Supporting Information

^BuOLi-Promoted Hydroboration of Esters and Epoxides

Yinyin Shi,^a Yue Wang,^a Zhefan Huang,^a Fangjun Zhang^b* and Yinlin Shao^a*

^a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

^b School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035 (China)

Email: zhangfj@wmu.edu.cn; shaoyl@wzu.edu.cn

Table of Contents

1. General procedure for the hydroboration of lactones and epoxides..............................S2
2. ^BuOLi-promoted decomposition of HBpin by 11B NMR spectroscopy.............................S3
3. ^BuOLi-promoted decomposition of Catecholborane by 11B NMR spectroscopy..................S4
4. ^BuOLi-promoted decomposition of HBdan by 11B NMR spectroscopy............................S4
5. ^BuOLi-promoted decomposition of 9-BBN by 11B NMR spectroscopy..............................S5
6. Copies of 1H and 13C NMR spectra..S7
1. General procedure for the hydroboration of lactones and epoxides.
1.1 Procedure for the lactones

In a nitrogen-filled glovebox, to a 10 mL Schlenk reaction tube equipped with a magnetic stirrer,
$tBuOLi$ (8.0 mg, 5 mol%), THF (1.0 mL), HBpin (2.5 mmol) and the corresponding lactones (1 mmol) were added in sequence. The reaction mixture was then heated at 100 °C (oil bath) with vigorous stirring for 24 hours. Thereafter, the reaction mixture was cooled down to room temperature and NaOH/MeOH (2 mL, 10 % aq.) solution was added. The resulting mixture was stirred overnight for complete hydrolysis. Organic compounds were extracted from the mixture with CH$_2$Cl$_2$ (3 x 12 mL). The organic fraction was dried over Na$_2$SO$_4$ and all volatiles were removed using rotary evaporator. The crude mixture was monitored by 1H NMR analysis using biphenyl or hexamethylbenzene as internal standard. The crude mixture was purified by flash column chromatography using PE/EtOAc (2/1) as the eluent to give the corresponding products.

1.2 Procedure for the epoxides

In a nitrogen-filled glovebox, to a 10 mL Schlenk reaction tube equipped with a magnetic stirrer,
$tBuOLi$ (4.0 mg, 5 mol%), THF (1.0 mL), HBpin (2.5 mmol) and the corresponding epoxides (1 mmol) were added in sequence. The reaction mixture was then heated at 100 °C (oil bath) with vigorous stirring for 24 hours. Thereafter, the reaction mixture was cooled down to room temperature and
NaOH/MeOH (2 mL, 10 % aq.) solution was added. The resulting mixture was stirred overnight for complete hydrolysis. Organic compounds were extracted from the mixture with CH$_2$Cl$_2$ (3 x 12 mL). The organic fraction was dried over Na$_2$SO$_4$ and all volatiles were removed using rotary evaporator. The crude mixture was monitored by 1H NMR analysis using hexamethylbenzene as internal standard. The crude mixture was purified by flash column chromatography using PE/EtOAc (3/1) as the eluent to give the corresponding products.

2. tBuOLi-catalyzed decomposition of HBpin by 11B NMR spectroscopy.

A stock solution of HBpin (262.4 mg, 2.05 mmol), dimethyl sulfide (9 µL, 0.12 mmol) and tBuOLi (9.6 mg, 0.12 mmol) in C$_6$D$_6$ (0.5 ml) were prepared under N$_2$. The reaction was heated to 100 °C for 30 minutes with stirring. Then 11B NMR spectrum was recorded.

![Figure S1: 11B-NMR spectrum of tBuOLi+HBpin+SMe$_2$ at 100 °C (160M, C$_6$D$_6$).](image)
3. ^{1}BuOLi-catalyzed decomposition of Catecholborane by 11B NMR spectroscopy.

A stock solution of Catecholborane (246 mg, 2.05 mmol), dimethyl sulfide (9 µL, 0.12 mmol) and ^{1}BuOLi (16.8 mg, 0.21 mmol) in C$_6$D$_6$ (0.5 ml) were prepared under N$_2$. The reaction was heated to 100 ºC for 30 minutes with stirring. Then 11B NMR spectrum was recorded.

![Figure S2: 11B-NMR spectrum of 1BuOLi+ Catecholborane +SMe$_2$ at 100 ºC (400M, C$_6$D$_6$).](image)

4. ^{1}BuOLi-catalyzed decomposition of HBdan by 11B NMR spectroscopy.

A stock solution of HBdan (344.4 mg, 2.05 mmol), dimethyl sulfide (9 µL, 0.12 mmol) and ^{1}BuOLi (9.6 mg, 0.12 mmol) in C$_6$D$_6$ (0.5 ml) were prepared under N$_2$. The reaction was heated to 100 ºC for 30 minutes with stirring. Then 11B NMR spectrum was recorded.
Figure S3. 11B-NMR spectrum of tBuOLi+HBdan+SM$_2$ at 100 °C (400M, C$_6$D$_6$).

5. tBuOLi-catalyzed decomposition of 9-BBN by 11B NMR spectroscopy.

A stock solution of 9-BBN (250.1 mg, 2.05 mmol), dimethyl sulfide (9 µL, 0.12 mmol) and tBuOLi (9.6 mg, 0.12 mmol) in C$_6$D$_6$ (0.5 ml) were prepared under N$_2$. The reaction was heated to 100 °C for 30 minutes with stirring. Then 11B NMR spectrum was recorded.
Figure S4: ^{11}B-NMR spectrum of $^3\text{BuOLi}+9\text{-BBN}+\text{SMe}_2$ at 100 °C (400M, C$_6$D$_6$).
6. Copies of 1H and 13C NMR Spectra

1H NMR (500 MHz, CDCl$_3$) of compound 2a

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2a

57
1H NMR (500 MHz, CDCl$_3$) of compound 2b

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2b
1H NMR (500 MHz, CDCl$_3$) of compound 2c

13C (1H) NMR (125 MHz, CDCl$_3$) of compound 2c
1H NMR (500 MHz, CDCl$_3$) of compound 2d

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2d
1H NMR (500 MHz, CDCl$_3$) of compound 2e

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2e
1H NMR (500 MHz, CDCl$_3$) of compound 2f

13C\{1H\} NMR (125 MHz, CDCl$_3$) of compound 2f
1H NMR (500 MHz, CDCl$_3$) of compound 2g

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2g
1H NMR (500 MHz, CDCl$_3$) of compound 2h

13C{H} NMR (125 MHz, CDCl$_3$) of compound 2h
1H NMR (500 MHz, CDCl$_3$) of compound 2i

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2i
1H NMR (500 MHz, CDCl$_3$) of compound 2j

13C\{1H\} NMR (125 MHz, CDCl$_3$) of compound 2j
1H NMR (500 MHz, CDCl$_3$) of compound 2k

13C(1H) NMR (125 MHz, CDCl$_3$) of compound 2k
1H NMR (500 MHz, CDCl$_3$) of compound 2l

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2l
1H NMR (500 MHz, CDCl$_3$) of compound 2m

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2m
1H NMR (500 MHz, CDCl$_3$) of compound 2n

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2n
1H NMR (500 MHz, CDCl$_3$) of compound 2o

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2o
1H NMR (500 MHz, CDCl$_3$) of compound 2p

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2p
1H NMR (500 MHz, CDCl$_3$) of compound 2q

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2q
1H NMR (500 MHz, CDCl$_3$) of compound 2r

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2r
1H NMR (500 MHz, CDCl$_3$) of compound 2s

13C\{1H\} NMR (125 MHz, CDCl$_3$) of compound 2s
1H NMR (500 MHz, CDCl$_3$) of compound 2t

13C {1H} NMR (125 MHz, CDCl$_3$) of compound 2t
1H NMR (500 MHz, CDCl$_3$) of compound 2u

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2u
1H NMR (500 MHz, CDCl$_3$) of compound 2v

13C\{1H\} NMR (125 MHz, CDCl$_3$) of compound 2v
1H NMR (500 MHz, CDCl$_3$) of compound 2w

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2w
1H NMR (500 MHz, CDCl$_3$) of compound 2x

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2x
1H NMR (500 MHz, CDCl$_3$) of compound 2y

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2y
1H NMR (500 MHz, CDCl$_3$) of compound 2z

13C-1H NMR (125 MHz, CDCl$_3$) of compound 2z
1H NMR (500 MHz, CDCl$_3$) of compound 2za

13C1H NMR (125 MHz, CDCl$_3$) of compound 2za
1H NMR (500 MHz, CDCl$_3$) of compound 2zb

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zb
1H NMR (500 MHz, CDCl$_3$) of compound 2zc

13C\{1H\} NMR (125 MHz, CDCl$_3$) of compound 2zc
1H NMR (500 MHz, CDCl$_3$) of compound 2zd

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zd
1H NMR (500 MHz, CDCl$_3$) of compound 2ze

13C-1H NMR (125 MHz, CDCl$_3$) of compound 2ze
1H NMR (500 MHz, CDCl$_3$) of compound 2zf

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zf
1H NMR (500 MHz, CDCl$_3$) of compound 2zg

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zg
\(^1\)H NMR (500 MHz, CDCl\(_3\)) of compound 2zh

\(^{13}\)C\(^{\{1\}H\}\) NMR (125 MHz, CDCl\(_3\)) of compound 2zh
1H NMR (500 MHz, CDCl$_3$) of compound 2zi

13C-1H NMR (125 MHz, CDCl$_3$) of compound 2zi
1H NMR (500 MHz, CDCl$_3$) of compound 2zj

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zj
1H NMR (500 MHz, CDCl$_3$) of compound 2zk

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zk
1H NMR (500 MHz, CDCl$_3$) of compound 2zl

13C1H NMR (125 MHz, CDCl$_3$) of compound 2zl
1H NMR (500 MHz, CDCl$_3$) of compound 2zm

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zm
1H NMR (500 MHz, CDCl$_3$) of compound 2zn

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 2zn
1H NMR (500 MHz, CDCl$_3$) of compound 2zo

13C1H NMR (125 MHz, CDCl$_3$) of compound 2zo
1H NMR (500 MHz, CDCl$_3$) of compound 2zo-1

13C{1}H NMR (125 MHz, CDCl$_3$) of compound 2zo-1
1H NMR (500 MHz, CDCl$_3$) of compound 1zp

13C{1H} NMR (125 MHz, CDCl$_3$) of compound 1zp
1H NMR (500 MHz, CDCl$_3$) of compound 2zp

13C (1H) NMR (125 MHz, CDCl$_3$) of compound 2zp