Schur-Weyl duality for the unitary groups of II$_1$-factors

Nessonov N. I. *

Abstract

We obtain the analogue of Schur-Weyl duality for the unitary group of an arbitrary II$_1$-factor.

1 Preliminaries.

Let \mathcal{M} be a separable II$_1$-factor, let $U(\mathcal{M})$ be its unitary group and let tr be a unique normalized normal trace on \mathcal{M}. Assume that \mathcal{M} acts on $L^2(\mathcal{M}, \text{tr})$ by left multiplication: $L(a)\eta = a\eta$, where $a \in \mathcal{M}$, $\eta \in L^2(\mathcal{M}, \text{tr})$. Then \mathcal{M}' coincides with the set of the operators that act on $L^2(\mathcal{M}, \text{tr})$ by right multiplication: $R(a)\eta = \eta a$, where $\eta \in L^2(\mathcal{M}, \text{tr})$, $a \in \mathcal{M}$. Let S_p be the symmetric group of the n symbols $1, 2, \ldots, p$. Take $u \in U(\mathcal{M})$ and define the operators $L^\otimes_p(u)$ and $R^\otimes_p(u)$ on $L^2(\mathcal{M}, \text{tr})^\otimes_p$ as follows

$L^\otimes_p(u) (x_1 \otimes x_2 \otimes \cdots \otimes x_p) = ux_1 \otimes ux_2 \otimes \cdots \otimes ux_p,$

$R^\otimes_p(u) (x_1 \otimes x_2 \otimes \cdots \otimes x_p) = x_1 u^* \otimes x_2 u^* \otimes \cdots \otimes x_p u^*,$

where $x_1, x_2, \ldots, x_p \in L^2(\mathcal{M}, \text{tr}).$

Obviously the operators $L^\otimes_p(u)$ and $R^\otimes_p(u)$, where $u \in U(\mathcal{M})$, form the unitary representations of the group $U(\mathcal{M})$. Also, we define the representation P_p of S_p that acts on $L^2(\mathcal{M}, \text{tr})^\otimes_p$ by

$P_p(s) (x_1 \otimes x_2 \otimes \cdots \otimes x_p) = x_{s^{-1}(1)} \otimes x_{s^{-1}(2)} \otimes \cdots \otimes x_{s^{-1}(p)}, s \in S_p. \quad (1.1)$

Denote by $\text{Aut} \mathcal{M}$ the automorphism group of factor \mathcal{M}. Let θ^s_p be the automorphism of factor \mathcal{M}^\otimes_p that acts as follows

$\theta^s_p(a) = P_p(s)aP_p(s^{-1}),$ where $s \in S_p, a \in \mathcal{M}^\otimes_p \cup \mathcal{M}^\otimes_p. \quad (1.2)$

Let \mathcal{A} be the set of the operators on Hilbert space H, let $\mathcal{N}_\mathcal{A}$ be the smallest von Neumann algebra containing \mathcal{A}, and let \mathcal{A}' be a commutant of \mathcal{A}. By von Neumann’s bicommutant theorem $\mathcal{N}_\mathcal{A} = \{ \mathcal{A}' \}' = \mathcal{A}''$. *This research was supported in part by the grant Network of Mathematical Research 2013–2015
Set \((\mathcal{M}^\otimes p)^{\mathfrak{S}_p} = \{a \in \mathcal{M}^\otimes p : \theta^s_p(a) = a\ \text{for all}\ s \in \mathfrak{S}_p\}\).

The irreducible representations of \(\mathfrak{S}_p\) are indexed by the partitions of \(p\). Let \(\lambda\) be a partition of \(p\), and let \(\chi^\lambda\) be the character of the corresponding irreducible representation \(T^\lambda\). If \(\dim \lambda\) is the dimension of \(T^\lambda\), then operator \(P^\lambda_p = \frac{\dim \lambda}{p!} \sum_{s \in \mathfrak{S}} \chi^\lambda(s) P_p(s)\) is the orthogonal projection on \(L^2(\mathcal{M}, \text{tr})^\otimes p\). Denote by \(\Upsilon_p\) the set of all partitions of \(p\). The following statement is an analogue of the Schur-Weil duality.

Theorem 1. Fix the nonnegative integer numbers \(p\) and \(q\). Let \(\lambda\) and \(\mu\) be the partitions from \(\Upsilon_p\) and \(\Upsilon_q\), respectively, and let \(\Pi_{\lambda\mu}\) be the representation of \(L^\otimes p \otimes R^\otimes q\) to the subspace \(\mathcal{H}_{\lambda\mu} = P^\lambda_p \otimes P^\mu_q \left(L^2(\mathcal{M}, \text{tr})^\otimes p \otimes L^2(\mathcal{M}, \text{tr})^\otimes q \right)\).

The following properties are true.

1. (1) \(\{L^\otimes p \otimes R^\otimes q (U(M))\}''' = (\mathcal{M}^\otimes p)^{\mathfrak{S}_p} \otimes (\mathcal{M}^\otimes q)^{\mathfrak{S}_q}\). In particular, the algebra \((\mathcal{M}^\otimes p)^{\mathfrak{S}_p} \otimes (\mathcal{M}^\otimes q)^{\mathfrak{S}_q}\) is the finite factor.

2. (2) For any \(\lambda\) and \(\mu\) the representation \(\Pi_{\lambda\mu}\) is quasi-equivalent to \(L^\otimes p \otimes R^\otimes q\).

3. (3) Let \(\gamma \vdash p\) and \(\delta \vdash q\). The representations \(\Pi_{\lambda\mu}\) and \(\Pi_{\gamma\delta}\) are unitary equivalent if and only if \(\dim \lambda \cdot \dim \mu = \dim \gamma \cdot \dim \delta\).

2 The proof of property (1)

In this section we give three auxiliary lemmas and the proof of property (1) in theorem 1.

Lemma 1. Let \(A\) be a self-adjoint operator from \(\Pi_1\)-factor \(\mathcal{M}\). Then for any number \(\epsilon > 0\), there exist a hyperfinite \(\Pi_1\)-subfactor \(\mathcal{R}_0 \subset \mathcal{M}\) and self-adjoint operator \(A_\epsilon \in \mathcal{R}_0\) such that \(\|A - A_\epsilon\| < \epsilon\). Here \(\|\|\) is the ordinary operator norm.

Proof. Let \(A = \int_a^b t \, dE_t\) be the spectral decomposition of \(A\). Fix the increasing finite sequence of the real numbers \(a = a_1 < a_2 < \ldots < a_m > b\) such that \(|a_i - a_{i+1}| < \epsilon\). Hence, choosing \(t_i \in [a_i, a_{i+1})\), we have

\[
\left\| A - \sum_{i=1}^m t_i E_{[a_i, a_{i+1})} \right\| < \epsilon. \tag{2.3}
\]

It is obvious that \(\mathcal{M}\) contains the sequence of the pairwise commuting \(I_2\)-factors \(M_i\), where \(i \in \mathbb{N}\). Notice that exist the pairwise orthogonal projections \(F_i\) from the hyperfinite \(\Pi_1\)-factor \(\left(\bigcup_i M_i \right)''\) and unitary \(u \in \mathcal{M}\) such that

\[
E_{[a_i, a_{i+1})} = u F_i u^* \quad \text{for } i = 1, 2, \ldots, m - 1.
\]

\(^1\)A partition \(\lambda = (\lambda_1, \lambda_2, \ldots)\) is a weakly decreasing sequence of non-negative integers \(\lambda_j\), such that \(\sum \lambda_j = p\). As usual, we write \(\lambda \vdash p\).
It follows from (2.3) that \(R_0 = u \left(\bigcup_{i} M_i \right)'' \) and \(A_e = \sum_{i=1}^{m} t_i E_{(a_i, a_{i+1})} \in R_0 \)
satisfy the conditions as in the lemma. \(\square \)

Consider the operators \(l(a) \) and \(r(a) \), where \(a \in \mathcal{M} \), acting in Hilbert space \(L^2(\mathcal{M}, tr) \) by

\[
l(a\eta) = a\eta, r(a) = \eta a, \quad \eta \in L^2(\mathcal{M}, tr).
\]

Let us denote by \(k \) the operator \(I \otimes \cdots \otimes I \otimes A \otimes I \otimes \cdots \) in \(\mathcal{M}^{\otimes p} \otimes \mathcal{M}^{\otimes q} \), where \(p+q \) satisfy the conditions as in the lemma.

Proof. At first we will prove that \(\text{hyperfinite } \text{II}_1 \)-factor \(\mathcal{R}_0 \) and \(a_e \in \mathcal{R}_0 \) such that \(\| a - a_e \| < \epsilon \).

Let \(M_i, i \in \mathbb{N} \) be the sequence of pairwise commuting \(I_2 \)-subfactors from \(\mathcal{R}_0 \) such that \(\left\{ \bigcup_{j \in \mathbb{N}} M_j \right\}'' = \mathcal{R}_0 \) and \(\mathcal{N}_0 \) be the relative commutant of \(\mathcal{R}_0 \) in \(\mathcal{M} \).

\(\mathcal{N}_0 = \mathcal{R}_0' \cap \mathcal{M} \). There exists the unique normal conditional expectation \(\mathcal{E} \) of \(\mathcal{M} \) onto \(\mathcal{N}_0 \) satisfying the next conditions

- **a)** \(\text{tr} (a) = tr (\mathcal{E} (a)) \) for all \(a \in \mathcal{M} \);
- **b)** \(\mathcal{E} (xay) = x\mathcal{E} (a) y \) for all \(a \in \mathcal{M} \) and \(x, y \in \mathcal{N}_0 \);
- **c)** \(\mathcal{E} (a) = \text{tr} (a) \) for all \(a \in \mathcal{R}_0 \).
Denote by $U_k (2^{l-k})$ the unitary subgroup of the $I_{2^{l-k}}$-factor $\left\{ \bigcup_{j=k+1}^{l} M_j \right\}''$. Let $d u$ be Haar measure on $U_k (2^{l-k})$.

Since, by lemma 2,

$$p^T(a u^*) \cdot p^T(u) \quad \text{lies in} \quad \{ \Sigma^p \otimes R^q (U(\mathcal{M})) \}''$$

for all $a, u \in \mathcal{M}$, to prove the theorem, it suffices to show that

$$\lim_{n \to \infty} \int_{U_0(2^n)} p^T(a u^*) \cdot p^T(u) \, d u = p^T(a) - q^T (\mathcal{E}(a)), \quad a \in \mathcal{M} \quad (2.5)$$

with respect to the strong operator topology.

Indeed, then, by property (c), the operator $p^T(a) - q^T (\mathcal{E}(a))$, where I is the identity operator from $M^p \otimes M^q$, lies in $\{ \Sigma^p \otimes R^q (U(\mathcal{M})) \}''$. Hence, using (2.4), we obtain

$$p^T(a) \in \{ \Sigma^p \otimes R^q (U(\mathcal{M})) \}'' .$$

To calculate of the left side in (2.5) we notice that

$$p^T(a u^*) \cdot p^T(u) = \sum_{k=1}^{p} k(l(a) + \sum_{k=p+1}^{p+q} k \tau(u^*) + \Sigma(a, u), \quad \text{where} \quad (2.6)$$

$$\Sigma(a, u) = \sum_{\{k,j=1\} \& \{k \neq j\}}^{p} k(l(a) \cdot (u^*) \cdot j(l(u)) + \sum_{\{k,j=p+1\} \& \{k \neq j\}}^{p+q} k(u^*) \cdot (\tau(u) \cdot k(a)$$

$$- \sum_{k=1}^{p} \sum_{j=p+1}^{p+q} k(l(a) \cdot (u^*) \cdot j(l(u)) - \sum_{k=1}^{p} \sum_{j=p+1}^{p+q} k(u) \cdot j(\tau(u^*) \cdot \tau(a)). \quad (2.7)$$

Let us first prove that

$$\lim_{n \to \infty} \int_{U_0(2^n)} k^T(uau^*) \, d u = k^T(\mathcal{E}(a)) \quad \text{for all} \quad a \in \mathcal{M} \quad (2.8)$$

with respect to the strong operator topology.

For this purpose we notice that the map

$$a \ni L^2(\mathcal{M}, \text{tr}) \xrightarrow{\mathcal{E}_n} \int_{U_0(2^n)} uau^* \, d u \in L^2(\mathcal{M}, \text{tr})$$

is the orthogonal projection. Since $\mathcal{E}_n \geq \mathcal{E}_{n+1}$, then

$$\lim_{n \to \infty} \mathcal{E}_n(a) = \mathcal{E}(a) \quad \text{for all} \quad a \in \mathcal{M}$$
with respect to the norm on $L^2(\mathcal{M}, \text{tr})$. Hence, applying the inequality $\|\mathcal{E}_n(a)\|_{L^2(\mathcal{M}, \text{tr})} \leq \|a\|$, we obtain $\lim_{n \to \infty} \|\mathcal{E}_n(a) - \mathcal{E}(a)\|_{L^2} = 0$ for all $\eta \in L^2(\mathcal{M}, \text{tr})$. This gives (2.8).

To estimate of $\Sigma(a, u)$ fix the matrix unit $\{e_{pq} : 1 \leq p, q \leq 2^n\}$ of the I_{2n}-factor $\bigcup_{j=1}^n M_j$. We recall that the operators e_{pq} satisfy the relations

$$e_{pq}^* = e_{qp}, \quad e_{pq} e_{st} = \delta_{qs} e_{pt}, \quad 1 \leq p, q, s, t \leq 2^n.$$

Denote by $\{a_{pq}\}_{p,q=1}^{2n} \subset \mathbb{C}$ the corresponding matrix elements of the operator $a \in \bigcup_{j=1}^n M_j''$:

$$a = \sum_{p,q=1}^{2n} a_{pq} e_{pq}.$$

If $k \neq j$, then, applying Peter-Weyl theorem, we obtain

$$k^j T_l = \int_{U_0(2^n)} k^l (u^*) \cdot \mathcal{I}(u) \, du = 2^{-n} \sum_{p,q=1}^{2n} k^l (e_{pq}) \cdot \mathcal{I}(e_{qp}),$$

$$k^j T_r = \int_{U_0(2^n)} k^r (u^*) \cdot \mathcal{I}(u) \, du = 2^{-n} \sum_{p,q=1}^{2n} k^r (e_{pq}) \cdot \mathcal{I}(e_{qp}),$$

$$k^j P = \int_{U_0(2^n)} k^l (u^*) \cdot \mathcal{I}(u) \, du = 2^{-n} \sum_{p,q=1}^{2n} k^l (e_{pq}) \cdot \mathcal{I}(e_{qp}).$$

A trivial verification shows that

$$(k^j T_l)^* = k^j T_l, \quad (k^j T_l)^* = k^j T_r, \quad k^j T_l^2 = k^j T_r^2 = 2^{-2n} I,$$

$$(k^j P)^* = k^j P^2 = 2^{-n} \cdot k^j P.$$

Hence, using (2.7), we have

$$\lim_{n \to \infty} \int_{U_0(2^n)} \Sigma(a, u) \, du = 0$$

with respect to the operator norm. We thus get (2.9).

The proof above works for the operator $\eta^T(a)$. But we must examine $p^T(u^*a) \cdot p^T(u)$ instead $p^T(u^*a) \cdot p^T(u)$ (see (2.6)).

The proof of Theorem 1(1). By lemma 3, it suffices to show that

$$\{ p^T(a), a \in \mathcal{M} \}'' = (\mathcal{M}^{\otimes p})^{\mathcal{S}_p}. \quad (2.9)$$

Fix the orthonormal bases $\{b_j\}_{j=0}^{\infty}$ in $L^2(\mathcal{M}, \text{tr})$ such that $b_j \in \mathcal{M}$ and $b_0 = 1$. Let $j = (j_1, j_2, \ldots, j_p)$ be the ordered collection of the indexes, and let $b_j =
Let \(i = (i_1, i_2, \ldots, i_p) \) and \(j = (j_1, j_2, \ldots, j_p) \) be equivalent if there exists \(s \in \mathcal{S} \) such that \((i_1, i_2, \ldots, i_p) = (j_{s(1)}, j_{s(2)}, \ldots, j_{s(p)})\). Denote by \(\mathcal{T} \) the equivalence class containing \(i \). Set \(s(j) = (j_{s(1)}, j_{s(2)}, \ldots, j_{s(p)}) \), \(s \in \mathcal{S}_p \).

It is clear that the elements \(b_j = \sum_{s \in \mathcal{S}_p} b_{s(j)} \in (\mathcal{M}^{\otimes p})^{\mathcal{S}_p} \) form the orthogonal bases in \(L^2 \left((\mathcal{M}^{\otimes p})^{\mathcal{S}_p}, \text{tr}^{\otimes p} \right) \). So to prove (2.9), it suffices to show that

\[
b_j \in \{ pT^+(a), a \in \mathcal{M} \}'' I.
\]

Let us prove this, by induction on \(m \).

If \(m = 1 \) then \(L_1 \subset \{ pT^+(a), a \in \mathcal{M} \}'' I \), by the definition of \(pT^+(a) \) (see lemma 3). Assuming (2.11) to hold for \(m = 1, 2, \ldots, k \), we will prove that

\[
L_{k+1} \subset \{ pT^+(a), a \in \mathcal{M} \}'' I.
\]

Indeed, if \(b_j \) lies in \(L_k \) then without loss of generality we can assume that

\[
j = \left(\underbrace{j_1, j_2, \ldots, j_k}_{k}, 0, \ldots, 0 \right), \text{ where } j_i \neq 0 \text{ for all } i \in \{1, 2, \ldots, k\}.
\]

If \(l \neq 0 \) then \(pT^+(b_l) b_j = b_l^{(k)} + b_l \), where \(b_l^{(k)} \in \bigoplus_{m=0}^{k} L_m \subset \{ pT^+(a), a \in \mathcal{M} \}'' I \)

and \(i = \left(\underbrace{j_1, j_2, \ldots, j_k}_{k+1}, l, 0, \ldots, 0 \right) \). Therefore, \(b_i \) lies in \(\{ pT^+(a), a \in \mathcal{M} \}'' I \).

This proves (2.11), (2.10) and (2.9).

\[\square\]

3 The proof of the properties (2) and (3)

Let \(\text{Aut} \mathcal{N} \) be the group of all automorphisms of von Neumann algebra \(\mathcal{N} \). We recall that automorphism \(\theta \) of factor \(\mathcal{F} \) is inner if there exists unitary \(u \in \mathcal{F} \).
such that $\theta(a) = uau^* = \text{Ad } u(a)$. Let us denote by $\text{Int } \mathcal{F}$ the set of all inner automorphisms of factor \mathcal{F}. An automorphism $\theta \in \text{Aut } \mathcal{F}$ is called outer if $\theta \notin \text{Int } \mathcal{F}$.

Consider Π_1-factor $\mathcal{F} = \mathcal{M}^\otimes p \otimes (\mathcal{M}')^\otimes q$. We emphasize that \mathcal{F} is generated by the operators $A = \{a_1, \ldots, a_p\} \otimes \{a_p+1, \ldots, a_{p+q}\}$, $(1 \leq j \leq p + q)$ which act in $L^2 \left(\mathcal{M}^\otimes (p+q), \text{tr}^\otimes (p+q) \right)$ as follows

$$A (\eta_1 \otimes \cdots \eta_p \otimes \eta_{p+1} \otimes \cdots \eta_{p+q}) = a_1 \eta_1 \otimes \cdots a_p \eta_p \otimes a_{p+1} \eta_{p+1} \otimes \cdots a_{p+q} \eta_{p+q}.$$

From now on, $\text{tr}^\otimes (p+q)$ denotes the unique normal normalized trace on the factor \mathcal{F}:

$$\text{tr}^\otimes (p+q) (A) = \prod_{k=1}^p \text{tr} (a_k) \prod_{k=p+1}^{p+q} \text{tr} (a_k^*). \quad (3.13)$$

If J is the antilinear isometry on $L^2 \left(\mathcal{M}^\otimes (p+q), \text{tr}^\otimes (p+q) \right)$ defined by $L^2 \left(\mathcal{M}^\otimes (p+q), \text{tr}^\otimes (p+q) \right) \ni X \mapsto X^* \in L^2 \left(\mathcal{M}^\otimes (p+q), \text{tr}^\otimes (p+q) \right)$, then

$$J \mathcal{A} \mathcal{J} (\eta_1 \otimes \cdots \eta_p \otimes \eta_{p+1} \otimes \cdots \eta_{p+q}) = \eta_1 a_1^* \otimes \cdots \eta_p a_p^* \otimes a_{p+1} \eta_{p+1} \otimes \cdots a_{p+q} \eta_{p+q}. \quad (3.14)$$

Well-known that $\mathcal{F}^* = J \mathcal{F} J$ (see [7]).

Let $\mathcal{P}_{p+q}(s), (s \in \mathcal{S}_{p+q})$ be the unitary operator on $L^2 \left(\mathcal{M}^\otimes (p+q), \text{tr}^\otimes (p+q) \right)$ defined by [13], and let $\mathcal{S}_p \times \mathcal{S}_q = \{s \in \mathcal{S}_{p+q} : s \{1, 2, \ldots, p\} = \{1, 2, \ldots, p\}\}$. Denote by e the unit in the group \mathcal{S}_{p+q}. The next lemma is obvious from the definition of factor \mathcal{F}.

Lemma 4. For each $s \in \mathcal{S}_p \times \mathcal{S}_q$ the map $\mathcal{F} \ni a \mapsto \mathcal{P}_{p+q}(s)a \mathcal{P}_{p+q}(s^{-1}) = \theta^*_{p+q}(a)$ is the automorphism of factor \mathcal{F}.

Lemma 5. If s is any non-identical element from $\mathcal{S}_p \times \mathcal{S}_q$ then $\text{Ad } \mathcal{P}_{p+q}$ is the outer automorphism of factor \mathcal{F}.

Proof. On the contrary, suppose that there exists the unitary operator $U \in \mathcal{F}$ such that

$$\mathcal{P}_{p+q}(s)a \mathcal{P}_{p+q}(s^{-1}) = U a U^* \quad \text{for all } a \in \mathcal{F}. \quad (3.15)$$

Let us prove that $U = 0$. For this, it suffices to show that

$$\text{tr}^\otimes (p+q) (U (u_1 \otimes u_2 \otimes \cdots \otimes u_{p+q})) = 0 \quad \text{for all unitary } u_j \in \mathcal{M}. \quad (3.16)$$

Let N be any natural number N

$$\left| \text{tr}^\otimes (p+q) (U (u_1 \otimes u_2 \otimes \cdots \otimes u_{p+q})) \right| \leq \frac{1}{N}. \quad (3.17)$$

To this purpose we find the pairwise orthogonal projections $p_j \in \mathcal{M}, j = 1, 2, \ldots, N$ with the properties

$$\sum_{j=1}^N p_j = I, \quad \text{tr} (p_j) = \frac{1}{N} \quad \text{for all } j = 1, 2, \ldots, N. \quad (3.18)$$
Remark 1. Without loss generality we can assume that \(s(1) = i \neq 1 \). Then

\[
\left| \text{tr}^{\otimes(p+q)} \left(U \left(u_1 \otimes u_2 \otimes \ldots \otimes u_{p+q} \right) \right) \right|
\]

is the faithful normal trace on \(F \). The involution:

\[
\text{tr}^{\otimes(p+q)} \left(\frac{1}{\lambda} U \left(u_1 \otimes u_2 \otimes \ldots \otimes u_{p+q} \right) \frac{1}{\lambda} \right)
\]

isometry. It follows immediately that

\[
\left| \text{tr}^{\otimes(p+q)} \left(\frac{1}{\lambda} U \left(u_1 \otimes u_2 \otimes \ldots \otimes u_{p+q} \right) \frac{1}{\lambda} \right) \right|
\]

\[
\leq \sum_{j=1}^{N} \text{tr}^{\otimes(p+q)} \left(\frac{1}{\lambda} \theta \left(u_1 p_j u_1^* \right) \right) = \sum_{j=1}^{N} \text{tr} \left(p_j \right) \text{tr} \left(u_1 p_j u_1^* \right) \overset{3.18}{=} \frac{1}{N}.
\]

This establishes (3.17) and (3.18).

To simplify notation, we will write \(\theta_s \) instead \(\theta^s_{p+q} = \text{Ad} \mathcal{P}_p \mathcal{Q}(s) \) (see lemma [4]).

Now we consider the crossed product \(\mathcal{F} \rtimes \theta (\mathcal{S}_p \times \mathcal{S}_q) \) of the factor \(\mathcal{F} \) by the finite group \(\mathcal{S}_p \times \mathcal{S}_q \) acting via \(\theta : s \in \mathcal{S}_p \times \mathcal{S}_q \mapsto \theta_s \in \text{Aut} \mathcal{F} \).

Von Neumann algebra \(\mathcal{F} \rtimes \theta (\mathcal{S}_p \times \mathcal{S}_q) \) is generated in Hilbert space \(L^2 (G, \mathcal{H}) \), where \(G = \mathcal{S}_p \times \mathcal{S}_q, \mathcal{H} = L^2 (M^{\otimes(p+q)}), \text{tr}^{\otimes(p+q)} \), by the operators \(\Pi_\theta (a), a \in \mathcal{F} \) and \(\lambda_g, g \in G \), which act as follows

\[
\Pi_\theta (a) \eta(g) = \theta_{g^{-1}} (a) \eta(g), \eta \in L^2 (G, \mathcal{H}),
\]

\[
(\lambda_g \eta)(g) = \eta(g^{-1} g), g \in G.
\]

(3.19)

Remark 1. Let \(a \in L^2 \left(M^{\otimes(p+q)}, \text{tr}^{\otimes(p+q)} \right) \). Set \(\xi_1 (g) = \begin{cases} a & \text{if } g = e \\ 0 & \text{if } g \neq e \end{cases} \). It is easy to check that \(\xi_1 \) is the cyclic vector for \(\mathcal{F} \rtimes \theta (\mathcal{S}_p \times \mathcal{S}_q) \). Namely, the set of the vectors \(A \xi_1, a \in \mathcal{F} \rtimes \theta (\mathcal{S}_p \times \mathcal{S}_q) \) is dense in \(L^2 (G, \mathcal{H}) \). In addition, the functional \(\hat{\tau} \) defined on \(A = \sum_{s \in \mathcal{S}_p \times \mathcal{S}_q} \Pi_\theta (a_s) \cdot \lambda_s \in \mathcal{F} \rtimes \theta (\mathcal{S}_p \times \mathcal{S}_q) \) by

\[
\hat{\tau}(A) = (A \xi_1, \xi_1) = \text{tr}^{\otimes(p+q)}(a_e),
\]

is the faithful normal trace on \(\mathcal{F} \rtimes \theta (\mathcal{S}_p \times \mathcal{S}_q) \).

Remark 2. The involution: \(\theta \mathcal{F} \xi_1 \ni A \xi_1 \mapsto \bar{A}^* \xi_1 \) extends to the antilinear isometry. It follows immediately that \(\hat{J} \eta(x) = \theta_{x^{-1}} (b_{x^{-1}}^*) \), \(\eta \in \mathcal{L}^2 (G, \mathcal{H}) \).

The operators \(\Pi_\theta (a) = \bar{J} \Pi_\theta (a) \bar{J}, a \in \mathcal{F} \) and \(\lambda_s' = \bar{J} \lambda_s \bar{J}, s \in \mathcal{S}_p \times \mathcal{S}_q \) act by

\[
(\Pi_\theta (a) \eta)(g) = JaJ \eta(g), \eta \in \mathcal{L}^2 (G, \mathcal{H}),
\]

\[
(\lambda_s' \eta)(g) = \theta_s (\eta(gs)), s \in G.
\]

(3.20)
The equality \(\hat{J}^{\theta} F \hat{J} = \theta F' \) is true. In particular, the vector \(\xi_I \) is cyclic for \(\theta F' \). Set \(\hat{\tau}'(A) = \hat{\tau}(\hat{J} A \hat{J}) \), where \(A \in \theta F' \). Then \(\hat{\tau}' \) is the faithful normal trace on \(\theta F' \).

Lemma 6. Von Neumann algebra \(\theta F' \) is \(\Pi_1 \)-factor.

Proof. It follows from remarks 1 and 2 that any operator \(A \in \theta F \) has a unique decomposition \(A = \sum_{g \in G} \Pi_{\theta}(a_g) \lambda_g \). Thus, if \(A \) lies in the centrum of \(\theta F \) then

\[
\Pi_{\theta}(a_g) \lambda_g \cdot \Pi_{\theta}(b) = \Pi_{\theta}(b) \cdot \Pi_{\theta}(a_g) \lambda_g \quad \text{for all} \quad g \in G \quad \text{and} \quad b \in F.
\]

Hence, using (3.19), we obtain

\[
a_g \cdot \theta_g(b) = b \cdot a_g \quad \text{for all} \quad g \in G \quad \text{and} \quad b \in F.
\]

Therefore, we have

\[
a_g^* a_g \theta_g(b) = a_g^* b a_g, \quad \theta_g'(b^*) a_g = a_g^* b^* a_g \quad \text{for all} \quad g \in G \quad \text{and} \quad b \in F.
\]

Hence, we conclude

\[
a_g^* a_g \in F \cap F' = \mathbb{C} I \quad \text{for all} \quad g \in G.
\]

We thus get \(a_g = z_g u_g \), where \(z_g \in \mathbb{C} \), \(u_g \) is the unitary operator from \(F \).

Assuming \(g \neq e \), we obtain from (3.21)

\[
\theta_g(b) = u_g^* \cdot b \cdot u_g \quad \text{for all} \quad b \in F. \tag{3.21}
\]

It follows from lemma 5 that \(a_g = 0 \) for all \(g \neq e \). But, by (3.21), \(a_e \in F \cap F' = \mathbb{C} I \). Therefore, \(A \in \mathbb{C} I \).

Let \(P = \frac{1}{|G|} \sum_{g \in G} \lambda_g \). We will identify \(\eta \in \mathcal{H} = L^2(\mathcal{M}^{\otimes(p+q)}; \text{tr}^{\otimes(p+q)}) \) with the function \(\tilde{\eta} \in l^2(\mathcal{H}, G) \) defined by: \(\tilde{\eta}(g) = \eta \) for all \(g \in G \). Define the unitary operator \(U_g \) on \(\mathcal{H} \) by

\[
U_g \eta = \theta_g(\eta), \quad \eta \in \mathcal{M}^{\otimes(p+q)},
\]

where \(\theta_g \) denote the automorphism \(\text{Ad} \mathcal{P}_{p+q}(g) \) (see lemma 4). It is easy to check that

\[
P L^2(\mathcal{H}, G) = \mathcal{H}, \quad P \cdot \theta F \cdot P = \{ a \in F : \theta_g(a) = a \quad \text{for all} \quad g \in G \} = \mathcal{F}^G,
\]

\[
P \lambda_g P = I \quad \text{for all} \quad g \in G, \quad P \Pi_{\theta}(a) P = \frac{1}{|G|} \sum_{g \in G} \theta_g(a) \in F \tag{3.22}
\]

\[
P \lambda_g P \eta = \theta_g(\eta) = U_g \eta, \quad P \Pi_{\theta}(a) P \eta = J a J \eta = \eta a^*, \quad \text{where} \quad \eta \in \mathcal{H}.
\]

We sum up this discussion in the following.

Lemma 7. Von Neumann algebra \((\mathcal{F}^G)' \) is generated by \(F' \) and \(\{ U_g \}_{g \in G} \).

9
Proof. According to remark 2, von Neumann algebra \(\theta F' \) is generated by the operators \(\Pi_g(a), \ a \in F \) and \(\lambda_g, \ g \in G \). Hence, using (3.22), we obtain the desired conclusion.

Lemma 8. \((F^G)' \cap F = CI \).

Proof. Let \(A \in (F^G)' \cap F = (F^G)' \cap (F')' \). Lemma 7 assures that \(A = \sum_{g \in G} a_g U_g \), where \(a_g \in F' \) for all \(g \in G \). Therefore,

\[
\sum_{g \in G} b a_g U_g = \sum_{g \in G} a_g U_g b \quad \text{for all} \quad b \in F'.
\]

Hence, applying lemma 6 and (3.22), we have

\[
b a_g U_g = a_g U_g b \quad \text{for all} \quad b \in F' \quad \text{and} \quad g \in G.
\]

This means that

\[
b a_g = a_g \theta_g(b) \quad \text{for all} \quad b \in F' \quad \text{and} \quad g \in G. \tag{3.33}
\]

Now we recall that, by remark 2, since the relations \(JFJ = F' \) and \(JU_g = U_g J \) are true, we obtain from lemma 5 that

\[
F' \ni b \mapsto U_g b U_g^* = \theta_g(b) \in F'
\]
is the outer automorphism of the factor \(F' \) for all \(g \neq e \). Now as in the proof of lemma 6 the equality (3.23) gives that \(A \in CI \).

The proof of Theorem 1(2-3). We recall that \(F = M \otimes_p (M') \otimes_q G = G_p \times G_q \). By theorem 1(1), \(\{ L \otimes_p (R \otimes_q U(M)) \}' = F^G \). It follows from (3.22) and the lemmas 6 7 that \(F^G \) is a factor, and the map

\[
\theta F' \ni a R_p \mapsto P a P \in (F^G)'
\]
is an isomorphism. Therefore, the formula

\[
\tau'(a) = (R_p^{-1}(a)\xi_1, \xi_1), \ a \in (F^G)' \quad (\text{see remarks 1 and 2}) \tag{3.24}
\]
defines the normal, normalized trace on \((F^G)' \).

Since the projection \(P^l = P^l \otimes P^l \) lies in \((F^G)' \), the map

\[
\{ L \otimes_p \otimes_q (U(M)) \}' = F^G \ni a \mapsto P^l \otimes^\nu P^l \otimes^\nu P^l \in P^l F^G P^l \tag{3.25}
\]
is an isomorphism. In particular, \(\Pi^{l \nu}_{pq} (U(M) \otimes (L \otimes q(u))) = \Pi^{l \nu}_{pq} \) for all \(u \in U(M) \) and \((\lambda, \mu) \in G_p \times G_q \). This proves the property (2) from the theorem 1.
To prove the property (3), we notice that the projections $P_{p}^{\lambda} \otimes P_{q}^{\mu}$ and $P_{p}^{\gamma} \otimes P_{q}^{\delta}$ are in $(\mathcal{F}G)^{\prime}$. It follows from (3.24) that

$$\tau'(P^{\lambda}_{p} \otimes P^{\mu}_{q}) = \frac{\dim \lambda \cdot \dim \mu}{p!q!}.$$

Thus, assuming that $\dim \lambda \cdot \dim \mu = \dim \gamma \cdot \dim \delta$, we obtain

$$\tau'(P^{\lambda}_{p} \otimes P^{\mu}_{q}) = \tau'(P^{\gamma}_{p} \otimes P^{\delta}_{q}).$$

Since $(\mathcal{F}G)^{\prime}$ is a factor, there exist the partial isometry $U \in (\mathcal{F}G)^{\prime}$ such that

$$UU^{\ast} = P_{p}^{\lambda} \otimes P_{q}^{\mu} \quad \text{and} \quad U^{\ast}U = P_{p}^{\gamma} \otimes P_{q}^{\delta}.$$

Hence we have

$$\Pi_{\lambda\mu}(u) = P_{p}^{\lambda} \otimes P_{q}^{\mu} \ (\mathcal{L}^{\oplus p} \otimes \mathcal{R}^{\oplus q}(u)) \ P_{p}^{\lambda} \otimes P_{q}^{\mu} = \mathfrak{U}U^{\ast} \ (\mathcal{L}^{\oplus p} \otimes \mathcal{R}^{\oplus q}(u)) \ \mathfrak{U}U^{\ast} = \mathfrak{U} \ U^{\ast} (\mathcal{L}^{\oplus p} \otimes \mathcal{R}^{\oplus q}(u)) \ U^{\ast} = \Pi_{\gamma\delta}(u) \quad \text{for any} \quad u \in U(M).$$

References

[1] Weil H., The classical groups. Their Invariants and Representations, Princeton Univ. Press, Princenton, N.J., 1997.

[2] Tsilevich N. V., Vershik A. M., Infinite-dimensional Schur-Weyl duality and the Coxeter-Laplace operator, Steklov Institute of Mathematics at St.Petersburg, arXiv:1209.4800

[3] Boyer R.P., Characters and factor-representations of the unitary group of the CAR-algebra, Journal of Operator Theory, 30(1993), 315-328.

[4] Dudko A., Characters on the full group of an ergodic hyperfinite equivalence relation, J. Funct.Anal. 261(2011), 1401-1414

[5] Enomoto T., Izumi M., Indecomposable characters on infinite dimensional groups associated with operator algebras, arXiv:1308.6329v1 [math.OA] 28 Aug 2013.

[6] Kirillov A.A., Representations of the infinite dimensional unitary group, Soviet Math., Dokl., 14 (1973), 1355-1358.

[7] Takesaki M., Theory of Operator Algebras, v. II, Springer, 2005, 518 pp.

[8] E.Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe, Math. Zeitschr. 85 (1964), no.1, 40-61.

[9] A. Connes, Periodic automorphisms of the hyperfinite factors of type II_1, Acta Sci. Math., 39 (1977), 39-66.