Hematologic malignancies in children: Epidemiological aspects in the pediatric oncology department of Oran Anti-Cancerous center, Algeria (2009-2013)

Chahrazed Bachir Bouiadjra1, Oum Kaltoum Seddiki1, Mustapha Difa2

1 Department of Biology, Faculty of Science of Nature and Life, Djillali LIABES University of Sidi Bel Abbes (UDL-SBA), Algeria
2 Laboratory of Health & Environment, Department of Biology, Djillali LIABES University of Sidi Bel Abbes (UDL-SBA), Algeria

ABSTRACT

The incidence of the hematological malignancies, cancers of blood and lymphoid organs, has been in continuous increase for the last 20 years. In Algeria, few data on hematological malignancies are available in the absence of a population register. The aim of this work is to describe the epidemiological aspect of hematological malignancies in children from northwestern Algeria.

This study was carried out in 366 patients, with hematological malignancies, aged from 1 month to 15 years, over a period of 5 years (2009-2013). The study was carried out in the Anti-Cancerous Centre of Oran, Algeria.

We noted a predominance of male gender comparing to the females with a sex ratio M/F of 1.2. A male predominance was found for all pathologies (sex ratio of 1:0.8 for acute lymphoid leukemia, ALL) except for acute myeloid leukemia, AML where a female predominance was observed with a sex ratio F/M of 1:2.1. 0-3 years age group is the most affected by these haemopathies with 34.2%, however, patients older than 10 years are the least affected. The most frequent malignant haemopathies was the ALL with 60.9%, followed by the AML with 16.9%. The mortality rate in all the studied patients is about 8.2%. The mortality rate in patients with chronic myeloid leukemia (CML) was about 20%, which is significantly higher compared to those recorded in patients with ALL and LH (5.4% and 5%, respectively).

This study highlights the need for broader strategies for better understanding of all epidemiological aspects of childhood hematological malignancies and for adopting case management and prevention policies.

Keywords: Hematologic malignancies, epidemiological characteristics, children, acute lymphoblastic leukemia, Oran anti cancerous centre.

INTRODUCTION

Hematological malignancies, neoplasms account for about 40% of cancers in children under the age of 15 years, and developed from the bone marrow hematopoietic cells and lymphatic system. This kind of hematological malignancy develops at the expense of lymphoid lines precursors, with a strong preponderance of B-lymphoid line.1

Leukemia is the most prevalent pediatric cancer. The acute lymphoid leukemia (ALL) accounts for about 80% of the cases (75% of them are B-ALL), whereas the acute myeloid leukemia (AML), which is traditionally encountered in adults, accounts for only 20% of cases.2 Usually, the chronic lymphoid leukemia (CLL) is not found in children, however, the chronic myeloid leukemia (CML) is extremely rare.3-4 The upsurge of Hodgkin’s lymphoma (HL) incidence is associated with the age of children.5 On the other hand, the non-Hodgkin’s lymphoma (NHL) is very rare before the first year of life. The Burkitt lymphomas involving mature B-cells represent the half of the NHL and represent the most common histological type in children aged 3 to 8 years; nonetheless, their impact decreases in older children. The T and B lymphoblastic lymphomas represent 17% and 5% of cases, respectively.6
The ionizing radiation exposure is recognized as the major risk factor for malignant hemopathies in children. However, other risk factors are established, such as non-ionizing radiation, electromagnetic fields of extremely low frequency and exposure to radon.

The purpose of our retrospective study was to describe the epidemiological aspect of malignant hemopathies over a period of 5 years (2009-2013) at the level of pediatric oncology facility of the Anti-Cancer Centre of Oran (North-Western Algeria).

METHODS

In this descriptive retrospective study, we selected and treated the medical records of all patients, of both genders and aged from one month to 15 years, admitted to the hematological clinic or hospitalized at the pediatric oncology department of the Anti-Cancer Centre of Oran (North-Western Algeria) over a period of five years (2009-2013). The inclusion criteria were based on a positive diagnosis of malignant homeopathy after cytological and/or histological examination. However, clinical hematological manifestations and therapeutic aspects were excluded.

Data were processed and analyzed by SPSS software version 22.0 (‘Statistical package for Social Sciences’, IBM Corporation, Chicago, IL, August 2013) for Windows. For all analyzes, a p-value of 0.05 or less was considered significant with a confidence interval of 95%. The Chi-square test was used to compare the values expressed in frequency (%). The relationships between the different parameters were studied using Pearson’s correlation test and the simple linear regression test with a 95% confidence interval (CI 95%).

RESULTS

A total of three hundred sixty-six (366) patients, aged from one month to 15 years, were enrolled in this retrospective study. We noted a predominance of male gender comparing to the females (54.6% vs. 45.4%, respectively) (Table 1), with a sex ratio M/F of 1.2.

As described in figure 1, male predominance was found for all pathologies (e.g. sex ratio M/F of 1.08 for ALL) except for acute myeloid leukemia (AML) where a female predominance was observed (34 girls against 28 boys with a sex ratio F/M of 1.21).

The mean age of all participants was 6.39±4.33 years (76.72± 52.05 month) (Table 2). The highest prevalence of the studied pathologies was recorded in the age group of 0-3 years with 34.2%, followed by the age group of 4-6 years with 24.3%. However, the prevalence in the age groups of 10-12 and 13-15 years was 12.0% and 13.9%, respectively. The majority of malignant hemopathies were observed before the age of 3 years (38.1% of ALL). Though, the frequency of HL increases in children after the age of 4 years (Table 3) and (Figure 2).

The most frequent malignant hemopathies was the ALLs with 60.9%, followed by the AML with 16.9%. In contrariwise, low prevalence was observed of CML and NHL with 2.7% and 8.5%, respectively (Table 4).

Using the Pearson correlation test, positive no significant association was noted (r²=0.006, p=0.139) between the age of children and the type of pathology (Table 5 and 6).

As illustrated in table 7, the annual incidence of malignant hemopathies has steadily increased in Oran from 68 cases in 2009 to 96 cases in 2012. Although, a decrease in the ALLs was observed (from 56 cases in 2009 to 35 cases in 2012) (Figure 3).

As summarized in Table 8 and 9, high significant correlation (r²=0.091, p<0.001) was observed between the type of pathology and the years of hospitalization of patients.

Results from our study disclosed a mortality rate of 8.2% in the studied population (Table 10). The mortality rate was fairly high in patients with AML and CML, with 16.1% and 20%, respectively. On the other hand, low rates were noted in patients with ALL and HL with 5.4% and 5%, respectively (Table 11) and (Figure 4).

As depicted in Table 12 and 13, no significant correlation (r²=0.008, p=0.073) was observed between the number of deaths and the type of pathology.

Table 1: Distribution of patients by gender
Effective
Valid
M
Total

Table 2: Distribution of patients by age (by years and months)
N

Age (year)
Age (month)
N valid (listwise)
Age range (years)

Less than 3 years
4 to 6 years
7 to 9 years
10 to 12 years
13 years and more
Total

Table 4: Distribution of patients by the type of pathology

Valid	Effective	Percentage%	Valid Percentage	Cumulative Percentage
	ALL	223	60.9	60.9
	AML	62	16.9	77.9
	HL	40	10.9	88.8
	CML	10	2.7	91.5
	NHL	31	8.5	100.0
Total		366	100.0	100.0

Table 5: Relationship between type of pathology and age

Correlations (Coefficient of correlation r=0.077)
Type of pathology
Type of pathology
age range (years)
Sig. (unilateral)
age range (years)
N
age range (years)
Table 6: Meaning test (Fisher Report)

ANOVA *(Fisher test F=2.198, p=0.139)*

Model	Sum of squares	dOF	Average of squares	D	Sig.
1 Regression	3.412	1	3.412	2.198	0.139*
Residue	565.200	364	1.553		
Total	568.612	365			

a. dependent Variable: Type of pathology
b. predicted Values: (constants), age range (years)

Table 7: Distribution of pathologies by year of recruitment of patients (incidence)

Year	Effective	ALL	AML	HL	LMC	NHL	Total
2009							68
	% included in year	82.4%	14.7%	0.0%	0.0%	2.9%	100.0%
	% included in type of pathology	25.1%	16.1%	0.0%	0.0%	6.5%	18.6%
2010							60
	% included in year	81.7%	13.3%	1.7%	3.3%	0.0%	100.0%
	% included in type of pathology	22.0%	12.9%	2.5%	20.0%	0.0%	16.4%
2011							68
	% included in year	64.7%	19.1%	4.4%	4.4%	7.4%	100.0%
	% included in type of pathology	19.7%	21.0%	7.5%	30.0%	16.1%	18.6%
2012							96
	% included in year	36.5%	17.7%	24.0%	2.1%	19.8%	100.0%
	% included in type of pathology	15.7%	27.4%	57.5%	20.0%	61.3%	26.2%
2013							74
	% included in year	52.7%	18.9%	17.6%	4.1%	6.8%	100.0%
	% included in type of pathology	17.5%	22.6%	32.5%	30.0%	16.1%	20.2%
Total							366
	% included in year	60.9%	16.9%	10.9%	2.7%	8.5%	100.0%
	% included in type of pathology	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Table 8: Relationship between type of pathology and year of recruitment

Correlation (Coefficient of correlation r=0.301)
Type of pathology
Correlation of Pearson
Sig. (unilateral)
N
Year
Table 9: Meaning test (Fisher Report)

Model	Sum of squares	dOF	Average squares	F	Sig.
1 Regression	51.460	1	51.460	36.221	0.000
Residue	517.152	364	1.421		
Total	568.612	365			

ANOVA (Fisher report F=36.221, p<0.001)

- a. dependent Variable: Type of pathology
- b. predicted Values: (constants), Year

Tableau 10: Mortality rate in patients with haematological malignancies

	Effective	Percentage%	valid Percentage	cumulative Percentage
deceased	30	8.2	8.2	8.2
not deceased	336	91.8	91.8	100.0
Total	366	100.0	100.0	

Table 11: Mortality rate for all haematological malignancies

Death Type of pathology	Effective	DCD	% included in Death	% included in Type of pathology	NDC	% included in Death	% included in Type of pathology	Total
ALL	12	12	40.0%	5.4%	211	62.8%	94.6%	223
AML	10	10	33.3%	16.1%	52	15.5%	83.9%	62
HL	2	2	6.7%	5.0%	38	11.3%	95.0%	40
CML	2	2	6.7%	20.0%	8	2.4%	80.0%	10
NHL	4	2	13.3%	12.9%	27	8.0%	87.1%	31

Table 12: Relationship between mortality and type of pathology

Correlation (Coefficient of correlation r=-0.094)

Correlation of Pearson	Death	Type of pathology
	1.000	-0.094
Death		
	-0.094	1.000

Sig. (unilateral)	Death	Type of pathology
	0.037	
Type of pathology		
	0.37	

N	Death	Type of pathology
	366	
	366	

Type of pathology	Death	Type of pathology
	366	
	366	
Table 13: Meaning test (Fisher Report)

ANOVA (Fisher test $F=3.231$, $p=0.073$)

Model	Sum of squares	dOF	Average squares	F	Sig.
Regression	0.242	1	0.242	3.231	0.073
Residue	27.299	364	0.075		
Total	27.541	365			

a. Dependent variable: Death
b. Predicted values: (constant), Type of pathology

Figure 1: Average age of patients by type of pathology and gender

Figure 2: Distribution of pathologies according to the age of patients

Figure 3: Distribution of pathologies according to the year of recruitment

Figure 4: Mortality rates for all haematological malignancies
DISCUSSION

In this retrospective epidemiological study, we aimed to describe the epidemiological aspect of malignant hemopathies in children aged 1 month to 15 years. The study was carried out over a period of 5 years (2009-2013) at the level of the pediatric oncology facility of the Anti-Cancer Centre of Oran (North-Western Algeria). To the best of our knowledge, this investigation is the first to describe the malignant hemopathies characteristics in this health facility. The outcomes of the current study revealed an increased incidence of the malignant hemopathies during the last decade in the Northwestern region of Algeria (Wilaya of Oran). Similar conclusions were reported from two studies carried out in Abadan between 1995 and 2004 and from the United States. Likewise, an upsurge in the incidence of these pathologies has been shown by the European data of ACCIS (Automated Childhood Cancer Information System).

The sex ratio M/F in our study was 1.2. This finding matches the results obtained in France by Desandes et al. in 2004 (sex ratio M/F between 1 and 1.4). Similarly, Lahrou et al. in Morocco reported a male gender predominance in ALL patients with a higher sex ratio (1.32). Several authors highlighted the higher prevalence of AML in male subjects, which is inconsistent with the results of our study. The association between the female gender and the risk of AML must be further explored in order to better understand this complication.

Malignant hemopathies represent about 40% of all cancers before the age of 15 years. 34.2% of malignant hemopathies were observed before the age of 3 years, these findings are in agreement with the results of a European study carried out by Clavel et al. where a higher incidence of malignant hemopathies was recorded in children under 5 years of age during. According to Gobin et al., 80% of cases of childhood leukemia are acute lymphoblastic leukemia (ALL). This complication could occur at any age, and more particularly between the 1st and 10th years of life. The higher incidence has been reported between 2 and 3 years. In our study, the highest incidence was observed between 0-3 years. The incidence of acute myeloid leukemia (AML) is higher in children less than 3 years of age and then decreases markedly. This decrease can be explained by the fact that AML is more frequent in adults. Few cases of Hodgkin’s lymphoma (HL) were noted in our studied population before the age of 4 years, this could be explained by the fact that this disease increases with age. Chronic lymphocytic leukemia (CLL) is not found in children and chronic myeloid leukemia (CML) are extremely rare, as these two pathologies mainly affect the elderly.

Some studies have been devoted to evaluate the malignant hemopathies’ mortality in Algeria and Africa. Despite the improved diagnosis and therapeutic progress made during the last few decades, malignant hemopathies’ mortality remains relatively high. In the area of Sidi-Bel-Abbes (North-Western Algeria), the mortality rate was about 8.2%. This frequency might be explained by the lack of diagnostic tools at the hematology department and the consultation delays. However, any disease prognosis depends on the precocity and the accessibility to medical care. One limitation of the present study is the retrospective aspect that does not allow optimizing the collection of some information in when medical records are not standardized.

CONCLUSION

The childhood malignant homeopathies have particular epidemiological characteristics in the region of Oran (North-Western Algeria). Our results highlighted a mortality rate that remains not negligible. More strategies involving further aspects and policies and based on patient information, public awareness and training of medical personnel are needed to help reduce the consultation time and better managing and preventing malignant homeopathies.

Conflicts of interest: There are no conflicts of interest.

REFERENCES

1. Remontet L et al. Cancer incidence and mortality in France over the period 1978-2000. Rev Epidemiol Santé Publique 2003; 51:330.
2. Benakli M. Leucémies aigües myéloïdes. Revue Algérienne d’Hématologie 2009; 00:22-5.
3. Soulères D, FRCPC, Dionne JL. La leucémie lymphoïde chronique: comment la prendre en charge? Le clinicien 2002; 17:115-24.
4. Choquet S. Hématologie. Ellipes; 2002.
5. Meretkcrmann R, Engelhardt M, Berger DP. Précis d’hématologie et d’oncologie. 1ère éd. Springer; 2011.
6. Morton LM, Van SS, Devesa SS, Hargte P, Weissenburger D, Linet MS. Lymphoma incidence patterns by WHO subtype in the United States. Blood 2006; 1:265-76.
7. Servaye-Fauve C, Laurier D, Gougon-Bellec S, et al. Childhood leukemia around French nuclear power plants - the Geocap study, 2002-2007. Int J Cancer 2012; 13;169-69.
8. Servaye-Fauve C, Demoury C, Rudant J, et al. Childhood leukaemia close to high-voltage power lines - the Geocap study, 2002-2007. Br J Cancer 2013; 108:1899-1906.
9. Evrard AS, Hemon D, Billon S, et al. Ecological association between indoor radon concentration and childhood leukemia incidence in France, 1990-1998. Eur J Cancer Prev 2005; 14:147-57.
10. Sawadogo D, Yapo A, Sangare M, Tolo A, Yao-Ayé M. Caractéristiques épidemiologiques des patients atteints d’hématopathies malignes à Abidjan au cours de la décennie 1995-2004. J Afr Cancer 2009; 1:4-10.
11. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics. CA Cancer J Clin 2014; 64(2):83-103.
12. Steilarova-Foucher E, Stiller C, Kaatsch P, et al. Geographical patterns and time trends of cancer incidence and survival among children and adolescents in Europe since the 1970s (the ACCISproject): an epidemiological study. Lancet 2004; 364:2097-105.
13. Desandes E, Clavel J, Berger C, et al. Cancer incidence among children in France 1990-1999. Pediatric Blood & Cancer 2004; 43:749-57.
14. Lahrou Z, Lafhel I, Maani K, Hachim J, Itri A. Leucémies aigües de l’enfant : Étude de 142 cas. Archives de Pédiatrie 2014; 21(S, Suppl 1):357.
15. Feltbowera RG, McNallyb RJ, Kinseyd SE, et al. Epidemiology of leukaemia and lymphoma in children and young adults from the north of England, 1990-2002. European Journal of Cancer 2009; 45:420-27.
16. Clavel J, Gobin A, Auclerc MF, et al. Incidence of childhood leukemia and non-Hodgkin’s lymphoma in France: National Registry of Childhood leukemia and Lymphoma (1990-1999). Eur J Cancer Prev 2004; 13:97-103.
17. Gobin A, Auclerc MF, Avrignon A, et al. Survival in France after childhood acute leukemia and non-Hodgkin’s lymphoma (1990-2000). Eur J Cancer 2006; 42:534-41.
18. Zénalhausen R, Zucy K, Solentbaker M, Fey MF, Tolber A. Leucémies aigües de l’adulte. Forum Med. Suisse 2003; 29:684-92.
19. Abad MT. Épidémiologie de la maladie d’Hodgkin en Algérie. Revue Algérienne d’Hématologie 2009; 01:8-10.
20. Kipp TJ, Stevenson FK, Wu C, Croce CM, Packham G, Wierda WG et al. Chronic lymphocytic leukemia. Nat Rev Dis Primers 2017.
21. Djouadi-Lahlou K. Approche épidémiologique de la leucémie myéloïde chronique en Algérie. Revue Algérienne d’Hématologie 2009; 00:18-21.