POSITIVITY OF $|p|^a|q|^b + |q|^b|p|^a$

LI CHEN AND HEINZ SIEDENTOP

Abstract. We show that
\[J_{a,b,n} := \frac{1}{2}(|p|^a|q|^b + |q|^b|p|^a) \]
is positive under suitable conditions on the exponents a and b and
the underlying dimension n. (Here q is the multiplication by x and $p := i^{-1}\nabla$.)
Furthermore we show a generalization of the generalized Hardy inequalities
for the fractional Laplacians.

1. Introduction

The classical Hardy inequality ([3, Formula (4)])
\[\int_a^\infty \left(\frac{F}{x} \right)^\kappa dx \leq \left(\frac{\kappa}{\kappa - 1} \right)^\kappa \int_a^\infty f^\kappa dx \]
with $F(x) = \int_a^x f(t)dt$ and $\kappa > 1$ is one of the longest known inequalities allowing to
bound the weighted L^κ-norm of a decaying function by the L^κ-norm of its gradient
(Hardy [3]). In modern textbooks, see, e.g., Reed and Simon [7, p. 169], this occurs
($\kappa = 2$) as the quantum mechanical uncertainty principle lemma and is written in
three dimensions as
\[\int_{\mathbb{R}^3} |\nabla \psi|^2 \geq \frac{1}{4} \int_{\mathbb{R}^3} |\psi(x)|^2 dx. \]
This, in turn was generalized by Herbst [4] (see also Yafaev [8] and Frank et al [1])
to fractional Laplacians (see [19]).

In a seemingly different context, the excess charge problem of atoms, Lieb [5]
needed
\[|q||p|^2 + |p|^2|q| > 0 \]
which, however, turned out to be equivalent to the quantum mechanical uncertainty
principle. Here $p = -i\nabla$ is the momentum operator and q (multiplication by x) is
the position operator. Lieb [5] showed in fact, that also
\[|q||p| + |p||q| > 0 \]
in three dimensions by reducing it to (2).

With the advent of graphene physics, two-dimensional versions of Lieb’s inequality
became of physical interest which, however, could not simply be reduced to (2).
Instead, [8] was directly proven [2].

The purpose of this article is to show, that the positivity of the Jordan product
$J_{a,b,n} := \frac{1}{4}(|p|^a|q|^b + |q|^b|p|^a)$ is in fact a generalization which reduces, for $b = n - a$
to Hardy inequalities for fractional Laplacians. Here a and b are positive constants
and n is the underlying dimension of the appropriate function space.

Date: March 19, 2013.
1991 Mathematics Subject Classification. 47A63, 26D10, 81Q10.
Key words and phrases. Hardy Inequality.
2. Positivity and Relation to Generalized Hardy Inequalities

Our basic result is the following operator inequality on $L^2(\mathbb{R}^n)$ for the momentum operator $p = -i\nabla$ and the position operator q (multiplication by x).

Theorem 1. Assume $n \geq a + b$ and $\min\{a, b\} \in [0, 2]$. Then on $C_0^\infty(\mathbb{R}^n)$

\[0 < J_{a,b,n} := \frac{1}{2}|p|^a q^b + |q|^b p^a. \]

In fact, our proof shows more, namely

\[|q|^{b/2} H_{a,n} q^{b/2} \leq J_{a,b,n} \]

where $H_{a,n}$ is the Hardy operator of $[19]$.

As indicated in the introduction, the case $n = 3$, $a = 2$, and $b = 1$ has an important consequence in atomic physics: it is an essential ingredient in bounding the total number of electrons that atoms can bind: the number of electrons that an atom can bind can never exceed twice its nuclear charge. This special case was proven and applied in this context by Lieb [5]. The case $n = 2$ and $a = b = 1$ plays a similar role in investigating how many electrons a magnetic quantum dot in a graphene layer can bound and was proved and applied in that context (Handerek and Siedentop [2]).

Proof. For the proof we can assume that $a \leq b$, since, if not, we use the Fourier transform to exchange the role of p and q.

We first treat the case, that $a < 2$. In this case we follow the strategy of [2] and use the identity (20). Thus, by polarization

\[t := \frac{1}{2}(\psi, (|p|^a q^b + |q|^b p^a)\psi) \]

\[= \alpha_{a,n} R \int_{\mathbb{R}^n} dx \int_{\mathbb{R}^n} dy \left(\frac{\psi(x) - \psi(y)}{|x - y|^{n+a}} \right)^2 \]

\[= \alpha_{a,n} R \int_{\mathbb{R}^n} dx \int_{\mathbb{R}^n} dy \left(\frac{2|x|^b |\psi(x)|^2 - (|x|^b + |y|^b) \psi(x) \psi(y)}{|x - y|^{n+a}} \right). \]

Now, setting $\psi = g/|.|^{(n+b-a)/2}$ we get

\[\frac{t}{\alpha_{a,n}} = \int_{\mathbb{R}^n} dx \int_{\mathbb{R}^n} dy \left(\frac{|x|^b |g(x)|^2}{|x|^{(n+b-a)/2}} + \frac{|y|^b |g(y)|^2}{|y|^{(n+b-a)/2}} - \frac{2b|g(x)g(y)| |y|^b}{|x - y|^{n+a}} \right) \]

\[= \int_{\mathbb{R}^n} \frac{dx}{|x|^n} [g(x)]^2 \int_{\mathbb{R}^n} dy \frac{2|x|^a - |x|^{a+b} |y|^{n+a} + |x|^{a+b} |y|^{-n-a}}{|x - y|^{n+a}} \frac{2|x|^a - |x|^{a+b} |y|^{n+a} + |x|^{a+b} |y|^{-n-a}}{|x - y|^{n+a}} \]

\[+ \int_{\mathbb{R}^n} \frac{dx}{|x|^{(n+b-a)/2}} \frac{(|x|^b + |y|^b) |g(x) - g(y)|^2}{|x - y|^{(n+b-a)/2}}. \]

At this point we could simply drop the last term, since it is positive. However, with minimal extra effort we estimate the last term using $|x|^b + |y|^b \geq 2|x|^{b/2} |y|^{b/2}$ and
obtain using (21)

\begin{align*}
(8) \quad t & \geq \alpha_{a,n} \int_{\mathbb{R}^n} dx \frac{|g(x)|^2}{|x|^n} \int_{\mathbb{R}^n} dy \frac{2 - |y|^{\frac{n+a-b}{2}} - |y|^{\frac{n-a-b}{2}}}{(2|y|)^{\frac{n+a-b}{2}} \left(\begin{array}{c} \frac{b}{2} + 1 \\ \frac{n-a-b}{2} \end{array} \right)} + (\psi, |q|^{b/2} H_{a,n} |q|^{b/2} \psi) \\
& = \frac{\alpha_{a,n}}{2} \int_{\mathbb{R}^n} dx \frac{|g(x)|^2}{|x|^n} \int_{\mathbb{R}^n} dy \frac{2|y|^{\frac{n-a}{2}} - |y|^{b/2} - |y|^{b/2}}{(2|y|)^{\frac{n-a}{2}} \- \omega \cdot \epsilon} + (\psi, |q|^{b/2} H_{a,n} |q|^{b/2} \psi) \\
& \geq 0
\end{align*}

assuming – in the last line – that \(\psi \) is not identical zero. The positivity, i.e., the last inequality, follows from the positivity of the numerator of the last integral which is a consequence of the fact that the function \(f(\alpha) := r^\alpha + r^{-\alpha} \) is strictly monotone increasing for positive \(r \) and \(n - a \geq b \).

We now supply the missing case that \(\min\{a, b\} = 2 \). Again we may assume that \(a \leq b \) without loss of generality. An easy calculation shows

\begin{align*}
(9) \quad & \frac{1}{2} (|p|^2 |q|^b + |q|^b |p|^2) \\
& = |q|^2 \left((|p|^2 + \frac{1}{2} |q|^{-\frac{1}{2}} (|p|^2, |q|^{\frac{1}{2}}) |q|^{-\frac{1}{2}}) |q|^\frac{1}{2} \right) \\
& = |q|^2 \left(|p|^2 - \frac{b^2}{4} |q|^{-2} \right) |q|^\frac{b}{2} \\
& \geq |q|^2 H_{2,n} |q|^{\frac{b}{2}} > 0,
\end{align*}

because \(b \leq n - 2 \). Since the first inequality is actually an equality in the case \(b = n - 2 \), it shows that our assumption \(a + b \leq n \) is critical, since Herbst’s inequalities are sharp.

\[\square \]

3. **Ground State Representation**

The result of the previous section can be viewed as a warmup for the following result.

Theorem 2. Assume \(a, b \in (0, \infty) \) with \(a + b \leq n \), \(\min\{a, b\} \in (0, 2) \), and \(\psi \in C_0^\infty (\mathbb{R}^n) \). Then

\begin{align*}
(10) \quad (\psi, (J_{a,b,n} - L_{a,b,n} |q|^{b-a}) \psi) &= (\psi, |q|^{\frac{b}{2}} H_{a,n} |q|^{\frac{b}{2}} \psi) \\
& + \alpha_{a,n} \int_{\mathbb{R}^n} dx \int_{\mathbb{R}^n} dy \frac{(|x|^{\frac{b}{2}} - |y|^{\frac{b}{2}})^2 |\psi(x)| |x|^{\frac{b}{2}} - |\psi(y)| |y|^{\frac{b}{2}})^2}{2|x|^\gamma |x - y|^{n+a} |y|^\gamma}
\end{align*}

where \(\gamma = (n + b - a)/2 \) and

\begin{align*}
(11) \quad L_{a,b,n} &= 2^n \frac{\Gamma \left(\frac{n-b+a}{4} \right) \Gamma \left(\frac{n+b+a}{4} \right)}{\Gamma \left(\frac{a+b-a}{4} \right) \Gamma \left(\frac{a-b-a}{4} \right)}.
\end{align*}

Monotony of \(L_{a,b,n} \): Note that \(L_{a,b,n} \) is a strictly monotone decreasing function in \(b \) on the interval \([0, n - a] \) and vanishes at \(n - a \). The second claim is obvious, since \(\lim_{x \to 0} \Gamma(x) = 0 \). For the first claim we use the log convexity of the Gamma function (Bohr and Mollerup).

Sharpness: Formula (10) implies the inequality

\begin{align*}
(12) \quad J_{a,b,n} & > L_{a,b,n} |q|^{b-a} + |q|^{b/2} H_{a,n} |q|^{b/2}
\end{align*}
is strict under the assumptions of the theorem, since the remainder term in (10) vanishes, if and only if $\psi(x) = c|x|^{-\gamma}$ which is only in L^2 when $c = 0$. However, the remainder can be made arbitrarily small by a smooth cut-off tending to infinity.

If $a = 2$, equality holds in (12) because of the calculation (9).

Proof. Pick $\gamma := \frac{n+b-a}{2}$. By Fourier transform of $|\cdot|^{-\alpha}$ (see (13)), we know that

\begin{equation}
\begin{aligned}
(|\psi|^2|x|^\gamma, J_{a,b,n}|x|^{-\gamma}) &= \frac{1}{2} \int_{\mathbb{R}^n} d\xi |\xi|^a \left((|\psi(x)|^2 |x|^{\gamma})^{\wedge} (|x|^{b-\gamma})^{\wedge} (\xi) + (|\psi(x)|^2 |x|^{\gamma})^{\wedge} (\xi) \right) \\
&= \frac{1}{2} \left(\frac{B_{n-(\gamma-b)}}{B_{\gamma-b}} \int_{\mathbb{R}^n} d\xi |\xi|^{a-n+\gamma-b} (|\psi(x)|^2 |x|^{\gamma})^{\wedge} (\xi) + \frac{B_{n-\gamma}}{B_{\gamma}} \int_{\mathbb{R}^n} d\xi |\xi|^{a-n+\gamma} (|\psi(x)|^2 |x|^{\gamma})^{\wedge} (\xi) \right) \\
&= \frac{1}{2} \left(\frac{B_{n+a+b-\gamma} B_{n-(\gamma-b)} B_{\gamma-b}}{B_{n-a-\gamma} B_{\gamma-b}} \int_{\mathbb{R}^n} dx |\psi(x)|^2 |x|^{b-a} \right) \\
&= L_{a,b,n} \int_{\mathbb{R}^n} dx |\psi(x)|^2 |x|^{b-a}.
\end{aligned}
\end{equation}

(Note that we refrained from doing obvious mollifications.) We have a similar computation for the operator $|q|^\frac{2}{2} |p|^\alpha |q|^\frac{2}{2} |x|^{-\gamma}$,

\begin{equation}
\begin{aligned}
(|\psi|^2|x|^\gamma, |q|^\frac{2}{2} |p|^\alpha |q|^\frac{2}{2} |x|^{-\gamma}) &= \int_{\mathbb{R}^n} d\xi |\xi|^a \left((|\psi(x)|^2 |x|^{\gamma})^{\frac{2}{2}} (|x|^{|\gamma|})^{\wedge} (\xi) \right) \\
&= \frac{B_{n-(\gamma-b)}}{B_{\gamma-b}} \int_{\mathbb{R}^n} d\xi |\xi|^{a-n+\gamma-b} (|\psi(x)|^2 |x|^{\gamma})^{\frac{2}{2}} (\xi) \\
&= \frac{B_{n+a+b-\gamma} B_{n-(\gamma-b)} B_{\gamma-b}}{B_{n-a-\gamma} B_{\gamma-b}} \int_{\mathbb{R}^n} dx |\psi(x)|^2 |x|^{b-a} \\
&= 2^a \frac{\Gamma\left(\frac{n+a}{2}\right) \Gamma\left(\frac{n+b}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \int_{\mathbb{R}^n} dx |\psi(x)|^2 |x|^{b-a}.
\end{aligned}
\end{equation}

On the other hand, by using (20) and polarization we can compute the above quantities again and obtain

\begin{equation}
\begin{aligned}
(|\psi|^2|x|^\gamma, J_{a,b,n}|x|^{-\gamma}) &= \frac{1}{2} \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{dx dy}{|x-y|^{n+a}} \left((|\psi(x)|^2 |x|^{\gamma} - |\psi(y)|^2 |y|^{\gamma})(|x|^{b-\gamma} - |y|^{b-\gamma}) + (|\psi(x)|^2 |x|^{b-\gamma} + |\psi(y)|^2 |y|^{b+\gamma})(|x|^{-\gamma} - |y|^{-\gamma}) \right) \right) \\
&= \frac{1}{2} \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{dx dy}{|x-y|^{n+a}} \left(2|\psi(x)|^2 |x|^{b} + 2|\psi(y)|^2 |y|^{b} \right. \\
&\quad \left. - |\psi(x)|^2 |x|^{b-\gamma} |y|^{-\gamma} - |\psi(y)|^2 |x|^{b+\gamma} |y|^{\gamma} - |\psi(x)|^2 |x|^{b-\gamma} |y|^{-\gamma} - |\psi(y)|^2 |x|^{b+\gamma} |y|^{\gamma} \right) \right).
\end{aligned}
\end{equation}
By (6) and subtraction and addition of $2\Re \psi(x)\psi(y)|y|^b + 2\Re \psi(x)\overline{\psi(y)}|x|^b$ in the above braces we get
\begin{equation}
(16) \quad \left(|\psi|^2|x|^\gamma, J_{a,b,n}|x|^{-\gamma} \right) \\
= \alpha_{a,n} \Re \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{dxdy}{|x-y|^{n+a}} \left(\psi(x) - \psi(y) \right) \left(|x|^b \psi(x) - |y|^b \psi(y) \right) \\
+ \frac{1}{2} \alpha_{a,n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{dxdy}{|x-y|^{n+a}} \left(2\Re \psi(x)\psi(y)|y|^b + 2\Re \psi(x)\overline{\psi(y)}|x|^b \\
- |\psi(x)|^2 |x|^\gamma |y|^{b-\gamma} - |\psi(y)|^2 |x|^\gamma |y|^b \right) \\
- |\psi(x)|^2 |x|^b |y|^{-\gamma} - |\psi(y)|^2 |x|^b |y|^b \right)
= (\psi, J_{a,b,n} \psi) - \alpha_{a,n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{1}{2} \frac{(|x|^b + |y|^b) dxdy}{|x-y|^{n+a}} |\psi(x)| |x|^\gamma - |\psi(y)||y|^\gamma^2.
\end{equation}

The sesquilinear form of $|q|^{\frac{a}{2}} |p|^{\alpha} |q|^{\frac{b}{2}}$ is
\begin{equation}
(17) \quad (|\psi|^2|x|^\gamma, |q|^{\frac{a}{2}} |p|^{\alpha} |q|^{\frac{b}{2}}|x|^{-\gamma}) \\
= \alpha_{a,n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{dxdy}{|x-y|^{n+a}} \left(|\psi(x)|^2 |x|^\frac{\gamma}{2} + |\psi(y)|^2 |y|^\frac{\gamma}{2} \right)(|x|^\frac{\gamma}{2} - |y|^\frac{\gamma}{2}) \\
= \alpha_{a,n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{dxdy}{|x-y|^{n+a}} \left(|\psi(x)|^2 |x|^b + |\psi(y)|^2 |y|^b \\
- 2\Re \psi(x)\psi(y)|x|^\frac{b}{2} |y|^\frac{b}{2} + 2\Re \psi(x)\overline{\psi(y)}|x|^\frac{b}{2} |y|^\frac{b}{2} \\
- |\psi(x)|^2 |x|^\frac{b}{2} |y^\gamma - |\psi(y)|^2 |x|^\frac{b}{2} |y|^b \right)
= (\psi, |q|^{\frac{a}{2}} |p|^{\alpha} |q|^{\frac{b}{2}} \psi) - \alpha_{a,n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{dxdy}{|x-y|^{n+a}} \frac{|\psi(x)||x|^\gamma - |\psi(y)||y|^\gamma^2}{|x-y|^{\frac{n+a}{2}}}. \tag{17}
\end{equation}

A combination of the computations (13) to (17) and the ground state representation (21) gives us the desired result. \hfill \Box

\section*{Appendix A. Auxiliary Facts}

For the reader’s convenience we collect some helpful known facts:

\begin{itemize}
 \item \textbf{Fourier transforms of powers:} For $\alpha \in (0, n)$
 \begin{equation}
 B_{\alpha} \mathcal{F}(| \cdot |^{-\alpha}) = B_{n-\alpha} | \cdot |^{-n + \alpha}
 \end{equation}
 with $B_{\alpha} := 2^{\frac{\alpha}{2}} \Gamma(\alpha/2)$ (see, e.g., Lieb and Loss \cite[Theorem 5.9]{LiebLoss2001}).
 \item \textbf{Generalized Hardy Inequalities (Herbst \cite{Herbst1985}):} Assume $\alpha \in (0, n)$. Then, on $H^{\alpha/2}(\mathbb{R}^n)$
 \begin{equation}
 \mathcal{H}_{\alpha,n} := |p|^{\alpha} - 2^{\alpha} \left[\frac{\Gamma\left(\frac{n+\alpha}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right)} \right] |q|^{-\alpha} > 0.
 \end{equation}
 The inequality is sharp in the sense that there is no smaller constant in front of $|q|^{-\alpha}$ which allows this inequality on $C_0^\infty(\mathbb{R}^n)$.
 Hardy’s classical inequality is obtained for $\alpha = 2$, Kato’s inequality is the case $\alpha = 1$.
 \item \textbf{Fractional Laplacian:} For $\psi \in H^{\alpha/2}(\mathbb{R}^n)$
 \begin{equation}
 (\psi, |p|^{\alpha} \psi) = \alpha_{a,n} \int_{\mathbb{R}^n} dx \int_{\mathbb{R}^n} dy \frac{|\psi(x) - \psi(y)|^2}{|x-y|^{n+a}}
 \end{equation}
 with
 \begin{equation}
 \alpha_{a,n} = \frac{2^{a-1} \Gamma\left(\frac{n+\alpha}{2}\right)}{\pi^{n/2} |\Gamma(-\frac{\alpha}{2})|}.
 \end{equation}
\end{itemize}
Ground State transformed Hardy Operator (Frank et al [1]): For all $\psi \in C^0_0(\mathbb{R}^n \setminus \{0\})$

\begin{equation}
(\psi, H_{a,n}\psi) = \alpha_{a,n} \int_{\mathbb{R}^n} dx \int_{\mathbb{R}^n} dy \frac{\left| \psi(x)|x|^{-a} - \psi(y)|y|^{-a} \right|^2}{|x|^{-2a} |x-y|^{n+a} |y|^{-2a}}.
\end{equation}

Acknowledgment: We thank Rupert Frank for his interest in this generalization of Lieb’s original inequality and some helpful remarks on the first draft of the manuscript. Further thanks go to Ira Herbst, Kenji Yajima, and Daisuke Aiba for careful reading of the preprint. This work has been partially supported by the Sino-German program “Analysis of Partial Differential Equations and Their Applications” (National Science Foundation of China and Deutsche Forschungsgemeinschaft), by the SFB 12 of the DFG, and NSFC grant 11271218. H. S. thanks also the Mittag-Leffler Institute where part of this work has been done.

References
[1] Rupert L. Frank, Elliott H. Lieb, and Robert Seiringer. Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. *J. Amer. Math. Soc.*, 21(4):925–950, 2008.
[2] M. Handrek and H. Siedentop. On the maximal excess charge of the Chandrasekhar-Coulomb Hamiltonian in two dimension. *Lett. Math. Phys.*, doi 10.1007/s11005-013-0618-5, February 2013.
[3] G. H. Hardy. Note on a theorem of Hilbert. *Mathematische Zeitschrift*, 6(3-4):314–317, 1920.
[4] Ira W. Herbst. Spectral theory of the operator $(p^2 + m^2)^{1/2} - Ze^2/r$. *Comm. Math. Phys.*, 53:285–294, 1977.
[5] Elliott H. Lieb. Bound on the maximum negative ionization of atoms and molecules. *Phys. Rev. A*, 29(6):3018–3028, June 1984.
[6] Elliott H. Lieb and Michael Loss. *Analysis*. Number 14 in Graduate Studies in Mathematics. American Mathematical Society, Providence, 1 edition, 1996.
[7] Michael Reed and Barry Simon. *Methods of modern mathematical physics. II. Fourier analysis, self-adjointness*. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.
[8] D. Yafaev. Sharp constants in the Hardy-Rellich inequalities. *Journ. Functional Analysis*, 168(1):212–144, October 1999.