Utility of speckle-tracking echocardiography for predicting atrial fibrillation following ischemic stroke: a systematic review and meta-analysis

Qinggele Gao1 · Peng Liu1 · Tingting Lv2 · Ying Yang1 · Ping Zhang1,2

Received: 20 December 2021 / Accepted: 12 February 2022 / Published online: 30 April 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Undiagnosed atrial fibrillation (AF) is one of the main sources of cryptogenic stroke. And strain indices measured by speckle-tracking echocardiography are associated with atrial remodeling supposed to be the substrate of AF. Therefore, there is a strong need for evaluating the utility of speckle-tracking echocardiography to predict the likelihood of AF in patients with cryptogenic stroke. PubMed, Embase and Cochrane Database were searched for studies. The random-effects model was used to calculate the pooled results, and summary receiver operating characteristic curve (SROC) analysis was performed to show the overall predictive value. There were 1483 patients with cryptogenic stroke from 8 studies. Meta-analysis showed that strain indices including global longitudinal strain (GLS) (mean difference [SMD]: −0.22, 95% confidence interval [95% CI] −0.40 to −0.04), left atrial reservoir strain (εR), (SMD: −0.87, 95% CI −1.26 to −0.48, conduit strain (εCD) (SMD: −0.56, 95% CI −0.81 to −0.30), contractile strain (εCT) (SMD: −1.00, 95% CI −1.39 to −0.61), and left atrial reservoir strain rate (SRe) (SMD: −0.54, 95% CI −0.80 to −0.28) measured at the period of cryptogenic stroke was significantly decreased in patients with AF occurrence compared to without. SROC analysis suggested an acceptable predictive efficiency of εR for AF occurrence (AUC = 0.799). For patients after cryptogenic stroke, GLS, εR, εCD, εCT and SRe were significantly decreased in AF occurrence compared with non-occurrence. But there was no value in left atrial reservoir strain rate (SRs) and contractile strain rate (SRa) for predicting AF.

Keywords Atrial fibrillation · Cryptogenic stroke · Speckle-tracking echocardiography · Strain

Introduction

Ischemic stroke is a fatal condition which lead it to be one of the five leading causes of death worldwide [1]. So, it is critical to find the cause and the embolic source of ischemic stroke. Approximately 20% of thromboembolic events, including stroke, transient ischemic attack and systemic thromboembolism, are attributed to a cardioembolic source [2]. And atrial fibrillation (AF) is an independent risk predictor of ischemic stroke [2]. However, studies have shown that 20–30% of ischemic strokes could not find the source of the incident and were classified as cryptogenic stroke [3]. It has been reported that undiagnosed AF accounts for 20–30% of cryptogenic stroke [4]. Thus, many researchers explored how to predict AF in patients with ischemic stroke.

The use of cardiac implanted electronic devices (CIEDs) has significantly improved the detection of AF but the invasive characteristic restricts its widespread clinical adoption [5–7]. By contrast, echocardiography which could assess left atrium anatomy and function is noninvasive, and speckle-tracking echocardiography as a novel technology accurately evaluates regional and global left atrial strain which is deemed associated with atrial remodeling [8–10]. Atrial remodeling including atrial enlargement, heterogeneity of the conduction tissue and alterations of atrial electrical and...
contractile properties provides substrate of AF occurrence and promotes its persistence [11, 12].

Parameters of atrial speckle-tracking echocardiography mainly include left ventricular global longitudinal strain (GLS) and left atrial reservoir strain (εR), conduit strain (εCD), contractile strain (εCT) [13]. Besides, left atrial reservoir strain rate (SRs), conduit strain rate (SRe) and contractile strain rate (SRa) are also used for evaluation of atrial and ventricular function. It has been reported that these parameters could predict and evaluate AF and its complications [14–17]. Multiple researches explored their predictive value for AF following cryptogenic stroke during follow-up. However, the results of these studies were not consistent.

Therefore, the objectives of current review and meta-analysis of the published literature were to determine the exact value of parameters of speckle-tracking echocardiography to predict the likelihood of AF occurrence in patients with cryptogenic stroke.

Methods

Search strategy

We searched the online databases of PubMed, Embase, and Cochrane Database to identify relevant researches from inception to September 18th 2021. The search terms used were as follows: (“speckle tracking” OR “velocity vector imaging” OR “edge tracking” OR “strain” OR “function” OR “deformation” OR “stiffness”) AND (“left atrial” OR “atrial” OR “atrium”) AND (“atrial fibrillation” OR “AF”) AND (“cryptogenic stroke” OR “ischemic stroke” OR “thrombotic stroke” OR “brain infarction” OR “cerebral infarction” OR “stroke”). We also manually searched the reference lists of relevant studies. Two investigators (Qinggele Gao and Peng Liu) independently screened the potentially studies and extracted the data from these studies using a standardized extraction form. Discrepancies between investigators were judged by the third experienced investigator (Tingting Lv).

Selection criteria

The inclusion criteria for this study were as follow: (a) the study design was cohort analysis; (b) studies that reported left ventricular GLS, and left atrial εR, εCD, εCT, SRs, SRe or SRa measured by speckle-tracking echocardiography. (d) studies concerned with the association with strain parameters of speckle-tracking echocardiography and occurrence of AF following cryptogenic stroke. The exclusion criteria including: (a) the identified studies were case reports, letters, comments, reviews or meta-analyses; (b) studies were animal studies. The Newcastle–Ottawa Quality Assessment Scale (NOS) was used for quality assessment of the included studies.

Data extraction

Two investigators (Qinggele Gao and Peng Liu) independently extracted data from identified studies using a standardized extraction form and disagreements were judged by the third investigator. The data extracted include: (a) authors; (b) year of publication; (c) type of study; (d) follow-up duration; (e) gender; (f) age; (g) sample size; (h) mean CHA2DS2-VASc score; (i) left ventricular ejection fractions; (J) E/e′; (k) left atrial volume index; (l) indices of strain and strain rate.

Statistical analysis

To perform the meta-analysis, we used STATA MP 14.0 software. For the demographic information, continuous variables were expressed as the mean ± standard deviation (SD), and categorical variables were expressed as numbers and percentages. Strain parameters of speckle-tracking echocardiography were described as the mean ± SD. The effect measure of the differences of left atrial GLS, εR, εCD, εCT, SRs, SRe or SRa between patients with and without occurrence of AF was given as standard mean difference (SMD) with 95% confidence intervals (95% CI). Statistical heterogeneity across studies was assessed by I^2 statistic, which was determined from standard chi-square test. A random-effects model was used in the analysis. Sensitivity analysis using leave-one-out method was applied to identify the source of the heterogeneity. Statistical significance was defined as a two-tailed p value of 0.05.

Results

Study characteristics

The flow diagram of the search strategy of studies was shown in Fig. 1. A total of 718 potentially relevant citations were retrieved from PubMed, Embase and the Cochrane Library, of which eight studies containing 1483 patients met the inclusion criteria and were therefore included [1, 18–24]. Among these studies, five, seven, four, six studies investigated the differences in GLS, εR, εCD, εCT, respectively, between patients with and without occurrence of AF following cryptogenic stroke; And three studies investigated the differences in SRs, SRe or SRa between patients with and without occurrence of AF following cryptogenic stroke. The baseline characteristics of included studies and of the study populations are shown in Table 1. The proportion of
female participants ranged from 36 to 50.8%, and mean age from 50 to 80 years.

Difference in GLS between patients with and without occurrence of AF

Five studies [19, 20, 22–24] assessed the difference in GLS between patients with and without occurrence of AF following cryptogenic stroke. One study [24] revealed statistically decreased GLS in patients with AF occurrence compared to patients without. But the other four studies [19, 20, 22, 23] indicated there was no difference in GLS. As meta-analysis, the pooled analysis showed a significant decrease in GLS measured at the period of cryptogenic stroke in patients with AF occurrence compared to patients without. And the SMD was −0.22 (95% CI −0.40 to −0.04; \(p = 0.016 \)) (\(\hat{I}^2 = 0.0\% , \ p = 0.684 \)) (Fig. 2).

Difference in \(\varepsilon_R \) between patients with and without occurrence of AF

Seven studies [1, 18–23] assessed the difference in \(\varepsilon_R \) between patients with and without occurrence of AF following cryptogenic stroke. Five studies [1, 19, 21–23] revealed that \(\varepsilon_R \) was significantly decreased in patients with AF occurrence compared to patients without. In contrast, the other two studies [18, 20] reported there was no difference in \(\varepsilon_R \). As meta-analysis, the pooled analysis showed a significant decrease of \(\varepsilon_R \) in patients with AF occurrence compared to patients without. The SMD was −1.00 (95% CI −1.39 to −0.61, \(p < 0.001 \)) with high heterogeneity (\(\hat{I}^2 = 80.6\% , \ p < 0.001 \)). Upon sensitivity analysis by removing one study at a time, Rasmussen et al. [22] study was found to be the cause of heterogeneity and removal of this study reduced heterogeneity to \(\hat{I}^2 = 66.4\% , \ p = 0.018 \), but this did not change the SMD significantly (Fig. 3C).

Difference in SRs between patients with and without occurrence of AF

Three studies [18, 20, 24] assessed the difference in SRs. Among these studies, one study [18] reported a statistically significant decrease of SRs in patients with AF occurrence compared to patients without AF occurrence. But the other two studies [20, 24] reported there was no difference in SRs. As meta-analysis, the pooled analysis showed no significantly different SRs in patients with AF occurrence compared to patients without AF occurrence. The SMD was −0.46 (95% CI −1.04 to 0.11, \(p = 0.114 \)) and high heterogeneity (\(\hat{I}^2 = 84.0\% , \ p < 0.001 \)) (Fig. 3A).

Difference in \(\varepsilon_{CD} \) between patients with and without occurrence of AF

Four studies [19–22] assessed the difference in \(\varepsilon_{CD} \) between patients with and without occurrence of AF following cryptogenic stroke. Two studies [21, 22] showed a statistically significant decrease of \(\varepsilon_{CD} \) in patients with AF occurrence. But the other two studies [19, 20] reported there was no difference. As meta-analysis, the pooled analysis showed \(\varepsilon_{CD} \) was significantly decreased in patients with AF occurrence compared to patients without. And the SMD was −0.56 (95% CI −0.81 to −0.30, \(p < 0.001 \)) with low-moderate heterogeneity (\(\hat{I}^2 = 42.3\% , \ p = 0.158 \)) (Fig. 3B).

Difference in \(\varepsilon_{CT} \) between patients with and without occurrence of AF

Six studies [1, 19–23] assessed the difference in \(\varepsilon_{CT} \) between patients with and without occurrence of AF following cryptogenic stroke. Four studies [1, 19, 21, 23] revealed \(\varepsilon_{CT} \) was decreased in patients with AF occurrence compared to patients without. But the other two studies [20, 22] reported there was no difference in \(\varepsilon_{CT} \). The pooled analysis showed a significantly decrease of \(\varepsilon_{CT} \) in patients with AF occurrence compared to patients without. \(\text{SMD} = −1.00 \) (95% CI −1.39 to −0.61, \(p < 0.001 \)) with high heterogeneity (\(\hat{I}^2 = 80.6\% , \ p < 0.001 \)). Upon sensitivity analysis by removing one study at a time, Rasmussen et al. [22] study was found to be the cause of heterogeneity and removal of this study reduced heterogeneity to \(\hat{I}^2 = 66.4\% , \ p = 0.018 \), but this did not change the SMD significantly (Fig. 3C).
Table 1 The baseline characteristics of studies investigating the differences of speckle-tracking echocardiography indices between patients with and without AF occurrence after cryptogenic stroke

Author	Year of study	Type of study	NOS score	Mean follow up	Sample size	Female (%)	Age	Mean CHA2DS2-VASc score	LVEF(%)	E/′	LAVI (mL/m²)	Strain(%)/strain rate (s⁻¹)								
Skaarup et al.	2017	Case-control	NR	6	175	39.7	50	51.6 ± 13.5	61.5 ± 12.9	3.3 ± 1.3	3.8 ± 1.3	47 ± 8	46 ± 9	7.3 ± 2.7	8.0 ± 3.0	NR	NR	GLS/SRs, SRe, SRe′, SRe′, SRa, SRa′		
Pathan et al.	2017	cohort 8	477	24 months	437	43.2	50.8	65 (43–87)	80 (69–91)	4.3 ± 1.47	5.6 ± 1.3	NR	NR	10.3 ± 4.8	13.3 ± 6.3	33.87 ± 11.1	40.92 ± 15.3	ER, ECI, ECD		
Olsen et al.	2019	cohort 7	43	36 months	65	40	54	50 ± 12	65 ± 8	3.0 ± 1.1	3.7 ± 1.2	51 ± 8	51 ± 8	7.3 ± 2.2	8.5 ± 2.3	NR	NR	ƐR′, ƐCt′, ƐCd, ƐR′/SRs′, SRe′, SRe′, SRa′		
Rasmussen et al.	2019	cohort 6	158	6 months	158	36	46	59 ± 14	68 ± 10	3.8 ± 1.57	5.04 ± 1.67	53 ± 7	50 ± 11	8.3 (6.3;10.6)	9.5 (7.2;14)	NR	NR	GLS, ER, ECI, ECD		
Sade et al.	2020	cohort 7	58	12 months	158	36	51	70 ± 9	74 ± 10	4.7 ± 1.6	5.2 ± 1.6	NR	NR	NR	NR	NR	NR	GLS, ER, ECI, ECD		
Deferm et al.	2020	Cohort 6	163	25 months	163	38	57	64 ± 14	70 ± 11	NR	NR	68 (63–73)	66 (63–70)	9.38 (7.13–12)	12.4 (9.87–15)	31.2 (24.5–39.7)	43.6 (30.9–49.7)	ERSRs, SRe, SRe′, SRe′, SRa′		
Kusunose et al.	2021	Cohort 6	75	0.6 months	75	36	50	73 ± 14	80 ± 8	NR	NR	58 ± 10	58 ± 7	10.2 ± 4.1	10.4 ± 2.6	38 ± 17	46 ± 20	GLS, ER, ECI, ECD		
Ble et al.	2021	cohort 6	38	12 months	38	37	48.6	73.4 ± 9.7	77.6 ± 8.3	4.79 ± 1.4	5.22 ± 1.20	63.2 ± 3.9	63.2 ± 2.8	NR	NR	NR	NR	NR	NR	ER, ECI
patients with AF occurrence compared to patients without AF occurrence. As meta-analysis, the pooled analysis also showed significantly decreased SRe in patients with AF occurrence compared to patients without AF occurrence. And the SMD was -0.54 (95% CI -0.80 to -0.28, $p < 0.001$) and low heterogeneity ($I^2 = 12.2\%$, $p = 0.320$) (Fig. 4B).

Difference in SRa between patients with and without occurrence of AF

Three studies [18, 20, 24] assessed the difference in SRa between patients with and without occurrence of AF following cryptogenic stroke. One study [18] reported statistically decreased SRa in patients with AF occurrence. But the other two studies [20, 24] revealed there was no difference in SRa. As meta-analysis, the pooled analysis showed no significantly different SRa in patients with and without AF occurrence with SMD of -0.35 (95% CI -0.92 to 0.21, $p = 0.220$) and high heterogeneity ($I^2 = 79.9\%$, $p = 0.007$). Removal of Deferm et al. [18] study reduced heterogeneity to $I^2 0.0\%$, $p = 0.547$, but this did not change the SMD significantly (Fig. 4C).

Predictive effect of εR on occurrence of AF after cryptogenic stroke

Three studies [18, 22, 23] analyzed the predictive effect quantitatively. The summary receiver operating characteristic curve (SROC) of decreased εR for AF occurrence was shown in Fig. 5. The area under the curves (AUC) was 0.799. The pooled sensitivity and specificity were 0.76 (95% CI 0.66–0.84) and 0.72 (95% CI 0.67–0.76), respectively. And the pooled positive likelihood ratio and negative likelihood ratio were 2.66 (95% CI 2.14–3.30) and 0.35 (95% CI 0.24–0.50), respectively. The pooled diagnostic odds ratio (DOR) was 7.72 (95% CI 4.66–12.80).

Discussion

This is the first meta-analysis exploring the value of parameters measured by speckle-tracking echocardiography to predict the likelihood of AF occurrence in patients with cryptogenic stroke. Echocardiography is a noninvasive and relatively low-cost method to estimate atrial and ventricular function as well as anatomy. And speckle-tracking echocardiography has been used as a quantitative assessment tool, by which regional and global left atrial function, atrial strain could be evaluated accurately [25].

AF could induce structural and functional remodeling in atrium, and atrial remodeling also could provide substrate of AF occurrence and persistence, the phenomenon which is called “AF beget AF” [26, 27]. Thus, it is meaningful to find an indicator of atrial remodeling to predict AF or diagnose subclinical AF. Atrial strain alteration is expression of atrial remodeling and could be measured quantitatively by speckle-tracking echocardiography [10, 28]. Enlarged Left atrial size is an independent predictor of AF occurrence, and left atrial volume index (LAVI) is accurate in assessing left atrial size. Multiple studies revealed that patients with AF recurrence following catheter ablation have a higher LAVI compared to patients without recurrence [29]. Compared with increased LAVI which is the result of global structural
Fig. 3 Forest plot pooled analysis of standard mean difference of εR between patients with AF occurrence and without after cryptogenic stroke (a). Forest plot pooled analysis of standard mean difference of εCD between patients with AF occurrence and without after cryptogenic stroke (b). Forest plot pooled analysis of standard mean difference of εCT between patients with AF occurrence and without after cryptogenic stroke (c). εR left atrial reservoir strain, εCD conduit strain, εCT contractile strain, AF atrial fibrillation.
Fig. 4 Forest plot pooled analysis of standard mean difference of SRs between patients with AF occurrence and without after cryptogenic stroke (a). Forest plot pooled analysis of standard mean difference of SRe between patients with AF occurrence and without after cryptogenic stroke (b); Forest plot pooled analysis of standard mean difference of SRa between patients with AF occurrence and without after cryptogenic stroke (c). SRs left atrial reservoir strain rate, SRe conduit strain rate, SRa contractile strain rate
and functional remodeling in the atrium, the atrial strain not only evaluate the left atrial global remodeling but also assess regional remodeling accurately.

Atrial strain expressing the degree of deformation of matter in response to applied stress could influence reservoir, conduit, and booster pump function. Reservoir function is associated with left ventricular ejection, left ventricular isovolumic contraction and relaxation. Reservoir function is also a marker of left ventricular size and compliance as well as left atrium. Conduit function represents left ventricular relaxation and atrial compliance. Conduit function corresponds to early transmitral flow which is the E wave in M-mode echocardiographic. Contractile function is associated with left atrial preload and afterload which is also the left ventricular end-diastolic pressure. Contractile function could be modulated by venous return and atrial compliance [14]. Indices of left atrial reservoir, conduit function and contractile function measured by speckle-tracking echocardiography were ε_R, ε_{CD} and ε_{CT}, respectively. In the current study, the pooled analysis demonstrated that ε_R ε_{CD} and ε_{CT} were significantly decreased in patients with AF occurrence compared to patients without. So, for the patients with cryptogenic stroke, decreased ε_R, ε_{CD} or ε_{CT} could represent severe atrial remodeling and reduced atrial compliance, which were at high risk of occurrence of AF or complicated with subclinical AF. Meanwhile, in our pooled analysis, left ventricular GLS which was changed in HfPEF, stage B heart failure and mitral regurgitation significantly decreased in patients with AF occurrence [30]. We supposed that patients with decreased GLS were more likely to occur AF due to the patients complicated with heart diseases that could induce AF [16, 31].

SRs, SRe and SRa as the rate of ε_R, ε_{CD} and ε_{CT}, respectively, are also the critical indices of speckle-tracking echocardiography to estimate atrial compliance [10]. In our analysis, the results showed that pooled analyses of SRs and SRa were at high heterogeneity caused by Deferm et al. study. We concluded that the heterogeneity of this study was due to shorter interval between occurrence of cryptogenic stroke and echocardiography compared with other studies, besides, the rhythm monitoring method was 30-day mobile cardiac outpatient telemetry for AF detection. However, removal of this study did not change the result that there were no significantly differences of SRs and SRa between patients with AF occurrence and without. So, it is meaningless for SRs and SRa to predict AF in patients with cryptogenic stroke. SRe, as a parameter of left ventricular relaxation and atrial compliance, were proved significantly decreased in patients with AF occurrence. Thus, SRe is more effective to predict AF than ε_R and ε_{CT}. Further studies are required to seek the cut-off value of strain and strain rate indices after cryptogenic stroke to evaluate risk of AF occurrence.

Fig. 5 The SROC of decreased ε_R for AF occurrence. SROC summary receiver operating characteristic curve, AF atrial fibrillation

Limitations

This study has several limitations. Firstly, the current meta-analysis included relatively small number of studies, which was also due to that there were limited studies involved in association between indices of speckle-tracking echocardiography and occurrence of AF after cryptogenic stroke. Secondly, parameters of strain measured by speckle-tracking echocardiography have some methodologic variations including option of chamber views, timing of initial onset on ECG and measuring roof of the left atrium or not, which was a critical factor of high degree of heterogeneity in our effect estimate. Thirdly, in the identified studies and this meta-analysis, it was hard to figure out if the etiology of stroke was AF or not. We concluded that some patients with cryptogenic stroke were due to subclinical AF, but there was limited way to prove it. Thirdly, only ε_R was analyzed with predictive effect quantitatively due to limitation of number of relevant studies. Finally, the analysis was not an individual participant data meta-analysis which collected original data and might obtain the cut-off value of strain and strain rate indices after cryptogenic stroke to evaluate risk of AF occurrence.

Conclusions

Speckle-tracking echocardiography is useful to predict AF in patients with cryptogenic stroke. strain parameters of GLS, ε_R, ε_{CD}, ε_{CT} were exhibited decreased compared with patients without AF occurrence. And strain parameters were more predictive than indices of strain rate in which only SRe were proved decreased in patients with AF occurrence.
Funding This work was supported by Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20190902) of Professor Ping Zhang.

Data availability All data generated or analyzed during this study are included in this article.

Declarations

Conflict of interest The authors have no conflicts to disclose.

References

1. Ble M, Benito B, Cuadrado-Godía E, Pérez-Fernández S, Gómez M, Mas-Stachurska A, Tizón-Marcos H, Molina L, Martí-Almor J, Cladellas M (2021) Left atrium assessment by speckle tracking echocardiography in cryptogenic stroke: seeking silent atrial fibration. J Clin Med 10(16):3501
2. Sandercock PA, Warlow CP, Jones LN, Starkey IR (1989) Predisposing factors for cerebral infarction: the Oxfordshire community stroke project. BMJ 298(6666):75–80
3. Hart R, Diener H, Coutts S, Easton J, Granger C, O’Donnell M, Sacco R, Connolly S (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurology 13:429–438
4. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thius V, Rogers T, Beckers F et al (2014) Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370(26):2478–2486
5. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42(5):373–498
6. Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinchak R, Cook J, Paraschos A, Love J, Radoslovich G et al (2003) Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation 107(12):1614–1619
7. Perera KS, Sharma M, Connolly SJ, Wang J, Gold MR, Hohnloser SH, Lau CP, Van Gelder IC, Morillo C, Capucci A et al (2018) Stroke type and severity in patients with subclinical atrial fibrillation: an analysis from the asymptomatic atrial fibrillation and stroke evaluation in pacemaker patients and the atrial fibrillation reduction atrial pacing trial (ASSERT). Am J Cardiol J 201:160–163
8. Vianna-Pinton R, Moreno CA, Baxter CM, Lee KS, Tsang TS, Appleton CP (2009) Two-dimensional speckle-tracking echocardiography of the left atrium: feasibility and regional contraction and relaxation differences in normal subjects. J Am Soc Echocardiogr 22(3):299–305
9. Cameli M, Caputo M, Mondillo S, Ballo P, Palmerini E, Lisi M, Marino E, Galderisi M (2009) Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking. Cardiovasc Ultrasound 7:6
10. Haji K, Marwick TH (2021) Clinical utility of echocardiographic strain and strain rate measurements. Curr Cardiol Rep 23(3):18
11. Fu L, Rao F, Lian F, Yang H, Kuang S, Wu S, Deng C, Xue Y (2019) Mechanism of electrical remodeling of atrial myocytes and its influence on susceptibility to atrial fibillation in diabetic rats. Life Sci 239:116903
12. Johansen MC, Doria de Vasconcellos H, Nazarian S, Lima JAC, Gottesman RF (2021) The investigation of left atrial structure and stroke etiology: the I-LASER study. J Am Heart Assoc 10(2):e018766
13. Hoit BD (2014) Left atrial size and function: role in prognosis. J Am Coll Cardiol 63(6):493–505
14. Pathan F, D’Elia N, Nolan MT, Marwick TH, Negishi K (2017) Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr 30(1):59–70 (e58)
15. Azemi T, Rabiya VM, Ayirala SR, McCullough LD, Silverman DI (2012) Left atrial strain is reduced in patients with atrial fibration, stroke or TIA, and low risk CHADS(2) scores. J Am Soc Echocardiogr 25(12):1327–1332
16. Liao JN, Chao TF, Kuo JY, Sung KT, Tsai JP, Lo CL, Lai YH, Su CH, Hung CL, Yeh HI (2020) Global left atrial longitudinal strain using 3-beat method improves risk prediction of stroke over conventional echocardiography in atrial fibrillation. Circ Cardiovasc Imaging 13(8):e012087
17. Kamel H, Bartz TM, Longstreth WT Jr, Elkind MSV, Gott diener J, Kizer JR, Gardin JM, Kim J, Shah S (2021) Cardiac mechanics and incident ischemic stroke: the cardiovascular health study. Sci Rep 11(1):17358
18. Deferm S, Bertrand PB, Churchill TW, Sharma R, Vandervoort PM, Schwamm LH, Yoegor Sanborn DM (2021) Left atrial mechanics assessed early during hospitalization for cryptogenic stroke are associated with occult atrial fibration: a speckle-tracking strain echocardiography study. J Am Soc Echocardiogr 34(2):156–165
19. Kusunose K, Takahashi H, Nishio H, Hirata Y, Zheng R, Ise T, Yamaguchi K, Yagi S, Fukuda D, Yamada H et al (2021) Predictive value of left atrial function for latent paroxysmal atrial fibration as the cause of embolic stroke of undetermined source. J Cardio 78(5):355–361
20. Olsen FJ et al (2020) Relationship between left atrial strain, diastolic dysfunction and subclinical atrial fibrillation in patients with cryptogenic stroke: the SURPRISE echo substudy. Int J Cardiovasc Imaging 36(1):79–89
21. Pathan F, Sivaraj E, Negishi K, Rafiudeen R, Pathan S, D’Elia N, Galligan J, Neilson S, Fonseca R, Marwick TH (2018) Use of atrial strain to predict atrial fibrillation after cerebral ischemia. JACC Cardiovasc Imaging 11(11):1557–1565
22. Rasmussen SMA, Olsen FJ, Jørgensen PG, Fritz-Hansen T, Jepsen T, Gislason G, Biering-Sørensen T (2019) Utility of left atrial strain for predicting atrial fibrillation following ischemic stroke. Int J Cardiovasc Imaging 35(9):1605–1613
23. Sade LE, Keskin S, Can U, Colak A, Yuce D, Ciftci O, Ozin B, Muderrisoglu H (2020) Left atrial mechanics for secondary prevention from embolic stroke of undetermined source. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeaa311
24. Skaarup KG, Christensen H, Høst N, Mahmoud MM, Ovesen C, Olsen FJ, Jensen JS, Biering-Sørensen T (2017) Usefulness of left ventricular speckle tracking echocardiography and novel measures of left atrial structure and function in diagnosing paroxysmal atrial fibrillation in ischemic stroke and transient ischemic attack patients. Int J Cardiovasc Imaging 33(12):1921–1929
25. Sonaglioni A, Lombardo M, Nicolosi GL, Rigamonti E, Anza C (2021) Incremental diagnostic role of left atrial strain analysis in thrombotic risk assessment of nonvalvular atrial fibrillation patients planned for electrical cardioversion. Int J Cardiovasc Imaging 37(5):1539–1550
26. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92(7):1954–1968
27. Thomas L, Abhayaratna WP (2017) Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance. JACC Cardiovasc Imaging 10(1):65–77
28. Ramkumar S, Pathan F, Kawakami H, Ochi A, Yang H, Potter EL, Marwick TH (2021) Impact of disease stage on the performance of strain markers in the prediction of atrial fibrillation. Int J Cardiol 324:233–241
29. Njoku A, Kannabhiran M, Arora R, Reddy P, Gopinathannair R, Lakkireddy D, Dominic P (2018) Left atrial volume predicts atrial fibrillation recurrence after radiofrequency ablation: a meta-analysis. Europace 20(1):33–42
30. Tschope C, Senni M (2020) Usefulness and clinical relevance of left ventricular global longitudinal systolic strain in patients with heart failure with preserved ejection fraction. Heart Fail Rev 25(1):67–73
31. Dons M, Jensen JS, Olsen FJ, de Knegt MC, Fritz-Hansen T, Vazir A, Biering-Sorensen T (2018) Global longitudinal strain corrected by RR-interval is a superior echocardiographic predictor of outcome in patients with atrial fibrillation. Int J Cardiol 263:42–47

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.