A novel authigenic magnetite source for sedimentary magnetization

Zhiyong Lin1,2,3,*, Xiaoming Sun1,3,4,5, Andrew P. Roberts6, Harald Strauss2, Yang Lu7, Xin Yang1, Junli Gong1, Guanhua Li4, Benjamin Brunner8 and Jörn Peckmann7

1School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
2Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Münster D-48149, Germany
3Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510006, China
4School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
5Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
6Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
7Institut für Geologie, Zentrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg D-20146, Germany
8Department of Geological Sciences, The University of Texas at El Paso, El Paso, Texas 79902, USA

ABSTRACT

We report a novel authigenic nanoscale magnetite source in marine methane seep sediments. The magnetite occurs in large concentrations in multiple horizons in a 230 m sediment core with gas hydrate–bearing intervals. In contrast to typical biogenic magnetite produced by magnetotactic bacteria and dissimilatory iron-reducing bacteria, most particles have sizes of 200–800 nm and many are aligned in distinctive structures that resemble microbial precipitates. The magnetite is interpreted to be a byproduct of microbial iron reduction within methane sediments with rapidly changing redox conditions. Iron sulfides that accumulated at a shallow sulfate-methane transition zone were oxidized after methane seepage intensity decreased. The alteration process produced secondary iron (oxyhydr)oxides that then became a reactive iron source for magnetite authigenesis when methane seepage increased again. This interpretation is consistent with 13C depletion in coexisting carbonate nodules. The authigenic magnetite will record younger palaeomagnetic signals than surrounding sediments, which is important for palaeomagnetic interpretations in seep systems. The microbial and possibly abiotic processes that caused these magnetic minerals to form at moderate burial depths remain to be determined.

INTRODUCTION

Magnetic signals preserved in sediments provide fundamental information for ancient tectonic, geomagnetic field, and environmental reconstructions. Sedimentary magnetic signals have traditionally been thought to be dominated by detrital magnetic iron-oxide particles, while biogenic magnetite with magnetically ideal stable single-domain (SD) properties has proven more recently to be a significant recorder of strong and stable sedimentary remanences over geological time scales (Chang and Kirschvink, 1989; Kopp and Kirschvink, 2008; Roberts et al., 2012). There are two main pathways for biomeralization of ultrafine biogenic magnetite in sediments, one of which is used by magnetotactic bacteria (MTB) and the other by dissimilatory iron-reducing bacteria (DIRB) (Moskowitz, 1995; Roberts, 2015). Intracellular magnetite produced by MTB has well-defined sizes, morphologies, chain arrangements, and stoichiometries (Devouard et al., 1998; Kopp and Kirschvink, 2008). The magnetic nanoparticulate remains of MTB are preserved post-mortem as magnetofossils and are found in diverse sedimentary environments (Chang and Kirschvink, 1989). In contrast, extracellular authigenic magnetite produced by DIRB (Lovley et al., 1987) is thought to have sizes <20 nm in diameter (Li et al., 2009) with magnetically unstable superparamagnetic properties (Moskowitz et al., 1993). Although dissimilatory iron reducers occur widely in anoxic subsurface sediments, geological preservation of extracellular magnetite has been documented only rarely (e.g., Roberts, 2015).

MAGNETIC SIGNALS RECORDED IN METHANIC SEDIMENTS

The study site GMGS2-16 is situated on the passive continental margin of the northern South China Sea (Fig. 1), which contains large basins with thick sedimentary sequences that have been deformed by movement along tectonic lineaments (McDonnell et al., 2000). Abundant methane-derived carbonates and gas hydrates (Fig. 1) confirm that methane seepage occurs widely in the study area (see the Supplemental Material for materials and methods).

Mass magnetic susceptibility (χ) of sediments in core GMGS2-16 has large variations

*E-mails: linzhiy9@mail.sysu.edu.cn; eessxm@mail.sysu.edu.cn

© 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license.

Manuscript received 26 June 2020
Revised manuscript received 18 September 2020
Manuscript accepted 25 September 2020

CITATION: Lin, Z., et al., 2020, A novel authigenic magnetite source for sedimentary magnetization: Geology, v. 49, p. XXX–XXX, https://doi.org/10.1130/G48069.1

© 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license.
www.gsapubs.org | Volume XX | Number XX | GEOLOGY | Geological Society of America

(Fig. 2A). Peak \(\chi \) values (>\(2 \times 10^{-4} \) m\(^3\) kg\(^{-1}\)) occur in multiple layers with nodular magnetic mineral aggregates (Figs. 3A and 3B; Fig. S1 in the Supplemental Material). In contrast, \(\chi \) has low and constant values of \(\sim 1.0 \times 10^{-4} \) m\(^3\) kg\(^{-1}\) in intervals without magnetic aggregates.

To characterize the magnetic domain state and magnetostatic interactions of magnetic particles, first-order reversal curve (FORC) measurements (Pike et al., 1999) were produced for bulk sediments. FORC diagrams for low-\(\chi \) samples reveal a low-coercivity component and a magnetostatically interacting higher-coercivity SD component (Fig. 2E1; Figs. S2A–S2C); the latter is typical of greigite-bearing sediments that have experienced...
diagenetic sulfidization and magnetic dissolution (Roberts et al., 2018). In contrast, similar FORC diagrams were produced for samples with peak χ values (Figs. 2E2–2E4; Fig. S2D), which indicate the presence of stable SD particles with strong magnetostatic interactions and/or vortex-state particles (see Roberts et al. [2017] for signatures of vortex-state particles). Equidimensional SD magnetite has sizes in the ~ 20–75 nm range, and vortex-state particles have sizes in the hundreds of nanometers range (Muxworthy and Williams, 2009).

- X-ray diffraction (XRD) analysis reveals that magnetite is the sole magnetic phase in the magnetic mineral extracts (Fig. 2F). This was confirmed by observations of clustered ultrafine particles within the magnetite aggregates, which range mainly from 200 to 800 nm in size (Fig. 3; Fig. DR3). Rarely, aligned magnetite particles were found (Figs. 3E and 3F; Figs. S3F–S3H), which differ from magnetofossil chains and are more similar to microbially formed structures (e.g., Johannessen et al., 2020). Individual particles are mainly spherical (Fig. 3G) or clustered euhedral crystals (Figs. 3H and 3I). Both particle types also occur as smaller nanocrystals (Figs. 3G–3I) with single-crystal sizes ranging from 10 to 20 nm (Figs. 3J–3L).

NATURE OF THE MAGNETITE NANOPARTICLES

Magnetite in marine sediments generally originates from detrital inputs from land or as an authigenic mineral that forms during diagenesis (Roberts, 2015). The ultrafine, well-crystallized, and aggregated nature of the studied particles...
expected to be reduced in sulfidic environments. This is unusual because magnetite is the identified authigenic magnetite accumulated (cf. Chen et al., 2016; Lin et al., 2018). Most of \(\delta^{2016} \), co-occurrence of bivalve shells, and low enrichments in carbonate nodules (Chen et al., 2016) would also promote iron-sulfide mineral oxidation. Wüstite (Roberts, 2015). Abundant euhedral magnetite in such a sulfidic environment is puzzling and indicates that magnetite formation postdated most of the carbonate and pyrite formation at paleo-SMTZs, after the environment became hydrogen sulfide limited.

We propose the following scenario for magnetite authigenesis driven by microbial iron reduction within methanic sediments that undergo dynamic methane seepage changes (Fig. 4). Vertical SMTZ movement and variable redox conditions occur commonly in this gas hydrate-bearing area (Z. Lin et al., 2016). In initial stages with high methane fluxes, sulfide production would cause pyrite accumulation at a shallow SMTZ. When seepage diminishes, downward-moving, seawater-derived oxidizing fluids would promote iron-sulfide mineral oxidation at the former SMTZ, leading to secondary iron (oxyhydr)oxide formation at paleo-SMTZs. Gypsum formation (Q. Lin et al., 2016). High porosity and permeability in coarse sediments (Chen et al., 2016) and advective seawater transport due to convective fluxes at seeps (Aloisi et al., 2004) would facilitate sulfide mineral oxidation.

An ensuing change fromoxic to methanic environments would then have been caused by a resurgence of high methane fluxes (Lin et al., 2018). Rapid sediment burial (e.g., mass wasting; Wang et al., 2016) would also promote iron (oxyhydr)oxide preservation during burial into a methanic environment. The presence of wüstite (FeO; Fig. 2F) suggests a sulfide-free Fe\(^{2+}\)-rich environment (cf. Kolo et al., 2009) and also indicates rapid burial of reactive iron (oxyhydr) oxides without further alteration by sulfidization.

Magnetite authigenesis has not been identified previously in methanic sediments, although microbial iron reduction is observed commonly in similar sedimentary settings (Egger et al., 2014; Riedinger et al., 2014; Amiel et al., 2020). Microbial iron reduction in methanic zones can be driven by (1) DIRB outcompeting methanogens for organic substrates (Thamdrup, 2000), (2) methanogens that switch from methanogenesis to iron reduction with an unidentified electron donor that does not appear to be methane (Sivan et al., 2016), or (3) iron reduction coupled to anaerobic oxidation of methane (Beal et al., 2009; Egger et al., 2014). Extracellular titanomagnetite has been identified under nearly natural methanic conditions in culture with the archaean *Methanosarcina Barkeri* (Shang et al., 2020). Based on this observation, microbiologically driven magnetite authigenesis with iron (oxyhydr)oxides as an electron acceptor (Fig. 3B; Fig. S1) could be feasible in methanic sediments. Organic substrates for dissimilatory iron reduction are probably scarce when these sediments are subjected to methanic conditions, which suggests that coupling of iron reduction to anaerobic oxidation of methane is the most likely process. Although the nature of iron reduction in methanic sediments is not clear, the presence of both microorganisms with iron reducing abilities and reactive Fe\(^{2+}\)-bearing minerals is essential for the process to occur. Methanogenic and/or methanotrophic archaea are present throughout the studied core (Cui et al., 2019). The presence of iron (oxyhydr)oxides in methanic sediments at site GMGS2-16 would, thus, allow authigenic magnetite formation by microbial iron reduction. Irrespective of the lack of laboratory culture studies of magnetite formation mechanisms in methanic sediments, the proposed scenario...
ACKNOWLEDGMENTS

This research was funded by the National Key Research and Development Program of China (grant 2018YFC0310004 and 2018YFA0702605), the National Natural Science Foundation of China (grants 41806049, 41876038, and 91128101), the Guangdong Special Fund for Economic Development (Marine Economy, grant GDME-2016D001), the China Geological Survey Project for South China Sea Gas-Hydrate Resource Exploration (grant DD20160211), and the Australian Research Council (grant DP200100765). Zhiyong Lin acknowledges the International Postdoctoral Exchange Fellowship Program provided by the China Postdoctoral Council (20180053). We thank Shengxiong Yang and Guangxue Zhang for providing samples. Comments by Max Coleman, Ramon Egli, and an anonymous reviewer helped to improve the paper.

REFERENCES CITED

Aloisi, G., Wallmann, K., Haese, R.R., and Salighe, J.-F., 2004, Chemical, biological and hydrological controls on the 31C content of cold seep carbonate crusts: Numerical modeling and implications for convection at cold seeps: Chemical Geology, v. 213, p. 359–383, https://doi.org/10.1016/j.chemgeo.2004.07.008.

Amiel, N., Shaar, R., and Sivan, O., 2020. The effect of early diagenesis in methane sediments on sedimentary magnetic properties: Case study from the SE Mediterranean continental shelf: Frontiers of Earth Science, v. 8, 283, https://doi.org/10.3389/feart.2020.00283.

Beal, E.J., House, C.H., and Orphan, V.J., 2019, Mangane-

see- and iron-dependent marine methane oxidation: Science, v. 325, p. 184–187, https://doi.org/10.1126/science.1169984.

Boezius, A., Ravensclag, K., Schubert, C.J., Rickert, D., Wildel, F., Gieseke, A., Amann, R.T., Jorgensen, B.B., Wüsten, U., and Pfankuche, O., 2000, A marine microbial consortium apparently mediating anaerobic oxidation of methane: Nature, v. 407, p. 623–626, https://doi.org/10.1038/35035672.

Chang, S.B.R., and Kirschvink, J.L., 1989, Magneto-
fossils in the magmatization of sediments, and the evolution of magmatic biomagnetization: Annual Review of Earth and Planetary Sciences, v. 17, p. 169–195, https://doi.org/10.1146/annurev.ea.17.050189.001125.

Chen, F., Hu, Y., Feng, D., Zhang, X., Cheng, S., Cao, J., Lu, H., and Chen, D., 2016, Evidence of intense methane seeps from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea: Chemical Geology, v. 443, p. 173–181, https://doi.org/10.1016/j.chemgeo.2016.09.029.

Cui, H., Su, X., Chen, F., Holland, M., Yang, S., Li, Lin, Z., Sun, X., Lu, Y., Xu, L., Gong, J., Lu, H., Teichert, B.M.A., and Peckmann, J., 2016, Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea: Journal of Asian Earth Sciences, v. 123, p. 213–223, https://doi.org/10.1016/j.jseaes.2016.04.007.

Lin, Z., Sun, X., Lu, Y., Xu, L., Gong, J., Lu, H., Teichert, B.M.A., and Peckmann, J., 2016, Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea: Journal of Asian Earth Sciences, v. 123, p. 213–223, https://doi.org/10.1016/j.jseaes.2016.04.007.

Lin, Z., et al., 2018, Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimen-
tary environment: Marine Geology, v. 403, p. 271–284, https://doi.org/10.1016/j.margeo.2018.06.010.

Lovley, D.R., Stolz, J.F., Nord, G.L., and Phillips, E.J., 1987, Anaerobic production of magnetite by a dissimilatory iron-reducing microorgan-
ism: Nature, v. 328, p. 252–254, https://doi.org/10.1038/328252a0.

McDonnell, S.L., Max, M.D., Cherckis, N.Z., and Czarnecki, M.F., 2000, Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan: Marine and Petroleum Geology, v. 17, p. 929–936, https://doi.org/10.1016/S0264-8172(00)00023-4.

Moskowitz, B.M., 1995, Biomagnetization of mag-
netic minerals: Reviews of Geophysics, v. 33, p. 123–128, https://doi.org/10.1029/95RG00043.

Moskowitz, B.M., Frankel, R.B., and Bazylinski, D.A., 1993, Rock magnetic criteria for the detection of biogenic magnetite: Earth and Planetary Science Letters, v. 120, p. 283–300, https://doi.org/10.1016/0012-821X(93)00245-5.

Muxworthy, A.R., and Williams, W., 2009, Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals: Journal of the Royal Society Interface, v. 6, p. 1207–1212, https://doi.org/10.1098/rsif.2008.0462.

Pike, C.R., Roberts, A.P., and Verosub, K.L., 1999, Characterizing interactions in fine magnetic
particle systems using first order reversal curves: Journal of Applied Physics, v. 85, p. 6660–6667, https://doi.org/10.1063/1.370176.

Riedinger, N., Pfeifer, K., Kasten, S., Garming, J.F.L., Vogt, C., and Hensen, C., 2005, Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate: Geochimica et Cosmochimica Acta, v. 69, p. 4117–4126, https://doi.org/10.1016/j.gca.2005.02.004.

Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A., and Kasten, S., 2014, An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments: Geobiology, v. 12, p. 172–181, https://doi.org/10.1111/gbi.12077.

Roberts, A.P., 2015, Magnetic mineral diagenesis: Earth-Science Reviews, v. 151, p. 1–47, https://doi.org/10.1016/j.earscirev.2015.09.010.

Roberts, A.P., Chang, L., Heslop, D., Florindo, F., and Larrañaga, J.C., 2012, Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations: Journal of Geophysical Research, v. 117, B08104, https://doi.org/10.1029/2012JB009412.

Roberts, A.P., Almeida, T.P., Church, N.S., Harrison, R.J., Heslop, D., Li, Y., Li, J., Muxworthy, A.R., Williams, W., and Zhao, X., 2017, Resolving the origin of pseudo-single domain magnetic behavior: Journal of Geophysical Research: Solid Earth, v. 122, p. 9534–9558, https://doi.org/10.1002/2017JB014860.

Roberts, A.P., Zhao, X., Harrison, R.J., Heslop, D., Muxworthy, A.R., Rowan, C.J., Larrañaga, J.C., and Florindo, F., 2018, Signatures of reductive magnetic mineral diagenesis from unmixing of first-order reversal curves: Journal of Geophysical Research: Solid Earth, v. 123, p. 4500–4522, https://doi.org/10.1029/2018JB015706.

Sha, Z., Liang, J., Zhang, G., Yang, S., Lu, J., Zhang, Z., McConnell, D.R., and Humphrey, G., 2015, A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations: Marine Geology, v. 366, p. 69–78, https://doi.org/10.1016/j.margeo.2015.04.006.

Sha, Z., Xu, Z., Fu, S., Liang, J., Zhang, W., Su, P., Lu, H., and Lu, J., 2019, Gas sources and its implications for hydrate accumulation in the eastern Pearl River Mouth Basin: Haiyang Dizhi Yu Disiji Dizhi (Marine Geology and Quaternary Geology), v. 39, p. 116–125, https://doi.org/10.16562/j.cnki.0256-1492.2019010902 (in Chinese with English abstract).

Shang, H., Daye, M., Sivan, O., Borlina, C.S., Tamura, N., Weiss, B.P., and Bosak, T., 2020, Formation of zero-valent iron in iron-reducing cultures of Methanosarcina barkeri: Environmental Science & Technology, v. 54, p. 7354–7365, https://doi.org/10.1021/acs.est.0c01595.

Sivan, O., Shusta, S.S., and Valentine, D.L., 2016, Methanogens rapidly transition from methane production to iron reduction: Geobiology, v. 14, p. 190–203, https://doi.org/10.1111/gbi.12172.

Thamdrup, B., 2000, Bacterial manganese and iron reduction in aquatic sediments: Advances in Microbial Ecology, v. 16, p. 41–84, https://doi.org/10.1007/978-1-4615-4187-5_2.

Wang, L., Yu, X., Tyson, S., Li, S., Kuang, Z., Sha, Z., Liang, J., and He, Y., 2016, Submarine landslides, relationship with BSRs in the Dongsha area of South China Sea: Petroleum Research, v. 1, p. 59–69, https://doi.org/10.1016/S2096-2495(17)30031-5.

Printed in USA