MINIREVIEWS

1

Confocal endomicroscopy and cyst fluid molecular analysis: Comprehensive evaluation of pancreatic cysts
Li F, Malli A, Cruz-Monserrate Z, Conwell DL, Krishna SG

10

Imaging of gall bladder by endoscopic ultrasound
Sharma M, Somani P, Sunkara T

ORIGINAL ARTICLE

Retrospective Cohort Study

16

New 14-mm diameter Niti-S biliary uncovered metal stent for unresectable distal biliary malignant obstruction
Kikuyama M, Shirane N, Kawaguchi S, Terada S, Makai T, Sagimoto K

Retrospective Study

23

Post-endoscopic procedure satisfaction scores: Can we improve?
Munjal A, Steinberg JM, Mossaad A, Kallus SJ, Mattar MC, Haddad NG

30

Case series on multimodal endoscopic therapy for gastric antral vascular ectasia, a tertiary center experience
Matin T, Naseemuddin M, Shoreibah M, Li P, Kyanam Kabir Baig K, Wilcox CM, Peter S

37

Mediastinal node staging by positron emission tomography-computed tomography and selective endoscopic ultrasound with fine needle aspiration for patients with upper gastrointestinal cancer: Results from a regional centre
Harrington C, Smith L, Bisland J, López González E, Jamieson N, Paterson S, Stanley AJ

45

Management of endoscopic biliary stenting for choledocholithiasis: Evaluation of stent-exchange intervals
Tohda G, Dochin M

Prospective Study

51

Bacterial presence on flexible endoscopes vs time since disinfection
Mallette KI, Pieroni P, Dhillon SS
Editorial Board Member of World Journal of Gastrointestinal Endoscopy, Marcela Kopacova, MD, PhD, Professor, 2nd Department of Internal Medicine - Gastroenterology, Charles University Teaching Hospital, Hradec Kralove 500 05, Czech Republic

World Journal of Gastrointestinal Endoscopy (World J Gastroint Endosc, WJGE, online ISSN 1948-5190, DOI: 10.4253) is a peer-reviewed open access (OA) academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJGE covers topics concerning gastroscopy, intestinal endoscopy, colonoscopy, capsule endoscopy, laparoscopy, interventional diagnosis and therapy, as well as advances in technology. Emphasis is placed on the clinical practice of treating gastrointestinal diseases with or under endoscopy.

We encourage authors to submit their manuscripts to WJGE. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great clinical significance.

World Journal of Gastrointestinal Endoscopy is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, and PubMed Central.

NAME OF JOURNAL
World Journal of Gastrointestinal Endoscopy

ISSN
ISSN 1948-5190 (online)

LAUNCH DATE
October 15, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Qiang Cai, MD, Professor, School of Medicine, Emory University, Atlanta, GA 30322, United States
Atsushi Imagawa, PhD, Doctor, Department of Gastroenterology, Imagawa Medical Clinic, Mitoyo 760-1503, Kagawa, Japan

EDITORIAL BOARD MEMBERS
All editorial board members resources online at http://www.wjgnet.com/1948-5190/editorialboard.htm

EDITORIAL OFFICE
Xiu-Xia Song, Director
World Journal of Gastrointestinal Endoscopy
Baishideng Publishing Group Inc
7901 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 500, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLICATION DATE
January 16, 2018

COPYRIGHT
© 2018 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/gerinfo/204

ONLINE SUBMISSION
http://www.f6publishing.com
Imaging of gall bladder by endoscopic ultrasound

Malay Sharma, Piyush Somani, Tagore Sunkara

Abstract
Endoscopic ultrasonography (EUS) is considered a superior investigation when compared to conventional ultrasonography for imaging gall bladder (GB) lesions as it can provide high-resolution images of small lesions with higher ultrasound frequencies. Examination of GB is frequently the primary indication of EUS imaging. Imaging during EUS may not remain restricted to one station and multi-station imaging may provide useful information. This review describes the techniques of imaging of GB by linear EUS from three different stations. The basic difference of imaging between the three stations is that effective imaging from station 1 is done above the neck of GB, from station 2 at the level of the neck of GB and from station 3 below the level of the neck of GB.

Key words: Gallbladder; Gallbladder cancer; Gallstones; Biliary sludge; Antrum; Duodenal bulb; Endoscopic ultrasound

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Endoscopic ultrasonography (EUS) is superior investigation than ultrasonography for imaging gall bladder (GB). Different techniques of imaging of GB by EUS have been described by different authors but a standard technique has not been specifically described. We herein discuss the techniques of imaging of GB by linear EUS from three different stations.

Sharma M, Somani P, Sunkara T. Imaging of gall bladder by endoscopic ultrasound. World J Gastrointest Endosc 2018; 10(1): 10-15 Available from: URL: http://www.wjgnet.com/1948-5190/full/v10/i1/10.htm DOI: http://dx.doi.org/10.4253/wjge.v10.i1.10
INTRODUCTION

Imaging modalities used in evaluating gall bladder (GB) diseases include transabdominal ultrasonography (USG), endoscopic ultrasonography (EUS), computerized tomography, and magnetic resonance imaging[1,2]. Although USG is considered the gold standard for GB imaging, in view of providing high resolution images; EUS has been found to be better than USG for GB lesions imaging[3-6]. Different techniques of imaging by EUS have been described by different authors for GB imaging but a standardized technique has not been mentioned[7-10]. In view of close proximity of GB to the duodenum, usually EUS imaging is restricted to duodenum[11]. Usually, endosonographers perform GB imaging from multiple stations and the initial station of imaging differs among different endosonographers[12,13]. The present review elaborates the various methods of GB imaging by linear EUS.

APPLIED ANATOMY OF GB

The GB lies on the visceral surface of the liver. The non-peritoneal upper surface of the GB is attached by connective tissue to a shallow fossa on the liver located between the right lobe and the quadrate lobe. The GB has three segments: The fundus, the body, and the left segment which is the infundibulum or neck. The fundus projects beyond the inferior margin of the liver, is covered completely in peritoneum and is in contact with the anterior abdominal wall. The body tapers towards the neck, which lies in the porta hepatitis. The neck or infundibulum is hook-shaped and may show a pouch like dilatation toward the right (Hartmann’s pouch). The neck turns sharply downward as it becomes continuous with the cystic duct. The mucous membrane of the cystic duct is raised up into a spiral fold that consists of five to ten irregular turns; it is continuous with a similar fold in the neck of the GB.

TECHNIQUES OF IMAGING

The images included in this review were obtained utilizing the linear echoendoscope EG-3830 UT (Pentax, Tokyo, Japan), along with a Hitachi Avius processor (Hitachi, Tokyo, Japan). The EUS image orientation on screen was as follows: Monitor’s right side corresponds to the cranial and left to the caudal end of the patient. Rotation of the echo endoscope is the most crucial aspect to GB imaging. Majority of the movements are performed in a straight position of the echo endoscope, except during EUS imaging from first part of duodenum when the scope is in a J-shaped position. Proper right/left knobs movements along with in/out movement of the echo endoscope are utilized for adequate contact with the gastrointestinal wall for proper EUS imaging.

STATIONS OF IMAGING

EUS of the GB can be done from the fundus of stomach, duodenal bulb, descending duodenum and antrum. The imaging from duodenal bulb and antrum are almost similar in appearance hence the description is restricted to three stations (Figure 1 and Table 1): (1) the fundus of stomach; (2) duodenal bulb and antrum; and (3) descending duodenum.

Imaging from fundus of stomach/esophagogastric junction

The GB lies on the far side of screen between 6 to 9 o’clock position. Movements near esophagogastric junction (40 cm) should be performed under direct vision to avoid the possibility of perforation. Initially, segment 2 and 3 portal vein tributaries are identified within the left lobe of liver. A clockwise rotation follows the tributaries which form the left branch of portal vein (PV). Further clockwise rotation traces the left branch of PV towards the liver hilum where it is joined by the right branch of PV. After the union the supraduodenal part of PV is seen as a curving vessel going from 9/11 o’clock position to 4/6 o’clock position (Figure 2). The common bile duct (CBD) and GB are seen in the area beyond the curving part of PV in the left lower quadrant of screen (Figure 3). Initially, the CBD and neck of GB are identified just beyond the PV (Figure 4). Imaging of remaining part of GB can be done by following GB down from the fundic part of stomach. This follow down of GB is possible due to EUS probe movement along

Station	Home base structure	Main position where gall bladder is seen	Part of biliary tract seen on clockwise rotation	Part of biliary tract seen on anti-clockwise rotation
Station - 1: OG junction	Joining of right branch of portal vein with left branch of portal vein	Beyond the curving part of portal vein between 6-8 o’clock position	Upper 1/3rd of CBD	Neck of Gall Bladder, Fundus
Station - 2: Antrum of stomach/duodenal bulb	Portal vein, superior mesenteric vein	Between 2-4 o’clock position	Lower 1/3rd of CBD	Upper 1/3rd of CBD, neck of Gall Bladder and Fundus, left and right hepatic duct union
Station - 3: Descending duodenum	Superior mesenteric vein	Between 9-11 o’clock position	Pancreatic duct	Middle and upper 1/3rd of CBD, neck of gall bladder and fundus, left and right hepatic duct union

CBD: Common bile duct.
the lesser curvature along with combination of three smooth movements: (1) Pushing around 25 to 30 cm; (2) 90 degree clockwise rotation; and (3) up movement of up/down knob on echo endoscope for about 90 degree. This combination of movements allows smooth pathway of EUS transducer along the lesser curvature and follows down the GB from neck towards the fundus of GB.

Imaging from antrum and duodenal bulb

The GB lies close to the probe between 2 to 4 o’clock position. The imaging from the antrum is sometimes best done by pushing the echo endoscope from the body of stomach towards the pylorus with a hyperinflated balloon (Figure 5). The imaging from duodenum can be done without a balloon by passing the scope beyond the pylorus and pushing it into the duodenal bulb apex. The contact with the superior and anterior duodenal...
The wall is established after sucking the air out of the lumen of duodenum, by turning in an anticlockwise direction and by moving the up and down knobs generally in a downward direction (Figures 6-10). Home base position is identified with adequate rotation and minor adjustments of both knobs, where the portal vein is seen on the far side of the screen in a long axis (Figure 11). Clockwise rotation follows the CBD towards the papilla and anticlockwise rotation makes the scanning towards the liver hilum, the upper part of CBD, the cystic duct and GB (Figures 7-9). The CBD and GB are seen in the area between the probe and portal vein and
higher up between the probe and liver (Figure 12).

Imaging from descending duodenum

The GB lies close to the probe between 8 to 11 o’clock position. Imaging from descending duodenum requires the entry into 2nd part of duodenum followed by shortening of scope. After entry, multiple times pushing the scope in/out is required to place the echo endoscope into the descending duodenum (3rd part of duodenum). By combining three movements, i.e., slow withdrawal up to the duodenal bulb, clockwise/anticlockwise torque and upward movement of the up/down knobs in third part of duodenum, there is better visualization of lower one third of CBD. The combination of three movements should be done with a main emphasis on anticlockwise rotation. During this rotation the superior mesenteric vein can be followed all the way towards the hilum where the portal vein is seen in a rounded axis within the hepatoduodenal ligament. The anechoic bile duct can be identified and followed all the way to the liver hilum (Figures 13-15). The continuity of CBD can be seen with the cystic duct and GB. Sometimes the valve of heister can be visualized within the cystic duct (Figure 16).
CONCLUSION

The techniques described in the present paper are likely to provide the images as discussed in most of the cases and from majority of the stations. However, the reproducibility of the images may be compromised in the duodenal bulb due to the variability of the scope position and due to the balloon use. The basic concept of GB imaging by linear EUS is simple: Station 1 shows the GB at around 6 o’clock position, station 2 shows the GB at around 3 o’clock position and station 3 shows the GB at around 9 o’clock position. The difference between the three imaging is that effective imaging in station 1 lies above the neck of GB, in station 2 lies at the level of the neck of GB and station 3 lies below the level of the neck of GB. These techniques will be useful for evaluation of different kind of pathologies of GB by EUS14-22.

ACKNOWLEDGMENTS

Pran Prakash (Graphic designer) for his contribution in making figures and table.

REFERENCES

1. Dietrich CF. Endoscopic Ultrasound: An Introductory manual and Atlas. New York: Thieme, 2006 [DOI: 10.1055/b-002-52057]
2. Van Dam S, Sivak MV. Gastrointestinal Endosonography. Philadelphia: Saunders, 2015: 226-255.
3. Rosch T, Will U, Chang KJ. Logitudianl Endosonography: Atlas and Manual for Use in the Upper Gastrointestinal Tract. Germany, 2001.
4. Gress FG, Isban B. Endoscopic Ultrasoundography. Massachusetts: Wiley-Blackwell, 2001.
5. Al-Haddad M. EUS in Bile Duct, Gallbladder, and Ampullary Lesions. In: Robert H. Hawes, Paul Fockens, Shyam Varadarajulu. Endosonography. Philadelphia: Saunders, 2015: 226-255. Available from: URL: https://www.us.elsevierhealth.com/endosonography-9780323221511.html.
6. Rameshbabu CS, Wani ZA, Rai P, Abdulqader A, Garg S, Sharma M. Standard imaging techniques for assessment of portal venous system and its tributaries by linear endoscopic ultrasound: a pictorial essay. Endosc Ultrasound 2013; 2: 16-34 [PMID: 24949362 DOI: 10.7178/eus.04.005].
7. Sharma M, Rai P, Rameshbabu CS, Arya S. Imaging of the pancreatic duct by linear endoscopic ultrasound. Endosc Ultrasound 2015; 4: 198-207 [PMID: 26374577 DOI: 10.4103/2303-9027.162997].
8. Sharma M, Pathak A, Rameshbabu CS, Rai P, Kirnake V, Shoukat A. Imaging of pancreas divisum by linear-array endoscopic ultrasonography. Endosc Ultrasound 2016; 5: 21-29 [PMID: 26879163 DOI: 10.4103/2303-9027.175878].
9. Sharma M, Rai P, Rameshbabu CS, Senadhinan P. Imaging of peritoneal ligaments by endoscopic ultrasound (with videos). Endosc Ultrasound 2015; 4: 15-27 [PMID: 25789280 DOI: 10.4103/32303-9027.151317].
10. Sharma M, Rai P, Mehta V, Rameshbabu CS. Techniques of imaging of the aorta and its first order branches by endoscopic ultrasound (with videos). Endosc Ultrasound 2015; 4: 98-108 [PMID: 26020043 DOI: 10.4103/2303-9027.156722].
11. Sharma M, Rameshbabu CS, Dietrich CF, Rai P, Bansal R. Endoscopic ultrasound of the hepatoduodenal ligament and liver hilum. Endosc Ultrasound 2016; Epub ahead of print [PMID: 27824022 DOI: 10.4103/2303].
12. Pathak A, Shoukat A, Thomas NS, Mehta D, Sharma M. Seagulls of endoscopic ultrasound. Endosc Ultrasound 2017; 6: 231-234 [PMID: 28663526 DOI: 10.4103/2303-9027.190919].
13. Owen CC, Bilhartz LE. Gallbladder polyps, cholesterolosis, adenomyomatosis, and acute acalculous cholecystitis. Semin Gastrointest Dis 2003; 14: 178-188 [PMID: 14719768].
14. Sun XJ, Shi JS, Han Y, Wang JS, Ren H. Diagnosis and treatment of polypoid lesions of the gallbladder: report of 194 cases. Hepatobiliary Pancreat Dis Int 2004; 3: 591-594 [PMID: 15567752].
15. Mitake M, Nakazawa S, Naitoh Y, Kimoto E, Tsukamoto Y, Asai T, Yamao K, Inui K, Morita K, Hayashi Y. Endoscopic ultrasonography in diagnosis of the extent of gallbladder carcinoma. Gastrointest Endosc 1990; 36: 562-566 [PMID: 2279643 DOI: 10.1016/S0002-9610(90)71164-9].
16. Vijayakumar A, Vijayakumar A, Patil V, Mallikarjuna MN, Shivswamy BS. Early diagnosis of gallbladder carcinoma: an algorithm approach. ISRN Radiol 2012; 2013: 239424 [PMID: 24959553 DOI: 10.5402/2013/239424].
17. Kapoor A, Kapoor A, Mahajan G. Differentiating malignant from benign thickening of the gallbladder wall by the use of acoustic radiation force impulse elastography. J Ultrasound Med 2011; 30: 1499-1507 [PMID: 22039022 DOI: 10.7863/jum.2011.30.11.1499].
18. Sugiyama M, Atomi Y, Yamato T. Endoscopic ultrasonography for differential diagnosis of polypoid gall bladder lesions: analysis in surgical and follow up series. Gut 2000; 46: 250-254 [PMID: 10644321 DOI: 10.1136/gut.46.2.250].
19. Azuma T, Yoshikawa T, Araida T, Takasaki K. Differential diagnosis of polypoid lesions of the gallbladder by endoscopic ultrasonography. Am J Surg 2001; 181: 65-70 [PMID: 11248179 DOI: 10.1016/S0002-9610(00)00526-2].
20. Yang HL, Sun YG, Wang Z. Polypoid lesions of the gallbladder: diagnosis and indications for surgery. Br J Surg 1992; 79: 227-229 [PMID: 1555088 DOI: 10.1002/bjs.1800790312].
21. Gallahan WC, Conway JD. Diagnosis and management of gallbladder polyps. Gastrointest Clin North Am 2010; 39: 359-367, x [PMID: 20478491 DOI: 10.1016/j.gtc.2010.02.001].
22. Yang LP, Yang ZL, Tan XG, Miao XY. [Expression of annexin A1 (ANXA1) and A2 (ANXA2) and its significance in benign and malignant lesions of gallbladder]. Zhonghua Zhongliu Zazhi 2010; 32: 595-599 [PMID: 21122411].

P- Reviewer: Kikuyama M, Souza JLS, Yan SL S- Editor: Ji FF E- Editor: Li D

WJGE | www.wjgnet.com 15 January 16, 2018 | Volume 10 | Issue 1
