Intestinal Microbiota and Functional Characteristics of Black Soldier Fly Larvae (Hermetia Illucens)

Zhineng Yuan (✉ yuanzhin@foxmail.com)
Sun Yat-Sen University

Ying Ma
Sun Yat-Sen University The school of agriculture

Bingjie Tang
Sun Yat-sen University School of Life Science

Rouxian Zeng
Sun Yat-sen University School of Life Science

Qiang Zhou
Sun Yat-sen University School of Life Science https://orcid.org/0000-0002-7678-0563

Original Article

Keywords: Hermetia illucens, intestinal bacteria, utilization efficiency, metagenomics

DOI: https://doi.org/10.21203/rs.3.rs-168343/v1

License: ☋ ☑ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose: Black soldier fly transforms organic waste into insect protein and fat, which makes it valuable to ecological utilization. This process is associated with intestinal microbiota. This research was developed to determine the type and functional characteristics of intestinal microbiota present in black soldier fly larvae.

Methods: In this research, metagenomics has been used to study black soldier fly larvae gut bacteria, which involves the high abundance of the gut microbes advantage bacterium group, the impact, and physiological functions of the microbiota. Furthermore, intestinal bacteria and their related functions were investigated by bioinformatics analysis to evaluate potential the microbial strains that may be used to improve feed utilization efficiency in factory farming.

Result: The results showed that black soldier fly larvae’ intestine contains more than 11,000 bacteria. High relative abundance of group W (larvae fed with 75% wheat bran and 25% soybean powder) may promote feed utilization efficiency, whereas high relative abundance of group T microbiota (larvae fed with 75% wheat bran and 25% soybean powder supplemented with 1% tetracycline) may play an important role in black soldier fly larvae survival.

Conclusion: The gut bacteria in black soldier fly larvae were involved in polysaccharide biosynthesis and metabolism, translation, membrane transport, energy metabolism, cytoskeleton, extracellular structures, inorganic ion transport and metabolism, nucleotide metabolism, and coenzyme transport physiological processes. The 35 significant differential microbes in group W may have a positive impact in feed utilization and physiological process.

1 Background

Black soldier fly Hermetia illucens (Diptera: Stratiomyidae) larvae are commonly used to recycle organic waste (van Huis, 2013). They feed on organic waste including livestock manure (Rehman et al., 2017; Beskin et al., 2018), food waste (Nguyen et al., 2015), and organic waste (Li et al., 2010). The black soldier fly is currently used as a tool for waste transformation and utilization, but few researches consider diverse protocols to improve its waste utilization efficiency. Intestinal microorganisms are involved in several insect functions, including nutritional coordination (Douglas, 1998), defense against plant toxins (Hammer et al., 2015), physiological response (Basset et al., 2000; Li et al., 2016), life span increase (Hoyt et al., 1971), influence on development and reproductive potential (Gavriel et al., 2011; Prado et al., 2009), and detoxifying of specific foods (Hehemann et al., 2010) among others. Collectively, insect intestinal microorganisms play a crucial role in growth and development of insects. Other studies have shown that bacteria in insects gut play an important role in promoting food utilization. In this regard, gut bacteria of wood-feeding higher termite promote cellulose and xylan hydrolysis (Warnecke et al., 2007), whereas Odontotaenius disjunctus intestinal microbiota contributes to lignocellulose decomposition (Ceja-Navarro et al., 2019). Studies of black soldier fly larvae gut microbes include antibacterial peptide active
substances extraction (Park et al., 2015), intestinal specific microbiota (Xie, 2010), conserved microbiota analysis (Shelomi et al., 2020), active enzymes analysis and identification (Kim et al., 2011; Lee et al., 2014; Lee et al., 2016). A recent review evaluated black soldier fly larvae microbial community and prospected its feasibility to utilization improvement (Jeroen et al., 2018). Furthermore, a relevant research finished an in-depth study to classify the positive influence of gut microbiota in black soldier fly larvae (Bruno et al., 2019). However, there is scarce research focused on biological function analysis of black soldier fly larvae gut microbiota. In addition, no research has been performed to search for microbiota that enhance feed utilization efficiency. It then becomes necessary to develop research to better understand black soldier fly larvae microbiota characteristics and functions.

Metagenomics research is a useful tool in gut microbes research, whose information is based on sequencing data (Furrie, 2006). Based on the development of this technology, many unculturable microbes have been studied and analyzed (Handelsman, 2004). In this concern, metagenomics research has expanded the mining of microbial community structure and function on the environment. To evaluate black soldier fly larvae intestinal bacteria biological function and screen potential microbial strain that may be exploited to improve feed utilization efficiency in factory farming, such bacteria were systematically analyzed through metagenomics.

2 Results

2.1 Data Quality Assessment

Raw reads obtained from Contig sequencing were assembled with the software MEGAHIT (Gurevich et al., 2013) in default parameter. Contig sequences shorter than 300bp were discarded, and the assembly results were evaluated by QUAST (Zhu et al., 2013) with default parameter. Results demonstrated that the number of Contig in different experimental groups was about 600,000, and greatly varied in length. The N50 length was about 1000 bp-1200 bp with the alignment rate exceeding 95% (Table 1).
Sample	Total Length (bp)	Contig Number	Largest Length (bp)	GC (%)	N50 (bp)	Mapped (%)
F1	713374913	679554	332933	41.78	1115	97.07
F2	601410151	594324	264723	41.58	1061	95.68
F3	621800601	613040	315309	41.63	1065	95.84
T1	573217820	519415	184590	41.85	1194	96.05
T2	716521041	613618	721453	41.86	1290	97.17
T3	649395570	557814	186681	42.01	1287	96.87
W1	604749023	581793	363719	42.28	1072	95.93
W2	712670354	668870	399518	42.11	1116	96.38
W3	680722887	639170	744843	42.37	1108	96.35

Notes: Sample: sample number; Total Length: sum of the base numbers of all contigs; Contig Numbers: number of contigs after assembly; Largest Length: number of bases in the longest contig; N50: contigs were sorted from long to short and the cumulative length was counted. When a contig was added and the cumulative length was equal to half of the sum of the lengths of all contigs, the length of the contig was N50. Mapped: alignment rate between sequencing reads and assembled contigs.

MetaGeneMark (Fu et al., 2012) was used to identify coding regions in the genome with default parameters. Gene prediction was conducted according to the assembled Contigs. The number of genes in different samples was about 500,000. The average gene length measured in each sample was in the range of 260 to 340 bp. Cd-hit software (Version 4.6.6) was used to remove the redundancy with default parameters, the similarity threshold was set at 95% and the coverage threshold at 90% (Fu et al., 2012). It was concluded that there were 2168041 non-redundant genes obtained in this sequence process, with an average length of 280 bp (Table 2).
Table 2
Predicted genes overview

Sample ID	Gene number	Total length (bp)	Average (bp)	Max length (bp)	Min length (bp)
F1	550158	152574384	277	7536	102
F2	464889	125423319	269	9972	102
F3	485384	132226104	272	7536	102
T1	426498	117609837	275	8286	102
T2	531807	152545194	286	8175	102
T3	472169	132783018	281	8904	102
W1	506309	164800824	325	12033	102
W2	579598	184957656	319	10866	102
W3	576423	195543927	339	11607	102
Gene set	2168041	608038053	280	12033	102

Notes: Samples: sample number; Genes Numbers: the number of predicted genes; Total Length: the bases sum of predicted genes; Average Length: the average bases of predicted genes.

2.2 Species Information Statistics

The species composition and relative abundance of the samples were obtained by comparing the above non-redundant genes with the species information of the sequence in the Nr database (Ashburner et al., 2000). The intestinal microbial species of the black soldier Fly larvae in different groups were counted in taxa of kingdom, phylum, class, order, family, genus, and species. The gut larvae microbiota was abundant, reaching more than 2300 genera and 11,000 species. The number of microbial species on different taxa in different groups were relatively similar, but a significant difference was observed in genus between groups W and T. In general, the intestinal microbe species of group W were higher, but not in a significant level than those of groups F and T (Table 3).

Table 3
Microbial species statistics

Group	kingdom	phylum	class	order	Family	genus	species
F	6	115.33 ± 1.15	124.67 ± 1.15	269.67 ± 1.53	623.33 ± 0.58	2309.67 ± 9.61 ab	11510.33 ± 25.50
T	6	115.33 ± 1.53	125.33 ± 0.58	269.33 ± 2.08	619 ± 5.20	2283 ± 7.81 a	11432.33 ± 68.72
W	6	111.67 ± 1.15	125.33 ± 1.15	269.67 ± 0.58	622 ± 3.46	2321.67 ± 10.11 b	11880 ± 17.09
2.3 Analysis of high abundant bacteria in the intestinal tract of black soldier fly larvae.

The resulting top 15 high abundance bacteria were selected for comparison. Results showed that the relative high abundance of bacteria at the level of phylum and genus was highly comparable (Fig. 1). The highest relative abundance bacteria belonged to Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. The highest abundance bacteria at species level were Enterococcus, Acinetobacter, Providencia, Enterobacter, and Myroides.

2.4 Similarity Analysis of Microbial and Functional Genes between Groups

The microbiota and functional gene composition of the samples were hierarchically clustered through R and the unweighted paired average method (UPGMA). Based on this, the similarity of species composition and functional gene composition of each sample was determined. The sample distance in the sample hierarchy clustering indicates the similarity of the species composition of the two samples. Results showed that samples in same groups are closer and the branches are shorter, therefore the microbial species structure and functional gene composition of the samples between the same treatment groups were comparable (Figs. 2a, and 2c).

Principal Component Analysis (PCA) decomposes the differences of multiple sets of data on the two-dimensional coordinate chart through processing complex data into two eigenvalues. Composition analysis of different samples (97% similarity) reflects differences and distances between samples. Composition of the species in the two samples are similar, when they come closer on a PCA diagram. The results showed that the same sample in same group were closer to each other, which demonstrated that the microbial composition and functional gene composition were comparable. The sum of the first dimension (98.4%) and the second dimension (1.13%) reached 99.53%, which explain the difference between different groups to a great extent (Fig. 2b, Fig. 2d).

2.5 Analysis of Differential Microbes

About 100 species were selected ($p < 0.05$) to draw differential heatmaps. According to the heatmap, there exists 35 high relative abundance species in group W (Faecalitcena contorta, Stenotrophomonas acidaminiphila, Sphingobacterium cellulitidis, Salana multivorans, Enterococcus sp. Gos25 – 1, Lachnospiraceae bacterium OF09-33XD, Pusillimonas caeni, Hungatella hathewayi, Sphingobacterium sp. 30C10-4-7, Stenotrophomonas sp. Leaf70, Pusillimonas sp. T7-7, uncultured Stenotrophomonas sp., Frischella perrara, Myroides sp. N17-2, Microbacterium sp. CH12i, Ochrobactrum sp. A44, Microbacterium ginsengiterrae, Kluyvera georgiana, Sphingobacterium gobiense, Myroides odoratus, Klebsiella...
pneumoniae, Enterococcus pallens, Sphingobacterium lactis, Candidatus Schmidhempelia bombi, Aequorivita soesokkakensis, Vitellibacter aquimaris, Enterococcus sp. 9D6 DIV0238, Providencia stuartii, Miniimonas sp. PCH200, Gilliamella apicola, Orbus hercynius, Sphingobacterium mizutaii, Sphingobacterium sp. 1.A.4, Microbacterium profundi, Thermus filiformis), 34 in group T(Dysgonomonas capncytophagooides, Allomyces macrogyrus, Enterococcus sp. 9E7 DIV0242, Candidatus Erwinia dacicola, Enterococcus sp. 4G2 DIV0659, Propionibacteriaceae bacterium 16Sb5-5, Desulfovibrio sp. DS-1, Marinifilum breve, Tatumella sp. UCD-D suzukii, Bacillus velezensis, Staphylococcus gallinarum, Staphylococcus sciuri, Dysgonomonas sp. Marseille-P4361, Klebsiella aerogenes, Providencia rettgeri, Mycolicibacterium mucogenicum, Corynebacterium nuruki, Ruaniaeae bacterium KH17, Corynebacterium stationis, Enterococcus sp. 6C8 DIV0013, Enterococcus faecium, Providencia rustigianii, Wohlfahrtimonas populi, Weissella jogaejeotgali, Bacillus amyloliquefaciens, Enterococcus casseliflavus, Bacteroides thetaiotaomicron CAG:40, Weissella thailandensis, Enterobacter hormaechei, Staphylococcus xylosus, Enterococcus saccharolyticus, Carnobacterium maltaromaticum, Spizellomyces punctatus), and 22 in group F(Citrobacter sp. MH181794, Schaalia canis, Metarhizium majus, Candida maltose, Nosocomiicoccus massiliensis, Lactobacillus sp. 54 – 5, Dysgonomonas gadei, Dorea longicatena, Prevotella sp. 10(H), Leminorella grimontii, Bacteroides caccae, Variorovax sp. EL159, Solibacillus isronensis, Proteus mirabilis, Actinomyces sp., Staphylococcus lentus, Rozella allomycis, Ignatzschineria sp. F8392, Leucobacter triazinivorans, Campylobacter concisus, Bacteroides sp. 1 1 14, Azospira oryzae).

The relative high abundance species of the different groups concentrate on different species without obvious overlap in the heatmap. Although the relative high abundance species of the differential species in Group F was the lowest, the relatively low abundance species were also less than the other two groups (Fig. 3).

2.6 Analysis of Differential Functional Gene

The heatmap of different functional genes was obtained through a parametric test. The heatmap of Kegg (Kanehisa et al., 2004) metabolic pathways in differential abundance gene shows that groups possess differences in polysaccharide biosynthesis and metabolism, translation, membrane transport and energy metabolism. Group W results showed highest relative abundance in four biological process, group F maintained middle level abundance in those four-biological process, and group T showed low abundance in those four-biological process (Fig. 4a). The EggNOG (Powell et al., 2014) heatmap evidences the differences of cytoskeleton, extracellular structures, inorganic ion transport and metabolism, nucleotide transport and metabolism, and coenzyme transport and metabolism in different groups. Group W showed high abundance in extracellular structure, inorganic ion transport and metabolism, nucleotide metabolism and transport, coenzyme transport and metabolism, whereas the related functional genes of cytoskeleton in group T showed relatively high abundance. The extracellular structures of group F were comparable to those of group W, whereas the other categories were less than those of group W (Fig. 4b).

3 Discussion
The N50 length of assembly sequence was about 1100 bp, with an alignment rate exceeding 95%, whereas the Contig number of a single sample reached 600,000, which means that this data assembly quality meets the requirement of research and analysis. Genes number of a single sample up to 550,000 suggests that the sequencing depth is enough for subsequent microbial biological analysis. Moreover, results of intestinal microbial statistics showed that there were over 11,000 intestinal bacteria in the black soldier fly larvae gut, indicating that the presence of highly abundant microbes in the gut. It is relative similar among different groups in each taxonomic order, indicating that different feeds had limited influence on the overall microbial community. The top 15 high abundance microbes in the class and genus analysis results demonstrated that there was no apparent difference between groups. Results indicate that feed played a slight role in core gut microbiota of black soldier fly larvae, which was consistent with published research (Klammsteiner et al., 2020). The highest relative abundance bacteria belonged to Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. It showed some differences with Jeon et al (2011)' results, which included Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Actinobacteria. Among those bacteria, Proteobacteria was observed as a potential microbial signature of disease, Firmicutes was considered to play an important role in digestion of animal manure, and Bacteroidetes were shown to degrade high molecular weight organic matter (Zhan et al., 2020). Taken together, the larvae gut core microbiota facilitated degradation of animal manure and organic matter, which may provide microbial evidence for Kim et al (2011)'s research. However, we should be more cautious to adopt black soldier larvae protein as edible for Proteobacteria in its gut (Wang et al., 2017).

The intergroup similarity analysis of microbial species and functional genes demonstrates that both feeds and tetracycline had an impact on the intestinal microbial community structure of the black soldier fly larvae. The intestinal microbial community structure of larvae fed under a similar environment was comparable, which agrees with other studies (Jiang, 2018; Tanaka et al., 2016; Liang et al., 2014; Bruno et al., 2019). Furthermore, our results agreed with Engel et al. (2013) in that the diet shapes the composition and activity of the gut microbiota. Heatmap analysis results demonstrated that different treatments influence some microbes in the black soldier fly larvae. A similar trend shown in function genes indicates a relation between differential microbes and function genes. We can then infer that those microbes play a crucial role in black soldier fly larvae growth and development, which agree with De Smet et al. (2018) conclusion. From these results, we may conclude the relatively high abundance microbiota in group W (35) and group F (22) play an important role in growth and development, whereas the relatively high abundance microbiota in group T (34) are relevant for black soldier fly larvae to survive in harsh conditions. However, Further research is required to address such assumptions. Combining heatmap of Kegg and eggNOG analysis in differential function genes, showed that relative function gene abundance of groups W, F, and T gradually reduces polysaccharide biosynthesis and metabolism, translation, and membrane transport and energy metabolism which associate with feeding. Hereby, we inferred that the 35-differential microbiota in group W were closely related to feeding. Furthermore, we believe that the differential microbiota in different groups play an important role in such biological process. Group T has relatively high abundance functional genes in cytoskeleton indicating that the relatively high abundance
differential microbiota in group T was related to cytoskeleton, which may be due to the inhibitory effect of Tetracycline on some essential microbes involved in development and feeding (Cai et al., 2018; Cifuentes et al., 2020), showing a great difference with mycotoxins and pesticides (Purschke et al., 2017). However, naval approaches are necessary to investigate this issue. The functional gene in group W displayed a high level in cell structure, inorganic ion transport and metabolism, nucleotide metabolic process, and coenzyme transport and metabolism, which indicate that the relatively high abundance differential microbiota in group W is essential in these biological processes. Based on the aforementioned result, we conclude that the 35-differential microbes in group W were mainly associated with energy metabolism which influences growth a lot, whereas the 34-differential microbes in group T were related to survival in harsh environments. The present study provided a better understanding of the intestinal microbiota of black soldier fly larvae, however, it did not fully to address the relation between microbes and function. We have research underway to elucidate such relationship.

4 Conclusion

The present study demonstrated that gut bacteria in black soldier fly larvae were involved in polysaccharide biosynthesis and metabolism, translation, membrane transport, energy metabolism, cytoskeleton, extracellular structures, inorganic ion transport and metabolism, nucleotide metabolism, and coenzyme transport physiological processes. The 35 significant differential microbes in group W have a positive impact in energy metabolism and physiological process which could be exploits to improve transform efficiency. Subsequent studies will explore the function of specific differential high relative abundance microbes in Group W and evaluate the possibility of improving farming efficiency with those microbiotas.

5 Methods

The research aims at exploring the relation between black soldier fly larvae and its intestinal microbiota. 4th-5th stage black soldier fly larvae fed with varied feeds were selected to study intestinal microbiota. In order to avoid accidental outcomes, we set 3 repeats (10 individuals for 1 repeat) for every treatment. Metagenomic method which is a practical tool was utilized to achieve our goal.

5.1 Insect Sources and Breeding

Black soldier fly eggs and larvae were partly acquired from Guangzhou Anruijie Environmental Protection Technology limited company, all of them were trapped in field and reared in 25°C, 16 h photoperiod, 60%-70% relative humidity feed for 30 generation.

After hatching from eggs, black soldier fly larvae were incubating with 75% wheat bran, 25% soybean powder (Group W), food waste (group F), or 75% wheat bran and 25% soybean powder supplemented with 1% Tetracycline (group T) for 10 d. Then 10 4th -5th stage larvae were selected in each group for intestinal anatomy, performing triplicate determinations.
5.2 Intestinal Dissection of Black Soldier Fly Larvae

Black soldier fly larvae were starved for 24 h, after which they were washed with sterile water and inactivated for 10 min at -20 °C. Next, they were surface sterilized with 75% alcohol and washed with sterile water. Larvae intestines were dissected out with sterile scissors and tweezers on a sterile operating table, eliminating intestinal adhesions. The obtained larvae intestines were preserved at -80 °C for subsequent sequencing at Beijing Biomarker Technologies.

5.3 Metagenomic Sequencing and Bioinformatics Analysis

DNA isolation, Sequencing and bioinformatics analysis were performed by Beijing Biomarker Technologies, acquiring 10 G of sequencing data for every replicate (three replicate determinations were achieved). Filtering and quality controlling were processed to get original clean reads for subsequent analysis. Trimmomatic software was used for original splicing sequences (Raw Tags), whereas Bowtie2 was used to sequence alignment with host genome to remove host contamination. MEGAHIT (Gurevich et al., 2013) was utilized for metagenome assembly, and contig sequences shorter than 300 bp were not considered. QUAST (Zhu et al., 2010) was used to evaluate assembly results, whereas MetaGeneMark (Fu et al., 2012) was used to predict the encoding genes and perform functional annotation on the encoding genes in general database and special database. Those bioinformatics analysis tools were kept in default parameter while analysis performing. Taxonomic analysis was performed based on clean reads data. Furthermore, species composition, abundance information, and function genes of the samples were statistically analyzed.

5.4 Statistical Analyses.

The statistic in this research were analyzed in Prism GraphPad 8, the figures were drawn through R.

Declarations

Ethics approval and consent to participate: No approval of research ethics committees was required to accomplish the goals of this study because experimental work was conducted with an unregulated invertebrate species. The larvae were utilized to experiment without abuse or maltreatment. All authors understand that my participation is voluntary and agree to participate in the above research.

Consent for publication: Written informed consent for publication was obtained from all participants.

Competing interests: The authors declare that they have no competing interests.

Funding: National Key R&D program of China (grant number 2017YFF0210204) supported this research, but it didn't involve in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Authors Contributions: All authors contributed to the study conception and design. The first draft of the manuscript was written by Yuan Zhineng and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Acknowledgements: We thank Beijing Biomarker Technologies for providing the data analysis services. We are also thankful to. The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

References

1. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat genet 25(1): 25-29.
2. Basset A, Khush RS, Braun A et al (2000) The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. PNAS 97(7): 3376-3381.
3. Beskin KV, Holcomb CD, Cammack JA et al (2018) Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions. Waste Manage 74: 213-220.
4. Bruno D, Bonelli M, Filippi FD et al (2019) The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. Appl Environ Microbiol 85(2) e01864-18.
5. Cai M, Ma S, Hu R et al (2018) Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. Environ Pollut 242:634–642.
6. Cifuentes Y, Glaeser SP, Mvie J et al (2020) The gut and feed residue microbiota changing during the rearing of Hermetia illucens larvae. Antonie Van Leeuwenhoek113(9):1323-1344.
7. De Smet J, Wynants E, Cos P et al (2018) Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Appl Environ Microbiol 84: e02722-17.
8. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43: 17-37.
9. Fu LM, Niu BF, Zhu ZW et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23): 3150-3152.
10. Furrie E (2006) A molecular revolution in the study of intestinal microflora. Gut 55(2): 141–143.
11. Gavriel S, Jurkevitch E, Gazit Y et al (2011) Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J Appl Entomol 135(7): 564-573.
12. Gurevich A, Saveliev V, Vyahhi N et al (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8): 1072-1075.
13. Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179(1):1-14.
14. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4): 669-685.
15. Hehemann JH, Correc G, Barbeyron T et al (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464(7290): 908-912.
16. Hoyt CP, Osborne GO, Mulcock AP (1971) Production of an insect sex attractant by symbiotic bacteria. Nature 230(5294): 472-473.
17. Jeon H, Park S, Choi J et al (2011) The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr Microbiol 62(5): 1390-1399.
18. Jeroen DS, Enya W, Paul C et al (2018) Microbial Community Dynamics during Rearing of Black Soldier Fly Larvae (Hermetia illucens) and Impact on Exploitation Potential[J]. Appl Environ Microbiol, 84 (9) e02722-17.
19. Jiang CL (2018) Effect of gut microbiome of black soldier fly larvae (Hermetia illucens) on the biodegradation of food waste. Dissertation, Zhejiang University.
20. Kanehisa M, Goto S, Kawashima S et al (2004) The kegg resource for deciphering the genome. Nucleic Acids Res 32(suppl 1): D277-D280.
21. Kim W, Bae S, Park K et al (2011) Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). J Asia-Pac Entomol 14(1): 11-14.
22. Klammsteiner T, Walter A, Bogataj T et al (2020) The Core Gut Microbiome of Black Soldier Fly (Hermetia illucens) Larvae Raised on Low-Bioburden Diets[J]. Front Microbiol. 11: 993.
23. Lee C-M, Lee Y-S, Seo S-H (2014) Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia illucens using metagenomic library. J Microbiol Biotechnol 24:1196–1206.
24. Lee Y-S, Seo S-H, Yoon S-H (2016) Identification of a novel alkaline amylopullulanase from a gut metagenome of Hermetia illucens. Int J Biol Macromol 82:514–521.
25. Li GN, Xia XJ, Tang WC et al (2016) Intestinal microecology associated with fluoride resistance capability of the silkworm (Bombyx mori L.). Appl Microbiol Biotechnol 100(15): 6715-6724.
26. Li Q, Zheng LY, Cai H et al (2011) From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 90(4), 1545-1548.
27. Liang X, Fu Y, Tong L et al (2014) Microbial shifts of the silkworm larval gut in response to lettuce leaf feeding. App Microbiol Biotechnol 98(8): 3769-3776.
28. Nguyen TT, Tomberlin JK, Vanlaerhoven S (2015) Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. Environ Entomol 44(2), 406-410.
29. Purschke B, Scheibelberger R, Axmann S (2017) Impact of substrate contamination with mycotoxins, heavy metals and pesticides on growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:1410–1420.
30. Park SI, Kim JW, Yoe SM (2015) Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev Comp Immunol 52(1): 98-106.

31. Powell S, Forslund K, Szklarczyk D et al (2014) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42(Database issue): 231- 239.

32. Prado S, Almeida R (2009) Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica. Entomol Exp Appl 132(1): 21-29.

33. Rehman KU, Rehman A, Cai MM et al (2017) Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J Cleaner Prod 154: 366-373.

34. Shelomi M, Wu MK, Chen SM et al (2020) Christopher Glen Burke, Microbes Associated with Black Soldier Fly (Diptera: Stratiomiidae) Degradation of Food Waste[J]. Environ Entomol, 49(2): 405–411.

35. Tanaka H, Aoyagi H, Shiina S et al (2006) Influence of the diet components on the symbiotic microorganism's community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71(6): 907-917.

36. van Huis A (2013). Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58: 563-583.

37. Wang YS, Shelomi M (2017) Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 6:91.

38. Warnecke F, Luginbuhl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169), 560-565.

39. Xie JF (2010) The screening and Identification of cellulase bacterial strain from intestines of Hermetia illueens L. Maggots. Dissertation, Huazhong Agricultural University.

40. Zhan S, Fang G, Cai M et al (2020) Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler[J]. Cell Res 30: 50–60.

41. Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences[J]. Nucleic Acids Res 38(12): 132–132.