Angle-dependent magnetoresistance in the weakly incoherent interlayer transport regime

M. V. Kartsovnik1, D. Andres1, S. V. Simonov2, W. Biberacher1, I. Sheikin3, N. D. Kuslich4, and H. Müller5

1Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Germany
2Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
3Grenoble High Magnetic Field Laboratory, CNRS, BP 166, 38042 Grenoble Cedex 9, France
4Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia and European Synchrotron Radiation Facility, F-38043 Grenoble, France

We present comparative studies of the orientation effect of a strong magnetic field on the interlayer resistance of α-(BEDT-TTF)$_2$KHg(SCN)$_4$ samples characterized by different crystal quality. We find striking differences in their behavior which is attributed to the breakdown of the coherent charge transport across the layers in the lower quality sample. In the latter case, the nonoscillating magnetoresistance background is essentially a function of only the out-of-plane field component, in contradiction to the existing theory.

The extremely high electronic anisotropy is a common feature of many exotic conductors extensively investigated in the recent years, such as, for example, organic conductors κ [1, 2] or layered metal oxide superconductors κ [3, 4, 5]. The mechanism of the interlayer charge transfer is one of the central questions in understanding the nature of various ground states and electronic properties of these materials. In particular, the problem of discriminating between coherent and incoherent interlayer transport has received much attention (see, e.g., κ [6, 7, 8, 9, 10, 11, 12]).

If the coupling is strong enough, so that the interlayer hopping time, $\tau_\parallel \sim \hbar/t\perp$, where $t\perp$ is the interlayer transfer integral, is considerably shorter than the transport scattering time τ, the electron transport is fully coherent and can be adequately described within the anisotropic three-dimensional (3D) Fermi liquid model. In the other limit, $t\perp/\tau_\parallel > \tau$, the successive interlayer hopping events are uncorrelated; thus the electron momentum and the Fermi surface can only be defined in the plane of the layers. Here one should distinguish between two different transport regimes. In the strongly incoherent regime there is no interference between the electron wave functions on adjacent layers and the interlayer hopping is entirely caused by scattering processes. Consequently, the temperature dependent resistivity across the layers, $\rho_\perp(T)$, is nonmetallic. On the other hand, one can consider the case of a weak overlap of the wave functions on adjacent layers, so that the interlayer transport is mostly determined by one particle tunneling. This weakly incoherent transport was studied in a number of theoretical works κ [6, 7, 8, 9, 10, 11, 12] assuming that the intralayer momentum is conserved during a single tunneling but successive tunneling events are uncorrelated due to scattering within the layers. The transverse resistivity ρ_\perp has been shown to be almost identical to that in the coherent case, sharing with the latter the metallic temperature dependence κ [8, 9] and most of high-field magnetotransport phenomena κ [8, 9]. Thus the question arises: is there a substantial physical difference between the coherent and weakly incoherent interlayer transport regimes?

Moses and McKenzie κ proposed to use the angle-dependent magnetoresistance to distinguish between the two cases: When the field is turned in a plane normal to the layers, a narrow peak is often observed at the orientations nearly parallel to the layers κ [13]. This so-called coherence peak is associated with a topological change of electron cyclotron orbits on a 3D Fermi surface slightly warped in the direction perpendicular to the layers κ [14, 15, 16, 17] and can only exist in the coherent regime.

Its absence in the weakly incoherent transport model κ [17] is a natural consequence of the assumed strictly 2D Fermi surface.

The observation of the coherence peak has been used as an argument for the coherent interlayer coupling in a number of layered conductors κ [1, 2, 10, 11, 12]. However, no systematic experimental study of the weakly incoherent regime has been done thus far. Here we present comparative studies of the orientation effect of a high magnetic field on the interlayer magnetoresistance of different samples of the layered organic conductor α-(BEDT-TTF)$_2$KHg(SCN)$_4$. We argue that, depending on the crystal quality, either the coherent or weakly incoherent transport regime can be realized in this material. In agreement with the theoretical predictions, the coherence peak is only observed in the highest quality samples. However, by contrast to the coherent case, an important new feature, that cannot be explained by existing theories, has been found in the weakly incoherent regime: the magnetoresistance in a field strongly tilted towards the layers turns out to be insensitive to the inplane field component.

α-(BEDT-TTF)$_2$KHg(SCN)$_4$ is one of the most anisotropic organic conductors κ [15]. Its electronic system comprises a quasi-1D and a quasi-2D conduction band. This compound exhibits a complex “magnetic field–pressure–temperature” phase diagram which can be consistently explained by a charge-density-wave (CDW) formation at an unusually low temperature, $T_{\text{CDW}} \approx 8$ K κ [18, 19, 20]. In the CDW state the quasi-1D carriers
are gapped whereas the quasi-2D band remains metallic. Since we are presently focusing on the metallic magnetotransport, numerous anomalies associated with field-induced CDW transitions should be avoided. We will, therefore, consider the zero-pressure CDW state only at relatively low fields, up to 10 T, at which no significant change of the electronic system occurs. In addition, we present data taken at a high pressure, \(P = 6.2 \text{ kbar} \), which suppresses the CDW, restoring the fully normal metallic state. The measurements have been done at \(T = 1.4 \text{ K} \).

Figure 1 illustrates the dependence of the interlayer resistance of two different samples on the magnetic field orientation, measured at zero pressure. The orientation is defined by the polar angle \(\theta \) between the field direction and the normal to the plane of the layers, and by the azimuthal angle \(\varphi \) between the projection of the field on the plane and the crystallographic \(a \) axis. Both samples exhibit prominent angular magnetoresistance oscillations (AMROs) periodic in the \(\tan \theta \) scale: the resistance sharply drops at the Lebed magic angles \([21]\). What we want to focus on now is the nonoscillating background which turns out to be drastically different in the two samples shown in Fig. 1.

In the highest quality sample (see Fig. 1a) the nonoscillating magnetoresistance component displays a rather complex behavior strongly depending on the azimuthal angle \(\varphi \). In particular, the \(\varphi \)-dependence of the resistance at the field aligned exactly parallel to the layers, i.e. at \(\theta = 90^\circ \), is directly related to the in-plane curvature of the Fermi surface \([15, 23]\). Further, a detailed inspection of the \(\theta \)-dependence around \(\theta = 90^\circ \) reveals a very narrow peak as shown in the inset in Fig. 1a. It is, to our knowledge, the first observation of the coherence peak in the present compound. The peak has been found at the azimuthal orientations, \(0^\circ \leq \varphi \leq 50^\circ \), its width \(\Delta \theta \) varying between 0.12° and 0.35°. One can, therefore, estimate the Fermi surface corrugation in the interlayer direction \([15]\): \(\Delta k_F/|k_F| \approx \Delta \theta/|k_F|d \approx 1.5 \times 10^{-3} \), where we have taken the mean value \(\Delta \theta = 0.23^\circ \), the intralayer Fermi wave number \(k_F \approx 0.14 \text{ Å}^{-1} \), and the interlayer spacing \(d \approx 20 \text{ Å} \).

Further, estimating roughly the Fermi energy from the de Haas–von Alphen data \([2]\), \(\varepsilon_F \approx 40 \text{ meV} \), we arrive at an extremely low value of the interlayer transfer integral: \(t \approx (\Delta k_F/2k_F)\varepsilon_F \approx 0.03 \text{ meV} \).

Another kind of the angular dependence is observed on the second sample as illustrated in Fig. 1b. The amplitude of the AMRO is considerably weaker here and the oscillations are damped, with tilting the field towards \(\pm 90^\circ \), much faster than in the previous case, thus indicating a lower crystal quality. We, therefore, will refer to this sample as to the "dirty" one, by contrast to the "clean" sample considered above \([24]\).

Note, however, that both samples are clean enough in the sense that the strong field criterion, \(\omega_c \tau \gg 1 \), is always fulfilled in fields of a few tesla.

No coherence peak has been found for the "dirty" sample at any \(\varphi \). According to the theory \([6, 8]\), this means the breakdown of the interlayer coherence. On the other hand, the presence of AMRO and the metallic temperature dependence \(R(T) \) indicate the weakly rather than strongly incoherent interlayer transport regime to be realized in the present case.

The most obvious distinction of the "dirty" sample is the behavior of the nonoscillating magnetoresistance background: the latter decreases steadily as the field is tilted towards the layers, producing a broad dip around \(\theta = \pm 90^\circ \). Remarkably, as seen from Fig. 1b, this behavior is practically independent of the azimuthal orientation of the field rotation plane.

The results above were obtained at zero pressure, in the partially metallic CDW state. To verify that the drastic difference in the behavior of the "clean" and "dirty" samples is related to the metallic magnetotransport and
not to some specific features of the CDW state, we have performed measurements under high pressure at which the whole material is entirely normal metallic.

Examples of the θ-sweeps recorded for "clean" and "dirty" samples at the pressure of 6.2 kbar are shown in Fig. 2. The Fermi surface and, therefore, the electron orbit topology are different from those at zero pressure. This is, in particular, reflected in the AMRO behavior [25, 26]: now the oscillations are mostly determined by closed orbits on the cylindrical Fermi surface. Despite the radical modification of the magnetoresistance behavior upon applying pressure, the major differences between the "clean" and "dirty" samples remain the same as in the zero-pressure state. The "clean" sample exhibits a small narrow peak around $\theta = 90^\circ$ (see the inset in Fig. 2,a) and a strong dependence on the azimuthal orientation φ. By contrast, the "dirty" sample shows no coherence peak and is insensitive to φ at sufficiently high tilt angles θ.

The decrease of the magnetoresistance of the "dirty" sample, as the field direction approaches the plane of the layers, and its independence of the azimuthal angle φ suggests that it does not feel the magnetic field component parallel to the layers. To check this, we have made θ-sweeps at different values of the field strength and replotted the resistance as a function of the field projection on the normal to the layers, $B_\perp = B \cos \theta$. The result for zero pressure is shown in Fig. 3. Except the vicinities of the magic angles, all the curves, recorded at fields from 2 to 10 T, collapse on a single line. A similar behavior is observed at higher fields in the high-pressure state. Moreover, the curves shown in Fig. 3 nicely coincide with the field dependence $R(B)$ taken at the field perpendicular to the layers (dashed gray line in Fig. 3). Thus, we conclude that the magnetoresistance of the "dirty" sample at high tilt angles is essentially a function of only the field component perpendicular to the layers.

This is a surprising and somehow counterintuitive result. Normally, an in-plane magnetic field acts to confine charge carriers to the layers, thus increasing the interlayer resistivity. The theory predicts a strong linear or superlinear magnetoresistance in strong fields parallel to the layers, both in the coherent [24, 27] and weakly incoherent [18] interlayer transport regimes. The exact field dependence is determined by the Fermi surface geometry. Since the latter is generally anisotropic in the plane of the layers, the magnetoresistance strongly depends on the azimuthal orientation of the field [28, 29]. For the coherent regime, the theoretical predictions are in a good agreement with our results on the "clean" sample as well as with numerous other experiments [12]. This is, however, not the case for the weakly incoherent regime, as follows from the data on the "dirty" sample. The fact

FIG. 2: (color online). Angle-dependent magnetoresistance of (a) the "clean" sample and (b) the "dirty" sample at $P = 6.2$ kbar. $B = 20$ T. Inset in the upper panel: fragment of the $\varphi = 9^\circ$ curve for the "clean" sample with the coherence peak.

FIG. 3: (color online). Magnetoresistance of the "dirty" sample at $P = 0$ as a function of the out-of-plane field component. The raw θ-sweeps recorded at different field strengths are shown in the inset.
that its resistance is insensitive to the in-plane field is clearly in conflict with the existing theories.

An important point is that the anomalous behavior of the "dirty" sample is observed in both the zero- and high-pressure states of α-(BEDT-TTF)$_2$KHg(SCN)$_4$, characterized by different Fermi surface geometries. Moreover, a similar broad dip centered at $\theta = 90^\circ$ was found in the angle-dependent magnetoresistance of other highly anisotropic materials: the purely quasi-1D compound (TMTSF)$_2$PF$_6$ [30, 31], purely quasi-2D artificial GaAs/AlGaAs superlattice [11], and probably the most anisotropic of known organic conductors β''-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$, combining open and cylindrical Fermi surfaces [4]. Kuraguchi et al. [11] already noted that a change in the interlayer transfer integral leads to a radical change in the magnetoresistance anisotropy although their data was not sufficient to establish the independence of the in-plane field component.

In conclusion, our data on the angle-dependent interlayer magnetoresistance of α-(BEDT-TTF)$_2$KHg(SCN)$_4$ reveals a dramatic sample dependence which is most likely caused by the crossover between the coherent and weakly incoherent interlayer transport regimes. In the coherent regime the magnetoresistance is highly sensitive to both the polar and azimuthal orientations of the applied magnetic field that can be understood in terms of the conventional anisotropic 3D Fermi liquid theory. By contrast, in the weakly incoherent case the nonoscillating magnetoresistance background does not depend on the azimuthal orientation, in fields strongly inclined towards the layers, and can be scaled by a function of only the out-of-plane field component. This anomalous behavior appears to be a general feature of the weakly incoherent magnetotransport, regardless of the in-plane Fermi surface geometry. However, the mechanism responsible for it remains unclear, indicating that a considerable modification of the existing theory is necessary.

We thank P. Chaikin, A. Lebed, and P. Grigoriev for valuable stimulating discussions. The work was supported by the INTAS grant 01-0791, and the DFG-RFBR grant 436 RUS 113/592.

[1] T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors (Springer-Verlag, Berlin, 1998), 2nd ed.
[2] J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors (Springer-Verlag, Berlin Heidelberg, 1996).
[3] S. L. Cooper and K. E. Gray, Physical Properties of High Temperature Superconductors IV (World Scientific, Singapore, 1994).
[4] C. Bergemann, A. P. Mackenzie, S. R. Julian, D. Forsythe, and E. Ohmichi, Adv. Phys. 52, 639 (2003).
[5] R. Jin, B. C. Sales, P. Khalifah, and D. Mandrus, Phys. Rev. Lett. 91, 217001 (2003).
[6] T. Valla, P. D. Johnson, Z. Yusof, B. Wells, Q. Li, S. M. Loureiro, R. J. Cava, M. Mikami, Y. Mori, M. Yoshimura, and T. Sasaki, Nature 417, 627 (2002); G. Mihály, I. Kezsmárki, F. Zámborszky, and L. Forró, Phys. Rev. Lett. 84, 2670 (2000).
[7] R. H. McKenzie and P. Moses, Phys. Rev. Lett. 81, 4492 (1998); P. Moses and R. H. McKenzie, Phys. Rev. B 60, 7998 (1999).
[8] T. Osada, Physica E 12, 272 (2002); T. Osada and M. Kuraguchi, Synth. Met. 133-134, 75 (2003).
[9] J. Wosnitza, J. Hagel, J. S. Qualls, J. S. Brooks, E. Balthes, D. Schweitzer, J. A. Schlueter, U. Geiser, J. Mohtasham, R. W. Winter, et al., Phys. Rev. B 65, 180506(R) (2002).
[10] J. Singleton, P. A. Goddard, A. Ardavan, N. Harrison, S. J. Blundell, J. A. Schlueter, and A. M. Kini, Phys. Rev. Lett. 88, 037001 (2002).
[11] M. Kuraguchi, E. Ohmichi, T. Osada, and Y. Shiraki, Synth. Met. 133-134, 113 (2003).
[12] N. E. Hussey, M. Abdel-Jawad, A. Carrington, A. P. Mackenzie, and L. Balicas, Nature 425, 814 (2003).
[13] G. Soda, D. Jérome, M. Weger, J. Alizon, J. Gallice, H. Robert, J. M. Fabre, and L. Giral, J. Phys., Paris 38, 931 (1977); S. Shitkovsky, M. Weger, and H. Gutfreund, J. Phys., Paris 39, 711 (1978).
[14] N. Kumar and A. M. Javanavar, Phys. Rev. B 45, 5001 (1992).
[15] M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004).
[16] N. Hanasaki, S. Kagoshima, T. Hasegawa, T. Osada, and N. Miura, Phys. Rev. B 57, 1336 (1998).
[17] V. G. Peschansky and M. V. Kartsovnik, Phys. Rev. B 60, 11207 (1999).
[18] R. H. McKenzie, cond-mat/9706235 (unpublished).
[19] P. Christ, W. Biberacher, M. V. Kartsovnik, E. Steep, E. Balthes, H. Weiss, and H. Müller, JETP Lett. 71, 303 (2000).
[20] D. Andres, M. V. Kartsovnik, W. Biberacher, H. Weiss, E. Balthes, H. Müller, and N. Kushch, Phys. Rev. B 64, 161104(R) (2001).
[21] A. G. Lebed, JETP Lett., 43, 174 (1986); T. Osada, S. Kagoshima, and N. Miura, Phys. Rev. B 46, 1812 (1992); A. G. Lebed, N. N. Bagmet, and M. J. Naughton, Phys. Rev. Lett. 93, 157006 (2004).
[22] M. V. Kartsovnik and V. N. Laukhin, J. Phys. I France 6, 1753 (1996).
[23] A. G. Lebed and N. N. Bagmet, Phys. Rev. B 55, R8654 (1997).
[24] The estimation of the scattering time from the AMRO damping gives $\tau \approx 15$ ps and 5 ps for the "clean" and "dirty" sample, respectively.
[25] M. V. Kartsovnik, A. E. Kovalev, V. N. Laukhin, I. F. Schegolev, H. Ito, T. Ishiguro, N. D. Kushch, H. Mori, and G. Saito, Synth. Met. 70, 811 (1995).
[26] N. Hanasaki, S. Kagoshima, N. Miura, and G. Saito, J. Phys. Soc. Jpn. 65, 1010 (1996).
[27] V. G. Peschansky, Low Temp. Phys. 23, 35 (1997); A. J. Schofield and J. R. Cooper, Phys. Rev. B 62, 10779 (2000).
[28] T. Osada, S. Kagoshima, and N. Miura, Phys. Rev. Lett. 77, 5261 (1996).
[29] I. J. Lee and M. J. Naughton, Phys. Rev. B 57, 7423 (1998).
[30] G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 75, 4690 (1995); E. I. Chashechkina and P. M. Chaikin, Phys. Rev. Lett. 80, 2181 (1998).
[31] H. Kang, Y. J. Jo, and W. Kang, Phys. Rev. B 69, 033103 (2004).