WEAK FORMULATION OF THE MTW CONDITION AND CONVEXITY PROPERTIES OF POTENTIALS

GRÉGOIRE LOEPER¹, NEIL TRUDINGER²

¹Monash University, School of Mathematical Sciences
²The Australian National University, Mathematical Sciences Institute

Abstract. We simplify the geometric interpretation of the weak Ma-Trudinger-Wang condition for regularity in optimal transport and provide a geometric proof of the global c-convexity of locally c-convex potentials when the cost function c is only assumed twice differentiable.

1. Introduction

We consider a cost function c defined on the product $\Omega \times \Omega^*$ of two domains Ω, Ω^* in Euclidean space \mathbb{R}^n. For a mapping $\phi : \Omega \rightarrow \mathbb{R}$ we define its c-transform $\phi^c : \Omega^* \rightarrow \mathbb{R}$ by

$$\forall y \in \Omega^*, \phi^c(y) = \sup_{x \in \Omega} \{-\phi(x) - c(x, y)\}.$$

Conversely we define the c^*-transform of $\psi : \Omega^* \rightarrow \mathbb{R}$. A c-convex potential has at every point $x \in \Omega$ a c-support, i.e., there exists $y \in \Omega^*, \psi = \psi(y) \in \mathbb{R}$ such that

$$\forall x' \in \Omega, \phi(x') \geq -\psi(y) - c(x', y),$$

with equality at $x' = x$. It follows from this definition that

$$\phi(x) = \sup_{y \in \Omega^*} \{-\psi(y) - c(x, y)\}$$

and that ϕ can be obtained as the c^* transform of $\psi : \Omega^* \rightarrow \mathbb{R}$. It then turns out that $\psi = \phi^c$. For ϕ a c-convex potential, and ϕ^c its c-transform, we define as in [2] the contact set as a set valued map G_{ϕ} given by

$$G_{\phi}(y) = \{x : \phi(x) + \phi^c(y) = -c(x, y)\}.$$

for $y \in \Omega^*$. We will also use the notions of c-segment, c-convexity of domains. Whenever needed, we will refer to the conditions $A1, A2, A3, A3w$ that have been introduced in [5, 6]. One of the main features of this paper is that we will assume throughout that the cost function

E-mail address: gregoire.loeper@monash.edu.
Date: July 7, 2020.
c is globally $C^2(\Omega \times \Omega^*)$, without any further explicit smoothness hypotheses. As usual we will use subscripts to denote partial derivatives of c with respect to variables $x \in \Omega$ and subscripts preceded by a comma to denote partial derivatives with respect to $y \in \Omega^*$, so that in particular $c_x, c_{i,y}, c_{i,j}, c_{i,j}$ denote the partial derivatives of c with respect to $x, x_i, y, y_j, x_i y_j$. We also use $c^{i,j} = [c_{i,j}]$ to denote the inverse of the matrix $c_{x,y} = [c_{i,j}]$. We further assume throughout the paper that c satisfies the assumptions A_1, A_2 of [5], that is for all $x \in \Omega$ the mapping $y \rightarrow -c_x(x,y)$ is injective, that the dual counterpart holds and the matrix $c_{x,y}$ is not singular. We also introduce what will be a weak form of assumption A_3w:

Definition 1.1. The cost function satisfies A_3v if: for all $x, x_1 \in \Omega$ and $y_0, y_1 \in \Omega^*$, for all $\theta \in (0, 1)$, with

$$c_x(x, y_0) = \theta c_x(x, y_1) + (1 - \theta)c_x(x, y_0),$$

there holds

$$\max\{-c(x, y_0) + c(x_0, y_0), -c(x, y_1) + c(x_0, y_1)\} \geq -c(x, y_0) + c(x_0, y_0) + o(|x - x_0|^2),$$

where the term $o(|x - x_0|^2)$ may depend on θ.

From [2] it is known that when the cost function is C^4, A_3v is equivalent to A_3w.

Our main result is the following:

Theorem 1.2. Let $c : \Omega \times \Omega^* \rightarrow \mathbb{R}$ be a C^2 cost-function satisfying A_1, A_2 with Ω, Ω^* c-convex with respect to each other. Assume that

(i) c satisfies A_3v.

Then

(ii) for all $y_0, y_1 \in \Omega^*$, $\sigma \in \mathbb{R}$, the set $U = \{x \in \Omega : c(x, y_0) - c(x, y_1) \leq \sigma\}$ is c-convex with respect to y_0.

(iii) for all ϕ c-convex, $x \in \Omega$, $y \in \Omega^*$, the contact set $G_\phi(y)$ and its dual $G_{\phi'}(x)$ are connected,

(iv) any locally c-convex function in Ω is globally c-convex.

Remark. The novelty of the result lies in the way it is obtained; at no point do we have to differentiate the cost function c. Hence the computations from previous proofs [1, 4, 8], in the case when $c \in C^4$, do not have to be reproduced. The proof will be based on a purely geometric interpretation of condition A_3v.

2. Proof of Theorem 1.2

In what follows we will use the term c–exponential (c-exp), as in [2], to denote the mapping in condition A_1, that is

$$y = c$-exp_x(p) \iff -c_x(x, y) = p.$$
We recall also that
\[D_p(\text{c-exp}_x) = -c^{x,y}. \]

The core of the proof lies in the following two lemmas,

Lemma 2.1 (c-hyperplane lemma). Let \(x_0 \in \Omega, y_0, y_1 \in \Omega^* \) and let \(y_\theta = \text{c-exp}_{x_0} p_\theta \) where \(p_\theta = (1 - \theta)c_x(x_0, y_0) + \theta c_x(x_0, y_1), \ 0 \leq \theta \leq 1 \), denote a point on the c-segment from \(y_0 \) to \(y_1 \), with respect to \(x_0 \).

Consider
\[S_\theta = \{ x \in \Omega : c(x, y_0) - c(x_0, y_0) \leq c(x, y_\theta) - c(x_0, y_\theta) \} \]
Then as \(\theta \) approaches 0, \(\partial S_\theta \cap \Omega \) converges to \(H_0 \), the \(c^* \)-hyperplane with respect to \(y_0 \), passing through \(x_0 \), with \(c \)-normal vector \(p_1 - p_0 \), given by
\[H_0 = \{ x \in \Omega : -c^{x,y}(x_0, y_0)(p_1 - p_0) \cdot [c_y(x, y_0) - c_y(x_0, y_0)] = 0 \} \]

Proof. Locally around \(\theta = 0 \), the equation of \(\partial S_\theta \) reads
\[[c_y(x, y_0) - c_y(x_0, y_0)] \cdot (y_\theta - y_0) = o(\theta). \]
Passing to the limit as \(\theta \) goes to 0, we obtain
\[[c_y(x, y_0) - c_y(x_0, y_0)] \cdot \partial_\theta y_\theta = 0, \]
which gives the desired result, since
\[\partial_\theta y_\theta = -c^{x,y}(x_0, y_0)(p_1 - p_0). \]

Remark. We call \(H_0 \) a c-hyperplane with respect to \(y_0 \) because if we express \(x \) as \(c^*-\exp_{y_0}(q) \) then
\[H_0 = c^*-\exp_{y_0}(\tilde{H}_0), \]
or equivalently
\[\tilde{H}_0 = -c_y(\cdot, y_0)(H_0), \]
where
\[\tilde{H}_0 = \{ q \in c_y(\cdot, y_0)(\Omega) : c^{x,y}(x_0, y_0)(p_1 - p_0) \cdot (q - q_0) = 0 \}, \quad q_0 = -c_y(x_0, y_0) \]
Therefore, \(H_0 \) is the image by \(c^*-\exp_{y_0} \) of a hyperplane.

Remark. We will define in the same way the section \(S_\theta, \theta' \) for \(\theta' \in (\theta, 1) \) and the \(c^* \)-hyperplane \(H_\theta \).

The following lemma is then the second main ingredient of the proof: it says that the \(c \)-convexity of \(S_\theta \) is non-decreasing with respect to \(\theta \); (note that the previous lemma asserts that the \(c \)-convexity of \(S_\theta \) vanishes at \(\theta = 0 \)).

Lemma 2.2. Assume that \(c \) satisfies A3v. Then the second fundamental form of \(S_\theta \) at \(x_0 \) is non-decreasing with respect to \(\theta \), for \(\theta \) in \((0, 1]\).
Proof. Consider
\[h_\theta = c(x, y_\theta) - c(x, y_0) - c(x_0, y_0) + c(x_0, y_\theta). \]
Note that \(h_\theta \) is a defining function for \(S_\theta \) in the sense that \(S_\theta = \{ x \in \Omega : h_\theta \leq 0 \} \).

Note also that at \(x = x_0 \) we have \(h_\theta(x_0) = 0 \) for all \(\theta \) and the set
\[\{ \partial_x h_\theta | x = x_0, \theta \in [0, 1] \} \]
is a line. Therefore all the sets \(\partial S_\theta \) contain \(x_0 \) and have the same unit normal at \(x_0 \).

Then we note that property \(A_3v \) is equivalent to the following: locally around \(x_0 \) we have
\[h_\theta \leq \max\{h_1, 0\} + o(|x - x_0|^2). \tag{1} \]
(To see this, we just subtract \(c(x_0, y_0) - c(x, y_0) \) from both sides of the inequality \(A_3v \)).

Then (1) implies that the second fundamental form of \(S_\theta \) cannot strictly dominate the second fundamental form of \(S_1 \) in any tangential direction at \(x_0 \). By changing \(y \) into \(y_\theta' \) for \(\theta' \geq \theta \), this implies that the second fundamental form of \(S_\theta \) is non-decreasing with respect to \(\theta \).

\[\square \]

Remark. We remark that analytically the conclusion of Lemma 2.2 can be expressed as a co-dimension one convexity of the matrix
\[A(x, p) = -c_{xx}(x, c\text{-exp}_{x_0}(p)) \]
with respect to \(p \), in the sense that the quadratic form \(A\xi, \xi \) is convex on line segments in \(p \) orthogonal to \(\xi \) or more explicitly:
\[\left[A_{ij}(x, p_\theta) - (1 - \theta)A_{ij}(x, p_0) - \theta A_{ij}(x, p_1) \right] \xi_i \xi_j \leq 0, \tag{2} \]
for all \(\xi \in \mathbb{R}^n \) such that \(\xi \cdot (p_1 - p_0) = 0 \), which, for arbitrary \(y_0, y_1 \in \Omega^* \), is clearly equivalent to \(A_3w \) when \(c \in C^4 \).

We now deduce assertion \((ii) \) in Theorem 1.2 from \(A_3v \); this will be done in several steps.

Step 1. Uniform boundedness of the section’s curvature (including \(c \)-hyperplanes)
From the previous corollary, it follows that \(\theta \to c_{xx}(x_0, y_\theta)\xi_i \xi_j \) is convex and therefore Lipschitz, and for a.e. \(\theta \in [0, 1] \),
\[A = \partial_\theta c_{x_i x_j}(x_0, c\text{-exp}_{x_0}(p_\theta))\xi_i \xi_j \]
exists and is equal to \(\lim_{\theta' \to \theta} B(\theta, \theta') \) where
\[B(\theta, \theta') = \frac{(c_{x_i x_j}(x_0, c\text{-exp}_{x_0}(p_{\theta'})) - c_{x_i x_j}(x_0, c\text{-exp}_{x_0}(p_\theta))) \xi_i \xi_j}{\theta' - \theta}. \]
The first term would be the curvature of \(H_\theta \) if it exists. The second term in the limit is the curvature of \(S_{\theta,\theta'} \). We can deduce right away that the curvature of \(S_{\theta,\theta'} \) remains uniformly bounded at \(x_0 \) thanks to (2). Now this reasoning can be extended to any point \(x_1 \in \partial S_{\theta,\theta'} \), although the \(c \)-segment between \(y_0 \) and \(y_0' \) will be with respect to \(x_1 \), but the conclusion that the curvature of \(S_{\theta,\theta'} \) at \(x_1 \) is uniformly bounded remains. Therefore the curvature of all sections is uniformly bounded as the uniform limit of \(S_{\theta,\theta'} \), \(H_\theta \) is a \(C^{1,1} \) hypersurface, and therefore has a curvature a.e. given by \(A \).

Step 2. Local convexity Wherever \(A \) is well defined, the curvature of \(H_\theta \) is equal to \(A \). Moreover, for \(\theta' > \theta \), the second fundamental form of \(S_{\theta,\theta'} \) dominates a.e. the one of \(H_\theta \).

Let us define the hypersurfaces

\[P_m = \{ x \in \Omega, c(x, y_0) - c(x, y_1) = m \}, m \in \mathbb{R} \]

By standard measure theoretical arguments, the previous result implies the following:

Lemma 2.3. For a.e. \(y_0, y_1, m \) there holds at \(\mathcal{H}^{n-1} \) every point \(x_0 \) on \(P_m(y_0, y_1) \), that

- the second fundamental form (SFF) of \(H_0(x_0, y_0, y_1) \) at \(x_0 \) is well defined, let us call it \(A \), equivalently \(H_0(x_0, y_0, y_1) \) is twice differentiable (as a hypersurface)
- \(A \) is dominated by the SFF of \(\partial S_1(x_0, y_0) \)
- going back to the tangent space (i.e. composing with \(c \cdot y) \)), the second fundamental form of \(c \cdot y) \partial S_1(x_0, y_0) \) dominates the null form.

We now conclude the local convexity. Starting from a point \(x_0 \) where \(H_0 \) and \(S_0 \) are tangent. Both are defined by \(x_0, y_0, y_1 \). We let \(p = c_\pi(x_0, y_0) - c_\pi(x_0, y_1) \). Representing \(S_0 \) and \(H_0 \) as graphs over \(\mathbb{R}^{n-1} \), and we denote by \(h_0 \) and \(s_0 \) the corresponding functions. We assume \(x_0 = 0 \), and that both graphs have a flat gradient at \(0 \). For \(x \in \mathbb{R}^{n-1} \) we have

\[h(x') = |x'|^2 \int_0^1 \partial_{\nu}h(\theta x')(1 - \theta)d\theta \]

and the same holds for \(s \) (\(\nu \) is the appropriate unit vector). By the definition of \(H_0 \), at a given point \(z = (x', h_0(x')) \), \(H_0 \) is tangent to

\[S_z = S(z, y_0, c - c_\pi(z, y_0) + p) \]

For almost every choice of \(x_0 \) there will hold for a.e. \(x' \) that

\[\partial_{\nu}h(x') \leq \partial_{\nu}s_z(x') \leq \partial_{\nu}s_0(x') + \varepsilon(x' - 0) \]
with \(\lim_0 \varepsilon = 0 \), depending on the continuity of \(c_{xx}, c_{x,y} \). Therefore

\[
h_0(x') \leq |x'|^2 \left(\int_0^1 \partial_{xx} s_0(\theta x')(1 - \theta)d\theta + \varepsilon(x') \right)
\]

\[
\leq s_0(x') + \varepsilon(x' - x_0)|x'|^2.
\]

Going now in the tangent space, for \(q' \) in a well chosen \(n - 1 \) subspace, and \(\pi \) the projection on \(\{x_n = 0\} \), we call \(x(q') = \pi(c^* - \exp(y_0, q')) \) and we have

\[
h_0(x(q')) \leq s_0(x(q')) + \varepsilon(x(q') - x_0)|x(q')|^2,
\]

\(h_0(x(q')) \) is an affine function, \(s_0(x(q')) \) defines the image of \(S_0 \) by \(c_{y} \) and \(\varepsilon(x(q'))|x(q')|^2 \leq \varepsilon(q')|q'|^2 \) for some \(\varepsilon' \). For a.e. choice of \(x_0 \), this holds for a.e. \(q' \). More importantly the \(\varepsilon' \) is (locally) uniform. This implies the convexity through the following lemma.

Lemma 2.4. Let \(s \) be \(C^1 \). Assume that for some continuous \(\varepsilon(\cdot) \) with \(\varepsilon(0) = 0 \), there holds for almost every \(x_0, x \)

\[
s(x) \geq l_{x_0}(x) - \varepsilon(x - x_0)|x - x_0|^2
\]

\(l_{x_0} \) being the tangent function at \(x_0 \), then \(s \) is convex.

Proof. Elementary, both sides of the inequality are continuous in \(x, x_0 \), so this holds in fact everywhere.

\[\square\]

Global convexity To complete the proof of assertion (ii), we need to show that the set \(\hat{S}_1 \) is connected. The proof goes as follows, and it is very close to the argument of [6], Section 2.5. Let \(\sigma \) be a constant, and assuming that the set

\[
\{ c(x, y_0) - c(x, y_1) \leq \sigma \}
\]

has two disjoint components, we let \(\sigma \) increase until the two components touch in a \(C^1 \) \(c \)-convex subdomain \(\Omega' \subset \subset \Omega \). From the local convexity property this can only happen on the boundary of \(\Omega' \). At this point, say \(x_1 \) there holds locally that

\[
c(x, y_0) - c(x, y_1) \leq \sigma
\]

on \(\partial \Omega' \) and for \(x^\varepsilon = x_1 - \varepsilon \nu, \nu \) the outer unit normal to \(\Omega' \),

\[
c(x^\varepsilon, y_0) - c(x^\varepsilon, y_1) > h.
\]

This implies that

\[
c(x, y_0) - c(x, y_1) \geq h
\]

is locally \(c \)-convex around \(x_1 \), a contradiction, and from this we deduce that \(S_1 \) can have at most one component. Since a connected locally convex set in Euclidean space must be globally convex, we thus deduce that \(S_1 \) is globally \(c \)-convex.
2.1. **An analytical proof for a smooth cost function.** If a C^2 domain Ω is defined locally by $\varphi > 0$, its local c-convexity with respect to y_0, for $c \in C^3$, is expressed by
\[
\left[\varphi_{ij} + c_{ij,k} k^{l} (\cdot, y_0) \partial_l \varphi \right] \tau_i \tau_j \geq 0,
\]
or equivalently
\[
\left[\varphi_{ij} + \partial_p A_{ij} \partial_p \varphi \right] \tau_i \tau_j \geq 0
\]
for all $\tau \in \partial \Omega$ [8]. Plugging $\varphi(x) = c(x, y_0) - c(x, y_1) - h$ into this inequality, we obtain immediately from (2) that S_1 is locally c-convex with respect to y_0. More generally this argument proves Theorem 1.2 when we assume additionally that the form $A_\xi \cdot \xi$ is differentiable with respect to p in directions orthogonal to ξ.

2.2. **Connectedness of the contact set.** This new characterization implies right away the c-convexity of the global c-sub-differential. We prove now that (i) implies (iii).

For ϕ c-convex, we have
\[
\phi(x) = \sup_y \{-\phi^c(y) - c(x, y)\},
\]
\[
\phi^c(y) = \sup_x \{-\phi(x) - c(x, y)\}.
\]
Then
\[
\{\phi(x) \leq -c(x, y_0) + h\} = \cap_y \{x : -\phi^c(y) - c(x, y) \leq -c(x, y_0) + h\}
\]
\[
= \cap_y \{x : c(x, y_0) \leq c(x, y) - h + \phi^c(y)\}.
\]
Therefore $\{\phi(x) \leq -c(x, y_0) + h\}$ is an intersection of c-convex sets and hence also c-convex. We then have
\[
G_{\phi}(y) = \{x, \phi(x) = -c(x, y) - \phi^c(y)\}
\]
\[
= \{x, \phi(x) \leq -c(x, y) - \phi^c(y)\},
\]
and hence $G_{\phi}(y)$ is a c-convex set. To show the dual conclusion, we may rewrite assertion (ii) as: for all $y, y_1 \in \Omega^*$, $x_0, x_1 \in \Omega^*$ and $\theta \in (0, 1)$, with
\[
c_\theta(x_\theta, y) = \theta c_\theta(x_1, y) + (1 - \theta)c_\theta(x_0, y),
\]
there holds
\[
\max\{-c(x_0, y) + c(x_0, y_0), -c(x_1, y) + c(x_1, y_0)\}
\]
\[
\geq -c(x_\theta, y) + c(x_\theta, y_0).
\]
Since this shows in particular that A_{3v} is invariant under duality we complete the proof of assertion (iii). Moreover as a byproduct of this argument we also see that the sets S_θ are non-increasing with respect to θ and that A_{3v} holds without the term $o(|x - x_0|^2)$. □
2.3. **Local implies global.** We prove that (ii) implies (iv). We consider ϕ a locally c-convex function, i.e., ϕ has at every point a local c-support. Locally, ϕ can be expressed as

$$
\phi(x) = \sup_{y \in \omega} \{-\psi(y) - c(x, y)\},
$$

for some $\omega(x) \subseteq \Omega^*$ (if ϕ was globally c-convex there would hold that $\omega \equiv \Omega^*$ and ψ would be equal to ϕ^c). It follows that the level sets

$$
S_{m, y_0} = \{ x : \phi(x) + c(x, y_0) \leq m \}
$$

are locally c-convex with respect to y_0 for any y_0. We obtain that $-\partial_y c(S_{m, y_0}, y_0)$ is locally convex. Reasoning again as in the proof of the global convexity in point (ii) (i.e. increasing m until two components touch), we obtain that, for ϕ locally c-convex, $-\partial_y c(S_{m, y_0}, y_0)$ is globally convex for all y_0. This implies in turn the global c-convexity of ϕ, following Proposition 2.12 of [2]. As already mentioned, this part is very similar to the argument of [8], section 2.5.

Finally we remark that the arguments in this paper extend to generating functions as introduced in [7] and also provide as a byproduct an alternative geometric proof of the invariance of condition $A3\omega$ under duality to the more complicated calculation in [7]. The resultant convexity theory is presented in [3].

□

References

[1] Y.-H. Kim and R. J. McCann. Continuity, curvature, and the general covariance of optimal transportation. *J. Eur. Math. Soc. (JEMS)*, 12:1009–1040, 2010.

[2] G. Loeper. On the regularity of solutions of optimal transportation problems. *Acta Mathematica*, 202(2):241–283, 2009.

[3] G Loeper and Neil S. Trudinger. preprint.

[4] G. Loeper and C. Villani. Regularity of optimal transport in curved geometry: the non-focal case. *Duke Math. Journal*, 151(3):431–485, 2010.

[5] X.-N. Ma, N. S. Trudinger, and X.-J. Wang. Regularity of potential functions of the optimal transport problem. *Arch. Ration. Mech. Anal.*, 177(2):151–183, 2005.

[6] N. S. Trudinger and X.-J. Wang. On the second boundary value problem for Monge-Ampère type equations and optimal transportation. *Ann. Scuola Norm. Sup. Pisa Cl. Sci.*, 5(8):143–174, 2009.

[7] Neil S. Trudinger. On the local theory of prescribed Jacobian equations. *Discrete Contin. Dyn. Syst.*, 34(4):1663–1681, 2014.

[8] Neil S Trudinger and Xu-Jia Wang. On strict convexity and continuous differentiability of potential functions in optimal transportation. *Archive for rational mechanics and analysis*, 192(3):403–418, 2009.

Gregoire Loeper
Monash University
School of Mathematics
9 Rainforest Walk
3800 CLAYTON VIC, AUSTRALIA

email: gregoire.loeper@monash.edu