100Mo-enriched Li$_2$MoO$_4$ scintillating bolometers for 0ν2β decay search: from LUMINEU to CUPID-0/Mo projects

D.V. Poda for LUMINEU, EDELWEISS, and CUPID-0/Mo Collaborations

Abstract. A scintillating bolometer technology based on 100Mo-enriched lithium molybdate (Li$_2^{100}$MoO$_4$) crystals has been developed by LUMINEU to search for neutrinoless double-beta (0ν2β) decay of 100Mo. The results of several low temperature tests at underground environments have proved the reproducibility of high detector performance and crystal radiopurity: in particular ~5–6 keV FWHM energy resolution and at least 9σ rejection of α’s in the vicinity of the 0ν2β decay of 100Mo (3034 keV) and below 10 μBq/kg bulk activity of 228Th and 226Ra. A modest acquired exposure (0.1 kg•yr) is a limiting factor of the LUMINEU experiment sensitivity to the 0ν2β decay half-life of 100Mo ($T_{1/2} ≥ 0.7×10^{23}$ yr at 90% C.L.), however the two-neutrino 2β decay has been measured with the best up-to-date accuracy, $T_{1/2} = [6.92 ± 0.06(\text{stat.}) ± 0.36(\text{syst.})] × 10^{20}$ yr. The applicability of the LUMINEU technology for a ton-scale 0ν2β decay bolometric project CUPID is going to be demonstrated by the CUPID-0/Mo experiment with ~5 kg of 100Mo embedded in forty 0.2 kg Li$_2^{100}$MoO$_4$ scintillating bolometers. A first phase of the experiment with twenty Li$_2^{100}$MoO$_4$ detectors is in preparation at the Modane underground laboratory (France) to start by the end of 2017.

INTRODUCTION

Searches for neutrinoless double-beta decay (0ν2β) — a lepton number violating spontaneous nuclear transition which requires a Majorana nature of neutrinos (e.g. see the recent review [1] and references herein) — are among the hottest worldwide experimental efforts in Astroparticle physics. The sensitivity to the 0ν2β half-lives already / to be achieved by the present generation leading 0ν2β experiments (lim$T_{1/2}^{0ν2β} ~ 10^{24} − 10^{26}$ yr [1, 2]) has to be improved by two orders of magnitude to make a further significant progress in the field [3]. Such enhancement would be possible with a new / advanced technology, which can provide near zero-background conditions in the region of interest (around the Q-value of the 0ν2β transition, Q$_{ββ}$) for a ton-scale detector over years of exposure. LUMINEU (Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature) is a French-funded project (2012–2017) aiming at the development of such challenging technology based on 100Mo-enriched zinc and lithium molybdate (ZnMoO$_4$ and Li$_2$MoO$_4$) scintillating bolometers. Since recently, LUMINEU is part of an R&D activity towards CUPID (CUORE Upgrade with Particle ID) [4, 5], a next-generation 0ν2β project aiming at using as much as possible the infrastructure of the present ton-scale bolometric experiment CUORE. In this paper we will overview the main LUMINEU achievements concerning the R&D of Li$_2$MoO$_4$ scintillating bolometers which led to the preparation of a 0ν2β experiment CUPID-0/Mo aiming at a demonstration of the suitability of the LUMINEU technology for CUPID.

LUMINEU R&D OF Li$_2^{100}$MoO$_4$ SCINTILLATING BOLOMETERS

An R&D of 100Mo-enriched Li$_2$MoO$_4$ scintillating bolometers has been accomplished by LUMINEU as follows:

- Development of molybdenum purification methods [6].
- Screening selection of a commercial ultra-pure Li$_2$CO$_3$ powder [7]. An R&D of Li$_2$CO$_3$ powder purification is still ongoing to ensure its high purity.
- Optimization of the crystal growth with the help of the low-temperature-gradient Czochralski technique [8]. Investigation of a double crystallization to further improve crystal’s quality and radiopurity [7, 8].
- Underground tests of Li$_2$MoO$_4$ and Li$_2^{100}$MoO$_4$ (100Mo enrichment is ~97%) scintillating bolometers [7].
• A pilot 2β experiment with four 0.2-kg Li$_2^{100}$MoO$_4$ cryogenic detectors.

The results of the LUMINEU R&D demonstrated that the crystallization technology is mature for a mass production of large (up to $\varnothing 4.5 \times 15$ cm or $\varnothing 6 \times 10$ cm), perfect optical quality, highly radiopure Li$_2^{100}$MoO$_4$ scintillators and that the bolometric technology is well reproducible in terms of high detector’s performance (e.g. see in Table 1 and Figure 1), which altogether completely satisfies the LUMINEU specifications.

TABLE 1. Performance and radiopurity of four Li$_2^{100}$MoO$_4$ scintillating bolometers tested at 17 mK in the EDELWEISS set-up at the Modane underground laboratory (LSM, France). The energy resolution (FWHM) is measured at 2615 keV γ quanta of 208Tl during a 232Th calibration. The light yield for γ's (LY) and the α/γ separation efficiency are extracted from an AmBe calibration data (the 2.5–3.5 MeV γ's and α+t events with \sim5.1 MeV electron-equivalent energy caused by 4Li(n,α) reaction were used). The radioactive contamination is estimated from the analysis of the energy spectra of α events accumulated in the background measurements. The performed analysis is similar to the one described in detail in [7].

Detector’s ID	Crystal’s mass (g)	FWHM (keV) at 2615 keV	LY γ/β (keV/MeV)	α/γ Separation above 2.5 MeV	Activity (μBq/kg)
enrLMO-1	186	5.8(6)	0.41	9σ	\leq 4 450(30)
enrLMO-2	204	5.7(6)	0.38	9σ	\leq 6 200(20)
enrLMO-3	213	5.5(5)	0.73	14σ	\leq 3 76(10)
enrLMO-4	207	5.7(6)	0.74	14σ	\leq 5 20(6)

FIGURE 1. Left panel: The energy spectra of the 232Th source and the dependence of FWHM energy resolution measured by a single 0.2 kg Li$_2^{100}$MoO$_4$ module and four-bolometer array operated at LNGS (12 mK; [7]) and LSM (17 mK), respectively. The expected resolution at $Q_{\beta\beta}$ of 100Mo is \sim5–6 keV FWHM shown as an open circle and an open square with error bars according to the fits to the LNGS and LSM data respectively. Right panel: The scatter-plots of light yield vs. heat energy of the AmBe data (290 h) of the enrLMO-2 and enrLMO-4 detectors operated at LSM without and with a reflecting film, respectively.

INVESTIGATION OF 2β DECAY OF 100Mo

The LUMINEU pilot 2β experiment was able to perform a precise investigation of the two neutrino double-beta decay of 100Mo, as it is illustrated in Figure 2 (left). The analysis is similar to the one described in [7]. The half-life value is derived with the best up to-date accuracy (see Table 2). Figure 2 (right) shows a few events registered above the 2615 keV peak with an average rate 1.1(2) cpd/kg, but no events are observed in the 200-keV-wide energy interval centered at $Q_{\beta\beta}$ of 100Mo. Thus, we set a lower half-life limit $T_{1/2}^{\text{2$\beta$}} \geq 0.7 \times 10^{23}$ yr at 90% C.L. which is about one order of magnitude weaker than the NEMO-3 result ($T_{1/2}^{\text{2$\beta$}} \geq 1.1 \times 10^{24}$ yr at 90% C.L. [9]), but it is achieved over an exposure of 100Mo shorter by a factor 600 (0.06 vs. 34.3 kg·yr).
is going to be dedicated to the EDEL WEISS low mass WIMPs search program [12].

Left panel: The background energy spectrum of FIGURE 2. leading ones in the field.

scintillating bolometers over 0.04 kg\times\muon-induced events [7]. Therefore, we are going to improve the present background by removing identified Th contaminated elements and using an available muon veto with a 98% coverage.

Taking into account the achievements of the LUMINEU project, an extension of the LUMINEU pilot experiment to the availability of \sim 7 kg of 100Mo-enriched molybdenum and the cryogenic set-up(s) able to host the LUMINEU-like modules, the CUPID-0/Mo project is planned to be realized in two phases:

- Twenty Li\textsubscript{2}100MoO\textsubscript{4} crystals (\circ \times 45 mm, \sim 0.2 kg each; 2.34 kg of 100Mo) to be operated as scintillating bolometers in five towers inside the EDELWEISS set-up (LSM, France) by the end of 2017.
- Additional twenty similar-size Li\textsubscript{2}100MoO\textsubscript{4}-based detectors ready to be operated in a complementary set-up1, e.g. CUPID-0 (LNGS, Italy), in the middle of 2018.

As one can see in Table 3, the sensitivity of the considered CUPID-0/Mo configurations would be comparable with the most stringent constraints on the effective Majorana neutrino mass (0.06–0.6 eV) derived from the results of the most sensitive 0\nu2\beta experiments [1, 2], for which a typical exposure is tens–hundreds kg\times yr of isotope of interest. It should be noted that the sensitivity of the CUPID-0/Mo Phase I remains substantially unaffected even with an order of magnitude worse projected background (10^{-2} counts/yr/kg/keV), which is similar to the 0.06\pm 0.03 counts/yr/kg measured in the 2.8–3.6 MeV energy interval by the LUMINEU pilot 2\beta experiment2. So, in spite of the considerably small scale of the CUPID-0/Mo experiment, this search would be among the leading ones in the field.

1In principle, the experimental volume of the EDELWEISS set-up is able to host also these additional 20 detectors, however a part of the cryostat is going to be dedicated to the EDELWEISS low mass WIMPs search program [12].

2The observed events above 2.65 MeV (see Figure 2) could be explained by pile-ups of \gamma cascade from 208Tl decays nearby the detectors and/or muon-induced events [7]. Therefore, we are going to improve the present background by removing identified Th contaminated elements and using an available muon veto with a 98% coverage.

CUPID-0/Mo 2\beta EXPERIMENT

$T_{2\nu2\beta}^{1/2}$ (10^{18} yr)	S/B	Experiment	$\beta\beta$ Source	100Mo exposure	Year [Ref.]
7.11\pm 0.02(stat)\pm 0.54(syst)	40	NEMO-3	100Mo foils	7.37 kg\times yr	2005 [10]
6.92\pm 0.06(stat)\pm 0.36(syst)	10	LUMINEU Li\textsubscript{2}100MoO\textsubscript{4} bol.	0.04 kg\times yr	2017 [This work]	

1In principle, the experimental volume of the EDELWEISS set-up is able to host also these additional 20 detectors, however a part of the cryostat is going to be dedicated to the EDELWEISS low mass WIMPs search program [12].

2The observed events above 2.65 MeV (see Figure 2) could be explained by pile-ups of \gamma cascade from 208Tl decays nearby the detectors and/or muon-induced events [7]. Therefore, we are going to improve the present background by removing identified Th contaminated elements and using an available muon veto with a 98% coverage.
Table 3

The CUPID-0/Mo sensitivity (90% C.L.) to the 0ν2β decay half-life of 100Mo for different configurations of the experiment. Assumed background is 10⁻³ counts/yr/kg/keV in 10 keV window centered at Qββ of 100Mo (73% of decays); the efficiency of the pulse shape discrimination is set to be 95% [7]. The recent calculations of a phase-space factor [13, 14], the nuclear matrix elements [15, 16], and an axial-vector coupling constant equal to 1.269 are used to estimate the sensitivity to the effective Majorana neutrino mass ⟨mββ⟩.

CUPID-0/Mo configuration	Exposure (kg×yr of 100Mo)	limT_{1/2}^{0ν2β} (yr)	lim⟨mββ⟩ (eV)
(1) 20×0.5 crystal×yr	1.2	1.3×10⁻²⁴	0.33–0.56
(2) 20×1.5 crystal×yr	3.5	4.0×10⁻²⁴	0.19–0.32
(3) 40×3.0 crystal×yr	14	1.5×10⁻²⁵	0.10–0.17

Conclusions

A production line of large, optical quality, radiopure 100Mo-enriched Li₂100MoO₄ crystal scintillators and their high performance as scintillating bolometers have been established within the LUMINEU project. A reasonably high sensitivity to the 0ν2β and the most precise half-life value for the 2ν2β decay of 100Mo (g.s. to g.s. transitions) have been achieved in a pilot LUMINEU 2β experiment over only ≈0.1 kg×yr exposure of four 0.2 kg Li₂100MoO₄ detectors array operated inside the EDELWEISS set-up in the Modane underground laboratory (France). A successful accomplishment of the LUMINEU project triggered its extension to CUPID-0/Mo 2β experiment aiming at operating forty 0.2-kg Li₂100MoO₄ scintillating bolometers. The start of data taking with 20 detectors is foreseen in the EDELWEISS set-up by the end of 2017. The main CUPID-0/Mo goal is to demonstrate zero-background conditions in the vicinity of the expected 100Mo 0ν2β decay peak and therefore to prove the viability of the LUMINEU technology for CUPID project, a ton-scale bolometric 0ν2β experiment.

Acknowledgments

This work is a part of LUMINEU program, a project funded by the Agence Nationale de la Recherche (ANR, France). The help of the technical staff of the Laboratoire Souterrain de Modane and of the other participant laboratories is gratefully acknowledged. We thank the mechanical workshop of CEA/SPEC for its skilful contribution to the conception and fabrication of the detectors’ holders.

References

[1] J. D. Vergados, H. Ejiri, and F. Šimkovic, Int. J. Mod. Phys. E 25, p. 1630007 (2017).
[2] A. Gando et al., Phys. Rev. Lett. 117, p. 082503 (2017).
[3] S. M. Bilenky and C. Giunti, Int. J. Mod. Phys. A 41, p. 075204 (2015).
[4] G. Wang et al., (2015), arXiv:1504.03599 [physics.ins-det].
[5] G. Wang et al., (2015), arXiv:1504.03612 [physics.ins-det].
[6] L. Bergé et al., JINST 9, p. P06004 (2014).
[7] E. Armengaud et al., Eur. Phys. J. C (submitted) (2017), arXiv:1704.01758 [physics.ins-det].
[8] V. Grigoryeva et al., J. Mat. Sci. Eng. B 7, p. 63 (2017).
[9] R. Arnold et al., Phys. Rev. D 92, p. 072011 (2015).
[10] R. Arnold et al., Phys. Rev. Lett. 95, p. 182302 (2005).
[11] A. S. Barabash, Nucl. Phys. A 935, p. 52 (2015).
[12] Q. Arnaud et al., Phys. Rev. D (submitted) (2017), arXiv:1707.04308v1 [physics.ins-det].
[13] J. Kotila and F. Iachello, Phys. Rev. C 85, p. 034316 (2012).
[14] S. Stoica and M. Mirea, Phys. Rev. C 88, p. 037303 (2013).
[15] J. Engel and J. Menendez, Rep. Prog. Phys. 80, p. 046301 (2017).
[16] L. S. Song, J. M. Yao, P. Ring, and J. Meng, Phys. Rev. C 95, p. 024305 (2017).