Dynamic of the human gut microbiome under infectious diarrhea
Hao Chung The¹ and Son-Nam H Le²

Despite the widespread implementation of sanitation, immunization and appropriate treatment, infectious diarrheal diseases still inflict a great health burden to children living in low resource settings. Conventional microbiology research in diarrhea have focused on the pathogen’s biology and pathogenesis, but initial enteric infections could trigger subsequent perturbations in the gut microbiome, leading to short-term or long-term health effects. Conversely, such pre-existing perturbations could render children more vulnerable to enteropathogen colonization and diarrhea. Recent advances in DNA sequencing and bioinformatic analyses have been integrated in well-designed clinical and epidemiological studies, which allow us to track how the gut microbiome changes from disease onset to recovery. Here, we aim to summarize the current understanding on the diarrheal gut microbiome, stratified into different disease stages. Furthermore, we discuss how such perturbations could have impacts beyond an acute diarrhea episode, specifically on the child’s nutritional status and the facilitation of antimicrobial resistance.

Addresses
¹ Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
² School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Viet Nam

Corresponding author: Chung The, Hao (haoct@oucru.org)

Current Opinion in Microbiology 2022, 66:79–85
This review comes from a themed issue on Microbiota
Edited by Lindsay Hall and Melanie Schirmer
For complete overview of the section, please refer to the article collection, “Microbiota”
Available online 1st February 2022
https://doi.org/10.1016/j.mib.2022.01.006
1369-5274© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
Infectious diarrhea remains a major global health problem. It is characterized by the passage of at least 3 loose, liquid stool per day in patients, and is caused by a wide array of etiologies, including viruses (rotavirus, norovirus), bacteria (Campylobacter, Salmonella, Shigella, Vibrio, Escherichia coli), and parasites (Cryptosporidium, Entamoeba, Giardia) [1–4]. Approximately 1.3 million deaths yearly are attributed to diarrhea, of which ~500 000 target children under five years-old, making diarrhea the fourth leading cause of child mortality [4]. This burden disproportionately affect children in low and middle income countries (LMICs), where ~950 million diarrhea cases occur annually against a backdrop of poor access to sanitation, good nutrition and healthcare [4].

The microbial communities inhabiting the gastrointestinal tract is an integral component to human health. The density and diversity are greatest for communities in the colon (termed the gut microbiota), which mainly consist of anaerobic bacteria of phyla Bacteroidetes and Firmicutes [5]. Perturbation in the gut microbiota and its encompassing environment (gut microbiome dysbiosis) has been linked to health conditions as varied as cancer [6], metabolic diseases [7], and depression [8], which are mostly chronic and non-communicable. Diarrhea presents a major dysbiosis event, as increased bowel movements and fluid secretion destabilize the gut environment. The acute nature of diarrhea also requires longitudinal observations to fully capture the rapid microbiome changes. Though most diarrhea episodes are self-limiting, patients are frequently treated with oral rehydration, zinc supplement, probiotics and antimicrobials (in case of dysentery or bacterial infections) [9,10]. The latter two treatments further introduce destabilizing effects. Additionally, the gut microbiome composition and succession in young children are highly varied and dynamic, depending on geography, birth term, mode of delivery, breastfeeding, time of weaning, and nutritional status [11–13]. All these factors combined complicate interpretations from diarrhea microbiome studies. In the scope of this review, we summarize the current understanding on the impact of infectious diarrhea on gut microbiome, focusing on its dynamic in different disease phases, as well as the effect of such dysbiosis beyond acute diarrhea. Similar to other disciplines, most diarrhea microbiome research rely on the culture-independent approach to offer a thorough representation of the microbial community, accessed via 16S rRNA amplification or shotgun metagenomic sequencing of fecal samples. We searched the PubMed database using the keywords ‘((microbiota[MeSH Terms]) OR (microbiome[MeSH Terms])) AND (diarrhea[MeSH Terms])’, and included articles which mentioned the investigation of the gut microbiome in infectious diarrhea.

Dysbiosis in the early phase of diarrhea
We define the disease’s early phase as the period when diarrhea symptoms have not subsided, frequently within the first three to five days since disease onset or
presentation to hospitals. Diarrhea brings forth a marked reduction in taxonomic richness and diversity, compared to age-matched and location-matched healthy individuals [14*,15*,16**]. Repeated washouts could greatly erode the microbiota, and higher water content in diarrheal stool (lower bowel transit time) has been associated with lower alpha-diversity, as observed previously in European adults [17]. The gut microbiome undergoes a dramatic taxonomic change upon diarrhea’s onset, favoring the proliferation of fast-growing facultative anaerobes. Proteobacteria (mostly Enterobacteriaceae/E. coli) and Streptococcus (mainly Streptococcus salicarius and Streptococcus gallolyticus) are most significantly enriched during this early phase, and could account for up to 80% in relative abundance in the fecal microbiomes [14*,15*,18**,19–21] (Table 1, Figure 1). The bloom of these bacteria is facilitated by the transiently oxygenated gut environment during diarrhea, evidenced by the respective elevation in genes encoding low-affinity cytochrome oxidases [18**]. This increased abundance is coupled with a drastic disappearance of obligate anaerobic gut commensals (Bifidobacterium, Prevotella, Faecalibacterium, Lachnospiraceae, Ruminococcaceae, etc.) [14*,15*], leading to a depletion of associated metabolites such as short chain fatty acid (SCFAs) [22,23]. Diarrheagenic bacteria, however, are usually of transient and/or low abundance (except for Vibrio cholerae in the first day) [15*,18**,24]. Nevertheless, such global dysbiosis was not observed in all patients with diarrhea, and a portion of infected patients retain fecal microbiomes highly resembling those found in healthy controls [15*,24]. Particularly, the gut microbiome of children with diarrhea could be grouped into four

Table 1

Reference	Study location	No. diarrhea patients	Length of follow-up	Study method	Diarrhea etiologies	Antibiotic treatment	Taxa abundant in diarrhea dysbiosis	Taxa depleted in diarrhea dysbiosis
Pop et al. [14]	Gambia, Mali, Kenya, Bangladesh	508	–	16S-rRNA	Multiple (ND)	NA	Escherichia, Granulicatella, Streptococcus	Prevotella, Bacteroides, Megasphaera
Chung The et al. [15]	Vietnam	145	–	16S-rRNA	Salmonella, Shigella, Campylobacter, norovirus, rotavirus	No	Streptococcus, Escherichia, Fusobacterium, oral bacteria	Clostridiales, Erysipelotrichales
David et al. [18**,19]	Bangladesh	41	1–6 months	Shotgun metagenomic	Vibrio cholerae, Escherichia coli	Azithromycin	Escherichia, Enterococcus, Streptococcus cholerae, Streptococcus, Fusobacterium, Granulicatella	Bacteroides, Prevotella, Roseburia, Bacteroides, Prevotella, Blautia, Faecalibacterium
Hsiao et al. [19]	Bangladesh	7	3 months	16S-rRNA	Vibrio cholerae	Azithromycin	Escherichia, Enterobacteria, Streptococcus cholerae	Bacteroidesaceae, Bifidobacteriaceae, Ruminococcaceae, Bacteroides, Firmicutes
Monira et al. [20]	Bangladesh	9	1 month	16S-rRNA	Vibrio cholerae	Erythromycin	Escherichia, Enterobacteria	Bacteroidesaceae, Clostridiales, Bifidobacteriaceae, Ruminococcaceae, Bacteroides, Firmicutes
Sohail et al. [21]	Qatar	39	–	16S-rRNA	Rotavirus	NA	Proteobacteria, Fusobacteria, Streptococcus cholerae	Bacteroides, Prevotella, Roseburia, Blautia, Lactobacillus, Clostridiales
Singh et al. [24]	USA	200	1–14 weeks	16S-rRNA	Campylobacter, Salmonella, Shigella, E. coli, norovirus, rotavirus	NA	Enterobacteriaceae, Pasteurellaceae, Lactobacillales, Cetobacterium, Achromobacter	Bacteroides, Prevotella, Roseburia, Blautia, Lactobacillus, Clostridiales
Becker-Dreps et al. [27]	Nicaragua	25	2 months	16S-rRNA	Shigella, E. coli, norovirus, rotavirus, Escherichia coli, viruses	Yes	Enterobacteriaceae, Pseudocarnobacter, Enterobacter Staphylococcus, Veillonellas, Alloprevotella, Escherichia	Erysipelotrichaceae, Clostridium, Holdemanella Faecalibacterium, Subdoligranulum
Gallardo et al. [34]	Chile	63	–	16S-rRNA	Norovirus, rotavirus	Yes	Enterobacteriaceae, Pseudocarnobacter, Enterobacter Staphylococcus, Veillonellas, Alloprevotella, Escherichia	Bacteroides, Blautia, Ruminococcus, Faecalibacterium
Mizutani et al. [39]	Ghana	80	–	16S-rRNA	Norovirus, rotavirus	Yes	Enterobacteriaceae, Pseudocarnobacter, Enterobacter Staphylococcus, Veillonellas, Alloprevotella, Escherichia	Bacteroides, Blautia, Ruminococcus, Faecalibacterium
Dinleici et al. [42]	Turkey	10	1 month	16S-rRNA	Rotavirus	No	Enterobacteriaceae, Pseudocarnobacter, Enterobacter Staphylococcus, Veillonellas, Alloprevotella, Escherichia	Bacteroides, Blautia, Ruminococcus, Faecalibacterium
enterotypes, each predominated by a taxon: Bifidobacterium, Bacteroides, Streptococcus, or Escherichia. Younger age (<20 months-old) and exclusive breastfeeding were associated with the Bifidobacterium enterotype, while poor nutritional status and older age were linked to the Escherichia enterotype [15]. It is inconclusive how these different initial configurations affect clinical outcome and recovery, but higher relative abundance of Streptococcus has shown positive correlation with hospitalization length or diarrhea duration [25,26].

Asides Escherichia and Streptococcus, other bacteria have been found overabundant in diarrheal fecal microbiomes, even in the absence of global dysbiosis. Our research in Vietnam highlighted that these include Bifidobacterium mortiferum, and several members of the human oral microbiota (Granulicatella, Gemella, Actinomyces, Rothia, Fusobacterium nucleatum, etc.) [15], in line with other findings [14,19,27]. The anaerobic F. mortiferum commonly colonizes the gastrointestinal tract (albeit in low abundance) of the Chinese, but not Western, population [28,29], and its proliferation has been recently noted in patients with colorectal polyps [30,31]. These suggest that F. mortiferum overabundance could be a general marker of gut dysbiosis, particularly in Asian populations. Computational analyses have suggested that oral bacteria could form a tight correlation network, as inferred from taxa co-abundance patterns, in the diarrheal gut microbiome [15]. This indicates that they may co-exist in polymicrobial biofilms similar to those present in the oral cavity, but their significance in diarrhea diseases is not currently studied [32]. Microbial transit along the oral-gut axis occurs frequently in healthy individuals [33], and the ecologically barren landscape generated by diarrhea may be ideal for the transient colonization of these oral bacterial conglomerates.

Though overall dysbiosis patterns were not associated with different diarrheal etiologies [15,24], there exists some nuanced variances. Bacteria-induced diarrhea was associated with an elevation of Escherichia [34], Streptococcus and oral bacteria [15], while viral infections retained a higher abundance in Bifidobacterium [15,26]. This may suggest that viral infections lead to a less severe
reductions in anaerobic gut commensals [35,36], possibly because most viruses (rotavirus, norovirus) infect cells lining the small intestine, instead of the colon [37,38]. In mouse model, rotavirus infection resulted in increased Bacteroides and Akkermansia populations (both with mucin-degrading capability) only in the ileal microbiome [37], but evidence for the overgrowth of these two taxa in human rotavirus infections has been inconclusive [21,26,34,39]. On the other hand, Giardia-induced diarrhea was consistently linked to a decrease in Gammaproteobacteria and an enrichment of Prevotella [40]. Dysentery (mucoid/bloody diarrhea) is a severe form of infectious diarrhea with heightened gut inflammation, which requires antimicrobial treatments and longer hospitalization [10,41]. An overabundance of facultative anaerobes (Escherichia, Streptococcus, Enterococcus, etc.) has been reported in dysenteric diarrhea, which was coupled with a depletion in bacteria of known immunomodulatory effects (Lactobacillus ruminis, Bifidobacterium pseudocatenulatum) [14,15,24]. These findings indicate that bacterial infections and dysentery are usually accompanied by dysbiotic states diverging further from the healthy condition, which could be the effect of pathogen-triggered inflammation and/or frequent antimicrobial use.

Post-diarrhea recovery phase

The gut microbiome of patients recovering post-diarrhea diverge from those observed in the disease’s early phase and converge toward that in the healthy population. The recovery phase signals a gradual increase in taxonomic richness and diversity in the gut microbiome, but microbiome succession showed high temporal variability among the infected individuals [42]. By studying Bangladeshi patients infected with V. cholerae and enterotoxigenic E. coli, David et al. proposed a stepwise (mid-stage and late-stage) succession model for gut microbiome recovery [18]. The expansion of Escherichia/Streptococcus eventually depletes the oxygen in the gut environment, leading to their population decline in the recovery phase. The mid-stage is specifically characterized by a sizable abundance of Bacteroides (occurring as early as day 7 since disease onset), while the late-stage harbors a greater abundance and diversity of Prevotella and SCFA-producing Firmicutes [18,19,24,27]. Carbohydrate metabolism genes, mostly of the genus Bacteroides, were the most significantly enriched during the mid-stage, allowing these bacteria to flexibly extract energy from diet-derived and host-derived carbohydrates (plentiful in fiber and mucin, respectively) [18,37]. Notably, this chronobiological microbial assemblage resembles that of gut microbiome recovery post antimicrobial administration [43]. Numerous studies have noted that following antimicrobial treatment, Bacteroides (or Bacteroidites) flourish while Firmicutes and Actinobacteria diminish [44,45]. Similarly, iso-osmotic diarrhea induced a transient gut perturbation, with a significant Bacteroides bloom immediately post-washout [46]. Bacteroides species, such as Bacteroides uniformis and Bacteroides thetaiotaomicron, were identified as primary recovery-associated taxa due to their mucin-degrading capability [47,48]. By capitalizing on host-derived nutrients, Bacteroides becomes the keystone species for the colon’s ecological recovery. This subsequently initiates a complex network of cross-feeding to expedite the repopulation of other anaerobic and SCFA producing commensals (Bifidobacterium, Roseburia, Faecalibacterium, etc.), thus establishing a taxonomically and functionally diverse community [43]. An outstanding question is whether the recovered microbiota returns to the pre-infection state in patients, and such data are limited due to the paucity of diarrhea cohort studies. Findings from a Campylobacter human challenge study showed that significant compositional differences still persisted when comparing the recovery and pre-infection microbiomes, with Bacteroides abundance during recovery attributed to antimicrobial use [49]. In contrast, the presence of the Bacteroides-enriched stage is less prominent in recovery from viral gastroenteritis [42], possibly owing to its less severe dysbiotic state and infrequent antimicrobial use.

Further impact of diarrheal dysbiosis

Though diarrhea is mostly acute, repeated diarrhea episodes could exert lifelong consequences on a child health. Studies have long proposed that diarrhea and undernutrition amplify the effect of each other, which predisposes children to stunting, cognitive impairment, and glucose intolerance in adulthood [50]. Longitudinal microbiome tracking in Peruvian children demonstrated that increased diarrhea frequency substantially reduced the gut microbiome diversity and richness, and this effect was exacerbated in stunted children [16]. Stunting was also associated with a slower rate in microbiome recovery, and the prolonged perturbation in turn reduced resilience to subsequent enteric infections, creating a vicious cycle of diarrhea and undernutrition. Stunted children in Africa were shown to have an overgrowth of oral bacteria in the small intestine and colon [51]. This concurs with the evidence that macaques with growth faltering experienced taxonomic and functional alternations in their colon microbiomes, with the preponderance of oral bacteria such as Lactobacillus salivarius and Streptococcus [52]. We speculate that repeated diarrhea increases the chance that translocated oral bacteria acclimatize to the perturbed gut environment, and their stable colonization might induce inflammation and alter the functionality of the microbiome. Indeed, colonic proliferation of oral bacteria is a known signature of colorectal cancer [53], and these bacteria (F. nucleatum, Peptostreptococcus) could potentiate tumorigenesis and enhance gut inflammation [54,55]. Aside from clinical diarrhea, asymptomatic carriage of enteropathogens also remodels the gut microbiome. Children infected with Campylobacter, norovirus or enteroaggregative E. coli had significant higher abundance of Ruminococcus gnavus [56], which has been
robustly linked to Crohn disease and produced proinflammatory polysaccharides [57]. Similar to diarrhea, asymptomatic infection with *Campylobacter* was associated with stunting [56], highlighting the significance of dysbiosis outside the purging effect of diarrhea.

The expansion of Enterobacteriaceae during diarrhea’s early phase greatly increases its contact with the assault pathogens, thus heightening the likelihood of horizontal gene transfer. Experimental model has confirmed the ease of plasmid transfer from *Salmonella* to *E. coli*, owing to colitis-induced Enterobacteriaceae bloom [58]. Our study in Vietnam has identified that the same multidrug resistant plasmid was present in the commensal *E. coli* and pathogenic *Shigella sonnei*, both isolated from a single child with diarrhea [59]. Moreover, the efficiency of plasmid transfer (from *S. sonnei* to *E. coli*) increased 10–40 folds when incubated with fluoroquinolone in vitro. This suggests that once pathogens enter settings with high enteric infection incidence and antimicrobial usage, the gut’s Enterobacteriaceae could act as an effective reservoir fostering the emergence of new multidrug resistance phenotype. This likely contributes to the rise of plasmid-mediated azithromycin resistance in *Shigella flexneri* 3a (once entered in the men-who-have-sex-with-men community) [60] and cephalosporin resistance in *S. sonnei* (once introduced into Vietnam) [61].

Outlook

Despite the impressive reduction in diarrhea-related mortality globally, diarrhea endemicity and its incurred morbidity still remain a debilitating actor on child health. Gut dysbiosis following diarrhea is short-lived and reversible, but its negative effect is amplified in vulnerable populations. Outstanding questions remain on how dysbiosis mechanistically influences clinical resolution of diarrhea, and the contribution of dysbiosis on immunological functionality in long-term, given that gastroenteritis could increase the risks of ulcerative colitis, Guillain-Barré syndrome, and reactive arthritis [62]. Thorough understanding on the gut microbiome in undernourished children helped engineering a microbiota-directed complementary food, which successfully alleviated the microbiome immaturity and improved the health status in this target population [63**]. In light of negative results from recent probiotic trials for acute diarrhea [64,65], future research should exploit microbiome knowledge to design more optimal probiotics or interventions.

Funding information

HCT is a Wellcome International Training Fellow (218726/Z/19/Z).

Conflict of interest statement

Nothing declared.

Declaration of Competing Interest

The authors report no declarations of interest.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Kotloff KL, Natario JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF et al.: Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. *Lancet* 2013, 382:209-222.

2. Duong VT, Phat VV, Tuyen HT, Dung TTN, Trung PD, Minh PVan, Phuong Tu LT, Campbell JI, Le Phuc H, Thanh Ha TT et al.: Evaluation of luminescent xTAG gastrointestinal panel assay for detection of diarrheal pathogens in fecal samples in Vietnam. *J Clin Microbiol* 2016, 54:1094-1100.

3. Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havit A, McCormick BJ, McGrath M, Olortegui MP, Samie A et al.: Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). *Lancet Glob Heal* 2015, 3:e564-e575.

4. Troeger C, Forouzanfar M, Rao PC, Khalil I, Brown A, Reiner JR, Fullman N, Thompson RL, Ababour A, Ahmed M et al.: Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet Infect Dis* 2017, 17:399-1-40.

5. The Global Microbiome Project Consortium: *Structure, function and diversity of the healthy human microbiome*. Nature 2012, 486:207-214.

6. Kostic AD, Gevers D, Pedamallu CS, Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina Al et al.: Genomic analysis identifies association of *Fusobacterium* with colorectal carcinoma. *Genome Res* 2012, 22:292-298.

7. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. *Nature* 2006, 444:1027-1031.

8. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurlishkov A, Joossens M, Wijmenga C et al.: The neuroactive potential of the human gut microbiota in quality of life and depression. *Nat Microbiol* 2019, 4.

9. Casburn-Jones AC, Farthing MJG: Management of infectious diarrhoea. *Gut* 2004, 53:296-305.

10. Tria BS, Fischer Walker CL, Munos M, Black RE: *Antibiotics for the treatment of dysentery in children*. *Int J Epidemiol* 2010, 39:70-74.

11. Dogra S, Sakwinska O, Soh S-E, Ngom-bru C, Brück M, Berger B, Brüssow H, Karnani N, Lee YS, Yap F et al.: Rate of establishing the gut microbiota in infancy has consequences for future health. *Gut Microbes* 2015, 6:321-325.

12. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H et al.: Dynamics and stabilization of the human gut microbiome during the first year of life. *Cell Host Microbe* 2015, 17:690-703.

13. Robertson RC, Manges AR, Finlay BB, Prendergast AJ: The human microbiome and child growth – first 1000 days and beyond. *Trends Microbiol* 2019, 27:131-147.

14. Pop M, Walker AW, Paulson J, Lindsay B, Antonio M, Hossain M, Oundo J, Tamboura B, Mai V, Astrova skaya I et al.: Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. *Genome Biol* 2014, 15:R76.
15. Chung The H, de Sessions PF, Jie S, Thanh DP, Thompson CN, Minh CNN, Chu CW, Tran T-A, Thomson NR, Thwaites GE et al.: Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes 2018, 9:38-54

The authors report the overabundance of oral bacteria in the diarrheal gut microbiome, and how demographic and clinical factors could influence the diarrheal microbiome configuration.

16. Rouhani S, Griffin NW, Yori PP, Gehrig JL, Oortegui MP, Salas MS, Trigoso DR, Moulton LH, Houpt ER, Barratt MJ et al.: Diarrhea as a potential cause and consequence of reduced gut microbial diversity among undernourished children in Peru. Clin Infect Dis 2020, 71:899-999.

By studying a birth cohort in Peru, the authors showed that diarrhea and stunting amplify the gut microbiota dysbiotic effects of each other.

17. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D et al.: Population-level analysis of gut microbiota variation. Science (80-) 2016, 352:560-564.

The authors investigated the gut microbiome dynamic from diarrhea onset until recovery, and proposed a step-wise model in understanding the diarrheal gut microbiome.

18. Hsiao A, Ahmed AMS, Subramanian S, Griffin NW, Drewry LL, Petri WA, Haque R, Ahmed T, Gordon JI: Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014, 515:423-426.

19. Monira S, Nakamura S, Gotoku K, Izutsu K, Watanabe H, Alam NH, Nakaya T, Horii T, Ali S, Iida T et al.: Metagenomic profile of gut microbiota in children during cholera and recovery. Gut Pathog 2013, 5:1.

20. Sohail MU, Al Khattab HA, Al Thani AA, Al Ansari K, Yasmine HM, Al-Asmakh M: Microbiome profiling of rotavirus infected children suffering from acute gastroenteritis. Gut Pathog 2021, 13:1-9.

21. Monira S, Hoq MM, Chowdhury AKA, Saaqu M, Agne F, Endtz HP, Alam M, Rahman M, Pochart P, Desjeux J-F et al.: Short-chain fatty acids and commensal microbiota in the faeces of severely malnourished children with cholera rehydrated with three different carbohydrates. Eur J Clin Nutr 2010, 64:1116-1124.

22. Tazume S, Ozawa A, Yamamoto T, Takahashi Y, Takeshi K, Saitd SM, Ichoroh G, Waiyaki PG: Ecological study on the intestinal bacterial flora of patients with diarrhea. Clin Infect Dis 1993, 16:577-582.

23. Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R, Jernigan K, Zell A, Newton DW, Salminia H, Lephart P et al.: Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome 2015, 3:45.

24. Sarker SA, Sultana S, Reuter G, Moine D, Descombes P, Charton F, Bourdin G, McCallin S, Ngom-Bru C, Neville T et al.: Oral phage therapy of acute bacterial diarrhea with two coinhabiting phages: a randomized trial in children from Bangladesh. eBioMedicine 2016, 4:124-137.

25. Mathew SS, Smatti MK, Al Ansari K, Nasrallah GK, Al Thani AA, Yasmine HM: Mixed viral-bacterial infections and their effects on gut microbiota and clinical illnesses in children. Sci Rep 2019, 9:1-12.

26. Becker-Dreps S, Allai I, Monteagudo A, Vilchez S, Huddgens MG, Rogawski ET, Carroll IM, Zambrana LE, Espinoza F, Azcarate-Peril MA: Gut microbiome composition in young Nicaraguan children during diarrhea episodes and recovery. Am J Trop Med Hyg 2015, 93:1187-1193.

27. He Y, Mujagond P, Tang W, Wu W, Zheng H, Chen X, Chen M, Ma W, Zhou H: Non-nucleatum Fusobacterium species are dominant in the Southern Chinese population with distinctive compositions to host diseases compared with F. nucleatum. Gut 2021, 70:810-812.

28. Yeoh YK, Chen Z, Wong MCS, Hui M, Yu J, Ng SC, Sung JY, Chan FKL, Chan PKS: Southern Chinese populations harbour non-nucleatum Fusobacteria possessing homologues of the colorectal cancer-associated FadA virulence factor. Gut 2020, 69:1998-2007.

29. Wei PL, Hung CS, Kao YW, Lin YC, Lee CY, Chang TH, Shia BC, Lin JC: Classification of changes in the fecal microbiota associated with colonic adenomatous polyps using a long-read sequencing platform. Genes (Basel) 2020, 11:1-14.

30. Liang S, Zhao Y, Zhao Y, Zhu Y, Chen Y, Huang X, Wei C, Wu C, Wang Q, Pan X et al.: Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. Int J Biol Sci 2020, 16:135-146.

31. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG: Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A 2016, 113:E791-E800.

32. Schmidt TS, Hayward MR, Coelho LP, LS, Costea PI, Voigt AY, Wirbel J, Maistrenko OM, Alves RJ, Bergsten E et al.: Extensive transmission of microbes along the gastrointestinal tract. eLife 2019, 8.

33. Gallardo P, Izquierdo M, Vidal RM, Chamorro-Veloso N, Rosselló-Mora R, O’Ryan M, Farfán MJ: Distinctive gut microbiota is associated with diarrheagenic Escherichia coli infections in Chilean children. Front Cell Infect Microbiol 2017, 7:1-10.

34. Taco-Masias AA, Fernandez-Aristi AR, Cornejo-Tapia A, Aguilar-Luis MA, del Valle LJ, Silva-Caso W, Zavaleta-Gavidia V, Weigl P, Cornejo-Pacheceros H, Bazán-Mayra J et al.: Gut microbiota in hospitalized children with acute infective gastroenteritis caused by virus or bacteria in a regional Peruvian hospital. PeerJ 2020, 8:1-15.

35. Nelson AM, Walk ST, Taube S, Taniuchi M, Houpt ER, Wobus CE, Young VB: Disruption of the human gut microbiota following norovirus infection. PLoS One 2012, 7.

36. Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL, Hutchinson DS, Ajami NJ, Petrosino JF, Hyser JM: Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes 2020, 11:1324-1347.

Using the rotavirus infection mouse model, the authors found that mucin-degrading Bacteroides and Akkermansia specifically proliferated in the ileal microbiome upon infection, but not in other compartments of the gastrointestinal tract.

38. Green KY, Kaufman SS, Nagata BM, Chaimmongkol N, Kim DY, Levenson EA, Tin CM, Yardley AS, Johnson JA, Barletta AB et al.: Human norovirus targets enterodendritic epithelial cells in the small intestine. Nat Commun 2020, 11:1-10.

39. Mizutani T, Aobage SY, Ishizaka A, Afun T, Mensah GI, Asante-Poku A, Asandem DA, Parbie PK, Abana CZY, Kushitor D et al.: Gut microbiota signature of pathogen-dependent dysbiosis in viral gastroenteritis. Sci Rep 2021, 11:1-11.

40. Berry ASF, Johnson K, Martins R, Sullivan MC, Farias Amorim C, Putre A, Scott A, Wang S, Lindsay B, Baldassano RN et al.: Natural infection with giardia is associated with altered community structure of the human and canine gut microbiome. mSphere 2020, 5.

41. Thompson CN, Pani MVT, Hoang NVM, Minh PV, Vinh NT, Thuy CT, Nga TTT, Rabaa MA, Duy PT, Dung TTN et al.: A prospective multi-center observational study of children hospitalized with diarrhea in Ho Chi Minh City, Vietnam. Am J Trop Med Hyg 2015, 92:1045-1052.

42. Dinleyici EC, Martinez-Martinez D, Kara A, Karabuz A, Daligic N, Metin O, Yazar-AS, Guven S, Kuruoglu Z, Turel O et al.: Time series analysis of the microbiota of children suffering from acute infectious diarrhea and their recovery after treatment. Front Microbiol 2018, 9:1-11.

43. Chng KR, Ghosh TS, Tan YH, Nandi T, Lee IR, Ng AH0, Li C, Ravikrishnan A, Lim KM, Lye D et al.: Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat Ecol Evol 2020, 1:1256-1267.

The authors mined large-scale microbiome profiles to identify Bacteroides as keystone species in microbiome recovery post antibiotic treatment, which was confirmed in animal model.

Current Opinion in Microbiology 2022, 66:79-85 www.sciencedirect.com
This microbiome research highlights the importance of understanding the effects of antibiotic treatment on the gut microbiome and the potential implications for human health. The findings suggest that antibiotic use can alter the gut microbiome, leading to overgrowth of certain bacterial species and potential changes in disease susceptibility. The study also underscores the need for further research to elucidate the mechanisms underlying these microbiome changes and to develop strategies to mitigate their effects.

45. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, De Vos WM: Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 2016, 7:1-8.

46. Fukuyama J, Rumker L, Sankaran K, Jeganathan P, Dethlefsen L, Reiman DA, Holmes SP: Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment. PLoS Comput Biol 2017, 13:e1005706.

47. Martens EC, Chiang HC, Gordon JJ: Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 2008, 4:447-457.

48. Stamps BW, Kuroiwa J, Isidean SD, Schilling MA, Harro JA, Talaat KR, Sack DA, Tribble DR, Maue AC, Rimmer JE et al.: Exploring changes in the host gut microbiota during a controlled human infection model for Campylobacter jejuni. Front Cell Infect Microbiol 2021, 11:1-14.

49. Guerant RP, Coker DB, Prongay M, Virta J, Di Nuzzo P, Triposo DR, Moulton LH, Hojrup E, Barratt MJ, Kosek MN et al.: Gut microbiota features associated with Campylobacter burden and postnatal linear growth deficits in a Peruvian birth cohort. Clin Infect Dis 2020, 71:1000-1007.

50. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J: Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A 2019, 116:12672-12677.

51. The authors isolated an identical multidrug resistance plasmid from Shigella sonnei and commensal E. coli in a child with diarrhea, and demonstrated that plasmid transfer rate increases in treatment with antimicrobials.

52. Baker KS, Dallman TJ, Ashton PM, Day M, Hughes G, Crook PD, Gilbert VL, Zittermann S, Allen VG, Howden BP et al.: Intercellular dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infect Dis 2015, 3099:1-9.

53. Chung The H, Boinett C, Pham Thanh D, Jenkins C, Weller FX, Howden BP, Valcanis M, de Lappe N, Cormican M, Wangchuk S et al.: Dissecting the molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat Commun 2019, 10:4828.

54. Ternhag A, Torner A, Svensson Å, Ekdahl K, Giesecke J: Short- and long-term effects of bacterial gastrointestinal infections. Emerg Infect Dis 2008, 14:143-148.

55. Gehrig JL, Venkatesh S, Chang H-W, Hibberd MC, Kung VL, Cheng J, Chen CY, Subramanian S, Cowardin CA, Meier MF et al.: Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 2019, 365.

56. The authors explored understanding on gut microbiome dysbiosis in undernourished Bangladeshi children to design a microbiota-directed complementary food, which produced positive results in a clinical study.

57. Freedman SB, Williamson-Urquhart S, Fanion KJ, Gouin S, Willan AR, Poonai N, Hurley K, Sherman PM, Finkelstein Y, Lee BE et al.: Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med 2018, 379:2015-2026.

58. Chau TTH, Chau NNM, Le NTH, The HC, Vinh PV, To NTN, Ngoc NM, Tuan HM, Le Chau Ngoc T, Kolader ME et al.: A double-blind, randomized, placebo-controlled trial of Lactobacillus acidophilus for the treatment of acute watery diarrhea in Vietnamese children. Pediatr Infect Dis J 2018, 37:35-42.