Waste Products as an Alternative Construction Material - A Review

J Anne Mary¹, R.Gobinath², G.Shyamala³ and K.Rajesh Chary⁴
¹Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai
²Department of Civil Engineering, S R Engineering College, Warangal, Telangana
³Department of Civil Engineering, S R University, Warangal, Telangana
⁴Sumathi Reddy Institute of Technology for Women, Warangal, India.

Email id: anne_jes19@yahoo.co.in

Abstract: The world’s economy is based on the infrastructure of the country. Ancient history shows that old construction works are done with surki and lime but not with sand. Sand is used only after introduction of cement in construction industry. Worldwide sand is used as fine aggregate in concrete and average of 40 billion tones of natural sand is used annually. This large amount of consumption reduced the water table amount and destroys the flora and fauna of the biodiversity. So alternative construction materials identification for natural sand plays a major role for civil engineers in construction industry for sustainable environment. The main objective of this study is to find the optimum percentage of replacement with waste products to alter the fine aggregate.

1. Introduction
Sand is one the main ingredients of concrete used for plastering, concreting and finishing works, for construction of dams, house, water tanks, roadways, bridges, offshore structures etc. in conventional concrete sand is used minimum of 25% this consumption lead to shortage in conventional material[1,2]. Large amount of industrial waste and its byproducts also can be used effectively as fine aggregate which has similar properties[3,4].

2. Materials Used
There are many alternative construction materials which can be used effectively in concrete they are Crumbed Rubber, Steel Slag, Copper Slag, Glasscrete, Saw Dust, CeramicWaste and quarry dust[5,6,7].

Crumbed Rubber	Steel Slag	Copper Slag	Glasscrete

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
Ceramic Waste	Saw Dust	Demolition Waste	Quarry Dust

Figure 1. Alternative Fine Aggregates

2.1 **Crumbed Rubber**

The waste rubber tier when crushed is called crumb rubber[8,9]. The waste generated by rubber industries increases annually and the disposal of it into land causes serious environmental impact. This rubber crumb can also be used in concrete as fine aggregate[10,11]. The physical properties of rubber crumb are as below

Physical Properties	Crumbed Rubber
Appearance	Black and Rough
Specific Gravity	1.72
Density	0.83
Moisture Content	2%
Fineness modulus	4.48%

2.2 **Steel Slag**

Various types of slags obtained in production of steel but blast furnace slag and steel slag is occurred as the byproduct[12,13] of steel production in electrical furnace. The physical properties are as below

Physical Properties	Steel Slag
Appearance	Brown and Rough
Specific Gravity	2.93
Bulk Density	1911.11 kg/m³
Water Absorption	1%
Shape	Highly angular

2.3 **Copper Slag**

Copper slag is an individual by product material produce by copper stetting and refining processes [14,15]. This has similar property of sand; hence copper slag can be replaced for fine aggregate. The physical properties of copper slag are as below

Physical Properties	Copper Slag
Appearance	Black and Glassy
Specific Gravity	3.47
Bulk Density	2.08 g/cc
Water Absorption	0.17 %
Moisture Content	0.1%
2.4. Glasscrete
Waste glass is crushed into specified size and can be replaced by fine aggregate in concrete[16]. The physical Properties of glasscrete are as below.

Physical Properties	Glasscrete
Appearance	All Color and Rough
Specific Gravity	3.01
Bulk Density	1310 kg/m³
Water Absorption	1.5 %
Shape	Highly angular

2.5. Ceramic Waste
Ceramic industries produce ceramic waste about 15 – 20 % in production stage because once broken cannot be used. This can be crushed to required size and can be used as a replacement of fine aggregate[17]. The physical properties of ceramic waste are as below.

Physical Properties	Ceramic Waste
Appearance	White – Brown
Specific Gravity	2.5
Bulk Density	1188 kg/m³
Water Absorption	0.18%
Shape	Angular

2.6. Saw Dust
Saw dust is a byproduct of cutting, grinding, drilling of pulverizing wood with a saw[18]. This can also be used as fine aggregate in concrete. The physical properties are as below.

Physical Properties	Saw Dust
Appearance	Dark Brown
Specific Gravity	2.19
Bulk Density	1040 kg/m³
Water Absorption	2 %
Moisture Content	0.3%

2.7. Demolition Waste
Demolition waste is generated whenever any demolition activity takes places. This can be crushed and replaced instead of fine aggregate [19]. The physical Properties of demolition waste are as below.

Physical Properties	Demolition Waste
Appearance	Dull white- Red- Grey
Specific Gravity	2.5
2.8. Quarry Dust
Quarry dust is a waste obtained during quarrying process. The property is same as granite and can be replaced for fine aggregate. The physical properties of quarry dust are as below

Physical Properties	Quarry Dust
Appearance	Dark Grey
Specific Gravity	2.57
Bulk Density	1.85 g/cc
Water Absorption	2%
Fineness Modulus	2.41%

3. Experimental Investigations
The waste materials obtained from various products can be replaced for fine aggregate. The experimental results are

3.1. Rubber Crumb
Rubber crumb can be replaced from 0% to 100% as fine aggregate. In this 5% of replacement gives 5% higher in compression strength, 10% higher in split tensile strength and 2% higher in flexural strength compare to the conventional concrete [20].

3.2. Steel Slag
Steel slag can be replaced from 0% to 100% as fine aggregate. In this 25% of replacement gives 10% lower in compression strength, 12% higher in split tensile strength and 8% higher in flexural strength compare to the conventional concrete.

3.3. Copper Slag: CS
Copper slag can be replaced from 0% to 100% as fine aggregate. In this 40% of replacement gives 35% higher in compression strength, 6% higher in split tensile strength and 10% higher in flexural strength compare to the conventional concrete.

3.4. Glasscrete: GC
Glasscrete can be replaced from 0% to 100% as fine aggregate. In this 30% of replacement gives 9% higher in compression strength, 6% higher in split tensile strength and 8% higher in flexural strength compare to the conventional concrete.

3.5. Ceramic Waste: CW
Ceramic Waste can be replaced from 0% to 100% as fine aggregate. In this 30% of replacement gives 5% higher in compression strength, 30% higher in split tensile strength and 7% higher in flexural strength compare to the conventional concrete.

3.6. Saw Dust: SD
Saw Dust can be replaced from 0% to 100% as fine aggregate. In this 5% of replacement gives 0% higher in compression strength, 2% higher in split tensile strength and 1.5% higher in flexural strength compare to the conventional concrete.
3.7. Demolition Waste: DW
Saw Dust can be replaced from 0% to 100% as fine aggregate. In this 10% of replacement gives 3% higher in compression strength, 8% higher in split tensile strength and 2% higher in flexural strength compared to the conventional concrete.

3.8. Quarry Dust: QD
Quarry Dust can be replaced from 0% to 100% as fine aggregate. In this 30% of replacement gives 12% higher in compression strength, 10% higher in split tensile strength and 8% higher in flexural strength compared to the conventional concrete.

4. Analysis Of Results
The test results for 28th day concrete compression strength, tensile strength and flexural strength results are investigated and optimum percentage of replacement is individual material is identified. The following are the optimum percentage of replacement.

![Figure 2. % of Replacement](image)

The alternative materials for fine aggregate can be replaced from 0% to 100% in that rubber crumb can be replaced 5%, steel slag can be replaced 25%, copper slag is replaced 40%, glasscrete can be replaced 30%, sawdust can be replaced 5%, demolition waste can be replaced 10% and quarry dust can be replaced 30%. The strength parameter which enhances the mechanical property is as below.

Table 9. Percentage of Increase in Strength

Materials	Compression Strength	Tensile Strength	Flexure Strength
RC	5	10	2
SS	10	12	8
CS	35	6	10
GC	9	6	8
CW	5	30	7
SD	0	2	1.5
DW	3	8	2
The table shows that copper slag is one of the alternative construction materials which can be replaced effectively instead of natural sand in concrete for better results. It is available easily and cost is very low so it can be effectively utilized in construction industry.

![Percentage of Increase in Strength](image)

Figure 3.% of increase in strength

5. Conclusion

- The investigation is done to conclude that.

- The demand of the natural sand is stabilized by altering new construction materials.

- Waste material which has similar property of natural sand is utilized and waste is minimized.

- The mechanical property of the concrete is enhanced due to effective utilization of alternative fine aggregate.

- Copper slag is available easily in market for low cost. Cost of copper slag is very low compare to natural sand.

6. References

[1] Rajesh Kumar K, Gobinath R, Shyamala G, Viloria E and Varela N 2020 Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides Mater Today Proc 27 664–70

[2] Anne Mary J 2016 An Experimental Investigation on Copper Slag as Replacement of Fine Aggregate Concrete International Journal of Civil Engineering and Technology 7(6) 282–289

[3] Ahmed N 2010 Innovative Application of Scrap-tire Steel Cords in Concrete Mixes Jordan Journal of Civil Engineering 4(1)

[4] Shyamala G, Kumarasamy K, Ramesh S, Kalaivani M and Pillalamarri S P 2020 Influence of nano-silica in beam-column joint flexural properties IOP Conf Ser Mater Sci Eng 872 012169
[5] Brindha D and Nagan S 2011 Durability studies Copper Slag admixed Concrete Asian Journal of Civil Engineering (Building and Housing) 12(5) 563 – 578
[6] Binaya Patnaik 2014 Strength and Durability Properties of Copper Slag Admixed Concrete International Journal of Research in Engineering and Technology
[7] Balamurugan 2013 Use of Quarry Dust to Replacing Sand in Concrete – An Experimental Study International Journal of Science and Research Publications
[8] Archana Reddy R, Sivakrishna A, Gobinath R and Ramesh Babu D 2020 A novel method to predict pozzolanic nature of concrete with sintered clay using soft computing techniques IOP Conf Ser Mater Sci Eng 872
[9] Arellano Aguilar 2010 Lightweight Concretes of Activated Metakaolin-Fly Ash Binders, With Blast Furnace Slag Aggregates Construction and Building Materials 241166 –75
[10] Dhiraj Agrawal 2014 Utilization of Industrial Waste In Construction Material – A Review International Journal of Innovative Research in Science Engineering and Technology 3(1)
[11] Awoyera P O, Awobayikun O, Gobinath R, Viloria A and Ugwu E I 2020 Rheological, mineralogical and strength variability of concrete due to construction water impurities Int J Eng Res Africa 48 78–91
[12] Rogers D and Calvo B 2015 Defining the rehabilitation needs of water networks Procedia Eng 119, 182–188 doi:10/1016/jproeng201508873
[13] Golla S Y, Rajesh Kumar K, Khan M I, Rahul C and Pruthvi Raj K 2020 Structural performance of exterior beam-column joint using biochar impregnated pond ash concrete Mater Today Proc 0–4
[14] Kalaivani M, Shyamala G, Ramesh S, Angusenthil K and Jagadeesan R 2020 Performance evaluation of fly ash/slag based geopolymer concrete beams with addition of lime Mater Today Proc 27 652–6
[15] Saravanan SP and Gobinath R 2015 Drinking Water Safety through Bio Sand Filter - A Case Study of Kovalambakkam Village Chennai Int J Appl Eng Res 10(53) 254-262
[16] Pinheiro 2013 Processing of Red Ceramics Incorporated with Encapsulated Petroleum Waste J MaterProcess Techno Properties of bricks made using fly ash, quarry dust and billet scale Constr Build Mater 41131–138
[17] Raval 2013 Use of ceramic powder as a partial replacement of cement International Journal of Innovative Technology & Exploring Engineering 3(2) 1-4
[18] Chandana 2012A Study of Sustainable Industrial Waste Material as Partial Replacement of Cement International Association
[19] Patel 2014 The Potential Pozzolanic Activity of Different Ceramic Waste Powder as Cement Mortar Component International Journal of Engineering Trend and Technology 9(6) 267-271
[20] Gobinath R, Raja G, Prasath E, Shyamala G, Viloria A and Varela N 2020 Studies on strength characteristics of black cotton soil by using novel SiO2 combination as a stabilizing agent Mater Today Proc 27 657–63
[21] Awoyera P O, Adesina A, Sivakrishna A, Gobinath R, Rajesh Kumar Kand Srinivas A 2020 Alkali activated binders: Challenges and opportunities Mater Today Proc 27 40–3