Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Acute Flaccid Myelitis: A call for vigilance and an update on management

Sarah E. Hopkins, Jay Desai, Leslie Benson

PII: S0887-8994(20)30307-6
DOI: https://doi.org/10.1016/j.pediatrneurol.2020.09.003
Reference: PNU 9853

To appear in: Pediatric Neurology

Received Date: 3 August 2020
Revised Date: 30 August 2020
Accepted Date: 5 September 2020

Please cite this article as: Hopkins SE, Desai J, Benson L, Acute Flaccid Myelitis: A call for vigilance and an update on management, Pediatric Neurology (2020), doi: https://doi.org/10.1016/j.pediatrneurol.2020.09.003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc.
Acute Flaccid Myelitis: A call for vigilance and an update on management

Running title: AFM update

Sarah E. Hopkins¹, Jay Desai², Leslie Benson³

Division of Neurology, Children's Hospital of Philadelphia, Philadelphia PA¹; Division of Neurology, Children's Hospital of Los Angeles, Los Angeles, CA²; and Department of Neurology, Boston Children’s Hospital, Boston, MA³

Word Count: 1196

Keywords: child, acute flaccid myelitis, poliomyelitis, enterovirus

Corresponding Author:
Sarah Hopkins, MD, MSPH
Assistant Professor of Clinical Neurology
University of Pennsylvania Perelman School of Medicine
Division of Neurology
The Children's Hospital of Philadelphia
3501 Civic Center Boulevard
Philadelphia, PA 19104

Email: hopkinss1@email.chop.edu
Phone: (215)590-1719
Fax: (215)590-1771

Jay Desai, MD
Clinical Associate Professor
Keck School of Medicine of University of Southern California
Neurologist
Children’s Hospital Los Angeles
4650 Sunset Boulevard, MS 82
Los Angeles, CA 90027
Email: JDesai@chla.usc.edu

Leslie A. Benson, MD
Instructor in Neurology
Harvard Medical School
Department of Neurology
Boston Children’s Hospital
300 Longwood Avenue
Boston, MA 02115
Email: Leslie.Benson@childrens.harvard.edu

Conflicts of Interest: The authors have no conflicts of interest to report.

Disclosures: Dr. Hopkins receives salary support from the US Centers for Disease Control for activities related to AFM surveillance and is the site PI for the NIH AFM Natural History Study. Dr. Desai has received funds from EFGLA, Ovid, Novartis, Aquestive, Neurelis, UCB. Dr. Benson is a site PI for the AFM Natural History Study and is a paid consultant to the National Vaccine Injury Compensation Program and to the Massachusetts Department of Public Health. She receives funds for Biogen and Alexion sponsored clinical trials, and from ROHHAD Fight, Inc and HMS Shore Foundation.
Introduction

An increase in acute flaccid paralysis with a longitudinal gray matter lesion of the spinal cord was noted in California in 2012\(^1\). Additional cases in California, Colorado and across the US followed in 2014\(^2\), resulting in CDC surveillance with a case of acute flaccid myelitis (AFM) defined as a patient <18 with the acute onset of flaccid paralysis in the setting of a longitudinal, gray-matter predominant, lesion of the spinal cord. There were subsequent biennial increases in cases of AFM, to a maximum of 238 US cases spread over 42 states in 2018\(^3\). This biennial occurrence presents unique challenges. Just as public and health care provider vigilance begin to wane, we approach another season. With focus and energy diverted to the COVID-19 pandemic, 2020 may be even more testing. We aim to review AFM basics, provide guidance on testing and reporting, and discuss the current state of research and therapeutics. We encourage child neurologists to maintain a high level of suspicion for AFM, to review the diagnosis with local front line providers, and to have a plan for rapid evaluation and management of these patients.

Clinical Presentation

Children with AFM typically present with proximal greater than distal, asymmetric paralysis of one or more extremities with or without bulbar or cranial nerve findings in the setting of a recent or current febrile illness. Weakness may be preceded by pain in the affected extremity, leading to misdiagnoses of joint conditions or trauma. Weakness may progress over hours to several days to multiple extremity weakness and respiratory decline, with 33% of patients requiring respiratory support \(^4\). Findings on neurologic examination include low muscle tone with decreased or absent deep tendon reflexes and typically intact sensation. Weakness is flaccid in the primarily involved extremity, but in cases with severe cord edema there may be secondary upper motor neuron signs, particularly in the lower
extremities. There may be bulbar and/or cranial nerve findings. Given the sudden loss of muscle tone and decreased movement in addition to the spinal cord lesion, patients are also at risk for constipation and urinary retention.

Notably, AFM is a diagnosis easy to miss early in the presentation as subtle weakness associated with pain may be thought to be due to trauma, or to viral illness. Close examination of all patients for proximal muscle weakness (high five, shoulder shrug, stoop and recover, stand from floor without using hands) and hyporeflexia is essential to avoid missing an early presentation of AFM.

Testing recommendation

Earlier viral testing increases yield, so specimens should be obtained as quickly as possible. Viral testing is minimal risk, and samples, respiratory in particular, should be obtained as soon as the diagnosis of AFM is suspected, without waiting for magnetic resonance imaging (MRI) confirmation. Table 1 lists basic testing recommendations. Suspicion for AFM should lead to MRI of the spinal cord to look for central gray matter lesions (typical imaging findings in figure 1). MRI brain should also be obtained to rule out alternative possibilities and in case of cranial nerve involvement which may accompany. Repeat imaging may be necessary depending on clinical course. Spinal MRI weeks and months later may show myelomalacia but there is no consensus on the utility of routine follow up studies. Lumbar puncture is recommended to look for evidence of inflammation, and typically demonstrates a lymphocytic pleocytosis with variable elevation in protein. The diagnosis does not require electrodiagnostic confirmation, but electromyography may help when alternative etiologies, such as Guillain Barré Syndrome, are in the differential, and may be helpful in prognostication6.
Table 1: Recommendations for Initial Testing for Suspected AFM

Specimen	Tests
Respiratory (nasopharyngeal swab)	Respiratory virus polymerase chain reaction (PCR) panel, enteroviral PCR
Serum	Enteroviral PCR, NMO (aquaporin 4) and MOG antibody testing, consider Lyme and West Nile antibody testing when clinically appropriate
CSF	Basic studies, enteroviral PCR testing
Stool	Enteroviral PCR
Imaging	MRI of the spinal cord with and without contrast, strongly consider MRI brain with and without contrast

PCR – polymerase chain reaction
NMO – neuromyelitis optica, MOG – myelin oligodendrocyte glycoprotein

Figure 1: Axial (A) and Sagittal (B) T2 weighted images demonstrating gray matter predominant longitudinally extensive lesions characteristic of AFM.
Treatment

We recommend that all patients with possible AFM be admitted to the hospital for close monitoring and testing. All patients should have close monitoring of respiratory function, particularly negative inspiratory force (NIF). Patients with bulbar findings and/or cervical spine lesions and those with progressive weakness will be at higher risk for respiratory compromise and autonomic dysfunction, and we suggest admission to an intensive care unit.

Unfortunately, there remain no clear recommendations for optimal medical treatment of AFM. IVIG is often used to boost humoral immunity, and showed efficacy when given early in a mouse model. Steroids and plasma exchange have been used, and theoretically may have benefit in cases with significant spinal cord edema and long tract signs; however, timing and potential risk of exacerbating underlying infection should be carefully considered on a case by case basis. Several centers around the country tried fluoxetine in 2015-16 but a retrospective analysis of data revealed no benefit.

Recent data from colleagues at Vanderbilt demonstrates that, in a mouse model, anti-enterovirus D68 antibodies may limit the course of AFM, and are associated with marked recovery in the mouse model. Whether these antibodies will be developed as a safe and effective therapy for humans with AFM remains to be seen, but the data is encouraging.

Early involvement of pediatric rehabilitation is key to maximizing functional outcomes. Bracing must balance safety and use of the muscles. In addition, nerve and muscle transfer surgeries may be considered to maximize function in select patients. AFM patients are at risk for secondary complications such as joint subluxation, limb length discrepancies, scoliosis, and decreased bone density. Close monitoring is required long term. Where feasible, consider referral to centers with AFM experience and multidisciplinary teams.
There have been changes to the AFM case definition over the years. Current US Centers for Disease Control and Prevention (CDC) guidelines request that clinicians report any patient with sudden onset of flaccid limb weakness and MRI with spinal cord lesions involving at least some gray matter with the exclusion of malignancies, vascular disease, or anatomic abnormalities. The CDC provides clear instructions for reporting cases at https://www.cdc.gov/acute-flaccid-myelitis/hcp/clinicians-health-departments.html. Cases should be reported by a team caring for the patient when the MRI has been obtained and the diagnosis is suspected. As with initial sample acquisition, time is important – earlier reporting improves accuracy of surveillance numbers, and makes it easier to procure the appropriate samples.

In addition to surveillance, the NIH/NIAID AFM Natural History Study begins this year. Clinicians interested in enrolling patients may find additional information here: https://www.cdc.gov/acute-flaccid-myelitis/parents/get-involved-afm-research.html.

Conclusions

AFM is associated with significant morbidity. Early consideration of the diagnosis and testing is key to identifying the etiology, keeping patients safe, and contributing key data to surveillance. We hope that recent research will lead to additional treatments for AFM; in which case early diagnosis will be key to effective treatment. We ask child neurologists to reach out to front line providers in their region to remind them about AFM, and urge institutions to have clear protocols in place for testing and management.
1. Van Haren K, Ayscue P, Waubant E, et al. Acute flaccid myelitis of unknown etiology in California, 2012-2015. *JAMA*. 2015;314(24):2663-2671.

2. Messacar K, Schreiner TL, Van Haren K, et al. Acute flaccid myelitis: A clinical review of US cases 2012–2015. *Ann Neurol*. 2016;80(3):326-338.

3. CDC. AFM Cases and Outbreaks. https://www.cdc.gov/acute-flaccid-myelitis/cases-in-us.html. Published 2020. Accessed July 21, 2020.

4. Ayers T, Lopez A, Lee A, et al. Acute flaccid myelitis in the United States: 2015-2017. *Pediatrics*. 2019;144(5):2019-1619.

5. Martin JA, Messacar K, Yang ML, et al. Outcomes of Colorado children with acute flaccid myelitis at 1 year. *Neurology*. 2017;89:129-137.

6. Hixon AM, Clarke P, Tyler KL. Evaluating Treatment Efficacy in a Mouse Model of Enterovirus D68-Associated Paralytic Myelitis. *J Infect Dis*. 2017;216(10):1245-1253.

7. Vogt M, Fu J, Kose N et al. Human antibodies neutralize enterovirus D68 and protect against infection and paralytic disease. *Sci Immunol*. 2020;5(49).

8. Pino PA, Intravia J, Kozin SH, Zlotolow DA. Early results of nerve transfers for restoring function in severe cases of acute flaccid myelitis. *Ann Neurol*. 2019;86(4).

9. Melicosta ME, Dean J, Hagen K, et al. Acute flaccid myelitis: Rehabilitation challenges and outcomes in a pediatric cohort. *J Pediatr Rehabil Med*. 2019;12(3): 245-253.