Novel Co-rich high entropy alloys with superior tensile properties

Daixiu Weia,b, Xiaoqing Lic, Weicheng Henga,d, Yuichiro Koizumia, Feng Heb,e, Won-Mi Choif, Byeong-Joo Leef, Hyoung Seop Kimf, Hidemi Katoa and Akihiko Chibaa

aInstitute for Materials Research, Tohoku University, Sendai, Japan; bDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA; cDepartment of Materials Science and Engineering, KTH – Royal Institute of Technology Stockholm, Sweden; dDepartment of Materials Processing, Tohoku University, Sendai, Japan; eState Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, People's Republic of China; fDepartment of Materials Science and Engineering, Pohan University of Science and Technology (POSTEC), Pohan, Republic of Korea

\textbf{ABSTRACT}

We developed a series of Co-rich Co\textsubscript{x}Cr\textsubscript{25}(FeNi)\textsubscript{75–x} (x = 35, 45, 55, 65) high entropy alloys with improved strength and/or ductility, derived from lowering the stacking fault energy (SFE) and reducing the fcc phase stability of the equiatomic CoCrFeNi alloy. Thermodynamics and \textit{ab initio} calculations demonstrated that increasing Co while decreasing Fe and Ni concentrations lower the SFE and reduce the fcc phase stability. The Co\textsubscript{35}Cr\textsubscript{25}Fe\textsubscript{15}Ni\textsubscript{20} and Co\textsubscript{45}Cr\textsubscript{25}Fe\textsubscript{15}Ni\textsubscript{15} alloys with single fcc phase, exhibit superior tensile properties, contributing to the twinning and fcc → hcp martensitic transformation. The present study offers a guideline for designing high-performance high entropy alloys.

\textbf{IMPACT STATEMENT}

A series of novel Co-rich non-equiatomic high entropy alloys with enhanced tensile properties were developed by lowering the stacking fault energy and reducing the phase stability of equiatomic CoCrFeNi alloy.

\textbf{ARTICLE HISTORY}

Received 7 November 2018

\textbf{KEYWORDS}

High entropy alloy; metastable; stacking fault energy; martensitic transformation; deformation twinning

1. Introduction

High entropy alloys (HEAs) comprise four or more multiple principle elements have attracted extensive academic interests, which was firstly proposed in the year 2004 \cite{1,2}. Thereinto, the equiatomic FeMnCoCrNi alloy is one of the most thoroughly studied HEAs because of the exceptional fcc phase stability, good combinations of strength and ductility, and superior fracture resistance at cryogenic temperatures \cite{2,3}. The interesting properties are considered as an outcome of heavy lattice distortions and sluggish diffusion by mixing the multiple principle elements \cite{1,4–6}. Dislocation slip is the sole plastic deformation mode of the alloy at room temperature, but deformation twinning occurs at cryogenic temperatures because of the lowered stacking fault energy (SFE). The SFEs of FeMnCoCrNi and FeNiCoCr alloys are estimated to be 20–30 mJ/m2 at room temperature but decreased to approximate zero at 0 K, meanwhile the hcp phase tends to become more stable with decreasing temperatures \cite{7,8}.

Moreover, twinning-induced plasticity (TWIP) and transformation-induced plasticity assisted dual phase (TRIP-DP) non-equiatomic Fe-rich HEAs were recently developed \cite{9,10}, inspired by the plasticity and strengthening mechanisms in many low SFE metals and alloys such as TRIP steel, metastable austenitic steel, and TWIP steel. The two types of HEAs exhibit high tensile strengths and large elongations at room temperature that...
overcome the strength-ductility trade-off, owing to the assistance of deformation twinning and strain-induced martensitic transformation (SIMT), respectively. The low SFE of metastable fcc phase of the alloys gained from tuning the chemical composition and concentration, enables the formation of Shockley partial dislocations, which is a crucial requisite for the activation of twinning and SIMT when the applied stress exceeds a threshold value.

On the other hand, Co-based superalloys have been widely used in manufacturing vanes, gas turbines, and metallic orthopedic implants, owing to the superior mechanical properties and corrosion resistance [11–13]. The alloys generally exhibit two kinds of crystal structures including γ-fcc and ϵ-hcp, where the γ phase is thermodynamically stable at elevated temperatures whereas the ϵ phase is stable at ambient temperature [14]. Generally, the SFE of these alloys is extremely low, reaching negative values at room temperature for some compositions [15]. As a result, the $\gamma \rightarrow \epsilon$ SIMT proceeds during plastic straining of the metastable γ phase, which partially contributes to the exceptional mechanical properties [16,17]. Furthermore, elements of Fe and Ni are γ phase stabilizers for the alloy while Cr is the ϵ phase stabilizer (i.e. alloying with Fe and Ni can stabilize the γ phase and increase the SFE, whereas alloying with Cr will stabilize the ϵ phase and lower the SFE of the alloys) [18]. In the present study, we aimed to design novel Co-rich HEAs with manipulated mechanical properties and deformation behaviors by regulating the SFE and phase stability, achieved by adjusting the elemental concentrations of the equiatomic CoCr-FeNi alloy based on the thermodynamics and ab initio calculations.

2. Methodology

We designed quaternary HEAs described as Co$_x$Cr$_{25}$ (FeNi)$_{75-x}$ ($x = 25, 35, 45, 55, 65$, hereinafter denoted by Co$_{25}$, Co$_{35}$, Co$_{45}$, Co$_{55}$, and Co$_{65}$ alloys, respectively). The Gibbs free energy difference between hcp phase and fcc phase ($\Delta G_{\text{fcc} \rightarrow \text{hcp}}$, which is defined as $\Delta G_{\text{fcc} \rightarrow \text{hcp}} = G_{\text{hcp}} - G_{\text{fcc}}$) of the various alloys, were calculated using Thermo-Calc software with the TCFE2000 thermodynamic database and its upgraded version [19,20]. The generalized stacking fault energy (GSFE) of the alloys were calculated by ab initio calculations based on density functional theory (DFT) method [21], and the Kohn–Sham equations were solved using the exact muffin-tin orbitals method (EMTO) [22,23].

Ingots of the alloys were produced by arc melting in a water-cooled copper hearth, followed by homogenization at 1200°C for 5 h in an Ar atmosphere to ensure the chemical homogeneity. Then, the alloys hot forged at 1200°C to a 50% reduction in thickness, and finally room temperature rolled to 40% reduction in thickness again with subsequent annealing at 1000°C for 6 min. After that, dog-bone-shaped tensile specimens with a gauge geometry of 10 mm × 2 mm × 1 mm were sliced by electrical discharge machining. The tensile specimens were grinded and mirror-finished. Then, uniaxial tensile tests were conducted at 25°C with a strain rate of 1.5 × 10$^{-4}$ s$^{-1}$. The microstructures of the specimens were observed by scanning electron microscope (SEM) equipped with an electron backscatter diffraction detector (EBSD), using an acceleration voltage of 15 kV. The phase identification was carried out by X-ray diffraction (XRD) with Co Kα radiation. The fractured samples were characterized by scanning transmission electron microscope (STEM) with operation voltage of 200 kV, and the thin-foil specimens for STEM observation were prepared by ion milling.

3. Results and discussion

The Gibbs free energy difference curves of $\Delta G_{\text{fcc} \rightarrow \text{hcp}}$ in Figure 1(a) illustrates that an increase in Co content leads to a decrease in fcc phase (γ phase) stability in the Co$_x$Cr$_{25}$(FeNi)$_{75-x}$ alloys. Moreover, γ phase is more stable at elevated temperatures whereas the hcp phase (ϵ phase) tends to be more stable at lower temperatures, which is in accordance with traditional Co-based alloys. The curves of GSFE of the alloys at 0 K in Figure 1(b) show the initiation of one whole stacking fault by shifting along 1/6 $\{112\}$$\gamma$ planes. The unstable SFE of γ_{usf}, which represents the lowest energy barrier for dislocation nucleation [24], increases gradually from 343.2 to 412.5 mJ/m2 accompanied by the increase of Co content. It indicates that the Co-rich alloys will exhibit higher resistance for dislocation nucleation (i.e. higher yield strength than the Co-lean alloys). On the other hand, the values of intrinsic and extrinsic SFEs marked by γ_{usf} and γ_{esf}, are compared in Figure 1(c). It indicates that both of the γ_{usf} and γ_{esf} are lowered by increasing Co content, and the values of γ_{usf} are smaller than γ_{esf}. It has been found that the Fe and Ni stabilize the γ phase in Co-based superalloys. In addition, independent reduction of Ni concentration or an increase in the Co concentration does significantly lower the SFE [18]. Therefore, the coordination lowers the SFE and reduces the γ phase stability, which will affect the deformation behaviors.

Figure 2(a–e) depict the EBSD IPF maps containing average grain sizes of the Co$_{25}$ (Figure 2(a)), Co$_{35}$ (Figure 2(b)), Co$_{45}$ (Figure 2(c)), Co$_{55}$ (Figure 2(d)) and Co$_{65}$ (Figure 2(e)) alloys. The grains are fully recrystallized without obvious distortions, and the grain size decreases gradually from 14.9 μm to 6.2 μm with the
increase of Co content. Because of the tiny difference in grain sizes of the Co25−45 samples, the effect of grain size on the tensile properties of those samples can be neglected. On the other hand, the corresponding phase maps in Figure 2(f–j) show the phase composition of the samples. The Co25−45 samples are single γ phase containing some annealing twin bands, while the Co55−65 samples are γ + ε dual phase with lath morphologies. The amount of ε phase in the Co55 and Co65 samples are 62.8 and 91.3%, respectively. The phase composition would affect the tensile properties dramatically, because the γ phase is generally soft and ductile but the ε phase is hard and brittle.

The engineering stress–strain curves in Figure 3(a) and the strengths and elongations in Figure 3(b) demonstrate the tensile properties of the alloys at room temperature. The Co25−45 samples comprising single γ phase show superior fracture elongation larger than 76%, but the Co55−65 samples consisting of a large amount of ε phase have very limited elongations less than 21%. On the other hand, the yield strength and ultimate tensile strength (UTS) increase co-instantaneously accompanied by the increase of Co content, with the exception of Co55 sample. The enhanced strength is probably due to the increase of γ_{usf} and the different amount of ε phase. It is noteworthy that the fracture elongation firstly increases and then decreases with a maximum value of 96.1% (Co35), and the strength enhances without the expense of ductility by changing the Co content from 25 to 45%. The Co35 and Co45 samples exhibit UTS of 721 and 841 MPa with fracture elongations of 96.1% and 76.2% respectively, which are superior to the Co25 sample. The strain hardening curves in Figure 3(c) indicate that the Co-rich samples show relatively higher strain hardening rates, despite all the Co25−45 samples are single γ phase. Moreover, the γ + ε dual phase samples show much higher hardening rates than single γ phase samples, due to the lack of operative slip systems of the ε-hcp phase. Figure 3(d) is the tensile properties of Co35 and Co45 samples compared with other single fcc phase HEAs reported previously [3,8–10,25–30], which indicates an exceptional combination of strength and ductility is obtained in the two samples. It sheds light on the development of Co-rich HEAs with superior mechanical properties.

Figure 4 shows the XRD patterns of the samples both before (Figure 4(a)) and after (Figure 4(b)) tensile fracture. The Co25−45 samples comprise single γ phase meanwhile the Co55−65 samples consist of γ + ε dual phases before tensile in accordance with the EBSD results in Figure 2. However, the peaks of the ε phase detected in the fractured Co45 sample and the enhancement of the ε phase peaks in the fractured Co55−65 samples indicate that the γ → ε phase transformation proceeded in those samples during plastic deformation. In contrast, the transformation did not occur in the Co25−35 samples, because of no ε phase peak is found in those fractured samples. It can be concluded that the room temperature plastic deformation behaviors of the samples are significantly influenced by the Co content, i.e. the SFEs and phase stabilities of the new designed HEAs alloys.

Figure 5(a–c) shows the bright filed image (Figure 5(a)), high-magnification HADDF image (Figure 5(b)), and diffraction pattern (Figure 5(c)) of the fractured Co25 sample. A high density of dislocations and deformation-induced nanotwins less than 10 nm thick indicated by arrowheads are observed. The twinning elements are $K_1 = (111)_\gamma$, $\eta_1 = [112]_\gamma$, $K_2 = (11\bar{1})_\gamma$, $\eta_2 = [112]_\gamma$ as indicated in Figure 5(b,c), which is the common
operative twinning system in fcc metals formed by the motion of Shockley partial dislocations on every close-packed \{111\} planes. Figure 5(d–f) is the bright field image (Figure 5(d)), high-magnification HADDF image (Figure 5(e)), and diffraction pattern (Figure 5(f)) of the fractured Co_{45} sample. A lamellar structure consisting of strip-shaped \(\gamma\) and \(\epsilon\) phases is observed. The atomic stacking sequences are ABCABC\(_\gamma\) and ABABAB\(_\epsilon\) along the \(<111>\gamma\) and [0001]\(_\epsilon\) orientations, respectively. These two phases follow an orientation relationship described as: \{111\}_\gamma // (0001)\(_\epsilon\), \(<110>\gamma // [1120]_\epsilon\), which is analogous the lamellar structure consisting of \(\gamma\) and \(\alpha_2\) phase in lamellar Ti-Al alloys \[31,32\]. The \(\epsilon\) phase was formed in the \(\gamma\) matrix during plastic deformation by SIMT, which is achieved by the nucleation and propagation of Shockley partial dislocations on every second \{111\}_\gamma planes. On the other hand, it can be deduced that twinning is relatively easier to be activated in the Co_{35} sample, because the SFE is lower than Co_{25} sample meanwhile no \(\epsilon\) phase was detected in the fractured Co_{35} sample by XRD. The higher probability of activation of deformation twinning partially contributes to the improved strength and elongation.

The SFE determines the plastic deformation mechanisms of fcc metals, which switches the deformation mode from dislocation slip to twinning and finally to fcc \(\rightarrow\) hcp SIMT via lowering the SFE. Dissociation of a perfect dislocation with Burgers vector \(\vec{b}\) of \(\frac{1}{3}[110]\) into a pair of Shockley partial dislocations with \(\vec{b}\) of \(\frac{1}{6}[211]\) is often stimulated in low SFE fcc metals, which can be described as: \(1/2[110] \rightarrow 1/6[211] + 1/6[12\bar{T}]\). If a partial dislocation of \(1/6[211]\) glides on a \((111)_\gamma\) plane represented by symbol ‘\(\backslash\)’, the stacking sequence along \((111)_\gamma\) changes from \ldots ABC|ABC \ldots to \ldots ABC|BCA \ldots , which forms an intrinsic stacking fault with local hcp stacking sequence. The gliding of partial dislocations on every second \((111)_\gamma\) planes produce \(\epsilon\) phase. On the other hand, if the partial dislocations glide on every two consecutive \((111)_\gamma\) planes, the stacking sequence along \((111)_\gamma\) direction changes from \ldots ABCABC|A|B|C|A|BC \ldots to \ldots ABCABC|B|A|C|B|AC \ldots , generating a local twin with ‘C’ as the plane of symmetry. The SFE governs the dissociation and motion behaviors of the dislocations, where the intrinsic stacking fault prefers to form in metals with lower SFEs than that of extrinsic stacking fault.

The SFE and \(\gamma\) phase stability are lowered by increasing the Co content in the present study, which then manipulate the plastic deformation mechanisms of the alloys. In Co_{25–65} alloys, dislocations and deformation twinning are formed during plastic deformation. However, the fcc \(\rightarrow\) hcp martensitic transformations

Figure 2. EBSD (a–e) IPF maps and (f–j) phase maps of the Co_{x}Cr_{25}(FeNi)_{25–x} HEAs before tensile, with the average grains sizes and fractions of hcp phase inserted in the IPF and phase maps, respectively.
Figure 3. (a) Tensile stress–strain curves, (b) the yield strength, elongation and ultimate tensile strength, and (c) the strain hardening rates of Co\textsubscript{x}Cr\textsubscript{25}(FeNi)\textsubscript{75−x} HEAs; (d) the strength versus elongation of Co\textsubscript{35}Cr\textsubscript{25}Fe\textsubscript{20}Ni\textsubscript{20} and Co\textsubscript{45}Cr\textsubscript{25}Fe\textsubscript{15}Ni\textsubscript{15} alloys compared with other single fcc phase HEAs.

Figure 4. XRD patterns of Co\textsubscript{x}Cr\textsubscript{25}(FeNi)\textsubscript{75−x} high entropy alloys before tensile and after tensile at room temperature.
Figure 5. STEM (a, d) bright filed images, (b, e) HADDF images and (c, f) diffraction patterns of (a–c) Co25Cr25Fe25Ni25 alloy and (d–f) Co45Cr25Fe15Ni15 alloy after tensile to fracture at room temperature.

occurred in the Co55–65 alloys due to the lowered SFE. As a result, the Co55–65 alloys strengthened by TRIP effect exhibit much higher hardening rate and strength than the Co25–35 alloys with TWIP effect during plastic deformation at room temperature.

4. Conclusions
A series of novel Co-rich Co₅ₓCr₂₅(FeNi)₇₅₋ₓ (x = 25–65) HEAs with enhanced tensile properties and manipulated deformation behaviors, were designed by lowering the SFE and fcc phase stability of the equiatomic CoCrFeNi alloy. The increase of Co concentration at the expense of decreasing Fe and Ni concentrations yields a lower SFE and reduced fcc phase stability, accompanied by the deformation mechanism switches from deformation twinning to fcc → hcp martensitic transformation. Hereinto, the Co₃₅Cr₂₅Fe₂₀Ni₂₀ and Co₄₅Cr₂₅Fe₁₅Ni₁₅ alloys with metastable single fcc phase possess superior combination of strength and ductility compared to other single fcc phase counterparts. The findings here provide a feasible guideline for developing high-performance high entropy alloys.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was primarily supported by the ‘Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development’ project, Tohoku University, Japan. The work was partially supported by the Swedish Research Council (Grant No. 2016-00236), and the DFT calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre. Meanwhile, this work was partially supported by the Future Material Discovery Project of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (NRF-2016M3D1A1023383).

ORCID
Hyoung Seop Kim http://orcid.org/0000-0002-3155-583X
References

[1] Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.

[2] Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004:375–377. 213–218.

[3] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158.

[4] Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.

[5] Tsai MH, Yeh JW. High-entropy alloys: A critical review. Mater Res Lett. 2014;2:107–123.

[6] Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.

[7] Zaddach AJ, Niu C, Koch CC, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM. 2013;65:1780–1789.

[8] Liu SF, Wu Y, Wang HT, et al. Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics. 2018;93:269–273.

[9] Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124–133.

[10] Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230.

[11] Coutouradis D, Davin A, Lamberigts M. Cobalt-based superalloys for applications in gas turbines. Mater Sci Eng. 1987;88:11–19.

[12] Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33:477–486.

[13] Wei D, Koizumi Y, Chiba A, et al. Heterogeneous microstructures and corrosion resistance of biomedical Co-Cr-Mo alloy fabricated by electron beam melting (EBM). Addit Manuf. 2018;24:103–114.

[14] Kurosu S, Matsumoto H, Chiba A. Isothermal phase transformation in biomedical Co-29Cr-6Mo alloy without addition of carbon or nitrogen. Metall Mater Trans A. 2010;41:2613–2625.

[15] Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy. Acta Mater. 2013;61:1648–1661.

[16] Rajan K, Vander Sande JB. Room temperature strengthening mechanisms in a Co-Cr-Mo-C alloy. J Mater Sci. 1982;17:769–778.

[17] Wei D, Koizumi Y, Takashima T, et al. Fatigue improvement of electron beam melting-fabricated biomedical Co-Cr-Mo alloy by accessible heat treatment. Mater Res Lett. 2018;6:93–99.

[18] Morral FR. Cobalt and Cobalt alloys. Columbus, OH: Cobalt Information Center; 1967.

[19] TCFE2000. The Thermo-Calc Steels Database, upgraded by Lee BJ, Sundman B at KTH, KTH, Stockholm. 1999.

[20] Choi WM, Jo YH, Kim DG, et al. A thermodynamic modelling of the stability of sigma phase in the Cr-Fe-Ni-V high-entropy alloy system. J Phase Equilib Diff. 2018;39:694–701.

[21] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev B. 1964;136:864–871.

[22] Vitos L. Total-energy method based on the exact muffin-tin orbitals theory. Phys Rev B. 2001;64:014107.

[23] Vitos L, Skriver HL, Johansson B, et al. Application of the exact muffin-tin orbitals theory: the spherical cell approximation. Comput Mater Sci. 2000;18:24–28.

[24] Yan JA, Wang CY, Wang SY. Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study. Phys Rev B. 2004;70:1741051–1741055.

[25] Wu Z, Bei H, Parr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014;81:428–441.

[26] Otto F, Dlouhy A, Ch S, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61:5743–5755.

[27] Stepanov ND, Shaysultanov DG, Tikhonovsky MA, et al. Tensile properties of the Cr-Fe-Ni-Mn non-equiatomic multicomponent alloys with different Cr contents. Mater Des. 2015;87:60–65.

[28] Zaddach AJ, Scattergood RO, Koch CC. Tensile properties of low-stacking fault energy high-entropy alloys. Mater Sci Eng A. 2015;636:373–378.

[29] Fang W, Chang R, Zhang X, et al. Effects of Cobalt on the structure and mechanical behavior of non-equal molar Co_xFe_{50−x}Cr_{25}Ni_{25} high entropy alloys. Mater Sci Eng A. 2018;723:221–228.

[30] Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78.

[31] Wei D, Koizumi Y, Nagasako M, et al. Refinement of lamellar structures in Ti-Al alloy. Acta Mater. 2017;125:81–97.

[32] Wei D, Koizumi Y, Yamanaka A, et al. Control of γ lamella precipitation in Ti-39 at.% Al single crystals by nanogroove-induced dislocation bands. Acta Mater. 2015;96:352–365.