Hepatitis B Vaccination and Hepatocellular Carcinoma Rates in Boys and Girls

Mei-Hwei Chang, MD
Wen-Yi Shau, MD, PhD
Chien-Jen Chen, ScD
Tzee-Chung Wu, MD
Man-Shan Kong
Der-Cherng Liang, MD
Hsu-Mei Hsu, MPH
Huey-Ling Chen, MD
Hong-Yuan Hsu, MD, PhD
Ding-Shinn Chen, MD

for the Taiwan Childhood Hepatoma Study Group

Context Hepatocellular carcinoma (HCC) has a male predominance and is closely related to hepatitis B virus (HBV) infection. Hepatitis B virus vaccination was launched in 1984 in Taiwan for neonates of mothers carrying hepatitis B e antigen, resulting in a decreased incidence of HCC in children. The effect on boys vs girls is not known.

Objective To evaluate the association between a HBV vaccination program with incidence of childhood HCC by sex.

Design and Setting Analysis of data collected from Taiwan’s National Cancer Registry System and the Taiwan Childhood Hepatoma Study Group between 1981 and 1996.

Participants Children aged 6 to 14 years who were diagnosed as having HCC (201 boys and 70 girls).

Main Outcome Measure Incidence of HCC in boys and girls before and after implementation of the vaccination program.

Results The boy-girl incidence ratio decreased steadily from 4.5 in 1981-1984 (before the program’s introduction) to 1.9 in 1990-1996 (6-12 years after the vaccination program was launched). The incidence of HCC in boys born after 1984 was significantly reduced in comparison with those born before 1978 (relative risk [RR], 0.72; P = .002). No significant decrease in HCC incidence was observed in girls born in the same periods (RR, 0.77; P = .20). The incidence of HCC in boys remained stable with increasing age, while an increase of HCC incidence with age in girls was observed. These age and sex effects remained the same regardless of birth before or after the vaccination program.

Conclusion Our results suggest that boys may benefit more from HBV vaccination than girls in the prevention of HCC.

JAMA. 2000;284:3040-3042 www.jama.com

©2000 American Medical Association. All rights reserved.
Address, etc, were checked and merged, and any repetition was deleted. The case information was confirmed by the reporting hospitals. The capture-recapture method was used to estimate the total number of cases of childhood HCC (Epi Info, version 6.04; Centers for Disease Control and Prevention and the World Health Organization). The number of cases identified by systems 1 and 2 was estimated to be 86% (95% confidence interval [CI], 80%-92%) of the actual total number of children with HCC.

System 1: National Cancer Registry System
Cases of hepatoma diagnosed between July 1981 and June 1996 were analyzed from the data bank of the National Cancer Registry System at the National Department of Health. This registry was established in 1979. Cases are reported by the department of medical records in each of the 167 hospitals with more than 50 beds in Taiwan.

System 2: Multicenter Childhood Hepatoma Study Group
To ensure the accuracy of the data from the National Cancer Registry, we formed a multicenter Childhood Hepatoma Study Group to register children with hepatoma during the same study period. Pediatric gastroenterologists or oncologists from 17 major hospitals, including all 12 tertiary referral centers in Taiwan, participated.

Statistical Analysis
The study population was stratified both by age at diagnosis and the year of birth. Children with HCC who were older than 6 years on July 1, 1984, when the HBV vaccination program was launched, were born before July 1978. Children born before 1978 and after 1984 were the respective cohorts without and with the effect of HBV vaccination. Children born between 1978 and 1984 were born during the transition to full implementation of the HBV vaccination program. They might have received HBV vaccination beyond infancy.

Age-specific and birth-year-specific incidences of HCC were calculated for boys and girls. Relative incidences of HCC among children divided into groups by age, birth cohort, and sex were analyzed using Poisson regression. The modification of age effect on HCC incidence by sex was statistically tested by cross production of age and sex variables (the interaction term) and expressed in separate models when the age trends were significantly different between female and male.

RESULTS
A consistent predominance of HCC in boys was found throughout the observation period. The incidence of childhood HCC declined gradually in boys during 1981-1996, while the incidence in girls remained stable. Although the trend of the predominance in boys remained, the boy/girl ratio of the incidence of HCC declined gradually with time from 4.5 for years of diagnosis 1981-1984 to 1.9 for years of diagnosis 1990-1996.

The relative risk (RR) of HCC in boys born between 1978 and 1984 declined significantly in comparison with those born before 1978 (RR, 0.83; P = .02); the trend of decrease in the RR of HCC was even more evident in those born after 1984 compared with those born before 1978 (RR, 0.72; P = .002) (Table 2). However, the trend of decline in girls was not significant for the birth cohort born between 1978 and 1983 vs those born before 1978 (RR, 1.02; P = .90) or for those born after 1984 vs those born before 1978 (RR, 0.77; P = .20).

The age trend of HCC risk was significantly modified by sex. The risk of HCC in boys remained constant from age 6 to 14 years, while the risk of HCC in girls, though lower than in boys, increased significantly with age. In separate models, there was no significant age trend for boys (RR, 0.97; 95% CI, 0.92-1.03; P = .33), while the incidence of HCC in girls increased significantly by 1.15 times for each year increment of age (RR, 1.15; 95% CI, 1.04-1.28; P = .007). The age effect in boys and girls was the same before and after vaccination (Figure).

COMMENT
In the present study, we observed a predominance of HCC in boys both before and after the HBV vaccination pro-
program. This predominance cannot be explained by the effect of sex hormones, as in adults. Tumor suppression gene regulation, the metabolism of carcinogens, or genetic alterations have been proposed to differ between men and women and need further study.3

This predominance decreased after the vaccination program because the incidence of HCC decreased significantly in boys but not in girls. Why the vaccination program seems to have had more of an effect on boys remains unclear. The low incidence of HCC in girls may render the statistical comparison of the incidences difficult. It is possible that HCC in girls is less intimately related to HBV infection than in boys, but seems unlikely given our previous observations and evidence of HBV infection in girls with HCC born after implementation of the program (unpublished data by authors). The possibility that intrauterine infection with HBV, which would not be affected by vaccination, occurs more frequently in female infants also is unlikely, as there was no female predominance in infants who were seropositive for the hepatitis B surface antigen at birth.12 Additionally, there was no difference in the vaccination coverage rate between male and female infants in Taiwan. (National Taiwan University Hospital’s coverage rate is 100% for all mature neonates. The number of delivery of neonates is approximately 3000 per year. The national coverage rate for neonates was between 84% and 94% for 1986 to 1994 [M. H. Chang, unpublished data]). It also seems unlikely that case finding for such a serious disease would differ between boys and girls or change over time.

Seropidemiologic studies in Taipei conducted in both 1984 and 1994 in children showed no or a slight predominance in boys in the incidence of HBV infection.1,13 In contrast, the remarkable predominance of HCC in boys suggests that factor(s) in addition to chronic HBV infection may contribute to hepatocarcinogenesis in males, particularly the early occurrence in prepubertal males.

Figure. Incidence of Hepatocellular Carcinoma (HCC) in Boys and Girls Aged 6 to 14 Years

A, The incidence of HCC in boys born after July 1978 was significantly lower than in those born before July 1978 (P < .001). The incidence of HCC in boys from 6 to 14 years did not change regardless of the birth year, suggesting that the age effect on the incidence of HCC was not prominent in boys. B, The incidence of HCC in girls aged 6 to 14 years increased with age, regardless of the birth year. The incidence of HCC in girls did not change in different birth cohorts.

REFERENCES

1. Chen DS. Hepatitis B virus infection, its sequelae, and prevention in Taiwan. In: Okuoka K, Ishak G, eds. Neoplasms of the Liver. Tokyo, Japan: Springer-Verlag; 1987:71-80.
2. Chang MH, Chen DS, Hsu HC, Hsu HY, Lee CY. Maternal transmission of hepatitis B virus in childhood hepatocellular carcinoma. Cancer. 1989;64:2377-2380.
3. Chen HL, Chang MH, Hsu HY, et al. Seropidemiology of hepatitis B virus infection in children: ten years of mass vaccination in Taiwan. JAMA. 1996;276:906-908.
4. Chang MH, Chen CJ, Lai MS, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. N Engl J Med. 1997;336:1855-1859.
5. Munoz N, Bosch X. Epidemiology of hepatocellular carcinoma. In: Okuoka K, Ishak KG, eds. Neoplasms of the Liver. Tokyo, Japan: Springer-Verlag; 1987:1-19.
6. Ryder RW, Whittle HC, Sanneh AB, Ajdukiewicz AB, Tulloch S, Yvonnet B. Persistent hepatitis B virus infection and hepatitis in the Gambia, West Africa: a case control study of 140 adults and their 603 family contacts. Am J Epidemiol. 1992;136(12):1122-1131.
7. Kemp CJ, Leary CN, Drinkwater NR. Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor-dependent but not cell autonomous. Proc Natl Acad Sci U S A. 1989;86:7505-7509.
8. Ni YH, Chang MH, Hsu HY, et al. Hepatocellular carcinoma in childhood: clinical manifestations and prognosis. Cancer. 1991;68:1737-1741.
9. Chen DS, Hsu NHM, Sung JL, et al. A mass vaccination program in Taiwan against hepatitis B virus infection in infants of hepatitis B surface antigen carrier mothers. JAMA. 1987;257:2697-2693.
10. Kuo CY, Liu HC, Chang MH, et al. Hepatoblastoma in infancy and childhood: a clinical and pathological study of 32 cases. Acta Paediatr Sin. 1991;32:79-87.
11. Poisson regression analysis. In: Selvin S. Practical Biostatistical Methods. Belmont, Calif: Duxbury Press; 1995:455-490.
12. Tang JP, Hsu HY, Lin HH, Ni YH, Chang MH. Hepatitis B surface antigenemia at birth: a long-term follow-up study. J Pediatr. 1998;133:374-377.
13. Hsu HY, Chang MH, Chen DS, Lee CY, Sung JL. Baseline seropidemiology of hepatitis B virus infection in children in Taipei, 1984: a study just before mass hepatitis B vaccination program in Taiwan. J Med Virol. 1986;18:301-307.