A Partial Order on Bipartite Graphs with \(n \) Vertices

Emil Daniel Schwab
Department of Mathematical Sciences, University of Texas - El Paso, USA

ABSTRACT. The paper examines a partial order on bipartite graphs \((X_1, X_2, E)\) with \(n \) vertices, \(X_1 \cup X_2 = \{1, 2, \ldots, n\} \). The basis of such bipartite graph is \(X_1 = \{1, 2, \ldots, k\} \), \(0 \leq k \leq n \). If \(U = (X_1, X_2, E(U)) \) and \(V = (Y_1, Y_2, E(V)) \) then \(U \leq V \) iff \(|X_1| \leq |Y_1| \) and \(\{ (i, j) \in E(U) : j > |Y_1| \} = \{ (i, j) \in E(V) : i \leq |X_1| \} \). This partial order is a natural partial order of subobjects of an object in a triangular category with bipartite graphs as morphisms.

KEYWORDS: Bipartite graph; partial order; triangular category.

1 The set \(B_n \) of bipartite graphs

We restrict attention to finite simple graph and use standard notations and definitions of graph theory. A graph \(G \) is a pair \((X, E)\), where \(X \) is a set \(\{x_1, x_2, \ldots, x_n\} \) of elements called vertices, and \(E \) is a set of pairs of vertices \((x_i, x_j) = (x_j, x_i)\). An element \((x_i, x_j)\) of \(E \) is called an edge of \(G=(X, E) \). Any two vertices, \(x_i \) and \(x_j \), are said to be adjacent if and only if the pair \((x_i, x_j)\) is an edge of \(G \). A graph \((X, E)\) is bipartite if its vertices can be partitioned into two sets \(X_1 \) and \(X_2 \) (\(X_1 \cup X_2 = X ; X_1 \cap X_2 = \emptyset \)) such that no two vertices in the same set are adjacent. One often writes \(U=(X_1, X_2, E(U)) \) to denote a bipartite graph, and we say that the first set \(X_1 \) is the basis of the bipartite graph \(U \).

An isomorphism of graphs \(G=(X, E) \) and \(G'=(X', E') \) is a bijection \(f : X \to X' \) such that any two vertices \(x_i, x_j \in X \) are adjacent in \(G \) if and only if \(f(x_i), f(x_j) \in X' \) are adjacent in \(G' \).
Now, we denote by B_n the set of bipartite graphs $U=(X_1, X_2, E(U))$ with n vertices such that the following laws hold:

1) The family $\{x_1, x_2, \ldots, x_n\}$ of the vertices of U is denoted by its set of indices $\{1, 2, \ldots, n\}$ such that the first indices $(i=1, 2, \ldots, k)$ are in the same partite set namely in the basis X_1 of U and $X_2=\{k+1, k+2, \ldots, n\}$.

2) If i and j are adjacent in U such that $i \in X_1$ and $j \in X_2$ then (i, j) denotes the corresponding edge of U. Thus $(i, j) \in E(U)$ implies $i < j$.

For instance, the following bipartite graph U:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

with the set of edges $E=\{(1, 7), (2, 6), (4, 7), (5, 6)\}$ and $X_1=\{1, 2, 3, 4, 5\}$, $X_2=\{6, 7\}$ is an element of B_7. The following two elements of B_7:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\phi & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\phi & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

are two distinct elements of B_7. The first has basis the empty set, and $\{1, 2, 3, 4, 5, 6, 7\}$ is the basis of the second bipartite graph.

It is straightforward to check that

\[|B_n| = \sum_{k=0}^{n} 2^{k(n-k)},\]

where $|B_n|$ is the cardinality of B_n.

2. A partial order on B_n

Let $U = (X_1, X_2, E(U))$ and $V = (Y_1, Y_2, E(V))$ be two elements of B_n.

Proposition 1. The relation defined by

$U \leq V \iff |X_1| \leq |Y_1|$ and $\{(i, j) \in E(U) \mid j > |Y_1|\} = \{(i, j) \in E(V) \mid i \leq |X_1|\}$

is a partial order on B_n.
Proof. It is immediate that the relation defined above is reflexive and antisymmetric. To show that it is also transitive, let $U = (X_1, X_2, E(U)), V = (Y_1, Y_2, E(V)), W = (Z_1, Z_2, E(W)) \in B_n$ such that $U \leq V$ and $V \leq W$. It follows that

a) $|X_1| \leq |Y_1| \leq |Z_1|$,

b) $(i_0, j_0) \in \{(i, j) \in E(U) | j >|Z_1| \}$

$\Rightarrow (i_0, j_0) \in \{(i, j) \in E(U) | j >|Y_1| \} = \{(i, j) \in E(V) | i \leq |X_1| \}$

$\Rightarrow (i_0, j_0) \in \{(i, j) \in E(V) | i \leq |X_1| \ and \ j >|Z_1| \} = \{(i, j) \in E(W) | i \leq |X_1| \}$

$\Rightarrow \{(i, j) \in E(U) | j >|Z_1| \} \subseteq \{(i, j) \in E(W) | i \leq |X_1| \}$

c) $(i_0, j_0) \in \{(i, j) \in E(W) | i \leq |X_1| \}$

$\Rightarrow (i_0, j_0) \in \{(i, j) \in E(W) | i \leq |Y_1| \} = \{(i, j) \in E(V) | j >|Z_1| \}$

$\Rightarrow (i_0, j_0) \in \{(i, j) \in E(V) | i \leq |X_1| \ and \ j >|Z_1| \} = \{(i, j) \in E(U) | j >|Z_1| \}$

$\Rightarrow \{(i, j) \in E(W) | i \leq |X_1| \} \subseteq \{(i, j) \in E(U) | j >|Z_1| \}$

a), b) and c) implies that $U \leq W$.

Proposition 2. If the bases of two elements $U, V \in B_n, U \neq V,$ are equal then U and V are incomparable.

Proof. The equality

$\{(i, j) \in E(U) | j >|Y_1| \} = \{(i, j) \in E(V) | i \leq |X_1| \}$

where $X_1 = Y_1$, implies that $U = V$.

Now, let $n=3$. Then the Hasse diagram of the partially ordered set (B_3, \leq) is the following one:
Without specifying the bipartite graphs, the Hasse diagram of
\((B_3, \leq)\) is given by:

The case \(n > 3\) is somewhat laborious. For example, the Hasse diagram of
the partial ordered set \((B_4, \leq)\) is the following one:
3. Connection with a triangular category

Möbius inversion for categories was considered for the first time by Leroux [Ler75]. A Möbius category in the sense of Leroux is a decomposition finite category C (i.e. a small category where each morphism α has only finitely many nontrivial factorizations) such that an incidence function $f : MorC \rightarrow \mathbb{R}$ has a convolution inverse if and only if $f(1_A) \neq 0$ for any identity morphism 1_A of C.

The convolution $f \ast g$ of two incidence functions f and g is defined by

$$(f \ast g)(\alpha) = \sum_{\alpha = \beta \gamma} f(\beta) \cdot g(\gamma) \quad (\alpha \in MorC).$$

Möbius categories have also been characterized as decomposition-finite categories in which

1. each identity morphism is indecomposable, i.e., $1_A = \beta \gamma$ implies $\beta = 1_A = \gamma$;
2. $\beta \gamma = \gamma$ implies that β is identity morphism.

Now, it is straightforward to see that a special class of categories (called triangular categories by Leroux [Ler80]) in which the set of objects is the set of nonnegative integers \mathbb{N} and the family of numbers $|\text{Hom}(k,n)|$
(where $|\text{Hom}(k,n)|$ is the number of morphisms from k to n) constitute a triangular family of numbers, that is:

$$|\text{Hom}(n,n)| = 1 \text{ for all } n \in N; \text{ and } |\text{Hom}(m,n)| = 0 \text{ if } m > n.$$

The prime example of a triangular category (denoted Δ in [Ler80]) is that for which $0 \in N$ is the initial object and $\text{Hom}_\Delta(k,n)=$"the set of all injective and isotone maps from $\{1,2,\ldots,k\}$ to $\{1,2,\ldots,n\}". The corresponding triangular family of numbers is the following one:

$$|\text{Hom}_\Delta(k,n)| = \binom{n}{k} \quad (k \leq n)$$

More combinatorial triangular families of numbers can be represented by triangular categories (see [Ler80], [Ler90]).

Let C be a triangular category. The set $S(n)$ of subobjects of $n \in N$ (or, rather, monomorphisms into n) is an ordered set:

$$\alpha \leq \beta \iff \exists \gamma : \beta \gamma = \alpha$$

This relation is called the natural partial order on the set of subobjects of n.

Proposition 3. Since $|\text{Hom}(k,k)| = 1$ for every $k \in N$, two monomorphisms α, β into $n, \alpha \neq \beta$, with the same domain k are incomparable.

A triangular category is called lattice-triangular if $(S(n), \leq)$ is a lattice for every $n \in N$. A triangular category C is called monomorphic-triangular if any morphism of C is a monomorphism. We have:

Theorem 4. ([Sch03]) Let C be a monomorphic-triangular category. Then C is lattice-triangular if and only if C has pullbacks.

The triangular category Δ is a lattice triangular category. It is straightforward to check that in Δ the lattice $(S(n), \leq)$ is isomorphic to the Boolean algebra of all subsets of the set $\{1,2,\ldots,n\}$. This category is not a category with pushout and therefore in Theorem 1, the “pullback” cannot be replaced by “pushout”.

Now, we shall consider the category B of bipartite graphs (see $Bipis$ in [Ler80]) defined by:
- \(\text{Ob}B = \mathbb{N} \);
- \(\text{Hom}_B(k,n) = \begin{cases} \{ U \in B_n \mid \{1,2,\ldots,k\} \text{ is the basis of } U \} & \text{if } k \leq n \\ \emptyset & \text{if } k > n \end{cases} \)

The composition of two morphisms: if \(U \in \text{Hom}_B(m,k) \) and \(V \in \text{Hom}_B(k,n) \) then the composition \(V \circ U \) is the bipartite graph with \(n \) vertices, 1,2,\ldots,\(n \), having the basis \(\{1,2,\ldots,m\} \); and the set of edges being the union of the set of edges of \(U \) and the set of those edges of \(V \) which have an endpoint in the basis of \(U \).

For example, if \(U \in \text{Hom}_B(2,5) \) is given by

\[
\begin{array}{ccc}
1 & 2 & \\
3 & 4 & 5
\end{array}
\]

and if \(V \in \text{Hom}_B(5,7) \) is given by

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
& & & & & &
\end{array}
\]

then

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
& & & & & &
\end{array}
\]

that is,

\[
E(V \circ U) = \{(1,4);(2,3);(2,5);(1,7);(2,6)\}.
\]
Hence,

\[E(V \bullet U) = E(U) \cup \{(i, j) \in E(V) : i \leq m\}. \]

The identity morphism from \(n \) to \(n \) is the bipartite graph with \(n \) vertices and with basis \(\{1, 2, \ldots, n\} \); the set of edges being the empty set.

Proposition 5. The category \(B \) is a triangular category and the corresponding triangular family of numbers is the following one:

\[|\text{Hom}_B(k, n)| = 2^{k(n-k)} \quad (k \leq n) \]

Proposition 6. The category \(B \) is monomorphic but it is not epimorphic.

Proof. Let \(V \in \text{Hom}_B(m, n) \) and \(U, U' \in \text{Hom}_B(k, m) \) be such that

\[V \bullet U = V \bullet U'. \]

Then,

\[U \cup \{(i, j) \in V : i \leq k\} = U' \cup \{(i, j) \in V : i \leq k\} \]

and therefore \(U = U' \).

Now, if \(V' \in \text{Hom}_B(m, n) \) such that

\[V \bullet U = V' \bullet U, \]

then,

\[\{(i, j) \in V : i \leq k\} = \{(i, j) \in V' : i \leq k\}. \]

But this does not imply that \(V = V' \).

Proposition 7. The partial order on \(B_n \) is the natural partial order on the set of subobjects of \(n \) in the triangular category \(B \).

Proof. Let \(U = (X_1, X_2, E(U)) \) and \(V = (Y_1, Y_2, E(V)) \) be two elements of \(B_n \) such that

\[|X_1| \leq |Y_1| \text{ and } \{(i, j) \in E(U) : j > |Y_1|\} = \{(i, j) \in E(V) : i \leq |X_1|\}. \]

These two bipartite graphs \(U \) and \(V \) are two morphisms of the category \(B \) having the same codomain \(n \). Consider the morphism

\[W = (X_1, Y_1 - X_1, E(W)) \in \text{Hom}_B(|X_1|, |Y_1|), \]

where

\[E(W) = \{(i, j) \in E(U) : j \leq |Y_1|\} \]

and we obtain:

\[E(V \bullet W) = E(W) \cup \{(i, j) \in E(V) : i \leq |X_1|\} = \{(i, j) \in E(U) : j \leq |Y_1|\} \cup \{(i, j) \in E(U) : j > |Y_1|\} = E(U). \]

It follows that the diagram
is commutative in B.

Conversely, if the above diagram is commutative in B, where $U = (X_1, x_2, E(U)), V = (Y_1, Y_2, E(V))$ and $W = (X_1, y_1, X_2, E(W))$, then

$$|X_1| \leq |Y_1|$$

and

$$E(W) = \{(i, j) \in E(U) : j \leq |Y_1|\}$$

$$E(U) = E(V \bullet W) = E(W) \cup \{(i, j) \in E(V) : i \leq |X_1|\}$$

$$\Rightarrow \quad E(U) = \{(i, j) \in E(U) : j \leq |Y_1|\} \cup \{(i, j) \in E(V) : i \leq |X_1|\}$$

$$\Rightarrow \quad \{(i, j) \in E(U) : j > |Y_1|\} = \{(i, j) \in E(V) : i > |X_1|\}$$

as required.

Taking into account the Hasse diagram of (B_3, \leq) and Proposition 7, it follows:

Proposition 8. The monomorhic-triangular category B is not a lattice-triangular category.

References

[CLL80] M. Content, F. Lemay, P. Leroux - *Catégories de Möbius et fonctorialités: un cadre général pour l’inversion de Möbius*, J.Comb.Th. (A) 28 (1980), 169-190

[Ler75] P. Leroux - *Les catégories de Möbius*, Cahiers de Topologie et Géom. Diff. 16 (1975), 280-282

[Ler80] P. Leroux - *Catégories triangulaires: exemples, applications et problèmes*, Rapport de recherche, Univ. du Québec à Montréal, 1980
[Ler90] P. Leroux - Reduced matrices and q-log-concavity properties of q-Stirling numbers, J. Comb.Th. (A) 54 (1990), 64-84

[SS02] E. Schwab, E. D. Schwab - Pullbacks and pushouts in triangular categories, Proc. Algebra Symposium, “Babes-Bolyai” Univ. Cluj (2002), 253-260

[Sch03] E. D. Schwab - On triangular categories, Houston J. Math., 29 (2003), 25-40