Вариационная идентификация входных параметров модели распространения загрязняющих веществ от подводного источника

С. В. Кочергин*, В. В. Фомин

Морской гидрофизический институт РАН, Севастополь, Россия
*E-mail: vskocher@gmail.com

Поступила в редакцию 14.05.2019 г., после доработки – 19.08.2019 г.

Цель. Построение и апробация вариационной процедуры определения концентрации загрязняющей примеси и скорости вытекания воды на выходе из подводного источника, а также анализ чувствительности алгоритма к уровню случайного шума в данных измерений – цель настоящей работы.

Методы и результаты. Расчет поля течений проведен с помощью трехмерной бароклинной σ-координатной модели циркуляции вод. При реализации модели переноса загрязнений использованы монотонные схемы типа TVD. Начальные профили температуры и солености задавались на основе результатов зондирования в районе подводного выпуска, а характерная скорость фоновых течений определялась на основе данных ADCP-измерений. Идентификация входных параметров задачи проводилась на основе итерационной процедуры минимизации квадратичного функционала.

Численные эксперименты по идентификации параметров заглубленного источника загрязнений показали, что без учета шума искомые параметры восстанавливаются с относительной ошибкой < 1%. Показано, что задача идентификации обладает лучшей обусловленностью при ассимиляции данных из более информативных точек схемы измерений.

Выводы. На основе анализа проведенных численных экспериментов показана работоспособность алгоритма линеаризации при идентификации параметров подводного источника. Предложенные алгоритмы могут быть использованы при решении широкого класса задач экологической направленности, а также для интерпретации и планирования натурных экспериментов по исследованию распространения сточных вод в прибрежных водах.

Ключевые слова: минимизация функционала, численное моделирование, идентификация параметров, задача в вариациях, ассимиляция данных измерений, метод линеаризации.

Благодарности: работа выполнена в рамках государственного задания по теме № 0827-2018-0004 «Комплексные междисциплинарные исследования океанологических процессов, определяющих функционирование и эволюцию экосистем прибрежных зон Черного и Азовского морей» и частично поддержана грантом РФФИ № 18-45-920035 п_а.

Для цитирования: Кочергин С. В., Фомин В. В. Вариационная идентификация входных параметров модели распространения загрязняющих веществ от подводного источника // Морской гидрофизический журнал. 2019. Т. 35, № 6. С. 621–632. doi:10.22449/0233-7584-2019-6-621-632

© Кочергин С. В., Фомин В. В., 2019
Variational Identification of Input Parameters in the Model of Distribution of the Pollutants from the Underwater Source

S. V. Kochergin*, V. V. Fomin

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russia
*e-mail: vskocher@gmail.com

Purpose. The aim of the paper is to construct and to validate the variational procedure for determining the pollutant concentration and the water flow out velocity at the underwater source exit, as well as to analyze the algorithm sensitivity to the level of random noise in the measurement data.

Methods and Results. The flow field was calculated using the three-dimensional baroclinic σ-coordinate model of water circulation. Realization of the pollution transfer model included application of the TVD-type monotone schemes. The temperature and salinity initial profiles were preset based on the results of probing in the area of the underwater release, and the characteristic velocity of the background currents was defined using the data of the ADCP-measurements. The input parameters of the problem were identified by means of the iterative procedure for minimizing the quadratic functional. The numerical experiments on identifying parameters of the underwater pollution source showed that if noise was left out of account, the original parameters were reconstructed with a relative error < 1%. It is shown that the identification problem becomes of better conditionality in case the data from more informative points of the measurement scheme are assimilated.

Conclusions. Based on the analysis of the numerical experiments, the linearization algorithm is shown to be able to identify the parameters of the underwater source. The proposed algorithms can be used to solve a wide class of environmental problems, as well as to interpret and to plan the field experiments aimed at studying the wastewater distribution in the coastal waters.

Keywords: functional minimization, numerical modeling, parameter identification, problem in variations, assimilation of measurement data, linearization method.

Acknowledgements: The work was carried out within the framework of the state task on theme No 0827-2018-0004 “Complex interdisciplinary studies of oceanological processes conditioning functioning and evolution of the ecosystems of the Black and Azov seas’ coastal zones” and at partial support of the RFBR grant No 18-45-920035 p_a.

For citation: Kochergin, S.V. and Fomin, V.V., 2019. Variational Identification of Input Parameters in the Model of Distribution of the Pollutants from the Underwater Source. Physical Oceanography, [e-journal] 26(6), pp. 547-556. doi:10.22449/1573-160X-2019-6-547-556

Введение

Существенное влияние на экологическую обстановку в морских прибрежных водах оказывают различные факторы, в том числе выпуски загрязняющих веществ из подводных коллекторов. Наличие полной и достоверной информации о ситуации в акватории выпусков важно для оценки последствий и принятия управленческих решений. Для ее получения необходимо использование контактных и дистанционных методов измерений [1–3], а также методов математического моделирования [4–6].

При использовании математического моделирования естественным образом встает задача идентификации параметров модели по данным измерений. Методы поиска оптимальных параметров чаще всего основаны на минимизации функционалов качества, которые характеризуют разность между модельными оценками концентрации примеси и данными измерений. Алгоритмы ассимиляции [7–9] строятся с использованием сопряженных уравнений [10]. Такие процедуры являются особенно эффективными при переменных по пространству и времени искомых параметрах. Когда идентификации подлежат...
некоторые константы численного моделирования, одной из эффективных процедур поиска оптимальных параметров является метод оценивания на основе метода линеаризации [11, 12]. В этом случае задача в вариациях решается один раз, что может быть иногда весьма эффективным при итерационной идентификации параметров.

Целью данной работы является построение и апробация вариационной процедуры поиска входных параметров модели переноса. Рассматривается численная гидротермодинамическая модель [13], в которой параметрами, подлежащими идентификации, являются концентрация загрязнения в подводном источнике (далее C_p) и скорость вытекания на выходе из него (далее w_p). Следует отметить, что идентификация таких параметров является важной задачей, поскольку получение реальных значений этих параметров обычно затруднительно.

Динамическая модель

Для расчета полей течений, концентрации примеси, температуры и солености морской воды в районе подводного выпуска используется нелинейная бароклинная модель, изложенная в работах [13–15]. В ее основу положены трехмерные σ-координатные уравнения динамики океана в приближении Буссинеска и гидростатики следующего вида (предполагается суммирование по индексам α и β, которые здесь и далее меняются от 1 до 2):

$$\frac{\partial}{\partial t}(Du_a) + \Lambda u_a + \varepsilon_{ab} fDu_{\beta} + gD \frac{\partial}{\partial x_{\alpha}} + DB_{\alpha} = \frac{\partial}{\partial x_{\beta}}(D\tau_{ab}) + \frac{\partial}{\partial \sigma} \left(\frac{K_{M}}{D} \frac{\partial u_a}{\partial \sigma} \right), \quad (1)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial x_{\alpha}}(Du_a) + \frac{\partial}{\partial \sigma} \right) = 0, \quad (2)$$

$$\frac{\partial}{\partial t}(DT) + \Lambda T = \frac{\partial}{\partial x_{\beta}} \left(A_T \frac{\partial T}{\partial x_{\beta}} \right) + \frac{\partial}{\partial \sigma} \left(\frac{K_{T}}{D} \frac{\partial T}{\partial \sigma} \right), \quad (3)$$

$$\frac{\partial}{\partial t}(DS) + \Lambda S = \frac{\partial}{\partial x_{\beta}} \left(A_S \frac{\partial S}{\partial x_{\beta}} \right) + \frac{\partial}{\partial \sigma} \left(\frac{K_{S}}{D} \frac{\partial S}{\partial \sigma} \right), \quad (4)$$

$$\frac{\partial}{\partial t}(DC) + \Lambda C = \frac{\partial}{\partial x_{\beta}} \left(A_C \frac{\partial C}{\partial x_{\beta}} \right) + \frac{\partial}{\partial \sigma} \left(\frac{K_{C}}{D} \frac{\partial C}{\partial \sigma} \right), \quad (5)$$

$$\rho = \rho(T,S), \quad (6)$$

$$\Lambda \varphi = \frac{\partial}{\partial x_{\beta}}(Du_{\beta} \varphi) + \frac{\partial}{\partial \sigma} \left(w_{\sigma} \varphi \right), \quad B_{a} = \frac{g}{\rho_{0}} \left(\frac{\partial}{\partial x_{\alpha}} D \int_{0}^{\sigma} \rho d\sigma' + \sigma \frac{\partial D}{\partial x_{\sigma}} \rho \right), \quad (7)$$

$$\tau_{aa} = 2A_{M} \frac{\partial u_a}{\partial x_{\alpha}}, \quad \tau_{ab} = \tau_{ba} = A_{M} \left(\frac{\partial u_{b}}{\partial x_{\alpha}} + \frac{\partial u_{a}}{\partial x_{\beta}} \right), \quad (8)$$

МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ том 35 № 6 2019 623
где \(x_1 = x, x_2 = y \); \(\sigma \) – безразмерная вертикальная координата, изменяющаяся в пределах от -1 до 0; \(D = h_0 + \eta \) – динамическая глубина; \(\tau_{q\theta} \) – компоненты тензора турбулентных напряжений; \(A_M, K_M, A_r, K_r, A_s, K_s, A_c, K_c \) – коэффициенты турбулентной вязкости и диффузии; \(g \) – ускорение свободного падения; \(f \) – параметр Кориолиса; \(\rho_0 \) – средняя плотность воды; \(\varepsilon_{q\theta} = 0 \) при \(\alpha = \beta \); \(\varepsilon_{12} = -1; \varepsilon_{21} = 1 \); \(C \) – концентрация загрязняющей примеси; \(T, S \) – температура и соленость воды.

Искомыми переменными системы (1) – (8) являются \(\left(u, u_2 \right) = (u, v) \) – горизонтальные компоненты скорости, \(w_z \) – нормальная к поверхностям \(\sigma = \text{const} \) компонента скорости течений, поля \(T, S, C \) и поле плотности морской воды \(\rho \).

На свободной поверхности \((\sigma = 0) \) граничные условия имеют вид
\[
w_z = 0, \quad \frac{K_M}{D} \frac{\partial u_a}{\partial \sigma} = 0, \quad \frac{K_T}{D} \frac{\partial T}{\partial \sigma} = 0, \quad \frac{K_s}{D} \frac{\partial S}{\partial \sigma} = 0, \quad \frac{K_c}{D} \frac{\partial C}{\partial \sigma} = 0. \tag{9}
\]

Граничные условия на дне за пределами источника \(\left(\sigma = -1, x \neq x_p, y \neq y_p \right) \) записываются следующим образом:
\[
w_z = 0, \quad \frac{K_M}{D} \frac{\partial u_a}{\partial \sigma} = \mu |u| u_a, \quad \frac{K_T}{D} \frac{\partial T}{\sigma} = 0, \quad \frac{K_s}{D} \frac{\partial S}{\sigma} = 0, \quad \frac{K_c}{D} \frac{\partial C}{\sigma} = 0, \tag{10}
\]
где \(\mu \) – коэффициент донного трения; \(|u| = \sqrt{u_1^2 + u_2^2} \).

Граничные условия на дне в области действия источника \(\left(\sigma = -1, x = x_p, y = y_p \right) \) можно представить в виде [14]:
\[
w_z = w_p, \quad \frac{K_M}{D} \frac{\partial u_a}{\partial \sigma} = \mu |u| u_a, \tag{11}
\]
\[
w_p T - \frac{K_T}{D} \frac{\partial u_a}{\partial \sigma} = w_p T, \quad w_p S - \frac{K_s}{D} \frac{\partial S}{\partial \sigma} = w_p S, \quad w_p C - \frac{K_c}{D} \frac{\partial C}{\partial \sigma} = w_p C. \tag{12}
\]

В начальный момент времени трехмерные гидротермодинамические поля и поле концентрации загрязняющей примеси описываются следующими условиями:
\[
u = U_0, v = w = 0, \quad \eta = 0, \quad T = T_0(\sigma), \quad S = S_0(\sigma), \quad C = 0. \tag{13}
\]
Здесь \(u, v, w \) – компоненты скорости течений вдоль осей \(x, y, \sigma \) соответственно; \(U_0 \) – постоянная по глубине скорость фонового течения; \(T_0(\sigma) \) – фоновое распределение температуры; \(S_0(\sigma) \) – фоновое распределение солености; \(w_p = Q_p / d^2 \) – скорость вытекания воды, \(Q_p \) – расход воды; \(d \) – горизонтальный размер источника; \(T_p, S_p \) – температура и соленость вытекающей воды; \(C_p \) – концентрация примеси на выходе из источника.
Численная процедура решения системы уравнений основана на выделении баротропной и бароклинной составляющих в поле скорости и использовании явных схем по горизонтальным координатам и неявных схем – по \(\sigma \)-координате. Коэффициенты горизонтальной турбулентной диффузии вычисляются по формуле Смагоринского [16]. Коэффициенты вертикальной турбулентной вязкости и диффузии определяются по модели Мейлора – Ямады [13, 17]. Для аппроксимации адvectionных членов в уравнениях модели используются TVD-схемы [18, 19], которые обладают свойством монотонности, что является важным условием для адекватного моделирования градиентных полей. Алгоритм числовой реализации модели подробно описан в работе [14].

Задача решается на интервале времени \([0, t_o]\) в прямоугольной области \(\Omega = \{0 \leq x \leq L; 0 \leq y \leq L; -1 \leq \sigma \leq 0\} \) с жидкими боковыми границами и свободной поверхностью. При \(t > 0 \) на дне бассейна (\(\sigma = -1 \)) в локальной области \(\Omega_p \) начинает действовать источник массы.

Алгоритм идентификации концентрации загрязнения в источнике

Рассмотрим случай, когда в качестве параметра, который необходимо идентифицировать, выбирается \(C_p \). Такая задача может быть решена на основе метода линеаризации [11]. Пусть \(V = \frac{\partial C}{\partial C_p} \) – вариация функции \(C \) относительно исходного параметра \(C_p \). Следуя [20], для уравнения (5) с краевыми условиями из (9) – (13) запишем следующую задачу в вариациях:

\[
\frac{\partial}{\partial t}(DV) + \Delta V = \frac{\partial}{\partial x}\left(A_c \frac{\partial V}{\partial x}\right) + \frac{\partial}{\partial y}\left(A_c \frac{\partial V}{\partial y}\right) + \frac{\partial}{\partial \sigma}\left(\frac{K_c}{D} \frac{\partial V}{\partial \sigma}\right),
\]

(14)

\[
\frac{K_c}{D} \frac{\partial V}{\partial \sigma} = 0 \quad \text{при} \quad \sigma = 0,
\]

(15)

\[
\frac{K_c}{D} \frac{\partial V}{\partial \sigma} = 0 \quad \text{при} \quad \sigma = -1 \quad \text{и} \quad (x, y) \notin \Omega_p,
\]

(16)

\[
\frac{K_c}{D} \frac{\partial V}{\partial \sigma} = w_p (V - 1) \quad \text{при} \quad \sigma = -1 \quad \text{и} \quad (x, y) \in \Omega_p.
\]

(17)

Пусть задача (14) – (17) решается на интервале времени \([0, t_o]\) в области \(\Omega \). Тогда для решения задачи идентификации параметра \(C_p \) требуется найти минимум следующего функционала:

\[
J = \frac{1}{2} \left\langle P(\dot{R}C - C_{obs}), P(\dot{R}C - C_{obs}) \right\rangle,
\]

(18)

где \(\langle a, b \rangle = \int_0^t \int_0^t \int_{\Omega} ab d\Omega dt \) – скалярное произведение; \(C_{obs} \) – измеренные значения \(C \) в заданных точках области \(\Omega \) в определенные моменты времени; \(R \) – МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ том 35 № 6 2019
оператор проектирования в точки наблюдений; \(P \) – оператор восполнения нулями поля невязок при отсутствии данных измерений.

Представим переменную \(C \) в виде

\[
C = \bar{C} + V \left(C_p - C_p^* \right),
\]

где \(\bar{C} \) – некоторая оценка концентрации загрязнения, а \(C_p^* \) – ее истинное значение, подлежащее идентификации. После подстановки (19) в (18) получаем

\[
J = \frac{1}{2} \left\{ P \left[R \left(\bar{C} + V \left(C_p - C_p^* \right) \right) - C_{obs} \right], P \left[R \left(\bar{C} + V \left(C_p - C_p^* \right) \right) - C_{obs} \right] \right\}.
\]

В дальнейшем для простоты записи опускаем черту у \(\bar{C} \). Из условия стационарности \(\frac{\partial J}{\partial C_p} = 0 \) имеем

\[
C_p^* = C_p + \frac{\left\langle P \left(RC - C_{obs} \right), PRV \right\rangle}{PRV, PRV}.
\]

Формула (21) справедлива и для случая, когда имеются измерения, например, только на поверхности моря. Тогда задача построения функционала качества (18) решается за счет соответствующего выбора операторов \(P \) и \(R \).

Алгоритм идентификации параметра \(C_p \) реализуется итерационно. Вначале один раз решается задача в вариациях (14) – (17) и определяется переменная \(V \). Далее задается некоторое начальное приближение для параметра \(C_p \) и решается основная задача (1) – (13). В дальнейшем проводится оценка \(C_p \) по формуле

\[
C_p^n = C_p^{n-1} + \frac{\left\langle P \left(RC^n - C_{obs} \right), PRV \right\rangle}{PRV, PRV},
\]

где \(n = 1, 2, \ldots, N \) – номер итерации.

Алгоритм идентификации скорости вытекания из источника

Идентификация скорости вытекания \(w_p \) в рамках системы (1) – (13) существенно сложнее по сравнению с идентификацией \(C_p \), поскольку приводит к нелинейной задаче в вариациях. Эта задача даже в приближении постоянных коэффициентов \(\alpha_M, \quad K_T, \quad K_s, \quad K_c \) достаточно сложна для решения. Поэтому предлагается следующий упрощенный алгоритм идентификации \(w_p \).

На первом этапе определяется вариация \(V = \frac{\partial C_p}{\partial w_p} \) путем осреднения по ансамблю решений серии основных задач при различных значениях \(w_p \).
в окрестности истинного значения \(w_p = w_p^* \). На втором этапе задается начальное приближение для скорости вытекания и значение \(w_p \) уточняется по формуле

\[
w_p^n = w_p^{n-1} + \frac{\langle P(RC^n - C^{\text{obs}}), PRV \rangle}{\langle PRV, PRV \rangle}.
\]

(23)

Выражение (23) получено из условия стационарности \(\frac{\partial J}{\partial w_p} = 0 \) функционала (18), в котором величина \(C \) представляется в виде \(C = \bar{C} + V(w_p - w_p^*) \).

Численные эксперименты и обсуждение результатов

Модельные расчеты проводились для района Голубой бухты г. Севастополя, где располагается основной выпуск городских сточных вод. Расчетная область имела горизонтальный размер \(L = 2 \) км и глубину \(h_0 = 30 \) м. Использовалась прямоугольная сетка с шагом по горизонтали \(d = 20 \) м и дискретностью по \(\sigma 1 \) м. Временной шаг интегрирования модели выбирался равным 5 с.

На западной границе расчетной области (\(x = 0 \)) задавались условия вида (1). На других жидким гранциях для всех переменных использовались условия гладкого продолжения:

- при \(x = L \), \(\frac{\partial \phi}{\partial x} = 0 \) при \(x = 0 \) и \(y = L \).

Центр источника поступления загрязнений располагался в точке с координатами \(x_p = 600 \) м, \(y_p = 1000 \) м. Горизонтальный размер источника по осям \(x, y \) равнялся шагу расчетной сетки. Считалось, что вытекающая из источника вода имеет нулевую соленость \((S_p = 0) \), а ее температура равна температуре окружающей среды, т. е. \(T_p = T_0 (-1) \). В качестве \(T_0 \) и \(S_0 \) использовались результаты зондирования в районе подводного выпуска, выполненного 20 мая 2016 г. Согласно данным ADCP-измерений в районе Гераклейского п-ова [21], величина \(U_0 \) принималась равной 0,05 м/с.

Вначале был проведен модельный расчет динамических характеристик и значений концентрации загрязнений, вызванных действием источника, с заданным «истинным» значением \(C_p^* = 0,5 \) кт/м³. Общее время интегрирования составляло 6 ч. За первый час модельного времени расход воды в источнике \(Q_p \) линейно увеличивался от 0 до 1,4 м³/с и далее оставался неизменным.

Процессное распределение поля загрязненных вод на фиксированном горизонте \(\sigma = -0,3166 \) (\(z = -9,5 \) м) для \(t = 6 \) ч показано на рис. 1. Здесь приведены изолинии относительной концентрации \(c = 100\% \cdot C/C_p^* \). Безразмерные горизонтальные координаты имеют вид: \(x' = x/2d \); \(y' = y/2d \). На рис. 2 для \(t = 6 \) ч показаны изолинии относительной концентрации \(c \) на разрезе вдоль оси \(x' \) при \(y' = 25 \). Из рисунков видно, что поле загрязненных вод состоит из факела и струи, вытянутой по направлению фонового течения и сконцентрированной в слое скачка плотности (8–10 м). Подробное описа-
ние влияния стратификации плотности морской воды и скорости фонового течения на поле примеси дано в работах [14, 15].

Р и с. 1. Горизонтальное распределение относительной концентрации примеси c (%) в районе подводного источника при $\sigma = -0.3166 (z = -9.5 \text{ м})$

Fig. 1. Horizontal distribution of the relative impurity concentration c (%) in the area of the under-water source at $\sigma = -0.3166 (z = -9.5 \text{ m})$

Р и с. 2. Вертикальная структура поля относительной концентрации примеси c (%) в районе подводного источника при $y' = 25$

Fig. 2. Vertical structure of the relative impurity concentration c (%) field in the area of the under-water source at $y' = 25$
Параллельно с «эталонным» расчетом решалась задача в вариациях (14) – (17). При ее решении сохранялись необходимые вертикальные профили V в соответствующие моменты времени проведения измерений.

В процессе интегрирования модели значения концентрации C сохранялись. Предполагалось, что некий движущийся датчик последовательно измеряет вертикальный профиль C от свободной поверхности до глубины $z = 25$ м ($\sigma_B = -0,8333$). Измерения начинаются в момент времени $t_1 = 2$ ч в точке $(x'_1, y'_1) = (25, 20)$ и заканчиваются в момент времени $t_{15} = 5,5$ ч в точке $(x'_{15}, y'_{15}) = (35, 30)$. Дискретность измерений по времени составляет 15 мин. Указанная схема измерений выбрана из тех соображений, что в натурных исследованиях идентификация загрязненных вод обычно проводится путем проведения серии вертикальных зондирований перпендикулярно направлению распространения струй [3].

Далее была выполнена серия численных экспериментов по тестированию изложенного выше алгоритма идентификации параметра C_p. Численные эксперименты проводились с различным количеством станций. Кроме того, в «измеренные» вертикальные профили $C(\sigma)$ добавлялся случайный шум $\xi \in[-r/2, r/2]$, где $\xi = r(\delta -1/2)$, r – заданный уровень шума, $\delta \in[0,1]$ – нормально распределенная случайная величина. В качестве начального приближения задавалось значение $C_p = 0,1$ кг/м3. Установлено, что для сходимости итерационного процесса необходимо 2–3 итерации.

Результаты восстановления параметра C_p для различных комбинаций станций при $0 \leq r \leq C_p*/10$ приведены в табл 1. Как показывает сопоставление, без учета случайного шума параметр C_p восстанавливается точно, не зависимо от количества и информативности используемых станций. При учете случайного шума наилучшее восстановление происходит, когда используются наиболее информативные станции (группа A), обозначенные на рис. 1 белыми квадратами. К группе B относятся расположенные на периферии пятна загрязнения станции, координаты которых обозначены черными кружками. Такой результат хорошо согласуется с работой [22], посвященной планированию экспериментов.

При тестировании алгоритма идентификации параметра w_p была выполнена серия численных экспериментов. Для простоты считалось, что измерения всех 15 вертикальных профилей C, расположенных согласно схеме на рис. 1, выполнены одновременно при $t = 4$ ч. Концентрация примеси в источнике $C_p^* = 0,5$ кг/м3.

Вначале было решено 8 основных задач ($1 \leq j \leq 8$), в которых расход воды в источнике $Q_{p,j}$ изменялся от 0,8 до 2,0 м3/с с шагом $\Delta Q_p = 0,2$ м3/с. Соответствующие значения скорости вытекания определялись по формуле $w_{p,j} = Q_{p,j}/d^2$. «Истинное» значение расхода воды $Q_p^* = 1,4$ м3/с, а соответствующее ему «истинное» значение скорости вытекания $w_p^* = 3,5 \cdot 10^{-3}$ м/с.

МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ том 35 № 6 2019 629
В процессе решения указанных задач сохранялись поля C при $t = 4$ ч. Далее для каждого $w_{p,j}$ вычислялась разностная производная $V_j = C_p(w_{p,j}) - C_p(w_{p,j-1})/\Delta w_p$, где $\Delta w_p = \Delta Q_p/d^2$; $2 \leq j \leq 8$. После этого определялось среднее значение $\bar{V} = 1/7\sum_j V_j$, которое и принималось за вариацию в формуле (23). В качестве начального приближения использовалось $w_p = 10^{-3}$ м/с.

Станичия / Stations	r, кг/м3 / %	Уровень шума, 100\% r/C_p^*, %	Восстановленная концентрация C_p, кг/м3 / Reconstructed concentration C_p, kg/m3	Ошибка восстановления, 100\% $1-C_p/C_p^*$, %
Группа A / Group A	0,0000	0,0	0,5000	0,0
0,0125	2,5	0,4791	4,2	
0,0250	5,0	0,5814	16,3	
0,0500	10,0	0,8432	68,6	
0,0000	0,0	0,5000	0,0	
Группа B / Group B	0,0125	2,5	0,5836	16,7
0,0250	5,0	0,6932	38,6	
0,0500	10,0	1,0986	119,7	

Результаты восстановления концентрации загрязнения на выходе из подводного источника C_p для различных групп станций при разном уровне шума r во входных данных приведены в табл. 2. Как видно, при уровне шума 1,25% и ниже величина w_p восстанавливается практически точно. Как и при идентификации C_p наибольшее уменьшение функционала (18) происходит на первой итерации. Ошибка определения искомого параметра w_p обусловлена ассимиляцией информации со всех стаций измерений (в том числе неинформативных) и приближенным характером определения вариации концентрации. Естественно, при усвоении наиболее информативных данных точность восстановления параметра увеличивается вследствие улучшения обусловленности решаемой задачи идентификации.
Результаты восстановления скорости вытекания воды w_p из подводного источника при разном уровне шума r во входных данных

Results of reconstructing velocity of the water release w_p from the underwater source at different noise level r in the input data

| r, кг/м3 / r, кг/м3 | Уровень шума, 100% · r/C_p^*, % / Noise level, 100% · r/C_p^*, % | Восстановленная скорость вытекания w_p, м/с / Reconstructed water release velocity w_p, m/s | Ошибка восстановления, 100% · $|1 - w_p/w_p^*|$, % / Reconstruction error, 100% · $|1 - w_p/w_p^*|$, % |
|---------------------|---|--|----------------------------------|
| 0,0000 | 0,0 | 3,4991985·10$^{-3}$ | 0,0 |
| 0,00675 | 1,25 | 3,5180813·10$^{-3}$ | 0,5 |
| 0,0125 | 2,5 | 3,8568601·10$^{-3}$ | 10,2 |
| 0,0250 | 5,0 | 4,6490142·10$^{-3}$ | 32,8 |

Выводы

На основе анализа проведенных численных экспериментов показана применимость алгоритма линеаризации при идентификации входных параметров модели распространения загрязняющих веществ от подводного источника. Алгоритмы обладают хорошей сходимостью итерационного процесса, что позволяет оперативно оценивать концентрацию в источнике загрязнения. Предложенные алгоритмы могут быть использованы при решении широкого класса задач экологической направленности, а также для интерпретации и планирования натурных экспериментов по исследованию распространения сточных вод в прибрежных водах.

СПИСОК ЛИТЕРАТУРЫ

1. Бондур В. Г., Гребенюк Ю. В. Дистанционная индикация антропогенных воздействий на морскую среду, вызванных заглубленными стоками: моделирование, эксперименты // Исследование Земли из космоса. 2001. № 6. С. 49–67.
2. Bondur V. Complex satellite monitoring of coastal water areas // Proceedings of 31st International Symposium on Remote Sensing of Environment, ISRSE 2005: Global Monitoring for Sustainability and Security. Saint Petersburg, 2005. 7 p. URL: http://www.aerocosmos.info/pdf/1/2005_31_ISRSE_Bondur.pdf (date of access: 07.05.2019).
3. Bondur V.G. Satellite Monitoring and Mathematical Modelling of Deep Runoff Turbulent Jets in Coastal Water Areas // Waste Water – Evaluation and Management / Ed. F. S. Garcia Einschlag. Croatia : InTech, 2011. P. 155–180. doi:10.5772/16134
4. Blumberg A. F., Ji Z.-G., Ziegler C. K. Modeling Outfall Plume Behavior Using Far Field Circulation Model // Journal of Hydraulic Engineering. 1996. Vol. 122, no. 11. P. 610–616. http://dx.doi.org/10.1061/(ASCE)0733-9429(1996)122:11(610)
5. Zhang X.-Y., Adams E. E. Prediction of Near Field Plume Characteristics Using Far Field Circulation Model // Journal of Hydraulic Engineering. 1999. Vol. 125, iss. 3. P. 233–241. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:3(233)
6. Бондур В. Г., Журбас В. М., Гребенюк Ю. В. Математическое моделирование турбулентных струй глубинных стоков в прибрежные акватории // Океанология. 2006. Т. 46, № 6. С. 805–820.
7. Marchuk G. I., Penenko V. V. Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment // Modelling and Optimization of Complex Systems / Ed. G. I. Marchuk. Berlin : Springer, 1979. P. 240–252. https://link.springer.com/chapter/10.1007%2FBFb0004167
8. Marchuk G. I., Agoskov V. I., Shutyaev V. P. Adjoint Equations and Perturbation Algorithms in Nonlinear Problems. New York : CRC Press, 1996. 288 p.
9. Shutyaev V. P., Le Dimet F.-X., Parmuzin E. Sensitivity analysis with respect to observations in variational data assimilation for parameter estimation // Nonlinear Processes in Geophysics. 2018. Vol. 25, iss. 2. P. 429–439. https://doi.org/10.5194/npg-25-429-2018
10. Marchuk G. I. Adjoint Equations and Analysis of Complex Systems. Dordrecht : Springer Netherlands, 1995. 468 p. (Mathematics and Its Applications, Vol. 295). doi:10.1007/978-94-017-0621-6
11. Алифанов О. М., Артихиин Е. А., Румянцев С. В. Экстремальные методы решения некорректных задач и их приложения к обратным задачам теплообмена. М. : Наука, 1988. 285 c.
12. Горский В. Г. Планирование кинетических экспериментов. М. : Наука, 1984. 241 с.
13. Ivanov V. A., Fomin V. V. Numerical Simulation of Underwater Runoff Propagation in the Heraklean Peninsula Coastal Zone // Physical Oceanography. 2016. № 6. P. 82–95. doi:10.22449/1573-160X-2016-6-82-95
14. Иванов В. А., Фомин В. В. Математическое моделирование динамических процессов в зоне море – суша. Севастополь : ЭКОСИ-Гидрофизика, 2008. 363 с.
15. Бондар В. Г., Иванов В. А., Фомин В. В. Особенности распространения загрязненных вод из подводного источника в стратифицированной среде прибрежной акватории // Известия Российской академии наук. Физика атмосферы и океана. 2018. Т. 54, № 4. С. 453–461. doi:10.1134/S0002351518040053
16. Smagorinsky J. General circulation experiments with the primitive equations: I. The basic experiment // Monthly Weather Review. 1963. Vol. 91, no. 3. P. 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
17. Mellor G. L., Yamada T. Development of a turbulence closure model for geophysical fluid problems // Review of Geophysics and Space Physics. 1982. Vol. 20, no. 4. P. 851–875. http://dx.doi.org/10.1029/RG020i004p00851
18. Harten A. On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes // SIAM Journal on Numerical Analysis. 1984. Vol. 21, iss. 1. P. 1–23. https://doi.org/10.1137/0721001
19. Фомин В. В. Применение схем TVD для численного моделирования фронтальных зон солености в мелком море // Метеорология и гидрология. 2006. № 2. C. 59–68.
20. Кочергин В. С., Кочергин С. В. Вариационные алгоритмы идентификации мощности течения принципиальных источников загрязнения // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. № 3. С. 67–72.
21. Пространственная структура течений у Гераклейского полуострова по данным ADCP- наблюдений 2015 г. / А. Н. Морозов [и др.] // Экологическая безопасность прибрежной акватории // МИТ, 2016. Вып. 1. С. 73–79.
22. Кочергин В. С., Кочергин С. В. Идентификация начального поля модели переноса и построение оптимальной схемы измерений // Экологическая безопасность прибрежных и шельфовых зон моря. Севастополь : МГИ, 2016. Вып. 1. С. 58–63. doi:10.22449/2413-5577-2018-1-58-63

Об авторах:
Кочергин Сергей Владимирович, старший научный сотрудник, отдел вычислительной техники и математического моделирования, ФГБУН ФИЦ МГИ (299011, Россия, г. Севастополь, ул. Капитанская, д. 2), кандидат физико-математических наук, ORCID ID: 0000-0002-3583-8351, vskocher@gmail.com

Фомин Владимир Владимирович, заведующий отделом вычислительной техники и математического моделирования, ФГБУН ФИЦ МГИ (299011, Россия, г. Севастополь, ул. Капитанская, д. 2), доктор физико-математических наук, ORCID ID: 0000-0002-9070-4460, v.fomin@ukr.net