Towards an AI Coach to Infer Team Mental Model Alignment in Healthcare

Sangwon Seo
Department of Computer Science
Rice University
Houston, TX, USA
sangwon.seo@rice.edu

Lauren R. Kennedy-Metz
Harvard Medical School and
U.S. Dept. of Veterans Affairs
Boston, MA, USA
Lauren.Kennedy-Metz@va.gov

Marco A. Zenati
Harvard Medical School and
U.S. Dept. of Veterans Affairs
Boston, MA, USA
marco_zenati@hms.harvard.edu

Julie A. Shah
Massachusetts Institute of Technology
Cambridge, MA, USA
julie_a_shah@csail.mit.edu

Roger D. Dias
Brigham and Women's Hospital
Harvard Medical School
Boston, MA, USA
rdias@bwh.harvard.edu

Lauren R. Kennedy-Metz
Harvard Medical School and
U.S. Dept. of Veterans Affairs
Boston, MA, USA
Lauren.Kennedy-Metz@va.gov

Marco A. Zenati
Harvard Medical School and
U.S. Dept. of Veterans Affairs
Boston, MA, USA
marco_zenati@hms.harvard.edu

Vaibhav V. Unhelkar
Department of Computer Science
Rice University
Houston, TX, USA
unhelkar@rice.edu

Abstract—Shared mental models are critical to team success; however, in practice, team members may have misaligned models due to a variety of factors. In safety-critical domains (e.g., aviation, healthcare), lack of shared mental models can lead to preventable errors and harm. Towards the goal of mitigating such preventable errors, here, we present a Bayesian approach to infer misalignment in team members’ mental models during complex healthcare task execution. As an exemplary application, we demonstrate our approach using two simulated team-based scenarios, derived from actual teamwork in cardiac surgery. In these simulated experiments, our approach inferred model misalignment with over 75% recall, thereby providing a building block for enabling computer-assisted interventions to augment human cognition in the operating room and improve teamwork.

Index Terms—teamwork, surgical data science, cardiac surgery, Bayesian inference, patient safety, artificial intelligence

I. INTRODUCTION

Alignment of mental models among the members of a team is critical to achieving effective teamwork. In absence of shared understanding [1] about the goals, plans and context of the team, teamwork often results in preventable errors [2, 3]. For instance, lack of shared mental models between members of a flight crew can result in aviation accidents [3]. Similarly, misalignment between members of a surgical team can lead to preventable harm and adverse events [4]. Teams can adopt best practices (such as team training and debriefing) to improve their mental model sharing [5–7]. Nevertheless, the possibility of preventable error persists due to the impact of execution-time factors, such as high workload, surgical flow disruptions or fatigue [8].

Informed by the challenges of teamwork in the cardiac operating room (Fig. 1), our goal is to mitigate preventable errors of human teams performing goal-oriented and time-critical tasks. Team assessments, through questionnaires and metrics of evaluating team fluency, provide one avenue for teams to improve shared understanding and teamwork [9–10]. However, due to their inherent post-hoc nature, it is difficult to utilize these assessments during time-critical tasks and alleviate preventable errors arising due to execution-time factors. Moreover, while collaborating, it is not easy for team members to self-assess their teamwork, due to distributed cognition and the partially observable nature of collaboration.

We posit that augmenting post-hoc assessments with on-the-fly interventions can help mitigate preventable errors caused due to execution-time factors. We envision a digital team member (AI Coach) that can assess and improve teamwork by monitoring the team members during their collaborative task execution and providing timely interventions. Due to the advances in surgical data science, sensing hardware and software [12–13], the opportunity is ripe to develop such an execution-time tool. However, several challenging problems need to be resolved to realize its vision. For instance, based on the sensed information, the AI Coach would need to infer whether the mental models (a latent quantity) are aligned. Similarly, it would need to identify when to provide interventions.
to improve teamwork. In this work, we describe our research towards realizing one such capability: namely, execution-time inference of the alignment of team member’s mental models.

We focus on teams with fixed membership and performing sequential collaborative tasks in stochastic environments. Specifically, we consider collaborative tasks that can be represented as a partially observable variant of Markov decision processes (MDPs), where the latent variables represent the team’s preference (or, equivalently, mental model) regarding collaborative task execution [15]. In the ideal case each team member should maintain the same preference; however, in practice, team members may have different estimates of the “shared” preference (i.e., misalignment of mental models) due to ineffective team communications, lack of expertise, or a variety of execution-time factors.

To infer and predict misalignment of mental models, we provide a Bayesian approach that leverages prior knowledge about the collaborative task and data of the team members’ task execution (namely, actions and observable states of the task). As an exemplary application, we demonstrate our approach using two simulated collaboration scenarios, inspired by teamwork during cardiac surgery procedures (e.g., CABG, SAVR, etc): namely (a) protamine administration to reverse heparin and (b) surgical tool handovers. In the experiments conducted on simulated tasks, our approach could infer model misalignment with over 75% recall. Encouraged by these results, in our ongoing work, we are extending our approach to enable its use in a simulated operating room (OR). The paper concludes with a brief discussion of this ongoing and future work, with emphasis on the computational challenges.

II. REPRESENTING COLLABORATIVE TASKS

A mathematical representation of teamwork is necessary to enable automated reasoning of team behavior. Motivated by the variety of teaming contexts, research on human teaming, multi-agent systems and human-robot collaboration has led to several formalism to represent teamwork [17]–[19]. Here, we utilize a multi-agent and partially observable variant of MDPs, to represent goal-oriented collaborative tasks of interest.

MDPs provide a framework to represent sequential decision-making tasks [16]. They are specified by a set of states \(s \in S \), which represent the task context; a set of actions \(a \in A \), which represent the actions that can be taken while performing the task; a transition model \(T : S \times A \times S \rightarrow [0, 1] \), which specifies the distribution over the next task state given current state and action; and a reward function \(R : S \rightarrow \mathbb{R} \), which specifies the reward of reaching a state and can encode task goals. As MDPs can encode stochastic outcomes and goals, they provide a useful framework to represent real-world sequential tasks.

MDPs, however, represent tasks with one decision-maker. To represent teams, we consider its multi-agent variants, where the action represents joint action of a team. Specifically, for a team with \(n \) members, the joint action is represented as \(a = [a_1, a_2, \ldots, a_n] \), thereby enabling modeling of multiple decision-makers. The task progress (through the transition model), now, depends on the joint action (i.e., action of each team member). The behavior of a team, for a fully observable multi-agent MDP, can be specified using \(n \) policies, where \(\pi_i(a_i|s) \) denotes the policy of the \(i \)-th team member.

In real-world tasks, the state may not be fully observable. Especially for humans, their preferences or (partial) understanding of the task may influence their behavior. Similarly, for human teams, situation awareness may influence each team member’s policy. Thus, we augment the task state, with a latent feature \(x \in X \), which denotes the team member’s latent preferences regarding the task. In general, the latent feature may evolve during the task; however, here, we limit our scope to time-invariant latent states. Thus, the collaborative task can be described using the tuple \((S, X, A, T, R)\). Next, we instantiate this task model for two scenarios inspired by teamwork in the OR.

A. Protamine Administration

Cardiac surgery is performed by a team of surgeons, anesthesiologists, perfusionists, and nurses (as shown in Figs. [12]–[2]): in academic medical centers, a subset of the team can be trainees (e.g. residents, fellows, students) with limited task experience. After successful weaning of the patient from the cardiopulmonary bypass machine, alongside removal of the venous and arterial cannulas, protamine needs to be administered to reverse the anticoagulant effect of heparin and restore normal blood coagulation. The resident anesthesiologist (RA) administers protamine after receiving a verbal request from the attending surgeon (AS), after which the surgeon begins removing the cannulas. One caveat is that a patient may be allergic to protamine leading to a life-threatening “protamine reaction” syndrome; hence, protamine needs to be administered intravenously incrementally over 5-10 minutes and not as a single intravenous bolus.

Administration of protamine as a bolus (i.e., all at once) can lead to a protamine reaction with refractory vasoplegia unless action is not taken quickly and efficiently by the team; however, due to limited prior experience, an RA can have an incorrect mental model of the team’s strategy (incremental vs. bolus administration). In a prior documented case in the literature, protamine administration was conducted by the RA improperly as a bolus, despite the oversight of the attending anesthesiologist [8]. Meanwhile, physical barriers including the sterile drape separating the RA from the AS preclude explicit awareness of such an error by the team unless verbally communicated. Thus, misalignment of mental models may occur if the team is not proceeding through the surgical steps as expected. If an AI Coach can infer this lack of shared mental models (between the AS and RA), it can help prevent associated adverse outcomes.

Thus, as our first task, we represent the collaboration between the AS and RA during protamine administration using the task model. The goal of the team (encoded as \(R \)) is to safely administer protamine and successfully remove cannulas while avoiding any adverse outcomes. The observable component of the task state \(s \in S \) is defined by the following features: protamine administration phase (\(s_1 \), a
In addition to the observable features, which can be measured using sensors and instrumentation in the operating room [13], [14], the team behavior depends on the proper understanding of the task. In particular, the team may have one of two mental states regarding protamine administration: bolus or incremental (especially because heparin is always given as a bolus). These mental states correspond to the latent state $x \in \mathcal{X}$ in the task model, as they cannot be measured by a physiological sensor. The surgeon is modeled to have the following actions $a_1 \in A_1$: request protamine, remove cannula, and No-op. Similarly, the anesthesiologist can take the following actions $a_2 \in A_2$: administer incremental dosage, administer bolus, communicate, and No-op.

The transition model T represents the effect of team members’ actions on the task state. The task begins prior to the protamine administration phase ($s_1 = 0$), and transitions to the protamine administration phase ($s_1 = 1$) after the surgeon’s ‘request’ action. The ‘remove cannula’ action updates the status of cannula removal (s_3) deterministically. Similarly, the protamine administration actions update the status of protamine administration (s_2): specifically, ‘bolus’ changes $s_2 = 100\%$, where ‘incremental dosage’ increments s_2 first by a test dosage and, subsequently, by 25%. The incremental dosage leads to an allergic reaction with 0.01 probability. Similarly, bolus administration of protamine leads to an adverse reaction with 0.8 probability. The No-op and ‘communicate’ actions do not change the task state; however, we posit that a more engaged resident (with the correct task understanding) is likely to communicate more often. The scenario terminates after the goal is achieved or when the patient exhibits adverse or allergic reaction, after which the surgical team adopts specific protocols to restore the patient’s stability.

B. Surgical Tool Delivery

As the second task, we model the handovers (between scrub and circulating nurses) encountered in surgery. To model this task, we consider a grid-world representation of the operating area (Fig. 2) and focus on the sub-team of surgeon, scrub nurse (SN), and circulating nurse (CN). During the preoperational stage, required surgical tools are prepared and placed in the sterile area next to the operating table. However, every so often, an additional tool (or item, such as sutures) may be required to be delivered from outside the sterile area. In such situations, SN may ask the CN to deliver the requisite tool. Incorrect tool delivery, due to lack of shared mental models arising from ineffective communication of the surgeon’s preferences, can delay the surgery and lead to preventable harm in time-critical situations. In such situations, an AI Coach can help detect model misalignment and mitigate delivery of incorrect tools.
A. Problem Statement

To arrive at the algorithm, we first provide a mathematical description of the problem statement. For a given task specification, we assume that each team member as well as the AI Coach can observe (through sensors) the task’s observable features and, thus, maintains a shared understanding of the state component s. However, each team member can potentially maintain a different understanding regarding the latent feature x, where the estimate of i-th team member is denoted as \hat{x}_i. Further, the policy of the i-th team member depends on both latent and observable features, and is denoted as $\pi_i(a_i|s, \hat{x}_i)$. In a team with shared understanding, all team members will maintain the same estimate of the latent feature (i.e., $\hat{x}_1 = \hat{x}_2 = \cdots = \hat{x}_n$). However, if the estimates differ, the team members will have misaligned mental models.

The AI Coach seeks to infer this model misalignment given the task model (S, X, A, T, R), team members’ policies $(\pi_1, \pi_2, \cdots, \pi_n)$, and data of team’s task execution (i.e., s, a-sequences). The task execution sequences are represented as $\tau = (s^0, a^0, s^1, a^1, \cdots, s^k, a^k)$, where the subscript denote the sequence indices, s^0 denotes the initial task state, and k denotes the sequence length. Note that only observable state features can be sensed, thus the task execution data excludes latent feature of the task state (x).

B. Inference Algorithm

We adopt a Bayesian approach to infer model misalignment. To estimate the quantity of interest (x), in addition to data, Bayesian algorithms require specification of prior probability $p(x)$ and likelihood model $p(data|x)$. Here, we utilize the task and policy specifications to arrive at the likelihood model, while noting that, in general, its specification is non-trivial. In our ongoing work, we are actively developing approaches to learn these models from training data, for the case where team members’ policies are difficult to specify.

In our case, the Bayesian algorithm seeks to infer the latent state \hat{x} for each member of the team. Let us denote this joint estimate as $\hat{x} = (\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n)$. Given the data, the posterior probability is computed as follows,

$$p(\hat{x}|\tau) \propto p(\tau|\hat{x})p(\hat{x}) = p(s^0, a^0, s^1, \cdots, s^k|\hat{x})p(\hat{x})$$

$$= p(\hat{x})p(s^0) \prod_{j=0}^{k-1} T(s^{j+1}|a^j, s^j)P(a^j|s^j, \hat{x})$$

$$\propto \prod_{i=1}^n \left(\prod_{j=0}^{k-1} \pi_i(a^j_i|s^j, \hat{x}_i) \right), \quad (1)$$

where, we assume that the prior probabilities and policies corresponding to each team member are independent, i.e.,

$$p(\hat{x}) = p(\hat{x}_1)p(\hat{x}_2) \cdots p(\hat{x}_n) \quad (2)$$

$$P(a|s, \hat{x}) = \pi_1(a_1|s, \hat{x}_1)\pi_2(a_2|s, \hat{x}_2) \cdots \pi_n(a_n|s, \hat{x}_n). \quad (3)$$

IV. EXPERIMENTS

To evaluate the inference approach, we utilize the collaboration scenarios described in Sec. II. For each scenario, we implement the Markovian task model (detailed in Sec. II-A), specify ground truth policies of the team members, and generate synthetic data of task execution using the task and policy specifications. Execution sequences are created by first assigning latent states \hat{x}_i to the team member and, then iteratively, (a) sampling team members’ action a using their policy, latent state \hat{x}_i, and task state s, and (b) sampling the next state s' in the sequence using the transition model $T(s'|s, a)$, until the task termination criteria is reached.

A. Protamine Administration

We generate 300 task sequences for the simulated protamine administration task, where model misalignment could occur due to incorrect task understanding. In our simulations, the AS always expects incremental protamine administration, while the RA may (incorrectly) administer it as a bolus with probability 0.5. We describe the team member’s policies next.

The scenario begins prior to protamine administration phase, during which the RA may communicate (e.g., ask for supervision, provide updates) with AS. We model that an RA which communicates more often is less likely to have an incorrect understanding of the task (i.e., misaligned mental model). During the task, the AS initiates the protamine administration phase through a verbal communication, after which protamine is administered bolus or incrementally by the RA based on their task understanding \hat{x}. Cannula removal is interleaved with the protamine administration. The AI Coach can sense the observable state s, team’s actions a, and seeks to infer \hat{x}. Among the 300 task sequences generated, in 155 the team exhibits model misalignment. We evaluate the inference performance with both full and partial task sequences.

Post-hoc performance As the AI coach can monitor the amount of protamine administered, with full task sequences, it can always infer model misalignment accurately. While post-hoc inference of misalignment does not prevent the anesthesiologist from performing the erroneous action (bolus), it can help identify near-miss events (i.e., where the incorrect action did not lead to an adverse outcome; 31 out of 300 in our synthetic data) and help the team achieve a shared mental model for subsequent surgeries.

Execution-time performance Since the algorithm does not impose any condition on the length of sequence, it can also provide an estimate during the task (i.e., given partial task execution). For the current task, we evaluate this capability for when the surgeon requests protamine (i.e., before a potential error). Even with a partial task sequence, the algorithm results in overall estimation accuracy of 66.3%. In life-critical tasks, where the goal of AI Coach is to mitigate adverse outcomes, false alarms are less critical. Among the 155 sequences with misaligned mental models, the algorithm could predict model misalignment in 119 cases, i.e., exhibiting 76.8% recall.
B. Surgical Tool Delivery

For the tool delivery task, we generate 300 synthetic task sequences and 271 samples among them include the situation where a tool was requested. The task sequences include the positions of the tools and CN, patient status (i.e., whether an incision has been made or not), item request status (i.e., whether SN has requested an item from CN), and actions of the team members. While the AI Coach can sense when an item request is made, to reflecting sensing capabilities in the OR, it cannot detect which item was requested in our simulations. Thus, the inference algorithm needs to infer the latent states (i.e., tool being requested, \(\hat{z} \)) for both SN and CN, to estimate model alignment. Similar to the protamine case, we evaluate both the post-hoc and execution-time performance. On average, the full sequences are \(\approx 30 \) steps; while the partial sequences include 7 steps (2 steps before the request and 5 steps after the request). The inference algorithm results in 75.9% and 98.5% recall with partial and full sequences, respectively.

V. DISCUSSIONS

In this paper, we propose the problem of inferring mental model alignment in collaborative tasks and provide an execution-time approach to infer model alignment using observable features of team behavior. Through computer simulations of surgery-inspired collaborative scenarios, we provide proof-of-concept results that demonstrate that the inference of model alignment is computationally feasible and can help mitigate preventable harm. For instance, in the protamine administration scenario, the proposed approach could predict model misalignment (and associated errors) 76.8% given task model, policy specifications, and partial task sequences.

Further, even in the challenging tool delivery task where multiple strategies may be valid (e.g., request of either tool is valid in the tool delivery domain), the inference algorithm could infer model misalignment with 75.9% recall with partial task sequences (i.e., before the tool is delivered). In addition to mitigating preventable harm, thus, this execution-time inference of can also help improve team’s task performance. For instance, an AI Coach that provides interventions based on inferred model misalignment, can help in the early detection of incorrect tool delivery; note that, without an AI Coach, the team would realize their error only after it is made.

Encouraged by these results, we are working towards the vision of realizing an AI Coach for human teams by relaxing the requirement of model specification and addressing associated sensing challenges. For instance, the proposed approach assumes accurate specification of team members’ policies and complete observability of their actions, both of which might be difficult to meet in practice. Hence, we are exploring learning-based approaches to arrive at team policies in presence of latent states \([20, 21]\). To address the challenges associated with state and action observability, the development of an AI Coach would be greatly enhanced by nuanced surgical tool detection and people tracking methodology. The possibilities of incorporating these approaches into the OR are steadily increasing as surgical data science takes hold in surgical environments \([14]\). Additionally, robust and sensitive psychophysiological sensors equipped to team members may provide insight into impending mental model misalignments and function to provide automated feedback on team members’ cognitive states.

REFERENCES

[1] S. Converse, J. Cannon-Bowers, and E. Salas, “Shared mental models in expert team decision making,” Individual and group decision making: Current issues, vol. 221, pp. 221–46, 1993.
[2] D. P. Baker, S. Gustafson, J. Beaubien, E. Salas, and P. Barach, “Medical teamwork and patient safety: the evidence-based relation,” AHRQ publication, vol. 5, no. 53, pp. 1–64, 2005.
[3] C. K. Kolander, “Flight and cabin crew teamwork: improving safety in aviation,” in Crew Resource Management. Elsevier, 2019, pp. 407–420.
[4] J. A. Walr et al., “Patient safety in the cardiac operating room: human factors and teamwork: a scientific statement from the american heart association,” Circulation, vol. 128, no. 10, pp. 1139–1169, 2013.
[5] P. Van den Bossche, W. Gijselaers, M. Segers, G. Woltjer, and P. Kirschner, “Team learning: building shared mental models,” Instruc- tional Science, vol. 39, no. 3, pp. 283–301, 2011.
[6] E. Salas, S. Tannenbaum, D. Cohen, and G. Latham, Developing and enhancing teamwork in organizations: Evidence-based best practices and guidelines. John Wiley & Sons, 2013, vol. 33.
[7] J. Nelly, P. D. Mills, Y. Young-Xu, B. T. Carney, P. West, D. H. Berger, L. M. Mazzia, D. E. Paull, and J. P. Bagian, “Association between implementation of a medical team training program and surgical mortality,” JAMA, vol. 304, no. 15, pp. 1693–1700, 2010.
[8] M. A. Zenati, K. B. Leissner, S. Zorza, L. Kennedy-Metz, S. J. Yule, and R. D. Dias, “First reported use of team cognitive workload for root cause analysis in cardiac surgery,” in Seminars in thoracic and cardiovascular surgery, vol. 31, no. 3. Elsevier, 2019, pp. 394–396.
[9] E. Britton, N. Simper, A. Leger, and J. Stephenson, “Assessing teamwork in undergraduate education: a measurement tool to evaluate individual teamwork skills,” Assessment & Evaluation in Higher Education, vol. 42, no. 3, pp. 378–397, 2017.
[10] P. MacAlpine and P. Stone, “Evaluating ad hoc teamwork performance in drop-in player challenges,” in International Conference on Autonomous Agents and MultiAgent Systems. Springer, 2017, pp. 168–186.
[11] R. D. Dias, M. A. Zenati, H. M. Conboy, L. A. Clarke, L. J. Osterweil, G. S. Avrunin, and S. J. Yule, “Dissecting cardiac surgery: A video-based recall protocol to elucidate team cognitive processes in the operating room,” Annals of surgery, 2021.
[12] L. Maier-Hein et al., “Surgical data science–from concepts to clinical translation,” arXiv preprint arXiv:2011.02284, 2020.
[13] L. R. Kennedy-Metz, R. D. Dias, R. Srey, G. C. Rance, C. Furlanello, and M. A. Zenati, “Sensors for continuous monitoring of surgeon’s cognitive workload in the cardiac operating room,” Sensors, vol. 20, no. 22, p. 6616, 2020.
[14] L. R. Kennedy-Metz, P. Mascagni, A. Torralba, R. D. Dias, P. Perona, J. A. Shah, N. Pidoy, and M. A. Zenati, “Computer vision in the operating room: Opportunities and caveats,” IEEE Transactions on Medical Robotics and Bionics, 2020.
[15] J. Kim, “Intelligent decision support for human team planning.” in IJCAI, 2018, pp. 5769–5770.
[16] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized POMDPs. Springer, 2010, vol. 1.
[17] B. J. Grosz and S. Kraus, “The evolution of SharedPlans,” in Foundations of rational agency. Springer, 1999, pp. 227–262.
[18] N. Schurr, R. Maheswaran, P. Scerri, and M. Tambe, “From STEAM to Machinetta: The evolution of a BDI teamwork model,” Cognition and Multiagent Interaction, 2004.
[19] O. Amir, B. Grosz, and K. Gajos, “MIP-nets: enabling information sharing in loosely-coupled teamwork,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.
[20] T. Osa, J. Pajariinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters et al., “An algorithmic perspective on imitation learning,” Foundations and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.
[21] V. V. Unhelkar and J. A. Shah, “Learning models of sequential decision-making with partial specification of agent behavior,” in AAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 2522–2530.