A diuranium carbide cluster stabilized inside a C$_{80}$ fullerene cage

Xingxing Zhang1, Wanlu Li2, Lai Feng3, Xin Chen2, Andreas Hansen4, Stefan Grimme4, Skye Fortier5, Dumitru-Claudiu Sergentu6, Thomas J. Duignan6, Jochen Autschbach6, Shuao Wang7, Yaofeng Wang1, Giorgios Velkos8, Alexey A. Popov8, Nabi Aghdassi9, Steffen Duhm9, Xiaohong Li1, Jun Li2, Luis Echegoyen4, W.H.Eugen Schwarz2,10 & Ning Chen1

Unsupported non-bridged uranium–carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing $I_h(7)$-C$_{80}$ fullerenes as nanocontainers, a diuranium carbide cluster, U=CU, has been encapsulated and stabilized in the form of UCU@$I_h(7)$-C$_{80}$. This endohedral fullerene was prepared utilizing the Krätschmer–Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@$I_h(7)$-C$_{80}$-[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium–carbon distances (2.03 Å) indicative of covalent U=CU double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of $+$5. The structural features of UCU@$I_h(7)$-C$_{80}$ and the covalent nature of the U(f^1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
Understanding the nature of actinide-ligand multiple bonding remains a modern day challenge owing to the complex electronic structures of these elements, and as a consequence, our comprehension of their chemistries lags behind that of the more commonly studied transition metals1–3. Importantly, recent developments in the synthesis and study of molecular uranium complexes containing a variety of $U=\text{E}(\text{L})$ or $U=\text{E}(\text{L}^\text{m})$ moieties ($\text{E} = \text{O}, \text{S}, \text{Se}, \text{Te}, \text{N}, \text{NR}, \text{P}, \text{As}; \text{L} = \text{other ligands}$) have provided valuable insights regarding the participation of the 5f and 6d valence orbitals in chemical bonding1,2,6–27. Conspicuously missing from this list are $U=C$ bonds, specifically those which lack ancillary heteroatom or chelating support. While metal–carbon double bonds (i.e., Schrock carbenes) are common in transition metal chemistry and catalysis, unsupported $U=C$ bonds have long remained a major and outstanding synthetic target. Some success towards the synthesis of $\text{An} = \text{C}$ bonds has been realized through the use of heteroatom stabilizing chelating ligands such as $\text{U} = \text{SiMe}_3$28–29. In a few rare instances, the isolation of non-chelated $U=C$ bonds has been achieved in complexes such as (η^2-C$_2$H$_2$)$_3\text{U} = \text{CHPMMe}_2\text{Ph}$ and [N(SiMe$_3$)$_2]$\text{U} = CHPPh$_3$\text{P}$_2$, using formally diatomic ylidic ligands31,34. Electronically, the $U=C$ units found in these methanediide (η^2-C$_2$H$_2$)$_3\text{U} = \text{CHPMMe}_2\text{Ph}$ and [N(SiMe$_3$)$_2]$\text{U} = CHPPh$_3$\text{P}$_2$] examples are best described as highly polarized, nucleophilic carbenes with σ and modest π bonding overlap between uranium and carbon. The α-carbon bonded heteroatom(s) (e.g., phosphorus) aids the delocalization of the carbon-centered charge accumulation. While compounds possessing unsupported $U=C$ bonds are difficult to prepare under typical synthetic conditions, Andrews and coworkers have identified alkylidene and even alkylidyne species such as $\text{H}_2\text{C} = \text{U}=\text{X}$ and HC≡U=H (X = H, F, Cl or Br) in low-temperature noble-gas matrix isolation experiments, providing evidence for such bonding motifs35–37. However, these compounds are too reactive to be isolated under typical synthetic conditions. The knowledge gained from studying stable compounds featuring $U=C$ multiple-bonds can be extended to uranium carbide ceramics, which offer improved thermal density and higher conductivity over current UO$_2$ nuclear fuels38–40.

Based on our recent success with the isolation of new actinide endohedral fullerences, we turned our attention towards the synthesis and isolation of carbon cages encapsulating clusters that possess $U=C$ bonds. The internal hollow cavity of C$_{2n}$ fullerences can encapsulate and stabilize novel metallic clusters, especially some which are highly reactive and virtually impossible to prepare independently41–43. Recently, we reported the first crystallographically characterized examples of actinide endohedral metallofullerenes (Th$_2$C$_{82}$ and U$_2$C$_{2n}$, $2n = 74, 82$) and described their unique electronic properties43,44. We therefore hypothesized that fullerene cages would provide an ideal architecture and electronic environment to trap and stabilize unique actinide clusters with novel bonding motifs.

Herein, using the $I_h(7)$-C$_{80}$ fullerene cage as a molecular nanocarrier, we report, to the best of our knowledge, the first structurally characterized example of unsupported uranium $U=C$ bonds found in UCU@$I_h(7)$-C$_{80}$, possessing the unprecedented dimetallic-carbide cluster $U=\text{C}=U$. X-ray crystallographic analysis reveals two very short $U=C$ bonds of 2.033(5)/2.028(5) Å, with an unexpected nonlinear $U=\text{C}=U$ bond angle of 142.8(3)°.

Results

Synthesis of $U_2\text{C}_2@C_{80}$. $U_2\text{C}_2@C_{80}$ was synthesized by the Krätschmer–Huffman arc discharge method45. Graphite rods, packed with graphite and finely dispersed U_2O_3, were vaporized in an arcning chamber under a He atmosphere. The compound was isolated and purified using a multistage high-performance liquid-chromatography protocol (HPLC). The composition and purity of the isolated $U_2\text{C}_2@C_{80}$ was confirmed by high-resolution matrix-assisted laser desorption-ionization time-of-flight positive-ion-mode mass spectrometry (MALDI-TOF/MS), which presents a prominent molecular ion peak with a mass-to-charge ratio of $m/z = 1448.103$ (Supplementary Fig. 1), corresponding to the [U$_2$C$_{81}]^{+}$ empirical formula. The mass spectral isotopic distribution pattern matches the theoretically predicted one, thus confirming the molecular composition. In addition, an energy dispersive spectroscopic analysis of the purified sample was employed to determine the elementary composition of the compound. The spectrum shows characteristic peaks of uranium and carbon (Supplementary Fig. 2), which confirmed the assignment of this molecule to U$_2$C$_{81}$. Moreover, the powder X-ray diffraction pattern of U$_2$C$_2@C_{80}$ proves that the purified sample of U$_2$C$_2@C_{80}$ used for the experimental characterizations below, exists as a pure phase (Supplementary Fig. 5).

Molecular structure of UCU@$I_h(7)$-C$_{80}$[NiII-OEP]. The molecular structure of UCU@C$_{80}$ was determined by single-crystal X-ray diffraction analysis. Slow diffusion of nickel(II) octaethylporphyrin (NiII-OEP) in benzene into a CS$_2$ solution of UCU@C$_{80}$ yielded black UCU@$I_h(7)$-C$_{80}$[NiII-OEP] cocrystals (1). In cocrystal 1, UCU@C$_{80}$ is observed to adopt a slightly distorted icosahedral $I_h(7)$-C$_{80}$ cage structure (Fig. 1a) that is highly ordered. Similarly, inside the fullerene cage, the central carbon atom C$_0$ of the endohedral UC$_2$U unit is fully ordered, while the U atoms are slightly disordered. Two major U positions (U1 and U2) have common dominant occupancy of 0.853(3), while the residual occupancies are limited on both sides within ca. ½ to 1 Å distance from the two main positions, possibly indicating some large amplitude motions of the UC$_2$U cluster (Supplementary Fig. 6). The distances between the major U1,2 sites and the carbons of the adjacent aromatic rings of the cage all lie within a narrow range of around 2.50 Å (2.471(5) to 2.543(5) Å, Fig. 1b), corresponding to distances of the ring centers Ct to Ui of 2.042(1) Å and angles Ct–Ui–C$_0$ = 159(1)°. The U–C$_0$ bonds are 2.03 Å (U1–C$_0$ = 2.033(5) Å, U2–C$_0$ = 2.028(5) Å), forming a nearly linear Ct1–U1—U2–Ct2 chain (Fig. 1b) bridged by a non-linear –C$_0$– carbide anion.

Fig. 1 ORTEP drawing of UCU@$I_h(7)$-C$_{80}$[NiII-OEP] with 40% probability ellipsoids. a. UCU@$I_h(7)$-C$_{80}$[NiII-OEP] structure showing the relationship between the fullerene cage and the [NiII-OEP] ligands. The two UUV/2 sites have common occupancy of 0.853(3). Four minor U sites (Supplementary Fig. 6) and the solvent molecules are omitted here for clarity.b. Fragment view showing the interaction of the major U1–C$_0$–U2 cluster with the closest aromatic ring fragments of the cage with centers Ct1 and Ct2. The orange line connects Ct1–U1–U2–Ct2

Notes

1. Some text may be presented in a different format due to the nature of the content.

Acknowledgments

Author contributions

Competing interests

Data availability

Ethics declarations

Funding

Corresponding author

References

1. **Additional references from the original text.**
For hexa-coordinated uranium, Pyykkö found that two short and strong axial and four long and weak equatorial bonds are energetically near-equivalent to two long and weak axial and four short and strong equatorial bonds. Therefore, particularly short axial bonds are expected when additional equatorial coordination is absent, as in the present case. Indeed, most U-Cl distances are reported between 2.5 and 2.9 Å, for instance 2.651(4) to 2.698(4) Å for the dinuclear U(V) inverse C=C=C= structure possessing two uranium-carbon double bonds formed by a bridging carbide atom, formally C=−. The bending of the U−C=C−U cluster of 1 was an unexpected exception to the common linear geometries of sp³−p²−p²− hybridized carbon atoms found for main-group molecules of type E=C=E (E=O, NR, CR₂), though a few cases with angles between 180° and 90° have been theoretically proposed and observed in recent years.

Table 1 Calculated and experimentally derived geometric parameters of UCU groups

Geometric parameter	Calc.° UCU@I_y(7)-C₈₀ (molecule)	Calc.° UCU@I_y(7)-C₈₀ (molecule)	Calc.° UCU@I_y(7)-C₈₀ (molecule)	Exptl.^b UCU@I_y(7)-C₈₀ [NiII-OEP] (crystal)
U−C /Å	2.024	2.074	2.022	2.033/2.028
U≡U /Å	3.918	4.118	3.917	3.849
Ligand−U /Å	2.33°	2.52−2.55	2.47−2.51	2.47−2.54
U−C−U /°	150.9	166.1	151.3	142.8
Fulleren C−C /Å	—	14 × 1.43 ± 0.01	20 × 1.46 ± 0.01	110 × 1.43 ± 0.03
‘π-Donating’ C−C /Å	—	—	—	10 × 1.48 ± 0.01

^aFrom scalar relativistic ZORA Kohn−Sham PBE V1Zp approaches
^bFrom crystal structure analysis by X-ray diffraction
^cFor comparison of I−U with C−U, we have subtracted the I−C bond−radii difference of 0.55 Å from the actual I−U distance

Altogether, the bond lengths observed for 1 strongly support an Arene≡U−C=U≡Arene structure possessing two uranium−carbon double bonds formed by a bridging carbide atom, formally C=−. The bonding of the U−C=U cluster of 1 was an unexpected exception to the common linear geometries of sp³−p²−p²− hybridized carbon atoms found for main-group molecules of type E=C=E (E=O, NR, CR₂), though a few cases with angles between 180° and 90° have been theoretically proposed and observed in recent years.

Computational studies of molecular structure and bonding in UCU@I_y(7)-C₈₀

Quantum-chemical calculations were performed to further verify the unique structural parameters of UCU@I_y(7)-C₈₀ and gain insight about the bonding of the encapsulated bent U−C=C−U cluster. The molecular structure was modeled for free UCU@I_y(7)-C₈₀ and for LUCUL (L = C₂H₇, 3I) model molecules, using quasi-relativistic density-functional (DF) approximations (Supplementary Figs. 13, 14) and ab-initio CASCCF(10e,12o)-PT2 approaches (Table 1). Additional information of the structure, orbitals and electronic states of LUCUL is available in Supplementary Figs. 15−19 and Supplementary Tables 3−5. For the three calculated cases, the formal oxidation state is identified as +5 for each U, derived from the formal [1.0−0.5−0.5] Lewis structure, where L₂−stands for the cage aren unit that accepts 3 electrons from
each uranium atom and forms 3 dative pair bonds with the nearly empty U-5f6d valence shell. In the case of UCU@I₈(7)-C₈₀, the two Λ₃⁻ units are the ligating arene units of the encapsulating C₈₀⁶⁻ closed-shell cage. The C and I atoms of the model units (C₅H₅) and (3I) have similar electronegativity as C of (C₈₀)₉, and the model units also become closed-shell ligands upon accepting 3 electrons from each U. The effective physical partial charges in all three cases remain small, around −1 for formal C⁺⁺, around +½ to +1 for formal U⁵⁺, and small for the ligand atoms of C₈₀, 2C₅H₅ or 6I (Supplementary Table 1).

The atomic free valence and the spin and orbital populations (Supplementary Table 1) indicate a single f-electron on each U atom. The experimental U–C₀ bond lengths, though unprecedentedly short (2.03 Å), are well reproduced in all three computed models (2.02 Å for ligands C₈₀ and (I₈), 2.07 Å for (C₅H₅)₂). Further, the observed unusual U–C₀–U bond angle of 142.8° is comparable to those computed for UCU@C₈₀ (151.3°) and (3I) UCU(3I) (150.9°), while the bulkier ligands of (C₅H₅)UCU(C₅H₅) led to 166.1°, which is still far from linear (Table 1). Neither the bond lengths nor the bond angle of the UCU unit appear to be significantly distorted by the encapsulation in C₈₀.

We chose the localized equivalent molecular orbital picture of the two simpler model systems to sketch the correlated and spin–orbit coupled valence electronic structure of ligated UCU@C₈₀U. (C₅H₅)UCU(C₅H₅) (Fig. 2) and (3I) UCU(3I) (Supplementary Fig. 15) gave very similar results. Each U forms a strong σ-bond to the central C₀ atom through covalent overlap of hybridized U (5f6d) orbitals with C(2s2p) hybrids. The U–C bonds of dominant π-character can be described as three-center-two-electron (3c2e) bonds that possess some σ-admixture. The large electronegativity difference of C and U (1.3 Pauling units) leads to bond-pair polarization toward C₀, especially for the π-type pairs, which are strongly localized on C₀ and lead to its effective negative charge. The U–C interactions are characterized by Mayer bond orders (BO) of 1.4 from DF calculations (comparable to 1.6 for the U=As double bond in [K(B15C₅)] [N(CH₂CH₂NSiPr₃)₂] U=AsH]₂⁴ and by a Roos effective bond order (EBO) of 1.9 (counting the formally bonding antibonding NOs from our CASSCF calculation of (C₅H₅)UCU(C₅H₅), which substantiates the U=C double bond character).

The bonding motif is nicely illustrated by the electron localization function (ELF) map in Fig. 3, which shows the electron–density accumulation of the two two-center U–C σ-bonds and of the in-plane three-center U–C–U π-type bond, as well as the multiplex of the inner-valence non-bonding 5f electrons. Thus, the bonding of the U=C=U unit can be interpreted in terms of the localized negative charge build-up on C₀, which generates lone electron-pair density and gives rise to an sp₁/sp₂-hybridized type geometry at carbon with bond angles in the middle between 120° and 180°. This charge accumulation is partially offset by donation into the U(5f6d) orbitals. Thus the bonding model can be described as highly polarized U=C interactions with partial π-overlap strengthened by electrostatic attractive forces between the cationic U⁵⁺ atoms and the anionic C₀⁶⁻ carbide bridge.

Spectroscopic properties of UCU@I₈(7)-C₈₀. Nuclear Magnetic Resonance (NMR) spectroscopy was used to characterize UCU@I₈(7)-C₈₀. The ¹³C NMR spectrum of UCU@I₈(7)-C₈₀ measured at 298 K shows only two sharp signals at 138.53 and 125.14 ppm with a 3:1 intensity ratio, corresponding to the sets of 60 and 20 equivalent carbon atoms of the unperturbed I₈-C₈₀ fullerene cage (Supplementary Fig. 7). The apparent symmetry is likely due to fast and large-amplitude librations of the cage, similar to those proposed for M₂@I₈-C₈₀ (M = La, Ce) and M₃N@C₈₀ (M = Sc, Y)⁴₂,⁵₃,⁵₄. Unfortunately, no signal was detected for the single bridging C₀ carbon atom, likely due to limited sample amount, as well as to paramagnetic broadening effects from the unpaired ⁵f electrons on each uranium. Note-worthy is that the ¹⁷C NMR spectrum measured at lower temperature (i.e., 283 K) shows slightly shifted signals at 138.35 and 124.65 ppm, respectively, with a slightly larger chemical shift difference (Δδ = 13.70 ppm) than those observed at 298 K (Δδ = 13.39 ppm). Such a trend is very similar to that observed for Ce₂@I₈-C₈₀,⁵⁵ consistent with the paramagnetic nature of UCU (see below) and with the presence of an unpaired f electron on the formal U⁵⁺ (⁵f²⁶d⁰⁷s⁰) ions (Supplementary Table 1)⁵⁴. On the other hand, the slight temperature dependence of Δδ/AT = 0.02 ppm/K might also be accounted for by the libration of the UCU cluster that neutralizes the paramagnetic effects (mainly pseudocoupling interactions) for all carbon atoms.

We also utilized Fourier transform infrared absorption (FTIR), Raman emission and photoluminescence (PL) spectroscopies together with quantum-chemical calculations to further characterize UCU@I₈(7)-C₈₀. An experimental and theoretical spectral overview is presented in Fig. 4. The high-wavenumber range from 1600 to 1100 cm⁻¹ contains 104 carbon cage C–C stretching vibrations, resembling those of other I₈-C₈₀ based endohedral fullerenes such as Ln₃N@C₈₀⁴¹,⁵₆. Typical characteristics are the major overlaid bands around 1380 cm⁻¹ and the featureless gap between 1100 and 900 cm⁻¹. The remaining 130 collective deformations originating from bending and torsional motions of the carbon cage atoms show up between 900 and 200 cm⁻¹.

Quantum-chemical calculations suggest that an endohedral cluster of n atoms (here n = 3) shows 3 frustrated translational rocking modes against the cage (at 33, 59, and 115 cm⁻¹), 3 frustrated torsional wagging modes (at 16, 50, and 142 cm⁻¹), and 3n − 6 = 3 internal vibrations. The latter comprise the UC₅ bending mode (at 97 cm⁻¹), the symmetric stretch (coupled to near-degenerate cage deformations from 250 to 300 cm⁻¹), and the asymmetric stretch (at 780 cm⁻¹). The observed weak features...
in the Raman spectrum above 100 cm$^{-1}$ at 126, 148, and 277 cm$^{-1}$ agree reasonably well with the predicted UCU modes given above (in bold italics, estimated as weakly Raman active). Notably, the asymmetric UCU stretch appears as a pronounced feature in the IR spectrum at 785 cm$^{-1}$, which is consistent with the high negative charge on the C$_0$ atom of the endohedral UCU cluster, and with the crystallographic observation of very short axial U=C bonds.

Further, an experimental violet-blue photo-luminescence progression of U$_2$C$_8$I$_6$(h$_7$)-C$_{80}$ starting at a wavelength of 430 nm (\sim2.95 eV) in steps of ca. 1425 cm$^{-1}$ (Supplementary Fig. 8) may originate from a ligand-to-metal charge-transfer excitation of the highest occupied molecular orbital, which has dominant density on the fullerene cage near the U atoms. There are also C_{ring}-breathing vibrations around 1400 cm$^{-1}$ localized in the spatial C_{ring}-U-C-U-C_{ring} region.

The redox properties of UCU@h$_7$(h$_7$)-C$_{80}$, as investigated by means of cyclic voltammetry, show a surprisingly small electro-chemical gap of only 0.83 eV (Table 2, Supplementary Fig. 9). Most reported transition metal cluster fullerenes of I_h(h$_7$)-C$_{80}$ have gaps larger than 1 eV41. Typical M$_3$N@h$_7$(h$_7$)-C$_{80}$ fullerenes have gaps of 1.8–2.2 V. In particular, the first reduction potential of UCU@h$_7$(h$_7$)-C$_{80}$ (\sim0.41 V) is much more positive than that of any other reported M$_3$N@h$_7$(h$_7$)-C$_{80}$ fullerene57, e.g., \sim1.26 V for Sc$_3$N@h$_7$(h$_7$)-C$_{80}$ and \sim0.94 V for TiLu$_2$C@h$_7$(h$_7$)-C$_{80}$.59 UCU@h$_7$(h$_7$)-C$_{80}$ obviously exhibits a much better electron-accepting ability than other I_h(h$_7$)-C$_{80}$ clusterfullerenes. This significant difference between UCU@h$_7$(h$_7$)-C$_{80}$ and other reported M$_3$N@C$_{80}$ fullerenes indicates a major difference of their electronic structures, which may be caused by the encapsulation of the U=C0-U cluster with an open d-f shell electronically interacting with the cage. Interestingly, when compared to most other I_h(h$_7$)-C$_{80}$ cluster fullerenes, the redox potentials of UCU@h$_7$(h$_7$)-C$_{80}$ are close to those of dlanthanide fullerene, such as La$_2$@h$_7$(h$_7$)-C$_{80}$ which exhibits an electrochemical gap of 0.87 eV60. In general, the electrochemical gaps are related to the HOMO-LUMO gaps of the closed-shell fullerene subsystems. However, in the present case, the encapsulated U=C0-U cluster has a low-lying open U-5f shell, causing an abnormally small f-f gap of the UCU@h$_7$(h$_7$)-C$_{80}$ molecule. The reversible reduction of UCU@h$_7$(h$_7$)-C$_{80}$ is also quite remarkable, since M$_3$N@h$_7$(h$_7$)-C$_{80}$ fullerenes with group 3 metals exhibit irreversible reductions7.

The XPS spectrum of UCU@h$_7$(h$_7$)-C$_{80}$ was also recorded (Supplementary Fig. 10). The U-4f$_{7/2}$ ionization appears at 378.6 eV. In general, ionization energies increase with the formal oxidation state, e.g., from the U-4f$_{12}$ value of ca. 377.12 eV for the neutral uranium metal to ca. 381.31 eV for some uranyl(VI) salts. The present value of 378.6 eV is consistent with the very low effective charges on U as computed for UC$_0$U@C$_{80}$ (see below, U \sim +1.0e; C$_0$ \sim +1.0e, C$_{fulleren}$ \sim \pm0.0e), caused by the strong electron pair donation of formal C$_{80}$6 and C$_0$4 to the formal U3 + ions.

To gain further insight into the unique electronic characteristics of the U=C0-U cluster in UCU@C$_{80}$, the magnetic susceptibility was measured (see Supplementary Fig. 11 and Methods). The magnetic curves exhibit two regimes, (i) one at “high temperatures” from 300 K down to ca. 60 K, and (ii) another one at “low temperatures” from ca. 40 K down to 2 K. The “high temperature” region exhibits a huge, basically temperature-independent paramagnetism (TIP) of yet unknown origin. It is unknown for uranium complexes with common ligands21,22,48,61 and may possibly be due to the cooperative coupling of UCU and C$_{80}$ in the solid and related to the low band-gap calculated for UCU@C$_{80}$ (see Supplementary “Quantum Computational Methods”).

At “low temperatures”, we observed a Curie type magnetism $-\mu^2/T$ on top of the TIP, with net μ-values increasing with temperature from below to above a μ_{Bohr}, which appears compatible with hardly coupled unique units of type η_1La\equivU (V)=\equivU(V)\equivLa3, i.e., the endohedral di-uranium carbide fullerene molecules. The “low-temperature” literature values of $\mu_{Bohr}^{21,22,48,61}$ for mono- and bridged di-metallic U(V) and U (IV) complexes, typically increase, too, from low values up to 3 μ_{Bohr}. It shows the expected temperature-dependent weak coupling of two spins with the two partially quenched U-f-3 orbital angular momenta, the experimental curves being

![Fig. 4 Observed and theoretically predicted vibrational features of UCU@h$_7$(h$_7$)-C$_{80}$. The left upper curve (black) presents the observed Infrared absorption (IR) spectrum vs. wavenumber from 1600 to 600 cm$^{-1}$, with quantum-chemical density-functional simulation below (in blue). On the right is the observed Raman emission (in red) vs. wavenumber from 600 to 1000 cm$^{-1}$, with calculated wavenumbers (‘Theor. Freqs.’) in the 600-0 cm$^{-1}$ range (below in magenta). Observed local UCU vibrations above 100 cm$^{-1}$ are indicated by heavy dots. Observed and calculated spectral C$_{80}$-cage features represent either a single mode, or an overlay of several near-degenerate ones, indicating a contamination by CS$_2$.](image-url)

| Table 2 Redox potentials and electrochemical gaps of UCU@h$_7$(h$_7$)-C$_{80}$, La$_2$@h$_7$(h$_7$)-C$_{80}$, and Sc$_3$N@h$_7$(h$_7$)-C$_{80}$ |
|---------------------------------|----------------|------------|----------------|----------------|----------------|----------------|----------------|
Fullerene	E^{2+}/E^{1+}	E^+/E^0	E^0/α	E^{2-}/E^{1-}	E^{2-}/E^{+}	E_{red}^{b}	Ref.
UCU@h$_7$(h$_7$)-C$_{80}$	+1.05d	+0.42c	$-$0.41c	$-$1.34c	$-$1.72c	0.83	This work
La$_2$@h$_7$(h$_7$)-C$_{80}$	+0.95c	+0.56c	$-$0.31c	$-$2.13d	$-$2.13d	0.87	60
Sc$_3$N@h$_7$(h$_7$)-C$_{80}$	+0.97c	+1.26d	$-$1.62d	$-$1.82d	2.23	58	

aRedox potentials in V vs. ferrocene couple
bElectrochemical gaps in eV
cHalf-wave potential (reversible redox process)
dPeak potential (irreversible redox process)
reasonably reproduced by numerical simulations (see Supplementary Method “Quasi-relativistic correlated ab initio approaches” on the (C_6H_5)_3UCU(C_6H_5)_2 model).

Attempts to further resolve the electronic structure using EPR spectroscopy were unsuccessful, as no clearly defined signal was observed at 4 K (Supplementary Fig. 12). Factors such as near degenerate electronic states and cage shielding effects as well as the huge TIP complicate the analysis. Thus, additional studies of the electronic properties of this unique and unprecedented system are warranted and will be communicated in due time.

Discussion

In summary, the overall agreement between the crystallographic, luminescence, Raman, IR, core-electronic, magnetic and volumetric results, and the quantum-computational findings, conclusively show that a pure UCU@C_{70} compound was synthesized, which consists of a weakly perturbed C_{60} cage and a sandwiched, bent and strongly bound polar endohedral near-symmetric U=C=U unit. The quantum-chemical results suggest that both U atoms in the UCU unit have a formal +5 oxidation state. The encapsulation causes little bond length or angle deformation of the UCU fragment. The encapsulation protects the axially ligated U atoms from binding with harder or more electronegative ligands like O or N (as compared to carbon in the forms of C_6O and C_6N) so that C_60 can participate in primarily axial axial U=C=C bond at unusually short U=C_60 distances of 2.03 Å, and is not pushed into the weaker bonding equatorial plane of an E=U=E building block. The discovery of unsupported U=C bonding in a molecular compound confirms the distinction between diagonal and "poly-coordinated" uranium, and between "axial" covalent and "equatorial" dative bonding mechanisms. The work reported here offers a deeper understanding of the fundamentals of uranium bonding properties. This study also demonstrates that fullerene cages can be utilized as effective nanocounters to stabilize and study rare and reactive clusters which contain actinide metal–ligand bonds.

Methods

Synthesis, separation and purification of U,C_6I_4(7)-C_{60}. A soot containing uranium fullerene complexes synthesized by a direct-current arc discharge method (E building block. The discovery of unsup-ported U=C bonding in a molecular compound confirms the distinction between "diagonal" and "poly-coordinated" uranium, and between "axial" covalent and "equatorial" dative bonding mechanisms. The work reported here offers a deeper understanding of the fundamentals of uranium bonding properties. This study also demonstrates that fullerene cages can be utilized as effective nanocounters to stabilize and study rare and reactive clusters which contain actinide metal–ligand bonds.

Single crystal and powder X-ray diffraction analysis. Black co-crystals of UCU@C_{60} (NPO-EOP) were obtained by allowing the benzene solution of [Ni^2+][OUE] to diffuse together. X-ray diffraction data were collected at 120 K using a diffractometer (APEX II, Bruker Analytik GmbH) equipped with a CCD detector. The Multiscan method was used for the absorption correction. The structure was resolved using direct methods (SIR2004) and refined on F^2 with the full-matrix least-squares approach using SHELXL2013. Crystallographic details are given in the Supplementary Information. The coordinates for the X-ray structure of UCU@C_{60} were obtained from the corresponding authors on request.

Received: 1 December 2017 Accepted: 21 June 2018

Published online: 16 July 2018

References

1. Hayton, T. W. Metal-ligand multiple bonding in uranium: structure and reactivity. Dalton Trans. 39, 1145–1158 (2010).
2. Hayton, T. W. Recent developments in actinide-ligand multiple bonding. Chem. Commun. 49, 2956–2973 (2013).
3. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8615 (2015).
4. Gregson, M., Woolse, A. J., Cooper, O. J. & Liddle, S. T. Covalent uranium carbone chemistry. Inorg. Chem. 35, 262–294 (2015).
5. Patel, D. & Liddle, S. T. F-element-metal bond chemistry. Rev. Inorg. Chem. 32, 1 (2012).
6. Fortier, S., Brown, J. L., Kaltsoyannis, N., Wu, G. & Hayton, T. W. Synthesis, molecular and electronic structure of U(VI)[O][Ni^2+][OUE]. Inorg. Chem. 51, 1623–1633 (2012).
7. Lewis, A. J., Mullan, K. C., Nakamura-Ogasawara, E., Carroll, P. J. & Schelter, E. J. The inverse tris coalescence in a family of pentavalent uranium complexes. Inorg. Chem. 53, 6949–6953 (2014).
8. Lewis, A. J., Carroll, P. J. & Schelter, E. J. Stable uranium(VI) methyl and acetylidy complexes and the elucidation of an inverse tris coalescence ligand series. J. Am. Chem. Soc. 135, 13185–13192 (2013).
9. Kosog, B., La Pierre, H. S., Heinemann, F. W., Liddle, S. T. & Meyer, K. Synthesis of uranium(VI) terminal oxo complexes: molecular geometry driven by the inverse tris coalescence. J. Am. Chem. Soc. 134, 5284–5289 (2012).
10. Fortier, S., Wu, G. & Hayton, T. W. Synthesis of a nitrido-substituted analogue of the uranyl ion, [NO^+][OUE]. J. Am. Chem. Soc. 132, 6888–6889 (2010).
11. Hayton, T. W., Boncella, J. M., Scott, B. L. & Batista, E. R. Exchange of an imido ligand in bis(imido) complexes of uranium. J. Am. Chem. Soc. 128, 12622–12623 (2006).
12. Brown, J. L., Fortier, S., Lewis, R. A., Wu, G. & Hayton, T. W. A complete family of terminal uranium chalcogenides, [U(EO)][Ni^2+][OUE] (E = O, S, Se, Te). J. Am. Chem. Soc. 134, 15468–15475 (2012).
13. Brown, J. L., Fortier, S., Wu, G., Kaltsoyannis, N. & Hayton, T. W. Synthesis and spectroscopic and computational characterization of the chalcogenido-substituted analogues of the uranyl ion, [OUE]^2+ (E = S, Se). J. Am. Chem. Soc. 135, 5352–5355 (2013).
14. Fortier, S., Kaltsoyannis, N., Wu, G. & Hayton, T. W. Probing the reactivity and electronic structure of a uranium(V) terminal oxo complex. J. Am. Chem. Soc. 133, 14224–14227 (2011).
15. Smiles, D. E., Wu, G. & Hayton, T. W. Synthesis of uranium–ligand multiple bonds by cleavage of a trityl protecting group. J. Am. Chem. Soc. 136, 96–99 (2014).
16. Smiles, D. E., Wu, G., Hrobak, P. & Hayton, T. W. Use of U(VI) NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in [Th(EO)][Ni^2+][OUE] (E = O, S, Se, Te; n = 1, 2) and their oxo-uranium(VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).
17. Rosenzweig, M. W. et al. Uranium(VI) terminal hydrosulfido and sulfido complexes: insights into the nature of the uranium-sulfur bond. Chem. Sci. 7, 5875–5886 (2016).
23. King, D. M. et al. Isolation and characterization of a uranium(VI) sulfo complex supported by sialo ligands. Chem. Sci. 7, 5846–5856 (2016).
25. Gardner, B. M. et al. Triamidoamine-uranium(IV)-stabilized terminal parent phosphide and phosphinidene complexes. Angew. Chem. Int. Ed. 53, 4844–4848 (2014).

28. Cooper, O. J. et al. The nature of the UC double bond: pushing the stability of high-oxidation-state uranium carbonyls to the limit. Chem. Eur. J. 19, 7071–7083 (2013).
31. Cramer, R. E., Maynard, R. B., Paw, J. C. & Gilje, J. W. A uranium-carbon triple bond. Nat. Chem. 12, 14, lanthanide and actinide metal atoms: carbon-metal single, double and triple bonds. Coord. Chem. Rev. 305, 102 (2017).
32. Upton, C. A. et al. Laser melting of uranium carbides. J. Nucl. Mater. 385, 443–448 (2009).
33. Frad, W. A. Advances in Inorganic Chemistry and Radiochemistry Vol. 11, 153–247 (Academic Press, New York and London, 1968).
34. Stevenson, S. et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401, 55–59 (1999).
35. Wang, Y. et al. Unique four-electron-metal-to-cage charge transfer of Tb to a C82 fullerene cage: complete structural characterization of Th@C82(C=B)2. J. Am. Chem. Soc. 139, 5110–5116 (2017).
37. Cai, W. et al. Single crystal structures and theoretical calculations of uranium endohedral metallofullerenes U12@C82 and inorganic complexes of groups 3-12, 14 lanthanide and actinide metal carbons: metal-carbon single, double and triple bonds. Coord. Chem. Rev. 335, 76–102 (2017).
39. Du, J. & Jiang, G. A systematic theoretical study of UC–structure, bonding nature, and spectroscopy. Inorg. Chem. 56, 13794–13800 (2017).
44. Lydon, T. H., Hu, H.-S., Andrews, L. & Li, J. Formation of unprecedented actinide carbon triple bonds in uranium methylidyne complexes. Proc. Natl Acad. Sci. USA 104, 18191–18194 (2007).
46. Chou, H.-G. & Andrews, L. Matrix preparation and spectroscopic and theoretical investigation of small high oxidation-state complexes of groups 3-12, 14 lanthanide and actinide metal carbons: metal-carbon single, double and triple bonds. Coord. Chem. Rev. 335, 367–379 (2017).
48. Patel, D. et al. A formal high oxidation state inverse-sandwich diuranium complex: a new route to f-block metal-metals. Angew. Chem. Int. Ed. 50, 10388–10392 (2011).
49. Pyykö, P. & Asmussen, M. Molecular double-bond-covalent radii for elements 2–112. Chem. Eur. J. 15, 12770–12779 (2009).
50. Fortier, S. & Hayton, T. W. Oxo ligand functionalization in the uranyl ion (UO2)2+. Coord. Chem. Rev. 254, 197–214 (2010).
57. Frenking, G. Dative bonds in main-group compounds: a case for more arrows! Nat. Chem. 6, 484–486 (2014).
59. Karen, P. Oxidation state, a long-standing issue! Angew. Chem. Int. Ed. 54, 4716–4726 (2015).
60. Yamada, M., Mizorogi, N., Tsuchiy, T., Akasaka, T. & Nagase, S. Metal atoms collinear with the sp3 carbon of open phosphites; M=U(Cp)(Ad)2-(La and Ce, Ad=adamantylidene). J. Am. Chem. Soc. 130, 1171–1176 (2008).

SC0001136 for support. G.V. and A.A.P. acknowledge the European Research Council under the European Union’s Horizon 2020 programme (Grant No. 648295 “GraM3”) for financial support; they also thank D. S. Krylov and A. U. B. Wolter (IPW Dresden) for their help with the magnetic measurements. W.H.E.S. thanks the support from the Theoretical Chemistry Center of Tsinghua University.

Author contributions

N.C., L.E., and X.Z. conceived and designed the experiments. X.Z. and Y.W. synthesized and isolated all the compounds. W.L., J.L., W.H.E.S., X.C., A.H., S.G., D.C.S., T.J.D., and J.A. performed the computations and theoretical analyses. L.F. performed the crystallographic analysis. N.A. and S.D. provided the XPS analysis. X.L. carried out the NMR test. G.V. and A.A.P. measured and analyzed the magnetic data. N.C., L.E., W.H.E.S., J.L., L.F., S.F., X.Z, W.L., S.G., J.A., and S.W. co-wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-05210-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018