Recent Evolution in the Management of Lymph Node Metastases in Melanoma

Shelby Breit, MS-3, Elise Foley, MS-3, Elizabeth Ablah, Ph.D., MPH1, Hayrettin Okut, Ph.D.1,2,3, Joshua Mammen, M.D., Ph.D., FACS4
1University of Kansas School of Medicine-Salina, Salina, KS
2Department of Population Health
3Office of Research
4University of Kansas School of Medicine-Kansas City, Department of Surgery, Kansas City, KS

Received Sept. 29, 2020; Accepted for publication Dec. 15, 2020; Published online March 19, 2021

ABSTRACT

Introduction. Based upon two large randomized international clinical trials (German Dermatologic Cooperative Oncology Group (DeCOG-SLT) and Multicenter Selective Lymphadenectomy Trial II (MSLT-II)) published in 2016 and 2017, respectively, active surveillance has been demonstrated to have equivalent survival outcomes to completion lymphadenectomy (CLND) for a subset of patients who have microscopic lymph node disease. In this study, the changes in national practice patterns were examined regarding the utilization of CLND after positive sentinel lymph node biopsy (SLNB).

Methods. Using the National Cancer Database, CLND utilization was examined in SLN-positive patients diagnosed with melanoma between 2012 and 2016. A hierarchal logistical regression model with hospital-level random intercepts was constructed to examine the factors associated with SLNB followed by observation vs. SLNB with CLND.

Results. Of the 148,982 patients identified, 43% (n = 63,358) underwent SLNB and 10.3% (n = 6,551) had a SLNB with microscopic disease. CLND was performed for 57% (n = 2,817) of these patients. Patients were more likely to undergo CLND if they were ≤ 55 years of age (OR, 1.454; p ≤ 0.0001), ages 56 - 65 (OR, 1.127; p = 0.026), Charlson Deyo Score = 0 (OR, 2.088; p = 0.043), or were diagnosed with melanoma in 2012 (OR, 2.259; p ≤ 0.0001).

Conclusions. The utilization of CLND among patients with microscopic nodal melanoma was significantly lower in 2016 compared to 2012. Younger age, lack of comorbidities, and primary tumor location on the trunk or head/neck were associated with higher utilization of CLND. Kans J Med 2021;14:64-72

INTRODUCTION

Melanoma is a malignant tumor typically of the skin that arises from the proliferation of melanocytes. The incidence of melanoma in the United States has increased from 1980 to 25.83 cases per 100,000 persons in 2012 and 2016, respectively, active surveillance has been demonstrated to have equivalent survival outcomes to completion lymphadenectomy (CLND) for a subset of patients who have microscopic lymph node disease. In this study, the changes in national practice patterns were examined regarding the utilization of CLND after positive sentinel lymph node biopsy (SLNB).

Methods. Using the National Cancer Database, CLND utilization was examined in SLN-positive patients diagnosed with melanoma between 2012 and 2016. A hierarchal logistical regression model with hospital-level random intercepts was constructed to examine the factors associated with SLNB followed by observation vs. SLNB with CLND.

Results. Of the 148,982 patients identified, 43% (n = 63,358) underwent SLNB and 10.3% (n = 6,551) had a SLNB with microscopic disease. CLND was performed for 57% (n = 2,817) of these patients. Patients were more likely to undergo CLND if they were ≤ 55 years of age (OR, 1.454; p ≤ 0.0001), ages 56 - 65 (OR, 1.127; p = 0.026), Charlson Deyo Score = 0 (OR, 2.088; p = 0.043), or were diagnosed with melanoma in 2012 (OR, 2.259; p ≤ 0.0001).

Conclusions. The utilization of CLND among patients with microscopic nodal melanoma was significantly lower in 2016 compared to 2012. Younger age, lack of comorbidities, and primary tumor location on the trunk or head/neck were associated with higher utilization of CLND. Kans J Med 2021;14:64-72

INTRODUCTION

Melanoma is a malignant tumor typically of the skin that arises from the proliferation of melanocytes. The incidence of melanoma in the United States has increased from 10.51 cases per 100,000 persons in 1980 to 25.83 cases per 100,000 persons in 2016, and is predicted to increase to 31.15 cases per 100,000 persons in 2020. Melanoma can present at any age, with the highest incidence among those aged 60-70 years. The American Cancer Society estimates that 75,150 new cases of melanoma will be diagnosed in the United States in 2021, resulting in an estimated 10,180 deaths. Mortality from melanoma is higher among men and those with larger tumors. Melanoma is the most common cause of death for those with skin of color.

CLND can be associated with high morbidity, with the occurrence of complications ranging from 11% - 73%. Consequently, there have been several studies that have sought to determine if it is safe to avoid CLND for patients following a positive SLNB, including two large randomized control trials (RCTs): the German Dermatologic Cooperative Oncology Group (DeCOG-SLT) and the Multicenter Selective Lymphadenectomy Trial II (MSLT-II). The results of these two RCTs comparing CLND with observation demonstrated no difference in overall survival at three years, suggesting that CLND did not provide additional benefit among patients diagnosed with nodal metastasis. Both trials were limited by relatively short follow-up, and the favorable histologic characteristics of the patients enrolled.

A study evaluating the usage of CLND among patients diagnosed with melanoma from 2004 to 2005 reported that 50% of patients with a positive SLNB underwent a CLND, suggesting that clinicians were foregoing CLND for some patients. However, few studies have examined the practice patterns and trends in the performance of CLND among patients after a positive SLNB, with respect to frequency and patient factors. Our study objectives were to: 1) examine the national trends and practice patterns regarding the utilization of CLND among patients after a positive SLNB, and 2) identify which patient and tumor characteristics were associated with undergoing a CLND and those associated with observation after a positive SLNB.

METHODS

Participants. A cross-sectional study was conducted using the National Cancer Database (NCDB) to include patients 18 years or older who were diagnosed with melanoma between 2012 and 2016, as classified by the World Health Organization’s International Classification of Disease for Oncology (ICD-O), 3rd edition. Patients with metastatic disease, clinically positive lymph nodes, and carcinoma in situ were excluded.

Instrument. This study was considered “Not Human Subjects” by the Human Subjects Committee at the University of Kansas School of Medicine-Wichita. The NCDB, established in 1988, is a joint program of the American College of Surgeons Commission on Cancer (CoC) and the American Cancer Society (ACS) that collects data on approximately 70% of all cancer diagnoses annually. Cases were abstracted from the 2016 NCDB Adult Participant Use Data File, the most recent year of available data. The NCDB Participant Use Data File contains de-identified, Health Insurance Portability, and Accountability Act (HIPPA)-compliant data and are available to investigators affiliated with CoC-accredited programs.
Clinically relevant factors included gender, age (≤55 years, 56–65 years, 66–75 years, >75 years), race (white, non-white), insurance status (private, not insured, Medicaid, Medicare, other government insurance), quartile of median household income (<$38,000, $38,000–$47,999, $48,000–$62,999, and ≥$63,000), the number of comorbid conditions based on the Charlson-Deyo Score (0, 1, 2, and ≥3), year of melanoma diagnosis (2012–2016), Breslow thickness (<1.00 mm, 1.01–2.00 mm, 2.01–4.00 mm, ≥4.01 mm), the presence or absence of ulceration, and the primary location of the tumor (head, trunk, upper extremity, and lower extremity).

Surgical Procedure and Nodal Evaluation. The Facility Oncology Registry Data Standards (FORDS) were used to define regional lymph node evaluation and the surgical procedure(s) performed. Before January 1, 2012, the variable, “Scope of Regional LN Surgery”, had been used. However, the coding instructions for this variable led to the inability to distinguish SLNB alone or SLNB + CLND, leading to concerns of the under-reporting of procedures performed. A joint committee comprised of the Commission on Cancer (CoC), National Cancer Institute’s Surveillance Epidemiology and End Results (SEER), and North American Association of Central Cancer Registries (NAACCR) created a new variable, “Scope of Regional LN Surgery 2012”, that created the distinction between type of surgeries performed. “Scope of Regional LN Surgery 2012”, which was used in the current study, was coded as SLNB alone or SLNB with CLND. Cases were abstracted by Certified Tumor Registrars using NAACCR-approved software. Breslow thickness, primary site, and presence or absence of ulceration were evaluated using the Collaborative Stage Data Collection System.

Statistical Analysis. Data were analyzed using SAS version 9.4 (SAS Int. Inc., Cary, NC). Frequencies and percentages were reported for all categorical data. A hierarchical logistic regression model with hospital-level random intercepts that accounted for the clustering of patients within hospitals was constructed to examine the factors associated with SLNB followed by observation vs. SLNB with CLND. Cases were abstracted by Certified Tumor Registrars using NAACCR-approved software. Breslow thickness, primary site, and presence or absence of ulceration were evaluated using the Collaborative Stage Data Collection System.

RESULTS

A total of 265,127 patients were diagnosed with melanoma between January 1, 2012, and December 31, 2016. After excluding patients with distant metastatic disease, clinically positive lymph nodes, and carcinomas in situ or unknown American Joint Committee on Cancer (AJCC) staging, the final cohort contained 148,982 patients from 1,343 CoC-accredited facilities.

Of these patients, 42.5% (n = 63,358) underwent a SLNB (Table 1). Among patients who underwent a SLNB, 10.3% (n = 6,551) also had at least one lymph node with metastatic disease. Among those with a positive SLNB, 60% (n = 3,928) were male, and their mean age was 59 (SD = 15) years. Fifty-four percent (n = 3,517) of those with a positive SLNB were privately insured, 37% (n = 2,395) had Medicare, and 3% percent (n = 185) were uninsured. For 37% (n = 2,448) of patients, the trunk was the location of the primary site, making it the most common location in those with a positive SLNB. The head region comprised 14% (n = 949) of primary site cases.

Forty-three percent (n = 2,817) of patients with a positive SLNB had no further surgery, whereas 57% (n = 3,737) of patients with a positive SLNB underwent CLND. Among those who underwent CLND, 61% (n = 2,265) were male, and their mean age was 56 (SD = 15) years. Among those who underwent observation after positive SLNB, 59% (n = 1,663) were male, and their mean age was 62 (SD = 16) years. Fifty-nine percent (n = 2,186) of patients who underwent CLND were privately insured, whereas 48% (n = 1,331) of those who underwent observation after a positive SLNB were privately insured. Twenty-six percent (n = 966) of patients who underwent CLND had a Breslow thickness of ≥4.01 mm, whereas 31% (n = 875) of patients who underwent observation after positive SLNB had a Breslow thickness of 2.01–4.00 mm. In the unadjusted analysis, patient sex, age, insurance status, median household income, education, year of diagnosis, Breslow thickness, ulceration, and location were significantly different between individuals forgoing CLND after a positive SLNB and patients receiving a CLND after a positive SLNB (all p values < 0.05). Additional patient and tumor characteristics are detailed in Tables 1 and 2.

Use of Completion Lymph Node Dissection. Of the 148,982 patients identified, 42.5% underwent a SLNB (63,358), and 43% (n = 65,551) of those had a metastatic lymph node on final pathology (Figure 1). Overall, CLND was performed in 57% of cases (n = 3,734), but this frequency decreased over time. In 2012, 63% (n = 716) of patients underwent CLND after positive SLNB, decreasing to 48% (n = 719; p ≤ 0.0001) of patients undergoing CLND after positive SLNB in 2016.

Logistic regression analysis was employed to assess the impact of several predictor variables on the likelihood that a patient would or would not undergo CLND after a positive SLNB (Table 3). Patients were significantly more likely to undergo CLND if they were younger than or equal to 55 years of age (OR = 1.454; p ≤ 0.0001), between the ages of 56–65 (OR = 1.127; p = 0.026) or had a Charlson-Deyo Score of 0 (OR = 2.088; p = 0.043). Regarding location, patients were significantly more likely to undergo CLND if the primary tumor was located in the head region (OR = 1.238; p = 0.0002) or on the trunk region (OR = 1.71; p = 0.0002). Patients were more likely to undergo CLND if they were diagnosed with melanoma in 2012 (OR = 1.172; p ≤ 0.0001). Patients were more likely to undergo CLND if they had private insurance (OR = 1.172; p = 0.026). There was no statistical difference between those individuals who had Medicaid and Medicare.
Table 1. Characteristics of 63,358 patients with melanoma who underwent SLNB.

	All Patients Receiving a SLNB (n = 63,358)	All Patients Receiving a SLNB with a Metastatic Lymph Node on SLNB (n = 6,551)	Observation After Positive SLNB (no CLND) (n = 2,817)	CLND After Positive SLNB (n = 3,734)	p value*
Gender					
Male	36,870 (58.2%)	3,928 (60.0%)	1,663 (59.0%)	2,265 (60.0%)	<0.001
Female	26,488 (41.2%)	2,623 (40.0%)	1,154 (41.0%)	1,469 (39.0%)	<0.001
Age					
Median, y (IQR)	60.6	58.7	61.6	56.4	<0.001
<55 y	21,798 (34.4%)	2,625 (40.1%)	940 (33.4%)	1,685 (45.1%)	
56 - 75 y	15,837 (23.3%)	1,558 (23.8%)	641 (22.7%)	917 (24.6%)	
>75 y	10,960 (17.3%)	1,019 (15.5%)	620 (22.0%)	399 (10.7%)	
Race					0.289
White	62,115 (98.7%)	6,387 (98.0%)	2,746 (98.0%)	3,641 (98.0%)	
Non-White	801 (1.3%)	130 (2.0%)	56 (2.0%)	74 (2.0%)	
Insurance Status					<0.001
Not-insured	1,281 (2.0%)	185 (2.8%)	67 (2.4%)	118 (3.2%)	
Private	33,842 (54.0%)	3,517 (54.2%)	1,331 (47.7%)	2,186 (59.1%)	
Medicaid	1,903 (3.0%)	312 (4.8%)	121 (4.3%)	191 (5.2%)	
Medicare	24,906 (39.7%)	2,395 (36.9%)	1,235 (44.3%)	1,160 (31.4%)	
Other Government	807 (1.3%)	77 (1.2%)	36 (1.3%)	41 (1.1%)	
Median Household Income					
>$63,000	25,830 (40.1%)	2,374 (36.3%)	1,067 (38.0%)	1,307 (35.0%)	<0.001
$48,000 - $62,000	17,992 (28.5%)	1,963 (30.0%)	814 (28.9%)	1,149 (30.8%)	<0.001
$38,000 - $47,999	12,940 (20.5%)	1,456 (22.2%)	600 (21.3%)	856 (23.0%)	<0.001
<$38,000	6,488 (10.3%)	750 (11.5%)	333 (11.8%)	417 (11.2%)	0.001
Education (% without a HS diploma)					<0.001
<7%	21,204 (33.5%)	1,994 (30.5%)	876 (31.1%)	1,118 (30.0%)	
7% - 12.9%	22,764 (33.4%)	2,433 (37.2%)	1,015 (36.1%)	1,418 (38.0%)	<0.001
13% - 20.9%	13,457 (21.3%)	1,417 (22.5%)	614 (21.2%)	857 (23.0%)	<0.001
>21%	5,858 (9.3%)	647 (4.9%)	310 (11.0%)	337 (9.0%)	0.004
Charlson-Deyo Score					
0	53,136 (83.9%)	5,362 (81.8%)	2,250 (79.9%)	3,112 (83.3%)	<0.001
1	8,027 (12.7%)	913 (13.9%)	415 (14.7%)	498 (13.3%)	0.001
2	1,573 (2.5%)	185 (2.8%)	102 (3.6%)	83 (2.2%)	0.112
>3	622 (0.9%)	91 (1.4%)	50 (1.8%)	41 (1.1%)	0.239
Year of Diagnosis					
2012	11,316 (17.7%)	1,133 (17.3%)	417 (14.8%)	716 (19.2%)	0.001
2013	12,048 (19.0%)	1,224 (18.7%)	498 (17.7%)	726 (19.4%)	<0.001
2014	12,902 (20.4%)	1,330 (20.3%)	545 (19.3%)	785 (21.0%)	<0.001
2015	13,437 (21.2%)	1,363 (20.8%)	575 (20.4%)	788 (21.1%)	<0.001
2016	13,635 (21.5%)	1,501 (22.9%)	782 (27.8%)	719 (19.3%)	<0.001
Table 1. Characteristics of 63,358 patients with melanoma who underwent SLNB, continued.

Tumor Characteristic	All Patients Receiving a SLNB (n = 63,358)	All Patients Receiving a SLNB with a Metastatic Lymph Node on SLNB (n = 6,551)	Observation After Positive SLNB (no CLND) (n = 2,817)	CLND After Positive SLNB (n = 3,734)	p value*
Breslow Thickness	<0.001				
Median, mm (IQR)	2.02	3.12	3.05	3.17	
>1.00mm	21,621 (34.4%)	850 (13.1%)	382 (33.7%)	468 (12.6%)	
1.01 - 2.00mm	22,283 (35.5%)	1,956 (30.1%)	854 (30.6%)	1,102 (29.7%)	
2.01 - 4.00mm	11,841 (18.9%)	2,044 (31.5%)	875 (31.4%)	1,169 (31.5%)	
>4.01mm	7,039 (11.2%)	1,645 (25.3%)	679 (24.3%)	966 (26.1%)	
Ulceration	<0.001				
Present	14,946 (24.0%)	2,750 (42.4%)	1,167 (41.8%)	1,583 (42.8%)	<0.001
Absent	47,456 (76.0%)	3,742 (57.6%)	1,624 (58.2%)	2,118 (57.2%)	<0.001
Location	<0.001				
Head/Ear/Lip/Neck	12,148 (19.2%)	949 (14.4%)	378 (13.4%)	571 (15.3%)	
Trunk	20,077 (31.7%)	2,448 (37.4%)	921 (32.7%)	1,527 (40.1%)	
Upper Extremity	18,347 (29.0%)	1,452 (22.2%)	613 (21.8%)	839 (22.5%)	
Lower Extremity	12,786 (20.1%)	1,702 (26.0%)	905 (32.1%)	797 (21.3%)	

*Missing data for race (n = 442), insurance status (n = 619), median household income (n = 588), education (n = 75), Breslow Thickness (n = 574), Ulceration (n = 956)

Table 2. Factors associated with CLND (compared with observation).

Predictor	p value	Odds Ratio
Sex		
Male (Ref)		(Ref)
Female	0.993	1.00
Age		
>75 (Ref)		(Ref)
=55	<0.001	0.687
56 - 65	0.023	0.886
66 - 74	0.137	0.919
Race		
White (Ref)		(Ref)
Non-White	0.507	0.939
Insurance Status		
Other Government (Ref)		(Ref)
Not-insured	0.837	0.972
Private	0.024	0.853
Medicaid	0.5756	0.938
Medicare	0.500	1.060
Median Household Income		
>$63,000 (Ref)		(Ref)
<$38,000	0.235	0.919
$38,000 - $47,999	0.410	0.929
$48,000 - $62,000	0.868	0.992
Table 2. Factors associated with CLND (compared with observation). continued.

Predictor	p value	Odds Ratio
Education (% without a HS diploma)		
<7%	(Ref)	(Ref)
>21%	<0.001	1.301
13% - 20%	0.415	0.958
7% - 12.9%	0.005	0.881
Charleson Deyo Score		
3	(Ref)	(Ref)
0	0.043	0.859
1	0.086	0.862
2	0.246	1.164
Year of Diagnosis		
2016	(Ref)	(Ref)
2012	<.001	0.794
2013	0.123	0.92
2014	0.119	0.922
2015	0.863	1.01
Breslow Thickness		
>4.01 mm	(Ref)	(Ref)
<1.00 mm	0.017	1.153
1.01 - 2.00mm	0.388	1.04
2.01 - 4.00mm	0.672	0.982
Ulceration		
Present	(Ref)	(Ref)
Absent	0.081	1.052
Primary Site		
Lower Extremity	(Ref)	(Ref)
Head/Ear/Lip/Neck	<.001	0.807
Trunk	<.001	0.853
Upper Extremity	0.081	0.919

Figure 1. Flowchart of inclusion and exclusion criteria.
Table 3. Factors associated with undergoing CLND.

Predictor	β	Wald χ²	p	Odds Ratio
Sex				
Male (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
Female	0.001	0.002	0.968	1.001
Age				
> 75 (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
≤ 55	0.374	43.16	< 0.0001	1.454
56 - 65	0.119	4.974	0.026	1.127
66 - 74	0.085	2.227	0.136	1.089
Race				
White (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
Non-White	0.061	0.462	0.519	1.063
Insurance Status				
Other Government (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
Not-insured	0.284	0.041	0.839	1.03
Private	0.159	4.939	0.026	1.172
Medicaid	0.067	0.339	0.561	1.067
Medicare	-0.060	0.480	0.488	0.941
Median Household Income				
≥ $63,000 (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
< $38,000	0.085	1.401	0.236	1.088
$38,000 - $47,999	0.042	0.683	0.408	1.043
$48,000 - $62,000	0.007	0.026	0.872	1.008
Education (% without a HS diploma)				
< 7% (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
> 21%	-0.264	12.306	0.0005	0.768
13% - 20.9%	0.042	0.065	0.419	1.043
7% - 12.9%	0.127	7.834	0.005	1.136
Charleston Deyo Score				
3 (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
0	0.152	4.067	0.043	1.164
1	0.149	2.071	0.084	1.161
2	-0.152	1.352	0.244	0.859
Year of Diagnosis				
2016 (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
2012	0.231	16.685	< 0.0001	1.259
2013	0.082	2.312	0.128	1.086
2014	0.082	2.426	0.119	1.085
2015	-0.008	0.002	0.867	0.991
Breslow Thickness				
≥ 4.01 mm (Ref)	(Ref)	(Ref)	(Ref)	(Ref)
< 1.00 mm	-0.142	5.682	0.017	0.867
1.01 - 2.00 mm	-0.039	0.744	0.388	0.962
2.01 - 4.00 mm	0.018	0.179	1.019	0.982
CLND has been the standard of care for clinically node-negative patients with SLN positive melanoma since the early 1990s. However, there has been a growing trend in favor of omitting CLND for melanoma patients with a positive SLNB. Given that more than 80% of sentinel lymph node-positive patients have disease limited to the sentinel node, SLNB is thought to have both diagnostic and therapeutic value, potentially eliminating the need for a further, more extensive surgery.

The first objective of this study was to examine the national trends and practice patterns regarding the utilization of CLND in patients after a positive SLNB. From 2012 to 2016, 57% of patients underwent a CLND following a positive SLNB. Patient age (≤ 55 years of age, and between 55 and 65 years of age), tumor location (head/neck region and trunk), year of diagnosis (2012), and total number of comorbidities (Charlson-Deyo Score = 0) were significantly associated with patients electing to undergo a CLND after a positive SLNB.

Two landmark clinical trials, DeCOG-SLT and MSLT-II, were conducted to determine what, if any, therapeutic role CLND had in the treatment of melanoma patients with lymph node metastases. These trials demonstrated that CLND provided no melanoma-specific survival advantage compared to observation following a positive SLNB, suggesting that SLNB in concordance with observation may be sufficient for a subset of patients. As evidence grows that consensus on an optimal model that could be applied in clinical practice.

The second objective of our study was to examine factors associated with undergoing CLND. Our research found that patients were more likely to undergo a CLND if they were younger (< 65 years), had a primary tumor on the trunk or head/neck, had no comorbidities, or underwent primary resection in 2012. Previous studies have identified multiple factors associated with undergoing CLND including age, tumor location, and Breslow thickness. One study suggested that patients were more likely to forgo a CLND if they were older (> 55 years), had multiple comorbidities, had a lower extremity primary tumor location, or underwent primary resection in 2015. Another study found a lower likelihood of undergoing CLND in patients with a positive SLNB if the patients were older (> 75 years), had a primary tumor location.
on the lower extremity and Breslow thickness ≤ 1.00 mm, CLND is avoided in older patients due to the high postoperative risks. The finding that patients were more likely to undergo CLND if the primary tumor was on the trunk or head/neck likely reflects the high complication rate following inguinal node dissection and a tendency to avoid those dissections. Inguinal node dissections are associated with more extended hospital stays, increased wound infection, and delayed wound healing. Finally, though we described the alternative to surgery to be observation, we did not have documentation of the observation strategy implemented for each patient. In fact, the alternative to surgery may have been, for at least some patients, no further evaluation of the concerning lymph node basin.

In the future, it will be essential to continue to monitor the change in national practice patterns concerning the utilization of CLND, in particular, that patients with minimal tumor burden are offered the choice of nodal observation via ultrasound (active surveillance) versus CLND. Additionally, the utilization of CLND should be monitored in patients with more significant tumor burden who are considered a “high risk” subgroup.

CONCLUSIONS

The utilization of CLND among patients with microscopic nodal melanoma was significantly lower in 2016 compared to 2012. Younger age, lack of comorbidities, and primary tumor location on the trunk or head/neck were associated with higher utilization of CLND.

ACKNOWLEDGMENTS

We would like to acknowledge Holly Zink in the Department of Surgery at the University of Kansas for her critical review of this manuscript.

REFERENCES

1. Matthews NH, Li WQ, Qureshi AA, Weinstock MA, Cho E. Epidemiology of Melanoma. In: Ward WH, Farma JM. (Eds.) Cutaneous Melanoma: Etiology and Therapy. Brisbane, Australia: Codon Publications, 2017. PMID: 29461782.

2. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review 1975-2017. SEER Cancer Statistics Review, 1975-2017. Bethesda, MD: National Cancer Institute, 2020.

3. Guy GP Jr, Thomas CC, Thompson T, Watson M, Massetti GM, Richardson LC. Vital signs: Melanoma incidence and mortality trends and projections - United States, 1982-2030. MMWR Mortal Wldy Rep 2015; 64(2):59-596. PMID: 26042651.

4. Whiteman DC, Green AC, Olsen CM. The growing burden of invasive melanoma: Projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol 2016; 136(6):1161-1171. PMID: 26902923.

5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1):7-34. PMID: 30620402.

6. Swetter SM, Sabet-Kashani M, Johannet P, Reddy S, Phillips Locke T. Melanoma. In: Liebel and Phillips Textbook of Radiation Oncology, Philadelphia, PA: Elsevier Saunders, 2010, pp 1439-1472. ISBN: 9781416058977.

7. Angeles CV, Kang R, Shirai K, Wong SL. Meta-analysis of completion lymph node dissection in sentinel lymph node-positive melanoma. Br J Surg 2019; 106(6):672-681. PMID: 30992591.

8. Morton DL, Thompson JF, Cochran AJ, et al. Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med 2006; 355(13):1307-1317. PMID: 17005948.

9. Fairies MB, Thompson JF, Cochran AJ, et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med 2017; 376(23):2211-2222. PMID: 28591523.

10. Hieken TJ, Kane JM 3rd, Wng SL. The role of completion lymph node dissection for sentinel lymph node-positive melanoma. Surg Oncol 2019; 26(4):1028-1034. PMID: 30284132.

11. Eiger D, Oliveira DA, Oliveira RL, Sousa MC, Brandao MDC, Oliveira Filho RS. Complete lymphadenectomy following positive sentinel lymph node biopsy in cutaneous melanoma: A critical review. An Bras Dermatol 2018; 93(4):553-558. PMID: 30066763.

12. Namj S, Chang AE, Cimmimo VM, Imes RS, Johnson TM, Sabel MS. Is a level III dissection necessary for a positive sentinel lymph node in melanoma? J Surg Oncol 2012; 105(3):225-228. PMID: 21882199.

13. Ul-Mulk J, Holmich LI. Lymph node dissection in patients with malignant melanoma is associated with high risk of morbidity. Dan Med J 2012; 59(6):A4441. PMID: 22677239.

14. Wrightson WR, Wong SL, Edwards MJ, et al. Complications associated with sentinel lymph node biopsy for melanoma. Ann Surg Oncol 2003; 10(6):676-680. PMID: 12839853.

15. Guggenheim MM, Hug U, Jung FJ, et al. Morbidity and recurrence after completion lymph node dissection following sentinel lymph node biopsy in cutaneous malignant melanoma. Ann Surg 2008; 247(4):687-693. PMID: 18362633.

16. Leiter U, Stadler R, Mauch C, et al. Survival of SLNB-positive melanoma patients with and without complete lymph node dissection: A multicenter, randomized DECOG trial. J Clin Oncol 2015; 33(18 suppl):LBA9002.

17. Leiter U, Stadler R, Mauch C, et al. Complete lymph node dissection versus no dissection in patients with sentinel lymph node biopsy positive melanoma (DeCOG-SLT): A multicentre, randomised, phase 3 trial. Lancet Oncol 2016; 17(6):757-767. PMID: 2716539.

18. Bilimoria KY, Balch CM, Bentrem DJ, et al. Complete lymph node dissection for sentinel node-positive melanoma: Assessment of practice patterns in the United States. Ann Surg Oncol 2008; 15(6):1566-1576. PMID: 18414952.

19. World Health Organization. International Classification of Diseases for Oncology, Third Edition, First Revision. Lyon, France: World Health Organization, 2013.

20. Winchester DP, Stewart AK, Bura C, Jones RS. The National Cancer Data Base: A clinical surveillance and quality improvement tool. J Surg Oncol 2004; 85(1):1-3. PMID: 14696080.

21. American College of Surgeons. Facility Oncology Registry Data Standards (FORDS): Revised for 2016. https://www.facs.org/quality-programs/cancer/ocrd registmanuals/ocrcmanuals.html. Accessed July 8, 2019.

22. Commission on Cancer. Scope of regional lymph node surgery: A review of data validity, revised coding directives and agency transition plans. 2012.

23. Schuettevoerder D, Bubic I, Fortino J, Massimino KP, Vetto JT. Patients with sentinel lymph node positive melanoma: Who needs completion lymph node dissection? Am J Surg 2018; 215(5):868-872. PMID: 29397888.

24. Pasquali S, Moccellin S, Mozillo N, et al. Nonsentinel lymph node status in patients with cutaneous melanoma: Results from a multi-institutional prognostic study. J Clin Oncol 2014; 32(9):935-941. PMID: 24516022.

25. Gonzalez A. Sentinel lymph node biopsy: Past and present implications for the management of cutaneous melanoma with nodal metastasis. Am J Dermatol 2018; 19(Suppl D):24-30. PMID: 30074897.

26. Bartlett EK. Current management of regional lymph nodes in patients with melanoma. J Surg Oncol 2019; 119(2):200-207. PMID: 30481384.

27. Hewitt DB, Merkow RP, DeLancey JG, et al. National practice patterns of completion lymph node dissection for sentinel node-positive melanoma. J Surg Oncol 2018; 118(3):493-500. PMID: 30098302.

28. Gershwenwald JE, Andtbacka RH, Prieto VG, et al. Microsurgical tumor burden in sentinel lymph nodes predicts synchronous nonsentinel lymph node involvement in patients with melanoma. J Clin Oncol 2008; 26(26):4296-4303. PMID: 18606982.

29. Aryan C, Brady MS, Gonen M, Busam K, Coit D. Positive nonsentinel node status predicts mortality in patients with cutaneous melanoma. Ann Surg Oncol 2009; 16(10):3076-3083. PMID: 19877135.

30. Cascinelli N, Bombardieri E, Bufalino R, et al. Sentinel and nonsentinel node status in stage IB and II melanoma patients: Two-step prognostic indicators of survival. J Clin Oncol 2006; 24(27):4464-4471. PMID: 16983115.

31. Gladeri AA, Wong SL, Johnson TM, et al. Prognostic significance of a positive nonsentinel lymph node in cutaneous melanoma. Ann Surg Oncol 2009; 16(11):2978-2984. PMID: 1971133.
Leung AM, Morton DL, Ozao-Choy J, et al. Staging of regional lymph nodes in melanoma: A case for including nonsentinel lymph node positivity in the American Joint Committee on Cancer staging system. JAMA Surg 2013; 148(9):879-884. PMID: 23903435.

Madu MF, Wouters MW, van Akkooi AC. Sentinel node biopsy in melanoma: Current controversies addressed. Eur J Surg Oncol 2017; 43(3):517-533. PMID: 27590685.

Dewar DJ, Newell B, Green MA, Topping AP, Powell BW, Cook MG. The microanatomic location of metastatic melanoma in sentinel lymph nodes predicts nonsentinel lymph node involvement. J Clin Oncol 2004; 22(16):3345-3349. PMID: 15310779.

Starz H, Balda BR, Kramer KU, Buchels H, Wang H. A micromorphology-based concept for routine classification of sentinel lymph node metastases and its clinical relevance for patients with melanoma. Cancer 2001; 91(1):2110-2121. PMID: 11391592.

van Akkooi AC, Nowecki ZI, Voit C, et al. Sentinel node tumor burden according to the Rotterdam criteria is the most important prognostic factor for survival in melanoma patients: A multicenter study in 388 patients with positive sentinel nodes. Ann Surg 2008; 248(6):949-955. PMID: 19092339.

Shah DR, Yang AD, Maverakis E, Martinez SR. Age-related disparities in use of completion lymphadenectomy for melanoma sentinel lymph node metastasis. J Surg Res 2013; 185(1):240-244. PMID: 23809182.

Cormier JN, Xing Y, Ding M, et al. Population-based assessment of surgical treatment trends for patients with melanoma in the era of sentinel lymph node biopsy. J Clin Oncol 2005; 23(25):6054-6062. PMID: 16135473.

Kingham TP, Panageas KS, Ariyan CE, Busam KJ, Brady MS, Coit DG. Outcome of patients with a positive sentinel lymph node who do not undergo completion lymphadenectomy. Ann Surg Oncol 2010; 17(2):514-520. PMID: 19924486.

Bello DM, Faries MB. The Landmark Series: MSLT-1, MSLT-2 and DeCOG (Management of Lymph Nodes). Ann Surg Oncol 2020; 27(1):15-21. PMID: 31535299.

Keywords: melanoma, lymph node, lymphadenectomy, sentinel lymph node biopsy, neoplasm