Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo

Michael Levin
Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155-4243

ABSTRACT In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own \(V_{\text{mem}} \) but also by the \(V_{\text{mem}} \) of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in \(V_{\text{mem}} \) distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering \(V_{\text{mem}} \) gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which \(V_{\text{mem}} \) changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering.

INTRODUCTION Cell behavior is regulated by numerous distinct cues that impinge on them in vivo. Alongside chemical gradients (Huang et al., 2005; Geard and Willadsen, 2009; Niehrs, 2010; Ben-Zvi et al., 2011; Gershenson, 2012) and physical forces (Beloussov and Grabovsky, 2006; Beloussov, 2008; Nelson, 2009; von Dassow and Davidson, 2011; Davidson, 2012), cell activity is orchestrated toward the creation and repair of high-order anatomical structures by a set of bioelectrical cues (Levin, 2012a,b; Levin and Stevenson, 2012). Here bioelectricity refers to endogenous electrical signaling via ion channels and pumps at the plasma membrane; specifically excluded due to length constraints is the rich literature on external electromagnetic fields (Funk et al., 2009; Cifra et al., 2011; Hronik-Tupaj and Kaplan, 2012), ultraweak photon emission (Farhadi et al., 2007; Fels, 2009; Sun et al., 2010; Beloussov, 2011), and subcellular organelle potentials (Bustamante et al., 1995; Mazanti et al., 2001; Yamashita, 2011).

All these facts, sufficiently numerous, ... will open a very wide field of reflection, and of view, not only curious, but particularly interesting to medicine. There will be a great deal to occupy the anatomist, the physiologist, and the practitioner.

Allesandro Volta (1800), communicating to the Royal Society his invention of the electric battery

DOI:10.1091/mbc.E13-12-0708
Address correspondence to: Michael Levin (michael.levin@tufts.edu)
Abbreviations used: dpa, days postamputation; hMSC, human mesenchymal stem cells; hpa, hours postamputation; HPLC, high-performance liquid chromatography; 5-HT, serotonin; \(V_{\text{mem}} \), transmembrane voltage potential; VSP, voltage-sensitive phosphatase.

© 2014 Levin. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

"ASCB®, " The American Society for Cell Biology®," and "Molecular Biology of the Cell®" are registered trademarks of The American Society for Cell Biology.
The voltage potential (V_{mem}) at the cell membrane is produced by the movement of ions through across a cell membrane. Ions move via many different ion channels and pumps, under the control of concentration and electric gradients. Change of V_{mem} is transduced into cellular effector cascades by a range of mechanisms, including voltage-sensitive phosphatases, voltage-gated calcium channels, and voltage-sensitive transporters of signaling molecules such as serotonin and butyrate. (Diagram modified, with permission, from Figure 1B of Levin, 2007.)

Bioelectrical signals feed into epigenetic and transcriptional cascades and thus trigger changes in cell properties such as proliferation, differentiation, migration, shape change, and programmed cell death. Voltage reporter dye reveals gradients of V_{mem} across the anterior-posterior axis of planarian flatworms. (Taken, with permission, from Figure 2B of Beane et al., 2013.) In amputated worms, a circuit composed of proton and potassium conductances sets the voltage states at each blastema, which in turn determines the anatomical identity of each end of a regenerating fragment. (Diagram taken, with permission, from Figure 7C of Beane et al., 2011.) Manipulating this circuit in amputated planaria using pharmacological or genetic techniques that target ion flux allows the programming of stem cell–mediated morphogenesis to specific anatomical outcomes, such as the creation of two-head animals shown here.

NEW CONTROL KNOBS: RESTING POTENTIAL DETERMINES SINGLE-CELL STATE

In general, terminally differentiated, quiescent cells tend to be strongly polarized (bearing a more-negative resting potential),...
TABLE 1: Cell-level properties/behaviors controlled by bioelectric events.

Physical mechanism	References
Proliferation and cell cycle progression	Cone (1970, 1971, 1974), Cone and Tongier (1971, 1973), Cone and Cone (1976), Stillwell et al. (1973), Binggeli and Weinstein (1986), Arcangeli et al. (1993), Rouzaire-Dubois et al. (1993), Wonderlin and Strobl (1996), MacFarlane and Sontheimer (2000), Liebau et al. (2006), Morokuma et al. (2008a)
Apoptosis	Wang et al. (1999), Miki et al. (2001), Lauringen et al. (2003), Lang et al. (2005), Shen et al. (2013)
Migration and orientation	Hyman and Bellamy (1922), Anderson (1951), Stump and Robinson (1983), Schwab et al. (1995), Schwab (2001), Zhao et al. (1997), Fraser et al. (2005), McCaig et al. (2005), Pullar and Isseroff (2005), Yan et al. (2009)
Differentiation	Barth and Barth (1974a,b), Konig et al. (2006), Hinard et al. (2008), Sundelacruz et al. (2008), Lange et al. (2011)
Dedifferentiation	Cone and Tongier (1971), Harrington and Becker (1973), Stillwell et al. (1973), Cone and Cone (1976), Sundelacruz et al. (2013)

whereas embryonic, stem, and tumor cells tend to be depolarized (closer to zero; Binggeli and Weinstein, 1986). The picture is complicated by two still poorly understood factors: the relationship of overall V_{mem} to the cell cycle–dependent (sinusoidally varying) changes in voltage potential (Arcangeli et al., 1995; Higashimori and Sontheimer, 2007; Aprea and Calegari, 2012) and the fact that many cells in fact do not have a single V_{mem} but bear a set of distinct voltage domains over their surface (O’Connell et al., 2006; Levin, 2012a).

Crucially, V_{mem} is not simply a readout but is also a functional determinant of cell behavior, such as proliferative state and plasticity (Table 1), due to a number of mechanisms that functionally couple voltage potential changes to downstream cascades (Figure 1, B and C). These data derive from genetic experiments, as well as pharmacological screens designed to identify compounds that regulate stem cell differentiation or cancer progression (Alves et al., 2011; Sun et al., 2013). Differentiation and proliferation are controlled by changes in V_{mem}, as shown in human mesenchymal stem cells (Sundelacruz et al., 2008, 2013; You et al., 2012), cardiomyocytes (Lan et al., 2014), inhibitory postsynaptic currents (Jiang et al., 2009), vascular muscle (Jia et al., 2013), embryonic stem cells (Ng et al., 2010; Du et al., 2013), myoblasts (in which hyperpolarization driven by the Kir2.1 channel plays a key role; Hinard et al., 2008; Li et al., 2010), the specification of neurotransmitter types (Root et al., 2008), and the control of precursor differentiation (van Vliet et al., 2010; Yasuda and Adams, 2010; Lange et al., 2011; Liebau et al., 2011; Ring et al., 2012; Podda et al., 2013) in the developing nervous system and heart. Given the known roles of V_{mem} in regulating normal migration, differentiation, and proliferation (Aprea and Calegari, 2012; Ding et al., 2012; Inaba et al., 2012; Zhang et al., 2012; Cao et al., 2013; Yamashita, 2013), it is not surprising that control of ion flux (Park et al., 2008; House et al., 2010) and membrane voltage (Morokuma et al., 2008a; Blackiston et al., 2011; Chernet and Levin, 2013a, 2013b; Yang and Brackenbury, 2013) are also increasingly implicated in the cell dysregulation of cancer (Table 2).

Bioelectric cues also provide spatially patterned signals to cells. The differential activation of voltage-responsive transduction mechanisms on opposite sides of a cell allows bioelectric signals to regulate cell polarity. This was long ago shown in the symmetry breaking and control of outgrowth point in the algae Fucus (Jaffe, 1966, 1968) and has been recently shown using high-resolution imaging and genetic techniques in yeast (Minc and Chang, 2010) and pollen tubes (Certal et al., 2008; Michard et al., 2009). The cytoskeleton is one target of such signaling (Chifflet et al., 2003; Priel et al., 2006; Sekulic et al., 2011; Campetelli et al., 2012). Positional information can likewise be dictated by voltage properties of cells (Baglioni et al., 2012) and their neighbors (Shi and Borgens, 1995). Studies of embryonic left–right patterning of the Xenopus embryo have revealed how bioelectrical processes link individual cell dynamics to axial patterning of the entire body plan (Levin and Palmer, 2007; Aw and Levin, 2009): cytoskeletal chirality within the fertilized egg drives

Ion translocator protein	Species	References	Function
NaV1.5 sodium channel	Human	Onkal and Djamgoz (2009), House et al. (2010)	Oncogene
KCNK9 potassium channel	Mouse	Pei et al. (2003)	Oncogene
Ductin (proton V-ATPase component)	Mouse	Saito et al. (1998)	Oncogene
SLC5A8 sodium/butyrate transporter	Human	Gupta et al. (2006)	Oncogene
KCNE2 potassium channel	Mouse	Roepke et al. (2010)	Oncogene
KCNO1 potassium channel	Human, mouse	Lee et al. (1997), Weksberg et al. (2001), Than et al. (2013)	Oncogene
SCNSA voltage-gated sodium channel	Human	House et al. (2010)	Oncogene
Metabotropic glutamate receptor	Mouse, human	Song et al. (2012), Speyer et al. (2012), Martino et al. (2013)	Oncogene
CFTR chloride channel	Human	Xie et al. (2013), Zhang et al. (2013)	Tumor suppressor
Connexin43	Human	Sirnes et al. (2012)	Tumor suppressor
Acetylcholine receptor	Mouse	Felder et al. (1993)	Tumor suppressor

TABLE 2: Ion translocators implicated in cancer.
asymmetric distribution of ion transporter proteins in the early blastomeres, and the resulting gradient drives unidirectional (preneural) serotonin flow through cell fields, eventually triggering differential gene expression on the left versus right sides of the body (Levin, 2006; Levin et al., 2006; Aw et al., 2008; Lobkin et al., 2012b; Vandenberg et al., 2012, 2013). The dissection and synthesis of such systems at the genetic and physiological levels is beginning to reveal the properties of biophysical pathways by which individual cell polarity is integrated into large-scale patterning outcomes (Marshall, 2011).

MEASURING V_{MEM} IN VIVO

The first step in analyzing a bioelectric signal is the characterization of the spatiotemporal distributions of ionic parameters and a determination of how they correlate with patterning events. V_{MEM} in cells can be quantified using several approaches; unlike mRNA and protein levels revealed by sequencing or immunohistochemistry, bioelectric properties are only ascertainable in vivo and cannot be analyzed in fixed tissue. Voltage gradients can now be visualized continuously in situ using fluorescent reporters of transmembrane potential (Adams and Levin, 2012a,b; Figure 1D) and more exotic nanoscale materials (Tyner et al., 2007) suitable for use in any optically accessible tissue (Steinberg et al., 2007; Yun et al., 2007). These are a significant improvement on physiological impalement of single cells: far less invasive, and able to report multiple V_{MEM} values across tissues and even within cell membrane subdomains (Lechleiter et al., 1991; Adams and Levin, 2013). Reagents include cell-permeant dyes such as CC2-DMPE and DiSBAC$_2$(3) (Adams et al., 2006; Adams and Levin, 2012b; Oviedo et al., 2008; Ozkucur et al., 2010) and genetically encoded protein reporters (Tsutsui et al., 2008; Mutoh et al., 2011; Shen et al., 2011; Akemann et al., 2012).

Additional tools for the characterization of bioelectrical events include highly sensitive ion-selective extracellular electrode probes (Reid et al., 2007; Smith et al., 2007) that reveal ion flux, microelectrode arrays (Ayasomayajula et al., 2010; Schonecker et al., 2014), and reporters of individual ion species such as protons (Tantama et al., 2011) and sodium (Tseng et al., 2010; Dubach et al., 2011a,b). Significant opportunities exist for the development of specific, bright, ratiometric dyes that localize exclusively to the desired subcellular locale (e.g., plasma membrane or nucleus). Especially exciting will be the use of multiple physiological dyes in fluorescence-activated cell sorting experiments to identify subpopulations of “pure” stem and other cell types that differ in key bioelectric properties (Mello de Queiroz et al., 2008), as has been observed for human endothelial cells (Yu et al., 2002). Of importance, such experiments on dissociated cells will clearly highlight properties that are cell autonomous versus those physiological conditions that can only be maintained within a group context.

BIOELECTRIC SIGNALS INTERFACE WITH MOLECULAR GENETICS

The mechanistic investigation of bioelectric cues and their interactions with canonical biochemical pathways has been enriched by several new functional techniques (Adams and Levin, 2006b, 2013; Reid et al., 2007; Song et al., 2007). The comprehensive workflow for probing developmental bioelectricity can be illustrated by two examples. In the first, a tiered pharmacological screen (Adams and Levin, 2006a) implicated a proton pump and two channels as specifically required for tail regeneration but not for wound healing or development of the primary tail (Adams et al., 2007). These loss-of-function data were confirmed using reagents with molecular specificity by misexpression of a dominant-negative form of a V-ATPase subunit protein. Marker analysis was used to show why tails failed to regenerate in V-ATPase–inhibited tails (loss of regeneration-specific gene up-regulation, lack of the obligate increase of mitosis near the wound, and abrogation of innervation into the regenerate). Fluorescent dye imaging provided physiometric profiling of the changes of V_{MEM} during the stages of regeneration and confirmed that the unique voltage changes characteristic of the regenerating state were blocked by V-ATPase inhibition and were absent during stages at which tadpoles normally are not competent to regenerate their tails. On the basis of these findings, to develop a gain-of-function application, a yeast P-type proton pump was misexpressed in regeneration-incompetent animals, leading to restoration of mitosis, gene expression (MSX-1, Notch), innervation, and morphological regeneration of a complete tail. Additional rescue experiments using net-electroneutral proton exchangers allowed the independent testing of pH versus voltage signaling.

One key result was that the anatomical outcome (regeneration rescue) can be induced by a completely heterologous hyperpolarizing pump, which has no sequence or structural homology to the native Xenopus protein endogenously driving regeneration. This demonstrated that the necessary and sufficient trigger for regeneration is not a specific gene product (V-ATPase), but a bioelectric state, which can be implemented using a variety of different agents. This finding facilitated development of a purely pharmacological method of modulating ion flows in the wound to induce tail (Tseng et al., 2010) and leg (Tseng and Levin, 2013) regeneration without the need for gene therapy.

The available tools enable a multistep strategy that combines pharmacological screening, physiological imaging, and molecular-genetic tools to generate loss- and gain-of-function data showing how a bioelectric pathway normally works and how it can be exploited to trigger pattern formation. A similar approach was taken with an initial gain-of-function screen, misexpressing ion channels in frog embryogenesis. One of the outcomes was the finding that a specific V_{MEM} range was necessary and sufficient to trigger ectopic eye development (Pai et al., 2012). Dye imaging data showed that the location of the endogenous eyes is demarcated by a prepatter of V_{MEM} states in the anterior neurectoderm and that experimental alteration of this prepatter results in abnormal craniofacial gene expression and eye and facial malformations (Vandenberg, 2011; Pai et al., 2012). To complement the data showing that bioelectric states are an endogenous component of eye development, it was then shown that driving eye-specific V_{MEM} states in other body regions (by misexpression of ion channels) was sufficient to induce anatomically complete (well-formed) ectopic eyes (Figure 2A). Marker analysis revealed that this occurs via establishment of a positive feedback loop between hyperpolarization and Rx1/Pax6 expression, whereas a suppression screen of transduction mechanisms implicated voltage–gated calcium signaling as the transduction mechanism. However, note that, by themselves, “master” eye genes such as Pax6 do not produce eyes outside the head in vertebrates (Chow et al., 1999). Moreover, as with the tail, individual cell types appropriate to the eye did not have to be specified. Together these data revealed the unique properties of bioelectric triggers to reprogram body regions at the level of organ identity and overcome lineage specification limits observed with biochemical inducers.

Of interest, many forward genetic approaches have identified ion channel genes responsible for patterning phenotypes, as have unbiased transcriptional network analyses in development (Langlois and Martyniuk, 2013) and cancer (House et al., 2010). These include patterning of the face, limb, brain, and viscera in a range of model systems and a number of channelopathies that form an important
FIGURE 2: Bioelectric properties specify instructive, non–cell-autonomous patterning cues. (A) Targeted V_{mem} change, via misexpression of ion channels in the frog embryo, induces the formation of ectopic structures such as complete eyes, even in regions normally not competent to form eyes (such as on the gut). (Used, with permission, from Figure 3G of Pai et al., 2012.) (B) Tracking the ion channel expression using a lineage marker reveals that the effect is not cell-autonomous: in a lens created in the tail of a tadpole by ion channel expression, only about half of the ectopic cells express the heterologous ion channel (revealed by blue lacZ staining); the other half of the induced structure consists of host cells recruited to participate in making the appropriate shape but not themselves targeted by the V_{mem}-altering reagent. (C) Melanocytes seen in a cross section of a Xenopus tadpole are normally few in number, round, and confined to their normal locations. (D) Depolarization induced by ion channel modulation induces these cells to overproliferate, acquire an elongated shape, and invade many organs (red arrow). Of importance, this effect is also not cell autonomous, as seen in the melanocyte phenotype, which results when cells (marked by ion channel expression construct lineage label in blue) depolarized at a considerable distance from the melanocytes. (Taken, with permission, from Figure 6A of Chernet and Levin, 2013b.) (E) A normal planarian has a head and tail and regenerates each at the appropriate end of an amputated fragment. When it is cut into thirds and the middle fragment is briefly exposed to octanol, which temporarily blocks long-range bioelectrical signaling between the wound and mature tissues, a two-headed worm is generated. This change, via misexpression of ion channels in the tail of a planarian, induces the formation of ectopic structures such as complete eyes, even in regions normally not competent to form eyes (such as on the gut). The process described here is not cell autonomous: in a lens created in the tail of a planarian by ion channel expression, only about half of the ectopic cells express the heterologous ion channel (revealed by blue lacZ staining); the other half of the induced structure consists of host cells recruited to participate in making the appropriate shape but not themselves targeted by the V_{mem}-altering reagent.

reprogrammed to a head fate, are discarded at each cut: the information encoding a bipolar two-head animal is present even in the normal gut fragment—it is distributed throughout the body. We propose that this information is a kind of memory, encoded in electrical networks of somatic cells coupled by gap junctions, and is stored at the level of bioelectrical dynamics. (E–I taken, with permission, from Figure 2 of Levin, 2014; photographs of planaria taken by Taisaku Nogi, Children’s Health Research Institute, Canada, and Fallon Durant.)
Protein	Morphogenetic role or loss-of-function phenotype	Species	References
TMEM16A chloride channel	Tracheal morphogenesis	Mouse	Rock et al. (2008)
Kir7.1 potassium channel	Melanosome development	Zebrafish	Iwashita et al. (2006)
Cx41.8 gap junction	Pigmentation pattern	Zebrafish	Watanabe et al. (2006)
Cx45 gap junction	Cardiac defects (cushion patterning)	Mouse	Kumai et al. (2000), Nishii et al. (2001)
Cx43 gap junction	Oculodentodigital dysplasia, heart defects (outflow tract and conotruncal), left–right asymmetry defects, eye defect, osteoblast differentiation in bone patterning, syndactyly, microphthalmia	Human, mouse	Britz-Cunningham et al. (1995), Reaume et al. (1995), Ewart et al. (1997), Pizzuti et al. (2004), Debeer et al. (2005), Civitelli (2008), Zoidl and Dermietzel (2010), Gabriel et al. (2011)
Kir2.1 potassium channel	Wing patterning	Drosophila	Dahal et al. (2012)
Cx43 gap junction	Fin size and pattern regulation; craniofrontonasal syndrome	Zebrafish, mouse	Iovine et al. (2005), Davy et al. (2006), Hoptak-Solga et al. (2008), Sims et al. (2009)
Kir2.1 potassium channel	Andersen–Tawil syndrome, craniofacial and limb defects	Mouse, human	Bendahhou et al. (2003), Dahal et al. (2012)
CFTR chloride channel	Bilateral absence of vas deferens	Human	Uzun et al. (2005), Wilschanski et al. (2006)
KCNK9, TASK3 potassium channels	Birk–Barel dysmorphism syndrome, craniofacial defects	Human	Barel et al. (2008), Veale et al. (2014)
Girk2 potassium channel	Cerebellar development, retina patterning	Mouse	Rakic and Sidman (1973a,b), Hatten et al. (1986), Patil et al. (1995), Tong et al. (1996), Savy et al. (1999), Liesi et al. (2000)
GABA-A receptor (chloride channel)	Angelman syndrome, craniofacial patterning (e.g., cleft palate) and hand defects	Mouse, human	Wee and Zimmerman (1985), Culiat et al. (1995), Homanics et al. (1997)
KCNH2 K⁺ channel	Cardiac patterning	Mouse	Teng et al. (2008)
NHE2 Na⁺/H⁺ exchanger	Epithelial patterning	Drosophila	Simons et al. (2009)
V-ATPase proton pump	Wing-hair patterning, pigmentation and brain patterning, left–right asymmetry, eye development, tail regeneration, craniofacial patterning	Drosophila, medaka, human, chick, Xenopus, zebrafish	Hermle et al. (2010), Muller et al. (2013), Borthwick et al. (2003), Adams et al. (2006), Nuckels et al. (2009), Vandenberg et al. (2011), Monteiro et al. (2014)
Kv channel	Fin-size regulation	Zebrafish	Perathoner et al. (2014)
KCNQ1 potassium channel	Abnormalities of rectum, pancreas, and stomach, left–right patterning, Jervell and Lange-Nielsen syndrome, inner ear and limb defects	Mouse, Xenopus	Chouabe et al. (1997), Casimiro et al. (2004), Rivas and Francis (2005), Morokuma et al. (2008b), Than et al. (2013)
Kir6.2 potassium channel	Craniofacial defects, left–right patterning	Human, Xenopus	Gloyn et al. (2004), Aw et al. (2010)
NaV 1.5, Na⁺/K⁺-ATPase	Cardiac morphogenesis	Zebrafish	Shu et al. (2003), Chopra et al. (2010)
H⁺,K⁺-ATPase	Left–right patterning, polarity during regeneration	Xenopus, chick, sea urchin, zebrafish, planaria	Levin et al. (2002), Kawakami et al. (2005), Aw et al. (2008), Beane et al. (2011)
Innexin gap junctions	Foregut, cuticle (epithelial) patterning defects	Drosophila	Bauer et al. (2002), Bauer et al. (2004)
TRH1 K⁺ transporter	Root-hair patterning	Arabidopsis	Rigas et al. (2001)

TABLE 3: Ion translocators implicated in patterning by genetic approaches.
has been implicated in control of growth-cone turning (Nishiyama et al., 2008), eye patterning (Pai et al., 2012), and flatworm regeneration (Nogi et al., 2009; Beane et al., 2011; Zhang et al., 2011). Another uses the voltage gradients among cells to move small signaling molecules such as serotonin through gap junction-coupled cell fields, as occurs in left–right patterning (Fukumoto et al., 2005b; Adams et al., 2006) and control of neuronal pathfinding (Blackiston et al., 2015). Finally, voltage-sensitive phosphatases couple \(V_{\text{mem}} \) change to the plethora of events regulated by PTEN phosphatases (Murata et al., 2005; Okamura and Dixon, 2011).

Of interest, when they conflict, bioelectrical cues tend to trump chemical signals. One example is the guidance of cell motility: if a chemical gradient and an electric field are set up in opposite directions, the bioelectric vector trumps the chemical cue in directing cell movement (Zhao, 2009; Cao et al., 2011). Another example is the differentiation of human mesenchymal stem cells (hMSCs), which normally hyperpolarize as they differentiate; despite the presence of potent chemical inducers, hMSCs will not differentiate if kept artificially depolarized (Sundelacruz et al., 2008). Indeed, the voltage state can even partially reverse the differentiation state, inducing plasticity in differentiated hMSCs (Sundelacruz et al., 2013).

By identifying the specific ion channel genes that set \(V_{\text{mem}} \) states, the transduction mechanisms that sense \(V_{\text{mem}} \) change, and the downstream transcriptional or epigenetic targets (which include ion channels themselves), recent work has established the causal chain integrating bioelectrical cues with chemical pathways (Table 5). Neither signaling mode is entirely “upstream” of the other—cellular processes are regulated by the continuous cyclical interplay between transcriptional control of ion channel profiles within cells and the regulation of transcription by voltage dynamics. Future work will identify new ion channel genes important for specific functions, additional transduction mechanisms by which cells sense their depolarization and hyperpolarization, and genome-wide (next-generation sequencing (NGS) or microarray) profiles of transcriptional programs triggered by specific \(V_{\text{mem}} \) change.

Of importance, however, \(V_{\text{mem}} \) regulation extends beyond the state of single cells. Cells can sense the voltage states of their neighbors through gap junctions (GJs)—versatile (and themselves voltage-sensitive) channels allowing the direct sharing of current and other small molecules between cells (Palacios-Prado and Bukauskas, 2009; Pereda et al., 2013). The importance of GJ-mediated cues for cellular decision making has been shown, for example, in the development of the neocortex (Sutor and Hagerty, 2005) and more broadly in setting up the patterns of chemical syndasps (Anava et al., 2013). Cells can also read the bioelectrical state of distant regions via the chemical molecules redistributed (and transported or diffused) across long distances by bioelectric state change. This was long ago suggested by Burr, who used voltage readings at remote locations of the body to detect transplanted or induced tumors (Burr et al., 1940; Burr, 1941). Recent data in the frog model implicate long-range signaling via bioelectrical control of butyrate (Chernet and Levin, 2014) and serotonin (Blackiston et al., 2011; Lobikin et al., 2012a) in tumorigenesis and metastatic induction. Additional modes for nonlocal bioelectrical signaling include tunneling nanotubes (Chinnery et al., 2008; Wittig et al., 2012) and exosomes, which contain numerous ion channels (Lotvall and Valadi, 2007; Valadi et al., 2007; Wahlgren et al., 2012) and could regulate bioelectric states of cells that incorporate them. Because bioelectrical gradients mediate signaling beyond the single-cell level, they form a versatile medium for carrying information.

TABLE 4: Known transduction mechanisms by which ion flows affects cell behavior.

Developmental role	Key biophysical event	Transduction mechanism	References
Tail regeneration in Xenopus: first step	Voltage change (repolarization)	Guidance of neural growth	Adams et al. (2007)
Tail regeneration in Xenopus: second step	Intracellular sodium content	SIK2 (salt-inducible kinase)	Tseng et al. (2010)
Neoplastic conversion of melanocytes in Xenopus tadpoles	Voltage change (depolarization)	Serotonin movement	Morokuma et al. (2008a), Blackiston et al. (2011)
Polarity determination in planarian regeneration, length control of zebrafish fin	Voltage change	Ca\(^{2+}\) flux through voltage-gated calcium channel	Beane et al. (2011), Zhang et al. (2011), Chan et al. (2014), Kujawski et al. (2014)
Left–right patterning in Xenopus embryos, melanocyte transformation toward meta-static behavior	Voltage change	Serotonin movement	Levin et al. (2002), Fukumoto et al. (2005a,b), Adams et al. (2006), Blackiston et al. (2011), Lobikin et al. (2012a)
Trachea size control in Drosophila	Ion-independent function	Planar polarity, septate junction structure	Paul et al. (2007)

BIOELECTRIC STATES CAN ACT AS NECESSARY, SUFFICIENT, AND INSTRUCTIVE PATTERNING SIGNALS

Spatiotemporal gradients of \(V_{\text{mem}} \) among cells in vivo are now known to regulate organ identity, positional information, size control, and polarity of anatomical axes. One mode of \(V_{\text{mem}} \) signaling is as a prepattern. Much like Hox genes, whose combinatorial patterns of gene expression encode specific body regions during development, it has recently been shown that bioelectric prepatterns in the developing face of the frog and planarian models regulate the gene expression, size, and shape of craniofacial components (Vandenberg et al., 2011; Beane et al., 2013). In the frog, for example, patterns of hyperpolarization in the nascent face reveal the prospective locations of the eyes and other structures; experimental perturbation of these distributions alters the boundaries of expression of face patterning genes such as Frizzled, with the expected effects on craniofacial anatomy. Bioelectric gradients also specify orientation of the left–right axis in frog and chick embryos (Levin et al., 2002; Adams et al., 2006) and set the size of regenerating structures in segmented worms and regenerating...
Borgens (1986), References

Table 5: Data on endogenous bioelectric signal roles in morphogenesis.

Role	Species/system	References
Cellular polarization (anatomical asymmetry of cell or epithelium)	Alga Fucus, yeast	Jaffe (1982), Minic and Chang (2010)
Migration of neurons and positional information	Chick, amphibia	Shi and Borgens (1995), Pan and Borgens (2010)
Patterning in gastrulation, neurulation, and organogenesis	Chick, axolotl, frog	Stern (1982), Hotary and Robinson (1992), Borgens and Shi (1995), Shi and Borgens (1995), Levin et al. (2002), Adams et al. (2006)
Directional transport of maternal components into the oocyte	Moth, Drosophila	Woodruff (2005)
Growth control and size determination	Segmented worms	Kurtz and Schrank (1955)
Neural differentiation	Xenopus embryo	Uzman et al. (1998), Lange et al. (2011)
Polarity during regeneration	Planaria, plants, and annelids	Marsh and Beams (1947, 1949, 1950, 1952), Marsh and Beams (1957), Bentrop et al. (1967), Novák and Bentrup (1972), Novak and Sirnoval (1975), Beane et al. (2011)
Induction of limb and spinal cord regeneration	Amphibia	Borgens (1986), Borgens et al. (1986, 1990)
Control of gene expression and anatomy in craniofacial patterning	Xenopus embryo	Vandenbergen et al. (2011)
Induction of eye development	Xenopus embryo	Pai et al. (2012)

The voltage is what matters for the outcome, not which ion or channel was used to set it.

In addition to specifying directly the pattern of subsequent anatomy, some bioelectric signals seem to trigger whole developmental modules. In the case of tail regeneration in Xenopus, genetic, optogenetic, and pharmacological experiments have been used to recapitulate a regeneration-specific bioelectric state in nonregenerative animals and induce complete regrowth of this complex neuromuscular appendage (Adams et al., 2007; Tseng et al., 2010). Not only could appropriate \(V_{\text{mem}} \) state overcome physiological, chemical, and age-dependent blockade of regenerative capacity, but it was seen that a very simple (low information content) stimulus, such as “pump protons,” could be sufficient to trigger a complete and self-limiting cascade of events that rebuilt the appendage (Tseng and Levin, 2013), in essence providing a “build whatever normally goes here” signal. These examples reveal that bioelectric state can function as a sufficient signal or master regulator; this bodies well for the use of this approach in regenerative medicine, as we may not need to micromanage the morphogenesis of complex structures but instead rely on patterning subroutines already present in the host.

Bioelectric signals can also set the identity of whole embryonic regions to different organs. The morphogenesis of new regeneration blastemas in planaria (Figure 1, D–F) can be directed to make heads or tails by appropriate modulation of resting potential (Beane et al., 2011, 2013). In vertebrates, whole-eye formation can be induced ectopically, far outside the head, even in mesoderm or endoderm (Figure 2A) by misexpression of specific ion channels in vivo (Pai et al., 2012); this process is mediated by a feedback loop between hyperpolarization and expression of eye-specific genes such as Rx1 and Pax6, which in its absence cannot initiate eye formation outside of the head. It is also interesting that this signaling is not cell autonomous: cells with unique voltage characteristics serve as organizers, recruiting wild-type host tissues to participate in the ectopic morphogenesis (Figure 2B).

These examples illustrate the fact that bioelectric state provides instructive information to patterning processes and reveal that cell groups can be programmed at the level of complex organs, not only at the level of specifying individual cell types. Understanding in detail the mapping between bioelectric states and the anatomical outcomes—quantitatively cracking the bioelectric code—is a major open direction in this field. Possibilities for the parameters that functionally determine distinct organ types include spatial distribution of absolute \(V_{\text{mem}} \) values within a cell group, relative differences in \(V_{\text{mem}} \) across cell borders, and/or time-dependent changes of \(V_{\text{mem}} \) within cells. One technology that is likely to be instrumental in testing hypotheses about the bioelectric code is optogenetics (Knopfel et al., 2010; Liu and Tonegawa, 2010), which will facilitate the reading and writing of bioelectric patterning information in vivo. The first steps have been taken, showing regulation of stem cells via optogenetic signaling (Stroh et al., 2010; Wang et al., 2014), and a recent report showed the induction of tail regeneration by optical modulation of bioelectric state after amputation (Adams et al., 2013).

BIOELECTRICITY DOES NOT REDUCE TO MOLECULAR GENETICS

The information-bearing signal (the necessary and sufficient trigger) for events such as eye induction, head determination, and tail regeneration via \(V_{\text{mem}} \) change is a physiological state, not a gene product (Levin, 2013; Tseng and Levin, 2013). Studies reveal that the exact identity of the channel or pump used to trigger such morphological changes is often irrelevant—many sodium, potassium, chloride, or proton conductances can be used, as long as the appropriate...
The resting potentials across a tissue can arise from preexisting differences in ion channel transcription, but that is not the only way (Justet et al., 2013). Such regionalized patterns of V_{mem} can also form de novo in transcriptionally and proteomically identical cells because cells coupled by gap junctions (electrical synapses) form a (slow) electrically excitable medium; this is a particularly interesting aspect because such media are known to have powerful computational capabilities (Fenton et al., 1999; Gorgcki and Gorgcka, 2007; Adamatzky et al., 2011). Positive feedback loops implemented by elements such as voltage-gated ion channels, which both set and respond to V_{mem} changes, can drive spontaneous symmetry breaking and amplification of physiological noise. Considerable self-organization dynamics can take place without a need for preexisting chemical prepattern (Toko et al., 1987; Schiffmann, 1991, 1997; Palacios-Prado and Bukauskas, 2009) or transcriptional activity; for example, human red blood cells have a physiological, not genetic, circadian clock rhythm driven by a slow ionic oscillation (Chakravarty and Rizvi, 2011; O’Neill and Reddy, 2011). Such dynamics has been studied in nerve and muscle (Żykov, 1990; Chen et al., 1997; Boettiger et al., 2009; Boettiger and Oster, 2009), and Turing-type self-organization has long been appreciated in chemical signaling (Takagi and Kaneko, 2005; Muller et al., 2012; Sheth et al., 2012). However, capabilities and properties of self-organization of voltage patterns in groups of nonneural cells remain to be formally analyzed. Quantitative analysis of in silico models of bioelectric dynamics will need to be integrated with deep new data sets from appropriate physiometric technologies to fully understand and control developmental patterning in vivo.

One unexpected recent finding illustrates the storage of patterning information in physiological networks and has significant implications for evolution. Planarian flatworms have the remarkable ability to regenerate completely from partial body fragments (Reddien and Sanchez Alvarado, 2004; Salo et al., 2009; Lobo et al., 2012). After a surgical bisection, the cells at one edge make a tail, whereas those at the other edge make a head, revealing that the adult stem cells that implement regeneration are not locally controlled (since the cells were direct neighbors until the scalpel separated them) but must communicate with the remaining tissue to decide what anatomical structures must be formed. It was shown that this long-range communication occurs via gap junction–mediated electrical synapses (Scemes et al., 2007; Marder, 2009; Pereda et al., 2013), and works together with a bioelectric circuit that determines head versus tail identity in each end’s blastema (Beane et al., 2011, 2013). Brief inhibition of this gap junction–mediated communication results in worms developing heads at both ends (Nogi and Levin, 2005; Oviedo et al., 2010).

What is remarkable (Figure 2, E–I) is that weeks later, when these two-headed animals have their heads and tails amputated again (in just water, with no further perturbation), the same two-headed phenotype results, and this is repeated upon subsequent amputations. Thus a transient perturbation of physiological cell–cell communication stably changes the pattern to which the animal regenerates upon damage, despite normal genomic sequence. This again illustrates the potential divergence of genetic versus physiological information, especially since the phenotype is stable across fission (this animal’s most frequent reproductive mode), and thus could have significant implications for evolution. Although epigenetic processes may be involved, chromatin modification mechanisms alone are not a sufficient explanation, since the ectopic heads (tissue that might be suggested to have been epigenetically reprogrammed into a head state from its original tail identity) are thrown away at each generation of cutting. What remains is a gut fragment, which somehow knows that it is to form two heads, not one, upon further

Bioelectric Gradients Have Distinct, Autonomous Dynamics

Bioelectric patterns are clearly important drivers of cell behavior and pattern formation, but how do these patterns originate? Diverse resting potentials across a tissue can arise from preexisting differences in ion channel transcription, but that is not the only way (Justet et al., 2013). Such regionalized patterns of V_{mem} can also form de novo in transcriptionally and proteomically identical cells because cells coupled by gap junctions (electrical synapses) form a (slow) electrically excitable medium; this is a particularly interesting aspect because such media are known to have powerful computational capabilities (Fenton et al., 1999; Gorgcki and Gorgcka, 2007; Adamatzky et al., 2011). Positive feedback loops implemented by elements such as voltage-gated ion channels, which both set and respond to V_{mem} changes, can drive spontaneous symmetry breaking and amplification of physiological noise. Considerable self-organization dynamics can take place without a need for preexisting chemical prepattern (Toko et al., 1987; Schiffmann, 1991, 1997; Palacios-Prado and Bukauskas, 2009) or transcriptional activity; for example, human red blood cells have a physiological, not genetic, circadian clock rhythm driven by a slow ionic oscillation (Chakravarty and Rizvi, 2011; O’Neill and Reddy, 2011). Such dynamics has been studied in nerve and muscle (Żykov, 1990; Chen et al., 1997; Boettiger et al., 2009; Boettiger and Oster, 2009), and Turing-type self-organization has long been appreciated in chemical signaling (Takagi and Kaneko, 2005; Muller et al., 2012; Sheth et al., 2012). However, capabilities and properties of self-organization of voltage patterns in groups of nonneural cells remain to be formally analyzed. Quantitative analysis of in silico models of bioelectric dynamics will need to be integrated with deep new data sets from appropriate physiometric technologies to fully understand and control developmental patterning in vivo.
cutting; the information about basic anatomical polarity and body organization must be stored in a distributed form throughout the animal. Quantitative, field-like models of this circuit remain to be developed to understand precisely how information guiding specific shape outcomes is encoded in (represented by) bioelectric states among cells.

CONCLUSION: NEXT STEPS AND BEYOND

Major open questions for future progress include the mechanisms by which cells compare bioelectric state across distances, additional molecular details of the interactions of bioelectrical signals with chemical gradients and physical forces, and the development of quantitative models of bioelectric circuits that store stable patterning information during morphogenesis. Expansions of the toolkit of synthetic biology will soon allow the rational top-down programming of bioelectric circuits, which will have important implications for regenerative medicine, cancer biology, and bioengineering (Reid et al., 2011a; Levin, 2013). Optogenetics, once expanded to facilitate the control of stable V_{mem} in large, nonexcitable cell groups, will play a large part, and there is significant room for advances in better voltage reporters and techniques for in vivo modulation of bioelectric state. One hypothesis for the development of deep, quantitative theory in this field is that patterning information may be stored within nonneural bioelectric cell networks using the same molecular mechanisms and information-processing algorithms that underlie behavioral memory in the nervous system. This is being tested in our lab. It is thus possible that the techniques such as those now used to extract mental imagery from electrical measurements of living human brains (Nishimoto et al., 2011) may shed crucial light on the encoding of anatomical pattern in the electrical circuits of somatic cells; conversely, the cracking of the bioelectric code in development and regeneration may have important benefits for the understanding of the semantics of electric states in the brain.

In practical terms, the molecular biologist needs to consider not only transcriptional and protein profiles when working to understand regulation of single-cell behavior and pattern formation. Significant instructive information is generated at the level of bioelectricity; ion channels and gap junctions are the molecular elements of such circuits, but bioelectrical signaling has its own unique dynamics that will become increasingly tractable with development of new technology specifically targeting stable V_{mem} states. The existence of bioelectric signaling among most cell types, not only neurons, suggests that the field of applicability of electrochemicals (Famm et al., 2013; Sinha, 2013; Birmingham et al., 2014) is much wider than anticipated by current plans to target neural function. More broadly, to the extent that the data of developmental bioelectricity are erasing artificial distinctions between neural and nonneural cell types, the insights of computational neuroscience and cognitive science will become relevant to cell and developmental biology. It is possible that the most effective ways to understand high-order (anatomical-level) outcomes will involve not only bottom-up models of molecular pathways but also top-down models in which information and control theory concepts play central roles. In this way, molecular bioelectricity may be revealing a mechanistic path toward understanding the intelligence exhibited by cell behavior and harnessing it toward transformative advances in biomedicine and the information sciences (Albrecht-Buehler, 1985; Rubenstein et al., 2009; Marshall, 2011; Aur, 2012).

ACKNOWLEDGMENTS

This Perspective is dedicated to G. Marsh and H. W. Beans, who were among the first to demonstrate bioelectric reprogramming of whole body regions. I thank the members of the Levin lab and the bioelectricity community for many helpful discussions on these issues and Gary McDowell, Jean-Francois Pare, and Juanita Mathews for their comments on an early draft of the manuscript. I gratefully acknowledge support of the National Science Foundation (DBI-1152279 and Emergent Behaviors of Integrated Cellular Systems Subaward CBET-0939511), the National Institutes of Health (AR055993), the W. M. Keck Foundation, and the G. Harold and Leila Y. Mathers Charitable Foundation.

REFERENCES

Adamatzky A, Costello B, Bull L, Holley J (2011). Towards arithmetic circuits in sub-excitable chemical media. Israel J Chem 51, 56-66.
Adams DS (2008). A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration. Tissue Eng Part A 14, 1461–1468.
Adams DS, Levin M (2006a). Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis 44, 530–540.
Adams DS, Levin M (2006b). Strategies and techniques for investigation of biophysical signals in patterning. In: Analysis of Growth Factor Signaling in Embryos, ed. M Whitman and AK Sater, Oxford, UK: Taylor and Francis, 177–262.
Adams DS, Levin M (2012a). General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters. Cold Spring Harb Protoc 2012, 385–397.
Adams DS, Levin M (2012b). Measuring resting membrane potential using the fluorescent voltage reporters DiBAC(4)(3) and CC2-DMPE. Cold Spring Harb Protoc 2012, 459–464.
Adams DS, Levin M (2013). Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectric signals during pattern formation. Cell Tissue Res 352, 95–122.
Adams DS, Masi A, Levin M (2007). H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134, 1323–1335.
Adams DS, Robinson KR, Fukumoto T, Yuan S, Albertson RC, Yelick P, Kuo L, McSweeney M, Levin M (2006). Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133, 1657–1671.
Adams DS, Tseng AS, Levin M (2013). Light-activation of the Archaeohedopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo. Biol Open 2, 306–313.
Akemann W, Mutoh H, Perron A, Kyung Park Y, Iwamoto Y, Knopfel T (2012). Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophys 108, 2322–2337.
Albrecht-Buehler G (1985). Is cytoplasm intelligent too? Cell Muscle Motil 6, 1–21.
Aur D, Decherling K, Van Bitterswijk C, De Boer J (2011). High-throughput assay for the identification of compounds regulating osteogenetic differentiation of human mesenchymal stromal cells. PLoS One 6, e26678.
Anava S, Saad Y, Ayali A (2013). The role of gap junction proteins in the development of neural network functional topology. Insect Mol Biol 2, 457–472.
Anderson JD (1951). Galvanotaxis of slime mold. J Gen Physiol 35, 1–16.
Aprea J, Calegari F (2012). Bioelectric state and cell cycle control of mammalian neural stem cells. Stem Cells Int 2012, 816049.
Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronello M, Mini E, Olivotto M, Wanke E (1995). A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol 489, 455–471.
Arcangeli A, Carla M, Bene M, Becchetti A, Wanke E, Olivotto M (1993). Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential. Proc Natl Acad Sci USA 90, 5858–5862.
Arcangeli A, Crociani O, Lastraioi E, Masi A, Pillozzi S, Becchetti A (2009). Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem 16, 66–93.
Ayasomayajula A, Derix J, Perike S, Gerlach G, Funk RH (2010). DC microimaging in Embryos, ed. M Whitman and AK Sater, Oxford, UK: Taylor and Francis, 177–262.
Aur D (2012). From neuroelectrodynamics to thinking machines. Cogn Comput 4, 4–12.
Aw S, Adams DS, Qiu D, Levin M (2008). H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 125, 353–372.
Aw S, Koster J, Pearson W, Nichols C, Shi R (2015). Maternally inherited Birk Barel gene expression: dissociation of fos and jun induction. Genes Dev 3, 3845.

Borgens RB, Blight AR, McGinnis ME (1987). Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig. Science 238, 366–369.

Borgens RB, Blight AR, McGinnis ME (1990). Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electric fields. J Comp Neurol 296, 634–633.

Borgens RB, Blight AR, Murphy DJ (1986). Axonal regeneration in spinal cord injury: a perspective and new technique. J Comp Neurol 250, 157–167.

Borgens R, Robinson K, Vanable J, McGinnis M (1989). Electric Fields in Vertebrate Repair, New York: Alan R. Liss.
Chouabe C, Neyroud N, Guicheney P, Lazdunski M, Rromey G, Barhanin J (1997). Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J 16, 5472–5479.

Chow RL, Altman CR, Lang RA, Hemmati-Brivanlou A (1999). Pax6 induces ectopic eyes in a vertebrate. Dev Suppl 126, 4213–4222.

Crim MJ, Fields JZ, Farhadi A (2011). Electromechanical cellular interactions. Prog Biophys Mol Biol 105, 223–246.

Civitelli R (2008). Cell-cell communication in the osteoblast/osteocYTE lineage. Arch Biochem Biophys 473, 188–192.

Con DE Jr (1970). Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology 24, 438–470.

Con DE Jr (1971). Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol 30, 351–381.

Con DE Jr (1974). The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann NY Acad Sci 238, 420–435.

Con DE Jr, Cone CM (1976). Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192, 155–158.

Con DE Jr, Tongier M (1971). Contact inhibition of somatic mitosis by simulated changes in the transmembrane potential level. Oncology 25, 168–182.

Con DE Jr, Tongier M (1973). Contact inhibition of division: involvement of the electrical transmembrane potential. J Cell Physiol 82, 373–386.

Cullat CT, Stubbs LJ, Woychik RP, Inaba M, Yamanaka H, Kondo S (2012). Pigment pattern formation by Cx43 channel-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Lab Sci 78, 2419–2425.

Harrison DT, Becker RO (1973). Electrical stimulation of mRNA and protein synthesis. In: Cell Replicating. Exp Cell Res 76, 95–98.

Hatten ME, Liem RK, Mason CA (1986). Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci 6, 2676–2683.

He XB, Yi SH, Rhee YH, Kim H, Han YM, Lee SH, Lee H, Park CH, Lee YS, Richardson E, et al. (2011). Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 29, 1861–1873.

Hermle T, Salutkogul D, Grunewald J, Walz G, Simons M (2010). Regulation of Frizzled-dependent planar polarity signaling by a V-ATPase subunit. Curr Biol 20, 1269–1276.

Higashimori H, Sontheimer H (2007). Role of Kir4.1 channels in growth control of glia. Glia 55, 1668–1679.

Higuchi H, Iwasa A, Yoshida H, Miki N (1999). Long lasting increase in neupeptide Y gene expression in rat adrenal gland with reperfusion treatment: positive regulation of transsynaptic activation and membrane depolarization. Mol Pharmacol 38, 614–623.

Hinard V, Belin D, Konig S, Bader CR, Bernheim L (2008). Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242. Development 135, 859–867.

Hinman AN, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krassowska MD, Rick CE, Korpi ER, Makela R, et al. (1997). Mouse devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 94, 4143–4148.

Hoptak-Solga AD, Nielsen S, Jain J, Thummler H, Hyde DR, Lovine MK (2008). Connexin43 (GJAI) is required in the population of dividing cells during fin regeneration. Dev Biol 317, 541–548.

Hotary KB, Robinson KR (1992). Evidence of a role for endogenous electrical fields in chick embryo development. Development 114, 985–996.

House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, Sarvazyan A, Lein E, Vallabhaneni R, Lein E, et al. (2009). Pax6 induces ectopic eyes in a vertebrate. Dev Suppl 126, 4213–4222.

Fukumoto T, Kema IP, Levin M (2005a). Serotonin signaling is a very early step in patterning of the left-right partition in chick and frog embryos. Dev Neurosci 27, 349–363.
Minc N, Chang F (2010). Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr Biol 20, 710–716.

Monteiro J, Aires R, Becker JD, Jacinto A, Cereal AC, Rodriguez-Leon J (2014). VATPase proton pumping activity is required for adult zebrafish appendage regeneration. PLoS One 9, e92594.

Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M (2008a). Modulation of potassium channel function confers a hyperpolarizing invasive phenotype on embryonic stem cells. Proc Natl Acad Sci USA 105, 16608–16613.

Morokuma J, Blackiston D, Levin M (2008b). KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 21, 357–372.

Muller C, Maeso I, Wittbrodt J, Martinez-Morales JR (2013). The medaka mutation timin/pish sheds light on the evolution of VATPase B subunits in vertebrates. Sci Rep 3, 3217.

Muller P, Rogers KW, Jordan BM, Les J, Robson D, Ramanathan S, Schier AF (2012). Diffusional difficulty of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336, 721–724.

Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005). Phosphoinositidase C-phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243.

Mutoh H, Perras A, Akemann W, Iwamoto Y, Knopfel T (2011). Optogenetic monitoring of membrane potentials. Exp Physiol 96, 13–18.

Nakanishi S, Okazawa M (2006). Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells. J Physiol 575, 389–395.

Ng SY, Chn CH, Lau YT, Loo J, Wong CK, Bian ZX, Tsang SY (2010). Role of voltage-gated potassium channels in the fate determination of embryonic stem cells. J Cell Physiol 224, 165–177.

Niehrs C (2010). On growth and form: a Cartesian coordinate system of Wnt signalling. Bioessays 18, 495–504.

Nishiyama M, von Schimmelmann MJ, Togashi K, Findley WM, Hong K (2009). Functional roles of gap-junctional communication in planarian regeneration in vivo. Dev Dyn 238, 189–199.

Nishii K, Kumai M, Shibata Y (2001). Regulation of the epithelial-mesenchymal transition by Snail. Bioessays 23, 262–270.

Nog T, Zhang D, Chan JD, Gross JM (2009). The vacuolar-ATPase version of flatworm regenerative polarity. PLoS Negl Trop Dis 3, e464.

Ozkucur N, Epperlein HH, Funk RH (2010). Ion imaging during axolotl tail regeneration in vivo. Dev Dyn 239, 2048–2057.

Ozkucur N, Perike S, Sharma P, Funk RH (2011). Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol 12, 4.

Pai VP, Aw S, Somrat T, Lemire JM, Levin M (2012). Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139, 313–323.

Palacios-Prado N, Bualakas FK (2009). Heterotypic gap junction channels as voltage-sensitive valves for intercellular signaling. Proc Natl Acad Sci USA 106, 14855–14860.

Pan L, Borgens RB (2010). Perpendicular organization of sympathetic neurons within a required physiological voltage. Exp Neurol 222, 161–164.

Pan L, Borgens RB (2012). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Park JY, Helm JF, Zheng W, Ly OP, Hodul PJ, Centeno BA, Malafa MP (2008). Silencing of the candidate tumor suppressor gene solute carrier family member 5 (SLC5A5) in human pancreatic cancer. Pancras 36, e32–39.

Patel N, Poo MM (1982). Orientation of neurite growth by extracellular electric fields. J Neurosci 2, 483–496.

Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995). A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11, 126–129.

Paul SM, Palladino MJ, Betel GJ (2007). A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134, 147–155.

Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T (2003). Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci USA 100, 7803–7807.

Perathoner S, Daane JM, Henrion U, Seebohm G, Higdon CW, Johnson SL, Nusslein-Volhard C, Harris MP (2014). Bioelectric signaling regulates size in zebrafish fins. PLoS Genet 10, e1004080.

Peshkovska N, Horvath AE, Curti S, Hoge J, Cachope R, Flores CE, Rash JE (2013). Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta 1828, 134–146.

Pilozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A, Guasti L, Bartolozzi B, Ecabetti A, Wanke E (2002). HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hematopoietic progenitors. Leukemia 16, 1791–1798.

Pizzi A, Flex E, Mangiarelli R, Salpietro C, Zelante L, Dallapiccola B (2004). A homozygous GJA1 gene mutation causes a Hallermann-Streiff/ODDD spectrum phenotype. Hum Mutat 23, 286.

Poddar MV, Picentini R, Barbati SA, Mastromonato A, Puzzo D, D’Ascenzo M, Leone L, Grassi C (2013). Role of cyclic nucleotide-gated channels in the regulation of mouse hippocampal neurogenesis. PLoS One 8, e73246.

Priel A, Ramos AJ, Tusuzynski JA, Cantillo HF (2006). A biopolarization resistant electrical transmission: electrical amplification by microtubules. Biophys J 90, 4639–4643.

Pullar CE (2011). The Physiology of Bioelectricity in Development, Tissue Regeneration, and Cancer, Boca Raton, FL: CRC Press.

Pullar CE, Isseroff RR (2005). Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci 118, 2025–2034.

Rakic P, Sidman RL (1973a). The molecular basis for abnormality of Bergmann glia. Proc Natl Acad Sci USA 70, 2407–2415.

Rakic P, Sidman RL (1973b). Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci USA 70, 2407–2415.

Rakic P, Sidman RL (2008a). Modulation of potassium channel function confers a hyperpolarizing invasive phenotype on embryonic stem cells. Proc Natl Acad Sci USA 105, 16608–16613.

Rakic P, Djamgoz MB (2009). Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 625, 206–219.

Rakic P, Sidman RL (2008b). KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 21, 357–372.

Rakic P, Sidman RL (2008c). Orientation of neurite growth by extracellular electric fields. J Neurosci 28, 161–164.

Rakic P, Sidman RL (2012). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013a). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013b). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013c). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013d). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013e). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013f). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013g). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.

Rakic P, Sidman RL (2013h). Sagittal perpendicular orientation of neural crest-derived neurons in vivo is dependent on an extracellular gradient of voltage. J Neurosci Res 90, 1335–1346.
Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 427, 121–128.

Reaume AG, De Sousa PA, Kalkani S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995). Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–1834.

Reddien PW, Sanchez Alvarado A (2004). Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20, 725–757.

Reid B, Graue-Hernandez EO, Mannis MJ, Zhao M (2011a). Modulating endogenous electric currents in human corneal wounds—a novel approach of bioelectric stimulation without electrodes. Cornea 30, 338–343.

Reid B, Nuccitelli R, Zhao M (2007). Non-invasive measurement of bioelectric currents with a vibrating probe. Nat Protoc 2, 661–669.

Reid B, Vieira AC, Cao L, Mannis MJ, Schwab IR, Zhao M (2011b). Specific ion fluxes generate cornea wound electric currents. Commun Integr Biol 4, 462–465.

Rigas S, Debrosses G, Haralampidis K, Vicente-Aguilo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001). TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13, 139–151.

Ring H, Hudok SD, Shirazi-Fard S, Birnir B, Hallbook F (2012). GABA maintains the proliferation of progenitors in the developing chick ciliary marginal zone and non-pigmented cilium epithelium. PLoS One 7, e56530.

Rivas A, Francis HW (2005). Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol Neurotol 26, 415–424.

Rock JR, Futterer CR, Harfe BD (2008). The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev Biol 321, 141–149.

Roepke TK, Pertoll K, King EC, La Perle KM, Lerner DJ, Abbott GW (2010). Targeted deletion of Kcne2 causes gastritis cystica profunda and gastric neoplasia. PLoS One 5, e11451.

Root CM, Velazquez-Ulloa NA, Monsalve GC, Minakova E, Spitzer NC (2008). Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification. J Neurosci 28, 4777–4784.

Rouzaire-Dubois B, Gerard V, Dubois JM (1993). Involvement of K+ channels in the quaternary-induced inhibition of neuroblastoma cell growth. Pflugers Arch 423, 202–205.

Rubenstein M, Sai Y, Choung CM, Shen WM (2009). Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology. Int J Dev Biol 53, 849–881.

Saito T, Schlegel R, Andresson T, Yuge L, Yamamoto M, Yamasaki H (1998). Induction of cell transformation by mutated 16K vacuolar H+-atpase (dudin) is accompanied by down-regulation of gap junctional intercellular communication and translocation of connexin 43 in NIH3T3 cells. Oncogene 17, 1673–1680.

Salo E, Abnil JF, Adell T, Cebria F, Eckelt K, Fernandez-Taboada E, Handberg-Thorsager M, Iglesias M, Molina MD, Rodriguez-Esteban G (2009). Planarian regeneration: achievements and future directions after 20 years of research. Int J Dev Biol 53, 1317–1327.

Savy C, Martin-Martelini E, Simon A, Duyskaerts C, Veney C, Adelbrecht C, Raisman-Vozari R, Nguyen-Legros J (1999). Altered development of dopaminergic cells in the retina of weaver mice. J Comp Neurol 412, 513–530.

Speyer CL, Smith JS, Banda M, DeVries JA, Mekani T, Gorski DH (2012). Metabolic glutamate receptor-1: a potential therapeutic target for the treatment of breast cancer. Breast Cancer Res Treat 132, 565–573.

Steinberger BE, Touret N, Vargas-Caballero M, Grinstein S (2007). In situ measurement of the electrical potential across the phagosome membrane using FRET and its contribution to the proton-motive force. Proc Natl Acad Sci USA 104, 9523–9528.

Stern C (1982). Experimental reversal of polarity in chick embryo epiblast sheets in vitro. Exp Cell Res 140, 468–471.

Stillwell EF, Cone CM, Cone CD (1973). Stimulation of DNA synthesis in CNS neurones by sustained depolarisation. Nature 246, 121–128.

Sun Y, Dong Z, Jin T, Ang KH, Huang M, Haston KM, Peng J, Zhong TP, Finkbeiner S, Weiss WA, et al. (2013). Imaging-based chemical screening reveals activity-dependent neural differentiation of pluripotent stem cells. Elife 2, e00508.

Sun Y, Wang C, Dai J (2010). Biophotons as neuronal communication signals demonstrated by in situ biophoton autobiography. Photochem Photobiol Sci 9, 315–322.

Sundelacruz S, Levin M, Kaplan DL (2008). Membrane potential changes adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3, e3737.

Sundelacruz S, Levin M, Kaplan DL (2013). Depolarization alters phenotype, maintains plasticity of predetermined mesenchymal stem cells. Tiss Eng Part A 19, 1899–1908.

Sutor B, Hagerty T (2005). Involvement of gap junctions in the development of the neocortex. Biochim Biophys Acta 1719, 59–68.
 Swapna I, Borodinsky LN (2012). Interplay between electrical activity and enzyme activity in brain roots. Biophys Chem 27, 39–58.

 Tong Y, Wei J, Zhang S, Strong JA, Dlouhy SR, Hodes ME, Ghetti B, Yu L (1996). The veaver mutation changes the ion selectivity of the affected inwardly rectifying potassium channel GIRK2. FEBS Lett 390, 63–68.

 Tseng AS, Beane WS, Lemire JM, Masi A, Levin M (2010). Induction of vertebrate regeneration by a transient sodium current. J Neurosci 30, 13192–13200.

 Tseng AS, Carone K, Lemire JM, Levin M (2011). HDAC activity is required during Xenopus tail regeneration. PLoS One 6, e26382.

 Tseng A, Levin M (2013). Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation. Commun Integr Biol 6, 1–8.

 Tyner KM, Kopelman R, Philbert MA (2007). “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys J 93, 1163–1174.

 Uzun S, Gokce S, Wagner K (2005). Cystic fibrosis transmembrane conductance regulator gene mutations in infertile males with congenital bilateral absence of the vas deferens. Tohoku J Exp Med 207, 279–285.

 Yan Z, Zhengtao D, Jiachang Y, Fangqiong T, Qun W (2007). Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus. Anal Biochem 364, 122–127.

 Zhang D, Chan JD, Nogu T, Marchant JS (2011). Opposing roles of voltage-gated Ca2+ channels in neuronal control of regenerative patterning. J Neurosci 31, 15983–15995.

 Zhang J, Chan YC, Ho JC, Siu CW, Lian Q, Tse HF (2012). Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via Ether a go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol 303, C115–C125.

 Zhang JT, Jiang XH, Xie C, Chuang HH, Da Dong J, Wang Y, Fok KL, Zhang XH, Sun TT, Tang LL, et al. (2013). Downregulation of CFPTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochem Biophys Acta 1833, 2961–2969.

 Zhao M (2009). Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20, 674–682.

 Zhao M, Chalmer’s L, Cao L, Vieira AC, Mannis M, Reid B (2012). Electrical signaling in control of ooclar cell behaviors. Progr Retin Eye Res 31, 65–88.

 Zhao M, McCaig CD, Agius-Fernandez A, Forrester JV, Araki-Sasaki K (1997). Human corneal epithelial cells reorient and migrate cadditionally in a small applied electric field. Curr Eye Res 16, 973–984.

 Zoidl G, Dermietzel R (2010). Gap junctions in inherited human disease. Pflugers Arch 460, 451–466.

 Zykov VS (1990). Spiral waves in two-dimensional excitable media. Ann NY Acad Sci 591, 75–85.