Thermal decomposition kinetics of Zn\n chelates of substituted chalcones

K. G. Mallikarjun

Department of Chemistry, Jawahar Navodaya Vidyalaya, Peddapuram-533 437, India
E-mail: mallikarjunkg@yahoo.co.in Fax: 91-8852-243363

Manuscript received 23 April 2004, revised 5 July 2005, accepted 5 August 2005

The thermal decomposition of Zn\n complexes of 3-(phenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (PHPO), 3-(4-chlorophenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (CPHPO), 3-(4-methoxyphenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (MPHPO), 3-(3,4-dimethoxyphenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (DMPHPO) was studied by thermogravimetry. Mathematical analysis of the data has allowed us to determine various parameters using Freeman-Carroll equation, the integral method using the Coats-Redfern equation and the approximation method using the Horowitz-Metzger equation. The trend of the kinetic parameters was found to be different from that of the thermal stability order. The low values of Z suggest the slow nature of the reaction.

In continuation of our earlier work\(^1\) on thermal decomposition kinetics of metal chelates, the present investigation deals the thermal stability of the zinc chelates of 3-(phenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (PHPO), 3-(4-chlorophenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (CPHPO), 3-(4-methoxyphenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (MPHPO), 3-(3,4-dimethoxyphenyl)-1-(2'-hydroxynaphthyl)-2-propen-1-one (DMPHPO) and evaluation of kinetic parameters employing the differential Freeman-Carroll equation, the integral method using the Coats-Redfern equation and the approximation method using the Horowitz-Metzger equation\(^2\).

Results and discussion

All the complexes are coloured powders which are insoluble in water. The elemental analysis of the chelates showed zinc to ligand ratios of 1:2. The complexes were found to be stable in air and non-hygrosopic. The final pyrolysis product of all the complexes corresponds to ZnO. The thermal stability data (Table 1) of the chelates reveal that the introduction of a -OCH\(_3\) group increases the thermal stability, whereas introduction of a chlorine atom decreases the thermal stability. The enhancement thermal stability by the presence of electron releasing -OCH\(_3\) groups at position 3 and 4 was ascribed to the availability of higher electron density at the reactive centre. The lower thermal stability of CPHPO may be attributed to the electron withdrawing effect of a chlorine atom, leading to lower electron density at the reactive centre. The relative thermal stability of the chelates is $\text{Zn(CPHPO)}_2 < \text{Zn(PHPO)}_2 < \text{Zn(MPHPO)}_2 < \text{Zn(DMPHPO)}_2$. Mathematical analysis of the TG curves was carried out using the differential Freeman-Carroll equation, the integral method using the Coats-Redfern equation and the approximation method using the Horowitz-Metzger equation.

Freeman-Carroll equation:

Freeman-Carroll equation which may be written in the form.

$$\frac{\Delta \log (dW/dt)}{\Delta \log W_r} = \frac{-\left(\frac{E^*}{2.303 R} \frac{\Delta (T^{-1})}{\Delta \log W_r}\right)}{n} + \frac{1}{n}$$

where $W_r = W_{\infty} - W$, W_{∞} is the mass loss at the completion of reaction, W is the mass loss up to time t, T is the absolute temperature at time t, n is the order of reaction, R is the gas constant in calories and E^* is the energy of activation in kcal mol\(^{-1}\). W_r and T can be directly obtained from the TG traces. The temperature slopes dW/dT were converted into time slopes dW/dt, using the relation

$$\frac{dW}{dt} = \frac{dW}{dT} \cdot \left(\frac{dT}{dt}\right) = \left(\frac{dW}{dt}\right) \phi$$

where ϕ is the heating rate. The usual first-order rate law expression

$$\frac{dW}{dt} = k(a - x)$$

can be written in the following form using the terms W and W_r

$$\frac{dW}{dt} = kW_r$$

combining this with the Arrhenius equation

$$K = Z \exp \left(-\frac{E^*}{RT}\right)$$
We obtain

\[
\log \left(\frac{dW/dt}{W_r} \right) = -\frac{E^*}{2.303 RT} + \log Z
\]

Plot of log [(dW/dt)/W_r] against 1/T were drawn. They gave straight lines in all cases with slopes \(-E^*/2.303R\) from which \(E^*\) values were obtained. \(Z\) was calculated from the above equation and the entropy of activation \(\Delta S^*\) was obtained from the relation

\[
\Delta S^* = 2.330RT \log (Z/hkT_s)
\]

where \(k\) is the Boltzmann constant, \(h\) is the Planck constant and \(T_s\) is the peak temperature from DTG. The free energy of activation \(G^*\) was calculated using the following equation

\[
G^* = E^* - T_s \Delta S^*
\]

\(K_r = Z \exp (-E^*/RT_s)\)

Coats-Redfern equation:

\[
\log \left(\frac{W_{\infty} - W}{2.303 RT} \right) \log \left(\frac{W_{\infty}}{W} \right) = \log \left[\frac{Z}{\phi E^*} \left(1 - \frac{2RT}{E^*} \right) \right] - \frac{E^*}{2.303 RT}
\]

where \(W_{\infty}\) = mass loss at the completion of the reaction, \(W =\) mass loss at time \(t\), \(Z =\) frequency factor, \(\phi =\) linear rate of heating and \(E^* = \) activation energy of the reaction.

Assuming the decomposition of Zn^{II} chalcone chelates to follow first order kinetics \((n = 1)\) a plot of log \(\{\ln[(W_{\infty}/(W_{\infty} - W))/T^2]\}\) against \(1/T\) was drawn which gave straight lines in all cases with a slope of \(-E^*/2.303R\) from which the activation energy was calculated.

Horowitz-Metzger equation:

\[
\log \frac{W_{\infty}}{W_r} = \frac{E^*}{2.303 RT_s^2} - \log 2.303
\]

where, \(W_{\infty}\) = mass loss at the completion of the reaction, \(W_r = W_{\infty} - W, W =\) mass loss at time \(t\), \(T_s =\) peak temperature, \(R =\) gas constant.

A plot of log \(\log W_{\infty}/W_r\) against \(\theta\) was drawn which gave straight lines in all the cases with the slope \(-E^*/2.303RT_s^2\) from which \(E^*\) values were obtained.

Decomposition kinetics:

The analysis of data using the Freeman-Carroll equation gives the order of the decomposition reaction near unity for these complexes. The values of activation energy \(E^*\) obtained by all three methods for the zinc chelates are given in Table 2. The values of \(E^*\) and \(Z\) increase in the order Zn(PHPO)\(_2\) < Zn(CPHPO)\(_2\) < Zn(MPHPO)\(_2\) < Zn(DMPHPO)\(_2\).
The kinetic parameters show a somewhat different trend from that of thermal stability. This is due to the fact that the decisive criteria in kinetics are often quite different from those which decide thermal stability.

Experimental

The chalcones were prepared by the condensation of 2-hydroxy-1-acetonaphthone with benzaldehyde, chlorobenzaldehyde, methoxybenzaldehyde and dimethoxybenzaldehyde employing the Claisen-Schmidt condensation reported earlier. The zinc complexes of chalcones were prepared by refluxing a toluene solution of zinc acetate and the ligand in 1:2 molar ratio, in the presence of sodium acetate (pH 6–7) for 12 hours. The precipitates were filtered, washed with toluene and dried in a vacuum desiccator over fused calcium chloride. The purity of the sample was checked by elemental analysis. The thermograms were recorded using a Perkin-Elmer TGS-2 thermo balance in ambient air and at a heating rate of 6 K min⁻¹.

Typical TG curves are presented in Fig. 1 and Freeman-Carroll Plots in Fig. 2.

References

1. R. S. Naidu, R. Ruby, E. N. Rao and K. G. Mallikarjun, *Bull. Pure Appl. Sci.*, 1987, 60, 1; R. S. Naidu, E. N. Rao, R. Ruby and K. G. Mallikarjun, *Thermochim. Acta.*, 1988, 131, 299; 1989, 140, 97; *J. Indian Council Chem.*, 1988, 3, 41: *Acta Chim. Acad. Sci. Hung.*, 1990, 127, 385; K. G. Mallikarjun and R. Seshadri Naidu, *Thermochimica Acta*, 1992, 206, 273; K. G. Mallikarjun, *e-Journal of Chemistry*, 2004, 01(02), 105.

2. E. S. Freeman and B. Carroll, *J. Phys. Chem.*, 1958, 62, 394; A. W. Coats and J. P. Redfern, *Nature*, 1964, 200, 68; H. H. Horowitz and G. Metzger, *Anal. Chem.*, 1963, 35, 1464.

3. P. V. Khadikar, S. M. Ali and B. Heda, *Thermochim. Acta*, 1984, 82, 253.

4. J. Chacko and G. Parameswaran, *J. Therm. Anal.*, 1984, 29, 3.

5. S. S. Misra and Dinakar, *J. Indian Chem. Soc.*, 1972, 49, 6.