Supporting Information to:

Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry.

Joost Snijder §,‡, Michiel van de Waterbeemd §,‡, Eugen Damoc †, Eduard Denisov †, Dmitry Grinfeld †, Antonette Bennett ¶, Mavis Agbandje-McKenna ¶, Alexander Makarov §,†, Albert J.R. Heck §,‡*.

§ Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

‡ Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands.

† Thermo Fisher Scientific (Bremen), Bremen, Germany.

¶ Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA.
Limiting factors in transmission efficiency of high mass ions.

Before setting out to make further modifications, in order to extend the accessible mass range beyond what we reported previously, we investigated which factors would influence high mass ion transmission and detection on the Orbitrap mass analyzer. As the effective potential well in the Orbitrap analyzer is independent of mass, there is no fundamental limit on m/z to be detected. However, ion transport from the ion source as well as trapping of ions prior to injection into the analyzer, utilizes RF-only multipoles, which provide focusing in highly m/z-dependent RF quasi-potential wells. For example, in a quadrupole of inscribed radius \(r_0 \) with an RF voltage of amplitude \(V_{RF} \) applied to the rods (0-peak), the quasi-potential (in Volts) is given by

\[
\phi(r) \approx \frac{eV_{RF}^2}{\left(\frac{m}{z}\right)(2\pi)^2 r_0^2} \left(\frac{r}{r_0}\right)^2
\]

and therefore is inversely proportional to m/z. A similar formula is also applicable for other types of RF-only devices, such as multipoles, ion tunnels, funnels, carpets, etc.- just the value of \(r_0 \) changes. For typical \(f \approx 3.2 \) MHz, \(r_0 \approx 2.87 \) mm (which corresponds to the standard C-trap settings in this instrument), \(V_{RF} = 500 \) V (0-p), m/z = 10000, the RF pseudo-potential wall that prevents the ions from impinging upon the quadrupole electrodes, amounts approximately to 0.7 V. Therefore, any process that supplies ions with radial energy in excess of this amount will simultaneously doom these ions to be lost for analysis. For example, if thermalized ions (with a radial kinetic energy at room temperature of about \(kT \approx 0.025 \) eV) enter as a parallel beam of radius \(R \) into an ion-optical lens with focal distance \(F \) followed by an RF-multipole, then after the focal point they will form a beam with angular divergence \(\gamma = R/F \). If \(R \) is large enough so that for a final acceleration \(U \) of ions into a multipole

\[
\phi(r_0) < U \cdot \left(\frac{R}{F}\right)^2
\]

then such ions are lost from the multipole. Even for slightly smaller \(R \), with the beam approaching the RF rods, efficiency of ion transport is already drastically reduced. Typically, such lenses are just thin apertures that are used to separate differentially pumped regions and have RF-multipoles on one or both sides. Generally, we could represent their focal distance as

\[
F = r_0 \cdot C(U_0, U)
\]

where \(U_0 \) is the ion energy per elementary charge prior to the lens and coefficient \(C \) is determined by the particular geometry. Typically, \(U_0 \ll U \) and then \(C \approx C(U) \).

The most efficient countermeasure to loss of ions would be to establish a sufficiently high pressure of residual gas in the corresponding multipole, so that any excess radial energy is damped in collisions, preferably over the length comparable to or smaller than \(F \). In addition to this, an
increase of RF amplitude or a decrease of frequency or radius of the multipole could be used for more efficient focusing of ions. It should be noted that an excessive increase of pressure becomes detrimental for RF focusing. Substantial damping by collisions takes place in the injection flatapole of the instrument used in this work (Fig. 1), and collisional cooling is also the likely reason why the pressure in the HCD cell needs to be raised to >0.1 mbar for trapping of high-mass ions and their fragments (see below). However, the pressure remains significantly lower in other parts of the instrument: i.e. the bent flatapole, transport octapole and the C-trap. While the pressure in the first two RF multipoles could be elevated relatively easily, it would be more difficult for the C-trap because it directly relates to the residual pressure in the Orbitrap analyzer (with a coefficient of approximately 3*10^-6) and the stopping length always exceeds F in the C-trap.

To estimate the limit on m/z, the best-case assumption for an incoming ion beam would include its complete thermalization, so that most of the beam ($\approx 68\%$) is contained within radius R_T where

$$\phi(R_T) \approx kT$$ \hspace{1cm} (4)

Substituting R_T from (4) into (2)-(3), we obtain the upper limit for transmitted m/z:

$$\left(\frac{m}{z} \right)_{\text{max}} \leq \frac{C(U_0,U)}{(2\pi f)^2 r_0^2 \sqrt{U \cdot kT}} e^{V_{RF}^2 \ell^2 / (2U)}$$ \hspace{1cm} (5)

To estimate the m/z limit for the C-trap, we need to take into account that capture of ions into the trap is accompanied by reflection in the retarding DC potential created by end apertures on both sides of the RF rods. Penetration of the DC potential into a multipole (see Supplementary Figure S1) depends on the distance from the aperture as $\exp(\pm x/h)$ where $1/h^2$ is the eigenvalue of the Laplace operator in the multipole’s cross-section. It could be shown that at a sufficient distance from the aperture (of about r_0) the focal distance of the exponential retarding field depends weakly on the ion energy and is $F\approx0.41\ h=0.2\ r_0$. Therefore, for this field it holds that $C(U,U_0)=0.2$. For a maximum RF voltage of $V_{RF}=1500\ V$ (0-p) and a residual energy from the original jet expansion corresponding to 5-8 V acceleration, this corresponds to $(m/z)_{\text{max}}\approx29000-36000$, which roughly fits with the highest m/z experimentally observed so far in this mass spectrometer (see below). Due to the spread of initial velocities and coordinates, this cut-off is never sharp and well-defined, but rather manifests itself as an increasingly unstable and intensity-suppressed signal at higher m/z.

For acceleration lenses in the bent flatapole, transport octapole and on the entrance to the HCD cell, the focal distance F is much greater, of the order of $1.5\ r_0$ or higher and therefore even lower RF amplitudes are sufficient to retain ions of such m/z at energies up to 10-20 V. However, ions do need to lose almost all their kinetic energy by the time they reach the back of the HCD cell to avoid catastrophic scattering in the exponential retarding field at the turning point. Indeed, formula (5) could be re-written as a limit on maximum kinetic energy of ions as they approach the end of a multipole:
\[U_{\text{max}} \leq \frac{C(U_0, U)}{(2\pi f)^4} \frac{e^2V_{RF}^4}{kT \cdot (m/z)^2} \]

(6)

i.e. a change of frequency from e.g. 3.2 MHz to 2.8 MHz increases the allowed energy by a factor 1.7x, while in the exponential retarding field it plummets by a factor of 50x relatively to transmission lenses (see Supplementary Figure S2).

SI experimental procedures

The RF frequency of the injection flatapole, bent flatapole, transport octapole, C-trap and HCD cell were lowered by 20-25%. In particular, the RF frequency of the C-trap was lowered from 3.2 MHz to 2.8 MHz, which, according to Supplementary equation 5, should lead to an extension of the upper mass limit from 29000-36000 to 37000-47000 \(m/z \), and generally improve transmission of ions at high \(m/z \).

Tuning of some crucial instrument parameters was necessary for the analysis of mega Dalton assemblies. Mainly, whereas the instrument is normally operated at a source DC offset of 25 V, this did not allow transmission of the tested virus particles. Instead, no offset (0 V) resulted in base peak intensities of \(\sim 10^5 \) at 100 ms injection time. In addition, the required high xenon pressure in the HCD cell for efficient transmission of the high mass ions resulted in elevated pressures in the Orbitrap compartment as well (\(10^{-9} \) mbar, compared to \(10^{-11} \) in normal operating mode). This resulted in rather unstable and dampened transients, which gave rise to noisy spectra at longer transient times. Therefore, transient times were adjusted according to S/N to either 32 or 16 ms (compared to 64-256 ms in normal Orbitrap operating mode). For the same reason, transients of the same acquisition were averaged before FT as microscans, rather than combining spectra after FT. It should be noted that ions at high \(m/z \) are close in frequency (~50 kHz) to the high-pass filter of the pre-amplifier of the image current detection. To prevent erroneous eFT calibration at high \(m/z \), the pre-amplifier was replaced with a version equipped with a 22 kHz high-pass filter.
SI Tables

Supplementary Table S1. Peak assignments for HCD spectra of GroEL.

m/z	FWHM	M/ΔM, FWHM	z	mass (Da)
10539.5	7.1	1478	76	800928
10679.9	7.8	1363	75	800921
10822.5	7.6	1433	74	800792
10973.4	7.4	1479	73	800982
11124.3	7.4	1495	72	800878
11281.0	8.1	1392	71	800882
11442.0	6.5	1760	70	800871

	average	standard deviation		
	800893	59		
m/z	FWHM	M/ΔM, FWHM	z	mass (Da)
---------	------	-------------	----	-----------
13047.1	8.7	1501	57	743628
13278.9	9.2	1451	56	743562
13522.3	9.5	1422	55	743674
13772.2	10.3	1332	54	743647
14032.5	9.8	1427	53	743670
14302.0	10.1	1414	52	743651
14583.0	10.2	1426	51	743683
14874.8	10.5	1422	50	743692
15179.1	10.9	1391	49	743727
15494.8	11.6	1335	48	743702
15825.0	11.8	1335	47	743726
16168.5	12.2	1329	46	743705
16527.8	12.5	1324	45	743705
16904.3	12.3	1374	44	743745
17297.0	12.8	1347	43	743728
17709.4	13.0	1361	42	743754
18141.9	13.3	1360	41	743778
18595.4	13.9	1341	40	743777
19071.8	14.4	1325	39	743760
19574.8	14.5	1351	38	743804
20102.9	16.0	1258	37	743770
20662.3	16.1	1281	36	743808
21256.4	19.8	1074	35	743939

average	standard deviation			
743723	76			
m/z	FWHM	$M/\Delta M$, FWHM	z	mass (Da)
---------	------	---------------------	----	-----------
19612.8	16.7	1171	35	686414
20190.0	17.4	1160	34	686427
20802.2	18.6	1120	33	686439
21453.6	18.3	1172	32	686484
22144.3	18.8	1175	31	686442
22883.2	20.2	1135	30	686466
23671.8	21.2	1119	29	686453
24516.7	22.0	1116	28	686439
25425.4	24.0	1058	27	686458
26403.2	25.3	1042	26	686456
27460.3	27.5	997	25	686481
28606.6	28.9	989	24	686533
29850.4	30.3	984	23	686535
31208.5	31.4	993	22	686566
32693.2	34.1	958	21	686536
34327.8	36.1	952	20	686536
36134.3	36.5	991	19	686533
38143.8	40.9	934	18	686571

average	standard deviation
686487	51
Supplementary Table S2. Peak assignments of encapsulin, Dd, AAV1 and CCMV spectra.

m/z	FWHM	$M/\Delta M$, FWHM	z	mass (Da)
16144.1	46.3	349	127	2050179
16277.2	46.5	350	126	2050800
16404.6	44.4	369	125	2050448
16540.0	43.4	381	124	2050836
16675.3	41.8	399	123	2050944
16813.6	40.4	416	122	2051136
16951.3	39.6	428	121	2050990
17092.1	39.5	433	120	2050931
17235.2	39.1	440	119	2050872
17378.7	39.6	438	118	2050565
17522.7	40.7	431	117	2050033
17666.6	42.4	417	116	2049211
17814.8	42.7	417	115	2048587

average	standard deviation			
2050425	761			
m/z	FWHM	$M/\Delta M, \text{FWHM}$	z	mass (Da)
---------	------	------------------------	------	------------
20038.2	43.7	459	176	3526545
20149.5	40.8	493	175	3525989
20263.2	47.9	423	174	3525623
20382.3	45.7	446	173	3525956
20501.1	45.2	454	172	3526009
20623.5	49.1	420	171	3526453
20745.0	48.3	429	170	3526480
20868.7	48.9	426	169	3526636
20992.9	48.0	437	168	3526639
21122.1	50.9	415	167	3527229
21246.6	50.9	417	166	3526776
21377.3	49.6	431	165	3527093
21509.8	54.1	397	164	3527446
21643.9	51.4	421	163	3527794
21779.3	54.2	402	162	3528077
21920.3	48.4	453	161	3529009
22056.0	51.2	431	160	3528803
22200.9	55.1	403	159	3529776

average	standard deviation
3527130	1159

m/z	FWHM	$M/\Delta M, \text{FWHM}$	z	mass (Da)
20578.6	15.4	1336	178	3662809
20702.4	20.8	995	177	3664151
20824.0	18.9	1102	176	3664844
20943.5	21.5	975	175	3664936
21062.4	21.9	960	174	3664684
21185.8	23.4	904	173	3664972
21308.7	23.3	913	172	3664923
21433.1	23.1	929	171	3664891
21559.8	20.6	1048	170	3665001
21686.5	21.0	1035	169	3664846
21812.8	22.3	976	168	3664384
21946.8	23.4	939	167	3664944
22073.1	20.5	1079	166	3663962
22210.8	24.1	922	165	3664624

average	standard deviation
3664569	601
Adeno-Associated Virus Serotype 1, series2

m/z	FWHM	M/ΔM, FWHM	z	mass (Da)
20621.4	24.9	829	178	3670429
20742.5	21.2	978	177	3671247
20861.5	21.4	976	176	3671439
20980.4	19.7	1063	175	3671388
21103.9	21.7	974	174	3671906
21226.7	22.2	957	173	3672048
21348.0	20.6	1037	172	3671682
21475.8	21.7	990	171	3672186
21601.4	21.6	1001	170	3672068
21727.6	22.0	987	169	3671795
21856.0	22.2	986	168	3671645
21989.5	20.0	1102	167	3672078
22120.9	21.7	1022	166	3671895
22249.7	19.6	1134	165	3671027

Average standard deviation: 488

Adeno-Associated Virus Serotype 1, series3

m/z	FWHM	M/ΔM, FWHM	z	mass (Da)
20658.9	17.8	1163	177	3656452
20783.7	19.1	1088	176	3657755
20900.5	20.7	1011	175	3657409
21022.0	21.0	1001	174	3657656
21143.6	20.4	1035	173	3657666
21267.1	20.6	1035	172	3657762
21391.8	21.8	982	171	3657830
21518.6	22.2	969	170	3657985
21643.1	22.9	943	169	3657512
21771.5	21.8	997	168	3657444
21903.9	21.6	1016	167	3657781
22030.2	24.3	906	166	3656851
22162.5	26.5	835	165	3656652

Average standard deviation: 485
Cowpea Chlorotic Mottle virus

m/z	FWHM	$M/\Delta M$, FWHM	z	mass (Da)
22623.7	35.9	631	197	4456672
22737.7	41.7	545	196	4456393
22850.2	44.5	514	195	4455594
22972.6	47.9	479	194	4456490
23089.1	49.7	464	193	4456003
23208.6	52.5	442	192	4455859
23331.6	54.6	428	191	4456145
23452.5	57.8	406	190	4455785
23578.0	61.5	383	189	4456053
23705.5	61.2	387	188	4456446
23835.4	61.8	386	187	4457033
23967.3	60.0	399	186	4457732
24094.4	57.4	420	185	4457279
24223.6	50.2	482	184	4456958
24349.7	50.3	484	183	4455812

	average mass	standard deviation
	4456417	618
Supplementary Table S3. Quantification of TFP loading in encapsulin from HCD spectra of the loaded nanocompartment. The TFP-mass is calculated from the average determined mass, minus 59 (1st product ion) or 58 (2nd product ion) times the encapsulin monomer mass (28594 Da). The number of TFP (#TFP) is calculated by dividing the TFP-mass by the mass of one TFP monomer (34667 Da).

assignment (#TFP)	Mass (Da)	TFP-component		
	average	standard	TFP-mass	#TFP
	deviation			
1st product ion				
8	1964580	626	277534	8.01
9	1999406	197	312360	9.01
10	2034081	232	347035	10.01
11	2068801	200	381755	11.01
12	2103584	378	416538	12.02

2nd product ion				
	average	standard	TFP-mass	#TFP
	deviation			
9	1970968	161	312516	9.01
10	2005560	391	347108	10.01
11	2040093	275	381641	11.01
12	2074680	495	416228	12.01

Supplementary Table S4. Stoichiometry of AAV1 capsids. Using theoretical VP1/VP2/VP3 masses, all stoichiometry's with theoretical masses that are within two standard deviations of the experimental mass are listed.

peak series	mass (kDa)	stddev	VP1	VP2	VP3
1	3643	0.7	0	10	50
2	3650	0.5	0	11	49
3	3657	0.5	1	9	50
Supplementary Figure S1. Ion instability near the end aperture of a RF-only field occurs when diverging radial force created by DC potential ψ overpowers focusing by RF quasi-potential φ.
Supplementary Figure S2. The maximum allowed acceleration of ions (for efficient transmission) as a function of m/z for different f, V_{RF} and C, according to equation 6 of the main text. The curves illustrate how reduced RF frequency (f), higher RF amplitude (V_{RF}) and increased focal distance (via increase in C) are beneficial for transmission of higher m/z ions.

Supplementary Figure S3. Effect of reduced RF frequency on the injection flatapole and bent flatapole on the transmission of CsI clusters at 20000 m/z. CsI spectra were acquired starting with the lowered RF frequency (2.8 MHz, highlighted in blue). Mid-acquisition, while maintaining flow through the nanoelectrospray capillary, we switched back to the original RF frequency of the ion guides (3.3 MHz, highlighted in red), thereby demonstrating a 4-5 fold gain in transmission due to the lowered RF frequency on these two particular ion guides.
Supplementary Figure S4. Effect of reduced RF frequency on HCD spectrum of GroEL. a) HCD spectrum of GroEL. Signals are normalized to the most intense 14-mer charge state precursor ion. The acquired spectrum before the modification is shown in green, that after modification in red. b) Zoom-in of the blue highlighted m/z region in "a)" where 13-mer and 12-mer ions overlap. The closely spaced 13/12-mer peaks are still well resolved. For detailed peak assignments see Supplementary Table S1.

Supplementary Figure S5. Effective resolution as a function of m/z for intact GroEL 14-mer and 13-/12-mer product ions on the modified Exactive Plus with lowered RF frequency.
Supplementary Figure S6. Validating quantitation of cargo encapsulation in encapsulin VLP. a) Experimental spectrum of intact encapsulin VLP. b) Simulated spectra of the identified encapsulin-cargo complexes. Note that each consecutive stoichiometry is offset in y. c)Overlay of the experimental spectrum with the sum of spectra in “b)”.

Supplementary Figure S7. AAV1 capsid gross morphology and VP composition. A) 5µl of AAV1 capsids were stained with 2% uranyl acetate on holey carbon grids and imaged on a FEI spirit TEM. B) Coomassie stained SDS PAGE of denatured AAV1 capsids showing VP1, VP2 and VP3.