Enhancement of paclitaxel-induced breast cancer cell death via the glycogen synthase kinase-3β-mediated B-cell lymphoma 2 regulation

Kyung Tae Noh1,2,#, Gil Sun Cha2,*, Tae Heung Kang2,*, Joon Jung3,*, In Duk Jung2, Kwang-Youn Kim4, Soon-Cheol Ahn5, Ji Chang You6,*, & Yeong-Min Park2,*

1Department of Infectious Diseases, Armed Forces Medical Research Institute, Daejeon 34059, 2Department of Immunology, KU Open Innovation Center, College of Medicine, Konkuk University, Chungju 27478, 3Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 03083, Korea

Abstract

Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine protein kinase that is known to mediate cancer cell death. Here, we show that B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, is regulated by GSK-3β and that GSK-3β-mediated regulation of Bcl-2 is crucial for mitochondrial-dependent cell death in paclitaxel-stimulated cells. We demonstrate that MCF7 GSK-3β siRNA cells are more sensitive to cell death than MCF7 GFP control cells and that in the absence of GSK-3β, Bcl-2 levels are reduced, a result enhanced by paclitaxel. Paclitaxel-induced JNK (c-Jun N-terminal kinase) activation is critical for Bcl-2 modulation. In the absence of GSK-3β, Bcl-2 was unstable in an ubiquitination-dependent manner in both basal- and paclitaxel-treated cells. Furthermore, we demonstrate that GSK-3β-mediated regulation of Bcl-2 influences cytochrome C release and mitochondrial membrane potential. Taken together, our data suggest that GSK-3β-dependent regulation of Bcl-2 is crucial for mitochondria-dependent cell death in paclitaxel-mediated breast cancer therapy. [BMB Reports 2016; 49(1): 51-56]

INTRODUCTION

Glycogen synthase kinase-3 (GSK-3), a serine/threonine protein kinase, is involved in various cellular processes; it was first identified as an important regulator of glycogen synthesis (1). GSK-3 has two isoforms, GSK-3α and GSK-3β (2), and two phosphorylatable residues, Ser9 and Tyr216, whose phosphorylation determines the activity of GSK-3β (3). Whereas GSK-3β activation generally requires phosphorylation on Tyr216; the Ser9 residue is critical for inhibition of activity (2, 3). GSK-3β is involved in multiple physiological responses such as cell survival, apoptosis, metabolism, diabetes, and homeostasis (2-7). In detail, knockout studies of GSK-3β have shown that it is crucial for Nuclear factor-κB (NFκB-dependent cell survival (7); Ser9 phosphorylation of GSK-3β promotes cell survival via cAMP response element binding protein (CREB)-dependent Bcl-2 expression (8). Phosphorylation of Tyr216 in GSK-3β regulates p53, which enhances Bax expression, resulting in cell death (9). GSK-3β-mediated phosphorylation of Bax promotes its mitochondrial localization, thus initiates neuronal apoptosis (10).

Apoptosis is crucial for recovery of damaged and infected cells (11); this mechanism is triggered through two signaling pathways, the intrinsic and extrinsic pathways (12, 13). The intrinsic mitochondrial pathway is initiated when pro-apoptotic signals from outside the cell are transmitted within the cell (12, 13). This pathway hinges on the balance of activity between anti- and pro-apoptotic signals of the Bcl-2 family (14, 15). In the normal state, Bcl-2 combines with pro-apoptotic proteins (Bid, Bim, Bax, and Bak) and locates to the mitochondria. When an apoptotic signal from the outside is transmitted, the level of Bcl-2 is reduced, pro-apoptotic proteins combine with each other, the mitochondrial structure is changed, and apoptosis is initiated (14, 15). The extrinsic pathway occurs outside the cell through activation of pro-apoptotic receptors on the surface (6). Both pathways contribute to the activation of intra-cellular cysteine proteases, referred to as caspases (6, 14, 15).

Paclitaxel is a well known and effective medicine for tumor chemotherapy; it is widely used against a broad range of cancers including breast, lung, and ovarian cancers (16, 17).
Paclitaxel functions as a mitotic inhibitor, targeting microtubules (18, 19). Rodi et al. demonstrated that Bcl-2 was a target of paclitaxel by screening a library of phage-displayed peptides (20).

Here, we demonstrate the absence of GSK-3β enhanced breast cancer cell death induced by paclitaxel. We also demonstrate that paclitaxel-induced breast cancer cell death occurs through the intrinsic apoptosis pathway and is dependent on GSK-3β regulation of Bcl-2, using a GSK-3β siRNA system.

RESULTS

Paclitaxel-induced cell death is greater in MCF7 GSK-3β siRNA cells than in MCF7 GFP control cells

In a previous report, we found that the level of apoptosis-signal regulating kinase 1 (ASK1) was regulated by GSK-3β (21). Thus, we investigated whether the presence of GSK-3β influences cell death in paclitaxel-stimulated conditions, using MCF7 GSK-3β siRNA cells. First, we examined the cell death population change in MCF7 GFP control and MCF7 GSK-3β siRNA cells by paclitaxel stimulation, using Annexin V/propi- dium iodide (PI) staining. We observed that the population of Annexin V-stained cells in paclitaxel-treated MCF7 GSK-3β siRNA cells was greater than in controls (Fig. 1A). Furthermore, in a DNA fragmentation assay, paclitaxel treatment resulted in greater DNA fragmentation in GSK-3β knockdown cells (Fig. 1B) than in controls. From these results, we concluded that paclitaxel-induced breast cancer cell death was increased in GSK-3β knockdown cells.

Paclitaxel-induced Bcl-2 decrease is greater in the absence of GSK-3β and JNK activity is crucial for paclitaxel-induced reduction of Bcl-2

The Bcl-2 family of proteins is known as mediators of cell death, and an interaction between GSK-3β and Bcl-2 family proteins has been previously reported (8, 10). Because of the GSK-3β-dependent differences in cell death observed, we examined the level of the anti-apoptotic protein Bcl-2 in MCF7 GFP control and MCF7 GSK-3β siRNA cells. Fig. 2A shows that, in the absence of GSK-3β, Bcl-2 levels are diminished; this is also the case with paclitaxel-induced decrease of Bcl-2 in GSK-3β knockdown cells (Fig. 2A). These results were confirmed by confocal microscopy (Fig. 2B). In addition, we investigated paclitaxel-induced activation of MAPKs (JNK and p38) and found that paclitaxel-induced activation of these MAPKs is greater in MCF7 GSK-3β siRNA cells than in MCF7 GFP control cells (Fig. 2C). Furthermore, we found that JNK activity is critical for paclitaxel-mediated Bcl-2 modulation (Fig. 2D). From these results, we deduced that GSK-3β regulates Bcl-2 levels in both basal and paclitaxel-treated cells, and that JNK activity is crucial for paclitaxel-induced reduction of Bcl-2.

Bcl-2 stability is reduced in the GSK-3β knockdown condition

In previous experiments, we found that GSK-3β regulates the level of Bcl-2 in paclitaxel-treated cells. Here, we performed experiments to examine the effect of GSK-3β knockdown on Bcl-2 stability. MCF7 GSK-3β siRNA cells were pre-treated with JNK inhibitor, SB600125 (25 μM) or p38 inhibitor, SB203580 (10 μM) for 30 min, and harvested. Cells were stained with FITC-conjugated Bcl-2 antibody, and then stained with TO-PRO-3. (C) Cells were incubated with paclitaxel (2 μM) for 30 min, and then cells were treated with paclitaxel (2 μM) for 2 h. Cells were harvested and immunoblotted with Bcl-2 and Actin. The results are representative of three independent experiments.
time course experiments to examine the stability of Bcl-2. As shown in Fig. 3A, Bcl-2 is stable in the presence of GSK-3β during paclitaxel stimulation. However, in the absence of GSK-3β, paclitaxel treatment resulted in decreased levels of Bcl-2 levels (Fig. 3A). Therefore, we investigated whether GSK-3β influenced the turnover rate of Bcl-2 in the presence of paclitaxel using cycloheximide (CHX). We found that Bcl-2 is more stable in paclitaxel-treated cells in the presence of GSK-3β, suggesting GSK-3β-mediated Bcl-2 stabilization is resistant to proteosomal degradation (Fig. 3B). These results showed that GSK-3β plays a pivotal role in Bcl-2 stability under basal and paclitaxel-stimulated conditions. Most proteins degraded by the proteasome are dependent on ubiquitination (22). Due to the aberrant paclitaxel-mediated proteosomal degradation of Bcl-2 in the absence of GSK-3β, we examined the effect of GSK-3β on the ubiquitination of Bcl-2. Consistent with previous stability data, in the absence or inhibition of GSK-3β, more ubiquitinated Bcl-2 was observed than in the presence of GSK-3β (Fig. 3C, D). In addition, we observed paclitaxel-mediated activation of GSK-3β via phosphorylations of Ser9 and Tyr216 residues (Fig. 3E). Furthermore, in paclitaxel-treated cells, a much stronger ubiquitination of Bcl-2 was detected in cells with GSK-3β knockdown compared to control cells (Fig. 3F). Therefore, we concluded that GSK-3β activity is crucial for Bcl-2 ubiquitination under basal and paclitaxel-treated conditions.

Paclitaxel-induced/stimulated/triggered cytochrome C release and mitochondrial membrane potential collapse are greater in MCF7 GSK-3β siRNA cells compared to MCF7 GFP control cells

Cytochrome C is an intermediate in apoptosis, a regulated form of cell death used to kill cells in response to infection, in the process of development, or DNA damage (23). In previous results, we found paclitaxel-induced cell death and aberrant Bcl-2 reduction in the absence of GSK-3β. Therefore, we investigated paclitaxel-induced cytochrome C release and mitochondrial membrane potential in the presence or absence of GSK-3β. MCF7 GFP control and MCF7 GSK-3β siRNA cells were treated with paclitaxel (2 μM), incubated for 18 hours, and then harvested. Cytosolic and mitochondrial fraction assays using digitonin were performed. As shown in Fig. 4A, more cytochrome C release in the presence of paclitaxel was observed in MCF7 GSK-3β siRNA cells compared to MCF7 GFP control cells. Mitochondrial membrane potential is an important barrier of apoptosis via cytochrome C release (24). Thus, we investigated whether paclitaxel treatment in the presence or absence GSK-3β affects the biochemical structure of mito-

![Fig. 3.](http://bmbreports.org)
chondria. Paclitaxel-induced mitochondrial membrane potential collapse was greater in the absence of GSK-3β than in the presence of GSK-3β (Fig. 4B). From these results, we concluded that GSK-3β functions as a barrier to cytochrome C release and mitochondrial membrane potential collapse in paclitaxel-stimulated cells.

**DISCUSSION**

In this work, we studied the synergistic effect of paclitaxel and GSK-3β siRNA in MCF7 breast cancer cells. GSK-3β functions as an important regulator of cell death induced by various stresses (6). Bcl-2 family members can be classified into three subfamilies based on functional and structural features (11), this family of proteins is localized to smooth endoplasmic reticulum and mitochondria and functions as anti-apoptotic proteins.

Interaction between GSK-3β and the Bcl-2 family proteins has been reported. GSK-3β exhibits pro-apoptotic effects by modulating Bax, a pro-apoptotic protein (10). GSK-3β inhibition evokes cell survival via CREB-dependent-Bcl-2 expression (8). In recent, it was reported that interleukin 17A inhibits autophagy by blocking GSK-3β-mediated Bcl-2 degradation (25). However, under conditions of paclitaxel treatment, the relationship between GSK-3β and Bcl-2 has not been addressed. Here, we investigated this question based on our previous results demonstrating that the level of apoptosis-signal regulating kinase 1 (ASK1) is regulated by GSK-3β (21). In addition, our and other group have been investigating on the relevance between GSK3 beta and MAPKs (21, 26-28).

Paclitaxel is a drug widely used in chemotherapy; it is a microtubule-targeting agent that is effective against a wide range of cancers (29). Paclitaxel-treated cells have defects in mitotic spindle assembly, chromosome isolation, and cell division (16, 18, 30). In previous studies, Rodi et al. demonstrated that Bcl-2 was also a target of paclitaxel (20), a finding verified by demonstrating that the structure of Bcl-2 is similar to that of β-tubulin (31). In this study, we showed that Bcl-2 could be an indirect target of paclitaxel via GSK-3β.

Saunders et al. (32) first showed that paclitaxel could be an inducer of breast cancer cell death, and other works demonstrated synergistic effects between paclitaxel and other anti-tumor drugs in enhancing breast cancer cell death (33). In this study, we demonstrate an alternative mechanism to enhance the effects of paclitaxel on MCF7 breast cancer cells. We observed that paclitaxel was more effective in killing breast cancer cells in the absence of GSK-3β, using various cell death assays including Annexin V/propidium iodide (PI) staining, DNA fragmentation assay, and TUNEL assay. We also monitored Bcl-2 expression in paclitaxel-treated MCF7 GFP control and MCF7 GSK3β siRNA cells and found that GSK-3β affected Bcl-2 levels in basal and paclitaxel-treated condition. In GSK-3β knockdown cells, Bcl-2 levels were reduced compared with control cells. Bcl-2 levels were further reduced in paclitaxel-treated MCF7 GSK-3β siRNA cells compared with paclitaxel-treated MCF7 GFP control cells. We also showed that JNK activity is important for paclitaxel-mediated Bcl-2 modulation. Furthermore, we observed that Bcl-2 stability is dependent on GSK-3β in the presence of paclitaxel and that GSK-3β-mediated Bcl-2 stability is via ubiquitination pathway in basal and paclitaxel-stimulated conditions. Because Bcl-2 levels are crucial for cytochrome C release, we investigated the effect of GSK-3β on cytochrome C release and mitochondria membrane potential collapse under conditions of paclitaxel treatment. From the series of experiments, we concluded that GSK-3β absence-mediated Bcl-2 reduction causes hyper-sensitive cell death of breast cancer by paclitaxol.

In future studies, we plan to define the detailed mechanism of GSK-3β inhibition-mediated Bcl-2 reduction and, to use this
information for therapeutic benefit to treat breast and other cancers using nano-particle and GSK-3β siRNA. This work should provide both better understanding and increased effectiveness of combined therapy using a GSK3 inhibitor and paclitaxel to accelerate the development of effective breast cancer drugs.

MATERIALS AND METHODS

Cell culture
MCF7 GFP control and MCF GSK-3β siRNA cells were kindly provided by Dr. Eui-ju Choi (Korea university, South Korea). Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum, penicillin (100 U/ml), and streptomycin (100 µg/ml) under a humidified atmosphere of 5% CO2 at 37°C.

Reagents and antibodies
Antibodies against Bcl-2, Actin, GSK-3β, cytochrome C, and COX4 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The anti-p-jNK, anti-JNK, anti-pp38, and anti-p38 antibodies were obtained from Cell Signaling Technology Inc. (Beverly, MA). Paclitaxol was purchased from Toecis Bioscience (Bristol, UK). DiOC6(3) was purchased from Enzo Life Sciences (Farmingdale, NY). Annexin V-FITC Apoptosis Detection Kit (BD Biosciences, Lexington, KY), TUNEL Assay Kit (Thermo Scientific, Waltham, MA), and Subcellular Protein Fractionation Kit (Thermo Scientific, Waltham, MA) were used.

Detection of apoptosis
MCF7 GFP control and MCF GSK-3β siRNA cells (1 × 10⁵ cells) were trypsinized, incubated with annexin V-FITC and propidium iodide (PI), and analysed by flow cytometry (FACSCalibur, BD Biosciences) with CellQuest software. The percentage of annexin V-positive, PI-negative cells (annexin V-positive, PI-negative) were determined. Annexin V-positive cells were also incubated with TUNEL reaction mixture for apoptosis analysis and then stained with DAPI. TUNEL-positive nuclei were analysed for apoptosis under fluorescent microscopy.

Western immunoblot analysis
Western blot analysis was performed as previously described (34). In brief, cell lysates were subjected to SDS-PAGE and transferred to PVDF membranes. The PVDF membranes were then blocked with 5% nonfat milk in a washing buffer (50 mm Tris-HCl, pH 8.0, 150 mm NaCl, 0.1% Tween 20) and incubated with the indicated antibodies for 1 h at room temperature. The membranes were washed and incubated for 1 h at room temperature with the appropriate secondary antibodies conjugated with horseradish peroxidase (Thermo Scientific, Waltham, MA). Protein bands were visualized using an enhanced chemiluminescence system (Thermo Scientific, Waltham, MA).

Subcellular fractionation
Briefly, MCF7 GFP control and MCF GSK-3β siRNA cells were harvested and trypsinized. The supernatant were removed and incubated with digitonin buffer (10 mM piperazine-N,N'-bis (ethanesulfonic acid) (Pipes), pH 6.8, 0.015% v/v digitonin, 300 mM sucrose, 100 mM NaCl, 3 mM MgCl₂, 5 mM EDTA, Protease inhibitor (Bio Basic Inc, Canada)) in the ice for 3 min, and then centrifuged 3 × 10⁶ rpm for 10 min. The supernatant is cytosolic fraction and pellet is mitochondrial fraction.

Confocal laser scanning microscopy
MCF7 GFP control and MCF GSK-3β siRNA cells were seeded in the six-well plates for 24 h, and treated with paclitaxel for 18 h. Cells were fixed in 4% formaldehyde for 15 min, and permeabilized with 0.1% Triton X-100 for 7 min. Next, cells were blocked with PBS containing 5% bovine serum albumin for 1 h and subjected to immunefluorescent staining with mouse anti-Bcl-2 polyclonal antibody for a further 2 h at room temperature or overnight at 4°C, and then followed by Alexa Fluor 488 anti-mouse IgG (H+L) (Invitrogen, Carlsbad, CA) for 1 h at room temperature. Finally, fluorescence signals were analyzed by confocal laser scanning microscope (LSM710, Carl Zeiss, Germany).

Assessment of ∆Ψm
∆Ψm was assessed by measuring retention of the lipophilic cationic dye DiOC₆(3) in mitochondria. Cells were harvested and incubated in a DiOC₆(3) solution (20 nM in fresh medium) for 30 min at 37°C in the dark. The cells were then washed and resuspended in PBS. Immediately after PBS washing, ∆Ψm was measured by sorting the cells using FACSCalibur BD Biosciences, Lexington, KY). Dead cells were excluded by forward and side-scatter gating. Data were acquired by analyzing an average population of 1 × 10⁶ cells using CELLQuest software BD Biosciences, Lexington, KY).

Statistical analysis
All experiments were repeated at least 3 times with consistent results. Unless otherwise stated, data were expressed as the mean ± SEM. Analysis of variance was used to compare experimental groups with control values, while comparisons between multiple groups were made using Tukey's multiple comparison tests (Prism 3.0 GraphPad software). A P value less than 0.05 was considered to indicate statistical significance.

ACKNOWLEDGEMENTS
This research was supported by Basic Science Research Program through the National Research Foundation of Korea.
(NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2042924, 2012R1A2A1A03008433, and 2013R1A2A2A01068353)

REFERENCES

1. Embi N, Rylatt DB and Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107, 519-527
2. Jope RS and Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29, 95-102
3. Doble BW and Woodgett JR (2003) GSK-3: tricks of the trade. Curr Opin Cell Biol 15, 1175-1186
4. Shin J, Yu SB, Yu UY, Jo SA, Ahn JH (2010) Swedish mutation of glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24, 9993-10002
5. Xiong Q, Deng CY, Chai J (2009) Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts. BMB Rep 42, 119-124
6. Beurel E and Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signalling pathways. Prog Neurobiol 79, 173-189
7. Hoefflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90
8. Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W (2008) t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res 68, 395-403
9. Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET, Yu Q (2005) Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res 65, 9012-9020
10. Linseman DA, Butts BD, Precht TA et al (2004) Glycogen synthase kinase-3beta promotes p53-dependent apoptosis through Akt-dependent mechanism. Oncogene 25, 43-50
11. Willis S, Day CL, Hinds MG, Huang DC (2003) The Bcl-2-regulated apoptotic pathway. J Cell Sci 116(Pt 20), 4033-4036
12. Kang MH and Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15, 1126-1132
13. Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66, 1-15
14. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192
15. Wang K, Yin XM, Chao DT, Mllllman CL, Korsmeyer SJ (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10, 2859-2869
16. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimitotic tubule chemotherapy agents. Annu Rev Med 48, 353-374
17. Slichenmyer WJ and Von Hoff DD (1991) Taxol: a new and effective anti-cancer drug. Anticancer Drugs 2, 519-530
18. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13, 134-136
19. Schifff PB and Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77, 1561-1565
20. Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowksi L (1999) Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 285, 197-203
21. Noh KT, Park YM, Cho SG, Choi EJ (2011) GSK-3beta-induced ASK1 stabilization is crucial in LPS-induced endotoxin shock. Exp Cell Res 317, 1663-1668
22. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21
23. Liu X, Kim CN, Yang J, Lemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157
24. Henry-Mowatt J, Dive C, Martinou JC, James D (2004) Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 23, 2830-2860
25. Liu H, Mi S, Li Z, Hua F, Hu ZW (2013) Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy 9, 730-742
26. Noh KT, Son KH, Jung ID (2012) Protein kinase C delta (PKCdelta)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade regulates glycogen synthase kinase-3 (GSK-3) inhibition- mediated interleukin-10 (IL-10) expression in lipopolysaccharide (LPS)-induced endotoxemia. J Biol Chem 287, 14226-14233
27. Kim JW, Lee JE, Kim MI, Cho EG, Cho SG, Choi EJ (2003) Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEKK1). J Biol Chem 278, 13995-14001
28. Wang Q, Zhou Y, Wang X, Evers BM (2006) Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase 1 (MEK1). Cancer Res 28, 43-50
29. Yvon AM, Wadsworth P and Jordan MA (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10, 942-949
30. Tange S, Scherer MN, Greabi C (2002) The antineoplastic drug Paclitaxel has immunosuppressive properties that can effectively promote allograft survival in a rat heart transplant model. Transplantation 73, 216-223
31. Amos LA and Lowe J (1999) How Taxol stabilises microtubule structure. Chem Biol 6, R65-69
32. Saunders DE, Lawrence WD, Christensen C, Wappler NL, Charpentier D, Mcleod MA (2003) The Bcl-2-regulated apoptotic pathway. J Cell Sci 116(Pt 20), 4033-4036
33. Kang MH and Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15, 1126-1132
34. Lee SJ, Noh KT, Kang TH (2014) The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4. BMB Rep 47, 115-120