More on the restricted almost unbiased Liu-estimator in Logistic regression

Nagarajah Varathan 1,2 and Pushpakanthie Wijekoon3
1Postgraduate Institute of Science, University of Peradeniya, Sri Lanka
2Department of Mathematics and Statistics, University of Jaffna, Sri Lanka
3Department of Statistics and Computer Science, University of Peradeniya, Sri Lanka
email: varathan10@gmail.com, pushpaw@pdn.ac.lk

Abstract

To address the problem of multicollinearity in the logistic regression model, in this paper we propose a new estimator called Stochastic restricted almost unbiased logistic Liu-estimator (SRAULLE) when the prior information is available in the form of stochastic linear restrictions. A Monte Carlo simulation study was carried out to compare the performance of the proposed estimator with some existing estimators in the scalar mean squared error (SMSE) sense. Finally, a real data example was given to appraise the performance of the estimators.

Keywords: Logistic Regression; Multicollinearity; Stochastic linear restrictions; Almost unbiased logistic Liu estimator; Stochastic restricted almost unbiased logistic Liu estimator.

1 Introduction

The maximum likelihood estimation technique is commonly used method to estimate the parameters of the logistic regression model. The multicollinearity severely affects the variance of the estimates of parameters in the logistic regression model. As a result model produces inefficient estimates. To overcome this issue, several alternative estimators have been proposed in the literature. These estimators were introduced mainly based on two types. The first type of estimators are based only on the sample information and the second type of estimators are based on the sample and priori available information which may be in the form of exact or stochastic linear restrictions. Logistic Ridge Estimator (LRE) by Schaefer et al. (1984), the Principal Component Logistic Estimator (PCLE) by Aguilera et al. (2006), the Modified Logistic Ridge Estimator (MLRE) by Nja et al. (2013), the Logistic Liu Estimator (LLE) by Mansson et al. (2012), the Liu-Type Logistic Estimator (LTLE) by Inan and Erdogan (2013), the Almost Unbiased Ridge Logistic Estimator (AURLE) by Wu and Asar (2016), the Almost Unbiased Liu Logistic Estimator (AULLE) by Xinfeng (2015), and the Optimal Generalized Logistic Estimator
(OGLE) by Varathan and Wijekoon (2017) are some of the first type of estimators proposed in the literature. Under the second type of estimators, the Restricted Maximum Likelihood Estimator (RMLE) by Duffy and Santner (1989), the Restricted Logistic Liu Estimator (RLLE) by Siray et al. (2015), the Modified Restricted Liu Estimator by Wu (2015), the Restricted Logistic Ridge Estimator (RLRE) by Asar et al. (2016a), the Restricted Liu-Type Logistic Estimator (RLTLE) by Asar et al. (2016b), and the Restricted Almost Unbiased Ridge logistic Estimator (RAURLE) by Varathan and Wijekoon (2016a) were introduced to improve the performance of the logistic model when the exact linear restrictions are available in addition to sample model. When the restrictions on the parameters are stochastic, the Stochastic Restricted Maximum Likelihood Estimator (SRMLE) (Nagarajah and Wijekoon, 2015), the Stochastic Restricted Ridge Maximum Likelihood Estimator (SRRMLE) (Varathan and Wijekoon, 2016b), and the Stochastic Restricted Liu Maximum Likelihood Estimator (SRLMLE) (Varathan and Wijekoon, 2016c) were proposed in the literature. In this research, following Xinfei (2015), a new estimator namely, Stochastic restricted almost unbiased logistic Liu Estimator (SRAULLE) is proposed for the logistic regression model with the presence of stochastic linear restrictions as prior information. The organization of the paper is as follows. The model specification and estimation are given in Section 2. Proposed estimators and their asymptotic properties are discussed in Section 3. In Section 4, the conditions for superiority of SRAULLE over some existing estimators are derived with respect to mean square error (MSE) criterion. A Monte Carlo simulation study is conducted to investigate the performance of the proposed estimator in the scalar mean squared error (SMSE) sense in Section 5. A numerical example is discussed in Section 6. Finally, some conclusive remarks are given in Section 7.

2 Model Specification and estimation

Consider the logistic regression model

\[y_i = \pi_i + \varepsilon_i, \quad i = 1, \ldots, n \]

(2.1)

which follows Binary distribution with parameter \(\pi_i \) as

\[\pi_i = \frac{\exp(x_i' \beta)}{1 + \exp(x_i' \beta)}, \]

(2.2)

where \(x_i \) is the \(i^{th} \) row of \(X \), which is an \(n \times p \) data matrix with \(p \) explanatory variables and \(\beta \) is a \(p \times 1 \) vector of coefficients, \(\varepsilon_i \) are independent with mean zero and variance \(\pi_i (1 - \pi_i) \) of the response \(y_i \). The Maximum likelihood estimate (MLE) of \(\beta \) can be obtained as follows:

\[\hat{\beta}_{MLE} = C^{-1} X' \hat{W} Z, \]

(2.3)

where \(C = X' \hat{W} X; \ Z \) is the column vector with \(i^{th} \) element equals \(\text{logit}(\hat{\pi}_i) + \frac{y_i - \hat{\pi}_i}{\hat{\pi}_i (1 - \hat{\pi}_i)} \) and \(\hat{W} = \text{diag} [\hat{\pi}_i (1 - \hat{\pi}_i)] \). Note that \(\hat{\beta}_{MLE} \) is an unbiased estimate of \(\beta \) and its covariance matrix is

\[\text{Cov}(\hat{\beta}_{MLE}) = \{X' \hat{W} X\}^{-1}. \]

(2.4)
The MSE and SMSE of $\hat{\beta}_{MLE}$ are

$$
MSE[\hat{\beta}_{MLE}] = Cov[\hat{\beta}_{MLE}] + B[\hat{\beta}_{MLE}]B'[\hat{\beta}_{MLE}] \\
= \{X'WX\}^{-1} \\
= C^{-1}
$$

and

$$
SMSE[\hat{\beta}_{MLE}] = tr[C^{-1}]
$$

When the multicollinearity presents in the logistic regression model (2.1), many alternative estimators have been proposed in the literature. Among those, in this research we consider the Logistic Liu estimator (LLE) by Mansson et al., (2012) and the Almost Unbiased Logistic Liu Estimator (AULLE) by Xinfeng (2015) under the first type of estimators.

LLE : $\hat{\beta}_{LLE} = Z_d\hat{\beta}_{MLE}$; where $Z_d = (C + I)^{-1}(C + dI), 0 < d < 1$

AULLE : $\hat{\beta}_{AULLE} = W_d\hat{\beta}_{MLE}$; where $W_d = [I - (1 - d)^2(C + I)^{-2}], 0 < d < 1$

The asymptotic properties of LLE:

$$
E[\hat{\beta}_{LLE}] = E[Z_d\hat{\beta}_{MLE}] = Z_d\beta,
$$

$$
D[\hat{\beta}_{LLE}] = Cov[\hat{\beta}_{LLE}] = Cov[Z_d\hat{\beta}_{MLE}] = Z_dC^{-1}Z_d',
$$

Consequently, the bias vector and the mean square error matrix of LLE are obtained as

$$
B[\hat{\beta}_{LLE}] = E[\hat{\beta}_{LLE}] - \beta = [Z_d - I]\beta = \delta_1, (say)
$$

and

$$
MSE[\hat{\beta}_{LLE}] = D[\hat{\beta}_{LLE}] + B[\hat{\beta}_{LLE}]B'[\hat{\beta}_{LLE}] = Z_dC^{-1}Z_d' + \delta_1\delta_1'
$$
respectively.

The asymptotic properties of AULLE:

\[
E[\hat{\beta}_{AULLE}] = E[W_d\hat{\beta}_{MLE}]
= W_d\beta,
\]

\[
D[\hat{\beta}_{AULLE}] = Cov[\hat{\beta}_{AULLE}]
= Cov[W_d\hat{\beta}_{MLE}]
= W_dC^{-1}W_d,
\]

Then, the bias vector and the mean square error matrix of AULLE are obtained as

\[
B[\hat{\beta}_{AULLE}] = E[\hat{\beta}_{AULLE}] - \beta
= [W_d - I]\beta
= \delta_2,
\]

and

\[
MSE[\hat{\beta}_{AULLE}] = D[\hat{\beta}_{AULLE}] + B[\hat{\beta}_{AULLE}]B'[\hat{\beta}_{AULLE}]
= W_dC^{-1}W_d + \delta_2\delta_2'
\]

respectively. As an alternative technique to stabilize the variance of the estimator due to multicollinearity, one can use prior information, if available, in addition to the sample model (2.1) either as exact linear restrictions or stochastic linear restrictions.

Suppose that the following stochastic linear prior information is given in addition to the general logistic regression model (2.1).

\[
h = H\beta + v; \quad E(v) = 0, \quad Cov(v) = \Psi.
\]

where \(h \) is an \((q \times 1)\) stochastic known vector, \(H \) is a \((q \times p)\) of full rank \(q \leq p \) known elements and \(v \) is an \((q \times 1)\) random vector of disturbances with mean 0 and dispersion matrix \(\Psi \), which is assumed to be known \((q \times q)\) positive definite matrix. Further, it is assumed that \(v \) is stochastically independent of \(\varepsilon \), i.e. \(E(\varepsilon v') = 0 \).

In the presence of stochastic linear restrictions (2.17) in addition to the logistic regression model (2.1), Nagarajah and Wijekoon (2015) introduced the Stochastic Restricted Maximum Likelihood Estimator (SRMLE).

\[
\hat{\beta}_{SRMLE} = \hat{\beta}_{MLE} + C^{-1}H'(\Psi + HC^{-1}H')^{-1}(h - H\hat{\beta}_{MLE})
\]
The asymptotic properties of SRMLE:

\[
E(\hat{\beta}_{SRMLE}) = \beta, \tag{2.19}
\]

\[
Cov(\hat{\beta}_{SRMLE}) = C^{-1} - C^{-1}H'(\Psi + HC^{-1}H')^{-1}HC^{-1}
\]

\[
= (C + H'\Psi^{-1}H)^{-1},
\]

\[
= R \text{(say)}
\]

and

\[
Bias[\hat{\beta}_{SRMLE}] = E[\hat{\beta}_{SRMLE}] - \beta = 0. \tag{2.21}
\]

The MSE of SRMLE is

\[
MSE[\hat{\beta}_{SRMLE}] = Cov(\hat{\beta}_{SRMLE}) + B[\hat{\beta}_{SRMLE}]B'[\hat{\beta}_{SRMLE}] \tag{2.22}
\]

\[
= (C + H'\Psi^{-1}H)^{-1}
\]

\[
= R
\]

The Proposed Estimator

In this section, by replacing \(\hat{\beta}_{MLE}\) by \(\hat{\beta}_{SRMLE}\) in (2.8), we propose a new estimator which is called as the Stochastic restricted almost unbiased logistic Liu Estimator (SRAULLE) and defined as

\[
\hat{\beta}_{SRAULLE} = W_d\hat{\beta}_{SRMLE} \tag{3.1}
\]

where \(W_d = [I - (1 - d)^2(C + I)^{-2}], 0 < d < 1\).

The asymptotic properties of \(\hat{\beta}_{SRAULLE}\) are

\[
E[\hat{\beta}_{SRAULLE}] = E[W_d\hat{\beta}_{SRMLE}]
\]

\[
= W_d\beta, \tag{3.2}
\]

\[
D(Cov(\hat{\beta}_{SRAULLE})) = Cov(\hat{\beta}_{SRAULLE})
\]

\[
= Cov(W_d\hat{\beta}_{SRMLE})
\]

\[
= W_dCov(\hat{\beta}_{SRMLE})W_d'
\]

\[
= W_dRW_d'. \tag{3.3}
\]
and
\[\text{Bias}(\hat{\beta}_{\text{SRAULLE}}) = E[\hat{\beta}_{\text{SRAULLE}}] - \beta \] \quad (3.4)
\[= [W_d - I] \beta \]
\[= \delta_2. \]

Consequently, the mean square error can be obtained as,
\[\text{MSE}(\hat{\beta}_{\text{SRAULLE}}) = D(\hat{\beta}_{\text{SRAULLE}}) + \text{Bias}(\hat{\beta}_{\text{SRAULLE}})\text{Bias}(\hat{\beta}_{\text{SRAULLE}})' \] \quad (3.5)
\[= W_d R W_d' + \delta_2 \delta_2'. \]

4 Mean square error comparisons

When different estimators are available for the same parameter vector \(\beta \) in the regression model one must solve the problem of their comparison. Usually, as a general measure, the mean square error matrix is used, and is defined by
\[\text{MSE}(\hat{\beta}, \beta) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)'] \] \quad (4.1)
\[= D(\hat{\beta}) + B(\hat{\beta})B'(\hat{\beta}) \]
where \(D(\hat{\beta}) \) is the dispersion matrix, and \(B(\hat{\beta}) = E(\hat{\beta}) - \beta \) denotes the bias vector.

The Scalar Mean Squared Error (SMSE) of the estimator \(\hat{\beta} \) can be defined as
\[\text{SMSE}(\hat{\beta}, \beta) = \text{trace}[\text{MSE}(\hat{\beta}, \beta)] \] \quad (4.2)

For two given estimators \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \), the estimator \(\hat{\beta}_2 \) is said to be superior to \(\hat{\beta}_1 \) under the MSE criterion if and only if
\[M(\hat{\beta}_1, \hat{\beta}_2) = \text{MSE}(\hat{\beta}_1, \beta) - \text{MSE}(\hat{\beta}_2, \beta) \geq 0. \] \quad (4.3)

4.1 Comparison of SRAULLE with MLE

To compare the estimators \(\hat{\beta}_{\text{MLE}} \) and \(\hat{\beta}_{\text{SRAULLE}} \), we consider their MSE differences as below:
\[\text{MSE}(\hat{\beta}_{\text{MLE}}) - \text{MSE}(\hat{\beta}_{\text{SRAULLE}}) = \{D(\hat{\beta}_{\text{MLE}}) + B(\hat{\beta}_{\text{MLE}})B'(\hat{\beta}_{\text{MLE}})\} \]
\[- \{D(\hat{\beta}_{\text{SRAULLE}}) + B(\hat{\beta}_{\text{SRAULLE}})B'(\hat{\beta}_{\text{SRAULLE}})\} \]
\[= C^{-1} - \{W_d R W_d' + \delta_2 \delta_2'\} \]
\[= U_1 - V_1 \]
where \(U_1 = C^{-1} \) and \(V_1 = W_d R W_d' + \delta_2 \delta_2' \). One can obviously say that \(W_d R W_d' \) and \(U_1 \) are positive definite matrices and \(\delta_2 \delta_2' \) is non-negative definite matrix. Further by Lemma 1 (see Appendix A), it is clear that \(V_1 \) is positive definite matrix. By Lemma 2 (see Appendix A), if \(\lambda_{\max}(V_1 U_1^{-1}) < 1 \), then \(U_1 - V_1 \) is a positive definite matrix, where \(\lambda_{\max}(V_1 U_1^{-1}) \) is the largest eigen value of \(V_1 U_1^{-1} \). Based on the above arguments, it can be concluded that the estimator SRAULLE is superior to MLE if and only if \(\lambda_{\max}(V_1 U_1^{-1}) < 1 \).
4.2 Comparison of SRAULLE with LLE

Consider the MSE differences of \(\hat{\beta}_{\text{LLE}} \) and \(\hat{\beta}_{\text{SRAULLE}} \)

\[
MSE(\hat{\beta}_{\text{LLE}}) - MSE(\hat{\beta}_{\text{SRAULLE}}) = \{D(\hat{\beta}_{\text{LLE}}) + B(\hat{\beta}_{\text{LLE}})B'(\hat{\beta}_{\text{LLE}})\} - \{D(\hat{\beta}_{\text{SRAULLE}}) + B(\hat{\beta}_{\text{SRAULLE}})B'(\hat{\beta}_{\text{SRAULLE}})\} \\
= \{Z_dC^{-1}Z_d' + \delta_1\delta_1'\} - \{W_dRW_d' + \delta_2\delta_2'\}
\]

where \(U_2 = Z_dC^{-1}Z_d' + \delta_1\delta_1' \) and \(V_2 = W_dRW_d' + \delta_2\delta_2' \). One can easily say that \(W_dRW_d' \) and \(Z_dC^{-1}Z_d' \) are positive definite matrices and \(\delta_1\delta_1' \) and \(\delta_2\delta_2' \) are non-negative definite matrices. Further by Lemma 1, it is clear that \(U_2 \) and \(V_2 \) are positive definite matrices. By Lemma 2, if \(\lambda_{\max}(V_2U_2^{-1}) < 1 \), then \(U_2 - V_2 \) is a positive definite matrix, where \(\lambda_{\max}(V_2U_2^{-1}) \) is the largest eigen value of \(V_2U_2^{-1} \). Based on the above results, it can be said that the estimator SRAULLE is superior to LLE if and only if \(\lambda_{\max}(V_2U_2^{-1}) < 1 \).

4.3 Comparison of SRAULLE with AULLE

Consider the MSE differences of \(\hat{\beta}_{\text{AULLE}} \) and \(\hat{\beta}_{\text{SRAULLE}} \)

\[
MSE(\hat{\beta}_{\text{AULLE}}) - MSE(\hat{\beta}_{\text{SRAULLE}}) = \{D(\hat{\beta}_{\text{AULLE}}) + B(\hat{\beta}_{\text{AULLE}})B'(\hat{\beta}_{\text{AULLE}})\} - \{D(\hat{\beta}_{\text{SRAULLE}}) + B(\hat{\beta}_{\text{SRAULLE}})B'(\hat{\beta}_{\text{SRAULLE}})\} \\
= \{W_dC^{-1}W_d' + \delta_2\delta_2'\} - \{W_dRW_d' + \delta_2\delta_2'\} \\
= W_d(C^{-1} - R)W_d' \\
= C^{-1}H'(\Psi + HC^{-1}H')^{-1}HC^{-1} \\
> 0
\]

Since the above mean square error difference is positive definite, it can be concluded that SRAULLE is always superior than AULLE.

4.4 Comparison of SRAULLE with SRMLE

Consider the MSE differences of \(\hat{\beta}_{\text{SRMLE}} \) and \(\hat{\beta}_{\text{SRAULLE}} \)

\[
MSE(\hat{\beta}_{\text{SRMLE}}) - MSE(\hat{\beta}_{\text{SRAULLE}}) = \{D(\hat{\beta}_{\text{SRMLE}}) + B(\hat{\beta}_{\text{SRMLE}})B'(\hat{\beta}_{\text{SRMLE}})\} - \{D(\hat{\beta}_{\text{SRAULLE}}) + B(\hat{\beta}_{\text{SRAULLE}})B'(\hat{\beta}_{\text{SRAULLE}})\} \\
= R - \{W_dRW_d' + \delta_2\delta_2'\} \\
= U_3 - V_3
\]

where \(U_3 = R \) and \(V_3 = W_dRW_d' + \delta_2\delta_2' \). It can be easily seen that \(W_dRW_d' \) and \(R \) are positive definite matrices and \(\delta_2\delta_2' \) is non-negative definite matrix. Further by Lemma 1, it is clear that \(V_3 \) is positive definite matrix. By Lemma 2, if \(\lambda_{\max}(V_3U_3^{-1}) < 1 \), then \(U_3 - V_3 \) is a positive definite matrix, where \(\lambda_{\max}(V_3U_3^{-1}) \) is the largest eigen value of \(V_3U_3^{-1} \). Based on the above results,
it can be said that the estimator SRAULLE is superior to SRMLE if and only if \(\lambda_{\text{max}}(V_3U_3^{-1}) < 1 \).

According to the results obtained from above mean square error comparisons it can be concluded that the proposed estimator SRAULLE is always superior than AULLE. However, under certain conditions SRAULLE performs well over MLE, LLE, and SRMLE with respect to the mean square error sense.

5 A Simulation study

To examine the performance of the proposed estimator; SRAULLE with the existing estimators: MLE, LLE, AULLE and SRMLE in this section, we conduct the Monte Carlo simulation study. The simulations are based on different levels of multicollinearity; \(\rho = 0.7, 0.8, 0.9 \) and \(0.99 \) and different sample sizes; \(n = 25, 50, 75 \) and 100. The Scalar Mean Square Error (SMSE) is considered for the comparison. Following McDonald and Galarneau (1975) and Kibria (2003), the explanatory variables are generated as follows:

\[
x_{ij} = (1 - \rho^2)^{1/2}z_{ij} + \rho z_{i,p+1}, \quad i = 1, 2, ..., n, \quad j = 1, 2, ..., p
\]

(5.1)

where \(z_{ij} \) are independent standard normal pseudo-random numbers and \(\rho \) is specified so that the theoretical correlation between any two explanatory variables is given by \(\rho^2 \). Four explanatory variables are generated using (5.1). The dependent variable \(y_i \) in (2.1) is obtained from the Bernoulli(\(\pi_i \)) distribution where \(\pi_i = \frac{\exp(x'_i\beta)}{1+\exp(x'_i\beta)} \). The parameter values of \(\beta_1, \beta_2, ..., \beta_p \) are chosen so that \(\sum_{j=1}^{p} \beta_j^2 = 1 \) and \(\beta_1 = \beta_2 = ... = \beta_p \). Following Asar et al. (2016b), Wu and Asar (2015) and Mansson et al. (2012), the optimum value of the biasing parameter \(d \) can be obtained by minimizing SMSE value with respect to \(d \). However, for simplicity in this paper we consider some selected values of \(d \) in the range \(0 < d < 1 \). Moreover, we consider the following restrictions.

\[
H = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}, \quad h = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad \text{and} \quad \Psi = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

(5.2)

The simulation is repeated 1000 times by generating new pseudo-random numbers and the simulated SMSE values of the estimators are obtained using the following equation.

\[
\hat{\text{SMSE}}(\hat{\beta}^*) = \frac{1}{1000} \sum_{r=1}^{1000} (\hat{\beta}_r - \beta)'(\hat{\beta}_r - \beta)
\]

(5.3)

where \(\hat{\beta}_r \) is any estimator considered in the \(r^{th} \) simulation. The simulation results are displayed in Tables 5.1 - 5.3 (Appendix). As we observed from the theoretical results, the proposed estimator SRAULLE is superior to AULLE in the mean square error sense with respect to all the sample sizes \(n = 25, 50, 75 \), and 100 and all the \(\rho = 0.7, 0.8, 0.9, \) and 0.99. From the Tables 5.1- 5.3, it is further noted that if the multicollinearity is very high (for example \(\rho \geq 0.9 \)) the proposed estimator SRAULLE is a very good alternative to MLE, LLE, AULLE and SRMLE regardless
of the values of n and d. However, the performance of LLE is considerably good for very small d values and moderate ρ values. Moreover, as we expected, MLE has the worst performance in all of the cases (having the largest SMSE values).

6 Numerical example

In order to check the performance of the new estimator SRAULLE, in this section, we used a real data set, which is taken from the Statistics Sweden website (http://www.scb.se/). The data consists the information about 100 municipalities of Sweden. The explanatory variables considered in this study are Population (x_1), Number unemployed people (x_2), Number of newly constructed buildings (x_3), and Number of bankrupt firms (x_4). The variable Net population change (y) is considered as response variable, which is defined as

$$y = \begin{cases} 1 & \text{if there is an increase in the population;} \\ 0 & \text{o/w.} \end{cases}$$

The correlation matrix of the explanatory variables x_1, x_2, x_3, and x_4 is displayed in Table 6.1. It can be noticed from the Table 6.1 that, all the pair wise correlations are very high (greater than 0.95). Hence a clear high multicollinearity exists in this data set. Further, the condition number being a measure of multicollinearity is obtained as 188 showing that there exists severe multicollinearity with this data set. Moreover, we use the same restrictions as in (5.2) for the prior information.

The SMSE values of MLE, LLE, AULLE, SRMLE, and SRAULLE for some selected values of biasing parameter d in the range $0 < d < 1$ are given in the Table 6.2. It can be clearly noticed from the Table 6.2 that the proposed estimator SRAULLE outperforms the estimators MLE, LLE, AULLE, and SRMLE in the SMSE sense, with respect to all the selected values of biasing parameter d in the range $0 < d < 1$ except $d = 0.01$. Further, SRAULLE is having better performance compared to AULLE for all the values of d.

Table 6.1: The correlation matrix of the explanatory variables

	x_1	x_2	x_3	x_4
x_1	1.000	0.998	0.971	0.970
x_2	0.998	1.000	0.960	0.958
x_3	0.971	0.960	1.000	0.987
x_4	0.970	0.958	0.987	1.000

7 Concluding Remarks

In this research, we proposed the Stochastic restricted almost unbiased logistic Liu estimator (SRAULLE) for logistic regression model in the presence of linear stochastic restriction when the multicollinearity problem exists. The conditions for superiority of the proposed estimator over some existing estimators were derived with respect to MSE criterion. Further, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. Results
reveal that the proposed estimator is always superior to AULLE in the mean square error sense and it can be a better alternative to the other existing estimators under certain conditions.

References

1. Aguilera, A. M., Escabias, M., Valderrama, M. J., (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. *Computational Statistics & Data Analysis* 50: 1905-1924.

2. Asar, Y., Arashi, M., Wu, J.,(2016a). Restricted ridge estimator in the logistic regression model. *Commun. Statist. Simmu. Comp.* Online. DOI: 10.1080/03610918.2016.1206932

3. Asar, Y., Erişoğlu, M., Arashi, M., (2016b). Developing a restricted two-parameter Liu-type estimator: A comparison of restricted estimators in the binary logistic regression model. *Commun. Statist. Theor. Meth.* Online. DOI: 10.1080/03610926.2015.1137597

4. Duffy, D. E., Santner, T. J., (1989). On the small sample prosperities of norm-restricted maximum likelihood estimators for logistic regression models. *Commun. Statist. Theor. Meth.* 18: 959-980.

5. Inan, D., Erdogan, B. E., (2013). Liu-Type logistic estimator. *Communications in Statistics-Simulation and Computation* 42: 1578-1586.

6. Kibria, B. M. G., (2003). Performance of some new ridge regression estimators.*Commun. Statist. Theor. Meth.* 32: 419-435.

7. Mansson, G., Kibria, B. M. G., Shukur, G., (2012). On Liu estimators for the logit regression model. *The Royal Institute of Technonlogy, Centre of Excellence for Science and Innovation Studies (CESIS)*, Sweden, Paper No. 259.

8. McDonald, G. C., and Galarneau, D. I., (1975). A Monte Carlo evaluation of some ridge type estimators. *Journal of the American Statistical Association* 70: 407-416.

9. Nja, M. E., Ogoke, U. P., Nduka, E. C., (2013). The logistic regression model with a modified weight function. *Journal of Statistical and Econometric Method* Vol.2, No. 4: 161-171.

10. Rao, C. R., Toutenburg, H., Shalabh and Heumann, C., (2008). *Linear Models and Generalizations*.Springer. Berlin.

11. Rao, C. R.,and Toutenburg, H.,(1995). *Linear Models :Least Squares and Alternatives, Second Edition*. Springer-Verlag New York, Inc.

12. Schaefer, R. L., Roi, L. D., Wolfe, R. A., (1984). A ridge logistic estimator. *Commun. Statist. Theor. Meth.* 13: 99-113.
13. Şiray, G. U., Toker, S., Kaçiranlar, S., (2015). On the restricted Liu estimator in logistic regression model. *Communications in Statistics- Simulation and Computation* 44: 217-232.

14. Nagarajah, V., Wijekoon, P., (2015). Stochastic Restricted Maximum Likelihood Estimator in Logistic Regression Model. *Open Journal of Statistics*. 5, 837-851. DOI: 10.4236/ojs.2015.57082

15. Varathan, N., Wijekoon, P., (2016a). On the restricted almost unbiased ridge estimator in logistic regression. *Open Journal of Statistics*. 6, 1076-1084. DOI: 10.4236/ojs.2016.66087

16. Varathan, N., Wijekoon, P., (2016b). Ridge Estimator in Logistic Regression under stochastic linear restriction. *British Journal of Mathematics & Computer Science*. 15 (3), 1. DOI: 10.9734/BJMCS/2016/24585

17. Varathan, N., Wijekoon, P., (2016c). Logistic Liu Estimator under stochastic linear restrictions. *Statistical Papers*. Online. DOI: 10.1007/s00362-016-0856-6

18. Varathan, N., Wijekoon, P., (2017). Optimal Generalized Logistic Estimator, *Communications in Statistics-Theory and Methods*, DOI: 10.1080/03610926.2017.1307406

19. Wu, J., (2015). Modified restricted Liu estimator in logistic regression model. *Computational Statistics*. Online. DOI: 10.1007/s00180-015-0609-3

20. Wu, J., Asar, Y., (2016). On almost unbiased ridge logistic estimator for the logistic regression model. *Hacettepe Journal of Mathematics and Statistics*. 45(3), 989-998. DOI: 10.15672/HJMS.20156911030

21. Wu, J., Asar, Y., (2015). More on the restricted Liu Estimator in the logistic regression model. *Communications in Statistics- Simulation and Computation*. Online. DOI: 10.1080/03610918.2015.1100735

22. Xinfeng, C., (2015). On the almost unbiased ridge and Liu estimator in the logistic regression model. *International Conference on Social Science, Education Management and Sports Education*. Atlantis Press: 1663-1665.
Appendix

Lemma 1: Let $A : n \times n$ and $B : n \times n$ such that $A > 0$ and $B \geq 0$. Then $A + B > 0$. (Rao and Toutenburg, 1995)

Lemma 2: Let the two $n \times n$ matrices $M > 0, N \geq 0$, then $M > N$ if and only if $\lambda_{\text{max}}(NM^{-1}) < 1$. (Rao et al., 2008)

Table 5.1: The estimated MSE values for different d when $n = 25$

ρ	d	MLE	LLE	AULLE	SRMLE	SRAULLE
0.70	0.01	1.4798	0.8052	1.2383	1.0138	0.8536
	0.1	1.4798	0.8600	1.2780	1.0138	0.8798
	0.2	1.4798	0.9233	1.3186	1.0138	0.9067
	0.3	1.4798	0.9893	1.3552	1.0138	0.9309
	0.4	1.4798	1.0579	1.3875	1.0138	0.9524
	0.5	1.4798	1.1291	1.4153	1.0138	0.9708
	0.6	1.4798	1.2030	1.4383	1.0138	0.9861
	0.7	1.4798	1.2794	1.4564	1.0138	0.9981
	0.8	1.4798	1.3585	1.4694	1.0138	1.0068
	0.9	1.4798	1.4402	1.4772	1.0138	1.0120
	0.99	1.4798	1.5160	1.4798	1.0138	1.0137

0.80	0.01	1.9817	0.8781	1.4912	1.1793	0.9039
	0.1	1.9817	0.9602	1.5699	1.1793	0.9479
	0.2	1.9817	1.0566	1.6513	1.1793	0.9935
	0.3	1.9817	1.1584	1.7253	1.1793	1.0350
	0.4	1.9817	1.2658	1.7912	1.1793	1.0720
	0.5	1.9817	1.3786	1.8481	1.1793	1.1041
	0.6	1.9817	1.4968	1.8955	1.1793	1.1308
	0.7	1.9817	1.6205	1.9329	1.1793	1.1518
	0.8	1.9817	1.7497	1.9599	1.1793	1.1670
	0.9	1.9817	1.8843	1.9763	1.1793	1.1762
	0.99	1.9817	2.0101	1.9817	1.1793	1.1793

0.90	0.01	3.5707	0.9334	1.9075	1.5271	0.9039
	0.1	3.5707	1.0954	2.1522	1.5271	0.9479
	0.2	3.5707	1.2945	2.4151	1.5271	0.9935
	0.3	3.5707	1.5137	2.6625	1.5271	1.0350
	0.4	3.5707	1.7530	2.8885	1.5271	1.0720
	0.5	3.5707	2.0124	3.0881	1.5271	1.1041
	0.6	3.5707	2.2919	3.2573	1.5271	1.1308
	0.7	3.5707	2.5915	3.3924	1.5271	1.1518
	0.8	3.5707	2.9112	3.4908	1.5271	1.1670
	0.9	3.5707	3.2510	3.5506	1.5271	1.1762
	0.99	3.5707	3.5740	3.5705	1.1793	1.1793

0.99	0.01	33.1595	0.4893	1.2984	2.4804	0.2878
	0.1	33.1595	1.2132	3.5907	2.4804	0.4482
	0.2	33.1595	2.5413	7.2401	2.4804	0.7008
	0.3	33.1595	4.4324	11.5879	2.4804	1.0004
	0.4	33.1595	6.8751	16.2114	2.4804	1.3183
	0.5	33.1595	9.8731	20.7438	2.4804	1.6294
	0.6	33.1595	13.4266	24.8751	2.4804	1.9128
	0.7	33.1595	17.5353	28.3515	2.4804	2.1510
	0.8	33.1595	22.1995	32.8571	2.4804	2.3308
	0.9	33.1595	27.4190	32.6065	2.4804	2.4425
	0.99	33.1595	32.5914	33.1540	2.4804	2.4800
Table 5.2: The estimated MSE values for different d when $n = 50$

ρ	$d = 0.01$	$d = 0.1$	$d = 0.2$	$d = 0.3$	$d = 0.4$	$d = 0.5$	$d = 0.6$	$d = 0.7$	$d = 0.8$	$d = 0.9$	$d = 0.99$
0.70	MLE 1.0662	1.0662	1.0662	1.0662	1.0662	1.0662	1.0662	1.0662	1.0662	1.0662	1.0662
	LLE 0.6249	0.6600	0.7004	0.7422	0.7854	0.8300	0.8761	0.9236	0.9726	1.0230	1.0696
	AULLE 0.9318	0.9543	0.9770	0.9975	1.0154	1.0307	1.0434	1.0533	1.0604	1.0647	1.0662
	SRMILE 0.7173	0.7173	0.7173	0.7173	0.7173	0.7173	0.7173	0.7173	0.7173	0.7173	0.7173
	SRAULLE 0.6334	0.6474	0.6617	0.6744	0.6856	0.6952	0.7031	0.7092	0.7137	0.7164	0.7173
0.80	MLE 1.5025	1.5025	1.5025	1.5025	1.5025	1.5025	1.5025	1.5025	1.5025	1.5025	1.5025
	LLE 0.7156	0.7739	0.8419	0.9134	0.9883	1.0667	1.1485	1.2337	1.3224	1.4145	1.5003
	AULLE 1.1894	1.2403	1.2926	1.3400	1.3819	1.4181	1.4481	1.4717	1.4887	1.4990	1.5024
	SRMILE 0.8807	0.8807	0.8807	0.8807	0.8807	0.8807	0.8807	0.8807	0.8807	0.8807	0.8807
	SRAULLE 0.7111	0.7388	0.7671	0.7928	0.8155	0.8351	0.8513	0.8641	0.8733	0.8789	0.8807
0.90	MLE 2.8448	2.8448	2.8448	2.8448	2.8448	2.8448	2.8448	2.8448	2.8448	2.8448	2.8448
	LLE 0.8150	0.9431	1.0989	1.2687	1.4526	1.6505	1.8626	2.0887	2.3288	2.5830	2.8239
	AULLE 1.6588	1.8370	2.0267	2.2037	2.3625	2.5056	2.6248	2.7198	2.8407	2.8307	2.8446
	SRMILE 1.2238	1.2238	1.2238	1.2238	1.2238	1.2238	1.2238	1.2238	1.2238	1.2238	1.2238
	SRAULLE 0.7500	0.8216	0.8976	0.9684	1.0325	1.0888	1.1363	1.1741	1.2015	1.2182	1.2237
0.99	MLE 26.9632	26.9632	26.9632	26.9632	26.9632	26.9632	26.9632	26.9632	26.9632	26.9632	26.9632
	LLE 0.4165	1.0607	2.1916	3.7594	5.7641	8.2058	11.0845	14.4001	18.1527	22.3422	26.4863
	AULLE 1.2822	3.2802	6.3089	9.8379	13.5461	17.1550	20.4289	23.1753	25.2440	26.5281	26.9589
	SRMILE 2.2638	2.2638	2.2638	2.2638	2.2638	2.2638	2.2638	2.2638	2.2638	2.2638	2.2638
	SRAULLE 0.1830	0.3484	0.5958	0.8823	1.1824	1.4737	1.7377	1.9589	2.1255	2.2288	2.2635
Table 5.3: The estimated MSE values for different d when $n = 75$

ρ	MLE	LLE	AULLE	SRMLE	SRAULLE	MLE	LLE	AULLE	SRMLE	SRAULLE	MLE	LLE	AULLE	SRMLE	SRAULLE	MLE	LLE	AULLE	SRMLE	SRAULLE
0.70	0.4775	0.3791	0.3940	0.3837	0.4647	0.4775	0.3791	0.3940	0.3837	0.4647	0.4775	0.6770	0.6770	0.6770	0.6770	0.6770	0.6770	0.6770	0.6770	
0.80	0.4802	0.6404	0.5120	0.4850	0.6467	0.4968	0.5156	0.5349	0.5545	0.5443	0.4984	0.4984	0.4984	0.4984	0.4984	0.4984	0.4984	0.4984		
0.90	1.1005	1.1005	1.0830	1.1005	1.0830	1.1005	1.0830	1.0830	1.0830	1.0830	1.0830	1.0830	1.0830	1.0830	1.0830	1.0830	1.0830	1.0830		
0.99	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308	13.1308		
Table 5.4: The estimated MSE values for different d when $n = 100$

$\rho = 0.70$	MLE	LLE	AULLE	SRMLE	SRAULLE
$d = 0.01$	0.4172	0.3380	0.4078	0.3423	0.3350
$d = 0.1$	0.4172	0.3450	0.4094	0.3423	0.3363
$d = 0.2$	0.4172	0.3528	0.4111	0.3423	0.3375
$d = 0.3$	0.4172	0.3608	0.4125	0.3423	0.3387
$d = 0.4$	0.4172	0.3689	0.4137	0.3423	0.3396
$d = 0.5$	0.4172	0.3771	0.4148	0.3423	0.3404
$d = 0.6$	0.4172	0.3853	0.4157	0.3423	0.3411
$d = 0.7$	0.4172	0.3937	0.4163	0.3423	0.3416
$d = 0.8$	0.4172	0.4021	0.4168	0.3423	0.3420
$d = 0.9$	0.4172	0.4107	0.4171	0.3423	0.3422
$d = 0.99$	0.4172	0.4185	0.4172	0.3423	0.3423

$\rho = 0.80$	MLE	LLE	AULLE	SRMLE	SRAULLE
$d = 0.01$	0.5932	0.4341	0.5662	0.4469	0.4278
$d = 0.1$	0.5932	0.4477	0.5709	0.4469	0.4311
$d = 0.2$	0.5932	0.4629	0.5755	0.4469	0.4344
$d = 0.3$	0.5932	0.4785	0.5796	0.4469	0.4373
$d = 0.4$	0.5932	0.4943	0.5832	0.4469	0.4398
$d = 0.5$	0.5932	0.5104	0.5863	0.4469	0.4420
$d = 0.6$	0.5932	0.5268	0.5888	0.4469	0.4437
$d = 0.7$	0.5932	0.5435	0.5907	0.4469	0.4451
$d = 0.8$	0.5932	0.5605	0.5921	0.4469	0.4467
$d = 0.9$	0.5932	0.5777	0.5930	0.4469	0.4469
$d = 0.99$	0.5932	0.5935	0.5932	0.4469	0.4469

$\rho = 0.90$	MLE	LLE	AULLE	SRMLE	SRAULLE
$d = 0.01$	1.1311	0.6264	0.9785	0.6958	0.6086
$d = 0.1$	1.1311	0.6659	1.0041	0.6958	0.6232
$d = 0.2$	1.1311	0.7113	1.0300	0.6958	0.6381
$d = 0.3$	1.1311	0.7584	1.0532	0.6958	0.6513
$d = 0.4$	1.1311	0.8070	1.0736	0.6958	0.6630
$d = 0.5$	1.1311	0.8573	1.0910	0.6958	0.6729
$d = 0.6$	1.1311	0.9092	1.1053	0.6958	0.6811
$d = 0.7$	1.1311	0.9627	1.1166	0.6958	0.6875
$d = 0.8$	1.1311	1.0179	1.1246	0.6958	0.6921
$d = 0.9$	1.1311	1.0746	1.1295	0.6958	0.6949
$d = 0.99$	1.1311	1.1271	1.1311	0.6958	0.6958

$\rho = 0.99$	MLE	LLE	AULLE	SRMLE	SRAULLE
$d = 0.01$	10.8045	5.9082	1.7797	1.8820	0.3585
$d = 0.1$	10.8045	1.5492	2.7752	1.8820	0.5315
$d = 0.2$	10.8045	2.4352	5.0155	1.8820	0.7427
$d = 0.3$	10.8045	3.0700	6.5735	1.8820	0.9609
$d = 0.4$	10.8045	4.0288	7.5399	1.8820	1.1742
$d = 0.5$	10.8045	5.1198	8.7932	1.8820	1.3722
$d = 0.6$	10.8045	6.3430	9.6474	1.8820	1.5462
$d = 0.7$	10.8045	7.6985	10.2821	1.8820	1.6889
$d = 0.8$	10.8045	9.1863	10.6972	1.8820	1.7948
$d = 0.9$	10.8045	10.6884	10.8032	1.8820	1.8600
$d = 0.99$	10.8045	10.8045	10.8032	1.8820	1.8817
Table 6.2: The SMSE values of estimators for the Numerical example

	d = 0.01	d = 0.1	d = 0.2	d = 0.3	d = 0.4	d = 0.5
MLE	0.0009457555	0.0009457555	0.0009457555	0.0009457555	0.0009457555	0.0009457555
LLE	0.0009441630	0.0009443098	0.0009444729	0.0009446361	0.0009447993	0.0009449624
AULLE	0.0009457541	0.0009457543	0.0009457546	0.0009457548	0.0009457550	0.0009457551
SRMLE	0.000945487	0.000945487	0.000945487	0.000945487	0.000945487	0.000945487
SRAULLE	0.000945472	0.000945475	0.000945477	0.000945480	0.000945481	0.000945483

	d = 0.6	d = 0.7	d = 0.8	d = 0.9	d = 0.99
MLE	0.0009457555	0.0009457555	0.0009457555	0.0009457555	0.0009457555
LLE	0.0009451256	0.0009452888	0.0009454521	0.0009456153	0.0009457622
AULLE	0.0009457553	0.0009457554	0.0009457554	0.0009457555	0.0009457555
SRMLE	0.000945487	0.000945487	0.000945487	0.000945487	0.000945487
SRAULLE	0.000945484	0.000945485	0.000945486	0.000945487	0.000945487