SEMICSORED PRODUCTS AND REFLEXIVITY

EVGENIOS T.A. KAKARIADIS

Abstract. Given a w*-closed unital algebra A acting on H_0 and a contractive w*-continuous endomorphism β of A, there is a w*-closed (non-selfadjoint) unital algebra $Z_+\times_\beta A$ acting on $H_0 \otimes \ell^2(\mathbb{Z}_+)$, called the w*-semicrossed product of A with β. We prove that $Z_+\times_\beta A$ is a reflexive operator algebra provided A is reflexive and β is unitarily implemented, and that $Z_+\times_\beta A$ has the bicommutant property if and only if so does A. Also, we show that the w*-semicrossed product generated by a commutative C*-algebra and a *-endomorphism is reflexive.

Introduction

As is well known, to construct the C*-crossed product of a unital C*-algebra C by a *-isomorphism $\alpha : C \to C$, we begin with the Banach space $\ell^1(\mathbb{Z}, C, \alpha)$ which is the closed linear span of the monomials $\delta_n \otimes x$, $n \in \mathbb{Z}$, $x \in C$, under the norm $|\sum_{n=-k}^k \delta_n \otimes x_n|_1 = \sum_{n=-k}^k \|x_n\|_C$, equipped with the (isometric) involution $(\delta_n \otimes x)^* = \delta_{-n} \otimes a^{-n}(x^*)$. Now, there are two “natural” ways to define multiplication in $\ell^1(\mathbb{Z}, C, \alpha)$: either the left multiplication $(\delta_n \otimes x) *_l (\delta_m \otimes y) = \delta_{n+m} \otimes a^m(x)y$, or the right one $(\delta_n \otimes x) *_r (\delta_m \otimes y) = \delta_{n+m} \otimes xa^m(y)$. Then the corresponding algebras are isometrically *-isomorphic via the map $\Psi(\delta_n \otimes x) = \delta_{-n} \otimes a^{-n}(x)$. We can see that $(\ell^1(\mathbb{Z}, C, \alpha)_l)^{opp} = \ell^1(\mathbb{Z}, C^{opp}, \alpha)_r$, where for an algebra B, B^{opp} is the space B along with the multiplication $x \otimes y := yx$; hence, in case C is commutative, each algebra is the opposite of the other. The left and right crossed product are the completion of the corresponding involutive Banach algebras under a universal norm induced by the $| \cdot |_1$-contractive *-representations (hence, they are C*-algebras characterized by a universal property) and the map Ψ extends to a C*-isomorphism. Moreover, it can be proved that the crossed product is *-isomorphic to the reduced crossed product $C^\pi_l(C)$, i.e. the norm closure of the range of the left regular representation, and thus we end up with just one object to which we refer as the

2000 Mathematics Subject Classification. 47L65 (primary), 47L75 (secondary).
Key words and phrases. C*-envelope, reflexive subspace, semicrossed product .
The author was supported by an SSF scholarship.
crossed product of the dynamical system \((\mathcal{C}, \alpha)\). The key fact is that there is a bijection between the \(|·|_1\)-contractive \(*\)-representations of each of these \(\ell^1\)-algebras and the (left or right) covariant unitary pairs (see section 1).

If we wish to construct a non-selfadjoint analogue, we can see that there are more possibilities. For example, Peters defined the semicrossed product as the completion of the Banach algebra \(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l\) under the universal norm that arises from the left covariant isometric pairs and examined the case when \(\alpha\) is an injective \(*\)-endomorphism of \(\mathcal{C}\). He proved that this semicrossed product embeds isometrically in a crossed product (see [11]) and, for the commutative case, that this crossed product is the \(C^*\)-envelope of the semicrossed product (see [12]).

In section 1 we use an alternative definition using “sufficiently many” homomorphisms of the Banach algebra \(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l\) (see also [3]). The advantage is that there is a bijection between the left covariant contractive pairs and the homomorphisms of the Banach algebra \(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l\). Moreover, there is a duality between the left covariant contractive pairs and the right covariant contractive pairs, which induce the homomorphisms of the Banach algebra \(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_r\); hence, we get similar results for the right version. Also, using a dilation theorem of [9], we can see that this definition gives the one in [11]. If we consider the maximal operator space structure, then the semicrossed products are operator algebras with a universal property that characterizes them up to completely isometric isomorphism. In theorem 1.4 we prove that the semicrossed product is independent of the way \(\mathcal{C}\) is (faithfully) represented and in theorem 1.5 we prove that in case \(\alpha\) is a \(*\)-isomorphism, its \(C^*\)-envelope is exactly the crossed product. So, in order to define a \(w^*\)-analogue of the semicrossed product that arises by a \(w^*\)-continuous contractive endomorphism \(\beta\) of a \(w^*\)-closed subalgebra \(\mathcal{A}\) of some \(\mathcal{B}(H_0)\) (for example, a von Neumann algebra), either we take the \(w^*\)-closed linear span of a non-selfadjoint left regular representation or the \(w^*\)-closed linear span of the analytic polynomials of the von Neumann crossed product, depending on the properties of \(\beta\).

In section 2 we analyze the properties of the \(w^*\)-semicrossed product, in case \(\beta\) is unitarily implemented. First of all, we study the connection between the semicrossed product and the \(w^*\)-tensor product \(\mathcal{A} \overline{\otimes} \mathcal{T}\), where \(\mathcal{T}\) is the algebra of the analytic Toeplitz operators, and give an example when these two algebras are incomparable. A main result of this section is the reflexivity of the \(w^*\)-semicrossed product, when \(\mathcal{A}\) is reflexive. Recall that a subspace \(\mathcal{S} \subseteq \mathcal{B}(H)\) is reflexive if it coincides with its reflexive cover, namely \(\text{Ref}(\mathcal{S}) = \{T \in \mathcal{B}(H) : T\xi \in \mathcal{S} \text{ for all } \xi \}\).
semicrossed products and reflexivity

Sξ, for all ξ ∈ H} (see [7]); unlike [7], we will call S hereditarily reflexive if every w*-closed subspace of S is reflexive. As a consequence we have that, when a unitary implementation condition holds, the w*-closed image of ṯπ induced by a representation (H₀, π) of C is reflexive. Also, we get several known results as applications. As another main result, we prove that the w*-semicrossed product is the commutant of a w*-semicrossed product and is its own bicommutant if and only if the same holds for A.

In the last section we consider the semicrossed product of a commutative C*-algebra C(K) with a continuous map φ : K → K. As observed in theorem 1.4, the representations induced by a character of C(K), say evt, t ∈ K, suffice to obtain the norm of the semicrossed product and play a significant role for its study. First, we show that the w*-closure of such representations is always reflexive; in fact, it has the form (T₀P₀) ⊕ (T₀P₀) ⊕ · · · ⊕ (T₀P₀), where T is the algebra of lower triangular operators in B(ℓ²(Z⁺)), T is the algebra of analytic Toeplitz operators and P₀, P₀, . . . P₀ some projections determined by the orbit of the point t ∈ K.

In what follows we use standard notation, as in [4] for example. Z⁺ = {0, 1, 2, . . .} and all infinite sums are considered in the strong-convergent sense. Throughout, we use the symbol v for the unilateral shift on B(ℓ²(Z⁺)), given by v(en) = en+1. A useful tool for the proofs in sections 2 and 3 is a Féjer-type Lemma; consider the unitary action of T on H = H₀ ⊗ ℓ²(Z⁺) induced by the operators Uₙ, s ∈ R, given by Uₙ(ξ ⊗ eₙ) = eᵢₙsξ ⊗ eₙ. For every T ∈ B(H) and every m ∈ Z we define the “m-Fourier coefficient”

\[G_m(T) = \int_0^{2\pi} U_s T U_s^* e^{-imt} ds \]

the integral taken as the w*-limit of Riemann sums. If we set σₗ(T)(t) = \(\frac{1}{2\pi} \sum_{n=0}^{t} \sum_{m=-n}^{n} G_m(T) \exp(amt)\), then σₗ(T)(0) \(\xrightarrow{w^*}\) T. Note that Gₘ(·) is w*-continuous for every m ∈ Z.

Now, for every κ, λ ∈ Z⁺, and T ∈ B(H₀) let the “matrix elements” Tₖ,λ ∈ B(H₀) be defined by ⟨Tₖ,λξ, η⟩ = ⟨T(ξ ⊗ eₙ), η ⊗ eₙ⟩, ξ, η ∈ H₀; then we can write the Fourier coefficients explicitly by the formula

\[G_m(T) = \begin{cases}
V_m(\sum_{n≥0} T_{m,n,n} ⊗ p_n) & , \text{when } m ≥ 0, \\
(\sum_{n≥0} T_{n,-m+n} ⊗ p_n)(V^*)^{-m} & , \text{when } m < 0,
\end{cases} \]
where $V = 1_{H_0} \otimes v$. For simplicity, we define the diagonal matrices

$$T_{(m)} = \begin{cases} \sum_{n \geq 0} T_{m+n,n} \otimes p_n & \text{, when } m \geq 0, \\ \sum_{n \geq 0} T_{n,-m+n} \otimes p_n & \text{, when } m < 0, \end{cases}$$

Note that the sums converge in the w^*-topology as well, since the partial sums are uniformly bounded by $\|T\|$. Hence, $G_m(T)$ is the m-diagonal of T, when we view H as the ℓ^2-sum of copies of H_0.

1. Semicrossed products of C^*-algebras

Let C be a unital C^*-algebra and $\alpha : C \to C$ a $*$-morphism; define $\ell^1(\mathbb{Z}_+, C, \alpha)$ to be the closed linear span of the monomials $\delta_n \otimes x$, $n \in \mathbb{Z}_+$, $x \in C$, under the norm

$$\left\| \sum_{n=0}^k \delta_n \otimes x_n \right\|_1 = \sum_{n=0}^k \|x_n\|_C.$$

We endow $\ell^1(\mathbb{Z}_+, C, \alpha)$ either with the left multiplication $(\delta_n \otimes x) \ast_l (\delta_m \otimes y) = \delta_{n+m} \otimes a^m(x)y$, or with the right one $(\delta_n \otimes x) \ast_r (\delta_m \otimes y) = \delta_{n+m} \otimes xa^m(y)$, and denote the corresponding Banach algebras by $\ell^1(\mathbb{Z}_+, C, \alpha)_l$ and $\ell^1(\mathbb{Z}_+, C, \alpha)_r$, respectively. One can see that $(\ell^1(\mathbb{Z}_+, C, \alpha)_l)^{opp}$ is exactly $\ell^1(\mathbb{Z}_+, C^{opp}, \alpha)_r$, where, if B is an algebra, B^{opp} is the space B with the multiplication $x \otimes y := yx$. Thus, in case C is commutative, each algebra is the opposite of the other.

Let (H, π) be a $*$-representation of C and T a contraction in $B(H)$. The pair (π, T) is called a left covariant contractive (l-cov.con.) pair, if the left covariance relation is satisfied, i.e. $\pi(x)T = T\pi(\alpha(x))$, $x \in C$. If, in particular, T is an isometry, pure isometry, co-isometry or unitary, then we will call such a pair a left covariant isometric, purely isometric, co-isometric or unitary pair. We can see that every l-cov.con. pair induces a contractive representation $(H, T \times \pi)$ of $\ell^1(\mathbb{Z}_+, C, \alpha)_l$, given by

$$(T \times \pi) \left(\sum_{n=0}^k \delta_n \otimes x_n \right) = \sum_{n=0}^k T^n \pi(x_n).$$

Conversely, if $\rho : \ell^1(\mathbb{Z}_+, C, \alpha)_l \to B(H)$ is a contractive representation, then (H, ρ) restricts to a contractive representation (H, π) of the C^*-algebra C, thus a $*$-representation. If we set $\rho(\delta_1 \otimes e) = T$, then $\|T^n\| \leq 1$, for every $n \in \mathbb{Z}_+$. It is easy to check that the pair (π, T) satisfies the left covariance relation.

Analogously, there is a bijection between right covariant contractive (r-cov.con.) pairs (π, T) (i.e. satisfying the right covariance condition
$T\pi(x) = \pi(\alpha(x))T$, $x \in \mathcal{C}$) and contractive representations $\pi \times T$ of the algebra $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_r$. Note that if (π, T) is a l-cov.con. pair then (π, T^*) is a r-cov.con. pair. Thus TT^* commutes with $\pi(\mathcal{C})$.

Example 1.1. Let (H_0, π) be a faithful *-representation of \mathcal{C} and define on $H_0 \otimes \ell^2(\mathbb{Z}_+)$ the representation $\tilde{\pi}(x) = \text{diag}\{\pi(\alpha^n(x)) : n \in \mathbb{Z}_+\}$ and $V = 1_{H_0} \otimes v$, where v is the unilateral shift. Then $(\tilde{\pi}, V)$ is a l-cov.is. pair. For simplicity we will denote the corresponding representation $V \times \tilde{\pi}$, by lt_{π}. As mentioned before, the pair $(\tilde{\pi}, V^*)$ is a r-cov.con. pair which induces the representation $rt_{\pi} := \tilde{\pi} \times V^*$. One can check that lt_{π} and rt_{π} are faithful.

Definition 1.2. The (left) semicrossed product $\mathbb{Z}_+ \times_{\alpha} \mathcal{C}$ is the completion of $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l$ under the norm

$$
\|F\|_l = \sup\{\|((T \times \pi)(F))\| : (\pi, T) \text{ is a l-cov.con. pair}\}.
$$

Analogously, the (right) semicrossed product $\mathcal{C} \times_{\alpha} \mathbb{Z}_+$ is the completion of $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_r$ under the norm

$$
\|F\|_r = \sup\{\|((\pi \times T)(F))\| : (\pi, T) \text{ is a r-cov.con. pair}\}.
$$

The left semicrossed product is endowed with an operator space structure (the maximal one, see [1, 1.2.22]) induced by the matrix norms

$$
\|[F_{i,j}]\|_l = \sup\{\|((T \times \pi)(F_{i,j}))\| : (\pi, T) \text{ l-con.cov. pair}\}.
$$

We note that there is a bijective correspondence between the l-cov.con. pairs (π, T) and the unital completely contractive representations of $\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l$. Thus, the left semicrossed product has the following universal property (up to completely isometric isomorphisms): for any unital operator algebra \mathcal{B} and for any unital completely contractive morphism $\rho : \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l \rightarrow \mathcal{B}$, there exists a unique unital completely contractive morphism $\tilde{\rho} : \mathbb{Z}_+ \times_{\alpha} \mathcal{C} \rightarrow \mathcal{B}$ that extends ρ.

In theorem 1.4 we prove that the semicrossed product, as an operator algebra, is independent of the way \mathcal{C} is (faithfully) represented. In order to do so, we use some dilations theorems of [9] and [11] and arguments similar to the ones in [6, theorem 6.2].

First of all, every l-cov.con. pair (π, T) on a Hilbert space H dilates to a l-cov.is. pair (η, W) on a Hilbert space $H_1 \supseteq H$, such that $\eta(x)H \subseteq H$ and $\eta(x)|_H = \pi(x)$, for every $x \in \mathcal{C}$, and $T^n = P_HW^n|_H$, for every $n \in \mathbb{Z}_+$, where W is an isometry (see [9]). Hence, by [11, II.5] we see that the norm $\|\cdot\|$ is the supremum over all left covariant purely isometric pairs. By [11, proposition I.4], for such a pair (η, W) on a
Hilbert space H_1 there is a representation (H_2, π') of \mathcal{C} such that $W \times \eta$ is unitarily equivalent to $l_t \pi'$. Thus, eventually we have that, for $F \in \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_t$, $\|F\|_t = \text{sup}\{\|lt_\pi(F)\| : (H, \pi) \text{ a } *\text{-representation of } \mathcal{C}\}$. Moreover, $\|\{F_{i,j}\}_t\|_t = \text{sup}\{\|lt_\pi(F_{i,j})\| : (H, \pi) \text{ a } *\text{-representation of } \mathcal{C}\}$.

Proposition 1.3. If $F_{i,j} \in \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_t$, then $\|\{F_{i,j}\}_t\|_t = \|lt_{\pi_u}(F_{i,j})\|$, where (H_u, π_u) is the universal representation of \mathcal{C}. Analogously, for every $F_{i,j} \in \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_r$, $\|\{F_{i,j}\}_r\|_r = \|lt_{\pi_u}(F_{i,j})\|$.

Proof. Let (H, π) be a $*$-representation of \mathcal{C}. By definition of the universal representation we have that $\pi_u|_H = \pi$ and $\pi_u(x)H \subseteq H$. Let $H_0 = H \otimes \ell^2(\mathbb{Z}_+)$. We denote by P_{H_0} the projection onto $H \otimes \ell^2(\mathbb{Z}_+) \subseteq H_u \otimes \ell^2(\mathbb{Z}_+)$ and observe that $P_{H_0}(1_{H_u} \otimes v)^n|_{H_0} = (1_{H_0} \otimes v)^n$, for every $n \in \mathbb{Z}_+$. Thus, for every $\nu \in \mathbb{Z}_+$ and for every $F_{i,j} \in \mathcal{M}_\nu(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha))$, we have that $\|lt_\pi(F_{i,j})\| = (P_{H_0} \otimes I_\nu)[lt_{\pi_u}(F_{i,j})]|_{(H_0)^{\nu}}$, and so $\|lt_\pi(F_{i,j})\| \leq \|lt_{\pi_u}(F_{i,j})\|$.

If (H, π) is a faithful $*$-representation of \mathcal{C}, we denote by $C^*(\pi, V)$ the C^*-algebra generated by the representation lt_π in $\mathcal{B}(H \otimes \ell^2(\mathbb{Z}_+))$. The covariance relation shows that $C^*(\pi, V)$ is the norm-closed linear span of the monomials $V^m \pi(x)(V^*)^\lambda$, $m, \lambda \in \mathbb{Z}_+$. Since, $C^*(\pi, V)$ is a direct summand of $C^*(\pi_u, V_u)$, the compression $\Phi : \mathcal{B}(H_u \otimes \ell^2(\mathbb{Z}_+)) \to \mathcal{B}(H \otimes \ell^2(\mathbb{Z}_+))$ is a $*$-epimorphism when restricted on $C^*(\pi_u, V_u)$. We will prove that it is also faithful, hence completely isometric.

To this end, for every $s \in [0, 2\pi]$, we define $u_s : \ell^2(\mathbb{Z}_+) \to \ell^2(\mathbb{Z}_+)$ by $u_s(e_m) = e^{2\pi i s} e_m$. Let $\widetilde{U}_s = 1_{H_u} \otimes u_s$ and $U_s = 1_H \otimes u_s$. The map $\tilde{\gamma}_s = ad_{\widetilde{U}_s}$ is a $*$-automorphism of $C^*(\pi_u, V_u)$, since $\tilde{\gamma}_s(\pi_u(x)) = \pi_u(x)$ and $\tilde{\gamma}_s(V_u)^n = e^{2\pi i n s} V_u^n$. Similarly, $\gamma_s = ad_{U_s}$ is a $*$-automorphism of $C^*(\pi, V)$. It is clear that $\Phi \circ \tilde{\gamma}_s = \gamma_s \circ \Phi$, because $\Phi(\tilde{U}_s) = U_s$. We denote by $C^*(\pi_u, V_u)^\gamma$ the fixed point algebra of $\tilde{\gamma}$ and define the contractive, faithful projection $\widetilde{E} : C^*(\pi_u, V_u) \to C^*(\pi_u, V_u)^\gamma$ by

$$\widetilde{E}(X) := \int_0^{2\pi} \tilde{\gamma}_s(X) \frac{ds}{2\pi},$$

(as a Riemann integral of a norm-continuous function). Let $\mathcal{B}_k := \{\sum_{n=0}^{k} V_u^n \pi_u(x_n)(V_u^*)^n : x_n \in \mathcal{C}\}$; then we can check that $C^*(\pi_u, V_u)^\gamma$ is the norm-closure of $\cup_{k \in \mathbb{Z}_+} \mathcal{B}_k$. Let X_k be an element of \mathcal{B}_k. Since, $V_u^n \pi_u(x)(V_u^*)^n = \text{diag}\{0, \ldots, 0, \pi_u(x), \pi_u(\alpha(x)), \ldots\}$, we see that X_k is a diagonal matrix whose (m, m)-entry is the element $(X_{k})_{m,m} = \pi_u\left(\sum_{j=0}^{\min\{m,k\}} \alpha^{m-j}(x_{m-j})\right)$. So, if (H, π) is a faithful $*$-representation
of C,

$$
\|(X_k)_{m,m}\| = \left\| \pi_u \left(\sum_{j=0}^{\min\{m,k\}} \alpha^{m-j}(x_{m-j}) \right) \right\|
$$

$$
= \left\| \sum_{j=0}^{\min\{m,k\}} \alpha^{m-j}(x_{m-j}) \right\|_C = \left\| \pi \left(\sum_{j=0}^{\min\{m,k\}} \alpha^{m-j}(x_{m-j}) \right) \right\|
$$

$$
= \left\| (\Phi(X_k))_{m,m} \right\|.
$$

So $\|X_k\| = \sup_m \{\|(X_k)_{m,m}\|\} = \sup_m \{\|(\Phi(X_k))_{m,m}\|\} = \|\Phi(X_k)\|$; hence $\Phi : C^*(\pi_u, V_u) \to C^*(\pi, V)$ is isometric on each B_k. Thus, Φ is injective when restricted to the fixed point algebra $C^*(\pi_u, V_u)^\gamma$.

Theorem 1.4. The left semicrossed product $\mathbb{Z}_+ \times_\alpha C$ is completely isometrically isomorphic to the norm-closed linear span of $\sum_{n=0}^{k} V^n \tilde{\pi}(x_n), x_n \in C$, where (H, π) is any faithful $*$-representation of C. Respectively, the right semicrossed product $C \times_\alpha \mathbb{Z}_+$ is completely isometrically isomorphic to the norm-closed linear span of $\sum_{n=0}^{k} \tilde{\pi}(x_n)(V^*)^n, x_n \in C$, where (H, π) is any faithful $*$-representation of C.

Proof. It suffices to prove that the natural $*$-epimorphism Φ is faithful, hence a (completely) $*$-isometric isomorphism. Let $X \in \ker \Phi$, then $X^*X \in \ker \Phi$. Hence,

$$
\Phi(\tilde{E}(X^*X)) = \Phi \left(\int_0^{2\pi} \tilde{\gamma}_s(X^*X) \frac{ds}{2\pi} \right)
$$

$$
= \int_0^{2\pi} \Phi(\tilde{\gamma}_s(X^*X)) \frac{ds}{2\pi} = \int_0^{2\pi} \gamma_s(\Phi(X^*X)) \frac{ds}{2\pi} = 0.
$$

Now $\tilde{E}(X^*X)$ is in $C^*(\pi_u, V_u)^\gamma$ and Φ is faithful there; hence $\tilde{E}(X^*X) = 0$ and so $X^*X = 0$.

For the right semicrossed product, note that $C^*(\pi, V^*) = C^*(\pi, V)$.

If, in particular, α is a $*$-isomorphism, then there is a natural way to identify the left semicrossed product as a closed subalgebra of the (reduced) crossed product, i.e. $C^*_l(C)$. In this case, we refer to this closed subalgebra as the left reduced semicrossed product. In a dual way, we can define the right reduced semicrossed product. The following is proved in [12], when C is abelian.

Theorem 1.5. If α is a $*$-isomorphism, then the C^*-envelope of the semicrossed product is the (reduced) crossed product.
Proof. Since \(\alpha \) is a \(*\)-isomorphism, we can view \(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha) \) as a \(\cdot \mid_\cdot \)-closed subalgebra of \(\ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_l \). First we prove that the inclusion map \(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha) \hookrightarrow \ell^1(\mathbb{Z}, \mathcal{C}, \alpha) \) is completely isometric. The key is to prove that

\[
\|F\|_l = \sup\{\|(U \times \pi)(F)\| : (\pi, U) \text{ l-cov.un. pair of } \ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_l\},
\]

for every \(F \in \ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l \), since the right hand side is exactly the norm of the (left) crossed product. For simplicity, we denote this norm by \(\|\cdot\|_l \).

It is obvious that \(\|F\| \leq \|F\|_l \), since every l-cov.un pair of \(\ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_l \) restricts to a l-cov.un. pair of the subalgebra \(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l \). Also, if \((H_0, \pi)\) is a faithful \(*\)-representation of \(\mathcal{C} \), then \(t_\pi \) is the compression of the left regular representation of \(\ell^1(\mathbb{Z}, \mathcal{C}, \alpha)_l \) induced by \(\pi \), denoted simply by \(lt \). So, \(\|lt_\pi(F)\| \leq \|lt(F)\|_l \), thus \(\|F\| \leq \|F\|_l \) by theorem 1.4.

Arguing in the same way, we get that \(\|[F_{i,j}]\| \leq \|[F_{i,j}]\|_l \) and \(\|[lt_\pi(F_{i,j})]\| \leq \|[lt(F_{i,j})]\|_l \), for every \([F_{i,j}] \in \mathcal{M}_\psi(\ell^1(\mathbb{Z}_+, \mathcal{C}, \alpha)_l) \). But \(lt \) is a \(*\)-morphism of the crossed product, hence completely contractive.

Thus, \(\|[F_{i,j}]\|_l \leq \|[F_{i,j}]\| \) and equality holds.

Hence, if \(\tilde{\pi}(x) = \text{diag}\{\pi(a^m(x))\}, m \in \mathbb{Z} \) and \(U = 1_{H_0} \otimes u \), where \(u \) is the bilateral shift, then the map \(x \mapsto U^n\tilde{\pi}(x) \) extends to a complete isometry \(\iota : \mathbb{Z}_+ \times_\alpha \mathcal{C} \to \mathcal{C}_1^*(\mathcal{C}) \), whose image generates \(\mathcal{C}_1^*(\mathcal{C}) \) as a \(\mathcal{C}^* \)-algebra.

Let \(\mathcal{B} \) be the \(\mathcal{C}^* \)-envelope of \(\mathbb{Z}_+ \times_\alpha \mathcal{C} \). Then, by the universal property of \(\mathcal{C}^* \)-envelopes, there is a surjective \(\mathcal{C}^* \)-homomorphism \(\Psi : \mathcal{C}_1^*(\mathcal{C}) \to \mathcal{B} \), which restricts to a completely isometry on \(\iota(\mathbb{Z}_+ \times_\alpha \mathcal{C}) \).

Let \(G \in \ker \Phi \) be of unit norm, and choose \(F = \sum_{n=0}^k U^n\tilde{\pi}(x_n) \) with \(\|G - F\| < \frac{1}{2} \). Thus \(UG \in \ker \Psi, \iota^{-1}(UG) \in \mathbb{Z}_+ \times_\alpha \mathcal{C} \), \(\|\iota^{-1}(UG)\| = \|UG\| = \|F\| > \frac{1}{2} \) and \(\|U^kG - U^kF\| = \|G - F\| < \frac{1}{2} \). Then \(\frac{1}{2} < \|\iota^{-1}(UG)\| = \|\Psi(UG)\| = \|\Psi(U^kG - U^kF)\| \leq \|U^kG - U^kF\| < \frac{1}{2} \), which is a contradiction. \(\square \)

2. \(w^* \)-Semicrossed Products

Let \(\mathcal{A} \subseteq B(H_0) \) be a unital subalgebra, closed in the \(w^* \)-operator topology, and \(\beta : \mathcal{A} \to \mathcal{A} \), a contractive \(w^* \)-continuous endomorphism of \(\mathcal{A} \). From now on we fix \(H = H_0 \otimes \ell^2(\mathbb{Z}_+) \) and \(\pi := \text{id}_{\mathcal{A}} \), as in example 1.1. Then \(\pi \) is a faithful representation of \(\mathcal{A} \) on \(H \), and we can write \(\pi(b) = \sum_{n \geq 0} \beta^n(b) \otimes p_n \), where \(p_n \in \mathcal{B}(\ell^2(\mathbb{Z}_+)) \) is the projection onto \([e_n] \). Note that the sum converges in the \(w^* \)-topology as well. Hence, \(\pi(b) \) belongs to the \(w^* \)-tensor product algebra \(\mathcal{A} \otimes \mathcal{B}(\ell^2(\mathbb{Z}_+)) \). This is, by definition, the \(w^* \)-closed linear span in \(\mathcal{B}(H) \) of the operators \(b \otimes a \), with \(b \in \mathcal{A} \) and \(a \in \mathcal{B}(\ell^2(\mathbb{Z}_+)) \). We also represent \(\mathbb{Z}_+ \) on \(H \) by the isometries \(V^n = 1_{H_0} \otimes v^n \), where \(v \) is the unilateral shift on \(\ell^2(\mathbb{Z}_+) \).

Thus, \(V^n \in \mathcal{A} \otimes \mathcal{B}(\ell^2(\mathbb{Z}_+)) \).
Definition 2.1. The \(w^*-\)semicrossed product \(\mathbb{Z}_+ \times_{\beta} \mathcal{A} \) is the \(w^* \)-closure of the linear space of the ‘analytic polynomials’ \(\sum_{n=0}^{k} V^n \pi(b_n), b_n \in \mathcal{A}, k \geq 0 \).

It is easy to check that the left covariance relation \(\pi(b)V = V \pi(\beta(b)) \) holds. Hence, \((\pi, V) \) is a left covariant isometric pair. Thus, the \(w^* \)-semicrossed product is a unital (non-selfadjoint) subalgebra of \(\mathcal{B}(H) \) and by definition, \(\mathbb{Z}_+ \times_{\beta} \mathcal{A} \subseteq \mathcal{A} \overline{\otimes} \mathcal{B}(l^2(\mathbb{Z}_+)) \).

Proposition 2.2. An operator \(T \in \mathcal{B}(H) \) is in the \(w^* \)-semicrossed product if and only if \(T_{\kappa, \lambda} \in \mathcal{A} \) and \(G_m(T) = V^m \pi(T_{m,0}) \) when \(m \in \mathbb{Z}_+ \) while \(G_m(T) = 0 \) for \(m < 0 \). Equivalently, when \(T_{\kappa, \lambda} \in \mathcal{A} \) and \(\beta(T_{m+\lambda, \lambda}) = T_{m+\lambda+1, \lambda+1} \) for every \(m, \lambda \in \mathbb{Z}_+ \), while \(T_{\kappa, \lambda} = 0 \) when \(\kappa < \lambda \).

Proof. If \(T = \sum_{\kappa=0}^{n} V^\kappa \pi(b_\kappa) \) with \(b_\kappa \in \mathcal{A} \), then \(G_m(T) = V^m \pi(b_m) \) when \(m \in \{0, 1, \ldots, n\} \) and \(G_m(T) = 0 \) otherwise. Let \(T \in \mathbb{Z}_+ \times_{\beta} \mathcal{A} \) and a net \(A_\iota = \sum_{\kappa=0}^{n} V^\kappa \pi(b_{\iota, \kappa}) \) of analytic polynomials converging to \(T \) in the \(w^* \)-topology. Since \(G_m \) is \(w^* \)-continuous, we have that \(G_m(T) = w^* \lim G_m(A_\iota) \) for every \(m \in \mathbb{Z} \). Thus \(G_m(T) = 0 \) when \(m < 0 \). If \(m \geq 0 \), then \(T_{(m)} = (V^*)^m G_m(T) = w^* \lim_i (V^*)^m G_m(A_i) = w^* \lim_i \pi(b_{i,m}) \). Let \(\phi \in \mathcal{B}(H_0)_* \) and \(k \in \mathbb{Z}_+ \), then \(\phi \otimes \omega_{e_k, e_k} \in \mathcal{B}(H)_* \); hence we get \(\phi(T_{m+k, \kappa}) = (\phi \otimes \omega_{e_k, e_k})(T_{(m)}) \) is \(w^* \lim_i \pi(b_{i,m}) \). Thus \(T_{m+k, \kappa} = w^* \lim_i \beta^k(b_{i,m}) \), for every \(\kappa \in \mathbb{Z}_+ \), so \(T_{m+k, \kappa} \in \mathcal{A} \). Also, since \(\beta \) is \(w^* \)-continuous, we get that \(\beta^k(T_{m,0}) = w^* \lim_i \beta^k(b_{i,m}) = T_{m+k, \kappa} \), for every \(\kappa \in \mathbb{Z}_+ \). Hence, we get that \(G_m(T) = V^m \pi(T_{m,0}) \), for every \(m \geq 0 \).

For the opposite direction, if \(T \in \mathcal{B}(H) \) satisfies the conditions, we can see that \(G_m(T) \in \mathbb{Z}_+ \times_{\beta} \mathcal{A} \), and so by the Féjer Lemma, \(T \in \mathbb{Z}_+ \times_{\beta} \mathcal{A} \) as well. The last equivalence is trivial. \(\square \)

Remark 2.3. Note that each \(ad_w \) leaves \(\mathbb{Z}_+ \times_{\beta} \mathcal{A} \) invariant, and hence, being unitarily implemented, also leaves its reflexive cover invariant. Thus, so does \(G_m(\cdot) \).

Suppose now that the endomorphism \(\beta \) is implemented by a unitary \(w \) acting on \(H_0 \), so that \(\beta(b) = wbw^* \), for all \(b \in \mathcal{A} \). Let \(\rho(b) = b \otimes 1_{\mathcal{F}(\mathbb{Z}_+)} \), for \(b \in \mathcal{A} \) and \(W = w^* \otimes v \). Then \((\rho, W) \) is a left covariant isometric pair and we denote by \(\mathbb{Z}_+ \times_w \mathcal{A} \) the \(w^* \)-closure of the linear space of the ‘analytic polynomials’ \(\sum_{n=0}^{k} W^n \rho(b_n), b_n \in \mathcal{A}, k \geq 0 \).

It is easy to check that \(\mathbb{Z}_+ \times_w \mathcal{A} \) is unitarily equivalent to \(\mathbb{Z}_+ \times_{\beta} \mathcal{A} \), via \(Q = \sum_{n \geq 0} w^{-n} \otimes p_n \). Thus we refer to \(\mathbb{Z}_+ \times_w \mathcal{A} \) as the \(w^* \)-semicrossed product, as well. Using the unitary operator \(Q \) and proposition 2.2 we get the following characterization.
Proposition 2.4. An operator \(T \in \mathcal{B}(H) \) is in \(\mathbb{Z}_+ \otimes w \mathcal{A} \) if and only if \(G_m(T) = W^m \rho(b_m) \), for some \(b_m \in \mathcal{A} \), when \(m \in \mathbb{Z}_+ \) and \(G_m(T) = 0 \) for \(m < 0 \). Equivalently, when \(T_{m+\lambda,\lambda} = (w^*)^m b_m \), for every \(m, \lambda \in \mathbb{Z}_+ \) and \(T_{\kappa,\lambda} = 0 \), when \(\kappa < \lambda \). \(\square \)

The relation between the \(w^* \)-semicrossed product \(\mathcal{A} \otimes T \) and \(\mathbb{Z}_+ \otimes w \mathcal{A} \) depends on some properties of \(w \). Specifically,

- \(\mathcal{A} \otimes T = \mathbb{Z}_+ \otimes w \mathcal{A} \) if and only if \(w^* \in \mathcal{A} \).
- \(\mathcal{A} \otimes T \subset \mathbb{Z}_+ \otimes w \mathcal{A} \) if and only if \(w^* \notin \mathcal{A} \), \(w \notin \mathcal{A} \).
- \(\mathbb{Z}_+ \otimes w \mathcal{A} \subset \mathcal{A} \otimes T \) if and only if \(w \notin \mathcal{A} \), \(w^* \in \mathcal{A} \).
- \((\mathbb{Z}_+ \otimes w \mathcal{A}) \cap (\mathcal{A} \otimes T) = \rho(\mathcal{A}) \), if and only if \((w^* \mathcal{A}) \cap \mathcal{A} = \{0\} \), \(\forall n \in \mathbb{Z}_+ \).

It is easy to verify that, when \((w^* \mathcal{A}) \cap \mathcal{A} = \{0\} \) for every \(n \in \mathbb{Z}_+ \), then \(w, w^* \notin \mathcal{A} \), but the converse is not always true.

Example 2.5. Take \(\mathcal{A} = L^\infty(\mathbb{T}) \) acting on \(L^2(\mathbb{T}) \) and \(\beta(f)(z) = f(\lambda z) \), where \(\lambda \) is a \(q \)-th root of unity. Then \(\beta \) is unitarily implemented by \(w \in \mathcal{B}(L^2(\mathbb{T})) \), with \((w(g))(z) = g(\lambda z) \). Then \(w^{mq} = I_{H_0} \), for every \(m \in \mathbb{Z}_+ \), hence \(w^{mq} \mathcal{A} \cap \mathcal{A} = \mathcal{A} \). In this case, \((\mathbb{Z}_+ \otimes w \mathcal{A}) \cap (\mathcal{A} \otimes T) \) contains the \(w^* \)-closed algebra generated by \(\sum_{n=0}^k W^{mq}_n \rho(b_n), b_n \in \mathcal{A} \), which properly contains \(\rho(\mathcal{A}) \).

The following lemma will be superseded below (theorem 2.9).

Lemma 2.6. The \(w^* \)-semicrossed product \(\mathbb{Z}_+ \otimes w \mathcal{B}(H_0) \) is reflexive, for every unitary \(w \in \mathcal{B}(H_0) \).

Proof. Let \(T \in \text{Ref}(\mathbb{Z}_+ \otimes w \mathcal{B}(H_0)) \). By remark 2.3 each \(G_m(T) \) belongs to the reflexive cover of the \(w^* \)-semicrossed product. For \(\kappa < \lambda \) and \(\xi, \eta \in H_0 \) there is a sequence \(A_n \in \mathbb{Z}_+ \otimes w \mathcal{B}(H_0) \) such that \(\langle T(\xi \otimes e_\lambda), \xi \otimes e_\kappa \rangle = \lim_n \langle A_n(\xi \otimes e_\lambda), \eta \otimes e_\kappa \rangle \). Hence, \(\langle T_{\kappa,\lambda}^* \xi, \eta \rangle = \lim_n \langle (A_n)^{\kappa,\lambda}_\kappa \xi, \eta \rangle = 0 \), since \((A_n)^{\kappa,\lambda}_\kappa = 0 \), for \(\kappa < \lambda \). Hence \(G_m(T) = 0 \) for every \(m < 0 \). Now, fix \(m \in \mathbb{Z}_+ \) and consider \(\xi \in H_0 \), \(g_r = \sum r^m e_n, 0 \leq r < 1 \). We can check that the subspace \(\mathcal{F} = \{ (b\xi) \otimes g_r : b \in \mathcal{B}(H_0) \} \) is \((\mathbb{Z}_+ \otimes w \mathcal{B}(H_0))^* \)-invariant, hence \(G_m(T)^* \)-invariant. Since \(\xi \otimes g_r \in \mathcal{F} \), there is a sequence \((b_n) \) in \(\mathcal{B}(H_0) \) such that \(G_m(T)^*(\xi \otimes g_r) = \lim_n (b_n \xi) \otimes g_r \). Thus, \(\sum \gamma^{m+n+k} T_{m+k,\kappa}^\kappa \xi \otimes e_\kappa = \lim_n (b_n \xi) \otimes g_r \). Taking scalar product with \(\eta \otimes e_\kappa \), where \(\eta \in H_0 \) and \(\kappa \geq 0 \), we have that \(\gamma^{m+k} \langle T_{m+k,\kappa}^\kappa \xi, \eta \rangle = \lim_n \gamma^\kappa \langle b_n \xi, \eta \rangle \). Hence, \(r^\kappa \langle T_{m+k,\kappa}^\kappa \xi, \eta \rangle = \lim_n (b_n \xi, \eta) = r^\kappa \langle T_{m,0}^\kappa \xi, \eta \rangle \), for every \(\eta \). Thus, \(T_{m+k,\kappa}^\kappa \xi = T_{m,0}^\kappa \xi \), for arbitrary \(\xi \in H_0 \), so \(T_{m+k,\kappa} = T_{m,0} \) for every \(\kappa \in \mathbb{Z}_+ \). Hence, \(G_m(T) \in \mathcal{B}(H_0) \otimes T \), which coincides with \(\mathbb{Z}_+ \otimes w \mathcal{B}(H_0) \) since \(w \in \mathcal{B}(H_0) \). \(\square \)
Let S be a w^*-closed subspace of $\mathcal{B}(H)$. We say that S is G-invariant if $G_m(S) \subseteq S$ for every $m \in \mathbb{Z}$. If, in particular, S is a w^*-closed subspace of $Z_+ \overline{\times}_w \mathcal{B}(H_0)$, then $G_m(S) = 0$, for every $m < 0$.

In the next proposition we prove that we can associate a sequence $(S_m)_{m \geq 0}$ of w^*-closed subspaces of $\mathcal{B}(H_0)$ to such an S, and vice versa.

Proposition 2.7. A w^*-closed subspace S of $\mathcal{B}(H)$ is a G-invariant subspace of $Z_+ \overline{\times}_w \mathcal{B}(H_0)$ if and only if it is the w^*-closure of the linear space of the analytic polynomials $\sum_{n=0}^{k} W^n \rho(x_n)$, $x_n \in S_n$, $k \in \mathbb{Z}_+$, where S_n are w^*-closed subspaces of $\mathcal{B}(H_0)$.

Proof. Let S be a G-invariant w^*-closed subspace of $Z_+ \overline{\times}_w \mathcal{B}(H_0)$ and let $S_m = \{w^m T_{m,0} : T \in S\}$, for every $m \geq 0$. Then S_m is a w^*-closed subspace of $\mathcal{B}(H_0)$. Indeed, let $x = w^*\lim_m w^m(T_{i,m,0})$, for $T_i \in S$. Then $\rho((w^*)^{m}x) = w^*\lim_m \rho(T_{i,m,0})$, so $W^m \rho(x) = w^*\lim_m V^m \rho(T_{i,m,0}) = w^*\lim_m G_m(T_i)$, since $T_i \in Z_+ \overline{\times}_w \mathcal{B}(H_0)$. But S is G-invariant, hence $W^m \rho(x) \in S$, thus $x = (w^m(V^m \rho(x)))_{m,0} \in S_m$. A use of the Féjer Lemma and proposition 2.4 completes the forward implication.

For the converse, let S be a w^*-closed subspace as in the statement and $A \in S$; so $A = w^*\lim_i A_i$, where $A_i = \sum_{\kappa=0}^{n_i} W^\kappa \rho(x_{i,\kappa})$, with $x_{i,\kappa} \in S_{\kappa}$. Then $A \in Z_+ \overline{\times}_w \mathcal{B}(H_0)$ and $G_m(A) = w^*\lim_i G_m(A_i) = w^*\lim_i W^m \rho(x_{i,\kappa})$. Thus, $w^m A_{m,0} = w^*\lim_i x_{i,m} \in S_m$. Hence, we have that $G_m(A) = W^m \rho(w^m A_{m,0}) \in S$. \(\square\)

Theorem 2.8. Let $(S_m)_{m \geq 0}$ be the sequence associated to a G-invariant w^*-closed subspace S of $Z_+ \overline{\times}_w \mathcal{B}(H_0)$. If every S_m is reflexive then S is reflexive.

Proof. By lemma 2.6 $\text{Ref}(S) \subseteq \text{Ref}(Z_+ \overline{\times}_w \mathcal{B}(H_0)) = Z_+ \overline{\times}_w \mathcal{B}(H_0)$. So, for every T in the reflexive cover of S and every $m, \lambda \in \mathbb{Z}_+$, we have that $T_{m,\lambda,\lambda} = (w^*)^m b_m$, where $b_m \in \mathcal{B}(H_0)$. Thus, it suffices to prove that $b_m \in S_m$. Since $T \in \text{Ref}(S)$, for every $\xi, \eta \in H_0$, there is a sequence (A_n) in S such that $\langle T(\xi \otimes e_\lambda), (w^*)^m \eta \otimes e_{m+\lambda} \rangle = \lim_n \langle A_n(\xi \otimes e_\lambda), (w^*)^m \eta \otimes e_{m+\lambda} \rangle$. So, $\langle b_m \xi, \eta \rangle = \langle T_{m,\lambda,\lambda} \xi, (w^*)^m \eta \rangle = \lim_n \langle (A_n)_{m,\lambda,\lambda} \xi, (w^*)^m \eta \rangle$. Since each $A_n \in S$, then $(A_n)_{m,\lambda,\lambda} = (w^*)^m b_{n,m}$ for some $b_{n,m} \in S_m$. Thus $\langle b_m \xi, \eta \rangle = \lim_n \langle b_{n,m} \xi, \eta \rangle$, which means that $b_m \in \text{Ref}(S_m) = S_m$. \(\square\)

Theorem 2.9. If A is a reflexive algebra, then $Z_+ \overline{\times}_w A$ is reflexive. In addition, if A is hereditarily reflexive, then every G-invariant w^*-closed subspace of $Z_+ \overline{\times}_w A$ is reflexive.

Proof. The algebra $Z_+ \overline{\times}_w A$ is associated to the sequence $(A)_{m \geq 0}$; hence it is reflexive by the previous theorem. \(\square\)
Applications 2.10. A. (Sarason’s result, [13] theorem 3]) Consider the case of a reflexive subalgebra \mathcal{A} of $M_n(\mathbb{C})$ and a unitary $w \in M_n(\mathbb{C})$ such that $w \mathcal{A} w^* \subseteq \mathcal{A}$. Then $Z_+ \mathcal{A}$ is reflexive. Note that $Z_+ \mathcal{A} = \mathcal{T}$ when $n = 1$ and $w = I_{H_0}$.

B. (Ptak’s result, [13] theorem 2]) More generally, $\mathcal{A} \otimes \mathcal{T}$ coincides with $Z_+ \mathcal{A}$. So $\mathcal{A} \otimes \mathcal{T}$ is reflexive, when \mathcal{A} is reflexive.

C. If \mathcal{M} is a maximal abelian selfadjoint algebra and let β be a *-automorphism, then $Z_+ \beta \mathcal{M}$ is reflexive, since every *-automorphism of a m.a.s.a. is unitarily implemented. For example let $\mathcal{M} = L^\infty(\mathbb{T})$ acting on $L^2(\mathbb{T})$ and β the rotation by $\theta \in \mathbb{R}$. Also $Z_+ \beta \mathcal{A}$ is reflexive whenever \mathcal{A} is a β-invariant w^*-closed subalgebra of \mathcal{M}, since \mathcal{M} is hereditarily reflexive (see [7]).

D. Consider \mathcal{T} acting on $H^2(\mathbb{T})$ and β as in the previous example. Then, \mathcal{T} is reflexive and so $Z_+ \beta \mathcal{T}$ is a reflexive subalgebra of $\mathcal{B}(H^2(\mathbb{T})) \otimes \mathcal{B}(\ell^2(\mathbb{Z}_+))$.

E. If \mathcal{A} is a nest algebra and β is an isometric automorphism, then it is unitarily implemented (see [2]). Thus, $Z_+ \beta \mathcal{A}$ is reflexive.

F. Consider a C^*-algebra \mathcal{C} and a *-morphism $\alpha : \mathcal{C} \rightarrow \mathcal{C}$. Let (H_0, σ) be a faithful *-representation of \mathcal{C} such that the induced *-morphism

$$\beta : \sigma(\mathcal{C}) \rightarrow \sigma(\mathcal{C}) : \sigma(x) \mapsto \beta(\sigma(x)) = \sigma(\alpha(x))$$

is implemented by a unitary $w \in \mathcal{B}(H_0)$. Then the induced representation lt_α is faithful on $Z_+ \times_\alpha \mathcal{C}$. Thus, $lt_\alpha(Z_+ \times_\alpha \mathcal{C})$ is the w^*-closed linear span of the analytic polynomials $\sum_{n=0}^{k} V^n \pi(\sigma(x))$, and it is unitarily equivalent to the algebra $\mathcal{E} := \text{span}\{\rho(\sigma(x)), W^n : x \in \mathcal{C}, n \in \mathbb{Z}_+\}$, via $Q = \sum_{n \geq 0} w^{-n} \otimes p_n$. But \mathcal{E} is exactly the w^*-semicrossed product $Z_+ \times_\alpha \sigma(\mathcal{C})^{w^*}$. Thus, $lt_\sigma(Z_+ \times_\alpha \mathcal{C})^{w^*}$ is reflexive.

In particular, let K be a compact, Hausdorff space, μ a positive, regular Borel measure on K and $\sigma : C(K) \rightarrow \mathcal{B}(L^2(K, \mu)) : f \mapsto M_f$. Consider a homeomorphism ϕ of K, such that ϕ and ϕ^{-1} preserve the μ-null sets and let $\alpha(f) = f \circ \phi$. Then the map $M_f \rightarrow M_{f \circ \phi}$ extends to a *-automorphism of $L^\infty(K, \mu)$, hence it is unitarily implemented. Thus, $lt_\sigma(Z_+ \times_\alpha C(K))^{w^*}$ is reflexive.

H. Let (\mathcal{M}, τ) be a von Neumann algebra with a faithful, normal, tracial state τ and let $L^2(\mathcal{M}, \tau)$ be the Hilbert space associated to (\mathcal{M}, τ). Let $\beta : \mathcal{M} \rightarrow \mathcal{M}$ be a trace-preserving *-automorphism and consider \mathcal{M} acting on $L^2(\mathcal{M}, \tau)$ by left multiplication. Then β is
unitarily implemented and it can be verified that the w^*-semicrossed product $Z_+\overline{\times}_w\mathcal{A}$ coincides with the adjoint of the analytic semicrossed product defined in [8] and [10]. Hence, we obtain [10, proposition 4.5] for $p = 2$.

We conclude the analysis of the w^*-semicrossed product $Z_+\overline{\times}_w\mathcal{A}$ by finding its commutant. We know that $U_s(Z_+\overline{\times}_w\mathcal{A})U_s^* = Z_+\overline{\times}_w\mathcal{A}$, for all $s \in [0, 2\pi]$, hence, $U_s(Z_+\overline{\times}_w\mathcal{A})U_s^* = (Z_+\overline{\times}_w\mathcal{A})'$. Thus, $T \in (Z_+\overline{\times}_w\mathcal{A})'$ if and only if $G_m(T) \in (Z_+\overline{\times}_w\mathcal{A})'$, for every $m \in \mathbb{Z}$. Now, recall that $w\mathcal{A}w^* \subseteq \mathcal{A}$, hence $w^*\mathcal{A}'w \subseteq \mathcal{A}'$. So, we can define the w^*-semicrossed product $Z_+\overline{\times}_w\mathcal{A}'$, where $\gamma \equiv ad_{w^*} : \mathcal{A}' \to \mathcal{A}'$.

Theorem 2.11. If $\gamma \equiv ad_{w^*}$, then $(Z_+\overline{\times}_w\mathcal{A})' = Z_+\overline{\times}_\gamma\mathcal{A}'$. □

Proof. Obviously $T \in (Z_+\overline{\times}_w\mathcal{A})'$ if and only if $T \in \{b \otimes 1, w^* \otimes v : b \in \mathcal{A}\}'$; note also that $V \in (Z_+\overline{\times}_w\mathcal{A})'$. Let $T \in (Z_+\overline{\times}_w\mathcal{A})'$, then for $m \geq 0$ and $b \in \mathcal{A}$, $n \geq 0$,

$$G_m(T)(b \otimes 1) = (b \otimes 1)G_m(T) \quad \text{and} \quad G_m(T)(w^* \otimes v) = (w^* \otimes v)G_m(T),$$

hence, $T_{m+n,n}b = bT_{m,n+n}$ and $T_{m+n+1,n+1}(w^*)_n = (w^*)_nT_{m+n,n}$,

so, $T_{m+n,n} \in \mathcal{A}'$ and $T_{m+n,n} = \gamma^n(T_{0,-m})$.

Thus, if we set $\pi'(T_{m,0}) = \sum_{n \geq 0} \gamma^n(T_{m,0}) \otimes p_n$, we get that $G_m(T) = V^m \pi'(T_{m,0})$, for $m \geq 0$.

Now, let $m < 0$, hence $G_m(T) = T_{(m)}(V^*)^{-m}$. Since, $V \in (Z_+\overline{\times}_w\mathcal{A})'$, we have that $T_{(m)} = G_m(T)V^{-m} \in (Z_+\overline{\times}_w\mathcal{A})'$. Thus, $G_0(T_{(m)}) = T_{(m)} \in (Z_+\overline{\times}_w\mathcal{A})'$ and so, by what we have proved, $T_{n,-m+n} = \gamma^n(T_{0,-m})$.

Since $G_m(T)(\xi \otimes e_0) = 0$, then

$$G_m(T)(w^* \otimes v)^{-m}(\xi \otimes e_0) = (w^* \otimes v)^{-m}G_m(T)(\xi \otimes e_0) = 0,$$

so $(T_{0,-m}(w^*)^{-m}\xi) \otimes e_0 = 0$. Thus, $T_{0,-m} = 0$ and therefore $T_{n,-m+n} = \gamma^n(T_{0,-m}) = 0$, for every $n \geq 0$; hence $G_m(T) = 0$, for every $m < 0$.

Hence, by proposition 2.2, we get that $T \in Z_+\overline{\times}_\gamma\mathcal{A}'$.

For the converse, let $T \in Z_+\overline{\times}_\gamma\mathcal{A}'$, then $G_m(T) \in Z_+\overline{\times}_\gamma\mathcal{A}'$ for every $m \in \mathbb{Z}$, and we can see that $G_m(T) \in \{b \otimes 1, w^* \otimes v : b \in \mathcal{A}\}'$. Hence, $G_m(T) \in (Z_+\overline{\times}_w\mathcal{A})'$ for every $m \in \mathbb{Z}$, so $T \in (Z_+\overline{\times}_w\mathcal{A})'$. □

Theorem 2.12. The double commutant of $Z_+\overline{\times}_w\mathcal{A}$ is $Z_+\overline{\times}_w\mathcal{A}''$. Thus, the w^*-semicrossed product is its own bicommutant if and only if $\mathcal{A} = \mathcal{A}''$.

Proof. We recall that $Q(Z_+\overline{\times}_\beta\mathcal{A})Q^* = Z_+\overline{\times}_w\mathcal{A}$, where $Q = \sum_{n} w^{-n} \otimes p_n$; hence $Q'\overline{(Z_+\overline{\times}_\beta\mathcal{A})}' = Z_+\overline{\times}_w\mathcal{A}'$. Thus, $(Z_+\overline{\times}_w\mathcal{A})' = (Z_+\overline{\times}_w\mathcal{A})' = (Q(Z_+\overline{\times}_w\mathcal{A})Q)^* = Q(Z_+\overline{\times}_w\mathcal{A})' Q^* = Q(Z_+\overline{\times}_w\mathcal{A})' Q^* = Z_+\overline{\times}_w\mathcal{A}''$.
We end this section with a note on the reduced w^*-semicrossed products (see the definition below). Let \mathcal{M} be a von Neumann algebra acting on a Hilbert space H_0, β a $*$-automorphism of \mathcal{M} and consider $\mathbb{Z} \rtimes_{\beta} \mathcal{M}$ to be the usual w^*-crossed product, a von Neumann subalgebra of $\mathcal{M}\overline{\otimes}\mathcal{B}(\ell^2(\mathbb{Z}))$. This is by definition the von Neumann algebra $\{\hat{\pi}(b), U : b \in \mathcal{M}\}''$, where $\hat{\pi}(b) = \sum_{n \in \mathbb{Z}} \beta^n(b) \otimes p_n$ and $U = 1_{H_0} \otimes u$, the ampliation of the bilateral shift $u \in \mathcal{B}(\ell^2(\mathbb{Z}))$.

Definition 2.13. The reduced w^*-semicrossed product $\mathbb{Z}^+ \rtimes_{\beta} \mathcal{M}$ is the w^*-closure of the linear space of ‘analytic polynomials’ $\sum_{k \geq 0} U^k \pi(b_n)$, $b_n \in \mathcal{M}$.

Since $(\hat{\pi}, U)$ is a 1-cov.un. pair, the reduced w^*-semicrossed product is a w^*-closed subalgebra of the w^*-crossed product. In fact, note that $\mathbb{Z}^+ \rtimes_{\beta} \mathcal{M}$ is the intersection of $\mathbb{Z} \rtimes_{\beta} \mathcal{M}$ with the ‘lower triangular’ matrices. Hence, we have the following proposition.

Proposition 2.14. The reduced w^*-semicrossed product of a von Neumann algebra is reflexive. □

Now, take \mathcal{A} to be a w^*-closed subalgebra of \mathcal{M} which is invariant under β. We define $\mathbb{Z}^+ \rtimes_{\beta} \mathcal{A}$ to be the w^*-closure of the linear space of ‘analytic polynomials’ $\sum_{k \geq 0} U^k \pi(b_n)$, $b_n \in \mathcal{A}$, $k \geq 0$. Using the technique of theorem 2.9 one can show the following.

Corollary 2.15. If \mathcal{A} is reflexive subalgebra of \mathcal{M} which is invariant under β, then $\mathbb{Z}^+ \rtimes_{\beta} \mathcal{A}$ is reflexive. □

3. **The Commutative Case**

Now, we examine the case where \mathcal{C} is a commutative, unital C*-algebra, $\mathcal{C} = C(K)$, and the $*$-endomorphism α is induced by a continuous map $\phi : K \to K$. Let ev_t be the evaluation at $t \in K$, i.e. $ev_t(f) = f(t)$; then $(\ell^2(K), \oplus_t ev_t)$ is a faithful $*$-representation of $C(K)$. If some $t \in K$ has dense orbit, we obtain a faithful representation of $C(K)$ on $\ell^2(\mathbb{Z}^+)$. As observed in theorem 1.1, such representations play a fundamental role for the semicrossed product $\mathbb{Z}^+ \times_{\alpha} C(K)$, since they are “enough” to obtain the norm. Let $\pi_t := ev_t$, as in example 1.1. So, $\pi_t : C(K) \to \mathcal{B}(\ell^2(\mathbb{Z}^+))$ is given by $\pi_t(f) := \sum_{n \geq 0} f(\phi^n(t)) p_n$, where p_n is the one-dimensional projection on $[e_n]$. Then (π_t, v) is a left covariant isometric pair. We define the one point w^*-semicrossed product to be $\mathcal{C}_t = \ell^2(\mathbb{Z}^+) \rtimes_{\alpha} \mathcal{C}(K)$, i.e. the w^*-closed linear span in $\mathcal{B}(\ell^2(\mathbb{Z}^+))$.
of the ‘analytic polynomials’ $\sum_{n=0}^{k} v^n \pi_t(f_n)$, $f_n \in C(K)$.

Let $t' = \phi^{n_0}(t)$ be the first periodic element of the orbit of t with period p, as in the following diagram:

$$t \xrightarrow{\phi(t)} \phi^{n_0-1}(t) \xrightarrow{\phi^{n_0}(t) = t'} \phi(t')$$

Then $\text{orb}(t) = \{t, \ldots, \phi^{n_0-1}(t), t', \ldots, \phi^{p-1}(t')\}$ induces a family of projections $\{P_{n_0}, P_0, \ldots, P_{p-1}\}$ such that $I = P_{n_0} \oplus P_0 \oplus \cdots \oplus P_{p-1}$. Indeed, let P_{n_0} be the projection on $[e_0, \ldots, e_{n_0-1}]$ and P_i be the projection on $[e_{n_0+i} : j \in \mathbb{Z}_+]$ for $i = 0, \ldots, p-1$. Note that if $f \in C(K)$, then $\pi_t(f)(e_{n_0+i+j}) = f(\phi^{n_0+i+j}(t))e_{n_0+i+j}$, for $j \in \mathbb{Z}_+$. Hence, $\pi_t(f)P_i = f(\phi^i(t))P_i$, for every $i = 0, \ldots, p-1$.

Proposition 3.1. The algebra C_t is the linear sum $(\Sigma P_{n_0}) \oplus (TP_0) \oplus \cdots \oplus (TP_{p-1})$, where Σ is the algebra of lower triangular operators in $B(\ell^2(\mathbb{Z}_+))$, T is the algebra of analytic Toeplitz operators and $P_{n_0}, P_0, \ldots, P_{p-1}$ are the projections induced by the orbit of t.

Proof. For any $n \in \mathbb{Z}_+$ and $f \in C(K)$, we have

$$v^n \pi_t(f) = v^n \pi_t(f) P_{n_0} \oplus f(t') v^n P_0 \oplus f(\phi^{p-1}(t')) v^n P_{p-1}.$$

Thus, $C_t \subseteq (\Sigma P_{n_0}) \oplus (TP_0) \oplus \cdots \oplus (TP_{p-1})$.

For the converse, first let $TP_{n_0} \in \Sigma P_{n_0}$ and note that $(TP_{n_0})_{\kappa, \lambda} = 0$ when $\kappa < \lambda$ or $n_0 - 1 < \lambda$. So, $G_m(TP_{n_0}) = 0$, when $m < 0$, and $G_m(TP_{n_0}) = v^m(\sum_{n=0}^{n_0-1}(TP_{n_0})_{m+n,n} P_n)$, when $m \geq 0$. Note that $(TP_{n_0})_{\kappa, \lambda} \in \mathbb{C}$ for every $\kappa, \lambda \in \mathbb{Z}_+$. Fix $m \geq 0$ and let $n \in \{0, \ldots, n_0 - 1\}$.

Then by Urysohn’s Lemma there is a sequence $(f_{n,j})_j$ of continuous functions on K, such that $\lim_j f_{n,j}(\phi^n(s)) = (TP_{n_0})_{m+n,n}$ and $f_{n,j}(s) = 0$ for $s \in \text{orb}(t) \setminus \{\phi^n(t)\}$. Hence, $(TP_{n_0})_{m+n,n} P_n = w^*-\lim_j \pi_t(f_{n,j}) \subseteq C_t$ and so $v^m(TP_{n_0})_{m+n,n} P_n \subseteq C_t$. Thus $G_m(TP_{n_0}) \in C_t$, and, by the Féjer Lemma, $TP_{n_0} \subseteq C_t$.

Also, for fixed $i \in \{0, \ldots, p-1\}$ and $m \in \mathbb{Z}_+$, consider $v^m P_i \in TP_i$. Again by Urysohn’s Lemma, there is a sequence $(f_{i,j})_j$ of continuous functions on K, such that $\lim_j f_{i,j}(\phi^i(s')) = 1$ and $f_{i,j}(s) = 0$ for $s \in \text{orb}(t) \setminus \{\phi^i(t')\}$. Then $w^*-\lim_j \pi_t(f_{i,j}) = P_i$, so $v^m P_i \subseteq C_t$. Hence, $TP_i \subseteq C_t$, for every $i \in \{0, \ldots, p-1\}$. Thus, $(\Sigma P_{n_0}) \oplus (TP_0) \oplus \cdots \oplus (TP_{p-1}) \subseteq C_t$. □
Note that if \(orb(t) \) has no periodic points, then \(C_t = \mathcal{F} \), since \(P_{n_0} = 1_{\ell^2(\mathbb{Z}_+)} \). Also, if \(orb(t) \) has exactly one periodic point \(t' \), then \(\phi^n(t) = t' \) for every \(n \geq n_0 \) (i.e. \(t' \) is a fixed point); thus \(C_t = \mathcal{F} P_{n_0} \oplus T P_{n_0}^+ \). If \(t \) is itself a fixed point, then \(C_t = \mathcal{T} \).

Remark 3.2. Let \(\mathcal{D} \) be the algebra of diagonal operators in \(B(\ell^2(\mathbb{Z}_+)) \) and \(\mathcal{D}_\phi = \{ T \in \mathcal{D} : T_{\kappa,\kappa} = T_{n,n} \text{ when } \phi^n(t) = \phi^n(t) \} \) which is a \(w^* \)-closed subalgebra of \(\mathcal{D} \). Hence, \(T \in \mathcal{D}_\phi \) if and only if \(T \) is of the form

\[
T = \text{diag}\{y_0, \ldots, y_{n_0-1}, y_{n_0}, \ldots, y_p-1, y_{n_0}, \ldots, y_{p-1}, \ldots\}.
\]

It is immediate from the previous proposition that \(C_t \) is generated by the unilateral shift in \(B(\ell^2(\mathbb{Z}_+)) \) and the diagonal matrices \(\text{id} \) \(\mathcal{D}_\phi \). Thus, an operator \(T \in B(\ell^2(\mathbb{Z}_+)) \) is in \(C_t \) if and only if for every \(m < 0 \), \(G_m(T) = 0 \), and for every \(m \geq 0 \), \(G_m(T) = v^m \sum_n T_{m+n,n}p_n \) where \(T_{m+n,n} = T_{m+n,n} \) whenever \(\phi^n(t) = \phi^n(t) \).

Theorem 3.3. The algebra \(C_t \) is reflexive.

Proof. If \(T \in \text{Ref}(C_t) \), then \(G_m(T) \in \text{Ref}(C_t) \); thus \(G_m(T) = 0 \), for \(m < 0 \). Let \(g_r = \sum_{n=0}^r r^n e_n \), with \(0 \leq r < 1 \), and \(\mathcal{F} = [\pi_t(f)g_r : f \in C(K)] \). Then \(\mathcal{F} \) is \((C_t)^* \)-invariant; thus \(G_m(T)^* \)-invariant, for \(m \in \mathbb{Z}_+ \). So, there is a sequence of \(f_j \in C(K) \) such that \(G_m(T)^* g_r = \lim_j \pi_t(f_j)g_r \). Hence \(r^m \sum_{n=0}^r \pi_t(f_j)g_r \), for every \(n \in \mathbb{Z}_+ \). Thus, \(T_{m+n,n} = T_{m+n,n} \) if \(\phi^n(t) = \phi^n(t) \). So, by remark 3.2, \(T \in C_t \). \(\square \)

Remark 3.4. In order to construct \(C_t \), it is sufficient to take coefficients from any uniform algebra \(\mathfrak{A} \) on \(K \).

Indeed, let \(\mathfrak{A} \) be a norm closed subalgebra of \(C(K) \) containing the constant functions which separates the points of \(K \) and form the polynomials \(\sum_{k=0}^k v^n \pi_t(f_n) \), \(f_n \in \mathfrak{A} \). By remark 3.2, it suffices to prove that \(\pi_t(\text{ball}(\mathfrak{A})) \) is \(w^* \)-dense in \(\text{ball}(\mathcal{D}_\phi) \). Fix \(z \in \mathbb{T} \) and \(n_0 \in \mathbb{Z}_+ \), and take \(T \in \mathcal{D}_\phi \), such that \(T_{n_0,n_0} = z \) and \(T_{n,n} = 1 \), if \(\phi^n(t) \neq \phi^n(t) \). Using the argument of the claim of \(\mathfrak{A} \) theorem 2.9) we can find a sequence of \((f_j)_j \) in \(\text{ball}(\mathfrak{A}) \) such that \(w^*\lim_j \pi_t(f_j) = T \). To complete the proof, observe that products of elements of this form approximate the unitaries in \(\mathcal{D}_\phi \) in the \(w^* \)-topology and that the strong closure of \(\pi_t(\text{ball}(\mathfrak{A})) \) is closed under multiplication.

Acknowledgements. I wish to give my sincere thanks to A. Katavolos for his kind help and advice during the preparation of this paper. I also wish to thank E. Katsoulis for bringing remark 3.4 to my attention. Finally, I wish to thank I.Sis. and T.o.Ol. for the support and inspiration.
References

[1] D. P. Blecher and C. Le Merdy. Operator algebras and their modules—an operator space approach, volume 30 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, Oxford, 2004. Oxford Science Publications.

[2] K. R. Davidson. Nest algebras, volume 191 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1988. Triangular forms for operator algebras on Hilbert space.

[3] K. R. Davidson and E. G. Katsoulis. Operator algebras for multivariable dynamics, 2007, arXiv.org:math/0701514.

[4] R. V. Kadison and J. R. Ringrose. Fundamentals of the theory of operator algebras. Vol. II, volume 16 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997. Advanced theory, Corrected reprint of the 1986 original.

[5] E. G. Katsoulis. Geometry of the unit ball and representation theory for operator algebras. Pacific J. Math., 216(2):267–292, 2004.

[6] T. Katsura. On C^*-algebras associated with C^*-correspondences. J. Funct. Anal., 217(2):366–401, 2004.

[7] A. N. Loginov and V. S. Šul’man. Hereditary and intermediate reflexivity of W^*-algebras. Izv. Akad. Nauk SSSR Ser. Mat., 39(6):1260–1273, 1437, 1975.

[8] M. McAsey, P. S. Muhly, and K.-S. Saito. Nonselfadjoint crossed products (invariant subspaces and maximality). Trans. Amer. Math. Soc., 248(2):381–409, 1979.

[9] P. S. Muhly and B. Solel. Extensions and dilations for C^*-dynamical systems. In Operator theory, operator algebras, and applications, volume 414 of Contemp. Math., pages 375–381. Amer. Math. Soc., Providence, RI, 2006.

[10] C. Peligrad. Reflexive operator algebras on noncommutative Hardy spaces. Math. Ann., 253(2):165–175, 1980.

[11] J. R. Peters. Semicrossed products of C^*-algebras. J. Funct. Anal., 59(3):498–534, 1984.

[12] J. R. Peters. The C^*-envelope of a semicrossed product and nest representations, 2008, arXiv.org:0810.5364.

[13] M. Ptak. On the reflexivity of pairs of isometries and of tensor products of some operator algebras. Studia Math., 83(1):47–55, 1986.

[14] D. Sarason. Invariant subspaces and unstarred operator algebras. Pacific J. Math., 17:511–517, 1966.

Evgenios T.A. Kakariadis, Department of Mathematics, University of Athens, Panepistimioupolis, GR-157 84, Athens, GREECE
E-mail address: mavro@math.uoa.gr