Effect of different genotypes of *Tithonia diversifolia* on fermentation of feed mixtures with *Urochloa brizantha* cv. Marandú

Julian Rivera⁠⁠A,E, Julian Chará⁠⁠B, Jacobo Arango⁠⁠C, and Rolando Barahona⁠⁠D

**Abstract.** *Tithonia diversifolia* (Mexican sunflower) is a shrub used for animal feed that has outstanding agronomic and chemical characteristics. Its potential to modify the dynamics of fermentation and improve the supply of nutrients to ruminants has received considerable attention. This study was designed to determine the effect of different genotypes of *T. diversifolia* on ruminal fermentation and degradation of dry matter (DM), concentration of volatile fatty acids, and production of methane (CH₄) when mixed with a low-quality tropical grass, *Urochloa brizantha* (palisade grass). In a randomised complete block design, mixtures of seven genotypes of *T. diversifolia* with *U. brizantha* cv. Marandú were evaluated by using the in *vitro* gas production technique. The effect of fertilisation was also evaluated for each genotype. Inclusion of *T. diversifolia* significantly (*P* < 0.05) increased the supply of nutrients and modified fermentation parameters. DM degradation of biomass after 72 h was greater in the presence of *T. diversifolia* than for feeds based only on *U. brizantha* (68.0% vs 63.4%; *P* < 0.01). CH₄ production was lower (*P* < 0.05) during fermentation with some *T. diversifolia* genotypes (25.3 vs 27.7 mg CH₄ g⁻¹ incubated DM), and the acetic:propionic acid ratio was also lower. Fertilisation of *T. diversifolia* genotypes increased DM degradation, increased the content of certain nutrients (e.g. crude protein) and modified CH₄ production. Therefore, inclusion of *T. diversifolia* in mixtures based on low-quality tropical grasses such as *U. brizantha* increases the supply of nutrients (crude protein, minerals, energy) and can modify the products of enteric fermentation, with some genotypes decreasing enteric CH₄ emissions.

**Keywords:** chemical composition, methane emission, Mexican sunflower, ruminal fermentation, volatile fatty acids.

Received 8 February 2021, accepted 15 April 2021, published online 10 August 2021

**Introduction**

Under tropical and subtropical conditions, there are many shrub species with the ability to produce high amounts of highly nutritional biomass, constituting a reliable alternative for the development of highly productive and resource-efficient grazing systems (Rivera et al. 2018). Despite such richness, only some species are empirically used in cattle systems, limiting their true productive potential (Halmemies-Beauchet-Filleau et al. 2018). Identifying fodder species with the ability to produce adequate amounts of forage with high nutritional quality is a need that must be satisfied to generate efficient grazing systems in compliance with current environmental and productive requirements (Valenciaga et al. 2018).

In recent years, *Tithonia diversifolia* (Hemsl.) A.Gray (Mexican sunflower) has gained the attention of researchers due to its potential to increase rumen fermentative efficiency and degradation, as well as to modulate fermentation dynamics of feed offered under grazing conditions (Rivera et al. 2013; Terry et al. 2016; Ribeiro et al. 2016; Galindo-Blanco et al. 2018). In countries such as Mexico, Argentina, Brazil and Colombia, *T. diversifolia* is propagated by using asexual material from existing crops and wild plants; however, in recent years, there have been advances in seed propagation (Santos-Gally et al. 2020).

The benefits of *T. diversifolia* come from its superior nutritional value due to its high content of crude protein (CP), minerals and energy, low fibre content, the presence of beneficial phytochemical compounds such as phenolics, flavonoids and some essential oils, and its ability to adapt to different soil and climatic conditions including acidic and low-fertility soils (Chagas-Paula et al. 2012; Mauricio et al. 2017).

Some phytochemical compounds in *T. diversifolia* can decrease enteric methane (CH₄) production and modify gas production rates through inhibitory effects on specific groups.
of rumen microorganisms (Barahona et al. 2003; Delgado et al. 2012; Banik et al. 2013; Bhatta et al. 2013). Furthermore, the diversity of T. diversifolia in Latin America is very high (Rivera et al. 2019), and this shrub could represent part of a strategy to diversify nutrients available to ruminants and to modify rumen fermentation patterns, including enteric CH4 emissions.

The addition of 30% T. diversifolia to a diet based on Cynodon nlemfuensis led to reduced CH4 production in in vitro studies (Delgado et al. 2012), likely due to the presence of T. diversifolia secondary metabolites such as tannins, flavonoids, saponins and alkaloids that reduce rumen protozoan populations, which share a symbiotic relationship with ruminal CH4-producing methanogens (Hook et al. 2010).

Rivera et al. (2019) identified different T. diversifolia genotypes with wide phenotypic diversity and adaptation to diverse agroecological conditions, and some of these genotypes had high nutritional quality. The present study evaluated whether these genotypes also differ in in vitro fermentation and degradation, the production of volatile fatty acids (VFAs) and the generation of CH4 when included as a part of forages commonly offered to grazing ruminants in the lowland tropics.

Materials and methods

Plant materials and localisation

Seven of the best performing T. diversifolia genotypes were collected in experimental plots under lowland tropic conditions (Meta, Colombia: 3°47’21.43”N, 73°49’15.93”W; 530 m a.m.s.l.). The selected and collected genotypes presented outstanding performance in the production of biomass, number of stems and overall growth and exhibited genetic differences by cluster analysis (Shannon index 0.442 and Nei genetic diversity 0.2812). The experiment was a randomised complete block design in which half of the plots with the seven genotypes were fertilised, and the other half was not fertilised, allowing the value obtained to be corrected by the blank flask weight (i.e. bottle without forage sample but containing buffer solution, reducing agent, and ruminal fluid).

In vitro assessments of DM degradability (IVDMD), VFAs (acetate, propionate and butyrate) and CH4 production were performed after 24 and 72 h of incubation. VFA determinations were made in the NUTRILAB-GRICA Laboratory of the University of Antioquia; filtered ruminal fluid (1 mL) was taken and added to 25% metaphosphoric acid (4 mL) to be stored at 4°C for further determination of VFAs. VFA concentration was assessed by high-performance liquid chromatography (20A Series; Shimadzu, Tokyo) using an Aminex HPX-87H column (300 mm by 7.8 mm) (Bio-Rad Laboratories, Hercules, CA, USA) with an ultraviolet/visible detector (UV/Vis, SPD-20AV) at 50°C and a wavelength of 210 nm; the mobile phase (0.005 M H2SO4) was used with a flow rate of 0.7 mL min⁻¹. The CH4 concentration was quantified by using a gas chromatograph (GC-2014; Shimadzu) with the following specifications: packed 1/800 stainless steel columns HAYESEP T 80/100 mesh 1.0 m, HAYESEP D 80/100 4 m, 1.5 P–N, 0.7 m Shimalite Q 100/180; column temperature 80°C; detector temperature FID = 250°C, ECD 325°C; methaneizer temperature 380°C; carrier gas nitrogen; column flow 30.83 mL min⁻¹, and injection volume managed by a loop with a capacity of 2 mL (International Centre for Tropical Agriculture, CIAT).

Chemical composition of assessed T. diversifolia genotypes

Plant materials were analysed for DM, CP, ash, ether extract, neutral detergent fibre (NDF), acid detergent fibre (ADF), calcium (Ca), phosphorus (P), total digestible nutrients, gross energy, net energy of lactation (NEL), total phenols and total tannins. These assessments were determined by near infrared spectroscopy (NIRS) (Ariza-Nieto et al. 2018), and levels of Ca and P were determined by atomic absorption and UV-Vis spectrophotometry based on methods NTC 5151 (ICONTEC 2003) and 4981 (ICONTEC 2001), respectively (Animal Nutrition Laboratory of the Colombian Corporation for Agricultural Research, AGROSAVIA). Total phenols and tannins were quantified according to the Folin-
|          | T. diversifolia genotypes in mixtures with U. brizantha: | Fertilisation | U. briz. alone | P-value and effect of: | s.e.m. |
|----------|--------------------------------------------------------|---------------|----------------|------------------------|-------|
|          | Gen. 1 | Gen. 2 | Gen. 3 | Gen. 4 | Gen. 5 | Gen. 6 | Gen. 7 | Not fertilised | Fertilised | Forage type | Fert. |
| DM (g 100 g⁻¹) | 20.65b | 20.23b | 20.19b | 20.32b | 20.18b | 20.23b | 20.26b | 20.41 | 20.25 | 22.11a | 0.028 | 0.320 | 0.10 |
| CP (g 100 g⁻¹ DM) | (19.97b) | (20.23b) | (20.01b) | (20.14b) | (20.11b) | (20.30b) | (20.14b) | | | | |
| Ash (g 100 g⁻¹ DM) | 16.50ab | 16.63ab | 16.64ab | 16.30b | 16.49ab | 16.69ab | 17.21ab | 16.62 | 17.66 | 11.81c | <0.0001 | <0.001 | 0.23 |
| EE (g 100 g⁻¹ DM) | 10.31a | 10.13a | 10.40a | 10.29a | 10.60a | 10.50a | 10.37a | 10.37 | 10.39 | 8.71b | <0.0001 | 0.787 | 0.07 |
| NDF (g 100 g⁻¹ DM) | 1.68 | 1.61 | 1.62 | 1.70 | 1.61 | 1.61 | 1.62 | 1.65 | 1.64 | 1.7 | 0.775 | 0.636 | 0.01 |
| Ca (g 100 g⁻¹ DM) | (1.65) | (1.63) | (1.67) | (1.70) | (1.62) | (1.63) | (1.65) | | | | |
| P (g 100 g⁻¹ DM) | 0.75a | 0.82a | 0.81a | 0.78a | 0.76a | 0.77a | 0.70a | 0.77 | 0.64 | 0.43b | <0.0001 | <0.001 | 0.02 |
| TDN (g 100 g⁻¹ DM) | (0.66ab) | (0.66ab) | (0.62ab) | (0.61ab) | (0.63ab) | (0.69a) | (0.64ab) | | | | |
| GE (MJ kg⁻¹) | 2.19a | 2.10a | 2.11a | 2.03ab | 1.74b | 1.97ab | 1.86 | 1.67 | 1.53b | <0.0406 | <0.001 | 0.11 |
| NE₁ (MJ kg⁻¹) | 5.48ab | 5.44b | 5.44b | 5.44b | 5.44b | 5.44b | 5.48ab | 5.48 | 5.52 | 4.90c | 0.0003 | 0.034 | 0.04 |
| TP (g 100 g⁻¹ DM) | 1.46a | 1.81a | 1.48a | 1.57a | 1.34a | 1.32a | 1.45a | 1.49 | 0.82 | 0.65b | <0.0111 | <0.001 | 0.09 |

Table 1. Chemical composition of forage comprising Urochloa brizantha cv. Marandú alone and in 75:25 mixtures with individual genotypes of Tithonia diversifolia that were either not fertilised or fertilised (in parentheses)
Ciocalteu methodology (Animal Nutrition & Forages Quality Laboratory, CIAT).

Experimental design and statistical analyses
Gas production data were adjusted to the Gompertz nonlinear model (Lavrenčič et al. 1997) with the aim of performing a more accurate biological interpretation of the gas production results. Mixtures and control treatments were compared by means of a randomised complete block design with three replicates where blocks corresponded to sites from which the materials of T. diversifolia genotypes (experimental plots) were collected; Rivera (2020) planted T. diversifolia genotypes in blocks according to different chemical and physical soil conditions:

\[ y_{klj} = \mu + a_k + b_l + c_{kl} + d_{lj} + e_{ijkl} \]

where \( \mu \) is mean of the overall effect; \( a_k \) is factor effect \( k \) (collected genotypes 1, 2, 3 ... 7); \( b_l \) is factor effect \( l \) (fertilisation level 1, 2); \( c_{kl} \) is block effect; \( d_{lj} \) is factor interaction; \( e_{ijkl} \) is random value, experimental error of experimental unit \( k,l,j \); and \( y_{klj} \) is observation in the experimental unit of the variable to evaluate.

The incubations were performed during one run; the experimental units corresponded to the plots where the forages were collected (feeds); and each of the plots corresponded to the plots where the forages were collected and the incubation times, and the random effects corresponded to the plots where the forages were collected and the inoculums used in the incubation.

All analyses were performed using the RStudio tool and the agricolae and easynls libraries (R Foundation, Vienna, Austria). Differences between means were identified by Tukey’s contrast test applied at a significance level of \( P = 0.05 \), and the normality (Shapiro–Wilk) and homogeneity (Levene) of variance and additivity (Tukey’s test of additivity) were evaluated.

Results
Chemical composition
The chemical composition of the evaluated mixtures before fermentation is shown in Table 1. Compared with the grass-alone control treatment, inclusion of T. diversifolia resulted in significant \( (P < 0.05) \) differences in all variables except ether extract and gross energy; however, there were no significant differences among mixtures that included the different T. diversifolia genotypes. In general, including T. diversifolia decreased the DM and fibre content in the mixture and increased the content of minerals and NE\(_L\) \( (P < 0.05) \). Fertilisation of the seven genotypes of T. diversifolia increased \( (P < 0.05) \) CP and NE\(_L\) contents and decreased Ca compared with unfertilised plots. For total phenols and total tannins, no differences were observed among the genotypes, but there was an effect of fertilisation \( (P < 0.001) \).

In vitro fermentation
Inclusion of T. diversifolia modified some in vitro ruminal fermentation parameters (Table 2), with significant \( (P < 0.05) \)
effects on the maximum rate of gas production (MRGP) and lag phase (LP) variables but not on timing at the inflection point (TIP) or gas at the inflection point. Overall, fertilisation of *T. diversifolia* significantly increased MRGP (*P* = 0.004) and reduced TIP (*P* = 0.001). Among the mixtures, genotypes 1, 3 and 7 presented lower MRGP values, and mixtures of genotypes 2 and 3 higher LP values (average of fertilised and unfertilised; *P* = 0.007).

### Degradability of DM

There were no differences in IVDMD between the evaluated mixtures and the grass-alone control after 24 h (Table 3). By contrast, after 72 h of fermentation, mixtures that included *T. diversifolia* exhibited significantly (*P* < 0.05) higher IVDMD values than the grass-alone control treatment (68.0% vs 63.4%), with no significant differences in IVDMD among mixtures including *T. diversifolia*. Overall, fertilised *T. diversifolia* mixtures presented higher (*P* < 0.01) IVDMD than unfertilised mixtures.

### VFA production

After 24 h of incubation, the *U. brizantha* control had a lower (*P* = 0.0321) propionic acid concentration than mixtures that included genotypes 5, 6 and 7 of *T. diversifolia* (average of fertilised and unfertilised). Genotypes 2 and 4 yielded greater amounts of acetate among mixtures. In turn, the acetate:propionate ratios of all mixtures were significantly (*P* = 0.004) different from the *U. brizantha* control (Table 4). Genotype 6 + *U. brizantha* produced the lowest values for total VFA. After 72 h, there were significant (*P* < 0.05) differences for all assessed parameters. Inclusion of *T. diversifolia* was associated with reduced concentrations of acetic acid and higher levels of propionic acid. Likewise, the acetate:propionate ratio was reduced in all *T. diversifolia* mixtures.

### Methane production

Inclusion of *T. diversifolia* significantly favoured a decrease in CH₄ production compared with the *U. brizantha* control treatment, especially when CH₄ emissions were estimated per g DMD at 72 h (Table 5). On average, after 72 h of incubation, inclusion of *T. diversifolia* decreased the Ym units (CH₄ loss as a percentage of gross energy), and production of CH₄ (as mg per g incubated dry matter or DMD) by 0.99, 2.47 and 5.83, respectively. In addition, among *T. diversifolia* mixtures, those with genotypes 2, 4 and 7 had the lowest CH₄ production per g IDM (*P* = 0.006). The highest Ym was observed for the *U. brizantha* control and genotype 6 mixture.

### Discussion

Inclusion of *T. diversifolia* in tropical grass-based mixtures has been reported as a successful strategy for increasing nutrient supply, animal productivity, and stocking rate in tropical livestock systems (Rivera et al. 2015b; Ribeiro et al. 2016; Mejía-Díaz et al. 2017).

The results of this study demonstrated that replacing 25% (DM basis) of a tropical grass such as *Urochloa* sp. with *T. diversifolia* increased concentrations of CP, P, Ca and NE₄ in the forage by 45%, 39%, 65% and 12%, respectively. Furthermore, it decreased NDF and ADF contents in the biomass by 15% and 19%, respectively (Table 1). This improved supply of nutrients because the lower fibre content favours DM degradability, which is beneficial for increased nutrient utilisation in ruminants and hence production (Rivera et al. 2015b; Mauricio et al. 2017).

Regardless of the *T. diversifolia* genotype used, addition of this species to conventional tropical grass increased the nutritional value and degradability of the forage. This was further improved by fertilisation, which had positive effects on some nutrient contents (CP, NE₄) and degradability parameters. The nutritional value of the genotypes evaluated in the present study was, in general, higher than that found by LaO et al. (2012) for *T. diversifolia* ecotypes grown in Cuba. However, they identified an influence of the ecotypes on nutritional quality.

Galindo et al. (2011) and Galindo-Blanco et al. (2018) suggested that as a result of the phytochemical composition of *T. diversifolia*, its dietary inclusion in pasture-based mixtures modifies the rumen fermentation products, as observed in this evaluation. Changes in gas production might be due to a lower concentration of insoluble carbohydrates (Barahona and Sánchez 2005; Barahona et al. 2006) and a greater supply of nutrients, as well as optimisation of microbial fermentation when this shrub with a relatively high protein content is included in the feed mixture, as evident in the decrease of the LP in *T. diversifolia* mixtures (Table 2). The decreased
Table 4. Volatile fatty acid (VFA) production of forage comprising *Urochloa brizantha* cv. Marandú alone and in 75:25 mixtures with individual genotypes of *Tithonia diversifolia* that were either not fertilised or fertilised (in parentheses). Individual VFAs are measured in mol 100 mol\(^{-1}\); total VFAs in mmol L\(^{-1}\). Where an effect is significant, parameter means followed by the same letter are not significantly different according to the Tukey test at \(P = 0.05\); s.e.m., standard error of the mean.

| T. diversifolia genotypes in mixtures with U. brizantha: | U. briz. alone | Fertilisation | P-value for effect of: | s.e.m. |
|--------------------------------------------------------|----------------|--------------|------------------------|--------|
| Gen. 1 | Gen. 2 | Gen. 3 | Gen. 4 | Gen. 5 | Gen. 6 | Gen. 7 | Not fertilised | Fertilised |
|----------|----------|----------|----------|----------|----------|----------|----------------|-------------|
| 24 h of fermentation | | | | | | | | |
| Acetate (A) | 67.96abcd | 71.20ab | 68.67abcd | 67.28bcd | 69.53abc | 63.21d | 67.76abcd | 73.74a | 68.3 | 67.4 | 0.0018 | 0.217 | 0.48 |
| (68.22abcd) | (67.08bcd) | (67.36bcd) | (69.68abc) | (63.75cd) | (65.74bcd) | (67.08bcd) |
| Propionate (P) | 23.84abc | 20.49bc | 22.39abc | 23.32abc | 21.26abc | 27.21a | 22.59abc | 17.62c | 22.7 | 24.2 | 0.0013 | 0.079 | 0.59 |
| (22.33abc) | (24.50ab) | (23.88abc) | (22.80abc) | (27.76a) | (25.23ab) | (24.56ab) |
| Butyrate | 8.20ab | 8.31ab | 8.94ab | 9.40ab | 9.21ab | 9.58ab | 9.65a | 8.64ab | 9.01 | 8.61 | 0.0371 | 0.074 | 0.17 |
| (9.45ab) | (8.42ab) | (8.76ab) | (7.52b) | (9.03ab) | (9.03ab) | (8.65ab) |
| A:P ratio | 2.39bc | 3.51ab | 3.09bc | 2.89bc | 3.30abc | 2.37c | 3.01bc | 4.19a | 3.08 | 2.96 | 0.0013 | 0.073 | 0.08 |
| (3.07bc) | (2.75bc) | (2.83bc) | (3.07bc) | (2.30c) | (2.66bc) | (2.73bc) |
| Total VFAs | 113.6b | 105.5b | 115.9b | 85.0cde | 99.2bede | 77.1e | 97.4ab | 97.5 | 101.2 | 0.045 | 0.432 | 3.0 |
| (81.0de) | (104.2bc) | (97.7bcde) | (143.5a) | (95.6bcde) | (84.9cde) | (102.6bcd) |
| 72 h of fermentation | | | | | | | | |
| Acetate (A) | 64.10def | 68.91ab | 65.63f | 62.98bcd | 65.68bcde | 64.22bede | 65.52bcde | 67.03bcd | 72.89a | 64.53 | 66.74 | <0.001 | 0.0192 | 0.36 |
| (66.81ab) | (66.84bcde) | (68.31bc) | (65.78bcde) | (66.23bcde) | (64.67cde) | (66.41bcde) |
| Propionate (P) | 27.20abc | 28.30ab | 30.44a | 27.52abc | 25.30bc | 26.66bc | 26.33bc | 20.48d | 27.43 | 25.97 | <0.001 | 0.112 | 0.28 |
| (24.30c) | (24.15cd) | (25.40bc) | (27.52abc) | (26.84bc) | (26.99abc) | (26.57bc) |
| Butyrate | 8.80a | 8.39ab | 9.03a | 7.10cd | 8.48ab | 7.82bc | 6.62d | 6.64d | 8.03 | 7.3 | <0.001 | 0.006 | 0.17 |
| (6.80d) | (9.01a) | (6.29d) | (6.69d) | (6.93d) | (8.35ab) | (7.02cd) |
| A:P ratio | 2.36bcd | 2.19cd | 1.99d | 2.42bcd | 2.62bc | 2.46bcd | 2.55bc | 3.56a | 2.37 | 2.58 | <0.001 | 0.005 | 0.06 |
| (2.84b) | (2.78b) | (2.69b) | (2.39bcd) | (2.48bcd) | (2.40bcd) | (2.51bc) |
| Total VFAs | 125.1f | 179.5bcd | 157.7def | 217.5a | 144.1ef | 171.5bede | 177.2bcde | 199.2ab | 167.5 | 181.7 | <0.001 | 0.014 | 5.2 |
| (150.7def) | (164.1ede) | (219.0a) | (224.2a) | (167.0bcde) | (149.2def) | (197.5abc) |
Table 5. In vitro methane ruminal production of forage comprising *Urochloa brizantha* cv. Marandú alone and in 75:25 mixtures with individual genotypes of *Tithonia diversifolia* that were either not fertilised or fertilised (in parentheses) according to the Tukey test at *P* = 0.05; s.e.m., standard error of the mean, *Ym*, CH$_4$ loss as a percentage of gross energy; IDM, incubated dry matter; DMD, DM degradation. Where an effect is significant, parameter means followed by the same letter are not significant different.

| Gen   | *T. diversifolia* genotypes in mixtures with *U. brizantha* | Fertilised | Fert. type | Ym (%) | CH$_4$ (mg g$^{-1}$ IDM) | CH$_4$ (mg g$^{-1}$ DMD) | 24 h of fermentation |
|-------|-----------------------------------------------------------|------------|------------|--------|------------------------|------------------------|-----------------------|
|       |                                                           | alone      | Fert.      |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |
| Gen. 1 |                                                           |            |            |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |
| Gen. 2 |                                                           |            |            |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |
| Gen. 3 |                                                           |            |            |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |
| Gen. 4 |                                                           |            |            |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |
| Gen. 5 |                                                           |            |            |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |
| Gen. 6 |                                                           |            |            |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |
| Gen. 7 |                                                           |            |            |        |                        |                        |                       |
|       |                                                           |            |            |        |                        |                        |                       |

In this study, including *T. diversifolia* in the forage mixture changed the total amount of VFAs, and some genotypes modified the proportion of acetate to propionate. These changes in VFA concentrations can be explained by the smaller proportion of structural carbohydrates (i.e. cellulose, hemicellulose) in the feed, which ferment slowly (Martin et al. 2008). An increased content of structural carbohydrates in the forage shifts VFA production towards acetate and to a lesser extent towards propionate and butyrate (Martin et al. 2008; Terry et al. 2016). Changes in the acetate:propionate ratio have been associated with changes in CH$_4$ production both *in vitro* (Holtshausen et al. 2009) and *in vivo* (Eugène et al. 2011), and changes in the (acetate + butyrate):propionate ratio have also been associated with *in vivo* CH$_4$ production (Danielsson et al. 2012), with the generation of H$_2$ in the rumen reduced and rumen energy use improved (Williams et al. 2019).

Inclusion of *T. diversifolia* genotypes decreased ADF and NDF contents in the mixtures, which may have modified VFA production. Fertilisation also affected these parameters and degradability, likely due to increases in the proportion of leaves and a reduction in lignified structures such as stems, that in turn increased the soluble fraction.

Finally, regarding CH$_4$ production, inclusion of *T. diversifolia* decreased the concentration of this gas compared with *U. brizantha* alone, but no significant differences were observed among genotypes (Table 5). Delgado et al. (2012) reported that *T. diversifolia* has methane-
reducing properties when supplemented at 30% in a feed based on the forage grass *Cynodon dactylon* and indicated that this was due to the secondary metabolites present in *T. diversifolia*, such as condensed tannins, essential oils and saponins. Chagas-Paula et al. (2012). Ejelonu et al. (2017) reported that *T. diversifolia* contains over 150 phytochemical compounds, particularly sesquiterpene lactones, diterpenes, flavonoids, tannins and saponins, that modify ruminal microbial populations without affecting the degradability or utilisation of nutrients in the feed.

Concentrations of total phenols and tannins differed between *T. diversifolia* and *U. brizantha*. Phytochemical compounds and low fibre content present in *T. diversifolia* may explain the reduction of CH$_4$ emissions in mixtures containing this species. The efficacy of tannins in modulating fermentation dynamics depends on their molecular weight (Foo et al. 1997). In a comparison of seven tropical legumes, Barahona et al. (2006) showed that the inhibitory effect of tannins on the activity of microbial cellulolytic and hemicellulolytic enzymes varied according to their response to changes in anthocyanidin content and molecular weight. This underlines the importance of conducting studies to improve understanding of the dietary effects of *T. diversifolia* tannins.

Studies have evaluated the effect of *T. diversifolia* on CH$_4$ emissions (Terry et al. 2016; Ribeiro et al. 2016), although the results are contradictory. According to the results of these studies, the effect of *T. diversifolia* on CH$_4$ emissions depends on the percentage inclusion in the mixture and the quality of the basal forage diet, and apparently, some ecotypes of this species offer more phytochemical compounds such as essential oils and polyphenols.

Low contents of ADF (<40%) and NDF (<50%), acceptable amounts of soluble carbohydrates (>12%), high degradability (>70%) and high contents of CP (>20%) appear to be the main features that decrease CH$_4$ at the ruminal level. Yan et al. (2006) reported that reducing the contents of NDF and ADF to 1% decreased the g CH$_4$ emissions per kg IDM by 2.01 and 2.26, respectively. Those authors also reported that for every 1% increase in protein content, emission of enteric CH$_4$ decreased by 6.22 L kg$^{-1}$ DM consumed. Similarly, the consumption of grasses that are less lignified has a clear effect on ruminal digestibility and passage rate (O’Mara 2004). Thus, Blaxter and Clapperton (1965) reported that by decreasing the digestibility of forages from 75% to 55%, the emission of methane increases from 306 to 499 g day$^{-1}$. Lower fibre content and higher CP content could explain the decrease in CH$_4$ production found in this study with the inclusion of *T. diversifolia* in a basal diet of *U. brizantha* or another tropical pasture.

Finally, according to the results obtained, it is important to advance in vivo experiments using different levels of inclusion of *T. diversifolia* in the feed to analyse which chemical compound(s) from this species can significantly decrease CH$_4$ production.

**Conclusions**

We conclude that the use of *T. diversifolia* in lowland tropical mixtures improves the supply of nutrients, especially CP, energy and minerals, and decreases the dietary content of fibre regardless of the genotype used. Furthermore, owing to its chemical characteristics and nutrient content, *T. diversifolia* modifies fermentation parameters by increasing the production of propionic acid and the overall efficiency of the fermentative process and decreases the acetate:propionate ratio, with some differences observed among genotypes. Finally, the inclusion of some *T. diversifolia* genotypes in low-quality feed mixtures can reduce CH$_4$ emissions under in vitro conditions.

**Conflicts of interest**

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

**Funding information**

This study was conducted under the Colombian Sustainable Cattle Ranching project funded by the Government of the United Kingdom and the Global Environment Facility and received support from MINCIENCIAS (National Doctorates call 727, 2015) and contract 80740-006-2020.

**Compliance with ethical standards**

The work described herein was conducted using rumen fluid obtained from fistulated cattle maintained in accordance with the requirements of Colombian law No. 84/1989 and following protocol approved by the Ethics Committee of the Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria, CIPAV, assuring the welfare of animals used in the experiments.

**Acknowledgements**

The authors acknowledge the financial support received from the Colombian Sustainable Cattle Ranching project funded by the Government of the United Kingdom and the Global Environment Facility. We also thank El Porvenir farm owners for the permission to perform this study, the provision of data and the collaboration during the field work, as well as to MINCIENCIAS and the Colombian Autonomous Fund for Science, Technology and Innovation Francisco José de Caldas.

**References**

Ariza-Nieto C, Mayorga O, Mojica B, Parra D, Afanador-Tellez G (2018) Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. *Journal of Near Infrared Spectroscopy* 26, 44–52. doi:10.1177/0967035517774600

Banik BK, Durmic Z, Erskine W, Ghamkhar K, Revell C (2013) *In vitro* ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. *Crop & Pasture Science* 64, 935–942. doi:10.1071/CP13149

Barahona R, Sánchez S (2005) Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. *Ciencia y Tecnología Agropecuaria* 6, 69–82. doi:10.21930/reta.vol6_num1_art39

Barahona R, Lascano CE, Narvaez N, Owen E, Morris P, Theodorou MK (2003) *In vitro* degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. *Journal of the Science of Food and Agriculture* 83, 1256–1266. doi:10.1002/jsfa.1534
Barahona R, Sánchez S, Lascano CE, Owen E, Morris P, Theodorou MK (2006) Effect of condensed tannins from tropical legumes on the activity of fibrolytic enzymes from the rumen fungus Neocallimastix hurleyensis. *Enzyme and Microbial Technology* 39, 281–288. doi:10.1016/j.enzmictec.2005.10.011

Bhatta R, Saravanam M, Barua L, Sampath KT, Prasad CS (2013) Effect of plant secondary compounds on *in vitro* methane, ammonia production and ruminal protozoa population. *Journal of Applied Microbiology* 115, 455–465. doi:10.1111/jam.12238

Blaxter KL, Clapperton JL (1965) Prediction of amount of methane produced by ruminants. *British Journal of Nutrition* 19, 511–522. doi:10.1079/BJIN19650046

Botero-Londoño J, Gómez A, Botero M (2019) Rendimiento, parámetros agronómicos y calidad nutricional de la *Tithonia diversifolia* con base en diferentes niveles de fertilización. *Revista Mexicana de Ciencias Pecuarias* 10, 789–800. doi:10.22319/rmcp.v10i3.4667

Brooks A, Theodorou MK (1997) ‘Manual for gas production technique.’ (Institute of Grassland and Environmental Research (IGER): Aberystwyth, UK)

Chagas-Paula DA, Oliveira RB, Rocha BA, Da Costa FB (2012) Broils A, Theodorou MK (1997) A. *Revista Cubana de Ciencia Avícola* 37, 197–211.

Cunatas CA, Naranjo JF, Tarazona AM, Correa GA, Barahona R (2015) Dry matter and nutrient intake and diet composition in *Leucaena leucocephala*-based intensive silvopastoral systems. *Tropical and Subtropical Agroecosystems* 18, 303–311.

Danielsson R, Schnürer A, Arthurson V, Bertilsson J (2012) Methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. *Applied and Environmental Microbiology* 78, 6172–6179. doi:10.1128/AEM.00675-12

Delgado DC, Galindo J, González R, González N, Scull I, Dihigo L, Cairó J, Aldama AI, Moreira O (2012) Feeding of tropical trees and shrub foliage as a strategy to reduce ruminal methanogenesis: studies conducted in Cuba. *Tropical Animal Health and Production* 44, 1097–1104. doi:10.1016/j.tab.2011.04.023

Dhanao MS, López S, Dijkstra K, Davis DR, Sandeson R, Williams BA, Silesi ZY, France J (2000) Estimating the extent of degradation of ruminant feed from a description of their gas profiles observed in *in vitro* comparison of models. *British Journal of Nutrition* 83, 131–142. doi:10.1079/BJN20010019

Ejekwe OC, Elekofehintia OO, Adanalwob IG (2017) *Tithonia diversifolia* saponin-blood lipid interaction and its influence on immune system of normal wistar rats. *Biomedicine and Pharmacotherapy* 87, 589–595. doi:10.1016/j.biopha.2017.01.017

Eugène M, Martin C, Mialon MM, Krauss D, Renand G, Doreau M (2011) Dietary linseed and starch supplementation decrease methane production of fattening bulls. *Animal Feed Science and Technology* 166–167, 330–337. doi:10.1016/j.anifeedsci.2011.04.023

Fondevilla M, Barrios A (2001) La técnica de producción de gas y su aplicación al estudio del valor nutritivo de los forrajes. *Revista Cubana de Ciencia Avícola* 35, 197–211.

Foo LY, Lu Y, McNabb WC, Waghorn G, Uglyt MJ (1997) Proanthocyanidins from *Lotus pedunculatus*. *Phytochemistry* 45, 1689–1696. doi:10.1016/S0031-9422(97)00198-2

Galindo J, González N, Sosa A, Ruiz T, Torres V, Aldana A, Díaz H, Moreira O, Sarduy L, Noda A (2011) Efecto de *Tithonia diversifolia* (Hemsl.) A. Gray (botón de oro) en la población de protozooos y metanogémenos ruminales en condiciones in vitro. *Revista Cubana de Ciencia Avícola* 45, 33–37

Galindo-Blanco JL, Rodríguez-García I, González-Ibarra N, García-López R, Herrera-Villafraune M (2018) Sistema silvopastoral con *Tithonia diversifolia* (Hemsl.) A. Gray: efecto en la población microbiana ruminal de vacas. *Pastos y Forrajes* 41, 273–280.

Gallego-Castro LA, Mahecha-Ledesma L, Angulo-Arizala J (2016) Calidad nutricional de *Tithonia diversifolia* (Hemsl.) A. Gray bajo tres sistemas de siembra en el trópico alto. *Agronomía Mesoamericana* 28, 213–222. doi:10.15517/am.v28i1.21671

Gaviria-Urbí X, Naranjo-Ramírez JF, Bolívar-Vergara DM, Barahona-Rosales R (2015) Consumo y digestibilidad en novillos cebunios en un sistema silvopastoril intensivo. *Archivos de Zootecnia* 64, 21–27. doi:10.21071/az.v64i245.370

Halmemies-Beauchet-Filleau A, Rinne M, Lamminen M, Mapato C, Ampapon T, Wanapat M, Vanhatalo A (2018) Review: alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. *Animal* 12, s295–s309. doi:10.1079/BJ175173118802252

Holtshhausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister T, Odongo N (2009) Feeding saponin-containing *Yucca schidigera* and *Quillaja saponaria* to decrease enteric methane production in dairy cows. *Journal of Dairy Science* 92, 2809–2821. doi:10.3168/jds.2008-1843

Hook SE, Wright ADG, McBride BW (2010) Methanogens: methane producers of the rumen and mitigation strategies. *Archaea* 2010, 945785. doi:10.1155/2010/945785

ICONTEC (2001) ‘NTC 4981. Alimentos para animales. Determinación del contenido de fosforo.’ *MéTODO spectrofotoméTRICO.* (Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia)

ICONTEC (2003) ‘NTC 5151. Alimento para animales. Determinación de los contenidos de Calcio, Cobre, Hierro, Magnesio, Manganeso, Potasio, Sodio y Zinc. Método usando espectrometría de absorción atómica.’ (Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia)

LaO O, González H, Orozco A, Castillo Y, Ruiz O, Estrada A, Ríos F, Gutiérrez E, Bernal H, Valencia D, Castro BI, Hernández Y (2012) Composición química, degradabilidad ruminal in situ y digestibilidad in vitro de ecotipos de *Tithonia diversifolia* de interés para la alimentación de rumiantes. *Revista Cubana de Ciencia Avícola* 46, 47–53.

Lavrnicic A, Stefanov B, Susmel P (1997) An evaluation of the Gompertz model in degradability studies of forage chemical components. *Animal Science* 64, 423–431. doi:10.1177/0301661X9706400302

Leucaena leucocephala fed a diet based on soybean meal and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. *Journal of Animal Science* 86, 2642–2650. doi:10.2527/jas.2007-0774

Mauricio RM, Calsavara LHF, Ribeiro RS, Pereira LGR, Freitas DS, Paciullo DS, Barahona R, Rivera JE, Chará J, Murgueitio E (2017) Feeding ruminants using tropical trees and shrub as forage. *Agronomía Mesoamericana* 28, 371–387. doi:10.15517/ma.v28i2.22750

Martin C, Rouel J, Jouany JP, Doreau M, Chilliard Y (2008) Methane output–methane, ammonia–fl systems observed in vitro of ecotipos de *Tithonia diversifolia* de interés para la alimentación de rumiantes. *Revista Cubana de Ciencia Avícola* 46, 47–53.

Molina IC, Angarita E, Mayorga OL, Chará J, Barahona R (2016) Effect of condensed tannins from tropical legumes on the methane production of Lucerna heifers fed a diet based on *Cynodon plectostachyus*. *Livestock Science* 185, 24–29. doi:10.1016/j.livsci.2016.01.009
O’Mara F (2004) Greenhouse gas production from dairying: reducing methane production. Advances in Dairy Technology 16, 295–309.

Ørskov ER, McDonald I (1979) The estimate of protein degradability in the rumen from incubation measurements weighed according to rate of passage. The Journal of Agricultural Science 92, 499–503. doi:10.1017/S0021859600063048

Ribeiro RS, Terry SA, Sacamanto JP, Rocha e Silveira S, Bento CB, Silva EF, Montovani HC, Gama MAS, Pereira LG, Tomich TR, Mauricio RM, Chaves A (2016) Tithonia diversifolia as a supplementary feed for dairy cows. PLoS One 11, e0165751. doi:10.1371/journal.pone.0165751

Rivera J (2020) Variabilidad fenotípica y genética de Tithonia diversifolia (Hemsl.) A. Gray para la producción animal sostenible. PhD Thesis, Faculty of Agricultural Sciences, University of Antioquia, Medellin, Colombia.

Rivera JE, Naranjo JF, Cuartas CA, Arenas FA (2013) Fermentación in vitro y composición química de algunos forrajes y dietas ofrecidas bajo un sistema silvopastoril en el trópico de altura. Livestock Research for Rural Development 25, 174.

Rivera JE, Molina IC, Donney’s G, Villegas G, Chará J, Barahona R (2015a) Dinámica de fermentación y producción de metano en dietas de sistemas silvopastoriles intensivos con L. leucocephala y sistemas convencionales orientados a la producción de leche. Livestock Research for Rural Development 27, 76.

Rivera JE, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arenas FA, Chará J, Murqueuittio E (2015b) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPI), en la calidad y productividad de leche bovina en el piedemonte Amazonicano colombiano. Livestock Research for Rural Development 27, 189.

Rivera JE, Gómez-Leyva JF, Castaño K, Morales JG, Chará J, Barahona R (2017) Diversidad molecular, química y morfológica en materiales de Tithonia diversifolia (Hemsl.) Gray para la alimentación animal en Colombia y México. In ‘Memorias: IX Congreso Internacional Sobre Sistemas Silvopastoriles’. (Eds J Chará, P Peri, JE Rivera, E Murqueuittio, K Castaño) pp. 249–255. (Centro Para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV): Manizales, Colombia)

Rivera JE, Chará J, Gómez-Leyva JF, Ruiz T, Barahona R (2018) Variabilidad fenotípica y composición fitoquímica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development 30, 200. http://www.lrrd.org/lrrd30/12/river30200.html

Rivera J, Lopera J, Chará J, Gómez-Leyva J, Barahona R, Enrique E (2019) Genetic and morphological diversity of Tithonia diversifolia (Hemsl.) A. Gray for use in silvopastoral systems of Latin America. In ‘Book of abstracts 4th World Congress on Agroforestry’. (Eds C Dupraz, M Gomse, G Lawson) pp. 712. (CIRAD/INR/World Agroforestry: Montpellier)

Santos-Gally R, Muñoz M, Franco G (2020) Fruit heteromorphism and germination success in the perennial shrub Tithonia diversifolia (Asteraceae). Flora 271, 151686. doi:10.1016/j.flora.2020.151686

Terry SA, Ribeiro RS, Freitas DS, Delarota GD, Pereira LGR, Tomich CTR, Mauricio RM, Chaves AV (2016) Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Animal Production Science 56, 437–441. doi:10.1071/AN15560

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185–197. doi:10.1016/0377-8401(94)90171-6

Valenciaga D, López JR, Galindo J, Ruiz T, Montegudo F (2018) Cinética de degradación ruminal de materiales vegetales de Tithonia diversifolia recolectados en la región oriental de Cuba. Livestock Research for Rural Development 30, 186.

Williams SRO, Hannah WC, Jacobs JD, Moate PJ (2019) Volatilite fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals 9, 1006. doi:10.3390/ani9121006

Yan T, Mayne CS, Porter MG (2006) Effects of dietary and animal factors on methane production in dairy cows offered grass silage-based diets. International Congress Series 1293, 123–126. doi:10.1016/j.ics.2006.02.024

Yañez-Ruiz DR, Bannink A, Dijkstra J, Kebeab E, Morgavi DP, O’Kiely P, Reynolds CK, Schwarm A, Shingfield KJ, Yu Z, Hristov AN (2016) Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology 216, 1–18. doi:10.1016/j.anifeedsci.2016.03.016