Semiclassical Defect Measures and the Observability Estimate for Schrödinger Operators with Homogeneous Potentials of Order Zero

Keita MIKAMI*

December 14, 2018

Abstract

We study the asymptotic behavior as $|x| \to \infty$ of Schrödinger operators with homogeneous potentials. For this purpose, we use methods from semiclassical analysis and investigate semiclassical defect measures. We prove their localization in direction which we apply in order to obtain a necessary condition of observability.

1 Introduction

Let $P = -\Delta + V$ be a Schrödinger operator on \mathbb{R}^n. We make the following assumption on the potential V.

Assumption A. (1) V is a real valued smooth function.
(2) We can decompose V as $V = V_\infty + V_s$; here V_∞ is real-valued, and is homogeneous of order zero, i.e., $V_\infty(x) = V_\infty(\frac{x}{|x|})$ for $|x| \geq 1$, and $V_s(x) = o(x^{-1})$ as $|x| \to \infty$.

If V_∞ is homogeneous of order zero, one can regard V_∞ as a function on S^{n-1}. We use the same symbol V_∞ for the original potential and restriction of this function to S^{n-1}.

Next we introduce a new semiclassical quantization.

*Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro Tokyo, 153-8914 Japan. E-mail: kmikami@ms.u-tokyo.ac.jp.
Theorem 1.2. Under Assumption(A), let $diffeomorphism T_1$ for u where numbers class

Theorem 1.1. \textit{(Existence of semiclassical defect measure)}

Let f \textit{cutoff function} if f \textit{admissible cutoff function}.

(1) For any $m \in \mathbb{N}$, there exists $C_m > 0$ such that $\sup_{r \in \mathbb{R}} |\partial_r^m f_h(r)| < C_m$ uniformly in h.

For $a \in C_0^\infty(\mathbb{R} \times T^*S^{n-1})$ and admissible cutoff function f_h, one can regard $f_h(r) a(\rho, \theta, \frac{n}{r})$ as an element of $C_0^\infty(T^*\mathbb{R}^n)$ for small h with the natural \textit{diffeomorphism} $T_0^*(\rho, \theta) \times T^*S^{n-1} \simeq T^*\mathbb{R}^n \setminus \{(0, \xi)\}$ induced by polar coordinate. The function $\tilde{a}(x, \xi) = f_h(r) a(\rho, \theta, \frac{n}{r})$ on $T^*\mathbb{R}^n$ in the symbol class S, the symbol class with respect to the order function 1. In the other words for any $\alpha, \beta \in \mathbb{N}^n$, $\sup_{(x, \xi) \in T^*\mathbb{R}^n} |\partial_x^\alpha \partial_\xi^\beta \tilde{a}(x, \xi)| < \infty$ (See Section 2.1).

Now the \textit{Weyl quantization} $\tilde{a}_h^w(hx, D_x)$ of the symbol \tilde{a} becomes a well-defined bounded linear operator on $L^2(\mathbb{R}^n)$, given as the extension of

$$\tilde{a}_h^w(hx, D_x)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^{2n}} e^{i(x-y, \xi)} a_h \left(\frac{h(x+y)}{2}, \xi \right) u(y)dyd\xi,$$

for $u \in S(\mathbb{R}^n)$. We write $\tilde{a}_h^w(hX, D_X) = \text{Op}_{f_h}(a)$.

Theorem 1.1. \textit{(Existence of semiclassical defect measure)}

Let $u_h \in L^2(\mathbb{R}^n)$ be a bounded family in h. There exists a sequence of positive numbers $h_m \to 0$ as $m \to \infty$ and a finite Radon measure μ_f on $\mathbb{R} \times T^*S^{n-1}$ and

$$\langle u_{h_m}, \text{Op}_{f_{h_m}}(a)u_{h_m} \rangle_{L^2(\mathbb{R}^n)} \to \int_{\mathbb{R} \times T^*S^{n-1}} a d\mu_f \text{ as } m \to \infty,$$

for all $a \in C_0^\infty(\mathbb{R} \times T^*S^{n-1})$. Furthermore, if f_h is non negative, μ_f is also non negative.

Let $j \in C^\infty(\mathbb{R} : [0, 1])$ be such that $j(r) = 0$ if $r \leq \frac{1}{2}$ and $j(r) = 1$ if $1 \leq r$. Then this j can be regarded as an admissible cut-off function.

Theorem 1.2. Under Assumption(A), let $u_h \in \mathcal{D}(P)$ be such that

\begin{equation}
\begin{cases}
(P - E)u_h = R_h \\
\|u_h\|_{L^2(\mathbb{R}^n)} = 1,
\end{cases}
\end{equation}

where $\|R_h\|_{L^2(\mathbb{R}^n)} = o(h)$ as $h \to 0$. We assume there exists $\chi \in C_0^\infty((1, \infty))$ such that $u_h(x) = \chi(h|x|)u(x) + R'_h$ with $\|R'_h\| = o(1)$ as $h \to 0$. Then we can prove the following:

(1) $E \in \text{Cr}(V)$, and

(2) $\text{supp}(\mu_j) \subset \{(0, \theta, 0) \in \mathbb{R} \times T^*S^{n-1} \mid \theta \in \text{Cr}(V) \cap V^{-1}(E)\}$.

2
The claim of (2) in Theorem 1.2 is a semiclassical version of the localization in direction proved in [6, 7, 8, 10]. One clear difference of their localization in direction from our version is the appearance of \(L^2 \) states which localizes to saddle point and the local minimum points. It is proved in [6] that there exists a distribution which localizes in saddle points or local minimum points. The appearance of \(L^2 \) states which localizes to saddle point and the local minimum points is essential in the sense that one can take \(u_h \) so that \(\mu_j \neq 0 \) and \(\mu_j \) is supported in the direction of local maxima or saddle point (See Section 4).

The statement of (1) in Theorem 1.2 implies intuitively that there are not so many \(o(h) \)-quasimodes whose support escapes from the origin with \(h^{-1} \) order. Actually, we can construct \(o(h) \)-quasimodes whose support escapes from the origin with \(h^{-2} \) order (See Section 4). We can also show some results on the relationship between quasimodes and its support.

Let \(c : [0, 1] \to [0, \infty) \) be a monotone increasing function such that \(c(h) = o(1) \) as \(h \to 0 \) and \(c(h)^{-1} = o(h^{-1}) \). We define an admissible cutoff function \(J_h \in C^\infty((0, \infty): [0, 1]) \) by \(J_h(r) = j((\log c(h)^{-1})^{-1} \log r) \). Then \(c(h)^{-\frac{1}{2}} \leq r \leq c(h)^{-\frac{1}{4}} \) if \(r \in \text{supp}[J_h] \). Let \(\tilde{J}_h(r) = j(4(\log c(h)^{-1})^{-1} \log r) \).

Theorem 1.3. Under the assumptions of Theorem 1.2 and the additional assumption \(E \notin \text{Cr}(V) \), there exists \(c(h) \) as required in the last paragraph such that if \(J_h u_h \to 0 \) as \(h \to 0 \), then \(u_h \to 0 \) on \(\{ x \in \mathbb{R}^n \mid |x| > h^{-1} c(h)^{-\epsilon} \} \) as \(h \to 0 \) for any \(\epsilon > 0 \).

The notion of semiclassical measure was first introduced in [15]. The study of partial differential equation using defect measure appeared in [13] and was refined in [5]. You can find several proofs of the existence of semiclassical measures in [2, 4, 14, 16]. You can find a good survey of this subject in [1].

In usual semiclassical analysis, we define a semiclassical defect measure as a measure on a cotangent bundle. Roughly speaking, this usual defect measure treats a point in the cotangent bundle whose orbits of the Hamiltonian flow generated by \(p \) are trapped. Actually, one can prove that if the Hamiltonian flow generated by \(p \) is non-trapping, \(\mu \) is identically zero. With some assumption, Schrödinger operators with homogeneous potentials are is non-trapping(See Section 2 of [8] for the detail). Thus we cannot apply usual semiclassical analysis.

One idea is to consider a point in the cotangent bundle whose orbits of the Hamiltonian flow generated by \(p \) scatters. We realize this idea by taking the position to infinity, instead of taking the energy to infinity. A non-semiclassical quantization similar to our new quantization can be found in [3].
We turn to the application of our semiclassical measure. We can prove an observability result. Let $\Omega \subset \mathbb{R}^n$, we say observability holds on Ω if for some $T > 0$ there exists $C_{\Omega,T} > 0$ such that

$$\|u\|_{L^2(\mathbb{R}^n)} \leq C_{\Omega,T} \int_0^T \int_{\Omega} |e^{-itP} u(x)|^2 dx dt$$

for any $u \in L^2(\mathbb{R}^n)$.

Theorem 1.4. Let $\Omega \subset \mathbb{R}^n$ be a domain which such that

$$\Omega \cap \{x \in \mathbb{R}^n \mid |x| > R\} \subset \mathbb{R}^n \setminus \{(r, \theta) \in \mathbb{R}^n \mid r > R, \text{dist}(\theta, \theta_0) < C T^{-k}\}$$

for some $R, C > 0$ and $\theta_0 \in S^{n-1}$ with $\partial_\theta^k V(\theta_0) = 0$ for any $k \leq k$, where $\ell(k)$ is a function on \mathbb{N} such that $\ell(k) = k + 1$ if $k > 0$ and $\ell(0) = \frac{2}{3}$.

Then the observability on Ω fails for any $T > 0$, i.e., there exists $u_m \in L^2(\mathbb{R}^n)$ such that $\|u_m\|_{L^2(\mathbb{R}^n)} = 1$ and $\int_0^T \int_{\Omega} |e^{-itP} u_m(x)|^2 dx dt \to 0$ as $m \to \infty$.

It is known that observability is equivalent to the controllability in [12]. The controllability means the condition that for any $u_0 \in L^2(\mathbb{R}^n)$ there exists $f \in L^2((0,T) \times \Omega)$ such that the solution to the equation

$$\begin{cases}
 (i\partial_t + P)u(t, x) = f \chi(0,T) \times \Omega(t, x) \\
 u(0, x) = u_0(x).
\end{cases}$$

satisfies $u(t, x) \equiv 0$.

The relation between semiclassical defect measures and observability is shown in [11] that in the compact manifold case, if the geodesic satisfies geometric control condition, one can prove observability holds by using a semiclassical defect measure.

The plot of this paper is as follows. We first introduce a new semiclassical quantization and give some of its basic properties of to give a proof of Theorem 1.1 in section 2. We also prove some result in classical mechanics in Section 2. In section 3, we prove Theorem 1.2 and 1.3. The proof is essentially the same with that of te Hamiltonian flow invariance of usual semiclassical defect measures. We construct an example of u_h such that the corresponding semiclassical defect measure μ is not identically zero in Section 4. Finally, we give a proof of Theorem 1.4 in Section 5.

Acknowledgment. The author is grateful to Professor Fabricio Macià and Professor Shu Nakamura for suggesting the idea of the new semiclassical quantization in personal communication. The author is also grateful to Professor Erik Skibsted for introducing to me an unpublished preprint and having lots of discussions. The author is also grateful to Professor Kenichi Ito and
Kouichi Taira for useful discussion. The author is also grateful to Genki Sato for correcting many grammatical mistakes. The author is under the support of the FMSP (Frontiers of Mathematics Science and Physics) program at the Graduate School of Mathematical Sciences, University of Tokyo. Also he is supported by JSPS KAKENHI Grant Number 18J12370.

2 Preliminaries

2.1 Pseudodifferential Calculus for \(\text{Op}_{f_h}(a) \)

The aim of this subsection is to prove some properties of \(\text{Op}_{f_h}(a) \) as a bounded operator on \(L^2(\mathbb{R}^n) \) and to prove Theorem 1.1.

First we want to show \(\tilde{a}_h(x, \xi) = f_h(x) a(\rho, \theta, \frac{x}{|x|}) \in S \) for admissible cutoff function \(f_h \) and \(a \in C_0^\infty(\mathbb{R} \times T^* S^{n-1}) \), where

\[
S = \{ a \in C^\infty(T^* \mathbb{R}^n) \mid \forall \alpha, \beta \in \mathbb{N}^n, \sup_{(x, \xi) \in T^* \mathbb{R}^n} |\partial_x^\alpha \partial_\xi^\beta \tilde{a}(x, \xi)| < \infty \}.
\]

Let \(v \in T_x (\mathbb{R}^n \setminus \{0\}) \). From the cartesian coordinates, we can write \(v = \sum_{m=1}^n v_i \partial_{x_i} \). Also, if we fix local coordinate \((U, \psi)\) of \(S^{n-1} \) with \(\frac{x}{|x|} \in U \), we can write \(v = v_r \partial_r + \sum_{m=1}^{n-1} v_\theta \partial_\theta \) using polar coordinate.

Let \(\tilde{\psi} \) be a map \((0, \infty) \times U \subset \mathbb{R}^n \rightarrow \psi(U) \) which takes \(x \) to \(\psi(\frac{x}{|x|}) \).

Then we can write \(v_r = \frac{x}{|x|} \cdot \tilde{v} \) and \(v_\theta = J(\tilde{\psi}) \frac{1}{|x|} (I_n - (\frac{x}{|x|})_{i,j}) \tilde{v} \) where \(\frac{x}{|x|} \cdot \tilde{v} = (v_1, v_2, \cdots, v_n) \) and \(J(\tilde{\psi}) \) denotes the Jacobi matrix of \(\tilde{\psi} \) at \(x \).

Let \(\xi \in T^* \mathbb{R}^n \). Then using dual coordinate of cartesian coordinates and polar coordinate, \(\xi \) can be written as \(\sum_{m=1}^n \xi_i dx_i + p dr + \sum_{m=1}^{n-1} \eta d\theta_i \).

Using cartesian coordinate, we see \(\xi(v) = \sum_{m=1}^n \xi_i v_i \). Using polar coordinate, we see \(\xi(v) = \rho \frac{x}{|x|} \cdot \tilde{v} + \eta \cdot J(\tilde{\psi}) \frac{1}{|x|} (I_n - (\frac{x}{|x|})_{i,j}) \tilde{v} \).

Substituting \(\tilde{v} = \frac{x}{|x|} \cdot \xi \), we see \(\rho = \frac{x}{|x|} \cdot \xi \). If \(\{I_n - (\frac{x}{|x|})_{i,j}\} \tilde{v} = \tilde{v} \) i.e. \(\frac{x}{|x|} \cdot \tilde{v} = 0 \), we see \(|x| \xi \cdot \tilde{v} = \eta \cdot J(\tilde{\psi}) \tilde{v} \), which means \(|x| \xi = t J(\tilde{\psi}) \eta \).

Thus we obtain

\[
\forall \alpha, \beta \in \mathbb{N}^n, \sup_{(x, \xi) \in T^* \mathbb{R}^n} |\partial_x^\alpha \partial_\xi^\beta \tilde{a}(x, \xi)| < \infty.
\]

\[
\iff \forall m, \ell \in \mathbb{N}, \tilde{\alpha}, \tilde{\beta} \in \mathbb{N}^{n-1}, \sup_{(x, \xi) \in T^* \mathbb{R}^n} |\partial_x^m \partial_\rho^\ell \partial_\theta^\tilde{\alpha} (r \partial_\eta^\tilde{\beta}) \tilde{a}(x, \xi)| < \infty.
\]

Then it is clear that \(\tilde{a}(x, \xi) \in S \).

We define dilation operator \(U_h \) by \(U_h u(x) = h^n u(\frac{x}{h}) \) for \(u \in L^2(\mathbb{R}^n) \). Then \(U_h \) is unitary and one can calculate

\[
\text{Op}_{f_h}(a) = U_h^{-1} \tilde{a}^w(X, h D_X) U_h.
\]

(2.1)
Thus we can apply an usual semiclassical analysis for S. Then one can use results in usual semiclassical analysis in [17] to obtain the following theorems.

Theorem 2.1. (Calderon-Vaillancourt Theorem)

For $a \in S$, there exists $C > 0$ such that

$$\|a^w(hX, D_X)\|_{L^2(\mathbb{R}^n)} \leq C \sup_{(x, \xi) \in \mathbb{R}^{2n}} |a(x, \xi)| + o(h^{\frac{1}{2}}) \quad \text{as} \quad h \to 0.$$

Theorem 2.2. (Sharp Gårding inequality)

Suppose $a \in C_0^\infty(\mathbb{R} \times T^*S^{n-1})$ is positive. Then there exist $C > 0$ and $h_0 > 0$ such that

$$\langle u, \text{Op}_h(a)u \rangle_{L^2(\mathbb{R}^n)} \geq -Ch\|u\|_{L^2(\mathbb{R}^n)}^2$$

for $u \in L^2(\mathbb{R}^n)$ and $0 < h < h_0$.

Proof of Theorem 1.1. The proof is essentially the same with that of the Theorem 5.2 in [17]. However we give the detail for the completeness.

Since $C_0(\mathbb{R} \times T^*S^{n-1})$ is separable with the topology defined by sup-norm and $C_0^\infty(\mathbb{R} \times T^*S^{n-1})$ is dense subspace, thus one can find $\{a_\ell\} \in C_0^\infty(\mathbb{R} \times T^*S^{n-1})$ which is dense in $C_0(\mathbb{R} \times T^*S^{n-1})$.

From Theorem 2.1, $\langle u_h, \text{Op}_{h,h}(a_1)u_h \rangle$ is bounded in h. Thus one can find sequence $h_m^{(1)}$ such that $h_m^{(1)} \to 0$ and $\langle u_{h_m^{(1)}}, \text{Op}_{h,h_{h_m^{(1)}}}(a_1)u_{h_m^{(1)}} \rangle \to F(a_1)$ as $m \to \infty$ for some $F(a_1)$.

Similarly, for $\ell = 2, 3, 4, \cdots$ one can find sequence $h_m^{(\ell)}$ which is subsequence of $h_m^{(\ell-1)}$ and $\langle u_{h_m^{(\ell)}}, \text{Op}_{h_{h_m^{(\ell)}}}(a_\ell)u_{h_m^{(\ell)}} \rangle \to F(a_\ell)$ as $m \to \infty$ for some $F(a_\ell)$. Then by diagonal argument one can find sequence h_m such that $\langle u_{h_m}, \text{Op}_{h_{h_m}}(a)u_{h_m} \rangle \to F(a)$ as $m \to \infty$ for each ℓ.

From Theorem 2.1, one can calculate as follows:

$$\langle u_{h_m}, \text{Op}_{h_{h_m}}(a)u_{h_m} \rangle$$

\begin{align*}
&\leq \|\text{Op}_{h_{h_m}}(a)\|_{L^2(\mathbb{R}^n)}\|u_{h_m}\|_{L^2(\mathbb{R}^n)} \\
&\leq C \sup_{(r,\rho,\theta,\eta) \in \mathbb{R}^{2n}} |f_{h_m}(r)a_\ell(\rho, \theta, \eta)| + o(h^{\frac{1}{2}}) \\
&\leq C \sup_{(\rho,\theta,\eta) \in \mathbb{R} \times T^*S^{n-1}} |a_\ell(\rho, \theta, \eta)| + o(h^{\frac{1}{2}}),
\end{align*}

where we have used the fact f_h is uniformly bounded in the last line. Thus a functional $a_\ell \mapsto F(a_\ell)$ defines a bounded and linear functional F on $C_0(\mathbb{R} \times T^*S^{n-1})$. Theorem 2.2 implies that F is non-negative if f_h is non-negative. Then Riesz-Markov-Kakutani theorem implies there exists a Radon measure μ_f such that $\langle u_{h_m}, \text{Op}_{h_{h_m}}(a)u_{h_m} \rangle \to \int_{\mathbb{R} \times T^*S^{n-1}} ad\mu_f$ as $m \to \infty$ for any $a \in C_0^\infty(\mathbb{R} \times T^*S^{n-1})$.
Taking \(\chi_n \in C_0(\mathbb{R} \times T^*S^{n-1}) \) such that \(0 \leq \chi_n \to 0 \) pointwise as \(n \to \infty \). Then one obtains \(\lim_{n \to \infty} \int_{\mathbb{R} \times T^*S^{n-1}} \chi_n d\mu_f = \mu_f(\mathbb{R} \times T^*S^{n-1}) \) from the monotone convergence theorem. Since \(f_\mu \) is uniformly bounded, Theorem 2.1 implies \(\lim_{n \to \infty} \int_{\mathbb{R} \times T^*S^{n-1}} \chi_n d\mu_f \leq C \). This means \(\mu_f(\mathbb{R} \times T^*S^{n-1}) \leq C \), which proves finiteness.

\[\square \]

2.2 Induced Dynamical System

Here we consider the following dynamical system on \(\mathbb{R} \times T^*S^{n-1} \) which is induced by Hamiltonian flow of \(P \). Essentially, contents of this section is first done in [8] but we write here for the convince.

Let \(H \) be a vector field on \(T^*(\mathbb{R} \times T^*S^{n-1}) \) defined by

\[
H = q(\theta, \eta) \frac{\partial}{\partial \rho} + (\partial_q q)(\theta, \eta) \frac{\partial}{\partial \theta} - ((\partial_q q)(\theta, \eta) + (\partial_\theta V)(\theta) + 2\rho \eta) \frac{\partial}{\partial \eta},
\]

where \(q(\theta, \eta) = \frac{1}{2} \eta h(\theta) \eta \) is symbol of Laplacian on \(S^{n-1} \) and \(\Phi_t \) be a flow generated by \(H \).

The relation of this dynamical system and the Schrödinger operator with homogeneous potential is as follows:

Let \(\Phi_t \) be a Hamiltonian flow generated by the Hamiltonian of \(H \). For \((r, \rho, \theta, \eta) \in T^*\mathbb{R}^n \) we write \(\Phi_t(r, \rho, \theta, \eta) = (\tilde{r}(t), \tilde{\rho}(t), \tilde{\theta}(t), \tilde{\eta}(t)) \). Then \((\tilde{r}(t), \tilde{\rho}(t), \tilde{\theta}(t), \tilde{\eta}(t)) \) satisfy

\[
\frac{d}{dt} \tilde{r}(t) = 2\tilde{\rho}(t), \quad \frac{d}{dt} \tilde{\rho}(t) = q(\tilde{\theta}(t), \frac{\tilde{\eta}(t)}{\tilde{r}(t)}),
\]

\[
\frac{d}{dt} \tilde{\theta}(t) = (\partial_q q)(\tilde{\theta}(t), \frac{\tilde{\eta}(t)}{\tilde{r}(t)}), \quad \frac{d}{dt} \tilde{\eta}(t) = -((\partial_q q)(\tilde{\theta}(t), \frac{\tilde{\eta}(t)}{\tilde{r}(t)}) + (\partial_\theta V)(\tilde{\theta}(t))).
\]

If we take \((\rho(t), \theta(t), \eta(t)) = (\tilde{r}(t), \tilde{\theta}(t), \frac{\tilde{\eta}(t)}{\tilde{r}(t)}) \), we obtain

\[
\frac{d}{dt} \rho(t) = \tilde{r}(t)^{-1}q(\theta(t), \eta(t)), \quad \frac{d}{dt} \theta(t) = \tilde{r}(t)^{-1}(\partial_q q)(\theta(t), \eta(t)),
\]

\[
\frac{d}{dt} \eta(t) = -\tilde{r}(t)^{-1}\{((\partial_q q)(\theta(t), \eta(t)) + (\partial_\theta V)(\theta(t))) + 2\rho(t) \eta(t)\}.
\]

We assume \(\tilde{r}(t) \neq 0 \) and \(\tilde{r}(t) \to \infty \) as \(t \to \infty \). We introduce new time \(\tau \) by \(\tau = \int_0^t \tilde{r}(s)^{-1}ds \). Then we see

\[
\frac{d}{d\tau} \rho(t) = q(\theta(t), \eta(t)), \quad \frac{d}{d\tau} \theta(t) = (\partial_q q)(\theta(t), \eta(t)),
\]

\[
\frac{d}{d\tau} \eta(t) = -((\partial_q q)(\theta(t), \eta(t)) + (\partial_\theta V)(\theta(t)) + 2\rho(t) \eta(t)).
\]
Thus considering the orbit of Φ_t corresponds to considering the orbit of Hamilton flow of P.

In the last of this section, we write $\Phi_t(\rho, \theta, \eta) = (\rho(t), \theta(t), \eta(t))$ for $(\rho, \theta, \eta) \in \mathbb{R} \times T^*S^{n-1}$.

Lemma 2.3. Total energy $\rho^2 + q(\theta, \eta) + V(\theta)$ is conserved.

Proof. Let $E(t) = \rho(t)^2 + q(\theta(t), \eta(t)) + V(\theta(t))$. Then we see

$$\frac{d}{dt} E(t) = 2\rho(t)q(\theta(t), \eta(t)) + \{(\partial_{\theta}q)(\theta(t), \eta(t)) + (\partial_{\theta}V)(\theta(t))\}(\partial_{\theta}q)(\theta(t), \eta(t))$$

$$- (\partial_{\theta}q)(\theta(t), \eta(t))\{(\partial_{\theta}q)(\theta(t), \eta(t)) + (\partial_{\theta}V)(\theta(t)) + 2\rho(t)\eta(t)\}$$

$$= 0.$$

\[\square\]

Lemma 2.4. $\lim_{t \to \infty} \rho(t)$ exists.

Remark. Since $\frac{d}{dt}\rho(t) = q(\theta(t), \eta(t))$, $q(\theta(t), \eta(t))$ is integrable on $(0, \infty)$.

Proof. Since $\frac{d}{dt}\rho(t) = q(\theta(t), \eta(t)) > 0$, $\rho(t)$ is monotone increasing. From Lem2.3, $\rho(t)^2 \leq \rho(t)^2 + q(\theta(t), \eta(t)) = E(0) - V(\theta(t))$. Since V is bounded, so is $\rho(t)$. Thus $\rho(t)$ is monotone increasing and bounded, which concludes the proof. \[\square\]

Lemma 2.5. $q(\theta(t), (\partial_{\theta}V)(\theta(t)))$ is integrable on $(0, \infty)$ with respect to t.

Proof. Let $F(t) = -t(\partial_{\theta}V(\theta(t)))h(\theta(t))\eta(t)$. Then we obtain

$$\frac{d}{dt} F(t) = -t(Hess(V)(\theta(t))(\partial_{\theta}q)(\theta(t), \eta(t)))h(\theta(t))\eta(t)$$

$$- t(\partial_{\theta}V(\theta(t)))\{(\partial_{\theta}h(\theta(t)))(\partial_{\theta}q)(\theta(t), \eta(t))\}\eta(t)$$

$$+ t(\partial_{\theta}V(\theta(t)))h(\theta(t))\{(\partial_{\theta}q)(\theta(t), \eta(t)) + (\partial_{\theta}V)(\theta(t)) + 2\rho(t)\eta(t)\}$$

Thus there exists $C > 0$ such that

$$\frac{d}{dt} F(t) + Cq(\theta(t), \eta(t)) > Cq(\theta(t), (\partial_{\theta}V)(\theta(t))).$$

By integrating this inequality from $t = 0$ to $t = T$, we obtain

$$F(T) - F(0) + C \int_0^T q(\theta(t), \eta(t))dt > C \int_0^T q(\theta(t), (\partial_{\theta}V)(\theta(t)))dt.$$
Since $q(\theta(t), (\partial_\theta V)(\theta(t))) \geq 0$ it is sufficient to show there exists a sequence T_j such that $T_j \to \infty$ as $j \to \infty$ and $\{F(T_j)\}$ has upper bound.

From the definition of q, we obtain

$$|F(t)| \leq q(\theta(t), \eta(t)) + q(\theta(t), (\partial_\theta V)(\theta(t))).$$

Since second term is bounded, we only have to show that first term is bounded for some $\{T_j\}$. Since first term is integrable, there exists a sequence $\{T_j\}$ such that there exist $C > 0$ such that $q(\theta(t), \eta(t)) < C$, which completes the proof. \qed

Theorem 2.6. $\lim_{t \to \infty} (\partial_\theta V)(\theta(t)) = \lim_{t \to \infty} \eta(t) = 0$.

Proof. Let $G(t) = q(\theta(t), (\partial_\theta V)(\theta(t)))$. Then we obtain

$$\frac{d}{dt}G(t) = 2^t(\text{Hess}(V)(\theta(t))(\partial_\theta q)(\theta(t), \eta(t)))h(\theta(t))(\partial_\theta V)(\theta(t)) + \frac{d}{d\theta}(\partial_\theta V)(\theta(t))(\partial_\theta q)(\theta(t), \eta(t))\eta(t))((\partial_\theta V)(\theta(t)).$$

Similarly to the proof of Lemma 2.5, one can prove that right hand side is integrable and $\lim_{t \to \infty} G(t)$ exists. Since $G(t)$ is integrable, this limit should be zero.

Since

$$\frac{d}{dt}V(\theta(t)) = \frac{d}{d\theta}(\partial_\theta V)(\theta(t))h(\theta(t))(\partial_\theta q)(\theta(t), \eta(t)) \leq q(\theta(t), (\partial_\theta V)(\theta(t)) + q(\theta(t), \eta(t))$$

$\lim_{t \to \infty} V(\theta(t))$ exists. From Lem 2.3, $q(\theta, \eta(t)) = E - \rho^2 - V(\theta(t))$ for some constant E. Since right hand side has limit as $t \to \infty$, $\lim_{t \to \infty} q(\theta, \eta(t))$ exists. Then integrability of $q(\theta, \eta(t))$ yields this limit is zero. \qed

3 Proof of Theorem 1.2 and Theorem 1.3

We first prepare a lemma and Theorem to prove of Theorem 1.2.

Lemma 3.1. Let $a \in C_0^\infty(\mathbb{R} \times T^*S^{n-1})$, then one obtains the following:

$$[\text{Op}_h(a), P] = \frac{h}{i}\{f_h(r)a(\rho, \theta, \frac{\eta}{r}), \rho^2 + q(\theta, \frac{\eta}{r}) + V(\theta)\}u(hX, DX) + E_h$$

as $h \to 0$, where E_h is a family of pseudodifferential operator on $L^2(\mathbb{R}^n)$ depending on h such that $\|E\|_{L^2(\mathbb{R}^n)} = o(h)$ as $h \to 0$. We note that $\{\cdot, \cdot\}$ denotes Poisson bracket.
Proof. From equality (2.1), one can directly obtain the assertion for $-\triangle$ from Theorem 4.18 in [17] i.e.

$$[\text{Op}_f h(a), -\triangle] = \frac{\hbar}{i} \left\{ f_h(r)a(\rho, \theta, \eta), \rho^2 + q(\theta, \eta) \right\} w(hX, D_X) + O(h^3).$$

Let $k \in C^\infty(\mathbb{R})$ $k(x) = 1$ if $x > \varepsilon$ and $k(x) = 0$ if $x < \frac{\varepsilon}{2}$, where $\varepsilon > 0$ is taken so that $f_h(x) = 0$ if $x < \varepsilon$. Then we can calculate as follows:

$$[\text{Op}_{h,c}(a), V] = [\text{Op}_{h,c}(a), k(hr)(V_\infty + V_s)] + [\text{Op}_{h,c}(a), \{1 - k(hr)\}V].$$

Since V_∞ is homogeneous of order zero, $k(h|x|)V_\infty(x) = \tilde{V}(hx)$ is a smooth and bounded function on $C^\infty(\mathbb{R}^n)$. Then one can obtain the equality similarly to the case of $-\triangle$ from (2.1).

Concerning V_s, one can calculate $\|k(hr)V_s\|_{L^2(\mathbb{R}^n)} = O(h)$ as $h \to 0$ from the definition of V_s. Thus $[\text{Op}_{h,c}(a), j(2c(h)hr)V_s] = O(h)$ as $h \to 0$ from Theorem 2.1.

Next we claim that $[\text{Op}_{h,c}(a), \{1 - k(hr)\}] = O(h^3)$. Let $\tilde{k}(x) = 1 - k(|x|)$, then $\tilde{k} \in C^\infty(\mathbb{R}^n)$ from the definition of k. By conjugating semiclassical dilation U_h, one can calculate as follows:

$$\text{Op}_{f_h}(a)\tilde{k}(hx) = \{ f_h(r)a(\rho, \theta, \eta) \} w(hx, D_x) \tilde{k}(hX) = U_h^* \{ f_h(r)a(\rho, \theta, \eta) \} w(x, hD_x) \tilde{k}(x) U_h.$$

Since $\text{supp}(f_h(r)a(\rho, \theta, \eta)) \cap \text{supp}(\tilde{k}(x)) = \phi$, Theorem 4.18 in [17] implies the claim.

Since multiplication operator by V is uniformly bounded in h, the claim implies $\[\text{Op}_{f_h}(a), \{1 - k(hr)\}\] = O(h^3)$, which concludes the proof.

\[\square\]

Theorem 3.2. (Energy conservation)

Assume Assumption A. Let f_h be an admissible cutoff function and let $u_h \in \mathcal{D}(P)$ be such that

$$\begin{cases} (P - E)u_h = R_h \\ \|u_h\|_{L^2(\mathbb{R}^n)} = 1, \end{cases}$$

where $\|R_h\|_{L^2(\mathbb{R}^n)} = O(1)$ as $h \to 0$. Then support of μ_f is localized in energy surfaces in the following meaning:

$$\text{supp}(\mu_f) \subset \{(\rho, \theta, \eta) \in \mathbb{R} \times T^* S^{n-1} \mid \rho^2 + q(\theta, \eta) + V_\infty(\theta) = E\}.$$
Proof. Since \((P - E)u_h = o(1)\), one can calculate

\[
o(1) = \langle u_h, \text{Op}_{f_h}(a)(P - E)u_h \rangle_{L^2(\mathbb{R}^n)}
\]

\[
= \langle u_h, \{f_h(r)\rho^2 + q(\theta, \eta) + V(\theta - E)\}w(hX, D_x)u_h \rangle_{L^2(\mathbb{R}^n)} + o(1)
\]

as \(h \to 0\) where we have used the fact that \(\|\text{Op}_{f_h}(a)V_s\|_{L^2(\mathbb{R}^n)} = o(1)\) as \(h \to 0\).

Therefore, if we take a suitable subsequence \(h_m\) and \(m \to 0\), we obtain

\[
\int_{\mathbb{R} \times T^*S^{n-1}} a(\rho^2 + q(\theta, \eta) + V - E)d\mu_f = 0,
\]

which concludes the proof.

Actually, it suffices to prove following Theorem to prove Theorem 1.3.

Theorem 3.3. Assume assumptions of Theorem 1.3. If \(E \notin \text{Cr}(V)\) and \(J_h u_h \to 0\) as \(h \to 0\), \(\tilde{J}_h u_h \to 0\) as \(h \to 0\).

Proof of Theorem 1.3. Let \(c_0(h) = h^{-1}\|R_h\|_{L^2(\mathbb{R}^n)}\).

We define \(c(h) = \max_{0 \leq \tilde{h} \leq h} \max\{\tilde{h}^\delta, c_0(\tilde{h})^\delta\}\) for some \(\delta \in (0, 1)\). Then \(c(h)\) is monotone increasing function on \((0, 1)\) and \(c(h)\) satisfies \(c(h) = o(1)\) and \(c(h)^{-1} = o(h^{-1})\) as \(h \to 0\). It is also clear that \(\|R_h\|_{L^2(\mathbb{R}^n)} = o(hc(h))\) as \(h \to 0\).

Then we can apply Theorem 3.3 and can prove Theorem 1.2 by iteration.

Proof of Theorem 3.3. Let \(\chi(r) = j(\frac{1}{2}r)(1 - j(\frac{1}{4}r))\). We define our cutoff function \(\chi_h\) by \(\chi_h(r) = \chi((\log(c(h)^{-1}))^{-1}\log r)\). Then we see that \(r \leq c(h)^{-1}\) on \(\text{supp}(\chi_h)\).

We assume \(\tilde{J}_h u_h \not\to 0\) as \(h \to 0\), which means semiclassical measure \(\mu_J\) is positive.

Since \(\|R_h\|_{L^2(\mathbb{R}^n)} = o(hc(h))\), we obtain the followings:

\[
o(hc(h)) = \langle u_h, \{c(h)r\chi_h(r)\rho^2 + q(\theta, \eta)\}w(hx, D_x), P \rangle_{L^2(\mathbb{R}^n)}
\]

\[
= h \langle u_h, \{c(h)r\chi_h(r)\rho^2 + q(\theta, \eta)\}, \rho^2 + q(\theta, \eta) + V(\theta) \rangle w(hx, D_x)u_h \rangle_{L^2(\mathbb{R}^n)} + \mathcal{O}(h^3)
\]
We also see

\[
\{ r\chi_h(r)a(\rho, \theta, \frac{\eta}{r}), \rho^2 + q(\theta, \frac{\eta}{r}) + V(\theta) \}
\]

\[
= 2\rho\chi_h(r)a(\rho, \theta, \frac{\eta}{r}) + \chi_h(r)\{(\partial_\rho a)(\rho, \theta, \frac{\eta}{r})q(\theta, \frac{\eta}{r}) + (\partial_\theta a)(\rho, \theta, \frac{\eta}{r})(\partial_\eta q)(\theta, \frac{\eta}{r})
\]

\[
- (\partial_\eta a)(\rho, \theta, \frac{\eta}{r})((\partial_\theta q)(\theta, \frac{\eta}{r}) + (\partial_\theta V)(\theta) + 2\rho\frac{\eta}{r})\}
\]

\[
+ 2\rho(\log h^{-1})^{-1}(\partial_r \chi)((\log h^{-1})^{-1}\log r)a(\rho, \theta, \frac{\eta}{r}).
\]

Taking \(h \to 0 \), we see

\[
\int_{\mathbb{R} \times T^*S^{n-1}} 2pa(\rho, \theta, \frac{\eta}{r}) + \{(\partial_\rho a)(\rho, \theta, \frac{\eta}{r})q(\theta, \frac{\eta}{r}) + (\partial_\theta a)(\rho, \theta, \frac{\eta}{r})(\partial_\eta q)(\theta, \frac{\eta}{r})
\]

\[
- (\partial_\eta a)(\rho, \theta, \frac{\eta}{r})((\partial_\theta q)(\theta, \frac{\eta}{r}) + (\partial_\theta V)(\theta) + 2\rho\frac{\eta}{r})\}d\mu \]

where we have used that \(\mu_\chi = \mu_\tilde{J} \) since \(J\tilde{u}_h \to 0 \) as \(h \to 0 \).

Let \(H \) be a vector field on \(T^*(\mathbb{R} \times T^*S^{n-1}) \) defined by

\[
H = q(\theta, \frac{\eta}{r})\partial_\rho + (\partial_\eta q)(\theta, \frac{\eta}{r})\partial_\theta - ((\partial_\theta q)(\theta, \frac{\eta}{r}) + (\partial_\theta V)(\theta) + 2\rho\frac{\eta}{r})\partial_\eta,
\]

and \(\Phi_t \) be flow generated by \(H \). Using this \(\Phi_t \), (3.1) can be rewrite as

\[
\frac{d}{dt} \int_{\mathbb{R} \times T^*S^{n-1}} \Phi_t^*(ae^{2pt})d\mu = 0.
\]

If \(E \notin \text{Cv}(V) \), \(\lim_{t \to \infty} \rho(t) \neq 0 \), which means \(\int_{\mathbb{R} \times T^*S^{n-1}} \Phi_t^*(ae^{2pt})d\mu \) diverges if we take the limit \(t \to \infty \) or \(t \to -\infty \) since \(\mu \) is positive. This is contradiction and the assertion follows.

\[\square \]

Proof of Theorem 1.2. Let \(C > 0 \) be such that \(\text{supp}(\chi) \subset (1, C) \). We define \(\tilde{\chi}(x) = j(x)(1 - j(\frac{1}{2C}x)) \). Then \(x\tilde{\chi}(x) \) is an admissible cutoff function.

For \(a \in C^\infty_0(\mathbb{R} \times T^*S^{n-1}) \), we calculate commutator of \(\text{Op}_{r\tilde{\chi}}(a) \) and \(P - E \) to obtain

\[
o(h) = \langle u_h, [\text{Op}_{r\tilde{\chi}}(a), P - E]u_h \rangle_{L^2(\mathbb{R}^n)}
\]

\[
= \frac{h}{\tilde{\chi}} \langle u_h, \text{Op}_j(\rho a + 2\rho a)u_h \rangle_{L^2(\mathbb{R}^n)} + o(h),
\]

similarly to the proof of Theorem 1.2.
Then we see $\mu_j = 0$ if $E \notin \text{Cv}(V)$, which is contradiction from Theorem 3.1 and the assumption on u_h. Thus $E \in \text{Cv}(V)$.

If $E \in \text{Cv}(V)$, similar to the above argument, we see

$$\text{supp}(\mu) \subset \{(\rho, \theta, \eta) \in \mathbb{R} \times T^*S^{n-1} \mid \lim_{t \to \infty} \rho(t) = 0\}. $$

Let $a \in C_0^\infty(\mathbb{R} \times T^*S^{n-1}; [0, \infty))$ be such that

$$\text{supp}(a) \cap \{q(\theta, \partial_\theta V(\theta)) + q(\theta, \eta) < \delta\} = \phi.$$

Then we see

$$\int_{\mathbb{R} \times T^*S^{n-1}} ad\mu_j = \lim_{t \to \infty} \int_{\mathbb{R} \times T^*S^{n-1}} \Phi_t^*(ae^{2\rho t})d\mu_j$$

$$\lim_{t \to \infty} \int_{\{\lim_{t \to \infty} \rho(t) = 0\}} \Phi_t^*(ae^{2\rho t})d\mu_j.$$

Since $\rho(t)$ is monotone increasing and $\lim_{t \to \infty} \rho(t) = 0$, $\rho(t) < 0$ which implies

$$\lim_{t \to \infty} \int_{\{\lim_{t \to \infty} \rho(t) = 0\}} \Phi_t^*(ae^{2\rho t})d\mu_j \leq \lim_{t \to \infty} \int_{\{\lim_{t \to \infty} \rho(t) = 0\}} \Phi_t^*(a)d\mu_j$$

from the fact $\lim_{t \to \infty} \Phi_t^*(a)(\rho, \theta, \eta) = 0$ pointwise from the definition of a, Theorem 2.6 and dominant convergence theorem,

$$\int_{\mathbb{R} \times T^*S^{n-1}} ad\mu_j = \lim_{t \to \infty} \int_{\{\lim_{t \to \infty} \rho(t) = 0\}} \Phi_t^*(ae^{2\rho t})d\mu_j = 0,$$

This means

$$\text{supp}(\mu) \subset \{(\rho, \theta, 0) \in \mathbb{R} \times T^*S^{n-1} \mid \theta \in \text{Cr}(V), \lim_{t \to \infty} \rho(t) = 0\}. $$

If (ρ, θ, η) is in the set of right hand side of the above line, $\rho(t) = \rho$ for any t since the set of right hand side is fixed set of Φ_t, which implies $\rho = 0$ and $\theta \in V^{-1}(E)$. Thus the assertion follows.

\[\square\]

4 Example of asymptotic eigenvectors whose defect measure does not vanish

In this section, we construct an example of u_h such that corresponding semiclassical measure $\mu \neq 0$. We will show existence of the quasimodes with following support condition.
Theorem 4.1. Assume Assumption A.

(1) Let \(E \in [\min(V), \max(V)] \), \(\theta_0 \in V^{-1}(E) \subset S^{n-1} \) and \(k \in \mathbb{N} \cup \{0\} \) be such that \(\partial^k \theta V(\theta_0) = 0 \) for any \(k \leq k \). For any \(C > 0 \), there exists a solution \(u_h \) to the (1.1) which satisfies the following conditions:

1. \(u_h \in \mathcal{D}(P) \) and satisfies
 \[
 \begin{cases}
 (P - E)u_h = R_h \\
 \|u_h\|_{L^2(\mathbb{R}^n)} = 1,
 \end{cases}
 \]

2. \(\|R_h\|_{L^2(\mathbb{R}^n)} = o(h) \) if \(k > 1 \) and \(\|R_h\|_{L^2(\mathbb{R}^n)} = \Theta(h) \) if \(k = 0, 1 \) as \(h \to 0 \),

3. Let \(j \) be a function in Section 1. \(u_h \) satisfies \(j(hr)u_h(r, \theta) = u_h(r, \theta) \),

4. \(\text{supp}(u_h) \subset \{(r, \theta) \in \mathbb{R}^n \mid r > 1, \text{dist}(\theta, \theta_0) < C r^{-\ell(k)}\} \) for sufficiently small \(h > 0 \),

where \(\ell(k) \) is such that \(\ell(k) = k + 1 \) if \(k > 0 \) and \(\ell(0) = \frac{2}{3} \), and \(\text{dist}(\cdot, \cdot) \) denotes the distance defined by the metric on \(S^{n-1} \) induced by the Euclidean metric on \(\mathbb{R}^n \).

(2) Let \(\max(V) < E \), \(\theta_0 \in S^{n-1} \) and \(k \in \mathbb{N} \cup \{0\} \) be such that \(\partial^k \theta V(\theta_0) = 0 \) for any \(k \leq k \). For any \(C, \varepsilon > 0 \), there exists a solution \(u_h \) to the (1.1) which satisfies the following conditions:

1. \(u_h \in \mathcal{D}(P) \) and satisfies
 \[
 \begin{cases}
 (P - E)u_h = R_h \\
 \|u_h\|_{L^2(\mathbb{R}^n)} = 1,
 \end{cases}
 \]

2. \(\|R_h\|_{L^2(\mathbb{R}^n)} = \Theta(h) \) as \(h \to 0 \),

3. Let \(j \) be a function in Section 1. \(u_h \) satisfies \(j(hr)u_h(r, \theta) = u_h(r, \theta) \),

4. \(\text{supp}(u_h) \subset \{(r, \theta) \in \mathbb{R}^n \mid r > 1, \text{dist}(\theta, \theta_0) < C r^{-\ell(k)}\} \) for sufficiently small \(h > 0 \),

where \(\ell(k) \) is the same with (1).

Remark. From Theorem 3.1, condition 2. in both statements imply \(\mu_j \) do not vanish.

Proof. (1) We will construct \(u_h \) of form \(u_h(x) = f_h(r)g_h(\theta) \) by the polar coordinate which satisfies following conditions in addition to the conditions in Theorem 4.1:
1. \(\| \partial_r^2 + \frac{n-1}{r} \partial_r f_h \|_{L^2((0,\infty);r^{n-1} dr)} = o(h) \) as \(h \to 0 \).

2. If \(k > 1 \) (resp. \(k = 0, 1 \)), \(\| r^{-2} \Delta_{S^{n-1}} u_h \|_{L^2(\mathbb{R}^n)} = o(h) \) (resp. \(O(h) \)), where \(\Delta_{S^{n-1}} \) denotes Laplacian on \(S^{n-1} \).

3. There exists \(C > 0 \) such that \(|V(\theta) - E| \leq Ch^{\ell(k)} \) on supp(\(g_h \)).

We assume that \(E = 0 \). This does not lose generality since \((V - E) \) is still homogeneous of order zero.

Let \(f \in C_0^\infty(1, \infty) \setminus \{0\} \). We define \(f_{h,0}(r) = Ch^{-n} f(hr) \) if \(k > 0 \) and \(f_{h,0}(r) = Ch^{-\frac{n+2}{2} f(h^{\frac{4}{3}} r)} \) if \(k = 0 \), where \(C > 0 \) is renormalizing constant. Then we see that \(r^{-1} \leq Ch \) on supp(\(f_h \)) for some \(C > 0 \) and one can easily calculate that \(f_h \) satisfies the condition 1. at the beginning of proof.

Since \(\partial_r^k V(\theta_0) = 0 \) for any \(\hat{k} \leq k \), from Taylor’s theorem, there exists a small neighbor \(U \) of \(\theta_0 \) such that \(V(\theta) = O(\text{dist}(\theta, \theta_0)^{k+1}) \) near \(\theta = \theta_0 \).

Let \(\phi \in C_0^\infty(\mathbb{R}) \) be such that supp(\(\phi \)) \(\subset (-1, 1) \) and \(\phi(x) = 1 \) if \(|x| \leq \frac{1}{2} \) and \(0 \leq \phi \leq 1 \). We define \(\tilde{g}_h \) by

\[
\tilde{g}_h(\theta) = \phi \left(\frac{\text{dist}(\theta, \theta_0)}{h \frac{1+k}{k+1}} \right).
\]

Then we see that there exists \(C > 0 \) such that \(|V| \leq Ch^{1+k} \) on supp(\(\tilde{g}_h \)) for sufficiently small \(h \). Also, since \(\Delta_{S^{n-1}} \) is a second order differential operator, we obtain that \(\| \Delta_{S^{n-1}} \tilde{g}_h(\theta) \| = o(h^{-\frac{1+k}{k+1}}) \| \tilde{g}_h \| \). Let \(C_h^{(2)} = \| \tilde{g}_h \|_{L^2(S^{n-1})}^{-1} \) and \(g_h = C_h^{(2)} \tilde{g}_h \).

Since \(\Delta_{S^{n-1}} g_h(\theta) = o_{L^2(S^{n-1})}(h^{-\frac{1+k}{k+1}}) \) and \(r^{-2} f_h(r) = O_{L^2((0,\infty);r^{n-1} dr)}(h^{2}) \), we see \(r^{-2} \Delta_{S^{n-1}} u_h = o_{L^2(\mathbb{R}^n)}(h) \) if \(k > 0 \) the case \(k = 0 \) can be check easily. Combining with the conditions of \(f_h \) and \(g_h \), we see \((P - E) u_h = o_{L^2(\mathbb{R}^n)}(h) \).

Actually, we can calculate \(\| u_h \|_{L^2(\mathbb{R}^n)} = 1 \) from the definition of \(f_h \) and \(g_h \). From the definition of \(f_h \), it is clear \(j(h_m|x|)u_{h_m}(x) = u_{h_m}(x) \to 0 \) for any sequence \(h_m \) such that \(h_m \to 0 \) as \(j \to \infty \). Thus the semiclassical defect measure \(\mu \) defined from \(u_h \) does not vanish.

Concerning about the proof of (2), let \(E = E_1 + E_2 \) where \(V(\theta_0) = E_2 \). Let \(f_h(r) = Ch^{-\frac{2}{3} n} f(h^{\frac{2}{3}} r)e^{\sqrt{E_1} r} \). Then one can obtain the conclusion similarly. \(\square \)

5 Proof of Theorem 1.4

In this section we prove observability result for Schrödinger operators with homogeneous potentials of order zero.
Proof of Theorem 1.4. We prove by constructing sequence of functions u_m such that $\int_{0}^{T} \int_{\Omega} |e^{-itP} u_m(x)|^2 \, dx \, dt \to 0$ as $m \to \infty$.

Let $X = \{(r, \theta) \in \mathbb{R}^n \mid r > R, \text{dist}(\theta, \theta_0) < Cr^{-1/n}\}$ and u_h be solution of (1.1) which constructed in Theorem 4.1. Then we can find $\bar{\chi} \in C_0^\infty(0, \infty)$ such that $\bar{\chi}(hr)f_h(r) = f_h(r)$.

From the assumption of k and R, we can take $\varphi_h \in C^\infty(S^{n-1}; [0,1])$ so that $\text{supp}[\varphi] \cap \{\theta \in S^{n-1} \mid \text{dist}(\theta, \theta_0) < r^{-1/n}\} = \phi$ and $\bar{\chi}(hr)\varphi_h(\theta) = 1$ on Ω for sufficiently small $h > 0$. Then we see that $\text{supp}[\bar{\chi}(hr)\varphi(\theta)] \cap X = \phi$ for sufficiently small $h > 0$.

By the assumption on u_{h_m} and φ, we see that

$$0 \leq \|u_{h_m}\|_{L^2(\Omega)} \leq \langle u_{h_m}, \chi_{\Omega} u_{h_m} \rangle \leq \langle u_{h_m}, \bar{\chi}(h_mr)\varphi_h(\theta)u_{h_m} \rangle,$$

where $\chi_{\Omega}(x)$ denotes characteristic function of Ω. Then from Theorem 4.1 (2) and (3), $j(2hr\varphi_h(\theta))u_{h_m} = 0$ for sufficiently large m, which means $\|u_{h_m}\|_{L^2(\Omega)} = 0$ for sufficiently large m.

Next we claim $F_m(t) = \langle e^{-itP} u_{h_m}, \chi_{\Omega} e^{-itP} u_{h_m} \rangle_{L^2(\mathbb{R}^n)} \to 0$ as $m \to \infty$.

One can calculate as follows:

$$\frac{dF_m}{dt}(t) = -i\langle e^{-itP} Pu_{h_m}, \chi_{\Omega} e^{-itP} u_{h_m} \rangle_{L^2(\mathbb{R}^n)} + i\langle e^{-itP} u_{h_m}, \chi_{\Omega} e^{-itP} Pu_{h_m} \rangle_{L^2(\mathbb{R}^n)}.$$

Thus we see

$$\left| \frac{dF_m}{dt}(t) \right| \leq C\|u_{h_m}\|_{L^2(\mathbb{R}^n)} \|(P - E)u_{h_m}\|_{L^2(\mathbb{R}^n)} = C\|(P - E)u_{h_m}\|_{L^2(\mathbb{R}^n)},$$

where $C > 0$ is a constant independent of t and we have used boundedness of χ_{Ω} in the first inequality and uniform boundedness of u_m in the second inequality.

Since $F_m(t) = F_m(0) + \int_{0}^{t} \frac{dF_m}{dt}(s) \, ds$, we see for $t \in [0, T]$,

$$|F_m(t)| \leq |F_m(0)| + \int_{0}^{t} \left| \frac{dF_m}{dt}(s) \right| \, ds \leq |F_m(0)| + C\|Pu_{h_m}\|_{L^2(\mathbb{R}^n)}.$$

Letting $m \to \infty$, we obtain the claim.

For any $\varepsilon > 0$, there exists sufficiently large $M > 0$ so that $m > M$ implies $\|\langle e^{-itP} u_{h_m}, \chi_{\Omega} e^{-itP} u_{h_m} \rangle_{L^2(\mathbb{R}^n)} \leq \frac{\varepsilon}{4}$. Then $\int_{0}^{T} \int_{\Omega} |e^{-itP} u_{m}(x)|^2 \, dx \, dt \leq \varepsilon$ for $m > M$, which concludes the proof. \qed
References

[1] N. Anantharaman and F. Macià, The dynamics of the Schrödinger flow from the point of view of semiclassical measures, In *Spectral geometry*, volume 84 of *Proc. Sympos. Pure Math.*, pages 93-116. Amer. Math. Soc., Providence, RI, 2012.

[2] Y. Colin de Verdière, Ergodicité et functions propres du laplacien, *Comm. Math. Phys.* 102 (1985), 497-502.

[3] H. D. Cornean, I. Herbst and E. Skibsted, Classical and quantum dynamics for 2D-electromagnetic potentials asymptotically homogeneous of degree zero, arXiv:math-ph/0703089.

[4] P. Gérard, Measures semi-classiques et onde de Bloch, *Équations aux Dérivées Partielles*, 1990-1991, École Polytech., Palaiseau., 1991, pp Exp. No. XVI, 19.

[5] P. Gérard, Microlocal defect measures, *Comm. in Partial Differential Equations* 16 (1991), 1761-1794.

[6] A. Hassell, R. B. Melrose and A. Vasy, Spectral and scattering theory for symbolic potentials of order zero, *Advances in Math.* 181 (2004), 1-87.

[7] A. Hassell, R. B. Melrose and A. Vasy, Micro local propagation near radial points and scattering for symbolic potentials of order zero, *Analysis and PDE* 1 (2008), No.2, 127-196.

[8] I. Herbst, Spectral and scattering theory for Schrödinger operators with potentials independent of |x|, *Amer. J. Math.* 113 (1991), 509-565.

[9] I. Herbst and E. Skibsted, Quantum scattering for potentials independent of |x|: Asymptotic completeness for high and low energies, *Comm. PDE* 29 (2004), No.3-4, 547-610.

[10] I. Herbst and E. Skibsted, Absence of quantum states corresponding to unstable classical channels, *Ann. Henri Poincaré* 9 (2008), 509-552.

[11] G. Lebeau, Contrôle de l’équation de Schrödinger. *J. Math. Pures Appl.* 9, (1992), 267-291.

[12] J. J. Lions, Contrôlabilité de l’équation exacte, perturbation et stabilisation des systèmes distribués, R.M.A. Masson23 (1988).
[13] P. P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 and 2. Rev. Mat. Iberoamericana 1, no1, 145-201, 2, no2, 45-121 (1985), 267-2

[14] P. P. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993), no3, 553-618.

[15] E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759.

[16] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), No. 4, 919-941.

[17] M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, American Mathematical Society 138 (2012)