On the structure of spikes

Vahid Ghorbani, Ghodratollah Azadi and Habib Azanchiler

Department of mathematics, University of Urmia, Iran

Abstract

Spikes are an important class of 3-connected matroids. For an integer \(r \geq 3 \), there is a unique binary \(r \)-spike denoted by \(Z_r \). When a circuit-hyperplane of \(Z_r \) is relaxed, we obtain another spike and repeating this procedure will produce other non-binary spikes. The \(es \)-splitting operation on a binary spike of rank \(r \), may not yield a spike. In this paper, we give a necessary and sufficient condition for the \(es \)-splitting operation to construct \(Z_{r+1} \) directly from \(Z_r \). Indeed, all binary spikes and many of non-binary spikes of each rank can be derived from the spike \(Z_3 \) by a sequence of The \(es \)-splitting operations and circuit-hyperplane relaxations.

Keywords: binary matroid, \(es \)-splitting operation, relaxation, spike.

1. Introduction

Azanchiler [1], [2] extended the notion of \(n \)-line splitting operation from graphs to binary matroids. He characterized the \(n \)-line splitting operation of graphs in terms of cycles of the respective graph and then extended this operation to binary matroids as follows. Let \(M \) be a binary matroid on a set \(E \) and let \(X \) be a subset of \(E \) with \(e \in X \). Suppose \(A \) is a matrix that represents \(M \) over \(GF(2) \). Let \(A_X^e \) be a matrix obtained from \(A \) by adjoining an extra row to \(A \) with this row being zero everywhere except in the columns corresponding to the elements of \(X \) where it takes the value 1, and then adjoining two columns labeled \(\alpha \) and \(\gamma \) to the resulting matrix such that the column labeled \(\alpha \) is zero everywhere except in the last row where it takes the value 1, and \(\gamma \) is the sum of the two column vectors corresponding to the elements \(\alpha \) and \(e \). The vector matroid of the matrix \(A_X^e \) is denoted by \(M_X^e \). The transition from \(M \) to \(M_X^e \) is called an \(es \)-splitting operation. We call the matroid \(M_X^e \) as \(es \)-splitting matroid.
Let M be a matroid and $X \subseteq E(M)$, a circuit C of M is called an OX-circuit if C contains an odd number of elements of X, and C is an EX-circuit if C contains an even number of elements of X. The following proposition characterizes the circuits of the matroid M_X^e in terms of the circuits of the matroid M.

Proposition 1. Let $M = (E, \mathcal{C})$ be a binary matroid together with the collection of circuits \mathcal{C}. Suppose $X \subseteq E$, $e \in X$ and $\alpha, \gamma \notin E$. Then $M_X^e = (E \cup \{\alpha, \gamma\}, \mathcal{C}')$ where $\mathcal{C}' = (\cup_{i=0}^{5} C_i) \cup \Lambda$ with $\Lambda = \{e, \alpha, \gamma\}$ and $C_0 = \{C \in \mathcal{C} : C \text{ is an EX-circuit}\}$; $C_1 = \{C \cup \{\alpha\} : C \in \mathcal{C} \text{ and } C \text{ is an OX-circuit}\}$; $C_2 = \{C \cup \{e, \gamma\} : C \in \mathcal{C}, e \notin C \text{ and } C \text{ is an OX-circuit}\}$; $C_3 = \{(C \setminus e) \cup \{\gamma\} : C \in \mathcal{C}, e \in C \text{ and } C \text{ is an OX-circuit}\}$; $C_4 = \{(C \setminus e) \cup \{\alpha, \gamma\} : C \in \mathcal{C}, e \in C \text{ and } C \text{ is an EX-circuit}\}$; C_5 is the set of minimal members of $\{C_1 \cup C_2 : C_1, C_2 \in \mathcal{C}, C_1 \cap C_2 = \emptyset\}$ and each of C_1 and C_2 is an OX-circuit.

It is observed that the es-splitting of a 3-connected binary matroid may not yield a 3-connected binary matroid. The following result, provide a sufficient condition under which the es-splitting operation on a 3-connected binary matroid yields a 3-connected binary matroid.

Proposition 2. Let M be a 3-connected binary matroid, $X \subseteq E(M)$ and $e \in X$. Suppose that M has an OX-circuit not containing e. Then M_X^e is a 3-connected binary matroid.

To define rank-r spikes, let $E = \{x_1, x_2, ..., x_r, y_1, y_2, ..., y_r, t\}$ for some $r \geq 3$. Let $C_1 = \{\{t, x_i, y_i\} : 1 \leq i \leq r\}$ and $C_2 = \{\{x_i, y_i, x_j, y_j : 1 \leq i < j \leq r\}$. The set of circuits of every spike on E includes $C_1 \cup C_2$. Let C_3 be a, possibly empty, subsets of $\{\{z_1, z_2, ..., z_r\} : z_i \in \{x_i, y_i\} \text{ for all } i\}$ such that no two members of C_3 have more than $r - 2$ common elements. Finally, let C_4 be the collection of all $(r + 1)$-element subsets of E that contain no member of $C_1 \cup C_2 \cup C_3$.

Proposition 3. There is a rank-r matroid on E whose collection \mathcal{C} of circuits is $\mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3 \cup \mathcal{C}_4$.

The matroid M on E with collection \mathcal{C} of circuits in the last proposition is called a rank-r spike with tip t and legs $L_1, L_2, ... L_r$ where $L_i = \{t, x_i, y_i\}$ for all i. In the construction of a spike, if C_3 is empty, the corresponding spike
is called the rank-r free spike with tip t. In an arbitrary spike M, each circuit in C_3 is also a hyperplane of M. Evidently, when such a circuit-hyperplane is relaxed, we obtain another spike. Repeating this procedure until all of the circuit-hyperplanes in C_3 have been relaxed will produce the free spike. Now let J_r and 1 be the r \times r and r \times 1 matrices of all ones. For r \geq 3, let A_r be the r \times (2r+1) matrix \([I_r|J_r-I_r|1]\) over GF(2) whose columns are labeled, in order, x_1, x_2, ..., x_r, y_1, y_2, ..., y_r, t. The vector matroid M[A_r] of this matrix is called the rank-r binary spike with tip t and denoted by Z_r. Oxley \[3\] showed that all rank-r, 3-connected binary matroids without a 4-wheel minor can be obtained from a binary r-spike by deleting at most two elements.

2. Circuits of Z_r

In this section, we characterize the collection of circuits of Z_r. To do this, we use the next well-known theorem.

Theorem 4. \[3\] A matroid M is binary if and only if for every two distinct circuits C_1 and C_2 of M, their symmetric difference, C_1 \Delta C_2, contains a circuit of M.

Now let M = (E, \mathcal{C}) be a binary matroid on the set E together with the set \mathcal{C} of circuits where E = \{x_1, x_2, ..., x_r, y_1, y_2, ..., y_r, t\} for some r \geq 3. Suppose Y = \{y_1, y_2, ..., y_r\}. For k in \{1, 2, 3, 4\}, we define \varphi_k as follows.

\[\varphi_1 = \{L_i = \{t, x_i, y_i\} : 1 \leq i \leq r\};\]
\[\varphi_2 = \{\{x_i, y_i, x_j, y_j\} : 1 \leq i < j \leq r\};\]
\[\varphi_3 = \{Z \subseteq E : |Z| = r, |Z \cap Y| \text{ is odd and } |Z \cap \{y_i, x_i\}| = 1 \text{ where } 1 \leq i \leq r\};\]
and
\[\varphi_4 = \begin{cases} \{E - C : C \in \varphi_3\}, & \text{if } r \text{ is odd;} \\ \{(E - C)\Delta\{x_{r-1}, y_{r-1}\} : C \in \varphi_3\}, & \text{if } r \text{ is even.} \end{cases}\]

Theorem 5. A matroid whose collection \mathcal{C} of circuits is \varphi_1 \cup \varphi_2 \cup \varphi_3 \cup \varphi_4, is the rank-r binary spike.

Proof. Let M be a matroid on the set E = \{x_1, x_2, ..., x_r, y_1, y_2, ..., y_r, t\} such that \mathcal{C}(M) = \varphi_1 \cup \varphi_2 \cup \varphi_3 \cup \varphi_4. Suppose Y = \{y_1, y_2, ..., y_r\}. Then, for every two distinct circuits C_1 and C_2 of \varphi_3, we have C_1 \cap Y \neq C_2 \cap Y and |C_j \cap \{x_i, y_i\}| = 1 for all i and j with 1 \leq i \leq r and j \in \{1, 2\}. We conclude that there is at least one y_i in C_1 such that y_i \notin C_2 and so x_i is in C_2 but it is not in C_1. Thus, no two members
of \(\varphi_3 \) have more than \(r - 2 \) common elements. It is clear that every member of \(\varphi_4 \) has \((r + 1) \)-elements and contains no member of \(\varphi_1 \cup \varphi_2 \cup \varphi_3 \). By Proposition 3, we conclude that \(M \) is a rank-r spike. It is straightforward to show that for every two distinct members of \(C \), their symmetric difference contains a circuit of \(M \). Thus, by Theorem 4, \(M \) is a binary spike.

It is not difficult to check that if \(r \) is odd, then the intersection of every two members of \(\varphi_3 \) has odd cardinality and the intersection of every two members of \(\varphi_4 \) has even cardinality. Clearly, \(|\varphi_1| = r \), \(|\varphi_2| = \frac{r(r-1)}{2} \), and \(|\varphi_3| = |\varphi_4| = 2^{r-1} \). Therefore, every rank-r binary spike has \(2^r + \frac{r(r+1)}{2} \) circuits. Moreover, \(\cap_{i=1}^{r} L_i \neq \emptyset \) and \(|C \cap \{ x_i, y_i \}| = 1 \) where \(1 \leq i \leq r \) and \(C \) is a member of \(\varphi_3 \cup \varphi_4 \).

3. The es-splitting operation on \(Z_r \)

By applying the es-splitting operation on a given matroid with \(k \) elements, we obtain a matroid with \(k + 2 \) elements. In this section, our main goal is to give a necessary and sufficient condition for \(X \subseteq E(Z_r) \) with \(e \in X \), to obtain \(Z_{r+1} \) by applying the es-splitting operation on \(X \). Now suppose that \(M = Z_r \) be a binary rank-r spike with the matrix representation \([I_r|J_r-L_r|1]\) over \(GF(2) \) whose columns are labeled, in order \(x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_r, t \). Suppose \(\varphi = \varphi_1 \cup \varphi_2 \cup \varphi_3 \cup \varphi_4 \) be the collection of circuits of \(Z_r \) defined in section 2. Let \(X_1 = \{ x_1, x_2, \ldots, x_r \} \) and \(Y_1 = \{ y_1, y_2, \ldots, y_r \} \) and let \(X \) be a subset of \(E(Z_r) \). By the following lemmas, we give six conditions for membership of \(X \) such that, for every element \(e \) of this set, \((Z_r)^e_X \) is not the spike \(Z_{r+1} \).

Lemma 6. If \(r \geq 4 \) and \(t \notin X \), then, for every element \(e \) of \(X \), the matroid \((Z_r)^e_X \) is not the spike \(Z_{r+1} \).

Proof. Suppose that \(t \notin X \). Without loss of generality, we may assume that there exist \(i \) in \(\{1, 2, \ldots, r\} \) such that \(x_i \in X \) and \(e = x_i \). By Proposition 1, the set \(\Lambda = \{ x_i, \alpha, \gamma \} \) is a circuit of \((Z_r)^e_X \). Now consider the leg \(L_i = \{ t, x_i, y_i \} \), we have two following cases.

(i) If \(y_i \in X \), then \(|L_i \cap X| \) is even. By Proposition 1, the leg \(L_i \) is a circuit of \((Z_r)^e_X \). Now if all other legs of \(Z_r \) have an odd number of elements of \(X \), by Proposition 1, we observe that these legs transform to circuits of cardinality 4 and 5. So there are exactly two 3-circuit in \((Z_r)^e_X \). If not, there is a \(j \neq i \) such that \(L_j \) is a 3-circuit of \((Z_r)^e_X \) and \(\Lambda \cap L_i \cap L_j = \emptyset \), we conclude that in each case, for every element \(e \) of \(X \), the matroid \((Z_r)^e_X \) is not the spike \(Z_{r+1} \). Since \(Z_{r+1} \) has \(r + 1 \) legs and the intersection of the legs of \(Z_{r+1} \) is non-empty.
(ii) If $y_i \notin X$, then $|L_i \cap X|$ is odd. By Proposition 1, $(L_i \setminus x_i) \cup \gamma$ is a circuit of $(Z_r)^e_X$. Now if there is the other leg L_j such that $|L_j \cap X|$ is even, then L_j is a circuit of $(Z_r)^e_X$. But $(L_j \cap L \cap ((L_i \setminus x_i) \cup \gamma)) = \emptyset$, so $(Z_r)^e_X$ is not the spike Z_{r+1}. We conclude that every leg L_j with $j \neq i$ has an odd number of elements of X. Since $x_i \notin L_j$, by Proposition 1 again, L_j is not a 3-circuit in $(Z_r)^e_X$. Therefore, $(Z_r)^e_X$ has only two 3-circuits and so, for every element e of X, the matroid $(Z_r)^e_X$ is not the spike Z_{r+1}.

Lemma 7. If $r \geq 4$ and $e \neq t$, then, for every element e of $X - t$, the matroid $(Z_r)^e_X$ is not the spike Z_{r+1}.

Proof. Suppose that $e \neq t$. Without loss of generality, we may assume that there exist i in $\{1,2,\ldots,r\}$ such that $x_i \in X$ and $e = x_i$. By Proposition 1, the set $\Lambda = \{x_i, \alpha, \gamma\}$ is a circuit of $(Z_r)^e_X$ and by Lemma 6 to obtain Z_{r+1}, the element t is contained in X. Now consider the leg $L_i = \{t, x_i, y_i\}$. We have two following cases.

(i) If $y_i \in X$, then $|L_i \cap X|$ is odd. By Proposition 1, $L_i \cup \alpha$ and $(L_i \setminus x_i) \cup \gamma$ are circuits of $(Z_r)^e_X$. Now if there is the other leg L_j such that $|L_j \cap X|$ is even, then L_j is a circuit of $(Z_r)^e_X$. But $(L_j \cap L \cap ((L_i \setminus x_i) \cup \gamma)) = \emptyset$, so $(Z_r)^e_X$ is not the spike Z_{r+1}. We conclude that every leg L_j with $j \neq i$ has an odd number of elements of X. Since $x_i \notin L_j$, by Proposition 1 again, L_j is not a 3-circuit in $(Z_r)^e_X$. Therefore $(Z_r)^e_X$ has only two 3-circuit and so $(Z_r)^e_X$ is not the spike Z_{r+1}.

(ii) If $y_i \notin X$, then $|L_i \cap X|$ is even. So L_i is a circuit of $(Z_r)^e_X$. By similar arguments in Lemma 6 (i), one can show that for every element e of $X - t$, the matroid $(Z_r)^e_X$ is not the spike Z_{r+1}.

Next by Lemmas 6 and 7 to obtain the spike Z_{r+1}, we take t in X and $e = t$.

Lemma 8. If $r \geq 4$ and there is a circuit C of φ_3 such that $|C \cap X|$ is even, then the matroid $(Z_r)^e_X$ is not the spike Z_{r+1}.

Proof. Suppose that C is a circuit of Z_r such that C is a member of φ_3 and $|C \cap X|$ is even. Then, by Proposition 1, the circuit C is preserved under the es-splitting operation. So C is a circuit of $(Z_r)^e_X$. But $|C| = r$. Now if $r > 4$, then C cannot be a circuit of Z_{r+1}, since it has no r-circuit, and if $r = 4$, then, to preserve the members of φ_2 in Z_4 under the es-splitting operation and to have at least one member of φ_3 which has even number of elements of X, the set X must be $E(Z_r) - t$ or t. But in each case $(Z_4)^e_X$ has exactly fourteen 4-circuits, so it is not the spike Z_5, since this spike has exactly ten 4-circuit. We conclude that the matroid $(Z_r)^e_X$ is not the spike Z_{r+1}.

Lemma 9. If $r \geq 4$ and $|X \cap \{x_i, y_i\}| = 2$, for i in $\{1,2,\ldots,r\}$, then the matroid $(Z_r)^e_X$ is not the spike Z_{r+1} unless r is odd and for all i, $\{x_i, y_i\} \subset X$, in which case Z_{r+1} has γ as a tip.
Proof. Suppose that \(\{x_i, y_i\} \subset X\) for \(i \in \{1, 2, \ldots, r\}\). Since \(t \in X\) and \(e = t\), after applying the es-splitting operation, the leg \(\{t, x_i, y_i\}\) turns into two circuits \(\{t, x_i, y_i, \alpha\}\) and \(\{x_i, y_i, \gamma\}\). Now consider the leg \(L_j = \{t, x_j, y_j\}\) where \(j \neq i\). If \(|L_j \cap X|\) is even (this means \(\{x_j, y_j\} \notin X\)), then \(L_j\) is a circuit of \((Z_r)_X^\gamma\). But \(\{x_i, y_i, \gamma\} \cap \{t, x_j, y_j\} = \emptyset\) and this contradicts the fact that the intersection of the legs of a spike is not the empty set. So \(\{x_j, y_j\}\) must be a subset of \(X\). We conclude that \(\{x_k, y_k\} \subset X\) for all \(k \neq i\). Thus \(X = E(Z_r)\). But in this case, \(r\) cannot be even since every circuit in \(\varphi_3\) has even cardinality and by Lemma \(\blacksquare\) the matroid \((Z_r)_X^\gamma\) is not the spike \(Z_{r+1}\).

Now we show that if \(X = E(Z_r)\), and \(r\) is odd, then \((Z_r)_X^\gamma\) is the spike \(Z_{r+1}\) with tip \(\gamma\). Clearly, every leg of \(Z_r\) has an odd number of elements of \(X\). Using Proposition 1, after applying the es-splitting operation, we have the following changes.

For \(i \in \{1, 2, \ldots, r\}\), \(L_i\) transforms to two circuits \((L_i \setminus t) \cup \gamma\) and \(L_i \cup \alpha\), every member of \(\varphi_2\) is preserved, and if \(C \in \varphi_3\), then \(C \cup \alpha\) and \(C \cup \{t, \gamma\}\) are circuits of \((Z_r)_X^\gamma\). Finally, if \(C \in \varphi_4\), then \(C\) and \((C \setminus t) \cup \{t, \gamma\}\) are circuits of \((Z_r)_X^\gamma\). Note that, since \(X = E(M)\) with \(e = t\), there are no two disjoint \(OX\)-circuits in \(Z_r\) such that their union be minimal. Therefore the collection \(C_5\) in Proposition 1 is empty. Now suppose that \(\alpha\) and \(t\) play the roles of \(x_{r+1}\) and \(y_{r+1}\), respectively, and \(\gamma\) plays the role of tip. Then we have the spike \(Z_{r+1}\) with tip \(\gamma\) whose collection \(\psi\) of circuits is \(\psi_1 \cup \psi_2 \cup \psi_3 \cup \psi_4\) where

\[
\psi_1 = \{(L_i \setminus t) \cup \gamma : 1 \leq i \leq r\} \cup \Lambda;
\psi_2 = \{\{x_i, y_i, x_j, y_j\} : 1 \leq i < j \leq r\} \cup \{(L_i \cup \alpha : 1 \leq i \leq r\};
\psi_3 = \{C \cup \alpha : C \in \varphi_3\} \cup \{C : C \in \varphi_4\};
\psi_4 = \{C \cup \{t, \gamma\} : C \in \varphi_3\} \cup \{(C \setminus t) \cup \{t, \gamma\} : C \in \varphi_4\}.
\]

In the following lemma, we shall use the well-known facts that if a matroid \(M\) is \(n\)-connected with \(E(M) \geq 2(n - 1)\), then all circuits and all cocircuits of \(M\) have at least \(n\) elements, and if \(A\) is a matrix that represents \(M\) over \(GF(2)\), then the cocircuit space of \(M\) equals the row space of \(A\).

Lemma 10. If \(|X| \leq r\), then the matroid \((Z_r)_X^\gamma\) is not the spike \(Z_{r+1}\).

Proof. Suppose \(X \subset E(Z_r)\) such that \(|X| \leq r\). Then, by Lemmas \(\blacksquare\) and \(\blacksquare\) \(t \in X\) with \(e = t\) and \(|X \cap \{x_i, y_i\}| = 1\) for all \(i \in \{1, 2, \ldots, r\}\). Therefore, there are at least two elements \(x_j\) and \(y_j\) with \(i \neq j\) not contained in \(X\) and so the leg \(L_j = \{t, x_j, y_j\}\) has an odd number of elements of \(X\). Thus, after applying
the es-splitting operation L_j transforms to $\{x_j, y_j, \gamma\}$. Now let $L_k = \{t, x_k, y_k\}$ be another leg of Z_r. If $|L_k \cap X|$ is even, then L_k is a circuit of $(Z_r)^t_X$. But $(L_k \cap \Lambda \cap \{x_j, y_j, \gamma\}) = \emptyset$. Hence, in this case, the matroid $(Z_r)^t_X$ is not the spike Z_{r+1} . We may now assume that every other leg of Z_r has an odd number of elements of X. Then, for all $j \neq i$, the elements x_j and y_j are not contained in X. We conclude that $|X| = 1$ and in the last row of the matrix that represents the matroid $(Z_r)^t_X$ there are two entries 1 in the corresponding columns of t and α. Hence, $(Z_r)^t_X$ has a 2-cocircuit and it is not the matroid Z_{r+1} since spikes are 3-connected matroids.

By Lemmas 9 and 10 we must check that if $|x| = r + 1$, then, by using the es-splitting operation, can we build the spike Z_{r+1}?

Lemma 11. If $r \geq 4$ and $|X \cap X_1|$ be odd, then the matroid $(Z_r)^t_X$ is not the spike Z_{r+1}.

Proof. Suppose that r is even and $|X \cap X_1|$ is odd. Since $t \in X$ and $|X| = r + 1$, so $|X \cap X_1|$ must be odd. Therefore the set X must be $C \cup t$ where $C \in \varphi_3$. But $|C \cap X|$ is even and by Lemma 8, the matroid $(Z_r)^t_X$ is not the spike Z_{r+1}.

Now suppose that r is odd, $r \geq 4$ and $|X \cap X_1|$ is odd. Then $|X \cap X_1|$ must be even and so $X = C$ where $C \in \varphi_4$. By definition of binary spikes, there is a circuit C' in φ_4 such that $C' = C \Delta \{x_i, y_i, x_j, y_j\}$ for all i and j with $1 \leq i < j \leq r$. Clearly, $|(E - C') \cap X| = 2$. Since $(E - C')$ is a circuit of Z_r and is a member of φ_3, by Lemma 8 the matroid $(Z_r)^t_X$ is not the spike Z_{r+1}.

Now suppose that M is a binary rank-r spike with tip t and $r \geq 4$. Let $X \subseteq E(M)$ and $e \in X$ and let $E(M) - E(M_X^t) = \{\alpha, \gamma\}$ such that $\{e, \alpha, \gamma\}$ is a circuit of M_X^t. Suppose $\varphi = \cup_{i=0}^t \varphi_i$ be the collection of circuits of M where φ_i is defined in section 2. With these preliminaries, the next two theorems are the main results of this paper.

Theorem 12. Suppose that r is an even integer greater than three. Let M be a rank-r binary spike with tip t. Then M_X^t is a rank-$(r + 1)$ binary spike if and only if $X = C$ where $C \in \varphi_4$ and $e = t$.

Proof. Suppose that $M = Z_r$ and $X \subseteq E(M)$ and r is even. Then, by combining the last six lemmas, $|X| = r + 1$; and X contains an even number of elements of X_1 with $t \in X$. The only subsets of $E(Z_r)$ with these properties are members of φ_4. Therefore $X = C$ where $C \in \varphi_4$ and by Lemma 11 $e = t$. Conversely, let $X = C$ where $C \in \varphi_4$. Then, by using Proposition 11 every leg of Z_r is preserved under the es-splitting operation since they have an even number of elements of X.

7
Moreover, for $i \in \{1, 2, ..., r\}$, every leg L_i contains e where $e = t$. So $L_i \setminus t$ contains an odd number of elements of X and by Proposition 1, the set $(L_i \setminus t) \cup \{\alpha, \gamma\}$ is a circuit of M_X^t. Clearly, every member of φ_2 is preserved. Now let $C' \in \varphi_3$. Then $t \notin C'$. We have two following cases.

(i) Let $C' = (E - X) \Delta \{x_{r-1}, y_{r-1}\}$. Then $|C' \cap X| = 1$ and by Proposition 1, $C' \cup \alpha$ and $C' \cup \{t, \gamma\}$ are circuits of M_X^t.

(ii) Let $C' = (E-C'') \Delta \{x_{r-1}, y_{r-1}\}$ where $C'' \neq X$ and $C'' \in \varphi_4$. Since $|X| = r+1$ and $|C'' \cap X|$ is odd, the cardinality of the set $X \cap (E-C'')$ is even and so $|C' \cap X|$ is odd. Therefore, by Proposition 1 again, $C' \cup \alpha$ and $C' \cup \{t, \gamma\}$ are circuits of M_X^t.

Evidently, if $C \in \varphi_4$, then $|C \cap X|$ is odd and by Proposition 1, $C \cup \alpha$ and $(C \setminus t) \cup \gamma$ are circuits of M_X^t. Moreover, there are no two disjoint OX-circuits in φ. So the collection C_5 in Proposition 1 is empty. To complete the proof, suppose that α and γ play the roles of x_{r+1} and y_{r+1}, respectively, then we have the spike Z_{r+1} with collection of circuits $\psi = \psi_1 \cup \psi_2 \cup \psi_3 \cup \psi_4$ where

$$
\psi_1 = \{L_i = \{t, x_i, y_i\} : 1 \leq i \leq r\} \cup \Lambda;
$$

$$
\psi_2 = \{(x_i, y_i, x_j, y_j) : 1 \leq i < j \leq r\} \cup \{(L_i \setminus t) \cup \{\alpha, \gamma\} : 1 \leq i \leq r\};
$$

$$
\psi_3 = \{C \cup \alpha : C \in \varphi_3\} \cup \{(C \setminus t) \cup \gamma : C \in \varphi_4\};
$$

$$
\psi_4 = \{C \cup \{t, \gamma\} : C \in \varphi_3\} \cup \{C \cup \alpha : C \in \varphi_4\}.
$$

Theorem 13. Suppose that r is an odd integer greater than three. Let M be a rank-r binary spike with tip t. Then M_X^t is a rank-$(r+1)$ binary spike if and only if $X = C \cup t$ where $C \in \varphi_3$ or $X = E(M)$, and $e = t$.

Proof. Suppose that $M = Z_r$ and $X \subseteq E(M)$. Let $X = E(M)$. Then, by Lemma 9, the matroid M_X^t is the spike Z_{r+1} with tip γ. Now, by combining the last six lemmas, $|X| = r + 1$ and X contains an even number of elements of X_1 with $t \in X$. The only subsets of $E(Z_r)$ with these properties are in $\{C \cup t : C \in \varphi_3\}$. Conversely, let $X = C \cup t$ where $C \in \varphi_3$. Clearly, every member of φ_3 contains an odd number of elements of X. Now let C' be a member of φ_4. If $C' = E(Z_r) - C$, then C' contains an odd number of elements of X. If $C' \neq E(Z_r) - C$, then there is a $C'' \in \varphi_3$ such that $C' = E(Z_r) - C''$. Therefore $|C \cap C'| = |C \cap (E(Z_r) - C'')| = |C - (C \cap C'')|$ and so $|C \cap C'|$ is even. So C' contains an odd number of elements of X and, by Proposition 1 again, $C' \cup \alpha$ and $(C \setminus t) \cup \gamma$ are circuits of M_X^t.

Evidently, if C_1 and C_2 be disjoint OX-circuits of Z_r, then one of C_1 and C_2 is in φ_3 and the other is in φ_4 where $C_2 = E(Z_r) - C_1$, as $C_1 \cup C_2$ is not minimal, it follows by Proposition 1 that C_5 is empty. Now if α and γ play the roles of
x_{r+1} and y_{r+1}, respectively. Then M^t_X is the spike Z_{r+1} with collection of circuits $\psi = \psi_1 \cup \psi_2 \cup \psi_3 \cup \psi_4$ where

$$
\psi_1 = \{L_i = \{t, x_i, y_i\} : 1 \leq i \leq r\} \cup \Lambda;
$$

$$
\psi_2 = \{\{x_i, y_i, x_j, y_j\} : 1 \leq i < j \leq r\} \cup \{(L_i \setminus t) \cup \{\alpha, \gamma\} : 1 \leq i \leq r\};
$$

$$
\psi_3 = \{C \cup \alpha : C \in \varphi_3\} \cup \{(C \setminus t) \cup \gamma : C \in \varphi_4\};
$$

$$
\psi_4 = \{C \cup \{t, \gamma\} : C \in \varphi_3\} \cup \{C \cup \alpha : C \in \varphi_4\}.
$$

Remark 14. Note that the binary rank-3 spike is the Fano matroid denoted by F_7. It is straightforward to check that any one of the seven elements of F_7 can be taken as the tip, and F_7 satisfies the conditions of Theorem 13 for any tip. So, there are exactly 35 subset X of $E(F_7)$ such that $(F_7)_X^e$ is the binary 4-spike where e is a tip of it. Therefore, by Theorem 13 these subsets are $X = E(F_7)$ for every element e of X and $C \cup z$ for every element z in $E(F_7)$ not contained in C with $e = z$ where C is a 3-circuit of F_7.

References

[1] H. Azanchiler, *Some new operations on matroids and related results*, Ph. D. Thesis, University of Pune (2005).

[2] H. Azanchiler, *Extension of Line-Splitting operation from graphs to binary matroid*, Lobachevskii J. Math. 24 (2006), 3-12.

[3] J. G. Oxley, *Matroid Theory*, Oxford University Press, Oxford (1992).

[4] S. B. Dhotre, P. P. Malavadkar and M. M. Shikare, *On 3-connected es-splitting binary matroids*, Asian-European J. Math. 9 (1)(2016), 1650017-26.

[5] Z. Wu, *On the number of spikes over finite fields*, Discrete Math, 265 (2003) 261-296