INTRODUCTION

Plasmodium falciparum malaria is a mosquito infection disease in erythrocytes that demands public attention [1–3]. Malaria long-term treatment using multidrug such as chloroquine (C) and sulfadoxine-pyrimethamine causes drug resistance [4–6], increased morbidity, mortality, and health care costs [9]. The discovery of new, better bioactivity and lower toxicities drugs is focused on the abundant and renewable natural building blocks.

Active anti-malaria compound discovery has been carried out from natural sources, for instance, Elaeutherine bulbosa [10] and Andrographis paniculata [11]. Eugenol and cinnamaldehyde are major components in clove essential oil (EO) and cinnamon EO. Clove (Syzygium aromaticum (L) Merr. & Perry) and Cinnamon (Cinnamomum burmanii) plants can thrive in Indonesia and other tropical countries. The clove EO has various bioactivity potentials including antimicrobial [12–14], antifungals [15–17], anticancer [18], antiprotozoal [19], analgesic [20] and anti-inflammatory [21–23]. At the same time, cinnamon derived from cinnamon EO has anti-proliferative, antibacterial, and antimicrobial activity [24–26]. This bioactivity predicts influenced by eugenol (C10H12O2) and cinnamaldehyde (C9H8O) content as the major compound.

Molecular drug discovery is also focused on the functional group (FG) that has better bioactivity prediction. In some areas, people have used Moringa oleifera leaves for malaria treatment. It is known as a pearl of local wisdom on malaria therapy. Rhamnosyloxy benzyl isothiocyanates, the natural isothiocyanate found in M. oleifera leaves, are predicted responsible FG of anti-plasmodial [27]. Natural ITCs are known to have several bioactivities [28–38]. The double bond FG has partially positive and negative properties, and it is possible to carry out additional reactions into other FG. Eugenol and cinnamaldehyde have a double bond and aldehyde FG that building blocks potentially for ITC compounds. The bioactivity of eugenol-ITC and cinnamaldehyde-ITC derivatives as an anti-malaria is not known.
RESULTS AND DISCUSSION

Preparation compound and receptor for molecular docking

Docking system validation was done by redocking the native ligand of the 1YVB chain A. The precision of the docking process was determined by RMSD (Root Mean Standard Deviation) value less than 2.0. All ligands have good validation at 0.0. The molecular docking principle is based on ligand binding interactions with active amino acids in the receptors via the presence of hydrogen bonds, Van der Waals, and electrostatic interactions. Ligand and amino acids bond distance will affect the affinity energy (ΔG) or complex stability between ligand and receptor [42]. The smaller the bond distance, the better the value of the ligand-receptor complex affinity.

As starting material, eugenol has the same affinity with the cinnamaldehyde complex (table 1). However, OH-eugenol is predicted to inhibit the ITC group’s entry, and methylation is required to form methyl eugenol (ME). It was showed that ME increased the stability complex and has a better affinity (ΔG = -5.2 Kcal/mol) than eugenol. Methyl eugenol isothiocyanate (ME-ITC) or 4-(2-isothiocyanatopropyl)-1,2-dimethoxybenzene has affinity -4.9 Kcal/mol. Inserting the ITC group into cinnamaldehyde resulted in 2 types of ITC prediction, namely 3-isothiocyanato-3-phenylpropanal (ligand 5) and 2-isothiocyanato-3-phenylpropanal (ligand 6). The affinity score of ligand 6 is better than its derivatives. However, both ME-ITC (ligand 3) and cinnamaldehyde-ITCs (ligand 5 and 6) could not achieve chloroquine affinity and natural ITC from Moringa oleifera leaves (ligands 7, 8, 9, and 10). In general, ligands 8 and 10 have better affinity than chloroquine. It is in accordance with the local tradition of using Moringa oleifera leaves as a traditional malaria medicine. Ligand 8 has the best energy affinity compared to chloroquine and other ligands (table 1).

Table 1: Binding affinities of complex 1YVB chain A with ligand

Ligand	Affinity ΔG (kcal/mol)	Ligand	Affinity ΔG (kcal/mol)	Ligand	Affinity ΔG (kcal/mol)
1	-5.1	5	-4.8	9	-5.8
2	-5.2	6	-5.3	10	-6.4
3	-4.9	7	-6.2	C	-6.3
4	-5.1	8	-6.6		
Fig. 3: The complex structure and 2D interaction of 1YVB chain A with: (i) chloroquine; (ii) ligand 6; (iii) ligand 8
Result docking analysis is should also notice the interaction between ligand with active site residue. His159 and Cys25 residues are the active sites in the surface layer of cysteine protease responsible for the proliferation of *falciparum erythrocyte* [43]. Ligand 6 and C make Van der Waals link at His159 and Cys25 with its affinities -5.3 Kcal/mol and -6.3 Kcal/mol, respectively. Ligand 8, with the lowest affinity (-6.6 Kcal/mol), has hydrogen bond interaction between His159 and the hydroxy group of tetrahydropyran. The Cys25 forms Van der Waals bonds around the sulfur double bond (fig. 3). Hydrogen bonds in the complex’s residue ligand are much stronger than the Van der Waals; they stabilize the complex bonds and reduce affinity energy.

Physicochemical, pharmacokinetics, and bioactivities of compound

The physicochemical of drug candidates was measured by its properties covered by the Lipinski Rule of Five (RO5) and Veber Rule [44-46]. The n-octanol/water partition coefficient (Log P) is a parameter that determines the hydrophobicity of a compound. Drug compounds’ hydrophilic/lipophilic properties affect drug absorption, drug-receptor interactions, molecular metabolism, and toxicity [47]. Topological Polar Surface Area (TPSA) is a predictor of drug transport properties such as intestinal absorption and penetration of the blood-brain barrier. TPSA deals with hydrogen bonds in compounds. The number of rotatable bonds (RB) measures the flexibility of the compound related to drug absorption and bioavailability. All the ligands obeyed Lipinski and Veber Rule (table 2).

Drug candidates should have a pharmacokinetics character such as ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicological) as an integral part of screening to get the promising drug candidates [48]. ADMET is covered in drug-likeness (properties and bioactivities). The bioactivity of a drug candidate can be determined by calculating the G-Protein-Coupled Receptor (GPCR) ligand score, ion channel modulator, nuclear receptor ligand, a kinase inhibitor, protease inhibitor, enzyme inhibitor [47]. Ligands' biological activity scores of more than 0.00 are recognized as active, and less than 0.50 are inactive [49]. The potential bioactivity of building block compounds (ligands 1, 2, and 4) and ITC designed ligands 3, 5, and 6 are moderately active. Furthermore, the native ITC in *M. oleifera* has a variation score around active and moderate (table 3).

Table 2: Physicochemical properties of ligands

Ligand	Lipinski rule*	Veber rule**				
	MW	HBA	HBD	LogP	RB	TPSA
1	164.20	2	1	2.37	3	29.46
2	178.23	2	0	2.65	4	18.46
3	237.32	3	0	2.95	5	62.91
4	132.16	1	0	1.65	2	17.07
5	191.25	2	0	2.14	4	61.52
6	191.25	2	0	2.06	4	61.52
7	311.36	6	3	2.71	4	123.60
8	353.40	7	2	2.99	6	129.67
9	353.40	7	2	2.50	6	129.67
10	353.40	7	2	1.85	6	129.67
C	319.88	2	1	3.95	8	28.16

*Lipinski rule: MW: Molecular weight ≤500g/mol, HBA: Hydrogen Bond Acceptors ≤10, HBD: hydrogen bond donors ≤5, LogP ≤5

**Veber rule: RB: Rotatable Bonds ≤10, TPSA ≤140

All ligands are equipped with gastrointestinal absorption and brain access assays via the Brain or Intestinal. Estimated (Boiled-Egg) permeation method for predicting lipophilicity and polarity of the drug candidate. The white egg illustrates the physicochemical space of compounds with the highest absorbed probability by the gastrointestinal tract (GI absorption), and the yellow region (yolk) is the highest permeate space to the brain (BBB permeant). Well-absorbed compound (blue point), well-brain penetrant compound symbolized as pink point [50]. Analysis of all ligands shows that the building blocks (molecules 1, 2, and 4) have a well-brain penetrant character and are distributed in egg yolk (table 4). It also occurred to the ITC-designed ligands and chloroquine (molecule 11). However, natural ITC (molecules 7, 8, 9, and 10) are stacked at the egg white border and assumed to be absorbed by the gastrointestinal tract (fig. 4). Ligands 1 and 2 were observed in high-risk mutagenic, tumorigenic, and irritant categories, but ligand 4 was only tumorigenic toxic. Ligands 3 and 6 dominantly have medium-risk toxicity properties, and it is a promising drug for anti-malaria. Chloroquine has a high risk of mutagenicity and irritant. Natural ITC from *M. oleifera* leaves showed mutagenic, tumorigenic, and reproductive effects at medium risk (table 5).

Table 3: Bioactivities score of ligands

Ligand	GPCR	Ion channel modulator	Kinase inhibitor	Nuclear receptor	Protease inhibitor	Enzyme inhibitor
1	-0.86	-0.36	-1.14	-0.78	-1.29	-0.41
2	-0.81	-0.38	-1.06	-0.80	-1.14	-0.43
3	-0.19	-0.17	-0.84	-0.54	-0.58	0.10
4	-1.09	-0.39	-1.24	0.96	-0.79	-0.46
5	-0.56	0.01	-1.37	-0.91	-0.69	-0.04
6	-0.37	-0.10	-1.18	-0.55	-0.17	0.22
7	0.03	0.05	-0.40	-0.20	-0.11	0.49
8	0.07	-0.03	-0.48	-0.12	0.01	0.46
9	0.07	0.06	-0.40	0.05	0.00	0.51
10	0.07	0.06	-0.40	-0.05	0.00	0.51
C	0.32	0.32	0.38	-0.19	0.05	0.11
Synthetic Accessibility (SA) score is an estimation parameter of a drug designed to be synthesized on a laboratory scale. It was measured based on complexity, starting materials, or retrosynthetic-based [51]. SA score of ITC-designed ligands is between 2.14-2.51 for easily synthesized and natural-ITCs in 4.22 –4.38 for moderately categories (table 4). The 8 compound has an OR group in the para position where R is a tetrahydropryan molecule containing an acetate group. The therapeutic activity of ITC is also influenced by aromatic and aliphatic side chains [28]. In this regard, in the design of eugenol-ITC and cinnamaldehyde-ITC for malaria drug purposes, the substitution of tetrahydropryan, hydroxy, or acetate groups in the building block rings should be recommended to determine better anti-malaria potential.

Table 4: Boiled-egg permeation and synthetic accessibility properties of ligands

Ligand	Pharmacokinetics	SA	Ligand	Pharmacokinetics	SA
	SA			SA	
1	H		N	1.58	
2	H		N	1.71	
3	H		N	2.51	
4	H		N	1.61	
5	H		N	2.24	
6	H		N	2.14	

GIA: Gastrointestinal absorption, BBBp: Blood-brain barrier permant, P-gs: P-glycoprotein substrate, SA: Synthetics accessibility, H: High, Y: Yes, N: No

Table 5: Toxicity prediction of ligands

Ligand	OSIRIS prediction	Ligand	OSIRIS prediction						
	MP	TP	IP	RP		MP	TP	IP	RP
1	HR	HR	HR	NI	7	MR	MR	NI	MR
2	HR	HR	HR	NI	8**	MR	MR	NI	MR
3**	MR	MR	NI	MR	9	MR	MR	NI	MR
4	MR	HR	MR	NI	10	MR	MR	NI	MR
5	MR	MR	HR	MR	C	HR	NI	HR	NI
6**	MR	MR	NI	MR					

*HR: High Risk, MR: Medium Risk, NI: No Indication, MP: Mutagenic Prediction, TP: Tumorigenic Prediction, IP: Irritant Prediction, RP: Reproductive Prediction, **Good indication*

Eugenol and cinnamaldehyde have a methylene FG, allowing addition reactions to be carried out into various other ones. The double bond addition using thiocyanic acid will produce two isothiocyanate and thiocyanate with varying yields. Isothiocyanate compounds have been synthesized from Brazilian limonene by transforming terminal methylene groups using potassium thiocyanate (in chloroform) for 24 h reaction time [52].

Synthesis of ITC in several natural compounds using amine groups has also been successfully formed with raw materials noscapine, bile acids, amino acids, and several aromatic compounds performed by transforming the-NH2 group into an ITC group [53]. The natural product that has a triple bond group, -8,15-diisocyano-11(20)-amphilectene, has been isolated from the Caribbean sponge Svenzea flava and used as a building block to form isothiocyanate derivatives [54]. Various degrees of commercial amine (primary, secondary or tertiary), cyclic, aromatic,
and all amine positions (ortho, meta, or para) have been used to synthesize the ITC group by one-pot method and water-based at room temperature [55]. Separation and purification of ITC compounds are generally performed by column chromatography or preparative Thin Layer Chromatography. Its identification is implemented mainly by Infrared, Liquid Chromatography-Mass Spectrometry (LCMS), Gas Chromatography-Mass Spectrometry (GCMS), and High-Performance Liquid Chromatography-Mass Spectrometry [55–57] because these compounds are unstable.

CONCLUSION

Eugenol and cinnamaldehyde availability allow them to be the raw materials and building block for isothiocyanate compounds. *In silico* studies show that methyl eugenol isothiocyanate and cinnamaldehyde isothiocyanate are promising antimalarial compounds in terms of substituents variation such as natural isothiocyanates. This research is an invaluable essential reference for the synthesis of isothiocyanates as anti-malaria.

ACKNOWLEDGEMENT

This article is part of the doctoral thesis. Sincerely grateful to the Indonesian Ministry of Research and Technology/National Agency for Research and Innovation and the Indonesian Ministry of Education and Culture. Authors thank Universitas Brawijaya was supported through Hibah Guru Besar 2020-2021.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All authors have contributed equally.

CONFLICT OF INTERESTS

We declare that we have no conflict of interest.

REFERENCES

1. Hasjim H, Dale P, Groneberg DA, Kuch U, Müller R. Social determinants of malaria in an endemic area of Indonesia. Malar J. 2019;18(1):134. doi: 10.1186/s12936-019-2760-8, PMID 30979370.

2. Zheng J, Pan H, Gu Y, Zuo X, Ran N, Yuan Y, Zhang C, Wang F. Prospects for malaria vaccines: pre-erythrocytic stages, blood stages, and transmission-blocking stages. BioMed Res Int. 2019;2019:9751471. doi: 10.1152/2019/9751471, PMID 31687404.

3. Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, Masjedi A, Shahrivar F, Ahmadpour E. Prevention of malaria: a systematic review. Nanomedicine. 2019;18:221-33. doi: 10.18552/nano/2019/39/203032.

4. Pilar Santamarina M, Rosello J, Gimenez S, Amparo Blazquez M, Commercial Laurus nobilis L. and syzygium aromaticum L. Merr. & Perry essential oils against post-harvest phytopathogenic fungi using clove essential oil (Syzygium aromaticum L.) essential oil. Food Chem. 2019;74(1):18-27. doi: 10.1016/j.foodchem.2018.09.173, PMID 30495562.

5. Rogier E, Herman C, Huber CS, Hamre RES, Pierre B, Mace KE, Presume J, Mondeux G, Romulus I, Eisme T, Eisele TP, Drutz T. Malaria drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop. 2016;164:329-36. doi: 10.1016/j.actatropica.2016.09.008, PMID 27647575.

6. Singh V, Pahuja C, Ali M, Sultana S. Analysis and bioactivities of the flower buds of *Syzygium aromaticum* (L.) essential oil. Food Chem. 2019;276:180-6. doi: 10.1016/j.foodchem.2019.104405, PMID 31707126.
Daker M, Lin YV, Akowuah GA, Yam MF, Ahmad M. Inhibitory effects of Cinnamomum burmannii blume stem bark extract and trans-cinnamaldehyde on nasopharyngeal carcinoma cells; synergism with cisplatin. Exp Ther Med. 2013;5(6):1701-9. doi: 10.3892/etm.2013.1041, PMID 23837058.

HanlyAbdou OA, Ahmed RR, Ibrahim MA, Abdel-Gawad DRL. The anti-inflammatory influence of Cinnamomum burmannii against multi-walled carbon nanotube-induced liver injury in rats. Environ Sci Pollut Res Int. 2019;26(35):3606-72. doi: 10.1007/s11356-019-07607-5, PMID 31745806.

Leone A, Spada A, Battersz A, Schindli A, Arntz J, Bertoli S. Cultivation, genetic, ethnopharmacology, pharmacology and phytomedia of Moringa oleifera leaves: an overview. Int J Mol Sci. 2015;16(15):12791-83. doi: 10.3390/ijms160612791, PMID 26057747.

Kala C, Ali SS, Ahmad N, Jamal Giiani S, Ali Khan N. Isothiocyanates; a review. J Pharmacogn. 2019;5:71-89.

Kim HY, Gornawun G, Shin IS. Antibacterial activities of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root in liquid and vapor phases against 5 dominant bacteria isolated from low-salt Jeotgal, a Korean salted and fermented seafood. Food Sci Biotechnol. 2015;24(4):1405-12. doi: 10.1007/s10068-015-0180-2.

Ntalli N, Caboni P. A review of isothiocyanates biofumigation activity on plant-parasitic nematodes. Phytochem Rev. 2017;16(5):827-34. doi: 10.1007/s11101-017-9491-7.

Arumugam A, Abdull Razis AP. Aaptosis as a mechanism of the cancer chemopreventive activity of glucosinolates: a review. Asian Pac J Cancer Prev. 2018;19(16):1439-48. doi: 10.22034/JPACP.2018.19.16.1439, PMID 29936713.

Tripathi K, Hussein UK, Amupali R, Barnett R, Bachaboina L, Scalici J, Rocconi RP, Owen LB, Piazza GA, Palle K. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation. Oncotarget. 2015;6(7):5237-52. doi: 10.18632/oncotarget.5237, PMID 26057747.

Wu H, Feng JT, Lin KC, Zhang X. Antimicrobial properties activity on plant-parasitic nematodes. Phytochem Rev. 2017;16(5):827-34. doi: 10.1007/s11101-017-9491-7.

Ohba K, Sakai H. Molecular mechanisms of the anti-cancer effects of isothiocyanates from cruciferous vegetables in human tissues. J Chromatogr A. 2021;1643:1-16462060. doi: 10.1016/j.chroma.2021.12.080, PMID 32764897.

Sun N, Li B, Shao J, Mo W, Hu B, Shen Z, Hu X. A general and facile one-pot process of isothiocyanates from amines under aqueous conditions. Beilstein J Org Chem. 2012;8:61-70. doi: 10.3762/bjoc.8.6, PMID 22423272.

Rahmaharick P, Soliman MES. Bioinformatics-based tools in drug discovery: the cartography from single gene to integrative biological networks. Drug Discovery Today. 2016;21(Suppl):9:1658-65. doi: 10.1016/j.drudis.2015.03.041, PMID 26964527.

Ramirez D. Computational methods applied to rational drug design. Open Med Chem J. 2016;10:7-20. doi: 10.2174/187410441666101807007, PMID 27708723.

Zoete V, Grosdflier A, Michielin O. Docking, virtual high throughput screening and in silico fragment-based drug design. J Cell Mol Med. 2009;13(2):238-48. doi: 10.1111/j.1582-4934.2008.00665.x, PMID 19183238.

Garcia Godoy MJ, Lopez Camacho E, Garcia Nieto J, Del Ser J, Nebro AJ, Aldana Montes JF. Bio-inspired optimization for the molecular docking problem: State of the art, recent results and perspectives. Appl Soft Comput. 2019;79:30-45. doi: 10.1016/j.asoc.2019.03.044.

Quesne MG, Ward RA, de Visser SP. Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front Chem. 2013;1:1-10.39. doi: 10.3389/fchem.2013.00039, PMID 24790966.

Damiao MCFB, Pasquale KF, Polli MC, Parise Filho R. To be drug or prodrug: structure-property exploratory approach regarding oral bioavailability. J Pharm Sci. 2014;17(4):532-40. doi: 10.18433/j3b84h, PMID 25579432.

Jia CY, Li JF, Hao GF, Yang GF. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today. 2020;25(1):248-50. doi: 10.1016/j.drudis.2019.10.014, PMID 31705799.

Rouane A, Tchouar N, Kerasa A, Belaidi S, Cinar M. Structure-based virtual screening and drug-like of quercetin derivatives with anti-malaria activity. Rev Thor Res. 2017;5:1-11.

A CM. Determination of molecular property, bioactivity score and binding energy of the phytochemical compounds present in casia auriculata by molinspiration and DFT method. TJBMS 2017;2(2):8-22. doi: 10.21522/TJBM2016.02.02.Art002.

Nastase A, Vodnar DC, Ionut I, Stana A, Benedec D, Tamaian R, Oniga O, Tiberiu B. Antibacterial evaluation and virtual screening of new thiazolyl-triazole Schiff bases as potential DNA-gyrase inhibitors. Int J Mol Sci. 2018;19(11)-1-18: doi: 10.3390/ijms19110222; 19010222 PMID 29324679:1-18.

Sari DRT, Cairns JRC, Safirli A, Fatchiyah F. Virtual prediction of the delphinidin-3-O-glucoside andpeonidin-3-O-glucoside as anti-inflammatory of TNF-a Signaling. Acta Inform Med. 2019;27(3):152-7. doi: 10.5455/aim.2019.27.152-157, PMID 31762569.

Daina A, Zoete V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. Chem Med Chem. 2016;11(1):1171-21. doi: 10.1002/cmdc.201601082, PMID 27214927.

Boda K, Seidel T, Gasteiger I. Structure and reaction based evaluation of synthetic accessibility. J Comput Aided Mol Des. 2007;21(6):311-25. doi: 10.1007/s10822-006-9999-2, PMID 17294248.

Batista A, SAAlmeida Batista SA, Vandrenes F, Falzihori B, Britta E, de Oliveira DN, Catharino RR, Goncalves MA, Ramalho TC, La Porta FA, Nakamura CV, da Silva CC. Synthesis and comparison of antileishmanial and cytotoxic activities of S-(−)-limonen benzaldehyde thiosemicarbazones with their R-(+)-analogues. J Mol Struct. 2019;1179:252-62. doi: 10.1016/j.molstruc.2018.11.017.

Babanezhad Harikandei K, Salehi P, Ebrahimi SN, Bararjanian M, Kaiser M, Al-Harassia A. Synthesis, in vitro antiproteolytic activity and molecular docking study of isothiocyanate derivatives. Bioorg Med Chem. 2020;28(1):1-12:115185. doi: 10.1016/j.bmc.2019.115185, PMID 31794198.

Nieves K, Prudhomme J, Le Roch KG, Franblau SG, Rodriguez AD. Natural product-based synthesis of novel anti-isocyanate-isoxselenocyanate-functionalized amphotericine Biterpenes. Bioorg Med Chem Lett. 2016;26(3):854-7. doi: 10.1016/j.bmcl.2015.12.080, PMID 26748697.

Kim HY, Phan-a-god S, Shin I, Phan-a-god S, Shin IS. Antibacterial activities of isothiocyanates extracted from horseradish (Armoracia rusticana) root against Aantibiotic-resistant bacteria. Food Sci Biotechnol. 2015;24(3):1029–34. doi: 10.1007/s10068-015-0131-y.