Re-distributing the field outlets for irrigation networks within the new growth cities: The Central District of Kerbala city as example

Ali Mekki Al-Fawzy¹, Isra’a Abdul-sahib Hasan², Hayfaa Kareem Hasan³, and Najm Abdul Hussein Najm⁴
¹,²,³Directorate of Water Resources in Kerbala City, State Commission on Operation of Irrigation and Drainage Projects, Ministry of Water Resources, Iraq
⁴University of Kerbala

E-mail: ¹ali_alfawzy85@yahoo.com, ²israa83.hasan@gmail.com, ³zyd821498@gmail.com, ⁴najim.a@uokerbala.edu.iq

Abstract. Generally, the rivers in both the natural and lined form use the open-section system to carry water, either for distribution or conveyance purposes. With time and depreciation effect, this system needs to be change or modify to become more indirectly suitable with growth of cities, and specially with transformation of land use from agricultural to residential. The present paper aims to reach a proper decision to re-distribute the field outlets for a part of AliHneidiyah river in Karbala city, Republic of Iraq, for the distance between stations (0+000) and (4+000), to choose between keeping up the current number of outlets or reduce them to a certain, actually used one. For this study, the cadastral maps were used as a reference to determine the agricultural areas served by the river during its route within the study area, and geographic information system to monitor the change in the nature of these areas represented by gradual transformation from agricultural to residential purpose, by using of satellite images for four different years, 2002, 2007, 2013, and 2016. The results of this study showed a great reduction in the agricultural areas on both sides of the chosen length of river route by a percentage of 88%, which leads to change location and specifications of the remain, actually used outlets. In addition, use the whole section for conveyance purposes to protect the water quality. This study showed that the geographic information system is a good and helpful technique for evaluation and make decisions of water related subjects.

1. Introduction
Iraq has passed and still by the problem of lack in quantities of water supplied to it from the upstream countries of the Tigris and Euphrates rivers and their tributaries, which clearly cast a delusion on agricultural production, whereas the area of agricultural land in the regions surrounding cities has shrunk [1], and transformed from the agricultural use to the residential, commercial, industrial, or other uses noticeably in the last two decades [2] and [3]. This calls for reconsideration in the distribution of surface water for the rivers feeding these areas, and activating the role of groundwater use in the remaining areas for the present time [4], as well as using of the water shares that were canceled in order to revive desert areas or those suffering from desertification due to lack of Incoming water [5], in addition making a correct and smart use of modern technologies in redirection of water
shares to the reclaimed lands [6]. The geographic information system and remote sensing techniques consider as the best tools in the present time for spatial description, due to the great potential they offer to help diagnose various problems, engineering or otherwise, and try to find appropriate solutions to treat these problems completely or partially [7], whereas it consider as an effective tool in evaluating the distribution of public services to urban residential regions, rural regions and others, and re-evaluating the random distribution of these services within city districts [8] and [9], and using of satellite visuals in produce the main information layers such as the land cover, the various land uses, the distribution layers of river networks, roads, religious and social landmarks and others [10], to be utilized for creating a realistic and future vision in any field of life that can be applied by these technologies. The geographic information system has a tight relationship with the various fields of water resources engineering, as it is a valuable technique in the preparation of many hydrological and hydro-geological studies. One of these studies is the water harvesting whereas this technique enables the spatial expertise support system to become an integrated system by the introduction of special information layers of the hydrological database and producing it as comprehensive formats in terms of form and concept [11] by using many criteria including river streams, slope, rainfall, vegetation index … etc [12]. As well as estimating the rainfall-runoff erosive factor of the wide range watersheds for different formative terrain [13]. In addition, the effective contribution to assessing the quality of surface water such as rivers and their tributaries by monitoring the concentrations and distribution of many elements and compounds, and studying the physical properties of the rivers such as water transparency, salinity, electrical conductivity, … etc, and analyzing the results to build a network of databases that can be used in the geographical distribution of data [14] and [15]. Also, this technique can be to be used for groundwater, whereas it contributes to choose the best location for drilling wells by studying many variables such as resistivity, depth, thickness, trans- emissivity of aquifer [16], and assessing the validity of this water for various human uses such as drinking, Industrial and agricultural use by dividing the land cover into multi-layers as water sources, forest lands, open arid lands, residential areas, and agricultural crops lands [17] and [18]. The urban growth represented by the use of modern housing units with their concepts of construction (adding construction materials to the rural environment) and formative (introducing the modern architectural language to the character of housing and rural buildings) leads to distorting and changing the reality of the formation in the housing fabric of the rural settlement, where the green areas begin to recede, and replaced by the residential areas gradually [19]. This change truly affects the water structures that serve these agricultural lands, such as natural and lined channels, and as a result of neglect and lack of use, another phenomenon is clearly activated, which is the phenomenon of water percolation into the soil face that surrounding these waterways, which definitely leads to the decrease of the water shares that waters the areas located in the tail regions of the river [20], and this calls for an urgent need to use modern technologies to guidance the consumption of this ground water by sub-surface irrigation techniques via, and it's obvious role in feeding ground water [21], as well as to investigate and examine the structures that build on water courses, examine them continuously, and a make a periodic evaluation of it [22] in order to increase the efficiency of water use of the remaining and newly developed lands, which cause the increase in the production of permanent and seasonal crops, and using the best methods and modern programs such as dynamic programming [23]. This study aims to investigate the remaining agricultural lands on both sides of the AliHneidiyah river in the central district of Kerbala city for part of its path, which is 4 km, and make a redistribution of the current outlets to be compatible with the remaining agricultural area within the study area.

Description of Study Area

1.1. District, Major, and minor sectors
The district often consists of number of major sectors, and the major sector may be described as an area consists of small areas called as minor sectors. Figure 1 explains these terms.
1.2. Al-Huseiniyah river – general description
Al-Huseiniyah river is one of the two main channels that irrigate the agricultural areas in Kerbala city. It takes its water share from the Euphrates river at the right side of Al-Hindiyah barrage in Al-Musayyib district of Babylon city, (the inlet coordinates in WGS 1984 UTM System zone 38N; X = 430777, Y = 3621208), and passes through three districts of Kerbala city, Al-Husseiniyah district, the central district of Kerbala city, and Al-Hurr district. The designed discharge of this river is 55 m3/s and the cross section differs along its route. At the station (29+000) Al-Huseiniyah river divided by two sub-rivers, Arrushdiyah river on its right side and AliHneidiyah river on its left side. See figure 2, a part of the cadastral map no. 9192/April/1971.

1.3. AliHneidiyah river – general description
AliHneidiyah river starts its route from the division point of Al-Huseiniyah river at the station (29+000), the division coordinates in WGS 1984 UTM System zone 38N; X = 409107, Y = 3609692, and flows through a number major sectors of the central district of Kerbala city for a distance of 16 km, according to the cadastral map no. 9192/April/1971. Table 1 shows the details of the major sectors within river full route where according to this route a total area of (4×10^6) m2 of farms and (7.5×10^6) m2 of orchards have been irrigated, whereas the river designed discharge is 2.2 m3/s.

1.4. Description of the study area
The study area lies between coordinates X = {407300 to 409300}, Y = {3607000 to 3610000} in WGS 1984 UTM System zone 38N, where inside it the river flows for a distance of 4 km from the division point mentioned previously, see figure 2, and provides the water shares for a number of field outlets about 26 on its right side and 25 on its left side as in figure 3. The outlets feed the water courses which flow across the minor sectors to provide its farms and orchards with the required water share. Figure 4 obtains the river cross-section within the study area, and table 2 lists the details of major sectors, minor sectors, and the field outlets within the study area.

Figure 1. A part of a certain cadastral map views a major sector within a certain district, and the minor sectors contained inside it.

Figure 2. The study area of AliHneidiyah river including the division point of Al-Huseiniyah river at the upper right corner.
Table 1. Details of the major sectors that irrigated by AliHneidiyah river.

Major sector No.	Area (m²)	Farm (m²)	Orchard (m²)
5	45,675	-	45,675
6	1,792,398	-	1,792,398
7	4,200	-	4,200
22	89,975	-	89,975
24	1,183,825	150,000	1,033,825
40	7,144,897	3,553,200	3,591,697
43	1,239,030	296,800	942,230

Figure 3. The field outlets of AliHneidiyah river within the study area, (Year 2016 satellite image).
Table 2. Details of the effective regions that irrigated by AliHneidiyah river.

Outlet No.	Effective region No.	Major sector No.	Minor sectors No.	Total area of the effective region (m²)	Outlet discharge (m³/s)	
A01	R01	6	1	2,575	1.00	
A02	R02	6	2 and 3	17,125	1.50	
A03	R03	6	4 to 7	36,750	3.50	
A04	R04	6	8 to 22, and 192	31,275	5.50	
A05	R05	6	23, 26 to 32, and 220 33 to 36, 38, and 45, 46, and 48 to 65 10 to 18, 98, 99, 224, and 227	71,505	7.00	
A06	R06	6	45, 46, and 48 to 65 10 to 18, 98, 99, 224, and 227	275,000	12.00	
A07	R07	6	37	11,000	1.00	
A08	R08	6	39	1,150	1.00	
A09	R09	6	40	350	1.00	
A10	R10	6	147(Part2), 47, 66 to 70, 118, 140(Part2) to	9,843	2.00	
A11	R11	22		94,775	9.30	
---	---	---	---	---		
A12	R12	6	147(Part1), 194, and 195	148	4,000	1.00
A13	R13	6	120, 149 to 152, 172, and 173	24,200	2.30	
A14	R14	6	121 and 154	22,625	2.30	
A15	R15	6	153	15,100	1.25	
A16	R16	6	71 to 74, 75 to 78, 81, and 174 to 199	41,300	4.00	
A17	R17	6	79, 80, 85, 200, and 201	40,650	4.00	
A18	R18	6	196 to 198, and 219	799,895	35.00	
A19	R19	6	196 to 198, and 219	252,025	25.00	
A20	R20	6	101 and 102	61,175	6.00	
A21	R21	6	103 to 109	63,975	6.30	
A22	R22	6	110 and 111	14,275	1.25	
A23	R23	6	113	5,800	1.25	
A24	R24	6	114 to 117	32,000	1.25	
A25	R25	6	167	8,450	1.00	
A26	R26	6	175	5,075	1.00	
A27	R27	6	176	4,825	1.50	
A28	R28	6	177	11,275	1.00	
A29	R29	6	178	6,375	1.00	
A30	R30	6	119 and 179	9,200	1.00	
A31	R31	6	218	2,750	1.00	
A32	R32	6	180	16,775	1.50	
A33	R33	6	181	7,650	1.25	
A34	R34	6	182 and 183	26,725		
B01	R01	5	1 and 5	8,400	1.00	
B02	R02	5	3	4,125	1.00	
B03	R03	5	6, 13, and 14	6,375	1.00	
B04	R04	5	15 and 16	6,450	1.00	
B05	R05	5	72	2,025	1.00	
B06	R06	6	24	3,300	1.00	
B07	R07	6	25	4,700	1.00	
---	---	---	---	---		
B08	L08	6	158 to 160, 204, and 205	62,715	6.30	
B09	L09	6	157, 202, and 230	23,850	2.30	
B10	L10	6	156, 164 to 166, 168 to 171, 208, 225, and 238	11,100	1.00	
B11	L11	6	155, 209 to 211, and 217	109,725	10.80	
B12	L12	6	122 to 125, 200 to 207, 212, and 216	13,700	1.25	
B13	L13	6	115 to 118, 198, and 199	144,875	14.30	
B14	L14	6	129, and 132 to 139	34,175	3.30	
B15	L15	6	127, 130, and 131	63,600	6.30	
B16	L16	6	109 (Part1), and 110 to 112	17,975	1.80	
B17	L17	24	114	21,000	1.00	
B18	L18	24	109 (Part1), and 110 to 112	37,675	1.00	
B19	L19	24	108	10,275	1.00	
B20	L20	24	109 (Part2)	7,500	1.00	
B21	L21	24	105	26,950	2.50	
B22	L22	24	104	8,000	1.00	
B23	L23	24	120	5,200	1.00	
B24	L24	24	72	11,900	1.00	
B25	L25	24	58 to 60, 69, and 211	75,475	7.50	

Note1: The letter (A) in the outlets column refers to the outlets on the right side of AliHneidiyah river.

Note2: The letter (B) in the outlets column refers to the outlets on the left side of AliHneidiyah river.

Note3: The letter (R) in the effective regions column refers to the areas on the right side of AliHneidiyah river.

Note4: The sign (L) in the effective regions column refers to the areas on the left side of AliHneidiyah river.
Figures 5, 6, 7, and 8 show the satellite images of the study area for the years 2002, 2007, 2013, and 2017 after merging it by a part of the cadastral map 9192lApril/1971 using ArcGIS-ArcMap 10.3 program.

2. Analysis and discussion
The figures 5, 6, 7, and 8 respectively, refer to an obvious reduction in the total area of the agricultural lands by time within the study area due to the human multi activities that change the nature of land use from agricultural to multi-purpose uses. Table 3 lists the areas of the effective regions of the agricultural lands, which remained in each satellite image, whereas all effective areas were plotted and calculated by the program (ArcGIS-ArcMap 10.3). This table also confirms the reduction in the agricultural lands with time. Figure 9 shows the relationship between the percentage ratio of the remain agricultural lands and the time, in years, where it can be noticed that the ratio of the agricultural lands for the period bounded by the years 1971 and 2002 is range between 90.95% to 66.81%, which means that the annual ratio is 0.75% due to many considerations such as the national policy followed by the government that preserves the agricultural lands and orchards, encourages the cultivation of various crops, prevents overtaking of water shares or changing the gender of agricultural land use for other uses, and keeps all hydraulic structures in safe position.

![Figure 5. The satellite image of the year 2002 for the study area.](image1)

![Figure 6. The satellite image of the year 2007 for the study area.](image2)
Table 3. Details of the effective regions within each satellite image for the study area.

Year	Effective region No.	Area (m²)	% of the total study area
2002	A01/2002	186750.0	0.09883
	A02/2002	28187.2	0.01491
	A03/2002	10512.5	0.00556
	A04/2002	61272.0	0.03243
	A05/2002	66646.7	0.03527
	A06/2002	423784	0.22429
	A07/2002	93647.7	0.04956
	A08/2002	188036.0	0.09952
	A09/2002	74275.4	0.03931
	A10/2002	35831.9	0.01896
	A11/2002	10103.6	0.00535
	A12/2002	23094.9	0.01222
	A13/2002	11335.8	0.00600
	A14/2002	1021.6	0.00054
	A15/2002	13952.9	0.00739

Figure 7. The satellite image of the year 2013 for the study area.

Figure 8. The satellite image of the year 2016 for the study area.
Year	Code	Value	Percentage
2007	A16/2002	2172.2	0.00115
	A17/2002	4745.1	0.00251
	A18/2002	26994.1	0.0143
	Total	**1,262,364**	**66.810%**
2007	B01/2007	15961.7	0.00845
	B02/2007	33325.9	0.01763
	B03/2007	14570.0	0.00771
	B04/2007	162448	0.0860
	B05/2007	39254.2	0.02077
	B06/2007	391869	0.20740
	B07/2007	94043.9	0.04977
	B08/2007	4718.7	0.00250
	B09/2007	22876.2	0.01211
	B10/2007	35785.9	0.01894
	B11/2007	14881.8	0.00788
	B12/2007	4.7	0.00000
	B13/2007	27548.9	0.01458
	B14/2007	48965.3	0.02592
	B15/2007	16215.0	0.00858
	B16/2007	11313.6	0.00599
	Total	**933782.8**	**49.423%**
2013	C01/2013	182743	0.0967
	C02/2013	25198.2	0.01333
	C03/2013	2318.3	0.00123
	C04/2013	7555.4	0.00400
	C05/2013	54683.9	0.02894
	C06/2013	27522.5	0.01457
	C07/2013	4917.0	0.00260
	C08/2013	15913.2	0.00842
	C09/2013	10876.9	0.005757
	C10/2013	11342.9	0.00600
	C11/2013	54722.1	0.02896
	C12/2013	19386.5	0.01026
	C13/2013	9164.4	0.00485
	C14/2013	39219.8	0.02076
	C15/2013	11003.6	0.00582
	Total	**476567.7**	**25.219%**
2016	D01/2016	15965.8	0.00845
	D02/2016	5114.5	0.00271
D03/2016 49136.5 0.02600
D04/2016 19315.8 0.01020
D05/2016 39101.1 0.02070
D06/2016 25101.1 0.01330
D07/2016 45230.1 0.02394
D08/2016 7434.1 0.00393
D09/2016 2257.6 0.00119
D10/2016 23015.4 0.01218
D11/2016 12347.3 0.00654
D12/2016 10134.5 0.00536
Total 254153.8 13.450%

Note1: In each satellite image, the names and values of the effective areas differ according to the appearance in the taken image.

While for the period bounded by the years 2002 and 2007, the ratio ranges between 66.81% and 49.42%, for the period bounded by the years 2007 and 2013, the ratio ranges between 49.42% and 25.22%, and for the period bounded by the years 2013 and 2016, the ratio ranges between 25.22% and 13.45%, the annual ratio for these three periods are 3.48%, 4.03%, and 3.92% respectively.

Figure 9. The relationship between the percentage ratio of the remain agricultural lands and the time (years).
This huge increment was happened due to many considerations compared with annual ratio of the first period. These considerations can be described briefly as the opposite of the first period considerations. Besides, the water and solid pollutants that fill the irrigation channels and their field water courses due to the fast expansion in residential part in general form inside the study area, and the other fields of work. All these factors lead to an argent need to make a decision about keeping the hydraulic structures within the new growth cities safe, and protect the water shares quantitatively and environmentally. Focusing on figure 9, there is a clear separation of periods can be noticed whereas the first portion represents the period between the years 1971 and 2002, and the second portion represents the three previous periods starting from the year 2002 to the year 2016. Drawing the relationship for the data of the second portion introduces the equation

\[R.A. = -0.038(T) + 77.49 \quad R^2 = 0.998 \quad (1) \]

Where R.A. is the percentage ratio of the remain agricultural land, and T is time in years. According to this equation with the continuity of current situation of human activities, the green area within the study boundaries will be disappeared at the beginning of the year 2040. From the technical point of view and the low ratio of the remain agricultural lands within the study area in the present time that form about 12% from the studied area, cancelling the outlets that feed the areas which were transformed into non-agricultural use, and keeping the outlets of the effective regions that remain within the study area as in figure 8, with the continuous monitoring of the change in land use of these areas may be consider as a best decision for this study. Figure 10 shows the cancelled outlets and the figure 11 shows the remain outlets of areas within satellite image of the year 2016.

Figure 10. The cancelled outlets on the satellite image of the year 2016 for the study area.
Figure 11. The remain outlets on the satellite image of the year 2016 for the study area.

From these figures a total number 48 outlets on both sides of the river study area were cancelled, and that gives about 1,785,716 m² of the area that could be reclaimed in the major sectors out of the irrigation boundary plan of the city, which help to reduce the desertification phenomena in the south part of the city and refresh its whole green area.

3. Conclusions

The new growth of cities is a series issue for the fields of agriculture and water resources with the absence of the proper and synchronous planning for these fields with the urban planning, and the results of this absence are more hydraulic, environmental, and social issues added as obstructions in the future of societies. From the current study the following points can be concluded:

1- The total area of agricultural lands within the study area reduces as the time going on.
2- The relationship between the percentage ratio of the remain agricultural lands and time was represented by linear equation.
3- There are two clear periods during the reduction of the agricultural lands, the first was between the years 1971 and 2002, and the second between the years 2002 and 2016.
4- According to second period, the agricultural lands will be disappeared from the study area at the beginning of the year 2040.
5- Cancelling the outlets that feed the areas which were transformed into non-agricultural use, and keeping the outlets of the effective regions that remain within the study area consider as a best decision for this study.
6- The Geographic Information System is being a good and helpful technique for evaluation and make decisions of water related subjects.
4. Recommendations
The following recommendations may be useful as solutions for the study case:

1- Transforming the river cross-section into a closed conduit may be done by:
 a- Close the section partially by using concrete removable covers along the studied river route, to be easily moved during the maintenance process.
 b- Close the section fully by constructing an unmovable reinforced roof, and using of manholes at studied distances along the river route for flushing process during the its maintenance.
 c- Replace the whole section by a pipe system with equivalent cross-section to ensure throwing the decided discharge.

2- Re-distributing the field outlets of the water courses by removing the cancelled ones from the river route within the study area, and using its water shares to:
 a- Enhancing the water shares of the agricultural lands that irrigate from the river after the study area.
 b- Resumption of reclamation works in the major sectors no.61 and no.20 at the southern part of Kerbala city.

3- Activating the role of ground water within the study area as alternative resource to irrigate the remain agricultural lands.

5. References
[1] Abood H M 2018 The reality of plant agricultural produce in Abo Qark Journal of University of Babylon for Engineering Sciences, Iraq 26 2 82-106
[2] Aziz K A 2019 The international legal basis of the human right of water Journal of University of Babylon for Humanities, Iraq 27 5 66-88
[3] Khudair B H, Sadeq N S and Mohamed R S 2018 Determining and predicting the water demand dynamic system model mapping urban crawling and monitoring using remote sensing techniques and GIS Journal of Engineering, University of Baghdad, Iraq 24 6 103-113
[4] Al-Kubaisi Q Y, Hussain T A and Ismail M M 2019 Estimation of water balance for the central basin of Erbil plain (north of Iraq) Engineering and Technology Journal, University of Technology, Iraq 37C 1 22-28
[5] Hadi A A 2018 Using of remote sensing applications to identify desertification zones in the southern Iraq marshes Journal of Engineering and Sustainable Development, Al-Mustansiriya University, Iraq 22 (3) 6 1-8
[6] Sarhan S A and Jalil Sh of A 2018 Analysis simulation outputs from the mutual effect of flow in weir and gate system Journal of University of Babylon for Engineering Sciences, Iraq 26 6 48-59
[7] Shaish A K 2011 Prepare of mapping the distribution of schools in Kut city using geographic information system (GIS) Engineering and Technology Journal, University of Technology, Iraq 29 16 650-663
[8] Al-Anbari R, Zakariya O and Mohammed Z Th 2016 Environmental and urban land use analysis by GIS in Al-Shaab of Baghdad as a study case Engineering and Technology Journal, University of Technology, Iraq 34A 12 2272-2281
[9] Atta H A 2012 Different resolution merging methods for environmental areas extraction Journal of Engineering, University of Baghdad, Iraq 18 12 1335-1343
[10] Najm N A 2010 Integrating of remote sensing and GIS to produce land use and land cover maps for Kerbala city Journal of Kerbala University, Iraq 8 3 Scientific 227-236
[11] Yahya B M 2012 Using spatial expert support system to select suitable sites for rain water harvesting Al-Rafidain Engineering Journal, Mosul University, Iraq 21 4 46-54
[12] Ali Kh A 2018 Geospatial hydrological analysis in GIS environment for selecting potential water harvest sites : The case of Badrah-Wasit Journal of University of Babylon for Engineering Sciences, Iraq 26 2 328-337
[13] Khassaf S I 2018 Estimation rainfall-runoff erosivity factor for RUSLE equation in the Euphrates river watershed by GIS modeling Journal of University of Kerbala, Iraq 16 1 Scientific 312-319
[14] Salman H M, Jasim M N and Salman J M 2015 Assessment of water quality in Euphrates river/Iraq Journal of Babylon University/Engineering Sciences, Iraq 23 2
[15] Al-Rubaie F M and Al-Musawi N O 2019 The effect of Dyala river water quality on the quality of Tigris river water using GIS Journal of Engineering, University of Baghdad, Iraq 25 10 71-87
[16] Aziz N A, Hasan R H and Abdulrazzaq Z T 2018 Optimum site selection for ground water wells using integration between GIS and hydro-geological data Engineering and Technology Journal, University of Technology, Iraq 36A 6 596-602
[17] Al-Bassam B F 2009 Assessment of shallow ground water quality in Zhengzhou Area using remote sensing and GIS Journal of Engineering and Sustainable Development, Al-Mustansiriya University, Iraq 13 3 72-86
[18] Talabiniya M, Khosravi H and Zohrabi S 2019 Assessing the ground water quality for pressurized irrigation systems in Kerman province, Iran Sustainable Water Management, https://doi.org/10.1007/s40899-019-00318-1
[19] Al-Naggar M A, Ibrahim A I and Chabuk M 2019 Modern patterns of residential units and their impact in deformation of the morphology of the rural settlements in Iraq Journal of University of Babylon for Engineering Sciences, Iraq 27 1 275-289
[20] Hasson M Kh and Ali A R 2018 Evaluation of the loss from the discharge by the percolation process along a selected section of Hilla river within Hashimiya region Journal of University of Babylon for Engineering Sciences, Iraq 26 3 34-42
[21] Al-Masraf S A and Hommadi A H 2018 Improving water use efficiency and water productivity for Okra crop by using subsurface water retention technology Journal of Engineering, University of Baghdad, Iraq 24 7 65-75
[22] Shayea A Gh and Al-Thamiry H A 2020 Effect of tail regulators on the flood capacity of Euphrates river at Annasiriyah city Journal of Engineering, University of Baghdad, Iraq 26 1 43-54
[23] Hussain A H, al-Saati N H and Hashim S H 2018 A review of optimization to the operation of a complex water resources system based on certain practical assumptions and simplification Journal of University of Babylon for Engineering Sciences, Iraq 26 9 15-25