Probing new CP violating observables in D meson decays

Yong-Feng Liu 1 and Xian-Wei Kang 2

1 Beijing Research Centre of Sustainable Energy and Building, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Departamento de Física, Universidad de Murcia, E-30071 Murcia, Spain

E-mail: Corresponding author: kxw198710@126.com (Xian-Wei Kang)

Abstract. CP violation in the charm quark sector has not been examined very well as the case for strange and beauty ones. Some novel insights into the issue on the CP violation in D meson decay are discussed. Specifically, i) the T-violating observables in $D \to VV$ decays are constructed. Assuming CPT invariance T violation implies CP violation. This is a new idea and an alternative way for probing CP violation in D decays; ii) the decay of quantum correlated DD pair to vector mesons (denoted by V) is explored, which offers the new CP violating observables that have not been noticed before;

1. Introduction

CP violation in D decay is still a primary and hot topic in flavor physics. In the Standard Model (SM), this quantity is shown to be small, and in fact, up to now, has not been well determined in experiment. Any large signal of CP violation would be a smoking gun for new physics, see e.g. Refs. [1, 2]. The general consensus is that in SM the CP asymmetry is highly suppressed and out of the current experimental capability, however, in a New Physics (NP) model, CP violation can reach a relatively large quantity. In Ref. [2] the authors show the CP violation can yield order of 10^{-2}, which is comparable to the current experimental sensitivity. Or contrarily, the non-observation of these CP violating signal will at least put severe constraint on these NP models.

The decays $D \to PP$ (P is a pseudoscalar, typical examples are $D \to K\pi, \pi\pi$) have been extensively considered, however, we notice that the mode of D decaying to vector meson can provide rich information in angular distribution due to the polarization of spin-1 meson. In case of $D \to VV$ decay, we show the triple production (TP) term can occur which violates the time-reversal invariance. These signals can be accessed by a angular analysis in experiment. The quantum coherent double D decays, $\psi(3770) \to D\bar{D} \to (VV)(VV)$, is also quite interesting, since it provides new CP violating observables that have not been aware of before. We may denote $\psi(3770)$ resonance by ψ for simplicity. Below we will sketch this method. Replacing one VV pair by $K\pi$, one has $\psi(3770) \to D\bar{D} \to (VV)(K\pi)$, which is exploited to render a new information on the strong phase δ, required for the extraction of the angle γ in Cabibbo-Kobayashi-Maskawa (CKM) matrix [3, 4].
2. Single D decays to VV

The mode of single D decaying to VV is used to explore the CP violation [5]. The vector meson can provide a polarization factor (denoted by ϵ) and thus the triple product like $\vec{k} \cdot (\epsilon_1 \times \epsilon_2)$ can be composed. It is interesting to note that such triple product (TP) violates time-reversal (T) symmetry. Then if such structures can be isolated from the angular analysis, these would be measurable in experiment. By comparing a pair of CP-conjugate process, the term of correlation of triple product can be extracted in a way such that the clean CP violation can be probed [6]. For the process $D(p) \rightarrow V_1(k, \epsilon_1)V_2(q, \epsilon_2)$, where in the parenthesis the four-momenta and polarization is indicated for each vector meson, the amplitude can be written as [6],

$$M = a\epsilon_1^* \cdot \epsilon_2^* + \frac{b}{m_{1m_2}}(p \cdot \epsilon_1^*)(p \cdot \epsilon_2^*) + \frac{c}{m_{1m_2}}\epsilon^{\alpha\beta\gamma\delta}\epsilon_{1\alpha}\epsilon_{2\beta}k_\gamma p_8,$$

where $\epsilon_{1\alpha}\epsilon_{2\beta}k_\gamma p_8$ is the mode of single D mesons in the rest frame of D meson takes just $\vec{p} \cdot (\epsilon_1^* \times \epsilon_2^*)$ which changes sign under the time-reversal transformation. With CP invariance one can write the amplitude for $D(p) \rightarrow V_1(k, \epsilon_1)V_2(q, \epsilon_2)$ as

$$\overline{M} = \overline{a}\epsilon_1^* \cdot \epsilon_2^* + \frac{\overline{b}}{m_{1m_2}}(p \cdot \epsilon_1^*)(p \cdot \epsilon_2^*) - \frac{\overline{c}}{m_{1m_2}}\epsilon^{\alpha\beta\gamma\delta}\epsilon_{1\alpha}\epsilon_{2\beta}k_\gamma p_8,$$

with

$$\overline{a} = \sum_j a_j e^{i\delta_{j1}} e^{-i\phi_{j1}}, \quad \overline{b} = \sum_j b_j e^{i\delta_{j0}} e^{-i\phi_{j0}}, \quad \overline{c} = \sum_j c_j e^{i\delta_{j1}} e^{-i\phi_{j1}}.$$

And then

$$|\overline{M}|^2 = |\overline{a}|^2|\epsilon_1^* \cdot \epsilon_2^*|^2 + |\overline{b}|^2|(k \cdot \epsilon_1^*)(q \cdot \epsilon_2^*)|^2 + |\overline{c}|^2|\epsilon^{\alpha\beta\gamma\delta}\epsilon_{1\alpha}\epsilon_{2\beta}k_\gamma p_8|^2$$

$$+2\text{Re}(\overline{a}\overline{b}^*)(\epsilon_1^* \cdot \epsilon_2^*)(k \cdot \epsilon_1^*)(q \cdot \epsilon_2^*)$$

$$+2\text{Im}(\overline{a}\overline{c}^*)(\epsilon_1^* \cdot \epsilon_2^*)\epsilon^{\alpha\beta\gamma\delta}\epsilon_{1\alpha}\epsilon_{2\beta}k_\gamma p_8 - 2\text{Im}(\overline{b}\overline{c}^*)(k \cdot \epsilon_2^*)(q \cdot \epsilon_1^*)\epsilon^{\alpha\beta\gamma\delta}\epsilon_{1\alpha}\epsilon_{2\beta}k_\gamma p_8.$$
Comparing $|M|^2$ and $|\overline{M}|^2$, one finds

$$ A_T \propto Im(ac^*) = \sum_{i,j} a_i c_j \sin[(\phi_{si} - \phi_{pj}) + (\delta_{si} - \delta_{pj})] $$

(7)

and

$$ \frac{1}{2}(A_T + \overline{A}_T) \propto \frac{1}{2}[Im(ac^*) - Im(\overline{a}c^*)] = \sum_{i,j} a_i c_j \sin(\phi_{si} - \phi_{pj}) \cos(\delta_{si} - \delta_{pj}), $$

$$ \frac{1}{2}(A_T - \overline{A}_T) \propto \frac{1}{2}[Im(ac^*) + Im(\overline{a}c^*)] = \sum_{i,j} a_i c_j \cos(\phi_{si} - \phi_{pj}) \sin(\delta_{si} - \delta_{pj}). $$

(8)

A_T itself is not a signal of T violation, since even $\phi = 0$ one can still get a non-zero A_T due to the contamination of the strong phase. However, $A_T + \overline{A}_T$ is a clean identification of the T-violation. The next step is to build the bridge between A_T and an experimentally-accessable quantities.

Keeping in mind that a, b, c is related to the helicity amplitude, the angular distribution should contain these T-violating information. To that end, the helicity formalism developed by Jacob and Wick [7] is proved to be very useful. The two-body decay amplitude can be written as (see also Ref. [8])

$$ A(a \rightarrow 1 + 2) = \sqrt{\frac{2 J + 1}{4 \pi}} D_{i\lambda}^j(\phi_1, \theta_1, 0) H_{\lambda_1 \lambda_2}, $$

(9)

where J is the total angular momentum of particle a, M the spin projection along an arbitrarily chosen z-axis, (θ, ϕ) is the polar angle of $\vec{p_1}$ in the rest frame of a; λ’s are the corresponding helicities, and H is the helicity amplitude. The Rotation matrix is defined as

$$ D_{m' m}(\alpha, \beta, \gamma) = e^{-i\alpha m' l} d_{i m'}^j(\beta) e^{-i\gamma m} $$

(10)

with the Wigner d function. In Eq. (9), we have chosen the choice $\gamma = 0$ [7]. For cascade two-body decay, the amplitude is just given the product of each reaction. Then the differential decay rate can be calculated, containing the helicity amplitudes $H_{1,1}, H_{0,0}, H_{-1,-1}$ corresponding to the helicity configurations for the two vector mesons. In a practical experimental analysis, the transversity basis can be also introduced,

$$ A_\parallel = \frac{1}{\sqrt{2}}(H_{1,1} + H_{-1,-1}), \quad A_0 = H_0, \quad A_\perp = \frac{1}{\sqrt{2}}(H_{1,1} - H_{-1,-1}) $$

(11)

which has a good CP transformation behavior with eigenvalues $+1$, $+1$ and -1 respectively. This point can be understood by [7, 8]

$$ CP|JM, \lambda_1 \lambda_2; 1, 2\rangle = \eta_1 \eta_2 (-)^{J-s_1-s_2}|JM, \lambda_1 \lambda_2; \bar{1}, \bar{2}\rangle. $$

(12)

For the current case, $0^- \rightarrow 1^- + 1^-$, we have the total angular momentum $J = 0$, the spin of vector mesons $s_1 = s_2 = 1$, and the intrinsic parity $\eta_1 = \eta_2 = -1$, then $H_{\lambda_1 \lambda_2} = \overline{H}_{-\lambda_1,-\lambda_2}$. Here we write out the angular distribution for the process $D \rightarrow VV \rightarrow (PP)(PP)$,

$$ \frac{d \Gamma}{d \cos \theta_1 d \cos \theta_2 d \phi} \propto \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \cos^2 \phi |A_\parallel|^2 + \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \sin^2 \phi |A_\perp|^2 $$

$$ + \cos^2 \theta_1 \cos^2 \theta_2 |A_0|^2 - \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \sin 2 \phi Im(A_\parallel A_0^*) $$

$$ - \frac{\sqrt{2}}{4} \sin 2 \theta_1 \sin 2 \theta_2 \cos \phi Re(A_\parallel A_0^*) + \frac{\sqrt{2}}{4} \sin 2 \theta_1 \sin 2 \theta_2 \sin \phi Im(A_\perp A_0^*). $$

(13)
The parts \((A_\perp A_0^*)\) and \((A_\parallel A_0^*)\) are related to \(T\)-violating signal and can be measured in experiment. Such angular distribution formula with helicity amplitudes are also investigated in Refs. [9, 10]. We also plan to extend this framework to the interesting decay mode \(B \rightarrow \pi \pi l \bar{\nu}_l\) [11].

3. Quantum correlated \(D \bar{D}\) decay

3.1. \(\psi(3770) \rightarrow D^0 \bar{D}^0 \rightarrow (V_1 V_2)(V_3 V_4)\)

The original idea is motivated by that \(CP\) violation occurs in the correlated \(D^0 \bar{D}^0\) decays to final state \(f_a f_b\) with the same \(CP\) eigenvalue under the \(CP\) transformation [12]. This is simply because \(f_a f_b\), that is produced from \(\psi \rightarrow D^0 \bar{D}^0\), is in the state of \(P\)-wave. As for e.g., the \((PP)(PP)\) or \((PP)(VP)\) decay product, the only observable is the decay rate or branching ratio, since the helicity is fixed in these cases, however, as mentioned before, for the \((VV)(VV)\) mode very rich angular information can be available due to the polarization of vector meson.

We will describe our decay chain as

\[
\psi \rightarrow D^0 \bar{D}^0, \quad D^0 \rightarrow V_1 V_2, \quad \bar{D}^0 \rightarrow V_3 V_4,
\]

where the vector meson decays to pseudoscalar pairs,

\[
V_1 \rightarrow M_1 M_1', \quad V_2 \rightarrow M_2 M_2', \quad V_3 \rightarrow M_3 M_3', \quad V_4 \rightarrow M_4 M_4'.
\]

(15)

According to the idea that the final states must have different \(CP\) eigenstates, the transversity combinations \((0, 0), (|\cdot|, |\cdot|), (\perp, \perp), (|\cdot|, |\cdot|), (0, 0),\) for the two pairs of vector mesons violate \(CP\) symmetry since \(A_0\) and \(A_\parallel\) are \(CP\)-even while \(A_\perp\) \(CP\)-odd. The next step is to pick out these pieces in the angular distribution and e.g. [13],

\[
\int d\Gamma \frac{1}{128} \prod_{i=1}^{4} (5 \cos^2 \theta_i - 1) \sim |A(D^0 \rightarrow V_1 V_2)|^2 |A(D^0 \rightarrow V_3 V_4)|^2 |\rho_{V_1 V_2}^0 - \rho_{V_3 V_4}^0|^2.
\]

(16)

with the definition

\[
\rho_f = \frac{A(D^0 \rightarrow f)}{A(D^0 \rightarrow f)}.
\]

(17)

For more details, we refer readers to the original paper [13] and more supplements in Ref. [14, 15]. Here we mainly concentrate at the physics behind. In experiment, the information of \(|\rho_{V_1 V_2}^0 - \rho_{V_3 V_4}^0|^2\) can be easily accessed in terms of the expression for branching ratio

\[
BR(D^0 \bar{D}^0 \rightarrow f_a f_b) = 2 BR(D^0 \rightarrow f_a) BR(D^0 \rightarrow f_b) |\rho_a - \rho_b|^2.
\]

(18)

In above equation, all the small quantities due to the mixing have been neglected. One can parameterize \(\rho_f = \eta_f (1 + \delta_f) \exp(i \alpha_f)\) where \(\delta_f\) represents \(CP\)-violation in decay, and \(\alpha_f\) is the phase difference between \(D^0\) and \(\bar{D}^0\) to the same final state \(f\). Then one has, neglecting \(\delta_f\),

\[
|\rho_a - \rho_b|^2 = 4 \sin^2 \frac{\alpha_a - \alpha_b}{2}.
\]

(19)

Up to now, there is no direct measurement for joint \(D^0 \bar{D}^0\) decay. Assuming non-observation of the \(CP\)-violating signals, taking the \((V_1 V_2) = (0 \rho^0)^0\) ("0" part), \((V_3 V_4) = (K^* \rho^0)_{||}\) ("||" part) as example, one can put the constraint that the corresponding angle difference is smaller than 5
degrees around. The statistics knowledge on estimating the rare signal has been used, namely, taking the method proposed in Ref. [16], an upper limit 2.4 for the signal event is setted for non-observation of a signal in a true experiment with average background event number \(b = 3 \). This has been widely used in estimating the upper limit of rare signals, see e.g. for the \(\Lambda - \bar{\Lambda} \) oscillation [17, 18]. In the estimate, we have considered the 20 fb\(^{-1} \) \(\psi(3770) \) data. At last we stress that the two vector meson pairs should not be identical. More clearly, they are either different particles or in different transeversity combination (like \((0, |\rangle) \) or \((|\rangle, 0) \), but can not be \((0, 0) \), \((|\rangle, |\rangle) \) and \((|\rangle, \perp) \)), otherwise, the branching ratio will be zero, as can be seen easily from Eq. (18).

3.2. \(\psi(3770) \rightarrow D^0\bar{D}^0 \rightarrow (V_1V_2)(K\pi) \)

This subsection is devoted to the better extraction of the strong phase \(\delta \) occuring in the \(D \rightarrow K\pi \) decay, that is needed to extract the CKM matrix angle \(\gamma \) in the Atwood-Dunietz-Soni (ADS) method [19]. In 1997, the authors ADS proposed a nice method that makes it possible for a clean extraction of angle \(\gamma \), by combining the measurements of \(B^- \rightarrow K^-D^0(f \rightarrow D^0) \) and \(B^- \rightarrow K^-\bar{D}^0(\bar{D}^0 \rightarrow f) \), where \(f \) is doubly-Cabibbo-suppressed mode of \(D^0 \) and thus a Cabibbo-favoured state of \(\bar{D}^0 \), but \(f \) is not necessary a \(CP \)-eigenstate. In fact, \(K\pi \) is a typical example. In doing so, the knowledge on \(D \rightarrow K\pi \) decay is an essential input for that procedure. One can introduce the strong phase \(\delta \) by the ratio of amplitudes

\[
A\left(D^0 \rightarrow K^-\pi^+\right) \quad \frac{A(\bar{D}^0 \rightarrow K^-\pi^+)}{A(D^0 \rightarrow K^-\pi^+)}
\]

Adapting the formula for the \(4V \) modes to current case for \((V_1V_2)(K\pi) \) one will get the differential decay rate. It depends on the amplitudes of \(D \rightarrow VV \) part, i.e., \(A_0, A_{||} \), \(A_\perp \) and also \(r \) and \(\delta \). The new feature is the emergence of the \(|\sin\delta| \) term. Note that \(\delta \) has been measured from the \(D^0\bar{D}^0 \rightarrow (PP)(PP) \) mode, and the results show that \(\delta \) is a quite small number since \(\cos\delta \approx 1 \) [20, 21]. Considering this fact, the sensitivity on \(\sin\delta \) is much larger than the one for \(\cos\delta \) and we expect to use this measurement to improve the errors on \(\delta \).

4. Conclusion

The processes \(\psi(3770) \rightarrow D^0\bar{D}^0 \rightarrow (VV)(VV), \psi(3770) \rightarrow D^0\bar{D}^0 \rightarrow (VV)(K\pi) \) and \(D \rightarrow VV \rightarrow (PP)(PP) \) are explored, where \(P \) and \(V \) denote the pseudoscalar and vector mesons, respectively. The motivation is to fully exploit the polarization of vector meson and thus provides rich angular observables. Concerning the \(4V \) mode, we show that the new \(CP \) violating observables can be constructed, and as for \((VV)(K\pi) \) we point out it can be used to extract the strong phase \(\delta \) in the decay \(D \rightarrow K\pi \). The appearance of \(\sin\delta \) term makes it more welcome than \(\cos\delta \) since \(\delta \) is very small. Besides these quantum correlated \(D^0\bar{D}^0 \) decay we notice that \(D \rightarrow VV \) is also a promising mode. Here the novelty is utilizing the \(T \)-violation. Assuming \(CPT \) invariance, \(T \)-violation is equivalent to a \(CP \)-violating signal. These proposals can be tested in BES or the future super tau-charm factory with much higher luminosity.

Acknowledgements

The author X.W.Kang would like to express his appreciation to J. Charles, S. Descotes-Genon and Hai-Bo Li. Some texts are based on the collaborative paper [5][13] with them. Concerning ordering of the reference, we have benefited much from J. A. Oller. We also acknowledge the email exchanges with Prof. G. Valencia and Prof. D. London. This proceeding is funded by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD20140311) and the Beijing Natural Science Fund (KZ201510016019).
References
[1] Delepine D, Faisel G and Ramirez C A 2013 Phys. Rev. D 87 075017
[2] Grossman Y, Kagen A L and Nir Y 2007 Phys. Rev. D 75 036008
[3] Cabibbo N 1963, Phys. Rev. Lett. 10, 531 (1963)
[4] Kobayashi M and Maskawa T 1973, Prog. Theor. Phys. 49, 652
[5] Kang X W and Li H B 2010, Phys. Lett. B 684, 137 (Preprint arXiv:0912.3068 [hep-ph])
[6] Valencia G, Phys. Rev. D 39, 3339
[7] Jacob M and Wick G C 1959, Annals Phys. 7, 404; [Annals Phys. 281, 774 (2000)].
[8] Richman J D 1984, “An Experimenter’s Guide to the Helicity Formalism”, CALT-68-1148.
[9] Kang X W, Li H B, Lu G R and Zou B S 2010, Chin. Phys. C 34, 1061 (Preprint arXiv:0911.2998 [hep-ph])
[10] Kang X W, Li H B, Lu G R and Datta A 2011, Int. J. Mod. Phys. A 26, 2523 (Preprint arXiv:1003.5494 [hep-ph])
[11] Kang X W, Kubis B, Hanhart C and Meißner U G 2014, Phys. Rev. D 89, 053015 (Preprint arXiv:1312.1193[hep-ph])
[12] Bigi I I Y and Sanda A I 1984, Phys. Rev. D 29, 1393
[13] Charles J, Descotes-Genon S, Kang X W, Li H B and Lu G R 2010, Phys. Rev. D 81, 054032 (Preprint arXiv:0912.0899 [hep-ph])
[14] Kang X W, Charles J, Descotes-Genon S and Li H B 2010, PoS ICHEP 2010, 247 (Preprint arXiv:1010.1687 [hep-ph])
[15] Charles J, Descotes-Genon S, Kang X W and Li H B 2011, Int. J. Mod. Phys. Conf. Ser. 02, 132
[16] Roe B P and Woodroffe M B 1999, Phys. Rev. D 60, 053009 (Preprint physics/9812036)
[17] Kang X W, Li H B and Lu G R 2010, Phys. Rev. D 81, 051901 (Preprint arXiv:0906.0230 [hep-ph])
[18] Kang X W, Li H B and Lu G R 2010, “Probe Λ − ¯Λ oscillation in J/ψ → Λ ¯Λ decay at BES-III,” (Preprint arXiv:1008.2845 [hep-ph])
[19] Atwood D, Dunietz I and Soni A 1997, Phys. Rev. Lett. 78, 3257 (Preprint hep-ph/9612433)
[20] Asner D M et al 2012 [CLEO Collaboration], Phys. Rev. D 86 112001 (Preprint arXiv:1210.0939[hep-ex])
[21] Ablikim M et al 2014 [BESIII Collaboration], Phys. Lett. B 734, 227 (Preprint arXiv:1404.4691[hep-ex])