INTRODUCTION

Despite recent advances in diagnosis and treatment, esophageal cancer still has high mortality. Mean survival for squamous cell carcinoma (SCC) is 13.95 ± 11.2 months and for esophageal adenocarcinoma (EA) is 13.22 ± 10.23 months.

Prognostic factors associated with patient and with disease itself are multiple and poorly explored. Knowing these parameters can allow a better stratification of high-risk groups.

This study aims to assess demographic, clinical and pathological factors in esophageal cancer patients that impact in overall survival and prognostic.

METHODS

This study retrospectively reviewed esophageal cancer patients that were admitted at an oncology referral center between 2009 and 2012.

The analyzed variables were age, sex, performance status, past oncologic history, family oncologic history, tumor size, weight loss and body mass index, tumor location, grade of cellular differentiation, oncologic stage, lymphatic dissection, and curative intent resection.
The studied population was composed of 565 individuals (n=565), of which 444 were SCC and 105 EA. The remaining was composed of other less frequent tumors, such as neuroendocrine tumors.

Demographic, pathological and clinical characteristics were analyzed and compared to clinical stage and overall survival at 60 months. Average follow-up was 19.8 months.

Statistical Analysis
Regarding statistical analysis, to compare group means, ANOVA test was used; to analyze Kaplan-Meier curves, Log-Rank and Wilcoxon tests were used. Influence of prognostic variables was assessed by Cox regression. Significance level admitted was 0.05.

RESULTS

No difference was noted between SCC and EA overall survival curves. After five years, SCC presented 22.81% survival rate against 20.19% for EA (Figure 1).

![Figure 1](image1.png)

Of all of the EA patients, 30.4% were eligible for curative intent surgery. This proportion was 20% in SCC patients (p-value for Log-Rank 0.114; for Wilcoxon 0.042). After five years, survival for EA was 58% and for SCC 56.6%. By univariate analysis, curative intention resection was clearly associated to a better survival rate (p-value < 0.001). Figure 2 and 3 present overall survival curves according to oncologic stages at diagnosis.

Longitudinal neoplasm extension at diagnosis was compared to clinical oncologic stage. By Chi-square analysis, it was noted that neoplasm size relate to poor prognosis in SCC (p-value 0.00), but not in EA (p-value 0.173). By univariate Cox regression, only in SCC tumor size was related to survival (p-value 0.001).

Degree of cellular differentiation was related to poor oncologic stage at diagnosis in SCC (Chi-Sq=27.831; DF=6; p-value=0.00), but not in EA (Chi-Sq=7.943; DF=6; p-value=0.242).

Weight loss (kg), BMI variation (kg/m²) and percentage of weight loss from initial symptoms to the diagnosis of esophageal carcinoma are factors that predict worse oncologic stage at diagnosis in the SCC. In EA, this finding was not statistically significant (Figure 5). By logistic regression, BMI lower than 20 kg/m² was a predictor of poor survival rate.

Considering only patients submitted to curative intent surgery, more than 23 node resection could not reach a statistically significant improvement in survival rate by univariate analysis (p=0.678 in EA and p=0.493 in SCC).

![Figure 2](image2.png)

![Figure 3](image3.png)

By univariate and multivariate analysis (Tables 1 and 2), variables associated to poor survival rate in EA was weight loss, performance status at the moment of diagnosis and distal location tumors; for SCC, male sex, weight loss, performance status, past history of other malignances and delay in initiating treatment. For both carcinoma types, curative intention resection was more often associated to better prognosis.

DISCUSSION

Several factors have been related to prognosis in esophageal carcinoma. The present study analyzed prognostic factors associated to patients (age, gender, performance status, past oncologic history, family oncologic history, weight loss and body mass index); factors associated to neoplasm (tumor size, tumor location, grade of cellular differentiation, stage of cancer); and factors associated to treatment (quality of lymphadenopathy, curative intent resection).
TABLE 1 - Univariate and multivariate prognostic factors analysis for esophageal adenocarcinoma

Variable	Deaths	Total	%	Survival rate (%)	p-value	HR (95%)	p-value
				1 year			
						Superior	
						Inferior	
Sex							
Male	55	78	70,5	54.4	23.4	1.00	
Female	13	16	81.3	53.8	24.2	0.35	0.04
Age ≥ 50 years							
< 50 years	10	12	83.3	55.0	0.0	1.00	
≥ 50 years	58	82	70.7	56.2	26.2	0.62	0.08
BMI ≥ 20 kg/m²							
< 20 kg/m²	43	59	72.9	66.8	26.6	1.00	
≥ 20 kg/m²	17	21	81.0	21.6	10.8	4.42	1.09
Weight loss ≥ 5 kg							
< 5 kg	5	11	45.5	66.7	44.4	1.00	
≥ 5 kg	36	46	78.3	45.0	16.6	0.33	0.05
Tumor location							
Gastroesophageal junction	43	61	70.5	56.2	26.6	0.98	0.21
Distal	18	26	69.2	63.2	24.1	3.63	1.01
Middle	7	10	100	82.1	24.6	2.19	0.43
Clinical stage ≥ 4 months							
I	9	20	45.0	84.4	56.5	1.00	
II	55	68	80.9	47	9.5	12.39	0.34

†= not possible to estimate; ‡ = at the time of diagnosis; §= time between initial symptoms to diagnosis; ¶= time between diagnosis and initial oncologic treatment; HR = hazard ratio; ECOG = Eastern Cooperative Oncology Group performance status; KPS = Karnofsky performance status

TABLE 2 - Univariate and multivariate prognostic factors analysis for squamous cell carcinoma

Variable	Deaths	Total	%	Survival rate (%)	p-value	HR (95%)	p-value
				1 year			
						Superior	
						Inferior	
Sex							
Male	226	308	73.4	54.0	22.4	1.00	
Female	51	82	62.2	58.3	32.2	0.95	0.22
Age ≥ 50 years							
< 50 years	26	39	66.7	65.3	38.6	1.00	
≥ 50 years	25	31	71.5	53.8	22.9	0.89	0.31
BMI ≥ 20 kg/m²							
< 20 kg/m²	115	168	68.5	62.5	31.8	1.00	
≥ 20 kg/m²	131	174	75.3	42.1	12.6	1.23	0.71
Weight loss ≥ 5 kg							
< 5 kg	21	39	53.8	84.3	54.5	1.00	
≥ 5 kg	148	199	74.4	45.1	18.9	3.35	0.14
ECOG ≥ 2							
< 2	163	229	71.2	62.3	26.8	1.00	
≥ 2	86	113	76.1	31.7	11.0	1.71	0.66
KPS ≥ 70%							
< 70%	167	228	73.2	61.9	25.7	1.00	
≥ 70%	82	111	73.9	33.2	12.0	0.93	0.37
Positive post oncologic history							
Yes	241	337	71.5	52.6	23.2	1.00	
No	31	47	66.0	69.4	35.1	0.56	0.25
Positive familiar oncologic history							
No	164	238	68.9	58.7	26.3	1.00	
Yes	75	102	73.5	49.9	19.7	1.33	0.78
Delay for diagnosis ≥ 4 months							
< 4 months	108	151	71.5	51.3	24.7	1.00	
≥ 4 months	123	172	71.5	52.9	21.9	0.98	0.58
Delay for start treatment ≥ 4 months							
< 4 months	120	164	73.2	55.4	26.8	1.00	
≥ 4 months	96	144	66.7	69.0	31.0	0.58	0.34
Cellular differentiation grade ≥ 2	32	52	61.5	50.3	34.9	1.01	0.41
Tumor location							
Gastroesophageal junction	7	9	77.8	55.6	22.2	1.00	
Distal	59	95	62.1	66.7	32.6	2.16	0.27
Medium	173	233	74.2	52.1	22.6	2.50	0.32
Cervical	37	51	72.5	47.6	21.1	2.45	0.29
Clinical stage ≥ 4 months							
I	40	75	53.3	76.8	51.7	1.00	
II	212	284	74.6	50	17.2	1.06	0.46

‡= at the time of diagnosis; §= time between initial symptoms to diagnosis; ¶= time between diagnosis and initial oncologic treatment; HR = hazard ratio; ECOG = Eastern Cooperative Oncology Group performance status; KPS = Karnofsky performance status
Factors associated to patients
Age had association to bad prognosis only in SCC patients. Eloubeidi et al. showed an independent associated to less than 5 dissected nodes was related to an increasing risk of mortality (hazard ratio [HR], 1.29; 95% confidence interval [95%CI], 1.06 – 1.56) according to Eloubeidi et al. Rizk et al. showed that patients with more than four involved lymph nodes have survival similar to that of patients with M1 disease. Consequently, the number of lymph nodes removed would be an independent factor for prognosis. For Peyre et al. , a minimum of 23 regional lymph nodes should be removed.

In this study, survival improvement after curative intent surgery must be carefully analyzed, once selection for surgery (only not advanced stages) may be a bias.

CONCLUSION
Esophageal carcinoma is a poor prognosis disease. In our study, after five years of follow-up, overall survival is next to 20%. Weight loss (kg), BMI variation (kg/m²) and percentage of weight loss are factors that predict worse stage at diagnosis in the squamous cell carcinoma. In adenocarcinoma, these findings were not statistically significant.

REFERENCES
1. Andreollo NA, Coelho Neto Jde S, Calomeni GD, Lopes LR, Tericiot Junior V. Total esophagectomy for esophageal cancer can predict bad prognosis: a transversal study in a quaternary high volume hospital in Brazil. ANGIO. 2016 53: 44-8.
2. Zasman M, Herbellia FA, Aquino JL. Standardized clinical pathways for esophagectomy are not a reality in Brazil, even with a high prevalence of esophageal cancer and achalasia. ARQ BRAS CI DIG. 2015 Jul-Sep;28(3):190-2. doi: 10.1590/S0102-6720201500300011.