Game Theory based Channel Assignment and Load balancing for Cognitive Radio Ad-hoc Networks

Viyyapu Lokeshwari Vinya, Gurrala Venkateswara Rao

Abstract: Though various works have been done for handling end-to-end congestion control in traditional wireless adhoc networks, they lead to abnormal delay in Cognitive Radio Networks (CRN) due to the extra delaycaused by PU activities. While assigning channels along the route towards destination, channel availability, channel quality and channel switching delay should be considered. In this paper, we propose a Game theory based Channel Assignment and Load balancing(GTCALB) technique for multicast routing for CRAHN. In this technique, a channel matrix is constructed for each link with probability of channel availability, delay cost and channel quality. Then Game theory model is applied for each link in which a utility function is derived for each channel. Then the link with minimum overload is selected with a channel having maximum utility function. The proposed GTCALB technique is applied for each route, during the multicast route discovery. By NS2 simulation, it is shown that the GTCALB technique reduces the end-to-end delay and increases the throughput and packet delivery ratio for the constructed multicast routes.

Keywords: CRAN; Game Theory; Channel; Load balancing; GTCALB

I. INTRODUCTION
A cognitive radio is an intellectualtransistor that wisdoms its surroundings to getcertainbroadcastfactors of other transistors. The novel networking modelwhich containsintellectualtransistors is called as a cognitive radio network (CRN) [1]. Itexploits the bandscrupulouslyretrieving the approved band deprived of meddling with the presentoperators. In a CRN, the CR sporadicallyexamins the band so that the SU can practice the indolentnetwork to connect after approximating the co-channel meddling [2]. Numerous lessons emphasis on enhancing specifictop networksmakings of a cognitive radio [3].

Networkconsignmentplans are vital in defining how these networks are exploited proficiently in severalsystems. Every node is allotted one or additionalidlenetworks. To accomplishnetworkconsignmentcorrectly, suitable policies are established to assign the presentnetworks. An elementary necessity for networkconsignment is to evadeintrusions incedissimilarassociations or operators cannot utilise the similarnetwork within their broadcast range at the same time [4]. By integrating the spectrum resources into a sub-channel scalegroup, a livelylambdabroadcastprovision was establishedeven though it is able томake the most of the network exploitation, the suppleness is missing in this procedure. [5].

II. RELATED WORKS
Vani Shrivastav et al [1] have suggested a game theoretic-based prototype accessibleby means of the idea of Nash Equilibrium for bandwidth distribution. In this exemplary, intrusion and quantity of transistors on every singleconnection are well-thought-out as factors for planning the game. Aproach for networkdistributionamid the operators is also offered. It is witnessed from the initiation investigation that the schemeachieves acceptably regardingsystemexploitation. Also, the Taguchi process is put to use and an investigation of change (ANOVA) is done, demonstrating that the strategy factors considered in our suggested technique are meaningful.

Jie Jia et al [6] have offered a scientific design to constitute the multifaceted dealings amongst the consequence of system intrusion, connection dimensions and movement preservation. Moreover, a nested developmentplan is suggested to resolve the difficult issue, together with a hereditary method for network distribution, a hereditary method for path arrangement and an idealtrackassortmentprocedure to discover supremebandwidth track. With an intention to safeguard the discretesegregation and reckless meeting, both the grouping and sequence-based programming guidelines are aimed with appropriaterestrain control mechanisms. Widespread imitation consequences are obtainable to validate the efficacy of their procedure.

Md. Jalil Piran et al [9] have suggested a technique for network distribution depending on audio-visual content necessities and the excellence of the accessiblenetworks in cognitive radio networks (CRNs).
Their aim is to protect system bandwidth and attain superior audio-visual provision. In this technique, the content is distributed into groups depending on act difficulty and PSNR. To allot network to the groups over multichannel CRNs, they initially want to recognise the proprietor’s action and then exploit the unscrupulous habit consequently. Then, they plot the accessible band occasions to the content group as stated by both the excellence of the networks and the necessities of the groups. Then, a misrepresentation development prototype is built based on the system broadcast applicance. Yuting Wang et al [10] have anticipated a combined network as sortment and steering procedure, known as CSR to make sure the path steadiness and decrease path dormancy amid intellectual operators. The network obtainability according to ancient evidence and the networks wapping suspension are exploited as the network choice principles to select the end wise unserving path that holds extraordinary statistics distribution likelihoods and little post-ponements. Mahassin Mohamed Ahmed Osman et al [11] have suggested a covetous heuristic procedure known as Load Balanced Spectrum and Transmission Range Aware Clustering (LB-STRAC). LB-STRAC objects to allocate the capacity impartially amid the cluster-heads and also to assign the band honesty amongst the created groups. It comprises of two stages. The early group building stagedoespreliminary segregation of a system into groups, and the group association explanation stage links the standard nodules into groups in such a way that backup the capacity harmonising. Dan Wang et al [12] have anticipated a new endwise cramping control system termed ECCO, that deliberates the exclusive characteristics in multi-hop CR ad hoc systems like bandwidth detecting, network meeting, and approved operators’ actions. The usual package round trip time (RTT) for multi-hop CR ad hoc systems is obtained.

III. PROBLEM IDENTIFICATION AND PROPOSED SOLUTION

In our previous work [13], an energy efficient multicast route establishment protocol using AODV with PSO has been proposed. In this protocol, MAODV protocol is applied for multicast route discovery and energy efficient routes are selected for transmission. As an extension to this paper, this work aims to assign channels to the multicast routes in a load balanced way. While assigning channels along the route towards destination, the following parameters are to be considered:

- Channel availability
- Expected Channel Quality
- Link Load
- Channel switching delay

In congestion aware channel allocation [6], the link capacity and flow conservation constraints are checked for allocating the channel to a link. However, since it uses Genetic Algorithm (GA) for solving the optimization problem, it involves huge computation complexity and time. Though various works have been done for handling end-to-end congestion control in traditional wireless adhoc networks, they lead to abnormal delay in CRN due to the extra delay caused by PU activities. Hence the average RTT should be computed in terms of the channel rendezvous delay, MAC layer delay, service delay and queuing delay [12].

In [10], the channel availability and switching delay parameters are considered for channel selection. However, it did not consider channel quality and load. In order to solve these issues, we propose a Game theory based Channel Assignment and Load balancing technique for multicast routing in CRAHNS.

IV. GAME THEORY BASED CHANNEL ASSIGNMENT AND LOAD BALANCING TECHNIQUE

A Overview

In this technique, a channel matrix A is constructed for each link with the following details: Channel number, probability of availability P(a), delay cost (DC) which is sum of channel switching delay and MAC layer delay and channel quality in terms of expected SINR (ESINR).

Then Game theory model is applied for each link. In this model, from the details of matrix A, a utility function will be derived for each channel in terms of P(a), DC and ESINR. Before estimating the strategy of each player, the link overload (OL) is estimated for each link. Then the link with minimum overload is selected with a channel having maximum utility function.

The proposed technique will be applied for each route, during the multicast route discovery. By NS2 simulation, it will be shown that the proposed technique reduces the end-to-end delay and increases the throughput and packet delivery ratio for the constructed multicast routes.

B Construction of Channel Matrix

The channel availability of each channel Ch is given by

\[P_i(a) = P_x(a).P_y(a) \]

(1)

where \(P_x \) and \(P_y \) represent the available probability of node \(x \) and node \(y \) at channel \(Ch_i \) respectively.

After a cognitive node transmits data through channel \(Ch_i \), \(P_i(a) \) is updated using the following equation:

\[P_i(a) = \begin{cases}
 P_i + (1 - P_i).P_{mult} & \text{successful} \\
 P_i - \gamma & \text{Others}
\end{cases} \]

(2)
Where p'_i represents the channel before updating and p_i represents the channel after updating. γ is the channel availability update factor fixed based on network traffic history information.

The channel switching delay for channel Ch_i is given by
\[SD_i = SD_x + SD_y, \]
where SD_x and SD_y represent the switching delay of node x and node y to channel Ch_i, respectively.

The MAC layer delay is defined as the average medium access delay or is the contention delay [12].

The average MAC layer delay of channel Ch_i is given by
\[D_{mac}(i) = P_{idle}(T_{sense}) [T_{sense} + T_{ave} + T_{RTS} + T_{CTS}] + T_{MACK} + \]
\[(1-P_{idle}(T_{sense})) (T_{tr} - T_{sense}) \]
where
- $P_{idle}(T_{sense})$ indicates that the channel is idle during the sensing time T_{sense}.
- T_{ave} is the expected delay occurred in the backoff period.
- T_{RTS} and T_{CTS} denotes the duration of the RTS and the CTS, respectively
- T_{MACK} isthe duration of the MAC layer acknowledgement

The idle time $P_{idle}(t)$ is given by
\[P_{idle}(t) = e^{-\lambda_p t} \]
where λ_p is the packet arrival rate of PU.

Then the cumulative delay cost DC of channel Ch_i is given by
\[DC_i = SD_i + D_{mac}(i) \]

The channel quality is estimated in terms of expected SINR.

The ESINR of link k at channel Ch_i is given as [2]
\[ESINR_k(k) = \frac{p_k h_{ij}}{\sum_{j=1}^{n} p_j h_{jk} + n} \]

The channel switching delay for channel Ch_i is given by [10]
\[SD_i = SD_x + SD_y, \]

where SD_x and SD_y represent the switching delay of node x and node y to channel Ch_i, respectively.

The MAC layer delay is defined as the average medium access delay or is the contention delay [12].

The average MAC layer delay of channel Ch_i is given by
\[D_{mac}(i) = P_{idle}(T_{sense}) [T_{sense} + T_{ave} + T_{RTS} + T_{CTS}] + T_{MACK} + \]
\[(1-P_{idle}(T_{sense})) (T_{tr} - T_{sense}) \]
where
- $P_{idle}(T_{sense})$ indicates that the channel is idle during the sensing time T_{sense}.
- T_{ave} is the expected delay occurred in the backoff period.
- T_{RTS} and T_{CTS} denotes the duration of the RTS and the CTS, respectively
- T_{MACK} isthe duration of the MAC layer acknowledgement

The idle time $P_{idle}(t)$ is given by
\[P_{idle}(t) = e^{-\lambda_p t} \]
where λ_p is the packet arrival rate of PU.

Then the cumulative delay cost DC of channel Ch_i is given by
\[DC_i = SD_i + D_{mac}(i) \]

The channel quality is estimated in terms of expected SINR.

The ESINR of link k at channel Ch_i is given as [2]
\[ESINR_k(k) = \frac{p_k h_{ij}}{\sum_{j=1}^{n} p_j h_{jk} + n} \]

Where,
- p_k is the transmission power of transmitter k
- h_{ij} is the path-loss between the transmitter j and receiver k
- n is the noise power

Then the channel matrix $A(i)$ is constructed for link l as

\[
A = \begin{bmatrix}
1 & P_1(a) & DC_1 & ESINR_1 \\
2 & P_2(a) & DC_2 & ESINR_2 \\
... & ... & ... & ... \\
... & ... & ... & ... \\
m & P_m(a) & DC_m & ESINR_M \\
\end{bmatrix}
\]

C Estimation of Link Overload

Link over load (OL) indicates the difference of link capacity LC_{ij} and aggregate traffic load on each link e_{ij} [6]
\[OL_{ij} = LC_{ij} - \sum_{s \in S} f_{ij} \]
\[(7) \]
Where f_{ij} is the traffic demand for session s through the link e_{ij}

The link capacity LC_{ij} can be defined as the sum of effective capacity within all the channels $Ch_1, Ch_2, ..., Ch_m$.
\[LC_{ij} = \sum_{c=1}^{m} LC_{ij}(c) \]

The effective channel capacity of link l_{ij} for a channel c is calculated as
\[LC_{ij}(c) = x_{ij}^c \frac{H_c}{1 + N_{ij}(c)} \log_2 \left(1 + \frac{P_d(ij)^{-\gamma}}{P_N} \right) \]
\[(8) \]
Where
- x_{ij}^c is the link channel allocation variable for assigning the channel c for link e_{ij}
Game Theory based Channel Assignment and Load balancing for Cognitive Radio Ad-hoc Networks

H_c denotes the bandwidth of the channel c
P_t and P_n are the transmission and the noise powers respectively
d_{ij} denotes the gain of the link transmission
N_i,c indicates the set of the interference links of channel c

D Estimation of Channel Utility Function

From the details of channel matrix A, a utility function will be derived for each channel in terms of P(a), DC and ESINR as given by

\[U_{ij}(c) = \left[\frac{w_1P(a) + w_2ESINR}{w_3DC} \right] \]

where U(c) is the utility of channel c for the link e_{ij} and w1, w2 and w3 are constants in the range of [0,1].

E Optimization Constraints for a Link

For each link e_{ij}, the following optimization constraints are checked:

(i) Minimize OL_{ij} such that OL_{ij} < M
(ii) Choose the channel k such that U_{ij}(k) is maximum.

F. Multicast Route Discovery using MAODV

The MAODV protocol structure is shown in Figure 1, which is used to determine multicast diagram in CRAHN. MAODV utilise Route Request (RREQ) and Route Reply (RREP) packages. If RREQ is not a combined appeal, restructured steering route can retort unservingly at any nodule. After the steering procedure, the PSO procedure is put on to the path for path development which advances the vitalityingestion of the CR system.

G Game Theory Model

Ssdemarcated in game concept, in a game, the quantity of performers interrelate along with specified guidelines. Those troupes may possibly be single, collections, corporations, links and so on. Their communications will have an influence on every single performer and on the entire cluster of performers, i.e. they are inter-reliant.

A game in normal form consists of:

1. A finite number of players.
2. A strategy set assigned to each player.
3. A settlement or efficacypurpose, which allots a definite settlement to every single performer based up on his scheme and the approach of the other performers. Hence the game theory model can be stated in its general form as

\[G = \{ S_i, R_j, \{A_j\}, \{U_j\} \} \]

where \{S_i, R_j\} is the set of players, \{A_j\} is the set of actions of the players and \{U_j\} represent their utility functions. The exemplary is a non-cooperative game, where performers create liberated verdicts to enhance their efficacypurposes.

For transmitting the multicast data from a sender S to the set of receivers \{R_1, R_2, ..., R_k\}, the multicast tree is established using MAODV. For each path towards the receivers, channels can be assigned to each link using the following algorithm.

Algorithm: Game theory model for channel assignment

1. The game starts at time t
2. For each link l of the path along S to \{R_j\},
3. If OL (l) \leq M, where M is the minimum threshold value for OL
4. Estimate the channel matrix A(l)
5. For each channelc
6. Determine the utility function U(c) using Eq. (9)
7. If U(c) \geq Max(U), (where Max(U) is the maximum utility function),
8. Select the channel c
9. End if
10. End For
11. If no such channel exists, then
12. Select an alternate link
13. Else
14. Channel c is assigned to link l
15. End if
16. Else
17. Select an alternate link
18. End if
19. End For
V. EXPERIMENTAL RESULTS

A. Experimental Settings

The simulation of proposed GTCALB technique is conducted in Ns-2 and it is compared with Congestion-aware Channel Allocation with Route Scheduling (CCARS) [6] protocol. The performance is evaluated with respect to End-to-End Delay (E2D), Packet Delivery Ratio (PDR), packet drop and throughput. The simulation topology is shown in Figure 1 and various simulation settings are listed in Table 1.

Number of Nodes	100
Size of the topology	1500 X 300m
MAC protocol	IEEE 802.22 contention based MAC
Traffic type	Constant Bit Rate
Number of SU flows	6 to 24
Packet size	512 Bytes
Data sending Rate	100 to 500Kb/s
Number of channels	5
Number of interfaces	3

Table 1 Simulation settings

In this section, the performance of the two techniques is evaluated by varying the SU data flows from 6 to 24.

B. Varying the SU Flows

The graph showing the results of E2D for varying the flows, is shown in Figure 2. The figure depicts that the E2D of GTCALB ranges from 0.01 to 0.90 seconds and E2D of CCARS ranges from 2.8 to 13.9 seconds. Ultimately, the E2D of GTCALB is 90% less when compared to CCARS.

The graph showing the results of PDR for varying the flows, is shown in Figure 3. The figure depicts that the PDR of GTCALB ranges from 0.99 to 0.98 and PDR of CCARS ranges from 0.94 to 0.45. Ultimately, the PDR of GTCALB is 31% higher when compared to CCARS.

The graph showing the results of Packet Drop for varying the flows, is shown in Figure 4. The figure depicts that the Packet Drop of GTCALB ranges from 43 to 877 and Packet Drop of CCARS ranges from 897 to 31782. Ultimately, the Packet Drop of GTCALB is 95% less when compared to CCARS.
The graph showing the results of throughput for varying the flows, is shown in Figure 5. The figure depicts that the throughput of GTCALB ranges from 14.8 to 58.1 and throughput of CCARS ranges from 14.4 to 28.2. Ultimately, the throughput of GTCALB is 29% higher when compared to CCARS.

C. Varying the Data Sending Rate

In this section, the performance of the two techniques is evaluated by varying the data sending rate from 100 to 500 Kb/s.

The graph showing the results of E2D for varying the rate, is shown in Figure 6. The figure depicts that the E2D of GTCALB ranges from 0.6 to 4.9 seconds and E2D of CCARS ranges from 8.6 to 22.2 seconds. Ultimately, the E2D of GTCALB is 88% less when compared to CCARS.

The graph showing the results of PDR for varying the rate, is shown in Figure 7. The figure depicts that the PDR of GTCALB ranges from 0.98 to 0.81 and PDR of CCARS ranges from 0.67 to 0.14. Ultimately, the PDR of GTCALB is 66% higher when compared to CCARS.

The graph showing the results of Packet Drop for varying the rate, is shown in Figure 8. The figure depicts that the Packet Drop of GTCALB ranges from 267 to 16680 and Packet Drop of CCARS ranges from 11659 to 155492. Ultimately, the Packet Drop of GTCALB is 95% less when compared to CCARS.

The graph showing the results of throughput for varying data sending rate, is shown in Figure 9. The figure depicts that the throughput of GTCALB ranges from 14.8 to 58.1 and throughput of CCARS ranges from 14.4 to 28.2. Ultimately, the throughput of GTCALB is 29% higher when compared to CCARS.
The graph showing the results of throughput for varying the rate, is shown in Figure 9. The figure depicts that the throughput of GTCALB ranges from 36.5 to 151.5 and throughput of CCARS ranges from 26.0 to 27.3. Ultimately, the throughput of GTCALB is 65% higher when compared to CCARS.

REFERENCES

1. Vani Shrivastav, Sanjay K. Dhurandher, Isaac Woungang and Vinesh Kumar, "Game Theory-Based Channel Allocation in Cognitive Radio Networks”, IEEE Global Communications Conference (GLOBECOM), USA, 2016.

2. Amulya Bhattarai, Chalie Charoenlarpnopparut, Prapun Suksompong and Patrachart Komolkiri, "Developing Policies for Channel Allocation in Cognitive Radio Networks using Game Theory”, IEEE 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), Thailand, 2014.

3. Vinesh Teotia, Vipin Kumar and Sonajharia Minz, "Conflict Graph based Channel Allocation in Cognitive Radio Networks”, IEEE 34th Symposium on Reliable Distributed Systems Workshops, 2015.

4. Wenxuan Duan, Xing Tang, Junwei Zhou, Jing Wang and Guosheng Zhou, "Load Balancing Opportunistic Routing for Cognitive Radio Ad Hoc Networks”, Hindawi, Wireless Communications and Mobile Computing, Volume 2018, Article ID 9412782, 16 pages, 2018.

5. Jianjun Yang, Bryson Payne, Markus Hitz, Yanping Zhang, Ping Guo and Le Lid, "Fair Gain Based Dynamic Channel Allocation for Cognitive Radios in Wireless Mesh Networks”, Journal of Computers, Vol. 9, No. 10, October 2014.

6. Jie Jia, Quisi Lin, Jian Chen, Chunya Li and Xingwei Wang, "Congestion aware channel allocation with route scheduling in wireless cognitive radio mesh network”, Computers and Electrical Engineering, Elsevier, Vol. 39, pp. 1346–1357, 2013.

7. Long Zhang, Yuqiong Cao, and Haitao Xu, "On Achieving Optimal Congestion Control for Elastic Traffic in Cognitive Radio Ad Hoc Networks under Predictable Contact”, IEEE, 2017.

8. Hans Márquez, C. Salgado and Cesar Hernández, "Multichannel Assignment with Load Balance in Cognitive Radio Networks”, Indian Journal of Science and Technology, Vol 10, No-33, 2017.

9. Md. Jalil Piran, M. Ejaz Ahmed, Amjad Ali, Ju Bin Song, and Doug Young Suh, "Channel Allocation Based on Content Characteristics for Video Transmission in Time-Domain-Based Multichannel Cognitive Radio Networks”, Mobile Information Systems, Hindawi, Volume 2015, Article ID 934715, 7 pages, 2015.

10. Yuting Wang, Guoqiang Zheng, Huahong Ma, Yang Li and Jishun Li, "A Joint Channel Selection and Routing Protocol for Cognitive Radio Network”, Wireless Communications and Mobile Computing, Hindawi, Volume 2018, Article ID 6848641, 7 pages, 2018.

11. Mahassin Mohamed Ahmed Osman, Sharifah Kamilah Syed Yusof, and Nik Noordin Nik Abd Mulik, "Load Balanced Clustering Algorithm for Cognitive Radio Ad Hoc Networks”, IEEE 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), 2018.

12. Dan Wang and Yi Song, "ECCO: A Novel End-to-End Congestion Control Scheme in Multi-hop Cognitive Radio Ad Hoc Networks”, IEEE Transactions on Cognitive Communications and Networking, Vol.5, No.1, pp. 93-102, 2018.

13. Viyyapu Lokeshwari Vinya and Gurrula Venkateswara Rao, "An Energy Efficient Multicast Route Establishment using AODV with PSO Algorithm and RSA for Secured Transmission”, International Journal of Intelligent Engineering & Systems, April 23, 2019.