Supplementary Material
Dissolved Organic Matter in the Gulf of Cádiz: Distribution and Drivers of Chromophoric and Fluorescent Properties

Valentina Amaral*, Cristina Romera-Castillo, Jesús Forja

*Correspondence: vamaral@cure.edu.uy

1. Supplementary Figures

Fig. S1. Description of the water masses in the Gulf of Cádiz, (A) T-S diagram and (B) Proportion of the water masses determined by the OMP analysis. Data corresponds to the deepest station (SP7) and Sancti Petri section during summer of 2016, respectively. SAW: Superficial Atlantic Water, NACW: North Atlantic Central Water and MOW: Mediterranean Outflow Water.
Fig. S2. Fluorescence characteristics of the six components identified by the PARAFAC global analysis.
Fig. S3. Excitation (solid line) and emission (dotted line) spectra of the six-components for the global model and the same components for the individual models (components were numbered arbitrarily by the PARAFAC models) for summer (C1S - C6S), autumn (C1A - C6A), spring and winter (C1Sp-W - C3Sp-W). The * denotes comparisons between components with a Tucker congruence values < 0.98.
Fig. S4. Vertical profiles of temperature (°C), salinity, apparent oxygen utilization (AOU, µM), chlorophyll a (Chl a, µg L⁻¹) and dissolved organic carbon (DOC, µM) from Guadalquivir transect during the stratified (spring) and mixed (autumn) period.
Fig. S5. Vertical profiles of fluorescence components C1-C6 during the stratified (spring) and mixed (autumn) period in the Guadalquivir transect.
Fig. S6. Relationship between average seasonal values of UV radiation (UVA+UVB) and fluorescent intensity of component 4 (C4).

Fig. S7. Absorbance spectra for station SP7 during summer and winter at different depths: black 300 m, red 500 m and green 650 m.
2. Supplementary Tables

Table S1. Complementary information about oceanographic and meteorological settings in the Gulf of Cádiz during the study period. * Correspond to the accumulated precipitations 30 days prior to the sampling dates.

Variable	March	June	September	December
Thermocline depth (m)	75.4 ± 42.3	43.9 ± 16.8	34.8 ± 14.4	67.3 ± 26.9
Accumulative precipitations	40.2	74.9	8.8	59.2
(L m⁻²)*				
UV radiation (W m⁻²)	247.7 ± 3.3	466.8 ± 10.2	338.7 ± 14.8	166.9 ± 12.4
Wind speed (m s⁻¹)	8.4 ± 4.3	7.8 ± 3.8	5.9 ± 2.9	8.0 ± 4.1
Table S2. Spectral properties of the six PARAFAC components from the global model in the Gulf of Cádiz (n = 766) and correspondence with previously identified components in different environments using OpenFluor database and literature*.

Ex/Em	OpenFluor (Tucker congruency)	Ex/Em	Description	Environment	
C1 270 (320)/411	C2, (Chen et al., 2018) (0.99)	260 (305)/404	Marine humic-like	Arctic Sea water	
	C2, (Murphy et al., 2006) (0.98)	320/414	Marine humic-like	Atlantic and Pacific Ocean	
	C3, (Yamashita et al., 2010b)(0.98)	> 260 (> 315)/421	Microbial humic-like	Tropical rivers	
	C2, (Catalá et al., 2015)(0.98)	270 (326)/402	In situ, Microbial	Global dark ocean	
	C1, (Yamashita et al., 2011)(0.97)	260 (320)/425	Humic-like enriched in fulvic acids	Watersheds	
	C415, (Kida et al., 2019)(0.97)	-	Ubiquitous, autochthonous and allochthonous	Antarctic lakes	
C1 260 (310)/429	C1, (Garcia et al., 2015) (0.97)	240 (310)/429	Peak A+M, terrestrial	Mountain streams	
C2 260 (320)/425	C2, (Dalmagro et al., 2019)(0.97)	252 (321)/408	Terrestrial	Streams riparian forest	
C2 318/410	C2, (Li et al., 2016) (0.97)	260 (305)/416	Terrestrial (humic and fulvic)	Everglades	
	C3, (Yamashita et al., 2010c)(0.97)	-	Ubiquitous	Pantanal	
C1 252 (310)/398	C1, (Murphy et al., 2018) (0.97)	318/410	Marine/microbial	Artic porewater	
	C2, (Chen et al., 2016) (0.97)	260 (311)/411	Peak A	Mesocosm experiment	
	C2, (Asmala et al., 2018) (0.96)	240 (340)/398	Peak A	Coastal zone	
C1 240/308	C1, (Kulkarni et al., 2019)(0.96)	240/308	Terrestrial	Groundwater	
	C1, (Borisover et al., 2009) (0.96)	240 (310)/396	Marine humic-like	Lake	
Region	Sample	Reference	Method	Type	Source of Wastewater
-------------------------	--------	----------------------------	-----------------------	-------------------------------------	----------------------
Marine and terrestrial, peak M. Humic-like, terrestrial	Pacific and Atlantic Ocean Groundwater				
C2	300/359	C4, (Schittich et al., 2018) (0.97)	300/350	Protein like	Groundwater
		C3, (Catalá et al., 2015) (0.97)	298/343	Tryptophan-like	Global dark ocean
		C3, (Amaral et al., 2016) (0.96)	300/340	Tryptophan-like	Coastal subtropical lagoon Sediments
		C4, (Chen et al., 2017) 0.96	300/338	Bound proteins	Recycled wastewaters
		C6, (Murphy et al., 2011) (0.96)	290/352	Protein, Tryptophan-like	
C3	275-370/446	C3, (Chen et al., 2016) (0.97)	275 (370)/ 452	Terrestrial humic-like	Artic porewater
		C3, (Graeber et al., 2012) 0.97	255 (370)/432	Humic-like, ubiquitous	Central European streams
		C1, (Yamashita et al., 2010a)(0.96)	260 (370)/466	Mix A/C, higher plant derived and microbial reworked	Okhtoks Sea and the North Pacific Ocean
C4	250/430	C2, (Walker et al., 2009) (0.98)	< 240/404	Humic-like, terrestrially, exposed to UVA	Canadian Arctic surface water Lakes
		C3, (Osburn et al., 2011) (0.98)	< 250/434	Terrestrial, Peak A	Tropical rivers, Africa Sediments Streams
		C4, (Lambert et al., 2016a) (0.98)	<260/444	Terrestrial and photochemically degraded	
		C2, (Chen et al., 2017) (0.98)	<260/434	Terrestrial, photoprodut and/or photorefractory	
		C4, (Lambert et al., 2016b)(0.98)	<240/434	Terrestrial and photochemical degradation	
		C3, (Osburn et al., 2017) (0.98)	240(305)/425	Humic substances after degradation	Lakes
		C4, (Murphy et al., 2008) (0.97)	250(320)/370	Unknown, anthropogenic	Pacific and Atlantic Ocean
ID	Authors and Year (Reference)	265/422	Description	Location	
-----	------------------------------	---------	--	---	
C1	Chen et al., 2016 (0.97)	97	Terrestrial	Artic Ocean porewater	
C1	Cawley et al., 2012 (0.97)	97	Terrestrial, Peak A	Gulf of Maine	
C3	Osburn et al., 2016a (0.96)	97	Terrestrial humic-like	Coastal waters	
C2	Kowalczyk et al., 2009 (0.96)	97	Terrestrial humic-like	South Atlantic Bight	
C3	Li et al., 2016 (0.96)	97	Peak A	Lakes	

ID	Authors and Year (Reference)	275/325 (349)	Description	Location
C5	280/317 (378)	92	Bound to proteins	Atlantic Ocean
C3	Kowalczyk et al., 2013 (0.92)	92	Mixture of PAH and aromatic amino acids	Italian coast
C1	Gonnelli et al., 2016*	92	Peak N, PAH, origin unclear	Black Sea
C3	Margolin et al., 2018*	92	Peak T, leaching of polyphenols from senescence plants	Headwater catchments
C2	Garcia et al., 2018 (0.92)	92	Similar to free dissolved tryptophan	Marine, streams, wastewaters
C4	Asmala et al., 2018 (0.91)	91	Oil-related	Estuaries

ID	Authors and Year (Reference)	275/320	Description	Location
C6	275/303	93	Protein-like	Atlantic and Pacific Ocean
C5	Osburn et al., 2016b(0.91)	91	Tyrosine	Atlantic coastal plain
Table S3. Parameters of the multiple linear regressions model between dissolved organic carbon (DOC), absorption coefficient a_{254} and fluorescent components with temperature (T) and salinity (S) for surface water. Fitting parameter of the relationship with T (β_1) and S (β_2), standard error and the determination coefficient (R^2) are presented. The significance levels of the estimation are included ($p < 0.0001 ***$, $p < 0.001 **$ and $p < 0.01 *$). Results are described for each campaign and only cases with p-values higher than 0.01 are described.

Component	Season	β_1 (T)	β_2 (S)	Std. Error	R^2
DOC	Spring	-3.2*	41.4***	11.9	0.09
	Summer	1.9***	-30.0***	8.9	0.28
	Autumn	2.2***	-9.2	6.2	0.36
	Winter	5.7***	-32.8***	5.5	0.22

a_{254}	Season	β_1 (T)	β_2 (S)	Std. Error	R^2
DOC	Spring	-0.643***	4.085***	0.301	0.16
Winter	-0.0005 ***	-0.0092***	0.0016	0.69	
Autumn	0.085***	-0.870**	0.185	0.34	
Winter	0.164***	-2.070***	0.211	0.30	

C1	Season	β_1 (T)	β_2 (S)	Std. Error	R^2
DOC	Spring	-0.0011 **	-0.0011	0.0011	0.50
Summer	0.0005 ***	-0.0092***	0.0016	0.69	
Winter	0.0011 ***	-0.0344***	0.0017	0.79	

C2	Season	β_1 (T)	β_2 (S)	Std. Error	R^2
DOC	Spring	-0.0011*	0.0040	0.0009	0.24
Winter	-0.0001	-0.0025*	0.0005	0.31	

C4	Season	β_1 (T)	β_2 (S)	Std. Error	R^2
DOC	Spring	-0.0019	0.0204**	0.0022	0.27

C5	Season	β_1 (T)	β_2 (S)	Std. Error	R^2
DOC	Spring	-0.0082***	0.0461***	0.0030	0.28
Summer	0.0006*	-0.0199***	0.0043	0.36	
Winter	0.0004	-0.0137**	0.0031	0.16	

C6	Season	β_1 (T)	β_2 (S)	Std. Error	R^2
DOC	Spring	-0.0183***	0.1034***	0.0071	0.26
Summer	0.0015**	-0.0235***	0.0100	0.13	
References

Amaral, V., Graebner, D., Calliari, D., and Alonso, C. (2016). Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnol. Oceanogr. 61, 906–918. doi:10.1002/lno.10258.

Asmala, E., Haraguchi, I., Markager, S., Massicotte, P., Riemann, B., Staehr, P. A., et al. (2018). Eutrophication Leads to Accumulation of Recalcitrant Autochthonous Organic Matter in Coastal Environment. Global Biogeochem. Cycles 32, 1673–1687. doi:10.1002/2017GB005848.

Borisover, M., Laor, Y., Parparov, A., Bukhanovsky, N., and Lado, M. (2009). Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin. Water Res. 43, 3104–3116. doi:10.1016/j.watres.2009.04.039.

Catalá, T. S., Reche, I., Fuentes-Lema, A., Romero-Castillo, C., Nieto-Cid, M., Ortega-Retuerta, E., et al. (2015). Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat. Commun. 6, 1–8. doi:10.1038/ncomms6986.

Cawley, K. M., Butler, K. D., Aiken, G. R., Larsen, L. G., Huntington, T. G., and McKnight, D. M. (2012). Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed. Mar. Pollut. Bull. 64, 1678–1687. doi:10.1016/j.marpolbul.2012.05.040.

Chen, M., Jung, J., Lee, Y. K., and Hur, J. (2018). Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean. Sci. Total Environ. 639, 624–632. doi:10.1016/j.scitotenv.2018.05.205.

Chen, M., Kim, J. H., Nam, S. I., Niessen, F., Hong, W. L., Kang, M. H., et al. (2016). Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Sci. Rep. 6, 1–10. doi:10.1038/srep39213.

Chen, M., Kim, S. H., Jung, H. J., Hyun, J. H., Choi, J. H., Lee, H. J., et al. (2017). Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications. Water Res. 121, 150–161. doi:10.1016/j.watres.2017.05.022.

D’Sa, E. J., Overton, E. B., Lohrenz, S. E., Maiti, K., Turner, R. E., and Freeman, A. (2016). Changing Dynamics of Dissolved Organic Matter Fluorescence in the Northern Gulf of Mexico Following the Deepwater Horizon Oil Spill. Environ. Sci. Technol. 50, 4940–4950. doi:10.1021/acs.est.5b04924.

Dalmagro, H. J., Lathuilhière, M. J., Sallo, F. da S., Guerreiro, M. F., Pinto, O. B., de Arruda, P. H. Z., et al. (2019). Streams with riparian forest buffers versus impoundments differ in discharge and DOM characteristics for pasture catchments in Southern Amazonia. Water (Switzerland) 11, 1–20. doi:10.3390/w11020390.

Garcia, R. D., Diéguez, M. del C., Gerea, M., Garcia, P. E., and Reissig, M. (2018). Characterisation and reactivity continuum of dissolved organic matter in forested headwater catchments of Andean Patagonia. Freshw. Biol. 63, 1049–1062. doi:10.1111/fwb.13114.

Garcia, R. D., Reissig, M., Queimaldiños, C. P., Garcia, P. E., and Dieguez, M. C. (2015). Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. Sci. Total Environ. 521–522, 280–292. doi:10.1016/j.scitotenv.2015.03.102.

Gonçalves-Araujo, R., Stedmon, C. A., Heim, B., Dubinenvok, I., Kraberg, A., Moiseev, D., et al. (2015). From fresh to marine waters: Characterization and fate of dissolved organic matter in the Lena River Delta Region, Siberia. Front. Mar. Sci. 2, 1–13. doi:10.3389/fmars.2015.00108.

Gonnelli, M., Galletti, Y., Marchetti, E., Mercadante, L., Retelletti Brogi, S., Ribotti, A., et al. (2016). Dissolved organic matter dynamics in surface waters affected by oil spill pollution: Results from the Serious Game exercise. Deep. Res. Part II Top. Stud. Oceanogr. 133, 88–99. doi:10.1016/j.dsr2.2015.06.027.

Graeber, D., Gelbrecht, J., Pusch, M. T., Anlanger, C., and von Schiller, D. (2012). Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Sci. Total Environ. 438, 435–446. doi:10.1016/j.scitotenv.2012.08.087.

Kida, M., Kojima, T., Tanabe, Y., Hayashi, K., Kudoh, S., Maie, N., et al. (2019). Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams. Water Res. 163, 0–2. doi:10.1016/j.watres.2019.114901.

Kowalczyk, P., Durako, M. J., Young, H., Kahn, A. E., Cooper, W. J., and Gonsior, M. (2009). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability. Mar. Chem. 113, 182–196. doi:10.1016/j.marchem.2009.01.015.

Kowalczyk, P., Tilstone, G. H., Zablocka, M., Rötgers, R., and Thomas, R. (2013). Composition of dissolved organic matter along an Atlantic Meridional Transect from fluorescence spectroscopy and
Kulkarni, H., Mladenov, N., and Datta, S. (2019). Effects of acidification on the optical properties of dissolved organic matter from high and low arsenic groundwater and surface water. *Sci. Total Environ.* 653, 1326–1332. doi:10.1016/j.scitotenv.2018.11.040.

Kulkarni, H. V., Mladenov, N., Johannesson, K. H., and Datta, S. (2017). Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility. *Appl. Geochemistry* 77, 194–205. doi:10.1016/j.apgeochem.2016.06.002.

Lambert, T., Bouillon, S., Darchambeau, F., Massicotte, P., and Borges, A. V. (2016a). Shift in the chemical composition of dissolved organic matter in the Congo River network. *Biogeoosciences* 13, 5405–5420. doi:10.5194/bg-13-5405-2016.

Lambert, T., Teodoru, C. R., Nyoni, F. C., Bouillon, S., Darchambeau, F., Massicotte, P., et al. (2016b). Along-stream transport and transformation of dissolved organic matter in a large tropical river. *Biogeoosciences* 13, 2727–2741. doi:10.5194/bg-13-2727-2016.

Li, P., Lee, S. H., Lee, S. H., Lee, J. B., Lee, Y. K., Shin, H. S., et al. (2016). Seasonal and storm-driven changes in chemical composition of dissolved organic matter: a case study of a reservoir and its forested tributaries. *Environ. Sci. Pollut. Res.* 23, 24834–24845. doi:10.1007/s11356-016-7720-z.

Margolin, A. R., Gonnelli, M., Hansell, D. A., and Santinelli, C. (2018). Black Sea dissolved organic matter dynamics: Insights from optical analyses. *Limnol. Oceanogr.* 63, 1425–1443. doi:10.1002/lno.10791.

Murphy, K. R., Hambly, A., Singh, S., Henderson, R. K., Baker, A., Stuetz, R., et al. (2011). Organic matter fluorescence in municipal water recycling schemes: Toward a unified PARAFAC model. *Environ. Sci. Technol.* 45, 2909–2916. doi:10.1021/es103015e.

Murphy, K. R., Ruiz, G. M., Dunsmaur, W. T. M., and Waite, T. D. (2006). Optimized parameters for fluorescence-based verification of ballast water exchange by ships. *Environ. Sci. Technol.* 40, 2357–2362. doi:10.1021/es051935e.

Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. *Mar. Chem.* 108, 40–58. doi:10.1016/j.marchem.2007.10.003.

Murphy, K. R., Stedmon, C. A., Wenig, P., and Bro, R. (2014). OpenFluor- An online spectral library of auto-fluorescence by organic compounds in the environment. *Anal. Methods* 6, 658–661. doi:10.1039/c3ay41935e.

Murphy, K. R., Timko, S. A., Gonsior, M., Powers, L. C., Wünsch, U. J., and Stedmon, C. A. (2018). Photochemistry Illuminates Ubiquitous Organic Matter Fluorescence Spectra. *Environ. Sci. Technol.* 52, 11243–11250. doi:10.1021/acs.est.8b02648.

Osburn, C. L., Anderson, N. J., Stedmon, C. A., Giles, M. E., Whiteford, E. J., McGenity, T. J., et al. (2017). Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes Along a Regional Hydro-climatic Gradient. *J. Geophys. Res. Biogeosciences* 122, 3431–3445. doi:10.1002/2017JG003999.

Osburn, C. L., Boyd, T. J., Montgomery, M. T., Bianchi, T. S., Coffin, R. B., and Paerl, H. W. (2016a). Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. *Front. Mar. Sci.* 2. doi:10.3389/fmars.2015.00127.

Osburn, C. L., Handsel, L. T., Peterls, B. L., and Paerl, H. W. (2016b). Predicting Sources of Dissolved Organic Nitrogen to an Estuary from an Agro-Urban Coastal Watershed. *Environ. Sci. Technol.* 50, 8473–8484. doi:10.1021/acs.est.6b00053.

Osburn, C. L., Wigdahl, C. R., Fritz, S. C., and Saros, J. E. (2011). Dissolved organic matter composition and photoactivity in prairie lakes of the U.S. Great Plains. *Limnol. Oceanogr.* 56, 2371–2390. doi:10.4319/lo.2011.56.6.2371.

Schittich, A. R., Wünsch, U. J., Kulkarni, H. V., Battistel, M., Bregnhoj, H., Stedmon, C. A., et al. (2018). Investigating Fluorescent Organic-Matter Composition as a Key Predictor for Arsenic Mobility in Groundwater Aquifers. *Environ. Sci. Technol.* 52, 13027–13036. doi:10.1021/acs.est.8b04070.

Stedmon, C. A., and Markager, S. A. (2005). Tracing the Production and Degradation of Autochthonous Fractions of Dissolved Organic Matter by Fluorescence Analysis. *Limnol. Oceanogr.* 50, 1415. Available at: http://search.ebscohost.com/login.aspx?direct=true&db=edsjsrt&AN=edsjsr.3597686&authtype=sso &custid=s8993828&site=eds-live&scope=site.

Walker, S. A., Amon, R. M. W., Stedmon, C., Duan, S., and Louchoourn, P. (2009). The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters. *J. Geophys. Res. Biogeosciences* 114, 1–12.
