Calculations Energy of the \((nl^2) \, ^1L_\pi\) Doubly Excited States of Two-Electron Systems via the Screening Constant by Unit Nuclear Charge Formalism

Momar Talla Gning\(^{1,*}\), Ibrahima Sakho\(^{1}\), Malick Sow\(^{2}\)

\(^{1}\)Department of Experimental Sciences, UFR Sciences and Technologies University of Thies, Thies, Senegal
\(^{2}\)Atoms Laser Laboratory, Department of Physics, Faculty of Sciences and Technologies, University Cheikh Anta Diop, Dakar, Senegal

Email: *gingpc85@hotmail.fr

Abstract

In this work, the total energies of doubly excited states \((ns^2) \, ^1S\), \((np^2) \, ^1D\), \((nf^2) \, ^1G\), \((nd^2) \, ^1I\), \((ng^2) \, ^1K\), and \((nh^2) \, ^1M\) of the helium iso-electronic sequence with \(Z \leq 10\) are calculated in the framework of the variational method of the Screening Constant by Unit Nuclear Charge Formalism. These calculations are performed using a new wavefunction correlated to Hylleraas-type. The possibility of using the SCUNC method in the investigation of high-lying Doubly Excited States (DES) in two-electron systems is demonstrated in the present work in the case of the \((nl^2) \, ^1L_\pi\) doubly excited states, where accurate total energies are tabulated up to \(n = 20\). All the results obtained in this paper are in agreement with the values of the available literature and may be useful for future experimental and theoretical studies on the doubly excited \((nl^2) \, ^1L_\pi\) states of two-electron systems.

Keywords

Doubly Excited States, Helium-Like Systems, Screening Constant by Unit Nuclear Charge (SCUNC), Wave Functions Correlated, Total Energy

1. Introduction

Studies of doubly-excited states of helium-like systems remain an active field of research since the early experiments of Madden and Codling [1] [2] concerning the observation of resonant structures in the absorption spectrum of helium using synchrotron radiation. The strong correlation between electrons in the
A doubly excited state of two-electron atomic systems has attracted considerable attention from theorists and experimenters as evidenced by the efforts concentrated in the field over the last twenty years. Theoretical investigations in two-electron Doubly Excited States (DES) are of great interest in connection with the understanding of collisional and radiative processes which take place in hot astrophysical and laboratory plasma [3] [4] [5]. In these investigations, great attention has been paid to the study of symmetric \((n\ell)\) DES where the electron-electron correlation effects may be predominant as revealed by the works of Fano [6]. Several experimental and theoretical studies on doubly excited \((n\ell)\) states have been carried out using different methods. Experimentally, many of these doubly excited states have been observed in electronic impact experiments by Oda et al. [7] and Hicks and Comer [8]. In their studies, these authors have worked on the energy spectra of ejected electrons from autoionization states in helium excited by electron impact. Other doubly excited states were observed by ion impact by Rudd [9] and by Bordenave-Montesquieu et al. [10]. These doubly excited states were also studied by examining the spectra of ejected electrons by Gelabart et al. [11] and by Rodbro et al. [12]. From a theoretical point of view, several calculation methods have been used, the complex rotation method [13] [14] [15], the variational method of Hylleraas [16], the double sums over the total hydrogen spectrum formalism [17], the density functional theory [18], the formalism of the Feshbach projection operators [19] [20], the discretization technique [21], the truncated diagonalization method [22], the time-dependent variation perturbation theory [23], and the semi-empirical procedure of the screening constant by unit nuclear charge (SCUNC) method [24] [25] [26], to name a few. In all these \(ab-initio\) methods, energies of \((nl2)\) doubly-excited states of He isoelectronic sequence can’t be expressed in an analytical formula. In addition, most of these preceding methods require large basis-set calculations involving a fair amount of mathematics complexity. But, it’s widely believed that there are distinct advantages to viewing problems of physics within the framework of simple analytical models. Contrary to all these methods, the variational procedure of the SCUNC method makes it possible to calculate the energies of the \((n\ell)\) doubly excited states without a complex mathematical program or calculation code but from a simple analytical expression. In addition, in the recent past the variational procedure of the SCUNC method has been successfully applied to calculations of the energies of doubly excited states \(nlnl'\) \((n = 2 - 4)\) in helium-like ions by Sakho [27] using a special Hylleraas-type wave function. These reasons sufficiently justify our choice to apply the variational procedure of the SCUNC method in this study. The goal of the present work is to report accurate total energies and excitation energies of the doubly excited states \((n\ell)\) using the variational procedure of the SCUNC formalism but also to show that it is possible to calculate total energies and precise excitation energies of high-lying up to \(n = 20\) of the doubly excited states \((n\ell)\) without any calculation code or complex mathematical program, without a powerful computer but using a sim-
ple analytical expression. Section 2 gives the correlated wave functions and brief overview of the calculation method. Section 3 gives the presentation and the discussion of our results in the case of doubly excited states \((ns^2)^1S^\ell, (np^2)^1D^\ell, (nf^2)^1G^\ell, (ng^2)^1H^\ell, (nh^2)^1I^\ell,\) and \((nh^2)^1M^\ell\) of the He-like ions up to \(Z = 10\) are made. All our results are compared to available theoretical and experimental data.

2. Theory and Calculations

2.1. Hamiltonian and Hylleraas-Type Wave Functions

The time independent Schrödinger equation for the Helium atom, or the positive ions of its isoelectronic sequence, or of the negative Hydrogen ion, is

\[
\hat{H}\Psi = E\Psi
\]

where \(\hat{H}\) represents the Hamiltonian operator of the considered system, \(\Psi\) the trial wave function and \(E\) the associated energy.

The Hamiltonian \(H\) of the helium isoelectronic series is given by (in atomic units)

\[
H = -\frac{1}{2}\Delta_1 - \frac{1}{2}\Delta_2 - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}
\]

In this equation, \(r_1\) and \(r_2\) denote the position of the two electrons from the nucleus, \(Z\) is the nuclear charge, \(\Delta_1\) is the Laplacian with reference to the coordinates of the vector radius \(r_1\) which detect the position of the electron 1. \(\Delta_2\) Laplacian defines the coordinates of the vector radius \(r_2\) which detect the position of the electron 2 and \(r_{12}\) inter-electronic distance.

Solving Equation (1) is very difficult because of the term \(r_{12}\) representing electron-electron repulsion. It is therefore necessary to implement a rough calculation method using a correlated wavefunction.

The groundbreaking work in this area was conducted by Hylleraas [28] [29] [30]. The simplest Hylleraas wave function is written as follow:

\[
\Psi(r_1, r_2, r_{12}) = (1 + br_{12}) \exp[-\alpha(r_1 + r_2)]
\]

Since Hylleraas’ original work, tremendous efforts have been made to improve upon that work, using larger and larger expansions, adding more complicated terms. In this present work, we have modified this Hylleraas wavefunction in order to adapt it to the study of symmetrical \((n\ell^2)^1L^\ell\) doubly excited states in two-electron atomic systems. These wave functions are defined as follow:

\[
\Psi(r_1, r_2, r_{12}) = \sum_{\ell=0}^{\infty} \left(n^\ell r_0^\ell\right)^\nu \times \left(1 + C_0 Zr_{12}\right) \exp[-\alpha(r_1 + r_2)]
\]

In this expression, \(n\) is the principal quantum number; \(\ell\) is orbital quantum number, \(r_0\) is Bohr radius, \(C_0\) and \(\alpha\) are the variational parameters to be determined by minimizing the energy, \(Z\) is the nuclear charge number, \(r_{12}\) represents the term electron-electron repulsion \(r_1\) and \(r_2\) are the coordinates of electrons with respect to the nucleus.
From the theoretical viewpoint, the Hylleraas variational method is based on the Hylleraas and Undheim theorem [31] according to which, a good approximation of the energy eigenvalue \(E(\alpha, C_0) \) is obtained when the minima of the function \((d^2E(\alpha, C_0))/d\alpha dC_0 \) converge with increasing values of the dimension \(D \) of the basis states and when the function exhibit a plateau.

Using this theorem, the values of the variational parameters \(\alpha \) and \(C_0 \) can be determined by the following conditions:

\[
\frac{\partial E(\alpha, C_0)}{\partial C_0} = 0
\]

and

\[
\frac{\partial E(\alpha, C_0)}{\partial \alpha} = 0
\]

In the framework of the Ritz’ variation principle, the energy \(E(\alpha, C_0) = \langle \hat{H}(\alpha, C_0) \rangle \) is calculated from the relation:

\[
\langle \hat{H}(\alpha, C_0) \rangle = \left\langle \Psi(\alpha, C_0) \right| \hat{H} \left| \Psi(\alpha, C_0) \right\rangle
\]

In this equation, the correlated wave functions are given by (4) and the Hamiltonian \(\hat{H} \) of the helium isoelectronic series in given by (2) (in atomic units).

Furthermore, the closure relation represents the fact that \(|r_1, r_2 \rangle \) are continuous bases in the space of the two-electron space, written as follow:

\[
\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \Psi_1(r_1) \Psi_2(r_2) |r_1, r_2 \rangle \langle r_1, r_2| = 1
\]

Using this relation, according to (7), we obtain:

\[
E(\alpha, C_0) = \int \int dr_1^3 dr_2^3 \langle \Psi(\alpha, C_0) \rangle \hat{H} \langle \Psi(\alpha, C_0) \rangle
\]

By developing this expression (9), we find:

\[
E(\alpha, C_0) = \int \int dr_1^3 dr_2^3 \Psi(\alpha, C_0) \times \hat{H} \Psi(\alpha, C_0) = \int \int dr_1^3 dr_2^3 \Psi(\alpha, C_0) \hat{H} \Psi(\alpha, C_0)
\]

This means:

\[
N \ast E(\alpha, C_o) = \int \int dr_1^3 dr_2^3 \Psi(\alpha, C_0) \hat{H} \Psi(\alpha, C_0)
\]

with the normalization constant

\[
N = \int \int dr_1^3 dr_2^3 |\Psi(\alpha, C_0)|^2
\]

To make it easier to integrate Equation (11), we operate the variable changes in elliptic coordinates by:

\[
s = r_1 + r_2; \quad t = r_1 - r_2; \quad u = r_{12}
\]

On the basis of these variable changes, the elementary volume element

\[
d\tau = d^3r_1 d^3r_2 = 2\pi^2 \left(s^2 - t^2 \right) ududsdt
\]
Using these elliptical coordinates, Equation (11) is written as follows

\[
N\varepsilon (\alpha, C_0) = \int_0^\infty ds \int_0^\infty du \int_0^{s^2-t^2} \left[u (s^2-t^2) \left(\frac{\partial^2 \Psi}{\partial s^2} + \frac{\partial^2 \Psi}{\partial t^2} + \frac{\partial^2 \Psi}{\partial u^2} \right) \right] ds \left(s^2 - u^2 \right) + t (s^2 - u^2) \left(\frac{\partial \Psi}{\partial s} + \frac{\partial \Psi}{\partial t} - \Psi \times \left(4Zsu - s^2 + t^2 \right) \right)
\]

(15)

with respect to the correlated wave functions given by expression (4), it is expressed as follow

\[
\Psi(s,t,u,\alpha, C_0) = \sum_{i=0}^{\infty} \left(n_z^2 r_0^2 \right)^{u} (1 + C_0 Zu) \exp(-\alpha s)
\]

(16)

Furthermore, according to (12), the normalization constant is written in elliptic coordinates as:

\[
N = \int_0^\infty ds \int_0^\infty du \int_0^{s^2-t^2} \Psi^2 ds
\]

(17)

2.2. General Formalism of the SCUNC Method

The Screening Constant by Unit Nuclear Charge (SCUNC) formalism is used in this work to calculate the total energies of the symmetrical \((n\ell^2)\,^{1}\!L^\pi\) doubly excited states of the helium-isoelectronic up to \(Z = 10\).

In the framework of the Screening Constant by Unit Nuclear Charge (SCUNC) formalism, total energies of the \((N\ell n\ell')\,^{2S+1}\!L^\pi\) doubly excited states are expressed in Rydberg (Ry) as below [24] [25]

\[
E(N\ell n\ell', \,^{2S+1}\!L^\pi) = -Z^2 \left(\frac{1}{N^2} + \frac{1}{n^2} \left[1 - \beta(N\ell n\ell', \,^{2S+1}\!L^\pi, Z) \right]^2 \right)
\]

(18)

In this equation, the principal quantum numbers \(N\) and \(n\), are respectively the inner and the outer electron of the helium-isoelectronic series. In this equation, the \(\beta\)-parameters are screening constant by unit nuclear charge expanded in inverse powers of \(Z\) and given by

\[
\beta(N\ell n\ell', \,^{2S+1}\!L^\pi, Z) = \sum_{k=1}^{4} f_k \left(\frac{1}{Z} \right)^k
\]

(19)

where \(f_k = f_k(N\ell n\ell', \,^{2S+1}\!L^\pi)\) are screening constants to be evaluated based on variational predicable using a wavefunction.

For the states \((n\ell^2)\,^{1}\!L^\pi\), \(N = n\) and \(l = l'\). Hence, the total energy is written as follow:

\[
E(n\ell^2, \,^{1}\!L^\pi) = -\frac{Z^2}{n^2} \left[1 + \left(1 - \beta(n\ell^2, \,^{1}\!L^\pi, Z) \right)^2 \right] \text{Ry}
\]

(20)

Furthermore, in the framework of the screening constant by unit nuclear charge formalism, the \(\beta\)-screening constant is expressed in terms of the variational \(\alpha\)-parameter as follow

\[
\beta(n\ell^2, \,^{1}\!L^\pi, Z, \alpha) = \frac{\alpha}{Z^2} \left(1 + \frac{2L}{2n+4L-3} \right)
\]

(21)
In this expression, \(n \) denotes the principal quantum number, \(L \) characterizes the considered quantum state (S, P, D, F etc.) and \(\alpha \) is the variational parameter.

Then, using Equation (21), the total energies of the symmetrical \((n\ell) \, ^1L^\pi\) doubly excited states in the helium isoelectronic series is expressed in Rydberg (Ry) as below:

\[
E(n\ell^2, ^1L^\pi, Z) = -\frac{Z^2}{n^2} \left[1 + \left(1 - \frac{\alpha}{Z^2} \right) \left(1 + \frac{2L}{2n+4L-3} \right)^2 \right] \text{Ry}
\]

(22)

In this equation, only the parameter \(\alpha \) is unknown. Considering the \((2s^2) \, ^1S^\prime\) state of Helium-like ions \((Z = 2 \text{ - } 10)\), we calculated the values of the variational parameters \(\alpha \) and \(C_0 \), the results of which are presented in Table 1.

The Equation (22) is used to calculate the total energies of the \((n\ell^2) \, ^1L^\pi\) doubly excited states of helium-like ions without a complex calculation program.

3. Results and Discussions

The results obtained in the present study for \((ns^2) \, ^1S^\prime\), \((np^2) \, ^1D^\prime\), \((nf^2) \, ^1G^\prime\), \((nf^2) \, ^1I^\prime\), \((ng^2) \, ^1K^\prime\), and \((nh^2) \, ^1M^\prime\) with \(n \leq 20 \) in the helium-like ions up to \(Z = 10 \) are listed in Tables 1-16 and compared to various other calculations. Table 1 presents our results on the calculation of the variational parameters \(\alpha \) and \(C_0 \).

These variational parameters are calculated by determining the expression of \(E = f(\alpha, C_0) \) from the expression (15) and the wavefunction (16), then according to conditions (5) and (6) we obtained a system of equations whose resolution to give the values of the variational parameters \(\alpha \) and \(C_0 \) with \(2 \leq Z \leq 10 \). All calculations in this work were performed with the calculation program MAXIMA. In Tables 2-7 we have listed our present results \(E \) on the calculation of the total energies of the \((n\ell^2) \, ^1L^\pi\) doubly excited states of the helium isoelectronic sequence with \(2 \leq Z \leq 10 \) and \(2 \leq n \leq 20 \) obtained using Equation (22). Table 2 shows our present results of the \((ns^2) \, ^1S^\prime\) \((n = 2 \text{ - } 20)\) doubly excited states of helium-like systems \((Z = 2 \text{ - } 10)\). Table 3 shows our present results of the \((np^2) \, ^1D^\prime\) \((n = 2 \text{ - } 20)\) doubly excited states of helium-like systems \((Z = 2 \text{ - } 10)\). Table 4 shows our present results of the \((nf^2) \, ^1G^\prime\) \((n = 3 \text{ - } 20)\) doubly excited states of helium-like systems \((Z = 2 \text{ - } 10)\). Table 5 shows our present results of the \((nf^2) \, ^1I^\prime\) \((n = 4 \text{ - } 20)\) doubly excited states of helium-like systems \((Z = 2 \text{ - } 10)\). Table 6 shows our present results of the \((ng^2) \, ^1K^\prime\) \((n = 5 \text{ - } 20)\) doubly excited states of helium-like systems \((Z = 2 \text{ - } 10)\). Table 7 shows our present results of the \((nh^2) \, ^1M^\prime\) \((n = 6 \text{ - } 20)\) doubly excited states of helium-like systems \((Z = 2 \text{ - } 10)\).

Table 8 shows a comparison of the present calculations for the \((ns^2) \, ^1S^\prime\) states with the results of the semi-empirical procedure of the screening constant by

\(Z \)	2	3	4	5	6	7	8	9	10
\(\alpha \)	0.96105	1.40362	1.93837	2.47394	3.00997	3.54627	4.08276	4.61938	5.15608
\(C_0 \)	0.24982	0.26539	0.28139	0.29115	0.29771	0.30244	0.30600	0.30878	0.31102
Table 2. Total energy (−E) for (ns²) ¹S⁺ (n = 2 - 20) doubly excited states of helium-like systems (Z = 2 - 10). The energies E are in eV.

Z	2	3	4	5	6	7	8	9	10
ns²	−E								
2⁺	21.45940	52.42726	96.46002	154.07753	225.28724	310.09472	408.50290	520.51348	646.12749
3⁺	9.53751	23.29900	42.87112	68.47890	100.12766	137.81987	181.55684	231.33932	287.16777
4⁺	5.36485	13.10569	24.11501	38.51938	56.32181	77.52368	102.12572	130.12837	161.53187
5⁺	3.43350	8.38764	15.43360	24.65241	36.04596	49.61515	65.36046	83.28216	103.38040
6⁺	2.38438	5.82475	10.71778	17.11973	25.03192	34.5497	45.38921	57.83483	71.79194
7⁺	1.75179	4.27941	7.87429	12.57767	18.39080	25.31385	33.34718	42.49090	52.74510
8⁺	1.34121	3.27642	6.02875	9.62985	14.08045	20.17298	25.70437	31.90753	40.38297
9⁺	1.05972	2.58878	4.73646	7.60877	11.12530	15.31332	20.17298	25.70437	31.90753
10⁺	0.85838	2.09691	3.85840	6.16310	9.01149	12.40379	16.34012	20.82054	25.84510

Table 3. Total energy (−E) for the (np²) ¹D⁺ (n = 2 - 20) doubly excited states of helium-like systems (Z = 2 - 10). The energies E are in eV.

Z	2	3	4	5	6	7	8	9	10
np²	−E								
2⁺	19.40691	48.98779	91.46705	147.50214	217.11646	300.32082	397.12093	507.52007	631.52025
3⁺	8.78089	22.04020	41.04506	66.07698	97.14529	134.25433	177.40638	226.60274	281.84424
4⁺	5.00135	12.50334	23.24244	37.32758	54.89863	75.82286	100.14645	127.87008	158.99418
5⁺	3.23051	8.05224	14.94822	24.01485	35.25507	48.67024	64.26108	82.02799	101.97124
6⁺	2.25935	5.61862	10.41971	16.72838	24.54660	33.87526	44.71844	57.06561	70.92775
7⁺	1.66926	4.14359	7.67801	12.32015	18.07141	24.93241	32.90349	41.98486	52.17663
8⁺	1.28386	3.18216	5.89260	9.45120	13.85900	19.11648	25.22888	32.18135	39.98987
9⁺	1.01824	2.52067	4.66512	7.47977	10.96542	15.12242	19.95098	25.45121	31.62516
10⁺	0.82739	2.04609	3.78505	6.0690	8.89227	12.26146	16.17460	20.63180	25.63311
11⁺	0.68564	1.69405	3.13258	5.01981	7.35623	10.14210	13.37752	17.06258	21.19731
12⁺	0.57748	1.42570	2.63546	4.22227	6.18654	8.52846	11.24814	14.34564	17.82100
13⁺	0.49305	1.21645	2.24800	3.60082	5.27527	7.27152	9.58964	12.22970	15.19171
Table 4. Total energy ($-E$) for the \((nd^2) \, ^1\Sigma^+ \) \((n = 3 - 20)\) doubly excited states of helium-like systems \((Z = 2 - 10)\). The energies \(E\) are in eV.

\(Z\)	\(2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)	\(8\)	\(9\)	\(10\)
\(3d^2\)	8.66987	21.84944	40.76532	65.70667	96.68358	133.70073	176.76056	225.86449	281.01340
\(4d^2\)	4.92028	12.36512	23.04025	37.10354	54.56575	75.42399	99.68137	127.33865	158.39628
\(5d^2\)	3.17227	7.95352	14.80410	23.82457	35.01823	48.38660	63.93048	81.65034	101.54646
\(6d^2\)	2.16707	5.46666	10.31481	16.59001	24.37447	33.66919	44.47473	56.79139	70.61936
\(7d^2\)	1.63727	4.08980	7.59970	12.21693	17.94306	24.77881	32.72457	41.78056	51.94691
\(8d^2\)	1.25931	3.14100	5.83274	9.37235	13.76099	18.99922	25.08731	32.02543	39.81368
\(9d^2\)	0.99901	2.48852	4.61839	7.41825	10.88897	15.03099	19.84451	25.32967	31.48654
\(10d^2\)	0.81206	2.02051	3.74790	6.01801	8.83154	12.18833	16.09005	20.53529	25.52462
\(11d^2\)	0.67323	1.67337	3.10257	4.98032	7.30720	10.08347	13.30928	16.98469	21.0977
\(12d^2\)	0.56728	1.40875	2.61088	4.18993	6.46393	8.48047	11.19228	14.28189	17.74935
\(13d^2\)	0.48458	1.20239	2.22761	3.57401	5.24199	7.23174	9.54334	12.17686	15.13234
\(14d^2\)	0.41878	1.03834	1.92304	3.08470	4.52364	6.24003	8.23394	10.50542	13.05450
\(15d^2\)	0.36555	0.90576	1.67701	2.68951	3.94357	5.43931	7.17681	9.15611	11.37723
\(16d^2\)	0.32189	0.79709	1.47539	2.63575	3.46841	4.78350	6.31106	8.05115	10.00378
\(17d^2\)	0.28563	0.70689	1.30810	2.09717	3.07430	4.23960	5.93311	7.13489	8.86493
\(18d^2\)	0.25518	0.63119	1.16777	1.87190	2.74378	3.78351	4.99112	6.36666	7.91012
\(19d^2\)	0.22936	0.56706	1.04888	1.68110	2.46388	3.39729	4.48139	5.71620	7.10173
\(20d^2\)	0.20728	0.51223	0.94729	1.51807	2.22474	3.06737	4.04598	5.16061	6.41126

Table 5. Total energy \((−E)\) for the \((nf^2) \, ^1\Pi \) \((n = 4 - 20)\) doubly excited states of helium-like systems \((Z = 2 - 10)\). The energies \(E\) are in eV.

\(Z\)	\(2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)	\(8\)	\(9\)	\(10\)
\(4f^2\)	4.88462	12.30381	22.95032	36.98626	54.41728	75.24595	99.47366	127.10120	158.12904
\(5f^2\)	3.14469	7.90632	14.73497	23.73314	34.90428	48.25001	63.77119	81.46828	101.31460
\(6f^2\)	2.19522	5.51005	10.26127	16.51924	24.28632	33.56358	44.35159	56.65069	70.46106
\(7f^2\)	1.62030	4.06908	7.55759	12.16131	17.87382	24.69587	32.62789	41.67010	51.82266
\(8f^2\)	1.24569	3.11795	5.79909	9.32793	13.70571	18.93303	25.01016	31.93731	39.71456
Continued

Table 6. Total energy \((-E)\) for the \((ng^2)\) \(1K^\prime\) \((n = 5 - 20)\) doubly excited states of helium-like systems \((Z = 2 - 10)\). The energies \(E\) are in eV.

\(Z\)	\(2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)	\(8\)	\(9\)	\(10\)
\(ng^2\)	\(-E\)								
5g\(^2\)	3.12860	7.87865	14.69439	23.67940	34.83728	48.16967	63.67745	81.36112	101.22099
6g\(^2\)	2.18229	5.48788	10.22878	16.47627	24.23275	33.49937	44.27669	56.56508	70.36472
7g\(^2\)	1.60979	4.04301	7.53129	12.12654	17.83049	24.63495	32.56734	41.60091	51.74480
8g\(^2\)	1.23704	3.10320	5.77753	9.29943	13.67022	18.89050	24.96058	31.88065	39.65082
9g\(^2\)	0.98071	2.45755	4.57320	7.35860	10.8474	14.9249	19.74091	25.21133	31.35343
10g\(^2\)	0.79685	1.99482	3.71044	5.96858	8.77005	12.11521	16.00426	20.43731	25.41443
11g\(^2\)	0.66044	1.65182	3.07117	4.93891	7.25569	10.02181	13.23743	16.90264	21.0750
12g\(^2\)	0.55643	1.39049	2.58428	4.15487	6.10279	8.42829	11.13149	14.21248	17.67130
13g\(^2\)	0.47529	1.18677	2.04888	3.54406	5.20475	7.18718	9.49144	12.11760	15.06570
14g\(^2\)	0.41075	1.02488	1.90347	3.05891	4.49158	6.20167	8.18926	10.45441	12.99715
15g\(^2\)	0.35858	0.89408	1.66002	2.66713	3.91576	5.40604	7.13807	9.11888	11.32750
16g\(^2\)	0.31579	0.78687	1.46055	2.34621	3.44413	4.75445	6.27724	8.01254	9.96037
17g\(^2\)	0.28026	0.69791	1.29506	2.08000	3.05297	4.21408	5.56341	7.10097	8.82681
18g\(^2\)	0.25042	0.62326	1.15624	1.85673	2.72494	3.76097	4.96489	6.33671	7.87646
19g\(^2\)	0.22513	0.56001	1.03865	1.66763	2.44715	3.37297	4.5810	5.68962	7.07185
20g\(^2\)	0.20350	0.50594	0.93816	1.50606	2.20982	3.04952	4.02521	5.13690	6.38462

Table 7. Total energy \((-E)\) for the \((nh^2)\) \(1M^\prime\) \((n = 6 - 20)\) doubly excited states of helium-like systems \((Z = 2 - 10)\). The energies \(E\) are in eV.

\(Z\)	\(2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)	\(8\)	\(9\)	\(10\)
\(ng^2\)	\(-E\)								
6h\(^2\)	2.17365	5.47302	10.20698	16.44740	24.19675	33.45620	44.22633	56.50750	70.29992
7h\(^2\)	1.60263	4.03075	7.51331	12.10275	17.80083	24.60839	32.52856	41.55350	51.69145
Table 8. Comparison of the present calculations on total energies of the doubly (ns²) ¹S¹ systems (Z = 2 - 10) with available literature values. All results are expressed in eV.

States	ns² ¹S¹	Z	2	3	4	5	6	7	8	9	10
−𝑃	21.45940	52.42276	96.46002	154.07753	225.28724	310.09472	408.50290	520.51348	646.12749		
−𝑃	21.19004	51.75672	95.92923	153.70728	225.09117	310.08075	408.67588	520.87683	646.68334		
−𝑃	21.16692	51.86067	96.15032	154.04035	225.53336	310.63042	409.33154	521.63766	647.54894		
−𝑃	21.19388	51.75719	95.92188	153.72003	225.09205	310.08931	408.67561	520.87758	646.68514		
−𝑃	21.16678	51.86054	96.15046	154.03995	225.53363	310.62879	409.33289	521.62923	647.54853		
−𝑃	21.16460	51.86312	96.14556	154.03886	225.53540	310.62852	409.33358	521.63576	647.54377		
−𝑃	21.19000	52.00000	96.43000	154.45000	226.09000	311.32000	410.17000	522.62000	648.67000		
−𝑃	9.35725	23.29900	42.87112	68.47890	100.12766	137.81987	181.55684	231.33932	287.16777		
−𝑃	9.64652	23.38097	43.16324	68.99254	100.86877	138.79205	182.76224	232.77934	288.84349		
−𝑃	9.64065	23.48066	43.29425	69.06061	100.76559	138.39575	181.93676	231.37273	286.68564		
−𝑃	9.62031	23.40586	43.23344	69.10874	101.02769	138.99573	183.00878	233.07901	289.17806		
−𝑃	9.41772	23.03000	42.63519	68.31431	100.04059	137.81366	181.63365	231.50082	287.41489		
−𝑃	9.62017	23.40586	43.23316	69.10847	101.02837	138.99627	183.00918	233.06996	289.17887		
−𝑃	9.62466	23.40178	43.22527	69.10738	101.02224	138.98212	182.99653	233.05866	289.17125		
−𝑃	9.58385	22.83852	42.25657	67.85978							
−𝑃	9.42000	23.11000	42.86000	68.65000	100.48000	138.37000	182.30000	232.27000	288.30000		
−𝑃	5.36485	13.10569	24.11501	38.51938	56.32181	77.52368	102.12572	130.12837	161.53187		
−𝑃	5.49139	13.25971	24.42944	39.00059	56.97332	78.34732	103.12276	131.29961	162.87803		
−𝑃	5.46963	13.25848	24.45079	39.03978	57.02243	78.41957	103.20357	131.40206	162.99422		
−𝑃	5.29751	12.93915	23.98235	38.42684	56.27276	77.52023	102.16899	131.21932	161.67093		
Continued

| \(n^2 \, 1S^0 \) |
|---|---|---|---|
| \(-E \) | 5.5000 | 13.18000 | 24.49000 | 38.08000 | 57.95000 | 78.43000 | 103.18000 | 130.42000 | 163.20000 |
| \(-P^0 \) | 5.30000 | 13.00000 | 24.11000 | 38.61000 | 56.52000 | 77.83000 | 102.54000 | 130.65000 | 162.17000 |
| \(-E^0 \) | 3.43350 | 8.38764 | 15.43360 | 24.65241 | 36.04596 | 49.61515 | 65.36046 | 83.28216 | 103.38040 |
| \(5^2 \, 1S^0 \) | \(-P^0 \) | 3.53993 | 8.28111 | 15.34872 | 24.59325 | 36.01455 | 49.61291 | 65.38816 | 83.34034 | 103.46942 |
| \(6^2 \, 1S^0 \) | \(-P^0 \) | 3.39000 | 8.32000 | 15.43000 | 24.71000 | 36.17000 | 49.81000 | 65.63000 | 83.62000 | 103.79000 |
| \(7^2 \, 1S^0 \) | \(-P^0 \) | 2.38438 | 5.82475 | 10.71778 | 17.11973 | 25.03192 | 34.45497 | 45.38921 | 57.83483 | 71.79194 |
| \(P^0 \) | 2.47025 | 5.94161 | 10.92483 | 17.41965 | 25.42606 | 34.94460 | 45.97447 | 58.51647 | 72.57007 |
| \(E^0 \) | 2.35000 | 5.78000 | 10.71000 | 17.16000 | 25.12000 | 34.59000 | 45.57000 | 58.07000 | 72.07000 |
| \(6^2 \, 1S^0 \) | \(-P^0 \) | 1.72000 | 4.27000 | 7.82000 | 12.63000 | 18.46000 | 25.41000 | 33.48000 | 42.66000 | 52.95000 |
| \(P^0 \) | 1.73000 | 4.24000 | 7.87000 | 12.61000 | 18.46000 | 25.41000 | 33.48000 | 42.66000 | 52.95000 |
| \(E^0 \) | 1.821259 | 4.37559 | 8.04042 | 12.81602 | 18.70239 | 25.69953 | 33.80717 | 43.02557 | 53.35447 |

\(^{1}\text{Present work, values calculated from Equation (22)}, ^{2}\text{Sakho [32]}, ^{3}\text{Ho [33]}, ^{4}\text{Sow et al. [36]}, ^{5}\text{Gning et al. [37]}, ^{6}\text{Konté et al. [38]}, ^{7}\text{Ho [34]}, ^{8}\text{Sakho et al. [24]}, ^{9}\text{Ray et al. [23]}, ^{10}\text{Ho [35]}, ^{11}\text{Diouf et al. [39]}, ^{12}\text{Sakho [40]}.\)

\(^{1}\text{Present work, values calculated from Equation (22)}, ^{2}\text{Sakho [32]}, ^{3}\text{Ho [33]}, ^{4}\text{Sow et al. [36]}, ^{5}\text{Gning et al. [37]}, ^{6}\text{Konté et al. [38]}, ^{7}\text{Ho [34]}, ^{8}\text{Sakho et al. [24]}, ^{9}\text{Ray et al. [23]}, ^{10}\text{Ho [35]}, ^{11}\text{Diouf et al. [39]}, ^{12}\text{Sakho [40]}.\)

In Table 9, we compare our calculations for \((np^2) \, 1D^0\) states with the results of the complex rotation of Ho [33] [34] [35], with the results of Sow et al. [36] who used the variational method of the SCUNC formalism, with the complex rotation values of Gning et al. [37], with the Konté et al. [38] data, with the data from the time-dependent variation perturbation theory of Ray et al. [23], with the results of Diouf et al. [39] and finally with the data from the modified slater theory of Sakho [40]. The observation of our results shown in this table shows that our present calculations are generally in good agreement with the results of the cited authors up to \(Z = 10\).

In Table 9, we compare our calculations for \((np^2) \, 1D^0\) states with the results of the calculations of Badiane et al. [41], with the data of Sakho [24] [32] [40], with the results of the complex rotation calculations (CRC) of Ho and Bhatia [13], with the values of Ivanov and Safronova [17], with the results of the variational method calculations of Hylleraas de Biaye et al. [16] and finally with those obtained by Roy et al. [18] who applied the functional density theory (FDT). Here, the agreements between the calculations are considered good. Table 10 compares our results for the \((n^2d) \, 1G^+ (n = 3 - 10)\) states with those obtained by Badiane et al. [41], Sakho [32] [40], Bachau et al. [19], Biaye et al. [16], Ivanov and Safronova [17], Diouf et al. [39], Ray et al. [23] and Roy et al. [18]. As regards the \((n^2d) \, 1G^+\) levels, comparison shows also a good agreement up to \(Z = 10\). Table 11 shows the results of our present calculations of the total energies of the doubly excited \((n^2f) \, 1I^+ (n = 4 - 10)\) states of helium-like systems up to \(Z = 10\), which we compare with those obtained by Biaye et al. [16], Badiane et al. [41], Sakho et al. [32] [40], Ho [20], Diouf et al. [39], and Sow et al. [36]. A comparative
Table 9. Comparison of the present calculations on total energies of the doubly \((np^2)^1\text{D}_r\) \((n = 2 - 5)\) excited states of helium-like systems \((Z = 2 - 10)\) with available literature values. All results are expressed in eV.

States \(np^2 1\text{D}_r\)	\(Z\)	2	3	4	5	6	7	8	9	10
\(-E^p\)	19.40971	48.98779	91.46705	147.50214	217.11646	300.32082	397.12093	507.52007	631.52025	
\(-E^p\)	19.12145	48.19274	90.86974	147.15243	217.04218	300.53626	397.63604	508.34153	632.65271	
\(-E^p\)	19.12008	48.19002	90.86656	147.14835	217.03537	300.52809	397.62652	508.33201	632.64183	
\(-E^p\)	19.10104	48.18049	90.81665	147.13835	217.02869	300.26551	397.28229	507.90071	632.12481	
\(-E^p\)	19.14533	48.39138	90.97314	147.16059	216.95238	300.35123	397.35577	507.96601	632.18195	
\(-E^p\)	19.18403	48.39138	91.14321	147.47352	217.39320	300.90769	398.02245	508.73746	633.05408	
\(-E^p\)	47.78049	90.54592	146.90888							
\(-E^p\)	19.12000	48.19000	90.87000	147.15000	217.03000	300.53000	397.63000	508.33000	632.64000	
\(-E^p\)	19.12000	48.73000	91.95000	147.87000	219.20000	303.24000	400.88000	512.13000	636.98000	
\(-E^p\)	8.78089	22.04020	41.04506	66.07698	97.14529	134.25433	177.40638	226.60274	281.84424	
\(-E^p\)	8.98656	22.56777	42.23345	67.96182	99.74201	137.57401	181.45511	231.38394	287.36187	
\(-E^p\)	9.33759	27.62192	42.10011	67.62440	99.19642	136.81482	180.48094	230.19344	285.95368	
\(-E^p\)	8.66955	21.82626	40.49669	66.40669	97.38993	134.42000	179.18160	229.06009	285.07883	
\(-E^p\)	8.50000	21.42000	40.38000	65.40000	96.46000	133.57000	176.72000	225.92000	281.17000	
\(-E^p\)	5.00135	12.50334	23.24244	37.32587	54.89863	75.82286	100.14654	127.87008	158.99418	
\(-E^p\)	12.8881	23.97187	38.52433	56.48269	77.84364	102.61009	130.77661	162.34727		
\(-E^p\)	3.23051	8.05224	14.94822	24.01485	35.25507	48.67024	64.26108	82.02799	101.97124	
\(-E^p\)	3.28849	8.24777	15.40029	24.73652	36.25238	49.94652	65.81892	83.86824	104.09583	
\(-E^p\)	3.53068	8.51309	15.67240	25.00863	36.52178	50.21047	66.07743	84.12131	104.34209	
\(-E^p\)	7.95117	14.92953	24.08344							
\(-E^p\)	7.71000	14.54000	23.54000	34.72000	48.08000	63.62000	81.33000	101.22000		
\(-E^p\)	3.06000	7.80000	14.71000	23.80000	35.07000	48.52000	64.14000	81.94000	101.92000	

1Present work, values calculated from Equation (22), aBadiane et al. [41], bSakho et al. [32], cHo and Bhatia [13], dIvanov and Safronova [17], eBiaye et al. [16], fRoy et al. [18], gSakho et al. [24], hSakho [40].
Table 10. Comparison of the present calculations on total energies of the doubly \((nd^2)^1\text{Ge}\) \((n = 3 - 10)\) excited states of helium-like systems \((Z = 2 - 10)\) with available literature values. All results are expressed in eV.

States \(nd^2^1\text{Ge}\)	\(Z\)	2	3	4	5	6	7	8	9	10
\(-F\) 3\(d^2\)^1\text{Ge}	8.66987	21.84944	40.76532	65.70667	96.68358	133.70073	176.76056	225.86449	281.01340	321.32901
\(-F\) 4\(d^2\)^1\text{Ge}	8.31716	20.87794	39.56401	64.34271	95.23988	132.11133	175.08356	224.11306	279.19300	319.21848
\(-F\) 5\(d^2\)^1\text{Ge}	8.30942	21.07114	39.88374	64.74271	95.64942	132.60385	175.64667	225.61854	280.70732	320.73279
\(-E\) 3\(d^2\)^1\text{Ge}	8.38927	21.14053	39.89191	64.74814	95.48479	132.35685	175.32166	224.76232	279.28772	319.31317
\(-E\) 4\(d^2\)^1\text{Ge}	8.38383	21.54734	40.49464	65.45157	96.43174	133.44332	176.49175	225.57839	280.70732	320.73279
\(-E\) 5\(d^2\)^1\text{Ge}	8.57703	21.24938	39.97082	64.73727	95.51456	132.41065	175.26860	224.27632	279.28772	320.73279

\(^{1}\)Present work, values calculated from Equation (22), \(^{2}\)Badiane et al. [41], \(^{3}\)Sakho et al. [32], \(^{4}\)Bachau et al. [19], \(^{5}\)Biaye et al. [16], \(^{6}\)Ivanov and Safronova [17], \(^{7}\)Diouf et al. [39], \(^{8}\)Ray et al. [23], \(^{9}\)Roy et al. [18], \(^{10}\)Sakho [40].
Table 11. Comparison of the present calculations on total energies of the doubly $^{1}I_e (n = 4 - 10)$ excited states of helium-like systems ($Z = 2 - 10$) with available literature values. All results are expressed in eV.

States $nf^{2} \ ^{1}I_{e}$	Z	2	3	4	5	6	7	8	9	10
$4f^{2} \ ^{1}I_{e}$	a	4.88462	12.30381	22.95032	36.98626	54.41728	75.24595	99.47366	127.10120	158.12904
$5f^{2} \ ^{1}I_{e}$	a	5.02139	12.43411	22.78972	37.66355	55.38959	75.43250	100.78073	128.41943	159.33212
$6f^{2} \ ^{1}I_{e}$	a	5.20000	12.56000	23.01000	37.86000	55.50000	75.68000	101.17735	128.70000	159.63000
$7f^{2} \ ^{1}I_{e}$	a	5.30000	12.69000	23.22000	38.06000	55.70000	75.93000	101.73000	129.20000	160.03000
$8f^{2} \ ^{1}I_{e}$	a	5.40000	12.82000	23.42000	38.26000	55.90000	76.18000	102.28000	129.70000	160.33000
$9f^{2} \ ^{1}I_{e}$	a	5.50000	12.95000	23.62000	38.46000	56.10000	76.43000	102.83000	130.20000	160.63000
$10f^{2} \ ^{1}I_{e}$	a	0.80291	2.00511	3.72546	5.98842	8.79474	12.14478	16.03872	20.47668	25.45872

aPresent work, values calculated from Equation (22), bBiaye et al. [16], cRadiane et al. [41], dSakho et al. [32], eHo [20], fDiouf et al. [39], gSow et al. [36]; hSakho [40].

A reading of the results mentioned in this table shows a good agreement between the present SCUNC results and the data found in the literature. For level $4f^{2}$, it should be noted that comparison with the results of Biaye et al. [16] indicates satisfactory agreement for $Z = 2 - 10$.

In Table 12 and Table 13, we compare the results of our calculations of the total energies of the doubly excited states (ng^{2}) $^{1}K_{e}$ and ($n\ell^{2}$) $^{1}M_{e}$ with those of Sakho [40] and Diouf et al. [39]. The agreements between the calculations are seen to be generally good. It is worth mentioning that there are not many results.
Table 12
Comparison of the present calculations on total energies of the doubly \((ng^2)^1K^+\) \((n = 5 - 10)\) excited states of helium-like systems \((Z = 2 - 10)\) with available literature values. All results are expressed in eV.

States \((ng^2)^1K^+\)	\(Z\)	2	3	4	5	6	7	8	9	10
\(5g^2 1K^+\)	\(E_p\)	3.12860	7.87865	14.69439	23.67940	34.83728	48.16967	63.67745	81.36112	101.22099
	\(E_a\)	2.93000	7.59000	14.40000	23.40000	34.60000	47.90000	63.70000	81.24000	101.28000
	\(E_b\)	2.93000	7.59000	14.41000	23.41000	34.69000	47.90000	63.71000	81.24000	101.28000
\(6g^2 1K^+\)	\(E_p\)	2.18229	5.48788	10.22878	16.47627	24.23275	33.49937	44.27669	56.56508	70.36472
	\(E_a\)	2.03000	5.27000	10.02000	16.27000	24.05000	33.30000	44.12000	56.43000	70.25000
	\(E_b\)	2.04000	5.23000	10.04000	16.22000	24.10000	33.41000	44.22000	56.54000	70.38000
\(7g^2 1K^+\)	\(E_p\)	1.60979	4.04301	7.53129	12.12654	17.83049	24.64395	32.56734	41.60091	51.74480
	\(E_a\)	1.49000	3.87000	7.36000	11.96000	17.67000	24.49000	32.42000	41.46000	51.61000
	\(E_b\)	1.50000	3.88000	7.36000	11.95000	17.75000	24.43000	32.48000	41.51000	51.63000
\(8g^2 1K^+\)	\(E_p\)	1.23704	3.10320	5.77753	9.29943	13.67022	18.89050	24.96058	31.88065	39.65082
	\(E_a\)	1.08071	2.45755	4.57320	7.35860	10.81474	14.94209	19.74091	25.21133	31.35343
	\(E_b\)	0.98685	1.99482	3.71044	5.96858	8.77005	12.11521	16.00426	20.43731	25.41443

1Present work, values calculated from Equation (22), aSakho [40], bDiouf et al. [39].

Table 13
Comparison of the present calculations on total energies of the doubly \((nh^2)^1M^+\) \((n = 6 - 10)\) excited states of helium-like systems \((Z = 2 - 10)\) with available literature values. All results are expressed in eV.

States \((nh^2)^1M^+\)	\(Z\)	2	3	4	5	6	7	8	9	10
\(6h^2 1M^+\)	\(E_p\)	2.17365	5.47302	10.20698	16.44740	24.19675	33.45620	44.22633	56.50750	70.29992
	\(E_a\)	2.02000	5.25000	9.99000	16.24000	24.01000	33.28000	44.07000	56.37000	70.18000
	\(E_b\)	2.04000	5.23000	9.97000	16.22000	24.10000	33.27000	44.06000	56.37000	70.18000
\(7h^2 1M^+\)	\(E_p\)	1.60263	4.03075	7.51331	12.10275	17.80083	24.60839	32.52586	41.53550	51.69145
	\(E_a\)	1.48000	3.86000	7.34000	11.93000	17.64000	24.45000	32.38000	41.42000	51.56000
	\(E_b\)	1.46000	3.82000	7.36000	11.95000	17.63000	24.43000	32.33000	41.51000	51.63000
\(8h^2 1M^+\)	\(E_p\)	1.23105	3.09296	5.76253	9.27960	13.64551	18.86088	24.92603	31.84117	39.60369
	\(E_a\)	0.97565	2.44891	4.56056	7.34189	10.79392	14.91715	19.71182	25.17808	31.31603
	\(E_b\)	0.79253	1.98746	3.69968	5.95436	8.75234	12.09399	15.97952	20.49094	25.38263

1Present work, values calculated from Equation (22), aSakho [40], bDiouf et al. [39].

on the states and the only ones available to our knowledge are those of the authors Sakho [40] and Diouf et al. [39]. Moreover for \(n > 7\) there are no results available so we think that the results cited up to \(n = 20\) in this work may be interesting for future experimental and theoretical studies on these states.

In Tables 14-16 are quoted results for excitation energies of helium-like ions with \(Z \leq 10\). Our excitation energies are calculated with respect to the accurate ground state energies of Frankowski and Pekeris [42]. Comparison indicates that our excitation energies for \((ns^2)^1S^+\), \((np^2)^1D^+\) and \((nd\ell)^1G^2\) levels agree well
Table 14. Comparison of the present calculations on the variational calculation of the excitation energies of the doubly excited states \((ns^2)^1S^0\) \((n = 2 - 5)\) of the He-like systems with some theoretical results available in the literature consulted for \(Z = 2 - 5\). All the results are expressed in eV: 1 Ryd = 13.605698 eV.

States \(ns^2)^1S^0\)	\(Z\)	2	3	4	5
\(2s^2)^1S^0\)	\(E^f\)	57.5548	145.6737	275.1269	445.4159
	\(E^p\)	57.8487	146.2476	275.4882	445.5893
	\(E^d\)	58.6460	147.7633	277.6814	448.4165
	\(E^b\)	57.8200	146.3400	275.6600	445.7800
\(3s^2)^1S^0\)	\(E^f\)	69.4768	174.7975	328.7157	531.0145
	\(E^p\)	69.4299	175.2577	329.3314	531.6345
	\(E^d\)	69.9000	175.1000	328.9600	531.1800
	\(E^b\)	69.3972	174.7026	328.4035	530.5215
\(4s^2)^1S^0\)	\(E^f\)	73.5469	184.8470	347.1820	560.5819
	\(E^p\)	73.4218	184.9939	347.5358	561.0999
	\(E^d\)	73.7100	185.1600	347.6100	561.0600
	\(E^e\)	75.5808	189.7089	356.1533	574.8140
\(5s^2)^1S^0\)	\(E^f\)	75.1905	189.4457	355.9523	574.7972
	\(E^p\)	75.6200	189.8200	356.2400	574.9000

\(^a\)Present work, \(^b\)Ho [33], \(^c\)Ray and Mukherjee [23], \(^d\)Sakho et al. [24], \(^e\)Ho [34].

Table 15. Comparison of the present calculations on the variational calculation of the excitation energies of the doubly excited states \((np^2)^1D^0\) \((n = 2 - 5)\) of the He-like systems with some theoretical results available in the literature consulted for \(Z = 2 - 5\). All the results are expressed in eV: 1 Ryd = 13.605698 eV.

States \(np^2)^1D^0\)	\(Z\)	2	3	4	5
\(2p^2)^1D^0\)	\(E^f\)	59.6074	149.1087	280.1198	451.9913
	\(E^p\)	59.8900	149.9100	280.7200	452.3400
	\(E^d\)	149.9157	280.7699	452.4575	
	\(E^b\)	60.3249	150.6749	281.6815	453.8316
	\(E^e\)	150.3239	281.0420	452.5854	
	\(E^f\)	150.0599	280.9522	452.6670	
\(3p^2)^1D^0\)	\(E^f\)	70.2334	176.0563	330.5418	533.4165
	\(E^p\)	70.5100	176.6900	331.2100	534.0900
	\(E^d\)	176.4251	330.8008	533.5502	
	\(E^b\)	70.0693	175.9788	330.1368	533.3216
	\(E^e\)	176.2699	330.4933	533.0876	
	\(E^f\)	176.4441	330.8253	533.5611	
Table 16. Comparison of the present calculations on the variational calculation of the excitation energies of the doubly excited states \((n\ell^2) \, ^1 \text{D}^\ell \,(n = 2 - 5)\) of the He-like systems with some theoretical results available in the literature consulted for \(Z = 2 - 5\). All the results are expressed in eV.

States \((n\ell^2) \, ^1 \text{D}^\ell \,(n = 2 - 5)\)	\(Z\)	2	3	4	5
\(3\ell^2 \, ^1 \text{G}^\ell\)	\(E\)	70.3444	176.2471	330.8215	533.7867
	\(E\)	70.6245	176.9557	331.6960	534.8128
	\(E\)	71.0544	177.3529	332.0144	535.0495
	\(E\)	70.5238	176.9421	331.7477	534.9298
	\(E\)	74.0939	185.7314	348.5466	562.3881
\(4\ell^2 \, ^1 \text{G}^\ell\)	\(E\)	74.3089	186.0362	348.7685	562.5167
	\(E\)	73.7021	185.5789	348.2569	561.9398
	\(E\)	75.8420	190.1429	356.7827	575.6688
	\(E\)	75.9470	190.2838	356.8475	575.6543
	\(E\)	75.6667	189.8185	358.3822	575.0611
\(5\ell^2 \, ^1 \text{G}^\ell\)	\(E\)	76.7975	192.5498	361.2720	582.9034
	\(E\)	76.8667	192.6376	361.3047	582.8789
\(6\ell^2 \, ^1 \text{G}^\ell\)	\(E\)	77.3770	194.0067	363.9872	587.2765
	\(E\)	77.4273	194.0717	364.0150	587.2600

*Present work; aBachau et al. [19]; bRoy et al. [18]; cRay and Mukherjee [23].

with results obtained by the authors cited in Tables 14-16. Overall, we find a good agreement between our results and those of these authors. For all the states studied, the results obtained are in good agreement with the theoretical results we have consulted. The small difference noted between our results and those of the authors mentioned above is explained by the used method and the choice of the correlated wavefunction. The actual results presented in these different tables sufficiently show the good agreements between the current calculations and the different \textit{ab-initio} results for the doubly excited states \((n\ell^2) \, ^5 \text{S}^\ell\), \((np\ell^2) \, ^1 \text{D}^\ell\), \((n\ell^2) \, ^1 \text{G}^\ell\)
\(^1\!G^\prime, (n^f) \ ^1\!I^\prime, (n^g) \ ^1\!K^\prime, \) and \((n^h) \ ^1\!M^\prime\) of the He-like ions up to \(Z = 10\). This very good agreement sufficiently justifies the validity of the variational procedure of the SCUNC method to give the precise values obtained directly from an analytical expression, unlike all the \textit{ab-initio} methods cited in this document. Furthermore, the results quoted up to \(n = 20\) in this work may be interesting for future experimental and theoretical studies in the doubly excited states \((n^f) \ ^1\!L^\prime\). In summary, the manuscript reports on new calculations for key atomic-structure parameters of important fundamental few-body systems (helium and helium-like ions). While not allowing more precision tests of physics due to the neglect of relativistic, spin, and QED effects, such results can still be helpful in the future development of theories to describe more complex atoms, or may be further developed to study the time-dependent evolution of atoms in external \textit{(e.g. laser)} fields.

4. Conclusion

In this paper, the total energies and excitation energies of the doubly excited \((n^s) \ ^1\!S^\prime, (n^p) \ ^1\!D^\prime, (n^d) \ ^1\!G^\prime, (n^f) \ ^1\!I^\prime, (n^g) \ ^1\!K^\prime, \) and \((n^h) \ ^1\!M^\prime\) states of helium-like ions up to \(Z = 10\) are reported. These energies are calculated in the framework of the variational procedure of the Screening Constant by Unit Nuclear Charge (SCUNC) formalism. In this present work, a new wavefunction correlated to Hylleraas-type adapted to the correct description of electron-electron correlation phenomena in the \((n^f)\) doubly excited states of helium-like systems has been constructed. Our results for total energies and the excitation energies are in good agreement with the values cited in the experimental and theoretical literature. Furthermore, for \(n > 10\), no theoretical and experimental values from the literature are available for direct comparison. The good precision obtained in this work underlines that the results quoted up to \(n = 20\) in this work may be interesting for future experimental and theoretical studies in the doubly excited states \((n^f) \ ^1\!L^\prime\). The results presented in this paper show that it is therefore possible to perform an analytical calculation of the total energies of the \((n^f)\) doubly excited states for helium-like ions, without having to resort to excessively complicated calculations or a computer program.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Madden, R.P. and Codling, K. (1963) \textit{Physical Review Letters}, 10, 516. \nhttps://doi.org/10.1103/PhysRevLett.10.516

[2] Codling, K., Madden, R.P. and Ederer, D.L. (1967) \textit{Physical Review Journals Archive}, 155, 26. \nhttps://doi.org/10.1103/PhysRev.155.26

[3] Kahn, M.S. (1999) \textit{Physica Scripta T}, 80, 23-27. \nhttps://doi.org/10.1023/A:1023888619110
Keller, S. and Dreizler, R.M. (1999) *Physica Scripta T*, 80, 93-94. https://doi.org/10.1238/Physica.Topical.080a00093

Faenov, A.Ya., Skobelev, I.Yu. and Rosnej, F.B. (1999) *Physica Scripta T*, 80, 43-45. https://doi.org/10.1238/Physica.Topical.080a00043

Fano, U. (1983) *Reports on Progress in Physics*, 46, 97-165. https://doi.org/10.1088/0034-4885/46/2/001

Oda, N., Nishimura, F. and Tashira, S. (1970) *Physical Review Letters*, 24, 42-45. https://doi.org/10.1103/PhysRevLett.24.42

Hicks, P.J. and Comer, J. (1975) *Journal of Physics B: Atomic and Molecular Physics*, 8, 1866-1879. https://doi.org/10.1088/0022-3700/8/11/022

Rudd, M.E. (1965) *Physical Review Letters*, 15, 580-581. https://doi.org/10.1103/PhysRevLett.15.580

Bordenave-Montesquieu, A., Gleizes, A., Rodiere, M. and Benoit-Cattin, P. (1973) *Journal of Physics B: Atomic and Molecular Physics*, 6, 1997. https://doi.org/10.1088/0022-3700/6/10/016

Gelebart, F., Tweed, R.J. and Peresse, J. (1976) *Journal of Physics B: Atomic and Molecular Physics*, 9, 1739. https://doi.org/10.1088/0022-3700/9/10/018

Rodbro, M., Bruch, R. and Bisgaard, P. (1979) *Journal of Physics B: Atomic and Molecular Physics*, 12, 2413-2447. https://doi.org/10.1088/0022-3700/12/15/009

Ho, Y.K. and Bhatia, A.K. (1991) *Physical Review A*, 44, 2895-2855. https://doi.org/10.1103/PhysRevA.44.2895

Lindroth, E. (1994) *Physical Review A*, 49, 4473-4480. https://doi.org/10.1103/PhysRevA.49.4473

Ho, Y.K. and Callaway, J. (1985) *Journal of Physics B: Atomic and Molecular Physics*, 18, 3481. https://doi.org/10.1088/0022-3700/18/17/010

Biaye, M., Konté, A., Faye, B.A.N. and Wagué, A. (2005) *Physica Scripta*, 71, 39-42. https://doi.org/10.1140/epjd/e2008-00018-2

Ivanov, A.I. and Safronova, I.U. (1993) *Optika.Spectrosk*, 75, 516.

Roy, K.A., Singh, R. and Deb, M.B. (1997) *Journal of Physics B: Atomic, Molecular and Optical Physics*, 30, 4763. https://doi.org/10.1088/0953-4075/30/21/014

Bachau, H., Martin, F., Riera, A. and Yanez, M. (1991) *Atomic Data Nuclear Data Tables*, 48, 167-212. https://doi.org/10.1016/0092-640X(91)90006-P

Ho, Y.K. (1989) *Z Physics D Atoms, Molecules and Clusters*, 11, 277-281. https://doi.org/10.1007/BF01438499

Macias, A., Martin, F., Riera, A. and Yanez, M. (1987) *Physical Review A*, 36, 4187-4202. https://doi.org/10.1103/PhysRevA.36.4187

Conneely, M.J. and Lipsky, L. (1978) *Journal of Physics B: Atomic and Molecular Physics*, 24, 4135. https://doi.org/10.1088/0022-3700/11/24/008

Ray, D. and Mukherjee, P.K. (1991) *Journal of Physics B: Atomic, Molecular and Optical Physics*, 24, 1241. https://doi.org/10.1088/0953-4075/24/6/013

Sakho, I., Ndao, A.S., Biaye, M. and Wagué, A. (2008) *European Physical Journal D*, 47, 37-44. https://doi.org/10.1140/epjd/e2008-00018-2

Sakho, I., Ndao, A.S., Biaye, M. and Wagué, A. (2008) *Physica Scripta*, 77, Article ID: 055303. https://doi.org/10.1088/0031-8949/77/05/055303

Sakho, I. (2011) *European Physical Journal D*, 61, 267-283. https://doi.org/10.1140/epjd/e2010-10294-8
[27] Sakho, I. (2011) *Journal of Atomic and Molecular Sciences*, 2, 20-42. https://doi.org/10.4208/jams.062910.072810a

[28] Hylleraas, E.A. (1928) *Zeitschrift für Physik*, 48, 469-494. https://doi.org/10.1007/BF01340013

[29] Hylleraas, E.A. (1929) *Zeitschrift für Physik*, 54, 347-366. https://doi.org/10.1007/BF01375457

[30] Hylleraas, E.A. (1930) *Zeitschrift für Physik*, 65, 209-225. https://doi.org/10.1007/BF01397032

[31] Hylleraas, E.A. and Undheim, B. (1930) *Zeitschrift für Physik*, 65, 759-772. https://doi.org/10.1007/BF01397263

[32] Sakho, I., Ndao, A.S., Biaye, M. and Wagué, A. (2010) *Physica Scripta*, 82, Article ID: 035301. https://doi.org/10.1088/0031-8949/82/03/035301

[33] Ho, Y.K. (1981) *Physical Review A*, 23, 2137. https://doi.org/10.1103/PhysRevA.23.2137

[34] Ho, Y.K. (1979) *Journal of Physics B: Atomic and Molecular Physics*, 12, 387. https://doi.org/10.1088/0022-3700/12/3/016

[35] Ho, Y.K. (1980) *Physics Letters A*, 79, 44-46. https://doi.org/10.1016/0375-9601(80)90313-8

[36] Sow, B., Sow, M., Gning, Y., Traore, A., Ndao, A.S. and Wague, A. (2016) *Radiation Physics and Chemistry*, 123, 25-30. https://doi.org/10.1016/j.radphyschem.2016.01.037

[37] Gning, et al. (2015) *Radiation Physics and Chemistry*, 106, 1-6. https://doi.org/10.1016/j.radphyschem.2014.06.015

[38] Konté, A., Ndao, A.S., Biaye, M. and Wagué, A. (2006) *Physica Scripta*, 74, 605. https://doi.org/10.1088/0031-8949/74/6/002

[39] Diouf, A., et al. (2017) *International Journal of Applied Mathematics and Theoretical Physics*, 3, 78-85. https://doi.org/10.11648/j.ijamtp.20170304.11

[40] Sakho, I. (2010) *Journal of Atomic and Molecular Sciences*, 1, 103-117. https://doi.org/10.4208/jams.022510.031010a

[41] Badiane, J., et al. (2018) *International Journal of Applied Mathematics and Theoretical Physics*, 4, 27-41. https://doi.org/10.11648/j.ijamtp.20180402.11

[42] Frankowski, F. and Pekeris, L.C. (1966) *Physical Review*, 146, 46-49. https://doi.org/10.1103/PhysRev.146.46