Deviation differential equations. Jacobi fields

G. SARDANASHVILY

Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia

Abstract

Given a differential equation on a smooth fibre bundle $Y \to X$, we consider its canonical vertical extension to that, called the deviation equation, on the vertical tangent bundle VY of Y. Its solutions are Jacobi fields treated in a very general setting. In particular, the deviation of Euler–Lagrange equations of a Lagrangian L on a fibre bundle Y are the Euler–Lagrange equations of the canonical vertical extension of L onto VY. Similarly, covariant Hamilton equations of a Hamiltonian form H are the Hamilton equations of the vertical extension VH of H onto VY.

1 Introduction

By a Jacobi field usually is meant a vector field along a geodesic in a pseudo-Riemannian manifold which obeys the geodesic deviation equation.

In a general setting, we consider the deviation equation (8) – (9) and the Jacobi fields of an arbitrary differential equation (3) on a smooth fibre bundle $Y \to X$. In particular, we are concerned with the deviation of the Euler–Lagrange equations (14) and the covariant Hamilton equations (18) on a fibre bundle $Y \to X$.

Let $E \to X$ be a vector bundle. A E-valued r-order differential operator on Y is a bundle morphism

$$\Delta : J^r Y \to X E$$

over X. Given a global zero section $\hat{0}$ of $E \to X$, we treat its inverse image

$$\mathcal{E} = \text{Ker} \Delta = \Delta^{-1}(\hat{0})$$

as a differential equation on Y, though it need not be a closed subbundle of $J^r Y$.

Let (x^λ, y^i) be bundle coordinates on Y, $(x^\lambda, y^i, y^i_\lambda)$ the adapted coordinates on $J^r Y$, and (x^λ, z^A) bundle coordinates on E. Then the differential equation \mathcal{E} (2) is locally given by equalities

$$\mathcal{E}^A(x^\lambda, y^i_\lambda) = 0.$$
Let VJ^rY and VE be the vertical tangent bundles of fibre bundle $J^rY \to X$ and $E \to X$, respectively. There is the canonical vertical prolongation

$$V\Delta : VJ^rY \overset{\delta}{\to} VE$$

(4)

of the bundle morphism Δ. Due to the canonical isomorphism

$$VJ^rY = J^r(VY), \quad \dot{y}^i_A = (\dot{y}^i)_A,$$

(5)

the bundle morphism (4) is a VE-valued r-order differential operator

$$V\Delta : J^r(VY) \overset{\Delta}{\to} VE$$

(6)

on the vertical tangent bundle VY of $V \to X$. It is called the vertical extension of the differential operator Δ. Since $VE \to X$ is a vector bundle, the kernel of this operator

$$V\mathcal{E} = \text{Ker} \ V\Delta$$

(7)

defines an r-order differential equation on VY. With respect to bundle coordinates $(x^\lambda, y^i, \dot{y}^i_A, \ddot{y}^i_A)$ on $J^r(VY)$, the differential equation (7) is locally given by equalities

$$\mathcal{E}^A(x^\lambda, y^i_A) = 0,$$

(8)

$$\partial_V \mathcal{E}^A(x^\lambda, y^i_A) = 0,$$

(9)

$$\partial_V = \dot{y}^i \partial_i + \ddot{y}^i_A \partial_A + \dddot{y}^i_{\lambda\mu} \partial^\lambda \partial^\mu + \cdots,$$

(10)

where d_V is the vertical derivative.

The equation $V\mathcal{E}$ (7) is called the deviation equation (or the variation equation in the terminology of [6]). Its part (8) is the projection of this equation to J^rY, and it is equivalent to the original equation (3). Therefore, a solution of the deviation equation (7) is given by a pair (s, ψ) of a solution s of the original differential equation and a section ψ of the pull-back bundle $s^*VY \to X$ which obeys the linear differential equation (9). This section ψ is called the Jacobi field.

In particular, if $Y \to X$ is an affine bundle modelled on a vector bundle $\overline{Y} \to X$, there is the canonical isomorphism

$$VY = Y \oplus \overline{Y},$$

and Jacobi fields ψ are sections of a vector bundle $\overline{Y} \to X$. For instance, if Y is a vector bundle, then $\overline{Y} = Y$. In the case of an affine bundle Y, it is readily observed that, given a solution (s, ψ) of the deviation equation $V\mathcal{E}$ (7), the sum $s + \psi$ obeys the original differential equation \mathcal{E} with accuracy to terms linear in ψ. Therefore, one can think of Jacobi fields ψ as being deviations of solutions of the original differential equation.

Let us note that any differential equation \mathcal{E} on a fibre bundle can be written in the form (3), and then the equalities (8) – (9) provide the corresponding deviation equation $V\mathcal{E}$.

2
Turn now to Lagrangian formalism on a fibre bundle $Y \to X$ \cite{2, 6, 10}. We use the fact that any exterior m-form ϕ on a fibre bundle $Y \to X$ possesses a vertical extension

$$V \phi = \partial_V \phi$$

onto the vertical tangent bundle VY of $Y \to X$. This is the pull-back onto $VY \subset TY$ of its tangent extension $T \phi$ onto TY defined by the equalities

$$T \phi(\tilde{u}_1, \ldots, \tilde{u}_m) = u_{TY} d(\phi(\tilde{u}_1, \ldots, \tilde{u}_m))$$

for any vector fields u_1, \ldots, u_m on Y, where \tilde{u}_a are their functorial lift onto TY and u_{TY} is the Liouville vector field on TY \cite{9}.

A k-order Lagrangian on a fibre bundle Y is defined as a density

$$L = L(x^{\lambda}, y^i, y^{i\lambda}) d^n x, \quad n = \dim X,$$

on a k-order jet manifold J^kY. The kernel of the associated Euler–Lagrange operator

$$\delta L = (\partial_i L + \sum_{\Lambda} (-1)^{|\Lambda|} d_{\Lambda} \partial_{\Lambda}^i L) dy^i \wedge d^n x$$

are the $2k$-order Euler–Lagrange equations

$$\partial_i L + \sum_{\Lambda} (-1)^{|\Lambda|} d_{\Lambda} \partial_{\Lambda}^i L = 0$$

on a fibre bundle Y.

Let us consider the vertical extension VL \eqref{11} of the Lagrangian L \eqref{12} onto $VJ^kY = J^k(VY)$. It reads

$$VL = \partial_V L d^n x.$$

Therefore, one can think of VL \eqref{15} as being a k-order Lagrangian on the vertical tangent bundle. It is easily verified that the Euler–Lagrange operator δVL of this Lagrangian VL is the vertical extension $V \delta L$ \eqref{6} of the Euler–Lagrange operator δL \eqref{13} of a Lagrangian L. Accordingly, the corresponding Euler–Lagrange equations are the deviation of the Euler–Lagrange equations \eqref{14}.

Furthermore, the counterpart of a first order Lagrangian formalism on a fibre bundle $Y \to X$ is polysymplectic Hamiltonian formalism \cite{1, 6} on the Legendre bundle

$$\Pi_Y = V^* Y \otimes (\wedge^n T^* X) \otimes TX = V^* Y \wedge (n-1) \wedge T^* X$$

provided with the holonomic coordinates $(x^{\lambda}, y^i, p^\lambda_i)$, where the fibre coordinates p^λ_i possess the transition functions

$$p^\lambda_i = \det \left(\frac{\partial x^\varepsilon}{\partial x'^\mu} \right) \frac{\partial y^j}{\partial y'^i} \frac{\partial x^{\lambda \mu}}{\partial x^{\lambda \mu}} p^\mu_j.$$

The Legendre bundle Π_Y \eqref{16} is provided with the polysymplectic form

$$\Omega_Y = dp^\lambda_i \wedge dy^i \wedge \omega \otimes \partial_\lambda.$$
and an exterior Hamiltonian form

\[H = p^i \lambda dy^i \wedge \omega, \quad \omega = d^n x, \quad \omega_\lambda = \partial_\lambda \omega. \]

(17)

This Hamiltonian form yields the covariant Hamilton equations

\[y^i_\lambda = \partial^i_\lambda H, \quad p^i_\lambda = -\partial_i H \]

(18)
on a fibre bundle \(Y \to X \). A key point is that, due to the canonical isomorphism \(VV^*Y = V^*VY \), the vertical extension \(VH \) (11) of the Hamiltonian form \(H \) (17) is a Hamiltonian form

\[VH = (\dot{p}^i_\lambda dy^i + p^i_\lambda d\dot{y}^i) \wedge \omega_\lambda - \partial_V H \omega \]
on the Legendre bundle \(\Pi_{VY} \) over the vertical tangent bundle \(VY \), and that the corresponding covariant Hamilton equations are the deviation (7) of the covariant Hamilton equations (18).

For instance, if \(X = \mathbb{R} \), the above mentioned covariant Hamiltonian formalism provides Hamiltonian formalism of non-autonomous mechanics on a fibre bundle \(Y \to \mathbb{R} \) [7]. Its vertical extension has been considered in application to mechanical systems with non-holonomic constraints [3] and completely integrable systems [5]. In particular, one can show that Jacobi fields of a completely integrable Hamiltonian system of \(m \) degrees of freedom make up an extended completely integrable system of \(2m \) degrees of freedom, where \(m \) additional integrals of motion characterize a relative motion [5].

References

[1] Bryant, R., Chern, S., Gardner, R., Goldschmidt, H. and Griffiths, P. (1991). Exterior Differential Systems (Springer-Verlag, Berlin).

[2] Giachetta, G., Mangiarotti, L. and Sardanashvily, G. (1997). New Lagrangian and Hamiltonian Methods in Field Theory (World Scientific, Singapore).

[3] Giachetta, G., Mangiarotti, L. and Sardanashvily, G. (1999). Nonholonomic constraints in time-dependent mechanics, J. Math. Phys. 40, 1376; arXiv: math-ph/9807014.

[4] Giachetta, G., Mangiarotti, L. and Sardanashvily, G. (1999). Covariant Hamilton equations for field theory, J. Phys. A 32, 6629.

[5] Giachetta, G., Mangiarotti, L. and Sardanashvily, G. (2003). Jacobi fields of completely integrable Hamiltonian systems, Phys. Lett. A 309, 382; arXiv: math-ph/0205026.

[6] Giachetta, G., Mangiarotti, L. and Sardanashvily, G. (2009) Advanced Classical Field Theory (World Scientific, Singapore).
[7] Giachetta, G., Mangiarotti, L. and Sardanashvily, G. (2010) Geometric Formulation of Classical and Quantum Mechanics (World Scientific, Singapore); arXiv: 0911.0411.

[8] Krasil’shchik, I., Lychagin, V. and Vinogradov, A. (1985). Geometry of Jet Spaces and Nonlinear Partial Differential Equations (Gordon and Breach, Glasgow).

[9] Mangiarotti, L. and Sardanashvily, G. (1998). Gauge Mechanics (World Scientific, Singapore).

[10] Sardanashvily, G. (2010) Advanced Differential Geometry for Theoreticians. Fibre Bundles, Jet Manifolds and Lagrangian Theory (Lambert Academic Publishing, Saarbrucken); arXiv: 0908.1886.