Turning Copper Metal into Weyl Semimetal

Yongping Du and Er-jun Kan
Department of Applied Physics and Institution of Energy and Microstructure Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China.

Hu Xu
Department of Physics, South University of Science and Technology of China, 518055 Shenzhen, China

Sergey Y. Savrasov
Department of Physics, University of California, Davis, CA 95616, USA

Xiangang Wan†
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

(Dated: May 1, 2018)

A search for new topological quantum systems is challenging due to the requirement of non-trivial band connectivity that leads to protected surface states of electrons. A progress in this field was primarily due to a realization of band inversion mechanism between even and odd parity states that was proven to be very useful in both predicting many of such systems and our understanding their topological properties. Despite many proposed materials assume the band inversion between s and p (or $p/d, d/f$) electrons, here, we explore a different mechanism where the occupied d states subjected to a tetrahedral crystal field produce an active t_{2g} manifold behaving as a state with an effective orbital momentum equal to negative one, and pushing $j_{\text{eff}} = 1/2$ doublet at a higher energy. Via hybridization with nearest neighbor orbitals realizable, e.g., in a zincblende structural environment, this allows a formation of odd parity state whose subsequent band inversion with an unoccupied s band becomes possible, prompting us to look for the compounds with Cu$^{+1}$ ionic state. Chemical valence arguments coupled to a search in materials database lead us to systematically investigate electronic structures and topological properties of CuY (Y=F, Cl, Br, I) and CuXO (X=Li, Na, K, Rb) families of compounds. Our theoretical results show that CuF displays a behavior characteristic of an ideal Weyl semimetal with 24 Weyl nodes at the bulk Brillouin Zone. We also find that another compounds CuNaO and CuLiO are the s–d inversion type topological insulators. Results for their electronic structures and corresponding surfaces states are presented and discussed in the context of their topological properties.

PACS numbers:

INTRODUCTION

Topological quantum solids are a new class of systems that behave as an insulator or semimetal in the bulk but whose surface contains conducting states meaning that the electrons can primarily move along the surface of the material. Starting from the original proposal on the principal existence of such state of matter in the case of two dimensions (2D) called a quantum spin Hall insulator [1, 2] and its subsequent extension to its three-dimensional (3D) analog called a topological insulator (TI) [3], the field has been recently enriched by the discoveries of new topological phases of matter such as topological crystalline insulators [4], Weyl semimetals (WSM) [5], Dirac semimetals (DSM) [6–8], and nodal line semimetals (NLS) [9]. Their unusual properties such as robust surface currents insensitive to the disorder or various forms of quantum Hall effects have led to a plethora of proposals for the use of topological materials in fundamental research spanning from magnetic monopoles to Majorana fermions, and in applications such as fault-tolerant quantum computations [10, 11].

How do we identify new topological materials in the infinite world of chemically allowed compounds? Although, group theoretical arguments have been recently shown to be very helpful in our understanding of band connectivity and their resulting topological behavior [12, 13], the remarkable progress in this field has been primarily driven by a realization of the so called band inversion mechanism [2] where the s level at the conduction–band edge and the p level at the valence–band edge interchange at a certain portion of the Brillouin Zone (BZ) and open a hybridization gap. Since s and p are even or odd parity states, this may result in a non–zero Z_2 topological invariant according to the Fu–Kane criterion of the 3D TIs [14]. Much celebrated discoveries of such topological systems as HgTe quantum wells [2], Bi$_2$Se$_3$ and related compounds[15, 16], proposals for half–Heusler ternary compounds [17–19], BaBiO$_3$ [20], etc., have been all based on this band inversion mechanism. Very interesting extensions of these ideas for the inversion between d and f levels have led to the proposals of some Americium and Plutonium com-
pounds [21] showing non–trivial topological properties as well as to the discovery of a topological Kondo insulator SmB$_6$ [22]. Another example is the most recent proposal of nodal line materials that have the $p - d$ inversion of levels [23–26].

Will systems with hybridized s and d electrons qualify to show topologically protected states? Despite the corresponding spherical harmonics are both of even parity, it is well known that the d states subjected to the cubic crystal field produce a t_{2g} triplet that behaves in many cases as a state with effective orbital momentum equal to negative one [27]. Most notable examples here are the Mott insulating behavior in Sr$_2$IrO$_4$ [28] and predicted non–collinear magnetism in pyrochlore iridates [5] where the spin–orbit splitting of the t_{2g} manifold leads to an active $j_{eff} = 1/2$ doublet state. One can subsequently explore a new class of materials where active s and d electrons realize new topologically non–trivial systems. This is schematically illustrated in Fig. 1 where the atomic d–level subjected to a tetrahedral crystal field realizable, e.g., in a zincblende structural environment, and spin–orbit coupling can form an odd parity $\Gamma_7^{(-\sigma)}$ state via hybridization with nearest–neighbor orbitals. A subsequent band inversion with an unoccupied s band becomes possible in compounds containing ionic configurations $d^{10}s^0$, such as Cu$^{+1}$.

Here we report on a theoretical study how such $s–d$ inversion mechanism is capable to produce topologically non–trivial electronic phases and lead to new realizations of Weyl semimetals and topological insulators. First, we use a low–energy $k · p$ model to illustrate the parameter space responsible for the appearance of various topological phases. Second, using a valence argument, we establish a chemical space of relevant compounds, and by coupling first–principles band structure calculations with a search in materials database, we successfully predict that CuF is a Weyl semimetal with 24 Weyl points in the bulk Brillouin Zone. Remarkably, this material does not show any other trivial states crossing the Fermi level contrary to recently discovered TaAs[29, 30] and other WSMs[11]. Furthermore, we also predict that CuNaO and CuLiO are the $s – d$ inversion type topological insulators.

FIG. 1: Illustration how the atomic d–level subjected to a tetrahedral crystal field spin–orbit coupling and hybridization with nearest neighbors produces odd parity $\Gamma_7^{(-\sigma)}$ doublet that can hybridize with a predominantly empty s–band of a material.

RESULTS AND DISCUSSION

Effective Model. The d–orbital subjected to a crystal field of cubic lattices is split onto t_{2g} and e_g orbital states, where, if the local symmetry is octahedral, the energy of e_g state comes higher than the one of t_{2g} state, while if the local symmetry is tetrahedral, the energy of the t_{2g} is higher than the one of the e_g. Within the t_{2g} manifold, the effective orbital angular momentum is one with an additional minus sign[27]. That means that when the spin–orbit coupling (SOC) of the strength λ is taken into account, the t_{2g} state is split into effective $j_{eff} = 1/2$ doublet state with and energy λ and $j_{eff} = 3/2$ quadruplet state with an energy $-\lambda/2$. Note that the $j_{eff} = 1/2$ state is energetically higher than the $j_{eff} = 3/2$. Allowing hybridization with nearest neighbor orbitals the $j_{eff} = 1/2$ doublet can form an antibonding state of odd parity, $\Gamma_7^{(+\sigma)}$. Thus, as we illustrate on Fig. 1, if a predominantly empty band of the even parity (s) character resides above the occupied d–level, its bottom around the Γ point and odd parity $\Gamma_7^{(-\sigma)}$ state can interchange and open a hybridization gap. This scenario may produce a non–zero Z_2 topological invariant because according to Fu and Kane criterion [14], the product of

FIG. 2: Phase diagram of the minimal (4x4) $k · p$ model involving two s–orbitals and two $\Gamma_7^{(-\sigma)}$ orbitals in the symmetry T_d^2 ($F\bar{T}3m$) of the zincblende structure which illustrates realization of various topological phases in the parameter space of the model: normal insulator (NI) (cyan), Dirac semimetal (DSM) (red), topological insulator (TI) (yellow), Weyl semimetal (WSM) (green).
occupied states parities at all time reversal invariant momenta becomes equal to \(-1\) due to the occurrence of the band inversion around the \(\Gamma\) point.

Although many lattice space groups would qualify for exploring this idea, the ones without inversion symmetry are particularly interesting since they are capable of realizing Weyl semimetals. These materials were recently proposed to have topological surface states in a form of Fermi arcs\[5\] as well as a great number of other exotic phenomena such as a highly anisotropic negative magnetoresistance related to chiral anomaly effect\[31, 32\], a topological response\[33\], unusual non–local transport properties\[34\], novel quantum oscillations from the Fermi arcs\[35\], etc \[11\].

One of the simplest structures that would fit the requirement of the absent inversion center is the zincblende structure with the space group \(T_d^4\) (\(\overline{F}3m\)). Let us use a \(k\cdot p\) method and construct a low energy effective model around the \(\Gamma\) point in the symmetry of the zincblende structure by considering only a minimal basis set of 4 orbitals: \(|s, j_z = 1/2\rangle, |s, j_z = -1/2\rangle, |\Gamma_7^{(-)}, j_z = 1/2\rangle, |\Gamma_7^{(-)}, j_z = -1/2\rangle\)

The Hamiltonian reads

\[
H_{\text{eff}} = \epsilon_0(k) + \begin{pmatrix}
M(k) & 0 & Pk_+ + iVk_zk_y & Pk_- + Vk_zk_+ \\
0 & M(k) & Pk_- - Vk_zk_+ & -M(k) \\
Pk_+ - iVk_zk_y & Pk_- - Vk_zk_+ & -M(k) & 0 \\
Pk_+ + Vk_zk_- & -Pk_+ + iVk_zk_y & 0 & -M(k)
\end{pmatrix}
\]

where \(k_\pm = k_x \pm ik_y\) and \(M(k) = M_0 - M_1k^2\) with parameters \(M_0, M_1\) chosen to be less than zero in order to reproduce the band inversion. In such a case, the energy dispersion is \(E(k) = \epsilon_0(k) \pm \sqrt{A(k)^2 + B_+(k)^2}\), where \(A(k)^2 = M(k)^2\), \(B_+(k)^2 = P^2k^2 + V^2(k_x^2k_y^2 + k_x^2k_z^2 + k_y^2k_z^2) \pm 2\sqrt{P^2V^2(k_y^2(k_x^2 - k_z^2)^2 + k_z^2(k_y^2 - k_x^2)^2 + k_x^2(k_z^2 - k_x^2)^2)}\).

The band crossing points are given by the following conditions: \(A(k)^2 + B_-(k)^2 = 0\).

According to the conditions of the band inversion and the band crossings, we can obtain the phase diagram with a variety of topological phases such as DSM, WSM, and TI, depending on the parameters of the model. This is illustrated in Fig.2. For example, let us fix the parameter \(|P/V| = 0.5\) and alter \(M_0/M_1\), as shown by a vertical arrow in Fig.2. For any \(M_0/M_1 < 0\), there is no band inversion, and the system is a normal insulator (NI), because the \(s\) band is higher than the \(\Gamma_7^{(-)}\) band everywhere in \(k\) space. When \(M_0/M_1\) approaches zero, the \(s\) band lowers down, and when \(M_0/M_1 = 0\), the \(s\) band exactly touches \(\Gamma_7^{(-)}\) band at the \(\Gamma\) point. The system becomes a Dirac semimetal with four–fold degenerate Dirac point exactly at \(k = 0\). The DSM plays the role of a phase boundary between topologically trivial and non–trivial phases. It is indeed a line in the phase diagram (red) for any value of \(|P/V|\). If we further lower the \(s\) band by increasing \(M_0/M_1\) (both \(M_0, M_1 < 0\)), the band inversion occurs. First, we obtain the TI phase, and, second, the ideal WSM emerges. The Weyl points are confined within \(k_x = 0, k_y = 0\) or \(k_z = 0\) planes by a special symmetry \(C_{2T} = C_2 \cdot T\) where \(C_2\) denotes two–fold rotation \(C_{2x}, C_{2y}\) and \(C_{2z}\) and \(T\) denotes the time–reversal symmetry\[36\].

To illustrate the transition between the TI and the WSM phases, let us set \(k_z = 0\). Then the condition for bands crossing, \(A(k)^2 + B_-(k)^2 = 0\), requires both \(A(k) = 0\) and \(B_- (k) = 0\), where \(A(k) = M_0 - M_1(k_x^2 + k_y^2)\) and \(B_- (k) = |P|\sqrt{k_x^2 + k_y^2} - |V| |k_z|k_y\). \(A(k) = 0\) is the equation for a circle and \(B_- (k) = 0\) is a hyperbolic equation. When \(M_0 = 0\), the circle becomes a point and the band crossing occurs at \(k = 0\) giving rise to the DSM phase. When \(M_0 < 0\), the band crossing is determined by the crossing between the circle and the hyperbola. Touching between the two occurs at \(\frac{M_0}{M_1} = 4|\frac{P}{V}|^2\), which is the boundary between the TI and the WSM phases.

Material Realization. A realization of such model dictates the search of a material with a fully occupied narrow \(d\) band and an empty wide \(s\) band, so that, in principle, any ionic compound with Cu\(^{1+}\) valence state subjected to the discussed symmetry constrains qualifies. We therefore utilize a first–principles electronic structure method (for details, see Appendix) and systematically investigate energy bands and topological properties of the following two families of compounds: CuX (X=F, Cl, Br, I) and CuYO (Y=Li, Na, K, Rb). Our results indicate that the compound CuF is an ideal Weyl semimetal while CuNaO and CuLiO are both topological insulators of the discussed \(s–d\) type of the band inversion.

We first discuss electronic structures of CuX (X=F, Cl, Br, I) family \[37\]. Experimentally, it was first reported in 1933 that CuF crystallizes in a zincblende structure\[37\], illustrated in Fig.3(a), although its existence under ambient conditions was questioned later on\[37–41\]. As there are no free internal coordinates in this type of structure, the only parameters to optimize are the lattice constants. Our numerical results are in a good agreement with the
FIG. 3: Results for CuF: (a) Crystal structure with Cu atoms (red) and F atoms (cyan); (b) The Brillouin Zone and the projected (001) (blue) and (111) (red) surfaces. Green (with Chern number +1) and blue (with Chern number -1) dots show schematic positions of the Weyl nodes. (c) Band structure in the vicinity of the Fermi level where Γ^{-7}_{\downarrow} states (blue) and σ states (red) form band inversion. The insert shows a wave function $|\Gamma^{-7}_{\downarrow}\rangle$ along the Cu-F line, behaving as an odd parity state with respect to the point approximately midway between Cu and F. Solid/dashed lines show real (red) and imaginary (blue) parts of two components of Γ^{-7}_{\downarrow}, respectively. (d) The Fermi arc surface states for the (001) surface; (e) The Fermi arc surface states for (111) surface. Here the green (black) diamonds are the projections of two Weyl points with monopole charges +2(−2), while the green (black) stars are the projections of the single Weyl point with monopole charges +1(−1).

original experimental work [37] and small discrepancies have a negligible effect on the electronic structures.

Our theoretical analysis shows that the compounds CuCl, CuBr, CuI are all topologically trivial band insulators. The band structure of CuF along two high symmetry lines of the first BZ (for notations, see Fig. 3(b)) is shown in Fig. 3(c). The spin–orbit coupling is included in the calculation. Our orbital–character analysis confirms that the states near the Fermi level are mainly formed by Cu–3d states (denoted by blue color) and Cu–4s states (denoted by red color) as shown in Fig. 3(c). F–2p states are located between −8.5eV and −7.5eV indicating that they are far away from the Fermi level. However, they hybridize strongly with nearest neighbor Cu–$j_{\text{eff}} = 1/2$ states and produce an antibonding odd parity doublet Γ^{-7}_{\downarrow}. To illustrate this, at the insert of Fig. 3(c), we plot the calculated wave function $|\Gamma^{-7}_{\downarrow}\rangle$ along the line connecting Cu and F atoms. One can clearly see that, at the Cu site, the wave function is even but in the middle of the Cu-F bond, it becomes odd via the formation of the antibonding combination between Cu–$j_{\text{eff}} = 1/2$ and F-2p. We find that apart from the linearly dispersing
Weyl states there are no other bands crossing the Fermi level. We also find that the Γ^7 state located at 0.04 eV above the Fermi energy and the Cu–4s state located at -0.47eV form an inverted band structure around the Γ point.

In conclusion, we have explored the band inversion mechanism between spin–orbit coupled t_{2g} states and a wide s band for a zincblende type of structure. We found that a few ionic compounds with Cu$^{+1}$ valence state exhibit non-trivial topological properties. CuLiO and CuNaO are the topological insulators while CuF is a Weyl semimetal. Remarkably, apart from the Weyl nodes, there are no other Fermi surface states in this compound which makes it appealing for further experimental studies of such effects as a large negative magnetoresistance. Being a definite signature of the chiral anomaly in the quantum limit, it has been observed in known Weyl semimetals [47], but it is not clear how to separate contributions from the Weyl points and regular Fermi pockets.
Our theoretical work demonstrates how the ideas of band inversion coupled to chemical valence considerations can guide the search of new topological quantum systems in the infinite database of materials. Although the tight-binding method employed in our work to detect Fermi arc surface states does not take into account surface relaxation effects, it shows the existence of long arcs in CuF. We have recently shown [48], that long and straight Fermi arcs are generally capable of supporting nearly dissipationless surface currents, therefore it could be interesting to explore if nanowires based on CuF are realizable in practice.

APPENDIX: COMPUTATIONAL DETAILS

We perform first-principles calculations based on the full potential linearized augmented plane wave (FP-LAPW) method as implemented in WIEN2K package [49]. To obtain accurate band inversion strength and band order, the modified Becke–Johnson exchange potential together with local density approximation for the correlation potential (MBJLDA) has been used[50]. The plane-wave cutoff parameter $R_{MTK_{max}}$ is set to be 7. The spin–orbit coupling is treated using the second-order variational procedure. To check the existence of the Weyl nodes, a dense k-mesh with $24 \times 24 \times 24$ divisions of reciprocal lattice translations has been employed. To study the surface states, we use the Green’s function method based on a tight-binding Hamiltonian using the maximally localized Wannier functions (MLWFs), which are projected from the Bloch states derived from first-principles calculations [43].

ACKNOWLEDGEMENT

The work was supported by National Key R&D Program of China (No. 2017YFA0303203), the NSFC (No. 11525417, 51572085, 51721001 and 11790311), National Key Project for Basic Research of China (Grant No. 2014CB921104), the Priority Academic Program Development of Jiangsu Higher Education Institutions. Y. F. Du was supported by the Natural Science Foundation of Jiangsu Province (Grants No. BK20170821), the Special Foundation for theoretical physics Research Program of China(Grants No. 11747165). S. Y. S. was supported by NSF DMR (Grant No. 1411336).

* Electronic address: savrasov@physics.ucdavis.edu
† Electronic address: xgwan@nju.edu.cn
[1] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[2] B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science 314, 1757 (2006).
[3] C. L. Kane and E. J. Mele, Z$_2$ Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 226801 (2005).
[4] L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106, 106802 (2011).
[5] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83, 205101 (2011).
[6] S. M. Young, S. Zaeheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac Semimetal in Three Dimensions, Phys. Rev. Lett. 108, 140405 (2012).
[7] F. Wang and D.-H. Lee, Topological relation between bulk gap nodes and surface bound states: Application to iron-based superconductors, Phys. Rev. B 86, 094512 (2012).
[8] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang Dirac semimetal and topological phase transitions in A$_2$Bi (A = Na, K, Rb), Phys. Rev. B 85, 195320 (2012).
[9] A. Burkov, M. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84, 235126 (2011).
[10] For a review, see, e.g., M. Z. Hasan, C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
[11] For a review, see, e.g., N.P. Armitage, E. J. Mele, A. Vishwanath, Weyl and Dirac Semimetals in Three Dimensional Solids, Rev. Mod. Phys. (in press, 2018), arXiv:1705.01111.
[12] H. C. Po, A. Vishwanath, H. Watanabe, Symmetry-based Indicators of Band Topology in the 230 Space Groups, Nat. Commun. 8, 50 (2017).
[13] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J. Slager, Topological Classification of Crystalline Insulators through Band Structure Combinatorics, Phys. Rev. X 7, 041069 (2017).
[14] L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76, 045302 (2007).
[15] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang and S.-C. Zhang, Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ with a single Dirac cone on the surface, Nat. Phys. 5, 438 (2009).
[16] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5, 398 (2009).
[17] H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, M. Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9, 546 (2010).
[18] S. Chado, X. Qi, J. Kübler, G. H. Fecher, C. Felser and S. C. Zhang, Tunable multifunctional topological insulators in ternary Heusler compounds, Nat. Mater. 9, 541-545 (2010).
[19] D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhi, X.-Q. Chen, G. M. Stocks, and Z. Zhang, Half-Heusler Compounds as a New Class of Three-Dimensional Topological Insulators, Phys. Rev. Lett. 105, 096404 (2010).
[20] B. Yan, M. Jansen and C. Felser, A large-energy-gap oxide topological insulator based on the superconductor
[21] X. Zhang, H. Zhang, J. Wang, C. Feiher, S.-C. Zhang, Actinide Topological Insulator Materials with Strong Interaction, Science 335, 1464 (2012).

[22] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo Insulators, Phys. Rev. Lett. 104, 106408 (2010).

[23] Rui Yu, Hongming Weng, Zhong Fang, Xi Dai, and Xiao Hu, Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu$_3$PdN, Phys. Rev. Lett. 115, 036807 (2015).

[24] Youngkuk Kim, Benjamin J. Wieder, C.-L. Kane, and Andrew M. Rappe, Dirac Line Nodes in Inversion-Symmetric Crystals, Phys. Rev. Lett. 115, 036806 (2015).

[25] Y. Du, F. Tang, D. Wang, L. Sheng, E.-J. Kan, C.-G. Duan, S. Y. Savrasov and X. Wan, CaTe: a new topological node-line and Dirac semimetal, NPJ Quantum Materials 2, Article 3 (2017).

[26] Y. Du, X. Bo, D. Wang, E.-J. Kan, C.-G. Duan, S. Y. Savrasov, X. Wan, Emergence of Topological Nodal Lines and Type II Weyl Nodes in Strong Spin–Orbit Coupling System InNbX$_2$(X=S,Se), Phys. Rev. B 96, 235152 (2017).

[27] J. Kanamori, Theory of the Magnetic Properties of Ferrous and Cobaltous OXides, Prog. Theor. Phys. 17, 177 (1957).

[28] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, T. Arima, Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr$_2$IrO$_4$, Science 323, 1329 (2009).

[29] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides, Phys. Rev. X 5, 011029 (2015).

[30] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Aldoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).

[31] V. Aji, Adler-Bell-Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates, Phys. Rev. B 85, 241101 (2012).

[32] D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88, 104412 (2013).

[33] K.-Y. Yang, Y.-M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B 84, 075129 (2011).

[34] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and A. Vishwanath, Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals, Phys. Rev. X 4, 031035 (2014).

[35] A. C. Potter, I. Kimchi and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun. 5, 6161 (2014).

[36] J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang and D. Xing, Symmetry–protected ideal Weyl semimetal in HgTe-class materials, Nat. Commun. 7, 11136 (2016).

[37] F. Ebert, H. Woitinek, Kristallstrukturen von Fluoriden. II. HgF, HgF$_2$, CuF und CuF$_2$, Zeitschrift fuer Anorganische und Allgemeine Chemie 210, 269 (1933).

[38] R. W. G. Wyckoff, ZnS structure, sphalerite structure, Crystal Structures (Second edition. Interscience Publishers, Inc., New York, 1963), Vol. 1, page 85.

[39] M. Cardona, Optical Properties of the Silver and Cuprous Halides, Phys. Rev. 129, 69 (1963).

[40] J. M. Crabtree, C. S. Lees and K. Little, The copper fluorides: Part I—X-ray and electron microscope examination, J. Inorg. Nuclear Chem. 1, 213 (1955).

[41] C. M. Wheeler, JR. and H. M. Haendler, The Thermal Decomposition of Copper (II) Fluoride Dihydrate, JACS 76, 263 (1954).

[42] T. Fukui, Y. Hatsugai and H. Suzuki, Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances, J. Phys. Soc. Jpn., 74, 6 (2005).

[43] A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, N Marzari, A tool for obtaining maximally-localised Wannier functions, Comput. Phys. Commun. 185, 2309 (2014).

[44] D. Fischer, W. Carl, H. Glasm and R. Hoppe, Zur Struktur der KAgO-Verwandtschaft Neubestimmung an AAgO = A$_4$[Ag$_4$O$_4$] (A = Na–Rb) mit einer Bemerkung zu CsCuO, Z. anorg. allg. Chem. 585, 75 (1990).

[45] R. Unamaheswari, M. Yogeswari, G. Kalpana, Electronic properties and structural phase transition in A[M4O$_4$] (A=Li, Na, K and Rb; M=Ag and Cu): A first principles study, Solid State Comm. 155, 62 (2013).

[46] T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications, Phys. Rev. B 82, 125210 (2010).

[47] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the Chiral-Anomaly–Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X 5, 031023 (2015).

[48] G. Resta, S.-T. Pi, X. Wan, S. Y. Savrasov, High Surface Conductivity of Fermi Arc Electrons in Weyl semimetals, arXiv:1708.02415.

[49] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (Technische Universitat Wien, Austria, 2001).

[50] F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102, 226401 (2009).