Genome Sequence of Ruloma Virus, a Novel Paramyxovirus Clustering Basally to Members of the Genus Jeilongvirus

Bert Vanmechelen, a Sien Meurs, a Zafeiro Zisi, a Joëlle Goüy de Bellocq, b Magda Bletsa, a Philippe Lemey, a Piet Maes a

a KU Leuven – University of Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Leuven, Belgium
b The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic

ABSTRACT We report here the complete genome sequence of ruloma virus, a novel paramyxovirus detected in a Machangu’s brush-furred rat from Tanzania. Ruloma virus has the longest orthoparamyxovirus genome reported to date and forms a sister clade to all currently known members of the genus Jeilongvirus.

The recently established genus Jeilongvirus within the subfamily Orthoparamyxovirinae contains seven recognized species, all identified in rodents and bats (1). However, several more putative species have been reported, also in other mammals, indicating that they might be more prevalent and have a wider host range than previously assumed (2–4). Jeilongviruses are set apart from other paramyxoviruses by the presence of one or two additional genes (compared to the traditional N-P/V/C-M-F-G-L genome organization), encoding transmembrane proteins, between the F and G genes. Additionally, members of the rodent clade of the genus Jeilongvirus are characterized by the long but variable length of their G genes and their overall large genome size (5).

We performed next-generation sequencing on cDNA from kidney and spleen tissue of a Machangu’s brush-furred rat (Lophuromys machangui) caught by snap-trapping in Tanzania (9°02’26.7”S, 33°34’23.5”E) in 2013 (see also reference 6). Prior to Illumina sequencing, the tissue was subjected to total RNA extraction using the RNaseasy minikit (Qiagen), with additional freeze-thaw steps before and after tissue homogenization and with on-column DNase treatment (see reference 6 for a more detailed description). The RNA Quantifluor system (Promega) and a Bioanalyzer 2100 device, using an Agilent RNA 6000 Nano chip (Agilent Technologies), were used for quantitation and quality assessment. Next, the Ribozero rRNA removal kit (Illumina) was used to deplete rRNA, and sequencing libraries were prepared with the NEXTflex rapid Illumina directional RNA-Seq library prep kit (PerkinElmer). Paired-end sequencing (2 × 150 bp) was performed on an Illumina NextSeq 500 instrument (Illumina) at Viroscan3D (Lyon, France). Following adapter trimming using Trimmomatic v0.36, CLC Genomics Workbench v10.0.1 was used for de novo assembly. Paramyxoviral contigs were identified using tBLASTx v2.5.0+ search against a custom database containing all recognized and putative paramyxovirus species for which complete genomes are available. Based on these contigs (average coverage depth, 8 ×), primers were designed to determine the complete genome sequence by reverse transcriptase PCR (RT-PCR) and subsequent Sanger sequencing, and 5’ and 3′ rapid amplification of cDNA ends (RACE) using the 5′/3′ RACE kit (Roche) was used to complete the genome ends. Genome annotation was performed using the NCBI ORFfinder (www.ncbi.nlm.nih.gov/orffinder) and TMHMM Server v2.0 (www.cbs.dtu.dk/services/TMHMM) for transmembrane protein prediction. All tools were run with default parameters unless otherwise specified.

Based on its location (Rungwe District, Tanzania) and host of origin (Lophuromys machangui), this virus was given the name ruloma virus. Its genome consists of 20,454 nucleotides, in compliance with the “rule of six” for paramyxovirus genomes, and
represents the largest mammalian paramyxovirus genome reported thus far (7). The genome has an average GC content of 33.24% and shares little similarity with known paramyxoviruses, as evaluated by pairwise sequence comparison (8) with Mount Mabu Lophuromys virus 1 and 2, showing the highest degree of nucleotide identity (both 41 to 42%). The genome structure,
3\begin{align*}
\text{-N-P/V/C-M-F-TM-G-L-5}\end{align*},
follows the typical paramyxovirus genome layout but includes an additional gene encoding a transmembrane protein between the F and G genes (9). Similar genome organizations are found only in members of the genus *Jeilongvirus*, which sometimes can even encode a second additional gene (SH) between this TM gene and the F gene. In accordance with its genome structure, phylogenetic analysis based on the protein sequence of all currently available (putative) orthoparamyxovirus species clusters ruloma virus as a sister lineage to all known members of the genus *Jeilongvirus* (Fig. 1). Interestingly, with a length of 784 amino acids, the G protein of ruloma virus is remarkably long, a trait thus far observed only in members of the “rodent clade” of the genus *Jeilongvirus* (5).
Data availability. The genome sequence of ruloma virus has been deposited in NCBI GenBank under the accession number MW579602. The Illumina data have been deposited in the NCBI SRA under the accession number SRR14154489.

ACKNOWLEDGMENTS

Permission to collect specimens and handle animals was provided by the Sokoine University of Agriculture with the assistance of the Pest Management Centre, Morogoro, Tanzania. All animal-related procedures were carried out in accordance with the International Guiding Principles for Biomedical Research Involving Animals.

B.V. was supported by a strategic basic research (SB) Ph.D. fellowship at FWO (Research Foundation–Flanders), project number 1528617N. The research leading to these results received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement number 725422-ReservoirDOCS).

P.L. acknowledges support by the Research Foundation–Flanders (“Fonds voor Wetenschappelijk Onderzoek–Vlaanderen,” G066215N, G0D5117N, and G0B9317N).

The rodent sample was collected by J. Bryja, R. Sumbera, and V. Mazoch within the project of the Czech Science Foundation number P506/10/0983.

REFERENCES

1. Balkema-Buschmann A, Dunndon WG, Duprex WP, Easton AJ, Fouchier RAM, Kurath G, Lamb RA, Lee B, Rima BK, Rota PA, Wang L. 2018. ICTV proposal 2018.011MA.v1. https://talk.ictvonline.org/ictv/proposals/2018.011MA.v1 Paramyxoviridae. zip. Accessed 11 February 2021.

2. Sakaguchi S, Nakagawa S, Mitsuhashi S, Ogawa M, Sugiyama K, Tamukai K, Koide R, Katayama Y, Nakano T, Makino S, Imanishi T, Miyazawa T, Mizutani T. 2020. Molecular characterization of feline paramyxovirus in Japanese cat populations. Arch Virol 165:413–418. https://doi.org/10.1007/s00705-019-04480-x

3. Vanmechelen B, Vergote V, Merino M, Verbeken E, Maes P. 2020. Common occurrence of Blerina virus, a novel paramyxovirus found in Belgian hedgehogs. Sci Rep 10:19341. https://doi.org/10.1038/s41598-020-76419-1

4. Wu Z, Han Y, Liu B, Li H, Zhi G, Latinna A, Dong J, Sun L, Du J, Zhou S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang J, Jiang J, Xu X, Zhou H, Yang F, Morand S, Dazak P, Jin Q. 2021. Decoding the RNA viromes of rodent lungs provides new visions into the origin and evolution pattern of rotoderm-borne diseases in mainland Southeast Asia. Res Square https://doi.org/10.21203/rs.3.rs-17323/v1

5. Vannechenel B, Blets M, Laenen L, Lopes AR, Vergote V, Beller L, Deboutte W, Korva M, Aveic Zapanc T, Gouy de Bellocq J, Gryseels S, Leirs H, Lemey P, Vrancken B, Maes P. 2018. Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genomics 19:617.

6. Bletsa M, Vrancken B, Gryseels S, Boonen I, Fikatas A, Li Y, Laudisioott A, Leguimne S, Bryja J, Makundu R, Mehreretu Y, Akaibe BD, Mbalitini SG, Van de Perre F, Van Houtte N, Ter Peere M, Debarbieri M, Drexler JF, Verheyen E, Leirs H, de Bellocq JG, Lemey P. 2020. Unravelling the evolutionary relationships of hepacviruses within and across rodent hosts. bioRxiv https://doi.org/10.1101/2020.10.332932.2020.10.332932

7. Calain P, Roux L. 1993. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830. https://doi.org/10.1128/JVI.67.8.4822-4830.1993

8. Bao Y, Chetvernin V, Tatusova T. 2014. Improvements to pairwise sequence comparison (PASC): a genome-based Web tool for virus classification. Arch Virol 159:3293–3304. https://doi.org/10.1007/s00705-014-2197-x

9. Rima B, Balkema-Buschmann A, Dunndon WG, Duprex P, Easton A, Fouchier R, Kurath G, Lamb R, Lee B, Rota P, Wang L, ICTV Report Consortium. 2019. ICTV virus taxonomy profile: Paramyxoviridae. J Gen Virol 100:1593–1594. https://doi.org/10.1099/jgv.0.001328

10. Kato K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

11. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348

12. Heled J. 2012. Sequence diversity under the multispecies coalescent with Yule process and constant population size. Theor Popul Biol 81:97–101. https://doi.org/10.1016/j.tpb.2011.12.007

13. Le SQ, Gascuel O. 2008. An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320. https://doi.org/10.1093/molbev/mst067

14. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

15. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016. https://doi.org/10.1093/virev/vey016

16. ICTV. 2019. ICTV master species list 2019. v1. https://talk.ictvonline.org/