The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold

Tim Schulte¹, Jonas Löfling²,³, Cecilia Mikaelsson¹, Alexey Kikhney⁴, Karina Hentrich²,³, Aurora Diamante¹, Christine Ebel⁵, Staffan Normark²,³, Dmitri Svergun⁴, Birgitta Henriques-Normark²,³ and Adnane Achour¹

¹Science for Life Laboratory, Center for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet Science Park, Tomtebodavägen 23A Solna, Stockholm 17165, Sweden
²Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
³Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
⁴European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, Hamburg 22603, Germany
⁵Institut de Biologie Structurale, CEA-CNRS-Université, Grenoble, France

1. Summary

Streptococcus pneumoniae is a major human pathogen, and a leading cause of disease and death worldwide. Pneumococcal invasive disease is triggered by initial asymptomatic colonization of the human upper respiratory tract. The pneumococcal serine-rich repeat protein (PsrP) is a lung-specific virulence factor whose functional binding region (BR) binds to keratin-10 (KRT10) and promotes pneumococcal biofilm formation through self-oligomerization. We present the crystal structure of the KRT10-binding domain of PsrP (BR₁₈₇–₃₈₅) determined to 2.0 Å resolution. BR₁₈₇–₃₈₅ adopts a novel variant of the DEv-IgG fold, typical for microbial surface components recognizing adhesive matrix molecules adhesins, despite very low sequence identity. An extended β-sheet on one side of the compressed, two-sided barrel presents a basic groove that possibly binds to the acidic helical rod domain of KRT10. Our study also demonstrates the importance of the other side of the barrel, formed by extensive well-ordered loops and stabilized by short β-strands, for interaction with KRT10.

2. Introduction

Streptococcus pneumoniae (pneumococcus) is a human-adapted, Gram-positive commensal bacterium that colonizes the upper respiratory tract in about 10%
of healthy adults and up to 60% of children. Although normally not causing any symptoms, pneumococcus is a major human pathogen, and a leading cause of disease and death worldwide [1]. Streptococcal antigenicity is determined to a large extent by the structure and contents of the outermost layer of the cell, including a variety of proteins with differing functions localized within the polysaccharide capsule [1,2]. Surface-associated adhesins play a pivotal role for pneumococcal colonization of the nasopharynx and for the development of infectious pneumococcal disease through interactions with specific cellular surface structures in the host [3].

The pneumococcal serine-rich repeat protein (PsrP) is an important lung-specific virulence factor that is present in 60% of strains capable of causing pneumonia in children [2]. The C-terminal cell wall anchoring domain of PsrP contains an LPxTG motif that is covalently anchored to the peptidoglycan by Sortases [4]. A characteristic feature of the serine-rich repeat protein (SRRP) family is the presence of a long, highly repetitive and glycosylated C-terminal serine-rich repeat (SRR) region (figure 1a) that can vary between 400 and 4000 residues [5]. The size of the possibly super-helical SRR region might correlate with the capsule thickness of each species, extending the highly basic functional binding region (BR) domain out of the capsule [5–8]. The sequence of the BR domain, which includes the N-terminal SRR1 and the longer C-terminal SRR2 regions, is extremely variable among all known SRRPs, which could account for the broad range of targets bound by this adhesin family [5,8]. Pneumococcal PsrP promotes both biofilm formation through self-oligomerization and adherence to keratin 10 (KRT10)-expressing lung epithelial cells. These disparate functions are facilitated by two distinct regions within the surface-exposed BR domain [7,9].

Keratins (KRTs) are intermediary filament (IF) proteins that are mainly regarded as intracellular constituents of the cytoskeleton [10]. More than 50 distinct human KRT genes are expressed in a highly cell-type- and cell-differentiation-state-dependent manner [11]. All KRTs exhibit a tripartite structure characterized by a long α-helical rod domain flanked by an amino- and a carboxy-terminal non-α-helical end domain. The secondary structure of the rod domain, which is highly conserved among IF proteins, is divided into four heptad-repeat-containing helical segments called 1A, 1B, 2A and 2B, which are interrupted by three short linker sequences L1, L12 and L2 [10]. The heptad-repeat-containing segments form the structural basis for the heteromeric assembly of KRT filaments [12]. For example, the acidic type-I KRT-10 and the basic type-II KRT-1 form an obligate heterodimer that is the main building block in filament assembly.

It has been previously demonstrated that KRTs are also readily available on the surface of epithelial cells, acting as potential surface-accessible docking sites for microbial adhesins. While the *Staphylococcus aureus*-derived adhesin clumping factor B (ClfB) interacts with KRT10 and possibly KRT8 on the surface of desquamated stratified squamous epithelial cells isolated from human nares [13,14], the *Streptococcus agalactiae*-derived SRR-1 protein interacts with KRT4 on the surface of human laryngeal carcinoma-derived Hep2-cells [15].
In the structurally and mechanistically well-described ‘dock, lock and latch’ binding mode of the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) C1b3 to K10T, a peptide derived from the tail of K10T ‘docks’ into a binding trench localized between the two homologous subdomains N2 and N3 of C1b3, and undergoes a disorder-to-order transition by complementing a β-sheet within N3. The C-terminal extension of N3 is thereafter redirected in order to ‘lock’ the K10T peptide in place and to form a ‘latch’ through β-sheet complementation with N2 [16,17].

Both the N2 and N3 domains of C1b3 display the DEv-variant of the IgG fold (DEv-IgG) that has been described for the A-region of the S. aureus-derived CNA protein [18,19]. Interestingly, CnaA subdomains with similar topology have been identified in the two other available crystal structures of SRRPs, Fap1 and GspB, derived from *Streptococcus parasanguinis* and *Streptococcus gordonii*, respectively [6,8]. The presence of a CnaA-subdomain has also been predicted for the *Streptococcus agalactiae*-derived KRT4-binding SRRP SRR-1 [8]. However, the topology for the BR domain of PsrP could not be predicted owing to missing sequence homology. In this study, the crystal structure of the K10T-binding region of PsrP (BR187–385) was determined, revealing a novel fold distantly related to CnaA subdomains. While one face of the compressed, two-sided barrel of BR187–385 is created by an extended β-sheet that presents a highly basic binding groove, extensive well-ordered loop regions distort the other face of the barrel, forming a paperclip-like substructure. *In vitro* alanine substitution of residues localized within this paperclip structure efficiently disrupted BR187–385/K10T complex formation.

3. Results and discussion

3.1. The crystal structure of monomeric BR187–385 presents a compressed β-barrel fold with two remarkably different faces

BR187–385 crystallized in two crystal forms of the space groups *P*21_21_2 and *P*4_2_2, with differing unit cell parameters (table 1). Single anomalous dispersion (SAD) data, collected from a seleno-methionine derivative of the P4_2_2, with differing unit cell parameters. Three BR187–385 polypeptide chains were placed in the asymmetric unit, and refined to *R* and *R*_merge-values of 18.6% and 21.5%, respectively. The native P4_2_2 dataset that diffracted to 2.0 Å was solved using BR187–385 from P4_2_2 as a template for molecular replacement (MR). A single BR187–385 molecule was found in the P4_2_2 asymmetric unit, and a model comprising residues L203–S378 was refined to *R* and *R*_merge-values of 17.7% and 20.1%, respectively. The structural deviation between the P4_2_2-BR187–385 monomer and each of the three P4_2_2-BR187–385 molecules was minimal, with root mean square deviations (r.m.s.d.) of 0.6 Å and less than 0.4 Å, following superposition of the P4_2_2 monomer on the P4_2_2 chains A and B/C, respectively.

The overall three-dimensional structure of BR187–385 composed of 43% β-strands, 2% α-helices, 17% turns and 38% loop regions, can be described as a compressed barrel with two remarkably different faces (figure 1b). While one side of the barrel forms an extended and twisted antiparallel β-sheet that comprises the six strands A1, A, B, E, D and D1, the other side mainly consists of well-ordered loops, each stabilized by two sets of β-sheet belts, comprising strands D2, D3, C2, F1, G and D4, C1, F2, respectively. Furthermore, the highly ordered loops are also stabilized by several β-turns and hairpin motifs (data not shown).

Crystal packing analysis revealed that two symmetry-related molecules in the P4_2_2 crystal formed an intermolecular β-sheet resulting in an interface area of 585 Å². The same interface was also observed for chains B and C in the P4_2_2 crystal form. However, a single population with a sedimen
tation coefficient of 1.85 S corresponding to a monomer with a hydrodynamic radius of 25 Å was clearly assessed using analytical ultracentrifugation (AUC; figure 2a). A similar hydrodynamic radius value was also derived from the retention volume of the BR187–385 monomer using size exclusion chromatography (SEC; data not shown). Finally, small angle X-ray scattering (SAXS) analysis of BR187–385 revealed a monomer in solution with a molecular weight estimated from the forward scattering I(0) to 18 ± 2 kDa and from the Porod volume to 23 ± 2 kDa (expected at 22 kDa; figure 2b; electronic supplementary material, table S1). While the radii of gyration *R* obtained from the Guinier approximation and from the distance distribution function *p*(r) were 22.7 ± 1.2 Å and 22.5 ± 2.0 Å, respectively, the *D*_max value was 77.0 ± 8.0 Å. It should be noted that the extended *p*(r) function suggested a partially unfolded protein. Furthermore, fitting of the experimental data using the ensemble optimization method (EOM) also indicated the formation of a globular envelope with N- and C-terminal extensions (see electronic supplementary material, figure S1). The ensemble of 18 monomer models yielded a theoretical average sedimentation coefficient of 1.94 ± 0.06 S, in good agreement with the AUC analysis (figure 2a).

In conclusion, the crystal structure of the BR187–385 monomer takes a compressed barrel fold with one face formed by an extended and twisted β-sheet, and the other face mainly consisting of well-ordered loops. We believe, at the present stage, that the formed pseudo-complexes are probably owing to crystal packing.

3.2. The K10T-binding region domain of PsrP adopts a novel MSCRAMM fold-variant

A search for structural homologues revealed that BR187–385 adopts an MSCRAMM-related DEv-IgG fold (figure 3). The typical DEv-IgG fold topology can be described as a compressed barrel composed of two opposing β-sheets that are formed by β-strands ABED (sheet I) and CFG (sheet II) [19]. The insertion of two extra strands between strands D and E distinguishes the DEv-IgG variant from the IgG-constant domain [22]. BR187–385 takes a novel DEv-IgG fold variant with one side of the barrel distorted by loops and β-turns, as well as extensive insertions of shorter strands and loops between strands D and E (figure 3).

The first nine structural homologues, identified using Dali [23], belonged to the MSCRAMM or SRRP family (see electronic supplementary material, table S2). Although they shared only 5–17% sequence identity with BR187–385, they all superimposed to BR187–385 with r.m.s.d. values stretching from 3.0 to 4.7 Å. In particular, both crystal structures of the CnaA-subdomains of the SRRPs Fap1 and GspB superimposed to BR187–385 with r.m.s.d. values of 3.0 and 3.2 Å, despite
Table 1. X-ray data collection and refinement statistics.
data collection
space group
unit cell parameters (a, b, c in Å; α, β, γ in degree)
X-ray source
detector
temperature (K)
resolution limits (Å)
wavelength (Å)
no. of observations
no. of unique reflections
redundancy
I/σ
$R_{ ext{sym}}$ (%)
$R_{ ext{merge}}$ (%)
$R_{ ext{merge}}+\sigma$ (%)
phasing
software
resolution limit
no. of sites found
CC all/weak
FOM after SHELXE
FOM after DM
structure refinement
PDB entry
molecules in ASU
mask estimated solvent (%)
$R_{ ext{work}}$ (%)
$R_{ ext{free}}$ (%)
no. of residues
protein
water
small molecule
other
no. of atoms
mean isotropic B-value (\AA^2)
Wilson B-factor (\AA^2)
r.m.s.d. from ideal bond lengths (\AA)
r.m.s.d. from ideal bond angle (°)
molprobity
Ramachandran
outliers (%)
favoured (%)
all atom clash score (percentile)
molprobity score (percentile)
sequence identities of only 15% and 8%, respectively (see electronic supplementary material, table S2 and figure S2). Compared with GspB, the CnaA subdomains of Fap1 and BR187–385 are more distantly related to the canonical DEv-IgG fold displayed by ClfB (figure 3). While both BR187–385 and Fap1 bind using their CnaA-like subdomains to their cognate ligands KRT10 and saliva-coated hydroxylapatite, respectively, GspB binds the carbohydrate ligand sialyl T-antigen via its Siglec subdomain [6,8]. The S. aureus-derived ClfB was also chosen for comparison with BR187–385 (see electronic supplementary material, table S2 and figure S2) because it binds to a KRT10-derived linear peptide motif (LPM) via the ‘dock, lock and latch’ mechanism [16,17]. Here again, despite a sequence identity of only 5%, the N3 subdomain of ClfB superimposed to BR187–385 with an r.m.s.d. value of 3.9 Å (figure 3; electronic supplementary material, figure S2). However, superimposition of ClfB and BR187–385 also revealed that BR187–385 can probably not bind to KRT10 via the same ‘dock, lock and latch’ binding mode, because KRT10 is bound on different sites of the two proteins (see electronic supplementary material, figure S3).

3.3. The KRT10-binding region of BR187–385 resembles a paperclip

The KRT10-binding region of PsrP that comprises residues 273–341 corresponds to a region involving most of strand E, as well as strands C2, D, D1, D2, D3 and D4, all connected by the loops Lc2/D, Lc1/C2, Ld1/D2, Ld2/D3 and Ld3/D4 (figure 4b). A substructure within this region takes a paperclip form with back- and front-loops formed by residues 268–295 and 305–324, respectively, which provides a possible explanation to previous experimental observations (figure 4b) [9]. Indeed, while pre-incubation of KRT10+-A549 cells with a BR-construct comprising residues 273–341 (front- and back-loops) blocked binding of pneumococcal TIGR4, pre-incubation with a shorter BR construct stretching from residues 291 to 325 (front-loop only) resulted in binding to KRT10, but did not block binding of TIGR4 bacteria to A549 cells.

We hypothesized that binding of KRT10 may require conformational re-arrangements of the three loops LC1/C2, LD1/D2 and Ld3/D4 (figure 4b). Analysis of the distribution of B-factor values revealed a high mobility of LC1/C2 and LD1/D2, as well as of LD2/D3 localized at the tip of the front-loop, compared with the rest of the structure (see electronic supplementary material, figure S4a). Rigidity analysis of BR187–385 confirmed that LC1/C2 did not belong to the single large rigid cluster formed by almost the entire BR187–385 structure (see electronic supplementary material, figure S4b). Our analysis indicated that Ld3/D4 could be uncoupled by breakage of a single hydrogen bond interaction between the backbone oxygen of the asparagine residue N321 and the hydroxyl group of the serine residue S308. Furthermore, removal of three and four hydrogen bond interactions between the front- and back-loop regions would uncouple LC1/D2 and the entire front-loop region from the rigid cluster, respectively.

Hydrophobic interactions represent an essential mechanism for binding to intrinsically disordered protein regions [24] such as KRT10-associated glycine loops. Two distinct solvent-accessible hydrophobic pockets, localized proximally to strand D4 and underneath the front-loop, could possibly act as initial anchor points for interaction (figure 4b). Furthermore, inspection of the electrostatic surface of BR187–385 revealed the presence of a highly basic groove with a solvent-accessible surface area of 180 Å² (figure 4c) that could easily accommodate the elongated and negatively charged helical rod domain of KRT10 (see electronic supplementary material, figure S5). The complementary charges of the basic BR187–385 and the acidic rod domains of KRT10/KRT1 (with theoretical isoelectric points of 4.6 and 4.8, respectively) could play an important role in initial complex formation, because electrostatic interactions are dominant long-range forces for protein associations [25]. Interestingly, the functional binding domain of the S. agalactiae-derived SRR-1 probably contains a CnaA-like domain, as predicted by sequence homology [8]. This CnaA subdomain with a theoretical isoelectric point of 4.7 binds to the carboxy-terminal domain of keratin-4 (KRT4) that belongs to basic type-II IFs [15]. This suggests that the surface of the two hitherto known keratin-binding SRRPs, PsrP and...
SRR-1, could be charge-optimized for efficient binding to oppositely charged IF protein ligands.

In conclusion, our structural analysis suggests that the KRT10-minimal binding region of BR 187–385 resembles a paperclip that could allow for binding to KRT10 following conformational rearrangements of the clip-associated loops. Furthermore, the extended β-sheet on one side of the compressed barrel may provide a basic binding groove that

Figure 3. BR187–385 adopts a fold that is distantly related to the MSCRAMM-typical DEv-IgG fold. Both CnaA-subdomains of Fap1 (PDB: 2X12) and GspB (3QD1), as well as the N3 subdomain of ClfB (3AU0), superimpose to BR 187–385 with r.m.s.d. values of 3.0, 3.2 and 3.9 Å, despite sequence identities of only 15%, 8% and 5% (see electronic supplementary material, figure S2 and supplemental movies), respectively. The fold of BR187–385 is distantly related to the canonical DEv-IgG fold displayed by the N3 domain of ClfB. Topology diagrams of the DEv-IgG fold variants are designated and colour-coded according to [8,19,21].
could accommodate parts of the highly negatively charged helical rod domains of the KRT10/KRT1 heterodimer.

3.4. Binding of BR 187–385 to keratin-10 is disrupted by alanine substitution of several residues within the paperclip region

The interaction between BR_{187–385} and KRT10 was confirmed in a pull-down experiment in which Strep-Tag-II BR_{187–385} (STII-BR_{187–385}) bound to Ni–NTA bead-immobilized full-length KRT10 (figure 5a). For ELISA assays, three shorter KRT10 constructs comprising the head and tail end regions (including the associated helical segments 1A and 2B from the rod domain, as well as the entire rod domain of KRT10) were produced. While STII-BR_{187–385} bound with similar capacity to both the KRT10-full-length (KRT10-FL) and the KRT10-tail-rod-2B (KRT10-TRD) domains with a shared EC_{50} value of 345 nM, binding to the KRT10-rod domain (KRT10-ROD) was significantly reduced, with an estimated EC_{50} value.

Figure 4. BR_{187–385} comprises a paperclip-like region and a basic binding groove for interaction with KRT10. (a) The putative paperclip region provides an explanation for previous experimental observations [9]. The back- and front-loops of the clip, formed by residues 268–295 and 305–324, are coloured red and orange, respectively. Boxes highlight this specific region. Binding of KRT10 most probably requires conformational re-arrangements of the three loops L_{C1/C2}, L_{D1/D2} and L_{D3/D4} (see electronic supplementary material, figure S4). (b) Hydrophobic patches on BR_{187–385} are displayed on a surface hydrophobicity distribution plot. Regions coloured red and blue are hydrophobic (positive values) and hydrophilic (negative values), respectively. Two hydrophobic patches are localized within the KRT10-binding region. While hydrophobic patch-1 is localized proximally to strand D4, hydrophobic patch-2 is localized underneath the tip of the front-loop of the clip. Hydrophobicity is plotted on a relative scale.

(c) Analysis of the surface electrostatic potential of BR_{187–385} reveals a highly positively charged binding groove formed by the extended antiparallel β-sheet I that could accommodate the acidic helical rod domain of the KRT10/KRT1 heterodimer (see electronic supplementary material, figure S5). The electrostatic potential is plotted in $k_b T e^{-1}$ with the Boltzmann’s constant k_b, the charge of an electron e, at a temperature of 298 K.
Finally, binding of STII- BR187–385 to the KRT10 head-rod-1A domain (KRT10-HRD) was at a very low level (figure 5b).

Both head and tail domains are composed of glycine-rich loops, anchored to stacked arrays of aromatic and/or large apolar residues [10,26–28]. It has been previously suggested that, in contrast to the head domain, the tail of KRT10 is composed of fewer but larger (and therefore potentially more flexible) loop regions [27], which could play a key role in interactions with other proteins. For example, ClfB complements a KRT10 tail-derived LPM into a β-sheet, enforcing disorder-to-order transition of the peptide [16,17]. The peptide-binding site prediction server PepSite [29] identified two clip-associated binding sites in BR187–385 where several
KRT10-derived LPMs could fit (see electronic supplementary material, figure S6). While binding site-1 was located within the first surface-accessible hydrophobic patch and localized proximally to strand D4, binding site-2 was localized underneath the front-loop region of the clip.

Ten residues located within or in the near vicinity of the two predicted paperclip-associated binding sites of BR187 – 385 were substituted to alanine (figure 6a), and all mutated proteins were tested for binding to KRT10-TRD using ELISA. Residue K231, which is not located within the predicted binding sites, was selected as a negative control.

The interaction levels were reduced by at least 80% compared with WT-BR187 – 385 and control K231A-BR187 – 385 for seven of 10 mutations, including residues F329, M325 and I294 localized in site-1, as well as residues V290, M277, Y317 and W319 localized in site-2 (figure 6a,b). Furthermore, the Y305A and M310A substitutions within binding sites-1 and -2 reduced binding to KRT10-TRD by 15% and 60%, respectively. Finally, the N321A substitution did not affect BR187– 385-binding to KRT10-TRD, probably due to the fact that its side chain points towards the solvent instead of the predicted binding site. Importantly, the mutations affected neither the expression and solubility levels of the mutated proteins nor their retention volumes in SEC (data not shown). Furthermore, comparative circular dichroism (CD) spectra analysis of WT- and mutated BR187– 385 proteins indicated that their overall secondary structure was not significantly affected by the introduced substitutions (see electronic supplementary material, figure S7). However, it cannot be excluded that the introduced substitutions may induce small conformational changes that were not detected by CD spectroscopy, but could affect binding to KRT10-TRD.

Figure 6. KRT10-TRD is bound in two contiguous paperclip-associated binding sites within BR 187 – 385. (a) The location of each substituted residue is indicated. The centre of mass of each residue is displayed as a sphere and coloured according to its importance for binding to KRT10-TRD (red and blue for low and high binding intensities, respectively). The introduced substitutions did not significantly alter the overall secondary structure of the mutated BR187– 385 proteins (see electronic supplementary material, figure S7). (b) Normalized intensity values were determined for binding of WT BR187 – 385 and each mutated variant to KRT10-TRD coated in wells of ELISA plates. Values are given as mean with standard deviation. WT and mutated BR187– 385 variants were classified into groups a—d using the Tukey test at a significance level of p < 0.05.
In conclusion, our results demonstrate that BR$_{187-385}$ binds to KRT10-TRD using two contiguous paperclip-associated binding sites. Furthermore, binding of KRT10 to site-2 probably requires conformational adaptations by the front-loop.

3.5. Concluding remarks

In this study, the crystal structure of the KRT10-binding region domain (BR$_{187-385}$) of PsrP was determined, revealing the compressed barrel fold as a member of the MSCRAMM family of adhesin proteins despite very low sequence identity. Our results suggest that electrostatic interactions may play an important role in initial complex formation. Indeed, the acidic helical rod domain of KRT10 could fit in the highly basic groove of BR$_{187-385}$, created by an extended b-sheet on one side of the compressed barrel. Structural analysis and in vitro binding data also indicate the importance of the other face of the barrel that resembles a paperclip for binding to the tail-rod-2B region of KRT10. Future crystal structure determination of BR$_{187-385}$ in complex with a KRT10-derived binding motif is required to elucidate the exact binding mechanisms, possibly confirming the importance of electrostatic interactions for initial complex formation.

4. Experimental procedures

4.1. Cloning

All protein constructs were cloned into the pET21d expression vector (Novagen) using the ligation-independent FastCloning method [30]. The coding sequence for the full-length basic region of PsrP (residues 2–395) was prepared from S. pneumoniae TIGR4 chromosomal DNA as described before [31] and used as template for PCR amplification to generate expression constructs comprising residues 187–385 of PsrP (BR$_{187-385}$) with N-terminal poly-His (HHHHHH) and STII (SAWNHPQFEK) tags, respectively. Mutated expression constructs of BR$_{187-385}$ were generated following previously described protocols [32].

The coding sequence for full-length KRT10 (clone ID HsCD00045373, Uniport ID P13645) obtained from the DNASU previously described protocols [32]. Protein expression was induced at OD 0.4–0.7 using M IPTG and performed overnight at 25°C. Expression of Seleno-methionine (Se-Met)-substituted protein was performed using Se-Met medium complete (Molecular Dimensions, UK) and Met-auxotroph E. coli B834 cells (EMBL, Hamburg, Germany).

Poly-histidine-tagged BR$_{187-385}$ was purified using immobilized metal affinity (IMAC) and cation exchange chromatography (CEC; HisTrap FF and HiTrap SPFF, GE Healthcare, Sweden). STII-tagged BR$_{187-385}$ was purified using affinity chromatography on a Strep-Tactin superflow high-capacity column (IBA, Germany). Monomeric BR$_{187-385}$ was eluted using SEC on Superdex 75 or 200 columns (GE Healthcare). The purity of poly-His- and STII-tagged BR$_{187-385}$ constructs were assessed by SDS–PAGE to be at least 99% (see electronic supplementary material, figure S8–c).

The soluble poly-His-tagged KRT10-TRD was purified using IMAC and anion exchange chromatography (AEC) on a 1 ml HiTrap Q HP (GE Healthcare). The poly-His-tagged KRT10-FL and KRT10-ROD were purified as inclusion bodies as described previously [35] and further purified in the presence of 6 M urea using AEC on a HiTrap Q HP 1 ml. KRT10-HRD was purified in the presence of 6 M urea using IMAC and CEC on a HiTrap Q SPFF 1 ml column (GE Healthcare). KRT10-FL, KRT10-ROD and KRT10-HRD were thereafter dialysed against urea-free buffer. The final purity of KRT10-TRD, KRT10-HRD, KRT10-ROD and KRT10-FL were estimated as 99%, 99%, 99% and more than 90% (see electronic supplementary material, figure S8b, respectively).

4.3. Crystallization of BR$_{187-385}$

The BR$_{187-385}$ monomer was concentrated to 20 mg ml$^{-1}$ in 20 mM sodium citrate, 500 mM NaCl, 10% (v/v) glycerol, pH 5.5. Well-diffracting crystals of wild-type and Se-Met-BR$_{187-385}$ were obtained in 0.2 M lithium sulfate, 0.1 M sodium acetate trihydrate pH 4.6, 25% PEG4000 (w/v) using the sitting drop vapour-diffusion method followed by micro-seeding. Crystals were cryo-protected by soaking in mother liquor supplemented with 25% glycerol and flash-frozen in liquid nitrogen.

4.4. Data collection and determination of the crystal structure of BR$_{187-385}$

X-ray diffraction data from crystals of native and Se-Met-substituted BR$_{187-385}$, both collected at beam line ID29 at the synchrotron radiation facility at the ESRF (Grenoble, France), were processed using the XDS program package [36] (table 1). The SAD dataset of a P4$_3$2$_1$2$_1$ Se-Met-substituted BR$_{187-385}$ crystal diffracting to 2.25 Å was used to determine the crystal structure of BR$_{187-385}$ based on the SAS protocol from AUTO-RICKSHAW [37]. Almost complete models for three BR$_{187-385}$ molecules were obtained that were complemented through automatic rebuilding in Buccaneer [38]. COOT was used for all subsequent model building [39]. An MR search was performed using Phaser [40], and a single BR$_{187-385}$ molecule was located in the asymmetric unit of the native crystal. Initial rigid body and restrained refinement rounds were performed in CCP4 REFMAC [38] followed by model refinement using PHENIX [41] with individual
isotropic ADP factors and TLS refinement of the entire chain. A single Ramachandran plot outlier was found in the final model corresponding to residue T271, located in a β-turn motif with weak electron density. Finally, the side-chain atoms O\(^{1}\) and C\(^{\beta}\) of residue T378 were not built as a result of poor electron density.

The structural model was used to further refine the model corresponding to the anomalous dataset, using a simulated annealing protocol with subsequent LBFGS minimization with individual isotropic ADP factors, whole-chain TLS group refinement and NCS Cartesian restraints. At later stages, simulated annealing was omitted and NCS Cartesian restraints were altered to NCS torsion restraints. Crystal packing analysis revealed that the overall mobility of chain A (residues I204-S377) was relatively higher compared with the mobility of chains B and C (both comprising residues N203–S376), as reflected by higher overall B-factor values and lower map correlation coefficients (data not shown).

4.5. Structural analysis of BR\(^{187–385}\)

The hydrophobicity of BR\(^{187–385}\) was assessed using the program package VASCo 1.0.2 [42]. PDB2PQR 1.7.1 [43] and APBS 1.3 in Pymol [44] were used to calculate the electrostatic surface potentials. All figures were created using Pymol version 1.3.0 [45]. Further programs used for structural analysis are listed in the electronic supplementary material.

4.6. Analytical ultracentrifugation analysis and sedimentation velocity experiments

Sedimentation velocity experiments were carried out on an analytical ultracentrifuge XLI (Beckman Coulter, Palo Alto, CA) with a rotor speed of 50,000 rpm, at 20°C, using a rotor Anti-50, and double-sector cells of optical path length 12 or 3 mm equipped with sapphire windows. Acquisitions were made using absorbance at 280 nm. Two samples of BR\(^{187–385}\) in 20 mM sodium citrate, 250 mM NaCl, 2.5% glycerol pH 5.5 were investigated. Solvent density of 1.017 g ml\(^{-1}\) and viscosity of 1.11 mPa s were measured at 20°C on density-meter DMA 5000 and viscosity-meter AMVn (Anton Paar), and the partial specific volume was estimated to 0.721 ml g\(^{-1}\) with the program SEDNTERP. The analysis was carried out in terms of distribution of sedimentation coefficients, c(s), and non-interacting species, with SEDFIT software, version 14.0c. The c(s) distributions showed a species at 1.85 S contributing to 97% of the total signal for two different sample concentrations of 45 and 22.5 μM. Their analysis in terms of one non-interacting species gave independent values for the molar mass of 23 and 20.5 kDa at the two concentrations, close to the theoretical value of 22.1 kDa. The theoretical sedimentation coefficients for 20 models from the generated EOM ensemble (see below) were calculated by the atomic-type/shell-model calculation in HYDROPRO [46] with a radius of the atomic elements of 2.9 Å.

4.7. Small angle X-ray scattering data processing and analysis

Synchrotron radiation X-ray scattering data were collected from five solute concentrations of BR\(^{187–385}\) in the range 1.1–8.7 mg ml\(^{-1}\) in 20 mM sodium citrate, 250 mM NaCl, 2.5% glycerol pH 5.5 were collected on the X33 camera of the EMBL on storage ring DORIS III (DESY, Hamburg, Germany) [47]. Data were collected using a photon counting Pilatus 1M detector at a sample–detector distance of 2.7 m and a wavelength of λ = 1.5 Å, the range of momentum transfer 0.01 < s < 0.6 Å\(^{-1}\) was covered (s = 4π sinθ/λ, where 2θ is the scattering angle). The forward scattering I(0), the radius of gyration R\(_{g}\) along with the pair distribution function of the particle p(r) and the maximum dimension D\(_{max}\) were computed by the automated SANS data analysis pipeline [48]. The molecular mass (MM) of BR\(^{187–385}\) was evaluated by comparison of the forward scattering with that from a reference solution of bovine serum albumin (MM = 66 kDa). The excluded volume of the hydrated protein was computed with the program AUTOPOROD [49]. For globular proteins, the hydrated volumes in A\(^{3}\) are about 1.6 times the MM in Dalton. To assess the flexibility of BR\(^{187–385}\) the EOM [50] was used. See the electronic supplementary materials for details about data collection and analysis.

4.8. Pull-down assay

KRT10-FL was immobilized to 30 μl Ni–NTA magnetic agarose beads (Qiagen, Germany) in 10 mM potassium phosphate, pH 7.2, 250 mM NaCl, 0.05% Triton X-100 (magnetic PBS buffer). Beads not loaded with KRT10-FL protein were used as negative control. Beads were washed using 10 mM potassium phosphate, pH 7.8, 300 mM NaCl, 20 mM imidazole, 8% glycerol, 0.2% Triton X-100 (magnetic washing buffer) for 30 min. A volume of 100 μl of 25 μM STII-BR\(^{187–385}\) was incubated with the beads in 20 mM HEPES, 50 mM NaCl, 10% glycerol, pH 7.5 for 1 h. Beads were analysed using SDS–PAGE before incubation with BR\(^{187–385}\), after 10 min wash using magnetic PBS buffer, 1 min wash and three times of a 10 min wash using magnetic washing buffer.

4.9. ELISAs

ELISAs were performed using Nunc C96 MicroWell plates. PBS-T (PBS with 0.05% Tween-20) was used as washing buffer. Conjugates were detected using HRP-conjugated anti-His antibodies (anti-His AB-HRP, ab1187; Abcam, UK) and adjusted to the coating levels of KRT10 constructs were detected using HRP-conjugated anti-His antibodies (anti-His AB-HRP, ab1187; Abcam, UK) and adjusted to the coating levels of KRT10-TRD incubated at a concentration of approximately 5 μg ml\(^{-1}\). 2% BSA (w/v) in PBS was used as blocking agent. STII-BR\(^{187–385}\) to KRT10 construct binding assays were performed in PBS with STII-BR\(^{187–385}\) concentrations ranging from 23 nM to 3 μM. For the second assay, WT-BR\(^{187–385}\) and mutated variants were used at a concentration of 1 μM for the BR\(^{187–385}\)/KRT10-TRD interaction. Binding of STII-BR\(^{187–385}\) to KRT10 was detected using 250 ng μl\(^{-1}\) Strept-Tactin HRP conjugate in PBS-T (stock of IBA, Germany). Data were averaged and normalized as described in the electronic supplementary material.

Acknowledgements. We gratefully acknowledge excellent technical assistance by Åke Engstrom, fruitful discussions with Tatyana Sandalova, Frederico Fogilari and Peter Meltho, as well as access to synchrotron beamline ID29 at ESRF (Grenoble, France). This work was facilitated by the Protein Science Facility at Karolinska Institutet/SciLifeLab (http://psf.ki.se).
References

1. Van der Poll T, Opal SM. 2009 Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374, 1543–1555. (doi:10.1016/S0140-6736(09)61144-4)

2. Muñoz-Almagro C, Selva L, Sanchez CJ, Esteva C, de Sevilla MF, Palàries R, Orihuela CJ. 2010 PsnP, a protective pneumococcal antigen, is highly prevalent in children with pneumonia and is strongly associated with clonal type. Clin. Vaccine Immunol. 17, 1672–1678. (doi:10.1128/CVI.00271-10)

3. Gamez G, Hammerschmidt S. 2012 Combat pneumococcal infections: adhesins as candidates for protein-based vaccine development. Curr. Drug Targets 13, 323–337. (doi:10.2174/138945012794246997)

4. Springer T, Weiner EM, Clubb RT. 2011 Sortase enzymes in Gram-positive bacteria. Mol. Microbiol. 82, 1044–1059. (doi:10.1111/j.1365-2958.2011.07887.x)

5. Lizzano A, Sanchez CJ, Orihuela CJ. 2012 A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis. Mol. Oral Microbiol. 27, 257–269. (doi:10.1111/j.1365-2958.2012.00653.x)

6. Ramboarina S et al. 2010 Structural insights into serine-rich filmbriae from gram-positive bacteria. J. Biol. Chem. 285, 32 446–32 457. (doi:10.1074/jbc.M110.128165)

7. Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Godinot J, Debain R, de Sevilla MF, Pallares R, Orihuela CJ. 2010 The pneumococcal serine-rich repeat protein is an epithelial mouse-associated adhesin. PLoS Pathog. 6, e1000943. (doi:10.1371/journal.ppat.1000943)

8. Lee C-H, Kim M-S, Chung BM, Leary DJ, Goulombre PA. 2012 Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 19, 707. (doi:10.1038/nsmb.2330)

9. Böing LM, Walsh EJ, Massey RC, Foster TJ. 2002 Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell. Microbiol. 4, 759–770. (doi:10.1046/j.1462-5822.2002.00231.x)

10. Haim M, Trost A, Maier CJ, Achatz G, Feichtner S, Hintner H, Bauer JW, Onder K. 2010 Cytokeratin 8 interacts with clumping factor B: a new possible virulence factor target. Microbiology 156, 3710–3721. (doi:10.1099/mic.0.034413-0)

11. Samen U, Eikmanns BJ, Reinscheid DJ, Borges F. 2007 The surface protein Srr-1 of Staphylococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEP-2 cells. Infect. Immun. 75, 5405–5414. (doi:10.1128/IAI.00717-07)

12. Ganesh VK et al. 2011 Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. J. Biol. Chem. 286, 25 963–25 972. (doi:10.1074/jbc.M110.1217414)

13. Xiang H, Feng Y, Wang J, Liu B, Chen Y, Liu L, Deng X, Yang M. 2012 Crystal structures reveal the multiligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog. 8, e1002751. (doi:10.1371/journal.ppat.1002751)

14. Symersky J et al. 1997 Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat. Struct. Mol. Biol. 4, 833–838. (doi:10.1038/nsb0977-833)

15. Devilanayagam CCS, Wann ER, Chen W, Carson M, Rashajankshi KR, Hook M, Narayana SVL. 2002 A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibronogen-binding MSCRAMM, clumping factor A. EMBO J. 21, 6660–6672. (doi:10.1093/emboj/cdf619)

16. Sheidrick GM. 2010 Experimental phasing with SHELXD/E: combining chain tracking with density modification. Acta Crystallogr. D, Biol. Crystallogr. 66, 479–485. (doi:10.1107/S0907444909038360)

17. Bork P, Hofmann K, Sander C. 1994 The immunoglobulin fold: structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309–320. (doi:10.1006/jmbi.1994.1582)

18. Vengadesan K, Narayana SVL. 2011 Structural biology of Gram-positive bacterial adhesins. Protein Sci. 20, 759–772. (doi:10.1002/pro.613)

19. Solis J, Kääriäinen S, Rosenström P, Schenkel A. 2008 Searching protein structure databases with Dalitree v.3. Bioinformatics 24, 2780–2781. (doi:10.1093/bioinformatics/btn507)

20. Mészáros B, Tompa P, Simon I, Dostálný Z. 2007 Molecular principles of the interactions of disordered proteins. J. Mol. Biol. 372, 549–561. (doi:10.1016/j.jmb.2007.07.004)

21. Schreiber G, Hanar G, Zhou H-X. 2009 Fundamental aspects of protein—protein association kinetics. Chem. Rev. 109, 839–860. (doi:10.1021/cr000373w)

22. Mack JW, Torchia DA, Steinetz PM. 1988 Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments. Biochemistry 27, 5418–5426. (doi:10.1021/bi801450a006)

23. Steinetz PM, Mack JW, Korge BP, Gann SQ, Haynes SR, Steven AC. 1991 Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricins and single-stranded RNA binding proteins. Int. J. Biol. Macromol. 13, 130–139. (doi:10.1016/0141-8101(91)90037-I)

24. Simnad P, Usachov V, Debes C, Grüter F, Parry DAD, Ormøy MB. 2011 Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. J. Cell. Sci. 124, 4221–4232. (doi:10.1242/jcs.089516)

25. Petsalaki E, Stark A, Garcia-Urdiales E, Russell RB. 2009 Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput. Biol. 5, e1000335. (doi:10.1371/journal.pcbi.1000335)

26. Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y. 2011 FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 11, 92. (doi:10.1186/1472-6750-11-92)

27. Mellmann P, Daniels R, Eberhardt A, Rönnlund D, Blom H, Widengren J, Normark S, Henriques-Normark B. 2012 LytA, major autolysin of Streptococcus pneumoniae, requires access to nascent peptidoglycan. J. Biol. Chem. 287, 11 018–11 029. (doi:10.1074/jbc.M111.318564)

28. Li J, Li C, Xiao W, Yuan D, Wan G, Ma L. 2008 Site-directed mutagenesis by combination of homologous recombination and DpnI digestion of the plasmid template in Escherichia coli. Anal. Biochem. 373, 389–391. (doi:10.1016/j.ab.2007.10.034)

29. Cormier CT et al. 2010 Protein structure initiative material repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res. 38, D743–D749. (doi:10.1093/nar/gkp999)
34. Koth CM, Orlicky SM, Larson SM, Edwards AM. 2003 Use of limited proteolysis to identify protein domains suitable for structural analysis. In *Macromolecular crystallography*, part C (eds CW Carter Jr, RM Sweet), pp. 77 – 84. San Diego, CA: Academic Press.

35. Hatzfeld M, Weber K. 1990 Tailless keratins assemble into regular intermediate filaments in vitro. *J. Cell. Sci.* 97, 317 – 324.

36. Kabsch W. 1993 Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. *J. Appl. Crystallogr.* 26, 795 – 800. (doi:10.1107/S0021889893005588)

37. Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA. 2005 Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. *Acta Crystallogr. D, Biol. Crystallogr.* 61, 449 – 457. (doi:10.1107/S0907499X0003112)

38. CCP4. 1994 The CCP4 suite: programs for protein crystallography. *Acta Crystallogr. D, Biol. Crystallogr.* 50, 760 – 763. (doi:10.1107/S0907499X9400132)

39. Emsley P, Cowtan K. 2004 Coot: model-building tools for molecular graphics. *Acta Crystallogr. D, Biol. Crystallogr.* 60, 2126 – 2132. (doi:10.1107/S0907499X0401958)

40. McCoy AJ. 2007 Solving structures of protein complexes by molecular replacement with Phaser. *Acta Crystallogr. D, Biol. Crystallogr.* 63, 32 – 41. (doi:10.1107/S0907499X06045975)

41. Adams PD et al. 2002 PHENIX: building new software for automated crystallographic structure determination. *Acta Crystallogr. D, Biol. Crystallogr.* 58, 1948 – 1954. (doi:10.1107/S0907499X0201657)

42. Steinkellner G, Rader R, Thallinger GG, Kratky C, Gruber K. 2009 VASCo: computation and visualization of annotated protein surface contacts. *BMC Bioinformatics* 10, 32. (doi:10.1186/1471-2105-10-32)

43. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. 2004 PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. *Nucleic Acids Res.* 32, W665 – W667. (doi:10.1093/nar/gkh381)

44. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. 2001 Electrostatics of nanosystems: application to microtubules and the ribosome. *Proc. Natl Acad. Sci. USA* 98, 10 037 – 10 041. (doi:10.1073/pnas.181342398)

45. Schrödinger L. 2010 PyMOL molecular graphics system. See http://www.pymol.org.

46. García De La Torre J, Huertas ML, Cannaso B. 2000 Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. *Biophys. J.* 78, 719 – 730. (doi:10.1016/S0006-3495(00)76630-6)

47. Blanchet CE et al. 2012 Instrumental setup for high-throughput small- and wide-angle solution scattering at the X33 beamline of EMBL Hamburg. *J. Appl. Crystallogr.* 45, 489 – 495. (doi:10.1107/S0021889812013490)

48. Franke D, Kikhtney AG, Svergun DI. 2012 Automated acquisition and analysis of small angle X-ray scattering data. *Nucl. Instrum. Methods Phys. Res. A* 689, 52 – 59. (doi:10.1016/j.nima.2012.06.008)

49. Petoukhov MV et al. 2012 New developments in the ATSAS program package for small-angle scattering data analysis. *J. Appl. Crystallogr.* 45, 342 – 350. (doi:10.1107/S0021889812007662)

50. Bernado P, Mylonas E, Petoukhov MV, Bladock M, Svergun DI. 2007 Structural characterization of flexible proteins using small-angle X-ray scattering. *J. Am. Chem. Soc.* 129, 5656 – 5664. (doi:10.1021/ja069124n)