An Ankyrin-G N-terminal Gate and Protein Kinase CK2 Dually Regulate Binding of Voltage-gated Sodium and KCNQ2/3 Potassium Channels

Received for publication, January 28, 2015, and in revised form, May 15, 2015. Published, JBC Papers in Press, May 12, 2015, DOI 10.1074/jbc.M115.638932

Mingxuan Xu and Edward C. Cooper

From the Molecular Neuropharmacology Laboratory, Department of Neurology, Department of Neuroscience, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030

Background: Neuronal axons use dense clusters of voltage-gated ion channels to conduct rapid electrical signals called action potentials.

Results: We mapped sites on a cytoskeletal protein, ankyrin-G, which binds and clusters sodium and potassium channels.

Conclusion: Channel binding is dually regulated by protein kinase CK2 phosphorylation and the ankyrin-G sequence.

Significance: The new mechanisms identified control axonal membrane excitability and are drug development candidates.

In many mammalian neurons, fidelity and robustness of action potential generation and conduction depends on the colocalization of voltage-gated sodium (Na\(^+\)) and KCNQ2/3 potassium channel conductance at the distal axon initial segment (AIS) and nodes of Ranvier in a ratio of ~40 to 1. Analogous “anchor” peptides within intracellular domains of vertebrate KCNQ2, KCNQ3, and Na\(^+\) channel α-subunits bind Ankyrin-G (AnkG), thereby mediating concentration of those channels at AISs and nodes of Ranvier. Here, we show that the channel anchors bind at overlapping but distinct sites near the AnkG N terminus. In pulldown assays, the rank order of AnkG binding strength is Na\(^+\),1.2 > KCNQ3 > KCNQ2. Phosphorylation of KCNQ2 and KCNQ3 anchor domains by protein kinase CK2 (CK2) augments binding, as previously shown for Na\(^+\),1.2. An AnkG fragment comprising ankyrin repeats 1 through 7 (R1–7) binds phosphorylated Na\(^+\), or KCNQ anchors robustly. However, mutational analysis of R1–7 reveals differences in binding mechanisms. A smaller fragment, R1–6, exhibits much diminished KCNQ3 binding but binds Na\(^+\),1.2 well. Two lysine residues at the tip of repeat 2–3 β-hairpin (residues 105–106) are critical for Na\(^+\),1.2 but not KCNQ3 channel binding. Another dibasic motif (residues Arg-47, Arg-50) in the repeat 1 front α-helix is crucial for KCNQ2/3 but not Na\(^+\),1.2 binding. AnkG’s alternatively spliced N terminus selectively gains access to those sites, blocking KCNQ but not Na\(^+\), channel binding. These findings suggest that the 40:1 Na\(^+\),:KCNQ channel conductance ratio at the distal AIS and nodes arises from the relative strength of binding to AnkG.

Action potentials are the principal, defining, rapid long distance signal in neurons (1). Although vertebrate action potentials consist mainly in an abrupt increase and fall in inward Na\(^+\) current, diverse outward K\(^+\) currents powerfully influence action potential properties including threshold, shape, and adaptation. A recently appreciated example of such collaboration is the functional interaction of small numbers of voltage-gated KCNQ2/3 and more abundant Na\(^+\) channels in action potential generation at the axon initial segment (AIS) and conduction at nodes of Ranvier (2–5). Na\(^+\) channels (including Na\(^+\),1.1, 1.2, and 1.6 α-subunits, depending on cell type) and KCNQ channels (either KCNQ2/KCNQ3 heteromers, or KCNQ2 homomers) are concentrated at AISs, and nodes of Ranvier are concentrated by interaction of their intracellular domains with a scaffolding protein AnK-G (Fig. 1). AnK-G not only plays a central role in establishing and maintaining the specialized electrical activity of AISs and nodes but is essential for neuronal axodendritic polarity (6–10). AnK-G is a very large molecule with diverse splice isoforms (190–480 kDa; see the schematic structure, Fig. 1C) known to be capable of recognizing many ligands including Na\(^+\), and KCNQ2/3 channels via its membrane binding (MB) domain (6, 11, 12). The MB domain consists of 24 ankyrin repeats encoded by 22 exons. A canonical ankyrin repeat contains 33 amino acid residues. Ankyrin repeat structures have been extensively studied (13, 14).

Understanding the mechanisms determining the clustering of AIS and nodal channels is of both biological and medical interest. The protein complex of AnK-G and its axonal channel ligands is implicated in psychiatric and neurological diseases. Variation in ANK3, the gene encoding AnK-G, is strongly associated with bipolar disorder, and Na\(^+\), blocking drugs are very commonly used as mood stabilizers (15). Mutations in genes for both Na\(^+\), and KCNQ2 channels cause severe forms of epilepsy associated with developmental...
impairment and autism (16–19). Studies combining pharmacology, electrophysiology, and computational modeling suggest that relatively minor changes in the ratio of AIS KCNQ and Na\textsubscript{\alpha} conductance can have a large impact on neuronal responsiveness (5, 20, 21).

What is the role of AnkG in setting the number and ratio of AIS KCNQ and Na\textsubscript{\alpha} channels? Previously Pan et al. (3) identified a highly conserved ~80-amino acid ankyrin binding domain at the distal end of the intracellular C terminus of KCNQ2 and KCNQ3. Within this larger domain, a 9-amino acid segment mimics the Na\textsubscript{\alpha} channel ankyrin-G binding region. Two short α-helical segments representing sites for interaction with calmodulin (CaM, helices A and B) and two for subunit-subunit interactions (subunit interaction domain (SID), helices C and D) are labeled. The region used for GST fusions is shown in red; at the distal end is the AnkG binding motif (blue square). AnkG is a large multimodular protein containing a membrane binding (MB) domain, a spectrin binding domain (SBD), a C-terminal intracellular domain including a very large exon domain (VLE), and a death domain.

Deletion and alanine substitution mutations in AnkG were made using QuikChange (Stratagene) using rat AnkG-NT3 cDNA as template. The β hairpin tip alanine mutations were introduced at positions corresponding to the first and last codon of exons, i.e. hairpin 1 (H1): 39,405D-AA; H2: 71,72NQ- AA; H3: 105,106KK-AA; H4: 138,139QN-AA; H5: 171,172ED-AA; H6: 204,205PA-AA; H7: 241,242ES-AA. The alanine substitution mutations within the AnkG-NT3 non-ankyrin N terminus were at MB N-R7 E15, EEE19–21, EETE19–23; KKKK24–27, RKR29–31, and KKK36–38. Other alanine substitution mutations were at R47, R50 (Arg-47 and Arg-50) in repeat 1. To mimic AnkG splice isoforms lacking exon 7 (29), codons 234–241 encoding residues MVVNRATE were deleted. All constructs were verified by DNA sequencing before use. Additional cloning details are provided in supplemental Table S1.

Fusion Protein Expression and Purification—GST fusion proteins were expressed in Escherichia coli strain BL21 (DE3) and induced by 1 mM isopropyl β-D-1-thiogalactopyranoside. Overexpressed GST fusion proteins were affinity-purified by glutathione-Sepharose 4B according to the manufacturer’s manual (GE Healthcare). The protein eluted was dialyzed against 1 liter of phosphate-buffered saline (PBS, diluted from 10× PBS, Thermo Scientific) using 10-kDa molecular weight cutoff dialysis cassettes (Pierce). Protein concentration was estimated by colloidal Coomassie Blue staining (Invitrogen) using a standard curve generated using bovine serum albumin (BSA). Purified

Experimental Procedures

Reagents—Antibodies were purchased: mouse anti-GFP (clone N86/8, antibody registry #AB_10671444, UC Davis/NIH NeuroMab Facility), rabbit anti-GFP (Invitrogen), rat monoclonal anti-HA (Roche Applied Science). Secondary antibodies highly purified to minimize cross-reactivity were from Jackson ImmunoResearch (West Grove, PA). A cDNA encoding the 270-kDa isoform of rat ankyn-G was obtained from Vann Bennett (25). Cloned human KCNQ2 and KCNQ3 cDNAs were obtained from Thomas Jentsch (26, 27).

cDNA Constructs—AnkG-MB-GFP, KCNQ2-Neurofascin-HA, and CD4-Na\textsubscript{\alpha}II-III constructs have been described previously (3, 22). Constructs encoding various fragments of the AnkG-MB domain were generated by PCR with Pfu polymerase. Those PCR products were inserted into EcoRI and Sall sites of pEGFP-N1 (Invitrogen). GST-Na\textsubscript{\alpha}1.2 DII-III loop was generated by PCR amplification using the rat Na\textsubscript{\alpha}1.2 cDNA clone (28) as template. The PCR product, corresponding to residues 989–1203 of the domain II–III intracellular loop, was inserted into BamHI + Sall sites of pGEX4T-1. The distal portion of the C-terminal intracellular domains of human KCNQ2 and KCNQ3 were cloned into BamHI + NotI sites of pGEX6p-1 to make GST-Q2C (571–844) and GST-Q3C (578–872). To generate clones encoding alternatively used AnkG N termini NT1 and NT2, we exploited a unique PstI site within the first repeat (R1) of the rat AnkG cDNA. We synthesized cDNAs for NT1-R1 or NT2-R1, including a BamHI site at 5′ end, and cloned this fragment into pUC57 (Genewiz). The NT1-R1, NT2-R1 fragments were digested with BamHI and PstI and inserted into pEGFP-AnkG N-R7 digested with BamHI and PstI.
proteins were aliquoted and snap-frozen in liquid nitrogen and stored (−80 °C).

In Vitro Protein Kinase (CK2) Phosphorylation—Phosphorylation reactions were performed by incubating purified GST fusion proteins (2 μg) with 1× CK2 buffer containing 200 μM ATP and 10 units of CK2 (New England BioLabs) for 1 h at 30 °C. For the control conditions, protein samples were treated identically except CK2 was omitted.

Cell Culture and Transfection—Human embryonic kidney (HEK) 293 cells were cultured in Eagle’s medium containing 10% fetal bovine serum (Invitrogen). X-tremeGENE 9 (Roche Applied Science) or Lipofectamine 2000 (Invitrogen) was used for transfection following the manufacturer’s manual.

Surface Redistribution Assay and Immunostaining—The AnkG surface redistribution screening assay (see Fig. 4) has been previously described (3, 25, 30). In brief, HEK293 cells were transfected with plasmids AnkG-MB GFP together and HA-tagged NF-KCNQ2 C-terminal (residues 571–844) plasmids and replated onto coverslips at low density. Cells were fixed 2 days after transfection. After washing three times, the cells were blocked in 10% normal goat serum, 2% BSA, 1× PBS for 1 h, then incubated with rat anti-HA antibody at 4 °C overnight.

Coverslips were mounted using Prolong Gold (Invitrogen) and analyzed further fulfilled several criteria. They were well isolated and spindle-shaped or multipolar. Small cells lacking a clearly defined cytoplasmic compartment were excluded. Under red imaging, epifluorescence, cells that gave anti-HA-positive staining with a clearly resolved edge distribution were photographed, and then the distribution of green fluorescence was analyzed. For each experimental condition, images of 20 or more cells from three separate transfection experiments were collected. Imaged cells were classified as either possessing (edge positive) or lacking (edge negative) an easily detected green fluorescence surface “edge” that co-localized with the red anti-HA staining. Intensity histogram line positions were chosen so they would cross positions where the red HA surface edge and underlying cytoplasmic compartment were readily detected.

Cellular Localization Correlation Analysis—To analyze KCNQ2/3 and Na+, interaction with AnkG in a cellular environment, we used a localization correlation approach (31–33). NF-Q2C or CD4-Na,II-III constructs were co-transfected in HEK293 cells with GFP-fused AnkG MB fragments. Two day after transfection, cells were fixed, washed 3 times, permeabilized with 1× PBS containing 0.2% Triton X-100, blocked in 10% normal goat serum, 2% BSA, 1× PBS, 0.02% Triton X-100 for 1 h, and then incubated with rat anti-HA antibody at 4 °C overnight. Cells were washed 5 times with PBS with 0.02% Triton X-100, incubated with Cy3-conjugated anti rat IgG antibody for 2 h at room temperature, and then mounted and imaged. Images for analysis were acquired from three independent transfections. The co-localization of red and green fluorescence was quantified using NIS Elements AR (Nikon Instruments). Regions of interest selected were based on overlapped/merged green and red channels.

CK2 Activity Inhibition—TBB and TBCA (4,5,6,7-tetram bromo-2-azabenzoimidazole, and ((E)-3-(2,3,4,5-tetram bromophenylethynyl)acetic acid; Sigma) were used as CK2 inhibitors. TBB was dissolved in DMSO at 10 mM; TBCA was dissolved in DMSO at 5 mM. HEK293 cells were co-transfected with MB-GFP and NF-Q2C. One day after transfection, 50 μM TBB or 25 μM TBCA was added to culture medium for either 6 or 24 h. DMSO alone was added to controls.

Image Acquisition and Analysis—Epifluorescence images were collected using a Nikon 80i microscope, a 60×, 1.4 numerical aperture Plan Apo oil immersion objective, and an Exi Aqua CCD camera (QImaging) driven by NIS Elements (Nikon) software.

Sequential Pulldown and Western Blot—For each condition, equal amounts (2 μg) of purified GST fusion proteins either phosphorylated or non-phosphorylated by CK2 were incubated with glutathione beads for 2 h at 4 °C. After extensive washing, GST fusion protein-coated beads were further incubated with cell lysate from HEK cells expressing various AnkG-MB domain truncations fused with GFP, and then, after another extensive wash, the pulldown protein complex was eluted using Laemmli sample buffer (2×) with DTT for 5 min at 95 °C. The samples were resolved in SDS-PAGE and transferred to nitrocellulose membranes (Bio-Rad) then subject to Western blot and enhance chemiluminescent detection using the ECL kit (GE Healthcare).

Results

Phosphorylation by Protein Kinase CK2 (CK2) Enhances KCNQ2 and KCNQ3 Association with AnkG—Although expressed ubiquitously, CK2 is enriched at AISs and nodes of Ranvier (34). Four conserved CK2 consensus sites lie within or
Differential Na\textsubscript{v} and KCNQ2/3 Channel Binding to Ankyrin-G

**Figure A**

- **DMSO**
  - DAPI
  - MB-GFP
  - NF-2Q2C
  - Merged

- **TBB 6 hr**
  - DAPI
  - MB-GFP
  - NF-2Q2C
  - Merged

- **TBCA 6 hr**
  - DAPI
  - MB-GFP
  - NF-2Q2C
  - Merged

- **DMSO**
  - DAPI
  - MB-GFP
  - NF-2Q2C
  - Merged

- **TBB 24 hr**
  - DAPI
  - MB-GFP
  - NF-2Q2C
  - Merged

- **TBCA 24 hr**
  - DAPI
  - MB-GFP
  - NF-2Q2C
  - Merged

- **G**

  |          | TBB 50uM | TBCA 25uM |
  |----------|----------|-----------|
  | DMSO 6 hr|          |           |
  |          | 0.6      | 0.4       |
  |          | 0.6      | 0.4       |
  |          | 0.6      | 0.4       |

  |          | TBB 50uM | TBCA 25uM |
  |----------|----------|-----------|
  | DMSO 24 hr|        |           |
  |          | 0.6      | 0.4       |
  |          | 0.6      | 0.4       |
  |          | 0.6      | 0.4       |

**Pearson coefficient**

- **21**
- **23**
- **21**
- **29**
- **33**
- **21**
immediately C-terminal to the Na\textsubscript{v} channel anchor motif; phosphorylation of these sites has been shown to markedly enhance binding of AnkG (34, 35). Although Na\textsubscript{v} and KCNQ2/3 sequences have low similarity outside of the short anchor motifs (Fig. 2A, red asterisks), the C-terminal intracellular domains of KCNQ2 and KCNQ3 nonetheless have, respectively, three and four consensus CK2 sites in or C-terminal to their anchor motifs (Fig. 2A, arrows). To determine if CK2-mediated phosphorylation regulates KCNQ2/3 binding of AnkG, we performed sequential in vitro CK2 phosphorylation and pulldown experiments using GST-fused channel baits and soluble, heterologously expressed AnkG prey. The Na\textsubscript{v},1.2 bait included the entire intracellular loop between homology domains II and III (shown in red in Fig. 1A; Ref. 34); the KCNQ2/3 baits extended from the tetramerization domain tail (36) to the C terminus (KCNQ2 residues 571–844, KCNQ3 residues 578–872, red in Fig. 1B). Purified baits (GST-Q2C, GST-Q3C, GST-Na\textsubscript{II-III}, or GST) were incubated with purified CK2 and ATP; in controls, CK2 was omitted. After 30 min, CK2-treated and control fusion proteins were collected on glutathione beads, washed extensively, and then mixed with lysates of HEK cells expressing AnkG membrane binding domain green fluorescence protein fusion proteins (AnkG-MB-GFP). Western blots showed that, without CK2 phosphorylation, KCNQ2 and KCNQ3 baits pulled down AnkG-MB-GFP very weakly but detectably, whereas unphosphorylated Na\textsubscript{v} bait yielded a much greater signal (Fig. 2B). For all the channel fusion baits, but not GST, CK2 phosphorylation markedly enhanced binding of AnkG-MB-GFP.

**CK2 Inhibitor Treatment Decreases Co-localization of MB-GFP and NF-Q2C**—The selective CK2 inhibitors TBB and TBCA have been used previously to study CK2 effects on Na\textsubscript{v} channel localization and KCNQ2 channel function (34, 37, 38). To further analyze the role of CK2 in regulation of AnkG and KCNQ channel interactions, we treated HEK cells expressing AnkG MB and either Na\textsubscript{v} or KCNQ anchor-bearing fusion constructs. Six hours of treatment with TBCA, but not TBB, induced a significant reduction of co-localization of NF-Q2C and AnkG compared with treated vehicle controls (Fig. 3, A–C and G). After 24 h of exposure to either TBB or TBCA, co-localization was significantly reduced (Fig. 3, D–G). These results indicate that CK2 activity inhibition alters interaction between the KCNQ2 and AnkG MB in intact HEK293 cells.

An AnkG-MB Fragment (N-R12, ~400 residues) Contains the KCNQ2 Binding Site—Previously, Pan et al. (3) used AnkG-MB-GFP as a reporter in a cell-based surface redistribution assay to identify the homologous KCNQ2/KCNQ3 anchor motifs (3, 30). We generated expression constructs including three overlapping fragments of the AnkG-MB domain (Fig. 4A) and compared their ability to be concentrated at the cell membrane by interaction with the KCNQ2C polypeptide (residues 571–844; Fig. 1B). In 21 of 21 cells studied, AnkG-MB-GFP, containing the non-ankyrin repeat N terminus and all 24 ankyrin repeats, was efficiently redistributed to the cell membrane (Fig. 4B), as was an N-R12 truncation construct (32/33 cells studied; Fig. 4C). MB (R11–17) and MB (R16–24) constructs remained homogeneously distributed in the cytoplasm and never showed an edge appearance (0/27 and 0/22 cells, respectively; Fig. 4, D and E). We were unable to achieve efficient cytoplasmic expression of smaller AnkG N-terminal constructs (data not shown). Alternatively, we performed pulldown experiments using CK2-phosphorylated GST-Q3C and GST-Na\textsubscript{II-III} fusion proteins baits and overlapping AnkG-MB fragments as prey. Although the Na\textsubscript{v} and KCNQ3 baits showed detectable CK2 phosphorylation-dependent binding of N-R17 and R7-R24 fragments, binding of the N-R17 fragment was much stronger (Fig. 5, A and B).

An N-R6 AnkG Fragment Is Sufficient for Robust Binding to the Na\textsubscript{v} Anchor, but a Larger N-R7 Fragment Is Required for Robust Binding to KCNQ3—To further map channel binding sites within the AnkG-MB, we performed additional pulldown experiments using smaller MB fragments as prey (Fig. 5). In a series of C-terminal truncations at exon-exon junctions, AnkG-MB N-R7 was the minimal fragment sufficient to bind the CK2-phosphorylated KCNQ3 anchor robustly (Fig. 5, C and D). A smaller fragment, N-R6, bound the Na\textsubscript{v} anchor well but bound the KCNQ3 anchor much more poorly (Fig. 5C).

Exon 7 in vertebrate ankyrins is atypical, only eight codons in length, and analysis of brain and heart tissues indicate it is alternatively spliced (29) (data not shown). As a result, the R6–7 \( \beta \)-hairpin has alternative forms possessing and lacking an eight-amino acid insert (termed here, R6L and R6S). Deletion of exon 7 had no effect on binding to either channel (Fig. 5D). Repeats 5 and 6 are coded on the same exon (exon 6 in vertebrates; Fig. 5E) and are the only repeats that break the canonical 33 residue per repeat pattern (39 and structure (14, 40); see “Discussion”). Deletion of exon 6/7–5 resulted in an N-R4 fragment that showed markedly reduced binding to either anchor (Fig. 5D).

The Third AnkG \( \beta \)-Hairpin Tip Is Required for Robust Binding to Na\textsubscript{v}, but Not KCNQ2/3—The above findings indicate that the main sites for recognizing both channels are within the N-R7 region. Although N-R7 is a small portion of the whole AnkG polypeptide, it still offers a large potential binding surface. To further elucidate differences in Na\textsubscript{v} and KCNQ2/3 anchor binding, we used a combination of scanning and targeted point mutagenesis. The \( \beta \)-hairpin tips of ankyrin repeats are relatively variable in sequence and exposed to ligands and, therefore, often contribute to sites of specific binding. In AnkG, these tips are of additional interest as they correspond to exon-exon junction sites and thus may confer characteristic ligand binding through alternative splicing (13, 14, 29, 41). We, therefore, tested a series of mutant N-R7 constructs in which predicted

**FIGURE 3.** CK2 inhibition reduces the colocalization of overexpressed AnkG and KCNQ2/3 fusion proteins in HEK cells. A–F, representative images and fluorescence correlation profiles for HEK293 cells co-expressing NF-Q2C with MB-GFP, treated with DMSO (A and D, vehicle control), 50 \( \mu \)M TBB (B and E), or 25 \( \mu \)M TBCA (C and F); green versus red fluorescence correlation profiles are shown in rightmost column. In this profile, the x axis plots relative green fluorescence intensity (GFP, 0–100%); the y axis gives red fluorescence (Cy3 anti-HA, 0–100%). Region of interest selected are indicated with yellow lines (merged panels). G, Pearson correlation coefficient factors for the conditions shown. The number of cells analyzed per condition, S.E., and t test results (***, \( p < 0.001 \); ***, \( p < 0.01 \); *, \( p < 0.05 \)) are indicated. Scale bars: 10 \( \mu \)m.
Differential Na₉ and KCNQ2/3 Channel Binding to Ankyrin-G

A

| AnkG MB Domain       | Edges label |
|-----------------------|-------------|
| N-R24                 | +           |
| N-R12                 | +           |
| R11-17                | -           |
| R17-24                | -           |

B

C

D

E

FIGURE 4. The N-terminal half of AnkG-MB (N-R12, ~400 residues) contains the KCNQ2 determinant(s) responsible for surface redistribution. A, schematic showing MB domain exonic structure, encoded ankyrin repeats, β-hairpin tips were individually substituted by di-alanine mutations (Fig. 6, A–C). Pulldown experiments with CK2-phosphorylated GST-Na₉ II-III and GST-Q3C showed that mutation of β-hairpin 3 (H3) between repeats R2 and R3 exhibited a dramatic loss of binding to Na₉ II-III. The disrupted Na₉ II-III binding was observable by both Western blot and Ponceau staining (Fig. 6C, black arrow). Binding to phosphorylated KCNQ3-C was unchanged by the mutation of H3. Mutation at other β-hairpin tips had no effect on binding to either channel type. The H3 tip consists of two lysines (indicated in red, Fig. 6, A, E, and F), whereas anchor sequences of Na₉ and KCNQ2/3 channels possess multiple acidic and phosphorylated side chains. This suggests that electrostatic interactions involving this tip may be essential for binding of Na₉ channels to AnkG.

When introduced into full-length (N-R24) AnkG-MB, the H3 di-alanine mutation had no effect on binding to GST-Na₉ II-III (data not shown). We hypothesized that because earlier experiments showed evidence of weak interaction with R7–24, change restricted to this hairpin tip might be compensated by other contributions from other sites or even by (physiologically irrelevant) simultaneous interactions with multiple bait molecules. We, therefore, introduced a larger disruption including H3, namely removal of R2–R3 with fusion of R1 and R4 at a potential native exon-exon junction site (Fig. 6F). The R2-R3 deletion decreased binding to GST-Na₉ II-III markedly but had little effect on binding to GST-KCNQ3C (Fig. 6, E, first versus third lanes, and F).

A Dibasic Sequence in Repeat 1 Contributes to KCNQ2/3 but Not Na₉ Channel Binding—MB N-R12 binds to both channel types, whereas MB R2–12 binds neither (Fig. 5D). To identify sites within the N-R1 region critical for binding Na₉ or KCNQ channels, we made additional alanine mutations, focusing on charged residues that might also interact electrostatically with the anchor domains. Previously, Abdi et al. (42) obtained evidence for interaction between an acidic sequence in the C terminus of ankyrin-B (amino acids 1597–1599, EED) and a basic sequence, RAAR, located in the front α-helix of ankyrin repeat 1 of Ankyrin B. This RAAR sequence is conserved in vertebrate and protostome ankyrins (data not shown). We noted that the ankyrin-B C-terminal ligand sequence EED resembles the key residues of the anchor motifs (ESD for KCNQ2 and Na₉, and ETD for KCNQ3), especially if the Ser and Thr residues are phosphorylated by CK2 (34, 43). Therefore, we generated R47A/R50A-mutated AnkG N-R7 (Figs. 6A and 7A) and performed pulldown assays. R47A/R50A mutation caused the complete loss of KCNQ2 and KCNQ3 binding activity (Fig. 7, B and C, lanes a and b) but had no detectable effect on Na₉ channel binding (Fig. 7B).
The initial N-terminal portion of all ankyrins consists of a non-ankyrin sequence encoded by one or two exons. The clone used here and in many previous studies by us and others (3, 25, 44) has a 39-residue N terminus bearing 3 clusters of basic amino acids and 1 cluster of acidic amino acids (Fig. 7A). We made alanine substitution mutations for several combinations of positive charged residues (KKKK24–27, RKR29–31, KKK36–38) and acidic residues (E15, EEE19–21, EEETE19–23). None of these mutant constructs changed the binding to either KCNQ3 or Na\(_v\) baits (Fig. 7, D and F).

To further assess the role of the repeat 1 Arg-47 and Arg-50 residues in a cellular context, we introduced R47A and R50A mutations into GFP-tagged AnkG MB and MB Ndel and assayed co-localization with HA-tagged NF-Q2C in intact HEK293 cells (Fig. 8). Rows A–G show GFP and HA fluorescence of representative cells that gave correlation values near
the means plotted in panel H. As expected, GFP and NF-Q2C localization was poorly correlated, whereas AnkG MB, MB Ndel, or R1–7 localization was highly correlated with NF-Q2C. Interestingly, whereas AnkG MB was redistributed to the cell surface when co-expressed with NF-Q2C (Fig. 8, A and B), the N terminus-lacking fragments most effective in pulldown assays caused NF-Q2C to be redistributed intracellularly (Fig. 8, C and F). R47A/R50A-mutated MB Ndel (Fig. 8F) or R1–7 (Fig. 8G) diminished the intracellular staining for NF-Q2C and significantly reduced localization correlation (p < 0.001 and p < 0.01, respectively; Fig. 8H). R47A/R50A mutation gave no significant effect on co-localization of AnkG MB and NF-Q2C, suggesting that the presence of the N-terminal may weaken the impact of this mutation.

The Non-ankyrin Repeat N Terminus of AnkG Inhibits KCNQ2/3 but Not Na+, Channel Binding—As targeted mutation of charged residues in the N terminus failed to mimic the effect of deleting N-R1, we generated a construct deleting all 39 residues from AnkG-MB (N-R24) leads to increased KCNQ channel binding activity. Deletion of R2-R3 repeats of full-length MB leads to marked reduction of Na+ channel binding activity. Na+, and KCNQ3 baits were CK2-phosphorylated. F, summary of the results in E; scale is as in Fig. 5E.
FIGURE 7. Arg-47 and Arg-50, two arginines on the repeat 1 front α-helix, are critical for KCNQ2/3 but not Na$_1$2.1 channel binding. A, the AnkG N terminus and first repeat, with residues mutated highlighted; positive charged residues (green shading), cluster including multiple acidic residues (red shading), single acidic residue (pink box). Shown are GST pulldowns of AnkG-MB (N-R7) and (R1–7) with and without R47A and R50A mutations (B and C) and of AnkG-MB (N-R7) with and without the indicated mutations in the N terminus (D and F). Lower, GST pulldowns of GST-NaV II-III and GST-Q3C. The R47A/R50A mutation abolishes KCNQ3 binding, but the Na$_1$ channel binding is unaffected. C, GST-Q3C pulldown AnkG-MB (N-R7), AnkG-MB (N-R7) Arg-47–Arg-50 mutation (R1–7), AnkG-MB (R1–7) Arg-47–Arg-50 mutations with or without CK2 activity. Upper, input; middle, prey pulled down by GST-Q3C; lower, prey pulled down by CK2-phosphorylated GST-Q3C. CK2 phosphorylation and N-terminal deletion additively increase binding. Lanes c' and d' are briefer exposures. D and F, mutations within the NT3 N-terminal have no affects. D, Western blots showing pull downs by GST-Na$_1$, 1.2 DII-III and GST-Q3C. E and F, pulldowns of additional mutant constructs showing both Western blots and Ponceau stains. In GST-Na$_1$, 1.2 DII-III, but not GST-Q3C pulldowns, Ponceau staining reveals both the bait (*) and the AnkG prey. For both baits, the mutations have no effect on pulldown results.
Removal of the N terminus, achieved experimentally by dele-
tion by both channels. The non-ankyrin repeat N terminus restricts
phosphorylation of bound calmodulin, and to phosphorylate
enriched at the AIS, to regulate activity of KCNQ2 through
52). Here we investigate AnkG biochemical interactions needed
in axonal development, structure, and excitability (10, 44, 51,
longitudinally. Recent studies have highlighted the central roles
developmental programs enabling protein deployment along
reliable, fast-conducting, spatially compact, and energetically
Discussion
Mammalian axons have evolved signaling systems that are
fast-conducting, spatially compact, and energetically
(7, 24, 49, 50). This is achieved through genetic and
developmental programs enabling protein deployment along
axon that is modular and elaborately polarized, radially and
Recently, studies have highlighted the central roles
played by all three vertebrate ankrysins (ankyrin-G, -B, and -R)
in axonal development, structure, and excitability (10, 44, 51,
Here we investigate AnkG biochemical interactions needed
for the concentration of membrane voltage-gated sodium and
KCNQ2/3 potassium channels at initial segments and nodes of
Ranvier. We mapped the binding sites within AnkG for
KCNQ2/3 and Na\textsubscript{+},1.2 and characterized molecular determi-
nants for these interactions.
First, we found that CK2 phosphorylation markedly en-
hanced the ability of KCNQ2/3 C-terminal anchor domains to
bind AnkG. Moreover, inhibition of CK2 activity diminished
the colocalization of transfected AnkG and NF-Q2 fusion pro-
teins co-expressed in HEK293 cells. CK2 has been shown to be
enriched at the AIS, to regulate activity of KCNQ2 through
phosphorylation of bound calmodulin, and to phosphorylate
Na\textsubscript{+}, channels and thereby enhance their binding to AnkG (34,
35, 37, 53, 54). Together, the new findings further support a
“lock in place” mechanism where, after being synthesized in the
soma or dendrites, Na\textsubscript{+}, and KCNQ2/3 channels are transported
to the axon hillock, admitted to the AIS, and phosphorylated at
their anchor domains by local CK2. Once phosphorylated and
captured within the diffusion barrier of the AIS/nodal mem-
brane near abundant AnkG (55), exit from the AIS would be
slowed even if the dimeric interaction between the ligand and
AnkG was relatively weak. This appears to be the case for
KCNQ2/3 channels; even under our in vitro conditions, binding
is very substoichiometric (unlike Na\textsubscript{+},1.2; Fig. 6, C and D).
Also, although overexpressed NF-Q2C fusion proteins redistrib-
ute AnkG to the membrane efficiently (Fig. 2), the associa-
tion is completely lost during immunoprecipitation experi-
ments from HEK lysates (data not shown). Indeed, with or
without phosphorylation by CK2, Na\textsubscript{+},1.2 binds to AnkG much
more strongly than KCNQ3 and KCNQ2. The ratio of Na\textsubscript{+}, and
KCNQ peak conductance measured by voltage-clamp at rat
sciatic nerve nodes of Ranvier (56) and L5 cortical pyramidal
neuron AISs (5) is similar, ~40:1. Our studies suggest that rela-
tively weak KCNQ2/3-AnkG binding contributes to this con-
ductance density ratio. This ratio is physiologically and ener-
getically advantageous, due to the relatively hyperpolarized
voltage dependence and slow kinetics of KCNQ2/3 channel
activation. These parameters allow KCNQ2/3 channels to
strongly influence excitability in the subthreshold range yet
play a diminished role once threshold is passed (5, 56, 57).
Second, we mapped the AnkG subregions binding to the
KCNQ2/3 and Na\textsubscript{+},1.2 anchor domains. We found that the
strongest binding is contained within the first through seventh
AnkG ankyrin repeats (R1–7), with weak but detectable addi-
tional affinity. The new findings further support a
“lock in place” mechanism where, after being synthesized in the
soma or dendrites, Na\textsubscript{+}, and KCNQ2/3 channels are transported
to the axon hillock, admitted to the AIS, and phosphorylated at
their anchor domains by local CK2. Once phosphorylated and
captured within the diffusion barrier of the AIS/nodal mem-
brane near abundant AnkG (55), exit from the AIS would be
slowed even if the dimeric interaction between the ligand and
AnkG was relatively weak. This appears to be the case for
KCNQ2/3 channels; even under our in vitro conditions, binding
is very substoichiometric (unlike Na\textsubscript{+},1.2; Fig. 6, C and D).
Also, although overexpressed NF-Q2C fusion proteins redistribute
AnkG to the membrane efficiently (Fig. 2), the association is completely lost during immunoprecipitation experiments from HEK lysates (data not shown). Indeed, with or without phosphorylation by CK2, Na\textsubscript{+},1.2 binds to AnkG much more strongly than KCNQ3 and KCNQ2. The ratio of Na\textsubscript{+}, and KCNQ peak conductance measured by voltage-clamp at rat sciatic nerve nodes of Ranvier (56) and L5 cortical pyramidal neuron AISs (5) is similar, ~40:1. Our studies suggest that relatively weak KCNQ2/3-AnkG binding contributes to this conductance density ratio. This ratio is physiologically and energetically advantageous, due to the relatively hyperpolarized voltage dependence and slow kinetics of KCNQ2/3 channel activation. These parameters allow KCNQ2/3 channels to strongly influence excitability in the subthreshold range yet play a diminished role once threshold is passed (5, 56, 57).
Second, we mapped the AnkG subregions binding to the KCNQ2/3 and Na\textsubscript{+},1.2 anchor domains. We found that the strongest binding is contained within the first through seventh AnkG ankyrin repeats (R1–7), with weak but detectable additional binding elsewhere in MB. Work published by others
Differential Na\textsubscript{v} and KCNQ2/3 Channel Binding to Ankyrin-G

while our paper was in preparation agrees with those findings (40, 58). However, our mutagenesis of hairpin tips beyond R7 did not reveal any additional critical binding residues (data not shown). In particular, we were unable to find any evidence for KCNQ2/3 or Na\textsubscript{v,1.2} interaction with hairpins 13, 14, or 15 of AnkG implicated in binding the major cardiac sodium channel, Na\textsubscript{v,1.5} (41).

By deletion and substitution mutagenesis within R1–7, we identified different regions and key residues needed for Na\textsubscript{v}, and KCNQ2/3 binding. Alanine substitution of two arginine residues on the same face of the R1 front \(\alpha\)-helix abolished KCNQ2/3 but not Na\textsubscript{v} channel binding (Fig. 7, B and C, and Fig. 10, B–E, site 2). Replacing two lysines at the third hairpin tip abolished Na\textsubscript{v,1.2} binding but only slightly diminished KCNQ2/3 (Fig. 10, B–E, site 3). R7 deletion much reduced KCNQ3 binding but had little effect on Na\textsubscript{v,1.2} (Fig. 10, nine residues on adjoining hairpin portions of repeats 4 and 5

While our work was in final stages of preparation, Wang et al. (40) reported two crystal structures including the R1 through R7 regions of Ankyrin B fused to two ligands; one of the ligands studied was a portion of the Na\textsubscript{v,1.2} anchor peptide (32). This first glimpse at the main ankyrin KCNQ/Na\textsubscript{v} binding region is very informative, most notably revealing how repeats 5 and 6 (encoded by a single, conserved exon) depart from the ankyrin canonical fold while adhering closely to its 33 residue, solenoidal periodicity (Fig. 6, A and B). Our experiments implicate the same binding surface on AnkG shown to engage ligands by chemical studies are helpful guides for interpretation of already published and future structural studies (discussed below).
Wang et al. (40). However, our CK2 phosphorylation results indicate that portions of Na\textsubscript{v}1.2 and KCNQ2/3 up to 15–20 residues away from the Na\textsubscript{v}1.2 peptide studied by Wang et al. (40) are critical for ankyrin recognition. The completed work sets the stage for more refined mutational studies constrained by the known R1–7 structure. Future structural experiments should include the non-ankyrin repeat N terminus as well as larger and untethered portions of the channel anchor domains including CK2 phosphorylation sites. Phosphomimetic mutations at those sites may allow assessing the effect of CK2 phosphorylation on ankyrin-channel interactions.

Our studies highlight conserved vertebrate molecular mechanisms influencing neuronal excitability through precise control of the ratio of Na\textsubscript{v} and KCNQ2/3 channels on axons. The findings shed light on causes of epilepsy and other neuropsychiatric disease arising from mutations in genes for AnkG and its channel ligands. Identification of the channel binding regions makes possible targeted screening for agents capable of modulating relative channel affinity and, thus, neuronal responsiveness. Treatments that inhibit Na\textsubscript{v} binding or enhance KCNQ2/3 binding, thereby reducing the Na\textsubscript{v}/KCNQ ratio at AISs and nodes of Ranvier, are candidate therapies for acute seizures, epilepsy, and mood disorder.

**Author Contributions**—M. X. performed the experiments. E. C. C. and M. X. designed the study, analyzed the data, and wrote the paper.

**Acknowledgments**—We thank the members of the Cooper lab for helpful discussions, Angel Lopez for sharing unpublished results, and Baouyen Tran for critical reading of the manuscript. We thank the following investigators for generous gifts of cDNA clones: Vann Ben-Asher, Jeff Devedoux, Robert J. Dunn (McGill University) and Angel Lopez for sharing unpublished results. We thank the following for generously providing antibodies: Robert J. Dunn and M. X. performed the experiments. E. C. C. and M. X. designed the study, analyzed the data, and wrote the paper.

**References**

1. Bean, B. P. (2007) The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465
2. Devaux, J. J., Kleopa, K. A., Cooper, E. C., and Scherer, S. S. (2004) KCNQ2 is a nodal K\textsuperscript{+} channel. J. Neurosci. 24, 1236–1244
3. Pan, Z., Kao, T., Horvath, Z., Lemos, J., Sul, J. Y., Cranstoun, S. D., Bennett, V., Scherer, S. S., and Cooper, E. C. (2006) A common ankyrin-G-based mechanism retains KCNQ and Na\textsubscript{v} channels at electrically active domains of the axon. J. Neurosci. 26, 2599–2613
4. Schwarz, J. R., Grassmeier, G., Cooper, E. C., Kao, T. C., Nodera, H., Tabuena, D., Kaji, R., and Bostock, H. (2006) KCNQ channels mediate IK\textsubscript{s}, a slow K\textsuperscript{+} current regulating excitability in the rat node of Ranvier. J. Physiol. 573, 17–34
5. Battefeld, A., Tran, B. T., Gavrilo, J., Cooper, E. C., and Kole, M. H. (2014) Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J. Neurosci. 34, 3719–3732
6. Zhou, D., Lambert, S., Malen, P. L., Carpenter, S., Boland, L. M., and Bennett, V. (1998) AnkyrinG is required for clustering of voltage-gated Na\textsubscript{v} channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143, 1295–1304
7. Rasband, M. N. (2010) The axon initial segment and the maintenance of neuronal polarity. Nat. Rev. Neurosci. 11, 552–562
8. Wimmer, V. C., Reid, C. A., So, E. Y., Berkovic, S. F., and Petroz, S. (2010) Axon initial segment dysfunction in epilepsy. J. Physiol. 588, 1829–1840
9. Hedstrom, K. L., Ogawa, Y., and Rasband, M. N. (2008) AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J. Cell Biol. 183, 635–640
10. Galiano, M. R., Jha, S., Ho, T. S., Zhang, C., Ogawa, Y., Chang, K. J., Stanewich, M. C., Mohler, P. J., and Rasband, M. N. (2012) A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149, 1125–1139
11. Michaely, P., and Bennett, V. (1995) Mechanism for binding site diversity on ankyrin: comparison of binding sites on ankyrin for neurofascin and the Cl\textsuperscript{−}/HCO\textsubscript{3}\textsuperscript{−} anion exchanger. J. Biol. Chem. 270, 31298–31302
12. Davis, J. Q., and Bennett, V. (1990) The anion exchanger and Na\textsuperscript{+} -ATPase interact with distinct sites on ankyrin in vitro assays. J. Biol. Chem. 265, 17252–17256
13. Li, J., Mahajan, A., and Tsai, M. D. (2006) Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45, 15168–15178
14. Michaely, P., Tomchick, D. R., Machius, M., and Anderson, R. G. (2002) Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J. 21, 6387–6396
15. Ferreira, M. A., O’Donovan, M. C., Meng, Y. A., Jones, I. R., Ruderfer, D. M., Jones, L., Fan, J., Kirov, G., Perlis, R. H., Green, E. K., Smoller, J. W., Grozeva, D., Stone, J., Nikolov, I., Chambert, K., Hamshere, M. L., Nimmo- gaonkar, V. L., Moskvina, V., Thase, M. E., Caesar, S., Sachs, G. S., Franklin, J., Gordon-Smith, K., Ardlie, K. G., Gabriel, S. B., Fraser, C., Blumenstiel, B., Defelice, M., Breen, G., Gill, M., Morris, D. W., Elkin, A., Muir, W. J., McGhee, K. A., Williamson, R., Macintyre, D. J., MacLean, A. W., St. C. D., Robinson, M., Van Beck, M., Pereira, A. C., Kandassamy, R., McQuillin, A., Collier, D. A., Bass, N. J., Young, A. H., Lawrence, J., Ferrier, I. N., Anjorin, A., Farmer, A., Curtis, D., Scollnick, E. M., McGuffin, P., Daly, M. J., Corvin, A. P., Holmans, P. A., Blackwood, D. H., Gurling, H. M., Owen, M. J., Purcell, S. M., Sklar, P., Craddock, N., and Wellcome Trust Case Control, C. (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40, 1056–1058
16. Bi, C., Wu, J., Jiang, T., Liu, Q., Cai, W., Yu, P., Cai, T., Zhao, M., Jiang, Y. H., and Sun, Z. S. (2012) Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility. Hum. Mutat. 33, 1635–1638
17. Weckhuysen, S., Mandelstam, S., Suls, A., Audenaert, D., Deconinck, T., Claes, L. R., Deprez, L., Smets, K., Hristova, D., Yordanova, I., Jordanova, A., Coeulemans, B., Jansen, A., Hasarta, D., Roelens, F., Lagae, L., Ynddle, S., Stanley, T., Herson, S. E., Mulley, J. C., Berkovic, S. F., Scheffer, I. E., and de Jonghe, P. (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71, 15–25
18. Weckhuysen, S., Ivanovic, V., Hendrickx, R., Van Coster, R., Hjalgrim, H., Moller, R. S., Grenborg, S., Schoonjans, A. S., Coeulemans, B., Heavin, S. B., Eltz, C., Horvath, R., Casara, G., Pisano, T., Giordano, L., Rostjes, K., Haberlandt, E., Albrecht, B., Bebot, A., Benkel, I., Syrbe, S., Sheidley, B., Guerrini, R., Poduri, A., Lemke, J. R., Mandelstam, S., Scheffer, I., Angri mani, M., Striano, P., Marinii, C., Suls, A., de Jonghe, P., and KCN2Q Study Group (2013) Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81, 1697–1703
19. Kato, M., Yamagata, T., Kubota, M., Arai, H., Yamashita, S., Nakamura, K., Oyazato, Y., Maeno, M., Nishiyama, K., Hayasaka, K., Matsumoto, N., and Saito, K. (2013) Clinical spectrum of early onset epileptic encephalopathies caused by KCN2 mutation. Epilepsia 54, 1282–1287
20. Cooper, E. C., and Jan, L. Y. (2003) M-channels: neurological diseases, neuromodulation, and drug development. Arch. Neurol. 60, 496–500
21. Peters, H. C., Hu, H., Pongs, O., Storm, J. F., and Isbrandt, D. (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance, and behavior. Nat. Neurosci. 8, 51–60
22. Garrido, J. J., Giraud, P., Carlier, E., Fernandes, F., Mousaff, A., Fache,
M. P., Debanne, D., and Dargent, B. (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. *Science* **300**, 2091–2094

Lemailliet, G., Walker, B., and Lambert, S. (2003) Identification of a conserved ankyrin-binding motif in the family of sodium channel α subunits. *J. Biol. Chem.* **278**, 27333–27339

Hill, A. S., Nishino, A., Nakajo, K., Zhang, G., Fineinan, J. R., Selzer, M. E., Okamura, Y., and Cooper, E. C. (2008) Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates. *PLoS Genet.* **4**, e1000317

Zhang, X., and Bennett, V. (1998) Restriction of 480/270-kD ankyrin G to ankyrins.

VOLUME 290 • NUMBER 27 • 16632

Differential Na+ and KCNQ2/3 Channel Binding to Ankyrin-G

1. Wang, C., Wei, Z., Chen, K., Ye, F., Yu, C., Bennett, V., and Zhang, M. (2006) Molecular evolution of the ankyrin gene family. *Mol. Biol. Evol.* **23**, 550–558

2. Wang, C., Wei, Z., Chen, K., Ye, F., Yu, C., Bennett, V., and Zhang, M. (2014) Structural basis of diverse membrane target recognitions by ankryns. *Elife* **10.7554/eLife.04353

3. Lowe, J. S., Palygin, O., Bhasin, N., Hund, T. J., Boyden, P. A., Shibata, E., Anderson, M. E., and Mohler, P. J. (2008) Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. *J. Cell Biol.* **180**, 173–186

4. Abdi, K. M., Mohler, P. J., Davis, J. Q., and Bennett, V. (2006) Isoform specificity of ankyrin-B: a site in the divergent C-terminal domain is required for intramolecular association. *J. Biol. Chem.* **281**, 5741–5749

5. Gasser, A., Ho, T. S., Cheng, X., Chang, K. J., Waxman, S. G., Rasband, M. N., and Dib-Hajj, S. D. (2012) An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. *J. Neurosci.* **32**, 7232–7243

6. Ho, T. S., Zollinger, D. R., Chang, K. J., Xu, M., Cooper, E. C., Stankewich, M. C., Bennett, V., and Rasband, M. N. (2014) A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. *Nat. Neurosci.* **17**, 1664–1672

7. Rueckert, E. H., Barker, D., Ruderfer, D., Bergen, S. E., Duhl, C., Luce, C. J., Sheridian, S. D., Theriault, K. M., Chambert, K., Morian, J., Purcell, S. M., Madison, J. M., Haggarty, S. J., and Sklar, P. (2013) Cis-acting regulation of brain-specific ANX3 gene expression by a genetic variant associated with bipolar disorder. *Mol. Psychiatry* **18**, 922–929

8. Cunningham, F., Amode, M. R., Barrett, D., Beal, K., Bills, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, G., Fitzgerald, S., Gil, L., Girón, C. G., Gordon, L., Hourlier, T., Hunt, S. E., Janacek, S. H., Johnson, N., Juetttemann, T., Káahri, A. K., Keenan, S., Martin, F. J., Maurel, T., McLaren, W., Murphy, D. N., Nag, R., Overduin, B., Parker, A., Patricio, M., Perry, E., Pignatelli, M., Riat, H. S., Sheppard, D., Taylor, K., Thorman, A., Vullo, A., Wilder, S. P., Zadissa, A., Aken, B. L., Birney, E., Harrow, J., Kinsella, R., Muffato, M., Ruffier, M., Searle, S. M., Spudich, G., Trevanion, S. J., Yates, A., Zerbino, D. R., and Flicek, P. (2015) Ensembl 2015. *Nucleic Acids Res.* **43**, D662–D669

9. Cole, C., Barber, J. D., and Barton, G. J. (2008) The Jpred 3 secondary structure prediction server. *Nucleic Acids Res.* **36**, W197–W201

10. Buchanan, D. W., Minneci, F., Nugent, T. C., Breyson, K., and Jones, D. T. (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. *Nucleic Acids Res.* **41**, W349–W357

11. zakon, H. H. (2012) Adaptive evolution of voltage-gated sodium channels: the first 800 million years. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 10619–10625

12. Hallermann, S., de Kock, C. P., Stuart, G. J., and Köle, M. H. (2012) State and location dependence of action potential metabolic cost in cortical pyramidal neurons. *Nat. Neurosci.* **15**, 1007–1014

13. Chang, K. J., Zollinger, D. R., Susuki, K., Sherman, D. L., Makara, M. A., Brophy, P. J., Cooper, E. C., Bennett, V., Mohler, P. J., and Rasband, M. N. (2014) Glial ankryns facilitate paranodal axoglial junction assembly. *Nat. Neurosci.* **17**, 1673–1681

14. Xu, K., Zhong, G., and Zhuang, X. (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. *Science* **339**, 452–456

15. Sanchez-Ponce, D., Muñoz, A., and Garrido, J. I. (2011) Casein kinase 2 and microtubules control axon initial segment formation. *Mol. Cell. Neurosci.* **46**, 222–234

16. Brachet, A., Leterrier, C., Irondelle, M., Fache, M. P., Racine, V., Sibarita, J. B., Choquet, D., and Dargent, B. (2010) Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. *J. Cell Biol.* **191**, 383–395

17. Nakada, C., Ritchie, K., Oba, Y., Nakamura, M., Hotta, Y., Iino, R., Kasai, R. S., Yamaguchi, K., Fujiwara, T., and Kusumi, A. (2003) Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. *Nat. Cell Biol.* **5**, 626–632

18. Röper, J., and Schwarz, J. R. (1989) Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. *J. Physiol.* **416**, 93–110

19. Shah, M. M., Migliore, M., Valencia, I., Cooper, E. C., and Brown, D. A. (2008) Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 7869–7874

20. Barry, J., Gu, Y., Jukkola, P., O’Neill, B., Gu, H., Mohler, P. J., Rajamani, M. P., Debanne, D., and Dargent, B. (2003) Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. *J. Cell Biol.* **191**, 383–395

21. Raper, J. C., and Schwarz, J. R. (1989) Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. *J. Physiol.* **416**, 93–110

22. Shah, M. M., Migliore, M., Valencia, I., Cooper, E. C., and Brown, D. A. (2008) Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 7869–7874

23. Barry, J., Gu, Y., Jukkola, P., O’Neill, B., Gu, H., Mohler, P. J., Rajamani, K. T., and Gu, C. (2014) Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na channels into axons. *Dev. Cell* **28**, 117–131

24. Bennett, V., and Baines, A. J. (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. *Physiol. Rev.* **81**, 1353–1392