Exercise Intolerance in Volume Overload Heart Failure Is Associated With Low Carotid Body Chemosensitivity

David Andrade
Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile

Esteban Diaz
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile

Camilo Toledo
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile

Karla Schwarz
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile

Katherin Pereyra
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile

Hugo Diaz
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile

Noah Marcus
Dept. of Physiology and Pharmacology, Des Moines University, Des Moines IA, USA

Fernando Ortiz
Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile

Angelica Rios
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile

Domiziana Ortolani
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile

Rodrigo Del Rio (rdelrio@bio.puc.cl)
Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
Abstract

Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands during exercise and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in HF patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses and exercise tolerance were assessed at the end of a 6 weeks exercise training program. Exercise tolerant HF rats (HF+EX-T) completed all training sessions and benefit from exercise as evidenced by improvements in cardiac systolic function and reductions in HCVR, sympathetic tone and arrhythmias. Contrarily, HF rats that failed to complete training sessions (HF+EX-inT) showed no improvements in cardiac systolic function nor in HCVR, sympathetic tone, or arrhythmias but displayed a further compromise in cardiac diastolic function when compared to HF-sedentary rats. In addition, HF+EX-inT rats showed impaired HVR which was associated with increased arrhythmias susceptibility and mortality during hypoxic challenges (~60% survival). Finally, exercise tolerance was closely dependent on carotid body (CB) function since their selective ablation impaired exercise capacity in HF. Our results indicate that: i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and ii) reduced CB chemoreflex contributes to EX-inT in HF.

Introduction

Heart failure (HF) is a global public health problem characterized by autonomic abnormalities and impaired cardiac function. Current pharmaceutical approaches to HF treatment are effective in delaying disease progression; however, the 5-year mortality rate is approximately 50%. Exercise training (EX) has been shown to be an effective non-pharmacological therapeutic adjunct in treatment of HF, that results in improvements in cardiac function, quality of life, and survival. These beneficial effects are frequently associated with improvement in cardiac autonomic imbalance and normalization of abnormal chemoreflex function, both of which are associated with lower survival rates in HF. However, these beneficial effects rely on the ability to tolerate EX, which is not always a given in patients with HF.

Exercise intolerance (EX-inT) is defined as impairment of the ability to perform physical activity and is characterized by decreased exercise and functional capacities. It is one of several important indicators in the diagnosis of patients with HF. The precise mechanisms underlying EX-inT in HF are not fully understood; however, it has been proposed that EX-inT may be linked to reductions in perfusion of working muscles and consequent decreases in oxygen supply. Theoretically, this is a result of impaired ability to increase cardiac output to working muscles which is compounded by persistent sympathoexcitation and reduced vasodilatory mechanisms in vascular beds regulating muscle perfusion. Most of the experimental support for this hypothesis comes from studies examining reduced ejection fraction HF, which is indeed, characterized by reductions in blood flow to muscle secondary to heart damage. However, it is worth noting that patients with preserved ejection fraction HF, who often do not have hemodynamic compromise at rest also experience EX-inT.
In order to meet the metabolic demands of exercise, increases in ventilation are required in addition to increases in and re-distribution of cardiac output. Peripheral chemoreflexes is one of several important homeostatic mechanisms that contribute to increases in pulmonary ventilation during exercise. Early evidence of this, came from studies in patients who had undergone bilateral denervation of the peripheral chemoreceptors (i.e. carotid bodies) for treatment of bronchial asthma. In these people, carotid body resection resulted in a significant reduction in exercise hyperpnea25. Previous studies have shown that aberrant chemoreflex function contributes to autonomic dysfunction, abnormal breathing patterns, and cardiac dysfunction in HF1,2,4-8. However, to date no studies have addressed the role of chemoreflex function in EX-inT in HF. Reductions in chemoreflex gain could potentially have an adverse impact on exercise tolerance due to inadequate pulmonary ventilation. In the present study, we aimed to determine the prevalence of EX-inT in a volume-overload HF model (which lacks the confounding effect of reduced blood flow)5,26 and the extent to which aberrant chemoreflex function contributes to EX-inT in this model.

Materials And Methods

Ethical approval and animals

Forty male Sprague-Dawley rats (250 ± 20g) were used in these experiments. All experiments were performed 8-weeks following induction of HF. In accordance the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the Guía para el Cuidado y Uso de los Animales de Laboratorio from CONICYT, all animals were kept at controlled room temperature under a 12 hours light/dark cycle with ad libitum access to food and water. All experimental protocols were approved by the Ethics Committee for Animal Experiments of the Pontificia Universidad Católica de Chile (#170710022) and were performed according to the ARRIVE Guidelines. All experiments were performed in the Laboratory of Cardiorespiratory Control at Physiology Department of the Pontificia Universidad Católica de Chile. At the end of the appropriate experiments, all animals were humanely euthanized via anesthetic overdose (sodium pentobarbital 100 mg/kg i.p.).

Two-weeks after HF induction surgery, rats were randomly allocated to endurance exercise training (EX; n=28) or sedentary (Sed; n=12) conditions. Sedentary animals were assigned to plethysmography experiments (n=6) and echocardiography and cardiac function experiments (n=6). Rats that trained less than 50% of the total EX session were classified as intolerant to EX (HF+EX-inT), similar to has been previously described38. Then, based on training times rats were assigned to one of the following groups: HF+EX-T (n=17) and HF+EX-inT, (n=11). From inT animals, n=6 rats were assigned to plethysmography experiments and n=5 rats, were allocated to anesthetized preparation at 8th weeks. From tolerant animals, n=7 rats were allocated to anesthetized experiments, n=6 rats were assigned to plethysmography experiments. Finally, n=4 rats from HF+EX-T rats were used to CBA (Fig. 7).

Volume overload HF model.
Volume overload was used to induced HF as described previously1,3,8,39-41. Briefly, under anesthesia (2% isoflurane/ 98% O\textsubscript{2}) after laparotomy, an anastomosis was created between abdominal aorta and inferior vena cava vessels using 1.20 x 40 mm needle (BD Precision Glide). The opening in the aorta was closed using tissue adhesive (Histoacryl, Braun). The abdomen was then closed in layers. Post-operative management consisted of administration of 5 mg enrofloxacin (s.c.), 1 mg ketoprofen (s.c.), 5 ml saline solution (i.p.) and 2% lidocaine hydrochloride jelly (topical).

Exercise training protocol

The EX-training protocol was similar to previous studies1. Briefly, rats ran on a motor-driven treadmill (PanLab, Harvard Apparatus, USA) at low speed (10 m/min), low % grade (0%), and for a short duration (10 min/day) during the first 2 weeks of the training program. Then, intensity and duration were gradually increased to 25 m/min at 10% grade for 60 min/day until they completed 6 weeks of training. Regardless of whether HF rats were classified as EX-T or EX-inT, all rats exercised to their capacity for 6 weeks. Nevertheless, the inT animals were removed from the treadmill whether exhausted- rat must remained 3 times for longer than 5 seconds in the platform with electric shock (3-5 mA). Soleus to body weight ratio was calculated in each animal to estimate effectiveness of EX as previously described1.

Echocardiography

To assess cardiac function, echocardiography was performed two weeks after HF surgery as previously described42. Echocardiography was repeated in all groups at week 8 post-HF induction after completing EX or Sed protocols. Briefly, under anesthesia (isoflurane 1.5-2.0%, 97% O\textsubscript{2}) rats were placed in supine position and scanned in M-mode with an echocardiograph (Samsung Medison Co., Seoul, South Korea), using a 12-MHz electronic transducer. Images were obtained from the left parasternal short-axis views of the left ventricle (LV) at the level of papillary muscles43. Left ventricular end-diastolic diameter (LV\textsubscript{EDD}) and left ventricular end-systolic diameter (LV\textsubscript{ESD}) were measured. Subsequently the left ventricular end-diastolic volume (LV\textsubscript{EDV}), left ventricular end-systolic volume (LV\textsubscript{ESV}), ejection fraction (LV\textsubscript{EF}) and fractional shortening (LV\textsubscript{FS}) were calculated. Animals were classified as high-output HF if they exhibited a minimum of a 2.5-fold increase in SV and LV\textsubscript{EDV}, as previously described1,3,5,8.

Invasive cardiac hemodynamics

Rats were anesthetized with \(\alpha\)-chloralose (40 mg/kg) and urethane (800 mg/kg), and then were intubated (16-g cannula). After this a 2F pressure-volume (PV) conductance catheter (Millar, SPR-869) was placed into the right carotid artery and advanced into the left ventricle8,44-46. In addition, another catheter was inserted in the jugular vein for bolus calibration44. Before LV placement of the PV catheter, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), pulse pressure (PP) and heart rate (HR) were determined. Systolic and diastolic cardiac function were determined by single beat analysis47-49. After an equilibration period (25-min), baseline PV loops were recorded, and LV hemodynamic parameters were calculated using 10-15 successive PV loops. Baseline PV loop
parameters were left ventricular end-systolic pressure (LVESP) and left ventricular end-diastolic pressure (LVEDP). Load-dependent cardiac function parameters were determined by means of the calculation of \(\frac{dp}{dt_{\text{max}}} \) and \(\frac{dp}{dt_{\text{min}}} \). Load-independent systolic cardiac function was determined by calculating the slope of end-systolic pressure-volume relationship (ESPVR) from one cardiac cycle. Diastolic cardiac function was determined by volume at pressure 0, from one cardiac cycle. In addition, during PV-loop preparation cardiovascular response to hypoxia (\(F_iO_2 \ 10\% \ O_2/\text{balance} \ N_2 \)) and hypercapnia (\(F_iCO_2 \ 7\% \ CO_2/93\% \ O_2 \)) were evaluated. Volumes were calibrated using arterial blood by the cuvette calibration method and NaCl 30% i.v. bolus for determination of parallel conductance\(^8\). Data analysis was performed using the PV loop module of LabChart 8.0 software.

Cardiac sympathetic tone

We determined cardiac sympathetic tone by measuring the maximum bradycardic response to propranolol as previously described\(^3,8\). Briefly, during PV-loop recording a bolus of propranolol was injected (1mg/kg i.v.) and the maximal chronotropic response was quantified. Sympathetic tone was quantified as the change in heart rate (\(\Delta HR \)) in response to propranolol.

Arrhythmia incidence

Arrhythmia incidence was measured as previously described\(^1,3-5,8\). HR was derived from blood pressure \(dP/dt \) waveforms. Irregular heartbeats were visually inspected and counted as previously described\(^1,3-5,8,50\). Arrhythmias were defined as premature or delayed beats with changes greater than 3 standard deviations (SD) from the mean beat-to-beat interval duration\(^1,3-5,8\). Arrhythmia incidence was expressed as events/hour.

Central and peripheral chemoreflex function

Central and peripheral chemoreflex sensitivity was assessed by allowing the rats to breathe a mixture of hypercapnic or hypoxic gas, respectively\(^4,8\). Briefly, unrestrained whole-body plethysmography was used to measure or calculate the following: tidal volume \(V_T \), respiratory frequency \(R_F \), minute ventilation (\(V_E \)), inspiratory time (\(T_i \)), expiratory time (\(T_e \)), total respiratory time (\(T_{tot} \)), peak inspiratory flow (PiF) and peak expiratory flow (PeF). These were measured during stimulation of central chemoreceptors with hyperoxic hypercapnia (7% \(CO_2/93\% \ O_2 \), for 10 min) and during stimulation of peripheral chemoreceptors with poikilocapnic hypoxia (10% \(O_2/\text{balance} \ N_2 \), for 10 min). The hypercapnic ventilatory response (HCVR) was obtained by calculating the slope of the linear regression adjustment of the \(V_E \) response following \(F_iCO_2 \ 0.03\% \) and 7%, as previously described\(^8\). The hypoxic ventilatory response (HVR) was obtained by calculating the slope of the linear regression adjustment of the \(V_E \) response following \(F_iO_2 \ 21\% \) and 10% challenges, as previously described\(^8\). All recordings were made at an ambient temperature of 25 ± 2 °C. Data was calculated using ECG auto software (EMKA technologies, France)\(^4,8\).

Carotid body ablation (CBA)
After six weeks of exercise training the carotid bodies (CBs) were ablated as previously described4. Briefly, rats were anesthetized with 2\% isoflurane in O\textsubscript{2}. Under sterile surgical conditions, the CBs were exposed via a ventral incision on the neck, visually identified, and cryogenically destroy4. The effectiveness of this maneuver was confirmed by the lack of hypoxic ventilatory responses immediately after recovery from surgery4. Post-operative management consisted of administration of 5 mg enrofloxacin (s.c.), 1 mg ketoprofen (s.c.), 5 ml saline solution (i.p.) and 2\% lidocaine hydrochloride jelly (topical).

Statistical analysis

Data were expressed as mean ± standard error of the mean (SEM). All data were subjected to Shapiro-Wilk normality test. Differences among groups were assessed using one-way ANOVA, followed by Holm-Sidak’s post hoc comparisons. An alpha of $p < 0.05$ was considered statistically significant. All analysis was performed with Prism version 8.4.0 (GraphPad Software, USA)

Results

Tolerance/intolerance to exercise training in HF animals.

Training times were significantly lower in HF+EX-inT animals, compared to HF+EX-T rats (29.2 ± 10.1 vs. 100.0 ± 13.1 \% change, HF+EX-inT vs. HF+EX-T, respectively) (Fig. 1A). EX tolerance versus intolerance in HF rats was 61\% (n=16) and 39\% (n=10), respectively (Fig. 1B). In addition, EX tolerance/intolerance was not related to the initial degree of cardiac dysfunction since all groups exhibited similar cardiac dimensions. Indeed, before the beginning of the protocol (2 weeks post-HF surgery) all animals display no statistical differences on left ventricle end-diastolic diameter (LV\textsubscript{EDD}) (7.0 ± 0.3 vs. 6.7 ± 1.1 vs. 8.1 ± 0.2 mm), LV end-systolic diameter (LV\textsubscript{ESD}) (3.8 ± 0.4 vs. 3.3 ± 0.5 vs. 3.8 ± 0.2 mm), LV\textsubscript{ED} volume (LV\textsubscript{EDV}) (281.9 ± 21.9 vs. 355.7 ± 24.7 vs. 342.0 ± 19.7 μl), LV\textsubscript{ESV} (67.7 ± 9.9 vs. 64.2 ± 9.2 vs. 68.9 ± 10.4 μl), LV ejection fraction (LV\textsubscript{EF}) (75.3 ± 4.4 vs. 79.8 ± 2.8 vs. 82.3 ± 1.5 \%) or LV fractional shortening (LV\textsubscript{FS}) (45.6 ± 3.9 vs. 50.5 ± 3.1 vs. 53.1 ± 1.8) (HF+Sed vs. HF+EX-T vs. HF+EX-inT, respectively).

Baseline physiological parameters

Baseline physiological parameters at 8th weeks post-HF surgery are displayed in Table 1 and Fig. 1. HF+EX tolerant rats showed a significant increase of LV\textsubscript{ESD} (4.7 ± 0.4 vs. 3.6 ± 0.3 mm, HF+EX-T vs. HF+Sed rats, respectively) (Fig. 1E) and LV\textsubscript{ESV} (110.9 ± 18.6 vs. 60.6 ± 13.6 μl, HF+EX-T vs. HF+Sed rats, respectively), compared to HF+Sed rats (Fig. 1H). In addition, LV\textsubscript{FS} was significantly decreased in HF+EX-T and HF+EX-inT animals compared to HF+Sed rats (44.5 ± 2.9 and 45.1 ± 4.1 vs. 55.2 ± 2.5 \%, HF+EX-T and HF+EX-inT vs. HF+Sed rats, respectively) (Fig. 1F), while LV\textsubscript{EF} was significantly different between HF+EX-T vs. HF+Sed rats (73.3 ± 2.8 vs. 83.9 ± 2.3 \%, HF+EX-T vs. HF+Sed rats, respectively) (Fig. 1I). HF+EX-T and HF+EX-inT rats showed no significant differences in LV\textsubscript{EDD}, LV\textsubscript{ESD}, LV\textsubscript{ESV}, LV\textsubscript{FS} and LV\textsubscript{EF} (Fig. 1). No significant changes on LV\textsubscript{EDD} and LV\textsubscript{EDV} were found between all groups (Fig. 1D and G, respectively).
HF+EX-inT rats showed a significant increase of cardiac hypertrophy compared to HF+EX-T animals (Table 1). HF+EX-T showed an increase in the soleus muscle-to-body weight (soleus/BW) ratio compared to HF+Sed animals (p<0.05) (Table 1). HF-EX-inT rats showed a slight but not significant increase in soleus/BW compared to HF+Sed animals (Table 1). EX did not change cardiac hypertrophy in HF+EX-T and HF+EX-inT animals compared to HF+Sed rats (Table 1).

Resting respiratory parameters (in normoxia) are shown in Table 2. No significant changes were found in V_T amplitude or R_f. Accordingly, no changes in respiratory cycle duration or peak flows were found between groups (Table 2).

Cardiac baseline parameters including SV, SW, LVESP, dP/dt_{max}, dP/dt_{min}, dV/dt_{max}, dV/dt_{min}, TauW were not different between groups (Table 3).

Cardiac sympathetic tone and arrhythmia incidence

HF+EX-T rats showed a smaller cardiac bradycardic response to propranolol compared to HF+Sed rats and HF+EX-inT (-59.0 ± 8.8 vs. -92.9 ± 11.3 and -99.9 ± 9.8 ΔHR, HF+EX-T vs. HF+EX-inT and HF+Sed). In contrast, HF+EX-inT rats showed similar chronotropic response to propranolol compared to HF+Sed rats (-99.9 ± 9.8 vs. 92.9 ± 11.3 ΔHR, HF+EX-inT vs. HF+Sed rats, respectively) (Fig. 2A and B).

Arrhythmia incidence was significantly reduced in HF+EX-T rats (31.4 ± 19.8 vs. 196.0 ± 84.8 events/hour, HF+EX-T vs. HF+Sed). HF+EX-inT rats showed no change in arrhythmia incidence compared to HF+Sed animals (Fig. 2C and D).

Cardiac hemodynamic function

Cardiac function parameters are shown in Figure 3. HF+EX-T animals not showed significant differences in diastolic cardiac function compared to HF+Sed rats (Fig. 3A left and B). However, HF+EX-inT evidenced a worsening of diastolic function compared to HF+EX-T and HF+Sed group (V_0: 289.5 ± 21.3 vs. 254.2 ± 19.4 and 237.8 ± 6.6 µl, HF+EX-inT vs. HF+EX-T and HF+Sed rats, respectively) (Fig. 3A left and B). Nevertheless, LVEDP and ESPVR were improved in HF+EX-T rats compared to HF+Sed and HF+EX-inT animals (LVEDP: 3.6 ± 0.3 vs. 5.6 ± 0.2 and 5.9 ± 0.8 mmHg, HF+EX-T vs. HF+Sed and HF+EX-inT, respectively) (ESPVR: 0.8 ± 0.1 vs. 0.5 ± 0.1 and 0.5 ± 0.1 mmHg/µl, HF+EX-T vs. HF+Sed and HF+EX-inT rats, respectively) (Fig. 3C and D). Systolic function in HF+EX-inT rats were indistinguishable compared to the ones obtained in HF+Sed (Fig. 3A right and D). No differences in maximum isovolumetric pressures were found between groups (Fig. 3E).

Cardiac responses to chemoreflex activation

Our previous work showed that chemoreflex activation increased cardiac arrhythmias and promoted deterioration in cardiac function in volume-overloaded HF rats. Accordingly, we tested the effects of EX on arrhythmia incidence during stimulation of central and peripheral chemoreflexes. Central chemoreflex activation with acute hypercapnia elicits cardiac arrhythmias in HF+Sed and HF+EX-inT rats to a similar
extent (14.4 ± 5.5 vs 17.0 ± 3.8 evens/10 min, respectively). Notably, the chemoreflex-induced cardiac arrhythmogenesis was blunted in HF+EX-T rats. HF+EX-T animals showed a ~3-fold reduction in arrhythmia incidence compared to HF+Sed animals (5.6 ± 2.1 vs. 14.4 ± 5.5 evens/10 min, HF+EX-T vs. HF+Sed, respectively) (Fig. 4A and B).

Peripheral chemoreflex activation with acute hypoxia did not trigger an increase in cardiac arrhythmias in HF+Sed rats nor in HF+EX-T rats (9.8 ± 4.7 events/10 min, HF+EX-T rats) (Fig. 4C). Indeed, during the hypoxic challenge both HF+Sed and HF+EX-T animals displayed an increase R_f without changes in intraventricular pressure and/or EKG integrity (Fig. 4C, left panel). In contrast, peripheral chemoreflex activation induced a marked increase in cardiac arrhythmias and related mortality in HF+EX-inT rats (Fig. 4C). Within a minute of hypoxic stimulation, arrhythmic events begin to appear and were accompanied by decreases in intraventricular pressures (Fig. 4C, right panel). Peripheral chemoreflex activation led to mortality in 40% of HF+EX-inT, but did not have a similar effect in the other experimental groups (Fig. 4D).

Peripheral and central chemoreflex gain.

Chemoreflex gain assessed before the onset of the EX-program (2 weeks post-HF surgery) showed no statistical differences in either peripheral or central chemoreflex gain between groups (HVR: 2.6 ± 0.3 vs. 3.6 ± 0.3 vs. 2.5 ± 0.4 $\Delta V_E/\Delta F_i CO_2$%; and HCVR: 2.3 ± 0.6 vs. 2.9 ± 0.6 vs. 2.5 ± 0.5 $\Delta V_E/\Delta F_i CO_2$%, HF+Sed vs. HF+EX-T vs. HF+EX-inT, respectively).

Responses to central and peripheral chemoreflex stimulation were evaluated by the ventilatory response to hypercapnia ($F_i CO_2$ 7%) and hypoxia ($F_i O_2$ 10%), respectively (Fig. 5A). HF+EX-T rats had significantly lower central chemoreflex gain compared to HF+Sed (3.1 ± 0.8 vs. 6.4 ± 0.4 $\Delta V_E/\Delta F_i CO_2$%, HF+EX-T vs. HF+Sed, respectively) (Fig. 5A and B), without differences compared to HF+EX-inT animals (Fig. 5B). In contrast, HCVR in HF+EX-inT was similar to that in HF+Sed (Fig. 5B).

Peripheral chemoreflex gain in HF+EX-T not showed significant differences compared to HF+Sed rats (Fig. 5A and C). While, HF+EX-inT rats evidenced a significantly lower HVR than HF+EX-T and HF+Sed animals (2.9 ± 0.7 vs. 5.6 ± 0.2 and 4.8 ± 0.2 $\Delta V_E/\Delta F_i O_2$%, HF+EX-inT vs. HF+EX-T and HF+Sed) (Fig. 5A and C). In addition, HF+EX-inT animals showed significant differences in R_f, V_e, T_e, T_{tot}, PiF and PeF responses to hypoxia compared to HF+EX-T and HF+Sed animals (Fig. 5 and Table 2). V_T was significantly reduced in HF+EX-inT rats compared to the HF+EX-T animals (Table 2). In addition, Ti was significantly higher in HF+EX-inT rats compared to HF+Sed animals (Table 2).

Carotid body ablation (CBA) and EX tolerance in HF rats.

The effects of CBA on training times are displayed in Fig. 6. Total training time was reduced by ~50% in HF+EX-T rats after CBA compared to previous EX times obtained before ablation of carotid body chemoreceptors (Fig. 6A). Accordingly, CBA results in a significant reduction in the ventilatory response to hypoxia in HF+EX-T (50.3 ± 1.4 vs. 33.1 ± 3.7 ml/min/100g, before vs. after CBA in HF+EX-T; Fig. 6B and C).
Discussion

In the present study we found that: i) EX-inT was present in 39% of high-output HF rats; ii) EX-inT was not related to the initial degree of cardiac failure nor to central/peripheral chemoreflex gain prior to the onset of EX in HF rats; iii) HF+EX-inT rats had similar degrees of autonomic dysfunction, arrhythmia incidence, and cardiac systolic dysfunction compared to HF sedentary rats; iv) EX-inT results in a greater degree of cardiac diastolic dysfunction in HF; v) EX results in a significant reduction in peripheral chemoreflex gain in HF+EX-inT, which was associated with increased incidence of cardiac arrhythmias and higher mortality during hypoxic challenge; and vi) ablation of peripheral chemoreceptors in HF+EX-T rats was sufficient to induce a phenotype similar to EX-inT animals. Taken together, our data suggest that decreased peripheral chemoreflex gain contributes to EX-inT in HF. Based on our findings it is plausible that reductions in chemoreflex gain in a subset of HF patients may lead to EX-inT, further abnormalities in cardiac function, and potentially predispose to severe arrhythmogenesis and increased mortality risk during moderate hypoxic exposure.

Intolerance to exercise is a well-recognized characteristic in the diagnosis of HF. HF patients typically have reduced exercise and functional capacity and experience dyspnea during daily activities. Interestingly, intolerance to physical exercise is observed in both types of HF (i.e. reduced and preserved ejection fraction). Current theories on exercise intolerance center on an inability to adequately increase cardiac output during exercise and reductions in muscle blood flow secondary to reduced EF and potentially abnormalities in muscle metabolism. In addition to cardiac, vascular, and metabolic responses to exercise, respiratory adjustments to exercise are just as crucial to maintaining homeostasis and therefore exercise tolerance. Despite well-documented derangements in ventilatory control in HF, no studies to date have addressed this as a potential mechanism contributing to exercise intolerance in HF with no reductions in EF.

In the present study, we used volume-overload HF model to study the contribution of chemoreflexes to exercise tolerance in the absence of reduced EF. We showed that volume-overloaded HF rats display exercise intolerance independent of the initial degree of cardiac failure. With respect to respiratory control, we observed that these animals displayed decreased peripheral chemoreflex gain after training despite the fact that peripheral chemoreflex gain was similar between all groups prior to the onset of the EX program. Therefore, it is reasonable to hypothesize that exercise intolerance in volume-overload HF stems in part from a reduction in peripheral chemoreflex gain. To test this assumption, we eliminated the peripheral chemoreflex in HF rats that were previously proven to be exercise tolerant. These HF+EX-T rats underwent bilateral ablation of the carotid bodies after six weeks of EX. Notably, we found that HF+EX-T rats showed a significant loss in EX performance at 2 weeks post-ablation. Indeed, total training times in HF+EX-T rats that underwent ablation were not significantly different from the values obtained in HF+EX-inT rats. This result strongly supports a role for peripheral chemoreceptors in contributing to exercise tolerance in HF. Based on our findings, the precise mechanisms by which peripheral chemoreceptors...
contribute to exercise tolerance in volume-overload HF, a model of HF with no reductions in EF warrants future investigation.

Impairment of systolic and diastolic function has been observed in patients with HF and in animal models of HF1,3,8,28. Whether or not EX results in improvements in diastolic function in HF is still controversial. Indeed, a meta-analysis performed by Pandey et al. (2015)29 showed that HF patients did not experience significant improvements in diastolic function following EX29. Our previous work showing that EX training did not improve diastolic dysfunction in high-output HF rats1 is consistent with these findings. The results of the present study in HF+EX-T rats agree with and extend our previous observations by illustrating the detrimental effects of EX in EX-inT HF rats. Indeed, we found that HF rats that do not tolerate EX had worse diastolic function after completing EX protocol. This result suggests that in some HF populations physical exercise may be detrimental. Interestingly, this concern has previously been discussed as an important factor in disease progression and decompensation in human HF20.

Similar to what is known about the effects of EX on diastolic function in HF, evidence regarding the beneficial effects of EX on systolic function is limited and controversial1,15,30,31. It has been shown that endurance EX in HF patients results in minor improvements in systolic function32, however in these studies no effort was made to distinguish between EX tolerant vs. intolerant patients32. In contrast, we previously reported that EX improves systolic function in HF rats1. It is worth noting that in the present study we found similar beneficial effects of EX on cardiac contractility, but that this was restricted to EX tolerant HF animals. Indeed, no beneficial effects of EX on cardiac contractility were observed in HF+EX-inT rats. For future studies to accurately assess the beneficial effects of EX on cardiac function in HF it is important to identify and differentiate the proportion of the patient population that do not tolerate EX.

Autonomic dysfunction characterized by sympato-vagal imbalance is a hallmark of HF in humans and is faithfully reproduced in animal models of HF1,8,33. Our previous work and that of others has shown that volume-overloaded HF rats exhibit autonomic imbalance characterized by heightened sympathetic activity1,3-5,8,34. It has been proposed that autonomic imbalance, mainly sympathoexcitation, contributes to EX intolerance in HF by reducing muscle blood flow along with increases in peripheral vascular resistance23. Importantly, volume-overloaded HF with preserved ejection fraction is a particularly useful model for examining the effects of EX intolerance in the absence of overt reductions in cardiac output.

We found that EX was an effective means to reduce cardiac sympathetic tone in HF rats that tolerate EX. This is in agreement with our previous observations1; however, this research extends our previous findings by showing that EX has no salutary effect on sympathetic activity in HF rats with EX intolerance. In this study, cardiac chronotropic responses to propranolol from HF+EX-inT rats were undistinguishable from those in in sedentary HF rats. Whether this lasting heightened sympathetic activity in HF+EX-inT group contributes to the EX intolerant phenotype in HF requires further study.
Cardiac arrhythmias are a major contributor to mortality in patients with HF and are often associated with increased cardiac sympathetic tone. In our previous studies we showed that volume-overloaded HF rats had a higher incidence of cardiac arrhythmias than shams and that EX training significantly reduced occurrence of these arrhythmias. In this study we extend our previous findings with the observation that EX training has no beneficial effect on cardiac arrhythmias in HF rats with EX intolerance. It is important to note that HF+EX-inT rats do not experience improvements in cardiac sympathetic tone as observed in HF rats that tolerate EX. Previously, we reported that cardiac arrhythmias in volume-overloaded HF rats are driven primarily by sympathetic activation, therefore it is plausible that the lack of effects of EX on cardiac arrhythmias in HF+EX-inT rats was related, at least in part, to the inability of EX to reduce sympathoexcitation. However, we cannot rule out the possibility that cardiac cellular/molecular remodeling occurred following EX training in HF+EX-inT rats that contributed to the arrhythmic substrate.

It has been proposed that chemoreflex-mediated sympathoexcitation is a major contributor to the progression of HF. Previously we found that volume-overload HF is associated with enhanced central chemoreflex gain and autonomic dysfunction, but that these animals did not exhibit changes in peripheral chemoreflex gain. In the present study we showed that EX in HF+EX-T rats significantly reduced central chemoreflex gain without changing peripheral chemoreflex gain. Therefore, it is possible that reductions in central chemoreflex gain in HF+EX-T rats following EX contribute to the improvements we observed in autonomic and cardiac function. In contrast, EX in HF+EX-inT rats had no discernable effect on central chemoreflex gain compared to HF sedentary rats. Surprisingly, we found that peripheral chemoreflex gain was attenuated after EX in HF+EX-inT rats. This finding is of note in part because when exposed to moderate hypoxia, HF+EX-inT rats had increased incidence of cardiac arrhythmias and higher mortality compared to HF+Sed animals. It is plausible that a diminished hypoxic ventilatory response compromises cardiac oxygen supply during hypoxic challenge in HF+EX-inT animals triggering lethal cardiac arrhythmias.

Whether a decrease in peripheral chemoreflex gain affects tolerance to EX in HF has not been previously addressed. It has been shown that CB ablation in humans results in a significant reduction of exercise hyperpnea; however, the extent to which this affects exercise tolerance is unclear. It has been proposed that carotid body chemoreceptors act not only to maintain arterial blood gas homeostasis, but that they also serve an important role as metabolic sensors. Recently, Chang et al. (2015) showed that carotid bodies respond to increases in extracellular lactate and can elicit a ventilatory response to physiologically relevant lactate concentrations. It is widely known that plasma lactate levels increase during acute exercise (of sufficient intensity), therefore, it is possible that peripheral chemoreceptors modulate the ventilatory adjustments and tolerance to EX in HF. In the case of a decrease in peripheral chemoreflex gain (as we observed) during higher intensity exercise, a loss in the sensitivity to metabolic by-products by peripheral chemoreceptors would adversely affect ventilatory responses to EX and contribute to EX intolerance. Since our HF+EX-inT animals displayed decreased peripheral chemoreflex gain we decided to determine if reducing peripheral chemoreflex gain (via ablation) would produce a phenotype switch in HF
animals that had previously demonstrated good tolerance for EX. Notably, ablation of the carotid bodies in HF+EX-T rats did indeed result in a phenotype switch, transforming the exercise tolerant animal into an intolerant one. Taken together, our observations suggest that reductions in peripheral chemoreflex gain are an important mechanism underlying EX intolerance in volume-overload HF. Measuring ventilation during exercise in rodents is very difficult, however future studies that address the precise role of peripheral chemoreceptors in EX ventilation in HF would add important insight to our findings.

Limitations

Limitations are inherent in any experimental model of human disease. Our HF model, as many others, does not fully recapitulate human HF. Indeed, HF models do not include any comorbidities (i.e. coronary artery disease, diabetes mellitus, atrial fibrillation and hypertension) that are typically associated with development or progression of HF33,37. However, it is worth noting that volume-overloaded HF model is a useful tool for separating the effects of neurohumoral activation on HF pathophysiology from the effects of reduced blood flow typically observed in reduced ejection fraction HF models. We acknowledge that our findings cannot be extrapolated to all types of human HF. Finally, our experimental design did not allow for measurement of ventilation or other cardiovascular parameters during EX sessions. Additional studies which address cardiorespiratory responses during acute exercise will provide additional insights into EX intolerance in HF.

Conclusion

Exercise intolerant HF rats display a decreased peripheral chemoreflex gain and a further deteriorated cardiac function. Interestingly, ablation of peripheral chemoreceptors in exercise tolerant HF rats resulted in transformation of exercise-tolerant animals to exercise-intolerant animals. Our data suggest that loss of chemoreflex sensitivity contributes, at least in part, to exercise intolerance in HF rats.

Declarations

Acknowledgements

We thank Fidel Flores for his help in managing the animal facility and Alexis Arce for his help in the training sessions.

Author contribution

D.C.A. and E.D.J. collected, analyzed, and interpreted data, and contributed to the preparation of the manuscript. C.T., K.S., K.V.P., H.S.D., A.P.R.G. and D.O. performed data collection, analysis and contributed to the preparation of the manuscript. F.O. and N.J.M. performed data interpretation and contributed to the preparation of the manuscript. R.D.R. contributed to the concept of the project and experimental design. R.D.R. also contributed to data interpretation and preparation of the manuscript. All data collection was
undertaken in the laboratory of R.D.R. at the Pontificia Universidad Católica de Chile. All authors approved the final version of the manuscript.

Funding

This work was supported by FONDECYT grants 1180172 (RDR), 1210940 (FO), 3190659 (CT), 3210564 (HSD) and the Basal Centre of Excellence in Aging and Regeneration (AFB 170005) to RDR and the special grant ‘Lithium in Health and Disease’ from the Sociedad Química y Minera de Chile (SQM) to RDR.

Disclosures

None

References

1. Andrade, D.C., Arce-Alvarez, A., Toledo, C., Diaz, H.S., Lucero, C., Schultz, H.D., Marcus, N.J., and Del Rio, R. Exercise training improve cardiac autonomic control, cardiac function and arrhythmogenesis in rats with preserved ejection fraction heart failure. *J Appl Physiol.* 2017;123(3):567-577 doi:10.1152/japplphysiol.00189.2017.

2. Andrade, D.C., Arce-Alvarez, A., Toledo, C., Díaz, H.S., Lucero, C., Quintanilla, R.A., Schultz, H.D., Marcus, N.J., Amann, M., and Del Rio, R. Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter? *Am J Physiol Heart Circ Physiol.* 2018;314(3) 2018 doi: 10.1152/ajpheart.00407.2017

3. Andrade, D.C., Toledo, C., Díaz, H.S., Lucero, C., Arce-Álvarez, A., Oliveira, L.M., Takakura, A.C., Moreira, T.S., Schultz, H.D., Marcus, N.J., Alcayaga, J., and Del Rio, R. Ablation of brainstem C1 neurons improves cardiac function in volume overload heart failure. *Clin Sci (Lond)* 2019; 133 (3): 393–405. doi:10.1042/CS20180589

4. Del Rio, R., Marcus, N.J., and Schultz, H.D. Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. *J Am Coll Cardiol* 2013;62: 2422–2430. doi:10. 1016/j.jacc.2013.07.079.

5. Del Rio, R., Andrade, D.C., Toledo, C., Diaz, H.S., Lucero, C., Arce-Alvarez, A., Marcus, N.J., and Schultz, H.D. Carotid Body-Mediated Chemoreflex Drive in The Setting of low and High Output Heart Failure. *Sci Rep* 7: 8035, 2017. doi:10.1038/s41598-017-08142-3.

6. Niewinski, P., Janczak, D., Rucinski, A., Tubek, S., Engelman, Z.J., Piesiak, P., Jazwiec, P., Banasiak, W., Fudim, M., Sobotka, P.A., Javaheri, S., Hart, E.C., Paton, J.F., and Ponikowski, P. Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study. *J. Heart Fail.* 2016; 19:391-400.

7. Toledo, C., Andrade, D.C., Lucero, C., Schultz, H.D., Marcus, N., Retamal, M., Madrid, C., and Del Rio, R. Contribution of peripheral and central chemoreceptors to sympahto-excitation in heart failure. *J Physiol* 595: 43–51, 2017. doi:10.1113/JP272075.
8. Toledo, C., Andrade, D.C., Lucero, C., Arce-Alvarez, A., Díaz, H.S., Aliaga, V., Schultz, H.D., Marcus, N.J., Manríquez, M., Faúndez, M., and Del Rio, R. Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. *J Physiol* 595: 2479–2495, 2017. doi:10.1113/JP273558.

9. Owan, T.E., Hodge, D.O., Herges, R.M., Jacobsen, S.J., Roger, V.L., and Redeld, M.M. Trends in Prevalence and Outcome of Heart Failure With Preserved Ejection Fraction. *N Engl J Med*. 355(3):251–259, 2006. doi:10.1056/NEJMoa052256.

10. Antonicelli, R., Spazzafumo, L., Scalvini, S., Olivieri, F., Matassini, M.V., Parati, G., Del Sindaco, D., Gallo, R., and Lattanzio, F. Exercise: a “new drug” for elderly patients with chronic heart failure. *Aging (Albany NY)* 8:860–872, 2016. doi:10.18632/aging.100901.

11. Besnier, F., Labrunée, M., Pathak, A., Pavy-Le Traon, A., Galès, C., Sénard, J.M., and Guiraud, T. Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. *Ann Phys Rehabil Med* 60: 27–35, 2017. doi: 10.1016/j.rehab.2016.07.002.

12. Gao, L., Wang, W., Liu, D., and Zucker, I.H. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing-induced chronic heart failure. *Circulation* 115: 3095–3102, 2007. doi:10.1161/CIRCULATIONAHA.106.677989.

13. Hsu, C.Y., Hsieh, P.L., Hsiao, S.F., and Chien, M.Y. Effects of exercise training on autonomic function in chronic heart failure: systematic review. *BioMed Res Int* 2015: 591708, 2015. doi:10.1155/2015/591708.

14. La Rovere, M.T., Bersano, C., Gnemmi, M., Specchia, G., and Schwartz, P.J. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. *Circulation* 106: 945–949, 2002. doi: 10.1161/01.CIR.0000027565.12764.E1.

15. Murad, K., Brubaker, P.H., Fitzgerald, D.M., Morgan, T.M., Goff, D.C. Jr Soliman, E.Z., Eggebeen, J.D., and Kitzman, D.W. Exercise training improves heart rate variability in older patients with heart failure: a randomized, controlled, single-blinded trial. *Congest Heart Fail* 18: 192–197, 2012. doi:10.1111/j.1751-7133.2011.00282.x.

16. Nolte, K., Herrmann-Lingen, C., Wachter, R., Gelbrich, G., Düngen, H.D., Duvinage, A., Hoischen, N., von Oehsen, K., Schwarz, S., Hasenfuss, G., Halle, M., Pieske, B., and Edelmann, F. Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: the Ex-DHF-P trial. *Eur J Prev Cardiol* 22: 582–593, 2015. doi:10.1177/2047487314526071.

17. Ricca-Mallada, R., Migliaro, E.R., Piskorski, J., and Guzik, P. Exercise training slows down heart rate and improves deceleration and acceleration capacity in patients with heart failure. *J Electrocardiol* 45: 214–219, 2012. doi:10.1016/j.jelectrocard.2012.01.002.

18. Tabet, J.Y., Meurin, P., Beauvais, F., Weber, H., Renaud, N., Thabut, G., Cohen-Solal, A., Logeart, D., and Ben Driss, A. Absence of exercise capacity improvement after exercise training program: a strong prognostic factor in patients with chronic heart failure. *Circ Heart Fail* 1: 220–226, 2008. doi:10.1161/CIRCHEARTFAILURE.108.775460.
19. Yoshimura, R., Sato, T., Kawada, T., Shishido, T., Inagaki, M., Miyano, H., Nakahara, T., Miyashita, H., Takaki, Y., Tatewaki, T., Yanagiya, Y., Sugimachi, M., and Sunagawa, K. Increased brain angiotensin receptor in rats with chronic high-output heart failure. *J Card Fail* 6: 66–72, 2000. doi:10.1016/S1071-9164(00)00013-0.

20. Piña, I.L., Apstein, C.S., Balady, G.J., Belardinelli, R., Chaitman, B.R., Duscha, B.D., Fletcher, B.J., Fleg, J.L., Myers, J.N., Sullivan, M.J., and American Heart Association Committee on exercise, rehabilitation, and prevention. Exercise and heart failure: A statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. *Circulation* 107: 1210–1225, 2003. doi:10.1161/01.CIR.0000055013.92097.40.

21. Szlachcic, J., Masse, B.M., Kramer, B.L., Topic, N., and Tubau, J. Correlates and prognostic implication of exercise capacity in chronic congestive heart failure. *Am J Cardiol* 55: 1037–1042, 1985. doi:10.1016/0002-9149(85)90742-8.

22. Gupte, A.A., and Hamilton, D.J. Exercise intolerance in heart failure with preserved ejection fraction. *Methodist DeBakey Cardiovasc J* 12: 105–109, 2016. doi:10.14797/mdcj-12-2-105.

23. Ledoux, J., Gee, D.M., and Leblanc, N. Increased peripheral resistance in heart failure: new evidence suggests an alteration in vascular smooth muscle function. *Br J Pharmacol.* 2003: 139(7): 1245-1248.

24. Barrett-O’Keefe, Z., Lee, J.F., Ives, S.J., Trinity, J.D., Witman, M.A.H., Rossman, M., Groot, H.J., Sorensen, J.R., Morgan, D.E., Nelson, A.D., Stehlik, J., Richardson, R.S., and Wray, D.W. \(\alpha\)-Adrenergic Receptor Regulation of Skeletal Muscle Blood Flow During Exercise in Heart Failure Patients With Reduced Ejection Fraction. *Am J Physiol Regul Integr Comp Physiol.* 316(5): R512–R524, 2019. doi:10.1152/ajpregu.00345.2018.

25. Toledo, C., Lucero, C., Andrade, D.C., Díaz, H.S., Schwarz, K.G., Pereyra, K.V., Arce-Alvarez, A., López, N.A., Martinez, M., Inestrosa, N.C., and Del Rio, R. Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. *Aging (Albany NY).* 2019 Aug 25;11(16):5924-5942.

26. Honda, Y. Role of Carotid Chemoreceptors in Control of Breathing at Rest and in Exercise: Studies on Human Subjects with Bilateral Carotid Body Resection. *Japanese Journal of Physiology,* 35: 535-544,1985.

27. Upadhya, B., Haykowsky, M.J., Eggebeen, J., and Kitzman, D.W. Exercise intolerance in heart failure with preserved ejection fraction: more than a heart problem. *J Geriatr Cardiol* 12: 294–304, 2015. doi:10.11909/j.issn.1671-5411.2015.03.013.

28. Pfeffer, M.A., Shah, A.M., and Borlaug, B.A. Heart failure with preserved ejection fraction in perspective. *Circ Res.* 2019; 124:1598–1617. doi: 10.1161/CIRCRESAHA.119.313572

29. Pandey, A., Parashar, A., Kumbhani, D., Agarwal, S., Garg, J., Kitzman, D., Levine, B., Drazner, M., and Berry, J. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. *Circ Heart Fail* 8: 33–40, 2015. doi:10.1161/CIRCHEARTFAILURE.114.001615.
30. Adams, V., Alves, M., Fischer, T., Rolim, N., Werner, S., Schütt, N., Bowen, T.S., Linke, A., Schuler, G., and Wisloff, U. High-intensity interval training attenuates endothelial dysfunction in a Dahl salt-sensitive rat model of heart failure with preserved ejection fraction. *J Appl Physiol* 119: 745–752, 2015. doi:10.1152/japplphysiol.01123.2014.

31. Dieberg, G., Ismail, H., Giallauria, F., and Smart, N.A. Clinical outcomes and cardiovascular responses to exercise training in heart failure patients with preserved ejection fraction: a systematic review and meta-analysis. *J Appl Physiol* 119: 726–733, 2015. doi:10.1152/japplphysiol.00904.2014.

32. Smart, N., Haluska, B., Jeffriess, L., and Marwick, H. Exercise training in systolic and diastolic dysfunction: effects on cardiac function, functional capacity, and quality of life. *Am. Heart. J.* 2007; 153:530-536.

33. Kitzman, D.W., Little, W.C., Brubaker, P.H., Anderson, R.T., Hundley, W.G., Marburger, C.T., Brosnihan, B., Morgan, T.M., and Stewart, K.P. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. *JAMA* 288: 2144–2150, 2002. doi:10.1001/jama.288.17.2144.

34. Kristen, A.V., Just, A., Haass, M., and Seller, H. Central hypercapnic chemoreflex modulation of renal sympathetic nerve activity in experimental heart failure. *Basic Res Cardiol* 97: 177–186, 2002. doi:10.1007/s003950200009.

35. Marcus, N.J., Del Rio, R., Schultz, E.P., Xia, X.H., and Schultz, H.D. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. *J Physiol* 592: 391–408, 2014. doi:10.1113/jphysiol.2013.266221.

36. Chang, A.J., Ortega, F.E., Riegler, J., Madison, D.V., and Krasnow, M.A. Oxygen regulation of breathing through an olfactory receptor activated by lactate. *Nature* 2015, 527(7577) :240-244. doi: 10.1038/nature15721.

37. Topor, Z.L., Vasilakos, K., Younes, M., and Remmers, J.E. Model based analysis of sleep disordered breathing in congestive heart failure. *Respir Physiol Neurobiol* 2007, 155, 82–92.

38. Guazzi M, Brenner DA, Apstein CS, Saupe KW. Exercise intolerance in rats with hypertensive heart disease is associated with impaired diastolic relaxation. Hypertension. 2001;37(2):204-208. doi:10.1161/01.hyp.37.2.204.

39. Brodsky, S., Gurbanov, K., Abassi, Z., Hoffman, A., Ruffolo, R.R. Jr Feuerstein, G.Z., and Winaver, J. Effects of eprosartan on renal function and cardiac hypertrophy in rats with experimental heart failure. *Hypertension* 32: 746–752, 1998. doi:10.1161/01.HYP.32.4.746.

40. Modesti, P.A., Vanni, S., Bertolozzi, I., Cecioni, I., Lumachi, C., Perna, A.M., and Winaver, J. Different growth factor activation in the right and left ventricles in experimental volume overload. *Hypertension* 43: 101–108, 2004. doi:10.1161/01.HYP.0000104720.76179.18.

41. Ryan, T.D., Rothstein, E.C., Aban, I., Tallaj, J.A., Husain, A., Lucchesi, P.A., and Dell’Italia, L.J. Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. *J Am Coll Cardiol* 49: 811–821, 2007. doi:10.1016/j.jacc.2006.06.083.
Darbandi-Azar, A., Tavakoli, F., Moladoust, H., Zare, A., and Sadeghpour, A. Echocardiographic evaluation of cardiac function in ischemic rats: value of m-mode echocardiography. *Res Cardiovasc Med* 3: e22941, 2014. doi:10.5812/cardiovascmed.22941.

Schiller, N.B., Shah, P.M., Crawford, M., DeMaria, A., Devereux, R., Feigenbaum, H., Gutgesell, H., Reichek, N., Sahn, D., Schnittger I, et al. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. *J Am Soc Echocardiogr* 2: 358–367, 1989. doi:10.1016/S0894-7317(89)80014-8.

Cingolani, O.H., Yang, X.P., Liu, Y.H., Villanueva, M., Rhaleb, N.E., and Carretero, O.A. Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats. *Hypertension* 43:1067–1073, 2004. doi:10.1161/01.HYP.0000125013.22494.c5.

Pacher, P., Nagayama, T., Mukhopadhyay, P., Bátkai, S., and Kass, D.A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. *Nat Protoc* 3: 1422–1434, 2008. doi:10.1038/nprot.2008.138.

Rommel, K.P., von Roeder, M., Latuscynski, K., Oberueck, C., Blazek, S., Fengler, K., Besler, C., Sandri, M., Lücke, C., Gutberlet, M., Linke, A., Schuler, G., and Lurz, P. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. *J Am Coll Cardiol* 67: 1815–1825, 2016. doi:10.1016/j.jacc.2016.02.018.

Casas, B., Viola, F., Cedersund, G., Bolger, A.F., Karlsson, M., Carlhäll, CJ., and Ebbers, T. Non-invasive Assessment of Systolic and Diastolic Cardiac Function During Rest and Stress Conditions Using an Integrated Image-Modeling Approach. *Front Physiol*. 30;9:1515, 2018. doi: 10.3389/fphys.2018.01515.

Senzaki, H., Chen, C.H., and Kass, D.A. Single-beat estimation of end-systolic pressure–volume relation in humans. A new method with the potential for noninvasive application. *Circulation* 94, 2497–2506, 1996 doi:10.1161/01.CIR.94.10.2497

Ten Brinke, E.A., Burkhoff, D., Klautz, R.J., Tschöpe, C., Schalij, M.J., Bax, J.J., van der Wall, E.E., Dion, R.A., and Steendijk, P. Single-beat estimation of the left ventricular end-diastolic pressure-volume relationship in patients with heart failure. *Heart*. 2010;96(3):213–219. doi: 10.1136/hrt.2009.176248.

Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R.G., and Clifford, G.D. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. *J Biomed Inform*. 2008;41:442–451. doi: 10.1016/j.jbi.2008.03.003.

Tables

Table 1. Baseline characteristics and cardiovascular parameters in HF after six weeks of exercise training (EX).
	HF+Sed (n = 6)	HF+EX-T (n = 7)	HF+EX-inT (n = 5)
Training effectiveness			
Soleus/BW (% change)	100.0 ± 6.7	118.1 ± 4.2*	111.0 ± 2.1
Cardiac Hypertrophy			
HW/BW (mg/g)	3.7 ± 0.3	3.5 ± 0.2	4.4 ± 0.3*
Pulmonary congestion			
Lung W/D (g/g)	4.2 ± 0.1	4.5 ± 0.1	4.7 ± 0.3
Blood pressure and HR			
SBP (mmHg)	101.4 ± 5.3	108.9 ± 6.4	96.0 ± 6.2
DBP (mmHg)	63.3 ± 5.7	72.5 ± 6.0	57.1 ± 3.9
PP (mmHg)	38.1 ± 1.2	36.4 ± 2.2	35.3 ± 7.7
HR (bpm)	318.3 ± 16.2	359.0 ± 14.1	394.3 ± 21.2

Values are expressed as mean ± SEM. T: tolerant; inT: intolerant; HW: heart weight; HW/BW: heart weight/body weight; lung W/D: Lung Wet/Dry; SBP: systolic blood pressure; DPB: diastolic blood pressure; PP: pulse pressure; HR: heart rate. One-way ANOVA, Sidak post hoc analysis. * vs. HF+Sed, + vs. HF+EX-T, p < 0.05.

Table 2. Ventilatory parameters during normoxia (F\textsubscript{i}O\textsubscript{2} 21%), hypoxia (F\textsubscript{i}O\textsubscript{2} 10%), and hypercapnia (F\textsubscript{i}CO\textsubscript{2} 7%) in HF after six weeks of exercise training (EX).
	HF+SED (N=5)	HF+EX-T (N=5)	HF+EX-inT (N=5)
Nomoxia			
VT (ml/100g)	0.27 ± 0.01	0.24 ± 0.04	0.22 ± 0.04
RF (breaths/min)	83.29 ± 5.18	87.89 ± 12.60	88.75 ± 9.96
Ve (mL/min 100g)	22.62 ± 2.30	21.18 ± 0.83	19.59 ± 2.20
Ti (ms)	278.10 ± 53.21	276.90 ± 44.40	245.60 ± 15.46
Te (ms)	420.40 ± 23.48	420.60 ± 138.60	438.70 ± 73.37
Ttot (ms)	698.40 ± 54.26	697.40 ± 103.70	684.20 ± 67.07
PiF (ml/s)	9.69 ± 3.34	8.08 ± 2.32	8.38 ± 1.58
PeF (ml/s)	5.755 ± 1.56	5.33 ± 1.54	4.51 ± 0.95
Hypercapnia			
VT(ml/100g)	0.37 ± 0.08	0.32 ± 0.02	0.30 ± 0.03 *
RF(breaths/min)	201.8 ± 47.99	161.50 ± 16.68 *	181.20 ± 29.69
Ve (mL/min 100g)	74.74 ± 12.98	51.57 ± 3.98 *	55.28 ± 4.07 *
Ti (ms)	155.70 ± 23.01	180.10 ± 18.12*	204.40 ± 16.02 *
Te (ms)	177.50 ± 55.20	197.70 ± 28.70	172.30 ± 15.67
Ttot (ms)	333.10 ± 97.63	377.90 ± 36.83	376.70 ± 28.69
PiF (ml/s)	18.66 ± 2.80	14.18 ± 1.63 *	12.49 ± 2.78 *
PeF (ml/s)	15.97 ± 3.09	12.57 ± 2.21 *	10.03 ± 2.21 *
Hypoxia			
VT(ml/100g)	0.32 ± 0.03	0.35 ± 0.04	0.27 ± 0.07 +
RF(breaths/min)	193.20 ± 21.31	174.20 ± 14.82	144.70 ± 16.06 * +
Ve (mL/min 100g)	61.62 ± 4.34	60.61 ± 4.05	40.86 ± 14.14 * +
Ti (ms)	149.40 ± 13.37	151.30 ± 16.37	194.20 ± 19.57 *
Te (ms)	170.50 ± 21.66	184.40 ± 17.90	227.80 ± 31.26 * +
Ttot (ms)	320.00 ± 33.30	335.70 ± 21.52	422.00 ± 46.40 * +
Values are expressed as mean ± SEM. T: tolerant; inT: intolerant; VT: tidal volume; Rf: respiratory frequency; Ve: minute ventilation; Ti: inspiratory time; Te: expiratory time; Ttot: total respiratory time; PiF: peak inspiratory flow; and PeF: peak expiratory flow. One-way ANOVA, Sidak post hoc analysis. * vs. HF+Sed, + vs. HF+EX-T, p < 0.05.

Table 3. Baseline cardiac parameters in HF after six weeks of exercise training (EX).

	HF+Sed (N=6)	HF+EX-T (N=7)	HF+EX-inT (N=5)
SV (μl)	293.2 ± 9.4	266.5 ± 31.1	262.8 ± 27.1
CO (μl·min)	109,700.0 ± 16,219.1	96,009.1 ± 11,892.0	104,896.0 ± 16,833.3
SW (mmHg·μl)	28,285.0 ± 4,253.4	25,433.0 ± 2,549.1	24,298.1 ± 3,845.0
LVESP (mmHg)	89.2 ± 6.1	91.2 ± 4.5	88.7 ± 2.4
dP/dt\text{max} (mmHg/s)	8,288.0 ± 976.5	8,945.0 ± 988.8	9,063.2 ± 728.2
dP/dt\text{min} (mmHg/s)	-6,049.0 ± 852.4	-6,442.4 ± 502.1	-5,966.0 ± 634.9
dV/dt\text{max} (μl/s)	15,590.0 ± 2,088.0	14,314.1 ± 741.9	16,613.0 ± 2,028.3
dV/dt\text{min} (μl/s)	-21,557.0 ± 3,039.0	-26,673.1 ± 2,187.0	-25,177.0 ± 2,555.0
TauW (ms)	9.2 ± 0.7	8.1 ± 0.8	7.8 ± 1.0

Values are expressed as mean ± SEM. T: tolerant; inT: intolerant; SV: stroke volume; SW: Stroke work; LVESP: left ventricle end-systolic pressure; dP/dt\text{max}: first derivative of maximum intraventricular pressure; dP/dt\text{min}: first derivative of minimum intraventricular pressure; dV/dt\text{max}: first derivative of maximum intraventricular volume; dV/dt\text{min}: first derivative of minimum intraventricular volume; TauW: time constant of relaxation of Weiss. One-way ANOVA, Sidak post hoc analysis.