Use of genetic resources in white straw and cereal crops breeding in the monsoon climate

A G Klykov, G A Murugova, P M Bogdan, I V Konovalova, O A Timoshinova and N A Kryuchkova

FSBSI "FSC of Agricultural Biotechnology of the Far East named after A. K. Chaika”
30, Volozhenina street, Timiryazevsky, Ussuriysk, 692539, Russia

E-mail: gal.murugova@yandex.ru

Abstract. In creating new competitive varieties, the leading role belongs to plant genetic resources. Researches are devoted to the study of 823 samples of domestic and foreign breeding of spring barley (Hordeum vulgare. L.), winter and spring soft wheat (Triticum aestivum L.), durum wheat (Triticum durum Dest.), and buckwheat (Fagopyrum esculentum Moench), buckwheat Tatar (Fagopyrum tataricum (L.) Gaertn.) buckwheat semi-umbrella (Fagopyrum cymosum Meissn.) from world collection of Russian National Institute of Plants Genetic Resources (VIR). High-yield source varieties, resistant to lodging, adapted to the conditions of the monsoon climate have been identified. A bioresource feature collection has been formed. As a result of targeted research, new varieties of spring wheat (Nikolskaya), spring barley (Primorets) and buckwheat (Ussurochka) adapted to the conditions of the monsoon climate of the Far East have been created.

1. Introduction
Ensuring food security is one of the strategic tasks of the agro-industrial complex of Russia, an important role in the solution of which belongs to grain as the most important, socially significant product [1-3].

In this regard, the need to increase production of own grain in the Far Eastern region is becoming especially urgent [4]. In the set of measures aimed at achieving this goal, an important role belongs to the variety, which accounts for up to 40% of the yield growth. The Far East of Russia is characterized by a monsoon climate with high air humidity, with frequent fogs, contributing to the enhanced development of diseases, lowering grain quality, and resistance to lodging [4-6]. To create competitive varieties, it is necessary to have genetically diverse and comprehensively studied source material [7-10].

The purpose of this work is to study the genetic resources of grain and cereal crops of the world collection of VIR in the monsoon climate, the selection of samples with economically valuable traits for use in practical breeding.

2. Research technique
The research was carried out in the laboratory for the selection of grain and cereal crops of the Federal State Budget Scientific Institution "A.K. Chaika Federal Research Center for Agrobiotechnologies of the Far East" in 2009-2019. The object of research was 823 samples of grain and cereal crops received in the bioresource collection from the world collection of N.I. Vavilov Russian National Institute of Plants Genetic Resources (VIR). The bulk of the material is represented by samples of the genus
Triticum L. (402 pcs.): Soft wheat (*Triticum aestivum* L.) - spring (280 pcs.) and winter forms (103 pcs.); durum wheat (*Triticum durum* Dest.) spring forms (19 pcs.). Cultivated barley *Hordeum vulgare* L. includes 175 samples: two-row (*Hordeum vulgare* L. subsp. distichum) - 128 pcs. and multirow forms (*Hordeum vulgare* L. subsp. vulgare) - 47 pcs. The genus Buckwheat (*Fagopyrum* Mill.) was represented by 246 samples: buckwheat (*Fagopyrum esculentum* Moench) - 229 pcs., Buckwheat Tatar (*Fagopyrum tataricum* (L.) Gaertn.) - 16 pcs. and (*Fagopyrum cymosum* Meissn.) - 1 pc. Accounting and observations were carried out according to the methodology of the State test of agricultural crops [11]. Statistical data processing - according to B.A. Dospekhova [12].

3. **Research results**

In recent years, the A.K.Chaika Federal Research Center for Agrobiotechnology of the Far East are conducting a focused study of global genetic resources and identifying sources of economically valuable traits in the monsoon climate. A bioresource collection of grain and cereal crops of various ecological and geographical origin was formed, represented by 30 countries of the world.

Analysis of the studied genetic resources showed that the largest number of samples of *Triticum aestivum* L. (299 pcs.) is represented by varieties lutescens (245 pcs.) and erythrospermum (76 pcs.), *Triticum durum* Dest. (19 pcs.) - hordeiforme (16 pcs.).

Wheat in the collection is represented by varieties of Russian selection - 261 samples and CIS countries - 38 (Kazakhstan - 13, Ukraine - 18, Tatarstan - 3, Bashkortostan - 2, Belarus - 2), Asian countries - 32 (India -8, China - 11, Syria - 3, Algeria - 6, Tunisia - 2, Egypt - 1, Iran - 1), the countries of America - 29 (USA - 10, Chile - 2, Mexico - 7, Argentina - 1, Canada - 9), countries of Western Europe - 21 (Netherlands - 1, Germany - 6, Poland - 3, Czechoslovakia - 2, Estonia - 2, Serbia - 1, France - 1, Portugal - 2, Norway - 1, Sweden - 1, Finland - 1), Australia - 2 (table 1).

Variety	Origin	Russia and CIS	Asis	Western Europe	Australia	North America
Triticum aestivum L.						
lutescens	219	5	14	–	7	
erythrospermum	51	10	2	–	13	
albidum	9	9	–	–	–	
ferrugineum	6	2	1	–	–	
milturum	8	–	1	–	1	
suberythrospermum	–	–	–	–	1	
graecum	3	4	1	2	3	
subgraecum	–	–	1	–	–	
rufinflatum	–	1	–	–	–	
erythroleucum	–	1	1	–	–	
barbarossa, pseudobarbarossa	1	–	–	–	–	
caesium	1	–	–	–	–	
fulvocinereum	1	–	–	–	–	
vavilovii jakub	–	–	–	–	1	
Total	299	32	21	2	29	
Triticum durum Dest.						
leucurum	3	–	–	–	–	
hordeiforme	16	–	–	–	–	
Total	19	–	–	–	–	

The barley species represented by genus *Hordeum* L. are widespread and grow under various climatic conditions [13,14]. The most widespread and practical use has the form of cultivated barley *Hordeum vulgare* L. The bioresource collection is represented by two subspecies of cultivated barley: two-row
(Hordeum vulgare L. subsp distichum) and multi-row (Hordeum vulgare L. subsp. Vulgare) (table 2). The main part of the samples belongs to the nutans variety (71 pcs.): Russia (42 pcs.), CIS countries (24 pcs.), Western Europe (42 pcs.); pallidum 28 samples: Russia (10 pcs.), Countries of Western Europe (10 pcs.), Countries of Asia (4 pcs.), Countries of America (2 pcs.), Countries of Africa and the CIS (according to 1 sample).

Table 2. The origin of samples of Hordeum vulgare L. subsp distichum and Hordeum vulgare L. subsp. vulgare.

Variety	Origin	Russia and CIS	Asia	Western Europe	Africa	North America
	Hordeum vulgare L. subsp. vulgare					
pallidum		11	4	10	1	2
ricotense		2	1	1	-	6
horsfordianum		-	1	-	-	-
paralleum		2	1	2	-	-
coeleste		-	1	-	-	-
trifurcatum		-	1	-	-	-
Total		15	10	13	1	8
	Hordeum vulgare L. subsp distichum					
nutans		66	1	42	-	-
tonsum		-	1	1	-	-
medicum		7	-	-	-	-
persicum		-	1	1	-	-
subnudipyramidat		1	1	-	-	-
submedicum		2	-	-	-	-
nudum		1	-	1	-	2
Total		77	4	45	0	2

The studied bioresource collection of buckwheat consists of 246 samples belonging to three species of the genus Fagopyrum Mill.: F. esculentum Moench (buckwheat sowing or ordinary); F. tataricum (L.) Gaertn. (buckwheat tatar); F. cymosum Meissn. (buckwheat semi-umbrella) [15]. The largest number of samples belong to the species Fagopyrum esculentum Moench (299 pcs.) - Russia and the CIS countries - 189 pcs., Asia - 36 pcs. and Europe - 4 pcs. (table 3).

Table 3. The origin of the studied samples of three species of genus Fagopyrum Mill.

Type	Origin	Russia and CIS	Asia	Europe
Fagopyrum esculentum (L.) Moench		189	36	4
Fagopyrum tataricum (L.) Gaertn.		4	3	9
Fagopyrum cymosum Meissn.		-	1	-
Total		193	40	13

As a result of multi-year selection assessment of grain samples in the collection nursery on the basis of the main economically valuable traits (productive bushiness, number of grains per ear, weight of grain per plant), source varieties that exceed the standards by 1.5-2 times were identified. They are of great interest for breeding: Triticum aestivum L. - Ishimskaya 98 (Russia), Favorit (Russia), In memory of Vavenkov (Russia), Lutescens 70 (Russia), Ingala (Russia), Tulaykovskaya 105 (Russia), Wold Seeds 1812 (USA), Long 94 -4081 (China), Triso (Germany); Hordeum vulgare L. - Keystone (Canada), Bruce (Canada), Kharkov 111 (Ukraine), Kolchan (Russia) Krinichny (Republic of Belarus), Kimberly (Canada), Runis (Mongolia) (table 4).
Table 4. Source varieties of *Triticum aestivum* L. and *Hordeum vulgare* L. isolated according to the main selection traits.

Variety (origin),	Productive bushiness, pcs.	The number of grains in the ear, pcs.	The mass of grain from the plant, g
Triticum aestivum L.			
Primorskaya 39 (Russia) var. lutescens	2.8	32.4	3.2
Latona (Russia), var. lutescens	3.8	45.6	5.7
Erythrospermum 51/5 (Russia), var. erythrospermum	3.9	36.7	4.4
In memory of Vavenkov (Russia), var. lutescens	6.4	40.7	7.6
Tulaykovskaya 105 (Russia), var. lutescens	5.6	55.2	8.3
Ishimskaya 98 (Russia), var. lutescens	7.7	44.0	7.9
Ingala (Russia), var. lutescens	5.8	50.6	9.7
Lutescens 70 (Russia), var. lutescens	6.1	36.7	6.1
Iren (Russia), var. miturum	5.4	45.5	8.6
Favorit (Russia), var. lutescens	7.8	41.2	8.6
Prokhorovka (Russia), var. lutescens	5.4	39.8	6.2
Krasnoufimskaya 100 (Russia), var. lutescens	7.0	40.5	9.6
Spartanka (Russia), var. lutescens	2.9	38.3	4.9
Zimznitsa (Russia), var. lutescens	2.9	37.5	4.5
Kuma (Russia), var. lutescens	3.3	39.6	4.2
Long 94-4081 (China) var. erythrospermum	3.4	53.9	6.3
Hubara 1 (Syria), var. graecum	4.0	39.9	4.7
Triso (Germany), var. lutescens	4.2	52.0	4.5
Wold Seeds 1812 (CIIIA), var. ferrugineum	5.6	37.9	5.8
Pin Chun 11 (China), var. erythrospermum	4.8	36.4	6.1
Ken Hong 14 (China), var. lutescens	3.9	40.2	4.7
HCP 05	0.2	3.2	0.2
Hordeum vulgare L. subsp. distichum			
Primorsky 98 (Russia), var. submedicum	3.8	19.8	3.7
Kharkovsky 111 (Ukraine), var. nutans	5.6	26.1	5.2
Krinichny (Republic of Belarus), var. nutans	3.5	22.4	4.6
Hordeum vulgare L. subsp. vulgare			
Kolchan (Russia), var. rikotense	5.0	48.0	4.6
Kimberly (Canada), var. pallidum	3.1	46.9	4.0
Keystone (Canada), var. rikotense	6.3	47.0	4.7
Runis (Mongolia), var. pallidum	3.8	44.5	5.1
Bruce (Canada), var. pallidum	5.2	39.7	4.6
HCP 05	0.2	2.0	0.2

The conducted researches indicate the breeding importance of such productivity elements as productive bushiness, the number of grains per ear, and the mass of grain per plant; therefore, source varieties were purposefully used in hybridization based on these characters [4-5].

As a result of the selection process with the participation of selected varieties sources, highly productive varieties were obtained that provide an increase of 10-20% to the standards: *Triticum aestivum* L. - Nikolskaya (Latona x Eritrospermum 51/5), Primorskaya 222 (Spartanka x Primorskaya 39), Primorskaya 235 (Seaside 50 x Kuma), Seaside 239 (Olympia x Ken Hong 14); *Hordeum vulgare* L. - Seaside 167 (Seaside 5097 x K-19907 x Runis), Primorets (Seaside 5021 x Krinichny), Seaside 212 (Seaside 44 x Keystone) (table 5). The greatest breeding value is represented by the varieties: spring wheat - Nikolskaya, spring barley - Primorets.
Table 5. Characteristics of the varieties *Triticum aestivum* L. and *Hordeum vulgare* L. according to the main breeding and economic characteristics.

Variety	Crossbreeding combination	Plants Height, cm	Productive bushiness, pcs.	Number of grains in the ear, pcs.	Mass of grain from a plant, g	Mass 1000 grains, g	Resistance to lodging, score	Yield, t / ha
Primorskaya39 (st),	transformation of winter wheat Ilyichevka into spring form	115.0	1.2	28.8	1.2	34.6	7	3.7
var. lutescens	Nikolskaya, var. erythrospermum	91.0	1.2	27.0	1.4	35.4	9	4.0
Primorskaya222, var.	Spartanka x Primorskaya 39	87.9	1.5	26.0	1.2	36.8	9	4.1
lutescens	Primorskaya 50 x Kuma	95.0	1.3	26.6	1.5	43.0	9	4.1
Primorskaya 239, var.	Olimpiyax Ken Hong 14	74.1	1.6	28.0	1.3	37.8	9	3.9
lutescens	HCP 05	8.0	0.1	3.0	0.1	3.0	0	0.2
Primorskii 98 (st),	K-19362 Sumerimoti (Japan) x Прым 3474) x (K-2938 Shikokunadaka №1 (Japan) x Prim 3541	89.4	1.9	19.6	1.2	42.3	7-8	3.7
var. submedicum	Primorskii 5097 x K 19907 x Runis	91.8	2.1	24.0	1.6	40.2	7-8	4.0
Primorskii 167, var.	Primorskii 5021 x Krinichny	91.2	1.8	22.5	1.8	38.2	9	4.6
nutans	Primorskii 4699 x Kimberly	79.2	1.5	24.5	1.2	38.1	9	4.0
Primorskii 197, var.	Primorskii 44 x Keystone	78.2	1.7	20.8	1.2	40.4	9	4.2
nutans	HCP 05	8.2	0.2	1.8	0.2	2.9	0	0.2

In the Far East, buckwheat is cultivated under various environmental conditions; therefore, varieties adapted to abiotic and biotic environmental factors are needed [16].

In this regard, the A.K. Chaika Federal Research Center for Agrobiotechnology of the Far East carries out selection of buckwheat in the direction of obtaining a black-fruited variety with high quality cereals (protein, fat, amino acids, rutin) adapted to waterlogging in the second half of the growing season [16, 17]. For hybridization, valuable *Fagopyrum esculentum* samples were selected from the bioresource collection for fruit coloration, large-fruited, productivity, lodging resistance, high flavonoid content: Bashkir Krasnostebelnaya (Russia), Kitavase (Japan), Krasnotsvetkova (Ukraine), Cheroplodnaya (Republic of Belarus). Particular attention is paid to the selection of the combination of the use of cell breeding in *vitro* culture with hybridization. As a result of multi-year selection work, a promising Ussurochka variety was obtained by the method of hybridization and tissue culture. The new variety is characterized by high productivity (1.4 g), resistance to lodging (table 6).
4. Conclusion

Thus, as a result of studying the genetic resources of spring wheat, spring barley and buckwheat from the VIR world collection, source varieties with valuable breeding and economic characteristics and properties that were selected for use in hybridization to create new highly productive varieties lodging adapted to the conditions of the monsoon climate have been selected. Using the sources and new varieties that were created: spring wheat - Nikolskaya (the variety was obtained by hybridization followed by individual selection of Laton x Erythrospermum 51/5, a variety of erythrospermum). The variety is mid-season, the vegetation period is 83-88 days, resistant to smut and powdery mildew, the average yield is 4.0 t / ha, potential 5.8 t / ha; spring barley - Primorets (variety obtained by hybridization and tissue culture) x Sanle (obtained by hybridization and tissue culture followed by negative selection from the population (Pri7 x Kazan large-fruited) x Sanle -2). It is a mid-season variety, vegetation period is 77 days, resistant to lodging, average yield of 4.6 t / ha, potential - 6.1 t / ha; buckwheat - Ussurochka (obtained by hybridization and tissue culture followed by negative selection from a complex population (Emerald x Chokeberry) x (Emerald x Kitawase in vitro on a selective medium with copper ions) a variant of alata). It is a mid-season variety, vegetation period is 70-75 days, yield - 1.5-1.8 t / ha. Grain color is black and dark brown, the content of rutin in cereal is 9.7 mg / 100g. In 2018, new varieties were transferred to the State variety test in the Far Eastern zone.

References
[1] Sandukhadze B I, Zhuravliova EV and Kochetygov G V 2011 Non-chernozem winter wheat in the food security solution of the Russian Federation (Moscow) p 156
[2] Chekmarev P A 2009 Production of high-quality grains is the most important task of the Russian agro-industrial complex Zemledelie 4 3-4
[3] Uvarov GL, Smirnova VV and Smurov S I 2006 Role of a variety and a predecessor in increase of productivity and grain quality of winter wheat Grain Economy 6 15-7
[4] Klykov A G, Volkov Y G end Gapeka A V 2014 Biological Characteristics of Spring Barley Varieties in the Far East of Russia In: Barley: Physical Properties, Genetic Factors and Environmental Impacts of Growth, ed. Kohji Hasunuma (New York: Nova Publishers) pp 21-
36

[5] Murugova G A, Pavlova N A and Klykov A G 2019 Evaluation of Adaptive Properties of the Spring Barley Varieties Using Mathematical Analysis Information Technologies and High-Performance Computing 2019: Short Paper Proc. V Inter. Conf. Inform. Technol. And High-Perform. Computing (ITHPC-2019), Sept. 6-19 2019, Khabarovsk, Russia CEUR Workshop Proceedings vol 2426 pp 110-5

[6] Klykov A G, Moiseenko LM and Gorovoy PG 2018 Biological resources of species of the genus Buckwheat (Fagopyrum Mill.) In the Russian Far East (Vladivostok: Dalnauka) p 304

[7] Safonova IV, Aniskov NI and Kobylyansky VD 2019 The database of genetic resources in the VIR winter rye collection as a means of classification of genetic diversity, analysis of the collection history and effective study and preservation Vavilov Journal of Genetics and Breeding 23(6) 780-86 DOI 10.18699 / VJ19.552

[8] Dzybenko N I 2018 Vavilov’s collection of worldwide crop genetic resources in the 21st century Biopreservation and Biobanking 16(5) 377-83 DOI: 10.1089 / bio.2018.0045

[9] Milner S G et al 2019 Genebank genomics highlights the diversity of a global barley collection Nature Genet 51(2) 319-26

[10] Zohary D, Hopf M and Weiss E 2012 The domestication of the plants in the old world (Oxford: Oxford University Press) p 264

[11] Method of state variety testing of agricultural crops 1989 issue 2 White straw, cereal, leguminous, maize, and fodder crops (Moscow) p 194

[12] Dospekhov B A 2014 Methodology of field experiment (with the basics of statistical analysis of research results) (Moscow: Alliance) p 351

[13] Chernov V E and Pendinen G I 2011 Comparative evaluation callusogenesis and regeneration in different barley varieties Agricultural biology 1 44-53

[14] Sukhinina KV, Repko N.V. and Kovaliov V.V. 2016 Botanical classification of barley and its use in the breeding of new varieties Modern research and development 6(6) 105-8

[15] Zhou M, Kreft I, Woo S-H, Chrungoo N and G Wieslander 2016 Molecular Breeding and Nutritional Aspects of Buckwheat (London: Elsevier, Academic Press) p 482

[16] Klykov A G and Moiseenko L M 2014 Morphobiological features of some forms of Fagopyrum (Polygonaceae) introduced in the Primorski Krai Agricultural biology. Series Plant biology 1 109-14

[17] Klykov A G 2018 Cultivation of Fagopyrum tataricum and Fagopyrum esculentum in order to obtain raw material with hidh rutin content in the Far East of Russia In: Buckwheat Germplasm in the World M Zhou, I Kreft, G Suvorova, Y Tang and SH Woo (ed.) (London: Acad. Press) Ch. 18 pp 179-89 DOI: 10.1016 / B978-0-12-811006-5.00018-5