Three-Dimensional Observation of Atmospheric Processes in Cities

DIETER SCHERER1*, FELIX AMENT2, STEFAN EMEIS3, UTE FEHRENbach1, BERND LEITL2, KATHARINA SCHEBER1, CHRISTOPH SCHNEIDER4 and ULRICH VOGT5

1Institute of Ecology, Chair of Climatology, Technische Universität Berlin, Berlin, Germany
2Meteorological Institute, Universität Hamburg, Hamburg, Germany
3Institute of Meteorology and Climate Research – Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
4Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
5Institute of Combustion and Power Plant Technology, University of Stuttgart, Stuttgart, Germany

(Manuscript received February 16, 2018; in revised form January 14, 2019; accepted January 24, 2019)

Abstract

To cope with weather and climate-induced impacts as well as with air pollution in cities, the German research programme “Urban Climate Under Change” ([UC]2) aims at developing, testing and validating a new urban climate model, which is able to cover the full range of temporal and spatial scales of urban atmospheric processes. The project “Three-dimensional Observation of Atmospheric Processes in Cities” (3DO), which forms the module B of the [UC]2 research programme, aims at acquisition of comprehensive, accurate three-dimensional observational data sets on weather, climate and air quality in the German cities of Berlin, Hamburg and Stuttgart. Data sets from long-term observations and intense observation periods allow for evaluation of the performance of a new urban climate model called PALM-4U that is developed by the project “Model-based city planning and application in climate change” (MOSAIK), which forms the module A of the [UC]2 research programme. This article focuses on collaborative activities for compilation of existing and acquisition of new observational data within the 3DO project.

Keywords: urban weather, urban climate, air quality, observational data, long-term observations, intense observation periods, urban climate model, model validation, applicability tests

1 Introduction

More than half of mankind lives in urban regions, and the global trend for urbanisation is ongoing (UNITED NATIONS, 2014). Urban weather and climate, as well as air quality are major environmental factors influencing living conditions in cities. Severe weather events like storms or intense rainfall, and climate events like long-lasting heat waves or droughts have proven to be costly and deadly natural hazards. Atmospheric processes control air quality by dispersion of air pollutants emitted from various natural and anthropogenic sources, the latter being highly concentrated in urban regions (WORLD HEALTH ORGANIZATION, 2013). Thus, development of new city quarters, as well as transformation of existing city quarters towards more sustainable places according to the United Nations SDG No. 11 (‘Make cities inclusive, safe, resilient and sustainable’, UNITED NATIONS, 2015) require observational data combined with scenario-based numerical simulations provided by urban climate models for environmental impact assessment. This holds true even if climate change would not be considered. However, future hazards due to regional consequences of global climate change form the background for the fact that mitigation of and adaptation to climate change have recently become important tasks for urban administrations (e.g. SOLECKI, 2012; UN-HABITAT, 2016), in addition to ongoing, established tasks of considering atmospheric processes in urban planning or air-quality control, among others.

Urban regions, and thus their atmospheric environments, are characterised by large heterogeneity across a wide range of spatial and temporal scales. Cities are morphologically complex (STEWART and OKE, 2012), and are characterised by highly complex spatial patterns of emissions of heat, water vapour and air pollutants (see e.g. BARLOW et al., 2017). Micro-scale atmospheric processes, taking place at buildings, trees and other forms of vegetation, in street canyons and at infrastructure components like bridges over distances of metres up to decametres, need to be considered, particularly with respect to ambient atmospheric conditions of humans. Local-scale (also called neighbourhood-scale) atmospheric processes that spatially extend over hundreds of metres up to several kilometres are fundamental when investigating atmospheric conditions in city quarters or districts. Large cities are further influenced by meso-scale atmospheric processes, which extend over kilome-
SISC: Surface-Induced Secondary Circulation. From Orlanski (right frame). CISC: Convective-Induced Secondary Circulation, modelled by micro-scale models (left frame) and meso-scale models and coloured areas. The two red frames indicate phenomena limiting thresholds and forbidden zones are depicted by straight lines and coloured areas. The two red frames indicate phenomena.

Decades, all of them relevant for present and future living conditions in cities.

In this respect, the height of the PBL is of utmost importance for air quality in cities, since it strongly influences dispersion of air pollutants (Stull, 1988; Angelvine et al., 1997). The PBL is strongly modified over urban areas, such that the urban boundary layer (UBL) and the urban canopy layer (UCL) develop through altered exchange of momentum, sensible and latent heat due to intensification of mechanically and thermally induced turbulence. These modifications interact with urban energy and water balance, formation of UHIs, BLUHIs, and SUHIs (Arnfield, 2003; U.S. Environmental Protection Agency, 2008). Unfortunately, PBL dynamics over cities and related atmospheric processes are not yet sufficiently studied since data from LTOs of PBL heights are sparsely available. In most urban studies, atmospheric probing addressing the entire PBL have been carried out during dedicated, short-term IOPs. One of the most important experiments in this respect was the “Basel Urban Boundary Layer Experiment” (BUBBLE) (Rotach et al., 2005) that took place over one year, with additional measurements during a special IOP.

New observational technologies, in particular for ground-based remote sensing of atmospheric variables throughout the entire PBL and beyond, have been recently developed (e.g., Emeis, 2015). The still high costs for purchasing and operating these instruments are a main reason for the fact that three-dimensional observational atmospheric data are generally sparse and hardly cover longer periods. In conclusion, observations of atmospheric processes within cities will remain difficult despite new emerging technologies (Chen et al., 2012).

Since 2016 a new research programme entitled “Urban Climate Under Change” ([UC]^2) (www.uc2-program.org) is funded by the BMBF for a first

Figure 1: Characteristic scales of atmospheric flow phenomena based on Orlanski (1975) and Schlünzen et al. (2011). Various limiting thresholds and forbidden zones are depicted by straight lines and coloured areas. The two red frames indicate phenomena modelled by micro-scale models (left frame) and meso-scale models (right frame). CISC: Convective-Induced Secondary Circulation, SISC: Surface-Induced Secondary Circulation. From Emeis (2015).
period of three years to address the above-mentioned challenges. The \([\text{UC}]^2\) research programme is in line with research activities in other countries, e.g., in the United Kingdom (Barlow et al., 2017). It is structured in three different modules (A, B, and C). This article presents an overview on compilation and acquisition of observational data for model evaluation and application examples processed by module B “Three-dimensional Observation of Atmospheric Processes in Cities” \((3\text{DO})\) \((\text{www.uc2-3do.org})\). Three further articles present an overview on the entire \([\text{UC}]^2\) research programme (Scherer et al., 2019), and discuss the specific research and development tasks for development of a new urban climate model called PALM-4U \((\text{read: PALM for you})\) by the project “Model-based city planning and application in climate change” \((\text{MOSAIK})\) \((\text{module A; Maronga et al., 2019})\), and the evaluation of the practicability and user serviceability of the PALM-4U model by the projects “Climate Models for Practice” \((\text{KliMoPrax})\) and “Review of practical and user serviceability of an urban climate model to foster climate-proof urban development” \((\text{UseUClim})\) \((\text{module C; Halbig et al., 2019})\).

2 Aims and objectives

As described by Scherer et al. (2019), the \([\text{UC}]^2\) research programme aims at development, validation and application of an innovative building-resolving urban climate model \((\text{spatial resolution 10 m or finer})\) for entire cities in size of up to 2000 km\(^2\), embedded in different regional climates and topographic situations. Thus, comprehensive observational data sets on weather, climate and air quality in large cities are required to assess the performance of the PALM-4U model, which is based on the Large Eddy Simulation Model PALM \((\text{Raasch and Schröter, 2001; Maronga et al., 2015})\), and extended for urban applications (see Maronga et al., 2019).

A major aim of the 3DO project is to explore the impact of the third, vertical dimension on flow features, energy exchange and air quality processes in the urban atmosphere. Many processes in the UBL can only be understood if their vertical structure is known, e.g., the impact of air-temperature inversions a few hundreds of metres above ground on near-surface air-pollutant concentrations. Mobile remote sensing devices \((\text{e.g. SODARs, wind-LIDAR systems})\) and UASs have been developed recently. They offer the opportunity to acquire data on the vertical structure of the atmosphere at different intra-urban locations. Among others, air pollutants like ultra-fine particulates \((\text{UFPs})\) and black carbon \((\text{BC})\) are within the focus of the project. Since a few years, mobile measurement platforms \((\text{e.g. mobile measurement cars, bicycles, tethered balloons})\) are available to measure concentrations of UFPs and BC. Thus, the 3DO project is one of the first projects deploying and using the above-mentioned instruments in a larger, co-ordinated framework. Furthermore, the philosophy of the 3DO project is to obtain scale-consistent data of a broad spectrum of atmospheric variables to validate the numerical model PALM-4U, which, as large-eddy resolving model with grid spacing down to 1 m or less, is able to simulate very small-scale features of urban climates. Concurrent high-resolution observations, both in time and space, are therefore required at many sites and for different vertical levels. The 3DO project is thus not a repetition of earlier experiments but designed to obtain improved knowledge on three-dimensional processes in the urban atmosphere, and specifically, how they influence atmospheric environments of urban inhabitants. The main hypothesis is thus that three-dimensional atmospheric data sets provide relevant information for various applications in urban planning and air quality control, as well as for design and implementation of actions for mitigation of and adaptation to climate change.

The 3DO consortium partners \((\text{Table 1; acronyms of the institutions are used hereinafter})\) process existing atmospheric data sets and acquire new observational data sets by new LTO instruments and measurements during dedicated IOPs in three large German cities \((\text{Berlin, Hamburg, Stuttgart})\). Measurements are carried out at very high temporal and spatial resolution over sufficiently long periods to improve the data inventories available for the three cities and their surrounding regions. Data from wind tunnel experiments carried out by the UHHmeteo complement the observational data sets since they allow for characterizing spatial and temporal representativeness of near-ground flow and dispersion measurements, and offer an additional opportunity for model validation.

Reference data sets of known accuracy are derived from LTO and IOP data using rigorous quality control procedures ensuring their applicability for model tests and validation. For this purpose, new measurement concepts and analysis tools for effective and efficient data acquisition, analysis and management, for model validation, as well as for distribution of data and results to end users in diverse scopes of applications are developed and tested in the 3DO project. Reference data sets do not only cover the atmosphere near ground in the three cities and their surroundings, but also vertically extend over the PBL, and partly beyond.

Module A will use observational data provided by module B for testing individual model components of PALM-4U as well as the entire model. Modules A and B will jointly evaluate the PALM-4U model using quality-controlled reference data \((\text{see Maronga et al., 2019; Scherer et al., 2019})\). Finally, modules B and C will jointly test the applicability of observational methods for practical applications using real-case examples \((\text{see also Halbig et al., 2019; Scherer et al., 2019})\).

All partners except those of subproject 13 \((\text{GEONET})\) have performed or continue to perform measurements or process space-borne RS data, while GEONET has developed and is operating a data management system \((\text{DMS})\) for the \([\text{UC}]^2\) research programme.
Table 1: Overview on subprojects (SP), principal investigators (PI) and institutions part of the 3DO consortium.

SP	PI	Institution	Acronym
1	Dieter Scherer	Technische Universität Berlin (TUB), Fachgebiet Klimatologie	TUBklima
1	Andreas Philipp	Universität Augsburg (UA), Institut für Geographie	UAgeo
1	Jörn Welsch	Senatsverwaltung für Stadtentwicklung und Wohnen Berlin	SenSWB
1	Andreas Kerschbaumer	Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin	SenUVKB
2	Christoph Schneider	Humboldt-Universität zu Berlin (HUB), Geografisches Institut	HUBgeo
3	Sahar Sodoudi	Freie Universität Berlin (FUB), Institut für Meteorologie	FUBmeteo
4	Stephan Weber	Technische Universität Braunschweig (TUBS), Institut für Geökoökologie	TUBSgeo
5	Erika von Schneidemesser	Institute of Advanced Sustainability Studies Potsdam	IASS
6	Dieter Klamp	Forschungszentrum Jülich (FZJ), Institut für Energie- und Klimaforschung	FZJiek8
7	Sahar Sodoudi	Freie Universität Berlin (FUB), Institut für Meteorologie	FUBmeteo
8	Norbert Kalthoff	Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung	KITmktro
8	Ulrich Vogt	Universität Stuttgart (US), Institut für Feuerungs- und Kraftwerkstechnik	UStifk
9	Valeri Goldberg	Technische Universität Dresden (TUD), Professor für Meteorologie	TUDDmeteo
10	Bernd Leitl	Universität Hamburg (UHH), Meteorologisches Institut	UHHmeteo
11	Felix Ament	Universität Hamburg (UHH), Meteorologisches Institut	UHHmeteo
12	Meinolf Kossmann	Deutscher Wetterdienst (DWD), Geschäftsbereich Klima und Umwelt	DWDku1
13	Günter Groß	Leibniz Universität Hannover (LUH), Institut für Meteorologie und Klimatologie	LUHimuk
14	Peter Trute	GEO-NET Umweltconsulting GmbH	GEONET
15	Thilo Erbertseder	Deutsches Zentrum für Luft- und Raumfahrt (DLR), Deutsches Fernerkundungsdatenzentrum	DLRfdl
16	Anke Roiger	Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre	DLRpa

3 Overview on atmospheric observations

Observational atmospheric data sets from existing and new LTOs, as well as data acquired during four IOPs are provided by the 3DO partners for the cities of Berlin, Hamburg and Stuttgart including their surrounding regions (Fig. 2). The winter IOPs took place in 2017 and 2018 during the months January and February, while the summer IOPs lasted from July to August both in 2017 and 2018. A few IOP measurements took place slightly before or after the main IOP periods due to logistical reasons. The exact timing of the measurements is stored together with the data in the respective data files.

Data sets comprise weather and climate data, data on wind and turbulence, energy and water balance components, momentum and mass fluxes, as well as data on air pollution by gas-phase air constituents and particulate matter including UFPs. Atmospheric data near the surface are mainly acquired through AWSs, ECSs, and AQSs. The 3DO partners developed a sophisticated experimental research set-up to acquire complementary three-dimensional data sets on atmospheric processes over cities at very high temporal and spatial resolution over sufficiently long periods. In addition, data sets acquired by space-borne RS systems are comprehensively available for the three city regions (and beyond).

Berlin, the capital and largest German city (890 km², 3,520,000 cap (December 2015), 3,900 cap/km²) was chosen since it provides an ideal test bed for validation of urban climate models. Atmospheric pro-
cesses, and thus urban climate and air quality conditions in Berlin are neither masked by topographically induced atmospheric processes nor by land-sea breezes or other coastal influences. In contrast, maritime influences are present in Hamburg (760 km², 1,860,000 cap, December 2016), 2,300 cap/km²), and their effects on urban atmospheric processes need to be better understood. Stuttgart (210 km², 624,000 cap (December 2015), 3,000 cap/km²) is one of the German cities with largest problems in air quality, mainly caused by its geographic situation in topographically complex terrain. However, topographically induced processes like cold-air flows can also positively influence urban air quality year-round and mitigate urban heat island effects during summer nights.

Tables 2 and 3 illustrate the broad spectrum of observational methods that the 3DO partners apply. Existing data sets comprise basic geo-data (e.g. digital terrain elevation, building and vegetation heights) and structural data (e.g. administrative borders) available from GISs and RS systems. Time series data on atmospheric variables are available from various sources for decades or longer back in time, for instance from weather stations provided by the DWD in and nearby Berlin, Hamburg and Stuttgart, from official AQs networks, or from observations as operated in Berlin by the TUBklima with the UCON Berlin and the FUBmeteo with the Berlin City Measurement Network. In addition, the 3DO partners compiled multi-annual observational data on specific atmospheric variables, e.g. from ECS, vertical profilers, and from air- and space-borne RS systems, which are continuously updated.

The existing data sets, although comprehensive in nature, are not sufficient for reaching the overall goals of the [UC]² research programme. Incomplete spatial coverage, both in horizontal and vertical dimensions, as well as missing variables require additional observations. Thus, some of the 3DO partners extended the measurements at existing LTO sites by new sensors and instruments that are also able to acquire 3D data, and installed new LTO stations at sites in urban areas that were not sufficiently represented, so far. Mobile LTOs using a variety of sensors and platforms complement the LTO sites. Some of the existing and new LTOs (e.g. by the RADAR systems) are intended to be utilised after completion of the first phase of the 3DO project, but measurements are taking or will take place already during the first phase to ensure data availability for additional investigations (e.g. on strong precipitation events).

During the four IOPs, 3DO partners carried out station-based observations and mobile measurements by pedestrians, bicycles, cars and public transport infrastructures. Three-dimensional data were acquired by utilizing high masts, SODAR and LIDAR systems, passive microwave radiometers, tethered balloons, radiosondes, manned and unmanned aircrafts and copters, and by space-borne RS systems. Vertical profile measurements are available for different LTO and IOP sites, and some of the instruments acquired spatially distributed data along flight routes, horizontal paths (transects), or as gridded data. The DLRrfd processes and provides space-borne RS data sets for the three cities, both as LTO and IOP data. Selection and calibration of instrumentation, execution of measurements, as well as data processing and quality control were and are carried out following general guidelines and state-of-the art methods to ensure high data quality. Dedicated wind tunnel experiments carried out by the UHHmeteo allow to comprehensively characterize selected urban areas in which intense observations take place both by LTOs and during the IOPs in dedicated areas called IOLs within the three cities. The IOLs are studied at a very high level of spatial detail to enable comprehensive evaluation of the PALM-4U model. Together with the LTO and IOP measurements at areas outside the IOLs, the resulting data sets will enable concurrent analyses of city-wide processes (meso- to local-scale) and processes in neighbourhoods, street canyons, and around individual buildings (local- to micro-scale). The wind tunnel simulations, which are partly completed, aim at provision of additional reference data sets at a slightly reduced level of complexity, still resolving the spatio-temporal variability of flow and transport phenomena dominated by near-ground, shear- and obstacle-induced turbulence.

Data provided by 3DO partners are rigorously quality controlled before being shared within the [UC]² research programme, with the scientific community, or the general public. Data are stored using open standard data formats like NetCDF (www.unidata.ucar.edu/software/netcdf). Data sets comprise metadata that follow general scientific conventions like the NetCDF CF version 1.7 (www.cfconventions.org). The [UC]² data standard is fully documented, and is publicly available (see Scherer et al., 2019). The 3DO website (www.uc2-3do.org) provides overview maps of LTO and IOP measurements in Berlin, Hamburg and Stuttgart, including further information on the stations.

3.1 Berlin

The concept behind the measurements in Berlin is twofold. Data from LTO sites representing different urban structures spread over the whole city are used to characterize intra-urban variations of atmospheric conditions both near the ground and in the PBL. Thus, these data allow for analysis and evaluation of meso-scale patterns in near-surface atmospheric variables like air temperature, humidity or concentrations of air pollutants, as well as of vertical profiles of wind, turbulence or aerosol concentrations as derived from both observations and numerical simulations. IOP measurements were mainly carried out within the two IOLs in Berlin, for which PALM-4U simulations are scheduled using model domains of 1 m grid spacing. Since many of the LTO sites are also located within the two IOLs, the resulting data sets cover a broad spectrum of atmospheric variables.
Table 2: Instrumentation of long-term observations (LTOs) used by the subprojects (SP) of the 3DO consortium (see Table 1 for acronyms). Type of observation is either stationary (s) or mobile (m); City: Berlin (B), Hamburg (HH), Stuttgart (S). Observed variables refer to Appendix – List of symbols.

SP	Instrumentation	#	Type	Platform	Owner	City	Observed variables	Height (a.g.)
1	ceilometer (Lufft CHM 15k)	2	s	roof/ground	TUBklima	B	β, Na, h, h0, v, c11	0.015 to 15 km
1	Temperature and humidity sensor (Campbell CS215)	12	s	AWS	TUBklima	B, P	T, u, p, v, E, E0a, E0s, Evap.	2 m
1	Temperature and humidity sensor (Vaisala HMP155)	1	s	EBS (roof)	TUBklima	B, S, HH	T, u, p, v, E, E0a, E0s, Evap.	47 to 57 m
1	Temperature and humidity sensor (Campbell IRGASON)	1	s	EBS	TUBklima	B, S, HH	T, u, p, v, E, E0a, E0s, Evap.	~1 to 40 m
2	Temperature and humidity sensor (Campbell IRGASON)	1	s	AWS (roof)	TUBklima	B, S, HH	E0a, E0s, Evap.	14 to 20 m
2	Heat flux plate (Hukseflux), temperature and humidity sensor (Vaisala HMP 155), wind sensor (Young 52202), open-path gas analyser and 3D ultra-sonic anemometer (Campbell uSonic-3), tipping bucket rain gauge (Young 52202), soil heat flux plate (Hukseflux)	1	s	AWS	HUBgeo	B	q, T, u, p, v, E0a, E0s, Evap.	~2 to 3 m
3	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic)	1	s	AWS	TUBklima	B	T, u, p, v, E, E0a, E0s, Evap.	14 to 20 m
3	3D ultra-sonic anemometer (Emetek USA1), engine exhaust particle counter (Passam AG), aerosol spectrometer (Grimm 107), 1.6 to 4 km	1	s	car	USifk	S	T, u, v, E, E0a, E0s, Evap.	1.5 m
4	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), tipping bucket rain gauge (Young 52202), soil heat flux plate (Hukseflux)	1	s	roof	HUBgeo	B	P, NO2, PM10, PM2.5, PM10	57 m
5	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), tipping bucket rain gauge (Young 52202), soil heat flux plate (Hukseflux)	1	s	roof	TUBklima	B	P, NO2, PM10, PM2.5, PM10	57 m
6	Optical particle counter (Alphasense B4), NO2 sensor (Alphasense B43F), CO sensor (Thies 4.3120.22.002), aethalometer (Magee AE33), wind monitor (Lufft WS200-UMB), meteorological instrument (Lufft WS301-UMB), tipping bucket rain gauge (Lambrecht 8333.12H)	1	m	rack rail	USifk	S	PM2.5, PM10, PM2.5, PM10	variable
7	Optical particle counter (Alphasense B4), NO2 sensor (Alphasense B43F), CO sensor (Thies 4.3120.22.002), aethalometer (Magee AE33), wind monitor (Lufft WS200-UMB), meteorological instrument (Lufft WS301-UMB), tipping bucket rain gauge (Lambrecht 8333.12H)	1	m	rack rail	USifk	S	PM2.5, PM10, PM2.5, PM10	variable
8	Optical particle counter (Alphasense B4), NO2 sensor (Alphasense B43F), CO sensor (Thies 4.3120.22.002), aethalometer (Magee AE33), wind monitor (Lufft WS200-UMB), meteorological instrument (Lufft WS301-UMB), tipping bucket rain gauge (Lambrecht 8333.12H)	1	m	rack rail	USifk	S	PM2.5, PM10, PM2.5, PM10	variable
9	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), infra-red remote temperature sensor (Heitronics KT19), barometer (Vaisala PFB200), water content reflectometer (Campbell CS1616), temperature probe (Campbell)	1	s	top of church	UHHmeteo	HH	T, u, v, E0a, E0s, Evap., P, H2O	147 m
10	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), infra-red remote temperature sensor (Campbell IRGASON)	1	s	top of church	UHHmeteo	HH	T, u, v, E0a, E0s, Evap., P, H2O	96 to 123 m
11	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), infra-red remote temperature sensor (Campbell IRGASON)	1	s	AWS	DWKd1l	B	T, u, p, v, E0a, E0s, Evap., P, H2O	1 m, 2 m
11	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), infra-red remote temperature sensor (Campbell IRGASON)	1	s	AWS	DWKd1l	S	T, u, v, E0a, E0s, Evap., P, H2O	1 m, 2 m
12	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), infra-red remote temperature sensor (Campbell IRGASON)	1	s	AWS	DWKd1l	S	T, u, v, E0a, E0s, Evap., P, H2O	1 m, 2 m
13	Temperature and humidity sensor (Campbell CS215), barometer (Campbell CS300), weather transmitter (Vaisala WXT530), 2D sonic anemometer (Gill WindSonic), pyranometer (Campbell CS300), infra-red remote temperature sensor (Campbell IRGASON)	1	s	AWS	DWKd1l	S	T, u, v, E0a, E0s, Evap., P, H2O	1 m, 2 m
14	Landsat-8	1	m	satellite	DLRrfd	B, S, HH	T0	surface
14	Envisat/Sciamachy	1	m	satellite	DLRrfd	B, S, HH	NO2	0 to 12 km
14	AERONET	1	m	satellite	DLRrfd	B, S, HH	NO2	0 to 12 km
14	MetOpGOME-2	2	m	satellite	DLRrfd	B, S, HH	NO2	0 to 12 km
14	Sentinel-3	1	m	satellite	DLRrfd	B, S, HH	CO, CH4, O3, H2O, NO2	0 to 12 km
14	Sentinel-3 OCLI, SLSTR	2	m	satellite	DLRrfd	B, S, HH	AOD, PM10, PM2.5	0 to 100 km
14	Aquarius	1	m	satellite	DLRrfd	B, S, HH	AOD, PM10, PM2.5	0 to 100 km
14	CALLIPSO/CALIOP	1	m	satellite	DLRrfd	B, S, HH	h0	0 to 10 km
Table 3: Instrumentation of intense observation periods (IOPs) used by the subprojects (SP) of the 3DO consortium (see Table 1 for acronyms). Type of observation is either stationary (s) or mobile (m); City: Berlin (B), Hamburg (HH), Stuttgart (S). Observed variables refer to Appendix – List of symbols.

SP Instrumentation	Type	Platform	Owner	City	Observed variables	Height (a.g.)
1 Temperature and humidity sensor (Campbell CS215), 3D ultra-sonic anemometer (Thies 3D), tipping bucket rain gauge (Young 52203), net-radiometer (Kipp & Zonen CN4), soil temperature profile probe (UMS TH3), soil humidity profile probe (Delta: Pto)	s	AWS	TUBklima	B	T, u, v, w, E, Rs,	−1 to 10 m
2 Condensation particle counter (Grimm EDM 405 UFFC), temperature, humidity, air pressure, precipitation, and wind sensor (Lafur WS8000)	m					
3 Aerosol spectrometer (Grimm 1.109)	s	bicycle	HUBgeo	B	T, u, v, E, Ew, Ew,	1 m
4 Aerosol spectrometer (Grimm 1.108)	s	bus, bicycle	HUBgeo	B	PM10, PM2.5, PM1.0,	variable
5 Optical particle counter (Alphasense N2)	m		HUBgeo	B	PM10, PM2.5, PM1.0,	variable
6 Meteorology instrument (Vaisala HMT 330), GPS (Wintec WBT202)	m		FZJiek8	B	T, u, v, Ew, Ew,	1 m
7 Electrical low pressure impactor (Dekati), CPC-3788 (TSI)	m		FZJiek8	B	PM10, PM2.5, PM1.0,	variable
8 Laser aerosol spectrometer (Grimm Mini-LAS 11-E)	s	container	TUBSgeo	B		1 s
9 Laser aerosol spectrometer (Grimm 1.109)	s	bicycle	HUBgeo	B		1 m
10 Laser aerosol spectrometer (Grimm 1.108)	s	bus, bicycle	HUBgeo	B		variable
11 Optical particle counter (Alphasense N2)	m		HUBgeo	B		1 m
12 Temperature and humidity sensor (Campbell HMP155A), wind sensor (Campbell 0510-45), 3D ultra-sonic anemometer (Grimm WindSonic), IR thermometer (Testo 410–2), globe thermometer (PCE-WB 20 SD)	s		FZJiek8	B		1 m
13 Aerosol spectrometer (Grimm 1.109)	s		HUBgeo	B		variable
14 Aerosol spectrometer (Grimm 1.108)	s		HUBgeo	B		variable
15 Optical particle counter (Alphasense N2)	m		HUBgeo	B		1 m
16 Meteorology and air chemistry instrument (URBMOBI 3.0)	m		HUBgeo	B		5 m
17 Water temperature (Lambrecht)	m		HUBgeo	B		1 m
18 Water temperature and speed sensor (Testo 410–2)	m		TUBklima	B		1 m
19 Thermocouple (Testo 830-T1)	s		TUBSgeo	B		1 m
20 Temperature and humidity sensor (Type 3031, Theodor Friedrichs), 2D ultra-sonic anemometer (Grimm WindSonic), IR thermometer (Testo 410–2), globe thermometer (PCE-WB 20 SD)	s		TUBklima	B		1 m
21 Laser thermometer (Lambrecht)	m		HUBgeo	B		1 m
22 Aerosol spectrometer (Grimm 1.109)	s		HUBgeo	B		1 m
23 Aerosol spectrometer (Grimm 1.108)	s		HUBgeo	B		1 m
24 Temperature and humidity sensor (Type 3031, Theodor Friedrichs), 2D ultra-sonic anemometer (Grimm WindSonic), IR thermometer (Testo 410–2), globe thermometer (PCE-WB 20 SD)	s		TUBklima	B		1 m
25 Temperature and humidity sensor (Rotronic LOG HC2-S3)	s		TUBklima	B		1 m
26 Temperature, humidity, and wind speed sensor (Testo 410–2)	m		TUBklima	B		1 m
27 IR thermometer (Testo 830-T1)	s		TUBSgeo	B		1 m
28 IR remote temperature sensor (Campbell IR100)	s		TUBSgeo	B		1 m
29 IR gas analyser (IRGA, LI-COR 840A), condensation particle counter (TSI 3878)	s		TUBSgeo	B		1 m
30 Thermocouple (Campbell Scientific FW3), IR gas analyser (IRGA, LI-COR 840A), condensation particle counter (TSI 3007)	s		TUBSgeo	B		1 m
31 2D ultra-sonic anemometer (Grimm WindSonic), condensation particle counter (TSI 3007), temperature, humidity and wind speed sensor (Kipp & Zonen CN4), aethalometer (Aethlabs AE51)	s		TUBSgeo	B		1 m
32 2D ultra-sonic anemometer (Grimm WindSonic), temperature, humidity and wind speed sensor (Kipp & Zonen CN4), aethalometer (Aethlabs AE51)	s		TUBSgeo	B		1 m
33 Zephyr small sensor (Earthsense)	s		IASS	B	PM2.5, NO2, NO, O3,	0.5 to 40 m
34 NOx/NO2/NO sensor (Teledyne API T 200), O3 sensor	s		IASS	B	NOx, NO, NO2, O3,	20 m
35 O3 sensor (Teledyne API 430)	s		IASS	B		40 m
36 Aerosol spectrometer (Mega 33)	s		IASS	B		2.5 m
37 Aethalometer (Mega AE33)	s		IASS	B		4 m
38 Laser aerosol spectrometer (Grimm Mini-LAS 11-E)	s		IASS	B		1 m
39 Laser aerosol spectrometer (Grimm Mini-LAS 11-E)	s		IASS	B		1 m
40 Laser particle counter (Purple Air PA-DE, Dual Laser Air Sensor)	s		IASS	B		0.5 to 2 m
41 Chemiluminescence of generated NO2 (Eco-Physics), NO2 photolytic converter + chemiluminescence of NO2 (Eco-Physics), O3 irradiation with excess NO + chemiluminescence of NO2 (Eco-Physics modified)	s		FZJiek8	B	NO2, NO2, O3,	2 m
42 CO resonance fluorescence (Aerolyser), cavity attenuated phase shift (Aerolyser)	s		FZJiek8	B		2 m
43 CO2, CH4, CO2, CH4, H2O, N2O, NH3	s		FZJiek8	B		2 m
44 VOC canister sampling (Restec), GC-MS (Agilent)	s		FZJiek8	B		2 m
45 Meteorology instrument (Vaisala HMT 330), GPS (Wintec WBT202)	s		FZJiek8	B		2 m
46 Electrical low pressure impactor (Dekati), CPC-3788 (TSI)	s		FZJiek8	B		2 m
47 O3 sensor (Amoco 413M), SO2 sensor (Thermo Fisher TE 43)	s		FZJiek8	B		2 m
48 Ceilometer (Vaisala CL31)	s		IASS	B		0 to 7.6 km
49 Meteorology instrument (Vaisala HMT 330), GPS (Wintec WBT202)	s		FZJiek8	B		2 m
50 Laser particle counter (Purple Air PA-DE, Dual Laser Air Sensor)	s		IASS	B		0.4 to 8 km

Meteorol. Z. (Contri. Atm. Sci.) 2029 D. Scherer et al.: Three-Dimensional Observation of Atmospheric Processes in Cities 127
concurrently measured at a multitude of locations and vertical levels with state-of-the-art instrument deployment.

Atmospheric data from LTO in Berlin are comprehensively available from a variety of sources (Fig. 3), and allow for detailed studies of urban atmospheric processes. Some of the time series cover periods of more than 20 years. The longest time series in Berlin has been acquired at the DWD weather station ‘Tempelhofer Feld’ starting from 1948. The time series from the nearby DWD weather station in Potsdam, although not being an urban station, is even longer and fully covers the 20th century. A large amount of additional LTO data in the surroundings of Berlin is available, mainly from weather stations of the DWD and from the Lindenberg Meteorological Observatory – Richard Assmann Observatory, which routinely operates a large number of vertical profilers, as well as comprehensive short- and long-wave radiation and energy balance measurements that characterize the surrounding rural atmosphere (DWD, 2017b). The DWDk1 has installed an additional AWS in Berlin for measurements over at least two years.

The city-scale UCON Berlin operated by the TUBklima since 1990 (a few measurements even started already in 1986) provides one of the longest time-series data sets on urban climates in the world. This is justified by the fact that the earliest city-scale network listed in the review by Muller et al. (2013) is the Berlin City Measurement Network operated by the FUBmeteo since 2000. The BLUME AQS network operated by the SenUVKB provides multi-decadal time series data on concentrations of air pollutants. In addition, the 3DO project started new LTOs that shall continue in larger parts beyond the project’s duration. The TUBklima and FUBmeteo partners increased the number of instruments and sites of their urban measurement networks in Berlin, and installed a network of three ceilometers within the city.

In 2018, the TUBklima installed a new 40 m tall measurement mast in an urban neighbourhood of Berlin (Rothenburgstraße, Berlin-Steglitz). The mast is instrumented to perform vertical profile LTO measurements of air temperature and humidity, up- and down-welling short- and long-wave radiation (four component radiometers), 3D wind components, sensible and latent heat fluxes (3D sonic anemometers and open-path gas analysers) at five levels in the UCL and above the roof level up to the inertial sublayer. In addition, the TUBklima deployed two wind LIDAR systems and a
passive micro-wave air temperature/humidity profiler deployed within the two IOLs (Fig. 4) as LTOs. A dual-polarimetric X-band Doppler weather RADAR system will complement the LTO instrumentation in the beginning of 2019. A TIR camera system with an integrated terrestrial 3D laser scanner was used for mobile measurements of urban structures with complex geometries during the IOPs (and beyond). The entire instrumentation of the TUBklima for 3D observation of atmospheric processes in Berlin and its surroundings forms the UCO Berlin, which will officially start after completion of instrument deployment for unlimited time. The UCO Berlin will provide an experimental platform for researchers in urban atmospheric and environmental sciences.

The HUBgeo operates a LTO site at Berlin-Adlershof in the Southeast of Berlin combining meteorological and air quality variables including UFPs counters. The HUBgeo will further install semi-permanent LTO of major air pollutants at selected sites using cost-effective custom-made micro-electronic small-scale sensor systems. The HUBgeo will also deploy additional mobile LTO by installing a new generation of URBMOBI sensors (Seidel et al., 2016) at buses, trams, taxis, garbage trucks or similar vehicles on a semi-permanent basis through agreements with vehicle operators.

The TUBSgeo installed additional 3D ultrasonic anemometers, a fast electric mobility spectrometer to measure size-resolved particle concentrations including UFPs, fast optical sensors (IR absorption) to measure
fluctuations of carbon dioxide and water vapour concentrations, as well as condensation particle counters (Weber et al., 2013).

The IASS equipped a number of LTO sites with a prototype of a micro-sensor instrument (Zephyr) for measuring a variety of variables at high spatial density and temporal resolution relevant for city-scale numerical modelling, including air pollution components, such as ozone, nitrogen dioxide, and particulate matter, as well as air temperature and relative humidity.

During the four IOPs, mobile and airborne in-situ measurements were performed by the TUBklima, HUBgeo, FUBmeteo, TUBgeo, IASS, FZJiek8, TUDDmeeteo, DWDk1, LUHimuk, and the DLRpa. The IOP measurements focused on the two IOLs, but also covered other areas in and around Berlin. Comprehensive stationary and mobile instrumentation both for meteorological variables and concentrations of carbon dioxide and air pollutants were used for short-term measurements at selected sites, as well as for repetitive measurements along transects, using temporary stations and various mobile platforms. Ultrasonic anemometers allowed for detection of weak cold-air flows, while radiometers (four components) enabled acquisition of data on up- and down-welling short- and long-wave radiation, surface temperatures of different surface types including walls and roofs of buildings, and on mean radiant temperature, which is a key variable to characterise human-biometeorological conditions. Vertical profiles of atmospheric variables were acquired by UASs by the UAgeo and the LUHimuk, and by a tethered balloon system by the TUDDmeteo over several days, the latter during the two summer IOPs. In addition, the DLRpa carried out a flight campaign using the DLR Cessna aircraft during the summer IOP in 2018.

3.2 Hamburg

A two-tier LTO strategy is implemented in Hamburg to monitor both regional-scale and local weather conditions within the city to assess atmospheric modifications by the urban environment. Basic information about overall near-surface weather conditions, i.e., screen-level air temperature and humidity, as well as wind at 10 m height, is provided by a network of weather stations operated by the DWD featuring eight stations in the vicinity of Hamburg (Fig. 5). Unfortunately, almost all weather stations operated by the DWD inside the city of Hamburg stopped operation close to the end of the last century rendering any extensions of long-term urban climate analyses like those presented by Schlünzen et al. (2010) impossible. Inside the city only the observational record of the station Fuhlsbüttel ranging back to 1891 is continuously updated.

This set-up was extended by the UHHmeteo through two profiling sites east and northwest of the city, respectively, and at the tall tower facility “Hamburg Wettermast” (Brümmer et al., 2012; Brümmer and Schultze, 2015) located at the eastern outskirts of Hamburg providing digitalized observations since 1995. Observations comprise in-situ profiles of air temperature, humidity and wind speed acquired with analysers measuring turbulent fluctuations of wind, air temperature, humidity and carbon dioxide to derive corresponding turbulent fluxes. The Hamburg Wettermast site is
complemented as energy balance station by soil temperature, radiation, precipitation (rain gauge and micro rain radar) and cloud measurements (ceilometer, cloud temperature and optical cloud camera). A similar energy balance station set-up, using a 10 m-mast instead of a tall tower, was deployed at the airfield Hüngriger Wolf located 50 km northwest of Hamburg close to the city of Itzehoe. Vertical profile data of air temperature and wind are acquired by a micro-wave radiometer and a wind SODAR, respectively. While these two profiling sites outside the city, in combination with the DWD network, monitor regional-scale weather conditions, a network of ten autonomous weather stations (HUSSCONET); Wiesner et al., 2014) observes locally modified urban weather and climate conditions since September 2010. Each station measures standard near-surface meteorological variables (air temperature and humidity, wind at 3 m height, solar irradiance, pressure, precipitation, surface temperature, soil heat flux). In addition, all seven stations at unsealed locations are equipped with five-layer soil temperature and soil moisture sensors.

The IOPs at Hamburg were the small-scale counterparts of the LTOs offering reference data for model validation, particularly for wind and turbulence. The surrounding of the HCU, located at the river Elbe directly in the city centre, was selected as target area as it features comparably simple incident flow conditions from the river (Fig. 6). Following again a two-tier approach, measuring both the forcing and the local response, allows to set up a well-defined test case for models simulating flows over and around the HCU building. The UHHmeteo and the TUDDmeteo measured undisturbed
wind conditions with two wind masts, a tethered balloon and a wind LIDAR. Detailed flow structures on the north side of the building were detected by an array of twelve 3D ultrasonic anemometers mounted at six wind masts at 3 and 6 m height. Data from this array were recorded at 20 Hz to provide detailed insight into spatial and temporal structures of turbulent flows. The IOPs are accompanied by corresponding experiments by the UHHmeteo in a large boundary-layer wind tunnel, where simulations for several flow directions allow for an analysis of fully 3D flow structures, and thus provide reliable information on representativeness of local measurements. In addition, wind-tunnel simulations of the Hamburg IOL for a future stage of the HafenCity district were performed by the UHHmeteo. Such data will be used to test the ability of the PALM-4U model to capture effects caused by changing building structures, among others.

3.3 Stuttgart

Acquisition of data on topographically induced winds and their modifications by the urban fabric are one of the major objectives of the measurements carried out in Stuttgart. In particular, the role of atmospheric flows
for dispersion of air pollutants is of utmost importance since Stuttgart is one of the German cities with highest concentrations of air pollutants.

Atmospheric data from LTOs in Stuttgart are available from different sources (Fig. 7). The longest time series is available since the late 19th century (1878) from the Universität Hohenheim. Meteorological variables like air and soil temperature, humidity, wind speed and direction, solar radiation, and precipitation are continuously measured since then. Additionally, new LTO sites were installed to fill gaps in 3DO data sets.

The DWDku1 installed five additional weather stations equipped with instruments to measure different meteorological variables, and the USifk installed a measurement car on the central Marienplatz to measure meteorological variables and concentrations of air pollutants.

During the IOPs, 3DO partners performed numerous measurements of meteorological variables and air pollutants including in-situ measurements at different sites on street level, RS measurements, mobile measurements on street level, as well as vertical soundings. IOP measurements focus on two IOLs in Stuttgart, one of them also foreseen for wind-tunnel experiments by the UHHmeteo (Fig. 8).

In-situ measurements of air pollutants and measurements of meteorological variables are performed by the USifk with a measurement car. During the IOPs, passive samplers (Passam) were applied for measuring nitrogen dioxide and nitrogen oxide concentrations at ap-
prox. 15 sites in the city to supplement the mobile measurements. The KIT Institut für Meteorologie und Klimaforschung, Atmosphärische Aerosolforschung, supported the 3DO partners with a fully equipped monitoring station for the determination of air pollutants with focus on particulate matter identification by an aerosol mass spectrometer (AMS) and a laser ablation aerosol time of flight (LAAPTOF) instrument, among others.

The KITimktro and KITimkifu used different RS devices to determine horizontal and vertical distributions of meteorological variables. Instruments in operation were a ceilometer (mixing height), six Doppler wind LiDAR (horizontal and vertical wind speed and wind direction), an X-band Doppler RADAR (precipitation), a TIR camera (surface temperature), and a micro-wave radiometer (temperature, humidity, water vapour content). The DWDku1 operated a SODAR system for determination of vertical wind profiles. Some of the instruments delivered data up to 12 km above ground.

The FZJiek8 performed mobile measurements with a measurement van also used in Berlin. At high temporal and spatial resolution, different air pollutants were determined for transects along streets within the city of Stuttgart but also in windward and leeward directions. For air temperature, humidity and pressure, similar measurements were performed by the DWDku1. The USifk used a bicycle to perform transect measurements of meteorological variables and air pollutants. Compared to the mobile measurements by car, the bicycles could easily be used aside the roads, e.g. in parks and pedestrian zones. As generally applied for mobile measurements, the bike measurements were performed such that artefacts stemming from the moving platform or the release of heat, particulates, etc. were avoided or, at least, reduced to a minimum. Therefore, additional measurements (e.g. by a GPS that provides both location and speed of the bike) were included for post-processing the bike data.
The USifk and the DWDku1 performed tethered balloon measurements for meteorological variables up to a height of 470 m above ground (limitation of height due to flight security). The USifk additionally measured concentrations of different air pollutants with the help of the tethered balloon. Tethered balloon soundings were supported by radio-sounding measurements of meteorological variables performed by the DWDku1. The USifk applied particulate-matter and gas sensors for mobile measurements on a rack railway for profile measurements from the city centre of Stuttgart to the outskirts. The LUHimuk performed vertical profile measurements with a multicopter, and the UAgeo measured vertical profiles of atmospheric variables by UAS during the summer IOP in 2017. A flight campaign using a Cessna aircraft was carried out by the DLRpa during the summer IOP in 2018.

4 Conclusions and perspectives

The 3DO project was able to implement a highly ambitious observational research concept combining existing, comprehensive LTO data sets from three German cities with state-of-the-art instrumentation for acquisition of new, three-dimensional atmospheric data at a level of detail that has not yet been realised in Germany. The 3DO approach is integrative, i.e., it combines investigations on weather, climate and air quality phenomena, following the requirements formulated by Barlow et al. (2017). The goals of the 3DO project are only achievable by a large consortium, since the multitude of measurements requires versatile and expensive instrumentation, as well as many highly skilled people installing and operating them. Finally, data analysis is highly complex. Thus, scientific and logistic co-ordination of the 3DO project and its embedding into the entire UC² research programme is essential for reaching the goals.

Although evaluation of the PALM-4U model is not yet completed, the 3DO partners are, based on the results already obtained by LTOs and during four IOPs, confident that they will be able to provide a broad portfolio of suitable, accurate reference data sets including data on turbulence essential for validating LES models like PALM-4U, which could also be used for evaluating other numerical atmospheric models. 3DO data sets are expected to provide the basis for design and implementation of an urban climate model intercomparison project that is planned for the future.

The [UC]² data standard ensures that fully documented 3DO data sets from both LTO and IOP measurements will not only be available for studies within the [UC]² research programme but also for further research and applications. The 3DO partners expect that their data sets will be of high scientific and practical value for long time, not only for model evaluation but also for stand-alone studies and applications.

The 3DO partners will also work on further enhancing the measurement strategies and methods. Crowdsourcing and citizen science are two examples of emerging methodologies in urban climatology (Chapman et al., 2015, 2017; Meier et al., 2017) that will develop in the upcoming years and need to be integrated into future research.

Appendix – Abbreviations

AMS Aerosol mass spectrometer
AWS Automatic weather station
AQS Air quality station
BC Black carbon
BLUHI Boundary-layer urban heat island
BLUME Berliner Luftgütemessnetz
BMBF German Federal Ministry of Education and Research
CF Climate and Forecast Metadata Conventions
ECS Eddy-covariance station
GIS Geographic information system
GPS Global positioning system
HCU HafenCity University
HUSCONET Hamburg Urban Soil Climate Observatory Network
IOL Intense observation location
IOP Intense observation period
IR Infra-red
LAAPTOF Laser ablation aerosol time of flight
LIDAR Light detecting and ranging
LTO Long-term observation
NetCDF Network Common Data Format
PALM Parallelized Large Eddy Simulation Model for Atmospheric and Oceanic Flows
PBL Planetary boundary layer
RADAR Radio detecting and ranging
RS Remote-sensing
SDG Sustainable development goal
SODAR Sound detecting and ranging
SUHI Surface urban heat island
TIR Thermal infra-red
UAS Unmanned aerial system
UBL Urban boundary layer
UCL Urban canopy layer
Appendix – List of symbols

Symbol	Description
AOD	aerosol optical depth
BC	mass concentration of black carbon
β	backscatter coefficient
c_{cl}	cloud coverage
CH_{4}	mass concentration of methane
CO	mass concentration of carbon monoxide
CO_{2}	mass concentration of carbon dioxide
C_{2}H_{6}	mass concentration of ethane
E_{sw,d}	down-welling short-wave irradiance
E_{sw,u}	up-welling short-wave irradiance
E_{sw,4d}	short-wave irradiance from four cardinal directions
E_{sw,6d}	short-wave irradiance from six cardinal directions
E_{lw,d}	down-welling long-wave irradiance
E_{lw,u}	up-welling long-wave irradiance
E_{lw}	long-wave irradiance
E_{dif}	diffuse solar irradiance
h_{al}	height of aerosol layers
HC	mass concentration of hydrocarbons
h_{cl}	cloud height
h_{lw}	liquid water path
h_{pbl}	height of the planetary boundary layer
h_{wv}	water vapor path
H_{soil}	soil heat flux
LDR	linear depolarization ratio
N	number concentration of particulate matter
N_{al}	number of aerosol layers
NO	mass concentration of nitrogen monoxide
NO_{2}	mass concentration of nitrogen dioxide
NO_{x}	mass concentration of nitrogen oxides
v_{r}	radial Doppler velocity
O_{3}	mass concentration of ozone
OVOC	mass concentration of oxygenated volatile organic compounds
p	air pressure
P	total precipitation
pF_{soil}	soil water potential
P_{l}	liquid precipitation
PM	mass concentration of particulate matter
P_{s}	solid precipitation
PSD	particle size distribution; diameters for PM and N are specified as subscripts in μm.
T	air temperature
T_{b}	brightness temperature
T_{globe}	globe temperature
T_{soil}	soil temperature
T_{w}	water temperature
T_{va}	virtual acoustic temperature
θ_{dp}	differential phase
θ_{soil}	volumetric water content
U	relative humidity
u	wind component in x-direction
v	wind component in y-direction
VOC	mass concentration of volatile organic compounds
w	wind component in z-direction
ws	wind speed
x	eastward location in cartesian coordinates
y	northward location in cartesian coordinates
z	vertical location in cartesian coordinates
Z	reflectivity
Z_{dr}	differential reflectivity

Acknowledgments

The German Federal Ministry of Education and Research (BMBF) funds the 3DO consortium under grant 01LP1602 within the framework of Research for Sustainable Development (FONA; www.fona.de). The German Aerospace Center (DLR) Project Management Agency supports the consortium. The authors thank all principal investigators, project scientists and further persons working in the 3DO project for their contribution to this overview article. Thanks are given to Achim Holtmann for proof-reading the manuscript.

References

Angevine, W., A. Grimsdell, L.M. Hartten, A.C. Delany, 1998: The Flatland Boundary Layer Experiments. – Bull. Amer. Meteor. Soc. 79, 419–431.
Ching, J., R. Rotunno, Chen, F., C. Bell, 2003: Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. – Int. J. Clim. 23, 1–26.

Barlow, J., M. Best, S. Bohinenstengel, P. Clark, S. Grimmond, H. Lean, A. Christen, S. Emeis, M. Hartman, A. Lemosnou, A. Martilli, E. Pandiyaraj, M. Ratch, S. Ballard, I. Boutle, A. Brown, X. Cai, M. Carpetieneri, O. Coceal, B. Crawford, S. Di Sabatino, J. Dou, D. Drew, J. Edwards, J. Fallback, K. Fornum, J. Gornall, T. Gronemeier, C. Halios, D. Hertwig, K. Hirano, A. Holtslag, Z. Luo, G. Mills, N. Nakayoshi, K. Pain, K. Schluenzes, S. Smith, L. Soullac, G. Steeneveld, T. Sun, N. Theeuwes, D. Thomson, J. Voogt, H. Ward, Z. Xie, J. Zhong, 2017: Developing a Research Strategy to Better Understand, Observe and Simulate Urban Atmospheric Processes at Kilometre to Sub-Kilometre Scales. – Bull. Amer. Meteor. Soc. 98, ES261–ES264. DOI:10.1175/ BAMS-D-17-0106.1.

BRÜMMER, B., M. SCHULTZE, 2015: Analysis of a 7-Year Low-Level Temperature Inversion Data Set Measured at the 280 m High Hamburg Weather Mast. – Meteorol. Z. 24, 481–494.

BRÜMMER, B., I. LANGE, H. KONOW, 2012: Atmospheric Boundary Layer Measurements at the 280 m High Hamburg Weather Mast 1995 – 2011: Mean Annual and Diurnal Cycles. – Meteorol. Z. 21, 319–335.

CHAPMAN, L., C.L. MULLER, D.T. YOUNG, E.L. WARREN, C.S.B. GRIMMOND, X.-M. CAI, E.J.S. FERRANTI, 2015: The Birmingham Urban Climate Laboratory: An Open Meteorological Test Bed and Challenges of the Smart City. – Bull. Amer. Meteor. Soc. 96, 1545–1560.

CHAPMAN, L., C. BELL, S. BELL, 2017: Can the Crowdsourcing 1377 Data Paradigm Take Atmospheric Science to a New Level? A 1378 Case Study of the Urban Heat Island of London Quantified Using 1379 Netatmo Weather Stations. – Int. J. Climatol. 37, 3597–3605.

CHEN, F., R. BORNSTEIN, C.S.B. GRIMMOND, J. LI, X. LIANG, A. MARTILLI, S. MIAO, J. VOOGT, Y. WANG, 2012: Research Priorities in Observing and Modeling Urban Weather and Climate. – Bull. Amer. Meteor. Soc. 93, 1725–1728.

CHING, J., R. ROTUNNO, M. LE MONE, A. MARTILLI, B. KOSOVIC, P.A. JMENEZ, J. DUDHIA, 2014: Convectively Induced Secondary Circulations in Fine-Grid Mesoscale Numerical Weather Prediction Models. – Mon. Wea. Rev. 142, 3284–3302.

DWD, 2017a: Deutscher Wetterdienst Leistungen. Stationsslexikon. – Online available at www.dwd.de/DE/leistungen/klimadatendeutschland/stationssliste.html (accessed March 8, 2019).

DWD, 2017b: Deutscher Wetterdienst Sites around Germany. Lindenberg Meteorological Observatory – Richard Assmann Observatory. – Online available at www.dwd.de/SharedDocs/broschueren/EN/press/lo_lindenberg_en.pdf?blob=publicationFile&v=3 (accessed March 8, 2019).

EMEIS, S., 2015: Observational Techniques to Assist the Coupling of CWE/CFD Models and Meso-Scale Meteorological Models. – J. Wind Eng. Industr. Aerodyn. 144, 24–30.

GRIMMOND, C.S.B., 2006: Progress in Measuring and Observing the Urban Atmosphere. – Theor. Appl. Climatol. 84, 3–22.

GRIMMOND, C.S.B., M. ROTH, T.R. OKE, Y.C. AU, M. BEST, R.C.G. BETTS, H. CLEUGH, W. DABBERT, R. EMANUEL, E. FREITAS, K. FORTUNIAK, S. HANNA, P. KLEIN, L.S. KALKSTEIN, C.H. LUI, A. NICKSON, D. PEARLMUTTER, D. SAILOR, J. VOOGT, 2010: Climate and More Sustainable Cities: Climate Information for Improved Planning and Management of Cities (Producers/Capabilities Perspective). – Procedia Env. Sci. 1, 247–274.

HALBRG, G., B. STEURI, B. BÜTER, I. HEESE, J. SCHULTZE, M. STECKING, S. STRATBRÜCKER, L. WILLEN, M. WINKLER, 2019: User requirements and case studies to evaluate the practicability and usability of the urban climate model PALM-4U. – Meteorol. Z. 28, 139–146. DOI:10.1127/metz/2019/0914.

MARONGA, B., M. GRYCZKA, R. HEINZE, F. HOFFMANN, F. KANANI-SÜHRING, M. KECK, K. KETLESEN, M.O. LETZEL, M. SÜHRING, S. RAASCH, 2015: The Paralleled Large-Eddy Simulation Model (PALM) Version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives, Geosci. Model Dev., 8, 2515–2551.

MARONGA, B., G. GROSS, S. RAASCH, S. BANZHAF, R. FORKEL, W. HULDENS, F. KANANI-SÜHRING, A. MATZARAKIS, M. MAUDER, D. PAVLIK, J. PFAFFERT, S. SCHUBERT, G. SECKMEYER, H. SIEKER, K. TRUSLOVA, 2019: Development of a new urban climate model based on the model PALM – Project overview, planned work, and first achievements. – Meteorol. Z. 28, 105–119. DOI:10.1127/ metz/2019/0909.

MEIER, F., D. FENNER, T. GRASSMANN, M. OTTO, D. SCHERER, 2017: Crowdsourcing Air Temperature from Citizen Weather Stations for Urban Climate Research. – Urb. Clim. 19, 170–191.

MOLLWO, H., 1958: Klimawerte von Frankfurt/Main: 1857–1956. – Berichte des Deutschen Wetterdienstes 434, 4. vollständ. neu bearb. Auflage. Offenbach am Main, Selbstverlag des Deutschen Wetterdienstes.

MULLER, C., L. CHAPMAN, C.S.B. GRIMMOND, D.T. YOUNG, X. CAI, 2013: Sensors and the City: A Review of Urban Meteorological Networks. – Int. J. Clim. 33, 1585–1600.

ORLANSKI, I., 1975: A Rational Subdivision of Scales for Atmospheric Processes. – Bull. Amer. Meteor. Soc. 56, 527–530.

RAASCH, S., M. SCHRÖTER, 2001: PALM – A Large-Eddy Simulation Model Performing on Massively Parallel Computers. – Meteorol. Z. 10, 363–372.

ROTACH, M.W., R. VOGT, C. BERNHOFER, E. BATCHVAROVA, A. CHRISTEN, A. CLAPPIER, B. FEDERSEN, S.-E. GRYNING, G. MARTUCCI, H. MAYER, V. MITEV, T.R. OKE, E. PARLOW, H. RICHNER, M. ROTH, Y.-A. ROULET, D. RUFFIEUX, J.A. SALMONT, M. SCHATZMANN, J.A. VOOGT, 2005: BUBBLE – An Urban Boundary Layer Meteorology Project. – Theor. Appl. Climatol. 81, 231–261.

SCHERER, D., F. ANTRITTER, S. BENDER, J. CORTEKAR, S. EMEIS, U. FEHRENBACK, G. GROSS, G. HALBRG, J. HASSE, B. MARONGA, S. RAASCH, K. SCHERER, 2019: Urban Climate Under Change [UC2] – A National Research Programme for Developing a Building-Resolving Atmospheric Model for Entire City Regions. – Meteorol. Z. 28, 95–104. DOI:10.1127/ metz/2019/0913.

SCHLUENZEN, H., P. HOFFMANN, G. ROSENHAGEN, W. RIECKE, 2010: Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. – Int. J. Climatol. 30, 1121–1136.

SCHLUENZEN, H., D. GRABE, S.I. BOHINENSTENGEL, I. SCHLÜTER, R. KOPPMANN, 2011: Joint Modelling of Obstacle Induced and Mesoscale Changes – Current Limits and Challenges. – J. Wind Eng. Ind. Aerodyn. 99, 217–225.

SEIDEL, J., G. KETZLER, B. BECHTEL, B. THIES, A. PHILIPP, J. BÖHNER, S. EGLI, M. EISELE, F. HERMA, T. LANGKAMP, E. PETERSEN, T. SAXSEN, D. SCHLABING, C. SCHNEIDER, 2016: Mobile Measurement Techniques for Local and Micro-Scale Studies in Urban and Topo-Climateology. – Die Erde 147, 15–39.

SOLECKI, W., 2012: Urban Environmental Challenges and Climate Change Action in New York City. – Env. Urban. 24, 557–573.
Stewart, I.D., T.R. Oke, 2012: Local Climate Zones for Urban Temperature Studies. – Bull. Amer. Meteor. Soc. 93, 1879–1900.
Stull, R.B., 1988: An Introduction to Boundary Layer Meteorology. – Kluwer Academic Publishers, 442–583.
UN-Habitat, 2016: World Cities Report 2016. Urbanization and Development: Emerging Futures. – UN-Habitat, 247 pp.
United Nations, 2014: World Urbanization Prospects: The 2014 Revision. Highlights (ST/ESA/SER.A/352), Department of Economic and Social Affairs, Population Division. – United Nations, New York, 27 pp.
United Nations, 2015: Sustainable Development Goals, 17 Goals to Transform our World. – Online available at www.un.org/sustainabledevelopment/cities/ (accessed March 8, 2019).
U.S. Environmental Protection Agency, 2008: Reducing Urban Heat Islands: Compendium of Strategies. Draft. – Online available at www.epa.gov/heat-islands/heat-island-compendium (accessed March 8, 2019).
Weber S., K. Kordowski, W. Kuttler, 2013: Variability of Particle Number Concentration and Particle Size Dynamics in an Urban Street Canyon under Different Meteorological Conditions. – Sci. Total Environ. 449, 102–114.
World Health Organization, 2013: Health Risks of Air Pollution in Europe – HRAPIE Project.
Wiesner, S., A. Eschenbach, F. Ament, 2014: Urban Air Temperature Anomalies and their Relation to Soil Moisture Observed in the City of Hamburg. – Meteorol. Z. 23, 143–157.
World Meteorological Organization, 2006: Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites (T.R. Oke). – Instruments and Observing Methods Report No. 81 (WMO/TD-No. 1250), 47 pp.
World Meteorological Organization, 2017: Guide to Meteorological Instruments and Methods of Observation: (CIMO guide). – WMO-No. 8, 1177 pp.