Distribution of particles which produces a desired radiation pattern

A.G. Ramm
Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu, fax 785-532-0546, tel. 785-532-0580

Abstract

A method is given for calculation of a distribution of small particles, embedded in a medium, so that the resulting medium would have a desired radiation pattern for the plane wave scattering by this medium.

1 Introduction

Let $D_0 \subset \mathbb{R}^3$ be a bounded domain, k_0 be the wave number in D_0 and $k < k_0$ be the wave number in $D'_0 = \mathbb{R}^3 \setminus D_0$. We assume that D_0 is a homogeneous medium, so that k_0 is a constant. This assumption can be weakened: we may assume that $k_0 = k_0(x)$ is a known function. Let D_m be a particle, d_m be its diameter, $1 \leq m \leq M$, M is the number of small particles, $a = \max_{1 \leq m \leq M} \frac{d_m}{2}$ is an estimate for the radius of a small particle. We assume that $k_0 a \ll 1$, and then $k a \ll 1$, i.e., particles are small, that $d \gg a$, where $d = \min_{j \neq m} \text{dist}(D_m, D_j)$ and that the particles are acoustically soft, i.e., $u = 0$ on S_m, the boundary of D_m. Denote $U_{m=1}^M D_m := U, \ R^3 \setminus U = V, \ \partial U$ is the boundary of $U, \ C_m$ is the electrical capacitance of a perfect conductor with the shape of D_m.

The Inverse Problem is:

Can one distribute many small particles in D_0 so that a plane wave $u_0 := e^{i k_0 x}$, (where α is a given unit vector, $\alpha \in S^2, \ S^2$ is a unit sphere), scattered by D_0, would produce a desired radiation pattern (scattering amplitude) $A(\alpha', \alpha)$?

The acoustic pressure u solves the problem (1)-(3):

$$(\nabla^2 + k^2 - q(x))u = 0 \text{ in } V, \quad q(x) = \begin{cases} k^2 - k_0^2 & \text{in } D_0 \\ 0 & \text{in } D'_0, \end{cases} \quad (1)$$

PACS 03.40.Kf MSC 35J05, 35J10, 70F10, 81U40, 35R30
key words: acoustic scattering, many-body problem, nanotechnology, inverse problems
\[u = 0 \text{ on } \partial U, \]
\[u = e^{ik\alpha \cdot x} + A(\alpha', \alpha) \frac{e^{ikr}}{r} + o\left(\frac{1}{r}\right), \quad r := |x| \to \infty, \quad \alpha' = \frac{x}{r}, \]
and the coefficient \(A(\alpha', \alpha) \) is called the scattering amplitude or radiation pattern.

Let \(G = G(x, y) \) solve the problem
\[\left[\nabla^2 + k^2 - q(x) \right] G = -\delta(x-y) \text{ in } \mathbb{R}^3, \quad r \left(\frac{\partial G}{\partial r} - ikG \right) = o(1) \quad r \to \infty. \]
This \(G \) exists, is unique, and solves the integral equation
\[G(x, y) = g(x, y) - (k^2 - k_0^2) \int_{D_0} g(x, z) G(z, y) \, dz, \quad g = g(x, y) := \frac{e^{ik|x-y|}}{4\pi|x-y|}. \]
For brevity, we drop the \(k \)-dependence in \(g, G \) and other functions below. One may consider \(G(x, y) \) known since \(D_0 \) and \(k_0 \) are known.

Let us look for the solution to (1)–(3) of the form
\[u = U_0(x, \alpha) + \sum_{m=1}^{M} \int_{S_m} G(x, t) \sigma_m(t) \, dt, \]
where \(\sigma_m(s) \) are unknown functions and \(U_0(x, \alpha) \) is the scattering solution corresponding to the potential \(q(x) \) in the absence of small bodies, i.e., in the whole space. For arbitrary \(\sigma_m \) the right-hand side of (6) solves equation (1) (because \(G \) solves (4)), satisfies the radiation condition (3), and
\[A(\alpha', \alpha) = A_q(\alpha', \alpha) + \frac{1}{4\pi} \sum_{m=1}^{M} \int_{S_m} U_0(s, -\alpha') \sigma_m(s) \, ds, \]
where the scattering solution \(U_0(s, \alpha) \) can be defined by the formula ([1, p.232]):
\[G(x, s) = \frac{e^{ikr}}{4\pi r} U_0(s, \alpha) + o\left(\frac{1}{r}\right), \quad r := |x| \to \infty, \quad \alpha = -\frac{x}{r}. \]
Formula (8) was proved in [3, p.46], where it was shown that \(U_0(x, \alpha) \) solves the problem
\[\left[\nabla^2 + k^2 - q(x) \right] U_0(x, \alpha) = 0 \text{ in } \mathbb{R}^3, \quad U_0 = e^{ik\alpha \cdot x} + A_q(\alpha', \alpha) \frac{e^{ikr}}{r} + o\left(\frac{1}{r}\right), \]
where \(r := |x| \to \infty \) along the direction \(\alpha' \). The function \(U_0 \) can also be considered known, and \(G \) can be considered as Green’s function for the Schrödinger equation (4).
The right-hand side of (6) solves problem (1)–(3) if and only if \(\sigma_m \) are such that boundary condition (2) is satisfied:

\[
-U_0(s, \alpha) - \sum_{m \neq j} \int_{S_m} G(s, t) \sigma_m(t) \, dt = \int_{S_j} G(s, t) \sigma_j(t) \, dt, \quad s \in S_j, \quad 1 \leq j \leq M.
\]

(10)

So far the smallness of the particles was not used. If \(ka \ll 1 \), then equation (10) can be simplified:

\[
-U_0(s_j, \alpha) - \sum_{m \neq j} G(s_j, t_m) Q_m = \int_{S_j} g_0(s_j, t) \sigma_j \, dt, \quad 1 \leq j \leq M, \quad Q_m := \int_{S_m} \sigma_m \, dt,
\]

(11)

where \(s_j \in S_j \) is any point in \(S_j \), and \(g_0 = \frac{1}{4\pi|x-y|} \). In equation (11) we have used two approximations. The first one is

\[
G(s, t) \approx g(s, t), \quad s, t \in S_j.
\]

(12)

This approximation is justified by (5) when \(k|x-y| \ll 1 \), because the term \(g(x, y) \) is the main term on the right-hand side of (5) as \(x \to y \), and \(|s_j - t| \ll 1 \). The second one is \(g \approx g_0 \) if \(k|s-t| \ll 1 \), and the error of this approximation is \(O(ka) \), so this approximation is also justified because \(ka \ll 1 \).

Equation (11) is equation for the charge distribution \(\sigma_j \) on the surface \(S_j \) of a perfect conductor charged to the potential \(-U_0(s_j, \alpha) - \sum_{m \neq j} G(s_j, t_m) Q_m \). Therefore the total charge \(Q_j := \int_{S_j} \sigma_j \, dt \) on the surface \(S_j \) can be calculated by the formula

\[
Q_j = C_j \left(-U_0(s_j, \alpha) - \sum_{m \neq j} G(s_j, t_m) Q_m \right), \quad 1 \leq j \leq M,
\]

(13)

where \(C_j \) is the electrical capacitance of the perfect conductor \(D_j \). In [1, p.385] formulas for calculation of \(C_j \) with arbitrary desired accuracy are given. Equation (13) is a linear algebraic system for finding unknown \(Q_j, 1 \leq j \leq M \).

Consider the limiting case \(M \to \infty \) of the distribution of particles in \(D_0 \). Define \(C(y) \) as follows:

\[
\int_D C(y) \, dy = \lim_{M \to \infty} \sum_{D_m \subset D} C_m,
\]

(14)

where \(D \subset D_0 \) is an arbitrary subdomain of \(D_0 \). The above definition means that \(C(y) \) is the limiting density of the capacitances of the small particles in \(D \). Formula (13) shows that the self-consistent field \(u_e \) can be defined as

\[
u_e(x, \alpha) = \begin{cases} U_0(x, \alpha) + \sum_{m=1}^M G(x, t_m) Q_m, & \min_{1 \leq m \leq M} |x - t_m| \gg a, \\ U_0(x, \alpha) + \sum_{m \neq j} G(x, t_m) Q_m, & |x - t_j| \sim a. \end{cases}
\]

(15)
Therefore, defining \(u_e \) we neglect the influence of any fixed single small particle on the field. This is justified when \(M \to \infty \). Using (13) and (15) one gets
\[
\begin{align*}
 u_e(x, \alpha) &= U_0(x, \alpha) - \sum_m G(x, t_m) C_m u_e(t_m, \alpha),
\end{align*}
\]
and in the limit \(M \to \infty \) one obtains the equation:
\[
\begin{align*}
 u_e(x, \alpha) &= U_0(x, \alpha) - \int_{D_0} G(x,y) C(y) u_e(y, \alpha) \, dy,
\end{align*}
\]
where \(C(y) \) is defined in (14). Equation (16) is equivalent to the Schrödinger scattering problem:
\[
\begin{align*}
 [\nabla^2 + k^2 - q(x) - C(x)] u_e &= 0 \text{ in } \mathbb{R}^3,
\end{align*}
\]
where \(q(x) \) is known, the function \(u_e \) has the following asymptotics
\[
\begin{align*}
 u_e &= e^{i k \alpha \cdot x} + A(\alpha', \alpha) \frac{e^{i k r}}{r} + o \left(\frac{1}{r} \right), \quad r := |x| \to \infty, \quad \alpha' = \frac{x}{r},
\end{align*}
\]
and \(A(\alpha', \alpha) \) is the scattering amplitude at a fixed \(k > 0 \).

Therefore the Inverse Problem, stated above, is reduced to inverse scattering problem of finding the potential \(q(x) + C(x) \) from the knowledge of the corresponding fixed-energy scattering amplitude \(A(\alpha', \alpha) \).

This problem was solved by the author (see [1, Chapter 5] and references therein). In Section 2 we outline the author’s algorithm for solving this inverse scattering problem.

If the potential \(q(x) + C(x) \) is found and \(q(x) \) is known, then \(C(x) \) is found and one knows the density of the particle distribution in \(D \) which produces the desired radiation pattern \(A(\alpha', \alpha) \). Assuming that the particles are identical, one has \(C_m = C \), where \(C \) is the electrical capacitance of one particle, and \(C(x) = N(x) C \), where \(N(x) \) is the density of particles, that is, the number of particles per unit volume around point \(x \). See [2] for the theory of wave scattering by small bodies.

2 Solution to inverse scattering problem

We follow [1, p.264] and take \(k = 1 \) without loss of generality. Given \(A(\alpha', \alpha) \) one finds \(A_\ell(\alpha) := \int_{S^2} A(\alpha', \alpha) Y_{\ell m}(\alpha') \, d\alpha' \), where \(Y_{\ell m} := Y_{\ell m} \) are the normalized spherical harmonics, so that
\[
\begin{align*}
 A(\alpha', \alpha) &= \sum_{\ell=0}^{\infty} A_\ell(\alpha) Y_{\ell m}(\alpha'),
 \quad \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \ell =: \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}.
\end{align*}
\]

If the data \(A(\alpha', \alpha) \) are exact, then ([1, p.262])
\[
\begin{align*}
 \max_{\alpha \in S^2} |A_\ell(\alpha)| &\leq O \left(\sqrt{\frac{b_0}{\ell}} \left(\frac{b_0 e}{2\ell} \right)^{\ell+1} \right),
 \quad |Y_{\ell m}(\theta')| \leq \frac{1}{\sqrt{4\pi}} \frac{e^{\kappa r}}{|j_\ell(r)|} \forall r > 0, \quad \theta \in \mathcal{M},
\end{align*}
\]
where \(b_0 > 0 \) is the radius of the smallest ball containing the domain \(D_0, \mathcal{M} := \{ \theta : \theta \in \mathbb{C}^3, \theta \cdot \theta = 1 \}, \theta \cdot \omega := \sum_{j=1}^3 \theta_j \omega_j \), \(\kappa = |Im \theta| \), \(j_\ell(r) \) is the spherical Bessel function. Fix an arbitrary \(\xi \in \mathbb{R}^3 \). One can find (nonuniquely and explicitly) \(\theta', \theta \in \mathcal{M} \), such that \(\theta' - \theta = \xi, \theta \to \infty \). For example, if \(\xi = te_3, t = |\xi| > 0 \), (which can be assumed without loss of generality), then \(\theta' = \frac{t}{2} e_3 + z_1 e_1 + z_2 e_2, \theta = -\frac{t}{2} e_3 + z_1 e_1 + z_2 e_2 \), and the condition

\[
\frac{t^2}{4} + z_1^2 + z_2^2 = 1, \quad z_1, z_2 \in \mathbb{C},
\]

implies \(\theta, \theta' \in \mathcal{M} \). One may find many \(z_1 z_2 \in \mathbb{C} \), such that \((\text{ii}) \) holds and \(|z_1| \to \infty \). For example, take \(z_1 = re^{i\varphi}, z_2 = re^{-i\varphi} \), then \(r^2 \sin(2\varphi) - r^2 \sin(2\varphi) = 0, r^2[\cos(2\varphi + \cos(2\varphi)] = 1 - \frac{t^2}{4}, \) so \(r^2 \cos(2\varphi) = \frac{1}{2} - \frac{t^2}{8} \). One can take \(r \geq \left| \frac{1}{2} - \frac{t^2}{8} \right|^{1/2} \) and find \(\varphi \) such that \(\cos(2\varphi) = \left(\frac{1}{2} - \frac{t^2}{8} \right) \frac{1}{r} \).

In what follows we always assume

\[
\theta' - \theta = \xi, \quad \theta', \theta \in \mathcal{M}, \quad |\theta| \to \infty.
\]

Because of \((\text{ii}) \), the series

\[
A(\theta', \alpha) = \sum_{\ell=0}^{\infty} A_{\ell}(\alpha) Y_{\ell}(\theta'), \quad \theta \in \mathcal{M},
\]

converges absolutely and uniformly on compact subsets of \(S^2 \times \mathcal{M} \).

Fix positive numbers \(b_0 < b_1 < b_2 \) such that \(D_0 \subset B_{b_0} := \{ x : |x| \leq b_0 \} \). Note that the scattering solution \(u(x, \alpha) \) for the scattering potential \(q(x) + C(x) \) can be written explicitly in the region \(|x| > b_0 \):

\[
u(\alpha) \in L^2(S^2). \quad \text{Consider the problem:}
\]

\[
F(\nu) = \min,
\]

where

\[
F(\nu) := \int_{b_1 \leq |x| \leq b_2} \left| e^{-i\theta \cdot x} \int_{S^2} u(x, \alpha) \nu(\alpha) d\alpha - 1 \right|^2 \ dx.
\]

The function \(u(x, \alpha) \) in \((\text{ii}) \) is defined in \((\text{iii}) \), and the minimization in \((\text{iv}) \) is with respect to all \(\nu \in L^2(S^2) \). One can prove \((\text{v} \ p.265 \ |) \) that

\[
\inf F(\nu) := d(\theta) \leq \frac{\text{const}}{|\theta|}, \quad \theta \in \mathcal{M}, \quad |\theta| \gg 1,
\]

\[5\]
Let $\nu(\alpha, \theta)$ be an arbitrary approximate solution to (25) in the following sense:

$$\mathcal{F}(\nu(\alpha, \theta)) \leq 2d(\theta).$$ \hfill (28)

For this ν define

$$\hat{C} := -4\pi \int_{S^2} A(\theta', \alpha) \nu(\alpha, \theta) d\alpha,$$ \hfill (29)

where $A(\theta', \alpha)$ is defined in \[22\].

Let $\tilde{C}(\xi) = \int_{D_0} C(x)e^{-i\xi \cdot x} dx$, where $C(x) \in L^2(D_0)$ vanishes in D'_0. Let \[21\] hold.

The following theorem is proved by the author in [1, p.266].

Theorem. Under the above assumptions one has

$$|\hat{C} - \tilde{C}(\xi)| = O \left(\frac{1}{|\theta|} \right).$$ \hfill (30)

Conclusion: An algorithm is given for embedding many small particles in a domain D_0 in such a way that the plane wave, scattered by such domain, would have a desired radiation pattern $A(\alpha', \alpha)$.

The algorithm consists of solving the inverse scattering problem, namely, finding the potential $q(x) + C(x)$, vanishing outside D_0, from the fixed-energy ($k^2 = \text{const} > 0$) scattering amplitude $A(\alpha', \alpha)$. If this potential is found, then $C(x)$ is found, and the small acoustically soft identical particles should be distributed in D_0 with the density $N(x) = C^{-1}C(x)$, where $C > \tau$ is the electrical capacitance of a perfect conductor which has the shape of the particle.

References

[1] Ramm, A. G. , Inverse problems, Springer, New York, 2005.

[2] Ramm, A. G. , Wave scattering by small bodies of arbitrary shapes, World Sci. Publishers, Singapore, 2005.

[3] Ramm, A. G. , Scattering by obstacles, D.Reidel, Dordrect, 1986.