Large extra dimensions and light hidden photons from anisotropic string vacua

Michele Cicoli
Abdus Salam ICTP, Strada Costiera 11, Trieste 34014, Italy
E-mail: mcicoli@ictp.it

We derive type IIB vacua which are very promising to put string theory to experimental test. These are Calabi-Yau compactifications with a 4D fibration over a 2D base. The moduli are fixed in such a way to obtain a very anisotropic configuration where the size of the 2D base is exponentially larger than the size of the 4D fibre. These provide stringy realisations of the supersymmetric large extra dimensions scenario and extensions of the ADD scenario which are characterised by TeV-scale strings and two micron-sized extra dimensions. We also study the phenomenological properties of hidden Abelian gauge bosons which mix kinetically with the ordinary photon and get a mass via the Green-Schwarz mechanism. We show that anisotropic compactifications lead naturally to dark forces for an intermediate string scale or even to a hidden CMB for the extreme case of TeV-scale strings.
1. Micron-sized extra dimensions from anisotropic compactifications

Type IIB flux compactifications are very promising to test string vacua. In particular, LARGE Volume Scenarios (LVS) can naturally give rise to strings at LHC scales and two micron-sized extra dimensions (EDs) for compactifications on fibred Calabi-Yau (CY) three-folds [1]. The internal volume \(\mathcal{V} \) is fixed exponentially large in string units: \(\mathcal{V} \approx e^{6\phi_0} \gg 1 \), where \(\phi \) is an \(O(1) \) parameter and the string coupling \(g_s \ll 1 \) is in the perturbative regime. \(M_s \approx 1 \) TeV can be obtained for \(\mathcal{V} \approx 10^{30} \) since dimensional reduction gives \(\mathcal{V} \approx M_s^2/M_\ast^4 \), providing a dynamical solution of the hierarchy problem based on moduli fixing. If all the EDs are of the same size (D7-stack wrapping the fibre. In this case, they would fix perturbative corrections to the superpotential the volume at open strings are localised far away from the fibre. In this case, \(2D \) of ADD scenarios with two micron-sized EDs [2]. This is why we focus on CY three-folds with a volume \(V \tau \) with \(V \) and the string coupling \(g_s \) lead \(O(10) \) so that \(\langle \tau_1 \rangle \gg \sqrt{\langle \tau_1 \rangle} \Rightarrow L \gg l \approx d \).

Moduli stabilisation: Due to the no-scale structure, the Kähler moduli are fixed beyond leading order in \(\alpha' \) and \(g_s \). The \(\alpha' \) corrections to the Kähler potential \(K \) do not develop any potential for \(\tau_1 \) since they depend only on \(\mathcal{V} \). Open string loop corrections to \(K \) depend on \(\tau_1 \) if there is a D7-stack wrapping the fibre. In this case, they would fix \(\tau_1 \) too large at \(\langle \tau_1 \rangle \approx 6^{2/3} (\mathcal{V})^{2/3} \gg 1 \). If there are instead no D7-branes wrapping \(\tau_1 \), we expect no \(\tau_1 \)-dependent \(g_s \) correction to \(K \) since open strings are localised far away from the fibre. In this case, \(\tau_1 \) can be fixed only by non-perturbative corrections to the superpotential \(W \). In the presence of a racetrack superpotential on \(\tau_3 \), \(W = W_0 + A e^{-a_3 T_3} - B e^{-b_3 T_3} \), the del Pezzo divisor can be fixed at \(\langle T_3 \rangle \approx 1/g_s \approx O(10) \) and the volume at \(\langle \mathcal{V} \rangle \approx e^{6\phi_0} \approx 10^{30} \). The fibre is then fixed at \(\langle \tau_1 \rangle \approx \langle \tau_2 \rangle \approx O(10) \) via poly-instanton corrections to \(W \) generated by a string instanton on \(\tau_1 \):

\[
W = W_0 + A e^{-a_3 (T_3 + C_1 e^{-2\pi\tau_1})} - B e^{-b_3 (T_3 + C_2 e^{-2\pi\tau_1})}.
\]

(1.1)

The poly-instanton potential for \(\tau_1 \), \(V_{\text{poly}} \approx \langle \mathcal{V} \rangle^{-4} \), is suppressed since the leading potential scales as \(V_{\text{lead}} \approx \langle \mathcal{V} \rangle^{-3} \). Closed string loops are \(\tau_1 \)-dependent but they can be shown to be negligible.

Mass scales: The higher dimensional Planck scales are \(M_{10D} \approx M_s \) and \(M_{6D} = (4\pi \tau_1)^{1/4} M_s \), while the 4D Planck scale is \(M_p = \sqrt{4\pi \mathcal{V}} M_s \). There are also different Kaluza-Klein (KK) scales: the theory becomes 6D above \(M_{6K} \approx M_s/\xi^{1/2} \approx 1/l \) and 10D above \(M_{10K} \approx M_s/\xi^{1/4} \approx 1/l \) while KK replicas of Standard Model (SM) particles show up at \(M_{KK}^\text{SM} \approx M_s/\tau_\text{SM} \approx 1/d \), where \(\tau_\text{SM} \) is an additional del Pezzo supporting the SM brane stack. For \(M_s \approx 3 \) TeV, we would have \(M_{6D} \approx 10 \) TeV, \(M_{10D} \approx 4 \) TeV, \(M_{6K}^\text{SM} \approx M_{KK}^\text{SM} \approx 1 \) TeV and \(M_{KK} \approx 1 \) meV. The dilaton and the complex structure moduli are almost degenerate with the gravitino which has a mass \(m_{3/2} \approx M_p^2/M_s \approx 1 \) meV. The Kähler moduli can be even lighter due to no-scale structure. In fact, \(\tau_1 \) has a mass of order \(m_{3/2} \) but \(\mathcal{V} \) and \(\langle \mathcal{V} \rangle \) are much lighter since \(m_1 \approx M_p/\mathcal{V}^{1/2} \approx 10^{-32} \) eV and \(m_\mathcal{V} \approx M_p/\langle \mathcal{V} \rangle^{3/2} \approx 10^{-18} \) eV. These moduli would mediate unobserved fifth forces but we still need to study radiative corrections.
Supersymmetry breaking: Compactifications with TeV-scale strings need large supersymmetry (SUSY) breaking effects since gravity mediation would yield soft terms of order $M_{\text{soft}} \simeq m_{3/2} \simeq 1$ meV. Hence we consider a brane set-up that breaks SUSY explicitly, so that the low-energy theory contains just the SM. The bulk is instead approximately supersymmetric since $m_{3/2} \simeq 1$ meV, providing a stringy realisation of supersymmetric large EDs scenarios which are promising for explaining dark energy [4]. Given that SUSY is badly broken on the SM brane, we expect large radiative corrections to moduli masses from loops of massive open strings:

$$\delta m \simeq \xi M_s^2 / M_p \simeq \xi M_p / \gamma$$

where

$$\mathcal{L}_{\text{int}} = (\xi / M_p) \phi F_{\mu\nu} F^{\mu\nu},$$

for a canonically normalised modulus ϕ. In the case of τ_1, $\xi \simeq 1 / \gamma$, as this is a flat direction at leading order. Hence the mass of the fibre is unchanged. However, since this modulus is very weakly coupled, $g \simeq 1 / (M_p \gamma)$, there are no bounds from fifth forces. For the volume mode, $\xi \simeq 1$, and so its mass gets lifted to $m_\gamma \simeq 1$ meV, just at the edge of detectability in fifth force experiments.

Phenomenology: The phenomenology of these models differs from ADD scenarios due to the presence of new states and low-energy bulk SUSY. There are many implications for colliders, astrophysics and cosmology: (i) deviations from Newton’s law; (ii) energy loss into the EDs due to radiation of KK modes; (iii) absence of superpartners of SM particles since SUSY is non-linearly realised; (iv) strong bounds from neutron-star cooling ($M_{\text{dd}} > 700$ TeV) and distortions of the MeV diffuse γ-ray background can be evaded since KK modes decay into invisible degrees of freedom (dof); (v) problems with BBN, if the SM brane cools too quickly through evaporation into the bulk, require a very low reheat temperature $T_{\text{RH}} \lesssim 100$ MeV; (vi) no over-closure of the Universe since the lightest KK mode cannot be stable due to the absence of continuous isometries in a compact CY; (vii) the lightest moduli and KK modes are good dark matter candidates.

2. Light hidden photons from anisotropic compactifications

Hidden photons γ' interact with the visible sector only via kinetic mixing with the hypercharge:

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu}^{(\text{vis})} F_{\mu\nu}^{(\text{hid})} - \frac{1}{4} F_{\mu\nu}^{(\text{hid})} F_{\mu\nu}^{(\text{hid})} + \frac{\chi}{2} F_{\mu\nu}^{(\text{vis})} F_{\mu\nu}^{(\text{hid})} + m_\gamma^2 A_{\mu}^{(\text{hid})} A_{\mu}^{(\text{hid})} + A_{\mu}^{(\text{vis})} A_{\mu}^{(\text{vis})}. \quad (2.1)$$

The hidden photon can get a mass $m_{\gamma'}$ either via a model-dependent Higgs mechanism in the hidden sector or via a St"uckelberg mechanism which is typically stringy since it corresponds to the Green-Schwarz cancellation of the anomalies. Here we shall focus on the St"uckelberg mechanism. The kinetic mixing takes place at one-loop and the corresponding parameter scales as $\chi \simeq g_\gamma g_{\gamma'} / (16\pi^2)$.

Similar to neutrinos, the kinetic mixing induces photon \leftrightarrow hidden photon oscillations. Given that thermal photons get a plasma mass $\omega_p \simeq 1$ meV, a resonant conversion of photons into γ' with $m_{\gamma'} \simeq 1$ MeV can occur after BBN but before CMB decoupling. This results in a hidden CMB which increases the effective number of relativistic dof. The current observational value $\Delta N_{\text{eff}} = 1.3 \pm 0.9$ can be obtained for $\chi \simeq 10^{-6}$ in a region that is tested experimentally. Moreover, due to the kinetic mixing, SM particles get a small charge under the hidden $U(1)$ leading to dark forces. A mass of the order $m_{\gamma'} \simeq 1$ GeV can explain either the deviation of $(g-2)_\mu$ from the SM prediction if $\chi \simeq 10^{-3}$, or several puzzling observations connected to dark matter and astrophysics if $\chi \simeq 10^{-6}$, again in a region tested by experiments. For a review on these issues see [5].
Hidden photons as open strings: Hidden photons arise naturally in string compactifications. In type IIB vacua, the γ is an excitation of a D7-brane wrapping a four-cycle τ_{hid} far from the SM. For large τ_{hid}, the hidden gauge coupling becomes very small since $g^2_{\text{hid}} = \tau_{\text{hid}}/(4\pi) \ll 1$ resulting in a significantly suppressed χ which can naturally be of order 10^{-6}. By turning on a world-volume flux on the hidden D7-stack, a Kähler modulus τ_j gets a charge $q \neq 0$ under $U(1)_{\text{hid}}$ and the corresponding axion gets eaten up by the γ which acquires a Stückelberg mass $m^2_{\gamma} \simeq q^2 g_{\text{hid}}^2 (K_0)_{jj} M_p^2$, where $(K_0)_{jj}$ is the jj element of the tree-level Kähler metric. Moreover, a moduli-dependent Fayet-Iliopoulos term gets generated. As can be seen from the expression for m_{γ}, if the EDs are exponentially large, hidden photons can naturally be very light [6]. In the case of isotropic compactifications, no prediction can be obtained in the interesting regions of the (χ, m_{γ}) parameter space [6]. However anisotropic compactifications with hidden photons living on D7-branes wrapping the fibre divisor, predict a hidden CMB and dark forces which can be detectable in the lab [7]. Furthermore, all the moduli can be successfully fixed with the D-terms under control [7].

Phenomenological implications: Let us focus on LVS anisotropic compactifications with γ living on the fibre divisor. τ_i is fixed via g_i corrections to K at $\langle \tau_i \rangle = \kappa \langle \tau_2 \rangle$ where $\kappa \simeq (g_c e_1)^2/e_2$ with e_1 and e_2 unknown coefficients of the loop corrections. The relation between m_{γ} and χ can be written as $m_{\gamma} \simeq \kappa 10^{24} \chi^3 \text{GeV}$, leading to two interesting scenarios:

1. **Natural dark forces for intermediate scale strings:** $m_{\gamma} \simeq 1 \text{ GeV}$ and $\chi \simeq 10^{-6}$ for $\kappa \simeq 10^{-6}$ which can be achieved without fine-tuning the underlying parameters. The string scale is $M_s \simeq 10^{11} \text{ GeV}$ and the CY is slightly anisotropic: $L \simeq 10^4 M_s^{-1} > l \simeq 10^2 M_s^{-1}$.

2. **Hidden CMB with KK dark forces and strings at the LHC:** $m_{\gamma} \simeq 1 \text{ meV}$ and $\chi \simeq 10^{-6}$ for $\kappa \simeq 10^{-18}$ which requires a severe fine-tuning and gives TeV-scale strings. KK hidden photons with $M_{\gamma}^2 \simeq M_s \tau_j^{-1/4} \simeq 1 \text{ GeV}$ might behave as dark forces and the CY is very anisotropic: $L \simeq 10^{11} M_s^{-1} \gg l \simeq 10^2 M_s^{-1}$.

References

[1] M. Cicoli, C. P. Burgess and F. Quevedo, *Anisotropic Modulus Stabilisation: Strings at LHC Scales with Micron-sized Extra Dimensions*, [arXiv:1105.2107 [hep-th]].

[2] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, *The hierarchy problem and new dimensions at a millimeter*, Phys. Lett. B 429 (1998) 263 [arXiv:hep-ph/9803315].

[3] M. Cicoli, M. Kreuzer, C. Mayrhofer, *Toric K3-Fibred Calabi-Yau Manifolds with del Pezzo Divisors for String Compactifications*, [arXiv:1107.0383 [hep-th]].

[4] Y. Aghababaie, C. P. Burgess, S. L. Parameswaran and F. Quevedo, *Towards a naturally small cosmological constant from branes in 6D supergravity*, Nucl. Phys. B 680 (2004) 389.

[5] J. Jaeckel and A. Ringwald, *The Low-Energy Frontier of Particle Physics*, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329 [hep-ph]].

[6] M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, *Naturally Light Hidden Photons in LARGE Volume String Compactifications*, JHEP 0911 (2009) 027 [arXiv:0909.0515 [hep-ph]].

[7] M. Cicoli, M. Goodsell, J. Jaeckel, A. Ringwald, *Testing String Vacua in the Lab: From a Hidden CMB to Dark Forces in Flux Compactifications*, JHEP 1107 (2011) 114 [arXiv:1103.3705 [hep-th]].