Review of Measurement Methods and Compositions for Ultrafine Particles

Judith C. Chow*, John G. Watson

Desert Research Institute, 2215 Raggio Parkway, Reno, NV, 89512 USA.

Abstract

Impactor, virtual impactor/aerosol concentrator, and aerodynamic lenses are used to separate the ultrafine particle (UP) fraction from other particle sizes for chemical analysis. Cascade impactors, such as the Micro-Orifice Uniform Deposit Impactor (MOUDI), are most commonly used in field studies, with sampling onto substrates amenable to different chemical analyses. Impactors need sufficient sampling flow rates and homogeneous deposits on the impaction surfaces for multiple chemical analyses. Mass, elements, ions, and carbon fractions can be measured on these substrates by several analytical methods. Specific organic compounds measured by solvent extraction require substantial mass loadings that can only be obtained by compositing samples from several measurement periods unless aerosol concentrators or high-volume sampling devices are used. Thermal desorption-gas chromatographic/mass spectrometry has potential to obtain organic speciation with small sample sizes. Studies of UP composition began in the late 1990s, with 25 ambient studies surveyed here. These are mostly from urban areas. Organic material, including polycyclic aromatic hydrocarbons (PAHs), usually constituted the most abundant portion of UP, with high elemental concentrations found near industrial sites. Much of the UP < 50 nm appears to be semi-volatile, consistent with it being composed by organic materials such as hopanes from engine oils or condensed secondary organic aerosol such as organic acids.

Keywords: Ultrafine particles; Chemical composition; Particle size distribution; Carbonaceous aerosol.

* Corresponding author. Tel.: 1-775-674-7050, Fax: 1-775-674-7009
E-mail address: Judy.Chow@dri.edu
INTRODUCTION

Ultrafine particles (UP) are loosely defined as those with diameters in the range of ~1 nm to 100 nm (nanometers). UP are bigger than air molecules (~0.3 nm), but smaller than the upper limits of PM$_{2.5}$ or PM$_{10}$ (particles with aerodynamic diameters less than 2.5 and 10 micrometers [µm], respectively) regulated by the U.S. National Ambient Air Quality Standards (NAAQS; U.S.EPA, 2006). Although UP do not contribute large quantities to PM$_{2.5}$ or PM$_{10}$ mass, they dominate the number concentration and most of the surface area. UP are produced by condensation of hot vapors in fresh combustion emissions, or form naturally when gases oxidize to compounds with lower vapor pressures and spontaneously nucleate or condense on other small particles (Kulmala et al., 2004). Owing to their small sizes and high mobilities, UP diffuse rapidly and may combine with each other, with larger particles, and with nearby deposition surfaces within minutes to hours. UP may contain organic material, transition metals, sulfuric acid (H$_2$SO$_4$), and free radicals. UP often consist of volatile components at atmospheric temperatures, and the high curvature of the smallest particles (< 10 nm) favors evaporation over larger particles of the same composition (the Kelvin effect). Gases evaporated from small particles may re-condense on larger ones, thereby shifting the distribution toward larger particle diameters (Zhang and Wexler, 2002).

UP are often considered deleterious when they are inhaled or ingested into the human body (Oberdörster et al., 1995). They penetrate to the lower parts of the lung (Daigle et al., 2003) where their large numbers can defeat defensive mechanisms. Thereafter, they can transport through the bloodstream or lymphatic system to vital organs (Oberdörster et al., 2004). However, UP can also be lifesavers. The same inhalation and transport properties can rapidly deliver medicines to specific locations. Iron (Fe) nanoparticles can be magnetically directed to specific locations without invasive procedures.

UP are produced by either pollution sources or for commercial applications and can result in adverse health effects in the ambient and workplace environments if they are not appropriately controlled (Biswas and Wu, 2005; Chow et al., 2005c; Chow and Watson, 2006). Control methods are more complex and cost more than those for larger particles.

This review examines the state of knowledge concerning UP chemical composition. Specific objectives are to explain and evaluate measurement methods for UP chemical composition, summarize UP chemical composition, compare them among different times and places, and specify gaps and uncertainties in the current knowledge base regarding UP composition and potential methods of filling those gaps.
MEASUREMENT METHODS FOR ULTRAFINE PARTICLE CHEMICAL COMPOSITION

PM composition measurements require collection of materials on substrates that can then be analyzed by precise laboratory methods (Chow, 1995). Since UP mass concentrations are low compared to other size fractions (e.g., PM$_{2.5}$ and PM$_{10}$), large sample volumes or sensitive analytical methods are needed. Inertial size-selective inlets for UP present design and application challenges. *In situ* single particle mass spectrometers are emerging technologies for UP chemical characterization (Middlebrook *et al.*, 2003).

Particle measurement systems

A generic particulate sampling system includes size-selective inlet, sampling surface, denuders, filter holders, flow controllers, and pumps (Watson and Chow, 2001). Although simple in concept, practical implementation requires a careful integration of the components specific to the sampling objectives. The nature of the aerosol being sampled, environmental sampling conditions (e.g., temperature and relative humidity), and the types of chemical analyses applied to the filter deposit must be evaluated before the sample is taken.

UP size-selective inlets

Impactors, virtual impactor/aerosol concentrators, and aerodynamic lenses have been devised to separate the UP fraction from larger particles.

Impactors

Stacked or cascade impactors obtain particle size ranges in series. At near-ambient pressures, the lower size ranges of cascade impactors were once limited to ~100 nm because it was impractical to make jet widths small enough and flow rates high enough to permit impaction of smaller particles (Marple, 2004). A filter located after the final stage would collect all of the smaller particles, but this was insufficient to characterize the UP fraction.

UP sizes are similar to the mean free path of air molecules (66.4 nm at 293°K and atmospheric pressure), the distance a typical air molecule travels before encountering another molecule. The mean free path decreases at lower pressures. The Cunningham slip correction factor is used in impactor design equations to account for differences in particle movements as they become less equally bombarded by air molecules. By operating impactor stages at lower pressures, size cuts can be reduced. Smaller nozzle widths decrease downstream pressures as well as increasing the velocity through the nozzle, which also lowers the cut-point. UP sampling on substrates became practical in the late 1970s and early 1980s with the perfection of low pressure impactors (Berner, 1972; 1976a; 1976b; 1984; Hering *et al.*, 1979a; 1979b; Marple *et al.*, 1981; 1991; Wang and
Table 1 summarizes the cut points for different cascade impactors.

The 13-stage Low Pressure Impactor (LPI; Hering et al., 1979a; 1979b) uses a single nozzle for each stage to concentrate collected particles into a spot on the impaction surface. It was designed to use metal strips as impaction substrates that could be analyzed for sulfur by flash volatilization (Roberts and Friedlander, 1976). The small amount of deposit collected by the UP stages, the non-uniformity of the deposit, and the collection substrate are not amenable to a broad range of chemical composition measurements.

The eight-stage Berner Low Pressure Impactor (BLPI; Berner, 1972; 1976a; 1976b; 1984; Hillamo and Kauppinen, 1991) contains multiple nozzles (1 to 250) in each impaction plate. Variation in the number of nozzles per stage creates uncertainties for chemical analysis. Halder et al. (1999) modified their elemental detection system to rotate the samples in front of the excitation beam. This is not satisfactory for other methods where a portion of the deposit is used to extrapolate results for the entire sample.

The 11- to 13-stage Andersen Low Pressure Impactor (ALPI; Yamasaki et al., 2000; Pagels et al., 2005; Vaaraslahti et al., 2005; Zervas and Dorlhene, 2006) has multiple jet impaction plates, similar to the BLPI. These are individually manufactured and calibrated. Table 1 shows several versions of the ALPI with flow rate variations from 20-24.5 liters per minute (L/min).

The 13-stage Electrical Low Pressure Impactor (ELPI, Dekati Instruments, Finland) uses a unipolar corona discharge to impact an unit charge on each particle (Marjamäki et al., 2000). The charged particles then travel through a series of impactors and are deposited onto stages based on their aerodynamic diameters. Each impactor stage is electronically isolated and the accumulated charge on each substrate is proportional to the number of particles deposited on that stage. ELPIs have been used in a variety of source characterization studies for diesel (e.g., Shi and Harrison, 1999; Arnold et al., 2006; Mamakos et al., 2006), gasoline (e.g., Marić et al., 1999), wood combustion (e.g., Hays et al., 2003), and power plant (e.g., Yi et al., 2006) emissions, as well as for indoor (e.g., Mosley et al., 2001) and outdoor (e.g., Gouriou et al., 2004) studies and characterization of pharmaceuticals (Glover and Chan, 2004).

The 12-stage Small Deposit Low Pressure Impactor (SDI; Maenhaut et al., 1996) was developed for compatibility with Proton Induced X-ray Emission (PIXE) spectroscopy to measure elemental composition. It is called “small deposit” because the sample is focused within an 8 mm diameter spot.

The Micro-Orifice Impactor (MOI; Kuhlmeier et al., 1981) was similar to the BLPI, but it evolved into the 11-stage Micro-Orifice Uniform Deposit Impactor (MOUDI; Marple et al., 1991; MSP, 1999) by slowly rotating the impaction plates under each nozzle, thereby meeting the need for homogeneous deposits. The Nano-MOUDI (Fujitani et al., 2006) provides greater detail in the UP size fraction. MOUDI is most commonly used for UP composition studies.
Table 1. Different cut points for different cascade impactors.

Impactor	Flow Rate (L/min)	Total Stages	Cut Point Ranges (µm)	UP Stages	UP Cut Points (nm)*
Low Pressure Impactor (LPI)^a	10 or 30	13	<0.03–10	5	30, 60, 108, 170
Berner Low Pressure Impactor (BLPI)^b	30	8	0.034–11.3	4	34, 65, 94, 160
Electrical Low Pressure Impactor (ELPI)^c	10 or 30	13	0.007–10	4	30, 60, 108, 170
Small Deposit Area Impactor (SDI)^d	11	12	0.045–8.5	3	45, 90, 150
Andersen Low Pressure Impactor (ALPI)^e	22.2	12	0.056–9.5	2	56, 130^f
(Dylec LP-20)	20	12	0.06–11	2	60, 120^g
(Yamasaki et al., 2000; Pagels et al., 2005; Vaaraslahti et al., 2005; Zervas and Dorlhene, 2006).					
Micro Orifice Uniform Deposit Impactor (MOUDI)^j	24.2	11	0.11–11	1	110^h
(Kawanaka et al., 2004)	24.5	13	0.01–10.85	3	10, 50, 120ⁱ
Nano-MOUDI^k	10 or 30	10	0.056–18	3	56, 100, 180

^a Dekati, Ltd., Tampere, Finland, (Hering et al., 1979a; 1979b).
^b (Berner, 1972, 1976a, 1976b; Hillamo and Kauppinen, 1991).
^c Dekati, Ltd., Tempere, Finland, (Shi et al., 1999; Keskinen et al., 2003).
^d Dekati, Ltd., Tampere, Finland, (Maenhaut et al., 1996).
^e Andersen Instruments, now Thermo Fisher Scientific, Waltham, M.A.; Model LP-20, Tokyo Dylec, Tokyo, Japan (Yamasaki et al., 2000; Pagels et al., 2005; Vaaraslahti et al., 2005; Zervas and Dorlhene, 2006).
^f (Yamasaki et al., 2000)
^g (Hasegawa et al., 2004)
^h (Kawanaka et al., 2004)
ⁱ (Ma et al., 2004)
^j MSP Corporation, Shoreview, MN, (Marple et al., 1990; 1991; MSP, 1999).
^k MSP Corporation, Shoreview, MN, (MSP, 2004).

* Nominal cut points. Actual cut points vary from instrument to instrument depending on calibration.
Although cascade impactor substrates are sometimes greased or oiled to minimize re-entrainment and bounce from one stage to the next, these coatings interfere with chemical analyses (Fujitani et al., 2006; Wang et al., 2005). This is more of an issue for larger, and drier, soil particles than for PM$_{2.5}$ which are often inherently oily. Serious particle bounce is indicated by soil-related elements in the lower impaction stages.

Aerosol concentrators

Virtual impactors are often used as aerosol concentrators (e.g., Sioutas et al., 1995) to obtain aerosol concentrations higher than those found in ambient air. Several UP concentrators have been developed (Gordon et al., 1999; Gupta et al., 2004a; 2004b; Kim et al., 2000a; 2000b; 2001b; 2001a; Misra et al., 2004; Sioutas et al., 1999) where UP are drawn through an inlet that removes the large particles (e.g., > 0.15 µm), then into a chamber saturated with water vapor over a warm water reservoir. UP subsequently pass through a condensing area at lower temperature where the particles grow as water vapor condenses on them. These grown particles then pass through a 1.5 µm cut-point virtual impactor where they are separated from most of the airstream. They then pass through a drier where the water is evaporated and they return to their UP size ranges. The implementation of Kim et al. (2000b) operates at 120 L/min and the minor flow can vary from 3 to 12 L/min. This provides for an enrichment of 10 to 40 times the ambient UP concentration. Although constructed primarily for animal exposure studies, this type of concentrator inlet can be used to obtain large quantities of UP on filters amenable to different chemical analysis methods. Owing to the different hygroscopic properties of UP, the sampled composition and size distribution may differ from that of the ambient air.

UP aerodynamic lenses

The aerodynamic lens (Liu et al., 1995a; 1995b; Middha and Wexler, 2005; Petrucci et al., 2000) consists of apertures of varying sizes in a series. A particle beam is produced when a particle-laden gas expands through a nozzle into a vacuum. Particles move closer to the axis when their aerodynamic diameters are less than a critical value and experience small radial drag forces. They stay close to the axis during nozzle expansion and therefore form a narrow particle beam downstream. The major effects that limit the minimum beam width are Brownian motion and lift forces on particles during the nozzle expansion. Aerodynamic lenses are used almost exclusively on single particle spectrometers for particle sizes < 100 nm. Because the lower size range of particle mass spectrometers is limited, and quantification is less than 100% efficient, these instruments underestimate particle counts.
Sampling substrates

Sampling substrates must be matched to the analysis purpose (Chow, 1995). For impactors such as the MOUDI, the substrates must be thin enough that they do not interfere with the narrow gap between the nozzle exit and the impaction plate. The substrates cannot contain the substances being measured, so it is often necessary to operate several instruments in parallel to accommodate a number of filter media. MOUDIs can be obtained for either 37 mm or 47 mm diameter substrates.

Ringed Teflon-membrane filters have been found to pop up the retainer ring on the MOUDI filter holder and have been used after the last impactor stage that allows the flow for the impactors to be drawn through. Because filter porosity is not needed in an impactor such as the MOUDI, 37 or 47 mm disks of non-porous Teflon fluorinated ethylene propylene copolymer (FEP) films of 0.002 thickness (DuPont) are used. These disks are soaked in methanol overnight, rinsed with distilled-deionized water (DDW) and dried in a vacuum chamber to remove contaminants. These substrates are amenable to mass, elemental, and ion determinations.

Aluminum (Al) foil in 37 or 47 mm disks (Reynolds Aluminum; Gresham, OR) are often used as substrates for carbon analysis. The disadvantage of foil is that it is highly reflective and melts at ~600°C when heated in an inert atmosphere. This makes the separation of elemental from organic carbon (EC, OC) uncertain when measured by thermal/optical methods (Chow et al., 1993; 2007). One solution is to apply the pyrolysis correction on the quartz backup filter to the total carbon (TC) measured on the Al substrates.

Other substrates (e.g., Pallflex TX40HI20 and T60A20 Teflon-coated glass-fiber filters) can be used for ion analyses and for specific organic compounds, but not for TC analyses owing to their Teflon coating. Glass-fiber filters contain borosilicate glass filaments and should not be considered for particle sampling (Coutant, 1977; Spicer and Schumacher, 1979; Witz et al., 1983; Lin and Friedlander, 1988). Fujitani et al. (2006) showed that mode diameter varies from 56 nm for ELPI with Al foil, to 100 nm for a Nano-MOUDI with Al foil, to 260 nm for ELPI with quartz-fiber filters for diesel exhaust particles. Heavy loadings on ELPI-Al (similar to those of polycarbonate substrates) experienced particle blow-off, resulting in a smaller mode diameter.

Etched polycarbonate-membrane filters have low elemental blank levels and are appropriate for elemental and ion analyses but not for thermal evolution carbon analysis (Watson et al., 2005). They are the best filter media for single particle analysis by electron microscopy because particles are easily distinguished from the flat filter surface. The filters hold an electrostatic charge that influences mass measurements unless effort is invested in discharging them with a small radioactive source (Engelbrecht et al., 1980). Electrostatic discharging is good practice for all filter media, even though others do not retain as much charge as the polycarbonate membranes.
UP laboratory analysis methods

Chow (1995), Solomon et al. (2001), Wilson et al. (2002), and Fehsenfeld et al. (2004) review laboratory chemical analysis methods applicable to UP and other PM samples. Filter substrates are analyzed for mass by gravimetry (Engelbrecht et al., 1980; Feeney et al., 1984; Witz et al., 1988; 1990), elements by X-ray Fluorescence (XRF; Watson et al., 1999), PIXE (Kasahara, 1999), Instrumental Neutron Activation Analysis (INAA; Dams et al., 1970; Zoller and Gordon, 1970; Olmez, 1989), Atomic Absorption Spectrometry (AAS; Ranweiler and Moyers, 1974; Fernandez, 1989), Inductively-coupled Plasma (ICP) with Atomic Emission Spectroscopy and ICP with Mass Spectrometry (ICP/AES and ICP/MS; Fassel and Kniseley, 1974; McQuaker et al., 1979; Lynch et al., 1980; Harman, 1989; Wang et al., 1998; Tan et al., 2002; Lough et al., 2005), ions by ion chromatography (IC; Chow and Watson, 1999), Automated Colorimetry (AC; Butler et al., 1978; Mueller et al., 1978; Fung et al., 1979; Pyen and Fishman, 1979), and carbon (OC, EC, and carbon fractions) by thermal or thermal/optical methods (Chow et al., 1993; 2001; 2004; 2005a; 2007; Watson et al., 2005).

Organic speciation

The most common method used for speciated organic compounds (such as PAHs, alkanes, alkenes, and polar organics) in PM samples is solvent extraction (SE), followed by gas chromatography (GC)/MS, time-of-flight (TOF)/MS, or flame ionization detection (FID). Combined Fourier transform infrared (FTIR)/MS techniques or high performance liquid chromatography (HPLC)/MS are also used. HPLC is a form of IC that uses columns and eluents specific to water soluble carbon, especially organic acids. Large sample deposits are required for these analyses, much more than is available in the UP fraction unless acquired from high-volume sampling, impactors, or aerosol concentrators.

Thermal desorption (TD)-GC/MS (e.g., Ho and Yu, 2004; Hays and Lavrich, 2007) is an emerging technology in which a small section of the substrate can be placed directly into the GC injector and heated. Organic materials are volatilized and detected by GC/MS or GC/MS-FID. Very small samples, such as UP samples from impactors, can be analyzed by this technique.

Thermal denuders can also be used with other UP detection devices, such as the scanning mobility particle sizer (SMPS), to infer aerosol composition (Hasegawa et al., 2004). Particles are drawn through an inlet that is cycled between ambient and a selected higher temperature and the SMPS size distributions are compared. Temperatures in the range of 300°C are often used to include sulfates, nitrates, and many OC compounds. The difference between the heated and unheated measurements separates the stable from the “semi-volatile” fraction of the aerosol.

Another approach is to use a humidifier between two SMPSs to determine the hygroscopicity of the sampled aerosol. This is termed the Tandem Differential Mobility Analyzer (TDMA; Rader and McMurry, 1986). Sodium chloride, ammonium sulfate, ammonium nitrate, and some
organic compounds grow to larger sizes when humidified. Other materials, such as EC, often do not grow as much. This gives a qualitative indication of the potential chemical composition.

Individual particle analysis

Single particles are characterized by optical or electron microscopy. Optical microscopy (Lee and Kelly, 1980; Janocko et al., 1982; Casuccio et al., 1983; 1989; Dattner et al., 1983; Lucas et al., 1988) is useful for coarse particles with sizes much larger than the wavelength of light (0.3 to 0.7 µm). Electron microscopy (EM; such as scanning EM [SEM] or transmission EM [TEM]) is needed to characterize smaller particles and their size distribution. These methods provide information on particle color, shape, size, and composition.

ULTRAFINE PARTICLE COMPOSITION

Table 2 summarizes measurements from 25 studies of UP chemical composition. It lists the sampling location, types of measurements taken, the number of samples, and the major findings with respect to UP composition. Most of the studies acquired other UP measurements, such as particle number and size distribution. These are included in the table for future reference. Several general observations can be made with respect to data reporting, measurement locations, measurement methods, and aerosol composition.
Table 2. Summary of studies on ultrafine particle (UP) composition.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments	
Hughes et al. (1998)	• One site: Pasadena, CA. • Five 24-hr average samples every sixth day from 1/1996 to 2/1996.	• A DMA/CPC (Models 3071 and 3760) every 90s in 175 channels for 0.017 < dp < 0.25 µm (including 120 channels of UP). • A laser OPC (Model ASASP-X) every 4-10s in 31 channels for 0.09 < dp < 3.0 µm. • A ten-stage MOUDI (Model 100) and a non-rotating MOI (Model 110) (reports bottom six stages [0.056 < dp < 1.8 µm]) and after filter. • MOUDI and MOI were preceded with a Teflon-coated cyclones to remove coarse particles (dp > 1.8 µm). • The two UP stages were 56 and 97 nm. • A low-volume fine PM sampler.	• Acquired mass, elements (by INAA), carbon (OC and EC) by TOT, anions (Cl-, NO\textsubscript{3}-, SO\textsubscript{4}2-) by IC, and cations (NH\textsubscript{4}+) by ICM using RFA. • Data presented in tables for daily UP concentrations, stacked bar charts for MOUDI concentrations, and pie charts without percentages for each component.		• Particle number concentration 1.3 x 104 ± 8.9 x 103 #/cm3. • Averaged 24-hr UP mass was 0.6-1.2 µg/m3.	• Used particle density of 1.7 g/cm3 to convert equivalent number concentration to mass distribution. • OC (0.26 µg/m3) and EC (0.06 µg/m3) contributed 46 to 62% of UP mass. • Trace metals accounted for a few % to ~25% of UP mass with Fe (average/maximum 67.5/148.3 ng/m3) being most abundant followed by Ti (7.65/110.2 ng/m3), Cr (7.32/126.2 ng/m3), Zn (3.68/6.56 ng/m3) and Ba (1.04/2.8 ng/m3). • Lanthanide series elements (used as catalysts) were found for La and Ce with an average/maximum of 0.11/0.51 ng/m3 and 0.19/0.82 ng/m3, respectively.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Hughes et al. (1999)	• Four sites in CA, three urban and one background: Long Beach, Fullerton, Riverside, Santa Catalina Islands (background site)	• EAA (1.7 < \(d_p\) < 250 nm; Model 3030) every seven min at three urban sites, A laser OPC (0.09 < \(d_p\) < 2.6 \(\mu\)m; Model ASAP-X) every five sec in 21 channels at the Long Beach and Riverside sites, Two ATOFMS at the three urban sites, One ten-stage MOUDI (Model 100) and non-rotating MOI (Model 110) report the bottom six stages (0.056 < \(d_p\) < 1.8 \(\mu\)m) and after filter, Low-volume total and fine PM sampler. The two UP stages are 56 and 97 nm	• Acquired mass, elements by INAA, carbon (OC and EC) by TOT, anions (Cl\(^-\), NO\(_3\)^-\(\), and SO\(_4\)^2-) by IC, and cations (NH\(_4^+\)) by ICM using RFA. VOCs and total non-methane organic particle compounds by EPA method TO-12 (Data not reported.) Data presented in percent average mass distribution with a stacked bar chart for MOUDI concentrations, and mass spectra from ATOFMS.	• Particle number concentrations \(-10^4\#/\text{cm}^3\). UP composition for the MOUDI stacked bar charts were too small to quantify UP composition.	• Particle density of 1.3 g/cm\(^3\) used to convert equivalent particle number concentration to mass distribution. Nominal cut points for MOUDI and MOI were not reported. Different numbers of impactor samples were taken at the different sites on different days, precluding site-to-site comparison. Unimodal particle mass distribution found at Riverside, with the peak around 0.5 \(\mu\)m, larger than the mode at Long Beach. UP mass was \(-1-1.5\ \mu\text{g}/\text{m}^3\), with organic compounds being the largest contributor at urban sites. Santa Catalina Island UP was mostly inorganic, but not well identified. Example mass spectra for ATOFMS showed geometric mass \(d_p\) of 0.37 \(\mu\)m for NH\(_4\)NO\(_3\) containing particles with OC inclusion, 0.42 \(\mu\)m for OC, and 0.98 \(\mu\)m for predominantly EC with some NH\(_4\)NO\(_3\). No information given for UP.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Cass et al. (2000)	• Seven sites in CA: L.A. - Pasadena - Fullerton - Azusa - Mira Loma - Diamond Bar - Riverside. • Several 24-hr average samples from 1/1996 to 11/1997.	• DMA/CPC (TSI Models 3071 and 3760). • EAA (TSI Model 3030). • OPC (Model ASASP-X). • Two MOUDIs (Model 100) (0.056 \(< d_p < 1.8 \mu m in six stages).	• Acquired mass, elements by INAA, carbon (OC and EC) by TOT, anions (Cl\(^{-}\), NO\(_3\)\(^{-}\), and SO\(_4\)\(^{2-}\)) by IC, and cations (NH\(_4\)\(^{+}\)) by ICM using RFA. • Data presented in stacked bar charts and pie charts.	• UP mass averaged 0.8 \(\mu g/m^3\) ranging from 0.55 to 1.16 \(\mu g/m^3\). • UP chemical composition:	• Estimated UP (i.e., PM\(_{0.1}\)) emissions were 13.3 tonnes per day in Southern California with 43% from on-road vehicles, 32% from stationary fuel combustion, and 10% from other mobile sources (e.g., diesel engines, off-road vehicles). • Primary UP emissions were estimated to consist of 65% organic compounds, 7% EC, 7% sulfate and 4% trace elements. • UP composition varied by location and season. • Mass particle size distribution peaked at 0.5 \(\mu m\) consisting largely of carbonaceous aerosol, followed by (NH\(_4\))\(_2\)SO\(_4\) and NH\(_4\)NO\(_3\). • Abundant trace metals in UP were K (88 ng/m\(^3\)), Na (85 ng/m\(^3\)), and Ba (19 ng/m\(^3\)). • Abundant transition metals in UP were Fe (186 ng/m\(^3\)), Ti (43 ng/m\(^3\)), Cr (6.7 ng/m\(^3\)) and Zn (3.8 ng/m\(^3\)).

Observables	Average	Range
Mass (\(\mu g/m^3\))	0.8	0.55-1.16
OC x 1.4	50%	32-67%
EC	8.7%	0-5.4%
Cl\(^{-}\)	0.5%	0-2.5%
NO\(_3\)\(^{-}\)	6.8%	0-19%
SO\(_4\)\(^{2-}\)	8.2%	0.8-18%
NH\(_4\)\(^{+}\)	3.7%	0-33%
Na\(^{+}\)	0.6%	0-2.5%
Metal oxides	14%	0-26%
Unknown	7.5%	0-29%
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Chung et al. (2001)	• One site: Bakersfield, CA 8-hr average samples acquired from 1000-1800 PST on seven days from 1/14/1999 to 1/23/1999. 1/14/1999 and 1/21/1999 were chemically analyzed.	• Two MOUDIs (Model 110) (0.056 < \(d_p\) < 1.8 µm in six stages) equipped with AIHL-designed cyclones. • Collocated MOUDIs with filter-based sampling.	• Acquired mass, elements by PIXE and XRF, carbon (OC and EC) by TOT, and ions (Na\(^+\), K\(^+\), Ca\(^+\), NH\(_4\)\(^+\), Cl\(^-\), NO\(_3\)\(^-\), PO\(_4\)\(^{3-}\), and SO\(_4\)\(^{2-}\)) by IC. • Data presented in stacked bar charts; percent chemical composition by pie charts (without mass concentration), and time series.	• Particle number concentrations from \(\sim 10^{10}\) to \(10^{11}\) #/cm\(^3\). • Ultrafine percentage composition:	• No specific cut points were given for MOUDI stages. • Ca, (the geological elements), and OC (54 ± 62 ng/m\(^3\)) were major UP components. • UP at Bakersfield were alkaline while fine particles were neutral based on anion/cation balance (UP Ca\(^{2+}\) was 64 ± 57 ng/m\(^3\) and estimated 25% more cations than anions).

Observables	Polluted day (1/14/1999)	Clean day (1/21/1999)	
-------------	--------------------------	------------------------	
Mass	NA	NA	
OC	24%	14%	
EC	5%	5%	
NO\(_3\)\(^-\)	11%	8%	
SO\(_4\)\(^{2-}\)	5%	5%	
Other S	5%	5%	
Na	7%	8%	
Cl	0%	2%	
Al	6%	14%	
Si	4%	0%	
K	3%	2%	
Ti	2%	3%	
Fe	1%	2%	
Ca	20%	18%	
Other metals	8%	13%	
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Pakkanen et al. (2001a)	• Two sites in Finland: Valilä, Helsinki (urban site 2 km NE of city center) Luukki, Espoo (rural site).				
• 24- or 48-hr average samples starting at 0900-1000 LST were acquired once per month from 6/12/1996 to 6/5/1997 (10 valid pairs). | • Two ten-stage BLPIs sampling for 0.035 < d_{p} < 7.5 µm with pre-impactor cut-size of ~15.7 µm (Liu and Pui, 1981).
• The three UP stages are 35, 67, and 93 nm.
• Collocated BLPIs and VI's for validation (Pakkanen and Hillamo, 2002). | • Acquired mass, elements by ICP/MS, (an additional six BLPI samples [60 individual stages] by PIXE and INAA for comparison), ions (Cl\(^-\), NO\(_3\)\(^-\), SO\(_4\)\(^{2-}\), NH\(_4\)\(^+\), Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\), MSA, Ox, malonate, succinate, glutarate) by IC.
• Data presented in tables, species size distribution, and ion balance as a fraction of particle sizes and size distribution. | • Average mass and chemical composition (ng/m\(^3\)) are: | • Elemental and ion analyses explained 15-20% of UP mass.
• The remaining UP mass was attributed 70% to carbonaceous aerosol and 10% to water, which were not measured.
• Contribution of UP to PM\(_{2.5}\) mass was 7% at urban and 8.5% at rural sites.
• Most abundant metals were Na, K, Ca, Fe, and Zn, ranging from 0.7 to 5 ng/m\(^3\).
• Most abundant organic ions were Ox and MSA, contributing to UP at 0.5% and 0.37%, respectively.
• Contribution of UP to PM\(_{2.5}\) for B, Ni, Se, and Ag was 10-20%.
• Aiken mode (d_{p} < 0.15 µm) often observed with mean mode diameter of 0.06 and 0.12 µm.
• Abundance of Mg, Ca, Sr, and Ba at Aitken mode was attributed to vehicle exhaust. Abundance of Fe, Co, Ni, and Mo was attributed to heavy fuel oil combustion. |

Observables	Urban Site	Rural Site
Mass	490	520
NO\(_3\)\(^-\)	4	11
SO\(_4\)\(^{2-}\)	32	40
NH\(_4\)\(^+\)	22	25
B	0.27	0.13
Na\(^+\)	2.1\(^*\)	3.2\(^*\)
Na	2.9\(^*\)	1.3\(^*\)
Mg\(^{2+}\)	0.69\(^*\)	0.92\(^*\)
Mg	0.26\(^*\)	0.37\(^*\)
Cl	1.7	1.2
K	2.0\(^*\)	1.5\(^*\)
K	0.86\(^*\)	1.3\(^*\)
Ca\(^{2+}\)	4.8\(^*\)	6.5\(^*\)
Ca	2.2\(^*\)	1.9\(^*\)
V	0.16	0.092
Fe	1.8	0.73
Co	0.024	0.023
Ni	0.24	0.24
Zn	0.81	0.70
Sr	0.01	0.009
Mo	0.015	0.013
Ba	0.058	0.03
Ox	2.1	1.9
MSA	1.3	1.7

Na\(^+\)/Na, Mg\(^{2+}\)/Mg, K\(^+\)/K, and Ca\(^{2+}\)/Ca ratios often exceeded unity, indicating an overestimation of cations or underestimation of anions.
• Anion deficit was found for d_{p} < 0.2 µm and d_{p} > 1 µm
• SO\(_4\)\(^{2-}\) size distribution showed MMD ~0.5 µm.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Geller et al. (2002)	Two sites in the L.A. Basin, CA:				
- Downey (Diesel emission-dominant site)
- Riverside (Downwind receptor site).
- Three-hour samples taken from 3/12/2001 to 3/29/2001 at:
 - 0700-1000 PST (morning)
 - 1100-1400 PST (midday)
 - 1500-1800 PST (evening).
- Total of 36 UP samples (= 3 samples/day x 6 days x 2 sites). | - USC UPC (concentrator) operated at 110 L/min intake and 5 L/min output flow rate (enrichment factor of 22) followed by nano-MOUDI (Model 115-1, nominal cut points: 10, 18, 32, and 56 nm).
- A modified MOUDI (Model 100) (100, 180, and 320 nm) operated at 10 L/min.
- Concentrations compared with collocated ELPI (Model 393501) and CPC (Model 3022A) measurements. | - Acquired mass, carbon (OC and EC) by TMO, and ions (NO$_3^-$ and SO$_4^{2-}$) by IC.
- Data presented in an average histogram of five or six stages and scatterplots.
- No elemental concentrations or Nano MOUDI composition data were reported. | - Particle number concentrations $2.3-6.9 \times 10^3 \text{#/cm}^3$ at Downey and $9.3 \times 10^3 - 1.1 \times 10^4 \text{#/cm}^3$ at Riverside.
- UP average mass was 0.81-1.92 µg/m3 at Downey and 0.65-0.80 µg/m3 at Riverside. | - Define UP as < 180 nm and also as 10-100 nm.
- OC was predominant in UP at both sites, accounting for 50-80% of the total mass.
- Bimodal mass distribution with nuclei (32-56 nm) and accumulation (100-180 nm) modes was found at Downey.
- Distinct mode of UP mass and OC in the 32-56 nm range was independent of time of day at Downey.
- OC drove mass size distribution at the diesel-dominated Downey site. Morning peaks (32-56 µm) resulted from condensation of vehicle-emitted organic vapors.
- Average UP OC/EC ratios were 2.4, 2.7, and 3.4 at Downey, and 7.5, 9.9 and 7.5 at Riverside for morning, midday, and evening periods, respectively. Higher OC/EC ratios at Riverside were attributed to gasoline-fueled vehicle emissions. |

UP (<100 nm) composition*	Downey ng/m3	Riverside ng/m3
Mass	500-4,200	300-1,800
OC	200-1,000	200-400
EC	10-310	20-70
NO$_3^-$	ND - 400	ND - 80
SO$_4^{2-}$	ND - 120	ND - 40

* Estimated value from histogram (in Figures 4 and 6 of Geller et al. (2002)).
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments	
Kim et al. (2002)	• Two sites in CA – Downey (Diesel-emission dominated site) – Riverside (Downwind receptor site) • Approximately five months, from 9/19/2000 to 1/31/2001 at Downey, and 2/5/2001 to 6/30/2001 at Riverside. • 24-hr average MOUDI measured once per week during a weekday (starting at 0600 PST). • Acquired approximately 20 samples.	SMPS (Model 3936) measured 15-min average particle number concentration (14 < dₚ < 500 nm). • A dual beam aethalometer (Model AE-20) measured 5-min PM₂.₅ BC. • Three MOUDIs (Model 110) (using 0.1, 0.35, 1.0, 2.5 and 10 µm stages) • Five-min average wind speed, wind direction, temperature and relative humidity.	• Acquired mass, elements by XRF, carbon (OC and EC) by TMO, ions (NO₃⁻ and SO₄²⁻) by IC. • Data presented in tables and pie charts. Correlations and scatterplots were given over a diurnal time series.	Relative UP Abundances:	• Geometric mean (concentration range):	
				Downey	Riverside	
				(µg/m³)	(µg/m³)	
				Mass	4.11 (1.12-8.89)	1.34 (0.42-3.65)
				OC (µg/m³)	2.75 (2.62-3.01)	1.35 (0.72-3.90)
				EC (µg/m³)	0.067 (0.58-0.75)	0.13 (0.04-0.19)
				NH₄NO₃ (µg/m³)	0.08 (0.02-0.14)	0.10 (ND - 0.33)
				(NH₄)₂SO₄ (µg/m³)	0.15 (0.078-0.11)	0.09 (0.05-0.2)
				Ti (ng/m³)	3.2 (0.2-9.1)	0.87 (0.22-2.9)
				V (ng/m³)	1.8 (0.2-15.9)	0.17 (0.16-0.33)
				Cr (ng/m³)	5.1 (0.2-37)	13 (0.17-6.7)
				Mn (ng/m³)	2.5 (0.3-5.7)	0.58 (0.3-2.03)
				Fe (ng/m³)	40.5 (10.4-133)	10 (1.23-33.8)
				Ni (ng/m³)	3.6 (0.1-12.3)	1.83 (0.13-13.6)
				Cu (ng/m³)	6.4 (0.6-24.6)	1.46 (0.18-9.54)
				Zn (ng/m³)	7.5 (1.4-38.6)	1.45 (0.11-6.11)
				Average Percentage:		
				Downey (12/19/2000-1/25/2001)	Riverside (3/1/2001-4/19/2001)	
				Mass NA	NA	
				OC 64%	73%	
				EC 18%	8%	
				NO₃⁻ 2%	1%	
				SO₄²⁻ 4%	5%	
				Others² 2%	0%	
				Metals 3%	13%	
				Including P, S, Cl, and Br		

• Unimodal size distribution with mode 30-40 nm at Downey and bimodal at Riverside with an increase in accumulation mode (0.1-2.5 µm). • An increase in sub-100 nm during 1400-1600 PST was found at Riverside. • MOUDI quartz-fiber after filter OC may have positive or negative artifacts. • Fe was most abundant of the transition metals in UP, followed by Cu and Zn (relatively high V, Cr, and Ni were also found). • UP V was 11 times higher at Downey than at Riverside, reflecting the impact from refineries at Downey.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Viidanoja et al. (2002a)	• One site in Finland: Vallila, Helsinki (Urban site, 2 km NE of city center).				
• 24-hr average samples were acquired starting at noon LT from 5/1/2000 to 7/15/2000.					
• Two 12-stage SDIs sampling for 0.045 < \(d_p<8.4\) µm. The second SDI was equipped with a Teflon front filter to remove particles and estimate organic artifact.					
• The two UP stages are 45 and 88 nm.					
• Collocated SDIs and VI for comparison.					
• An aethalometer (based on an absorption coefficient of 19 m²/g).	• Acquired carbon (OC and EC) by TOT (OC at 310, 480, 615, and 900°C in helium; EC at 675, 750, 825, and 920°C in 10% oxygen in helium).				
• OC and EC were determined both with (by laser) and without (by helium and oxygen phases) optical pyrolysis (OP) corrections.					
• A pyrolysis correction factor determined by TOT with VI samples is used to estimate pyrolytic OC in SDI samples without OP correction by laser.					
• Data presented in tables for SDI stages and for OC and EC size distribution.	• Nearly 100% of OC found at 45 and 88 nm stages are gaseous OC. The percentage of gaseous OC decreases to 20-40% of total OC (gas and particles) for the larger particles.				
• UP Composition (µg C/cm²):					
Carbon	\(d_p\) (45-88 nm)	\(d_p\) (< 45 nm)	after filter		
--------	---------------------	-------------------	------------		
OC (Particle)	4.5	2.6	5.3		
OC (Gaseous)	2.8	2.8	5.2		
OC (6/20-21)	3.8	2.6	5.2		
OC (6/27-28)	3.8	2.6	5.4		
EC (6/20-21)	1.9	0.5	0		
EC (6/27-28)	0.8	0.4	0		
• Reported 11-23% (median of 20%) positive organic artifact by fine fractions (\(d_p<2.3\) µm) of VI as compared to SDI.					
• OC pyrolysis in VI samples averaged 10% (1-22%) of total OC.					
• SDI, like other impactors, was susceptible to sampling artifact and OC pyrolysis during thermal analysis.					
• Carbonaceous aerosol in UP was overestimated without removing gaseous organic.					
• OC pyrolysis was most prevalent on stages 4 (0.142-0.235 µm) and 5 (0.235-0.38 µm), followed by stages 6-8 (0.038-0.58, 0.058-0.8, and 0.8-1.06 µm, respectively). OC exhibited bimodal peaks at 0.2-0.8 µm and 2-5 µm. EC exhibited unimodal peaks at 0.2-0.5 µm.					
• EC was low (0.4-0.5 µg C/cm²) for \(d_p<45\) nm, EC was 40-50% of OC at 88 nm.					
Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
-----------------------	---	---------------------	--	------------------------	--
Ishizaka and Adhikari (2003)	Two sites in Japan: − Nagoya (urban site with industrial pollution) − Mikuni (coastal atmosphere).	• A CPC (TSI Model 2025A) and a diffusion battery (TSI Model 3041) with switching value (TSI Model 3042A) in 15 channels for 0.003 < d_p < 0.2 µm. • A CCN counter. (Mee, Model 130) is activated at 0.5% super saturation. • An LPC (Kanomax Model TF-500) for d_p > 0.3 µm. • A thermal analysis system consisting of a heater (100–500°C), an aerosol sensor, and a data recorder. • Sampling flow rate was 28.3 L/min for two to five days at Nagoya and 50 L/min for two to four days at Mikuni.	• Compared continuous thermal analytical curves with CCN concentrations based on rate of evaporation, and then inferred to its chemical compositions. • Data presented in tables, histogram, and time-series plots.	• No UP composition was reported. • Divided chemical compounds into three temperature ranges: − Group I (0–150°C) highly volatile compounds: - H_2SO_4, water vapor, formic acid, acetic acid, NH_4Cl, (NH_4)_2SO_4, OC, organic nitrogen, terpenes, and dioctyl phthalate − Group II (150–300°C) intermediately volatile compounds: - (NH_4)_2SO_4, NH_4HSO_4, NH_4NO_3, SOA, and diesel exhaust − Group III (> 350°C) refractory compounds: - Soot/BC, polymerized organic compounds, CaCO_3, and NaCl	CCN decreased abruptly at 100°C and then decreased linearly to 12% of the initial concentration at 200°C for Nagoya samples and at 250°C for Mikuni samples. • Used thermal analysis (i.e., volatility) to infer CCN composition. • ~80% of CCN evaporated below 300°C with the majority of the volatile species, and the concentration of CCN remained constant between 300 and 500°C. • Anthropogenic organic material, such as that from automotive exhaust, contributed to CCN in the polluted atmosphere. • Thermal curve for inorganic ions were similar to CCN. This suggested that (NH_4)_2SO_4 and NH_4NO_3 contributed greatly to CCN at urban Nagoya site and (NH_4)_2SO_4 contributed greatly to CCN at coastal Mikuni site. • Thermal curve of carbon and sea salt were different from CCN with organic material contributing to CCN. Soot particles did not contribute to CCN.
Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
-----------------------	---	--	--	------------------------	--
Phares et al. (2003)	• One site at East Houston, TX (near channel view, less than 1 km from ship channel) as a part of the U.S. EPA Supersite program.				
 • Continuous sampling from 8/23/2000 to 9/18/2000. | • An RSMS II (0.014 $< d_p < 1.3 \, \mu m$), with a laser ablation time-of-flight MS characterizing single particle with positive/negative ion detection for ~110 min scan. | • Particles in 60 composition classes of nine sizes were selected (35, 50, 70, 100, 140, 170, 320, 590, and 1,140 nm).
 • Data presented in number of spectra obtained in each compound class and wind roses (to infer pollution sources). | Major UP Composition includes:
 | Spectrum % of UP | Carbon & 16
 Si/Silicon Oxide & 30
 K & 31
 V/Vanadium Oxide & 0.64
 Fe & 6.1
 Zn & 1.7 | NaCl & 7.5
 Lime & 1.0
 Amines & 2.4 | | • Obtained approximately 27,000 single particle spectra for individual particle composition, but no quantitative chemical composition was given.
 • Houston ship channel aerosol is dominated by refineries, incinerators, and chemical plants as evidenced by emitted Si, V, amines, metals, and lime in UP. |
| Rhoads et al. (2003) | • One site at Atlanta, GA, as part of the August 1999 “Southern Oxidants Study Supersite Experiment.”
 • Sampled 120 hours over 20 days (from 8/10/1999 to 8/31/1999) and obtained spectra from 15,989 particles. | • An RSMS-H (0.014 $< d_p < 1.3 \, \mu m$), with a laser ablation time-of-flight MS, characterizing single particle with positive/negative ion detection by LDI/MS. | • Particles in 70 composition classes of 13 size fractions, including 14, 30, 47, 59, 105, 153, 204, 254, 354, 491, 823, 995, and 1,285 nm.
 • Data presented in number of spectra obtained in each compound class, by wind roses in eight directions, and by fractions of total as overall distributions of spectrum during study. | Major UP composition includes:
 | Spectrum % of UP* | OC & 74
 EC & 1.5
 NO$_2^-$ & 2
 Na & 1
 K & 8
 Ca & 2
 Fe & 3
 Others & 8.5 | | • Obtained approximately 15,000 spectra for individual particle composition but no quantitative chemical compositions were given.
 • No distinguishable differences were found for minerals, SiO$_2$, Fe, and other metals
 • No S or SO$_4^{2-}$ were found in compound classes.
 • Many of the major compound classes appeared in same size and/or wind direction ranges, indicating emissions from specific sources. |

*Based on ~15,000 single particle spectra.
Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Cohen et al. (2004)	• One site at New York, NY, ~400 meters east of the former World Trade Center (WTC).	• Four UDM.	• Acquired mass, carbon (OC and EC by TOT), and PAH (Offenberg et al., 2003) in MI-EAS backup filters (dp < 0.5 µm).	• Particle number concentrations ranged from 1.5 x 10^4 #/cm^3, peaking at 7 x 10^4 #/cm^3.	• UP and fine PM were not elevated during the study.
	• Ten sampling periods of 3-4 days each during 9/20/2001 to 12/14/2001.	• One EAS (TSI Model 3100) preceded by five-stage MI (i.e., MI-EAS).	• Data presented in atomic force microscopy (AFM) images, histogram, and time series.	• PAH ranged from 10 to 1,500 ng/m^3 for dp < 0.5 µm.	• No acidic or fibrous particles were found in UP fractions.
	• One CNC (TSI Model 3020).	• One MOUDI (Model 100) with eight stages (0.1, 0.17, 0.29, 0.56, 1.0, 1.8, 3.8 and 15 µm).		• PAHs (BAA, PHE, FLT, pyrene, and chrysene/triphenylene) comprised 55% of PAHs for dp < 0.5 µm.	• Morphology of fine PM collected soon after the WTC collapse with major fires showed agglomerates of small particles under incomplete combustion.
	• One MOUDI (Model 100) with eight stages (0.1, 0.17, 0.29, 0.56, 1.0, 1.8, 3.8 and 15 µm).			• About 7% of TC was organic for dp < 0.5 µm.	
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Fine et al. (2004)	• Two sites in CA: – Downtown L.A. at USC – Riverside. • Four times daily (i.e., 0700-1030 PDT; 1100-1430 PDT; 1500-1830 PDT; 1900-0630 [the following day] PDT) 3.5- and 11.5-hr averaged samples during summer (8/12/2002-8/16/2002 at USC; and 8/26/2002-8/30/2002 at Riverside) and Winter (1/13/2003-1/7/2003 at USC; and 1/27/2003-1/31/2003 at Riverside).	• A High-Vol sampler with slit impactor operated at 500 L/min to separate accumulation (0.18-2.5 µm) and UP (0-0.18 µm) size ranges. • A MOUDI (Model 110). MOUDI stages were chosen to correspond to the size cut points of the High-Vol sampler.	• Acquired mass and carbon (OC and EC) by TOT. • Derivatized and non-derivatized PAHs (including 17α(H), 21β(H), and 29-norhopane, 17α(H), 21β(H)-hopane, 22,29,30-trisnorhopane and COR) and organic acids measured after derivatization as methylated acids by GC/MS. • Solvent extraction in 50 mL of 19:1 mixture of DCM and methanol, followed by nitrogen evaporation. • Data presented in histograms and correlations of EC and PAHs.	• UP mass up to 5 and 10 µg/m³ were reported at USC and Riverside, respectively, with high UP concentrations during midday and evening. • Levoglucosan (a marker for vegetative burning) was often not detectable, with highest average of 50 ng/m³. • Cholesterol (a marker for cooking) ranged from 0.01-0.2 ng/m³.* • 1,2-benzenedicarboxylic acid (a SOA indicator) ranged from 0.01-2 ng/m³.* • Use of specific ng compounds at specific time intervals and location to imply source origins. * Average concentrations were approximated from histograms.	• Defined UP as <180 nm. • No quantitative data was presented. • Particle mass distributions suggested photochemical origins during summer at both sites and during winter at the Riverside site. • Particle growth was not significant during dry and hot summer, owing to the hydrophobic nature of EC and nonpolar organics in UP. • Abundant hopanes (0.2-1.1 ng/m³) in UP during the morning at the USC site suggested fresh vehicle emissions (i.e., from motor oil). • Abundant BaP (0.05-1.5 ng/m³) and COR found in UP suggested poor spark-ignition combustion in gasoline-fueled vehicles.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Gasparini et al. (2004)	• One site at Aldine, TX (north and downwind of Houston metropolitan area) as part of the U.S. EPA Supersite program. • From 6/2001 to 10/2001.	• Two HF-DMAs alternating operation between single DMA mode for size distribution and TDMA mode for measurements of size-resolved aerosol properties such as hygroscopic growth and volatility for particle size range of 25 < d_p < 700 nm. • Hygroscopic measurements made with TDMA were analyzed in eight sizes: 25, 36, 53, 77, 122, 163, 236, and 344 nm.	• Based on hygroscopicity, separate particles into four categories: pure and mixed insolubles and pure and mixed solubles. • Data presented in mass and 3-D volume distribution using 11-point second order Savitzky-Golay smoothing function, TDMA growth factor distributions, and size-resolved hygroscopicity.	• Divided UP composition into four categories based on their hygroscopicity: − pure and mixed water solubles: - inorganic salts, acids, and oxidized organics − pure and mixed water insolubles: - soot, organic compounds, metals, and dust.	• By combining size distribution with aerosol hygroscopicity, the size-resolved aerosol composition was inferred. • Vehicle related OC and EC emissions during morning traffic hours resulted in simultaneous increase in pure insoluble material throughout the size ranges up to 344 nm. • Particles > 0.1 µm exhibited bimodal growth, with increasing importance of the hygroscopic mode with increasing dry particle size. • During two episodes, pronounced increase in small particle concentrations were followed by particle growth. It appeared that condensation of organic compounds was responsible for the initial growth, while condensation of inorganic compounds was responsible for the continued growth. • Morning traffic resulted in an increase in pure insoluble material throughout the 700 nm size range.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Hasegawa et al. (2004)	• Two sites in Japan:	▪ An SMPS consisting of DMA (Model 3081) and CPC (model 3025A) for 10 min scan of 18.4 < dp < 865 nm in 107 channels.	▪ Acquired OC and EC for 0.06 < dp < 11 µm at 11 stages.	▪ At 250°C the peak at 30 nm (containing volatile species such as NO₃⁻, SO₄²⁻ and organics) disappeared. The second peak at 90 nm (consisting of solid material, mainly soot and EC) remained.	▪ Increase in UP corresponded to total traffic and high concentration of diesel engine vehicles.
	• A roadside site at the Ikegami-Shincho crossing in Kawasaki City, Kanagawa Prefecture	▪ A thermal denuder (Dekati), heated at 250°C preceded DMA (Grimm Model 5.5-900) and CPC (Grimm Model 5.403) for 14.9 < dp < 742 nm during Period II.			▪ Particle concentration for 18.4 < dp < 50 nm increased in the morning under calm winds, which corresponded to the increased EC and NO.
	• An ambient suburban site at the National Institute for Environmental Studies in Tsukuba City, Ibaraki Prefecture.	▪ 13 stage ALPI (Tokyo Dylec Corp. Model LP-20).*	▪ Data presented in carbon size distribution, number distribution, wind pollution roses, and temporal variations.	▪ EC/TC ratio was larger for dp > 60 nm as compared to those in the 60-120 nm ranges, suggesting abundance of volatile compounds for dp > 60 nm.	▪ The 30 nm peaks at the suburban Tsukuba site in the afternoon implies continued impacts from vehicle exhaust as well as photochemical reactions.
	• From 2/18-27/2002 (Period I) and from 9/20/2002 to 10/1/2002 (Period II) at Kawasaki, and from 3/1/2002 to 3/14/2002 at Tsukuba.			▪ Increase in UP corresponded to total traffic and high concentration of diesel engine vehicles.	▪ Thermaldenuder suggested that most UP evaporated at 250°C.

*See Table 1 for cut points.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Kawanaka et al. (2004)	• One site at Saitama University in Saitama City, north of Tokyo, Japan. 1/16/2003 to 2/27/2003 with filter change occurring every week.	• 12-stage ALPI (Tokyo Dylec Model LP-20) for 0.11 < dp < 11 µm. * See Table 1 for cut points.	• Acquired 9 PAHs after DCM extraction (i.e., BbF, BkF, BaP, BeP, PER, IND, DBahA, BghiP, COR) by GC/EI-MS, and 2-NF by GC/NCI-MS.	**Type of PAH (ng/g PM)**	**Cumulative frequency of PAH and 2-NF**
				Total PAH 170 NA	UP
				BbF 32 3.6	
				BkF 26 3.4	
				BeP 23 3.6	
				BaP 21 3.1	
				PER 5 4.1	
				IND 22 3.2	
				DBahA 3.2 2.9	
				BghiP 27 4.2	
				COR 16 4.8	
				2-NF 9 5.8	
			• Mutagenicity determined by Ames test using Salmonella typhimurium strains TA98 and YG1024 under conditions with and without S9 mix.	**Type of Mutagenicity**	**Mutagenicity/PM (Revertants/mg)**
			• Data presented in tables as percent cumulative frequency and in histogram for particle size distribution.	TA98-S9 1,050	**Approximated from histogram in Figures 2 and 4 of Kawanaka et al. (2004)**
			• Define UP as dp < 0.11 µm, fine particles as dp < 2.1 µm, and PMcoarse as 2.1 < dp < 11 µm. UP was of 1.5% of PM11.	TA98+S9 800	**Approximated from histogram in Figures 2 and 4 of Kawanaka et al. (2004)**
			• 9 PAHs, total PAH, 2-NF, and mutagenicity were unimodal with a peak at 0.48-0.68 µm.	YG1024-S9 9,000	**Approximated from histogram in Figures 2 and 4 of Kawanaka et al. (2004)**
			• Highest PAHs, 2-NF and mutagenicity per unit PM mass were found in UP fractions, suggesting UP were efficient at carrying mutagenic compounds which cause adverse health effects.	YG1024+S9 2,500	**Approximated from histogram in Figures 2 and 4 of Kawanaka et al. (2004)**
			• Based on size distribution of PM between 0.11 and 11 µm, 2.9-5.8% of PAHs and 2-NF, and 5.1-5.9% of mutagenicity were found in UP.		**Approximated from histogram in Figures 2 and 4 of Kawanaka et al. (2004)**
			• Attributed PAH to emissions from combustion sources.		
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Ma et al. (2004)	One site at Kansai, Japan, with industrial parks such as textiles, general machinery, and chemical/metal products with a 45 km radius. Two times per day (0900-1800 and 1800-0900 LT) from 12/10/2002 to 12/25/2002.	Two 13-stage LPAIs* for 0.01 < \(d_p\) < 10.85 µm. OPC (Model KC-01 D, RION) for 15-min average with cut point at 0.3, 0.5, 1.0, 2.0, 5.0, and 7.5 µm. Hourly \(SO_2\) (GFS-32, DKK) \(NO_x\) (GLN-32, DKK), and \(PM_{2.5}\) TEOM.	Acquired mass, elements by PIXE, and carbon (OC and EC) by TOR. Data presented in percent of UP particle size distribution by elements in three-dimensional (3-D) size distribution of OC and EC, and used factor analysis to identify source contribution.	3-D graphs show low UF metal concentration with abundant S (~2.00 ng/m\(^3\)), detectable K (<100 ng/m\(^3\)), and trace levels (<0.2 ng/m\(^3\)) of Mn and Cr, indicative of gas-to-particle conversion in the atmosphere and by the condensation of gas vaporized in the combustion process.	Only one LPAI stage contained UP. Peak EC concentration was in the range of 0.12-0.29 µm, while peak OC was found at 0.29-0.67 µm. High OC/EC ratio suggested that organic compounds were emitted as primary particles from combustion sources in Kansai. No specific source apportionment results were given for UP. Factor analysis indicated automobile exhaust, fossil fuel contribution, refuse incinerations, iron industry, and geological material contributed to \(PM_{2.5}\).

* See Table 1 for cut points.
| Study | Sampling Location, Period, and Number of Samples | Measurement Methods | Observables and Data Presentation Method | Relative UP Abundances | Comments |
|-----------------------|---|---|--|--|--|
| Miguel et al. (2004) | • One site at Claremont, CA. | • A MOUDI (Model 110, used 4 or 5 stages) | • Acquired mass carbon (OC and EC), by unspecified method, 12 PAHs extracted with DCM and analyzed by HPLC-fluorescence, and ions (NO₃⁻ and SO₄²⁻) by IC (Dionex Model DX-100). | • EC, OC, and SO₄²⁻ in UP mode accounted for 43%, 24%, and 4% of total EC, OC, and SO₄²⁻ mass, respectively. | • UP defined as dₚ < 0.18 µm. • EC size distribution did not vary over the study period with abundant UP and accumulation modes. • Correlations with temperature were high for SO₄²⁻ and EC in UP mode and OC and NO₃⁻ in coarse mode. • As temperature decreased, particle-phase PAH concentration (i.e., the BAA-IND group) increased with decreasing volatile species, suggesting the increased partitioning from vapor phase and increased photostability during the winter. • Similar size distributions were found for monthly composite target PAHs from October to February. • Coarse fraction PAHs were found from March to July. |
| | • 24-hr average samples, (midnight to midnight), sampled once a week from 10/2001 to 7/2002. | • Meteorological data for wind speed, wind direction, temperature, and relative humidity were acquired. | • 12 PAHs were grouped by sub-cooled vapor pressure: 1) a PHE-FLT semi-volatile PAH group (log[P°L] from -0.95 to -2.06) including PHE, ANT, PYR, and FLT, and 2) a BAD-IND less volatile and particle-phase PAHs (log[P°L] -3.22 to -7.04) including BAA, CRY, BgP, BaP, and BbF. | • PHE-FLT and BAA-IND in UP mode accounted for 30% and 40% of the PAH mass. | |
| | • Samples were composited monthly for analysis (~10 samples) as UP (0.0-0.18 µm), accumulation (0.18-2.5 µm), and coarse (2.5-10 µm) modes. | • Data presented in monthly particle size distribution of PAHs and EC including one UP mode and examined correlations of chemical components with temperature. | • EC, OC, and SO₄²⁻ in UP mode accounted for 43%, 24%, and 4% of total EC, OC, and SO₄²⁻ mass, respectively. | | |
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Tolocka et al. (2004b)	One site at southeast Baltimore, MD, as part of the U.S. EPA Supersite program. Continuous sampling from 4/2002 to 5/2002 to obtain two-hr average spectra with ~2,000 particles/day.	An RSMS III (45 < d_p < 1,250 nm), with a laser ablation time-of-flight MS, characterizing single particles with positive/negative ion detection for ~110 min scan by LDMS. A continuous NO_3^- monitor (by flash vaporization).	- Particles in nine sizes were selected (45, 50, 90, 115, 140, 220, 440, 770, and 1,250 nm). - Metals are categorized into: 1) pure, 2) mixed, and 3) unconfirmed classes. - Evaluated positive ion spectra using m/z 30 (NO_2^+) as indicator for NO_3^-, and calculated NO_3^- from the hit rate and number of particles collected in a particular time span. - Data presented in time series spectrum, number concentrations, and number by wind roses in eight directions.	- No absolute UP concentrations, used ART 2-a neural network algorithm, assigned NO_3^- spectra into “pure” and “internally mixed” classes. - Identified events on the basis that concentration increased 10 fold over the baseline concentration levels. - Reported pure or fresh (50-90 nm) and aged (110-220 nm) NO_3^- events, coincided with an increase in the number of mixed particles containing NO_3^-, suggesting that they were formed by condensation of NH_4NO_3 onto pre-existing particles.	Obtained approximately 75,000 size particle spectra in the positive ion mode. UP NO_3^- events were found during low temperatures and high RH. Partitioning of NH_4NO_3 to particle phase was influenced by the particle number concentrations and chemical composition during NO_3^- events. V, a marker for residual oil combustion, was observed from all wind directions. Fe and Pb were observed from the east-northeast, whereas As and Pb were observed from the south-southeast.
Fang et al. (2005; 2006a; 2006b)	One traffic sampling site, west of Taichung, Taiwan. Three-day (~4,320 min) average samples acquired from 11/2004 to 1/2005.	One MOUDI (Model 100; 0.056 < d_p < 18 µm) in 10 stages. One nano-MOUDI (Model 115); 10 < d_p < 56 nm.	- Acquired mass and ions (Cl^-, NO_3^-, SO_4^{2-}, NH_4^+, Na^+, K^+, Ca^{2+}, and Mg^{2+}) by IC (Dionex-100) and elements (Mg, Cr, Fe, Cu, Zn, and Pb) by AAS from Teflon filters.	- UP concentrations were 39, 35, and 37 µg/m^3 for the < 18, 32, and 56 nm stages, respectively. - UP (d_p < 0.1 µm) consisted of 16.9% of total PM mass (d_p < 18 µm). - Major ionic species of SO_4^{2-}, NH_4^+, and Mg^{2+} have higher concentrations for d_p < 56 nm. - Cumulative fractions for UP are: 21.1% for SO_4^{2-}, 24% for NH_4^+, and 21% for Mg^{2+}. - Cumulative fractions for d_p < 56 nm was 12.3 for elements (Mg, Ca, Cr, Fe, Zn, and Pb).	Used cumulative fractions to interpret the UP fraction. Ion concentrations were reported as µg/g, and metal concentrations as mg/g or as µg/m^3 for filter density, inconsistent with mass concentrations of µg/m^3.
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Herner et al. (2005; 2006a; 2006b)	Six sites in Northern California:				
 - Bodega Bay (coastal)
 - Davis (urban)
 - Sacramento (urban)
 - Modesto (urban)
 - Bakersfield (urban)
 - Sequoia National Park (regional background)
 - Western slope of the Sierra Nevada mountains
 - From 12/16/2000 to 2/3/2001 for the following intensive operating periods (IOPs):
 - IOP1: 12/15-18/2000
 - IOP2: 12/26-28/2000
 - IOP3: 1/4-7/2001
 - IOP4: 1/31/2001-2/3/2001 | Two collocated MOUDI (Model 110) at each site.
 - SMPS measurements at Modesto during 1/4-7/2001.
 - PM$_{10}$, PM$_{2.5}$ and PM$_{1.8}$ and gaseous NH$_3$ and HNO$_3$ were acquired. | Acquired mass, carbon (OC and EC) by TOT, ions (Na$^+$, K$^+$, Ca$^{2+}$, NH$_4^+$, NO$_3^-$, PO$_4^{3-}$, and SO$_4^{2-}$), elements (Al, Si, P, S, Cl, K, Ca, Sc, Ge, Se, Br, I, and Ce) by XRF, and elements (Si, S, Ca, Ni, Cu, and Zn) by ICP/MS. | OC and EC constituted 90% for $d_p < 0.18$ µm and ~98% for UP.
 - Maximum UP of ~2.4 µg/m3 was found at Sacramento and Bakersfield.
 - Daytime UP concentrations were ~50% lower than nighttime concentrations.
 - UP concentrations did not increase during multi-week stagnation in the SJV (consistent with coagulation as a dominant removal mechanism for UP) though PM$_{2.5}$ increased by 7 fold.
 - Two types of particles were identified: hygroscopic SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$; and less hygroscopic OC and some EC.
 - Carbon and hygroscopic particles exist separately in the SJV until coagulation mixes them in the accumulation mode.
 - UP elemental concentrations (ng/filter) were low, typically < 0.1 or 0.01 µg/m3. | Two types of particles were identified: hygroscopic SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$; and less hygroscopic OC and some EC.
 - Carbon and hygroscopic particles exist separately in the SJV until coagulation mixes them in the accumulation mode.
 - UP elemental concentrations (ng/filter) were low, typically < 0.1 or 0.01 µg/m3. |
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Lin et al. (2005)	- Roadside in an unspecified city in southern Taiwan.				
- 13 samples collected during seven sampling periods from 2/2004 to 4/2004. | MOUDI (Model 110) and nano-MOUDI (Model 115) with Si grease applied. | Mass and elements (Na, Mg, Al, Si, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Ag, Cd, Sb, Ba, and Pb) by ICP/MS (Agilent 7500 series) and Si by ICP/AES (Perkins Elmer Optima 2000 DV). | Nanoparticles ($10 < d_p < 56$ nm) contain greater quantities of traffic-related metals (Pb, Cd, Cu, Zn, Ba, and Ni).
- UP by mass were: | Reported nanoparticles ($d_p < 10-56$ nm) and UP measurements of 23 ± 11 and 31 ± 19 µg/m3, respectively. |
| | | | | Element | % of UP mass in nanoparticles |
| | | | | V | 38% |
| | | | | Cr | 28% |
| | | | | Ni | 30% |
| | | | | Zn | 22% |
| | | | | Ag | 37% |
| | | | | Cd | 50% |
| | | | | Sb | 64% |
| | | | | Pb | 24% |
| | | | | Ag, Cd, Sb are more abundant in nucleation/condensation mode. V, Zn, Ag, Cd, Sb, Ba, and Pb are abundant in UP diesel exhaust, while Mn, Cu, and Sr are abundant in UP gasoline exhaust. |
Table 2. Continued.

Study	Sampling Location, Period, and Number of Samples	Measurement Methods	Observables and Data Presentation Method	Relative UP Abundances	Comments
Sardar et al. (2005)	Four sites in CA:				
- USC (Source site)
- Long Beach (LB) (Source site)
- Upland (UL) (receptor site)
- Riverside (RS) (receptor site) | - A modified MOUDI (Model 110), Nano-MOUDI (Model 115-1), and an ELPI (Model 393501).
- An SMPS/CPC system (Models 3966/3022A) every 15 min scans for 22 < dₚ < 948 nm during fall 2002 at Riverside and Long Beach, during winter 2002 at USC and during summer 2003 at Riverside.
- Hourly gases NOₓ, NO₂, CO and O₂ | - Acquired 14-day integrated mass, carbon (OC and EC) by TOT, and ions (NO₃⁻ and SO₄²⁻) by IC.
- Data presented in tables, percent contribution to total, histogram, and time series plots. | - UP mass ranged 0.8 to 3.5 µg/m³, peaking during fall.
- UP composition (ng/m³) | - UP defined as dₚ < 180 nm, assuming particle density 1.6 g/cm³, equivalent mobility diameter is 130 nm.
- Converted SMPS number to mass concentrations by assuming density of 1.6 g/cm³.
- Highest UP and EC mass found at USC, probably due to the impact of nearby freeway traffic with diesel vehicle emissions.
- UP composition varied in the range of 32-69% for OC, 1-34% for EC, 0-4% for NO₃⁻, and 0-24% for SO₄²⁻.
- Average UP across sites and seasons were 52% OC, 10% EC, 1% NO₃⁻, and 8% SO₄²⁻.
- Found OC mode at 18-56 nm during summer, suggesting photochemical SOA formations. |
| Study | Sampling Location, Period, and Number of Samples | Measurement Methods | Observables and Data Presentation Method | Relative UP Abundances | Comments |
|---------------|--|---------------------|--|------------------------|--|
| Huang et al. (2006) | • Zhujiang Tunnel (near Guangzhou, Southern China).
• 12 sampling periods from 12/20/04 to 1/20/05 and nine periods from 7/20/04 to 8/20/04.
• Tunnel length: 1,238 m (721 m underwater).
• Tunnel Bores: Two, with three lanes in one traffic direction.
• Average Vehicle Speed: 15-50 km/hr.
• 94,173 vehicles tracked over six sampling periods:
 – 18% heavy duty
 – 57% light duty
 – 25% motorcycles. | • MOUDI (10 stages). | • Carbon (OC and EC) by NIOSH method
• Ions (Cl^-, NO_3^-, SO_4^{2-}, Na^+, K^+, Mg^{2+}, Ca^{2+}, NH_4^+) by IC. | • Reconstructed mass showed abundance of OC and EC in UP with few percentage for ions. | • MMD for EC at 0.42 µm for tunnel as compared to 0.1 µm in the literature.
• No mass was measured.
• Diesel vehicle exhaust included high engine loads and low combustion efficiency.
• Residence time and optical properties of EC in South China were difficult to measure.
• Internal mixing of EC with SO_4^{2-} led to faster atmospheric removal by wet deposition. |
| Study | Sampling Location, Period, and Number of Samples | Measurement Methods | Observables and Data Presentation Method | Relative UP Abundances | Comments |
|-----------------------|---|--|--|--|---|
| Watson et al. (2007) | • Two sites in California’s San Joaquin Valley
 - Fresno (urban)
 - Angiola (rural).
 • From 12/26/2000 to 2/3/2001 for the following intensive operating periods (IOPs):
 - IOP2: 12/26-28/2000
 - IOP3: 1/4-7/2001
 - IOP4: 1/31/2001-2/3/2001
 • 34 samples collected during:
 - 0000-0500 (6)
 - 0500-1000 (10)
 - 1000-1600 (10)
 - 1600-2400 (8). | • Three collocated MOUDI (Model 110; 8 stages) at each site.
 • PM$_{2.5}$ collocated filter samples were acquired.
 • Acquired mass, carbon (OC and EC) by IMPROVE TOR/TOT method, ions (Cl$^-$, NO$_3^-$, SO$_4^{2-}$, Na$^+$, K$^+$, NH$_4^+$) and elements (Na-U) by XRF. | • UP: 56 nm < d_p < 100 nm.
 | Observables | Average ± Standard Deviation (µg/m3) | Angiola | Fresno | | | • Nearly all of the UP was OC and EC at Angiola and Fresno.
 | Mass | 4.4 ± 3.5 | 2.4 ± 1.3 | 2.4 ± 1.3 | | | • UP fractions of OC and EC were higher at Angiola (22 and 23%, respectively) than at Fresno (6.0 and 9.9%, respectively). |
| OC | 2.9 ± 3.3 | 2.2 ± 1.2 | 2.2 ± 1.2 | | | |
| EC | 0.55 ± 0.26 | 0.47 ± 0.30 | 0.47 ± 0.30 | | | |
| NO$_3^-$ | ND | 0.11 ± 0.07 | 0.11 ± 0.07 | | | |
| SO$_4^{2-}$ | ND | ND | ND | | | |
| Fe | 0.038 ± 0.054 | 0.086 ± 0.093 | 0.086 ± 0.093 | | | |
| Observables | Average ± Standard Deviation (UP% of Total) | Angiola | Fresno | | | |
| Mass | 9.4 ± 9.3 | 3.0 ± 2.1 | 3.0 ± 2.1 | | | |
| OC | 22 ± 16 | 6.6 ± 3.6 | 6.6 ± 3.6 | | | |
| EC | 23 ± 9 | 10.5 ± 4.6 | 10.5 ± 4.6 | | | |
| NO$_3^-$ | ND | 0.34 ± 0.09 | 0.34 ± 0.09 | | | |
| SO$_4^{2-}$ | ND | ND | ND | | | |
| Fe | 17 ± 26 | 14 ± 17 | 14 ± 17 | | | |
Sampling and Monitoring Methods.

Aethalometer........... A paper tape light-absorption measurement of Black Carbon (BC) (Model RTAA-900, Andersen Instruments, Inc. [Thermo Electron, Inc.], Atlanta, GA)
ALPI Andersen Low pressure impactor, operated at 20 L/min, with 12 stages at < 0.06, 0.12, 0.29, 0.48, 0.68, 1.2, 2.1, 3.5, 5.1, 7.6, and 11 µm (Model LP-20, Tokyo Dylec, Tokyo, Japan, [Kasahara et al., 1996; Ma et al., 2001]). See Table 1 for different variations of ALPI
ATOMF Aerosol time-of-flight Mass Spectrometers (Model 3800-030/3800-100, TSI, Inc., St. Paul, MN) to obtain continuous particle number distributions and single particle chemical composition in the size range of 0.2 < dp < 5 µm
BLPI Berner low pressure impactor with sampling flow rate of 30 L/min. Nominal cut points of eight stages (Berner and Lurzer, 1980)
CCN Counter Cloud Condensation Nuclei Counter (Model 130, Mee Industries, Monrovia, CA)
CPC Condensation Particle Counter, also termed Condensation Nuclei Counter (CNC) including: a) TSI (Models 3022A and 3760, TSI, Inc., Shoreview, MN), and b) Grimm (Model 5.403, Grimm Aerosol Technik GmbH & Co. KG, Ainring, Germany)
DMA Differential Mobility Analyzer including: a) TSI (Model 3071, TSI, Inc., Shoreview, MN), and b) Grimm (Model 5.5-900, Grimm Aerosol Technik GmbH & Co. KG, Ainring, Germany)
HF-DMA High-flow differential mobility analyzer (Aerosol Dynamics, Inc., Berkeley, CA; Stolzenburg et al., 1998) Nano DMA TSI (Model 3085, TSI, Inc., Shoreview, MN), selects particles < 150 nm
EAA Electrical Aerosol Analyzer (Model 3030, TSI, Inc., Shoreview, MN), measures particle number concentrations in the range of 0.017 < dp < 0.250 µm
EAS Electrostatic aerosol sampler. A two-stage (one charging and one collecting stage) electrostatic precipitator that deposits particles onto collection surface for chemical analysis and microscopic evaluation. (EAS, Model 3100, TSI, Inc., Shoreview, MN)
ELPI Electrical low-pressure impactor (Model 393501, Dekati Ltd. Osusmyllykatu 13 TSI Finland), operated at a flow rate of 10 or 30 L/min
High-Vol High volume sampling system with slot impactor and cut point at 0.18 µm at flow rate of 500 L/min (Misra et al., 2002) LPC Laser Particle Counter (Model TF-500, Kanomax, Andover, NJ, Ishizaka and Adhikari, 2003)
MOI Micro-orifice impactor (MSP Corporation, Minneapolis, MN)
MOUDI Micro-orifice uniform deposit impactor, with eight stages at 0.18, 0.32, 0.56, 1.0, 1.8, 3.2, 5.6, and 18 µm (Model 100, MSP Corporation, Minneapolis, MN). Model 110 (MSP Corporation, Minneapolis, MN) is a 10-stage impactor which adds 0.056 and 0.1 µm to the Model 100 stages. Both models operate at 30 L/min
Modified MOUDI . Model 110 (MSP Corporation, Minneapolis, MN) with 2/3 of acceleration nozzle plates masked, operated at 10 L/min Nano-MOUDI...... Model 115-1 (MSP Corporation, Minneapolis, MN) operated at 10 L/min, with 4 stages at 10, 18, 32, and 56 nm
OPC Optical Particle Counter: a) Particle Measuring Systems (Model ASASP-X, Particle Measuring Systems, Boulder, CO) in 31 channels for the size range 0.09 dp < 2.6 µm every five sec, and b) RION (Model KC-01D1, RION, Tokyo, Japan)
R&P 5400 Continuous carbon analyzer for OC and EC (Rupprecht and Patashnick Co, Albany, NY)
RSMS II Rapid Single-particle mass spectrometer, Version 2. (Malina et al., 2000; Phares et al., 2001; 2002)
RSMS III Rapid single-particle mass spectrometer, Version 3. A laser ablation time-of-flight mass spectrometer that simultaneously detects positive and negative ions (Lake et al., 2003; 2004; Tolocka et al., 2005; 2006)
SDI Small deposit area impactor (a 12-stage [0.045, 0.090, 0.150, 0.235, 0.380, 0.580, 0.800, 1.06, 1.61, 2.60, 4.07, and 8.5 µm], low-pressure, multi-nozzle inertial impactor with a deposit area < 8 mm in diameter, 53 deposit areas, operated at 11 L/min (Maenhaut et al., 1996)
SMPS Scanning Mobility Particle Sizer (Model 3936, TSI, Inc., Shoreview, MN)
TEOM............... Tapered element oscillating microbalance (Series 1400a, Thermo Fisher Scientific, formerly Rupprecht & Patashnick Co., Inc., Albany, NY)
TDMA Tandem differential mobility analyzer, operating two DMAs in series (Rader and McMurry, 1986)
UCPC Ultrafine Condensation Particle Counter (Model 3025A, TSI, Inc., St. Paul, MN)
UDM Ultrafine diffusion monitor, a low-flow rate (200 cm3/min) diffusion monitor that deposits particles by diffusion onto the walls of the channel (Cohen et al., 2000). UP are collected onto two nanofilm detectors and one non-reactive (silicon) detector (detectors are stored under nitrogen after sampling) to quantify both total and acidic particles by atomic force microscopy (AFM)
USC UPC UP Concentrator that enriches particle concentrations by a factor of 40. Air is first drawn at a flow of 2,201 L/min through a saturation-condensation system that grows particles to 2-3 µm droplets, separated by virtual impactors, passed through diffusion dryer, and then returned to original size (Kim et al., 2000a)
VI Virtual impactor, operated at 16.7 and 1.7 L/min for 2.3 and 15 µm cut point, respectively (Loo and Cork, 1988)

\textbf{Analysis Methods}

AAS...................... Atomic Absorption Spectrometry
GC/EI-MS............. Gas chromatograph/electron impact ionization-mass spectrometer for organic compounds
GC/MS.................. Gas chromatograph/mass spectrometry for organic compounds
GC/NCI-MS.......... Gas chromatograph with negative ion chemical ionizations mass spectrometer for organic compounds
HPLC................... High performance liquid chromatography for organic compounds and organic acids
IC Ion chromatography for anions (Cl$^-$, NO$_3^-$, PO$_4^{3-}$, SO$_4^{2-}$) and cations (Na$^+$, K$^+$, NH$_4^+$)
ICM Indophenol colorimetric method for NH$_4^+$ analysis
ICP/MS................ Inductively coupled plasma/mass spectroscopy for elements
INAA Instrumental neutron activation analysis for elements
LDI/MS Laser desorption ionization/mass spectroscopy
PIXE Proton-induced X-ray emissions spectrometry analysis for elements
RFA Alpkem rapid flow analyzer (Model RFA-300) for NH$_4^+$ analysis by indophenol colorimetric method
SAED Selected area electron detection
TEM Transmission electron microscopy for particle morphology
TMO Thermal magnesium dioxide carbon analysis method for OC and EC (Fung, 1990)
TOR Thermal/optical reflectance method for OC and EC (Chow et al., 1993; 2001; 2004; 2005b; 2007)
TOT Thermal/optical transmission method for OC and EC (Birch and Cary, 1996)
XRF X-ray fluorescence analysis for elements

\textbf{Observables}

CCN Cloud condensation nuclei
CN Condensation nuclei
d$_p$ Particle aerodynamic diameter
HC Hydrocarbon
MMD Mass medium diameter
MSA Methane sulfonate
O$_x$ Oxalate
PAH Polycyclic aromatic hydrocarbon
2-NF 2-nitrofluoranthene
ANT anthracene
BAA Benzo[a]anthracene
BaP benzo[a]pyrene
BbF benzo[b]fluoranthene
BeP benzo[e]pyrene
BgP/BghiP ... benzo[ghi]perylene
BkF benzo[k]fluoranthene
COR coronene
CRY chrysene
DBahA........ dibenz[a,h]anthracene
FLT fluoranthene
IND Indeno[1,2,3-cd]pyrene
PER perylene
PHE phenanthrene
PYR pyrene

PM.................. Particulate matter
SOA................ Secondary Organic Aerosol

Chemical Species:
BC Black Carbon
EC Elemental Carbon
OC Organic Carbon
OM Organic Mass (= OC x 1.4)
TC Total Carbon
Cl Chloride
NO Nitrogen oxide
NO₂ Nitrogen dioxide
NO₃ Nitrate
SO₄²⁻ Sulfate
NH₄⁺ Ammonium
Na⁺ Water-soluble sodium
VOC Volatile Organic Compounds
(NH₄)₂SO₄ Ammonium sulfate
NH₄NO₃ Ammonium nitrate
NH₄Cl Ammonium chloride
NH₄HSO₄ Ammonium bisulfate
Ca²⁺ Water-soluble calcium
H₂SO₄ Sulfuric Acid
CaCO₃ Calcium carbonate
NaCl Sodium chloride
O₃ Ozone
Elements:

- B................. Boron
- Al.............. Aluminum
- Mg.............. Magnesium
- Si.............. Silicon
- K.............. Potassium
- Ti............. Titanium
- V.............. Vanadium
- Cl............ Chlorine
- Cr............ Chromium
- Mn........... Manganese
- Fe........... Iron
- Co.......... Cobalt
- Ni.......... Nickel
- Cu.......... Copper
- Zn.......... Zinc
- Se.......... Selenium
- Sr......... Strontium
- Mo......... Molybdenum
- Ag......... Silver
- Pb.......... Lead
- Ba.......... Barium
- La......... Lanthanum
- Ce......... Cerium

SPM.............. Suspended particulate matter with a cut point at 100% collection efficiency of ~10 µm (~7 µm by 50% collection efficiency, term used in Japan)

UP Ultrafine particles

Other Abbreviations:

- AIHL cyclone........ Air Industrial Hygiene Laboratory cyclone, removes particles greater than 1.8 µm at 30 L/min (John and Reischl, 1980)
- DCM........ Dichloromethane (CH\textsubscript{2}Cl\textsubscript{2})
- L.A. Los Angeles
- LDT........ Local daylight time
- LST........ Local standard time
- ND........... Not detectable
- NA........... Not available
- PDT........ Pacific daylight time
- PST........ Pacific standard time
- USC University of Southern California
Data reporting

Inconsistent definitions are used for the terms “ultrafine particle” and “nanoparticle.” Many of these definitions are operational, depending on the measurement method. In Table 2, Kawanaka et al. (2004) define UP as particles < 110 nm, while Geller et al. (2002), Fine et al. (2002), Miguel et al. (2004) and Sardar et al. (2005) define UP as < 180 nm. Chow et al. (2005c) recommended the use of < 10 nm for nanoparticles and < 100 nm for UP in the physical sciences.

Many of the references report their results graphically rather than in tables, thereby making it difficult to obtain quantitative concentrations for the different chemical species. Several reporting methods include stacked bar charts of the composition for the different size fractions in which only the major components could be identified. Some references report pie charts with percentage contributions of each chemical component. These had to be deconvoluted to obtain the absolute concentrations reported in Table 2, and this was only possible when the UP mass was reported with the pie chart. Several of the studies report only a few of the UP size fractions rather than the total for all particles less than 100 nm. The most straightforward references were those that reported the results in a table for each of the species measured and each stage of size-segregation, such as that of Pakkanen et al. (2001b).

Data are qualitative or semi-quantitative for the aerosol mass spectrometer studies (Phares et al., 2003; Rhoads et al., 2003; Tolocka et al., 2004a; 2004b). Zhang et al. (2004) show that OC is a major component of small particles, demonstrated by the percentage of nucleation events. Erdmann et al. (2005) classify single particle spectra, but this is often subjective and it is not possible to compare the results among different investigators, even when they are using the same instrument. Tolocka et al. (2004a) shows a clear directionality of UP metals using the short-time resolution available from the single particle mass spectrometer, in which most of the UP Fe is coming from a source to the northeast, whereas most of the UP arsenic (As) derives from sources to the southeast. This type of data can be correlated with source locations to better identify and quantify contributors to excessive concentrations.

Monitoring locations

Of the 25 studies summarized in Table 2, eight (Hughes et al., 1998; 1999; Cass et al., 2000; Geller et al., 2002; Kim et al., 2002; Fine et al., 2004; Miguel et al., 2004; Sardar et al., 2005) are from different locations within the Los Angeles metropolitan area. In central California, Chung et al. (2001) sampled at urban Bakersfield and Watson et al. (2007) sampled at the urban Fresno and non-urban Angiola sites. Herner et al. (2005; 2006a; 2006b) characterized UP at six California locations including the cities of Modesto and Sacramento, a coastal site (Bodega Bay), Sequoia National Park, and the western slope of the Sierra Nevada. All of these used MOUDI impactors for sampling with a combination of XRF, PIXE, or INAA for elements, IC or AC for
water soluble ions, and thermal/optical reflectance (TOR) or transmission (TOT) for OC and EC measurements (Watson et al., 2005). Fine et al. (2004) and Miguel et al. (2004) quantified PAHs.

Other U.S. cities include Houston, TX (Phares et al., 2003), Atlanta, GA (Rhoads et al., 2003), and Baltimore, MD (Tolocka et al., 2004a; 2004b), where single particle spectrometers were applied. Gasparini et al. (2004) reported TDMA measurements from Houston to evaluate hygroscopic properties. MOUDI measurements were also taken by Cohen et al. (2004) in New York near the World Trade Center after 9/11/2001 and results are influenced by that event.

In Europe, Pakkanen et al. (2001a) measured UP with a BLPI at urban Helsinki and rural Luukii, Espoo sites in Finland. Viidanoja et al. (2002a) used SDIs in Helsinki. Four studies on UP were reported in Japan using ALPI with the cut points shown in Table 1. Kawanaka et al. (2004) and Ma et al. (2004) sampled at Saitama University and in a Kansai industrial area, respectively. Hasegawa et al. (2004) coupled ALPI with a thermal denuder near roadways in Kawasaki. Ishizaka and Adhikari (2003) also applied the thermal denuder method in the industrial area of Nagoya and along the Japanese coast at Mikuni to infer cloud condensation nuclei (CCN) composition. In Asia, Lin et al. (2005) conducted a roadside study in southern Taiwan using the MOUDI and Nano-MOUDI, while Huang et al. (2006) reported on a tunnel experiment in southern China using a MOUDI.

Most of the studies were performed during the late 1990s and early 2000s. The number of samples taken ranges from two to ~50, which is a small data set from which to draw general conclusions. Sampling locations were largely within highly populated urban centers, with a few in non-urban areas for contrast. Sometimes example results from a few interesting samples were reported, while at other times only the all-sample averages were reported.

UP composition

Organic material (OM = OC×1.4 to account for the unmeasured hydrogen, oxygen, nitrogen, and other material that is associated with organic molecules) was the major component of the UP fraction. Hughes et al. (1998) found that OM accounted for 40% to 53% of the UP in Los Angeles during 1996. This was consistent with the results of Cass et al. (2000), Geller et al. (2002), Kim et al. (2002), and Sardar et al. (2005) for southern California samples. However, Miguel et al. (2004) found that 43% of UP was composed of EC while only 24% came from OC. For northern California, Herner et al. (2005; 2006a; 2006b) found that OC and EC constitute ~98% of UP mass. OC and EC in UP were also reported by Huang et al. (2006) for a southern China tunnel. Different OC and EC levels could be due to the different sampling sites, sampling times, UP cut points, and measurement methods. In any case, OC and EC were major portions of UP in nearly all of the summarized studies.

When the OC fraction was examined for more specific organic compounds, Miguel et al. (2004) found that phenanthrene/fluoranthene and benzo[a]anthracene/indeno[1,2,3-cd]pyrene in
UP mode accounted for large fractions of PAH mass in Southern California. These compounds indicate contributions from fossil fuel combustion sources, especially gasoline- and diesel-powered vehicle exhaust. In Saitama, Japan, Kawanaka et al. (2004) found PAH in the range of 3–30 ng/g PM and 3–6% of PAH were found in UP. They also found that these samples were highly mutagenic. Mutagenicity was not observed at urban and suburban locations in Guangzhou, South China, especially for heavy PAHs (> 5 rings; Duan et al., 2005). PAH are semi-volatile in nature and can easily condense on other particles. The larger surface-to-volume ratios in the UP fraction probably encourage this condensation. Cohen et al. (2004) measured PM$_{2.5}$ PAH as high as 1,500 ng/m3, reflecting the intensity of emissions from fires soon after the 9/11/2001 World Trade Center attack.

Fine et al. (2004) sought contributions from cooking and wood burning by using levoglucosan and cholesterol as organic markers for these sources. Their concentrations were low, with levoglucosan undetected in many samples, although it did achieve a value as high as 50 ng/m3 in one UP sample. Cholesterol was also low (< 0.2 ng/m3), which indicated a negligible contribution from meat cooking to UP in Southern California during the study period.

Mass, elements, and ion concentrations were reported by Pakkanen et al. (2001a), while only carbon was reported by Viidanoja et al. (2002b). Therefore, mass closure was not achieved, although Pakkanen et al. (2001a) found organic acids that could indicate biogenic origins. Phares et al. (2003) found that amines constituted 2.4% of the UP mass in Houston, TX. Hasegawa et al. (2004) found that nearly all of the UP < 30 nm disappeared when heated to 250°C with a thermal denuder for roadway samples. This is consistent with UP being composed of semi-volatile OM that can evaporate from small particles and condense on larger ones, thereby enhancing particle growth (Zhang and Wexler, 2002).

EC was also present in most UP fractions, but not in the lowest size ranges as indicated by the thermal denuder results of Hasegawa et al. (2004) and Ishizaka and Adhikari (2003). This is consistent with the laboratory tests reported by Kittelson (1998) that showed most of the UP < 50 nm fraction evaporating after thermal denuding. This might happen with low-sulfur diesel fuels and after-engine soot removal owing to evaporated lubrication oil that condenses after emission and cooling to ambient temperatures (Zielinska et al., 2004; Vaaraslahti et al., 2005). This hypothesis is somewhat supported by the hopane measurements of Fine et al. (2004), as hopanes are believed to originate in engine oils.

Non-carbonaceous substances were found to dominate some of the samples, but this may depend on the measurement method. Single particle spectrometers, for example, draw materials into a vacuum, and some of the semi-volatile organic compounds may evaporate prior to detection. These spectrometers collect UP < 50 nm with < 100% efficiency, even with aerodynamic lens inlets, and it appears that much of the OC resides in this fraction. Phares et al. (2003) found that silicon oxides constitute 30% of UP, with potassium (K) constituting another
31% of UP. Carbon was only 16% of the UP in Houston, TX. This may be an artifact of the particle spectrometer measurement system, but it might also indicate that some very fine geological material penetrates to the UP fraction. Using an impactor, Chung et al. (2001) found large quantities of calcium (Ca) in the UP fraction at Bakersfield, CA. Ca is also an engine oil additive, and this may be the source. Kim et al. (2002) found that Fe was the largest metal component in Los Angeles, ranging from 10 to 130 ng/m3. This may be evidence of particle re-entrainment from previous impactor stages, as mentioned above. Ma et al. (2004) found K and traces of manganese (Mn) and chromium (Cr) near Japanese industrial sources. At roadside, Lin et al. (2005) found vanadium (V), zinc (Zn), silver (Ag), cadmium (Cd), antimony (Sb), barium (Ba), and lead (Pb) are abundant in UP diesel exhaust, while Mn, cerium (Ce), and strontium (Sr) are abundant in UP gasoline exhaust.

Sulfur (S) was an important, but minor, UP component in most of the studies. This is surprising, since sulfuric acid (H$_2$SO$_4$) nucleation is considered to be a major formation mechanism of small particles. Once it begins, in fresh combustion exhaust or as the result of photochemical activity, it appears that organic or metal vapors rapidly condense and constitute most of the UP mass.

CONCLUSIONS AND KNOWLEDGE GAPS

UP chemical composition measurements are most commonly acquired with laboratory measurements from the lower stages of cascade impactors. The MOUDI is usually used for these measurements. XRF, PIXE, and INAA are applied for elements, with thermal/optical methods used for carbon. Ions are measured by IC, AC, or AAS. Single particle mass spectrometers are used for semi-quantitative chemical measurements.

Data are reported in different ways by different authors and are not completely comparable across studies. In the U.S., data have been reported for: the Los Angeles area, central (Fresno, Bakersfield), and northern California (Sacramento, Modesto); Houston, TX; Atlanta, GA; Baltimore, MD; and New York, NY. In Finland, data are available from Helsinki and Luukki, Espoo. In Japan, data are available from Nagoya, Mikuni, Kawasaki, Tsukuba, and Saitama. In Asia, data are available for Taiwan and Southern China. Most of these are urban areas, with some results from roadside, industrial, non-urban, coastal, and regional background sites.

Organic material is the most abundant portion of UP in most, but not all samples. Some have high elemental concentrations, especially from industrial sites. K, Ca, and Fe were found to be important elements in some samples. K originates from biomass burning, and Ca is used as an oil additive. Condensed Fe vapors are often found in industrial processes. Much of the UP < 50 nm appears to be semi-volatile, consistent with it being comprised of organic materials such as
hopanes from engine oils or condensed secondary organic aerosol such as organic acids. PAH were abundant in the UP fraction in a few studies.

Sampling inlets and upper and lower size cuts for UP fractions are not consistent or well-defined. Methods are needed to establish UP fractions, then to translate the results from different sampling methods into a common particle size range. Differences in the analytical methods applied for the measurement of OC, EC, and organic compounds need to be better quantified and standardized. More comparison studies are needed among laboratories for particles specific to the UP fraction.

Standardized concentration units, reporting methods, and common data bases are needed to better compare UP composition measurements among sampling sites. These data bases would allow more efficient and consistent comparisons of results from different studies.

REFERENCES

Arnold, F., Pirjola, L., Aufmhoff, H., Schuck, T., Lähde, T. and Hämeri, K. (2006). First Gaseous Sulfuric Acid Measurements in Automobile Exhaust: Implications for Volatile Nanoparticle Formation. Atmos. Environ. 40: 7097-7105.

Berner, A. (1972). Practical Experience with 20-Stage Impactor (Praktische Erfahrungen Mit Einem 20-Stufen-Impaktor). Staub Reinhaltung Der Luft. 32: 315-320.

Berner, A. (1976a). The Theory of Measurement of Aerosol Size Distributions by Means of Single and Multiple Cascade Impactors. II-The Measurement of Median Distributions from the Class of Cotabular Distributions. Staub-Reinhaltung Der Luft. 36: 417-419.

Berner, A. (1976b). The Theory of the Measurement of Aerosol Particle Size Distributions by Means of Simple and Multiple Cascade Impactors. I-A Mathematical Description of the Cascade Impactor. Staub-Reinhaltung Der Luft. 36: 385-390.

Berner, A. and Lurzer, C. (1980). Mass Size Distributions of Traffic Aerosols at Vienna. J. Phys. Chem. 84: 2079-2083.

Berner, A. (1984). In Aerosols, Liu, B.Y.H., Pui, D.Y.H. and Fissan, H.J. (Eds.), p. 139.

Birch, M.E. and Cary, R.A. (1996). Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust. Aerosol Sci. Technol. 25: 221-241.

Biswas, P. and Wu, C.Y. (2005). 2005 Critical Review: Nanoparticles and the Environment. J. Air Waste Manage. Assoc. 55: 708-746.

Butler, F.E., Jungers, R.H., Porter, L.F., Riley, A.E. and Toth, F.J. (1978). In Ion Chromatographic Analysis of Environmental Pollutants, Sawicki, E., Mulik, J.E. and Wittgenstein, E. (Eds.), Ann Arbor Science, Ann Arbor, MI, p. 65.
Cass, G.R., Hughes, L.A., Bhave, P., Kleeman, M.J., Allen, J.O. and Salmon, L.G. (2000). The Chemical Composition of Atmospheric Ultrafine Particles. *Phil. Trans. Roy. Soc. Lond. A.* 358: 2581-2592.

Casuccio, G.S., Janocko, P.B., Lee, R.J., Kelly, J.F., Dattner, S.L. and Mgebroff, J.S. (1983). The Use of Computer Controlled Scanning Electron Microscopy in Environmental Studies. *J. Air Poll. Control Assoc.* 33: 937-943.

Casuccio, G.S., Schwoeble, A.J., Henderson, B.C., Lee, R.J., Hopke, P.K. and Sverdrup, G.M. (1989). In *Transactions, Receptor Models in Air Resources Management*, Watson, J.G. (Ed.), Air & Waste Management Association, Pittsburgh, PA, p. 39.

Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A. and Purcell, R.G. (1993). The DRI Thermal/Optical Reflectance Carbon Analysis System: Description, Evaluation and Applications in U.S. Air Quality Studies. *Atmos. Environ.* 27A: 1185-1201.

Chow, J.C. (1995). Critical Review: Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. *J. Air Waste Manage. Assoc.* 45: 320-382.

Chow, J.C. and Watson, J.G. (1999). In *Elemental Analysis of Airborne Particles, Vol. 1*, Landsberger, S. and Creatchman, M. (Eds.), Gordon and Breach Science, Amsterdam, p. 97.

Chow, J.C., Watson, J.G., Crow, D., Lowenthal, D.H. and Merrifield, T.M. (2001). Comparison of IMPROVE and NIOSH Carbon Measurements. *Aerosol Sci. Technol.* 34: 23-34.

Chow, J.C., Watson, J.G., Chen, L.-W.A., Arnott, W.P., Moosmüller, H. and Fung, K.K. (2004). Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. *Environ. Sci. Technol.* 38: 4414-4422.

Chow, J.C., Watson, J.G., Chen, L.W.A., Paredes-Miranda, G., Chang, M.-C.O., Trimble, D., Fung, K.K., Zhang, H. and Yu, J.Z. (2005a). Refining Temperature Measures in Thermal/Optical Carbon Analysis. *Atmos. Chem. Phys.* 5: 2961-2972.

Chow, J.C., Watson, J.G., Louie, P.K.K., Chen, L.-W.A. and Sin, D. (2005b). Comparison of PM$_{2.5}$ Carbon Measurement Methods in Hong Kong, China. *Environ. Poll.* 137: 334-344.

Chow, J.C., Watson, J.G., Savage, N., Solomon, J., Cheng, Y.S., McMurry, P.H., Corey, L.M., Bruce, G.M., Pleus, R.C., Biswas, P. and Wu, C.Y. (2005c). 2005 Critical Review Discussion: Nanoparticles and the Environment. *J. Air Waste Manage. Assoc.* 55: 1411-1417.

Chow, J.C. and Watson, J.G. (2006). Overview of Ultrafine Particles and Human Health. *WIT Transactions on Ecology and the Environment.* 99: 619-632.

Chow, J.C., Watson, J.G., Chen, L.-W.A., Chang, M.C.O., Robinson, N.F., Trimble, D.L. and Kohl, S.D. (2007). The Improve_A Temperature Protocol for Thermal/Optical Carbon Analysis: Maintaining Consistency with a Long-Term Data Base. *J. Air Waste Manage. Assoc.* 57: accepted.
Chung, A., Herner, J.D. and Kleeman, M.J. (2001). Detection of Alkaline Ultrafine Atmospheric Particles at Bakersfield, California. *Environ. Sci. Technol.* 35: 2184-2190.

Cohen, B.S., Li, W., Xiong, J.Q. and Lippmann, M. (2000). Detecting H⁺ in Ultrafine Ambient Aerosol Using Iron Nano-Film Detectors and Scanning Probe Microscopy. *Appl. Occup. Environ. Hyg.* 15: 80-89.

Cohen, B.S., Heikkinen, M.S.A. and Hazi, Y. (2004). Airborne Fine and Ultrafine Particles Near the World Trade Center Disaster Site. *Aerosol Sci. Technol.* 38: 338-348.

Coutant, R.W. (1977). Effect of Environmental Variables on Collection of Atmospheric Sulfate. *Environ. Sci. Technol.* 11: 873-878.

Daigle, C.C., Chalupa, D.C., Gibb, F.R., Morrow, P.E., Oberdörster, G., Utell, M.J. and Frampton, M.W. (2003). Ultrafine Particle Deposition in Humans During Rest and Exercise. *Inhal. Toxicol.* 15: 539-552.

Dams, R., Robbins, J.A., Rahn, K.A. and Winchester, J.W. (1970). Non-Destructive Neutron Activation Analysis of Air Pollution Particulates. *Anal. Chem.* 42: 861-867.

Dattner, S.L., Mgebroff, J.S., Casuccio, G.S. and Janocko, P.B. (1983). Identifying the Sources of TSP and Lead in El Paso Using Microscopy and Receptor Models.

Duan, J.C., Bi, X.H., Tan, J.H., Sheng, G.Y. and Fu, J.M. (2005). The Differences of the Size Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) Between Urban and Rural Sites of Guangzhou, China. *Atmospheric Research.* 78: 190-203.

Engelbrecht, D.R., Cahill, T.A. and Feeney, P.J. (1980). Electrostatic Effects on Gravimetric Analysis of Membrane Filters. *J. Air Poll. Control Assoc.* 30: 391-392.

Erdmann, N., Dell'Acqua, A., Cavalli, P., Gruning, C., Omenetto, N., Putaud, J.P., Raes, F. and van Dingenen, R. (2005). Instrument Characterization and First Application of the Single Particle Analysis and Sizing System (SPASS) for Atmospheric Aerosols. *Aerosol Sci. Technol.* 39: 377-393.

Fang, G.C., Wu, Y.S., Wen, C.C., Lin, C.K., Huang, S.H., Rau, J.Y. and Lin, C.P. (2005). Concentrations of Nano and Related Ambient Air Pollutants at a Traffic Sampling Site. *Toxicol. Ind. Health.* 21: 259-271.

Fang, G.C., Wu, Y.S., Chang, S.Y., Rau, J.Y., Huang, S.H. and Lin, C.K. (2006a). Characteristic Study of Ionic Species in Nano, Ultrafine, Fine and Coarse Particle Size Mode at a Traffic Sampling Site. *Toxicol. Ind. Health.* 22: 27-37.

Fang, G.C., Wu, Y.S., Rau, J.Y. and Huang, S.H. (2006b). Traffic Aerosols (18 nm ≤ Particle Size ≤ 18 µm) Source Apportionment During the Winter Period. *Atmospheric Research.* 80: 294-308.

Fassel, V.A. and Kniseley, R.N. (1974). Inductively Coupled Plasma-Optical Emission Spectroscopy. *Anal. Chem.* 46: 1155A-1164A.
Feeney, P., Cahill, T., Olivera, J. and Guidara, R. (1984). Gravimetric Determination of Mass on Lightly-Loaded Membrane Filters. *J. Air Poll. Control Assoc.* 34: 376-377.

Fehsenfeld, F.C., Hastie, D., Chow, J.C. and Solomon, P.A. (2004). In *Particulate Matter Science for Policy Makers, A NARSTO Assessment*, McMurry, P.H., Shepherd, M.F. and Vickery, J.S. (Eds.), Cambridge University Press, Cambridge, UK, p. 159.

Fernandez, F.J. (1989). In *Methods of Air Sampling and Analysis*, Lodge, J.P., Jr. (Ed.), Lewis Publishers, Chelsea, MI, p. 83.

Fine, P.M., Cass, G.R. and Simoneit, B.R.T. (2002). Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Woods Grown in the Southern United States. *Environ. Sci. Technol.* 36: 1442-1451.

Fine, P.M., Chakrabarti, B., Krudysz, M., Schauer, J.J. and Sioutas, C. (2004). Diurnal Variations of Individual Organic Compound Constituents of Ultrafine and Accumulation Mode Particulate Matter in the Los Angeles Basin. *Environ. Sci. Technol.* 38: 1296-1304.

Fujitani, Y., Hasegawa, S., Fushimi, A., Kondo, Y., Tanabe, K., Kobayashi, S. and Kobayashi, T. (2006). Collection Characteristics of Low-Pressure Impactors with Various Impaction Substrate Materials. *Atmos. Environ.* 40: 3221-3229.

Fung, K.K., Heisler, S.L., Price, A., Nuesca, B.V. and Mueller, P.K. (1979). In *Ion Chromatographic Analysis of Environmental Pollutants*, Sawicki, E. and Mulik, J.D. (Eds.), Ann Arbor Science Publishers, Inc., Ann Arbor, MI, p. 203.

Fung, K.K. (1990). Particulate Carbon Speciation by MnO₂ Oxidation. *Aerosol Sci. Technol.* 12: 122-127.

Gasparini, R., Li, R.J. and Collins, D.R. (2004). Integration of Size Distributions and Size-Resolved Hygroscopicity Measured During the Houston Supersite for Compositional Categorization of the Aerosol. *Atmos. Environ.* 38: 3285-3303.

Geller, M.D., Kim, S., Misra, C., Sioutas, C., Olson, B.A. and Marple, V.A. (2002). A Methodology for Measuring Size-Dependent Chemical Composition of Ultrafine Particles. *Aerosol Sci. Technol.* 36: 748-762.

Glover, W. and Chan, H.K. (2004). Electrostatic Charge Characterization of Pharmaceutical Aerosols Using Electrical Low-Pressure Impaction (ELPI). *J. Aerosol Sci.* 35: 755-764.

Gordon, T., Gerber, H., Fang, C.P. and Chen, L.C. (1999). A Centrifugal Particle Concentrator for Use in Inhalation Toxicology. *Inhal. Toxicol.* 11: 71-87.

Gouriou, F., Morin, J.P. and Weill, M.E. (2004). On-Road Measurements of Particle Number Concentrations and Size Distributions in Urban and Tunnel Environments. *Atmos. Environ.* 38: 2831-2840.

Gupta, T., Demokritou, P. and Koutrakis, P. (2004a). Development and Performance Evaluation of a High-Volume Ultrafine Particle Concentrator for Inhalation Toxicological Studies. *Inhal. Toxicol.* 16: 851-862.
Gupta, T., Demokritou, P. and Koutrakis, P. (2004b). Effects of Physicochemical Properties of Ultrafine Particles on the Performance of an Ultrafine Particle Concentrator. *Aerosol Sci. Technol.* 38: 37-45.

Halder, H., Menzel, N., Hietel, B. and Wittmaack, K. (1999). A New Analysis Chamber with a Rotating Target Holder for Total-Sample PIXE Analysis of Aerosol Deposits Collected in Berner Impactors. *Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms.* 150: 90-95.

Harman, J.N. (1989). In *Methods of Air Sampling and Analysis*, Lodge, J.P. (Ed.), Lewis Publishers, Chelsea, MI, p. 88.

Hasegawa, S., Hirabayashi, M., Kobayashi, S., Moriguchi, Y., Kondo, Y., Tanabe, K. and Wakamatsu, S. (2004). Size Distribution and Characterization of Ultrafine Particles in Roadside Atmosphere. *J. Environ. Sci. Health-Part A-Toxics/Haz. Subst & Env. Eng.* 39: 2671-2690.

Hays, M.D., Smith, N.D., Kinsey, J., Dong, Y. and Kariher, P. (2003). Polycyclic Aromatic Hydrocarbon Size Distributions in Aerosols from Appliances of Residential Wood Combustion as Determined by Direct Thermal Desorption-GC/MS. *J. Aerosol Sci.* 34: 1061-1084.

Hays, M.D. and Lavrich, R.J. (2007). Developments in Direct Thermal Extraction-GC/MS of Fine Aerosols. *Trends in Analytical Chemistry.* 26: 88-102.

Hering, S.V., Flagan, R.C. and Friedlander, S.K. (1979a). Design and Evaluation of New Low-Pressure Impactor. I. *Environ. Sci. Technol.* 13: 667-673.

Hering, S.V., Friedlander, S.K., Collins, J.J. and Richards, L.W. (1979b). Design and Evaluation of a New Low-Pressure Impactor. II. *Environ. Sci. Technol.* 13: 184-188.

Herner, J.D., Aw, J., Gao, O., Chang, D.P. and Kleeman, M.J. (2005). Size and Composition Distribution of Airborne Particulate Matter in Northern California 1. Particulate Mass, Carbon, and Water-Soluble Ions. *J. Air Waste Manage. Assoc.* 55: 30-51.

Herner, J.D., Green, P.G. and Kleeman, M.J. (2006a). Measuring the Trace Elemental Composition of Size-Resolved Airborne Particles. *Environ. Sci. Technol.* 40: 1925-1933.

Herner, J.D., Ying, Q., Aw, J., Gao, O., Chang, D.P.Y. and Kleeman, M.J. (2006b). Dominant Mechanisms that Shape the Airborne Particle Size and Composition Distribution in Central California. *Aerosol Sci. Technol.* 40: 827-844.

Hillamo, R.E. and Kauppinen, E.I. (1991). On the Performance of the Berner Low Pressure Impactor. *Aerosol Sci. Technol.* 14: 33-47.

Ho, S.S.H. and Yu, J.Z. (2004). In-Injection Port Thermal Desorption and Subsequent Gas Chromatography-Mass Spectrometric Analysis of Polycyclic Aromatic Hydrocarbons and N-Alkanes in Atmospheric Aerosol Samples. *J. Chromatogr. A.* 1059: 121-129.
Huang, X.F., Yu, J.Z., He, L.Y. and Hu, M. (2006). Size Distribution Characteristics of Elemental Carbon Emitted from Chinese Vehicles: Results of a Tunnel Study and Atmospheric Implications. *Environ. Sci. Technol.* 40: 5355-5360.

Hughes, L.S., Cass, G.R., Gone, J., Ames, M. and Olmez, I. (1998). Physical and Chemical Characterization of Atmospheric Ultrafine Particles in the Los Angeles Area. *Environ. Sci. Technol.* 32: 1153-1161.

Hughes, L.S., Allen, J.O., Kleeman, M.J., Johnson, R.J., Cass, G.R., Gross, D.S., Gard, E.E., Gälli, M.E., Morrical, B.D., Fergenson, D.P., Dienes, T., Noble, C.A., Liu, D.Y., Silva, P.J. and Prather, K.A. (1999). Size and Composition Distribution of Atmospheric Particles in Southern California. *Environ. Sci. Technol.* 33: 3506-3515.

Ishizaka, Y. and Adhikari, M. (2003). Composition of Cloud Condensation Nuclei. *J. Geophys. Res.* 108: AAC 2-1-AAC 2-16.

Janocko, P.B., Casuccio, G.S., Dattner, S.L., Johnson, D.L. and Crutcher, E.R. (1982). In *Proceedings, Receptor Models Applied to Contemporary Pollution Problems*, Air Pollution Control Association, Pittsburgh, PA,

John, W. and Reischl, G. (1980). A Cyclone for Size-Selective Sampling of Ambient Air. *J. Air Poll. Control Assoc.* 30: 872-876.

Kasahara, M., Park, J.H. and Chatani, S. (1996). Size Distribution and Solubility of 15 Elements in Atmospheric Aerosols. *Int. J. of PIXE*. 6: 299-310.

Kasahara, M. (1999). In *Analytical Chemistry of Aerosols*, Spurny, K.R. (Ed.), CRC Press LLC, Boca Raton, FL, p. 145.

Kawanaka, Y., Matsumoto, E., Sakamoto, K., Wang, N. and Yun, S.J. (2004). Size Distributions of Mutagenic Compounds and Mutagenicity in Atmospheric Particulate Matter Collected with a Low-Pressure Cascade Impactor. *Atmos. Environ.* 38: 2125-2132.

Keskinen, J., Pietarinen, K. and Lehtimäki, M. (2003). Electrical Low Pressure Impactor. *J. Aerosol Sci.* 23: 353-360.

Kim, S., Chang, M.C., Kim, D. and Sioutas, C. (2000a). A New Generation of Portable Coarse, Fine, and Ultrafine Particle Concentrators for Use in Inhalation Toxicology. *Inhal. Toxicol.* 12: 121-137.

Kim, S., Sioutas, C., Chang, M.C. and Gong, H. (2000b). Factors Affecting the Stability of the Performance of Ambient Fine-Particle Concentrators. *Inhal. Toxicol.* 12: 281-298.

Kim, S., Jaques, P.A., Chang, M.C., Barone, T., Xiong, C., Friedlander, S.K. and Sioutas, C. (2001a). Versatile Aerosol Concentration Enrichment System (VACES) for Simultaneous in Vivo and in Vitro Evaluation of Toxic Effects of Ultrafine, Fine and Coarse Ambient Particles Part II: Field Evaluation. *J. Aerosol Sci.* 32: 1299-1314.

Kim, S., Jaques, P.A., Chang, M.C., Froines, J.R. and Sioutas, C. (2001b). Versatile Aerosol Concentration Enrichment System (VACES) for Simultaneous in Vivo and in Vitro Evaluation
of Toxic Effects of Ultrafine, Fine and Coarse Ambient Particles Part I: Development and Laboratory Characterization. *J. Aerosol Sci.* 32: 1281-1297.

Kim, S., Shen, S., Sioutas, C., Zhu, Y. and Hinds, W.C. (2002). Size Distribution and Diurnal and Seasonal Trends of Ultrafine Particles in Source and Receptor Sites of the Los Angeles Basin. *J. Air Waste Manage. Assoc.* 52: 297-307.

Kittelson, D.B. (1998). Engines and Nanoparticles: A Review. *J. Aerosol Sci.* 29: 575-588.

Kuhlmeiy, G.A., Liu, B.Y.H. and Marple, V.A. (1981). A Micro-Orifice Impactor for Sub-Micron Aerosol Size Classification. *J. Am. Ind. Hyg. Assoc.* 42: 790-795.

Kulmala, M., Vehkamäki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V.M., Birmili, W. and McMurry, P.H. (2004). Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations. *J. Aerosol Sci.* 35: 143-176.

Lake, D.A., Tolocka, M.P., Johnston, M.V. and Wexler, A.S. (2003). Mass Spectrometry of Individual Particles Between 50 and 750 Nm in Diameter at the Baltimore Supersite. *Environ. Sci. Technol.* 37: 3268-3274.

Lake, D.A., Tolocka, M.P., Johnston, M.V. and Wexler, A.S. (2004). The Character of Single Particle Sulfate in Baltimore. *Atmos. Environ.* 38: 5311-5320.

Lee, R.J. and Kelly, J.F. (1980). Overview of SEM-Based Automated Image Analysis. *Scanning Electron Microscopy*. 1: 303-303.

Lin, C.I. and Friedlander, S.K. (1988). A Note on the Use of Glass Fiber Filters in the Thermal Analysis of Carbon Containing Aerosols. *Atmos. Environ.* 22: 605-607.

Lin, C.C., Chen, S.J., Huang, K.L., Hwang, W.I., Chang-Chien, G.P. and Lin, W.Y. (2005). Characteristics of Metals in Nano/Ultrafine/Fine/Coarse Particles Collected Beside a Heavily Trafficked Road. *Environ. Sci. Technol.* 39: 8113-8122.

Liu, B.Y.H. and Pui, D.Y.H. (1981). Aerosol Sampling Inlets and Inhalable Particles. *Atmos. Environ.* 15: 589-.

Liu, P., Ziemann, P.J., Kittelson, D.B. and McMurry, P.H. (1995a). Generating Particle Beams of Controlled Dimensions and Divergence .1. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. *Aerosol Sci. Technol.* 22: 293-313.

Liu, P., Ziemann, P.J., Kittelson, D.B. and McMurry, P.H. (1995b). Generating Particle Beams of Controlled Dimensions and Divergence .2. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. *Aerosol Sci. Technol.* 22: 314-324.

Loo, B.W. and Cork, C.P. (1988). Development of High Efficiency Virtual Impactors. *Aerosol Sci. Technol.* 9: 167-176.

Lough, G.C., Schauer, J.J., Park, J.S., Shafer, M.M., Deminter, J.T. and Weinstein, J.P. (2005). Emissions of Metals Associated with Motor Vehicle Roadways. *Environ. Sci. Technol.* 39: 826-836.
Lucas, J.H., Casuccio, G.S. and Miller, D. (1988). In Transactions, PM₁₀: Implementation of Standards, Mathai, C.V. and Stonefield, D.H. (Eds.), Air Pollution Control Association, Pittsburgh, PA, p. 120.

Lynch, A.J., McQuaker, N.R. and Brown, D.F. (1980). ICP/AES Analysis and the Composition of Airborne and Soil Materials in the Vicinity of a Lead/Zinc Smelter Complex. J. Air Poll. Control Assoc. 30: 257-260.

Ma, C.J., Kasahara, M., Tohno, S. and Hwang, K.C. (2001). Characterization of the Winter Atmospheric Aerosols in Kyoto and Seoul Using PIXE, EAS and IC. Atmos. Environ. 35: 747-752.

Ma, C.J., Oki, Y., Tohno, S. and Kasahara, M. (2004). Assessment of Wintertime Atmospheric Pollutants in an Urban Area of Kansai, Japan. Atmos. Environ. 38: 2939-2949.

Maenhaut, W., Hillamo, R., Makela, T., Jaffrezo, J.-L., Bergin, M.H. and Davidson, C.I. (1996). A New Cascade Impactor for Aerosol Sampling with Subsequent PIXE Analysis. Nucl. Instrum. Methods Phys. Res. Sect. B. 109/110: 482-487.

Mallina, R.V., Wexler, A.S., Rhoads, K.P. and Johnston, M.V. (2000). High Speed Particle Beam Generation: A Dynamic Focusing Mechanism for Selecting Ultrafine Particles. Aerosol Sci. Technol. 33: 87-104.

Mamakos, A., Ntziachristos, L. and Samaras, Z. (2006). Evaluation of the Dekati Mass Monitor for the Measurement of Exhaust Particle Mass Emissions. Environ. Sci. Technol. 40: 4739-4745.

Maricq, M.M., Podsiadlik, D.H. and Chase, R.E. (1999). Gasoline Vehicle Particle Size Distributions: Comparison of Steady State, FTP, and US06 Measurements. Environ. Sci. Technol. 33: 2007-2015.

Marjamäki, M., Keskinen, J., Chen, D.R. and Pui, D.Y.H. (2000). Performance Evaluation of the Electrical Low-Pressure Impactor (ELPI). J. Aerosol Sci. 31: 249-261.

Marple, V.A., Liu, B.Y.H. and Kuhlmey, G.A. (1981). A Uniform Deposit Impactor. J. Aerosol Sci. 12: 333-337.

Marple, V.A., Liu, B.Y.H. and Burton, R.M. (1990). High-Volume Impactor for Sampling Fine and Coarse Particles. J. Air Waste Manage. Assoc. 40: 762-767.

Marple, V.A., Rubow, K.L. and Behm, S.M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol Sci. Technol. 14: 434-446.

Marple, V.A. (2004). History of Impactors-The First 110 Years. Aerosol Sci. Technol. 38: 247-292.

McQuaker, N.R., Kluckner, P.D. and Chang, G.N. (1979). Calibration of an Inductively Coupled Plasma-Atomic Emission Spectrometer for the Analysis of Environmental Materials. Anal. Chem. 51: 888-895.
Middha, P. and Wexler, A.S. (2005). Particle-Focusing Characteristics of Matched Aerodynamic Lenses. *Aerosol Sci. Technol.* 39: 222-230.

Middlebrook, A.M., Murphy, D.M., Lee, S.H., Thompson, D.S., Prather, K.A., Wenzel, R.J., Liu, D.Y., Phares, D.J., Rhoads, K.P., Wexler, A.S., Johnston, M.V., Jimenez, J.L., Jayne, J.T., Worsnop, D.R., Yourshaw, I., Seinfeld, J.H. and Flagan, R.C. (2003). A Comparison of Particle Mass Spectrometers During the 1999 Atlanta Supersite Project. *J. Geophys. Res.* 108: SOS 12-1-SOS 12-13.

Miguel, A.H., Eiguren-Fernandez, A., Jaques, P.A., Froines, J.R., Grant, B.L., Mayo, P.R. and Sioutas, C. (2004). Seasonal Variation of the Particle Size Distribution of Polycyclic Aromatic Hydrocarbons and of Major Aerosol Species in Claremont, California. *Atmos. Environ.* 38: 3241-3251.

Misra, C., Kim, S., Shen, S. and Sioutas, C. (2002). A High Flow Rate, Very Low Pressure Drop Impactor for Inertial Separation of Ultrafine from Accumulation Mode Particles. *J. Aerosol Sci.* 33: 735-752.

Misra, C., Fine, P.M., Singh, M. and Sioutas, C. (2004). Development and Evaluation of a Compact Facility for Exposing Humans to Concentrated Ambient Ultrafine Particles. *Aerosol Sci. Technol.* 38: 27-35.

Mosley, R.B., Greenwell, D.J., Sparks, L.E., Guo, Z., Tucker, W.G., Fortmann, R. and Whitfield, C. (2001). Penetration of Ambient Fine Particles into the Indoor Environment. *Aerosol Sci. Technol.* 34: 127-136.

MSP. (1999). MOUDI™-Micro-Orifice, Uniform-Deposit Impactor Models 100 & 110.

MSP. (2004). Model 120 MOUDI-II, Model 125B NanoMOUDI-II: Second Generation Micro-Orifice Uniform-Deposit Impactors for Collecting Size-Fractionated Aerosol Particle Samples from 0.01 to 18 µm for Gravimetric and Chemical Analysis.

Mueller, P.K., Mendoza, B.V., Collins, J.C. and Wilgus, E.S. (1978). In *Ion Chromatographic Analysis of Environmental Pollutants*, Sawicki, E., Mulik, J.D. and Wittgenstein, E. (Eds.), Ann Arbor Science Publishers, Inc., Ann Arbor, MI, p. 77.

Oberdörster, G., Gelein, R.M., Ferin, J. and Weiss, B. (1995). Association of Particulate Air Pollution and Acute Mortality: Involvement of Ultrafine Particles? *Inhal. Toxicol.* 7: 111-124.

Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. and Cox, C. (2004). Translocation of Inhaled Ultrafine Particles to the Brain. *Inhal. Toxicol.* 16: 437-445.

Olmez, I. (1989). In *Methods of Air Sampling and Analysis*, Lodge, J.P. (Ed.), Lewis Publishers, Chelsea, MI, p. 143.

Pagels, J., Gudmundsson, A., Gustavsson, E., Asking, L. and Bohgard, M. (2005). Evaluation of Aerodynamic Particle Sizer and Electrical Low-Pressure Impactor for Unimodal and Bimodal Mass-Weighted Size Distributions. *Aerosol Sci. Technol.* 39: 871-887.
Pakkanen, T.A., Kerminen, V.M., Korhonen, C.H., Hillamo, R.E., Aarnio, P., Koskentalo, T. and Maenhaut, W. (2001a). Urban and Rural Ultrafine (PM0.1) Particles in the Helsinki Area. *Atmos. Environ.* 35: 4593-4607.

Pakkanen, T.A., Kerminen, V.M., Korhonen, C.H., Hillamo, R.E., Aarnio, P., Koskentalo, T. and Maenhaut, W. (2001b). Use of Atmospheric Elemental Size Distributions in Estimating Aerosol Sources in the Helsinki Area. *Atmos. Environ.* 35: 5537-5551.

Pakkanen, T.A. and Hillamo, R.E. (2002). Comparison of Sampling Artifacts and Ion Balances for a Berner Low-Pressure Impactor and a Virtual Impactor. *Boreal Environment Research.* 7: 129-140.

Petrucci, G.A., Farnsworth, P.B., Cavalli, P. and Omenetto, N. (2000). A Differentially Pumped Particle Inlet for Sampling of Atmospheric Aerosols into a Time-of-Flight Mass Spectrometer: Optical Characterization of the Particle Beam. *Aerosol Sci. Technol.* 33: 105-121.

Phares, D.J., Rhoads, K.P., Wexler, A.S., Kane, D.B. and Johnston, M.V. (2001). Application of ART-2a to Laser Ablation Mass Spectrometry of Particle Standards. *Anal. Chem.* 73: 2338-2344.

Phares, D.J., Rhoads, K.P. and Wexler, A.S. (2002). Performance of a Single-Ultrafine-Particle Mass Spectrometer. *Aerosol Sci. Technol.* 36: 583-592.

Phares, D.J., Rhoads, K.P., Johnston, M.V. and Wexler, A.S. (2003). Size-Resolved Ultrafine Particle Composition Analysis 2. Houston. *J. Geophys. Res.* 108: SOS 8-1-SOS 8-14.

Pyen, G.S. and Fishman, M.J. (1979). In *Ion Chromatography Analysis of Environmental Pollutants, Volume II*, Mulik, J.D. and Sawicki, E. (Eds.), Ann Arbor Science Publishers, Inc., Ann Arbor, MI, p. 235.

Rader, D.J. and McMurry, P.H. (1986). Application of the Tandem Differential Mobility Analyzer to Studies of Droplet Growth or Evaporation. *J. Aerosol Sci.* 17: 771-787.

Ranweiler, L.E. and Moyers, J.L. (1974). Atomic Absorption Procedure for Analysis of Metals in Atmospheric Particulate Matter. *Environ. Sci. Technol.* 8: 152-156.

Rhoads, K.P., Phares, D.J., Wexler, A.S. and Johnston, M.V. (2003). Size-Resolved Ultrafine Particle Composition Analysis 1. Atlanta. *J. Geophys. Res.* 108: SOS 6-1-SOS 6-13.

Roberts, P.T. and Friedlander, S.K. (1976). Analysis of Sulfur in Deposited Aerosol Particles by Vaporization and Flame Photometric Detection. *Atmos. Environ.* 10: 403-408.

Sardar, S.B., Fine, P.M., Mayo, P.R. and Sioutas, C. (2005). Size-Fractionated Measurements of Ambient Ultrafine Particle Chemical Composition in Los Angeles Using the NanoMOUDI. *Environ. Sci. Technol.* 39: 932-944.

Shi, J.P. and Harrison, R.M. (1999). Investigation of Ultrafine Particle Formation During Diesel Exhaust Dilution. *Environ. Sci. Technol.* 33: 3730-3736.

Shi, J.P., Khan, A.A. and Harrison, R.M. (1999). Measurements of Ultrafine Particle Concentration and Size Distribution in the Urban Atmosphere. *Sci. Total Environ.* 235: 51-64.
Sioutas, C., Koutrakis, P., Ferguson, S.T. and Burton, R.M. (1995). Development and Evaluation of a Prototype Ambient Particle Concentrator for Inhalation Exposure Studies. *Inhal. Toxicol.* 7: 633-644.

Sioutas, C., Kim, S. and Chang, M.C. (1999). Development and Evaluation of a Prototype Ultrafine Particle Concentrator. *J. Aerosol Sci.* 30: 1001-1017.

Solomon, P.A., Mitchell, W., Tolocka, M., Norris, G., Gemmill, D.B. and Wiener, R. (2001). Evaluation of PM$_{2.5}$ Chemical Speciation Samplers for Use in the EPA National PM$_{2.5}$ Chemical Speciation Network.

Spicer, C.W. and Schumacher, P.M. (1979). Particulate Nitrate: Laboratory and Field Studies of Major Sampling Interferences. *Atmos. Environ.* 13: 543-552.

Stolzenburg, M.R., Kreisberg, N. and Hering, S.V. (1998). Atmospheric Size Distributions Measured by Differential Mobility Optical Particle Size Spectrometry. *Aerosol Sci. Technol.* 29: 402-418.

Tan, P.V., Fila, M.S., Evans, G.J. and Jervis, R.E. (2002). Aerosol Laser Ablation Mass Spectrometry of Suspended Powders from PM Sources and Its Implications to Receptor Modeling. *J. Air Waste Manage. Assoc.* 52: 27-40.

Tolocka, M.P., Lake, D.A., Johnston, M.V. and Wexler, A.S. (2004a). Number Concentrations of Fine and Ultrafine Particles Containing Metals. *Atmos. Environ.* 38: 3263-3273.

Tolocka, M.P., Lake, D.A., Johnston, M.V. and Wexler, A.S. (2004b). Ultrafine Nitrate Particle Events in Baltimore Observed by Real-Time Single Particle Mass Spectrometry. *Atmos. Environ.* 38: 3215-3223.

Tolocka, M.P., Lake, D.A., Johnston, M.V. and Wexler, A.S. (2005). Size-Resolved Fine and Ultrafine Particle Composition in Baltimore, Maryland. *J. Geophys. Res.* 110: D07S04.

Tolocka, M.P., Reinard, M.S., Lake, D.A., Ondov, J.M., Wexler, A.S. and Johnston, M.V. (2006). Characterization of Short-Term Particulate Matter Events by Real-Time Single Particle Mass Spectrometry. *Aerosol Sci. Technol.* 40: 873-882.

U.S.EPA. (2006). National Ambient Air Quality Standard for Particulate Matter: Final Rule. *Federal Register.* 71: 61144-61233.

Vaaraslahti, K., Keskinen, J., Giechaskjel, B., Solla, A., Murtonen, T. and Vesala, H. (2005). Effect of Lubricant on the Formation of Heavy-Duty Diesel Exhaust Nanoparticles. *Environ. Sci. Technol.* 39: 8497-8504.

Viidanoja, J., Kerminen, V. and Hillamo, R. (2002a). Measuring the Size Distribution of Atmospheric Organic and Black Carbon Using Impactor Sampling Coupled with Thermal Carbon Analysis: Method Development and Uncertainties. *Aerosol Sci. Technol.* 36: 607-616.

Viidanoja, J., Sillanpaa, M., Laakia, J., Kerminen, V.M., Hillamo, R., Aarnio, P. and Koskentalo, T. (2002b). Organic and Black Carbon in PM$_{2.5}$ and PM$_{10}$: 1 Year of Data from an Urban Site in Helsinki, Finland. *Atmos. Environ.* 36: 3183-3193.
Wang, C.F., Chin, C.J. and Chiang, P.C. (1998). Multielement Analysis of Suspended Particulates Collected with a Beta-Gauge Monitoring System by ICP Atomic Emission Spectrometry and Mass Spectrometry. Anal. Sci. 14: 763-768.

Wang, C.F., Chang, C.Y., Tsai, S.F. and Chiang, H.L. (2005). Characteristics of Road Dust from Different Sampling Sites in Northern Taiwan. J. Air Waste Manage. Assoc. 55: 1236-1244.

Wang, H.C. and John, W. (1988). Characteristics of the Berner Impactor for Sampling Inorganic Ions. Aerosol Sci. Technol. 8: 157-172.

Watson, J.G., Chow, J.C. and Frazier, C.A. (1999). In Elemental Analysis of Airborne Particles, Vol. 1, Landsberger, S. and Creatchman, M. (Eds.), Gordon and Breach Science, Amsterdam, p. 67.

Watson, J.G. and Chow, J.C. (2001). In Aerosol Measurement: Principles, Techniques, and Applications, Second Edition, Baron, P. and Willeke, K. (Eds.), John Wiley & Sons, New York, NY, p. 821.

Watson, J.G., Chow, J.C. and Chen, L.-W.A. (2005). Summary of Organic and Elemental Carbon/Black Carbon Analysis Methods and Intercomparisons. Aerosol Air Qual. Res. 5: 65-102.

Watson, J.G., Chow, J.C., Lowenthal, D.H. and Magliano, K.L. (2007). Size-Resolved Aerosol Chemistry in Central California. J. Aerosol Sci. submitted:

Wilson, M.R., Lightbody, J.H., Donaldson, K., Sales, J. and Stone, V. (2002). Interactions Between Ultrafine Particles and Transition Metals in Vivo and in Vitro. Toxicol. Appl. Pharmacol. 184: 172-179.

Witz, S., Smith, M.M. and Moore, A.B., Jr. (1983). Comparative Performance of Glass Fiber Hi-Vol Filters. J. Air Poll. Control Assoc. 33: 988-991.

Witz, S., Eden, R.W., Liu, C.S. and Wadley, M.W. (1988). Water Content of Collected Aerosols in the South Coast and Southeast Desert Air Basins. J. Air Poll. Control Assoc. 38: 418-419.

Witz, S., Eden, R.W., Wadley, M.W., Dunwoody, C., Papa, R.P. and Torre, K.J. (1990). Rapid Loss of Particulate Nitrate, Chloride and Ammonium on Quartz Fiber Filters During Storage. J. Air Waste Manage. Assoc. 40: 53-61.

Yamasaki, K., Yamada, Y., Miyamoto, K. and Shimo, M. (2000). In Proceedings, Tenth Congress of the International Radiation Protection Association, International Radiation Protection Association, Hiroshima, Japan, p. P-1b-42-1.

Yi, H.H., Hao, J.M., Duan, L., Li, X.H. and Guo, X.M. (2006). Characteristics of Inhalable Particulate Matter Concentration and Size Distribution from Power Plants in China. J. Air Waste Manage. Assoc. 56: 1243-1251.

Zervas, E. and Dorphene, P. (2006). Comparison of Exhaust Particle Number Measured by EEPS, CPC, and ELPI. Aerosol Sci. Technol. 40: 977-984.
Zhang, K.M. and Wexler, A.S. (2002). A Hypothesis for Growth of Fresh Atmospheric Nuclei. *J. Geophys. Res.* 107: AAC 15-1-AAC 15-6.

Zhang, L., Ranade, M.B. and Gentry, J.W. (2004). Formation of Organic Coating on Ultrafine Silver Particles Using a Gas-Phase Process. *J. Aerosol Sci.* 35: 457-471.

Zielinska, B., Sagebiel, J., Whitney, K. and Lawson, D.R. (2004). Emission Rates and Comparative Chemical Composition from Selected in-Use Diesel and Gasoline-Fueled Vehicles. *J. Air Waste Manage. Assoc.* 54: 1138-1150.

Zoller, W.H. and Gordon, G.E. (1970). Instrumental Neutron Activation Analysis of Atmospheric Pollutants Utilizing Ge(Li) Y-Ray Detectors. *Anal. Chem.* 42: 257-257.

Received for review, May 10, 2007
Accepted, June 8, 2007