A machine learning algorithm predicts molecular subtypes in pancreatic ductal adenocarcinoma with differential response to gemcitabine-based versus FOLFIRINOX chemotherapy

Georgios Kaissis¹¶, Sebastian Ziegelmayer¹¶, Fabian Lohöfer¹¶, Katja Steiger², Hana Algül³, Alexander Muckenhuber², Hsi-Yu Yen², Ernst Rummeny¹, Wilko Weichert², Roland Schmid³, Helmut Friess⁴, Jens T. Siveke⁵,⁶ and Rickmer Braren¹*

¹Department of diagnostic and interventional radiology, School of Medicine, Technical University of Munich, Munich, Germany;
²Department of Pathology, School of Medicine, Technical University of Munich, Munich, Germany;
³Department of Internal Medicine II, School of Medicine, Technical University of Munich, Munich, Germany;
⁴Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany;
⁵Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.
⁶German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany

Supplemental Material
1 Feature extraction
Tumors were manually segmented by consensus reading as detailed in the main manuscript. Radiomic features were extracted from the quality-controlled 3-dimensional volumes as follows: Intensity discretization was performed to a fixed bin number of 32 bins for all scans as described in (1). No normalization was performed. Value plausibility was ascertained for all parameters. Images were spatially resampled to 3x3x3mm using the BSpline interpolator. No resegmentation was performed. Radiomic features were derived using PyRadiomics v. 2.1.1 (2) yielding 19 first order statistics, 16 3D shape-based, 10 2D shape based, 24 Gray Level Coocurrence Matrix, 16 Gray Level Run Length Matrix, 16 Gray Level Size Zone Matrix, 5 Neighbouring Gray Tone Difference Matrix and 14 Gray Level Dependence Matrix features as well as Laplacian of Gaussian-filtered, wavelet-decomposition-based (using the coiflet 1 function), square, exponential, gradient, square-root, logarithm and local binary-pattern filtered versions of these features. Laplacian of Gaussian-filtering was performed with a kernel (sigma) of 3mm. GLCM and GLRLM were extracted using the default settings (separately for each direction then averaged). Feature descriptions can be found in the PyRadiomics documentation (3). Feature extraction and processing was carried out according to the IBSI manual v. 7 (4). 1606 features were extracted in total.

2 Feature preprocessing
The following radiomic features were excluded: Features yielding nil, constant or-missing values. Furthermore, tumors were segmented a second time after 2 weeks by the same observers to test for repeated segmentation stability. The intra-class-correlation coefficient (two-way mixed effects model/ consistency as described by McGraw and Wong (5)) was calculated and features yielding inter-segmentation values below 0.8 were excluded. In total, the following 40 reproducible and stable features remained:
Potential intercorrelation between the relevant features selected by the algorithm was explored by calculating Spearman’s ρ between their values. The correlation between the features was found to be weak (as defined by Dancey and Reidy (6)) at best, signifying feature independence. A heatmap of feature correlation is seen below:
3 Feature engineering and machine learning modeling

Machine learning modeling was performed using the Python programming language version 3.7. The following packages were used: Pandas 0.23.4, Numpy 1.16.2, Matplotlib 3.0.3, Seaborn 0.9.0, Scikit Learn 0.20.3, Lifelines 0.21.0, Statsmodels 0.9.0, XGBoost 0.90, Scikit-Survival 0.9.

Feature values were normalized to a range of (0,1) using the StandardScaler package implemented in sklearn.preprocessing.

Because of the small dataset size, the use of automatic hyperparameter tuning and nested cross-validation was eschewed. Some manual hyperparameter modifications were made to reduce model variance and increase overfitting resistance: tree complexity penalization was
applied to the leaf values in the form of L2 regularization and shrinkage regularization was introduced by reducing the learning rate.

For training and testing, the estimator was fit and tested using stratified shuffle/split cross-validation with 10 splits of 70%/30% (train/test) of the dataset. For testing survival prediction, a manual train/test set was built using interleaving to preserve the time-series structure and a stochastic Gradient Boosted Regression Tree algorithm was used. The learning rate was set at 0.01 and individual trees were built using 90% of the rows. Cox proportional hazards was used as a loss function to optimize and trees were split based on the Friedman MSE criterion. The concordance index between the predictions of the model on the testing set and the actual survival times was calculated.

For all other survival analyses, the stratified shuffle/split cross-validation technique was used. The survival curves stratified by radiomic signature only and by both, radiomic signature and chemotherapy can be found below:
Kaplan-Meier curves resulting from 10-fold cross validation and showing disease-free survival stratified by radiomic signature (KRT81+/high risk (blue line) or KRT81-/low risk (green line)). Total N=17.
Kaplan-Meier curves resulting from 10-fold cross validation and showing overall survival stratified by radiomic signature. (KRT81+/high risk (blue line) or KRT81-/low risk (green line)). Total N=17.
Kaplan-Meier curves resulting from 10-fold cross validation and showing overall survival stratified by radiomic signature and chemotherapy regimen. (KRT81+/high risk with gemcitabine (blue line) or FOLFIRINOX (green line)). Total N=7 to 11
Kaplan-Meier curves resulting from 10-fold cross validation and showing overall survival stratified by radiomic signature and chemotherapy regimen. (KRT81-low risk with gemcitabine (blue line) or FOLFIRINOX (green line)). Total N=6 to 10
7 STROBE Statement Checklist

Item No	Title and abstract	Recommendation	Remark/Location
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract	Reported in abstract	
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Reported in abstract	
2	Explain the scientific background and rationale for the investigation being reported	Introduction	
3	State specific objectives, including any prespecified hypotheses	Introduction	
4	Present key elements of study design early in the paper	Methods/Study Design	
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Ibid.	
6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	Ibid.	
	(b) For matched studies, give matching criteria and number of exposed and unexposed	Ibid.	
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Ibid. and Methods/Clinical variables. Compare also Results	
8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Methods/Study Design	
9	Describe any efforts to address potential sources of bias	Results	
10	Explain how the study size was arrived at	Methods/Study Design	
11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Results, Table 1	
12	(a) Describe all statistical methods, including those used to control for confounding	Methods	
	(b) Describe any methods used to examine subgroups and interactions	Ibid.	
	(c) Explain how missing data were addressed	Supplementary Material/Results	
	(d) If applicable, explain how loss to follow-up was addressed	N.A.	
	(e) Describe any sensitivity analyses	Supplementary Material	

Results
Section	Page No.	Notes
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		(c) Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Report numbers of outcome events or summary measures over time
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses
Discussion		Summarise key results with reference to study objectives
	18	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias
	19	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence
	20	Discuss the generalisability (external validity) of the study results
Other information		Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based
The flowchart of patient recruitment is shown below:

Examined for eligibility
N=102

Excluded
N=47

Confirmed eligible
N=55

Included in the study
N=55

Completed follow-up
N=55

Analysed
N=55

Reasons for exclusion:

No PDAC in final histopathological report (8 patients), insufficient or incomplete imaging (14 patients), death within 2 months of imaging (4 patients), received prior treatment (8 patients), histopathologically unclassifiable tumor subtype (13 patients)
8 Supplementary Bibliography

(1) Vallieres, C. R. Freeman, S. R. Skamene, and I. El Naqa. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in medicine and biology, 60(14):5471–96, Jul 2015

(2) van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104–e107

Compare also: https://pyradiomics.readthedocs.io/

(3) PyRadiomics feature definitions:

https://pyradiomics.readthedocs.io/en/latest/features.html

Compare also: (4) below

(4) Zwanenburg, A., Leger, S., Vallières, M., and Löck, S. (2016). Image biomarker standardisation initiative: https://arxiv.org/abs/1612.07003v7

Multiple versions of the manual are available, version 7 is linked and was current at the time of the analysis

(5) McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30-46.

(6) Dancey C.P., Reidy J. Statistics for Psychology, Pearson Education; 2007