RE L$_3$ x-ray absorption study of REO$_{1-x}$F$_x$FeAs (RE = La, Pr, Nd, Sm) oxypnictides

B Joseph1, A Iadecola1, M Fratini2, A Bianconi1, A Marcelli3 and N L Saini1

1 Dipartimento di Fisica, Università di Roma ‘La Sapienza’, Piazza le Aldo Moro 2, 00185 Roma, Italy
2 Istituto di Fotonica e Nanotecnologie, CNR Roma, Italy
3 Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Italy

Received 4 August 2009, in final form 22 September 2009
Published 8 October 2009
Online at stacks.iop.org/JPhysCM/21/432201

Abstract

Rare earth L$_3$-edge x-ray absorption near-edge structure (XANES) spectroscopy has been used to study REOFeAs (RE = La, Pr, Nd, Sm) oxypnictides. The Nd L$_3$ XANES due to the $2p_{3/2} \rightarrow 5\epsilon_d$ transition shows a substantial change in both white line (WL) spectral weight and the higher energy multiple scattering resonances with the partial substitution of O by F. A systematic change in the XANES features is seen due to varying lattice parameters with ionic radius of the rare earth. On the other hand, we hardly see any change across the structural phase transition. The results provide timely information on the local atomic correlations showing the importance of the local structural chemistry of the REO spacer layer and interlayer coupling in the competing superconductivity and itinerant striped magnetic phase of the oxypnictides.

1. Introduction

Recently, the discovery of high temperature superconductivity in the Fe-based oxypnictides [1] has attracted wide attention from the condensed-matter community. The rare earth (RE) oxypnictides (REOFeAs) have a layered structure, similar to the copper oxide superconductors and diborides, with electronically active (FeAs)δ^- layers separated by (REO)δ^+ reservoirs. Both the charge transfer and the lattice misfit between the two sub-layers [2, 3] are important for the superconducting function of these materials, similar to the case of cuprates [4, 5] and diborides [6]. The REOFeAs become superconducting with a maximum transition temperature $T_c \approx 55$ K [7, 8] when the active layers are doped through atomic substitutions or oxygen vacancies in the REO spacers. One of the interesting aspects of these materials is the competing spin density wave (SDW) and superconductivity [8–11]. Indeed, the undoped compound REOFeAs is antiferromagnetically ordered (albeit a poor metal), however at the same time showing a structural phase transition from the tetragonal to the orthorhombic phase [12, 3, 13]. With doping the system becomes superconducting and the structural transition as well as the SDW transition disappear [8, 14–16]. In addition, while the maximum T_c of the doped system increases with reducing RE ion size [7, 17], the structural transition temperature (T_s) decreases for the undoped system [3]. This further underlines the importance of the local chemistry of the REO layers in the correlating itinerant magnetism and superconducting function of these materials.

It is well known that RE L$_3$ x-ray absorption near-edge structure (L$_3$-XANES) spectroscopy is a direct probe of the local structure around a selected absorbing atom and of the distribution of the valence electrons, with the final states in the continuum being due to multiple scattering resonances of the photoelectron in a finite cluster [18]. Moreover, in an ordered structure, the focusing effects of atoms in a collinear geometry also determines multiple scattering resonances in a large cluster of near neighbor atoms. Therefore the RE L$_3$-XANES is an ideal tool to study the local geometry around the RE and has often been applied to study rare earth containing materials [19–21]. The added advantage of this technique lies in the fact that, unlike photoemission experiments, there are
negligible surface effects (and multiplet effects), making it a very useful fingerprint probe of unoccupied valence states and the local chemistry of the absorbing atom.

Here we have exploited RE L3-XANES spectroscopy to make a systematic study of the local geometry around the RE atom and the related electronic structure, measuring a series of REOFeAs (RE = La, Pr, Nd, Sm) with varying rare earth size. We have also studied the effect of the tetragonal to orthorhombic structural phase transition as well as the superconductivity on the RE L3 XANES. We find a systematic change in the L3-XANES spectra reflecting the varying electronic and local geometrical structure of the title system. Incidentally the L3-XANES white lines hardly show any change across the tetragonal to orthorhombic structural phase transition temperature, however, a clear change is observed with the electron insertion by F-substitution. The results suggest that, in addition to the FeAs layers, structural coupling with the spacer layer should be important for the high Tc, reminiscent of the recent debate on misfit strain [5, 4, 6] and out-of-plane disorder [22–24] controlling superconductivity in the copper oxide perovskites.

2. Experimental details

RE L3-edge x-ray absorption near-edge structure (L3-XANES) measurements were performed on powder samples of REOFeAs (RE = La, Pr, Nd, Sm) prepared using a solid state reaction method [25]. Prior to the absorption measurements, the samples were characterized by x-ray diffraction for their structural properties [3]. The structural phase transition temperatures were measured to be 165 K, 155 K, 135 K and 130 K respectively for the La, Pr, Nd and Sm containing REOFeAs samples. The superconducting transition temperature for the F-doped NdO1−xFeAs was found to be 49 K [26]. The x-ray absorption measurements were made at the XAFS beamline of the Elettra Synchrotron Radiation Facility, Trieste, where the synchrotron radiation emitted by a bending magnet source was monochromatized using a double crystal Si(111) monochromator. The L3-XANES measurements were made at two temperatures (room temperature and 80 K) in the transmission mode using three ionization chambers mounted in series for simultaneous measurements on the sample and a reference. For the low temperature measurements, the samples were mounted on a liquid nitrogen cryostat cold finger enclosed in an Al shroud with a Be window. The sample temperature was measured to be 80 ± 1 K for the low temperature measurements. As a routine experimental approach, several absorption scans were collected to ensure the reproducibility of the spectra, in addition to the high signal to noise ratio.

3. Results and discussion

Figure 1 shows normalized RE-L3 spectra of REOFeAs (La, Pr, Nd, Sm) measured at room temperature showing an intense peak, the characteristic white line (WL) of RE3++. Here, the zero of the energy scale is fixed to the WL peak position for a proper comparison between the different spectra. It is worth recalling that the L3 absorption process is a 2p3d transitions (or 2p5→5d transitions) governed by the dipole selection rules (l = ±1) and hence empty states with d or s symmetries (and admixed states) can be reached in the final state. Since the probability for a 2p3/2 → 6s transition is about two orders of magnitude lower than for a 2p1/2 → 5d transition, the earlier can be ignored for describing the L3 WL. The one-electron picture (i.e., all the orbitals not directly involved in the absorption process are passive in the final state) works well for the L3 WL unless the materials of interest are mixed valent systems. In the present case, the WL appears to be a typical of RE3+ and hence the one-electron picture could be fairly used to describe the spectra.

In addition to the intense WL, we can see different near-edge features, a weak structure around 15 eV above the WL (feature A), and the continuum resonances appearing as a two peak structure (the broad features denoted by B1 and B2 appearing respectively around 35 and around 50 eV) due to the photoelectron scattering with the nearest neighbors. The RE atoms have 4 near neighbors O sitting at a distance ≈2.3 Å and 4 As atoms occupying a site at ≈3.3 Å, and hence the two peak structure of the continuum resonance is expected with the low and high energy peaks due to As and O scattering respectively. The energy separation between the two is consistent with the ΔE ≈ 1/d2 relation for a continuum resonance [27]. Here it is worth referring to Ignatov et al [28] reporting the La L3-XANES on LaOFeAs with a typical La3+ WL and the continuum peak, however, with a limited discussion they have incorrectly assigned the continuum resonance peak B1 to the La–O distance.

The feature A is very weak or absent for the La and Pr L3-XANES while clearly visible for the Nd and Sm L3 cases (see Figure 1. The near-edge regions of the normalized RE L3-edge absorption spectra of the REOFeAs at 80 K and room temperature (solid and dotted lines, respectively). The zero of the energy scale is fixed to the characteristic WL representing 2p3/2 → 5d transitions. Other near-edge features are assigned as A, B1 and B2, showing a change of local geometry with changing rare earth. The inset shows a zoom over the near-edge features A, B1 and B2 (room temperature).
The feature A has been frequently observed in the L3-XANES of the rare earths and discussed as being due to a particular local structural geometry of the RE [29]. Here the feature A is found to be absent (or very weak) in the La and Pr L1 spectra while clearly seen in the Nd and Sm L3 edges. The feature A is found to appear at the same energy. Indeed, the observation is consistent with the earlier results [29, 30], albeit with a dubious interpretation relating it to the local structure. Considering the fact that the basic geometry of the RE is the same, it is difficult to rule out feature A as having an electronic origin or being related to disorder in the REO layer, however, detailed multiple scattering calculations should be performed for further clarification.

On the other hand, the continuum resonance peaks B1 and B2 show a systematic change with the rare earth ion size (see e.g. the inset) indicating a clear evolution of the local geometry around the RE. Peaks B1 and B2 shift towards higher energy due to decreasing RE–As and RE–O distances with decreased rare earth size, consistent with the \(\Delta E \propto 1/d^2 \) empirical rule [27]. It is interesting to note that neither the WL nor the XANES features show any appreciable change across the tetragonal to orthorhombic structural transition temperature (dotted and solid lines in figure 1). Therefore, while the average symmetry measured by diffraction (long range orderd structure) changes, the local atomic structure measured by the XANES hardly show any change except a thermal shrinkage of the lattice (figure 2). On the other hand, the negligible change in the WL intensity suggests that the electronic structure of the unoccupied RE d-states (and admixed electronic states) remains the same in the two structural phases. This observation is consistent with the Fe K-edge XANES [31] study revealing hardly any change in the local structure across the structural phase transition in these materials. However, the Fe K-edge study has revealed a clear change in the \(1s \rightarrow 3d \) quadrupole transition (albeit small) across the structural phase transition. Thus, it is possible that the tetragonal-to-orthorhombic structure phase transition is being induced by the electronic part, due to the fact that the electronic sates near the Fermi surface are mainly of Fe 3d nature. However, more work is necessary to discuss the structural phase transition versus local structure by XANES, enhanced by polarized data.

Figure 2 shows energy positions of the peak B1 with respect to the WL (\(\Delta E \)) at two temperatures, showing a continuous increase with decreasing rare earth size due to the decreased RE–As distance. The \(\Delta E \) at low temperature is slightly higher by almost the same amount, suggesting an average but similar unit cell shrinkage for all the samples on lowering the temperature. We have also plotted the crystallographic RE–As distance at room temperature for comparison (lower panel). The inset displays the \(\Delta E \) as a function \(1/d^2 \), showing the expected linear behavior [27].

To get further information from the L3-XANES, we have extracted the line shape parameters for the WL as well as the peaks B1 and B2. In the one-electron approximation the L3-XANES WL could be deconvoluted by a Lorentzian (core hole life time), convoluted by the experimental broadening providing the 5d (and admixed) density of empty states weighted by the matrix element and the arctan curve to take into account the transition into the continuum. The energy positions are similar to those which have been obtained from the second derivative of the spectra (figure 2). All efforts were made to take care of experimental aspects influencing the L3-line shapes (thickness and homogeneity of the samples), however, it is not correct to consider equal transition matrix elements for all the rare earths, therefore the absolute intensities can not be compared quantitatively as a function of the RE. Moreover, the absolute intensity of the WL does not show any appreciable or systematic change with the rare earth. On the other hand, the intensities of the continuum resonance peaks B1 and B2, probing the local geometry around the rare earth atom, change systematically. The relative change in the intensity of peaks B1 and B2, defined as \(\Delta I = [I(B_1) - I(B_2)]/[I(B_1) + I(B_2)] \), is displayed in figure 3 as a function of rare earth, showing a decrease with decreasing rare earth size, revealing a systematic change of local geometry around the RE involving the As and O atoms (peak B1 is due to the RE–As distance while peak B2 is due
Figure 3. Difference of relative intensities of the continuum resonances B_1 and B_2 as a function of rare earth (a). The vertical position of the As atom with respect to the Fe–Fe plane, measured by the Fe K-edge EXAFS [32], is also shown (b).

to the RE–O distance). Since the RE–As represents out-of-plane atomic correlation while the RE–O describes in-plane correlation, the decreasing Δf should reflect the increased correlation between the RE–O layer and the Fe–As layer (i.e., increased interlayer coupling) with decreasing rare earth size. Although it is difficult to quantify the atomic displacement pattern around the RE, the results seems to be consistent with the higher perpendicular position of the As atom with respect to the Fe–Fe plane (figure 3(b)) and the decreased RE–As distance (figure 2(b)) with decreasing rare earth size.

Let us turn to the effect of doping on the L_3-XANES. To explore this, we have used NdOFeAs as a representative and measured Nd L_3-XANES on the undoped and F-substituted system. Figure 4 shows the measured Nd L_3-XANES at room temperature on the NdOFeAs and the superconducting NdO$_{1-x}$F$_x$As system ($T_c \sim 49$ K). Both samples are in their tetragonal phase and hence the differences reflect the effect of F-substitution. The L_3-edge WL intensity shows a significant increase with F-doping, suggesting an increase of the localization of the RE empty d density of states [33]. In addition, a substantial change in peaks B_1 and B_2 can be seen (inset of figure 4).

Recently Sun et al [34] have studied CeO$_{1-x}$F$_x$FeAs by the Ce L_3-XANES system as a function of external pressure, revealing a drastic decrease of the WL intensity while the T_c decreases with increasing hydrostatic pressure. Incidentally, the results reported here show a more intense Nd L_3 WL for the superconducting system, and hence the increased intensity (more atomic like character) of the L_3 WL may be somehow related to the superconductivity. It is possible that the F-substitution in the NdOFeAs causes reduced hybridization between the Nd 5d and admixed 4f orbitals, similar to the 4f-superconductors [35], in which the superconductivity gets suppressed with increased hybridization.

On the other hand, the peak B_1 seems to show a different effect of F-doping. Indeed, peaks B_1 and B_2 tend to merge (peak B_1 hardly shows any shift while peak B_2 appears at a lower energy) The doping of F induces an increase of Nd–O/F distance; hence the shift of the peak B_2 towards lower energy is reasonable. On the other hand, the diffraction data reveal a shrinkage of the RE–As bonds; hence a shift of the peak B_1 towards higher energy should be expected, inconsistent with the present results. This may be due to the fact that diffraction tends to average local distortions and is thus less sensitive to localized structural distortions and possible nanoscale inhomogeneities [36, 37].

In summary, we have studied the RE L_3-XANES of the oxypnictides REOFeAs with variable rare earth ions to explore the valence electronic structure as well as the local geometry of the RE–O slab. While the L_3 white lines hardly show any change across the tetragonal to orthorhombic structural phase transition temperature, a clear change is observed in the spectral weight with the electron doping. In addition, the XANES features above the WL show a systematic change due to the varying local geometry with the rare earth size. The energy separation between the WL and the continuum resonances change consistently with a change of RE–As and RE–O distance, due to changing misfit between the FeAs and REO sub-layers. A systematic change of the relative intensities
of the continuum resonance features is also observed. Since
the vertical position of the As atom changes systematically
with the rare earth size (the As atom moves away from the
Fe–Fe plane due to the decreased Fe–As–Fe angle with
decreasing rare earth size [32]), this has a direct influence
on the local geometry of the REO slabs, as demonstrated by
the XANES spectra. The results suggest that the interlayer
coupling between the Fe–As and the spacer (REO) layer
may also play a role in the superconductivity mechanism
of the REOFeAs. Thus, the outcome of this work recalls
the recent debate on the misfit strain [5, 4] and out-of-plane
disorder controlled superconductivity in copper oxide high Tc
superconductors [22–24], bringing the two families onto the
same platform for discussion. Although it is difficult to argue
on the cause or consequence of the local structural changes
and the quantitative role of intra and interlayer coupling in
the correlating itinerant magnetism and superconductivity, the
present results certainly add a new experimental feedback to
understand the role of the structure and local chemistry in the
fundamental properties of REOFeAs oxypnictides.

Acknowledgments

The authors thank the Elettra staff for their help and coopera-
tion during the experimental run (proposal no. 20085317). We
also acknowledge Zhong-Xian Zhao and Z A Ren (Beijing)
for providing high quality samples for the present study. This
research has been partially supported by the COMEPHS (FP6-
STREP Controlling mesoscopic phase separation). One of us
(BJ) would like to acknowledge the MIUR (Italy) for a fellow-
ship under the Italy–India bilateral program.

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008
J. Am. Chem. Soc. 130 3296
[2] Ricci A, Poccia N, Ciacca G, Fratini M and Bianconi A 2009
J. Supercond. Nov. Magn. 22 589
[3] Fratini M et al 2008 Supercond. Sci. Technol. 21 092002
[4] Bianconi A, Bianconi G, Caprara S, Di Castro D,
Oyanagi H and Saini N L 2000 J. Phys.: Condens. Matter
12 10655
Bianconi A, Agrestini S, Bianconi G, Di Castro D and
Saini N L 2001 J. Alloys Compounds 317 537
Agrestini S, Saini N L, Bianconi G and Bianconi A 2003
J. Phys. A: Math. Gen. 36 9133
[5] Poccia N and Fratini M 2009 J. Supercond. Nov. Magn. 22 599
[6] Agrestini S, Castro D, Sansone M, Saini N L, Saccone A,
Negri S D, Giovannini M, Colapietro M and
Bianconi A 2001 J. Phys.: Condens. Matter 13 11689
[7] Ren Z et al 2008 Europhys. Lett. 83 17002
[8] Ishida K, Nakai Y and Hosono H 2009 J. Phys. Soc. Japan
78 062001
[9] Zhao J et al 2008 Nat. Mater. 7 953
[10] Huang Q, Zhao J, Lynn J W, Chen G F, Luo J L, Wang N L and
Dai P 2008 Phys. Rev. B 78 054529
[11] Zhao J et al 2008 Phys. Rev. B 78 132504
[12] De la Cruz C et al 2008 Nature 453 899
[13] Margadonna S, Takabayashi Y, McDonald M T, Brunelli M,
Wu G, Liu R H, Chen X H and Prassides K 2009 Phys. Rev.
B 79 014503
Kasperkiewicz K, Bos J W G, Fitch A N, Prassides K and
Margadonna S 2009 Chem. Commun. 707–9
[14] See e.g., Proceedings of the International Symposium on
Fe-Pnictide Superconductors 2008 J. Phys. Soc. Japan 77
(Suppl. C)
[15] See e.g., focus issue on iron based superconductors 2009 New
J. Phys. 11 025007
[16] See e.g., a short review by Izumyov Yu A and
Kurmaev E Z 2008 Phys.—Usp. 51 1261
[17] Lee C-H, Iyo A, Eisaki H, Kito H, Fernandez-Diaz M T, Ito T,
Kihou K, Matsuhata H, Braden M and Yamada K 2008
J. Phys. Soc. Japan 77 083704
Miyazawa K, Kihou K, Shigae P M, Lee C-H, Kito H,
Eisaki H and Iyo A 2009 J. Phys. Soc. Japan 78 034712
Lee C-H et al 2008 J. Phys. Soc. Japan 77 44
[18] Bianconi A, Dell’Ariccia M, Durham P J and Pendry J B 1988
Phys. Rev. B 26 6502
Bianconi A, Incocchia L and Stipcich S (ed) 1988 EXAFS and
Near Edge Structure (Berlin: Springer)
Bianconi A 1988 X-ray Absorption: Principles, Applications,
Techniques of EXAFS, SEXAFS, XANES ed R Prinz and
D Koningsberger (New York: Wiley)
[19] Journel L et al 2002 Phys. Rev. B 66 045106 and references therein
[20] Bianconi A, Marcelli A, Karnatak R, Despert H, Kotani A,
Jo T and Petiau J 1987 Phys. Rev. B 35 806
Chaboy J, Garcia J and Marcelli A 1997 J. Magn. Magn. Mater.
166 149
[21] Liu L, Gao B, Chu W, Chen D, Hu T, Wang C, Dunsch L,
Marcelli A, Luo Y and Wu Z 2008 Chem. Commun. 4 474–6
Fukui K, Ogasawara H, Kotani A, Harada I, Maruyama H,
Kawamura N, Kobayashi K, Chaboy J and Marcelli A 2001
Phys. Rev. B 64 104405
[22] Eisaki H, Kaneko N, Feng D L, Damascelli A, Mang P K,
Shen K M, Shen Z-X and Greven M 2004 Phys. Rev. B
69 064512
Fujita K, Noda T, Kojima K M, Eisaki H and Uchida S 2005
Phys. Rev. Lett. 95 097006
[23] Sun C, Yang H, Cheng Lu, Wang J, Xu X, Ke S and
Cao L 2008 Phys. Rev. B 78 104518
[24] Hobou H, Ishida S, Fujita K, Ishikado M, Kojima K M,
Eisaki H and Uchida S 2009 Phys. Rev. B 79 064507
[25] Ren Z et al 2008 Europhys. Lett. 82 57002
[26] Di Gioacchino D, Marcelli A, Zhang S, Fratini M, Poccia N,
Ricci A and Bianconi A 2009 J. Supercond. Nov. Mag.
22 549–52
[27] Bianconi A, Dell’Ariccia M, Gargano A and Natoli C R 1983
EXAFS and Near Edge Structure ed A Bianconi,
I. Incoccia and S Stipcich (Berlin: Springer) p 57
Bianconi A, Fritschi E, Calas G and Petiau J 1985 Phys. Rev. B
32 4292
[28] Ignatov A, Zhang C L, Vannucci M, Croft M, Tyson T A,
Kwok D, Qin Z and Cheong S-W 2008 arXiv:0808.2134
[29] Tan Z, Filipkowski M E, Budnick J I, Heller E K, Brewe D L,
Chambers B L, Bouldin C E, Woicik J C and Shi D 1990
Phys. Rev. Lett. 64 2593
[30] Tan Z, Budnick J I, Chen W Q, Brewe D L, Cheong S-W,
Cooper A S and Rupp L W 1990 Phys. Rev. B 42 4808
Tan Z, Budnick J I, Luo S, Chen W Q, Cheong S-W, Cooper A S,
Canfield P C and Fisk Z 1991 Phys. Rev. B 44 7008
Tan Z, Heald S M, Cheong S-W, Cooper A S and
Budnick J I 1992 Phys. Rev. B 45 2593
[31] Wu Z Y, Benfatto M and Natoli C R 1992 Phys. Rev. B
45 531
Wu Z Y, Benfatto M and Natoli C R 1998 Phys. Rev. B
57 10336
[32] Mustre de Leon J, Lezama-Pacheco J, Bianconi A and
Saini N L 2009 J. Supercond. Nov. Mag. 22 579–83
[33] Iadecola A, Agrestini S, Filippini M, Simonelli L, Fratini M,
Joseph B, Mahajan D and Saini N L 2009 Europhys. Lett.
87 26005
[34] Chaboy J, Marcelli A, Marziali M, Gwosz O, Stizza S and
Zianovskii J 1993 J. Phys. Appl. Phys. 32 Suppl. 32–2
797
[35] Sun L et al 2009 arXiv:0907.4212v1
[35] Onuki Y and Kitaoka Y (ed) 2007 J. Phys. Soc. Japan
 76 051001 special issue of Frontiers of Novel
 Superconductivity in Heavy Fermion Compounds
 see also, a brief review by Steglich F 2005 J. Phys. Soc. Japan
 74 167

[36] Zhang C J, Oyanagi H, Sun Z H, Kamihara Y and
 Hosono H 2008 Phys. Rev. B 78 214513

[37] Sato M, Kobayashi Y, Lee S-C, Takahashi H and Miura Y 2009
 arXiv:0902.3007v1