On Borsuk–Ulam theorems and convex sets

M. C. Crabb

Institute of Mathematics, University of Aberdeen, Aberdeen, UK

Correspondence
M. C. Crabb, Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, UK.
Email: m.crabb@abdn.ac.uk

Abstract
The Intermediate Value Theorem is used to give an elementary proof of a Borsuk–Ulam theorem of Adams, Bush and Frick [1] that if \(f : S^1 \to \mathbb{R}^{2k+1} \) is a continuous function on the unit circle \(S^1 \) in \(\mathbb{C} \) such that \(f(-z) = -f(z) \) for all \(z \in S^1 \), then there is a finite subset \(X \) of \(S^1 \) of diameter at most \(\pi - \pi/(2k+1) \) (in the standard metric in which the circle has circumference of length \(2\pi \)) such the convex hull of \(f(X) \) contains 0 \(\in \mathbb{R}^{2k+1} \).

MSC 2020
05E45, 52A20, 55M25, 55R25 (Primary), 54E35 (Secondary)

1 INTRODUCTION

We shall use the Intermediate Value Theorem to give an elementary proof of the following Borsuk–Ulam theorem of Adams, Bush and Frick in which \(k \geq 1 \) is a natural number, \(\zeta = e^{2\pi i/(2k+1)} \in \mathbb{C} \) and the metric \(d \) on the unit circle, \(S(\mathbb{C}) \), in \(\mathbb{C} \) is given by \(d(z, e^{i\theta}z) = |\theta| \) if \(|\theta| \leq \pi \).

Theorem 1.1 [1, Theorems 1 and 5]. Let \(f : S^1 = S(\mathbb{C}) \to \mathbb{R}^{2k+1} \) be a continuous map such that \(f(-z) = -f(z) \) for all \(z \in S(\mathbb{C}) \). Then there exist \(e_i \in \{\pm 1\}, i = 0, \ldots, 2k \), and \(z \in S(\mathbb{C}) \) such that 0 lies in the convex hull of the image \(f(X) \) of the finite set \(X = \{e_i\zeta^i z \mid i = 0, \ldots, 2k\} \), which is a subset of \(S(\mathbb{C}) \) with diameter at most \(\pi - \pi/(2k+1) \).

Moreover, there is an example of such a map \(f \) with the property that any finite subset \(X \subseteq S(\mathbb{C}) \) such that 0 lies in the convex hull of \(f(X) \) has diameter greater than or equal to \(\pi - \pi/(2k+1) \).

Consider, more generally, a continuous map \(f : S(\mathbb{R}^n) \to \mathbb{R}^{m+n-1} \), where \(m \geq 0 \) and \(n > 1 \), such that \(f(-v) = -f(v) \) for all vectors \(v \) on the unit sphere \(S(\mathbb{R}^n) \) in \(\mathbb{R}^n \). The classical Borsuk–Ulam theorem asserts, in one form, that if \(m = 0 \), there is a point \(x \in S(\mathbb{R}^n) \) such that \(f(x) = 0 \). If \(n = 2 \), the proof is an elementary exercise using the Intermediate Value Theorem, while for
general n a proof (one of many) can be given using the F_2-cohomology of real projective space. If $m > 0$, the theorem clearly fails, in the sense that there exist maps f having no zero, for example, the inclusion $S(\mathbb{R}^n) \subseteq \mathbb{R}^n \hookrightarrow \mathbb{R}^{m+n-1}$. But the Adams–Bush–Frick theorems of [1] show that there is a finite subset $X \subseteq S(\mathbb{R}^n)$ with the property that zero is a convex linear combination of the values $f(x)$, $x \in X$, and, to make the assertion non-trivial (because $\frac{1}{2}f(x) + \frac{1}{2}f(-x) = 0$ for any x), satisfying the condition that X does not contain any pair of antipodal points. And this condition is refined, for given m and n, by bounding the diameter of X. A precise statement is given in Corollary 2.4.

More technical geometric arguments can be used to establish a Borsuk–Ulam theorem for higher dimensional spheres strengthening another of the Adams–Bush–Frick theorems [1, Theorem 3]. The unit sphere $S(\mathbb{R}^n)$ in \mathbb{R}^n is equipped with the standard metric d: $\cos(d(u,v)) = \langle u, v \rangle$, $0 \leq d(u,v) \leq \pi$.

Theorem 1.2. Let $m, n \geq 1$ be positive integers such that $m \leq 2r \leq n < 2r+1$, where $r \geq 0$ is a non-negative integer. Suppose that $f: S^{n-1} = S(\mathbb{R}^n) \to \mathbb{R}^{m+n-1}$ is a continuous map such that $f(-v) = -f(v)$ for all $v \in S(\mathbb{R}^n)$. Then there exists a finite subset $X \subseteq S(\mathbb{R}^n)$ with cardinality at most $m + n$ and diameter at most $\pi - \arccos(1/n)$ such that 0 lies in the convex hull of $f(X)$ in \mathbb{R}^{m+n-1}.

Moreover, there is an example of such a map f with the property that any finite subset $X \subseteq S(\mathbb{R}^n)$ such that 0 lies in the convex hull of $f(X)$ has diameter greater than or equal to $\pi - \arccos(1/n)$.

The proof of Theorem 1.2, requiring methods from Algebraic Topology (although not much more than the calculation of the F_2-cohomology of real projective spaces and the properties of Stiefel–Whitney classes of vector bundles), is beyond the scope of this elementary note, but can be found, with additional material, in [3].

For the wider context of these results the reader is referred to [1, 2].

2 | The Intermediate Value Theorem

Lemma 2.1. Let $f: S(\mathbb{C}) \to \mathbb{R}^{2k+1}$ be a continuous map such that $f(-z) = -f(z)$. Suppose that w_0, \ldots, w_{2k} are any $2k + 1$ points in $S(\mathbb{C})$. Then there exist $e_i \in \{\pm 1\}$, $\lambda_i \geq 0$, for $i = 0, \ldots, 2k$, with $\sum \lambda_i = 1$, and $z \in S(\mathbb{C})$, such that $\sum_{i=0}^{2k} \lambda_i f(e_i z w_i) = 0$.

If $f(w_0), \ldots, f(w_{2k})$ lie in a $2k$-dimensional subspace of \mathbb{R}^{2k+1}, we can require that $z = 1$.

Proof. Consider the determinant map

$$\varphi: S(\mathbb{C}) \to \Lambda^{2k+1} \mathbb{R}^{2k+1}, z \mapsto f(z w_0) \wedge \cdots \wedge f(z w_{2k}).$$

(Thus, $\varphi(z) \in \mathbb{R}$ is the determinant of the $(2k + 1) \times (2k + 1)$-matrix with columns the vectors $f(z w_0), \ldots, f(z w_{2k})$.) Then $\varphi(-z) = (-1)^{2k+1} \varphi(z) = -\varphi(z)$. So, by the Intermediate Value Theorem, φ has a zero.

If $\varphi(z) = 0$, the vectors $f(z w_i)$ in \mathbb{R}^{2k+1} are linearly dependent and there exist $\mu_i \in \mathbb{R}$, not all zero such that $\sum \mu_i f(w_i) = 0$. We may assume, by scaling, that $\sum |\mu_i| = 1$. Choose $\lambda_i \geq 0$ and $e_i = \pm 1$ so that $\lambda_i e_i = \mu_i$.

Lemma 2.2. For $z \in S(\mathbb{C})$ and $e_i = \pm 1$, $i = 0, \ldots, 2k$, the distance $d(e_i z^i, e_j z^j)$ is less than or equal to $\pi - \pi / (2k + 1)$.

Proof. Indeed, the $2(2k + 1)$ points $\pm z^i\zeta$ on the unit circle lie at the vertices of a regular polygon.

These two lemmas already prove the first part of Theorem 1.1.

Example 2.3 [1, Theorem 5]. Let P be the k-dimensional complex vector space of complex polynomials $p(z)$ of degree $\leq 2k - 1$ such that $p(-z) = -p(z)$. Let $g : S(\mathbb{C}) \to P^*$ be the evaluation map to the dual $P^* = \text{Hom}_\mathbb{C}(P, \mathbb{C})$. Suppose w_0, \ldots, w_{2k} are points of $S(\mathbb{C})$ such that 0 lies in the convex hull of the $g(w_i)$. Then $d(w_i, w_j) \geq \pi - \pi/(2k + 1)$ for some i, j.

For the sake of completeness, we include a concise version of the proof in [1].

Proof. Assume first that the $2k + 1$ points w_i^2 are distinct. By relabelling, we may arrange that $w_1 = e^{i\theta}w_0$, where θ is the minimum of the distances $d(w_i, w_j), i \neq j$.

Suppose that $\sum \lambda_i g(w_i) = 0$, where the $\lambda_i \in \mathbb{R}$ are not all equal to zero. This means that $\sum \lambda_i p(w_i) = 0$ for each $p \in P$, and hence, since $\lambda_i \in \mathbb{R}$ and $w_i^{-1} = \overline{w_i}$, that $\sum \lambda_i p(w_i^{-1}) = 0$ too (because $\sum \lambda_i p(w_i)$ can be written as the complex conjugate of $\sum \lambda_i \overline{p(w_i)}$ with $\overline{p} \in P$). For $r \neq s$, $0 \leq r, s \leq 2k$, we may write

$$z^{-2k+1} \prod_{j \neq r, j \neq s} (z^2 - w_j^2) = p_+(z) + p_-(z^{-1}),$$

for unique polynomials $p_+, p_- \in P$. Then we find, because $\sum \lambda_i p_+(w_i) = 0$ and $\sum \lambda_i p_-(w_i^{-1}) = 0$, that

$$\sum \lambda_i w_i^{-2k+1} \prod_{j \neq r, j \neq s} (w_i^2 - w_j^2) = \sum \lambda_i (p_+(w_i) + p_-(w_i^{-1})) = 0,$$

that is,

$$\lambda_r w_r^{-2k+1} \prod_{j \neq r, j \neq s} (w_r^2 - w_j^2) + \lambda_s w_s^{-2k+1} \prod_{j \neq r, j \neq s} (w_s^2 - w_j^2) = 0,$$

or

$$\lambda_r \prod_{j \neq r} (w_r w_j^{-1} - w_j^{-1} w_r) = \lambda_s \prod_{j \neq s} (w_s w_j^{-1} - w_s^{-1} w_j).$$

It follows that, for some non-zero $c \in \mathbb{R}$,

$$\lambda_i \delta_i = c,$$

where $\delta_i = \prod_{j \neq i} (w_i w_j^{-1} - w_i^{-1} w_j)$.

for all i. (Notice that δ_i, being the product of the $2k$ purely imaginary numbers $w_i \overline{w_j} - \overline{w_i} w_j$, is real.) In particular, all the λ_i are nonzero.

Given that 0 lies in the convex hull of the points $g(w_i)$, we can now assume further that all λ_i are non-negative, and so, because they are non-zero, strictly positive. Then the $\delta_i \in \mathbb{R}$ all have the same sign. We show that there is some i such that $w_i = -e^{it\theta}w_0$ for $0 < t < 1$.
Indeed, write $\psi(t) = \prod_{1 < j \leq 2k} (e^{i\theta} w_0 w_{-1}^j - e^{-i\theta} w_0^{-1} w_j) \in i\mathbb{R}$, for $0 \leq t \leq 1$. Then $\delta_0 = (w_0 w_{-1}^1 - w_{-1}^1 w_1) \psi(0)$ and $\delta_1 = (w_1 w_0^{-1} - w_0^{-1} w_1) \psi(1)$. So, by the Intermediate Value theorem again, $\psi(t) = 0$ for some t, and then $w_i^2 = (e^{i\theta} w_0)^2$ for some i, $1 < i \leq 2k$. But $w_i \neq e^{i\theta} w_0$, by the minimality of θ. So $w_i = -e^{i\theta} w_0$. Now $d(w_1, w_0) = \pi - t\theta$ and $d(w_i, w_1) = \pi - (1-t)\theta$. But clearly $\theta \leq 2\pi/(2k+1)$ and either $t \geq 1/2$ or $1-t \geq 1/2$.

This completes the proof if all the points w_i^2 are distinct. In general, we can apply the result to $2k+1$ vectors w'_0, \ldots, w'_{2k} with the w_i^2 distinct such that $\{w_0^2, \ldots, w_{2k}^2\} \subseteq \{w'_0, \ldots, w'_{2k}\}$. For any $\delta > 0$, we can choose the w_i' in such a way that $d(w_i, w_i') < \delta$, and then conclude that, for some $i, j \geq 0$, we have $d(w_i, w_j) + 2\delta > \pi - \pi/(2k+1)$.

\[\square \]

Lemmas 2.1 and 2.2, together with Example 2.3, establish Theorem 1.1, using the standard fact\footnote{We have $\lambda_y > 0$, $y \in Y$, such that $\sum \lambda_y y = 0$. Suppose that $\mu_y \in \mathbb{R}$, $y \in Y$, satisfy $\sum \mu_y y = 0$ and $\sum \mu_y = 0$. Then, for any $t \in \mathbb{R}$ such that $\lambda_y > |t\mu_y|$ for all y, $\sum (\lambda_y + t\mu_y) y = 0$, $\sum (\lambda_y - t\mu_y) y = 0$, $\lambda_y \pm t\mu_y \geq 0$, and so $\lambda_y > \pm t\mu_y$, that is, $\lambda_y > |t\mu_y|$, for all y. Hence $\mu_y = 0$ for all y.} that, if Y is a finite subset of a real vector space such that the convex hull of Y contains 0 but no proper subset of Y has this property, then the set Y is affinely independent.

\textbf{Corollary 2.4.} Let $m \geq 0$ and $n > 1$ be integers. Then there is a non-negative real number $\delta < 1$ with the property that, for any continuous map $f : S(\mathbb{R}^n) \to \mathbb{R}^{m+n-1}$ such that $f(-v) = -f(v)$ for all $v \in S(\mathbb{R}^n)$, there is a finite subset X of $S(\mathbb{R}^n)$ of cardinality at most $m+n$ and diameter at most $\pi - \arccos(\delta) < \pi$ such that 0 lies in the convex hull of $f(X)$.

The classical Borsuk–Ulam theorem deals with the case $m = 0$; we may take $\delta = 0$ so that X consists of a single point.

\textbf{Proof.} By restricting f to $S(\mathbb{R}^2) \subseteq S(\mathbb{R}^n)$ and including \mathbb{R}^{m+n-1} in \mathbb{R}^{2k+1} for the smallest $k \geq 1$ such that $m + n - 1 \leq 2k + 1$, we see from Theorem 1.1 that the assertion is true with δ equal to $\cos(\pi/(2k+1))$.

\[\square \]

There is an easy extension of Lemma 2.1 to higher dimensions.

\textbf{Lemma 2.5.} For integers $n, k \geq 1$, suppose that $f : S(\mathbb{C}^n) \to \mathbb{R}^{2k+1}$ is a continuous map such that $f(-v) = -f(v)$ for all $v \in S(\mathbb{C}^n)$. Then, for any $2k + 1$ vectors w_0, \ldots, w_{2k} in $S(\mathbb{C}^n)$, there exist $e_i \in \{\pm 1\}$, $\lambda_i \geq 0$, for $i = 0, \ldots, 2k$, with $\sum \lambda_i = 1$, and $z \in S(\mathbb{C})$ such that $\sum_{i=0}^{2k} \lambda_i f(e_i z w_i) = 0$.

\textbf{Proof.} This can be established, using the same arguments as in the proof of Lemma 2.1, by looking at the function $\varphi : S(\mathbb{C}) \to \Lambda^{2k+1} \mathbb{R}^{2k+1}$ defined by $\varphi(z) = f(z w_0) \wedge \cdots \wedge f(z w_{2k})$.

\[\square \]

\textbf{Example 2.6.} For $n > 1$, write e_1, \ldots, e_n for the standard orthonormal \mathbb{C}-basis of \mathbb{C}^n, let $\eta = e^{2\pi i/(2l+1)}$ where $l \geq 1$ is a positive integer, and fix an integer r in the range $1 \leq r \leq n$.

If k satisfies $2k + 1 \leq (2l + 1)^r \binom{n}{r}$, we can choose distinct vectors w_0, \ldots, w_{2k} from the set

$$\{(\sum_{s=1}^{r} \eta^{a_s} e_{i_s})/\sqrt{r} \mid 1 \leq i_1 < i_2 \cdots < i_r \leq n, a_s = 0, \ldots, 2l\} \subseteq S(\mathbb{C}^n).$$

Then \(|\langle w_i, w_j \rangle| \leq \delta = 1 - (1 - \cos(\pi/(2l+1))/r \quad \text{for} \quad i \neq j\). Hence $d(e_i z w_i, e_j z w_j) \leq \pi - \arccos(\delta)$. \[\square \]
Application of Lemma 2.5 to the case \(r = 1 \), for which \(\arccos(\delta) = \pi/(2l + 1) \), gives a result which is close to [1, Theorem 2], but slightly weaker. For general \(r \), if \(l \) is large, \(\arccos(\delta) \) is close to \((\pi/(2l + 1))/\sqrt{r}\). In particular, the case \(r = n \) gives a much stronger result than that provided by [1, Theorem 2] when \(k \) is sufficiently large. (A similar observation is made in [2, Remark 4.2].)

ACKNOWLEDGMENTS
I am grateful to the authors of [1], H. Adams, J. Bush and F. Frick, for their helpful comments on the 2019 version of this note.

JOURNAL INFORMATION
Mathematika is owned by University College London and published by the London Mathematical Society. All surplus income from the publication of Mathematika is returned to mathematicians and mathematics research via the Society’s research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES
1. H. Adams, J. Bush, and F. Frick, Metric thickenings, Borsuk–Ulam theorems, and orbitopes, Mathematika 66 (2020), 79–102
2. H. Adams, J. Bush, and F. Frick, The topology of projective codes and the distribution of zeros of odd maps, arXiv math.GT2106.14677 (2021)
3. M. C. Crabb, On Borsuk–Ulam theorems and convex sets, arXiv math.AT 2108.10705 (2021)