mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal–ventral border in the *Drosophila* eye

Helen McNeill,¹ Chung-Hui Yang,¹ Michael Brodsky,² Josette Ungos,¹ and Michael A. Simon¹,³

¹Department of Biological Sciences, Stanford University, Stanford, California 94305 USA; ²Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA

The *Drosophila* eye is composed of dorsal and ventral mirror-image fields of opposite chiral forms of ommatidia. The boundary between these fields is known as the equator. We describe a novel gene, *mirror* (*mrr*), which is expressed in the dorsal half of the eye and plays a key role in forming the equator. Ectopic equators can be generated by juxtaposing *mrr* expressing and nonexpressing cells, and the path of the normal equator can be altered by changing the domain of *mrr* expression. These observations suggest that *mrr* is a key component in defining the dorsal–ventral boundary of tissue polarity in the eye. In addition, loss of *mrr* function leads to embryonic lethality and segmental defects, and its expression pattern suggests that it may also act to define segmental borders. Mirror is a member of the class of homeoproteins defined by the human proto-oncogene PBX1. *mrr* is similar to the Iroquois genes *ara* and *caup* and is located adjacent to them in this recently described homeotic cluster.

[Key Words: *Drosophila*; eye development; polarity; compartment; border]

Received January 14, 1997; revised version accepted March 4, 1997.

The spatial control of differentiation is a central issue in the study of the development of multicellular organisms. A primary step in pattern formation is the division of homogeneous cells into distinct fields. The border between these fields can then act as signaling centers for further patterning and growth [Peifer and Bejsovec 1992; Blair 1995]. An example of such a border is found in the *Drosophila* eye. The eye is composed of dorsal and ventral fields of photoreceptor clusters called ommatidia. Ommatidia in the dorsal half of the eye are the mirror image of those in the ventral region [see Fig. 1B, below; Deitrich 1909; Ready et al. 1976; Tomlinson 1985, 1988; Tomlinson and Ready 1987]. The boundary where the dorsal and ventral fields meet is known as the equator. The equator bisects the eye from anterior to posterior, rarely deviating by more than one ommatidial width as it crosses the eye. How the equator is determined is not well understood, but clonal analysis has indicated that cell lineage is not an important factor in forming the equator. Therefore, it has been proposed that cell–cell interactions are critical for establishing the dorsal/ventral [D/V] boundary within the eye [Ready et al. 1976].

The eye develops from a monolayer epithelium called the eye imaginal disc [for review, see Wolff and Ready 1993]. During the third instar larval period preclusters at the posterior of the eye disc begin to form, and their differentiation induces the formation of new preclusters anterior to them. This leads to a wave of differentiation that sweeps across the disc. This wave is marked by an indentation known as the morphogenetic furrow, which separates the undifferentiated and differentiating regions of the disc. Initially, preclusters emerging from the morphogenetic furrow appear identical. As they mature, the preclusters in the dorsal and ventral regions of the eye rotate in opposite directions [see Fig. 1A, below]. Asymmetries are incorporated into the preclusters as they rotate, resulting in ommatidia of opposing polarity and chirality in the adult eye. Recent work has demonstrated that the degree of ommatidial rotation is controlled by a number of genes including *nemo* and *roulette* [Choi and Benzer 1994] and has suggested that tissue polarity genes such as *spinylegs*, *prickly-spinylegs* [Gubb 1993; Choi et al. 1996], *frizzled* [Zheng et al. 1995], and *dishevelled* [Theisen et al. 1994] are necessary for regulating D/V polarity in the eye.

Several experiments suggest that the equator might be a source of D/V patterning information. Analysis of patterning defects in clones of *frizzled*– cells suggests that *frizzled* is required to interpret and relay a signal emitted by the equator [Zheng et al. 1995]. Consistent with this proposal is the observation that a number of genes ap-
McNeill et al.

pear to be expressed either solely at the equator or in a gradient from the equator [Sun et al. 1995; Villano and Katz 1995; Brodsky and Steller 1996]. Furthermore, morphological analysis has indicated that ommatidial differentiation in each row proceeds from the equator outwards [Wolf and Ready 1991] and has been used to suggest that more mature ommatidia provide D/V polarity information to their less differentiated neighbors [Gubb 1993].

We describe here a novel homeodomain-containing protein, Mirror (Mrr), that plays an important role in defining the equator. mrr is expressed in the dorsal half of the eye, with expression terminating at the equator. Using loss-of-function mrr alleles and ectopic expression of mrr, we have analyzed the role of mrr during eye development. Our data suggest that the juxtaposition of mrr expressing and nonexpressing cells plays an important role in defining the equator. In addition, analysis of the mrr expression pattern and the mrr loss-of-function phenotype in embryos suggests that mrr also acts in the definition of the segmental border.

Results

Identification of a gene expressed in the dorsal half of the eye

mrr was first detected using a P element (mrrP1) that carries white and lacZ and is inserted into the 69D region of the third chromosome. Strong white gene expression was restricted to cells dorsal to the equator [Fig. 1C,D]. This expression pattern suggested that mrrP1

Figure 1. Identification of a gene expressed in the dorsal half of the eye. (A) Development of polarity and chirality in an eye imaginal disc. For this and all subsequent pictures, dorsal is up, anterior is to the left. Undifferentiated cells are sequentially recruited into the precluster. The acquisition of neuronal identity is indicated by the acquisition of color; R2/5 (purple), R3/4 (green), R8 (yellow), R7 (red). Preclusters begin to rotate as they differentiate, rotating in opposite directions above and below the equator. The final arrangement shown is not achieved until pupal stages. (B) Diagram of a wild-type equator. Above the equator ommatidia are organized such that the apex of the trapezoid formed by the ommatidium points up, whereas in the ventral half of the eye the mirror image form exists. Each black circle represents a rhabdomere projected by a photoreceptor into the middle of the ommatidium. (C) mrrP1 flies express the white gene (which results in red pigmentation) in the dorsal half of the eye. (D) Section of a mrrP1 eye. Note the restriction of white (seen as yellow pigment granules in sections) to the dorsal half of the eye. Expression of white does not cross the equator but terminates at variable positions in the dorsal ommatidia by the equator. Position of the equator is indicated by the sawtooth red line. (E) β-Galactosidase staining of a mrrP1 eye imaginal disc. Staining decreases after the furrow has passed. Note the patch of staining in the antennal portion of the disc. The white arrow indicates the position of the morphogenetic furrow, the black arrowhead indicates the presumed position of the equator. (F) In situ hybridization of mrr riboprobe to an eye imaginal disc. Transcript is restricted to the dorsal anterior half of the eye disc, with expression ceasing at the morphogenetic furrow. Arrows as in E. (G) β-Galactosidase staining of a mrrP1 embryo. Staining reflects a segmentally repeated expression pattern of this enhancer trap. (H) In situ hybridization of mrr riboprobe to a wild-type stage 11 embryo. Segmentally repeated staining resembles staining of embryos carrying mrrP1.
mirror defines a border in the eye

might be inserted close to a gene, that we call mrr, which is involved in determining dorsal identity or in forming the D/V boundary. To determine if mrr is expressed at the time of the establishment of D/V polarity, we examined developing eye discs. β-Galactosidase activity was restricted to the dorsal cells both in front of the morphogenetic furrow and in the first few rows behind the furrow (Fig. 1E). Analysis of β-galactosidase staining in mrrP1 embryos (Fig. 1G) suggests that mrr might also play a role in embryonic development.

mrr encodes a homeodomain protein

To identify mrr, the P element was used to obtain genomic DNA adjacent to the insertion site. A chromosomal walk was conducted in both directions from the mrrP1 insertion point, and a portion of the walk was then used to probe an eye imaginal disc cDNA library (Fig. 2A). Nine overlapping cDNAs were isolated that define a 23-kb transcription unit with five exons. Hybridization of these cDNAs to eye imaginal discs demonstrated that this gene is expressed in the dorsal half of the eye disc in a pattern similar to that of β-galactosidase expression in mrrP1 eye discs (Fig. 1E, F). Hybridization of these cDNAs to embryos also revealed expression that was very similar to β-galactosidase activity in mrrP1 embryos (Fig. 1G, H). We conclude that this transcription unit is mrr.

The 3.5-kb mrr transcript contains a single long open reading frame (ORF) of 1.9 kb. Conceptual translation of the mrr cDNA (Fig. 2B) reveals that the Mrr protein (Mrr) is a putative transcriptional activator containing both a homeodomain and an acidic transactivation domain (for review, see Triezenberg 1995; Burglin 1994). The Mrr homeodomain contains 3 additional amino acids be-
McNeill et al.

tween helix 1 and helix 2 that are not present in most homeodomains. This places it in a class of homeodomain proteins defined by human PBX1 and its Drosofila homolog Extralanticle (see Fig. 2C) [Kamps et al. 1990; Nourse et al. 1990; Flegel et al. 1993; Rauskolb et al. 1993]. These proteins are notable for forming heterodimers with other homeodomain proteins and increasing their partners' target specificity and affinity [Chan et al. 1994; van Dijk and Murre 1994, 1995; Chang et al. 1995; Knoepfler and Kamps 1995; Lu et al. 1995; Mann 1995; Phelan et al. 1995).

Mrr is related most closely to the two homeodomain proteins of the Iroquois complex, Araucan (Ara) and Caupolican (Caup), although the Iroquois proteins are related more closely to each other than to Mrr (Gomez-Skarmeta et al. 1996). The homology to these proteins is particularly striking in three regions [Fig. 2B]. The major region of homology lies within the homeodomain and the 15 amino acids immediately after the homeodomain. Over the homeodomain, 57/60 amino acids are identical, with three conservative changes (Fig. 2C). In the amino-terminal region there is a highly conserved Notch interaction domain, which has been proposed to be involved in protein–protein interactions [Gomez-Skarmeta et al. 1996] [Fig. 2D]. In addition, a highly conserved novel region close to the carboxyl terminus is also conserved among all these family members [Fig. 2E]. The similarity of mrr to ara and caup and its coincident location at 69D [within 50 kb of caup; Gomez-Skarmeta et al. 1996] suggests that mrr is a new member of the Iroquois complex.

Patterning defects in mrr alleles

To analyze the function of mrr we sought to obtain mutant mrr alleles. Because the mrr insertion site is within 300 bp of the beginning of the mrr transcriptional unit, the insertion of the P element might have disrupted mrr expression. We therefore began our phenotypic analysis by examining homozygous mrrP1 eyes to determine whether there were defects in patterning. mrrP1 eyes are smooth, with no apparent disruptions in the packing of the ommatidial facets. However, closer analysis revealed subtle patterning defects. In ~20% of mrrP1 eyes (9/50), at least one ommatidium close to the equator is misspecified, having ventral chirality and polarity but residing in the dorsal field, or vice versa. Such misspecified ommatidia are not found in wild-type eyes (0/50; see also Franceschini and Kirchfeld 1971; Ready et al. 1976). In addition, mrrP1 eyes had defects in the path of the equator across the eye. In wild-type eyes, the equator moves up and down one ommatidial width as it traverses the eye and rarely if ever moves more than two ommatidial widths at one time. In contrast, ~10% of mrrP1 eyes displayed an irregular equator. These irregularities were either three consecutive steps in a single direction or a single step of three ommatidial widths (data not shown). These defects in mrrP1 flies suggested that mrr might have a role in defining the equator.

The weak and variable defects in mrrP1 eyes and the lack of a mrrP1 embryonic phenotype despite strong expression of mrr in the embryo (Fig. 1H) suggested that the mrrP1 might retain substantial function. We therefore sought stronger mrr alleles. We took advantage of the fact that transposase-catalyzed excision of P elements is often imprecise and can result in the deletion of flanking sequences. Among 95 transposase-induced excision events, we isolated eight excision alleles that fail to complement each other and have either embryonic or early larval lethal phenotypes. Consistent with these alleles being defective for mrr function, in situ hybridization of embryos homozygous for mrr*25, a strong allele that contains a 1-kb deletion in the promoter region, had only very low levels of mirror transcript. We also obtained an independent insertion into the mrr locus, mrrP2 (Brodsky and Steller 1996). mrrP2 is an insertion 234 bp upstream of the 5' end of the mrr cDNA and results in early larval lethality that cannot be complemented by mrrP6. This recessive lethal phenotype could be reverted at high frequency (45/58 excision events) upon excision of the P element, indicating that the P-element insertion near mrr was the cause of the lethal phenotype. Taken together, these results indicate that the defects in each of these alleles are the result of reduced mrr expression.

Loss of mrr expression can define a new equator

Because strong mrr alleles have an embryonic lethal phenotype, we studied mrr function in the eye by examining clones of cells homozygous for loss-of-function mrr mutations. Clones of homozygous mutant cells were generated by mitotic recombination and lacked the white gene and therefore pigment granules. Loss of mrr function had different effects in different parts of the eye. In the ventral half of the eye, there were no effects, consistent with our observation that mrr expression is restricted to the dorsal half of the eye. Dorsal clones also had no significant disturbances in ommatidial polarity or chirality within the clone. These results suggested that mrr is not required for the implementation of dorsal identity (see Fig. 3B, C).

In contrast to the lack of defects within mrr-minus clones, we noted a dramatic alteration in patterning at the border of certain clones. Ectopic equators formed at the equatorial borders of dorsal anterior clones where mrr-minus tissue abutted mrr-expressing tissue [see Fig. 3B]. The wild-type ommatidia just outside of the clone adopted ventral polarity and chirality. Ventral patterning extended for one to two ommatidial widths, then the tissue resumed normal dorsal patterning. The formation of ectopic equators where mrr-expressing and -nonexpressing cells meet suggests that the juxtaposition of mrr-expressing and -nonexpressing cells serves to define the normal equator (Fig. 3A).

Loss of mrr changes the path of the normal equator

If the juxtaposition of mrr-expressing and -nonexpressing cells defines the normal equator, then loss of mrr function in dorsal cells along the equator should affect its
mrr defines a border in the eye

To further test the hypothesis that the pattern of mrr expression defines the equator, we analyzed the effects of ectopic expression of mrr. Our first approach was to place mrr under the control of a heat shock promoter and observe the effects of ubiquitous expression during third instar larval development. Heat shock-driven mrr disrupts normal development and results in flies with rough eyes [data not shown]. Sections of these eyes revealed numerous defects, including randomized polarity and chirality of ommatidia. The pleiotropic nature of these defects are difficult to interpret but are consistent with a requirement for spatially restricted mrr expression. To test whether a border of mrr expression is important for its function, we used the Gal4 system (Brand and Perrimon 1993) to express mrr at the ventral margin of the eye. Sections of these eyes revealed occasional ommatidia (in three of five eyes examined) that had dorsal polarity and chirality close to the ventral margin of the eye, near where ectopic mrr was expressed [Fig. 3D]. No abnormal ommatidia were observed in regions of the ventral field away from where mrr was ectopically expressed. These data suggest that ectopic expression of mrr can result in the perception of an equatorial border by nearby ommatidia and can lead them to orient around this new border.

mrr expression during development

Loss of mrr function results in embryonic lethality, which indicates that mrr function is important during early development. We therefore examined mrr expression during embryogenesis by in situ hybridization. mrr expression was detected first at the cellular blastoderm stage as an anterior ventral patch at the site of the presumptive anterior midgut invagination. Shortly thereafter, mrr is expressed at the dorsal folds prior to their formation [Fig. 4A]. mrr continues to be expressed in these tissues [Fig. 4B,C]. mrr is expressed in a segmental pattern by the beginning of stage 10 [Fig. 4D] and then later in delaminating neuroblasts [Broadus et al. 1995]. mrr is also expressed at this time in more dorsal groups of cells. As the embryo undergoes germ-band retraction, mrr expression is retained in the nerve cord and appears transiently in the proventriculus as it undergoes folding [Fig. 4E].

mrr is also expressed in a complex pattern in larvae and adults. This pattern includes portions of the wing, haltere, and genital imaginal discs, as well as the dorsal anterior follicle cells in the ovary [data not shown]. A
Figure 4. In situ hybridization with riboprobes to staged embryos reveals dynamic expression of mrr during embryogenesis. Embryos are oriented so that dorsal is up and anterior is to the left. Embryos were staged according to Campos-Ortega and Hartenstein [1985]. (A) Expression at dorsal folds and anterior midgut invagination; (B) early gastrulation maintains pattern at dorsal folds and anterior midgut invagination; (C) early germ-band extension maintains expression at dorsal folds and anterior midgut invagination; (D) mrr is expressed in a segmentally repeated pattern in a germ-band extended, early stage 11 embryo; (E) stage 13 embryos show strong staining in the proventriculus and weak staining in anterior portion of the ventral nerve cord; (F) costaining with antibodies to engrailed (brown) and in situ mrr probes (blue) demonstrate that mrr is expressed at the anterior border of the segment.

role for mrr function in the development of these tissues is reflected by defects in these structures in mrrP1 flies. These defects include held-out wings, missing thoracic bristles, crumpled halters, and the production of eggs lacking dorsal appendages and anterior chorion.

mrr function in embryonic segmentation

The expression pattern of mrr suggests that its function may be important for many steps in development. We were particularly interested in the expression of mrr in each segment. To determine where in the segment mrr is expressed, we costained wild-type embryos with antibodies to Engrailed, which defines the posterior border of each segment, and with mrr riboprobes. This experiment revealed that mrr expression is adjacent and posterior to Engrailed in every segment [Fig. 4F]. This placed mrr expression at the anterior border of each segment.

To determine whether mrr expression in the segment is important for patterning, we examined the cuticles of mrr loss-of-function embryos. mrr mutant cuticles were smaller than wild type and had sparse denticles [Fig. 5]. Anterior denticles were often missing from each segment, and denticle rows 2 and 3 often were fused together. These defects in mrr mutant embryos confirm that mrr has a role in patterning within segments. Interestingly, a small percentage of embryos also had fusions of adjacent segments [Fig. 5E], suggesting that mrr may also play a role in defining the border between segments.

Discussion

The Drosophila eye is divided precisely into dorsal and ventral mirror-image fields, which are separated by a sharp boundary known as the equator. We have identified a novel homeobox-containing gene, mrr, which functions to define the equator. Three lines of evidence suggest that a border of mrr expression defines the equa-
tor. First, the expression of mrr is consistent with a role in defining the equator. mrr is expressed in the dorsal half of the eye days before D/V asymmetries become apparent, and expression ceases once these asymmetries are established. Furthermore, mrr expression terminates at the midpoint of the eye, producing a natural border of mrr expression where the equator will form. Second, our mosaic analysis has revealed that changes in mrr expression can create ectopic equators or alter the path of the normal equator. For example, mrr loss-of-function clones situated in dorsal regions of the eye can produce an ectopic equator along the side of the clone that faces the normal equator. In addition, when the normal equator enters a region of mrr loss of function, the path of the equator is diverted toward the new border of mrr expression. Third, ectopic expression studies are consistent with the hypothesis that a border of mrr expression defines the equator. Ectopic expression of mrr in a small region at the ventral margin of the eye results in the adoption of dorsal polarity and chirality of some nearby ommatidia. This suggests that an ectopic equator is being defined in this region. In contrast, ubiquitous expression of mrr led to rough and disordered eyes, which suggests that spatial restriction of mrr expression is important for the ability of mrr to define a border. Together, these data suggest a model in which the juxtapositioning of mrr-expressing and -nonexpressing cells defines a border.

One important aspect of the induction of ectopic borders in mrr clones is that only the edge of the clone that is parallel to the normal equator produces an ectopic equator. One interpretation of this observation is that the polarizing signal is transmitted from an equator toward the dorsal and ventral poles. Consistent with this idea is the observation that clones of the tissue polarity mutant, frizzled, behave as though a signal is being transmitted from the equator (Zheng et al. 1995).

Although our results suggest that juxtaposing mrr-expressing and -nonexpressing cells can define a border, it is not always sufficient. Only clones in the anterior region form ectopic equators. All clones in the dorsal anterior-most region of the eye developed ectopic equators at their ventral face. One explanation for this restriction may be that mrr is not the sole determinant of the equator. In this regard, it is interesting to note that ara and caup are also expressed in dorsal regions of the eye (J. Gomez-Skarmeta and J. Modellel, pers. comm.). In addition, there is evidence for the differential expression of other genes along the D/V axis of the eye (Sun et al. 1995; Brodsky and Steller 1996). Such genes might contribute to equator formation. Alternatively, as our alleles are not entirely lacking mrr transcript, the possibility remains that clones without any mrr function could induce equators throughout the dorsal half of the eye.

How is the equator formed?

We propose that dorsal identity is determined through a gradient of a dorsal morphogen, which activates mrr transcription in a graded fashion. If mrr is then able to regulate its own transcription (a characteristic of many transcription factors), this could result in a sharp border of mrr expression. Interactions between the mrr-expressing and -nonexpressing cells could then lead to the production of signals that pattern the eye. Three observations are consistent with this model. First, a potential Mrr-binding site (based on the defined DNA binding site of Ara; Gomez-Skarmeta et al. 1996) is present in the mrr upstream region (H. McNeill, unpubl.). Second, mrr expression includes both a gradient that is strongest in the most dorsal regions and a sharp termination at the equator (see Fig. 1E,F). Third, there are several enhancer trap lines that are expressed at the equator, which provide candidates for control by Mrr.

Previous studies have been divided as to how D/V polarity and the equatorial boundary are established (Chaunet and Heberlein 1995; Ma and Moses 1995; Strutt and Mlodzik 1995; Wehrli and Tomlinson 1995). Some groups suggest that D/V polarity responds to global coordinates, whereas others propose that D/V polarity results solely from progression of the morphogenetic furrow. The restriction of mrr expression to dorsal cells during the second larval instar clearly indicates that D/V differences in positional identity exist prior to the furrow.

The mechanism of D/V boundary determination in the wing may provide a model for understanding equator formation in the eye. Dorsal identity in the wing is controlled by homeodomain protein Apterous, which is expressed solely by dorsal cells (Bourgouin et al. 1992; Cohen et al. 1992; Williams et al. 1993). The juxtaposition of Apterous-expressing and -nonexpressing cells defines the D/V border in part by directing dorsal expression of the secreted protein Fringe (Diaz and Cohen 1993; Blair et al. 1994; Irvine and Wieschaus 1994; Kim et al. 1995). Fringe then directs patterning at the D/V border in part by controlling the Notch pathway (Kim et al. 1995, 1996). Because Apterous is not expressed in the eye, it is interesting to speculate that mrr may control D/V border formation in the eye by controlling some of these same genes. However, there are some differences in the actions of apterous and mrr. Although the equator can cross a clone of mrr cells, the D/V border of the wing cannot cross through an apterous clone. Another difference is that cells within dorsal apterous clones have ventral identity while ommatidia within dorsal mrr clones always retain dorsal morphology. However, the lack of independent markers for D/V identity in the eye prevents us from ruling out the possibility that the ommatidia within the dorsal mrr clones are actually ventral with respect to the ectopic equator.

Mrr in the embryo

Our study of mrr function in the eye has led us to propose that mrr acts to define the equatorial border. Our in situ analysis of mrr expression demonstrated that mrr is also expressed at another well-studied boundary, the segmental border. In this case, mrr is expressed at the anterior side of the border. The time of onset of mrr expres-
sion in the segment is after the establishment of para-
segmental signaling, but prior to and during the
determination of the segmental border and the refine-
ment of Engrailed and Wingless expression. As the bor-
tal border in the embryo suggest that

terminates the parasegmental boundary, so might the jux-
tapositioning of mrr-expressing cells be important for defining the segmental border. Consis-
tent with this hypothesis is our observation that mrr
mutant embryos have segmental patterning defects. Our
data in the D/V boundary in the eye and on the segment-
ral border in the embryo suggest that mrr
may function in both of these systems to define borders.

Materials and methods

Isolation and analysis of mrr mutations

The mrrP1 insertion was obtained during a screen for imprecise excision of a P element in the Src64 locus, and was identified by the dorsal specific expression of the white gene. No Src64 inter-
actions are observed. The P-element insertion site was local-
ized to 69D on polytene chromosomes by in situ hybridization using biotin-labeled probes specific for P-element sequences and mrr cDNA probes.

mrrP1 homozygous flies have numerous subtle defects. Flies have abnormal scutellar bristles, drooping halteres, dichaete wings, and are missing alulae. Homozygous mothers lay eggs lacking dorsal appendages and often have an open anterior cho-
rition. Hatch rate analysis indicates that <30% of eggs laid by homzygous mothers hatch. Reciprocal crosses to w118 flies demonstrated that this is a maternal effect. Pseudopupil (Franc-
eschini and Kirschfeld 1971) analysis of eyes indicated occa-
sional subtle defects in the orientation of ommatidia and the regula-
arity of the equator.

To obtain stronger mrr alleles the mrrP1 insertion was mobil-
ized using the 22–3 transposable source [Robertson 1988] and excisions were identified by loss of white expression.

Immunohistochemistry and in situ analysis

Digoxigenin-labeled mrr riboprobes were made using the Boe-
hringer Mannheim Genius kit, as described. In situ hybridiza-
tions utilized antisense-strand riboprobes and were performed according to standard procedures (Tautz and Pfeifle 1989). Cu-
ticle preparations in the eggshell were obtained by collecting the progeny of mrr88/w118 for 3 hr, aging embryos for 28 hr, de
teillzinizing, dechoriatiing, and mounting in Hoyers/lactic
acid (Wieschaus and Nüsslein-Volhard 1986). Cuticle prepara-
tions were viewed after 24 hr at 65°C on a slide warmer.

Analysis of mrrP1 β-galactosidase activity

Imaginal discs were dissected from third instar mrrP1 homozy-
gous larvae in phosphate-buffered saline (PBS), fixed in 1% glu-
taraldehyde for 5 min at 22°C, and rinsed three times in PBS. Discs were immersed in X-gal staining solution for 1–3 hr at
22°C. β-Galactosidase staining of mrrP1 and mrrP2 flies demon-
strated that mrr is expressed in wing imaginal discs in dorsal and peripheral regions, in ovaries in the anterior dorsal follicle cells, in genital disc in a lateral stripe, in the larval CNS, and intestinal tract. We did not observe staining in leg discs.

Analysis of 30A Gal4: UAS mrr flies

30A Gal4::UAS (upstream activating sequence) mrr flies were
obtained from a cross between 30A Gal4/Cyo flies and UAS
mrr/TM3 flies. The resulting flies were raised at 18°C for 2
weeks and shifted to 23°C until eclosion. Flies carrying mrr
expressed under the 30A Gal4 control were identified by lack of
TM3 and Cyo markers. Eyes from five flies were fixed with glutaraldehyde and osmium tetroxide as described (Tomlinson
and Ready 1987) and analyzed in 1 μm sections under a light
microscope.

Clonal analysis

Mitotic clones were generated by irradiating the progeny of
males (homozygous for a white + P element at 70°C crossed to
w; mrrP2/TM3 females. Embryos were collected for 24 hr, aged
for 24 hr, and irradiated with 1000 rads. This generated mrr
mutant clones marked by the loss of white. The positions of
clones were marked prior to embedding, and standard histologi-
ical methods were used for sections of adult eyes [Tomlinson
and Ready 1987].

Molecular biology

Genomic DNA flanking mrrP1 [a 1.5-kb XhoI rescue fragment] was isolated by plasmid rescue [Pirrotta 1986] and used as a probe to screen a genomic library cloned into the λFixI11 vector
(Stratagene, Inc.). A 4.5-kb genomic fragment was then used to probe an eye imaginal disc cDNA library in λgt10 [constructed by Dr. A. Cowman, Walter and Eliza Hall Institute, Melbourne, Austra-
alia]. EcoRI fragments of mrr cDNA were cloned into Bluescript [Stratagene, Inc.] and used for sequencing and pro-
duction of riboprobes. Molecular analysis of mrrP1 imprecise excisions was done using genomic Southern analysis. Addi-
tional genomic DNA was obtained by screening P1 cosmid li-
braries with a mrr cDNA. P1C was subcloned as a Sac–Cla
fragment from P1446. Manipulations of DNA and RNA were
done according to the protocols of Sambrook et al. [1989]. Ex-
pression constructs containing mrr cDNA were made by fusing
the two fragments of mrr cDNA obtained from EcoRI and
HindIII subcloning of the λgt10 cDNA library to a common
HindIII site. The construct containing the 5′-untranslated re-

region (UTR), the entire coding region of mrr and 0.7 kb of 3′ UTR
were cloned into the KpnI site of PHXX and subcloned into the
NotI site of hsCasPer. The same KpnI fragment was cloned into the
KpnI site of the GalUAS vector pUAST [Brand and Perrimon
1993]. Constructs were injected into w118 flies using standard
methods [Rubin and Spradling 1982].

Sequencing

All DNA sequences were determined using the dideoxy chain
termination method with a Sequenase kit [U.S. Biochemical]. Tem-
plates for the determination of the 3505-bp mrr cDNA se-
quences were generated by sonication of plasmid DNA and in-
sertion of the sonicated fragments into the vector M13mp10. The entire sequence of mrr was determined on both strands. Compressions were eliminated using a combination of deaza-
nucleotide and dITP nucleotides and analysis of templates on formamide-containing gels. The genomic structure of mrr was
determined through a combination of exonuclease-deletion of the 5.5-kb plasmid rescue fragment of mrrP2 and primer-based
sequencing of the remainder of mrr using oligonucleotide prim-
ers on genomic subclone PIC.
Acknowledgments

We thank Tom Kornberg for the generous gift of Engrailed antibodies, Hermann Steller for his support of M.B. for part of this work, Juan Modellel, Françoise Chanut, and Kathy Matthews and the Bloomingston Stock Center for fly stocks, M. Scott for help with cuticle analysis, and members of the Simon laboratory, and Craig Smibert for comments on this manuscript. This research was supported by a postdoctoral fellowship to H.M. from the American Cancer Society. M.A.S. is a Markey scholar in Biomedical Science.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

Note added in proof

The sequence data described in this paper have been submitted to GenBank under accession no. U95021.

References

Blair, S.S. 1995. Compartments and appendage development in Drosophila. BioEssays 17: 299–309.

Blair, S.S., D.L. Brower, J.B. Thomas, and M. Zavortink. 1994. The role of apterous in the control of dorsoventral compartmentalization and PS integrin gene expression in the developing wing of Drosophila. Development 120: 1805–1815.

Brand, A.H. and N. Perrimon. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415.

Broadus, J., J.B. Skeath, E. Spana, T. Bossing, G. Technau, and C.Q. Doe. 1995. New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mech. Dev. 53: 393–402.

Brodsky, M.H. and H. Steller. 1996. Positional information along the dorsal-ventral axis of the Drosophila eye: Graded expression of the four-jointed gene. Dev. Biol. 173: 428–446.

Bourguin, C., S. Lundgren, and J. Thomas. 1992. Apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron 9: 549–561.

Burglin, T.R. 1994. A comprehensive classification of homeobox genes. In A guidebook for homeobox genes (ed. D. Duboule), Oxford University Press, Oxford, UK.

Campos-Ortega, J.A. and V. Hartenstein. 1985. The embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin, Germany.

Chan, S.K., L. Jaffe, M. Capovilla, J. Botas, and R.S. Mann. 1994. The DNA binding specificity of Ultrabithorax is modulated by Pbx proteins. Cell 78: 603–615.

Chang, C.P., W.F. Shen, S. Rozenfeld, H.J. Lawrence, C. Large, and M.L. Cliney. 1995. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes & Dev. 9: 663–674.

Chanut, F. and U. Heberlein. 1995. Role of the morphogenetic furrow in establishing polarity in the Drosophila eye. Development 121: 4085–4094.

Choi, K.W. and S. Benzer. 1994. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78: 125–136.

Choi, K.W., B. Mozer, and S. Benzer. 1996. Independent determination of symmetry and polarity in the Drosophila eye. Proc. Natl. Acad. Sci. 93: 5737–5741.

Cohen, B., M. McGuffin, C. Pfeifle, D. Segal, and S.M. Cohen. 1992. Apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes & Dev. 6: 715–729.

Diaz, B.F. and S.M. Cohen. 1993. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75: 741–752.

Dietrich, W. 1909. Die Facettenaugen der Dipterena Z. Wiss. Zool. 92: 465–539.

Flegel, W.A., A.W. Singson, J.S. Margolis, A.G. Bang, J.W. Posa- kony, and C. Murre. 1993. Dpbx, a new homeobox gene closely related to the human proto-oncogene pbx1 molecular structure and developmental expression. Mech. Dev. 41: 155–161.

Franceschini, N. and K. Kirchfeld. 1971. Etude optique in vivo des elements photorecepteurs dans l’oeil compose de Drosophila. Kybernetik 9: 159–182.

Gomez-Skarmeta, J.L., R.D. del Corral, E. de la Calle-Mustienes, M.D. Ferre, and J. Modolell. 1996. Araucan and caupolican, two members of the novel Iroquois complex, encode homeo-proteins that control primeval and vene-forming genes. Cell 85: 95–105.

Gonzalez, C.S. and G. Morata. 1995. Control of Drosophila adult pattern by extradenticle. Development 121: 2117–2125.

Gubb, D. 1993. Genes controlling cellular polarity in Drosophila. [Suppl.] Development 269–277.

Irvine, K.D. and E. Wieschaus. 1994. fringe, a Boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79: 595–606.

Kamps, M.P., C. Murre, X.-h. Sun, and D. Baltimore. 1990. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60: 547–555.

Kim, J., K.D. Irvine, and S.B. Carroll. 1995. Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell 82: 795–802.

Kim, J., A. Sebring, J. Esch, M. Kraus, K. Vorwerk, J. Magee, and S. Carroll. 1996. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382: 133–138.

Knoepfner, P.S. and M.P. Kamps. 1995. The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1. Mol. Cell. Biol. 15: 5811–5819.

Lu, Q., P.S. Knoepfner, J. Scheele, D.D. Wright, and M.P. Kamps. 1995. Both Pbx1 and E2A-Pbx1 bind the DNA motif AT-CAAATCA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol. Cell. Biol. 15: 3786–3795.

Ma, C. and K. Moses. 1995. Wingless and patched are negative regulators of the morphogenetic furrow and can affect tissue polarity in the developing Drosophila compound eye. Development 121: 2279–2289.

Mann, R.S. 1995. The specificity of homeotic gene function. BioEssays 17: 855–863.

Nourse, J., J. Mellentin, N. Gallii, J. Wilkinson, E. Stanbridge, S. Smith, and M. Cliney. 1990. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535–555.

Peifer, M. and A. Beissev. 1992. Knowing your neighbors: Cell interactions determine intrasegmental patterning in Drosophila. Trends Genet. 8: 243–249.
Phelan, M.L., I. Rambaldi, and M.S. Featherstone. 1995. Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol. Cell. Biol. 15: 3989-3997.

Pirrotta, V. 1986. Cloning Drosophila genes. In Drosophila, a practical approach (ed. D.B. Roberts), pp. 83-110. IRL Press, Oxford, UK.

Rauskolb, C., M. Peifer, and E. Wieschaus. 1993. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 74: 1101-1112.

Sambrook, J., E.F. Pritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Scambler, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Rubin, G.M. and A.C. Spradling. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218: 348-353.

Shen, W.F., C.P. Chang, S. Rozenfeld, G. Sauvageau, R.K. Humphries, M. Lu, H.J. Lawrence, M.L. Cleary, and C. Lardman. 1996. Hox homeodomain proteins exhibit selective complex stabilities with Pbx and DNA. Nucleic Acids Res. 24: 898-906.

Strutt, D.I. and M. Mlodzik. 1995. Ommatidial polarity in the Drosophila eye is determined by the direction of furrow progression and local interactions. Development 121: 4247-4256.

Sun, Y.H., C.J. Tsai, M.M. Green, J.L. Chao, C.T. Yu, T.J. Jaw, J.Y. Yeh, and V.N. Bolshakov. 1995. White as a reporter gene to detect transcriptional silencers specifying position-specific gene expression during Drosophila melanogaster eye development. Genetics 141: 1075-1086.

Tautz, D. and C. Pfeifle. 1989. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81-85.

Villano, J.L. and F.N. Katz. 1995. Four-jointed is required for intermediate growth in the proximal-distal axis in Drosophila. Development 121: 2767-2777.

Weischaus, E. and C. Nüsslein-Volhard. 1986. Looking at embryos. In Drosophila, a practical approach (ed. D.B. Roberts), pp. 199-227. IRL Press, Oxford, UK.

Williams, J.A., S.W. Paddock, and S.B. Carroll. 1993. Pattern formation in a secondary field: A hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development 117: 571-584.

Wolff, T. and D.F. Ready. 1991. The beginning of pattern formation in the Drosophila compound eye: The morphogenetic furrow and the second mitotic wave. Development 113: 841-850.

---. 1993. Pattern formation in the Drosophila retina. In The Development of Drosophila melanogaster (ed. M. Bate and A. Martinez-Arias), Vol. 2, pp. 1277-1326. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Zheng, L., J. Zhang, and R.W. Carthew. 1995. frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development 121: 3045-3055.

1082 GENES & DEVELOPMENT
mirror encodes a novel PBX-class homeoprotein that functions in the
definition of the dorsal-ventral border in the Drosophila eye.

H McNeill, C H Yang, M Brodsky, et al.

Genes Dev. 1997, 11:
Access the most recent version at doi:10.1101/gad.11.8.1073

This article cites 49 articles, 21 of which can be accessed free at:
http://genesdev.cshlp.org/content/11/8/1073.full.html#ref-list-1

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.