The Impact of Dietary Components on Regulatory T Cells and Disease

Rebeca Arroyo Hornero, Ibrahim Hamad, Beatriz Côrte-Real and Markus Kleinewietfeld*

VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium

The rise in the prevalence of autoimmune diseases in developed societies has been associated with a change in lifestyle patterns. Among other factors, increased consumption of certain dietary components, such as table salt and fatty acids and excessive caloric intake has been associated with defective immunological tolerance. Dietary nutrients have shown to modulate the immune response by a direct effect on the function of immune cells or, indirectly, by acting on the microbiome of the gastrointestinal tract. FOXP3+ regulatory T cells (Tregs) suppress immune responses and are critical for maintaining peripheral tolerance and immune homeostasis, modulating chronic tissue inflammation and autoimmune disease. It is now well-recognized that Tregs show certain degree of plasticity and can gain effector functions to adapt their regulatory function to different physiological situations during an immune response. However, plasticity of Tregs might also result in conversion into effector T cells that may contribute to autoimmune pathogenesis. Yet, which environmental cues regulate Treg plasticity and function is currently poorly understood, but it is of significant importance for therapeutic purposes. Here we review the current understanding on the effect of certain dietary nutrients that characterize Western diets in Treg metabolism, stability, and function. Moreover, we will discuss the role of Tregs linking diet and autoimmunity and the potential of dietary-based interventions to modulate Treg function in disease.

Keywords: diet, microbiome, Treg—regulatory T cell, autoimmunity, environmental factors

INTRODUCTION

An appropriate balance between pro- and anti-inflammatory immune responses is required to protect organisms from invading pathogens and tumor development without incurring in autoimmune and allergic diseases. While different cell populations with anti-inflammatory activity have been identified, CD4+ FOXP3+ regulatory T cells (Tregs) are the most well-defined. FOXP3 transcription factor determines Treg cell lineage and is essential for appropriate immune homeostasis. Loss-of-function mutations in foxp3 lead to fatal immune disorders in humans (IPEX) (1, 2) and mice (Scuffy phenotype) (3).

Tregs suppress innate and adaptive immune responses using a broad array of molecular mechanisms which e.g., involve cell-contact dependent mechanisms (4), the release of soluble factors (5, 6), deprivation of growth factors (7), induction of apoptosis of target cells (8), and ATP hydrolysis and adenosine production (9, 10). Although there is versatility in the Treg response that allows for a specialized response according to the environment, the anatomical location, and the type of the cell to suppress (11, 12), increasing evidence suggests lack of Treg stability as a culprit of autoimmunity (13). Tregs isolated for instance from T1D (14, 15), MS (16–19) and SLE...
(20) patients showed acquisition of pro-inflammatory functions and reduced suppressive potency in vitro.

Whereas, genetic factors clearly predispose to autoimmune development, the dramatic increase in the incidence of autoimmune diseases in Western countries suggests Western lifestyle patterns as important triggers of disease [reviewed in (21, 22)]. A variety of factors have been proposed to favor autoimmune development such as decrease pathogen exposure, smoke, hormones, stress, pollutants, dietary components and obesity (23–27). Moreover, increasing data highlight the complex interplay between nutrition, metabolic state and the immune response. Caloric restriction ameliorates disease severity and increases the lifespan in experimental animal models of inflammation and autoimmunity (28–30). By contrast, obesity is one of the most consisting factors that predispose for autoimmunity, having being linked with MS (31), T1D (32), psoriasis (33), and Chron’s disease (34) (Figure 1). In addition, diet alters the gut microbial composition. Gut bacteria and their metabolites regulate pro-inflammatory and regulatory T cell responses in the gut, which could exert systemic effects in the individual (35–37).

Although there are many other cell types and environmental factors involved in triggering autoimmunity, given their crucial role in disease regulation, we will summarize the evidence provided by experimental and epidemiological studies associating nutrition, regulatory T cell function and autoimmunity.

Treg REGULATION AND HETEROGENEITY

We and others have shown before that different cell subsets can be distinguished within the pool of Tregs (9, 38). Recent immune phenotyping by mass cytometry and single cell transcriptomic analysis have further demonstrated the heterogeneity of the FOXP3⁺ Treg population (39, 40). Therefore, these technologies could potentially aid in the identification of novel markers involved in Treg function, stability migration and in gaining a better understanding of Treg biology. Tregs are typically categorized according to their origin into two subsets; those that develop in the thymus (tTregs) as a distinct cell lineage, and those induced from CD4⁺CD25⁻FOXP3⁻ naïve T cells in peripheral tissues (pTregs). In vitro, FOXP3⁺ Tregs can also be generated from CD4⁺FOXP3⁻ T cells by e.g., culturing them in the presence of TGF-β, IL-2, and anti-CD3 stimulation (41, 42) being generally named as iTregs, although their functional activity is not well-defined in humans.

FOXP3 is regulated at transcriptional and post-transcriptional level in response to environmental cues [reviewed in (43)]. Demethylation at specific regions of the foxp3 locus is pivotal for regulating FOXP3 expression in different Treg subsets (44). Moreover, distinct FOXP3 splicing variants have been described in humans (45–49) and variations in their relative expression are present in autoimmune disease patients (50–54), suggesting a link between FOXP3 post-transcriptional regulation and autoimmune pathogenicity.

Signals driven by the cytokine milieu (55–59), co-stimulatory molecules (60–62) and the strength of the TCR signaling (63–65) allow Tregs to adapt to the immune environment through e.g., changes in FOXP3 expression. Several studies have shown that, under certain inflammatory conditions, some Tregs secrete pro-inflammatory cytokines and lose their suppressive function (13, 66–72). Interestingly, phenotypically distinct Treg subsets in humans and mice have been described that mirror CD4⁺ Th cell populations by specific co-expression of chemokine receptors, cytokines, and lineage specifying-transcription factors classically associated with Th cells (18, 73–76). The acquisition of T-hspecific markers may allow Tregs to co-localize and regulate particular Th cell subsets in vivo (76). However, it might also be an indication of loss of function. Indeed, an increase in IFN-γ-producing Tregs has been associated with e.g., T1D, MS and autoimmune hepatitis (15, 18, 77). Also, the frequency of Tregs expressing IL-17 is increased in e.g., human patients with psoriasis, IBD and RA (62, 78–83). These data suggest that some Th-like Tregs may lose their ability to suppress immune responses and, instead, may contribute to autoimmunity.

Additionally, Tregs show phenotypical differences depending on which tissue they reside in, with the best non-lymphoid-tissue Treg populations described being those residing in visceral adipose tissue (VAT), skeletal muscle, colonic lamina propria and skin [reviewed in (84–86)]. In general, tissue-resident Tregs are characterized by higher frequency, self-antigen TCR repertoire with clonal micro-expansion, and a specific transcriptional profile different from Tregs in lymphoid organs (87–90). Moreover, by the use of single cell transcriptomics it was revealed that Tregs are highly homogenous within each tissue (40). These distinct phenotypes allow for cell accumulation in specific tissues and dedicated function within the microenvironment [reviewed in (84)].

The existence of multiple Treg subsets with specialized function dependent on environmental signals shows the complexity of Treg biology, but it also makes Treg plasticity and function susceptible to pharmaceutical intervention. Whether changes in diet or microbial composition associated with a Western lifestyle can control Treg function is being actively studied.

OBESITY AND VAT Tregs

Excessive calories are stored as fat in adipose tissue, which also acts as an “endocrine organ” releasing pro-inflammatory adipokines and cytokines such as TNF-α, IL-6, IL-1β, and leptin, resulting in systemic low-degree chronic inflammation (91, 92) (Figure 1). Multiple immune cell types reside in the adipose tissue and play a role in inflammation and metabolic dysregulation (87, 93–99). In particular, obese mice display a dramatic reduction in Treg numbers specifically in adipose tissue, but not in other fat depots, nor in other non-lymphoid tissues and spleen or lymph nodes (87, 100). Cytokines and adipokines may be involved in controlling Treg fluctuations in obese VAT. Obesity positively correlates with IL-6 and IL-17 expression in mice and humans (101, 102). IL-6 promotes
Th17 over Treg development (103) and obese-induced Th17 cell expansion was correlated with exacerbated disease symptoms in autoimmune disease models of experimental autoimmune encephalomyelitis (EAE) and colitis (102, 104). Leptin favors Th1 responses (105–109) and Th17 differentiation (110), but inhibits Treg proliferation (111). Moreover, leptin deficient mice showed a decrease in pathogenic inflammation in most of experimental models of IBD (112), RA (113, 114) and MS (108,
Similarly, relapsing-remitting MS patients also displayed an inverse correlation between frequency of Tregs and serum leptin levels (115), indicating that leptin may act as a link between obesity, Treg numbers and immunological tolerance.

In addition to differences in frequency, it was demonstrated that VAT-Tregs isolated from genetically promoted (leptin-deficient) or diet-induced (high fat chow) insulin-resistant mouse models of obesity have an altered transcriptional signature compared to lean mice (116). Phenotypical changes driven by obesity highlight the adaptability of VAT-Tregs to metabolic perturbations and suggest that obesity might alter Treg plasticity. Although most of the molecular mechanisms still need to be elucidated, it has been shown that excessive caloric intake leads to a dysregulation of intracellular nutrient-energy-sensing pathways and metabolic overload in immune cells (117, 118).

METABOLIC REGULATION OF Tregs

Cellular metabolism regulates cell development, proliferation and function and is controlled by environmental cues and nutrient availability (119, 120). Tregs have a specific metabolic profile, which is mainly dependent on mitochondrial metabolism through fatty acid oxidation (FAO) or pyruvate dependent oxidative phosphorylation (OXPHOS) (121–125). mTOR, one of the main pathways linking nutritional availability with cellular activity, promotes glycolysis (126, 127) and regulates differentiation of Th1, Th17, and Tregs (128–130). Studies showed that in vitro over-activation of mTOR, by culturing in media containing high concentration of nutrients or leptin, impaired Treg proliferation and the induction of FOXP3 expression (131). Treatment with rapamycin or neutralizing anti-leptin mAb reversed this effect and resulted in increased Treg frequencies and lessened EAE severity. However, continuous treatment with rapamycin or genetic mTOR silencing impeded Treg proliferation in the long term in vivo (131). Hence, periods of high and low nutrient levels, required for oscillatory changes in mTOR activity, may be necessary for Treg homeostasis and immunotolerance [reviewed in (132)].

Deletion of PTEN, a negative regulator of PI3K, also contributes to Treg regulation by enhancing glycolysis, decreasing FOXP3 expression and inducing the generation of effector T cells (133, 134). Additionally, the metabolic sensor LKB1 acts through AMPK promoting OXPHOS over glycolysis, and its deletion on Tregs led to alterations in cellular metabolism and the development of autoimmune diseases associated with dampened FOXP3 expression (124, 135). On the other hand, AMPK is considered an antagonist of mTOR activity with the ability to promote FAO (136, 137). Berod et al. showed that deletion of ACC1, a key enzyme in fatty acid synthesis, promoted AMPK activity in CD4+ T cells leading to increases in FAO and Treg development, and ACC1 inhibition under EAE conditions improved disease severity by increasing Treg/Th17 ratio (138).

Vitamins and indoles also modulate Treg function (59). For example, retinoic acid (vitamin A metabolite) acts in conjunction with TGFB-β promoting the induction of Tregs from naive T cells and stabilizing FOXP3 expression, which prevented their conversion into Th1/Th17 cells in the presence of IL-1β/IL-6 (139, 140). Calcitriol, a vitamin D metabolite, enhanced the growth of Tregs (141, 142). Vitamin C has been found to increase the generation of FOXP3+ iTregs on alloantigen-specific Treg induction cultures and to cause a pronounced TSDR demethylation, resulting in an elevated FOXP3 stability (143). Interestingly, vitamin C treatment may act in a distinct manner on iTreg and iTreg function. A recent study by Oyarce et al. showed that iTreg cells pretreated with vitamin C before coculturing with effector CD4+ T cells did not enhanced Treg ability to suppress T cell proliferation regardless of their increased FOXP3 expression. By contrast, in vitro-induced iTregs generated in presence of vitamin C showed improved suppressive capacities (144).

Metabolites associated with aryl hydrogen receptor (AHR) also control Treg function. Kynurenine is important for the generation, expansion and function of Tregs (145–147) and indole-3-carbonale (13C) and 3,3′-diiodolylmethane (DIM) promoted Treg infiltration to the CNS under EAE conditions, improving disease severity, and progression (147).

These data highlight the potential of targeting Treg metabolism to ameliorate autoimmune disease progression. However, more research regarding the therapeutic level of such modulation still has to be conducted. Besides, the limitations associated with studying Treg metabolism, due to their plasticity, culturing method, and biological source prompt a big challenge in the field.

THE EFFECT OF SALT IN Treg PLASTICITY

Increased intake of salt that is also common in Western diets has been linked with cardiovascular disease (148, 149) and autoimmunity (22, 150–154). Although the specific mechanisms are still being revealed, several studies in murine EAE and colitis models have demonstrated that elevated NaCl intake could exacerbate disease by promoting the induction of pathogenic Th17 cells via the SGK1-FOXO1 pathway (35, 36, 155). Besides, Wu et al. have recently described a direct effect of SGK1-FOXO1 in controlling Treg function, such as SGK1 deficiency in Tregs protected mice from the development of autoimmunity (156).

High-salt also induced secretion of IFN-γ and repressed IL-10 expression in Tregs, which resulted in impaired suppressive function in vitro and in vivo (155, 157, 158). In mice fed with high-salt diet, Tregs secreted more IFN-γ and failed to control colitis and xenogeneic GVHD, which was dependent on SGK1 signaling (157). IFN-γ-secreting FOXP3+ Tregs with reduced IL-10 expression have been found in MS and T1D patients and are thought to contribute to disease (15, 18, 158). Interestingly, the imbalance between IFN-γ- and IL-10-expressing-Tregs in MS patients was also observed when Tregs from healthy donors were exposed to high-salt in vitro (158), suggesting that a high-salt environment could skew Tregs toward a dysfunctional state. Moreover, PTGER2 and β-catenin appeared as upstream regulators of the SGK1-FOXO1 axis in response to high-salt concentration, and constitutive expression of active β-catenin in Tregs caused the development of Scurfy-like autoimmunity.
Dietary Components and Tregs

THE GUT MICROBIOTA AFFECTS DISEASE-CONTROLLING Tregs

The human gastrointestinal tract is the major reservoir of microorganisms including bacteria, microeukaryotes, archaea, and viruses, all of which collectively constitute the commensal microbiota (164). Extensive research has demonstrated the intimate crosstalk between commensal microbiota and immune balance. Tregs residing in the intestine are critical for maintaining intestinal immune homeostasis (165–167). Increasing evidence shows that Tregs in the colonic lamina propria are mostly peripherally-induced and depend on microbiota-derived signals for proper development and function (90, 168, 169). In fact, germ-free mice or antibiotic-treated mice show a substantial reduction in colonic Treg frequency (168, 170, 171). Interestingly, induction of pTregs in the small intestine appears more dependent on dietary antigens than on microbial signals (172). By investigating germ-free mice fed on an antigen-free diet, Kim et al. elegantly showed reduction in pTreg numbers in small intestinal lamina propria compared to germ-free mice fed on conventional diet. Importantly, pTregs residing in small intestinal lamina propria suppressed immune responses against dietary antigens (172).

Haghikia et al. elegantly demonstrated that dietary fatty acids profoundly impact T cell subset differentiation in the gut, which had a subsequent impact on central nervous system autoimmunity. The authors showed that SCFAs increased Treg proliferation while long-chain fatty acids (LCFAs) supported Th1 and Th17 differentiation in the gut, which had a significant effect in EAE severity (173). The short-chain fatty acid (SCFA) butyrate, derived from fermentation of dietary carbohydrates by gut microbiota, is an important promotor of colonic Treg differentiation through epigenetic modifications in the foxp3 locus, which induces FOXP3 expression and pTreg conversion (171, 174–176). Clostridia are known to produce high levels of butyrate and colonization of germ-free mice with these bacteria increased colonic Treg frequency and protected mice from colitis (177). By contrast, segmented filamentous bacteria (SFB) induced Th17 cell development in the gut promoting systemic autoimmunity (178–180). In a recent study, Luu et al. have shown that the SCFA pentanoate inhibited SFB-promoted Th17 cell induction by metabolic and epigenetically reprogramming CD4+ T cells to suppress IL-17 production and fostering IL-10 production in CD4+ T cells and B cells (181). Furthermore, Häger et al. reported increased Treg numbers in 36 RA patients after receiving high-fiber dietary supplementation for 28 days, which correlated with a higher Th1/Th17 ratio and decreased expression of markers associated with bone erosion (182).

Several studies have shown that administration of probiotic bacteria containing members of the Lactobacillus, Streptococcus, and Bifidobacterium genera primed DCs to induce the development of FOXP3+ Tregs and IL-10-secreting regulatory T cells (183, 184) (Figure 1). Poutahidis et al. showed that mice fed with Westernized “fast food”-style chow developed obesity and had increased IL-17 levels. By contrast, the addition of probiotic yogurt containing Lactobacillus reuteri into the diet was sufficient to induce weight loss by a Treg dependent mechanism (174). Importantly, diet alters the gut microbiome (185–187) and dysregulation of intestinal microbiota is associated with autoimmunity [reviewed in (188, 189)]. Wilck et al. have shown that increased salt consumption affects intestinal bacterial composition in mice and humans. Lactobacillus spp. was suppressed in high salt condition, but its supplementation prevented high salt-induced Th17 differentiation and ameliorated salt-sensitive hypertension and EAE severity (37, 154). Cekanaviciute et al. found that MS patients have a high presence of the Akkermansia colacoceticus and Akkermansia muciniphila, and the exposure of healthy donor PBMC to these bacteria impaired Treg conversion while enhancing Th1 differentiation (190). These data connect diet with microbiota composition and autoimmune pathogenesis, raising the potential of microbiota-targeted therapies.

DIET AS A THERAPEUTIC AID TO CONTROL AUTOIMMUNITY

It is becoming clear that nutrition, metabolic state, microbiota, and autoimmunity are deeply interconnected. In addition to genetic factors, the Western diet characterized by high caloric intake in the form of processed food enriched in protein, sugar, fat and salt, is widely believed to contribute to the rise in autoimmune diseases in the last decades (Figure 1). However,
one of the major challenges in investigating the effect of diet in human health is the impossibility to address the role of individual nutrients, which maybe the reason why a definite association between dietary interventions and outcomes in human autoimmune disease has not been established yet. Besides, dietary nutrients and microbial metabolites alter the immune response by acting on different immune cell populations, challenging our aim to identify underlying immunological mechanisms targeted during dietary interventions. For instance, we have recently corroborated that high salt diet lead to alterations in T cell populations in murine tumor transplantation models (191). However, inhibition of tumor growth given by high salt diet was largely independent of T cells in these models. Instead, high salt blocked the suppressive function of myeloid derived suppressor cells (MDSCs) in vitro and seems to promote thereby more pronounced anti-tumor immunity in vivo (191).

Obesity alters the balance between pro-inflammatory and suppressive T cells responses in adipose tissue, with Tregs losing their phenotypic identity and function (116), and resulting in break of self-tolerance (131) (Figure 1). Caloric restriction exerts immunoregulatory effects but is not suitable as general therapy for humans. Interestingly, Cignarella et al. have recently reported that intermittent fasting also improves diseases outcomes in the EAE model as caloric restriction does (192). This effect was partially mediated by changes in the gut microbiota, since microbiota transplantation from mice under intermittent fasting into normally-fed mice could induce protection from EAE (192). Microbiota is a major determinant in the regulation of pro-inflammatory and regulatory T cell plasticity in the gut (35–37). Importantly, gut-resident T cells have the ability to traffic between different organs and exert a systemic effect in the organism (193, 194). Furthermore, these findings were translated into a small trial studying 16 MS patients that were on intermittent fasting for 15 days. Although no significant changes in gut bacteria composition was observed, a trend toward increased abundance of the Treg-inducer Clostridia bacteria was reported (177, 192).

As indicated by these data, dietary interventions and the use of probiotics may aid in the control of Treg stability and function

by altering the milieu in which Tregs act in vivo, and help to restore immune responses in individuals with autoimmune prone Western lifestyle.

CONCLUDING REMARKS

Although it is clear that Treg function is frequently altered in human autoimmunity, it should be noted that Tregs are a heterogenous population with distinct tissue-specific features, multiple functions and differential degree of plasticity in response to environmental cues. Moreover, autoimmune diseases are highly heterogenous and it is likely that different defects in Treg-mediated regulation are involved in different types of autoimmune disease and even in each individual depending on the specific genetic background (195). Increasing progress in purifying and subdividing Treg subsets and defining the mechanisms that dictate their function and plasticity will likely contribute to a better understanding on the role of Tregs in autoimmunity.

Dietary factors, via direct effects on immune cells or by acting indirectly through modulation of the gut microbiota, may regulate Treg plasticity and function and, therefore, may have the potential to control disease outcome. However, more research and tightly controlled studies are needed to assess the impact of specific dietary nutrients and bacteria or microbial metabolites on Tregs, autoimmunity, and human health.

AUTHOR CONTRIBUTIONS

RA, IH, BC-R, and MK wrote the manuscript.

FUNDING

MK was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (640116), by a SALK-grant from the government of Flanders, Belgium and by an Odysseus-grant of the Research Foundation Flanders (FWO), Belgium.

REFERENCES

1. Bennett CL, Christie J, Ramsdell F, Brunak ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. (2001) 27:20–1. doi: 10.1038/35713
2. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. (2001) 27:18–20. doi: 10.1038/35707
3. Brunak ME, Jeffery EW, Hjerrild KA, Paepere B, Clark LB, Yasakyo SA, et al. Disruption of a new forkhead/winged-helix protein, scurfyn, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. (2001) 27:68–73. doi: 10.1038/35784
4. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. (2011) 332:600–3. doi: 10.1126/science.1209247
5. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. (1999) 190:995–1004. doi: 10.1084/jem.190.7.995
6. Banchereau J, Pasccual V, O’Garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol. (2012) 13:925–31. doi: 10.1038/ni.2406
7. Barthlott T, Moncrief H, Veldhoen M, Atkinson J, Christensen J, O’Garra A, et al. CD25+ CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int Immunol. (2005) 17:279–88. doi: 10.1093/intimm/dsh207
8. Grossman WI, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Levy TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. (2004) 11:589–604. doi: 10.1016/j.immuni.2004.09.002
9. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells; hydrolysis of extracellular ATP and immune suppression. Blood. (2007) 110:1225–32. doi: 10.1182/blood-2006-12-064527
10. Bodor J, Bopp T, Vaeth M, Klein M, Serfling E, Hunig T, et al. Cyclic AMP underpins suppression by regulatory T cells. *Eur J Immunol.* (2012) 42:1375–84. doi: 10.1002/eji.201141578

11. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? *Int Immunol.* (2009) 21:1105–11. doi: 10.1093/intimm/dxq069

12. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. *Nat Immunol.* (2009) 10:239–44. doi: 10.1038/ni.1757

13. Zou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. *Nat Immunol.* (2009) 10:1000–7. doi: 10.1038/ni.1774

14. Lawson JM, Tremble J, Dayan C, Beyan H, Leslie RD, Peiman M, et al. Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. *Clin Exp Immunol.* (2008) 154:353–9. doi: 10.1111/j.1365-2249.2008.03810.x

15. McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. *J Immunol.* (2011) 186:9318–26. doi: 10.4049/jimmunol.1003099

16. Haas J, Hug A, Viehaver A, Fritzsche B, Falk CS, Filser A, et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. *Eur J Immunol.* (2005) 35:3343–52. doi: 10.1002/eji.200526065

17. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. *J Exp Med.* (2004) 199:971–9. doi: 10.1084/jem.20031579

18. Dominguez-Villar M, Baecher-Allan CM, Hafler DA. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. *Nat Med.* (2011) 17:763–5. doi: 10.1038/nm.2389

19. Costantino CM, Baecher-Allan CM, Hafler DA. Human regulatory T cells and autoimmunity. *Eur J Immunol.* (2008) 38:921–4. doi: 10.1002/eji.200738404

20. Vargas-Rojas MJ, Crispin JC, Richaud-Patin Y, Alcocer-Varela J. Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. *Lupus.* (2008) 17:289–94. doi: 10.1177/0961203307088307

21. Javierre BM, Hernando H, Ballestar E. Environmental triggers and epigenetic deregulation in autoimmune disease. *Dis Model. Med.* (2011) 8:1235–45.

22. Manzel A, Muller DN, Hafler DA, Erdman SE, Linker RA, Kleinewietfeld M. The role of salt for immune cell function and disease. *Curr Allergy Asthma Rep.* (2011) 11:2060–6. doi: 10.1007/s11882-011-0404-6

23. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. *N Engl J Med.* (2002) 347:911–20. doi: 10.1056/NEJMra020401

24. Okada H, Kuhn C, Feillet H, Bach JF. The “hygiene hypothesis” for autoimmune and allergic diseases: an update. *Clin Exp Immunol.* (2010) 160:1–9. doi: 10.1111/j.1365-2249.2010.01439.x

25. Matveeva O, Bogie JF, Hendriks JLA, Linker RA, Haghikia A, Kleinewietfeld M. Western lifestyle and immunopathology of multiple sclerosis. *Ann N Y Acad Sci.* (2018) 1417:71–86. doi: 10.1111/nyasa.13583

26. Willebrand R, Kleinewietfeld M. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. *Nature.* (2011) 496:518–22. doi: 10.1038/nature11868

27. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. *Nature.* (2013) 496:513–7. doi: 10.1038/nature11984

28. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. *Nature.* (2017) 535:585–9. doi: 10.1038/nature24628

29. Miyara M, Yoshioaka Y, Kito A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the Foxp3+ transcription factor. *Immunity.* (2009) 30:899–911. doi: 10.1016/j.immuni.2009.03.019

30. Mason GM, Lowe K, Melchiotti R, Ellis R, de Rinaldis E, Peiman M, et al. Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. *J Immunol.* (2015) 195:2030–7. doi: 10.4049/jimmunol.1500703

31. Miragaya RJ, Gomes T, Chomka A, Jardine L, Riedel A, Hegazy AN, et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue interaction. *Immunity.* (2019) 50:493–504 e7. doi: 10.1016/j.immuni.2019.01.001

32. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, et al. Regulatory T cells: recommendations to simplify the nomenclature. *Nat Immunol.* (2013) 14:307–8. doi: 10.1038/ni.2554

33. Shevach EM, Thornton AM. Tregs, pTregs, and iTregs: similarities and differences. *Immune Rev.* (2014) 259:88–102. doi: 10.1111/imr.12160

34. Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. *Nat Rev Immunol.* (2017) 17:103–17. doi: 10.1038/nri.2017.75

35. Zheng Y, Josewicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. *Nature.* (2010) 463:808–12. doi: 10.1038/nature086750

36. Allan SE, Passerini L, Bacchetta R, Celli N, Dai M, Orban PC, et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. *J Clin Invest.* (2005) 115:3276–84. doi: 10.1172/JCI24685

37. Smith EL, Finney HM, Nesbit AM, Ramsdell F, Robinson MK. Splice variants of human FOXP3 are functional inhibitors of human CD4+ T-cell activation. *Immunology.* (2006) 119:203–11. doi: 10.1111/j.1365-2567.2006.02425.x

38. Du J, Huang C, Zhou B, Ziegler SF. Isotype-specific inhibition of RORalpha-mediated transcriptional activation by human FOXP3. *J Immunol.* (2008) 180:4785–92. doi: 10.4049/jimmunol.180.7.4785

39. Kaur G, Goodall JC, Jarvis LB, Hill Gaston JS. Characterisation of Foxp3 splice variants in human CD4+ and CD8+ T cells-identification of Foxp3Delta7 in human regulatory T cells. *Mol Immunol.* (2010) 47(1–2):321–32. doi: 10.1016/j.molimm.2010.07.008

40. Mailer RK, Joly AL, Liu S, Elias S, Tegner J, Andersson J. IL-18 promotes Th17 differentiation by inducing alternative splicing of FOXP3. *Sci Rep.* (2015) 5:14674. doi: 10.1038/srep14674

41. Ryder LR, Woetmann A, Madsen HO, Odom N, Ryder LP, Bliddal H, et al. Expression of full-length and splice forms of Foxp3 in rheumatoid arthritis. *Scand J Rheumatol.* (2010) 39:279–86. doi: 10.3109/0300974090355374

42. Sambucci M, Gargano F, De Rosa V, De Bardi M, Picozza M, Placido R, et al. Foxp3 isoforms and PD-1 expression by T regulatory cells in multiple sclerosis. *Sci Rep.* (2018) 8:3674. doi: 10.1038/s41598-018-21861-5
52. Joly AL, Seitz C, Liu S, Kuznetsov NV, Gertow K, Westerberg LS, et al. Alternative splicing of FOXP3 controls regulatory T cell effector functions and is associated with human atherosclerotic plaque stability. Circ Res. (2018) 122:1385–94. doi: 10.1161/CIRCRESAHA.117.312340

53. Joly AL, Anderson J. Alternative splicing, FOXP3 and cardiovascular aging. Aging. (2019) 11:15111. doi: 10.1111/age.13149

54. Maier RKW. Alternative splicing of FOXP3-virtue and vice. Front Immunol. (2018) 9:530. doi: 10.3389/fimmu.2018.00530

55. Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immuno Rev. (2011) 241:63–76. doi: 10.1111/j.1600-065X.2011.01004.x

56. Tran DQ, Ramsey H, Steckel B, Gennar J. Identification and characterization of IL-10/IFN-gamma-producing effector-like T cells with regulatory function in human blood. J Exp Med. (2009) 206:1009–17. doi: 10.1084/jem.20082238

57. Gandhi R, Kumar D, Burns EJ, Nadeau M, Bake B, Laroni A, et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol. (2010) 11:846–53. doi: 10.1038/nii1913

58. Haringer B, Lozza Z, Steeckel B, Gennar J. Identification and characterization of IL-10/IFN-gamma-producing effector-like T cells with regulatory function in human blood. J Exp Med. (2009) 206:1009–17. doi: 10.1084/jem.20082238

59. Hoeppli RE, Wu D, Cook L, Levings MK. The environment of regulatory T cells impairs suppressive function and promotes instability and pro-inflammatory cytokine production. Cell Rep. (2017) 17:4779-9. doi: 10.1016/j.celrep.2017.10.089

60. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, et al. Commensal DNA limits regulatory T cell conversion and is associated with human atherosclerotic plaque stability. Proc Natl Acad Sci USA. (2019) 116:247–93. doi: 10.1073/pnas.1809281116

61. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary and maintains Foxp3 transcription factor stability in induced regulatory T cells. Sci Immunol. (2018) 3:eaa22042. doi: 10.1126/sciimmunol.aaa2042

62. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu L, Spivakov M, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. (2008) 105:7797–802. doi: 10.1073/pnas.080928108

63. Okhura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. (2012) 37:785–99. doi: 10.1016/j.immuni.2012.09.010

64. Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cells in gut Peyer's patches. Cell Metab. (2019) 30:123–35.e7. doi: 10.1016/j.cmet.2019.05.006

65. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science. (2015) 348:609–13. doi: 10.1126/science.aac3922

66. Oldenhove G, Bouladoux N, Wohlfert EA, Blank RB, Zhu Q, et al. Production of proinflammatory cytokines by monocytes in liver-resident regulatory T cells phenotypically mirror effector Th cells. J Immunol. (2016) 196:4437–44. doi: 10.1182/jimmunol.2016.05.003

67. Bovenschen HJ, van de Kerkhof PC, van Erp PE, Woestenrek N, Joosten I, Koenen HJ. Foxp3(+) regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol. (2011) 131:1853–60. doi: 10.1038/jid.2011.139

68. Sanchez Rodriguez R, Paull ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, et al. Memory regulatory T cells reside in human skin. J Clin Invest. (2014) 124:1027–36. doi: 10.1172/JCI21932

69. Li L, Buus M. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Proc Natl Acad Sci USA. (2009) 106:4793–8. doi: 10.1073/pnas.090408106

70. Sugimoto CM, Ashley CW, Yang L, Kuchroo VK, Baecker-Allan C, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood. (2009) 113:4240–9. doi: 10.1182/blood-2008-138231

71. Kleinewietfeld M, Hafer DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. (2013) 25:305–12. doi: 10.1016/j.smim.2013.10.009

72. Kleinewietfeld M, Hafer DA. Regulatory T cells in autoimmune neuroinflammation. Immuno Rev. (2014) 259:231–44. doi: 10.1111/imr.12160

73. Rajapakse P, de la Roza C, Chen J, Beutler B, Rosen F, et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+)- regulatory T cells. Nat Immunol. (2016) 17:1176–85. doi: 10.1038/nii1810

74. Koehler D, van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. (2015) 21:543–57. doi: 10.1016/j.cellmet.2015.03.005
10. Bilate AM, Bousbaine D, Meslin L, Agudelo M, Leube J, Kratzert A, et al. Tissue-specific emergence of regulatory and intraepithelial T cells from a donal T cell precursor. Sci Immunol. (2016) 1eaaf471. doi: 10.1126/sciimmunol.aaf471

9. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. (2005) 115:911–9. doi: 10.1016/j.jaci.2005.02.023

8. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. (1993) 259:87–91. doi: 10.1126/science.7678183

7. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. (2003) 112:1796–808. doi: 10.1172/jci200319246

6. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. (2007) 117:175–84. doi: 10.1172/jci29881

5. Reis BS, Lee K, Fanok MH, Mascaraque C, Amoury M, Cohn LB, et al. Leptin receptor signaling in T cells is required for Th17 differentiation. J Immunol. (2015) 194:5253–60. doi: 10.4049/jimmunol.1402996

4. De Rosa V, Procaccini C, Cali G, Pirozzi G, Fontana S, Zappacosta S, et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity. (2007) 26:241–55. doi: 10.1016/j.immuni.2007.01.011

3. Siegmund B, Lehr HA, Fantuzzi G. Leptin: a pivotal mediator of immune tolerance. Trends Immunol. (2004) 25:193–200. doi: 10.1016/j.it.2004.02.009

2. Procopacini C, Galgani M, De Rosa V, Matteure G. Intracellular metabolic pathways control immune tolerance. Trends Immunol. (2012) 33:1–7. doi: 10.1016/j.it.2011.09.002

1. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. (2013) 38:633–43. doi: 10.1016/j.immuni.2013.04.005
130. Procaccini C, De Rosa V, Galgani M, Abanni L, Cali G, Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of Arroyo Hornero et al. Dietary Components and Tregs

132. De Rosa V, La Cava A, Matarese G. Metabolic pressure and the

133. Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM, et al. Critical role of all-

134. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the

135. Wu D, Luo Y, Guo W, Niu Q, Xue T, Yang F, et al. Lkb1 maintains Treg cell

136. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. Sodium chloride-enriched diet enhanced inflammatory cytokine production and exacerbated experimental colitis in mice. J Crohns Colitis. (2017) 11:237–45. doi: 10.1016/j.cccj.2016j04.139

137. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is activity sets regulatory T cell responsiveness. Nat Immunol. (2010) 33:929–41. doi: 10.1038/ni.2010.11.024

138. Chambers ES, Suwannasaen D, Mann EH, Urry Z, Richards DF, R, Floess S, et al. Alloantigen-induced regulatory T cells generated in vivo.

139. Cortese M, Yuan C, Chitnis T, Ascherio A, Munger KL. No association of reciprocal differentiation of regulatory T cells and Th17 cells.

140. Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q, et al. Critical role of all-

142. Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH, et al. Activity sets regulatory T cell responsiveness.

143. O'Neill HM, Lally JS, Galic S, Thomas M, Azizi PD, Fullerton MD, et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia. (2014) 57:1693–702. doi: 10.1007/s00125-014-3273-1

144. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. (2013) 17:113–24. doi: 10.1016/j.cmet.2012.12.001

145. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. (2017) 8:70–82. doi: 10.18632/oncotarget.13783

146. Luo C, Chen Z, Xiao S, Thalhammer T, Madi A, Han T, et al. SGK1 governs the reciprocal development of Th17 and regulatory T cells. Cell Rep. (2018) 22:1657–67. doi: 10.1016/j.celrep.2017.12.068

147. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vadudattu N, et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest. (2015) 125:4212–22. doi: 10.1172/JCI81151

148. Sumida T, Lincoln MR, Ujeke CM, Rodriguez DM, Akazawa H, Noda T, et al. Activated beta-catenin in Foxp3(+) regulatory T cells links inflammatory environments to autoimmunity. Nat Immunol. (2018) 19:1391–402. doi: 10.1038/nature19019-018-0236-6

149. Luo Y, Xue Y, Wang J, Dang J, Fang Q, Huang G, et al. Negligible effect of sodium chloride on the development and function of CD4(+) Tfh cells. Cell Rep. (2019) 26:1869–79. doi: 10.1016/j.celrep.2019.01.066

150. Paling D, Solanky BS, Riemer F, Tozer DJ, Wheeler-Kingshott CA, Kapoor R, et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain. (2013) 136:2305–17. doi: 10.1093/brain/aws1149

151. Yang X, Yao G, Chen W, Tang X, Feng X, Sun L. Exacerbation of lupus nephritis by high sodium chloride related to activation of SGK1 pathway. Int Immunopharmacol. (2015) 29:568–73. doi: 10.1016/j.intimp.2015.09.027

152. Wu H, Huang X, Qiu H, Zhao M, Liao W, Yuan S, et al. High salt promotes autoimmunity by TET2-induced DNA demethylation and driving the differentiation of Th17 cells. Sci Rep. (2016) 6:28065. doi: 10.1038/srep28065

153. Monteleone I, Marafini I, Dinallo V, Di Fusco D, Troncone E, Zorzi F, et al. Sodium chloride-enriched diet enhanced inflammatory cytokine production and exacerbated experimental colitis in mice. J Crohns Colitis. (2017) 11:237–45. doi: 10.1016/j.cccj.2016j04.139

154. Muller DN, Wlk N, Haase S, Kleinevieffeld M, Linker RA. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat Rev Immunol. (2019) 19:243–54. doi: 10.1038/s41577-018-0113-4

155. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. (2017) 8:70–82. doi: 10.18632/oncotarget.13783

156. Wu C, Chen Z, Xiao S, Thalhammer T, Madi A, Han T, et al. SGK1 governs the reciprocal development of Th17 and regulatory T cells. Cell Rep. (2018) 22:1657–67. doi: 10.1016/j.celrep.2017.12.068

157. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vadudattu N, et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest. (2015) 125:4212–22. doi: 10.1172/JCI81151

158. Sumida T, Lincoln MR, Ujeke CM, Rodriguez DM, Akazawa H, Noda T, et al. Activated beta-catenin in Foxp3(+) regulatory T cells links inflammatory environments to autoimmunity. Nat Immunol. (2018) 19:1391–402. doi: 10.1038/nature19019-018-0236-6

159. Luo Y, Xue Y, Wang J, Dang J, Fang Q, Huang G, et al. Negligible effect of sodium chloride on the development and function of CD4(+) Tfh cells. Cell Rep. (2019) 26:1869–79. doi: 10.1016/j.celrep.2019.01.066

160. Paling D, Solanky BS, Riemer F, Tozer DJ, Wheeler-Kingshott CA, Kapoor R, et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain. (2013) 136:2305–17. doi: 10.1093/brain/aws1149

161. Cortese M, Yuan C, Chitnis T, Ascherio A, Munger KL. No association between dietary sodium intake and the risk of multiple sclerosis. Neurology. (2017) 89:1322–9. doi: 10.1212/wnl.0000000000004417

162. Fitzgerald KC, Munger KL, Hartung HP, Freedman MS, Montalban X, Edan G, et al. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann Neurol. (2017) 82:20–9. doi: 10.1002/ana.24965

163. Haase S, Wlk N, Kleinevieffeld M, Muller DN, Linker RA. Sodium chloride triggers Th17 mediated autoimmunity. J Neuroimmunol. (2019) 329:9–13. doi: 10.1016/j.jneuroim.2018.06.016

164. Lloyd-Price J, Abu-Ali G, Hutterhoven C. The healthy human microbiome. Genome Med. (2016) 8:51. doi: 10.1186/s13073-016-0307-y

165. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Microbiol. (2004) 2:478–85. doi: 10.1038/nrm1373

166. Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. (2013) 13:321–35. doi: 10.1038/nri3430
171. Arpaia N, Campbell C, Fan X, Dikty S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. *Nature*. (2013) 504:451–5. doi: 10.1038/nature12726

172. Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. *Science*. (2016) 351:858–63. doi: 10.1126/science.aac5560

173. Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. *Immunity*. (2015) 43:817–29. doi: 10.1016/j.immuni.2015.09.007

174. Poutahidis T, Kleinniewietfeld M, Smillie C, Levkovich T, Perrottet A, Bhela S, et al. Microbial reprogramming inhibits Western diet-associated obesity. *PLoS ONE*. (2013) 8:e68596. doi: 10.1371/journal.pone.0068596

175. Smith PM, Howitt MR, Panikov N, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. *Science*. (2013) 341:569–73. doi: 10.1126/science.1241165

176. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbes-derived butyrate induces the differentiation of colonic regulatory T-cells. *Nature*. (2013) 504:446–50. doi: 10.1038/nature12721

177. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. *Science*. (2011) 331:337–41. doi: 10.1126/science.1198469

178. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. *Science*. (2013) 341:569–73. doi: 10.1126/science.1241165

179. Ivanov, II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. *Cell*. (2009) 139:485–98. doi: 10.1016/j.cell.2009.09.033

180. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. *Immunity*. (2009) 31:677–89. doi: 10.1016/j.immuni.2009.08.020

181. Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, et al. The metabolic-epigenetic crosstalk in lymphocytes. *Nat Commun*. (2014) 6:6696–701. doi: 10.1038/ncomms7011

182. Häger J, Bang H, Hagen M, Frech M, Trager P, Sokolova MV, et al. The role of dietary fiber in rheumatoid arthritis patients: a feasibility study. *Nutrients*. (2019) 11:e2392. doi: 10.3390/nu1102392

183. Smit HN, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integulin. *J Allergy Clin Immunol*. (2005) 115:1260–7. doi: 10.1016/j.jaci.2005.03.036

184. Kwok HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, et al. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. *Proc Natl Acad Sci USA*. (2010) 107:2159–64. doi: 10.1073/pnas.0904055107

185. David LA, Maurice CF, Carmody RN, Gootenberg JB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. *Nature*. (2014) 505:559–63. doi: 10.1038/nature12820

186. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. *Proc Natl Acad Sci USA*. (2010) 107:14691–6. doi: 10.1073/pnas.1005963107

187. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. *Nature*. (2013) 504:451–5. doi: 10.1038/nature12726

188. De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. *Clin Exp Immunol*. (2019) 195:74–85. doi: 10.1111/cei.13158

189. Nogueira AR, Shoenfeld Y. Microbiome and autoimmune diseases: cause and effect relationship. *Curr Opin Rheumatol*. (2019) 31:471–4. doi: 10.1097/BOR.0000000000000628

190. Czekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. *Proc Natl Acad Sci USA*. (2017) 114:10713–8. doi: 10.1073/pnas.1711235114

191. Willebrand R, Hamad I, Van Zeelbroeck L, Kiss M, Bruderek K, Geuzens A, et al. High salt inhibits tumor growth by enhancing anti-tumor immunity. *Front Immunol*. (2019) 10:1141. doi: 10.3389/fimmu.2019.01141

192. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. *Cell Metab*. (2018) 27:1222–35 e10. doi: 10.1016/j.cmet.2018.05.006

193. Morton AM, Sefik E, Upadhayay R, Weisслeder R, Benoist C, Mathis D. Endoscopic photoconversion reveals unexpectedly broad leucocyte trafficking to and from the gut. *Proc Natl Acad Sci USA*. (2014) 111:6696–701. doi: 10.1073/pnas.1405634111

194. Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, et al. Control of TH17 cells occurs in the small intestine. *Nature*. (2011) 475:514–8. doi: 10.1038/nature10228

195. Long SA, Buckner JH. CD4+FoxP3+ T regulatory cells in human autoimmunity: more than a numbers game. *J Immunol*. (2011) 187:2061–6. doi: 10.4049/jimmunol.1003224

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Arroyo Hornero, Hamad, Corte-Real and Kleinniewietfeld. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.