Dipolar exchange induced transparency with Rydberg atoms

David Petrosyan
Institute of Electronic Structure and Laser, FORTH, GR-71110 Heraklion, Crete, Greece
Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
E-mail: dap@iesl.forth.gr

Abstract
A three-level atomic medium can be made transparent to a resonant probe field in the presence of a strong control field acting on an adjacent atomic transition to a long-lived state, which can be represented by a highly excited Rydberg state. The long-range interactions between the Rydberg state atoms then translate into strong, non-local, dispersive or absorptive interactions between the probe photons, which can be used to achieve deterministic quantum logic gates and single photon sources. Here we show that long-range dipole–dipole exchange interaction with one or more spins—two-level systems represented by atoms in suitable Rydberg states—can play the role of control field for the optically dense medium of atoms. This induces transparency of the medium for a number of probe photons \(n_p \) not exceeding the number of spins \(n_s \), while all the excess photons are resonantly absorbed upon propagation. In the most practical case of a single spin atom prepared in the Rydberg state, the medium is thus transparent only to a single input probe photon. For larger number of spins \(n_s \), all \(n_p \leq n_s \), photon components of the probe field would experience transparency but with an \(n_p \)-dependent group velocity.

1. Introduction
Atoms excited to the Rydberg states with high principal quantum numbers \(n \gg 1 \) have very long natural lifetimes \(\tau \propto n^3 \) and strong electric dipole moments \(\propto n^2 \) for the microwave transitions between the neighboring states [1]. The resulting long-range, resonant (exchange or Förster) and nonresonant (dispersive or van der Waals) dipole–dipole interactions between the atoms can suppress multiple Rydberg excitations within a certain blockade distance [2–5]. Dipole–dipole exchange interactions can mediate long-range binding potentials between Rydberg atoms [6–8] and can be used to study coherent [9–11] and incoherent [12, 13] excitation transfer processes.

An optically dense atomic medium can be made transparent to a resonant probe field whose photonic excitations are coherently mapped onto the atomic excitations, forming the so-called dark-state polaritons [14, 15]. This effect is called electromagnetically induced transparency (EIT) [15], and it is usually mediated by a control laser field driving the atoms on the transition adjacent to the probe resonance. Alternatively, the driving laser can be replaced by an electromagnetic mode of a resonator strongly coupled to the corresponding atomic transition [16, 17]. For an initially empty cavity, the resulting vacuum induced transparency (VIT) is sensitive to the number of photons in the input probe pulse and can therefore serve as a photon-number filter [18].

Here we propose a hitherto unexplored mechanism to attain transparency for a weak resonant probe field propagating in an ensemble of atoms whose adjacent transition is strongly coupled by dipole–dipole exchange interaction to one or more spins—two-level systems—playing the role of a quantized control field. In analogy with EIT and VIT, we call this mechanism dipolar exchange induced transparency—DEIT. By employing resonant dipole–dipole interaction between suitable pairs of highly excited Rydberg states, we ensure that the atoms of the medium are subject to a strong and long-range dipolar exchange field of the effective spins, see figure 1. Each probe photon propagating in the DEIT medium with a slow group velocity creates an accompanying Rydberg excitation by flipping one spin. The number of spins \(n_s \) then determines the maximal number of probe photons \(n_p \leq n_s \) that can simultaneously be accommodated in the medium without
We now turn to the quantitative description of the system shown schematically in Figure 1. Consider a one-dimensional propagation and interaction of a weak (quantum) probe field $\hat{E}(z, t)$ with the atomic medium of linear density $\rho(z)$ and length L, taken as quantization length. In the interaction picture [42, 43], the Hamiltonian of the system reads

$$
\hat{H}/\hbar = -\frac{i\hbar}{L} \int dz \hat{E}^\dagger(z) \partial_z \hat{E}(z) - \int dz \rho(z) \left[\Delta \hat{\delta}(z) + \langle \delta + \delta_r \rangle(z) + (\gamma \hat{E}(z) \hat{\delta}(z) + \text{h.c.}) \right] + \int dz \rho(z) \left[\delta \partial_z \left(z e_z - r_j \right) \hat{a}^{(j)} + \text{h.c.} \right],
$$

where $\Delta = \omega - \omega_i$, ω_i is the ground-state transition frequency, γ is the photon decay rate, and $\hat{\delta}(z) = |g\rangle \langle e|$. The medium is optically thick, so the probe photons turn into dark-state polaritons having large admixture of atomic density. The probe pulse is $\hat{E}(z, t)$ propagates with group velocity v_g along the z axis in an optically dense atomic medium of linear density $\rho(z)$ and length L.

The atoms at positions z are subject to dipole–dipole interaction $D(z) \equiv D(z e_z - r_j)$ with the effective spin J at position r_j, resulting in DEIT for the probe field.

Figure 1. Schematics of the system. (a) Level configuration of atoms interacting with the probe field \hat{E} on the transition between the ground state $|g\rangle$ and excited state $|e\rangle$ which decays with rate Γ_r, while the coupling D to the Rydberg state $|r\rangle$ is mediated by the dipole–dipole exchange interaction D_{ex} with the effective spin–J (atoms in (b)) and an auxiliary laser Ω, detuned from the nonresonant intermediate Rydberg state $|g\rangle$ by $\Delta_r \gg \Omega, D$. (b) The $n_e \geq 1$ atoms with the Rydberg states $|u\rangle$ and $|d\rangle$, confined in a small volume of size Δ_r, form an effective spin $J = n_e/2$ which interacts with the medium atoms in (a) via the dipole–dipole exchange. (c) The probe pulse $\hat{E}(z, t)$ propagates with group velocity v_g along the z axis in an optically dense atomic medium of linear density $\rho(z)$ and length L.
Here the first term is the free Hamiltonian for the probe field $\hat{E}(z) = \sum_k \hat{a}_k e^{ikz}$ propagating with velocity c. The probe field operators obey the commutation relations $[\hat{E}(z), \hat{E}'(z')] = [\hat{E}'(z), \hat{E}''(z')] = 0$ and $[\hat{E}(z), \hat{E}''(z')] = \delta(z-z')$ which follow from the bosonic nature of operators $\hat{a}_k, \hat{a}_k^\dagger$ for the individual longitudinal modes k. The second term of equation (1) describes the atoms of the medium and their interaction with the probe field \hat{E} with the coupling strength $\eta = \varphi_{ge} \sqrt{\omega/(2\hbar \epsilon_0 w^2 L)}$, where φ_{ge} is the dipole matrix element of the transition $|g\rangle \rightarrow |e\rangle$, ω is the carrier frequency of the probe field, ϵ_0 is the vacuum permeability, and $w \ll L$ is the probe field transverse width. We use the continuous atomic operators $\hat{p}_{\nu}(z) \equiv \frac{1}{\sqrt{N}} \sum_{\nu=1}^{N} |\nu\rangle \langle \nu|$, averaged over $N = \rho(z) \Delta z \gg 1$ atoms within a small interval Δz around position z\cite{15}. These continuous operators obey the relations $\hat{p}_{\nu}(z) \hat{p}_{\nu'}(z') = \delta_{\nu,\nu'} \hat{p}_{\nu}(z)\delta(z-z')/\rho(z)$. We work in the frame rotating with the optical field \hat{E} and ω (auxiliary coupling field) frequencies, and the microwave ω_{sub} (spin–transition) frequency, as detailed in the next paragraph. Then the energy of the excited atomic level $|e\rangle$ is given by the detuning $\Delta = \omega - \omega_{ge}$ of the probe field from the transition frequency resonance ω_{ge} and the energy of the Rydberg state $|r\rangle$ is defined via $\delta = (\omega_e + \omega_{sub}) - \omega_{tr}$.

The last term of equation (1) describes the effective long-range interaction between the medium atoms and n_j spins at positions r_j. These spins are represented by atoms with the Rydberg states $|u\rangle$ and $|d\rangle$ with the transition frequency ω_{sub} and the spin lowering $\hat{d}_r = |d\rangle \langle u|$ and rising $\hat{d}_e = |u\rangle \langle d|$ operators. The medium atoms and spins are coupled via the dipole–dipole interaction

$$D_{de} = \frac{1}{4\pi \epsilon_0 c} \left[\varphi_{rr} \cdot \varphi_{dd} - 3 \frac{\langle \varphi_{rr} \cdot \varphi_{dd} \rangle}{|R|^2} \right],$$

where φ_{rr} is the dipole moment of the atomic transition $|r\rangle \rightarrow |i\rangle$ between the Rydberg states $|r\rangle$ and $|i\rangle$, φ_{dd} is the dipole moment of the spin transition $|d\rangle \rightarrow |u\rangle$, and $R \equiv (x_r - r)$ is the relative position vector between an atom at z and a spin at r. To be specific, we consider a geometry of the system such that $\varphi_{rr}, \varphi_{dd}$ are along the y (quantization) axis, and assume that spin positions r_j are away from the z axis, at $x_j > w$. Then the interaction $D_{de} = \frac{G_{de}}{|x_r - r|^3}$, where G_{de} is finite for all z. The atomic excitation to the Rydberg state $|r\rangle$ is mediated by a non-resonant auxiliary coupling field of frequency ω_e which acts on the transition from the excited state $|e\rangle$ to the intermediate Rydberg state $|i\rangle$ with the Rabi frequency Ω, and a large detuning $\Delta_e = \omega_e - \omega_i = \omega_{sub}/|\Delta_e| \gg |D_{de}|$, Ω. Upon adiabatic elimination of the nonresonant state $|i\rangle$, we obtain the rate $D(x_r - r) = \frac{G_{de} \Omega}{|x_r - r|^3}$ of the effective atom–spin exchange interaction. Due to negligible population of $|i\rangle$, we can then neglect the dipole–dipole interaction between the medium atoms, $D_{de} \propto \frac{G_{de} \frac{\Omega^2}{|x_r - r|^3}}{\Delta_e}$, which requires that

$$\frac{\Delta_e}{\Omega^2} \ll \left\lfloor \frac{\Delta_e}{\Omega} \right\rfloor.$$

Adiabatic elimination of $|i\rangle$ leads also to the ac Stark shift $\frac{\Omega^2}{\Delta_e}$ of level $|e\rangle$, which can be absorbed in the detuning Δ_e and to the dipole–dipole interaction induced shift $\delta' = \frac{1}{\Delta_e} \frac{\Omega^2}{\Delta_e}$ of level $|r\rangle$, which should be added to δ. Looking ahead to the DEIT resonance in the vicinity of $\Delta \approx -\delta$, we note that in order to be able to disregard the spatially varying shift δ', we require it to be smaller than the DEIT linewidth $1/\gamma_c$, where $\gamma_c \approx 1/\gamma^2$ is the relaxation rate of the δ_{ge} coherence\cite{15}. This leads to the condition $1/\gamma_c \ll \left\lfloor \frac{\Delta_e}{\Omega} \right\rfloor \ll 1$, i.e., the Rabi frequency Ω of the auxiliary field should be sufficiently larger than γ_c (setting $|\delta| > \gamma_c$ from now on), but still much smaller than $|\Delta_e|$.

We may assume that the n_j spin-atoms are placed in a small volume of size $\Delta x \ll x_r / 3$ at position $r_j = x, x_j, z_j$ with $x_j \gg w$ and $z_j \approx \Delta x / 2$, such that the interaction strength D_{de} does not change appreciably within Δx. All the spin-atoms then couple symmetrically to the medium atoms, forming thereby an effective large spin $J = \frac{1}{2} n_j$ of the Dicke model\cite{44} with the symmetric states $|J, M_j\rangle$ corresponding to $J + M_j$ atoms in state $|u\rangle$ and the remaining $J - M_j$ atoms in $|d\rangle$, where $M_j = -J, \ldots, J$ is the ‘magnetic’ (spin projection) quantum number. With the collective spin-lowering $\hat{J}_L \equiv \sum_j \hat{d}_r^L$ and rising $\hat{J}_e \equiv \sum_j \hat{d}_e^L$ operators, the last term of Hamiltonian (1) can then be written as $\int dz \rho(z) D(z)[\hat{p}_{\nu}(z) \hat{J}_L + \hat{J}_L \hat{p}_{\nu}(z)]$, where $D(z) \equiv D(x_r - r_j)$. These operators obey standard spin-algebra relations: $[\hat{J}, |J, M_j\rangle] = \sqrt{(J + M_j) (J - M_j + 1)} |J, M_j + 1\rangle$, $[\hat{J}, |J, M_j\rangle] = \sqrt{(J + M_j + 1) (J - M_j + 1)} |J, M_j + 1\rangle$, $|J, M_j\rangle \equiv M_j |J, M_j\rangle$, etc. Strictly speaking, we should also take into account the dipole–dipole exchange interactions between the spin-atoms, $\sum_{j<k} D_{de} (r_j - r_k) \hat{d}_r^L \hat{d}_e^L$, which generalizes the Dicke model to the Lipkin–Meshkov–Glick model\cite{45}. In the special case of infinite range interaction, $D_{de} = \text{const}$, we obtain the Hamiltonian for the spin–J as $H_J = h \hat{J}_e \hat{J}_L + D_{de} (J - \frac{1}{2})^2$, where h is the effective magnetic field—detuning, in the present context. For simplicity, we neglect the dispersive (van der Waals) interactions between the spin atoms. Below, our main concern is the case of at most a single spin-atom, $J = \frac{1}{2}$, but we will keep the notation generally applicable to any J, assuming for simplicity negligible interactions between spins, leading to equidistant (or degenerate, for $h = 0$) spectrum of H_J. Such a situation can in principle be
realized for a few spin atoms arranged in certain geometric configurations, e.g., on a line tilted by angle $\theta \approx 54.7^\circ$ with respect to the direction of the dipole moment vector \mathbf{M}_dip (the y axis), since then $D_s \propto |M_\text{dip}|^2 (1 - \cos^2 \theta) \approx 0$.

Note finally that if, in the last term of Hamiltonian (1), we replace the dipolar exchange operator $D(z)\hat{J}$ (and its Hermite conjugate) with a c-number Rabi frequency of a classical driving field Ω, this Hamiltonian will describe the usual EIT process [14, 15, 43].

2.2. Dynamics of the system

From Hamiltonian (1) we obtain the following Heisenberg equations for the relevant system operators:

$$\partial_t \hat{c}(z) = i\hbar \mathcal{N} \hat{c}(z),$$
(2)

$$\partial_t \hat{c}_\nu(z) = (i\Delta - \gamma_\nu) \hat{c}_\nu(z) + i\hbar \hat{c}(z)[\hat{c}_\nu(z) - \hat{c}(z)] - iD(z)\hat{c}_\nu(z)\hat{J}_+ + \hat{F}_\nu,$$
(3)

$$\partial_t \hat{c}_\nu(z)\hat{J}_+ = [(i\Delta + \delta - \gamma_\nu)\hat{c}(z)\hat{J}_+ - i\hbar \hat{c}(z)\hat{c}_\nu(z)\hat{J}_+ - iD(z)\hat{c}_\nu(z)\hat{J}_+ + \hat{F}_\nu,$$
(4)

where $N = \rho L (\gg 1)$ is the total number of medium atoms (assuming uniform density), and γ_α and $\gamma_\nu (\ll \gamma_\nu)$ are the atomic coherence relaxation rates (with \hat{F}_ν and \hat{F}_ν the associated Langevin noise operators), while we ignore the decay of spins since Rydberg states are long-lived.

We consider adiabatic evolution of the system and drop the noise operators \hat{F} since they do not contribute to the dynamics of the atomic and normally ordered field operators [14, 15]. With all the medium atoms prepared initially in the ground state $|g\rangle$ and a weak input probe field $(\eta_t \ll N)$, we can neglect the depletion of $|g\rangle$ and set $\hat{c}_g \approx 1$ and $\hat{c}_\nu, \hat{c}_\nu \rightarrow 0$ in the above equations. From the stationary solution of equations (3) and (4) we then obtain the atomic coherence \hat{c}_ν. Substituting it in the field propagation equation (2) without the time-derivative and comparing with $\partial_t \hat{E} = i\frac{\omega}{\hbar} \hat{E}$ [43], we obtain the medium susceptibility

$$\hat{\chi}(z, \Delta) = \frac{2}{\omega} \frac{\eta^2 N}{\gamma_\nu - i\Delta + \delta},$$
(5)

Note that $2\eta^2 N / \omega = |\psi_\text{el}|^2 \rho / \hbar \omega_0 = \frac{\gamma}{\omega_0} \rho_\text{el}$, where $\gamma = 3\pi^2 e^2 / \omega^2$ is the atomic resonant absorption cross-section assuming the (population) decay rate $\Gamma_\nu = 2\gamma_\nu$ from state $|e\rangle$, and $\rho = N / (\omega^2 L)$ is the volume density of atoms. Equation (5) has the form of the usual EIT susceptibility [15, 43, 46], but with the square of the driving field Rabi frequency $|\Omega|_t^2$ replaced by that of the space-dependent dipolar exchange operator, $|D(z)|^2 \hat{J}_+ \hat{J}_-$. In figure 2 we show the imaginary part of medium susceptibility, equation (5), responsible for the probe absorption, as a function of probe frequency, at different spatial positions of the medium. In the absence of spin atom(s), $\langle \hat{J}_+ \hat{J}_- \rangle = 0$, the absorption spectrum is the usual Lorentzian of the TLA medium, while in the presence of a spin atom prepared in the spin-up state $|u\rangle$, such that $\langle \hat{J}_+ \hat{J}_- \rangle = 1$, the medium exhibits position-dependent EIT-like spectrum for a single probe photon (see below).

Using the expansion of $\hat{\chi}$ to first order in probe frequency around Δ [43], we can now write the propagation equation for the probe pulse amplitude as

$$\partial_t \hat{\Phi}(z, t) = i\frac{e}{2} \hat{\chi} \hat{E}(z, t),$$
(6)

where $\hat{\Phi}(z, t) = c [1 + \frac{e}{\hbar} \frac{\partial}{\partial \Delta}] \text{Re} \hat{\chi}(z, \Delta)$ is the group velocity [15, 43], which, as the susceptibility, is z-dependent and operator-valued quantity. We are concerned with the dynamics of probe field with the carrier frequency near the DEIT (EIT) resonance $\Delta = -\delta$, assuming the EIT-like condition $|\gamma_\nu + i\theta|_\nu \ll |D(z)|^2 \forall z \in [0, L]$. The group velocity is then

$$\hat{\Phi}(z) = \hat{\Phi} \frac{e}{\hbar} \frac{\partial}{\partial \Delta} \approx \frac{c}{\eta^2 N} \frac{|D(z)|^2 \hat{J}_+ \hat{J}_-}{|\Omega|_t^2} \ll c,$$
(7)

provided $\langle \hat{J}_+ \hat{J}_- \rangle = 0$ (see below), and assuming that the collective atom-field coupling $\eta^2 N$ is larger than the single atom–spin coupling $|D(z)|^2$ which remains finite even at $z \approx L/2$ due to the spin position $x_r \gg w$. The propagation equation (6), supplemented with equations (5) and (7), is the central result of this paper. Before we discuss its implications, however, we should establish the connection between the value of spin operator \hat{J}_+, \hat{J}_- (for the given initial spin j) and the number of probe photons inside the medium $\hat{N}_\nu(t) = \frac{1}{\Gamma} \int_0^L dz \hat{E}^\dagger (z, t) \hat{E}(z, t)$.

Using equation (2) and

$$\partial_t \hat{c}(z) = i\hbar \mathcal{N} \hat{c}(z) + \text{h.c.},$$
(8)
\[\partial_t \hat{J}_z = \int dz \rho [i \hat{D}(z) \hat{\delta}_r(z) \hat{J}_z + \text{h.c.}] = -\int dz \rho [\partial_t \hat{\delta}_r(z)] \] (9)

and taking into account that \(\partial_t [\hat{\delta}_r + \hat{\delta}_e] = 0 \), since under the DEIT (EIT) resonance and adiabatic evolution the excited state \(|e\rangle \) is never populated, \(\hat{\delta}_e = 0 \) \([15, 43]\), we obtain that \(\partial_t [\hat{n}_p - \hat{J}_z] = \frac{\gamma_J}{\Delta} [\hat{\delta}^\dagger(0) \hat{\delta}(0) - \hat{\delta}^\dagger(L) \hat{\delta}(L)] \) is determined by the difference of the flux of probe photons entering and leaving the medium at \(z = 0 \) and \(z = L \), respectively. Next, from \(\eta \hat{\delta}(z) = D(z) \hat{\delta}_r(z) \hat{J}_z \) (see equation (3) with \(\hat{\delta}_r, \hat{\delta}_e = 0 \)) we have

\[
\eta^2 \hat{n}_p = \frac{1}{\Delta} \int_0^L dz [\hat{D}(z)]^2 \hat{\delta}_r(z) \hat{J}_z \hat{J}_z.
\]

We assume that the initial spin \(J(n_i = 2 J_r \text{ spin atoms}) \) is prepared in state \(|J, J\rangle \) (all spin-atoms in state \(|n_i\rangle \)). Using the equality \(\hat{J}_z = (J - \hat{J}_z)(J + \hat{J}_z + 1) \), after a little algebra we obtain the approximate expression

\[
\eta^2 N \hat{n}_p \approx 2|\hat{D}|^2 (J - \hat{J}_z),
\]

where we used \(\int_0^L dz \rho \hat{\delta}_r(z) = (J - \hat{J}_z) \) assuming that \(\hat{\delta}_r(z) \) is a slowly varying function of \(z \) in comparison to \(|\hat{D}(z)|^2 \) with the mean value \(\bar{D}^2 = \frac{1}{\Delta} \int_0^L dz |\hat{D}(z)|^2 \). Recall that we positioned the spin \(J \) such that

\[
\eta^2 N D^2 (z(\mathbf{e}_z - \mathbf{r}))^2 \forall z \in [0, L].
\]

Equation (10) therefore indicates that inside the medium nearly all of probe photons are converted into the spin (de-)excitations, \(\hat{n}_p \ll (J - \hat{J}_z). \) We then obtain that

\[
J - \hat{J}_z(t) \approx \frac{c}{L} \int_0^t [\hat{\delta}^\dagger(0, t') \hat{\delta}(0, t') - \hat{\delta}^\dagger(L, t') \hat{\delta}(L, t')] dt' \equiv \hat{\delta}_{p,\text{in}}(t) - \hat{\delta}_{p,\text{out}}(t).
\]

We can now deduce the response of the medium to the incoming probe photons. The \(n_p = n_{p,\text{in}} - n_{p,\text{out}} \) photons, that already entered the medium but not yet left it, are coherently converted into the atomic Rydberg excitations \(|p\rangle \) with simultaneous flip of \(n_p \) spin-atoms from state \(|u\rangle \) to state \(|d\rangle \), corresponding to the spin state \(|J, J - n_p\rangle \). Operator \(\hat{J}_z \) acting on that state leads to \((n_i - n_p)(n_p + 1)\) which is non-zero if \(n_i > n_p \). Then the next probe photon entering the medium sees vanishing susceptibility, since in equation (5) the last term in denominator diverges under the DEIT (EIT) conditions. That \((n_p + 1)\)th probe photon propagates in the DEIT medium without absorption and with the \(n_p \)-dependent group velocity

\[
\nu_g^{n_p+1}(z) = c (|\hat{D}(z)|^2 (n_i - n_p)(n_p + 1))^{-\frac{1}{2}} \eta^2 N \] as per equation (7). We note parenthetically that if \(n_i > n_p \) the large spin-\(g \) behaves as a harmonic oscillator and the group velocity depends nearly linearly on \(n_p \)—a situation similar to VIT with \(\Lambda \)-atoms in a cavity \([18]\). On the other hand, if \(n_i \ll n_p \), the susceptibility of equation (5) reduces to that of the resonant TLA medium \((|\Delta| < \gamma)\). Equation (6) then leads to linear absorption of the incoming probe photon, \(\nu_g^{\dagger}(z) \hat{\delta}(z) = \hat{\delta}^\dagger(0) \hat{\delta}(0) \exp(-\kappa z) \), with the (intensity) absorption coefficient \(\kappa = 2 \gamma n_p \) \([43]\). Thus the DEIT medium behaves as a photon number filter, transmitting up to \(n_p \ll n \) probe photons at a time, given the number \(n_i \) of spin-atoms prepared in state \(|u\rangle \).
Perhaps the most experimentally relevant and practically interesting situation of a single-photon filter or a transistor is realized for a single spin playing the role of a gate: for \(n_s = 0 \) the medium is strongly absorbing for the incoming probe photons, with the optical depth \(\text{OD} = \kappa L \), which can be large enough in the medium of sufficient length \(L \) (see below); For \(n_s = 1 \) a single spin atom in state \(|u \rangle \) makes the medium transparent for one, and no more than one, probe photon at a time.

3. Experimental considerations and conclusions

The system discussed above can be realized experimentally with currently available setups for Rydberg EIT with alkali atoms [25–27, 31, 36–38]. As a specific example, we may consider an ensemble of cold Rb atoms in an elongated trap of length \(L \approx 25 \, \mu \text{m} \). The ground \(|g \rangle \) and excited \(|e \rangle \) states of the medium atoms would correspond to suitable sublevels of the 5S\(_{1/2}\) and 5P\(_{3/2}\) (or 5P\(_{1/2}\)) electronic states, with \(\Gamma_e \approx 2 \pi \times 6 \, \text{MHz} \), while the Rydberg states are \(|i \rangle = |nS_{1/2}, M_f = 1/2 \rangle \) and \(|r \rangle = |nP_{3/2}, M_f = 1/2 \rangle \) with the principal quantum number \(n \approx 82 \), and the quantization direction is taken along the y axis (\(|i \rangle \leftrightarrow |r \rangle \) is a \(\pi \)-transition, \(\Delta M_f = 0 \)). The spin atom(s) can then be prepared by focused laser beam(s) in state \(|u \rangle = (n' + 1)S_{1/2}, M_f = 1/2 \rangle \) with strong dipole transition to state \(|d \rangle = |nP_{3/2}, M_f = 1/2 \rangle (\Delta M_f = 0). A static external electric or magnetic field can lift the degeneracy of the Rydberg \(M_f \) states of the spin and medium atoms to ensure that only \(\Delta M_f = 0 \) transitions are resonantly coupled via the dipole–dipole exchange interaction, in the presence of the auxiliary coupling field with the appropriate frequency \(\omega_\text{a} \), to satisfy the two-photon resonance condition \(|d| \ll \gamma (\delta \approx -\Delta) \). With the quantum defects \(\delta_S = 3.131 \) and \(\delta_P = 2.4565 \) for the Rb 5S and P states [1], we chose \(n' = 86 \) such that the transition \(|i \rangle \rightarrow |r \rangle \) is appropriately detuned (by \(\Delta \gamma \approx 10 \kappa \approx 2 \pi \times 0.44 \, \text{GHz} \)) from the \(|u \rangle \rightarrow |d \rangle \) transition resonance. Calculation of the transition dipole moments \(\tilde{d}_{ir} \) and \(\tilde{d}_{yu} \), involving the radial [47] and angular parts, leads to the coefficient \(C_\text{a} = 2 \pi \times 10.8 \, \text{GHz} \, \text{MHz}^3 \). Then the DEIT linewidth \(\Delta \omega_\text{DEIT} = |D(R)|^2/\gamma \) of the medium atoms can be large enough, \(\Delta \omega_\text{DEIT} \gtrsim 2 \pi \times 10^5 \) Hz at a distance \(R \lesssim d_i = 12.5 \, \mu \text{m} \) from the spin atoms, which permits the medium lengths \(L \approx 2 d_i \). We take moderate atomic density \(\rho = 10^{13} \, \text{cm}^{-3} \) at which the mean interatomic separations is larger than the size of the \(n \approx 80 \) Rydberg electron orbit, so as to avoid excessive decoherence due to electron collisions with the ground state atoms [41]. With \(L \approx 25 \, \mu \text{m} \) when then obtain optical depth OD \(\approx 7 \), which would yield complete absorption of the probe photon(s) in the absence of DEIT, or saturation thereof by the previous \(n_p = n_i \) photons. Decay and dephasing of Rydberg states of the medium and spin atoms, with the typical rate \(\gamma_i \) of several tens of kHz [25–29], will degrade DEIT and lead to a small probability of absorption of the probe photon(s), \(\int_0^L dz \approx \frac{1}{c} \text{Im} (\tilde{\chi}(z)) \approx 10^{-2} \), during propagation through the medium. Several alternative choices of suitable atomic states and species are also possible. This will permit implementation of an efficient photon number switch as described above.

Note finally that in the above analysis we have neglected van der Waals interactions between the \(|r \rangle \) state atoms. This simplification can be justified for a few probe photons simultaneously present in the medium, such that the mean distance between the photons is smaller than the van der Waals blockade distance \(d_b = \sqrt[8]{C_{\text{a}}/8 \gamma_\text{DEIT}} \) [24, 28–30]. Due to the \(R \) dependence of the DEIT linewidth, \(d_b = \sqrt[8]{C_{\text{a}}/8 \gamma_\text{DEIT} |R|} \) varies between \(\sim 3 \, \mu\text{m} \) in the center (\(z \sim L/2 \)) and \(\sim 10 \, \mu\text{m} \) at the edges (\(z \sim 0, L \)) of the medium. Hence, even for many spin atoms \(n_i > 1 \), the number of probe photons in the medium is realistically limited to \(n_p \lesssim 3 \).

Obviously, van der Waals interaction does not affect the performance of the single-photon switch, \(n_i = 1 \) or 0.

It would be interesting to consider an extended system with evenly distributed spin atoms prepared in one of the spin states with overlapping dipolar exchange field affecting the medium atoms. Then the density of probe photons that can propagate in the medium without attenuation will not exceed the density of spin atoms. Even more intriguing would be to explore simultaneous interaction of the Rydberg spin-atoms arranged in a chain-like 1D configuration with the medium atoms, and among themselves via resonant excitation (or hole) hoping. This may lead in bound states of the spin–flips (magnons) and propagating probe photons subject to DEIT.

Developing an appropriate theoretical many-body description is a challenge worth pursuing as such systems could serve as viable quantum simulators with quantum light fields and Rydberg atoms.

Acknowledgments

Useful discussion with Michael Fleischhauer, József Fortágh and Klaus Mølmer are gratefully acknowledged. This work was supported in part by the H2020 FET Proactive project RySQ.
References

[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)
[2] Saffman M, Walker T G and Molmer K 2010 Quantum information with Rydberg atoms Rev. Mod. Phys. 82 2313
[3] Comparat D and Pillet P 2010 Dipole blockade in a cold Rydberg atomic sample J. Opt. Soc. Am. B 27 A208
[4] Jaksh D, Cirac J I, Zoller P, Rolston S L, Côté R and Lukin M D 2000 Fast quantum gates for neutral atoms Phys. Rev. Lett. 85 2208
[5] Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksh D, Cirac J I and Zoller P 2001 Dipole blockade and quantum information processing in mesoscopic atomic ensembles Phys. Rev. Lett. 87 037901
[6] Kiffner M, Park H, Li W and Gallagher T F 2012 Dipole–dipole–coupled double-Rydberg molecules Phys. Rev. A 86 031401(R)
[7] Kiffner M, Li W and Jaksh D 2013 Three-body bound states in dipole–dipole interacting Rydberg atoms Phys. Rev. Lett. 111 233003
[8] Petroshyan D and Molmer K 2014 Binding potentials and interaction gates between microwave–dressed Rydberg atoms Phys. Rev. Lett. 113 123003
[9] Bettelli S, Maxwell D, Fernholz T, Adams C S, Lesanovsky I and Ates C 2013 Exciton dynamics in emergent Rydberg lattices Phys. Rev. A 88 043436
[10] Barredo D, Labuhn H, Ravets S, Lahaye T, Browaeys A and Adams C S 2015 Coherent excitation transfer in a spin chain of three Rydberg atoms Phys. Rev. Lett. 114 133002
[11] Yu H and Bobichevaux F 2016 Coherent dipole transport in a small grid of Rydberg atoms Phys. Rev. A 93 023618
[12] Günter G, Schempp H, de-Saint-Vincent M R, Schempp H, Whitlock S and Weidemüller M 2013 Observing the dynamics of dipole-mediated energy transport Science 342 954
[13] Schönleber D W, Eisfeld A, Genkin M, Whitlock S and Wüster S 2015 Quantum simulation of energy transport with embedded Rydberg aggregates Phys. Rev. Lett. 114 123005
[14] Fleischhauer M and Lukin M D 2000 Dark-State polarizations in electromagnetically induced transparency Phys. Rev. Lett. 84 5904
[15] Fleischhauer M and Lukin M D 2002 Quantum memory for photons: dark-state polaritons Phys. Rev. A 65 022314
[16] Fleischhauer M, Imanoglu A and Marangos J P 2005 Electromagnetically induced transparency: optics in coherent media Rev. Mod. Phys. 77 633
[17] Field J E 1993 Vacuum–Rabi-splitting-induced transparency Phys. Rev. A 47 5064
[18] Parigi V, Bimbard E, Stanojevic J, Hilliard A J, Nogrette F, Tualle-Brouri R, Ourjoumtsev A and Grangier P 2012 Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms Phys. Rev. Lett. 109 233602
[19] Tiarks D, Schmidt S, Rempe G and Durr S 2016 Optical x phase shift created with a single-photon pulse Phys. Rev. A 93 063818
[20] Friedler I, Petroshyan D, Fleischhauer M and Kurizki G 2005 Long-range interactions and entanglement of slow single-photon pulses Phys. Rev. A 72 043403
[21] Shahmoon E, Kurizki G, Fleischhauer M and Petroshyan D 2011 Strongly interacting photons in hollow-core waveguides Phys. Rev. A 83 033806
[22] He B, MacRae A, Han Y, Iovkov I A and Simon C 2011 Phys. Rev. A 83 022312
[23] Parigi V, Bimbard E, Stanojevic J, Hilliard A J, Nogrette F, Tsaille-Broui R, Ourjoumtsev A and Grangier P 2012 Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms Phys. Rev. Lett. 109 233602
[24] Tiarks D, Schmidt S, Rempe G and Durr S 2016 Optical x phase shift created with a single-photon pulse Phys. Rev. A 93 063818
[25] Petrosyan G and Fleischhauer M 2010 Photon-number selective group delay in cavity induced transparency Phys. Rev. Lett. 105 013601
[26] Lauk N and Fleischhauer M 2016 Number-state filter for pulses of light Phys. Rev. A 93 063818
[27] Friedler I, Petroshyan D, Fleischhauer M and Kurizki G 2005 Long-range interactions and entanglement of slow single-photon pulses Phys. Rev. A 72 043403
[28] Shahmoon E, Kurizki G, Fleischhauer M and Petroshyan D 2011 Strongly interacting photons in hollow-core waveguides Phys. Rev. A 83 033806
[29] He B, MacRae A, Han Y, Iovkov I A and Simon C 2011 Phys. Rev. A 83 022312
[30] Parigi V, Bimbard E, Stanojevic J, Hilliard A J, Nogrette F, Tsaille-Broui R, Ourjoumtsev A and Grangier P 2012 Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms Phys. Rev. Lett. 109 233602
[31] Tiarks D, Schmidt S, Rempe G and Durr S 2016 Optical x phase shift created with a single-photon pulse Phys. Rev. A 93 063818
[32] Petrosyan G and Fleischhauer M 2010 Photon-number selective group delay in cavity induced transparency Phys. Rev. Lett. 105 013601
[33] Petroshyan D, Otterbach J and Fleischhauer M 2011 Electromagnetically induced transparency with Rydberg atoms Phys. Rev. Lett. 107 213601
[34] Ates C, Sevčinc S and Pohl T 2011 Electromagnetically induced transparency in strongly interacting Rydberg gases Phys. Rev. A 83 041802(R)
[35] Sevčinc S, Henkel N, Ates C and Pohl T 2011 Nonlocal nonlinear optics in cold Rydberg gases Phys. Rev. Lett. 107 153001
[36] Hofmann C S, Günter G, Schempp H, de-Saint-Vincent M R, Gärttner M, Evers J, Whitlock S and Weidemüller M 2013 Subpoissonian statistics of Rydberg-interacting dark-state polaritons Phys. Rev. Lett. 110 203601
[37] Dūdina Y O and Kumrich A 2012 Strongly interacting Rydberg excitations of a cold atomic gas Science 336 887
[38] Otterbach J, Moos M, Muth D and Fleischhauer M 2013 Wigner crystalization of photons in cold Rydberg ensembles Phys. Rev. Lett. 111 133601
[39] Moos M, Höning M, Unanyan R and Fleischhauer M 2015 Many-body physics of Rydberg dark-state polaritons in the strongly interacting regime Phys. Rev. A 92 053846
[40] Distante E, Padron-Brito A, Cristiani M, Paredes-Barato D and de Riedmatten H 2016 Storage enhanced nonlinearities in a cold atomic Rydberg ensemble Phys. Rev. Lett. 117 115301
[41] Li W, Visco D, Hofferberth S and Lesanovsky I 2014 Electromagnetically induced transparency in an entangled medium Phys. Rev. Lett. 112 243601
[42] Maxwell D, Sizver D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2013 Storage and control of optical photons using Rydberg polaritons Phys. Rev. Lett. 110 103001
[43] Baur S, Tiarks D, Rempe G and Durr S 2014 Single–photon switch based on Rydberg blockade Phys. Rev. Lett. 112 073901
[44] Tiarks D, Baur S, Schneider K, Durr S and Rempe G 2014 Single–photon transistor using a Förster resonance Phys. Rev. Lett. 113 053602
[45] Gorniaczyk H, Tresp G, Schmidt J, Fedder H and Hofferberth S 2014 Single–photon transistor mediated by interstate Rydberg interactions Phys. Rev. Lett. 113 053601
Gorniaczyk H, Tresp C, Bienias P, Paris-Mandoki A, Li W, Mirgorodskiy I, Büchler H P, Lesanovsky I and Hofferberth S 2016 Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances Nat. Commun. 7 12480

[39] Murray C and Pohl T 2016 Quantum and nonlinear optics in strongly interacting atomic ensembles Adv. Atom. Mol. Opt. Phys. 65 321

[40] Firstenberg O, Adams C S and Hofferberth S 2016 Nonlinear quantum optics mediated by Rydberg interactions J. Phys. B: At. Mol. Opt. Phys. 49 152003

[41] Balewski J B, Krupp A T, Gaj A, Peter D, Büchler H P, Löw R, Hofferberth S and Pfau T 2013 Coupling a single electron to a Bose–Einstein condensate Nature 502 664

Gaj A, Krupp A T, Balewski J B, Löw R, Hofferberth S and Pfau T 2014 From molecular spectra to a density shift in dense Rydberg gases Nat. Commun. 5 4546

[42] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

[43] Lambropoulos P and Petrosyan D 2007 Fundamentals of Quantum Optics and Quantum Information (Berlin: Springer)

[44] Dicke R H 1954 Coherence in spontaneous radiation processes Phys. Rev. 93 99

[45] Lipkin H J, Meshkov N and Glick A J 1965 Validity of many-body approximation methods for a solvable model: I. Exact solutions and perturbation theory Nucl. Phys. 62 188

[46] Petrosyan D 2005 Towards deterministic optical quantum computation with coherently driven atomic ensembles J. Opt. B 7 S141

[47] Kaulakys B 1995 Consistent analytical approach for the quasi-classical radial dipole matrix elements J. Phys. B: At. Mol. Opt. Phys. 28 4963