Evolutionary novelty in communication between the sexes
E Dale Broder, Damian O Elias, Rafael L Rodríguez, Gil G Rosenthal, Brett M Seymoure, Robin M Tinghitella

Supplementary Table 1: Select examples of novelty in mating communication as well as examples of mechanisms that may lead to novelty (noted as “NA (mechanism)” in the modality column). These examples and mechanisms are referenced in the manuscript.

Citation	Common Name	Species Name	Modality (if example of novelty)	Documented Change
Bostwick et al. 2011;	Club-winged	Machaeropterus	Acoustic (Sonation)	Signaler modified feather morphology to replace vocalizations
Bostwick 2000	manakins	deliciosus		
Clark et al. 2011;	Calliope	Stellula calliope	Acoustic (Sonation)	Signaler modified feather morphology to replace vocalizations
Clark et al. 2018	hummingbird			
Taylor et al. 2019	Ghost crabs	Ocypode quadrata	Acoustic	Signaler co-opted gastric stridulation to produce signal that
				overlaps claw stridulation song
Kingsley et al. 2018	Birds	Class Aves	Acoustic	Syrinx as a novel structure resulting in new sexual signals
Feng et al. 2006; Arch et al. 2008	Large Odorous Frogs	Odorrana graminea	Acoustic	Signaler shifts to ultrasonic frequencies
Elias et al. 2005	Jumping Spiders	Habronattus dosenus	Visual to Vibratory	Signaler shifts from visual to acoustic signal
Ter Hofstede et al. 2015	Katydid	Tettigoniidae	Acoustic to Vibratory	Signaler shifts from airborne to substrate-borne sound
Belwood & Morris 1987	Katydid	Tettigoniidae	Acoustic to Vibratory	Signaler shifts from airborne to substrate-borne sound
Kingsley et al. 2018	Birds	Class Aves	Acoustic	
Tinghitella et al. 2018	Pacific field cricket	Teleogryllus oceanicus	Acoustic	Signaler creates purring sound using distinct wing morphology
Otter et al. 2020	White-throated	Zonotrichia albicollis	Acoustic	Attractiveness of song arose between receiver and signaler due to
	sparrow			cultural evolution
Verzijden et al. 2007	Zebra Finches	Taeniopygia guttata	Acoustic	Song discrimination learning in zebra finches induces highly
				divergent responses to novel songs
Ramirez et al. 2010	Green Orchid Bee	Euglossa viridissima	Chemical	Signaler incorporates compounds from herbicides in courtship
				chemical cues
Kawase et al. 2013	Pufferfish	Torquigener spp.	Visual	Males construct large structures that are absent in closely related
				species
Kelley & Endler 2017	Bowerbirds	Ptilinorhynchus nuchalis	Visual	Males construct bowers with novel objects and with dimensions
				to create illusions
Arnegard et al. 2010	African mormyrid fish	Paramormyrops spp.	Electrical	Novelty in signal arises as a consequence of gene duplication
Garcia & Ramirez 2005	Goodeid fishes	Subfamily Goodeiniae	Visual	Terminal yellow bands were new male sexual signal that elicited
				prey-approach response and then new receiver response
Sockman et al. 2005;	European Starling	Sturnus vulgaris	Acoustic	Receiver only responds to novel song elements as enhancements of
Sockman et al. 2002				already attractive long-bout songs
Citation	Common Name	Species Name	Modality	Documented Change
--------------------------	-----------------------	----------------------------------	----------	--
Ryan & Rand 1990	Tungara Frogs	*Engystomops pustulosus*	Acoustic	Receivers prefer songs with many novel acoustic ornaments, but only when paired with the species-typical whine call
Zurek et al. 2015	Habronattus Jumping Spiders	*Habronattus spp.*	Visual	Receivers evolved trichromacy using spectral filtering allowing them to detect red male signals
Kronforst et al. 2006	Heliconius Butterflies	*Heliconius spp.*	NA (mechanism)	Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless
Saether et al. 2007	Old World Flycatchers	*Ficedula spp.*	NA (mechanism)	Sex-chromosome-linked species recognition and evolution of reproductive isolation in flycatchers
Shaw & Lesnick 2009	Hawaiian Crickets (Genus *Laupala*)	*Laupala spp.*	NA (mechanism)	Genomic linkage of male song and female acoustic preference QTL underlying a rapid species radiation
Wiley & Shaw 2010	Hawaiian Crickets (Genus *Laupala*)	*Laupala spp.*	NA (mechanism)	Multiple genetic linkages between female preference and male signal in rapidly speciating Hawaiian crickets
McNiven & Moehring 2013	Fruit Flies	*Drosophila spp.*	NA (mechanism)	Identification of genetically linked female preference and male trait
Xu & Shaw 2019	Hawaiian Crickets	*Laupala spp.*	NA (mechanism)	Genetic coupling of signal and receiver preference facilitates sexual isolation during rapid speciation
Rebar & Rodriguez 2015	Treehoppers	*Enchenopa binotata*	NA (mechanism)	Insect mating signal and mate preference phenotypes covary among host plant genotypes
Ritchie et al. 2001	Fruit Flies	*Drosophila montana*	NA (mechanism)	Temperature impacts sender signaling behavior but has minimal effects on female preferences for signals
Rosenthal & Elias 2019	Wolf Spiders	*Schizocosa floridana*	NA (mechanism)	Some components of signaling are temperature invariant, but are subject to varying receiver preferences across temperatures
Fisher et al. 2006	Sheephead Swordtail	*Xiphophorus birchmanni*	NA (mechanism)	Females no longer preferred conspecific male chemical cues to congener species in humic acid polluted water
Rosenthal et al. 2019	Wolf Spiders	*Schizocosa floridana*	NA (mechanism)	Signaler evolved new tonal chirp due to microhabitat specialization in oak leaf litter
Dzieweczynski et al. 2017	Three-spine Stickleback	*Gasterosteus aculeatus*	NA (mechanism)	Females no longer receptive to signal under chemical pollutants in water
Dzieweczynski & Kane 2017	Siamese Fighting Fish	*Betta splendens*	NA (mechanism)	Females no longer receptive to signal under chemical pollutants in water
Saaristo et al. 2019	European Perch	*Perca fluviatilis*	NA (mechanism)	Females no longer receptive to signal under chemical pollutants in water