GROUP COCYCLES ON THE VOLUME-PRESERVING
DIFFEOMORPHISM GROUP

SHUHEI MARUYAMA

ABSTRACT. We construct two kinds of group cocycles on the volume-preserving
diffeomorphism group. We show that, for the volume-preserving diffeomorphism
group of the sphere, one of the cocycles gives the Euler class of flat sphere bundles.

1. Introduction

Let M be a connected manifold and n denote the minimum positive number that
the homology $H_n(M; \mathbb{Z})$ is non-zero. Let Ω denote a closed n-form on M such that
the cohomology class $[\Omega] \in H^n(M; \mathbb{R})$ is a non-zero image of the map $H^n(M; \mathbb{Z}) \to
H^n(M; \mathbb{R})$. Let G denote the group of Ω-preserving diffeomorphisms of M. The
normalized volume form and the group of volume-preserving diffeomorphisms is an
example. In this paper, we construct two kinds of group-cocycles on G; group
$(n + 1)$-cocycles c_k with coefficients in the trivial G-module \mathbb{Z} (Definition 2.1), and
group n-cocycles b_k with coefficients in the trivial G-module $S^1 = \mathbb{R}/\mathbb{Z}$ (Definition
2.8). We show that, if the manifold is the n-sphere S^n and the n-form Ω is the
normalized standard volume form on S^n, the cohomology class $[c_k]$ is equal to the
Euler class of flat sphere bundle up to sign (Theorem 3.1). By using this, we also
show that the group cohomology classes $[c_k]$ and $[b_k]$ are non-zero for the n-sphere
S^n (Theorem 3.2).

Some group cocycles have been constructed on groups of diffeomorphisms that
preserve a fixed differential form, such as the symplectomorphism group and the
volume-preserving diffeomorphism group. On the symplectomorphism group of an
exact symplectic manifold, Ismagilov, Losik, and Michor constructed in [3] a group
two-cocycle with coefficients in \mathbb{R}. On the symplectomorphism group of an integral
symplectic manifold, a group three-cocycle with coefficients in \mathbb{Z} is constructed in [6],
which is a variant of Ismagilov, Losik, and Michor’s one. Our group cocycles c_k are
considered as generalizations of the cocycle in [6]. On the group of diffeomorphisms
that preserve a fixed exact form, Losik and Michor constructed in [4] a group cocycle
with coefficients in \mathbb{R}. Our group cocycles b_k are analogous to Losik and Michor’s
one.

2. Group cocycles

2.1. Group cohomology. Let G be a group and A be a G-module. The set of all
maps $C_{\mathrm{grp}}^p(G; A) = \{ c : G^p \to A : \text{map} \}$ is called the group p-cochains of G
with coefficients in A. The coboundary operator $\delta : C_{\mathrm{grp}}^p(G; A) \to C_{\mathrm{grp}}^{p+1}(G; A)$ is defined
by
\[\delta c(g_1, \ldots, g_{p+1}) = g_1 c(g_2, \ldots, g_{p+1}) + \sum_{i=1}^{p} (-1)^i c(g_1, \ldots, g_i g_{i+1}, \ldots, g_{p+1}) + (-1)^{p+1} c(g_1, \ldots, g_p) \]
if A is a left G-module and
\[\delta c(g_1, \ldots, g_{p+1}) = c(g_2, \ldots, g_{p+1}) + \sum_{i=1}^{p} (-1)^i c(g_1, \ldots, g_i g_{i+1}, \ldots, g_{p+1}) + (-1)^{p+1} c(g_1, \ldots, g_p)g_{p+1} \]
if A is a right G-module. The group cohomology $H^*_\text{grp}(G; A)$ of G with coefficients in A is the cohomology of the cochain complex (C^*_grp, δ).

Let G^δ denote the group G with discrete topology. Then the group cohomology of G is isomorphic to the singular cohomology of the classifying space BG^δ of G^δ (see [2]). Under this identification, a group cohomology class gives a universal characteristic class of flat G-bundles.

2.2. The group cocycles with coefficients in \mathbb{R}. Let M be a connected manifold and n denote the minimum positive number that the homology $H_n(M; \mathbb{Z})$ is non-zero. Let Ω denote a closed n-form on M such that the cohomology class $[\Omega] \in H^n(M; \mathbb{R})$ is a non-zero image of the map $H^n(M; \mathbb{Z}) \to H^n(M; \mathbb{R})$. The typical example of (M, Ω) is a homology n-sphere and its (normalized) volume form. Let $G = \text{Diff}_\Omega(M)$ denote the Ω-preserving diffeomorphism group. We regard the integers \mathbb{Z} as the trivial G-module. Then we define group $(n+1)$-cocycles c_k in $C^{n+1}_\text{grp}(G; \mathbb{Z})$ as follows.

Let $(C_*(M; \mathbb{Z}), \partial)$ and $(C^*(M; \mathbb{Z}), d)$ denote the singular chain complex and the singular cochain complex respectively. We regard $C_q(M; \mathbb{Z})$ and $C^*(M; \mathbb{Z})$ as the left G-module and the right G-module respectively. Let us consider the double complexes $C^*_\text{grp}(G; C_q(M; \mathbb{Z}))$ and $C^*_\text{grp}(G; C^*(M; \mathbb{Z}))$. Take a point $\Delta_0 = x \in M = C_0(M; \mathbb{Z})$ and a singular n-cocycle $w_n \in C^n(M; \mathbb{Z})$ that the cohomology class $[w_n] \in H^n(M; \mathbb{Z})$ corresponds to the class $[\Omega]$ in $H^n(M; \mathbb{R})$. By the assumption of M, we take elements $\Delta_k \in C^k_\text{grp}(G; C_k(M; \mathbb{Z}))$ for $0 \leq k < n$ satisfying
\[\delta \Delta_k = \partial \Delta_{k+1} \in C^{k+1}_\text{grp}(G; C_k(M; \mathbb{Z})). \]
Since the map $H^n(M; \mathbb{Z}) \to H^n(M; \mathbb{R})$ is injective, any element in G preserves the cohomology class $[w_n]$, that is, $\delta w_n(g) = w_n - g^* w_n$ is a coboundary for any $g \in G$. Thus we take an element $w_{n-1} \in C^1_\text{grp}(G; C^{n-1}(M; \mathbb{Z}))$ such that
\[\delta w_n = -(1)^{n} w_{n-1} \in C^1_\text{grp}(G; C^n(M; \mathbb{Z})). \]
Since $H^k(M; \mathbb{Z}) = 0$ for $0 < k < n$ by the universal coefficients theorem, we take elements $w_k \in C^{n-k}_\text{grp}(G; C^k(M; \mathbb{Z}))$ such that
\[\delta w_k = -(1)^{n-k} w_{k-1} \in C^{n-k+1}_\text{grp}(G; C^k(M; \mathbb{Z})). \]
Let \(\langle \cdot, \cdot \rangle : C^r(M; \mathbb{Z}) \times C_r(M; \mathbb{Z}) \rightarrow \mathbb{Z} \) denote the pairing. This map induces the map
\[
\langle \cdot, \cdot \rangle : C^p_{\operatorname{grp}}(G; C^r(M; \mathbb{Z})) \times C^q_{\operatorname{grp}}(G; C_r(M; \mathbb{Z})) \rightarrow C^{p+q}_{\operatorname{grp}}(G; \mathbb{Z}).
\]

Definition 2.1. For \(0 \leq k \leq n \), define \(c_k \in C^{n+1}_{\operatorname{grp}}(G; \mathbb{Z}) \) by \(c_k = \langle \delta w_k, \Delta_k \rangle \).

To show that the cochains \(c_k \) are cocycles, we use the following proposition.

Proposition 2.2. For any \((a, b) \in C^p_{\operatorname{grp}}(G; C^r(M; \mathbb{Z})) \times C^q_{\operatorname{grp}}(G; C_r(M; \mathbb{Z})) \), we have
\[
\delta \langle a, b \rangle = \langle \delta a, b \rangle + (-1)^p \langle a, \delta b \rangle.
\]

Since the proof is the straightforward calculation, we omit it.

Proposition 2.3. The group cochains \(c_k \) are cocycles and cohomologous to each other.

Proof. By Proposition 2.2, we have
\[
d c_k = \langle \delta \delta w_k, \Delta_k \rangle + (-1)^{n-k+1} \langle \delta w_k, \delta \Delta_k \rangle = 0
\]
for any \(0 \leq k \leq n \). Thus the group cochain \(c_k \in C^{n+1}_{\operatorname{grp}}(G; \mathbb{Z}) \) is a cocycle for any \(0 \leq k \leq n \). For \(0 < k \leq n \), we have
\[
c_k = \langle \delta w_k, \Delta_k \rangle = -(-1)^{n-k+1} \langle \delta w_k, \Delta_k \rangle = -(-1)^{n-k+1} \langle w_{k-1}, \delta \Delta_k \rangle = -(-1)^{n-k+1} \langle w_{k-1}, \delta \Delta_{k-1} \rangle = -(-1)^{n-k+1} \langle \delta w_{k-1}, \Delta_{k-1} \rangle = c_{k-1} - \delta \langle w_{k-1}, \Delta_{k-1} \rangle.
\]
Thus the cocycles \(c_k \) are cohomologous to each other. \(\square \)

Remark 2.4. If \(n = 2 \) and the 2-form \(\Omega \) is an integral symplectic form on \(M \), then the cocycle \(c_2 \) is, up to sign, equal to the cocycle introduced in [6].

Let \(E^{p,q} \) denote the spectral sequence of the double complex \(C^p_{\operatorname{grp}}(G; C^q(M; \mathbb{Z})) \). Then \(E^{p,q} \) is isomorphic to \(H^p_{\operatorname{grp}}(G; H^q(M; \mathbb{Z})) \), where we consider the coefficients \(H^q(M; \mathbb{Z}) \) as the right \(G \)-module by pullback. Since \(H^q(M; \mathbb{Z}) = 0 \) for \(0 < q < n \), we have
\[
E^{0,n}_{n+1} = E^{0,n}_n = \cdots = E^{0,n}_2 = H^n(M; \mathbb{Z})^G,
\]
where \(H^n(M; \mathbb{Z})^G \) denotes the \(G \)-invariant part, and
\[
E^{n+1,0}_{n+1} = E^{n+1,0}_n = \cdots = E^{n+1,0}_2 = H^{n+1}_{\operatorname{grp}}(G; \mathbb{Z}).
\]
Thus the transgression map \(d_{n+1}^{0,n} : E^{0,n}_{n+1} \rightarrow E^{n+1,0}_{n+1} \) defines the map
\[
d_{n+1}^{0,n} : H^n(M; \mathbb{Z})^G \rightarrow H^{n+1}_{\operatorname{grp}}(G; \mathbb{Z}).
\]
Since the cohomology class \([w_n] \) is in \(H^n(M; \mathbb{Z})^G \), we obtain the class \(d_{n+1}^{0,n}[w_n] \in H^{n+1}_{\operatorname{grp}}(G; \mathbb{Z}) \).

Proposition 2.5. The cohomology class \(d_{n+1}^{0,n}[w_n] \) is equal to the class \([c_k] \).
Proof. The transgression map $d_{n+1}^{b,n}$ is given by the coboundary of the tail of the zig-zag (see, for example, [1, Section 14]). Moreover, the coboundary of the tail of zig-zag is equal to $\delta w_0 = (\delta w_0, \Delta_0) = c_0$. Thus we have $d_{n+1}^{b,n}[w_n] = [c_0]$. By Proposition 2.3, we have $d_{n+1}^{b,n}[w_n] = [c_k] \in H_{\text{grp}}^{n+1}(G; \mathbb{Z})$.

\begin{corollary}
The cohomology class $[c_k]$ is independent of the choice of w_k and Δ_k.
\end{corollary}

Note that the above corollary can be shown by a straightforward calculation.

\begin{remark}
If we replace the coefficients \mathbb{Z} with \mathbb{R}, then the class $d_{n+1}^{b,n}[\Omega]$ in $H_{\text{grp}}^{n+1}(G; \mathbb{R})$ is trivial since the zig-zag is trivial. Thus the cohomology class $d_{n+1}^{b,n}[w_n]$ is equal to 0 in $H_{\text{grp}}^{n+1}(G; \mathbb{R})$. By the exact sequence

$$
\cdots \to H_n^{b}(G; S^1) \to H_{n+1}^{b}(G; \mathbb{Z}) \to H_{n+1}^{b}(G; \mathbb{R}) \to \cdots,
$$

we have the class in $H_n^{b}(G; S^1)$ that hits to the class $d_{n+1}^{b,n}[w_n] = [c_k]$. Since the connecting homomorphism $H_n^{b}(G; S^1) \to H_{n+1}^{b}(G; \mathbb{Z})$ factors through the bounded cohomology $H_{n+1}^{b}(G; \mathbb{Z})$, the cohomology class $[c_k]$ is bounded.

2.3. The group cocycles with coefficients in S^1. By Remark 2.7 we know the existence of the cohomology class in $H_{\text{grp}}^{n}(G; S^1)$ corresponding to the class $[c_k] \in H_{\text{grp}}^{n+1}(G; \mathbb{R})$ under the connecting homomorphism

$$
\delta : H_{\text{grp}}^{n}(G; S^1) \to H_{\text{grp}}^{n+1}(G; \mathbb{Z}).
$$

In this section, we give cocycles $b_k \in C_{\text{grp}}^{n}(G; S^1)$ such that $\delta[b_k] = [c_k] \in H_{\text{grp}}^{n+1}(G; \mathbb{Z})$.

By the assumption of the n-form Ω and the exact sequence

$$
\cdots \to H^n(M; \mathbb{Z}) \to H^n(M; \mathbb{R}) \xrightarrow{j} H^n(M; S^1) \to \cdots
$$

we have $j[\Omega] = 0$. Here we consider Ω as the corresponding singular n-coycle (if we temporally use the symbol Ω_{sing} to denote the corresponding singular cocycle, this cocycle is defined by $\Omega_{\text{sing}}(\sigma) = \int_\sigma \Omega$ for any singular n-simplex σ). We take a singular $(n - 1)$-cochain $\eta_{n-1} \in C^{n-1}(M; S^1)$ such that $d\eta_{n-1} = j\Omega \in C^n(M; S^1)$. By the universal coefficients theorem, the cohomology $H^n(M; S^1)$ is trivial for $0 < k < n$. Thus, as with the definition of $w_k \in C_{\text{grp}}^{n-k}(G; C^k(M; \mathbb{Z}))$, we define group cocycles $\eta_k \in C_{\text{grp}}^{n-1-k}(G; C^k(M; S^1))$ by

$$
\delta \eta_k = -(-1)^{n-k}d\eta_{k-1}
$$

for $0 < k < n$. Let $\Delta_k \in C_{\text{grp}}^k(G; C^k(M; \mathbb{Z}))$ be the cochains defined in Section 2.2.

\begin{definition}
For $0 \leq k \leq n - 1$, define $b_k \in C_{\text{grp}}^n(G; S^1)$ by $b_k = \langle \delta \eta_k, \Delta_k \rangle$.
\end{definition}

As with Proposition 2.3 and Corollary 2.6 we have the following.

\begin{proposition}
The group cochains b_k are cocycles and cohomologous to each other. Moreover, the cohomology class $[b_k]$ is independent of the choice of cochains η_k and Δ_k.
\end{proposition}
Theorem 2.10. Let $\delta : H^n_{grp}(G; S^1) \to H^{n+1}_{grp}(G; \mathbb{Z})$ denote the connecting homomorphism, then we have $\delta[b_k] = [c_k]$.

Proof. By Proposition 2.3 and 2.9 it is enough to show the equality $\delta[b_{n-1}] = [c_n]$. Recall that $b_{n-1} = \langle \delta \eta_{n-1}, \Delta_{n-1} \rangle$ and $c_n = \langle \delta w_n, \Delta_n \rangle$. Let $\overline{\eta}_{n-1} \in C^{n-1}(M; \mathbb{R})$ be a lift of $\eta_{n-1} \in C^{n-1}(M; S^1)$, that is, $\overline{\eta}_{n-1}$ satisfies $j\overline{\eta}_{n-1} = \eta_{n-1}$, and put $\overline{b}_{n-1} = \langle \delta \overline{\eta}_{n-1}, \Delta_{n-1} \rangle \in C^n_{grp}(G; \mathbb{R})$.

Then we have

$$\delta \overline{b}_{n-1} = \delta \langle \delta \overline{\eta}_{n-1}, \Delta_{n-1} \rangle = \langle \delta \delta \overline{\eta}_{n-1}, \Delta_{n-1} \rangle - \langle \delta \overline{\eta}_{n-1}, \delta \Delta_{n-1} \rangle$$

$$= -\langle \delta \overline{\eta}_{n-1}, \partial \Delta_{n-1} \rangle = -\langle \delta \overline{\eta}_{n-1}, \Delta_{n-1} \rangle = -\langle \delta \overline{\eta}_{n-1}, \Delta_{n-1} - \delta \eta_{n-1} \rangle.$$

Since the action by G preserves Ω as the singular n-cocycle, we have $\delta \Omega = 0 \in C^1_{grp}(G; C^n(M; \mathbb{R}))$. Thus we have

$$\delta \overline{b}_{n-1} = -\delta (\Omega - d\overline{\eta}_{n-1}) = \langle \delta (\Omega - d\overline{\eta}_{n-1}), \Delta_{n-1} \rangle.$$

Since $j(\Omega - d\overline{\eta}_{n-1}) = j\Omega - dw_{n-1} = 0$, the cocycle $\Omega - d\overline{\eta}_{n-1}$ is in $C^n(M; \mathbb{Z})$. This integer coefficients cocycle satisfies the assumption of w_n. Thus, if we put $w_n = \Omega - d\overline{\eta}_{n-1} \in C^n(M; \mathbb{Z})$, we have

$$\delta \overline{b}_{n-1} = \langle \delta w_n, \Delta_n \rangle = c_n$$

and this implies $\delta[b_{n-1}] = [c_n]$. \square

3. The Euler class of flat sphere bundles

In this section, for the n-sphere S^n and the normalized standard volume form, we show that the class $[c_k]$ is equal to the Euler class of flat sphere bundles up to sign (Theorem 3.1) and show that the group cohomology classes $[c_k]$ and $[b_k]$ are non-trivial (Theorem 3.2).

Let us recall that the construction of the Euler class in terms of the Leray-Serre spectral sequence. Let $E \to B$ be an oriented sphere bundle over a connected base space B and E^p,q denote the Leray-Serre spectral sequence. Since $H^k(S^n; \mathbb{Z}) = 0$ for $0 < k < n$ and the bundle is oriented, we have $E^{0,n}_{n+1} = E^{0,n}_2 = H^n(S^n; \mathbb{Z})$ and $E_{n+1}^{1,0} = E^{1,0}_{n+1} = H^{n+1}(B; \mathbb{Z})$. Let $d_{n+1}^{0,n} : E^{0,n}_{n+1} \to E^{0,n+1,0}_{n+1}$ denote the derivation map and θ denote the generator of the cohomology $H^n(S^n; \mathbb{Z}) = E^{0,n+1}_n$, then the cohomology class $-d_{n+1}^{0,n} \theta \in H^{n+1}(B; \mathbb{Z})$ is the Euler class of the oriented sphere bundle $E \to B$.

Let $\text{Diff}_+(S^n)$ denote the orientation-preserving diffeomorphism group and $e \in H^{n+1}(\text{Diff}_+(S^n); \mathbb{Z}) \cong H^{n+1}_{grp}(\text{Diff}_+(S^n); \mathbb{Z})$ denote the universal Euler class of flat sphere bundles. Let us consider the normalized standard volume form Ω on S^n. Then the volume-preserving diffeomorphism group $G = \text{Diff}_+(S^n)$ is included in $\text{Diff}_+(S^n)$. Let $e_G \in H^{n+1}_{grp}(G; \mathbb{Z})$ denote the pullback of the Euler class. By the naturality of the Euler class, the class e_G is the universal Euler class of flat sphere bundles whose structure group is reduced to G.
Theorem 3.1. The cohomology class \([c_k] \in H^{n+1}_{\text{grp}}(G; \mathbb{Z})\) is equal to the negative of the Euler class \(e_G\).

Proof. Let \(EG^\delta \to BG^\delta\) denote the universal \(G^\delta\)-bundle. Then the Borel construction \(S^n_{G^\delta} = EG^\delta \times_{G^\delta} S^n \to BG^\delta\) is the universal flat sphere bundle. Note that the Leray-Serre spectral sequence of the Borel construction is isomorphic to the spectral sequence used in Section 2.2 (see [5]). Thus, by the construction of the Euler class in the Leray-Serre spectral sequence, the class \(d^{n+1}_0[w_n] \in H^{n+1}_{\text{grp}}(G; \mathbb{Z})\) is equal to the negative of the Euler class of the flat sphere bundle \(S^n_{G^\delta} \to BG^\delta\) under the identification \(H^{n+1}_{\text{grp}}(G; \mathbb{Z}) \cong H^{n+1}_{\text{grp}}(BG^\delta; \mathbb{Z})\). By Proposition 2.5, the group cocycles \(c_k\) give the negative of the Euler class of the universal flat sphere bundle. \(\Box\)

Since the natural action by \(SO(n+1)\) on \(S^n\) preserves the normalized standard volume form \(\Omega\), there is the inclusion \(SO(n+1) \to G\). Let \(e_{SO(n+1)} \in H^{n+1}_{\text{grp}}(SO(n+1); \mathbb{Z})\) denote the pullback of \(e_G\) by the inclusion. By the naturality of the Euler class, the class \(e_{SO(n+1)}\) is the universal Euler class of flat sphere bundles whose structure group is reduced to \(SO(n+1)\). The universal Euler class in \(H^{n+1}(BSO(n+1); \mathbb{Z})\) of vector bundles hits the class \(e_{SO(n+1)}\) under the canonical map

\[H^{n+1}(BSO(n+1); \mathbb{Z}) \to H^{n+1}(BSO(n+1); \mathbb{Z}) \cong H^{n+1}_{\text{grp}}(SO(n+1); \mathbb{Z}) \]

Since the canonical map is injective (see [7]), the class \(e_{SO(n+1)}\) is non-trivial and so is the class \(e_G\). Thus, we obtain the following theorem.

Theorem 3.2. Let \(M\) be the \(n\)-sphere and \(\Omega\) the normalized standard volume form. Then the classes \([c_k] \in H^{n+1}_{\text{grp}}(G; \mathbb{Z})\) and \([b_k] \in H^n_{\text{grp}}(G; S^1)\) are non-trivial.

References

1. Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
2. Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
3. Rais S. Ismagilov, Mark Losik, and Peter W. Michor, A 2-cocycle on a symplectomorphism group, Mosc. Math. J. 6 (2006), no. 2, 307–315, 407. MR 2270616
4. Mark Losik and Peter W. Michor, Cohomology for a group of diffeomorphisms of a manifold preserving an exact form, Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 5-6, 1117–1130. MR 2264408
5. Mark V. Losik, Characteristic classes of transformation groups, Differential Geom. Appl. 3 (1993), no. 3, 205–218. MR 1245561
6. Shuhei Maruyama, A group three-cocycle of the symplectomorphism group and the dixmier-douady class of symplectic fibrations, 2020.
7. J. Milnor, On the homology of Lie groups made discrete, Comment. Math. Helv. 58 (1983), no. 1, 72–85. MR 699007

Graduate School of Mathematics, Nagoya University, Japan

Email address: m17037h@math.nagoya-u.ac.jp