A comparative genomics study of 23 *Aspergillus* species from section *Flavi*

Inge Kjærbølling, Tammi Vesth, Jens C. Frisvad, Jane L. Nybo, Sebastian Theobald, Sara Kildgaard, Thomas Isbrandt Petersen, Alan Kuo, Atsushi Sato, Ellen K. Lyhne, Martin E. Kogle, Ad Wiebenga, Roland S. Kun, Ronnie J.M. Lubbers, Miia R. Mäkelä, Kerrie Barry, Mansi Chovatia, Alicia Clum, Chris Daum, Sajeet Haridas, Guifen He, Kurt LaButti, Anna Lipzen, Stephen Mondo, Jasmyn Pangilinan, Robert Riley, Asaf Salamov, Blake A. Simmons, Jon K. Magnuson, Bernard Henri ssat, Uffe H. Mortensen, Thomas O. Larsen, Ronald P. de Vries, Igor V. Grigoriev, Masayuki Machida, Scott E. Baker & Mikael R. Andersen

Section *Flavi* encompasses both harmful and beneficial *Aspergillus* species, such as *Aspergillus oryzae*, used in food fermentation and enzyme production, and *Aspergillus flavus*, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section *Flavi* and compare 31 fungal genomes including 23 *Flavi* species. We reassess their phylogenetic relationships and show that the closest relative of *A. oryzae* is not *A. flavus*, but *A. minisclerotigenes* or *A. aflatoxiformans* and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section *Flavi*. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section *Flavi*.
A spersgillus section Flavi encompasses a large number of species, many of which have a significant impact on human life: some species (e.g., A. oryzae and A. sojae) are routinely used in production of sake, miso, soy sauce, and other fermented foods. Moreover, A. oryzae is used industrially for production of enzymes and secondary metabolite production. Furthermore, A. flavus has been shown to infect immunocompromised humans, and is currently the second most common cause of human aspergillosis. In addition, the section includes less known species that, similar to their (in)famous relatives, display both beneficial and harmful properties. The benefits are found in producers of bioactive compounds (such as the anti-insectant N-alkoxy pyrrole metabolite, leporin, from A. leporis, an antibiotic with antifungal activity, avermectide, from A. avermectus) and enzyme producers (including amylases, proteases, and xylanolytic enzymes in A. tamarii and pectin-degrading enzymes in A. alliaceus). On the harmful side, plant pathogens (A. alliaceus on onion bulb, A. nomius on nuts, seeds, and grains) and toxin producers (ochratoxin from A. flavus, aflatoxin from A. sojae) are also found among these less studied Flavi species, for which no genome sequences have previously been available.

Given the importance of section Flavi, it is highly valuable to examine the full genetic potential of the section in order to assess alternative species for industrial use, combat pathogenicity, find novel bioactives, and to identify useful enzymes. Prior to this project, whole-genome sequences were only available for five species from section Flavi (A. oryzae, A. flavus, A. sojae, A. luteovirescens (formerly A. bombycis), and A. parasiticus). They all belong to a closely related clade within the section and thus cover only a small part of the diversity.

In this study, as part of the Aspergillus genus-sequencing project, we have generated genome sequences for 18 additional species plus an additional A. parasiticus isolate, permitting genomic comparisons across 23 members of section Flavi containing at least 29 species. We apply these sequences in tandem with experimental and phenotypic data on secondary metabolite production, growth characteristics, and plant polysaccharide degradation to link phenotypes to genotypes and quantify the genetic potential of the section. Our analysis is useful for (1) exploring novel enzymes and secondary metabolites, (2) optimizing food fermentation and industrial use, and (3) improving food and feed protection and control.

Results and discussion

Assessment of 19 newly sequenced section Flavi genomes. In this study, we present the whole-genome sequences of 19 species from Aspergillus section Flavi (Fig. 1b). Two of these (A. nomius and A. arachidicola) were also published by other groups in parallel to this work. We compare these 19 to previously sequenced section Flavi species (A. oryzae, A. flavus, A. sojae, and

![Fig. 1 Phylogeny and genome statistics of section Flavi plus eight other Aspergillus, Penicillium, and Neurospora species.](image-url)
A. luteovirescens3,12–14 as well as eight reference species: six from the rest of genus Aspergillus plus Neurospora crassa and Penicillium digitatum as outgroups (Fig. 1a, b).

As a first basis test, the quality of the genome assemblies was compared based on genome size, GC content, and number of predicted proteins (Fig. 1c). This showed a reasonable draft genome quality with 13 out of the 18 genomes assembled into fewer than 500 scaffolds (Fig. 1c, column 5). One cause of alarm was A. coremiiformis with 2728 scaffolds, which made us concerned with the quality of the gene content. However, the genome covers 99.78\% of the Benchmarking Universal Single-Copy Orthologs (BUSCO20), and 96\% of the expressed sequence tag (EST) clusters can be mapped to the genome. We thus conclude that the genome annotation is of a high enough quality for comparisons of the gene content despite the large number of scaffolds.

Section Flavi species generally have expanded genomes. The genome sizes of Aspergillus section Flavi are generally large compared with other representative Aspergilli (average of 37.96 Mbp vs. 31.7 Mbp (Fig. 1c)), as was previously reported for A. oryzae21. One major exception is A. coremiiformis, which has both fewer genes and a notably smaller genome, making it unique in the section.

Multigene phylogeny shows complex heritage of A. oryzae. Next we examined the evolutionary relationships in section Flavi based on a phylogeny derived from 200 genes (Fig. 1a). The support of the branching within the tree is high (100 out of 100 bootstraps in most branches). The tree confirms that section Flavi is a monophyletic group. The clades in Fig. 1a correspond to a previously reported phylogenetic tree based on the beta-tubulin gene16,11,22 and the distances between sections correspond to previous work23.

One potential error in the tree is that A. sojae is found closest to A. flavus, since A. sojae is perceived as a domesticated version of A. parasiticus. This branching indeed also has the lowest bootstrap value in the tree. The most likely explanation is that since the A. sojae gene predictions are based on the A. flavus and A. oryzae genome annotations24,25, a bias is created in the predicted genes and this bias is likely reflected in the tree. As a test, we have generated phylogenetic trees using alternative methods not dependent on gene annotation (CVTree26,27). These clearly show that A. sojae is closest to A. parasiticus, both when using whole-genome and proteome sequences (Supplementary Fig. 1 and Supplementary Fig. 2). We hence think that A. sojae should be placed next to A. parasiticus in the phylogenetic tree as the arrow indicated in Fig. 1a.

Furthermore, A. oryzae, perceived as a domesticated version of A. flavus19,28–30, is not directly next to it in the tree. However, it has previously been suggested that A. oryzae descends from an ancestor that was the ancestor of A. minisclerotigenes or A. aflatoxiformans31. The phylogeny (Fig. 1a, zoom) supports this suggestion, showing that A. minisclerotigenes and A. aflatoxiformans are closer relatives of A. oryzae than A. flavus.

Analysis of shared proteins confirms high genetic diversity. In order to examine core features shared by all section Flavi species, clades, as well as features of individual species, we made an analysis of shared homologous genes within and across species16, and sorted these into homologous protein families (Fig. 2). This allowed the identification of (1) The core genome—protein families with at least one member in all compared species. This is expected to cover essential proteins. (2) Section-specific and clade-specific genes—genes that have homologs in all members of a clade/section, but not with any other species. (3) Species-specific genes—genes without homologs in any other species in the comparison.

The core genome of all 31 species in this dataset is 2082 protein families. For the 29 Aspergillus species this number is 3853, and for section Flavi species alone constitutes 4903 protein families. Thus, more than half the genome of the section Flavi species varies across the species.

Examining the clade-specific protein families, only very few (27–54) are found (Fig. 2a), which is low compared with section Nigri examined previously16. As sections Nigri and Flavi are roughly equally species-rich, this could indicate that the species in section Flavi are more distinct. This is supported by the fact that...
the number of species-specific genes are very high (166–2181), where we see 166 (A. sojae) to be an artificially low number, due to the gene calling in this genome being based on A. flavus and A. oryzae genomes.

Species-specific genes often encode regulation and P450s. We wanted to see whether the species-specific genes could be linked to known Flavi functions such as food fermentation and plant and human pathogenicity. In order to do this, we examined predicted functions of the species-specific genes using InterPro, GO and KOG annotations. The portion with a functional annotation was low; 20, 12, and 9% for InterPro, GO, and KOG, respectively; in total 21% had an annotation (Supplementary Figs. 3–5). This is a very high—but not unusual—percentage of unidentifiable functions.

We will focus on InterPro since it covers more genes: the most common InterPro functions include transcription factors, protein kinases, transporters, and P450s (Supplementary Fig. 3), which are also significantly overrepresented. While these traits cannot directly be linked to food fermentation and pathogenicity, regulation is involved in adaptation and P450s play roles in both substrate degradation and production of bioactive compounds, both of which are relevant for fungal pathogenicity.

Species genes are over-represented in sub-telomeric regions. It has been shown that the sub-telomeric sequences are extensively rearranged regions in A. nidulans, A. oryzae, and A. fumigatus. This is also seen in mammals, nematodes, and yeasts. Previous studies showed that sub-telomeric regions have a bias for unique, diverged, or missing genes. Another study has shown secondary metabolite gene clusters (SMGCs) to be enriched in sub-telomeric regions in A. nidulans and A. fumigatus.

We therefore examined the gene density and location of species-specific genes, secondary metabolite clusters, and core genome, by using the telomere-to-telomere A. oryzae genome as a reference in order to assess the potential overrepresentation of these genes in the sub-telomeric regions (Fig. 3).

Both visual inspection and Fisher’s exact test confirmed that both species-specific (p-value = 7.266e–07) and SMGCs (p-value < 2.2e–16) are enriched toward the sub-telomeric regions (100 kbp from the chromosomal ends), where core genes are found less often at the sub-telomeric regions. The fact that the species-specific genes are not randomly distributed argues against that they are simply annotation or gene modeling errors, therefore indicating that they are, indeed, legitimate genes. The distribution of the species-specific genes suggests that new genes are more frequently successfully incorporated into the sub-telomeric regions than other locations. Whether this is the result of a selection for the sub-telomeric region, or a counterselection against other regions, or both, the data do not reveal.

Synten analysis reveals islands of highly variable gene content. Syntenic and non-syntenic regions are another factor to consider when analyzing genome location. It has been shown that the A. oryzae genome has a mosaic pattern of syntenic and

Fig. 3 Location of species unique and secondary metabolite genes in the A. oryzae genome. The gray bars represent the A. oryzae genome. Above the chromosome the species-specific (turquoise) and secondary metabolite genes (orange) are mapped to the genome, each line represents a gene. The curve shows the percentage of the density calculated from the total number of genes within 30 kbp in steps of 5 kb. Below the genome, the core genes are mapped by the gray dots and the density of the total number of genes is shown by the black graph (with a window of 30 kbp).
non-syntenic regions relative to distantly related Aspergilli\(^1,2\). We examined the synteny across section \textit{Flavi} and into \textit{A. nidulans} and \textit{A. fumigatus} using \textit{A. oryzae} RIB40 as reference (Table 1). This analysis supports our earlier finding that \textit{A. oryzae} is closely related to \textit{A. aflatoxicosm} than \textit{A. flavus}.

An overview of shared syntenic genes are illustrated in Supplementary Fig. 6. In general, there are fewer regions of synteny toward the telomeric ends as previously seen\(^12\) in a comparison of \textit{A. nidulans}, \textit{A. fumigatus}, and \textit{A. oryzae}. We further observed that chromosomes 1 and 2 have a very high degree of conserved synteny, while chromosomes 6 and 8 have a much lower conservation of synteny.

We find dense islands of non-syntenic genes in non-sub-telomeric regions on chromosomes 4, 6, and 8. These could be caused by horizontal gene transfer (HGT), gene shuffling, or de novo gene formation. We investigated for HGTs using BLASTp to examine the best hits in the NCBI nonredundant database. Recent HGTs are expected to have high sequence identity with the source genome. We investigated for HGTs using BLASTp to examine the best hits in the NCBI nonredundant database.

Table 1 Percentage of genome with conserved synteny relative to \textit{A. oryzae}.

Species	# Syntenic genes	% of \textit{A. oryzae}
A. parasiticus	8199	68.15
A. transmontanensis	8238	68.48
A. arachidicola	8817	73.29
A. novoparaticus	8102	67.35
A. sergii	8091	67.26
A. flavi	8686	72.20
A. aflatoxicosm	9094	75.59
A. oryzae	–	–
A. minisclerotigenes	8498	70.64
A. caelatus	7411	61.60
A. pseudocaelatus	7503	62.37
A. pseudotomarii	7494	62.29
A. tamarii	7471	62.10
A. pseudonominus	7179	59.68
A. nomius	7269	60.42
A. luteovirescens	7863	65.36
A. bertholletius	6801	56.53
A. allius	6021	50.05
A. albiertertis	5998	49.86
A. cereumiformis	5425	45.10
A. leporis	5800	48.21
A. avenaceus	5351	44.48
A. nidulans	4272	35.51
A. fumigatus	4876	40.53

Variable CAZyme content does not reflect the ability to degrade plant biomass.

To evaluate the actual carbon utilization ability across section \textit{Flavi}, we performed growth profiling of 31 species (29 Aspergilli, including 23 species from section \textit{Flavi}) on 35 plant biomass-related substrates (Fig. 5, Supplementary Data 1) and compared this with the CAZyme gene content prediction related to plant biomass degradation (Supplementary Data 2). In a previous study, the variation in growth between distant related Aspergilli could be linked to differences in CAZyme gene content\(^53\), but this was not the case for closer related species from \textit{Aspergillus} section \textit{Nigri}\(^54\).

Glucose resulted in the best growth of all monosaccharides for all species and was therefore used as an internal reference for growth (Supplementary Fig. 7). Growth on other carbon sources was compared with growth on D-glucose and this relative difference was compared between the species. Growth on monosaccharides was largely similar between the species of section \textit{Flavi} (Fig. 5, Supplementary Fig. 7, and Supplementary Data 1).

The CAZyme sets related to plant biomass degradation are overall highly similar for section \textit{Flavi} (Fig. 5), with the exception of \textit{A. coremiiformis}, which has a strongly reduced gene set. This is mainly due to reduction in glycoside hydrolation families, but also a number of families related to pectin, xylan, and xyloglucan degradation. Surprisingly, this species showed better relative growth on xylan than most other species, while the growth on other polysaccharides was mainly similar to that of section \textit{Flavi}. Thus, the reduced gene set has not reduced its ability to degrade plant biomass. This could be similar to the case of \textit{T. reesei}, which also has a reduced CAZyme gene set, but produces the corresponding enzymes at very high levels\(^39\). However, the origin of this approach is likely very different as its CAZyme content was shaped by loss and then massive HGT gain of plant cell wall degrading enzymes\(^57\), while no indications for this are present for \textit{A. coremiiformis}.

Hydrolitic differences are clade-specific within section \textit{Flavi} (Supplementary Data 2). The \textit{A. togoensis} clade has a reduced set of xylanolytic and xyloglucanolytic genes, but this is not reflected in the growth. In contrast, GH115 (alpha-glucuronidase) genes are expanded in clades \textit{A. flavi}, \textit{A. tamarii}, and \textit{A. nomius} (xylanolytic enzymes or activity have been reported from several species from these clades\(^49–51,53,58–62\)). GH62 (arabinoxylan arabinoxyranohydrolyase) was expanded in clade \textit{A. leporis}, and clades \textit{A. leporis} and \textit{A. avenaceus} were the only clades with CE15 (glucuronoyl esterases), which were also found in \textit{Aspergillus} species outside section \textit{Flavi}.

The galactomannan degrading ability was nearly fully conserved in section \textit{Flavi}, but interestingly growth on guar gum that consists mainly of galactomannan was variable between the clades of section \textit{Flavi} (Fig. 4b), showing again a variation in gene content in the section.

Section \textit{Flavi} is a rich source of carbohydrate-active enzymes.

Carbohydrate-Active enZymes (CAZymes) are essential for what carbon sources a species can degrade and utilize. Within section \textit{Flavi} the CAZymes/carbon utilization is mainly described for \textit{A. oryzae}\(^1,2,40\) and to a lesser extent for \textit{A. flavus}\(^41–45\) and \textit{A. sojae}\(^46,47\), while only incidental studies have been performed with other species of this group\(^48–54\), often describing production or characterization of a certain CAZyme activity or protein, respectively.

We used the CAZy database to predict the CAZyme content in the genomes of the section (Fig. 4). A total of 13,759 CAZymes were predicted for the 23 \textit{Flavi} species (average 598/species). This is quite rich compared with included reference Aspergilli (508/ species).

It is clear from this analysis that there is a distinct difference between the clades of section \textit{Flavi} (Fig. 4b), showing again a variation in gene content in the section.
Variation was observed in the number of pectinolytic genes. The most pronounced differences were the absence of PL11 (rhamnogalacturonan lyase) genes from most species of section Flavi, and the expansion of GH78 (alpha-rhamnosidase) in clades A. flavus and A. tamarrii. However, these differences and the smaller ones in other families did not result in large variation in growth on pectin.

More obvious differences were present during growth on cellobiose, lactose, and lignin. Most species grew poorly on cellobiose despite similar numbers of beta-glucosidase-encoding genes in most species (Supplementary Data 2). Similarly, only A. arachidicola, and to a lesser extent A. albertensis grew well on lactose, while the number of beta-galactosidases in these species is similar to that of the other species. Most interesting was the finding that A. albertensis grew as well on lignin as on D-glucose, suggesting potential applications in biofuel production.

In summary, CAZyme potential in section Flavi is largely conserved (with the exception of A. coremiiformis) with some variations in copy numbers, but the genomic potential and variations are not necessarily reflected in the growth. It is therefore likely that as suggested previously, the observed differences are largely at the regulatory level.

CAZyme family GH28 is inflated in clade A. flavus. We were particularly interested in GH28 CAZymes, as they are important for food fermentation and the quality of the final fermented product. A phylogenetic tree was created of all members of GH28 from section Flavi (Supplementary Fig. 8). The tree consists of 429 proteins, on average 18.7 per species.

Within the tree there are different groupings. Five groups have members from all 23 species, nine groups are missing one to four species (usually A. coremiiformis and A. caelatus), and two groups are specific to the A. flavus, A. tamarrii, and A. nomius clades. Last there are eight groups containing 2–13 species, which do not follow the phylogeny—suggesting these to be sources of GH28 variation.

In general, species from clade A. flavus have a high number of GH28 members. A. sojae is known to have a high number of GH28, which is also seen here with 24 members; however, A. sergii has an even higher number with 25 members. It could be interesting to investigate if this could be exploited either by using A. sergii as a new species in food fermentation and/or as a source of novel enzymes.

Analysis of secondary metabolism. The genus Aspergillus is known to produce a large number of SMs and the number of
predicted SMGCs is even higher. The majority of predicted SMGCs are uncharacterized and therefore have the potential to produce a diversity of novel, bioactive compounds. We examined the diversity and potential for SM production in section Flavi, both quantitatively in terms of numbers of clusters, and qualitatively in terms of the compounds these clusters could potentially produce.

Secondary metabolism in section Flavi is diverse and prolific.
To quantitatively assess the potential for SM production, SMGCs were predicted using a SMURF-like prediction tool for all species except N. crassa and A. sojae, since these were sequenced by other methods and with dissimilar gene calling methods (Fig. 6c). Within the 28 Aspergillus species, there is a total of 1972 predicted SMGCs and for section Flavi genomes, the total is 1606 SMGCs (73/species). This is more than 15 extra per species compared with the very prolific Penicillium genus.

We wanted to examine how unique the SMGCs are, and thus constructed families of SMGCs (Supplementary Data 3). For the entire dataset, we could collapse it into 477 SMGC families, and for section Flavi 308 SMGC families. Out of these, 150 SMGC clusters are only found in one section Flavi species (Fig. 6a), showing a large number of unique clusters in each species (6.8 unique SMGCs/species). Compared with Aspergillus section Nigri, the number of clusters per species in this study is slightly lower, but the number of members in each SMGC family is also lower, demonstrating greater diversity in secondary metabolism in section Flavi compared with section Nigri.

Dereplicating secondary metabolism predicts toxin producers.
To assess the potential for SM production qualitatively, we used a pipeline of “genetic dereplication” where predicted clusters are associated with verified characterized clusters (from the MIBiG database) in a guilt-by-association method. Based on this, 20 cluster families were coupled to a compound family (Fig. 6b). Other clusters were found in all or nearly all Flavi genomes, e.g., those similar to the naphthopyrone, nidulanin A, and avarin clusters. Most families generally follow the phylogenetic groups, suggesting a loss-based distribution pattern, but some, like the SMGC families similar to the asperfurane clusters, did not follow the phylogeny. Moreover, potential producers of known toxins such as aflatoxin and aspirochlorine were identified (Fig. 6b).

Combination of data and analysis links a compound to a cluster.
Extending from the known SMGC clusters, we were interested in linking compounds and clusters based on the presence/absence pattern of produced compounds and predicted clusters. We therefore created a heatmap of all the cluster families found in at least five species, added the predicted compound families from the MIBiG dereplication, in addition to manually interested in linking compounds and clusters based on the presence/absence pattern of produced compounds and predicted clusters. We therefore created a heatmap of all the cluster families found in at least five species, added the predicted compound families from the MIBiG dereplication, in addition to manually curated compound families from a literature survey (Supplementary Fig. 9). In addition to this, we measured the SM production of the Flavi species (Supplementary Data 4).

Of particular interest was miyakamides. They are originally isolated from an A. flavus isolate and shown to have antibiotic
Backbone c
function are likely candidates for miyakamide biosynthesis.
identi function are widely conserved. We thus propose that the (Synteny plot in Supplementary Fig. 10B). The synteny plot genes, the difference is likely caused by SMGC prediction errors (Supplementary Fig. 10B). The size of the predicted cluster is 1 sequence similarity is conserved before the start of the gene A domains is most likely caused by annotation error since the (Supplementary Fig. 10A). Searching for cluster families with members in all the miyakamide- properties77, but the biosynthetic gene cluster is not known. Our chemical analysis showed production in A. sojae, A. nomius, A. parasiticus, A. novoparasiticus, and A. transmontanensis. We performed retro-biosynthesis from the chemical structure and predicted that the biosynthetic gene cluster should contain a nonribosomal peptide synthetase (NRPS) with 2 adenylation domains from NRPS and PKS backbones, NRPS: non-ribosomal peptide synthetase, NRPS-like: non-ribosomal peptide synthetase like, containing at least two PKS-specific domains and another domain or one NRPS A domain in combination with NAD binding 4 domain or short-chain dehydrogenase, PKS: polyketide synthase, PKS-like: polyketide synthase like, containing at least two PKS-specific domains and another domain, TC: terpene cyclase.

Fig. 6 Dereplication of known compounds and predicted secondary metabolite backbone genes per species. a A dendrogram representing the phylogenetic relationship between the species. The black boxes in the nodes represent the secondary metabolite gene cluster (SMGC) families shared among the species branching from that node. If there is no black box there are zero clusters shared. The gray boxes at the tips show the number of unique SMGC families only found in one species for the Flavi section. b Matrix indicating the presence and absence of SMGC families coupled to known clusters from the MIBiG database66 for each species. Overview of the cluster family for aflatoxin can be found in Supplementary Figure 11. c Predicted secondary metabolite genes for each species divided by the backbone enzyme. DMAT: dimethylallyltransferase (prenyl transferases), HYBRID: a backbone gene containing domains from NRPS and PKS backbones, NRPS: non-ribosomal peptide synthetase, NRPS-like: non-ribosomal peptide synthetase like, containing at least two NRPS-specific domains and another domain or one NRPS A domain in combination with NAD binding 4 domain or short-chain dehydrogenase, PKS: polyketide synthase, PKS-like: polyketide synthase like, containing at least two PKS-specific domains and another domain, TC: terpene cyclase.

The aflatoxin biosynthetic gene cluster is highly conserved. Perhaps the best known secondary metabolite in section Flavi is the highly carcinogenic aflatoxin. Aflatoxins are known to be produced by many section Flavi species (A. arachidicola, A. luteovirescens, A. flavus, A. minisclerotigenes, A. nomius, A. aflatoxiformans, A. pseudocaelatus, A. pseudomomys, and A. pseudotamarii, and some A. oryzae isolates)4,10. The dereplication analysis (Fig. 6b) identified a SMGC family predicted to be involved in sterigmatocystin and aflatoxin production, which is all the species in the A. flavus, A. nomius, and A. tamarii clades except A. tamarii. A syntax plot of the SMGC family (Supplementary Fig. 11) shows that the cluster is extremely well conserved with no rearrangements and a high alignment identity for the aflatoxin genes. Only A. caelatus has a truncated form with only the aflB, aflC, and aflD genes and A. tamarii seems to have a complete loss of the cluster. Interestingly, most of the predicted clusters did not include the aflP and aflQ genes that are responsible for the last step of aflatoxin biosynthesis. We searched the genomes for aflP (Supplementary Fig. 12), and found it in all genomes, but with different start sites and extra sequence in the middle of the proteins. RNA-seq data support these models (Supplementary Fig. 13) and suggest errors in the A. flavus gene models. Similarly, the aflQ gene is found in all the other species, but 5–10 genes away from the predicted
clusters. Thus, detailed analysis shows that all these species have the genes required for aflatoxin biosynthesis.

Conclusion
We de novo sequenced the genomes of species representing various parts of the Flavi section, which allowed a section-wide comparison illustrating the similarities and diversity within the section. We show that A. oryzae is closely related to A. minisclerotigenes or A. aflatoxiformans based on a 200-gene phylogeny. Members of the Flavi section have a large genome size compared with other Aspergillus. The large genome is reflected in the high number of SMGCs and CAZymes that could be a source of novel compounds and enzymes in the future.

We have shown that the aflatoxin cluster is highly conserved both concerning identity and synteny in the A. flavus, A. nomius clade, and partly in the A. tamarii clade where the clade is partly lost in A. caelatus and completely lost in A. tamarii.

The number of species unique proteins is varying, but even with the very closely related A. flavus clade, most species have above 700 unique proteins illustrating the high diversity. Localisation hot spots and a few dense non-syntenic blocks that could represent rearrangement hot spots.

Overall the data and analysis presented here provide the fungal research community with a substantial resource, and set the stage for future research in the field.

Methods

Purification of DNA and RNA. For all sequences generated for this study (Supplementary Table 1), spores were harvested from shake flask containing 200 ml of complex medium, CYA, CYAox, or CY20 depending on the strain (see Materials and Methods). With 2-mercaptoethanol was added to the samples, vortexed, and spun down. The isolated RNA (mRNA) was purified from shake flask containing 200 ml of complex medium, CYA, MEOx, or CY20 depending on the strain (see Supplementary Table 1) cultivated for 5–10 days at 30 °C. Biomass was isolated by phenol extraction (see ref.78 and below) and checked for quality and concentration using a NanoDrop (BioNordika). RNA isolation was performed using the Qiagen RNeasy Mini Plus Kit (Qiagen) following the method described in our previous work16.

The Qiagen RNeasy Plant Mini Kit was used according to the manufacturer’s instructions. A sample of frozen biomass was subsequently used for RNA purification. First, hyphae were transferred to a 2 ml microtube together with a 5-mm steel bead (Qiagen), placed in liquid nitrogen, then lysed using the Qiagen TissueLyser LT at 45 Hz for 50 s. Then the Qiagen RNeasy Plant Mini Plus Kit was used to isolate RNA. RLT Plus buffer (with 2-mercaptoethanol) was added to the samples, vortexed, and spun down. The lysate was then used in step 4 in the instructions provided by the manufacturer, and the protocol was followed from this step. For genomic DNA, a protocol based on Fulwy et al.79 was used. The same procedure was used previously16,80.

DNA and RNA sequencing and assembly. All genomes and transcriptomes in this study were sequenced with Illumina. For all genomic Illumina libraries, 100 ng of DNA was sheared to 270-bp fragments using the Covaris LE220 (Covaris) and size selected using SPRI beads (Beckman Coulter). The fragments were treated with end repair and A tailing and ligated to Illumina-compatible adapters (IDT) using the KAPA-Illumina library creation kit (KAPA Biosystems).

For transcriptomes, stranded complementary DNA libraries were generated using the Illumina TruSeq Stranded Total RNA LT Sample Prep Kit. Messenger RNA (mRNA) was purified from 1 μg of total RNA using magnetic beads containing poly(T) oligos. mRNA was fragmented using divalent cations and high temperature. The fragmented RNA was reverse transcribed using random hexamers and SSII (Invitrogen) followed by second-strand synthesis. The fragmented complementary DNA was treated with end repair, A tailing, adapter ligation, and ten cycles of PCR.

The prepared libraries were quantified using KAPA Biosystems’ next-generation sequencing library quantitative PCR kit and run on a Roche LightCycler 480 real-time PCR instrument. The quantified libraries were then multiplexed with other libraries, and library pools were prepared for sequencing on the Illumina HiSeq sequencing platform using a TruSeq paired-end cluster kit, v3, and Illumina’s cBot instrument to generate clustered flow cells for sequencing. Sequencing of the flow cells was performed on the Illumina HiSeq2000 sequencer using a TruSeq SBS sequencing kit, v3, following a 2 x 150 indexed run recipe.

After sequencing, the genomic FASTQ files were quality control-filtered to remove artifacts/process contamination and assembled using Velvet54. The resulting assemblies were used to create in silico long mate-pair libraries with insert sizes of 3000 ± 90 bp, which were then assembled with the target FASTQ using AllPaths-LG release version R4771055. Illumina transcriptome reads were assembled into consensus sequences using Rnnotator v3.2.256.

Genome annotation. All genomes were annotated using the JGI annotation pipeline81,82 as previously described16,80. Genome assembly and annotations are available at the JGI fungal genome portal MycoCosm (see URLs) and have been deposited in the DNA Data Bank of Japan (DDBJ)/European Molecular Biology Laboratory (EMBL)/GenBank under the accession numbers provided in the Data Availability Statement.

Homologous protein families. All predicted proteins from the 31 genomes used in this study were aligned using the BLASTp function from the BLAST + suite version 2.2.27 with an (e-value < 1e-10). The resulting 961 whole-genome BLAST tables were analyzed to identify homologous proteins and group them into families as described previously16.

Protein families containing at least one protein from all species were defined as core families, while species-unique families were defined as families containing one or more protein(s) from only one species.

Functional annotation. Functional domains were identified in all the proteins using InterPro32, GO34, and KOG35.

Phylogeny. Monocore genes were identified as protein families having exactly one member in each species. Each protein family was aligned using MUSCLE version 3.8.31 (default settings) and then trimmed using gblocks version 0.91b (–t –b –d = 5 –b = h). Following 200 of these monocore sequences (with length between 150 and 1000 AA) were selected randomly and concatenated and used to construct a phylogenetic tree using RAxML version 8.2.8 using the PROT GAMMAWAG substitution model and 1000 bootstraps.

Prediction of CAZymes. CAZymes were predicted using the CAZymes database (CAZy, www.cazy.org)83,84 and the method described in our previous work16. Each Aspergillus protein model was compared using BLASTp with proteins listed in the CAZymes database (CAZy)83,84. Models with over 50% identity over the entire length of an entry in CAZy were directly assigned to the same family (or subfamily when relevant). Proteins with less than 50% identity to a protein in CAZy were all considered as new, and conserved features, such as the catalytic residues, were searched whenever known. Because 30% sequence identity results in widely different e-values (from nonsignificant to highly significant), for CAZy family assignments, we examined sequence conservation (percentage identity over CAZy domain length). Sequence alignments with isolated functional domains were performed in the case of multimodular CAZymes. The same methods were used for Penicillium digitatum and Neurospora crassa.

Prediction of secondary metabolite gene clusters. Secondary metabolite gene clusters (SMGCs) and SMGC families were predicted based on the SMURF algorithm94 and the method described in our previous work16. For the prediction of SMGCs, we developed a command-line Python script roughly following the SMURF algorithm: According to SMURF the following genes were predicted as “backbone” genes:

Genes that have at least three PFAM domains—ketocetyl-synt (PF00109), Ketocetyl-synt-C (PF02801), and Acyl_transf_1 (PF00698)—were predicted as “PKS” genes.

Genes that have ketoacyl-synt (PF00109) and Ketocetyl-synt-C (PF02801) but not Acyl_transf_1 (PF00698) were predicted as “PKS-like” genes.

Genes that have at least three domains AMP-binding (PF00501), PP-binding (PF00550), and Condensation (PF00668) were predicted as “NRPS” genes.

Genes that have an AMP-binding (PF00501) domain and at least one of the domains PP-binding (PF00550), Condensation (PF00668), NAD_binding_4 (PF07993), and Epimerase (PF01370) were predicted as “NRPS-like” genes.

Genes that have both “PKS” and “NRPS” domains were predicted as “Hybrid” genes.

Genes that have a Trp_DMAT domain were predicted as “DMAT” genes.

Genes that have Terpene_synth (PF01397) or Terpene_synth-C (PF03936) domains were predicted as “Terpene cyclase/synthase” genes.
Secondary metabolite-specific PFAM domains were taken from Supplementary Data 1 of the SMURF paper. As input, the program takes genomic coordinates and the annotated PFAM domains of the predicted genes. Based on the multidomain PFAM composition of identified “backbone” genes, it can predict seven types of secondary metabolite clusters: (1) polyketide synthases (PKSs), (2) PKS-like, (3) non-ribosomal peptide synthetases (NRPSs), (4) NRPS-like, (5) hybrid PKS–NRPS, (6) prenyltransferases (DMATS), and (7) seven helicases (Tcs). Besides backbone genes, PFAM domains, which are enriched in experimentally identified secondary metabolite clusters (secondary metabolite-specific PFAMs), were used in determining the borders of gene clusters. The maximum allowed size of intergenic regions in a cluster was set to 3 kb, and each predicted cluster was allowed to have up to six genes without secondary metabolite-specific domains.

SMGC families were created based on the SMURF prediction comparisons using BLASTp (BLAST + suite version 2.2.27, e-value ≤ 1 × 10–10). Subsequently, a score based on BLASTp identity and shared proteins was created to determine the similarity between gene families as depicted in the formula below. Using these scores, we created a weighted network of SMGC clusters and used a random walk community detection algorithm (R version 3.3.2, igraph_1.0.166) to determine families of SMGC clusters. Finally, we ran another round of random walk clustering on the communities that contained more members than species in the analysis (ptailoring/ pbackbone = sum of percentage BLAST alignment of tailoring/backbone enzymes, respectively; ttailoring/pbackbone = number of tailoring/backbone enzymes with significant hits, respectively; ttailoring/pbackbone = total number of tailoring/backbone enzymes):

\[
\text{score} = \sum_{i} p_{\text{tailoring},i} + \sum_{i} p_{\text{backbone},i}
\]

To create a cluster similarity score, a combined score of tailoring and backbone enzymes was created. The sum of the BLASTp percent identity (ptailoring/pbackbone) of all hits for tailoring enzymes between two clusters was divided by the maximum amount of tailoring enzyme (ttailoring/pbackbone) and multiplied by 0.35. Then the score for the backbone enzymes was calculated in the same manner but multiplied by 0.65 to give more weight to the backbone enzymes. The scores were added to create an overall cluster similarity score:

\[
\text{avg} \left(\frac{p_{\text{tailoring}}}{p_{\text{backbone}}} \right) \times 0.35 + \frac{\text{avg}(p_{\text{tailoring}})}{\text{avg}(p_{\text{backbone}})} \times 0.65
\]

Annotation of SMGC families using MIBiG (genetic dereplication). SMGC families were annotated based on the MIBiG database. Known gene clusters were coupled to SMGC families, making it possible to predict the compounds or derivatives thereof a species can potentially produce. Cluster families containing one cluster highly similar to a known compound cluster are labeled after the known compound.

Genome synteny analysis. Orthologs were defined as a pair of genes found between two genomes from different species by bidirectional best hits using BLASTp with e-value < 1 × 10–10. When two genes within 10 kb on the first genome have corresponding orthologs within 10 kb on the second genome, the region between the two genes was defined as a syntenic block. The distance between the two genes was calculated by the formula, [PC1 – PC2] – 1/2 (LN1 + LN2), where PCN and LNN are nucleotide position of the center and nucleotide length of gene “n” (n = 1 or 2), respectively.

Analysis of chromosomal localization. For visualization of chromosome, chromosomal location, and gene density the R package karyoPlotR was used.

Secondary metabolite gene cluster analysis and visualization. For visualization of cluster synteny and similarity EasyFig was used. The parameters minimum length and minimum identity were set to 50 bp and 50%, respectively.

Profiling of growth on different carbon sources. The species were grown on 35 different media plates using the same method as first described by de Vries et al. All strains were grown on MM97 containing monosaccharides/oligosaccharides, polysaccharides, and crude substrates at 25 mM, 1%, and 3% concentration, respectively.

Chemical analysis of secondary metabolism. The section Flavi strains were cultivated as three-point cultures on CYA and YES media for 7 days in the dark at 30 °C; subsequently three plugs (6 mm inner diameter) were taken across the colonies corresponding orthologs within 10 kb on the second genome, to recognize the dipeptide backbone.

Ultra-high-performance liquid chromatography-diode array detection-trap quadrupole-time-of-flight mass spectrometry (UHPLC–DAD–QTOFMS) was performed on an Agilent Infinity 1290 UHPLC system equipped with a diode array detector. Separation was obtained on a 250 × 2.1 mm i.d., 2.7 µm, Poroshell 120 Phenyl Hetyl column (Agilent Technologies, Santa Clara, CA) held at 60 °C. The sample, 1 µL, was eluted with a flow rate of 0.35 mL min–1 using A: a linear gradient 10% acetonitrile in Milli-Q water buffered with 20 mM formic acid increased to 100% in 15 min, staying there for 2 min before returning to 10% in 0.1 min, held for 3 min before the following run.

Data availability

All genomes used in the study are available from Joint Genome Institute fungal genome portal MycoCosm (http://ncpsb.jgi.doe.gov/tang). All new genomes published in the study have been deposited in GenBank under the following NCBI accession numbers: Aspergillus niger CBS 5188—BioProject: PRJNA333900, Accession No: SWBD00000000; Aspergillus minisclerotigenes CBS 117635—BioProject: PRJNA333902, Accession No: SWDB00000000; Aspergillus parasiticus CBS 117618—BioProject: PRJNA333906, Accession No: SWCZ00000000; Aspergillus novopasificus CBS 126849—BioProject: PRJNA333905, Accession No: SWDA00000000; Aspergillus leporus CBS 151.66—BioProject: PRJNA333901, Accession No: SWBU00000000; Aspergillus alicatius CBS 536.65—BioProject: PRJNA334014, Accession No: SWAS00000000; Aspergillus parviscariger CBS 121.62—BioProject: PRJNA333907, Accession No: SWAT00000000; Aspergillus pseudotamarii CBS 117625—BioProject: PRJNA333910, Accession No: STFF00000000; Aspergillus fumigatus CBS 18842—BioProject: PRJNA333897, Accession No: STFF00000000; Aspergillus tamarii CBS 117626—BioProject: PRJNA333912, Accession No: STFF00000000; Aspergillus transmontanensis CBS 130015—BioProject: PRJNA333913, Accession No: STFK00000000; Aspergillus sorgeniae CBS 130017—BioProject: PRJNA333911, Accession No: STFL00000000; Aspergillus arachidicolica CBS 117612—BioProject: PRJNA333896, Accession No: STFO00000000; Aspergillus ochraceus CBS 553.37—BioProject: PRJNA333890, Accession No: STFN00000000; Aspergillus caelatus CBS 763.97—BioProject: PRJNA333899, Accession No: STFF00000000; Aspergillus berlesei CBS 29228—BioProject: PRJNA333898, Accession No: STFP00000000; Aspergillus albertensis CBS 14317—BioProject: PRJNA333895, Accession No: STFP00000000; Aspergillus pseudomycos CBS 119388—BioProject: PRJNA333909, Accession No: STFR00000000; Aspergillus pambocaulus CBS 117616—BioProject: PRJNA333998, Accession No: STFT00000000.

Received: 16 April 2019; Accepted: 2 December 2019; Published online: 27 February 2020

References

1. Machida, M., Yamada, O. & Gomi, K. Genomics of Aspergillus oryzae: learning from the history of Koji Mold and exploration of its future. DNA Res. 15, 173–183 (2008).
2. Kobayashi, T. et al. Genomics of Aspergillus oryzae. Biosci. Biotechnol. Biochem. 71, 646–670 (2007).
3. Aoyama, A. et al. Draft genome sequencing and comparative analysis of Aspergillus sojae NRBC4239. DNA Res. 18, 165–176 (2011).
4. Frisvad, J. C., Møller, L. L. H., Larsen, T. O., Kumar, R. & Arnaa, J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 102, 9481–9515 (2018).
5. Xu, J. et al. What can the Aspergillus flavus genome offer to mycotoxin research? Mycology 2, 218–236 (2011).
6. Klich, M. A. Aspergillus flavus: the major producer of aflatoxin. Mol. Plant Pathol. 8, 713–722 (2007).
7. Gourama, H. Aspergillus flavus and Aspergillus parasiticus: aflatoxigenic fungi of concern in foods and feeds: a review. J. Food Prot. 58, 895–1404 (1995).
8. Hedavati, M., Ts Paquingatto, A. C., Warn, P. A., Bowyer, P. & Denning, D. W. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiol. 153, 1677–1692 (2007).
9. Krishnan, S., Manavathu, E. K. & Chandrasekar, P. H. Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses 52, 206–222 (2009).
69. Andersen, M. R. et al. Accurate prediction of secondary metabolism gene clusters in filamentous fungi. Proc. Natl Acad. Sci. USA 110, E99–E107 (2013).
70. Zabala, A. O., Xu, W., Chooi, Y. H. & Tang, Y. Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran ring formation. Chem. Biol. 19, 1049–1059 (2012).
71. Cary, J. W. et al. Transcriptome analysis of
72. Cary, J. W. et al. Transcriptome analysis of
73. Berthier, E. et al. Low-volume toolbox for the discovery of immunosuppressive fungal secondary metabolites. PLoS Pathog. 9, e1003289 (2013).
74. Chiang, Y.-M. M. et al. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranein, in Aspergillus nidulans. J. Am. Chem. Soc. 131, 2965–2970 (2009).
75. Majia, S., Grundmann, A., Li, X., Li, S. M. & Turner, G. Identification of a hybrid PKS/NRPS required for pseudorotin A biosynthesis in the human pathogen Aspergillus fumigatus. ChemBioChem 8, 1736–1743 (2007).
76. Lin, H. C. et al. The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of beta-trans-bergamotene. J. Am. Chem. Soc. 135, 4616–4619 (2013).
77. Shishnov, K. et al. Antimycobiotics miyakamides produced by a fungus. J. Antibiot. 55, 952–961 (2002).
78. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, 2012).
79. Fulton, T. M., Chunwongse, J. & Tankely, S. D. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13, 207–209 (1995).
80. Kis-Papo, T. et al. Genomic adaptations of the halophilic dead sea filamentous fungus Eurotium rubrum. Nat. Commun. 5, 3745 (2014).
81. Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, 699–704 (2014).
82. Grigoriev, I. V., Martinez, D. A. & Salamov, A. A. Fungal genomic annotation. Appl. Mycol. Biotechnol. 6, 123–142 (2006).
83. Lombard, V., Golconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, 490–495 (2014).
84. Cantarel, B. L. et al. The Carbohydrate-Active Enzyme database (CAZY): an expert resource for Glycometabolics. Nucleic Acids Res. 37, 233–238 (2009).
85. Gel, B. & Serra, E. Karyoplotter: An R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017).
86. Sullivan, M. J., Petty, N. K. & Beaston, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1011 (2011).
87. De Vries, R. et al. A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Appl. Environ. Microbiol. 70, 3954–3959 (2004).
88. Arnaud, M. B. et al. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res. 40, 653–659 (2012).
89. Andersen, M. R. et al. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res. 21, 885–897 (2011).
90. Marcit-Houben, M. et al. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genom. 13, 646 (2012).
91. Galagian, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868 (2003).
92. Parvis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
93. Lebar, M. D. et al. Identification and functional analysis of the aspergillus acid glucanase gene cluster in Aspergillus flavus. Fungal Genet. Biol. 16, 14–23 (1995).
94. Nicholson, M. J. et al. Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium pastoris to elucidate their function. Appl. Environ. Microbiol. 75, 7469–7481 (2009).
95. Wöllenberg, R. D. et al. Chrysogine biosynthesis is mediated by a two-modulon nonribosomal peptide synthetase. J. Nat. Prod. 80, 2131–2137 (2017).
96. Yun, C. S., Toyomoto, T. & Osada, H. Biosynthesis of the mycotinoxacin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat. Commun. 6, 8758 (2015).
97. Watanabe, K. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes natural product discovery. Chem. Pharm. Bull. 62, 1153–1165 (2014).
98. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
99. Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

Acknowledgements
Genome sequencing was kindly supported by Joint BioEnergy Institute and Joint Gen-ome Institute. M.R.A., J.L.N., S.T. and T.C.V. gratefully acknowledge funding from the Villum Foundation, Grant VKR023437. M.R.A. and T.C.V. further acknowledge funding from the Danish National Research Foundation, grant number DNRF137. M.R.A. further acknowledges support from the Jock Foundation. The work conducted by the US Department of Energy Joint Genome Institute, a US Department of Energy Office of Science User Facility, is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. The US Department of Energy Joint BioEnergy Institute (www.jbei.org) is supported by the US Department of Energy, Office of Science, and Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.

Author contributions
J.C.F. analyzed data, contributed data analysis methods, contributed to design of research, and wrote most parts of the paper. T.V. conceived the overall project, analyzed data, contributed to design of research, wrote parts of the paper, and coordinated the project. J.C.F. contributed to design of research, contributed analytical tools and data for species selection and verification, wrote parts of the paper, and analyzed data. J.L.N. and S.T. analyzed data and contributed to design of research. K.S. and T.I. generated data on secondary metabolism and analyzed chemical data. E.K.L. and M.E.K. contributed to design of research, developed methods, conducted experiments, and analyzed data. A. Sat analyzed data and contributed to design of research. A.W., R.S.K. and R.J.M.L. performed part of the experiments. M.R.M. analyzed data and wrote parts of the paper. A.K., A. Sal, S.H., R.R. and S.M. annotated genomes and analyzed data. A.C., A.L., K.L., and J.P. assembled the genomes. C.D., G.H. and M.C. sequenced RNA and DNA. I.K.M. and B.A.S. contributed to design of research. B.H. and E.D. contributed analytical tools and analyzed CAZyme data. U.H.M. contributed to design of research and developed methods. T.O.L. generated data on secondary metabolism, analyzed data, and wrote parts of the paper. R.P.D. analyzed data and wrote parts of the paper. K.B. and I.G. coordinated the DNA and RNA sequencing and annotation. M.M. analyzed data and wrote parts of the paper. S.E.B. conceived the overall project, analyzed data, contributed to design of research, and contributed to writing and editing the paper. M.R.A. conceived the overall project, analyzed data, contributed to design of research, wrote parts of the paper, and coordinated the project. All authors commented on the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-14051-y.

Correspondence and requests for materials should be addressed to M.R.A.

Peer review information Nature Communications thanks Yi-Ming Chiang, William Nierman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020