Vestiges of the proto-Caribbean seaway: Origin of the San Souci Volcanic Group, Trinidad

Iain Neill, Andrew C. Kerr, Kevin R. Chamberlain, Axel K. Schmitt, Franco Urbani, Alan R. Hastie, James L. Pindell, Tiffany L. Barry, Ian L. Millar

1. Introduction

Rifting of the supercontinent Pangaea and the opening of the Central Atlantic during the Mesozoic represents both a classic example of continental break-up and passive margin development, and an enduring enigma in assessing the role of mantle plumes in such a process (e.g., Callegaro et al., 2013; Hill, 1993; McHone, 2000). One branch of the Pangaea break-up story that has hitherto received little attention is the rifting of North and South America from the latest Triassic onwards (e.g., Bartok, 1993; Ostos et al., 2005). This rifting generated both the Gulf of Mexico and the proto-Caribbean seaway (Pindell and Dewey, 1982), and lasted until the onset of N–S convergence between the Americas in the Late Cretaceous (Müller et al., 1999). The Pacific-derived Caribbean Plate has over-ridden much of the proto-Caribbean since the Cretaceous. Only fragments of proto-Caribbean crust which have been either accreted to the Caribbean Plate or thrust onto South America remain, from which the tectono-magmatic evolution of the proto-Caribbean oceanic crust have to be pieced together. Many of these ‘fragments’ in South America have hitherto received little attention.

During the Late Jurassic–Early Cretaceous, the proto-Caribbean seaway was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et al., 2013) the Farallon Plate was fringed on its western margin by east-dipping subduction of the Farallon Plate, generating the ‘inter-American Arc’ (e.g., Pindell and Dewey, 1982). During the Early–Late Cretaceous (see Hastie and Kerr, 2010; Pindell et al., 2011; Hastie et al., 2013; Escuder Viruete et a...
et al., 2014, for recent debate), east-dipping subduction beneath the inter-American Arc ceased and was superseded by SW-dipping subduction of proto-Caribbean oceanic crust. Proto-Caribbean subduction gave rise to the ‘Great Arc of the Caribbean’ (sensu Burke, 1988), a composite of several island arc systems of debated origin and complexity (Neill et al., 2011; Wright and Wyld, 2011). This arc system includes much of the present-day Greater Antilles, Aves Ridge, and Netherlands–Venezuelan Antilles as well as Tobago and allochthonous terranes in Venezuela, and marked the leading edge of the Pacific-derived Caribbean Plate from the Cretaceous to the Palaeocene. These subduction systems shut down following roll-back of the proto-Caribbean slab and were superseded by growth of the Palaeocene–Eocene gneiss of the Palaeo-Caribbean crust. Proto-Caribbean subduction gave rise to the “Great Arc” system. Therefore, models of how and when North and South America broke apart remain to be tested properly, and the role of igneous processes in continental break-up in the future remains to be tested.

Fortunately, a few fragments of Mesozoic proto-Caribbean crust and lithospheric mantle escaped subduction, having been either accreted to the present-day Greater or Lesser Antilles (e.g., Jolly et al., 2008; Marchesi et al., 2011; Neill et al., 2010) or been thrust onto northern South America (Kerr et al., 2009; Ostos and Sisson, 2005; Wadge and Macdonald, 1985) (Fig. 1). Nevertheless, a further problem remains in studying such proto-Caribbean outcrops in that many of these contain altered mafic rocks which are inherently difficult to interpret geochemically and to date accurately due to mobilisation of major and trace elements. In this paper, we present new ion microprobe U–Pb zircon geochronology along with immobile element and Nd–Hf radiogenic isotope data from the San Souci Volcanic Formation of northeast Trinidad (Fig. 2), the easternmost exposure of igneous rocks on the Caribbean coast of South America. We use the new data to reassess the timing and source of magmatism at San Souci and its relationship to both the break-up of the Americas and later Caribbean tectonics. Furthermore, this work demonstrates the potential for accurate dating of altered fine-grained Panamericana mafic rocks.

2. Geological setting and studied samples

2.1. The Caribbean–South American Plate boundary

Northern South America is a tectonically complex transpressive plate boundary between the Caribbean and South American Plates. South America is currently moving to the west at ~20 mm a⁻¹ relative to the Caribbean Plate, with much of the motion taken up on the El Pilar–San Sebastian fault system running through Trinidad and Venezuela (Weber et al., 2001) and the offshore North Coast Fault Zone to the north of Trinidad (Figs. 1.2). In pre-Cenozoic times, northern South America was a passive margin of the proto-Caribbean seaway between North and South America, with the future

![Image](image_url)
Fig. 2. (a) Geological map of the Trinidad and Tobago region showing major geological units and strike–slip fault systems. Simplified from Robertson and Burke (1989), Algar (1998) and Snoke et al. (2001b), with topography from www.geomapapp.org (Haxby et al., 2010; Ryan et al., 2009). (b) Cross-section modified from Robertson and Burke (1989) through the North Coast Fault Zone and northern Trinidad, showing equivalent position of San Souci which lies to the east of the section. (c) Sample location map for San Souci and the Toco Formation after Wadge and Macdonald (1985).
Caribbean region lying in the Pacific to the west of South America as part of the Farallon Plate (Maresch, 1974). After inception of southwest-dipping subduction beneath the Great Arc, the Caribbean Plate advanced north-eastwards relative to the Americas, consuming proto-Caribbean oceanic crust. Tectono-stratigraphic data reveal that the leading edge of the Caribbean Plate began to interact with northwest South America by ~75 Ma (Vallejo et al., 2006; Weber et al., 2010). The Caribbean Plate then collided with the South American passive margin diachronously from west to east during the Cenozoic, generating mountainous terrain such as the Cordillera de la Costa in Venezuela and the Northern Range of Trinidad (Escalona and Mann, 2010; Pindell and Barrett, 1990) (Fig. 1).

2.2. The Caribbean–South American Plate boundary zone in Venezuela

The present diffuse plate boundary in central Venezuela is divided from north to south into five crustal units (Fig. 1a,b): (1) the most northerly unit is the Southern Caribbean Deformed Belt, a sub-sea wedge of S-dipping sedimentary rocks (Bezada et al., 2010). (2) Next are the Netherlands-Venezuelan Antilles, fragments of Caribbean Oceanic Plateau and island arc rocks (see Kerr et al., 1996; Loewen et al., 2013; Netherlands-Venezuelan Antilles, fragments of Caribbean Oceanic Plateau) and the Southern Caribbean Deformed Belt, a sub-sea wedge of Paleozoic continental material; (e) the Loma de Hierro Belt, which is likely to be an ophiolite of proto-Caribbean origin affected by low grade metamorphism (see discussion in Section 6.1); and (f) the Villa de Cura Belt, a klippe which has overridden the passive margin units of northern South America (Maresch, 1974). The latter is divided into two terranes, the Villa de Cura sensu stricto with HPLT assemblages belonging to an island arc-related subduction complex, and the unsubducted San Sebastian Terrane which reaches prehnite–pumpellyite facies only. The rocks of the Villa de Cura Belt are probably fragments of the inter-American or ‘Great Arc’ and may correlate with rocks found on Margarita and Tobago Islands to the east (Maresch et al., 2009;Neill et al., 2012; Snoke et al., 2001a). (5) Finally, the fold-and-thrust belt of the Serranía del Interior containing para-autochthonous sedimentary rocks is the Caribbean–South American Plate interaction (Hung, 2005).

In northeastern Venezuela, the belts described from the Cordillera de la Costa largely disappear beneath the Gulf of Paria (Fig. 1a) and are replaced in the Arauy–Paria region primarily by Mesozoic meta-sedimentary rocks from the proto-Caribbean passive margin (Hackley et al., 2005). There are also 2 km-scale exposures of Palaeozoic gneisses (Hackley et al., 2005), suggesting that much of the Araya–Paria region may be broadly equivalent to the Ávila or Caucagua belts. On the very northern coast of the Araya Peninsula, there are meta-tuffs, pillow basalts and serpentinites known as the El Copey Meta-volcanic Formation (McMahon, 2000; Seijas, 1971) (Fig. 1a). These are discussed in Section 6.1 and are considered to be of proto-Caribbean origin.

2.3. The Caribbean–South American Plate boundary zone in Trinidad

Trinidad, unlike Venezuela, comprises relatively few igneous and meta-igneous rocks. Much of the island developed para-autochthonously on the Mesozoic to Early Cenozoic passive margin of the proto-Caribbean Seaway (Algar, 1998). Exceptions are altered tholeiitic tuff horizons in the Barremian (~130–125 Ma) Maracas Formation of the Northern Range (Jackson et al., 1991) and the San Souci Volcanic Formation (Wadge and Macdonald, 1985). Trinidad has mountainous terrain to the north of the island (the Northern Range, reaching up to 1 km above sea level) and basins (e.g., the Caroni Basin) and low hills of a few hundred metres elevation (the Central and Southern Ranges) to the south. The island is cut by successive right-lateral strike–slip fault systems (Fig. 2a, Algar, 1998). The El Pilar Fault (Fig. 2a,b) cuts the southern edge of the Northern Range and roughly marks the boundary between non-metamorphic facies and the metamorphic rocks of the Northern Range. The Northern Range consists mostly of Jurassic to Upper Cretaceous proto-Caribbean passive margin protoliths (Algar, 1998). The Range underwent Oligocene–Miocene greenschist–facies metamorphism and penetrative deformation co-incident with collision between the Caribbean Plate and the passive margin (Algar and Pindell, 1991, 1993; Speed and Poland, 1991).

2.4. The San Souci Group1: San Souci Volcanic Formation and Toco Formation

The San Souci Group (Algar and Pindell, 1991) lies in an isolated location on the northern coast of Trinidad, between the villages of Toco and Grand Riviere (Fig. 2a,c) and is not geologically part of the Northern Range. The Group consists of both sedimentary and igneous rocks. The Caribbean ‘Great Arc’ rocks of Tobago Island (Snoke et al., 2001a) are 35 km to the north, whilst the Toco–Grand Riviere fault system separates the San Souci Group from the Northern Range meta-sediments (Algar and Pindell, 1993) to the south. The Toco–Grand Riviere fault system is a splay from the offshore North Coast Fault Zone, marking the effective Caribbean–South American Plate boundary (Robertson and Burke, 1989) (Fig. 2b). The San Souci Group consists of the San Souci Volcanic Formation (SSVF), dominated by mafic sub-aerial volcanic and hypabyssal rocks (described in more detail in Section 2.5), and the Toco Formation which contains fine black shales and interdigitated coarse quartz-feldspathic sandstone channels along with calcareous shales, grits and thin limestone bands (Barr, 1962; Wadge and Macdonald, 1985). Exposure is severely limited by tropical weathering and jungle vegetation.

The San Souci Group only reaches prehnite–pumpellyite facies and does not show penetrative deformation. The oldest zircon fission track ages from the Toco Formation range from the Permian to Early Jurassic, coinciding with ages of granitoids in western Venezuela and Colombia (Algar et al., 1998). The Toco Formation was thus likely deposed on the proto-Caribbean margin of South America, but was then transported eastward relative to South America after accretion to the leading edge of the Caribbean Plate. During fieldwork, the contact between the SSVF and the Toco Formation was not exposed.

Barr (1962, 1963) identified solitary and colonial coral, bivalve, echinoderm, ammonoid and foraminiferal assemblages within calcareous shale and limestone units of the Toco Formation, including the ammonite Pulchella, which is of Barremian age (130–125 Ma). However, the youngest zircon fission track ages obtained from two sandstone samples cluster at ~108 Ma (Albian) (Algar et al., 1998). The ages were proposed to represent detritus from the ‘Great Arc’ or the then-undated SSVF (Algar and Pindell, 1993; Algar et al., 1998), implying an Albian age for part of the Toco Formation (incompatible with the faunal ages), and/or a similar age for the SSVF. On the basis of our geochronological and isotope geochemistry results we can rule out both these possibilities and instead propose that the ~108 Ma ages represent uplift following a prehnite–pumpellyite facies metamorphic event which partially annealed Toco Formation zircons. Wadge and Macdonald (1985) obtained a K–Ar age of 87 ± 4.4 Ma from a basalt of the SSVF at San Souci Point (Fig. 1b) but this age is questionable given extensive hydrothermal alteration of the SSVF.

Limited geochemical data (Wadge and Macdonald, 1985) have precluded detailed petrogenetic assessment of the SSVF. Previous

1 Both ‘San Souci’ (Fr. ‘carefree’) and ‘San Souci’ are used in the literature. We use the latter in direct reference to the village of the same spelling within the field area.
interpretations of the origin of the SSVF range from proto-Caribbean MORB (Algar and Pinell, 1993) or a seamount (Algar, 1993) to an outlier of the Caribbean Oceanic Plateau (Kerr et al., 2003; Wadge and Macdonald, 1985).

2.5. Petrography of studied samples

The SSVF is dominated by massive sub-aerial mafic volcanic rocks, thought to have been auto-brecciated by repeated magmatism (Wadge and Macdonald, 1985) and perhaps also affected by interaction with sea-water, although the lack of altered glass indicates these are not hyaloclastites. Also present are hypabyssal dolerites which appear to intrude the volcanic pile. A 100 m-wide dyke-like dolerite body is said to lie in a fault-bounded unit 6 km to the south-east of San Souci, and a gabbro-dolerite intrusion was noted from the middle of the formation by Wadge and Macdonald (1985), but neither were exposed during fieldwork for this study due to dense vegetation. The freshest available samples of the least brecciated and altered extrusive and intrusive rocks were collected from track cuttings near Grand Riviere and from cuttings and shoreline at San Souci Point (Fig. 2c). The coarser rocks of the SSSF are aphric dolerites, of 1–2 mm grain size, with a primary mineralogy of interlocking elongate plagioclase and clinopyroxene. The finer-grained mafic auto-breccias contain elongate, randomly-aligned plagioclase and stubby clinopyroxene. All rocks have undergone alteration: plagioclase is partially replaced by clays and sericite, and veins and small alteration patches contain assemblages dominated by chlorite, with prehnite, pumppellyte, clays, calcite, epidote, and Fe–Ti oxides.

During this study an outcrop of uncertain stratigraphic position was discovered in a recent quarry towards the eastern end of the SSSF (Sample location 7 on Fig. 2c). This outcrop consists of felsic plagioclase-phyric auto-breccias with elongate to needle-like groundmass plagioclase, quartz, squat clinopyroxene often altered to chlorite, and Fe–Ti oxides. These felsic samples also contain some quartz-calctze veinsing. A single sample from the Toco Formation was also collected, an impure sandstone containing very fine angular quartz (~65%, approximately 0.25 mm grain size), heavily altered calcified feldspar grains and some platy muscovite (~<5%).

3. In-situ geochronology of the SSSF

3.1. Methodology and textural information

Glass or mineral separates from fine-medium grained mafic igneous rocks are normally dated by Ar–Ar methods. An earlier attempt to date plagioclase crystals was unsuccessful owing to the degree of alteration. Analysis was instead undertaken on zircons and baddeleyites found in the SSSF following protocols outlined for the analysis of small (<50 μm) grains using the secondary ion microprobe (SIMS) on thick-sectioned samples (Chamberlain et al., 2010; Schmitt et al., 2010). Baddeleyite (ZrO₂) is an accessory mineral in ma

thick-sectioned samples (Chamberlain et al., 2010; Schmitt et al., 2010). Analysis was instead undertaken on zircons and baddeleyites found in plagioclase crystals was unsuccessful owing to the degree of alteration. Analysis was then used for identification. The section contained isolated grains of baddeleyite with minimal rims of zircon, at least as many mixed grains with a core of baddeleyite and a mantle of zircon, plus numerous zircons, either misshapen or euhedral, which lack baddeleyite entirely. Examples of these textures are found in Supplementary Item A. Textural analysis allows identification of grains which are unsuitable for analysis. U–Pb ages are calculated assuming the crystal is solely one phase or the other, so mixed grains are rejected. Finally, the distinct populations of zircon are interpreted differently: misshapen zircons are probably late overgrowths entirely replacing baddeleyite, whereas euhedral zircons are considered to be magmatic.

Baddeleyites and zircons selected for dating were analysed on the Cameca IMS 1270 SIMS instrument at the University of California, Los Angeles in two runs during 2011 and 2012. An aperture in the transfer section of the secondary beam column was used to reduce the effective sampling diameter from ~20 μm to ~8 μm. In line with previous protocol, the sample chamber was flooded with oxygen (~3 × 10⁻⁵ Torr for zircon, ~1 × 10⁻⁵ Torr for baddeleyite) to enhance recovery of secondary ions of Pb approximately 10-fold (e.g., Schuhmacher et al., 1993; Wingate and Compston, 2000). U/Pb relative sensitivity was calibrated using UO₂/U for baddeleyite using the Phalaborwa standard and using UO/U for zircon using standard ASZ. UO₂/U ranged from 6.2 to 7.0 (2011 run) whilst UO/U ranged from 7.9–8.3 (2011) to 6.52–8.52 (2012). Pb values were corrected for common Pb using 206Pb for both baddeleyite and zircon.

3.2. Zircon U–Pb results

Results are presented in Table 1 and graphically in Supplementary Items B1 and B2. Of the dateable grains, 11 zircons give a 206Pb/238U weighted mean age of 135.0 ± 7.3 Ma. Misshapen zircons taken to be replacing baddeleyite and euhedral zircons have ages within error of one other, indicating that the baddeleyite-zircon transformation likely occurred during crystallisation. A single baddeleyite grain (not included in the weighted mean) gave an age close to being within error of the other ages (Table 1). As baddeleyite cannot be generated by low-grade metamorphic processes, this age strongly supports the magmatic origin of the zircon population.

4. Whole-rock geochemistry

4.1. Analytical methods

Whole rock samples were prepared and analysed for major and trace elements at Cardiff University using methods outlined in McDonald and Viljoen (2006). Samples were powdered by agate ball mill and after determination of loss on ignition (900 °C for 2 h) were fused on a propane burner with LiBO₂ in platinum crucibles, and dissolved in HNO₃. Analytical uncertainty = 45 ppm; BCR2:176Hf/177Hf = 0.282866 ± 8.52 –σ, n = 45, 2σ. Hf was obtained using the LN-SPEC (Wingate and Compston, 2000). U/Pb relative sensitivity was calibrated using UO₂/U for baddeleyite using the Phalaborwa standard and using UO/U for zircon using standard ASZ. UO₂/U ranged from 6.2 to 7.0 (2011 run) whilst UO/U ranged from 7.9–8.3 (2011) to 6.52–8.52 (2012). Pb values were corrected for common Pb using 206Pb for both baddeleyite and zircon.

Whole-rock geochemistry

Whole rock samples were prepared and analysed for major and trace elements at Cardiff University using methods outlined in McDonald and Viljoen (2006). Samples were powdered by agate ball mill and after determination of loss on ignition (900 °C for 2 h) were fused on a propane burner with LiBO₂ in platinum crucibles, and dissolved in HNO₃. Analytical uncertainty = 45 ppm; BCR2:176Hf/177Hf = 0.282866 ± 8.52 –σ, n = 45, 2σ. Hf was obtained using the LN-SPEC column separation method (Münker et al., 2001), and samples were analysed on a Nu-plasma multicollector ICP-MS. Reverse mass–bias correction with empirically determined 176Hf/177Hf and 176Lu/177Lu ratios was employed, although separation techniques ensured samples contained little Yb and no Lu was present. Results for standards (JMC475: 176Hf/177Hf = 0.282161 ± 0.000006 at 1σ, n = 45, 2σ analytical uncertainty = 45 ppm; BC2: 176Hf/177Hf = 0.282866 ± 0.000006 at 1σ, n = 7, 2σ analytical uncertainty = 40 ppm) were comparable to preferred values of 0.282160 for JMC475 (Nowell and
Table 1

SIMS data from in-situ analyses of zircon and baddeleyite in sample INSS6.3, San Souci Volcanic Formation.

Grain	Description	Size (μm)	206Pb/ 238U	±1 s.e.	206Pb/ 238U zircon date (Ma)	U ppm	Th/ U	1 s.e.	* 206Pb/ 238U	±1 s.e.	% 206Pb/*	±1 s.e.	ρho	UO2/UO2	Run
Zircon	bd rep	20 × 8	175	14	97.7	621	2.6098	0.165	43	0.0247	8	0.422	7.8	03/03/2011	
	rep	28 × 10	162	12	98.9	741	2.3079	0.184	24	0.0254	8	0.458	7.9	03/03/2011	
	2z	25 × 5	145	11	100.0	739	2.6076	0.175	30	0.0227	7	0.457	8.1	03/03/2011	
	bd	22 × 10	145	9	98.4	772	2.7469	0.168	39	0.0227	7	0.474	8.6	03/03/2011	
	euhedral	22 × 18	141	8	103.0	469	1.9976	0.334	14	0.0221	5	0.570	8.3	24/01/2012	
1z	euhedral	18 × 13	108	10	99.3	754	0.9078	0.138	15	0.0216	8	0.552	7.9	03/03/2011	
3z	euhedral	30 × 8	137	7	92.0	769	1.2496	0.131	16	0.0215	6	0.430	8.1	24/01/2012	
17z	euhedral	22 × 13	134	9	99.0	1159	3.83572	0.123	37	0.0209	7	0.400	8.0	03/03/2011	
10z	bd	30 × 10	126	9	98.6	641	2.2176	0.166	26	0.0197	7	0.470	7.5	24/01/2012	
4z	bd	18 × 6	125	7	90.6	638	1.5928	0.265	27	0.0196	5	0.550	9.3	24/01/2012	
2z	bd	15 × 5	125	8	100.0	844	2.464	0.224	32	0.0195	6	0.640	8.3	24/01/2012	
Baddeleyite	thin z rim	12 × 8	155	8	93.8	545	0.93492	0.056	81	0.0244	5	0.355	5.3	03/03/2011	

Notes: values in parentheses are absolute errors at one sigma level for ages, percent for ratios. bd = baddeleyite, z = zircon, rep = zircon replacing bd.

Parrish, 2001 and 0.282879 for BCR2 (Blichert-Toft, 2001), so no corrections were made. Light rare earth elements (LREE) were concentrated on Eichrom AG50 cation columns, and analysed using a Thermo Scientific Triton TIMS machine in multi-dynamic mode. The 143Nd/144Nd results for the La Jolla standard were: 0.511846 ± 0.000003 at 1σ (n = 6, 2σ analytical uncertainty = 12 ppm). Here, results are normalised to a preferred value of 143Nd/144Nd = 0.511860. Isotope results are presented in Table 3, along with results for El Copey and Siquisique (Section 6.1) produced for Kerr et al. (2009).

4.3. Felsic rocks

The two felsic samples (SS7.1 and 7.3) plot as a calc-alkaline andesite/dacite and shoshonitic dacite respectively on a Th-Co discrimination diagram (Fig. 3a) or as trachy-andesite/phonolite on a Zr/Th vs. Nb/Y plot (Fig. 3b). They have lower Fe2O3, TiO2, MgO and CaO and higher Al2O3 and Na2O compared to the mafic rocks (Table 2). The trace element contents are also distinct, with very high HFSE concentrations and much lower Ni and Cr compared to the mafic samples (Table 2). These felsic rocks have concave chondrite-normalised REE patterns with high LREE/MREE (middle REE) ratios (Fig. 4c). The samples have no depletion in the HREE and appear to lack Eu anomalies. On a primitive mantle-normalised trace element plot (Fig. 4d), the felsic rocks have large negative Ti anomalies and very large positive Zr–Hf and Nb–Ta anomalies with moderate Nb/Ta (~15) but very high Zr/Hf (55). Th is slightly enriched over the LREE.

The single sandstone from the adjacent Toco Formation has ~81 wt.% SiO2 and low concentrations of Al2O3 and K2O (Table 2) probably derived from muscovite, altered feldspar and clays. For the most part, the sandstone has identical REE and normalised trace element patterns to the felsic volcanic rocks, with the exception of a very large negative Nb–Ta anomaly on the primitive mantle-normalised plot (Fig. 4d). This discrepancy suggests that the volcanic and sedimentary rocks are genetically unrelated.

4.4. Radiogenic isotopes

Isotopic ratios of the mafic rocks of the SSVF vary little, and are more radiogenic than Bulk Earth, with initial values at 135 Ma of εHf ~ 13.9 and εNd ~ 8.9 (Fig. 5, Table 3). The two felsic samples from San Souci, also corrected to initial values at 135 Ma in the absence of better age constraints, are less radiogenic than the mafic rocks, with εHf of ~9.7 and εNd of ~6.1. The Toco Formation sandstone has isotopic signatures typical of mature continental crust (εHf = ~ −23, εNd = ~ −14) so is not plotted on Fig. 5. There is clearly no connection between the SSVF and the Toco Formation, nor does the Toco Formation have isotopic signatures consistent with Caribbean Great Arc input (cf. the ~110–105 Ma Tobago Volcanic Group; Neill et al., 2013).
The most important implication of the new \(^{206}\text{Pb}/^{238}\text{U}\) age is that the SSVF is not an outlying fragment of the ~94–89 Ma Caribbean Oceanic Plateau (Kerr et al., 2003; Wade and Macdonald, 1985) but represents magmatic activity during the Lower Cretaceous at ~135 Ma. Given its structural relationship with the Great Arc and the margin of Trinidad, and close temporal association with the passive margin sediments of the Toco Formation, we conclude that the SSVF was erupted in the proto-Caribbean seaway offshore from northern South America. The bulk of the SSVF does not contain large extractable zircons suitable for fission track analysis, so the ~108 Ma ages obtained by Algar et al. (2003) are not relevant to this study.

5. Discussion

5.1. Implications of the U–Pb results

The lack of negative Nb–Ta, Ti, and Zr–Hf anomalies on the primitive mantle-normalised plots (Fig. 4b, d, f) and no enrichment of Th with respect to the MORB-OIB array on a Th/Yb vs. Ta/Yb diagram (Fig. 6a; Pearce, 1983) clearly indicates that these rocks are not subduction-related nor have they been influenced by typical continental crust. There is no clear temporal or geochemical correlation between the rocks of the SSVF and either the island arc-related suites of Tobago Island (Neill et al., 2013), or the Villa de Cura in Venezuela (Unger et al., 2005). Given that the SSVF presently lies to the south and east of the bulk of the Great Arc, its non-subduction-related geochemical signature further confirms an origin in the proto-Caribbean realm.

5.2. Tectonic setting of the mafic component of the SSVF

Incompatible trace element ratios in mafic rocks can be used to investigate the mantle source of the mafic SSVF as such ratios are largely unaffected by modest degrees of magmatic differentiation. The flat chondrite and primitive mantle-normalised HREE patterns all indicate a shallow, spinel-facies source (average Eu vs. Chondrite -0.75 km). On Fig. 6a, the SSVF samples have Er/Gd ratios not substantially greater than 1, which is indicative of partial melting of mantle sources which are not enriched or MORB-type mantle sources in the Caribbean.
region (e.g., Kerr et al., 2002; Neill et al., 2011). On Fig. 6b most mafic SSVF rocks plot just below the lower tremolite, similar to N-MORB, whilst the remaining samples plot within the tremolite. Variable degrees of partial melting of a homogeneous source generate trends parallel to the tremolite (Fitzton et al., 1997), so the SSVF is likely to be derived from the partial melting of a heterogeneous source with variable depletion or enrichment in incompatible trace elements. The most incompatible element-enriched mafic sample analysed for isotopes (INSS3c) is isotopically similar to the other mafic rocks (Table 3), so there is no clear evidence for mixing between less radiogenic melts and the magmatic rocks. Indeed the lack of any obvious relationship between isotope and trace element signatures in the mafic rocks means that any heterogeneities in the mantle source are likely to have been formed in the recent geological past.

These findings can be used to address the role of sub-continental lithosphere during rifting in the region. Mantle peridotites from the Tinoquillo lherzolite massif in Venezuela (Ostos et al., 2005; Fig. 1) have radiogenic isotope ratios (εHe up to +50) which are decoupled from the terrestrial array to high εNd value (Choi et al., 2007; Fig. 4). This anomaly is taken to reflect an origin in the subduction-modified South American sub-continental lithosphere (Choi et al., 2007). Less extreme decoupling was reported in the Lower Cretaceous Tinaquillo lherzolite massif in Venezuela (Ostos et al., 2005; Fig. 1) to have radiogenic melts and the ma

San Souci felsic rocks	Toco sandstone	El Copey meta-volcanic rocks	Siquisique gabros	Siquisique basalts	
INSS5.1	INSS5.3	AK01	AK02	AK05	
65.21	64.45	81.28	47.59	48.99	47.82
0.56	0.51	0.62	1.64	1.63	1.87
14.73	16.98	8.80	15.77	16.05	15.48
5.61	4.37	2.35	11.53	9.89	11.29
0.08	0.10	bd	0.16	0.21	0.23
2.38	1.95	0.31	7.57	7.42	7.31
2.54	2.54	0.43	7.87	9.27	10.18
6.43	7.57	0.57	1.30	1.55	1.17
0.08	0.12	1.25	0.14	0.38	0.06
0.25	0.29	0.04	0.15	0.14	0.18
2.26	1.66	1.77	4.47	3.48	2.61
100.12	100.44	99.44	98.28	99.01	98.27
8.0	7.2	7.1	43.1	44.5	38.7
63.7	52.7	42.5	301.5	330.1	326.2
45.2	25.7	34.6	310.1	336.4	149.5
134	7.4	5.6	48.6	49.0	31.4
bd	bd	bd	128.0	153.9	105.0
0.9	1.2	55.1	3.8	13.9	0.6
123	271	70	25	29	225
26.5	26.7	99.9	30.6	39.2	42.8
340.4	476.3	659.9	117.8	1106	144.9
52.6	92.2	14.7	6.0	6.2	10.0
23	66	161	73	235	124
6.3	8.5	14.5	2.7	2.6	3.5
3.6	6.2	1.1	0.4	0.4	0.6
6.4	10.6	12.4	0.4	0.5	0.7
38.0	54.5	31.8	5.3	6.3	8.4
69.1	95.9	70.2	145	143	20.1
6.8	9.1	7.7	2.4	2.3	3.1
23.5	29.2	28.7	11.5	11.6	15.6
4.1	4.7	5.3	3.6	3.6	4.5
1.2	1.3	0.8	1.3	1.3	1.6
4.1	4.4	4.5	4.7	5.0	5.7
0.6	0.7	0.7	0.8	0.9	0.9
4.0	4.0	4.5	5.5	6.2	6.7
0.8	0.8	0.9	1.1	1.3	1.4
2.5	2.5	2.8	3.5	3.8	4.1
0.4	0.4	0.5	0.5	0.5	0.6
2.6	2.6	3.3	3.2	3.5	3.8
0.4	0.5	0.6	0.5	0.6	0.6

We have calculated REE, Zr and Nb concentrations in melts using non-modal batch partial melt equations (Shaw, 2005) for depleted-, average and enriched-depleted MORB mantle sources (D-DMM, DMM and E-DMM, respectively) (Workman and Hart, 2005), and a hypothetical oceanic plateau source consisting of primitive mantle from which 1% average continental crust has been extracted (Fitzton and Godard, 2004). Batch and fractional melting models are comparable at low degrees of partial melting (<10%, Shaw, 2005). There is little fractionation of the MREE/HREE in these mafic rocks (Dy/YbPMN = 1.1), ruling out melting of garnet peridotite, so a simple spinel lherzolite starting composition
was used, with proportions of mineral phases from Johnson et al. (1990) and partition coefficients from Pagé et al. (2009). Partial melting curves are plotted on Fig. 7a along with the SSVF mafic rocks. Since olivine is not present in the analysed rocks, and they are clearly not primary melts, we have also attempted to account for fractional crystallisation by subjecting some of the calculated partial melts to ~20% Rayleigh fractionation of an assemblage containing olivine and Cr-spinel in the ratio 9:1. The results have been normalised to Primitive Mantle and are presented on Fig. 7b for comparison with the low and high Zr/Nb samples from San Souci.

No single starting composition adequately models the spread of data from the SSVF—or indeed for data from outcrops at El Copey and Siquisique in Venezuela (Kerr et al., 2009). Partial melt curves (Fig. 7a) show that the composition of the majority of the SSVF rocks can be modelled by 2–7% melting of a range of sources from D-DMM to E-DMM. As indicated by the non-linear spread of samples on Fig. 7b and variable Zr/Nb ratios (7–27), the mantle source of the SSVF was heterogeneous, and this is borne out by partial melt modelling. Fig. 7b shows that the overall shape of the trace element patterns may be reasonably reproduced by partial melting of heterogeneous sources followed by removal of olivine and spinel. Further fractional crystallisation of clinopyroxene and plagioclase may be necessary to raise incompatible element concentrations to those observed in the analysed samples without significantly affecting elemental ratios.

5.4. Causes of melting

The degree of partial melting (~7%) indicated by the models are similar to the lowest reported figures for mid-ocean ridges (Hellebrand et al., 2001) but much lower than typical high-temperature plume-related settings (e.g., Hastie and Kerr, 2010). The fact that melting took place within the spinel stability field indicates that the SSVF was not formed by melting beneath thick oceanic lithosphere as is more typically the case for ocean island basalts. The lack of any geochemical or isotopic signatures typical of the melting of sub-continental lithosphere, or crustal contamination, indicates that by the time the SSVF formed in the Early Cretaceous, rifting was well advanced. Overall, the exact interpretation of how the SSVF formed depends upon whether or not the SSVF was erupted in the same location as the Toco Formation. If so, the SSVF must have formed on a passive margin, perhaps as a seamount (Algar, 1993), although the exact trigger for melting in this scenario is unclear. Alternatively, Pindell and Kennan (2001) argue that during the Late Jurassic–Early Cretaceous, a transform fault system developed between Yucatan (Mexico) and the northern coast of South America coupled to a spreading axis within the proto-Caribbean Seaway to the northeast of the South American margin (Fig. 8). This fault system would extend close enough to South America to receive clastic input from the continent, and could have been the site of extension-related magmatic activity.

5.5. Source of the felsic samples

As there are only two felsic samples, it is difficult to determine their origin and differentiation history. Low concentrations of Ni (~14 ppm), Cr (~35 ppm) and MgO (~2.1 wt.%) cannot be diagnostic of a mantle or crustal source given that the samples are highly evolved. However, their extreme LREE and HFSE enrichment and slightly less radiogenic isotope signatures compared to the mafic rocks indicates these are not simply highly fractionated lavas coeval with the mafic rocks. The felsic samples are enriched in HFSE except Ti, and have concave REE patterns with moderate HREE concentrations and Dy/YbCN < 1 (Fig. 4c–d). These patterns are dissimilar to many common rock types: in particular the REE patterns with no significant HREE depletion and the low Ti concentrations are unlike typical ocean island basalts.

The only samples we have found with similar trace element patterns to the SSVF felsic rocks are the felsic volcanic rocks of the Aiguëa Series and the Valle Chico Igneous Complex, both from the Lower Cretaceous of Uruguay, formed at the southern edge of the Parana-Etendeka continental flood basalt province (Kirstein et al., 2000; Lustrino et al., 2005). These rocks have low Ti concentrations that have been proposed to be the result of extensive fractionation, but very high Zr and Nb which were attributed to complexing of these elements due to a high flux of volatiles from underlying mafic magmas (e.g., Hildreth, 1981; Kirstein et al., 2000). The Aiguëa rocks, which have less radiogenic 143Nd/144Nd compared to the felsic SSVF samples, have been attributed to melting of pre-existing Uruguayan mafic lower crust during rifting and plume magmatism (Kirstein et al., 2000). It is possible that the San Souci felsic rocks were evolved melts of young isotopically distinct lower crust, perhaps proto-Caribbean oceanic material from the earliest phase of spreading, with volatiles derived from ongoing mafic magmatism helping induce complexing of HFSE.

Table 3

Unit and Sample	187Hf/177Hf Measured ± 2σ	εHf	143Nd/144Nd Measured ± 2σ	εNd
San Souci Volcanic Formation				
Mafic	INSS3c 0.283139 0.000005 0.283084 0.283084 +14.0	0.513088 0.000006 0.512932 +9.1		
INSS6.5 0.283156 0.000007 0.283093 0.283093 +14.3	0.513089 0.000005 0.512925 +9.0			
INSS17.2 0.283140 0.000006 0.283070 0.283070 +13.5	0.513060 0.000012 0.512901 +8.5			
Felsic	INSS7.3 0.282956 0.000006 0.282936 0.282936 +8.8	0.512856 0.000002 0.512770 +6.0		
INSS7.1 0.283013 0.000008 0.282989 0.282989 +10.6	0.512878 0.000003 0.512784 +6.2			
Toco Formation	INSS5.1 0.282066 0.000004 0.282052 0.282052 −22.5	0.511782 0.000002 0.511740 −14.1		
El Copey meta-basalts	AK01 0.283138 0.000007 0.283071 0.283071 +13.5	0.513083 0.000026 0.512918 +8.8		
AK02 0.283141 0.000005 0.283065 0.283065 +13.3	0.513061 0.000002 0.512895 +8.4			
Siquisique basalts (b) and gabbro (g)	AK20b 0.283150 0.000006 0.283109 0.283109 +13.9	0.512117 0.000006 0.513004 +9.4		
AK25b 0.283148 0.000012 0.283107 0.283107 +13.8	0.513106 0.000005 0.512996 +9.2			
AK19g 0.283144 0.000007 0.283097 0.283097 +13.5	0.513034 0.000006 0.512998 +9.3			
A major difference between the Uruguayan rocks (Lustrino et al., 2005) and those from the SSVF is the concave REE patterns of the latter. Amphibole (also apatite and zircon) as a residual or fractionating phase may generate concave REE patterns as it is compatible with MREEs and moderately compatible with the HREEs (Davidson et al., 2013). Hydrous magmas that typically fractionate amphibole form in subduction-related environments, unlike the SSVF samples. Amphibole is therefore most likely to have been a residual phase in the source region. Positive Zr–Hf anomalies relative to the MREE may simply be a product of the fact that Zr and Hf are incompatible in amphibole (Klein et al., 1997) and high Zr/Hf ratios may have originated by low degrees of melting with residual pyroxene or other phases capable of fractionating the HFSE (David et al., 2000). Titanium and Nb–Ta usually display coupled behaviour as Nb and Ta are compatible in titanates (Nielsen and Beard, 2000; Tiepolo et al., 2001), but Nb and Ta are incompatible in high-Ti amphibole (e.g., Hilyard et al., 2000). Therefore residual high-Ti amphibole in a rutile-free lower crustal source region would produce the observed Nb–Ta–Ti anomalies of the felsic samples in a melt. Residual amphibole may thus represent an alternative to volatile complexing as a source of the unusual HFSE distributions in the SSVF.

Fig. 3. Classification diagrams for the three locations followed by selected major element plots. (a) Th–Co classification from Hastie et al. (2007) and (b) Pearce, 1996. (c–f) SiO$_2$, TiO$_2$, MgO and CaO versus immobile incompatible element Yb.
6. Regional comparisons

6.1. Other basaltic outcrops in northern South America

Three other outcrops containing mafic volcanic rocks related to the proto-Caribbean realm are found in Venezuela. At El Copey on the Araya Peninsula (Fig. 1), meta-tuffs, pillow basalts and serpentinites are found in apparently conformable contact overlying the calcareous graphitic schists of the Neocomian–Barremian Carúpano Formation and themselves are overlain by the Güinimita Formation, a conglomeratic unit believed to be of Barremian–Aptian age (McMahon, 2000; Seijas, 1971). Assuming there are no faulted contacts, the El Copey metavolcanics are of Barremian age, and therefore penecontemporaneous with the SSVF and may indeed be an along-strike equivalent of the latter. Elemental and isotopic signatures are broadly comparable between the two units (Figs. 4–5; Kerr et al., 2009), and the ratio–ratio plots and partial melting models indicate ~5% partial melting of a slightly more enriched source than the bulk of the SSVF (Figs. 6–7).

The Siquisique basalts and gabbros of Los Algodones lie to the north-west of the Cordillera de la Costa (Fig. 1). Recent Ar–Ar dating (Kerr et al., 2009) and the ages of radiolarian-bearing cherts (Baumgartner et al., 2013) indicate a Late Cretaceous age of ~95–90 Ma for the Siquisique volcanic rocks. Earlier interpretations of the unit as a fragment of Jurassic proto-Caribbean crust (Bartok et al., 1985) were based on ammonites said to be collected from a Palaeogene mélange (Baumgartner et al., 2013). Geochemical comparisons and modelling show Siquisique was derived from modest degrees of melting (~3–4%) of a heterogeneous mantle source roughly akin to depleted to average depleted MORB mantle (Fig. 7). Proto-Caribbean spreading had largely ceased by ~90 Ma (Müller et al., 1999; Seton et al., 2012), so it is likely that the Siquisique basalts and gabbros formed at a seamount or a localised extensional setting within the proto-Caribbean realm rather than at a true spreading ridge.

Fig. 4. Trace element plots from the SSVF with analyses of basalts from Venezuelan outcrops at El Copey (Barremian) and Siquisique (Turonian) for comparison (Kerr et al., 2009). See text for details. Chondrite normalisation from McDonough and Sun (1995); Primitive Mantle normalisation from Sun and McDonough (1989).

Fig. 5. Nd–Hf radiogenic isotope diagram comparing the SSVF with proto-Caribbean fragments at Siquisique and El Copey in Venezuela (Kerr et al., 2009), sub-continental lithosphere of the Tinaquillo lherzolite, Venezuela (Choi et al., 2007), the mafic Parlatuvier Formation of the North Coast Schist, Tobago, which has a sub-continental lithospheric component (Neill et al., 2012), and the Caribbean Great Arc rocks of the Tobago Volcanic Group (Neill et al., 2013). Bulk Silicate Earth and the mantle array are from Choi et al. (2007). The diagram shows measured ratios in black with grey symbols representing age-corrected ratios in order to demonstrate that there is little change in results and interpretation following correction.
Finally the Loma de Hierro belt immediately north of the Villa de Cura Klippe within the Cordillera de la Costa (Fig. 1) is another fragment of proto-Caribbean mafic crust (Urbani and Rodríguez, 2004). A new laser ablation $^{206}\text{Pb}/^{238}\text{U}$ zircon age of $127 \pm 1.9/4.3$ Ma has been obtained from a gabbroic sample (Marvin et al., 2013), comparable with the SSVF. There remains little geochemical information about the mafic rocks of Loma de Hierro: three whole rock major and trace element results showing incompatible element-depleted MORB-like signatures were obtained following fieldwork in 2004 (A.C. Kerr, unpublished data). The total outcrop of the Loma de Hierro covers at least 100 km2 and should be a target for future detailed study.

6.2. Proto-Caribbean crust in the Greater or Lesser Antilles

There are further examples of proto-Caribbean material preserved within the present-day Greater or Lesser Antilles which may provide insights into the development of the seaway. Cretaceous inception of SW-dipping proto-Caribbean subduction resulted in the trapping of proto-Caribbean crustal and lithospheric mantle sections within the new ‘Great Arc’, some of which are discussed here. The Loma La Monja gabbros and basalts of the Cordillera Central, Hispaniola (Escuder Viruete et al., 2009), fall within the Iceland trammles at slightly lower Zr/Y ratios than San Souci (Fig. 6b). The Loma La Monja complex is late Middle Jurassic in age, on the basis of radiolarian ages from overlying cherts of the El Aguacate Formation (Montgomery et al., 1994). These rocks are argued to be the product of low-degree melting in the garnet stability field followed by 15–20% melting of N-MORB- and E-MORB-like sources (Escuder Viruete et al., 2009). Escuder Viruete et al. (2009) proposed the presence of a mantle plume to explain the E-MORB source and high degree of partial melting. These figures for partial melting are indeed higher than those for typical spreading ridges (~10%) but slightly lower than the fast-spreading East Pacific Rise (Niu and Hékian, 1997), so there is no clear evidence for a mantle plume origin for Loma La Monja aside from the incompatible element-enriched mantle source. Melting might also be focussed at a proto-Caribbean triple junction towards the western end of the Sea-way related to opening of Mexican and Colombian back-arc basins (e.g., Pindell, 1993; Pindell and Kennan, 2001; Fig. 8).

In contrast, the Late Jurassic volcano-plutonic complexes of La Désirade, Guadeloupe, have a back-arc basin geochemical signature and are derived from depleted mantle (Neill et al., 2010). These rocks were probably formed in the westernmost proto-Caribbean close to the then east-dippinginter-American arc system (Fig. 8). Like Loma La Monja, La Désirade was accreted to the Great Arc during inception of SW-dipping subduction (Corsini et al., 2011; Neill et al., 2010). Apart from Tinaquillo in Venezuela, which may represent an intra-continental rift adjacent to the proto-Caribbean Seaway (Ostos et al., 2005), one of the few fragments of proto-Caribbean lithosphere mantle is found at Monte de Estado in south-west Puerto Rico (Jolly et al., 2008; Marchesi et al., 2011). Analysis of spinel and clinopyroxene compositions in the Monte del Estado peridotite indicates removal of 2–15% partial melt in the spinel stability field (Marchesi et al., 2011). This range
extends slightly higher than for our analysed samples, and appears consistent with melting beneath a reasonably fast-spreading ridge: the exact palaeo-location within the proto-Caribbean realm is uncertain.

6.3. The break-up of Pangaea and importance to Caribbean tectonics

We have little evidence regarding a plume model for the initiation of proto-Caribbean rifting, or of any relationship between the studied proto-Caribbean rocks and the widespread 200 Ma Central Atlantic Magmatic Province (CAMP). Unfortunately, there has not been a Hf isotope study of CAMP magmatism with which to compare our results on altered rocks to seek common mantle sources. However, we note that the geochemical heterogeneities present in the SSVF and other locations are restricted to trace elements and not isotope signatures, so modification of their mantle sources had to have taken place recently before their formation. Heterogeneous proto-Caribbean mantle sources and locally enhanced degrees of partial melting might be explained by the contamination or fertilisation of the upper asthenosphere and lithosphere by the CAMP plume a few tens of Ma prior to the opening of the proto-Caribbean. Impingement of a plume beneath Pangaea may also have weakened the lithosphere and pre-disposed the region to rifting at a later date.

The Mesozoic tectonic evolution of the Caribbean region involves the onset of southwest-dipping subduction of proto-Caribbean crust beneath the ‘Great Arc’ starting at a contentious point in the Early or Late Cretaceous (e.g., Hastie et al., 2013; Pindell et al., 2011). This paper does not discuss this aspect of Caribbean tectonics, but it is pertinent to note the absence of large tracts of proto-Caribbean crust derived from high degrees of partial melting. This finding indicates that the proto-Caribbean crust was probably of normal (6–7 km) thickness, and would subduct beneath the inter-American Arc given the right tectonic circumstances. Those supporting Late Cretaceous initiation of subduction beneath the Great Arc argue for collision between the Caribbean Oceanic Plateau and the inter-American Arc (e.g., Burke, 1988; Kerr et al., 2003), but there is also significant support for an Early Cretaceous onset of SW-dipping subduction triggered by the fragmentation and stretching of the inter-American Arc and its conversion into a transpressive boundary during the westward drift of North America (e.g., Pindell et al., 2011). Others have argued for Early Cretaceous chocking of the proto-Greater Antilles Arc trench by old (i.e. pre-95 Ma) plume-thickened Pacific crust, forcing a pre-Caribbean Oceanic Plateau subduction polarity reversal (Corsini et al., 2011; Lardeaux et al., 2013; Mauffrey and Leroy, 1997). The question of how young, thick and buoyant the proto-Caribbean crust was becomes important: any subduction polarity reversal or initiation would be aided by the presence of comparatively thin crust on the proto-Caribbean side of the inter-American Arc system (e.g., Stern, 2004).

7. Conclusions and recommendations

1) The San Souci Volcanic Formation is an Early Cretaceous unit in Trinidad containing mafic volcanic and hypabyssal rocks which originated close to the South American passive margin of the proto-Caribbean Seaway as the Americas drifted apart during the break-up of Pangaea.

2) Both the SSVF and the likely penecontemporaneous El Copey metavolcanic rocks and younger Siquisique basalts and gabbros (both in Venezuela) formed by ~7% partial melting of a spinel peridotite source containing both depleted and enriched components. Fragments of proto-Caribbean crust and lithospheric mantle found today in the Caribbean region confirm the presence of heterogeneous mantle sources across the proto-Caribbean at various times during rifting, but fail to demonstrate that there was a singular large-scale plume-related event during the Jurassic–Cretaceous in this region.

3) This work shows the potential for micro-zircon to be used as a revealing and reasonably precise chronometer in mafic rocks from the Caribbean region where other methods, such as Ar–Ar dating, fail. Further SIMS dating work to resolve the age of proto-
Caribbean crust and help resolve the age and origin of the CCOP could be fruitful.

4) Outcrops such as El Copey and Siquisique, and in particular the relatively unknown Loma de Hierro belt of the Cordillera de la Costa, require more detailed studies of their geochemical signatures, in a similar manner to this work, to help build a picture of the nature of proto-Caribbean spreading and development of the passive margin. Furthermore, there remains a need to understand clearly the origin and tectonic evolution of the Netherlands-Venezuelan Antilles, Aves Ridge, Villa de Cura, and Tobago Island subduction-related rocks in order to definitively reconstruct southern Caribbean tectonic history, and by proxy that of the Caribbean Plate as a whole.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.tecto.2014.04.019.

Acknowledgements

L.N. was supported by a Natural Environment Research Council (NERC) PhD studentship [NX/F00229X/1] whilst at Cardiff University. A NERC facilities committee grant-in-kind to A.C.K. and L.N. [IP/1064/1108] enabled radiogenic isotope work and a NERC small grant [NER/B/S2001/00827] to A.C.K. allowed collection and analysis of Venezuelan samples. The ion microprobe facility at UCLA is partly supported by grant numbers 1029193 and 1339051 from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation. Laura Cotton and Greta Robertson assisted with fieldwork in Trinidad. Iain McDonald and Ley Woolley are thanked for running the major and trace element analyses. We are grateful to Peter Bartok for discussions on Siquisique. Thanks to Hubert Whitechurch, an anonymous reviewer and editor Laurent Jolivet for their constructive comments on the manuscript.

References

Algar, S.T., 1993. Tectonic stratigraphic development, and thermo-chronological evolution of Trinidad. Unpublished PhD Thesis, Dartmouth College, Hanover, New Hampshire. 433 pages.

Algar, S.T., 1998. Tectonostratigraphic development of the Trinidad region. In: Pendell, J.L., Drake, C.L. (Eds.), Palaeogeographic Evolution and Non-glacial Eustasy, Northern South America. SEPM Special Publication, 58, pp. 87–109.

Algar, S.T., Pendell, J.L., 1991. Structural development of the Northern Ranges of Trinidad and implications for the tectonic development of the southeastern Caribbean. In: Gilgeous, K.A. (Ed.), Transactions of the Second Geological Conference of the Geological Society of Trinidad and Tobago, Petroun, Point-a-Pierre. Trinadad (281 pp.).

Algar, S.T., Pendell, J.L., 1993. Structure and deformation history of the Northern Ranges of Trinidad and adjacent areas. Tectonics 12, 814–829.

Algar, S.T., Heady, E.C., Pendell, J.L., 1998. Fission track dating in Trinidad: implications for provenance, depositional setting and tectonic uplift. In: Pendell, J.L., Drake, C.L. (Eds.), Palaeogeographic Evolution and Non-glacial Eustasy, Northern South America. SEPM Special Publication, 58, pp. 111–128.

Barr, K.W., 1962. The geology of the Toco District, Trinidad, West Indies, Pt. 1. Overseas Geology and Mineral Resources, 8, pp. 379–415.

Barr, K.W., 1963. The geology of the Toco District, Trinidad, West Indies, Pt. 2. Overseas Geology and Mineral Resources, 9, pp. 1–29.

Bartok, P., 1993. Prebreakup geology of the Gulf of Mexico-Caribbean: its relation to Triassic and Jurassic rift systems of the region. Tectonics 12, 441–459.

Bartok, P., Renzi, O., Westermann, G.E.G., 1985. The Siquisique ophiolites, northern Lara State, Venezuela: a discussion on their middle Jurassic ammonite and tectonic implications. C.S.A. Bull. 96, 1050–1055.

Baumgartner, P.O., Rojas-Agramonte, Y., Sandoval-Gutierrez, M., Urbani, F., Garcia-Delgado, D., Garban, G., Perez-Rodriguez, M., 2013. Late Jurassic break-up of the proto-Caribbean and circum-global circulation across Pangea. Geophysical Research Abstracts 15, 13408–13413.

Bezada, M.J., Magnani, M.B., Zelt, C.A., Schmitz, M., Levander, A., 2010. The Caribbean Plate in Venezuela: tectono-magmatic setting of the ophiolite units and isotopic evolution. Earth-Sci. Rev. 99, 19–40.

Cann, P., 1970. Bb, Sr, Zr and Nb in some ocean floor basaltic rocks. Earth Planet. Sci. Lett. 10, 7–11.
Mauffrey, A., Leroy, S., 1997. Seismic stratigraphy and structure of the Caribbean igneous crust. J. Geophys. Res. 102, 7621–7639.

Nowell, G.M., Parrish, R.R., 2001. Simultaneous acquisition of isotope compositions and trace elements by multi-collector mass spectrometry (PIMMS). In: Holland, G., Tanner, S.D. (Eds.), Plasma Source Mass Spectrometry. GSA Special Paper, 394, pp. 123–138.

Niu, Y., Hékinian, R., 1997. Spreading rate-dependence of the extent of mantle melting beneath the Caribbean Plate. J. Geophys. Res. 102, 7601–7620.

Nielsen, R.L., Beard, J.S., 2000. Magnetite-meltHFSE partitioning. Chem. Geol. 164, 21–30.

Norton, R.J., Stern, R.J., 1989. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett. 93, 191–206.

Palandri, M., Randrianasolo, A., 2013. Early Cretaceous rift formation in the Leewarde Islands, South Pacific. AAPG Bull. 97, 1195–1221.

Panson, E., 1999. The geology of the eastern Caribbean. In: Thomas, H.G. (Ed.), The geology of the Caribbean region. Cambridge University Press, Cambridge, pp. 83–93.

Pepin, K., 1997. Aeolian deposits and early Pleistocene climate on Barbados. Earth Planet. Sci. Lett. 151, 47–64.

Pepin, K., 1998. Aeolian deposits and early Pleistocene climate on Barbados. Earth Planet. Sci. Lett. 151, 47–64.

Pepin, K., 1998. Aeolian deposits and early Pleistocene climate on Barbados. Earth Planet. Sci. Lett. 151, 47–64.

Pepin, K., 1998. Aeolian deposits and early Pleistocene climate on Barbados. Earth Planet. Sci. Lett. 151, 47–64.
Wadge, G., Macdonald, R., 1985. Cretaceous tholeiites of the northern continental margin of South America: the San Souci Formation of Trinidad. J. Geol. Soc. Lond. 142, 297–308.

Weber, J.C., Dixon, T.H., Démets, C., Ambeh, W.B., Jansma, P., Mattioli, G., Saleh, J., Sella, G., Bilham, R., Pérez, O., 2001. GPS estimate of relative plate motion between the Caribbean and South American plates, and geologic implications for Trinidad and Venezuela. Geology 29, 75–78.

Weber, M., Cardona, A., Valencia, V., García-Casco, A., Tobón, M., Zapata, S., 2010. U/Pb detrital zircon provenance from Late Cretaceous metamorphic units of the Guajira Peninsula, Colombia: tectonic implications on the collision between the Caribbean arc and the South American margin. J. S. Am. Earth Sci. 29, 805–816.

Wingate, M.T.D., Compston, W., 2000. Crystal orientation effects during ion micro-probe U–Pb analysis of baddeleyite. Chem. Geol. 168, 75–97.

Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72.

Wright, J.E., Wyld, S.J., 2011. Late Cretaceous subduction initiation on the southern margin of the Caribbean plateau: one great arc of the Caribbean or three? Geosphere 7, 468–493.