Hopf Algebras of Dimension pq

Siu-Hung Ng
Mathematics Department, Towson University, Baltimore, MD 21252

Abstract

Let H be a non-semisimple Hopf algebra with antipode S of dimension pq over an algebraically closed field of characteristic 0 where $p \leq q$ are odd primes. We prove that $\text{Tr}(S^{2p}) = p^2d$ where $d \equiv pq$ (mod 4). As a consequence, if p, q are twin primes, then any Hopf algebra of dimension pq is semisimple.

0 Introduction

Let p be an odd prime and k an algebraically closed field of characteristic 0. If H is a semisimple Hopf algebra of dimension p^2 over k, then H is isomorphic to $k[Z_{p^2}]$ or $k[Z_p \times Z_p]$ by [Mas96]. A more general result for semisimple Hopf algebras of dimension pq, where p, q are odd primes, is obtained by [EG98]. In [Ng02], the author proved that non-semisimple Hopf algebras of dimension p^2 over k are Taft algebras and hence completed the classification of Hopf algebras of dimension p^2. However, there is no known example of non-semisimple Hopf algebras of dimension pq, with $p < q$. In fact, it is shown in [AN01] and [BD02] that there is no non-semisimple Hopf algebra over k of dimension 15, 21, 35, 55, 77, 65, 91 or 143.

By [Ng02], if $p \leq q$ are odd primes and H is a non-semisimple Hopf algebra with antipode S of dimension pq, then $S^{4p} = id_H$ and $\text{Tr}(S^{2p}) = p^2d$ for some odd integer d. In this paper, we prove that $d \equiv pq$ (mod 4). As a consequence, we prove that if p, q are twin primes, any Hopf algebra of dimension pq over k is semisimple. Recently, Etingof and Gelaki also announce a even more general result [EG03] which covers the cases when $p < q \leq 2p + 1$.

1 Notation and Preliminaries

Throughout this paper, $p \leq q$ are odd primes, k denotes an algebraically closed field of characteristic 0, and H denotes a finite-dimensional Hopf algebra over k with antipode S. Its comultiplication and counit are, respectively, denoted by Δ and ε. We will use Sweedler’s notation [Swe69]:

$$\Delta(x) = \sum x_{(1)} \otimes x_{(2)}.$$

A non-zero element $a \in H$ is called group-like if $\Delta(a) = a \otimes a$. The set of all group-like elements $G(H)$ of H is a linearly independent set, and it forms a group under the multiplication of H. For the details of elementary aspects for finite-dimensional Hopf algebras,
Let \(\lambda \in H^* \) be a non-zero right integral of \(H^* \) and \(\Lambda \in H \) a non-zero left integral of \(H \). There exists \(\alpha \in \text{Alg}(H, k) = G(H^*) \), independent of the choice of \(\Lambda \), such that \(\Lambda a = \alpha(a) \Lambda \) for \(a \in H \). Likewise, there is a group-like element \(g \in H \), independent of the choice of \(\lambda \), such that \(\beta \lambda = \beta(g) \lambda \) for \(\beta \in H^* \).

Follow [Rad76]:

\[
S^4(a) = g(\alpha \to a \leftarrow \alpha^{-1})g^{-1} \quad \text{for} \quad a \in H ,
\]

where \(\to \) and \(\leftarrow \) denote the natural actions of the Hopf algebra \(H^* \) on \(H \) described by

\[
\beta \to a = \sum a_{(1)} \beta(a_{(2)}) \quad \text{and} \quad a \leftarrow \beta = \sum \beta(a_{(1)}) a_{(2)}
\]

for \(\beta \in H^* \) and \(a \in H \). If \(\lambda \) and \(\Lambda \) are normalized, there are formulae for the trace of any linear endomorphism on \(H \).

Theorem 1.1 [Rad90, Theorem 1] Let \(H \) be a finite-dimensional Hopf algebra with antipode \(S \) over the field \(k \). Suppose that \(\lambda \) is a right integral of \(H^* \), and that \(\Lambda \) is a left integral of \(H \) such that \(\lambda(\Lambda) = 1 \). Then for any \(f \in \text{End}_k(H) \),

\[
\text{Tr}(f) = \sum \lambda \left(S(\Lambda_{(2)}) f(\Lambda_{(1)}) \right) = \sum \lambda \left((S \circ f)(\Lambda_{(2)}) \Lambda_{(1)} \right) = \sum \lambda \left((f \circ S)(\Lambda_{(2)}) \Lambda_{(1)} \right) .
\]

Following [Ng02, Section 2], the index of \(H \) is the least positive integer \(n \) such that \(S^{4n} = id_H \) and \(g^n = 1 \).

Suppose that \(H \) is a finite-dimensional Hopf algebra of odd index \(n > 1 \), and that \(\omega \in k \) is a primitive \(n \)th of unity. Since \(g^n = 1 \) and \(\alpha \) is an algebra map, \(\alpha(g) \) is a \(n \)th root of unity. There exists a unique element \(x(\omega, H) \in \mathbb{Z}_n \) such that

\[
\alpha(g) = \omega^{x(\omega, H)}. \]

Following the notation in [Ng02], we let

\[
H^\omega_{a,i,j} = \{ u \in H \mid S^2(u) = (-1)^a \omega^i u \text{ and } ug = \omega^j u \}
\]

for any \((a, i, j) \in \mathbb{Z}_2 \times \mathbb{Z}_n \times \mathbb{Z}_n \). Since the \(r(g) \in \text{End}_k(H) \), defined by \(r(g)(a) = ag \) for \(a \in H \), commutes with \(S^2 \), we have

\[
H = \bigoplus_{a \in \mathbb{Z}_n} H^\omega_a \quad (1.2)
\]
where \mathcal{K}_n denotes the group $\mathbb{Z}_2 \times \mathbb{Z}_n \times \mathbb{Z}_n$.

Using the eigenspace decomposition of H in (1.2), the diagonalization of a left integral Λ of H admits the following form (cf. [Ng02]),

$$
\Delta(\Lambda) = \sum_{a \in \mathcal{K}_n} \left(\sum_{u_a \otimes v_{-a+x}} \right)
$$

(1.3)

where $\sum_{u_a \otimes v_{-a+x}} \in H_{\omega_a} \otimes H_{\omega_{-a+x}}$ and $x = (0, -x(\omega, H), x(\omega, H))$ in \mathcal{K}_n.

In the sequel, we will call the expression in equation (1.3) the **normal form** of $\Delta(\Lambda)$ associated with ω. We will simply write $u_a \otimes v_{-a+x}$ for the sum $\sum_{u_a \otimes v_{-a+x}}$ in the normal form of $\Delta(\Lambda)$.

Let E_{ω}^a, $a \in \mathcal{K}_n$, be the set of orthogonal projections associated with the decomposition (1.2). Then

$$
\dim(H_{\omega}^a) = \text{Tr}(E_{\omega}^a)
$$

and we have the following lemma.

Lemma 1.2 Let H be a finite-dimensional Hopf algebra with the antipode S of odd index $n > 1$ over k, and $\omega \in k$ a primitive nth root of unity. Let $x = x(\omega, H) \in \mathbb{Z}_n$ and $x = (0, -x, x)$. Then we have

$$
\dim(H_{\omega}^a) = \dim(H_{\omega}^{x-a})
$$

for all $a \in \mathcal{K}_n$.

Proof. Let Λ be a left integral for H and let λ be a right integral for H^* such that $\lambda(\Lambda) = 1$. Using the normal form of $\Delta(\Lambda)$ associated with ω in (1.3) and Theorem 1.1 we have

$$
\text{Tr}(E_{\omega}^a) = \sum_{b \in \mathcal{K}_n} \lambda(S(v_{-b+x})E_{\omega}^a(u_b)) = \lambda(S(v_{-a+x})u_a) .
$$

By Theorem 1.1 again, we also have

$$
\text{Tr}(E_{\omega}^{x-a}) = \sum_{b \in \mathcal{K}_n} \lambda(S(E_{-a+x}^{\omega}(v_{-b+x}))u_b) = \lambda(S(v_{-a+x})u_a) .
$$

Therefore, $\text{Tr}(E_{\omega}^a) = \text{Tr}(E_{\omega}^{x-a})$. Since $\dim(H_{\omega}^a) = \text{Tr}(E_{\omega}^a)$ for any $a \in \mathcal{K}_n$, the result follows.

Theorem 1.3 [Ng02] Let H be a Hopf algebra of dimension pq over k with antipode S, where $p \leq q$ are odd primes. Then the index of H and the order of S^4 are equal to p, and $\text{Tr}(S^{2p}) = p^2d$ for some odd integer d.

■
Lemma 1.4 Suppose that H is a non-semisimple Hopf algebra of dimension pq over k where $p \leq q$ are odd primes, and that $\omega \in k$ is a primitive pth root of unity. Let g and α be the distinguished group-like elements of H and H^* respectively. If g is non-trivial, then the integer d in Theorem 1.3 is given by

$$ \dim(H_{0,i,j}^\omega) - \dim(H_{1,i,j}^\omega) = d $$

for all $i, j \in \mathbb{Z}_p$. Moreover, if both g and α are not trivial, then

$$ \dim(H_{a,i,j'}^\omega) = \dim(H_{a,i,j}^\omega) $$

for any $a \in \mathbb{Z}_2$ and $i, j, j' \in \mathbb{Z}_p$.

Proof. If α is trivial and $g \neq 1$, then by [Ng02, Lemma 4.3],

$$ \dim(H_{0,i,j}^\omega) - \dim(H_{1,i,j}^\omega) = d $$

If both g and α are non-trivial, then by the proof of [Ng02, Proposition 5.3], H is isomorphic to the biproduct

$$ R \times B \quad (1.4) $$

as Hopf algebras (cf. [Rad85]) where $B = k[g]$ and R is a right B-comodule subalgebra of H. It is shown in [AS98, section 4] that R is invariant under S^2. Moreover, in the identification $H \cong R \otimes B$ given by multiplication, one has

$$ S^2 = T \otimes id_B \quad (1.5) $$

where T is the restriction of S^2 on R. Let

$$ R_{a,i} = \{ x \in R \mid S^2(x) = (-1)^a \omega^i x \} $$

for any $(a, i) \in \mathbb{Z}_2 \times \mathbb{Z}_p$. It follows from the proof of [Ng02, Proposition 5.3] that

$$ \dim(R_{0,i}) - \dim(R_{1,i}) = d $$

By (1.4),

$$ H_{a,i,j}^\omega = R_{a,i} \otimes e_j $$

for all $(a, i, j) \in \mathcal{K}_p$ where e_j is the central idempotent of B such that $e_j g = \omega^i e_j$. Thus,

$$ \dim(H_{a,i,j}^\omega) = R_{a,i} $$

for all $(a, i, j) \in \mathcal{K}_p$ and hence

$$ \dim(H_{0,i,j}^\omega) - \dim(H_{1,i,j}^\omega) = d $$

\[\blacksquare\]
2 Proofs of Main Results

Lemma 2.1 Let H be a finite-dimensional Hopf algebra with antipode S of odd index $n > 1$ over k, and $\omega \in k$ a primitive nth root of unity. Let $\ell \in \mathbb{Z}_n$ such that $2\ell = x(\omega, H)$. Then

$$\dim(H^\omega_{1,-\ell,\ell})$$

is even.

Proof. Let V be space of all $f \in H^*$ such that $f(u) = 0$ for $u \in H^\omega_{a,i,j}$ whenever $(a, i, j) \neq (1, -\ell, \ell)$. Obviously, V is isomorphic to $(H^\omega_{1,-\ell,\ell})^*$ and so $\dim(V) = \dim(H^\omega_{1,-\ell,\ell})$. Let Λ be a non-zero left integral of H and

$$\Delta(\Lambda) = \sum_{a \in \mathbb{K}_n} u_a \otimes v_{-a+x}$$

the normal form of $\Delta(\Lambda)$ associated with ω where $x = (0, -2\ell, 2\ell)$. Then

$$(f, h) = (f \otimes h)\Delta(\Lambda)$$

defines a non-degenerate bilinear form on H^*. Let $f \in V$ such that $(f, h) = 0$ for all $h \in V$. For any $h' \in H^*$, there exists $h \in V$ such that $h'(u) = h(u)$ for all $u \in H^\omega_{1,-\ell,\ell}$. Thus

$$(f, h') = \sum_{a \in \mathbb{K}_n} f(u_a)h'(v_{-a+x}) = f(u_{1,-\ell,\ell})h'(v_{1,-\ell,\ell}) = (f, h) = 0.$$

By the non-degeneracy of (\cdot, \cdot), $f = 0$. Therefore, (\cdot, \cdot) induces a non-degenerate bilinear form on V. Using [Rad94, Theorem 3(d)], we have

$$\Delta^{op}(\Lambda) = \sum_{(a,i,j) \in \mathbb{K}_n} (-1)^a \omega^{-i-j} \left(\sum_{a,j} u_{a,i,j} \otimes v_{a,-2\ell-i,2\ell-j} \right).$$

Therefore, for any $f, h \in V$,

$$(h, f) = (f \otimes h)\Delta^{op}(\Lambda) = -f(u_{1,-\ell,\ell})h(v_{1,-\ell,\ell}) = -(f, h).$$

Hence, V admits a non-degenerate alternating form and so $\dim(V)$ is even. ■

If H is a finite-dimensional Hopf algebra of index $n > 1$, we define

$$H_- := \{ u \in H \mid S^{2n}(u) = -u \},$$
$$H_+ := \{ u \in H \mid S^{2n}(u) = u \}.$$

Corollary 2.2 Suppose H is a finite-dimensional Hopf algebra with antipode S of odd index $n > 1$. Then, the subspace H_- is of even dimension.
Proof. Let $\omega \in k$ be an nth of unity and $\ell \in \mathbb{Z}_n$ such that $2\ell = x(\omega, H)$. We then have

$$H_-= \bigoplus_{i,j \in \mathbb{Z}_n} H_{1,i,j}^\omega = H_{1,-\ell,\ell}^\omega \oplus \left(\bigoplus_{\text{some } i,j \in \mathbb{Z}_n \atop (i,j) \neq (-\ell,\ell)} H_{1,i,j}^\omega \oplus H_{1,-2\ell-i,2\ell-j}^\omega \right).$$

It follows from Corollary 1.2 and Lemma 2.1, dim(H_-) is even. ■

Theorem 2.3 Let H be a non-semisimple Hopf algebra with antipode S of dimension pq where $p \leq q$ are odd primes. Then

$$\text{Tr}(S^{2p}) = p^2d \quad \text{and} \quad d \equiv pq \pmod{4}.$$

Proof. By Theorem 1.3, H is of index p and Tr$(S^{2p}) = p^2d$ for some odd integer d. Since

$$\dim(H_+) + \dim(H_-) = pq$$

and

$$\text{Tr}(S^{2p}) = \dim(H_+) - \dim(H_-) = p^2d,$$

we have

$$\dim(H_-) = p(q - pd)/2.$$

By Corollary 2.2, $p(q - pd) \equiv 0 \pmod{4}$ or $d \equiv pq \pmod{4}$. ■

Theorem 2.4 For any pair of twin primes $p < q$, if H is a Hopf algebra of dimension pq, then H is semisimple.

Proof. Suppose there is a non-semisimple Hopf algebra H of dimension pq. By [LR88], H^* is also non-semisimple. Since dim(H) is odd, by [LR95, Theorem 2.1], H and H^* cannot be both unimodular. By duality, we may simply assume that H^* is not unimodular. It follows from Theorem 1.3 that $|G(H)| = p$ and so

$$\dim(C) \geq p$$

where C is the coradical of H. If dim$(C) = p$, then H is pointed and hence, by [Ste97, Corollary 4], H is semisimple. Therefore, dim$(C) > p$ and so we have

$$\text{Tr}(S^{2p}|_{H/C}) \geq -(pq - \dim(C)) > -pq + p = -p^2 - p.$$

It follows from [LR88, Lemma 3.2] that

$$\text{Tr}(S^{2p}|_C) \geq p.$$

Thus, we have

$$\text{Tr}(S^{2p}) = \text{Tr}(S^{2p}|_C) + \text{Tr}(S^{2p}|_{H/C}) > -p^2.$$

(2.1)

Since $pq \equiv -1 \pmod{4}$, by Theorem 2.3

$$\text{Tr}(S^{2p}) = -p^2$$

but this contradicts (2.1). ■

Acknowledgement

The author would like to thank P. Etingof for his useful suggestion for Theorem 2.4 and informing me his recent work [EG03] with S. Gelaki.
References

[AN01] Nicolás Andruskiewitsch and Sonia Natale, Counting arguments for Hopf algebras of low dimension, Tsukuba J. Math. 25 (2001), no. 1, 187–201. MR 2002d:16046

[AS98] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, Hopf algebras of order p^2 and braided Hopf algebras of order p, J. Algebra 199 (1998), no. 2, 430–454. MR 99c:16033

[BD02] Margaret Beattie and Sorin Dascalescu, Hopf Algebras of Dimension 14, Preprint arXiv:math.QA/0205243

[EG98] Pavel Etingof and Shlomo Gelaki, Semisimple Hopf algebras of dimension pq are trivial, J. Algebra 210 (1998), no. 2, 664–669. MR 99k:16079

[EG03] Pavel Etingof and Shlomo Gelaki, On Hopf Algebras of Dimension pq, Preprint arXiv:math.QA/0303359

[LR88] Richard G. Larson and David E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), no. 2, 267–289. MR 89k:16016

[LR95] Semisimple Hopf algebras, J. Algebra 171 (1995), no. 1, 5–35. MR 96a:16040

[Mas96] Akira Masuoka, The p^n theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc. 124 (1996), no. 3, 735–737. MR 96f:16046

[Mon93] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.

[Ng02] Siu-Hung Ng, Non-semisimple Hopf algebras of dimension p^2, J. Algebra 255 (2002), no. 1, 182–197.

[Rad76] David E. Radford, The order of the antipode of a finite dimensional Hopf algebra is finite, Amer. J. Math. 98 (1976), no. 2, 333–355. MR 53 #10852

[Rad85] The structure of Hopf algebras with a projection, J. Algebra 92 (1985), no. 2, 322–347. MR 86k:16004

[Rad90] The group of automorphisms of a semisimple Hopf algebra over a field of characteristic 0 is finite, Amer. J. Math. 112 (1990), no. 2, 331–357. MR 91b:16048

[Rad94] The trace function and Hopf algebras, J. Algebra 163 (1994), no. 3, 583–622. MR 95e:16039

[Şte97] D. Ştefăan, Hopf subalgebras of pointed Hopf algebras and applications, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3191–3193. MR 97m:16076
[Swe69] Moss E. Sweedler, *Hopf algebras*, W. A. Benjamin, Inc., New York, 1969, Mathematics Lecture Note Series.