Prevalence of mycorrhizae in host plants and rhizosphere soil: A biodiversity aspect

Majidul Islam, Abdulrahman Al-Hashimi, Mosa Ayshasiddeka, Hanif Ali El Enshasy, Hesham Ali, Daniel Joe Dailin, R. Z. Sayyed, Tanzima Yeasmin

1 Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh, 2 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia, 3 Institute of Bioprodut Development, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia, 4 Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia, 5 City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt, 6 Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science, and STKVS Commerce College, Shahada, India, 7 Department of Entomology, Asian PGPR Society, Auburn University, AL, United States of America

☯ These authors contributed equally to this work. ‡ These authors also contributed equally to this work
* sayyedrz@gmail.com (RZS); yeasmin_bio@yahoo.com (TY)

Abstract

Plants roots are colonized by soil inhabitants known as arbuscular mycorrhizal fungi (AMF), which increase plant productivity, and enhance carbon storage in the soil. We found mycorrhizal vesicles, arbuscules, and mycelium in the root of more than 89% of the selected plants of University of Rajshahi campus, Bangladesh. The rate of their presence differed in plant to plant of a family and different families. The highest root colonization (98±1.0%) was found to be present in Xanthium strumarium (Asteraceae). Mycorrhiza was not found in the root of Sphagneticola calendulacea (Asteraceae), Cestrun nocturnum (Solanaceae), Acacia nilotica and Acacia catechu (Mimosoidae), Rorippa nasturtium, Brassica oleracila var botrytis (Brasicaceae), Punica granatum (Lythraceae), Tecoma capensis (Bignoniacea), Spinacia oleracia (Chenopodiaceae), Chenopodium album (Goosefoot). Result of soil analysis reveals that the rhizospheric soils were deficient in nutrients which might be suitable for mycorrhizal symbiosis with plants. In the rhizospheric soils, 22 species of Glomus, Scutelospora, Gigaspora, Archaeospora, and Acullospora were found. We also found the genera ‘Glomus’ dominance in the plant root and rhizospheric soil. So, it can be concluded that the highly colonized roots as well as spores can be used to prepare mycorrhizal inoculum for future purposes.

Introduction

Arbuscular mycorrhiza (AM) is the plant-fungal symbiosis that exists on the Earth [1,2]. Smith and Read [2] revealed that more than 90% of all plant species, from liverworts to angiosperms, are involved in the mycorrhizal association [3]. In some cases, soil pH, soil phosphate (P) level, salinity vegetation, or the hydrologic condition of the soil have been found to be associated...
with the distribution of AM fungal species [4–7]. A decrease in either AM colonization in roots or the number of fungal propagules in soil was found to be associated with high values of soil pH, nutrient status, moisture content, and salinity [8].

Carbohydrates are produced in the leaves and then transported to the root tissue by the plant’s stomata. Fungal partners in mycorrhizal association obtain carbohydrates from the roots of the host plant. As a result, the fungus has access to a steady supply of glucose and sucrose from the host plants. The fungal hyphae produce large surface area. Compared to plant roots hair, these hairs are much longer and finer. These are capable of releasing minerals from the soils that aren’t accessible to plants roots. However, the fungal partner absorbs water and mineral nutrients from the soil and supplies the plants. Increased plant growth and development in nutrient-poor soil can be achieved as a result of this effect [9].

Economic growth in Bangladesh relies heavily on the production of agricultural crops. Increased production costs and the harmful nature of chemical fertilizers for the environment have sparked renewed interest in the use of less expensive and technologically simple methods for environmental sustainability with low production costs and high crop yields. Various plant species are naturally grown in the Rajshahi University area, Bangladesh. In addition, a wide variety of crops, fruits and vegetables are grown by people. Most of the Rajshahi zone’s plant species are naturally grown on the campus of University of Rajshahi, while others are cultivated. The goal of this investigation was to discover the biodiversity of mycorrhizal organisms in plant roots and rhizospheres. In future, mycorrhizal inoculum will be prepared using highly colonized roots as well as mycorrhizal spores as an alternative to chemical fertilizers by gathering knowledge about the status of biodiversity. As a result, mycorrhizal technology can be used to improve crop yields and environmental quality in Bangladesh’s various agricultural systems.

Materials and methods

Study area

The study area, University of Rajshahi, Bangladesh has been selected as representative of Rajshahi Zone, Bangladesh. It is located in the district of Rajshahi and situated at 24.370˚N 88.637˚E northwestern part of Bangladesh with an area of approximately 753 acres. The altitude of Rajshahi is 30 m.a.s.l. It is on the bank of the river, Padma. The temperature recorded is 26˚C to 42˚C, and the average rainfall is 280 mm.

Sample collection

About 91 different plant species were selected randomly (Table 1). The root samples along with rhizospheric soil were collected at a depth of 0–20 cm with the auger. Number of samples for each plant is one for soil sample and root pieces, and three plants are considered for each species.

Assessment of root colonization

Fixed root pieces were washed with 70% alcohol and then washed three times with distilled water. After that, root pieces were selected and cut into small segments (about 1 cm). Root segments were put in a beaker containing enough 10% KOH solution, covered, and heated at 90˚C in the water bath for 60 min. KOH was poured off and washed with distilled water three times. Root pieces were treated with alkaline H2O2 for 20 min. at room temperature. Then, these were rinsed with distilled water three times and acidified with 1% HCl for 3 min. Root pieces were stained with trypan blue solution for 120–180 min., and subsequently, the root was de-stained at room temperature in lactoglycerol. After de-staining, these root pieces were washed three times with distilled water and then with lactoglycerol. Finally, they were placed on a slide and stained with trypan blue solution.
Plant Name	Family	Plant Name	Family
Xanthium Strumarium	Asteraceae	Coccinea cordifolia	Cucurbitaceae
Chrysanthemum sp	Asteraceae	Benincasa hispida	Cucurbitaceae
Tagetes Minuta	Asteraceae	Gardenia jasminoides	Rubiaceae
Eclipta alba	Asteraceae	Isora coccinea	Rubiaceae
Mikania scandens	Asteraceae	Coffea arabica	Rubiaceae
Blumea lacera	Asteraceae	Salvia divinorum	Lamiaceae
Calendula arvensis	Asteraceae	Leonurus sibiricus	Lamiaceae
Helianthus annus	Asteraceae	Clerodendrum inerme	Lamiaceae
Cosmos bipinatus	Asteraceae	Ocimum sanctum	Lamiaceae
Enhydra fluctuans	Asteraceae	Salvia officinalis	Lamiaceae
Symedrella nodiflora	Asteraceae	Lantana camara	Verbenaceae
Sphagneticoila calendulaeac	Asteraceae	Verbena lilacina	Verbenaceae
Solanum melongena	Solanaceae	Nystanthes arborstritis	Oleaceae
Datura metal	Solanaceae	Jasmin sambac	Oleaceae
Capsicum frutescens	Solanaceae	Rumex maritimus	Polygonaceae
Nicotiana plumagensifolia	Solanaceae	Polygonum sp	Polygonaceae
Petunia hybrid	Solanaceae	Cassia tora	Cesalpinaceae
Lycopersicum lycopersicum	Solanaceae	Puozologia indica	Cesalpinaceae
Solanum indicum	Solanaceae	Cassia sophera	Cesalpinaceae
Cestrum nocturnum	Solanaceae	Lagerstroemia floresginae	Lythraceae
Hibiscus rosa-sinensis	Malvaceae	Puncia granatum	Lythraceae
Abelmoschus esculentus	Malvaceae	Bacopa monnieri	Plantoginaceae
Siderhombifolia	Malvaceae	Pennstemon babatus	Plantoginaceae
Sidaacuta	Malvaceae	Acacia catechu	Mimosoidae
Amaranthus spinosus	Amaranthaceae	Acacia nilotica	Mimosoidae
Amaranthus viridis	Amaranthaceae	Phyllanthus reticulatus	Phyllanthaceae
Alternanthera sessilis	Amaranthaceae	Phyllanthus fraternus	Phyllanthaceae
Alternanthera sp	Amaranthaceae	Heliotropium indicum	Boraginaceae
Achyranthus aspera	Amaranthaceae	Tropaolum majus	Tropaeolaceae
Mimosa pudica	Fabaceae	Catharanthus roseus	Balsaminaceae
Sesbania acuata	Fabaceae	Thuja sp	Cupersaceae
Peltophorium pterocarpum	Fabaceae	Carica papa	Caricaceae
Crotalaria sp	Fabaceae	Arctocarpus heterophyllus	Moraceae
Acacia auriculiformis	Fabaceae	Impatiens balsamina	Balsaminaceae
Delonix regia	Fabaceae	Pteris pteris	Pteridaceae
Codiaeum variegatum	Euphorbiaceae	Poo annua	Poaceae
Acalypa indica	Euphorbiaceae	Litchi chinensis	Sapindaceae
Euphorbia hypericifolia	Euphorbiaceae	Psidium guajava	Myrtaceae
Ricinus communis	Euphorbiaceae	Murraya paniculata	Rutaceae
Ricinus sp	Euphorbiaceae	Blubell barleria	Acanthaceae
Euphorbia mili	Euphorbiaceae	Adhatoda vasica	Acanthaceae
Zea mays	Poaceae	Rorippa nasturtium	Brassicaceae
Triticum aestivum	Poaceae	Brasica oleracea var botrytis	Brassicaceae
Cynodon dactylon	Poaceae	Tecoma capensis	Bignoniaceae
Elymus repens	Poaceae	Spinacia oleracia	Chenopodiaceae
Cucurbita maxima	Cucurbitaceae	Chenopodium album	Goosefoot
segments were examined under the microscope to observe mycorrhizal root colonization. The extent of VA mycorrhizal colonization was estimated by the percentage of root length colonization examined for each sample at least 50 root segments [10] and calculated by the following formula–

\[
\text{Root colonization (\%)} = \frac{\text{No. of AM positive segments}}{\text{No. of segments studied}} \times 100
\]

Extraction, identification, and quantification of mycorrhizal spores. Collected soil samples were dried in the air, and 100 g of air-dried soil sample was taken in a bucket filled with \(\frac{3}{4}\)th in tap water and mixed water properly, and left to settle down for about 5–10 min. The supernatant was decanted, and sucrose gradient centrifugation was done for 4 min. at 3000 rpm [11]. Spores were counted under a dissecting microscope, and spore densities (SD) were expressed as the number of spores per 100 g of soil. The isolated spores were mounted in polyvinyl lactoglycerol (PVLG). Morphological identification of spores up to species level was based on spore size, color, the thickness of the wall layers, and the subtending hyphae by the identification manual [http://schuessler.userweb.mwn.de/amphylo] and the website of the international collection of vesicular and AM fungi (http://invam.wvu.edu).

Soil analysis

Air-dried rhizospheric soil samples in three replicates for each plant were analyzed for their physical and chemical properties. The pH was determined (soil-water suspensions) with the help of a pH meter [12]. The texture was determined using 6% \(\text{H}_2\text{O}_2\), 2N HCl, and 2N NaOH [13]. The moisture content was determined according to the conventional method. Organic matter (OM) was determined by the Walkley-Black acid digestion method. Phosphorus (extracted with 0.03M NH4F-0.02M HCl) was measured by molybdenum blue colorimetry method, potassium (K) by an ammonium acetate method using a flame photometer, and nitrogen (N) by the alkaline hydrolysis diffusion method. Available soil Boron and Zinc were determined in atomic spectrophotometer [14].

Statistical analysis

All experiments were conducted in triplicate. The data was analyzed by One-way analysis of variance (ANOVA), and the values of standard deviations were considered. The p-value (\(p < 0.05\), \(p < 0.001\)) was considered in determining significant difference.

Results

Presence of AMF structure in roots

The plants of University of Rajshahi showed a well-colonized arbuscular mycorrhizal association. The occurrence of Mycorrhizal fungi in roots of plants has been determined on the basis of vesicles, arbuscular and hyphal formation (Fig 1).

Root colonization in roots of different plants

The percentage of root colonization was compared among 91 different plant species. About 89% of plants were found to be colonized with AMF, and the degree of colonization varied from 10.3\(\pm\)0.6% to 98.0\(\pm\)1.0%, as shown in Table 2. The highest colonization (98\(\pm\)1.0%) was observed in *Xanthium strumarium* belonging to the family Asteraceae. In contrast, other plants of Asteraceae i.e. *Chrysoxanthum* sp, *Tagetes minuta*, *Eclipta alba*, *Mikania scandens*, *Blumea lacera*, *Calendula arvenris*, *Hellianthus annus*, *Cosmos bipinatus*, *Enhydra fluctuans*, *PLOS ONE*
and *Synedrella nodiflora* showed root colonization 80.3 ± 2.5%, 75.3 ± 1.5%, 72.7 ± 2.5%, 59.7 ± 2.1%, 48.0 ± 5.0%, 42.3 ± 4.0%, 29.7 ± 0.6%, 24.3 ± 4.0% and 18.7 ± 0.6% respectively. *Sphagneticola calendulacea* was not colonized with mycorrhiza. The percentage of root colonization varied from 18.7 ± 4.0% to 98 ± 1.0% in the Asteraceae family. In the Solanaceae family, the highest colonization (80.7 ± 3.1%) was observed in *Datura metallica*, whereas *Solanum melongena*, *Capsicum frutescens*, *Nicotiana plumbaginifolia*, *Petunia hybrid*, *Lycopersicon lycopersicum*, and *Solanum indicum* showed 80.3 ± 2.5%, 73.3 ± 0.6%, 69.0 ± 4.6%, 51.0 ± 3.6%, 49.7 ± 3.8% and 34.0 ± 3.6% respectively. The percentage colonization ranged from 34.0 ± 3.6% to 80.7 ± 3.1% in the Solanaceae family. No colonization was observed in *Cestrum nocturnum*. In the Malvaceae family, highest (59.3 ± 4.0%) and lowest (11.3 ± 1.2%) colonization was observed in *Hibiscus rosa-sinensis* and *Sida acuta*, respectively, whereas *Abelmoschus esculentus* and *Sida rhombifolia* showed 52.3 ± 3.5% and 31.7 ± 1.5% individually. The percentage of root colonization speckled from 11.3 ± 1.2% to 59.3 ± 4.0% in the Malvaceae family. Among five plants of the Amaranthaceae family, the highest colonization (75.3 ± 2.5%) was found in *Amaranthus spinosus*, and *Alternanthera* sp. showed the lowest colonization (11.0 ± 1.7%), whereas *Achyranthus aspera*, *Alternanthera sessilis*, and *Amaranthus viridis* showed 11.3 ± 1.5%, 21.3 ± 3.2%, and 39.7 ± 2.5% root colonization respectively. The root colonization varied from 11.0 ± 1.7% to 70.3 ± 2.5% in the Amaranthaceae family. In the Fabaceae family, the highest colonization (35.7 ± 2.1%) was observed in *Mimosa pudica*, whereas *Sesbania aculeata*, *Peltophorum pterocarpum*, *Crotalaria* sp. *Acacia auriculiformis*, and *Delonix regia* showed 33.0 ± 2.6%, 30.7 ± 2.1%, 21.0 ± 5.6%, 16.0 ± 3.6%, and 11.0 ± 1.7% respectively. The percentage colonization ranged from 11.0 ± 1.7% to 35.7 ± 2.1% in the Fabaceae family. In the Acanthaceae family, the highest colonization (42.3 ± 8.5%) was observed in *Blubell barleria*, whereas *Adhatoda vasica* showed 33.7 ± 9.5% root colonization. In the Euphorbiaceae family, the highest colonization (90.3 ± 2.5%) was found in *Codiaeum variegatum*, and *Euphorbia milii* showed the lowest colonization (10.7 ± 1.2%). Other plants of this Family i.e. *Acalypha indica*, *Euphorbia hypericifolia*, *Ricinus sp.*, and *Ricinus communis* showed 41.3 ± 4.2%, 37.7 ± 3.5%, 25.3 ± 0.6, and 19.3 ± 2.1 respectively. The mycorrhizal colonization ranged from 10.7 ± 1.2% to 90.3 ± 2.5% in the Euphorbiaceae family. In the Poaceae family, the highest colonization (49.0 ± 3.6%) was detected in *Zea mays*. Other
Table 2. Mycorrhizal root colonization in different plants of Rajshahi University campus ground.

Plant Name	Family	Root colonization	Scientific Name	Family	Root colonization
Xanthium Strumarium	Asteraceae	98±2.1	Coccinea cordifolia	Cucurbitaceae	44±1.5
Chrysanthemum sp.	Asteraceae	80±2.5	Benincasa hispida	Cucurbitaceae	40±2.1
Tagetes Minuta	Asteraceae	75±1.5	Gardenia jasminoides	Rubiaceae	10±1.2
Eclipta alba	Asteraceae	72±2.5	Isxora cocinea	Rubiaceae	50±2.6
Mikania scandens	Asteraceae	59±3.6	Coffea arabica	Rubiaceae	40±2.0
Blumea lacera	Asteraceae	48±5.0	Salvia divinorum	Lamiaeae	85±7.2
Calendula arvensis	Asteraceae	42±4.0	Leonurus sibiricus	Lamiaeae	85±4.0
Helianthus annus	Asteraceae	29±7.6	Clerodendrum inerme	Lamiaeae	85±2.1
Cosmos bipinatus	Asteraceae	24±4.0	Ocimum sanctum	Lamiaeae	38±5.5
Enhydra fluctuans	Asteraceae	20±4.2	Salvia officinalis	Lamiaeae	32±6.7
Synedrella nodiflora	Asteraceae	18±4.7	Lantana camara	Verbenaceae	36±4.2
Sphagetticola calendulacea	Asteraceae	0	Verbena lilacina	Verbenaceae	28±7.0
Solanum melongena	Solanaceae	80±2.5	Nyctanthes arborstritis	Oleaceae	66±4.6
Datura metal	Solanaceae	80±3.1	Jasmin sambac	Oleaceae	40±7.0
Capsicum frutecens	Solanaceae	73±0.6	Rumex maritimus	Polygonaceae	11±1.0
Nicotiana plumbagensfolia	Solanaceae	69±4.6	Polygonum sp.	Polygonaceae	36±5.5
Petunia hybrid	Malvaceae	51±3.6	Cassia tora	Cesalpineaecae	59±8.5
Lycopersicon lycopersicum	Solanaceae	49±3.8	Puzolognia indica	Cesalpineaecae	25±3.6
Solanum indicum	Solanaceae	34±3.6	Cassia sophera	Cesalpineaecae	26±3.8
Cestrum nocturnum	Solanaceae	0	Lagerstoemia flos regina	Lythraceae	41±7.5
Hibiscus rosa-sinensis	Malvaceae	59±4.0	Punica granatum	Lythraceae	0
Abelmoschus esculentus	Malvaceae	52±3.5	Bacopa monnieri	Plantoginaceae	30±7.0
Sidalchobifolia	Malvaceae	31±1.5	Penstemon babatus	Plantoginaceae	30±3.1
Sidaacuta	Malvaceae	11±1.2	Acacia catechu	Mimosoidae	0
Amaranthus spinosus	Amaranthaceae	75±2.5	Acacia nilotica	Mimosoidae	0
Amaranthus viridis	Amaranthaceae	39±2.5	Phyllanthus reticulatus	Phyllanthaceae	74±1.5
Alternanthera sessilis	Amaranthaceae	21±3.2	Phyllanthus fraternus	Phyllanthaceae	19±3.8
Alternanthera sp.	Amaranthaceae	11±1.7	Heliotropium indicum	Boraginaceae	46±2.0
Achyranthus aspera	Amaranthaceae	11±1.5	Tropaeolum majus	Tropaeolaceae	46±5.5
Mimosoida	Fabaceae	35±2.1	Catharanthus roseus	Poaceae	44±2.5
Sesbaniaisaculata	Fabaceae	33±2.6	Thua sp.	Coptoginaceae	38±5.1
Peltophorum pterocarpum	Fabaceae	30±2.1	Carica papa	Caricaceae	34±1.2
Crotonia sp.	Fabaceae	21±5.6	Artocarpus heterophyllus	Moraceae	30±8.0
Acacia auriculiformis	Fabaceae	16±3.6	Impatiens balsamnia	Balsaminaceae	25±2.6
Delonix regia	Fabaceae	11±1.7	Pteris pteris	Pteridaceae	19±6.5
Codiaeum variegatum	Euphorbiaceae	90±4.0	Poa annua	Poaceae	11±1.5
Acyalphyra indica	Euphorbiaceae	41±4.2	Litchi chinensis	Sapindaceae	10±3.0
Euphorbia hypericifolia	Euphorbiaceae	37±3.5	Psidium guajava	Myrtaceae	12±2.5
Ricinus communis	Euphorbiaceae	19±2.1	Murraya paniculata	Rutaceae	13±2.6
Ricinus sp.	Euphorbiaceae	25±0.6	Blubell barleria	Acanthaceae	42±8.5
Euphorbia mili	Euphorbiaceae	10±1.2	Adhatoda vasica	Acanthaceae	33±9.5

(Continued)
plants of this family i.e. *Triticum aestivum*, *Cynodon dactylon*, and *Elymus repens* showed 29.7 ±0.6%, 15.3±1.5%, and 11.7±1.5% separately. The root colonization varied from 11.7±1.5% to 48.0±2.0% in the Poaceae family. In the Cucurbitaceae family, the highest root colonization (80.3±2.1%) was found in *Cucurbita maxima*. Other plants of this family i.e. *Coccinea cordifolia*, *Benincasa hispida* showed 44.3±3.1, and 40.7±2.1% respectively. The percentage of root colonization varied from 40.7±2.1% to 80.3±2.1% in the Cucurbitaceae family. Among the plants of the Rubiaceae family, the highest root colonization (50.0±2.6%) was detected in *Ixora coccinea* and *Gardenia jasminoides*, *Coffeea arabica* showed 10.7±1.2%, 40.0±2.0% root colonization respectively. The percentage of root colonization varied 10.7±1.2% to 50.0±2.6% in the Rubiaceae family. In the Lamiaceae family, *Salvia divinorum*, *Clerodendrum inerme* showed a maximum of 85.7±1.2%, 85.7±2.1% respectively. Other plants of this family i.e. *Leonurus sibiricus*, *Octimum sanctum*, *Salvia officinalis* showed 85.0±4.0%, 38.3±5.5%, 32.3±6.7% root colonization respectively. The percentage of root colonization varied 32.3±3.1% to 85.7±1.2% in the Lamiaceae family. In the Oleaceae family, *Nyctanthes arbor-tristis* showed the highest root colonization (66.0±4.6%), whereas *Jasmin sambac* showed 40.0±7.0% root colonization. In the Polygonaceae family, *Polygonum* sp. showed 36.7±5.5% root colonization, where *Rumex maritimus* showed 11.0±1.0% mycorrhizal root colonization. In the Caesalpinaceae family, *Cassia tora*, *Puozolgia indica*, and *Cassia sophera* showed 59.7±8.5%, 25.0±3.6%, and 26.7±3.8% mycorrhizal root colonization respectively. In the Lythraceae family, *Lagerstroemia flosregia* showed 41.7±7.5% root colonization, whereas *Punica graminatum* did not show mycorrhizal root colonization. In the Plantaginaceae family, *Bacopa monnieri* and *Penstemon babatus* showed 30.0±7.0%, 30.7±3.1% mycorrhizal root colonization separately. *Phyllanthus reticulatus* (*Phyllanthaceae*), *Tropaeolum majus* (*Tropaeolaceae*), *Heliotropium indicum* (*Boraginaceae*), *Catharanthus roseus* (*Apocynaceae*), *Thuja* sp. (*Cupresaceae*), *Carica papaya* (*Caricaceae*), *Artocarpus heterophyllus* (*Moraceae*), *Impatiens balsamina* (*Balsaminaceae*) and *Pteris pteris* (*Pteridaceae*), Psidium guajava (*Myrtaceae*), and *Murraya paniculata* (*Rutaceae*) showed 11.7±1.5%, 10.3±0.6%, 12.3±2.5%, 13.0±3.6% root colonization separately. *Acacia nilotica* and *acacia catechu* (*Mimosoideae*), *Calotropis procera* (*Asclepiadaceae*), *Rorippa asturtium* (*Brassicaceae*), *Tecoma capensis* (*Bignoniaceae*), *Spinacia oleracea* (*Chenopodiaceae*), *Chenopodium album* (*Goosefoot*) did not show mycorrhizal root colonization.

Physio-chemical properties of rhizosphere soil

The degree to which mycorrhizal fungi enhance the nutrition and health of associated plants depends on many biotic and abiotic soil factors and other environmental factors that influence
the host, the fungi, and their association. The most important factors include the abundance of AMF infective propagules and soil phosphorus status. To evaluate higher root colonization against soil chemicals, 8 different plant species i.e. 1 (Codiaeum varicatuum), 2 (Salvia divinorium), 3 (Solanum melongena), 4 (Tagetes minuta), 5 (Phyllanthus reticulatus), 6 (Capsicum frutescens), 7 (Lycopersicon lycopersicm), and 8 (Abelmoschus esculentus) were selected for soil analysis. Table 3 summarized the data on soil status, i.e. the physical and chemical properties. It may be mentioned that the status of soil means the suitability of soil conditions for various crop production.

Soil quality influences mycorrhizal infection. Soil texture may affect plant responses to mycorrhiza. Soil strength and penetration resistance influence the rates at which water and nutrients flow or diffuse to the root surface. The clay, silt, and sand in experimental soils were varied from 8.00±0.15% to 18.1±0.31%, 27.8±0.51% to 38.0±0.32%, and 43.3±2.11% to 64.8±2.06% respectively. So, the observed soils were loamy soil. Loamy soil is suitable for growing most plant varieties.

It was revealed from the present data that the soil pH of the experimental plant area was alkaline, which might be associated with the natural colonization of an arbuscular mycorrhizal fungus in the roots of the plants examined. The pH range was indicated 7.30±0.13 to 8.10±0.20. Khan et al. (2004) reported that the soil pH of the Rajasahi region is high because of naturally alkaline, which is associated with occurring lime [15]. Soil pH is a commonly used index of plant root zone acidity and is crucial to many elements and microbial processes. Moisture influences soil resistance to root penetration, the geometry of different parts of the nutritional movement to root surface, and microorganism activity. The amount of moisture in soil was found to be 15.5±0.45% to 19.1±0.76% in Table 3. Phosphorus is one of the major nutrients for plant growth. It is the structural constituent of nucleotide, which is an energy carrier for all metabolic activities. It is essential for the constituent of the cell nucleus, cell division, and the development of meristematic tissue in the growing regions. The amount of phosphorus in experimental mycorrhizal soils was 15.48±0.51 ppm to 25.74±2.62 ppm. Nitrogen is an essential constituent of protein and, therefore, a constituent of all living cells. Nitrogen increases the proportion of water, and it also makes more giant cells with thinner cell walls.
Nitrogen is an essential constituent of protein and, therefore, a constituent of all living cells. Nitrogen increases the proportion of water, and it also makes more giant cells with thinner cell walls. Soil Nitrogen content was varied from 0.08±0.02 to 0.12±0.03%. Soil organic matter ranged from 1.39±0.05% to 2.11±0.08%. Potassium helps maintain cell permeability, aids in the translocation and composition of carbohydrates, and is essential for photosynthesis. Potassium keeps iron more mobile and increases the resistance of plants to a particular disease. The potassium levels of mycorrhizal rhizosphere soil were ranged between 0.16±0.02 cmol/kg to 1.09±0.09 cmol/kg. Zinc plays a central role in healthy plant metabolism and growth processes. It is needed in small quantities for the formation of auxin, chlorophyll, and cytochrome. It also has a role in forming enzymes and carbohydrates, regulating starches, and proper root development.

Zinc also helps plants assimilate to cold temperatures across the growing season. Zinc plays an essential role in mycorrhizal colonization and distribution. The level of zinc of mycorrhizal rhizosphere soil ranged from 0.16±0.02 cmol/kg to 1.09±0.09 cmol/kg. Potassium helps maintain cell permeability, aids in the translocation and composition of carbohydrates, and is essential for photosynthesis. Potassium keeps iron more mobile and increases the resistance of plants to a particular disease. The potassium levels of mycorrhizal rhizosphere soil were ranged between 0.16±0.02 cmol/kg to 1.09±0.09 cmol/kg. Zinc plays a central role in healthy plant metabolism and growth processes. It is needed in small quantities for the formation of auxin, chlorophyll, and cytochrome. It also has a role in forming enzymes and carbohydrates, regulating starches, and proper root development.

Results showed that mycorrhizal root colonization is positively correlated with number of spores. Correlation among mycorrhizal root colonization, spore numbers, and physiochemical properties of rhizospheric soils of 8 different plant species were summarized in Table 4.

Mycorrhizal spore density and diversity

The rhizospheric soils which were analyzed to determine physio-chemical properties were selected for isolation of mycorrhizal spores. Twenty-two different mycorrhizal spore populations were isolated. Nineteen isolated spores were identified based on morphological characteristics such as spore size, color, wall thickness, number of walls, types of walls and wall groupings, etc. Three spores could not be identified, which will be identified in future with 18s RNA technology. Identified spores belonged to the genera *Glomus*, *Scutellospora*, *Gigaspora*, *Archaeospora* and *Acullospora* mentioned in Fig 2.

Table 4. Pearson correlation among mycorrhizal root colonization, spore numbers, and physiochemical properties of rhizosphere soils of different plant species.

	Colonization	Spore no.	Moisture (%)	Clay (%)	Sand (%)	Silt (%)	pH	P (ppm)	N (%)	C (%)	Zn (ppm)	B (ppm)	K (Cmol/kg)
Colonization	1												
Spore No.	0.915	1											
Moisture (%)	0.954	0.961	1										
Clay (%)	0.983	0.973	0.979	1									
Sand (%)	-0.898	-0.981	-0.952	-0.956	1								
Silt (%)	0.864	0.954	0.918	0.924	-0.986	1							
pH	0.989	0.917	0.943	0.978	-0.884	0.862	1						
P (ppm)	-0.785	-0.673	-0.731	-0.751	0.687	-0.638	-0.738	1					
N (%)	0.437	0.336	0.450	0.403	-0.308	0.328	0.475	0.122	1				
C (%)	0.175	0.263	0.282	0.222	-0.198	0.213	0.243	0.163	0.483	1			
Zn (ppm)	-0.597	-0.621	-0.597	-0.620	0.660	-0.611	-0.535	0.785	0.304	-0.108	1		
B (ppm)	-0.249	-0.387	-0.443	-0.322	0.452	-0.403	-0.180	0.562	0.308	0.019	0.612	1	
K (Cmol/kg)	-0.387	-0.351	-0.511	-0.385	0.362	-0.307	-0.348	0.659	0.020	0.049	0.356	0.805	1

https://doi.org/10.1371/journal.pone.0266403.t004
Isolated spores were varied from 28.7±1.70 to 60.7±1.20 in number per 100 g of soil, as presented in Table 3. The highest spore number was observed in *Codiaeum variegatum*, while that was lowest in *Abelmoschus esculentus*.

Discussion

The study area, University of Rajshahi, Bangladesh has a tropical monsoon climate characterized by heavy seasonal rainfall, high temperatures, and high humidity. The mycorrhizal fungi were found to be present in nearly all of the tested plant species. The intensity varied in the plants of the same family and the plants of different families. Strzemska *et al.* [15] found that the root colonization in the plants of different families and the single-family plants differed [15]. The AM fungal structure in the root varied in the selected plants where vesicles, arbuscles, mycelium were present separately and in combination (Fig 1). Different vesicles were observed where some are oval and some are spherical in shape. Mycelia were present in most of the plants while arbuscles were observed in the roots of some plant species. The observed AMF structure was supported by Khanam *et al.* [16,17]. The frequent occurrence of vesicles in most plant species from the study sites showed the presence of VAM fungi belonging to the *Glomineae*. Plants of Brassicaceae Bignoniaceae, Goosefoot, and Chenopodiaceae were not colonized with mycorrhiza. These data are in line with earlier studies showing that these families lack functional mycorrhiza because of the presence of glucosinolates and their hydrolysis products, isothiocyanates, in and around their roots [18].

In rhizosphere of 8 different plant species, twenty two spores were isolated and nineteen spores were identified as species of *Glomus*, *Scutellospora*, *Gigaspora*, *Archaeospora*, and *Acullospora* (Fig 2) while three spores could not be identified. Among the identified genera, *Glomus* species was found more in number (Ten in twenty-two). Sporocarp of *Glomus sinusum* was observed which indicates that *Glomus* spores are grown in clusters. It might be a reason for getting more number of *Glomus* spores in the roots as shown in Fig 1. *Glomus* is the most common mycorrhizal species in Bangladesh’s forests [19]. They speculated that *Glomus’* sporulation pattern could be the key to the taxon’s rise to dominance. We found that the rhizosphere and roots of the same plant were found to contain a variety of species from different genera.
(Figs 1 and 2). Plant phenology, root phenology, and root production all influence spore production patterns [20]. Every life history of a mycorrhizal fungus is influenced by plant roots. Spore germination, germination rate, the direction of germ tubes, hyphal branching recognition of the host root penetration establishment, intensity of colonization growth of hyphae into soils, and sporulation of the AM fungi were reported to be affected by the plant roots [21]. The roots of various plants produced a variety of organic chemicals and volatile compounds. Organic acids, ethanol and other volatile compounds could all influence the AM fungi’s activity and life cycle in natural environments. Various factors, such as dense root systems with an abundance of fine roots, mycorrhizal fungi’s ability to compete with other rhizosphere-dwelling organisms, seasons, soil moisture, soil type, and nutrient levels, have been found to have an impact on spore numbers, activity, and other traits [21].

AM fungal spore number was found to be increased with increase in root colonization. This result is consistent with those of the previous reports [22,23]. However, Fontenla et al. [24] have demonstrated that when the number of spores was high, the frequency of colonization decreased [24]. It has been shown that there is no significant relationship between AM colonization and spore population [25]. It might be due to the different gradients by soil and the strong effect of plant factors on the formation, function, and adaptation of the fungus to the respective soil conditions. Mycorrhizal colonization was found to be possible due to the presence of moisture [26]. Roots were found to have arbuscles when examined under a microscope. Moisture may be a factor for the occurrence of arbuscles. There are several factors that can influence the growth, sporulation, and community structure of AM fungi in the soil [27,28]. The alkaline soil in the experimental area could be linked to the natural colonization of AM fungi [26]. The extraradical proliferation of hyphae may be aided by organic matter, which increases spore production [29,30]. A high level of soil phosphorus generally inhibits mycorrhizal infection [31–34] which might be the reason for current prevalence of mycorrhiza in *Abelmoschus esculentus*. The potassium concentration might be suitable for mycorrhizal colonization in Bangladesh [35]. The zinc concentration in the soil might be suitable for mycorrhizal root colonization [36]. Mycorrhizal root colonization also affects the zinc nutrition of the crop [37] and is inurn affected by zinc status of the soil [38], climate changes [39,40] and the presence of organic fertilizers and rhizobia [41,42].

However, chemical analysis showed that the rhizospheric soils were deficient in nutrients, especially C, N. Nutrient deficiency might be responsible for the variation in their pattern of production and colonization. By considering all the facts mentioned above, it can be said that the ecological condition of the study area favored diverse mycorrhizal prevalence and their colonization in plant roots.

Conclusion

This study reveals that in University of Rajshahi, Bangladesh, plant species respond to mycorrhizal association where about 89% plant species are involved in mycorrhizal association. Species of *Acaulospora*, *Gigaspora*, *Glomus*, *Scutelospora*, and *Archaeospora* was observed in the selected rhizospheric soils. Three spores could not be identified which will be confirmed with 18s RNA technology. So, it can be concluded that the highly colonized roots as well as spores can be used in inoculum production on crop of Bangladesh.

Acknowledgments

The authors extend their appreciation to the Researchers Supporting Project number (RSP-2021/219), King Saud University, Riyadh, Saudi Arabia, Dean of Science, University of
Rajshahi, Bangladesh and Universiti Teknologi Malaysia UTM, for industrial grant No. R.J13000.7609.4C240 and R.J13000.7609.4C284.

Author Contributions
Conceptualization: Tanzima Yeasmin.
Formal analysis: Majidul Islam, Mosa Ayshasiddeka, Hanif Ali, Daniel Joe Dailin.
Funding acquisition: Abdulrahman Al-Hashimi, Hesham Ali El Enshasy.
Methodology: Majidul Islam, Mosa Ayshasiddeka.
Supervision: Tanzima Yeasmin.
Writing – original draft: R. Z. Sayyed, Tanzima Yeasmin.
Writing – review & editing: Abdulrahman Al-Hashimi, Hesham Ali El Enshasy, R. Z. Sayyed, Tanzima Yeasmin.

References
1. Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol. 2008; 6:763–775. https://doi.org/10.1038/nrmicro1987 PMID: 18794914
2. Smith S, Read D. Mycorrhizal symbiosis, 3rd edn. London. UK: Academic Press 2008; 1–800.
3. Lanfranco L, Bonfante P, Genre A. The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. Microbiol Spectr. 2016; 4. https://doi.org/10.1128/microbiolspec.FUNK-0012-2016 PMID: 28087942
4. Abbott L K, Robson A D. Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosyst Environ. 1991; 35:121–150. https://doi.org/10.1016/0167-8809(91)90048-3
5. Johnson N C, Tilman D, Wedin D. Plant and soil controls on mycorrhizal fungi. Ecology. 1992; 73:2034–2042. https://doi.org/10.2307/1941453
6. Miller S, Bever J. Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia. 1999; 119:586–592. https://doi.org/10.1007/s004420050823 PMID: 28307718
7. Escudero V G, Mendoza R E. Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza. 2005; 15:291–229. https://doi.org/10.1007/s00572-004-0332-3 PMID: 15517421
8. Entry J A, Rygiewicz P T, Watrall L S, Donnelly P K. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Ad Environ Res. 2002; 7:123–138. https://doi.org/10.1016/S1093-0191(01)00109-5
9. Gorsi S M. Studies on mycorrhizal arbuscular in some medicinal plants of Azad Jammu and Kasmir. Asian J Plant Sci. 2002; 1:382–387. https://doi.org/10.3923/ajps.2002.383.387
10. Giovanetti N, Mosse B. An evaluation of techniques to measure vesicular-arbuscular infection in roots. New Phytol. 1980; 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
11. Gerdemann J W, Nicolson T H. Spores of mycorrhizal endogen species extracted from soil by wet sieving and decanting. Trans British Mycol. 1963; 46:235–244. https://doi.org/10.1016/S0007-1536(63)80079-0
12. Jackson M L. Soil Chemical Analysis. Prentice-Hall of Indian. Pvt. Ltd. 1973.
13. Piper C S. Effect of non-treated field soil on sporulation of vesicular. Soil and Plant Analysis, Adelaide University Press, Australia 1966.
14. Khan H R, Rahman M K, Rouf A J M A, Sattar G S. Land evaluation and effects of brick burning on soil degradation at all Upazilas in Rajshahi Division. Dhaka Univ J Biol Sci. 2004; 13:49–60.
15. Strzemksa J, Sanders F E, Mosse B, Tinker P B. Occurrence and intensity of Mycorrhiza and deformation of roots without Mycorrhiza in cultivated plants. Endomycorhizas. Academic Press. London 1975; 537–543.
16. Khanam D, Solaiman A R M, Mridha M A U, Karim A J M S. Arbuscular mycorrhizal fungi association with some agricultural crops grown in four agro-ecological zones of Bangladesh. Bangladesh J Soil Sci. 2003; 27–28:1–12.
17. Khanam D, Solaiman A R M, Mridha M A U. Biodiversity of arbuscular mycorrhizal fungi in agricultural crops grown under different agro-ecological zones of Bangladesh. Bull Inst Trop Agr Kyushu Univ. 2004; 27:25–33.

18. Glenn M G, Chew F S, Williams P H. Influence of glucosinolate content of Brassica (Cruciferae) roots on the growth of vesicular-arbuscular mycorrhizal fungi. New Phytol. 1988; 110:217–225. https://doi.org/10.1111/j.1469-8137.1988.tb00255.x

19. Dhar P P, Mridha M A U. Biodiversity of arbuscular mycorrhizal fungi in different trees of Madhapur forest, Bangladesh. J For Res. 2006; 17:201–205. https://doi.org/10.1007/s11676-006-0047-8

20. Brundrett M. Mycorrhizas in natural ecosystems. Adv Ecol Res. 1991; 21:271–315. https://doi.org/10.1016/0169-5347(91)90036-9

21. Bhatia N, Sundari K, Adholeya A. Diversity and selective dominance of vesicular-arbuscular mycorrhizal fungi. In: Mukerji KG. (ed.), Concepts in Mycorrhizal Research. Netherlands: Kluwer Academic Publishers 1996;133–178.

22. Abbott L K, Robson A D. A quantitative study on the spores and anatomy of mycorrhizas formed by a species of Glomus, with special reference to its taxonomy. Aust J Bot. 1979; 27:363–375. https://doi.org/10.1071/ BT9790363

23. Louis I, Lim G. Spore density and root colonization of vesicular-arbuscular mycorrhizas in tropical soils. Transaction of British Mycological Society. 1987; 88:207–212. https://doi.org/10.1016/S0007-1536(87)80216-4

24. Fontenla S, Godoy R, Rosso P, Havrylenko M. Root association in Astrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza. 1998; 8:29–33. https://doi.org/10.1007/ s005720050207

25. Dhar P P, Mridha M A U. Status of biodiversity of arbuscular mycorrhizal fungi in different tree species growing in Betagi community forests. Chittagong Univ J Biol Sci. 2003; 27:13–19.

26. Zaman P, Roy A K, Khanum N S, Absar N, Yeasmin T. Arbuscular mycorrhizal status of medicinal plants in Rajshahi University Campus. Mycosistema. 2006; 27:543–553. https://doi.org/10.3923/std. 2016.141.147

27. Wang G M, Coleman D C, Freckman D W, Dyer M I, McNaghten S J, Acra M A, et al. Carbon partitioning patterns of mycorrhizal versus non-mycorrhizal plants: real-time dynamic measurements using \(^1\)CO\(_2\). New Phytol. 1989; 112:489–493. https://doi.org/10.1111/j.1469-8137.1989.tb00342.x PMID: 29265440

28. Medeiros C A B, Clark R B, Ellis J R. Growth and nutrient uptake of sorghum cultivated with vesicular-arbuscular mycorrhiza isolates at varying pH. Mycorrhiza. 1994; 4:185–192. https://doi.org/10.1007/ s005720050019

29. Douds D D, Galvez L, Franke-Snyder M, Reider G, Drinkwater L E. Effect of compost addition and crop rotation point upon VAM fungi. Agric Ecosyst Environ. 1997; 65:257–266. https://doi.org/10.1016/ S0167-8809(97)00075-3

30. Joner E J, Jakobsen I. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem. 1995; 27:1153–1159. https://doi.org/10.1016/ 0038-0717(95)00047-I

31. Schenck N C. Methods and Principles of Mycorrhizal research. American Phytopathological Society, St. Paul. Minnesota 1982.

32. Amijee F, Tinker P B, Strobel D P. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol. 1989; 111:435–446. https://doi.org/10.1111/j.1469-8137.1989.tb00706.x PMID: 33874001

33. Halder M, Akhter S, Mahmud A S M, Islam F, Mullick R, Joardar J C, et al. Prevalence of arbuscular mycorrhiza fungi (AMF) colonization in medicinal plant root and the response of prevalence with some selected medicinal plants rhizosphere soil properties in BCSIR forest, Chittagong. Bangladesh. J Pure Appl Microbiol. 2015; 9:131–140. https://doi.org/10.1007/s11676-006-0047-8

34. Adnan M, Zahir S, Fahad S, Arif M, Mukhtar A, Imtiaz AK, et al (2018) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 8:4339. https://doi.org/10.1038/s41598-018-22653-7 PMID: 29515141

35. Chen B D, Li X L, Tao H Q, Christie P, Wong M H. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in calcareous soil spiked with various quantities of zinc. Chemosphere. 2003; 50:839–846. https://doi.org/10.1016/s0045-6535(02)00228-x PMID: 12688500

36. Wahid F, Fahad S, Subhan D, Adnan M, Zhen Y, Saud S, et al. Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils. Agriculture, 2020, 10, https://doi.org/10.3390/agriculture10080334
37. Abdul S, Muhammad AA, Shabir H, Hesham A. El E, Sajjad H, Niaz A, et al. Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. *Saudi J of Biol Sci*, 2021, 28, 11, 6339–6351. https://doi.org/10.1016/j.sjbs.2021.06.096 PMID: 34759753

38. Abdul S, Muhammad AA, Subhan D, Niaz A, Fahad S, Rahul D, et al. Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. *Sci Rep*, 2021, 11:18468.

39. Fahad S., Sonmez O., Saud S., Wang D., Wu C., Adnan M., et al. (Eds.), Climate change and plants: biodiversity, growth and interactions, First edition. ed, Footprints of climate variability on plant diversity. CRC Press, Boca Raton. 2021.

40. Fahad S., Sönmez O., Turan V., Adnan M., Saud S., Wu C., et al. (Eds.), Sustainable soil and land management and climate change, First edition. ed, Footprints of climate variability on plant diversity. CRC Press, Boca Raton. 2021.

41. Najafi Vafa Y. Sohrabi R. Z.Sayyed, Ni Luh Suriani and Rahul Datta. Effects of combinations of Rhizobacteria, mycorrhizae, and seaweeds on growth and yields in wheat cultivars under the influence of supplementary irrigation. *Plants*. 2021, 10,811. https://doi.org/10.3390/plants10040811 PMID: 33924128

42. Bastami A, Amirnia R, Sayyed RZ, Enshasy HE. The effect of mycorrhizal fungi and organic fertilizers on quantitative and qualitative traits of two important Satureja species *Agronomy*, 11, 1285. https://doi.org/10.3390/agronomy11071285.