Photosynthetic Production Determines Bottom Water Oxygen Variations in the Upwelling Coastal South China Sea Over Recent Decades

Xiaowei Zhu1,2, Guodong Jia3*, Yuhang Tian1,2, Aibin Mo1,2, Weihai Xu1,2, Li Miao1,2, Shendong Xu4 and Wen Yan1,2,5

1Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China, 2Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, 3State Key Laboratory of Marine Geology, Tongji University, Shanghai, China, 4Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research, Centre of China, School of Marine Sciences, Guangxi University, Nanning, China, 5School of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China

Dissolved oxygen (DO) in seawater is fundamental to marine ecosystem health. How DO in coastal upwelling areas responds to upwelling intensity under climate change is of particular interest and vital importance, because these productive regions account for a large fraction of global fishery production and marine biodiversity. The Yuedong upwelling (YDU) in the coastal northern South China Sea can be served as a study case to explore long-term responses of DO to upwelling and climate due to minor influence of riverine input. Here, bottom water DO conditions were recovered by sedimentary C_{28}\Delta 22/\Delta 5,22 ratios of steroids in three short cores, with lower ratio value indicating higher DO concentration. The ratio records showed oscillations in varying degrees and exhibited no clear trends before ∼1980s, after which, however, there occurred a persistent decreasing trend or basically remained at lower values. Thus, inferred DO variations by the C_{28}\Delta 22/\Delta 5,22 ratio records are not compatible with regional YDU-involved physical processes under climate change, such as southwesterly wind-induced onshore advection of reduced-oxygenated source waters from outer shelf and oceanic warming that would rather lead to less oxygenation in bottom waters in recent decades. Intriguingly, the alcohol records of n-C_{20:1}/C_{28}\Delta 5,22 and br-C_{15}/C_{28}\Delta 5,22 ratios, indicative of the relative strengths between biogeochemical oxygen consumption (i.e., by zooplankton and microbes) and photosynthetic oxygen production (i.e., by phytoplankton), changed almost in parallel with the C_{28}\Delta 22/\Delta 5,22 records in three cores. Accordingly, we propose that net photosynthetic oxygen production outweighs source water– and warming-induced increasing deoxygenation in the study area. This study may suggest an important biogeochemical mechanism in determining bottom water DO dynamics in shallow coastal upwelling regions with minor contribution of riverine input.

Keywords: bottom water oxygen variation, ratios of 5a-stanols to DS-sterols, alcohol biomarkers, physical-biogeochemical processes, Yuedong upwelling
INTRODUCTION

The fate of dissolved oxygen (DO) in seawater has attracted increasing attentions from multi-disciplines, owing to its vital role in ecological, biological, and geochemical dynamics in marine environments (Diaz and Rosenberg, 2008; Breitburg et al., 2009; Breitburg et al., 2018; Levin and Breitburg, 2015; Watson, 2016; Schmidtko et al., 2017; Fennel and Testa, 2019). The inventory of oceanic DO is determined by the balance between its primary sources (i.e., photosynthetic production, air–sea gas exchange, and physical oxygen supply) and sinks (i.e., aerobic respiration and consumption, oxidation of reduced chemical species, and physical oxygen export) (Breitburg et al., 2018; Fennel and Testa, 2019). Over recent decades, various investigations based on time-series observations, numerical models, and geological records have been carried out to understand the physical-biogeochemical processes controlling the spatiotemporal distributions of low-oxygen (i.e., hypoxic and anoxic) conditions within the global ocean (e.g., Breitburg et al., 2018; Fennel and Testa, 2019, and references therein).

Generally, the occurrence of oxygen-deficiency in estuarine and river-dominated shelf regions is mainly attributed to the significant feedback of freshwater discharge and anthropogenic input, whereas the coastal upwelling areas without direct riverine and anthropogenic impacts experience low-oxygen conditions mostly due to supplies of oxygen-poor and nutrient-rich source waters at times of upwelling (Breitburg et al., 2018; Fennel and Testa, 2019). Long-term links between DO condition and upwelling intensity have been evidenced by sedimentary records of nitrogen isotope from the northeastern tropical Pacific margin, showing enhanced oxygenation in response to weakened wind-induced upwelling since 1850 (Deutsch et al., 2014). However, different relationships between DO and upwelling have been documented in other upwelling regions; e.g., overall enhanced oxygenation (Cardich et al., 2019) is observed in response to strengthened upwelling off Peru since 1860 (Gutierrez et al., 2011). These occurrences likely indicate that the proposed negative impact of upwelling activity on DO condition may be too simplistic, especially in terms of long-term (i.e., decadal and centurial scales) relationships. Besides, close links between upwelling-favorable wind and climate change proposed previously (Bakun, 1990) have been recently evidenced by observations, models, and records in many upwelling regions (Gutierrez et al., 2011; Sydeman et al., 2014; Wang et al., 2015), showing strengthened wind-induced upwelling in response to climatic warming. This scenario may further complicate long-term responses of DO condition to upwelling variation and climate change; however, this issue has not been investigated in upwelling regions in the coastal northern South China Sea (SCS) (Hu and Wang, 2016), including the Yedong upwelling (YDU).

Recently, sedimentary records of long-chain diols in the YDU area revealed increasing trends in the upwelling intensity and annual mean sea surface temperature (SST) over recent decades (Zhu et al., 2018), supporting previous studies showing close links between upwelling intensification and climatic warming (Bakun, 1990; Gutierrez et al., 2011; Sydeman et al., 2014; Wang et al., 2015). Long-chain diol records also demonstrated insignificant or indirect input from the Pearl River (Zhu et al., 2018), making the YDU as an ideal spot to explore long-term responses of DO variability to upwelling and climate. However, as available DO records are lacking in the YDU region, how DO responds to enhanced upwelling and increased SST remains unclear. This issue is relevant to fishery production, marine biodiversity, and ecosystem health over time so that proper proxies are essential to reconstruct long-term DO variations in the YDU area to fill in this gap.

Over the past few decades, an increasing number of DO-related proxies based on biomarkers, elements (i.e., molybdenum and uranium), and foraminifier (i.e., *Balaminia marginata* and *Quinqueloculina* spp.) have been proposed and applied to reconstruct paleo-DO or paleo-redox conditions (e.g., Nakakuni et al., 2017; Nakakuni et al., 2018; Li et al., 2018; Naafs et al., 2019; Jacobel et al., 2020; Wakeham, 2020, and references therein). Among the biomarker-derived redox proxies, the 5α-stanol/Δ5-sterol ratios are widely used because eukaryote-derived Δ5-sterols are ubiquitous in aquatic environments and can be anaerobically transformed to 5α-stanol counterparts without aerobic re-conversion (e.g., Gaskell and Eglinton, 1975; Wakeham, 1989; Wakeham, 2020; Berndmeyer et al., 2014; Nakakuni et al., 2017, 2018). Some other processes, such as *in vivo* production of 5α-stanols and preferential degradation of Δ5-sterols may also modulate the 5α-stanol/Δ5-sterol ratios and confound their applicability to reflect redox processes (e.g., Nishimura and Koyama, 1977; Wakeham, 1989; Arzayus and Canuel, 2004; Bogus et al., 2012). Therefore, before applying the 5α-stanol/Δ5-sterol ratios to infer redox variations, their suitability as such an approach should be examined. Here, the 5α-stanol/Δ5-sterol ratios were applied for the first time to elucidate their ability to reconstruct historical redox condition in the YDU area and further to explore the responses of DO dynamics to climate-forced YDU processes over recent decades.

Origin of Common Alcohols in Marine Environments and Factors Regulating the 5α-Stanol/Δ5-Sterol Ratios

Generally, short-chain (C_{14–16}) the sum of C_{14}, C_{16} and C_{18}) n-alcohols are primarily derived from marine organisms and long-chain (C_{26–30}) the sum of C_{26}, C_{28} and C_{30}) n-alcohols are mainly produced by terrestrial vascular plants (e.g., Mudge and Norris, 1997; Treignier et al., 2006; Hu et al., 2009; Strong et al., 2012; Strong et al., 2013; Guo et al., 2019). The middle-chain unsaturated n-alcohols (i.e., n-C_{28}) are typically diagnostic bio-markers for copepods (Kattner and Krause, 1989) and short-chain branched alcohols (i.e., br-C_{15}; the sum of iso- and anteiso-C_{15}) are ubiquitous in marine environments produced by certain microbes (Mudge and Norris, 1997; Treignier et al., 2006; Huang et al., 2013; Yang et al., 2014; Naafs et al., 2019). The odd/even ratio of short-chain n-alcohols (i.e., C_{15–17}/C_{16–20}; the sum of C_{15} and C_{17}/the sum of C_{16}, C_{18} and C_{20}) indicates the degree of microbial alternation and is a rough measure of microbial activity (Treignier et al., 2006).
The C_{27-29} sterols have diverse and ecologically widespread sources, including aquatic plankton (i.e., phytoplankton and zooplankton) and terrestrial plants (Volkman, 1986; Volkman, 2003; Volkman et al., 1998; Rampen et al., 2010). Generally, zooplankton is the major biological precursor for C_{27} sterols, whereas C_{28} and C_{29} sterols appear to be particularly abundant in phytoplankton and terrestrial plants, respectively. However, a comprehensive study on 106 marine diatom species reveals that C_{27-29} sterols are all present with C_{28}\Delta^{5,24(28)} being the most common component, followed by C_{27}\Delta^{5}, C_{28}\Delta^{5}, C_{29}\Delta^{5}, and C_{29}\Delta^{22,22} (Rampen et al., 2010); nevertheless, none of these sterols can be used as an unambiguous diatom biomarker due to their wide occurrence in other algae (Volkman, 2003).

The 5α-stanols are generally derived from the anaerobic reduction of their Δ^5-sterol counterparts (e.g., Gaskell and Eglinton, 1975; Wakeham, 1989, 2020; Berndmeyer et al., 2014; Nakakuni et al., 2018). The particulate matter studies at various depths of the water column from different marine settings revealed that the extent of conversion of Δ^5-sterols to 5α-stanol counterparts varies with water-column redox potential (Wakeham, 1989; Wakeham, 2020; Wakeham et al., 2007; Berndmeyer et al., 2014). Generally, little 5α-stanol generation occurs under oxic conditions, yielding low 5α-stanol/Δ^5-sterol ratios, whereas substantial conversion of Δ^5-sterols occurs in anoxic environments, resulting in high 5α-stanol/Δ^5-sterol ratios. However, the 5α-stanol/Δ^5-sterol ratios can also be regulated by direct biogenic input of 5α-stanols and/or preferential degradation of Δ^5-sterols relative to 5α-stanols (e.g., Nishimura and Koyama, 1977; Wakeham, 1989; Arzayus and Canuel, 2004; Bogus et al., 2012).

The occurrence of 5α-stanols has been reported in some species of marine organisms, such as diatoms (e.g., *Thalassionema nitzschioides* and *Skeletonema costatum*; Barrett et al., 1995; Rampen et al., 2010), dinoflagellates (e.g., *Scrippsiella* sp. and *Gymnodinium sanguineum*; Mansour et al., 1999), microalgae (e.g., *Pavlova* sp.; Volkman et al., 1990), and zooplankton (e.g., *Themisto gaudichaudi*; Nelson et al., 2000; Nelson et al., 2001). For example, *T. nitzschioides* and *S. costatum* produce a minute fraction (<11%) of 5α-stanols, such as C_{27}\Delta^{22} and C_{28}\Delta^{22,24(28)} respectively (Barrett et al., 1995; Rampen et al., 2010), and *Scrippsiella* sp. and *G. sanguineum* produce high fractional abundances of C_{27}\Delta^{5} (24.3%) and C_{28}\Delta^{22} (31.7%), respectively (Mansour et al., 1999). Recently, comprehensive investigations on a series of C_{26-29} 5α-stanol/Δ^5-sterol ratios in sediment cores demonstrated that some ratio pairs are not applicable to trace historical redox processes because of the interference of *in vivo* produced 5α-stanols by some organisms (Nakakuni et al., 2017; Nakakuni et al., 2018).

The preferential degradation of Δ^5-sterols relative to their 5α-stanol counterparts may also confound the 5α-stanol/Δ^5-sterol ratios to reflect anaerobic conversion processes (e.g., Arzayus and Canuel, 2004; Bogus et al., 2012). The higher rate of degradation than hydrogenation of Δ^5-sterols has been proposed to explain higher 5α-stanol/Δ^5-sterol ratios in sediments from the York River estuary (Arzayus and Canuel, 2004). This is followed by a subsequent study on surface sediments in a cross-shelf transect offshore the Pakistan continental margin, suggesting that the increasing trend in the C_{27}\Delta^{5}/Δ^{5}\Delta^{5} ratio is attributable to the faster degradation of C_{27}\Delta^{5} compared with that of C_{27}\Delta^{5} (Bogus et al., 2012).

MATERIALS AND METHODS

Study Area

The YDU, located in the inshore area from Hong Kong to the Nanri Islands (Figure 1), is a common phenomenon with a large spatial extent occurring in summer, leading to colder SST and higher salinity and nutrients than surrounding waters (Jing et al., 2011; Hu and Wang, 2016). The local southwesterly wind stress is one of the most important dynamical factors to induce the coastal YDU with apparent inter-annual variability (Jing et al., 2011; Hu and Wang, 2016). Recently, sedimentary records of long-chain diol index (LDI) and diol index 2 (DI-2), which are respective indicators for annual mean SST and southwestward wind-induced upwelling intensity in the YDU area, revealed increasing warming and enhancing upwelling over recent decades (Zhu et al., 2018).

To the west of YDU is the Pearl River estuary (PRE; Figure 1), receiving discharges from the subtropical Pearl River. The river is the second largest river in China in terms of discharge, 80% of which occurs during the wet season (April to September). After being poured out of the estuary, the Pearl River plume swings seasonally (Dong et al., 2004; Su, 2004); it generally turns toward the west during the dry winter due to northeasterly winds and Coriolis effect and extends offshore toward south and southeast during wet summer under southwestward winds when the Pearl River discharge reaches its maximum.

Sample Collection

In this work, three short box cores (Figure 1; Table 1) at the margin of the YDU were studied. They were collected in 2009 during the China Ocean Carbon (CHOICE-C) Cruise I onboard the *Dongfanghong II*. The core surfaces were well preserved upon collection, as demonstrated by the fairly clear water above the sediment surface in the box cores. After the overlying water being siphoned out, core barrels were pushed into each box to collect sub-cores. Sediment in the sub-cores was then (usually within an hour) extruded onboard using a hydraulic jack, and sectioned at 2-cm intervals. The sectioned samples were sealed in plastic jars, then frozen until they were freeze-dried at ~50°C in the laboratory, and grounded with an agate mortar and pestle for further analyses and tests. The chronology of the cores has been determined by the ^210Pb method and reported by Zhu et al. (2018). Table 1 shows the dating results and other information of the three cores.

Lipid Extraction, Separation and Measurement

The core sediments have been reported for long-chain diols and the detailed experiments for lipid extraction and separation can be found in the work of Zhu et al. (2018). Briefly, freeze-dried and powdered sediments were extracted ultrasonically with MeOH, dichloromethane (DCM)/MeOH (1:1, v/v), and DCM, and all
extracts were combined after centrifugation. Following saponification with KOH/MeOH and extraction into hexane, the neutral lipids were purified using silica gel chromatography by elution with DCM/n-hexane (4:1, v/v) and DCM/MeOH (2:1, v/v), respectively. The latter fraction containing alcohols was converted to trimethylsilyl derivatives with bis(trimethylsilyl)trifluoroacetamide (BSTFA) at 60°C for 2 h before gas chromatography–mass spectrometry (GC–MS) analyses.

GC–MS analysis was performed at the State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, with a Thermo Scientific Trace gas chromatograph coupled to a Thermo Scientific DSQ II mass spectrometer. Separation was achieved with a 60 m × 0.32 mm i.d., fused silica column (J and W DB-5) coated with a 0.25-μm film thickness. The oven temperature was programmed from 80°C (held 2 min) to 220°C at 6°C/min, then to 290°C (held 5 min) at 8°C/min, and at last to 315°C (held 25 min) at 2°C/min. Identification and quantification of alcohol compounds, including n-alcohols, br-alcohols, sterols, and stanols, were based on their characteristic mass fragments, i.e., m/z 103 for n- and br-alcohols, 255 for Δ5-and Δ5,22-sterols, 257 for Δ22- sterols, and 215 for 5α-stanols (Huang et al., 2013; Yang et al., 2014; Nakakuni et al., 2017; Nakakuni et al., 2018).

Further, an approach proposed by Nakakuni et al. (2017); Nakakuni et al. (2018) was applied to determine the accuracy of the analytical 5α-stanol/Δ5-sterol ratio results, especially the C27Δ22/Δ5,22,C 27Δ0/Δ5, and C28Δ22/Δ5,22 ratio pairs used in this study (see below). Four samples from cores S101 (2–4 cm and 22–24 cm) and S201 (0–2 cm and 22–24 cm) were measured replicated for quality control, because both cores with relatively low or even unquantifiable contents of Δ5-sterols (this scenario can be seen roughly in mass spectrogram) were particularly susceptible to large deviations caused by pronounced background noise. Estimated values of relative standard deviation of the three ratio pairs in the four samples (2–4 cm and 22–24 cm in S101, and 0–2 cm and 22–24 cm in S201) ranged from 4% to 10%, similar to those (<10%) reported by Nakakuni et al. (2017); Nakakuni et al. (2018), implying high precision of the analytical results in the present study.

Degradation-Corrected Downcore Sterol Concentration
Using an approach similar to (Middelburg, 1989) power model, log-log plots of degradation rate constant (k) vs. time since deposition (t) were proposed by Canuel and Martens (1996) to evaluate the influence of post-diagenesis on downcore sterol concentration according to the following equation:

$$\log k = -1.12 \times \log t - 0.065, \text{or } k = 0.86 \times t^{-1.12}$$ \hspace{1cm} (1)$$

Further, given a known apparent initial age (a_0), the sterols$_{corr}$ (the initial sterols at the sediment surface before

TABLE 1 | Information of the three sediment cores.

	S101	S201	S401
Location			
Latitude (°N)	22.25	22.58	22.75
Longitude (°E)	114.71	115.48	116.29
Water depth (m)	35	31	24
Core length (cm)	40	40	24
Dating model			
MAR (g/cm²/yr)	0.51	0.63	0.37
Time span (yr)	1941–2008	1965–2009	1930–2007
MTR per 2 cm interval (yr)	3.6	2.3	7.1
MSR (cm/yr)	0.57	0.85	0.28

*aMass accumulation rate.
*bMean temporal resolution.
*cMean sedimentation rate.
For any downcore sample at depositional time \(t \) (sterols) can be solved using the following equations:

\[
k' = 0.86 \times (a_0 + t)^{-1.12}
\]

\[
\text{sterol}_{\text{corr}} = \text{sterols} / [\exp - (k' \times t)]
\]

The sterols\(_s\) was initially termed as the sum of several sterols (Canuel and Martens, 1996); however, given almost similar degradation behaviors between individual sterols under anaerobic conditions (Sun and Wakeham, 1994; Canuel and Martens, 1996; Harvey and Macko, 1997; Sun and Wakeham, 1998; Grossi et al., 2001), the sterols\(_s\) can be also utilized to calculate sterols\(_{\text{corr}}\) for each individual sterol. The value of \(a_0 \) has been found to be several decades in coastal and shelf areas (Middelburg, 1989; Jia et al., 2013). For simplicity, an empirical 59-year value for \(a_0 \) calculated by Jia et al. (2013) for site A9 outside the PRE (see Figure 1 for location) was used in this study.

RESULTS

Spatial Distribution of Sterols and Stanols in the Three Cores

A great variety of sterols and stanols were identified in core S401 sediments (Figure 2; Table 2); however, many of them, especially C\(_{28}\) and C\(_{29}\) sterols were below detection limit in most samples in cores S101 and S201. Accordingly, the common compounds in three cores, including 4-desmethyl sterols C\(_{27}\)\(\Delta^5,22\), C\(_{27}\)\(\Delta^5\), and C\(_{28}\)\(\Delta^5,22\) and their 5a-stanol counterparts (C\(_{27}\)\(\Delta^22\), C\(_{27}\)\(\Delta^0\), and C\(_{28}\)\(\Delta^22\), respectively), as well as 4-methyl sterol C\(_{30}\)\(\Delta^22\), were...
The stanols were more abundant than sterol counterparts in cores S101 and S201 (Figures 3A,B; Supplementary Table S1), yielding relatively high ratio values of $C_{27}\Delta^5/\Delta^5$ (ranged 2.7–33.7 and 4.9–134.6 and averaged 18.6 ± 9.2 and 32.7 ± 32.7, respectively), $C_{28}\Delta^7/\Delta^5$ (ranged 0.7–5.7 and 1.2–13.3 and averaged 3.1 ± 1.5 and 5.2 ± 3.9, respectively), and $C_{27}\Delta^{27}/\Delta^{5,22}$ (ranged 0.7–2.6 and 1.1–4.6 and averaged 1.7 ± 0.5 and 2.5 ± 1.0, respectively) (Figure 3C). However, the stanol abundances were slightly higher or even lower than sterol counterparts in core S401 (Figures 3A,B; Supplementary Table S1), yielding comparatively lower ratio values of $C_{28}\Delta^0/\Delta^5$ (ranged 1.0–3.5 and averaged 2.5 ± 0.9), $C_{28}\Delta^{27}/\Delta^{5,22}$ (ranged 0.4–1.1 and averaged 0.8 ± 0.2), and $C_{27}\Delta^{27}/\Delta^{5,22}$ (ranged 0.5–1.3 and averaged 1.0 ± 0.3) (Figure 3C). Furthermore, these three ratio pairs showed strong positive correlations with each other (Supplementary Table S3), thereby allowing for $C_{28}\Delta^{27}/\Delta^{5,22}$ to provide a general view of the ratio distribution in the three cores, as shown below.

Temporal Distribution of Sterols and Stanols Over the Past Few Decades

Contents of Σ sterols (and individual sterols as demonstrated in Supplementary Table S2) displayed roughly similar variation features in cores S101 and S201; i.e., relatively low concentration without significant change before ~1985 (averaged 21 ± 13 and 103 ± 32 ng/g, respectively) followed by large oscillation during ~1985–1995 (varied 19–101–67 and 141–315–70, respectively), and a rapid increase after ~1995 (ranged 67–189 and 70–313 ng/g, respectively) (Figure 4). Temporal variation of Σ sterols in core S401 exhibited largely similar patterns with cores S101 and S201 before ~1985 and after ~1995 (averaged 148 ± 58 and 431 ± 282 ng/g, respectively); however, the oscillation during ~1985–1995 did not occur in core S401 likely due to low sediment rate and time resolution of the core (two data at the time interval; Figure 4 and Table 1).

Values of the $C_{28}\Delta^{27}/\Delta^{5,22}$ ratio (and other two ratio pairs as demonstrated in Supplementary Table S3) oscillated in large amplitudes in cores S101 and S201 (ranged 0.7–5.7 and 1.2–13.3,
FIGURE 4 | Distribution of the ∑ sterols abundances and the C_{29}Δ^{27}/Δ^{5,22} ratios in the three cores.

FIGURE 5 | Linear correlation of ∑ sterols with n-C_{14-18} (red points), n-C_{26-30} (blue points), n-C_{20:1} (green points) and br-C_{15} (orange points) alcohols in the three cores.
respectively) but swung less variably in core S401 (ranged 0.4–1.1) (Figure 4). Distributions of the \(\text{C}_{28} \Delta^{22} / \Delta^{5,22} \) ratio varied similarly in shape between cores S101 and S201 but changed diversely in terms of multi-year variations as compared to core S401 (Figure 4) likely due to the low-resolution data of the core (Table 1). Temporal variations of the \(\text{C}_{28} \Delta^{22} / \Delta^{5,22} \) ratio exhibited no clear trends before ~1980s; after that, however, there occurred a persistent decreasing trend in cores S101 (from 3.2 to 0.7) and S401 (from 1.1 to 0.4) or basically remained at relatively lower values in core S201 (mostly <3 with two exceptions) (Figure 4).

Distribution of n- and Br-Alcohols in the Three Cores
On the whole, contents of \(n \)-C\(_{14-18} \), \(n \)-C\(_{26-30} \) and br-C\(_{15} \) alcohols were highest in core S201 (ranged 518–2,118, 313–974, and 96–228 ng/g and averaged 932 ± 366, 530 ± 183, and 160 ± 40 ng/g, respectively) and lowest in core S101 (ranged 103–568, 79–390, and 13–90 ng/g and averaged 268 ± 128, 199 ± 73, and 38 ± 24 ng/g, respectively) (Figure 3D; Supplementary Table S4). The \(n \)-C\(_{20:1} \) alcohol was also most abundant in core S201 (ranged 16–72 ng/g and averaged 41 ± 17 ng/g) but was least abundant in core S401 (ranged 4–24 ng/g and averaged 9 ± 5 ng/g) (Figure 3D; Supplementary Table S4).

Moreover, contents of \(n \)-C\(_{14-18} \) and \(n \)-C\(_{20:1} \) alcohols exhibited strong positive correlations with \(\Sigma \) sterols (and individual sterols as demonstrated in Supplementary Table S2) in the three cores (Figure 5). The abundances of br-C\(_{15} \) alcohols resembled to the \(n \)-alcohol ratios of C\(_{15-17} / \text{C}_{16-20} \) down the cores (Supplementary Figure S1) but correlated insignificantly with \(\Sigma \) sterols (and individual sterols as demonstrated in Supplementary Table S2) especially in cores S201 and S401 (Figure 5).

DISCUSSION

Origin of Sterols and Their Application as Primary Production (PP)
The biological sources of the \(\text{C}_{27} \Delta^{5,22} \), \(\text{C}_{27} \Delta^{5} \), \(\text{C}_{29} \Delta^{5,22} \), and \(\text{C}_{30} \Delta^{22} \) sterols in the study area are likely predominantly marine organisms. This is supported by the better correlations of \(\Sigma \) sterols (and individual sterols as demonstrated in Supplementary Table S2) with marine-sourced \(n \)-C\(_{14-18} \) alcohols than with terrigenous-originated \(n \)-C\(_{26-30} \) alcohols in the three cores (Figure 5). Presently, it is difficult to constrain the species-specific sources of these biological sterols, owing to their ubiquity in a wide range of marine organisms, including phytoplankton and zooplankton (Volkman, 1986; Volkman et al., 1998; Volkman, 2003; Rampen et al., 2010), which are abundant in the study area (Wang et al., 2011; Duan et al., 2014; Ren et al., 2020). However, the strong correlations among these sterols in the three cores (Supplementary Table S2) suggest common factors in modulating production of various phytoplankton and subsequent consumption by zooplankton in food chains. This is further supported by the strong correlations between \(\Sigma \) sterols (and individual sterols as demonstrated in Supplementary Table S2) and \(n \)-C\(_{20:1} \) alcohol (Figure 5), a diagnostic biomarker for copepods (Kattner and Krause, 1989), which dominate zooplankton composition in the YDU area (Ren et al., 2020). Therefore, here, \(\Sigma \) sterols, the sum of sterols produced by various phytoplankton (i.e., diatoms and dinoflagellates) and/or zooplankton-dependent zooplankton, rather than individual sterol, are more suitable to roughly indicate PP in the study area. Nevertheless, the \(\Sigma \) sterols loss due to degradation processes in the water column and/or sediments (e.g., Sun and Wakeham, 1994; Canuel and Martens, 1996; Prahl et al., 2000; Sinninghe Damsté et al., 2002; Wakeham et al., 2002; Hernández-Sánchez et al., 2014) may confound \(\Sigma \) sterols burial fluxes to reflect initial export PP.

Present-day investigations in the YDU area reveal that total phytoplankton abundances are not highly variable at various depths of the upper 30-m water column (i.e., 78.9 × 10^4 unit in surface water vs. 50.7 × 10^4 unit at 20- to 30-m water depth; Wang et al., 2011). This occurrence should be due to that the photic zone (i.e., 0–30 m) can extend readily to the seafloor of the study sites (water depths <35 m; Table 1). Phytoplankton-derived lipid biomarkers could undergo least degradation in such shallow water depths, as even in deep-sea water columns, including the Arabian Sea (0–3,380 m; Prahl et al., 2000; Wakeham et al., 2002) and the South East Atlantic Ocean (0–100 m; Hernández-Sánchez et al., 2014), the loss of biomarkers (including sterols) has been found insignificant. Accordingly, the application of buried \(\Sigma \) sterols to infer paleo-PP is feasible as long as degradation in sediments is properly considered.

Thus, we used a model proposed by Canuel and Martens (1996) to estimate the degradation loss of \(\Sigma \) sterols in sediments and further to assess its influence on the downcore changes of \(\Sigma \) sterols, similar with the approach for organic carbon-degradation correction applied in the PRE (Jia et al., 2013) using the (Middelburg, 1989) model. It should be noted that the (Canuel and Martens, 1996) model is established for the anoxic environments of Cape Lookout Bight but is also likely applicable for coastal areas where aerobic conditions are usually confined to uppermost few-millimeter sediments (e.g., Hansen and Blackburn, 1991; Sun and Wakeham, 1994; Sun and Wakeham, 1998; Arndt et al., 2013). As illustrated in Figure 6, the initial \(\Sigma \) sterols (\(\Sigma \) sterolscorr) changed almost similarly with the burial \(\Sigma \) sterols, indicating that downcore \(\Sigma \) sterols can be used to infer PP variations in the study area, despite the degradation loss could be as high as ~24% in sediment depths.

According to Figure 4, the \(\Sigma \) sterols with largely similar variation features in most parts of the three cores suggest common factors controlling PP in the YDU area over the past few decades. The change in abundances of algal sterols, which is associated with PP variability, has been also documented offshore the PRE (i.e., at site A9; Figure 1) over the past century (Jia et al., 2013), demonstrating, again, the reliability of burial \(\Sigma \) sterols to reflect export PP in the coastal northern SCS. Moreover, the variability of PP offshore the PRE is considered as a result from
the fluvial nutrient influx from the Pearl River (Jia et al., 2013). However, riverine nutrient inputs could be largely ruled out as a cause for PP variations in the study area due to minor influence of the Pearl River plume, as have been described in detail in our previous study (Zhu et al., 2018). This is further supported by the relatively lower sterol abundances in core S101 than in cores S201 and S401 (Figure 3A; Supplementary Table S1), because core S101 was located closest to, whereas the other two cores were distributed further away from, the PRE (Figure 1). Our previous study on long chain diols derived DI-2 records in three cores revealed that the increasing trend in the upwelling intensity with inter-annual variability is a common phenomenon covering the YDU area over recent decades (Zhu et al., 2018). Thus, we deem that the upwelling-induced nutrients may have exerted an important effect on the variations of PP and sterol abundances at the sites.

Origin of Stanols
The diatom community is almost the exclusively dominant algae in the study area, accounting for ~88% of the total phytoplankton composition with Probuscia alata being the major species, followed by T. nitzschioides, Pseudo-nitzschia pungens, and S. costatum (Wang et al., 2011). The S. costatum is predominantly abundant in the PRE (Qiu et al., 2010; Shen et al., 2011); however, C28Δ24(28) that can be produced in vivo by S. costatum (Barrett et al., 1995; Rampen et al., 2010) has not been identified (or reported) in this region (Hu et al., 2009; Strong et al., 2012; Strong et al., 2013; Jia et al., 2013; Guo et al., 2019). The C28Δ24(28) was not detected either in core S101 (closest to the PRE), suggesting that C28Δ24(28) would be little produced by algae (i.e., S. costatum) in the coastal northern SCS. However, C28Δ24(28) was identified, despite with minimal amounts (averaged 7 ± 4 ng/g; Supplementary Table S1) in core S401 (farthest to the PRE), thus indicating that anaerobic conversion of C28Δ5,24(28) is more likely responsible for the presence of C28Δ24(28) at the site. The contribution of T. nitzschioides to C27Δ22 (Barrett et al., 1995; Rampen et al., 2010) in the three cores, however, could not be completely neglected based on the present study.

Dinoflagellates, despite account for a minute fraction of the total phytoplankton community, are the second most abundant algae in the YDU area (Wang et al., 2011; Duan et al., 2014). The dominance of Scrippsiella sp. in dinoflagellate floras in the study area (Duan et al., 2014) likely suggests this species as a considerable contributor to C27Δ0. This is further supported by the much high values of the C27Δ0/Δ5 ratio; i.e., an average of 32.7 in core S201 (Figure 3C), as such a similarly high C27Δ0/Δ5 ratio has been also documented in Scrippsiella sp. (Mansour et al., 1999). The possibility of dinoflagellate G. sanguineum as a biological source for C28Δ22 (Mansour et al., 1999), however, could be largely ruled out, owing to the absence of this species in the YDU area (Wang et al., 2011; Duan et al., 2014). Similarly, some other marine organisms that have been reported to contain considerable fractional abundances of C28Δ22 (Volkman et al., 1990; Nelson et al., 2000; Nelson et al., 2001) have also not been observed (or reported) in the study area (Wang et al., 2011; Duan et al., 2014; Ren et al., 2020).

Implication of the C28Δ22/Δ5,22 Ratio for Bottom Water DO Condition
As explained above, the C27Δ22/Δ5,22 and C27Δ0/Δ5 ratios are not suitable as reliable indicators for anaerobic transformation processes at the study sites, as T. nitzschioides and Scrippsiella sp. may contribute to C27Δ22 and C27Δ0, respectively. In contrast, the insignificant contribution of living organisms to other 5α-stanols (i.e., C28Δ24(28) and C28Δ22) suggests they are more likely
derived from the anaerobic conversion of their Δ^5-sterol counterparts. The $C_{28} \Delta^{22}/\Delta^5$ ratio is selected in this study because the three cores all contained detailed data of this ratio. However, another confounding factor should be ruled out before the application of the ratio as a redox indicator, i.e., the $C_{28} \Delta^{22}/\Delta^5$ ratio variations down the cores could be caused by differential degradation, given that 5a-stanols are more refractory than their respective Δ^5-sterol counterparts (e.g., Nishimura and Koyama, 1977; Wakeham, 1989; Arzyaus and Canuel, 2004; Bogus et al., 2012). Lines of evidence have revealed that biomarker (including sterols) degradation is insignificant even in deep-sea water columns as compared to in sediments (e.g., Prahl et al., 2000; Sinninghe Damsté et al., 2002; Wakeham et al., 2007; Hernández-Sánchez et al., 2014). Therefore, the potential loss of $C_{28} \Delta^{22}$ in the studied shallow water column (<35 m; Table 1) is not considered, but instead, its loss in sediments was evaluated. Here, we used the model by Canuel and Martens (1996) to estimate the initial $C_{28} \Delta^{22}/\Delta^5$ ($C_{28} \Delta^{22}$, as the case for \sum sterols corr), and then assessed the potential influence of degradation process on the downcore $C_{28} \Delta^{22}/\Delta^5$ variations. As illustrated in Figure 6, profiles of the corrected $C_{28} \Delta^{22}/\Delta^5$ ($C_{28} \Delta^{22}/C_{28} \Delta^5$ corr) followed those of buried $C_{28} \Delta^{22}$ in three cores, indicating that degradation loss of $C_{28} \Delta^{22}$ in sediment depths is not responsible for the downcore changes in the $C_{28} \Delta^{22}/\Delta^5$ ratios.

Therefore, by elimination, we deem the anaerobic conversion of $C_{28} \Delta^{22}$, a more reasonable process to interpret past $C_{28} \Delta^{22}/\Delta^5$ variations. Previous studies have revealed that the 5a-stanol/Δ^5-sterol ratios increase sharply in the oxic-anoxic transition zone in waters (Wakeham, 1989; Wakeham et al., 2007; Berndmeyer et al., 2014; Wakeham, 2020) and sediments (Nishimura and Koyama, 1977). Conditions in such a zone are well suited to the development of a large and most active microbial population (Karl, 1978; Larock et al., 1979; Lin et al., 2008; Rodriguez-Mora et al., 2013; Berndmeyer et al., 2014). In the YDU area, the significant reduction of $C_{28} \Delta^{22}$ in the water column could be largely ruled out due to the absence of anaerobic waters (and thus oxic-anoxic transition zone), as revealed by monitoring records (Zhang et al., 2018; Figure 7) and satellite observations (the World Ocean Atlas 2018; https://www.nodc.noaa.gov/cgi-bin/OC5/SELECT/woselect.pl?parameter=3).

Thus, we believe the anaerobic conversion of $C_{28} \Delta^{5,22}$ may have occurred principally in sediments. The hydrogenation reduction of Δ^5-sterols has been found to be rapid in the oxic-anoxic transition zone in microbiologically active sediments in the early sedimentation process, below which the hydrogenation rate is greatly attenuated (Nishimura and Koyama, 1977). This scenario may thus suggest that, in the coastal YDU, the greater part of $C_{28} \Delta^{22}$ originating from the hydrogenation of $C_{28} \Delta^{5,22}$ may have been produced mainly in the microbiologically active oxic-anoxic transition zone, which would lie in surface sediments. This is because 1) aerobic conditions are usually confined to the uppermost few-millimeter layer in coastal areas (e.g., Hansen and Blackburn, 1991; Sun and Wakeham, 1994; Wakeham, 1998; Arndt et al., 2013) and 2) microbial population is highest near the sediment surface and drops off steeply with depths in coastal marine sediments (e.g., Jørgensen and Revsbech, 1989; Saahm et al., 1999; Arndt et al., 2013). Moreover, comparison of surface sediments (≤2 cm) from different lakes with diverse bottom water redox potentials demonstrates an increasing trend in the 5a-stanol/Δ^5-sterol ratios from relatively oxidizing (i.e., 0.36 at Lake Kizaki) to reducing (i.e., 0.66 at Lake Suigetsu) environments (Nishimura and Koyama, 1977). Similarly, the 5a-stanol/Δ^5-sterol ratios are found higher in surface sediments with comparatively lower bottom water DO levels in the Yangtze River estuary (Zhu et al., 2012) and the PRE (Guo, 2015), implying that the ratio records in downcore sediments may reflect bottom water (surface sediment) redox conditions in the past. This is followed by a recent study on short cores around Penguin Island, demonstrating that sedimentary variations of the 5a-stanol/Δ^5-sterol ratios may be attributed to changes in bottom water conditions at the study sites at the time of deposition (Ceschim et al., 2016).
Accordingly, in this study, sedimentary \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratios are likely also predominantly determined by bottom water DO conditions that modulate the extent of anaerobic conversion of \(C_{28}\Delta^{5,22} \) at its initial deposition as a component of surface sediments. Here, DO condition is not an either–or concept between anaerobic and aerobic but a description of likely continuous change in DO concentration, although a common quantitative relation between the \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratio and DO concentration cannot be made at present and could be site specific. This is because the so-called anaerobic conversion has been found to take place under various redox conditions not strictly devoid of oxygen with a reported wide range of DO concentrations from 0 to \(\sim 10.6 \text{mg/L} \) (Wakeham, 1989; Wakeham et al., 2007; Berndmeyer et al., 2014; Guo, 2015). This implies that in the YDU area the anaerobic conversion of \(C_{28}\Delta^{5,22} \) may occur persistently and with varying degrees in surface sediments in response to variable bottom water DO concentrations. Given that the mean temporal resolutions of the three cores were \(\sim 2–7 \) years per 2-cm sediment interval (Table 1), the \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratio in each sediment interval is effectively a result of multi-year accumulated anaerobic conversion processes. Such an integrated continuous accumulation record would dampen or smooth out greater variations on shorter time scales (e.g., monthly and seasonal) and thereby should tend to reflect longer-term (i.e., multi-year) mean state of DO conditions. This point is supported by previous studies showing that the \(\Delta^{5,22} \)–\(\Delta^{5,22} \) sterol ratios are not reflective of seasonal-biased DO signals in surface sediments, where bottom water experience dramatically seasonal DO variability (Nishimura and Koyama, 1977; Zhu et al., 2012; Guo, 2015), implying that seasonal DO dynamics is hard to be recorded in sedimentary \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratios. Therefore, we believe multi-year mean state of bottom water DO conditions should be responsible for sedimentary \(C_{28}\Delta^{22}/\Delta^{5,22} \) records in the study area. This is consistent with a rough comparison between the \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratios in core S101 (3.6 years per 2-cm sedimentary interval; Table 1) and 4-year averaged bottom water DO variations at proximal monitoring station MM13 (Figure 1) during 1991–2007, showing higher \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratio values corresponding with lower DO concentrations (Figure 7). According to the ratio records down the three cores (Figure 4), DO concentrations varied at each site but similarly in shape between sites S101 and S201 with no clear temporal trend before \(\sim 1980s; \) after that, DO concentrations increased gradually (i.e., at sites S101 and S401) or shifted to a relatively abundant state (i.e., at site S201).

Potential Factors on Bottom Water DO Variations

Our novel sterol data (Figure 3A; Supplementary Table S1), together with already published diol data (Zhu et al., 2018), reinforce that the Pearl River plume contributes insignificantly to the study area, consistent with a recent study suggesting the influence of runoff from the Pearl River only within a certain range (Xu et al., 2020). Therefore, the input from the Pearl River is not considered as the most important driver on bottom water DO dynamics, but instead, the climate-induced upwelling-involved physical-biogeochemical processes (i.e., source water, wind stress, oceanic warming, photosynthetic production, and aerobic consumption) should be important to influence past changes in bottom water DO concentrations in the YDU area. These upwelling-involved processes have also been proposed as potentially important drivers on bottom water DO dynamics in many other upwelling regions without direct riverine influence (e.g., Fennel and Testa, 2019 and references therein).

The substantial impact of upwelling intensity on DO condition has been observed in upwelling regions off Peru, showing overall enhanced oxygenation in response to gradually intensified upwelling, which is attributed to a subtle oxygenation trend in the upwelled source waters (Cardich et al., 2019). The advection of upwelled source waters has been also proposed as a dominant factor controlling DO variability in many other upwelling regions (e.g., Grantham et al., 2004; Monteiro et al., 2006; Monteiro et al., 2008; Chan et al., 2008; Mohrholz et al., 2008). However, a 29-year observation across the northern SCS shelf area during 1976–2004 reveals a significant decrease in DO concentrations at various depths of the upper 200-m water column (Ning et al., 2009), thus likely transporting reduced-oxygenated source waters from outer shelf to inner coastal area at times of upwelling over recent decades. This scenario would rather decrease bottom water oxygenation and thus promote the anaerobic conversion of \(C_{28}\Delta^{5,22} \) in more reducing surface sediments, leading to elevated \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratios in recent decades that is in contrast with our present records. Therefore, the physical supply of source waters from outer shelf due to upwelling activity is not likely the major cause for bottom water DO variability in the study area.

Increases in southwesterly wind stress have been simulated to decrease bottom water hypoxia by eroding vertical stratification and aerating deep waters in the PRE (Wei et al., 2016; Lu et al., 2018). However, a time-series (2001–2015) observation in the nearby Mirs Bay reveals that larger hypoxic areas in bottom waters are often observed during years with longer-lasting southwesterly wind as a result of enhanced stratification, extended residence time of bottom waters, and onshore transport of low-oxygenated source waters induced by stable upwelling (Zhang et al., 2018). This inconsistency between the two proximal regions just to the west of YDU suggests that the actual impact of local southwesterly wind on DO condition may be highly site specific in the coastal northern SCS. Specific to our study sites, the wind stress appears to exert a minor effect on bottom water DO condition, as the \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratio correlated insignificantly with DI-2 inferred local wind stress in the three cores (Supplementary Figure S2).

Oceanic warming has a high potential to enhance stratification, decrease the DO solubility, and increase the rate of organic matter mineralization, thus eventually increasing oxygen deficiency and causing low-oxygen condition in bottom waters (Ning et al., 2009; Keelings et al., 2010; Schmidtko et al., 2017; Breitburg et al., 2018; Fennel and Testa, 2019). However, the important role of oceanic warming in regulating bottom water DO condition could be largely ruled out in the study area, because the \(C_{28}\Delta^{22}/\Delta^{5,22} \) ratio changed...
uncorrelated with LDI-derived annual mean SST in three cores (Supplementary Figure S2). Similar findings suggesting less importance of oceanic warming on DO condition in the coastal area than in the open ocean have been also made in other studies (e.g., Breitburg et al., 2018; Fennel and Testa, 2019 and references therein).

The above difficulties in the interpretation on the C$_{28}\Delta^{22}/\Delta^{5,22}$ ratio-inferred bottom water DO variability prompt us to consider the possible role of biogeochemical processes, because we notice that the C$_{28}\Delta^{22}/\Delta^{5,22}$ ratios correlate substantially reversed with the Σ sterols abundances in three cores (Figure 4). This occurrence suggests that bottom water DO concentrations change positively with total PP in the YDU area, which is compatible with recent studies focused on a small area of the western YDU, showing that low-oxygen areas do not coincide with the regions of high PP (Wei et al., 2016; Zhang et al., 2018). This phenomenon may be related with the competitive results of the twofold impacts induced by elevated PP in shallow, clear

![Comparison of n-C$_{29}$/C$_{28}\Delta^{5,22}$ (blue curves) and br-C$_{19}$/C$_{28}\Delta^{5,22}$ (red curves) with C$_{28}\Delta^{22}/\Delta^{5,22}$ (green curves) in the three cores.](image1.png)

![Schematic diagram of the biogeochemical mechanism of photosynthetic production in determining bottom water DO variations in surface sediments in the shallow, clear YDU area, showing (A) decreased bottom water oxygenation (−) and more reducing surface sediment (+) indicated by higher C$_{28}\Delta^{22}/\Delta^{5,22}$ ratio (+) in response to lower PP indicated by less abundant Σ sterols (−), and (B) increased bottom water oxygenation (+) and less reducing surface sediment (−) indicated by lower C$_{28}\Delta^{22}/\Delta^{5,22}$ ratio (−) in response to higher PP indicated by more abundant Σ sterols (+). Here, anaerobic conversion of C$_{28}\Delta^{22}$ is setting to occur principally in the oxic-anoxic transition zone in microbiologically active surface sediment, and thus, the C$_{28}\Delta^{22}/\Delta^{5,22}$ ratio at each sedimentary interval is mainly governed by bottom water DO level at the time of deposition. For detail in, e.g., figure (B), higher abundances of phytoplankton can fuel more abundant zooplankton (Figure 5) in the total photic water column; however, higher amounts of phytoplankton (and phytoplankton-dependent zooplankton) derived relatively labile organic matter may not always lead to increased microbial biomass (i.e., at sites S201 and S401; Figure 5). Regardless of certain degree of DO consumption by zooplankton respiration and microbial remineralization, the dominant role of DO production by phytoplankton photosynthesis in the photic zone (Figure 8) may still lead to higher extent of net bottom water DO penetrating into surface sediment, resulting in less reducing condition and thus lower sedimentary C$_{28}\Delta^{22}/\Delta^{5,22}$ ratio.](image2.png)
waters (Fennel and Testa, 2019); i.e., exacerbated oxygen depletion due to high rate of respiration and mineralization, and sufficient oxygen supply through photosynthetic production. To give a rough assessment of the competitive results between the biogeochemical oxygen sink and source, we compared the records of zooplankton and microbes (consumers) with records of phytoplankton (producers). As illustrated in Figure 8, distributions of the \(n\text{-C}_{20:1}/\text{C}_{28} \Delta^{5,22} \) and \(br\text{-C}_{17}/\text{C}_{28} \Delta^{5,22} \) ratios, indicative of the relative abundances of zooplankton and microbes compared with phytoplankton, respectively, changed almost in parallel with the \(\text{C}_{28} \Delta^{22}/\Delta^{5,22} \) ratios in the three cores. These occurrences suggest that, in our studied shallow-water area with less turbidity due to minor influence of the Pearl River plume (Zhu et al., 2018; this study), the oxygen production via photosynthesis may have exceeded biological oxygen consumption by zooplankton respiration and microbial remineralization, leading to a strong positive relationship between water column PP and bottom water (surface sediment) DO (Figure 4). Figure 9 illustrates general scenarios of the dominant role of photosynthetic production in the photic water column (i.e., 0–30 m; Wang et al., 2011) just above the seafloor of the study sites (water depths <35 m; Table 1) in determining bottom water redox conditions in surface sediments. We suggest that net photosynthetic oxygen production outweighs upwelling-involved source water- and oceanic warming–induced deoxygenation in bottom waters in the YDU area. We believe this phenomenon may also occur elsewhere with similar coastal upwelling conditions, such as shallow, clear waters with minor influence of riverine terrigenous input. However, the dominance of biogeochemical forcing on bottom water DO condition may be greatly attenuated in large river-impacted upwelling regions. For example, in the Mirs Bay (Figure 1) that is the western boundary of YDU affected by the Pearl River plume, the physical processes (i.e., freshwater discharge), rather than biogeochemical dynamics, are proposed as the most important drivers for inter-annual bottom water DO variability (Zhang et al., 2018).

CONCLUSION

A series of sterols and stanols were identified, and the 5α-stanol/\(\Delta^5 \)-sterol ratios were examined for their applicability for redox reconstruction in sediment cores in the YDU area in the coastal northern SCS. The \(\Sigma \) sterols abundances with roughly similar variation features were observed in most parts of the three cores, suggesting common factors controlling PP, which may be related to upwelling-induced nutrients over the past few decades. The \(\text{C}_{27} \Delta^{22}/\Delta^{5,22} \) and \(\text{C}_{27} \Delta^9/\Delta^5 \) ratios were not so reliable to reflect redox conditions because marine organism may produce these two stanols in vivo. However, some other ratio pairs such as the \(\text{C}_{28} \Delta^{22}/\Delta^{5,22} \) ratio can be accepted as a feasible redox indicator to infer changes of redox conditions in surface sediments, which are largely dependent on bottom water DO levels. The \(\text{C}_{28} \Delta^{22}/\Delta^{5,22} \) ratio records in three cores showed oscillations in varying degrees and exhibited no clear trends in bottom water DO concentrations before ~1980s but indicated a persistent increasing trend in oxygenation (at sites S101 and S401) or basically shifted to relatively higher DO level (at site S201) since then. This occurrence could be caused by the changes in net ecosystem production, as indicated by the \(n\text{-C}_{20:1}/\text{C}_{28} \Delta^{5,22} \) and \(br\text{-C}_{17}/\text{C}_{28} \Delta^{5,22} \) records that changed similarly with the \(\text{C}_{28} \Delta^{22}/\Delta^{5,22} \) records in the three cores. This study may provide a perspective on the responses of bottom water DO variation to upwelling and climate change in the future in shallow, clear coastal upwelling regions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Gj conceived and supervised the entire work and commented on the paper. XZ performed the experiments, analyzed the data, and wrote the article. YT and AM prepared the figures. WX, LM, SX, and WY contributed to the discussion and writing of this paper.

FUNDING

The study was supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (no. GML2019ZD0104), the National Natural Science Foundation of China (nos. 42176079 and 41706059), the State Key R&D project (no. 2016YFA0601104), and K.C. Wong Education Foundation (no. GJTD-2018-13). We acknowledge the support of SML311019006/311020006.

ACKNOWLEDGMENTS

We thank the expedition chief scientists, P. Cai and W. Zhai, and the crew of the Dongfanghong II for their support and help during the cruises. Special thanks go to editors and two reviewers for their thoughtful and constructive comments that greatly improved the clarity and quality of the article.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feart.2021.759317/full#supplementary-material
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R. (2015). Intensiﬁcation and Spatial Homogenization of Coastal Upwelling under Climate Change. Nature 518 (7539), 390–394. doi:10.1038/nature14235
Wang, Y., Lin, M., Lin, G. M., and Xiang, P. (2011). Community Composition of Phytoplankton in Fujian-Guangdong Coastal Upwelling Region in Summer and Related Affecting Factors. Ying Yong Sheng Tai Xue Bao 22 (2), 503–512. Available at: http://www.cjae.net/CN/Y2011/V22/I02/503.
Watson, A. J. (2016). Oceans on the Edge of Anoxia. Science 354 (6319), 1529–1530. doi:10.1126/science.aaj2321
Wei, X., Zhan, H., Ni, P., and Cai, S. (2016). A Model Study of the Effects of River Discharges and Winds on Hypoxia in Summer in the Pearl River Estuary. Mar. Pollut. Bull. 113 (1-2), 414–427. doi:10.1016/j.marpolbul.2016.10.042
Xu, S., Zhang, Z., Jia, G., Yu, K., Lei, F., and Zhu, X. (2020). Controlling Factors and Environmental Signiﬁcance of BIT and δ13C of Sedimentary GDGTs from the Pearl River Estuary, China over Recent Decades. Estuarine, Coastal Shelf Sci. 233, 106534. doi:10.1016/j.ecss.2019.106534
Yang, H., Ding, W., and Xie, S. (2014). Distribution of Microbial Fatty Acids and Fatty Alcohols in Soils from an Altitude Transect of Mt. Jianfengling in Hainan, China: Implication for Paleoaltimetry and Paleotemperature Reconstruction. Sci. China Earth Sci. 57 (5), 999–1012. doi:10.1007/s11430-013-4729-8
Zhang, H., Cheng, W., Chen, Y., Yu, L., and Gong, W. (2018). Controls on the Interannual Variability of Hypoxia in a Subtropical Embayment and its Adjacent Waters in the Guangdong Coastal Upwelling System, Northern South China Sea. Ocean Dyn. 68 (8), 923–938. doi:10.1007/s10236-018-1168-2
Zhu, C., Pan, J.-M., and Pancost, R. D. (2012). Anthropogenic Pollution and Oxygen Depletion in the Lower Yangtze River as Revealed by Sedimentary Biomarkers. Org. Geochem. 53, 95–98. doi:10.1016/j.orggeochem.2012.09.008
Zhu, X., Jia, G., Mao, S., and Yan, W. (2018). Sediment Records of Long Chain Alkyl Diols in an Upwelling Area of the Coastal Northern South China Sea. Org. Geochem. 121, 1–9. doi:10.1016/j.orggeochem.2018.03.014

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or ﬁnancial relationships that could be construed as a potential conﬂict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their afﬁliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Zhu, Jia, Tian, Mo, Xu, Miao, Xu and Yan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.