Review of preprocessing techniques used in soil property prediction from hyperspectral data

S. Minu1*, Amba Shetty1 and Binny Gopal2

Abstract: Soil properties are neither static nor homogenous with space and time. Capturing the spatial variation of soil properties through conventional methods is a difficult task. Hyperspectral remote sensing data provide rich source of information produced in the form of spectrum at each pixel which can be used to identify surface materials. Airborne and spaceborne narrowband hyperspectral sensors have come to the fore which provides spectral information across large area. Thus, it is a promising tool for studying soil properties and can be used as an alternative to conventional method. But atmospheric attenuation and low signal to noise ratio are major problems with this type of data. Preprocessing of hyperspectral airborne/spaceborne data is required to extract soil properties. This paper reviews previous studies on prediction of soil properties from hyperspectral airborne and satellite data during the past years and the preprocessing techniques used in these predictions.

1. Introduction
Remotely sensed hyperspectral satellite data have great potential for quantitative assessment of soil and vegetation parameter at spatial scale. The development of methods to map soil properties using optical remote sensing data in combination with field measurements has been the objective of several studies during the last decade (Ben-Dor et al., 2009). Also it has been a challenge to find the most appropriate technique for studying soil properties from optical data and thus reducing the time and effort involved in field sampling and laboratory analysis.

Soil reflectance in the visible near-infrared and mid-infrared regions has been widely used in many studies. Some of the soil properties predicted from reflectance data were organic matter (OM), soil

ABOUT THE AUTHORS
Our group works on application of Hyperspectral data for soil and vegetation discrimination applications. In the process of applying this data to any application, major issue to be addressed is to account for the effects of atmosphere on the hyperspectral data and to account for it appropriately. Though there are several algorithms available to address this, there is no guideline on the application of them. One of the issues that we wish to address is how best to account for the effect of atmosphere so that proper signal of the targets is extracted for further analysis.

PUBLIC INTEREST STATEMENT
The present review paper would be very useful in the process of digital soil mapping mission from satellite data. As soil is a precious non-renewable resource, it has to be examined periodically. Prediction from satellite data provides a continuous method of monitoring soil quality. The accuracy of prediction depends on the quality of satellite data. The methods to improve quality of data are reviewed in this paper.
organic carbon (SOC), total nitrogen (TN), pH, moisture content (MC), electrical conductivity (EC), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), manganese (Mn), zinc (Zn), and iron (Fe) with various levels of prediction accuracy. Various prediction models such as multiple linear regression (MLR), principal components regression (PCR), stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), artificial neural networks (ANN), etc. were used. These models work well with signals obtained under laboratory conditions, with minimal source of noise. Thus, performance of these models on remotely sensed airborne or spaceborne data is influenced by atmospheric interference and the occurrence of spectral noises. At this juncture, the role of preprocessing techniques on the prediction accuracy of soil properties from remotely sensed data needs to be studied.

Preprocessing techniques consist of atmospheric correction algorithms as well as spectral pretreatment and smoothing methods. Over the years, atmospheric correction algorithms have evolved from applied math approach to ways supported on rigorous radiative transfer (RT) modeling (Minu & Shetty, 2015). Noise and unwanted spectral signals are removed by spectral pretreatment and smoothing methods. Only good-quality data with better signal-to-noise ratios can be conveniently used for the purpose.

Minu and Shetty (2015) review different hyperspectral atmospheric correction algorithms developed during the past years. Internal average reflectance approach (Kruse, Raines, & Watson, 1985), flat field approach (Roberts, Yamaguchi, & Lyon, 1986), empirical line (EL) method (Roberts, Yamaguchi, & Lyon, 1985), QUIck atmospheric correction (Bernstein et al., 2005) etc. are empirical or semi-empirical atmospheric correction methods. RT codes try to simulate the transfer process of an electromagnetic wave in the atmosphere. The normally used RT codes are LOWTRAN (Kneizys et al., 1988), MODTRAN (Berk, Bernstein, & Robertson, 1989), 5S (Tanré, Deroo, Duhaut, Herman, & Morcrette, 1990), and 6S (Vermote et al., 1997). There are a range of software programs available to model the atmosphere including ATmospheric REMoval algorithm (ATREM) (Gao, Heidebrecht, & Goetz, 1993), ATmospheric CORrection (ATCOR) (Richter, 1996), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) (Adler-Golden et al., 1998), Imaging Spectrometer Data Analysis System (ISDAS) (Staenz, Szeredi, & Schwarz, 1998), High-accuracy ATmosphere Correction for Hyperspectral data (HATCH) (Qu, Goetz, & Heidbrecht, 2001), Atmospheric CORrection Now (ACORN) (ACORN 4.0, 2002) etc. Hybrid methods include combinations of empirical approaches and radiative modeling for the derivation of surface reflectance from hyperspectral imaging data. Each preprocessing technique is made of its own assumptions. So there is a need to analyze limitations of different preprocessing techniques and to come up with a universal method.

2. Prediction of soil properties from airborne/spaceborne hyperspectral data

Hyperspectral sensors operate with more than hundreds of bands with good spatial and spectral resolution producing continuous spectra. With the progress and maturity of technology, hyperspectral remote sensing has found a wide range of applications in mapping soil types and quantifying soil constituents. Review papers by Ben-Dor et al. (2009); Ge, Thomasson, and Sui (2011); Mulder, de Bruin, Schaepman, and Mayr (2011), etc. point toward it. Airborne sensors provide high spatial resolution (2–20 m), high spectral resolution (10–20 nm), and high SNR (>500:1) data. Even though satellite hyperspectral imageries have become available since 2000, only few attempts have been made to use them for mapping soil properties. This may be due to their low signal to noise ratio. Tables 1 and 2 summarize previous studies carried out using airborne and satellite hyperspectral imageries to predict soil properties. The preprocessing techniques used are also mentioned in the table.

It is seen that RT models are mainly used in preprocessing of airborne imagery. It may be due to the fact that more information on atmospheric conditions are available in the case of airborne sensors, so that modeling of atmosphere can be done precisely and it can be removed to obtain pure signal. Whereas semi-empirical models like FLAASH are mainly used in hyperspectral imageries. Comparison of different models are still lacking in this field. Also EL method which also requires ground information gives good results. But it is limited only to the areas where ground information
Soil property	Platform/spectral range/spatial resolution	Field nature	Country	Preprocessing method	Prediction tech.	\(R^2 \) value	Author
Fe	AVIRIS (400–2,500 nm) (20 m)	Pasture and seasonal crops	Brazil	MODTRAN-based (Green, Conel, & Roberts, 1993)	Regression equations	0.83	Galvão, Pizarro, and Epiphanio (2001)
TiO₂						0.74	
Al₂O₃						0.68	
OM	DAIS-7915 (400–2,500 nm) (5 m)	Agriculture fields	Israel	Minimum noise fraction (MNF) (Green, Berman, Switzer, & Craig 1988) for noise reduction; EL technique	Visible and NIR analysis	0.827	Ben-Dor, Petkin, Banin, and Karnieli (2002)
EC						0.647	
EC pH						0.665	
Mg						0.67	
K						0.59	
OM						0.55	
OM TiO₂						0.74	
OM Al₂O₃						0.68	
OM pH						0.67	
OM Mg						0.59	
EC pH						0.665	
Mg OM Al₂O₃						0.67	
K OM TiO₂						0.59	
Iron oxide	CASI-A (400–1,000 nm) (3 m)	Sand dunes	Israel	EL technique	Spectral indices based model	0.59	Ben-Dor et al. (2006)
Gravel coverage %	DAIS-7915 (400–2,500 nm) (5 m)	Alluvial fan	Negev desert, Israel	MNF technique for noise reduction and EL technique	Ferric absorption feature depth(AFD) model	0.83	Crouvi, Ben-Dor, Beyth, Avigad, and Amit (2006)
SOC	HyMap (450–2,500 nm) (3.5 m)	Agriculture fields	Germany	ATCOR Richter & Schläpfer, (2002); Schläpfer & Richter, 2002	MLR	0.9	Selige, Böhner, and Schmidhalter (2006)
TN Sand Clay						0.92	
SOC TN Sand Clay						0.95	
SOC TN Sand Clay						0.71	
EC pH						0.86	
Mg Na Cl						0.87	
Cl						0.65	
EC pH						0.86	
Mg Na Cl						0.86	
Clay						0.65	
EC pH						0.86	
Mg Na Cl						0.86	
Clay						0.65	
Ca CO₃						0.6696	
Cl						0.6188	
Mg Na Cl						0.6188	
Clay						0.6224	
CaCO₃						0.7376	
Clay						0.7376	
CaCO₃						0.7376	

(Continued)
is available. Also it is seen that prediction of SOC gives good results compared to other properties. This may be because the soil reflectance curve is affected more by presence of OM.

3. Inference
Several surface soil properties were modeled from remotely sensed hyperspectral imagery. Since soil is a more heterogeneous material, more careful spectral manipulations need to be done in assessing its properties from spectral data. For the best performance of any prediction system, the key influencing factors are to be identified and optimized. Although there are many soil properties prediction models, the prediction accuracy is found to be still very low.

The noises should be removed from the hyperspectral imagery in order to utilize it to the best. The signal to noise ratio should be maximum. Several spectral pre-processing methods are employed in various studies to improve the performance and robustness of the prediction models. Even though the pre-processing techniques affect the prediction model considerably, it was not given that much importance. So to develop a good model there is a need to perform a better preprocessing. In this percept, different preprocessing techniques used in various studies are listed in this review paper. Hybrid methods which combine physical model and image statistics need to be promoted. There is a need to give guidelines on selection of suitable preprocessing technique for the prediction of soil chemical properties.

Soil property	Platform/ spectral range/spatial resolution	Field nature	Country	Preprocessing method	Prediction tech.	R^2 value	Author
MC	HyMap (440–2,470 nm) (4 m)	Sandy substrates and low vegetation cover area	Germany	MODTRAN4 based ACUM algorithm	Normalized soil moisture index (NSMI) model	0.819	Haubrock, Chabrilat, Kuhnert, Hostert, and Kaufmann (2008)
Clay	HYMAP (400–2,500 nm) (5 m)	Area is devoted to vineyards	France	ATCOR4 code for airborne sensors	Continuum removal analysis	0.58	Lagacherie, Baret, Feret, Madeira Netto, and Robbez-Masson (2008)
CaCO$_3$						0.47	
SOC	AHS-160 sensor (430 nm–2,540 nm) (2.6 m)	Agriculture fields	Belgium	MODTRAN 4 embedded with ATCOR 4 (Richter, Schläpfer, & Müller, 2006)	PLSR	RPD = 1.47	Stevens et al. (2008)
Clay	HYMAP (400–2,500 nm) (5 m)	Area is devoted to vineyards	France	ATCOR4 code for airborne sensors	PLSR	0.64	Lagacherie, Gomez, Bailly, Baret, and Coulouma (2010)
CaCO$_3$						0.77	
SOC	AHS-160 sensor (430 nm–2,540 nm) (2.6 m)	Cropland	Luxembourg	MODTRAN4-based algorithm; (Richter, 2005; Rodger & Lynch, 2001)	PLSR	0.71	Stevens et al. (2010)
C	HyperSpecTIR (400–2,450 nm) (2.5 m)	Tilled agricultural fields	MD, USA	Imagery processing by ENVI 4.7; & different signal smoothening methods	PLSR	0.65	Hively et al. (2011)
Al						0.76	
Fe						0.75	
Silt						0.79	
Clay	MIVIS (430–1,270 nm) (4.8 m)	Maize field, but the crop had not emerged	Central Italy	MODTRAN4-based model (Vermote, Tanre, Deuze, Herman, & Marcotte, 1997)	PLSR	0.78	Casa, Castaldi, Pascucci, Palombo, and Pignatti (2013)
Silt						0.56	
Sand						0.81	
SOC	CASI 1500 (380–1,050 nm) (0.2 m)	Compost added soil	Italy	EL calibration with asphalt spectral signatures	Correlation between the second derivative value and SOC	0.85	Matarrese et al. (2014)
Table 2. Summary of soil properties prediction using satellite remote sensing techniques

Soil Prop	Platform	Field characteristics	Country	Preprocessing method	Prediction tech.	R^2 values	Author
SOC	EO1 Hyperion (400–2,500 nm) (30 m)	Cotton crops and pasture. Field size = 100 × 500 m2	Australia	Algorithm based on ATREM and SS code.	PLSR	0.5	Gomez, Viscarra Rossel, and McBretney (2008)
OM	EO1 Hyperion (400–2,500 nm) (30 m)	Raw-crop agriculture field	Central Indiana, USA	ENVI FLAASH module	PLSR	0.74	Zheng (2008)
TN	EO1 Hyperion (400–2,500 nm) (30 m)	Arid regions; 4,332 km2.	Shanxi, China	EL atmospheric correction	Linear regression model	0.84	Wu, Liu, Chen, Wang, and Chai (2009)
TP	EO1 Hyperion (400–2,500 nm) (30 m)	Bare field	Central Indiana, USA	ACORN	PLSR	0.79	Zhang, Li, and Zheng (2009)
TC	EO1 Hyperion (400–2,500 nm) (30 m)	Agriculture–pasture mixed area.	Hengshun County, China	Internal average relative reflectance	Land degradation spectral response units (DSRU) model	0.722	Wang, He, Lv, Chen, and Jian (2010)
Clay	EO1 Hyperion (400–2,500 nm) (30 m)	Maize field, but the crop had not emerged, 12 and 17 ha plots	Central Italy	FLAASH	PLSR	0.6	Casa et al. (2013)
Silt	CHRIS-PROBA (415–1,050 nm) (17 m)	Wheat and potato fields. Field size = 90 × 90 m2.	China	FLAASH	PLSR	0.63	Lu, Wang, Niu, Li, and Zhang (2013)
Sand	EUR image (17 m)	Scattered paddy fields, 47 km2.	Karnataka India	FLAASH, Moving average Savitzky–Golay	PLSR	0.63	Gopal, Shetty, and Ramya (2014)
OM	EO1 Hyperion (400–2,500 nm) (30 m)	Coastal soils densely covered with vegetation	Florida, USA	FLAASH, MNF filter	PLSR	0.67	Anne, Abd-Ellahman, Lewis, and Hewitt (2014)
POM	EO1 Hyperion (400–2,500 nm) (30 m)						
MAOM	EO1 Hyperion (400–2,500 nm) (30 m)						
labile C	EO1 Hyperion (400–2,500 nm) (30 m)						
labile N	EO1 Hyperion (400–2,500 nm) (30 m)						

Funding

The authors received no direct funding for this research.

Author details

S. Minu1
E-mail: minu.s88@gmail.com

Amba Shetty1
E-mail: amba.shetty@yahoo.co.in

Binny Gopal2
E-mail: binnycoorg07@gmail.com

1 Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, Karnataka, India.

2 Department of Agronomy, University of Agricultural and Horticultural Sciences, Navile, Shimoga, Karnataka 577225, India.

Citation information

Cite this article as: Review of preprocessing techniques used in soil property prediction from hyperspectral data, S. Minu, Amba Shetty & Binny Gopal, Cogent Geoscience (2016), 2: 1145878.

References

- ACORN 4.0. (2002). “User’s Guide”, Analytical Imaging and Geophysics. Boulder, CO: LLC.
- Adler-Golden, S. M., Berk, A., Bernstein, L. S., Richtsmeier, S., Acharya, P. K., Matthew, M. W., … Chetwynd, J. (1998). FLAASH, A MODTRAN-atmospheric correction package for hyperspectral data retrievals and simulations. Proceedings of the 7th Annual JPL Airborne Earth Science Workshop (Vols. 97–21, pp. 9–14). CA: JPL Publication Pasadena.
- Anne, N. J. P., Abd-Ellahman, A. H., Lewis, D. B., & Hewitt, N. A. (2014). Modeling soil parameters using hyperspectral...
image reflectance in subtropical coastal wetlands. *International Journal of Applied Earth Observation and Geoinformation*, 33, 47–56. http://dx.doi.org/10.1016/j.jag.2014.06.007

Ben-Dor, E., Patkin, K., Banin, A., & Karnieli, A. (2003). Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—A case study over clayey soils in Israel. *International Journal of Remote Sensing*, 23, 1043–1062. http://dx.doi.org/10.1080/01431160100006962

Ben-Dor, E., Levin, N., Singer, A., Karnieli, A., Braun, O., & Kidron, G. J. (2006). Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor. *Geoderma*, 131(1–2), 1–21. http://dx.doi.org/10.1016/j.geoderma.2005.02.011

Ben-Dor, E., Chabrillat, S., Dematté, J. A. M., Taylor, G. R., Hill, J., Whiting, M. L., & Sommer, S. (2009). Using imaging spectroscopy to study soil properties. *Remote Sensing of Environment*, 113, 538–555. http://dx.doi.org/10.1016/j.rse.2008.09.019

Berk, A., Bernstein, L. S., & Robertson, D. C. (1989). MODTRAN: A moderate resolution model for LOWTRAN. Final report, GL-TR-89-0122, AFGL, Hanscom AFB, MA 42 pp.

Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, P. Y., Perkins, T. C., Berk, A., … Heke, M. L. (2002). A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (Quick Atmospheric Correction). *Geoscience and Remote Sensing Symposium, IEEE International*, 5, 3552.

Casa, R., Costalí, F., Pascucci, S., Palombo, A., & Pignatti, S. (2013). A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. *Geoderma*, 197–198, 17–26. http://dx.doi.org/10.1016/j.geoderma.2012.12.016

Crouvi, O., Ben-Dor, E., Beyth, M., Avigad, D., & Amit, R. (2006). Quantitative mapping of soil water content from field spectrometer and hyperspectral remote sensing. *Remote Sensing of Environment*, 104, 103–117. http://dx.doi.org/10.1016/j.rse.2006.05.004

De Tar, W. R., Chesson, J. H., Penner, J. V., & Ojala, J. C. (2008). Detection of soil properties with airborne hyperspectral measurements of bare fields. *American Society of Agricultural and Biological Engineers*, 51, 463–470.

Farifteh, J., Van der Meer, F. D., Atzberger, C. G., & Carranza, E. J. M. (2007). Quantitative analysis of soil-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). *Remote Sensing of Environment*, 110, 59–78. http://dx.doi.org/10.1016/j.rse.2007.02.005

Galvão, L. S., Pizarro, M. A., & Epiphonio, J. C. N. (2001). Variations in reflectance of tropical soils. *Remote Sensing of Environment*, 75, 245–255. http://dx.doi.org/10.1006/remote.2001.0425-4257(00)00170-X

Gao, B. C., Heidebrecht, K. B., & Goetz, A. F. H. (1993). Derivation of scaled surface reflectances from AVIRIS data. *Remote Sensing of Environment*, 44, 165–178. http://dx.doi.org/10.1016/0034-4257(93)90014-O

Ge, Y., Thomasson, A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. *Frontiers of Earth Science*, 5, 229–238.

Gomez, C., Logacheva, P., & Coulouma, G. (2008). Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. *Geoderma*, 148, 141–148. http://dx.doi.org/10.1016/j.geoderma.2008.09.016

Gomez, C., Viscarra Rossel, R. A., & McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. *Geoderma*, 146, 403–411. http://dx.doi.org/10.1016/j.geoderma.2008.06.011

Gopal, B., Shetty, A., & Ramya, B. J. (2014). Prediction of topsoil nitrogen from spaceborne hyperspectral data. *Geocarto International*, 30, 82–92. doi:10.1080/1010604049.2014.894585

Goren, D., Goren, M., Switzer, P., & Craig, M. D. (1989). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. *IEEE Transactions on Geoscience and Remote Sensing*, 26, 65–74. http://dx.doi.org/10.1109/36.3001

Green, R. O., Conel, J. E., & Roberts, D. A. (1993). Estimation of aerosol optical depth and additional atmospheric parameters for the calculation of the reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer. In *Summaries of the Forth Annual JPL Airborne Geoscience Workshop*. JPL Publication, 93–26, 73–76.

Houbraucq, S.-N., Chabrillat, S., Kuhnert, M., Hostert, P., & Kaufmann, H. (2008). Surface soil moisture quantification and validation based on hyperspectral data and field measurements. *Journal of Applied Remote Sensing*, 2(023552), 1–26.

Hively, W. D., McCarty, G. W., Reeves, J. B., Long, M. W., Oesterling, R. A., & Delwiche, S. R. (2011). Use of airborne hyperspectral imagery to map soil properties in tiled agricultural fields. *Applied and Environmental Soil Science*, Article ID 358193, 13.

Hong, S. Y., Sudduth, K. A., Kitchen, N. R, Drummond, S. T., Palm, H. L., & Wiebold, W. J. (2002). Estimating within-field variations in soil properties from airborne hyperspectral images. In *Pecora 15Land Satellite Information IV/SPRIS Commission IFETOS 2002 Conference Proceedings*. Denver, CO.

Kneizys, F. X., Shettle, E. P., Abreu, L. W., Chetwynd, J. H., Anderson, G. P., Gallery, W. O, … Clough, S. A. (1998). Users guide to LOWTRAN-7. In AFGL-TR-8-0177 Air Force Geophysics Laboratories, Bedford, MA.

Kruse, F. A., Raines, G. J., & Watson, K. (1985). Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data. In *Proceedings of the 4th thematic conference on remote sensing for exploration geology*. Ann Arbor, MI.

Logachev, R., Boret, F., Feret, J.-B., Madeiro Netto, J. M., & Robbez-Mazure, J. M. (2008). Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. *Remote Sensing of Environment*, 112, 825–835. http://dx.doi.org/10.1016/j.rse.2007.06.014

Logachev, P., Gomez, C., Bailly, J. S., Boret, F., & Coulouma, G. (2010). The use of hyperspectral imagery for digital soil mapping in Mediterranean areas. *Digital Soil Mapping*, *Progress in Soil Science*, 2, 93–102. http://dx.doi.org/10.1007/978-90-481-8863-5

Lu, P., Wong, L., Niu, Z., Li, L., & Zhang, W. (2013). Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery. *Journal of Geochemical Exploration*, 132, 26–33. http://dx.doi.org/10.1016/j.jgeoexpl.2013.04.003

Matarrese, R., Ancona, V., Salvatori, R., Muolo, M. R., Uricchio, V. F., & Vurro, M. (2014). Detecting soil organic carbon by CASI hyperspectral images. In *Geoscience and Remote Sensing Symposium (INSPR Conference Number: 14716443, pp. 3284–3287).* IEEE Conference Publications. doi:10.1109/IGARSS.2014.694718

Minu, S., & Shetty, A. (2013). Atmospheric correction algorithms for hyperspectral imagery: A review. *International Research Journal of Earth Sciences*, 3, 14–18.

Mulder, V. L., de Bruin, S., Schaepman, M. E., & Mayr, T. R. (2013). The use of remote sensing in soil and terrain mapping—A review. *Geoderma*, 162, 1–19. http://dx.doi.org/10.1016/j.geoderma.2010.12.018
O’Neill, N. T., Zagolski, F., Bergeron, M., Royer, A., Miller, J. R., & Freemantle, J. (1997). Atmospheric correction validation of casi images acquired over the Boreas Southern study area. Canadian Journal of Remote Sensing, 23, 143–162. http://dx.doi.org/10.1080/07038892.1997.10855196

Qu, Z., Goetz, A. F. H., & Heidbrecht, K. B. (2001). High accuracy atmosphere correction for hyperspectral data (HATCH). Proceedings of the Ninth JPL Airborne Earth Science Workshop JPL-Pub, 00–18, 373–381.

Richter, R. (1996). A spatially adaptive fast atmosphere correction algorithm. International Journal of Remote Sensing, 11, 139–166.

Richter, R. (2005). Atmospheric/topographic correction for airborne imagery (DLR report, DLR-IB 562-02/05, p. 107). Wesseling.

Richter, R., & Schläpfer, D. (2003). Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. International Journal of Remote Sensing, 23, 2631–2649. http://dx.doi.org/10.1080/01431160110511834

Richter, R., Schläpfer, D., & Müller, A. (2006). An automatic atmospheric correction algorithm for visible/NIR imagery. International Journal of Remote Sensing, 27, 2077–2085. http://dx.doi.org/10.1080/014311605005486690

Roberts, D. A., Yamaguchi, Y., & Lyon, R. J. P. (1985). Calibration of airborne imaging spectrometer data to percent reflectance using airborne imaging spectrometer data to percent reflectance using field spectral measurements. In Proceedings of the Nineteenth International Symposium on Remote Sensing of the Environment (pp. 21–25). Michigan, 21–25 October 1985.

Roberts, D. A., Yamaguchi, Y., & Lyon, R. (1988). Comparison of various techniques for calibration of AIS data. In Proceedings of the 2nd Airborne Imaging Spectrometer Data Analysis Workshop (Vols. 86–35, pp. 21–30). Pasadena, CA: JPL Publication Laboratory.

Rodger, A., & Lynch, M. J. (2001). Determining atmospheric column water vapour in the 0.4–2.5 μm spectral region. In Proceedings of the AVIRIS Workshop 2001. Pasadena, CA: JPL Publication Laboratory.

Selige, T., Böhner, J., & Schmidhalter, U. (2008). High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma, 136, 235–244. http://dx.doi.org/10.1016/j.geoderma.2006.03.050

Staenz, K., Szeredi, T., & Schwarz, J. (1998). ISDAS—A system for processing/analyzing hyperspectral data. Canadian Journal of Remote Sensing, 24, 99–113. http://dx.doi.org/10.1080/07038892.1998.10855230

Stevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., & Ben-Dor, E. (2008). Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma, 144, 395–404. http://dx.doi.org/10.1016/j.geoderma.2007.12.009

Stevens, A., Udehoven, T., Denis, A., Tychon, B., Liqy, R., Hoffmann, L., & van Wesemael, Bv (2010). Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma, 158, 32–45. http://dx.doi.org/10.1016/j.geoderma.2009.11.032

Tanne, D., Deroo, C., Duhaut, P., Herman, M., & Morcette, J. J. (1997). Technical note description of a computer code to simulate the satellite signal in the solar spectrum: The SS code. International Journal of Remote Sensing, 11, 659–668. http://dx.doi.org/10.1080/01431169008955048

Uno, Y., Prasher, S. O., Patel, R. M., Strachan, I. B, Pattey, E., & Karimi, Y. (2006). Development of field-scale soil organic matter content estimation models in Eastern Canada using airborne hyperspectral imagery. Canadian Biosystems Engineering, 47, 1.9–1.14.

Vermeire, E. F., Tonne, D., Deuze, J. L., Herman, M., & Morcette, J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35, 675–686. http://dx.doi.org/10.1109/36.581987

Vermote, E. F., El Saleous, N., Justice, C. O., Kaufman, Y. J., Privette, J. L., Remer, L., ... Tanne, D. (1997). Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation”. Journal of Geophysical Research, 102, 131–141.

Wang, J., He, T., Lv, C., Chen, Y., & Jian, W. (2010). Mapping soil organic matter based on land degradation spectral response units using Hyperion images. International Journal of Applied Earth Observation and Geoinformation, 12, S171–S180. http://dx.doi.org/10.1016/j.jag.2010.01.002

Wu, J., Liu, Y., Chen, D., Wang, J., & Chai, X. (2009). Quantitative mapping of soil nitrogen content using field spectrometer and hyperspectral remote sensing. IEEE International Conference on Environmental Science and Information Application Technology, 2, 379–382. doi:10.1109/ESIAT.2009.296

Zhang, T., Li, L., Zheng, B. (2009). Partial least squares modeling of Hyperion image spectra for mapping agricultural soil properties. Proceedings of SPIE—The International Society for Optical Engineering, 7454, 74540P-1–74540P-12. doi:10.1117/12.814217

Zheng, B. (2008). Using satellite hyperspectral imagery to map soil organic matter, total nitrogen and total phosphorus (MSc thesis, pp. 1–81). Department of Earth Science, Indiana University.