MORINGA OLEIFERA AS A PHARMACEUTICAL EXCIPIENT

UPHADEK B.*, SHINKAR D. M., PATIL P. B., SAUDAGAR R. B.
Department of Pharmaceutics, R. G. Sapkal College of Pharmacy, Anjaneri 422213, Nasik, Maharashtra, India
Email: uphadekavita@gmail.com
Received: 26 Dec 2017, Revised and Accepted: 05 Feb 2018

ABSTRACT

Plant gums and mucilages are being used due to their abundance in nature, safety and economy. Additives play an important role in pharmaceutical preparations like tablet, lotions, suspensions, syrups and ointments. Recent trends towards the use of the natural and nontoxic products which demand the replacement of synthetic excipients with natural ones. Moringaoleifera gum has good mucoadhesive polymer, disintegrating agent and binder. Moringa Oleifera gum show that it has high potential for industrial application especially in the food, textile and pharmaceutical industries.

Keywords: Gums, Mucilages, Additives, Mucoadhesive, Moringa Oleifera

INTRODUCTION [1-3]

Nowadays Most of Researchers are trying to introduce new excipients for drug formulations to exhibit varied functions. The popularity of new excipient research is growing tremendously over the last few decades due to increasing demand for safe, economical and functionally reliable substitutes for the existing synthetic ones. There is almost all therapeutic formulations used for humans and others include excipients. Pharmaceutical excipients can be regarded as totally inert or inactive substance within the formulation, but are used to convert Active Pharmaceutical Ingredients into dosage forms suitable for administration to patient.

Moringaoleifera Lam belongs to family Moringaceae. It is also known as Drumstick in English, Saragvo in Gujarati, Soanj-na in Hindi, Sajna in Bengali, Nuge in Kannada, Sgru in Malayalam, Shevga in Marathi, Shobhanjana in Sanskrít and Munaga in Tehgu. Moringa powder is sparingly soluble in water but swells in contact with water giving a highly viscous solution. In view of the easy availability of the plant, the ex-udates from the stem of the tree. The stem of the tree exudes a gum which is initially white in colour but changes to reddish brown to brownish black on exposure.

Moringa Oleifera Lam. (Moringaceae) is one of the 14 species of the family morigaceae, native to India, Africa, Arabia, Southeast Asia, South America, and the Pacific and Caribbean Islands. Because M. oleifera has been seen in many tropic and sub-tropic regions worldwide. The plant is referred to by a number of names such as horseradish tree, drumstick tree, ben oil tree, miracle tree, and “Mother’s Best Friend”. This plant grown and widely cultivated in the northern part of Nigeria and many countries in tropical Africa. Moeingaoleiferacan be grown in a variety of soil conditions preferring well-drained sandy or loamy soil that is slightly alkaline. Almost every part of M. oleifera can be used for food and as forage for livestock.

Moringa Oleifera Lam. (Moringaceae) is one of the 14 species of the family morigaceae, native to India, Africa, Arabia, Southeast Asia, South America, and the Pacific and Caribbean Islands. Because M. oleifera has been seen in many tropic and sub-tropic regions worldwide. The plant is referred to by a number of names such as horseradish tree, drumstick tree, ben oil tree, miracle tree, and “Mother’s Best Friend”. This plant grown and widely cultivated in the northern part of Nigeria and many countries in tropical Africa. Moeingaoleiferacan be grown in a variety of soil conditions preferring well-drained sandy or loamy soil that is slightly alkaline. Almost every part of M. oleifera can be used for food and as forage for livestock.

Moringa Oleifera gum show that it has high potential for industrial application especially in the food, textile and pharmaceutical industries.

Pharmacological importance [3-11]

Analgesic activity

The experimental studies using hot plate and tail immersion method have shown that alcohol extract of leaves and seeds of Moringa oleifera possess marked analgesic activity and found to be equipotent to standard drug.

Anti-inflammatory activity

Poultice of leaves is beneficial in glandular swellings. The root extract exhibited significant anti-inflammatory activity in Carrageen induced rat paw edema.

Antipyretic activity

The antipyretic activity of ethanolic, petroleum ether, solvent ether and ethyl acetate extracts of seeds of moringa was screened using yeast induced hyperpyrexia method.
Wound healing properties

Three wound models viz excision wound, incision wound and dead space wound were selected for assessing wound healing activity of ethanolic and ethyl acetate extracts of leaves. Ethanolic and ethyl acetate extracts (10% w/w extract in the form of ointment) showed significant wound healing activity that is comparable with the standard vicco turmeric cream, Phytosterols and phenolic compounds present in these extracts promote the wound healing activity.

Table 1: The nutrient composition of leaves, leaf powder, seeds and pods [1]

Nutrients	Fresh leaves	Dry leaves	Leaf powder	Seed	Pods
Calories (cal)	92	329	205	-	25
Protein (g)	6.7	29.4	27.1	35.97	2.5
Fat (g)	1.7	5.2	2.3	38.67	0.1
Carbohydrate (g)	12.5	41.2	38.2	8.67	3.7
Fibre (g)	0.9	12.5	19.2	2.00	4.8
Vitamin B1 (mg)	0.06	2.02	2.64	0.05	0.05
Vitamin B2 (mg)	0.05	21.3	20.5	0.06	0.07
Vitamin B3 (mg)	0.8	7.6	8.2	0.2	0.2
Vitamin C (mg)	2.20	15.8	17.3	4.5	120
Vitamin E (mg)	448	10.8	113	751.67	-
Calfium (mg)	440	2105	2005	45	30
Magnesium (mg)	42	448	368	635	24
Phosphorus (mg)	70	252	204	75	110
Potassium (mg)	259	1236	1324	-	259
Copper (mg)	0.07	0.49	0.57	5.20	3.1
Iron (mg)	0.05	25.6	20.2	-	5.3

All values are in 100 g per plant material

Anti-asthmatic activity

A study was carried out to investigate the efficacy and safety of seed kernels of Moringa oleifera in the treatment of bronchial asthma. The results showed an appreciable decrease in severity of symptoms of asthma and also simultaneous improvement in respiratory tract functions.

Antidiabetic activity

An extract from the Moringa leaves has been shown to be effective in lowering blood sugar levels within 3 h ingestion, though less effectively than the standard hypoglycaemic drug.

Hepatoprotective activity

The methanolic and chloroform extracts of leaves of Moringaoleifera have shown significant hepatoprotection against carbon tetrachloride induced hepatotoxicity in albino rats in reducing serum total bilirubin, direct bilirubin, Serum glutamic pyruvic transaminase, and serum glutamicoxaloacetic transaminase levels. Moringa roots have been reported to possess hepatoprotective activity. The aqueous and alcoholic extracts from Moringa flowers were also found as hepatoprotective effect, due to the presence of quercetin, a well-known flavonoid.

Antitumor and anticancer activity

Some isolated bioactive compounds from the seeds of Moringaoleifera were tested for antitumor promoting activity using 7, 12-dimethylbenzanthracene as initiator and 12-O-tetra-decanoyl-phorbol-13-acetate as tumour promoter. Niaziminin, a thio carbamate from the leaves of Moringaoleifera was found to be a potent chemo preventive agent in chemical carcinogenesis. The seed extracts have also been found to be effective on hepatic carcinogen metabolizing enzymes, antioxidant parameters and skin papilloma genesis in mice. A seed ointment had similar effect to neomycin against Staphylococcus aureus and E. coli. An extract from leaves was found to be effective at inhibiting the growth of fungi Basidiobolusbacteroides, B. ranarums and Sporochin found in roots is effective against both Gram positive and Gram negative bacteria. M. oleifera root contains Anthonine was found highly toxic to the cholera bacterium. The antimicrobial activity of different Moringaoleifera seed extracts were tested against Scenedesmusobliquus(green algae), Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus thermophileus(bacterial strains) and Herpes Simplex virus type 1 (HSV 1) and Polio virus type 1 (sabin vaccine). Although, P. aeruginosa was more resistant to all M. oleifera extracts, B. thermodilophus was more sensitive than other organisms to all extracts. The extract of aqueous methanolic extract and fixed oil on HSV1 was highly similar, 52.22% and 45.20%.

Antihypertensive, diuretic and cholesterol lowering activities

Moringa leaf juice is known to have antihypertensive effect on blood pressure. Mustard oil glycosides and thio carbamate glycosides have been isolated from Moringa leaves which were found to be responsible for the blood pressure lowering effect. Moringaroots, leaves, flowers, gum and the aqueous infusion of seeds have been found to possess diuretic activity. Moringa leaves extract(crude) shows significant cholesterol lowering action in the blood serum of high fat diet fed rats which might be attributed to the presence of a bioactive phytoconstituent i.e. β-sitosterol.

Antispasmodic, Antiacid and Antihelnitic activities

Moringaroots and leaves have been reported to possess antispasmodic activity. This activity of leaves has been attributed to the presence of 4 alpha-L-rhamnosyloxybenzyl isothiocyanate. An aqueous extract made from seeds was found to be effective against P. aeruginosa, S. aureus and E. coli. An extract from leaves was found to be effective at inhibiting the growth of fungi Basidiobolusbacteroides, B. ranarums and Sporochin found in roots is effective against both Gram positive and Gram negative bacteria. M. oleifera root contains Anthonine was found highly toxic to the cholera bacterium. The antimicrobial activity of different Moringaoleifera seed extracts were tested against Scenedesmusobliquus(green algae), Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus thermophileus(bacterial strains) and Herpes Simplex virus type 1 (HSV 1) and Polio virus type 1 (sabin vaccine). Although, P. aeruginosa was more resistant to all M. oleifera extracts, B. thermodilophus was more sensitive than other organisms to all extracts. The extract of aqueous methanolic extract and fixed oil on HSV1 was highly similar, 52.22% and 45.20%.

Antihypertensive, diuretic and cholesterol lowering activities

Moringa leaf juice is known to have antihypertensive effect on blood pressure. Mustard oil glycosides and thio carbamate glycosides have been isolated from Moringa leaves which were found to be responsible for the blood pressure lowering effect. Moringaroots, leaves, flowers, gum and the aqueous infusion of seeds have been found to possess diuretic activity. Moringa leaves extract(crude) shows significant cholesterol lowering action in the blood serum of high fat diet fed rats which might be attributed to the presence of a bioactive phytoconstituent i.e. β-sitosterol.

Antispasmodic, Antiacid and Antihelnitic activities

Moringaroots and leaves have been reported to possess antispasmodic activity. This activity of leaves has been attributed to the presence of 4 alpha-L-rhamnosyloxybenzyl isothiocyanate. An aqueous extract made from seeds was found to be effective against P. aeruginosa, S. aureus and E. coli. An extract from leaves was found to be effective at inhibiting the growth of fungi Basidiobolusbacteroides, B. ranarums and Sporochin found in roots is effective against both Gram positive and Gram negative bacteria. M. oleifera root contains Anthonine was found highly toxic to the cholera bacterium. The antimicrobial activity of different Moringaoleifera seed extracts were tested against Scenedesmusobliquus(green algae), Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus thermophileus(bacterial strains) and Herpes Simplex virus type 1 (HSV 1) and Polio virus type 1 (sabin vaccine). Although, P. aeruginosa was more resistant to all M. oleifera extracts, B. thermodilophus was more sensitive than other organisms to all extracts. The extract of aqueous methanolic extract and fixed oil on HSV1 was highly similar, 52.22% and 45.20%.

Antihypertensive, diuretic and cholesterol lowering activities

Moringa leaf juice is known to have antihypertensive effect on blood pressure. Mustard oil glycosides and thio carbamate glycosides have been isolated from Moringa leaves which were found to be responsible for the blood pressure lowering effect. Moringaroots, leaves, flowers, gum and the aqueous infusion of seeds have been found to possess diuretic activity. Moringa leaves extract(crude) shows significant cholesterol lowering action in the blood serum of high fat diet fed rats which might be attributed to the presence of a bioactive phytoconstituent i.e. β-sitosterol.
Cardiac and circulatory stimulant

All parts of the tree are reported to be used as cardiac and circulatory stimulant. Moringinine acts on the sympathetic nervous system and acts as a cardiac stimulant.

Antioxidant activity

Antioxidant activity reported in oil from the dried seeds is higher than BHT (Butylated Hydroxy Toluene) and alpha-tocopherol. Aqueous methanol (80%) and ethanol (70%) extracts of freeze dried leaves showed radical scavenging and antioxidant activities. The drumstick leaves are found to be a great source of natural antioxidants.

Antifertility activity

The aqueous extract of root and bark at a dose of 200 mg/kg and 400 mg/kg, respectively, showed post-coital anti fertility effect in rat and also induced foetal resorption at late pregnancy. An aqueous extract of Moringa oleifera roots was investigated for its estrogenic, anti-estrogenic, progestational and anti-progestational activities. Doses up to 600 mg/kg of the extract orally failed to induce a decidua response in the traumatized uterus of ovariectomized rats.

Surfactant behavior

A study on interfacial properties and fluorescence of a coagulating protein extracted from Moringa seeds and its interaction with sodium dodecyl sulphate (SDS) was carried out. The study reported that

a) The protein extracted from Moring seeds has significant surfactant behavior.

b) The coagulant protein interacts strongly with SDS and the protein might have specific binding sites for SDS.

c) There is formation of protein-SDS complex.

Film forming property

Studies reported that gum of M. oleifera has enormous potential for use in the preparation of polymeric films as drug delivery systems.

As stabilizer

Plant phenolics have gained considerable interest in recent years for their potential effects against food related microorganisms. Phenolic extract obtained from the leaves of M. oleifera and M. crusindica showed stabilizing activity. In the present study, effect of addition of phenolic extract from leaves of M. oleifera and M. indica on the shelf life of pineapple juice stored at 40°C was investigated by monitoring changes in titratable acidity and sensory parameters for 8 w. Results observed that the extracts of natural phenolics can be used to improve the quality and safety of foods.

Cosmetic use

Various parts of Moringaoleifera have cosmetic value. Cognis Laboratories Serobiologics team developed Puricare TM and Purisoft TM, two active ingredients based on botanical peptides from the seeds of Moringaoleiferatree that purify hair and skin and offer protection against the effects of pollution. Moringaseed oil, known as Behen oil is widely used as a carrier oil in cosmetic preparations. The healing properties of Moringaoil were documented by ancient cultures. Moringa oil possesses exceptional oxidative stability which may explain why the Egyptians placed vases of Moringa oil in their tombs. It is high in oleic acid and similar composition to olive oil. Moringa oil is light and spreads easily on the skin. It is good oil for use in massage and aromatherapy applications. It can be used in body and hair care as a moisturizer and skin conditioner. Other uses include soap making and for use in cosmetic preparations such as lip balm and creams. Moringaoleiferabutter, a semisolid fraction of Moringa oil, is used in baby products to contribute a free radical resistant emollient with exceptionally long lasting skin softness.

Detoxification/water purification

Moringas have the ability to remove hazardous materials from water. After oleoextraction of Moringa seeds the left press cake contains water soluble proteins that act as effective coagulants for water purification. The charged protein molecules can serve as non-toxic natural polypeptides to settle mineral particles and organics in the purification of drinking water, vegetable oil, depositing juice and beer. Moringa seeds showed similar coagulation effects to alum. It is also reported that a recombinant protein in the seed is able to flocculate gram positive and gram negative bacterial cells. Moringa seeds could be used as adsorbant for the removal of cadmium from aqueous media. Thus water purifying attributes of Moringa seeds are as coagulant, microbial elimination and as a biosorbant.

Binder

In view of importance of binders in pharmaceuticals for the manufacture of tablets and capsules, gum extracted from the bark of Moringa Oleifera gum was evaluated its binding properties through assessment of various parameters essential for pharmaceutical formulation.

Starch

Starch is also one of the most widely used biomaterial in the food, textile, cosmetics, plastics, adhesives, paper and pharmaceutical industries. The diverseindustrial usage of starch is based on its availability at low cost, high calorific value and inherent excellent physicochemical properties. The versatility of starch in industrial applications is clearly defined by its physicochemical properties; therefore, a thorough evaluation of the necessary parameters is important in elucidating its industrial uses. Moringa Oleifera starch is a new starch feedstock for Industrial use which can reduce the burden on other starch sources such as cassava, corn, yam, potatoes and other complex carbohydrates. And also to provide an inherent nutritional benefits for various industrial products that use starch as one of the raw material.

Disintegrant

Moringaoleifera isolated gum powder can be effectively used as disintegrant. The disintegration time for natural gum was found to be less when compared to synthetic gum tablet.

Future potential [18-20]

In coming decades, it is anticipated that natural polymers will be coming as additional derivatives for development of various novel drug delivery systems due to a number of actions such as coating agent, gel former, controlled-release matrix, in addition to inducing desirable properties such as mucoadhesion and permeation enhancement to improve oral bioavailability of a drug.

CONCLUSION

After survey of various literatures concluded that natural polymer like Moringaoleiferaplays a vital role in the development of Novel drug delivery systems. So in future these polymers may be used widely by there searcher for the development of NDDS because of its advantage over other synthetic polymer. We anticipate that more uses of natural polymer will be coming as additional derivatives are synthesized and newer formulations are developed. The natural polymers can serve a number of purposes, including as a coating
agent, gel former, controlled-release matrix, in addition to inducing desirable properties, such as mucoadhesion and permeation enhancement to improve oral bioavailability of a drug.

AUTHORS CONTRIBUTIONS
All the author have contributed equally

CONFLICT OF INTERESTS
Declared none

REFERENCES
1. Dubey DK, Dora J, Gulsan AK, Gulsan RK. A multipurpose tree-Moringa Oleifera. Int J Pharm Chem Sci 2013;2:413-22.
2. Gopalakrishnan L, Doriya R, Kumar DS. Moringa Oleifera: a review on nutritive importance and its medicinal application. Food Sci Human Wellness 2016;5:49-56.
3. Darekar AB, Kahane JJ, Ashawat M, Chavan MJ, Saudagar RB. Plant exudates and mucilage as pharmaceutical excipients. J Adv Pharm Educ Res 2013;3:387-401.
4. Khatiwada R, Nayyar T, Sabharwal S, Jain UK, Taneja R. Recent approaches and pharmaceutical applications of natural polysaccharides: a review. Int J Pharm Sci Res 2013;5:490-49.
5. Kaur L, Sharma J, Kanu N. Natural polymers-promising potential in drug delivery. Int J PharmTech Res 2013;5:689-99.
6. Abitha MH, Flowerlet M. Natural polymers in pharmaceutical formulation. Int J Institutional Pharm Life Sci 2013;5:684-99.
7. Patel BV, Patel D. Study of disintegrant property of Moringa Oleifera gum and its comparison with other superdisintegrants. Int J Chem Tech Res 2011;3:1119-24.
8. Panda D, Swain S, Kaungo SK, Gupta R. Preparation and evaluation of gels from gum of Moringa Oleifera. Indian J Pharma Sci 2006;68:777-80.
9. Patel MT, Patel JK, Upadhayay UM. Assessment of various pharmaceutical excipient properties of natural Moringa Oleifera gum. Int J Pharm Life Sci 2012;3:1833-47.
10. Choudhary PD, Pawar HA. Recently investigated natural gums and mucilages as pharmaceutical excipients: an overview. Int J Pharm 2014. http://dx.doi.org/10.1155/2014/204849
11. Shah DP, Jain VC, Dalvadi HP. A preliminary investigation of Moringa Oleifera lam gum as a pharmaceutical excipient. Int J Pharm Res Technol 2011;1:12-6.
12. Aney JS, Tambe R, Kulkarni M, Bhise K. Pharmacological and pharmaceutical potential of Moringa Oleifera: a review. Int J Pharm Res 2009;2:1424-6.
13. CP Khare. Indian Medicinal Plants. An Illustrated Dictionary; 2007. p. 422-3.
14. Hukkeri VV, Nagathan CV, Karadi RV, Patil SV. Antipyretic and wound healing activities of Moringa Oleifera lam in rats. Indian J Pharm Sci 2006;68:124-6.
15. Agarwal B, Mehta A. Antiasthmatic activity of Moringa Oleifera lam: a clinical study. Indian J Pharmacol 2008;40:26-30.
16. Manjari M, Piyush M, Agarwal AC. Pharmacognostical and phytochemical investigation of antidiabetic activity of Moringa Oleifera lam leaf. Indian Pharm 2007;6:70-2.
17. Patil SK, Mukherjee PK, Saha BP. Studies on antiulcer activity of Moringa Oleifera leaf extracts on gastric ulcer models in rats. Phytother Res 1995;9:463-5.
18. Mehta LK, Balamaran R, Amin AH, Bafna PA, Gulati OD. Effect of fruits of Moringa Oleifera on the lipid profile of normal and hypercholesterolemic rabbits. J Ethnopharmacol 2003;86:191-5.
19. Shivalingam MR, Kumaran KSG, Reddy YVK, Jeslin D, Sudhanathao MT, Chaitanya BS. Evaluation of binding properties of Moringa Oleifera gum in the formulation of paracetamol tablets. Drug Invention Today 2010;2:69-71.
20. Zheng Yi, Zhu Fan, Lin Dan. Optimization of formulation and processing of Moringa Oleifera and spirulina complex tablets. Saudi J Biol Sci 2017;24:122-6.