AN ELEMENTARY PROOF OF A CONGRUENCE BY SKULA AND GRANVILLE

ROMEO MEŠTROVIĆ

Abstract. Let $p \geq 5$ be a prime, and let $q_p(2) := (2^{p-1} - 1)/p$ be the Fermat quotient of p to base 2. The following curious congruence was conjectured by L. Skula and proved by A. Granville

$$q_p(2)^2 \equiv -\sum_{k=1}^{p-1} \frac{2^k}{k^2} \pmod{p}.$$

In this note we establish the above congruence by entirely elementary number theory arguments.

1. Introduction and Statement of the Main Result

The Fermat Little Theorem states that if p is a prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$. This gives rise to the definition of the Fermat quotient of p to base a

$$q_p(a) := \frac{a^{p-1} - 1}{p},$$

which is an integer. Fermat quotients played an important role in the study of cyclotomic fields and Fermat Last Theorem. More precisely, divisibility of Fermat quotient $q_p(a)$ by p has numerous applications which include the Fermat Last Theorem and squarefreeness testing (see [1], [2], [3], [7] and [9]). Ribenboim [10] and Granville [7], besides proving new results, provide a review of known facts and open problems.

By a classical Glaisher’s result (see [4] or [5]) for a prime $p \geq 3$,

$$q_p(2) \equiv -\frac{1}{2} \sum_{k=1}^{p-1} \frac{2^k}{k} \pmod{p}. \quad (1.1)$$

Recently Skula conjectured that for any prime $p \geq 5$,

$$q_p(2)^2 \equiv -\sum_{k=1}^{p-1} \frac{2^k}{k^2} \pmod{p}. \quad (1.2)$$

Applying certain polynomial congruences, Granville [5] proved the congruence (1.2). In this note, we give an elementary proof of this congruence which is based on congruences for some harmonic type sums.

\begin{flushleft}
2010 Mathematics Subject Classification. Primary 11B75; Secondary 11A07, 11B65, 05A19, 05A19.

Keywords and phrases. Congruence, Fermat quotient, harmonic numbers.
\end{flushleft}
Remark 1.1. Recently, given a prime p and a positive integer \(r < p - 1 \), R. Tauraso [13] Theorem 2.3] established the congruence \(\sum_{k=1}^{p-1} 2^k / k^r \pmod{p} \) in terms of an alternating \(r \)-tuple harmonic sum. For example, combining this result when \(r = 2 \) with the congruence (1.2) [14] Corollary 2.4], it follows that

\[
\sum_{1 \leq i < j \leq p-1} \frac{(-1)^j}{ij} \equiv q_p(2)^2 \equiv -\sum_{k=1}^{p-1} \frac{2^k}{k^2} \pmod{p}.
\]

2. Proof of the congruence (1.2)

The harmonic numbers \(H_n \) are defined by

\[
H_n := \sum_{j=1}^{n} \frac{1}{j}, \quad n = 1, 2, \ldots,
\]

where by convention \(H_0 = 0 \).

Lemma 2.1. For any prime \(p \geq 5 \) we have

(2.1) \[
q_p(2)^2 \equiv \sum_{k=1}^{p-1} \left(2^k + \frac{1}{2^k} \right) \frac{H_k}{k + 1} \pmod{p}.
\]

Proof. In the present proof we will always suppose that \(i \) and \(j \) are positive integers such that \(i \leq p - 1 \) and \(j \leq p - 1 \), and that all the summations including \(i \) and \(j \) range over the set of such pairs \((i, j)\).

Using the congruence (1.1) and the fact that by Fermat Little Theorem, \(2^{p-1} \equiv 1 \pmod{p} \), we get

\[
q_p(2)^2 = \left(\frac{2^{p-1} - 1}{p} \right)^2 \equiv \frac{1}{4} \left(\sum_{k=1}^{p-1} \frac{2^k}{k} \right)^2 = \frac{1}{4} \left(\sum_{k=1}^{p-1} \frac{2^{p-k}}{p-k} \right)^2.
\]

(2.2)

\[
= \frac{1}{4} \left(2 \sum_{k=1}^{p-1} \frac{2^{(p-1)-k}}{-k} \right)^2 = \left(\sum_{k=1}^{p-1} \frac{1}{k \cdot 2^k} \right)^2
\]

\[
= \sum_{i+j \leq p} \frac{1}{ij \cdot 2^{i+j}} + \sum_{i+j \geq p} \frac{1}{ij \cdot 2^{i+j}} - \sum_{i+j=p} \frac{1}{ij \cdot 2^{i+j}}
\]

\[
:= S_1 + S_2 - S_3 \pmod{p}.
\]

We will determine \(S_1, S_2 \) and \(S_3 \) modulo \(p \) as follows.

\[
S_1 = \sum_{i+j \leq p} \frac{1}{ij \cdot 2^{i+j}} = \sum_{k=2}^{p} \frac{1}{k \cdot 2^{i+j}} = \sum_{k=2}^{p} \frac{1}{k \cdot 2^{i+j}}
\]

(2.3)

\[
= \sum_{k=2}^{p} \frac{1}{2^k} \sum_{i=1}^{k-1} \left(\frac{1}{i} + \frac{1}{k-i} \right) = \sum_{k=2}^{p} \frac{2H_{k-1}}{k \cdot 2^k} = \sum_{k=1}^{p-1} \frac{H_k}{(k+1)2^k}.
\]

Observe that the pair \((i, j)\) satisfies \(i + j = k \) for some \(k \in \{p, p+1, \ldots, 2p-2\} \) if and only if for such a \(k \) holds \((p-i) + (p-j) = l \) with \(l := 2p - k \leq p \).
Accordingly, using the fact that by Fermat Little Theorem, $2^{2p} \equiv 2^2 \pmod p$, we have

$$S_2 = \sum_{i+j \geq p} \frac{1}{ij \cdot 2^{i+j}} = \sum_{(p-i)+(p-j) \geq p} \frac{1}{(p-i)(p-j) \cdot 2^{(p-i)+(p-j)}}$$

$$= \sum_{i+j \leq p} \frac{1}{ij \cdot 2^{p-i-j}} \equiv \frac{1}{4} \sum_{i+j \leq p} \frac{2^{i+j}}{ij} \equiv \frac{1}{4} \sum_{k=2}^{p} \sum_{i+j=k} \frac{2^{k}}{ij}$$

(2.4)

$$= \frac{1}{4} \sum_{k=2}^{p} \frac{2^k}{k} \sum_{i=1}^{k-1} \left(\frac{1}{i} + \frac{1}{k-i} \right) = \sum_{k=2}^{p} \frac{2^{k-1}H_{k-1}}{k}$$

$$= \sum_{k=1}^{p-1} \frac{2^k H_k}{k+1} \pmod p.$$

By Wolstenholme’s theorem (see, e.g., [15], [6]; for its generalizations see [11, Theorems 1 and 2]) if p is a prime greater than 3, then the numerator of the fraction $H_{p-1} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p-1}$ is divisible by p^2. Hence, we find that

$$S_3 = \sum_{i+j=p} \frac{2^{i+j}}{ij} = 2^p \sum_{i=1}^{p-1} \frac{1}{i(p-i)}$$

(2.5)

$$= \frac{2^p}{p} \sum_{i=1}^{p-1} \left(\frac{1}{i} + \frac{1}{p-i} \right) = \frac{2^{p-1}}{p} H_{p-1} \equiv 0 \pmod p.$$

Finally, substituting (2.3), (2.4) and (2.5) into (2.2), we immediately obtain (2.1). \qed

Proof of the following result easily follows from the congruence $H_{p-1} \equiv 0 \pmod p$.

Lemma 2.2. [13, Lemma 2.1] Let p be an odd prime. Then

(2.6)

$H_{p-k-1} \equiv H_k \pmod p$

for every $k = 1, 2, \ldots, p-2$.

Lemma 2.3. For any prime $p \geq 5$ we have

(2.7)

$q_p(2)^2 \equiv \sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} - \sum_{k=1}^{p-1} \frac{2^k}{k^2} \pmod p.$

Proof. Since by Wolstenholme’s theorem, $H_{p-1}/p \equiv 0 \pmod p$, using this and the congruences $2^{p-1} \equiv 1 \pmod p$ and (2.6) of Lemma 2.2, we immediately obtain

$$\sum_{k=1}^{p-1} \frac{2^k H_k}{k+1} \equiv \sum_{k=1}^{p-2} \frac{2^k H_k}{k+1} = \sum_{k=1}^{p-2} \frac{2^{p-k-1} H_{p-k-1}}{p-k}$$

(2.8)

$$= -\sum_{k=1}^{p-2} \frac{H_k}{k \cdot 2^k} \equiv -\sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} \pmod p.$$
Further, we have
\[
\sum_{k=1}^{p-2} \frac{H_k}{(k+1)2^k} = 2 \sum_{k=1}^{p-2} \frac{H_k}{(k+1)2^{k+1}} - \frac{1}{k+1}.
\]
(2.9)

Moreover, from \(2^p \equiv 2 \pmod{p}\) we have
\[
\sum_{k=1}^{p-1} \frac{1}{k \cdot 2^k} = \sum_{k=1}^{p-1} \frac{1}{(p-k)2^{p-k}}
\]
(2.10)

The congruences (2.8), (2.9) and (2.10) immediately yield
\[
\sum_{k=1}^{p-1} \left(2^k + \frac{1}{2^k}\right) \frac{H_k}{k+1} = \sum_{k=1}^{p-1} \frac{2^k H_k}{k+1} + \sum_{k=1}^{p-1} \frac{H_k}{(k+1)2^k}
\]
(2.11)
\[
\equiv \sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} - \sum_{k=1}^{p-1} \frac{2^k}{k^2} \quad \pmod{p}.
\]

Finally, comparing (2.1) of Lemma 2.1 with (2.11), we obtain the desired congruence (2.7).

Notice that the congruence \(\sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} \equiv 0 \pmod{p}\) for any prime \(p \geq 5\) is recently established by Z.W. Sun \([13, \text{Theorem 1.1 (1.1)}]\) and it is based on the identity from \([13, \text{Lemma 2.4}]\). Here we give another simple proof of this congruence (Lemma 2.6).

Lemma 2.6. For any prime \(p \geq 5\) we have
\[
\sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} \equiv \frac{1}{2} \sum_{1 \leq i \leq j \leq p-1} \frac{2^i - 1}{ij} \pmod{p}.
\]
(2.12)

Proof. From the identity
\[
\left(\sum_{k=1}^{p-1} \frac{1}{k \cdot 2^k}\right) \left(\sum_{k=1}^{p-1} \frac{1}{k \cdot 2^k}\right) = \sum_{1 \leq i < j \leq p-1} \frac{1}{ij \cdot 2^j} + \sum_{1 \leq j < i \leq p-1} \frac{1}{ij \cdot 2^j} + \sum_{k=1}^{p-1} \frac{1}{k^2 \cdot 2^k},
\]
and the congruence \(H_{p-1} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p-1} \equiv 0 \pmod{p}\) it follows that
\[
\sum_{1 \leq i < j \leq p-1} \frac{1}{ij \cdot 2^j} + \sum_{1 \leq j < i \leq p-1} \frac{1}{ij \cdot 2^j} + \sum_{k=1}^{p-1} \frac{1}{k^2 \cdot 2^k} \equiv 0 \pmod{p}.
\]
(2.13)
Since \(2^p \equiv 2 \pmod{p} \), we have
\[
\sum_{1 \leq j < i \leq p-1} \frac{1}{ij} \cdot 2^j \equiv \sum_{1 \leq j < i \leq p-1} \frac{1}{2} \frac{2^{p-j}}{(p-i)(p-j)} \equiv \frac{1}{2} \sum_{1 \leq i < j \leq p-1} \frac{2^j}{ij} \pmod{p},
\]
which substituting into (2.13) gives
\[
(2.14) \quad \sum_{1 \leq i < j \leq p-1} \frac{1}{ij} \cdot 2^j + \sum_{k=1}^{p-1} \frac{1}{k} \cdot 2^k \equiv -\frac{1}{2} \sum_{1 \leq i < j \leq p-1} \frac{2^j}{ij} \pmod{p}.
\]
Further, if we observe that
\[
\sum_{k=1}^{p-1} \frac{H_k}{k} \cdot 2^k = \sum_{k=1}^{p-1} \frac{H_{k-1} + 1}{k} \cdot 2^k = \sum_{1 \leq i < j \leq p-1} \frac{1}{ij} \cdot 2^j + \sum_{k=1}^{p-1} \frac{1}{k^2} \cdot 2^k,
\]
then substituting (2.14) into the previous identity, we obtain
\[
(2.15) \quad \sum_{k=1}^{p-1} \frac{H_k}{k} \cdot 2^k \equiv -\frac{1}{2} \sum_{1 \leq i < j \leq p-1} \frac{2^j}{ij} \pmod{p}.
\]
Since
\[
0 \equiv \left(\sum_{k=1}^{p-1} \frac{1}{k} \right) \left(\sum_{k=1}^{p-1} \frac{2^k}{k} \right) = \sum_{1 \leq i < j \leq p-1} \frac{2^j}{ij} + \sum_{1 \leq i < j \leq p-1} \frac{2^j}{ij} \pmod{p},
\]
comparing this with (2.15), we immediately obtain
\[
(2.16) \quad \sum_{k=1}^{p-1} \frac{H_k}{k} \cdot 2^k \equiv -\frac{1}{2} \sum_{1 \leq i < j \leq p-1} \frac{2^j}{ij} \pmod{p}.
\]
From a well known fact that (see e.g., [9, p. 353])
\[
(2.17) \quad \sum_{k=1}^{p-1} \frac{1}{k^2} \equiv 0 \pmod{p}
\]
we find that
\[
\sum_{1 \leq i \leq j \leq p-1} \frac{1}{ij} = \frac{1}{2} \left(\left(\sum_{k=1}^{p-1} \frac{1}{k} \right)^2 + \sum_{k=1}^{p-1} \frac{1}{k^2} \right) \equiv 0 \pmod{p}.
\]
Finally, the above congruence and (2.16) immediately yield the desired congruence (2.12).

\[\Box\]

Lemma 2.5. For any positive integer \(n \) holds
\[
(2.18) \quad \sum_{1 \leq i < j \leq n} \frac{2^i - 1}{ij} = \sum_{k=1}^{n} \frac{1}{k^2} \binom{n}{k}.
\]
Proof. Using the well known identities
\[\sum_{i=k}^{j} \binom{i-1}{k-1} = \binom{j}{k} \quad \text{and} \quad \frac{1}{k} \binom{i}{k} = \frac{1}{k} \binom{i-1}{k-1} \]
with \(k \leq j \), and the fact that \(\binom{i}{k} = 0 \) when \(i < k \), we have

\[
\sum_{1 \leq i \leq j \leq n} \frac{2^i - 1}{ij} = \sum_{1 \leq i \leq j \leq n} \frac{(1 + 1)^i - 1}{ij} = \sum_{1 \leq i \leq j \leq n} \frac{i}{j} \sum_{k=1}^{i} \frac{1}{k} \binom{i}{k}
\]

\[
= \sum_{1 \leq i \leq j \leq n} \frac{1}{j} \sum_{k=1}^{n} \frac{1}{k} \binom{i-1}{k-1} = \sum_{k=1}^{n} \frac{1}{k} \sum_{1 \leq i \leq j \leq n} \frac{1}{j} \binom{i-1}{k-1}
\]

\[
= \sum_{k=1}^{n} \frac{1}{k} \sum_{j=i}^{n} \frac{1}{j} \binom{j}{k} = \sum_{k=1}^{n} \frac{1}{k} \sum_{j=k}^{n} \frac{1}{j} \binom{j-1}{k-1}
\]

\[
= \sum_{k=1}^{n} \frac{1}{k^2} \sum_{j=k}^{n} \frac{1}{j} \binom{j-1}{k-1} = \sum_{k=1}^{n} \frac{1}{k^2} \binom{n}{k},
\]
as desired. \(\square \)

Lemma 2.6. [13, Theorem 1.1 (1.1)] For any prime \(p \geq 5 \) holds

\[
(2.19) \quad \sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} \equiv 0 \pmod{p}.
\]

Proof. Using the congruence (2.12) from Lemma 2.4 and the identity (2.18) with \(n = p - 1 \) in Lemma 2.5, we find that

\[
(2.20) \quad \sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} \equiv \sum_{k=1}^{p-1} \frac{1}{k^2} \binom{p-1}{k} \pmod{p}.
\]

It is well known (see e.g., [8]) that for \(k = 1, 2, \ldots, p - 1 \),

\[
(2.21) \quad \binom{p-1}{k} \equiv (-1)^k \pmod{p}.
\]

Then from (2.20), (2.21) and (2.17) we get

\[
\sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} \equiv \sum_{k=1}^{p-1} \frac{(-1)^k}{k^2} = \sum_{k=1}^{p-1} \frac{1}{k^2} - 2 \sum_{1 \leq j \leq p-1 \atop 2 \mid j} \frac{1}{j^2}
\]

\[
\equiv -2 \sum_{1 \leq j \leq p-1 \atop 2 \mid j} \frac{1}{j^2} = -\frac{1}{2} \sum_{k=1}^{(p-1)/2} \frac{1}{k^2} \pmod{p}.
\]
Finally, the above congruence together with a well known fact that (see e.g., [12] Corollary 5.2 (a) with \(k = 2 \))

\[
\frac{1}{k^2} \equiv 0 \pmod{p}
\]

yields

\[
\sum_{k=1}^{p-1} \frac{H_k}{k \cdot 2^k} \equiv 0 \pmod{p}.
\]

This concludes the proof. \(\square \)

Proof of the congruence (1.2). The congruence (1.2) immediately follows from (2.7) of Lemma 2.3 and (2.19) of Lemma 2.6. \(\square \)

References

[1] Agoh, T., Skula, L., *Fermat quotients for composite moduli*, J. Number Theory 66 (1997) 29–50.

[2] Cao, H. Q., Pan, H., *A congruence involving product of \(q \)-binomial coefficients*, J. Number Theory 121 (2006), 224–233.

[3] Ernvall, R., Metsänkylä, T., *On the \(p \)-divisibility of Fermat quotients*, Math. Comp. 66 (1997), 1353–1365.

[4] Glaisher, J. W. L., *On the residues of the sums of the inverse powers of numbers in arithmetical progression*, Q. J. Math. 32 (1900), 271-288.

[5] Granville, A., *The square of the Fermat quotient*, Integers 4 (2004), \# A22.

[6] Granville, A., *Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers*, in Organic Mathematics–Burnaby, BC 1995, CMS Conf. Proc., vol. 20, American Mathematical Society, Providence, RI, 1997, 253-276.

[7] Granville, A., *Some conjectures related to Fermat’s Last Theorem*, Number Theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, 177–192.

[8] Hardy, G. H., Wright, E. M., *An Introduction to the Theory of Numbers*, Fourth Edition, Clarendon Press, Oxford, 1960.

[9] Lehmer, E., *On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson*, Ann. Math. 39 (1938), 350–360.

[10] Ribenboim, P., *13 Lectures on Fermat’s Last Theorem*, Springer-Verlag, New York, Heidelberg, Berlin, 1979.

[11] Slavutsky, I. Sh., *Leudesdorf’s theorem and Bernoulli numbers*, Arch. Math. 35 (1999), 299–303.

[12] Sun, Z. H., *Congruences concerning Bernoulli numbers and Bernoulli polynomials*, Discrete Appl. Math. 105 (2000), 193–223.

[13] Sun, Z. W., *Arithmetic theory of harmonic numbers*, Proc. Amer. Math. Soc., article in press; preprint arXiv:0911.4433v3 [math.NT] (2009).

[14] Tauraso, R., *Congruences involving alternating multiple harmonic sums*, Electron. J. Comb. 17 (2010), \# R16.

[15] Wolstenholme, J., *On certain properties of prime numbers*, Quart. J. Pure Appl. Math. 5 (1862), 35-39.

Maritime Faculty, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro

E-mail address: romeo@ac.me