Groups having 11 cyclic subgroups

Khyati Sharma and A. Satyanarayana Reddy
Department of Mathematics
Shiv Nadar University, India - 201314
E-mail: ks171@snu.edu.in, satya.a@snu.edu.in

Abstract

Let \(c(G) \) denotes the number of cyclic subgroups of a finite group \(G \). A group \(G \) is \(n \)-cyclic if \(c(G) = n \). In this paper, we show that \(c(G) = 11 \) if and only if \(G \cong H \), where \(H \in \{ \mathbb{Z}_{p^{10}}, \mathbb{Z}_{27} \times \mathbb{Z}_3, \mathbb{Z}_{27} \times \mathbb{Z}_3, \text{Dic}_7, \mathbb{Z}_7 \times \mathbb{Z}_3, \mathbb{Z}_3 \times S_3, \mathbb{Z}_5 \times \mathbb{Z}_8, \mathbb{Z}_3 \times \mathbb{Z}_{16} \} \) and \(p \) is a prime number.

Keywords: \(n \)-cyclic group, Sylow theorem, Maximal subgroup

Mathematics Subject Classification: 20D20, 20D25

1 Introduction

A group \(G \) is \(n \)-cyclic, if it has \(n \) cyclic subgroups. It is easy to verify that \(G \) is 1-cyclic or 2-cyclic if and only if \(G \cong \{ e \}, G \cong \mathbb{Z}_p \), where \(p \) is a prime number respectively. Zohu [9] found all the groups which are \(n \)-cyclic for \(n = 3, 4 \) and 5. Later, Kalra [3] classified all the \(n \)-cyclic groups for \(n \in \{ 6, 7, 8 \} \). Recently, Ashrafi and Haghi [1] have found all 9, 10-cyclic groups. In the present work, we find all 11-cyclic groups by using the same approach as that of Ashrafi and Haghi [1].

To elucidate further on this literature, we examined the incremental work done over time in counting these \(n \)-cyclic groups, beginning with the work by Tóth [8] which helped to count the number of cyclic subgroups of a finite abelian group. Later, Tărnăuceanu [7] classified all finite groups \(G \) having \(|G| - 1 \) number of cyclic subgroups. It is well known that \(G \) is \(|G| \)-cyclic if and only if \(G \) is an elementary abelian 2-group [1].

The notations \(\mathbb{Z}_n, D_{2n}, Q_{2^n}, M(p^a) \) and \(\text{Dic}_n \) denote the cyclic groups of order \(n \), dihedral group of order \(2n \), generalized quaternion group of order \(2^n \), modular group of order \(p^a \) and dicyclic group of order \(4n \) respectively. Here, a group \(G \) is CLT, if it has subgroups corresponding to every divisor of \(|G| \). Throughout this paper \(p, q \) and \(r \) are distinct prime numbers. We refer to the website [2] to count the number of cyclic subgroups of any group of order 1 to 500, using their Hasse diagram.
Let G be a group and $c(G)$ denotes the number of cyclic subgroups of G. If $c(G) = n$, we can also say that G is n-cyclic. Let $d(n), \omega(n)$ denote the number of positive divisors and number of distinct prime divisors of n respectively. It is easy see that $c(G) \leq |G|$. Richard’s Theorem [4] provides a lower bound on $c(G)$, in particular, we have $c(G) \geq d(|G|)$. Suppose G is an 11-cyclic group of order n. An immediate consequence from Richard’s Theorem [4] is that $\omega(n) \leq 3$ in particular, n is one of the form p^k, pq, p^2q, pqr, p^3q or p^4q, where $k \leq 10$. Let $c_G(m)$ (simply $c(m)$, when G is clear from the context) denotes the number of cyclic subgroups of order m in G and define $T(G) = |G| - \sum_{m|\mid G} c(m)\phi(m)$. We can easily see that $T(G) = 0$. In most of the cases to find all 11-cyclic groups we take different possibilities of $c(m)$, for all the divisors m of n and then examine all the solutions of $T(G) = 0$. In the next section we will give the proof to find all 11-cyclic groups.

2 Proof

Let G be an 11-cyclic group. We will prove the result casewise by taking different possibilities on $|G|$.

$|G| = p^a$: We will prove that

$$G \cong \begin{cases}
\mathbb{Z}_{p^{10}} \text{ or } \mathbb{Z}_{27} \times \mathbb{Z}_3 & \text{if } G \text{ is abelian,} \\
\mathbb{Z}_{27} \times \mathbb{Z}_3 & \text{otherwise.}
\end{cases}$$

Let M be a maximal subgroup of G. Then we have the following two cases:

M is a cyclic subgroup of G. We first assume that G is abelian. Since $|M| = p^{a-1}$, then either G is isomorphic to \mathbb{Z}_{p^a} or $\mathbb{Z}_p \times \mathbb{Z}_{p^{a-1}}$. If $G \cong \mathbb{Z}_{p^a}$, then we can easily prove that $a = 10$. If $G \cong \mathbb{Z}_p \times \mathbb{Z}_{p^{a-1}}$, then by Theorem 1.1 of [1], $c(G) = (n - 1)p + 2$, consequently, $p = 3, a = 4$ and $|G| = 81$. Further from [2] we have $G \cong \mathbb{Z}_{27} \times \mathbb{Z}_3$.

Now if G is non-abelian, then depending on p, we have the following two situations: If p is odd, then $G \cong M(p^a)$ and by Theorem 1.1 [1], $c(G) = (n - 1)p + 2$. This shows that $p = 3, a = 4$. Thus $G \cong \mathbb{Z}_{27} \times \mathbb{Z}_3$ by [2]. When $p = 2$ by classification theorem of finite non-abelian 2-groups containing cyclic maximal subgroup, $G \cong D_{2^2}, Q_{2^2}, M(2^a)$ or S_{2^2}. Using Theorem 1.1 [1], we have $c(D_{2^2}) = a + 2^{a-1}, c(Q_{2^2}) = a + 2^{a-2}, c(M(2^a)) = 2a$ and $c(S_{2^2}) = a + 3.2^{a-3}$. Now by simple calculation, one can check that none of these groups are 11-cyclic.

M is a non-cyclic subgroup of G. Then $c(M) \leq 10$. Let us consider the set $S = \{ \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_5 \times \mathbb{Z}_5, \mathbb{Z}_3 \times \mathbb{Z}_5, \mathbb{Z}_2 \times \mathbb{Z}_8, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_7 \times \mathbb{Z}_7, \mathbb{Z}_2 \times \mathbb{Z}_{16}, \mathbb{Z}_4 \times \mathbb{Z}_4, \mathbb{Z}_2 \times Q_{16}, SD_{16}, \mathbb{Z}_{16} \times \mathbb{Z}_2, \mathbb{Z}_4 \times \mathbb{Z}_4, \mathbb{Z}_9 \times \mathbb{Z}_3, \mathbb{Z}_8 \times \mathbb{Z}_2, \mathbb{Z}_3 \times \mathbb{Z}_3, Q_{16}, D_8, Q_8, S_3 \}$ of all non-cyclic groups, which are n-cyclic and $n \leq 10$.

Then M is isomorphic to a member of S by Theorem 1.2 and Lemma 2.1 \cite{1}. Therefore, $p = 2$ and $a = 3, 5$ or 6, $p = 3$ and $a = 3, 5$, $p = 5, 7$ and $a = 3$. Moreover, $|G| \in \{8, 16, 27, 32, 64, 81, 125, 343\}$. We can easily verify that no group of these orders is 11-cyclic by checking their Hasse diagram. Hence, the only non-abelian 11-cyclic p-group is $\mathbb{Z}_{27} \rtimes \mathbb{Z}_3$.

The following conclusion can be made by using the above case. A group G is cyclic and 11-cyclic if and only if $G \cong \mathbb{Z}_{p^{10}}$. If G is an abelian group of order n, where $n \in \{pq, p^2q, pqr, p^3q, p^4q\}$, then by using Theorem 1 \cite{8}, one can see that G is not 11-cyclic. Hence, the only non-cyclic abelian 11-cyclic group is $\mathbb{Z}_{27} \times \mathbb{Z}_3$.

From now onwards, all the groups are supposed to be non-abelian.

$|G| = pq$: If $p < q$, then by Lemma 3.1 of \cite{3} $c(G) = q + 2$. Therefore $q = 9$, which is a contradiction. Hence no group of order pq is 11-cyclic.

$|G| = p^2q$: If $p < q$, then according to Proposition 3.2 of \cite{3}, $c(G) \in \{6, 2p+4, pq+4, q+4, 2q+2\}$. Hence G is 11-cyclic only if $p = 2, 3$ and $q = 7$. Moreover, from \cite{2} one can notice that $G \cong Dic_7$ or $\mathbb{Z}_7 \rtimes \mathbb{Z}_9$.

If $p > q$, then from Proposition 3.2 of \cite{3}, $c(G) \in \{6, 2p+4, p^2+3, p^2+p+2, 2p+3, 3p+2\}$. Thus $c(G) = 11$ is possible only if $p = 3$ and $q = 2$. Again from \cite{2}, we have $G \cong \mathbb{Z}_3 \times S_3$.

$|G| = pqr$: We will prove that there is no 11-cyclic group of order pqr. Since every group of square free order is solvable, so G has Hall subgroups of order pq, pr and qr. These Hall subgroups are either cyclic or they are isomorphic to S_3, D_{14}, D_{10} or $\mathbb{Z}_7 \rtimes \mathbb{Z}_3$ by Theorem 1.2 and Lemma 2.1 of \cite{1}. As a consequence of Lemma 19 \cite{5}, at least one of them is non-abelian. Let M be a non-abelian, maximal Hall subgroup of G. Then we have the following sub-cases:

$M \cong \mathbb{Z}_7 \times \mathbb{Z}_3$. Table 1 lists all the cases for the potential number of cyclic subgroups of G.

\begin{table}[h]
\begin{center}
\begin{tabular}{cccccccc}
\hline
$c(1)$ & $c(7)$ & $c(3)$ & $c(p)$ & $c(7p)$ & $c(3p)$ & $c(21)$ & $T(G)$ \\
\hline
1 & 1 & 7 & 1 & 1 & 0 & 0 & 14p – 14 \\
1 & 2 & 7 & 1 & 0 & 0 & 0 & 20p – 26 \\
1 & 1 & 7 & 1 & 0 & 1 & 0 & 18p – 18 \\
1 & 1 & 7 & 1 & 0 & 0 & 1 & 20p – 32 \\
\end{tabular}
\end{center}
\end{table}

Table 1

It is clear that $T(G) \neq 0$ in every case.

$M \cong D_{14}$. In this case we have $|G| = 14p$ and $c(M) = 9$. Since $c(G) = 11$ by Sylow theorem G has unique subgroups of order 7 and p. Therefore Table 2 includes

\begin{table}[h]
\begin{center}
\begin{tabular}{cccccccc}
\hline
$c(1)$ & $c(7)$ & $c(3)$ & $c(p)$ & $c(7p)$ & $c(3p)$ & $c(21)$ & $T(G)$ \\
\hline
1 & 1 & 7 & 1 & 1 & 0 & 0 & 14p – 14 \\
1 & 2 & 7 & 1 & 0 & 0 & 0 & 20p – 26 \\
1 & 1 & 7 & 1 & 0 & 1 & 0 & 18p – 18 \\
1 & 1 & 7 & 1 & 0 & 0 & 1 & 20p – 32 \\
\end{tabular}
\end{center}
\end{table}

Table 2
all possible cases for the number of cyclic subgroups of G.

1	7	1	1	0	0	$13p - 19$
1	7	1	1	0	1	$12p - 12$
1	7	1	1	0	1	$7p - 7$

Table 2

In every case we can easily see that $T(G) = 0$ has no solution.

$M \cong S_3$. Then from $c(G) = 11$ and Sylow theorem, we get the following possibilities for the number of cyclic subgroups of G recorded in Table 3.

1	3	1	1	3	2	0	$2p - 2$
1	3	1	1	2	3	0	$3p - 3$
1	3	1	1	3	0	2	$p - 3$
1	3	1	1	2	0	3	$3p - 9$
1	3	1	1	0	3	2	$p + 3$
1	3	1	1	0	2	3	$p - 7$
1	3	1	1	5	0	0	0
1	3	1	1	0	5	0	$5p - 5$
1	3	1	1	0	0	5	$5p - 15$
1	3	5	1	1	0	0	$4p - 12$
1	3	5	1	0	1	0	$6p - 11$
1	3	5	1	0	0	1	$5p - 15$
1	3	1	6	0	0	0	0
1	6	1	1	2	0	0	$3p - 6$
1	6	1	1	0	2	0	$p - 4$
1	6	1	1	0	0	2	$5p - 12$
1	6	1	1	1	1	0	$2p - 5$
1	6	1	1	0	1	1	$3p - 8$
1	6	1	1	1	0	1	$4p - 9$

Table 3

By using the fact that p is prime and $p \geq 5$ the only possible solution of $T(G) = 0$ is $p = 7$. Therefore the order of G is 42. After checking the Hasse diagram of all groups of order 42 (see [2]), we can say that no such group is 11-cyclic.
In this case $|G| = 10p$ and G has a unique subgroup of order p as it has at least 5 subgroups of order 2. Thus, by using Sylow theorem all the possibilities for the number of cyclic subgroups of G are recorded in the Table 4.

Since $p \notin \{2, 5\}$ so it is easy to check that $T(G) = 0$ has no solution. Hence the conclusion is no group of order pqr, is 11-cyclic.

$|G| = p^2q^2$: We will show that none of the groups of order p^2q^2 are 11-cyclic. We will prove the same by examining the following cases.

G has unique subgroup of order p and unique subgroup of order q. In this case Sylow p and q subgroups of G are cyclic. Note that $n_p(G) = n_q(G) = 1$ is not possible as G is not cyclic.

If $n_p(G), n_q(G) > 1$ and $p < q$, then by Sylow theorem, $n_p(G) \geq q, n_q(G) = p^2$, so $c(G) \geq p^2 + q + 3$. Thus, if we take $q > 3$, then $c(G) > 11$. Therefore, $p = 2, q = 3$ and $|G| = 36$. By [2], we can check that no group of order 36 is 11-cyclic.

Now, assume that $n_p(G) > 1$ and $n_q(G) = 1$. Then by using Sylow theorem, $n_p(G) \geq 1 + p$ and $n_p(G) \in \{q, q^2\}$. Also, G has unique cyclic subgroup of order pq. If $n_p(G) = q$, then $p < q$ and $c(G) > q + 5$. Hence $p \in \{2, 3\}$ and $q \in \{2, 3, 5\}$. If $p = 2$, then $q \in \{3, 5\}$ and $|G| = 36, 100$. From [2], we can conclude that no group of order 36 and 100 is 11-cyclic. Let $p = 3$, then all the possible cases for the number of cyclic subgroups of G are listed in Table 5.

By simple calculation we can observe that $T(G) = 0$ has no solution. If $n_p(G) = q^2$, then either $|G| = 36$ or $c(G) > 11$. In this case G is not 11-cyclic.

G has unique subgroup of order q and at least $p + 1$ subgroups of order p.

This implies that Sylow q-subgroup of G is cyclic. Also G has unique cyclic subgroups of order 1, q and q^2. Therefore, $c(G) \geq p + 4$, which shows that
Table 5

\[
p \in \{2, 3, 5, 7\}. \text{ If } p = 2, 3, 5 \text{ or } 7, \text{ then all the possible number of cyclic subgroups of } G \text{ are recorded in the below Table 6.}
\]

It is easy to check that \(T(G) = 0 \) has no solution in all the cases.

Table 6

Subgroups of order \(p \) and \(q \) are not unique. By Sylow theorem, \(G \) has at least \(p + 1 \) and \(q + 1 \) subgroups of order \(p \) and \(q \) respectively. Therefore, \(c(G) \geq \)
\[p + q + 3. \] Also, as a consequence we have \(p + q \in \{2, 3, 4, 5, 6, 7, 8\} \), equivalently \(|G| \in \{36, 100, 225\} \). From [2], after analyzing the Hasse diagram of all the groups of order 36, 100 and 225 we can say that none of them is 11-cyclic.

Hence no group of order \(p^2q^2 \) is 11-cyclic.

\[|G| = p^3q : \] Specifically, we will prove that \(G \cong \mathbb{Z}_5 \times \mathbb{Z}_8 \). If \(G \) is a non-CLT group of order \(p^3q \), then by Theorem 1.1 of [6], either \(G \) is isomorphic to \(SL(2, 3) \) or \(E(p^3) \times \mathbb{Z}_q \), where, \(E(p^3) \) is the elementary abelian \(p \)-group of order \(p^3 \). We can check \(c(SL(2, 3)) = 13 \), from [2]. Since every non-identity element of \(E(p^3) \) has order \(p \), then \(c(E(p^3)) = p^2 + p + 2 \). If \(p > 2 \), then \(c(E(p^3)) \geq 14 \). If \(p = 2 \), then \(c(E(p^3)) = 8 \) also \(E(p^3) \times \mathbb{Z}_q \) has at least \(q + 1 \) subgroups of order \(q \), where \(q \geq 3 \). Therefore, \(c(E(p^3) \times \mathbb{Z}_q) > 11 \), which is a contradiction. Thus \(G \) is a CLT group, so it has a subgroup of order \(p^2q \), say \(M \). By using the fact that \(c(M) < 11 \) together with Theorem 1.2 and Lemma 2.1 [1], we have \(M \in \{ \mathbb{Z}_{p^2q}, \mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_{2p}, A_4, \mathbb{Z}_5 \times \mathbb{Z}_4, \mathbb{Z}_3 \times \mathbb{Z}_{2q}, D_{12}, \mathbb{Z}_7 \times \mathbb{Z}_9, \mathbb{Z}_9 \times S_3 \} \). If \(M \in \{ A_4, \mathbb{Z}_3 \times \mathbb{Z}_4, \mathbb{Z}_5 \times \mathbb{Z}_4, D_{12}, \mathbb{Z}_7 \times \mathbb{Z}_9, \mathbb{Z}_3 \times S_3 \} \), then \(|G| \in \{24, 40, 54, 189\} \). Hence by [2], we can check that no such group is 11-cyclic. If \(M \cong \mathbb{Z}_{p^2q} \) then there are following sub-cases:

G has at least \(p + 1 \) subgroups of order \(p \). Since \(c(M) = 6 \) and \(M \) has unique subgroup of order \(p \), \(G \) has \(p \) subgroups of order \(p \) different from those, which are contained in \(M \). Thus \(c(G) \geq 6 + p \) and \(p \leq 5 \). All the possibilities of numbers of cyclic subgroups of \(G \) are given in Table [7]. We are getting \(q = 3 \) for \(p = 2 \) after solving the equation \(T(G) = 0 \), from Table [7]. Also \(|G| = 24 \), by [2], we can check that no group of order 24 is 11-cyclic.

G has unique subgroup of order \(p \). In this case Sylow \(p \)-subgroup of \(G \) is either cyclic or generalized quaternion. Suppose \(G \) has unique cyclic Sylow \(p \)-subgroup, then \(n_q(G) \geq 1 + q \). This shows that, \(c(G) \geq 7 + q \) and \(q = 2 \) or 3. We have the following possibilities for the number of cyclic subgroups of \(G \) recorded in Table [8].

We can not find values of \(p \) after solving the equation \(T(G) = 0 \) as \(p > 2 \). Therefore, if Sylow \(p \)-subgroup of \(G \) is cyclic then \(n_q(G) > 1 \). Now, by Sylow theorem, \(G \) has at least \(1 + p \) Sylow \(p \)-subgroups. Moreover, \(c(G) \geq 7 + p \) and \(p = 2 \) or 3. All the possible number of cyclic subgroups of \(G \) are listed in Table [9]. From, Table [9] after solving the equation \(T(G) = 0 \), we are getting \(q = 5 \) for \(p = 2 \) and \(|G| = 40 \). By [2], after checking the structure of all the groups of order 40, \(G \cong \mathbb{Z}_5 \times \mathbb{Z}_8 \).

If Sylow \(p \)-subgroup of \(G \) is generalized quaternion then the possible number of cyclic subgroups of \(G \) are given in Table [10].

From Table [10] after solving the equation \(T(G) = 0 \) we are getting \(q = 3 \) and \(|G| = 24 \). By [2], no group of order 24 in which Sylow \(p \)-subgroup is
generalized quaternion is 11-cyclic. If \(M \cong \mathbb{Z}_3 \times \mathbb{Z}_{3q} \), then \(|G| = 27q \) and \(G \) has no cyclic subgroup of order 27. Also, by Sylow theorem, \(n_3(G) \in \{1, q\} \) and \(n_q(G) \in \{1, 3, 9, 27\} \). If \(n_q(G) \in \{3, 9, 27\} \), then we can easily check that \(G \) is not 11-cyclic. Thus \(n_q(G) = 1 \), all the possibilities for number of cyclic subgroups of \(G \) are listed in Table 11.

Table 7

\(p \)	\(c(1) \)	\(c(p) \)	\(c(p^2) \)	\(c(p^3) \)	\(c(q) \)	\(c(pq) \)	\(c(p^2q) \)	\(T(G) \)
2	1	3	1	3	1	1	1	\(2q - 7 \)
1	3	1	2	1	2	1	\(q - 3 \)	
1	3	1	2	1	1	2	\(q + 2 \)	
1	3	2	2	1	1	1	\(q - 3 \)	
1	3	3	1	1	1	1	\(2q - 5 \)	
1	3	2	1	1	1	2	\(q - 3 \)	
1	3	2	1	1	2	1	\(3q - 7 \)	
1	3	2	0	1	3	1	\(q - 1 \)	
1	3	2	0	1	1	3	0	
1	3	1	0	1	2	2	\(q - 1 \)	
1	3	1	0	1	2	3	\(q - 3 \)	
1	3	1	0	1	3	2	\(q \)	
1	3	1	0	1	4	1	1	\(q + 1 \)
3	1	4	2	1	1	1	1	\(3q - 5 \)
1	4	1	1	2	1	1	\(17q - 23 \)	
1	4	1	0	2	2	1	\(5q - 1 \)	
1	4	1	0	1	2	2	\(5q + 1 \)	
1	4	2	0	1	1	2	\(2q - 1 \)	
1	4	3	0	1	1	1	\(q - 1 \)	
1	4	1	2	1	1	1	\(3q - 7 \)	
1	4	1	0	3	1	1	\(4q - 1 \)	
1	4	1	0	1	3	1	\(7q - 1 \)	
1	4	1	0	1	1	3	\(q + 1 \)	
5	1	6	1	0	1	1	1	\(10q - 1 \)

Table 8

\(c(1) \)	\(c(p) \)	\(c(p^2) \)	\(c(p^3) \)	\(c(q) \)	\(c(pq) \)	\(c(p^2q) \)	\(T(G) \)
1	1	1	1	3	1	3	\(p^3 - 3p^2 + 2p - p \)
1	1	1	1	3	3	1	\(p^3 - p^2 - 2p \)
1	1	1	1	3	2	2	\(p^3 - 2p^2 - 1 \)
1	1	1	1	5	1	1	\(p^3 - p^2 - 4 \)
1	1	1	1	4	2	1	\(p^3 - p^2 - p - 4 \)
1	1	1	1	4	1	2	\(p^3 - 2p^2 + p - 3 \)
No Such group is 11-cyclic as from Table 11, there is no solution for the equation $T(G) = 0$. Now assume that $M \cong \mathbb{Z}_2 \times \mathbb{Z}_2 q$. By Sylow theorem $n_2(G) \in \{1, q\}$ and $n_q(G) \in \{1, 2, 4, 8\}$. If $n_q(G) = 8$ then G is not 11-cyclic. Now, we have the following possibilities for the number cyclic subgroups of G given in the below Table 12.

From, Table 12 after solving the equation $T(G) = 0$ we are getting $q = 3$ or 5, that is $|G| = 24$ or 40. By [2], no such group is 11-cyclic.
Table 12

| G | \(p^4q \) : We will prove that, \(G \cong \mathbb{Z}_3 \times \mathbb{Z}_{16} \). If \(G \) is a CLT group, then it has a subgroup of order \(p^3q \), call it \(M \) such that \(c(M) \leq 10 \). By Theorem 1.2 and Lemma 2.1 of [1], \(M \in \{ \mathbb{Z}_{p^3q}, \mathbb{Z}_3 \times \mathbb{Z}_8, \mathbb{Z}_9 \times \mathbb{Z}_8 \} \). If \(M \cong \mathbb{Z}_3 \times \mathbb{Z}_8 \) then \(|G| = 48 \). By [2], no such group of order 48 is 11-cyclic. If \(M \cong \mathbb{Z}_9 \times \mathbb{Z}_8 \), then \(|G| = 16q \) and \(c(M) = 10 \) by Theorem 1.2 of [1]. All the possibilities for the number of cyclic subgroups of \(G \) are recorded in the Table 13.

We cannot find the value of \(q \) by solving the equation \(T(G) = 0 \). Thus, no such group is 11-cyclic. Now, suppose that \(G \) has a subgroup \(M \cong \mathbb{Z}_{p^3q} \), then we have the following sub-cases.

G has a unique subgroup of order \(p \). In this case, Sylow \(p \)-subgroup of \(G \) is either cyclic or generalized quaternion. If \(G \) has unique cyclic Sylow \(p \)-subgroup, then \(n_q(G) \geq 1 + q \). Therefore \(q = 2 \). All the possibilities of the number of cyclic subgroups of \(G \) are given in the Table 14.

By simple calculation we cannot find value of \(p \) after solving the equation \(T(G) = 0 \), from Table 14 Therefore, if Sylow \(p \)-subgroup of \(G \) is cyclic, then

\[
c(1) \quad c(2) \quad c(2^2) \quad c(2^3) \quad c(q) \quad c(2q) \quad c(4q) \quad T(G)
\begin{array}{cccccccc}
1 & 3 & 1 & 0 & 1 & 3 & 2 & 3 \\
1 & 3 & 2 & 0 & 1 & 3 & 1 & q - 1 \\
1 & 3 & 0 & 0 & 4 & 3 & 0 & q + 3 \\
1 & 4 & 1 & 0 & 1 & 3 & 1 & 2q - 11 \\
1 & 3 & 1 & 0 & 1 & 4 & 1 & q + 1 \\
1 & 4 & 2 & 0 & 1 & 3 & 0 & 4q - 5 \\
1 & 3 & 2 & 0 & 1 & 4 & 0 & q - 1 \\
1 & 3 & 3 & 0 & 1 & 3 & 0 & 2q - 3 \\
1 & 3 & 0 & 0 & 1 & 3 & 3 & q - 3 \\
1 & 3 & 0 & 0 & 1 & 4 & 2 & q - 5 \\
1 & 4 & 0 & 0 & 1 & 3 & 2 & 3 \\
1 & 5 & 0 & 0 & 1 & 4 & 0 & 3p - 1 \\
1 & 4 & 0 & 0 & 1 & 5 & 0 & 2p + 1
\end{array}
\]

Table 12

\[
c(1) \quad c(2) \quad c(2^2) \quad c(2^3) \quad c(q) \quad c(2q) \quad c(4q) \quad c(8q) \quad T(G)
\begin{array}{cccccccc}
1 & 1 & 3 & 1 & 0 & 1 & 1 & 3 & 0 & 2q - 1 \\
1 & 2 & 3 & 0 & 0 & 1 & 1 & 3 & 0 & 8q - 1 \\
1 & 1 & 4 & 0 & 0 & 1 & 1 & 3 & 0 & 4q - 1 \\
1 & 1 & 3 & 0 & 0 & 2 & 1 & 3 & 0 & 7q + 1 \\
1 & 1 & 3 & 0 & 0 & 1 & 2 & 3 & 0 & 7q + 1 \\
1 & 1 & 3 & 0 & 0 & 1 & 1 & 4 & 0 & 3q + 1
\end{array}
\]

Table 13
\(c(1) \)	\(c(p) \)	\(c(p^2) \)	\(c(p^3) \)	\(c(p^4) \)	\(c(2) \)	\(c(2p) \)	\(c(2p^2) \)	\(c(2p^3) \)	\(T(G) \)
1	1	1	1	1	3	1	1	1	\(p^4 - p^3 - 2 \)

Table 14

\(n_p(G) \geq 1 + p \) and \(c(G) \geq 8 + 1 + p \). With these observations, we get \(p = 2 \). Now, all the possibilities of the number of cyclic subgroups of \(G \) are listed in Table 15.

\(c(1) \)	\(c(2) \)	\(c(2^2) \)	\(c(2^3) \)	\(c(2^4) \)	\(c(q) \)	\(c(2q) \)	\(c(4q) \)	\(c(8q) \)	\(T(G) \)
1	1	1	1	3	1	1	1	1	\(q - 3 \)

Table 15

From Table 15, we get \(q = 3 \) and \(|G| = 48 \). By [2], after seeing the structure of all the groups of order 48, we have \(G \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_{16} \).

If Sylow \(p \)-subgroup of \(G \) is generalized quaternion then \(|G| = 16q \). All the possibilities of number of cyclic subgroups of \(G \) are recorded in Table 16.

\(c(1) \)	\(c(2) \)	\(c(2^2) \)	\(c(2^3) \)	\(c(2^4) \)	\(c(q) \)	\(c(2q) \)	\(c(4q) \)	\(c(8q) \)	\(T(G) \)
1	1	4	0	1	1	1	1	1	\(4q - 3 \)
1	1	3	0	2	0	1	1	1	\(q - 1 \)
1	1	3	1	0	1	2	1	1	\(7q - 3 \)
1	1	3	1	0	1	1	2	1	\(3q + 1 \)
1	1	3	1	0	1	1	2	1	\(2q - 1 \).

Table 16

From the above Table 16, we can not find the value of \(q \) after solving the equation \(T(G) = 0 \). Hence, no such group is 11-cyclic.

\(G \) has at least \(p + 1 \) subgroups of order \(p \). Then \(G \) has at least \(p \) subgroups of order \(p \) different from those, which are contained in \(M \) and so \(p = 2 \) or 3. All the possibilities for the numbers of cyclic subgroups of \(G \) are given in Table 17. Now, it is easy to see we can not find the value of \(q \) after solving the equation \(T(G) = 0 \), from Table 17. Consequently, no such group is 11-cyclic.

\(p \)	\(c(1) \)	\(c(p) \)	\(c(p^2) \)	\(c(p^3) \)	\(c(p^4) \)	\(c(q) \)	\(c(pq) \)	\(c(p^2q) \)	\(c(p^3q) \)	\(T(G) \)
2	1	1	1	1	3	1	1	1	1	\(q - 3 \)
3	1	4	1	0	1	1	1	1	1	\(3q + 11 \)

Table 17
Let G be a non-CLT group of order p^4q. Then by putting different conditions on the number of subgroups of order p and q and by using Sylow theorem we can check that no such group is 11-cyclic.

3 Conclusion

In this work, a classification of 11-cyclic groups is given and they are $\mathbb{Z}_{p^{10}}, \mathbb{Z}_{27} \times \mathbb{Z}_3, \mathbb{Z}_{27} \rtimes \mathbb{Z}_3, Dic_7, \mathbb{Z}_7 \times \mathbb{Z}_9, \mathbb{Z}_3 \times S_3, \mathbb{Z}_5 \rtimes \mathbb{Z}_8$ and $\mathbb{Z}_3 \rtimes \mathbb{Z}_{16}$. Here, we can observe that these groups are supersolvable with abelian Sylow subgroups and centres of these groups are cyclic. Moreover, every p-cyclic group, where $p \leq 11$ is supersolvable. We are now working on 12-cyclic groups.

References

[1] Ali Reza Ashrafi and Elaheh Haghi. On n-cyclic groups. *Bulletin of the Malaysian Mathematical Sciences Society*, 42(6):3233–3246, 2019.

[2] GroupNames. Groupnames.org is a database, under construction, of names, extensions, properties and character tables of finite groups of small order. Available at http://people.maths.bris.ac.uk/~matyd/GroupNames/.

[3] Hemant Kalra. Finite groups with specific number of cyclic subgroups. *Proceedings-Mathematical Sciences*, 129(4):1–10, 2019.

[4] IM Richards. A remark on the number of cyclic subgroups of a finite group. *The American Mathematical Monthly*, 91(9):571–572, 1984.

[5] Khyati Sharma and A Satyanarayana Reddy. Cyclic and abelian clt groups. *arXiv preprint arXiv:2208.01415*, 2022.

[6] Marius Tărnăuceanu. Non-clt groups of order pq^3. *Mathematica Slovaca*, 64(2):311–314, 2014.

[7] Marius Tărnăuceanu. Finite groups with a certain number of cyclic subgroups. *The American Mathematical Monthly*, 122(3):275–276, 2015.

[8] László Tóth. On the number of cyclic subgroups of a finite abelian group. *Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie*, pages 423–428, 2012.

[9] Wei Zhou. Finite groups with small number of cyclic subgroups. *arXiv preprint arXiv:1606.02431*, 2016.