Antioxidant capacity, total phenolic content and phenolic compounds of pulp and bagasse of four Peruvian berries

Elizabeth Rojas-Ocampo, Llisela Torrejón-Valqui, Lucas D. Muñoz-Astecker, Marleni Medina-Mendoza, Diner Mori-Mestanza, Efraín M. Castro-Alayo

1. Introduction

The reuse of waste from agro-industrial processing has become an important issue for the economy, sustainability of the processes (Buratto et al., 2021), and the world’s population growth (Mokhtar et al., 2018). In parallel, consumer preferences towards a healthy diet that is rich in natural bioactive compounds, motivate researchers to look for bioactive compounds in agri-food products (Mokhtar et al., 2018). There is evidence that shows that native fruits have a high content of bioactive compounds that generate their high antioxidant capacity (AC) (Pfükwa et al., 2020). However, the largest amount of bioactive compounds is found in the non-edible fraction of fruits which is generally discarded (Cádiz-Gurrea et al., 2020). The poor management of this by-product is reflected in a substantial loss of bioactive compounds (Vázquez-González et al., 2020). Fruits such as berries can be an important part of a healthy diet due to their content of bioactive compounds. Important berries such as: blackberry, blueberry, cranberry, raspberry and strawberry are important sources of bioactive compounds and are consumed as a fresh or processed product (Jimenez-Garcia et al., 2013). In Peru, the production of aguaymanto is 12 tons per ha (Instituto Nacional de Innovación Agraria, 2021), and by 2021, it is estimated that Peru would have 14789 ha of blueberries and in a few years we will reach 20 thousand hectares (Agencia Agraria de Noticias, 2021).

Phenolic compounds are bioactive molecules present throughout the plant kingdom, including non-edible materials remaining of the industrial fruit processing, which are considered by-products, waste or bagasse (Machado et al., 2021). This bagasse still contains a large amount of chlorogenic acid and epicatechin of blackberry (Rubus roseus Poir). It was shown that the wastes of the four Amazonian berries have higher values of bioactive properties than their pulp, being the elderberry bagasse the one with the best properties.

A B S T R A C T

Revaluing agri-food waste to offer consumers bioactive compounds for a healthy diet is an important issue. In the present work, the antioxidant capacity (AC), total phenolic content (TPC) and phenolic compounds of pulp and bagasse of four Peruvian berries with UHPLC-DAD was determined. Elderberry (Sambucus peruviana Kunth) bagasse had a greater amount of TPC (4.87 ± 0.02 mg GAE/100 gfw) and AC (7.66 ± 0.04 and 7.51 ± 0.24 μmol TE/gfw in DPPH and ABTS, respectively) than the bagasse of the other berries, with a strong positive correlation between TPC and AC. Blueberry (Vaccinium forrthondum Kunth) bagasse contains the highest amount of gallic acid (103.26 ± 1.59 μg/gfw), chlorogenic acid (1276.55 ± 1.86 μg/gfw), caffeic acid (144.46 ± 1.78 μg/gfw), epicatechin (1113.88 ± 1.82 μg/gfw) and p-coumaric acid (77.82 ± 1.92 μg/gfw). Elderberry (Sambucus peruviana Kunth) bagasse contains the highest amount of catechin (153.32 ± 0.79 μg/gfw). No significant differences were found in the content of chlorogenic acid and epicatechin of blackberry (Rubus roseus Poir). It was shown that the wastes of the four Amazonian berries have higher values of bioactive properties than their pulp, being the elderberry bagasse the one with the best properties.
as diabetes and inflammation (Prencipe et al., 2014). Goldenberry, is recognized for having high content of bioactive compounds (Dag et al., 2017), its bioactive compounds are responsible for the high AC of the products derived from this berry (Olivares-Tenorio et al., 2017; Ramadan, 2011; Puente et al., 2011). However, most reports have focused on the properties of goldenberry fruit only, rather than on its byproducts (Nocetti et al., 2020). Elderberry is a berry commonly used for its medicinal and nutritional properties (Kirovski et al., 2021). In Europe, elderberries are used in the preparation of desserts and yogurts; and as a medicine thanks to its antioxidant, anticancer, immunostimulating, antiallergic, antiviral and antibacterial properties (Dominguez et al., 2020; Ferreira et al., 2020).

The wild berries are getting more attention due to the presence of an enormous range of phytoconstituents encompassing considerable antioxidant efficacy and health benefits (Umdale et al., 2020). In elderberries, chlorogenic acid is reported as being the major cinnamic acid present (Ferreira et al., 2020). In freeze-dried goldenberry juice, chlorogenic acid was found as the main polyphenol followed by p-coumaric acid and ferulic acid (Dag et al., 2017). In selected cultivar blueberries, caffeic acid, chlorogenic acid, p-coumaric acid, and quercetin was found (You et al., 2011). In blackberry cultivating, five anthocyanins, five phenolic acids, and ten non-anthocyanin flavonoids were identified between they found catechin, epicatechin, chlorogenic acid, kaemnperol and ellagic acid (Moraes et al., 2020). Various studies have reported that the by-products of various fruits (skin and seed) have high amounts of phytochemicals and antioxidants (Bora et al., 2019); however, studies on bioactive compounds, total phenolic content (TPC) and AC of Amazon berries are scarce. Then, the objective of this research was to determine the AC, TPC and phenolic compounds of pulp and bagasse of four Peruvian berries.

2. Materials and methods

2.1. Materials

Before harvesting the fruits, their maturity was determined according to the experience of the local farmer. Then, mature and healthy fruits of elderberry (Sambucus peruviana Kunth), blackberry (Rubus roseus Poir), goldenberry (Physalis peruviana L) and blueberry (Vaccinium floribundum Kunth) were harvested from the towns María y Cuelcho (Amazonas Region), during January to March 2019. One kilogram of each fruit was stored at -20 °C until its chemical analysis. Leaves, flowers and fruit of each berry were send to the “Herbarium Truxillense (HUT)” of the Universidad Nacional de Trujillo-Perú for its taxonomic identification.

2.2. Chemicals

Folin-Ciocalteu phenol reagent (Merck, Darmstadt, Germany), sodium carbonate (Spectrum, New Brunswick, USA), potassium persulphate, gallic acid, ethanol, HPLC standards (chlorogenic acid, caffeic acid, p-coumaric acid, (–)-catechin, (–)-epicatechin, (–)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (trolox), 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2’-Diphenyl-1-picrylhydrazyl (DPPH), and methanol were purchased from Sigma Aldrich (St. Louis, MO, USA).

2.3. Aqueous extract of polyphenols

According to (Pu et al., 2011) with some modifications, 200 g of berry were weighed, homogenized in an electric homogenizer for 2 min. Bagasse and pulp were separated using a sieve. One gram of bagasse or pulp was mixed with 9 mL of ultrapure water, separately. Each mixture was stirred for 30 min at room temperature and then centrifuged at 5000 rpm for 30 min. The supernatant was collected in a 15 mL amber glass flasks and they were stored under refrigeration until analysis.

2.4. Determination of total phenolic content

Total phenolic content (TPC) in aqueous extracts was determined according to the Folin–Ciocalteu's procedure (Singleton et al., 1999) (de Souza et al., 2014). The extracts (0.5 mL) were mixed with 2.5 mL of Folin–Ciocalteu reagent (10 %) and 2 mL of sodium carbonate solution (4 %). The mixture was stirred and kept at room temperature for 2 h in the dark. The absorbance was measured at 750 nm against a blank using an spectrophotometer (Unico, S2100, USA). TPC was estimated from a standard curve of gallic acid (y = 0.0051x + 0.0363). R^2 = 0.9991 and results expressed as mg gallic acid equivalents (GAE)/100 g fresh weight (mg GAE/100 gfw).

2.5. Antioxidant capacity

According to de Souza et al. (2014), the AC was determined using the ABTS, and DPPH methods. For the ABTS assay, the procedure followed the method of Re et al. (1999) with minor modifications. The ABTS radical cation (ABTS+–) was generated by the reaction of 5 mL of aqueous ABTS solution (7 mM) with 88 μL of 140 mM (2.45 mM final concentration) potassium persulphate. The mixture was kept in the dark for 16 h before use and then diluted with ethanol to obtain an absorbance of 0.7 ± 0.06 units at 734 nm using a spectrophotometer (Unico, S2100, USA). The berry extracts (30 μL) or a reference substance (Trolox) were allowed to react with 3 mL of the resulting blue–green ABTS radical solution in the dark. The decrease of absorbance at 734 nm was measured after 6 min. Ethanol solutions of known Trolox concentrations were used for calibration (y = −0.0003x + 0.7605. R^2 = 0.9804). The results are expressed as micromoles of Trolox equivalents (TEs) per gram of fresh weight (μmol of TE/gfw). The DPPH free radical-scavenging capacity was estimated using the method of Carderioosa et al. (2016) and Brand-Williams et al. (1995). Briefly, the solution of DPPH (600 μM) was diluted with ethanol to obtain an absorbance of 0.7 ± 0.04 units at 517 nm. The fruit extracts (0.1 mL) were allowed to react with 3.9 mL of the DPPH radical solution for 30 min in the dark, and the decrease in absorbance from the resulting solution was monitored. The absorbance of the reaction mixture was measured at 517 nm. The results were expressed as μmol of TE/gfw.

2.6. UHPLC-DAD analyses of phenolic compounds profile

Quantification of phenolic compounds was performed according to Coklar and Akbulut (2017) and Demir et al. (2014) with some modifications. For that, an Ultra High Performance Liquid Chromatographic system (UHPLC) Agilent 1290 Infinity Series equipped with a G7167B mutisampler, G7104A flexible pump, G7116B column oven, and a G7117B diode array detector was used. Before the injection, the extracts were filtered through a 0.45 μm pore size x 33 mm syringe filter (Merck, Millex, Germany). The separation was achieved using a reversed-phase C18 column (5 μm, 250 × 4.6 mm i.d.). The mobile phase was (A) water/acetic acid (98:2) and (B) water/acetonitrile/acetic acid (78:20:2). The flow rate was 0.75 mL/min and the gradient was as follows: 10–14 % B (5 min), 14–23 % B (11 min), 23–35 % B (5 min), 35–40 % B (14 min), 40–100 % B (3 min), 100 % B isocratic (3 min), 100–10 % B (3 min) and 10 % B isocratic (4 min). The detector was set to 280 and 320 nm. The column temperature was 40 °C. According to Sasmaz et al. (2020) and Kelebek (2016), the phenolic compounds were quantified by comparison with peak areas and retention time (Ferreira et al., 2020) of each standard. The coefficient of correlation (R^2) value of the standards phenolic compounds were above 0.9799 in all cases. The data was analyzed using Chemstation software.

2.7. Statistical analysis

One-way analysis of variance was performed using Rstudio. Tukey's test was used as a post-hoc multiple comparisons at a significance level of
p < 0.05 (Wang et al., 2015). All the experiments were performed in quadruplicate, and the results were expressed as mean ± standard deviation (SD). The Pearson's correlation analysis between TPC and AC was performed with CurveExpert Professional software.

3. Results and discussions

3.1. Total phenolic content and antioxidant capacity

The AC of a fruit is related to the synergistic effects between its phenolic compounds (Acosta-Montoya et al., 2010). In addition, the TPC of the same species can vary significantly according to the geographical origin and different methods of obtaining its phenolic extracts (Jiang et al., 2021). Table 1 shows the results obtained in the quantification of TPC of bagasse and pulp of berries from the Amazon Region. The blueberry obtained a TPC of $(2.71 ± 0.02$ mg GAE/100 gfw in the bagasse and $1.91 ± 0.02$ mg GAE/100 gfw in the pulp. This value is below those found by Koca and Karadeniz (2009), who reports values in a range of $77–82$ mg GAE/100 gfw for blueberry grown in the Black Sea Region of Turkey, and de Souza et al. (2014) reports TPC values of $305.38 ± 5.09$ mg GAE/100 gfw for blueberry produced in the subtropical areas of Brazil. Koca and Karadeniz (2009) and de Souza et al. (2014) reports $850.52 ± 4.77$ and $173–305$ mg GAE/100 gfw for blackberry, respectively. On the other hand, Acosta-Montoya et al. (2010) reports TPC of $520 ± 20$ mg GAE/100 gfw in blackberry from Costa Rica, we must consider that these values have been reported for whole berries, that is, pulp and bagasse. In the present work it is shown that the TPC values found in pulp and bagasse of blackberry and blueberry were very low, because the berry extracts were obtained with pure water. For example, Pasquel Reategui et al. (2014) used supercritical carbon dioxide extraction to obtain extracts from blackberry industrial residues, they found TPC of $2413 ± 0.02$ mg GAE/100 g fw extract. For goldenberry, Oztuk and Atagü (2017) reports $42.16 ± 0.02$ mg GAE/100 g in Turkish goldenberry, and Ordóñez-Santos et al. (2017) reports $80.15 ± 1.09$ mg GAE/100 g in goldenberry from Colombia, values higher than those found in the present work ($0.01 ± 0.01$ and $0.69 ± 0.01$ mg GAE/100 gfw in bagasse and pulp, respectively). For elderberry (Sambucus nigra) from Portugal, Ferreira et al. (2020) reports $820 ± 45$ mg GAE/100 gfw, values much higher than those found in our samples. Knowing that water is the solvent with the lowest extraction performance, the results found were as expected.

In general, the presence of TPC contributes to the AC of the berry (Nocetti et al., 2020). In the present work, the bagasse of the berries had the highest AC than pulp both in DPPH and ABTS (Table 1). In the case of AC measured in DPPH, $2.64 ± 0.09$ μmol TE/gfw were found in blueberry bagasse, much lower value than reported by de Souza et al. (2014) in Brazilian blueberry ($7775.45 ± 1009.60$ μmol TE/gfw). The blackberry bagasse had AC of $7.19 ± 0.06$ μmol TE/gfw, value lower than that reported by de Souza et al. (2014) (2142.42 ± 125.64 μmol TE/gfw). In elderberry bagasse, $7.66 ± 0.04$ μmol TE/gfw was found, value much lower than that found by Jakobek et al. (2007) in elderberry from Croatia (100.16 μmol TE/gfw), and in goldenberry, $1.46 ± 0.04$ μmol TE/gfw was founded, value lower than found by Oztuk et al. (2017) in goldenberry from Turkey ($6.05–5.14$ μmol TE/gfw). The AC results obtained by both methods are not directly comparable because the radical capture mechanisms are different for each method (Chaves et al., 2018; Martín-Gómez et al., 2020). However, both showed the same trend, the results obtained by the ABTS and DPPH methods agree that blackberry and elderberry have higher AC than other berries, both in their bagasse and in their pulp. The descending order of the AC of the berries is:

DPPH method: elderberry > blackberry > blueberry > goldenberry for bagasse and blackberry elderberry > blueberry > goldenberry for pulp.

ABTS method: blackberry > elderberry > blueberry > goldenberry for bagasse and elderberry > blackberry > blueberry > goldenberry for pulp.

TPC can have a synergistic or antagonistic effect on AC (Jiang et al., 2021). If we make a comparison between the bioactive properties of the analyzed berries, we can notice that the elderberry bagasse has a higher amount of TPC (Figure 1a) than the other berries, as a consequence, it also has the highest AC measured in DPPH (Figure 1c), both in pulp and bagasse. Thus, we can also affirm that those berries that have a higher amount of TPC, also have a higher AC, so there is a direct proportion between both properties. In the case of AC measured in ABTS, an inverse proportion occurs (Figure 1b). This is corroborated with what Nocetti et al. (2020) affirms. It is important to consider that when using the Folin-Ciocalteu reagent, not only TPC is measured but also the total reducing substances in the sample (Sério et al., 2014).

The AC depends on the structural factors of the phenolic compounds such as the number and position of the hydroxyl or methoxyl groups in the phenolic ring (Giovanelli and Buratti, 2009). Also, other researchers state that the AC could depend on the type of solvent used in the extraction (Sariburun et al., 2010). To demonstrate the influence of TPC on AC, the correlation between both values was established. Positive linear correlations shown in Figure 2 demonstrate that the TPC and AC values are better correlated positively to bagasse ($R^2 = 0.95$ in ABTS and DPPH) rather than to pulp ($R^2 = 0.93$ and $R^2 = 0.76$ in ABTS and DPPH), of them, the best correlation was with AC measured in ABTS. These results agree with those reported by de Souza et al. (2014), Giovanelli and Buratti (2009), and Sariburun et al. (2010). Vasco et al. (2008) obtained coefficients of correlation of 0.66 in Ecuadorian berries. Martín-Gómez et al. (2020) obtained a coefficient of correlation of 0.81 for the DPPH method and 0.57 for the ABTS method in blueberry.

Table 1. Total phenolic content and antioxidant capacity of bagasse and pulp of Peruvian berries.

Sample	TPC (mg GAE/100 gfw)	Antioxidant capacity (μmol TE/gfw)	DPPH	ABTS
Bagasse				
Blueberry	$2.71 ± 0.02^a$	$2.64 ± 0.09^a$	$4.85 ± 0.28^a$	
Elderberry	$4.87 ± 0.02^a$	$7.66 ± 0.04^a$	$7.51 ± 0.24^a$	
Blackberry	$4.11 ± 0.01^b$	$7.19 ± 0.06^b$	$8.61 ± 0.14^a$	
Goldenberry	$0.77 ± 0.01^c$	$1.97 ± 0.05^b$	$1.69 ± 0.07^d$	
Pulp				
Blueberry	$1.91 ± 0.02^a$	$3.35 ± 0.05^b$	$6.57 ± 0.14^a$	
Elderberry	$4.87 ± 0.12^a$	$4.3 ± 0.09^b$	$6.34 ± 0.04^b$	
Blackberry	$3.07 ± 0.01^b$	$1.06 ± 0.09^b$	$1.5 ± 0.08^d$	

Results were given as mean ± standard deviation (n = 4). Different letters in the same column indicate statistically significant differences (p < 0.05). Tukey’s test was apply separately on bagasse and pulp.
3.2. Phenolic compound profile by UHPLC-DAD

Phenolic compounds are distributed throughout the plant kingdom and are thus form an integral part of the human diet (Denardin et al., 2015). Table 2 shows the phenolic compounds found in berry pulp and bagasse. Among the phenolic compounds of berries from the Amazon region identified and quantified with UHPLC-DAD, goldenberry pulp contains the highest amount of gallic acid (178.71 ± 3.88 μg/gfw). This is important if we consider the Corazza et al. (2018) findings, who reported that Brazilian goldenberry had a higher AC due to its high content of gallic acid. Respect to catechin and epicatechin, goldenberry bagasse and pulp contain 178.71 ± 3.88 and 144.69 ± 0.46 μg/gfw, respectively. Olivares-Tenorio et al. (2017) reports 16 ± 0.3 and 23 ± 0.4 μg/gfw of catechin and epicatechin, respectively, in goldenberry from Colombia, which are much lower than those found in Amazonian goldenberry. Elderberry bagasse contains the highest amount of catechin (153.32 ± 0.79 μg/gfw), chlorogenic acid (509.71 ± 1.11 μg/gfw) caffeic acid (44.50 ± 1.23 μg/gfw) and p-coumaric acid (58.13 ± 0.12 μg/gfw) (Table 2). These values are higher than the reported by Jakobek et al. (2007) in elderberry from Croatia (15.84 ± 0.2 and 10.80 ± 0.2 μg/gfw).

![Figure 1. Bioactive compounds of berries from Amazonas Region. (a) TPC (b) ABTS (c) DPPH.](image)

![Figure 2. Linear correlations of TPC versus the AC determined for pulp (a) and bagasse (b) of four Amazon berries.](image)

Table 2. Phenolic compounds profile in berries from Amazonas Region by UPLC-DAD expressed as μg/gfw.

Sample	Gallic acid	Catechin	Chlorogenic acid	Caffeic acid	Epicatechin	p-coumaric acid
Bagasse						
Blueberry	103.26 ± 1.59a	89.96 ± 1.76d	1276.55 ± 1.86a	144.46 ± 1.78a	1113.88 ± 1.82a	77.82 ± 1.92a
Elderberry	Nd	153.32 ± 0.79a	509.71 ± 1.11a	44.50 ± 1.23b	984.14 ± 1.53b	58.13 ± 0.12b
Blackberry	72.44 ± 0.21b	Nd	111.11 ± 0.12a	Nd	Nd	60.01 ± 0.62b
Goldenberry	Nd	Nd	108.44 ± 0.83a	Nd	144.69 ± 0.46a	59.60 ± 0.33b
Pulp						
Blueberry	95.26 ± 1.46a	89.45 ± 0.78b	1071.90 ± 1.35a	67.26 ± 0.99a	970.16 ± 1.41a	71.20 ± 0.40a
Elderberry	Nd	129.67 ± 1.50a	429.50 ± 1.34b	27.43 ± 1.46a	597.90 ± 1.65b	58.94 ± 0.39b
Blackberry	Nd	Nd	111.17 ± 0.95a	Nd	Nd	60.39 ± 0.61b
Goldenberry	Nd	Nd	Nd	Nd	112.20 ± 1.65b	59.12 ± 0.86b

Means with different letters within the same column are significantly different at p < 0.05. Tukey’s test was apply separately on bagasse and pulp. Nd, not detected.
E. Rojas-Ocampo et al.

Heliyon 7 (2021) e07787

for caffeic acid and p-coumaric acid, respectively). Ferreira et al. (2020) and Mudge et al. (2016), report chlorogenic acid values of 200 ± 0.1 μg/gfw and 107 μg/gfw for Portuguese and American elderberry, respectively. These values are lower than the ones found in all berries of the present work, both in bagasse and pulp.

Blueberry bagasse contains higher amounts of gallic acid (103.26 ± 1.59 μg/gfw), chlorogenic acid (1276.55 ± 1.86 μg/gfw), caffeic acid (144.46 ± 1.78 μg/gfw), epicatechin (1113.88 ± 1.82 μg/gfw) and p-coumaric acid (77.82 ± 1.92 μg/gfw) (Table 2). Cesa et al. (2017) reports 18.2 ± 0.6 μg/gfw of chlorogenic acid in blueberry, lower values than those reported in this work. Selappan et al. (2002) reports that blueberries (Vaccinium ashei Reade) from Georgia have gallic acid (15.3–2589 μg/gfw), caffeic acid (24–63.2 μg/gfw), p-coumaric acid (37.8–157.8 μg/gfw), catechin (145.3–3874.8 μg/gfw), epicatechin (342.3–1295.1 μg/gfw). Then the values of phenolic compounds found in the blueberry bagasse are within the parameters reported by Selappan et al. (2002).

The opposite occurs with blackberry, because the values found in the present work for gallic acid and p-coumaric acid are higher than those reported by Selappan et al. (2002) (41.2–64.2 and 0.4–2.08 μg/gfw, respectively). Gündoğdu et al. (2016) reports for Turkish blackberry catechin values (1115.99 ± 14.72 ± 4389.70 ± 50.74 μg/gfw) higher than those found in the blackberry bagasse of the present work and lower values (5.04 ± 0.07 to 11.75 ± 0.24 μg/gfw) of chlorogenic acid.

The difference between the TPC of berries can be due to several factors, one of them is the extraction, which can cause degradation of phenolic compounds (Domínguez et al., 2020). Also, several intrinsic (genetic factors and the degree of fruit ripeness) and extrinsic (environmental and climatic conditions that include exposure to different levels of radiation and wind, temperature, water availability, soil composition, and other agronomic factors) factors of plants influence the amount and type of phenolic compounds (Ferreira et al., 2020; Dag et al., 2017; Salvador et al., 2015). This is the reason why variability was found between the amount and type of phenolic compounds in the berries analyzed (Table 2). Our results coincide with those obtained by (Ferreira et al., 2020), who reports 0.02 ± 0.01 g/100 gdw of chlorogenic acid in Portuguese elderberry harvested in the first year and 0.10 ± 0.08 g/100 gdw of the same elderberry in the third year.

4. Conclusion

Results obtained in this study show that the four berries grown in the Amazonas region of Peru represent a very interesting source of antioxidant compounds contained mainly in bagasse. Elderberry bagasse has a greater amount of total phenolic content and antioxidant capacity than the bagasse and pulp of the other berries, with a strong positive correlation between both bioactive properties. Elderberry bagasse contains the highest amount of catechin, and blueberry bagasse contains the highest amount of gallic acid, chlorogenic acid, caffeic acid, epicatechin and p-coumaric acid. No significant differences were found in the content of chlorogenic acid and epicatechin of blackberry.

Declarations

Author contribution statement

Elizabeth Rojas-Ocampo: Performed the experiments; Wrote the paper.
Lliela Torrejón-Valqui, Marleni Medina-Mendoza: Performed the experiments.
Lucas D. Muñoz-Astecker: Contributed reagents, materials, analysis tools or data.
Dinner Mori-Mestanza: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data.
Efraín M. Castro-Alayo: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.

Funding statement

This work was supported by the World Bank Group through the Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt) of the Peruvian government, and the Universidad Nacional Toribio Rodríguez de Mendoza of Amazonas.

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors thank to Giuliana Díaz Pérez and Pamela Roxana Pizango Corman, monitors of the Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt), for providing us with facilities in the execution of the Berries project.

References

Acosta-Montoya, O., Vaillant, F., Cozzano, S., Merta, C., Pérez, A.M., Castro, M.V., 2010. Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotruchos Schidl.) during three edible maturity stages. Food Chem. 119, 1497–1501.

Agenzia Agraria de Noticias, 2021. En Perú se instalán cada año 2 mil hectáreas de arándanos [WWW Document]. Agrar. Agenzia Agrar. Not. URL https://agraria .pe/noticias/en-peru-se-instalan-cada-ano-2-mil-hectareas-de-arandanos-22151 (accessed 6.12.21).

Bora, P., Ragge, S., Abdel-Aal, E.S.M., 2019. Effect of incorporation of joji berry by-product on biochemical, physical and sensory properties of selected bakery products. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft & Technol.) 112, 108225.

Brand-Williams, W., Cuvelier, M.E., Beres, C., 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft & Technol.) 28, 25–30.

Buratto, R.T., Cocero, M.J., Martín, A., 2021. Characterization of industrial açai pulp residues and valorization by microwave-assisted extraction. Chem. Eng. Process. - Process Intensif. 160, 108269.

Cádiz-Guerra de la L., Villagras-Aguilar del C. M., Leyva-Jiménez, F.J., Pimentel-Moral, S., Fernández-Ochoa, A., Alainós, M.E., Segura-Carretero, A., 2020. Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Res. Int. 138, 109786.

Cárdenes, V., Girones-Vilaplana, A., Muriel, J.L., Moreno, D.A., Moreno-Rojas, J.M., 2016. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.). Food Chem. 202, 276–283.

Cesa, S., Carradori, S., Bellagamba, G., Locatelli, M., Casadei, M.A., Maschi, A., Paolocci, P., 2017. Evaluation of processing effects on anthocyanin content and colour modifications of blueberry (Vaccinium spp.) extracts: comparison between HPLC-DAD and CIELAB analyses. Food Chem. 252, 114–123.

Chaves, V.C., Boff, L., Vizzotto, M., Calveté, E., Reginatto, F.H., Simões, C.M., 2018. Berries grown in Brazil: anthocyanin profiles and biological properties: chemical composition of berries grown in Brazil. J. Sci. Food Agric. 98, 4331–4338.

Coklar, H., Akbulut, M., 2017. Anthocyanins and phenolic compounds of Mahonia aquifolium berries and their contributions to antioxidant activity. J. Funct. Foods 35, 166–174.

Corazza, G.O., Bilibio, D., Zanella, O., Nunes, A.L., Bender, J.P., Carniel, N., dos Santos, P.P., Primo, W.A., 2018. Pressurized liquid extraction of polyphenols from Goldenberry: influence on antioxidant activity and chemical composition. Food Bioprod. Process. 112, 63–68.

Dag, D., Kilerçioğlu, M., Öztap, M.H., 2017. Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft & Technol.) 83, 86–94.

de Souza, V.R., Pereira, P.A.P., da Silva, T.L.T., de Oliveira Lima, L.C., Pio, R., Queiruz, F., 2014. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 156, 362–368.
Demir, N., Yıldız, O., Alpaslan, M., Hayaloglu, A.A., 2014. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 57, 126-133.

Denardin, C.C., Hirsch, G.E., da Rocha, R.P., Vizzotto, M., Henríquez, A.T., Moreira, J.C.F., Guma, F.T.C.R., Emauelli, T., 2015. Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J. Food Drug Anal. 25, 387-398.

Domínguez, R., Zhang, L., Rocchetti, G., Luciani, L., Patero, M., Munekata, P.E.S., Lorenzo, J.M., 2020. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 330, 127566.

Ferreira, S.S., Silva, P., Silva, A.M., Nunes, F.M., 2020. Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: a three-year study. Food Chem. 302, 125366.

Fu, L., Xu, B.-T., Xu, X.-R., Gan, R.-Y., Zhang, Y., Xia, E.-Q., Li, H.-B., 2011. Antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 112, 902-908.

Gowd, V., Bao, T., Chen, W., 2019. Antioxidant potential and phenolic profile of blackberry anthocyanin extract followed by human gut microbiota fermentation. Food Res. Int. 120, 523-533.

Gündoğdu, M., Tan, C., Canan, I., 2016. Bioactive and antioxidant characteristics of blackberry cultivars from East Anatolia. Turk. J. Agric. For. 40, 344-351.

Instituto Nacional de Innovación Agraria, 2021. Agricultores de Piura mejoran producción de aguaymanto con uso de semillas de alta calidad – Instituto Nacional de Innovación Agraria. URL. https://www.inia.gob.pe/2020-nota-054/ (accessed 6.12.21).

Jakobek, L., Seruga, M., Novak, I., Medvidovic-Kosanovic, M., 2007. Flavonoids, phenolic acids and antioxidant activity of some red fruits. Dtsch. Lebensm.-Rundsch. 103 (8), 369-377.

Jiang, Y., Fang, Z., Leonard, W., Zhang, P., 2021. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 129, 345-350.

Giovanelli, G., Buratti, S., 2009. Comparison of polyphenolic composition and antioxidant activity of Italian blueberries and some cultivated varieties. Food Chem. 112, 902-908.

Kiprovski, B., Malen, J., Jiang, Y., Fang, Z., Leonard, W., Zhang, P., 2021. Phenolic compounds in Lycium berry: characterization, optimization of extraction parameters and bioactive properties. Food Chem. 330, 127566.

Machado da, A.P.F., Geraldi, M.V., do Nascimento de, R.P., Moya, A.M.T.M., Vezza, T., Sakan, A., Mota, M., Coin, F., 2011. Antioxidant activities of blueberry waste and use of compression to manufacture sustainable starch films with improved barrier properties. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 57, 126-133.

Moraes, D.P., Lozano-Sánchez, J., Machado, M.L., Vizzotto, M., Lazzaretto, M., Levyua-Jimenez, F.J.J., da Silveira, T.L., Ries, E.F., Barcia, M.T., 2020. Characterization of a new blackberry cultivar BRS Xingu: chemical composition, phenolic compounds, and antioxidant capacity in vitro and in vivo. Food Chem. 322, 126783.

Mudge, E., Applequist, W.L., Finley, J., Lister, P., Townesmith, A.K., Walker, K.M., Brown, P.N., 2016. Variation of select anthocyanin profile of blackberry cultivars grown in the Black Sea Region of Turkey. Sci. Hortic. 121, 447-450.

Mokhtar, S.M., Swailam, H.M., Embaby, H.E.-S., 2017. Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.) J. Funct. Foods 32, 46-57.

Ortiz-Santos, L.E., Martínez-Girón, J., Arias-Jaramillo, M.E., 2017. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 233, 96-100.

Ou, Y., Wang, B., Chen, F., Huang, Z., Wang, X., Luo, P.G., 2011. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 125, 201-208.