Mini Review Uranium-Thorium Decay Series in the Marine Environment of the Southern South China Sea

Yusoff AH and Mohamed CAR*

School of Environmental and Natural Resource Sciences, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Abstract

The South China Sea (SCS) is divided into two parts namely northern SCS (nSCS) and southern SCS (sSCS). The sSCS is a semi-closed system that receives rapid large water flushing from the Western Pacific Ocean and the Java Sea during the northeast and southwest monsoon events. Major natural radionuclides in the sSCS are expected to come from river water and terrestrial sediment discharge i.e., Mekong River, Chao Phraya River, Pahang River and Rajang River which contain high lithogenic and biogenic materials. A box model was developed to estimate the amount of 232Th discharge from rivers to the sSCS basin. The result shows that the total flux of 232Th entering into the sSCS was 140.3 × 10^12 Bq/km²/yr, with the highest contribution from the Pahang River followed by the Rajang River, Mekong River and Chao Phraya River. The activity concentrations of natural radionuclides presented herein should be considered useful in order to understand the geochemical behavior of natural radionuclides in marginal sea areas. The review shows that publications on natural radionuclides are still limited; therefore further research needs to be done.

Keywords: Radionuclides; Southern South China Sea; Northeast monsoon; Mekong river; Marginal sea

Introduction

Components of the uranium-thorium U-Th decay series have played an important role in the study of chemical oceanography in the southern South China Sea (sSCS) since the early 1990s. Natural radionuclides are widely used as a tool to investigate the oceanographic process that occurs in the sSCS region such as in the Gulf of Thailand [1,2], the Johor Straits [3], coastal Peninsular Malaysia [4-7], the Vietnam coast [8], the North coast of Java, Indonesia [9], Manila Bay [10,11] and the Sulu Sea [12].

The South China Sea (SCS) is divided into two parts; the northern South China Sea (nSCS) and the southern South China Sea (sSCS). The nSCS includes Taiwan, Hong Kong and the Republic of China, while countries in the SCS basin comprise Malaysia, Singapore, Thailand, Indonesia, Brunei, Indonesia, Cambodia, Vietnam and the Philippines. While four rivers feed into the sSCS; the Mekong River, the Chao Phraya River, the Pahang River and the Rajang River (Figure 1). The Mekong River is the 12th longest river in the world and drains a catchment of 790,000 km² and about 15,000 m³/s as the 8th largest water discharge [13]. This river flows for 4909 km passing through six countries; China, Myanmar, Thailand, Laos, Cambodia, and Vietnam [14]. The Pahang River is located in the Pahang basin, and at 459 km is the longest river in Peninsular Malaysia. The source of the river is the Titiwangsa main range and is a main channel of water drainage to the SCS region [15]. The longest river in East Malaysia is the Rajang River, located in northwest Borneo at about 563 km. In addition, sSCS has a unique geographical structure. Being a semi-enclosed ocean basin, there is a constant exchange of water between the sSCS and the surrounding ocean through the straits. Water is flushed from the western Pacific during northeast (NE) monsoon events and the basin receives a high input of natural radionuclide from land during southwest (SW) monsoon events [6,16]. Furthermore, the geological characteristic of the straits around the sSCS shows a unique structure (Figure 2). Mekong and Chao Phraya River which are located at the Indochina Peninsula consist mainly of Paleozoic-Mesozoic sedimentary rocks with minor intrusive and extrusive igneous rocks. While, the Pahang River which is located at the Malaysian Peninsula consists mainly of Paleozoic-Mesozoic granite and granodiorite rock [17]. The different geological characteristic surrounding the sSCS might contribute to the different behavior of radionuclides in the sSCS. Therefore, the aim of this study is to review published reports of potential sources of natural radionuclide and develop a suitable simple model to estimate the flux of natural radionuclides entering into the sSCS. This review also reports on current levels of natural radionuclides in seawater, sediment and organisms in the sSCS area.

Uranium thorium (U-Th) decay series in marine environments

There are three major actinide nuclides with a very long half-life; 238U (t½ 4.5 × 10⁹ years), 232Th (t½ 1.4 × 10⁶ years) and 226Ra (t½ 7.0 × 10⁴ years) as well as others described in other studies such as Cheng et al. and Loeff [18]. The decay process of these radionuclides produce three decay series as shown in Figure 3. The U-Th decay series begins with 238U, 232Th and 226Ra, and ends with stable isotopes of lead [18-20]. In a closed system where the growth of the parent is balanced with the decay of the daughter, the ratio between parent and daughter is equal to unity (1). However, in a natural environment such as in marine, freshwater and terrestrial ecosystems disequilibrium will occur between parent and daughter [21-23].

Generally, the members of a U-Th decay series enter marine environments through four main pathways; in-situ production of a daughter nuclide, river transport, the diffusion process through sediment and from the atmosphere (Figure 4) [20].

Most natural radionuclides are commonly absorbed onto particles, deposited on seafloors and have their own parents. For example, 234U, 236Ra and 210Po are produced from the decay of 238U, 232Th and 210Pb, respectively. Meanwhile, natural radionuclides of riverine input such as 238U, 232Th and 230Th are carried in detrital particles from source during...
The characteristics of each radionuclide in a uranium-decay series are unique and thus suitable for use as indicators of marine environmental conditions e.g., ^{210}Pb, ^{210}Po and ^{234}Th are used as tools to estimate biological productivity the water column [25-27]. The ratio

river flow to the ocean [24]. In addition, the input of ^{218}Pb resulted from emissions of ^{222}Rn from rock and soil, and is also scavenged from the atmosphere by precipitation processes before being deposited onto the ocean surface [16].
Uranium-238 series

Element	Decay Product	Half-life
U-238	Pa-234	1.2 min
Th-234	Pa-231	32800 y
Th-230	Ra-226	1600 y
Ra-228	Ra-222	5.75 y
Ra-224	Ra-223	3.7 d

Uranium-234 series

Element	Decay Product	Half-life
U-234	Th-230	75400 y
Th-231	Th-228	1.9 y
Th-223	Ac-225	6.1 hr
Ac-227	Ra-223	11.4 d

Uranium-235 series

Element	Decay Product	Half-life
U-235	Th-232	3.64*10^10 y
Th-231	Th-228	1.9 y
Th-227	Ac-225	6.1 hr
Ac-227	Ra-223	11.4 d

Figure 3: Natural uranium-thorium decay series, colored according to particle reactivity. The arrows represent decay with changes in atomic number (Z) and number of nucleons (N) indicated. All three series end with a stable lead isotope [18].

Figure 4: Schematic diagram showing oceanic cycles of selected members of the U and Th decay series. Horizontal arrows indicate radioactive decay characterized by a constant rate. Vertical arrows denote fluxes across the sediment-water interface and also removal from atmosphere (for 210Pb) through chemical scavenging and particle settling [18,20].
of radionuclides such as 230Th/232Th and 231Pa/230Th has been used to determine pollution levels and biological productivity in open oceans [28], where both 231Pa and 235U are also produced throughout the water column at a constant production ratio rate value of 231Pa/230Th = 0.093, especially in marginal seas.

Potential source and budget of radionuclides in the southern South China Sea

The sSCS has a unique geographical structure as it is a semi-enclosed ocean basin with water exchanges through the straits and bay. The area is dominated by the unique characteristic of an east Asian monsoon system with northeast winds during winter (November–February) and southwest winds during summer (June–August) [29,30]. Surface water current flows from north to south during the northeast monsoon and in the reverse direction during the southwest monsoon (Figure 5). This results in large amounts of water flushing both artificial and natural radionuclides from the western Pacific Ocean and the Java Sea into the sSCS during northeast and southwest monsoon events, resulting in a high deposition of radionuclides in this region [6]. Several studies have shown that monsoon events contribute significantly to high radionuclide activities in the sSCS basin. High 228Ra and 228Ra activity has been observed in surface sediment on the eastern coast of Peninsular Malaysia; the source of which are neighboring countries and the Western Pacific Ocean during northeast monsoon events [6]. Recent studies have also shown high 210Po activity in Malaysian coastal waters as a result of haze event in dry season during southwest monsoon [16].

Besides monsoon phenomena, the SCS also have experienced with the typhoon events especially at the sSCS region [31]. However, the typhoon event is rare occurred in sSCS compared with nSCS because the SCS located at the Equator region and always immune from the natural disaster [32]. Typhoon Vamei formed in the sSCS was a rare typhoon event that occurred at sSCS in year 2001 with a wind speed more than 36 m/s has significant affecting the atmospheric and oceanic conditions [33].

In addition to the monsoon, the sSCS also receives major radionuclides from the river either in particulate, dissolved or soil forms. The SCS receives about 1600 million tons per year (Mt/yr) of detrital sediments from numerous rivers including the Pearl, the Red, and the Mekong [29]. Terrigenous materials in the SCS are mainly generated through transport from the continent via large rivers (e.g., the Mekong River, the Rajang River) representing 8.4% of estimated global fluvial sediment discharge to the world’s oceans [34]. In the sSCS, the highest sediment discharge is from the Mekong River (160 Mt/yr), while the Chao Phraya, Pahang and Rajang Rivers discharge 11 Mt/yr, 20.4 Mt/yr and 30 Mt/yr, respectively [17] (Table 1). Based on that scenario, the sSCS can be considered the largest sink for fluvial sediments in the SCS basin, and is thus expected to receive more natural radionuclides from its contributing rivers.

The riverine input of radionuclides such as 235U, 232Th and 228Ra from major rivers to the sSCS is listed in Table 1. These radionuclides are carried in the particulate load of rivers where reactions occurring

River (area)	Drainage area 10^3 km²	Sediment discharge Mt/year	232U (Bq/kg)	232Th (Bq/kg)	228Ra (Bq/kg)
Mekong (Vietnam)	790	160	n.a	50.7	n.a
Chao Phraya (Thailand)	160	11	33.33	48	n.a
Pahang (Peninsular Malaysia)	19	20.4	n.a	102.5	56
Rajang (East Malaysia)	50	30	58	27.8	45

Note: n.a = not available

Data sources: a) Huy and Luyen [53], b) Srisuksawad et al. [1] c) Mohamed et al. [6] d) Wan Mahmood and Yi [4], e) Yusoff and Mohamed [38], f) Wan Mahmood et al. [44], Yi et al. [43] h) (Milliman and Syvitski [13], l. Liu et al. [55]) j) Staub et al. [54].

Table 1: Drainage area, suspended sediment discharge of major rivers flowing directly into the Southern South China Sea (sSCS) and radionuclide activity.
in the river may modify radionuclide fluxes to the oceans [24]. The drainage area, sediment load and radionuclide activity data were used to estimate radionuclide fluxes from river sediments (Equation 1) to the sSCS basin using the equation below:

\[
F = \frac{C}{A} \times S \times A
\]

Where \(F\) is the fluxes of radionuclides, \(C\) is the radionuclides activity and \(A\) is the drainage area. While an equation 2 was apply to estimate the total fluxes of radionuclides contribute from four rivers into the sSCS. Where \(\Delta F\) is the total fluxes of radionuclide entering into the sSCS, \(C_{mk}\), \(C_{cp}\) and \(C_{ph}\) are the activities of radionuclide in Mekong River, Chao Phraya River, Pahang River and Rajang River, respectively. Then \(S_{mk}\), \(S_{cp}\), \(S_{ph}\) and \(S_{ph}\) are refer to the amount of sediment loading contributed from Mekong, Chao Phraya, Pahang and Rajang Rivers, respectively. Finally, \(A_{mk}\), \(A_{cp}\), \(A_{ph}\) and \(A_{ph}\) are refer to the drainage area of Mekong, Chao Phraya, Pahang and Rajang Rivers, respectively.

A simple box model has been developed to estimate total fluxes of \(^{232}\)Th discharge from the river to the sSCS (Figure 6). Total fluxes of \(^{232}\)Th is \(1.40 \times 10^5 \) Bq/km²/yr with the highest amount contributed by the Pahang River (\(110.05 \times 10^3 \) Bq/km²/yr) followed by the Rajang River (\(16.68 \times 10^3 \) Bq/km²/yr), the Mekong River (\(10.27 \times 10^3 \) Bq/km²/yr) and the Chao Phraya River (\(3.3 \times 10^3 \) Bq/km²/yr).

High inputs from the Pahang River might be related to its geological formation. The Pahang basin’s geographical location in Peninsular Malaysia has extensive granitic rock compared to other areas in Southeast Asia (Figure 7) [35]. Thorium is highly concentrated in granitic rock with a value range of 8-33 ppm [36]. During the weathering process, Th in the tetravalent state can be adsorbed onto surface minerals of granitic rock such as apatite, monazite and zircon then transported from rivers to the oceans [36,37]. The normal ratio of \(\text{Th}/\text{U}\) in most granitic rock ranges from 3.5 to 6.3 [36] while the value of \(\text{Th}/\U\) in marine sediment adjacent to Peninsular Malaysia is influenced by granitic rock.

Study of natural U-Th decay series in the southern South China Sea: Is there enough information?

Studies measuring natural radioactivity in various media around the sSCS have been conducted since the early 1990s. A number of expeditions such as Research on the Seas and Island (ROSES) organized by Universiti Sains Malaysia (USM) and the Prime Scientific Sailing Expedition (EPSP’09), which covered the west and east coasts of Peninsular Malaysia, the Exclusive Economic Zone (EEZ) of Sabah Sarawak, the Sulu Sea and the Celebes Sea have been held for Malaysian marine scientists. These expeditions have contributed new knowledge of radionuclide behavior in the sSCS near Malaysia [3,5,7,12,16,23,38,41-45].

Table 2-4 presents the values of natural radionuclide in sediment, sea water and biota respectively as collected in the sSCS and adjacent sea areas. The value of \(^{234}\)U and \(^{238}\)U in sediment ranges from 6.83 Bq/kg to 65.3 Bq/kg and 5 Bq/kg to 91.5 Bq/kg, respectively [1,3,38,39]. Natural thorium isotopes such as \(^{230}\)Th, \(^{232}\)Th and \(^{233}\)Th in sediments were detected in various areas in the sSCS such as the Johor Strait, the Vietnam coast and on the Malaysian coast with values ranging from 1.83 Bq/kg to 262.83 Bq/kg, 9 to 62.83 Bq/kg and nd to 200 Bq/kg, respectively [1,3,6,44,46]. The values of \(^{228}\)Ra and \(^{226}\)Ra in sediment from the sSCS ranged from 2.9 Bq/kg to 64 Bq/kg and 23 to 130 Bq/kg, respectively [1,4,6,43]. In addition, high \(^{232}\)Th activity was detected in sediment in the sSCS region (~262.83 Bq/kg) [3] which might due to marginal sea characteristics where the ocean receives more input of \(^{232}\)Th from the straits surrounding the sea. Furthermore, a high organic matter contents in sediment also reported at the sSCS e.g., western coast of Borneo which can influence the concentration activity of natural radionuclides in sediments. A strong statistical correlation value between organic matter contents with natural radioisotopes of uranium such as \(^{234}\)U (\(r^2=0.959, p<0.01\)) and \(^{238}\U (r^2=0.904, p<0.01\) are well discussed by Yusof and Mohamed [38]. The adsorption of uranium with organic matters will occurred through the process of ion exchange for formation the stable of U(IV) in surface sediments [22,47].
The activity of isotopes in sediments in the sSCS is generally higher compared to other regions such as the Red Sea and the north eastern coast of India, thus further investigation is essential to determine the various sources of radionuclide entering the sSCS region.

In sea water, high values of ^{226}Ra and ^{238}Ra isotopes were detected in the EEZ of Peninsular Malaysia with values of up to $2.7 \times 10^3 \text{ mBq/L}$ and $3.5 \times 10^3 \text{ mBq/L}$ respectively as published by Amin et al. (Table 3) [48]. A high value of radium isotopes in sea water corresponds to the high activity value of radium isotopes detected in surface sediments from the east coast of Peninsular Malaysia [6]. In addition, oil and industry gas contribute up to almost 560 Bq/kg of ^{226}Ra from sludge discharge to the marine environment [49]. Radium ^{226}Ra isotope activity in sea water was higher in the SCS compared to the entire South China Sea and western Pacific Ocean regions due to high radionuclide depositional fluxes from enhanced dry precipitation caused by haze events [16].

On the other hand in marine organisms, high ^{210}Po and ^{234}Th values were detected in green mussels collected from the Johor Strait with average values of 150 Bq/kg and 388 Bq/kg. It is plausible that the Straits of Johor might be liable to certain levels of radionuclide contamination from exiting natural radionuclides and anthropogenic activity inputs [50]. Furthermore, concentrations of ^{238}Ra in fish (0.80-2.13 Bq/kg) from the eastern coast of Peninsular Malaysia [4] also show high values

Radionuclide	Samples	Technique	Range values (average) Bq/kg	Country (Area)	References
^{234}U	Sediment core (n=22) Alpha detector	21.12-65.3	Thailand gulf	[1]	
	Sediment core (n=2) Alpha detector	6.83-62.17	Malaysia (Borneo port)	[38]	
	Sediment core (n=25) INAA	30-91.5 (65.0)	Malaysia (Johor Strait)	[3]	
	Sediment core (n=22) Alpha detector	20.67-63.67 (33.33)	Thailand gulf	[1]	
^{238}U	Surface sediment (n=51) ICP-MS	5-50 (23)	Thailand (eastern coast of gulf)	[39]	
	Sediment core (n=2) Alpha detector	8.5-58	Malaysia (Borneo port)	[38]	
^{226}Ra	Surface sediment (n=51) HGPe detector	2.9-53.2	Thailand (eastern coast of gulf)	[39]	
	Sediment core (n=16) HPGe detector	16-46 (30)	Malaysia (EEZ of Peninsular)	[4]	
	Surface sediment (n=31) HPGe detector	16-21	Malaysia (EEZ of Sabah and Sarawak)	[43]	
	Surface sediment (n=15) Alpha detector	8-48	Malaysia (East coast of peninsular)	[6]	
	Surface sediment (n=18) HPGe detector	13-64	Malaysia (West coast of peninsular)	[6]	
^{230}Th	Sediment core (n=16) HPGe detector	28-57 (56)	Malaysia (EEZ of Peninsular)	[4]	
	Surface sediment (n=31) HPGe detector	23-45	Malaysia (EEZ of Sabah and Sarawak)	[43]	
	Surface sediment (n=15) HPGe detector	12-130	Malaysia (East coast of peninsular)	[6]	
	Surface sediment (n=18) HPGe detector	36-89	Malaysia (West coast of peninsular)	[6]	
^{232}Th	Sediment core (n=3) Alpha detector	23.17-164	Malaysia (marine port of Sabah, Labuan and Klang)	[46]	
	Surface sediment (n=31) Alpha detector	9-12	Malaysia (EEZ of Sabah) and Sarawak	[44]	
	Sediment core (n=22) Alpha detector	22.17-62.83	Thailand gulf	[1]	
	Sediment core (n=31) Alpha detector	6.8-27.8	Malaysia (EEZ of Sabah and Sarawak)	[44]	
	Sediment core (n=22) Alpha detector	4-108 (48)	Thailand gulf	[1]	
	Sediment core (n=25) INAA	30.67-262.83 (86.67)	Malaysia (Johor Strait)	[3]	
	Sediment core (n=3) Alpha detector	1.83-153.67	Malaysia (marine port of Sabah, Labuan and Klang)	[46]	
	Surface sediment (n=15) Alpha detector	65-145	Malaysia (East coast of peninsular)	[6]	
	Surface sediment (n=18) Alpha detector	35-59	Malaysia (West coast of peninsular)	[6]	
^{234}Th	Sediment core (n=33) HPGe detector	n.d-200	Vietnam (northern coast)	[55]	
	Sediment core (n=25) HPGe detector	n.a	Indonesia (north coast of Java Sea)	[9]	
^{210}Po	Sediment core (n=13) Apha detector	2.33-141.4	Malaysia (EEZ of Sabah)	[56]	
	Sediment core (n=22) Alpha detector	11.67-143.33	Thailand gulf	[1]	
	Sediment core (n=10) Alpha detector	22-110	Philippines (area affected by toxic harmful algal bloom (HAB))	[11]	

Note: EEZ = exclusive economic zone; n.d = not detected (below detection limit); n.a = not available, HPGe= High purity vertical germanium detectors, INAA= Instrumental neutron activation analyses

Table 2: Range values of radionuclides in marine sediment in the southern South China Sea area.
compared to other areas such as fish from Japan (226Ra: 0.008 Bq/kg) and Puget Sound, USA (226Ra: 0.003-0.75 Bq/kg) [4]. In addition, 210Po and 210Pb activity in the west coast of Peninsular Malaysia shows high values compared to 226Ra [23,51]. Furthermore, high activity values of 231Pa and 231Pb detected in zooplankton as published by Mohamed and Kuan (1996) P. Radiometric dating of estuarine sediments from the Rajang River, Mekong River and Chao Phraya River. The activity values of natural radionuclides in organisms, sediment and seawater in the sSCS were also compiled and reviewed. Unfortunately, there is limited data available on the distribution and behavior of some natural radionuclides such as 231Pa, 234Th, 210Bi, 7Be and 10Be in the sSCS. It is strongly recommended that further and more complete research is undertaken to study the behavior of these radionuclides in the sSCS [58].

Conclusion

This review discusses potential sources and budgets of natural radionuclides in the sSCS. The total flux of 232Th discharge to the sSCS was successfully estimated from the box model with a value of 140.3 × 10^3 Bq/km²/yr. The highest flux of 232Th contributed to the sSCS is from the Pahang River with a value of 110.05 × 10^3 Bq/km²/yr followed by the Rajang River, Mekong River and Chao Phraya River. The activity values of natural radionuclides in organisms, sediment and seawater in the sSCS were also compiled and reviewed. Unfortunately, there is limited data available on the distribution and behavior of some natural radionuclides such as 231Pa, 234Th, 210Bi, 7Be and 10Be in the sSCS. It is strongly recommended that further and more complete research is undertaken to study the behavior of these radionuclides in the sSCS.

Acknowledgements

The authors would like to thank the Ministry of Science, Technology and Innovation (MOSTI), for providing the research grant (04-01-02-SF0801). Thanks are also due to all the laboratory members and staff of Pusat Pengajian Sains Sekitaran dan Sumber Alam, Faculty of Science and Technology, UKM.

References

1. Srisukawad K, Ponpepakasemsan B, Nouchpramool S, Yamkate R, et al. (1997) Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand. Continental Shelf Research 17: 925-965.

2. Cheevaporn V, Mokkongprai P (1996) Pb-210 Radiometric dating of estuarine
3. Wood KD, Ahmad Z, Shazli NA, Yaakob R, Carpenter R (1997) Geochemistry of sediments in Johor Strait between Malaysia and Singapore. Continental Shelf Research 17: 1207-1228.

4. Wan Mahmood ZUY, YJ MIW (2012) Marine radioactivity concentration in the Exclusive Economic Zone of Peninsular Malaysia: 226 Ra, 228 Ra and 228 Ra / 226 Ra. Journal of Radioanalytical and Nuclear Chemistry 292: 183-192.

5. YJ MIW, Wan Mahmood ZU, Ahmad Z, Jaffary NA, Ishak K (2011) NORM activity concentration in sediment cores from the Peninsular Malaysia East Coast Exclusive Economic Zone. Journal of Radioanalytical and Nuclear Chemistry 289: 653-661.

6. Mohamed CAR, Wan Mahmood, Ahmad Z, Ishak AK (2010) Enrichment of natural radium isotopes in the southern South China Sea surface sediments. Coastal Marine Science 34: 165-171.

7. Mohamed CAR, Wan Mahmood ZUY, Ahmad Z (2008) Recent sedimentation of sediments in the coastal waters of Peninsular Malaysia. Pollution Research 27: 27-36.

8. Duong P, Tschurlović M, Buchtela K (1996) Enrichment of radioactive materials in sand deposits of Vietnam as a result of mineral processing. Environment International 22: 271-274.

9. Boer W, van den Bergh GD, de Haas H, de Stijger HC, Gieles R, et al. (2006) Validation of accumulation rates in Teluk Banten (Indonesia) from commonly applied 210Pb models, using the 1983 Krakatau eruption as time marker. Marine Geology 227: 263-277.

10. Maria EJ (2009) Estimating sediment accumulation rates in Manila Bay, a marine pollution hot spot in the Seas of East Asia. Marine Pollution Bulletin 59: 164-174.

11. Sombritro E, Bulos AD, Sta Maria EJ, Honrado MC, Azanza RV, et al. (2004) Application of 210Pb-derived sedimentation rates and dinoflagellate cyst analyses in understanding Pyridium bahamense harmful algal blooms in Manila Bay and Malampaya Sound, Philippines. J Environ Radioact 76: 177-194.

12. Okubo A, Obata H, Gamo T, Minami H, Yamada M (2007) Scavenging of Th in the Sulu Sea. Deep Sea Research II 54: 276-293.

13. Milliman JD, Syvitski JPM (1992) Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers.1. The Journal of Geology 100: 525-544.

14. Pantulu VR (1986) The Mekong River system. In: Davies B, Walker K (eds.) The Ecology of River Systems. Dordrecht, The Netherlands: Dr. W. Junk Publishers 695-741.

15. Lien PI (2011) Hydrological Pattern of Pahang River Basin and Their Relation To Flood Historical Event. Jurnal e-Bangi 6: 29-37.

16. Sabudi AA, Mohamed CAR (2015) High 210 Po Activity Concentration in the Surface Water of Malaysian Seas Driven by the Dry Season of the Southwest Monsoon (June – August 2009). Estuaries and Coasts 38: 482-493.

17. Liu Z, Zhao Y, Colin C, Stattegger K, Wiesner MG, et al. (2015) Source-to-Sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews 153: 238-273.

18. Leef MM (2015) Uranium-Thorium Decay Series in the Oceans: Overview. In: Elias S (ed.) Earth Systems and Environmental Sciences, (Reference Module in Earth Systems and Environmental Sciences). Amsterdam: Elsevier: 1-16.

19. Roy-Barman M, Jeandel C, Souhaut M, Rutkowska A, Voege I, et al. (2005) The influence of particle composition on thorium scavenging in the NE Atlantic ocean (POMME experiment). Earth and Planetary Science Letters 240: 681-693.

20. Henderson G, Anderson R (2003) The U-series Toolbox for Paleoceanography. Reviews in Mineralogy and Geochemistry 52: 493-531.

21. Kronfeld J, Godthay-Smith DI, Johannessen D, Zentilli M (2004) Uranium series isotopes in the Avon Valley, Nova Scotia. J Environ Radioact 73: 335-352.

22. Dawood YH (2010) Factors Controlling Uraniun and Thorium Isotopic Composition of the Streambed Sediments of the River Nile, Egypt. JAKU: Earth Science 21: 77-103.

23. Mohamed CAR, Theng TL (2006) Activity concentration of Pb-210 and Pb-210 in edible tissue of fish caught at Kuala Selangor, Malaysia. Malaysian Applied Biology 35: 67-73.

24. Scott MR (1983) The chemistry of U- and Th-series nuclides in the rivers. In: Ivanovich M (ed.) Uranium Series Disequilibrium: Applications to Environmental Problems. New York: Oxford University Press 181-201.

25. Sall AB, Mohamed CAR (2014) Behavior of 210Po and 210Pb in shallow water region of Mersing estuary, Johor, Malaysia. Environmental Asia 7: 7-18.

26. Theng TL, Mohamed CAR (2005) Activities of 210Po and 210Pb in the water column at Kuala Selangor, Malaysia. Journal of Environmental Radioactivity 80: 273-286.

27. Yang W (2006) Disequilibria between 210Po and 210Pb in surface waters of the southern South China Sea and their implications. Science in China Series D Earth Sciences 49: 103-112.

28. Miguel S, Bolivar JP, Garcia-Tenorio R (2003) Mixing, sediment accumulation and focusing using 210Pb and 137Cs. Journal of Paleolimnology 29: 1-11.

29. Liu Z, Stattegger K (2014) South China Sea fluvial sediments: An introduction. Journal of Asian Earth Sciences 79: 507-508.

30. Wang B (2006) The Asian Monsoon, Netherlands: Springer Science & Business Media.

31. Ko DS, Shenn-Yu C, Chun-Chieh W, Lin II (2014) Impacts of Typhoon Megi (2010) on the South China Sea. Journal of Geophysical Research. Ocean 119: 4474-4489.

32. Tan F, Lin HS, Khuddu A (2011) The Impact of the Typhoon to Peninsular Malaysia on Oroggraphic Effects. In: IEEE Symposium on Business, Engineering and Industrial Applications (ISBEA). Langkawi.

33. Aboobacker M, Pavel T, Vindok KK, Vethamony P (2013) Wind waves generated by Typhoon Vamco in the southern South China Sea. Geophysical Research Abstracts.

34. Milliman JD, Farnsworth K (2011) River Discharge to the Coastal Ocean: A Global Synthesis. New York: Cambridge University Press.

35. Chappell NA, Sherlock M, Bidin K, Macdonald R, Najman Y, et al. (2007) Runoff processes in Southeast Asia: Role of soil, regolith and rock type. In: Sawada H eds. Forest Environments in the Mekong River Basin. Springer 3-23.

36. Gascoyne M (1982) Geochemistry of the actinides and their daughters. In: Ivanovich M (ed.) Uranium Series Disequilibrium: Applications to Environmental Problems. New York: Oxford University Press 35-41.

37. Harmon R, Rosoth J (1982) Igneous rock. In: Ivanovich M, Harmon R (eds.) Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Oxford UK: Clarendon Press 145-166.

38. Yusoff AH, Mohamed CAR (2015) Vertical Profiles of Natural Uranium Isotopes in Sediment Cores from Kota Kinabalu and Labuan Ports, Malaysia. Environmental Asia 8: 85-93.

39. Kritsananuwat R, Sahoo SK, Fukushima M, Panga K, Chanyotha S (2015) Radiological risk assessment of 222U, 228Th and 232Th in Thailand sediment samples at selected areas proposed for nuclear power plant sites. Journal of Radio analytical and Nuclear Chemistry 303: 325-334.

40. Huy NQ, Luyen T (2005) Study on external exposure doses from terrestrial radioactivity in Southern Vietnam. Radiation protection dosimetry 1: 1-6.

41. Nozaki Y, Yamamoto Y (2001) River runoff of nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced "alkalinity pump" hypothesis. Global Biogeochemical Cycles 15: 555-567.

42. Obata H, Nozaki Y, Dia Sotto Albo, Yamamoto Y (2004) Dissolved Al, In, and Ce in the eastern Indian Ocean and the Southeast Asian Seas in comparison with the radionuclides 210Pb and 210Po. Geochimica et Cosmochimica Acta 68: 1035-1048.

43. Yi MW, Zahariun A, Abdul-Kadir I (2009) Distribution of naturally occurring radionuclides activity concentration in East Malaysian marine sediment. Applied Radiation and Isotopes 67: 630-635.

44. Wan Mahmood ZUY, Ahmad Z, Izwan Abd Aziz M, Mohamed CAR, Ishak AK (2010a) Radioactivity distribution of thorium in sediment core of the Sabah-Sarawak coast. Journal of Radio analytical and Nuclear Chemistry 285: 365-372.

45. Wan Mahmood ZUY, Mohamed CAR, Yi MW, Ahmad Z, Ishak K, et al. (2010b) Vertical inventories and fluxes of 210 Pb, 228 Ra and at southern South China
Sea and Malacca Straits. Journal of Radioanalytical and Nuclear Chemistry 286: 107-113.

46. Yusoff AH, Sabuti AA, Mohamed CAR (2015) Natural uranium and thorium isotopes in sediment cores Off Malaysian Ports. Ocean Science Journal 50: 403-412.

47. Borovec Z, Kribe B, Tolar V (1979) Sorption of uranyl by humic acids. Chemical Geology 27: 39-46.

48. Amin YM, Mahat RH, Nor RM, Uddin KM, Ghazwa HT, et al. (2013) The presence of natural radioactivity and 137Cs in the South China Sea bordering peninsular Malaysia. Radiation protection dosimetry 156: 475-480.

49. Omar M, Ali HM, Abu MP, Kontol KM, Ahmad Z, et al. (2004) Distribution of radium in oil and gas industry wastes from Malaysia. Applied Radiation and Isotopes 60: 779-782.

50. Peng ML (2015) Radioactivity Levels of 234Th and 210Po in the Green Mussel (Perna viridis) at the Straits of Johor and the Estimated Accumulations to Human Body. In: Ahmad I, Syazwan ZZ (eds.) ISIMBIOMAS 2015. Putrajaya: UPM press pp: 34-39.

51. Alam L, Mohamed CAR (2011) Natural radionuclide of Po210 in the edible seafood affected by coal-fired power plant industry in Kapar coastal area of Malaysia. Environmental Health 10: 43.

52. Mohamed CAR, Kuan PF (2005) Concentrations of 210Po and 210Pb in zooplankton at Pulau Redang, Terengganu, Malaysia. Journal of Biological Sciences 5: 312-314.

53. Huy NQ, Luyen TV (2006) Study on external exposure doses from terrestrial radioactivity in Southern Vietnam. Radiat Prot Dosimetry 118: 331-336.

54. Staub JR, Among HL, Gastaldo RA (2000) Seasonal sediment transport and deposition in the Rajang River delta, Sarawak, East Malaysia. Sedimentary Geology 133: 249-264.

55. Bergh GD, Boera W, Schaapveldb MAS, Ducc DM, van Weeringa TjCE (2007) Recent sedimentation and sediment accumulation rates of the Ba Lat prodelta (Red River, Vietnam). Journal of Asian Earth Sciences 29: 545-557.

56. Theng TL, Ahmad Z, Mohamed CAR (2003) Estimation of sedimentation rates using 210Pb and 210Po at the coastal water of Sabah, Malaysia. Journal of Radioanalytic and Nuclear Chemistry 256: 115-120.

57. Liu Z, Wang H, Hantoro WS, Sathiamurthy E, Colin C (2012) Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chemical Geology 291: 1-12.

58. Mohamed CAR, Mohamed K, Ahmad Z (2006) Distribution of 234U and 238U in Sungai Selangor, Peninsular of Malaysia. Journal of Applied Sciences 6: 562-566.