Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium

Jie Zheng1,2, Shenghui Cui1† and Jianghong Meng1,2*

1Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; 2Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA

Received 31 May 2008; returned 21 July 2008; revised 30 September 2008; accepted 2 October 2008

Objectives: Multidrug resistance (MDR) including fluoroquinolone resistance in Salmonella Typhimurium can result from overexpression of efflux pumps. We examined the mechanisms of fluoroquinolone resistance among in vitro-induced ciprofloxacin-resistant Salmonella Typhimurium mutants, LT2 and LTH, derived from laboratory strain LT2.

Methods: Deletion mutation and RT–PCR techniques were employed to study the role of efflux pumps in fluoroquinolone resistance and their regulation cascades.

Results: In addition to point mutations in DNA gyrase (gyrA, gyrB) and topoisomerase IV (parC, parE) genes, increased expression of efflux pump genes, such as acrAB and acrEF, was observed in fluoroquinolone-resistant Salmonella strains. Constitutive expression of ramA containing a 9 bp deletion in the promoter region directly associated with the overexpression of acrAB and acrEF and conferred an MDR phenotype in LTL. Inactivation of ramA increased the antimicrobial susceptibility of LTL, whereas complementation with the mutant allele induced an MDR phenotype in drug-susceptible Salmonella Typhimurium LT2, as demonstrated by 2- to 64-fold increases in resistance to fluoroquinolones, tetracycline and chloramphenicol. On the other hand, inactivation of mutant soxRS resulted in a slight increase in the susceptibility of LTH to several fluoroquinolone drugs, and the introduction of the mutant allele had no effect on antimicrobial susceptibility of LT2, indicating that constitutive expression of soxRS played a minimum role in fluoroquinolone resistance.

Conclusions: Mutations in the promoter region of ramA appear to play a role in the up-regulation of RamA and AcrAB, and RamA is an activator of the MDR regulation cascade in Salmonella Typhimurium.

Keywords: multidrug resistance, antimicrobial resistance, regulation

Introduction

Non-typhoidal salmonellae are an important cause of food-borne gastroenteritis worldwide. Each year, an estimated 1.4 million people suffer from salmonellosis in the USA.1 Numerous reports have shown that an increased number of Salmonella have become resistant to antibiotics including fluoroquinolones.2-4 Since fluoroquinolones are central to the management of severe salmonellosis, the emergence of multidrug-resistant (MDR) Salmonella Typhimurium with reduced susceptibility to fluoroquinolones is a serious public health concern. Although high-level fluoroquinolone resistance in Salmonella remains rare, outbreaks of fluoroquinolone-resistant Salmonella infections have been reported in the USA,5,6 Taiwan7 and Japan.2

Bacterial resistance to antimicrobials can be conferred by horizontal transfer of mobile elements carrying resistance genes, such as plasmids, transposons and bacteriophage, by target gene mutations, and by increased expression of multidrug efflux pumps resulting in reduced intracellular concentrations of various antibiotics, including β-lactams, macrolides, tetracycline, chloramphenicol and quinolones.8-13 Studies in Escherichia coli have shown that transcriptional activators, such as MarA, SoxS and Rob, play a role in antimicrobial resistance by activating transcription of efflux pumps,14-16 including acrAB and tolC.17-21

*Corresponding author. Tel: +1-301-405-1399; Fax: +1-301-314-3313; E-mail: jmeng@umd.edu
†Present address: State Food and Drug Administration, Beijing, China

© The Author 2008. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
For Permissions, please e-mail: journals.permissions@oxfordjournals.org
SoxS is a member of the AraC/XylS family of transcriptional regulators and is positively regulated by SoxR. It can be activated by oxidation22 or nitrosylation.23 In both laboratory and clinical strains of \textit{E. coli} and \textit{Salmonella}, activation of the sox\textit{RS} regulon contributes to the increased resistance to quinolone, nalidixic acid and chloramphenicol.24,25

In addition to the MarA/SoxS/Rob family, George et al.26 identified and characterized RamA, another member of the AraC/XylS family, for its role in conferring MDR in \textit{Klebsiella}. Most recently, the \textit{ramA} gene was identified in \textit{Enterobacter aerogenes}, \textit{Enterobacter cloacae} and \textit{Salmonella enterica Paratyphi B} and may also be involved in MDR in these organisms.27–29 However, van der Straaten et al.30 showed that inactivation of \textit{ramA} did not affect the antimicrobial susceptibility of wild-type and clinical isolates of MDR \textit{Salmonella} Typhimurium. We have previously reported contributions of target gene mutations and efflux pumps to decreased susceptibility in \textit{Salmonella} Typhimurium to quinolones/fluoroquinolones and other antimicrobials.31 In the present study, we determined the effect of the transcriptional activators RamA and SoxS on the expression of the multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant \textit{Salmonella} Typhimurium.

Materials and methods

\textbf{Bacterial strains, plasmids and growth media}

Fluoroquinolone-resistant strains LTL and LTH were independently derived from \textit{Salmonella} Typhimurium LT2 after \textit{in vitro} induction with ciprofloxacin from 0.015 to 128 mg/L. The fluoroquinolone resistance phenotypes were stabilized by passing the strains in Luria–Bertani (LB) broth 10 times without antibiotics. The MICs for LT2, LTL and LTH were 0.015, 4 and 64 mg/L, respectively. No mutations were present in gyrA and/or topoisomerase IV of LT2, whereas LTL possessed a mutation (Ser83Phe) in GyR\textit{A} and LTH contained double mutations (Ser83Phe, Asp87Asn) in GyrA and a single mutation (Gly78Asp) in ParC. The bacteria were grown in LB medium (Difco, BD Diagnostic System, Sparks, MD, USA) at 37°C unless otherwise indicated. If required, the medium was supplemented with kanamycin (25 mg/L) or ampicillin (100 mg/L). Mueller–Hinton (MH) medium (Difco) was used for antimicrobial susceptibility testing. Parataquat (Sigma-Aldrich, St Louis, MO, USA) was used to induce the expression of sox\textit{RS}. Plasmids pKD46 [low-copy-number, \textit{araB}-\textit{gam}-\textit{bet}-\textit{exo}, \textit{repA}101 (ts), \textit{oriR}101, \textit{Amp}r], pKD4 (\textit{oriR}6K\textsubscript{Y}, \textit{aph}) and pCVD442 (\textit{R}\textsubscript{SR} \textit{ori}, \textit{mobR}4, \textit{bla}, \textit{sacB}) were used in gene inactivation and replacement as described previously.32,33

\textbf{Antimicrobial susceptibility test}

MICs of selected antimicrobial agents for \textit{Salmonella} were determined using the Sensititre automated antimicrobial susceptibility system (Trek Diagnostic System, Westlake, OH, USA) or a standard agar dilution procedure according to CLSI (formerly NCCLS) performance guidelines.34 The following antimicrobials were tested using the Sensititre system: cefoxitin, ceftriaxone, ceftolozin, amoxicillin/clavulanic acid, ampicillin, sulfamethoxazole, trimethoprim, ciprofloxacin, difloxacin, enrofloxacin, levofloxacin, gatifloxacin, nalidixic acid, orbifloxacin, sarafloxacin, danofloxacin, chloramphenicol, gentamicin, streptomycin, amikacin and tetracycline. The susceptibility to nalidixic acid and ciprofloxacin was also determined by agar dilution in order to expand the tested concentrations up to 1024 and 128 mg/L, respectively. \textit{E. coli} ATCC 25922 and 35218, \textit{Enterococcus faecalis} ATCC 51299 and \textit{Pseudomonas aeruginosa} ATCC 27853 were used as quality control organisms in the antimicrobial susceptibility testing.

\textbf{Construction of \textit{marRAB}, sox\textit{RS} and \textit{ramA} null mutations}

Null \textit{Salmonella} Typhimurium LT2 mutations in \textit{marRAB}, sox\textit{RS} and \textit{ramA} genes were constructed using the methods described by Datsenko and Wanner.35 Briefly, the kanamycin resistance cassette (\textit{kan}) of plasmid pKD4 was PCR amplified using oligonucleotides \textit{marRAB-KP1} and \textit{marRAB-KP2} for \textit{marRAB}, sox\textit{RS-KP1} and sox\textit{RS-KP2} for sox\textit{RS}, or \textit{ramA-KP1} and \textit{ramA-KP2} for \textit{ramA} [Table S1, available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/)]. These 62 base oligonucleotides included 22 bases complementary to the \textit{kan} sequence at the 3’ end and 40 bases complementary to regions adjacent to \textit{marRAB}, sox\textit{RS} or \textit{ramA}. Replacement of target gene, \textit{marRAB}, sox\textit{RS} or \textit{ramA}, was verified by PCR using the k1 and k2 primers and primers flanking the deleted regions (Table S1).32

\textbf{Expression analysis of \textit{acrB}, \textit{acrF}, \textit{marA}, sox\textit{S}, ram\textit{A} and \textit{robA}}

Overnight bacterial cultures were diluted 1/100 in MH broth and grown to mid-logarithmic phase at 37°C with vigorous shaking (230 rpm). Total RNA was harvested from 2 mL aliquots of culture using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and cleaned using an RNaseasy Mini Kit (Qiagen, Valencia, CA, USA). RNA preparations were treated with RNase-free DNase (Qiagen) on columns and assessed for purity by PCR. RNA yield and quality were determined using an ND1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). At least two independent RNA preparations were isolated for each strain and treatment.

Template RNA (2 μg) and random hexamers in a final volume of 18.5 μL were incubated at 70°C for 10 min and then added to a reverse transcriptase reaction mixture containing 1 μL first strand buffer, 1 mM dNTPs, 10 mM 1,4-dithiothreitol (DTT), 40 U/μL RNaseOUT and 1 μL of SuperScript III reverse transcriptase (Invitrogen). The 30 μL mixture was incubated at 25°C for 10 min and at 42°C for 90 min. Additional incubation at 70°C for 15 min was done to inactivate the enzyme. The resultant cDNAs were diluted 500-fold, except those of the normalizing gene, \textit{rrsG}, which underwent a 105-fold dilution. Real-time PCR was performed using the IQ5 multicolour real-time PCR system (Bio-Rad, Hercules, CA, USA) with each specific primer pair described in Table S1. CDNA and \textit{iQ SYBR Green Supermix} (Bio-Rad). PCR conditions were 3 min at 95°C, followed by 40 cycles of 95°C for 10 s, 60°C for 15 s and 72°C for 30 s. The \textit{ΔΔC} method35 was used to calculate fold induction of transcription of a target gene by comparison with a value relative to the wild-type strain grown in MH broth at log phase.

\textbf{DNA sequence analysis}

PCRs were performed using chromosomal DNA as templates from LT2, LTL and LTH, and specific oligonucleotide primers for the amplification of \textit{acrB} (\textit{acrF}-F21 and \textit{acrR}-R993), \textit{marRAB} (\textit{marRAB}-F23 and \textit{marRAB}-R1179), sox\textit{RS} (sox\textit{RS}-F75 and sox\textit{RS}-R1025), \textit{robA} (\textit{robA}-F57 and \textit{robA}-R1180) and \textit{ramA} (\textit{ramA}-F121 and \textit{ramA}-R690) (Table S1). PCR products were purified using a QiAquick® PCR purification kit (Qiagen). Both strands of each amplicon were sequenced using the same primer pairs at Macrogen, Inc. (Seoul, Korea). DNA sequences were analysed with
RamA and SoxS on expression of AcrAB and AcrEF in S. Typhimurium

Sequencher 4.0 software (Gene Codes Corporation, Ann Arbor, MI, USA) and aligned using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST/). The predicted amino acid alignments presented in Figure 2 were prepared using the CLUSTALW program (version 1.8; http://www.ebi.ac.uk/clustalw/) and the BOXSHADE program (version 3.21; http://www.ch.embnet.org/software/BOX_form.html).

Replacement of wild-type ramA with mutant ramA allele in LT2 and LTH

Mutant ramA from strain LTL was introduced into wild-type strain LT2 and strain LTH using plasmid pKD46. The replacement of wild-type ramA was selected by tetracycline (8 mg/L) and confirmed by PCR using primers ramAF10, containing eight of the nine bases that were absent in mutant ramA at the 3' end, and ramAR416.

Replacement of wild-type soxRS with mutant soxRS allele in LT2

Additionally, mutant soxRS from LTH was introduced into LT2 using a suicide plasmid-mediated approach described previously.33 Briefly, the mutant soxRS was amplified by PCR using primers soxRS-xbaI-F and soxRS-xbaI-R (Table S1). The PCR product after XbaI digestion was cloned into pCVD442 resulting in plasmid pCVD442/sox. The insertion was confirmed by PCR using primers pCVD442-F and pCVD442-R. The construct pCVD442/sox was then introduced into LT2 via electroporation. The replacement of soxRS was confirmed by

Figure 1. Gene expression analysis by RT–PCR. (a) Changes in expression levels by fold among efflux pump genes acrB (grey bars) and acrF (white bars) in wild-type LT2, in vitro-induced mutants and knock-out mutant strains. (b) Changes in expression levels by fold among global regulatory genes ramA (dark grey bars), soxS (light grey bars), robA (black bars) and marA (white bars) in LT2 and in vitro-induced mutant strains. The ΔΔCt method was used to calculate the relative amount of specific RNA present in each sample. Data are presented as arithmetic means of the transcriptional induction (fold change) estimated by comparison with values relative to the wild-type strain LT2.
Zheng et al.

Table 1. Antimicrobial resistance profiles of Salmonella Typhimurium LT2 and its derived mutants

Strains	CIP	NAL	DAN	DIF	ENR	GAT	LVX	MAR	ORB	CHL	TET
LT2	0.015	4	0.06	0.25	0.06	0.03	0.06	0.03	0.125	8	1
LT2::ramA‡	0.25	64	0.25	0.5	2	2	0.25	0.5	0.5	32	16
LT2::soxRS‡	0.015	4	0.06	0.25	0.06	0.03	0.06	0.03	0.125	8	1
LTL	4	1024	8	>32	8	4	8	8	16	64	16
ΔacrAB::km	0.06	64	0.125	0.5	0.125	0.125	0.125	0.25	0.25	0.25	2
ΔramA::km	0.25	64	0.5	0.5	0.25	0.25	0.5	0.5	1	8	1
ΔmarRAB::km	4	1024	8	32	8	2	4	4	16	64	16
LTH	64	512	>32	>32	>32	16	32	32	>32	8	1
ΔacrAB::km	4	16	8	8	4	0.5	2	2	8	0.5	0.25
ΔsoxRS::km	16	64	32	>32	>32	8	16	8	>32	8	1
ΔramA::km	64	64	>32	>32	>32	32	>32	>32	>32	8	1
ΔmarRAB::km	64	512	>32	>32	>32	32	>32	>32	>32	8	1
LTH::ramA‡	128	1024	>32	>32	>32	>32	>32	>32	>32	>32	64

CIP, ciprofloxacin; NAL, nalidixic acid; DAN, danofoxacin; DIF, difloxacin; ENR, enrofloxacin; GAT, gatifloxacin; LVX, levofloxacin; MAR, marbofloxacin; ORB, orbifloxacin; CHL, chloramphenicol; TET, tetracycline.

PCR using primers soxRSwt-F and soxRSwt-R containing 10 bases that were absent in mutant soxRS at the 3’ end (Table S1).

Results

Expression ofacrB and acrF in Salmonella Typhimurium LT2 series strains

The role of efflux pumps in fluoroquinolone resistance of Salmonella was evaluated by comparing the expression levels of acrB and acrF in fluoroquinolone-resistant strains LTL and LTH with ciprofloxacin MICs of 4 and 64 mg/L, respectively, with those of LT2. LTL possessed a mutation (Ser83Phe) in GyrA, whereas LTH contained double mutations (Ser83Phe, Asp87Asn) in GyrA and a single mutation (Gly78Asp) in ParC. Based on RT–PCR, LTL and LTH both expressed acrAB and acrEF at elevated levels compared with LT2 (Figure 1a). The expression of acrAB was 15.1- and 5.5-fold greater in LTL and LTH, respectively, compared with their counterpart in LT2. acrEF had a relatively lower expression level compared with acrAB within the same strains. Noticeably, the expression of acrAB and acrEF in LTL was 2- to 3-fold greater than that in LTH.

Expression of marA, soxS, ramA or robA in Salmonella Typhimurium LT2 mutants

Earlier studies have shown that constitutive expression of either marA or soxS mRNA is primarily responsible for the activation of acrB transcription, contributing to clinical MDR in Salmonella Typhimurium.25,36 In addition to marA and soxS, we also examined the expression of robA, whose product is closely related to MarA and SoxS in E. coli, and ramA, which is newly identified in Salmonella as a possible MDR regulator. LTL and LTH showed highly up-regulated ramA and soxS, respectively (Figure 1b). However, neither LTL nor LTH expressed marA or robA at an elevated level compared with the wild-type LT2 (Figure 1b).

The role of ramA, soxS, acrAB or marRAB in MDR and fluoroquinolone resistance phenotypes of Salmonella Typhimurium

As ramA and soxS were highly up-regulated in fluoroquinolone-resistant LT2 and LTH, their role in drug resistance in Salmonella was determined by comparing antimicrobial susceptibility of Salmonella Typhimurium strains with or without deletion of these genes (Table 1). Inactivation of ramA in LT2 exhibited 16- to 32-fold increased susceptibility to nalidixic acid, ciprofloxacin and other fluoroquinolones, and 8- to 16-fold to tetracycline and chloramphenicol. Unlike the dominant effect of ramA inactivation in LT2, inactivation of soxS in LTH exhibited only 2- to 8-fold increased susceptibility to nalidixic acid, ciprofloxacin and several other fluoroquinolones, and the resistance levels to tetracycline and chloramphenicol remained the same. Consistent with changes of antimicrobial phenotypes after gene inactivation, the overexpression of acrAB and acrEF was reduced to baseline level in LT2 ΔramA and LTH ΔsoxRS mutants, respectively (Figure 1a). Furthermore, inactivation of acrAB in LTL and LTH resulted in increased susceptibilities to all antimicrobials tested, whereas inactivation of mar regulon (marRAB) in these strains did not result in detectable changes in the antimicrobial susceptibility profiles (Table 1).

Mutations in ramA, the soxRS region and acrR of Salmonella Typhimurium LT2 mutants

The DNA sequence of ramA of LTL, compared with that of ramA of LT2 (accession no. NC_003197), showed a 9 bp (ATGAGTGCT) deletion in the ramA promoter –10 (TATA box) region (Figure 2a). This change might have turned on the transcription of the ramA gene constitutively. For the soxRS region in LTH that exhibited increased susceptibility to ciprofloxacin, the sequence analysis showed LTH had an in-frame 3 bp insertion (T313C317C321), which created two amino acid alterations (His105Ser, Arg106Pro) and one residue (Ala) insertion at the C-terminus (Figure 2b).
There was also an in-frame 12 bp deletion and eight residue alterations in soxR close to the C-terminus. A deletion of thymine resulted in a +1 frameshift at stop codon-153, which might delay the termination. However, no mutation was found in marRAB, robA or acrR genes in all strains (data not shown).

Antimicrobial resistance conferred by the ramA or soxRS allele

The role of ramA in conferring MDR phenotypes in Salmonella Typhimurium was unclear. The replacement of the wild-type ramA allele in LT2 with ramA resulted in the conferring MDR phenotypes in Salmonella Typhimurium. There was also an in-frame 12 bp deletion and eight residue alterations in soxR close to the C-terminus. A deletion of thymine resulted in a +1 frameshift at stop codon-153, which might delay the termination. However, no mutation was found in marRAB, robA or acrR genes in all strains (data not shown).
MDR phenotype in Salmonella Typhimurium. In addition, when the ramA allele was introduced into LTH, fluoroquinolone resistance levels were also increased compared with LTH with the wild-type allele. For example, MICs of ciprofloxacin and nalidixic acid increased to 128 and 1024 mg/L, respectively (Table 1). Increase in resistance to tetracycline and chloramphenicol was also observed. The MICs of tetracycline and chloramphenicol were 16 and 64 mg/L, increases of 16- and 8-fold, respectively (Table 1).

Expression of constitutive SoxR protein in laboratory strains of E. coli and Salmonella was shown to lead to an increase in resistance to nalidixic acid, chloramphenicol and tetracycline by 2- to 4-fold. However, the introduction of the soxRS allele in the present study resulted in no change in drug susceptibility compared with LT2 (Table 1), suggesting that SoxRS was not the primary cause of the resistance to nalidixic acid and fluoroquinolones in strain LTH.

Discussion
Bacterial resistance to fluoroquinolones is usually mediated by mutations in bacterial DNA gyrase (gyrA, gyrB) and topoisomerase IV (parC, parE) genes, as well as by active efflux. Plasmid-mediated resistance to quinolones in Gram-negative bacteria has also been described. In Salmonella, the most common residues in GyrA, known to confer quinolone resistance, are associated with mutations at serine-83 and aspartate-87, either alone or together. Serine-80 or glycine-78 substitution in ParC has been found in ciprofloxacin-resistant clinical and laboratory-induced strains. In the present study, fluoroquinolone-resistant LTL (MIC 4 mg/L ciprofloxacin) and LTH (MIC 64 mg/L ciprofloxacin) were independently derived from Salmonella Typhimurium LT2 induced with ciprofloxacin. In addition to the decreased susceptibility to nine fluoroquinolone drugs, LTL also displayed resistance to chloramphenicol (MIC 64 mg/L) and tetracycline (MIC 16 mg/L). The findings indicated that, although they had the same ancestor, LTL and LTH use different mechanisms against antimicrobials. The topoisomerase mutations alone were not able to explain the fluoroquinolone resistance observed in LTL and LTH. In LTL, the MDR phenotype was lost after inactivation of the acrAB locus even with the presence of the point mutation in gyrA. In LTH, however, the MICs of most fluoroquinolones were still above the breakpoints, although the inactivation of acrAB increased the susceptibility to all antibiotics tested. These data suggest that increasing expression of efflux pumps together with a single gyrA mutation confers fluoroquinolone resistance in laboratory-induced Salmonella strains and that high-level fluoroquinolone resistance requires additional mutations in topoisomerases, whereas the overexpression of efflux pumps becomes less important. Previous studies showed that there was no direct correlation between the level of acrB mRNA and MICs of ciprofloxacin. Possible explanations for the non-correlative relationship include: (i) the presence of post-transcriptional regulation of acrB; and (ii) efflux pumps are only one of several contributing factors in mediating fluoroquinolone resistance.

In E. coli, MarA, SoxS and RobA, transcriptional activators from the AraC/XylS family, interact with acrAB, thereby increasing the production of AcrAB and effectively enhancing efflux. Constitutive overexpression of these genes due to mutations in both laboratory and clinical isolates of E. coli has been described previously. These global regulators are also present in Salmonella, essentially identical to those in E. coli. It is thought that efflux and influx in salmonellae might be regulated in a similar way as in E. coli. This hypothesis is supported by studies showing that constitutive overexpression of soxRS can contribute to antimicrobial resistance in a clinical isolate of Salmonella Typhimurium. Our findings demonstrated that constitutive overexpression of soxS due to mutations in both soxR and soxS was involved in the fluoroquinolone resistance in LTH by an marA independent pathway. However, inactivation of the soxRS regulon only slightly reduced the resistance to several fluoroquinolones in LTH; the introduction of the soxRS allele from LTH to the drug-susceptible strain LT2 displayed the same susceptibility profile as wild-type LT2. Furthermore, inactivation of acrAB did not abolish resistance to at least five fluoroquinolone drugs, suggesting that efflux pumps may not be the primary mechanism to cause resistance to nalidixic acid and fluoroquinolones in LTH.

In addition to the MarA/SoxS/Rob family, RamA was identified as a potential alternative global regulator. Overexpression of RamA has been associated with MDR in E. aerogenes, Klebsiella pneumoniae and S. enterica serovar Paratyphi B. Demonstrated that disruption of ramA led to a suppression of MDR in K. pneumoniae. However, trans-complementation with plasmid-borne ramA restored the phenotype of decreased susceptibility to tigecycline. However, it is not clear that such an increase over the original MICs is due to the multicopy nature of the carrier plasmid or the elevated levels of constitutive ramA transcription. In the present study, we revealed that an increased level of constitutive ramA transcription resulted in an MDR phenotype. Increase in MICs correlated with the constitutive overexpression of acrAB and ramA in LTL, whereas expression levels of known Acr regulators such as marA and soxS were unchanged. These data indicated that RamA acts as an activator of expression of acrAB. Most recently, Abouzeed et al. reported that a 2 nt deletion upstream of ramA played a role in the up-regulation of RamA and AcrAB in a Salmonella Typhimurium DT104 isolate. Our study independently identified the 9 bp deletion in the promoter region of mutant ramA in fluoroquinolone-resistant Salmonella, which includes the 2 bp deletion of Abouzeed et al., suggesting that it might be the binding site for RamR, a local repressor of RamA. The deletion of the binding site of the repressor leads to activation of ramA in LTL. Nkaiido et al. showed that indole- and bile-mediated regulation of AcrAB in Salmonella is also RamA-dependent, and that induction of ramA is required for overexpression of acrAB, indicating the important role of RamA in the regulation of efflux pumps in Salmonella Typhimurium. However, van der Straaten et al. reported no effect on MDR phenotype among 15 clinical Salmonella isolates after ramA was disrupted.

In summary, we showed that ramA is an activator of the MDR cascade in Salmonella Typhimurium. Increased expression of efflux pumps, conferring MDR in Salmonella Typhimurium, is regulated by multiple transcriptional activators under different environmental pressures. Future studies on interactions among MarA, SoxS and RamA genetic systems are needed to decipher their individual contributions to MDR.

Acknowledgements
We thank Dr Carl Schroeder for critical review of the manuscript.
Funding

This study was supported in part by the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) of the University of Maryland and the U.S. Food & Drug Administration.

Transparency declarations

None to declare.

Supplementary data

Table S1 is available as Supplementary data at Online.

References

1. Mead PS, Slutsker L, Dietz V et al. Food-related illness and death in the United States. Emerg Infect Dis 1999; 5: 607–25.
2. Izumiya H, Mori K, Kurazono T et al. Characterization of isolates of Salmonella enterica serovar Typhimurium displaying high-level fluoroquinolone resistance in Japan. J Clin Microbiol 2005; 43: 5074–9.
3. Joshi S, Amarnath SK. Fluoroquinolone resistance in Salmonella Typhi and S. Paratyphi A in Bangalore, India. Trans R Soc Trop Med Hyg 2007; 101: 308–10.
4. Hakanen A, Siltinen A, Kotilainen P et al. Increasing fluoroquinolone resistance in salmonella serotypes in Finland during 1995–1997. J Antimicrob Chemother 1999; 43: 145–8.
5. Olsen SJ, DeBess EE, McGivern TE et al. A nosocomial outbreak of fluoroquinolone-resistant Salmonella infection. N Engl J Med 2001; 344: 1572–9.
6. Varma JK, Greene KD, Ovitt J et al. Hospitalization and antimicrobial resistance in Salmonella outbreaks, 1984–2002. Emerg Infect Dis 2005; 11: 943–6.
7. Chiu CH, Wu TL, Su LH et al. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis. N Engl J Med 2002; 346: 413–9.
8. Carattoli A. Importance of integrons in the diffusion of resistance. Vet Res 2001; 32: 243–59.
9. Carattoli A. Plasmid-mediated antimicrobial resistance in Salmonella enterica. Curr Issues Mol Biol 2003; 5: 113–22.
10. Doublet B, Schwarz S, Kehrenberg C et al. Florfenicol resistance gene floR is part of a novel transposon. Antimicrob Agents Chemother 2005; 49: 2106–8.
11. Levesque C, Piché L, Larose C et al. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1998; 39: 185–91.
12. Li XZ, Nakaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64: 159–204.
13. Poole K. Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 2004; 4: 500–8.
14. Ariza RR, Li Z, Ringstad N et al. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol 1995; 177: 1655–61.
15. Amabile-Cuevas CF, Demple B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res 1991; 19: 4479–84.
16. Hachler H, Cohen SP, Levy SB. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J Bacteriol 1991; 173: 5532–8.
17. Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 1997; 41: 2067–75.
18. Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 2000; 182: 3467–74.
19. Bennik MH, Pomposiello PJ, Thorne DF et al. Defining a rob regulon in Escherichia coli by using transposon mutagenesis. J Bacteriol 2002; 182: 3794–801.
20. White DG, Goldman JD, Demple B et al. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 1997; 179: 6122–6.
21. Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 1996; 178: 306–8.
22. Nunoshiba T, Hidalgo E, Amabile Cuevas CF et al. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol 1992; 174: 6054–60.
23. Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci USA 2000; 97: 5146–50.
24. Koutsoliotou A, Pena-Llopis S, Demple B. Constitutive soxR mutations contribute to multiple-antibiotic resistance in clinical Escherichia coli isolates. Antimicrob Agents Chemother 2005; 49: 2746–52.
25. Koutsoliotou A, Martins EA, White DG et al. A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (serovar Typhimurium). Antimicrob Agents Chemother 2001; 45: 38–43.
26. George AM, Hall RM, Stokes HW. Multidrug resistance in Klebsiella pneumoniae: a novel gene, rma, confers a multidrug resistance phenotype in Escherichia coli. Microbiology 1995; 141: 1909–20.
27. Chollet R, Chevalier J, Bollet C et al. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter cloacae. Microb Drug Resis 2007; 13: 1–6.
28. Yassien MA, Ewis HE, Lu CD et al. Molecular cloning and characterization of the Salmonella enterica serovar Paratyphi B rma gene, which confers multiple drug resistance in Escherichia coli. Antimicrob Agents Chemother 2002; 46: 360–6.
29. van der Straaten T, Janssen R, Mevius DJ et al. Defining a mar regulon in the antibiotic resistance phenotype of Escherichia coli. J Bacteriol 1991; 173: 5532–8.
30. van der Straaten T, Janssen R, Mevius DJ et al. Defining a mar regulon in the antibiotic resistance phenotype of Escherichia coli. J Bacteriol 1991; 173: 5532–8.
31. Chen S, Cui S, McDermott PF et al. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. J Bacteriol 1995; 177: 1655–61.
32. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97: 6640–5.
33. Donnenberg MS, Kaper JB. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 1991; 59: 4310–7.
34. National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk and Dilution

Downloaded from https://academic.oup.com/jac/article-abstract/63/1/95/702836
by guest
on 29 July 2018
Susceptibility Tests for Bacteria Isolated from Animals—Second Edition: Approved Standard M31-A2. NCCLS, Wayne, PA, USA, 2002.

35. Bio-Rad L. Instruction Manual, iQ5 Optical System Software, Rev. B. Bulletin #10005604.

36. Eaves DJ, Ricci V, Piddock LJ. Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother 2004; 48: 1145–50.

37. Chou JH, Greenberg JT, Demple B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 1993; 175: 1026–31.

38. Hakanen A, Kotilainen P, Jalava J et al. Detection of decreased fluoroquinolone susceptibility in Salmonella and validation of nalidixic acid screening test. J Clin Microbiol 1999; 37: 3572–7.

39. Piddock LJ, Ricci V, McLaren I et al. Role of mutation in the gyrA and parC genes of nalidixic-acid-resistant Salmonella serotypes isolated from animals in the United Kingdom. J Antimicrob Chemother 1998; 41: 635–41.

40. Heisig P. High-level fluoroquinolone resistance in a Salmonella Typhimurium isolate due to alterations in both gyrA and gyrB genes. J Antimicrob Chemother 1993; 32: 367–77.

41. Piddock LJ. Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 2002; 26: 3–16.

42. Brown JC, Thomson CJ, Amyes SG. Mutations of the gyrA gene of clinical isolates of Salmonella typhimurium and three other Salmonella species leading to decreased susceptibilities to 4-quinolone drugs. J Antimicrob Chemother 1996; 37: 351–6.

43. Griggs DJ, Gensberg K, Piddock LJ. Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals. Antimicrob Agents Chemother 1996; 40: 1009–13.

44. Baucheron S, Chaslus-Dancla E, Cloeckaert A. Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204. J Antimicrob Chemother 2004; 53: 657–9.

45. Ling JM, Chan EW, Lam AW et al. Mutations in topoisomerase genes of fluoroquinolone-resistant salmonellae in Hong Kong. Antimicrob Agents Chemother 2003; 47: 3567–73.

46. Hansen H, Heisig P. Topoisomerase IV mutations in quinolone-resistant salmonellae selected in vitro. Microb Drug Resist 2003; 9: 25–32.

47. Webber MA, Piddock LJ. Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob Agents Chemother 2001; 45: 1550–2.

48. Grkovic S, Brown MH, Skurray RA. Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 2001; 12: 225–37.

49. Oethinger M, Podglajen I, Kern WV et al. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother 1998; 42: 2089–94.

50. Ruzin A, Visalli MA, Keeney D et al. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2005; 49: 1017–22.

51. Abouzeed YM, Baucheron S, Cloeckaert A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2008; 52: 2428–34.

52. Nikaido E, Yamauchi A, Nishino K. AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 2008; 283: 24245–53.