Einstein Manifolds and Conformal Field Theories

Steven S. Gubser

Joseph Henry Laboratories
Princeton University
Princeton, New Jersey 08544

Abstract

In light of the AdS/CFT correspondence, it is natural to try to define a conformal field theory in a large N, strong coupling limit via a supergravity compactification on the product of an Einstein manifold and anti-de Sitter space. We consider the five-dimensional manifolds T^{pq} which are coset spaces $(SU(2) \times SU(2))/U(1)$. The central charge and a part of the chiral spectrum are calculated, respectively, from the volume of T^{pq} and the spectrum of the scalar laplacian. Of the manifolds considered, only T^{11} admits any supersymmetry: it is this manifold which characterizes the supergravity solution corresponding to a large number of D3-branes at a conifold singularity, discussed recently in [1]. Through a field theory analysis of anomalous three point functions we are able to reproduce the central charge predicted for the T^{11} theory by supergravity: it is $27/32$ of the central charge of the $\mathcal{N} = 2 \mathbb{Z}_2$ orbifold theory from which it descends via an RG flow.

July 1998

1 Introduction

A large number of coincident D3-branes in a smooth spacetime induce a supergravity metric which is locally $AdS_5 \times S^5$. It is in the context of this geometry that the AdS/CFT correspondence was first developed [2, 3, 4]. Considerable thought has already been given to D3-branes on orbifold singularities [5, 6], as components of F-theory vacua [7], in the presence of D7-branes and orientifolds [8, 9, 10] and more recently on conifold singularities [1]. In each case the geometry can be worked out, and properties of the D3-brane world-volume theory can be deduced from the holographic prescriptions of [3, 4].

An alternative approach, which we take in this paper, is to start with a geometry and see how its properties relate via the holographic correspondence to conformal field theory. The conjecture is implicit in [4] that any anti-de Sitter vacuum of string theory or M-theory defines a conformal field theory. The simplest examples apart from S^5 involve the coset manifolds T^{pq} considered in [11]. Of these, only T^{11} preserves some supersymmetry ($\mathcal{N} = 1$, which is 1/4 of maximal considering conformal invariance). One is entitled to wonder what status the other T^{pq} compactifications have as string vacua. In any case, whatever exotic quantum field theoretic behavior reflects the usual pathologies of non-supersymmetric string vacua, it is at least a fascinating consequence of holography that a conformal fixed point at large \mathcal{N} and strong coupling exists and is characterized by compactified classical type IIB supergravity.

In section 2 we use the volume of the Einstein manifold to compute the central charge of the conformal field theory. The results tally with field theory in the case of orbifolds, but for the coset manifolds the central charge is typically irrational, which rules out any weakly interacting lagrangian description. For the case of T^{11} supported by N units of D3-brane charge, the central charge is $27/16$ times the central charge for $\mathcal{N} = 4 U(N)$ super-Yang-Mills theory. Through an analysis, presented in section 2.1, of anomalous three point functions of the R-current and the stress-energy tensor, we are able to reproduce this number on the field theory side.

In section 3 we compute the spectrum of the scalar laplacian on the T^{pq} manifolds. Typically, dimensions of operators are irrational as well. In the case of T^{11}, only part of this spectrum can be related to chiral primaries and their descendants; most of the others again have irrational dimensions. There is no reason to suppose that these dimensions do not flow as couplings are changed, but this makes their finite values in the limit of supergravity’s validity all the more remarkable: they provide an example of operators whose dimensions are not protected but nevertheless tend to finite values in the strong coupling limit.

2 Volume and curvature of T^{pq}

From the basic AdS/CFT setup as enunciated in [3, 4], one can conclude that the central charge of the conformal field theory is inversely proportional (in the large \mathcal{N} limit at least)

\footnote{Since one needs a stress tensor to define a CFT and hence a graviton in the bulk spectrum, it seems that a theory containing gravity is necessary in the bulk to make the conjecture reasonable. If anything more than a large \mathcal{N} limit of the boundary theory is desired, the bulk theory must be quantum mechanical. It is for this reason that we consider string theory or M-theory the only candidates for the bulk theory.}
to the volume of the compact five-dimensional Einstein manifold M_5. To see this, consider the geometry

$$ds^2 = \frac{L^2}{z^2} (dx^2 + dz^2) + L^2 ds^2_{M_5}$$

$$F = \frac{N\sqrt{\pi}}{2\text{Vol} \ M_5} (\text{vol}_{M_5} + \text{vol}_{AdS})$$

(1)

where the metric $ds^2_{M_5}$ is taken to have curvature $R^{\alpha \beta} = 4\delta^{\alpha \beta}$. The volume Vol M_5 and the five-forms vol M_5 and vol AdS refer to the metrics $ds^2_{M_5}$ and $\frac{1}{z^2}(dx^2 + dz^2)$ (ie, without the powers of L which appear in the full ten-dimensional metric). N is the integer 3-brane charge. The Einstein equation,

$$R^M_{\ M} = \frac{\kappa^2}{6} F_{MP_1 P_2 P_3 P_4} F^{NP_1 P_2 P_3 P_4}$$

(2)

is satisfied if one takes

$$L^4 = \frac{\sqrt{\pi}}{2} \frac{\kappa N}{\text{Vol} \ M_5}.$$

(3)

After compactification on M_5, type IIB supergravity can be summarized by the action

$$S = \frac{\text{Vol} \ M_5}{2\kappa^2} L^8 \int d^5x \sqrt{g} \left(R + 12 - \frac{1}{2}(\partial \phi)^2 + \ldots \right).$$

(4)

In (4), the metric is taken to be $ds^2 = g_{\mu\nu} dx^\mu dx^\nu = \frac{1}{z^2}(dx^2 + dz^2)$: we have rescaled out all factors of L from the integrand. In view of (3), the prefactor on S in (4) is $\frac{N^2}{8\text{Vol} \ M_5}$. All correlators calculated via the holographic prescription of [3, 4] include an overall factor $1/\text{Vol} \ M_5$ from this prefactor.

Indeed, one of the first checks made in [3] was to see that the central charge of the $\mathcal{N} = 4$ theory came out correctly from the two-point function of the stress-energy tensor, calculated essentially via (4) with $M_5 = S^5$. In a more involved calculation, the authors of [12] succeeded in establishing

$$\langle T^{\alpha \beta} \rangle_{g_{\mu\nu}} = -aE_4 - cI_4$$

(5)

where

$$E_4 = \frac{1}{16\pi^2} \left(R^2_{ijkl} - 4R^2_{ij} + R^2 \right)$$

$$I_4 = \frac{1}{16\pi^2} \left(R^2_{ijkl} - 2R^2_{ij} + \frac{1}{3}R^2 \right)$$

(6)

from the holographic prescription applied to an arbitrary boundary metric $g_{\mu\nu}$ in the conformal class of (compactified) Minkowski space. The calculation again follows from (4) (improved by boundary terms and regulated), so a and c carry an inverse factor of Vol M_5. The coefficient c is the same as what we have called the central charge (namely the normalization of the two-point function of the stress-energy tensor), so the first term of (5) follows from what was already worked out in [13]. The derivation of [12] shows that $a = c$ is a consequence of holography plus the product space structure of the spacetime (thus restricting the types of theories one could hope to construct holographically from product geometries). It was also reported there that the agreement between the holographic and free field values of
a and c persists to orbifolded theories such as those considered in [5]. The free field counting is done using the following table [14] (all other entries follow from the first three):

field	a	c
real scalar	1/360	1/120
complex Weyl fermion	11/720	1/40
vector boson	31/180	1/10
$\mathcal{N} = 1$ chiral multiplet	1/48	1/24
$\mathcal{N} = 1$ vector multiplet	3/16	1/8
$\mathcal{N} = 2$ hyper multiplet	1/24	1/12
$\mathcal{N} = 2$ vector multiplet	5/24	1/6
$\mathcal{N} = 4$ vector multiplet	1/4	1/4

Counting the free field content is a reliable method for computing the anomaly coefficients as long as there is at least $\mathcal{N} = 1$ supersymmetry, since then T^μ_{μ} and $\partial_\mu R^\mu$ are superpartners and the Adler-Bardeen theorem may be applied. In fact, the results of [15, 16] imply that the free field counting is valid to leading order in large \mathcal{N} even for non-supersymmetric theories obtained by orbifolding the $\mathcal{N} = 4$ theory. Indeed, all the agreements obtained so far are strictly leading large \mathcal{N} limits: the exact result $a = c = (N^2 - 1)/4$ for $\mathcal{N} = 4$ $SU(N)$ gauge theory apparently includes a one-loop contribution from supergravity.

To learn the central charge of the T^{pq} theories, we must compute the volume of these manifolds. We will use the methods of [17]. There are a few important differences between the conventions used here and those of [17] and [11], and we will write out formulas explicitly enough to disambiguate them. To form the quotient space T^{pq} we start with $SU(2) \times SU(2)$ generated by $i\sigma_k$ and $i\tau_k$, where k runs from 1 to 3, and divide out by the $U(1)$ generated by $\omega = p\sigma_3 + q\tau_3$. Let us write the generators as

\begin{equation}
 i\sigma_l, \quad i\tau_s, \quad Z = q_i\sigma_3 - p_i\tau_3, \quad \omega = p_i\sigma_3 + q_i\tau_3
\end{equation}

where l and s run over 1, 2. Referring to these anti-hermitian generators collectively as t_a, we define the structure constants and Killing metric so that

\begin{equation}
 [t_a, t_b] = C_{ab}^ct_c, \quad \gamma_{ab} = -\frac{1}{8}C_{ac}^dC_{bd}^c.
\end{equation}

The normalization of γ_{ab} is chosen so that this is the same metric as the natural one on $S^3 \times S^3$ where S^3 is the unit three-sphere. In this metric, the volume of $SU(2) \times SU(2)$ is $(2\pi^2)^2$, and the length of the orbit of ω is $2\pi \sqrt{p^2 + q^2}$. So before the symmetric rescaling,

\begin{equation}
 \text{Vol } T^{pq} = \frac{2\pi^3}{\sqrt{p^2 + q^2}}.
\end{equation}

The symmetric rescaling referred to in [11] and detailed in [17] is a replacement $e^a \rightarrow r(a)e^a$, where e^a is the vielbein for the coset space generated by $i\sigma_l$, $i\tau_s$, and Z. In a (hopefully) obvious notation, let us choose

\begin{equation}
 r(l) = \sqrt{a}\gamma, \quad r(s) = \sqrt{b}\gamma, \quad r(Z) = \gamma.
\end{equation}
The volume in the new metric, which we shall call the squashed metric, is

\[\text{Vol} T_{pq} = \frac{2\pi^3}{\sqrt{p^2 + q^2}} ab\gamma^3. \] (12)

The squashed metric still has an isometry group \(SU(2) \times SU(2) \times U(1) \). Furthermore, with a special choice of \(a \) and \(b \), the metric can be made Einstein. In [17] the following expression is given for the Riemann tensor (up to a convention-dependent factor of 2):\(^2\)

\[R^a_{\ bcd} = \frac{1}{2} C^a_{bcde} \begin{pmatrix} a & b \\ c & d \end{pmatrix} + C^a_{bd} C^d_{ce} r(d) r(e) \]

\[+ \frac{1}{4} C^a_{cd} C^c_{be} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} b & d \\ e & f \end{pmatrix} - \frac{1}{4} C^a_{ce} C^c_{bd} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} b & d \\ e & f \end{pmatrix} \]

(13)

From the Einstein requirement \(R^b_a = \Lambda \delta^b_a \) one now derives equation (2.5) of [11]:

\[\frac{\Lambda}{\gamma^2} = 4a - 2a^2 y^2 = 4b - 2b^2 x^2 = 2a^2 y^2 + 2b^2 x^2 \] (14)

where \(x = p/\sqrt{p^2 + q^2} \) and \(y = q/\sqrt{p^2 + q^2} \). Note that for given \(x \) and \(y \), the determination of \(a \) and \(b \) reduces to solving a cubic.

To sum up the discussion at the beginning of this section, the ratio of the central charge \(c \) in the conformal field theory “defined” by an Einstein manifold \(M_5 \) to the central charge \(c_0 = N^2/4 \) of \(N = 4 \) super-Yang-Mills with gauge group \(U(N) \) should be the same as the ratio of \(\text{Vol} S^5 \) to \(\text{Vol} M_5 \) computed with respect to Einstein metrics with the same cosmological constant. Using (14) and the fact that the unit \(S^5 \) has \(\text{Vol} S^5 = \pi^3 \) and \(\Lambda = 4 \), one arrives at

\[\frac{c}{c_0} = 2\sqrt{2} \frac{ab(p^2 + q^2)^3}{(q^2a^2 + p^2b^2)^{5/2}}. \] (15)

The results for the three simplest examples are quoted in the following table:

\(T_{pq} \)	\(x \)	\(y \)	\(a \)	\(b \)	\(\gamma \)	\(c/c_0 \)
\(T^{01} \)	0	1	1	1/2	\(\sqrt{2} \)	\(\sqrt{2} \)
\(T^{11} \)	1/\sqrt{2}	1/\sqrt{2}	4/3	4/3	3/\sqrt{8}	27/16
\(T^{34} \)	3/5	4/5	25/18	25/27	\(\frac{9}{7}\sqrt{2} \)	\(\frac{243}{25}\sqrt{2} \)

The value listed for \(\gamma \) is the one which makes \(\Lambda = 4 \). This normalization will be useful in the next section.

The higher \(T_{pq} \) have very complicated \(a \) and \(b \), and it does not seem worth the space to quote their central charges; suffice it to say that \(c/c_0 \) is typically an irrational involving irreducible square and cube roots. One can show using (14) and (15) that \(c/c_0 \geq O(\sqrt{pq}) \) (a better bound may be possible).

\(^2\)In (13) the Riemann tensor has been defined from the spin connection via \(R^a_b = \frac{1}{2} R^a_{bd} \omega^d dy^c dy^e = d\omega + \omega \wedge \omega \), whereas in [17] the factor of \(\frac{1}{2} \) is omitted. In [11] the normalization seems to be the same as used here.
2.1 The anomaly coefficients in field theory

In view of the construction [1] of the T^{11} theory from a relevant deformation of the $N = 2$ \mathbb{Z}_2 orbifold theory, one would expect to be able to derive the central charge in (16) from a field theory analysis along the lines of [18]. This is quite a nontrivial test of holography because it tests a nonperturbative field theoretic effect involving an RG flow from a simple UV theory to a IR theory which lies deep inside the conformal window. (Because $N_f = 2N_c$ for each of the gauge groups separately, the IR theory is not close to either edge of the conformal window [19] $3N_c/2 \leq N_f \leq 3N_c$. Perturbation theory in the electric or magnetic representation, respectively, can be used if $N_f = 3N_c - \epsilon$ or $N_f = 3N_c/2 + \epsilon$). In an $\mathcal{N} = 1$ superconformal theory, the anomaly coefficients a and c can be read off from anomalous three point functions $\partial_\mu \langle T_{\alpha\beta} T_{\gamma\delta} R^\mu \rangle$ and $\partial_\mu \langle R_\alpha R_\beta R^\mu \rangle$, where R_μ is the R-current: the former is proportional to $a - c$, while the latter is proportional to $5a - 3c$.

The ultraviolet theory, in $\mathcal{N} = 1$ language, has $2N_c^2$ vector multiplets filling out the adjoints of the two $U(N_c)$ gauge groups, plus $6N_c^2$ chiral multiplets filling out an adjoint for each gauge group $(2N_c^2)$ plus bifundamental matter $(4N_c^2)$. The R-current descends from one of the $\mathcal{N} = 4$ $SU(4)$ R-currents. The R-charge of the $N_\lambda = 2N_c^2$ gluino fields is 1, whereas the R-charge of the $N_\chi = 6N_c^2$ quark fields is $-1/3$. There is no gravitational anomaly in $\langle TTR \rangle$ because the $U(1)_R$ generator is traceless. So $a_{UV} - c_{UV} = 0$. For the $\partial_\mu \langle R_\alpha R_\beta R^\mu \rangle$ anomaly, we use the position space analysis summarized in [18]: for a single Majorana spinor with axial current $J_\mu = \frac{1}{2}\bar{\psi}\gamma_\mu\gamma^5\psi$, \[\frac{1}{\Box} \langle J_\alpha(x) J_\beta(y) J_\mu^\mu(z) \rangle = \frac{1}{12\pi^2} \epsilon_{\alpha\beta\gamma\delta} \frac{\partial}{\partial x^\gamma} \frac{\partial}{\partial y^\delta} \delta^4(x - z) \delta^4(y - z) \equiv \frac{a_{UV}}{16} \mathcal{A}_{\alpha\beta}(x, y, z). \] (17)

By counting $U(1)$ charges, one obtains
\[\partial_\mu \langle R_\alpha R_\beta R^\mu \rangle = (5a_{UV} - 3c_{UV}) \mathcal{A}_{\alpha\beta} = \frac{9}{16} \left(N_\lambda + \left(-\frac{1}{3}\right)^3 N_\chi \right) \mathcal{A}_{\alpha\beta} = N_c^2 \mathcal{A}_{\alpha\beta}. \] (18)

So far, this has just verified the known result from free field counting with (7) that $a_{UV} = c_{UV} = N_c^2/2$.

The relevant deformation discussed in [1] gives a mass to the chiral multiplets in the adjoints of the gauge groups, leaving behind $4N_c^2$ chiral multiplets with a quartic superpotential, plus $2N_c^2$ vector multiplets as before. The anomalous dimension of mass operators of the form $\text{tr} AB$ was found in the infrared [1] from the exact beta function [20, 21] to be $\gamma_{1R} = -1/2$. After the adjoint chiral fields have been made massive and integrated out, the R-current which is the superpartner of the stress-energy tensor is no longer conserved, in part due to internal anomalies proportional to the beta function. A non-anomalous $U(1)$ current [22] is $S_\mu = R_\mu + \frac{1}{3}(\gamma_{1R} - \gamma)K_\mu$, where K_μ is the Konishi current, which assigns charge 1 to quarks and 0 to gluinos.\footnote{S. P. de Alwis has shown [23] how one can define the current S_μ in the full $\mathcal{N} = 2$ \mathbb{Z}_2 orbifold theory instead of first integrating out the chiral adjoint fields, as we have done here. (19) is unchanged because the S-charge of the fermions in those chiral adjoints is 0 in the ultraviolet.} The external gauge and gravitational anomalies of S_μ are independent of scale. Since $S_\mu = R_\mu$ at the IR fixed point, the strategy is to evaluate the external anomalies of S_μ at a high scale where $\gamma \to 0$, and identify the answers as the IR
fixed point anomalies of R_ν. When $\gamma \to 0$, the S-charges of the fermion fields which remain massless are 1 for the $N_\lambda = 2N_c^2$ gluinos and $-1/2$ for the $N_\chi = 4N_c^2$ quarks. As before, there is no gravitational anomaly because the $U(1)_S$ generator is traceless. So $a_{IR} - c_{IR} = 0$. On the other hand,

$$\partial_\mu (R_\alpha R_\beta R_\mu) = (5a_{IR} - 3c_{IR}) A_{\alpha\beta} = \frac{9}{16} \left(N_\lambda + \left(-\frac{1}{2}\right)^3 N_\chi \right) A_{\alpha\beta} = \frac{27}{32} N_c^2 A_{\alpha\beta} .$$ \hspace{1cm} (19)

Thus $a_{IR}/a_{UV} = c_{IR}/c_{UV} = 27/32$, exactly the ratio of Vol S^5/Z_2 to Vol T^{11}. Of course, the agreement with supergravity is only to leading order in large N. A more careful analysis of the field theory would have the $U(1)$ parts of the gauge groups decoupling, changing a and c by a factor $1 - O(1/N^2)$ which is invisible in classical supergravity.

3 The laplacian on T^{pq}

To study the spectrum of chiral primaries in the T^{pq} CFT (insofar as we grant that the theory exists and is defined in the large N limit by the supergravity), the first step is to find the spectrum of the scalar laplacian on T^{pq}. A convenient parametrization of these coset spaces descends from Euler angles on $SU(2) \times SU(2)$. Let’s write a group element of $SU(2)$ as $g = e^{i\alpha J_z} e^{i\beta J_y} e^{i\gamma J_x}$. The standard unit sphere metric on $SU(2)$ is, in these variables,

$$ds^2 = \frac{1}{4} \left(d\alpha^2 + d\beta^2 + d\gamma^2 + 2\cos \beta \, d\alpha d\gamma \right) .$$ \hspace{1cm} (20)

The angles are allowed to vary over the ranges

$$\alpha \in (0, 2\pi) \quad \beta \in (0, \pi) \quad \gamma \in (0, 4\pi) .$$ \hspace{1cm} (21)

The reason that α is not allowed to range over $(0, 4\pi)$ is to avoid a double cover of $SU(2)$: $e^{2\pi J_z} = -1$.

The convenience of Euler angles is that we can represent the coset space T^{pq} as the hypersurface $p\gamma_1 + q\gamma_2 = 0$ in the Euler angle coordinatization $(\alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2)$ of $SU(2) \times SU(2)$. Writing $\gamma_1 = -q\alpha_3/\sqrt{p^2 + q^2}$, $\gamma_2 = p\alpha_3/\sqrt{p^2 + q^2}$, and ordering our coordinates for T^{pq} as $(\beta_1, \beta_2, \alpha_1, \alpha_2, \alpha_3)$, one arrives at a metric whose inverse is

$$g^{ab} = 4\gamma^2 \begin{pmatrix} a & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 \\ 0 & 0 & a \csc^2 \beta_1 & 0 & ya \cot \beta_1 \csc \beta_1 \\ 0 & 0 & 0 & b \csc^2 \beta_2 & -xb \cot \beta_2 \csc \beta_2 \\ 0 & ya \cot \beta_1 \csc \beta_1 & -xb \cot \beta_2 \csc \beta_2 & 1 + y^2a \cot^2 \beta_1 + x^2b \cot^2 \beta_2 & 0 \end{pmatrix}$$ \hspace{1cm} (22)

after squashing. One can now verify (12) by integrating $\sqrt{g} = \sqrt{\det g_{ab}} = ab\gamma^5 \sin \beta_1 \sin \beta_2$ over the allowed ranges for the variables:

$$\beta_1, \beta_2 \in (0, \pi) \quad \alpha_1, \alpha_2 \in (0, 2\pi) \quad \alpha_3 \in \left(0, 4\pi/\sqrt{p^2 + q^2}\right) .$$ \hspace{1cm} (23)
The laplacian has a fairly simple form:

$$\Box \phi = 4\gamma^2 \left[a \frac{1}{\sin \beta_1} \frac{\partial}{\partial \beta_1} \sin \beta_1 \frac{\partial}{\partial \beta_1} + b \frac{1}{\sin \beta_2} \frac{\partial}{\partial \beta_2} \sin \beta_2 \frac{\partial}{\partial \beta_2} + a \csc^2 \beta_1 \frac{\partial^2}{\partial \alpha_1^2} + b \csc^2 \beta_2 \frac{\partial^2}{\partial \alpha_2^2} + 2ya \cot \beta_1 \csc \beta_1 \frac{\partial^2}{\partial \alpha_1 \partial \alpha_3} - 2xb \cot \beta_2 \csc \beta_2 \frac{\partial^2}{\partial \alpha_2 \partial \alpha_3} + (1 + y^2 a \cot^2 \beta_1 + x^2 b \cot^2 \beta_2) \frac{\partial^2}{\partial \alpha_3^2} \right] \phi = -E\phi .$$ (24)

Amusingly enough, this equation can be solved completely by separation of variables even though T^{pq} is not metrically a product space: writing

$$\phi = \phi_1(\beta_1)\phi_2(\beta_2) \exp \left(i \sum_{j=1}^{3} m_j \alpha_j \right)$$ (25)

we arrive at

$$E = 4\gamma^2 (aE_1 + bE_2 + m_3^2)$$ (26)

where E_1 and E_2 are determined by the ordinary differential equations

$$\left[\frac{1}{\sin \beta_i} \frac{\partial}{\partial \beta_i} \sin \beta_i \frac{\partial}{\partial \beta_i} - (m_3 y_i \cot \beta_i + m_i \csc \beta_i)^2 \right] \phi_i = -E_i \phi_i$$ (27)

where $y_1 = y$ and $y_2 = -x$. For $y_i = 0$ and 1, we recognize (27) as the differential equation that determines eigenvalues of the laplacian on S^2 and S^3, respectively: in these cases one would have $E_i = l(l + 1)$ or $l(l + 2)/4$.

The next step is to determine, given specified η and χ, the values of E for which

$$\left[\frac{1}{\sin \beta} \frac{\partial}{\partial \beta} \sin \beta \frac{\partial}{\partial \beta} - (\eta \cot \beta + \chi \csc \beta)^2 \right] \phi = -e\phi$$ (28)

admits a regular solution on the interval $\beta \in [0, \pi]$. Introducing a new variable $z = \cos^2 \frac{\beta}{2}$, one can reduce (28) to a hypergeometric equation. Solutions of the form

$$\phi = z^F (1 - z)^G F(A, B; C; z)$$ (29)

with suitable A, B, C, F, and G are smooth in the interior of the interval, and have a behavior at the endpoints which can be determined using the formula [24]

$$F(A, B; C; z) = \frac{\Gamma(C)\Gamma(C - A - B)}{\Gamma(C - A)\Gamma(C - B)} F(A, B; A + B - C + 1; 1 - z) + (1 - z)^{C - A - B} \frac{\Gamma(C)\Gamma(A + B - C)}{\Gamma(A)\Gamma(B)} F(C - A, C - B; C - A - B + 1; 1 - z).$$ (30)
In brief, the solutions are regular when they can be expressed in terms of a hypergeometric function which is a polynomial. This is so when

\[\frac{1}{2} - \sqrt{\frac{1}{4} + e + \eta^2} + \max\{|\eta|, |\chi|\} \in \mathbb{Z}^- \equiv \{0, -1, -2, -3, \ldots\} . \]

(31)

One can verify (31) in four cases, taking \(\eta + \chi \) and \(\eta - \chi \) positive or negative. The eigenfunctions \(\phi \) in fact vanish at the endpoints except when \(|\eta| = |\chi| \). The case \(\eta = \chi = 0 \) leads to the Legendre polynomials. Let us go through the derivation of (31) for the case \(\eta - \chi \leq 0 \) and \(\eta + \chi \geq 0 \), and leave the other cases as an exercise for the reader. Choosing \(F = \frac{2 - \chi}{2} \) and \(G = \frac{\eta + \chi}{2} \), we are led to

\[
A = \frac{1}{2} + \chi - \sqrt{\frac{1}{4} + e + \eta^2} \quad B = \frac{1}{2} + \chi + \sqrt{\frac{1}{4} + e + \eta^2} \\
C = 1 + \chi - \eta .
\]

Regularity at \(z = 0 \) is guaranteed by our choice of the sign on \(F \). Because of the choice of sign on \(G \), regularity at \(z = 1 \) depends on having \(A \) or \(B \) vanish, so that the second term in (30) is absent. This occurs when \(A \in \mathbb{Z}^- \) or \(B \in \mathbb{Z}^- \). The latter is impossible because \(\chi \geq |\eta| \); so we are left with \(A \in \mathbb{Z}^- \), which indeed reduces to (31).

Writing \(l = k + \max\{|\eta|, |\chi|\} \) where \(k \in \mathbb{Z}^+ \equiv \{0, 1, 2, 3, \ldots\} \), one finds the simple expression \(e = l(l + 1) - \eta^2 \). Returning to (26), the final expression for the eigenvalues of the laplacian on \(T^{pq} \) is

\[E = 4\gamma^2 \left[a l_1(l_1 + 1) + b l_2(l_2 + 1) + m_3^2(1 - ay^2 - bx^2) \right] . \]

(32)

In (32), \(l_i = k_i + \max\{|m_3 y_i|, |m_i|\} \), \(k_i \in \mathbb{Z}^+ \), \(m_i \in \mathbb{Z} - m_3 y_i \), \(m_3 \in \frac{\sqrt{n^2 + q^2}}{2} \mathbb{Z} \), and \(i = 1, 2 \). The shift in the allowed values of \(m_i \) is necessary to ensure that (25) is single valued. Note that \(m_3 y_i \) is always either integer or half-integer, and that \(E \) is completely specified by \(m_3 \) (essentially, the \(U(1) \) charge) and the spins \(l_i \) under the two \(SU(2)'s \). The expression of (32) as a linear combination of the quadratic casimirs for the symmetry group \(SU(2) \times SU(2) \times U(1) \) is precisely the form expected for a coset manifold.\(^5\)

As in the case of \(S^5 \), the dimension of the scalar operator in the conformal field theory to which a given mode of the dilaton \(\phi \) couples is

\[\Delta = 2 + \sqrt{4 + E} , \]

(33)

where now \(\gamma \) must be chosen in (32) so that \(\Lambda = 4 \). In fact, these modes may be complexified by replacing \(\phi \) by a complex scalar \(B \) which also includes the axion. Comparing (2.33) and (2.53) of [25], one arrives at the conclusion that the operators coupling to the modes of \(h_6^\alpha \) and \(\alpha_\alpha^\beta_\gamma^\delta \) (which can be mixed together in two different ways) have dimensions

\[
\Delta = \begin{cases}
-2 + \sqrt{4 + E} \\
6 + \sqrt{4 + E} .
\end{cases}
\]

(34)

These dimensions can be read off directly from the eigenvalues of \(\Box \) because the relevant fields have a mode expansions purely in terms of the scalar eigenfunctions on \(T^{pq} \). In (33) and

\(^5\)Thanks to E. Witten for a discussion on this point.
(34) we have summarized the spectrum of operators which in [25] corresponded to the first, third, and sixth Kaluza-Klein towers of scalars. To obtain the rest of the bosonic spectrum, one must deal with the analogues of the vector, symmetric tensor, and antisymmetric tensor spherical harmonics appearing in (2.20) of [25]; for the fermionic spectrum, a study of the eigenfunctions of the Dirac operator is also required. We leave these more involved studies for future work.

Inspection of the spectrum of dimensions on all the T^{pq} reveals a rather uninteresting sequence of numbers, mostly complicated irrationals. However, T^{11} exhibits a fascinating feature which finds its explanation in the superconformal algebra. Operators of algebraically protected dimension are typically those whose dimension is the lowest possible given a certain R-charge, or else descendants of such operators derived by a series of supersymmetry transformations. The R-symmetry in this context is the $U(1)$ part of the isometry group of T^{11}, which acts by shifting α_3. The integer R-charge k is related to m_3 by $m_3 = k/\sqrt{2}$. Without loss of generality let us take $k \geq 0$. Using (32), (33), and (34), one finds that the smallest possible value of Δ is $\Delta = 3k/2$, and corresponds to a mode of h_0^α and $a_{\alpha \beta \gamma \delta}$ with $l_1 = l_2 = k/2$ and $|m_1|, |m_2| \leq k/2$. Thus we find a set of operators filling out a $(k + 1, k + 1)_k$ multiplet of $SU(2) \times SU(2) \times U(1)$, where $(d_1, d_2)_r$ indicates R-charge r and $SU(2)$ representations of dimensions d_1 and d_2. Indeed, $\Delta = 3k/2$ saturates the algebraic bound on Δ following from the superconformal algebra [26]. This part of the spectrum was anticipated on field theory grounds in [1], and it was argued there that the form of the operators is $\text{tr}(AB)^k$. The related operators in the third and sixth towers are descendants which presumably have the form $\text{tr} F_1^2(AB)^k + \text{tr} F_2^2(BA)^k$ and $\text{tr} F_3^4(AB)^k + \text{tr} F_4^4(BA)^k$, where F_4 is the special Lorentz contraction $F_{\mu_1 \mu_2} F_{\mu_2}^{\mu_3} F_{\mu_3}^{\mu_4} F_{\mu_4}^{\mu_1} - \frac{1}{4} (F_{\alpha}^{\mu_2} F_{\alpha}^{\mu_1})^2$.

The supergravity predicts in addition a spectrum of operators with at least one $SU(2)$ spin larger than the R-charge. These operators far outnumber the chiral primaries $\text{tr}(AB)^k$: there are $N_1(\Delta) \sim \frac{k}{2!} \Delta^2$ such chiral primaries with dimension less than Δ, versus a number $N(\Delta) \sim \frac{\text{Vol}_M}{60 \pi^4} \Delta^5$ of operators with larger $SU(2)$ spins, as follows from Weyl’s Law for the growth of eigenvalues of \Box. $N(\Delta) \sim \frac{\text{Vol}_M}{60 \pi^4} \Delta^5$. The dimensions of these non-chiral operators are in general irrational (square roots of integers). However, there are special nonnegative integer values of n_1 and n_2 such that for $l_1 = n_1 + k/2$ and $l_2 = n_2 + k/2$, the dimensions of the operators in the $(2l_1 + 1, 2l_2 + 1)_k$ multiplet are again integer or half-integer: $E = \left[2(n_1 + n_2 + 2) + \frac{3}{2} k \right]^2 - 4$, so $\Delta = 2(n_1 + n_2 + 2) + \frac{3}{2} k$ for relatives of the dilaton and $\Delta = 2(n_1 + n_2) + \frac{3}{2} k$ or $2(n_1 + n_2 + 4) + \frac{3}{2} k$ for relatives of h_0^α and $a_{\alpha \beta \gamma \delta}$. The n_i for which this occurs are solutions to the Diophantine equation $n_1^2 + n_2^2 - 4n_1n_2 - n_1 - n_2 = 0$: that is, consecutive terms in the sequence $\{0, 0, 1, 2, 4, 9, 18, 32, 57, 101, 182, 331, 609, 1130, 2109, 3982, 7457, 13950\}$.

6Thanks to I. Klebanov for a discussion on this point.

7Let us briefly indicate the solution of the Diophantine equation. Define

$$f_\pm(n) = \frac{1 + 4n \pm \sqrt{1 + 12n + 12n^2}}{2}.$$ By construction, any pair $(n_1, n_2) = (f_-(n), n)$ solves the equation, and any solution must have this form up to interchange of n_1 and n_2. Also, $f_+(0)$ is always a nonnegative integer, where the superscript denotes iterative application of f_+. To see that $(n_1, n_2) = (f_+(f_+(0)), f_+(0))$ where $i = 0, 1, 2, 3, \ldots$ are the only solutions, note that $f_-(f_+(n)) = n$ for nonnegative n, and $f_+(f_-(n)) = n$ for positive n. Furthermore, $f_-(n) \leq n$ for nonnegative integer n, with equality iff $n = 0$; and $f_-(n) = 0$ only for $n = 0$ or 1. Starting
If these higher dimension operators are, in some exotic sense, algebraic descendants of chiral primaries, then since the $SU(2)$ spins for given R-charge are larger than for the chiral primaries, the relevant algebra must involve the $SU(2)$'s. But, in contrast to the $U(1)$ R-symmetry group, the $SU(2)$'s do not participate in the usual $\mathcal{N} = 1$ superconformal algebra. Besides, the nilpotency of supersymmetry generators implies that the dimension of a descendant cannot be arbitrarily larger than the dimension of its chiral primary parent. So we do not see any reason why these peculiar series of operators with integer or half-integer dimensions should be protected.

4 Conclusions

It is an open question whether a quantum field theory constructed holographically from compactified string theory must include a local gauge invariance. Supergravity, and by extension closed strings, see only the gauge invariant observables. One can argue that if the compactification is supported by Ramond-Ramond charge, then it should be realizable in string theory as a D-brane configuration, and gauge invariance emerges from the dynamics of open strings attached to the branes. In light of this reasoning it would be interesting to find singular six-manifolds to which the T^{pq} spaces are related in the same way T^{11} is related to the conifold $z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0$ [1]. An analysis of D-branes on such manifolds should reveal a weak coupling gauge theory version of the conformal field theories defined holographically in this paper.

Perhaps the most general statement that can be made about supersymmetric theories constructed holographically from a product space $AdS_5 \times M_5$ is that the R-current must be free of gravitational anomalies: $\partial_\mu \langle T_{\alpha\beta} T_{\gamma\delta} R^\mu \rangle = 0$. This statement is nontrivial for $\mathcal{N} = 1$ and 2 supersymmetric theories, where the R-symmetry is $U(1)$ or $U(2)$; for $\mathcal{N} = 4$ the R-symmetry group is $SU(4)$, which is simple and hence automatically free of gravitational anomalies.

The original correspondence [2, 3, 4] between $AdS_5 \times S^5$ and $\mathcal{N} = 4$ super-Yang Mills theory has been questioned because so much of what it predicts is either non-verifiable (for instance the coefficient on the $q\bar{q}$ potential [27, 28]) or else largely a consequence of the large supergroup apparent on both sides of the duality (for example scaling dimensions of chiral operators). Already, holography’s successes go beyond the constraints of symmetry in predicting Green’s functions [29, 30] and in elucidating a geometric picture of confinement [31] and of baryons [32, 33]. Hopefully the example of D3-branes on conifolds, described for large N by the T^{11} manifold, will serve as further evidence that holography captures not only supergroup theory but gauge theory dynamics. The verification of $\gamma_{IR} = -1/2$ and $c_{IR}/c_{UV} = 27/32$ seems particularly nontrivial, since both relations rely on properties of the RG flow from the S^5/\mathbb{Z}_2 theory to the T^{11} theory.

with any putative solution $(f_-(n), n)$, one can find successively smaller solutions by repeated application of f_- to n until one reaches $n = 0$. The properties of f_+ now guarantee that n is a member of the sequence $\{f_+^{(i)}(0)\}_{i=0}^{\infty} = \{0, 1, 5, 20, 76, 285, \ldots\}$.
Acknowledgements

I would like to thank E. Witten for correcting a crucial sign in section 2 and for useful discussions on other points; and I have benefitted from discussions from I. Klebanov, N. Seiberg, and O. Aharony. This research was supported in part by the National Science Foundation under Grant No. PHY94-07194, by the Department of Energy under Grant No. DE-FG02-91ER40671, by the James S. McDonnell Foundation under Grant No. 91-48, and by the Hertz Foundation.
References

[1] I. R. Klebanov and E. Witten, “Superconformal field theory on three-branes at a Calabi-Yau singularity,” hep-th/9807080.

[2] J. Maldacena, “The Large N limit of superconformal field theories and supergravity,” hep-th/9711200.

[3] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B428 (1998) 105, hep-th/9802109.

[4] E. Witten, “Anti-de Sitter space and holography,” hep-th/9802150.

[5] S. Kachru and E. Silverstein, “4-D conformal theories and strings on orbifolds,” Phys. Rev. Lett. 80 (1998) 4855, hep-th/9802183.

[6] A. Lawrence, N. Nekrasov, and C. Vafa, “On conformal field theories in four-dimensions,” hep-th/9803015.

[7] A. Kehagias, “New type IIB vacua and their F theory interpretation,” hep-th/9805131.

[8] A. Fayyazuddin and M. Spalinski, “Large N superconformal gauge theories and supergravity orientifolds,” hep-th/9805096.

[9] Z. Kakushadze, “On large N gauge theories from orientifolds,” hep-th/9804184.

[10] O. Aharony, A. Fayyazuddin, and J. Maldacena, “The Large N limit of N=2, N=1 field theories from three- branes in F theory,” hep-th/9806159.

[11] L. J. Romans, “New compactifications of chiral $N = 2, d = 10$ supergravity,” Phys. Lett. B153 (1985) 392–396.

[12] M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” hep-th/9806087.

[13] S. S. Gubser and I. R. Klebanov, “Absorption by branes and Schwinger terms in the world volume theory,” Phys. Lett. B413 (1997) 41–48, hep-th/9708005.

[14] M. J. Duff, “Twenty years of the Weyl anomaly,” Class. Quant. Grav. 11 (1994) 1387–1404, hep-th/9308075.

[15] M. Bershadsky, Z. Kakushadze, and C. Vafa, “String expansion as large N expansion of gauge theories,” Nucl. Phys. B523 (1998) 59, hep-th/9803076.

[16] M. Bershadsky and A. Johansen, “Large N limit of orbifold field theories,” hep-th/9803249.

[17] L. Castellani, L. J. Romans, and N. P. Warner, “Symmetries of coset spaces and Kaluza-Klein supergravity,” Ann. Phys. 157 (1984) 394–407.
[18] D. Anselmi, D. Z. Freedman, M. T. Grisaru, and A. A. Johansen, “Nonperturbative formulas for central functions of supersymmetric gauge theories,” hep-th/9708042.

[19] N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge theories,” Nucl. Phys. B435 (1995) 129–146, hep-th/9411149.

[20] M. A. Shifman and A. I. Vainshtein, “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion,” Nucl. Phys. B277 (1986) 456.

[21] M. A. Shifman and A. I. Vainshtein, “On holomorphic dependence and infrared effects in supersymmetric gauge theories,” Nucl. Phys. B359 (1991) 571–580.

[22] I. I. Kogan, M. Shifman, and A. Vainshtein, “Matching conditions and duality in N=1 SUSY gauge theories in the conformal window,” Phys. Rev. D53 (1996) 4526–4537, hep-th/9507170.

[23] S. P. de Alwis, private communication, July 1998.

[24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Academic Press, San Diego, fifth edition ed., 1994.

[25] H. J. Kim, L. J. Romans, and P. van Nieuwenhuizen, “Mass spectrum of chiral ten-dimensional N = 2 supergravity on S^5,” Phys. Rev. D32 (1985) 389–399.

[26] M. F. Sohnius, “Introducing supersymmetry,” Phys. Rept. 128 (1985) 39.

[27] J. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett. 80 (1998) 4859, hep-th/9803002.

[28] S.-J. Rey and J. Yee, “Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity,” hep-th/9803001.

[29] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Correlation functions in the CFT(d) / AdS(d+1) correspondence,” hep-th/9804058.

[30] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, “Three point functions of chiral operators in D = 4, N=4 SYM at large N,” hep-th/9806074.

[31] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” hep-th/9803131.

[32] E. Witten, “Baryons and branes in anti-de Sitter space,” hep-th/9805112.

[33] D. J. Gross and H. Ooguri, “Aspects of large N gauge theory dynamics as seen by string theory,” hep-th/9805129.