Violation of k_\perp factorization in quark production from the Color Glass Condensate

H. Fujii, a F. Gelis b and R. Venugopalan c

a Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902, Japan
b CEA/DSM/SPhT, 91191 Gif-sur-Yvette cedex, France
c Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

We examine the violation of the k_\perp factorization approximation for quark production in high energy proton-nucleus collisions. We comment on its implications for the open charm and quarkonium production in collider experiments.

1. Introduction

Semi-hard processes, where $\sqrt{s} \gg m_{q_\perp} \gg \Lambda_{\text{QCD}}$, contribute significantly to particle production in high-energy collider experiments due to the large density of the small-x gluons. The k_\perp factorization formalism [1] systematically resums corrections of $(\alpha_s \ln(s/q_\perp^2))^n$ from gluon branchings in perturbative QCD. In this framework, the particle production cross-section is expressed as a convolution of a hard matrix element and unintegrated distributions of gluons in the hadrons with definite transverse momentum $k_{i\perp}$ and longitudinal fraction x_i in each projectile hadron ($i=1, 2$).

Multiple-scattering (higher twist) effects become important at small x due to the large density of small-x gluons. It is expected to be the origin of the Cronin enhancement and p_\perp broadening of hadrons observed in nuclear experiments. It is also relevant for the nuclear suppression of quarkonium production.

The simplest situation for studying the impact of higher twist effects on k_\perp factorization is in proton-nucleus (pA) collisions, wherein the proton is dilute and the nucleus is dense. The k_\perp factorization formalism was examined in the color glass condensate framework [2]. It is shown that the factorization is recovered when one keeps only the terms that are of the lowest order in the charge sources $\rho_{p,A}$ of the projectiles [3]. The cross-sections at the leading order in ρ_p, but at all orders in the dense source ρ_A of the nucleus are obtained analytically. Gluon production by the “2-to-1” processes is shown to be k_\perp-factorizable [4, 5, 6] whereas the quark production is generally not [7, 8, 9].

Here we report the numerical estimates for the k_\perp factorization breaking in quark production within the McLerran-Venugopalan (MV) model [10]. We briefly discuss open charm production and quarkonium suppression in pA collisions in this framework.
2. Violation of k_\perp factorization in quark pair production

The quark pair production cross-section is obtained as [7]:

$$\frac{d\sigma}{d^2p_\perp d^2q_\perp dy dy} = \frac{\alpha_s^2 N}{8\pi^4(N^2-1)} \int_{k_{1\perp},k_{2\perp}} \frac{\delta(p_\perp + q_\perp - k_{1\perp} - k_{2\perp})}{k_{1\perp}^2 k_{2\perp}^2} \times \left\{ \int_{k_{1\perp},k_{1}'\perp} \text{tr}_d \left[(\bar{q} + m)T_{qq}(\bar{y} - m)\gamma^0 T_{qq}^\dagger \gamma^0 \right] \phi_{A}^{\bar{q}q}(k_{2\perp}; k_{1\perp}, k_{1}'\perp) \right. $$

$$+ \int_{k_{1\perp}} \text{tr}_d \left[(\bar{q} + m)T_{qq}(\bar{y} - m)\gamma^0 T_{g}^\dagger \gamma^0 + \text{h.c.} \right] \phi_{A}^{qg}(k_{2\perp}; k_{1\perp}) $$

$$\left. + \text{tr}_d \left[(\bar{q} + m)T_{g}(\bar{y} - m)\gamma^0 T_{g}^\dagger \gamma^0 \right] \phi_{A}^{gg}(k_{2\perp}) \right\} \varphi_p(k_{1\perp}), \tag{1}$$

where the explicit forms for the Dirac matrices $T_{qq}(k_{1\perp}, k_{1\perp})$ and $T_{g}(k_{1\perp})$ are given in [7]. Here $\varphi_p(l_{\perp}) \equiv (\pi^2 R_p^2 l_{\perp}^2 / l_{\perp}^2)$ F.T. $\langle \rho_p^a(0) \rho_p^a(x_{\perp}) \rangle$ is the unintegrated gluon distribution for the proton, and F.T. denotes the Fourier transformation. One needs, however, three nuclear distributions defined as (see Eqs. (42), (43) and (45) in [7])

$$\phi_{A}^{\bar{q}q}(l_{\perp}) \equiv \frac{\pi^2 R_A^2 l_{\perp}^2}{g^2 N} \text{F.T. tr } \langle U(0)U^\dagger(x_{\perp}) \rangle,$$

$$\phi_{A}^{qg}(l_{\perp}; k_{1\perp}) \equiv \frac{2\pi^2 R_A^2 l_{\perp}^2}{g^2 N} \text{F.T. tr } \langle \bar{U}(x_{\perp})t^a U^\dagger(y_{\perp})U(0) \rangle,$$

$$\phi_{A}^{gg}(l_{\perp}; k_{1\perp}; k_{1}'\perp) \equiv \frac{2\pi^2 R_A^2 l_{\perp}^2}{g^2 N} \text{F.T. tr } \langle \bar{U}(0)t^a \bar{U}^\dagger(y_{\perp})U(x_{\perp})t^b U^\dagger(y_{\perp}) \rangle, \tag{2}$$

where U and \bar{U} denote the path-ordered exponentials of the gauge fields in the nucleus in the adjoint and fundamental representations, respectively, and describe the multiple scatterings of the gluon and the quarks. The average $\langle \cdots \rangle$ is taken over the Gaussian distribution of the color charge sources characterized by the saturation scale Q_s^2.

k_{\perp} factorization is violated by the transverse structure of the quark pair probed by the momentum $k_{\perp}^{(1)}$ from the nucleus since each quark from the pair can resolve and interact with several gluons from the nucleus. If any of the transverse masses $m_{q_{\perp}}$ and $m_{p_{\perp}}$ of the produced quarks is large compared with the typical rescattering scale, Q_s, we can neglect $k_{\perp}^{(1)}$ in $T_{qq}(k_{1\perp}, k_{1\perp}^{(1)})$ and recover the k_{\perp} factorized formula thanks to the sum rule for ϕ_A’s:

$$\int_{k_{1\perp},k_{1}'\perp} \phi_{A}^{\bar{q}q}(l_{\perp}; k_{1\perp}, k_{1}'\perp) = \int_{k_{1\perp}} \phi_{A}^{qg}(l_{\perp}; k_{1\perp}) \phi_{A}^{gg}(l_{\perp}; k_{1\perp}) \quad .$$

In Fig. 1 we compare the exact result with the k_{\perp} factorized approximation for single charm quark production. The breaking is relatively small for the saturation momentum $Q_s^2 = 1 \text{ GeV}^2$, which may be the relevant scale for RHIC at central rapidity. At $Q_s^2 = 15, 25 \text{ GeV}^2$ (corresponding to very forward rapidities in the proton fragmentation region at RHIC and LHC) the correction can be as large as 40% at $q_{\perp} \sim Q_s$. For the bottom quark production the violation is smaller. To assess the model-dependence of our results, we compute them now, shown in Fig. 2, with a non-local Gaussian model known to be the
asymptotic solution of renormalization equations for x evolution\cite{11}; non-linear evolution effects reduce the magnitude of the violation of k_{\perp} factorization.

In Fig. 3 shown is the total P_{\perp} distribution of the charm quark pair with the fixed invariant masses $M=3.1, 4, 8$ GeV. In the k_{\perp} factorized approximation (thin curves), either quark or antiquark exchanges all the momentum from the nucleus and we see the bump structure near Q_s, reflecting the gluon distribution of the nucleus. The bump is smeared out due to multiple scatterings of both the quark and antiquark in the full formula. Integrating over P_{\perp}, we show in Fig. 4, the magnitude of factorization breaking in the invariant mass spectrum of the pair.

3. Phenomenology

We study the importance of small-x distributions in D meson production by convoluting the single quark spectrum with an appropriate fragmentation function\cite{12}. We find, however, the production spectrum is determined not by the quark distribution with $q_{\perp}\ll Q_s$, but largely by the tail part $\propto 1/q_{\perp}^4$ of the MV model. Moreover, in order to assess
the rapidity dependence of open charm production, the x-dependence of the unintegrated gluon distributions should be taken into account, which requires going beyond the MV model. Our results on open charm production will be reported elsewhere[13].

The Q_s^2-dependence of the pair spectrum (divided by the charge density μ_A^2) is displayed in Fig. 5. At larger M, where the high-density effects are diminished, all curves converge to a single one. The multiple scatterings of the pair quarks suppress the yield in the low M region. (The overall cross-section is of course enhanced with increasing Q_s^2.) One can get an idea about the normal suppression of the quarkonium production in the pA collisions, relying on the color evaporation picture. We show the nuclear modification ratio, R_{pA}, for the pairs with M less than the open charm threshold $2M_D$, as a function of Q_s^2. The suppression pattern fits the form $1/(Q_s^2)\alpha$ with $\alpha \sim 0.42$, and not the frequently assumed exponential form. One should note here that $Q_s^2 \sim A^{1/3}$ in the MV model.

REFERENCES

1. S. Catani, M. Ciafaloni, F. Hautmann, Nucl. Phys. B 366, 135 (1991); J.C. Collins, R.K. Ellis, Nucl. Phys. B 360, 3 (1991).
2. E. Iancu, R. Venugopalan, hep-ph/0303204; K. Itakura, these proceedings.
3. F. Gelis, R. Venugopalan, Phys. Rev. D 69, 014019 (2004).
4. Yu.V. Kovchegov, A.H. Mueller, Nucl. Phys. B 529, 451 (1998); A. Dumitru, L.D. McLerran, Nucl. Phys. A 700, 492 (2002).
5. J.P. Blaizot, F. Gelis, R. Venugopalan, Nucl. Phys. A 743, 13 (2004).
6. Yu.V. Kovchegov, K. Tuchin, Phys. Rev. D 65, 074026 (2002); D. Kharzeev, Yu. Kovchegov, K. Tuchin, Phys. Rev. D 68, 094013 (2003).
7. J.P. Blaizot, F. Gelis, R. Venugopalan, Nucl. Phys. A 743, 57 (2004).
8. K. Tuchin, Phys. Lett. B 593, 66 (2004).
9. N. N. Nikolaev and W. Schafer, Phys. Rev. D 71, 014023 (2005).
10. H. Fujii, F. Gelis and R. Venugopalan, Phys. Rev. Lett. to appear hep-ph/0504047.
11. E. Iancu, K. Itakura, L.D. McLerran, Nucl. Phys. A 724, 181 (2003).
12. D. Kharzeev and K. Tuchin, Nucl. Phys. A 735, 248 (2004).
13. H. Fujii, F. Gelis and R. Venugopalan, in preparation.