Stochastic B-series and order conditions for exponential integrators

Alemayehu Adugna Arara1, Kristian Debrabant2, and Anne Kværnø3

1 Hawassa University, School of Mathematics and Statistics, P.O. Box 05, Hawassa, Ethiopia, alemayehu_arara@yahoo.com
2 University of Southern Denmark, Department of Mathematics and Computer Science, 5230 Odense M, Denmark, debrabant@imada.sdu.dk
3 Norwegian University of Science and Technology - NTNU, Department of Mathematical Sciences, NO-7491 Trondheim, Norway, anne.kvarno@ntnu.no

Abstract. We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulting general order theory covers both Itô and Stratonovich integration.

1 Introduction

The idea of expressing the exact and numerical solutions of different blends of differential equations in terms of B-series and rooted trees has been an indispensable tool ever since John Butcher introduced the idea in 1963 [4]. Naturally then, such series have also been derived for stochastic differential equations (SDEs) by several authors, see e.g. [6] for an overview.

In this paper, the focus is on d-dimensional SDEs of the form

$$dX(t) = \left(AX(t) + g_0(X(t))\right)dt + \sum_{m=1}^{M} g_m(X(t)) \ast dW_m(t), \quad X(0) = x_0, \quad (1)$$

or in integral form

$$X(t) = e^{tA}x_0 + \int_0^t e^{(t-s)A}g_0(X(s))ds + \sum_{m=1}^{M} \int_0^t e^{(t-s)A}g_m(X(s)) \ast dW_m(s), \quad (2)$$

in which case the linear term $AX(t)$, $A \in \mathbb{R}^{d \times d}$ constant will be treated with particular care by the use of exponential integrators, see e.g. [15] and references therein. The integrals w.r.t. the components of the M-dimensional Wiener process $W(t)$ can be interpreted e.g. as an Itô or a Stratonovich integral. The coefficients $g_m : \mathbb{R}^d \to \mathbb{R}^d$ are sufficiently differentiable and satisfy a Lipschitz and a linear growth condition. For Stratonovich SDEs, we require in addition that g_m are differentiable and that also the $g_m'g_m$ satisfy a Lipschitz and a linear growth condition. In the following, we will denote $dt = dW_0(t)$.
For the numerical solution of we consider a general class of ν-stage stochastic exponential integrators:

\[
H_i = e^{c_i h A} Y_n + \sum_{m=0}^{M} \sum_{j=1}^{\nu} Z_{ij}^{(m)}(A) \cdot g_m(H_j), \quad i = 1, \ldots, \nu, \tag{3a}
\]

\[
Y_{n+1} = e^{h A} Y_n + \sum_{m=0}^{M} \sum_{i=1}^{\nu} z_i^{(m)}(A) \cdot g_m(H_i), \tag{3b}
\]

where typically the coefficients $Z_{ij}^{(m)}$ and $z_i^{(m)}$ are random variables depending on the stepsize h, the matrix A and the Wiener processes.

Example 1. A 2-stage stochastic exponential time-differencing Runge–Kutta method (SETDRK) for $M = 1$ is given by:

\[
H_1 = Y_n,
\]

\[
H_2 = Y_n + \sqrt{h} g_1(H_1),
\]

\[
Y_{n+1} = e^{h A} Y_n + \int_{t_n}^{t_{n+1}} e^{(t_{n+1} - s)A} ds \cdot g_0(H_1)
\]

\[
+ \int_{t_n}^{t_{n+1}} e^{(t_{n+1} - s)A} \ast dW_1(s) \cdot g_1(H_1)
\]

\[
+ \frac{1}{\sqrt{h}} \int_{t_n}^{t_{n+1}} e^{(t_{n+1} - s)A} W_1(s) \ast dW_1(s) \cdot (-g_1(H_1) + g_1(H_2)),
\]

where $t_{n+1} = t_n + h$.

In the following, the ideas introduced in [6] will be used to derive a B-series representation of [2] and corresponding order conditions for the method [3]. In the deterministic case, such analysis has been carried out in [28].

2 B-series and order conditions for exponential integrators

To develop B-series for the exact solution of and one step numerical exponential integrators of the form [3], we use the following definitions of the trees associated to the stochastic differential equation [11] and their corresponding elementary differentials.

Definition 2 (trees). The set of $M + 2$-colored, rooted trees

\[
T = \{\emptyset\} \cup T_0 \cup T_1 \cup \cdots \cup T_M \cup T_A
\]

is recursively defined as follows:
Stochastic B-series and order conditions for exponential integrators

1. The graph \(\bullet_m = [\emptyset]_m \) with only one vertex of color \(m \) belongs to \(T_m \), and \(\bullet_A = [\emptyset]_A \) with only one vertex of color \(A \) belongs to \(T_A \).

2. Let \(\tau = [\tau_1, \tau_2, \ldots, \tau_\kappa]_m \) be the tree formed by joining the subtrees \(\tau_1, \tau_2, \ldots, \tau_\kappa \) each by a single branch to a common root of color \(m \) and \(\tau = [\tau_1]_A \) be the tree formed by joining the subtree \(\tau_1 \) to a root of color \(A \). If \(\tau_1, \tau_2, \ldots, \tau_\kappa \in T \), then \(\tau = [\tau_1, \tau_2, \ldots, \tau_\kappa]_m \in T_m \) and \([\tau_1]_A \in T_A \), for \(m = 0, \ldots, M \).

Definition 3 (elementary differential). For a tree \(\tau \in T \) the elementary differential is a mapping \(F(\tau) : \mathbb{R}^d \to \mathbb{R}^d \) defined recursively by

1. \(F(\emptyset)(x_0) = x_0 \),
2. \(F(\bullet_m)(x_0) = g_m(x_0), \quad F(\bullet_A)(x_0) = Ax_0 \),
3. If \(\tau_1, \tau_2, \ldots, \tau_\kappa \in T \), then \(F([\tau_1]_A)(x_0) = AF(\tau_1)(x_0) \) and

\[
F([\tau_1, \tau_2, \ldots, \tau_\kappa]_m)(x_0) = g_m(x_0)(F(\tau_1)(x_0), \ldots, F(\tau_\kappa)(x_0))
\]

for \(m = 0, \ldots, M \).

Now we give the definition of B-series.

Definition 4 (B-series). A (stochastic) B-series is a formal series of the form

\[
B(\phi, x_0; h) = \sum_{\tau \in T} \alpha(\tau) \cdot \phi(\tau)(h) \cdot F(\tau)(x_0),
\]

where \(\phi(\tau)(h) \) is a random variable satisfying \(\phi(\emptyset) \equiv 1 \) and \(\phi(\tau)(0) = 0 \) for all \(\tau \in T \setminus \{\emptyset\} \), and \(\alpha : T \to \mathbb{Q} \) is given by

\[
\alpha(\emptyset) = 1, \quad \alpha(\bullet_m) = 1, \quad \alpha(\bullet_A) = 1,
\]

\[
\alpha([\tau_1, \ldots, \tau_\kappa]_m) = \frac{1}{r_1!r_2! \cdots r_\kappa!} \prod_{k=1}^{\kappa} \alpha(\tau_k), \quad \alpha([\tau_1]_A) = \alpha(\tau_1),
\]

where \(r_1, r_2, \ldots, r_\kappa \) count equal trees among \(\tau_1, \tau_2, \ldots, \tau_\kappa \), and \(m = 0, \ldots, M \).

Next we give an important lemma to derive B-series for the exact and numerical solutions. It states that if \(Y(h) \) can be expressed as a B-series, then \(f(Y(h)) \) can also be expressed as a B-series where the sum is taken over trees with a root of color \(f \) and subtrees in \(T \).

Lemma 5. If \(Y(h) = B(\phi, x_0; h) \) is some B-series and \(f \in C^\infty(\mathbb{R}^d, \mathbb{R}^d) \), then \(f(Y(h)) \) can be written as a formal series of the form

\[
f(Y(h)) = \sum_{u \in U_f} \beta(u) \cdot \psi_\phi(u)(h) \cdot G(u)(x_0)
\]

(4)

where \(U_f \) is a set of trees derived from \(T \), by
Assume the exact solution h_A.

Inserting the series representation e^{h_A}

conclusion (6) implies the following theorem:

(i) $[0]_f \in U$, and if $\tau_1, \tau_2, \ldots, \tau_n \in T$, then $u = [\tau_1, \tau_2, \ldots, \tau_n]_f \in U_f$.

(ii) $G([0]_f)(x_0) = f(x_0)$ and

$$G([\tau_1, \tau_2, \ldots, \tau_n]_f)(x_0) = f(x_0)(F(\tau_1)(x_0), \ldots, F(\tau_n)(x_0)).$$

(iii) $\beta([0]_f) = 1$ and $\beta([\tau_1, \ldots, \tau_n]_f) = \frac{1}{\tau_1^{r_1} \cdot \tau_2^{r_2} \cdot \cdots \cdot \tau_n^{r_n}} \prod_{k=1}^{\infty} \alpha(\tau_k)$, with r_1, r_2, \ldots, r_n counting equal trees among $\tau_1, \tau_2, \ldots, \tau_n$.

(iv) $\psi(\{0\}_f) = 1$ and $\psi(\{\tau_1, \tau_2, \ldots, \tau_n\}_f)(h) = \prod_{k=1}^{\infty} \phi(\tau_k)(h)$.

Proof. The proof of this lemma is given in [6]. □

Applying Lemma 5 to the functions g_m on the right hand side of (1) gives

$$g_m(B(\phi, x_0; h)) = \sum_{\tau \in T_m} \alpha(\tau) \cdot \phi'(\tau)(h) \cdot F(\tau)(x_0),$$

(5)

where

$$\phi'(\tau)(h) = \left\{ \begin{array}{ll}
1 & \text{if } \tau = \bullet_m, \\
\prod_{k=1}^{\infty} \phi(\tau_k)(h) & \text{if } \tau = [\tau_1, \ldots, \tau_n]_m \in T_m.
\end{array} \right.$$

Assume the exact solution $X(h)$ of (1) at $t = h$ can be written as a B-series $B(\phi, x_0; h)$. Substituting $X(h) = B(\phi, x_0; h)$ in (2) and using (5) gives

$$B(\phi, x_0; h) = e^{hA}x_0 + \sum_{m=0}^{M} \int_{0}^{h} e^{(h-s)A} \sum_{\hat{\tau} \in T_m} \alpha(\hat{\tau}) \cdot \phi'(\hat{\tau})(s) \cdot F(\hat{\tau})(x_0) \cdot dW_m(s).$$

Inserting the series representation $e^{hA}x_0 = \sum_{q=0}^{\infty} \frac{h^q A^q}{q!} x_0$ yields

$$B(\phi, x_0; h) = x_0 + \sum_{q=1}^{\infty} \frac{h^q A^q}{q!} x_0 + \sum_{m=0}^{M} \sum_{\hat{\tau} \in T_m} \alpha(\hat{\tau}) \sum_{q=0}^{q-\text{times}} \left(\int_{0}^{h} \frac{(h-s)^q}{q!} \phi'(\hat{\tau})(s) \cdot dW_m(s) \cdot A^q F(\hat{\tau})(x_0) \right).$$

(6)

Note that any tree $\tau \in T$ can be rewritten as $\tau = [\ldots [\hat{\tau}]_A \ldots]_A = [\hat{\tau}]_A^m$ for $q = 0, 1, \ldots, \hat{\tau} \in T \setminus T_{\infty}$, that means $\hat{\tau} = \emptyset$ or $\hat{\tau} = [\tau_1, \ldots, \tau_n]_m$ for an $m \in \{1, \ldots, M\}$. It holds that $F([\hat{\tau}]_A^m) = A^q F(\hat{\tau})$, $\alpha([\hat{\tau}]_A^m) = \alpha(\hat{\tau})$. Especially, for $\tau = [0]_A^m$ it holds that $\alpha(\tau) = 1$ and $F(\tau)(x_0) = A^q F(\emptyset) = A^q x_0$. In conclusion (6) implies the following theorem:
Theorem 6. The solution \(X(h) \) of the SDE (11) can be written as a B-series \(B(\varphi, x_0; h) \) with

\[
\varphi(0)(h) = 1, \quad \varphi([0]_A^q)(h) = \frac{h^q}{q!},
\]

\[
\varphi([\tau_1, \ldots, \tau_n]_A^q)(h) = \int_0^h (h - s)^q \prod_{k=1}^n \varphi(\tau_k)(s) \, dW_m(s),
\]

for \(\tau_1, \ldots, \tau_n \in T, \kappa = 0, 1, \ldots, q = 0, 1, \ldots \) and \(m = 0, \ldots, M \), where \(\tau_i \neq \emptyset \) for \(i = 1, \ldots, \kappa \) if \(\kappa > 1 \).

Example 7. Let \(\tau = \emptyset \), where the colors red, black and white correspond to have more than one branch. Then \(\alpha(\tau) = 1, F(\varphi)(x_0) = g_0''(g_1'(Ax_0, g_0))(x_0) \) and \(\varphi(\tau)(h) = \int_0^h \left(W_1(s) \int_0^s s^2 \, dW_1(s_1) \right) \, ds \). Note also that e.g. the tree \(\tau = \emptyset \notin T \) since it is impossible for node \(\bullet \) to have more than one branch.

Now we derive the B-series representation for one step of the exponential stochastic integrator (3). Assume both the stage values \(H_i \) and the approximation \(Y_{n+1} \) to the exact solution can be written as B-series:

\[
H_i = B(\Phi_i, Y_n; h), \quad i = 1, \ldots, \nu \quad \text{and} \quad Y_{n+1} = B(\Phi, Y_n; h). \quad (7)
\]

In addition we assume that the coefficients \(Z_{i,j}^{(m)}(A) \) and \(z_i^{(m)}(A) \) can be expressed as power series of the form

\[
Z_{i,j}^{(m)}(A) = \sum_{q=0}^{\infty} Z_{i,j}^{(m,q)} A^q \quad \text{and} \quad z_i^{(m)}(A) = \sum_{q=0}^{\infty} z_i^{(m,q)} A^q,
\]

for \(i, j = 1, \ldots, \nu \), and \(m = 0, \ldots, M \). Substituting these formulas into (3) and using (4) we get

\[
H_i = \sum_{q=0}^{\infty} \frac{(c_i h)^q}{q!} A^q Y_n + \sum_{m=0}^{M} \sum_{j=1}^{\nu} Z_{i,j}^{(m)}(A) \sum_{\tau \in T_m} \alpha(\tau) \cdot \Phi_j'(\tau)(h) \cdot F(\tau)(Y_n)
\]

\[
= \sum_{q=0}^{\infty} \frac{(c_i h)^q}{q!} A^q Y_n + \sum_{m=0}^{M} \sum_{j=1}^{\nu} \sum_{\tau \in T_m} \alpha(\tau) \sum_{q=0}^{\infty} Z_{i,j}^{(m,q)} \Phi_j'(\tau)(h) \cdot A^q F(\tau)(Y_n),
\]

and similarly

\[
Y_{n+1} = \sum_{q=0}^{\infty} \frac{h^q}{q!} A^q Y_n + \sum_{m=0}^{M} \sum_{j=1}^{\nu} \sum_{\tau \in T_m} \alpha(\tau) \sum_{q=0}^{\infty} z_i^{(m,q)} \Phi_j'(\tau)(h) \cdot A^q F(\tau)(Y_n).
\]

Now using (4) and the linear independence of the elementary differentials yields the following theorem.
Theorem 8. The stage values H_i and the numerical solution Y_{n+1} of (3) can be written as B-series $H_i = B(\Phi_i, Y_n; h)$, $i = 1, \ldots, \nu$, and $Y_{n+1} = B(\Phi, Y_n; h)$ with the following recurrence relations for the functions $\Phi_i(\tau)(h)$ and $\Phi(\tau)(h)$,

$$
\Phi_i(\emptyset) = \Phi(\emptyset) \equiv 1, \quad \Phi_i([\emptyset]_A^q)(h) = \frac{(c_i h)^q}{q!}, \quad \Phi([\emptyset]_A^q)(h) = \frac{h^q}{q!},
$$

$$
\Phi_i([\tau_1, \ldots, \tau_\kappa]m)_A^q(h) = \sum_{j=1}^{\nu} Z_{ij}^{(m,q)} \prod_{k=1}^{\kappa} \Phi_j(\tau_k)(h),
$$

$$
\Phi([\tau_1, \ldots, \tau_\kappa]m)_A^q(h) = \sum_{i=1}^{\nu} z_i^{(m,q)} \prod_{k=1}^{\kappa} \Phi_i(\tau_k)(h),
$$

for $\tau_1, \ldots, \tau_\kappa \in T$, $\kappa = 0, 1, \ldots, q = 0, 1, \ldots$ and $m = 0, \ldots, M$, where $\tau_i \neq \emptyset$ for $i = 1, \ldots, \kappa$ if $\kappa > 1$.

To discuss the order of the method, we need the following definition.

Definition 9 (order). The order $\rho(\tau)$ of a tree $\tau \in T$ is defined by

$$
\rho(\emptyset) = 0, \quad \rho([\tau_1]_A) = \rho(\tau_1) + 1
$$

and

$$
\rho([\tau_1, \ldots, \tau_\kappa]_m) = \sum_{k=1}^{\kappa} \rho(\tau_k) + \begin{cases}
1 & \text{if } m = 0, \\
\frac{1}{2} & \text{otherwise},
\end{cases}
$$

for $m = 0, 1, \ldots, M$.

With Theorems 6 and 8 in place, we can now analyze the order of a given method:

Theorem 10. The method has mean square global order p if

$$
\Phi(\tau)(h) = \varphi(\tau)(h) + O(h^{p+\frac{1}{2}}) \text{ for all } \tau \in T \text{ with } \rho(\tau) \leq p,
$$

$$
E\Phi(\tau)(h) = E\varphi(\tau)(h) + O(h^{p+1}) \text{ for all } \tau \in T \text{ with } \rho(\tau) \leq p + \frac{1}{2}.
$$

(8a) (8b)

Here, the $O(\cdot)$-notation refers to $h \to 0$ and, especially in (8a), to the L^2-norm. The result (8) was first proved in [3].

We conclude this article with an example.

Example 11. We will apply Theorem 10 to the method given in Example 1.

Using the expansion (for the manipulation of stochastic integrals, see e.g.
\[
\int_0^h e^{(h-s)A} \ast dW_1(s) = \int_0^h 1 \ast dW_1(s)A^0 + \int_0^h (h-s) \ast dW_1(s)A^1 \\
+ \int_0^h \frac{(h-s)^2}{2} \ast dW_1(s)A^2 + \ldots \\
= I_{(1)}^* A^0 + I_{(10)}^* A^1 + I_{(100)}^* A^2 + \ldots
\]

where \(I_{(m_1\ldots m_n)}^* = \int_0^h \int_0^{s_1} \cdots \int_0^{s_{n-1}} \ast dW_{m_1}(s_1) \cdots \ast dW_{m_n}(s_1) \), and the similar expansion \(\int_0^h e^{(h-s)A} W_1(s) \ast dW_1(s) = I_{(11)}^* A^0 + I_{(110)}^* A^1 + \ldots \) we obtain

\[
\varphi_1^{(0)} = \int_0^h e^{(h-s)A} ds = hA^0 + \frac{h^2}{2} A^1 + \frac{h^3}{6} A^2 + \ldots,
\]

\[
\varphi_1^{(1)} = \int_0^h e^{(h-s)A} (1 - \frac{W_1(s)}{\sqrt{h}}) \ast dW_1(s)
\]

\[
= (I_{(1)}^* - \frac{I_{(11)}}{\sqrt{h}}) A^0 + (I_{(10)}^* - \frac{I_{(110)}}{\sqrt{h}}) A^1 + \ldots,
\]

\[
\varphi_2^{(1)} = \int_0^h e^{(h-s)A} W_1(s) \ast dW_1(s) = \frac{I_{(11)}}{\sqrt{h}} A^0 + \frac{I_{(110)}}{\sqrt{h}} A^1 + \ldots
\]

We also have (with colors as in Example 7) \(\varphi_2^{(0)} = 0, \varphi_1(\emptyset) = \varphi_2(\emptyset) = \varphi_1(\emptyset) = \varphi_2(\emptyset) = \varphi_1(\emptyset_2) = \varphi_2(\emptyset_2) = 0 \) and \(\varphi_2(\emptyset) = \sqrt{h} \), resulting in the weight functions given in the following table:

\(\tau \)	\(\rho(\tau) \)	\(\varphi(\tau)(h) \)	\(\Phi(\tau)(h) \)
0.5	\(I_{(1)}^* \)	\(\varphi_1^{(0)} + \varphi_2^{(0)} = h \)	\(I_{(1)}^* \)
1	\(h \)	\(h \)	\(\varphi_1^{(1)} + \varphi_2^{(1)} = h \)
1.5	\(I_{(10)}^* \)	\(\varphi_1^{(0)} \varphi_1(\emptyset) + \varphi_2^{(0)} \varphi_2(\emptyset) = 0 \)	\(I_{(10)}^* \)
\(hI_{(10)}^* - I_{(01)}^* \)	\(\varphi_1^{(1)} \varphi_1(\emptyset) + \varphi_2^{(1)} \varphi_2(\emptyset) = I_{(10)}^* \)	\(I_{(01)}^* \)	
\(I_{(01)}^* \)	\(\varphi_1^{(1)} \varphi_1(\emptyset) + \varphi_2^{(1)} \varphi_2(\emptyset) = 0 \)	\(I_{(01)}^* \)	
\(\sqrt{h} I_{(11)}^* \)	\(\varphi_1^{(1)} \varphi_1(\emptyset_2) + \varphi_2^{(1)} \varphi_2(\emptyset_2) = \sqrt{h} I_{(11)}^* \)	\(I_{(11)}^* \)	

While the weight functions for the exact solution and numerical approximation of the order 1.5 trees do not coincide, their expectation values coincide for Itô integral but not for Stratonovich (when \(\tau = \emptyset_2 \)). Thus, the method given in Example 7 has mean square order 1 for the Itô case but 0.5 in the Stratonovich case.
References

1. S. Becker, A. Jentzen, and P. E. Kloeden, An exponential Wagner–Platen type scheme for SPDEs, SIAM J. Numer. Anal. 54:4 (2016), 2389–2425.

2. H. Berland, B. Owren, and B. Skaflestad, B-series and order conditions for exponential integrators, SIAM J. Numer. Anal. 43:4 (2005), 1715–1727.

3. K. Burrage and P. M. Burrage, Order conditions of stochastic Runge-Kutta methods by B-series, SIAM J. Numer. Anal. 38:5 (2000), 1626–1646.

4. J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. (1963), 185–201.

5. D. Cohen, S. Larsson, and M. Sigg, A trigonometric method for the linear stochastic wave equation, SIAM J. Numer. Anal. 51:1 (2013), 204–222.

6. K. Debrabant and A. Kværnø, B-series analysis of stochastic Runge-Kutta methods that use an iterative scheme to compute their internal stage values, SIAM J. Numer. Anal. 47:1 (2008), 181–203.

7. __________, Stochastic Taylor expansions: Weight functions of B-series expressed as multiple integrals, Stoch. Anal. Appl. 28:2 (2010), 293–302.

8. M. Hochbruck and A. Ostermann, Explicit Exponential Runge–Kutta Methods for Semilinear Parabolic Problems, SIAM J. Numer. Anal. 43:3 (2005), 1069–1090.

9. A. Tambue and J. M. T. Ngnotchouye, Weak convergence for a stochastic exponential integrator and finite element discretization of stochastic partial differential equation with multiplicative & additive noise, Applied Numerical Mathematics 108 (2016), 57–86.