A SIMPLE PROOF OF THE RIEMANN HYPOTHESIS

Hatem A. Fayed
University of Science and Technology, Mathematics Program, Zewail City of Science and Technology
October Gardens, 6th of October, Giza 12578, Egypt
hfayed@zewailcity.edu.eg

January 30, 2025

ABSTRACT

In this article, it is proved that the non-trivial zeros of the Riemann zeta function must lie on the critical line, known as the Riemann hypothesis.

Keywords Riemann zeta function · Riemann hypothesis · Non-trivial zeros · Critical line

1 Riemann Zeta function

The Riemann zeta function is defined over the complex plane as [1],
\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \text{Re}(s) > 1 \] (1)
where \(\text{Re}(s) \) denotes the real part of \(s \). There are several forms can be used for an analytic continuation for \(\text{Re}(s) > 0 \) such as [1, 2].

\[\zeta(s) = \frac{1}{(1-2^1-s)\Gamma(s)} \int_0^{\infty} \frac{x^{s-1}}{e^x+1} dx, \] (2)
\[\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} - N^{1-s} \frac{1}{1-s} - s \int_N^{\infty} \frac{x-|x|}{x^{s+1}} dx, N = 1, 2 \ldots \] (3)
where \(|x| \) is the floor or integer part such that \(x - 1 < |x| \leq x \) for real \(x \).

and
\[\zeta(s) = \frac{1}{(1-2^1-s)} \eta(s), \quad \eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s} \] (4)
where \(s \neq 1 + \frac{2\pi ki}{\log(2)}, k = 0, \pm 1, \pm 2 \ldots \) and \(\eta(s) \) is the Dirichlet eta function (sometimes called the alternating zeta function).

2 Zeros of the Riemann Zeta Function

The trivial zeros of the Riemann zeta function occur at the negative even integers; that is, \(\zeta(-2n) = 0, n = 1, 2 \ldots \) [1]. On the other hand, the non-trivial zeros lie in the critical strip, \(0 \leq \text{Re}(s) \leq 1 \). Both Hadamard [3] and de la Vallee Poussin [4] independently proved that there are no zeros on the boundaries of the critical strip (i.e. \(\text{Re}(s) = 0 \) or \(\text{Re}(s) = 1 \)). Gourdon and Demichel [5] verified the the Riemann Hypothesis until the \(10^{13} \)-th zero.
Mossinghoff and Trudgian [6] proved that there are no zeros for \(\zeta(\sigma + it) \) for \(|t| \geq 2\) in the region,

\[
\sigma \geq 1 - \frac{1}{5.573412 \log |t|}
\]

This represents the largest known zero-free region for the zeta-function within the critical strip for \(3.06 \times 10^{10} < |t| < \exp(10151.5) \approx 5.5 \times 10^{4408}\).

The non-trivial zeros are known to be symmetric about the real axis and the critical line \(\text{Re}(s) = 1/2\), that is, \(\zeta(s) = \zeta(1-s) = \overline{\zeta(1-s)} = 0\) [1, 7].

3 Riemann Hypothesis

All the non-trivial zeros of the Riemann zeta function lie on the critical line \(\text{Re}(s) = 1/2\).

Proof. Assume that \(s = \sigma + it\) where \(0 < \sigma < 1\), \(t \in \mathbb{R}\) and \(N \to \infty\) is a natural number.

Let us define the functions \(\psi(s)\) as,

\[
\psi(s) = \lim_{N \to \infty} N^s \zeta(s)
\]

Clearly, the non-trivial zeros of the zeta function are included in the zeros of \(\psi(s)\), since at a non-trivial zero, \(s\), we have,

\[
\psi(s) = \lim_{N \to \infty} N^s \zeta(s) = \lim_{N \to \infty} N^s(0) = 0
\]

Using equation (3), \(\psi(s)\) can be written as,

\[
\psi(s) = \lim_{N \to \infty} \left[N^s \phi(N, s) - N^s I(N, s) \right]
\]

where

\[
\phi(N, s) = \sum_{n=1}^{N} \frac{1}{n^s} - \frac{N^{1-s}}{1-s}, \quad I(N, s) = s \int_{N}^\infty \frac{x - \lfloor x \rfloor}{x^{s+1}}\,dx
\]

So, let us investigate the zeros of \(\psi(s)\).

Note that \(N^s I(N, s)\) is bounded as \(N \to \infty\), since

\[
|N^s I(N, s)| = \left| N^s s \int_{N}^\infty \frac{x - \lfloor x \rfloor}{x^{s+1}}\,dx \right| = N^\sigma \sqrt{\sigma^2 + t^2} \int_{N}^\infty \frac{x - \lfloor x \rfloor}{x^{s+1}}\,dx
\]

\[
\leq N^\sigma \sqrt{\sigma^2 + t^2} \int_{N}^\infty \frac{1}{x^{s+1}}\,dx
\]

\[
\leq N^\sigma \sqrt{\sigma^2 + t^2} \left[\frac{1}{-\sigma x^\sigma} \right]_N^\infty
\]

\[
\leq N^\sigma \left[\frac{\sqrt{\sigma^2 + t^2}}{\sigma N^\sigma} \right]
\]

\[
\leq \frac{\sqrt{\sigma^2 + t^2}}{\sigma}
\]

Let us sum the first \((j-1) \in \mathbb{N}\) terms of the summation in \(\phi(N, s)\) separately [8], that is,

\[
\phi(N, s) = \frac{1}{1^s} + \frac{1}{2^s} \cdots + \frac{1}{(j-1)^s} + \sum_{n=j}^{N} f(n) - \frac{N^{1-s}}{1-s}
\]

(11)
Thus, for

\[f(x) = \frac{1}{x^s} \]

(12)

and its derivatives for \(i \in \mathbb{N} \) are,

\[f^{(2i-1)}(x) = -\frac{s(s+1) \cdots (s+2i-2)}{x^{s+2i-1}}, \quad f^{(2i)}(x) = \frac{s(s+1) \cdots (s+2i-1)}{x^{s+2i}} \]

(13)

Using the Euler–Maclaurin summation rule [8],

\[\sum_{n=j}^{N} f(n) = \int_{j}^{N} f(x)dx + \frac{1}{2} [f(N) + f(j)] + \sum_{i=1}^{m} \frac{B_{2i}}{(2i)!} \left[f^{(2i-1)}(N) - f^{(2i-1)}(j) \right] + E \]

(14)

where the error term is given by,

\[E = \frac{1}{(2m+1)!} \int_{j}^{N} \hat{B}_{2m+1}(x)f^{(2m+1)}(x)dx, \]

(15)

\(B_k \) is the \(k \)-th Bernoulli number defined implicitly by,

\[\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} B_k \frac{t^k}{k!} \]

(16)

\(B_k(x) \) is the \(k \)-th Bernoulli polynomial defined as the unique polynomial of degree \(k \) with the property that,

\[\int_{t}^{t+1} B_k(x)dx = t^k, \]

(17)

\(\hat{B}_k(x) \) is the periodic function \(B_k(x - \lfloor x \rfloor) \).

Thus, for \(m = 1 \), \(\phi(N, s) \) can be written as,

\[\phi(N, s) = \sum_{n=1}^{j-1} \frac{1}{n^s} + \int_{j}^{N} f(x)dx + \frac{1}{2} [f(N) + f(j)] + \frac{1}{12} \left[f'(x) \right]_{j}^{N} - \frac{N^{1-s}}{1-s} + E \]

\[= \sum_{n=1}^{j-1} \frac{1}{n^s} - \frac{1}{1-s} + \frac{1}{2} \left[\frac{1}{N^s} + \frac{1}{j^s} \right] - \frac{s}{12} \left[\frac{1}{N^{s+1}} - \frac{1}{j^{s+1}} \right] + E \]

\[= \sum_{n=1}^{j} \frac{1}{n^s} - \frac{1}{1-s} + \frac{1}{2} \left[\frac{1}{N^s} - \frac{1}{j^s} \right] - \frac{s}{12} \left[\frac{1}{N^{s+1}} - \frac{1}{j^{s+1}} \right] + E \]

\[\phi(j, s) = \frac{1}{2} \left[\frac{1}{N^s} - \frac{1}{j^s} \right] - \frac{s}{12} \left[\frac{1}{N^{s+1}} - \frac{1}{j^{s+1}} \right] + E \]

(18)

where

\[E = \frac{1}{3!} \int_{j}^{N} \hat{B}_3(x)f'''(x)dx \]

\[= \frac{1}{3!} \int_{j}^{N} \hat{B}_3(x) \left[-\frac{s(s+1)(s+2)}{x^{s+3}} \right] dx, \]

(19)

\[\hat{B}_3(x) = x^3 - \frac{3}{2} x^2 + \frac{1}{2} x \]

(20)
Since,
\[|\bar{B}_3(x)| < 0.0481126 \equiv B^{\text{max}}_3 \] (21)

Thus, the error term, \(E \), can be bounded as,
\[
|E| \leq \frac{1}{3!} \int_j^N |\bar{B}_3(x)f'''(x)| \, dx \\
\leq \frac{B^{\text{max}}_3}{3!} \int_j^N |f'''(x)| \, dx \\
\leq \frac{B^{\text{max}}_3}{3!} \frac{|s(s+1)(s+2)|}{(3!)^{\sigma+2}} \left[\frac{1}{\eta^{\sigma+2}} - \frac{1}{N^{\sigma+2}} \right] (22)
\]

Multiplying equation (18) by \(N^s \) and setting \(j = N/r \) where \(r \) is a natural number and \(N \) is a very large natural number that is divisible by \(r \),
\[
N^s \phi(N,s) = N^s \phi \left(\frac{N}{r}, \sigma \right) + \frac{N^s}{2} \left(\frac{1}{N^s} - \frac{r^s}{N^s} \right) - \frac{N^s s}{12} \left(\frac{1}{N^{s+1}} - \frac{r^{s+1}}{N^{s+1}} \right) + N^s \cdot O \left(\frac{1}{N^{\sigma+2}} \right) (23)
\]

As \(N \to \infty \),
\[
\lim_{N \to \infty} N^s \phi(N,s) = \lim_{N \to \infty} N^s \phi \left(\frac{N}{r}, \sigma \right) + \frac{1}{2} \left[1 - r^s \right] (24)
\]

Actually, there are two cases.

Case I: \(\zeta(s) \neq 0 \)

In this case, \(\psi(s) \) is unbounded as,
\[
|\psi(s)| = \lim_{N \to \infty} N^s \zeta(s) = \infty (25)
\]

From equation (10), we know that \(\lim_{N \to \infty} N^s I(N,s) \) is bounded, therefore \(\lim_{N \to \infty} N^s \phi(N,s) \) must be unbounded, since
\[
|\psi(s)| = \lim_{N \to \infty} \left| N^s \phi(N,s) - N^s I(N,s) \right| = \infty (26)
\]

So, we have
\[
\lim_{N \to \infty} \left| N^s \phi(N,s) \right| = \infty, \quad \lim_{N \to \infty} \left| N^s \phi(N/r,s) \right| = \infty (27)
\]

Case II: \(\zeta(s) = 0 \)

In this case, \(\psi(s) \) vanishes, since,
\[
|\psi(s)| = |N^s \zeta(s)| = 0 (28)
\]

Therefore \(\lim_{N \to \infty} N^s \phi(N,s) \) must be bounded since,
\[
|\psi(s)| = \lim_{N \to \infty} \left| N^s \phi(N,s) - N^s I(N,s) \right| = 0 (29)
\]

Thus, we must have,
\[
\lim_{N \to \infty} N^s \phi(N,s) = \lim_{N \to \infty} N^s I(N,s) (30)
\]
Assume that
\[H(s) = \lim_{N \to \infty} N^s \phi(N, s) \]
(31)

Hence,
\[\lim_{N \to \infty} N^s \phi \left(\frac{N}{r}, s \right) = r^s \lim_{N/r \to \infty} \left(\frac{N}{r} \right)^s \phi \left(\frac{N}{r}, s \right) = r^s H(s) \]
(32)

Substituting in equation (34), leads to,
\[(1 - r^s) \left[\frac{1}{2} - H(s) \right] = 0 \]
(33)

So, we have either,
\[1 - r^s = 0, \quad \Rightarrow \quad s = \frac{2\pi ki}{\log r}, \quad k = 0, \pm 1, \pm 2 \cdots \]
(34)

which is rejected as it leads to a contradiction with the range of \(\sigma \) (0 < \(\sigma \) < 1),
or, we have,
\[H(s) = \frac{1}{2} \]
(35)

Therefore, at a non-trivial zero of the zeta function, we must have,
\[\zeta(s) = 0 \implies \lim_{N \to \infty} N^s \phi(N, s) = \lim_{N \to \infty} N^s I(N, s) = \frac{1}{2} \]
(36)

Due to the symmetry of the non-trivial zeros of the zeta function about the critical line, we must also have,
\[\zeta(1 - \bar{s}) = 0 \implies \lim_{N \to \infty} N^{1-\bar{s}} \phi(N, 1 - \bar{s}) = \lim_{N \to \infty} N^{1-\bar{s}} I(N, 1 - \bar{s}) = \frac{1}{2} \]
(37)

Let us define
\[\nu(s) = (1 - s)\psi(s) - \bar{s}\psi(1 - \bar{s}) = \lim_{N \to \infty} [(1 - s)N^s \zeta(s) - \bar{s}N^{1-\bar{s}} \zeta(1 - \bar{s})] \]
(38)

Clearly, the non-trivial zeros of the zeta function are included in the zeros of \(\nu(s) \) since at a non-trivial zero, \(s \), we have \(\zeta(s) = \zeta(1 - \bar{s}) = 0 \) and hence,
\[\nu(s) = \lim_{N \to \infty} [(1 - s)N^s \zeta(s) - \bar{s}N^{1-\bar{s}} \zeta(1 - \bar{s})] = \lim_{N \to \infty} [(1 - s)N^s(0) - \bar{s}N^{1-\bar{s}}(0)] = 0 \]
(39)

From equation (38), \(\nu(s) \) can be written as,
\[\nu(s) = \lim_{N \to \infty} [(1 - s)N^s \phi(N, s) - \bar{s}N^{1-\bar{s}} \phi(N, 1 - \bar{s}) - (1 - s)N^s I(N, s) + \bar{s}N^{1-\bar{s}} I(N, 1 - \bar{s})] \]
(40)

So, at a non-trivial zero of the zeta function, using equation (36), we get,
\[\lim_{N \to \infty} [(1 - s)N^s \phi(N, s) - \bar{s}N^{1-\bar{s}} \phi(N, 1 - \bar{s})] = (1 - s) \left(\frac{1}{2} \right) + (\bar{s}) \left(\frac{1}{2} \right) = 0 \]
(41)

or
\[\lim_{N \to \infty} \beta(N, s) = \frac{1 - s - \bar{s}}{2} = \frac{1 - 2\sigma}{2} \]
(42)

where
\[\beta(N, s) = (1 - s)N^s \phi(N, s) - \bar{s}N^{1-\bar{s}} \phi(N, 1 - \bar{s}) \]
(43)

So, let us study the convergence of the series \(\lim_{N \to \infty} \beta(N, s) \). Obviously, it converges to zero when \(\sigma = 1 - \sigma \) (i.e. \(\sigma = 1/2 \)) and equation (42) is satisfied.
On the other hand, if \(\sigma \neq 1/2 \), let us write \(\phi(N, s) \) using Euler–Maclaurin summation rule given by equation \(\text{(48)} \) for large values of \(j, N \), such that \(N \gg j \gg |s(s+1)(s+2)| \),

\[
\phi(N, s) = \sum_{n=1}^{j} \frac{1}{n^s} - \frac{j^{1-s}}{1-s} + \frac{1}{2} \left[\frac{1}{N^s} - \frac{1}{j^s} \right]
\]

and similarly,

\[
\phi(N, 1-\bar{s}) = \sum_{n=1}^{j} \frac{1}{n^{1-\bar{s}}} - \frac{j^{1-\bar{s}}}{\bar{s}} + \frac{1}{2} \left[\frac{1}{N^{1-\bar{s}}} - \frac{1}{j^{1-\bar{s}}} \right]
\]

Therefore,

\[
\beta(N, s) = \sum_{n=1}^{j} \left[(1-s) \left(\frac{N}{n} \right)^{s} - (\bar{s}) \left(\frac{N}{n} \right)^{1-\bar{s}} \right] + \frac{1-s-\bar{s}}{2} - \frac{1}{2} \left[\frac{(1-s)N^s}{j^s} - \frac{\bar{s}N^{1-\bar{s}}}{j^{1-\bar{s}}} \right]
\]

\[
= \sum_{n=1}^{j} \left[(1-\sigma-it) \left(\frac{N}{n} \right)^{\sigma} - (\sigma-it) \left(\frac{N}{n} \right)^{1-\sigma} \right] \left(\frac{N}{n} \right)^{it} + \frac{1-2\sigma}{2} - \frac{1}{2} \left[\frac{(1-s)N^s}{j^s} - \frac{\bar{s}N^{1-\bar{s}}}{j^{1-\bar{s}}} \right]
\]

As \(n \to 1 \), \((N/n) \to N \) while as \(n \to N \), \((N/n) \to 1 \), so, for \(\sigma > 1/2 \), the magnitudes of first few terms of the above series are dominated by,

\[
\sqrt{(1-\sigma)^2 + t^2} N^{\sigma}, \sqrt{(1-\sigma)^2 + t^2} \left(\frac{N}{2} \right)^{\sigma}, \sqrt{(1-\sigma)^2 + t^2} \left(\frac{N}{3} \right)^{\sigma} \ldots
\]

Thus, as \(N \to \infty \), \(\beta(N, s) \) is dominated by the first few terms of the above series and the term,

\[
\frac{1}{2} \left[\frac{(1-s)N^s}{j^s} \right]
\]

which are all \(O(N^{\sigma}) \) and do not cancel out. This leads to the divergence of the series \(\lim_{N \to \infty} \beta(N, s) \), hence, equation \(\text{(48)} \) cannot be satisfied in this case.

Therefore, \(\nu(s) \), and accordingly \(\zeta(s) \), can only be zero when \(\sigma = 1/2 \). That is, all the non-trivial zeros of the zeta function must lie on the critical line, \(\text{Re}(s) = 1/2 \).

\[
\square
\]

References

[1] B. Riemann. Ueber die anzahl der primzahlen unter einer gegebenen größe. Monatsberichte der Berliner Akademie, pages 671–680, November 1859.

[2] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark. NIST Handbook of Mathematical Functions Paperback and CD-ROM. Cambridge University Press, 2010.

[3] J. Hadamard. Sur la distribution des zéros de la fonction \(\zeta(s) \) et ses conséquences arithmétiques. Bulletin de la Société Mathématique de France, 24:199–220, 1896.

[4] Charles De La Vallee-Poussin. Recherches analytiques sur la théorie des nombres premiers. Ann. Soc. Sc. Bruxelles, 1896.

[5] X. Gourdon. The 10 13 first zeros of the riemann zeta function . and zeros computation at very large height. 2004. Available at https://api.semanticscholar.org/CorpusID:17523625

[6] M.J. Mossinghoff and T.S. Trudgian. Nonnegative trigonometric polynomials and a zero-free region for the riemann zeta-function. Journal of Number Theory, 157:329–349, 2015.

[7] P. Borwein, S. Choi, B. Rooney, and A. Weirathmueller. The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike. CMS Books in Mathematics. Springer New York, 2007.

[8] H.M. Edwards. Riemann’s Zeta Function. Dover books on mathematics. Dover Publications, 2001.