Test compatible metrics and 2-branes

Yakov Itin

Institute of Mathematics, Hebrew University of Jerusalem,
Givat Ram, Jerusalem 91904, Israel email: itin@math.huji.ac.il

We propose a sufficient condition for a general spherical symmetric static metric to be compatible with classical tests of gravity. A 1-parametric class of such metrics are constructed. The Schwarzschild metric as well as the Yilmaz-Rosen metric are in this class. By computing the scalar curvature we show that the non-Schwarzschild metrics can be interpreted as close 2-branes. All the manifolds endowed the described metrics contain in a class of pseudo-Riemannian manifolds with scalar curvature of a fixed sign.

The question in turn is: What is similar in a long-distance analytical behavior of these two metrics and which other metrics have the same behavior? We work backwards. We do not specify the field equations, but simply postulate a jet-space of solutions which looks promising.

Consider the general spherical symmetric static metric in spatial conformal (isotropic) coordinates

\[ds^2 = e^{f(r)} dt^2 - e^{g(r)} (dx^2 + dy^2 + dz^2). \]

We are interested in asymptotically flat metrics, thus require the functions \(f \) and \(g \) to have Taylor expansions of the form

\[f(r) = \frac{a_1}{r} + \frac{a_2}{r^2} + O\left(\frac{1}{r^3}\right), \]
\[g(r) = \frac{b_1}{r} + \frac{b_2}{r^2} + O\left(\frac{1}{r^3}\right). \]

The zeroth order terms can be vanishing by rescaling the coordinates. Write the Schwarzschild line element, in the same isotropic coordinates

\[ds^2 = \left(1 - \frac{m}{r}\right)^2 dt^2 - \left(1 + \frac{m}{2r}\right)^4 (dx^2 + dy^2 + dz^2). \]

The Taylor expansions of the functions \(f \) and \(g \) for this metric are

\[f(r) = 2 \ln \left(1 - \frac{m}{r}\right) = -\frac{2m}{r} + O\left(\frac{1}{r^2}\right), \]
\[g(r) = 4 \ln \left(1 + \frac{m}{2r}\right) = \frac{2m}{r} - \frac{m^2}{2r^2} + O\left(\frac{1}{r^3}\right), \]

and the coefficients are

\[a_1 = -2m, \quad b_1 = 2m, \quad a_2 = 0, \quad b_2 = -\frac{m^2}{2}, \quad \ldots \]

The corresponding coefficients for the Yilmaz-Rosen metric \(\mathbb{B} \) are

\[a_1 = -2m, \quad b_1 = 2m, \quad a_i = b_i = 0 \quad \text{for} \quad i > 1. \]
Comparing (8) and (10) we obtain a sufficient condition for a general static spherical-symmetric asymptotic flat metric in isotropic coordinates (9) to be compatible with the macroscopic classical tests:

\[a_1 + b_1 = 0, \quad a_2 = 0. \] (9)

In order to describe by the metric (8) the field of a point with arbitrary mass, the actual value of the coefficient \(a_1 \) should, also, be arbitrary. Thus the conditions (8) define a 2-jet space of functions \(f(r) \) and a 1-jet space of functions \(g(r) \). These spaces correspond to the \(\frac{3}{2} \)-order approximation of GR.

As an example of functions containing in these jet-spaces consider a family of metrics

\[ds^2 = \left(1 + \frac{m}{kr}\right)^k dt^2 - \left(1 + \frac{m}{kr}\right)^{2k} (dr^2 + dy^2 + dz^2), \] (10)

where \(k \) is a dimensionless parameter. It is easy to see that the metric (10) satisfies the conditions (8) for an arbitrary choice of the parameter \(k \).

In order to have analytically correct functions in (10) we require the parameter \(k \) to be integer. Note that this restriction is taken only for simplification. We can also consider the parameter \(k \) as an arbitrary real number, but in this case we have made an analytical redefinition of the metric on the small distances \(r \leq \frac{m}{k} \).

For \(k = 2 \) one obtain, certainly, Schwarzschild metric while in the limits \(k \rightarrow \pm \infty \) (10) approaches Yilmaz-Rosen metric.

In order to obtain the the metric (10) in Schwarzschild coordinates we have to use the new radial coordinate \(r = r(\rho) \), which is implicit defined by the equation

\[\left(1 + \frac{m}{kr}\right)^k r = \rho. \] (11)

For \(k < 0 \) the metric (10) is singular at a distance

\[r = \frac{m}{k} \implies \rho = 0 \] (12)

i.e. in the origin of the Schwarzschild coordinates.

As for \(k > 0 \) the metric (8) is singular on a sphere

\[r = \frac{m}{k} \implies \rho = \frac{2^k}{k}. \] (13)

Note that the physical radius of singular sphere \(\rho \) increases very fast with growth of the parameter \(k \). In order to clarify the nature of the singularities compute the scalar curvature of the metric (10)

\[R = \frac{2 - k}{k} \left(\frac{m^2}{r^4} \cdot \frac{1 + \frac{m}{r}}{1 - \frac{m}{r}}\right)^2 \left(1 + \frac{m}{kr}\right)^{-2k} (1 + \frac{m}{kr})^{-2k}. \] (14)

Note that the expression in the brackets are positive thus the sign of the scalar curvature depends only on the value of the parameter \(k \). Thus all the manifolds endowed the metric (10) contain in a class of pseudo-Riemannian manifolds with a scalar curvature of a fixed sign.

The scalar curvature is zero only in the case of Schwarzschild metric - \(k = 2 \).

Consider the different regions for the values of the parameter \(k \):

1) \(k > 2 \)

The scalar curvature negative in every final point on the manifold. Near the singular value of coordinates \(r = \frac{m}{k} \) the scalar curvature is singular \(R \rightarrow -\infty \). Thus this coordinate singularity is physical. The scalar curvature inside of the spherical envelope decreases very fast. This singularity can be interpreted as a rigid sphere - close 2-brane.

![FIG. 1. The scalar curvature (14) plotted as a function \(R/m^2 \) of a radial distance \(r/m \) for \(k = 3 \).](image)

For \(k \rightarrow \infty \) we obtain the expression for the scalar curvature of Yilmaz-Rosen metric (4)

\[R = -2 \frac{m^2}{r^4} e^{-2\frac{m}{r}}. \] (15)

2) \(k = 1 \)

The scalar curvature is positive. We have the metric in isotropic coordinates

\[ds^2 = \left(1 + \frac{m}{r}\right)^2 dt^2 - \left(1 + \frac{m}{r}\right)^2 (dr^2 + dy^2 + dz^2). \] (16)

From the relation (11) we obtain the transform to the Schwarzschild radial coordinate

\[\rho = r + m. \]

The metric in these coordinates takes the form

\[ds^2 = \left(1 - 2 \frac{m}{\rho}\right) dt^2 - \left(1 - \frac{m}{\rho}\right) d\rho^2 - \rho^2 d\Omega^2. \] (17)

The scalar curvature of the metric (16) is
$$R = \frac{m^2}{r^4} \cdot \frac{1 + (1 - \frac{m}{r})^2}{(1 - \frac{m}{r})^2 (1 + \frac{m}{r})^4}. \quad (18)$$

This expression is positive in every point of the manifold. It is singular for $r = m$ or equivalently for $\rho = 2m$. Thus the coordinate singularity for $\rho = 2m$ is physical.

FIG. 2. The scalar curvature R plotted as a function R/m^2 of r/m for $k = 1$.

This singularity can be also interpreted as a rigid sphere - close 2-brane.

3) $k \leq -1$

The scalar curvature is negative. Consider for instance $k = -1$. The metric takes the form

$$ds^2 = \left(\frac{1 - \frac{m}{r}}{1 + \frac{m}{r}}\right) dt^2 - \left(1 - \frac{m}{r}\right)^{-2} (dx^2 + dy^2 + dz^2). \quad (19)$$

The metric is singular at the Schwarzschild radius $r = m$.

The scalar curvature takes a form

$$R = -3 \frac{m^2}{r^4} \cdot \frac{1 + (1 + \frac{m}{r})^2}{(1 + \frac{m}{r})^2}. \quad (20)$$

This value is regular for every r (except of the origin).

FIG. 3. The scalar curvature (20) plotted as a function R/m^2 of r/m for $k = 1$.

In order to describe by the metric (19) a black hole one should locate it’s surface at a distance $r = m$ where $g_{00} = 0$. In fact this surface cannot be reached by any material object. The proper radial distance from the surface $r = m$ to a point $r_0 > m$ is

$$l = \int_m^{r_0} \frac{dr}{(1 - \frac{m}{r})^2} \to \infty$$

The proper time for a radial null geodesic is also infinite

$$T = \int_m^{r_0} \frac{(1 + \frac{m}{r})^2}{(1 - \frac{m}{r})^2} \frac{dr}{r} \to \infty.$$

Thus the surface of a star cannot never reach the Schwarzschild radius and a realistic physical system can be modeled by the metric (19) only for a distance $r > m$. The behavior of the metric is similar to the spherical-symmetric solution in the gravity model of Lee and Lightman. [8].

[1] E. Witten, S.-T. Yau: “Connectedness of the boundary in the AdS/CFT correspondence”, hep-th/9910243.
[2] H. Yilmaz: Ann. Phys. (N.Y.) 101 (1976) 413–432.
[3] N. Rosen: Ann. Phys. (N.Y.) 84 (1974) 455–473.
[4] S. Kaniel and Y. Itin: Nuov. Cim. 113B (1998) 393-400.
[5] Y. Itin: Gen. Rel. Grav. 31 (1999) 187–204.
[6] U. Muench, F. Gronwald, F. W. Hehl: Gen. Rel. Grav., 30 (1998), 933-961.
[7] K. Watt, C. W. Misner: “Relativistic Scalar Gravity: A Laboratory for Numerical Relativity”, gr-qc/9910057.
[8] D.L. Lee and A.P. Lightman: Phys. Rev., D7 (1973), 3578.