Hybrid CNN-Transformer Model For Facial Affect Recognition In the ABAW4 Challenge

Lingfeng Wang, Haocheng Li, Chunyin Liu
University of Electronic Science and Technology of China
Chengdu, China
{wanglingfeng,202122011406,202152011703}@std.uestc.edu.cn

Abstract

This paper describes our submission to the fourth Affective Behavior Analysis (ABAW) competition. We proposed a hybrid CNN-Transformer model for the Multi-Task-Learning (MTL) and Learning from Synthetic Data (LSD) task. Experimental results on validation dataset shows that our method achieves better performance than baseline model, which verifies that the effectiveness of proposed network.

1. Introduction

Facial affective behavior recognition has become a research hotspot in the field of computer vision since it plays an important role in human-computer interaction. Existing research used different approaches to represent human emotions, such as valence-arousal estimation (VA), facial action unit (AU) detection, and facial expression (Expr) classification. Discrete basic expression categories is still the most popular way to represent facial affect, i.e., anger, disgust, fearful, happy, sad and surprised. Artificially generated data could help model to recognise the basic expressions.

In the challenge for Affective Behavior Analysis in-the-wild (ABAW) Competition [5,6,10,14,8,13,12,11,7,18,9], the organizers collect a large scale in-the-wild database Aff-Wild2 to provide a benchmark for Multi-Task-Learning (MTL) and Learning from Synthetic Data (LSD) tasks respectively.

In this paper, we describe our approach for the two challenge in the fourth ABAW competition. Firstly, we designed hybrid CNN-Transformer architecture to leverage spatial attention. We build two model using two different pretrained CNN and ensemble the output of the two model.

2. METHODOLOGY

2.1. Framework

Figure 1 shows the framework of our multi-task affective behavior analysis model. The overall architecture of our method is illustrated in Figure 1. Our method is a CNN-Transformer hybrid model which consists of the following two modules: a CNN feature extractor and a Transformer for spatial attention. First, the feature extractor module extracts the local visual features from input images. For feature extraction, we utilized a ResNet-18 network pretrained on AffectNet [15] dataset as well as a HRNet [11] pretrained on WFLW [17] landmark detection dataset. Afterwards, a spatial transformer module consisting of two transformer encoder is used to enhance spatial attention.

2.2. CNN-Transformer Hybrid Architecture

We use CNN-Transformer hybrid architecture inspired by [19]. CNN-transformer hybrid architecture mainly consists of a ResNet-18 [4] CNN model and a spatial transformer. The transformer is composed of two transformer encoders described in [16]. We didn’t use pure ViT architecture as [3] due to the fact ViT can capture long-distance feature dependencies effectively but fail to extract local feature details. As for CNN, traditional CNN architecture cannot capture rich global contextual information due to the limit of CNN receptive field. Proposed CNN-transformer hybrid design can leverage both global and local information.

2.3. Loss Function

For expression classification task in MTL and LSD challenge, we use cross entropy loss for classification.

Facial AU detection in MTL challenge can be regarded as a multi-label binary classification problem. Weighted BCE allows model to achieve trade-off between recall and precision. The position weights here is proportional to the ratio of positives in the total number for each AU class in training set.
Figure 1. Framework for multi-task affective behavior analysis model.

\[
L_{BCE} = \mathbb{E}[-\sum (w_i t_i \cdot \log p_i + (1 - t_i) \cdot \log(1 - p_i))]
\]

The concordance correlation coefficient (CCC) loss [12] is used for valence and arousal estimation in MTL challenge:

\[
L_{VA} = \frac{1}{2} \times (CCC_V + CCC_A)
\]

3. EXPERIMENTAL

3.1. Dataset

Proposed model is fine-tuned on two database for MTL and LSD track respectively. s-Aff-Wild2 database is used for Multi-Task-Learning (MTL) Challenge. It contains selected frames-images from Aff-Wild2 and provide frame-level annotations for valence-arousal estimation, facial action unit detection, and expression classification tasks. We use the official provided cropped images directly. As for LSD task, the LSD dataset provide 300K synthetic images that contain annotations in terms of the 6 basic facial expressions (anger, disgust, fear, happiness, sadness, surprise).

3.2. Training Setup

ResNet Model is trained on large scale facial expression recognition dataset AffectNet[15]. As for HRNet[11], it is trained on facial landmark dataset WFLW[17]. After that, we freeze the parameters of the CNN and train the spatial transformer on the training set of s-Aff-Wild2 database. Finally, we combine visual branch and audio branch and train joint model. Models are optimized using Adam optimizer and a learning rate of 0.0005. AutoAugment strategy for ImageNet described in [2] is applied for each input image. The mini-batch size is set to 64.

Method	Score MTL
Competition Baseline	0.3
Ours	0.981

Table 1. performance comparison on validation set for Synthetic Data Challenge

Method	Ex (F1)
Competition Baseline	0.5
HRNet-Transformer	0.587
ResNet-Transformer	0.596
Ensemble Model	0.618

Table 2. performance comparison on validation set for Synthetic Data Challenge

3.3. Result

Result on the validation set of MTL and LSD task is shown in [2]. Our model outperform competition baseline by a lot. As for LSD task, both HRNet-Transformer and ResNet-Transformer achieved better performance than competition Baseline. Moreover, if model Ensemble strategy is employed, the F1 score can reach 0.618.

4. CONCLUSION

This paper describe an effective facial action unit detection model by developing a CNN-Transformer hybrid architecture. Our key idea is to firstly use pretrained CNN to extract feature. Then we employ spatial transformer to enhance the relevance of features. Experimental results on validation dataset show that our model outperforms competition baseline, which verifies the effectiveness of proposed method.
References

[1] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S Huang, and Lei Zhang. Higherhrnet: Scale-aware representation learning for bottom-up human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5386–5395, 2020.

[2] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 113–123, 2019.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2020.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[5] Dimitrios Kollias. ABAW: Learning from synthetic data & multi-task learning challenges, 2022.

[6] Dimitrios Kollias. ABAW: Valence-arousal estimation, expression recognition, action unit detection & multi-task learning challenges, 2022.

[7] Dimitrios Kollias, Shiyang Cheng, Maja Pantic, and Stefanos Zafeiriou. Photorealistic facial synthesis in the dimensional affect space. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, pages 0–0, 2018.

[8] Dimitrios Kollias, Shiyang Cheng. Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou. Deep neural network augmentation: Generating faces for affect analysis. International Journal of Computer Vision, 128(5):1455–1484, 2020.

[9] Dimitrios Kollias, Mihalis A Nicolaou, Irene Kotsia, Guoying Zhao, and Stefanos Zafeiriou. Recognition of affect in the wild using deep neural networks. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on, pages 1972–1979. IEEE, 2017.

[10] Dimitrios Kollias, Viktoria Sharmanska, and Stefanos Zafeiriou. Distribution matching for heterogeneous multi-task learning: a large-scale face study, 2021.

[11] Dimitrios Kollias, Panagiotis Tzirakis, Mihalis A Nicolaou, Athanasios Papaioannou, Guoying Zhao, Björn Schuller, Irene Kotsia, and Stefanos Zafeiriou. Deep affect prediction in-the-wild: Aff-wild database and challenge, deep architectures, and beyond. International Journal of Computer Vision, pages 1–23, 2019.

[12] Dimitrios Kollias and Stefanos Zafeiriou. Expression, affect, action unit recognition: Aff-wild2, multi-task learning and arcface, 2019.

[13] Dimitrios Kollias and Stefanos Zafeiriou. Va-stargan: Continuous affect generation. In International Conference on Advanced Concepts for Intelligent Vision Systems, pages 227–238. Springer, 2020.

[14] Dimitrios Kollias and Stefanos Zafeiriou. Affect analysis in-the-wild: Valence-arousal, expressions, action units and a unified framework, 2021.

[15] Ali Mollahosseini, Behzad Hasani, and Mohammad H. Ma-hoor. Affectnet: A database for facial expression, valence, and arousal computing in the wild. IEEE Transactions on Affective Computing, 10(1):18–31, 2019.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[17] Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai, and Qiang Zhou. Look at boundary: A boundary-aware face alignment algorithm. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[18] Stefanos Zafeiriou, Dimitrios Kollias, Mihalis A Nicolaou, Athanasios Papaioannou, Guoying Zhao, and Irene Kot sia. Aff-wild: Valence and arousal ‘in-the-wild’ challenge. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on, pages 1980–1987. IEEE, 2017.

[19] Zengqun Zhao and Qingshan Liu. Former-dfer: Dynamic facial expression recognition transformer. In Proceedings of the 29th ACM International Conference on Multimedia, pages 1553–1561, 2021.