Neurophysiological signatures of hand motor response to dual-transcranial direct current stimulation in subacute stroke: a TMS and MEG study

I-Ju Kuo1,2†, Chih-Wei Tang1,3†, Yun-An Tsai2, Shuen-Chang Tang2, Chun-Jen Lin1,4, Shih-Pin Hsu1, Wei-Kuang Liang5, Chi-Hung Juan5, Catharina Zich6,7,8, Charlotte J. Stagg6,7,8 and I-Hui Lee1,4*

Abstract

Background: Dual transcranial direct current stimulation (tDCS) to the bilateral primary motor cortices (M1s) has potential benefits in chronic stroke, but its effects in subacute stroke, when behavioural effects might be expected to be greater, have been relatively unexplored. Here, we examined the neurophysiological effects and the factors influencing responsiveness of dual-tDCS in subacute stroke survivors.

Methods: We conducted a randomized sham-controlled crossover study in 18 survivors with first-ever, unilateral subcortical ischaemic stroke 2–4 weeks after stroke onset and 14 matched healthy controls. Participants had real dual-tDCS (with an ipsilesional [right for controls] M1 anode and a contralesional M1 [left for controls] cathode; 2 mA for 20 mins) and sham dual-tDCS on separate days, with concurrent paretic [left for controls] hand exercise. Using transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG), we recorded motor evoked potentials (MEPs), the ipsilateral silent period (iSP), short-interval intracortical inhibition, and finger movement-related cortical oscillations before and immediately after tDCS.

Results: Stroke survivors had decreased excitability in ipsilesional M1 with a relatively excessive transcallosal inhibition from the contralesional to ipsilesional hemisphere at baseline compared with controls, as quantified by decreased MEPs and increased iSP duration. Dual-tDCS led to increased MEPs and decreased iSP duration in ipsilesional M1. The magnitude of the tDCS-induced MEP increase in stroke survivors was predicted by baseline contralesional-to-ipsilesional transcallosal inhibition (iSP) ratio. Baseline post-movement synchronization in α-band activity in ipsilesional M1 was decreased after stroke compared with controls, and its tDCS-induced increase correlated with upper limb score in stroke survivors. No significant adverse effects were observed during or after dual-tDCS.

(Continued on next page)
Conclusions: Task-concurrent dual-tDCS in subacute stroke can safely and effectively modulate bilateral M1 excitability and inter-hemispheric imbalance and also movement-related α-activity.

Keywords: Subacute stroke, Transcranial direct current stimulation, Transcranial magnetic stimulation, Transcallosal inhibition, Magnetoencephalography, Plasticity
controls, as well as explore factors predicting responsiveness to dual-tDCS.

Materials and methods
Subjects and study design
We recruited patients aged 20–80 years with first-ever, unilateral, ischaemic stroke with mild to moderate hand paresis (Medical Research Council motor score 3–4) 2–4 weeks after stroke. Exclusion criteria were: major neurological or medical comorbidities or absent MEPs in the paretic hand. Age- and gender-matched healthy controls were also recruited. All participants gave their informed consent to participate in the study, which was approved by the institutional review board of Taipei Veterans General Hospital.

Twenty-one stroke survivors fulfilled the inclusion/exclusion criteria and 3 of them dropped out (14%) after recruitment because of unwillingness to complete the full assessment. The remaining 18 stroke survivors were enrolled a median of 23 days (range: 14–28) after stroke. Survivors had a median age of 63 (range: 31–76 years) and equal gender distribution (Table 1). They had mild to moderate hand paresis as defined by the Medical Research Council (MRC) score 3–4 of the extensor carpi radialis (ECR) muscle for being suitable for TMS measures from the ECR and MEG measures of finger lifting task. Their median scores of Fugl-Meyer assessment-upper extremity scale (FMA-UE) and Action Research Arm Test (ARAT) were 60 (range: 24–64) and 56 (range: 3–57), respectively. All stroke survivors were right-handed [40], and 10 of them had left hemiparesis. Lesions were mainly located in the deep nuclei and white matter of the middle cerebral artery territory. Four subjects had a pons infarction (Fig. 1a). 14 age (median: 59, range: 37–72) and gender (6 male) matched right-handed controls were also enrolled [Age: U = 78, p = 0.07; Gender \( \chi^2(1) = 0.69, p = 0.74 \)].

All subjects participated in four experimental sessions on separate days: two real and two sham dual-tDCS sessions, which were combined with either TMS or MEG recordings (i.e. TMS + real tDCS, TMS + sham tDCS, MEG + real tDCS, MEG + sham tDCS). The order of the sessions was counterbalanced across the groups and there was at least 72 h between sessions (Fig. 1b).

### Table 1: Baseline Characteristics of Subacute Stroke Survivors

| No/lesion | Age/Sex | Post-stroke (d) | NIHSS 2-4W | mRS 2-4W | MRC ECR | FMA-UE | ARAT | rMT (%) | MEP (\( \mu V \)) | iSP (ms) | SICI (ratio) |
|-----------|---------|----------------|------------|----------|---------|--------|------|---------|-------------|----------|-------------|
| 1 /L 67/M | 28      | 2              | 4          | 4        | 63      | 56     | 50/47| 85/134 | 62/52       | 0.31/0.39|
| 2 /R 68/F | 14      | 1              | 4          | 3        | 62      | 57     | 39/38| 312/677| 72/52       | 0.18/0.25|
| 3 /L 41/F | 25      | 6              | 4          | 3        | 49      | 24     | 90/47| 52/1710| NA/56      | 0.43/0.51|
| 4 /R 31/M | 23      | 1              | 4          | 4        | 63      | 57     | 36/31| 145/468| 77/78      | 0.25/0.23|
| 5 /R 76/M | 22      | 1              | 2          | 4        | 64      | 57     | 38/38| 294/628| 82/77      | 0.43/0.46|
| 6 /R 66/M | 20      | 4              | 3          | 3        | 24      | 3      | 42/35| 912/561| 84/72      | 0.46/0.22|
| 7 /R 75/F | 15      | 5              | 4          | 4        | 43      | 38     | 63/49| 244/628| 69/61      | 0.38/0.24|
| 8 /L 70/M | 19      | 2              | 4          | 3        | 32      | 6      | 36/30| 645/2196| 90/67      | 0.11/0.32|
| 9 /L 44/F | 23      | 2              | 4          | 3        | 60      | 56     | 45/39| 157/996| 92/47      | 0.26/0.19|
| 10/L 56/F | 18      | 1              | 3          | 4        | 64      | 57     | 42/41| 297/638| 84/52      | 0.32/0.35|
| 11/R 56/M | 15      | 1              | 3          | 4        | 64      | 57     | 30/32| 613/648| 79/53      | 0.21/0.30|
| 12/L 60/F | 14      | 0              | 2          | 4        | 61      | 57     | 40/33| 388/721| 64/62      | 0.12/0.24|
| 13/L 63/M | 28      | 2              | 3          | 4        | 53      | 32     | 100/45| 70/787 | NA/NA      | NA/0.28  |
| 14/R 62/F | 26      | 5              | 3          | 4        | 61      | 57     | 52/46| 101/838| 74/64      | 0.45/0.27|
| 15/R 66/F | 28      | 5              | 4          | 3        | 28      | 6      | 46/39| 160/1309| 93/68      | 0.40/0.61|
| 16/R 61/M | 18      | 3              | 3          | 4        | 43      | 48     | 88/46| 109/976| 79/64      | NA/0.38  |
| 17/R 76/F | 28      | 1              | 1          | 4        | 60      | 57     | 51/39| 346/1060| 77/74      | 0.28/0.46|
| 18/L 61/M | 28      | 5              | 4          | 3        | 40      | 20     | 38/32| 154/2069| 118/64     | 0.22/0.27|

NIHSS National Institutes of Health Stroke Scale, mRS Modified Rankin Scale, MRC Medical Research Council scale of the extensor carpi radialis (ECR) muscle strength, FMA-UE Fugl-Meyer Assessment - Upper Extremity, ARAT Action Research Arm Test, d Days, w Weeks. The individual electrophysiologic measurements using transcranial magnetic stimulation were recorded from the affected/unaffected ECR, including rMT: resting motor threshold (% of maximum stimulator output); MEP Motor evoked potential, iSP Ipsilateral silent period, SICI Short-interval intracortical inhibition. NA Not accessible (recordable), M Male, F Female, R Right hemisphere, L Left hemisphere. The group values represent the median (interquartile range).
Transcranial direct current stimulation

A tDCS stimulator (Eldith, UK) with 5x5cm conductive rubber electrodes and saline-soaked sponges was used. M1 representations were localized in each participant from ECR hotspot derived from single-pulse TMS. The anode was placed over the ipsilesional [right for controls] M1 [anode-targeted M1; M1_Anode], and the cathode over the contralesional [left for controls] M1 [cathode-targeted M1; M1_Cathode] (Fig. 1c). Impedance was kept below 5 kΩ.

For real stimulation, a 2 mA current (current density 0.08 mA/cm²) was applied for 20 min, including 30 s ramp-up and ramp-down. This tDCS dosage was safe according to the safety guideline and used by previous dual-tDCS studies [6, 41]. For sham stimulation, the stimulator was turned off immediately after the initial ramp-up period.

During the tDCS, subjects performed full range self-paced extension of the paretic [left for controls] ECR, with wrist extension over 3 s followed by 3 s of wrist flexion back to neutral position. This was repeated for 4 min followed by 1 min of rest for 4 cycles (Fig. 1b and d). The Adverse Effects Questionnaire [42] was administered after each tDCS session.

Transcranial magnetic stimulation

In the TMS sessions, MEPs, the ipsilateral silent period (iSP), and short-interval intracortical inhibition (SICI) were recorded from both M1s before (i.e. baseline) and immediately after real or sham tDCS (0, 15, 30 min). Both resting motor threshold (rMT) and active motor threshold (aMT) were measured once before either real or sham tDCS stimulation as the baseline values. The fixed evaluation order of each TMS session was rMT → MEP → SICI → iSP → aMT of the non-paretic hand [right for controls] and then the paretic hand [left for controls]. In line with the literatures, we observed the after-effects of a single-session tDCS lasted for about 30–40 min [2]. Therefore, the TMS measurements were completed by 40 min after tDCS to be within an estimated effective window. We utilized a Magstim Rapid² stimulator (Magstim, UK) with a 90 mm diameter double cone coil and a synchronized surface electromyography recording system (MedelecSynergy; VIASYS HealthCare, UK) for rMT, aMT, MEP amplitude, and iSP measurements. Two Magstim 200² stimulators were used for SICI. The rMT was defined as the minimum intensity required to elicit MEPs with a peak-to-peak amplitude greater than 50 μV in 5 out of 10 trials in the relaxed ECR [43]. The aMT was defined as the minimum intensity required to evoke MEPs with a peak-to-peak amplitude greater than 200 μV in 5 out of 10 trials, while the subject maintained at ~20% of maximum
The strength of muscle contraction was visually monitored and maintained by concurrent surface EMG recording (Fig. 1d). MEP amplitude was quantified as the mean peak-to-peak amplitude from 12 successive TMS pulses evoked every 5 s at an intensity of 120% baseline rMT. The iSP was calculated from the mean of 5 trials and was defined as the length of disrupted ongoing muscular activity of the ECR after an ipsilateral M1 TMS pulse at an intensity of 150% rMT. The participant was asked to maintain steady wrist extension with maximal strength monitored by surface EMG during the test period. The onset point of iSP was defined as disrupted ongoing muscular activity below the mean EMG amplitude of the baseline before the TMS pulse. The offset point of iSP was defined as EMG amplitude recovery to 50% of the baseline before the TMS pulse [44, 45]. The iSP ratio of contralesional / ipsilesional [left/right for controls] iSP was used to examine the interhemispheric transcallosal inhibition imbalance between contralesional to ipsilesional [left to right for controls] hemisphere. SICI was quantified using a subthreshold conditioning stimulus (80% of the baseline rMT) and suprathreshold test stimulus (120% of the baseline rMT), with individualized inter-stimulus intervals (ISI) between 1 and 5 ms to prevent ceiling or floor effects. ISI remained constant within subject across the experiment. SICI was calculated as the percentage of conditioned MEP amplitude relative to unconditioned MEPs for each trial and was obtained from the mean of 5 trials with a 5 s interval [46, 47].

Magnetoencephalography acquisition and analysis
In the MEG sessions, movement-related cortical oscillations were recorded before (i.e. baseline), and immediately after real and sham tDCS. The MEG measurements were completed by 40 min after tDCS to be within an estimated effective window. A Neurmag Vectorview MEG (Elekta, Helsinki, Finland) was used to acquire electrophysiological data while performing a simple motor task (see [48] for more details). Briefly, subjects performed a self-paced, unilateral index finger lifting task every 7 s with the paretic [left for controls] hand, keeping other muscles relaxed and avoiding excessive blinking. The acquisition lasted for up to 15 min to collect around 50 adequate trials as determined by online MEG and electrooculography (EOG) monitoring with a pre-defined rejection threshold (4000 ft for MEG and 200 mV for EOG).

MEG data were acquired with a 500 Hz sampling rate and analysed using Brainstorm [49]. MEG epochs comprised the −3 s to 3 s relative to movement onset, identified by an optic detection pad. Trials were discarded if the interval between two consecutive finger lifts was shorter than 6 s, or the corresponding EOG or MEG data were noisy, as defined by visual inspection and aforementioned EOG or MEG pre-defined rejection threshold. MEG channels were co-registered with the individual-MRI. MEG data were then filtered into α-band (8–12 Hz) and β-band (16–30 Hz), and projected to source level by minimum norm estimate [50]. The event-related desynchronization/synchronization (ERD/S) were then calculated as follows: ERD/ERS % = A−R/R × 100 (A: the power within the frequency band of interest during the active period of the event; R: the mean power of the reference period) [51]. The peak amplitude of ERD [or ERS] was determined as the minimum [or maximum] between −2 to 2 s [or 0 to 3 s] relative to movement onset for each individual [51]. This procedure resulted in four MEG measures of interest, i.e. α-ERD, β-ERS, β-ERD, β-ERS peak amplitude.

Statistical analyses
SPSS version 24.0.0 (Chicago, USA) was used for statistical analyses. Data were transformed where necessary to achieve a normal distribution. Outliers were identified if studentized residuals were greater than ±3 and removed from analysis.

Repeated measures analysis of variance (ANOVAs) were used to compare the baseline TMS (rMT, aMT, MEPs, iSP and SICI) and MEG measures (α-ERD, α-ERS, β-ERD, β-ERS) within groups (baseline session 1, baseline session 2), while Mann-Whitney U tests were used to compare these baseline TMS and MEG measures between groups (stroke survivors, healthy controls).

To define tDCS responsiveness, post-tDCS MEP changes were categorized into three groups [52]: High: if the mean at two or more time points (0, 15 mins, 30 mins) was greater than 15% for anodal tDCS or smaller than 15% for cathodal tDCS; Medium: between 10 and 15%; Low: < 10%. Stepwise multiple regression analysis with backward elimination was used to identify the independent factors for the tDCS response.

Results
Dual-tDCS is well tolerated
The only self-reported discomfort was tingling during the initial 1–2 min of tDCS stimulation (four subjects, 14%). No seizures or other severe adverse events were reported.
Stroke survivors had decreased baseline excitability in ipsilesional M1 compared with controls

We first wanted to investigate whether there were any differences between stroke survivors and controls in baseline TMS measures, i.e. before tDCS was applied. There were no significant intra-individual variabilities in the baseline TMS measures before real versus sham stimulation in healthy controls and stroke survivors, respectively (all \( p > 0.1 \), supplementary Table A.1). Therefore, we used the mean of the baseline measures for subsequent analyses. Compared to controls, stroke survivors had increased rMT (51 ± 21% versus 38 ± 5% maximum stimulator output, \( U = 63, \ p = 0.017, \ r = 0.42 \)), increased aMT (40% ± 12% versus 30 ± 6% maximum stimulator output, \( U = 59, \ p = 0.009, \ r = 0.45 \)), and decreased ipsilesional M1 excitability (MEP amplitude at 120% rMT 282 ± 233 μV versus 753 ± 374 μV, \( U = 27, \ p < 0.001, \ r = 0.66 \)). Stroke survivors also showed increased contralesional-to-ipsilesional transcallosal inhibition (iSP: 81 ± 13 ms versus 58 ± 4 ms, \( U = 1, \ p < 0.001, \ r = 0.18 \)), but comparable ipsilesional SICI (30 ± 12% versus 27 ± 9%, \( U = 122, \ p = 0.88, \ r = 21.6; \) Fig. 2).

Dual-tDCS leads to significant changes in TMS metrics in stroke survivors and in controls

We then wanted to explore the effects of dual-tDCS on our TMS metrics. We first wished to investigate whether stroke survivors and controls responded differently to dual-tDCS. We therefore ran two mixed-design 2 × 2 × 3 ANOVAs, with group (patients, controls) as the between-subjects factor, stimulation (real, sham) and time (0, 15, 30 min) as within-subjects factors and normalized TMS measures (MEP, iSP, SICI) as the dependent variable for each hemisphere separately. There was no significant group difference between stroke survivors and controls in response to tDCS in either M1Anode or M1Cathode in any of the TMS metrics (all \( p ’ s > 0.1 \)).

We were interested in the effects of dual-tDCS on TMS measures in stroke survivors to understand group-specific features (Fig. 3). In each group, a set of 2 × 3 repeated measures ANOVAs with factors of stimulation (real, sham) and time (0, 15 min, 30 min) were performed for post-tDCS changes of each normalized TMS measure (MEP, iSP, SICI) from M1Anode and M1Cathode separately.

In stroke survivors, there were significant main effects of stimulation [M1Anode: \( F (1,16) = 12.7, \ p = 0.003, \ \eta^2 = 0.44 \); M1Cathode \( F (1,17) = 11.23, \ p = 0.004, \ \eta^2 = 0.40 \)], with an increase MEP amplitude in M1Anode and a decrease in MEP amplitude in M1Cathode after real stimulation relative to sham. There were no significant main effects of time or interactions between stimulation and time (see Additional file 1, Table A.2 with full statistics).

In terms of iSP there were significant main effects of stimulation [M1Anode: \( F (1,15) = 13.7, \ p = 0.002, \ \eta^2 = 0.46 \); M1Cathode \( F (1,17) = 21.6, \ p = 0.001, \ \eta^2 = 0.55 \)], with an increase iSP in M1Anode and a decrease in iSP in M1Cathode after real stimulation relative to sham. There were no significant main effects of time or interactions between stimulation and time (see Additional file 1, Table A.2 with full statistics).

In terms of SICI there were significant main effects of stimulation [M1Anode: \( F (1,15) = 13.7, \ p = 0.002, \ \eta^2 = 0.46 \); M1Cathode \( F (1,17) = 21.6, \ p = 0.001, \ \eta^2 = 0.55 \)], with a decrease SICI in M1Anode and an increase in SICI in M1Cathode after real stimulation relative to sham. There were no significant main effects of time or interactions between stimulation and time (see Additional file 1, Table A.2 with full statistics).

![Fig. 2 Transcranial magnetic stimulation (TMS) measurements before (baseline) real and sham tDCS. The data were recorded from paretic and non-dominant left extensor carpi radialis muscles in stroke survivors (n = 18) and healthy controls (n = 14), respectively. Mean and standard error across individuals is shown. a Resting and active motor threshold (rMT, aMT, % of maximum stimulator output). b Motor evoked potential (MEP). c Ipsilateral silent period (iSP). d Short-interval intracortical inhibition (SICI). Measures with statistical significance are indicated as: *p < 0.05, **p < 0.01, ***p < 0.001.](image-url)
0.48; \text{M1Cathode} F (1,15) = 12.5, p = 0.003, \eta^2_p = 0.46], reflecting a shorter iSP in \text{M1Anode} and a longer iSP in \text{M1Cathode} after real stimulation relative to sham. There were no significant main effects of time, and no significant interactions (Table A.2).

There were no main effects or interactions in either \text{M1} in terms of SICI change (all p’s > 0.1, Table A.2). In line with the non-significant effects of group between stroke survivors and controls, the results in controls were highly similar to those in stroke survivors (Fig. 3, Table A.3).

**Stroke survivors exhibit smaller baseline ipsilesional \(\alpha\)- and \(\beta\)- ERSs than controls**

We then wished to see whether the changes in neural excitability as revealed by TMS was reflected in changes in frequency-specific neural activity as measured using MEG. MEG data were acquired from 12 healthy controls and 11 stroke survivors. Initially, we wanted to investigate whether there were any differences in MEG metrics (\(\alpha\)-ERD, \(\alpha\)-ERS, \(\beta\)-ERD, \(\beta\)-ERS) before tDCS, between stroke survivors and controls (Fig. 4a). Since there were no differences in any baseline MEG metric between the two baseline measures in either group (all p’s > 0.1), the mean of the two baseline measures were used for subsequent analyses. The mixed model ANOVAs and statistics details were summarized in Table A.4. The baseline ERS peak amplitudes in the ipsilesional [right for controls] hemisphere was significantly smaller in stroke survivors than controls in both the \(\alpha\)- [U = 27, \(p = 0.015, r = 0.51\)] and \(\beta\)-frequency bands [U = 17, \(p = 0.002, r = 0.64\)]. Baseline ERS peak amplitude in the contralesional [left for controls] hemisphere was significantly smaller in stroke survivors than controls in the \(\beta\)-band [U = 20, \(p = 0.005, r = 0.59\)], but not in the \(\alpha\)-band [U = 32, \(p = 0.036, r = 0.44, \alpha = 0.025\)].

**Dual-tDCS leads to an increase in \(\alpha\)-ERS in \text{M1Anode} in stroke survivors**

Next, we wished to investigate the neural response to dual-tDCS. We first wished to examine whether there was a significant difference between stroke survivors and controls in response to stimulation. We therefore performed a set of 2 × 2 × 2 mixed-design ANOVAs with group (patients, controls) as a between-subjects factor, stimulation (real, sham) and frequency band (\(\alpha\), \(\beta\)) as within-subjects factors, and normalized MEG measure as dependent variable for \text{M1 Anode-ERD}, \text{M1 Anode-ERS}, \text{M1Cathode-ERD} and \text{M1 Cathode-ERS} separately. These demonstrated that there were no significant differences between controls and stroke survivors in response to dual-tDCS in either hemisphere (all p’s > 0.1).

We then wanted to explore the group-specific effects of dual-tDCS in stroke survivors alone. Two 2 × 2 × 2 repeated measures ANOVAs with factors of stimulation (real, sham), frequency band (\(\alpha\), \(\beta\)) and time window (ERD, ERS) were performed for \text{M1Anode} and \text{M1Cathode} separately. In \text{M1Anode} there was a significant main effect of stimulation [F (1,10) = 6.04, \(p = 0.034, \eta^2_p = 0.38\)], but not of frequency band or time window. There was a
significant interaction between stimulation and time window \( F (1,11) = 5.44, p = 0.042, \eta^2_p = 0.35 \). Therefore, two 2x2 repeated measures ANOVAs with factors of stimulation (real, sham) and frequency band (\( \alpha \), \( \beta \)) were performed for M1 Anode-ERD and M1 Anode-ERS separately. No significant differences were observed in M1 Anode-ERD (all \( p \)'s > 0.1). However, there was a significant main effect of stimulation in M1 Anode-ERS, \( F (1,10) = 10.88, p = 0.008, \eta^2_p = 0.52 \), but no significant main effect of frequency band nor stimulation by frequency band interaction. Post-hoc testing revealed that \( \alpha \)-ERS in M1 Anode significantly increased after stimulation compared with sham \( t (10) = 3.19, p = 0.01, d = 0.96 \). There was also a trend of increase in \( \beta \)-ERS in M1 Anode after stimulation compared with sham \( t (10) = 2.42, p = 0.036, d = 0.73, \alpha = 0.025 \); Fig. 4b and c, full statistics in Table A.5).

The equivalent analyses in M1 Cathode revealed no significant effects of stimulation (Table A.5). There were no significant effects of stimulation in controls in any MEG metric studied (all \( p \)'s > 0.1).

Dual-tDCS-induced change in \( \alpha \)-ERS in ipsilesional M1 correlates with behaviour

This study was performed to understand the neurophysiological underpinnings of tDCS post-stroke. We therefore wished to explore the relationship between the observed stimulation-related increased \( \alpha \)-ERS in the ipsilesional M1 Anode, to address the hypothesis that tDCS-induced changes in neurophysiological measures may relate to functional status. We demonstrated that the stimulation-related change in \( \alpha \)-ERS (i.e. change with real stimulation compared to sham) was positively correlated with concurrent paretic upper limb motor scores \( r = 0.904, p < 0.001 \) for ARAT; \( r = 0.744, p = 0.009 \) for FMA-UE, Fig. 4d), such that stroke survivors with better function had larger stimulation-related \( \alpha \)-ERS change in ipsilesional M1. No significant correlations were demonstrated between tDCS-induced change in any TMS measure and tDCS-induced change in any other MEG metrics (all \( p \)'s > 0.1).

Responsiveness to dual-tDCS was predicted by interhemispheric inhibition imbalance, as reflected by iSP ratio

There was no statistically difference in response rate between stroke survivors and controls. In M1 Anode 93% of controls were “high” responders and 7% “medium”, 61% of stroke survivors were “high” responders and 28% “medium” \( \chi^2(2) = 4.40, p = 0.07 \). In M1 Cathode the rates were 86 and 7% in controls and 67 and 5% in stroke survivors \( \chi^2(2) = 2.89, p = 0.24 \). 79% of controls and 44% of stroke survivors were high responders in both hemispheres \( \chi^2(1) = 3.80, p = 0.05 \).
Only 3 stroke survivors were "low" responders in both hemispheres, all of whom had relatively severe hand paresis (cases 3, 8, 15).

A summary schematic of the neural changes elicited by dual-tDCS in both stroke survivors and controls is given in Fig. 5a. Given the variability in response to tDCS, we believed it would be important to explore the physiological underpinnings of this variability if possible. We therefore ran a multiple regression in stroke survivors to predict MEP change (change of MEP amplitude 15 min after real tDCS stimulation relative to sham) from six independent variables: age, gender, baseline FMA-UE score, baseline MEP ratio (baseline MEP amplitude of ipsilesional hemisphere (IH) relative to contralesional hemisphere (CH)), baseline iSP ratio (CH → IH baseline iSP / IH → CH baseline iSP), and baseline α-ERS ratio (baseline M1 ERS peak amplitude of IH relative to CH). After eliminating the least significant variables (p = 0.59 for age, p = 0.99 for gender, p = 0.57 for FMA-UE, p = 0.52 for baseline MEPs ratio, and p = 0.41 for baseline α-ERS ratio), the greatest explanatory power for the responsiveness to tDCS was achieved with the iSP ratio (R² = 0.253, p = 0.047). In this study, stroke survivors showed significantly higher iSP ratio than controls [Stroke survivors 1.22 (1.00 – 1.95) [Median (Range)]; Controls 1.02 (0.99 – 1.95); U = 29.0, p = 0.001, r = 0.63]. Greater baseline iSP ratios predicted a smaller response to tDCS (Fig. 5b). Similar analysis applied in healthy controls using the same independent variables (except baseline FMA-UE) revealed no significant predictors.

Discussion
To our knowledge, this is the first study to demonstrate the changes of motor cortical excitability, transcallosal inhibition and neural oscillations in subacute stroke survivors after M1-M1 dual-tDCS stimulation. We demonstrated that dual-tDCS led to an increase in cortical excitability and a decrease in transcallosal inhibition, as reflected by a shorter iSP, in the anode-targeted, ipsilesional M1. We also demonstrated a decrease in excitability and an increase in transcallosal inhibition, in the cathode-targeted, contralesional M1. The interhemispheric balance in iSP ratio predicted an individual’s response to subsequent dual-tDCS. In addition, we demonstrated an increase in movement-related ERS in the α-band. The increase in α-ERS was correlated with the stroke survivors’ concurrent ARAT and FMA-UE.

Increased interhemispheric inhibition to ipsilesional M1 in stroke survivors was significantly modulated by dual-tDCS and predicted response to stimulation
In line with previous literature [53–55], we demonstrated a significant decrease in excitability in the ipsilesional hemisphere and a relatively excessive transcallosal inhibition from the contralesional to ipsilesional hemisphere at baseline, compared with controls, as evidenced by a decreased MEP amplitude and an increased iSP duration. The iSP ratio reflects the degree of asymmetry interhemispheric inhibition, with higher ratio representing more transcallosal inhibition from contralesional [left in controls] M1 toward ipsilesional [right in controls] M1. In addition, this interhemispheric inhibition asymmetry predicted response to dual-tDCS: the greater the inhibition from the contralesional towards ipsilesional M1, the less the ipsilesional M1 excitability could be modulated. This finding is consistent with the hypothesis that excessive transcallosal inhibition may further inhibit ipsilesional hemisphere excitability [4] and, therefore, decrease neuromodulatory response. This hypothesis is supported by animal studies, highlights the
role of post-stroke inhibition in motor recovery [56]. The iSP ratio was higher at baseline in stroke survivors than controls and predicted response to tDCS in stroke survivors, but not in controls. It may be, therefore, that while the underlying physiological processes this metric represents is modulated by tDCS in health and disease, it has a functionally important role in representing interhemispheric imbalance. However, we may have to consider the individual difference when applying brain stimulation based on the interhemispheric imbalance hypothesis [7, 38].

The ipsilesional SICI has been suggested to decrease within 3 months post-stroke compared to contralesional and healthy control SICI in a recent meta-analysis by McDonnell et al. [54]. However, we found comparable ipsilesional SICI between subacute (2–4 weeks post-stroke) patients and healthy controls (Fig. 2d). The inconsistency may arise from different stroke severity (our patients had milder paresis than those with significant SICI decrease) and other stroke profiles (our patients were more homogenous as subacute and subcortical infarction) [54]. Further studies are required to determine ipsilesional SICI changes in subacute stroke. The iSP reflects interhemispheric inhibition mediated by γ-Aminobutyric acid (GABA)-A and GABA-B receptors [53, 57], while SICI reflects intra-cortical inhibition mediated by GABA-A activity. Our stroke survivors showed more interhemispheric inhibition than controls, and this was modulated to a greater extent in stroke survivors than controls by dual-tDCS. Both GABA-A and GABA-B circuits have been reported to be modulated by unilateral tDCS [58–60], but none has been explored in dual-tDCS studies.

Initially decreased ipsilesional M1 α-ERS in stroke survivors increased after tDCS and correlated with motor function

The way in which dual-tDCS modulates sensorimotor rhythms in subacute stroke survivors has not yet been investigated from the literature. Here, we demonstrated that stroke survivors had decreased ERS in both the α- and β-bands in ipsilesional M1 compared with controls. In addition, tDCS-induced change in α-ERS was positively correlated with motor function (FMA-UE and ARAT). Since ERS is thought to represent post-movement cortical inhibition or fine movement control [61, 62] and increased during stroke recovery [63], tDCS may promote stroke motor recovery by modulating ipsilesional M1 circuit interneuronal activity following movement to obtain better motor control.

Some previous studies have demonstrated an increase in α-ERD amplitude during motor imagery after dual- or unilateral-anodal tDCS in chronic stroke [34, 64] and healthy adults [33, 65]. It is not clear why ERD changes were not observed here. One possibility may be derived from the differences between motor imagery and motor execution tasks (we adopted the latter only), which include different cortical excitability states, intracortical circuits and task complexity [66, 67].

Stroke survivors and controls showed similar high responsiveness to dual-tDCS

In our stroke survivors, the response rate and overall magnitude of the modulation effects in MEP were similar to controls (Fig. 3). Few tDCS studies have addressed responsiveness, but our cohort were much more responsive than those in a previous study using unilateral anodal tDCS [68]. One previous dual-tDCS study [27] in six subacute stroke survivors without healthy controls demonstrated no MEP changes. Further studies are required to compare responsiveness across different tDCS montages and stages of post-stroke motor recovery.

There are some limitations to this study. First, we enrolled a homogenous group of stroke survivors for more consistent dual-tDCS effects in subacute stroke, which may limit the interpretation of our results in other stroke groups. Second, while we observed robust neurophysiological effects of a single session of tDCS on upper limbs, we did not seek to quantify its behavioural effects or concurrent influences on lower limbs. It is therefore difficult to fully describe the potential clinical significance of our findings, though as discussed above, changes in pathophysiological markers may be seen as robust proxy markers of function.

Conclusions

Our study demonstrated that dual-tDCS modulates neurophysiological markers in post-stroke survivors. These findings add to our understanding of the effects of tDCS in this understudied population. Our results, particularly that inter-hemispheric inhibition asymmetry may influence the effects of dual-tDCS, are important for the design of future clinical studies, suggesting that baseline electrophysiological measures should be therefore considered in translational applications of tDCS in stroke recovery.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12984-020-00706-1.

Additional file 1. Table A.1, Table A.2, Table A.3, Table A.4, Table A.5. Full statistic values of analysis of variance.

Abbreviations

aMT: Active motor threshold; ANOVA: Analysis of variance; ARAT: Action research arm test; ECR: Extensor carpi radialis; EEG: Electroencephalography; EOG: Electrooculography; ERD: Event-related desynchronization; ERS: Event-related synchronization; FMA-UE: Fugl-Meyer assessment-upper extremity scale; ISI: Inter-stimulus interval; iSP: Ipsilateral silent period; M1: Primary
motor cortex; MEG: Magnetoencephalography; MEP: Motor evoked potentials; MRC: Medical Research Council scale of muscle strength; mRS: Modified Rankin Scale; NIHSS: National Institutes of Health Stroke Scale; rMT: Resting motor threshold; SICI: Short-interval intracortical inhibition; tDCS: Transcranial direct current stimulation; TMS: Transcranial magnetic stimulation

Acknowledgements
We gratefully thank Wen-Yung Sheng for providing statistical advice. We thank the staff of the Clinical Research Core Laboratory and the Stroke Registry of the Taipei Veterans General Hospital for providing experimental facilities and collecting registry data, respectively. We also thank the Pervasive Artificial intelligence Research Labs in Taiwan.

Authors’ contributions
I.J.K., C.W.T., Y.A.T., S.C.T. and S.P.H. recruited participants, conducted the experiments and analysed the results. I.H.L., I.U.K. and C.W.T. conceived the experiments and wrote the manuscript. C.J.L., W.K.L., C.H.J., C.Z. and C.J.S. provided feedback and edited the manuscript. All authors reviewed the manuscript. The authors read and approved the final manuscript.

Funding
This work was supported by the Taiwan Ministry of Science and Technology [grant numbers 106–2314-B-075-019-MY3, 108–2634-F-008-003]; the Taipei Veterans General Hospital [grant numbers V107C-064, V108C-052, V109C-034]; the Taiwan Ministry of Education [Academic Strategic Alliance Project between Taiwan and Oxford University]; and the National Yang-Ming University [Brain Research Center, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Taiwan Ministry of Education]; C.J.S holds a Sir Henry Dale Fellowship, funded by the Wellcome Trust and the Royal Society (102584/Z/13/Z). The work was supported by the NIHR Oxford Health Biomedical Research Centre. The Wellcome Centre for Integrative Neuroimaging is supported by core funding from the Wellcome Trust (20319/Z/16/2).

Availability of data and materials
The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The study was approved by the ethics committee of Taipei Veterans General Hospital. All subjects provided written informed consent before participation.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Brain Science, Brain Research Center, National Yang-Ming University, No.155, Sec. 2, Linnong St., Beitou Dist, Taipei City 112, Taiwan.
2Department of Neurosurgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shihpai Rd., Beitou Dist, Taipei City 112, Taiwan.
3Department of Neurology, Far Eastern Memorial Hospital, No.21, Sec. 2, Nanya S. Rd., Banqiao Dist, New Taipei City 220, Taiwan.
4Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shihpai Rd., Beitou Dist, Taipei City 112, Taiwan.
5Institute of Cognitive Neuroscience, National Central University, No.300, Zhongda Rd., Zhongli Dist, Taoyuan City 320, Taiwan.
6Welcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DL, UK.
7Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX1 3TH, UK.
8MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, UK.

Received: 8 January 2020 Accepted: 1 June 2020
Published online: 11 June 2020

References
1. Kubo N. Non-invasive brain stimulation to enhance post-stroke recovery. Front Neural Circuits. 2016;10:56.
2. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.
3. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.
4. Takeuchi N, Izumi S. Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views. Stroke Res Treat. 2012;2012:584727.
5. Elsner B, Kugler J, Pohl M, Mehrholz I. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3:CD009645.
6. Calderon MAV, Miralles AN, Pimentel MJ, Estella JM, Ledesma MJS. Analysis of the factors related to the effectiveness of transcranial current stimulation in upper limb motor function recovery after stroke: a systematic review. J Med Syst. 2019;43(3):69.
7. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferrari F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.
8. Mo JF, Lee A, Kim MS, Park E, Chang WH, Shin YJ, et al. Prediction of motor recovery using quantitative parameters of motor evoked potential in patients with stroke. Ann Rehabil Med. 2016;40(6):806.
9. Labruna L, Jamil A, Fresnoza S, Batsikadze G, Kuo M-F, Vanderschelden B, et al. Efficacy of anodal Transcranial direct current stimulation is related to sensitivity to Transcranial magnetic stimulation. Brain Stimulation. 2016;9(1):18–15.
10. Kidgell DJ, Goodwill AM, Frazier AK, Daly RM. Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neurosci. 2013;14:64.
11. Karok S, Fletcher D, Witney AG. Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning. Neuropsychologia. 2017;94:984–95.
12. Koyama S, Tanaka S, Tanabe S, Sadato N. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement. Neurosci Lett. 2015;588:49–53.
13. Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103.
14. Karok S, Witney AG. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation. PLoS One. 2013;8(12):e85693.
15. Tazoe T, Endoh T, Kitamura T, Ogata T. Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLoS One. 2014;9(12):e114244.
16. Mordillo-Mateos L, Turpin-Fenoll L, Millan-Pascual J, Nunez-Perez N, Panayavin L, Gomez-Arquelles JM, et al. Effects of simultaneous bilateral tDCS of the human motor cortex. Brain Stimul. 2012;5(3):214–22.
17. Cambridge AB, Sinear JW, Bylow WD. T-wave’ recruitment determines response to tDCS in the upper limb, but only so far. Brain Stimul. 2015;8(6):1124–9.
18. O’Shea J, Boudrias MH, Stagg CJ, Bachtar V, Kischka U, Blicher JU, et al. Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage. 2014;85:924–33.
19. Goodwill AM, Teod WP, Morgan P, Daly RM, Kidgell DJ. Bihemispheric-tDCS and upper limb rehabilitation improves retention of motor function in chronic stroke: a pilot study. Front Hum Neurosci. 2016;10:258.
20. Bolognini N, Vallar G, Casati C, Latif LA, El-Nazer R, Williams J, et al. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabilit Neural Repair. 2011;25(9):819–29.
21. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75(24):2176–84.
22. Lefebvre S, Dricot L, Laloué P, Gradkowski W, Desfontaines P, Varard F, et al. Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain. 2015;138(Pt 1):149–63.
23. Williams JA, Pascual-Leone A, Fregni F. Interhemispheric modulation induced by cortical stimulation and motor training. Phys Ther. 2010;90(3):398–410.

24. Straudi S, Fregni F, Martinuzzi C, Pavarelli C, Salvioli S, Basaglia N. tDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke. Biomed Res Int. 2016;2016:5068127.

25. Del Felice A, Dallol V, Masiero S, Manganotti P. Contralateral cathodal versus dual transcranial direct current stimulation for decreasing upper limb spasticity in chronic stroke patients: a clinical and neurophysiological study. J Stroke Cerebrovasc Dis. 2012;21(2):932–941.

26. Dehern S, Gillauz M, Leujeune T, Delaunouc E, Mbonda P, Vandermeeren Y, et al. Effectiveness of a single session of dual-transcranial direct current stimulation in combination with upper limb robotic-assisted rehabilitation in chronic stroke patients: a randomized, double-blind, cross-over study. Int J Rehabil Res. 2018;41(2):138–145.

27. Wang QM, Cui H, Han SJ, Black-Schaffer R, Volz MS, Lee Y-T, et al. Combination of transcranial direct current stimulation and methylphenidate in subacute stroke. Neurosci Lett. 2014;569:6–11.

28. Tangwiriyasakul C, Verhagen R, WLC R, van MJAM P. Temporal evolution of event-related desynchronization in a stroke: A pilot study. Clinical Neurophysiology. 2013;125:1112–20.

29. Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsukau T, et al. Multimodal imaging of brain reorganization in motor areas of the contralateral hemisphere of well recovered patients after capsular stroke. Brain. 2006;129(Pt 3):791–808.

30. Shiner CT, Tang B, Johnson BW, McNulty PA. Cortical beta oscillations and motor thresholds differ across the spectrum of post-stroke motor impairment, a preliminary MEG and TMS study. Brain Res. 2015;1326:26–37.

31. Bartur G, Pratt H, Soroker N. Changes in Mu and Beta Amplitude of the EEG induced by cortical stimulation and motor training with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil. 2015;96(Suppl):S79–87.

32. Cramer SC. Repairing the human brain after stroke: I. mechanisms of repair after stroke. Nature. 2015;9:105.

33. Vollenweider P, Steinhoff PE, Wollmann H, Puschmann M, Berardelli A, et al. Modulation of motor cortex excitability after anodal transcranial direct current stimulation in combination with upper limb robotic-assisted rehabilitation. Brain Res. 2012;1538(1):76–82.

34. Lang N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcortical excitability. Exp Brain Res. 2004;156(4):439–43.

35. Yang YR, Tseng CY, Chiou SY, Liao KK, Cheng SJ, Lai KL, et al. Combination of rTMS and treadmill training modulates corticofmotor inhibition and improves walking in Parkinson disease: a randomized trial. Neurorehabil Neural Repair. 2015;27(11):79–86.

36. Chiou SY, Wang Ry, Liao RK, Wu YT, Lu CF, Yang YR. Co-activation of primary motor cortex ipsilateral to muscles contracting in a unilateral motor task. Clin Neurophysiol. 2013;124(7):1533–63.

37. Kujari T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.

38. Xu HF, Huang YZ, Lin YY, Tang CW, Liao KK, Lee PL, et al. Intermitent theta burst stimulation over ipsilesional primary motor cortex of subacute ischemic stroke patients: a pilot study. Brain Stimul. 2012;5(2):166–74.

39. Tadel F, Bailer S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716.

40. Härnäläinen M, Ilmoniemi R. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput. 1994;32(1):35–42.

41. Putscharl G, Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

42. Teo WP. Measures to predict the event-related desynchronization in acute stroke: A pilot study. J Stroke Cerebrovasc Dis. 2016;25(12):2932–86.

43. Chiou SY, Wang Ry, Liu RK, Wu YT, Lu CF, Yang YR. Induction of GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468(7321):305–9.

44. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–64.

45. Tremblay S, Beaule V, Lepage JF, Theret H. Anodal transcranial direct current stimulation modulates GABA-related intracortical inhibition in the M1 of healthy individuals. Neuroreport. 2013;24(1):46–50.

46. Antal A, Temey D, Kuhl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intraocular inhibition. J Pain Symptom Manag. 2010;39(5):809–903.

47. Hummel F, Celnik P, Giroux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):390–9.

48. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Modulation of motor cortex excitability after anodal transcranial direct current stimulation in combination with upper limb robotic-assisted rehabilitation. Brain Stimul. 2012;5(2):166–74.

49. Hämäläinen M, Ilmoniemi R. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput. 1994;32(1):35–42.

50. Putscharl G, Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

51. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–64.

52. Tremblay S, Beaule V, Lepage JF, Theret H. Anodal transcranial direct current stimulation modulates GABA-related intracortical inhibition in the M1 of healthy individuals. Neuroreport. 2013;24(1):46–50.

53. Antal A, Temey D, Kuhl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intraocular inhibition. J Pain Symptom Manag. 2010;39(5):809–903.

54. Hummel F, Celnik P, Giroux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):390–9.

55. Putscharl G, Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

56. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–64.

57. Tremblay S, Beaule V, Lepage JF, Theret H. Anodal transcranial direct current stimulation modulates GABA-related intracortical inhibition in the M1 of healthy individuals. Neuroreport. 2013;24(1):46–50.

58. Antal A, Temey D, Kuhl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intraocular inhibition. J Pain Symptom Manag. 2010;39(5):809–903.

59. Hummel F, Celnik P, Giroux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):390–9.

60. Putscharl G, Da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

61. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–64.

62. Tremblay S, Beaule V, Lepage JF, Theret H. Anodal transcranial direct current stimulation modulates GABA-related intracortical inhibition in the M1 of healthy individuals. Neuroreport. 2013;24(1):46–50.

63. Antal A, Temey D, Kuhl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intraocular inhibition. J Pain Symptom Manag. 2010;39(5):809–903.

64. Hummel F, Celnik P, Giroux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):390–9.