Search for bound-state electron+positron pair decay

F. Bosch1, S. Hagmann1, P.-M. Hillenbrand1, G. J. Lane2, Yu. A. Litvinov1,3,a, M. W. Reed2,b, M. S. Sanjari1, Th. Stöhlker1,4,5, S. Yu. Torilov6, X. L. Tu1,3,7, and P. M. Walker8

1 GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
2 Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
3 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
4 Helmholtz-Institut Jena, 07743 Jena, Germany
5 Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
6 St. Petersburg State University, Ulyanovskaya str. 1, Petrodvorets, 198504 St. Petersburg, Russia
7 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
8 Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

Abstract. The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the search of yet unobserved decay mode – bound-state electron-positron pair decay.

1 Introduction

The question on whether nuclear half-lives are fundamental constants or can be modified by external manipulations was asked already at the beginning of nuclear physics [1]. Only tiny effects of below about one percent were found, see review [2]. Recently, a 1.5% change in the electron capture decay rate of 7Be implanted in C60 clusters was observed [3]. Unconfirmed and disputed claims exist on the dramatic acceleration of α-decay in nuclei implanted into metals at cryogenic temperatures [4]. In all these cases, the results were explained using the modifications of electron densities, which is one of the main quantities needed to describe decay processes involving bound electrons [5].

Even with this scarce experimental evidence, it has been observed that high atomic charge states can dramatically modify nuclear decay properties [6–8]. A striking example is 163Dy. As a neutral atom it is stable. However, when fully-ionised its half-life becomes merely $T_{1/2}^{(163\text{Dy}^{64+})} \sim 33\text{ years}$ [9]. In the case of 187Re, removing all orbital electrons reduces the half-life by nine orders of magnitude [10]. Both nuclides decay via bound-state β decay in which the decay electron occupies one of the bound orbitals instead of being emitted to the continuum. This decay mode is a time-mirror of the electron capture decay. The process is marginal in neutral atoms, but it can be significant if atoms are highly-ionised.

It is immediately obvious that orbital electron capture and internal conversion decays are disabled in fully-ionised atoms. In such cases weak decay branches like positron emission (if energetically allowed) or γ de-excitation can be investigated. For instance, conversion coefficients of nuclear isomers [11–13], were measured in fully ionised 144Tb, 149Dy and 151Er isomeric states. Investigations of decay probabilities as a function of atomic charge states reveal interesting results. Counterintuitive results were obtained in electron capture of one- and two-electron systems in 122I, 140Pr and 142Pm ions [14–16], where the rate is by about 50% larger in the ion with one bound electron as compared to the ion with two electrons. These results can be explained by taking into consideration the conservation of the total nucleus plus leptons angular momentum [17, 18]. Due to the energetic blocking of the K-shell internal conversion, the decay rate of the 35.5-keV first excited state in 125Te is increased by 300% and 640% for 47+ and 48+ charge states as compared to the value known for neutral atoms [19]. A new decay mode bound-state internal conversion was observed for few-electron Fe isomers [20, 21]. Here the isomer de-excitation energy is transferred to a bound electron which is then excited to a higher, unoccupied atomic level. Increased half-life of the isomeric state in 192Os with a single bound electron allowed for benchmarking conversion coefficient estimations [22]. Studying the decays of isomers in highly-charged ions is important not only for investigations of weak decay branches or for testing of theoretical calculations, it is essential also for nuclear astrophysics [23], where the pathways of nucleosynthesis may dramatically be altered if low-spin long-lived excited states are present [24]. In particular this relates to $0^+ \rightarrow 0^+$ (E0) transitions which are strongly suppressed in fully-ionised atoms.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
mass spectrometry (SMS) [33, 34]. Nuclides with different masses are resolved by their revolution frequencies. The noise power of the Fourier-transformed signal directly relates to the number of stored ions. The SMS is sensitive to single particles [35] and has been employed for the search of long-lived isomers [36–39] as well as new isotopes [40, 41]. With new resonant detectors, time resolution of a few milliseconds can be envisioned [42–44]. The mass resolving power of the SMS is about 700 000 [45].

The decay in the ring is characterised by the disappearance of the signal at the revolution frequency of the parent ion and the correlation in time to the appearance of a signal at the frequency corresponding to the daughter ion [46]. The change in frequency reflects the change in the mass-over-charge ratio between the parent and the daughter ions. The details on the single-particle decay spectroscopy in storage rings can be found in [47].

Isomeric states decaying by double gamma-ray emission will not change the charge state and the daughter ion is still $^{194}\text{Pb}^{82+}$ in its ground state. The bound-state $e^- + e^+$ decay results in $^{194}\text{Pb}^{81+}$, which has a distinctly different revolution frequency. There is however a source of background, which is due to atomic pick-up of an electron from the rest-gas yielding the same daughter ions. If electron cooling of the stored ions [48] is employed, then also the recombination with the cooler electron has to be considered. Alternatively to electron cooling, the ions can be cooled stochastically [49, 50] or the ring can be operated in the isochronous ion-optical mode [45, 51, 52].

To perform first feasibility studies, one could use the operating facility at GSI Helmholtzentrum for Heavy Ion Research in Darmstadt, Germany, which is a combination of the fragment separator FRS [53] and the experimental storage ring ESR [54]. One could, for instance, study the most probable way to produce the first 0^+ in $^{194}\text{Pb}^{82+}$. Direct production at the FRS or the production directly in the ESR shall be considered. In-ring α-decays were suggested for the ESR to study the electron screening effects [55], though no systematic investigations were performed so far (see [56] for more details). The α-decay branches ^{198}Po populating the states in $^{194}\text{Pb}^{82+}$ are known [30], and the in-ring α-decay might be an efficient method to produce the state of interest. Concerning the background, one way to remove it could be the extraction and storage of ions in a Penning trap coupled to the ESR, HITRAP [57]. In this case, a clean detection method would be to measure 11-keV positrons from the decay. A possibility to distinguish the atomic electron capture from the isomer de-excitation decays on the basis of the distributions of the ion recoils (see [47]) shall be investigated as well. Monochromatic positrons emitted by fast projectiles is a favourable background-free detection method. Detection of ~ 11-keV positrons is feasible with an electron-spectrometer installed at the ESR [58, 59]. The concept of detecting positrons is described in detail in [60].

With higher kinetic energies the probability to pick-up electrons rapidly decreases. Therefore, another facility for the experiment could be the Facility for Antiproton and Ion Research, FAIR, which is under construction in Darm-
The bound-state $e^- + e^+$ decay is energetically allowed for the first 0^+ excited state in fully-ionised 194Pb$^{82+}$. The observation of this decay mode can experimentally be addressed at heavy-ion storage rings coupled to the radioactive-ion production facilities [69]. Such experiments, however, are very difficult at present but can be planned at the new generation radioactive-ion beam facilities like FAIR or HIAF.

In memorium

This short paper is dedicated to George Dracoulis, our friend who was inspired by the application of the heavy-ion storage rings to isomer studies.

Acknowledgements

This work is supported in part by the Helmholtz-CAS Joint Research Group (HCJRG-108), the Australian Research Council (DP120101417 and FT100100991), and the UK-Science and Technology Facilities Council.

References

[1] E. Rutherford and F. Soddy, J. Chem. Soc., Trans. 81, 837 (1902).
[2] G. T. Emery, Ann. Rev. Nucl. Sci. 22, 165 (1972).
[3] T. Ohtsuki, K. Ohno, T. Morisato et al., Phys. Rev. Lett. 98, 252501 (2007).
[4] F. Raiola, T. Spillane, B. Limata et al., Eur. Phys. J. A 32, 51 (2007).
[5] W. Bambuszk, H. Behrens, M. H. Chen et al., Rev. Mod. Phys. 49, 77 (1977).
[6] Y. A. Litvinov and F. Bosch, Rep. Prog. Phys. 74, 016301 (2011).
[7] F. Bosch, Y. A. Litvinov and T. Stöhlker, Prog. Part. Nucl. Phys. 73, 84 (2013).
[8] D. Atanasov, K. Blaum, F. Bosch et al., J. Phys. B: At. Mol. Opt. 48, 144024 (2015).
[9] M. Jung, F. Bosch, K. Beckert et al., Phys. Rev. Lett. 69, 2164 (1992).
[10] F. Bosch, T. Faestermann, J. Friese et al., Phys. Rev. Lett. 77, 5190 (1996).
[11] P. Walker and G. Dracoulis, Nature 399, 35 (1999).
[12] P. M. Walker and G. D. Dracoulis, Hyperfine Interact. 135, 83 (2001).
[13] G. D. Dracoulis, Phys. Scripta T152, 014015 (2013).
[14] Y. A. Litvinov, F. Bosch, H. Geissel et al., Phys. Rev. Lett. 99, 262501 (2007).
[15] N. Winckler, H. Geissel, Y. Litvinov et al., Phys. Lett. B 679, 36 (2009).
[16] D. R. Atanasov, N. Winckler, D. Balabanski et al., Eur. Phys. J. A 48, 22 (2012).
[17] Z. Patyk, J. Kurcewicz, F. Bosch et al., Phys. Rev. C 77, 014306 (2008).
[18] K. Siegień-Iwaniuk, N. Winckler, F. Bosch et al., Phys. Rev. C 84, 014301 (2011).
[19] F. Attallah, M. Aiche, J. F. Chemin et al., Phys. Rev. Lett. 75, 1715 (1995).
[20] W. R. Phillips, I. Ahmad, D. W. Banas et al., Phys. Rev. Lett. 62, 1025 (1989).
[21] W. R. Phillips, J. Copnell, D. W. Banas et al., Phys. Rev. A 47, 3682 (1993).
[22] A. Akber, M. W. Reed, P. M. Walker et al., Phys. Rev. C 91, 031301 (2015).
[23] E. M. Burbidge, G. R. Burbidge, W. A. Fowler et al., Rev. Mod. Phys. 29, 547 (1957).
[24] Yu.N. Novikov, H. Schatz, P. Dendooven et al., Eur. Phys. J. A 11, 257 (2001).
[25] B. A. Watson, T. T. Bardin, J. A. Becker et al., Phys. Rev. Lett. 35, 1333 (1975).
[26] J. Schirmer, D. Habs, R. Kroth et al., Phys. Rev. Lett. 53, 1897 (1984).
[27] J. Kramp, D. Habs, R. Kroth et al., Nucl. Phys. A474, 412 (1987).
[28] C. Walz, H. Scheit, N. Pietralla et al., Nature 526, 406 (2015).
[29] M. Huyse, A. N. Andreyev, P. Van Duppen et al., Nature 405, 430 (2000).
[30] P. Dendooven, P. Decrock, M. Huyse et al., Phys. Lett. B 226, 27 (1989).
[31] D. R. Plante, W. R. Johnson and J. Sapirstein, Phys. Rev. A 49, 3519 (1994).
[32] W. Johnson and G. Soff, Atom. Data Nucl. Data 33, 405 (1985).
[33] Y. Litvinov, H. Geissel, Y. Novikov et al., Nucl. Phys. A734, 473 (2004).
[34] Y. Litvinov, H. Geissel, T. Radon et al., Nucl. Phys. A756, 3 (2005).
[35] L. Chen, Y. A. Litvinov, W. R. Plaß et al., Phys. Rev. Lett. 102, 122503 (2009).
[36] M. W. Reed, I. J. Cullen, P. M. Walker et al., Phys. Rev. Lett. 105, 172501 (2010).
[37] M. W. Reed, P. M. Walker, I. J. Cullen et al., Phys. Rev. C 86, 054321 (2012).
[38] M. W. Reed, P. M. Walker, I. J. Cullen et al., J. Phys. Conf. Ser. 381, 2058 (2012).
[39] L. Chen, P. M. Walker, H. Geissel et al., Phys. Rev. Lett. 110, 122502 (2013).
[40] F. Bosch, H. Geissel, Y. Litvinov et al., Int. J. Mass. Spectrom. 251, 212 (2006).
[41] L. Chen, W. R. Plass, H. Geissel et al., Phys. Lett. B 691, 234 (2010).
[42] F. Nolden, P. Hülsmann, Y. Litvinov et al., Nucl. Instrum. Meth. A 659, 69 (2011).
[43] M. S. Sanjari, P. Hülsmann, F. Nolden et al., Phys. Scripta T156, 014088 (2013).
[44] M. S. Sanjari, X. Chen, P. Hülsmann et al., Phys. Scripta T166, 014065 (2015).
[45] B. Franzke, H. Geissel and G. Münzenberg, Mass Spectrom. Rev. 27, 428 (2008).
[46] Y. Litvinov, F. Bosch, N. Winckler et al., Phys. Lett. B 664, 162 (2008).
[47] P. Kienle, F. Bosch, P. Bühler et al., Phys. Lett. B 726, 638 (2013).
[48] M. Steck, P. Beller, K. Beckert et al., Nucl. Instrum. Meth. A 532, 357 (2004).
[49] F. Nolden, K. Beckert, P. Beller et al., Nucl. Instrum. Meth. A 532, 329 (2004).
[50] H. Geissel, Y. Litvinov, F. Attallah et al., Nucl. Phys. A746, 150c (2004).
[51] M. Hausmann, J. Stadlmann, F. Attallah et al., Hyperfine Interact. 132, 289 (2001).
[52] H. Geissel, Y. A. Litvinov, K. Beckert et al., Eur. Phys. J.-Spec. Top. 150, 109 (2007).
[53] H. Geissel, P. Armbruster, K. Behr et al., Nucl. Instrum. Meth. B 70, 286 (1992).
[54] B. Franzke, Nucl. Instrum. Meth. B 24/25, 18 (1987).
[55] A. Musumarra, F. Farinon, C. Nociforo et al., AIP Conf. Proc. 1165, 415 (2009).
[56] C. Nociforo, F. Farinon, A. Musumarra et al., Phys. Scripta T150, 014028 (2012).
[57] F. Herfurth, Z. Andelkovic, W. Barth et al., Phys. Scripta T166, 014065 (2015).
[58] P. M. Hillenbrand, S. Hagmann, A. B. Voitkiv et al., Phys. Rev. A 90, 042713 (2014).
[59] P. M. Hillenbrand, S. Hagmann, D. H. Jakubassa-Amundsen et al., Phys. Rev. A 91, 022705 (2015).
[60] P. M. Hillenbrand, S. Hagmann, K. E. Stiebing et al., Phys. Scripta T166, 014026 (2015).
[61] FAIR, FAIR Baseline Technical Report 1, GSI, Darmstadt (2006), http://www.fair-center.de/fileadmin/fair/publications_FAIR/FAIR_BTR_1.pdf
[62] H. Geissel, H. Weick, M. Winkler et al., Nucl. Instrum. Meth. B 204, 71 (2003).
[63] A. Dolinskii, D. Berkaev, U. Blell et al., Phys. Scripta T166, 014040 (2015).
[64] T. Söhlker, Y. A. Litvinov and for the SPARC Collaboration, Phys. Scripta T166, 014025 (2015).
[65] T. Söhlker, V. Bagnoud, K. Blaum et al., Nucl. Instrum. Meth. B 365, 680 (2015).
[66] J. Yang, J. Xia, G. Xiao et al., Nucl. Instrum. Meth. B 317, 263 (2013).
[67] A. Ozawa, T. Uesaka, M. Wakasugi et al., Prog. Theor. Exp. Phys. 2012, 03C009 (2012).
[68] T. Yamaguchi, Y. Yamaguchi and A. Ozawa, Int. J. Mass. Spectrom. 349-350, 240 (2013).
[69] Y. Litvinov, S. Bishop, K. Blaum et al., Nucl. Instrum. Meth. B 317, 603 (2013).