Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

Ingrid Lea Karlska˚s1, Kristina Maudal1, Lars Axelsson2, Ida Rud2, Vincent G. H. Eijsink1, Geir Mathiesen1*

1 Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway, 2 Nofima – Norwegian Institute for Food, Fisheries and Aquaculture Research, Ås, Norway

Abstract

We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species.

Introduction

Lactic acid bacteria (LAB) are widely used in the food industry, and are also increasingly applied as probiotics and as producers of enzymes and metabolites, mainly due to their GRAS (Generally Regarded As Safe) status. LAB can contribute to the quality, preservation and safety of fermented food products [1], one reason being that LAB inhibit spoilage microbes by production of lactic acid and bacteriocins [2,3]. Several LAB are natural inhabitants of the GI-tract of animals and humans, and have potential as in situ delivery vectors of antigens and other medically interesting proteins [4]. Some species of lactobacilli have been studied extensively, and several Lactobacillus strains are known to exert probiotic effects on human health [5]. Recently, several studies have demonstrated that some lactobacilli have immune-stimulatory properties, which may be relevant when applying these bacteria for in situ delivery of molecules to mucosal surfaces [6,7]. Given the importance of the lactobacilli in (functional) food, their potential as cell factory and delivery vehicle, and the apparent functional variation between genus members, it is imperative that versatile tools for protein expression and secretion are available for a variety Lactobacillus species.

In the past two decades several expression systems for production of heterologous proteins in LAB have been developed [8,9], including systems that lead to secretion of the overexpressed protein [10–12]. Secretion of heterologous proteins is challenging and often leads to the use of heterologous DNA from distantly related microbes, coding for signal peptides (SPs). We have previously developed the pSIP expression vectors [12,13] which allow inducible protein expression using the regulatory machinery naturally involved in bacteriocin production in Lactobacillus sakei [3]. The original vectors have been developed further to allow secretion of the expressed heterologous proteins [14,15]. Genome-wide screening of SPs from L. plantarum, using NucA as model protein, revealed large variation between SPs, both in terms of expression yield (i.e. the amount of protein produced) and secretion efficiency (i.e. the amount of produced protein that is actually secreted) [15].

The pSIP system has been successfully applied for intracellular expression [16,17], secretion [18,19] and surface anchoring [20,21] of a variety of proteins in L. plantarum and L. sakei. Generally, the use of the pSIP vectors has been limited to derivatives containing the narrow host range 256rep replicon [22], although a broad-host-range derivative, pSIP411, was constructed early in the development of the pSIP system [13]. Moreover, the applicability of the previously cloned L. plantarum SPs in other Lactobacillus species has not yet been explored. Notably, Lactobacillus spp. display considerable variation in their probiotic, cell-wall, and molecular properties [23], which is relevant for their application in different environments or products. Furthermore, host factors can have effects on heterologous protein expression [24]. All in all, this highlights the importance of testing and adopting the pSIP expression vectors to a wider host range, and of verifying the usefulness of previously selected SPs in other Lactobacillus species.

The goal of the present study was to analyze the applicability of the pSIP expression system in lactobacilli, focusing on secretion of heterologous proteins in other Lactobacillus species than L. plantarum. Basic functionality of the pSIP system (i.e. inducible gene expression) was first tested in several lactobacilli using the broad-host range vector pSIP411. The original 256rep replicon in selected pSIP secretion vectors was then replaced with the replicon present in pSIP411 to enable expression and secretion of NucA in...
five different species of Lactobacillus: L. rhamnosus, L. brevis, L. gasseri and L. curvatus and L. plantarum. These species represent different phylogenetic groups within the genus Lactobacillus [25] and include both human and food isolates (Table 1). L. plantarum, L. gasseri and L. rhamnosus are known for their immunomodulatory properties [26–28] and L. rhamnosus GG, also known as LGG, is marketed as probiotic. L. brevis and L. curvatus are often found in fermented foods, and may have probiotic properties (e.g. [29]). L. plantarum and L. gasseri have been used extensively for *in situ* delivery of mucosal vaccines [30,31]. For secretion, we evaluated three SPs derived from the L. plantarum proteins Lp_3050, Lp_0373 and Lp_2578, which had previously shown different abilities to direct secretion of NucA in L. plantarum [15].

Table 1. Bacterial strains used in this study.

Strains	Comments, isolation	References or source
Lactococcus lactis IL1403	Subcloning host strain	[52]
Lactobacillus (L.) plantarum WCFS1	Human saliva, secretion host	[44]
L. brevis ATCC 8287	Green olives, secretion host	ATCC
L. rhamnosus GG	Human GI tract, secretion host	Valio Ltd, Finland [46]
L. curvatus DSM 20019 T	Milk, secretion host	DSMZ
L. gasseri ATCC 33323 T	Human GI tract, secretion host	[45]
L. acidophilus ATCC 4356 T	Human GI tract	ATCC
L. coryniformis NCIMB 9711 T	Silage	NCIMB
L. farciminis MF1292	Dry fermented sausage	[53]
L. helveticus ATCC 15009 T	Emmental cheese	ATCC
L. johnsonii MF2395	Human GI tract	Nofima, Norway
L. paracasei NCIMB 700151 T	Milk	NCIMB
L. pentosus DSM 20314 T	Corn silage	DSMZ
L. pentosus MF1300	Dry fermented sausage	[53]
L. plantarum NC8	Silage	[12]
L. plantarum MF1298	Dry fermented sausage	[53]
L. reuteri DSM 20016 T	Human GI tract	DSMZ
L. reuteri ATCC PTA 6475	Human mother’s milk	BioGaia, Sweden
L. sakei DSM 20017 T	Sake	DSMZ
L. sakei Lb790	Meat	[12]
L. sakei 23K	Dry fermented sausage	INRA, France [54]

doi:10.1371/journal.pone.0091125.t001

Table 2. Plasmids used in this study.

Plasmids	Comments	References or source
pSIP411	Initial screening and source of SH71rep	[13]
pEV	plp_2578AmyA derivative, no sp, no AmyA (negative control)	[20]
plp0373NucA	NucA fused to the sp₀₃₇₃ with 256_{rep} Em^R	[15]
plp03050NucA	NucA fused to the sp₀₃₀₅₀ with 256_{rep} Em^R	[15]
plp2578NucA	NucA fused to the sp₂₅₇₈ with 256_{rep} Em^R	[15]
plp0373NucA-SH71	NucA fused to the sp₀₃₇₃ with SH71rep Em^R	This work
plp3050NucA-SH71	NucA fused to the sp₃₀₅₀ with SH71rep Em^R	This work
plp2578NucA-SH71	NucA fused to the sp₂₅₇₈ with SH71rep Em^R	This work

doi:10.1371/journal.pone.0091125.t002
Table 3. Qualitative functionality of the pSIP inducible gene expression system in Lactobacillus strains grown at various temperatures.

Species (no. of strains)	Temperature (°C)	25	30	37
L. acidophilus (1)	+	+	+	+
L. brevis (1)	+	+	+	
L. caseiiformis (1)	+	+	+	+
L. curvatus (1)	+	+	+	
L. curvatus (1)	+	+	+	
L. farciminis (1)	+	+	+	-
L. gasseri (1)	+	+	+	+
L. helveticus (1)	-	-	-	-
L. johnsonii (1)	-	-	-	-
L. paracasei (1)	+	+	+	+
L. pentosus (2)	-	-	-	-
L. plantarum (3)	+	+	+	+
L. reuteri (2)	-	+	+	+
L. rhamnosus (1)	+	+	+	+
L. sakei (3)	+	+	+	+

*+ >100 Miller Units (MU) GUS activity; non-induced cultures were <30 MU in all cases.

+ poor growth at this temperature.

a no growth at this temperature.

doi:10.1371/journal.pone.0091125.t003

Heterologous Secretion in Lactobacillus

When required, antibiotics were added as follows: for E. coli, erythromycin (200 μg/mL); for L. lactis, erythromycin (10 μg/mL); for all Lactobacillus species, erythromycin (5 μg/mL).

Plasmid Purification and Preparation of Competent Cells

Plasmids from E. coli were purified using the Nucleospin plasmid miniprep kit (Macherey-Nagel GmbH & Co., Duren, Germany). For plasmid isolation from L. lactis cells were pretreated with GTE-buffer (50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA, pH 8.0) containing 40 mg/mL lysozyme, 0.8 mg/mL RNase and 80 U/mL mutanolysin prior to the lysis step in the plasmid miniprep protocol. L. lactis was used as sub cloning host and was transformed as described by Holo and Nes [32]. L. reuteri was transformed according to Ahrné et al. [33]. All other Lactobacillus strains were transformed essentially as described by Ankurst et al. [34], but with the following modifications: (1) 4% instead of 1% glycine was used in the preparation of electro-competent L. caseiiformis, and (2) for L. acidophilus, L. gasseri, L. helveticus, L. johnsonii, L. paracasei and L. rhamnosus, the cells were washed three times in wash buffer (5 mM Na-phosphate, 1 mM MgCl₂, pH 7.4), and resuspended in E-buffer (0.9 M sucrose, 3 mM MgCl₂, pH 7.4) before storage.

Functionality Screen of the pSIP Inducible Gene Expression System

Lactobacillus strains (Table 1) were transformed with pSIP411 [13]. Overnight cultures of the transformed strains were inoculated in MRS broth containing 5 μg/mL erythromycin, and incubated at 25, 30 or 37°C (three temperatures tested for each transformant). The cultures were induced by adding the inducing peptide pheromone (SppIP) to 100 ng/mL at OD₆₀₀ 0.3, and allowed to grow over night (approximately 15–20 h, depending on strain and temperature). β-glucuronidase (GUS) activity was determined as described by Axelsson et al. [35].

Cloning Strategy

To construct the modified secretion vectors, the SH71, rep fragment (2 kb) was generated by digesting the pSIP411 vector [13] with Acc65I and BamHI and ligated to the larger fragment generated by Acc65I/BamHI digestion of plasmids pLP0373NucA, pLP3050NucA and pLP2578NucA to replace the 256(rep) replicon. This yielded vectors pLP0373NucA-SH71, pLP3050NucA-SH71and pLP2578NucA-SH71. Constructs verified by DNA sequencing were electrotransformed into competent Lactobacillus spp.

SDS-PAGE Analysis and Western Blot Analysis

 Overnight cultures of Lactobacillus spp. harboring the newly constructed pSIP secretion vectors (Tables 1 and 2) were diluted in MRS medium containing 5 μg/mL erythromycin. The cultures were induced by adding the inducing peptide pheromone at OD₆₀₀ 0.3 as described previously [36]. Cells were harvested 4 hours after induction by centrifugation at 6 000×g for 7 min at 4°C, after which the supernatants were filtered (0.22 μm; PMSF was added to 1 mM final concentration. The supernatant samples were run on 10% NuPAGE Novex Bis-tris gels using MOPS as running buffer (both Invitrogen). The proteins in the supernatant fractions were visualized using the Pierce Silver Stain Kit for Mass Spectrometry from Thermo Scientific (Rockford, IL) following the manufacturer’s protocol. The cells were washed three times with ice-cold 0.9% (w/v) NaCl. To extract intracellular proteins, washed cells were resuspended in 0.1 M Tris-HCl (pH 8) containing 0.01 M EDTA and 1 M NaCl (TEN buffer; 5% of the harvesting volume), before adding PMSF (1 mM final concentration). The cells were disrupted with glass-beads using a FastPrep-24 instrument (MP Biomedicals, Solon, OH) (speed 6.5, 45 seconds at 4°C).

When western analysis was appropriate, proteins from both the intracellular and extracellular fraction were separated by SDS-PAGE as described above and transferred to a nitrocellulose
membrane using the iBlot Dry Blotting System (Invitrogen) according to manufacturer’s recommendations. Rabbit polyclonal anti-NucA antiserum against the peptide EFDKGQRTD-KYGRG [15,37] was obtained from ProSci Inc. (Poway, CA) and used as recommended by the manufacturer. Protein bands were visualized by using a horseradish peroxidase-conjugated (HRP) goat anti-rabbit antibody (Bio-Rad) and the enhanced chemiluminescent kit from Pierce (Roche, IL).

Plasmid Copy Number Analysis by Quantitative Real-time PCR

All primers used in this study (Table S1) were purchased from Operon Biotechnologies GmbH (Cologne, Germany). Total DNA was isolated and purified from cells harvested 3–4 hours after inductions (see above) using the phenol-chloroform extraction method as previously described [38]. DNA was isolated from two independent cultures of each transformant, and analyzed as independent replicates throughout the real-time PCR procedure. All real time qPCR amplifications were performed using a StepOnePlus™ Realtime PCR system (Applied Biosystems, Carlsbad, CA).

qPCR reactions were prepared in triplicate for both chromosomal (groEL) and plasmid (eryR) amplicons. Each reaction included 10 µl 2× Power SYBR® Green® PCR Master Mix (Applied Biosciences), 10 pmol of each primer and 1 µl of DNA template in a total reaction volume of 20 µl. In negative controls the DNA template was replaced with water.

The qPCR program was as follows: initial denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, and 60°C for 1 min. After the last cycle, the temperature was increased from 60°C to 95°C at a rate of 0.3°C/s to establish the melting curve. The threshold cycle values (Ct) were automatically generated by the StepOne software v2.0 (Applied Biosystems) and exported to Excel for further analysis.

The plasmid copy number (PCN) was calculated using the following equation [39]: PCN = (Ec)Ctc/(Ep)Ctp. Here, Ec, Ctc and Ep, Ctp are the amplification efficiency (E) and the threshold cycle (Ct) value of the chromosome (c) and plasmid (p) amplicons, respectively. Amplification efficiencies were determined using validation experiments according to Livak and Schmittgen [40], which showed sufficient equivalence between the amplification efficiencies of the chromosomal and plasmid amplicons.
Results and Discussion

Host Range of the pSIP411 Vector and Inducible Gene Expression in Lactobacillus Species

The pSIP411 vector [13], containing the lactococcal broad-host-range replicon SH71 rep [41] was initially screened for functionality in several Lactobacillus strains (Table 1) representing another 12 species in addition to L. plantarum and L. sakei, for which the pSIP system originally was developed [12]. Replication of the pSIP411 vector as an intact plasmid was confirmed in all strains by plasmid preparation and restriction analysis (data not shown), confirming the broad-host-range of SH71 rep. The testing of gene expression was simplified by using overnight cultures instead of cells in a defined growth phase for GUS activity measurements. Thus, the test only gave a qualitative indication of whether inducible gene expression of gusA functioned or not (Table 3).

Figure 2. Growth curves for induced (–) and non-induced (–) cells of five different Lactobacillus species containing pLp3050NucA-SH71. Optical density (OD600) was measured every hour after induction of NucA production. The graphs show L. plantarum (▲), L. gasseri (□), L. rhamnosus (■), L. curvatus (●), and L. brevis (○). For comparison, graphs for L. plantarum harboring pLp3050NucA (×) (256 rep) are also shown. L. curvatus and L. brevis species were grown at 30°C, whereas the other species were grown at 37°C.

doi:10.1371/journal.pone.0091125.g002

Figure 3. Silver stained SDS-PAGE gel showing NucA in cell free supernatants from Lactobacillus plantarum WCFS1 harboring different expression vectors. The vectors differ with respect to the signal peptide (Lp_0373, Lp_3050 or Lp_2578) and the replicon (256 rep or SH71 rep), as indicated in the Figure. The sample size was 15 μl (Lp_3050 and Lp_0373) or 20 μl (Lp_2578). Lane M shows the molecular mass standard (kDa); wt indicates supernatant from L. plantarum WCFS1 without expression vector (15 μl).

doi:10.1371/journal.pone.0091125.g003
Induction using 100 ng/mL of sppIP, i.e. approximately 10 times the concentration required in _L. plantarum_ and _L. sakei_ to achieve full induction [15], resulted in appreciable GUS expression in 10 of the 14 *Lactobacillus* species (including _L. plantarum_ and _L. sakei_) at various temperatures (25°C, 30°C and 37°C). Importantly, for the ten successful species, the expression system worked at all temperatures compatible with growth, which may be important in applications and production optimization procedures. Notably, functionality did not correlate with phylogenetic relationships; for instance, _L. johnsonii_ and _L. acidophilus_ had different cell densities after the four hour induction period (Fig. 2). The lanes marked NucA contain 0.5 μg NucA standard (Sigma). The arrows indicate NucA.

A

B

Figure 4. Silver-stained SDS-PAGE gels showing cell-free supernatants of various lactobacilli. The gels show NucA production in induced cultures of five different *Lactobacillus* species harboring (a) pLp3050Nuc-SH71 or (b) pLp0373Nuc-SH71. The sample size was 15 μl except for _L. rhamnosus_ (20 μl). Note that the cultures had different cell densities after the four hour induction period (Fig. 2). The horizontal arrow indicates NucA.

Modification of pSIP Secretion Vectors Expands their Host Range in *Lactobacillus*

Three pSIP vectors for secretion of *Staphylococcus aureus* nuclease A (NucA) with different _L. plantarum_ signal peptides (Lp_3050_, Lp_0373_ and Lp_2578_) were selected from a previously generated genome-wide SP-library [14,15]. When used in _L. plantarum_ these SPs showed varying levels of secreted protein (3050>0373>2578) and secretion efficiencies varying from close to 100% (3050, 0373) to clearly less than 100% (2578) [15]. The host range of these previously developed pSIP vectors were expanded by replacing the 256rep replicon with the SH71rep replicon (Figure 1). The resulting vectors were re-transformed into _L. plantarum_ WCFS1 [44], and four other *Lactobacillus* species: _L. gasseri_ ATCC 33325T [45], _L. rhamnosus_ GG (LGG) [46], _L. brevis_ ATCC 8287 and _L. curvatus_ DSM 20019. We obtained transformants for all three secretion vectors in all species.

NucA Secretion in Lactobacilli

The effect of NucA production and secretion on growth rate was analyzed by comparing growth of induced and non-induced *Lactobacillus* harboring pLp3050NucA-SH71. Figure 2 shows similar growth rates for induced and non-induced cultures of all species except _L. gasseri_, which shows impaired growth after induction. The reduced growth rate after induction may indicate stress due to heterologous protein production and/or secretion of NucA. Secretion stress is a common problem accompanying heterologous expression in gram-positive bacteria [47,48]. Figure 2 also shows that _L. brevis_ and _L. rhamnosus_ generally grew slower than the other lactobacilli.

After exchanging the 256rep replicon with the SH71rep replicon, we first compared the NucA level in the supernatants of induced _L. plantarum_ cells harboring the various plasmids. Figure 3 shows that _L. plantarum_ harboring vectors containing the SH71rep replicon secreted more NucA compared to transformants harboring the corresponding vectors containing the 256rep replicon. Thus, the change of replicon had a positive effect on the amount of extracellular NucA produced by _L. plantarum_.

The ability of _L. plantarum_ SPs to drive NucA secretion in other lactobacilli was then examined by SDS-PAGE analysis of cell-free supernatants from induced cultures of the twelve other transformants (four *Lactobacillus* species, three transformants each). Most transformants containing constructs with the Lp_3050_ or Lp_0373_ SPs produced considerable levels of extracellular NucA (Figure 4A & 4B). The Lp_2578_ SP performed poorly, resulting in low extracellular NucA levels in most species (data not shown), similar to or lower than the levels found in _L. plantarum_ (Figure 3). All

Figure 5. Silver-stained SDS-PAGE gel showing cell-free supernatants of various lactobacilli. The gel shows NucA production in induced (black arrow) and non-induced cultures (white) of five different *Lactobacillus* species harboring pLp3050Nuc-SH71. The sample size was 15 μl species except for _L. rhamnosus_ (20 μl). Note that the cultures had different cell densities after the four hour induction period (Fig. 2). The horizontal arrow indicates NucA.

doi:10.1371/journal.pone.0091125.g004
species harboring the vector with the Lp_3050 SP secreted NucA, and this SP generally seemed to give the highest levels of extracellular NucA. L. rhamnosus GG was an exception: secretion with the Lp_3050 SP was low and only in this strain the Lp_0373 SP performed better than the Lp_3050 SP. Use of the Lp_0373 SP led to secretion of NucA in all species except in L. gasseri, which did not produce any NucA with either the Lp_0373 (Figure 4B) or the Lp_2578 SP (data not shown; confirmed by Western blotting; see below).

The promoters driving the expression of the gene of interest in the pSIP vectors are known to be strictly regulated in L. plantarum, where basal expression from the promoters is low, albeit depending on both the promoter and the gene of interest [12,49]. On a general note, a well-regulated system may be an advantage for the production of proteins that are detrimental to the host [4]. The level of basal expression was assessed for transformants harboring the Lp_3050 constructs and Figure 5 shows extracellular NucA levels in the supernatants of induced and non-induced cells. The gels show low levels of basal NucA production, in all host species tested. Thus, the regulation of the pSIP system is maintained, although minor differences in the tightness of the regulation may occur that are not detectable on the silver stained SDS-PAGE gels.

Secretion Efficiency

To analyze the secretion efficiency in the Lactobacillus species, levels of NucA in cell lysates and culture supernatants of the best performing transformants were compared using Western blot analysis with a NucA-specific antibody. All fractions showed only one major band, except for the cell lysate of L. curvatus (Figure 6; see below). The data indicate secretion efficiencies close to 100% for L. plantarum, L. brevis and L. rhamnosus, since cell lysates showed no or very low NucA signals. The cell lysates of L. gasseri and especially L. curvatus showed considerable NucA levels. The strong bands seen for L. curvatus at a mass slightly above the mass of the secreted protein were not observed in cell lysates of non-induced cells (data not shown) indicating that these bands represent non- or incorrectly processed NucA. Taken together, the L. curvatus samples show that this strain produced the highest levels of NucA, but that there are limitations in the processing and secretion capacity. Interestingly, these limitations in the secretion pipeline were not accompanied by particular effects of induction on the growth rate of the bacterium (Figure 2). Cell lysates of L. gasseri also contained a considerable amount of NucA. In this case however, the retained NucA was correctly processed (Figure 6).

Using Western blots, it was shown that the inability of L. gasseri to secrete NucA with the Lp_0373 or Lp_2578 SPs was due to the fact that no NucA was produced at all in these species (data not shown). PCR analysis of the two isolated vectors showed that the erythromycin resistant gene of the pSIP vector was intact, while the NucA gene part of the vector was missing. Thus, in contrast to the Lp3050NucA-sh71 construct, the constructs carrying the other two SPs were not stable in L. gasseri. Additional experiments to obtain stable transformants with the other two SPs failed. L. gasseri carrying pLp3050NucA-sh71 was the only strain for which induction (i.e. production of NucA) led to a clear reduction in the growth rate (Figure 2). Taken together, these observations (vector instability in two out of three cases; low secretion efficiency and growth inhibition upon induction in the third case), indicate that secretion of NucA leads to major stress in L. gasseri.

Table 4. Plasmid copy number (PCN) in lactobacilli harboring vectors with the NucA reporter gene.

Strain	Vector	PCN
L. plantarum	pLp3050NucA	2.0±0.2
L. plantarum	pLp3050NucA-SH71	9.8±2.8
L. curvatus	pLp3050NucA-SH71	14.9±1.3
L. brevis	pLp3050NucA-SH71	3.9±1.5
L. gasseri	pLp3050NucA-SH71	2.7±0.9
L. rhamnosus	pLp0373NucA-SH71	1.3±0.3

*All plasmid copy numbers were calculated from minimum two biological replicates, each analyzed by triplicate qPCR runs. The data shown are the means ± standard deviations.

doi:10.1371/journal.pone.0091125.t004

Figure 6. Western blots for analysis of secretion efficiency. The gels show proteins in cell lysates (C) and supernatants (S) of L. plantarum containing pLp3050NucA-SH71 or pLp3050NucA (256rep replicon), L. curvatus, L. brevis and L. gasseri containing pLp3050NucA-SH71, and L. rhamnosus containing pLp0373NucA-SH71. Lane M, molecular mass standard (20 kDa band); lane NucA contains 0.5 μg NucA standard (Sigma), indicated by the arrow. The lanes marked pEV show supernatants of L. plantarum harboring an empty vector without nucA. For all the culture-derived samples, the sample size corresponded to 20 μl of the original culture, which was harvested 4 hours after induction.
Plasmid Copy Number Determination

To further analyze the performance of the newly developed expression vectors plasmid copy numbers (PCN) were determined for the best working vector (in terms of secreted NucA) for each species. Plasmid copy numbers were determined by comparing the genomic groEL gene with the plasmid-borne eryR gene [50] using real time qPCR. The results (Table 4) show that replacing the 250_groEL replicon with the SH71_eryR replicon leads to an almost five-fold increase in copy number in \textit{L. plantarum} (from 2.0 to 9.8). Figures 3 and 6 shows that this increase in copy number is accompanied by an increase in NucA production/secretion, although the band intensities on the gels indicate that this increase is less than five-fold. A comparison between the Western blot analysis (Figure 6) and calculated plasmid copy numbers further shows that the species with the highest \textit{(L. curvatus)} or lowest \textit{(L. rhamnosus)} PCN correspondingly yielded the highest and lowest total amount of NucA, respectively. All in all, the data suggest that an increase in copy number is beneficial for NucA production. Notably, other factors, such as the capacity of the transcription, translation and translocation apparatus also play a role in determining the overall success of a transformant. As an example, in the case of \textit{L. curvatus}, the copy number and total protein level are relatively high, but Figure 6 shows that the secretion apparatus does not seem to be able to keep up with protein production.

Conclusions

The possibility to use the pSIP system for secretion of heterologous proteins in \textit{L. plantarum} has already been explored in several studies [18–20]. In the present study, we have modified the pSIP secretion vectors with a broad-host-range replicon, enabling use in different \textit{Lactobacillus} strains. Furthermore, we show that \textit{L. plantarum} SPs function in several of these species, which yields additional tools for genetic engineering of these important food and potentially probiotic bacteria. Importantly, the effectiveness of a SP for secretion of a protein is difficult to predict, and depends on both the protein and the expression strain used. Additionally, effects of SP variation on overall expression levels are common and not easy to rationalize [15,51]. In line with this, our present data show strain-dependent variation between the SPs, in terms of both total expression levels and secretion efficiency. While one generally should try out several SPs, both the present and previous results indicate that the SPs from \textit{Lp_3050} and \textit{Lp_0373} are relatively safe bets, definitively in \textit{L. plantarum}, and, as shown above, also in several other lactobacilli.

All in all, the new vectors presented here provide useful tools for modification of a variety of lactobacilli which could be used in the development of these bacteria as delivery vectors for biotechnologically and therapeutically interesting proteins. Potential applications vary from relatively well explored applications of LAB as live vaccine-delivery vectors to fine-tuning LAB probiotic properties. As an example, Park et al. [29] recently showed that combined administration of \textit{L. curvatus} and \textit{L. plantarum} modulates the gut microbiota in mice and leads to reduced obesity. The expression vectors described above allow secretion of heterologous proteins in both these species and could thus be used for in situ delivery of beneficial compounds in the gastrointestinal tract.

Supporting Information

Table S1 Oligonucleotide primers used in this study.

(AVCX)

Acknowledgments

\textit{Lactobacillus rhamnosus} GG was kindly provided by Soile Tynkkynen at Valio Ltd, Finland.

Author Contributions

Conceived and designed the experiments: ILK LA IR VGH E GM. Performed the experiments: ILK KM IR. Analyzed the data: ILK LA IR VGH E GM. Wrote the paper: ILK LA IR VGH E GM.

References

1. Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: S. Salminen von Wright A, Ouwehand A, editors. Lactic Acid Bacteria: Microbiological and Functional Aspects. Third Edition, Revised and Expanded ed. New York: Marcel Dekker. Inc./CRC Press pp. 1–66.
2. de Vuyt I, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13: 194–199.
3. Eijkman VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, et al. (2002) Production of class II bacteriocins by lactic acid bacteria: an example of biological warfare and communication. Antonie Van Leeuwenhoek 81: 639–654.
4. Diep DB, Mathiesen G, Eijkman VG, Nis EF (2009) Use of lactobacilli and their pheromone-based regulatory mechanism in gene expression and drug delivery. Curr Pharm Biotechnol 10: 62–73.
5. Bron PA, van Baarlen P, Kleerebezem M (2011) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10: 66–78.
6. Stoeker L, Nordone S, Gunderson S, Zhang L, Kajikawa A, et al. (2011) Assessment of Lactobacillus gasseri as a candidate oral vaccine vector. Clin Vaccine Immunol 18: 1034–1044.
7. Mohamadzadeh M, Duong T, Sandwick SJ, Hoover T, Klaenhammer TR (2009) Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proc Natl Acad Sci U S A 106: 4331–4336.
8. de Ruyter PPGA, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for \textit{Lactococcus lactis} with the food-grade inducer nisin. Appl Environ Microbiol 62: 3662–3667.
9. Mathiesen G, Namlos HM, Riese PA, Axelsson L, Eijkman VGH (2004) Use of bacteriocin promoters for gene expression in \textit{Lactobacillus plantarum} C11. J Appl Microbiol 96: 819–827.
10. Dieye Y, Usai S, Cléret F, Gruss A, Pafler JC (2001) Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183: 4157–4166.
11. Krüger C, Hu Y, Pan Q, Marçotte H, Hultberg A, et al. (2002) In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 20: 702–706.
12. Servig E, Grönqvist S, Naterstad K, Mathiesen G, Eijkman VGH, et al. (2003) Construction of vectors for inducible gene expression in \textit{Lactobacillus sakei} and \textit{L. plantarum}. FEMS Microbiol Lett 229: 119–126.
13. Servig E, Mathiesen G, Naterstad K, Eijkman VGH, Axelsson L (2005) High-level, inducible gene expression in \textit{Lactobacillus sakei} and \textit{Lactobacillus plantarum} using versatile expression vectors. Microbiology 151: 2439–2449.
14. Mathiesen G, Svenn A, Pafler JC, Axelsson L, Eijkman VGH (2008) Heterologous protein secretion by \textit{Lactobacillus plantarum} using homologous signal peptides. J Appl Microbiol 105: 215–226.
15. Mathiesen G, Svenn A, Brurberg MB, Fredriksen L, Axelsson L, et al. (2009) Genome-wide analysis of signal peptide functionality in \textit{Lactobacillus plantarum} WCFS1. BMC Genomics 10: 425.
16. Bohner N, Lutz-Wahl S, Fischer L (2012) Recombinant production of hyperthermostable CbF from Drosophila fuscipes in \textit{Lactobacillus} sp. Appl Microbiol Biotechnol 96: 903–912.
17. Kolandaswamy A, George L, Sadasivam S (2000) Heterologous expression of oxalate decarboxylase in \textit{Lactobacillus plantarum} NC2. Curr Microbiol 40: 467–472.
18. Anbazhagan K, Sairam P, Komathi S, Priva HP, Selvam GS (2015) In vitro degradation of oxalate by recombinant \textit{Lactobacillus plantarum} expressing heterologous oxalate decarboxylase. J Appl Microbiol 119: 860–867.
19. Morais S, Shaterrez N, Grünberg IR, Mathiesen G, Eijkman VGH, et al. (2013) Establishment of a simple \textit{Lactobacillus plantarum} cell consortium for cellulase-xylanase synergetic interactions. Appl Environ Microbiol 79: 5292–5297.
20. Fredriksen L, Klevenrud CR, Olsen Hult LT, Lea T, Nygaard CS, et al. (2012) Surface display of N-terminally anchored invasin in \textit{Lactobacillus plantarum} activates NF-κB in monocytes. Appl Environ Microbiol 78: 5864–5871.
21. Fredriksen L, Mathiesen G, Svein A, Brurberg MB, Fredriksen L, Axelsson L, et al. (2009) Genome-wide analysis of signal peptide functionality in \textit{Lactobacillus plantarum} WCFS1. BMC Genomics 10: 425.
23. Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, et al. (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34: 199–230.
24. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, et al. (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4: 2.
25. Felis GE, Delbaggio F (2007) Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8: 44–61.
26. Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin GL, et al. (2005) Lactobacilli activate human dendritic cells that skew T cell toward Thelper 1 polarization. Proc Natl Acad Sci U S A 102: 2880–2885.
27. Wells JM (2011) Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact 10 Suppl 1: 817.
28. Selle K, Klæhauemmer TR. (2013) Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev 37: 915–933.
29. Park DY, Ahn YF, Park SH, Hsh CS, Voo SR, et al. (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8: e59470.
30. Wells JM, Mercenier A (2008) Muraco delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6: 349–362.
31. Mohamadzadeh M, Durmaz E (2010) Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol 5: 1289–1296.
32. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55: 3119–3123.
33. Ahrne S, Molin G, Axelsson L (1992) Transformation of Lactobacillus reuteri with Electroporation - Studies on the Erythromycin Resistance Plasmid Plul631. Curr Microbiol 24: 199–205.
34. Aukrust T, Blom H (1992) Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Int 25: 253–261.
35. Azcarate-Peril MA, Altermann E, Goh YJ, Tallen R, Sanozky-Davies RB, et al. (2008) Analysis of the genome sequence of Lactobacillus gasseri ATCC 33532 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74: 4610–4625.
36. Kankainen M, Paulin L, Tytykynen S, von Ossowski I, Reunanen J, et al. (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pil containing a human- mucus binding protein. Proc Natl Acad Sci U S A 106: 17193–17198.
37. Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, et al. (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bifidobacterium breve. Environ Microbiol 3: 294–2941.
38. Antelmann H, Darmon R, Noone D, Vening JW, Western H, et al. (2003) The extracellular proteome of Bifidobacterium breve under secretion stress conditions. Mol Microbiol 49: 143–156.
39. Rinoe PA, Brueberg SB, Ejink OGH, Nes IF (2000) Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol Microbiol 37: 619–628.
40. Kankainen M, Paulin L, Tytykynen S, von Ossowski I, Reunanen J, et al. (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pil containing a human- mucus binding protein. Proc Natl Acad Sci U S A 106: 17193–17198.
41. Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, et al. (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bifidobacterium breve. Environ Microbiol 3: 294–2941.
42. van Pijkeren J-P, Britton RA (2012) High efficiency recombinant in lactic acid bacteria. Nucleic Acids Res 40: e76.
43. Vaidyanathan H, Kandasamy V, GopalRamakrishnan G, Ramachandran K, Jayaraman G, et al. (2011) Glycerol conversion to 1,3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactococcus lactis. AMB Express 1: 37.
44. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenzaar D, Kuipers OP, et al. (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100: 1990–1995.
45. Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, et al. (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bifidobacterium breve. Environ Microbiol 3: 294–2941.
46. Kankainen M, Paulin L, Tytykynen S, von Ossowski I, Reunanen J, et al. (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pil containing a human- mucus binding protein. Proc Natl Acad Sci U S A 106: 17193–17198.
47. Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, et al. (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bifidobacterium breve. Environ Microbiol 3: 294–2941.
48. Antelmann H, Darmon R, Noone D, Vening JW, Western H, et al. (2003) The extracellular proteome of Bifidobacterium breve under secretion stress conditions. Mol Microbiol 49: 143–156.
49. Kankainen M, Paulin L, Tytykynen S, von Ossowski I, Reunanen J, et al. (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pil containing a human- mucus binding protein. Proc Natl Acad Sci U S A 106: 17193–17198.
50. Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, et al. (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bifidobacterium breve. Environ Microbiol 3: 294–2941.
51. Antelmann H, Darmon R, Noone D, Vening JW, Western H, et al. (2003) The extracellular proteome of Bifidobacterium breve under secretion stress conditions. Mol Microbiol 49: 143–156.
52. Bolhuis A, Tjalsma H, Smith HE, de Jong A, Meima R, et al. (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bifidobacterium breve. Environ Microbiol 3: 294–2941.
53. Antelmann H, Darmon R, Noone D, Vening JW, Western H, et al. (2003) The extracellular proteome of Bifidobacterium breve under secretion stress conditions. Mol Microbiol 49: 143–156.
54. Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, et al. (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei UCC2003. Nat Biotechnol 23: 1527–1533.
55. Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, et al. (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei UCC2003. Nat Biotechnol 23: 1527–1533.