Molecular characterization of *Boeremia strasser*i the causal agent of black stems and rhizomes rot of peppermint

Beata Zimowska¹ · Ewa Dorota Król¹ · Agnieszka Furmańczyk¹ · Barbara Abramczyk² · Sylwia Okoń³

Published online: 2 March 2018 © The Author(s) 2018. This article is an open access publication

Abstract

The molecular characterization of *Boeremia strasseri* (Moesz) Gruyter et Verkley (basionym *Phoma strasseri* Moesz) isolates from peppermint crops grown in south-eastern and central Poland was studied using the Random Amplified Polymorphic DNA (RAPD) -PCR technique. Tests were performed using randomly selected primers. DNA profiles obtained using five primers proved to be useful in determining the genetic variability among *B. strasser*i genotypes. Molecular analysis of four loci: (i) rDNA internal transcribed spacer region (ITS1, 5.8S, ITS2); (ii) LSU (partial large subunit DNA 28S); (iii) *tub2* (gene region of β-tubulin); (iv) *act* (gene region of gamma-actin) proved that the actin gene is the most suitable DNA barcode for the accurate and rapid identification *B. strasseri* species.

Keywords *Phoma sensu lato* · *Mentha piperita* · Genetic relationship · Taxonomy

Introduction

The genus *Phoma* Sacc. emend. Boerema et G.J. Bollen (*Pleosporales*) is a cosmopolitan taxon of coelomycetous fungi containing numerous plant pathogenic, saprobic and endophytic species associated with a wide range of hosts (Aveskamp et al. 2008). This phytopathologically significant fungal genus has always been considered one of the most difficult to identify (Aveskamp et al. 2008; Zhang et al. 2009). Initially, it comprised more than 3000 species (Monte et al. 1991). Such a large number of taxa described within *Phoma* was related to the use of nomenclature mainly based on the characteristics of the host plant and marginalization of micro-morphological properties (Aveskamp et al. 2008). Intensive work carried out by Dutch mycologists, who had studied the morphology of these fungi in artificial cultures since 1992 led to their division into nine sections (Boerema 1997). The results of 40 years of taxonomic research based on the properties of *Phoma* species were presented in an article on their identification, and, consequently, the number of species was reduced to 223 (Boerema 1997; Boerema et al. 2004). However, the developed taxonomic system seemed a little artificial to the above authors, thus they began molecular DNA analyses of the species within individual sections. These studies revealed the phylogenetic heterogeneity of the species in the *Phoma* sections, disproved the existing division of the genus into sections and caused the necessity to re-classify (de Gruyter et al. 2009, 2010, 2012; Aveskamp et al. 2010). The genus *Phoma* was divided into clades, raised to the rank of genera, that comprised species with similar levels of relationships (Aveskamp et al. 2010).

*Boeremia strasser*i (Moesz) Gruyter et Verkley (basionym *Phoma strasseri* Moesz), family Didymellaceae (Chen et al. 2015), has been reported as the causal agent of black stems and rhizome rot of peppermint (*Mentha piperita* L.) in the USA (Horner 1971), Japan (de Gruyter et al. 2002), India (Kalra et al. 2004), Hungary (Paizs and Naggy 1975), and is present in Poland since 2004 (Zimowska and Machowicz-Stefaniak 2005; Zimowska 2007). The disease causes yield losses up to 90% due to the fast degradation of stem and rhizome tissues. A very high activity of β-glucosidase allows *B. strasseri* to penetrate the host cell wall and tissues, followed
by the action of other pectinolytic enzymes that break down pectin to low molecular weight compounds, which are the primary source of carbon for the pathogen (Zimowska 2012; Zimowska and Targowski 2015).

In this study we present the molecular characterization of *B. strasserii* isolates obtained from peppermint cultivated in various regions of Poland. We also attempted to evaluate the taxonomy of two isolates recovered from *Melissa officinalis*.
Table 3 Primer used for PCR and sequencing

Locus	Primer	Primer sequence 5' to 3'	Melting temperature (°C)	Orientation	References
ITS	ITS1	TCCGTAGGTGAACCTGCGG	59	Forward	White et al. 1990
ITS4	TCCTCGCTTTATTTGATGTC	59	Reverse	White et al. 1990	
LSU	LR0R	ACCCGCTGAACTTAAGC	60	Forward	Vilgalys and Hester 1990
LR5	TCCTGAGGAAACTTCCG	60	Reverse	Vilgalys and Hester 1990	
β-tubulin	BTsa	GTAAACCAATACTCGGTGCTGTTTAC	60	Forward	Glass and Donaldson 1995
β-tubulin	BTsb	ACCCTGATGTAAGCCTTGTC	60	Reverse	Glass and Donaldson 1995
Actin	ACT-512F	ATGTGCAAGGCCGGTTTCGC	55	Forward	Carbone and Kohn 1999
Actin	ACT-783R	TACGAGTCTCTTGCCCAT	55	Reverse	Carbone and Kohn 1999

(lemon balm) and Leonurus cardiaca (motherwort) using barcoding sequences. Many phylogenetic studies were based on internally transcribed spacers (ITS). However, in the case of Phoma sensu lato, ITS sequence analyses did not show significant nucleotide differences to infer relationships (Balmas et al. 2005). Considering the above, we have addressed other gene loci, i.e. LSU, β-tubulin and actin in data sets to enhance the phylogenetic analysis.

Materials and methods

Fungal isolates The material used for the study consisted of 22 isolates of B. strasseri, obtained from symptomatic peppermint (M. piperita) stems and rhizomes from earlier research on the health of peppermint in the south-eastern and central regions of Poland, and two Boeremia-like isolates collected from different hosts (Zimowska 2007, 2008). For comparative purposes, the reference isolate CBS 261.92 was retrieved from the culture collection of the CBS KNAW Fungal Biodiversity Centre, Utrecht (The Netherlands). Origin of the isolates is shown in Table 1. The Boeremia isolates have previously been used to study their morphological features following the method described by Boerema et al. (2004). Some of these isolates were also examined for pathogenicity to peppermint in the south-eastern and central regions of Poland, and two Boeremia-like isolates collected from different hosts (Zimowska and Machowicz-Stefaniak 2005; Zimowska 2012). Single spore cultures of these isolates were grown on 2% malt extract agar plates (MEA; Difco Laboratories, USA), at 22 °C in the dark for two weeks. Four replicates of each isolate were performed.

For phylogenetic analysis, sequences of 20 additional isolates of Boeremia spp. were retrieved from GenBank.

DNA extraction and analysis Genomic DNA was extracted from fungal mycelium using the Invisorb Spin Plant Midi Kit (Stratec Molecular, Germany), according to the manufacturer’s protocol. DNA concentration was first estimated on 1.5% agarose gel and compared with GeneRuler™ DNA Ladder Plus (Thermo Scientific, USA) then measured using a UV-Vis NanoDrop 2000c/2000 spectrophotometer (Thermo Scientific). DNA samples were diluted to a concentration of 20 ng/μl and stored at 20 °C for future use.

Estimation of Boeremia strasseri genetic variability Genetic variability of the studied isolates was investigated using randomly selected Random Amplified Polymorphic DNA (RAPD) primers (Operon Technologies, USA). A set of 30 primers were tested in five B. strasseri isolates, and five primers generated reproducible and detectable amplification products and were selected for further study (Table 2).

RAPD-PCR analyses were performed according to Williams et al. (1990) with some modification. The reaction volume was 20 μl and the reaction solution contained 1 x Taq buffer [750 mM Tris HCl, pH 8.8, 200 mM (NH4)2SO4, 0.1% Tween 20] (Thermo Scientific), 2.5 mM x MgCl2, 0.1 mM dNTP, 0.1 U polymerase Taq (Thermo Scientific), 0.2 μM primer, 20 ng/μl of genomic DNA and distilled water. The control reaction was run with water instead of DNA template. Amplification was performed using a DNA Engine Dyad Thermal Cycler (Biorad, USA), using the following program: initial denaturation for 3 min at 95 °C followed by 45 cycles consisting of 45 s of denaturation at 94 °C, 45 s of annealing at 37 °C, 45 s extension at 72 °C and a final extension at 72 °C for 10 min. Amplification products were separated by electrophoresis using a 1.5% agarose gel at 80 V for 1.5 h in 1 x TBE buffer containing 0.01% ethidium bromide. The products obtained were visualized under UV light, photographed and analyzed using BioGene (UK) software.

RAPD products were scored on photographs as present (1) or absent (0). Only bright and reproducible products were scored. Genetic pairwise similarities (SI-similarity index) between genotypes were evaluated according to Dice’s formula after Nei and Li (1979). Cluster analysis was conducted using the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) distance method implemented in the PAST program (Hammer et al. 2001). Clustering was verified by bootstrapping. Principal component analysis (PCA) was performed using PAST software (Hammer et al. 2001).
Species name	Strain number	Host	Locality	GenBank accession no.
Boeremia crinicola	CBS 109.79	Crinum powellii L.	Netherlands	GU23773.1GU237927.1GU237489.1KY484558.1
	CBS 118.93	Crinum sp.	Netherlands	GU237758.1GU237928.1GU237490.1KY484559.1
Boeremia diversispora	CBS 102.80	Phaseolus vulgaris L.	Kenya	GU237725.1GU237930.1GU237492.1EU880861.1
	CBS 101214	Phaseolus huanus L.	Zambia	KY48463.5.1–KY484738.1EU880862.1
	CBS 53.1.86	Vigna sp.	Burundi	–EU880863.1
	CBS 101194	Phaseolus vulgaris L.	Netherlands	GU237716.1GU237929.1GU237491.1EU880864.1
Boeremia exigua	CBS 107.21	Abelmoschus esculentus (L.) Moench	–	KT389491.1KT389708.1KT389785.1–
	CBS 118.38	Cheiranthus cheiri L.	Denmark	KT389489.1KT389706.1KT389783.1–
	CBS 119.38	Nicotiana tabacum L.		KT389490.1KT389707.1KT389784.1–
Boeremia exigua var. exigua	CBS 101201	Phlox sp.	Netherlands	KY484641.1KY484741.1KY484561.1
	CBS 101150	Cichorium intybus L.	Netherlands	GU237715.1EU754182.1GU237933.1GU237495.1–
Boeremia exigua var. gibescens	CBS 101150	C. intybus	Netherlands	––KY484562.1
Boeremia exigua var. inoxydalis	CBS 372.75	Vinca minor L.	Netherlands	KY484656.1–KY484754.1KY484565.1
Boeremia exigua var. heteromorpha	CBS 119730	Coffea arabica L.	Brasil	––KY484564.1
	CBS 119730	C. arabica	Brasil	GU237759.1GU237942.1GU237504.1–
	CBS 109183	C. arabica	Cameroon	GU237748.1GU237943.1GU237505.1KY484560.1
Boeremia foveata	CBS 341.67	Solanum tuberosum L.	Northern Ireland	GU237783.1GU237947.1GU237509.1EU880894.1
	CBS 109176	S. tuberosum	Bulgaria	GU237742.1GU237946.1GU237508.1EU880892.1
	CBS 200.37	S. tuberosum	United Kindom	–KY484761.1EU880893.1
Boeremia strasser	CBS 126.93	Mentha sp.	Nederland	GU237773.1NR135985.1GU237956.1GU237518.1EU880904.1
	CBS 261.92	Mentha piperita L.	USA	GU237813.1GU237957.1GU237519.1EU880905.1
F 126	M. piperita	Poland		MF113457MF113433MF121809MF121785
F 289	M. piperita	Poland		MF113458MF113434MF121810MF121786
F 365	M. piperita	Poland		MF113459MF113435MF121811MF121787
F 742	M. piperita	Poland		MF113460MF113436MF121812MF121788
F 743	M. piperita	Poland		MF113461MF113437MF121813MF121789
F 937	M. piperita	Poland		MF113462MF113438MF121814MF121790
F 1023	M. piperita	Poland		MF113463MF113439MF121815MF121791
ML 125	M. piperita	Poland		MF113464MF113440MF121816MF121792
ML 134	M. piperita	Poland		MF113465MF113441MF121817MF121793
ML 149	M. piperita	Poland		MF113466MF113442MF121818MF121794
ML 159	M. piperita	Poland		MF113467MF113443MF121819MF121795
ML 175	M. piperita	Poland		MF113468MF113444MF121820MF121796
ML 178	M. piperita	Poland		MF113469MF113445MF121821MF121797
Sequence analysis of ITS region, LSU, β-tubulin, actin

Phylogenetic analyses were based on differences in nucleotide sequences of PCR-amplified fragments of the rDNA ITS region (ITS1, 5.8 rDNA gene, ITS2) and three other loci: LSU, β-tubulin (tub2), and actin (act). Two universal primers were used for each reaction: ITS1 and ITS4, the LSU region with LR0R and LR5, the tub2 region with Bt2a and Bt2b primers, and the act region with ACT-512F and ACT-783R, respectively (Table 3).

PCR reaction was performed in a total volume of 25 μl according to Sambrook and Russel (2001). PCR products with fluorescent dye addition were separated electrophoretically in a 1.5% agarose gel at 80 V for 1.5 h in 1X TBE buffer containing 0.01% ethidium bromide and visualized under UV light. After checking and determining the size of the resulting PCR product, it was subjected to purification using a low melting point temperature agarose gel. Sequencing was conducted by the Genomed S.A. (Poland) using PCR primers and a Big Dye® Terminator Cycle Sequencing Kit V. 3.1 (Applied Biosystems, Life Technologies, USA) and separated on a 3730XL DNA Analyzer capillary sequencer. Sequences from each primer combination were used to obtain consensus sequences with BioEdit v. 7.2.5 (Hall 1999). Nucleotide sequences were analysed with sequences retrieved from GenBank using BLAST software (http://www.ncbi.nlm.nih.gov/BLAST/) (Altschul et al. 1997). The sequence of native isolates were compared with reference strains of other Boeremia spp. downloaded from GenBank (https://www.ncbi.nlm.nih.gov/) (Table 4). Phylogenetic analysis was carried out with the “one click” tool using the Phylogeny.fr program (http://www.phylogeny.fr). Sequences were aligned to each other using the MUSCLE (v 3.7), program and the sequence regions containing gaps or mismatched ends with the Gblocks (v 0.91b) program. A phylogenetic tree was constructed by using the PhyloML bootstrap (v 3.0) with an HKY85 algorithm of the maximum likelihood of substitution model and presented graphically using TreeDyn (v 198.3) gamma shape parameter 88.402.

Results

Of the 30 RAPD primers only five, i.e. OPA-13, OPL-07, OPR-15, OPU-05 and OPV-10, were useful for genetic similarity determination among the studied isolates of B. strasseri.

RAPD analysis amplified 58 fragments based on five selected primers, 43 of which (74.14%) were polymorphic, while seven fragments were monomorphic. The number of amplified DNA fragments per primer ranged from nine (OPU-05) to 14 (OPR-15 and OPL-07) with sizes ranging between 324 and 2300 bp (Table 2). Of the 58 amplification products, eight were specific for single isolates. The highest number of specific products was identified in isolates Lc722.
and M1532 (three specific products each) recovered from *L. cardiaca* and *M. officinalis*, respectively.

Genetic similarity matrices were produced based on RAPD markers using the Sørensen-Dice coefficient. The genetic similarity between isolates ranged from 0.370 to 1.00. Isolates F 126 and F 1023, F 126 and ML 125, F 289 and ML 134, F 1023 and ML 125, F 1023 and ML 175, ML 125 and ML 175 as well as a group of three isolates (F 365, F 742 and F 743) showed 100% similarity. The average similarity of the analyzed isolates was 0.820. Isolates collected from *L. cardiaca* and *M. officinalis* showed the lowest similarity to other isolates, with values of 0.459 and 0.508, respectively. Cluster analysis using the UPGMA method divided isolates into two main groups A and B (Fig. 1). Group A comprised isolates from peppermint that were distributed into three subgroups, regardless of the plant organ and place of origin. Two isolates collected from lemon balm and motherwort were grouped in cluster B.

![Fig. 1 Dendrogram of 24 *Boeremia* isolates constructed by the UPGMA method based on RAPD-PCR](image1)

![Fig. 2 RAPD-PCR results of the normalized component analysis (PCA) of 24 *Boeremia* isolates and reference strain](image2)
The relationships between the 25 analyzed native isolates were determined based on principal component analysis (PCA) (Fig. 2), which gave results comparable to those obtained by UPGMA clustering. *Boeremia* spp. isolates formed two distinct groups, that corresponded to UPGMA clusters A and B. For the RAPD data, the first three principal components explained 70.5% of the total variation, with PC-1, PC-2 and PC-3 accounting for 40.8%, 16.4% and 13.3% of the total variation, respectively.

Sequence similarity to the reference *B. strasseri* isolate CBS 261.92 was 99% for the ITS region, 99% for the LSU region. M 1532 isolate showed 98% similarity to the *tub2* region, Lc 722 isolate 97%, while the similarity for the *act* region was 96%.

The phylogenetic tree, based on the ITS sequences of 24 tested isolates and other selected *Boeremia* reference strains showed the clustering of all isolates into two main clades. The first clad was divided into two sub-clades. The first one included 22 native isolates of *B. strasseri*, and reference strains of *B. strasseri*, two reference strains of *Boeremia diversispora* (Bubák) Aveskamp, Gruyter et Verkley and *Boeremia crinicola* (Siemaszko) Aveskamp, Gruyter et Verkley,
respectively, while the reference strain of *B. divertispora* was in a separate branch. The second clad included one reference strain of *Boeremia exigua* (Desm.) Aveskamp, Gruyter et Verkley, *Boeremia foveata* (Foister) Aveskamp, Gruyter et Verkley and the native isolates M 1532 and Lc 722 (Fig. 3a). As a result of the phylogenetic analysis on the LSU region two clades were obtained, one of which grouped only native isolates, while the other included reference strains of *Boeremia* spp. (Fig. 3b).

The phylogenetic tree constructed with *tub2* sequences of 24 native isolates and reference strains of *Boeremia* spp. grouped these isolates into two main clades, the first of which was divided into five sub-clades, characterized by smaller or larger sequences variability. The one of them included two reference strains of *B. crinicola*, while the second grouped 15 native isolates and two reference strains of *B. strasseri*. The second clad was divided into tree sub-clades. The first one grouped in the individual tree reference strains of *B. divertispora*, second included tree reference strains of *B. foveata*, while the third included two native isolates Lc 722 and M 1532 and reference *B. exigua* strains (Fig. 3c).

The phylogenetic analysis of the *act* region produced four clades. The first one included 22 native isolates and two reference strains of *B. strasseri*, the second grouped two native isolates Lc 722 and M 1532 with *Boeremia exigua* var. *exigua* (Desm.) Aveskamp, Gruyter et Verkley and *B. foveata* reference strains, while *B. foveata* was included in the individual sub-clades. The third clad grouped reference strains of...
Discussion

The identification of *Phoma* species based on *in vitro* morphological characteristics is rather difficult and depends on the fungal strain, its place of origin and the host plants. Since this resulted in discrepancies and misidentifications, a multifaceted approach including rapid molecular tools, is desirable, to enable accurate identification. PCR-based RAPD is one of the most common techniques to estimate genetic diversity among *Phoma* isolates (Zhuo et al. 2005; Rai and Tiwari 2014).

Balmas et al. (2005) used the RAPD method to characterize Italian isolates of *Phoma tracheiphila* (Petri) L.A Kantsch. et Gikaschvili. They found that the analyzed isolates were genetically identical. On the other hand, Zhuo et al. (2005) found a significant genetic variation among *Didymella macrostoma* (Mont.) Q. Chen et L. Cai (Basionym *Phoma macrostoma* Mont.) isolates based on RAPD markers. Tiwari et al. (2013) showed that *Allophoma tropica* (R. Schneid. et
Boerema) Q. Chen et L. Cai (basionym *Phoma tropica* R. Schneid. et Boerema) isolates collected from various host plants and environmental conditions were genetically differentiated. Our study analyzed 22 isolates of *B. strasseri*, obtained from different parts of plants growing under different environmental conditions, as well as two *B. exigua* var. *exigua* isolates from various hosts. The results showed that the isolates from peppermint were highly similar and grouped together on the dendrogram. In contrast, the isolates from lemon balm and motherwort were genetically different and formed a separate cluster. Tiwari et al. (2013) suggested that the genetic diversity observed among *P. tropica* species might be due to difference in environmental conditions or different host types from which the species were isolated. Our study confirmed that host differences significantly influenced the genetic diversity of the analyzed isolates.

Comparison of the ITS region sequence, which is widely used in taxonomy and molecular phylogeny (Balmas et al. 2005; Aveskamp et al. 2009; Rai and Tiwari 2014), showed insignificant nucleotide differences. For this reason, it is difficult to clearly confirm the affiliation of the tested isolates to any given species. Similar correlations were found by Badillo-Vargas et al. (2008) who studied *Phoma* species. They observed that nucleotide sequences in the ITS region of *Phoma putaminum* Speg. and *Didymella macrostoma* (Mont.) Q. Chen et L. Cai [basionym *Phoma macrostoma* var. *incolorata*]
(A.S. Horne) Boerema et Dorenb.)] matched the sequence of closely related species. In another study distinct morphologi-
ical variants of Phoma exigua could not be distinguished from one another based on the molecular analysis of their ITS re-
gions, (Abeln et al. 2002).

Our results confirmed the usefulness of the actin barcode in species determination. The same locus had previously been
addressed while identification techniques were developed, proving highly reliable for deep-level phylogeny (Voigt et al.
2001; Aveskamp et al. 2009), and useful for discriminating closely related Phoma taxa (Aveskamp et al. 2009).

The present study, which is based on DNA phylogeny, showed that morphological characterization on standardized
media is not reliable for identification at the species level. In fact, two fungal isolates from L. cardiaca and M. officinalis
that were classified as B. strasseri based on their morphological characteristics, showed greater similarity to B. exigua var.
exigua than to B. strasseri at the DNA level.

Concluding, to truly elucidate the taxonomy of Phoma-like genera, a concerted global effort is required not only for
reclassifying previously described species, but also for providing GenBank with new sequences of isolates from countries
that have been largely neglected or undersampled by mycol-
ologists and plant pathologists.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Abeln ECA, Stax AM, de Gruyter J, van der As HA (2002) Genetic
differentiation of Phoma exigua varieties by means of AFLP finger-
prints. Mycol Res 106:419–427

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids Res 25:
3389–3402

Aveskamp MM, de Gruyter J, Crous PW (2008) Biology and recent
developments in the systematics of Phoma, a complex genus of major
quarantine significance. Fungal Divers 31:1–24

Aveskamp MM, Woudenberg JHC, de Gruyter J, Turkos E, Groenewald
JZ, Crous PW (2009) Development of taxon-specific sequence char-
acterized amplified region (SCAR) markers based on actin se-
quences and DNA amplification fingerprinting (DAF): a case study
in the Phoma exigua species complex. Mol Plant Pathol 10:403–414

Aveskamp MM, de Gruyter J, Woudenberg JHC, Varkley GJM, Crous
PW (2010) Highlights of the Didymellaceae: a polyphasic approach
to characterise Phoma and related pleosporalean genera. Stud Mycol
65:1–60

Badillo-Vargas IS, Rivera-Vargas LI, Calle-Bellido J (2008)
Morphological, pathogenic and molecular characterization of
Phoma spp. isolated from onion field soils in Puerto Rico. Journal
of Agriculture-University of Puerto Rico 92:73–86

Balmas V, Scherri B, Ghignone S, Salem AOM, Cacciola SO, Migheli Q
(2005) Characterisation of Phoma tracheiphila by RAPD-PCR,
microsatellite-primed PCR and ITS rDNA sequencing and develop-
ment of specific primers for in planta PCR detection. Eur J Plant
Pathol 111:235–247

Boerema GH (1997) Contributions towards a monograph of Phoma
(Coelomycetes) – V. Subdivision of Specific and Infra-specific Taxa in Culture. CABI Publishing, Wallingford

Carbone I, Kohn LM (1999) A method for designing primer sets for
speciation studies in filamentous ascomycetes. Mycologia 91:553–
560

Chen Q, Zhang K, Zhang GZ, Cai L (2015) A polyphasic approach to
classify two novel species of Phoma (Didymellaceae) from China.
Phytotaxa 197:267–281

De Gruyter J, Boerema GH, van der Aa HA (2002) Contributions towards
a monograph of Phoma (Coelomycetes) VI – 2. Section Phyllostictoides: outline of its taxa. Persoonia 18:1–53

De Gruyter J, Aveskamp MM, Woudenberg JHC, Varkley GJM, Groenewald
JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma
complex. Mycol Res 113:508–519

De Gruyter J, Woudenberg JHC, Aveskamp MM, Varkley GJM,
Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma.
Mycologia 102:1066–1081

De Gruyter J, Woudenberg JHC, Aveskamp MM, Varkley GJM,
Groenewald JZ, Crous PW (2012) Redisposition of Phoma-like
anamorphs in Pleosporales. Stud Mycol 75:1–56

Glass NL, Donaldson GC (1995) Development of primer sets designed
for use with the PCR to amplify conserved genes from filamentous
Ascomycetes. Appl Environ Microbiol 61:1323–1330

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment
editor and analysis program for Windows 95/98/NT. Nucleic Acids
Symp Ser 41:95–98

Hammer Q, Harper DAT, Ryan PD (2001) Past: Paleontological Statistics
Software Package for Education and Data Analysis. Palaeontol
Electron 4:1–9

Homer CE (1971) Rhizome and stem rot of peppermint caused by Phoma
strasseri. Plant Diseases Reports 5:814–816

Kalra A, Singh HB, Pandey R, Samad A, Patra NK, Kumar S (2004)
Diseases in mint: causal organisms, distribution and control mea-
sures. Journal of Herbs, Spices & Medicinal Plants 11:23–30

Monte E, Bridge PD, Sutton BC (1991) An integrated approach to
systematics. Mycopathologia 115:89–91

Nei M, Li WH (1979) Mathematical model for studying genetic variation
in terms restriction endonucleases. Proceedings National Academy
of Sciences USA 76:5269–5273

Paix L, Naggy F (1975) Phoma strasserii: A new pathogen of mint in
Hungary. Herba Hungarica 14:65–75

Rai MK, Tiwari VV (2014) Advances in taxonomy of genus Phoma:
Polyphyletic nature and role of phenotypic traits and molecular sys-
tematics. Indian J Microbiol 54:123–128

Sambrook J, Russel DW (2001) Molecular Cloning: A Laboratory
Manual, 3rd edn. Cold Spring Laboratory, New York

Tiwari VV, Gade AK, Rai M (2013) A study of phylogenetic variations
among Indian Phoma tropica species by RAPD-PCR and ITS-
rDNA sequencing. Indian J Biotechnol 12:187–194

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of
enzymatically amplified ribosomal DNA from several Cryptococcus
species. J Bacteriol 172:4239–4246

J Plant Pathol (2018) 100:13–24
Voigt K, Malgorzata J, Wöstemeyer J (2001) Strain typing of Polish
Leptosphaeria maculans isolates supports at the genomic level the
multispecies concept of aggressive and non-aggressive strains.
Microbiol Res 156:169–177

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990)
DNA polymorphism amplified by arbitrary primers are useful as
genetic markers. Nucleic Acids Res 18:6531–6535

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetic. In:
Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR
Protocols. Academic Press, San Diego, pp 315–322

Zhuo L, Bailey KL, Chen CY, Keri M (2005) Molecular and genetic
analyses of geographic variation in isolates of Phoma macrostoma
used for biological weed control. Mycologia 6:612–620

Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg
JH, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD
(2009) Multi-locus phylogeny of the Pleosporales: a taxonomic,
ecological and evolutionary reevaluation. Stud Mycol 64:85–102

Zimowska B, Machowicz-Stefaniak Z (2005) Characteristics of Phoma
strasseri isolates not reported in Poland pathogen of peppermint
(Mentha piperita L.) Acta Agrobot 58:151–162

Zimowska B (2007) Fungi colonizing and damaging different parts of
peppermint (Mentha piperita L.) cultivated in south-eastern Poland.
Herba Polonica 53:97–105

Zimowska B (2008) Biodiversity of fungi colonizing and damaging se-
lected parts of motherwort (Leonurus cardiaca L.) Herba Polonica
54:30–40

Zimowska B (2012) Pathogenicity and ultrastructural studies of the mode
of penetration by Phoma strasseri in peppermint stems and rhi-
zomes. Pol J Microbiol 61:273–279

Zimowska B, Targoński Z (2015) Pectinolytic activity of Boeremia
strasseri, the causal agent of black stem and rhizomes rot of pepper-
mint. Acta Scientiarum Polonorum Hortorum Cultus 14:19–28