Transjugular intrahepatic portosystemic stent shunt for medically refractory hepatic hydrothorax: A systematic review and cumulative meta-analysis

Ivo C Ditah, Badr F Al Bawardy, Behnam Saberi, Chobufo Ditah, Patrick S Kamath

AIM: To assess the effectiveness of transjugular intrahepatic portosystemic stent shunt (TIPSS) in refractory hepatic hydrothorax (RHH) in a systematic review and cumulative meta-analysis.

METHODS: A comprehensive literature search was conducted on MEDLINE, EMBASE, and PubMed covering the period from January 1970 to August 2014. Two authors independently selected and abstracted data from eligible studies. Data were summarized using a random-effects model. Heterogeneity was assessed using the I^2 test.

RESULTS: Six studies involving a total of 198 patients were included in the analysis. The mean (SD) age of patients was 56 (1.8) years. Most patients (56.9%) had Child-Turcott-Pugh class C disease. The mean duration of follow-up was 10 mo (range, 5.7-16 mo). Response to TIPSS was complete in 55.8% (95%CI: 44.7%-66.9%), partial in 17.6% (95%CI: 10.9%-24.2%), and absent in 21.2% (95%CI: 14.2%-28.3%). The mean change in hepatic venous pressure gradient post-TIPSS was 12.7 mmHg. The incidence of TIPSS-related encephalopathy was 11.7% (95%CI: 6.3%-17.2%), and the 45-d mortality was 17.7% (95%CI: 11.3%-24.13%).

CONCLUSION: TIPSS is associated with a clinically relevant response in RHH. TIPSS should be considered early in these patients, given its poor prognosis.

Key words: Cirrhosis; Portal hypertension; Hepatic hydrothorax; Transjugular intrahepatic portosystemic stent shunt; Meta-analysis
INTRODUCTION

Hepatic hydrothorax (HH) is the accumulation of significant pleural effusion, usually in excess of 500 mL, in a patient with cirrhosis without coexisting primary cardiopulmonary disease[1-3]. It is a relatively uncommon complication of end-stage liver disease, with an estimated prevalence among cirrhotic patients of 5% to 10%[1-3,10-12]. Although the exact mechanisms involved in the development of HH have not been completely elucidated, the most widely accepted mechanism is the passage of fluid from the peritoneal to the pleural cavity through diaphragmatic defects, usually less than 1 cm in diameter[11-13]. The one way flow of the ascitic fluid into the pleural cavity is also thought to be influenced by the negative intrathoracic pressure. The effusion, typically a transudate, most commonly occurs in the right hemithorax (85%)[3,10]. Ascites can be absent in up to 20% of patients with HH[11-13]. A diagnostic thoracentesis often confirms diagnosis and excludes infection.

The initial management of HH is similar to that for ascites. Maximal sodium restriction (< 70-90 mmol/d) and optimal tolerated diuretics are the first-line therapy. Therapeutic thoracentesis is a safe and effective way to rapidly relieve symptoms of dyspnea in patients with large effusions (1.5-2.0 L)[13]. However, when thoracentesis is required more than once every 2 to 3 wk in patients on maximal sodium restriction and optimal diuretics, it is considered refractory, and alternative treatments should be considered. Pleurodesis and peritoneovenous shunts are surgical options that are usually associated with rapid fluid reaccumulation and procedure-related complications, and they are not generally recommended as treatments for HH[14,15]. In the absence of a large pneumothorax, hemothorax, or frank empyema, a chest tube should not be inserted in patients with HH[16,17].

Up to 25% of patients with HH will become refractory to treatment[18], compared to only 10%[17] of patients with cirrhotic ascites. Refractory HH (RHH) has traditionally been associated with poor prognosis. Patients with RHH should therefore be considered for liver transplantation. The treatment strategies for RHH are similar but not identical to those for refractory ascites. In patients with prerenal azotemia, therapeutic thoracentesis as a long-term regular treatment is not recommended because of the risk for bleeding and pneumothorax[19]. Transjugular intrahepatic portosystemic stent shunt (TIPSS) is a nonsurgical, angiographic technique of reducing hepatic sinusoidal pressure, which then results in a reduction in the accumulation of fluid in the peritoneal and pleural space. The procedure is often used as a bridge to liver transplantation in patients with end-stage liver disease. Since RHH is an uncommon complication of cirrhosis, most of the studies on the effectiveness of TIPSS have been limited to small numbers of patients, primarily in the form of case reports[19-22] or case series[3,14,23-28]. Findings from these studies have varied substantially. The purpose of this study was to evaluate the effectiveness of TIPSS in patients with RHH by pooling all available evidence in a systematic review with cumulative meta-analysis.

MATERIALS AND METHODS

Core tip: Evidence on the effectiveness of transjugular intrahepatic portosystemic stent shunt (TIPSS) in patients with refractory hepatic hydrothorax (RHH) is scarce and variable. This paper summarizes available data on the effectiveness of TIPSS in RHH in a cumulative meta-analysis. The sum total of the evidence shows that TIPSS is associated with a clinically relevant response in three-quarters of patients with medically RHH. We suggest that TIPSS be considered early in patients with RHH, given its impact on quality of life and prognosis. However, caution should be exercised in older patients and those with severe underlying liver or renal dysfunction.

Ditah IC, Al Bawardy BF, Saberi B, Ditah C, Kamath PS. Transjugular intrahepatic portosystemic stent shunt for medically refractory hepatic hydrothorax: A systematic review and cumulative meta-analysis. World J Hepatol 2015; 7(13): 1797-1806. Available from: URL: http://www.wjgnet.com/1948-5182/full/v7/i13/1797.htm DOI: http://dx.doi.org/10.4254/wjh.v7.i13.1797

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
spreadsheets (Microsoft Corp, Redmond, Washington). The following information were abstracted from each study: author, time period of study, study methods and participants, outcome of interest (mortality/survival, response to TIPSS, TIPSS-related complications, incidence of hepatic encephalopathy (HE), mean change in hepatic venous pressure gradient (HVPG), and country of study). Differences between the 2 abstracting investigators were settled by reviewing the article together and seeking an independent input from a third investigator (BS).

Definition of operational variables

Medically RHH: Patients with underlying liver cirrhosis who underwent TIPSS because of symptomatic HH that had failed to respond to sodium (< 2 g/d) restriction, who had optimal diuretics dosing (maximal tolerated doses without electrolyte abnormalities or clinically significant side effects), and who required frequent (more than once every 2-3 wk) thoracentesis were classified as having medically RHH.

Response to TIPSS

Response to TIPSS was based on clinical or radiographic evidence of hydrothorax post-TIPSS. Response was categorized as complete, partial, or absent. Response was classified as complete if the patients’ symptoms of shortness of breath resolved or returned to baseline, with no evidence of pleural effusion requiring thoracentesis. Partial response was defined as improvement of shortness of breath but without complete symptomatic resolution; thoracentesis was required less frequently than pre-TIPSS. Absent response was defined as persistent or worsening symptoms of shortness of breath and/or persistent need for thoracentesis. Radiologically, complete response was defined as undetectable pleural effusion on chest radiographs, computed tomogram, or ultrasonogram; partial response if pleural effusion decreased compared to pre-TIPSS; and absent response if pleural effusion was unchanged or increased. The studies used either radiologic and/or clinical criteria to assess response to TIPSS.

TIPSS-related complications: (1) HE. TIPSS related HE was defined as new onset (i.e., never existed prior to TIPSS) or worsening (increased in frequency or severity of encephalopathy, compared to pre-TIPSS status). One study considered HE as TIPSS related if it occurred within 30 d of the procedure[24]; and (2) Mortality After TIPSS. Death was evaluated as early (i.e., occurred within 45 d of the procedure) and overall (death irrespective of when the event occurred throughout the follow-up period). The follow-up period varied across the studies, with the longest duration being 5 years.

Statistical analysis

Data from eligible studies were pooled using a random-effects model with Stata version 11 (Stata Corp LP, College Station, Texas). Outcomes are expressed as proportions (percentages) with 95% CIs. The pooled analyses are presented as forest plots. Since there were only 6 eligible studies, we determined a priori that subgroup analyses would not be performed. Statistical heterogeneity between studies was assessed using the Cochran Q test and the I² statistic. An I² value of greater than 50% or a P value of less than 0.05 for the Q statistic was taken to indicate significant heterogeneity. All analyses were performed in accordance with the Meta-analysis of Observational Studies in Epidemiology guidelines (Table 1)[25]. Since this was a cumulative meta-analysis, publication bias was not assessed.

RESULTS

Literature search results

Six studies involving a total of 198 patients were included in the analyses. Two studies were excluded because each had a small number of study subjects and were judged by 2 of the reviewing authors to be of poor quality[1,26]. Figure 1 summarizes the results of the literature search, including the reasons for the exclusion of studies, and Table 2 summarizes the characteristics of the 6 studies that were included in the analysis.

Characteristics of study participants

The mean (SD) age of the 198 patients was 56 years (1.8 years) and 52% were male. The majority of patients had Child class C disease (56.9%), while 40.7% and 0.8% were Child class B and A, respectively. The mean pre- and post-TIPSS HVPG values were 20.14 mmHg (range, 17.4-26.0 mmHg) and 7.37 mmHg (range, 5.7-10.0 mmHg), respectively. The mean duration of follow-up was 10 mo (5.7-16.0 mo). Table 3 shows the results of
There was no evidence of heterogeneity among the studies ($P = 0.86$ and $P = 0.81$, respectively).

The incidence of post-TIPSS encephalopathy was 11.7% (95%CI: 6.3%-17.2%) (Figure 4). On this outcome, however, there was evidence of significant heterogeneity among the studies ($P = 0.04$).

DISCUSSION

This study shows that TIPSS relieves symptoms in close to three-fourths (73%) of patients with RHH. The 45-d mortality and the 1-year survival in patients with RHH are comparable to those seen in patients with refractory ascites and variceal hemorrhage. The most important predictors of poor outcomes after TIPSS for RHH include older age and severe underlying liver disease and/or associated renal dysfunction.
Table 2 Characteristics of 6 studies evaluating the effectiveness of transjugular intrahepatic portosystemic stent shunt in patients with refractory hepatic hydrothorax

Ref.	Methods and patients	Outcomes/complications	Remarks
Gordon et al	Retrospective chart review of 24 consecutive patients with medically RHH	Post-TIPSS response was categorized as complete, partial, or absent	11 patients had variceal bleeding > 4 wk before TIPSS
	Post-TIPSS patients underwent Doppler US studies every 3 to 6 mo	Mean change in HVPG	Stent revision if decreased flow noted
	Mean follow-up was 7.2 mo (range, 0.25-49.0 mo)	TIPS patency was assessed by change in CTP score, survival, and new or worsened HE	5 failures were CTP C
	Patients with infection were excluded		12 patients had medially RHH; the rest of the 9 patients had TIPS and RHH as a secondary indication with the primary indication being intractable ascites (n = 7) and gastric varices (n = 2)
Jeffries et al	Retrospective chart review of 12 consecutive patients with medically RHH	Post-TIPSS response at ≤ 1 or > 1 mows was categorized as complete, partial, or absent	Immediate pre- and post-TIPSS prophylactic antibiotics given
	Post-TIPSS; patients had Doppler US studies every 3 mo	TIPS-related complications: ≤ 30 and > 30 d	Shunt thrombosis or decreased velocities required angioplastic revision
	Mean follow-up was 173 d (range, 7-926 d)	New-onset or worsened HE survival	4 patients had shunt revisions
	Patients with heart failure, HCC, alcoholic hepatitis, or intrinsic renal disease were excluded	Mean change in HVPG	Patients who died or underwent transplant ≤ 30 d after TIPS were classified as nonresponders to TIPS
Siegerstetter et al	Retrospective chart review of 40 consecutive patients with medically RHH	Post-TIPSS response was categorized as complete, partial, or absent	8 patients had no ascites; RHH was diagnosed by intraperitoneal methylene blue injection or technetium-Tc-99
	Post-TIPSS; patients had Doppler US studies at 4 wk, then every 3 mo	Predictors of survival:	2 stent size reductions due to chronic HE
	Mean (SD) follow-up was 14 mo [14 (range, 1-54 mo)]	Mean change in HVPG	
	Patients with infection were excluded	New-onset or worsened HE	
		CTP score improvement	
Spencer et al	Retrospective chart review of 21 consecutive patients with medically RHH	Survival at 1 yr	Prophylactic antibiotics administered
	Post-TIPSS; patients had Doppler US studies at 1, 3, and 6 mo, then every 6 mo	Post-TIPSS complications: Early (< 30 d) or late (≥ 30 d)	Radiographic and clinical response
	Mean follow-up was 223 d	New-onset or worsened HE	TIPS placement 100% successful
	Patients with severe right-sided heart failure and patients with PVT with cavernous transformation were excluded	Post-TIPSS response was categorized as complete, partial, or absent	1 patient with a partial response was weaned off oxygen due to decreased pleural fluid
		Mean change in HVPG	
		Cumulative survival	
Wilputte et al	Retrospective chart review of 28 consecutive patients with medically RHH	Mean change in HVPG	Stent revised for stenosis, obstruction, or relapsing RHH
	Post-TIPSS; patients had Doppler US at 24 h and at 1, 2, 3, 6, 9, and 12 mo, then every 6 mo	30-d mortality post-TIPSS	Patients who underwent transplant were censored at surgery date
	Mean (SD) follow-up was 358 d (121 d); 3 patients were excluded due to grade 3 HE, HCC, cardiopulmonary disease, and infection	Response to TIPSS was categorized as complete, partial, or absent	6 patients required TIPS revision
			2 patients had TIPS reduction due to intractable HE
			Both covered and uncovered stents were used
Dhanasekaran et al	Retrospective chart review of 73 consecutive patients with medically RHH	Post-TIPSS response at 1 mo and 6 mo was categorized as complete, partial, or absent	TIPS catheterization used if stenosis suspected or RHH reaccumulated
	Patients had Doppler US every 3 mo for 12 mo, then annually	Evaluated predictors of response to TIPSS	Angioplasty performed, if needed
	Patients with heart failure, pulmonary disease, infection, severe HE, portal vein thrombosis, and multiple hepatic cysts were excluded	Assessed for new or worsening HE	Uncovered and covered stents used
		Mean change in HVPG	
		Overall and 30-d mortality	

CTP: Child-Turcotte-Pugh; HE: Hepatic encephalopathy; HCC: Hepatocellular carcinoma; HVPG: Hepatic venous pressure gradient; PVT: Portal vein thrombosis; RHH: Refractory hepatic hydrothorax; TIPSS: Transjugular intrahepatic portosystemic shunt; US: Ultrasound.
Table 3 Summary of studies included in the pooled analyses of transjugular intrahepatic portosystemic shunt in patients with refractory hepatic hydrothorax

Ref.	No. of patients	Complete response (%)	Partial response (%)	45-d mortality (%)	1-yr survival (%)	Predictors of mortality
Gordon et al[14]	24	58	21	21	NA	TIPSS nonresponse
Jeffries et al[24]	12	42	17	25	NA	Age > 65 yr
Siegerstetter et al[26]	40	53	28	13	64	Age > 60 yr
Spencer et al[27]	21	57	28	14	NA	Medical comorbidities
Wilputte et al[28]	28	57	11	14	41	CTP score > 10
Dhanasekaran et al[23]	73	59	21	19	48	Mayo score > 1.5

CTP: Child-Turcotte-Pugh; MELD: Model for end-stage liver disease; NA: Not applicable; TIPSS: Transjugular intrahepatic portosystemic stent shunt.

Figure 2 Response to transjugular intrahepatic portosystemic shunt. A: Forest plot shows that most [55.8% (95%CI: 44.7%-66.9%)] of the 198 patients in the 6 studies had a complete response (resolution of refractory hepatic hydrothorax without further need for thoracentesis) after TIPSS. There was no evidence of heterogeneity among studies (P = 0.99); B: About one-fifth [17.6% (10.9%-24.2%)] of the patients had only a partial response (defined as improvement in refractory hepatic hydrothorax symptoms and/or a decrease for the need for thoracentesis). There was no evidence of heterogeneity among studies (P = 0.65); C: Just over one-fifth (21.2%) of the patients had no improvement in refractory hepatic hydrothorax after TIPSS. There was no evidence of heterogeneity among studies (P = 0.76). TIPSS indicates transjugular intrahepatic portosystemic stent shunt.
HH remains a rare complication of liver cirrhosis, with limited therapeutic options. When symptomatic HH fails to respond to medical treatment, repeat thoracentesis is often undertaken. Although thoracentesis is less invasive than TIPSS and is effective in quickly relieving symptoms of dyspnea, it can be associated with complications such as re-expansion pulmonary edema, pneumothorax, and empyema[5,30]. Repeated thoracentesis is also associated with deteriorating clinical status and poor quality of life[1,6].

TIPSS is a nonsurgical approach that decompresses the portal system, thereby addressing the mechanism of fluid collection in the abdomen and/or chest[31]. TIPSS is superior to other treatment modalities in the prevention of rebleeding from varices, and its control of refractory ascites has been well studied in controlled trials[32-36]. In contrast, controlled studies on its use in patients with RHH are lacking, and comparative studies with other treatment options may not be feasible[37,38]. Consequently, evidence on the effectiveness of TIPSS in RHH has been limited to case series with often small numbers of study participants. Results from the 6 studies included in this pooled analysis found a wide range of responses and complication rates, perhaps due to the lack of statistical power. In this study, we combined data from all the small studies, which allowed us to provide the best evidence on TIPSS effectiveness in RHH.

One-fifth of the patients died in the first 45 d after TIPSS placement. This number is well within the range for mortality following TIPSS use in patients with refractory ascites and variceal bleeding[39-44]. Early mortality was observed in patients who developed progressive liver failure, sepsis, renal failure, bleeding,

Study	Period	Proportion (95%CI)
Dhanasekaran	1992-2008	19.18 (10.48, 32.18)
Gordon	1992-1995	21.00 (2.58, 36.53)
Jeffries	1993-1997	25.00 (5.16, 73.06)
Spencer	1995-2000	28.58 (10.49, 62.19)
Wilputte	1992-2001	14.29 (3.89, 36.58)
Siegerstetter	1994-1998	12.50 (4.10, 29.20)
Overall		17.74 (11.34, 24.13)

Figure 3 Mortality after transjugular intrahepatic portosystemic stent shunt. A: Forest plot shows that about one-fifth [17.74% (95%CI: 11.34%-24.13%)] of the 198 patients in the 6 studies died within 45 d of undergoing TIPSS. There was no evidence of heterogeneity among studies (P = 0.86); B: Overall mortality after TIPSS was 50.17% (95%CI: 39.63%-60.71%) at a maximum follow-up of 5 years. There was no evidence of heterogeneity among studies (P = 0.81). TIPSS indicates transjugular intrahepatic portosystemic stent shunt.

Study	Period	Proportion (95%CI)
Dhanasekaran	1992-2008	52.05 (36.84, 71.45)
Gordon	1992-1995	54.17 (28.84, 92.63)
Jeffries	1993-1997	58.33 (23.45, 120.19)
Siegerstetter	1994-1998	37.50 (20.99, 61.85)
Spencer	1995-2000	57.14 (29.53, 99.82)
Wilputte	1992-2001	60.71 (35.37, 97.21)
Overall		50.17 (39.63, 60.71)

Overall mortality post-TIPSS was 50.17% (95%CI: 39.63%-60.71%) at a maximum follow-up of 5 years. There was no evidence of heterogeneity among studies (P = 0.81). TIPSS indicates transjugular intrahepatic portosystemic stent shunt.

Study	Period	Proportion (95%CI)
Dhanasekaran	1992-2008	15.07 (7.52, 26.96)
Gordon	1992-1995	37.50 (17.15, 71.19)
Jeffries	1993-1997	33.33 (9.08, 85.34)
Siegerstetter	1994-1998	5.00 (0.61, 18.06)
Spencer	1995-2000	42.86 (19.60, 81.36)
Wilputte	1992-2001	7.14 (0.87, 25.80)
Overall		11.74 (6.25, 17.22)

Encephalopathy post-TIPSS was noted in 11.7% (95%CI: 6.3%-17.2%) of the 198 patients in the 6 studies. There was, however, evidence of heterogeneity among the studies (P = 0.04). TIPSS indicates transjugular intrahepatic portosystemic stent shunt.

Ditah IC et al. TIPSS in refractory hepatic hydrothorax
Hepatic hydrothorax (HH) which is the accumulation of "ascitic fluid" in the pleural cavity is an uncommon complication of cirrhosis with poor prognosis. When HH fails to respond to traditional medical management (salt restriction and diuretics), it is referred to as refractory HH (RHH).

Research frontiers

Therapeutic options for RHH are limited. Transjugular intrahepatic porto-systemic shunt (TIPSS) has been proposed as an option for RHH. Because HH is rare, studies on the effectiveness of TIPSS in RHH have been restricted to small numbers of patients and findings have varied substantially and are controversial.

Innovations and breakthroughs

The purpose of this study was to evaluate the effectiveness of TIPSS in patients with RHH by pooling all available evidence in a systematic review and cumulative meta-analysis. By combining data from all available studies, the authors generated enough statistical power to study the clinical effectiveness of TIPSS in RHH.

Applications

This study shows that TIPSS leads to a clinically relevant response in about three-fourths (73%) of patients with RHH. The 45-d mortality and the 1-year survival in patients with RHH are comparable to those seen in patients with refractory ascites and variceal hemorrhage. The most important predictors of poor outcomes after TIPSS for RHH include older age and severe underlying liver disease and/or associated renal dysfunction. The authors suggest that TIPSS should be considered early in patients with RHH.

Terminology

HH is the accumulation of fluid in the pleural cavity in patients with cirrhosis. The most widely accepted mechanism for HH is the passage of fluid from the peritoneal to the pleural cavity through a diaphragmatic defect. When HH fails to respond to medical management including salt restriction and maximal tolerated diuretics, it is considered refractory. Transjugular intrahepatic porto-systemic shunt decompresses the portal system, thereby addressing the mechanism of fluid collection in the abdomen and/or chest.

Peer-review

The manuscript is very well written.
Benet A, Vidal F, Toda R, Siurana R, De Virgula CM, Richart C. Diagnosis of hepatic hydrothorax in the absence of ascites by intraperitoneal injection of 99mTc-Fluor colloid. *Postgrad Med J* 1992; 68: 112-114 [PMID: 1599266].

Machicao BJ, Balakrishnan M, Fallon MB. Pulmonary complications in chronic liver disease. *Hepatology* 2014; 59: 1627-1637 [PMID: 24089295 DOI: 10.1002/hep.26745].

Rubinstein D, McInnes IE, Dudley FJ. Hepatic hydrothorax in the absence of clinical ascites: diagnosis and management. *Gastroenterology* 1985; 88: 188-191 [PMID: 3964765].

Gordon FD, Anastopoulos HT, Crenshaw W, Gilchrist B, McEniff P, Falchuk KR, LoCicero J, Lewis WD, Jenkins RL, Trey C. The successful treatment of symptomatic, refractory hepatic hydrothorax with transjugular intrahepatic portosystemic portosystemic shunt. *Hepatology* 1997; 25: 1366-1369 [PMID: 9185754].

Ikard RW, Sawyer JL. Persistent hepatic hydrothorax after peritoneovenous shunt. *Arch Surg* 1980; 115: 1125-1127 [PMID: 7416961].

Orman ES, Lok AS. Outcomes of patients with chest tube insertion for hepatic hydrothorax. *Hepatol Inter* 2009; 3: 5-31 [PMID: 19669710 DOI: 10.1002/1610-0379].

Runyon BA. Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012. *Hepatology* 2013; 57: 1615-1653 [PMID: 23463403 DOI: 10.1002/hep.26359].

Krok KL, Cárdenas A. Hepatic hydrothorax. *Semin Respir Crit Care Med* 2012; 33: 3-10 [PMID: 22447255 DOI: 10.1055/s-0032-1301729].

Andrade RJ, Martin-Palanca A, Fraile JM, Alcantara R, Carmona C, Medina MC, Muñoz V, Melgaréo F. Transjugular intrahepatic portosystemic shunt for the management of hepatic hydrothorax in the absence of ascites. *J Clin Gastroenterol* 1996; 22: 305-307 [PMID: 8771428].

Conklin LD, Estrella AL, Weiner MA, Reardon PR, Reardon MJ. Transjugular intrahepatic portosystemic shunt for recurrent hepatic hydrothorax. *Ann Thorac Surg* 2000; 69: 609-611 [PMID: 10735708].

Degawa M, Hamaasaki K, Yano K, Nakao K, Kato Y, Sakamoto I, Nakata K, Eguchi K. Refractory hepatic hydrothorax treated with transjugular intrahepatic portosystemic shunt. *J Gastroenterol* 1999; 34: 128-131 [PMID: 10204623].

Kidokoro H, Kanazawa H, Nachi T, Narahara Y, Osada Y, Mamiya Y, Kimura Y, Taki Y, Atsukawa M, Nakatsuka Y, Kuroda H, Kidokoro H. Transjugular intrahepatic portosystemic shunting versus paracentesis plus albumin in cirrhosis with severe ascites. *Hepatology* 2004; 40: 629-635 [PMID: 15349901 DOI: 10.1002/hep.20364].

Boyer TD. Transjugular intrahepatic portosystemic shunt: current status. *Gastroenterology* 2003; 124: 1701-1710 [PMID: 12454841 DOI: 10.1016/S0016-5085(03)00252-2].

D’Amico G, Morabito A, Pagliaro L, Marubini E. Survival and prognostic factors in compensated and decompensated cirrhosis. *Dig Dis Sci* 1986; 31: 468-475 [PMID: 3009109].

Helton WS, Belshaw A, Althaus S, Park S, Coldwell DJ, Johansen K. Critical appraisal of the angiographic portacaval shunt (TIPS). *Ann Surg* 1993; 165: 566-571 [PMID: 8488938].

Jalan R, Elton RA, Redhead DN, Finlayson ND, Hayes PC. Analysis of prognostic variables in the prediction of mortality, shunt failure, variceal rebleeding and encephalopathy following the transjugular intrahepatic portosystemic stent-shunt for variceal haemorrhage. *J Hepatol* 1995; 23: 123-128 [PMID: 7499782].

Jalan R, Redhead DN, Hayes PC. Transjugular intrahepatic portosystemic stent-shunt for the treatment of variceal haemorrhage. *Br J Surg* 1995; 82: 1158-1164 [PMID: 7551988].

Rösse M, Haag K, Ochs A, Sellung M, Nöldge G, Perarnau JM, Berger B, Uem Gabelmann A, Haukenstein K. The transjugular intrahepatic portosystemic stent-shunt procedure for variceal bleeding. *N Engl J Med* 1994; 330: 165-171 [PMID: 8264738 DOI: 10.1056/NEJM199401203030303].
825-834 [PMID: 17678653]

46 D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. *J Hepatol* 2006; 44: 217-231 [PMID: 16298014]

47 Ginès P, Arroyo V, Vargas V, Planas R, Casafont F, Panés J, Hoyos M, Viladomiu L, Rimola A, Morillas R. Paracentesis with intravenous infusion of albumin as compared with peritoneovenous shunting in cirrhosis with refractory ascites. *N Engl J Med* 1991; 325: 829-835 [PMID: 1875966 DOI: 10.1056/NEJM199109193251201]

48 Rössle M, Gerbes AL. TIPS for the treatment of refractory ascites, hepatorenal syndrome and hepatic hydrothorax: a critical update. *Gut* 2010; 59: 988-1000 [PMID: 20581246 DOI: 10.1136/gut.2009.193227]

P- Reviewer: Chiu KW, Takaki A, Zhang XC S- Editor: Ji FF
L- Editor: A E- Editor: Liu SQ

Ditah IC et al. TIPSS in refractory hepatic hydrothorax
