The bipartite mitochondrial genome of *Ruizia karukerae* (Rhigonematomorpha, Nematoda)

Taeho Kim, Elizabeth Kern, Chungoo Park, Steven A. Nadler, Yeon Jae Bae & Joong-Ki Park

Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode *Ruizia karukerae* and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of *cox2* and three tRNA genes (*trnD*, *trnG* and *trnH*), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, *R. karukerae* mtDNA may provide an important early glimpse into this process.

The majority of metazoan mitochondrial genomes have a well-conserved structure and consist of a single circular chromosome, ranging from 14 to 20 kb and containing 37 genes: 13 protein-coding genes (PCGs) (*atp6, atp8, cob, cox1–3, nad1–6 and nad4l*), two ribosomal RNA (rRNA) genes (*rrnL* and *rrnS*) and 22 transfer RNA (tRNA) genes. In nematodes, mitochondrial genomes are also fairly conserved in structure and gene content, although they differ from other metazoans in some features. For example, most nematode species lack an *atp8* gene (except *Trichinella* spp. and *Trichuris* spp.), and their tRNAs have unique secondary structures (no DHU arm in 20 tRNAs and no TΨC arm in two tRNAs, *trnS1* and *trnS2*). Complete mitochondrial genomes have been reported from more than 176 nematode species since *Caenorhabditis elegans* and *Ascaris suum* were first published in 1992. Interestingly, in four nematode species the mitochondrial genome has been found to be divided into multiple chromosomes. The reasons underlying these structural abnormalities are unclear, and the sequencing of additional mitogenomes is needed in order to better understand common features of this unusual phenomenon.

The mitochondrial genome has been used in many phylogenetic studies as a powerful molecular marker for resolving both deep and shallow nodes in various groups, including nematodes. In recent decades, nematode mitochondrial genomes have provided independent confirmation of some phylogenetic hypotheses based on nuclear genes, and yielded insights into various evolutionary patterns such as convergent morphological evolution, and independent origins of plant parasitism. In this study we report the complete mitochondrial genome sequence of *Ruizia karukerae*, a member of the infraorder Rhigonematomorpha, a group of about 150 named nematode species that have a direct parasitic life cycle and use millipedes as their final host. The mitochondrial genome of *R. karukerae* is made up of two circular chromosomes of similar size, each encoding mostly different genes.

Results

The two circular mitochondrial chromosomes of *R. karukerae*. Initially, the PCR, sequencing, and assembly of four long PCR fragments (*cox1-rrnS* (1.5 kb), *rrnS-rrnL* (1.8 kb), *rrnL-nad5* (1.7 kb) and *nad5-cox1*...
Trichinella spp. and feature in nematode mitochondrial genomes with the exception of Plectus acuminatus nad2 direction, as is common in other known chromadorean nematode mitochondrial genomes (except for

The sequences from chromosome I and chromosome II were deposited in GenBank (accession numbers MF509850 and MF509851, respectively).

Gene content of *R. karukerae* mtDNA. The mitochondrial genome of *R. karukerae* contains 12 PCGs (atp6, cob, cox1-3, nad 1-6 and nad4L), two rRNA genes and 22 tRNA genes, and lacks an atp8 gene, a common feature in nematode mitochondrial genomes with the exception of *Trichinella* spp. and *Trichuris* spp.1-3. In the mitochondrial genome of *R. karukerae*, chromosome I contains six PCGs, two rRNA genes and nine tRNA genes, and chromosome II includes seven PCGs and 16 tRNA genes (Fig. 1, Table 1). All genes are encoded in the same direction, as is common in other known chromadorean nematode mitochondrial genomes (except for *nad2* in *Plectus acuminatus* and *P. aquatili*). Interestingly, *cox2*, *trnD*, *trnG* and *trnH* were identified on both chromosomes (Fig. 1, Table 1). The *trnG* sequences on chromosomes I and II are identical, while the sequences of *cox2*, *trnD*, and *trnH* differ by one nucleotide between chromosomes. The nucleotide substitution between the two copies of the *cox2* gene is a nonsynonymous mutation: a TAT codon encoding tyrosine in chromosome I is substituted by a TCT codon encoding serine in chromosome II. Tyrosine and serine are polar, non-charged hydrophilic amino acids, and therefore both duplicate copies of *cox2* gene are assumed to be functional. In addition, both of the *trnD* and *trnH* genes on chromosomes I and II are also presumed to be functional because the nucleotide substitution had no effect on the tRNA secondary structure (Supplementary Fig. S1). Low levels of sequence difference between homologous gene copies on chromosome I and II suggest that a bipartite mitochondrial genome has evolved in this species relatively recently, although more work is needed to confirm this. The *cox2* genes on the two chromosomes of *R. karukerae* are 99.9% similar, whereas between *R. karukerae* and its putative closest three sequenced relatives (*Rhigonema thysanophora* [Rhigonematormorpha], *Ascaridia columbae* and *Cucullanus robustus*3)), *cox2* sequence similarity ranges from 63% to 69%.
Protein-coding genes and codon usage. Among the 12 PCGs, six genes (cox2, nad5, nad6, nad2, cox3 and nad4) use ATA as the start codon, four (cox1, nad3, nad4l and nad1) start with ATT, and two (atp6 and cob) start with ATG (Table 1). As a termination codon, seven genes (cox1, cob, nad3, nad6, nad4l, nad1 and nad4) were inferred to use TAA, two genes (atp6 and cob) to use TAG, and three genes (nad5, nad2 and cox3) to use the incomplete termination codon 'T'.

The PCGs were biased towards T-rich codons (more than 2 Ts per triplet), similar to other chromadorean nematodes. The three most commonly used codons from each chromosome were all T-rich: TTT (11.3%), TTA (9.9%) and ATT (7.2%) for chromosome I and TTT (11.3%), TTA (9.9%) and ATT (7.2%) for chromosome II (Supplementary Table S1). In contrast, the frequency of C-rich codons (two or more Cs per triplet) was only 3.3% of the total PCGs from chromosome I and 3.5% of the total PCGs from chromosome II.

Table 1. Mitochondrial genome organization of *Ruzia karukerae*.

Gene	Positions of nucleotide sequences	No. of nt (bp)	Initiation/termination codons	Intergenic sequence
Chromosome I				
cox1	1–1536	1536	ATT/TAA	–2
trnC	1535–1590	56	2	
trnE	1593–1648	56	0	
trnS	1649–2338	690	0	
trnS2	2339–2393	55	12	
trnD	2406–2461	56	106	
trnG	2568–2623	56	–1	
cox2	2623–3312	690	ATA/TAA	–1
trnH	3312–3365	54	0	
trnL	3366–4306	941	0	
nad3	4307–4642	336	ATT/TAA	–1
nad5	4642–6223	1582	ATA/T	0
trnA	6224–6278	55	19	
nad6	6298–6771	474	ATA/TAA	29
trnS1	6801–6865	65	0	
NCR	6866–7336	471	0	
nad4l	7337–7588	252	ATT/TAA	5
trnW	7594–7646	53	13	
Chromosome II				
nad1	1–861	861	ATT/TAA	2
atp6	864–1442	579	ATG/TAG	1
trnK	1444–1504	61	0	
trnL2	1505–1559	55	1	
nad2	1561–2449	889	ATA/T	0
trnL	2450–2509	60	0	
trnR	2510–2563	54	–1	
trnQ	2563–2617	55	–1	
trnF	2617–2670	54	1	
cob	2672–3760	1089	ATG/TAG	0
trnL1	3761–3815	55	–3	
cox3	3813–4560	748	ATA/T	0
trnL	4561–4617	57	0	
nad4	4618–5844	1227	ATA/TAA	–2
trnM	5843–5901	59	–1	
trnD	5901–5956	56	106	
trnG	6063–6118	56	–1	
cox2	6118–6807	690	ATA/TAA	–1
trnH	6807–6860	54	57	
trnV	6918–6987	70	0	
NCR	6988–7476	489	0	
trnP	7477–7529	53	–1	
trnN	7529–7583	55	–2	
trnY	7582–7635	54	12	
Transfer RNA gene and the non-coding region. Twenty-two tRNA gene sequences, ranging in size from 53 bp (trnW) to 70 bp (trnV), are inferred to fold into secondary structures of tRNAs (Supplementary Table S1, Table 1). Twenty of the 8nAs contain an amino-acyl stem of a DHU arm and lack an anticodon stem, but lack a TWC arm structure. In contrast, trnS1 and trnS2 have a TWC arm and lack a DHU arm. These tRNA structures are commonly found in other nematode species21. The trnD, trnG and trnH genes were found on both chromosome I and chromosome II (Fig. 1, Table 1). The trnD and trnH sequences on chromosome I differed from their corresponding sequences (homologous genes) on chromosome II by a single nucleotide, but their putative secondary structure forms were identical (Supplementary Fig. S1).

On chromosome I, a non-coding region (designated NCR1) with a total length of 471 bp was found between trnN-trnY-nad1 and chromosome II of R. karukerae and chromosome I of R. thysanophora which mitochondrial genomes are now available (i.e., R. karukerae and R. thysanophora) share many gene clusters even though their gene order is not identical. Specifically, nad4l-trnW-cox1-trnC-trnE-rnnS-trnS2, trnG-cox2-trnH-rnnL-nad3, and nad5-trna are shared between R. thysanophora and chromosome I of R. karukerae, and atp6-trnK, nad2-trnI-trnK-trnQ-trnI-cox1-trnC3, trnI-nad4-trnM-trnD, trnG-cox2-trnH, and trnP-trnN-trnY-nad1 are shared between R. thysanophora and chromosome II of R. karukerae (Fig. 2). Although mitochondrial phylogenies support a sister relationship among Rhigonematomorpha, Ascaridomorpha and Gnathostomatomorpha22,23, gene order in rhigonematomorphs is more similar to the most common gene order pattern among Ascaridomorpha, Diplogasteromorpha and Rhabditomorpha: they have many shared gene clusters: cox1-trnL, trnM-trnD, trnG-cox2-trnH-rnnL-nad3, nad5-trna, nad4l-trnW, trnE-rnnS-trnS2, trnN-trnY-nad1, atp6-trnK, nad2-trnI-trnR-trnQ-trnF-cob-trnL1-cox3 and trnF-nad4.

Primers	Sequence (5’-3’)	Source	Size of PCR fragment	Size of overlapping region (with long PCR fragment)
Chromosome I				
LCO1490	GGTCAACAAAATCATAAAGATATTGG	This study	48 655 bp	395 bp (RP7/RP8)
HCO2198	TAAACTTCAGGGTGACCAAAAATCA	This study	655 bp	237 bp (RP1/RP2)
Nema_12S_F	GTCTCAAGAATATCGGCCTA	This study	465 bp	122 bp (RP1/RP2)
Nema_12S_R	GCKATTTGARAGTGTTTGTACC	This study	266 bp	66 bp (RP5/RP4)
Nema_16S_F_2	TTAATGTTGAAAATCGTTC	This study	678 bp	307 bp (RP3/RP4)
Nema_16S_R	TCTYMCRAAYGAAATACCTATATC	This study	345 bp	134 bp (RP5/RP6)
Nema_NDS_F	GGTCTAGGAAGACTCTGGTAKCGTCTG	This study	485 bp	309 bp (RP5/RP6)
Nema_NDS_R	AAGAGCMWAAWATAMHAAAAGT	This study	348 bp	140 bp (RP7/RP8)
RP1	AGTCTGGCATAGGCAAGGTGTTAGC	This study	1.5 kb	
RP2	GGCTACCCGGCTACTAATCAGC	This study	1.8 kb	
RP3	CAAACTGAAATATCGGAGGTGCC	This study	1.7 kb	
RP4	CAATTGTTAGCTACTTATATGCC	This study	2.7 kb	
RP5	GGCATTTAAGTAGCATAATATCGTG	This study	3.8 kb	
RP6	GATTAATATAGATGAACCTTCCAACAC	This study	3.8 kb	
RP7	GATAGGGGAGATGAAAAAGGATAGTG	This study	3.8 kb	
RP8	GAGCTAAACCTTGGCATATGAGGAC	This study	3.8 kb	
Chromosome II				
Chroma_ND1_F_4	GGGCTTTTGTAACTTTTAGGCG	This study	511 bp	146 bp (RP13/RP14)
Chroma_ND1_R_2	CACCTNACAYRTDCDCTYTC	This study	163 bp	66 bp (RP9/RP10)
Chroma_Cob_F_2	CARATRWSNTTWTRGRC	This study	358 bp	163 bp (RP9/RP10)
Chroma_Cob_R_2	TAYCAYTCNGGNACAAYATG	This study	232 bp	66 bp (RP11/RP12)
Chroma_ND4_F_3	CATGTHGARGDCDCCNCAC	This study	398 bp	398 bp (RP11/RP12)
Chroma_ND4_R_3	GTCCAGCGTATGTTAATAATG	This study	244 bp	244 bp (RP11/RP12)
RP9	GTAAGAACCCGGACTCATGTAG	This study	2.8 kb	
RP10	ACAAGCTTCTCCTCTCAGTCTCATAG	This study	2.8 kb	
RP11	GTTAGATTCTTGTCTGGTTCGGOC	This study	2.3 kb	
RP12	GTGCAGGGATGTTAATAATGCA	This study	2.8 kb	
RP13	GTGTGTCAGGAGGAGGATGTTAATAATGCTAG	This study	2.8 kb	
RP14	ATAACCAAAGGGCTAGCGGAG	This study	2.8 kb	

Table 2. Primers used to complete the mitochondrial genomes of Ruizia karukerae. IUPAC nucleotide ambiguity codes used are W (A or T), R (A or G), K (G or T), S (C or G), Y (C or T), M (A or C), D (A, C or T), H (A, G or T) and N (A, C, G or T).
for chromosome I and 1 bp-7.2 kb chromosome II) 13. The longest NCSs in both chromosomes of mitochondrial chromosomes of G. ellingtonae selection may favor shorter mitochondrial genomes. For example, in cultured human cells with both 11 kb and evidence favoring one of these arguments over another for 16 kb mitochondrial circles, smaller circles became more numerous over time while the larger circles decreased Rhabditophanes groups are somewhat similar: the rotifer atode with at least six mitochondrial chromosomes (each 6.4–9.5 kb in size) or Rhigonema sp.12,13, but the size of its two chromosomes (less than 8 kb each) is more similar to those of R. karukerae comprises circular chromosomes (chromosome I and II) of G. ellingtonae Rhabditophanes sp. KR3021 (nematode) and Globodera ellingtonae (nematode) all have two circular, evenly sized mitochondrial chromosomes12,13,25–27; however, the insect Scirtothrips dorsalis (thrip) has two chromosomes of very different sizes (14.3 kb and 0.9 kb)28. In contrast, the potato cyst nematodes (Globodera pallida and G. rostochiensis) have a least six circles10,11,29, and several lice species have mitochondrial genomes with 9 to 20 circles ranging from 1.5 to 5 kb30–37. In a few animals even the circular structure of the mitochondrial genome is not conserved: linearized mitochondrial genomes have been reported from an isopod (Armadillidium vulgare) and some cnidarians38,39.

The number of mitochondrial chromosomes in R. karukerae is the same as G. ellingtonae and Rhabditophanes sp.12,13, but the size of its two chromosomes (less than 8 kb each) is more similar to those of G. pallida, a nematode with at least six mitochondrial chromosomes (each 6.4–9.5 kb in size) or Rhabditophanes sp. (9.3 kb and 9.2 kb) rather than those of G. ellingtonae (17.8 kb and 14.4 kb)10,12,13,28. A common feature of G. ellingtonae, Rhabditophanes sp. and G. pallida is that they have abnormally long NCSs (non-coding sequences). The two mitochondrial chromosomes of G. ellingtonae have lengthy, intergenic NCSs between almost every gene (7 bp-8.1 kb for chromosome I and 1 bp-7.2 kb chromosome II)13. The longest NCSs in both chromosomes of Rhabditophanes sp. are each 2.6 kb30. In G. pallida, all six of its mitochondrial chromosomes contain many NCSs (3 to 7.4 kb in length)10,29. Abnormally lengthy NCSs in multipartite mitochondrial genomes are also found in some other metazoan groups: for example, two mitochondrial chromosomes of B. plicatilis (rotifer) have long NCSs (4.9 kb each)25 and L. bostrychophila (booklouse) has a relatively large number of intergenic NCSs (1–485 bp)26. In contrast, the NCSs of R. karukerae are more or less similar in size to those found in typical nematode species with a single mitochondrial chromosome (i.e., genes are abutting or the intergenic spaces are relatively short) (Fig. 1, Table 1).

Among nematodes with multipartite mitogenomes, there is considerable variation both in the characteristics of duplicated genes and the sequence divergence between duplicated copies. The duplicated genes found on both circular chromosomes (chromosome I and II) of R. karukerae comprise cox2 and three tRNA genes (trnD, trnG and trnH), accounting for 856 bp (Fig. 1, Table 1), and their sequences are identical or nearly so: the two copies of trnG are the same, whereas the other genes (cox2, trnD and trnH) are nearly identical to their homologous copies, each differing by only a single base pair. In comparison, the duplicated region (2.6 kb) in each of the mitochondrial chromosomes of Rhabditophanes sp. is identical26, while in G. ellingtonae the two mitochondrial chromosomes share both an NCS and several copies of nonfunctional pseudogenes (highly degraded or truncated), with no homologous, functional genes shared between the two circles13. In G. pallida, several protein-coding genes are found on more than one circle, but many of the duplicated genes are nonfunctional due to frame-shift or nonsense mutations29. Features of the duplicated regions of mitochondrial chromosomes in other non-nematode animals are somewhat similar: the rotifer B. plicatilis has a duplicated region 4.9 kb in size containing the tRNA(L) genes and a non-coding region22, while in the booklouse L. bostrychophila, each 0.9 kb duplicated region is identical and includes three tRNA genes (trnA, trnE and trnM) and a putative control region26.

To explain how multipartite mitogenomes arise, various models have been suggested, such as intramolecular homologous recombination40, or genome replication30 followed by gene deletion41; however, a broad consensus has not yet been reached. Multipartite mitochondrial genomes with circular or linear forms have evolved independently in disparate, unrelated taxa (insects, rotifers, and nematodes [circular form]; sponges, hydrids, box jellyfish [linear form])42, but it is still unclear how multiple chromosomes can arise from a single circular chromosome.

The two main arguments for why multipartite mitochondrial genomes exist are genetic drift and/or an unknown evolutionary advantage to having multiple mitochondrial chromosomes26,43,44 (but see 45). There is no evidence favoring one of these arguments over another for R. karukerae, but there is some evidence that natural selection may favor shorter mitochondrial genomes. For example, in cultured human cells with both 11 kb and 16 kb mitochondrial circles, smaller circles became more numerous over time while the larger circles decreased in number46, and in heteroplastic crickets, smaller mitochondrial genomes are transmitted to offspring more frequently than larger genomes47. Alternatively, multiple mitochondrial chromosomes may exist because a
specific replisome gene (the mitochondrial single-strand binding protein, mtSSB that aids in DNA replication) was previously lost or mutated. The abnormality in this gene would prevent a full-size mitochondrial chromosome from being replicated, but would still allow smaller chromosomes to exist. In lice, it has been argued that the absence of this gene is responsible for multipartite mitochondrial genomes. Although it is unknown exactly how or why multipartite genomes arise, previous work has noted a correlation with blood-feeding or a parasitic life-style. All nematode species thus far recorded as having multipartite mitochondrial genomes, including the present study, are parasitic species (G. elliottorum, G. pallida, G. rostochiensis [plant parasitic]; Rhabditiothrones sp. KR3021, R. karakerae [animal parasitic]). However, comparatively few free-living nematode mitogenomes have been sequenced (compared to parasitic forms), and there is no clear evidence that parasitic life styles are correlated with multipartite mitochondrial genomes, nor has any work conclusively demonstrated that multipartite mitogenomes would be an advantage for parasites. Much more research is needed to better elucidate the evolutionary mechanisms leading to unusual mitochondrial genome structures.

Mitochondrial DNA genes have a relatively long history of use in phylogenetics and phylogeography. More recently, phylogenetic comparisons of invertebrates based on complete mitochondrial genomes have been used for assessing deep relationships, and also for comparing species sharing more recent common ancestry. This range of resolution is possible because mitochondrial genomes are composed of genes with very different rates of substitution. Faster evolving genes track more recent evolutionary events, whereas more conserved genes (and protein sequences) are informative for some deeper divergences. Disadvantages of mitochondrial DNA include that its multiple genes are inherited as a single locus, and certain groups of organisms show substantial nucleotide bias across genes. For nematodes, mtDNA genomes represent one of the main loci that have been used to infer phylogenetic relationships spanning the phylum. NCBI contains complete mitochondrial genomes for 176 nematode species. In contrast, nuclear ribosomal genes are a much more extensively sampled loci, with thousands of nematode species sequenced for 18S (SSU) rDNA. This difference in taxon sampling between SSU and mitogenomes precludes detailed comparisons of phylogenetic results, but the main phylogenetic framework resulting from analysis of these separate loci is concordant despite some notable specific differences that will need to be tested through sampling of additional loci from nuclear genomes.

Materials and Methods

Specimen sampling and molecular methods. Nematode specimens were obtained from Anadenobolus monilicornis (millipedes) collected from the John Penncamp Coral Reef State Park, Key Largo, Florida, USA by R. Carreno. The specimens were identified based on morphological features and measurements. Total genomic DNA was extracted using a commercial kit (Epicentre MasterPure DNA Purification Kit; Epicentre Co.) following the manufacturer’s protocol. Four partial DNA fragments from four different genes (cox1, rrsN, rrlL, and nad5) were amplified by polymerase chain reaction (PCR) using a universal primer set (LCO1490/HCO2198) for cox1 and three nematode-specific primer sets (Nema_12S_F/Nema_12S_R for rrsN, Nema_16S_F_2/Nema_16S_R for rrlL, and Nema_NDS_F/Nema_NDS_R for nad5), designed directly from conserved regions of nematode mitochondrial genes. PCR amplifications were carried out using Takara Ex Taq Taq polymerase (Takara) in a total volume of 50 ul containing 2 ul template DNA, 10 pmol of each primer, 2.5 unit LA polymerase (TaKaRa), 1X LA Taq buffer, 0.4 mM dNTP mixture, 2.5 mM MgCl2, and 25.9 ul distilled water with the following amplification conditions: one cycle of initial denaturing step at 95°C for 1 min followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 47°C for 30 s, extension at 72°C for 1 min, and final elongation at 72°C for 10 min. Four primer pairs (RP1/RP2, RP3/RP4, RP5/RP6 and RP7/RP8) were designed from the partial sequences of the partial fragments (cox1, rrsN, rrlL, and nad5) and used to obtain four overlapping long PCR fragments ranging from 1.5 kb to 2.7 kb (cox1-rrsN (1.5 kb), rrsN-rlrL (1.8 kb), rrlL-nad5 (2.2 kb), and nad5-cox1 (2.7 kb)). Long PCR reactions consisted of 2 ul template DNA, 10 pmol of each primer, 2 unit LA Taq polymerase (TaKaRa), 1X LA Taq buffer, 0.4 mM dNTP mixture, 2.5 mM MgCl2, and 29.5 ul distilled water with the following amplification conditions: one cycle of initial denaturing at 95°C for 1 min followed by 40 cycles of denaturation at 95°C for 30 s, annealing and extension at 55°C to 65°C for 3 min to 10 min, followed by a final extension at 68°C for 10 min. The amplified PCR products were purified using a QIAquick Gel Extraction Kit (QIAGEN Co.) following standard protocols. The sequences of the PCR-amplified fragments were determined for both strands using Big Dye Terminator Cycle-Sequencing (Applied Biosystems) and a primer walking strategy. The sequence of a complete strand of mtDNA was assembled by checking the sequences of the overlapping regions of the long PCR fragments and partial fragments obtained from the four different genes (cox1, rrsN, rrlL, and nad5). Initially only a 7,659 bp contig (chromosome I) was obtained, containing six PCGs, two rDNAs, and nine tRNAs (Fig. 1). To locate the other genes, three partial fragments of three protein-coding genes missing from chromosome I (cob, nad1, and nad4) were amplified using three nematode specific primer sets (Chroma_ND1_F_4/Chroma_ND1_R_2 for nad1, Chroma_ND4_F_1/Chroma_ND4_R_3 for nad4 and Chroma_Cob_F_2/Chroma_Cob_R_2 for cob) and sequenced. Using three species-specific primer sets (RP9/RP10, RP11/RP12 and RP13/RP14) designed from cob, nad1 and nad4 partial sequences, three overlapping fragments were amplified by long-PCR and sequenced. The sequence of the complete strand of the second contig (chromosome II) was assembled by checking the sequences of the overlapping regions of the three long PCR fragments and the partial fragments obtained from the cob, nad1 and nad4 (Fig. 1).

Gene annotation. The 12 mitochondrial protein-coding genes and two ribosomal RNA genes of R. karu-kure were identified using the annotation program DOGMA and ORF finder (NCBI), and were confirmed by comparing nucleotide sequences with those from closely related nematodes. Putative secondary structures of 22 tRNA genes were inferred using the program tRNAscan-SE and verified by examining potential tRNA secondary structures and anticodon sequences.
Data Availability. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

1. Wolstenholme, D. R. Animal mitochondrial DNA: Structure and evolution. *Int. Rev. Cytol.* **141**, 173–216 (1992).
2. Boore, J. L. Animal mitochondrial genomes. *Nucleic Acids Res.* **27**, 1767–1780 (1999).
3. Lavrov, D. V. & Brown, W. M. *Trichinella spiralis* mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of coelomate metazoans. *Genetics* **157**, 621–637 (2001).
4. Liu, G. H. et al. Characterization of the complete mitochondrial genomes of two whipworms *Trichuris ovis* and *Trichuris discolor* (Nematoda: Trichuridae). *Infec. Genet. Evol.* **12**, 1635–1641 (2012).
5. Liu, G. H. et al. Clear genetic distinctiveness between human- and pig-derived *Trichuris* based on analyses of mitochondrial datasets. *PLoS Neglect.* **6**, e1539 (2012).
6. Liu, G. H. et al. Mitochondrial and nuclear ribosomal DNA evidence supports the existence of a new *Trichuris* species in the order Heteroptera's frangis leaf-moth. *PLoS One* **8**, e66249 (2013).
7. Mohandas, N. et al. Mitochondrial genomes of *Trichinella* species and genotypes - a basis for diagnosis, and systematic and epidemiological explorations. *Int. J. Parasitol.* **44**, 1073–1080 (2014).
8. Hawash, M. B. F., Andersen, L. O., Gasser, R. B., Stensvold, C. R. & Nejsum, P. Mitochondrial genome analyses suggest multiple *Trichuris* species in humans, baboons, and pigs from different geographical regions. *PLoS Neglect.* **9**, e004059 (2015).
9. Okimoto, R., Macfarlane, J. L., Clary, D. O. & Wolstenholme, D. R. The mitochondrial genomes of two nematodes, *Caenorhabditis elegans* and *Ascaris suum*. *Genetics* **130**, 471–498 (1992).
10. Armstrong, M. R., Block, V. C. & Phillips, M. S. A multipartite mitochondrial genome in the cyst nematode *Globoderma pallida*. *Genetics* **154**, 181–192 (2000).
11. Gibson, T., Block, V. C. & Dowton, M. Sequence and characterization of six mitochondrial subgenomes from *Globoderma rostriochiensis*. *Multispecies structure is conserved among close nematode relatives*. *J. Mol. Evol.* **65**, 308–315 (2007).
12. Hunt, V. L. et al. The genomic basis of parasitism in the *Strongyloides* clade of nematodes. *Nat. Genet.* **48**, 299–307 (2016).
13. Phillips, W. S. et al. The mitochondrial genome of *Globoderma elongatum* is composed of two circles with segregated gene content and differential copy numbers. *BMC Genomics* **17**, 706 (2016).
14. Yu, L., Li, Y. W., Ryder, O. A. & Zhang, Y. P. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of *bears* (*Ursidae*), a mammalian family that experienced rapid speciation. *BMC Evol. Biol.* **7**, 198 (2007).
15. Morin, P. A. et al. Complete mitochondrial genome phylogeographic analysis of killer whales (*Orcinus orca*) indicates multiple species. *Genome Res.* **20**, 908–916 (2010).
16. Park, J. K. et al. Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. *BMC Genomics* **12**, 392 (2011).
17. Cameron, S. L. Insect mitochondrial genomics: Implications for evolution and phylogeny. *Annu. Rev. Entomol.* **59**, 95–117 (2014).
18. Sultana, T. et al. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. *BMC Evol. Biol.* **13**, 12 (2013).
19. Kim, J. et al. Mitochondrial genomes advance phylogenetic hypotheses for *Tylenchina* (Nematoda: Chromadorea). *Zool. Scr.* **44**, 446–462 (2015).
20. Hunt, D. J. A synopsis of the *Rhigneematidae* (Nematoda), with an outline classification of the *Rhigneematida*. *Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences*. *BMC Genomics* **12**, 392 (2011).
21. Cameron, S. L. Insect mitochondrial genomics: Implications for evolution and phylogeny. *Annu. Rev. Entomol.* **59**, 95–117 (2014).
22. Sultana, T. et al. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. *BMC Evol. Biol.* **13**, 12 (2013).
23. Kim, J. et al. Phylogenetic analysis of two *Plectus* mitochondrial genomes (Nematoda: Plactida) supports a sister group relationship between *Plectida* and *Rhadbida* within *Chromadorea*. *Mol. Phylogenet. Evol.* **107**, 90–102 (2017).
24. Kim, T. et al. Phylogeny of *Rhigneematomorpha* based on the complete mitochondrial genome of *Rhigonea thyssanophora* (Nematoda: Chromadorea). *Zool. Scr.* **43**, 289–303 (2014).
25. Kim, T., Kim, J., Nadler, S. A. & Park, J. K. The complete mitochondrial genome of *Koerneria sudhausi* (Diplogasteromorpha: Nematoda) supports monophyly of *Diplogasteromorpha* within *Rhabditoforma*. *Curr. Genet.* **62**, 391–403 (2016).
26. Liu, G. H., Shao, R., Cai, X. Q., Li, W. W. & Zhu, X. Q. *Gnathostoma spinigerum* mitochondrial genome sequence: a novel gene arrangement and its phylogenetic position within the class *Chromadorea*. *Sci. Rep.* **5**, 12691 (2015).
27. Suga, K., Welch, D. B. M., Tanaka, Y., Sakakura, Y. & Hagiwara, A. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer *Brachionus plicatilis*. *Mol. Biol. Evol.* **25**, 1129–37 (2008).
28. Wei, D. D. et al. The multipartite mitochondrial genome of *Liposcelis bostrychophila*: insights into the evolution of mitochondrial genomes in bilateral animals. *PLoS One* **7**, e33973 (2012).
29. Hwang, D. S. et al. Complete mitochondrial genome of the monogenous rotifer, *Brachionus koreanus* (Rottifera, Brachionidae). *Mitochondr. DNA* **25**, 29–30 (2014).
30. Dickey, A. M. et al. A novel mitochondrial genome architecture in thrips (Insecta: *Thysanoptera*): extreme size asymmetry among chromosomes and possible recent control region duplication. *BMC Genomics* **16**, 439 (2015).
31. Gibson, T. et al. The mitochondrial subgenomes of the nematode *Globoderma pallida* are mosaics: Evidence of recombination in an animal mitochondrial genome. *J. Mol. Evol.* **64**, 463–471 (2007).
32. Shao, R., Kirkness, E. F. & Barker, S. C. The single mitochondrial chromosome typical of animals has evolved into 18 minicircles in the human body louse, *Pediculus humanus*. *Genome Res.* **19**, 904–912 (2009).
33. Shao, R., Zhu, X. Q., Barker, S. C. & Herd, K. Evolution of extensively fragmented mitochondrial genomes in the lice of humans. *Genome Biol. Evol.* **4**, 1088–1101 (2012).
34. Shao, R. et al. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta). *Sci. Rep.* **5**, 17339 (2015).
35. Cameron, S. L., Yoshizawa, K., Mizukoshi, A., Whiting, M. F. & Johnson, K. P. Mitochondrial genome deletions and minicircles are common in lice (Insecta: *Phthiraptera*). *BMC Genomics* **12**, 394 (2011).
36. Jiang, H., Barker, S. C. & Shao, R. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals. *Genome Biol. Evol.* **5**, 1298–1308 (2013).
37. Dong, W. G. et al. Fragmented mitochondrial genomes are present in both major clades of the blood-sucking lice (suborder Anoplura): evidence from two *Hoplopleura* rodent lice (family *Hoplopleuridae*). *BMC Genomics* **15**, 751 (2014).
38. Dong, W. G., Song, S., Jin, D. C., Guo, X. G. & Shao, R. Fragmented mitochondrial genomes of the rat lice, *Pulex papayasi* and *Pulex spinuliferus*: intra-genus variation in fragmentation pattern and a possible link between the extent of fragmentation and the length of life cycle. *BMC Genomics* **15**, 44 (2014).
39. Song, S. D., Barker, S. C. & Shao, R. Variation in mitochondrial minichromosome composition between blood-sucking lice of the genus *Haematopinus* that infest horses and pigs. *Parasite Vet.* **7**, 144 (2011).
40. Marcadé, I. et al. Structure and evolution of the atypical mitochondrial genome of *Armadillidium vulgare* (Isopoda, Crustacea). *J. Mol. Evol.* **65**, 651–659 (2007).
41. Kayal, E. et al. Evolution of linear mitochondrial genomes in medusozan cnidarians. *Genome Biol. Evol.* **4**, 1–12 (2011).
42. Faúr, C., Casper, M., Gao, T. & Moore, B. The maize mitochondrial genome: dynamic, yet functional. *Trends Genet.* **11**, 288–235 (1995).
41. Melov, S., Lithgow, G. J., Fischer, D. R., Tedesco, P. M. & Johnson, T. E. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. *Nucleic Acids Res.* **23**, 1419–1425 (1995).

42. Lavrov, D. V. & Pett, W. Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. *Genome Biol. Evol.* **8**, 2896–2913 (2016).

43. Rand, D. M. & Harrison, R. G. Mitochondrial DNA transmission genetics in crickets. *Genetics* **114**, 955–970 (1986).

44. Rand, D. M. "Why genomes in pieces?" revisited: Sucking lice do their own thing in mtDNA circle game. *Genome Res.* **19**, 700–702 (2009).

45. Boyce, T. M., Zwick, M. E. & Aquadro, C. F. Mitochondrial DNA in the bark weevils: size, structure and heteroplasy. *Genetics* **123**, 825–836 (1989).

46. Hayashi, J. L., Ohita, S., Kikuchi, A., Takemusi, M. & Goto, Y. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. *Proc. Natl. Acad. Sci. USA* **88**, 10614–10618 (1991).

47. Burger, G., Gary, M. W. & Lang, R. F. Mitochondrial genomes: anything goes. *Trends Genet.* **19**, 709–716 (2003).

48. Moritz, C., Dowling, T. E. & Brown, W. M. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. *Annu. Rev. Ecol. Syst.* **18**, 269–292 (1987).

49. Avise, J. C. Phylogeography: retrospect and prospect. *J. Biogeogr.* **36**, 3–15 (2009).

50. Hu, M. & Gasser, R. B. Mitochondrial genomes of parasitic nematodes—progress and perspectives. *Trends Parasitol.* **22**, 78–84 (2006).

51. Waaschbeck, A., Telford, M. J., Porter, J. S. & Littlewood, D. T. J. The complete mitochondrial genome of *Flustrellidra hispida* and the phylogenetic position of Bryozoa among the Metazoa. *Mol. Phylogenet. Evol.* **40**, 195–207 (2006).

52. Littlewood, D. T. J., Lockyer, A. E., Webster, B. L., Johnston, D. A. & Le, T. H. The complete mitochondrial genomes of *Schistosoma haematobium* and *Schistosoma spindalis* and the evolutionary history of mitochondrial genome changes among parasitic flatworms. *Mol. Phylogenet. Evol.* **39**, 452–467 (2006).

53. Park, J. K. et al. A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of *Microcotyle sebassis* (Monogenea: Platylemminthes). *BMC Evol. Biol.* **11**, 1–13 (2007).

54. Sultana, T., Han, H. & Park, J. K. Comparison of complete mitochondrial genomes of pine wilt nematode *Bursaphelenchus xylophilus* and *Bursaphelenchus mironovatus* (Nematoda: Aphelechoidae) and development of a molecular tool for species identification. *Gene* **520**, 39–46 (2013).

55. Holterman, M. et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. *Mol. Biol. Evol.* **23**, 1792–1800 (2006).

56. van Megen, H. et al. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. *Nematology* **11**, 927–950 (2009).

57. Liu, G. H. et al. Mitochondrial phylogenomics yields strongly supported hypotheses for ascaridomorph nematodes. *Sci. Rep.* **6**, 39248 (2016).

58. Carreno, R. A., Ordosch, D., Koltek, J. K., Hamill, D. R. & Tuhela, L. First United States records of the Rhigonematid genera *Ruizia* and *Heth* (Nematoda: Rhigonematida) from the introduced millipede, *Anadenobolus monilicornis* (Diplopoda: Rhinocricidae) in Key Largo, Florida, USA. *Comp. Parasitol.* **80**, 225–232 (2013).

59. Holterman, M. et al. Phylogenetic analyses of nuclear rDNA of the nematode *Cystosphaerella carolinensis* and the evolutionary history of mitochondrial genome changes among parasitic flatworms. *Gene* **520**, 39–46 (2013).

60. Wyman, S. K., Jansen, R. K. & Boore, J. L. Automatic annotation of organellar genomes with Dogma. *Bioinformatics* **20**, 3252–3255 (2004).

61. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genome sequences. *Nucleic Acids Res.* **25**, 953–964 (1997).

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2005898), the Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Science, ICT & Future Planning (NRF-2015R1A4A1041997), a grant from the Collaborative Genome Program (20140428) funded by the Ministry of Oceans and Fisheries, Korea, and a grant from the Animal and Plant Quarantine Agency (No. Z-1541785-2013-15-03). We thank Dr. Ramon Carreno for providing specimens. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2005898), the Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Science, ICT & Future Planning (NRF-2015R1A4A1041997), a grant from the Collaborative Genome Program (20140428) funded by the Ministry of Oceans and Fisheries, Korea, and a grant from the Animal and Plant Quarantine Agency (No. Z-1541785-2013-15-03). We thank Dr. Ramon Carreno for providing *R. karukerae* specimens.

Author Contributions

T.K., E.K., C.P and Y.J.B. performed molecular experiments and analyzed the data. T.K., E.K., S.A.N. and J.K.P. wrote the paper. J.K.P. designed and coordinated the study. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-25759-0.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018