Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.

Keywords: Fish collagen peptide, Osteoblast differentiation, Bone regenerative medicine

INTRODUCTION

Collagen is a major component related to extracellular matrix proteins in multicellular animals including humans, and plays an important role in maintaining a cytoskeleton. Furthermore, it has been widely used as a biomaterial (e.g., as a scaffold for cell and tissue regeneration-related proteins, wound dressing, or dietary supplement) because of its biocompatibility. In particular, collagen peptides, which are enzymatically hydrolyzed from gelatin, are often administered orally because they are easily digestible, and have been reported to have a positive effect on skin, cartilage and bone. Tanaka et al. reported that the oral administration of fish scale collagen peptides to hairless mice inhibited Ultraviolet Light B (UV-B)-induced skin dehydration, reduced epidermal hyperplasia, and decreased soluble type I collagen. In addition, Cod skin-derived collagen peptides have been shown to inhibit photoaging by suppressing the expression of matrix metalloproteinases 1, 3, 9 via the mitogen-activated protein kinase (MAPK) pathway. In other words, collagen peptides have a role in protecting against skin aging. In addition, clinical trials have shown that a 6-week intake of fish collagen peptides (FCP) improved skin hydration in female volunteers. Kalil et al. reported in their clinical study that there were no side effects or systemic effects by FCP, and that the FCP-treated group showed not only better skin texture and hydration, but also improved brightness. Collagen peptides derived from marine sponge have been shown to exhibit significant antioxidant activity, and to protect cells from UV-induced apoptosis in mouse fibroblasts and human keratinocytes. Thus, they have potential applications in the repair of damaged or photoaged skin. Zang et al. reported that oral administration of collagen peptides derived from Chum salmon skin promoted cutaneous wound healing and angiogenesis through upregulation of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 expression in rats, demonstrating the potential role of FCP as a healing material. Furthermore, the administration of collagen peptides from Chum salmon has also been reported to have a protective effect against early alcoholic liver injury by interfering with increased levels of total cholesterol and triacylglycerol and to have an accelerated healing effect on gastric ulcers. Thus, it has been shown to be effective for wound healing of mucous membranes as well as skin. The liver is composed of hepatic lobules, which are lobular veins, interlobular arteries, and interlobular bile ducts, separated from the liver lobules by a connective tissue, Glisson’s sheath. When inflammation, such as hepatitis, develops, Glisson’s sheath is infiltrated by inflammatory cells and blood glutamyltranspeptidase (GTP) is known to increase. When collagen peptides are ingested, blood peptides, such as proline-hydroxyproline (Pro-Hyp) and hydroxyproline-glycine (Hyp-Gly) inhibit the cellular inflammation induced by tumor necrosis factor (TNF)-α; it was thought that this process reduced the inflammation in a collagen peptide-treated group. Several other studies have reported that collagen peptides are also effective in diabetes and hypertension. Hatanaka et al. reported that the glycine-proline-hydroxyproline (Gly-Pro-Hyp) tripeptide is an enzyme that inactivates the hormone that lowers blood glucose levels. It has been reported that it inhibits dipeptidylpeptidase-IV activity. In a rat model of type 2 diabetes, collagen
peptides derived from the skin of Chum salmon were reported to protect carotid artery vascular endothelial cells by lowering blood glucose levels, and were found to decrease the expression of inflammatory cytokines and adipocytokines in the liver. In addition, treatment with FCP has been shown to improve glucose and lipid metabolic profiles, insulin sensitivity, renal function, and hypertension management in patients with type 2 diabetes and hypertension, suggesting that FCP may have potential utility in patients with both type 2 diabetes and hypertension. Moreover, it has reported that FCP stabilizes blood glucose levels, reduces the risk of obesity, and promotes prolonged satiety in the clinical study with patients with type 2 diabetes. Study using mouse 3T3-L1 preadipocytes has shown that it inhibits adipocyte differentiation through a mechanism involving transcriptional repression of main adipogenic regulators, thereby suppressing weight gain and adipogenesis. Angiotensin-converting enzyme (ACE) inhibitors (e.g., ramipril) are known to have not only a renoprotective effect but also reduce blood pressure, as they reduce intraglomerular pressure by the dilation of the renal tubules. Collagen peptides have been shown to have ACE inhibitory activity and may therefore contribute to the suppression of elevated blood pressure. Articular cartilage damage is one of the most common musculoskeletal disorders we encounter, and affects our quality of life. It has been suggested that collagen peptides extracted from the skin of deep-sea fish such as cod, haddock, and pollock may promote chondrogenic differentiation of primary adipose-derived stromal cells. It was also reported that oral administration of FCP and glucosamine suppressed cartilage degradation in rabbits with osteoarthritis. In line with these findings, FCP was shown to promote the chondrogenic differentiation of human mesenchymal stem cells. In clinical studies, FCP has been proven to promote the synthesis of cartilage matrix and reduce pain in patients with osteoarthritis, making it a promising candidate for the treatment of human osteoarthritis. Collagen peptides are thus cystic peptides with a variety of bioactivities; however, the detailed mechanisms underlying their effects in these diseases are unclear.

Unlike the organs associated with the above-mentioned diseases, bones and teeth are hard tissues composed of inorganic substances (e.g., calcium, magnesium, and phosphorus), organic substances (e.g., type I collagen), and non-collagenous proteins (e.g., osteocalcin and osteonectin). Based on its structural style, it is often compared to a reinforced concrete building. The reinforcing steel corresponds to collagen, while concrete corresponds to inorganic substances, such as calcium and phosphorus. Collagen provides not only the framework for bones, but also a source of bone flexibility. Osteoporosis has been known to be mainly caused by a decrease in bone density. However, in recent years, it has become clear that bone quality also plays a significant role in osteoporosis. Collagen is the critical factor for bone quality. At the National Institutes of Health (NIH) Consensus Conference in 2000, the definition of osteoporosis was revised from the conventional approach, to the following definition, which focuses on bone mineral density: "a skeletal disorder characterized by compromised bone strength predisposing to an increased risk of fracture". In brief, both bone density and bone quality are involved in bone strength. Thus, the osteogenic effect of collagen peptides needs to be evaluated from the viewpoints of both mineralization-related markers and collagen, which serves as a three-dimensional template for mineralization.

In this paper, we review the effects of FCP on bone regeneration in terms of "characterization of collagen peptides" and "mineralization-related markers and collagen quantity and quality" and provide a perspective on the role of FCP in the field of bone regeneration.

EFFECT OF MOLECULAR WEIGHT OF COLLAGEN PEPTIDES ON OSTEOGENESIS

Several studies have explored the molecular weight of bioactive collagen peptides. It has been reported that rats treated with orally administered collagen peptides with a molecular weight of less than 2 kDa derived from squid skin showed excellent anti-ACE activity. In addition, Kim et al. found that collagen peptides with molecular weights of 1.5–4.5 kDa derived from Alaska cod skin showed excellent antioxidant activity and could be used as natural antioxidants by in vitro systems.

Shimizu et al. used Caco-2 cells to investigate intestinal permeability to molecular weight size-classified FCP. They revealed that the smallest sized FCP crossed the Caco-2 monolayer most efficiently and that permeability was dependent on peptide size. However, because orally ingested functional peptides may be subjected to digestive degradation in the intestinal tract and/or deactivated by chemical changes, and because some physiological functional components may not have an efficient absorption and uptake mechanism in the intestinal tract, it is difficult to determine whether the effects found by in vitro systems using cultured cell responses will necessarily be effected by oral ingestion. On the other hand, few clinical studies have reported the optimal molecular weight range for patients with osteoporosis or arthritis, and there have been no detailed basic research-based reports on the mechanism. Liu et al. reported that 1,370 and 7,747 Da of bovine bone-derived collagen peptides promoted the expression of alkaline phosphatase (ALP) in MC3T3-E1 cells, while 878 Da of collagen peptides had the opposite effect. This result indicates that the effect of ALP is related to the molecular weight distribution of collagen peptides. In a previous study, we examined the expression of mineralization-related markers in NOS-1 cells, which is a human osteosarcoma-derived osteoblast, using FCP of ~2 kDa to ~8 kDa in molecular weight, and found that the ALP activity on day 3 of culture and the protein expressions of osteocalcin (OC), osteopontin (OP) and integrin (ITG) were significantly upregulated in an FCP-supplemented group on day 7 of
Table 1 The effect of amino acid sequence on collagen peptide for osteogenesis

Amino acid sequence	Effect on cell differentiation and osteogenesis	Reference No.
RGD motifs (arginine-glycine-aspartic acid)	RGD motifs induce focal adhesion through integrin binding. RGD motifs initiate αv integrin signaling in osteoblasts.	77)
	DGEA peptides cause the expression of osteogenic protein markers, e.g., collagen type 1, osteopontin, alkaline phosphatase, osteocalcin and dentin matrix acidic phosphoprotein 1.	79)
	E7(heptaglutamate)-DGEA-coupled hydroxyapatite enhances the adhesion and osteoblastic differentiation of mesenchymal stem cells, and increases new bone formation in rat tibiae.	80)
	DGEA peptides are involved in type 1 collagen-α2β1 integrin interaction on bone marrow cells.	81)
Pro-Hyp (proline-hydroxyproline)	During osteoblast differentiation, Pro-Hyp mediates Runx2 activity through directly binding Foxg1, which has been shown to play a role in the development of the brain and telencephalon, and increases Runx2 expression.	82)
	Pro-Hyp has a positive effect on osteoblastic differentiation through upregulation of Runx2, osterix, and collagen type 1 α1 chain gene expression.	83)
Lys-Ser-Ala (lysine-serine-alanine)	Lys-Ser-Ala promotes cell proliferation, alkaline phosphatase activity, mineral deposition, and expressions of osteoblastic differentiation-related gene such as alkaline phosphatase, osteopontin and osteocalcin in MC3T3-E1 cells.	84)

Alizarin red S staining also confirmed that MC3T3-E1 cells cultured in FCP-containing medium with a molecular weight of approximately 2.8 kDa for 21 days showed more minerals than the same cells cultured in the maintenance medium (unpublished data). These results suggest that the physiological cross-linking of collagen formed actively through collagen cross-linking-related enzymes (e.g., LH1, 2 and LOX) by 2–3 kDa of FCP might have resulted in the formation of tenacious collagen fibers, and a three-dimensional collagen template suitable for matrix mineralization promoted mineral deposition and growth.

EFFECT OF AMINO ACID SEQUENCES OF COLLAGEN PEPTIDES ON OSTEOGENESIS

Hydroxyproline, the main component of collagen, is responsible for the stability of collagen along with proline. In general, it accounts for approximately 10% of the total amino acids in mammalian type I collagen. On the other hand, the hydroxyproline content of fish collagen is approximately half that of mammalian collagen. It makes the triple helix stability of fish collagen less stable in comparison to mammalian collagen. Furthermore, this property leads to a lower denaturation temperature of fish collagen, while leading to better digestion and absorption than mammalian collagen.

How does the amino acid sequence of collagen peptides affect osteogenesis? Table 1 lists some reports on the effect of the amino acid sequences of
collagen peptides on osteogenesis. The RGD motif (arginine-glycine-aspartic acid) is a cell adhesion active sequence common to many cell adhesion proteins and is present in dozens of proteins (e.g., fibronectin, OP and laminin) as well as collagen. Staatz et al. found that α2β1 ITG bound to a site within an α1(1)-CB3 fragment in type I collagen. Subsequently, D’Alonzo et al. found that RGD peptide mimetics initiated α2β1 ITG signal transduction in MC3T3-E1 cells and that OP and α2β1 ITG diversely regulated the expression of collagenase-3 and OC during osteoblast differentiation80). The DGEA peptide (aspartic acid-glycine-glutamic acid-alanine) of type I collagen was revealed to induce osteoblast differentiation80) and it was found that when using heptaglutamate (E7), which is the hydroxyapatite (HA)-binding domain, HA coupled with E7-DGEA promoted mesenchymal stem cell adhesion and osteoblast differentiation and increased new bone80). DGEA peptides may not necessarily have a positive effect on osteogenesis, as it has been reported that the addition of DGEA peptides suppresses the expression of the osteoblast phenotype in bone marrow cells by interfering with the interaction between type I collagen and α2β1 ITG81).

Pro-Hyp has been shown to mediate Runx2 activity and increase the Runt-related transcription factor (Runx2) expression by directly binding to Forkhead Box G1 (Foxg1) recombinant protein during osteoblast differentiation82). Although Foxg1 appears to interact with Runx2 in the absence of Pro-Hyp, Pro-Hyp binds directly to Foxg1 protein in the presence of Pro-Hyp, causing a conformational change in Foxg1 protein and splitting the interaction between Foxg1 and Runx2. Thus, it seems to lead to the increased expression of Runx282). Another study also found that Pro-Hyp did not affect MC3T3-E1 cell proliferation or matrix mineralization, but significantly increased the ALP activity and gene expression of Runx2, osterix and type I collagen α1 chains83). These results demonstrated that Pro-Hyp promotes osteoblast differentiation. Thus, there are frequent reports on osteoblast differentiation and matrix mineralization of peptides containing the RGD motif, which is an active sequence associated with cell adhesion, the DGEA peptide which interacts with the cell adhesion molecule ITG, as well as Hyp, which is an amino acid specific to collagen. However, lysine-serine-alanine (Lys-Ser-Ala) has also been reported to positively influence osteoblast differentiation84). Lys-Ser-Ala, purified by liquid chromatography, had a high affinity for the core interface residues of the bone morphogenetic protein (BMP) receptor and induced phosphorylation of MAPKs, including p38 MAPK, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase, as well as Smads. This might have promoted cell proliferation, ALP activity, mineral deposition and the expression of osteoblast differentiation markers in MC3T3-E1 cells.

EFFECTS OF COLLAGEN PEPTIDES ON COLLAGEN QUALITY AND MINERALIZATION

It has been reported that type I collagen extracted from tilapia (Oreochromis niloticus) scales improves cell viability and adhesion as well as ALP activity, and promotes matrix mineralization by increasing gene expression of bone sialoprotein in rat odontoblastic cells85). It was also revealed that FCP promoted the survival of human primary periodontal ligament cells and upregulated the expression of osteogenesis-related proteins through the ERK signaling pathway, indicating that FCP might be a promising bioactive component for alveolar bone regenerative material86).

Osteoblasts synthesize a collagen matrix, which itself regulates the differentiation of precursor cells into mature osteoblasts. LOX and LH, which are involved in the formation of collagen cross-links synthesized by osteoblasts, also actively contribute to mature collagen formation87). Therefore, latylogens such as β-aminopropionitrile (βAPN), which suppresses LOX activity, inhibit stable matrix formation. It is reported that the collagen matrix synthesized by MC3T3-E1 cells treated with βAPN for 1 week significantly reduced dehydro-dihydroxylysinonorleucine (dH-DHLNL) and Pyr, which are the main cross-links of bone collagen, in comparison to control cultures88). In addition, inhibition of the LOX expression by βAPN significantly downregulated the OC mRNA expression to approximately 75%, suggesting that βAPN treatment not only inhibits the formation of collagen cross-linking, but also affects the activity and expression of osteoblasts89). LOX and LH, which are involved in the formation of collagen cross-links synthesized by osteoblasts, also actively contribute to mature collagen formation87). Therefore, latylogens such as β-aminopropionitrile (βAPN), which suppresses LOX activity, inhibit stable matrix formation. It is reported that the collagen matrix synthesized by MC3T3-E1 cells treated with βAPN for 1 week significantly reduced dehydro-dihydroxylysinonorleucine (dH-DHLNL) and Pyr, which are the main cross-links of bone collagen, in comparison to control cultures88). In addition, inhibition of the LOX expression by βAPN significantly downregulated the OC mRNA expression to approximately 75%, suggesting that βAPN treatment not only inhibits the formation of collagen cross-linking, but also affects the activity and expression of osteoblasts89). In our study, as mentioned above, FCP treatment significantly increased the amount of Pyr, which is a stable reductive cross-link, along with the amount of collagen synthesis in MC3T3-E1 cells, which had a positive effect on the expression of mineralization-related proteins, such as OC, OP and ITG, resulting in accelerated mineralization82,70). In addition, we have also confirmed that the filling of the FCP into the bone cavity formed in the mandible of rats accelerated osteogenic repair with minimal inflammatory cell infiltration in comparison to a control group that had no filling of FCP80).

The effect of FCP on matrix mineralization in the presence of collagen with suppressed physiological cross-linking formation is shown in Fig. 1. In order to synthesize collagen with suppressed physiological cross-linking formation, MC3T3-E1 cells were treated with minoxidil (Mx), a specific inhibitor of LH. The group cultured in Mx-containing FCP-free medium showed little or no mineral formation on day 21 of culture, whereas a small amount of mineral deposition was observed in the group cultured in Mx- and FCP-containing medium, with the group cultured on Mx-free FCP-containing medium showing the greatest amount of mineral deposition. These results indicate that LH positively contributes to mineralization, while FCP may have the ability to improve mineralization in the presence of vulnerable collagen.

Considering our previous studies and other reports,
it is presumed that natural functional collagen peptides derived from fish skin, bones and scales may actively induce osteoblast differentiation and improve collagen quality by enhancing the expression of mineralization-related markers and collagen cross-linking-related enzyme gene expression through the Smad and ERK/MAPK cascades, resulting in matrix mineralization (Fig. 2).

On the other hand, as mentioned earlier, our previous studies proved that the gene expressions of LH3 and GLT25D1 in MC3T3-E1 cells were enhanced by FCP\(^\text{70}\). It has been reported that LH3 functions mainly as a glucosyltransferase, while GLT25D1 does as a galactosyltransferase for type I collagen in osteoblast culture systems\(^\text{90}\). It has also been suggested that when LH3-mediated glycosylation occurs at a specific molecular site, e.g. residue 87, it is involved in the formed collagen fiber’s diameter and the maturation of cross-linking\(^\text{91}\). Further studies are required to determine whether the degree of collagen glycosylation in the FCP-treated group is actually increased at the protein level, and if so to investigate the relationship between glycosylation and matrix mineralization.

CONCLUSIONS AND FUTURE PROSPECTS

In the past decade, tremendous progress has been made toward the regeneration of dentin, dental pulp and periodontal tissues including alveolar bone and periodontal ligament in the field of dental tissue
engineering, giving rise to the new field of regenerative dentistry, FCP promotes matrix mineralization by positive effects on collagen synthesis and quality in osteoblasts. Namely, it means the availability to the regeneration of dentin and alveolar bone, which are composed of organic (collagen) and inorganic (minerals) matters in the field of dentistry. It also has potential as a safe bone regeneration agent that can contribute to human health through the effective use of fish by-products, which are originally marine waste.

However, few clinical studies on human subjects and animal studies have yet been conducted to evaluate the bone regeneration promoting effects of FCP. In order to properly evaluate the therapeutic effects of FCP in many medical fields including the field of bone regeneration, further comprehensive studies based on the results from basic research are necessary. And clinical application of FCP as soon as possible is desirable in other medical fields as well as the field of dentistry.

REFERENCES

1) Cao H, Chen MM, Liu Y, Liu YY, Huang YQ, Wang JH, et al. Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering. Colloids Surf B Biointerfaces 2015; 136: 1098-1106.
2) Elango J, Saravanakumar R, Rahman SU, Henrotin Y, Regenstein JM, Wu W, et al. Chitosan-collagen 3D matrix mimics trabecular bone and regulates RANKL-mediated paracrine cues of differentiated osteoblast and mesenchymal stem cells for bone marrow macrophage-derived osteoclastogenesis. Biomolecules 2019; 9: 173.
3) Murphy CM, Duffy GP, Schindeler A, O’Brien FJ. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. J Biomed Mater Res A 2016; 104: 291-304.
4) Hu Z, Yang P, Zhou C, Li S, Hong P. Marine collagen peptides from the skin of nile tilapia (orochromis niloticus): Characterization and wound healing evaluation. Mar Drugs 2017; 15: 102.
5) Ouyang QQ, Hu Z, Lin ZP, Quan WY, Deng YF, Li SD, et al. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int J Biol Macromol 2018; 112: 1191-1198.
6) Xiong XY, Liu Y, Shan LT, Xu YQ, Liang J, Lai YH, et al. Evaluation of collagen mixture on promoting skin wound healing in zebrafish caused by acneic acid administration. Biochem Biophys Res Commun 2018; 505: 516-522.
7) Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA. Biomacromolecular immobilization: Grafting of fish-scale collagen peptides onto aminoalyzed P(3HB-co-4HB) scaffolds as a potential wound dressing. Biomed Mater 2016; 11: 055009.
8) Wojtkowiak D, Frydrychowski AF, Hadzik J, Dominik M. Identification of small peptides of acidic collagen extracts from silver carp skin and their therapeutic relevance. Adv Clin Exp Med 2016; 25: 227-235.
9) Castillo-Briceno P, Bihan D, Nilges M, Hamaia S, Meseguer J, García-Ayala A, et al. A role for specific collagen motifs during wound healing and inflammatory response of fibroblasts in the teleost fish gilthead seabream. Mol Immunol 2011; 48: 826-834.
10) Wang Y, Zhang CL, Zhang Q, Li P. Composite electrospun nanomembranes of fish scale collagen peptides/chitosanoligosaccharides: Antibacterial properties and potential for wound dressing. Int J Nanomedicine 2011; 6: 667-676.
11) Li DD, Li WJ, Kong SZ, Li SD, Guo JQ, Guo MH, et al. Protective effects of collagen polypeptide from tilapia skin against injuries to the liver and kidneys of mice induced by D-galactose. Biomed Pharmacother 2019; 117: 109204.
12) Mei F, Liu J, Wu J, Duan Z, Chen M, Meng K, et al. Collagen peptides isolated from Salmo salar and Tilapia nilotica skin accelerate wound healing by altering cutaneous microbiome colonization via upregulated NOD2 and BD14. J Agric Food Chem 2020; 68: 1621-1633.
13) Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, et al. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces 2016; 143: 415-422.
14) LeBert DC, Squirell JM, Rindy J, Broadbridge E, Lui Y, Zakrzewska A, et al. Marine collagen matrices and wound repair. Development 2015; 142: 2136-2146.
15) Niu H, Wang Z, Hou H, Zhang Z, Li B. Protective effect of cod (gadus macrocephalus) skin collagen peptides on acetic acid-induced gastric ulcer in rats. J Food Sci 2016; 81: H1807-1815.
16) Lin B, Zhang F, Yu Y, Jiang Q, Zhang Z, Wang J, et al. Marine collagen peptides protect against early alcoholic liver injury in rats. Br J Nutr 2012; 107: 1160-1166.
17) Shen XR, Chen XL, XieHX, He Y, Chen W, Lao Q, et al. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing. Mil Med Res 2017; 4: 33.
18) Sontakke SB, Jung JH, Piao Z, Zhang HJ. Oral administered collagen tripeptide: enzymatic stability, intestinal permeability, and absorption of Gly-Pro-Hyp and Pro-Hyp. J Agric Food Chem 2016; 64: 7127-7133.
19) Liu D, Niko M, Boran G, Zhou P, Regenstein JM. Collagen and gelatin. Annu Rev Food Sci Technol 2015; 6: 527-557.
20) Lee HJ, Jang HL, Ahn DK, Kim HJ, Jeon HY, Seo DB, et al. Orally administered collagen peptide protects against UVB-induced skin aging through the absorption of dipeptide forms, Gly-Pro and Pro-Hyp. Biosci Biotechnol Biochem 2019; 83: 1146-1156.
21) Kang MC, Yumnam S, Kim SY. Oral intake of collagen peptide attenuates ultraviolet B irradiation-induced skin dehydration in vivo by regulating hyaluronic acid synthesis. Int J Mol Sci 2018; 19: 3551.
22) Ito N, Seki S, Ueda F. Effects of composite supplement containing collagen peptide and ornithine on skin conditions and plasma IGF-1 levels —A randomized, double-blind, placebo-controlled trial. Randomized Controlled Trial 2018; 16: 482.
23) Sanchez A, Blanco M, Correa B, Perez-Martin RI, SotoC. Effect of fish collagen hydrolysates on type I collagen mRNA levels of human dermal fibroblast culture. Mar Drugs 2018; 16: 144.
24) Czajka A, Kania EM, Genovesi L, Corbo A, Merone G, Czerwinski A, et al. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr Res 2018; 57: 97-108.
25) Tanaka M, Koyama Y, Nomura Y. Effects of collagen peptide ingestion on UV-B-induced skin damage. Biosci Biotechnol Biochem 2009; 73: 930-932.
26) Zhou T, Sui B, Mo X, Sun J. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: Fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int J Nanomedicine 2017; 12: 3495-3507.
27) Wang L, Wang X, Bai F, Fang Y, Wang J, Rao R. The anti-skin-aging effect of oral administration of gelatin from the swim bladder of amur sturgeon (Acipenser schrenckii). Food Funct 2019; 10: 3890-3897.
28) Felician FF, Xia C, Qi WQH. Collagen from marine biological
sources and medical applications. Chem Biodivers 2018; 15:
e1700557.

29) Zhang L, Zhang S, Song H, Li B. Effect of collagen hydrolysates
from silver carp skin (Hypophthalmichthys molitrix) on osteoporosis in chronologically aged mice: Increasing bone
remodeling. Nutrients 2018; 10: 1434.

30) Hou T, Liu Y, Guo D, Li B, He H. Collagen peptides from
crucian carp skin improve calcium bioavailability and structural
characterization by HPLC-ESI-MS/MS. J Agric Food Chem
2017; 65: 8847-8854.

31) Chen J, Qiu X, Hao G, Zhang M, Weng W. Preparation and
bioavailability of calcium-chelating peptide complex from
tilapia skin hydrolysates. J Sci Food Agric 2017 97: 4898-
4903.

32) Xu Y, Han X, Yong L. Effect of marine collagen peptides on
long bone development in growing rats. J Sci Food Agric 2010;
90: 1485-1491.

33) Chen T, Fan HHY, Wang S, Chen Q, Si L, Li B. Protective
effect of gelatin peptides from pacific cod skin against
photaging by inhibiting the expression of MMPs via MAPK
signaling pathway. J Photochem Photobiol B 2016; 165: 34-
41.

34) Sibilla S, Godfrey M, Brewer S, Budh-Raja A, Genovese L. An
overview of the beneficial effects of hydrolysed collagen as a
nutraceutical on skin properties: scientific background and
clinical studies. Open Nutraceuticals J 2015; 8: 29-42.

35) Matsumoto H, Ohara H, Ito K, Nakamura Y, Takahashi
S. Clinical effect of fish type I collagen hydrolysate on skin
properties. ITE Lett 2006; 7: 386-390.

36) Petersen Vitello Kall CL, Campes V, Cignachi S, Favaro
Izidoro J, Prieto Herman Reinehr C, Chaves C. Evaluation of
cutaneous rejuvenation associated with the use of ortho-
silicic acid stabilized by hydrolyzed marine collagen. J Cosmet
Dermatol 2018; 17: 814-820.

37) Pozzolini M, Millo E, Oliveri C, Mirata S, Salis A, Damonte G,
et al. Elicited ROS scavenging activity, photoprotective, and
wound-healing properties of collagen-derived peptides from
the marine sponge chondrosia reniformis. Mar Drugs 2018;
16: 465.

38) Zhang Z, Wang J, Ding Y, Dai X, Li Y. Oral administration of
marine collagen peptides from Chum Salmon skin enhances
cutaneous wound healing and angiogenesis in rats. J Sci Food
Agric 2011; 91: 2173-2179.

39) Katou K, Mori K. Autoimmune hepatitis with drug-induced
pneumonia due to Sho-saiko-to. Nihon Kokyuki Gakkai
Zasshi 1999; 37: 641-646.

40) Kouguchi T, Ito A, Iwai K, Shinizu M, Takahata Y, Suzuki T,
et al. Chicken collagen hydrolysate-derived peptides inhibit
tumor necrosis factor-a-induced inflammatory response in
endothelial cells. J Food Sci Technol Res 2012; 18: 667-671.

41) Zhu CF, Li GZ, Peng HB, Zhang F, Chen Y, Yong L. Therapeutic
effects of marine collagen peptides on Chinese patients with
type 2 diabetes mellitus and primary hypertension. Am J
Med Sci 2010; 340: 360-366.

42) Kim SK, Ngo DH, Vo TS. Marine fish-derived bioactive
peptides as potential anti-thrombogenic agents. Adv Food Nutr
Res 2012; 65: 249-260.

43) Hatanaka T, Kawakami K, Uraji M. Inhibitory effect of
collagen-derived tripeptides on dipeptidylpeptidase-IV
activity. J Enzyme Inhib Med Chem 2014; 29: 823-828.

44) Zhu C, Zhang W, Liu J, Mu B, Zhang F, Lai N, et al. Marine
collagen peptides reduce endothelial cell injury in diabetic
rats by inhibiting apoptosis and the expression of coupling factor
6 and microparticles. Mol Med Rep 2017; 16: 3947-
3957.

45) Zhu C, Zhang W, Mu B, Zhang F, Lai N, Zhou J, et al. Effects
of marine collagen peptides on glucose metabolism and
insulin resistance in type 2 diabetic rats. J Food Sci Technol
2017; 54: 2260-2269.

46) Cheung RC, Ng TB, Wong JH. Marine peptides: Bioactivities
and applications. Mar Drugs 2015; 13: 4006-4043.

47) Lee EJ, Hur J, Ham SA, Jo Y, Lee S, Choi MJ, et al. Fish
collagen peptide inhibits the adipogenic differentiation of
preadipocytes and ameliorates obesity in high fat diet-fed
mice. Int J Biol Macromol 2017; 104: 281-286.

48) Wright Jr JT, Bakris G, Greene T, Agodoa LY, Appel LJ,
Charleston J, et al. Effect of blood pressure lowering and
antihypertensive drug class on progression of hypertensive
kidney disease: results from the AASK trial. JAMA 2002;
288: 2421-2431.

49) Zhang Y, Olsen K, Grossi A, Otte J. Effect of pretreatment
on enzymatic hydrolysis of bovine collagen and formation of
ACE-inhibitory peptides. Food Chem 2013; 141: 2343-2354.

50) Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld
M, Siebert HC, et al. Hydrolyzed fish collagen induced
chondrogenic differentiation of equine adipose tissue-derived
stromal cells. Histochem Cell Biol 2010; 134: 545-554.

51) Ohnishi A, Osaki T, Matahira Y, Tsuka T, Imagawa T,
Okamoto Y, et al. Evaluation of the chondroprotective effects
of glucosamine and fish collagen peptide on a rabbit ACLT
model using serum biomarkers. J Vet Med Sci 2013; 75: 421-
429.

52) Hsu H, Uemura T, Yamaguchi I, Ikoma T, Tanaka J.
Chondrogenic differentiation of human mesenchymal stem
cells on fish scale collagen. J Biosci Bioeng 2018; 122: 219-
225.

53) Clark KL, Sebastianelli W, Flechsenhauer KR. 24-week study
on the use of collagen hydrolysate as a dietary supplement in
athletes with activity-related joint pain. Curr Med Res Opin
2008; 24: 1485-1496.

54) Bruyère O, Zegels B, Leonori L, Rabenda V, Janssen A,
Bourges C, et al. Effect of collagen hydrolysate in articular
pain: A 6-month randomized, double-blind, placebo controlled
study. Complement Ther Med 2012; 20: 124-130.

55) Zdzieblik D, Oesser S, Gollhofer A, König D. Improvement of
activity-related knee joint comfort following supplementation of specific collagen peptides. Appl Physiol
Nutr Metab 2017; 42: 588-595.

56) Banerjee P, Shanthi C. Cryptic peptides from collagen: A
critical review. Protein Pept Lett 2016; 23: 664-672.

57) Ravindran S, George A. Multifunctional ECM proteins in
bone and teeth. Exp Cell Res 2014; 325: 148-154.

58) Paine ML, White SN, Lao W, Hong S, Sarikaya M, Sneed
ML. Regulated gene expression dictates enamel structure
and tooth function. Matrix Biol 2001; 20: 273-292.

59) Aurrekoetxea M, García-Gallastegui P, Irastorza I, Luzuriaga
Paine ML, White SN, Luo W, Fong H, Sarikaya M, Snead
ML. Clinical effect of fish type I collagen hydrolysate on skin
properties. ITE Lett 2006; 7: 386-390.

60) Pavlovich et al. Hydrolyzed fish collagen induced
chondrogenic differentiation of equine adipose tissue-derived
stromal cells. J Vet Med Sci 2013; 75: 421-429.

61) Zdzieblik D, Oesser S, Gollhofer A, König D. Improvement of
activity-related knee joint comfort following supplementation of specific collagen peptides. Appl Physiol
Nutr Metab 2017; 42: 588-595.

62) Banerjee P, Shanthi C. Cryptic peptides from collagen: A
critical review. Protein Pept Lett 2016; 23: 664-672.

63) Shah D, Lynd T, Ho D, Chen J, Vines J, Jung HD, et al.
Pulp-dentin tissue healing response: A discussion of current
biomedical approaches. J Clin Med 2020; 9: 434.

64) Cooper PR, Chicca IJ, Holder MJ, Milward MR. Inflammation
and regeneration in the dentin-pulp complex: Net gain or net
loss? J Endod 2017; 43: 887-894.

65) Maeda H. Aging and senescence of dental pulp and hard
tissues of the tooth. Front Cell Dev Biol 2020; 8: 605996.

66) Martin RM, Correa PH. Bone quality and osteoporosis
therapy. Arq Bras Endocrinol Metabol 2010; 54: 186-199.

67) Ohashi S, Tanaka S. Etiology of osteoporosis —decrease of
bone mineral density and deterioration of bone quality—.
Clin Calcium 2012; 22: 805-811.

68) Anupama DS, Narohana JA, Acharya KK, Ravishankar, George
A. Effect of exercise on bone mineral density and quality of
life among postmenopausal women with osteoporosis without
fracture: A systematic review. Int J Orthop Trauma Nurs
67) Licata AA. Bone density, bone quality, and FRAX: Changing concepts in osteoporosis management. Am J Obstet Gynecol 2013; 208: 92-96.

68) Lin L, Lv S, Li B. Angiotensin-I-converting enzyme (ACE)—inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chem 2012; 131: 225-230.

69) Kim SK, Kim YT, Byun HG. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack skin. J Agric Food Chem 2001; 49: 1984-1989.

70) Shimizu K, Sato M, Zhang Y, Kouguchi T, Takahata Y, Morimatsu F, et al. Molecular size of collagen peptide reverses the permeability of Caco-2 cells. Biosci Biotechnol Biochem 2010; 74: 1123-1125.

71) Liu J, Si S, Qin Y, Zhang B, Song S, Guo Y. The effect of different molecular weight collagen peptides on MC3T3-E1 cells differentiation. Biomed Mater Eng 2015; 26 Suppl 1: S2041-2047.

72) Yamada S, Yoshizawa Y, Kawakubo A, Ikeda T, Yanagiguchi K, Hayashi Y. Early gene and protein expression associated with osteoblast differentiation in response to fish collagen peptides powder. Dent Mater J 2013; 32: 233-240.

73) Yamada S, Nagaoka H, Terajima M, Tsuda N, Hayashi Y, Yamauuchi M. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent Mater J 2013; 32: 88-95.

74) Bae I, Osatomi K, Yoshida A, Osako K, Yamaguchi A, Harai K. Biochemical properties of acid-soluble collagens extracted from the skins of underutilized fishes. Food Chem 2008; 109: 49-54.

75) Eastoe JE. The amino acid composition of fish collagen and gelatin. Biochem J 1957; 65: 363-368.

76) Giraud-Guille MM, Besseau L, Chopin C, Durand P, Herbage D. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states. Biomaterials 2000; 21: 899-906.

77) Staatz WD, Turecek C, Fratzl-Zelman N, Rumpfer M, Buchinger B, Spitzer S, Zeehrer R, et al. Collagen cross-linking influences osteoblastic differentiation. Calcif Tissue Int 2008; 82: 392-400.

78) Yamada S, Ikeda T, Yamamoto K, Yanagiguchi K, Hayashi Y. The efficiency of fish collagen peptides for bone regeneration. Jpn J Conserv Dent 2016; 59: 425-431.

79) Sricholpech M, Perdivara I, Nagaoka H, Yokoyama M, Tomer KB, Yamauchi M. Lysyl hydroxylase 3 glucosylates galactosylhydroxylysine residues in type I collagen in osteoblast culture. J Biol Chem 2011; 286: 8846-8856.

80) Sricholpech M, Perdivara I, Yokoyama M, Nagaoka H, Terajima M, Tomer KB, et al. Lysyl hydroxylase 3-mediated glycosylation in type I collagen. Molecular loci and biological significance. J Biol Chem 2012; 287: 22998-23009.

81) Chang WJ, Shimichi A, Makamura S, Huang RY, Chen JW. Bioengineering materials in dental application. BioMed Res Int 2017; 2017: 2135036.

82) Liu C, Sun J. Hydrolyzed tilapia fish collagen induces osteogenic differentiation of human periodontal ligament cells. Biomed Mater 2015; 10: 065020.

83) Yen AH, Yelick PC. Dental tissue regeneration — a mini-review. Gerontology 2011; 57: 85-94.

84) Eramo S, Natali A, Pinna R, Milia E. Dental pulp regeneration via cell homing. Int Endod J 2018; 51: 405-419.

85) Chisini LA, Conde MCM, Graziodi G, Martin ASS, Carvalho RV, Sartori LRM, et al. Bone, periodontal and dental pulp regeneration in dentistry: A systematic scoping review. Braz Dent J 2019; 30: 77-95.

86) Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 2019; 11: 23.

87) Shavandi A, Hou Y, Carne A, McConnell M, A Bekhit AE-D. Marine waste utilization as a source of functional and health compounds. Adv Food Nutr Res 2019; 87: 187-254.

88) Senevirathne M, Kim SK. Utilization of seafood processing by-products: Medicinal applications. Adv Food Nutr Res 2012; 65: 495-512.