The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells

Lukáš Synek1, Juraj Sekereš1,2 and Viktor Žárský1,2*

1 Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
2 Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic

*Correspondence: Viktor Žárský, Laboratory of Plant Cell Biology, Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Vinohrady 5, 12844 Prague, Czech Republic. e-mail: zarsky@rbb.cas.cz

January 2014 | Volume 4 | Article 543 | www.frontiersin.org

Delivery and final fusion of the secretory vesicles with the relevant target membrane are hierarchically organized and reciprocally interconnected multistep processes involving not only specific protein–protein interactions, but also specific protein–phospholipid interactions. The exocyst was discovered as a tethering complex mediating initial encounter of arriving exocytic vesicles with the plasma membrane. The exocyst complex is regulated by Rab and Rho small GTPases, resulting in docking of exocytic vesicles to the plasma membrane (PM) and finally their fusion mediated by specific SNARE complexes. In model Opisthokont cells, the exocyst was shown to directly interact with both microtubule and microfilament cytoskeleton and related motor proteins as well as with the PM via phosphatidylinositol 4,5-bisphosphate specific binding, which directly affects cortical cytoskeleton and PM dynamics. Here we summarize the current knowledge on exocyst-cytoskeleton-PM interactions in order to open a perspective for future research in this area in plant cells.

Keywords: exocyst, actin cytoskeleton, microtubule cytoskeleton, phospholipids, myosin, small GTPases, Ena70, secretion

THE EXOCYST AS A REGULATORY HUB IN THE ACTIVE CELL CORTEX

Polarized surface growth in eukaryotic cells involves interactions between the cytoskeleton and membrane transport pathways. The last steps of the secretory pathway taking place in the vicinity of the plasma membrane (PM) are regulated by an array of small GTPases, the exocyst tethering complex, and SNARE proteins. The exocyst is a protein complex comprising eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) engaged in docking and tethering of secretory vesicles, providing a spatial and temporal regulation of exocytosis (Hou et al., 1996; TerBush et al., 1996) and interacting directly or indirectly with membranes, cytoskeletal proteins, as well as with small GTPases from the Rab, Ral, and Rho superfamilies and many other proteins in the cell cortex (Wu et al., 2008). As such, the exocyst seems to act as an integrating hub in the cell cortex, mainly in the context of exocytosis. In general, proper exocyst function is essential for polar growth and morphogenesis, including invadopodia, lamellipodia, and neuronal dendrites formation in animal cells, bud growth in budding yeast, and cytokinesis in fission yeast (reviewed in Heider and Munson, 2012; Vaškovičová et al., 2013; Figure 1).

A growing number of papers document functions of the plant exocyst in similar processes with high demand for exocytosis, including root hair growth, hypocotyl cell elongation, cytokinesis, seed coat formation and papilla formation after a pathogen attack in plants (Synek et al., 2006; Hála et al., 2008; Fendrych et al., 2010; Kulich et al., 2010; Pecenkova et al., 2011; Vaškovičová et al., 2013).

THE EXOCYST AND ACTIN CYTOSKELETON

Deep insight into exocyst functions and their mechanisms came from genetic studies on budding yeast, where the exocyst was originally discovered as a protein complex (Novick et al., 1980; TerBush et al., 1996). In budding yeast cells, secretory vesicles are transported along formin- and Arp2/3-generated actin cables. A common model of the exocyst action suggests that most exocyst subunits arrive to the PM in association with secretory vesicles and cannot localize properly after disruption of the actin cytoskeleton (Boyd et al., 2004; Bendaž et al., 2012). However, Sec3p and part of the Exo70p population can reach its destination, a newly forming bud, independently of the actin cytoskeleton probably via direct association with Rho GTPases (Boyd et al., 2004). Therefore, Sec3p and Exo70p are supposed to act as landmarks of sites for the exocyst localization and action (Finger et al., 1998; Boyd et al., 2004).

Mutations in several exocyst-related genes cause actin cytoskeleton defects in budding yeast, leading subsequently to impaired cell growth and morphogenesis and also to an mRNA transport and polarization defect that is actin-dependent (Aronov and Goritz, 2001). The identified genes include the one encoding SEC10 and SEC15 exocyst components and CDC42 and RHO1 GTPases regulating the exocyst polar targeting (Wu et al., 2008).

An interesting reciprocal relationship was observed during cell wounding response, where Sec3p and the Bnr1p formin are degraded in order to eliminate competition for secretory vesicles required to repair the damaged membrane and cell wall, which are arriving along the pre-polarized cytoskeleton directing current polarized growth. The Bnr1p formin and the Exo70p exocyst subunit relocate to the damage site followed by redistribution of the Myo2p myosin and delivery of new material (Kono et al., 2012).

The exocyst was discovered in budding yeast, where the exocyst was originally discovered as a protein complex (Novick et al., 1980; TerBush et al., 1996). In budding yeast cells, secretory vesicles are transported along formin- and Arp2/3-generated actin cables. A common model of the exocyst action suggests that most exocyst subunits arrive to the PM in association with secretory vesicles and cannot localize properly after disruption of the actin cytoskeleton (Boyd et al., 2004; Bendaž et al., 2012). However, Sec3p and part of the Exo70p population can reach its destination, a newly forming bud, independently of the actin cytoskeleton probably via direct association with Rho GTPases (Boyd et al., 2004). Therefore, Sec3p and Exo70p are supposed to act as landmarks of sites for the exocyst localization and action (Finger et al., 1998; Boyd et al., 2004).

Mutations in several exocyst-related genes cause actin cytoskeleton defects in budding yeast, leading subsequently to impaired cell growth and morphogenesis and also to an mRNA transport and polarization defect that is actin-dependent (Aronov and Goritz, 2001). The identified genes include the one encoding SEC10 and SEC15 exocyst components and CDC42 and RHO1 GTPases regulating the exocyst polar targeting (Wu et al., 2008).

An interesting reciprocal relationship was observed during cell wounding response, where Sec3p and the Bnr1p formin are degraded in order to eliminate competition for secretory vesicles required to repair the damaged membrane and cell wall, which are arriving along the pre-polarized cytoskeleton directing current polarized growth. The Bnr1p formin and the Exo70p exocyst subunit relocate to the damage site followed by redistribution of the Myo2p myosin and delivery of new material (Kono et al., 2012).
In budding yeast, cell polarity and polarized exocytosis is coordinated also by the Rho3p GTPase (Adamo et al., 1999), which can regulate both actin polarity and transport of exocytic vesicles from mother cell to the bud, as well as vesicle docking to the PM. While the Rho3p vesicle delivery function is mediated by Myo2p, the docking requires Exo70p (Adamo et al., 1999).

In the fission yeast Schizosaccharomyces pombe, the actin cytoskeleton is dispensable for proper exocyst localization and polarized growth (Bendezú and Martin, 2011; Snaith et al., 2011). While actin-independent polar transport in budding yeasts might be constrained by the narrow bud neck, and bud growth requires motor-driven transport along actin cables, the open cylindrical shape of fission yeast cells may allow actin-independent vesicle transport (Bendezú and Martin, 2011). However, the exocyst and actin cytoskeleton share at least two common upstream regulators – Cdc42 (Estravís et al., 2011) and Pob1 (Nakano et al., 2011).

The polar exocyst localization and formation of actin cables are dependent on and mutually coupled by Pob1 via its interaction with the For3 formin and the Sec8 exocyst subunit, respectively. Simultaneous deletion of For3 and Sec8 results in isotropic growth, indicating a functional redundancy between microfilaments and the exocyst in cell polarization (Bendezú and Martin, 2011). In contrast, although unable to divide properly, sec8 exo70 and sec8 sec8 double mutants are still capable of polarized growth (Bendezú and Martin, 2011).

Although all fission yeast exocyst subunits can localize to cell poles largely independently of the actin cytoskeleton, at least Sec3, Sec5, and Exo70 (most probably as a part of the complete exocyst complex) are more efficiently transported to the cell apex by the Myo52 myosin V along microfilaments (Snaith et al., 2011; Bendezú et al., 2012). Either functional Sec3 or Exo70 is essential for viability and proper localization of other exocyst subunits, suggesting that, as in budding yeast, these two components act as exocyst tethers at the PM (Bendezú et al., 2012). A polarization pathway involving the exocyst relocalization and actin repolarization downstream of Cdc42 also participates in fission yeast mating (Bendezú and Martin, 2013).

Unexpectedly, the fission yeast Sec3 not only acts in exocytosis but also marks sites for actin recruitment and controls overall actin organization via direct binding of For3 (Jourdain et al., 2012). Mutants in Sec3 exhibit lack of microfilaments, depolarized actin patches, and disassembly of the cytokinetic acto-myosin ring probably due to a failure in polarization of the For3 formin.

The Exo70 exocyst subunit also interacts both in vitro and in vivo with the yeast and rat Arpc1/Arc40 subunit of the Arp2/3 complex, a key regulator of actin polymerization. Inhibition of the Exo70 function in rat kidney cells blocks formation of actin-based membrane protrusions and affects cell migration (Zuo et al., 2006), pointing to yet unknown capacity of Exo70 to regulate the actin organization and coordinating thus actin cytoskeleton with membrane trafficking during cell migration. Exo70 was recently shown to promote Arp2/3-driven microfilament nucleation and branching (Liu et al., 2012). Because both the...
exocyst and Arp2/3 complexes are well conserved across eukaryotes, including plants, their interaction is likely to be conserved as well.

In mammalian cells, actin organization, as well as membrane trafficking, cell growth and differentiation, is regulated by RaLA and RaLB, ubiquitous small GTPases from the Ras superfamily (Feig et al., 1996). Activated (GTP-bound) RaLA forms a stable complex with the exocyst via binding to Sec5 (Brymora et al., 2001; Sugihara et al., 2002; Fukui et al., 2003) and Exo84 (Moskalenko et al., 2003; Jin et al., 2005) exocyst subunits in human and rat cells. Specific inhibition of the Sec5 activity blocks filopodia formation in 3T3 cells, a dynamic process that is highly dependent on actin reorganization and that can be normally induced by RaLA or cytokines via Cdc42 (Sugihara et al., 2002). This inhibitory effect could not be attributed to disrupted secretion, since inhibition of secretion by brefeldin A did not affect filopodia formation (Sugihara et al., 2002), indicating that the exocyst-RaLA complex may regulate actin reorganization independently of vesicle transport. Both RaLA-Sec5 and RaLA-Exo84 interactions are necessary for proper regulation of the actin cytoskeleton dynamics, as demonstrated by different morphological consequences of uncoupling these interactions in PC-3 cells, such as defects in lamellipodia formation, rounder cells or extended spikes (Harel et al. and Yezhioglu, 2012). RaLA also interacts with the actin cytoskeleton via Myo1c, suggesting its function as a cargo receptor for the Myo1c motor (Chen et al., 2007). Taken together, the exocyst complex as an immediate effector of RaLA obviously integrates the secretory pathway and actin cytoskeleton near the PM in mammalian cells (Figure 1).

Cells of mouse oocytes can use secrerory (Rab11-positive) vesicles associated with the exocyst components via the Rab11–Sec15 interaction (Wu et al., 2005) as adaptable, motorized network nodes regulating the dynamics and density of microfilaments in a myosin Vb-dependent manner (Holobová et al., 2013). Such an actin modulation is essential for asymmetric positioning of the meiotic spindle and thus for the development of a fertilizable egg in mammals. Although we can find no dynamic membrane protrusions analogous to filopodia in plant cells, fine F-actin meshwork is essential for polar growth of root hairs, pollen tubes, or stigmatic papillae and this type of growth demanding precise regulation of exocytosis is also strongly dependent on the exocyst function (Yakovlev et al., 2008; Vaškovcová et al., 2013).

Ral GTPases are specific to animals – in plant cells, as in yeast, only homologs to Rho GTPases (called also Rac in animals) are present and due to some plant specific features they are called Rop (Rho of plant). Rop GTPases were clearly implicated in the cortical cytoskeleton regulation mostly possibly via plant specific Rop-interacting adaptors (BRCa, Fu et al., 2001; Yakovlev et al., 2008). Very significant for the speculations on plant exocyst-cytoskeleton links is a dominant land-plant specific way of Rop activation mediated by specific PRONG–GEF (plant-specific Rop nucleotide exchanger – GDP/GTP exchange factor) regulated by interacting receptor-like kinases (RLKs) that allow for very efficient cortical activation of Rop GTPases in response to plethora of different stimuli including changes in cell wall mechanics (Moucha et al., 2011). Moreover, the first Rop-exocyst interaction observed in plants is not direct – several GTP-bound Rops interact with the Sec3 exocyst subunit in Arabidopsis via a plant specific adaptor protein ICR1 which is implied in the regulation of auxin polar transport (Lavy et al., 2007; Hazak et al., 2010; see further). These features along with plant specific transmembrane anchorage of plant F-actin nucleating forms (Cvíčková, 2013, in this issue) indicate that the cortical wiring between actin cytoskeleton and exocytosis in plants will be quite specific.

THE EXOCYST AND TUBULIN CYTOSKELETON

Microtubules are not essential for exocytosis in budding yeast and no functional link with the exocyst complex has been documented so far (Hammer and Sellers, 2012). In rat kidney cells, however, Exo70 co-localizes with microtubules and the mitotic spindle, and in vitro, the exocyst complex reconstituted from recombinant subunits inhibits tubulin polymerization. However, deletions of any of Sec5, Sec6, Sec15, or Exo70 exocyst subunits diminished the inhibition activity. Surprisingly, Exo70 itself could inhibit tubulin polymerization, albeit the exocyst complex lacking the Exo70 subunit did not lose its activity completely. On the other hand, when Exo70 was overexpressed, the microtubule network became disrupted and filopodia-like PM protrusions were formed (Wang et al., 2004).

The protrusion formation is consistent with an observation in Xenopus neurons, where a local disassembly of microtubules by focal application of nocodazole induced an addition of a new membrane material at the affected site (Zakharenko and Popov, 1998).

In undifferentiated PC12 neuronal cells, the exocyst complex is associated with microtubules as well as microtubule organizing centers and can be co-immunoprecipitated with microtubules from the total rat brain lysate (Vega and Hsa, 2001). However, upon activation of neuronal differentiation, the exocyst redistributes from perinuclear localization to the growing neurite characterized by high exocytic activity at the PM. The subcellular exocyst localization was affected by treatment with microtubule-disrupting drugs, but not actin-disrupting drugs. These results support a possibility that the exocyst complex acts as a modulator of microtubules to mediate vesicle targeting in animal cells. It is expected that also in respect to microtubular cytoskeleton-secretory pathway relationship the plant cells will have specific features due to the obvious dependence of the final steps of exocytosis and membrane recycling in plants on the actin cytoskeleton and very possibly exocytosis permissive feature of even dense cortical microtubuli (see below). However, both cytoskeletal systems in plant cells strongly interact (e.g., via specific actin nucleating forms) so that in the real biological context it will be challenging to separate their functions.

INTERPLAY BETWEEN THE EXOCYST AND BOTH TYPES OF CYTOSKELETON

In contrast to budding yeast, typical vertebral cells use microtubules for long-range cargo transport and microfilaments for short-range transport in cell cortex during later steps of vesicles traffic (Hammer and Sellers, 2012). Several studies pinpoint the potential importance of the exocyst in transition of cargo from microtubules to microfilaments.
Mammalian cell migration involves cooperative reorganization of the actin and microtubule cytoskeletons under the control of Rho GTPases (de Curtis and Meldolesi, 2012). Proper localization and activity of the exocyst is promoted by microtubule-associated GEF-H1, a GTP exchange factor for the RhoA actin activator, in HeLa cells (Pathak et al., 2012). Microtubule depolymerization results in the activation of GEF-H1, which further activates RhoA (Krendel et al., 2002). Importance of this regulation was documented experimentally on the cleavage furrow formation during cytokinesis (Biskos et al., 2007) and on actin dynamics during cell migration (Nalbant et al., 2009). The depletion of GEF-H1 led to accumulation of Rab11-positive secretory vesicles within the cells and to mislocalization of Exo70 and Sec8 exocyst subunits (Pathak et al., 2012). GEF-H1 also directly binds the Sec3 exocyst subunit in a RalA GTPase-dependent manner; the interaction is stronger with free GEF-H1 than with its microtubule associated form (Pathak et al., 2012). GEF-H1 also directly binds the Sec5 exocyst subunit in a RalA GTPase-dependent manner; the interaction is stronger with free GEF-H1 than with its microtubule associated form (Pathak et al., 2012). The Sec3-GEF-H1 interaction promotes RhoA activation, which then regulates exocyst localization and possibly its assembly, as well as actin polymerization. Exocyst thus first helps to activate RhoA, which subsequently assists functioning of the exocyst, resulting in a positive feedback (Pathak et al., 2012). Interestingly, despite the different mechanisms of cytokinesis between plants and animals/fission yeast (contraction versus building of a cell plate), the exocyst is involved in both types of cytokinesis (Fendly et al., 2010).

EXOCYST INTERACTION WITH CELLULAR MEMBRANES

As mentioned earlier, in budding yeast, Sec3p and part of Exo70p population can reach newly forming bud also independently of microfilaments (Boyd et al., 2004). They bind the PM directly via phosphopholipid phosphatidylinositol 4,5-bisphosphate (PIP2) and indirectly by association with Rho GTPases (He et al., 2007; Zhang et al., 2008; Wu et al., 2010; Figure 1). Sec15p binds to the membrane of secretory vesicles via the Sec4p Rab GTPase (Guo et al., 1999) and Sec6p binds Sec2p, a vesicle-associated SNARE protein (Shen et al., 2013). Sec6p also contributes to anchor the exocyst complex at sites of secretion – possibly via interaction with PM-associated proteins (Songer and Munson, 2009). Besides facilitating exocytosis by interactions with Sec6p, a Qbc exocytic t-SNARE protein (Srivastam et al., 2005), and with Sec1, a protein from the Sec1/Munc18 family regulating SNARE functions (Moretger et al., 2012), the exocyst also interacts with the vesicles transporting myosin Myo2p (also a known Sec6p interactor) via the Sec3p subunit that directly binds the motor and allows for its release after vesicle tethers (Jin et al., 2011; Donovan and Bretscher, 2012).

In fission yeast, Sec5 and Sec8 exocyst subunits localize to cell tips largely independent of the actin cytoskeleton, but in a Cdc42 and PIP2-dependent manner. Thus, the fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other organisms (Bendezú and Martin, 2013). Bendezú et al. (2012) showed that Sec3 and Exo70 tether the exocyst complex arriving with secretory vesicles by direct binding to PIP2, and Rho GTPases at the cell poles. In absence of the Myo2 motor protein, vesicles with the entire exocyst can still reach the cell pole by random movement, but less efficiently. In absence of both Sec3 and Exo70, vesicles and the rest of the exocyst fail in delivery and tethers and form aggregates. Also in plants Sec3 subunit of exocyst interacts with membrane lipids (Bloeck et al., in preparation).

Very recently Zhao et al. (2013) discovered that Exo70 alone, through an oligomerization-based manner, can generate membrane curvatures in vitro independent of the exocyst function. This represents a mechanism creating protrusions even in the absence of actin, albeit it is not clear to what extent stimulated actin polymerization, membrane delivery, and membrane deformation contribute to cell shape changes in vivo including formation of membrane protrusions. Thus, Exo70 as a membrane-bending protein may couple the actin dynamics and PM remodeling in morphogenesis. The exocyst is also essential for large-particle phagocytosis (Mohammadi and Iberg, 2013), Salmonella invasion into host cells (Nichols and Casanova, 2010) and formation of tunneling nanotubes – recently discovered structures connecting cytoplasm of animal cells (Ohno et al., 2010; Muekenji et al., 2012; Schiller et al., 2013). Each of these events could combine all three mechanisms mentioned above. Membrane-deforming ability of Exo70 could function well beyond the cell cortex-associated events, since the exocyst participates in many cellular processes (reviewed in Hindler and Munson, 2012; Liu and Guo, 2012).

PERSPECTIVES ON THE EXOCYST–CYTOSKELETON INTERFACE IN ENDOMEMBRANE BIOGENESIS IN PLANTS

Regulation of the cytoskeleton structure and dynamics in plant cells is very much affected by the cell wall, implying close proximity between secretory pathway, cell wall biogenesis and cortical cytoskeleton. These cellular systems are regulated by small GTPases, especially from the ADF, RAB, and ROP families, major regulators of the cell polarity and morphogenesis closely related to their fungal or animal counterparts (Valkočesová et al., 2013). Work in the laboratory of Shaul Yalovsky (Lavy et al., 2007; Hazak et al., 2010) showed that the Sec3 exocyst subunit interacts with an activated (GTP-bound) ROP at the PM via ICR1, a founding member of the ICR/RIP protein family (Lister et al., 2008; Mache et al., 2010). RIP3 (also known as MIDD1) interacts in a GTP-bound manner with ROPs and also with the Kinesin-1A to regulate the microtubular dynamics (Mučka et al., 2010). RIP3 is a crucial negative regulator of cortical microtubules in the patterning of secondary cell wall thickening directed by the ROP11 GTPase module (Oda and Fukuda, 2012). At PM sites, where cortical microtubules are locally destabilized, the localized exocytosis-dependent secondary cell wall thickening is blocked (Oda and Fukuda, 2012).
While local destabilization of cortical microtubules seems to stimulate exocytosis in animal cells (see above Zakharenko and Popov, 1998), dense cortical microtubule domains of somatic plant cells are often the cortical domains of highest secretory activity, as in xylem thickening or seed coat epidermal cells with a volcano-like cell wall thickening, where highly polarized delivery of pectins is targeted to extremely dense cortical microtubule domains (McFarlane et al., 2008; Oda and Fukuda, 2012). The exocytosis of pectins into pectin-accumulating pockets depends on exocytosis function, implying a possibility that microtubule-rich domains might be a general cortical target recognized by EXO70s or other exocyst subunits, functioning as putative PM landmarks for exocytosis targeting (Zársky et al., 2009; Kulich et al., 2010). Extensive proliferation of the EXO70 gene in land plants (e.g., *Arabidopsis* in endowed with 23 EXO70 paralogs) possibly provides a potential for fine targeting into specific cortical areas (Synek et al., 2006; Cvrčková et al., 2012).

On the contrary, dense cortical microfilament meshwork might block exocytosis in both animal and plant cells (Valentín et al., 1999; Zársky et al., 2009). For instance, a dense subsapical F-actin fringe separating actively growing tip from the rest of the tobacco pollen tube might also be a mechanical obstacle for exocytosis (Lový-Wheeler et al., 2005). The exocyst is also accumulated at the tip of growing pollen tubes and is obviously involved in exocytosis (Hála et al., 2008). The transport and delivery of secretory vesicles in plant cells is likely to depend on both microfilaments and an interaction of some exocyst subunits with the PM phosphoinositides, like in the case of yeast and animal cells (see above). Phosphoinositide binding was indeed predicted for several *Arabidopsis* EXO70 paralogs based on yeast and animal models (Zársky et al., 2009) and currently proved both biochemically and cytologically in our laboratory for the *Arabidopsis* SECl3 exocyst subunit (Bloch et al., in preparation).

The dynamics of several exocyst subunits at the PM, as monitored by TIRF microscopy in *Arabidopsis* epidermal cells, was unaffected by actin or microtubule cytoskeleton disruption after short (10 min) treatment with inhibitors, however, prolonged actin cytoskeleton disruption (1 h) resulted in exocyst redistribution and aggregation at the PM and impaired dynamics (Fendrych et al., 2013). This is consistent with microfilament involvement not only in the delivery but also in spatial distribution of secretory vesicles and endomembrane compartments (Starchelin and Moore, 1995).

Interestingly, exocyst complexes show almost no lateral movement within the PM in both plant and animal cells, as analyzed by the TIRF microscopy and, very similar time of persistence within the PM in both plant and animal cells, as analyzed by TIRF microscopy, and very similar time of persistence within the PM in both plant and animal cells, as analyzed by TIRF microscopy. This is consistent with microfilament involvement not only in the delivery but also in spatial distribution of secretory vesicles and endomembrane compartments (Starchelin and Moore, 1995).}

CONCLUSION

Direct as well as a circumstantial evidence accumulated over the years concerning interactions and cooperation between the exocyst and cytoskeleton indicates that the exocyst, cytoskeleton, and membrane traffic meet at the active cellular cortex. The exocyst serves an important role in co-ordination of the vesicle trafficking with the cytoskeleton in eukaryotes, in addition to its canonical role in exocytosis. In plant cells, however, we have currently only limited and indirect evidence for this regulatory interplay, urging further research in this direction.

ACKNOWLEDGMENTS

This work was supported by the Czech Science Foundation (GACR project GPP501/11/P853) and EU-ITN grant No. 238640-PLANTORIGINS. The authors thank F. Cvrčková for critical reading of the manuscript.

REFERENCES

Adams, J. E., Ross, G., and Brennwald, P. (1999). The Rho GTPase RhoB has a direct role in exocytosis that is distinct from its role in actin polarity. *J. Biol. Chem.* 274, 29792–29797. doi: 10.1074/jbc.C100024200

Bendera, F. O., and Martin, S. G. (2013). Actin cables and the exocyst form two independent morphogenetic pathways in the fusion yeast. *Mol. Biol. Cell.* 24, 44–53. doi: 10.1091/mbc.E13-06-0720

Bendera, F. O., and Martin, S. G. (2013). Cdc42 nucleates the cell periphery for mate selection in fusion yeast. *Curr. Biol.* 23, 42–47. doi: 10.1016/j.cub.2012.10.042

Bendera, F. O., Vincentini, V., and Martin, S. G. (2012). Fusion yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles. *PLoS ONE* 7:e41248. doi: 10.1371/journal.pone.0041248

Berkfeld, J., Nabert, P., Roh, B. F., Ferré, O., Hahn, K. M., and Bokoch, G. M. (2007). GEF-H1 modulates localized Robc activation during cytokinesis under the control of mitotic kinases. *Dev. Cell.* 12, 699–712. doi: 10.1016/j.devcel.2007.05.014

Boyd, C., Hughes, T., Pypaert, M., and Novick, P. (2004). Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. *J. Cell Biol.* 167, 889–901. doi: 10.1083/jcb.200408124

Brymora, A., Valova, V., Larsen, M. R., Roufogalis, B. D., and Robinson, P. J. (2001). The brain exocyst complex interacts with RabL in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. *J. Biol. Chem.* 276, 29792–29797. doi: 10.1074/jbc.C100252200

Chen, X. W., Liao, D., Chang, S. H., Wang, Q., and Sulidin, A. R. (2007). Activation of RabL is required for insulin-stimulated GluK trafficking to the plasma membrane via the exocyst and the motor protein MyoD. *Dev. Cell.* 15, 581–594. doi: 10.1016/j.devcel.2007.07.017

Cvrčková, F. (2013). Formins and membranes: anchoring cortical actin to the cell wall and beyond. *Front. Plant Sci.* 4:136. doi: 10.3389/fpls.2013.00136

Cvrčková, F., Grant, M., Berzová, R., Hála, M., Kulich, J., Rasouli, A., et al. (2012). Evolution of the land plant exocyst complexes. *Front. Plant Sci.* 3:154. doi: 10.3389/fpls.2012.00154

de Carras, J., and Maldonado, J. (2011). Cell surface dynamics - how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton. *J. Cell Sci.* 125, 4435–4444. doi: 10.1242/jcs.106269

Denton, E. W., and Brachot, A. (2012). Myosin-V is an actin-binding binding secretory cargo and released in coordination with RabL/exocyst function. *Dev. Cell.* 25, 709–719. doi: 10.1016/j.devcel.2012.09.001
Finger, F. P., Hughes, T. E., and Novick, P. (1998). Sec3p is a spatial landmark of the TGN and interaction with the exocyst complex. Curr. Biol. 8, 337–346. doi:10.1016/S0960-9822(98)00033-0

Hazelett, C. C., and Yeaman, C. (2012). Sec5 and Exo84 mediate distinct aspects of RhoA activation and RhoA GTPase. Mol. Biol. Cell 23, 205–215. doi:10.1091/mbc.E11-08-0780

Mohammadi, S., and Liborg, R. R. (2013). Cell interaction with the exocyst complex to promote phagocytosis. J. Cell Biol. 200, 81–93. doi:10.1083/jcb.201206090

Mohner, A., Salih, M. R., Dubnau, M., Gandhi, P., Brewer, D. N., Carr, C. M., et al. (2012). Regulation of exocytosis by the exocyst subunit Sec5 and the SM protein Sec1. Mol. Biol. Cell 23, 337–346. doi:10.1091/mbc.E11-08-0707

Mokhrilov, S., Tong, C., Roncaglione, M., Feigenson, E., and Dotti, C. (2003). Rab5a regulates exocyst assembly through dual subunit interactions. J. Biol. Chem. 278, 51743–51748. doi:10.1074/jbc.M308702200

Mucha, E., Frohlic, A., Walford, A., and Berken, A. (2011). Rho proteins of plants functional cycle and regulation of cytokinetic activity. Eukaryot. Cell 10, 934–942. doi:10.1083/jcb.201108.045

Nichols, C. D., and Guarneros, J. I. (2010). Rho-mediated recruitment of new membrane to invasion foci via the host exocyst complex. Curr. Biol. 20, 1516–1520. doi:10.1016/j.cub.2010.05.058

Novick, P., Field, C., and Schekman, R. (1998). Identification of 23 complementation groups required for post-translational events in the yeast secretion pathway. Cell 93, 205–215. doi:10.1016/S0092-8674(00)80228-2

Oda, Y., and Fukuda, H. (2012). Secondary cell wall patterning during tylosin differentiation. Curr. Opin. Plant Biol. 15, 38–44. doi:10.1016/j.copb.2012.05.005

Pekani, T., Hehl, M., Kulich, E., Kocourková, D., Drdová, E., Fendrych, M., et al. (2012). For the exocyst complex subunits Exo70B2 and Exo70B1 in the plant–pathogen interaction. J. Exp. Bot. 63, 2101–2116. doi:10.1093/jxb/erq111

“fps-04-00543” — 2013/12/31 — 16:27 — page 6 — #6
Rivera-Molina, P., and Toomre, D. (2013). Live-cell imaging of exocyst links its subapical dynamics to various stages of vesicle fusion. J. Cell Biol. 201, 673–688. doi:10.1083/jcb.201212125

Sakurai-Sugata, M., Rechii, C., Le Doe, G., Shrivast, J. B., Davlet, L., Cammen, J., et al. (2008). The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and Rhb. J. Cell Biol. 181, 895–908. doi:10.1083/jcb.200705076

Schiller, C., Shakopees, K. N., Bobrowlder, I., Kremmer, E., von Toomre, C., Ueffing, M., et al. (2013). LST1 promotes the assembly of a molecular machinery responsible for tumtting nanotube formation. J. Cell Sci. 126, 767–777. doi:10.1242/jcs.114033

Shen, D., Yuan, H., Hutagalung, A., Verma, A., Kümmel, D., Wu, X., et al. (2013). Schiller, C., Diakopoulos, K. N., Rohwedder, I., Kremmer, E., von Toerne, C., Rivera-Molina, F., and Toomre, D. (2013). Live-cell imaging of exocyst links its subapical dynamics to various stages of vesicle fusion. J. Cell Biol. 201, 673–688. doi:10.1083/jcb.201212125

Sivaram, M. V., Saporita, J. A., Furgason, M. L., Boettcher, A. J., and Munson, M. (2005). The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Biol. Chem. 280, 509–526. doi:10.1074/jbc.M408489200

Stearman, M., V., Saporita, J. A., Furgason, M. L., Boettcher, A. J., and Munson, M. (2005). Demonstration of the exocyst protein Sec6p and its interaction with the t-SNARE Sec6p. Biochemistry. 44, 6192–6211. doi:10.1021/bi040080h

Smith, H. A., Thompson, J., Yates, J. R., and Sawin, K. E. (2011). Characterization of Mep53 reveals complementary roles for actin cable-dependent transport and exocyst regulators in fission yeast exocytosis. J. Cell Sci. 124, 2197–2219. doi:10.1242/jcs.079438

Songer, J. A., and Munson, M. (2009). Sec6p anchors the assembled exocyst complex at sites of secretion. Mol. Biol. Cell. 20, 975–982. doi:10.1091/mbc.E08-09-0868

Steb, L. A., and Moore, I. (1995). The plant golgi apparatus: structure, functional organization and trafficking mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 261–288. doi:10.1146/annurev.arplant.46.1.261

Sutte, S. J., Campagne, D., Tsvykh, M., and Blatt, M. R. (2006). Selective mobility and sensitivity to SNAP25 is exhibited by the Auxilidokis KAT K+ channel at the plasma membrane. Plant Cell 18, 835–934. doi:10.1105/tpc.16.008950

Svoboda, L., Blaszczyk, M., Urbanska, M., Patrauskas, P., Dorend, B. R., Milak, A., R., et al. (2011). CEP170 and IQGAP1 cooperatively regulate dendrite morphology. J. Neurosci. 31, 4588–4598. doi:10.1523/JNEUROSCI.5526-10.2011

Synek, L., Schlegel, N., Hålin, M., Dcin, M., and Zárský, V. (2007). Regulation of membrane trafficking, cytoskeleton dynamics and cell polarity by ROP/RCA1/PI3K. Plant Physiol. 147, 1272–1353. doi:10.1104/pp.1212110

Žárský, V., Saporita, J. A., Furgason, M. L., and Hålin, M. (2009). Exocyst and cell polarity in plants - except for recycling domains. New Phytol. 185, 250–272. doi:10.1111/j.1469-8137.2009.02881.x

Zhang, X., Orlando, K., Hu, B., Xu, J., Zhang, J., Zajec, A., et al. (2008). Membrane association and functional regulation of Sec2p by phospholipids and Cal. J. Cell Biol. 180, 1845–1854. doi:10.1083/jcb.200712073

Zuo, X., Jiin, J., Yang, C., Caparros, B. R., Baumgart, T., Bradley, B. P., et al. (2013). Exo70 generates membrane curvature for morphogenesis and cell migration. Dev. Cell 26, 266–278. doi:10.1016/j.devcel.2013.07.012

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 October 2013; paper pending published: 18 November 2013; accepted: 12 December 2013; published online: 02 January 2014.

Copyright © 2014 Synek, Sekereš and Žárský. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the original publication in this journal are cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.