Minimal Affinizations of Representations
of Quantum Groups:
the Simply-laced Case

Vyjayanthi Chari1,
Department of Mathematics,
University of California, Riverside, CA 92521, USA.

Andrew Pressley,
Department of Mathematics,
King’s College, Strand, London WC2R 2LS, UK.

Introduction

In \cite{2}, we defined the notion of an affinization of a finite-dimensional irreducible representation \(V \) of the quantum group \(U_q(\mathfrak{g}) \), where \(\mathfrak{g} \) is a finite-dimensional complex simple Lie algebra and \(q \in \mathbb{C}^\times \) is transcendental. An affinization of \(V \) is an irreducible representation \(\hat{V} \) of the quantum affine algebra \(U_q(\hat{\mathfrak{g}}) \) which, regarded as a representation of \(U_q(\mathfrak{g}) \), contains \(V \) with multiplicity one, and is such that all other irreducible components of \(\hat{V} \) are strictly smaller than \(V \), with respect to a certain natural partial order on the set of isomorphism classes of finite-dimensional representations of \(U_q(\mathfrak{g}) \). In general, a given representation \(V \) has finitely many affinizations up to \(U_q(\mathfrak{g}) \)-isomorphism (always at least one), and it is natural to look for the minimal one(s). We refer the reader to the introduction to \cite{2} for a discussion of the significance of the notion of an affinization.

In \cite{2}, we show that, if \(\mathfrak{g} \) has rank 2, every \(V \) has a unique minimal affinization. In this paper, we consider the case when \(\mathfrak{g} \) is a simply-laced algebra of arbitrary rank. If \(\mathfrak{g} \) is of type A, there is again a unique minimal affinization (this result is, in fact, contained in \cite{4}). But, if \(\mathfrak{g} \) is of type D or E, and if the highest weight of \(V \) is not too singular, we show that \(V \) has precisely three minimal affinizations. In all cases, the minimal affinization(s) are described precisely in terms of the parametrization of the finite-dimensional irreducible representations of \(U_q(\hat{\mathfrak{g}}) \) given in \cite{3} (in the \(sl_2 \) case), in \cite{5} (in the \(sl_n \) case), and in \cite{6} (in the general case).

1Both authors were partially supported by the NSF, DMS-9207701.
1 Quantum affine algebras and their representations

In this section, we collect the results about quantum affine algebras which we shall need later.

Let \mathfrak{g} be a finite–dimensional complex simple Lie algebra with Cartan subalgebra \mathfrak{h} and Cartan matrix $A = (a_{ij})_{i,j \in I}$. Fix coprime positive integers $(d_i)_{i \in I}$ such that $(d_i a_{ij})$ is symmetric. Let $P = \mathbb{Z}^I$ and let $P^+ = \{ \lambda \in P \mid \lambda(i) \geq 0 \text{ for all } i \in I \}$. Let R (resp. R^+) be the set of roots (resp. positive roots) of \mathfrak{g}. Let α_i ($i \in I$) be the simple roots and let θ be the highest root. Define a non-degenerate symmetric bilinear form $(\ , \)$ on \mathfrak{h}^* by $(\alpha_i, \alpha_j) = d_i a_{ij}$, and set $d_0 = \frac{1}{2}(\theta, \theta)$. Let $Q = \oplus_{i \in I} \mathbb{Z} \alpha_i \subset \mathfrak{h}^*$ be the root lattice, and set $Q^+ = \sum_{i \in I} \mathbb{N} \alpha_i$. Define a partial order \geq on P by $\lambda \geq \mu$ iff $\lambda - \mu \in Q^+$.

Let $q \in \mathbb{C}^\times$ be transcendental, and, for $r, n \in \mathbb{N}$, $n \geq r$, define

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}},$$

$$[n]_q! = [n]_q [n-1]_q \ldots [2]_q [1]_q,$$

$$\left[\begin{array}{c} n \\ r \end{array} \right]_q = \frac{[n]_q!}{[r]_q! [n-r]_q!}.$$

Proposition 1.1. There is a Hopf algebra $U_q(\mathfrak{g})$ over \mathbb{C} which is generated as an algebra by elements x_i^\pm, k_i^\pm ($i \in I$), with the following defining relations:

$$k_i k_i^{-1} = k_i^{-1} k_i = 1, \quad k_i k_j = k_j k_i,$$

$$k_ix_j^\pm k_i^{-1} = q_i^{\pm a_{ij}} x_j^\pm,$$

$$[x_i^+, x_j^-] = \delta_{ij} \frac{k_i - k_i^{-1}}{q_i - q_i^{-1}},$$

$$\sum_{r=0}^{1-a_{ij}} \left[\begin{array}{c} 1-a_{ij} \\ r \end{array} \right]_q (x_i^\pm)^r x_j^\pm (x_i^\pm)^{1-a_{ij}-r} = 0, \quad i \neq j.$$

The comultiplication Δ, counit ϵ, and antipode S of $U_q(\mathfrak{g})$ are given by

$$\Delta(x_i^+) = x_i^+ \otimes k_i + 1 \otimes x_i^+,$$

$$\Delta(x_i^-) = x_i^- \otimes 1 + k_i^{-1} \otimes x_i^-,$$

$$\Delta(k_i^\pm) = k_i^{\pm 1} \otimes k_i^{\pm 1},$$

$$\epsilon(x_i^\pm) = 0, \quad \epsilon(k_i^\pm) = 1,$$

$$S(x_i^+) = -x_i^{+1}, \quad S(x_i^-) = -k_i x_i^-; \quad S(k_i^\pm) = k_i^{\mp 1},$$

for all $i \in I$. \square

The Cartan involution ω of $U_q(\mathfrak{g})$ is the unique algebra automorphism of $U_q(\mathfrak{g})$ which takes $x_i^\pm \mapsto -x_i^\mp$, $k_i^{\pm 1} \mapsto k_i^{\mp 1}$, for all $i \in I$.

Let $\hat{I} = I \sqcup \{ 0 \}$ and let $\hat{A} = (a_{ij})_{i,j \in \hat{I}}$ be the extended Cartan matrix of \mathfrak{g}, i.e. the generalized Cartan matrix of the (untwisted) affine Lie algebra $\hat{\mathfrak{g}}$ associated to \mathfrak{g}. Let $a_0 = e^{d_0}$.
Theorem 1.2. Let $U_q(\mathfrak{g})$ be the algebra with generators x_i^\pm, $k_i^{\pm 1}$ ($i \in \hat{I}$) and defining relations those in 1.1, but with the indices i, j allowed to be arbitrary elements of \hat{I}. Then, $U_q(\mathfrak{g})$ is a Hopf algebra with comultiplication, counit and antipode given by the same formulas as in 1.1 (but with $i \in \hat{I}$).

Moreover, $U_q(\mathfrak{g})$ is isomorphic to the algebra A_q with generators $x_{i,r}^\pm$ ($i \in I$, $r \in \mathbb{Z}$), $k_i^{\pm 1}$ ($i \in I$), $h_{i,r}$ ($i \in I$, $r \in \mathbb{Z}\backslash\{0\}$) and $c^{\pm 1/2}$, and the following defining relations:

$$c^{\pm 1/2} \text{ are central,}$$
$$k_i k_i^{-1} = k_i^{-1} k_i = 1,$$
$$c^{1/2} c^{-1/2} = c^{-1/2} c^{1/2} = 1,$$
$$k_i k_j = k_j k_i, \quad k_i h_{j,r} = h_{j,r} k_i,$$
$$k_i x_{j,r} k_i^{-1} = q_i^{\pm a_{ij}} x_{j,r}^{\pm},$$
$$[h_{i,r}, x_{j,s}^\pm] = \pm \frac{1}{r} [r a_{ij}] q_i c^{\pm |r|/2} x_{j,r+s}^\pm,$$
$$x_{i,r+1}^\pm x_{j,s}^\mp - q_i^{\pm a_{ij}} x_{j,s}^\pm x_{i,r+1}^\mp = q_i^{\pm a_{ij}} x_{j,r+s+1}^\pm - x_{j,s+1}^\pm x_{i,r}^\mp,$$
$$[x_{i,r}^+, x_{j,s}^-] = \delta_{ij} \frac{c^{(r-s)/2} x_{i,r+s}^+ - c^{-(r-s)/2} x_{i,r+s}^-}{q_i - q_i^{-1}}$$

$$\sum_{\pi \in \Sigma_m} \sum_{k=0}^{m} (-1)^k \left[\begin{array}{c} m \\ k \end{array} \right] q_i x_{i,r(\pi(1))}^\pm \cdots x_{i,r(\pi(k))}^\pm x_{i,r(\pi(k+1))}^\pm \cdots x_{i,r(\pi(m))}^\pm = 0, \quad i \neq j,$$

for all sequences of integers r_1, \ldots, r_m, where $m = 1 - a_{ij}$, Σ_m is the symmetric group on m letters, and the $\phi_{i,r}^\pm$ are determined by equating powers of u in the formal power series

$$\sum_{r=0}^{\infty} \phi_{i,r}^\pm u^r = k_i^{\pm 1} \text{exp} \left(\pm (q_i - q_i^{-1}) \sum_{s=1}^{\infty} h_{i,s} u^s \right).$$

If $\theta = \sum_{i \in I} m_i \alpha_i$, set $k_\theta = \prod_{i \in I} k_i^{m_i}$. Suppose that the root vector x_θ^+ of \mathfrak{g} corresponding to θ is expressed in terms of the simple root vectors x_i^+ ($i \in I$) of \mathfrak{g} as

$$x_\theta^+ = \lambda [x_{i_1}^+, x_{i_2}^+, \ldots, x_{i_k}^+, x_j^+] \cdots$$

for some $\lambda \in \mathbb{C}^\times$. Define maps $w_i^\pm : U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ by

$$w_i^\pm(a) = x_{i,0}^\pm a - k_i^{\pm 1} a k_i^{\pm 1} x_{i,0}^\pm.$$

Then, the isomorphism $f : U_q(\mathfrak{g}) \to A_q$ is defined on generators by

$$f(k_0) = k_\theta^{-1}, \quad f(k_i) = k_i, \quad f(x_i^+) = x_{i,0}^+, \quad (i \in I),$$
$$f(x_0^+) = \mu w_{i_1}^+ \cdots w_{i_k}^+ (x_{j,-1}^-) k_\theta^{-1},$$
$$f(x_0^-) = \lambda k_\theta w_{i_1}^+ \cdots w_{i_k}^+ (x_{j,-1}^+),$$

where $\mu \in \mathbb{C}^\times$ is determined by the condition

$$[x_0^+, x_0^-] = \frac{k_0 - k_0^{-1}}{\mu}.$$
See [1], [5] and [7] for further details.

Note that there is a canonical homomorphism \(U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \) such that \(x_i^\pm \mapsto x_i^\pm \), \(k_i^{\pm 1} \mapsto k_i^{\pm 1} \) for all \(i \in I \). Thus, any representation of \(U_q(\mathfrak{g}) \) may be regarded as a representation of \(U_q(\mathfrak{g}) \).

Let \(\hat{U}^\pm \) (resp. \(\hat{U}^0 \)) be the subalgebra of \(U_q(\mathfrak{g}) \) generated by the \(x_i^\pm \) (resp. by the \(\phi_i^\pm \)) for all \(i \in I, r \in \mathbb{Z} \). Similarly, let \(U^\pm \) (resp. \(U^0 \)) be the subalgebra of \(U_q(\mathfrak{g}) \) generated by the \(x_i^\pm \) (resp. by the \(k_i^{\pm 1} \)) for all \(i \in I \).

Proposition 1.3. (a) \(U_q(\mathfrak{g}) = U^-U^0U^+ \).
(b) \(U_q(\mathfrak{g}) = \hat{U}^-\hat{U}^0\hat{U}^+ \). □

See [5] or [8] for details.

We shall make use of the following automorphisms of \(U_q(\mathfrak{g}) \):

Proposition 1.4. (a) For all \(t \in \mathbb{C}^\times \), there exists a Hopf algebra automorphism \(\tau_t \) of \(U_q(\mathfrak{g}) \) such that

\[
\begin{align*}
\tau_t(x_{i,r}^\pm) &= t^r x_{i,r}^\pm, \quad \tau_t(h_{i,r}) = t^r h_{i,r}, \\
\tau_t(k_i^{\pm 1}) &= k_i^{\pm 1}, \quad \tau_t(c^{\pm 1/2}) = c^{\mp 1/2}.
\end{align*}
\]

(b) There is a unique algebra involution \(\hat{} \) of \(U_q(\mathfrak{g}) \) given on generators by

\[
\begin{align*}
\hat{x}_{i,r}^\pm &= -x_{i,-r}^\mp, \quad \hat{h}_{i,r} = -h_{i,r}, \\
\hat{\phi}_{i,r}^\pm &= \phi_{i,-r}^\mp, \quad \hat{k}_i^{\pm 1} = k_i^{\mp 1}, \\
\hat{c}^{\pm 1/2} &= c^{\mp 1/2}.
\end{align*}
\]

Moreover, we have

\[
(\hat{} \otimes \hat{}) \circ \Delta = \Delta^{op} \circ \hat{},
\]

where \(\Delta^{op} \) is the opposite comultiplication of \(U_q(\mathfrak{g}) \). □

See [2] for the proof. Note that \(\hat{} \) is compatible, via the canonical homomorphism \(U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \), with the Cartan involution \(\omega \) of \(U_q(\mathfrak{g}) \).

A representation \(W \) of \(U_q(\mathfrak{g}) \) is said to be of type 1 if it is the direct sum of its weight spaces

\[
W_\lambda = \{ w \in W \mid k_i w = q_i^{\lambda(i)} w, \quad (\lambda \in P) \}.
\]

If \(W_\lambda \neq 0 \), then \(\lambda \) is a weight of \(W \). A vector \(w \in W_\lambda \) is a highest weight vector if \(x_i^+ w = 0 \) for all \(i \in I \), and \(W \) is a highest weight representation with highest weight \(\lambda \) if \(W = U_q(\mathfrak{g}).w \) for some highest weight vector \(w \in W_\lambda \). Lowest weight vectors and representations are defined similarly, by replacing \(x_i^+ \) by \(x_i^- \).

For a proof of the following proposition, see [5] or [8].

Proposition 1.5. (a) Every finite–dimensional representation of \(U_q(\mathfrak{g}) \) is completely reducible.

(b) Every finite–dimensional irreducible representation of \(U_q(\mathfrak{g}) \) can be obtained from a type 1 representation by twisting with an automorphism of \(U_q(\mathfrak{g}) \).

(c) Every finite–dimensional irreducible representation of \(U_q(\mathfrak{g}) \) of type 1 is both highest and lowest weight. Assigning to such a representation its highest weight defines a bijection between the set of isomorphism classes of finite–dimensional irreducible type 1 representations of \(U_q(\mathfrak{g}) \) and \(B^+ \).
(d) The finite-dimensional irreducible representation $V(\lambda)$ of $U_q(\mathfrak{g})$ of highest weight $\lambda \in P^+$ has the same character as the irreducible representation of \mathfrak{g} of the same highest weight.

(e) The multiplicity $m_\nu(V(\lambda) \otimes V(\mu))$ of $V(\nu)$ in the tensor product $V(\lambda) \otimes V(\mu)$, where $\lambda, \mu, \nu \in P^+$, is the same as in the tensor product of the irreducible representations of \mathfrak{g} of the same highest weight (this statement makes sense in view of parts (a) and (c)). □

A representation V of $U_q(\mathfrak{g})$ is of type 1 if $c^{1/2}$ acts as the identity on V, and if V is of type 1 as a representation of $U_q(\mathfrak{g})$. A vector $v \in V$ is a highest weight vector if

\[x_{i,r} v = 0, \quad \phi_{i,r}^\pm v = \Phi_{i,r}^\pm v, \quad c^{1/2} v = v, \]

for some complex numbers $\Phi_{i,r}^\pm$. A type 1 representation V is a highest weight representation if $V = U_q(\hat{\mathfrak{g}}) v$, for some highest weight vector v, and the pair of $(I \times \mathbb{Z})$-tuples $(\Phi_{i,r}^\pm)_{i \in I, r \in \mathbb{Z}}$ is its highest weight. Note that $\Phi_{i,r}^+ = 0$ (resp. $\Phi_{i,r}^- = 0$) if $r < 0$ (resp. $r > 0$), and that $\Phi_{i,0}^+ \Phi_{i,0}^- = 1$. (In [5], highest weight representations of $U_q(\hat{\mathfrak{g}})$ are called ‘pseudo-highest weight’.) Lowest weight vectors and representations of $U_q(\hat{\mathfrak{g}})$ are defined similarly.

If $\lambda \in P^+$, let \mathcal{P}^λ be the set of all I-tuples $(P_i)_{i \in I}$ of polynomials $P_i \in \mathbb{C}[u]$, with constant term 1, such that $\deg(P_i) = \lambda(i)$ for all $i \in I$. Set $\mathcal{P} = \cup_{\lambda \in P^+} \mathcal{P}^\lambda$.

Theorem 1.6. (a) Every finite-dimensional irreducible representation of $U_q(\hat{\mathfrak{g}})$ can be obtained from a type 1 representation by twisting with an automorphism of $U_q(\hat{\mathfrak{g}})$.

(b) Every finite-dimensional irreducible representation of $U_q(\hat{\mathfrak{g}})$ of type 1 is both highest and lowest weight.

(c) Let V be a finite-dimensional irreducible representation of $U_q(\hat{\mathfrak{g}})$ of type 1 and highest weight $(\Phi_{i,r}^\pm)_{i \in I, r \in \mathbb{Z}}$. Then, there exists $\mathbf{P} = (P_i)_{i \in I} \in \mathcal{P}$ such that

\[\sum_{r=0}^{\infty} \Phi_{i,r}^+ u^r = q_i^{\deg(P_i)} \frac{P_i(q_i^{-2} u)}{P_i(u)} = \sum_{r=0}^{\infty} \Phi_{i,r}^- u^{-r}, \]

in the sense that the left- and right-hand terms are the Laurent expansions of the middle term about 0 and ∞, respectively. Assigning to V the I-tuple \mathbf{P} defines a bijection between the set of isomorphism classes of finite-dimensional irreducible representations of $U_q(\hat{\mathfrak{g}})$ of type 1 and \mathcal{P}.

(d) Let $\mathbf{P}, \mathbf{Q} \in \mathcal{P}$ be as above, and let $v_{\mathbf{P}}$ and $v_{\mathbf{Q}}$ be highest weight vectors of $V(\mathbf{P})$ and $V(\mathbf{Q})$, respectively. Then, in $V(\mathbf{P}) \otimes V(\mathbf{Q})$,

\[x_{i,r}^+(v_{\mathbf{P}} \otimes v_{\mathbf{Q}}) = 0, \quad \phi_{i,r}^\pm(v_{\mathbf{P}} \otimes v_{\mathbf{Q}}) = \Psi_{i,r}^\pm(v_{\mathbf{P}} \otimes v_{\mathbf{Q}}), \]

where the complex numbers $\Psi_{i,r}^\pm$ are related to the polynomials P_iQ_i, as the $\Phi_{i,r}^\pm$ are related to P_i in (5). In particular, if $\mathbf{P} \otimes \mathbf{Q}$ denotes the I-tuple $(P_iQ_i)_{i \in I}$, then $V(\mathbf{P} \otimes \mathbf{Q})$ is isomorphic to a quotient of the subrepresentation of $V(\mathbf{P}) \otimes V(\mathbf{Q})$ generated by the highest weight vectors. □

See [5] for further details. If the highest weight $(\Phi_{i,r}^\pm)_{i \in I, r \in \mathbb{Z}}$ of V is given by an I-tuple \mathbf{P} as in part (c), we shall often abuse notation by saying that V has highest weight \mathbf{P}.

We shall need the following result from [2].
Lemma 1.7. Let \(\rho : U_q(\hat{\mathfrak{g}}) \to \text{End}(V) \) be a finite-dimensional irreducible representation of type 1 with highest weight \(P = (P_i)_{i \in I} \). For any \(t \in \mathbb{C}^\times \), denote by \(\tau_t^*(V) \) the representation \(\rho \circ \tau_t \). Then, \(\tau_t^*(V) \) has highest weight \(P^t = (P_i^t)_{i \in I} \), where

\[
P_i^t(u) = P_i(tu).
\]

Following [2], we say that a finite-dimensional irreducible representation \(V \) of \(U_q(\hat{\mathfrak{g}}) \) is an affinization of \(\lambda \in P^+ \) if \(V \cong V(\mathbf{P}) \) as a representation of \(U_q(\hat{\mathfrak{g}}) \), for some \(\mathbf{P} \in \mathcal{P}^\lambda \). Two affinizations of \(\lambda \) are equivalent if they are isomorphic as representations of \(U_q(\hat{\mathfrak{g}}) \); we denote by \([V]\) the equivalence class of \(V \). Let \(\mathcal{Q}^\lambda \) be the set of equivalence classes of affinizations of \(\lambda \).

The following result is proved in [2].

Proposition 1.8. If \(\lambda \in P^+ \) and \([V], [W] \in \mathcal{Q}^\lambda \), we write \([V] \preceq [W]\) iff, for all \(\mu \in P^+ \), either,

(i) \(m_\mu(V) \leq m_\mu(W) \), or
(ii) there exists \(\nu > \mu \) with \(m_\nu(V) < m_\nu(W) \).

Then, \(\preceq \) is a partial order on \(\mathcal{Q}^\lambda \). □

An affinization \(V \) of \(\lambda \) is minimal if \([V]\) is a minimal element of \(\mathcal{Q}^\lambda \) for the partial order \(\preceq \), i.e. if \([W] \in \mathcal{Q}^\lambda \) and \([V] \preceq [W]\) implies that \([V] = [W]\). It is proved in [2] that \(\mathcal{Q}^\lambda \) is a finite set, so minimal affinizations certainly exist.

2 Diagram subalgebras

In this section, \(\mathfrak{g} \) is any finite-dimensional complex simple Lie algebra.

Let \(J \) be any non-empty connected subset of \(I \), and let \(U_q(\mathfrak{g}_J) \) be the Hopf subalgebra of \(U_q(\mathfrak{g}) \) defined by the generators and relations in 1.1 for which all the indices \(i, j \in J \). Similarly, let \(U_q(\hat{\mathfrak{g}}_J) \) be the subalgebra of \(U_q(\hat{\mathfrak{g}}) \) defined by the generators and relations in 1.2 for which all the indices \(i, j \in J \). Let \(P_J \) be the set of weights of \(U_q(\mathfrak{g}_J) \), \(R^+_J \) the set of positive roots, etc. If \(\lambda \in P \), let \(\lambda_J \) be the restriction of \(\lambda : I \to \mathbb{Z} \) to \(J \). Similarly, if \(\mathbf{P} = (P_i)_{i \in I} \in \mathcal{P} \) is an \(I \)-tuple of polynomials in \(\mathbb{C}[u] \) with constant term 1, let \(\mathbf{P}_J \in \mathcal{P}_J \) be the \(J \)-tuple \((P_i)_{i \in J}\).

Let \(\Delta_J \) be the comultiplication of \(U_q(\hat{\mathfrak{g}}_J) \). Note that \(U_q(\hat{\mathfrak{g}}_J) \) is not a Hopf subalgebra of \(U_q(\hat{\mathfrak{g}}) \) in general. However, we do have

Lemma 2.1. Let \(\emptyset \neq J \subseteq I \) be connected, and let \(\rho_J : U_q(\hat{\mathfrak{g}}_J) \to U_q(\hat{\mathfrak{g}}) \) be the canonical homomorphism of algebras. Then, for all \(i \in J \),

\[
\Delta(x^\pm_{i, \pm 1}) - (\rho_J \otimes \rho_J)(\Delta_J(x^\pm_{i, \pm 1})) \in \bigoplus_{\eta', \eta''} U_q(\hat{\mathfrak{g}})_{\eta'} \otimes U_q(\hat{\mathfrak{g}})_{\eta''},
\]

where the sum is over those \(\eta', \eta'' \in Q \setminus Q_J \) such that \(\eta' + \eta'' = \pm \alpha_i \), and

\[
U_q(\hat{\mathfrak{g}})_{\eta} = \{ u \in U_q(\hat{\mathfrak{g}}) | k_j u k_j^{-1} = q^{\eta(j)} u \text{ for all } j \in I \}.
\]

The proof of this lemma can be deduced in a straightforward manner from [1].
Fix a non-empty connected subset $J \subseteq I$. Let $\lambda \in P^+$, $P \in P^\lambda$, and let M be a highest weight representation of $U_q(\hat{g})$ with highest weight P and highest weight vector m. Let $M_J = U_q(\hat{g})_J.m$. Then, it follows from 1.3 that

$$(1) \quad M_J = \bigoplus_{\eta \in Q_J^+} M_{\lambda, \eta}.$$

Similarly, let $\mu \in P^+$, $Q \in P^\mu$, let N be a highest weight representation of $U_q(\hat{g})$ of highest weight Q and highest weight vector n, and let $N_J = U_q(\hat{g})_J.n$. Then, we have

$$(2) \quad M_J \otimes N_J = \bigoplus_{\eta \in Q_J^+} (M \otimes N)_{\lambda + \mu, \eta}.$$

Indeed, it is obvious that the left-hand side of (2) is contained in the right-hand side. On the other hand,

$$(M \otimes N)_{\lambda + \mu, \eta} = \bigoplus_{\eta', \eta''} M_{\lambda, \eta'} \otimes N_{\mu, \eta''},$$

where the sum is over those $\eta', \eta'' \in Q^+$ such that $\eta' + \eta'' = \eta$. But, since $\eta \in Q_J^+$, this clearly forces $\eta', \eta'' \in Q_J^+$, so by (1), $(M \otimes N)_{\lambda + \mu, \eta} \subseteq M_J \otimes N_J$. This proves (2).

Now, $M_J \otimes N_J$ admits an obvious action of $U_q(\hat{g})_J$ by using Δ_J; we denote this representation by $M_J \otimes J N_J$. On the other hand, for weight reasons, the action of the $\Delta(x_{i,r}^\pm)$, $\Delta(x_{i,r}^\pm)$, for all $i \in J$, $r \in \mathbb{Z}$, obviously preserves $\otimes_{\eta \in Q_J^+} (M \otimes N)_{\lambda + \mu - \eta}$. This gives another representation of $U_q(\hat{g})_J$ on $M_J \otimes N_J$, using Δ, which we denote by $M_J \otimes N_J$.

Proposition 2.2. The identity map $M_J \otimes N_J \rightarrow M_J \otimes N_J$ is an isomorphism of representations of $U_q(\hat{g})_J$.

Proof. The map obviously commutes with the action of $U_q(\hat{g})_J$. From 1.2, it follows that $U_q(\hat{g})_J$ is generated as an algebra by the elements of $U_q(\hat{g})_J$, the $x_{i,r}^\pm$ for $i \in J$, $r = \pm 1$, and the $c^{\pm 1/2}$. Since $c^{1/2}$ acts as the identity on M and N, it suffices to prove that, for all $m' \in M_J$, $n' \in N_J$, $i \in J$, $r = \pm 1$,

$$(3) \quad \Delta(x_{i,r}^\pm). (m' \otimes n') - (\rho_J \otimes \rho_J)(\Delta_J(x_{i,r}^\pm)). (m' \otimes n') = 0.$$

The left-hand side of (3) obviously belongs to $M_J \otimes N_J$, since both terms involved do. On the other hand, by 2.1, the left-hand side also belongs to

$$\bigoplus_{\eta', \eta''} U_q(\hat{g})_{\eta', m' \otimes U_q(\hat{g})_{\eta''}, n'},$$

where the sum is over those $\eta', \eta'' \in Q \setminus Q_J$ such that $\eta' + \eta'' = \pm \alpha_i$. We may assume that $m' \in M_{\lambda - \xi'}$, $n' \in N_{\mu - \xi''}$, where $\xi', \xi'' \in Q_J^+$. Then, the weight of the first factor in a typical non-zero term in the above sum is $\lambda - \xi' + \eta'$. On the other hand, by (1), its weight must be of the form $\lambda - \eta$ for some $\eta \in Q_J^+$. Thus,

$$\eta' = \xi' - \eta.$$

But this is impossible, since $\xi' - \eta \in Q_J^+$ but $\eta' \notin Q_J^+$. Hence, the left-hand side of (3) is zero. \qed
Lemma 2.3. Let \(\emptyset \neq J \subseteq I \) define a connected subdiagram of the Dynkin diagram of \(\mathfrak{g} \). Let \(P \in \mathcal{P} \), and let \(v_P \) be a \(U_q(\hat{g}) \)-highest weight vector in \(V(P) \). Then, \(U_q(\hat{g}).v_P \) is an irreducible representation of \(U_q(\hat{g}) \) with highest weight \(P_J \).

Proof. Let \(W \) be a non-zero irreducible \(U_q(\hat{g}) \)-subrepresentation of \(U_q(\hat{g}).v_P \). Since \(U_q(\hat{g}).v_P \) is obviously preserved by the action of \(k_i \) for all \(i \in I \), it follows by 1.3 and 1.6(b) that we can choose \(0 \neq w \in W \cap V(P)_\mu \), for some \(\mu \in \lambda - Q_J^+ \), such that

\[
x_{i,r}.w = 0, \\
\phi_{i,r}^\pm w = \Phi_{i,r}^\pm w,
\]

for some \(\Phi_{i,r}^\pm \in \mathbb{C} \) and all \(i \in J, r \in \mathbb{Z} \). Since \(\mu \in \lambda - Q_J^+ \), we see that (1) actually holds for all \(i \in I, r \in \mathbb{Z} \). Let \(W^+ \) be the linear subspace spanned by all elements \(w \in U_q(\hat{g}).v_P \cap V(P)_\mu \) satisfying (4) and (5) for fixed \(\Phi_{i,r}^\pm \). The relations in 1.2 show that the \(\phi_{i,r}^\pm \) preserve \(W^+ \) for all \(i \in I, r \in \mathbb{Z} \). Since the \(\phi_{i,r}^\pm \) act as commuting operators on \(V(P) \), and so on \(W^+ \), there exists \(w' \in W^+ \) satisfying both (4) and (5) for all \(i \in I, r \in \mathbb{Z} \). This means that \(w' \) must be a scalar multiple of \(v_P \), and so \(\mu = \lambda \). Thus, \(W^+ = \mathbb{C}.v_P \) and the lemma is established. \(\square \)

Lemma 2.4. Let \(\emptyset \neq J \subseteq I \) define a connected subdiagram of the Dynkin diagram of \(\mathfrak{g} \). Let \(\lambda \in P^+, \ P \in \mathcal{P}^\lambda, \) and \(\mu \in \lambda - Q_J^+ \). Then, if \(M \) is any highest weight representation of \(U_q(\hat{g}) \) with highest weight \(P \) and highest weight vector \(m \), we have

\[
m_\mu(M) = m_{\mu,j}(M_J),
\]

where, \(M_J = U_q(\hat{g}).m \).

Proof. If \(V \) is any type 1 representation of \(U_q(\hat{g}) \), and \(\mu \in P \), set

\[
V_\mu^+ = \{ v \in V_\mu \mid x_{i,0}.v = 0 \text{ for all } i \in I \}.
\]

Similarly, if \(W \) is any type 1 representation of \(U_q(\hat{g}) \), and \(\nu \in P_J \), define \(W^+_\nu \) in the obvious way. It is clear that

\[
m_\mu(M) = dim(M^+_\mu), \quad m_{\mu,j}(M_J) = dim((M_J)^+_\mu,j).
\]

Thus, it suffices to prove that

\[
M^+_\mu = (M_J)^+_\mu,j.
\]

If \(v \in M^+_\mu \), then, by 1.3(b), \(v \in \hat{U}^-\lambda - \mu.m \), where, for any \(\eta \in Q^+ \),

\[
\hat{U}^-\eta = \{ u \in \hat{U}^- \mid k_i u k_i^{-1} = e_i^{\eta(i)} u \text{ for all } i \in I \}.
\]

Since \(\lambda - \mu \in Q^+_J \), it follows that \(v \in \hat{U}^-\lambda - \mu.m \), and hence that \(v \in (M_J)^-_\mu,j \). Conversely, since conjugation by \(k_i \) clearly preserves \((M_J)^+_\mu,j \subseteq M \) for all \(i \in I \), it suffices to prove that every \(U_q(\mathfrak{g}) \)-weight vector \(v \in (M_J)^-_\mu,j \) belongs to \(M^+_\mu \). If \(v \in M_\nu \), then \(\nu_J = \mu_J \), and \(\nu \in \lambda - Q^+_J \) by 1.3(b). This implies that \(\nu = \mu \), since restriction to \(J \) is injective on \(Q^+_J \). That \(x_{i,0}.v = 0 \) for all \(i \in I \setminus J \) is now clear, and the converse is proved. \(\square \)

The assumption that \(J \) is connected in 2.3 and 2.4 guaranteed that \(\mathfrak{g}_J \) was simple, and hence standard results about \(U_q(\mathfrak{g}) \) and \(U_q(\hat{g}) \) could be applied to \(U_q(\mathfrak{g}) \) and \(U_q(\hat{g}) \). The next two lemmas describe some consequences of restricting to disconnected subdiagrams.
Lemma 2.5. Let $J_1, J_2 \subseteq I$ be non-empty subsets for which $a_{ij} = 0$ if $i \in J_1$, $j \in J_2$ (in particular, $J_1 \cap J_2 = \emptyset$). Let $\lambda \in P^+$ and assume that $\lambda_{J_2} = 0$. If $P \in \mathcal{P}^\lambda$ and μ is a weight of $V(P)$ in $\lambda - Q_{J_1 \cup J_2}^+$, then $\mu \in \lambda - Q_{J_i}^+$.

Proof. By 1.3, every vector in $V(P)_\mu$ is a linear combination of vectors of the form

$$v = \sum \alpha_i v_i,$$

where $i, j \in J_1 \cup J_2$, $r_1, r_2, \ldots, r_k \in \mathbb{Z}$, $k \geq 1$. Since $a_{ij} = 0$ if $i \in J_1$, $j \in J_2$, the relations in 1.2 tell us that

$$[x_{i,r}^- x_{j,s}^-] = 0$$

if $i \in J_1$, $j \in J_2$, $r, s \in \mathbb{Z}$. Hence, we may assume that, in any expression (7), all of the $x_{i,r}^-$’s with $i \in J_2$ occur to the right of all $x_{i,r}^-$’s with $i \in J_1$. Since $\lambda_{J_2} = 0$, it follows that $x_{i,r}^- \cdot v = 0$ if $i \in J_2$, $r \in \mathbb{Z}$, so an expression of type (7) vanishes unless i_1, \ldots, i_k all belong to J_1. □

If $\emptyset \neq J \subseteq I$, $\lambda \in P$, let $\lambda^J \in P$ be defined by

$$\lambda^J(i) = \begin{cases} \lambda(i) & \text{if } i \in J, \\ 0 & \text{if } i \notin J. \end{cases}$$

Similarly, if $P = (P_i)_{i \in I} \in \mathcal{P}$, let $P^J \in \mathcal{P}$ have i^{th} component equal to P_i if $i \in J$, and equal to 1 otherwise.

Lemma 2.6. Let

$$I = J_1 \amalg \{i_0\} \amalg J_2$$

(disjoint union), where J_1 and J_2 are such that $a_{ij} = 0$ if $i \in J_1$, $j \in J_2$. Let $\lambda \in P^+$, $P \in \mathcal{P}^\lambda$, and let $\mu \in P^+$ be of the form

$$\mu = \lambda - \sum_{j \in I, j \neq i_0} r_j \alpha_j, \quad (r_j \in \mathbb{N}).$$

Then, any $U_q(g)$–highest weight vector v in $(V(P_{J_1 \amalg \{i_0\}}) \otimes V(P_{J_2}))_{\mu}$ (resp. in $(V(P_{J_1}) \otimes V(P_{J_2 \amalg \{i_0\}}))_{\mu}$) can be written

$$v = \sum w_t \otimes w'_t,$$

where $w_t \in V(P_{J_1 \amalg \{i_0\}})$, $w'_t \in V(P_{J_2})$ (resp. $w_t \in V(P_{J_1})$, $w'_t \in V(P_{J_2 \amalg \{i_0\}})$), and w_t, w'_t are $U_q(g)$–highest weight vectors of weights $\lambda_{J_1 \amalg \{i_0\}} - \sum_{j \in J_1} r_j \alpha_j$ and $\lambda_{J_2} - \sum_{j \in J_2} r_j \alpha_j$ (resp. $\lambda_{J_1} - \sum_{j \in J_1} r_j \alpha_j$ and $\lambda_{J_2 \amalg \{i_0\}} - \sum_{j \in J_2} r_j \alpha_j$).

Proof. We consider the tensor product $V(P_{J_1 \amalg \{i_0\}}) \otimes V(P_{J_2})$ (the proof in the other case is similar). We can obviously write v in the form (8) for some non–zero $U_q(g)$ weight vectors w_t and w'_t, of weights μ_t and μ'_t, say. We may assume, without loss of generality, that the w'_t are linearly independent. Since $\mu_t + \mu'_t = \mu$ for all t, it now follows from 2.5 that $\mu_t \in \lambda_{J_1 \amalg \{i_0\}} - Q_{J_1}^+$, $\mu'_t \in \lambda_{J_2} - Q_{J_2}^+$. For weight reasons, it is clear that

$$\alpha^+_i w_t = 0 \text{ if } i \in J_1 \amalg \{i_0\}, \quad \alpha^+_i w'_t = 0 \text{ if } i \in J_1 \amalg \{i_0\}.$$
Hence, if \(j \in J_1 \), we have
\[
x_j^+.v = \sum_t (x_j^+.w_t \otimes k_j.w_t' + w_t \otimes x_j^+.w_t') = 0,
\]
so
\[
\sum_t q_j^{q(i,j)} x_j^+.w_t \otimes w_t' = 0.
\]
Since the \(w_t' \) are linearly independent, it follows that \(x_j^+.w_t = 0 \) for all \(j \in J_1 \).

Hence, each \(w_t \) is a \(U_q(\mathfrak{g}) \)-highest weight vector. Interchanging the roles of \(w_t \) and \(w_t' \) one shows that the \(w_t' \) are also \(U_q(\mathfrak{g}) \)-highest weight vectors, thus proving the lemma. □

3 The \(sl_{n+1}(\mathbb{C}) \) case

If \(\mathfrak{g} \) is of type \(A_n \), we take \(I = \{1, \ldots, n\} \), where \(a_{ii} = 2, a_{ij} = -1 \) if \(|i - j| = 1 \), and \(a_{ij} = 0 \) otherwise. The following result describes the minimal affinizations of \(\lambda \), for all \(\lambda \in P^+ \), in this case.

By the \(q \)-segment of length \(r \in \mathbb{N} \) and centre \(a \in \mathbb{C}^\times \), we mean the set of complex numbers \(\{aq^{-r+1}, aq^{-r+3}, \ldots, aq^{r-1}\} \).

Theorem 3.1. Let \(\mathfrak{g} = sl_{n+1}(\mathbb{C}) \), and let \(\lambda \in P^+ \). Then, \(Q^{\lambda} \) has a unique minimal element. Moreover, this element is represented by \(V(\mathbf{P}) \), for \(\mathbf{P} \in \mathcal{P}^{\lambda} \), if and only if, for all \(i \in I \) such that \(\lambda(i) > 0 \), the roots of \(P_i \) form the \(q \)-segment with centre \(a_i \), for some \(a_i \in \mathbb{C}^\times \), and length \(\lambda(i) \), where either
(a) for all \(i < j \), such that \(\lambda(i) > 0 \) and \(\lambda(j) > 0 \),
\[
\frac{a_i}{a_j} = q^{\lambda(i)+2(\lambda(i+1)+\cdots+\lambda(j-1))+j-i},
\]
or
(b) for all \(i < j \), such that \(\lambda(i) > 0 \) and \(\lambda(j) > 0 \),
\[
\frac{a_j}{a_i} = q^{\lambda(i)+2(\lambda(i+1)+\cdots+\lambda(j-1))+j-i}.
\]

In both cases, \(V(\mathbf{P}) \cong V(\lambda) \) as representations of \(U_q(\mathfrak{g}) \).

Proof. By Theorem 2.9 in [4], if \(\mathbf{P} \in \mathcal{P}^{\lambda} \), then \(V(\mathbf{P}) \) is irreducible as a representation of \(U_q(sl_{n+1}) \) if and only if the conditions in 3.1 hold. It is obvious that \([V(\mathbf{P})] \) is then the unique minimal element of \(Q^{\lambda} \). □

As an immediate consequence, we have

Corollary 3.2. Let \(\mathfrak{g} = sl_{n+1}(\mathbb{C}) \), and let \(\emptyset \neq J \subseteq I \) define a connected subdiagram of the Dynkin diagram of \(\mathfrak{g} \) (which is therefore of type \(A_{|J|} \)). Let \(\lambda \in P^+ \) and \(\mathbf{P} \in \mathcal{P}^{\lambda} \) be such that \(V(\mathbf{P}) \) is a minimal affinization of \(\lambda \). Then:
(a) \(V(\mathbf{P}_J) \) is a minimal affinization of \(\lambda_J \), and
(b) \(V(\mathbf{P}^J) \) is a minimal affinization of \(\lambda^J \). □

The following result is of crucial importance in the next section.
Proposition 3.3. Let $\mathfrak{g} = sl_{n+1}(C)$, let $\lambda \in P^+$, and let $P \in P^\lambda$ be such that
(a) $V(P)$ is not a minimal affinization of λ, and
(b) $V(P_{\Delta \{i\}})$ is a minimal affinization of $\lambda_{\Delta \{i\}}$, for $i = 1, n$.
Then, $m_{\lambda-\eta}(V(P)) > 0$.

Proof. As a representation of $U_q(\mathfrak{g})$, we have, by 1.5(a),

$$V(P) = V_0 \oplus \bigoplus_i V_i,$$

where $V_0 \cong V(\lambda)$, $V_i \cong V(\lambda - \eta_i)$, and $\eta_i \in Q^+$, $\eta_i \neq 0$ (the η_i are not necessarily distinct). Let v^+_P be a $U_q(\mathfrak{g})$–highest weight vector in $V(P)$, and v^-_P a $U_q(\mathfrak{g})$–lowest weight vector. We claim that either $x^+_0.v^+_P \notin V_0$ or $x^-_0.v^-_P \notin V_0$. Indeed, suppose the contrary and let $v \in V_0$. Then,

$$v = x^- . v^+_P = x^+. v^-_P,$$

for some $x^\pm \in U^\pm$. Since $[x^+_0, x^\pm] = 0$ by the relations in 1.1, it follows that

$$x^+_0.v^+_P = x^\pm . x^+_0.v^+_P \in x^\mp . V_0 \subseteq V_0.$$

But, since k_0 acts on $V(P)$ as $(k_1 k_2 \ldots k_n)^{-1}$, the algebra of operators on $V(P)$ defined by the action of $U_q(\mathfrak{g})$ is generated by the action of $U_q(\mathfrak{g})$ and x^\pm_0. It follows that V_0 is a $U_q(\mathfrak{g})$–subrepresentation of $V(P)$, and hence that $V(P) = V_0$, contradicting 3.3(i).

Write v_P for v^+_P from now on, and assume, without loss of generality, that $x^+_0.v_P \notin V_0$. Then, $x^+_0.v_P$ must have non–zero component, with respect to the decomposition (9), in some V_i with $\eta_i \neq 0$. Then, $\eta_i \leq \theta$, and it suffices to prove that $\eta_i = \theta$.

Suppose for a contradiction that $\eta_i < \theta$. Then,

$$\eta_i = \sum_{i=1}^n r_i \alpha_i,$$

where each $r_i = 0$ or 1, and at least one $r_i = 0$. If $r_1 = 0$ (resp. $r_n = 0$), applying 2.3 and 2.4 with $J = I \Delta \{1\}$ (resp. $J = I \Delta \{n\}$) gives

$$m_{\lambda-\eta}(V(P)) = m_{(\lambda-\eta)_J}(V(P_J)),$$

which vanishes by 3.1 because $V(P_J)$ is a minimal affinization of λ_J by 3.2(b). But this is impossible, since $m_{\lambda-\eta}(V(P)) > 0$.

Thus, $r_i = 0$ for some $1 < i < n$. Let

$$J_1 = \{1, 2, \ldots, i-1\}, \quad J_2 = \{i+1, i+2, \ldots, n\}.$$

By 2.6, any $U_q(\mathfrak{g})$–highest weight vector v in $(V(P_{J_1 \Delta \{i\}}) \otimes V(P_{J_2}))(\lambda-\eta)$ is of the form

$$v = \sum_r w_r \otimes w'_r,$$

where the w_r and the w'_r are $U_q(\mathfrak{g})$–highest weight vectors of weights $\lambda^{J_1 \Delta \{i\}} - \sum_{j<i} r_j \alpha_j$ and $\lambda^{J_2} - \sum_{j>i} r_j \alpha_j$, respectively. But, by 3.2(b) and 3.3(b), both $V(P_{J_1 \Delta \{i\}})$ and $V(P_{J_2})$ are minimal affinizations, so, by 3.1, we have $r_j = 0$ for all $j < i$ and for all $j > i$. But then $\eta_i = 0$, a contradiction. \square

We isolate the result in the α_i case; this was proved in [4].
Proposition 3.4. Let \(g = sl_2(\mathbb{C}) \). For any \(r \in \mathbb{N} \), \(Q^{r\lambda_1} \) has a unique minimal element. This element is represented by \(V(P) \), where \(P \) is any polynomial of degree \(r \) whose roots form a \(q \)-segment. If \([W] \in Q^{r\lambda_1} \) is not minimal, then \(m_{(r-2)\lambda_1}(W) > 0 \). \(\square \)

4 The main reduction

In this section, we continue to assume that \(g \) is an arbitrary finite-dimensional complex simple Lie algebra. We show (see Proposition 4.2) that minimal affinizations remain minimal on restriction to certain ‘admissible’ subdiagrams of the Dynkin diagram of \(g \). To explain the meaning of ‘admissible’, suppose temporarily that \(g \) is of type \(D \) or \(E \). Let \(i_0 \in I \) be the unique node of the Dynkin diagram of \(g \) which is linked to three nodes other than itself. The set \(I \) can then be written as a disjoint union
\[
I = I_1 \amalg I_2 \amalg I_3 \amalg \{i_0\}
\]
such that
(i) \(I_r \cup \{i_0\} \) is of type \(A \), for \(r = 1, 2, 3 \),
(ii) for each \(r = 1, 2, 3 \), there exists exactly one \(i \in I_r \) such that \(a_{i_0i} \neq 0 \), and
(iii) \(a_{ij} = 0 \) if \(i \in I_r, j \in I_s, r \neq s \).
Clearly, \(I_1, I_2, I_3 \) are uniquely determined, up to a permutation.

Definition 4.1. Let \(J \) be a non-empty subset of \(I \). If \(g \) is not of type \(D \) or \(E \), \(J \) is admissible iff \(J \) is of type \(A \). If \(g \) is of type \(D \) or \(E \), then \(J \) is admissible iff the following two conditions are satisfied:
(i) \(J \subseteq I_r \cup \{i_0\} \) for some \(r = 1, 2, 3 \), and
(ii) \(J \) is connected (or, equivalently, \(J \) is of type \(A \)).

Proposition 4.2. Let \(J \subseteq I \) be admissible, let \(\lambda \in P^+ \), and let \(P = (P_i)_{i \in I} \in \mathcal{P}^{\lambda} \). If \(V(P) \) is a minimal affinization of \(\lambda \), then \(V(P_J) \) is a minimal affinization of \(\lambda_J \).

Remark. This result is definitely false if \(J \) is not admissible, as will become clear in Theorem 6.1.

Proof of 4.2. The proof proceeds by induction on \(|J| \). If \(|J| = 1 \), we must prove, in view of 3.4, that the roots of of each \(P_i \) form a \(q_i \)-segment.

Assume first that \(i \) is linked to exactly one other node in \(I \), and suppose for a contradiction that the roots of \(P_i \) do not form a \(q_i \)-segment. Let \(Q_i \) be any polynomial with constant term 1 such that \(deg(Q_i) = deg(P_i) \), and whose roots do form a \(q_i \)-segment. Let \(Q \) be the \(I \)-tuple which is equal to \(P \) except in the \(i^{th} \) place, where it equals \(Q_i \). We prove that \([V(Q)] \prec [V(P)] \), giving the desired contradiction to the minimality of \(V(P) \).

Note that, by taking \(\mu = \lambda - \alpha_i \), \(J = \{i\} \) in 2.4, and using 2.3 and the second part of 3.4, it follows that
\[
m_{\lambda-\alpha_i}(V(P)) > 0, \quad m_{\lambda-\alpha_i}(V(Q)) = 0.
\]
Thus, \([V(P)] \neq [V(Q)] \). To prove that \([V(Q)] \prec [V(P)] \), we must prove that, for all \(\mu \in P \), either 1.8(i) or 1.8(ii) holds. We may assume that \(\mu = \lambda - \sum_{i} a_i \alpha_i \),
\[s_j \geq 0, \text{ since otherwise } m_\mu(V(P)) = m_\mu(V(Q)) = 0. \] Suppose first that \(s_i > 0. \) We have just shown that, if \(\mu = \lambda - \alpha_i, \) then \(1.8(\text{i}) \) holds, while if \(\mu < \lambda - \alpha_i, \) then \(1.8(\text{ii}) \) holds with \(\nu = \lambda - \alpha_i. \) On the other hand, if \(s_i = 0, \) then applying \(2.4 \) with \(J = I \setminus \{i\}, \) we have

\[m_\mu(V(P)) = m_{\mu_j}(V(P)) = m_{\mu_j}(V(Q)) = m_\mu(V(Q)), \]

and so \(1.8(\text{i}) \) holds (note that \(I \setminus \{i\} \) is connected because of our assumption on \(i. \))

Suppose now that node \(i \) is linked to two other nodes, and assume for a contradiction that the roots of \(P_i \) do not form a \(q_i \)-segment. It is easy to see that there exist subsets \(J_1, J_2 \subseteq I \) such that

(a) \(I = J_1 \amalg \{i\} \amalg J_2 \) (disjoint union),
(b) \(J_1 \cup \{i\} \) defines a diagram of type \(A, \)
(c) \(J_2 \) is connected, and
(d) \(a_{jk} = 0 \) if \(j \in J_1, k \in J_2. \)

Let \(P' \in \mathcal{P}^{\lambda_{J_1} \cup \{i\}} \) be such that \(V(P') \) is a minimal affinization of \(\lambda_{J_1} \cup \{i\}, \) and let \(Q = (Q_j)_{j \in I} \) be defined by

\[
Q_j = \begin{cases} P_j & \text{if } j \in J_2, \\ P'_j & \text{if } j \in J_1 \cup \{i\}. \end{cases}
\]

We claim that \([V(Q)] < [V(P)] \), giving a contradiction as before.

As in the first part of the proof, we see that \([V(Q)] \neq [V(P)] \) and that, in proving that \([V(Q)] \preceq [V(P)] \), we need only consider weights \(\mu \in P \) of the form \(\mu = \lambda - \sum_{j \in I} s_j \alpha_j, \) where \(s_j \geq 0 \) for all \(j \in I, \) \(s_i = 0, \) and \(m_\mu(V(Q)) > 0. \) We show that, for such \(\mu, \)

\[m_\mu(V(Q)) = m_\mu(V(P)), \]

establishing \(1.8(\text{i}) \) and proving our claim.

We make use of the following lemma, which will also be needed later.

Lemma 4.3. Let \(i \in I \) be such that

\[I = J_1 \amalg \{i\} \amalg J_2 \]

(disjoint union), where \(J_1 \) is of type \(A, \) \(J_2 \) is connected, and \(a_{jk} = 0 \) if \(j \in J_1, k \in J_2 \). Let \(\lambda \in P^+, \) \(Q \in \mathcal{P}^\lambda, \) and assume that \(V(Q_{J_1}) \) is a minimal affinization of \(\lambda_{J_1}. \) Let \(\mu \in P \) be of the form \(\mu = \lambda - \sum_{j \in I} s_j \alpha_j, \) where \(s_j \geq 0 \) for all \(j \), and \(s_i = 0. \) If \(m_\mu(V(Q)) > 0, \) then \(s_j = 0 \) for all \(j \in J_1 \) (and so \(\mu \in \lambda - Q_{J_2}^+ \)).

Assuming this lemma for the moment, we see that, if \(m_\mu(V(Q)) > 0, \) then \(\mu \in \lambda - Q_{J_2}^+. \) Since \(P_{J_2} = Q_{J_2}, \) \(2.4 \) implies, as desired, that \(m_\mu(V(P)) = m_\mu(V(Q)). \)

We have now proved \(4.2 \) when \(|J| = 1. \) For the inductive step, assume that \(|J| = r > 1 \) and suppose that the result is known when \(|J| < r. \) Proceeding by contradiction, we suppose that \(V(P_{J'}) \) is a non-minimal affinization of \(\lambda_J. \) Define a subset \(J' \subseteq I \) and a node \(j_0 \in J \) as follows:

(i) if \(J \) contains an element \(j \) that is linked to exactly one other element in \(I, \) choose \(j_0 = j \) and \(J' = \emptyset; \)

(ii) otherwise, choose \(J' \) to be disjoint from \(J \) such that \(J \cup J' \) is admissible and \(I \setminus (J \cup J') \) is connected, and let \(j_0 \) be the unique element of \(J \) that is connected to an element of \(J'. \)
See the diagrams on the next page.

By the induction hypothesis, $V(P_{J \setminus \{j_0\}})$ is a minimal affinization. Hence, by 3.1, we may choose P'_{j}, for $j \in J' \cup \{j_0\}$, such that $\deg(P_{j}) = \deg(P'_{j})$, and such that, if we define the $(J \cup J')$–tuple $R = (R_{j})_{j \in J \cup J'}$ by

$$R_{j} = \begin{cases} P_{j} & \text{if } j \in J \setminus \{j_0\}, \\ P'_{j} & \text{if } j \in J' \cup \{j_0\}, \end{cases}$$

then $V(R)$ is a minimal affinization of $\lambda_{J \cup J'}$. Now define $Q = (Q_{j})_{j \in I \in P_{\lambda}}$ by

$$Q_{j} = \begin{cases} P'_{j} & \text{if } j \in J' \cup \{j_0\}, \\ P_{j} & \text{otherwise}. \end{cases}$$

We prove that $[V(Q)] < [V(P)]$, giving the usual contradiction.

Note first that, by 3.2, $V(Q_{J})$ is a minimal affinization of λ_{J}, but by assumption, $V(P_{J})$ is not minimal. By 3.3,

$$m_{\lambda_{J}} - \sum_{i \in J} \alpha_{i}(V(P_{J})) > 0, \quad m_{\lambda_{J}} - \sum_{i \in J} \alpha_{i}(V(Q_{J})) = 0.$$

By 2.3 and 2.4,

$$m_{\lambda} - \sum_{i \in J} \alpha_{i}(V(P)) > 0, \quad m_{\lambda} - \sum_{i \in J} \alpha_{i}(V(Q)) = 0.$$

Hence, $[V(P)] \neq [V(Q)]$.

To prove that $[V(Q)] < [V(P)]$, we need only consider, as usual, weights μ such that $m_{\mu}(V(Q)) > 0$ and $\mu = \lambda - \eta$, where $\eta = \sum_{j \in I} s_{j} \alpha_{j}$ and each $s_{j} \geq 0$. By the second equation in (10), $\eta \neq \sum_{j \in J} \alpha_{j}$. If $\eta > \sum_{j \in J} \alpha_{j}$, then 1.8(ii) holds with $\nu = \lambda - \sum_{j \in J} \alpha_{j}$. Hence, we may assume that $s_{j_1} = 0$ for some $j_1 \in J$. Define a subset J'' of J as follows:

(i) $J'' = J$ if $j = j_1$.
(ii) if \(j_0 \neq j_1 \), then \(J'' \) is the maximal connected subset of \(J \) containing \(j_0 \) but not \(j_1 \).

See the diagrams on the next page.

Set \(J_1 = J' \cup J'' \), \(J_2 = I \backslash (J_1 \cup \{j_1\}) \). Note that \(J_1 \) is of type \(A \) and \(J_2 \) is connected. Applying 4.3, we see that \(\mu \in \lambda - Q_{J_2}^+ \). Since \(P_{J_2} = Q_{J_2} \) it follows as usual from 2.3 and 2.4 that

\[
m_\mu(V(P)) = m_\mu(V(Q)),
\]

thus completing the proof of the inductive step. □

All that remains is to give the

Proof of 4.3. By 1.6(d), \(V(Q) \) is isomorphic to a subquotient of the tensor product \(V(Q^{J_1}) \otimes V(Q_{J_2 \cup \{i_0\}}) \); a fortiori, \(m_\mu(V(Q^{J_1}) \otimes V(Q_{J_2 \cup \{i_0\}})) > 0 \). By 2.6, if \(v \in (V(Q^{J_1}) \otimes V(Q_{J_2 \cup \{i_0\}}))_\mu \) is any \(U_q(\mathfrak{g}) \)-highest weight vector, then

\[
v = \sum_t w_t \otimes w'_t,
\]

where \(w_t \in V(Q^{J_1}) \) is a \(U_q(\mathfrak{g}) \)-highest weight vector of weight \(\lambda^{J_1} - \sum_{j \in J_1} s_j \alpha_j \), and \(w'_t \in V(Q_{J_2 \cup \{j_0\}}) \) is a \(U_q(\mathfrak{g}) \)-highest weight vector of weight \(\lambda^{J_2 \cup \{j_0\}} - \sum_{j \in J_2} s_j \alpha_j \). Since \(V(Q^{J_1}) \) is a minimal affinization of \(\lambda^{J_1} \), 3.1 implies that \(s_j = 0 \) for all \(j \in J_1 \) and hence \(\mu = \lambda - Q_{J_2}^+ \). □

5 Twisting with the Cartan involution

In this section, \(\mathfrak{g} \) is an arbitrary finite-dimensional complex simple Lie algebra. If \(V \) is any representation of \(U_q(\hat{\mathfrak{g}}) \), given by a homomorphism \(\rho : U_q(\hat{\mathfrak{g}}) \to \text{End}(V) \),
say, we denote by $\hat{\omega}^*(V)$ the representation $\rho \circ \hat{\omega}$, where $\hat{\omega}$ is the involution of $U_q(\hat{g})$ defined in 1.4(b). Let V^* be the $U_q(\hat{g})$-representation dual to V: recall that the action of $U_q(\hat{g})$ on V^* is defined by

$$(x.f)(v) = f(S(x).v),$$

where $f \in V^*$, $x \in U_q(\hat{g})$, and $S : U_q(\hat{g}) \to U_q(\hat{g})$ is the antipode. It is clear that, if V is an irreducible representation of $U_q(\hat{g})$, then V^* and $\hat{\omega}^*(V)$ are both irreducible representations as well. The purpose of this section is to give the defining polynomials of $\hat{\omega}^*(V)$ and V^* in terms of the defining polynomials of V. We need this result in the next section to prove the uniqueness of certain minimal affinizations.

Let w_0 be the longest element of the Weyl group of g, and let $i \rightarrow i$ be the bijection $I \rightarrow I$ such that $w_0(\alpha_i) = -\alpha_i$. It is well known that

$$\omega^*(V(\lambda)) \cong V(-w_0(\lambda)), \quad V(\lambda)^* \cong V(-w_0(\lambda)),$$

for all $\lambda \in P^+$, where ω is the Cartan involution of $U_q(g)$.

Proposition 5.1. Let $\lambda \in P^+$, $P = (P_i)_{i \in I} \in \mathcal{P}^\lambda$, and let

$$P_i(u) = \prod_{r=1}^{\lambda(i)} (1 - a_{r,i}^{-1}u), \quad (a_{r,i} \in \mathbb{C}^\times).$$

(a) Define $P^\hat{\omega} = (P_i^\hat{\omega})_{i \in I} \in \mathcal{P}^{-w_0(\lambda)}$ by

$$P_i^\hat{\omega}(u) = \prod_{r=1}^{\lambda(i)} (1 - q_r^2 a_{r,i}u).$$

Then, there exists $t \in \mathbb{C}^\times$, independent of $i \in I$, such that

$$\hat{\omega}^*(V(P)) \cong \tau_t^*(V(P^\hat{\omega}))$$

as representations of $U_q(\hat{g})$.

(b) Define $P^* = (P_i^*)_{i \in I} \in \mathcal{P}^{-w_0(\lambda)}$ by

$$P_i^*(u) = \prod_{r=1}^{\lambda(i)} (1 - a_{r,i}^{-1}u).$$

Then, there exists $t^* \in \mathbb{C}^\times$ such that, as representations of $U_q(\hat{g})$,

$$V(P)^* \cong \tau_{t^*}^*(V(P^*))$$

Proof. We first prove that it suffices to establish the proposition in the case when λ is fundamental. We do this for part (b); the proof for part (a) is similar (see also [2], where the corresponding result was proved for rank two algebras). By 1.6(d), we see that $V(P)$ is the unique irreducible subquotient of

$$\bigotimes \bigotimes V(\lambda_i, a_{i,r}).$$
which contains the tensor product of the highest weight vectors (the tensor product of the representations can be taken in any order). It is not hard to see that

$$V(\lambda_i, a_{i,r})^* \cong V(\lambda_i^*, a_{i,r}^*),$$

for some $a_{i,r}^* \in \mathbb{C}^\times$ (this follows from Proposition 3.3 in [2]). Hence, $V(P)^*$ is the unique irreducible subquotient of

$$\bigotimes_{i \in I} \bigotimes_{r=1}^{\lambda(i)} V(\lambda_i^*, a_{i,r}^*)$$

containing the tensor product of the highest weight vectors. Thus, by 1.6(d), it suffices to calculate the $a_{i,r}^*$.

The proof of 5.1 in the fundamental case is a consequence of the following lemma.

Lemma 5.2. Suppose that $a_{i,j} \neq 0$, $i \neq j$, and that $a_i, a_j \in \mathbb{C}^\times$. Then,

(a) $m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(V(\lambda_i, a_i) \otimes V(\lambda_j, a_j)) = 1$;

(b) if $v_i \in V(\lambda_i, a_i)$, $v_j \in V(\lambda_j, a_j)$ are $U_q(g)$-highest weight vectors, and $M = U_q(g). (v_i \otimes v_j) \subset V(\lambda_i, a_i) \otimes V(\lambda_j, a_j)$, then $m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(M) = 0$ iff

$$\frac{a_i}{a_j} = q^{-(3d_i + d_j - 1)};$$

(c) Let $v \in (V(\lambda_i, a_i) \otimes V(\lambda_j, a_j))_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}$ be a $U_q(g)$-highest weight vector. Then, v is also $U_q(g)$-highest weight iff

$$\frac{a_i}{a_j} = q^{3d_j + d_i - 1}.$$

Assuming this lemma, 5.1(a) is proved as follows. Using the notation introduced in 5.2, we have

$$\hat{\omega}^*(M) \subseteq \hat{\omega}^*(V(\lambda_j, a_j)) \otimes \hat{\omega}^*(V(\lambda_i, a_i)).$$

As in the proof of Proposition 5.5 in [2],

$$\hat{\omega}^*(V(\lambda_i, a_i)) \cong V(\lambda_i^*, \overline{\alpha_i})$$

for some $\overline{\alpha_i} \in \mathbb{C}^\times$. Identifying the two representations above, we thus have

$$\hat{\omega}^*(M) \subseteq V(\lambda_i^*, \overline{\alpha_i}) \otimes V(\lambda_j^*, \overline{\alpha_j}).$$

Now, since $m_{\lambda_i + \lambda_j}(M) = 1$, we have $m_{\lambda_i + \lambda_j}(\hat{\omega}^*(M)) = 1$ by the discussion preceding 5.1. Hence, $\hat{\omega}^*(M)$ contains $U_q(g). (\nu_j \otimes \nu_i) \subseteq V(\lambda_j^*, \overline{\alpha_j}) \otimes V(\lambda_i^*, \overline{\alpha_i})$. Assume now that $a_i/a_j = q^{-(3d_i + d_j - 1)}$. Then, by 5.2(b), $m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(M) = 0$, hence $m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(\hat{\omega}^*(M)) = 0$. A fortiori, $m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(U_q(g). (\nu_j \otimes \nu_i)) = 0$. By 5.2(b) again, $\overline{\alpha_j}/\overline{\alpha_i} = q^{-(3d_j + d_i - 1)}$. Since $d_j = d_i$ for all $i \in I$, we get

$$q_2^2 \overline{\alpha_j} a_j = q_i^2 \overline{\alpha_i} a_i,$$

from which 5.1(a) follows for fundamental representations.
We now prove 5.1(b). We continue to assume that

\[\frac{a_i}{a_j} = q^{-(3d_i + d_j - 1)}. \]

Let \(a_i^* \in \mathbb{C}^\times \) be such that

\[V(\lambda_i, a_i)^* = V(\lambda_i^*, a_i^*). \]

By standard properties of duals, \(M^* \) is a quotient of \(V(\lambda_i^*, a_i^*) \). Since \(m_{\lambda_i,\lambda_j - \alpha_i - \alpha_j}(M) = 0 \), we have \(m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(M^*) = 0 \). Applying 5.2(c), we see that

\[\frac{a_j^*}{a_i^*} = q^{3d_i + d_j - 1} = q^{3d_j + d_j - 1}. \]

This gives

\[\frac{a_i}{a_j} = \frac{a_j}{a_i}, \]

from which 5.1(b) follows. \(\square \)

Proof of 5.2(a). It suffices to prove that, if \(a_{ij} \neq 0, i \neq j, \) and \(a_i \in \mathbb{C}^\times \), then

\[m_{\lambda_i - \alpha_i}(V(\lambda_i, a_i)) = m_{\lambda_i - \alpha_i - \alpha_j}(V(\lambda_i, a_i)) = 0. \]

For, this result clearly implies that

\[m_{\lambda_i,\lambda_j - \alpha_i - \alpha_j}(V(\lambda_i, a_i) \otimes V(\lambda_j, a_j)) = m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(V(\lambda_i \otimes V(\lambda_j)), \]

and it easy to see that the last multiplicity is one.

It suffices to prove \((11) \) when \(g \) is of rank 2. For, if \(J = \{i, j\} \subseteq I, \) then, by the rank 2 case, \(m_{(\lambda_i - \alpha_i - \alpha_j)}(V((\lambda_i, a_i)) = 0, \) so, by 2.4, \(m_{\lambda_i - \alpha_i - \alpha_j}(V(\lambda_i, a_i)) = 0. \)

If \(g \) is of type \(A_2, \) \((11) \) is obvious, since, by 3.1, \(V(\lambda_i, a_i) \) is an irreducible representation of \(U_q(\mathfrak{g}). \)

If \(g \) is of type \(C_2 \) or \(G_2, \) this was proved in [2], Proposition 5.4(i). \(\square \)

Proof of 5.2(b), (c). Taking \(J = \{i, j\} \) we see that, by Proposition 2.2, it suffices to prove this result in the rank two case. If \(\mathfrak{g}_J \) is of type \(A_2, \) both parts (b) and (c) are established in the proof of Lemma 4.1 in [4].

If \(\mathfrak{g} \) is of type \(C_2 \) or \(G_2, \) then \(i = 7 \) for \(i = 1, 2. \) Part (b) was established in Proposition 5.4(c) in [2]. To prove (c), notice that, by (a), \(v \) is a \(U_q(\hat{\mathfrak{g}}) \)-highest weight vector in \(V(\lambda_i, a_i) \otimes V(\lambda_j, a_j) \) iff \(m_{\lambda_i + \lambda_j - \alpha_i - \alpha_j}(M^*) = 0, \) where \(M^* = U_q(\hat{\mathfrak{g}})(v_j \otimes v_i) \subseteq V(\lambda_j, a_j)^* \otimes V(\lambda_i, a_i)^*. \) Writing \(V(\lambda_i, a_i)^* \cong V(\lambda_i, a_i^*), \) we see from part (b) that

\[\frac{a_j}{a_i} = q^{-(3d_j + d_i - 1)}. \]

A direct calculation in the rank two case now gives that

\[a_i^* = ta_i, \]

and combining with \((12) \) gives the desired result.
6 The simply--laced case

In this section, we assume that \(g \) is of type \(D \) or \(E \). Let \(I_1, I_2, I_3 \subset I \), and \(i_0 \in I \), be as defined at the beginning of Section 4. If \(\lambda \in P \), define subsets \(I_r(\lambda) \subseteq I_r \), \(r = 1, 2, 3 \), by the following conditions:

(i) \(\lambda_{I_r(\lambda)} = 0 \),
(ii) \(I_r(\lambda) \) is connected,
(iii) \(I_r(\lambda) \cup \{i_0\} \) is of type \(A \), and
(iv) \(I_r(\lambda) \) is maximal with respect to properties (i)--(iii).

Note that \(I_r(\lambda) \) may be empty.

The following theorem is the main result of this paper.

Theorem 6.1. Let \(g \) be of type \(D \) or \(E \). Let \(\lambda \in P^+ \) and assume that \(\lambda(i_0) \neq 0 \).

(a) If \(I_r(\lambda) = I_r \) for some \(r \in \{1, 2, 3\} \), then \(Q^\lambda \) has a unique minimal element. This element is represented by \(V(P) \), where \(P \in P^\lambda \), if and only if \(V(P_{I_1 \setminus I}) \) is a minimal affinization of \(\lambda_{I_1 \setminus I} \).

(b) Suppose that, for all \(r \in \{1, 2, 3\} \), \(I_r(\lambda) \neq I_r \). Then, \(Q^\lambda \) has exactly three minimal elements. In fact, if \(P \in P^\lambda \), then \(V(P) \) is minimal if and only if there exists \(r, s \in \{1, 2, 3\} \), \(r \neq s \), such that \(V(P_{I_1 \setminus I_r}) \) and \(V(P_{I_1 \setminus I_s}) \) are minimal affinizations of \(\lambda_{I_1 \setminus I_r} \) and \(\lambda_{I_1 \setminus I_s} \), respectively.

Remarks. 1. Note that, for any \(r \in \{1, 2, 3\} \), \(I_1 \setminus I_r \) is of type \(A \), so we know from the results of Section 3 precisely when \(V(P_{I_1 \setminus I_r}) \) is minimal.

2. It might be helpful to illustrate this theorem diagrammatically. First, if \(g \) is of type \(A \), \(\lambda \in P^+ \), \(P = (P_i)_{i \in I} \in P^\lambda \), and if the roots of \(P_i \) form a \(q \)-segment with centre \(a_i \) for all \(i \in I \), then we draw an arrow above the Dynkin diagram of \(g \),

\begin{center}
or
\end{center}

according as the \(a_i \) satisfy condition (a) or condition (b) in 3.1, respectively. If \(g \) is of type \(D \) or \(E \), the theorem says that, under the hypotheses of 6.1(a), the minimal element of \(Q^\lambda \) is given by the diagram

\begin{center}
and under the hypotheses of 6.1(b), the three minimal elements of \(Q^\lambda \) are given by the diagrams
\end{center}
Proof of 6.1. Suppose first that $I_r(\lambda) = I_r$ for all r. Then, if $V(\mathbf{P})$ is minimal, by 4.2 the roots of P_i form a q_i-segment, and obviously $P_i = 1$ if $i \neq i_0$. By 1.7, $V(\mathbf{P})$ is unique up to twisting with an automorphism τ_t, for some $t \in \mathbb{C}^\times$. In particular, the element $[V(\mathbf{P})] \in Q^\lambda$ is unique and part (a) is proved in this case.

Suppose next that $I_r(\lambda) = I_r$ for exactly two values of r, say $r = 1, 2$, without loss of generality. If $V(\mathbf{P})$ is a minimal affinization of λ, then, by 4.2, $V(\mathbf{P}_{I_3 \cup \{i_0\}})$ is a minimal affinization of $\lambda_{I_3 \cup \{i_0\}}$. By 3.1, for all $i \in I_3 \cup \{i_0\}$ such that $\lambda(i) > 0$, the roots of P_i form a q_i-segment with centre a_i, say, where a_i/a_{i_0} satisfies either condition (a) or condition (b) in 3.1. By 5.1, $V(\mathbf{P})$ satisfies condition (a) iff $(\hat{\omega}(V(\mathbf{P})))^*$ satisfies condition (b). Since $[V(\mathbf{P})] = [\hat{\omega}(V(\mathbf{P})))^*$ it follows that the equivalence class of $V(\mathbf{P})$ is uniquely determined.

For the remainder of the proof of 6.1(a), and also for the proof of 6.1(b), we introduce the following notation. If $r \in \{1, 2, 3\}$, let $i_r \in I_r$ be the unique index such that

(i) $\lambda(i_r) \neq 0$, and
(ii) $\{i_r\} \cup \{i_0\} \cup I_r(\lambda)$ is of type A.

Note that, if $I_r(\lambda) \neq I_r$, then i_r and i_0 are the nodes of $\{i_r\} \cup \{i_0\} \cup I_r(\lambda)$ which are connected to only one other node (and $i_r = i_0$ if $I_r(\lambda) = I_r$).

Define $\theta_r(\lambda) = \sum_{i \in I_r(\lambda)} \alpha_i \in Q^+$.

Proposition 6.2. Let $\lambda \in P^+$ satisfy $\lambda(i_0) > 0$, and let $\mathbf{P} \in \mathcal{P}^\lambda$. Assume that $V(\mathbf{P}_{I_r \cup \{i_0\}})$ is minimal for $r = 1, 2, 3$.

(i) Let $\{r, s, t\} = \{1, 2, 3\}$. The following statements are equivalent:
(a) $V(\mathbf{P}_{I_r \cup \{i_0\}})$ is a minimal affinization of $\lambda_{I_r \cup \{i_0\}}$;
(b) $V(\mathbf{P}_{I_r(\lambda) \cup \{i_0, i_r, i_s\} \cup I_r(\lambda)})$ is a minimal affinization of $\lambda_{I_r(\lambda) \cup \{i_0, i_r, i_s\} \cup I_r(\lambda)}$;
(c) $m_{\lambda - \alpha_{i_0} - \alpha_{i_s}} - \theta(\lambda) - \theta_r(\lambda) \in V(\mathbf{P})$.

(ii) Let $0 \neq \eta = \sum_j s_j \alpha_j \in Q^+$ be such that $m_{\lambda - \eta} V(\mathbf{P}) > 0$. Then,
(a) $s_{i_0} \neq 0$;
(b) if $j \in I_r$ is such that $s_j > 0$, and if $J \subseteq I_r \cup \{i_0\}$ is the connected subset of type A which has j and i_0 as its ‘end’ nodes, then $s_i > 0$ for all $i \in J$;
(c) if $I_r \neq I_r(\lambda)$ then either $s_j > 0$ for all $j \in I_r(\lambda)$ or $s_j = 0$ for all $j \in I_r \setminus I_r(\lambda)$.

Proof of 6.2. (i) The equivalence (a) \(\Leftrightarrow\) (b) is obvious from 3.1. The equivalence (b) \(\Leftrightarrow\) (c) follows from 2.4 and 2.3.
(ii) Suppose that \(m_{\mu}(V(P)) > 0 \). Write \(\mu = \lambda - \eta \), where \(\eta = \sum_j s_j \alpha_j \). Suppose that \(s_{i_0} = 0 \). Let \(\{r, s, t\} = \{1, 2, 3\} \). Since \(V(P_{I_r \cup \{i_0\}}) \) is minimal of type A, it follows from 2.4 and 3.1 that \(m_{\nu}(V(P_{I_r \cup \{i_0\}})) = 0 \) where \(\nu = \lambda_{I_r \cup \{i_0\}} - \eta' \), and \(\eta' \in Q^+_{I_r \cup \{i_0\}} \). Applying 2.6 to the decomposition \(I = I_r \cup \{i_0\} \cup (I_s \cup I_t) \) now shows that \(s_i = 0 \) for all \(i \in I_r, r = 1, 2, 3 \). Hence, \(\eta = 0 \), contradicting our assumption. This proves (a).

Let \(j \in I_r \) be such that \(s_j > 0 \) and let \(J \subseteq I_r \cup \{i_0\} \) be the type A subset which has \(j \) and \(i_0 \) as its ‘end’ nodes. Suppose that \(s_i = 0 \) for some \(i \in J \), say \(i = j' \). We have a unique decomposition

\[
I = J' \amalg \{j'\} \amalg J''
\]

(disjoint union), where \(j \in J' \subset I_r, i_0 \in J'' \cup \{j'\} \), \(J' \) is of type A and \(a_{rs} = 0 \) if \(r \in J', s \in J'' \). Applying 2.6, 2.4 and 3.1 again gives that \(s_i = 0 \) for all \(i \in J' \), contradicting \(s_j \neq 0 \). This proves (b).

Part (c) now follows by considering separately the cases \(s_i > 0 \) and \(s_i = 0 \).

We now return to the proof of 6.1(a) in the case \(I_1(\lambda) = I_1, I_r(\lambda) \neq I_r, r = 2, 3 \). Suppose for a contradiction that \(V(P_{I_1 \setminus I_1}) \) is not minimal. By 6.2(i) this means that

\[
\tag{13}
m_{\lambda - \theta_2(\lambda) - \theta_3(\lambda) - \alpha_{i_2} - \alpha_{i_3} - \alpha_{i_0}}(V(P)) > 0.
\]

By 3.1, there exists a unique \(Q = (Q_i)_{i \in I} \in \mathcal{P}^\lambda \) such that

(i) \(Q_i = 1 \) if \(i \in I_1 \);
(ii) \(Q_i = P_i \) if \(i \in I_2 \cup \{i_0\} \);
(iii) \(V(Q_{I_1 \setminus I_1}) \) is a minimal affinization of \(\lambda_{I_1 \setminus I_1} \).

We prove that \([V(Q)] < [V(P)] \), contradicting the minimality of \([V(P)] \).

Clearly, \([V(Q)] \neq [V(P)] \), since, by 6.2(i),

\[
\tag{14}
m_{\lambda - \theta_2(\lambda) - \theta_3(\lambda) - \alpha_{i_2} - \alpha_{i_3} - \alpha_{i_0}}(V(Q)) = 0.
\]

Suppose that \(\mu \in P^+ \) is such that \(m_{\mu}(V(Q)) > 0 \), and let \(\mu = \lambda - \eta, \eta \in Q^+ \).

Write \(\eta = \sum_j s_j \alpha_j \). If \(s_{i_2} > 0 \) and \(s_{i_3} > 0 \), it follows from 6.2(ii)(a) that \(\eta > \theta_2(\lambda) + \theta_3(\lambda) + \alpha_{i_0} + \alpha_{i_2} + \alpha_{i_3} \). Equations (13) and (14) now show that condition 1.8(ii) is satisfied with \(\nu = \lambda - \theta_2(\lambda) - \theta_3(\lambda) - \alpha_{i_2} - \alpha_{i_3} - \alpha_{i_0} \).

If \(s_{i_2} \geq 0 \) and \(s_{i_3} = 0 \), let \(J = I_1 \cup I_2 \cup I_3(\lambda) \cup \{i_0\} \). By 2.4 and the fact that \(P_J = Q_J \), we get

\[
m_{\mu}(V(Q)) = m_{\mu,J}(V(Q_J)) = m_{\mu,J}(V(P_J)) = m_{\mu}(V(P)),
\]

so 1.8(i) is satisfied. If \(s_{i_2} = 0 \) and \(s_{i_3} > 0 \), let \(J' = I_1 \cup I_2(\lambda) \cup I_3 \cup \{i_0\} \). By 2.4, it suffices to show that \(m_{\mu,J'}(V(P_{J'})) = m_{\mu,J'}(V(Q_{J'})) \). Note that \(P_i = Q_i = 1 \) if \(i \in J' \setminus (I_3 \cup \{i_0\}) \), and that, if \(i \in I_3 \cup \{i_0\} \), then, by 4.2 and 3.1, there exists \(a_i, \gamma \in \mathbb{C}^\times \) such that the roots of \(P_i \) (resp. \(Q_i \)) form a \(q_i \)-segment with centre \(a_i \) (resp. \(\gamma a_i^{-1} \)). It follows from 5.1 that

\[
(\tau^*(V(P_{J'})))^* \cong \tau^*(V(Q_{J'}))
\]
for some $t \in \mathbb{C}^\times$ (here, $\hat{\omega}$ and τ_t are the appropriate automorphisms of $U_q(\hat{\mathfrak{g}}_{ir})$). This proves our assertion.

We have now shown that, if $V(P)$ is a minimal affinization of λ, then $V(P_{I \setminus I_1})$ is a minimal affinization of $\lambda_{I \setminus I_1}$. Conversely, suppose that $V(P_{I \setminus I_1})$ is minimal. Choose $Q \in \mathcal{P}^\lambda$ such that $V(Q)$ is minimal and $[V(Q)] \leq [V(P)]$. By the first part of the proof, $V(Q_{I \setminus I_1})$ is minimal. By 3.1, there exists $\gamma \in \mathbb{C}^\times$ such that either

(i) for all $i \in I \setminus I_1$, there exists $a_i \in \mathbb{C}^\times$ such that the roots of P_i (resp. Q_i) form a q_i-segment with centre a_i (resp. γa_i),

or

(ii) for all $i \in I \setminus I_1$, there exists $a_i \in \mathbb{C}^\times$ such that the roots of P_i (resp. Q_i) form a q_i-segment with centre a_i (resp. γa_i^{-1}).

Since $P_i = Q_i = 1$ for $i \in I_1$, it follows from 1.7 and 5.1 that either

(i) $V(P) \cong \tau^* \nu(V(Q))$,

or

(ii) $V(P) \cong (\hat{\omega}^* \tau^* \nu(V(Q)))^*$,

for some $t \in \mathbb{C}^\times$. But, in both cases, $[V(P)] = [V(Q)]$, so $[V(P)]$ is minimal.

This completes the proof of 6.1(a).

Suppose now, for 6.1(b), that $I_r(\lambda) \neq I_r$ for all r, that $V(P)$ is a minimal affinization of λ, but that neither $V(P_{\setminus I_2})$ nor $V(P_{\setminus I_3})$ is minimal. By 3.1 and 4.2, it follows that $V(P_{I \setminus I_1})$ is not minimal either (this is clear from the diagrams in the second remark following the statement of 6.1). By 6.2(i),

\[
(15) \quad m_{\lambda - \alpha_{i_0} - \alpha_{i_r} - \alpha_{i_3} - \theta_r(\lambda) - \theta_3(\lambda)}(V(P)) > 0
\]

for all $r \neq s \in \{1, 2, 3\}$. By 3.1 again, there exists $Q \in \mathcal{P}^\lambda$ such that $V(Q_{I \setminus I_1})$ is minimal and $Q_i = P_i$ if $i \in I_1 \cup I_2$. Notice that then $V(Q_{I \setminus I_2})$ is also a minimal affinization of $\lambda_{I \setminus I_2}(\lambda)$ and hence by 6.2(i)

\[
(16) \quad m_{\lambda - \alpha_{i_0} - \alpha_{i_r} - \alpha_{i_3} - \theta_r(\lambda) - \theta_3(\lambda)}(V(Q)) = 0, \quad r = 1, 2
\]

By (15), $[V(Q)] \neq [V(P)]$ and we prove next that $[V(P)] \prec [V(Q)]$.

Suppose that $\mu = \lambda - \eta$, where $\eta \in Q^+$ is such that $m_\mu(V(Q)) > 0$.

If either $s_{i_1}, s_{i_2} > 0$ or $s_{i_2}, s_{i_3} > 0$, then 6.2(ii)(a), together with equations (15) and (16), shows that 1.8(ii) holds with

\[
\nu = \lambda - \alpha_{i_0} - \alpha_{i_1} - \alpha_{i_3} - \theta_r(\lambda) - \theta_3(\lambda)
\]

for $r = 1$ or 2.

If $s_{i_3} = 0$, set $J = I_1 \cup I_2 \cup \{i_0\} \cup I_3(\lambda)$. By 6.2(ii)(b), $\eta \in Q^+_J$, and noting that $P_J = Q_J$, we get from 2.4 that

\[
m_\mu(V(P)) = m_\mu(V(P_{I})) = m_\mu(V(Q_{I})) = m_\mu(V(Q)).
\]

Finally if $s_{i_3} > 0$ and $s_{i_1} = s_{i_2} = 0$, take $J = I_1(\lambda) \cup I_2(\lambda) \cup \{i_0\} \cup I_3$. By 6.2(ii)(b), $\eta \in Q^+_J$. The same argument used in this case in 6.1(a) shows that, for some $\gamma \in \mathbb{C}^\times$,

\[
V(P_J) \cong \tau^*(V(Q_J)) \quad \text{or} \quad V(P_J) \cong (\hat{\omega}^* \tau^*(V(Q_J)))^*.
\]
In both cases, $m_\mu(V(P)) = m_\mu(V(Q))$, so 1.8(i) is satisfied.

We have now shown that, if $V(P)$ is minimal, then, for some $r \neq s$ in $\{1, 2, 3\}$, $P \in \mathcal{P}_{r,s}^\lambda$, where

$$\mathcal{P}_{r,s}^\lambda = \{P \in \mathcal{P}^\lambda \mid V(P_{I\setminus I_r}) \text{ and } V(P_{I\setminus I_s}) \text{ are both minimal}\}.$$

Note that, by 1.7, 3.1 and 5.1, if $P, Q \in \mathcal{P}_{r,s}^\lambda$, then $[V(P)] = [V(Q)]$. Moreover, if $P \in \mathcal{P}_{r,s}^\lambda$ and $t \in \{1, 2, 3\}\{r, s\}$, then, by 3.1, $V(P_{I\setminus I_t})$ is not minimal, and hence by 6.2(i),

$$m_{\lambda - \alpha_{i_0} - \alpha_{i_1} - \alpha_{i_2} - \theta_r(\lambda) - \theta_s(\lambda)}(V(P)) > 0,$$

$$m_{\lambda - \alpha_{i_0} - \alpha_{i_1} - \alpha_{i_2} - \theta_r(\lambda) - \theta_t(\lambda)}(V(P)) = 0,$$

$$m_{\lambda - \alpha_{i_0} - \alpha_{i_1} - \alpha_{i_2} - \theta_t(\lambda) - \theta_s(\lambda)}(V(P)) = 0.$$

It follows that, if $P^{r,s} \in \mathcal{P}_{r,s}^\lambda$, then the $[V(P^{r,s})]$ for $r < s$ in $\{1, 2, 3\}$, are distinct elements of Q_λ. We prove that all three elements are minimal. For this, it suffices to show that none of them is strictly less than the other two.

Suppose, for example, that $[V(P^{1,2})] \prec [V(P^{1,3})]$. Since

$$m_{\lambda - \alpha_{i_0} - \alpha_{i_1} - \alpha_{i_2} - \theta_1(\lambda) - \theta_2(\lambda)}(V(P^{1,2})) > 0,$$

$$m_{\lambda - \alpha_{i_0} - \alpha_{i_1} - \alpha_{i_2} - \theta_1(\lambda) - \theta_2(\lambda)}(V(P^{1,3})) = 0,$$

there exists $\eta \in Q^+$ such that $\eta < \alpha_{i_0} + \alpha_{i_1} + \alpha_{i_2} + \theta_1(\lambda) + \theta_2(\lambda)$ and $m_{\lambda - \eta}(V(P^{1,3})) > m_{\lambda - \eta}(V(P^{1,2}))$. But this is impossible, since $V(P^{1,3}_{I\setminus I_3})$ is minimal, so by 2.4 and 3.3, $m_{\lambda - \eta}(V(P^{1,3})) = 0$.

The proof of Theorem 6.1 is complete. □

References

1. Beck, J., Braid group action and quantum affine algebras, preprint, MIT, 1993.
2. Chari, V., Minimal affinizations of representations of quantum groups: the rank 2 case, preprint, 1994.
3. Chari, V. and Pressley, A. N., Quantum affine algebras, Commun. Math. Phys. 142 (1991), 261-83.
4. Chari, V. and Pressley, A. N., Small representations of quantum affine algebras, Lett. Math. Phys. 30 (1994), 131-45.
5. Chari, V. and Pressley, A. N., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
6. Chari, V. and Pressley, A. N., Quantum affine algebras and their representations, preprint, 1994.
7. Drinfel’d, V. G., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212-6.
8. Lusztig, G., Introduction to Quantum Groups, Progress in Mathematics 110, Birkhäuser, Boston, 1993.