Activation of Orphan Nuclear Constitutive Androstan Receptor Requires Subnuclear Targeting by Peroxisome Proliferator-activated Receptor γ Coactivator-1α

A POSSIBLE LINK BETWEEN XENOBIOTIC RESPONSE AND NUTRITIONAL STATE*

Received for publication, December 17, 2002, and in revised form, January 24, 2003
Published, JBC Papers in Press, January 27, 2003, DOI 10.1074/jbc.M212859200

Takuma Shiraki, Noriko Sakai, Eiko Kanaya, and Hisato Jingami‡

From the Department of Molecular Biology, Biomedical Engineering Research Institute, 6-2-3, Faruieda, Suita-City, Osaka 565-0874, Japan

In contrast to the classical nuclear receptors, the constitutive androstan receptor (CAR) is transcriptionally active in the absence of ligand. In the course of searching for the mediator of CAR activation, we found that ligand-independent activation of CAR was achieved in cooperation with the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). PGC-1α, a PGC-1α homologue, also activated CAR to less of an extent than PGC-1α. Coexpression of the ligand-binding domain of a heterodimerization partner, retinoid X receptor α, enhanced the PGC-1α-mediated activation of CAR, although it had a weak effect on the basal activity of CAR in the absence of PGC-1α. Both the N-terminal region, with the LXXLL motif, and the C-terminal region, with a serine/arginine-rich domain (RS domain), in PGC-1α were required for full activation of CAR. Pull-down experiments using recombinant proteins revealed that CAR directly interacted with both the LXXLL motif and the RS domain. Furthermore, we demonstrated that the RS domain of PGC-1α was required for CAR localization at nuclear speckles. These results indicate that PGC-1α mediates the ligand-independent activation of CAR by means of subnuclear targeting through the RS domain of PGC-1α.

Nuclear receptors comprise a large family of ligand-regulated transcription factors that mediate various physiological responses (1). Nuclear receptors are composed of highly conserved structural domains, including a DNA-binding domain (DBD) and a ligand-binding domain (LBD). In response to ligand binding, the LBDs of nuclear receptors undergo a structural rearrangement, resulting in the recruitment of transcriptional coactivators, such as CBP, cAMP-response element-bind-

* This work was supported by a grant from the New Energy and Industrial Technology Development Organization. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed. Tel.: 81-6-6872-8214; Fax: 81-6-6872-8210; E-mail: jingami@beri.or.jp.

† The abbreviations used are: DBD, DNA-binding domain; LBD, ligand-binding domain; CBP, cAMP-response element-binding protein-binding protein; PCAF, p300/CBP-associated factor; PPARγ, peroxisome proliferator-activated receptor γ; PGC-1α, PPARγ coactivator-1α; CAR, constitutive androstan receptor; FXR, pregnane X receptor; androstenol, 5α-androstan-3α-ol (androstanol) and 5α-androst-16-en-3α-ol (androstenol); RXR, retinoid X receptor; RRM, RNA recognition motif; HNF4, hepatocyte nuclear factor 4; PBS, phosphate-buffered saline.

EXPERIMENTAL PROCEDURES

Plasmids—The plasmids pCMX-FLAG-mPGC1α, pCMX-FLAG-mPGC1β, pCMX-GAL4-hERR3 (amino acids 173–483), pCMX-GAL4-hPPARγ2 (amino acids 204–506), pCMX-GAL4-hPXR (amino acids 204–506) were prepared as described (13).
110–343), pCMX-GAL4-hRXRα (amino acids 222–426), pCMX-GAL4-hRXRβ (amino acids 251–585), pCMX-GAL4-ΔDBD and UA54-h-Luc were kindly provided by Dr. A. Kakizuka (Kyoto University). The plasmids pOZ-Tip60 and pOZ-P/CAF were obtained from Dr. T. Ikura (Hiroshima University). The cDNA for human CAR LBD (amino acids 77–348) was obtained from a human liver cDNA library (OriGene Technologies, Inc.) using the primers CAR-L (5'-TAGATCT-GAATTC AGG AAA GAC ATG ATA C; underlining indicates the introduced EcoRI site) and CAR-R (5'-GGCGATTCC TCA GTC GCA GAT CTC CTG GAG C; underlining indicates the introduced BamHI site). The PCR fragment was cloned into pBluescript KS(−), and the sequence was confirmed. The EcoRI-BamHI fragment was excised and ligated to EcoRI-BamHI-digested pCMX-GAL4 DBD.

The pCMX-TFF1 plasmid was constructed by inserting an Nhel-BamHI fragment of TFF1, excised from phIIIB (obtained from Dr. D. Reinberg, Harvard University), into XbaI-BamHI-digested pGCM (obtained from Dr. K. Simon). The HินIII-KpnI fragment containing a FLAG peptide sequence was excised from pCMX-FLAG-mPGC1α and inserted into HindIII-KpnI-digested pCMX-GAL4-XbaRα, giving rise to pCMX-FLAG-XbaRα.

The pCMX-FLAG-mPGC1α plasmid was digested with Nhel and XbaI, and the large fragment was recircularized by ligation, giving rise to the PGC-1-Nhe deletion mutant. The large fragment was blunted by Klenow DNA polymerase and was recircularized by self-ligation, giving rise to the PGC-1-Nhe/Xba mutant. The pCMX-FLAG-mPGC1α plasmid was digested with XbaI, blunted by Klenow DNA polymerase, and was recircularized by self-ligation, giving rise to the PGC-1-Xba mutant. The pCMX-FLAG-mPGC1α plasmid was digested with EcoRI, and the large fragment was circularized by self-ligation, giving rise to the PGC-1-Eco mutant. The EcoRI-MfeI fragment containing the RS domain of PGC-1α was inserted into the EcoRI-digested PGC-1-Eco mutant, giving rise to the PGC-1-Mfe mutant.

The EcoRI-NolI fragment of hCAR LBD was cloned in-frame with the glutathione S-transferase (GST)-encoding sequence of pGEX6P-1 (Amer sham Biosciences). Deletion mutants of GST-fused PGC-1α were constructed in a similar manner as described above. For the S tag fusion protein, PGC-1α was digested with the indicated restriction enzymes and cloned into pET30 (Novagen).

For the enhanced green fluorescent protein (EGFP) fusion protein, the EcoRI-BamHI fragment of hCAR LBD was first cloned into pBlue script KS(−), and then the SalI-BamHI fragment was excised and cloned into pEFGP-C1 (Clontech).

Cell Culture and Transient Transfections—COS-7 cells were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 10% fetal calf serum (Hyclone Laboratories). One day before transfection, the cells were plated in 24-well plates at a density of 6 × 10^4 cells per well. The cells were transiently transfected with 1 μg of the DNA mixture by LipofectAMINE2000 (Invitrogen), according to the manufacturer’s recommendations. Typically, we used 200 ng of nuclear receptor, 400 ng of coactivator plasmid, 400 ng of reporter construct, 200 ng of pEYFP-C1 as an internal control, and pcDNA3 as a normalization plasmid. After 6 h of transfection, the medium was changed to phenol red-free Dulbecco’s modified Eagle’s medium (Invitrogen) containing 10% charcoal/dextran-treated fetal calf serum (Sigma), and the ligands were added for 24 h when necessary.

Luciferase Assay—One day after transfection, the enhanced yellow fluorescent protein (EYFP) fluorescence was measured with a microplate fluorescence reader, model FL500 (Bio-Tek Instruments) to examine the transfection efficiency. Then the cells were washed once with PBS and lysed with 150 μl of PicoGene lysis buffer (Toyo Ink Co., Ltd.). After the cell debris was removed by centrifugation, the luciferase activity was measured with PicoGene, using a luminometer, model TD-20/20 (Promega). Luciferase activities were normalized to the EYFP fluorescence value and are referred to as relative light units. All of the experiments were repeated at least three times and yielded similar results.

Pull-down Assay—GST fusion proteins were expressed in DH5α cells and were purified using glutathione-Sepharose 4B (Amer sham Biosciences). If necessary, the GST tag was removed by PreScission protease (Amer sham Biosciences). His-tagged proteins were expressed in the BL21(DE3) strain (Novagen) and then purified using a Ni²⁺-bound metal chelating column (Amer sham Biosciences). Ten μg of GST-fused and S-tagged PGC-1α proteins were each bound to glutathione-Sepharose 4B beads (Amersham Biosciences, Inc.), and the unbound proteins were washed, 20 μg of GST-free CAR proteins were added to the beads, which were incubated at 4 °C for 2 h. After the cell debris was removed by centrifugation, the luciferase activity was measured with PicoGene, using a luminometer, model TD-20/20 (Promega). Luciferase activities were normalized to the EYFP fluorescence value and are referred to as relative light units. All of the experiments were repeated at least three times and yielded similar results.

Histochemistry—COS-7 cells were seeded onto 35-mm dishes and were transfected with vectors expressing EGFP-fused CAR, FLAG-tagged RXRα, or FLAG-tagged PGC-1α. After 24 h, the cells were fixed with 5% formaldehyde for 15 min at room temperature. The cells were washed twice with PBS, permeabilized with 0.1% Nonidet P-40, and then incubated for 1 h in 3% bovine serum albumin in PBS to block nonspecific binding. FLAG-tagged proteins were visualized with anti-FLAG M2 antibody (Cosmo Bio Co. Ltd.) and rhodamine-conjugated anti-mouse IgG (Cosmo Bio Co. Ltd.). EGFP and rhodamine fluorescence were observed with a laser scanning microscope, model LSM510 (Zeiss).

![FIG. 1. Coactivation of CAR by PGC-1α. A, selectivity of various coactivators in CAR activation. COS-7 cells were coexpressed with vectors expressing the CAR LBD fused to the GAL4 DNA-binding domain (GAL4DBD) and the indicated coactivators together with a reporter construct. Transcriptional activation was analyzed by measuring luciferase activity, normalized to EYFP fluorescence as an internal control.](image-url)
RESULTS

Functional Coupling of PGC-1α with CAR—To find the mediator of CAR activation, we examined the coupling of various nuclear receptor coactivators with CAR (Fig. 1A). The CAR LBD was fused with the GAL4 DBD and was recruited to the promoter region with the GAL4 binding element, to drive the expression of the luciferase reporter gene. After transfection of the respective plasmids into COS-7 cells, transcriptional activation was measured by the luciferase activity. Without any exogenous coactivator, CAR showed the constitutive activity (white bar). Cotransfection of various coactivators with CAR revealed that PGC-1α strongly enhanced the CAR activity. PGC-1α also stimulated CAR activity to a lower extent than PGCA-1α. The other coactivators, such as Tip60, TFIIB, and P/Caf, did not stimulate the CAR activity. Next, we compared the magnitude of CAR activation by PGC-1α with that of other nuclear receptors (Fig. 1B). PGC-1α also enhanced the ERR3 and PPARγ activities in the absence of their ligands, as well as the CAR activity. A similar level of transcriptional enhancement by PGC-1α was observed with agonist-stimulated ERα. On the other hand, PGC-1α showed weak activation of PXR, although PXR has a sequence similar to that of CAR, and both receptors function in xenobiotic responses (4, 17). PGC-1α evoked weak activation of the retinoid X receptor α (RXRα) in the absence of its ligand, 9-cis-retinoic acid.

Effects of Putative Ligands on PGC-1α-mediated CAR Activation—The sex steroids androstanol and androstenol reportedly inhibit CAR activity (7, 17). In fact, we observed that androstenol (10 μM) partially inhibited the basal activity of CAR (Fig. 2A). In contrast, androstanol (10 μM) weakly activated PXR, which is consistent with the previous report (17). Next, we examined the effect of this putative ligand on the PGC-1α-mediated CAR activation and observed that androstenol moderately inhibited but did not abolish the CAR activation by the coexpression of PGC-1α (Fig. 2B). We also investigated the effect of a synthetic ligand, the antimitotic clotrimazole and observed that clotrimazole slightly inhibited but did not abolish the PGC-1α-mediated activation of CAR as well (data not shown).

Effects of Heterodimerization with RXRs on PGC-1α-mediated CAR Activation—RXRα is known to heterodimerize with CAR to enhance the constitutive activity of CAR (7, 18) and its androstanol sensitivity (7, 19). We therefore investigated the effect of heterodimerization with RXRα on the PGC-1α-mediated activation of CAR (Fig. 3). Because RXRα itself was slightly activated by PGC-1α, as shown in Fig. 1, we used the construct of RXRα LBD that was not fused with GAL4 DBD, to avoid the direct recruitment of PGC-1α by RXRα to the promoter. In fact, PGC-1α did not couple with the RXRα LBD without the GAL4 DBD (lane 2). Coexpression of the RXRα LBD had a weak effect on the basal activity of CAR but enhanced the PGC-1α-mediated CAR activation (lanes 3 and 4). The RXRα LBD had no effect on the PXR basal activity and a very weak effect on the PXR activity when coexpressed with PGC-1α (lanes 5 and 6). Although RXRα enhanced the PGC-1α-mediated activation of CAR, the coexpression of the RXRα LBD did not alter the required domains of PGC-1α for CAR activation (Fig. 4 and data not shown). Then we further characterized the PGC-1α-mediated CAR activation without RXRα.

Functional Domains within PGC-1α Required for CAR Activation—PGC-1α has a putative nuclear receptor interaction region containing the LXXLL motif, which is conserved in several nuclear receptor coactivators, the RS domain, and the RKM, the latter two of which are observed in many non-snRNP splicing factors (16). To define the functional domains of PGC-1α required for CAR activation, we made a series of deletion mutants of PGC-1α (Fig. 4A) and investigated their ability to activate CAR using the luciferase assay (Fig. 4B, panel a). Removal of the LXXLL motif (PGC-1-Nhe/Xba) de-
The vantage of ERR3, which was activated by cotransfection of mains for the enhancement was specific to CAR. We took advantage of the RS domain, which is a hatched box. The numbers at the ends of the constructs show the amino acid positions where the stop codon was introduced. B, PGC-1 deletion mutants were cotransfected with the GAL4 DBD-fused CAR (panel a) and ERR3 (panel b). The PGC-1-Nhe/Xba mutant lacking the LXXLL motif activated CAR but not ERR3. The PGC-1-Mfe mutant lacking RRM activated both CAR and ERR3. The CAR activation was dramatically reduced in the PGC-1-Xba and PGC-1-Eco mutants lacking the RS domain and RRM, although these mutants activated ERR3 to the same extent as the full length. The PGC-1-Nhe mutant activated neither CAR nor ERR3.

Next, we investigated whether the requirement of these domains for the enhancement was specific to CAR. We took advantage of ERR3, which was activated by cotransfection of PGC-1a (Fig. 1B) and investigated the required domains of PGC-1a for the activation of ERR3 (Fig. 4B, panel b). Removal of the LXXLL motif (PGC-1a-Nhe/Xba) completely abolished the ability of PGC-1a to activate ERR3, but the deletion of the RRM and RS domains (PGC-1a-Xba and PGC-1a-Eco) did not alter the ERR3 activation. A deletion mutant lacking all three regions (PGC-1a-Nhe) completely lost the ability to activate ERR3. These results indicated that both the LXXLL motif and the RS domain in PGC-1a are required for the full activation of CAR.

The Regions within PGC-1a That Interact with CAR LBD—We asked whether PGC-1a would physically interact with the CAR LBD. A, Pull-down experiments using a series of PGC-1a mutants with C-terminal deletions. Panel a, the GST-fused PGC-1a deletion mutants are schematically shown. The restriction enzyme indicated below the full-length PGC-1a was described in the legend to Fig. 4A. Panel b, PGC-1a deletion mutants, immobilized on glutathione-Sepharose beads, were resolved by SDS-PAGE and stained by CBB. Panel c, the CAR LBD was incubated with GST or GST-fused PGC-1a deletion mutants. After the beads were washed, the bound proteins were separated by SDS-PAGE. The CAR-LBD interaction with PGC-1a deletion mutants was detected by Western blotting using an anti-CAR antibody. B, Pull-down experiments using PGC-1a deletion mutants lacking the LXXLL motif. Panel a, schematic representation of the procedure to obtain the CAR-LBD complex by serial affinity purification. The His-tagged Nco I fragment of PGC-1a containing the RS domain was coexpressed and copurified with the GST-fused CAR LBD. D, schematic representation of the procedure to obtain the CAR-LBD complex by serial affinity purification. The His-tagged Nco I fragment of PGC-1a containing the RS domain was coexpressed and copurified with the GST-fused CAR LBD.
and visualized by Western blotting using an anti-CAR antibody (Fig. 5A, panel c). The CAR LBD was able to bind to PGC-1-Eco (lane 5), PGC-1-Xba (lane 6), and PGC-1-full (lane 7) but not to PGC-1-Nhe (lane 4). The difference in the CAR binding ability between PGC-1-Eco and PGC-1-Nhe indicated that the region containing the LXXLL motif was required for the association with the CAR LBD. A tighter interaction was observed in PGC-1-Xba (lane 6) and PGC-1-full (lane 7) than in PGC-1-Eco (lane 5). Although PGC-1-Xba and PGC-1-full were contaminated with many lower bands (Fig. 5A, panel b), the CAR interaction was not correlated with those lower bands. These results suggest that PGC-1α interacts with the CAR LBD through the C-terminal region in addition to the LXXLL motif.

We produced additional deletion mutants lacking the LXXLL motif, as His- and S-tagged (His-Stag) proteins, to locate other regions of PGC-1α interacting with the CAR LBD, besides the LXXLL motif region (Fig. 5B, panels a and b). The CAR LBD was mixed with the Stag-PGC-1α proteins immobilized onto S-protein beads, and the bound CAR LBD was pulled down and visualized by Western blotting using an anti-CAR antibody (Fig. 5B, panel c). The CAR LBD was able to bind to these His-Stag PGC-1α proteins (Fig. 5B, panel c), indicating that multiple regions of PGC-1α directly interact with CAR. It was notable that the NcoI-MfeI fragment, containing the RS domain, directly bound to CAR (lane 5), which possibly reflects the fact that the RS domain had a crucial effect on CAR activation (Fig. 4B, panel a).

Purification of the Recombinant CAR LBD-PGC-1α RS Domain Complex—To prove that the CAR LBD directly interacts with the RS domain of PGC-1α, we coexpressed the GST-fused CAR LBD and the His-tagged RS domain in E. coli and purified the complex of these two proteins. Serial affinity purification allowed us to isolate the CAR LBD-PGC-1α RS domain complex (Fig. 5C). The complex was eluted from glutathione-Sepharose beads by cleaving off the GST tag by PreScission protease, which ensured the direct binding of PGC-1α to the CAR LBD rather than nonspecific binding to the column (Fig. 5C). Aliquots of the eluate were subjected to SDS-PAGE and were analyzed by silver staining (Fig. 5D, panel a). The protein appeared as a 29-kDa band, corresponding to the CAR LBD. The coeluted 37-kDa protein was identified as a PGC-1α fragment by Western blotting using an anti-His antibody (Fig. 5D, panel b).

PGC-1α-dependent Arrangement of CAR Subnuclear Localization—In the course of the experiment investigating the colocalization of CAR with PGC-1α in cells, we found that CAR moved to nuclear speckles when PGC-1α was coexpressed. We used the EGFP-fused CAR LBD to determine the localization of CAR (Fig. 6A, center panel), which showed a distribution similar to that of the GAL4 DBD-fused CAR, as determined by immunofluorescence (Fig. 6A, left panel). Coexpression of RXRa did not affect the distribution of CAR (Fig. 6B). When PGC-1α was coexpressed, CAR colocalized at nuclear speckles with PGC-1α (Fig. 6C, panel a). In all of the 50 total cells counted, colocalization in nuclear speckles was observed (100%). A significant amount of CAR was still present in the cytoplasm even when PGC-1α was coexpressed, suggesting that the subnuclear distribution, but not the cytoplasm-nuclear shuttling of CAR, is important for the activity. PGC-1α expressed without CAR localized at nuclear speckles; however, a diffusely distributed signal was observed in the entire nucleus (Fig. 6C, panel a, PGC-1 alone). Coexpression of CAR with PGC-1α seemed to weaken the diffuse distribution of PGC-1α in the nucleus and to intensify the signal in nuclear speckles, suggesting that the binding of CAR and PGC-1α might cause a mutual effect on each other.

We used the deletion mutants of PGC-1α to investigate which domain of PGC-1α was responsible for the subnuclear targeting of CAR. The PGC-1-NheXba mutant lacking the LXXLL motif was able to shift the localization of CAR to the nuclear speckles (Fig. 6C, panel b). Of 44 total cells counted, 30 cells showed colocalization of CAR and PGC-1α in nuclear speckles (68%). The PGC-1-Mfe mutant lacking RRM was not able to localize in nuclear speckles by itself (Fig. 6C, panel c, PGC-1 alone). This observation is consistent with the previous report (20). Interestingly, the localization of PGC-1α in nuclear speckles was observed even in the absence of RRM but only when CAR was coexpressed (Fig. 6C, panel c). Colocalization of CAR and PGC-1α was observed in 32 of the 38 total cells counted (84%). Using the PGC-1-Xba mutant lacking both the RS domain and RRM, neither CAR nor PGC-1α localized in the nuclear speckles (Fig. 6C, panel d). The PGC-1-Eco mutant no longer showed exclusive nuclear localization, because of the absence of a nuclear localization signal (Fig. 6, C, panel e, and D). A comparison between the activity and the localization suggested that the colocalization in nuclear speckles may be a limited process for PGC-1α-mediated CAR activation.

DISCUSSION

In this study, we report that the transcriptional coactivator PGC-1α mediates the ligand-independent activation of the nuclear receptor CAR. Our results showed that the N-terminal region containing the LXXLL motif and the C-terminal region containing the RS domain participate in the interaction and the activation with CAR. Both regions were necessary for full activation. In addition, the RS domain was required for colocalization of PGC-1α in nuclear speckles with CAR. These data indicated that the ligand-independent activation of CAR by PGC-1α is achieved by subnuclear targeting through the RS domain of PGC-1α.

CAR shows constitutive activity in the absence of exogenous ligand when transfected into cell lines, such as HepG2 and CV-1 cells; however, it is reportedly inactive in primary cultured hepatocytes because of its cytoplasmic localization (21). This study gave us the idea that an additional factor may be required for the constitutive activity of CAR. In the course of searching for a coactivator coupling with CAR, we found that PGC-1α greatly enhanced the CAR activity in the absence of ligand. This activation was specific to PGC-1α, because several other coactivators we examined did not show the enhancement. This link of CAR with PGC-1α surprised us, because the liver is not the major organ of PGC-1α expression (8). However, important experimental data have recently described how PGC-1α expression in the liver is dynamically regulated by the nutritional state of the body; PGC-1α is induced by starvation or fasting and plays a critical role in gluconeogenesis (12, 22).

Recently, the crystal structures of several orphan nuclear receptors, including ultraspiracle, hepatocyte nuclear factor receptors (HNF4α and HNF4γ), retinoic acid-related orphan receptor β, ERR3, and PXR, have been solved (23–28). Notably, the crystals of the ultraspiracle, HNF4α, HNF4γ, and retinoic acid-related orphan receptor β LBDs prepared from E. coli contained lipid ligands, presumably derived from cell lipid constituents, in the hydrophobic pocket. According to these studies, one possible difference between the cell lines and the primary hepatocytes was that CAR might be activated by an unknown endogenous ligand produced by the cell lines. Alternatively, a natural ligand, which exists in the primary hepatocytes but not in the established cell lines, may repress the CAR activity, and its repression might be modulated by the interaction with PGC-1α. The CAR reverse agonist, androstenediol, did not completely inhibit the PGC-1α-mediated CAR activation, although the human CAR, which we used, is less sensitive to
CAR and the PGC-1 mediated ERR3-PGC-1 complex was so stable that it could not be dissociated by diethylstilbestrol stimulation (data not shown), supporting the idea that RXRα-RXRα heterodimer may stabilize PGC-1β. These results suggest that the RXRα-mediated CAR activation by the RXRα LBD did not change the domains of PGC-1β but did change their respective locations. Panel e, the PGC-1-Eco mutant was distributed throughout the cells, and the coexpression of CAR and the PGC-1-Eco mutant did not change their respective locations. Scale bar, 20 μm. D, schematic representation of the functional PGC-1α domains. CAR interacts with PGC-1α through multiple domains, including the LXXLL motif in the N terminus and the RS domain in the C terminus. PGC-1α by itself localizes at the nucleus by its nuclear localization signal (NLS) and at the nuclear speckles by RRM in the C terminus. The interaction with CAR induces the CAR-dependent targeting of PGC-1α to the nuclear speckles with CAR.

Because CAR forms a heterodimer with RXRα (7, 18, 19), we assessed the effect of the heterodimerization between CAR and RXRα on the PGC-1α coactivation. RXRα itself slightly coupled with PGC-1α in the absence of ligand, but the enhancement of PGC-1α-mediated CAR activation by the RXRα LBD was not additive but synergistic, suggesting that the CAR-RXRα heterodimer may stabilize PGC-1α binding to CAR rather than CAR and RXRα binding to PGC-1α independently. Using deletion mutants of PGC-1α, we observed that the coexpression of the RXRα LBD did not change the domains of PGC-1α required for CAR activation (data not shown), supporting the idea that RXRα stabilizes the binding. These results suggest that the heterodimerization with RXRα does not explain the constitutive activity of CAR. This idea does not contradict the in vivo observation that RXRα remains at the nucleus, even when CAR is inactive in the cytosol in hepatocytes (21).
PGC-1α reportedly couples with several other nuclear receptors in ligand-dependent and ligand-independent manners (8–15). PGC-1α interacts with these nuclear receptors through the LXXLL motif in its N-terminal region. In this study, we observed that CAR also directly interacted with the region containing the LXXLL motif. In addition, we found that another region containing RS domain in PGC-1α also interacted with CAR by pull-down experiments and probed the complex formation using purified proteins. The C-terminal fragment containing the RS domain and CRM1 reportedly interacts with an ERα hinge region in a ligand-independent manner (10). Taken together, the RS domain in PGC-1α may provide a novel interface to nuclear receptors. The interaction between PGC-1α and nuclear receptors through multiple domains may confer the specificity of the coactivation.

The RS domain as well as CRM1 in PGC-1α is shared with SR proteins, which are essential splicing factors that participate in mRNA processing through their RS domains and CRM1s (20, 29). PGC-1α diffusely localized at the nucleus and concentrated in the nuclear speckles, where splicing factors are colocalized (20). Nuclear speckles of splicing factors are considered to be a site for storage and assembly of splicing factors (30). Nuclear speckles are highly dynamic structures. Upon gene activation, the splicing factors, visualized by GFP fusions, are released from the nuclear speckles to transcriptionally active sites (31). In the absence of CRM1, PGC-1α did not reside in the nuclear speckles by itself; however, when CAR was coexpressed, the PGC-1α moved to nuclear speckles together with CAR, suggesting that the coexpression of CAR and PGC-1α has a mutual effect on their localization (Fig. 6D). This targeting activity was totally dependent on the RS domain and was observed even in the absence of the LXXLL motif in PGC-1α. The RS domains in the splicing factors are reportedly required for both targeting to and dissociation from nuclear speckles (32–34). These results strongly suggest that CAR binds to PGC-1α through the RS domain and rearranges the domain to acquire the ability to move into the nuclear speckles for transcriptional activation or for altering mRNA processing. It is interesting that the CAR-mediated transcriptional activation of cytochrome P450 by xenobiotics in hepatocytes is abolished by the serine/threonine-specific phosphatase inhibitor, okadaic acid (21), which is also known to prevent the movement of splicing factors into nuclear speckles (35). The involvement of the serine/threonine-specific phosphatases in regulating PGC-1α-mediated CAR activation will be investigated in the future.

Although the physiological relevance of PGC-1α-mediated CAR activation will be needed for further experiments, our data strongly suggest that PGC-1α regulates the activity of CAR in hepatocytes. Microarray data have suggested that CAR regulates several enzymes catalyzing fatty acid or carbohydrate metabolism (36). Thus, it would be intriguing to investigate the CAR activity in the liver under different nutritional conditions and the PGC-1α levels after exposure to xenobiotics, which would provide clues to the relationships between these important pathways, drug catalysis and metabolic conditions.

Acknowledgments—We thank Dr. Akira Kikuzuka and Dr. Hiroshi Ohzumi for providing many of the plasmids used in this study, sharing unpublished results, and making helpful comments. We also thank Dr. Danny Reinerb, Dr. Tsuyosi Ikura, and Dr. Kenneth Simon for providing plasmids.

REFERENCES
1. Steinmetz, A. C. U., Renaud, J.-P., and Moras, D. (2001) Annu. Rev. Biophys. Biomol. Struct. 30, 329–355
2. Glass, C. K., and Rosenfeld, M. G. (2000) Genes Dev. 14, 121–141
3. Nuclear Receptors Nomenclature Committee (1999) Cell 97, 161–163
4. Xie, W., and Evans, R. M. (2001) J. Biol. Chem. 276, 37708–37742
5. Zhang, J., Huang, W., Chua, S. S., Wei, P., and Moore, D. D. (2002) Science 298, 422–424
6. Choi, H.-S., Chang, M., Tsai, L., Simha, D., Lee, Y.-K., Seol, W., and Moore, D. D. (1997) J. Biol. Chem. 272, 23565–23571
7. Forman, B. M., Tsai, L., Choi, H.-S., Chen, J., Simha, D., Seol, W., Evans, R. M., and Moore, D. D. (1998) Nature 395, 612–615
8. Puigserver, P., Wu, Z., Graves, R., Wright, M., and Spiegelman, B. M. (1998) Cell 92, 829–839
9. Knutti, D., Kaul, A., and Krauli, A. (2000) Mol. Cell. Biol. 20, 2411–2422
10. Tcherepanova, I., Puigserver, P., Chiu, C., Donovan, J., Wu, Z., Rhee, J., Adelamn, G., Staffard, J., Kahn, C. R., Chambon, P., Newgard, C. B., and Spiegelman, B. M. (2001) Nature 413, 131–138
11. Vega, R. B., Huss, J. M., and Kelly, D. P. (2000) Mol. Cell. Biol. 20, 1868–1876
12. Yoon, J. C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelamn, G., Staffard, J., Kahn, C. R., Chambon, P., Newgard, C. B., and Spiegelman, B. M. (2001) Nature 413, 131–138
13. Huss, J. M., Kopp, R. P., and Kelly, D. P. (2002) J. Biol. Chem. 277, 40265–40274
14. Wu, Y., Delerive, P., Chin, W. W., and Burris, T. P. (2002) J. Biol. Chem. 277, 8898–8905
15. Delerive, P., Wu, Y., Burris, T. P., Chin, W. W., and Suen, C. S. (2002) J. Biol. Chem. 277, 3913–3917
16. Blencowe, B. J. (2000) Trends Biochem. Sci. 25, 106–110
17. Moore, L. B., Parks, D. J., Jones, S. A., Bledsoe, R. K., Consler, T. G., Stimmel, J. B., Goodwin, B., Liddle, C., Blanchard, S. G., Willson, T. M., Collins, J. L., and Williams, S. P. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 1549–1554
18. Rhee, J., Adelamn, G., Staffard, J., Kahn, C. R., Chambon, P., Newgard, C. B., and Spiegelman, B. M. (2001) EMBO J. 20, 5882–5891
19. Moras, D., and Renaud, J.-P. (2002) Mol. Cell 11, 1863–1876
20. Watkins, R. E., Wisely, G. B., Moore, L. B., Collins, J. L., Lambert, M. H., Renaud, J.-P. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 138–143
21. Kawamoto, T., Sueyoshi, T., Zelko, I., Moore, R., Washburn, K., and Negishi, M. (1999) Mol. Cell. Biol. 19, 6318–6322
22. Herzog, S., Long, F., Jhala, U. C., Hedrick, S., Quinn, R., Bauer, A., Rudolph, D., Schutz, G., Yoon, C., Puigserver, P., Spiegelman, B., and Montminy, M. (2001) Nature 413, 179–183
23. Clayton, G. M., Peak-Chew, S. Y., Norris, J. D., Spiegelman, B. M., and McDonnell, D. P., (2000) J. Biol. Chem. 275, 16302–16308
24. Kato, K., Morisawa, K., Izumi, M., Kadowaki, T., Nakamura, T., and Nakamura, S. (2000) J. Biol. Chem. 275, 15122–15127
25. Honkakoski, P., Zelko, I., Sueyoshi, T., and Negishi, M. (1998) Mol. Cell. Biol. 18, 5652–5658
26. Dussault, I., Lin, M., Hollister, K., Fan, M., Termini, J., Sherman, M. A., and Forman, B. M. (2000) Mol. Cell. Biol. 20, 5270–5280
27. Monosov, M., Wu, Z., Adelamn, G., Puigserver, P., Fan, M., and Spiegelman, B. M. (2000) Mol. Cell 6, 307–316
28. Spector, D. L. (1998) J. Cell Biol. 141, 377–387
29. Mayeda, A., Sreecan, G. R., Chandler, S. D., Fu, X.-D., and Krainer, A. R. (1999) Mol. Cell 4, 185–196
30. Misteli, T., and Spector, D. L. (1997) Trends Cell Biol. 7, 135–138
31. Misteli, T., Caceres, J. F., and Spector, D. L. (1997) Nature 387, 523–527
32. Li, H., and Bingham, P. M. (1991) Cell 67, 335–342
33. Hedley, M. L., Amrein, H., and Maniatis, T. (1996) Proc. Natl. Acad. Sci. U. S. A. 92, 11524–11528
34. Misteli, T., Caceres, J. F., Clement, J. Q., Krainer, A. R., Wilkinson, M. F., and Spector, D. L. (1998) J. Cell Biol. 143, 297–307
35. Spector, D. L., and Lamond, A. I. (1999) Curr. Opin. Cell Biol. 11, 372–377
36. Ueda, A., Hamadeh, H. K., Webb, H. K., Yamamoto, Y., Sueyoshi, T., Akrivi, C. A., Lehmann, J. M., and Negishi, M. (2002) Mol. Pharmacol. 61, 1–6