A SIMPLE PROOF THAT THE POWER $\frac{2m}{m+1}$ IN THE
BOHNEBBLUST–HILLE INEQUALITIES IS SHARP

DANIEL NUÑEZ-ALARCÓN AND DANIEL PELLEGRINO

ABSTRACT. The power $\frac{2m}{m+1}$ in the polynomial (and multilinear) Bohnenblust–
Hille inequality is optimal. This result is well-known but its proof highly nontrivial.
In this note we present a quite simple proof of this fact.

1. INTRODUCTION

The polynomial and multilinear Bohnenblust–Hille inequalities were proved by
H.F. Bohnenblust and E. Hille in 1931 and play a crucial role in different fields as
Fourier and Harmonic Analysis and Quantum Information Theory (see [4, 5, 7]).
The polynomial Bohnenblust–Hille inequality proves the existence of a positive
function $C : \mathbb{N} \to [1, \infty)$ such that for every m-homogeneous polynomial P on \mathbb{C}^N,
the $\ell^{\frac{2m}{m+1}}$-norm of the set of coefficients of P is bounded above by C_m times the sup-
premum norm of P on the unit polydisc. This result has important striking applications
in different contexts (see [4]). The multilinear version of the Bohnenblust–Hille in-
equality asserts that for every positive integer $m \geq 1$ there exists a sequence of positive scalars $(C_m)_{m=1}^{\infty}$ in $[1, \infty)$ such that

$$\left(\sum_{i_1, \ldots, i_m=1}^{N} |T(e_{i_1}, \ldots, e_{i_m})|^{\frac{2m}{m+1}} \right)^{\frac{m+1}{2m}} \leq C_m \sup_{z_1, \ldots, z_m \in \mathbb{D}^N} |T(z_1, \ldots, z_m)|$$

for all m-linear forms $T : \mathbb{C}^N \times \cdots \times \mathbb{C}^N \to \mathbb{C}$ and every positive integer N, where $(e_i)_{i=1}^{N}$ denotes the canonical basis of \mathbb{C}^N and \mathbb{D}^N represents the open unit polydisk in \mathbb{C}^N.

The original proof ([3]) that the power $\frac{2m}{m+1}$ is optimal is quite puzzling. Acc-
cording to Defant et al ([4] page 486), Bohnenblust and Hille “showed, through a
highly nontrivial argument, that the exponent $\frac{2m}{m+1}$ cannot be improved” or ac-
cording to Defant and Schwarting ([6] page 90), Bohnenblust and Hille showed “with
a sophisticated argument that the exponent $\frac{2m}{m+1}$ is optimal”. In [2] there is an
alternative proof for the case of multilinear mappings, but the arguments are also
nontrivial, involving p-Sidon sets and sub-Gaussian systems. The main goal of this
note is to present a quite elementary proof (which solves simultaneously the cases
of polynomials and multilinear mappings) of the optimality of $\frac{2m}{m+1}$.

Key words and phrases. Bohnenblust–Hille inequalities.
2. The new proof of the sharpness of $\frac{2m}{m+1}$

We will show that the optimality of the power $\frac{2m}{m+1}$ is a straightforward consequence of the following famous result known as Kahane-Salem-Zygmund inequality (see [3, Theorem 4, Chapter 6] or [1, page 21]):

Theorem 2.1 (Kahane-Salem-Zygmund inequality). Let m, n be positive integers. Then there are signs $\varepsilon_\alpha = \pm 1$ so that the m-homogeneous polynomial

$$P_{m,n} : \ell^\infty_n \to \mathbb{C}$$

given by

$$P_{m,n} = \sum_{|\alpha| = m} \varepsilon_\alpha z^\alpha$$

satisfies

$$\|P_{m,n}\| \leq C n^{(m+1)/2} \sqrt{\log m}$$

where C is an universal constant (it does not depend on n or m).

Theorem 2.2. The power $\frac{2m}{m+1}$ in the Bohnenblust–Hille inequalities is sharp.

Proof. Let $m \geq 2$ be a fixed positive integer. For each n, let $P_{m,n} : \ell^\infty_n \to \mathbb{C}$ be the m-homogeneous polynomial satisfying the Kahane-Salem-Zygmund inequality. For our goals it suffices to deal with the case $n > m$.

Let $q < \frac{2m}{m+1}$. Then a simple combinatorial calculation shows that

$$\left(\sum_{|\alpha| = m} |\varepsilon_\alpha|^q \right)^{1/q} = \left(p(n) + \frac{1}{m!} \prod_{k=0}^{m-1} (n-k) \right)^{\frac{1}{q}},$$

where $p(n) > 0$ is a polynomial of degree $m-1$. If the polynomial Bohnenblust–Hille inequality was true with the power q, then there would exist a constant $C_{m,q} > 0$ so that

$$C_{m,q} \geq \frac{1}{n^{(m+1)/2} \sqrt{\log m}} \left(p(n) + \frac{1}{m!} \prod_{k=0}^{m-1} (n-k) \right)^{1/q}$$

for all n. If we raise both sides to the power of q and make $n \to \infty$ we obtain

$$(C_{m,q}C)^q \geq \lim_{n \to \infty} \left(\frac{r(n)}{m!n^q(m+1)/2 (\sqrt{\log m})^q} + \frac{p(n)}{n^q(m+1)/2 (\sqrt{\log m})^q} \right),$$

with

$$r(n) = \prod_{k=0}^{m-1} (n-k).$$

Since

$$\deg r = m > \frac{q(m+1)}{2}$$

we have

$$\lim_{n \to \infty} \left(\frac{r(n)}{m!n^q(m+1)/2 (\sqrt{\log m})^q} + \frac{p(n)}{n^q(m+1)/2 (\sqrt{\log m})^q} \right) = \infty,$$

a contradiction. Since the multilinear Bohnenblust–Hille inequality (with a power q) implies the polynomial Bohnenblust–Hille inequality with the same power, we conclude that $\frac{2m}{m+1}$ is also sharp in the multilinear case. \Box
A NEW PROOF THAT THE POWER $\frac{2m}{m+1}$ IS SHARP

REFERENCES

[1] F. Bayart, Maximum modulus of random polynomials, Quart. J. Math 63 (2012), 21–39.
[2] R. Blei, Analysis in integer and fractional dimensions, Cambridge Studies in Advances Mathematics, 2001.
[3] H.F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931), 600-622.
[4] A. Defant, L. Frerick, J. Ortega-Cerdá, M. Ounaïes and K. Seip, The polynomial Bohnenblust–Hille inequality is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497.
[5] A. Defant, D. Popa and U. Schwarting, Coordinatewise multiple summing operators in Banach spaces, J. Funct. Anal. 259 (2010), 220–242.
[6] A. Defant, U. Schwarting, Bohr’s radii and strips – a microscopic and a macroscopic view, Note Mat. 31 (2011), 87–101.
[7] D. Diniz, G.A. Muñoz-Fernández, D. Pellegrino and J.B. Seoane-Sepúlveda, Lower bounds for the constants in the Bohnenblust–Hille inequality: the case of real scalars, Proc. Amer. Math. Soc., in press.
[8] J.-P. Kahane, Some Random Series of Functions, Cambridge Studies in Advanced Mathematics 5, Cambridge University Press, Cambridge, 1993.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DA PARAÍBA, 58.051-900 - JOÃO PESSOA, BRAZIL.

E-mail address: pellegrino@pq.cnpq.br and dmpellegrino@gmail.com