A possible new spawning area for Atlantic bluefin tuna (*Thunnus thynnus*): the first histologic evidence of reproductive activity in the southern Gulf of Mexico

Roberto Cruz-Castán1,2, Sámar Saber3, David Macías3, María José Gómez Vives3, Gabriela Galindo-Cortes2, Sergio Curiel-Ramírez4, César Meiners-Mandujano2

1Posgrado en Ecología y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, Mexico
2Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, Mexico
3Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Fuengirola, Málaga, Spain
4Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico

Corresponding Authors:
Roberto Cruz-Castán1,2
Hidalgo 617, Colonia Rio Jamapa, Boca del Río, Veracruz, 94290, Mexico
Email address: cas213@hotmail.com

César Meiners-Mandujano2
Hidalgo 617, Colonia Rio Jamapa, Boca del Río, Veracruz, 94290, Mexico
Email address: cmeiners@uv.mx

Abstract
The number of studies of reproductive biology for Atlantic bluefin tuna carried out in the Gulf of Mexico is significantly lower than those undertaken in the Mediterranean Sea. Four spawning areas have been found for the eastern Atlantic bluefin tuna stock in the Mediterranean Sea, so it is not implausible that there is more than one spawning area in the Gulf of Mexico for the western Atlantic bluefin tuna stock. The individuals used in this study were caught as bycatch by the Mexican surface longline fleet between January and April 2015. A total of 63 individuals ranging between 192 and 293 cm Lf (mean = 238 ± 22.52 cm) were measured. Gonads from 46 fish (31 females and 15 males) were collected for histological examination. All the individuals were classified as mature; 25 were reproductively active (in spawning capable and spawning stages). The histological analysis indicates spawning activity in Mexican waters (the southern Gulf of Mexico). Spawning occurred in March and April, when the sea surface temperature was 25.57 °C ± 0.6987 in March and 27.03 °C ± 0.6985 in April. Information on the location of the spawning areas is necessary for a correct management of species. The present study provides the first histological evidence of reproductive activity in Mexican waters, and indicates a wider
Atlantic bluefin tuna *Thunnus thynnus* (Linnaeus 1758) is a large, highly migratory species distributed in the Atlantic Ocean between 70° N and 30° S latitudes (Collette and Nauen 1983). The International Commission for the Conservation of Atlantic Tunas (ICCAT) categorizes two different bluefin tuna stocks for management purposes, the eastern and the western Atlantic stocks, separated at the 45°W meridian. This borderline was based on the two well-known spawning areas, the Mediterranean Sea and Gulf of Mexico. Atlantic bluefin tuna is classified as an endangered species by the International Union for Conservation of Nature (IUCN) as a consequence of fishing pressure (Collette et al. 2011a,b). Currently, there are ICCAT regulations aimed at managing both stocks (https://www.iccat.int/en/RecRes.asp). Although the western stock was the first to be under regulation (since 1999), the number of reproductive studies is significantly lower than those undertaken for the eastern stock (Susca et al. 2001; Corriero et al. 2003; Aranda et al. 2011; MacKenzie and Mariani, 2012).

The studies of the western stock focus on Canadian waters and the northern region of the Gulf of Mexico, specifically in United States waters (Heinisch et al. 2014; Knapp et al. 2014). The spawning area was located in the north and northwest of the Gulf of Mexico (Nemerson et al. 2000; Ingram et al. 2010). Over the years it has been thought that the western Atlantic bluefin tuna spawned only in the north Gulf of Mexico, but a recent larval study has reported a new spawning ground in the Slope Sea (Richardson et al. 2016). Furthermore, the southern Gulf of Mexico i.e. the Mexican waters according with Ward and Tunnell (2017), has been suggested to be a potential spawning area for Atlantic bluefin tuna due to the marked seasonality of the large individuals caught, which arrive to the southern of the Gulf of Mexico when the sea surface temperature registers the optimum thermal window to carry out the reproductive activity (Abad-Uribarren et al. 2014).

Information on the location of the spawning areas is necessary for a correct management of species. In the Mediterranean Sea four spawning zones have been described for the eastern stock (Karakulak et al. 2004), so it is quite plausible that more than one spawning area in the Gulf of Mexico can exist. Until now there have been no studies aimed to the reproductive status of individuals at the time of their appearance in Mexican waters. The main objective of this work was, through the analysis of the size frequency, and the histological examination of the gonads, to determine the maturity status of western Atlantic bluefin tuna caught in Mexican waters.

Materials & Methods

The individuals used in the present work were caught as bycatch by the Mexican surface longline fleet targeting yellowfin tuna *Thunnus albacares* (Bonnaterre, 1788) from January to April 2015.
Both the scientific observers on board and the surveys of the fishermen conducted throughout 2015 reported that no Atlantic bluefin tuna were caught between May and December. Atlantic bluefin tuna individuals were measured to the nearest cm (fork length; Lf) by scientific observers on longline vessels. Length analysis was conducted using kernel density estimators (KDE) (Salgado-Ugarte 2002; Rivera-Velázquez et al. 2010). KDE equation is

\[
\hat{f}(x) = \frac{1}{n h} \sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right)
\]

Where \(\hat{f}(x) \) is the density estimation of the variable x, n is the number of observations, h is the bandwidth, \(X_i \) corresponds to length of the i-th fish specimen and K is a smooth, symmetric kernel function integrating to one.

The location of each individual was recorded (Fig. 1) and a subset of Atlantic bluefin tuna was sampled to collect gonad tissues. Gonad samples were fixed in Bouin's liquid for 4 hours and subsequently preserved in 70% ethanol. A preserved gonad subsample was embedded in paraffin, sectioned at 10 μm and stained with Mallory's trichrome stain. Five or three histological sections separated 400 μm apart were examined per female and male, respectively. Microscopic classification used for Atlantic bluefin tuna gonads was based on a modification of the criteria of Schaefer (1998) and Farley et al. (2013).

Six developmental oocyte stages were considered in this study: primary growth (PG), lipid-stage (LS), early vitellogenic (E-Vit), advanced vitellogenic (A-Vit), migratory nucleus (MG) and hydrated (HY) oocytes. The most advanced group of oocytes (MAGO) present within each ovary and, the presence/absence of: postovulatory follicles (POFs), atretic follicles and late stages of atresia were used to determine the sexual maturity. Females were considered as mature if ovaries contained vitellogenic, MG or HY oocytes and/or atresia, and were classified into seven gonad stages (Table 1).

For males, four cellular stages, namely spermatogonia (SG), spermatocytes (SC), spermatids (SD), and spermatozoa (SZ), were microscopically differentiated and recorded. Five gonad stages were then assigned based on: the relative abundance of cysts containing the four cellular stages, the presence or absence of spermatozoa within seminiferous tubules, and the amount of sperm (when present) within the central longitudinal sperm duct (vas deferens) (Table 2).

Monthly data of the sea surface temperature (SST) were obtained from the telematics interface for the visualization and analysis of data of “Giovanni” (Acker and Leptoukh, 2007) remote perception detection from a satellite with a spatial resolution of four km. A temporal series of the monthly average of the SST was built from a regular polygon that included the area of the captures to correlate the mean SST with the different reproductive stages.

Results

Although Mexican longline fishery targeting yellowfin tuna operates all over the year, bluefin tuna catches only occurred between January and April. A total of 63 individuals were caught, 5
in January (7.93%), 8 in February (12.69%), 42 in March (66.66%) and 8 in April (12.69%).

Sizes of these individuals ranged from 192 to 293 cm Lf, with a mean of 238 ± 22.52 cm Lf. The
size structure was determined by a dominant mode of 235 cm Lf (Fig. 2). Gonads of 46
specimens, 31 ovaries and 15 testes, were histologically examined to determine their temporary
progression of reproductive stages (Table 3). Only mature individuals were found in the present
study. The five ovarian stages observed are shown in Fig. 3. All ovaries collected in January and
February (2 and 4 respectively) were in regenerating stage. In March, 6 ovaries in regenerating
stage were also observed (29%), one ovary (5%) was in developing, whereas those in the
spawning capable stage were found to be more frequent with 12 ovaries (57%) and 2 (10%) were in
regressing stage. In April, one ovary (25%) was in developing, 2 ovaries (50%) were in
spawning capable and one (25%) was in spawning. No POFs were observed, the ovary classified
as spawning showed MG oocytes as MAGO. The four testes stages found are shown in Fig. 4.
Only one male was collected in January, being in early spermatogenesis. No testes were
collected in February. In March, one testis (10%) was in early spermatogenesis, 5 testes (50%)
were in late spermatogenesis, 3 (30%) were in spawning, and one testis (10%) was in regressing
(spent). In April, one testis (25%) was in late spermatogenesis, one (25%) was in spawning and 2
testes (50%) were in regressing (spent).

Sea surface temperature in the southern Gulf of Mexico was increasing slightly from January to
February, from 23.04 °C ± 0.692 to 23.42 °C ± 0.691, in March a temperature of 25.57 °C ± 0.687
was registered and finally in April the SST reached 27.03 °C ± 0.685 (mean ± SE; Fig. 5).

Discussion

This is the first study that reports histological information for reproductive status of Atlantic
bluefin tuna in the southern Gulf of Mexico. According to Abad-Uribarren et al. (2014) our
results suggest a seasonality of the bluefin tuna bycatch in the Mexican longline fishery targeting
yellowfin tuna. The timing of the catches for this species (7.93% of catches in January, 12.697%
in February, increasing substantially to 66.667% in March, and decreasing in April to 12.697%)
suggests that Atlantic bluefin tuna gradually arrive to Mexican waters in January and February,
registering the highest catch in March perhaps due to increased feeding behavior before the
spawning season and a decrease in April when spawning begins. Although there are
no previous studies regarding to the feeding patterns for this species at the southern Gulf of
Mexico, a similar behavior has been previously described for Pacific bluefin tuna Thunnus
orientalis by Chen et al. (2006) who found a decrease in feeding when the spawning period
starts, as well as for other tuna species (Rivas 1954).

It is known that the reproductive season of tunas is strongly linked with temperature and 24 °C is
ideal for spawning (Schaefer 1998). The SST registered in the fishery zone is 25.57 °C ± 0.687
69 in March and 27.03 °C ± 0.685-69 in April, in agreement with SST in March and April
reported in the northern spawning zone of Atlantic bluefin tuna in the Gulf of Mexico, where
larvae were found from 25 °C to 28 °C (Muhling et al. 2010).
Several studies indicate that the spawning period of Atlantic bluefin tuna is about 3 months, from May to July for eastern stock and from April to June for western stock (Clay 1991; Knapp et al. 2014). According to Diaz and Turner (2007) the sizes of the individuals caught in this study from January to April correspond to sexually mature individuals. The histological examination of gonads showed that 48% of female and 67% of males were reproductively active. Male individuals in spawning stage were found after mid-March and males in regressing stage with evidence of residual SZ from previous spawning were found in late March and early April. For females, the most frequent ovary stage in March was spawning capable and one female in spawning stage was found in April, corresponding with the spawning season for western stock (Schaefer 2001; Teo et al. 2007). Lutcavage et al. (1999) expressed the need to consider other possible spawning areas for western stock and discuss the possibility of a spawning zone in the mid-Atlantic region, with similar hydrographic characteristics to the spawning area of the north Gulf of Mexico. However they could not prove the existence of a new spawning zone due to the lack of histological evidence. In the present study individuals in spawning capable (n =20) and in spawning (n=5) stages have been found in Mexican waters, suggesting a wider spawning area, beyond just the northern zone, potentially encompassing the entire Gulf of Mexico.

Conclusions

Additional studies are needed to support the southern Gulf of Mexico as a habitual spawning area. However four facts provide pieces of evidence to consider show that the southern Gulf of Mexico could be part of the spawning zone for Atlantic bluefin tuna and therefore evidence suggest the possibility that the entire Gulf of Mexico can be considered as may be a spawning zone for this species: 1) There is a marked seasonal occurrence of individuals, 2) SST is appropriate to carry out the reproduction of this species, 3) the sizes of fish caught correspond to sexually mature individuals, and 4) the histological analysis of gonads shows individuals in active reproductive stages (spawning capable and spawning).

Acknowledgements

The authors would like to recognize the effort and support of K&B tuna company, in particular to the CEO José Bisteni for all his support, all fishermen and staff from longline fleet of Tuxpan port, Veracruz, Mexico. The authors also thank Tim Dobinson for the English language proof reading of this manuscript and M.C. Ana Gabriela Galicia Cruz for her support in editing figures. We would like to thank the two anonymous reviewers for the help with the revision. Analyses and visualizations of SST used in this paper were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC.
References

Abad-Uribarren, A., Meiners, C., Ramírez-López, K., and Ortega-García, S. 2014. Dinámica temporal de la captura incidental de atún aleta azul (Thunnus thynnus) y su relación con la variabilidad ambiental en aguas Mexicanas del Golfo de México. Col. Vol. Sci. Pap. ICCAT. 70(2): 684-698.

Acker, J.G. and Leptoukh, G. 2007. Online Analysis Enhances Use of NASA Earth Science Data. Eos. Trans. AGU. 88(2):14-17.

Aranda, G., Aragón L., Corriero, A., Mylonas, C.C., De la Gándara, F., Belmonte, A., and Medina, A. 2011. GnRHa-induced spawning in cage-reared Atlantic bluefin tuna: An evaluation using stereological quantification of ovarian post-ovulatory follicles. Aquaculture. 317: 255-259. doi:10.1016/j.aquaculture.2011.04.030.

Chen, K.S., Crone, P., and HSU, C.C. 2006. Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean. Fisheries. Sci. 72(5): 985-994. doi:10.1111/j.1444-2906.2006.01247.x.

Clay, D. 1991. Atlantic bluefin tuna (Thunnus thynnus thynnus (L.)): A review. Inter-Am. Trop. Tuna Comm. Spec. Rep. 7: 89-180.

Collette, B.B., and Nauen, C.E. 1983. FAO species catalogue. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO. Fish.Synop. pp. 90-92.

Collette, B.B., Carpenter, K.E., Polidoro, B.A., Juan-Jordá, M. J., Boustany, A., Die, D. J., Elfès, C., Fox, W., Graves, J., Harrison, L.R., McManus, R., Minte-Vera, C.V., Nelson, R., Restrepo, V., Schratwieser, J., Sun, C.L., Amorim, A., Brick-Peres, M., Canales, C., Cardenas, G., Chang, S.K., Chiang, W.C., De Oliveira-Leite Jr, N., Harwell, H., Lessa, R., Fredou, F.L., Oxenford, H.A., Serra, R., Shao, K.T., Samaila, R., Wang, S.P., Watson, R., and Yáñez, E. 2011a. High value and long life—double jeopardy for tunas and billfishes. Science. 333(6040): 291-292. doi:10.1126/science.1208730.

Collette, B., Amorim, A.F., Boustany, A., Carpenter, K.E., de Oliveira Leite Jr., N., Di Natale, A., Die, D., Fox, W., Fredou, F.L., Graves, J., VieraHazin, F.H., Hinton, M., Juan Jorda, M., Kada, O., Minte Vera, C., Miyabe, N., Nelson, R., Oxenford, H., Pollard, D., Restrepo, V., Schratwieser, J., Teixeira Lessa, R.P., Pires Ferreira Travassos, P.E. &Uozumi, Y. 2011b. Thunnus thynnus. The IUCN Red List of Threatened Species 2011: e.T21860A9331546. Available at http://dx.doi.org/10.2305/IUCN.UK.2011-2.RLTS.T21860A9331546.en (Downloaded on 30 October 2018).
Corriero, A., Desantis, S., Deflorio, M., Acone, F., Bridges, C.R., De la Serna, J.M., Megalofonou, P., and De Metrio, G. 2003. Histological investigation on the ovarian cycle of the bluefin tuna in the western and central Mediterranean. J. Fish. Biol. 63(1): 108-119. doi:10.1046/j.1095-8649.2003.00132.x.

Diaz, G.A., and Turner, S.C. 2007. Size frequency distribution analysis, age composition, and maturity of western Bluefin tuna in the Gulf of Mexico from the U.S. (1981–2005) and Japanese (1975–1981) longline fleets. Col. Vol. Sci. Pap. ICCAT. 60(4): 1160-1170.

Farley J.H., Williams A.J., Hoyle S.D., Davies C.R., and Nicol S.J., 2013. Reproductive dynamics and potential annual fecundity of South Pacific albacore tuna (Thunnus alalunga). PLoS ONE. 8(4): e60577. doi:10.1371/journal.pone.0060577.

Heinisch, G., Rosenfeld, H., Knapp, J.M., Gordin, H., and Lutcavage, M.E. 2014. Sexual maturity in western Atlantic bluefin tuna. Sci. Rep. 4, 7205; doi:10.1038/srep07205.

Ingram Jr, G.W., Richards, W.J., Lamkin, J.T., and Muhling, B. 2010. Annual indices of Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico developed using delta-lognormal and multivariate models. Aquat. Living. Resour. 23: 35-47. doi:10.1051/alr/2009053.

Karakulak, S., Oray, I., Corriero, A., Deflorio, M., Santamaria, N., Desantis, S., and De Metrio, G. 2004. Evidence of a spawning area for the bluefin tuna (Thunnus thynnus L.) in the eastern Mediterranean. J. Appl. Ichthyol. 20(4): 318-320. doi:10.1111/j.1439-0426.2004.00561.x.

Knapp, J.M., Aranda, G., Medina, A., and Lutcavage, M. 2014. Comparative Assessment of the Reproductive Status of Female Atlantic Bluefin Tuna from the Gulf of Mexico and the Mediterranean Sea. PLoS ONE. 9(6): e98233. doi:10.1371/journal.pone.0098233.

Lutcavage, M.E., Brill, R.W., Skomal, G.B., Chase, B.C., and Howey, P.W. 1999. Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: do North Atlantic bluefin tuna spawn in the mid-Atlantic? Can. J. Fish. Aquat. Sci. 56(2): 173-177. doi:10.1139/f99-016.

MacKenzie, B.R., and Mariani, P. 2012. Spawning of Bluefin Tuna in the Black Sea: Historical Evidence, Environmental Constraints and Population Plasticity. PLoS ONE. 7(7): e39998. doi:10.1371/journal.pone.0039998.
Muhling, B.A., Lamkin, J.T., and Roffer, M.A. 2010. Predicting the occurrence of Atlantic bluefin tuna (*Thunnus thynnus*) larvae in the northern Gulf of Mexico: Building a classification model from archival data. Fish. Oceanogr. 19(6): 526-539. doi:10.1111/j.1365-2419.2010.00562.x.

Nemerson, D., Berkeley, S., and Safina, C. 2000. Spawning site fidelity in Atlantic bluefin tuna, *Thunnus thynnus*: the use of size-frequency analysis to test for the presence of migrant east Atlantic bluefin tuna on Gulf of Mexico spawning grounds. Fish. Bull. 98(1): 118-126.

Richardson, D.E., Marancik, K.E., Guyon, J.R., Lutcavage, M.E., Galuardi, B., Lam, C.H., Walsh, H.J., Wildes, S., Yates, D.A., and Hare, J.A. 2016. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (*Thunnus thynnus*). PNAS. 113(12): 3299-3304. doi:10.1073/pnas.1525636113.

Rivas, L.R. 1954. A preliminary report on the spawning of the western North Atlantic bluefin tuna (*Thunnus thynnus*) in the Straits of Florida. Bull. Mar. Sci. Gulf. Carribb. 4(4): 302-322.

Rivera-Velázquez, G., Salgado-Ugarte, I., Soto, L., and Naranjo, E. 2010. Un estudio de caso en el análisis de la distribución de frecuencias de tallas de *Litopenaeus vannamei* (Boone, 1931) mediante el uso de estimadores de densidad por Kernel. Lat. Am. J. Aquat. Res. 38(2): 201-209. doi:10.3856/vol38-issue2-fulltext-4.

Salgado-Ugarte, I.H. 2002. Suavización no paramétrica para análisis de datos. FES Zaragoza-DGAPA UNAM (PAPIIT IN217596, PAPIME 192031).

Schaefer, K.M. 1998. Reproductive biology of yellowfin tuna (*Thunnus albacares*) in the eastern Pacific Ocean. Inter-Am. Trop. Tuna Comm. Bull. 21(5): 205-221.

Schaefer, K.M. 2001. Reproductive biology of tunas. In *Tunas: physiology, ecology, and evolution. Edited by B.A. Block and E.D. Stevens*. Academic Press, San Diego. pp. 225-270.

Susca, V., Corriero, A., Deflorio, M., Bridges, C.R., and De metrio, G. 2001. New results on the reproductive biology of bluefin tuna (*Thunnus thynnus*) in the Mediterranean. Col. Vol. Sci. Pap. ICCAT. 52: 745-751.

Teo, S.L.H., Boustany, A.M., and Block, B.A. 2007. Oceanographic preferences of Atlantic bluefin tuna, *Thunnus thynnus*, on their Gulf of Mexico breeding grounds. Mar. Biol. 152(5): 1105-1119. doi:10.1007/s00227-007-0758-1.
