A REmark on \mathbb{Z}_p-ORBiFOLD CONSTRUCTIONS OF THE MOONSHINE VERTEX OPERATOR ALGEBRA

TOSHIYUKI ABE, CHING HUNG LAM, AND HIROMICHI YAMADA

Abstract. For $p = 3, 5, 7, 13$, we consider a \mathbb{Z}_p-orbifold construction of the Moonshine vertex operator algebra V^\sharp. We show that the vertex operator algebra obtained by the \mathbb{Z}_p-orbifold construction on the Leech lattice vertex operator algebra V_Λ and a lift of a fixed-point-free isometry of order p is isomorphic to the Moonshine vertex operator algebra V^\sharp. We also describe the relationship between those \mathbb{Z}_p-orbifold constructions and the \mathbb{Z}_2-orbifold construction in a uniform manner. In Appendix, we give a characterization of the Moonshine vertex operator algebra V^\natural by two mutually orthogonal Ising vectors.

1. Introduction

Let V be a vertex operator algebra (VOA) and $G \subset \text{Aut} V$ a finite group of automorphisms of V. The fixed-point subalgebra $V^G = \{ v \in V | gv = v, g \in G \}$ is called an orbifold subVOA. A simple current extension of an orbifold subVOA provides an effective method to construct a new VOA from a given pair of a VOA and an automorphism of the VOA of finite order.

The first example of such a simple current extension of an orbifold subVOA is the Moonshine VOA V^\sharp constructed in [15], where the VOA V_Λ associated with the Leech lattice Λ and an automorphism θ of order 2 lifted from the -1 isometry of Λ are considered. Using the construction in [15], many maximal 2-local subgroups of the Monster are described as the stabilizers of some subVOAs of $V_\Lambda^{(\theta)}$ in [27]. However, it is not easy to describe p-local subgroups based on this construction for $p \neq 2$.

For each $p = 3, 5, 7, 13$, there is a unique, up to conjugacy, fixed-point-free isometry of the Leech lattice Λ of order p. In the introduction of [15], a similar construction of V^\sharp by using an automorphism τ of V_Λ of order p lifted from a fixed-point-free isometry of Λ of order p was conjectured (see also [8]). Such a construction of V^\sharp was obtained in [3] for the case $p = 3$ (see also [23, 28]). Moreover, certain maximal 3-local subgroups of the Monster are described relatively explicitly using the \mathbb{Z}_3-orbifold construction.

In this paper, we consider the \mathbb{Z}_p-orbifold construction of the Moonshine VOA V^\sharp for the cases $p = 3, 5, 7, 13$. We show that the VOA obtained by the \mathbb{Z}_p-orbifold construction on V_Λ and a lift of a fixed-point-free isometry of Λ of order p is isomorphic to the Moonshine VOA V^\sharp. We also describe the relationship between those \mathbb{Z}_p-orbifold constructions and the \mathbb{Z}_2-orbifold construction [15] in a uniform manner.
Our idea is to use an isometry of the Leech lattice Λ of order $2p$ whose ith power is fixed-point-free on Λ for all $1 \leq i \leq 2p - 1$. Such an isometry is unique up to conjugacy. The isometry can be lifted to an automorphism σ of V_Λ of the same order $2p$ with $\theta = \sigma^p$ and $\tau = \sigma^{p+1}$. We consider the fixed-point subVOA $V_\Lambda^{(\sigma)} = \{ v \in V_\Lambda | \sigma v = v \}$ by σ.

It is known that $V_\Lambda^{(\sigma)}$ has exactly $4p^2$ irreducible modules up to equivalence $\mathbb{Z}_2 \times \mathbb{Z}_2$, and all of them are simple current modules $\mathbb{13}, \mathbb{14}, \mathbb{26}$. These irreducible $V_\Lambda^{(\sigma)}$-modules are parametrized by an abelian group $D \cong \mathbb{Z}_{2p} \times \mathbb{Z}_{2p}$ as W^α, $\alpha \in D$ so that the fusion products are given by $W^\alpha \boxtimes W^\beta \cong W^{\alpha + \beta}$ $\mathbb{14}, \mathbb{26}$.

It turns out that the VOA obtained by applying a \mathbb{Z}_{2p}-orbifold construction to the Leech lattice VOA V_Λ and the automorphism σ is isomorphic to V_Λ, also. This isomorphism induces some explicit relations between those \mathbb{Z}_p-orbifold constructions and the \mathbb{Z}_2-orbifold construction $\mathbb{15}$. In fact, it follows from $\mathbb{14}$ that there are four subgroups H_r, $1 \leq r \leq 4$, of D for which a simple current extension $V_r = \bigoplus_{\alpha \in H_r} W^\alpha$ has a structure of a simple, rational, C_2-cofinite, holomorphic VOA of CFT-type which extends the VOA structure of $V_\Lambda^{(\sigma)}$. Among these four VOAs V_r, $1 \leq r \leq 4$, two are isomorphic to the Leech lattice VOA V_Λ and the other two are isomorphic to the Moonshine VOA V^\flat. As for the latter two cases, one is a decomposition of the \mathbb{Z}_p-orbifold construction of V^\flat by the automorphism $\tau \in \text{Aut} V_\Lambda$ of order p into a direct sum of irreducible $V_\Lambda^{(\sigma)}$-modules, and the other is a decomposition of the \mathbb{Z}_2-orbifold construction of V^\flat by the involution θ obtained in $\mathbb{15}$ into a direct sum of irreducible $V_\Lambda^{(\sigma)}$-modules.

The paper is organized as follows. In Section $\mathbb{2}$ we recall some results on cyclic orbifold constructions, irreducible twisted modules for lattice vertex operator algebras, and certain fixed-point-free isometries of the Leech lattice of order $2p$, $p = 3, 5, 7, 13$. In Section $\mathbb{3}$ we discuss some basic properties of the irreducible σ^i-twisted V_Λ-modules. Section $\mathbb{4}$ is devoted to \mathbb{Z}_{2p}-orbifold constructions by the automorphism σ. In Appendix, we give a characterization of the Moonshine VOA V^\flat by two mutually orthogonal Ising vectors.

2. Preliminaries

In this section, we recall some results on cyclic orbifold constructions $\mathbb{14}, \mathbb{26}$, irreducible twisted modules for VOAs associated with positive definite even lattices and isometries of finite order $\mathbb{11}, \mathbb{6}, \mathbb{21}$, and some fixed-point-free isometries of the Leech lattice of order $2p$, $p = 3, 5, 7, 13$ $\mathbb{4}$.

2.1. Cyclic orbifold constructions

We follow the notation in $\mathbb{14}$. Let V be a simple, rational, C_2-cofinite, holomorphic vertex operator algebra of CFT-type and $G = \langle g \rangle$ a cyclic group of automorphisms of V of order n. Then there is a unique irreducible h-twisted V-module $V(h)$ for $h \in G$ by $\mathbb{7}$.

For each $h \in G$, there is a projective representation ϕ_h of G on the vector space $V(h)$ such that

$$\phi_h(g)Y_{V(h)}(v, z)\phi_h(g)^{-1} = Y_{V(h)}(gv, z)$$

for $v \in V$. The representation ϕ_h is unique up to multiplication by an nth root of unity.

If $h = 1$, we have $V(h) = V$ and then assume $\phi_h(g) = g$. We write ϕ_i for ϕ_g.

Let $W^{(i,j)}$ be the eigenspace of $\phi_i(g)$ in $V(g^i)$ with eigenvalue $e^{2\pi i j/n}$, i.e.,

$$W^{(i,j)} = \{ w \in V(g^i) | \phi_i(g)w = e^{2\pi i j/n}w \}.$$
Then \(W^{(i,j)} \) is an irreducible \(V^G \)-module and

\[
V(g^i) = \bigoplus_{j=0}^{n-1} W^{(i,j)}
\]

is an eigenspace decomposition of \(V(g^i) \) for \(\phi_i(g) \). The indices \(i \) and \(j \) are considered to be modulo \(n \). The second index \(j \) depends on the choice of multiplication by an \(n \)th root of unity for the representation \(\phi_i \) if \(i \neq 0 \). Note that \(W^{(0,0)} = V^G \).

The irreducible \(V^G \)-modules \(W^{(i,j)}, i, j \in \mathbb{Z}_n \), form a complete set of representatives of equivalence classes of irreducible \(V^G \)-modules [2, 24, 25], and all of them are simple current modules [13, 14].

The conformal weight of \(V(g^i), i \in \mathbb{Z}_n \) plays an important role in [14]. In the special case where the conformal weight of \(V(g) \) belongs to \((1/n)\mathbb{Z} \), the fusion algebra of the orbifold subVOA \(V^G \) of \(V \) by \(G \) has particularly nice form. We summarize the results of [14, Section 5] as the following theorem for later use.

Theorem 2.1. ([14]) Let \(V \) and \(G = \langle g \rangle \) be as above. If the conformal weight of \(V(g^i) \) belongs to \((1/n)\mathbb{Z} \), then we can choose multiplication of \(\phi_i \) by an \(n \)th root of unity so that the following conditions hold.

1. \(W^{(i,j)} \otimes W^{(k,l)} \cong W^{(i+k,j+l)} \).
2. The conformal weight of \(W^{(i,j)} \) is \(q_\Delta((i,j)) \equiv ij/n \) (mod \(\mathbb{Z} \)).
3. The fusion algebra of \(V^G \) is the group algebra of \(\mathbb{Z}_n \times \mathbb{Z}_n \) with a quadratic form \(q_\Delta \).
4. Let \(H \) be an isotropic subgroup of \(\mathbb{Z}_n \times \mathbb{Z}_n \) with respect to the quadratic form \(q_\Delta \).

Then

\[
\bigoplus_{(i,j) \in H} W^{(i,j)}
\]

admits a structure of a simple, rational, \(C_2 \)-cofinite, self-contragredient VOA of CFT-type which extends the VOA structure of \(V^G \). Furthermore, if \(H \) is a maximal isotropic subgroup, then it is holomorphic.

The subgroup \(\{(i,0) | i \in \mathbb{Z}_n \} \) is always a maximal isotropic subgroup of \(\mathbb{Z}_n \times \mathbb{Z}_n \) and

\[
\tilde{V}_g = \bigoplus_{i \in \mathbb{Z}_n} W^{(i,0)}
\]

is a simple, rational, \(C_2 \)-cofinite, holomorphic VOA of CFT-type which extends the VOA structure of \(V^G \) [14, page 21]. We say that the VOA \(\tilde{V}_g \) is obtained by a \(\mathbb{Z}_n \)-orbifold construction for \(V \) and \(g \).

2.2. Irreducible twisted modules for \(V_L \). Irreducible twisted modules for a lattice VOA \(V_L \) with respect to a lift of an isometry \(\nu \) of \(L \) of finite order were constructed explicitly in [11, 6, 21]. In this section, we recall some basic properties of those irreducible twisted modules in the special case where \(L \) is unimodular and \(\nu \) is fixed-point-free.

Let \((L, \langle \cdot, \cdot \rangle) \) be a positive definite even unimodular lattice and \(\nu \) a fixed-point-free isometry of \(L \) of finite order. Let \(m \) be a positive integer such that \(\nu^m = 1 \). Note that \(m \) is not necessarily the order of \(\nu \). We extend the isometry \(\nu \) to \(\mathfrak{h} = L \otimes_{\mathbb{Z}} \mathbb{C} \) linearly. Following [11 (4.17)] and [7, Remark 3.1], let

\[
\mathfrak{h}^{(i,\nu)} = \{ h \in \mathfrak{h} | \nu h = \xi_m^{-i} h \}, \quad \xi_m = e^{2\pi \sqrt{-1}/m}.
\]
Since \(\nu \) is fixed-point-free, we have \(\mathfrak{h}^{(0,\nu)} = 0 \) and \(\mathfrak{h} = \bigoplus_{i=1}^{m-1} \mathfrak{h}^{(i,\nu)} \). The \(\nu \)-twisted affine Lie algebra \(\hat{\mathfrak{h}}[\nu] \) is defined by

\[
\hat{\mathfrak{h}}[\nu] = \left(\bigoplus_{i=1}^{m-1} \mathfrak{h}^{(i,\nu)} \otimes t^{i/m} \mathbb{C}[t, t^{-1}] \right) \oplus \mathbb{C}K
\]

with commutation relations

\[
[x \otimes t^n, y \otimes t^{n'}] = (x, y)n \delta_{n+n',0} K, \quad [K, \hat{\mathfrak{h}}[\nu]] = 0
\]

for \(x \in \mathfrak{h}^{(i,\nu)}, y \in \mathfrak{h}^{(i',\nu)}, n \in i/m + \mathbb{Z}, n' \in i'/m + \mathbb{Z} \). We write \(x(n) \) for \(x \otimes t^n \).

The index \(i \) of \(\mathfrak{h}^{(i,\nu)} \) can be considered to be modulo \(m \). Then \(\hat{\mathfrak{h}}[\nu] \) is also denoted as

\[
\hat{\mathfrak{h}}[\nu] = \left(\bigoplus_{n \in (1/m)\mathbb{Z}} \mathfrak{h}^{(mn,\nu)} \otimes \mathbb{C}t^n \right) \oplus \mathbb{C}K.
\]

Let \(\tilde{\nu} \) be an automorphism of the VOA \(V_L \) which is a lift of \(\nu \). Since \(L \) is unimodular, there is a unique irreducible \(\tilde{\nu} \)-twisted \(V_L \)-module up to equivalence \([7]\). The irreducible \(\tilde{\nu} \)-twisted \(V_L \)-module constructed in \([6, 21]\) is of the form

\[
V_L(\tilde{\nu}) = M(1)\nu \otimes T
\]

as a vector space, where \(M(1)\nu \) is the symmetric algebra \(S(\mathfrak{h}[\nu]^-) \) of an abelian Lie algebra

\[
\hat{\mathfrak{h}}[\nu]^- = \bigoplus_{n \in (1/m)\mathbb{Z}, n < 0} \mathfrak{h}^{(mn,\nu)} \otimes \mathbb{C}t^n
\]

and \(T \) is an irreducible module for a certain finite group. The symmetric algebra \(S(\hat{\mathfrak{h}}[\nu]^-) \) is spanned by the elements of the form

\[
h_r(-n_r) \cdots h_1(-n_1)1
\]

with \(r \in \mathbb{Z}_{\geq 0}, n_j \in (1/m)\mathbb{Z}_{\geq 0} \) and \(h_j \in \mathfrak{h}^{(-mn_j,\nu)}, 1 \leq j \leq r \). The weight of an element \(h_r(-n_r) \cdots h_1(-n_1)1 \otimes u \in V_L(\tilde{\nu}) \) with \(u \in T \) is given by

\[
n_1 + \cdots + n_r + \rho, \quad (2.1)
\]

where

\[
\rho = \rho(V_L(\tilde{\nu})) = \frac{1}{4m^2} \sum_{i=1}^{m-1} i(m - i) \dim \mathfrak{h}^{(i,\nu)} \quad (2.2)
\]

is the conformal weight of \(V_L(\tilde{\nu}) \).

The dimension of \(T \) is determined in \([11, (4.53)]\), \([21, \text{Proposition 6.2}]\) and we have

\[
\dim T = \sqrt{|L/(1-\nu)L|} \quad (2.3)
\]

2.3. Fixed-point-free isometries of \(\Lambda \) of order \(2p \), \(p = 3, 5, 7, 13 \). The automorphism group \(CO_0 = O(\Lambda) \) of the Leech lattice \(\Lambda \) is a central extension of the largest Conway group \(CO_1 \) by a group of order 2. The central element of \(O(\Lambda) \) of order 2 is the \(-1\) isometry \(\theta : \alpha \mapsto -\alpha \) for \(\alpha \in \Lambda \). The character of the natural representation of \(O(\Lambda) \) on the 24 dimensional space \(\Lambda \otimes \mathbb{C} \) is denoted by \(\chi_{102} \) in \([4, \text{page 186}]\). We see from the values of \(\chi_{102} \) that the following lemma holds.
Lemma 2.2. For $p = 3, 5, 7, 13$, there exists a unique, up to conjugacy, isometry $\tau \in O(\Lambda)$ of order p which acts fixed-point-freely on Λ. Let $\sigma = \theta \tau \in O(\Lambda)$. Then σ is of order $2p$ and σ^i acts fixed-point-freely on Λ for all $1 \leq i \leq 2p - 1$.

Remark 2.3. For $p = 3, 5, 7, 13$, the isometry σ of Lemma 2.2 is the unique, up to conjugacy, isometry of Λ of order $2p$ such that σ^i acts fixed-point-freely on Λ for all $1 \leq i \leq 2p - 1$.

3. Irreducible σ^i-twisted V_Λ-modules

For $p = 3, 5, 7, 13$, let σ be as in Section 2.2. Thus σ is an isometry of the Leech lattice Λ of order $m = 2p$ and σ^i is fixed-point-free on Λ for all $1 \leq i \leq m - 1$. Since $\sigma^{m/2}$ is the -1 isometry of Λ, we have $\langle \alpha, \sigma^{m/2} \alpha \rangle = -\langle \alpha, \alpha \rangle \in 2\mathbb{Z}$ for $\alpha \in \Lambda$. Moreover, $\Lambda^\sigma = \{ \alpha \in \Lambda | \sigma \alpha = \alpha \} = 0$. Hence there is a lift $\hat{\sigma} \in \text{Aut} V_\Lambda$ of σ of order m by [14, Proposition 7.2]. For simplicity of notation, we use the same symbol σ to denote $\hat{\sigma}$. That is, σ denotes both an isometry of Λ of order m whose ith power is fixed-point-free on Λ for all $1 \leq i \leq m - 1$ and an automorphism of the VOA V_Λ of order m which is a lift of the isometry.

Let

$$\theta = \sigma^p, \quad \tau = \sigma^{p+1}.\tag{3.1}$$

Then $\sigma = \theta \tau = \tau \theta$, $|\theta| = 2$, $|\tau| = p$, $\langle \sigma \rangle = \langle \theta, \tau \rangle$ and θ is a lift of the -1 isometry of Λ.

We follow the notation in Section 2.2 with $L = \Lambda$ and $\nu = \sigma^i$ for the irreducible σ^i-twisted V_Λ-modules $V_\Lambda(\sigma^i) = M(1)[\sigma^i] \otimes T$, $1 \leq i \leq m - 1$. Thus $\mathfrak{h} = \Lambda \otimes \mathbb{C}$ and

$$\mathfrak{h}^{(j, \sigma^i)} = \{ h \in \mathfrak{h} | \sigma^i h = \xi_m^j h \}, \quad \xi_m = e^{2\pi \sqrt{\frac{1}{m}}}. \tag{3.2}$$

3.1. Conformal weight of $V_\Lambda(\sigma^i)$. The conformal weight of $V_\Lambda(\sigma^i)$ is

$$\rho(V_\Lambda(\sigma^i)) = \frac{1}{4m^2} \sum_{j=1}^{m-1} \frac{m-1}{j(m-j)} \dim \mathfrak{h}^{(j, \sigma^i)}. \tag{3.2}$$

by Eq. (2.2).

Lemma 3.1. The dimension of $\mathfrak{h}^{(j, \sigma^i)}$, $1 \leq i \leq m - 1$, $j \in \mathbb{Z}_m$ is as follows.

1. If i is odd and $i \neq p$, then

$$\dim \mathfrak{h}^{(j, \sigma^i)} = \begin{cases}
24/(p-1) & (j \text{ odd}, j \neq p), \\
0 & \text{(otherwise)}.
\end{cases}$$

2. If i is even, then

$$\dim \mathfrak{h}^{(j, \sigma^i)} = \begin{cases}
24/(p-1) & (j \text{ even}, j \neq 0), \\
0 & \text{(otherwise)}.
\end{cases}$$

3. If $i = p$, then

$$\dim \mathfrak{h}^{(j, \sigma^p)} = \begin{cases}
24 & (j = p), \\
0 & (j \neq p).
\end{cases}$$
Proof. Let \(h \in h^{(i;\sigma^i)} \). First, assume that \(i \) is odd and \(i \neq p \). If \(j \) is even, then \(jp \equiv 0 \pmod{m} \) and \((\sigma^i)^p h = \xi_m^{-jp} h = h \). Since \((\sigma^i)^p = \theta \), this implies that \(h = 0 \). If \(j = p \), then \(\sigma^i h = \xi_m^{-p} h = -h \) and \(\sigma^{-p} h = h \). Since \(\sigma^k \) is fixed-point-free on \(\Lambda \) for \(0 \neq k \in \mathbb{Z}_m \), it follows that \(h = 0 \). Therefore, we have the eigenspace decomposition

\[
\mathfrak{h} = \bigoplus_{1 \leq k \leq p, k \neq (p+1)/2} h^{(2k-1;\sigma^i)}
\]

of \(\mathfrak{h} \) by \(\sigma^i \). Since \(m \) and \(2k - 1 \) are coprime for \(1 \leq k \leq p, k \neq (p+1)/2 \), we have

\[
\dim h^{(2k-1;\sigma^i)} = \dim h^{(2k-1;\sigma^i)^2k-1} = \dim h^{(1;\sigma^i)}.
\]

Thus the assertion (1) holds.

Next, assume that \(i \) is even. Then the order of \(\sigma^i \) is the prime \(p \). The eigenspace decomposition of \(\mathfrak{h} \) by \(\sigma^i \) is

\[
\mathfrak{h} = \bigoplus_{1 \leq k \leq p-1} h^{(2k;\sigma^i)}
\]

and \(\dim h^{(2k;\sigma^i)}, 1 \leq k \leq p-1 \) coincide each other. Hence the assertion (2) holds.

Since \(\sigma^p \) is the \(-1\) isometry of \(\Lambda \), the assertion (3) is clear. \(\square \)

By Lemma 3.1 and Eq. (3.2), we can calculate the conformal weight of \(V_{\Lambda}(\sigma^i) \).

Lemma 3.2. The conformal weight of \(V_{\Lambda}(\sigma^i), 1 \leq i \leq m-1 \) is as follows.

\[
\rho(V_{\Lambda}(\sigma^i)) = \begin{cases}
(2p-1)/2p & (i \text{ is odd, } i \neq p), \\
(p+1)/p & (i \text{ is even}), \\
3/2 & (i = p).
\end{cases}
\]

3.2. Dimension of \(T \). The dimension of \(T \) of the irreducible \(\sigma^i \)-twisted \(V_{\Lambda} \)-module \(V_{\Lambda}(\sigma^i) = M(1)[\sigma^i] \otimes T \) is

\[
\dim T = \sqrt{|\Lambda/(1-\sigma^i)\Lambda|}.
\]

by (2.3).

Lemma 3.3. The dimension of \(T \), 1 \leq i \leq m-1 is as follows.

\[
\dim T = \begin{cases}
1 & (i \text{ is odd, } i \neq p), \\
p^{12/(p-1)} & (i \text{ is even}), \\
2^{12} & (i = p).
\end{cases}
\]

Proof. If \(i \) is odd and \(i \neq p \), then the eigenvalues of \(\sigma^i \) on \(\mathfrak{h} \) are exactly the primitive \(m \)th roots of unity by Lemma 3.1(1), and so the minimal polynomial of \(\sigma^i \) on \(\mathfrak{h} \) is a cyclotomic polynomial

\[
\Phi_m(x) = \sum_{k=0}^{p-1} (-1)^k x^k
\]

\[
= (x-1) \left(\sum_{k=1}^{(p-1)/2} x^{2k-1} \right) + 1.
\]
Hence
\[\alpha = (1 - \sigma^i) \left(\sum_{k=1}^{(p-1)/2} \sigma^{i(2k-1)} \right) \alpha \in (1 - \sigma^i) \Lambda \]
for \(\alpha \in \Lambda \). Thus \((1 - \sigma^i) \Lambda = \Lambda \) and \(\dim T = 1 \).

If \(i \) is even, then the order of \(\sigma^i \) is \(p \) and the minimal polynomial of \(\sigma^i \) on \(\mathfrak{h} \) is a cyclotomic polynomial
\[\Phi_p(x) = x^{p-1} + \cdots + x + 1 \]
by Lemma \[3.1\] (2). Hence \(\Lambda/\sigma^i \Lambda = \mathbb{Z} \) by \[16\], Lemma A.1 and \(\dim T = p^{12/(p-1)} \). If \(i = p \), then \(\Lambda/(1 - \sigma^i) \Lambda = \Lambda/2\Lambda = \mathbb{Z}_2^{24} \) and \(\dim T = 2^{12} \).

4. \(\mathbb{Z}_{2p} \)-ORBITFOLD CONSTRUCTIONS

We keep the notation in Section \[3\]. Since the conformal weight of the irreducible \(\sigma \)-twisted \(V_\Lambda \)-module \(V_\Lambda(\sigma) \) belongs to \((1/m)\mathbb{Z}\) by Lemma \[3.2\], for each \(i \in \mathbb{Z}_m \), we can choose a representation \(\phi_i \) of the group \(\langle \sigma \rangle \) on the irreducible \(\sigma^i \)-twisted \(V_\Lambda \)-module \(V_\Lambda(\sigma^i) \) so that the eigenspace \(W_{(i,j)} \) of \(\phi_i(\sigma) \) in \(V_\Lambda(\sigma^i) \), \(i, j \in \mathbb{Z}_m \) satisfy the four conditions of Theorem \[2.1\] with \(V = V_\Lambda, g = \sigma \) and \(n = m = 2p \). In particular,

1. \(W_{(i,j)} \otimes W_{(k,l)} \cong W_{(i+k,j+l)}. \)

2. The conformal weight of \(W_{(i,j)} \) is \(q_\Delta((i,j)) \equiv ij/m \) (mod \(\mathbb{Z} \)). The eigenspace decomposition of \(V_\Lambda(\sigma^i) \) for \(\phi_i(\sigma) \) is
\[V_\Lambda(\sigma^i) = \bigoplus_{j \in \mathbb{Z}_m} W_{(i,j)} \quad (4.1) \]

The condition (2) implies that only \(W_{(2k-1,0)} \) is of integral weight among \(W_{(2k-1,j)} \), \(j \in \mathbb{Z}_m \) for \(i = 2k-1, 1 \leq k \leq p, k \neq (p+1)/2; \) only \(W_{(2k,0)} \) and \(W_{(2k,p)} \) are of integral weight among \(W_{(2k,j)} \), \(j \in \mathbb{Z}_m \) for \(i = 2k, 0 \leq k \leq p-1; \) and \(W_{(p,j)} \) is of integral weight if and only if \(j \) is even for \(i = p \).

There are four maximal isotropic subgroups of \(\mathbb{Z}_m \times \mathbb{Z}_m \) with respect to the quadratic form \(q_\Delta \), namely,
\[H_1 = \{(0,j) | j \in \mathbb{Z}_m \}, \quad H_2 = \{(i,0) | i \in \mathbb{Z}_m \}, \]
\[H_3 = \{(2k,pk) | k \in \mathbb{Z}_m \}, \quad H_4 = \{(pk,2k) | k \in \mathbb{Z}_m \}. \]

For \(r = 1, 2, 3, 4 \),
\[\tilde{V}(r) = \bigoplus_{(i,j) \in H_r} W_{(i,j)} \]
admits a structure of a simple, rational, \(C_2 \)-cofinite, holomorphic VOA of CFT-type which extends the VOA structure of \(V_\Lambda(\sigma) \) by Theorem \[2.1\] (4).

In the case \(r = 1 \),
\[\tilde{V}(1) = \bigoplus_{j=0}^{2p-1} W_{(0,j)} \]
is the eigenspace decomposition of V_Λ by the automorphism σ, that is, $\tilde{V}^{(1)} = V_\Lambda$. Moreover,

$$V_\Lambda^+ = \bigoplus_{k=0}^{p-1} W^{(0,2k)}, \quad V_\Lambda^- = \bigoplus_{k=0}^{p-1} W^{(0,2k+1)},$$

where

$$V_\Lambda^\pm = \{ v \in V_\Lambda | \theta v = \pm v \}.$$

Next, we consider

$$\tilde{V}^{(2)} = \bigoplus_{i=0}^{2p-1} W^{(i,0)}.$$

We calculate the weight 1 subspace $\tilde{V}^{(2)}_1$ of $\tilde{V}^{(2)}$. If i is even or $i = p$, then the conformal weight of $V_\Lambda(\sigma^2)$ is greater than 1 by Lemma 3.2. Hence

$$\tilde{V}^{(2)}_1 = \bigoplus_{0 \leq k \leq p-1} W^{(2k+1,0)}_{(2)}.$$

For each $0 \leq k \leq p-1$, $k \neq (p-1)/2$, the conformal weight of $V_\Lambda(\sigma^{2k+1})$ is $(2p-1)/2p$ by Lemma 3.2 and $W^{(2k+1,0)}$ is the only irreducible $V_\Lambda(\sigma)$-module with integral weights among $W^{(2k+1,j)}$, $j \in \mathbb{Z}$ by the condition (2) of Theorem 2.1. Thus by Eq. (2.1) and Lemmas 3.1 and 3.3 we see that

$$\dim(W^{(2k+1,0)})_1 = 24/(p-1).$$

Therefore, $\dim(\tilde{V}^{(2)}_1) = 24$. Furthermore, $a(0)b = 0$ for $a, b \in (\tilde{V}^{(2)})_1$ by the fusion rule $W^{(i,0)} \ltimes W^{(j,0)} \cong W^{(i+j,0)}$ as $i + j$ is even if both i and j are odd. Then $\tilde{V}^{(2)}$ is a holomorphic VOA of central charge 24 whose weight 1 subspace is a 24 dimensional abelian Lie algebra with respect to the bracket $[a,b] = a(0)b$. Thus $\tilde{V}^{(2)} = \bigoplus_{i=0}^{2p-1} W^{(i,0)}$ is isomorphic to V_Λ by [11 Theorem 3] and we obtain the following theorem.

Theorem 4.1. $V_\Lambda \cong \bigoplus_{i=0}^{2p-1} W^{(i,0)}$.

Define a linear isomorphism $\theta' : \tilde{V}^{(2)} \to \tilde{V}^{(2)}$ by $(-1)^i$ on $W^{(i,0)}$. Then θ' is an automorphism of the VOA $\tilde{V}^{(2)}$ by the fusion rule $W^{(i,0)} \ltimes W^{(j,0)} \cong W^{(i+j,0)}$. The automorphism θ' is of order 2 and -1 on the weight 1 subspace. Hence it is conjugate to a lift $\tilde{\theta}$ of the -1 isometry of Λ. Indeed, $\theta^{-1}\theta'$ acts as the identity on the weight 1 subspace of $\tilde{V}^{(2)} = V_\Lambda$. Hence $\theta^{-1}\theta'$ is an inner automorphism $e^{h(0)}$ for some $h \in \mathfrak{h}$ by [12 Lemma 2.5] and we have

$$\theta' = \theta e^{h(0)} = e^{-\frac{1}{2} h(0)} \theta e^{\frac{1}{2} h(0)}$$

as required. Then

$$V_\Lambda^+ = V_\Lambda^{(\theta')} \cong (\tilde{V}^{(2)})^{(\theta')} = \bigoplus_{k=0}^{p-1} W^{(2k,0)}.$$

Therefore, the following theorem holds.

Theorem 4.2. $V_\Lambda^+ \cong \bigoplus_{k=0}^{p-1} W^{(2k,0)}$ and $V_\Lambda^- \cong \bigoplus_{k=0}^{p-1} W^{(2k+1,0)}$.
Next, we consider \(\widetilde{V}^{(3)} = \bigoplus_{k=0}^{2p-1} W^{(2k, pk)} \). Note that \(2(p + i) \equiv 2i \ (\text{mod } 2p) \). Moreover, \(pi \equiv 0 \ (\text{mod } 2p) \) if \(i \) is even and \(pi \equiv p \ (\text{mod } 2p) \) if \(i \) is odd. Hence

\[H_3 = \{(2k, 0)|0 \leq k \leq p - 1\} \cup \{(2k, p)|0 \leq k \leq p - 1\}. \]

Thus \(\widetilde{V}^{(3)} \) contains \(\bigoplus_{k=0}^{p-1} W^{(2k, 0)} \cong V_A^+ \). The VOA \(V_A^+ \) has exactly four irreducible modules, namely, \(V_A^\pm \) and \(V_A^{T, \pm} \), where \(V_A^{T, \pm} \) are the eigenspaces with eigenvalues \(\pm1 \) of \(\theta \) in a unique irreducible \(\theta \)-twisted \(V_A \)-module \(V_A(\theta) \). All of those four irreducible \(V_A^+ \)-modules are simple current. We take \(V_A^{T, \pm} \) so that the conformal weight of \(V_A^{T, +} \) is 2 and that of \(V_A^{T, -} \) is \(3/2 \). The weight 1 subspace of \(\widetilde{V}^{(3)} \) is 0, for the conformal weight of \(V_A(\sigma^{2k}) \), \(1 \leq k \leq p - 1 \) is greater than 1 by Lemma 3.2. Hence we conclude that \(\widetilde{V}^{(3)} \) is isomorphic to the Moonshine VOA \(V^2 = V_A^+ \oplus V_A^{T, +} \) constructed in [13]. Thus the following theorem holds.

Theorem 4.3. \(V^2 \cong \bigoplus_{k=0}^{p-1} W^{(2k, pk)} \) with \(V_A^+ \cong \bigoplus_{k=0}^{p-1} W^{(2k, 0)} \) and \(V_A^{T, +} \cong \bigoplus_{k=0}^{p-1} W^{(2k, p)} \).

Recall that \(\tau = \sigma^{p+1} \) is of order \(p \). We also note that

\[H_3 = \{((p + 1)k, pk)|0 \leq k \leq 2p - 1\} \]
\[= \{((p + 1)k, 0)|0 \leq k \leq p - 1\} \cup \{((p + 1)k, p)|0 \leq k \leq p - 1\}. \]

(4.3)

Let

\[U^{(k, 0)} = W^{((p + 1)k, 0)} \oplus W^{((p + 1)k, p)}, \quad 0 \leq k \leq p - 1. \]

(4.4)

For \(v \in V_A \), we have \(\tau v = v \) if and only if \(v \) is a sum of eigenvectors of \(\sigma \) of eigenvalues \(\pm1 \). Hence \(U^{(0, 0)} = W^{(0, 0)} \oplus W^{(0, p)} \) is equal to

\[V^{(\tau)}_A = \{v \in V_A|\tau v = v\}. \]

(4.5)

The irreducible \(\tau^k = \sigma^{(p+1)k} \)-twisted \(V_A \)-module \(V_A(\tau^k) = V_A(\sigma^{(p+1)k}) \), \(1 \leq k \leq p - 1 \) is a direct sum of eigenspaces for \(\tau \). For each \(k \), there is a unique one with integral weights among those eigenspaces for \(\tau \), namely, \(U^{(k, 0)} \). Since the conformal weight of \(V_A(\tau) = V_A(\sigma^{p+1}) \) belongs to \((1/p)\mathbb{Z}\) by Lemma 3.2,

\[\widetilde{V}_{A, \tau} = \bigoplus_{k=0}^{p-1} U^{(k, 0)} \]

(4.6)

is a \(\mathbb{Z}_p \)-orbifold construction with respect to \(V_A \) and \(\tau \) by Theorem 2.1.

Both \(V^2 \) and \(\widetilde{V}_{A, \tau} \) are simple current extensions of \(V_A^{(\sigma)} \) with the same simple current components \(W^{(i, j)}, (i, j) \in H_3 \) by Theorem 4.3 Eq. (4.3), (4.4) and (4.6). Since the VOA structure of a simple current extension is unique (see [9] and [10, Proposition 5.3]), it follows that \(V^2 \) and \(\widetilde{V}_{A, \tau} \) are isomorphic as VOAs.

Theorem 4.4. \(\widetilde{V}_{A, \tau} \cong V^2 \).

Remark 4.5. We have \(V_A^+ = \bigoplus_{k=0}^{p-1} W^{(0, 2k)} \) and \(V_A^{T, +} = \bigoplus_{k=0}^{p-1} W^{(p, 2k)} \), for \(V_A(\theta) = V_A(\sigma^p) \) and \(W^{(p, j)} \) is of integral weight only if \(j \) is even. Since

\[H_4 = \{(0, 2k)|0 \leq k \leq p - 1\} \cup \{(p, 2k)|0 \leq k \leq p - 1\} \]

\[\widetilde{V}^{(4)} = \bigoplus_{k=0}^{2p-1} W^{(pk, 2k)} \] is a decomposition of the Moonshine VOA \(V^2 = V_A^+ \oplus V_A^{T, +} \) into a direct sum of irreducible \(V_A^{(\sigma)} \)-modules.
APPENDIX A. A CHARACTERIZATION OF THE MOONSHINE VOA

In this appendix, we give another characterization of the Moonshine VOA V^2 using Ising vectors. It also provides an alternative proof that $\tilde{V}_{A,\sigma} \cong V^2$ for $p = 3$ and 5. The main theorem is as follows.

Theorem A.1. Let V be a simple, rational, C_2-cofinite, holomorphic VOA of CFT-type with central charge 24 such that the weight 1 subspace $V_1 = 0$. If V contains two mutually orthogonal Ising vectors, then V is isomorphic to the Moonshine VOA V^2.

The idea is essentially the same as in [19] and is also similar to that in Section 4. We try to obtain the Leech lattice VOA V_{Λ} by using some \mathbb{Z}_2-orbifold construction on V. The extra assumption on Ising vectors is used to define an involution on V such that the corresponding twisted module has conformal weight one.

An element $e \in V_2$ is called an *Ising vector* if the vertex subalgebra $\text{Vir}(e)$ generated by e is isomorphic to the simple Virasoro VOA $L(1/2,0)$ of central charge 1/2. Let $V_e(h)$ be the sum of all irreducible $\text{Vir}(e)$-submodules of V isomorphic to $L(1/2,h)$ for $h = 0, 1/2, 1/16$. Then one has an isotypical decomposition:

$$V = V_e(0) \oplus V_e(1/2) \oplus V_e(1/16).$$

Recall from [22] that the linear automorphism τ_e which acts as 1 on $V_e(0) \oplus V_e(1/2)$ and -1 on $V_e(1/16)$ defines an automorphism of the VOA V. On the fixed point subVOA $V^{(\tau_e)} = V_e(0) \oplus V_e(1/2)$, the linear automorphism σ_e which acts as 1 on $V_e(0)$ and -1 on $V_e(1/2)$ also defines an automorphism on $V^{(\tau_e)}$.

Let e and f be two mutually orthogonal Ising vectors in V and let U be the subVOA generated by e and f. Then

$$U = \text{Vir}(e) \otimes \text{Vir}(f) \cong L(1/2,0) \otimes L(1/2,0).$$

For any $h_1, h_2 \in \{0, 1/2, 1/16\}$, we define the space of multiplicities of the irreducible U-module $L(1/2, h_1) \otimes L(1/2, h_2)$ in V by

$$M(h_1, h_2) = \text{Hom}_U(L(1/2, h_1) \otimes L(1/2, h_2), V).$$

Then we have the isotypical decomposition

$$V = \bigoplus_{h_1, h_2 \in \{0, 1/2, 1/16\}} L(1/2, h_1) \otimes L(1/2, h_2) \otimes M(h_1, h_2).$$

Notice that $M(0, 0) = \text{Com}_V(U) = U^c$ is a subVOA of central charge 23 and $M(h_1, h_2)$, $h_1, h_2 \in \{0, 1/2, 1/16\}$, are $M(0,0)$-modules. Note also that

$$(V^{(\tau_e, \tau_f)} \circ \sigma_e, \sigma_f) = L(1/2,0) \otimes L(1/2,0) \otimes M(0,0).$$

Proposition A.2. The subVOA $M(0,0)$ is C_2-cofinite and rational. Moreover, $M(h_1, h_2)$, $h_1, h_2 \in \{0, 1/2\}$, are simple current modules of $M(0,0)$.
Proof. Let \(E = \langle \tau_e, \tau_f \rangle \subset \text{Aut} V \) be the subgroup generated by the Miyamoto involutions \(\tau_e \) and \(\tau_f \). Then \(E \) is elementary abelian of order 4 and the fixed point subVOA is

\[
V^E = \bigoplus_{h_1, h_2 \in \{0, \frac{1}{2}\}} L(\frac{1}{2}, h_1) \otimes L(\frac{1}{2}, h_2) \otimes M(h_1, h_2).
\]

Then \(V^E \) is \(C_2 \)-cofinite and rational by a result of Carnahan and Miyamoto \([2, 24]\).

Let \(S = \langle \sigma_e, \sigma_f \rangle \subset \text{Aut} V^E \). Then \(S \) is also elementary abelian and hence the fixed point subVOA

\[
W = (V^E)^S = L(\frac{1}{2}, 0) \otimes L(\frac{1}{2}, 0) \otimes M(0, 0)
\]

is \(C_2 \)-cofinite and rational. Therefore, \(M(0, 0) \) is also \(C_2 \)-cofinite and rational.

That \(M(h_1, h_2), h_1, h_2 \in \{0, 1/2\} \), are simple current modules of \(M(0, 0) \) follows from the fact that \(L(\frac{1}{2}, h_1) \otimes L(\frac{1}{2}, h_2) \otimes M(h_1, h_2) \) are common eigenspaces of \(S \) on \(V^E \) and \([5]\) Remark 6.4.

\[\square\]

Notation A.3. For \(i, j \in \{0, 1\} \), let \(V^{(i,j)} = \{ v \in V \mid \tau_e v = (-1)^i v, \tau_f v = (-1)^j v \} \). Then

\[
V^{(0,0)} = V^E = \bigoplus_{h_1, h_2 \in \{0, \frac{1}{2}\}} L(\frac{1}{2}, h_1) \otimes L(\frac{1}{2}, h_2) \otimes M(h_1, h_2),
\]

\[
V^{(1,0)} = L(\frac{1}{2}, \frac{1}{16}) \otimes L(\frac{1}{2}, 0) \otimes M(\frac{1}{16}, 0) \oplus L(\frac{1}{2}, \frac{1}{16}) \otimes L(\frac{1}{2}, \frac{1}{2}) \otimes M(\frac{1}{16}, \frac{1}{2}),
\]

\[
V^{(0,1)} = L(\frac{1}{2}, 0) \otimes L(\frac{1}{2}, \frac{1}{16}) \otimes M(0, \frac{1}{16}) \oplus L(\frac{1}{2}, \frac{1}{2}) \otimes L(\frac{1}{2}, \frac{1}{16}) \otimes M(\frac{1}{2}, \frac{1}{16}),
\]

\[
V^{(1,1)} = L(\frac{1}{2}, \frac{1}{16}) \otimes L(\frac{1}{2}, \frac{1}{16}) \otimes M(\frac{1}{16}, \frac{1}{16}).
\]

Notice that \(V^{(i,j)}, i, j \in \{0, 1\} \), are simple current modules of \(V^E \) \([3]\).

Lemma A.4. Let \(V \) be a simple, rational, \(C_2 \)-cofinite, holomorphic VOA of CFT type with central charge 24 such that \(V_1 = 0 \). Then \(M(h_1, h_2) \neq 0 \) for any \(h_1, h_2 \in \{0, \frac{1}{2}, \frac{1}{16}\} \).

Proof. Recall \(U = \text{Vir}(e) \otimes \text{Vir}(f) \cong L(\frac{1}{2}, 0) \otimes L(\frac{1}{2}, 0) \). Then the double commutant \((U^c)^c\) is an extension of \(U \). Note that there is only one non-trivial extension of \(U \), which is isomorphic to \(L(\frac{1}{2}, 0) \otimes L(\frac{1}{2}, 0) \oplus L(\frac{1}{2}, \frac{1}{2}) \otimes L(\frac{1}{2}, \frac{1}{2}) \) and the weight one subspace is non-zero. Hence \((U^c)^c = U\), for \(V_1 = 0 \). Therefore, by a result of Krauel and Miyamoto \([17]\), all irreducible modules of \(U \) must appear as a submodule of \(V \) since \(V \) is holomorphic and \(U \) and \(M(0, 0) \) are \(C_2 \)-cofinite and rational. It implies \(M(h_1, h_2) \neq 0 \) for any \(h_1, h_2 \in \{0, \frac{1}{2}, \frac{1}{16}\} \).

The following two results follow immediately from the general arguments on simple current extensions \([20, 29]\).

Lemma A.5. Let \(M = L(\frac{1}{2}, \frac{1}{2}) \otimes L(\frac{1}{2}, \frac{1}{2}) \otimes M(0, 0) \) and set

\[
\tilde{M} = \bigoplus_{h_1, h_2 \in \{0, \frac{1}{2}\}} L(\frac{1}{2}, \frac{1}{2} - h_1) \otimes L(\frac{1}{2}, \frac{1}{2} - h_2) \otimes M(h_1, h_2).
\]

Then \(\tilde{M} \) is an irreducible module of \(V^E \).
Theorem A.6. Let \(t = \tau_e \tau_f \) and set
\[
X = \bigoplus_{i,j \in \{0,1\}} V^{(i,j)} \otimes_{\Lambda} \tilde{M}.
\]
Then \(X \) is an irreducible \(t \)-twisted module of \(V \).

Define
\[
\tilde{V} = V^{(t)} \oplus X^{(t)},
\]
where \(X^{(t)} \) is the irreducible \(V^{(t)} \)-submodule of \(X \) which has integral weights. Then \(\tilde{V} \) is a simple, rational, \(C_2 \)-cofinite, holomorphic VOA of CFT-type. Notice that the conformal weight of \(M = L(\frac{1}{2}, \frac{1}{2}) \otimes L(\frac{1}{2}, \frac{1}{2}) \otimes M(0,0) \) is 1 and \(M \) is an \(L(\frac{1}{2}, 0) \otimes L(\frac{1}{2}, 0) \otimes M(0,0) \)-submodule of \(X^{(t)} \). Hence, \((X^{(t)})_1 \neq 0 \) and \((\tilde{V})_1 \neq 0 \). Since \(V_1 = 0 \), we have \(\tilde{V}_1 = (X^{(t)})_1 \), and hence the Lie algebra on \(\tilde{V}_1 \) is abelian. Thus we have the following theorem.

Theorem A.7. The VOA \(\tilde{V} \) is isomorphic to the Leech lattice VOA \(V_\Lambda \).

Now we are ready to prove our main theorem.

Theorem A.8. The VOA \(V \) is isomorphic to the Moonshine VOA \(V^2 \).

Proof. By Theorem A.7 we know that the VOA \(\tilde{V} \) is isomorphic to the Leech lattice VOA \(V_\Lambda \). Let \(g \) be the automorphism of \(\tilde{V} \) which acts as 1 on \(V^{(t)} \) and \(-1\) on \(X^{(t)} \). Then \(g \) is conjugate to the lift \(\theta \) of \(-1\) map on \(\Lambda \) since \(g \) acts on \(\tilde{V}_1 \) as \(-1\) (cf. Theorem 4.2). Therefore, we have \(\tilde{V}^{(g)} = V^{(t)} \cong V_\Lambda^+ \). Then by the same argument as in Theorem 4.4 we have
\[
V \cong V_\Lambda^+ \oplus V_\Lambda^{T,+} \cong V^2
\]
as \(V_\Lambda^+ \)-modules. Then by the uniqueness of simple current extensions, we can establish the desired isomorphism between \(V \) and \(V^2 \).

Remark A.9. Recall that the Leech lattice \(\Lambda \) contains a sublattice isometric to \(\sqrt{2}E_8^{\square 3} \). For \(p = 3, 5 \), we can choose a fixed-point-free isometry \(\tau \) of order \(p \) such that each direct summand of \(\sqrt{2}E_8^{\square 3} \) is stabilized; indeed, \(\sqrt{2}E_8^{\square 3} \) contains \(\sqrt{2}A_3^{12} \) and \(\sqrt{2}A_4^{6} \) as sublattices and the fixed-point-free isometry of \(\Lambda \) of order 3 (resp. 5) can be induced by the Coxeter element of \(A_2 \) (resp. \(A_4 \)). Thus, we have \((V^{(\tau)}_{\sqrt{2}E_8})^{\otimes 3} \subset V_\Lambda^{(\tau)} \). Let \(\theta \in \text{Aut} V_{\sqrt{2}E_8} \) be a lift of the \(-1\)-isometry of \(\sqrt{2}E_8 \). Then \(\theta \) and \(\tau \) commutes. Since \(V_{\sqrt{2}E_8}^{(\theta)} \) has exactly 496 Ising vectors \cite[Proposition 4.3]{18} and 496 is relatively prime to \(p \), there exists an Ising vector in \(V_{\sqrt{2}E_8}^{(\theta)} \) fixed by \(\tau \). Hence \(V_\Lambda^{(\tau)} \) contains two (in fact, three) mutually orthogonal Ising vectors. By Theorem A.8 we have \(\tilde{V}_\Lambda, \tau \cong V^2 \), also.

Acknowledgment. The authors thank Kenichiro Tanabe and Hiroshi Yamauchi for stimulating and valuable discussions and Masaaki Kitazume and Naoki Chigira for consultations about the Leech lattice. They also thank Scott Carnahan for pointing out a mistake in the early version.
REFERENCES

[1] B. Bakalov and V. G. Kac, Twisted modules over lattice vertex algebras in *Lie theory and its applications in physics V*, 3–26, World Sci. Publ., River Edge, NJ, 2004.

[2] S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645.

[3] H.Y. Chen, C.H. Lam and H. Shimakura, \mathbb{Z}_3-orbifold construction of the Moonshine vertex operator algebra and some maximal 3-local subgroups of the Monster, *Math. Z.* DOI 10.1007/s00209-017-1878-z.

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Clarendon Press, Oxford, 1985.

[5] C. Dong, X. Jiao and F. Xu, Quantum dimensions and quantum Galois theory, *Trans. Amer. Math. Soc.* **365** (2013), no. 12, 6441–6469.

[6] C. Dong and J. Lepowsky, The algebraic structure of relative twisted vertex operators, *J. Pure, Appl. Math.* **110** (1996), 259–295.

[7] C. Dong, H. Li and G. Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, *Commun. Math. Phys.* **214** (2000), 1–56.

[8] C. Dong and G. Mason, The construction of the moonshine module as a \mathbb{Z}_p-orbifold, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), 37–52, *Contemp. Math.*, **175**, Amer. Math. Soc., Providence, RI, 1994.

[9] C. Dong and G. Mason, On quantum Galois theory, *Duke Math. J.* **86** (1997), 305–321.

[10] C. Dong and G. Mason, Rational vertex operator algebras and the effective central charge, *Int. Math. Res. Notices* 2004, No.56, 2989–3008.

[11] C. Dong and G. Mason, Holomorphic vertex operator algebras of small central charge, *Pacific J. Math.* **213** (2004), 253–266.

[12] C. Dong and K. Nagatomo, Automorphism groups and twisted modules for lattice vertex operator algebras, *Contemp. Math.* **248** (1999), 117–133.

[13] C. Dong, L. Ren and F. Xu, On orbifold theory, arXiv:1507.03306v2.

[14] J. van Ekeren, S. Möller and N. Scheithauer, Construction and classification of holomorphic vertex operator algebras, arXiv:1507.08142v2.

[15] I. Frenkel, J. Lepowsky and A. Meurman, *Vertex operator algebras and the Monster*, Pure Appl. Math. **134**, Academic Press, Boston, MA,1988.

[16] R. L. Griess, Jr. and C.H. Lam, A moonshine path for $5A$ and associated lattices of ranks 8 and 16, *J. Algebra* **331** (2011), 338–361.

[17] M. Krauel and M. Miyamoto, A modular invariance property of multivariable trace functions for regular vertex operator algebras, *J. Algebra* **444** (2015), 124–142.

[18] C.H. Lam, S. Sakuma and H. Yamauchi, Ising vectors and automorphism groups of commutant subalgebras related to root systems, *Math. Z.* **255** (2007), no. 3, 597–626.

[19] C.H. Lam and H. Yamauchi, A characterization of the moonshine vertex operator algebra by means of Virasoro frames, *Intern. Math. Res. Notices*, 2007 (2007).

[20] C.H. Lam and H. Yamauchi, On the structure of framed vertex operator algebras and their pointwise frame stabilizers, *Comm. Math. Phys.* **277** (2008), 237–285.

[21] J. Lepowsky, Calculus of twisted vertex operators, *Proc. Natl. Acad. Sci. USA* **82** (1985), 8295–8299.

[22] M. Miyamoto, Griess algebras and conformal vectors in vertex operator algebras, *J. Algebra* **179** (1996), 528–548.

[23] M. Miyamoto, A \mathbb{Z}_3-orbifold theory of lattice vertex operator algebra and \mathbb{Z}_3-orbifold constructions, in *Symmetries, Integrable Systems and Representations*, Springer Proceedings in Mathematics and Statistics, **40**, 319–344, Springer, Heidelberg, 2013.

[24] M. Miyamoto, C_2-cofiniteness of cyclic-orbifold models, *Commun. Math. Phys.* **335** (2015), 1279–1286.

[25] M. Miyamoto and K. Tanabe, Uniform product of $A_{g,n}(V)$ for an orbifold model V and G-twisted Zhu algebra, *J. Algebra* **274** (2004), 80–96.
[26] S. Möller, A cyclic orbifold theory for holomorphic vertex operator algebras and applications, arXiv:1611.09843.

[27] H. Shimakura, Lifts of automorphisms of vertex operator algebras in simple current extensions, Math. Z. 256 (2007), no. 3, 491–508.

[28] K. Tanabe and H. Yamada, Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three. J. Math. Soc. Japan 65 (2013), 1169–1242.

[29] H. Yamauchi, Module categories of simple current extensions of vertex operator algebras, J. Pure Appl. Algebra 189 (2004), 315–328.

Faculty of Education, Ehime University, Matsuyama, Ehime 790-8577, Japan
E-mail address: abe.toshiyuki.mz@ehime-u.ac.jp

Institute of Mathematics, Academia Sinica, Taipei 115, Taiwan
E-mail address: chlam@math.sinica.edu.tw

Department of Mathematics, Hitotsubashi University, Kunitachi, Tokyo 186-8601, Japan,
Institute of Mathematics, Academia Sinica, Taipei 115, Taiwan
E-mail address: yamada.h@r.hit-u.ac.jp