Supporting Information:

Interplay of stereo-electronic and vibrational modulation effects in tuning the UPS spectra of unsaturated hydrocarbon cage compounds

Lorenzo Paoloni,† Marco Fusè,† Alberto Baiardi,‡ and Vincenzo Barone*,†

†Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125, Pisa, Italy
‡Lab. für Physikalische Chemie, Vladimir-Prelog -Weg 1-5/10, 8093 Zürich, Switzerland

E-mail: vincenzo.barone@sns.it

1 Assignment of UPS spectra

In what follows, computational and experimental values of transition energies for the six UPS spectra showed and discussed in the main article are provided. For what concerns the assignment of the purely electronic transition energies, the quasiparticle picture is retained. The numeration of MOs do not take into account the core levels. The pole strength are provided in parenthesis. Values of the transition energies calculated by means of the OVGF method are provided for transition energies below 20 eV, while values calculated with the NR2 approximation are given only for transitions assigned to outer valence MOs. In the cases of 2,6-STDO (table S1) and 2,6-STDE (table S3), the computational results provided in ref. S1 are also reported.

The assignment of the vibronic transitions is carried out for five of the six compounds studied in this work. The analysis is not carried out for the 2,6-STE0 molecule due to the
distance between experimental and calculated values; in other words, in this case the analysis of the computed values do not have a counterpart in the real world and therefore is left out. Normal modes associated with the most intense vibronic transitions are depicted.

Only the most intense vibronic transitions are listed, although in most of the cases many other vibronic transitions should be taken into account in order to completely reproduce the vibronic signature of a specific electronic transition.

A reduced-dimensinality scheme has been employed for the calculation of vibronic transitions of 2,6-STOT, 2,4-STDO and 2,4-STE0. The protocol is based on the exclusion (from the vibronic calculation) of all the normal modes with a fundamental frequency below a user-defined threshold. These thresholds are 800 cm$^{-1}$ in the case of 2,4-STDO and 850 cm$^{-1}$ in the cases of 2,6-STOT and 2,4-STE0.
Table S1: Values and assignment of each electronic transition for 2,6-STDO molecule.

transition	KT (HF/maug-cc-pVTZ)	OVGF/maug-cc-pVTZ	OVGF/cc-pVTZ	NRZ/maug-cc-pVTZ	ADC(3)/cc-pVDZ	experimental (UPS)
7b₂ [n (±σ)]	10.31	9.01 (0.899)	8.96 (0.901)	8.97 (0.876)	8.94 (0.897)	8.84³
6b₁ [n (±σ)]	11.61	10.15 (0.894)	10.09 (0.896)	9.95 (0.866)⁴	10.02 (0.889)	9.90⁴
6b₂ [σ]	13.05	11.70 (0.905)	11.64 (0.907)	12.06 (0.886)²	11.92 (0.906)	11.5-12.5¹
6b₂ [σ(+n)]	13.13	12.07 (0.893)	11.99 (0.894)	12.11 (0.864)²	11.94 (0.883)	
6b₁ [σ]	13.80	12.45 (0.904)	12.40 (0.906)	12.70 (0.885)²	12.62 (0.904)	
5b₁ [π]	14.39	13.49 (0.883)	13.36 (0.882)	13.21 (0.840)²	13.11 (0.854)	
5b₂ [σ(+n)]	14.47	13.29 (0.897)	13.20 (0.899)	13.18 (0.874)²	13.16 (0.891)	
4b₂ [σ]	14.80	13.27 (0.902)	13.21 (0.904)	13.44 (0.873)²	13.40 (0.893)	
6a [σ]	15.03	13.29 (0.895)	13.20 (0.898)	13.41 (0.871)²	13.41 (0.894)	
5b₁ [σ]	15.29	13.91 (0.906)	13.85 (0.907)	13.92 (0.883)²	13.89 (0.901)	
4b₁ [σ(+n)]	16.17	14.48 (0.885)	14.37 (0.888)	-	14.27 (0.850)²	14-14⁴
3b₂ [σ]	16.42	14.71 (0.878)	14.58 (0.882)	-	14.48 (0.669)	14-14.5⁴
3b₃ [σ]	17.27	15.65 (0.893)	15.57 (0.893)	-	15.75 (0.811)²	15.5⁵
4b₁ [σ]	18.11	16.09 (0.884)	15.99 (0.883)	-	15.96 (0.867)²	
2b₂ [π(+n)]	18.91	17.07 (0.883)	16.97 (0.883)	-	17.16 (0.761)²	
5a [σ]	19.42	17.32 (0.881)	17.24 (0.880)	-	17.24 (0.828)²	
3b₄ [σ]	20.13	18.02 (0.883)	17.96 (0.882)	-	18.02 (0.836)²	
4a [σ]	20.58	18.43 (0.882)	18.36 (0.881)	-	18.41 (0.852)²	

¹ taken from ref. S1
² slight contributions from other MOs
³ taken from ref. S2
⁴ our assignment
⁵ taken from ref. S2; assignment proposed in ref. S1
Table S2: Energies, intensities and assignment of the main vibronic transitions for the first and the second bands of the spectrum of 2,6-STDO molecule.

transition	main contributions	energy (eV)	intensity (a. u.)		
$7b_2$ [$n (+\sigma)$]	$	0\rangle \rightarrow	0\rangle$	8.737	$0.769 \cdot 10^{-3}$
	$	0\rangle \rightarrow	12(1)\rangle$	8.834	$0.518 \cdot 10^{-3}$
	$	0\rangle \rightarrow	24(1)\rangle$	8.874	$0.181 \cdot 10^{-3}$
	$	0\rangle \rightarrow	33(1)\rangle$	8.893	$0.188 \cdot 10^{-3}$
	$	0\rangle \rightarrow	40(1)\rangle$	8.967	$0.262 \cdot 10^{-3}$
	$	0\rangle \rightarrow	12(1), 40(1)\rangle$	9.064	$0.177 \cdot 10^{-3}$
$6b_3$ [$n (+\sigma)$]	$	0\rangle \rightarrow	0\rangle$	9.839	$0.205 \cdot 10^{-2}$
	$	0\rangle \rightarrow	8(1)\rangle$	9.915	$0.250 \cdot 10^{-3}$
	$	0\rangle \rightarrow	33(1)\rangle$	9.995	$0.425 \cdot 10^{-3}$
	$	0\rangle \rightarrow	40(1)\rangle$	10.069	$0.402 \cdot 10^{-3}$

Figure S1: Graphical representation of the normal modes of 2,6-STDO, numbered with respect to the associated fundamental frequency in ascending order; only the normal modes involved in the most intense vibronic transitions are reported (see table S2).
Table S3: Values and assignment of each electronic transition for 2,6-STDE molecule.

transition	KT (HF/maug-cc-pVTZ)	OVGF/maug-cc-pVTZ	OVGF/ce-pVTZ	NR2/maug-cc-pVTZ	ADC(3)/cc-pVDZ	experimental (UPS)
7b₂	9.06	8.71 (0.898)	8.69 (0.899)	8.77 (0.874)	8.68 (0.885)	8.49²
6b₂	9.98	9.58 (0.896)	9.54 (0.897)	9.61 (0.866)	9.55 (0.879)	9.40²
5b₂	11.35	10.23 (0.898)	10.20 (0.902)	10.27 (0.876)	10.32 (0.897)	10.05²
5a	11.96	10.84 (0.897)	10.81 (0.901)	10.87 (0.874)	10.96 (0.897)	10.9³
5b₁	12.54	11.32 (0.897)	11.28 (0.901)	11.28 (0.874)	11.38 (0.896)	11.4³
6b₁	12.81	11.63 (0.897)	11.59 (0.900)	11.59 (0.874)	11.70 (0.896)	11.9³
5b₂	13.03	11.90 (0.896)	11.86 (0.899)	11.82 (0.870)	11.95 (0.890)	11.9³
6a	13.20	11.66 (0.891)	11.63 (0.895)	11.76 (0.868)	11.84 (0.893)	12.5³
4b₂	13.72	12.35 (0.898)	12.32 (0.902)	12.27 (0.875)	12.41 (0.897)	14-15³
5b₁	14.29	13.02 (0.898)	13.00 (0.900)	12.81 (0.873)	12.97 (0.892)	14.15³
4b₁	15.57	14.29 (0.882)	14.25 (0.884)	-	14.12 (0.847)	15.9³
3b₂	15.79	14.52 (0.876)	14.49 (0.878)	-	14.31 (0.805)	
3b₁	16.29	14.86 (0.884)	14.81 (0.887)	-	14.79 (0.710)	
4b₁	16.82	15.11 (0.887)	15.07 (0.887)	-	15.13 (0.871)	
2b₂	17.65	15.91 (0.877)	15.86 (0.877)	-	16.01 (0.549)	15.9³
5a	18.52	16.70 (0.876)	16.66 (0.876)	-	16.60 (0.700)	
3b₁	19.19	17.19 (0.875)	17.16 (0.875)	-	17.25 (0.736)	
4a	19.56	17.54 (0.874)	17.50 (0.874)	-	17.54 (0.785)	

¹ taken from ref. S1
² taken from ref. S2
³ taken from ref. S2; assignment proposed in ref. S1
⁴ our assignment
Table S4: Energies, intensities and assignment of the main vibronic transitions for the first and the second bands of the spectrum of 2,6-STDE molecule.

transition	main contributions	energy (eV)	intensity (a. u.)		
7b₂ [π]		0⟩ →	0⟩	8.588	0.148 · 10⁻¹
		0⟩ →	16(1)⟩	8.688	0.367 · 10⁻²
		0⟩ →	31(1)⟩	8.728	0.189 · 10⁻²
		0⟩ →	47(1)⟩	8.803	0.698 · 10⁻²
		0⟩ →	16(1), 47(1)⟩	8.903	0.173 · 10⁻²
		0⟩ →	47(2)⟩	9.019	0.164 · 10⁻²
6b₃ [π]		0⟩ →	0⟩	9.445	0.168 · 10⁻¹
		0⟩ →	7(1)⟩	9.503	0.178 · 10⁻²
		0⟩ →	23(1)⟩	9.559	0.257 · 10⁻²
		0⟩ →	47(1)⟩	9.660	0.879 · 10⁻²
		0⟩ →	23(1), 47(1)⟩	9.774	0.134 · 10⁻²

Figure S2: Graphical representation of the normal modes of 2,6-STDE, numbered with respect to the associated fundamental frequency in ascending order; only the normal modes involved in the most intense vibronic transitions are reported (see table S4).
Table S5: Values and assignment of each electronic transition for 2,6-STEO molecule.

transition	method	experimental (UPS)		
	KT (HF/maug-cc-pVTZ)	OVGF/maug-cc-pVTZ	NR2/maug-cc-pVTZ	
13b $[\pi]$	9.85	9.44 (0.900)	9.57 (0.878)	9.404
12b $[n(+\sigma)]$	10.33	9.06 (0.895)	8.88 (0.868)	8.854
13a $[\sigma]$	12.48	11.25 (0.901)	11.43 (0.880)	
11b $[\sigma(+n)]$	12.55	11.27 (0.899)	11.32 (0.876)2	
10b $[n(+\sigma)]$	13.14	12.07 (0.893)	12.04 (0.861)	
12a $[\sigma]$	13.29	12.02 (0.900)	12.13 (0.879)	
9b $[\pi(+\sigma)]$	14.02	13.00 (0.888)	12.72 (0.858)	
11a $[\sigma]$	14.05	12.42 (0.894)	12.56 (0.870)	
8b $[\sigma]$	14.23	12.78 (0.900)	12.81 (0.867)2	
10a $[\sigma]$	14.79	13.47 (0.901)	13.36 (0.878)	
7b $[\pi(+\sigma)]$	15.73	14.10 (0.882)	-	
6b $[\sigma(+n)]$	16.17	14.83 (0.877)	-	
5b $[\sigma(+n)]$	16.75	15.14 (0.890)	-	15.14
9a $[\sigma]$	17.48	15.61 (0.885)	-	
4b $[\sigma]$	18.28	16.48 (0.880)	-	
8a $[\sigma]$	18.96	16.99 (0.878)	-	
7a $[\sigma]$	19.64	17.59 (0.879)	-	
6a $[\sigma]$	20.05	17.97 (0.878)	-	

1 taken from ref. S2
2 slight contributions from other MOs
3 assignment proposed in ref. S2
4 our assignment
Table S6: Values and assignment of each electronic transition for 2,6-STOT molecule.

transition	method	experimental (UPS)¹			
	KT (HF/maug-cc-pVTZ)	OVGF/maug-cc-pVTZ	NR2/maug-cc-pVTZ		
13b	n_s	9.17	8.52 (0.892)	8.29 (0.87)	8.49³
12b	π_Cs	10.72	10.47 (0.894)	10.44 (0.859)	10.50⁴
11b	n_O(+σ)	11.00	9.60 (0.891)	9.46 (0.861)²	9.45³
12a	σ	13.04	11.62 (0.899)	11.96 (0.875)	11.40³
11a	σ	13.58	12.21 (0.895)	12.40 (0.868)²	12-13⁴
10a	σ	13.93	12.45 (0.896)	12.68 (0.872)²	13-14.5⁴
9b	σ(+n_O)	14.22	12.78 (0.89)	-	
8b	π_CO(+σ)	14.67	13.32 (0.887)	-	
7b	σ(+n_O)	14.96	13.26 (0.888)	-	
9a	σ	15.29	13.80 (0.900)	-	
6b	π_CO(+σ)	16.22	14.45 (0.88)	-	
8a	σ	16.82	15.05 (0.874)	-	15⁴
5b	σ(+n_O)	17.23	15.52 (0.889)	-	
4b	σ	18.75	16.85 (0.874)	-	
7a	σ	19.01	16.87 (0.868)	-	
6a	σ	20.08	17.91 (0.876)	-	
5a	σ	20.51	18.33 (0.875)	-	

¹ taken from ref. S3
² slight contributions from other MOs
³ assignment proposed in ref. S3
⁴ our assignment
Table S7: Energies, intensities and assignment of the main vibronic transitions for the first, the second and the third bands of the spectrum of 2,6-STOT molecule.

transition	main contributions	energy (eV)	intensity (a. u.)			
13b	n_S	$	0\rangle \rightarrow	0\rangle$	8.253	$0.269 \cdot 10^{-3}$
13b	n_S	$	0\rangle \rightarrow	16(1)\rangle$	8.362	$0.133 \cdot 10^{-4}$
13b	n_S	$	0\rangle \rightarrow	21(1)\rangle$	8.374	$0.116 \cdot 10^{-4}$
13b	n_S	$	0\rangle \rightarrow	23(1)\rangle$	8.387	$0.138 \cdot 10^{-4}$
13b	n_S	$	0\rangle \rightarrow	27(1)\rangle$	8.395	$0.107 \cdot 10^{-4}$
12b	π_{CS}	$	0\rangle \rightarrow	0\rangle$	10.146	$0.502 \cdot 10^{-4}$
12b	π_{CS}	$	0\rangle \rightarrow	19(1)\rangle$	10.259	$0.125 \cdot 10^{-4}$
12b	π_{CS}	$	0\rangle \rightarrow	27(1)\rangle$	10.288	$0.182 \cdot 10^{-4}$
12b	π_{CS}	$	0\rangle \rightarrow	28(1)\rangle$	10.289	$0.111 \cdot 10^{-4}$
12b	π_{CS}	$	0\rangle \rightarrow	37(1)\rangle$	10.316	$0.115 \cdot 10^{-4}$
11b	$n_O(+\sigma)$	$	0\rangle \rightarrow	0\rangle$	9.321	$0.154 \cdot 10^{-3}$
11b	$n_O(+\sigma)$	$	0\rangle \rightarrow	21(1)\rangle$	9.441	$0.232 \cdot 10^{-4}$
11b	$n_O(+\sigma)$	$	0\rangle \rightarrow	24(1)\rangle$	9.458	$0.351 \cdot 10^{-4}$
11b	$n_O(+\sigma)$	$	0\rangle \rightarrow	29(1)\rangle$	9.470	$0.142 \cdot 10^{-4}$
11b	$n_O(+\sigma)$	$	0\rangle \rightarrow	35(1)\rangle$	9.481	$0.136 \cdot 10^{-4}$
11b	$n_O(+\sigma)$	$	0\rangle \rightarrow	40(1)\rangle$	9.550	$0.127 \cdot 10^{-4}$
Figure S3: Graphical representation of the normal modes of 2,6-STOT, numbered with respect to the associated fundamental frequency in ascending order; only the normal modes involved in the most intense vibronic transitions are reported (see table S7).
Table S8: Values and assignment of each electronic transition for 2,4-STDO molecule.

transition	method	experimental (UPS)²		
	KT (HF/maug-cc-pVTZ)	OVGF/maug-cc-pVTZ	NR2/maug-cc-pVTZ	
11a''[n(+σ)]	10.51	9.16 (0.896)	9.13 (0.870)	9.04⁴
15a'[n(+σ)]	11.47	10.06 (0.895)	9.89 (0.864)	9.88⁴
10a'[σ(+n)]	13.28	12.03 (0.900)	12.14 (0.874)	
14a'[σ(+n)]	13.44	12.19 (0.901)	12.41 (0.872)	¹
13a'[σ]	13.64	12.28 (0.902)	12.52 (0.879)	¹
9a''[σ(+n)]	14.01	12.54 (0.900)	12.73 (0.877)	
8a''[π]	14.43	13.38 (0.885)	13.17 (0.836)	
12a'[n(+σ)]	14.55	13.28 (0.893)	13.16 (0.820)	¹
11a'[σ(+n)]	14.80	13.45 (0.899)	13.49 (0.850)	¹
7a''[σ]	15.00	13.69 (0.902)	13.62 (0.863)	
10a'[π(+σ)]	16.18	14.47 (0.884)	-	
6a''[π(+σ)]	16.83	14.95 (0.876)	-	
9a'[σ]	17.76	15.91 (0.887)	-	
5a''[σ]	17.96	15.98 (0.884)	-	
8a'[σ]	18.76	16.94 (0.885)	-	
7a'[σ]	19.62	17.61 (0.883)	-	
4a''[σ]	20.48	18.18 (0.874)	-	
6a'[σ]	20.51	18.35 (0.880)	-	

¹ slight contributions from other MOs
² taken from ref. S3
³ assignment proposed in ref. S3
⁴ our assignment
Table S9: Energies, intensities and assignment of the main vibronic transitions for the first and the second bands of the spectrum of 2,4-STDO molecule.

transition	main contributions	energy (eV)	intensity (a. u.)	
$	0\rangle \to	0\rangle$	8.966	$0.201 \cdot 10^{-1}$
$	0\rangle \to	16(1)\rangle$	9.076	$0.597 \cdot 10^{-2}$
$	0\rangle \to	20(1)\rangle$	9.084	$0.129 \cdot 10^{-2}$
$	0\rangle \to	22(1)\rangle$	9.095	$0.160 \cdot 10^{-2}$
$	0\rangle \to	25(1)\rangle$	9.105	$0.411 \cdot 10^{-2}$
$	0\rangle \to	29(1)\rangle$	9.113	$0.133 \cdot 10^{-2}$
$	0\rangle \to	33(1)\rangle$	9.124	$0.113 \cdot 10^{-2}$
$	0\rangle \to	39(1)\rangle$	9.192	$0.105 \cdot 10^{-2}$
$	0\rangle \to	40(1)\rangle$	9.197	$0.175 \cdot 10^{-2}$
$	0\rangle \to	16(1)\;25(1)\rangle$	9.215	$0.122 \cdot 10^{-2}$
$	0\rangle \to	0\rangle$	9.793	$0.297 \cdot 10^{-1}$
$	0\rangle \to	15(1)\rangle$	9.902	$0.711 \cdot 10^{-2}$
$	0\rangle \to	22(1)\rangle$	9.922	$0.109 \cdot 10^{-2}$
$	0\rangle \to	25(1)\rangle$	9.932	$0.631 \cdot 10^{-2}$
$	0\rangle \to	27(1)\rangle$	9.934	$0.359 \cdot 10^{-2}$
$	0\rangle \to	15(1)\;25(1)\rangle$	10.041	$0.151 \cdot 10^{-2}$
Figure S4: Graphical representation of the normal modes of 2,4-STDO, numbered with respect to the associated fundamental frequency in ascending order; only the normal modes involved in the most intense vibronic transitions are reported (see table S9).
Table S10: Values and assignment of each electronic transition for 2,4-STE0 molecule.

transition	method	experimental (UPS)		
	KT (HF/maug-cc-pVTZ)	OVGF/maug-cc-pVTZ	NR2/maug-cc-pVTZ	
26a[πCC(+$n+σ$)]	9.52	8.86 (0.899)	8.67 (0.870)¹	8.65⁵
25a[n+$πCC+σ$]	10.94	9.84 (0.892)	9.97 (0.862)²	9.77⁵
24a[σ(+n)]	12.22	11.07 (0.897)	11.11 (0.873)³	10.90⁷
23a[σ]	12.85	11.56 (0.899)	11.75 (0.878)	
22a[σ]	13.08	11.83 (0.900)	11.91 (0.878)³	
21a[σ]	13.20	12.01 (0.898)	12.03 (0.872)³	
20a[σ]	13.41	11.98 (0.897)	12.09 (0.874)	
19a[πCO(+σ)]	14.09	13.04 (0.885)	12.70 (0.829)⁴	
18a[σ]	14.20	12.82 (0.900)	12.82 (0.838)³	
17a[σ]	14.47	13.21 (0.902)	-	
16a[πCO(+σ)]	15.84	14.26 (0.880)	-	
15a[σ(++n)]	16.42	14.91 (0.873)	-	
14a[σ]	16.95	15.28 (0.889)	-	
13a[σ]	17.33	15.44 (0.884)	-	
12a[σ]	18.18	16.41 (0.883)	-	
11a[σ]	19.10	17.18 (0.880)	-	
10a[σ]	19.86	17.67 (0.869)	-	
9a[σ]	19.98	17.90 (0.877)	-	

¹ relevant contribution from MO 25a
² relevant contribution from MO 26a
³ slight contributions from other MOs
⁴ taken from ref. S3
⁵ assignment proposed in ref. S3
⁶ our assignment
Table S11: Energies, intensities and assignments of the main vibronic transitions for the first and the second bands of the spectrum of 2,4-STEO molecule.

transition	main contributions	energy (eV)	intensity (a. u.)		
$	0\rangle \rightarrow	0\rangle$	$26a[\pi_{CC}(+n + \sigma)]$	8.491	$0.372 \cdot 10^{-1}$
$	0\rangle \rightarrow	18(1)\rangle$	8.602	$0.193 \cdot 10^{-2}$	
$	0\rangle \rightarrow	21(1)\rangle$	8.605	$0.426 \cdot 10^{-2}$	
$	0\rangle \rightarrow	24(1)\rangle$	8.612	$0.244 \cdot 10^{-2}$	
$	0\rangle \rightarrow	25(1)\rangle$	8.620	$0.570 \cdot 10^{-2}$	
$	0\rangle \rightarrow	26(1)\rangle$	8.626	$0.394 \cdot 10^{-2}$	
$	0\rangle \rightarrow	27(1)\rangle$	8.628	$0.410 \cdot 10^{-2}$	
$	0\rangle \rightarrow	28(1)\rangle$	8.631	$0.710 \cdot 10^{-2}$	
$	0\rangle \rightarrow	29(1)\rangle$	8.634	$0.362 \cdot 10^{-2}$	
$	0\rangle \rightarrow	34(1)\rangle$	8.643	$0.309 \cdot 10^{-2}$	
$	0\rangle \rightarrow	37(1)\rangle$	8.651	$0.154 \cdot 10^{-2}$	
$	0\rangle \rightarrow	39(1)\rangle$	8.654	$0.247 \cdot 10^{-2}$	
$	0\rangle \rightarrow	0\rangle$	$25a[n(+\pi_{CC} + \sigma)]$	9.805	$0.390 \cdot 10^{-1}$
$	0\rangle \rightarrow	17(1)\rangle$	9.914	$0.153 \cdot 10^{-2}$	
$	0\rangle \rightarrow	21(1)\rangle$	9.919	$0.142 \cdot 10^{-1}$	
$	0\rangle \rightarrow	23(1)\rangle$	9.924	$0.449 \cdot 10^{-2}$	
$	0\rangle \rightarrow	24(1)\rangle$	9.926	$0.106 \cdot 10^{-1}$	
$	0\rangle \rightarrow	27(1)\rangle$	9.942	$0.287 \cdot 10^{-2}$	
$	0\rangle \rightarrow	34(1)\rangle$	9.957	$0.227 \cdot 10^{-2}$	
$	0\rangle \rightarrow	43(1)\rangle$	10.019	$0.526 \cdot 10^{-2}$	
$	0\rangle \rightarrow	21(2)\rangle$	10.033	$0.260 \cdot 10^{-2}$	
$	0\rangle \rightarrow	21(1); 23(1)\rangle$	10.038	$0.164 \cdot 10^{-2}$	
$	0\rangle \rightarrow	21(1); 24(1)\rangle$	10.040	$0.389 \cdot 10^{-2}$	
$	0\rangle \rightarrow	24(2)\rangle$	10.047	$0.145 \cdot 10^{-2}$	
$	0\rangle \rightarrow	21(1); 43(1)\rangle$	10.133	$0.192 \cdot 10^{-2}$	
$	0\rangle \rightarrow	24(1); 43(1)\rangle$	10.140	$0.144 \cdot 10^{-2}$	
Figure S5: Graphical representation of the normal modes of 2,4-STEO, numbered with respect to the associated fundamental frequency in ascending order; only the normal modes involved in the most intense vibronic transitions are reported (see table S11).
References

(S1) Knippenberg, S.; François, J.-P.; Deleuze, M. S. Green’s function study of the one-electron and shake-up ionization spectra of unsaturated hydrocarbon cage compounds. *J. Comput. Chem.* **2006**, *27*, 1703–1722.

(S2) Gleiter, R.; Lange, H.; Borzyk, O. Photoelectron Spectra, Ab Initio SCF MO, and Natural Bond Orbital Studies on Stellenes. Long-Range π/σ Interactions. *J. Am. Chem. Soc.* **1996**, *118*, 4889–4895.

(S3) Gleiter, R.; Gaa, B.; Sigwart, C.; Lange, H.; Borzyk, O.; Rominger, F.; Irngartinger, H.; Oeser, T. Preparation and Properties of Stelladiones. *Eur. J. Org. Chem.* **1998**, *1998*, 171–176.