A New Construction of Codebooks Meeting the Levenshtein Bound

LI HAN1,2, SHIMIN SUN3, YANG YAN4,5, AND QIUYAN WANG5

1School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2National Engineering Laboratory for Computer Virus Prevention and Control Technology, Tianjin 300457, China
3School of Computer Science and Technology, Tongji University, Tianjin 300387, China
4School of Information Technology and Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
5Provincial Key Laboratory of Applied Mathematics, Putian University, Putian 351100, China

Corresponding author: Shimin Sun (sunshimin@tianjng.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61802281, Grant 61702366, and Grant 61602342, in part by the Natural Science Foundation of Tianjin under Grant 19JCJQJC15800 and Grant 18JCQJNJC70300, in part by the Tianjin Municipal Education Commission Project under Grant 2017KJ090, Grant 2018KJ215, Grant 2017KJ213, and Grant KYQD1817, in part by the Key Laboratory of Applied Mathematics of Fujian Province University (Putian University) under Grant SX201904 and Grant SX201804, in part by the Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology under Grant TJUT-KLICNST-K20160002, and in part by the China Scholarship Council under Grant 201809345010 and Grant 201907760008.

ABSTRACT Codebooks with low coherence have extensive applications in many fields such as code division multiple access (CDMA) communication systems, MIMO communications, compressed sensing and so on. In this paper, based on additive characters over finite fields, we propose a construction of optimal codebook with respect to the Levenshtein bound and verify that it is a new construction. By shortening the length of the optimal codebooks, we present a construction of codebooks asymptotically meeting the Levenshtein bound. To the best of our knowledge, the parameters of the asymptotically optimal codebooks are new.

INDEX TERMS Codebook, asymptotic optimality, Levenshtein bound, character, finite field.

I. INTRODUCTION

Let \(D = \{d_0, d_1, \ldots, d_{N-1}\} \) be a set consisted of \(N \) unit norm \(1 \times K \) complex vectors over an alphabet \(A \). The number of elements in the alphabet is said to be the alphabet size. The maximum inner-product correlation of \(D \) is given by

\[
I_{max}(D) = \max_{0 \leq i \neq j \leq N-1} |d_i^H d_j|,
\]

where \(d_i^H \) is the conjugate transpose of the complex vector \(d_i \). Then the set \(D \) is termed a codebook (also called signal set) with the parameters \((N, K)\) and maximum inner-product correlation \(I_{max}(D) \). In a code division multiple access system, the distinct vectors of a codebook are assigned to different users and the inner-product correlation is employed to distinguish among the signals of different users. As a result, the maximum inner-product correlation is an important indicator to judge the performance of a codebook. People would like to design a codebook \(D \) such that the parameter \(N \) is as great as possible and \(I_{max}(D) \) is as small as possible for a fixed \(K \). However, there exists a tradeoff between the parameters \(N, K \) and \(I_{max}(D) \), which is introduced by Welch [34].

Lemma 1 [34]: Let \(D \) be an \((N, K)\) codebook with \(I_{max}(D) \). Then we have

\[
I_{max}(D) \geq I_W = \sqrt{\frac{N - K}{(N - 1)K}}.
\]

Additionally, the equality holds if and only if it holds that

\[
|d_i^H d_j| = \sqrt{\frac{N - K}{(N - 1)K}}.
\]

for any pairs of \((i, j)\) with \(i \neq j \).

A codebook meeting the Welch bound with equality is called a maximum-Welch-bound-equality (MWBE) codebook [30]. The construction of MWBE codebooks has attracted a lot of attention (see [3], [5], [6], [10]–[13], [29]–[31], [35]) due to their wide utilization in MIMO communications [14], [15], CDMA communications systems [26], packing [3], compressed sensing [2], [22], combinatorial designs [5], [6], [35], coding theory (for instance, spherical codes [8], LDPC codes [9]) and quantum measurements [28]. In general, it is not easy to design an MWBE codebook.
Many researchers turned to the construction of codebooks asymptotically achieving the Welch bound, i.e., $I_{\max}(D)$ asymptotically meets the Welch bound for sufficiently large N. There has been extensive study of asymptotically optimal codebooks with respect to the Welch bound (see [4], [16]–[18], [20], [23]–[25], [33], [37]–[40]).

Strohmer and Heath [31] has pointed out that there are no (N, K) real codebook meeting the Welch bound with equality if $N > \frac{K(K+1)}{2}$ and (N, K) codebook achieving the Welch bound with equality if $N > K^2$. In other words, the Welch bound is not tight in these cases. When N is much bigger than K, Levenshtein [21] deduced a new bound called Levenshtein bound which is turned out to be tighter than the Welch bound. Thus, for a codebook such that the number of vectors is much greater than the length of vectors, the Levenshtein bound is a preferable benchmark for the maximum inner-product correlation.

Lemma 2 [21]: Let D be an (N, K) codebook with $I_{\max}(D)$. If D is a real valued codebook and $N > \frac{K(K+1)}{2}$, then

$$I_{\max}(D) \geq I_L = \sqrt{\frac{3N - K^2 - 2K}{(N - K)(K + 2)}}.$$

If D is a complex valued codebook and $N > K^2$, then

$$I_{\max}(D) \geq I_L = \sqrt{\frac{2N - K^2 - K}{(N - K)(K + 1)}}.$$

In fact, it is very hard to construct codebooks achieving the Levenshtein bound. Constructing codebooks (asymptotically) achieving the Levenshtein bound is harder than the design of (asymptotically) optimal codebooks with respect to the Welch bound. Limited work has been done in the construction of codebooks (asymptotically) achieving the Levenshtein bound. Until now, there are only four constructions of optimal codebooks with respect to the Levenshtein bound. One of the optimal construction was derived from Kerdock codes [1], [36] and the other constructions were constructed by planar functions [7], bent functions over the integer rings \mathbb{Z}_4, bent functions over finite fields [41], respectively. Besides optimal codebooks, there are a few constructions of asymptotically optimal codebooks. Tan et al. [32] proposed a construction of codebooks asymptotically achieving the Levenshtein bound by Gauss sums over finite fields. In [36], the authors presented a construction of codebooks asymptotically meeting the Levenshtein bound from binary codes and semi-bent functions. Based on multiplicative characters over finite fields, some asymptotically optimal codebooks with respect to the Levenshtein bound were obtained in [18], [20].

Codebooks (asymptotically) achieving the Levenshtein bound have several practical applications such as the construction of mutually unbiased bases [7] which are used in quantum physics, the construction of deterministic sensing matrices with low coherence [22], the design of spreading sequences for CDMA systems [26]. Hence, it is significant to construction (asymptotically) optimal codebooks with respect to the Levenshtein bound.

We are concerned in this paper with the following two objectives. The first objective is to provide a new construction of codebooks achieving the Levenshtein bound by additive characters over finite fields. Although the optimal codebooks have the same parameters as those in [7, Theorem 4], we prove that it is indeed a different construction. The other objective is to propose a new construction of asymptotically optimal codebooks with respect to the Levenshtein bound by considering the scalability issue regarding the length of the optimal codebooks. Notably, the parameters of the asymptotically optimal codebooks are flexible and not covered by the previous literatures.

This paper is built up as follows. Section 2 is devoted to the definitions and results for the characters and character sums over finite fields. The constructions of (asymptotically) optimal codebooks are summarized in Sections 3 and 4. In Section 5, we make a conclusion.

II. Character and Character Sums Over Finite Fields

In this section, we recall the definitions of characters over finite fields and some results about character sums over finite fields.

Let \mathbb{F}_q be a finite field with $q = p^n$ elements, where n is a positive integer and p is a prime. The trace function from \mathbb{F}_q to \mathbb{F}_p is defined as

$$\text{tr}_{q/p}(x) = x + x^p + \cdots + x^{p^{n-1}},$$

where $x \in \mathbb{F}_q$.

Let $m > 1$ be an integer and $\xi_m = e^{2\pi \sqrt{-1}/m}$. An additive character of \mathbb{F}_q is defined to be the function $\chi_{a}(x) = \xi_m^{ax}$, where $a, x \in \mathbb{F}_q$. When a runs around all the elements of \mathbb{F}_q, one can obtain all the additive characters of \mathbb{F}_q. Especially, the additive character χ_a of \mathbb{F}_q is called the canonical additive character if $a = 1$. We write $\mathbb{F}_q^\ast = \mathbb{F}_q \setminus \{0\}$. Under the multiplication operation, \mathbb{F}_q^\ast is a cyclic group of order $q - 1$ and a generator of it is said to be a primitive element of \mathbb{F}_q. Let ω be a primitive element of \mathbb{F}_q. For any integer j with $0 \leq j \leq q - 2$, we define a multiplicative character of \mathbb{F}_q to be the function $\varphi(j) = \xi_m^{j\omega^{-1}}$, where $0 \leq i \leq q - 2$.

If $j = \frac{q-1}{2}$, the multiplicative character φ_{q+1} is termed the quadratic character of \mathbb{F}_q and denoted by η for simplicity.

Finite fields are special structures since they have both additive characters and multiplicative characters. Combining the canonical additive character χ_1 and multiplicative character φ of \mathbb{F}_q, the Gauss sum over \mathbb{F}_q is defined as

$$G(\varphi) = \sum_{x \in \mathbb{F}_q^\ast} \varphi(x)\chi_1(x).$$

In most cases, it is very hard to determine the values of Gauss sums explicitly. Only in a few cases can Gauss sums be computed. Below, the explicit value of the Gauss sum over
\(\mathbb{F}_q \) is determined when the multiplicative character \(\varphi \) is the quadratic character of \(\mathbb{F}_q \).

Lemma 3 [27, Theorem 5.15]: Let \(p \) be a prime and \(n \) a positive integer. Write \(q = p^n \). Suppose that \(\mathbb{F}_q \) is a finite field and \(\eta \) is the quadratic character of \(\mathbb{F}_q \). Then

\[
G(\eta) = (-1)^{n-1} \sqrt{p^n},
\]

where \(p^* = (-1)^{\frac{n-1}{2}} p \).

In the sequel, we need the following two lemmas.

Lemma 4 [27, Theorem 5.33]: Assume that \(p \) is an odd prime. Let \(\chi_1 \) be the canonical additive character of \(\mathbb{F}_q \). Assume that \(f(x) = a_2 x^2 + a_1 x + a_0 \in \mathbb{F}_q[x] \) with \(a_2 \neq 0 \). Then, we have

\[
\sum_{x \in \mathbb{F}_q} \chi_1(f(x)) = \chi_1(a_0 - a_1^2(4a_2)^{-1}) \eta(a_2) G(\eta).
\]

Lemma 5 [27, Theorem 5.38]: Let \(\chi_1 \) be the canonical additive character of \(\mathbb{F}_q \). Assume that \(f(x) \in \mathbb{F}_q[x] \) is of degree \(n > 0 \) with \(\gcd(n, q) = 1 \). Then

\[
\left| \sum_{x \in \mathbb{F}_q} \chi_1(f(x)) \right| \leq (n-1)q^{1/2}.
\]

III. OPTIMAL CODEBOOKS

In this section, we present a new construction of optimal codebooks with respect to the Levenshtein bound and state the difference between our construction and the construction in [7].

A. A NEW CONSTRUCTION

Assume that \(p > 3 \) is a prime and \(n \) is a positive integer. Set \(q = p^n \) and \(\mathcal{E}_q \) to be the standard basis of the \(q \)-dimensional Hilbert space as follows:

\[
\begin{align*}
(1, 0, 0, \ldots, 0, 0), \\
(0, 1, 0, \ldots, 0, 0), \\
\vdots \\
(0, 0, 0, \ldots, 0, 1).
\end{align*}
\]

Let \(\chi_1 \) be the canonical additive character of \(\mathbb{F}_q \). For any \(a, b \in \mathbb{F}_q \), we can define a unit norm complex vector by

\[
d_{a,b} = \frac{1}{\sqrt{q}} \left(\chi_1((x+a)^3 + bx) \right)_{x \in \mathbb{F}_q}.
\]

After \(a, b \) walk along the finite field \(\mathbb{F}_q \), one can obtain a set of \(q^2 \) unit norm complex vectors as follows:

\[
\mathcal{D} = \{ d_{a,b} : a, b \in \mathbb{F}_q \}.
\]

Theorem 6: Let the symbols be the same as above. Then the set \(\mathcal{G} = \mathcal{D} \cup \mathcal{E}_q \) is a \((q^2 + q, q)\) codebook with \(I_{\max}(\mathcal{G}) = q^{-1/2} \) which meets the Levenshtein bound.

Proof: We divide our proof in three steps. First, we evaluate the inner-product correlation of \(\mathcal{G} \).

Case 1: If \(g_1 \neq g_2 \in \mathcal{E}_q \), it is easy to verify that

\[
|g_1 g_2^*| = 0.
\]

Case 2: If \(g_1 \in \mathcal{E}_q \) and \(g_2 \in \mathcal{D} \), it can be easily seen that

\[
|g_1 g_2^*| = \frac{1}{\sqrt{q}}.
\]

Case 3: If \(g_1 \neq g_2 \in \mathcal{D} \), then write \(g_1 = d_{a,b} \) and \(g_2 = d_{u,v} \), where \((a - u, b - v) \neq (0, 0)\). It follows from Eq. (1) that

\[
g_1 g_2^* = \frac{1}{q} \sum_{x \in \mathbb{F}_q} \chi_1 \left((x+a)^3 + bx - (x+u)^3 - vx \right)
\]

\[
= \frac{1}{q} \sum_{x \in \mathbb{F}_q} \chi_1 \left(3(a-u)x^2 + ex + d \right),
\]

where \(e = 3a^2 - 3u^2 + b - v \) and \(d = a^3 - u^3 \).

If \(a = u \), then by the fact \(b \neq v \), we derive that

\[
g_1 g_2^* = \frac{1}{q} \sum_{x \in \mathbb{F}_q} \chi_1 \left((b-v)x \right)
\]

\[
= 0,
\]

where \(e = 3a^2 - 3u^2 + b - v \) and \(d = a^3 - u^3 \). According to the definition of additive and multiplicative characters over finite fields and Lemma 3, we obtain that \(|g_1 g_2^*| = \frac{1}{\sqrt{q}} \).

From the definition of the set \(\mathcal{G} \), it is easy to check that \(\mathcal{G} \) is a \((q^2 + q, q)\) codebook with \(I_{\max}(\mathcal{G}) = q^{-1/2} \). Clearly, \(I_{\max}(\mathcal{G}) \) coincides with the Levenshtein bound given in Lemma 2.

Example 1: Let \(p = 5 \) and \(n = 1 \). Then \(q = 5 \) and the set \(\mathcal{D} \) consists of the following 25 codewords of length 5, where every coordinate in a codeword stands for a power of \(\zeta_5 = e^{\frac{2\pi i}{5}} \):

\[
\begin{align*}
\sqrt[5]{5}d_0 &= (3, 4, 2, 1, 0), & \sqrt[5]{5}d_1 &= (0, 3, 0, 2, 0), \\
\sqrt[5]{5}d_2 &= (2, 2, 3, 3, 0), & \sqrt[5]{5}d_3 &= (4, 1, 1, 4, 0), \\
\sqrt[5]{5}d_4 &= (1, 0, 4, 0, 0), & \sqrt[5]{5}d_5 &= (2, 0, 4, 3, 1), \\
\sqrt[5]{5}d_6 &= (4, 4, 2, 4, 1), & \sqrt[5]{5}d_7 &= (1, 3, 0, 0, 1), \\
\sqrt[5]{5}d_8 &= (3, 2, 3, 1, 1), & \sqrt[5]{5}d_9 &= (0, 1, 1, 2, 1), \\
\sqrt[5]{5}d_{10} &= (4, 1, 0, 2, 3), & \sqrt[5]{5}d_{11} &= (1, 0, 3, 3, 3), \\
\sqrt[5]{5}d_{12} &= (3, 4, 1, 4, 3), & \sqrt[5]{5}d_{13} &= (0, 3, 4, 0, 3), \\
\sqrt[5]{5}d_{14} &= (2, 2, 2, 1, 3), & \sqrt[5]{5}d_{15} &= (0, 3, 1, 4, 2), \\
\sqrt[5]{5}d_{16} &= (2, 2, 4, 0, 2), & \sqrt[5]{5}d_{17} &= (4, 1, 2, 4, 2), \\
\sqrt[5]{5}d_{18} &= (1, 0, 0, 2, 2), & \sqrt[5]{5}d_{19} &= (3, 4, 3, 3, 2), \\
\sqrt[5]{5}d_{20} &= (1, 2, 3, 0, 4), & \sqrt[5]{5}d_{21} &= (3, 1, 1, 1, 4),
\end{align*}
\]
\[\sqrt{5}d_{22} = (0, 0, 4, 2, 4), \quad \sqrt{5}d_{23} = (2, 4, 2, 3, 4), \]
\[\sqrt{5}d_{24} = (4, 3, 0, 4, 4), \]

One can easily verify that the codebook \(G \) of Theorem 6 is a (30, 5) codebook with \(I_{\text{max}} = \frac{1}{\sqrt{5}} \). This is consistent with the conclusion of Theorem 6.

B. COMPARISON

In [7], the authors presented an optimal codebook \(C \) with parameters \((q^2 + q, q)\) and \(I_{\text{max}}(C) = q^{-1/2} \) as follows:

\[
C = \mathcal{E}_q \cup \left\{ \frac{1}{\sqrt{q}} \left(\chi_1 (x^2 + vx) \right)_{x \in \mathbb{F}_q} : u, v \in \mathbb{F}_q \right\}, \tag{2}
\]

where \(f(x) \) is a planar function from \(\mathbb{F}_q \) to \(\mathbb{F}_q \). Taking \(a = v = 0 \) in Eq. (2), one can obtain a vector \(e = \frac{1}{\sqrt{q}}(1, 1, \ldots, 1) \) of \(C \). If the vector \(e \) is contained in the codebook \(G \), then there exists a vector \(d \) in \(G \) such that \(|de^H| = 1 \). In fact, for any vector \(d \) of \(G \), we have

\[
|de^H| = \begin{cases}
\frac{1}{\sqrt{q}}, & \text{if } d \in \mathcal{E}_q, \\
\frac{1}{q} \sum \chi_1 \left((x + a)^3 + bx \right), & \text{if } d \in \mathcal{D}.
\end{cases}
\]

Thanks to Lemma 5, we have

\[
\left| \sum_{x \in \mathbb{F}_q} \chi_1 \left((x + a)^3 + bx \right) \right| \leq 2\sqrt{q}.
\]

Thus, the vector \(e = \frac{1}{\sqrt{q}}(1, 1, \ldots, 1) \) is not contained in the codebook \(G \) which says that our construction of codebooks in Theorem 6 is not covered by the construction in [7, Theorem 4]. In a word, although the optimal codebooks generated by Theorem 6 have the same parameters as those in [7, Theorem 4], it is indeed a different construction.

IV. ASYMPTOTICALLY OPTIMAL CODEBOOKS

In this section, we consider the scalability issue regarding the length of the optimal codebooks obtained by Theorem 6. As a result, we present a new construction of asymptotically optimal codebooks with respect to the Levenshtein bound.

Suppose that \(p > 3 \) is a prime and \(m \) is a positive integer. Put \(q_1 = p^m \) and \(q = q_1^{kp} \), where \(k \) is a positive integer. Clearly, the finite field \(\mathbb{F}_{q_1} \) is a subfield of \(\mathbb{F}_q \). Assume that \(H \) is a subset of \(\mathbb{F}_{q_1} \) with \(h = \#H > 0 \), where \(\#H \) denotes the cardinality of the set \(H \). Denote by \(\mathcal{E}_{q-h} \) to be the standard basis of the \((q - h)\)-dimensional Hilbert space as follows:

\[
(1, 0, 0, \ldots, 0, 0),
(0, 1, 0, \ldots, 0, 0),
\vdots
(0, 0, 0, \ldots, 0, 1).
\]

Let \(\chi_1 \) be the canonical additive character of \(\mathbb{F}_q \). For any \(a, b \in \mathbb{F}_q \), define a unit norm complex vector by

\[
d_{a,b} = \frac{1}{\sqrt{q-h}} \left(\chi_1 \left((x + a)^3 + bx \right) \right)_{x \in \mathbb{F}_q \setminus H},
\]

and then define a set

\[
\mathcal{D}(H) = \{ d_{a,b} : a, b \in \mathbb{F}_q \}.
\]

Thus one can obtain a codebook

\[
\mathcal{Q}(H) = \mathcal{D}(H) \cup \mathcal{E}_{q-h}. \tag{3}
\]

Theorem 7: Suppose that \(p > 3 \) is a prime and \(m, k \) are positive integers such that \(m \) is even. Let \(q_1 = p^m \) and \(q = q_1^{kp} \). Assume that \(h \) is an integer with \(0 < h \leq q_1 \). Then the set \(\mathcal{Q}(H) \) defined by Eq. (3) is a \((q^2 + q, h)\) codebook with \(I_{\text{max}}(\mathcal{Q}(H)) = \frac{\sqrt{q-h}}{q-h} \).

Proof: Consider the codebook \(G \) constructed by Theorem 6. Clearly, \(G \) can be viewed as a \(q^2 + q \times q \) matrix. By deleting \(h \) columns of the codebook \(G \), one can obtain a new codebook \(\mathcal{Q}(H) \) with parameters \((q^2 + q, q, h)\). Due to \(I_{\text{max}}(G) = \frac{\sqrt{q}}{q} \), it is easy to check that \(I_{\text{max}}(\mathcal{Q}(H)) \leq \frac{\sqrt{q-h}}{q-h} \).

Below, we will show that \(I_{\text{max}}(\mathcal{Q}(H)) = \frac{\sqrt{q-h}}{q-h} \). According to Lemma 3, we get that \(G(H) = -\left((-1)^{p-1} \frac{k}{q} \right) \). Let \(\mu_1 \) be the canonical additive character of \(\mathbb{F}_{q_1} \). Put \(a, b, u, v \in \mathbb{F}_q \) such that \(a \neq u \in \mathbb{F}_{q_1} \) and \(\eta(3(a - u)) = \eta(-1)^{p-1} \frac{m}{q} \). Then

\[
d_{a,b}d_{u,v}^H = \begin{cases}
\frac{1}{q-h} \sum_{x \in \mathbb{F}_q \setminus H} \chi_1 \left((x + a)^3 + bx - (x + u)^3 - vx \right) \\
\frac{1}{q-h} \sum_{x \in \mathbb{F}_q \setminus H} \chi_1 \left(3(a - u)x^2 + a^3 - u^3 - u \right) \\
\frac{1}{q-h} \chi_1(a^3 - u^3) \eta(3(a - u)G(H)) \\
\frac{1}{q-h} \sum_{x \in \mathbb{F}_q \setminus H} \chi_1 \left(3(a - u)x^2 + a^3 - u^3 \right) \\
\frac{1}{q-h} \mu_1((a^3 - u^3) \tr_{q_1}(1)) \eta(3(a - u)G(H)) \\
\frac{1}{q-h} \sum_{x \in \mathbb{F}_q \setminus H} \mu_1 \left((a^3 - u^3) \tr_{q_1}(1) + f \right) \\
\frac{1}{q-h} \mu_1((a^3 - u^3) \tr_{q_1}(1)) \sqrt{q} \\
\frac{1}{q-h} \sum_{x \in \mathbb{F}_q \setminus H} \mu_1 \left(3(a - u)x^2 \tr_{q_1}(1) + f \right),
\end{cases}
\]

where \(f = (a^3 - u^3) \tr_{q_1}(1) \). Due to \(\tr_{q_1}(1) = kp = 0 \), we deduce that \(d_{a,b}d_{u,v}^H = -\frac{\sqrt{q}}{q-h} \). Consequently, \(I_{\text{max}}(\mathcal{Q}(H)) = \frac{\sqrt{q}}{q-h} \).
Notably, the codebook $Q(0)$ has a more flexible choice of the parameter q than that in Theorem 7.

Corollary 8: Let $p > 3$ be a prime and $m > 0$ be an even integer. Put $q = p^m$. Then the set $Q(0)$ defined by Eq. (3) is a $(q^2 + q, q - 1)$ codebook with $I_{\text{max}}(Q(H)) = \frac{\sqrt{q+1}}{q-1}$. Additionally, $Q(0)$ asymptotically achieves the Levenshtein bound.

Proof: The proof is analogous to that in Theorem 7 and Remark 1. Thus, we omit the proof of the corollary. □

In Table 1, we list some explicit values of parameters of the codebooks in Corollary 8. Also, we compare $I_{\text{max}}(Q(H))$ with the Levenshtein bound I_{L} in Table 1. It can be seen that $I_{\text{max}}(Q(H))$ is close to I_{L} as p and m increase. This means that the codebooks defined in Corollary 8 are indeed asymptotically optimal with respect to the Levenshtein bound.

TABLE 1. The parameters of the (N,K) codebook in Corollary 8.

p	m	N	K	I_{max}	I_{L}	I_{max}
7	2	2450	48	0.1167	0.1471	1.1327
11	2	14762	120	0.1000	0.0921	1.0867
7	4	5767202	2400	0.2083	0.2042	1.0202
11	4	214373522	14640	0.8333	0.8265	1.0082
13	4	815759282	28560	0.5952	0.5917	1.0059
17	4	6975840962	83520	0.3472	0.3460	1.0035
19	4	16983693362	130321	0.2770	0.2770	1.0028
23	4	78311265122	279840	0.1894	0.1890	1.0019
29	4	500247120242	707280	0.1190	0.1189	1.0012
31	4	852891960962	923520	0.1042	0.1041	1.0010

According to the definition of the set $Q(H)$, it is easy to check that $Q(H)$ is a $(q^2 + q, q - h)$ codebook with $I_{\text{max}}(Q(H)) = \frac{\sqrt{q+h}}{q-h}$.

Remark 1: Note that the codebook $Q(H)$ produced by Theorem 7 is a complex codebook with parameters $(q^2 + q, q - h)$ and $I_{\text{max}}(Q(H)) = \frac{\sqrt{q+h}}{q-h}$. Since $q^2 + q > (q-h)^2$, the corresponding Levenshtein bound is

$$I_{L} = \sqrt{\frac{q^2 + q + 2qh - h^2 + h}{(q^2 + h)(q - h + 1)}}.$$

It is easy to verify that $\lim_{q \rightarrow +\infty} \frac{I_{\text{max}}(Q(H))}{I_{L}} = 1$. Therefore, the codebook $Q(H)$ asymptotically meets the Levenshtein bound.

Remark 2: Some examples are used by Magma to verify the correctness of Theorem 7. The parameters N and K are very large even if for small p and m. Hence, we omit these examples here.

In the following, By setting $H = 0$ in Eq. (3), we obtain a $(q^2 + q, q - 1)$ codebook with $I_{\text{max}}(Q(0)) = \frac{\sqrt{q+1}}{q-1}$.

TABLE 2. The parameters of codebooks asymptotically meeting the Levenshtein bound.

Parameters (N, K)	I_{max}	References
$(q^2 - 1, q - 1)$, where q is a prime power	$\frac{\sqrt{q}}{q-1}$	[32]
$(q^2 - q - 1, q - 2)$, where q is a prime power	$\frac{\sqrt{q}}{q-2}$	[18]
$(q^2 + q, q - 1)$, where q is a prime power	$\frac{1}{\sqrt{q}}$	[20], [40]
$(2^m + 2^m, q)$, where $m > 0$ is an odd integer	$\frac{1}{\sqrt{2^m - 1}}$	[36]
$(p^km^p, p^km^p, p^km^p - h)$, where $p > 3$ is a prime, k, m, h are positive integers such that m is even and $h < p^m$	$\frac{\sqrt{p^m-n^p+h}}{p^m-n^p-h}$	Theorem IV 1
$(q^2 + q, q - 1)$, where $q = p^m$, $p > 3$ is a prime and $m > 0$ is an even integer	$\frac{\sqrt{q+1}}{q-1}$	Corollary IV 2

REFERENCES

[1] A. Calderbank, P. Cameron, W. Kantor, and J. Seidel, “Z_4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets,” *Proc. London Math. Soc.*, vol. 75, no. 2, pp. 436–480, Sep. 1977.

[2] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” *IEEE Signal Process. Mag.*, vol. 25, no. 2, pp. 21–30, Mar. 2008.

[3] I. H. Conway, R. H. Hardin, and N. J. A. Sloane, “Packing lines, planes, etc.: Packings in Grassmannian spaces,” *Exp. Math.*, vol. 5, no. 2, pp. 139–159, Jan. 1996.

[4] X. Cao, W. Zhou, and Z. Zhang, “More constructions of near optimal codebooks associated with binary sequences,” *Adv. Math. Commun.*, vol. 1, no. 1, pp. 187–202, 2017.

[5] C. Ding, “Complex codebooks from combinatorial designs,” *IEEE Trans. Inf. Theory*, vol. 52, no. 9, pp. 4229–4235, Sep. 2006.

[6] C. Ding and T. Feng, “A generic construction of complex codebooks meeting the Welch bound,” *IEEE Trans. Inf. Theory*, vol. 53, no. 11, pp. 4245–4250, Nov. 2007.

[7] C. Ding and J. Yin, “Signal sets from functions with optimum nonlinearity,” *IEEE Trans. Commun.*, vol. 55, no. 5, pp. 936–940, May 2007.

[8] P. Delsarte, J. Goethals, and J. Seidel, “Spherical codes and designs,” *Exp. Math.*, vol. 5, no. 2, pp. 197–212, Mar. 1996.

[9] J. Fan, “Array codes as low-density parity check codes,” in *Proc. Int. Symp. Turbo Codes*, Brest, France, 2000, pp. 543–546.
[10] M. Fickus, D. G. Mixon, and J. C. Tremain, “Steiner equiangular
 tight frames,” Linear Algebra its Appl., vol. 436, no. 5, pp. 1014–1027,
 Mar. 2012.

[11] M. Fickus and D. G. Mixon, “Tables of the existence of equian-
 gular tight frames,” 2015, arXiv:1504.00253. [Online]. Available:
 http://arxiv.org/abs/1504.00253.

[12] M. Fickus, D. G. Mixon, and J. Jasper, “Equiangular tight frames from
 hyperovals,” IEEE Trans. Inf. Theory, vol. 62, no. 9, pp. 5225–5236,
 Sep. 2016.

[13] M. Fickus, J. Jasper, D. G. Mixon, and J. Peterson, “Tremain equiangular
 tight frames,” 2016, arXiv:1602.03490. [Online]. Available:
 http://arxiv.org/abs/1602.03490.

[14] R. W. Heath, H. Bolcskei, and A. J. Paulraj, “Space-time signaling and
 frame theory,” in Proc. IEEE ICASSP, May 2001, pp. 2445–2448.

[15] R. W. Heath and A. J. Paulraj, “Linear dispersion codes for MIMO systems
 based on frame theory,” IEEE Trans. Signal Process., vol. 50, no. 10,
 pp. 2429–2441, Oct. 2002.

[16] H. Hu and J. Wu, “New constructions of codebooks nearly meeting the
 welch bound with equality,” IEEE Trans. Inf. Theory, vol. 60, no. 2,
 pp. 1348–1355, Feb. 2014.

[17] S. Hong and J. Y. Park, “Near-optimal partial Hadamard codebook con-
 struction using binary sequences obtained from quadratic residue mapp-
 ing,” IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3698–3705, Jun. 2014.

[18] Z. Heng, C. Ding, and Q. Yue, “New constructions of asymptotically opti-
 mal codebooks with multiplicative characters,” IEEE Trans. Inf. Theory,
 vol. 63, no. 10, pp. 6179–6187, Oct. 2017.

[19] Z. Heng and Q. Yue, “Optimal codebooks achieving the Levenshtein bound
 from generalized bent functions over \(\mathbb{Z}_q \),” Cryptogr. Commun.,
 vol. 9, no. 1, pp. 41–53, Jan. 2017.

[20] Z. Heng, “Nearly optimal codebooks based on generalized Jacobi sums,”
 Discrete Appl. Math., vol. 250, pp. 227–240, Dec. 2018.

[21] V. I. Levenshtein, “Bounds for packing of metric spaces and some of their
 applications,” Problem Cybern., vol. 40, pp. 43–110, 1983.

[22] S. Li and G. Ge, “Deterministic sensing matrices arising from near orthog-
 onal systems,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2291–2302,
 Apr. 2014.

[23] G. Luo and X. Cao, “Two constructions of asymptotically optimal code-
 books via the hyper Eisenstein sum,” IEEE Trans. Inf. Theory, vol. 64,
 no. 10, pp. 6498–6505, Oct. 2018.

[24] G. Luo, “New constructions of codebooks asymptotically achieving the welch
 bound,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, Jun. 2018,
 pp. 2346–2349.

[25] G. Luo, “Two constructions of asymptotically optimal code-
 books,” Cryptogr. Commun., vol. 11, no. 4, pp. 825–838, Jul. 2019.

[26] J. Massay and T. Mittelholzer, “Welch’s bound and sequence sets for code-
 division multiple-access systems,” in Sequences II, New York, NY, USA:
 Springer, 1999, pp. 63–78.

[27] R. Lidl and H. Niederreiter, Finite Fields. Cambridge, U.K.: Cambridge
 Press, 1997.

[28] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmetric
 informationally complete quantum measurements,” J. Math. Phys., vol. 45,
 no. 6, pp. 2171–2180, Jun. 2004.

[29] F. Rahimi, “Covering graphs and equiangular tight frames,” Ph.D. dissert-
 ation, Univ. Waterloo, Waterloo, ON, Canada, 2016. [Online]. Available:
 http://hdl.handle.net/10012/10793.

[30] D. Sarwate, “Meeting the Welch bound with equality,” in Sequences and
 Their Applications. London, U.K.: Springer, 1999, pp. 79–102.

[31] T. Strohmer and R. W. Heath, “Grassmannian frames with applications to
coding and communication,” Appl. Comput. Harmon. Anal., vol. 14, no. 3,
pp. 257–275, May 2003.

[32] P. Tan, Z. Zhou, and D. Zhang, “A construction of codebooks nearly
 achieving the Levenshtein bound,” IEEE Signal Process. Lett., vol. 23,
no. 10, pp. 1306–1309, Jul. 2016.

[33] T. Tang, Y. Li, T. Liu, and C. Xu, “Constructions of codebooks asyn-
 metrically achieving the welch bound with additive characters,” IEEE Signal
 Process. Lett., vol. 26, no. 4, pp. 622–626, Apr. 2019.

[34] L. Welch, “Lower bounds on the maximum cross correlation of signals
 (Corresp.),” IEEE Trans. Inf. Theory, vol. IT-20, no. 3, pp. 397–399,
May 1974.

[35] P. Xia, S. Zhou, and G. B. Giannakis, “Achieving the welch bound with
difference sets,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp. 1900–1907,
May 2005.