The TamB ortholog of *Borrelia burgdorferi* interacts with the \(\beta\)-barrel assembly machine (BAM) complex protein BamA

Henna Iqbal,\(^1\) Melisha R. Kenedy,\(^1\) Meghan Lybecker\(^2\) and Darrin R. Akins\(^1\)*
\(^1\)*Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
\(^2\)*Department of Biology, University of Colorado - Colorado Springs, Colorado Springs, CO 80918, USA.

Summary

Two outer membrane protein (OMP) transport systems in diderm bacteria assist in assembly and export of OMPs. These two systems are the \(\beta\)-barrel assembly machine (BAM) complex and the translocation and assembly module (TAM). The BAM complex consists of the OMP component BamA along with several outer membrane associated proteins. The TAM also consists of an OMP, designated TamA, and a single inner membrane (IM) protein, TamB. Together TamA and TamB aid in the secretion of virulence-associated OMPs. In this study we characterized the hypothetical protein BB0794 in *Borrelia burgdorferi*. BB0794 contains a conserved DUF490 domain, which is a motif found in all TamB proteins. All spirochetes lack a TamA ortholog, but computational and physicochemical characterization of BB0794 revealed it is a TamB ortholog. Interestingly, BB0794 was observed to interact with BamA and a BB0794 regulatable mutant displayed altered cellular morphology and antibiotic sensitivity. The observation that *B. burgdorferi* contains a TamB ortholog that interacts with BamA and is required for proper outer membrane biogenesis not only identifies a novel role for TamB-like proteins, but also may explain why most diderms harbor a TamB-like protein while only a select group encodes TamA.

Introduction

Borrelia burgdorferi, the spirochete that causes Lyme disease, is classified as a diderm and is similar to Gram-negative organisms in that it contains both an inner membrane (IM) and outer membrane (OM) bilayer (Holt, 1978; Hovind-Hougen, 1984; Barbour and Hayes, 1986). Given that *B. burgdorferi* is an extracellular pathogen, the OM and its constituents are the major interface between the host and pathogen during infection (Fikrig et al., 1990; 1992; Schable et al., 1990; Gilmore et al., 1996; Ornstein et al., 2002; Bunikis et al., 2008). The borrelian OM is unique in many ways. For instance, the bilayer is not only composed of phosphatidylcholine and phosphatidylycerol but it also contains free cholesterol, cholesterol esters, and three glycolipids [6-O-acylated cholesteryl \(\beta\)-D-galactopyranoside (ACGal), cholesteryl \(\beta\)-D-galactopyranoside (CGal), and mono-\(\alpha\)-galactosyl-diacylglycerol (MGalD)] (Belisle et al., 1994; Radolf et al., 1995; Hossain et al., 2001; Ben-Menachem et al., 2003; Schroder et al., 2003; Stubs et al., 2009). Interestingly, the two cholesterol containing glycolipids (ACGal and CGal) along with free cholesterol have recently been shown to form ordered microdomains in the borrelian OM similar to eukaryotic lipid rafts (LaRocca et al., 2010; 2013; Toledo et al., 2015). Another significant feature of the *B. burgdorferi* OM is that, unlike Gram-negative bacteria, it lacks lipopolysaccharide (LPS) on its surface (Takayama et al., 1987). Instead, the borrelian surface is decorated with lipid-modified proteins (i.e., lipoproteins) that are anchored into the outer leaflet of the OM (Fraser et al., 1997; Casjens et al., 2000; Brooks et al., 2006; Kenedy et al., 2012). The *B. burgdorferi* OM is also distinctive in that it contains a paucity of integral, membrane-spanning outer membrane proteins (OMPs) as compared to enteric Gram-negative organisms (Cullen et al., 2004). In fact, it has been shown that there are 10-fold fewer OMPs in *B. burgdorferi* than in the OM of *Escherichia coli* (Lugtenberg and van Alphen, 1983; Radolf et al., 1994). While these many distinctive aspects of the *B. burgdorferi* surface have been defined over the years, it is still poorly understood how biogenesis of its unique OM occurs.
A major advance in the field of bacterial OM biogenesis occurred just over a decade ago when assembly and export of OMPs in *Neisseria meningitidis* was determined to be controlled by an essential and highly conserved OMP designated Omp85 (Voulhoux et al., 2003). A similar finding by Silhavy and co-workers in *E. coli* identified a homolog of Omp85, designated YaeT, that was shown to be member of a large multi-protein complex required for the OM assembly process (Wu et al., 2005). It has also been recognized that proteins structurally and functionally similar to Omp85 and YaeT exist not only in all diderm bacteria but they are found in double-membraned euarkotic organelles as well, such as mitochondria and chloroplasts (Gentle et al., 2004; Zeth, 2010; Schleiff et al., 2011). The YaeT and Omp85 proteins along with their homologs in other diderm bacteria have since been designated BamA and the larger complex is referred to as the β-barrel assembly machine (BAM) (Kim et al., 2007; Walthier et al., 2009; Hagan et al., 2011). The BAM complex is required for proper folding, assembly and export of many OMPs as they move from the periplasm into the bacterial OM, which is crucial to OM biogenesis (Wu et al., 2005; Malinverni et al., 2006; Kim et al., 2007; Hagan et al., 2011; Lenhart and Akins, 2010; Dunn et al., 2015). The *E. coli* BAM complex has been well-characterized and consists of five members, the central OMP BamA and four accessory lipoproteins termed BamB, C, D and E (Wu et al., 2005; Onufryk et al., 2005; Ruiz et al., 2005; Malinverni et al., 2006; Sklar et al., 2007; Walthier et al., 2009). Previous studies by our laboratory have revealed that the BAM complex in *B. burgdorferi* is much more compact consisting only of BamA and two accessory lipoproteins, BamB and BamD (Lenhart and Akins, 2010; Lenhart et al., 2012; Dunn et al., 2015). The overall structure of BamA is comprised of a C-terminal transmembrane β-barrel domain that is embedded in the OM and a large N-terminal periplasmic component divided into five distinct polypeptide transport-associated (POTRA) domains (Sanchez-Pulido et al., 2003; Gentle et al., 2005; Gatzeva-Topalova et al., 2008; Noinaj et al., 2015). The POTRA domains are prerequisites for BamA interactions with nascent OMPs and the accessory proteins of the BAM complex (Kim et al., 2007; Gatzeva-Topalova et al., 2010; Anwari et al., 2010; Heuck et al., 2011; Workman et al., 2012; Bakelar et al., 2016).

In addition to BamA, several other bacterial OMPs have recently been identified that also belong to the Omp85 protein family, including the TamA, TamL, patatin-Omp85, WD40-Omp85, metallo-Omp85 and noNterm-Omp85 proteins (Selkirk et al., 2012; Heinz and Lithgow, 2014; Heinz et al., 2015). Among these other Omp85 family members TamA has been the best characterized (Gruss et al., 2013; Selkirk et al., 2012; Shen et al., 2014). Similar to the structure of BamA, TamA also consists of a C-terminal OM-associated β-barrel region and an N-terminal periplasmic region that contains three POTRA domains (Gruss et al., 2013). TamA was first identified in the *Enterobacteriaceae* by Lithgow and co-workers and was shown to be part of a distinct complex termed the translocation and assembly module (TAM) (Selkirk et al., 2012). The TAM consists of TamA and TamB; the OMP TamA interacts with the IM protein TamB and together they facilitate the assembly, localization, and export of many proteins, including autotransporters and other β-barrel OMPs such as fimbrial usher proteins and intimin (Selkirk et al., 2012; Heinz et al., 2016; Stubenrauch et al., 2016). Phylogenetic analyses have indicated that a possible gene duplication of BamA in a *Proteobacterial* ancestor resulted in the generation of TamA (Heinz et al., 2015). Thus, TamA is found only in *Proteobacteria*. On the other hand, TamB is ubiquitously distributed throughout all diderm with only a few rare exceptions (Heinz et al., 2015). This latter point suggests that TamB plays an important but yet-to-be-identified function other than its well-characterized role in the *Proteobacterial* TAM.

Previous studies have revealed that TamB is anchored to the IM by an uncleaved signal peptide at its N-terminus, while its C-terminal region contains a conserved domain of unknown function 490 (DUF490) (Selkirk et al., 2012; 2015; Gallant et al., 2008). Additionally, TamB orthologs are typically found to be encoded contiguous to or in close proximity to proteins from the Omp85 family (Heinz et al., 2015). For example, TamB is found in an operon with TamA in the *Proteobacteria* (Heinz et al., 2015; Gallant et al., 2008; Milner et al., 2014), downstream of TamL in *Bacteroides* spp. and *Chlorobi* spp. (Heinz et al., 2015), and in close proximity to BamA in organisms from the early-branching phyla, such as the *Fusobacteria*, *Dictyoglomi* and *Firmicutes* (Heinz et al., 2015). Interestingly, *B. burgdorferi* encodes a single protein, BB0794, containing a DUF490 motif and it is located immediately upstream of BamA. This observation led to the suggestion that BB0794 is a TamB ortholog, although there is currently no experimental proof supporting this conjecture (Selkirk et al., 2012). In the present study, we performed a detailed physicochemical characterization of BB0794. Signal peptide predictions, secondary structure modeling, and cellular localization assays revealed that BB0794 is anchored to the borreial IM by an uncleaved signal peptide, which is similar to other TamB proteins. However, unlike TamB from the *Proteobacteria*, BB0794 is apparently essential for *B. burgdorferi* viability. Thus, an IPTG-regulatable bb0794 mutant was generated. Examination of the mutant revealed that BB0794 is...
required to maintain normal bacterial morphology in *B. burgdorferi*. Moreover, co-immunoprecipitation experiments indicated that BB0794 specifically interacts with BamA. The combined data provide strong support for our conclusion that BB0794 is the TamB ortholog. Finally, the interaction observed between BB0794 and BamA leads us to speculate that TamB orthologs play an important role in OM biogenesis beyond their currently described function in the Proteobacterial TAM (Selkirk et al., 2012).

Results

Domain structure and genetic organization of bb0794

BB0794 was recently suggested to be a TamB homolog in *B. burgdorferi* (Selkirk et al., 2012). Despite an overall lack of sequence similarity between BB0794 and TamB (11% identity and 25% similarity score) BB0794 does contain two features conserved among all TamB orthologs, an N-terminal signal peptide and a C-terminal 325 amino acid region containing a DUF490 domain (Fig. 1A) (Heinz et al., 2015). The DUF490 domain of BB0794, however, is only 13% identical and 28% similar to the DUF490 domain from the *E. coli* TamB, but it is predicted to have a secondary structure similar to all other DUF490 members consisting of multiple β-strands separated by a region of α-helix (Fig. 1B). Additionally, TamB proteins in other organisms are typically encoded within an operon containing a member of the Omp85 family of proteins, such as TamA, TamL, or BamA (Heinz et al., 2015). Upon examination of the genetic locus containing BB0794, we observed that the gene encoding BB0794 is found immediately upstream of the genes encoding BamA and the periplasmic chaperone Skp, which together could possibly constitute a three gene operon. The genetic loci comparison among the most widespread genospecies, *B. burgdorferi*, *B. garinii* and *B. afzelii* are shown in Fig. 1C.

Expression of BB0794 and analysis of its physicochemical nature

The *E. coli* TamB protein is constitutively expressed and located in the periplasm (Selkirk et al., 2012; 2015; Shen et al., 2014). Interestingly, the borrelial genome deposited in the NCBI database for *B. burgdorferi* B31 (NCBI accession AE000783) has a missing nucleotide in the bb0794 gene which is annotated as a ‘K’ at base position 2395. The comparable base is noted as a guanine (G) in the annotated *B. garinii* and *B. afzelii* genomes. Resequencing this region in *B. burgdorferi* revealed that base 2395 corresponds to a G nucleotide in *B. burgdorferi* and the entire bb0794 sequence encodes a predicted protein of 1465 amino acids. This analysis of the bb0794 sequence is also supported by a recent resequencing of the *B. burgdorferi* genome that also indicated this base corresponds to a G in the bb0794 gene (NCBI accession CP009656). To verify the gene sequencing results, we subsequently analyzed BB0794 expression and performed immunoblot analysis of borrelial whole cell-lysates using BB0794-
specific antibodies. As expected from the corrected sequence analysis, we observed a protein of the expected size (168 kDa) expressed by B. burgdorferi, B. garinii and B. afzelii (Fig 2A).

To determine the physicochemical properties of BB0794 we performed Triton X-114 phase partitioning (TX-114) to first determine if it is expressed as a soluble periplasmic protein or it has amphiphilic character similar to membrane proteins. This assay can separate membrane proteins from periplasmic or cytoplasmic proteins based on their overall solubility in Triton X-114 (Bordier, 1981; Brusca and Radolf, 1994). Membrane proteins partition into the detergent-enriched phase while soluble proteins partition into the aqueous phase (Fig. 2B). When Triton X-114 separated fractions were subjected to immunoblot using BB0794-specific antibodies, BB0794 was found exclusively in the detergent-enriched phase (Fig. 2C), which indicated BB0794 is a membrane protein. Immunoblot analyses for the membrane-associated lipoprotein BamB and the soluble periplasmic protein Skp were included as controls.

Localization of BB0794 to the IM

Since TX-114 PP indicated that BB0794 is a membrane-associated protein, we next examined the localization of BB0794 by surface immunofluorescence assays (IFA) using BB0794-specific antisera (Fig. 3A). This analysis revealed that BB0794 could only be visualized when the spirochetal OM had been permeabilized, which was similar to the staining pattern observed for the periplasmic protein FlaB. Ospa antibodies were included as a control outer surface protein and, as expected, Ospa could be observed on the surface of intact spirochetes.

Although the immunofluorescence results indicated that BB0794 is not surface-exposed, to rule out the possibility that a surface-exposed domain was not...
accessible to antibodies by IFA, we also performed proteinase K (PK) experiments using whole *B. burgdorferi* cells. Consistent with the IFA result, the PK experiment revealed that BB0794 was not degraded by PK treatment (Fig. 3B). By contrast, the known surface-exposed protein OspA was found to be completely degraded by PK while the IM lipoprotein OppAIV, as expected was not degraded. Finally, when membrane fractionation was performed on *B. burgdorferi* to separate OM and protoplasmic cylinder (PC) fractions, BB0794 was found to be associated only with the PC fraction (Fig. 3C). For the fractionation experiments, antibodies specific for BamA were used as a control for a known OMP. BamA was observed in both the OM and PC preparations, as expected. To ensure the OM fractions were highly enriched and devoid of PC contents, we confirmed that the IM lipoprotein OppAIV was identified only in the PC fraction. The combined localization studies indicate that BB0794 is not localized to the OM and is associated only with the borrelial PC fraction.

BB0794 is anchored to the IM by an uncleaved signal peptide

The TamB protein from *E. coli* has a hydrophobic stretch of approximately 25 amino acids at its N-terminus that anchors it to the IM (Selkridge *et al.*, 2012; Shen *et al.*, 2014). Interestingly, the first 39 amino acids of the BB0794 sequence also is comprised of a hydrophobic domain based on Kyte-Doolittle hydrophobicity scores (Kyte and Doolittle, 1982). The PrediSi signal peptide prediction program, however, predicted that the N-terminus of BB0794 corresponds to a Sec-dependent signal peptide that is cleaved by signal peptidase I at amino acid 34 (data not shown) (Nielsen *et al.*, 1997). A more detailed analysis of BB0794 using the transmembrane domain identification algorithms TMHMM and Phobius revealed that other than the N-terminal hydrophobic region corresponding to the first 34 amino acids (Krogh *et al.*, 2001; Kall *et al.*, 2004) there were no other potential transmembrane domains in BB0794 (data not shown). Therefore, to determine if the N-terminal hydrophobic region of BB0794 is a cleaved or an uncleaved signal peptide we fused the first 39 amino acids of BB0794 to the mature OspA sequence lacking its native signal peptide, which was designated OspA^{794N}. The OspA^{794N} construct and a full-length OspA with its native signal peptide (OspA^{WT}) were then expressed in *B. burgdorferi* strain B313. Strain B313 was utilized for these experiments since it does not contain the linear plasmid 54 (lp54) element that harbors OspA in *B. burgdorferi* (Sadziene *et al.*, 1995).
Subsequent immunoblot analysis revealed that the OspA794N chimera containing the BB0794 signal peptide migrated several kDa larger than OspA WT protein containing its native, cleaved signal peptide (Fig. 4A). This observation strongly suggested that the N-terminal region of BB0794 corresponds to an uncleaved signal peptide. To provide further support for this contention, we subjected whole-cell lysates from strain B313 expressing OspA794N to TX-114 PP. When the final Triton X-114 detergent-enriched and aqueous fractions were subjected to immunoblot with OspA antibodies, the OspA794N chimera partitioned exclusively into the detergent phase, confirming that OspA794N is a membrane-associated amphiphilic protein (Fig. 4B). However, the mature recombinant OspA, which was expressed without its signal peptide (rOspA mat), lacks the N-terminal lipidation site and therefore separates solely into the aqueous phase as a soluble protein after Triton X-114 PP (Fig. 4B). The membrane bound lipoprotein BamB and the hydrophilic protein Skp were used as whole cell lysate controls to ensure full separation of the detergent and aqueous phases respectively. Finally, when PK surface accessibility assays were performed on OspA794N it was not degraded by PK, although the surface-exposed OspA WT protein was fully degraded by PK (Fig. 4C). As controls for the PK assays, the known

Fig. 4. BB0794 encodes an uncleaved signal peptide membrane anchor.
A. Whole-cell lysates of *B. burgdorferi* strain B313 expressing either the N-terminal 39 amino acids of BB0794 fused to OspA lacking its signal peptide (OspA794N) or the wildtype OspA (OspA WT) protein were subjected to immunoblot analysis using OspA specific antisera. Whole-cell lysates of B313, which lacks the lp54 plasmid encoding OspA, was used as a negative control. Molecular weight standards, in kDa, are indicated at left.

B. Triton X-114 phase partitioning was performed on whole-cell lysates of B313 strains expressing the N-terminal 39 amino acids of BB0794 fused to the OspA protein lacking its signal peptide (OspA794N) and a recombinant form of OspA lacking its signal peptide (rOspA mat). The detergent-enriched (D) and aqueous-enriched (A) phases were separated by SDS-PAGE and subjected to immunoblot using OspA-specific antibodies. Additionally, antibodies specific to the membrane-anchored BamB lipoprotein and periplasmic protein Skp were included as controls to ensure complete phase separation of the borrelial whole-cell lysates.

C. *B. burgdorferi* strain B313 expressing OspA794N or OspA WT were incubated with (+) or without (−) proteinase K (PK) before whole-cell lysates (1.25 × 10⁷ per lane) were subjected to immunoblot analysis with specific antibodies against OspA, the known outer membrane protein P66, or the inner membrane lipoprotein OppA IV.
BB0794 interacts with BamA in B. burgdorferi

The DUF490 domain of TamB has been shown to specifically interact with the POTRA1 domain of TamA (Selkrig et al., 2015). A TamA ortholog, however, is not present in B. burgdorferi and the only POTRA domain-containing protein in B. burgdorferi is BamA (BB0795), which is encoded just downstream of BB0794. To examine the possibility that BB0794 might interact with the POTRA containing BamA protein in B. burgdorferi we next performed co-immunoprecipitation (co-IP) experiments using anti-BB0794 antibodies. This analysis revealed not only that BB0794 antibodies can co-immunoprecipitate BB0794 along with BamA but that BamA-specific antibodies can specifically co-immunoprecipitate BB0794 (Fig. 5). Antibodies against OppAIV were included in this experiment to confirm that the interaction between BB0794 and BamA was specific. GST antibodies also were used to ensure the BB0794/BamA interactions observed were not the result of nonspecific antibody binding.

Generation of a regulatable BB0794 mutant strain

Prior studies on TamB have shown that its expression is not essential for bacterial viability (Gallant et al., 2008; Selkrig et al., 2012). After repeated attempts, however, we were unsuccessful in obtaining a bb0794 deletion mutant in B. burgdorferi. To overcome this obstacle, we generated an IPTG-regulatable bb0794 gene as shown in Fig. 6A. PCR analysis using specific primer pairs (white and black arrowheads in Fig. 6A) identified one mutant that had undergone recombination as expected (Fig. 6B). Since B. burgdorferi contains a large number of extrachromosomal linear and circular plasmids (cp), we also assessed the plasmid content of the mutant strain, designated flacp::bb0794. An analysis of all 21 endogenous plasmids in the parental and mutant strain revealed that the mutant maintained all plasmids except lp21 and cp32-7, neither of which have been implicated in borrelial physiology, virulence or the overall life-cycle of this organism in the tick or mammal (Purser and Norris, 2000; Stevenson et al., 2000; Caimano et al., 2000; Terekhova et al., 2006; Casjens et al., 2012). As expected, the expression of BB0794 in the flacp::bb0794 mutant was significantly reduced when IPTG was not included in the growth medium, although we never saw complete inhibition of BB0794 expression indicating that the regulation system is not fully repressed even when IPTG is absent. When IPTG was added, as little as 0.05 mM IPTG resulted in expression of BB0794 to a level similar to that observed with addition of 1 mM IPTG or in the parental strain (Fig. 6C). Interestingly, the expression of both BamA and Skp did not differ with the varying levels of IPTG in culture (Fig. 6C) even though it appeared that BB0794/BamA/Skp were part of a single operon and we assumed the BB0794 promoter would drive expression of these two downstream genes. As controls for the expression analyses, the level of the LacI repressor was also examined to ensure that it was expressed similarly in both the parental strain and in the mutant strain using differing levels of IPTG, and OppAIV was included to confirm that equal amounts of whole-cell lysates were loaded for all samples examined (Fig. 6C).

The observation that BB0794 expression was regulated by IPTG while BamA and Skp were not, indicated that these genes are not part of a single operon. To examine this issue, RNA-sequencing transcriptome data were analyzed to identify the 5' ends of the mRNAs corresponding to bb0794, bamA and skp. As observed in previous deep-sequencing studies, sequencing reads accumulated with a pronounced peak at the 5' end of each gene; this bias allows the relatively precise identification of transcription start sites (TSSs) based on the 5' end of mapped reads (Perkins et al., 2009; Hansen et al., 2010; Raghavan et al., 2011a, 2011b). This analysis revealed that BB0794 and BamA/Skp are encoded on distinct transcriptional units (Fig. 6D). The mRNA start site for bb0794 was identified 13 bp upstream of the bb0794 start codon and a single mRNA transcriptional start for both BamA and Skp was identified 343 bp upstream of the bamA start codon. The –10 and
−35 promoter binding regions for \(bb0794 \) and \(bamA/skp \) also were mapped by BPROM and virtual footprint v.3.0 (Munch et al., 2005; V.Solovyev, 2011), which correlated with the TSSs identified (Fig. 6D). No transcriptional start was identified upstream of \(skp \), which further indicated that \(bamA \) and \(skp \) are co-transcribed. To our knowledge, a TamB or TamB-like protein has not yet been reported to be essential for survival, which makes this the first study to suggest that the expression of BB0794/TamB-like protein is essential and further underscores the indispensable requirement of BB0794 in this spirochete.
BB0794 impacts normal B. burgdorferi morphology

We next examined the growth characteristics of the flacp::bb0794 mutant with or without IPTG induction of BB0794 (Fig. 7A). While cell density between the parental and flacp::bb0794 mutant strain cultivated with 1 or 0.05 mM IPTG was similar at all time points, the mutant cultivated without IPTG had significantly fewer organisms throughout the exponential and stationary phases of growth. Although the flacp::bb0794 mutant was consistently observed to be at a lower cell density, the log phase doubling time of the mutant cultivated without IPTG (9.2 h) was similar to the parental strain (9 h) and the mutant cultivated with 0.05 or 1.0 mM IPTG (10 and 9.3 h respectively). During the growth analyses we observed that the flacp::bb0794 mutant strain cultivated without IPTG exhibited a distinct morphology with many of the spirochetes appearing to be long chains of unseparated organisms (Fig. 7B, left panel). While this phenotype can also account for the decreased total count of mutant spirochetes in growth assays, we did not observe any other alterations in bending, flexing, or overall motility of the extended length organisms. This notable and easily observable phenotypic alteration due to BB0794 depletion was fully rescued in the flacp::bb0794 mutant cultivated in the presence of either 0.05 or 1 mM IPTG (Fig. 7B).
Deficiency of BB0794 increases the sensitivity of B. burgdorferi to antimicrobials

Previous studies have revealed that TamB plays an important role in maintaining OM integrity and morphology (Gallant et al., 2008; Babu et al., 2011; Selkrig et al., 2012; Smith et al., 2016). Given that we also observed the morphology of the BB0794 mutant to be altered, we next examined if the membrane integrity of the mutant also was impacted using antimicrobial sensitivity assays. We assessed the minimum inhibitory concentration (MIC) in the parental strain and the flacp::bb0794 mutant cultivated with or without IPTG using a group of hydrophilic antibiotics (penicillin G, carbenicillin and cefotaxime) that typically enter the cell through porins and a group of hydrophobic antibiotics (tetracycline, minocycline, and azithromycin) as compared to the parent strain. The MIC values for the hydrophilic antibiotic group (penicillin, carbenicillin and cefotaxime) were not altered between the parental strain and mutant strain cultivated without IPTG. The combined data suggest that BB0794 plays a direct or indirect role in regulating and maintaining membrane permeability.

Discussion

TamB is a protein with a DUF490 domain that was recently shown to be encoded downstream of TamA (Selkrig et al., 2012; 2015). TamA is an OMP and TamB is an IM-associated protein and together they interact in the periplasm to comprise the translocation and assembly module (TAM) (Selkrig et al., 2012; 2015; Shen et al., 2014). Similar to the BAM complex, the TAM from Enterobacteriaceae also catalyzes the insertion of Omps into the OM of diderm bacteria (Selkrig et al., 2012). Additionally, the TAM and BAM both contain a member of the Omp85 family of Omps (TamA and BamA). Interestingly, while most Proteobacterial organisms contain the canonical TAM, many other bacterial phyla and even some Proteobacteria do not contain TamA or a TamA-like protein (Heinz et al., 2015). By contrast, almost all diderm bacteria encode a TamB-like protein with a DUF490 domain found in close proximity or contiguous to an Omp85 family member such as TamA, TamL, or BamA (Heinz et al., 2015). The B. burgdorferi BB0794 protein was found to be encoded upstream of BamA and to contain a C-terminal conserved DUF490 domain with predominance of a short β-sheet secondary structure. Cellular localization and membrane fractionation studies revealed it is an IM protein and protein-fusion assays confirmed that BB0794 N-terminus is an uncleaved signal peptide. The combined data provide multiple lines of empirical evidence indicating that BB0794 should now be designated the B. burgdorferi TamB ortholog.

The region in the genome encoding BB0794/BamA/Skp is conserved not only in the Lyme disease spirochetes but among all spirochetes in the family Borelliaceae, which also includes the genera Borrelia that represents relapsing fever spirochetes. Within the bb0794-bamA-skp genetic locus in B. burgdorferi, we observed the presence of only a small intergenic 17 bp region between the bb0794 and bamA genes and a 20 bp region between the bamA and skp genes, leading to the assumption that all three genes are part of a single transcriptional unit and constitute an operon. Examination of RNA sequencing data revealed two unique 5 ends, one upstream of bb0794 and another upstream of bamA, indicating that bb0794 and bamA are separately regulated. While it is possible that the transcript encoding BB0794 could also encode BamA and/or Skp, immunoblot analysis of the IPTG-regulatable strain indicates otherwise since the BamA and Skp levels were observed to be independent of BB0794 expression levels. This leads us to conclude that BB0794 is primarily translated by the mRNA that starts upstream of bb0794 while BamA and Skp are primarily translated from their own transcript. This raises the intriguing possibility that BB0794 and BamA/Skp expression needs to be independently regulated, which could mean that different environmental factors such as changes in temperature,
host environment or physiological status of the organism requires differing levels of BB0794 and/or the BamA/Skp proteins. This notion is consistent with the finding that bb0794 but not bamA-skp is regulated by the two-component system Hk1/Rrp1, which controls cyclic-di-GMP levels in B. burgdorferi (Rogers et al., 2009; Caimano et al., 2015). The recent study by Caimano and co-workers also indicates that bb0794 transcription is up-regulated during the tick phase of the spirochetal enzootic cycle independent of bamA or skp expression (Caimano et al., 2015), which would be consistent with BB0794 expression needing to be tightly regulated during the borrelial enzootic cycle while BamA and Skp can be constitutively expressed in this spirochete.

Given the role of the TAM in OMP export and secretion, it is not surprising that TamB mutants in E. coli and Citrobacter rodentium have been shown to have diminished translocation and secretion of the autotransporter proteins Ag43 and p121, respectively (Selkirk et al., 2012). Deletion of TamB also has been shown to increase serum sensitivity of Salmonella enterica, suggesting TamB helps to regulate OM composition in this organism at some level (Selkirk et al., 2012). Furthermore, recent studies on MorC, a TamB ortholog from Aggregatibacter actinomycetemcomitans, have shown that this protein regulates the secretion of leukotoxin LtxA and also is required to maintain normal membrane morphology (Gallant et al., 2008; Kachlany, 2010; Smith et al., 2016). These combined studies suggest that TamB and TamB-like proteins in other organisms are not only involved in the proper export of various groups of OMPs, but they also are important for sustaining membrane integrity. Consistent with this observation, we also found that when BB0794 expression was depleted there were obvious defects in cellular morphology and in the overall sensitivity of B. burgdorferi to selected antibiotics, especially outer membrane traversing antibiotics. Along these lines, it is interesting to note that a mutant in ssg4 (substandard starch grain 4), which is a eukaryotic DUF490 domain-containing protein found in the amyloplasts of the rice plant Oryza sativa (Matsushima et al., 2014), is observed to form enlarged starch granules due to defective septum formation in dividing plastids (Matsushima et al., 2014). The ssg4 mutant identified was found to contain a single mutation (Gly substitution for Ser) in its DUF490 domain (Matsushima et al., 2014). This specific Gly residue was found not only to be conserved in eukaryotic DUF490 domains but also among DUF490 domains of Enterobacteriaceae (Matsushima et al., 2014). Interestingly, the conserved Gly residue also was identified in the DUF490 domain proteins of all Lyme disease causing Borrelia genospecies as well as in all relapsing fever Borrelia spp. and in Treponemes such as T. pallidum and T. denticola (data not shown). The role of this conserved DUF490 Gly residue found among not only pathogenic spirochetes but also in other diderms and eukaryotic organelles suggests it could be an important region to examine in future functional studies.

The most intriguing observation of the current study was the finding that BB0794 specifically interacts with BamA, indicating that TamB-like proteins form a previously unrecognized and distinct export system with the BAM complex. A possible explanation for the morphological defect observed in the BB0794 mutant could be the result of inhibiting this BB0794-BamA interaction. Since it has been established that the BAM complex is essential and required for OM biogenesis, it is tempting to speculate that the interaction between an inner and outer membrane-associated protein such as BB0794 and BamA is vital for coordinating the membrane syntheses and cell division process in this spirochete. Failure to meticulously coordinate these important physiological parameters could result in improper cell division, which was observed when BB0794 expression was depleted in the regulatable mutant.

Antibiotic sensitivity studies in E. coli have revealed that deletion of TamB results in increased sensitivity to vancomycin (Babu et al., 2011). Additionally, MorC mutants in A. actinomycetemcomitans have significantly higher sensitivity to bile salts (Smith et al., 2016). Similarly, we observed the BB0794 mutant to be more sensitive to lipid bilayer-permeating antibiotics such as tetracycline, minocycline and azithromycin, which could result from altered membrane permeability or biogenesis of the OM. It is also possible that the selective antibiotic sensitivities observed are the direct result of decreased efflux of the hydrophobic antibiotics after they enter the cell. It is known that bacterial efflux pumps, such as the one associated with TolC in E. coli, are responsible for resistance to multiple groups of antibiotics (Fralick, 1996; Zgurskaya and Nikaido, 2000; Sulavik et al., 2001; Nikaido and Takatsuka, 2009). Along these lines, it is interesting that the TolC ortholog in B. burgdorferi, designated BesC, also has been shown to regulate sensitivity to many antimicrobials (Bunikis et al., 2008). BesC forms the OM channel of the multi-drug efflux system in B. burgdorferi (Bunikis et al., 2008) and BesC deletion mutants have been noted to be highly sensitive to hydrophobic antibiotics such as tetracycline and azithromycin (Bunikis et al., 2008), which is consistent with what we observed in the BB0794 mutant strain. We have previously shown that the B. burgdorferi BAM complex is required for appropriate transport and OM integration of BesC into the borrelial OM (Lenhart and Akins, 2010; Dunn et al., 2015). The observation that BB0794 and BamA interact, raises the intriguing possibility that BesC export or function is also altered in...
some fashion when BB0794/BamA interaction is diminished, which may result in decreased antibiotic efflux. Determining whether BB0794 is needed for appropriate export of a subset of OMPs or if BB0794 plays a role in regulating trafficking of lipid or protein components of the OM will be important questions to examine in future studies.

Although the TamA protein is found exclusively in Proteobacteria, TamB and TamB-like proteins are much more ubiquitous and are found in almost all diderms (Heinz et al., 2015). TamA is typically encoded upstream of TamB in an operon (Gallant et al., 2008; Selkrig et al., 2012; Milner et al., 2014; Heinz et al., 2015); however, TamB-like proteins that neighbor BamA also have been identified in other diderms, such as the spirochete B. burgdorferi (Heinz et al., 2015). The interaction between BB0794 and BamA is a novel observation suggesting that the TamA-TamB interaction in Proteobacteria is not the only significant role played by TamB-like proteins in diderms (Selkrig et al., 2012; 2015; Shen et al., 2014). The observation that BB0794 and BamA interact also could provide an explanation as to why so many diderms lacking TamA or autotransporter-like substrate OMPs, such as B. burgdorferi, contain a TamB-like protein. Interestingly, prior studies have also indicated that the substrate autotransporters of the TAM also require the BAM complex for complete autotransporter biogenesis (Jain and Goldberg, 2007; Sauri et al., 2009; Rossiter et al., 2011). Furthermore, it has recently been shown that the usher protein FimD from E. coli requires both the BAM complex and the TAM for efficient assembly of this protein into the outer membrane (Stubenrauch et al., 2016). This previously reported dependence of substrate OMPs on both TAM and BAM also support our current model of a BB0794-BamA complex in ancestral spirochetal species that lack TamA. This also raises the important question as to whether TamB and TamB-like proteins from an organism that contains a TamA might also interact with BamA. Future studies to better define the interaction of TamB and TamB-like proteins with the BAM complex in diverse organisms should shed important light on the overall role of TamB in OM biogenesis beyond its interaction with TamA and OMP secretion in only a select group of Proteobacterial organisms.

Given that the DUF490 domain of TamB has been shown to interact with the POTRA domain of TamA (Selkrig et al., 2012; 2015), we would propose that BB0794 in B. burgdorferi interacts with BamA through one or more of its POTRA domains. Lithgow and co-workers have reported that the β-barrel like strands of the DUF490 domain in TamB impart the interaction observed between TamB and the TamA POTRA domain (Heinz et al., 2015; Selkrig et al., 2015). They also proposed that this TamB interaction with TamA could help to regulate the activity of the TAM (Heinz et al., 2015). Along similar lines of reasoning, it is tempting to speculate that BB0794 also maintains similar β-barrel like strand conformation in its DUF490 domain and this is responsible for the interaction between the BamA POTRA domain(s) and BB0794 in B. burgdorferi. An enhanced acknowledgment of the interaction between BB0794 and BamA and how it regulates the activities of the BAM complex will not only help us to better understand the concepts of spirochete physiology but also could help to explain the paradoxical observation that while almost all diderms contain a TamB-like protein only a subset of organisms contain TamA.

Experimental procedures

Bacterial strains and growth conditions

All borrelial strains utilized in this study were cultivated at 34°C in BSK-II liquid medium containing 6% heat inactivated rabbit serum (complete BSK-II) with the addition of appropriate antibiotic(s) or isopropyl-D-thiogalactopyranoside (IPTG) as indicated. B. burgdorferi B31 strain was used to perform cellular localization assays and co-immunoprecipitation experiments. B. afzelii Pko and B. garinii PBi (recently named B. bavariensis sp. nov. by Margos et al., 2013) strains were for BB0794 expression immunoblot. The non-infectious B. burgdorferi B313 strain was used for expression of the OspAWT and OspA794N proteins from the shuttle vector pBSV2G (Elias et al., 2003), which confers gentamicin resistance (40 µg ml⁻¹). The B. burgdorferi B31-5A4 KK strain expresses the LacI repressor and kanamycin resistance cassette from the endogenous plasmid lp25 (Gilbert et al., 2007), and was used to generate the flacc::bb0794 mutant. All shuttle vectors and constructs used for cloning were propagated using E. coli strain DH5α grown in lysogeny broth (LB) or on agar plates supplemented with the appropriate antibiotic(s).

Protein secondary structure and nucleotide sequence analyses of BB0794

The BB0794 signal peptide was predicted using PrediSi server (http://www.predisi.de/) (Nielsen et al., 1997). Transmembrane α-helices in the BB0794 protein sequence were predicted with Phobius (http://phobius.sbc.su.se/) and TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) (Krogh et al., 2001; Kall et al., 2004). The secondary structure of BB0794 and E. coli TamB were predicted using PSIPRED v3.3 server (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, 1999). The promoter regions for bb0794 and bamA were identified using BPRom (http://linux1.softberry.com/berry.phtml) and virtual footprint software v.3.0 (http://prodoric.tu-bs.de/vfp/vfp_promoter.php) (Munch et al., 2005; V.Solovyev, 2011). Nucleotide sequence analysis of bb0794 was determined from B. burgdorferi B31

© 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd., Molecular Microbiology, 102, 757–774
genomic DNA using primers BB0794-2221F and BB0794-3297R (Table 2).

Table 2. Oligonucleotides used in this study.

Primer name	Primer sequence (5’ to 3’)^a	Primer details
BB0794-2221F	TTAGGGTTAATTCCGATGAATATGG	BB0794 nucleotides 2221-2246; Sequence verification of BB0794
BB0794-3297R	GCCTCGAGTCCCGTTCTACCGTCACAT	Complementary to BB0794 nucleotides 3278-3297 plus Xhol restriction site; Sequence verification of BB0794
flacp::bb0794-831046F	GCGGTACCTCTAGTTTTTTAAATATTTTTTTTATT	Corresponding to nucleotides 831,046-831,075 of *B. burgdorferi* chromosomal genome plus KpnI restriction site
flacp::bb0794-831645R	GCCTCGAGACACTCTATCGATAATTATCATAT	Corresponding to nucleotides 831, 619-831,645 of *B. burgdorferi* chromosomal genome plus Xhol restriction site
flacp::bb0794-4F	GCGGTCCAGCATATGAAATGTGTTTTTGAGAAGTAAG	BB0794 nucleotides 4-27 plus Sall and Ndel restriction sites
flacp::bb0794-600R	GCCTCGATCCATTTTAACACGACTAAATCAAC	Complementary to BB0794 nucleotides 577-600 plus BamHI restriction site
aadA1-766F	GCCGAAGTCAACAAAGTAGCTCGGCAA	Nucleotides 766-789 of *aadA1* gene; PCR verification of flacp::bb0794
BB0794-927R	ATAAATTTCAAGCCTTTGGTTAGCTTAATCCACT	Complementary to BB0794 nucleotides 892-927; PCR verification of flacp::bb0794
FlgB-1F	GCCGGTACCTACCGAGCTTCAAGGAAGAT	flgB nucleotides 1-21 plus KpnI restriction site
FlgB-407R	GCCGGTACCTCGGAAAACCTCCCTCATTAATTATT	flgB nucleotides 383-407 plus BamHI restriction site
BB0794-1F	GCCGGGATCATGAATTTTTGTTTTTGAGAAGTAAG	BB0794 nucleotides 1-27 plus BamHI restriction site
BB0794-117R	CGCTCTAGATGCAGAAATTAGTGGTGAAC	Complementary to BB0794 nucleotides 94-117 plus Xbab restriction site
OspA-1F	GCCGGATCCATGAAAAATATTATTGGGAATAGGT	OsPA nucleotides 1-27 plus BamHI restriction site
OspA-822R	CGCTCGAATTTTTAAGCCTTATTTATTTTATCAAG	Complementary to OspA nucleotides 793-822 plus Sall restriction site
OspA-49F	GCCGTCTAGATGTAAGCAGAAAATGTAGACGACCTT	OsPA nucleotides 49-72 plus Xbab restriction site

^a Restriction sites shown in bold.

Generation of antibodies, immunoblot analyses, and triton X-114 phase partitioning

Antibodies specific to *B. burgdorferi* BB0794 were generated in rabbits against a synthetic peptide DTIGKEVQGLQLEIKGDDR (amino acids 345-363) by Thermo Fisher Scientific antibody production services (Thermo Scientific, Rockford, IL). Polyclonal antibodies against OspA, FlaB, P66, BamA, BamB, Skp, OppAIV or GST were generated in rats or rabbits as described previously (Radolf et al., 1994; Radolf et al., 1994; Brooks et al., 2005; Brooks et al., 2006; Lenhart and Akins, 2010; Kenedy et al., 2014). A monoclonal antibody specific to LacI was used according to manufacturer’s instructions (US Biological, Swampscott, MA).

For all immunoblots, samples were subjected to separation by 10% SDS-PAGE before being transferred to polyvinylidene difluoride (PVDF) membranes. Membranes with transferred proteins were subsequently blocked for 45 min in milk buffer comprised of phosphate buffered saline (PBS), 5% nonfat dried milk, and 0.5% Tween. After incubation with the primary antibody for 1–2 h, membranes were washed three times with milk buffer and subsequently incubated with HRP-conjugated goat anti-rat or goat anti-rabbit antibodies (Invitrogen, Carlsbad, CA) at 1:10 000 dilution for one hour. Following incubation, membranes were washed three times with milk buffer and twice with PBS before being developed using SuperSignal West Pico enhanced chemiluminescent reagent according to the manufacturer’s instructions (Thermo Scientific). The images were captured using a Fluor Chem Q instrument with associated AlphaView analysis software (Alpha Innotech, San Leandro, CA).

Triton X-114 phase partitioning was performed on whole cells from *B. burgdorferi* strain B31 or strain B313 expressing the OspA_{794N} fusion or on the purified recombinant OspA protein lacking its signal peptide (Weigel et al., 1992; Radolf et al., 1994). All phase partitioning experiments were performed as previously described (Bordier, 1981; Brusca and Radolf, 1994; Brooks et al., 2006).

BB0794 surface localization assays

Indirect immunofluorescence assays (IFA) were performed as described previously (Dunn et al., 2015). Briefly, *B. burgdorferi* B31 cultures were diluted to 5 × 10⁶ organisms...
and Akins, 2010; Dunn et al obtained using sucrose density gradient separation as performed on a starting amount of 5
amplicon was digested and ligated into pBSV2G using primers OspA-1F and OspA-822R (Table 2). The
ated by amplifying the entire gene (nucleotides 1-822) of BB0794, which was amplified using
primers BB0794-1F and BB0794-407R (Table 2), and NdeI before it was ligated downstream of the flgB promotor that was inserted into pBSV2G as outlined above. The final OspA794N and OspAWT constructs were verified by sequence analysis to contain no mutations and electroporated into B. burgdorferi strain B313 to further examine the properties of the BB0794 N-terminus.

Co-immunoprecipitation (co-IP) assays
Co-IP experiments were performed using the Pierce Direct IP Kit (Thermo Scientific, Rockford, IL). Briefly, B. burgdorferi B31 cells were grown to mid-log phase (5 × 10^7 organisms ml^-1) in complete BSK-II medium before whole-cell lysates were prepared as previously described (Lenhart et al., 2012). 500 μl of final lysates were then mixed with AminoLink resin with conjugated BB0794, BamA, and GST antibodies following the manufacturer’s instructions (Thermo Scientific). The lysate and resin mixture was rotated end over end at 4°C overnight before being washed. Proteins bound to the resin were eluted by adding 50 μl of final sample buffer containing β-mercaptoethanol and boiled for seven minutes before SDS-PAGE and immunoblot analysis.

Generation of a BB0794 IPTG regulatable mutant
The BB0794 regulatable mutant, designated flacp::bb0794, was generated in the B. burgdorferi B31-5A4 LK strain generously provided by Dr. D. Scott Samuels (University of Montana) (Gilbert et al., 2007). B. burgdorferi genomic DNA was first used as template to amplify 600 bp regions upstream and downstream of the start codon of the bb0794 gene using primers flacp::bb0794-831046F and flacp::bb0794-831645R (upstream region) and flacp::bb0794-4F and flacp::bb0794–600R (downstream region) as indicated in Table 2. The two 600 bp amplicons were directionally cloned into the pBluescript-II KS+ vector (Stratagene, La Jolla, CA) using the restriction sites added into the amplification primers. Subsequently, the streptomycin resistance cassette and hybrid flacp promotor were digested as a unit from the previously described flacp::BB0028 plasmid construct (Dunn et al., 2015) using restriction enzymes XhoI and Ndel before it was ligated between the two 600 bp amplicons that flank the BB0794 start site. The resulting recombination construct was then electroporated into the B31-5A4 LK strain and incubated in complete BSK-II supplemented with kanamycin (200 μg ml^-1), streptomycin (100 μg ml^-1) and IPTG (1 mM). Two weeks later, electroporated cultures in 96-well plates were screened for presence of antibiotic-resistant transformants. One clone identified, designated flacp::bb0794, was confirmed by PCR analysis to have undergone homologous recombination using the primers indicated in Table 2. The mutant was subsequently subjected to a complete plasmid analysis as previously described (Elias et al., 2002; Lenhart and Akins, 2010) before IPTG dose-dependent regulation of BB0794 was examined and confirmed by immunoblot analysis (see Fig. 6C).

Membrane fractionation
Highly enriched outer membrane (OM) and protoplasmic cylinder (PC) fractions of B. burgdorferi strain B31 were obtained using sucrose density gradient separation as described (Skare et al., 1995; Mulay et al., 2007; Lenhart and Akins, 2010; Dunn et al., 2015). All fractionations were performed on a starting amount of 5 × 10^10 mid-log phase spirochetes that were visualized at 1000× magnification using an Olympus BX60 fluorescent microscope (Olympus America, Center Valley, PA).

Proteinase K (PK) surface accessibility assays were performed on B31 strain and B313 strain expressing OspA794N and OspAWT as described previously (Brooks et al., 2006).

Generation of the BB0794/OspA fusion protein (OspA794N)
To examine the physicochemical properties of the predicted N-terminal signal peptide of BB0794, a chimeric protein encoding the first 39 amino acids of BB0794 was fused to the mature portion of OspA lacking its signal peptide. The resulting chimera, designated OspA794N, included nucleotides 1-117 of bb0794, which was amplified using B. burgdorferi genomic DNA and primers BB0794-1F and BB0794-117R (Table 2). The resulting amplicon was digested using restriction enzymes BamHI and XbaI and ligated into the borrellial shuttle vector pBSV2G (Elias et al., 2003). Next, nucleotides 49-822 of the ospA gene were PCR amplified using primers OspA-49F and OspA-822R (Table 2) and the amplicon was digested with restriction enzymes XbaI and SalI before being cloned immediately upstream of the bb0794/ospA chimera. The resulting construct expresses the N-terminal 39 amino acids from BB0794 fused to the mature portion of OspA corresponding to amino acids 17-274. The construct OspAWT was generated by amplifying the entire ospA gene (nucleotides 1-822) using primers OspA-1F and OspA-822R (Table 2). The amplicon was digested and ligated into pBSV2G downstream of the flgB promotor that was inserted into pBSV2G as outlined above. The final OspA794N and OspAWT constructs were verified by sequence analysis to contain no mutations and electroporated into B. burgdorferi strain B313 to further examine the properties of the BB0794 N-terminus.
Transcriptome analysis

Total RNA was isolated from *B. burgdorferi* strain B31-5A4 using a hot phenol protocol as described (Lybecker *et al.*, 2014). The isolated RNA was DNase I treated (Roche, Indianapolis, IN) and depleted of ribosomal RNA using the Ribo-Zero RNA removal kit for Gram-negative bacteria following the manufacturer's protocol (Epicentre, Madison, WI). RNA integrity was measured using an Agilent 2100 Bioanalyzer and RNA with an RNA Integrity Number (RIN) above 9.0 was used for subsequent cDNA library construction. Directional (strand-specific) RNA-seq cDNA libraries were constructed with a ligation-based protocol as previously described, but with an initial size-selection (Lybecker *et al.*, 2014). Briefly, the fragmented RNAs were treated to remove 5' and 3' phosphates and 2'-3' cyclic-phosphates and subsequently 3' and 5' RNA adapters were ligated at both ends as described (Lybecker *et al.*, 2014). A size selection of total RNA correlating to 50-500 nucleotides was conducted before fractionation on an 8% TBE-UREA gel. The di-tagged RNA libraries were then gel-purified and reverse transcribed for PCR analysis and Solexa sequencing as described (Lybecker *et al.*, 2014). Sequences have been deposited at the NCBI Sequence Read Archive under study accession number SRP078488 and experiment accession numbers SRX1948239 and SRX1948242.

Growth curve analysis

Growth curves were performed in triplicate as previously described (Lenhart and Akins, 2010). The parental B31-5A4 LK strain was passed into 14 ml tubes of prewarmed BSK-II complete media containing kanamycin (200 µg ml⁻¹) and seeded at 3000 organisms ml⁻¹. The *flacp:* bb0794 mutant was first washed with complete BSK-II to remove residual IPTG before seeding 3000 organisms ml⁻¹ in BSK-II complete media containing kanamycin (200 µg ml⁻¹), streptomycin (100 µg ml⁻¹), and rifampin (50 µg ml⁻¹) and a final IPTG concentration of 0 mM, 0.05 mM or 1.0 mM. Spirochetes were enumerated using dark-field microscope every 24 h for 11 days. Statistical significance was determined using unpaired t test (two-tailed) with Welch’s correction.

Antimicrobial susceptibility assays

Antimicrobial susceptibility of the parental strain B31-5A4 LK (WT) was compared to the *flacp:* bb0794 mutant cultivated with or without IPTG as previously described (Bunikis *et al.*, 2008; Dunn *et al.*, 2015) using the following antibiotics and ranges (ng ml⁻¹): penicillin (10–20,000), carbenicillin (2–5,000), cefotaxime (25–50,000), tetracycline (5–10,000), minocycline (5–10,000), and azithromycin (1–2,000). *B. burgdorferi* growth was assessed in differing concentrations of all antibiotics at 0, 24, 48 and 72 h by measuring the absorbance of each well at 562 and 630 nm using a Molecular Devices SpectraMax 340 plate reader (Molecular Devices, Sunnyvale, CA). Each assay was repeated four times in duplicate and the mean 562/630 nm ratio, which corresponds with the amount of borrelial growth per well, for all concentrations of each antibiotic was plotted with respect to time to determine the minimum inhibitory concentration (MIC) of each antibiotic.

Acknowledgements

We would like to thank Dr. Scott Samuels for providing the *B. burgdorferi* strain B31-5A4 LK used to generate the *bb0794* regulatable mutant. This work was supported in part by grant AI059373 to DRA.

References

Anwari, K., Poggio, S., Perry, A., Gatsos, X., Ramarathinam, S.H., Williamson, N.A., *et al.* (2010) A modular BAM complex in the outer membrane of the alpha-proteobacterium *Caulobacter crescentus*. *PLoS One* 5: e8619.

Babu, M., Diaz-Mejia, J.J., Vlasblom, J., Gagarinova, A., Phanse, S., Graham, C., *et al.* (2011) Genetic interaction maps in *Escherichia coli* reveal functional crosstalk among cell envelope biogenesis pathways. *PLoS Genet* 7: e1002377.

Bakelar, J., Buchanan, S.K., and Noinaj, N. (2016) The structure of the beta-barrel assembly machinery complex. *Science* 351: 180–186.

Barbour, A.G., and Hayes, S.F. (1986) Biology of *Borrelia* species. *Microbiol Rev* 50: 381–400.

Belisle, J.T., Brandt, M.E., Radolf, J.D., and Norgard, M.V. (1994) Fatty acids of *Treponema pallidum* and *Borrelia burgdorferi* lipoproteins. *J Bacteriol* 176: 2151–2157.

Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A., and Schneerson, R. (2003) A newly discovered cholesterol galactoside from *Borrelia burgdorferi*. *Proc Natl Acad Sci* 100: 7913–7918.

Bordier, C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution. *J Biol Chem* 256: 1604–1607.

Brooks, C.S., Vuppala, S.R., Jett, A.M., Alitalo, A., Meri, S., and Akins, D.R. (2005) Complement regulator-acquiring surface protein 1 imparts resistance to human serum in *Borrelia burgdorferi*. *J Immunol* 175: 3299–3308.

Brooks, C.S., Vuppala, S.R., Jett, A.M., and Akins, D.R. (2006) Identification of *Borrelia burgdorferi* outer surface proteins. *Infect Immun* 74: 296–304.

Brusca, J.S., and Radolf, J.D. (1994) Isolation of integral membrane proteins by phase partitioning with Triton X-114. *Methods Enzymol* 228: 182–193.

Bunikis, I., Denker, K., Ostberg, Y., Andersen, C., Benz, R., and Bergstrom, S. (2008) An RND-type efflux system in *Borrelia burgdorferi* is involved in virulence and resistance to antimicrobial compounds. *PLoS Pathog* 4: e1000009.

Caimano, M.J., Dunham-Em, S., Allard, A.M., Cassera, M.B., Kenedy, M., and Radolf, J.D. (2015) Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. *Infect Immun* 83: 3043–3060.

Caimano, M.J., Yang, X., Popova, T.G., Clawson, M.L., Akins, D.R., Norgard, M.V., and Radolf, J.D. (2000) Molecular and evolutionary characterization of the cp32/
18 family of supercoiled plasmids in *Borrelia burgdorferi*. *Infect Immun* **68**: 1574–1586.

Casjens, S., Palmer, N., van Vught, R., Huang, W.M., Stevenson, B., Rosa, P., et al. (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete *Borrelia burgdorferi*. *Mol Microbiol* **35**: 490–516.

Casjens, S.R., Mongodin, E.F., Qiu, W.G., Luft, B.J., Schutzer, S.E., Gilcrease, E.B., et al. (2012) Genome stability of Lyme disease spirochetes: comparative genomics of *Borrelia burgdorferi* plasmids. *PLoS One* **7**: e33280.

Cullen, P.A., Haake, D.A., and Adler, B. (2004) Outer membrane proteins of pathogenic spirochetes. *FEBS Microbiol Rev* **28**: 291–318.

Derbyshire, M.K., Gonzales, N.R., Lu, S., He, J., Marchler, G.H., Wang, Z., and Marchler-Bauer, A. (2015) Improving the consistency of domain annotation within the Conserved Domain Database. *Database (Oxford)* **2015**: 1–8.

Dunn, J.P., Kenedy, M.R., Iqbal, H., and Akins, D.R. (2015) Characterization of the beta-barrel assembly machine accessory lipoproteins from *Borrelia burgdorferi*. *BMC Microbiol* **15**: 70.

Elias, A.F., Stewart, P.E., Grimm, D., Caimano, M.J., Eggers, C.H., Tilly, K., et al. (2002) Clonal polymorphism of *Borrelia burgdorferi* strain B31 M1: implications for mutagenesis in an infectious strain background. *Infect Immun* **70**: 2139–2150.

Elias, A.F., Bono, J.L., Kupko, J.J., III, Stewart, P.E., Krum, J.G., and Rosa, P.A. (2003) New antibiotic resistance cassettes suitable for genetic studies in *Borrelia burgdorferi*. *J Mol Microbiol Biotechnol* **6**: 29–40.

Fikrig, E., Barthold, S.W., Kantor, F.S., and Flavell, R.A. (1990) Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. *Science* **250**: 553–556.

Fikrig, E., Barthold, S.W., Marcantonio, N., Deponte, K., Kantor, F.S., and Flavell, R.A. (1992) Roles of OspA, OspB, and flagellin in protective immunity to Lyme borreliosis in laboratory mice. *Infect Immun* **60**: 657–661.

Fralick, J.A. (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of *Escherichia coli*. *J Bacteriol* **178**: 5803–5805.

Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Latham, R., et al. (1997) Genomic sequence of a Lyme disease spirochete, *Borrelia burgdorferi*. *Nature* **390**: 580–586.

Gallant, C.V., Sedic, M., Chicoine, E.A., Ruiz, T., and Mintz, K.P. (2008) Membrane morphology and leukotxin secretion are associated with a novel membrane protein of *Aggregatibacter actinomycetemcomitans*. *J Bacteriol* **190**: 5972–5980.

Gatzeva-Topalova, P.Z., Walton, T.A., and Sousa, M.C. (2008) Crystal Structure of YaeT: Conformational Flexibility and Substrate Recognition. *Structure* **16**: 1873–1881.

Gatzeva-Topalova, P.Z., Warner, L.R., Pardi, A., and Sousa, M.C. (2010) Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. *Structure* **18**: 1492–1501.

Gentle, I., Burri, L., and Lithgow, T. (2005) Molecular architecture and function of the Omp85 family of proteins. *Mol Microbiol* **58**: 1216–1225.

Gentle, I., Gabriel, K., Beech, P., Waller, R., and Lithgow, T. (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. *J Cell Biol* **164**: 19–24.

Gilbert, M.A., Morton, E.A., Bundle, S.F., and Samuels, D.S. (2007) Artificial regulation of ospC expression in *Borrelia burgdorferi*. *Mol Microbiol* **63**: 1259–1273.

Gilmore, R.D., Jr., Kappel, K.J., Dolan, M.C., Burkot, T.R., and Johnson, B.J.B. (1996) Outer surface protein C (OspC), but not P39, is a protective immunogen against tick-transmitted *Borrelia burgdorferi* challenge: evidence for a conformational protective epitope in OspC. *Infect Immun* **64**: 2234–2239.

Gruss, F., Zahringer, F., Jakob, R.P., Burmann, B.M., Hiller, S., and Maier, T. (2013) The structural basis of autotransporter translocation by TamA. *Nat Struct Mol Biol* **20**: 1318–1320.

Hagan, C.L., Silhavy, T.J., and Kahne, D. (2011) beta-Barrel membrane protein assembly by the Bam complex. *Annu Rev Biochem* **80**: 189–210.

Hansen, K.D., Brenner, S.E., and Dudoit, S. (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. *Nucleic Acids Res* **38**: e131.

Heinz, E., and Lithgow, T. (2014) A comprehensive analysis of the Omp85/TipB protein superfamily structural diversity, taxonomic occurrence, and evolution. *Front Microbiol* **5**: 370.

Heinz, E., Selkirk, J., Belousoff, M., and Lithgow, T. (2015) Evolution of the translocation and assembly module (TAM). *Genome Biol Evol* **7**: 1628–1643.

Heinz, E., Stubenrauch, C.J., Grinster, R., Croft, N.P., Purcell, A.W., Strugnell, R.A., et al. (2016) Conserved features in the structure, mechanism, and biogenesis of the inverse autotransporter protein family. *Genome Biol Evol* **8**: 1690–1705.

Heuck, A., Schleiffer, A., and Clausen, T. (2011) Augmenting beta-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins. *J Mol Biol* **406**: 659–666.

Holt, S.C. (1978) Anatomy and chemistry of spirochetes. *Microbiol Rev* **42**: 114–160.

Hossain, H., Wellensiek, H.J., Geyer, R., and Lochnit, G. (2001) Structural analysis of glycolipids from *Ixodes ricinus* and *Ixodes dammini* using mass spectrometry and nuclear magnetic resonance. *Biochimie* **83**: 683–692.

Hovind-Hougen, K. (1984) Ultrastructure of spirochetes isolated from *Ixodes ricinus* and *Ixodes dammini*. *Yale J Biol Med* **57**: 543–548.

Jain, S., and Goldberg, M.B. (2007) Requirement for YaeT in the outer membrane assembly of autotransporter proteins. *J Bacteriol* **189**: 5393–5398.

Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. *J Mol Biol* **292**: 195–202.

Kachlany, S.C. (2010) *Aggregatibacter actinomycetemcomitans* leukotoxin: from threat to therapy. *J Dent Res* **89**: 561–570.

Kall, L., Krogh, A., and Sonnhammer, E.L. (2004) A combined transmembrane topology and signal peptide prediction method. *J Mol Biol* **338**: 1027–1036.

Kenedy, M.R., Lenhart, T.R., and Akins, D.R. (2012) The role of *Borrelia burgdorferi* outer surface proteins. *FEMS Immunol Med Microbiol* **66**: 1–19.
Kenedy, M.R., Luthra, A., Anand, A., Dunn, J.P., Radolf, J.D., and Akins, D.R. (2014) Structural modeling and physicochemical characterization provide evidence that P66 forms a b-barrel in the *Borrelia burgdorferi* outer membrane. *J Bacteriol* 196: 859–872.

Kim, S., Malinverni, J.C., Sliz, P., Silhavy, T.J., Harrison, S.C., and Kahne, D. (2007) Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine. *Science* 317: 961–964.

Krog, A., Larsson, B., von, H.G., and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J Mol Biol* 305: 567–580.

Kyte, J., and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. *J Mol Biol* 157: 105–132.

LaRocca, T.J., Crowley, J.T., Cusack, B.J., Pathak, P., Benach, J., London, E., et al. (2010) Cholesterol lipids of *Borrelia burgdorferi* form lipid rafts and are required for the bactericidal activity of a complement-independent antibody. *Cell Host Microbe* 8: 331–342.

LaRocca, T.J., Pathak, P., Chiantia, S., Toledo, A., Silvius, J.R., Benach, J.L., and London, E. (2013) Proving lipid rafts exist: membrane domains in the prokaryote *Borrelia burgdorferi* have the same properties as eukaryotic lipid rafts. *Plos Pathogens* 9: e1003353.

Lenhart, T.R., and Akins, D.R. (2010) *Borrelia burgdorferi* locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. *Mol Microbiol* 75: 692–795.

Lenhart, T.R., Kenedy, M.R., Yang, X., Pal, U., and Akins, D.R. (2012) BB0324 and BB0028 are constituents of the *Borrelia burgdorferi* beta-barrel assembly machine (BAM) complex. *BMC Microbiol* 12: 60.

Lugtenberg, B., and van Alphen, L. (1983) Molecular architecture and functioning of the outer membrane of *Escherichia coli* and other Gram-negative bacteria. *Biochim Biophys Acta* 737: 51–115.

Lybecker, M., Zimmermann, B., Blusic, I., Tukhtabaeva, N., and Schroeder, R. (2014) The double-stranded transcriptome of *Escherichia coli*. *Proc Natl Acad Sci U S A* 111: 3134–3139.

Malinverni, J.C., Werner, J., Kim, S., Sklar, J.G., Kahne, D., Misra, R., and Silhavy, T. (2006) YiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in *Escherichia coli*. *Mol Microbiol* 61: 151–164.

Margos, G., Wilske, B., Sing, A., Hizo-Teufel, C., Cao, W., Chu, C. Scholz, H., Straubinger, R.K., and Fingerle, V. (2013) Borrelia bavariensis sp. nov. is widely distributed in Europe and Asia. *International Journal of Systematic and Evolutionary Microbiology* 63: 4284–4288.

Matsushima, R., Maekawa, M., Kusano, M., Kondo, H., Fujita, N., Kawagoe, Y., and Sakamoto, W. (2014) Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. *Plant Physiol* 164: 623–636.

Milner, D.S., Till, R., Cadby, I., Lovering, A.L., Basford, S.M., Saxon, E.B., et al. (2014) Ras GT-Pase-like protein MglA, a controller of bacterial social-motility in *Myxobacteria*, has evolved to control bacterial predation by *Bdellovibrio*. *PLoS Genet* 10: e1004253.

Mulay, V., Caimano, M., Liveris, D., Desrosiers, D.C., Radolf, J.D., and Schwartz, I. (2007) *Borrelia burgdorferi* BBA74, a Periplasmic Protein Associated with the Outer Membrane, Lacks Porin-Like Properties. *J Bacteriol* 189: 2063–2068.

Munch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., and Jahn, D. (2005) Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. *Bioinformatics* 21: 4187–4189.

Nielsen, H., Engelbrecht, J., Brunak, S., and von, H.G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. *Protein Eng* 10: 1–6.

Nikaido, H., and Takatsuka, Y. (2009) Mechanisms of RND multidrug efflux pumps. *Biochim Biophys Acta* 1794: 769–781.

Noinaj, N., Rollauer, S.E., and Buchanan, S.K. (2015) The beta-barrel membrane protein insertase machinery from Gram-negative bacteria. *Curr Opin Struct Biol* 31: 35–42.

Onufryk, C., Crouch, M.L., Fang, F.C., and Gross, C.A. (2005) Characterization of Six Lipoproteins in the sigmaE Regulon. *J Bacteriol* 187: 4552–4561.

Ornstein, K., Ostberg, Y., Bunikis, J., Noppa, L., Berglund, J., Norry, R., and Bergstrom, S. (2002) Differential immune response to the variable surface loop antigen of P66 of *Borrelia burgdorferi* sensu lato species in geographically diverse populations of lyme borreliosis patients. *Clin Diag Lab Immunol* 9: 1382–1384.

Perkins, T.T., Kingsley, R.A., Fookes, M.C., Gardner, P.P., James, K.D., Yu, L., et al. (2009) A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus *Salmonella typhi*. *PLoS Genet* 5: e1000569.

Purser, J.E., and Norris, S.J. (2000) Correlation between plasmid content and infectivity in *Borrelia burgdorferi*. *Proc Natl Acad Sci U S A* 97: 13865–13870.

Radolf, J.D., Bourell, K.W., Akins, D.R., Brusca, J.S., and Norgard, M.V. (1994) Analysis of *Borrelia burgdorferi* membrane architecture by freeze-fracture electron microscopy. *J Bacteriol* 176: 21–31.

Radolf, J.D., Goldberg, M.S., Bourell, K.W., Baker, S.I., Jones, J.D., and Norgard, M.V. (1995) Characterization of outer membranes isolated from *Borrelia burgdorferi*, the Lyme disease spirochete. *Infect Immun* 63: 2154–2163.

Raghavan, R., Groisman, E.A., and Ochman, H. (2011a) Genome-wide detection of novel regulatory RNAs in *Es. coli*. *Genome Res* 21: 1487–1497.

Raghavan, R., Sage, A., and Ochman, H. (2011b) Genome-wide identification of transcription start sites yields a novel thermosensing RNA and new cyclic AMP receptor protein-regulated genes in *Escherichia coli*. *J Bacteriol* 193: 2871–2874.

Rogers, E.A., Terekhova, D., Zhang, H.M., Hovis, K.M., Schwartz, I., and Marconi, R.T. (2009) Rpr1, a cyclic-dGMP-producing response regulator, is an important regulator of *Borrelia burgdorferi* core cellular functions. *Mol Microbiol* 71: 1551–1573.

Rossiter, A.E., Leyton, D.L., Tveen-Jensen, K., Browning, D.F., Sevastyanovich, Y., Knowles, T.J., et al. (2011) The essential beta-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. *J Bacteriol* 193: 4250–4253.
Ruiz, N., Falcone, B., Kahne, D., and Silhavy, T.J. (2005) Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121: 307–317.

Sadziene, A., Thomas, D.D., and Barbour, A.G. (1995) Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect Immun 63: 1573–1580

Sanchez-Pulido, L., Devos, D., Genevois, S., Vicente, M., and Valencia, A. (2003) POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem Sci 28: 523–526.

Sauri, A., Soprova, Z., Wickstrom, D., de Gier, J.W., Van der Schors, R.C., Smit, A.B., et al. (2009) The Bam (Omp85) complex is involved in secretion of the auto-transporter haemoglobin protease. Microbiology 155: 3982–3991.

Schaible, U.E., Kramer, M.D., Eichmann, K., Modolell, M., Museteau, C., and Simon, M.M. (1990) Monoclonal antibodies specific for the outer surface protein A (OspA) of Borrelia burgdorferi prevent Lyme borreliosis in severe combined immunodeficiency (scid) mice. Proc Natl Acad Sci (USA) 87: 3768–3772.

Schleiff, E., Maier, U.G., and Becker, T. (2011) Omp85 in eukaryotic systems: one protein family with distinct functions. Biol Chem 392: 21–27.

Schober, N.W.J., Schombel, U., Heine, H., Gobel, U.B., Zahringer, U., and Schumann, R.M. (2003) Acylated cholesterol galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J Biol Chem 278: 33645–33653.

Selkreg, J., Belousoff, M.J., Headey, S.J., Heinz, E., Shiota, T., Shen, H.H., et al. (2015) Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci Rep 5: 12905.

Selkreg, J., Mosbahi, K., Webb, C.T., Belousoff, M.J., Perry, A.J., Wells, T.J., et al. (2012) Discovery of an archetypal protein transport system in bacterial outer membranes. Nat Struct Mol Biol 19: 506–510.

Shen, H.H., Leyton, D.L., Shiota, T., Belousoff, M.J., Noinaj, N., Lu, J., et al. (2014) Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes. Nat Commun 5: 5078.

Skare, J.T., Shang, E.S., Foley, D.M., Blanco, D.R., Champion, C.I., Mirzabetov, T., et al. (1995) Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest 96: 2380–2392.

Sklar, J.G., Wu, T., Gronenberg, L.S., Malinverni, J.C., Kahne, D., and Silhavy, T.J. (2007) Lipoprotein SmpA is a component of the YaeF complex that assembles outer membrane proteins in Escherichia coli. Proceedings of the National Academy of Sciences 104: 6400–6405.

Smith, K.P., Voogt, R.D., Ruiz, T., and Mintz, K.P. (2016) The conserved carboxyl domain of MorC, an inner membrane protein of Aggregatibacter actinomycetemcomitans, is essential for membrane function. Mol Oral Microbiol 31: 43–58.

Stevenson, B., Zuckert, W.R., and Akins, D.R. (2000) Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. J Mol Microbiol Biotechnol 2: 411–422.

Stubenrauch, C., Belousoff, M.J., Hay, I.D., Shen, H.H., Lillington, J., Tuck, K.L., et al. (2016) Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. Nat Microbiol 1: 16064.

Stubs, G., Fingerle, V., Wilcke, B., Gobel, U.B., Zahringer, U., Schumann, R.R., and Schroder, N.W. (2009) Acylated cholesterol galactosides are specific antigens of Borrelia causing lyme disease and frequently induce antibodies in late stages of disease. J Biol Chem 284: 13326–13334.

Sulavik, M.C., Houseweart, C., Cramer, C., Jiwani, N., Murgolo, N., Greene, J., et al. (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45: 1126–1136.

Takayama, K., Rothenberg, R.J., and Barbour, A.G. (1987) Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 55: 2311–2313.

Terekhova, D., Iyer, R., Wormser, G.P., and Schwartz, I. (2006) Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J Bacteriol 188: 6124–6134.

Toledo, A., Perez, A., Coleman, J.L., and Benach, J.L. (2015) The lipid raft proteome of Borrelia burgdorferi. Proteomics 15: 3662–3675.

Solovyev, V., Salamov, A. (2011) Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies. Li, R.W. (ed). Hauppauge, New York Nova Science Publishers, pp. 61–78.

Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M., and Tommassen, J. (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299: 262–265.

Walther, D., Rapaport, D., and Tommassen, J. (2009) Bio genesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 66: 2789–2804.

Weigel, L.M., Brandt, M.E., and Norgard, M.V. (1992) Analysis of the N-terminal region of the 47-kilodalton integral membrane lipoprotein of Treponema pallidum. Infect Immun 60: 1568–1576.

Workman, P., Heide, K., Giuliano, N., Lee, N., Mar, J., Vuong, P., et al. (2012) Genetic, biochemical, and molecular characterization of the polypeptide transport-associated domain of Escherichia coli BamA. J Bacteriol 194: 3512–3521.

Wu, T., Malinverni, J., Ruiz, N., Kim, S., Silhavy, T.J., and Kahne, D. (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121: 235–245.

Zeth, K. (2010) Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. Biochim Biophys Acta 1797: 1292–1299.

Zgurskaya, H.I., and Nikaido, H. (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37: 219–225.