Running head: Inherited resistance to herbivory

Plant Physiology research category: Plants interacting with other organisms

To whom correspondence should be addressed:

Georg Jander
Boyce Thompson Institute for Plant Research
1 Tower Road
Ithaca, NY 14853
Phone: (607) 254-1365
Fax: (607) 254-1502
Email: gj32@cornell.edu
Title: Herbivory in the previous generation primes plants for enhanced insect resistance

Authors: Sergio Rasmann1,4, Martin De Vos2,5, Clare L. Casteel2, Donglan Tian3, Rayko Halitschke1, Joel Y. Sun2, Anurag A. Agrawal1, Gary W. Felton3, and Georg Jander2

1Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
2Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
3Department of Entomology and the Center for Chemical Ecology; Pennsylvania State University; University Park, Pennsylvania, 16802, USA

4Present address: Department of Ecology and Evolution, University of Lausanne, CH - 1015 Lausanne, Switzerland
5Present address: Keygene N.V., 6700 AE Wageningen, The Netherlands

*This research was supported by postdoctoral fellowship from Swiss National Science Foundation PA0033-121483 to SR, and grants from the US National Science Foundation, DEB 0950231 to AAA and IOS-0718733 to GJ, and USDA NIFA AFRI grants 2007-35302-18218 and 2010-65105-20639 to GWF.
Abstract

Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid (JA) and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged *Arabidopsis thaliana* (Arabidopsis) and *Solanum lycopersicum* (tomato) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, causes caterpillars to grow up to 50% smaller than on control plants, and persists for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (*coi1*) or in the biogenesis of small interfering RNA (siRNA; *dcl2 dcl3 dcl4* and *nrpd2a nrpd2b*) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.
Introduction

To offset their sessile life, plants have evolved diverse strategies to survive and adapt to a broad range of biotic and abiotic stresses, including insect herbivory (Howe and Jander, 2008). Resistance to herbivory is mediated by preexisting physical and chemical barriers, rapidly induced defense mechanisms (Karban and Baldwin, 1997), and priming for stronger responses to subsequent attack (van Hulten et al., 2006). Given the adaptive value of such responses, there has been tremendous interest in unraveling the mechanisms of induced defenses. The hormonal signaling cascade triggering the production of anti-herbivore defenses is largely mediated by synthesis, movement, and perception of jasmonic acid (JA) and related metabolites (Chini et al., 2007; Thines et al., 2007; Howe and Jander, 2008). Interconversion of JA with the volatile methyl JA (MeJA) may allow more rapid propagation of the defense signal to other plant parts. JA-isoleucine conjugates are the active ligands for COI1, the F-box component of an E3-ubiquitin ligase complex, SCF^{COI1} (Chini et al., 2007; Thines et al., 2007; Sheard et al., 2010). Upon binding of JA-isoleucine, the SCF^{COI1} protein complex targets JA ZIM domain (JAZ) proteins for degradation by the 26S proteasome. Removal of JAZ proteins, which act as repressors of JA-responsive transcription factors (e.g. MYC2), allows the transcription of these target genes. This induced gene expression leads to elevated resistance, systemic signal transmission, and defense priming (Howe and Jander, 2008).

Evidence of inherited responses to herbivory comes from research with Raphanus raphanistrum (wild radish), where insect-damaged plants produced more resistant seedlings than undamaged plants (Agrawal et al., 1999), and demonstration of increased trichome production in Mimulus guttatus (yellow monkeyflower) that had been fed upon in the previous generation (Holeski, 2007). Transgenerational effects in plant responses to other environmental stresses have been described in several recent publications. Treatment of Arabidopsis thaliana (Arabidopsis) with ultraviolet light or bacterial flagellin caused an increased recombination frequency that persisted in subsequent generations (Molinier et al., 2006). Infection with tobacco mosaic virus increases Nicotiana tabacum (tobacco) recombination frequency and provides increased resistance for at least two subsequent generations (Kathiria et al., 2010). In the case of abiotic stress, exposure to elevated temperature led to increased heat tolerance for at least three subsequent generations in Arabidopsis (Whittle et al., 2009), and progeny of salt-stressed plants exhibit higher salt tolerance in the next generation (Boyko et al., 2006).
Epigenetic processes, which include inherited DNA methylation and histone modifications (Molinier et al., 2006; Chinnusamy and Zhu, 2009), are a likely mechanism for retaining stress memory in subsequent generations. Small interfering RNAs (siRNAs), ~24 nt RNAs (Hamilton and Baulcombe, 1999) that are processed from double-stranded RNA by dicer-like RNAse III enzymes (Lee et al., 2004), can lead to transcriptional regulation or, in some cases, mRNA decay (Matzke et al., 2001). Since siRNAs are able to move between cells and through the plant vasculature (Chitwood and Timmermans, 2010), they represent a possible mechanism for the inheritance of acquired resistance traits.

The mechanisms of transgenerational resistance to insect herbivory remain uninvestigated. In the few published examples of this phenomenon (Agrawal et al., 1999), it was not determined whether the progeny generations are constitutively more herbivore resistant, or whether they primed to respond more vigorously if there is a subsequent attack. It is also not known whether inheritance of acquired herbivore resistance is a maternal effect transmitted through the seed, for instance through storage of jasmonates or defensive secondary metabolites, or a longer-term effect that is inherited in an epigenetic manner. To address these questions, we designed a series of experiments to investigate the role of jasmonates and siRNA in transgenerational induced resistance to herbivory in two well-studied model species, Arabidopsis and Solanum lycopersicum (tomato).

Results

Specificity of transgenerational increased resistance

Tomato and Arabidopsis plants were challenged with caterpillar feeding, methyl jasmonate (MeJA) exposure, or mechanical damage. Next, progeny from control and elicited plants were grown in a common environment to identify inherited increases in herbivore resistance. All three treatments decreased growth of Helicoverpa zea (corn earworm) on progeny of treated tomato plants by about 40% relative to controls (Fig. 1A, $F_{3,116} = 11.269$, $p < 0.0001$). Preliminary experiments also showed that the small amount of ethanol used to dissolve MeJA for elicitation experiments has no effect on subsequent herbivory. In the case of Arabidopsis, prior-generation feeding by Pieris rapae (white cabbage butterfly) reduced caterpillar weight gain by 40% (Fig. 1B, $F_{1,24} = 26.848$, $p < 0.0001$), MeJA treatment had a similar 27% effect (Fig. 1B; $F_{1,18} = 4.108$, $p < 0.05$).
Specificity of transgenerational resistance in Arabidopsis was demonstrated by exposing progeny from a new parental population to *P. rapae* and three additional lepidopteran herbivores, the crucifer-specialist diamondback moth, *Plutella xylostella*, and two generalists, the cabbage looper, *Trichoplusia ni*, and the beet armyworm, *Spodoptera exigua*. In addition to *P. rapae*, only *S. exigua* showed reduced performance on plants that were exposed to *P. rapae* herbivory in the previous generation (Fig. 1C; $F_{1,16} = 7.517, p = 0.015$), likely due to the fact that there is species-specific variation in lepidopteran sensitivity to Arabidopsis defenses (Müller et al., 2010). Both *P. rapae* and *S. exigua* also grew less well on plants whose parents were fed upon by *P. xylostella* compared to control plants whose parents were left undamaged (Fig. 2). This indicates that the type of parental damage does not affect inherited herbivore resistance, which is consistent with observations of similar Arabidopsis transcriptional responses to different lepidopteran herbivores (Bidart-Bouzat and Kliebenstein, 2008).

Persistence of transgenerational resistance over time

Further research to investigate the mechanisms of transgenerational insect resistance was focused primarily on the more genetically tractable Arabidopsis system. To measure stability of the transgenerational resistance signal, we planted additional C1 (control) and H1 (herbivory in prior generation) seeds, without further exposure to herbivores in the second generation. C2 and H2 seeds were harvested, and the procedure was repeated to obtain C3 and H3 seeds (third generation after control and herbivory treatments). Transgenerational resistance to *P. rapae* persisted in the H2 generation (Fig. 1D; $F_{1,33} = 4.634, p = 0.039$), but not in the H3 generation (Fig. 1D; $F_{1,36} = 0.032, p = 0.858$).

Seed size and provisioning of resources could affect the robustness of plants in the H1 progeny generation (Agrawal et al., 1999). Similar to what has been observed previously in using this plant-herbivore system (van Loon et al., 2003), three days of *P. rapae* feeding reduced Arabidopsis seed set by 50% (Fig. 3A, $F_{1,18} = 49.123, p < 0.0001$). However, the mass of individual seeds (Fig. 3B; $F_{1,19} = 1.944, p = 0.180$) and plant size in the progeny generation (Figure S1) were not altered, suggesting that there are no differences in seed provisioning. Reduced seed set could result from the smaller plant size (loss of leaf area due to herbivory) or could reflect reallocation of resources from seed production to plant defense (Mauricio, 1998).
Since Arabidopsis dies shortly after seed set, it is unlikely that plants are “saving” resources for later growth and reproduction, as might be expected from a perennial plant.

Mechanisms of transgenerational resistance

We determined whether parental-generation herbivory inherently alters known defense traits in the seeds or the progeny generation. Seed content of the plant hormones JA, salicylic acid (SA), abscisic acid, and indole-3-acetic acid was not significantly affected by caterpillar feeding (Fig. 4), showing that H1 plants are not primed for insect resistance through the storage of these defense signaling molecules in the seeds. Glucosinolates, a crucifer-specific class of defensive secondary metabolites, also did not differ between seeds of control and *P. rapae*-treated plants (Fig. 5A). Among leaf glucosinolates in undamaged H1 plants, only 1-methoxyindol-3-ylmethylglucosinolate (1MI3M) was increased relative to C1 plants without *P. rapae* caterpillar feeding in the parental generation (Fig. 5B). Furthermore, the overall phenotype of the progeny plants was similar, irrespective the parental treatment (Figure S1), suggesting that plant size is not growth-limiting for the caterpillars. Rosette leaf trichome density, which is associated with insect resistance (Levin, 1973; Mauricio and Rausher, 1997), was not significantly altered by prior-generation herbivory (Fig. S2).

Jasmonic acid perception is required for transgenerational resistance

Since JA signaling plays a central role in the induction of plant defense responses (Howe and Jander, 2008), additional experiments were designed to determine whether inherited caterpillar resistance depends on the perception of JA via COI1 in the parental and/or progeny generation (Fig. 6A). Arabidopsis *coi1-1* mutants have normal growth patterns, but are unable to perceive JA-isoleucine conjugates and therefore fail to initiate defense-related gene expression changes in response to herbivory (Chini et al., 2007; Thines et al., 2007; Howe and Jander, 2008).

Consistent with this known defense signaling function of COI1, homozygous *coi1-1* mutant parent plants, which were induced by *P. rapae* feeding and pollinated with wild-type pollen, did not show increased resistance in the H1 generation (Fig. 6B; test for treatment effect; F_{1,53} = 0.023, p = 0.880). Functionally wild-type heterozygous *COI1/coi1-1* plants were also subjected to *P. rapae* herbivory. Segregating H1 progeny from *P. rapae*-induced parents were more resistant to herbivory, irrespective of their genotype (Fig. 6C; for treatment effect, F_{1,37} = 13.143,
p = 0.001, for progeny genotype effect; F1,37 = 0.656, p = 0.423, and for the interaction between
treatment and progeny genotypes; F1,37 = 0.025, p = 0.875). Therefore, in contrast to the parental
generation (Fig. 6B), perception of JA-isoleucine by COI1 in the progeny generation (Fig 6C) is
not required for inherited P. rapae resistance.

Consistent with the observed increase in 1MI3M (Figure 5), which is typically induced
by insect feeding and jasmonates (Agerbirk et al., 2009), P. rapae feeding in the parental
generation caused JA levels to be two-fold higher in H1 plants compared to C1 plants in the
absence of caterpillar damage (dashed lines in Figure 6D, and parental treatment effect below).
Additionally, after 72 hrs of feeding by neonate caterpillars, JA levels were significantly elevated
in H1 plants, which had been fed upon in the previous generation, relative to C1 controls (Fig.
6D; for parent treatments F1,58 =5.706, p = 0.020, for induction F1,58 = 46.117 p< 0.001, and for
time F3,58 = 4. 880, p = 0.004), suggesting priming for a more robust defense response. On the
other hand, SA, a phytohormone that is primarily associated with pathogen defense, did not
exhibit parental treatment effects. In fact, P. rapae herbivory reduced SA levels by 15% over a
period of 96 hrs (Fig. 6D). Consistent with the elevated JA levels, expression of lipoxygenase
(LOX2), a well-studied JA-responsive gene in Arabidopsis (Howe and Jander, 2008), was
increased in plants subjected to caterpillar feeding in the prior generation (Fig. 6E, for LOX2
parental treatment effect, F1,18 = 3.135, p = 0.094, for induction effect, F1,18 = 5.389, p = 0.032,
and for interaction, F1,18 = 4.078, p = 0.058). Allene oxide syntheses (AOS), a JA biosynthesis
gene (Howe and Jander, 2008), was also more highly induced by P. rapae if the previous
generation had been subjected to herbivory (Fig. 6E, for AOS; parental treatment effect, F1,20 =
4.349, p = 0.050, for induction effect, F1,20 = 31.242, p < 0.0001, and for interaction, F1,20 =
1.402, p = 0.250). Similar priming of defense gene expression was observed with the JA-
regulated tomato protease inhibitor (PIN2) gene (Miersch and Wasternack, 2000), which was
induced to a higher level by wounding if the previous generation had been exposed to MeJA
(Fig. S3).

Small RNAs are required for transgenerational resistance

The elevated caterpillar resistance (Fig. 1) and JA-mediated defenses (Fig. 6D,E) suggest
defense priming via an inherited signal from the parental plant. To test the hypothesis that this
effect requires an siRNA signal, we conducted experiments with two Arabidopsis mutants that
have a normal growth pattern but are deficient in small RNA biogenesis: a PolIV PolV double
mutant (nrpd2a nrpd2b), which lacks nuclear RNA polymerases required for the synthesis of
siRNAs (Pontes et al., 2006), and a dcl2 dcl3 dcl4 triple mutant, which is defective in siRNA
processing by dicer-like enzymes (Henderson et al., 2006). Whereas feeding in the previous
generation reduced growth of P. rapae on wild-type Arabidopsis, this was not the case on the
nrpd2a nrpd2b or dcl2 dcl3 dcl4 mutants (Fig. 7A, treatment effect for wild-type Col-0 P. rapae-
fed; F1,30 = 10.198, p = 0.003, for nrpd2a nrpd2b; F1,36 = 1.405, p = 0.244, and for dcl2 dcl3
dcl4; F1,26 = 0.363, p = 0.552). Similarly, application of MeJA to the parent plants was
ineffective in inducing transgenerational resistance in the mutants but not on wild-type plants
(Fig. 7B; treatment effect for Col-0; F1,35 = 13.034, p = 0.001, for nrpd2a nrpd2b; F1,30 = 0.001, p
= 0.971, and for dcl2 dcl3 dcl4; F1,31 = 0.009, p = 0.307).

Both the nrpd2a nrpd2b and dcl2 dcl3 dcl4 mutants have reduced amounts of some
glucosinolates relative to wild-type Col-0, with or without P. rapae feeding (Fig. 8 for total
glucosinolates, genotype effect; F2,300 = 8.772, p = 0.0002, treatment effect; F1,300 = 2.330, p =
0.128, and genotype by treatment interaction; F2,300 = 1.034, p = 0.357). In particular, 4-
methoxyindol-3-y1methylglucosinolate (4MI3M), which has been associated with pathogen
defense responses (Bednarek et al., 2009; Clay et al., 2009), is constitutively less abundant in the
mutants. Caterpillar feeding induces production of 4MI3M and 1-methoxyindol-3-
y1methylglucosinolate (1MI3M) in wildtype plants, but there was no significant increase in the
mutant lines. Reduced caterpillar size on the nrpd2a nrpd2b the dcl2 dcl3 dcl4 mutants (Fig. 7) is
correlated with lower abundance of glucosinolates, which are P. rapae feeding stimulants (Barth
and Jander, 2006; Müller et al., 2010).

Discussion

Our results demonstrate that both Arabidopsis and tomato plants that were subjected to herbivory
are more resistant to subsequent attack in the next generation. In the case of Arabidopsis, this
transgenerational resistance against chewing herbivores includes the priming of JA-related
defense responses and requires siRNA biogenesis.

4MA-mediated increased transgenerational resistance
Numerous studies show that jasmonates, SA, and ethylene (ET) have important functions in orchestrating plant responses to tissue damage or wounding (Howe, 2004; De Vos et al., 2005). Previous defense induction can cause plants to be primed for a more robust or rapid defense response upon subsequent attack (van Hulten et al., 2006), and treatment of seeds with JA primes plants for enhanced herbivore resistance weeks later (Worrall et al., 2011). Here, we have taken these observations a step further to show that MeJA induction in the previous generation, can prime progeny plants for enhanced resistance. Additionally, using \textit{coil} mutant plants we demonstrate that perception of JA is required in mother plants for increased resistance in the next generation. Further work using JA signaling-deficient mutants, e.g. \textit{jai1}, will be needed to determine whether tomatoes also require JA perception for increased transgenerational resistance. Unlike in the case of Arabidopsis, wounding alone primed tomatoes for increased caterpillar resistance in \textit{H1} plants. This could reflect inherent differences between Arabidopsis and tomato, or it could be the result of different experimental methods and perhaps insufficient mechanical wounding of the Arabidopsis plants. For instance, only frequent and controlled repetitive wounding triggered herbivore-like defense elicitation in lima beans (Mithofer et al., 2005).

Accumulating evidence demonstrates cross-talk between different phytohormone signaling pathways. For example, JA-mediated defense signaling is strongly activated upon chewing herbivore attack, whereas SA and ET are more specific to piercing-sucking herbivores or pathogen attack (Luna et al., 2011; Slaughter et al., 2011). Consistent with these prior reports, we observed priming for faster and higher JA induction in \textit{H1} generation, but we did not observe increased SA accumulation in response to \textit{P. rapae} attack on \textit{H1} or \textit{C1} plants. These results are consistent with specific activation of JA signaling during chewing herbivore attack, as well as with possible cross-talk with the SA signaling pathway (De Vos et al., 2005).

\textit{Small interfering RNA and transgenerational resistance}

siRNA is phloem-mobile (Chitwood and Timmermans, 2010) and could provide a signal that is passed from vegetative tissue to developing seeds in response biotic or abiotic stress. In the developing seeds and/or progeny plants, siRNA could alter gene expression through targeted mRNA degradation, regulation of translation, or DNA methylation. The inheritance of resistance over two generations (Fig. 1D) suggests that DNA methylation, which is impacted by PolIV- and
DCL2-dependent siRNA production and can be inherited through meiosis, is a possible mechanism for transgenerational inheritance. Increased resistance over two generations also indicates that the signal is likely to be propagated in the embryo, rather than maternal tissue that makes up the Arabidopsis seed coat.

Two other articles in the current issue show that similar transgenerational priming of defense signaling pathways is involved in plant responses to pathogen infection. Infection with avirulent *Pseudomonas syringae* and treatment with β-amino-butyric acid primed Arabidopsis for the induction of SA-mediated defense responses in the subsequent generation (Slaughter et al., 2011). In another study, the descendants of primed plants showed a faster and stronger SA-mediated defense response relative to controls (Luna et al., 2011). Comparable effects in a *drm1 drm2 cmt3* DNA methylation mutant suggest that hypomethylation is required to prime progeny plants for these SA-mediated defense responses.

Future prospects

Like all forms of phenotypic plasticity, transgenerational resistance to herbivory will only be effective if the response in one generation protects seedlings in the next generation (Karban et al., 1999). A plant that employs transgenerational resistance but whose progeny are not subject to attack may suffer energetic and ecological costs without benefits (Agrawal, 2001). Many natural populations of Arabidopsis have more than one generation per growing season (Donohue, 2009; Bentsink et al., 2010), which would expose parents and progeny to similar herbivore pressures. Therefore, rapid-cycling Arabidopsis genotypes would benefit from priming of insect resistance in progeny of plants that were subjected to herbivory. A testable prediction is that defense priming should be reduced in response to longer seed dormancy, which would expose progeny plants to a likely different herbivore environment in subsequent years. Such effects have been seen in the release of gene silencing due to seed aging (Lang-Mladek et al., 2010).

Unlike most plants natural ecosystems, the Arabidopsis and tomato lines used for the current experiments had been growing in the complete absence of herbivores for several generations. Since inherited resistance in Arabidopsis attenuates over three generations (Fig. 1D), herbivore-free laboratory rearing may account for the consistent transgenerational effects that we have observed. However, even in a growth chamber setting there are variables than cannot completely be controlled. Out of the nine independent positive control experiments
testing first-generation progeny from *P. rapae*-treated and control plants, seven showed variable
levels of increased resistance, two showed no significant differences, and none showed a
negative effect, i.e. caterpillar growth was never reduced on C1 plants compared to H1 plants
(Fig. 9). Similar to the protected existence of our laboratory-grown plants, some plants in
agricultural settings may grow in the almost complete absence of herbivory for several
generations, particularly with heavy use of insecticides in seed production fields. Just as
application of jasmonates to seeds can promote long-term herbivore resistance (Worrall et al,
2011), defense elicitation prior to seed set could be used to prime progeny plants for increased
herbivore and pathogen resistance, thereby providing a defensive benefit to tomatoes and other
crops that are particularly vulnerable to herbivory at the seedling stage.

Materials and Methods

Plants and growth conditions - Wild-type *Arabidopsis thaliana* (Arabidopsis) landrace
Columbia-0 (Col-0) was obtained from the Arabidopsis Biological Resource Center
(www.arabidopsis.org). Seeds of *nrpd2a nrpd2b* (Henderson et al., 2006) and *dcl2 dcl3 dcl4*
(Henderson et al., 2006) Arabidopsis mutants were obtained from Eric Richards (Boyce
Thompson Institute), and *coi1-1* seeds (Xie et al., 1998) were obtained from Gregg Howe
(Michigan State University). Plants were grown in Conviron growth chambers in 20 × 40-cm
nursery flats using Cornell Mix [by weight, 56% peat moss, 35% vermiculite, 4% lime, 4%
Osmocoat slow-release fertilizer (Scotts), and 1% Unimix (Peters)] at 23°C, 60% relative
humidity, with a light intensity of 180 μmol m⁻² s⁻¹ photosynthetic photon flux density and a
16:8-h light:dark photoperiod. Plants were grown for 3 weeks and were used in experiments
before flowering.

S. lycopersicum cv Micro-Tom was used in all tomato experiments. Seeds were originally
purchased from Tomato Growers Supply Co, Fort Myers, FL. Seedlings were grown in
Metromix 400 potting mix (Griffin Greenhouse & Nursery Supplies Tewksbury, MA) in a
greenhouse at Pennsylvania State University. The greenhouse was maintained on a 16:8-h
light:dark photoperiod. Six-week-old plants were used for insect feeding, mechanical damage, or
MeJA treatments.
Insects and rearing conditions – A *P. rapae* colony was established with ~20 adult butterflies that were collected on the Cornell University campus in 2008. Caterpillars were raised on cabbage (*Brassica oleracea*) var. Wisconsin Golden Acre (Seedway, Elizabethtown, PA, USA) under the same conditions as those used for growing Arabidopsis. Adult butterflies were fed with a 20% sucrose solution. *T. ni*, *P. xylostella*, *S. exigua*, and *H. zea* eggs were obtained from Benzon Research (Carlisle, PA, USA). For induction in the parental generation, individual caterpillars were allowed to feed for three days on each plant, and seeds were harvested five to six weeks after planting. We used about 25 parental plants for induction, and progeny were obtained from a random sampling of the mother plants. For bioassays in subsequent generations, insects were confined on the leaves of three-week-old Arabidopsis with mesh-covered cups. A single neonate lepidopteran larva per plant was allowed to feed for 7 days before being collected and lyophilized for one day. Larval dry weight was determined using a precision balance.

For experiments with *H. zea*, neonates were fed a wheat germ and casein-based artificial diet (BioServ, Frenchtown, NJ, USA) for one day, and then transferred to tomato leaves for four days (one larva per plant). Larval fresh weight was determined using a precision balance.

COI1 experiments – Seeds from *COI1/coi1-1* Arabidopsis were planted and grown as described above to produce a segregating population of *COI1/coi1-1, COI1/COI1*, and *coi1-1/coi1-1* plants. Half of all plants were induced with *P. rapae* for three days as described above. Homozygous mutants (*coi1-1/coi1-1*), which are male sterile, were visually identified by the absence of seed pods after flowering. Homozygous *coi1-1/coi1-1* mutants were pollinated with wild-type Col-0 to obtain viable heterozygous seeds. Subsequently, one neonate *P. rapae* larva per plant was allowed to feed for 7 days on three-week-old, next-generation (H1 and C1) plants, which either originated from functionally wild-type parents (heterozygous *COI1/coi1-1* or homozygous *COI1/COI1*), or from the cross between the jasmonate insensitive mutants (*coi1-1/coi1-1*) and a wild-type Col-0 plant. Design of the **COI1** experiments is illustrated in Fig. 6A.

Phytohormone analysis – Arabidopsis Col-0 wild-type were planted as described above and, after three weeks of growth, half of the plants were subjected to three days of *P. rapae* feeding. Plants were allowed to self-pollinate, and seeds were collected 5 to 6 weeks after initial planting. Harvested seeds were grown as described above and divided into four treatments (with and
without *P. rapae* feeding in the parental and progeny generations). In the progeny generation, damage was imposed by placing one first instar *P. rapae* caterpillar on each plant and allowing it to feed continuously for four days. Full-grown, visibly damaged leaves were harvested after 0, 48, 72, and 96 hrs. Plants from which a leaf had been harvested were discarded and not used for further experiments. Harvested leaves were weighed and placed in tubes containing 0.9 g of FastPrep matrix (BIO 101, Vista, CA, USA), before being flash-frozen in liquid nitrogen and stored -80°C until further use. One mL extraction buffer (2:1:0.005 ratio of iso-propanol:H₂O:HCl) was added to each sample. d₄-SA and d₅-JA (CDN isotopes, Point-Claire, Canada) were added as internal standards and samples were homogenized in a FastPrep® homogenizer (MP Biomedicals, Solon, OH, USA) at 6 m s⁻¹ for 45 s. Samples were dissolved in 200 µL methanol after extraction with dichloromethane and solvent evaporation, and 15 µL were analyzed using a triple-quadrupole LC-MS/MS system (Quantum Access; Thermo Scientific, Waltham, MA, USA). Analytes were separated on a C18 reversed phase HPLC column (Gemini-NX, 3µ, 150 x 2.00 mm; Phenomenex, Torrance, CA, USA) using a gradient of 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B) at a flow rate of 300 µL min⁻¹. The initial condition of 10% B was kept for 2 min and increased to 100% solvent B at 20 min. Phytohormones were analyzed by negative electrospray ionization (spray voltage: 3.5kV; sheath gas: 15; auxiliary gas: 15; capillary temperature: 350°C), collision-induced dissociation (argon CID gas pressure 1.3 mTorr, CID energy 16V) and selected reaction monitoring (SRM) of compound-specific parent/product ion transitions: SA 137→93; d₄-SA 141→97; JA 209→59; d₅-JA 214→62.

Glucosinolate assays – Arabidopsis leaves were collected, frozen in liquid nitrogen, and lyophilized. Extraction of plant tissue and preparation of desulphoglucosinolates was done as described previously (Barth and Jander, 2006; Kim et al., 2008). Desulfoglucosinolates were separated using a Waters 2695 HPLC and detected using a Waters 2996 photodiode array detector. For HPLC separation, the mobile phases were A, water, and B, 90% acetonitrile, with a flow rate of 1mL/min at 23 °C. Column linear gradients for samples were: 0–1 min, 98% A; 1–6 min 94% A; 6–8 min, 92% A; 8–16 min, 77% A; 16–20 min, 60% A; 20–25 min, 0% A; 25–27 min hold 0% A; 27–28 min, 98% A; 28–37 min, 98% A.
Gene expression analysis – Total RNA was extracted from frozen tissue samples using the SV Total RNA Isolation system with on-column DNAse treatment (Promega, Madison, WI). RNA integrity was verified using a 1.2% formaldehyde agarose gel. Transcript abundance of LOX2 (At3G45140, lipoxygenase 2), AOS (AT5G42650, allene oxide synthase), and PIN2 (K03271, proteinase inhibitor 2) was analyzed by quantitative real-time RT-PCR (qRT-PCR). eEF1-α (AT5G60390, elongation factor 1-alpha), which was used as an internal standard for Arabidopsis experiments, was identified from publically available microarray data as stably expressed after herbivory, and this stable expression was verified across samples using qRT-PCR. Ubiquitin (X58253) was used as an internal standard for tomato qRT-PCR. After RNA extraction and DNase treatment, 1µg of total RNA was reverse transcribed with SMART MMLV reverse transcriptase (Clonetech, Mountain View, CA) using an oligo-dT12-18 primer. Gene-specific primers used for qRT-PCR were designed using Primer-Blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) with the following criteria: TM of 60°C, PCR amplicon lengths of 90 to 150 bp yielding primer sequences with lengths of 18 to 24 nucleotides, with an optimum at 21 nucleotides, and guanine-cytosine contents of 40% to 60%. Primer sequences can be found in Supplemental Table S1. Reactions were carried out using 5 µl of the ‘SYBR green PCR master mix’ (Applied Biosystems, Foster City, CA), with 800 nM of primer, in the ‘7900HT’ instrument (Applied Biosystems, Foster City, CA). The PCR reactions were initiated by incubation at 95°C for 10 min to activate the enzyme. Then the following cycle was repeated 40 times: 95°C for 15 s, 60°C for 15 s, and 72°C for 15 s. The CT values were quantified and analyzed according to the standard curve method.

Statistical analysis - All larval growth, seed set, seed mass, glucosinolates and trichome count data were analyzed on a parental treatment comparison (such as *P. rapae* induction, *P. xylostella* induction, MeJA induction, mechanical damage versus undamaged control plants) with one-way ANOVA. Caterpillar mass for the *coi1-1* experiment was analyzed as for the parental treatments if parents were homozygous recessive *coi1/coi1-1*, but with two-way ANOVA for the heterozygous parent side of the experiment to test interaction between parental treatments and segregating genotypes in the progeny generation. Phytohormone induction data were analyzed with one-way ANOVA with induction (control plants versus *P. rapae* fed-plants), parental treatment (control versus *P. rapae* induction), and time as main factors. Gene expression data
were analyzed with a two-way ANOVA, with parental treatment and timing of induction as main effects. Because of low sample size, leaf and seed glucosinolates of Col-0 plants were individually analyzed with non-parametric tests. Data were checked for normality and log-transformed where needed. In addition, as needed, data for caterpillar growth were blocked for plant position or batch to control for position effect in growth chamber experiments. All analyses were performed in JMP 8 software (SAS Institute, Cary, NC, USA).

Supplemental Data

The following materials are available in the online version of this article

Supplementary Table S1. Primers used for quantitative RT-PCR in this study.

Supplementary Figure S1. Herbivory in the parental generation does not have a significant effect on the overall size and morphology of progeny plants.

Supplementary Figure S2. Trichome production on C1 and H1 Arabidopsis rosette leaves.

Supplementary Figure S3. Expression of proteinase inhibitor II (PIN2) in tomato with and without MeJA treatment in the previous generation.

Acknowledgments

We thank E. Richards, G. Howe, and B. Meyers for Arabidopsis seeds and experimental advice.
Agerbirk N, De Vos M, Kim JH, Jander G (2009) Indole glucosinolate breakdown and its biological effects. Phytochem Rev 8: 101-120

Agrawal AA (2001) Transgenerational consequences of plant responses to herbivory: An adaptive maternal effect? Am Nat 157: 555-569

Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defences in animals and plants. Nature 401: 60-63

Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46: 549-562

Bednarek P, Pišlewksa-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323: 101-106

Bentsink L, Hanson J, Hanhart CJ, Blankesijnt-de Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, de Andres MT, Reymond M, van Eeuwijk F, Smeekens S, Koornneef M (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci U S A 107: 4264-4269

Bidart-Bouzat MG, Kliebenstein DJ (2008) Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Arabidopsis thaliana. J Chem Ecol 34: 1026-1037

Boyko A, Hudson D, Bhomkar P, Kathiria P, Kovalchuk I (2006) Increase of homologous recombination frequency in vascular tissue of Arabidopsis plants exposed to salt stress. Plant Cell Physiol 47: 736-742

Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-U664

Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Op in Plant Biol 12: 133-139

Chitwood DH, Timmermans MCP (2010) Small RNAs are on the move. Nature 467: 415-419
Clay N, Adio A, Denoux C, Jander G, Ausubel F (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323: 95-101

De Vos M, van Oosten VR, van Poecke RM, van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, van Loon LC, Dicke M, Pieterse CM (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18: 923-937

Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philos Trans R Soc Lond B Biol Sci 364: 1059-1074

Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950-952

Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38: 721-725

Holeski LM (2007) Within and between generation phenotypic plasticity in trichome density of Mimulus guttatus. J Evol Biol 20: 2092-2100

Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Reg 23: 223-237

Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev of Plant Biol 59: 41-66

Karban R, Agrawal AA, Thaler JS, Adler LS (1999) Induced plant responses and information content about risk of herbivory. Trends in Ecol Evol 14: 443-447

Karban R, Baldwin I (1997) Induced Responses to Herbivory. University Press of Chicago, Chicago

Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco Mosaic Virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153: 1859-1870

Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 54: 1015-1026
Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser M-T, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3: 594-602

Lee YS, Nakahara K, Pham JW, Kim K, He ZY, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117: 69-81

Levin DA (1973) The role of trichomes in plant defense. Quart Rev Biol 48: 3-15

Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2011) Next generation systemic acquired resistance. Plant Physiology Submitted to Plant Physiology as a companion paper to the present one

Matzke MA, Matzke AJM, Pruss GJ, Vance VB (2001) RNA-based silencing strategies in plants. Curr Op Genet Dev 11: 221-227

Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 151: 20-28

Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51: 1435-1444

Miersch O, Wasternack C (2000) Octadecanoid and jasmonate signaling in tomato (Lycopersicon esculentum Mill.) leaves: endogenous jasmonates do not induce jasmonate biosynthesis. Biol Chem 381: 715-722

Mithofer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137: 1160-1168

Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442: 1046-1049

Müller R, de Vos M, Sun J, Sønderby I, Halkier B, Wittstock U, Jander G (2010) Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J Chem Ecol 36: 905-913

Pontes O, Li CF, Nunes PC, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS (2006) The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126: 79-92
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-405

Slaughter A, Daniela X, Flors V, Luna E, Hohn B, Mauch-Mani B (2011) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiology Submitted to Plant Physiology as a companion paper to the present one

Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu GH, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature 448: 661-U662

van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103: 5602-5607

van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103: 5602-5607

van Loon JAA, de Boer JG, Dicke M (2003) Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Ent Exp Appl 97: 219-227

Whittle CA, Otto SP, Johnston MO, Krochko JE (2009) Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany-Botanique 87: 650-657

Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR (2011) Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytol, epub ahead of print, doi: 10.1111/j.1469-8137.2011.03987.x.

Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091-1094
Figure legends

Figure 1. Transgenerational resistance in tomato and Arabidopsis. A) *Helicoverpa zea* growth on tomatoes originating from parents that were either left undamaged (control) or subjected to caterpillar feeding, MeJA treatment, or mechanical damage. B) *Pieris rapae* caterpillar growth on first-generation Arabidopsis progeny originating from parents that were either left undamaged (white bars), or subjected to *P. rapae* feeding, methyl jasmonate elicitation, or mechanical damage (black or grey bars). C) Effect of parental-generation *P. rapae* caterpillar feeding on *P. rapae, Plutella xylostella, Spodoptera exigua,* and *Trichoplusia ni* caterpillar growth on progeny plants. D) *P. rapae* caterpillar growth on three generations of Arabidopsis after *P. rapae* feeding (black bars) or undamaged controls (white bars). C1, C2, and C3 = generations after control treatments; H1, H2, H3 = generations after *P. rapae* herbivory. Error bars correspond to ± 1SE. Asterisks and different letters above bars represent post-hoc Student’s t-tests comparing means between parental treatments (p < 0.05).

Figure 2. Specificity of resistance in H1 Arabidopsis plants. Shown are average dry mass (±1SE) of A) *Pieris rapae* and B) *Spodoptera exigua* caterpillars on Arabidopsis progeny plants with parents that were undamaged (open bars), *P. rapae*-damaged for three days (black bars), or *P. xylostella*-damaged for three days (grey bars). Both *P. rapae* and *P. xylostella* feeding increased resistance in the next generation (for *P. rapae*, $F_{2,37} = 20.949, p < 0.0001$; and for *S. exigua*, $F_{2,22} = 4.039, p = 0.032$). Letters represent post-hoc Student’s t-tests comparing means between parental treatments (p < 0.05).

Figure 3. Effects of *Pieris rapae* feeding on A) Arabidopsis seed numbers and B) seed mass. Shown is average (± 1 SE). Asterisk indicates differences between parental treatments (p < 0.05, Student’s t-test).

Figure 4. Concentrations of phytohormones in *Arabidopsis thaliana* seeds collected from plants with and without herbivory. Shown are averages (± 1 SE) of salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and indoleacetic acid (IAA) in seeds of undamaged Col-0 *A. thaliana* plants (Control), or of plants that were damaged during three days with one caterpillar per plant.
of the specialist lepidopteran herbivores *Pieris rapae* (*P. rapae*), and *Plutella xylostella* (*P. xylostella*). No differences were found across treatments (ANOVAs for SA: F$_{2,25}$ = 1.066, p = 0.359. JA: F$_{2,25}$ = 1.703, p = 0.313. ABA: F$_{2,25}$ = 0.333, p = 0.666. IAA: F$_{2,25}$ = 272, p = 0.544).

Figure 5. Glucosinolate content of control and *Pieris rapae*-damaged Arabidopsis plants.
Shown is average (± 1SE) abundance of A) seed aliphatic, indole, and benzoyloxy glucosinolates (GS). Seed originated from either control plants (open bars) or mature plants that were induced by three days of *P. rapae* feeding (black bars). And B) indole and aliphatic glucosinolates (GS) in leaves from Arabidopsis plants with parents that were either left undamaged (C1, open bars), or fed upon by *P. rapae* caterpillars for three days (H1, black bars). Glucosinolates were measured on damaged leaves “*P. rapae*” treatments, and on equivalent leaf amount on the “Control” treatments. Plants originated from the seed batches that were used for glucosinolate assays. Wilcoxon test for 1MI3M, ChiSquare = 3.857, df = 1, p = 0.049. *p < 0.05.

Glucosinolate side chain abbreviations: 3MSP, 3-methylsulfinylpropyl; 4MSB, 4-methylsulfinylbutyl; 5MSP, 5-methylsulfinylpentyl; 4OH13M, 4-hydroxyindol-3-ylmethyl; 7MSH, 7-methylsulfinylheptyl; 4MTB, 4-methylthiobutyl; 8MSO, 8-methylsulfinyloctyl; I3M, indol-3-ylmethyl; 4MI3M, 4-methoxyindol-3-ylmethyl; 1MI3M, 1-methoxyindol-3-ylmethyl; 7MTH, 7-methylthioheptyl, 8MTO, 8-methylthiooctyl; 3BOP, 3-benzoyloxypropyl; 4BOB, 4-benzoyloxybutyl.

Figure 6. The role of jasmonate signaling and gene expression changes due to herbivory in the parental generation. A) Schematic of crosses used to determine when jasmonate-isoleucine conjugate (JA-Ile) detection by COI1 is required. Progeny from heterozygous *COI1/coi1-1* plants were raised with and without *Pieris rapae* herbivory. Homozygous *coi1-1/coi1-1* plants were pollinated with wild-type Col-0. Heterozygous and wild-type plants were allowed to self-pollinate. C1 and H1 progeny were used for *P. rapae* growth experiments. B) *P. rapae* caterpillar growth on plants with jasmonate-insensitive *coi1-1/coi1-1* parents. C) *P. rapae* caterpillar growth on jasmonate-insensitive *coi1-1/coi1-1* C1 (control) and H1 (*P. rapae* on parents) progeny of functionally wild-type Arabidopsis (*COI1/coi1-1* or *COI1/COI1*). D) Accumulation of jasmonic acid (JA) (top) and salicylic acid (SA) (bottom) in leaves of Arabidopsis with and...
without *P. rapae* feeding in the parental and progeny generations. E) Zero and 24 hr induction of lipoxygenase (*LOX2*) (top) and allene oxide synthase (*AOS*) (bottom) gene expression in Arabidopsis with *P. rapae*-damaged (H1, black bars) or undamaged (C1, open bars) parents. Gene expression is in arbitrary units, with control plant expression set to 1. Error bars correspond to ± 1SE. Asterisks and letters above bars represent differences between bars (p < 0.05, t-test).

Figure 7. Transgenerational resistance to insect herbivores is absent in small RNA deficient mutants. Average (± 1SE) mass of *Pieris rapae* caterpillars on wild-type Arabidopsis compared to *nrpd2a nrpd2b* and *dcl2 dcl3 dcl4* mutants with parent plants that were either A) damaged by *P. rapae* (black bars), or B) sprayed with methyl jasmonate (grey bars), or left as controls (open bars). Asterisks indicate differences between parental treatments, p < 0.05 t-test.

Figure 8. Constitutive and induced levels of indole and aliphatic glucosinolates (GS) in leaves of wild-type Col-0 Arabidopsis and RNA polymerase-deficient (*nrpd2a nrpd2b*) and dicer-like (*dcl2 dcl3 dcl4*) mutants. Averages (± 1SE) of A) more abundant glucosinolates and B) less abundant glucosinolates. Glucosinolates were measured in equivalent amounts of damaged (*P. rapae*) and undamaged (Control) leaves. Different letters above bars indicate significant differences (p < 0.05, t-test) for each glucosinolate type. Glucosinolate side chain abbreviations are as in Figure 5.

Figure 9. Independent replicates of Arabidopsis transgenerational resistance to *P. rapae* herbivory. Shown is the average *P. rapae* caterpillar mass after 7 days of feeding on progeny from control and *P. rapae*-induced Arabidopsis *thaliana* plants from nine independent experiments. Parent lines where either left undamaged (Control) or were induced by a *P. rapae* caterpillar feeding. Out of nine experiments, which include those shown in Figures 1, 2,6, and 7, seven showed increased transgenerational resistance (solid lines), and two showed no effect (dashed lines) (paired t-test between treatments across the nine experiments *t*$_9$ = -2.806, p = 0.012).
A

$P. \text{ rapae}$ mass (mg)

Control P. rapae P. xylostella

B

$S. \text{ exigua}$ mass (mg)

Control P. rapae P. xylostella
A

Parents

COI1/coi1

COI1/coi1

COI1/COI1

+/

-P. rapae

Crossed with WT Col-0 pollen

Self pollinated

H1

COI1/coi1

COI1/coi1

COI1/COI1

coi1/coi1

B

C

D

E

Parental treatment

P. rapae

Control

P. rapae

Control

P. rapae

Control

JA (ng/mg FW)

SA (ng/mg FW)

H1

0

20

40

60

80

100

Time (hrs)

Caterpillar mass (mg DW)

Caterpillar mass (mg DW)

coi1/coi1

COI1/COI1

coi1/coi1

COI1/COI1

Parent

Parental treatment

Control

P. rapae

Relative gene expression (arbitrary units)

0 hr

24 hrs

P. rapae feeding in H1

LOX2

AOS

Data from Figure 10A, B, C, D, and E.
Leaf glucosinolates in parent plants (nmol mg⁻¹ DW)

A

GS

Aliphatic

3MSP

4MSB

I3M

4M13M

Indole

B

Genotype Treatment

- Col-0 Control
- Col-0 *P. rapae*
- *dcl2,3,4* Control
- *dcl2,3,4* *P. rapae*
- *nrpd2a,b* Control
- *nrpd2a,b* *P. rapae*

GS

Aliphatic

5MSP

4OH13M

4MTB

8MSO

Indole

4M13M
