Clique Separator Decomposition of Hole- and Diamond-Free Graphs and Algorithmic Consequences

Andreas Brandstädter* Vassilis Giakoumakis†

January 21, 2013

Abstract

Clique separator decomposition introduced by Tarjan and Whiteides is one of the most important graph decompositions. A graph is an atom if it has no clique separator. A hole is a chordless cycle with at least five vertices, and an antihole is the complement graph of a hole. A graph is weakly chordal if it is hole- and antihole-free. $K_4 - e$ is also called diamond. Paraglider has five vertices four of which induce a diamond, and the fifth vertex sees exactly the two vertices of degree two in the diamond. In this paper we show that atoms of hole- and diamond-free graphs (of hole- and paraglider-free graphs, respectively) are either weakly chordal or of a very specific structure. Hole- and paraglider-free graphs are perfect graphs. The structure of their atoms leads to efficient algorithms for various problems.

Keywords: Clique separator decomposition; hole- and diamond-free graphs; hole- and paraglider-free graphs; perfect graphs; efficient algorithms.

1 Introduction, Motivation and Related Work

A clique separator (or clique cutset) of a graph G is a clique K such that $G[V \setminus K]$ has more connected components than G. An atom is a graph without clique separator. In [32, 34], it is shown that a clique separator decomposition tree of a graph can be determined in polynomial time, and in [32], this decomposition is applied to various problems such as Minimum Fill-in, Maximum Weight Independent Set (MWIS), Maximum Weight Clique and Coloring; if the problem is solvable in polynomial time on the atoms of a hereditary graph class C, it is solvable in polynomial time on class C. In this paper, we are going to analyze the structure of atoms in two subclasses of hole-free graphs.

A hole is a chordless cycle with at least five vertices, and an antihole is the complement graph of a hole. A graph is hole-free (antihole-free, respectively) if it contains no induced subgraph which is isomorphic to a hole (an antihole, respectively). $K_4 - e$ (i.e., a clique of four vertices minus one edge) is called diamond. A paraglider has five vertices four of which induce a diamond, and the fifth vertex sees exactly the two vertices of degree two in the diamond (see Figure 1). Note that paraglider is the

*Fachbereich Informatik, Universität Rostock, A.-Einstein-Str. 21, D-18051 Rostock, Germany, ab@informatik.uni-rostock.de
†MIS (Modélisation, Information & Systèmes), Université de Picardie Jules Verne, Amiens, France. e-mail: vassilis.giakoumakis@u-picardie.fr
complement graph of the disjoint union $P_2 \cup P_3$ (where P_n denotes a chordless path with n vertices and $n - 1$ edges).

Cycle properties of graphs and their algorithmic aspects play a fundamental role in combinatorial optimization, discrete mathematics and computer science. Various graph classes are characterized in terms of cycle properties - among them are the classes of chordal graphs, weakly chordal graphs and perfect graphs which are of fundamental importance for algorithmic graph theory and various applications. A graph is \textit{chordal} (also called \textit{triangulated}) if it is hole- and C_4-free (where C_4 denotes the chordless cycle of four vertices). See e.g. \cite{13, 22, 30} for the many facets of chordal graphs. A graph is completely decomposable by clique separator decomposition if and only if it is chordal. A graph is \textit{weakly chordal} (also called \textit{weakly triangulated}) if it is hole- and anti-hole-free. These graphs have been extensively studied in \cite{25, 26, 28, 31}; they are perfect. In \cite{2, 27}, recognition of weakly chordal graphs is solved in time $O(m^2)$, and the MWIS problem on weakly chordal graphs is solved in time $O(n^4)$. Chordal graphs are weakly chordal.

The celebrated \textit{Strong Perfect Graph Theorem} (SPGT) by Chudnovsky et al. says:

\textbf{Theorem 1 (SPGT \cite{19}).} A graph is perfect if and only if it is odd-hole-free and odd-anti-hole-free.

It is also well known that a graph is the line graph of a bipartite graph if and only if it is (claw,diamond,odd-hole)-free (see e.g. \cite{13}). These graphs play a fundamental role in the proof of the SPGT.

Since every hole C_k, $k \geq 7$, contains the disjoint union of P_2 and P_3 (and the paraglider is the complement graph of $P_2 \cup P_3$), it follows that HP-free graphs are C_k-free for every $k \geq 7$. Thus, by the SPGT, HP-free graphs are perfect. Our structural results for atoms of HP-free graphs, however, give a more direct way to show perfection of HP-free graphs.

Hole- and diamond-free graphs generalize the important class of chordal bipartite graphs (which are exactly the hole- and triangle-free graphs), and diamond-free chordal graphs are the well-known block graphs - see \cite{13} for various characterizations and the importance of chordal bipartite graphs as well as of block graphs. In \cite{10, 17}, various characterizations of (dart,gem)-free chordal graphs are given; among others, it is shown that a graph is (dart,gem)-free chordal if and only if it results from substituting cliques into the vertices of a block graph.

Recently there has been much work on related classes such as even-hole-free (forbidding also C_4) and diamond-free graphs \cite{29} (see also \cite{33}) and \cite{21} dealing with the structure and recognition of C_4- and diamond-free graphs.

Hole- and paraglider-free graphs obviously generalize chordal graphs. The classes of weakly chordal graphs and HP-free graphs are incomparable as the examples of paraglider (which is weakly chordal but not HP-free) and C_6 (which is HP-free but not weakly chordal) show but HP-free graphs are closely related to weakly chordal graphs:

Our main result in this paper shows that atoms of hole- and paraglider-free graphs (HP-free graphs for short) are either weakly chordal or of a very simple structure close to matched co-bipartite graphs. By \cite{32}, this has various algorithmic consequences; in section \cite{5} we describe these and others.
2 Further Basic Notions

Let G be a graph with vertex set $V(G) = V$ and edge set $E(G) = E$. Adjacency of vertices $x, y \in V$ is denoted by $xy \in E$, or $x \sim y$, or we simply say that x and y see each other. Nonadjacency is denoted by $xy \notin E$, or $x \not\sim y$, or x and y miss each other.

The open neighborhood $N(v)$ of a vertex v in G is $N(v) = \{u \mid uv \in E\}$, the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$, and the antineighborhood $A[v]$ of v is $A(v) = \{u \mid u \not\sim v\}$. The neighborhood $N(X)$ of a subset $X \subseteq V$ is the set of all neighbors of $x \in X$ outside X. For a subgraph H of G, let $N_H(x)$ denote the set $N(x) \cap V(H)$ and let $N_H(X)$ denote the set $N(X) \cap V(H)$.

For graph G, let \overline{G} (or co-G) denote the complement graph of G, i.e., $\overline{G} = (V(G), \{xy \mid x \not\sim y\})$. For $H \subseteq V$, let $G[H]$ denote the induced subgraph of H in G.

Let P_k denote a chordless path with k vertices x_1, \ldots, x_k and edges $x_ix_{i+1}, 1 \leq i \leq k - 1$, and let C_k denote a chordless cycle with the same k vertices and edges $x_ix_{i+1}, 1 \leq i \leq k - 1$, and x_kx_1.

A vertex set $U \subseteq V$ is independent if the vertices of U are pairwise nonadjacent. U is a clique if the vertices of U are pairwise adjacent. Let S_r (K_r, respectively) denote an independent vertex set (a clique, respectively) with r vertices.

For vertex x of graph G and $H \subseteq V(G)$, $x \oplus H$ means that x is adjacent to all vertices of H. In this case, we also say that x is total or universal with respect to H. Correspondingly, $x \ominus H$ means that x is adjacent to no vertex of H.

For $H \subseteq V(G)$ and $Q \subseteq V(G)$ with $H \cap Q = \emptyset$, $H \odot Q$ means that every vertex of H is adjacent to every vertex of Q (we also say that H and Q form a join) and $H \oslash Q$ means that no vertex of H is adjacent to any vertex of Q (H and Q form a co-join).

Let G be a graph. $G \setminus H$ or $G - H$ denotes the graph $G[V(G) - V(H)]$ induced by the set of vertices $V(G) - V(H)$.

Let \mathcal{F} be a set of graphs. G is \mathcal{F}-free if no induced subgraph of G is an element of \mathcal{F}. As already mentioned, G is hole-free (is antihole-free, respectively) if no induced subgraph of G is isomorphic to a hole (an antihole, respectively).

A co-matched bipartite graph results from a complete bipartite graph $K_{k,k}$ by deleting a perfect matching. A matched co-bipartite graph is the complement of a co-matched bipartite graph, i.e., it consists of two disjoint cliques of the same size k, and the edges between them form a matching with k edges.

Note that $\overline{C_6}$ is a matched co-bipartite graph with six vertices. Let A be a matched co-bipartite graph. Then left(A) denotes one of the maximal cliques of A and right(A) denotes the other maximal clique of A. Clearly left(A) and right(A) form a bipartition of the co-matched bipartite graph \overline{A} (and thus a corresponding partition of the vertex set of A). Subsequently, the edges between left(A) and right(A) are called matching edges.

3 Adjacency Properties for (Hole,Paraglider)-Free Graphs Containing $\overline{C_6}$

In this section we describe some adjacency properties of HP-free graphs containing $\overline{C_6}$ which will be useful in the structural description of atoms of hole- and paraglider-free
graphs.

3.1 Neighbors of C_6 in HP-Free Graphs

Throughout this section, let G be an HP-free graph. As mentioned already in the introduction, the only possible antihole in an HP-free graph is C_6; if G is C_6-free, it is weakly chordal. The following propositions are dealing with HP-free graphs containing C_6. Obviously, the following holds:

Proposition 1. Pairs x, y with $x \not\sim y$ in a C_6 A are endpoints of a P_4 (x, a, b, y) and two P_3's (x, c, y), (x, d, y) such that (c, a, b, d) is another P_4 in A.

Let A be a graph isomorphic to a C_6. The set of vertices outside A having distance $i \geq 1$ from A will be denoted by $D_i(A)$. Moreover, $D_1 = D_1(A) = A_1 \cup \ldots \cup A_6$, where A_i, $i \in \{1, \ldots, 6\}$, denotes the set of vertices outside A with distance one from A and having exactly i neighbors in A (note that A_i contain only vertices which are not in A).

Obviously, the next property holds:

Proposition 2. If $x, y \in A_1$ with $x \sim y$, and $N_A(x) = \{t\}$, $N_A(y) = \{z\}$ with $t \neq z$ then $t \sim z$.

For neighbors outside A which see more than one vertex in A, the situation is as follows:

Proposition 3.

(i) The two A-neighbors of any vertex in A_2 form an edge in A.

(ii) The three A-neighbors of any vertex in A_3 form a triangle in A.

(iii) $A_4 = A_5 = \emptyset$.

(iv) A_6 is a clique. Moreover, in a hole- and diamond-free graph, $A_6 = \emptyset$.

(v) If x sees A and $N_A(x)$ is not a clique then $x \in A_6$.

Proof. (i): If $x \in A_2$ sees y and z in A with $y \not\sim z$ then by Proposition 1, there is a P_4 P in A with endpoints y and z. It follows that x together with P induce a C_5 in G, a contradiction.

(ii): If the neighborhood of $x \in A_3$ in A is not a triangle then without loss of generality, x sees two vertices in $\text{left}(A)$, say a and b, and one in $\text{right}(A)$, say c. If c misses a and b then
x, a, b, c together with the neighbor of c in left(A) induce a paraglider, and if c sees a then x, a, b, c together with the neighbor of b in right(A) induce a paraglider - contradiction.

(iii): If $x \in A_1$ sees all three vertices in left(A), say a, b, c, and one in right(A), say d, then if a sees d, x, a, b, d together with the neighbor of b in right(A) induce a paraglider. If x sees two vertices in left(A), say a, b, and two vertices in right(A), say c, d then if a sees c and b sees d, x, a, d and the matching edge which x is missing induce a C_5. If a misses d and b sees c then x, a, b, c and the neighbor of a in right(A) induce a paraglider.

If $x \in A_5$ sees all three vertices in left(A) and two in right(A), say d, e, then x, d, e together with the vertex f which x misses in right(A) and the neighbor of f in left(A) induce a paraglider.

(iv): If there are $x, y \in A_6$ with $x \not\sim y$ then x and y together with any $P_1 \cup P_2$ from A form a paraglider. Moreover, the vertices of any P_3 in A together with any vertex of A_6 induce a diamond.

(v): This property easily follows from the preceding ones.

\begin{proposition}
Let $x \sim y$. If $x \in A_1$ and $y \in A_2 \cup A_3$ or $x \in A_2$ and $y \in A_3$ then $N_A(x)$ and $N_A(y)$ are comparable with respect to set inclusion.
\end{proposition}

\begin{proof}
As before, let A be a C_6, say with cliques $\text{left}(A) = \{v_1, v_2, v_3\}$, $\text{right}(A) = \{v_4, v_5, v_6\}$ and matching edges v_1v_4, v_2v_5 and v_3v_6.

First let $x \in A_1$; without loss of generality, let $N_A(x) = \{v_1\}$ and assume that $y \not\sim v_1$.

Recall that $y \in A_2$ or $y \in A_3$. If $\{v_2, v_3\} \subseteq N_A(y)$ then x, y, v_1, v_2, v_3 induce a paraglider. Thus y must see at least one vertex from right(A). If y sees v_5 then either x, v_1, v_4, v_5, y or x, v_1, v_2, v_5, y is a C_5 since by Proposition 3 $N_A(y)$ is a clique, and similarly if y sees v_6. Thus y misses v_5 and v_6 which implies that y sees v_4. Since by assumption, y misses v_1, y sees v_4 and v_2 or v_3 but this contradicts Proposition 3.

Now let $x \in A_2$ and $y \in A_3$; by Proposition 3 $N_A(y) = \text{left}(A)$ or $N_A(y) = \text{right}(A)$ and $N_A(x)$ is an edge in A. If $N_A(x) = \{v_1, v_2\}$ and $N_A(x)$ and $N_A(y)$ are not comparable then $N_A(y) = \text{right}(A)$ but now x, v_2, v_3, v_6, y is a C_5 - contradiction. If however $N_A(x) = \{v_1, v_3\}$ and without loss of generality, $N_A(y) = \text{left}(A)$ then x, y, v_2, v_5, v_4 is a C_5 which shows Proposition 3.

\begin{proposition}
For all $x, y \in A_2$ with $x \sim y$, $N_A(x) \cup N_A(y)$ is a clique.
\end{proposition}

\begin{proof}
By Proposition 3 $N_A(x)$ and $N_A(y)$ are edges. Assume to the contrary that there are $z \in N_A(x)$ and $t \in N_A(y)$ with $z \not\sim t$. Thus $z \notin N_A(y)$ and $t \notin N_A(x)$. By Proposition 1 there is a $P_4 (z, u, v, t)$ in A. Since $N_A(x)$ is an edge, x misses v, and likewise y misses u. To avoid a hole in the subgraph induced by $\{x, z, u, v, t, y\}$, we obtain $x \sim u$ and $y \sim v$ which implies that $N_A(x) \cup N_A(y) = \{z, u, v, t\}$. Then by Proposition 1 there is a $P_3 (z, w, t)$ in A such that x and y miss w and consequently x, z, w, t, y induce a C_5 in G, a contradiction.

Now it is easy to see that by Propositions 2, 3, 4, and 5 we obtain:

\begin{corollary}
For all $x, y \in A_3$ with $x \sim y$ and at least one of x, y does not belong to A_3, $N_A(x) \cup N_A(y)$ is a clique.
\end{corollary}
Proposition 6. Let \(x, y \in D_1 \) with \(x \not\sim y \) be the endpoints of a chordless path \(P \) whose internal vertices do not belong to \(D_1 \cup A \). Then

(i) \(P \) contains exactly three vertices \(x, w, y \) and

(ii) \(N_A(x) \) and \(N_A(y) \) are comparable.

Proof. (i): Assume to the contrary that \(P \) contains at least four vertices. Let \(u \) and \(v \) be two vertices of \(A \) such that \(u \in N_A(x) \) and \(v \in N_A(y) \) and let \(Q \) be a chordless path in \(A \) joining \(u \) and \(v \) (possibly \(\text{length}(Q) = 0 \), i.e., \(u = v \)). Now it is easy to verify that the graph induced by the vertices of \(P \cup Q \) contains a hole, a contradiction.

(ii): Assume to the contrary that \(N_A(x) \) and \(N_A(y) \) are not comparable. Let \(z \) and \(t \) be two vertices of \(A \) such that \(z \in N_A(x) \) \(- \) \(N_A(y) \) and \(t \in N_A(y) \) \(- \) \(N_A(x) \). If \(z \) is adjacent to \(t \) then \(x, z, t, y, w \) (where \(w \) is the vertex from condition (ii)) induce a \(C_5 \). Hence \(z \not\sim t \), and by Proposition 1 there is a \(P_4 \) \((z, a, b, t)\) in \(A \). Since by Proposition 3 \(N_A(x) \) and \(N_A(y) \) are cliques, neither \(x \) nor \(y \) can be adjacent to both vertices \(a \) and \(b \). It follows that the subgraph induced by \(x, z, a, b, t, y, w \) contains a hole, a contradiction. \(\square \)

Proposition 7. Let \(A^* \) be a maximal matched co-bipartite subgraph of \(G \) containing \(A \). Then the following hold:

(i) Every vertex of \(A_6 \) is total with respect to \(V(A^*) \).

(ii) If \(x \) and \(y \) are vertices of \(G \setminus A^* \) with \(x, y \in A_3 \), \(N_A(x) = \text{left}(A) \) and \(N_A(y) = \text{right}(A) \) then \(x \not\sim y \).

Proof. (i): Assume to the contrary that for some \(x \in A_6 \) and \(y \in V(A^*) \setminus V(A) \), \(x \not\sim y \) holds. Assume without loss of generality that \(y \in \text{left}(A^*) \) and let \(z \) be the neighbor of \(y \) in \(\text{right}(A^*) \). Consider the subgraph \(H \) of \(G \) induced by \(a, b, c, d, y, z \) where \(a, b, c, d \) are four vertices of \(A \) forming a \(C_4 \). Clearly, \(H \) is isomorphic to \(\overline{C_6} \). Since \(x \) is total with respect to \(\{a, b, c, d\} \), \(x \) will be adjacent to four or five vertices of \(H \) and we obtain a contradiction to Proposition 3.

(ii): First observe that if \(A^* = A \) then \(x \not\sim y \) for otherwise the graph induced by \(V(A) \cup \{x, y\} \) is a matched co-bipartite graph and this contradicts the maximality of \(A^* \). Thus, we can suppose that \(V(A^*) \setminus V(A) \neq \emptyset \).

Assume to the contrary that \(x \sim y \) and consider any edge \(zt \) of \(A^* \setminus A \) such that \(z \in \text{left}(A^*) \) and \(t \in \text{right}(A^*) \). Let \(Q \) be the graph induced by \(z, t \) and four vertices \(a, b, c, d \) forming a \(C_4 \) in \(A \) such that \(\{a, b\} \subset \text{left}(A) \) and \(\{c, d\} \subset \text{right}(A) \). Clearly \(Q \) is isomorphic to \(C_6 \).

We shall prove that \(x \sim z, y \sim t, x \not\sim t \) and \(y \not\sim z \). Observe first that since \(x \) misses \(c, d \) and \(y \) misses \(a, b \), we must have that \(x \not\sim t \) and \(y \not\sim z \) for otherwise \(N_Q(x) \) or \(N_Q(y) \) would not be a clique which contradicts Proposition 3.

Let \(Q_2 \) (\(Q_3 \), respectively) denote the vertices outside \(Q \) having exactly two neighbors (three neighbors, respectively) in \(Q \). Now \(x \sim z \) and \(y \sim t \) for otherwise since \(x \) sees \(a \) and \(b \), and \(y \) sees \(c \) and \(d \), we would have \(x \in Q_2 \) and \(y \in Q_2 \cup Q_3 \) or \(x \in Q_2 \cup Q_3 \) and \(y \in Q_2 \), and we obtain a contradiction to Proposition 4 or Proposition 5. Hence \(x \) \(\text{left}(A^*) \), \(x \) \(\text{right}(A^*) \), \(y \) \(\text{left}(A^*) \) and \(y \) \(\text{right}(A^*) \) and consequently \(V(A^*) \cup \{x, y\} \) induces a graph isomorphic to a matched co-bipartite graph which contradicts to the assumed maximality of \(A^* \). \(\square \)
3.2 A Lemma for Atoms of HP-Free Graphs

The subsequent Lemma describes an essential property of HP-free atoms which will lead to a structural description of HP-free graphs.

Let \(G \) be an HP-free graph, let \(A \) be an induced \(C_6 \) in \(G \) and let \(xy \) be a matching edge of \(A \) with \(x \in \text{left}(A) \) and \(y \in \text{right}(A) \). We use the following notation:

- \(A_2[xy] := \{ u \mid u \in A_2, N_A(u) = \{ x, y \} \} \)
- \(A_1[xy] := \{ uv \in E \mid u, v \in A_1, N_A(u) = \{ x \}, N_A(v) = \{ y \} \}. \)

By \(V(A_1[xy]) \), we denote the set of vertices in \(A_1[xy] \).

Lemma 1. In an HP-free atom, \(A_1[xy] = A_2[xy] = \emptyset \).

Proof. Assume to the contrary that at least one of the two sets is nonempty. Recall that by Proposition \(\{ iv \} \), \(A_6 \) is a clique which implies that \(\{ x, y \} \cup A_6 \) is a clique. Let \(G' := G \setminus \{(x, y) \cup A_6\} \) and \(A' := A \setminus \{ x, y \} \). Clearly the vertices of \(A' \) form a \(C_4 \), say \(C = \{ a, b, c, d \} \) with \(\text{left}(A) = \{ x, a, d \} \) and \(\text{right}(A) = \{ y, b, c \} \). Since \(G \) is an atom, \(\{ x, y \} \cup A_6 \) cannot be a clique cutset and consequently, \(G' \) contains a path between some vertex \(x_0 \in A_2[xy] \cup V(A_1[xy]) \) and \(x_k \in A' \). Let \(L = (x_0, x_1, \ldots, x_k) \) be such a path of minimum length in \(G' \). If \(x_0y_0 \in A_1[xy] \) then we assume without loss of generality that \(x_0 \sim x \) and \(y_0 \sim y \).

Claim 1. length(\(L \)) \= 2.

Proof of Claim Assume not - then \(L = (x_0, x_1, x_2) \) with \(x_2 \in A' \).

Assume first that \(x_0 \in A_2[xy] \). Since by Proposition \(\{ iv \} \), \(N_A(x_1) \) is a clique (recall that \(x_1 \notin A_6 \) and \(N_A(x_1) \cap \{ a, b, c, d \} \neq \emptyset \), if \(x_1 \in A_1 \cup A_3 \) then \(N_A(x_0) \) is not comparable with \(N_A(x_1) \) which contradicts Proposition \(\{ iv \} \) and if \(x_1 \in A_2 \), \(N_A(x_0) \cup N_A(x_1) \) is not a clique which contradicts Proposition \(\{ iv \} \).

Assume now that \(x_0 \in V(A_1[xy]) \) (recall that we assumed \(x_0 \sim x \)). By Proposition \(\{ 2 \} \) and Proposition \(\{ 4 \} \) we deduce that \(N_A(x_1) \subseteq \{ x, a, d \} \) and that \(y_0 \not\sim x_1 \). Let \(u \) be a neighbor of \(x_1 \) in \(\{ a, d \} \) and \(v \) the vertex of \(\{ b, c \} \) adjacent to \(u \). Then \(x_0, x_1, u, v, y, y_0 \) induce a \(C_6 \), a contradiction which shows Claim 1.

Since length(\(L \)) is assumed to be minimum, none of \(x_1, \ldots, x_{k-2} \) can be in \(A_2 \cup A_3 \cup V(A_1[xy]) \cup A_2[xy] \). It follows that if a vertex \(x_i \in \{ x_1, \ldots, x_{k-2} \} \) belongs to \(D_1 \) then \(x_i \in A_1 \setminus V(A_1[xy]) \). Let

\[Q := \{ x_1, \ldots, x_{k-2} \} \cap (A_1 \setminus V(A_1[xy])). \]

Claim 2. If \(x_0 \in A_2[xy] \) then \(Q \neq \emptyset \).

Proof of Claim Assume \(Q = \emptyset \); then none of \(x_1, \ldots, x_{k-2} \) belongs to \(D_1 \) and consequently by Proposition \(\{ 3 \} \), \(N_A(x_{k-1}) \) and \(N_A(x_0) = \{ x, y \} \) must be comparable. By Proposition \(\{ 3 \} \), \(N_A(x_{k-1}) \) must be a clique (recall that \(x_k \in \{ a, b, c, d \} \), and since the path in \(G' \) contains no vertex from \(A_6 \), we have \(x_{k-1} \notin A_6 \)). Thus we obtain a contradiction which shows Claim 2.
Claim 3. If $Q \neq \emptyset$ then either $N_A(Q) = \{x\}$ or $N_A(Q) = \{y\}$.

Proof of Claim 3. Assume not; then there are two vertices x_i and x_j in Q, $1 \leq i < j \leq k-2$, such that $N_A(x_i) \neq N_A(x_j)$ and for all k, $i < k < j$, $x_k \notin D_1$. Observe that $j > i + 1$ for otherwise x_i would be adjacent to x_j and consequently x_i and x_j would belong to $V(A_1[x,y])$, a contradiction. Now $N_A(x_i)$ and $N_A(x_j)$ are not comparable - a contradiction to Proposition 6 which shows Claim 3. \hfill \Box

Claim 4. If $Q \neq \emptyset$ then $N_A(Q) = \{x\}$ implies that $N(x_{k-1}) \subseteq \text{left}(A)$ and $N_A(Q) = \{y\}$ implies that $N(x_{k-1}) \subseteq \text{right}(A)$.

Proof of Claim 4. Let x_s, $1 \leq s \leq k-2$, be a vertex of path L with $x_s \in Q$ such that s is maximum with respect to these properties.

Assume first that $x_{k-1} \in A_1$. Then $x_s \sim x_{k-1}$ for otherwise, by Proposition 6, $N_A(x_{k-1})$ must be comparable with $N_A(x_s)$ and we obtain a contradiction to the fact that x_{k-1} has a neighbor in $\{a, b, c, d\}$. Proposition 2 implies that $N_A(x_{k-1}) \sim N_A(x_s)$ and consequently $N_A(x_{k-1})$ is contained either in $\{a, d\} \subseteq \text{left}(A)$ if $N_A(x_s) = \{x\}$ or in $\{b, c\} \subset \text{right}(A)$ if $N_A(x_s) = \{y\}$.

Now assume that $x_{k-1} \in A_2 \cup A_3$. Then Proposition 4 and Proposition 6 imply that $N_A(x_{k-1})$ and $N_A(x_s)$ must be comparable. Claim 4 follows from the fact that $N_A(x_{k-1})$ is a clique and at least one of the vertices of $\{a, b, c, d\}$ belongs to $N_A(x_{k-1})$. \hfill \Box

Claim 5. For $x_0 \in V(A_1[x,y])$, the following hold:

(i) If $Q \neq \emptyset$ then $N_A(Q) = \{x\}$.

(ii) $N_A(x_{k-1}) \subseteq \text{left}(A)$.

Proof of Claim 5

(i): Recall that for $x_0 \in V(A_1[x,y])$, we assumed that $N_A(x_0) = \{x\}$. Let x_i be a vertex such that $x_i \in Q$ and i is as small as possible. Recall that by Claim 3 either $N_A(Q) = \{x\}$ or $N_A(Q) = \{y\}$ holds.

If $i = 1$ and $N_A(Q) = \{y\}$ then $x_1 \in V(A_1[x,y])$ since $x_1 \sim x_0$ - a contradiction to the fact that every vertex of Q belongs to $A_1 - V(A_1[x,y])$. Thus, $N_A(x_1) = \{x\}$ and also $N_A(Q) = \{x\}$. If $i > 1$ then $x_1 \in D_2$ and by Proposition 6 we obtain that $i = 2$ and $N_A(x_2) = \{x\}$. Then by Claim 2 we obtain that $N_A(Q) = \{x\}$ as claimed.

(ii): If $Q \neq \emptyset$ then $N_A(x_{k-1}) \subseteq \text{left}(A)$ follows by the fact that $N_A(Q) = \{x\}$ and Claim 4.

In the other case, if $Q = \emptyset$ then no vertex of $\{x_1, \ldots, x_{k-2}\}$ is in D_1. Proposition 4 implies that $N_A(x_{k-1})$ and $N_A(x_0)$ must be comparable, and since by assumption $N_A(x_0) = \{x\}$ and $N_A(x_{k-1})$ is a clique, we obtain Claim 5. \hfill \Box

Let $u \in \{a, d\}$ be a neighbor of x_{k-1} and let v be the neighbor of u in $\text{right}(A)$ which clearly is different from the vertex y. If $x_0 \in A_2[x,y]$ then by Claim 2 $Q \neq \emptyset$ and by Claim 3 $N_A(Q) = \{x\}$ or $N_A(Q) = \{y\}$. Assume without loss of generality that $N_A(Q) = \{x\}$; then by Claim 3 we have $N(x_{k-1}) \subseteq \text{left}(A)$. Then the subgraph induced by $x_0, \ldots, x_{k-1}, u, v, y$ is a hole, a contradiction. Hence $x_0 \in V(A_1[x,y])$. By Claim 5 if $Q \neq \emptyset$ then $N_A(Q) = \{x\}$. It follows that the subgraph induced by $x_0, \ldots, x_{k-1}, u, v, y, y_0$ is a hole, a contradiction which shows Lemma 11. \hfill \Box
4 Structure of (Hole,Paraglider)-Free and (Hole,Diamond)-Free Atoms

Recall that HP-free (HD-free, respectively) denotes hole- and paraglider-free (hole- and diamond-free, respectively).

Theorem 2. If G is an HP-free atom containing an induced $\overline{C_6}$, A, and A_6 denotes the set of vertices which are universal for A then $G \setminus A_6$ is a matched co-bipartite graph.

Proof. Assume the contrary; let $G' := G \setminus A_6$ and let A^* be a maximal matched co-bipartite subgraph in G' containing A. Let $W := V(G') - V(A^*)$; by assumption, $W \neq \emptyset$. We define a partition $\pi(W)$ of the vertices of W according to their distance from A^*: $W = W_1 \cup \ldots \cup W_k$ where $W_i := \{x \in W \mid d(x, A^*) = i\}, i = 1, \ldots, k$. Thus, $W_1 = (W \cap (A_1 \cup A_2 \cup A_3)) \cup (W \cap D_2)$ where D_2 denotes the set of vertices which are in distance two from A and which see a vertex in A^*. The vertices in W_2 have distance at least two from A.

Claim 6. No vertex in W_1 has neighbors in both left(A^*) and right(A^*).

Proof of Claim 6. Assume to the contrary that for some $x \in W_1$, there are y and z with $y \in$ left(A^*) and $z \in$ right(A^*) such that $x \sim y$ and $x \sim z$. Suppose first that $y \sim z$. Consider the graph Q induced by y, z and four vertices a, b, c, d of A forming a C_4 such that $\{y, z\} \cap \{a, b, c, d\} = \emptyset$. Clearly Q is isomorphic to a $\overline{C_6}$. Then since by Lemma 1, $Q_2[yz] = \emptyset$ (where as before, $Q_2[yz]$ denotes the vertices outside Q seeing exactly y and z in Q), x can not belong to $D_2(A)$ and consequently $N(x) \cap \{a, b, c, d\} = \emptyset$, that is, $x \in A_1 \cup A_2 \cup A_3$. Since by Proposition 3, $N_Q(x)$ is a clique and by assumption x sees both y and z, we obtain a contradiction.

Now suppose that $y \not\sim z$ and consider the graph H induced by y, z, y_1, z_1, a, b where y_1 is the neighbor of y in right(A^*), z_1 is the neighbor of z in left(A^*), ab is any edge of A such that $a \in$ left(A), $b \in$ right(A) and $\{a, b\} \cap \{y, y_1, z, z_1\} = \emptyset$. Clearly H is isomorphic to a $\overline{C_6}$. Since by assumption x sees both y and z, $N_H(x)$ is not a clique which by Proposition 3 implies that x sees all vertices of H and thus also $x \sim a$ and $x \sim b$ with $a \in$ left(A) and $b \in$ right(A). Since by Proposition 3, $x \not\in A_3$, by Lemma 1, $x \not\in A_2[a, b]$ and by assumption, $x \not\in A_6$, we obtain a contradiction. ◊

We define now the following sets:

$$\text{left}(W_1) := \{x \in W_1 \mid N_{A^*}(x) \subseteq \text{left}(A^*)\}$$

$$\text{right}(W_1) := \{x \in W_1 \mid N_{A^*}(x) \subseteq \text{right}(A^*)\}.$$

By Claim 6, $\text{left}(W_1) \cap \text{right}(W_1) = \emptyset$. Thus $W_1 = \text{left}(W_1) \cup \text{right}(W_1)$ is a partition of W_1.

Claim 7. There is no edge between left(W_1) and right(W_1).

Proof of Claim 7. Assume to the contrary that $x \sim y$ for some $x \in$ left(W_1) and $y \in$ right(W_1). Recall that D_1 denotes the vertices in distance one to A. We first show:

$$x \text{ and } y \text{ cannot be both in } D_1. \tag{1}$$
Assume to the contrary that $x, y \in D_1$. Then by Proposition 3 (ii), $x, y \notin A_3$ is impossible. Suppose without loss of generality that $x \notin A_2$, i.e., $x \in A_1 \cup A_2$ and $y \in A_1 \cup A_2 \cup A_3$. If $x \in A_1$ and $y \in A_2 \cup A_3$ or $x \in A_2$ and $y \in A_1 \cup A_3$, Proposition 4 implies that $N_A(x)$ and $N_A(y)$ are incomparable, and if $x, y \in A_2$, Proposition 5 implies that $N_A(x) \cup N_A(y)$ is a clique. But since $x \in \left(W_1\right)$ and $y \in \left(W_1\right)$, none of these cases can occur. It follows that $x, y \in A_1$. However, by Lemma 1 such a pair of adjacent vertices cannot exist, a contradiction. \diamond

It follows that at least one of x or y is in D_2. Assume that $x \in D_2$ and let u be a neighbor of x in D_1. Suppose first that also $y \in D_2$ and let v be a neighbor of y in D_1. Obviously $u \in \left(W_1\right)$ and $v \in \left(W_1\right)$. Since by assumption $x, y \in D_2$, Proposition 6 (i) implies that $u \sim v$ and we obtain a contradiction with (f). Consequently, $y \in D_1$. Since $N_A(u)$ and $N_A(y)$ are not comparable, Proposition 6 (ii) implies that $u \sim y$ and again we obtain a contradiction with (f). This shows Claim 9. \diamond

For the partition $\pi(W) = \{W_1, \ldots, W_k\}$, $k \geq 1$, define the following sets for every $i \in \{2, \ldots, k\}$:

$$
\text{left}(W_i) := \{x \in W_i \mid \exists y \in \text{left}(W_{i-1}) \text{ such that } x \sim y\}
$$

$$
\text{right}(W_i) := \{x \in W_i \mid \exists y \in \text{right}(W_{i-1}) \text{ such that } x \sim y\}.
$$

Claim 8. ($\text{left}(W_1) \cup \ldots \cup \text{left}(W_k)) \cap (\text{right}(W_1) \cup \ldots \cup \text{right}(W_k)) = \emptyset$ and $(\text{left}(W_1) \cup \ldots \cup \text{left}(W_k)) \ominus (\text{right}(W_1) \cup \ldots \cup \text{right}(W_k))$.

Proof of Claim 8. We shall prove the claim by induction on k. By Claims 4 and 7 the result is true for $k = 1$. By the induction hypothesis the result is true for $k < s$, $s > 1$. Assume to the contrary that the result is false for $W_s \in \pi(W)$. Then there must be a chordless path $L_1 = (x_1, \ldots, x_{s-1}, x, y_{s-1}, \ldots, y_1)$ or a chordless path $L_2 = (x_1, \ldots, x_{s-1}, x, y, y_{s-1}, \ldots, y_1)$ such that $x_i \in \text{left}(W_i)$, $y_i \in \text{right}(W_i)$, $i \in \{1, \ldots, s-1\}$ and $x, y \in W_s$. By the induction hypothesis there is no edge between $\{x_1, \ldots, x_{s-1}\}$ and $\{y_1, \ldots, y_{s-1}\}$. Let $L = (x_1, z_1, \ldots, z_r, y_1)$, $r \geq 2$, be a chordless path joining x_1 and y_1 such that $z_i \in A^*$, $i \in \{1, \ldots, r\}$, which clearly exists. It is easy to see that the graph induced by the vertices of L_1 and L or by the vertices of L_2 and L is isomorphic to a hole - a contradiction. This shows Claim 8. \diamond

Let

$$
\text{left}(W) := (\text{left}(W_1) \cup \ldots \cup \text{left}(W_k))
$$

$$
\text{right}(W) := (\text{right}(W_1) \cup \ldots \cup \text{right}(W_k)).
$$

By Claim 8 left(W) and right(W) form a partition of W.

Claim 9. left(W)\ominusright(W) \cup right(A^*) and right(W)\ominusleft(W) \cup left(A^*).

Proof of Claim 9. Indeed, by Claim 8 we have that left(W)\ominusright(W). By Claim 6 we have that left(W_1)\ominusright(A^*) and right(W_1)\ominusleft(A^*), and by the construction of W_2, \ldots, W_k we have that $(W_2 \cup \ldots \cup W_k)\ominus V(A^*)$. This shows Claim 9. \diamond

Since by assumption $G' = G \setminus A_6$ is not isomorphic to a matched co-bipartite graph, we must have that $W \neq \emptyset$. Assume without loss of generality that left(W) $\neq \emptyset$. Then
since by Proposition 7 (i), $A_6 \cup \text{left}(A^*)$ is a clique and since by Claim 9 there is no edge between left(W) and right($W') \cup \text{right}(A^*)$, $A_6 \cup \text{left}(A^*)$ would be a clique cutset in G which contradicts our assumption that G is an atom. This finishes the proof of Theorem 2.

Corollary 2. Let G be a (hole,paraglider)-free graph.

(i) If G is C_6-free then G is weakly chordal.

(ii) If G is an atom containing an induced C_6 then G is the join of a matched co-bipartite graph and a clique.

Proof. (i): Recall that HP-free graphs are C_k-free for $k \geq 7$.

(ii): Indeed by Theorem 2 for a C_6 A in G, $G' = G \setminus A_6$ is a matched co-bipartite graph. By Proposition 7 $A_6 \cup V(G')$, and by Proposition 3 A_6 is a clique.

Since by Proposition 3 (iv), in (hole,diamond)-free graphs $A_6 = \emptyset$, we have:

Corollary 3. Let G be a (hole,diamond)-free graph.

(i) If G is C_6-free then G is weakly chordal.

(ii) If G is an atom containing an induced C_6 then G is a matched co-bipartite graph.

5 Algorithmic Consequences

In [32], for various problems such as Minimum Fill-in, Maximum Independent Set, Maximum Clique and Coloring, it is shown that whenever these problems are efficiently solvable on the atoms of a graph class, they are efficiently solvable on the graphs of the class. For perfect graphs, Maximum Independent Set, Maximum Clique and Coloring are known to be solvable in polynomial time [23, 24] using the ellipsoid method (but from a practical point of view, this is not an efficient solution of the problems).

(Hole,paraglider)-free graphs are perfect as the Strong Perfect Graph Theorem implies (a more direct way can use Theorem 2 and Corollary 2 and the fact that a graph is perfect if its atoms are perfect).

The clique separator approach gives direct combinatorial algorithms for the problems mentioned above:

Recognition of weakly chordal graphs can be done in $O(m^2)$ [21, 27], and recognition of matched co-bipartite graphs can be easily done in linear time. Thus, given an input graph, determine its atoms and check whether they are either weakly chordal or are the join of a clique and a matched co-bipartite graph. If not then the input graph is not (hole,paraglider)-free. Otherwise solve the problems on the atoms and finally combine the solutions as described in [32].

For matched co-bipartite graphs, MWIS is trivial. A first polynomial time algorithm for weakly chordal graphs is given in [26], and in [31], MWIS is solved in time $O(n^4)$ for weakly chordal graphs. Thus, the time bound for MWIS on HP-free graphs is roughly $O(n^6)$: Determine whether the input graph is weakly chordal. If yes, use the algorithm for weakly chordal graphs. If not, check whether all prime atoms are matched co-bipartite,
and if yes, then use the trivial algorithm for these graphs. If not, the input graph is not HP-free.

For Maximum Clique and Coloring one can proceed in a similar way. For Maximum Clique on diamond-free graphs, however, there is a more direct way to solve the problem efficiently by switching to the complement graph and the complement problem MWIS: If G is gem-free (see Figure 1 for gem) then \overline{G} has the property that for every vertex, its antineighborhood is P_4-free, i.e., a cograph. This means that one can solve the MWIS problem for such graphs in time $O(nm)$ in the obvious way. In [5], a $O(n^6)$ algorithm is given for Minimum Fill-In on weakly chordal graphs. Minimum Fill-In on matched co-bipartite graphs is efficiently solvable in the obvious way.

The Maximum Weight Induced Matching (MWIM) problem is another example of a problem which can be added to the list of problems above: A set M of edges is an induced matching in G if the pairwise distance of the edges in M is at least two in G. The MWIM problem asks for an induced matching of maximum weight. In [16], it is shown that for a hereditary class C of graphs, MWIM is solvable in polynomial time if MWIM is solvable in polynomial time on the atoms of C. This can be applied to (hole,paraglider)-free graphs since for weakly chordal graphs, a polynomial time solution is given in [18], and obviously, matched co-bipartite graphs are $3K_2$-free, which means that in such graphs (and in the join of a matched co-bipartite graph and a clique) one has to check only pairs of edges.

6 Conclusion

In this paper we have described the structure of (hole, paraglider)-free atoms (of (hole, diamond)-free atoms, respectively) and some algorithmic consequences. In a forthcoming paper [3], we will analyze the structure of (hole,diamond)-free graphs and its algorithmic consequences in more detail; in particular, we show that weakly chordal diamond-free atoms are either cliques or chordal bipartite.

There are various other aspects and papers which are related to our work as described subsequently:

6.1 Related results for subclasses of P_5-free graphs

In [1], Alekseev showed that P_5- and paraglider-free atoms are $3K_2$-free which leads to a polynomial time algorithm for the MWIS problem since $3K_2$-free graphs contain at most $O(n^4)$ inclusion-maximal independent sets. In [11], we improved this result by generalizing the forbidden paraglider subgraph. In [8], we give a more detailed structural analysis of P_5- and paraglider-free atoms. In [15], we describe the structure of prime P_5- and co-chair-free graphs and give algorithmic applications. The complexity of the MWIS problem for P_5-free graphs is an open problem. It is also open for (P_5, C_5)-free graphs; such graphs are hole-free. Thus, it is interesting to study subclasses of P_5-free graphs (subclasses of (P_5, C_5)-free graphs, respectively).

6.2 Clique-width

In [6], we describe the simple structure of $(P_5,diamond)$-free graphs; such graphs can contain C_5 and thus, P_5- and diamond-free graphs are in general not perfect and incomparable.
with (hole,diamond)-free graphs. \((P_5,\text{diamond})\)-free graphs have bounded clique-width - see e.g. [20] for the notion and algorithmic implications of bounded clique-width which has tremendous consequences for efficiently solving hard problems on such graph classes. For the more general class of \((P_5,\text{gem})\)-free graphs, the situation is similar: By the Strong Perfect Graph Theorem, \((\text{hole,gem})\)-free graphs are perfect since antiholes with at least seven vertices contain gem. The structure of \((P_5,\text{gem})\)-free graphs and some algorithmic applications were described in [4, 9]. In [12], it was shown that \((P_5,\text{gem})\)-free graphs have bounded clique-width.

The clique-width of \((\text{hole,diamond})\)-free graphs, however, is unbounded since e.g. the subclass of chordal bipartite graphs (which are the (hole, triangle)-free graphs), has unbounded clique-width [14]. This illustrates that corresponding subclasses of hole-free graphs are more interesting than those of \(P_5\)-free graphs.

6.3 Open problems

It would be interesting to describe the structure of \((\text{hole,gem})\)-free graphs. In particular, how can one avoid to use the Strong Perfect Graph Theorem for showing that \((\text{hole,gem})\)-free graphs are perfect?

In [7], we give a polynomial time algorithm for the MWIS problem on hole- and co-chair-free graphs. It would be interesting to obtain better structural results on these graphs.

References

[1] V.E. Alekseev, On easy and hard hereditary classes of graphs with respect to the independent set problem, Discrete Applied Math. 132 (2004) 17-26.
[2] A. Berry, J.-P. Bordat, P. Heggernes, Recognizing weakly triangulated graphs by edge separability, Nordic Journal of Computing 7 (2005) 164-177.
[3] A. Berry, A. Brandstäd, V. Giakoumakis, Recognizing diamond-free hole-free graphs in \(O(n^2)\) time, manuscript 2011.
[4] H. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao, and J.P. Spinrad, On algorithms for \((P_5,\text{gem})\)-free graphs, Theor. Computer Science 349 (2005) 2-21.
[5] V. Bouchitté, I. Todinca, Treewidth and Minimum Fill-In: Grouping the Minimal Separators, SIAM J. on Computing 31 (2001) 212-232.
[6] A. Brandstädt, \((P_5,\text{diamond})\)-free graphs revisited: structure and linear time optimization, Discrete Applied Math. 138 (2004) 13-27.
[7] A. Brandstädt, V. Giakoumakis, Maximum Weight Independent Sets in Hole- and Co-Chair-Free Graphs, manuscript 2011, submitted.
[8] A. Brandstädt and Chinh T. Hoang, On clique separators, nearly chordal graphs and the Maximum Weight Stable Set problem, Extended abstract in: M. Jünger and V. Kaibel (Eds.), IPCO 2005, LNCS 3509, pp. 265-275, 2005. Theoretical Computer Science 389 (2007) 295-306
[9] A. Brandstädt and D. Kratsch, On the structure of \((P_5,\text{gem})\)-free graphs; Discrete Applied Math. 145 (2005) 155-166.
[10] A. Brandstädt and V.B. Le, Simplicial powers of graphs, Theoretical Computer Science 410 (2009) 5443-5454.
[11] A. Brandstädt, V.B. Le, and S. Mahfud, New applications of clique separator decomposition for the Maximum Weight Stable Set problem, Theor. Computer Science 370 (2007) 229-239.
[12] A. Brandstädt, Hoang-Oanh Le, and R. Mosca, Chordal co-gem-free graphs and \((P_5,\text{gem})\)-free graphs have bounded clique-width, Discrete Applied Math. 145 (2005) 232-241.
[13] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Math. Appl., Vol. 3, Philadelphia, 1999.

[14] A. Brandstädt, V.V. Lozin, On the linear structure and clique width of bipartite permutation graphs, Ars Combinatoria Vol. LXVII (2003) 273-281.

[15] A. Brandstädt, R. Mosca, On the Structure and Stability Number of P_5- and Co-Chair-Free Graphs, Discrete Applied Math. 132 (2004) 47-65.

[16] A. Brandstädt, R. Mosca, On Distance-3 Matchings and Induced Matchings, available online in Discrete Applied Math. 2010.

[17] A. Brandstädt and P. Wagner, Characterising (k,l)-leaf powers, Discrete Applied Math. 158 (2010) 110-122.

[18] K. Cameron, R. Sritharan, Y. Tang, Finding a maximum induced matching in weakly chordal graphs, Discrete Math. 266 (2003) 133-142.

[19] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229.

[20] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique width, Theory of Computing Systems 33 (2000) 125-150.

[21] E.M. Eschen, C.T. Hoång, J.P. Spinrad, R. Sritharan, On graphs without a C_4 or a diamond, CoRR abstract 0909.4719 (2009), electronically available in Discrete Applied Math. 2011.

[22] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[23] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169-197, Corrigendum: Combinatorica 4 (1984) 291-295.

[24] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, Annals of Discrete Math. 21 (1984) 325-356.

[25] R.B. Hayward, Weakly triangulated graphs, J. Combin. Theory Series B 39 (1985) 200-208.

[26] R.B. Hayward, C.T. Hoång, F. Maffray, Optimizing weakly triangulated graphs, Graphs and Combinatorics 5 (1989) 339-349; erratum in 6 (1990) 33-35.

[27] R.B. Hayward, J.P. Spinrad, R. Sritharan, Weakly chordal graph algorithms via handles, Proceedings of the 11th Symposium on Discrete Algorithms 42-49, 2000.

[28] R.B. Hayward, J.P. Spinrad, R. Sritharan, Improved algorithms for weakly chordal graphs, Graphs and Combinatorics 3 (2007) no. 2, Art. 14.

[29] T. Kloks, H. Müller, K. Vušković, Even-hole-free graphs that do not contain diamonds: A structure theorem and its consequences, Journal of Combinatorial Theory, Series B 99 (2009) 733-800.

[30] T.A. McKee, F.R. McMorris, Topics in Intersection Graph Theory, SIAM Monographs on Discrete Math. and Appl. Vol. 2, Philadelphia, 1999.

[31] J.P. Spinrad, R. Sritharan, Algorithms for weakly triangulated graphs, Discrete Applied Math. 59 (1995) 181-191.

[32] R.E. Tarjan, Decomposition by clique separators, Discrete Math. 55 (1985) 221-232.

[33] K. Vušković, Even-hole-free graphs: a survey, electronically available in Appl. Anal. and Discrete Math., 2010.

[34] S.H. Whitesides, A method for solving certain graph recognition and optimization problems, with applications to perfect graphs, in: Berge, C. and V. Chvátal (eds), Topics on perfect graphs, North-Holland, Amsterdam, 1984.