Optimal Control for TB disease with vaccination assuming endogeneous reactivation and exogeneous reinfection

N Anggriani, B C Wicaksono, A K Supriatna
Department of Mathematics
Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran
Jl. Raya Bandung-Sumedang km 21 Jatinangor 45363, Indonesia

1E-mail: nursanti.anggriani@unpad.ac.id and nsanti_a@yahoo.co.id

Abstract. Tuberculosis (TB) is one of the deadliest infectious disease in the world which caused by Mycobacterium tuberculosis. The disease is spread through the air via the droplets from the infectious persons when they are coughing. The World Health Organization (WHO) has paid a special attention to the TB by providing some solution, for example by providing BCG vaccine that prevent an infected person from becoming an active infectious TB. In this paper we develop a mathematical model of the spread of the TB which assumes endogeneous reactivation and exogeneous reinfection factors. We also assume that some of the susceptible population are vaccinated. Furthermore we investigate the optimal vaccination level for the disease.

1. Introduction
Tuberculosis (TB) is among the fatal diseases known globally. It is estimated 9.6 millions new TB cases reported in 2014 [1]. Meanwhile, Indonesia is the third rank in regards to this new TB prevalence compared to other countries globally. In fact, TB vaccine is already available in the market. Since 1906 BCG (Bacille Calmette-Guerin) vaccine has been available. However the occurrence of TB is still increasing from time to time. This is alarming, hence many effort have been explored to attack the TB transmission from various view of points, including from theoretical viewpoint via the utilization of mathematical modeling to understand and to control the TB. Recently some mathematical models of TB transmission have been developed [2,3]. In this paper, based on earlier model [4] we derived a pulmonary and non-pulmonary transmission of TB as in [5]. Here we develop the mathematical model of the spread of the TB which assumes endogeneous reactivation and exogeneous reinfection factors. Here we also assume that some of the susceptible population are vaccinated, since vaccination is still common method in TB elimination [6]. These complexities are considered simultaneously in the model to give a better insight into the analysis of the optimal control of the TB transmission.

2. Model Formulation
Here we assume that human population is divided into seven compartments as the following: the number of susceptible compartment individual in time t is denoted by $S(t)$, the number of latent compartment individual in time t is denoted by $L(t)$, the number of vaccinated compartment individual
in time \(t \) is denoted by \(V(t) \), the number of infectious/pulmonary TB compartment individual in time \(t \) is denoted by \(I_i(t) \), the number of non-infectious/extra pulmonary TB compartment individual in time \(t \) is denoted by \(I_n(t) \), the number of recovered from infectious TB compartment individual in time \(t \) is denoted by \(R_i(t) \) and the number of recovered from non-infectious TB compartment individual in time \(t \) is denoted by \(R_n(t) \). The model is represented by the diagrams shown in Figure 1, with the description of the parameters given in Table 1. The model assumes that the recruitment rate is coming from the birth (there is no immigration factor), individual who are vaccinated goes to \(L \) if they are not immune. Each compartment will experience natural death but to compartment infectious and non-infectious an extra factor of death caused by TB is added. The causes of TB disease are also assumed to be affected by endogeneous reactivation or exogeneous reinfection.

![Figure 1. Schematic diagram of the TB disease transmission with endogeneous reactivation \(I_i \) and exogeneous reinfection \(I_n \).](image)

Based on the schematic diagram in Figure 1, we obtain the mathematical model of the TB disease transmission as follows:

\[
\begin{align*}
\frac{dS}{dt} & = \pi - \delta SI_i - \beta_i SI_i - \beta_n SI_i - \sigma S - \mu S \\
\frac{dV}{dt} & = \sigma S - (1 - \theta) VI_i - \mu V \\
\frac{dL}{dt} & = \delta SI_i + (1 - \theta) VI_i - \kappa L - \psi_i LI_i - \mu L \\
\frac{dI_i}{dt} & = \beta_i SI_i + (\omega_1 \kappa + \omega_2 \psi_i L)L + \lambda_i \psi_i R_i I_i - \gamma_i I_i - \mu_i I_i \\
\frac{dI_n}{dt} & = \beta_n SI_i + ((1 - \omega_1) \kappa + (1 - \omega_2) \psi_i L)L + \lambda_n \psi_n R_n I_i - \gamma_n I_n - \mu_n I_n \\
\frac{dR_i}{dt} & = \gamma_i I_i - \lambda_i \psi_i R_i I_i - \mu R_i \\
\frac{dR_n}{dt} & = \gamma_n I_n - \lambda_n \psi_n R_n I_i - \mu R_n
\end{align*}
\]
Table 1. Definition of parameters used in model

Parameter	Description
π	Birth rate
μ	Natural mortality rate
μ_l	Mortality rate of the infectious TB
μ_n	Mortality rate of the non-infectious TB
β_i	Transmission rate from susceptible compartment to infectious compartment I_i
β_n	Transmission rate from susceptible compartment to non-infectious compartment I_n
δ	Transmission rate from susceptible compartment to exposed compartment
σ	Vaccination rate for the susceptible
θ	Vaccination effectiveness
ψ_L, ψ_I, ψ_n	Rate of exogenous reinfection L, I_i, and I_n
ω_1	Fraction of exposed infectious TB
ω_2	Fraction of exposed non-infectious TB
κ	Rate of endogenous reactivation
γ_i	Recovery rate from infectious TB, I_i
γ_n	Recovery rate from non-infectious TB, I_n
λ_i	Transmission rate from recovered (R_i) compartment to I_i compartment
λ_n	Transmission rate from recovered (R_n) compartment to I_n

2.1 Equilibrium and the Reproduction Number

From the model (1-7), we have two equilibrium points, i.e. nonendemic,

$$(S, V, L, I_i, I_n, R_i, R_n) \left(\frac{\pi}{(\sigma+\mu)}, \frac{\pi \sigma}{\mu(\sigma+\mu)}, 0, 0, 0, 0, 0 \right)$$

and endemic point

$$S^* = \frac{\pi}{\beta_n l_i + \beta_i l_i + \delta l_i + \mu + \sigma},$$
$$V^* = \frac{\sigma \pi}{a^* - b^*},$$
$$L^* = \frac{\omega_1 (\sigma + \delta I_i - \mu - \delta l_i - \sigma)}{(a^* - b^*)(k + \psi I_i + \mu)},$$
$$R_i^* = \frac{\gamma_i l_i}{\lambda_i \psi I_i + \mu},$$
$$R_n^* = \frac{\gamma_n l_n}{\lambda_n \psi I_i + \mu},$$

with

$$a^* = \delta I_i^2 \theta + \beta_i l_i^2 \theta + \beta_n l_i^2 \theta + \sigma l_i \theta + \mu l_i \theta,$$
$$b^* = \delta I_i^2 + \delta l_i \mu + \beta_i l_i^2 + \beta_i l_i \mu + \beta_n l_i^2 + \beta_n l_i \mu + \sigma l_i + \sigma \mu + \mu l_i + \mu^2.$$

The Reproduction Number for model (1-7) is given by:

$$R_0 = \left(\frac{\beta_i \pi}{\sigma + \mu} + \frac{\omega_1 k (\mu \delta \pi + (1 - \theta) \pi \sigma)}{\mu(\sigma + \mu)(k + \mu)} \right) \left(\frac{1}{\gamma_i + \mu} \right).$$
3. Model Analysis

In this section we analyze the model by assuming that there is a program of vaccination to the susceptible population. We define the following objective function:

\[
J(u) = \int_{t_0}^{t_1} \left(A_1 I_1(t) + A_2 I_2(t) + C_1 u_1^2(t) + C_2 u_2^2(t) \right) dt
\]

where \(t_1 \) is the final time and the coefficients \(A_1, A_2 \) are the weight factors for infectious population, \(u_1, u_2 \) are the rate of the vaccination and the effectiveness control with \(C_1 \) and \(C_2 \) are the balancing cost factor due to scale the importance of \(I \). The constraints of the optimization problem for the Eqs. (1-7) are:

\[
t_0 < t < t_1, \quad 0 \leq u_1(t) \leq 1, \quad 0 \leq u_2(t) \leq 1, \quad S(0) > 0, \quad V(0) > 0, \quad L(0) \geq 0, \quad I_i(0) \geq 0, \quad I_n(0) \geq 0, \quad R_i(0) \geq 0, \quad R_n(0) \geq 0.
\]

Here we assume that there is a sufficient fund such that we are able to undertake a full vaccination program by vaccinating all susceptible in the human population, \(u_1 = 1 \). Hence, the Hamiltonian of the problem is given by

\[
H = f(t, x, u) + \lambda g(t, x, u)
\]

where \(A_1 I_1(t) + A_2 I_2(t) + C_1 u_1^2(t) + C_2 u_2^2(t) + \lambda_1 (\pi - \delta S I_i - \beta_i S I_i - \beta_n S I_i - u_1 S - \mu S) + \lambda_2 (u_1 S - (1 - u_2) V I_i - \mu V) + \lambda_3 (\delta S I_i + (1 - u_2) V I_i - \kappa L - \psi_i L I_i - \mu L) + \lambda_4 (\beta_i S I_i + (\omega_i \kappa + \omega_2 \psi_i I_i) L + \lambda_i \psi_i R_i I_i - \gamma_i I_i - \mu_i I_i - \mu I_i) + \lambda_5 (\beta_n S I_i + ((1 - \omega_1) \kappa + (1 - \omega_2) \psi_i I_i) L + \lambda_n \psi_n R_n I_i - \gamma_n I_i - \mu_n I_i) + \lambda_6 (\gamma_i I_i - \lambda_i \psi_i R_i I_i - \mu R_i) + \lambda_7 (\gamma_n I_i - \lambda_n \psi_n R_n I_i - \mu R_n)
\]

with \(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \) and \(\lambda_7 \) co-state variable or the Lagrange multiplier of the optimization problem. The necessary conditions that an optimal control must satisfy come from the Pontryagin’s Maximum Principle. To accomplish this, we define the Hamiltonian \(H \) for the control problem as above, and define the state vector variables:

\[
\begin{bmatrix}
S(t) \\
V(t) \\
L(t) \\
I_i(t) \\
I_n(t) \\
R_i(t) \\
R_n(t)
\end{bmatrix}
\]

and the vector variables for the co state equation : \(\dot{\lambda}(t) \)

Then the necessary conditions are:

\[
\begin{align*}
\dot{S} &= \frac{\partial H}{\partial \lambda_1} = \pi - \delta S I_i - \beta_i S I_i - \beta_n S I_i - u_1 S - \mu S \\
\dot{V} &= \frac{\partial H}{\partial \lambda_2} = u_1 S - (1 - u_2) V I_i - \mu V \\
\dot{L} &= \frac{\partial H}{\partial \lambda_3} = \delta S I_i + (1 - u_2) V I_i - \kappa L - \psi_i L I_i - \mu L \\
\dot{I}_i &= \frac{\partial H}{\partial \lambda_4} = \beta_i S I_i + (\omega_i \kappa + \omega_2 \psi_i I_i) L + \lambda_i \psi_i R_i I_i - \gamma_i I_i - \mu_i I_i - \mu I_i \\
\dot{I}_n &= \frac{\partial H}{\partial \lambda_5} = \beta_n S I_i + ((1 - \omega_1) \kappa + (1 - \omega_2) \psi_i I_i) L + \lambda_n \psi_n R_n I_i - \gamma_n I_i - \mu_n I_i - \mu I_n \\
\dot{R}_i &= \frac{\partial H}{\partial \lambda_6} = \gamma_i I_i - \lambda_i \psi_i R_i I_i - \mu R_i \\
\dot{R}_n &= \frac{\partial H}{\partial \lambda_7} = \gamma_n I_i - \lambda_n \psi_n R_n I_i - \mu R_n
\end{align*}
\]
with co-state equation:

\[
\begin{align*}
\dot{\lambda}_1 &= -\frac{\partial H}{\partial s} = \lambda_1 (\delta I_1 + \beta_1 l_1 + \beta_n l_n + u_1 + \mu) - \lambda_2 u_1 - \lambda_3 \delta I_1 - \lambda_4 \beta_1 l_1 - \lambda_5 \beta_n l_n \\
\dot{\lambda}_2 &= -\frac{\partial H}{\partial v} = \lambda_2 ((1 - u_2)l_1 + \mu) - \lambda_3 ((1 - u_2)l_i) \\
\dot{\lambda}_3 &= -\frac{\partial H}{\partial L} = \lambda_3 (k + \psi L l_1 + \mu) - \lambda_4 (\omega_1 k + \omega_2 \psi L l_i) - \lambda_5 ((1 - \omega_1)k + (1 - \omega_2)\psi L l_i) \\
\dot{\lambda}_4 &= -\frac{\partial H}{\partial \hat{u}} = -A_1 + \lambda_4 (\delta S + \beta_1 S + \beta_n S) + \lambda_6 ((1 - u_2)V) + \lambda_7 (\delta S + (1 - u_2)V - \psi L) - \lambda_4 (\beta_1 S + \omega_2 \psi L + \lambda_1 \psi R_i - \gamma_1 - \mu_1 - \mu) - \lambda_5 (\beta_n S + (1 - \omega_2)\psi L + \lambda_1 \psi R_i) - \lambda_6 (\gamma_1 - \lambda_1 \psi R_i) + \lambda_7 (\lambda_n \psi R_i) \\
\dot{\lambda}_5 &= -\frac{\partial H}{\partial \hat{u}_n} = -A_2 + \lambda_5 (\gamma_n + \mu_n + \mu) - \lambda_7 \gamma_n \\
\dot{\lambda}_6 &= -\frac{\partial H}{\partial \hat{u}_i} = -\lambda_4 (\lambda_1 \psi I_i) + \lambda_6 (\lambda_1 \psi I_i + \mu) \\
\dot{\lambda}_7 &= -\frac{\partial H}{\partial \hat{u}_n} = -\lambda_5 (\lambda_n \psi I_i) + \lambda_7 (\lambda_n \psi I_i + \mu)
\end{align*}
\]

The optimal condition can be achieved via the Pontryagin Maximum Principle, i.e., \(\frac{\partial H}{\partial u_1} = 0 \), which gives:

\[
\begin{align*}
2C_1 u_1 - \lambda_1 S + \lambda_2 S &= 0, \\
2C_1 u_1 &= \lambda_1 S - \lambda_2 S, \\
u_1 &= \frac{\lambda_1 S - \lambda_2 S}{2C_1} = \frac{(\lambda_1 - \lambda_2)S}{2C_1},
\end{align*}
\]

with the conditions \(0 \leq u_1 \leq 1 \). Then finally we have:

\[
u_1 = \max \left\{ \min \left(\frac{(\lambda_1 - \lambda_2)S}{2C_1}, 1 \right), 0 \right\}.
\]

Similarly, \(\frac{\partial H}{\partial u_2} = 0 \) which gives:

\[
\begin{align*}
2C_2 u_2 + \lambda_2 (V I_i) - \lambda_3 (V I_i) &= 0, \\
2C_2 u_2 &= \lambda_3 (V I_i) - \lambda_2 (V I_i), \\
u_2 &= \frac{\lambda_3 (V I_i) - \lambda_2 (V I_i)}{2C_2} = \frac{(\lambda_3 - \lambda_2)W I_i}{2C_2}
\end{align*}
\]

with the conditions \(0 \leq u_2 \leq 1 \). Then finally we have:

\[
u_2 = \max \left\{ \min \left(\frac{(\lambda_3 - \lambda_2)W I_i}{2C_2}, 1 \right), 0 \right\}.
\]

Here the sufficient conditions for both control giving the minimum objective value are \(\frac{\partial^2 H}{\partial u_1^2} = 2C_1 \geq 0 \) and \(\frac{\partial^2 H}{\partial u_2^2} = 2C_2 \geq 0 \). In the next section we provide a numerical example of the result above to show that the controls are really exist.

4. Numerical Simulation

Numerical simulation is done to illustrate the theory above. Here we choose the parameters values described in Table 2 to run the simulation in the model. The results are presented in Figure 2(a) to 2(h).
Table 2. The values of parameters used in the subsequent simulation of the model.

Parameter	Value
μ	0.2509710694
μ_i	0.6587000003
μ_r	0.5000000000
λ_i	0.7100995912
λ_r	0.5000000000
γ_i	0.2200000000
γ_r	0.2100000000
ω_1	0.1600000000
ω_2	0.7800000000
β_i	0.0027308696
β_r	0.0050000000
ψ	0.8500000000
δ	0.02883022718
κ	0.2522000000

(a) (b) (c) (d)

2016 International Congress on Theoretical and Applied Mathematics, Physics and Chemistry

Journal of Physics: Conference Series 725 (2016) 012011
doi:10.1088/1742-6596/725/1/012011
Figure 2. The results of the simulation for the data set given in Table 1.

Figure 2(a) shows the trajectory for the susceptible class. Figure 2(b) shows the trajectory for the vaccinated class. Figure 2(c) shows the trajectory for the latent. Figure 2(d) shows the trajectory for the infectious TB class. Figure 2(e) shows the trajectory for the non-infectious TB class. Figure 2(f) shows the trajectory for the recovered from infectious TB class and figure 2(g) for the non-infectious TB class. The control profiles are given in figure 2(h). The resulting R_0 upon the implementation of the controls is 0.48. In the simulation we use the values: $A_1 = 1$, $A_2 = 1$, $C_1 = 1$, $C_2 = 1$. The results presented in the figure above indicate that when there is no vaccination, the basic reproduction number (R_0) is certainly greater than one. However, when we apply vaccination control program with the control profiles given by figure 2(h) then the basic reproduction number reduces to just 0.48. This shows the success of the control program as indicated by figure 2(d) and 2(c) for the decrease of the population in the infected compartment.

5. Conclusion

In this paper we have developed a mathematical model for the transmission of tuberculosis disease with the effect of control, i.e. by taking into account the factor of BCG vaccine, and considering the endogeneous reactivation and exogeneous reinfection. The optimal control to the TB disease by BCG vaccine aims to reduce the number of population of active TB by taking into account the lowest possible cost. Optimal control dynamic models of disease control tuberculosis vaccine in this paper
concluded that vaccination is better done optimally to the susceptible population if the vaccine is highly effective. Otherwise, the effect of vaccination will not be optimal.

Acknowledgment
This work is funded by BOPTN Universitas Padjadjaran Indonesia under the Scheme of Penelitian Unggulan Perguruan Tinggi (PUPT) 2016

References
[1] WHO 2015 Global Tuberculosis Edition 20
[2] Nainggolan J, Supian S, Supriatna A K and Anggriani N 2013 Mathematical Model of Tuberculosis Transmission with Recurrent Infection and Vaccination. Journal of Physics: Conference Series 423 (2013) 012059.
[3] Nainggolan J, Supian S, Supriatna AK, Anggriani N and Detiatrimargini 2014 Optimal Control Solution of A Tuberculosis Transmission Model with Recurrent Infection and Vaccination Using C# Programming Advanced Science Letter American Scientific Publishers Vol. 20 p 51-55.
[4] Mishra, Bimal K and Srivastava J 2014 Mathematical Model on Pulmonary and Multidrug-resistant Tuberculosis Patients with Vaccination Journal of the Egyptian Mathematical Society 22 (2): 311-316.
[5] Anggriani N, Fithriati I, Agustian D, Supriatna AK 2015 The Effect of DOTS Strategy on the Transmission of Tuberculosis with Endogenous Reactivation and Exogenous Reinfection Factors Proceeding 3rd International Conference on Chemical, Agricultural and Medical Science (CAMS-2015) Dec 10-11, 2015, Singapura, http://dx.doi.org/10.15242/IICBE.C1215007.
[6] Egbetade S A and Ibrahim M O 2014 Modelling the Impact of BCG Vaccines on Tuberculosis Epidemics Journal of Mathematical Modelling and Application 9 (1):49-55.