Early Results of a Distance Learning Paediatric Surgery Programme in Mozambique

Ana Coelho¹, Ana Sofia Marinho¹, Joana Barbosa-Sequeira¹, André Nikutme², Leyani Noya³, Carla Rêgo¹,²,³, Fátima Carvalho¹, João Moreira-Pinto¹,²,³,⁴,⁵,⁶,⁷,⁸,¹⁰,¹¹

¹Department of Pediatric Surgery, Centro Materono-Infantil do Norte Albino Arosor, Centro Hospitalar Universitário do Porto, Largo do Professor Abel Salazar, ²Hospital CUF Porto, Estrada da Cunvalvulação, nº 14341, ³CINTESIS – Faculdade de Medicina da Universidade do Porto, Rua Dr. Piçado da Costa, ⁴ESB – Universidade Católica Portuguesa, Rua de Diogo Botelho nº 1327, ⁵EPIUNL - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas nº 135, Porto, ⁶Health4Moz ONGD, Rua Francisco Sá Carneiro nº142 – 5ºEsq, Leça da Palmeira, Portugal, ⁷Instituto Superior de Ciência e Tecnologia Alberto Chipande, Avenida Corrêa de Brito, nº 1238, Beira, ⁸Universidade Lúrio, Bairro de Marrere, nº 4250, Nampula, Mozambique, ⁹Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal, ¹⁰Instituto de Investigação, Inovação e Desenvolvimento, Fundação Fernando Pessoa (FP-I3ID), Porto, Portugal, ¹¹Pediatric Surgery, Hospital-Escola Fernando Pessoa, Universidade Fernando Pessoa, Porto

Abstract

Introduction: A pre-graduate training programme in paediatric surgery was applied to students in four medical schools of Mozambique. In this paper, we evaluate the early results of the programme. Materials and Methods: A pre-graduate training programme was developed and applied in two stages, theoretical education available at an online platform and a face-to-face session. To evaluate the programme, a diagnostic test was applied to all participants before the face-to-face session and, the same test, was applied again at the end of the session. Results: A total of 236 students participated in the programme. Forty-four per cent had a negative score on the diagnostic test. When the test was repeated, 91.9% had a positive score, and the difference between the scores in both tests reached statistical significance (P < 0.05). The participants who completed the first phase of the programme presented a higher median score in both tests (P < 0.05). Conclusions: The diagnostic tests allowed us to verify there was an increase in knowledge before and after the face-to-face session. There was also a significant difference between those participants who completed the online phase of the programme and those who did only the face-to-face session, which allows us to conclude that the online teaching programme was effective.

Keywords: Long-distance teaching, Mozambique, paediatric surgery, pre-graduate medical training

Introduction

Most of sub-Saharan Africa, and also Mozambique, suffer from an overall severe physician shortage with patients having particular limited access to surgical care.¹⁻⁴

In Mozambique, a country with an estimated population of 29 million people,³ of whom 45% are under 14 years of age,³ paediatric surgery is not part of the curriculum of medical schools.

Technological development, globalisation and the Internet promote and facilitate access to information everywhere, even in low- and middle-income countries (LMICs).⁴

Based on these premises, we developed a pre-graduate training programme in paediatric surgery, with an important part based on long-distance teaching.

Materials and Methods

The programme was created with the collaboration of the Paediatric Surgery Department of our hospital and Health 4Moz, ONGD. The programme was applied to students in the last year of their medical degree, in four Mozambican Medical Schools: Lúrio University (UniLurio) in Nampula city, Instituto Superior de Ciência e Tecnologia Alberto Chipande in Nampula and Beira city and Universidade Eduardo Mondlane and Instituto Superior de Ciências da Saúde de Moçambique in Maputo.

Address for correspondence: Dr. Ana Coelho, Largo da Maternidade Júlio Dinis 45, 4050-651 Porto, Portugal.
E-mail: ana.r.coelho@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Coelho A, Marinho AS, Barbosa-Sequeira J, Nikutme A, Noya L, Rêgo C, et al. Early results of a distance learning paediatric surgery programme in Mozambique. Afr J Paediatr Surg 2022;19:164-6.
The programme was applied in two stages:

1. Theoretical education, consisting of eight modules addressing different paediatric surgery topics, that were available at an online platform – Moodle (e-learning). There was a total estimated time for learning of 12 h, and the content was available between February and May 2017 in the 1st year, September and October 2018 in the 2nd year and from March to May 2019 in the 3rd year. At the end of each module, the participants had to perform a multiple-choice test, and only upon passing the test, they would have access to the next module. Each module consisted of pre-recorded lectures, and there was also reading material available to complement the lectures.

2. Face-to-face session, in a trip to Mozambique in July 2017, November 2018 and June 2019, with clinical case discussion sessions (lasting 4 h) and a hands-on session (lasting 2 h) covering wound treatment and suture techniques, and basic paediatric trauma life support with the use of simulation models.

During the entire time the programme was available online, the participants could use online forums available on the platform to ask questions, and those questions would be answered on a daily basis.

To evaluate the programme and knowledge acquisition, a diagnostic test was applied to all participants before the face-to-face session and, the same test, was applied again at the end of the session.

Statistical analysis

Statistical analysis was performed using the IBM® SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp and Microsoft® EXCEL; we used descriptive statistics, Friedman test and Kruskal-Wallis test.

RESULTS

We had a total of 236 participants in the programme in the 3 years [Table 1 shows the participant’s distribution by year and by institution]. The first phase of the programme (e-learning) was completed by 61.1% (n = 173). We have registered that reaching close to the deadline of the programme’s first phase, there was an increase of requests for access to the platform.

From the entire group, 44.3% had a negative score on the diagnostic test, and the test score median was 10/20. When the test was repeated at the end of the face-to-face training, 91.9% (n = 217) had a positive score, the median score was 14/20 and the difference between the scores in both tests reached statistical significance (P < 0.05). Globally, there was an increase in knowledge of 40%.

The participants who completed the first phase of the programme presented a higher median score in both tests, and this difference is statistically significant (P < 0.05).

DISCUSSION

Surgery is now recognised as an essential component of global public health, as evidenced by the Lancet Commission on Global Surgery and the World Health Assembly resolution on Strengthening Emergency and Essential Surgical Care and Anaesthesia as a Component of Universal Health Coverage.[6,7] There are estimates that surgical disease is responsible for 11%–30% of the global burden of disease, and congenital anomalies are increasingly recognised as an important global cause of paediatric disease.[1] In LMICs, in which more than 90% of congenital anomalies are estimated to occur, the human and financial cost of those is particularly severe.[1]

It is well known that there is an insufficient surgical workforce worldwide,[8] and in the particular case of paediatric surgery in Mozambique, it is reflected on the only four paediatric surgical specialists (and one foreign doctor) working in the whole country, with two trainees being formed.

Contemporary humanitarian efforts to help meet the high demand for paediatric surgery services and education in LMICs have taken several forms.[2] One well-known and common way of contributing to surgical care delivery to LMICs is the surgical volunteer trips.[1,2] While these programmes represent an effective measure in the short term, usually their emphasis is on the delivery of care rather than on training the local surgeons.[1,2] Other forms of delivering care and education, found in the literature, are faith-based mission hospitals, academic collaborations and teaching workshops.[2]

As noted by Sitkin and Farmer,[1] regardless of the model of education or delivery of care, developing and sustaining domestic paediatric surgical capacity is a critical long-term priority.

Taking into consideration that paediatric surgery is not part of the medical training curriculums in universities in Mozambique, the recognition and importance of some of the congenital conditions might not be valued by the newly trained doctors. Hence one of the main goals to the creation of this pre-graduate programme was to make the participants aware of the most common and important paediatric surgical diseases and to recognise which should be promptly managed.

A big part of our pre-graduate programme was based on an online platform. This allowed for the delivery of pre-recorded
lectures that were available throughout the entire time of
the programme and could be reviewed as many times as
necessary, reading material to complement the lectures and
online forums which allowed question asking and discussions
about the lecture themes.

Internet has become a very useful tool, nowadays, to provide
education.[2,9] We find, in the literature, several examples of
education models developed using technology and Internet
as a way of delivery. GlobalCastMD[10] is a virtual platform
where surgeons can attend online symposia; Stay Current: Paediatric Surgery[11] is a mobile application with a vast
multimedia library, podcasts, guidelines and discussions on
paediatric surgery and paediatric surgery didactic conferences
were shared weekly between an academic centre in Durban
and surgeons in remote provinces in South Africa.[12]

Using this Internet platform allowed us to deliver education
over a long distance, in an almost inexpensive way. As already
noticed by Raigani et al.[13] the ease of access to the web-based
content and the reduced or non-existing cost are important
advantages of this method.

We registered that there was a delay in getting access to the
online platform, with a rise in use towards the deadline of the
programme. This might have happened due to the unfamiliarity
with online teaching programmes and also due to technical
difficulties. Despite the advantages of Internet use to deliver
teaching, it is well known that slow Internet connectivity may
be a drawback and that Internet penetration in sub-Saharan
Africa remains low.[2,9]

The application of diagnostic tests allowed us to verify that there
was increase in knowledge before and after the face-to-face
session, and this difference was statistically significant.

There was also a significant difference between those participants
who completed the online phase of the programme (with higher
median scores in both the pre- and post-test) and those who
did only the face-to-face session, which allows us to conclude
that the online teaching programme was effective.

In the face-to-face session, students had the opportunity to
discuss clinical cases, learn and train suture techniques and
also learn and apply basic life support (BLS) coupled with
trauma initial assessment in simulation models. Knowledge of
BLS and delivery of effective cardiopulmonary resuscitation
techniques has been proven to increase the chances of survival
of patients.[13,14] The literature shows that medical students are
valuable resources to increase BLS skilled individuals in the
community,[15] thus our inclusion of this important theme in
our training programme.

We believe that better diagnostic capability and knowledge of
the most common paediatric surgery diseases is an
important asset and may help improve paediatric health in
Mozambique.

In the future, the application of this programme to other
medical schools and training local trainers will allow us to
make more solid conclusions.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Sitkin NA, Farmer DL. Congenital anomalies in the context of global
surgery. Semin Pediatr Surg 2016;25:15-8.
2. Butler MW. Developing pediatric surgery in low- and middle-income
countries: An evaluation of contemporary education and care delivery
models. Semin Pediatr Surg 2016;25:43-50.
3. Rose J, Bendix P, Funzano C, Yaz F, da Costa AA, Bickler S, et al.
Universities form research partnership to improve care in Mozambique.
Bull Am Coll Surg 2015;100:27-34.
4. Numanoglu A. Using telemedicine to teach paediatric surgery in
resource-limited countries. Pediatr Surg Int 2017;33:471-4.
5. Instituto Nacional de Estatística de Moçambique. Available from: http://
www.ine.gov.mz. [Last accessed on 2018 Mar 28].
6. Dare AJ, Grimes CE, Gillies R, Greenberg SL, Hagander L, Meara JG,
et al. Global surgery: Defining an emerging global health field. Lancet
2014;384:2245-7.
7. Strengthening Emergency and Essential Surgical Care and Anaesthesia
as a Component of Universal Health Coverage; 2015. p. 1-6. Available
from: http://apps.who.int/gb/ebwha/pdf_files/WHA68A68_R15‑en.
pdf.
8. O’Flynn D, O’Flynn E, Deneke A, Yohannan P, da Costa AA, O’Boyle C,
et al. Training surgeons as medical educators in Africa. J Surg Educ
2017;74:539-42.
9. Raigani S, Numanoglu A, Schwachter M, Ponsky TA. Online resources
in pediatric surgery: The new era of medical information. Eur J Pediatr
Surg 2014;24:308-12.
10. Global Cast MD. Available from: https://www.globalcastmd.com/. [Last
accessed on 2020 Apr 01].
11. Stay Current: Pediatric Surgery. Available from: https://staycurrent.
globalcastmd.com/login. [Last accessed on 2020 Apr 01].
12. Hadley GP, Mars M. Postgraduate medical education in paediatric
surgery: Videoconferencing – A possible solution for Africa? Pediatr
Surg Int 2008:24:223-6.
13. Alshoshan F, Alia Z, Alharbi A. Evaluation of the effectiveness of basic
life support courses among health care professionals at the Ministry of
National Guard Health Affairs King Abdulaziz Medical City, Riyadh,
Saudi Arabia. Int J Med Res Health Sci 2019;8:30-7.
14. Steen PA, Kramer-Johansen J. Improving cardiopulmonary
resuscitation quality to ensure survival. Curr Opin Crit Care
2008;14:299-304.
15. Abbas F, Sawaf B, Hanafi I, Hajeer MV, Zakaria ML, Abbas W, et al.
Peers versus professional training of basic life support in Syria: A randomized controlled trial. BMC Med Educ 2018;18:142.