The Association Between Trichomonas Vaginalis Infection and the Risk of Benign Prostate Hyperplasia, Prostate Cancer, and Bladder Cancer in Patients: a Nationwide Population-based Case-control Study

Hung Yi Yang
Tri-Service General Hospital

Ruei-Yu Su
Tri-Service General Hospital

Chi-Hsiang Chung
National Defense Medical Center

Hsin-Chung Lin
Tri-Service General Hospital

Kuo-Yang Huang
National Defense Medical Center

Wu-Chien Chien
National Defense Medical Center

Chien-Chou Chen (hsinchunglin@gmail.com)
Tri-Service General Hospital Songshan Branch

Research Article

Keywords: Trichomonas vaginalis, benign prostate hyperplasia (BPH), prostate cancer (PCa), bladder cancer (BC)

Posted Date: August 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-740634/v1

License: 🟢 This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Trichomonas vaginalis infection is one of the most widespread sexually transmitted infections in the world. There are approximately 276 million cases worldwide. Most men remain undiagnosed and untreated because they are asymptomatic. The chronic inflammation induced by persistent infection may increase the risk of developing genitourinary cancers. In this study, we aimed to investigate the association between trichomoniasis and benign prostate hyperplasia (BPH), prostate cancer (PCa), and bladder cancer (BC) in Taiwan.

Material and method: We designed a case-control study by using the database of the National Health Insurance program in Taiwan. We used the International Classification of Diseases, 9th Revision classifications to classify all the medical conditions in the case and control groups. All odds ratios (ORs) and 95% confidence intervals (CIs) were analyzed using multivariable logistic regression to adjust for all comorbidities and variables.

Result: From 2000 to 2015, we enrolled a total of 62,544 individuals as the case group and 187,632 as the control group. Trichomoniasis exposure had a significant association with BPH and PCa (adjusted OR: BPH = 2.685, 95% CI = 1.233–4.286, P = 0.013; PCa = 5.801, 95% CI = 1.296–26.035, P = 0.016). The relative risk was much higher if patients had both trichomoniasis and depression (adjusted OR = 7.682, 95% CI = 5.730–9.451, P < 0.001).

Conclusion: Men with trichomoniasis had a significantly higher risk of developing BPH and PCa than those without. Healthcare professionals should not only pay more attention to disease treatment, but also to public health education.

Background

Benign prostate hyperplasia (BPH), prostate cancer (PCa), and bladder cancer (BC) are common diseases in the elderly male population. The pathological mechanism of these diseases is not yet fully understood. Inflammation of the prostate, which can cause proliferation of epithelium and stroma, is considered to be related to both BPH and PCa [1, 2]. In addition, urinary tract infection (UTI) is significantly associated with genitourinary cancers (GUC), including kidney, prostate, and bladder cancers [3]. Trichomonas vaginalis infection is one of the most common sexually transmitted infections (STIs), accounting for approximately 276.4 million new cases annually [4]. Because most male patients are asymptomatic and remain undiagnosed and untreated, persistent infection may cause chronic inflammation, which may increase the risk of GUC. There is a lack of research into the relationship between T. vaginalis infection and BC; however, some studies have mentioned that T. vaginalis infection may induce proliferation of prostatic epithelial cells and stromal cells [5, 6]. Some in vitro studies showed that PCa may be associated with the up-regulation of the expression of genes that can control cell apoptosis or be overexpressed as a proto-oncogene [7, 8]. The study from Vienna General Hospital discovered that 29/86 (33.7%) patients with BPH were positive for T. vaginalis on polymerase chain reaction (PCR) testing [9]. The Health Professionals Follow-up Study (HPFS) demonstrated that T. vaginalis seropositivity had a positive correlation with PCa risk [10]. However, conflicting results have also been reported. Miguelle et al. demonstrated that there was no significant association between T. vaginalis infection and PCa in Caucasian or African-American groups [11]. Another multicenter study in the USA revealed that patients with a history of STIs and positive STI serologies demonstrated no association with BPH [12]. In addition, there is still a lack of related literature regarding BC and Asian male populations. Thus, this study aimed to examine the association between T. vaginalis infection and BPH, BC, or PCa.

Material And Method

Data source

We designed a population-based nationwide nested case-control study and obtained inpatient and outpatient files from Taiwan’s National Health Insurance Research Database (NHIRD). The data were collected from the Longitudinal Health Insurance Database 2005 (LHID2005), a part of NHIRD. We randomly selected approximately 2,000,000 people among the total population. All personal information was encrypted by National Health Research Institutes before released.

Identification of the case and control groups

We selected patients from 2000 to 2015 who had been diagnosed with BPH, PCa, or BC based on the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes as the case group (Table S1). We defined the date of the first disease diagnosis as the index date. We also used ICD-9-CM codes to identify patients with T. vaginalis infection (Table S1). In contrast, the control groups were patients without BPH, PCa, or BC. Among all patients in the case and control groups, we not only selected patients in a 1:3 case:control ratio, matching based on age and index date, but also excluded (1) women and patients of unknown sex, (2) patient’s aged less than 18 years, and (3) those last diagnosed with trichomoniasis within 1 year before the index date (Fig. 1). The comorbidities in our study included hypertension, myocardial infarction, congestive heart failure, cerebral or peripheral vascular disease, dementia, chronic obstructive pulmonary disease (COPD), type 2 diabetes, renal disease, and malignant disease except PCa and BC. We also evaluated depression as one of the comorbidities in our study because it may be associated with some cancers [13].

Statistical analysis

The statistical analyses were performed using SPSS version 22.0 (IBM Corp, Armonk, NY, USA). A P-value < 0.05 was considered significant. The chi-squared or Fisher exact test was used to evaluate distributions between the case and control groups. Continuous variables were evaluated using the t-test. Unconditional multiple logistic regression analyses were performed to evaluate the risks of BPH, PCa, and BC associated with trichomoniasis after adjusting for age, insurance premium, comorbidities, season, urbanization, and level of care.

Result
Demographic characteristics of the study population

Table 1 demonstrates the population distribution of different characteristics for 62,544 patients with BPH, PCa, or BC and 187,632 controls from 2000 to 2015. There were no significant differences in age between groups after matching. The proportion with trichomoniasis in the case group was 0.02% (14/62,544), while it was 0.01% (14/187,632) in the control group ($P < 0.001$).
Variables	Total	With	Without	P
BPH/prostate cancer, bladder cancer	250,176	62,544	187,632	
Trichomoniasis	0.004			
Without	250,148	62,530	187,618	
With	28	14	14	
Age (years)	73.15 ± 11.41	73.21 ± 10.65	73.13 ± 11.65	0.129
Age group (years)	0.999			
18–44	2,664	1.06	1,998	1.06
45–64	50,292	20.10	37,719	20.10
≥ 65	197,220	78.83	147,915	78.83
Insurance premium (NT$)	<0.001			
< 18,000	245,698	98.21	184,044	98.09
18,000–34,999	3,654	1.46	2,942	1.57
≥ 35,000	824	0.33	646	0.34
Depression	<0.001			
Without	217,896	87.10	167,387	89.21
With	32,280	12.90	20,245	10.79
CCI_R	1.74 ± 2.96	1.71 ± 2.77	1.75 ± 3.03	<0.001
Season	<0.001			
Spring (Mar-May)	56,893	22.74	41,398	22.06
Summer (Jun-Aug)	60,567	24.21	44,858	23.91
Autumn (Sep-Nov)	72,621	29.03	55,955	29.82
Winter (Dec-Feb)	60,095	24.02	45,421	24.21
Location	<0.001			
Northern Taiwan	99,711	39.86	73,236	39.03
Central Taiwan	71,555	28.60	54,677	29.14
Southern Taiwan	63,601	25.42	48,616	25.91
Eastern Taiwan	14,366	5.74	10,409	5.55
Outlying islands	943	0.38	694	0.37
Urbanization level	<0.001			
1 (Highest)	75,256	30.08	56,320	30.02
2	113,122	45.22	83,829	44.68
3	17,865	7.14	13,746	7.33
4 (Lowest)	43,933	17.56	33,737	17.98
Level of care	<0.001			
Hospital center	89,122	35.62	66,062	35.21
Regional hospital	115,596	46.21	88,994	47.43
Local hospital	45,458	18.17	32,576	17.36

Chi-square/Fisher exact test on categorical variables and t-test on continue variables
We present the results of the multivariable logistic regression analyses in Table 2. Patients with trichomoniasis had a significantly higher risk of BPH, PCa, or BC (adjusted odds ratio [AOR] = 2.999, 95% confidence interval [CI] = 1.426–5.301, p = 0.002). There was also a significantly higher risk for patients with depression (AOR = 3.124, 95% CI = 1.808–4.838, P<0.001). The opposite result was noted in patients with middle or high insurance premiums (insurance premium NT$18,000–34,999: AOR = 0.745, 95% CI = 0.688–0.799, P<0.001; insurance premium > NT$35,000: AOR = 0.836, 95% CI = 0.701–0.979, P = 0.019). Patients diagnosed in summer, autumn, or winter also had significantly lower risk than the control group (summer: AOR = 0.938, 95% CI = 0.902–0.953, P<0.001; autumn: AOR = 0.790, 95% CI = 0.758–0.805, P<0.001; winter: AOR = 0.862, 95% CI = 0.824–0.878, P<0.001). Patients who lived in areas with a higher urbanization level had a significantly higher risk of BPH, PCa, or BC (urbanization level 1: AOR = 1.160, 95% CI = 1.124–1.189, P<0.001; urbanization level 2: AOR = 1.211, 95% CI = 1.179–1.235, P<0.001) but had significantly lower risk when diagnosed at a higher level of care (hospital center: AOR = 0.819, 95% CI = 0.796–0.902, P<0.001; regional hospital: AOR = 0.745, 95% CI = 0.724–0.808, P<0.001) instead.
Table 2

Risk of BPH/prostate cancer and bladder cancer based on stated variables analyzed using multivariable logistic regression

Variables	Crude OR	95% CI	95% CI	P	Adjusted OR	95% CI	95% CI	P
Trichomoniasis								
Without	Reference				Reference			
With	3.000	1.430	6.294	0.004	2.999	1.426	5.301	0.002
Age group (years)								
18–44	Reference				Reference			
45–64	1.000	0.914	1.094	0.999	1.015	0.923	1.107	0.782
≥ 65	1.000	0.915	1.092	0.999	1.006	0.919	1.098	0.794
Insured premium (NT$)								
< 18,000	Reference				Reference			
18,000–34,999	0.722	0.665	0.784	< 0.001	0.745	0.688	0.799	< 0.001
≥ 35,000	0.823	0.697	0.971	0.021	0.836	0.701	0.979	0.019
Depression								
Without	Reference				Reference			
With	3.286	1.846	4.959	< 0.001	3.124	1.808	4.838	< 0.001
CCI_R	0.996	0.993	0.999	0.006	1.000	0.998	1.005	0.058
Season								
Spring	Reference				Reference			
Summer	0.936	0.912	0.960	< 0.001	0.938	0.902	0.953	< 0.001
Autumn	0.796	0.776	0.816	< 0.001	0.790	0.758	0.805	< 0.001
Winter	0.863	0.841	0.886	< 0.001	0.862	0.824	0.878	< 0.001
Location								
Northern Taiwan	Reference				Reference			
Central Taiwan	0.854	0.835	0.873	< 0.001	0.853	0.833	0.873	< 0.001
Southern Taiwan	0.853	0.833	0.873	< 0.001	0.852	1.011	1.094	0.012
Eastern Taiwan	1.052	1.011	1.094	0.012	0.992	0.858	1.148	0.919
Outlying islands	0.992	0.858	1.148	0.919	Had multicollinearity with urbanization level			
Urbanization level								
1 (Highest)	1.113	1.082	1.144	< 0.001	1.160	1.124	1.189	< 0.001
2	1.156	1.127	1.186	< 0.001	1.211	1.179	1.235	< 0.001
3	0.991	0.951	1.033	0.685	0.987	0.952	1.036	0.924
4 (Lowest)	Reference				Reference			
Level of care								
Hospital center	0.883	0.861	0.905	< 0.001	0.819	0.796	0.902	< 0.001
Regional hospital	0.756	0.738	0.775	< 0.001	0.745	0.724	0.808	< 0.001
Local hospital	Reference				Reference			

P: Chi-square/Fisher exact test on categorical variables and t-test on continue variables; OR = odds ratio, CI = confidence interval, Adjusted OR: adjusted for variables listed in the table

Risk of BPH/PCa and BC in the trichomoniasis group stratified by covariates

The risk of BPH, PCa, or BC stratified based on variables using multivariable logistic regression is shown in Table 3. Patients with trichomoniasis had a 2.999 times higher risk of BPH, PCa, or BC than the control group (AOR = 2.999, 95% CI = 1.426–5.301). In the case of trichomoniasis, there were significantly higher risks of BPH, PCa, or BC in patients aged > 65 years old, with lower insurance premiums, with/without depression, first diagnosed in winter, urbanization level 2, and first diagnosed in a local hospital (age > 65 years: AOR = 3.685, 95% CI = 1.704–8.015; insurance premium < NT$18,000: AOR = 2.999, 95% CI = 1.326–
5.301; with depression: AOR = 3.104, 95% CI = 1.706–5.972; without depression: AOR = 2.545, 95% CI = 1.138–4.289; first diagnosed in winter: AOR = 4.806, 95% CI = 1.104–19.675; urbanization level 2: AOR = 3.284, 95% CI = 1.057–10.978; first diagnosed in local hospital: AOR = 15.121, 95% CI = 1.762–118.976.

Table 3
Risk of BPH/prostate cancer and bladder cancer stratified by variables listed in the table by using multivariable logistic regression

BPH / prostate, bladder cancer Stratified	With Trichomoniasis exposure	Population	%	Without Trichomoniasis exposure	Population	%	Adjusted OR	95%CI	95%CI	P
Total	14	62,544	0.022	14	187,632	0.007	2.999	1.426	5.301	0.002
Age group (years)										
18–44	0	666	0.000	0	1,998	0.000	-	-	-	
45–64	0	12,573	0.000	2	37,719	0.005	0.000	-	-	0.999
≥ 65	14	49,305	0.028	12	147,915	0.008	3.685	1.704	8.015	0.001
Insurance premium (NT$)										
< 18,000	14	61,654	0.023	14	184,044	0.008	2.999	1.426	5.301	0.002
18,000–34,999	0	712	0.000	0	2,942	0.000	-	-	-	
≥ 35,000	0	178	0.000	0	646	0.000	-	-	-	
Depression										
Without	4	50,509	0.008	7	167,387	0.004	2.545	1.138	4.289	< 0.001
With	10	12,035	0.083	7	20,245	0.035	3.104	1.706	5.972	< 0.001
Season										
Spring	3	15,495	0.019	1	41,398	0.002	7.745	0.671	70.986	0.175
Summer	2	15,709	0.013	4	44,858	0.009	1.301	0.104	5.258	0.603
Autumn	4	16,666	0.024	6	55,955	0.011	2.197	0.482	4.894	0.224
Winter	5	14,674	0.034	3	45,421	0.007	4.806	1.104	19.675	0.033
Urbanization level										
1 (Highest)	2	18,936	0.011	2	56,320	0.004	3.199	0.453	22.845	0.241
2	6	29,293	0.020	6	83,829	0.007	3.284	1.057	10.978	0.035
3	1	4,119	0.024	1	13,746	0.007	3.351	0.210	53.777	0.382
4 (Lowest)	5	10,196	0.049	5	33,737	0.015	3.086	0.898	10.801	0.077
Level of care										
Hospital center	1	23,060	0.004	3	66,062	0.005	0.965	0.094	9.301	0.886
Regional hospital	7	26,602	0.026	10	88,994	0.011	2.301	0.846	6.127	0.071
Local hospital	6	12,882	0.047	1	32,576	0.003	15.121	1.762	118.976	0.008

P: Chi-square/Fisher exact test on categorical variables and t-test on continue variables; Adjusted OR = Adjusted odds ratio: adjusted for the variables listed in Table 2; CI = confidence interval

Risk of BPH/PCa and BC in subgroup with T. vaginalis exposure and the joint effect

Table 4 presents the T. vaginalis exposure ratio in each subgroup of BPH/PCa and BC. T. vaginalis exposure is significantly associated with a higher risk of BPH and PCa (BPH: AOR = 2.685, 95% CI = 1.233–4.286, P = 0.013; PCa: AOR = 5.801, 95% CI = 1.296–26.035, P = 0.016), but has no significant association with BC (AOR = 4.012, 95% CI = 0.524–31.145, P = 0.151). In addition, patients with both depression and T. vaginalis exposure had a significantly higher risk of developing BPH, PCa, or BC in comparison with other groups with only one condition or without them (AOR = 7.682, 95% CI = 5.730–9.451, P < 0.001) (Fig. 2).
Schistosoma haematobium cytokines found in trichomoniasis, including IL-6 and IL-8, are also associated with a higher risk of developing BC. There were still a lack of studies to prove that trichomoniasis is associated with BC. We still included BC patients in our study because the inflammatory response promotes cell proliferation, sustains inflammation, and stimulates the growth of prostate cancer cells. Levels of inflammatory cytokines are present in several cancers, including PCa. IL-6 plays an important role in inducing PCa. Repeated cell damage and repair in chronic inflammation is likely to play an important role in inducing BPH. In women, T. vaginalis induces pro-inflammatory cytokine production, including interleukin-6 (IL-6), interleukin-8 (IL-8), and chemokine ligand 2 (CCL2), while attaching to vaginal epithelial cells. A similar inflammatory reaction was also noted in T. vaginalis-infected prostatic epithelial cells in some in vitro studies. Repeated cell damage and repair in chronic inflammation is likely to play an important role in inducing BPH. Furthermore, the alteration in cytokine expression during chronic inflammation may have effects on cell growth and proliferation of the prostate epithelium and stroma.

Discussion

We designed this case-control study based on nationwide data from Taiwan NHIRD. We found that T. vaginalis infection was significantly associated with BPH and PCa in a male population. Therefore, T. vaginalis could be a pathogen that induces BPH and PCa. However, there was no significant association between trichomoniasis and BC. Furthermore, patients with both trichomoniasis and depression had higher risk of developing BPH, PCa, or BC. This result suggests that the joint effect of trichomoniasis and depression could increase the risk of BPH, PCa, or BC.

The mechanism of T. vaginalis inducing BPH and PCa still remains unclear. Several studies have demonstrated different possible mechanisms. In women, T. vaginalis induces pro-inflammatory cytokine production, including interleukin-6 (IL-6), interleukin-8 (IL-8), and chemokine ligand 2 (CCL2), while attaching to vaginal epithelial cells. A similar inflammatory reaction was also noted in T. vaginalis-infected prostatic epithelial cells in some in vitro studies. Repeated cell damage and repair in chronic inflammation is likely to play an important role in inducing BPH. Furthermore, the alteration in cytokine expression during chronic inflammation may have effects on cell growth and proliferation of the prostate epithelium and stroma. T. vaginalis possibly induces carcinogenesis of the prostate. The infected prostatic epithelial cells produce IL-6 in chronic inflammation. In early studies, an elevated serum IL-6 level was noted in patients with advanced PCa. The positive correlation between IL-6 receptor expression and cell proliferation has been reported. IL-6 also induces epithelial-mesenchymal transition (EMT) in breast cancer growth and metastasis, and the same reaction may also occur in prostatic epithelial cells. In addition, more than one study has demonstrated that IL-6 could enhance androgen receptor (AR) activity and AR gene expression, which is also related to prostate cancer growth.

Twu et al. demonstrated that T. vaginalis macrophage migration inhibitory factor (TvMIF) plays an important role in inducing PCa. There are already studies that have proven that higher macrophage migration inhibitory factor (HuMIF) levels are present in several cancers, including PCa. The structure of TvMIF is similar to that of HuMIF, which might explain why TvMIF also has the ability to promote cell proliferation, sustain inflammation, and stimulate the growth of prostate cancer cells.

There were still a lack of studies to prove that trichomoniasis is associated with BC. We still included BC patients in our study because the inflammatory cytokines found in trichomoniasis, including IL-6 and IL-8, are also associated with a higher risk of developing BC and some parasites, such as Schistosoma haematobium, can induce BC. However, our study shows no significant association between T. vaginalis infection and BC probably because of limited sample.
Our results demonstrate that except for depression, no comorbidities had a significant association with BPH, PCa, or BC. The joint effect of trichomoniasis and depression increased the risk by 7.682 times that of the control group. A recent study showed that depression is associated with decreased immunity [28]. Moreover, depression can also cause cytokine dysregulation and increased serum IL-6 concentration [28], which might enhance carcinogenesis after *T. vaginalis* infection.

Although this study was a large-scale population-based nationwide design with long-term monitoring from 2000 to 2015, there are still several limitations. First, the NHIRD does not contain detailed information regarding the histological and TNM classification of PCa and BC, serum sex hormone concentrations, family history, or personal history such as physical activity, alcohol consumption or tobacco smoking. Second, we did not include body mass index (BMI) as one of our variables. Obesity is one of the risk factors for BPH and PCa [29], which might affect their association with trichomoniasis. Third, our study might underestimate the exact number of patients with trichomoniasis. Most male patients would not seek treatment due to being asymptomatic, and ineffective screening protocols because of the lack of public health awareness could also lead to possible *T. vaginalis* infection being neglected [30]. Fourth, the number of cases of BC might be too small to be significant and the tracking time might not be sufficient for disease monitoring.

Conclusion

Male patients with *T. vaginalis* infection have an increased risk of developing BPH and PCa, especially in trichomoniasis patients with comorbid depression. Due to the lack of awareness of this pathogen, clinicians should not only treat patients who are already diagnosed but should also pay more attention to groups with higher trichomoniasis exposure risk.

Abbreviations

AOR: adjusted odds ratio; AR: androgen receptor; BC: bladder cancer; BMI: body mass index; BPH: benign prostate hyerplasia; CCL2: chemokine ligand 2; CI: confidence interval; COPD: chronic obstructive pulmonary disease; EMT: epithelial-mesenchymal transition; FGF-2: fibroblast growth factor 2; GUC: genitourinary cancers; HPFS: Health Professionals Follow-up Study; HuMIF: human macrophage migration inhibitory factor; IL: interleukin; LHID2005: Longitudinal Health Insurance Database 2005; NHI: National Health Insurance; NHIRD: National Health Insurance Research Database; NT$: New Taiwan Dollars; OR: odds ratio; PCa: prostate cancer; STI: sexually transmitted infection; *T. vaginalis*: *Trichomonas vaginalis; TvMIF: Trichomonas vaginalis* macrophage migration inhibitory factor; UTI: urinary tract infection

Declarations

Acknowledgements

We would like to thank the National Defense Medical Center team for support.

Availability of data and materials

Data supporting the conclusions of this article are included within the article and its additional files. The datasets used and/or analyzed during the present study will be made available by the corresponding author upon reasonable request.

Authors’ contributions

HCL, HYY and CCC conceived the idea and wrote the first draft manuscript. RYS and KYH contributed to the manuscript. WCC and CHC research data collection and statistical analyses. All authors read and approved the final manuscript.

Funding

This work was supported by Tri-Service General Hospital, Taiwan (TSGH-C108-003) to WCC and Tri-Service General Hospital Songshan Branch, Taiwan (TSGH-SS-D-110006) to CCC.

Ethics approval:

This study was approved by the Institutional Review Board of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (TSGHIRB No. 2-105-05-082).

Consent for publication:

Because the patient identifiers were encrypted before their data were used for research purposes to protect confidentiality, the requirement for written or verbal consent from patients for data linkage was waived.

Conflicts of Interest: The authors declare no competing interests.

Author details:

1 Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital
References

1. St Sauver JL, Jacobsen SJ. Inflammatory mechanisms associated with prostatic inflammation and lower urinary tract symptoms. Curr Prostate Rep. 2008;6:67–73.

2. Orsted DD, Bojesen SE. The link between benign prostatic hyperplasia and prostate cancer. Nat Rev Urol. 2013;10:49–54.

3. Huang CH, Chou YH, Yeh HW, et al. Risk of cancer after lower urinary tract infection: a population-based cohort study. Int J Environ Res Public Health. 2019;16:390.

4. World Health Organization. Global incidence and prevalence of selected curable sexually transmitted infections – 2008. Switzerland: WHO Geneva; 2012.

5. Kim JH, Kim SS, Han IH, et al. Proliferation of prostate stromal cell induced by benign prostatic hyperplasia epithelial cell stimulated with *Trichomonas vaginalis* via crosstalk with mast cell. Prostate. 2016;76:1431–44.

6. Kim SS, Kim JH, Han IH, et al. Inflammatory responses in a benign prostatic hyperplasia epithelial cell line (BPH-1) infected with *Trichomonas vaginalis*. Korean J Parasitol. 2016;54:123–32.

7. Twu O, Dessi D, Vu A, et al. *Trichomonas vaginalis* Homolog of Macrophage Migration Inhibitory Factor Induces Prostate Cell Growth, Invasiveness, and Inflammatory Responses. Proc Natl Acad Sci U S A. 2014;111:8179–84.

8. Sutcliffe S, Neace C, Magnuson NS, et al. Trichomonosis, a common curable STI, and prostate carcinogenesis—a proposed molecular mechanism. PLoS Pathog. 2012;8:e1002801.

9. Mitteregger D, Aberle SW, Makristathi S, et al. High detection rate of *Trichomonas vaginalis* in benign hyperplastic prostatic tissue. Med Microbiol Immunol. 2012;201:113–6.

10. Sutcliffe S, Giovannucci E, Alderete JF, et al. Plasma antibodies against *Trichomonas vaginalis* and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:939–45.

11. Marous M, Huang WY, Rabkin CS, et al. *Trichomonas vaginalis* infection and risk of prostate cancer: associations by disease aggressiveness and race/ethnicity in the PLCO trial. Cancer Causes Control. 2017;28:889–98.

12. Breyer BN, Huang WY, Rabkin CS, et al. Sexually transmitted infections, benign prostatic hyperplasia and lower urinary tract symptom-related outcomes: results from the prostate, lung, colorectal and ovarian cancer screening trial. BJU Int. 2016;117:145–54.

13. Lin CL, Liu TC, Wang YN, et al. The association between sleep disorders and the risk of colorectal cancer in patients: a population-based nested case–control study. In Vivo. 2019;33:573–9.

14. Han IH, Park SJ, Ahn MH, et al. Involvement of mast cells in inflammation induced by *Trichomonas vaginalis* via crosstalk with vaginal epithelial cells. Parasite Immunol. 2012;34:8–14.

15. Schauer IG, Rowley DR. The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation. 2011;82:200–10.

16. Penna G, Mondaini N, Amuchastegui S, et al., Seminal plasma cytokines and chemokines in prostate inflammation: interleukin 8 as a predictive biomarker in chronic prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia. Eur Urol, 2007;51:524 – 33; discussion 533..

17. Giri D, Ittmann M. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. Am J Pathol. 2001;159:139–47.

18. MacManus CF, Pettigrew J, Seaton A, et al. Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res. 2007;5:737–48.

19. Han IH, Kim JH, Kim SS, et al. Signalling pathways associated with IL-6 production and epithelial-mesenchymal transition induction in prostate epithelial cells stimulated with *Trichomonas vaginalis*. Parasite Immunol. 2016;38:678–87.

20. Adler HL, McCurdy MA, Kattan MW, et al. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol. 1999;161:182–7.

21. Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol. 2001;159:2159–65.

22. Sullivan NJ, Sasser AK, Axel AE, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.

23. Rojas A, Liu G, Coleman I, et al. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene. 2011;30:2345–55.

24. Lee SG, Lou W, Hou M, et al. Interleukin-6 promotes androgen-independent growth in LNCaP human prostate cancer cells. Clin Cancer Res. 2003;9:370–6.

25. Hussain F, Freissmuth M, Völkel D, et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol Cancer Ther. 2013;12:1223–34.

26. Chen MF, Lin PY, Wu CF, et al. IL-6 expression regulates tumorigenicity and correlates with prognosis in bladder cancer. PLoS One. 2013;8:e61901.
27. Inoue K, Slaton JW, Kim SJ, et al. Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res. 2000;60:2290–9.

28. Glaser R, Robles TF, Sheridan J, et al. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch Gen Psychiatry. 2003;60:1009–14.

29. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63:800–9.

30. Roth AM, Williams JA, Ly R, et al. Changing sexually transmitted infection screening protocol will result in improved case finding for Trichomonas vaginalis among high-risk female populations. Sex Transm Dis. 2011;38:398–400.

Figures

The flowchart of the study design (nested case-control study) from National Health Insurance Research Database in Taiwan.
Figure 2
Risk of BPH/prostate or bladder cancer stratified by trichomoniasis and depression status using logistic regression

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Graphicalabstract.tif
- TableS1.docx