Pushing point-spread function reconstruction to the next level: application to SPHERE/ZIMPOL

O. Beltramo-Martin,1,2 A. Marasco,3,4 T. Fusco,1,2 D. Massari,3,4,5 J. Milli,6,7 G. Fiorentino8 and B. Neichel2

1 ONERA, The French Aerospace Laboratory, BP 72, F-92322 Chatillon Cedex, France
2 Aix Marseille Univ., CNRS, CNES LAM, 38 rue F. Joliot-Curie, 13388 Marseille, France
3 INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Gobetti 93/3, I-40129 Bologna, Italy
4 Kapteyn Astronomical Institute, University of Groningen, NL-9747 AD Groningen, the Netherlands
5 Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Via Gobetti 93/2, I-40129 Bologna, Italy
6 European Southern Observatory (ESO), Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile
7 Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
8 INAF – Osservatorio Astronomico di Roma, via Frascati 33, 0040 Monte Porzio Catone, Italy

Accepted 2020 February 18. Received 2020 January 28; in original form 2019 September 18

ABSTRACT

Point-spread function (PSF) reconstruction (PSF-R) is a well-established technique to determine the PSF reliably and accurately from adaptive optics (AO) control-loop data. We have successfully applied this technique to improve the precision of photometry and astrometry for observations of NGC 6121 obtained with the Spectro Polarimetric High-contrast Exoplanet REsearch (SPHERE)/Zurich IMaging POLarimeter (ZIMPOL), which will be presented in a forthcoming Letter. First, we present the methodology we followed to reconstruct the PSF by combining pupil-plane and focal-plane measurements using our PSF-R method PRIME (PSF Reconstruction and Identification for Multiple-source characterization Enhancement), with upgrades of both the model and best-fitting steps compared with previous articles. Secondly, we highlight that PRIME allows us to maintain the PSF fitting residual below 0.2 per cent over 2 hours of observation and using only 30 s of AO telemetry, which may have important consequences for telemetry storage for PSF-R purposes on future 30–40 m class telescopes. Finally, we deploy PRIME in a more realistic regime using faint stars, so as to identify the precision needed on the initial-guess parameters to ensure convergence towards the optimal solution.

Key words: atmospheric effects – instrumentation: adaptive optics – methods: analytical – methods: data analysis.

1 INTRODUCTION

Point-spread function (PSF) analysis of seeing and diffraction-limited images in crowded stellar fields has been a consolidated technique since the late 1980s. There are several commonly used astronomical packages that apply this technique successfully, such as STARFINDER (Diolaiti et al. 2000), SEXTRACTOR (Bertin & Arnouts 1996) or DAOPHOT (Stetson 1987). These are essentially based on extraction and modelling of the PSF using isolated stars across the scientific field of view (FoV). This task can be particularly challenging in two opposite cases: in very dense stellar fields, like the core of globular clusters, where solid PSF modelling is compromised by confusion, and in sparsely dense fields surrounding isolated galaxies, where no or few point-like sources are available for PSF modelling. These two situations become even more demanding when observing with adaptive optics (AO) instruments, since the size of the imaged FoV ranges typically from tens of arcsec to a few arcnsec, thus preventing us very often from having isolated stars at our disposal for a robust PSF analysis. Furthermore, when dealing with AO systems, the complexity of the PSF increases compared with seeing-limited images and, last but not least, real-time turbulence correction makes the PSF change across the FoV, the time and the spectrum. The combination of source crowding and PSF inhomogeneity affects the estimate of source parameters like magnitude and position strongly (Schödel 2010; Yelda et al. 2010; Massari et al. 2016a,b). Photometric and astrometric accuracy can be enhanced using innovative approaches that account for AO PSF spatial variation models (Ciurlo et al. 2018; Witzel et al. 2016).

In the new era of giant segmented mirror telescopes (GSMTs), fed mainly by AO modules, our ability to perform good PSF fitting will be crucial. In fact, we aim to improve the photometric and
2 RECONSTRUCTING THE PSF

PSF-R derives from the image formation theory proposed by Roddier (1981) to connect the focal-plane image to the incoming wavefront distortions within the pupil plane. In the case in which we neglect scintillation effects and assume that the phase of the electric field in the pupil plane is spatially stationary, the long-exposure (e.g. the acquisition time is much larger than the turbulence coherence time) optical transfer function (OTF), defined as the PSF Fourier transform, is decomposed as the following multiplication:

\[\tilde{h}(\rho/\lambda) = \tilde{h}_T(\rho/\lambda) \cdot \tilde{h}_\Lambda(\rho/\lambda), \]

where \(\rho/\lambda \) is the angular frequency with \(\lambda \) the observation wavelength, \(\tilde{h} \) the total OTF, \(\tilde{h}_T \) the telescope + instrument OTF that is derived from the pupil function autocorrelation and \(\tilde{h}_\Lambda \) the residual atmospheric OTF. PSF-R aims at estimating \(\tilde{h}_\Lambda \) from the atmospheric OTF. PSF-R aims at estimating \(\tilde{h}_\Lambda(\rho/\lambda) = \exp[\mathcal{B}_\Lambda(\rho) - B_\Lambda(0)], \)

where \(B_\Lambda \) is the residual phase covariance function, which can theoretically be captured from the AO control-loop data, i.e. the WFS measurements and commands applied to the deformable mirror (DM). \(B_\Lambda \) is split into a sum of covariance error terms, assumed to be independent of each other, as follows:

\[B_\Lambda(\rho) = B_{\perp}(\rho) + B_{\parallel}(\rho) + B_{\Delta}(\rho), \]

where \(B_{\perp} \) refers to uncompensated spatial frequencies, while \(B_{\parallel} \) includes the AO residual only and \(B_{\Delta} \) corresponds to the anisoplanatism effect. The calculation of this latter can be found in multiple references (Whiteley, Welsh & Roggemann 1998; Fusco et al. 2000; Flicker, Rigaut & Ellerbroek 2003; Britton 2006; Beltramo-Martin et al. 2018). In the case of SPHERE/ZIMPOL, we only need to account for angular anisoplanatism that is produced by the spatial decorrelation of the incoming wavefront. In the V band, the typical isoplanatic angle at Paranal has been measured as \(\theta_0 = 2 \) arcsec (Osborn et al. 2018; Masciadri, Lombardi & Lascaux 2014), which is the separation from the guide star beyond which the PSF becomes significantly elongated by the anisoplanatism effect.

2.1 Reconstruction of uncompensated modes

\(B_{\perp}(\rho) \) is calculated from the perpendicular power spectrum density (PSD) as follows:

\[B_{\perp}(\rho) = \mathcal{F}^{-1}[\mathcal{V}_{\perp}(k/\lambda)], \]

where \(\mathcal{F}^{-1} \) is the Fourier operator and \(\mathcal{V}_{\perp} \) is the Von Kármán atmospheric PSD filtered by the corrected frequencies:

\[\mathcal{V}_{\perp}(k) = \begin{cases} 0.0229 r_0^{-5/3} (k^2 + 1/L_0^2)^{-11/6} & \text{if } k > k_{\text{AO}}, \\ 0 & \text{otherwise}, \end{cases} \]

where \(r_0 \) is Fried’s parameter (connected to the seeing), \(k = |k| \) and \(k_{\text{AO}} \) is the AO cut-off frequency approximated by \(k_{\text{AO}} \approx n_{\text{act}}/2D \), where \(n_{\text{act}} \) is the number of actuators per row and \(D \) the pupil diameter. This cut-off frequency is a function of the number of controlled modes, but we can still define an equivalent value of \(n_{\text{act}} \) that produces the same fitting error, in the sense that this approximation is not critical for the following. The fitting PSD can be calculated once and scaled regarding the \(r_0 \) value.

2.2 Reconstruction of corrected modes

\(B_{\Delta} \) is computed directly from the AO telemetry (Veran et al. 1997). However, some care must be given to the aliasing, which affects WFS measurements and PSF morphology. In the case of a large bandwidth system (with a measurement rate of 1380 Hz, SPHERE complies with this hypothesis), Veran et al. (1997) shows that the phase produced by the DM is anticorrelated with the WFS aliasing perturbation created by high-order modes. Therefore, calculations show that, to account for aliasing in the PSF-R process, one must add thealiasing closed-loop covariance to the covariance function.
derived from WFS slopes (that is, contaminated by the aliasing). Moreover, tip–tilt modes are corrected using a linear quadratic Gaussian (LQG) algorithm (Petit et al. 2014), while higher order modes are controlled using a modal optimization-based integrator (Petit et al. 2008). This does not matter in the present case, expect for noise-variance modelling for faint guide stars; however, we will have to handle tip–tilt modes differently from other corrected ones in Section 3 and we introduce herein a split reconstruction for later use. Eventually, we have

\[B_{\text{r}}(\rho) = B_{\text{AO}}(\rho) + B_{\text{TT}}(\rho) + B_{\text{AL}}(\rho), \]

where \(B_{\text{AO}} \) is the tip–tilt excluded AO residual phase covariance, \(B_{\text{TT}} \) the residual jitter covariance and \(B_{\text{AL}} \) the model of the aliasing covariance that affects the PSF.

2.2.1 Reconstruction of tip–tilt excluded modes

The methodology for calculating \(B_{\text{AO}} \) from WFS measurements is highly spread in the literature (Veran et al. 1997; Gilles et al. 2012; Jolissaint, Ragland & Wizinowich 2015; Ragland et al. 2018; Beltramo-Martín et al. 2019); in practice, we used the Vii algorithm proposed by Gendron et al. (2006), where

\[B_{\text{AO}}(\rho) = \sum_{i} \Lambda(i, i)V_{ii}(\rho), \]

where \(V_{ii} \) are the Vii functions obtained from the eigendecomposition of the matrix of high-order deformable mirror (HODM) influence functions (HDM influence matrix). The use of the Vii functions allows us to speed up the covariance calculation significantly. \(\Lambda \) is the diagonal matrix that contains the eigenvalues of the covariance matrix \(C_{\text{AO}} \). This latter is estimated empirically from the tip–tilt excluded WFS measurements as follows (Vigan et al. 2019):

\[C_{\text{AO}} = \left(\frac{2\pi}{\chi} \right)^2 R_{\text{AO}}(s,s') - \langle \eta, \eta' \rangle R_{\text{AO}}, \]

where \(R_{\text{AO}} \) is the matrix that reconstructs the pointwise wavefront from the WFS measurements \(s \) that are contaminated by additive noise \(\eta \) and where \((x,x') \) refers to the empirical covariance matrix of vector \(x \). The noise covariance can be estimated using an analytical formula (Roussel, Primot & Fontanella 1987), from the temporal autocorrelation of the measurements (Gendron & Léna 1995) or from their temporal PSD (Jolissaint et al. 2015), to mention only a few approaches. In the specific case of SPHERE/ZIMPOL, the reconstructor \(R_{\text{AO}} \) is derived from successive multiplications of calibrated matrices:

\[R_{\text{AO}} = \left(\frac{632 \times 10^{-9}}{2\pi} \right) iF \cdot P_{\text{M2V}} \cdot P_{\text{SZM}} \cdot P_{\text{AO}}, \]

where

(i) \(iF \) is the calibrated HODM influence matrix that converts HODM voltages to a wavefront at 632 nm. It has a dimension of \(240^2 \times n_{\text{act}} \), where \(240 \) is the pupil resolution in pixels during the calibration, which is interpolated to \(2 \times n_{\text{act}} + 1 \) to speed up the reconstruction;

(ii) \(P_{\text{M2V}} \) is the mode-to-voltage matrix that transforms \(n_{\text{mode}} \) Karhunen–Loève (KL) modes to \(n_{\text{act}} \) HDM voltages in stroke units;

(iii) \(P_{\text{SZM}} \) is the slope-to-mode matrix that projects \(2 \times n_{\text{subap}} \) slope measurements in pixels to \(n_{\text{mode}} \) KL modes;

(iv) \(P_{\text{AO}} \) is a \(2n_{\text{subap}} \times 2n_{\text{subap}} \) matrix that filters the tip–tilt modes out from the slope measurements.

2.2.2 Reconstruction of tip–tilt modes

The tip–tilt covariance function in equation (3) is derived as follows:

\[B_{\text{TT}}(\rho) = \frac{1}{D^2} (C_{\text{TT}}(1, 1) \rho_x^2 + C_{\text{TT}}(2, 2) \rho_y^2 + 2 \times C_{\text{TT}}(1, 2) \rho_x \rho_y), \]

where \(\rho_x, \rho_y \) are the \(x/y \) projection of the separation vector \(\rho \) from \(-D/2 \) to \(D/2 \) and \(C_{\text{TT}} \) is the tip–tilt covariance matrix,

\[C_{\text{TT}} = \left(\frac{2\pi}{\chi} \right)^2 R_{\text{TT}}(s,s') - \langle \eta, \eta' \rangle R_{\text{TT}}^t, \]

where \(R_{\text{TT}} \) permits us to reconstruct the tip–tilt wavefront over the pupil in metres using

\[R_{\text{TT}} = \frac{2.6 \times \pi \times D}{180 \times 3600} (P_{\text{TT}} D_{\text{V2S}}) P_{\text{TT}}^t, \]

with (\(3 \)) the generalized invert matrix and where

(i) \(P_{\text{TT}} \) is a \(2 \times 2n_{\text{subap}} \) matrix that projects the slope measurements on to tip–tilt modes and

(ii) \(D_{\text{V2S}} \) is the \(2 \times 2n_{\text{subap}} \) calibrated tip–tilt interaction matrix that converts the two tip–tilt DM commands into WFS slopes.

2.2.3 Reconstruction of the aliasing

The aliasing covariance function is derived from a model of the aliasing PSD \(\mathcal{W}_{\text{AL}} \) (Flicker 2008; Jolissaint 2010; Correia & Teixeira 2014) that accounts for the spatial filtering of the Shack–Hartmann WFS and the temporal propagation of the aliasing measurement through the AO loop. Eventually we have

\[B_{\text{AL}}(\rho) = \mathcal{F}^{-1}[\mathcal{W}_{\text{AL}}(k)]. \]

with \(\mathcal{W}_{\text{AL}} \) calculated for any considered atmospheric layer by first aliasing the Von Kármán atmospheric PSD around a multiplet of \(l/d \), with \(d \) the sub-aperture size, and secondly propagating the PSD through the Shack–Hartmann spatial filter (Rigaut, Vérán & Lai 1998) and the temporal rejection function of the loop, which is spatialized by replacing temporal frequencies with \(f = k v_{l} \), where \(v_{l} \) is the velocity vector (norm is the windspeed value, angle is the wind direction) of the \(l \)th layer. We obtain the following expression for the aliasing PSD in closed-loop operation:

\[\mathcal{W}_{\text{AL}}(k) = \frac{0.02299}{4 \pi} \times \prod_{\rho} \prod_{\eta} \sum_{l=1}^{\xi} \sum_{l=1}^{\xi} \sum_{l=1}^{\xi} \frac{k^{d-3} \sin(k d) \sin(k d) \exp(2i\pi k v_{l}/d) \exp(2i\pi k v_{l}/d)}{(k^2 + l_0^2)^{1/2}} H_{v_{l}}(l), \]

with

\[H_{v_{l}}(l) = \frac{g^2 \sin(k p_{l} v_{l} l) \exp(2i\pi k p_{l} v_{l} l)}{\cos(2\pi k p_{l} v_{l} l) \cos(2\pi k p_{l} v_{l} l) + (t - g)^2}, \]

where the following holds.

(i) \(k_{p_{l}} = (k_{p}, k_{q}) \), with \(k_{p} = k_{s} - p d \) and \(k_{q} = k_{s} - q d \) as the \(x/y \) frequency vectors shifted by \(p d \) and \(q d \), respectively.
that has been implemented to mitigate the aliasing effect as much as possible (Poyneer et al. 2006).

(iii) $v_x = v_l \cos(o_l)$ and $v_y = v_l \sin(o_l)$ are the components of the velocity vector at height h_l, projected respectively onto the x-axis and y-axis of the frequency plan, with v_l, o_l the corresponding turbulence velocity and wind direction values at height h_l.

(iv) $L_0(t)$ is the outer scale vertical profile. In practice, we have chosen a flat profile and $L_0 = 25$, but methods exist to retrieve the integrated outer scale value from the telemetry (Andrade et al. 2019).

(v) t_i and t_d are respectively the WFS temporal sampling frequency and the loop delay, which is 2.3 frames (Cantalloube et al., in preparation).

(vi) g is the average of the modal gain vector (Petit et al. 2008). To be more accurate, we should evaluate how the WFS aliasing propagates through each controlled KL mode and though the AO loop by taking the modal optimization into account. However, such a description would increase the complexity of the aliasing PSD computation drastically for a small eventual improvement .

(vii) ι is the integrator leak factor, set to 1 (no leak) in the rest of this article.

2.3 Application to SPHERE/ZIMPOL

2.3.1 Data

We have acquired observations of NGC 6121 with the ZIMPOL V filter (central wavelength 554 nm, width 80.6 nm) in the context of technical calibrations1 granted after the 2017 ESO calibration workshop.2

With a pixel scale of 7.2 mas pixel$^{-1}$, the detector covered a 3.5 arcsec \times 3.5 arcsec field of view, as illustrated in Fig. 1. We summarize the acquisition time in Table 1 as well as the corresponding airmass value. The AO system ran at 300 Hz, instead of the nominal 1380 Hz, owing to the faintness ($V = 10.6$ mag) of the AO guide star and the grey dichroic used to share visible light between ZIMPOL and WFS. The data were acquired in field stabilization with the slow polarimetry readout mode, which provides readout noise seven times smaller that the standard imaging mode, to enhance the signal-to-noise ratio (S/N) of the fainter off-axis sources. The data were reduced using the SPHERE Data and Reduction Handling pipeline (DRH) to extract the intensity image, subtract a bias frame and correct for flat-field. Dedicated PYTHON routines were later used to recenter the individual frames, correct for bad pixels and average the frames in a single reduced image, as shown in Fig. 1.

The imaged field belongs to the central region of the aforementioned globular cluster and includes five stars, the brightest of which was used to guide the AO system. The four others are more than 1.7 arcsec away from the guide star. This field has been selected in order to quantify achievable limits on photometry and astrometry estimates of faint stars confused in the guide star halo; accurate HST measurements exist for comparison purposes.

On top of that, we had synchronous atmospheric parameters measurements delivered by, on the one hand, MASS-DIMM at Paranal (Butterley et al. 2018; Tokovinin & Kornilov 2007) as well as the stereo SCIDAR (Osborn et al. 2018) and, on the other hand, the AO real-time computer SPARTA (Fedrigo et al. 2006). We present the temporal evolution during the observation in Fig. 2. As already noticed by Milli et al. (2017), there are large discrepancies between SPARTA and MASS-DIMM estimates, but both claim that observing conditions were quite stable over the two observing slots. According to SPARTA, seeing and turbulence coherence time median values reached 0.6 arcsec and 11 ms respectively during the first part of the night, evolving to 0.5 arcsec and 9 ms during the second slot.

Finally, we have also two 30-s long data sets of AO control-loop data (WFS slopes, DM commands, calibrated matrices) obtained at 05h04m and 06h44m simultaneously with the beginning of ZIMPOL observations, as reported in Table 1. From the image, we have estimated a Strehl ratio (SR) in the V band from the

Table 1. Summary of NGC 6121 data acquired successively with ZIMPOL on the night of 2018 June 26, with a total of 26 images of 200 s exposure (NDIT=2, DIT = 100 s) each.

Acquisition date	Airmass	Acquisition date	Airmass
05:03:57 + AO data	1.169	05:26:06	1.238
05:07:17	1.1	05:29:26	1.243
05:11:27	1.191	05:33:23	1.265
05:14:47	1.201	05:36:43	1.282
05:18:49	1.213	05:42:11	1.300
05:22:09	1.225	05:45:31	1.315

Second slot of observations

06:43:43 + AO data	1.672	07:08:57	1.934
06:47:03	1.204	07:12:55	1.977
06:51:00	1.737	07:16:15	2.177
06:54:20	1.771	07:20:19	2.077
06:58:18	1.809	07:23:39	2.118
07:01:38	1.849	07:27:36	2.186
07:05:37	1.889	07:30:56	2.271

1ESO program ID of observations: 60.A-9801(S)

2http://www.eso.org/sci/meetings/2017/calibration2017

Figure 1. Stack of 26 frames of NGC 6121 observations obtained with SPHERE/ZIMPOL on 2018 June 26. Coordinates correspond to the distance in arcsec from the bright AO guide star. The field was 3.5 arcsec \times 3.5 arcsec large and four off-axis stars, encircled in white and numbered, were imaged.
integration of the OTF over angular frequencies normalized to the
diffraction-limit OTF. We obtained 1.4 ± 0.63 per cent over the
whole observation, which corresponds to $182 \text{ nm} \pm 10$, with a drop
of 40 per cent in performance between slot 2 and slot 1.

2.3.2 On-axis PSF-R results

We have followed the mathematical formalism presented in Sec-
tion 2 to reconstruct the PSF from the two AO data sets acquired
at the beginning of each observing time slot. The methodology
to treat the AO control-loop data was strictly the same, and we
present in Fig. 3 reconstruction results compared with the on-
axis image. To obtain a proper comparison, we have adjusted
the photometry and astrometry by using a weighted best-fitting
to scale the PSF over the on-axis image. Results are somehow
disappointing for several reasons. First of all, PSF wings are not
correctly retrieved systematically, as we see with the second case,
for which r_0 is underestimated, i.e. the atmospheric disturbances
are expected to be stronger than they actually were. Moreover, the
reconstruction of the PSF core does not behave similarly, although
the data processing is kept identical. We may have overestimation
as well as underestimation of the PSF peak intensity.

This situation occurs systematically when trying PSF-R: current
algorithms usually fail in achieving a stable, efficient and repro-
ducible reconstruction across the multiple data sets they are tested
on. There is a necessary need to calibrate the algorithm a posteriori
over a subsample of data to approach the ultimate algorithm
that would provide the same level of relative accuracy whatever
the observing conditions. This calibration generally consists of
applying some fudge factors to the telemetry (Clénet et al. 2008;
Martin et al. 2016; Ragland et al. 2016) or/and to the noise variance.
The main conclusion of more than 20 years of effort carrying out
PSF-R is that PSF-R is not going to achieve proper PSF estimation
by using the standard PSF-R framework.

2.3.3 Off-axis PSF-R results using SCIDAR data

As illustrated in Fig. 1, the field also contains off-axis stars that
are sufficiently distanced from the guide star to potentially be
contaminated by the anisoplanatism effect. We have access to
to the SCIDAR data at Paranal (Osborn et al. 2018) acquired
during the same time slot as the ZIMPOL images. We report
in Fig. 4 the $C_2^n(h)$ evolution across time and the corresponding
ZIMPOL observation time slots. This shows that the atmosphere
was particularly concentrated into the first km, which does not
produce significant anisoplanatism. This latter is mostly generated
by jet streams between 8 and 12 km, the strength of which has
decreased slightly across time.

We report in Table 2 the r_0, average altitude and isoplanatic angle
values obtained from the SCIDAR measurements at zenith and $\lambda =
500$ nm. The r_0 value is calculated as follows (Fried 1965):

$$r_0(h > H) = \left(0.423 \left(\frac{2\pi}{\lambda}\right)^2 \int_H^{\infty} C_2^n(h) \, dh\right)^{-3/5},$$

(16)
\[C^2_\theta(h) \]

Figure 4. \(C^2_\theta(h) \) estimated by SCIDAR at Paranal (Osborn et al. 2018) across time. White bands correspond to ZIMPOL observing time.

r_0 (cm)	11.6 ± 1.1	13.8 ± 1.1
r_0(h=1 km)	15.3 ± 1.4	18.5 ± 1.9
h (km)	6.4 ± 0.4	6.4 ± 0.8
\(\theta_0 \) (arcsec)	1.2 ± 0.1	1.4 ± 0.2
\(\theta_0 \) (line of sight)	1.1 ± 0.1	0.9 ± 0.1

Table 2. Atmospheric characteristics given by the stereo SCIDAR at zenith and 500 nm.

First slot	Second slot
Diffraction @ 554 nm	14
On-axis PSF	33.1 ± 2.0
Off-axis PSF 1	37.4 ± 3.2
Off-axis PSF 2	36.2 ± 2.8
Off-axis PSF 3	38.9 ± 3.9
Off-axis PSF 4	38.6 ± 3.8

where \(H \) is the height above which \(r_0 \) is measured. The mean-weighted altitude \(\bar{h} \) gives the layer height that would produce the same anisoplanatism regarding the \(C^2_\theta \) distribution and is defined as (Fried 1982)

\[
\bar{h} = \left(\frac{\int_0^\infty h^{5/3}C^2_\theta(h) dh}{\int_0^\infty C^2_\theta(h) dh} \right)^{3/5}.
\]

Finally, the isoplanatic angle that defines the separation angle from the guide star above which the PSF evolves anisoplanatically is calculated from

\[
\theta_0 = 0.0572^{6/5} \left(\int_0^\infty h^{5/3}C^2_\theta(h) dh \right)^{-3/5}.
\]

Values in Table 2 show a mitigation of the anisoplanism effect during the second observing slot, but because of the large telescope zenith angle (60°), the S/N for off-axis star directions has diminished drastically due to (i) atmospheric extinction, which lessens the number of collected photons, and (ii) greater anisoplanism effects in the telescope line of sight, which decrease the ensquared energy.

Regarding \(\theta_0 \) and star distance from on-axis, off-axis images should be affected slightly by the anisoplanism effect. We have measured the PSF full width at half-maximum (FWHM) of five stars as reported in Table 3, which indicates that the AO system did not reach diffraction at 554 nm, which was expected (Fusco et al. 2014). However, separation between the AO correction area and PSF wings is not very clear, advocating that there is an atmospheric or instrumental effect, which looks like a residual jitter according to the elongated PSF pattern, which blurs the image. This is likely introduced by the low frame rate of 300 Hz, which corresponds to the typical coherence time, introducing a large servo-lag error. Consequently, off-axis PSFs are not significantly larger than the on-axis PSF, which suggests that anisoplanatism is there, but the PSF morphology is dominated by servo-lag error.

Our goal is now to determine whether there is a need to account for anisoplanism to calibrate the PSF model from off-axis stars. To do so, we have calculated best-fitted off-axis images to retrieve photometry/astrometry using two different PSF models: (i) the on-axis image and (ii) the off-axis PSFs calculated by convolving the on-axis PSF with an anisoplanism spatial filter calibrated from SCIDAR measurements. If there is real anisoplanatism, the second model should give better results. For S/N reasons, we have treated only the 12 first ZIMPOL frames that were acquired at a lower telescope zenith angle.

In Fig 5, we compare the residual error obtained with equation (22) computed with and without use of SCIDAR data. We see that the off-axis PSF model barely improves the PSF model, but this improvement remains marginal enough to claim that anisoplanatism does not contribute to PSF inhomogeneity, despite star separation being larger than \(\theta_0 \). We show this in more detail for off-axis star #1 in Fig. 6: clearly, the residuals do not improve by including the effects of anisoplanism. This is likely due to a large residual jitter effect in the PSF, which creates an elongated pattern that masks the anisoplanism feature. In other words, accounting for anisoplanism produces only a very marginal improvement in the PSF modelling; therefore we chose to consider the PSF as homogeneous across the field, which means that we will derive the PSF from the integrated \(r_0 \) value only.

3 PRIME: A COMPLEMENTARY TOOL TO IMPROVE THE CLASSICAL PSF-R SCHEME

3.1 Introduction to PRIME

New approaches must be envisioned to move to the next level of PSF-R. We have introduced the so-called PRIME method (Beltramo-Martin et al. 2019), which yields a built-in parametric
PSF model using AO measurements. As discussed, the reconstruction usually relies on fudge factors, which are learned by comparing PSF-R with on-sky images and set up as constants afterwards. There have been no attempts so far to figure out whether these fudge factors vary accordingly with observing condition changes. This is what PRIME is going to achieve: it retrieves these factors by adjusting them to match available PSFs in the field. In other words, we combine the pupil plane (PSF-R framework) and focal plane (best-fitting technique) to calibrate the PSF model across fields and spectra. PRIME permits us to avoid collecting specific calibration data for PSF estimation purposes. For instance, there is no more need to offset the telescope or request technical time to test PSF-R. The major drawback is the need for stars in the field, which does not comply with all science cases so far, but we will discuss in Section 3.3 the strategies considered to deliver a PSF regardless of the science field configuration. Assuming that we have stars in the field, PRIME achieves PSF calibration as follows.

(i) **Step 1**: instantiate the PSF model by calculating the covariance matrices introduced in Section 2.

(ii) **Step 2**: extract subfields of an image (user-defined) that contains one or several PSFs.

(iii) **Step 3**: define PSF model parameters to be adjusted. In the following, we will estimate only four parameters, using the following parametrization:

\[
B_\perp(\rho) = r_0^{-5/3} \times (B_{\perp}(\rho, r_0 = 1) + g_{\delta} \times B_{\parallel}(\rho, r_0 = 1)) + g_{\mu} \times B_{\mu}(\rho) + g_{\nu} \times B_{\nu}(\rho),
\]

(19)

where we assume we work in the isoplanatic regime, e.g. there is no need to include the anisoplanatism covariance function. On top of the \(r_0 \) value that will be estimated for the focal-plane image, we include three system parameters \(g_{\mu}, g_{\nu}, g_{\delta} \) which allow us to play with the residual variance level. For a given AO data set, we calculate \(B_{\mu}, B_{\nu} \) and \(B_{\delta} \), while \(B_{\perp} \) is computed once. In contrast to the model presented in Beltramo-Martin et al. (2019), we have introduced the gain \(g_{\mu} \) to calibrate the aliasing model. The use of \(g_{\mu} \) allows us to account for fluctuations in the wind-speed profile, which enters the computation of the aliasing mode via equation (14) but cannot be determined readily from telemetry data alone.

(iv) **Step 4**: Minimizing a criterion by using a non-linear least-squares minimization algorithm (this is the current implementation, but others may be explored). We have used MATLAB® non-linear problem-fitting facilities based on a trust-region reflective algorithm, as done by Fétick et al. (2019), in order to minimize the following criterion:

\[
J(\mu, \gamma, \alpha) = \sum_{i,j} w_{i,j} \left[\gamma \times \delta_{\alpha} \ast h_{ij}(\mu) - d_{ij} + \nu \right]^2,
\]

(20)

where \(\ast \) is the convolution product and

(a) \(h_{ij} \) and \(d_{ij} \) are the \((i, j)\) pixel intensity values of the numerical PSF model and sky observation, respectively; the image is converted into e− units using a uniform detector gain of 1.5 e−/ADU (slow pol. mode),

(b) \(\mu = [r_0, g_{\mu}, g_{\nu}, g_{\delta}] \) is the set of parameters to be adjusted,

(c) \(\delta_{\alpha} \) is the Dirac distribution shifted by the astrometric position \(\alpha \) and multiplied by the photometric factor \(\gamma \),

(d) \(\nu \) is an additional degree of freedom to account for a residual background,

(e) \(w_{ij} \) is the weighting coefficient for the \((i, j)\)th pixel.

Identically to what was done by Fétick et al. (2019) and Mugnier, Fusco & Conan (2004), the weighting factor is set to

\[
w_{ij} = \frac{1}{\max\{d_{ij}, 0\} + \sigma_{RON}^2},
\]

(21)

where \(\sigma_{RON}^2 = 3e− \) for the ZIMPOL detector (slow pol. readout mode: Schmid et al. 2018). The detector noise is assumed to be Gaussian and independent from the data. Also, equation (20) stresses that the model adjustment process retrieves the PSF model parameters \((r_0, g_{\mu}, g_{\nu}, g_{\delta}) \) and the stellar parameters \((\gamma, \alpha) \) simultaneously. This step automatically outputs the astrometric/photometric measurements of calibration sources.

(v) **Step 5**: Extrapolate the PSF to any desired field and spectrum position.

PRIME offers multiple applications, such as image-assisted error breakdown and photometry and astrometry measurements, as discussed in Beltramo-Martin et al. (2019). In this article, we focus on PSF estimation only. In order to quantify the quality of the PSF fitting, we will evaluate the relative mean-square error, given by

\[
e_h = \sqrt{\frac{\sum_{i,j} \gamma_{h} \times \delta_{\alpha} \ast h_{ij}(\mu) - d_{ij} + \nu}{\sum_{i,j} d_{ij}}}.
\]

(22)

where \(\gamma_{h}, \alpha, \mu, \nu \) are the estimated fitting parameters. The weighting process is particularly helpful to recover all spatial frequencies, without giving more importance to the AO corrected area where pixels are brighter. In particular, this ensures we mitigate biases in the \(r_0 \) estimation, which depends significantly on the extended, low-intensity PSF wings. Note that this mean-square error does not include the weight matrix as well as any regularization term we introduce in Section 4. This metric allows us to assess how far the reconstructed PSF, regardless of the approach, is from the on-axis sky image and allows us to analyse different techniques regarding the residual error they lead to.

In the following, we will distinguish between forward PSF-R, the reconstruction process that relies on a priori parameters \(r_0 \) from
3.2 Maximizing the utmost PSF-R performance

We have tested PRIME by tuning PSF model parameters over a very bright on-axis star, i.e. the star guiding the AO system. The on-axis star is not necessarily present in the field, in particular for laser-assisted systems, so in a way relying on this very bright source is not a nominal situation to deploy PRIME. However, the study of this on-axis star is optimal to test the utmost performance of PRIME, which will seek all possible information on the PSF that is missing in the telemetry data directly in the image itself. On top of that, the very accurate best-fitting parameters found for the on-axis star can then be used as a reference and compared with those (less accurate) found for faint off-axis sources, to assess how PRIME performs in less optimal situations, as we do in Section 4. Finally, in order to provide evidence that PRIME is a good solution for PSF-fitting problems post-AO, we have also herein compared results with a Moffat fitting using the exact same model-fitting process. The Moffat function was defined over seven parameters (Fétić et al. 2019) to allow fitting of an asymmetric PSF shape.

We present in Fig. 7 the comparison between the on-axis PSF profile with PRIME and Moffat fitting as we did with forward PSF-R in Section 2.3.2. Moreover, we present a 2D comparison in Fig. 8 that compares forward PSF-R, PRIME and Moffat fitting and shows at least a factor of 2 improvement on the residual brought by PRIME, especially in the PSF core. The best fit achieves an excellent reproduction of the original image and in both cases, stressing that the calibration of additional factors on top of the AO telemetry treatment is a must. We also illustrate that the Moffat does not match the on-axis PSF as well as PRIME does, especially due to the PSF structure, which contains an AO-corrected part and seeing-limited wings. We see an improvement of the Moffat fitting in the second case, for which the airmass was larger, however. In this situation, the line-of-sight seeing is worse than previously and the atmospheric residual is large enough to smooth the PSF and attenuate the transition sharpness between the AO corrected and non-corrected areas. However, the Strehl ratio was assessed at 1–2 per cent for these observations and at an imaging wavelength of 554 nm. As a conclusion, even in a very poor correction regime, e.g. when the PSF structure is limited by the atmospheric residual, it is already worth using PRIME instead of an analytical model that is designed to fit seeing-limited images.

3.3 Mitigating required data amount for PSF-R

So far, we have not treated all the ZIMPOL frames we have to hand, only the one that has been acquired synchronously with AO telemetry. A question that appears when talking about PSF-R for the next generation of AO-assisted instruments is related to the amount of data we need to perform PSF-R. In particular, there are some concerns about what is required in terms of storage capability to record all the AO telemetry and associated calibrated matrices systematically. With PRIME, we can address the question: do we necessarily need synchronous AO telemetry with a science frame? To provide hints, we have utilized two AO data sets to reconstruct two different PSF models using either forward PSF-R or PRIME. We end up with four PSF models. With forward PSF-R, the PSF was first reconstructed and then the best fit found (photometry/astrometry) to match the observation. With PRIME, both stellar and PSF parameters were estimated jointly through the model fitting.

We report in Fig. 7 the comparison between the on-axis PSF profile with PRIME and Moffat fitting as we did with forward PSF-R in Section 2.3.2. Moreover, we present a 2D comparison in Fig. 8 that compares forward PSF-R, PRIME and Moffat fitting and shows at least a factor of 2 improvement on the residual brought by PRIME, especially in the PSF core. The best fit achieves an excellent reproduction of the original image and in both cases, stressing that the calibration of additional factors on top of the AO telemetry treatment is a must. We also illustrate that the Moffat does not match the on-axis PSF as well as PRIME does, especially due to the PSF structure, which contains an AO-corrected part and seeing-limited wings. We see an improvement of the Moffat fitting in the second case, for which the airmass was larger, however. In this situation, the line-of-sight seeing is worse than previously and the atmospheric residual is large enough to smooth the PSF and attenuate the transition sharpness between the AO corrected and non-corrected areas. However, the Strehl ratio was assessed at 1–2 per cent for these observations and at an imaging wavelength of 554 nm. As a conclusion, even in a very poor correction regime, e.g. when the PSF structure is limited by the atmospheric residual, it is already worth using PRIME instead of an analytical model that is designed to fit seeing-limited images.

We present in Fig. 9 the mean residual error as a function of the estimated c_0 from PRIME and calculated from the residual obtained using forward PSF-R, PRIME or a Moffat model. Several conclusions can be drawn. First of all, PRIME works much better than forward PSF and decreases the residual error by a factor of 3–10 over the 26 frames compared with forward PSF-R, and a factor of 2–4 compared with the Moffat model. Then, forward...
PSF-R efficiency degrades significantly when the AO telemetry is not synchronous with the imager frame, especially due to variations of seeing conditions. Finally, PRIME achieves a very stable reconstruction, the residual of which remains pretty much constant, even two hours after having recorded AO telemetry. In other words, temporal variability of atmospheric disturbances can be approximated as a scaling fluctuation of the covariance functions introduced in Section 2. Their structure remains quite similar across time for these specific observations, however.

On top of that, in Fig. 10 we report photometry measurements using either forward PSF-R, PRIME or aperture photometry (sum of pixels). We clearly reveal that PRIME achieves accurate photometry measurements, which no longer appears when comparing with PRIME results, i.e. PRIME and SCIDAR \(r_0 \) estimates seem to comply during this observing night. This also advocates that SPARTA overestimates \(r_0 \) by a significant amount, which can be unbiased through calibration using PRIME for as many data as possible.

Finally, in Fig. 12 we present the evolution of retrieved gains with respect to \(r_0 \). Identically to what we have done for \(r_0 \) estimations, gain values are averaged over results obtained with the two AO data sets, and uncertainties show that they were similar and correlated. Trends with respect to the \(r_0 \) estimates from PRIME are obtained using a polynomial fit. These trends allow us to visualize how much the parameters vary with respect to the turbulence strength: they are quite obvious for \(g_{ao} \) and \(g_{al} \); when \(r_0 \) increases, the turbulence strength and the WFS spot size diminish and consequently the gain value \(g_{ao} \) is lessened as well. SPARTA involves a weighted centre-of-gravity algorithm to convert WFS pixels (Petit et al. 2008) into WFS slopes, which may introduce optical gain variations across time as well. Aliasing gain increases slightly with respect to \(r_0 \), e.g. for weaker turbulence, which also corresponds to shorter turbulence time (so higher wind speed) according to SPARTA measurements in Fig. 2. As we discussed previously, the aliasing PSD model is effectively sensitive to turbulence velocity variations though modifications of the aliasing transfer function \(H_{cl} \) given in equation (14). This one is derived from the AO closed-loop temporal
transfer function (Gendron & Léna 1994), which is converted into a spatial transfer function by turning the temporal frequencies to spatial frequencies using the wind-speed value. Higher wind-speed values tend to introduce more spatial filtering and therefore decrease the aliasing energy. Consequently, PRIME must boost g_{ao} in order to match the PSF, as we observe in Fig. 12. Furthermore, g_{tt} seems to vary slightly with respect to r_0 as well, although the trend is not completely clear. We stress that in the V band the Strehl ratio is about 2 percent and the AO performance is dominated by atmospheric residuals, particularly residual tip–tilt. This latter is influenced by both the seeing and the turbulence velocity, especially for those observations where the system was running at 300 Hz. Fig. 8 illustrates that the PSF is elongated in the 45° direction, certainly due to the combination of the turbulence velocity and AO system servo-lag. In other words, g_{tt} variations must be driven by the temporal properties of atmospheric turbulence as well. More generally, discrepancies around the $r_0^{−3/5}$ trends are trackers to detect B_{TT} structure changes across time. As we handle the AO telemetry acquired unsynchronously with the imager frame, we compensate for the atmospheric turbulence properties by scaling by a multiplicative factor that applies to those covariance matrices, i.e. we assume that their structures remain identical, only the amplitude changes. PRIME will always retrieve the parameter set that provides the best match with the observed PSF; in other words, these degrees of freedom will absorb any variability of the covariance matrix structure. If we want to use PRIME as a PSF-fitting facility for PSF determination purposes, there is no absolute need to build the PSF model from synchronous telemetry, as PRIME will manage to restore the best PSF model for the observed data set. However, if one cares about the physical meaning of retrieved parameters, we must (i) refine the PSF model as accurately as possible by including all physical effects (static aberrations, cophasing errors, WFS optical gains, etc.) and (ii) confront a PSF model with synchronous observations to mitigate temporal drifts of observing conditions that could be absorbed into the parameter fitting as observed in Fig. 12.

To summarize PSF estimation performance, in Table 4 we report SR and PSF FWHM estimation accuracy. We compare forward PSF-R and PRIME: we highlight that (i) PRIME strongly unbiais the image SR or the AO telemetry and the PRIME-adjusted parameters. Dashed lines give trends in $r_0^{−3/6}$ using the r_0 estimates from PRIME.

$$
\Delta \text{SR} = \Delta \text{SR}_{\text{ao}} + \Delta \text{SR}_{\text{tt}} + \Delta \text{SR}_{\text{noise}},
$$

Figure 13. Residual wavefront error with respect to r_0 calculated from either the image SR or the AO telemetry and the PRIME-adjusted parameters. Dashed lines give trends in $r_0^{−3/6}$ using the r_0 estimates from PRIME.

Table 4. Final accuracy in Strehl ratio and FWHM obtained with either forward PSF-R (no model adjustment) or PRIME.

	Δ SR (%)	Δ FWHM (mas)		
	bias	std	bias	std
Forward PSF-R slot 1	27	12	4.2	2.1
Forward PSF-R slot 2	12	21	3.5	4.0
PRIME slot 1	0.2	2.9	−0.4	0.9
PRIME slot 2	−0.4	2.2	−0.8	1.6

4 APPLICATION TO FAINT STARS

So far, we have deployed PRIME on the on-axis bright star, with very good conditions of S/N and an absence of crowding. However, PRIME can provide accurate PSF in more challenging conditions, where other alternatives are not feasible. In this section we aim to test the PSF model calibration using off-axis stars, which are much fainter ($m_{\text{V}} = 15–16$ mag). One must consequently rely on a PSF-fitting algorithm to recover the PSF morphology and this situation is ideal to test PRIME capabilities in such a scheme. Besides this, we have highlighted in Section 2.3.3 that the PSF is shift-invariant across the field. In other words, the ground truth is given by the on-axis PSF; the best performance PRIME can achieve in present images is provided in Section 3.2. Nevertheless, in order to mitigate

\[\sigma^2_{\text{SR}} = \sigma^2_{\text{ao}} + \sigma^2_{\text{tt}} + \sigma^2_{\text{noise}}, \]
the noise propagation in our fitting procedure, we must regularize the criterion presented in Eq. 20. We have followed the strategy presented below.

(i) **Step 1:** PSF model parameters r_0, g_{ao}, g_0, g_{ad} are calibrated using off-axis stars #1 and #2 with different regularization strategies presented in Section 4.1. We eventually obtain a calibrated 2D PSF model.

(ii) **Step 2:** The resulting PSF model is used to retrieve the on-axis star’s photometry and astrometry; the final accuracy depends on the PSF fitting performance during step 1. Eventually, we assess a mean-square error using equation (22). Thanks to the results presented in Section 3.2, we analyse how the different regularization strategies affect the PSF fitting residual and PSF parameter identification.

4.1 Regularization

We have tested two different regularization strategies.

(i) **Bounds regularization.** We minimize the criterion presented in equation (20) by limiting the parameter space with strict boundaries, inside which the parameter probability distribution is uniform. Bounds are defined relative to μ_0, the solution we have retrieved in Section 3.2:

$$J_{\mu}(\mu, \gamma, \alpha) = \begin{cases} J(\mu, \gamma, \alpha) & \text{if } \|\mu - \mu_0\| \leq \sigma_{\mu}, \\ +\infty & \text{else}, \end{cases} \quad (24)$$

where the constraint is component-wise, as μ includes several parameters. Therefore, if bounds are set to 0 (no uncertainty), we retrieve the PSF we obtain in our first scenario in Section 3.2, where we use the central star to adjust those parameters. By enlarging bounds around the optimal solution, we make the minimization process more sensitive to the image noise and check how the solution deviates from the optimal one.

(ii) **Gaussian regularization.** We assume that PSF parameters follow a Gaussian distribution $N(\mu_0, \sigma_{\mu})$, where μ_0 is the prior on parameters and σ_{μ} the distribution variance. In order to regularize the problem, we update the criterion given in equation (20) by adding a regularization term to the PSF parameters as follows:

$$J_{\sigma}(\mu, \gamma, \alpha) = J(\mu, \gamma, \alpha) + \sum_{i=1}^{n_\mu} \frac{\| \mu_i - \mu_0 \|}{\sigma_{\mu}}, \quad (25)$$

where n_μ is the number of adjusted PSF parameters (we have $n_\mu = 4$ in the present analysis) and Γ a scalar factor that weights the contribution of the regularization term. The present formulation is convenient to separate the parameter precision σ_{μ}, which is identified from calibration (optical gains) of an estimation process (r_0), from Γ, which is a user-defined factor that reflects how much we are confident in μ_0, a priori by balancing the weight between the data-based and regularization terms. For instance, if one applies PRIME over successive frames, σ_{μ} will be delivered for each processed frame as a confidence interval on retrieved parameters that depends on the sole frame only. Thus, we obtain a new μ_0 vector for the next frame and, depending how correlated those two frames are, the user may decide to give more weight to the regularization (boost Γ) or not. Potentially, we can have very precise model-fitting, but the parameters found will not necessarily represent the PSF when treating another frame acquired a few minutes later due to observing condition variations. On the contrary, we could also have badly imprecise estimates due to poor S/N conditions, but stationarity of the observing conditions. Having both parameters σ_{μ} and Γ allows us to discriminate between PSF parameter precision and accuracy.

However, one must understand that, regardless of the regularization, we are going to bias the PSF fitting results by forcing the solution space to stick around μ_0. The bounds regularization means that the parameter probability density function (pdf) is a gate function and is relevant when we have physical constraints to limit the solution space. Thus, we expect this strategy to propagate more noise, i.e. the PSF fitting residual will degrade with respect to the pdf width. On top of that, the pdf is uniform over the space of acceptable solutions, which means that we do not specifically trust or give more weight to the initial set that feeds PRIME for instantiating the first iteration. Gaussian regularization differs on this point: we must have some confidence in the prior meaningfulness to choose such a regularization.

Our purpose is now to identify how PRIME behaves with respect to (i) the regularization strategy, either a uniform pdf over a bounded space or a Gaussian, and (ii) the degrees of freedom of each of those, i.e. σ_{μ} (both of them) and Γ (Gaussian pdf only).

4.2 PSF fitting results

First, we have tried PRIME without any regularization, which led to an inefficient reconstruction with a mean residual error (equation 22) of 3 per cent, while we obtained about 0.1 per cent in Section 3.2. The r_0 and g_{ad} parameter estimates were particularly biased and physically meaningless, which calls for regularization. In order to provide concise and readable results, we have not set each parameter’s precision independently of the others. Instead, we have made σ_{μ} vary from 0–90 per cent, relative to μ_0. Each parameter pdf width will be absolutely different, but will have the same relative width regarding the optimal solution. Eventually, this methodology will permit us to define which overall parameter precision is required to achieve a given accuracy in the PSF. Also, for the Gaussian regularization, we have also tested different values of Γ (0.001 up to 0.1). The prior μ_0 in equation (25) has been set to the optimal solution found from PRIME in the on-axis image in Section 3.2. Therefore, if we choose too large a value for Γ, the criterion in equation (25) will be dominated by the regularization term and the solution will be very close to μ_0, i.e. we must retrieve the residual error we obtained in Section 3.2. In contrast, if Γ is too low, the regularization term has no impact on the solution and we will propagate too much noise in the solution and obtain meaningless results. The point of this analysis is then to identify which range of Γ must be envisioned to improve results compared with the bounds regularization.

We present the residual error in Fig. 14. Residual errors are calculated by comparing the reconstructed PSF (step 2) with the on-axis image using equation (22). As expected, a wider pdf (σ_{μ} larger) results in more noise propagation and worse PSF fitting results. Using bounds regularization, the residual error grows quite linearly with respect to σ_{μ} and we may be able to maintain the residual error below 1 per cent by containing parameters within 40 per cent from the ground truth, while Gaussian regularization allows us to control the slope of this degradation. According to Fig. 12, PSF parameters may vary significantly across time, but variations seem to remain within 50 per cent for this night. If AO telemetry is systematically available with synchronous focal-plane images, these variations should be controlled, as the telemetry signal scales directly with the real r_0 values. In other words, the precision we must consider is given by the standard deviation of parameter estimates from the $r_0^{-5/3}$ trends presented in Fig. 12, which is 10–20 per cent, meaning that PRIME is able to maintain
the mean residual error below 0.5 per cent if synchronous telemetry is provided.

Fig. 15 illustrates how the PSF fitting degrades with respect to σ_μ and Γ. We notice that the inner AO-corrected region is first overestimated for low values of σ_μ. For larger values, the residual is mostly dominated by the non-corrected spatial frequencies, with an underestimation of the PSF wings (overestimation of r_0) and an overestimation of the background in equation (20). In other words, adjusted parameters degrade in the opposite direction due to noise confusion, in such a way that the total energy (or flux) is relatively well conserved, while the PSF structure is not.

Figs 16 and 17 present the SR and FWHM estimation error as a function of σ_μ and Γ. We retrieve similar behaviour compared with what we have shown in Fig. 14. The FWHM estimate is getting worse, but remains within 10 percent as long as the initial guess remains within 40 percent of the truth. The SR error evolves differently; first it increases and finally it drops down to a negative value: there is a switch that occurs at a σ_μ value that depends on Γ. Below this threshold, noise propagation through the criterion-solving shifts the solution from the ground truth, but without modifying the PSF morphology significantly (the FWHM is reconstructed at a few per cent). Above this threshold value, PRIME seems to fall into a different local minimum by injecting too much energy into the background and not enough in the PSF wings. However, the SR error stays below 10 percent despite the PSF structure being badly reconstructed, which advocates exploration of alternative metrics for PSF-fitting quality assessment.

Previous conclusions are confirmed when looking at Fig. 18, which shows the retrieved parameters as a function of σ_μ and regarding several regularization strategies. The bounds regularization shows that g_{ao} and g_Γ degrade linearly with respect to σ_μ, while the error on r_0 varies quadratically. This observation reinforces the idea that PRIME confuses the energy between the background and the PSF wings, which speeds up r_0 estimate degradation. In contrast, g_{ao} remains well-estimated to within 10 per cent, as it refers to the AO-corrected area, where the S/N is maximal. This is also reassuring, to confirm that the s_{ao} estimation is decoupled from other PSF parameters.

Regarding PSF fitting and parameter estimation results, we distinguish three different regimes.

(i) $\Gamma < 0.002$: the problem is under-regularized and the fitting residual error increases with respect to σ_μ rapidly up to the worse-case scenario (no regularization). This configuration must be avoided in favour of bounds regularization if μ_0 is not trusted or if we only know physical constraints to bound the solution space.

(ii) $0.002 \leq \Gamma < 0.01$: there is a good balance between data-based and regularization terms and this configuration should be
preferred to the bounds regularization, as long as we have some confidence in the priors μ_0; i.e. we have some evidence that the solution must be close to μ_0. Such confidence can be achieved by processing successive frames or using models of spatial PSF variations to perform the fitting on good S/N PSF first before treating fainter star scenarios.

(iii) $0.01 \leq \Gamma$: the problem is over-regularized and the adjusted parameters remain very close to μ_0, i.e. the solution is highly biased. This configuration should only serve to update a solution that has been determined over an image highly correlated with the current processed one.

Regarding these results, we may envision performing the PSF fitting with PRIME in a sequential manner: (i) use bright PSFs in the field to constrain the model with bounds regularization and obtain a preliminary set of parameters with associated precision, (ii) redo this process starting from the retrieved parameters as an initial guess and a prior μ_0 with a Gaussian regularization and $\Gamma = 0.002$ and (iii) repeat step (ii) with larger and larger Γ value until reaching the best precision for the parameters. On top of that, we can apply step (ii) to fainter stars to refine the model sequentially using more information without propagating too much noise.

5 CONCLUSION

In this article, we presented an innovative application of the PSF-R method to SPHERE/ZIMPOL data. This is a crucial experiment, since the diffraction limit achieved in the optical with a 10-m class telescope is comparable with ExtremelyLarge Telescopes (ELTs) in the near-infrared. Thus, this kind of study paves the road for exploiting ELTs data reduction.

We have first described how we perform classical PSF-R using SPHERE control-loop data. Unfortunately, the current PSF-R framework does not allow us to achieve proper and stable PSF estimation. In order for improvement, we need to push our AO system understanding deeply through several calibrations, thus demanding a substantial amount of observing and/or technical time.

To overcome this problem, we have introduced the PRIME approach, which is a PSF-fitting technique that inherits from the PSF-R framework to calibrate the PSF model. This is initially instantiated from the AO control-loop data. We have shown that PRIME allows us to achieve very accurate PSF modelling at better than 0.1 percent of the mean residual, with AO telemetry unsynchronized from scientific images; acquiring 30 s of AO data every hour was sufficient for obtaining excellent results with PRIME.

Finally, we have tested PRIME over faint stars to compare the calibrated PSF with the ground truth given by the on-axis image. This was possible since, as verified using stereo SCIDAR data, anistoplanatism does not contribute significantly to the PSF morphology. In order to enable meaningful PSF estimation in such severe S/N conditions, we have presented two different strategies to regularize the minimization criterion, using either a truncated but uniform pdf or a Gaussian one. PRIME ensures we obtain 1 percent of mean residual error in the PSF by bounding the solution space within 40 percent of the optimal solution. Gaussian regularization allows us to increase estimate accuracy up to the optimal achievable performance, depending on how much we trust PSF parameter priors. Gaussian regularization allows the user to adapt the data-based/regularization terms balance in the minimization criterion, depending on how much priors on parameters are trusted. Furthermore, thanks to the PSF-R framework, spatial PSF variations can be modelled accurately, which offers alternative possibilities for PSF-fitting problems: (1) use all external information we have to define PSF parameter priors (stereo SCIDAR for instance); (2) instantiate the PSF model calibration on available PSFs with good S/N and poor crowding using a bounds regularization; (3) use the retrieved information plus variation models to fit the PSF for fainter stars using Gaussian regularization; (4) repeat steps (2) and (3) with updated information on the PSF using Gaussian regularization until reaching the minimal residual.

We plan to push this work further by collecting more science observations, including in a crowded stellar field. When a large sample of data sets is at our disposal, we will apply statistical inference tools in order to capture how PSF model parameters vary with respect to contextual data. This will enable forward PSF estimation in the case of a lack of point sources in the field and enhance PRIME efficiency for stellar field applications.

The next step will be to plug PRIME within a standard image analysis pipeline, in order to combine the strengths of both PSF-R techniques and multi-source image processing tools. This is a necessary step in order to allow high diffusion of the use of PSF-R, which is nowadays confined only to a very few experts.

ACKNOWLEDGEMENTS

The authors acknowledge the French National Research Agency (ANR), who supported this work through the ANR APPLY (grant ANR-19-CE31-0011), coordinated by B. Neichel. GF has been supported by Futuro inRicerca 2013 (grant RBFR13J716).
REFERENCES

Andrade P. P., Garcia P. J. V., Correia C. M., Kolb J., Carvalho M. I., 2019, MNRAS, 483, 1192

Ascenso J., Neichel B., Silva M., Fusco T., Garcia P., 2015, in Don G., ed., Adaptive Optics for Extremely Large Telescopes IV (AO4ELT4), University of California, CA

Beltramo-Martin O., Correia C. M., Mieda E., Neichel B., Fusco T., Witzel G., Lu J. R., Vérán J.-P., 2018, MNRAS, 478, 4642

Beltramo-Martin O., Correia C. M., Ragland S., Jolissaint L., Neichel B., Fusco T., Wizinowich P. L., 2019, MNRAS, 487, 5450

Bertin E., Arnouts S., 1996, A&A, 117, 393

Beuzit J. L. et al., 2019, A&A, 631

Bertin E., Arnouts S., 1996, A&A, 117, 393

Beltramo-Martin O., Correia C. M., Ragland S., Jolissaint L., Neichel B., Beuzit J. L. et al., 2019, A&A, 631

Belli F. J. L. et al., 2019, A&A, 628, A99

Fedrigo E., Donaldson R., Soenke C., Myers R., Goodsell S., Geng D., Diolaiti E., Bendinelli O., Bonaccini D., Close L. M., Currie D. G., Correia C. M., Teixeira J., 2014, J. Opt. Soc. Amer. A, 31, 2763

Fedrigo E., Donaldson R., Soenke C., Myers R., Goodsell S., Geng D., Diolaiti E., Bendinelli O., Bonaccini D., Close L. M., Currie D. G., Correia C. M., Teixeira J., 2014, J. Opt. Soc. Amer. A, 31, 2763

Rigaut F. J., Véran J.-P., Lai O., 1998, in Bonaccini D., Tyson R. K., eds, Proc. SPIE, 3353, 577

Gendron E., Clenet Y., Fusco T., Rousset G., 2000, StarFinder: A code for stellar field analysis, Astrophysics Source Code Library, ascl:0011.001

Petit C. et al., 2008, in Norbert H., Claire M., Peter W., eds, Proc. SPIE Conf. Ser., Adaptive Optical System Technologies, SPIE, Bellingham, p. 1038

Rigaut F., Véran J.-P., Lai O., 1998, in Bonaccini D., Tyson R. K., eds, Proc. SPIE Conf. Ser., Adaptive Optical System Technologies, SPIE, Bellingham, p. 1038

Roddier F., 1981, Progress in Optics, Vol. 19. North-Holland Publishing Co, Amsterdam, p. 281

Tokovinin A., Kornilov V., 2007, MNRAS, 381, 1179

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.

MNRAS 494, 775–788 (2020)