Emergence of multidrug-resistant *Providencia rettgeri* isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum β-lactamase causing a first outbreak in Korea

Saeam Shin¹, Seok Hoon Jeong², Hyukmin Lee², Jun Sung Hong², Min-Jeong Park¹ and Wonkeun Song¹*

Abstract

Background: Nosocomial outbreak due to carbapenem-resistant Enterobacteriaceae has become serious challenge to patient treatment and infection control. We describe an outbreak due to a multidrug-resistant *Providencia rettgeri* from January 2016 to January 2017 at a University Hospital in Seoul, Korea.

Methods: A total of eight non-duplicate *P. rettgeri* isolates were discovered from urine samples from eight patients having a urinary catheter and admitted in a surgical intensive care unit. The β-lactamase genes were identified using polymerase chain reaction and direct sequencing, and strain typing was done with pulsed-field gel electrophoresis (PFGE).

Results: All isolates showed high-level resistance to extended-spectrum cephalosporins, aztreonam, meropenem, ertapenem, ciprofloxacin, and amikacin. They harbored the *bla*_{NDM-1} carbapenemase and the *bla*_{PER-1} type extended-spectrum β-lactamases genes. PFGE revealed that all isolates from eight patients were closely related strains.

Conclusions: The 13-month outbreak ended following reinforcement of infection control measures, including contact isolation precautions and environmental disinfection. This is the first report of an outbreak of a *P. rettgeri* clinical isolates co-producing NDM-1 and PER-1 β-lactamase.

Keywords: *Providencia rettgeri*, Outbreak, Urinary tract infection, NDM-1, PER-1

Background

The genus *Providencia* comprises part of the natural human gut flora but may also cause infections, including travelers’ diarrhea, urinary tract infections, and other nosocomial infections [1]. Treatment of these infections is challenging because *Providencia rettgeri* strains are intrinsically resistant to many antimicrobials including ampicillin, first generation cephalosporins, polymyxins and tigecycline [2]. Furthermore, in recent years *P. rettgeri* has become increasingly important because of the emergence of carbapenemase-producing strains [3, 4]. Carbapenemases are enzymes known to hydrolyze almost all types of β-lactams [5]. The New Delhi metallo-β-lactamase (NDM-1) has been firstly identified in 2009 in a Swedish patient who had been previously hospitalized in New Delhi, India [6]. The first occurrence of NDM-1 producers was reported in clinical isolates of *P. rettgeri* in Israel in 2013 [7]. Since then, other cases have been reported in Mexico, Brazil, Argentina, Ecuador, Canada, and Nepal [3, 4, 8–13].

PER-1 enzyme is belong to class A extended-spectrum β-lactamases (ESBLs) and firstly discovered in a plasmid of *Pseudomonas aeruginosa* in France [14]. Later, it has
also found among several Gram-negative species including *Acinetobacter baumannii*, *Salmonella enterica* serovar Typhimurium, and also in *P. rettgeri* [15, 16]. PER-1 is widely spread in Turkey, however, high prevalence of PER-1 ESBL in *A. baumannii* has been reported in Korea [17].

Here, we report the first outbreak of multidrug-resistant *P. rettgeri* strain co-producing NDM-1 and PER-1 in Korea.

Materials and methods

Patients and bacterial isolates

From January 2016 to January 2017, a total of eight *P. rettgeri* isolates from eight patients were included in this study. Bacterial identification was done with a Vitek-MS (bioMérieux, Marcy l’Etoile, France). Medical records of the patients were retrospectively reviewed. This study protocol was approved by the hospital institutional review board.

Antimicrobial susceptibility testing

Minimum inhibitory concentrations (MICs) for cefotetan, cefotaxime, ceftazidime, cefepime, ertapenem, imipenem, meropenem, aztreonam, amikacin, ciprofloxacin, gentamicin, and tigecycline were determined using Etest strips (bioMérieux) on the Mueller–Hinton agar (Becton–Dickinson, Sparks, MD, USA). Colistin MIC was determined by broth microdilution. When available, antimicrobial susceptibility was interpreted based on the Clinical and Laboratory Standards Institute (CLSI) guideline [18]. For tigecycline and colistin, the European Committee for Antimicrobial Susceptibility Testing (EUCAST) criteria were used [19].

Detection of β-lactamase genes

The carbapenemase genes and ESBL genes were detected using specific PCR primers (Table 1) [20–27]. Amplified products were directly sequenced on the ABI 3730xl automatic sequencer (Applied Biosystems, Foster City, CA, USA) using the same primer pair. The sequences obtained were compared to those in GenBank.

Table 1 Primers used in this study for identifying antimicrobial resistance genes

Classification	Primer	Target	Nucleotide sequence, 5’ to 3’	Product size, bp	References
Class A β-lactamases	VEB-1F	*bla*_{VEB}	CGACTTCATTTCCGGATGC	642	[20]
	VEB-1R		GGACTCGAACAATACGC		
	PER-1F	*bla*_{PER-1}	ATGAAGTCATTATAAAAGCT	927	[20]
	PER-1R		TTAATTGGGCCTAGGG		
	CTX-M-1F	*bla*_{CTX-M-1}	GCAGCAGCTGAATAGTATGG	591	[21]
	CTX-M-1R		GCTGGTAGAAGTAAGTACCC		
	CTX-M-825F	*bla*_{CTX-M-825}	CGCTTTGCAATGCTGACC	307	[22]
	CTX-M-914F	*bla*_{CTX-M-914}	GCTGAGAGAAGGGCAGGAG	474	[22]
	CTX-M-914R		TGAAGCTGAGCCGACGCTCT		
	SHV-OS5	*bla*_{SHV}	TTATCTCCCTGTTAGCCA	797	[23]
	SHV-OS6		GATTTCTCAATTCGCT		
	TEM-A	*bla*_{TEM}	TAAAATTCTTGAGACG	1074	[23]
	TEM-B		TTACCAATGCTTATCA		
	KPC-F	*bla*_{KPC}	ATGTCACTGTACGCGCTCT	893	[24]
	KPC-R		TTTTCAGAGGTCCTA		
Class B β-lactamases	VM-F	*bla*_{VM}	GATGGTGTGGTCGATC	390	[25]
	VM-R		CGAATGCCGCGCAG		
	IMP-F	*bla*_{IMP}	GGAATAGAGTGGCTAATTC	232	[26]
	IMP-R		TGGTTTAAATGAAAAACCC		
	NDM-1-F	*bla*_{NDM-1}	CAATTATGTCAACGCCGTCG	726	[27]
	NDM-1-R		ATCATGCTGGCTGTTGGA		
Class D β-lactamases	OXA-10F	*bla*_{OXA-10}	TATCGGCTTGTCCTGAGTA	760	[20]
	OXA-10R		TTAGCCACCAATGATGCCC		
	OXA-F	*bla*_{OXA-48}	CGCTGGTATAGGTAACAC	438	[26]
	OXA-R		CATCAAGTTCCACCCGCA		
Pulsed-field gel electrophoresis
The bacterial genetic relatedness was evaluated by Pulsed-field gel electrophoresis (PFGE). Genomic DNA was digested with SfiI enzyme, and DNA fragments were separated on a CHEF-DR II System (Bio-Rad, Hercules, CA, USA). A lambda ladder (Bio-Rad) was used as a DNA size marker. The band patterns were analyzed using UVIband/Map software (UVItech Ltd., Cambridge, UK) and the dendrograms were generated based on the unweighted pair group method using arithmetic averages from the Dice coefficient. Isolates that exhibited a PFGE profile with more than 90% similarity (pulsotype) were considered as closely related strains.

Results
The characteristics of these patients and antimicrobial susceptibility patterns of *P. rettgeri* isolates were summarized in Table 2. In total, eight *P. rettgeri* isolates were recovered from urine samples of eight patients admitted in a surgical intensive care unit (SICU). All patients were admitted to a SICU from hospitalization and had a urinary catheter. The median days of the SICU stay before *P. rettgeri* isolation was 21.5 days (range, 8–38 days) (Fig. 1). All patients except one (P5) were recovered and discharged during the outbreak. A patient (P5) died following *Enterococcus faecalis* bacteremia. All *P. rettgeri* isolates showed similar antibiogram patterns with more than 90% similarity (pulsotype) were considered as closely related strains.

Discussion
In the present study we reported and characterized an outbreak of *P. rettgeri* isolates co-producing NDM-1 and PER-1 β-lactamases. Infection were not completely overlapping, PFGE revealed that all isolates were closely related. This suggests clonal cross-transmission of this strain in the SICU, and there is a possibility of transmission between patients and medical personnel by hand colonization or by environmental contamination. Infection control measures were reinforced in the SICU to include extensive environmental disinfection, active screening for carbapenemase-producing Enterobacteriaceae, and exhaustive contact isolation precautions. The outbreak did not eradicate in a short time, but the outbreak was eventually interrupted in January 2017.

Carbapenem resistance in Enterobacteriaceae has become a major public health challenge [28]. While carbapenem is a drug of choice for treatment of Enterobacteriaceae producing ESBL and plasmid-mediated AmpC cephalosporinase, production of carbapenemase in Enterobacteriaceae can be emerged. Carbapenemase gene is important due to its potential transferability to other species, by plasmids and transposons [28]. NDM-1 encoding plasmids are diverse and can also carry other antimicrobial resistance genes, including carbapenemase genes, ESBL genes, plasmid-mediated cephalosporinase genes, and aminoglycoside resistance genes [28, 29]. Among these, most ESBLs found with NDM-1 have been reported to be as CTX-M-15 type [29, 30]. Until now, this is the first report of Enterobacteriaceae co-carrying NDM-1 and PER-1 type ESBL. Although the NDM-1 enzyme is known to inactivate all β-lactams except aztreonam [6], our *P. rettgeri* isolates showed high MIC to aztreonam, possibly due to production of PER-1 type ESBL. The range of MIC to imipenem revealed 0.5–4 μg/mL. Imipenem MICs for *Providencia* spp. tend to be higher (e.g., MICs in the intermediate or resistant range) naturally. These isolates may have elevated imipenem MICs by mechanisms other than production of carbapenemases [18].

It is known that the multidrug-resistant bacteria have superior ability to survive and spread successfully in a hospital environment. In addition, the patient’s risk factor is also responsible for the nosocomial transmission of multidrug-resistant bacteria. Patient’s underlying disease, exposure to antimicrobial agents, and history of having invasive procedures are known as risk factors for the acquisition of carbapenem-resistant Enterobacteriaceae [28]. This outbreak persisted for 13 months, although the prompt infection control strategy was initiated after recognition of the first few cases. Because ICU admission patients often have one or more of risk factors, so it could be very difficult to eradicate once the outbreak occurs.

In conclusion, we report an alarming outbreak of high-level of multidrug-resistant *P. rettgeri* isolates co-producing NDM-1 and PER-1 β-lactamases. Infection
Patient ID	P1	P2	P3	P4	P5	P6	P7	P8
Isolate no	KN756	KN762	KN764	KN774	KN779	KN784	KN803	KN804
Sex/age (year)	M/63	M/50	M/52	M/66	F/75	M/81	F/40	M/53
Diagnosis	Brain hemorrhage	Deep neck infection	Central nervous system infection	Bladder cancer	Pneumonia	Pneumonia	Brain hemorrhage	Brain hemorrhage
Comorbidities	–	Diabetes mellitus	–	–	Cerebral infarction	Diabetes mellitus	–	–
Outcome	Survival	Survival	Survival	Death	Survival	Survival	Survival	Survival
Hospital admission date	18-Dec-15	05-Apr-16	28-Apr-16	01-Jul-16	28-Jul-16	14-Aug-16	16-Dec-16	19-Dec-16
P. rettgeri collection date	11-Jan-16	09-May-16	19-May-16	08-Aug-16	19-Aug-16	22-Aug-16	30-Dec-16	05-Jan-17
Antimicrobial agents used before P. rettgeri isolation (days)	Colistin (13), piperacillin-tazobactam (8), teicoplanin (11)	Colistin (21), metronidazole (10), piperacillin-tazobactam (10), ampicillin-sulbactam (8), teicoplanin (20), netilmicin (5), levofloxacin (9)	Colistin (13), piperacillin-tazobactam (3), vancomycin (6), teicoplanin (13), meropenem (7)	Ceftriaxone (6), tigecycline (4), doripenem (7), piperacillin-tazobactam (18), flomoxef (3), teicoplanin (5)	Metronidazole (10), moxifloxacin (6), piperacillin-tazobactam (5), ampicillin-sulbactam (3)	Ceftriaxone (3)	Ceftriaxone (8)	

MIC (μg/mL)

- **Cefotetan**: 256, 256, 256, 256, 256, 256, 256, 256
- **Cefotaxime**: 32, 32, 32, 32, 32, 32, 32, 32
- **Ceftazidime**: 256, 256, 256, 256, 256, 256, 256, 256
- **Cefepime**: 256, 256, 256, 256, 256, 256, 256, 256
- **Aztreonam**: 256, 256, 256, 256, 256, 256, 256, 256
- **Imipenem**: 0.5, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5
- **Meropenem**: 32, 32, 32, 32, 32, 32, 32, 32
- **Ertapenem**: 32, 32, 32, 32, 32, 32, 32, 32
- **Ciprofloxacin**: 32, 32, 32, 32, 32, 32, 32, 32
- **Ampicillin**: >256, >256, >256, >256, >256, >256, >256, >256
- **Gentamicin**: 16, 16, 16, 16, 16, 16, 16, 16
- **Tigecycline**: 4, 4, 4, 8, 4, 8, 8, 8
- **Colistin**: 2, 2, 8, 2, 2, 64, 4, 4

MIC: Minimum inhibitory concentration
prevention and control efforts should be continuously made to prevent nosocomial transmission of these threatening bacteria.

Author's contributions
SS performed the experiment, data analysis, and wrote the manuscript. SHJ, HL, JSH, and MJP performed the experiment and gave advice. WS designed study, data analysis, and critically reviewed and edited the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea. 2 Department of Laboratory Medicine and Research Institute for Antimicrobial Resistance, Yonsei University College of Medicine, Seoul, South Korea.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data generated or analyzed during this study are included in this published.

Ethics approval and consent to participate
This study protocol was approved by the hospital institutional review board.

Funding
This study has been funded by grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI12C0756).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
1. O’Hara CM, Brenner FW, Miller JM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev. 2000;13(4):534–46.
2. Magiorakos AP, Srinivasa A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljestrand B, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.
3. Mateseje LF, Boyd DA, Lefebvre B, Bryce E, Embree J, Gravel D, Katz K, Kibsey P, Kuhn M, Langley J, et al. Complete sequences of a novel blaNDM-1-harboursing plasmid from Providencia rettgeri and an F-type plasmid from Klebsiella pneumoniae identified in Canada. J Antimicrob Chemother. 2014;69(3):637–42.
4. Tada T, Miyoshi-Akiyama T, Dahal RK, Sah MK, Ohara H, Shimada K, Kirikae T, Pokhrel BM. NDM-1 Metallo-beta-Lactamase and ArmA 16S rRNA methylase producing Providencia rettgeri clinical isolates in Nepal. BMC Infect Dis. 2014;14:56.
5. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002;8(6):321–31.
6. Yong D, Toleman MA, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljestrand B, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.
7. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002;8(6):321–31.
8. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-beta-lactamase gene,bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.
9. Gefen-Halevi S, Hindiyeh MY, Ben-David D, Smollar G, Gal-Mor O, Azar R, Castanheira M, Belalouc N, Rahav G, Tal I, et al. Isolation of genetically unrelated bla(NDM-1)-positive Providencia rettgeri strains in Israel. J Clin Microbiol. 2013;51(5):1642–3.
10. Barrios H, Garza-Ramos U, Reyna-Flores F, Sanchez-Perez A, Rojas-Moteno T, Garza-Gonzalez E, Llaca-Diaz JM, Camacho-Ortiz A, Guzman-Lopez S, Silva-Sanchez J. Isolation of carbapenem-resistant NDM-1-positive Providencia rettgeri in Mexico. J Antimicrob Chemother. 2013;68(8):1934–6.
11. Carvalho-Assis AP, Pereira PS, Albano RM, Benoia GC, Chagas TP, Timm LN, Da Silva RC, Falci DR, Asensi MD. Isolation of NDM-producing Providencia rettgeri in Brazil. J Antimicrob Chemother. 2013;68(12):2956–7.
12. Pastoran F, Mee A, Gomez S, Derdoy L, Albronoz E, Faccone D, Guerriero P, Pasteran F, Meo A, Gomez S, Derdoy L, Albronoz E, Faccone D, Guerriero P, et al. Emergence of genetically related NDM-1-producing Providencia rettgeri strains in Argentina. J Global Antimicrob Resist. 2014;2(4):344–5.
13. Zuniga J, Parra H, Gestal MC, McDermott J, Barba P. First case of NDM-1-producing Providencia rettgeri in Ecuador. J Global Antimicrob Resist. 2015;3(4):392–3.
14. Carmona Junior NV, Filho HF, Gomes ECD, Calvalcante AJ, Garcia Dde O, Furtado JJ. First report of a NDM-producing Providencia rettgeri strain in the state of Sao Paulo. Braz J Infect Dis. 2015;19(1):119–23.
15. Bocanegra-Ibarias P, Garza-Gonzalez E, Morfin-Otero R, Barrios H, Villareal-Trevino L, Rodriguez-Noriega E, Garza-Ramos U, Petersen-Morfin S, Silva-Sanchez J. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS ONE. 2017;12(6):e0179651.
16. Nordmann P, Ronco E, Naas T, Poirel L. Characterization of a novel extended-spectrum beta-lactamase from Providencia aeruginosa. Antimicrob Agents Chemother. 1993;37(5):962–9.
17. Bradford PA. Extended-spectrum beta-lactamas in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51 (table of contents).