Dirac δ-function potential in quasiposition representation of a minimal-length scenario

M. F. Gusson, A. Oakes O. Gonçalves, R. O. Francisco
R. G. Furtado, J. C. Fabris* and J. A. Nogueira†

Departamento de Física, Centro de Ciências Exatas
Universidade Federal do Espírito Santo – UFES
29075-910 – Vitória – ES – Brasil

Abstract

A minimal-length scenario can be considered as an effective description of quantum gravity effects. In quantum mechanics the introduction of a minimal length can be accomplished through a generalization of Heisenberg’s uncertainty principle. In this scenario, state eigenvectors of the position operator are no longer physical states and the representation in momentum space or a representation in a quasiposition space must be used. In this work, we solve the Schroedinger equation with Dirac δ-function potential in quasiposition space. We calculate the bound state energy and the coefficients of reflection and transmission for scattering states. We show that leading corrections are of order of the minimal length ($O(\sqrt{\beta})$) and the coefficients of reflection and transmission are no longer the same for the Dirac delta well and barrier as in ordinary quantum mechanics. Furthermore, assuming that the equivalence of the 1s state energy of the hydrogen atom and the bound state energy of the Dirac δ-function potential in 1-dim is kept in a minimal-length scenario, we also find that the leading correction term for the ground state energy of the hydrogen atom is of order of the minimal length and $\Delta x_{min} \leq 10^{-25}$ m.

Keywords: Minimal length generalized uncertainty principle Dirac delta-function potential

PACS 12.60.i PACS 03.65.Sq PACS 04.20.Cv PACS 03.65.Ca

1 Introduction

Gravity quantization has become a huge challenge to theoretical physicists. Despite enormous efforts employed, so far, it was not possible to obtain a theory which can be considered suitable and not even a consensus approach. Nevertheless, most of the candidate theories to
gravity quantization seem to have one common point: the prediction of the existence of a minimal length, that is, a limit for the precision of a length measurement.

Although the first proposals for the existence of a minimal length were done by the beginning of 1930s [1–3], they were not connected with the quantum gravity, but instead of this with a nature cut-off that would remedy cumbersome divergences arising from quantization of systems with an infinite number of degrees of freedom. The relevant role that gravity plays in trying to probe a smaller and smaller region of the space-time was recognized by M. Bronstein [4] already in 1936, however his works did not attract a lot of attention. It was only in 1964 that C. A. Mead [5, 6] once again proposed a possible connection between gravitation and minimal length. Hence, we can assume that gravity may lead to an effective cut-off in the ultraviolet. Furthermore, if we are convinced that gravitational effects are considered when a minimal length is introduced then a minimal-length scenario could be thought of as an effective description of quantum gravity effects [7].

As far as we know, the introduction of a minimal-length scenario can be carried out through three different way [7–9]: a generalization of the Heisenberg’s uncertainty principle (GUP), a deformation of the special relativity (DSR) and a modification of the dispersion relation (MDR).

Various problems connected with the minimal length have been studied in the context of the non-relativistic quantum mechanics. Among them are the harmonic oscillator [10–14], the hydrogen atom [15–21], step and barrier potentials [22–24], finite and infinite square wells [25, 26], as well as others. In the relativistic context, the Dirac equation has been studied in [27–33]. The Casimir Effect has also been studied in a minimal-length scenario in [34–38].

An interesting problem in quantum mechanics is the Dirac δ-function potential. In general, the Dirac δ-function potential is used as a pedagogical exercise. Nevertheless, it has also been used to model physical quantum systems [39]. Maybe because the attractive Dirac δ-function potential is one of the simplest quantum system which displays both a bound state and a set of continuous states, it has been used to model atomic and molecular systems [40–45]. In addition, the short-range interactions in condensed matter with a large scattering length can actually be modeled as a Dirac δ-function potential [46–50]. In quantum field theory, in order to treat the Casimir effect more realistically, the boundary conditions are replaced by the interaction potential \(\frac{1}{2} \sigma(x) \phi^2(x) \), where \(\sigma(x) \) represents the field of the material of the borders (background field). Hence, for sharply localized borders the background field can be modeled by a Dirac δ-function [51, 52].

The Dirac δ-function potential by its very nature is challenging problem in a minimal-length scenario.

N. Ferkous [53] and M. I. Samar & V. M. Tkachuck [54] have independently calculated the bound state energy in “momentum space”. In both papers, the authors have found a correction for the expression of energy in \(\sqrt{\beta} \) and \(\beta \) (\(\sqrt{\beta} \sim \Delta x_{\min} \)), but with different coefficients, therefore disagreeing outcomes. M. I. Samar and V. M. Tkachuck claim that is because, whereas they consider \(p \) belongs to \(\left(-\frac{\pi}{2\sqrt{\beta}}, \frac{\pi}{2\sqrt{\beta}} \right) \), Ferkous consider \(p \) belongs to \((-\infty, \infty) \). In this

\[1\] It is named doubly special relativity because of the existence of two universal constants: light speed and minimal length.
work, we propose to solve the problem of a non-relativistic particle of mass \(m \) in the presence of Dirac \(\delta \)-function potential in quasiposition space. Since the quasiposition space representation is used we can consider the cases of bound states and scattering states as well. We find the same expression for the energy of the bound state obtained by Ferkous.

In addition, assuming that the equality between the 1s state energy of the hydrogen atom and the bound state energy of the Dirac \(\delta \)-function potential in 1-dim when the coefficient of the \(\delta \)-potential is replaced by the fine structure constant \([41]\) is kept in a minimal-length scenario, we find that the leading correction for the ground state energy of hydrogen atom is of order of the minimal length \((O(\sqrt{\beta})) \), differently from commonly found in the literature using perturbative methods \([15-18, 55]\), but in according to the results obtained by T. V. Fityo, I. O. Vakarchuk and V. M. Tkachuk \([20]\) and D. Bouaziz & N. Ferkous \([21]\) using a non-perturbative approach.

The rest of this paper is organized as follows. In section 2 we show how to introduce a minimal-length scenario and find the time-independent Schrödinger equation in quasiposition space representation. In section 3 we solve the modified Schrödinger equation and find the bound state energy and the coefficients of reflection and transmission for the scattering states. We present our conclusions in section 4.

2 Minimal-length scenario

In quantum theory, a minimal-length scenario can be accomplished by imposing a non-zero minimal uncertainty in the measurement of position which leads to generalized uncertainty principle (GUP). Since

\[
\Delta x \Delta p \geq \frac{|[\hat{x}, \hat{p}]|}{2},
\]

a generalization of the uncertainty principle corresponds to a modification in the algebra of the operators. There are different suggestions of modification of the commutation relation between the position and momentum operators which implement a minimal-length scenario. We concern with the most usual of them, proposed by Kempf \([10, 11]\), which in a 1-dimensional space is given by

\[
[\hat{x}, \hat{p}] := i\hbar \left(1 + \beta \hat{p}^2 \right),
\]

where \(\beta \) is a parameter related to the minimal length. The commutation relation (2) corresponds to the GUP

\[
\Delta x \Delta p \geq \frac{\hbar}{2} \left[1 + \beta (\Delta p)^2 + \beta \langle \hat{p} \rangle^2 \right],
\]

which implies the existence of a non-zero minimal uncertainty in the position \(\Delta x_{\text{min}} = \hbar \sqrt{\beta} \).

Unfortunately, in this scenario the eigenstates of the position operator are not physical states\(^2\) and, consequently, the representation in position space can no longer be used, that is, an arbitrary state vector \(|\psi\rangle \) can not be expanding in the basis of state eigenvectors of the position operator.

\(^2\)That is because the uncertainty \(\Delta A \) of an operator \(\hat{A} \) in any of its state eigenvectors \(|\psi_A\rangle \) must be zero, which is not the case for the position operator, since \(\Delta x_{\text{min}} > 0 \).
\{ |x\rangle \}. Hence the obvious way ahead is to make use of the representation in momentum space:

\[
\langle p | \hat{x} | \psi \rangle = i \hbar \left(1 + \beta p^2 \right) \frac{\partial \psi(p)}{\partial p}, \\
\langle p | \hat{p} | \psi \rangle = p \psi(p).
\] (4)

However, the representation in momentum space is not suitable in some cases, such as, for example, when the wave function has to satisfy boundary condition at specific points. So, the representation in quasiposition space \[56\],

\[
\langle x^{ML} | \hat{x} | \psi(t) \rangle = x \psi^{qp}(x,t), \\
\langle x^{ML} | \hat{p} | \psi(t) \rangle = -i \hbar \left(1 - \beta \hbar^2 \frac{\partial^2}{\partial x^2} \right) \frac{\partial \psi^{qp}(x,t)}{\partial x},
\] (5)

to first-order in \(\beta \) parameter, is more appropriate\[3\]. \(|x^{ML}\rangle \) are state vectors of maximal localization which satisfy \[10\]

\[
\langle x^{ML} | \hat{x} | x^{ML} \rangle = x, \text{ with } x \in \mathbb{R},
\] (6)

\[
(\Delta x)_{x^{ML}} = \Delta x_{\text{min}} = \hbar \sqrt{\beta},
\] (7)

and

\[
\langle x^{ML} | x^{ML} \rangle = 1.
\] (8)

The time-independent Schrödinger equation for a non-relativistic particle of mass \(m \) in quasiposition space representation takes the form

\[
-\frac{\hbar^2}{2m} \frac{d^2 \psi^{qp}(x)}{dx^2} + \beta \frac{\hbar^4}{3m} \frac{d^4 \psi^{qp}(x)}{dx^4} + V(x) \psi^{qp}(x) = E \psi^{qp}(x).
\] (9)

The above modified Schrödinger equation shows that GUP effects are performed by fourth-order derivative term. This term modifies the probability current as follows\[3\] \[57\]

\[
J = -\frac{i \hbar}{2m} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right) + \frac{i \beta \hbar^3}{m} \left[\left(\psi^* \frac{\partial^3 \psi}{\partial x^3} - \psi \frac{\partial^3 \psi^*}{\partial x^3} \right) + \left(\frac{\partial^2 \psi^*}{\partial x^2} \frac{\partial \psi}{\partial x} - \frac{\partial^2 \psi}{\partial x^2} \frac{\partial \psi^*}{\partial x} \right) \right],
\] (10)

but it does not modify the probability density\[3\].

\[
\rho = |\psi|^2.
\] (11)

\[3\] P. Pedram \[56\] has proposed a representation in which \(\hat{x} = \hat{x}_o \) and \(\hat{p} = \frac{\tan(\sqrt{\beta} \hat{p}_o)}{\sqrt{\beta}} \), where \(\hat{x}_o \) and \(\hat{p}_o \) are ordinary operators of position and momentum, which obey the canonical commutation relation \([\hat{x}_o, \hat{p}_o] = i \hbar\).

\[4\] From now on, we are going to omit the \(qp \) superscript of the wave function for sake of simplicity.

\[5\] That is because the authors assume that there is no changes in the time-dependent part of the Schrödinger equation.
3 Dirac δ-function potential

In this section, we consider a non-relativistic particle of mass m in the presence of Dirac delta-function potential in a minimal-length scenario. In accord to Eq. (11) we have

$$-\frac{\hbar^2}{2m} \frac{d^2 \phi(x)}{dx^2} + \beta \frac{\hbar^4}{3m} \frac{d^4 \phi(x)}{dx^4} - V_0 \delta(x) \phi(x) = E \phi(x), \quad (14)$$

where $V_0 > 0$ is a constant.

Integrating Eq. (14) between $-\epsilon$ and ϵ (with ϵ arbitrarily small and positive), and then taking the limit $\epsilon \to 0$, we obtain

$$\left[\frac{d \phi_{II}(0)}{dx} - \frac{d \phi_I(0)}{dx}\right] - \frac{2}{3} \beta \hbar^2 \left[\frac{d^3 \phi_{II}(0)}{dx^3} - \frac{d^3 \phi_I(0)}{dx^3}\right] + \frac{2mV_0}{\hbar^2} \phi(0) = 0, \quad (15)$$

where $\phi_I(x)$ and $\phi_{II}(x)$ are the solutions of Eq. (14) for $x < 0$ and $x > 0$, respectively.

Since the third derivative of $\phi(x)$ at $x = 0$ has a finite discontinuity (that is to say, a jump by a finite amount), we require that the second and first derivatives are continuous at $x = 0$. Consequently, Eq. (15) turns into [39, 59]

$$\frac{\beta}{3} \left[\frac{d^3 \phi_{II}(0)}{dx^3} - \frac{d^3 \phi_I(0)}{dx^3}\right] = \frac{mV_0}{\hbar^2} \phi(0). \quad (16)$$

As it is well-known, taking into account the sign of the energy two case can then arise: (i) bound states when $E < 0$ and (ii) scattering states when $E > 0$.

3.1 Bound states

In this case, the general solution of Eq. (11) is given by

$$\phi_{I,II}(x) = A_{I,II} e^{kx} + B_{I,II} e^{-kx} + C_{I,II} e^{\beta kx} + D_{I,II} e^{-\beta kx}, \quad (17)$$

where, to first order in β,

$$k := k_0 \left(1 + \frac{1}{3} \beta \hbar^2 k_0^2\right), \quad (18)$$

$$k_\beta := \sqrt{\frac{3}{2\hbar^2 \beta} \left(1 - \frac{1}{3} \beta \hbar^2 k_0^2\right)} \quad (19)$$

and

$$k_0 := \sqrt{\frac{2m|E|}{\hbar^2}}. \quad (20)$$
The coefficients can be found, except by one normalization constant, requiring that solutions remain finite when $x \to \pm \infty$ and the continuity of solution and of its first and second derivatives at $x = 0$. We come to the result
\[
\begin{cases}
\phi_I(x) = Ae^{kx} - \frac{k}{k_\beta} Ae^{k_\beta x}, & x < 0 \\
\phi_{II}(x) = Ae^{-kx} - \frac{k}{k_\beta} Ae^{-k_\beta x}, & x > 0,
\end{cases}
\]

(21)

where A is the normalization constant.

From Eq. (16) we can find the bound state energy up to order β as
\[
E = -\frac{mV_0^2}{2\hbar^2} + \sqrt{\frac{2\beta}{3}} \frac{m^2V_0^3}{\hbar^3} - 2\beta \frac{m^3V_0^4}{\hbar^4},
\]

(22)

which is in agreement with N. Ferkous’s result [53]. It is interesting to note that the first correction brought about by the introduction of a minimal-length scenario is $O(\sqrt{\beta})$.

For an electron, the relative difference between the bound state energy arising from the introduction of a minimal length and the absolute value of the ordinary energy of the bound state is showed as a function of the minimal length for the energy about 1 eV in Fig. 1 and as a function of E_0 (1 eV $\leq E_0 \leq 1$ keV) for $L_{\text{min}} = 10^{-20}$ m in Fig. 2. In Fig. 1 we choose the 10^{-17} m upper value for the minimal length because it is in accordance with that commonly found in the literature [15, 55, 58] and it is consistent with the one at the electroweak scale [9, 22, 23]. For the Planck’s length, $\frac{\Delta E}{E_0} \approx 8.4 \times 10^{-26}$, unfortunately a virtually unmeasurable effect quantum gravity using current technology.
3.2 Scattering states

In this case, the general solution of Eq. (11) is given by

\[\phi_{I,II}(x) = A_{I,II} e^{ikx} + B_{I,II} e^{-ikx} + C_{I,II} e^{k'_\beta x} + D_{I,II} e^{-k'_\beta x}, \] \hspace{1cm} (23)

where

\[k'_\beta := \sqrt{\frac{3}{2\hbar^2 \beta}} \left(1 + \frac{1}{3} \beta \hbar^2 k_0^2 \right). \] \hspace{1cm} (24)

Now we demand there is not reflected wave function for \(x > 0 \), consequently \(B_{II} = 0 \). From requirement that solutions remain finite when \(x \to \pm \infty \) we have \(D_I = 0 \) and \(C_{II} = 0 \). In this case, the continuity of solution and of its first and second derivatives at \(x = 0 \) are not enough to find the coefficients. It is also necessary to use the discontinuity of the third derivative at \(x = 0 \), Eq. (16). After some algebra, we have

\[
\begin{align*}
\phi_I(x) &= Ae^{ikx} + \frac{ik'_\beta}{k} A e^{-ikx} - \frac{A}{b} e^{k'_\beta x}, \quad x < 0 \\
\phi_{II}(x) &= aA e^{-ikx} - \frac{A}{b} e^{-k'_\beta x}, \quad x > 0,
\end{align*}
\] \hspace{1cm} (25)

where

\[a := 1 + \frac{2\beta \hbar^4 k'_\beta}{3mV_0} \left(k'_\beta^2 + k^2 \right), \] \hspace{1cm} (26)

\[b := a - i \frac{k'_\beta}{k}, \] \hspace{1cm} (27)
and \(A \) is a normalization constant.

Consequently, the reflection and transmission coefficients are given by

\[
R = \left(\frac{k'\beta}{k} \right)^2 \frac{1}{\left[1 + \frac{2\beta \hbar k'}{3hv_0} \left(k' + k \right) \right]^2 + \left(\frac{k' \beta}{k} \right)^2} \tag{28}
\]

and

\[
T = \left(\frac{k'\beta}{k} \right)^2 \frac{\left[1 + \frac{2\beta \hbar k'}{3hv_0} \left(k' + k \right) \right]^2}{\left[1 + \frac{2\beta \hbar k'}{3hv_0} \left(k' + k \right) \right]^2 + \left(\frac{k' \beta}{k} \right)^2}. \tag{29}
\]

Note that \(R + T = 1 \), as must be.

It is instructive to write the reflection and transmission coefficients up to first corrections. Then,

\[
R = \left(1 + \frac{2\hbar^2 |E|}{mv_0^2} \right)^{-1} \left[1 - \sqrt{\frac{2\beta}{3 \hbar^2}} \frac{2mv_0}{mV_0} \left(1 + \frac{mv_0^2}{2\hbar^2 |E|} \right)^{-1} \right] \tag{30}
\]

and

\[
T = \left(1 + \frac{mv_0^2}{2\hbar^2 |E|} \right)^{-1} \left[1 + \sqrt{\frac{2\beta}{3 \hbar^2}} \frac{m^2v_0^3}{\hbar^2 |E|} \left(1 + \frac{mv_0^2}{2\hbar^2 |E|} \right)^{-1} \right]. \tag{31}
\]

Above results show that the reflection and the transmission coefficients are no longer the same in the cases of a delta-function well \((V_0 > 0)\) and a delta-function barrier \((V_0 < 0)\). Therefore the presence of a minimal length decreases the chances of tunneling.

It is also interesting to note that the first correction brought about by the introduction of a minimal-length scenario is \(O(\sqrt{\beta}) \) in the same way as in the bound state energy.

Fig. 3 and Fig. 4 show the relative difference between the transmission coefficient arising from the introduction of a minimal length and \(T_0 \) (ordinary transmission coefficient) for the
cases of a Dirac delta well (dashed line) and of a Dirac delta barrier (continuous line). Fig. 3 is for electrons scattering of energy about 1 eV and \(V_0 = 2 \text{ eVÅ} \). For the Planck’s length, \(\Delta T/T_0 \approx 8.9 \times 10^{-27} \), again a virtually unmeasurable effect. Fig. 4 is for protons scattering of energy about 1 MeV and \(V_0 = 3 \times 10^{-2} \text{ MeVÅ} \). For the Planck’s length, \(\Delta T/T_0 \approx 4.7 \times 10^{-17} \). Note that \(L_{min} \sim 10^{-17} \text{ m} \) results in significant effects, which may be an indication that \(L_{min} \) is far from the electroweak scale.

3.3 Remarks

1. It is easy to see that in the limit \(\beta \to 0 \) we recover the results known for Dirac \(\delta \)-function potential in ordinary quantum mechanics.

2. A more detailed analysis shows that \(k_\beta \) and \(k'_\beta \) do not vanish even if \(m = 0 \). Therefore, \(e^{-k_\beta |x|} \) and \(e^{-k'_\beta |x|} \) solutions still persist since \(e^{-k_\beta |x|}, e^{-k'_\beta |x|} \to e^{-\sqrt{\frac{3}{2}} \hbar \beta |x|} \) when \(m = 0 \). Consequently, this leads us to presume that such solutions are “background solutions” caused by introduction of an effective description of the effects of quantum gravity. However, since their coefficients in Eqs. (21) and (25) vanish when \(m = 0 \), they are not present in the bound state and the scattering states solutions.

3. It is important to point out that now the first derivative at \(x = 0 \) is no longer discontinuous. However, in the limit \(\beta \to 0 \) the discontinuity at \(x = 0 \) is recovered. Moreover, if the term of \(O(\beta^2) \) is considered in the Schroedinger equation the third derivative will turn into continuous at \(x = 0 \), and so on.

4. \(e^{-k_\beta |x|} \) and \(e^{-k'_\beta |x|} \) solutions are only significant for very small values of \(x \), that is, high energy. Thus we could assume that they lie far outside validity range at which the Schroedinger equation may consistently work and throw them away. However, that is a naive assumption, because they lead to the emergence of traces of quantum gravity in

Figure 4: Scattering state: \(\frac{\Delta T}{T_0} \) as function of \(L_{min} \) in units of meter, for \(E_0 \approx 1 \text{ MeV} \).
low energy physics, as the previous results show. Note that they provide the continuity of first and second derivatives at $x = 0$.

5. It is known, at least since the Frost’s work of 1954 [41], that the ground state energy of the hydrogen atom (1s state) is identical to the bound state energy of a Dirac δ-function potential in 1-dim when V_0 is replaced by the fine structure constant, α. Thus, assuming that this identity is kept in a minimal-length scenario, the result (22) predicts a leading correction for ground state energy of the hydrogen atom of $O(\sqrt{\beta})$, whereas the result commonly found in the literature using perturbative methods is of $O(\beta)$ [15–18, 55].

It is important to add that using a non-perturbative approach T. V. Fityo, I. O. Vakarchuk and V. M. Tkachuk [20] and D. Bouaziz & N. Ferkous [21] have also found a first correction of $O(\sqrt{\beta})$.

Now, we can make a rough estimate of an upper bound for the minimal-length value comparing our result with experimental data [55]. Using data obtained in reference [60], in which the accuracy of about 4.2×10^{-14} eV has been obtained, we find that $\Delta x_{\text{min}} \leq 10^{-25}$ m. Hence, in the case of the protons scattering from the previous subsection, we find $\frac{\Delta T}{T_0} \sim 10^{-17}$ for $L_{\text{min}} \sim 10^{-25}$ m, which is a more representative result.

4 Conclusion

In this work, we solve, in quasiposition space, the Schroedinger equation for a Dirac δ-function potential. Our result for the bound state energy is in agreement with that calculated by Ferkous in momentum space. Moreover, we find that leading correction for the reflection and transmission coefficients of the scattering states, the bound state energy and ground state of the hydrogen atom are of order of the minimal length, $O(\sqrt{\beta})$. We also show that in the presence of a minimal length the coefficients of reflection and transmission for the Dirac delta-function well and the Dirac delta-function barrier are no longer the same. There is a decrease in the chances of tunneling.

Although different physical systems can be modeled by a Dirac δ-function potential, we have to ask ourselves of the validity of the results, since the Dirac δ-function potential is already an approximation to an actual physical system. That is, are the minimal-length effects smaller than the ones due to the modeling by the Dirac δ-function potential? Probably the answer is yes, though it is difficult to insure. What we can claim is the estimates of a upper bound for the minimal-length value are acceptable, in the sense that even though the corrections for a more realistic potential can be greater than ones due to the minimal-length effects, that only leads to upper bound values even smaller. However that is not very different from others systems we have studied in a minimal-length scenario.

6 Since the symmetry of the 1s state must remain the same in both cases.
Acknowledgements

We would like to thank FAPES, CAPES and CNPq (Brazil) for financial support.

References

[1] H. Kragh, “Arthur March, Werner Heisenberg and the search for a smallest length”, Rewe d’Histoire des Sciences 8(4), 401 (2012).

[2] H. Kragh, “Heisenberg’s lattice world: the 1930 theory sketch”, Am. J. Phys. 63, 595 (1995).

[3] W. Heisenberg, “Über die in der Theorie der Elementarteilchen auftretende universelle Länge”, Annalen der Physik 424, 20 (1938).

[4] M. Bronstein, “Quantum theory of weak gravitational fields”, (republication), Gen. Rel. Grav. 44, 267 (2012).

[5] C. A. Mead, “Possible connection between gravitation and fundamental length”, Phys. Rev. 135, B849 (1964).

[6] C. A. Mead and F. Wilczek, “Walking the Planck Length through History”, Physics Today 54, 15 (2001).

[7] S. Hossenfelder, “A note on theories with a minimal length”, Class. Quantum Grav. 23, 1815 (2006).

[8] A. Tawfik and A. Diab, “Generalized uncertainty principle: Approaches and applications”, Int. J. Mod. Phys. D 23(12), 1430025 (2014).

[9] A. Tawfik and A. Diab, “Review on Generalized Uncertainty Principle”, Rept. Prog. Phys. 78, 126001 (2015).

[10] A. Kempf, G. Mangano and R. B. Mann, “Hilbert Space Representation Of The Minimal Length Uncertainty Relation”, Phys. Rev. D 52, 1108 (1995).

[11] A. Kempf, “Non-pointlike particles in harmonic oscillators”, J. Phys. A 30, 2093 (1997).

[12] L. N. Chang, D. Minic, N. Okamura and T. Takeuchi, “Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations”, Phys. Rev. D 65, 125027 (2002).

[13] I. Dadić, L. Jonke and S. Meljanac, “Harmonic oscillator with minimal length uncertainty relations and ladder operators”, Phys. Rev. D 67, 087701 (2003).
[14] H. Hassanabadi, E. Maghsoodi, Akpan N. Ikot and S. Zarrinkamar, “Minimal Length Schrödinger Equation with Harmonic Potential in the Presence of a Magnetic Field”, Advances in High Energy Physics 2013, 923686 (2013).

[15] F. Brau, “Minimal length uncertainty relation and hydrogen atom”, J. Phys. A 32, 7691 (1999).

[16] R. Akhoury and Y. P. Yao, “Minimal length uncertainty relation and the hydrogen spectrum”, Phys. Lett. B 572, 37 (2003).

[17] S. Benczik, L. N. Chang, D. Minic, and T. Takeuchi, “Hydrogen-atom spectrum under a minimal-length hypothesis”, Phys. Rev. A 72, 012104 (2005).

[18] M. M. Stetsko and V. M. Tkachuk, “Perturbation hydrogen-atom spectrum in deformed space with minimal length”, Phys. Rev. A 74, 012101 (2006).

[19] K. Nouicer, “Coulomb potential in one dimension with minimal length: A path integral approach”, J. Math. Phys. 48, 112104 (2007).

[20] T. V. Fityo, I. O. Vakarchuk and V. M. Tkachuk, “One-dimensional Coulomb-like problem in deformed space with minimal length”, J. Phys. A: Math. Gen. 39, 2143 (2006).

[21] D. Bouaziz and N. Ferkous, “Hydrogen atom in momentum space with a minimal length”, Phys. Rev. A 82, 022105 (2010).

[22] S. Das and E. C. Vagenas, “Universality of Quantum Gravity Correction”, Phys. Rev. Lett. 101, 221301 (2008).

[23] S. Das and E. C. Vagenas, “Phenomenological implications of the generalized uncertainty principle”, Can. J. Phys. 87, 233 (2009).

[24] M. Sprenger, P. Nicolini and M. Bleicher “Physics on the smallest scales: an introduction to minimal length phenomenology”, Eur. J. Phys. 33, 853 (2012).

[25] K. Nozari and T. Azizi, “Some aspects of gravitational quantum mechanics”, Gen. Relativ. Gravit. 38(5), 735 (2006).

[26] G. Blado, C. Owens and V. Meyers “Quantum wells and the generalized uncertainty principle”, Eur. J. Phys. 35, 065011 (2014).

[27] K. Nozari and M. Karami “Minimal Length and Generalized Dirac Equation”, Mod. Phys. Lett. A 20, 3095 (2005).

[28] C. Quesne and V. M. Tkachuk “Dirac oscillator with nonzero minimal uncertainty in position”, J. Phys. A: Math. Gen. 38, 1747 (2005).

[29] Kh. Nouicer “An exact solution of the one-dimensional Dirac oscillator in the presence of minimal lengths”, J. Phys. A: Math. Gen. 39, 17475125 (2006).
[30] Y. Chargui, A. Trabelsi and L. Chetouani “Exact solution of the (1+1)-dimensional Dirac equation with vector and scalar linear potentials in the presence of a minimal length”, Phys. Lett. A 374, 531 (2010).

[31] H. Hassanabadi, S. Zarrinkamar and E. Maghsoodi1 “Minimal length Dirac equation re-visited”, Eur. Phys. J. Plus. 128, 25 (2013).

[32] L. Menculini, O. Panella and P. Roy “Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length”, Phys. Rev. D 87, 065017 (2013).

[33] L. Menculini, O. Panella and P. Roy “Quantum phase transitions of the Dirac oscillator in a minimal length scenario”, Phys. Rev. D 91, 045032 (2015).

[34] Kh. Nouicer “The Casimir effect in the presence of minimal length”, J. Phys. A: Math. Gen. 38, 10027 (2005).

[35] U. Harbach and S. Hossenfelder “Modification of the Casimir Effect Due to a Minimal Length Scale”, Phys. Lett. B 632, 379 (2006).

[36] O. Panella, “Casimir-Polder intermolecular forces in minimal length theories”, Phys. Rev. D 76, 045012 (2007).

[37] A. M. Frassino and O. Panella, “Casimir effect in minimal length theories based on a generalized uncertainty principle”, Phys. Rev. D 85, 045030 (2012).

[38] G. C. Dorsch and J. A. Nogueira, “Maximally Localized States in Modified Commutation Relation to All Orders”, Int. J. Mod. Phys. A 27(21), 1250113 (2012).

[39] M. Belloni and R. W. Robinett “The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics”, Phys. Rep. 540, 25 (2014).

[40] R. L. Kronig and W. G. Penney “Quantum mechanics of electrons in crystal lattices”, Proc. R. Soc. Lond. Ser. A 130, 499 (1931)

[41] A. A. Frost “Delta potential function model for electronic energies in molecules”, J. Chem. Phys. 22, 1613 (1954)

[42] A. A. Frost “Delta-function model. I. Electronic energies of hydrogen-like atoms and di-atomic molecules”, J. Chem. Phys. 25, 1150 (1956).

[43] A. A. Frost and F. E. Leland “Delta-potential model. II. Aromatic hydrocarbons”, J. Chem. Phys. 25, 1155 (1956).

[44] H. Kuhn “Free electron model for absorption spectra of organic dyes”, J. Chem. Phys. 16, 840 (1948).
[45] H. Kuhn “A quantum-mechanical theory of light absorption of organic dyes and similar compounds”, J. Chem. Phys. 17, 1198 (1949).

[46] S. Tan “Energetics of a strongly correlated Fermi gas”, Ann. Phys. 323, 2952 (2008).

[47] S. Tan “Large momentum part of a strongly correlated Fermi gas”, Ann. Phys. 323, 2971 (2008).

[48] S. Tan “Generalized virial theorem and pressure relation for a strongly correlated Fermi gas”, Ann. Phys. 323, 2987 (2008).

[49] E. Braaten and L. Platter “Exact relations for a strongly interacting Fermi gas from the operator product expansion”, Phys. Rev. Lett. 100, 205301 (2008).

[50] S. Zhang and A. J. Leggett “Universal properties of the ultracold Fermi gas”, Phys. Rev. A 79, 023601 (2009).

[51] N. Graham, R. L. Jaffe, V. Khemani, M. Quandt, M. Scandurra and H. Weigel “Calculating vacuum energies in renormalizable quantum field theories: A new approach to the Casimir problem”, Nucl. Phys. B 645, 49 (2002).

[52] K. A. Milton “The Casimir effect: recent controversies and progress”, J. Phys. A: Math. Gen. 37, R209 (2004).

[53] N. Ferkous, “Regularization of the Dirac δ potential with minimal length”, Phys. Rev. A 88, 064101 (2013).

[54] M. I. Samar and V. M. Tkachuk, “Exactly solvable problems in the momentum space with a minimum uncertainty in position”, J. Math. Phys. 57, 042102 (2016).

[55] F. L. Antonacci Oakes, R. O. Francisco, J. C. Fabris and J. A. Nogueira, “Ground state of the hydrogen atom via Dirac equation in a minimal-length scenario”, Eur. Phys. J. C 73, 2495 (2013).

[56] P. Pedram, “New approach to nonperturbative quantum mechanics with minimal length uncertainty”, Phys. Rev. D 85, 024016 (2012).

[57] S. Das and E. C. Vagenas, “Phenomenological implications of the generalized uncertainty principle”, Can. J. Phys. 87, 233 (2009).

[58] C. Quesne and V. M. Tkachuk, “Composite system in deformed space with minimal”, Phys. Rev. A 81, 012106 (2010).

[59] M. Belloni and R. W. Robinett, “Less than perfect quantum wavefunctions in momentum-space: How φ(p) senses disturbances in the force”, Amer. J. Phys. 79, 94 (2011).

[60] C. G. Parthey et al., “Improved Measurement of the Hydrogen 1S-2S Transition Frequency”, Phys. Rev. Lett. 107, 203001 (2011).