W which converges pointwise to T and such that $\|R_N\| \leq C\|T\|$ for all N.

Corollary 1.2. If X is separable and $T \in L(X,W)$, then T has the BAP iff there exists a sequence of finite rank operators from X to W convergent to T pointwise.

§2. Theorem.

Now, we redenote some objects from §1. Let X, W be any Banach spaces, $T \in L(X,W)$ and T possesses the property (*) from Lemma 1.3. Consider the sequence $(Q_i)_{i=1}^\infty$, given by assertion of Lemma 1.3, and put $A_p := Q_p$ ($p = 1, 2, \ldots$) and $K := C(\geq 1)$, assuming that $\|T\| = 1$. We are now in notations (partially) of the paper [1].

Theorem 2.1. If $T : X \to W$ has the property (*), then there exist a Banach space Y with a Schauder basis and two operators $\tilde{A} : X \to Y$ and $j : Y \to W$ so that $T = j \tilde{A}$.

Proof. In the above notation (assuming that $\|T\| = 1$), we have:

$$
Tx = \sum_{p=1}^\infty A_p x, \ \forall x \in X; \ \ A_p \in X^* \otimes W; \ \sup_{n \in \mathbb{N}} \| \sum_{p=1}^n A_p \| \leq K
$$

(note that for every n $\|A_n\| \leq \| \sum_{p=1}^n A_p - \sum_{p=1}^{n-1} A_p \| \leq 2K$). Let $E_p = A_p(X) \subset W$, $m_p := \dim E_p$ for $p \geq 1$ and $m_0 = 0$. We will proceed as in [1].

By Auerbach, there exist one-dimensional operators $B_j^{(p)} : E_p \to E_p$ with $\|B_j^{(p)}\| = 1$ for $j = 1, 2, \ldots, m_p$, and so that

$$
\sum_{j=1}^{m_p} B_j^{(p)}(e) = e, \ e \in E_p.
$$

Set $C_i^{(p)} := \frac{1}{m_p} B_j^{(p)}$ for $i = rm_p + j$ (where $r = 0, 1, \ldots, m_p - 1; j = 1, 2, \ldots, m_p$). Then, for $e \in E_p$,

$$
\sum_{i=1}^{m_p^2} C_i^{(p)}(e) = m_p \sum_{j=1}^{m_p} \frac{1}{m_p} B_j^{(p)} e = \sum_{j=1}^{m_p} B_j^{(p)} e = e.
$$
Also, for any \(q \geq 1, q \leq m_p^2 \) and some \(l < m_p \) and \(k \leq m_p \) we have:

\[
\| \sum_{i=1}^{q} C_i^{(p)} \| = \| \sum_{i=1}^{lm_p} C_i^{(p)} + \sum_{lm_p+1}^{lm_p+k} C_i^{(p)} \| \leq l \cdot \frac{1}{m_p} \| \sum_{j=1}^{m_p} B_j^{(p)} \| + \frac{1}{m_p} \| \sum_{j=1}^{k} B_j^{(p)} \| \leq 1 + 1 = 2.
\]

Now, let

\[
\tilde{A}_s := C_i^{(p)} A_p
\]

for \(p \in \mathbb{N}, i = 1, 2, \ldots, m_p^2 \) and \(s = m_0^2 + m_1^2 + \cdots + m_{p-1}^2 + i \). 1-dimensional operator \(\tilde{A}_s \) maps \(X \) into \(E_p \subset W \) in the following way:

\[
\tilde{A}_s : X \rightarrow E_p = A_p(X) \rightarrow E_p(\subset W).
\]

Since, for any \(n \in \mathbb{N} \), for some \(k \) and \(r \leq m_k^2 \)

\[
\sum_{s=1}^{n} \tilde{A}_s = \sum_{p=1}^{k-1} \sum_{i=1}^{m_p^2} C_i^{(p)} A_p + \sum_{i=1}^{r} C_i^{(k)} A_k,
\]

we get that

\[
\| \sum_{s=1}^{n} \tilde{A}_s \| \leq \| \sum_{p=1}^{k-1} A_p \| + \| \sum_{i=1}^{r} C_i^{(k)} A_k \| \leq K + 2\|A_k\| \leq 5K.
\]

(To get an estimation "4K" as in [1], it it enough to consider simultaniously, in the center, the given sum and the sum like \(\| \sum_{p=1}^{k} A_p \| + \| \sum_{i=1}^{m_k^2} C_i^{(k)} A_k \| \).

Since, for every \(x \in X \), \(A_k x \to 0 \) as \(k \to \infty \), we have:

\[
\lim_{n \to \infty} \sum_{s=1}^{n} \tilde{A}_s x = \lim_{N \to \infty} \sum_{p=1}^{N} A_p x = Tx.
\]

Now, consider the space

\[
Y := \{(y(s))_{s=1}^{\infty} : y(s) \in \tilde{A}_s(X), \sum_{s=1}^{\infty} y(s) \text{ converges in } W\}.
\]

Set \(||(y(s))_{s=1}^{\infty}|| := \sup_{n} \| \sum_{s=1}^{n} y(s) \|_W \). Note that \((\tilde{A}_s(x))_{s=1}^{\infty} \in Y \) for every \(x \in X \), \(\sum_{s=1}^{\infty} \tilde{A}_s(x) = Tx \) and \(||(\tilde{A}_s(x))_{s=1}^{\infty}||_Y \leq 5K ||x||_X \). Therefore, the map \(\tilde{A} : X \to Y \), defined by \(\tilde{A}(x) = (\tilde{A}_s(s))_{s=1}^{\infty} \), is linear and continuous (and \(||\tilde{A}|| \leq 5K \)). Let \(j : Y \to W \) be the natural map which takes \((y(s))_{s=1}^{\infty} \) to \(\sum_{s=1}^{\infty} s y(s) \).

Since

\[
|| \sum_{s=1}^{\infty} y(s) ||_W = \lim_{N} \| \sum_{s=1}^{N} y(s) \|_W \leq \sup_{n} \| \sum_{s=1}^{n} y(s) \|_W,
\]

then \(||j||_{L(Y,W)} \leq 1 \). Therefore, \(Tx = j\tilde{A} : X \to Y \to W \). It remains now to consider the space \(Y \).

For each \(s \), let \(\tilde{y}_s \in \tilde{A}_s \) be of norm 1. If \((y_s)_{s=1}^{\infty} \in Y \), then \(y_s = c_s \tilde{y}_s \). Define \(\bar{y}_s \in Y \) by \(\bar{y}_s(t) = 0 \) for \(t \neq s \) and \(\bar{y}_s(s) = \tilde{y}_s \) \((s = 1, 2, \ldots)\). Then, every \(y = (y_s) \in Y \) is of
type $\sum_{s=1}^{\infty} c_s \bar{y}_s$, if we consider $(\bar{y}_s)_{s=1}^{\infty}$ as a basis in Y. And this basis is monotone: for all scalars (c_s) we have that

$$||| \sum_{s=1}^{m} c_s \bar{y}_s ||| \leq ||| \sum_{s=1}^{m+1} c_s \bar{y}_s |||$$

(by definition of the norm in Y). Finally, the space Y is Banach (cf. [2,p. 18, Prop. 3.1]).

Remark. The theorem just obtained is a spade-theorem for some further investigations in a next paper.

Corollary 2.1. If X is separable and $T \in L(X,W)$ then T has the bounded approximation property if and only if T can be factored through a Banach space with a basis.

References

[1] A. Pełczyński : Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math., XL (1971), 239-243.

[2] I. Singer: Bases in Banach spaces I, Berlin-Heidelberg-New York: Springer (1970).

St. Petersburg State University, Saint Petersburg, RUSSIA.
E-mail address: orein51@mail.ru