Biodiversity assessment in Western Mediterranean marine protected areas (MPAs): Porifera of *Posidonia oceanica* meadows (Asinara Island MPA) and marine caves (Capo Caccia–Isola Piana MPA) of Sardinia

A. Padiglia, B. Cadeddu, F. D. Ledda, M. Bertolino, G. Costa, R. Pronzato & R. Manconi

To cite this article: A. Padiglia, B. Cadeddu, F. D. Ledda, M. Bertolino, G. Costa, R. Pronzato & R. Manconi (2018) Biodiversity assessment in Western Mediterranean marine protected areas (MPAs): Porifera of *Posidonia oceanica* meadows (Asinara Island MPA) and marine caves (Capo Caccia–Isola Piana MPA) of Sardinia, The European Zoological Journal, 85:1, 410-423, DOI: 10.1080/24750263.2018.1525440

To link to this article: https://doi.org/10.1080/24750263.2018.1525440

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 03 Dec 2018.

Submit your article to this journal

View Crossmark data
Biodiversity assessment in Western Mediterranean marine protected areas (MPAs): Porifera of Posidonia oceanica meadows (Asinara Island MPA) and marine caves (Capo Caccia–Isola Piana MPA) of Sardinia

A. PADIGLIA, B. CADEDDU, F. D. LEDDA, M. BERTOLINO, G. COSTA, R. PRONZATO, & R. MANCONI*

1Department of Veterinary Medicine, University of Sassari, Sassari, Italy, 2Department for the Earth, Environment and Life Sciences, University of Genova, Genova, Italy, and 3Centre for Integrative Biology, University of Trento, Trento, Italy

(Received 14 May 2018; accepted 8 September 2018)

Abstract
This paper focuses on a faunistic inventory and the biogeographic pattern of Sardinian Porifera in a scarcely investigated Italian sea belonging to the Eastern Algero-Provençal Basin. The composition and structure of sponge fauna were studied in two priority habitats in two Marine Protected Areas (MPAs) of the North-Western Sardinian Sea. Shallow-water surveys investigated Posidonia oceanica meadows at five sites in the Asinara Island MPA and three karstic submerged caves in the Capo Caccia–Isola Piana MPA. The annotated checklist shows notably high values of taxonomic richness, confirming that P. oceanica meadows and karstic caves are key habitats for Porifera assemblages. Indeed, the sponge taxa recorded (n = 77) with 59 cave-dwelling and 45 taxa in seagrass meadows represent over 10% of the total Mediterranean sponge fauna, despite the small areas investigated, restricted biotopes and low sampling effort. This suggests that species richness is underestimated in circum-Sardinia seas. Internationally protected species (n = 6), rare species (n = 5) and Mediterranean endemic species (n = 14) were recorded. Previously investigated Posidonia meadows and caves share comparable values of species richness and endemicity with the Sardinian biotopes. The geographic range of species indicates that the biogeographic affinity of the NW Sardinian Sea sponge fauna is dominated by Atlanto-Mediterranean species. The three caves harbour a notably homogeneous sponge community, as indicated by the ca. 50% of shared species and high similarity index (> 83%). By contrast, the composition varies markedly among the five Posidonia meadows, which share only five species and display similarity values ranging ca. 20–60%. Unexpectedly when comparing these contrasting biotopes, faunal similarity is relatively low (< 40% shared species); indeed, Posidonia meadows harbour a notable number of cave-dwelling species in intermatte shaded microhabitats.

Keywords: Priority habitats, Italian sponge fauna, annotated checklist, composition/species richness/endemicity, biogeography

Introduction
The Mediterranean Sea is one of the world’s priority hotspots for conservation and is home to a wealth of endemic sponge species (Coll et al. 2010; Pansini et al. 2011; Pronzato et al. 2012). Since ancient times, this semi-enclosed sea has been affected by human activity, and today its biodiversity is greatly endangered by habitat destruction, the overexploitation of bioresources and climate change (Médail & Quézel 1999; Halpern et al. 2008; Costello et al. 2010; Sala et al. 2012). In 1992 the European community established a list of habitats and species in need of protection, and more recently a list of 11 descriptors was selected as the basis for the assessment of Good Environmental Status (GES; Habitat Directive 1992, 2008; UNEP-MAP-RAC/SPA 2015). International conventions mandate conservation of these biotopes, which must be closely monitored, particularly in protected areas.

Major concerns have been raised with regard to some key taxa, such as Mediterranean Porifera, especially as massive pandemics have brought entire populations of some sponge species to the brink of
extinction during the last three decades (Gaino & Pronzato 1991; Gaino et al. 1992; Rizzello et al. 1997; Pronzato 1999; Cerrano et al. 2000; Manconi et al. 2001; Pronzato & Manconi 2008; Pronzato et al. 2012; Di Camillo et al. 2013). Moreover, shallow benthic communities have suffered a loss of structural complexity, mainly due to the marked decrease in engineering organisms, mostly sponges (Bertolino et al. 2016).

The Mediterranean sponge fauna has been amply studied and consists of approximately 720 species (Pansini & Longo 2003; Pansini et al. 2011; Van Soest et al. 2018; Bertolino & Pronzato, personal databases). By contrast, the benthic fauna of some Mediterranean sub-basins has not been thoroughly investigated, such as that of several North African sub-basins, the Sardinia Sea and the Corsica Sea, despite the central position of these areas in the Mediterranean and the influence of Atlantic inflow along their coasts. Historical data sets, mainly on marine protected areas (MPAs), are fundamental to understanding the accelerating changes occurring over time and space in the Mediterranean Sea.

The main aim of this paper was to contribute to basic knowledge of the Porifera fauna in two north-western Sardinian MPAs (Eastern Algero-Provençal Basin) by studying the composition and diversity of sponge assemblages in two priority habitats. The homogeneity vs. heterogeneity of taxonomic structure were investigated and compared within and among sponge assemblages in two contrasting shallow-water biotopes. In accordance with the EU guidelines, we focused on two biotopes of conservation interest, *Posidonia oceanica* (L.) Delile (1813) meadows and submerged marine caves, and used Porifera assemblages as a model taxon in terms of five descriptors, i.e. taxonomic composition, species richness, endemcity, richness of species of conservation value, and richness of rare species. The biogeographic affinity of the north-western Sardinian sponge fauna was also assessed on the basis of the geographic range of recorded species.

Materials and methods

Two priority habitats were investigated and censuses of sponge fauna were conducted in shallow water along the Northern Sardinian Sea coast (north-western Sardinia Island, Eastern Algero-Provençal Basin, Western Mediterranean Sea): i.e. at five sites of *P. oceanica* meadows along the southern coast of the Asinara Island MPA (2–6 m depth; Asinara Gulf; Figure 1A) and three submerged karstic caves (Bisbe, Falco, Galatea) at the Punta Giglio Promontory, a rocky limestone promontory dating back to the Mesozoic Era within the Capo Caccia-Isola Piana MPA (3–9 m depth; Figure 1B). These biotopes are impacted by several tourist activities, such as bathing, snorkelling, scuba diving and recreational fishing and boating, as well as by professional fishing and environmental alteration and pollution.

Sampling protocol

Sponges were photographed in vivo; representative fragments were then collected by means of SCUBA diving (two surveys per cave) and snorkelling (two surveys per site) along randomly selected transects in each biotope, preserved (in 95% ethanol or dried) and registered in a reference collection (> 400 specimens).

Macroscopic analysis of morphology was carried out on each sample by means of light microscopy (LM, stereo-microscope) and examination of > 300 in vivo photographs. Specimens were dissected in order to obtain representative fragments to be processed for the preparation of slides of cleaned skeletal networks and spicules in accordance with standard methods (Rützler 1978). Taxonomic identification was carried out on the basis of morphological diagnostic macro- and micro-traits on > 400 LM slides. The taxonomic status of species was determined in accordance with Systema Porifera (Hooper & Van Soest 2002), Fauna d’Italia (Pansini et al. 2011), and the World Porifera Database (WPD) (Van Soest et al. 2018). Species were considered rare when fewer than 10 published reports of their presence in the Mediterranean Sea were available.

Statistical analysis

Multivariate analysis and non-metric multidimensional scaling (nMDS) based on the Bray–Curtis similarity index for paired groups (unweighted pair group method with arithmetic mean, UPGMA) were applied to a data set of the presence/absence of the sponge species in order to evaluate the relationships of sponge species composition among: (i) the five *Posidonia* meadows; (ii) the three karstic caves; and (iii) *P. oceanica* vs. caves. nMDS was carried out on a data set of presence/absence by sampling site to evaluate significant differences in sponge composition in the two priority habitats (caves and *Posidonia*). The significant differences were assessed by means of the one-way analysis of similarities (ANOSIM) test; similarity matrices were based on the Bray–Curtis similarity index, and probability percentages lower than 3% were considered significant (Clarke & Warwick 2001). Statistical analyses were
performed by means of PRIMER for the nMDS and ANOSIM test. PAST (Palaeontological Statistics, v. 3.14) software was used to assess Bray–Curtis similarity (Hammer et al. 2001). Only taxa identified at the species level were included in statistical analyses.

Results

The annotated checklist reports a total of 77 taxa (Table I), 69 of which were identified at the species level (> 90% of the ca. 400 samples) despite the small areas investigated, restricted biotopes and low sampling effort. Some specimens (n = 8) remained undetermined, i.e. they were identified at the genus level, since they were in too poor a condition to allow more precise identification.

Taxonomic richness in caves

Galatea Cave (site 6) was seen to harbour 42 species, plus five taxa identified at the genus level, belonging to 38 genera, 28 families and 15 orders (Table I). Endemicity was ca. 16.6%, with seven Mediterranean endemics. Falco Cave (site 7) harboured 35 species, plus three taxa identified at the genus level, belonging to 29 genera, 22 families and 13 orders (Table I). Endemicity was ca. 17.1%, with six Mediterranean endemics. Bisbe Cave (site 8) harboured 28 species, plus seven taxa identified at the genus level, belonging to 26 genera, 20 families and 14 orders (Table I). Endemicity was ca. 21.4% with six Mediterranean endemic species.

In all, 51 species, plus eight taxa identified at the genus level, were recorded in the three submerged karstic caves, with 24 shared species. Endemicity is ca. 19.6% with 10 Mediterranean endemics. Atlanto-Mediterranean species are dominant (n = 30), and there were 11 cosmopolitans.

Figure 1. Study area in the two selected Sardinian Marine Protected Areas (MPAs) in the eastern Algero-Provençal Basin, Western Mediterranean (eight sampling areas within the boxes). Five *Posidonia* meadows at the Asinara Island MPA (box, top, left). Three karstic submerged caves (Galatea = 6, Falco = 7, Bisbe = 8) at the Capo Caccia–Isola Piana MPA (box, bottom, left).
No.	Species	Geographic range	Status
1	Clathrina clathrus (Schmidt, 1864)	+	E
2	Clathrina rubra Sarà, 1958	+	AM
	Leucalitidae Dendy & Row, 1913		
3	Ascandra contorta (Bowerbank, 1866)	+	AM
	Leucosolenididae Hartman, 1958		
4	Sycon sp.	+	
	Lithonidae Vacelet, 1981		
5	Petrobiona massiliana Vacelet & Lévi, 1958	+	E
	HOMOSCLEROMORPHA Bergquist, 1978		
6	Oscarella lobularis (Schmidt, 1862)	+	C
	Plakinidae Schulze, 1880		
7	Corticium candelabrum Schmidt, 1862	+	AM
8	Planaria Schulze, 1880	+	C
	DEMOSPONGIAE Sollas, 1885		
9	Stelletta lactea Carter, 1871	+	AM
10	Stelletta dorsigera Schmidt, 1862	+	E
	Geodiidae Gray, 1887		
11	Jaspis johnstonii (Schmidt, 1862)	+	AM
12	Drecitus (Stoeba) dissimilis (Sarà, 1959)	+	E
	Clionaidae d’Orbigny, 1851		
13	Cliona schmidtii (Ridley, 1881)	+	C
14	Cliona viridis (Schmidt, 1862)	+	C

(Continued)
Table I. (Continued).

No.	Species	Geographic range	Status
18.	Cliona sp. 1	+	
19.	Cliona sp. 2	+	
Spirastrellidae Ridley & Dendy, 1886			
20.	Diplastrella bistellata (Schmidt, 1862)	+ + + + + AM	
21.	Spirastrella Schmidt, 1868	+ + + + + + + C	
Suberitida Chombard & Boury-Esnault, 1999 Suberitidae Schmidt, 1870			
22.	Aaptos aaptos (Schmidt, 1864)	+ + + + + C	
23.	Terpios Duchassaing & Michelotti, 1864	+ + + C	
Halichondriidae Gray, 1867			
24.	Halichondria (Halichondria) genitrix (Schmidt, 1870)	+ AM	
Agelasida Hartman, 1980			
Hymerhabdiidae Morrow, Picton, Erpenbeck, Boury-Esnault, Maggs & Allcock, 2012			
25.	Prosuberites Topsent, 1893	+	
Tethyida Morrow & Cárdenas, 2015			
Tethyidae Gray, 1848			
26.	Tethya Lamarck, 1815	+ + AM P	
27.	Tethya citrina Sarà & Melone, 1965	+ AM P	
Timeidae Topsent, 1928			
28.	Timea Gray, 1867	+ E	
Chondrosiida Boury-Esnault & Lopès, 1985 Chondrosiidae Schulze, 1877			
29.	Chondrosia Nardo, 1847	+ + + + C	
Chondrillida Redmond, Morrow, Thacker, Diaz, Boury-Esnault, Cardenas, Hajdu, Lobo-Hajdu, Picton, Pomponi, Kayal & Collins, 2013			
30.	Chondrilla Schmidt, 1862	+ + + + AM	
Axinellida Lévi, 1953			
31.	Raspaillidae Nardo, 1833	+ AM	
32.	Axinella Schmidt, 1862	+ + AM	
33.	Axinella verrucosa (Esper, 1794)	+ AM	
Biennida Morrow, 2013			
34.	Rhabdodermaiidae Topsent, 1928	+ + AM	
Poecrioslerida Topsem, 1928 Tedaniidae Ridley & Dendy,1886			
35.	Tedania (Tedania) anhelans (Vio in Olivi, 1792)	+ AM	
Chondropsidae Carter, 1886			
36.	Batzella Topsent, 1893	+ AM	
Crambeidae Lévi, 1963			
37.	Crambe Vosmaer, 1880	+ + + + + + + C	

(Continued)
Table I. (Continued).

No.	Species	Geographic range	Status
38	*Crelia* Gray, 1867	+ + +	
39	*Hemimycale* Burton, 1934	+ + +	AM
40	*Hymedesmia* Bowerbank, 1864	+	AM
41	*Hymedesmia* *pana* Bowerbank, 1882	+	AM
42	*Hymedesmia* *peachii* Bowerbank, 1882	+	AM
43	*Phorbas* Duchassaing & Michelotti, 1864	+	AM
44	*Phorbas* Bowerbank, 1866	+ + +	AM
45	*Phorbas* (Topset, 1925)	+ + + + +	AM
46	*Acanthella* Schmidt, 1862	+ + +	AM
47	*Dictyonella* Schmidt, 1868	+ + +	
48	*Agelas* Duchassaing & Michelotti, 1864	+ + +	E
49	*Chalinula* Schmidt, 1868	+	AM
50	*Dendroxea* Griessinger, 1971	+	AM
51	*Dendroxea* *lenis* (Topset, 1892)	+ + +	AM
52	*Haliclona* (Halichoclona) *fulva* (Topset, 1893)	+	AM
53	*Haliclona* *cratera* (Schmidt, 1862)	+	AM
54	*Haliclona* (Soestella) *mucoa* (Griessinger, 1971)	+ + +	AM
55	*Haliclona* sp.	+ + +	
56	*Pachychalina* Schmidt, 1868	+ +	E R7
57	*Petroxoa* Vosmaer, 1885	+ + + + +	AM
58	*Aplysilla* Schulze, 1878	+	C
59	*Dysidea* Johnston, 1842	+ + + + +	C
60	*Dysidea* (Montagu, 1818)	+ +	C
61	*Dysidea* *incrustans* (Schmidt, 1862)	+	E
62	*Pleraplysilla* Topset, 1905	+ + +	AM
63	*Ircinia* Nardo, 1833	+ + + + +	E

(Continued)
Comparative analysis revealed high values of the similarity index: Falco vs. Bisbe ca. 83%, Galatea vs Falco ca. 73%, and Galatea vs Bisbe ca. 69% (Figure 2). Boring and encrusting sponges were common (Table I). Regarding massive horny sponges, all five Mediterranean species of the genus *Spongia* Linnaeus (1759) were recorded in the caves, e.g. *Spongia* (*Spongia*) lamella (Schulze, 1879) and *Spongia* (*Spongia*) of cicinalis Linnaeus (1759) were shared by all three caves.

Taxonomic richness in Posidonia meadows

In all, 45 species, plus one taxon identified at the genus level, 33 genera, 26 families and 14 orders were recorded in *Posidonia* meadows. Mediterranean endemics accounted for nine species (endemicity 20%). Only four species were shared by the five meadows sampled, i.e. *Spirastrella cunctatrix* (Schmidt, 1868), *Chondrilla mucula* (Schmidt, 1862), *Crambe crambe* (Schmidt, 1862) and *Ircinia variabilis* (Schmidt, 1862). Similarity index values ranged from 25% to 63% among the meadows sampled (Figure 3). Some sponge species preferentially colonised rhizomes, e.g. *Cacospongia mollior* (Schmidt, 1862), *C. crambe*, *Dysidea fragilis* (Montagu, 1814), *Hippospongia communis* (Lamarck, 1814), *Spongia* (*Spongia*) virgultosa (Schmidt, 1868), *S. officinalis*, *Tethya aurantium* (Pallas, 1766) and *Tethya citrina* (Sarà & Melone, 1965). Others were found mainly in intermatte areas with rocky substrates, e.g. *Ircinia retidermata* (Pulitzer-Finali & Pronzato, 1981), *I. variabilis* and *Pachychalina rustica* (Schmidt, 1868). Only *Hymedesmia* (*Hymedesmia*) pansa (Bowerbank, 1882) was found on leaves.

Comparison of taxonomic richness

In total, 69 species, plus eight taxa identified at the genus level, belonging to 52 genera, 37 families, 20 orders and three classes, form the updated checklist of Porifera from the two MPAs (Table I). The index of similarity between *Posidonia* meadows and caves was ca. 57% on the basis of 27 shared species (Figure 4). ANOSIM showed significant differences in the sponge composition of the two habitats ($R = 0.703; p < 0.05$), and nMDS data ordination revealed a clear separation of habitats, with intragroup differences being fewer in caves than in *Posidonia* meadows (Figure 5).
Protected species and rare species

The survey highlighted the presence of five sponge species protected by the (Specially Protected Areas/Biological Diversity in the Mediterranean) SPA/BIO protocol of the Barcelona Convention (Pronzato 2003; Relini & Tunesi 2009). Caves of Capo Caccia–Isola Piana MPA harboured Petrobiona mas-siliana (Vacelet & Lévi, 1958), S. lamella, S. officinalis and S. zimocca (Schmidt, 1862), while T. aurantium, S. lamella, S. officinalis and S. zimocca were found in the Posidonia meadows in the Asinara Island MPA.

Rare Mediterranean sponge species were also found, i.e. Cacospongia proficiens (Pulitzer-Finali & Pronzato, 1980) (two known reports), Dercitus (Stoeba) dissimilis (Sarà, 1959) (three known reports), I. retidermata (three known reports), P. rustica (seven known reports) and Clathrina rubra (Sarà, 1958) (eight known reports). Two of these, C. proficiens and C. rubra, had previously been recorded in caves (Pansini et al. 2011).
Discussion and conclusions

The faunistic census revealed a remarkably rich assemblage in the two Sardinian MPAs, i.e. over 10% of the entire Mediterranean Porifera diversity (ca. 720 species, Pronzato & Bertolino’s unpublished database) despite the very few sampling sites and low sampling effort. The several new records suggest that species richness is underestimated in Sardinia seas.

Figure 3. Sponge fauna of five Posidonia meadows at the Asinara Marine Protected Area (MPA). Similarity (Bray–Curtis) values range from approximately 20% to 60%. Only four species are shared by all sites (ca. 11%). Taxa identified at the genus level are not considered.
Seagrass meadows and caves are contrasting bio-
topes, which pose divergent environmental chal-
enges for Porifera. Data, as we expected, show
significant differences in sponge community compo-
sition between Posidonia meadows and marine caves.
The high heterogeneity and species variability in the
meadows (nMDS test) indicates that the intermatte
rocky substrate and leaves are suitable for photophi-
lous sponge species, whereas the quite stable rhi-
zome level, together with the shaded areas of
boulders scattered in the intermatte, favours sciaphi-
lous species.

Figure 4. Sponge fauna of caves vs. Posidonia meadows in two north-west Sardinian Marine Protected Areas (MPAs). Similarity index between meadows and caves is ca. 57% on the basis of 27 shared species (< 40%). Taxa identified at the genus level are not considered.
Figure 5. Diverging species composition of Porifera in cave vs. Posidonia meadows by non-metric multidimensional scaling (nMDS) data ordination (sampling sites; presence/absence of sponge species). Intragroup differences were smaller in caves (highest homogeneity) than in seagrass meadows, the latter characterised by the highest species diversity. Numbers refer to the eight sampling sites in Figure 1.

With regard to the Western Mediterranean Posidonia meadows, Asinara hosts 45 sponge taxa, whereas Pansini and Pronzato (1985) reported 75 species from Lacco Ameno (Ischia Island) and 42 from Prelo (Ligurian Sea). These discontinuities in Porifera distribution appear to be related to local environmental factors, such as sanding and sedimentation, rather than to depth (see Pansini & Pronzato 1985). In the Asinara MPA, data confirm that scattered rocky substrates of intermatte areas offer a stable substratum for sponges. Rhizomes are less stable, particularly those at the margins of mattes; indeed, they are damaged during storms or by anchorage and fishing gears as indicated by the frequent stranded of rhizomes with settled sponges along the entire Sardinian coasts (Manconi et al. in prep). By contrast, leaves are suitable for the settlement of only a few species, as they constitute an unstable, deciduous, smooth, short-lived substrate, and are more exposed to wave stress according to Pansini and Pronzato (1982a, 1985; but see also Piazzī et al. 2016). The variable environmental conditions in the five Asinara sites could explain the scant homogeneity of sponge assemblages with only five shared species in all sites (similarity index 25% to 63%).

Concerning Mediterranean marine caves, it is well known that they are hotspots of sponge diversity (e.g. Căteddu 2012; Gerovasileiou & Voultsiadou 2012; Manconi et al. 2013; Gerovasileiou et al. 2015; Dimarchopoulou et al. 2018), with over 300 documented species, and display similar values of species richness to the coralligenous biotope, in which over 300 species have so far been documented (see Bertolino et al. 2013; Longo et al. 2017).

Punta Giglio caves host 59 sponge species, while 32 species inhabit Mago Cave at Ischia Island (Cinelli et al. 1977) and 52 species have been recorded at Mitigliano Cave along the Sorrentine Peninsula (Pansini & Pronzato 1982b). By contrast, 78 cave-dwelling species have been recorded in the entire Balearic Sea, and a higher value of richness (161 species) has been reported in the Gulf of the Lion (see Căteddu 2012). On considering only species richness, the present data are in agreement with previous papers on the Western Mediterranean.

The diversity of sponges in the three Sardinian caves matches the results of previous Mediterranean studies (e.g. Cinelli et al. 1977; Pansini & Pronzato 1982b; Dimarchopoulou et al. 2018). Until now, cave-dwelling Porifera from Sardinia have been cited in a few surveys of benthos (Bianchi & Morri 1994; Căteddu 2012) and in descriptions of new and/or rare species from dark areas of these cryptic habitats (Manconi et al. 2006, 2009; Manconi & Serusi 2008; Manconi 2011). The rocky calcareous cliffs of Capo Caccia–Isola Piana MPA are known to host more than 200 (estimated by local speleologists) karstic caves, only ca. 50 of which have been mapped, despite the high interest of speleo-divers in this area during the last 50 years (see Chessa et al. 1999). Unfortunately, however, the notable effort in speleological explorations and geo-morphological surveys on submerged marine caves has not been matched by further investigations of biodiversity.

Differences in the taxonomic composition of sponge fauna are clearly evident on comparing Posidonia meadows with caves in the two MPAs investigated, although the unexpected low value of dissimilarity (43%) may partly be explained by the presence of sciaphilic sponges in shaded microhabitats of boulders scattered in the intermatte meadows. Moreover, in the caves presently studied, the absence of new species or stygobiont species, such as those reported from a few other Sardinian caves, seems to be related both to the strict affinity of the extremely rare lithistids for restricted areas in totally dark cave zones of the Capo Caccia–Punta Giglio karst (Manconi et al. 2006; Manconi & Serusi 2008) and to the extreme anchialine condition in a Tyrrhenian estuary cave of the Dorgali karst (Melis et al. 2016).

The cave-dwelling sponge fauna displays notable homogeneity (24 species shared by three caves), while Posidonia meadows (four species shared by five sampling sites) are considerably heterogeneous. The ability of sponges to disperse and settle among neighbouring caves (connectivity) is suggested by the ca. 40% of shared species in the caves investigated.

Moreover, comparison between the two biotopes, which are presumed to be totally different, revealed
that shaded micro-habitats (e.g. under boulders) in intermatte meadows harbour sciaphilic sponge species shared with caves, suggesting that the meadows may act as a reservoir supporting connectivity among sponge assemblages of other coastal biotopes. This could be particularly true of the extensive continuous meadows of *P. oceanica* along the Sardinian coast, particularly Asinara Island, which are considered to be some of the most pristine along the Italian coastline, even though few regressive areas are evident (see Telesca et al. 2015).

The heterogeneous composition and structure of sponge fauna in the meadows at Asinara confirm that this biotope hosting both sciaphilous and photophilous species is less selective than caves. By contrast, only sciaphilous sponges are likely to be found in dark submerged caves, except for the entrance zone when it is large and in shallow water.

From a taxonomic and conservation point of view, several internationally protected species (six of a total of 15) and five rare species (less than 10 records in the Mediterranean Sea) are harboured in the two MPAs. In particular, the surveys in caves yielded the third record of *Cacospongia proficuens* (the first in the western Mediterranean Sea). *Dercitus (Stoeba) dissimilis*, which is also a very rare species (see Rwm et al. 2018), was recorded in the karstic caves.

Present data increase sponge fauna diversity in the eastern Alerio-Provençal Basin although inventories of Sardinian cave-dwelling sponge species have recently been expanded (Manconi et al. 2006, 2009, 2013; Manconi & Serusi 2008; Manconi 2011; Cadèddu 2012; Melis et al. 2016). In conclusion, the diversity of Porifera in *Posidonia* meadows and submerged karstic caves of the Mediterranean Sea confirms that these two biotopes constitute one of the most important natural heritage and biodiversity hotspots of the Mediterranean Sea, together with coralligenous communities (Ballesteros 2006; Relini & Giaccone 2009). The new data set will constitute a basis for future long-term investigations and comparative analyses supporting further conservation efforts.

Acknowledgements

We are very grateful to the entire staff of the Asinara National Park, especially Giovanni Careddu, for their logistic support. Daniela Demurtas and several students assisted with the field and lab work. This work was supported by Fondazione di Sardegna (FS-2016); Regione Autonoma Sardegna (RAS2012-LR7/2007-CRP60215-2012 “Conservazione e valorizzazione delle grotte sarde: biodiversità e ruolo socio-economico-culturale”); Asinara National Park - Marine Protected Area “Asinara Island” (2016); Italian Ministero dell’Ambiente (MATTM) - CoNISMA-3AMP “Study of submarine cave environments – HABITAT CODE 8330 – in the Marine Protected Areas of Pelagie, Plémirio and Capo Caccia”; European Commission through BAMMBO Project ‘Sustainable Production of Biologically Active Molecules of Marine Based Origin’ (FP7 KBBE-2010-4-265896). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks to Professor Bernard Patrick (Genoa, Italy) for English revision of the final version of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Fondazione di Sardegna (FS-2016) Asinara National Park; Regione Autonoma della Sardegna [RAS2012-LR7/2007-CRP-60215]; CoNISMA [MATTM 3AMP]; Seventh Framework Programme [265896 Biologically Active Molecules of Marine Based Origin].

ORCID

A. Padiglia @ http://orcid.org/0000-0003-0009-9437

References

Ballesteros E. 2006. Mediterranean coralligenous assemblages: A synthesis of present knowledge. Oceanography and Marine Biology 48:123–195.

Bertolino M, Betti F, Bo M, Cattaneo-Vietti R, Pansini M, Romero J, Bavestrello G. 2016. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. Journal of the Marine Biological Association of the United Kingdom 96:341–350. DOI:10.1017/S0025315415001186.

Bertolino M, Cerrano C, Bavestrello G, Carella M, Pansini M, Calcinai B. 2013. Diversity of Porifera in the Mediterranean coralligenous accretions, with description of a new species. ZooKeys 336:1–37. DOI:10.3897/zookeys.336.5139.

Bianchi CN, Morri C. 1994. Southern species in the Ligurian Sea (northern Mediterranean): New records and a review. Bollettino dei Musei e degli Istituti Biologici dell’Università di Genova 58:181–197.

Cadèddu B. 2012. Biodiversity assessment in Mediterranean caves: the case of Porifera as model taxon. PhD Thesis, Sassari: University of Sassari (Italy).

Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F. 2000. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (Northwestern Mediterranean), summer 1999. Ecology Letters 3:284–293.
Chessa LA, Vitale L, Scardi M, Gutierrez M. 1999. Censimento preliminare delle grotte sommerse del litorale di Alghero/Sardegna NW. Biologia Marina Mediterranea 6:474–479.

Cinelli F, Fresti E, Mazzella L, Pansini M, Pronzato R, Svoboda A. 1977. Distribution of benthic phyto- and zoo-ooenoses along a light gradient in a superficial marine cave. Keegan BF, O’Ceidigh P, Boaden PJS, editors. Biology of benthic organisms. London: Pergamon Press. pp. 173–183. DOI: 10.1016/B978-0-08-021378-1.50023-3.

Clarke KR, Warwick RM. 2001. Change in marine communities: an approach to statistical analysis and interpretation. 2nd ed. Plymouth (UK): PRIMER-E Ltd.

Colli M, Piroddi C, Kaschner K, Ben Rais Lasram F, Steenbeek J, Aguzzo J, Ballesteros E, Nike Bianchi C, Corbera J, Daillanis T, Danovaro R, Estrada M, Foglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilbaumont F, Kesner-Reyes K, Kitsos MS, Koukouras A, Lampadariou N, Laxamana E, Lopez-Fé de la Cuadra CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voutsisoudis E. 2010. The biodiversity of the Mediterranean Sea: Estimates, patterns and threats. PLoS One 5:e11842. DOI: 10.1371/journal.pone.0011842.

Costello MJ, Coll M, Danovaro R, Halpin P, Ojaveer H, Miloslavich P. 2010. A census of marine biodiversity knowledge, resources and future challenges. PLoS One 5:e12110. DOI: 10.1371/journal.pone.0011842.

Di Camillo CG, Bartolucci I, Cerrano C, Bavestrello G. Pansini M, Pronzato R, Corriero G, Bufa P. 2010. Order Lithistida. Pansini M, Manconi R, Pronzato R, editors. Porifera I. Calcarea, Demospongiae (partim), Hexactinellida, Homoscleromorpha. Fauna d’Italia, Vol. XLVI. Bologna: Edizioni Calderini-Il Sole 24 ore. pp. 367–392.

Manconi R, Cadeddu B, Ledda F, Pronzato R. 2013. An overview of the Mediterranean cave-dwelling horny sponges (Porifera, Demospongiae). ZooKeys 281:1–68. DOI: 10.3897/zookeys.281.4171.

Manconi R, Cureddu T, Deriu A 2001. Valorizzazione delle risorse marine di Sardegna e Corsica: Dati preliminari sulle spugne cornee. PIC-INTERREG II Sardegna-Corsica, Università degli Studi, Sassari. pp. 259–261.

Manconi R, Ledda FD, Serusi A, Corso G, Stocchino GA. 2009. Sponges of marine caves: Notes on the status of the Mediterranean palaeoendemic Petrobiona masilliana (Porifera: Calcarea: Lithonida) with new records from Sardinia. Italian Journal of Zoology 76:306–315. DOI: 10.1080/11250000802629471.

Manconi R, Serusi A. 2008. Rare sponges from marine caves: Discovery of Neophrissospongia nano nov. sp. (Demospongiidae, Corallistidae) from Sardinia with an annotated checklist of Mediterranean lithistids. ZooKeys 4:71–87. DOI: 10.3897/zookeys.4.39.

Manconi R, Serusi A, Pisera A. 2006. A new Mediterranean ‘lithistid’ sponge, Aciculites mediterranea sp. nov. (Porifera: Demospongiae) from a dark marine cave in Sardinia. Journal of the Marine Biological Association of the United Kingdom 86:691–698. DOI: 10.1017/S0025315406013580.

Médail F, Quézel P. 1999. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conservation Biology 13:1510–1513. DOI: 10.1046/j.1523-1739.1999.98467.x.

Mélis P, Riesgo A, Taboad S, Manconi R. 2016. Coping with brackish water: A new species of cave-dwelling Protossabellida (Porifera: Demospongiae: Suberitidae) from the Western Mediterranean and a first contribution to the phylogenetic relationships within the genus. Zootaxa 4208:349–364.

Pansini M, Longo C. 2003. A review of the Mediterranean Sea sponge biogeography with, in appendix, a list of the demosponges hitherto recorded from this sea. Biogeographia 24:59–90. DOI: 10.2126/Bi110107.

Pansini M, Manconi R, Pronzato R. (Editors) 2011. Porifera I. Calcarea, Demospongiae (partim), Hexactinellida, Homoscleromorpha. Fauna d’Italia, Vol. 46. Bologna: Calderini-II Sole 24 Ore. 554 pp. ISBN: 978–88–506–5395–9.

Pansini M, Pronzato R. 1982a. Distribuzione dell’epifauna di una prateria di Posidonia dell’isola d’Ischia (Napoli): Poriferi. Il Naturalista Siciliano 4/6 (suppl. 3):517–522.

Pansini M, Pronzato R. 1982b. Distribuzione ed ecologia dei Poriferi nella grotta di Mitigliano (Penisola Sorrentina). Bollettino dei Musei e degli Istituti Biologici dell’Università di Genova 50 (suppl.):287–293.

Pansini M, Pronzato R. 1985. Distribution and ecology of epiphytic Porifera in two Posidonia oceanica (L.) Delile meadows
of the Ligurian and Tyrrhenian Sea. Marine Ecology 6:1–11. DOI:10.1111/j.1439-0485.1985.tb00316.x.

Piazzi L, Balata D, Ceccherelli G. 2016. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: An overview. Marine Ecology 37:3–41. DOI:10.1111/maec.12331.

Pronzato R. 1999. Sponge-fishing, disease and farming in the Mediterranean Sea. Aquatic Conservation: Marine and Freshwater Ecosystems 9:485–493. DOI:10.1002/(SICI)1099-0755(199909/10)9:5<485::AID-aqc362>3.0.CO;2-N.

Pronzato R. 2003. Mediterranean sponge fauna: A biological, historical and cultural heritage. Biogeographia 24:91–99. DOI:10.21426/B6110118.

Pronzato R, Ledda FD, Manconi R. 2012. Mediterranean horny sponges: How to drive a neverending story of exploitation toward a sustainable management and conservation. Lucas-Borja ME, editor. Endangered Species: habitat, Protection and Ecological Significance. Hauppauge, NY: Nova Science Publishers. 32 pp.

Pronzato R, Manconi R. 2008. Mediterranean commercial sponges: Over 5000 years of natural history and cultural heritage. Marine Ecology 29:1–21. DOI:10.1111/j.1439-0485.2008.00235.x.

Quinn G, Cabello HH, Garabito W, Rützler K, Van Soest RWM. 2016. A checklist of Mediterranean soft corals and sponges. Marine Ecology Progress Series 533:1–10.

Rützler K. 1978. Sponges in coral reefs. Stoddart DR, Johannes RE, editors. Coral reefs: research methods. Monographs on oceanographic methodology, Vol. 5. Paris: UNESCO.

Sala E, Ballesteros E, Panagiotis D, Di Franco A, Ferretti F, Foley D, Fraschetti S, Friedlander A, Garrabou J, Gucluoy H, Guidetti P, Halpern BS, Hereu B, Karamanlidis AA, Kizilkaya Z, Macpherson E, Mangialajo L, Mariani S, Micheli F, Pais A, Riser K, Rosenberg AA, Sales M, Selkoe KA, Starr R, Tomas F, Zabala M. 2012. The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications. PLoS One 7:e32742. DOI:10.1371/journal.pone.0032742.

Telesca L, Belluscio A, Criscoli A, Ardizzone G, Apostolaki ET, Fraschetti S, Grisetta M, Knittweis M, Martin CS, Pergent G, Alagna A, Badalamenti F, Garofalo G, Gerarkis V, Pace ML, Pergent-Martini C, Salomidi M. 2015. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Scientific Reports 5:12505. DOI:10.1038/srep12505.

UNEP-MAP-RAC/SPA. 2015. Action Plan for the conservation of habitats and species associated with seamounts, underwater caves and canyons, aphotic hard beds and chemo-synthetic phenomena in the Mediterranean Sea. Dark Habitats Action Plan. RAC/SPA, Tunis. 17 pp.

Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez B, Hajdu E, Pisera AB, Manconi R, Schönberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Diaz MC, Cárdenas P, Carballo JL, Rios P, Downey R. 2018. World Porifera database. Available: http://www.marinespecies.org/porifera. Accessed April 2018 05.