The structures of 1:1 and 1:2 adducts of phosphanetricarbonitrile with 1,4-diazabicyclo-[2.2.2]octane

Andrew P. Purdy,* Ray J. Butcherb and Christopher A. Kluga

*Chemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA.
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

In the structures of 1:1 and 1:2 adducts of phosphanetricarbonitrile (C₃N₃P) with 1,4-diazabicyclo[2.2.2]octane (C₆H₁₂N₂), the 1:1 adduct crystallizes in the orthorhombic space group, Pbcm, with four formula units in the unit cell (Z = 0.5). The P(CN)₃ unit lies on a crystallographic mirror plane while the C₆H₁₂N₂ unit lies on a crystallographic twofold axis passing through one of the C—C bonds. The P(CN)₃ moiety has close to C₃ᵥ symmetry and is stabilized by forming adducts with two symmetry-related C₆H₁₂N₂ units. The phosphorus atom is in a five-coordinate environment. As a result of the symmetry, the two trans angles are equal so τ₅ = 0.00 and thus the geometrical description could be considered to be square pyramidal. However, the electronic geometry is distorted octahedral with the lone pair on the phosphorous occupying the sixth position. As would be expected from VSEPR considerations, the repulsion of the lone-pair electrons with the equatorial bonding electrons means that the trans angles for the latter are considerably reduced from 180° to 162.01 (4)°, so the best description of the overall geometry for phosphorus is distorted square pyramidal. The 1:2 adduct crystallizes in the monoclinic space group, P₂₁/m with two formula units in the asymmetric unit (i.e. Z' = 1/2). The P(CN)₃ moiety lies on a mirror plane and one of the two C₆H₁₂N₂ (dabco) molecules also lies on a mirror plane. The symmetry of the P(CN)₃ unit is close to C₃ᵥ. There are three P···N interactions and consequently the molecular geometry of the phosphorus atom is distorted octahedral. This must mean that the lone pair of electrons on the phosphorus atom is not sterically active. For the 1:1 adduct, there are weak associations between the phosphorus atom and one of the terminal nitrogen atoms from the C≡N moiety, forming chains in the a-axis direction. In addition there are weak C—H···N interactions between a terminal nitrogen atoms from the C≡N moiety and the C₆H₁₂N₂ molecules, which form sheets perpendicular to the a axis.

1. Chemical context

Phosphorus tricyanide reacts in solution with nitrogen bases to produce a large mixture of products. This occurs with dicyanamides (Epshteyn et al., 2019), amines, and others. A reaction with CN⁻ was reported to produce an unusual dianion, P₂C₁₀N₁₀, which was structurally characterized (Schmidpeter et al., 1985). However, most of the products from these reactions are unknown. We have followed reactions between tertiary amines and P(CN)₃ by NMR, which shows many different chemical species as the reaction proceeds, but no crystalline compounds were isolated until P(CN)₃ was combined with the bidentate amine 4-diazabicyclo[2.2.2]octane (dabco). From this system we isolated both 1:1 and 1:2 adducts of P(CN)₃ with dabco.
2. Structural commentary

The structures of 1:1 (1) and 1:2 (2) adducts of phosphane-tricarbonitrile \([\text{P(CN)}_3]\) with \(1,4\)-diazabicyclo[2.2.2]octane \([\text{C}_6\text{H}_{12}\text{N}_2]\) are reported. The 1:1 adduct, \(\text{P(CN)}_3(\text{C}_6\text{H}_{12}\text{N}_2)\), 1 (Fig. 1), crystallizes in the orthorhombic space group, \(\text{Pbcm}\), with four formula units in the unit cell \((Z = 0.5)\). The \(\text{P(CN)}_3\) unit lies on a crystallographic mirror plane passing through atoms P1, C1, and N1 while the \(\text{C}_6\text{H}_{12}\text{N}_2\) unit lies on a crystallographic twofold axis passing through the \(\text{C}_3—\text{C}_3\) bond.

The \(\text{P(CN)}_3\) moiety has close to \(\text{C}_3\) symmetry with \(\text{P—C}\) bond lengths of 1.8057 (15) Å (P1—C1) and 1.8309 (10) Å (P1—C2) and \(\text{C—P—C}\) bond angles of 87.52 (6)° (C1—P1—C2(x, y, \(\frac{1}{2} - z\)) and 94.32 (4)° (C1—P1—C2). The \(\text{P—C}\) bond angles are 174.94 (9)° (P1—C2N2) and 176.03 (13)° (P1—C1N1). The \(\text{P(CN)}_3\) group is stabilized by forming adducts (Fig. 2) with two symmetry-related \(\text{C}_6\text{H}_{12}\text{N}_2\) units of length 2.6562 (8) Å, which is considerably shorter than the sum of their van der Waals radii \([\text{P} (1.80 \text{ Å}) + \text{N} (1.55 \text{ Å}) = 3.35 \text{ Å}; \text{Bondi}, 1964, 1966]\). Including the symmetry-related \(\text{C}_6\text{H}_{12}\text{N}_2\) and the two \(\text{N}—\text{P}\) interactions, P1 is in a five-coordinate environment. As a result of the symmetry, the two \(\text{trans}\) angles are equal so \(\tau_2 = 0.00\) (Addison et al., 1984) so the geometrical description could be considered to be square pyramidal. However, the electronic geometry is distorted octahedral with the lone pair on the phosphorous occupying the sixth position. As would be expected from VSEPR considerations (Gillespie & Nyholm, 1957; Gillespie, 1970), the repulsion of the lone-pair electrons with the equatorial bonding electrons means that the \(\text{trans}\) angles for the latter are considerably reduced from 180° to 162.01 (4)°, so the best description of the overall geometry at P1 is distorted square pyramidal. The metrical parameters of the \(\text{C}_6\text{H}_{12}\text{N}_2\) units are similar to each other and also show no significant deviations of the metrical parameters of the dabco molecules from values observed in other structures (Szafrański, 2018; Maderlehner & Pfitzner, 2012; Goreshnik, 2017; Akhmad Aznan et al., 2014).

The second adduct, \(\text{P(CN)}_3(\text{C}_6\text{H}_{12}\text{N}_2)\), 2 (Fig. 3), crystallizes in the monoclinic space group, \(\text{P2}_1/\text{m}\), with two formula units in the asymmetric unit \((i.e. Z′ = 0.5)\). The \(\text{P(CN)}_3\) moiety lies on a mirror plane passing through atoms P1, C2, and N2 and one of the two \(\text{C}_6\text{H}_{12}\text{N}_2\) (dabco) molecules also lies on a mirror plane. The symmetry of the \(\text{P(CN)}_3\) unit is close to \(\text{C}_3\) with \(\text{P—C}\) distances of 1.8197 (11) and 1.8315 (15) Å with \(\text{C—P—C}\) bond angles of 90.54 (5)° (P1—C2—C) and 94.44 (8)° (C1—P1—C2). The \(\text{P—C—N}\) bond angles are 176.33 (13)° (P1—C2—N3) and 179.54 (13)° (P1—C2—N5). The \(\text{P(CN)}_3\) group is stabilized by forming asymmetric links to the \(\text{C}_6\text{H}_{12}\text{N}_2\) units \([\text{P1—N3 and P1—N5 distances of 2.6731 (12) and 2.766 (9) Å, respectively}]. Both distances are considerably shorter than the sum of their van der Waals radii (Bondi, 1964, 1966). Since one of these \(\text{C}_6\text{H}_{12}\text{N}_2\) units does not lie on a crystallographic symmetry element but P1 does, there are three \(\text{N}—\text{P}\) interactions and consequently the molecular geometry of P1 is distorted octahedral. This must mean that the lone pair of electrons on the P is not sterically active. There is precedence for this in other \(\text{P}^{III}\) compounds (Capel et al., 2011).
Table 1
Selected geometric parameters (Å, °) for 1.

	P1—C1	P1—C2	P1—N3	P1—N5
P1—Cl1	1.8057 (15)	1.8309 (10)	2.6562 (8)	
C1—P1—C2	94.32 (4)	C2—P1—N3	162.01 (4)	
C2—P1—C2'	87.52 (6)	C2'—P1—N3	120.10 (3)	
C1—P1—N3	80.83 (3)	C3—N3—P1	119.2 (3)	

Symmetry code: (i) x, y, z + 1

A comparison of the metrical parameters for the P(CN)3 unit of 1 and 2 shows interesting differences, in spite of the fact that both lie on mirror planes and thus have the same overall symmetry. In the case of 1, P1, C1 and N1 lie in the mirror plane while in 2 it is P1, C2 and N2 that are in the mirror plane. In each case, the P—C distances are significantly different between those that are in and out of the mirror plane. For 1, the P—C(mirror) distance is 1.8057 (15) Å with the other distance at 1.8309 (10) Å, while in the case of 2, the P—C(mirror) distance is 1.8315 (15) Å with the other distance at 1.8197 (11) Å. This dissimilarity is also shown by the bond angles about the P atoms. In the case of 1, the smaller angle [87.52 (6)] involves the symmetry-related C=C=N groups while in 2 this angle is the larger angle [94.44 (8)]°. This difference between 1 and 2 might be related to the different geometries about the P atoms in the two structures when the interactions with the C6H12N2 groups are included. Some important bond parameters (bond lengths and bond angles) for 1 and 2, respectively, are given in Tables 1 and 2.

Table 2
Selected geometric parameters (Å, °) for 2.

	P1—C1	P1—C2	P1—N3	P1—N4
P1—Cl1	1.8197 (11)	1.8315 (15)	2.6731 (12)	
C1—P1—C2	94.44 (8)	C2—P1—N4	166.15 (18)	
C2—P1—C2'	90.54 (5)	C2'—P1—N4	78.62 (14)	
C1—P1—N3	76.69 (4)	N3—P1—N4	111.45 (11)	
C2—P1—N3	160.98 (5)	C1'—P1—N4'	166.15 (18)	
C1'—P1—N4'	77.25 (16)	N4A—P1—N4'B	108.5 (3)	

Symmetry code: (i) x, y + 1/2, z.

Pitzner, 2012; Goreshnik, 2017; Akhmad Aznan et al., 2014. There are very few reports in the literature of structures involving the P(CN)3 unit (Dillon et al., 1982; Sheldrick et al., 1981; Emerson & Britton, 1964). In the structure of P(CN)3 (Emerson & Britton, 1964) the P—C bond lengths are 1.77 (3), 1.79 (3), and 1.80 (3) Å and the P—C—N angles are 93.2 (2), 93.6 (2), and 93.7 (2)°. In this structure, the central P atom makes three non-bonded intermolecular associations with neighboring terminal N atoms with lengths of 2.85, 2.98, and 2.97 Å and C—N distances of 2.85, 2.98, and 2.97 Å. It can be seen that these metrical parameters for both 1 and 2 agree well with those for the parent P(CN)3 molecule. The major difference is in the length of the stronger intermolecular associations with the C6H12N2 units for 1 and 2 at 2.6562 (8) Å for 1, and 2.6731 (12) and 2.766 (9) Å for 2, which is much shorter than that observed for P(CN)3. In the other structures containing the P(CN)3 unit, one contains this unit as a dimer with long P—Br bond lengths forming two μ-Br bridges ([P(CN)3]Br+)2 (3); Sheldrick et al., 1981), while the other contains an isolated unit forming an association with a chloride anion [P(CN)3Cl]− (4); Dillon et al., 1982). In 3, the phosphorus atom is bonded to another P(CN)3 moiety through a mirror plane and the geometry about the P atom is also square pyramidal (τ4 = 0.00). The metrical parameters of the P(CN)3 unit for 3 are similar to those in 1 and 2. On the other hand, for 4 there are some significant differences in the metrical parameters of the P(CN)3 unit. In this case, the interaction of the P atom with the Cl atom is much stronger than that with Br in 3 (2.624 vs 3.059 Å) and the geometry about P is four-coordinate of the see-saw type. As a consequence, there is more asymmetry in the P—C bond lengths with that trans to Cl being 1.916 Å while the other two are 1.781 and 1.785 Å.

3. Supramolecular features

For 1 there are weak associations between P1 and N1 [3.0806 (14) Å], which, while weak, is shorter than the sum of the van der Waals radii of P and N from an adjoining P(CN)3 unit, forming chains along the a-axis direction. In addition there are weak C—H···N interactions (Table 3) between N2 and the C6H12N2 molecules, which form sheets perpendicular to the a axis (Fig. 4). For 2, since the lone pair on P1 is not stereochemically active, there are only weak bifurcated C—H···N interactions (Table 4) between N2 and the C6H12N2 molecules, as shown in Fig. 5.
4. Database survey

A search of the Cambridge Structural Database revealed that there are very few reports in the literature of structures involving a P(CN)₃ unit. The structure of the P(CN)₃ molecule was published in 1964 (Emerson & Britton, 1964). There are two other reports of this moiety: one contains this unit as a dimer with long P—Br bond lengths forming two μ-Br bridges (Sheldrick, et al., 1981), while the other contains an isolated unit forging an association with a chloride anion (Dillon, et al., 1982). While a majority of reported 1,4-diazabicyclo[2.2.2]octane (dabco) structures involve these species as protonated cations, dabco is one of the simplest linear bridging ligands that can be used for coordination polymers. There have been several reported examples of dabco-containing coordination polymers, the majority of these also involve another type of bridging ligand or anion (Burrows et al., 2012; Dau et al., 2012; Henke et al., 2012). Unusual examples have been reported where dabco is the sole linking ligand and include one-dimensional (1D) coordination chains (Wang, et al., 2011; Qu & Wu, 2007; Braga et al., 2004; Cunha-Silva et al., 2013), a 2D hexagonal network of 6₃ topology of [Ag(dabco)$_3$(H₂O)](3-fluorobenzenecarboxylate) (Qu & Sun, 2006) and a series of networks where dabco ligands bridge between M_2I_2 dimers or between Cu₄X_4 or higher order metal clusters where $X = 1$ or Cl (Shan, et al., 2011; Braga, et al., 2010; Liu, et al., 2010; Zhang, et al., 2010; Bi, et al., 2007; Wiles & Pike, 2006; O’Keefe et al., 2008). The latter feature 3D coordination polymer structures with an extraordinary range of topologies. There have also been several cases of metal complexes containing dabco as a ligand, a recent example being [PMo$_8$V$_6$O$_{42}$][Cu(dabco)$_2$][Cu(phen)$_2$]$_3$H$_2$O, which exhibits a novel 2D layered framework structure constructed from [PMo$_8$V$_6$O$_{42}$]$^{4–}$ and two different types of copper complexes (Xiao et al., 2018).

5. Synthesis and crystallization

General Comments Phosphorus cyanide was synthesized from PCl$_3$ and 3 eq. of AgCN in CHCl$_3$, followed by vacuum sublimation, according to the method of Staats et al. (1960). Acetonitrile and chloroform were dried by distillation from P$_2$O$_5$ and all reactions were performed in an argon-filled drybox.

Complexes with dabco. In an argon-filled dry box, 0.155 g of P(CN)$_3$ and 0.35 g of dabco were mixed in a scintillation vial and combined with 15 mL of dry MeCN. The vial was heated with agitation until all solids had dissolved and allowed to cool. The white crystalline product was washed with MeCN and allowed to dry, affording 0.41 g (86%) of the 1:2 adduct.
Solid-state NMR. All solid-state NMR measurements were performed using a Varian 500 spectrometer and a 4 mm HXY triple resonance MAS NMR probe. The 13C and 31P chemical shifts were referenced using hexamethylbenzene and 85% phosphoric acid, respectively. Rotor-synchronized Hahn-echo pulse sequences with $p/2$ and p pulse lengths of 5 ms and 10 ms, respectively, were used to acquire the spectra. Estimates of the spin-lattice relaxation times were obtained by varying the delay between scans. For the extraction of CSA parameters from solid-state spectra, the experimental sideband pattern was compared to an array of sideband patterns varying the delay between scans. For the extraction of CSA mates of the spin-lattice relaxation times were obtained by varying the delay between scans. For the extraction of CSA mates of the spin-lattice relaxation times were obtained by varying the delay between scans.

6. Chemical and NMR Discussion

Complexes 1 and 2 have low solubility and only dissociated P(CN)$_3$ and dabco were observed by NMR in CD$_3$CN or d$_5$-pyridine solution on a Bruker 400 MHz spectrometer. Other peaks, including P(CN)$_2$- (31P = -194 ppm) and other unidentified species from slow reactions do grow in slowly in a manner similar to solutions of P(CN)$_3$ with other amines. Additionally, when a mixture of P(CN)$_3$ and 4 eq. of dabco in CD$_3$CN was measured, no sharp 31P signal for P(CN)$_3$ was observed, showing that virtually all the P(CN)$_3$ is in the form of insoluble complexes when dabco is present in large excess. However, broad peaks are present in the 31P spectrum in all cases where the solids are within the observing region of the NMR spectrometer coil. In order to more fully characterize the complexes by NMR, solid-state magic-angle spinning (MAS) 31P and 13C NMR spectra were measured on a Varian 500 MHz spectrometer for both 1 and 2.

In the native compounds there is only one 13C NMR peak for dabco, N(C$_2$H$_4$)$_3$N, located at 47.5 ppm. Phosphorus cyanide has one peak in both the 13C and 31P NMR, located at 111.67 ppm and -138.71 ppm, respectively (Chaloux et al., 2015). The 31P and 13C NMR spectra for 1 are shown in Fig. 6. The 31P MAS NMR spectrum contains a set of spinning sidebands, which reflect the large chemical shift anisotropy (csa) for this nucleus in 1. One large peak at 45.1 ppm corresponding to coordinated dabco along with two smaller asymmetric peaks at 112 and 118 ppm in an approximate 1:2 ratio corresponding to nitrile carbons appear in the 13C MAS NMR spectrum. This 13C NMR spectrum makes sense as there is only one chemically equivalent dabco unit in this structure, but one cyano group has an interaction with atom P1 of another molecule along a (Fig. 2) and the other two cyano groups do not, making them chemically inequivalent.

The 31P and 13C NMR spectra for 2 are shown in Fig. 7. The 31P MAS NMR spectrum contains a set of spinning sidebands, which reflect the slightly smaller chemical shift anisotropy (csa) for 31P in this compound. Of particular interest is that the asymmetry is now close to 0.0, compared to the larger asymmetry of 0.34 for the 1:1 sample, Fig. 6a. The 13C MAS NMR spectrum contains two high field peaks at 47.4 and 45.6 ppm, with the former being roughly three times larger. The peak at 47.4 ppm may correspond to carbon atoms bonded to a dabco nitrogen that is coordinated to phosphorus (N5, N3), and the smaller peak to the carbons bonded to N4 that is not coordinated to P1, as these carbons are in a 3:1 ratio. A third asymmetric peak at 116 ppm corresponds to nitrile carbons, which are closer to being chemically equivalent to each other than the nitriles in 1. Interestingly, the spin-lattice relaxation time, T_1, for 31P is roughly 10 times shorter for 2 at 45±5 s compared to 1 where a single-exponential fit gives 450±50 s. Similarly, the 13C T_1 for the nitrile peak at 116 ppm is 90±10 s for 2, compared an estimate of 200±50 s for 1. In both cases the 13C T_1 for the low-field peaks near 45 ppm associated with the dabco was much less than 16 s, the shortest delay time used, which makes sense because the dabco units can rotate.

![Figure 6](image1.png)

(a) 31P MAS NMR spectrum for 1 obtained using a spinning speed of 5 kHz. The sideband pattern is corresponds to a chemical shift anisotropy (csa) with isotropic shift of -161 ppm, $d_{aniso} = -67.7$ ppm, and $h = 0.34$; (b) 13C MAS NMR spectrum for 1 obtained using a spinning speed of 12.5 kHz. Note that in both spectra, spinning sidebands are marked with asterisks (*).

![Figure 7](image2.png)

(a) 31P MAS NMR spectrum for 2 obtained using a spinning speed of 5 kHz. The sideband pattern is corresponds to a chemical shift anisotropy (csa) with isotropic shift of -158 p.p.m., $d_{aniso} = -59.3$ ppm, and $h = 0.00$; (b) 13C MAS NMR spectrum for 2 obtained using a spinning speed of 12.5 kHz. Note that in both spectra, spinning sidebands are marked with asterisks (*).
and are relaxed by their protons. These long 31P and cyano spin-lattice relaxation times for 1 are suggestive of a more rigid structure than 2. The solid-state NMR spectra for both complexes show that they are relatively pure compounds, with little contamination by the other complex.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. For both 1 and 2, all non-hydrogen atoms located from the solution using SHELXT (Sheldrick, 2015a). Finally, the refinement was completed with anisotropic displacement parameters for all non-hydrogen atoms. The H atoms were located from difference-Fourier maps and constrained to ride on their parent atoms with C—H bond distances of 0.99 Å and were refined as riding with isotropic displacement parameters 1.2 times that of their C atoms. For 2, one C$_6$H$_{12}$N$_2$ unit was located on a symmetry element and its hydrogen atoms were refined isotropically with isotropic displacement parameters 1.2 times that of their C atoms.

Funding information

Funding for this research was provided by: The Office of Naval Research.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Akhmad Aznan, A. M., Abdullah, Z. & Tiekink, E. R. T. (2014). Acta Cryst. E70, 31–35.

Bak, M., Rasmussen, J. T. & Nielsen, N. C. (2000). J. Magn. Reson. 147, 296–330.

Bi, M., Li, G., Hua, J., Liu, Y., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007). Cryst. Growth Des. 7, 2066–2070.

Bondi, A. (1964). J. Phys. Chem. 68, 441–451.

Bondi, A. (1966). J. Phys. Chem. 70, 3006–3007.

Braga, D., Giaffreda, S. L., Greipioni, F. & Polito, M. (2004). CrystEngComm, 6, 459–462.

Braga, D., Maini, L., Mazzeo, P. P. & Ventura, B. (2010). Chem. Eur. J. 16, 1553–1559.

Bucher (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bucher (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Burrows, A. D., Mahon, M. F., Raithby, P. R., Warren, A. J., Teat, S. J. & Warren, J. E. (2012). CrystEngComm, 14, 3658–3666.

Capel, V. L., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Monks, P. K., Probert, M. R., Shepherd, H. J. & Zorina, N. V. (2011). Dalton Trans. 40, 1808–1816.

Chaloux, B. L., Ponke, B. L., Purdy, A. P., Yesinowski, J. P., Glaser, E. R. & Esfahvyn, A. (2015). Chem. Mater. 27, 4507–4510.

Cunha-Silva, L., Carr, M. J., Kennedy, J. D. & Hardie, M. J. (2013). Cryst. Growth Des. 13, 3162–3170.

Dau, P. V., Kim, M., Garibay, S. J., Münch, F. M. L., Moore, C. E. & Cohen, S. M. (2012). Inorg. Chem. 51, 5671–5676.

Dillon, K. B., Platt, A. W. G., Schmidpeter, A., Zwaschka, F. & Sheldrick, W. S. (1982). Z. Anorg. Allg. Chem. 488, 7–26.

Emerson, K. & Britton, D. (1964). Acta Cryst. 17, 1134–1139.
Epshteyn, A., Purdy, A. P. & Chaloux, B. (2019). US Patent 10510458-B2.
Gillespie, R. J. (1970). *J. Chem. Educ.* **47**, 18–23.
Gillespie, R. J. & Nyholm, R. S. (1957). *Q. Rev. Chem. Soc.* **11**, 339–380.
Goreshnik, E. (2017). *J. Coord. Chem.* **70**, 859–870.
Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. (2012). *J. Am. Chem. Soc.* **134**, 9464–9474.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). *J. Appl. Cryst.* **48**, 3–10.
Liu, Y.-Y., Grzywa, M., Weil, M. & Volkmer, D. J. (2010). *J. Solid State Chem.* **183**, 208–217.
Maderlehner, S. & Pfitzner, A. (2012). *Z. Kristallogr.* **227**, 569–574.
O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). *Acc. Chem. Res.* **41**, 1782–1789.
Qu, Y. & Wu, J. (2007). *Acta Cryst.* E63, m1063–m1065.
Sheldrick, G. M. (2015a). *Acta Cryst.* A71, 3–8.
Sheldrick, G. M. (2015b). *Acta Cryst.* C71, 3–8.
Sheldrick, W. S., Schmidpeter, A., Zwaschka, F., Dilllon, K. B., Platt, A. W. G. & Waddington, T. C. (1981). *J. Chem. Soc. Dalton Trans.* pp. 413–418.
Staats, P. A., Morgan, H. W. & Cohen, H. M. (1960). *Inorg. Synth.* **6**, 84–87.
Szafran´ski, M. (2018). *Cryst. Growth Des.* **18**, 7106–7113.
Wang, X.-F., Qi, X.-L., Shi, F.-N. & Rocha, J. (2011). *J. Mol. Struct.* **1004**, 26–30.
Wiles, A. B. & Pike, R. D. (2006). *Organometallics.* **25**, 3282–3285.
Xiao, L.-N., Zhao, C.-X., Shi, X.-M., Zhang, H., Wu, W. & Cui, X.-B. (2018). *CrystEngComm, 20*, 969–977.
The structures of 1:1 and 1:2 adducts of phosphanetricarbonitrile with 1,4-diazabicyclo[2.2.2]octane

Andrew P. Purdy, Ray J. Butcher and Christopher A. Klug

Computing details
For both structures, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Phosphanetricarbonitrile–1,4-diazabicyclo[2.2.2]octane (1/1) (1)

Crystal data
C₆H₁₂N₂·C₃N₃P

Mr = 221.21

Orthorhombic, Pbcm

a = 6.0092 (2) Å

b = 13.6227 (5) Å

C = 13.4716 (5) Å

V = 1102.81 (7) Å³

Z = 4

F(000) = 464

Data collection
Bruker APEXII CCD diffractometer

φ and ω scans

Absorption correction: multi-scan

(SADABS; Krause et al., 2015)

Tmin = 0.684, Tmax = 0.746

16377 measured reflections

Refinement
Refinement on F²

Least-squares matrix: full

R[F² > 2σ(F²)] = 0.028

wR(F²) = 0.068

S = 1.08

1764 reflections

73 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/σ²(F²) + (0.0261P)² + 0.5245P

where P = (F² + 2Fc²)/3

(Δ/σ)max < 0.001

Δρmax = 0.40 e Å⁻³

Δρmin = −0.27 e Å⁻³
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso* / Ueq
P1	0.7847 (6)	0.60830 (2)	0.250000	0.00987 (8)
N1	0.2954 (2)	0.58880 (10)	0.250000	0.0222 (3)
N2	0.87850 (16)	0.45325 (6)	0.10017 (7)	0.01964 (18)
N3	0.69029 (13)	0.69630 (6)	0.42084 (6)	0.01125 (15)
C1	0.4862 (2)	0.59283 (10)	0.250000	0.0141 (2)
C2	0.83300 (15)	0.51360 (7)	0.15601 (7)	0.01305 (17)
C3	0.92037 (15)	0.72302 (7)	0.44943 (6)	0.01195 (17)
H3A	0.986077	0.766022	0.397947	0.014*
H3B	1.012485	0.662953	0.454173	0.014*
C4	0.58489 (16)	0.64329 (7)	0.50448 (7)	0.01500 (18)
H4A	0.675442	0.585056	0.521857	0.018*
H4B	0.435121	0.620363	0.484484	0.018*
C5	0.56488 (17)	0.78818 (7)	0.40371 (7)	0.01575 (19)
H5A	0.406311	0.772672	0.391407	0.019*
H5B	0.624346	0.821991	0.344310	0.019*

Atomic displacement parameters (Å²)

	U¹¹	U²²	U³³	U¹²	U¹³	U²³
P1	0.01010 (15)	0.00919 (14)	0.01032 (14)	0.00029 (11)	0.000	0.000
N1	0.0154 (6)	0.0270 (7)	0.0244 (6)	−0.0005 (5)	0.000	0.000
N2	0.0236 (4)	0.0178 (4)	0.0175 (4)	0.0026 (3)	−0.0012 (3)	−0.0025 (3)
N3	0.0108 (3)	0.0119 (3)	0.0110 (3)	−0.0003 (3)	−0.0001 (3)	0.0002 (3)
C1	0.0152 (6)	0.0135 (6)	0.0137 (5)	0.0001 (5)	0.000	0.000
C2	0.0144 (4)	0.0124 (4)	0.0123 (4)	0.0003 (3)	−0.0014 (3)	0.0013 (3)
C3	0.0102 (4)	0.0140 (4)	0.0117 (4)	−0.0007 (3)	0.0009 (3)	−0.0010 (3)
C4	0.0168 (4)	0.0145 (4)	0.0137 (4)	−0.0047 (3)	0.0041 (3)	−0.0015 (3)
C5	0.0170 (4)	0.0160 (4)	0.0142 (4)	0.0045 (3)	−0.0052 (3)	−0.0022 (3)

Geometric parameters (Å, °)

	C1—P1	C2—P1	N3—P1	C1—N1	C2—N2	N3—N1	C1—C2	N3—C5	C2—N2
P1—C1	1.8057 (15)	C3—C3⁺	1.5481 (17)						
P1—C2	1.8309 (10)	C3—H3A	0.9900						
P1—C2⁺	1.8309 (10)	C3—H3B	0.9900						
P1—N3	2.6562 (8)	C4—C5⁺	1.5543 (13)						
N1—C1	1.148 (2)	C4—H4A	0.9900						
N2—C2	1.1474 (13)	C4—H4B	0.9900						
N3—C5	1.4792 (12)	C5—H5A	0.9900						
N3—C4	1.4807 (12)	C5—H5B	0.9900						
N3—C3 1.4807 (12)

Bond	Length (Å)	Angle (°)
C1—P1—C2	94.32 (4)	C3—C5—H3A 109.6
C1—P1—C2’	94.32 (4)	N3—C3—H3B 109.6
C2—P1—C2’	87.52 (6)	C3—C5—H3B 109.6
C1—P1—N3	80.83 (3)	H3A—C3—H3B 108.1
C2—P1—N3	162.01 (4)	N3—C4—C5’ 110.23 (7)
C2’—P1—N3	75.68 (3)	N3—C4—H4A 109.6
N3—P1—N3’	120.10 (3)	C5’—C4—H4A 109.6
C5—N3—C4	108.27 (7)	N3—C4—H4B 109.6
C5—N3—C3	107.95 (7)	C5’—C4—H4B 109.6
C4—N3—C3	108.74 (7)	H4A—C4—H4B 108.1
C5—N3—P1	110.83 (5)	N3—C5—C4’ 110.16 (7)
C4—N3—P1	122.05 (5)	N3—C5—H5A 109.6
C3—N3—P1	97.87 (5)	C5’—C5—H5A 109.6
N1—C1—P1	176.03 (13)	N3—C5—H5B 109.6
N2—C2—P1	174.94 (9)	C4’—C5—H5B 109.6
N3—C3—C3’	110.23 (5)	H5A—C5—H5B 108.1
N3—C3—H3A	109.6	

Bond	Length (Å)	Angle (°)
C5—N3—C5—C4’	65.44 (11)	P1—N3—C4—C5’ 176.24 (6)
C4—N3—C5—C4’	−51.82 (11)	C4—N3—C5—C4’ 64.22 (9)
P1—N3—C5—C4’	−179.59 (8)	C3—N3—C5—C4’ −53.34 (10)
C5—N3—C4—C5’	−53.34 (9)	P1—N3—C5—C4’ −159.44 (6)
C3—N3—C4—C5’	63.71 (10)	

Symmetry codes: (i) x, y, −z+1/2; (ii) x, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C3—H3A—N2’	0.99	2.68	3.4269 (13)	133
C3—H3B—N2’	0.99	2.61	3.3691 (13)	134
C4—H4B—N2’	0.99	2.64	3.3385 (13)	127

Symmetry codes: (iii) −x+2, y+1/2, −z+1/2; (iv) −x+2, −y+1, z+1/2; (v) −x+1, −y+1, z+1/2.

Phosphanetricarbonitrile–1,4-diazabicyclo[2.2.2]octane (1/2) (2)

Crystal data

Parameter	Value
C6H12N2·C3N3P	F(000) = 356
M_r = 333.38	D_x = 1.307 Mg m\(^{-3}\)
Monoclinic, P2\(_1\)/m	Mo Kα radiation, λ = 0.71073 Å
a = 6.5807 (2) Å	Cell parameters from 4473 reflections
b = 12.3447 (4) Å	θ = 2.6–35.6°
c = 10.7719 (4) Å	μ = 0.17 mm\(^{-1}\)
β = 104.555 (2) °	T = 103 K
V = 846.99 (5) Å³	Plate, colorless
Z = 2	0.30 × 0.30 × 0.02 mm

Acta Cryst. (2021). E77, 1190-1196

sup-3
Data collection

Bruker APEXII CCD
diffractometer

Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Data collection
Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

T_{min} = 0.669, T_{max} = 0.747
19743 measured reflections

Refinement

Refinement on F^2
Least-squares matrix: full
R[F^2 > 2σ(F^2)] = 0.049
wR(F^2) = 0.109
S = 1.03
4235 reflections
187 parameters
18 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

	x	y	z	U_{eq}*/U_{eq}	Occ. (<1)
P1	0.80141 (5)	0.750000	0.71522 (4)	0.01039 (8)	
N1	1.0735 (2)	0.93032 (11)	0.84218 (11)	0.0353 (3)	
N2	1.0131 (2)	0.750000	0.50118 (14)	0.0236 (3)	
N3	0.74507 (18)	0.750000	0.95248 (11)	0.0113 (2)	
N4	0.6178 (2)	0.750000	1.16108 (12)	0.0163 (2)	
C1	0.9734 (17)	0.85819 (10)	0.79468 (10)	0.0197 (2)	
C2	0.9038 (2)	0.750000	0.58324 (14)	0.0144 (2)	
C3	0.9244 (2)	0.750000	1.06612 (15)	0.0274 (4)	
H3A	1.011990	0.814906	1.064404	0.033*	0.5
H3B	1.011990	0.685094	1.064404	0.033*	0.5
C4	0.8482 (3)	0.750000	1.19066 (15)	0.0228 (3)	
H4A	0.903240	0.685090	1.242177	0.027*	0.5
H4B	0.903240	0.814910	1.242177	0.027*	0.5
C5	0.6170 (2)	0.65328 (10)	0.95859 (12)	0.0249 (3)	
H5A	0.700901	0.587287	0.955230	0.030*	
H5B	0.493677	0.652299	0.883705	0.030*	
C6	0.54197 (19)	0.65328 (10)	1.08391 (11)	0.0208 (2)	
H6A	0.386635	0.651568	1.062498	0.025*	
H6B	0.594804	0.587526	1.134350	0.025*	
N5	0.3804 (14)	0.4230 (7)	0.4470 (5)	0.0112 (8)	0.5
C7	0.2606 (3)	0.50627 (17)	0.4901 (2)	0.0145 (3)	0.5

Acta Cryst. (2021). E77, 1190-1196

sup-4
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
P1	0.00873 (14)	0.01193 (15)	0.01113 (15)	0.000	0.00363 (11)	0.000
N1	0.0391 (6)	0.0460 (7)	0.0229 (5)	−0.0268 (6)	0.0117 (5)	−0.0107 (5)
N2	0.0148 (6)	0.0415 (9)	0.0151 (6)	0.000	0.0048 (5)	0.000
N3	0.0105 (5)	0.0124 (5)	0.0111 (5)	0.000	0.0028 (4)	0.000
N4	0.0182 (6)	0.0200 (6)	0.0123 (5)	0.000	0.0068 (4)	0.000
C1	0.0182 (5)	0.0289 (6)	0.0134 (4)	−0.0086 (4)	0.0062 (4)	−0.0034 (4)
C2	0.0101 (5)	0.0192 (6)	0.0133 (6)	0.000	0.0019 (4)	0.000
C3	0.0113 (6)	0.0586 (13)	0.0122 (6)	0.000	0.0025 (5)	0.000
C4	0.0183 (7)	0.0388 (10)	0.0107 (6)	0.000	0.0023 (5)	0.000
C5	0.0378 (7)	0.0219 (5)	0.0203 (5)	−0.0148 (5)	0.0172 (5)	−0.0074 (4)
C6	0.0256 (5)	0.0212 (5)	0.0191 (5)	−0.0079 (4)	0.0122 (4)	−0.0017 (4)
N5	0.0117 (11)	0.0142 (16)	0.010 (2)	−0.0046 (10)	0.0063 (16)	−0.0035 (16)
C7	0.0102 (7)	0.0128 (8)	0.0206 (9)	0.0012 (6)	0.0038 (7)	−0.0027 (7)
C8	0.0124 (8)	0.0118 (8)	0.0175 (9)	−0.0001 (6)	0.0072 (7)	−0.0040 (7)
C9	0.0182 (9)	0.0082 (7)	0.0170 (9)	0.0005 (6)	0.0039 (7)	0.0002 (6)
C10	0.0133 (8)	0.0107 (8)	0.0152 (8)	0.0019 (6)	0.0018 (6)	0.0011 (6)
C11	0.0179 (9)	0.0173 (9)	0.0138 (8)	−0.0059 (7)	0.0066 (7)	−0.0033 (7)
C12	0.0148 (8)	0.0125 (8)	0.0146 (8)	−0.0038 (6)	0.0060 (7)	−0.0013 (7)
N5A	0.0134 (11)	0.0121 (14)	0.0084 (19)	0.0008 (9)	0.0077 (16)	−0.0021 (15)

Geometric parameters (Å, °)

P1—C1	1.8197 (11)	C6—H6B	0.9900		
P1—C1	1.8197 (11)	N5—C7	1.441 (9)		
P1—C2	1.8315 (15)	N5—C11	1.489 (7)		
P1—N3	2.6731 (12)	N5—C9	1.490 (7)		

Acta Cryst. (2021). E77, 1190-1196
Bond	Distance (A)	Bond	Distance (A)
P1—N5A	2.766 (9)	C7—C8	1.548 (3)
P1—N5Ai	2.766 (9)	C7—H7A	0.967 (16)
N1—C1	1.1484 (16)	C7—H7B	0.962 (16)
N2—C2	1.147 (2)	C8—N5A	1.455 (9)
N3—C3	1.4713 (19)	C8—H8A	0.957 (17)
N3—C5i	1.4725 (13)	C8—H8B	0.966 (16)
N3—C5	1.4726 (13)	C9—C10	1.553 (3)
N4—C6	1.4687 (14)	C9—H9A	0.949 (17)
N4—C6i	1.4687 (14)	C9—H9B	0.958 (16)
C3—C4	1.469 (2)	C10—N5A	1.497 (8)
C3—H3A	0.9900	C10—H10A	0.952 (17)
C3—H3B	0.9900	C10—H10B	0.958 (16)
C4—H4A	0.9900	C11—C12	1.548 (3)
C4—H4B	0.9900	C11—H11A	0.964 (16)
C5—C6	1.5494 (15)	C12—N5A	1.501 (5)
C5—H5A	0.9900	C12—H12A	0.958 (16)
C5—H5B	0.9900	C12—H12B	0.965 (16)
C6—H6A	0.9900		
C1—P1—C1	94.44 (8)	C5—C6—H6B	109.5
C1—P1—C2	90.54 (5)	H6A—C6—H6B	108.1
C1—P1—C3	90.54 (5)	C7—N5—C11	109.4 (5)
C1—P1—N3	76.69 (4)	C7—N5—C9	109.1 (4)
C1—P1—N3i	76.69 (4)	C11—N5—C9	107.1 (5)
C2—P1—N3	160.98 (5)	N5—C7—C8	110.1 (4)
C1—P1—N5A	77.25 (16)	N5—C7—H7A	107.3 (19)
C1—P1—N5A i	166.15 (18)	C8—C7—H7A	110.3 (19)
C2—P1—N5A i	78.62 (14)	H7A—C7—H7B	110 (2)
N3—P1—N5A i	111.45 (11)	C7—N5—C7—H7B	113 (2)
C1—P1—N5A i	166.15 (18)	C11—N5—C7—H7B	106.6 (19)
C1—P1—N5A i	77.25 (16)	N5A—C8—C7	111.4 (4)
C2—P1—N5A i	78.62 (14)	N5A—C8—H8A	108 (3)
N3—P1—N5A i	111.45 (11)	C7—C8—H8A	112 (3)
N5A—P1—N5A i	108.5 (3)	N5A—C8—H8B	109.4 (17)
C3—N3—C5 i	108.14 (8)	C7—C8—H8B	109.1 (17)
C3—N3—C5	108.14 (8)	H8A—C8—H8B	107 (2)
C5—N3—C5	108.35 (13)	N5—C9—C10	110.0 (4)
C3—N3—C5	121.36 (9)	N5—C9—H9A	106 (2)
C5—N3—P1	105.14 (7)	C10—C9—H9A	114 (3)
C5—N3—P1	105.14 (7)	N5—C9—H9B	110.8 (17)
C6—N4—C6	108.77 (13)	C10—C9—H9B	107.1 (17)
C6—N4—C4	107.95 (8)	H9A—C9—H9B	109 (2)
C6—N4—C4	107.95 (8)	N5A—C10—C9	110.0 (4)
N1—C1—P1	176.33 (13)	N5A—C10—H10A	109 (2)
N2—C2—P1	179.54 (13)	C9—C10—H10A	111 (2)
N3—C3—C4	110.79 (12)	N5A—C10—H10B	107.9 (18)
N3—C3—H3A	109.5	C9—C10—H10B	109.5 (17)
Bond Angles (°)

Bond	Angle
C4—C3—H3A	109.5
N3—C3—H3B	109.5
C4—C3—H3B	109.5
H3A—C3—H3B	108.1
N4—C4—C3	110.72
N4—C4—H4A	109.5
C3—C4—H4A	109.5
C4—C4—H4B	109.5
C3—C4—H4B	109.5
N5A—C11—C12	109.6
C12—C11—H11A	112.0
C4—C3—H3B	109.5
N5—C11—C12	109.2
H3A—C3—H3B	108.1
N5—C11—H11A	110.6
N3—C5—C6	110.50
C6—C5—C6	109.6
N3—C5—H5A	109.6
C6—C5—H5B	109.6
C5—C6—C5	110.84
C5—N3—C3—C4	58.56
P1—N3—C3—C4	-58.56
C1—N4—C4—C3	-58.71
N3—C4—C3—N4	0.000
C5—N3—C5—C6	58.18
C5—N3—C5—C6	-58.81
P1—N3—C5—C6	-170.83
C6—N4—C4—C3	57.90
N3—C5—C6—N4	0.48
C11—N5—C7—C8	-65.9
C9—N5—C7—C8	51.0
N5—C7—C8—N5A	13.2

Hydrogen-Bond Geometry (Å, °)

	D—H	H···A	D···A	D—H···A
C8—H8B···N2ii	0.97 (2)	2.53 (2)	3.260 (2)	132 (2)

Symmetry code: (ii) x-1, y, z.

Acta Cryst. (2021). E77, 1190-1196

sup-7