Leisure activity participation and risk of dementia: 18 year follow-up of the Whitehall II Study

Authors

Andrew Sommerlad PhD 1,2 *, Séverine Sabia PhD 3,4, Gill Livingston MD 1,2, Mika Kivimäki PhD 4,5, Glyn Lewis PhD 1,2, Archana Singh-Manoux PhD 3,4

The Article Processing Charge was funded by Wellcome Trust

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
1 Division of Psychiatry, University College London, W1T 7NF, UK
2 Camden and Islington NHS Foundation Trust, London, UK
3 Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
4 Department of Epidemiology and Public Health, University College London, UK
5 Clinicum and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland

Submission Type: Article
Title Character count: 96
Number of Tables: 5
Number of Figures: 2
Word count of Abstract: 246
Word Count of Paper: 4,530
Search terms: dementia, leisure activity, prevention, risk factor, epidemiology

Corresponding author
Dr Andrew Sommerlad
a.sommerlad@ucl.ac.uk
Disclosures:
Andrew Sommerlad reports funding from Wellcome Trust (200163/Z/15/Z https://wellcome.ac.uk/)
Séverine Sabia reports funding from Agence Nationale de la Research, (ANR-19-CE36-0004-01).
Gill Livingston reports funding from the Alzheimer’s Society (AS-IGF -16-001) Dunhill Medical Trust (RPGF1711\10) North Thames ARC (1861414)
Mika Kivimäki reports funding from the UK Medical Research Council (K013351, R024227, S011676), NordForsk, the Nordic Council of Ministers (grant 75021) and the Academy of Finland (311492)
Glyn Lewis reports no disclosures relevant to the manuscript.
Archana Singh-Manoux reports funding from US National Institutes of Health (R01AG056477, RF1AG062553 https://www.nih.gov/).

Study funding
AS received funding from the Wellcome Trust for this study (200163/Z/15/Z https://wellcome.ac.uk/). The Whitehall II study is supported by grants from the US National Institutes of Health (R01AG056477, RF1AG062553 https://www.nih.gov/), the UK Medical Research Council (MRC S011676, MR/R024227 https://mrc.ukri.org/), and British Heart Foundation (RG/16/11/32334).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Study Funding:
Whitehall II study is supported by grants from the US National Institutes of Health (R01AG056477, RF1AG062553 https://www.nih.gov/), the UK Medical Research Council (MRC S011676, MR/R024227 https://mrc.ukri.org/), and British Heart Foundation (RG/16/11/32334).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Abstract

Objective
To test the hypothesis that leisure activity participation is associated with lower dementia risk, we examined the association between participation in leisure activities and incident dementia in a large longitudinal study with average 18-year follow-up.

Methods
We used data from 8,280 participants of the Whitehall II prospective cohort study. A 13-item scale assessed leisure activity participation in 1997-99, 2002-04, and 2007-09 and incidence of dementia (n cases=360, mean age at diagnosis 76.2 years, incidence rate = 2.4 per 1,000 person-years) was ascertained from three comprehensive national registers with follow-up until March 2017. Primary analyses were based on complete cases (n=6,050, n cases = 247) and sensitivity analyses used multiple imputation for missing data.

Results
Participation in leisure activities at mean age 55.8 (1997-99 assessment), with 18.0-year follow-up, was not associated with dementia (hazard ratio [HR] 0.92, 95%CI 0.79-1.06) but those with higher participation at mean age 65.7 (2007-09 assessment) were less likely to develop dementia with 8.3-year follow-up (HR 0.82 (0.69-0.98)). No specific type of leisure activity was consistently associated with dementia risk. Decline in participation between 1997-99 and 2007-09 was associated with subsequent dementia risk.

Conclusion
Our findings suggest that participation in leisure activities declines in the preclinical phase of dementia; there was no robust evidence for a protective association between leisure activity participation and dementia. Future research should investigate the socio-behavioural, cognitive, and neurobiological drivers of decline in leisure activity participation to determine potential approaches to improving social participation of those developing dementia.
Introduction

Participation in leisure activities has benefits for general health and well-being. Given the increasing numbers of people with dementia, there is considerable interest in effective approaches for prevention.\(^1\) Five of seven studies in a recent systematic review reported that frequent participation in leisure activities is associated with lower risk of subsequent dementia, suggesting that involvement in such activities may confer cognitive benefit.\(^2\) Postulated mechanisms are that participation in leisure activities helps building neural pathways and cognitive reserve,\(^3\) conferring resilience against neuropathological changes of dementia; reducing harmful stress;\(^4\) and encouraging a healthier lifestyle.\(^5\) However, dementia is characterized by a long preclinical phase and most previous positive studies had less than 10 years follow-up, so leisure activities may have reduced as an early consequence, rather than cause, of subsequent dementia.

Studies with long follow-ups are needed\(^6\) to address bias due to reverse association, whereby the observed association may be due to the dementia prodrome which is characterized by reduced leisure activity in the years preceding dementia diagnosis. Furthermore, repeated measures of exposure, in this case leisure activity, allow evaluation of the consistency of associations over time and that of change in exposures in order to provide insight into the direction of associations. In addition, understanding whether particular types of leisure activities have an impact may be informative for guiding specific future prevention approaches.

We therefore aimed to test the hypothesis that leisure activity participation is associated with lower risk of incident dementia in a large longitudinal study over an average 18-year follow-up. Secondary aims were to examine the importance of length of follow-up on the association of activity participation with dementia; associations between specific activities and dementia; and associations between leisure activity change over 10 years and subsequent incident dementia.

Method

Study design and participants

The Whitehall II study is an ongoing cohort study, established in 1985 among 10,308 (6,895 men and 3,413 women) London-based civil servants aged between 35 and 55 years who participated in a structured clinical examination and responded to a comprehensive questionnaire at recruitment,\(^7\) repeated every five years. Data on leisure activity participation were first collected during the 1997-99 study wave, which therefore serves as baseline for the current study, and repeated in the 2002-
04 and 2007-09 waves; we included all Whitehall II participants who took part in at least one of these waves.

Measurements

Leisure activity participation

Participants reported frequency of participation in 13 leisure activities, \(^8\) in response to the question ‘In your spare time are you involved in any of the following activities - how often have you taken part in these activities in the last 12 months?’

- Individual occupations (e.g. reading, listening to music)
- Using a home computer for leisure
- Courses and education / evening classes
- Involvement in clubs and organisations, voluntary or official
- Cultural visits to stately homes, galleries, theatres, cinema or live music events
- Positions of office; school governor, councillor etc.
- Social indoor games, cards, bingo, chess
- Gardening
- Household tasks, e.g. DIY, maintenance, decorating
- Practical activities, making things with your hands, e.g. pottery, drawing
- Religious activities/observance
- Going to pubs and social clubs
- Visiting friends or relatives

Participants responded to a 4-point Likert scale (Never=0, Less often=1, Monthly=2. Weekly=3), which were summed to yield a total leisure activity scale (scale 0 to 39). These measures previously showed a positive association with sleep quality \(^9\) and cross-sectionally with cognitive function. \(^8\)

Dementia

Dementia diagnosis was derived from three linked electronic health records to 31\(^{st}\) March 2017. \(^10\) National Health Service (NHS) Digital’s Hospital Episode Statistics (HES) and Mental Health Services Data (MHSD) include inpatient, emergency department, and outpatient records, including memory clinics which are the primary UK dementia diagnostic services. \(^11\) The linked HES/Office of National Statistics mortality data includes documented causes of death. Diagnoses are recorded as International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) \(^12\) codes; F00x-F03x, F05.1, and G30x-31.0 indicate any subtype of dementia. These data contain comprehensive records of people with diagnosed dementia in England, where 69% of those estimated to have dementia have a coded diagnosis. \(^13\) Sensitivity for dementia diagnosis is 78% in
and sensitivity has been increasing since 2006; additional use of MHSD and mortality data is likely to increase sensitivity for dementia diagnosis.

Covariates
Sociodemographic and lifestyle factors were measured by self-report, health status was derived from multiple available data (i.e. self-report, structured clinical examination and health records) and body mass index, blood pressure, fasting glucose along with cognition were assessed in structured clinical examination. Sociodemographic characteristics included sex, ethnicity (White, other ethnicity), and level of education (no formal education, lower secondary, higher secondary, graduate, postgraduate) assessed at study baseline and age, marital status (married, single, divorced, widowed), occupational position based on grade of last employment (professional, managerial, skilled non-manual, skilled manual, partly skilled, non-skilled), employment status (employed, retired/unemployed) assessed at all waves.

Health behaviours were derived from questionnaire at all waves: weekly alcohol consumption (0, 1-7, 8-14, >14 units), smoking (never, ex-smoker, current smoker), hours per week of moderate or vigorous physical activity (log-transformed due to non-normal distribution). Chronic illnesses were derived from a combination of questionnaire, clinical examination and/or linked electronic health records at all waves: body mass index (BMI), hypertension (either taking an antihypertensive or having systolic blood pressure ≥141mmHg), type 1 or 2 diabetes mellitus (either having previously received diagnosis of diabetes mellitus, taking anti-diabetic medication, having fasting plasma glucose ≥7.1mmol/L, or plasma glucose 2 hours after oral glucose tolerance test ≥11.1mmol/L), clinically-recorded acute stroke (not including transient ischaemic attack as these are often underdiagnosed so may not appear in the electronic health records we used to ascertain these data), and coronary heart disease (from HES). Cognition was assessed by structured clinical examination at the 1997-99, 2002-04 and 2007-09 waves by assessing verbal fluency, short-term verbal memory, and verbal and mathematical reasoning.

Analytic approach
We first described the characteristics of the whole cohort according to dementia status and baseline leisure activity participation using t test and χ² test. We then examined whether key characteristics varied according to non-participation in study waves or missing leisure activity data.

Association between leisure activity participation and incident dementia
We first calculated dementia incidence rates according to tertiles of leisure activity participation (low leisure activity was 0 to 13, medium was 14 to 18, and high was 19 to 33) and then calculated
absolute rate differences between groups at each the different study waves. Then our primary analysis examined the association between total leisure activity participation at 1997-99, 2002-04 and 2007-09 and subsequent incident dementia using Cox regression, after checking for the proportionality of hazards assumption. We found no evidence of interaction by sex (p=0.72) so did not stratify our analysis by sex. We censored participants at date of dementia diagnosis, death, or 31st March 2017, whichever came first. We repeated the analysis for each of the 13 activities. Results for the total leisure activity participation score are presented as hazard ratios (HR) for dementia according to one standard deviation (SD) higher activity participation. For each activity, they are presented per one point increase on the four point likert scale.

We also examined the association between change in leisure activity participation between 1997-99 and 2007-09 and risk of incident dementia after 2007-09. A positive value in the change score indicated decline in activity participation. In this analysis, HRs represent risk ratios of dementia per one SD decline in activity participation. In addition, we derived categories of change in leisure activity participation tertiles from 1997-99 to 2007-09 - remain low (low at 1997-99 and 2007-09), remain medium (medium at 1997-99 and 2007-09), remain high (high at 1997-99 and 2007-09), increasing (low at 1997-99 and medium or high at 2007-09, or medium at 1997-99 and high at 2007-09), and decreasing (high at 1997-99 and medium or low at 2007-09, or medium at 1997-99 and low at 2007-09). We repeated our analyses on the association between change in leisure activity participation and dementia using these categorical groups as exposure variable.

Analyses were adjusted for age and sex; then additionally for ethnicity, education, occupational position, marital status and employment status; then for for smoking, alcohol consumption and physical activity; then also for health conditions (BMI, hypertension, diabetes, coronary heart disease and stroke). Sex, ethnicity and education were taken from baseline and other covariates from the time of exposure measurement. For the analysis on change in leisure activity participation between 1997-99 and 2007-09 as a continuous variable, models were additionally adjusted for leisure activity participation at 1997-99 and sequentially for covariates drawn from the 2007-09 phase.

Sensitivity analyses:
We conducted several sensitivity analyses to test the robustness of our results. First, to further test the consistency of our findings, we repeated the primary analyses using leisure activity participation data collected at the two other study waves (2006 and 2012-13), using Cox regression adjusted as above. In post hoc analysis, we examined whether the association between leisure activity participation and dementia incidence was similar using repeat assessments of activity participation,
corresponding to increasingly shorter follow-up. We used data from the study waves at which we had activity data at 5 yearly intervals (1997/99, 2002/04, 2007/09, 2012-13) and included interaction terms between activity participation and wave.

To consider the potential for reverse association in greater detail, we then repeated our primary analyses with additional adjustment for cognitive function at exposure measurement, using a global cognitive z-score generated as described in previous studies. Then, we repeated the analysis using a 5-year washout period whereby we excluded participants who had less than 5 years follow-up due to incident dementia, death or end of follow-up, adjusted as before. Finally, as missing leisure activity data were associated with older age, female sex, unmarried status, and incident dementia, we repeated the primary analyses using multiple imputation, using covariates and dementia status, and leisure activity data from all waves, to assess the potential influence of missing data.

All analyses were undertaken using STATA SE version 14; 2-sided p < 0.05 was considered statistically significant.

Standard Protocol Approvals, Registrations, and Patient Consents
The Whitehall II study was approved most recently by NHS London - Harrow Research Ethics Committee, reference number 85/0938. Written informed consent for participation was obtained at each contact.

Data Availability
Data cannot be made publicly available because of ethics and IRB restrictions. However, researchers can apply for data access at https://www.ucl.ac.uk/whitehallII/data-sharing

Results
Participant flow is summarised in figure 1; 8,280 people participated in either 1997-99, 2002-04 or 2007-09, of whom 360 had developed dementia and 1,111 died by 31st March 2017. During 147,774 person-years at risk, 360 incident dementia cases were recorded (incidence 2.4 per 10,000 person-years). The mean age at dementia diagnosis was 76.2 years (SD 5.5, range 58.6-86.0). Full demographic information is in table 1; 69% of participants were male, 91% were White, and mean age at the start of follow-up (1997-99) was 55.9 years (SD 6.0, range 44.8-69.2). In univariate analyses, dementia status was associated with baseline sociodemographic factors, alcohol consumption, BMI, chronic illness, and leisure activity participation.
Association between leisure activity participation and incident dementia

Leisure activity participation increased during study follow-up (table 2) from 1997-99 (mean score 15.8, SD 5.2) to 2007-09 (18.4, SD 5.3). There was no unadjusted dementia incidence rate difference between tertiles of leisure activity participation in 1997-99. Compared with an incidence rate of dementia of 2.6 (95% confidence interval 2.1, 3.2) per 1000 person-years in those in the lowest tertile of leisure activity participation in 1997-99, the absolute rate differences per 1000 person years were −0.3 (95% confidence interval −1.0 to 0.4) for the intermediate group and −0.6 (−1.3 to 0.1) for the group in the highest tertiles of leisure activity participation. However, dementia incidence rates were lower in the higher tertiles of leisure activity in 2002-04 and 2007-09. Compared with the lowest tertiles, absolute rate differences per 1000 person years were -1.1 (-2.0, -0.1) in the intermediate and -1.2 (-2.1, -0.3) in the highest tertiles in 2002-04, and -2.9 (-4.2, -1.5) in the intermediate and -3.8 (-5.1, -2.5) in the highest tertiles in 2007-09.

In fully-adjusted cox regression analyses (table 3), higher leisure activity participation at 1997-99 or 2002-04 was not associated with lower risk of dementia (HR per standard deviation higher score = 0.92, 95% confidence interval (0.79, 1.06), p=0.24 and 0.88 (0.76, 1.03), p=0.10 respectively) over mean 18.0 and 13.0 years follow-up respectively. However, there was association between activity participation at 2007-09 (HR 0.82 (0.69, 0.98), p=0.03) and subsequent dementia with mean 8.3 years follow-up.

Associations between individual activities and subsequent incident dementia

Figure 2 shows the association between individual activities at the 1997-99 study wave and subsequent incident dementia in fully adjusted models, associations at other study phases are in table 4. No consistent associations were found as only ‘visiting friends and relatives’ was associated with dementia risk (HR per one point increase on activity scale = 0.85 (0.74, 0.98)), but this association was not seen across subsequent study waves. Participation in four different activities at the 2007-09 study wave (positions of office, individual occupations, home computing, and household tasks) was associated with subsequent dementia risk, but these leisure activities were not associated with dementia when drawn from earlier study waves (table 4).

Association between leisure activity change over 10 years and subsequent incident dementia

The mean leisure activity score increased by 2.6 points (SD 4.7, range -15 to +30) from 1997-99 to 2007-09. Of the participants who provided data on leisure activity participation at both waves, 820 (17.7%) remained low, 770 (16.6%) remained medium, 892 (19.2%) remained high, 997 (21.5%) increased and 1,159 (25.0%) decreased participation. For 1 SD decline in leisure activity participation, the hazard ratio for incident dementia during the subsequent mean 8.3 years was 1.35.
No association was found between categories of change in leisure activity participation and subsequent dementia.

Sensitivity analyses

Additional analyses of the associations between activity participation at 2006 and 2012-13 and incident dementia over 10.2 and 4.4 years mean follow-up respectively were consistent with the pattern of stronger association when follow-up was shorter. Fully-adjusted HR was 0.76 (0.66, 0.89) for the 2006 study wave with mean 10.2 years follow-up, and 0.68 (0.53, 0.86) for the 2012-13 wave with 4.4 years follow-up. There was evidence for a trend toward lowering of HR in analyses using activity data from later study waves where the assessment of leisure activity was closer to dementia diagnosis (p=0.03).

When we additionally adjusted for baseline cognitive ability, we found no association of leisure activities with incident dementia at any study wave (fully-adjusted HR for incident dementia per standard deviation higher activity participation = 0.99 (0.84, 1.18) for the 1997-99 study wave (n dementia cases/n participants = 187/4,984); HR = 0.97 (0.83, 1.13) for 2002-04 (205/5,747); and HR = 0.92 (0.76, 1.12) for 2007-09 (133/5,379)). When we applied a 5-year washout period to analyses, we also found no association between leisure activities at any study wave and incident dementia (HR = 0.93 (0.80, 1.08) for 1997-99 (241/5,942); HR = 0.92 (0.78, 1.08) for 2002-04 (196/5,759); and HR = 0.89 (0.71, 1.12) for 2007-09 (92/5,292)).

Use of multiple imputation to account for missing data on leisure activity and covariates found results consistent with our primary analyses. For the association between total leisure activities and subsequent incident dementia, the fully-adjusted HR at 1997-99 was 0.90 (0.78, 1.02) (360 dementia cases/8,280 participants); for 2002-04 HR = 0.87 (0.77, 0.99) (349/8,081); for 2007-09 HR = 0.78 (0.68, 0.90) (299/7,772). In models using multiple imputation, no specific leisure activities were consistently associated with incident dementia. For change in leisure activities from 1997-99, HR for incident dementia per standard deviation decline in activity participation was 1.38 (1.20, 1.59) in 7,772 participants with 299 dementia cases. Participants in the ‘decreasing’ category had elevated dementia risk compared to those who remained low (HR = 1.71 (1.10, 2.67)).

Discussion

In this large longitudinal study, participation in leisure activities at mean age 56 years was not associated with incidence of dementia over the subsequent 18 years. Associations were only evident when leisure activity was assessed at older ages, with less than 10 years between assessment of
leisure activities and diagnosis of dementia. Decline in leisure activity participation over 10 years was associated with subsequent elevated risk of dementia. No consistent associations were found for participation in specific types of leisure activities. Taken together, these results do not support the hypothesis that leisure activity participation can lower dementia risk, but suggest instead that reduction in activity participation is an indication of possible prodromal dementia.

Our findings contradict the conclusions of previous studies which reported associations between either a composite measure of leisure activities or specific activities and dementia risk and therefore suggested that activity participation may protect from dementia risk. Apart from one exception, these studies have had shorter follow-up than our study. A 2016 systematic review included seven studies in three separate meta-analyses according to the analytic methodology of the studies, and each of these meta-analyses found significant associations of higher activity participation with lower dementia risk. Five of seven studies reported significant associations but they had less than 6 years between measurement of leisure activities and dementia ascertainment. Two remaining studies had 9 and 12 years of follow-up and they reported null findings in regard to association with dementia. Another study reported association between leisure activities and incident dementia with less than 5 years, but no association with a follow-up greater than 5 years. Subsequent studies of social engagement with 3 years, and cultural engagement with 10 years, interval between activity measurement and dementia ascertainment also found positive associations between more frequent participation in activities and lower dementia risk. It therefore seems likely that in studies with less than 9 years follow-up or without sufficient ‘washout period’, associations found between leisure activity participation and dementia risk are likely due to reverse association. A notable study based on a long follow-up (44 years) of 800 Swedish women reported a binary variable generated from five cognitive activity domains to be associated with incident dementia in analyses adjusted for age, physical activity, smoking status, and socioeconomic status but not for education. The different populations studied, smaller range of activities assessed, and heterogeneity in confounder adjustment may partly explain the differences in findings.

Given the inconsistency in findings as a function of the period of follow-up, we used repeat measures of participation in leisure activities to examine how the length of follow-up affected findings. The underlying assumption is that leisure activities assessed sufficiently long before dementia onset is unlikely to be biased by reverse association. Our results show associations to emerge using the 2002-04 measure of leisure activities when mean follow-up was 8.3 years and mean age at leisure activity assessment was 65.7 years, and associations strengthened at successive study waves when follow-up was even shorter. Our results cannot rule out the possibility that leisure
activity participation after 65 years confers protection against dementia, or that lack of leisure activity or reduction in such activity at a vulnerable time leads to people being more likely to develop dementia. However, there is no compelling mechanism to explain this interpretation of the results given the known long preclinical period of dementia.

Furthermore, the associations between leisure activities at older ages and dementia in our study were attenuated in two sensitivity analyses aiming to consider the robustness of findings against bias due to reverse association; 1) when we additionally imposed a ‘washout period of 5 years’ thereby removing the potentially biasing effect of a small number of study participants developing dementia in the first 5 years after activity assessment, 2) when we adjusted for cognitive function at the time of exposure measurement, thereby taking into account cognitive decline in the early dementia prodrome. These findings, together with our sensitivity analysis indicating an effect of study wave on the association between activity participation and dementia risk, suggest that the protective associations found at later study waves were likely to be due to reverse association. This interpretation is strengthened by our finding that decline in leisure activity participation from age 56 to 66 years is associated with elevated dementia risk.

Diagnostic criteria specifies that dementia be diagnosed when cognitive decline is sufficient to ‘impair activities of daily living’. However early neuropathological changes of neurodegenerative dementias occur up to 25 years before symptoms are detected and cognitive symptoms precede dementia diagnostic threshold by approximately 12 years. It is plausible that decline in leisure activities precedes clinically-diagnosed dementia by around 10 years due to the prodromal emergence of dementia symptoms and is in accordance with our findings that 10-year decline in leisure activity participation predicts incident dementia. Neuropsychiatric symptoms including apathy are common in mild dementia and frequently precede dementia onset and may inhibit activity participation. Social cognitive impairments such as stubbornness, lack of concern for others, or emotional control difficulties are common features of mild dementia, possibly due to disruption of amygdala and frontal cortex networks. These emerging social cognitive changes are related to level of dependence and may disrupt the social relationships required to participate in activities with others.

Early symptoms of dementia related to social function are frequently misattributed by people with dementia and their family as about choice or personality, meaning that they may not be supported to maintain activity participation. In addition, cognitive decline is frequently accompanied by physical illness due to shared aetiological pathways, cognitive difficulties leading to neglect of physical healthcare, or physical illness causing neuropathological damage. Our finding of a
potential prodromal decline in leisure activity participation adjusted for chronic illness and health behaviours supports the notion that multiple mechanisms may underlie effects of preclinical dementia on social participation.

We found no specific activities to be consistently associated, throughout successive study waves, with elevated dementia risk. The only activity which at baseline was associated with subsequent dementia risk was ‘visiting friends and relatives’, which is consistent with our previous findings in the Whitehall study that more frequent contact with friends and relatives was associated with dementia risk with a 15 year follow-up. In the present study, the association was no longer statistically significant at subsequent study waves, possibly because a single item was used to assess social contact frequency compared to the more detailed questions in our previous study.

Strengths and limitations
This study’s longer follow-up than any previous study examining the association between leisure activity participation and incident dementia and our repeated measurements of activity participation allowed us to examine the potential of reverse association more thoroughly than previously possible. However, our study has limitations. Ascertainment of dementia from electronic health records, rather than through standardised assessment of all study participants, misses undiagnosed cases (22% for HES, one of three databases used in this study), which are more likely to be mild cases, and could result in bias if missed or delayed diagnostic recording were associated with leisure activity participation. This is plausible as those with lower leisure activity participation may have fewer contacts to encourage health-seeking behaviour or lack an informant to give accurate information in clinical settings, though, to our knowledge, no studies have reported association of leisure activity participation with diagnostic sensitivity and results from studies examining other aspects of social participation have been variable. The electronic health records also do not accurately tell us the time of symptom onset, which is typically around 3 years earlier than diagnosis, meaning that the prodromal leisure activity decline would be of shorter duration than the 8 years we have identified. Furthermore, health records do not yet contain comprehensive information about dementia subtype, meaning that we were unable to consider associations between activity participation and particular forms of dementia. However, the databases used for dementia ascertainment cover the predominant UK diagnostic settings and using electronic health records ensures analysis on all participants rather than only those who agree to an in-person assessment, thereby reduces risk of attrition bias.

The range of leisure activities was comprehensive but not exhaustive; some participants may have taken part in other beneficial activities such as watching football or visiting libraries which were not
covered in the questionnaire. Furthermore, data were available only on frequency of participation and other aspects such as duration, intensity, and quality of involvement in these activities were not available, although they would be expected to be linked to frequency. In addition we were unable to distinguish whether people engaged in specific activities once or many times over a week. The use of self-report allowed repeated assessment of frequency of activity participation and, while self-report is susceptible to measurement error, the fact that our assessments took place so long before dementia onset means that systematic bias in reporting is unlikely.

The study population of predominantly White, male, London-based civil servants may limit generalisability but our sample did include people from a wide range of socio-economic backgrounds. Loss to follow-up was more likely to occur in older, female, unmarried people and those who went on to develop dementia, but results using multiple imputation to account for missing data due to attrition or non-response were consistent with our primary analyses, suggesting that attrition is not an important source of bias for our findings. We combined type 1 and type 2 diabetes mellitus as a single covariate which have potentially different outcomes, but the majority of the diabetes cases (85%) in our study were diagnosed after study baseline when participants were in midlife, implying that these are type 2 diabetes. Finally, unmeasured confounders may have affected our results as is always the case in observational studies; we have performed several sensitivity analyses and their results are in line with the main analyses.

Clinical implications and future research
While leisure activity may benefit mental and physical health, we failed to find evidence that activity participation in midlife would protect against the development of dementia. These findings do not question the importance of leisure activities for general health and well-being; the conclusions drawn in this study are specifically for prevention of dementia. Considering the challenges of conducting randomised controlled trials of midlife lifestyle modifications to reduce dementia risk, the examination of potential risk factors using cohort studies with sufficiently long follow-up to reduce risk of reverse association bias is essential to guide future trials with greater chance of success. There is currently no clear evidence suggesting that modification of leisure activity participation is a priority target for dementia prevention trials.

Our novel finding of association of dementia with activity decline and the timing of this decline suggests that changes in leisure activity participation may be a prodromal feature of dementia, which is consistent with retrospective accounts of decline in participation in activities preceding dementia onset. There should therefore be awareness amongst clinicians that those who decrease leisure activities in the absence of other causes might be developing dementia.
Future research should aim to characterise the timing of activity decline in relation to other symptoms in greater detail. This may require more accurate methods for measuring activity participation than self-report, which may be inconsistent in people with memory problems, so technological approaches to in vivo measurement should be evaluated, and dementia status ascertainment should aim to accurately clarify time of dementia onset. Furthermore, understanding of the reasons for social decline is limited, so more detailed assessment of socio-behavioural, cognitive, and neurobiological correlates of social decline in cognitive disorders may elucidate disease processes and identify modifiable risk factors for social decline. These could be targeted in future research aiming to improve social engagement and maximise quality of life for people with dementia and their families.

Acknowledgments
We thank all of the participating civil service departments and their welfare, personnel, and establishment officers; the British Occupational Health and Safety Agency; the British Council of Civil Service Unions; all participating civil servants in the Whitehall II study; and all members of the Whitehall II study team. The Whitehall II Study team comprises research scientists, statisticians, study coordinators, nurses, data managers, administrative assistants and data entry staff, who make the study possible.
Appendix 1: Authors

Author	Location	Role
Andrew Sommerlad PhD	University College London, UK	Statistical Analysis, Design and conceptualisation of the study; conducted the data analysis plan; drafted the manuscript and all figures.
Severine Sabia PhD	INSERM, France	Design and conceptualisation of the study; interpreted the data; revised the manuscript for intellectual content.
Gill Livingston MD	University College London, UK	Design and conceptualisation of the study; interpreted the data; revised the manuscript for intellectual content.
Mika Kivimäki PhD	University College London, UK	Major role in acquisition of data; interpreted the data; revised the manuscript for intellectual content.
Glyn Lewis PhD	University College London, UK	Interpreted the data; revised the manuscript for intellectual content.
Archana Singh-Manoux PhD	INSERM, France	Design and conceptualisation of the study; interpreted the data; revised the manuscript for intellectual content.
References

1. Public Health England. Dementia: applying All Our Health [online]. Available at: https://www.gov.uk/government/publications/dementia-applying-all-our-health/dementia-applying-all-our-health. Accessed January.

2. Yates LA, Ziser S, Spector A, Orrell M. Cognitive leisure activities and future risk of cognitive impairment and dementia: Systematic review and meta-analysis. International psychogeriatrics 2016;28:1791-1806.

3. Stern Y. Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology 2012;11:1006-1012.

4. Resnick B, Orwig D, Magaziner J, Wynne C. The effect of social support on exercise behavior in older adults. Clinical Nursing Research 2002;11:52-70.

5. Weuve J, Proust-Lima C, Power MC, et al. Guidelines for reporting methodological challenges and evaluating potential bias in dementia research. Alzheimer's & Dementia 2015;11:1098-1109.

6. Marmot M, Brunner E. Cohort Profile: the Whitehall II study. International journal of epidemiology 2005;34:251-256.

7. Singh-Manoux A, Richards M, Marmot M. Leisure activities and cognitive function in middle age: evidence from the Whitehall II study. Journal of Epidemiology & Community Health 2003;57:907-913.

8. Nasermoaddeli A, Sekine M, Kumari M, Chandola T, Marmot M, Kagamimori S. Association of sleep quality and free time leisure activities in Japanese and British civil servants. Journal of occupational health 2005;47:384-390.

9. NHS Digital. Data Services - NHS Digital [online]. Available at: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services. Accessed 03/09/2019.

10. Department of Health. Living well with dementia: A national dementia strategy: Department of Health, 2009.

11. World Health Organisation. The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organisation, 1992.

12. NHS Digital. Recorded Dementia Diagnoses - July 2019 [online]. Available at: https://digital.nhs.uk/data-and-information/publications/statistical/recorded-dementia-diagnoses/july-2019. Accessed 03/09/2019.

13. Sommerlad A, Perera G, Singh-Manoux A, Lewis G, Stewart R, Livingston G. Accuracy of general hospital dementia diagnoses in England: Sensitivity, specificity, and predictors of diagnostic accuracy 2008–2016. Alzheimer's & Dementia 2018;14:933-943.

14. Perera G, Stewart R, Higginson IJ, Sleeman KE. Reporting of clinically diagnosed dementia on death certificates: retrospective cohort study. Age and ageing 2016;45:668-673.

15. Singh-Manoux A, Kivimaki M, Glymour MM, et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ (Clinical research ed) 2012;344:d7622.

16. Cox DR, Oakes D. Analysis of survival data: CRC Press, 1984.

17. Rubin DB. Multiple imputation for nonresponse in surveys: John Wiley & Sons, 2004.

18. Almeida OP, Yeap BB, Alfonso H, Hankey GJ, Flicker L, Norman PE. Older men who use computers have lower risk of dementia. PloS one 2012;7:e44239.

19. Fritsch T, Smyth KA, Debanne SM, Petot GJ, Friedland RP. Participation in novelty-seeking leisure activities and Alzheimer's disease. Journal of geriatric psychiatry and neurology 2005;18:134-141.
22. Lindstrom HA, Fritsch T, Petot G, et al. The relationships between television viewing in midlife and the development of Alzheimer’s disease in a case-control study. Brain and cognition 2005;58:157-165.
23. Wilson R, Scherr P, Schneider J, Tang Y, Bennett D. Relation of cognitive activity to risk of developing Alzheimer disease. Neurology 2007;69:1911-1920.
24. Najar J, Östling S, Gudmundsson P, et al. Cognitive and physical activity and dementia: A 44-year longitudinal population study of women. 2019;92:e1322-e1330.
25. Paillard-Borg S, Fratiglioni L, Winblad B, Wang H-X. Leisure activities in late life in relation to dementia risk: principal component analysis. Dementia and geriatric cognitive disorders 2009;28:136-144.
26. Sattler C, Toro P, Schönknecht P, Schröder J. Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry research 2012;196:90-95.
27. Sorman DE, Sundstrom A, Ronnlund M, Adolfsson R, Nilsson LG. Leisure activity in old age and risk of dementia: a 15-year prospective study. Journals of Gerontology Series B-Psychological Sciences & Social Sciences 2014;69:493-501.
28. Zhou Z, Wang P, Fang Y. Social Engagement and Its Change are Associated with Dementia Risk among Chinese Older Adults: A Longitudinal Study. Scientific reports 2018;8:1551.
29. Fancourt D, Steptoe A, Cedar D. Cultural engagement and cognitive reserve: museum attendance and dementia incidence over a 10-year period. The British Journal of Psychiatry 2018;213:661-663.
30. Wilson RS, Leurgans SE, Boyle PA, Bennett DA. Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. Archives of neurology 2011;68:351-356.
31. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine 2012;367:795-804.
32. Amieva H, Le Goff M, Millet X, et al. Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 2008;64:492-498.
33. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. Jama 2002;288:1475-1483.
34. Donaghy PC, Taylor J-P, O'Brien J, et al. Neuropsychiatric symptoms and cognitive profile in mild cognitive impairment with Lewy bodies. Psychological medicine 2018;48:2384-2390.
35. Van Der Linde RM, Dening T, Stephan BC, Prina AM, Evans E, Brayne C. Longitudinal course of behavioural and psychological symptoms of dementia: systematic review. The British Journal of Psychiatry 2016;209:366-377.
36. Ismail Z, Smith EE, Geda Y, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: Provisional diagnostic criteria for mild behavioral impairment. Alzheimer’s & Dementia 2016;12:195-202.
37. Chiong W, Wilson SM, D’Esposito M, et al. The salience network causally influences default mode network activity during moral reasoning. Brain : a journal of neurology 2013;136:1929-1941.
38. Cosentino S, Zahodne LB, Brandt J, et al. Social cognition in Alzheimer’s disease: A separate construct contributing to dependence. Alzheimer’s & Dementia 2014;10:818-826.
39. Singleton D, Mukadam N, Livingston G, Sommerlad A. How people with dementia and carers understand and react to social functioning changes in mild dementia: qualitative study. BMJ Open 2017;7:e016740.
40. Iturria-Medina Y, Sotero RC, Toussaint PJ, et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nature communications 2016;7:11934.
41. Cooper C, Lodwick R, Walters K, et al. Inequalities in receipt of mental and physical healthcare in people with dementia in the UK. Age and ageing 2016;46:393-400.
42. Kuźma E, Lourida I, Moore SF, Levine DA, Ukoumunne OC, Llewellyn DJ. Stroke and dementia risk: A systematic review and meta-analysis. Alzheimer's & Dementia 2018;14:1416-1426.
43. Sommerlad A, Sabia S, Singh-Manoux A, Lewis G, Livingston G. Association of social contact with dementia and cognition: 28-year follow-up of the Whitehall II cohort study. PLoS medicine 2019;16:e1002862.
44. Savva GM, Arthur A. Who has undiagnosed dementia? A cross-sectional analysis of participants of the Aging, Demographics and Memory Study. Age & Ageing 2015;44:642-647.
45. Valcour VG, Masaki KH, Curb JD, Blanchette PL. The detection of dementia in the primary care setting. Archives of Internal Medicine 2000;160:2964-2968.
46. Draper B, Cations M, White F, et al. Time to diagnosis in young-onset dementia and its determinants: the INSPIRED study. International journal of geriatric psychiatry 2016;31:1217-1224.
47. Van Vliet D, De Vugt M, Bakker C, et al. Time to diagnosis in young-onset dementia as compared with late-onset dementia. Psychological medicine 2013;43:423-432.
48. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol 2008;4:1-32.
Figure 1. Flow chart of participants in study (n=8,280)

Whitehall II study baseline participants (N = 10,308)

- Excluded (n = 2,028):
 - Did not participate in 1997-99, 2002-04, 2007-09 waves (1,786)
 - Deceased (239)
 - Prevalent dementia (3)

Participants of 1997-99, 2002-04, or 2007-09 study wave (n = 8,280)

- 1997-99
 - Excluded (n = 410):
 - Did not participate (410)
 - Deceased (0)
 - Participants (n = 7,870)
 - Incident dementia (n = 350)
 - Excluded (n = 1,820):
 - Prevalent dementia (0)
 - Missing exposure or covariate data (1,820)
 - Included in complete case analysis (n = 6,050)
 - Incident dementia (n = 247)

- 2002-04
 - Excluded (n = 1,313):
 - Did not participate (1,170)
 - Deceased (143)
 - Participants (n = 6,967)
 - Incident dementia (n = 289)
 - Excluded (n = 1,075):
 - Prevalent dementia (2)
 - Missing exposure or covariate data (1,073)
 - Included in complete case analysis (n = 5,892)
 - Incident dementia (n = 214)

- 2007-09
 - Excluded (n = 1,519):
 - Did not participate (1,132)
 - Deceased (387)
 - Participants (n = 6,761)
 - Incident dementia (n = 218)
 - Excluded (n = 1,230):
 - Prevalent dementia (4)
 - Missing exposure or covariate data (1,226)
 - Included in complete case analysis (n = 5,531)
 - Incident dementia (n = 154)
| Characteristic | All participants n=8,280 | No dementia n=7,920 | Dementia n=360 | p value | Mean leisure activity score (SD) | p value |
|------------------------------------|--------------------------|---------------------|----------------|----------|---------------------------------|---------|
| **Sex** | | | | | | |
| Female | 2,543 30.7 | 2,400 30.3 | 143 39.7 | <0.001 | 16.5 (m), 14.1 (f) | <0.001 |
| Male | 5,737 69.3 | 5,520 70.7 | 217 60.3 | | | |
| **Age** | | | | | | |
| Mean (SD) | 55.9 (6.0) | 55.7 (6.0) | 61.5 (4.7) | | | |
| Min, max | 44.8, 69.2 | 44.8, 69.1 | 46.2, 69.2 | <0.001 | | |
| **Marital status** | | | | | | |
| Married | 6,275 75.8 | 6,019 95.9 | 256 41.4 | <0.001 | 16.2 (5.1) | <0.001 |
| Single | 1,134 13.7 | 1,079 95.2 | 55 3.9 | | | |
| Divorced | 248 3.0 | 230 92.7 | 18 7.3 | | | |
| Widowed | 623 7.5 | 592 95.0 | 31 5.0 | | | |
| **Ethnicity** | | | | | | |
| White | 7,534 91.0 | 7,222 91.2 | 312 86.7 | 0.003 | 16.1 (w), 12.1 (o) | <0.001 |
| Non-white | 1,046 13.0 | 728 94.4 | 78 21.3 | | | |
| **Educational attainment** | | | | | | |
| No qualifications | 967 11.7 | 900 93.1 | 67 6.9 | | 13.4 (5.3) | |
| Lower secondary | 2,796 33.8 | 2,656 95.0 | 140 5.0 | | 15.4 (5.2) | <0.001 |
| Higher secondary | 2,207 26.7 | 2,135 96.7 | 72 3.3 | | 16.4 (5.0) | <0.001 |
| Graduate | 1,743 21.1 | 1,686 96.7 | 57 3.3 | | 14.7 (4.9) | |
| Postgraduate | 567 6.9 | 543 95.8 | 24 4.2 | | 16.8 (5.2) | |
| **Occupational position** | | | | | | |
| Professional | 999 12.1 | 953 95.4 | 46 4.6 | | 18.1 (4.9) | |
| Managerial | 1,652 20.0 | 1,597 96.7 | 55 3.3 | | 17.4 (4.8) | |
| Skilled non-manual | 1,223 14.8 | 1,180 95.5 | 43 5.5 | | 16.8 (4.6) | <0.001 |
| Skilled manual | 1,664 20.1 | 1,616 97.1 | 48 2.9 | | 15.7 (4.8) | |
| Partly skilled | 1,195 14.4 | 1,142 95.6 | 53 4.4 | | 14.5 (4.9) | |
| Non-skilled | 1,547 18.7 | 1,432 92.6 | 115 7.4 | | 12.0 (5.0) | |
| **Employment status** | | | | | | |
| Employed | 5,474 66.1 | 5,345 97.6 | 129 2.4 | <0.001 | 15.3 (5.0) | <0.001 |
| Retired/unemployed | 2,806 33.9 | 2,575 91.8 | 121 8.2 | | 16.6 (5.5) | |
| **Alcohol (unit/wk)** | | | | | | |
| Mean (SD) | 3.3 (3.3) | 3.3 (3.2) | 3.2 (3.5) | <0.001 | 14.8 (5.8) | |
| Min, max | 0.3, 6.7 | 0.3, 6.0 | 0, 20 | | | |
| **Physical activity (hr/wk)** | | | | | | |
| Mean (SD) | 15.4 (4.8) | 15.4 (4.8) | 18.5 (4.7) | 0.39 | 15.5 (y), 15.8 (n) | 0.25 |
| Min, max | 15,48.5 | 15.4, 48.5 | 18.5, 47.7 | | | 0.82 |
| **Prevalent coronary heart disease**| 553 6.7 | 515 6.5 | 38 10.6 | 0.003 | 15.5 (y), 15.8 (n) | <0.001 |
| **Prevalent hypertension** | 2,384 28.8 | 2,225 28.1 | 159 44.2 | <0.001 | 15.8 (y), 15.8 (n) | <0.001 |
| **Prevalent diabetes mellitus** | 454 5.5 | 410 5.2 | 44 12.2 | <0.001 | 14.8 (y), 15.8 (n) | <0.001 |
| **Prevalent stroke** | | | | | | |
| Mean (SD) | 15.8 (5.2) | 15.8 (5.2) | 15.0 (5.7) | 0.02 | 14.7 (y), 15.8 (n) | 0.39 |
| Min, max | 0.3, 33 | 0.3, 32 | 0, 33 | | | |
| **Key:** | | | | | | |
| f = female; hr = hours; m = male; min = minimum; max = maximum; n = no; o = other; SD = standard deviation; w = white; wk = week; y = yes. | | | | | | |
| **Notes:** | | | | | | |
| If no missing data information then missing = 0; p-value from chi-squared test for categorical/categorical data, independent t-test for categorical/continuous data, and Pearson’s correlation coefficient for continuous/continuous data | | | | | | |

Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Table 2: Description of leisure activity scale and individual activities

Wave of data collection (n)	1997-99 (7,870)	2002-04 (6,967)	2007-09 (6,761)	
Total Leisure activity score (Range 0-39)				
Mean (SD)	15.8 (5.2)	18.1 (5.3)	18.4 (5.3)	
Observed Range	0, 33	0, 35	2, 36	
Missing (%)	1,420 (18.0)	626 (9.0)	574 (8.5)	
Involvement in clubs and organisations, voluntary or official	Mean (SD)	1.0 (1.3)	0.9 (1.2)	1.0 (1.2)
Courses and education / evening classes	Mean (SD)	0.5 (1.1)	0.7 (1.1)	0.6 (1.1)
Cultural visits to stately homes, galleries, theatres, cinema, live music events	Mean (SD)	1.3 (0.9)	1.5 (0.8)	1.5 (0.8)
Positions of office; school governor, councillor etc.	Mean (SD)	0.2 (0.7)	0.4 (0.9)	0.5 (1.0)
Social indoor games, cards, bingo, chess	Mean (SD)	0.5 (1.0)	0.7 (1.0)	0.7 (1.0)
Individual occupations e.g. reading, listening to music	Mean (SD)	2.8 (0.7)	2.8 (0.6)	2.8 (0.5)
Using a home computer for leisure	Mean (SD)	1.0 (1.3)	1.8 (1.3)	2.3 (1.2)
Gardening	Mean (SD)	2.1 (1.2)	2.1 (1.1)	2.1 (1.1)
Going to pubs and social clubs	Mean (SD)	1.2 (1.2)	1.4 (1.1)	1.3 (1.1)
Household tasks, e.g. DIY, maintenance, decorating	Mean (SD)	1.6 (1.2)	1.9 (1.0)	1.7 (1.1)
Practical activities, making things with your hands, e.g. pottery, drawing	Mean (SD)	0.7 (1.1)	1.0 (1.1)	0.9 (1.1)
Religious activities/observance	Mean (SD)	0.8 (1.2)	0.9 (1.2)	0.9 (1.2)
Visiting friends or relatives	Mean (SD)	2.1 (0.9)	2.1 (0.8)	2.2 (0.8)
Table 3: Association between 1 SD higher score on leisure activity scale and subsequent dementia.

Study wave	1997-99	2002-04	2007-09
Mean Age (standard deviation)	55.8 (6.0)	61.0 (6.0)	65.7 (5.9)
Follow-up, years (standard deviation), max	18.0 (3.2), 20.0	13.0 (2.2), 14.5	8.3 (1.4), 9.7
Number included in fully adjusted model	6,050	5,892	5,531
Number of incident dementia cases	247	214	154

Leisure activities scale*	Adjustments	Hazard ratio* (95% confidence interval)		
	Age and sex (model 1)	0.85 (0.75, 0.96)	0.81 (0.71, 0.93)	0.70 (0.60, 0.82)
	Model 1 + education, socio-economic status, ethnicity, employment and marital status (model 2)	0.88 (0.77, 1.02)	0.83 (0.72, 0.96)	0.77 (0.65, 0.91)
	Model 2 + smoking, alcohol and physical activity (model 3)	0.93 (0.80, 1.08)	0.88 (0.76, 1.03)	0.82 (0.68, 0.98)
	Model 3 + body mass index, diabetes, hypertension, coronary heart disease, stroke (model 4)	0.92 (0.79, 1.06)	0.88 (0.76, 1.03)	0.82 (0.69, 0.98)

Notes: Results in bold indicate p<0.05; *Hazard ratio per standard deviation higher activity participation
Figure 2. Association of each leisure activity in 1997-99 with subsequent incident dementia

Activity	HR (95% CI)
Involvement in clubs and organizations, voluntary or official	1.07 (0.97, 1.17)
Courses and education/evening classes	1.04 (0.93, 1.16)
Cultural visits to cultural homes, galleries, theaters, cinema, live music, events	0.92 (0.80, 1.07)
Positions of office: school governor, councillor, etc.	0.98 (0.84, 1.10)
Social indoor games, cards, bingo, chess	0.96 (0.86, 1.07)
Individual occupations (e.g., reading, listening to music)	0.95 (0.80, 1.14)
Using a home computer for leisure	1.00 (0.90, 1.10)
Gardening	0.92 (0.82, 1.04)
Going to pubs and social clubs	0.94 (0.84, 1.06)
Household tasks, e.g., DIY, maintenance, decorating	0.97 (0.85, 1.11)
Practical activities, making things with your hands e.g., pottery, drawing	0.92 (0.83, 1.03)
Religious activities/conservancy	1.14 (0.94, 1.38)
Visiting friends or relatives	0.85 (0.74, 0.98)

Notes: Hazard ratios show HR for dementia for 1-point higher score on each leisure activity; adjusted for age, sex, occupational position, education, ethnicity, employment status, marital status, smoking, physical activity, alcohol consumption, body mass index, diabetes mellitus, hypertension, coronary heart disease, and stroke.
Table 4: Association between each leisure activity and subsequent incident dementia

Study wave	1997-99	2002-04	2007-09
Mean Age (standard deviation)	55.8 (6.0)	61.0 (6.0)	65.7 (5.9)
years f/u (standard deviation), max	18.0 (3.2), 20.0	13.0 (2.2), 14.5	8.3 (1.4), 9.7
Number included in fully adjusted model	6,050	5,892	5,531
Number of incident dementia cases	247	214	154
Involvement in clubs and organisations, voluntary or official	1.07 (0.97, 1.17)	1.01 (0.90, 1.13)	1.01 (0.88, 1.15)
Courses and education / evening classes	1.04 (0.93, 1.16)	0.97 (0.86, 1.10)	0.94 (0.80, 1.10)
Cultural visits to stately homes, galleries, theatres, cinema, live music events	0.92 (0.80, 1.07)	0.91 (0.77, 1.09)	0.98 (0.80, 1.20)
Positions of office; school governor, councillor etc	0.98 (0.81, 1.20)	0.88 (0.74, 1.05)	**0.77 (0.60, 0.98)**
Social indoor games, cards, bingo, chess,	0.96 (0.84, 1.10)	0.99 (0.86, 1.14)	1.15 (0.99, 1.33)
Individual occupations e.g. reading, listening to music	0.95 (0.80, 1.14)	0.87 (0.70, 1.07)	**0.79 (0.63, 0.99)**
Using a home computer for leisure	1.00 (0.90, 1.10)	1.00 (0.90, 1.12)	**0.83 (0.73, 0.94)**
Gardening	0.92 (0.82, 1.04)	0.96 (0.83, 1.10)	0.91 (0.78, 1.07)
Going to pubs and social clubs	0.94 (0.84, 1.06)	1.01 (0.88, 1.15)	0.95 (0.81, 1.11)
Household tasks, e.g. DIY, maintenance, decorating	0.97 (0.85, 1.11)	0.91 (0.78, 1.06)	**0.77 (0.64, 0.92)**
Practical activities, making things with your hands, e.g. pottery, drawing	0.92 (0.83, 1.03)	0.88 (0.78, 1.01)	0.98 (0.85, 1.14)
Religious activities/observance	1.04 (0.94, 1.15)	1.03 (0.92, 1.15)	1.02 (0.89, 1.16)
Visiting friends or relatives	**0.85 (0.74, 0.98)**	0.86 (0.73, 1.01)	0.96 (0.79, 1.16)

Notes: All separate models adjusted for age, sex, education, occupational position, ethnicity, employment status, marital status, smoking, alcohol, exercise, body mass index, hypertension, diabetes, coronary heart disease, and stroke at leisure activity measurement. Bold results indicate p<0.05
Table 5: Association between change in leisure activity scale from 1997-99 to 2007-09 and subsequent incident dementia

Change in total leisure activity scale	Continuous (per standard deviation change (decline) in leisure activity)	Categorical (n of dementia cases / n of participants)
	Adjusted for age and sex (model 1)	Remain low (17 / 820)
	1.33 (1.11, 1.58)	1 (reference)
	Model 1 + leisure activity participation at 1997-99 (model 2)	Remain medium (19 / 770)
	1.49 (1.22, 1.81)	1.11 (0.56, 2.17)
	Model 2 + education, socio-economic status, ethnicity, employment and marital status (model 3)	Remain high (31 / 892)
	1.41 (1.15, 1.72)	0.83 (0.42, 1.62)
	Model 3 + smoking, alcohol and physical activity (model 4)	Increasing (15 / 997)
	1.34 (1.09, 1.65)	0.82 (0.40, 1.70)
	Model 4 + body mass index, diabetes, hypertension, coronary heart disease, stroke (model 5)	Decreasing (53 / 1,159)
	1.35 (1.10, 1.66)	1.57 (0.89, 2.76)

Notes: Covariates taken from measurement at 2007-09.
Leisure activity participation and risk of dementia: 18 year follow-up of the Whitehall II Study
Andrew Sommerlad, Séverine Sabia, Gill Livingston, et al.
Neurology published online October 28, 2020
DOI 10.1212/WNL.0000000000010966

This information is current as of October 28, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2020/10/28/WNL.0000000000010966.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cognitive Disorders/Dementia
http://n.neurology.org/cgi/collection/all_cognitive_disorders_dementia
Cognitive aging
http://n.neurology.org/cgi/collection/cognitive_aging
Cohort studies
http://n.neurology.org/cgi/collection/cohort_studies
Risk factors in epidemiology
http://n.neurology.org/cgi/collection/risk_factors_in_epidemiology

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise