PM = EM : Partially Massless Duality Invariance

S. Deser
Lauritsen Lab, Caltech, Pasadena CA 91125 and Physics Department, Brandeis University, Waltham, MA 02454, USA

A. Waldron
Department of Mathematics, University of California, Davis, CA 95616, USA

(Dated: December 11, 2013)

In d = 4 de Sitter space, novel conformally invariant photon-like theories consistently couple to charged matter. We show that these higher spin, maximal depth, partially massless systems enjoy a Maxwellian, “electric-magnetic” duality.

INTRODUCTION

The notion of duality invariance,

\[\vec{E} \rightarrow \vec{B}, \quad \vec{B} \rightarrow -\vec{E}, \]

is almost coeval with Maxwell’s equations themselves, although a proof of its validity awaited over a century \[1, 2\]. In addition to countless generalizations of “duality” in field and string theory, it has led to an enormous variety of more precise analogs, in particular to spin 2 \[2, 3\], then to all free massless (integer or half-integer) spin systems in flat space \[4\, 18\].

In de Sitter (dS), electromagnetic (EM) interactions can be mediated by generalized Maxwell systems \[6\]. These are the maximal depth partially massless (PM) fields of \[2\, 8\] which enjoy many characteristics of EM such as lightlike propagation \[9\], gauge invariance \[8\], conformal invariance \[10\] and stability \[11\]. Unlike EM, these PM models describe higher spin \(s\) propagating helicities \(\pm s, \ldots, \pm 1\) \[8\]. Here we show that they also enjoy duality invariance, whence our title.

PM SYSTEMS

PM systems originate from free mass \(m\) fields propagating in de Sitter (dS) backgrounds \((\Lambda > 0)\) for which special \(m : \Lambda\) tunings yield additional gauge invariance(s) \[2\, 8\], thereby eliminating one or more lower helicity components from the, unavoidable in flat space, \((2s+1)\) total. For maximal depth PM systems, the helicity zero excitation is thereby removed, leaving only helicity \(\pm(s, \ldots, 1)\) modes. We simply write the final form of their (gauge-invariant) actions when all constraints are solved. [This is the critical step that requires sourceless fields: in the original Maxwell example, \(\vec{B}\) is identically transverse \((\vec{\nabla} \cdot \vec{B} = 0)\), so duality rotation is only well-defined (let alone an invariance) when the electric field is likewise transverse, with vanishing longitudinal–Coulomb component. This is also why zero mass is required in flat space.] Reduced PM actions in terms of
transverse-traceless (TT) tensors were first given in Eq. (29) of [11] for PM spin 2 or Eq. (24) of [10] for arbitrary s, maximal depth PM fields:

\[
S = \sum_{\varepsilon=1}^{s} S[\varphi_{i_{1}\ldots i_{\varepsilon}}; \varphi_{i_{1}\ldots i_{\varepsilon}}; \Lambda], \quad \text{where } S[p, q; \Lambda] := \int d^{4}x \left[\dot{p} \dot{q} - \frac{1}{2} \left\{ p^{2} + e^{-2\sqrt{\Lambda/3} t} B(q)^{2} - \frac{\Lambda}{12} q^{2} \right\} \right]. (4)
\]

Here the sum over \(\varepsilon \) runs over the helicities 1, \ldots, s of a (maximal depth) partially massless field and thus avoids the dangerous helicity zero mode. All indices are suitably contracted in each helicity’s action and \(B(q) := \nabla \times q \) denotes the “magnetic” field, namely the symmetrized curl [4, 15] of \(\varphi_{i_{1}\ldots i_{\varepsilon}} \) in (5).

Note that (only) in dimension \(d = 3 + 1 \) do the tensor ranks of each \(B(q) \) still match those of their potentials, and so of their corresponding “electric” companions \(\pi \). In what follows, the (easily verified) identity for transverse-traceless tensors

\[
B(\nabla \times q) = -\Delta q,
\]

will play an essential rôle.

In the dS coordinates [11] used in [10, 11], the only metric dependence of the action [11] is through \(\Lambda \). Note also, as shown in [11], although the Hamiltonian in [11] is neither time independent, nor manifestly positive, the generator of time translations, constructed from the composition \(\xi^{\mu} T_{\mu\nu} \) of the timelike, dS Killing vector \(\xi^{\mu} \) and the stress energy tensor \(T_{\mu\nu} \) [12], is both conserved and positive within the intrinsic horizon.

PM DUALITY

We now generalize the above scheme to PM. The essential point is that the duality rotations occur separately within each helicity sector. The key maneuver, therefore, is to bring the action \(S[p, q; \Lambda] \) displayed in [11] to the manifestly duality invariant form \(S[E, A; \Lambda] \) of [2]. This is achieved via the field redefinition

\[
E := e^{\frac{1}{2} \sqrt{\Lambda/3} t} \left\{ p - \frac{\sqrt{\Lambda/3}}{2} q \right\}, \quad A := e^{-\frac{1}{2} \sqrt{\Lambda/3} t} q.
\]

The proof that duality invariance is a canonical transformation is now identical to that of the dS Maxwell theory given above, save that the vector curl is replaced by its higher rank symmetrized counterpart in [13]. PM’s duality rotation invariance is, like Maxwell’s, traceable to conformal invariance.

SUMMARY

We have explicitly established the (extended) duality invariance of maximal depth PM systems. Noting that our models live in dS, one might speculate on their possible cosmological relevance: to the extent that such PM fields might be present, their radiative interactions could have consequences in the corresponding era. However, their coupling to charges are sufficiently unusual [14] that we have not yet tried to investigate this topic.

S.D. was supported in part by NSF PHY- 1064302 and DOE DE-FG02-164 92ER40701 grants.
[17] C. de Rham and S. Renaux-Petel, “Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity,” [arXiv:1206.3482] [hep-th];

[18] However, besides being inapplicable to massive systems, duality also ceases to be an invariance of the massless models’ nonlinear, Yang–Mills [1] and general relativity [12] extensions, an exception being quadratic, conformal (Weyl) gravity [5]. It seems equally unlikely that any nonlinear extension of PM, such as the putative one of massive gravity [17], will be dual invariant.

[19] The invariance of Maxwell in both Poincare and dS spaces shows that the results of [14] and [13] relating duality- and Poincare- invariances must be suitably interpreted: using the Schwinger-Dirac stress-tensor commutation relations that define the latter already assumes Poincaré; conversely, just because the 3+1 action (1) obeys these relations does not mean it is in flat space.