On the sensitivity analysis of energy quanto options

Rodwell Kufakunesu\textsuperscript{a,}*, Farai Julius Mhlanga\textsuperscript{b,}*, and Calisto Guambe\textsuperscript{a,}*

\textsuperscript{a}Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa; \textsuperscript{b}Department of Mathematics and Applied Mathematics, University of Limpopo, Sovenga, South Africa

**ABSTRACT**

In recent years there has been an advent of quanto options in energy markets. The structure of the payoff is rather a different type from other markets since it is written as a product of an underlying energy index and a measure of temperature. In the Heath-Jarrow-Morton (HJM) framework, by adopting the futures energy dynamics and model with stochastic volatility, we use the Malliavin calculus to derive the energy delta, temperature delta and cross-gamma formulae. The results reveal that these quantities are expressed in terms of expectations of the payoff and a random variable only depending on the underlying dynamics. This work can be viewed as a generalization of the work done, for example, by Benth et al. (2015).

**ARTICLE HISTORY**

Received 29 January 2018
Accepted 21 September 2021

**KEYWORDS**

Energy option; futures; Malliavin derivatives; HJM framework

**1991 MATHEMATICS SUBJECT CLASSIFICATION**

91G20; 60H30; 91B76

**1. Introduction**

The paper investigates hedging of the energy quanto options using the Malliavin Calculus approach by Nualart [1]. This method has shown that it outperforms the finite difference approach when it comes to discontinuous payoffs, see Benth et al. [2]. Quanto options in the equity market differ from those designed for energy markets by the structure of their payoffs. The energy quanto option has a product payoff which is structured in such a way that it takes advantage of the high correlation between energy consumption and certain weather conditions thereby enabling price and weather risk to be controlled simultaneously, refer Caporin et al. [3]. On the other hand, the equity quanto has a normal structure. Ho et al. [4] noted that quanto options, in general, are better hedgers than a simple combination of plain vanilla options. In energy markets, they give exposure to the volumetric risk input of weather conditions on energy prices, see Zhang [5].

Heath et al. [6] introduced the so-called HJM approach in fixed income markets where the dynamics of the forward rates are directly specified, see Benth et al. [7]. The fact that most contracts in energy markets are settled in futures and forward, the framework was later on in 2000 adopted in this market by Clewlow and Strickland [8]. There have been few papers in literature analyzing the hedging of this quanto option product. Benth et al. [9] recently studied the pricing and hedging of quanto energy options in this framework basing on both the spot and the futures products as the underlying
processes. The authors derived analytic expressions for the energy delta, temperature delta, and cross-gamma hedging formulae using direct differentiation of the price of quanto options. If the payoff functions are discontinuous then their approach method fails.

The Malliavin calculus technique has been used by several authors to obtain *Greeks* (partial derivatives of option prices with respect to underlying parameters) in equity derivative products, see for example, [7, 10–16]. In all these references the methods were not applied in a product payoff structure such as ours and with an interval delivering period. Our results can be viewed as a generalization of Benth et al. [9] in the sense that our approach allows for discontinuous payoff functionals.

Besides Malliavin calculus, finite difference, pathwise differentiation and likelihood ratio approaches are used to derive the derivative free formulae. The finite difference approach involves simulating the derivative prices at two or more values of the underlying parameter and then estimate the derivative free formulae by taking difference quotients between these values. Finite difference approach is easy to implement, however it is prone to large bias and large variance especially when dealing with discontinuous payoff functions, as in the case of a digital type and a barrier type quanto option [17]. The pathwise method computes the derivative of the payoff function with respect to the parameter of interest. This method only works for specific payoff functions, hence we cannot generalize the implementation of this approach. When it is applicable, the method gives unbiased results [18, p. 386]. However, the pathwise approach cannot be applied to non-differentiable payoff functions as in the case of barrier type and digital type quanto options. The likelihood ratio method assumes that the probability density function of the price is explicitly known and depends on the parameter of interest. The derivative free formulae is then computed by computing the derivative of the probability density of the underlying variable rather than the derivative of the payoff function [19]. The likelihood ratio method is restricted by requiring an explicit knowledge of the density of the underlying model, for example the probability density function for Asian type quanto options is not known.

Comparing with the mentioned approaches, Malliavin calculus approach has several advantages as it avoids the need to differentiate payoff functions and does not require explicit knowledge of the density of the underlying asset. However, the Malliavin calculus method is not reported to be better than the finite difference method when dealing with smoother payoff functionals such as the vanilla options [2]. The mathematical challenge arises from payoff functions which tend to be discontinuous, non-differentiable or even more complicated.

Typical energy quanto options have payoff functions that are determined by the level of both the energy price and an index related to weather (temperature) [9]. Typically, the energy quanto options have a general payoff, factorizing in functionals of the two underlying, that is,

\[ f(x, y) = g(x)h(y) \]  

for some measurable functions \( g \) and \( h \). The energy quanto options considered so far in literature have a continuous payoff of European call type

\[ g(x)h(y) = \max\{x - K^E, 0\} \times \max\{y - K^I, 0\} \]
where $K^E, K^T > 0$ are strike prices [9]. However, one or both of the two payoff functions (either $g$, $h$ or both) could be discontinuous. A typical example is the so-called digital type (or binary options) energy quanto option, that is,

$$g(x) = 1_{\{x \geq K^E\}} \text{ and/or } h(y) = 1_{\{y \geq K^T\}}. \quad (1.3)$$

Since the energy quanto options should hedge the joint price and volume risk, this paper considers, for example, a discontinuous payoff structure of the form

$$\max\{x - K^E, 0\} \times 1_{\{y \geq K^T\}} \quad (1.4)$$

which hedges the price risk, if and only if the average temperature during a certain period is too high. For such type of options one cannot use the pathwise or the likelihood ratio methods. This is where Malliavin calculus approach is most suited.

The purpose of the current paper is to derive the so-called derivative free hedging formulae using a much more powerful tool: the Malliavin calculus. In particular, we derive the energy delta, temperature delta and the cross-gamma hedging expectation formulae. Other hedging formulae are derived by using a similar approach. The energy delta is defined as the partial derivative of the price of quanto option with respect to the energy future price. The temperature delta is defined as the partial derivative of the price of quanto option with respect to the temperature index futures. The cross-gamma is defined as the second partial derivative of the price of quanto option with respect to both the energy future price and the temperature index futures. The contribution of this study is to derive applicable formulae in the context of Malliavin calculus. In passing, we generalize the calculations of Greeks in Benth et al. [9]. The use of Malliavin calculus allows us to obtain Greeks which are suitable for Monte Carlo simulation. Information about Greeks is useful for constructing replicating portfolios to protect the portfolio against possible changes related to certain risk factors.

The paper is organized as follows. Section 2 presents the structure of the quanto option and formulate the pricing problem as in Benth et al. [9]. In addition, we present the futures asset dynamics general diffusion models under the HJM framework. In Sec. 3, we review the necessary tools from Malliavin calculus to be applied in our proofs. In Sec. 4, we derive formulae for the energy delta, temperature delta and cross-gamma when the energy and temperature are independent while in Sec. 5, we derive the same when there is correlation between energy and temperature. Examples for both the independence case and correlation case are provided in Sec. 6. Section 7 is devoted quanto options with stochastic volatility. In Sec. 8, we discuss the residual risk. Finally, in Sec. 9, we conclude.

### 2. The contract structure and pricing of quanto options

In this section, we review the commodity quanto pricing, see, for example, Benth et al. [9] and in particular, we follow their notations therein. Benth et al. [9] have considered the quanto option with a payoff function $S$ given by:

$$S = (T_{\text{var}} - T_{\text{fix}})^+ \times (E_{\text{var}} - E_{\text{fix}})^+, \quad x^+ = \max(x, 0)$$

where $T_{\text{var}}$ represents some variable temperature measure, $T_{\text{fix}}$ represents some fixed temperature measure, and $E_{\text{var}}, E_{\text{fix}}$ are the variable and fixed energy
price, respectively. To avoid the downside risk on this quanto contract, it has been reported in Benth et al. [9] that for hedging purposes, it is reasonable to buy a contract with optionality. In the temperature market of Chicago Mercantile Exchange (CME), the contracts are written on the aggregated amount of heating-degree days (HDD) and cooling-degree days (CDD). The temperature index is used as the underlying. The HDD (similarly the CDD) over a measurement period $[\tau_1, \tau_2]$ is defined by:

$$HDD(t) := \max\{c - T(t), 0\},$$

(2.1)

where $T(t)$ is the mean temperature on day $t$, and $c$ is the pre-specified temperature threshold (e.g., 65°F or 18°C). If the contract is specified as the accumulated HDD over $[\tau_1, \tau_2]$ we have

$$\sum_{t=\tau_1}^{\tau_2} HDD(t) = \sum_{t=\tau_1}^{\tau_2} \max\{c - T(t), 0\},$$

(2.2)

analogously for CDD.

We note that quanto options have a payoff function that is a function of two underlying assets, temperature and price. We focus on quanto options with payoff function $f(E, I)$ where $E$ is an index of the energy price and $I$ is an index of temperature. The energy index $E$ over a period $[\tau_1, \tau_2]$ with $\tau_1 < \tau_2$ is defined to be the average spot price namely:

$$E = \frac{1}{\tau_2 - \tau_1} \sum_{u=\tau_1}^{\tau_2} S_u,$$

(2.3)

where $S_u$ is the energy spot price. In addition, we assume that the temperature index is defined by

$$I = \sum_{u=\tau_1}^{\tau_2} g(T_u),$$

(2.4)

where $T_u$ denotes the temperature at time $u$ and $g$ some function. For example, for a quanto option involving the HDD index, we choose $g(x) = \max\{x - 18, 0\}$. To price the quanto option exercised at the time $\tau_2$, its arbitrage-free price at time $t \leq \tau_2$ becomes

$$C_t = e^{-r(\tau_2 - t)} \mathbb{E}_t^Q \left[ f\left( \frac{1}{\tau_2 - \tau_1} \sum_{u=\tau_1}^{\tau_2} S_u, \sum_{u=\tau_1}^{\tau_2} g(T_u) \right) \right],$$

(2.5)

where $r > 0$ represents a constant risk-free interest rate and $\mathbb{E}_t^Q$ is the expectation operator with respect to $\mathbb{Q}$, conditioned on the market information at time $t$ given by the filtration $\mathcal{F}_t$. Following the argument in Benth et al. [9] on the relationship between the quanto option and the futures contract on the energy and temperature indexes $E$ and $I$, we note that the price at time $t \leq \tau_2$ of a futures contract written on some energy price with delivery period $[\tau_1, \tau_2]$ is given by
\[
F_E(t; \tau_1, \tau_2) = \mathbb{E}_t^Q \left[ \frac{1}{\tau_2 - \tau_1} \sum_{u=\tau_1}^{\tau_2} S_u \right].
\] (2.6)

At \( t = \tau_2 \) we have:
\[
F_E(\tau_2; \tau_1, \tau_2) = \frac{1}{\tau_2 - \tau_1} \sum_{u=\tau_1}^{\tau_2} S_u.
\] (2.7)

This means that the future price is exactly equal to what is being delivered. Applying the same argument to the temperature index, with price dynamics denoted by \( F_I(t, \tau_1, \tau_2) \), the quanto option price \( C_t \) can be written as:
\[
C_t = e^{-r(\tau_2 - t)} \mathbb{E}_t^Q \left[ f \left( \frac{1}{\tau_2 - \tau_1} \sum_{u=\tau_1}^{\tau_2} S_u, \sum_{u=\tau_1}^{\tau_2} g(T_u) \right) \right]
\]
\[= e^{-r(\tau_2 - t)} \mathbb{E}_t^Q \left[ f \left( F_E(\tau_2; \tau_1, \tau_2), F_I(\tau_2; \tau_1, \tau_2) \right) \right].
\] (2.8)

The advantage of writing the quanto option price as in Equation (2.8) is that futures are traded financial assets. Let \( K_E, K_I \) denote the high strikes for the energy and temperature indexes, respectively and \( \tilde{K}_E, \tilde{K}_I \) denote the low strikes for the energy and temperature indexes, respectively. Now we can define the payoff function
\[p(F_E(\tau_2; \tau_1, \tau_2), F_I(\tau_2; \tau_1, \tau_2), \tilde{K}_E, \tilde{K}_I, K_E, K_I) := p\]
so that
\[p = \alpha \times \left[ \max \{ F_E(\tau_2; \tau_1, \tau_2) - \tilde{K}_E, 0 \} \times 1_{\{ F_I(\tau_2; \tau_1, \tau_2) \geq \tilde{K}_I \}} + \max \{ \tilde{K}_E - F_E(\tau_2; \tau_1, \tau_2), 0 \} \times 1_{\{ F_I(\tau_2; \tau_1, \tau_2) \geq \tilde{K}_I \}} \right],
\] (2.9)
where \( \alpha \) is the contractual volume adjustment factor. As an example as in Benth et al. [9], we consider the product volume adjustment with the volume adjuster \( \alpha \) normalized to 1, that is, we consider the price of an option with the following payoff function:
\[\hat{p} = \max \{ F_E(\tau_2; \tau_1, \tau_2) - \tilde{K}_E, 0 \} \times 1_{\{ F_I(\tau_2; \tau_1, \tau_2) \geq \tilde{K}_I \}},\]
and the quanto option at time \( t \) is given by:
\[
C_t = e^{-r(\tau_2 - t)} \mathbb{E}_t^Q \left[ \hat{p}(F_E(\tau_2; \tau_1, \tau_2), F_I(\tau_2; \tau_1, \tau_2), \tilde{K}_E, \tilde{K}_I) \right].
\]

### 2.1. The asset dynamics

We use the HJM risk-neutral dynamics of the forward contract at time \( t \). Consider the general diffusion futures model under the risk-neutral measure \( \mathbb{Q} \) be given as:
\[
dF^E(t; \tau_1, \tau_2) = \sigma_E(t, F^E(t; \tau_1, \tau_2))dW^E(t),
\] (2.10)
\[
dF^I(t; \tau_1, \tau_2) = \sigma_I(t, F^I(t; \tau_1, \tau_2))dW^I(t).
\] (2.11)

with \( F^E(0; \tau_1, \tau_2) > 0 \) and \( F^I(0; \tau_1, \tau_2) > 0 \) where \( \sigma_E, \sigma_I \) are deterministic volatilities and \( W^E, W^I \) are correlated Brownian motions with a correlation parameter \( \rho \in (-1, 1) \). The process \( F^E \) is the option price of a future contact written on some energy price and \( F^I \) is the option price of a future contact written on some temperature price.
Given an arbitrary $W^E$, there exists $\tilde{W}^I$ which is independent of $W^E$ and $W^I$. Then, we can express $W^I$ as follows
\[
W^I = \rho W^E + \sqrt{1 - \rho^2} \tilde{W}^I. \tag{2.12}
\]
Thus we have
\[
dF^E(t; \tau_1, \tau_2) = \sigma_E(t, F^E(t; \tau_1, \tau_2))dW^E(t),
\]
\[
dF^I(t; \tau_1, \tau_2) = \rho \sigma_I(t, F^I(t; \tau_1, \tau_2))dW^E(t) + \sigma_I(t, F^I(t; \tau_1, \tau_2))\sqrt{1 - \rho^2}d\tilde{W}^I(t). \tag{2.14}
\]
The above equations can be written in matrix form as follows:
\[
\begin{pmatrix}
  dF^E \\
  dF^I
\end{pmatrix} =
\begin{pmatrix}
  \sigma_E(t, F^E) & 0 \\
  \rho \sigma_I(t, F^I) & \sigma_I(t, F^I)\sqrt{1 - \rho^2}
\end{pmatrix}
\begin{pmatrix}
  dW^E \\
  d\tilde{W}^I
\end{pmatrix}.
\]
We can write this as:
\[
d\bar{F} = a(t, F^I, F^E)d\bar{W}, \tag{2.15}
\]
where the matrix $a : ([0, \tau_2] \times \mathbb{R}^2) \to \mathcal{M}_2$, satisfies the growth and Lipschitz conditions. We can write (2.15) as:
\[
\bar{F} = \bar{F}_0 + \int_0^t a(t, F^I, F^E)d\bar{W}, \quad \bar{F}_0 > 0. \tag{2.16}
\]
For example, given this dynamics the quanto option becomes:
\[
C_t = \mathbb{E}^Q \left[ \hat{g} \left( \int_0^{\tau_2} \sigma_E(t, F^E)dW^E \right) \hat{h} \left( \int_0^{\tau_2} \sigma_I(t, F^I)dW^E, \int_0^{\tau_2} \sigma_I(t, F^I)d\tilde{W}^I \right) \right], \tag{2.17}
\]
where $\hat{g}(x) = \max\{x - K^E, 0\}$ and $\hat{h}(x, y) = \rho \max\{x - K^E, 0\} \times \sqrt{1 - \rho^2}1_{y \geq K^I}$ are measurable functions.

### 3. A primer on the Malliavin derivative properties

In this section, we review the necessary Malliavin derivative properties. These properties were also highlighted in Fournie et al. [12] and Mhlanga [15] and the proofs can be found in Nualart [1]. Let $\{W(t), 0 \leq t \leq \tau_2\}$ be an $n$-dimensional Brownian motion defined on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{Q})$. Let $S$ denote the class of random variables of the form
\[
F = f \left( \int_0^{\tau_2} h_1(t)dW(t), ..., \int_0^{\tau_2} h_n(t)dW(t) \right), \quad f \in C^\infty(\mathbb{R}^n),
\]
where $h_1, ..., h_n \in L^2([0, \tau_2])$.

For $F \in S$, the Malliavin derivative $DF$ of $F$ is defined as the process $\{D_tF, t \in [0, \tau_2]\}$ in $L^2([0, \tau_2])$ by:
\[
D_tF = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \left( \int_0^{\tau_2} h_1(t)dW(t), ..., \int_0^{\tau_2} h_n(t)dW(t) \right) h_i(t), \quad t \geq 0 \text{ a.s.}
\]
On $L^2([0, \tau_2])$ define the norm as:
The chain rule holds for the Malliavin derivative in the following form.

**Property P1.** Let \( F = (F_1, ..., F_n) \in \mathbb{D}^{1,2} \) and let \( \varphi : \mathbb{R}^n \to \mathbb{R} \) be a continuously differentiable function with bounded partial derivatives. Then \( \varphi(F) \in \mathbb{D}^{1,2} \) and

\[
D_t \varphi(F) = \sum_{i=1}^n \frac{\partial \varphi}{\partial x_i}(F)D_t F_i, \quad t \geq 0 \quad \text{a.s.} \tag{3.1}
\]

**Property P2.** Let \( \{X_t, \ t \geq 0\} \) be an \( \mathbb{R}^n \) valued Itô process whose dynamics are governed by the stochastic differential equation

\[
dX_t = b(X_t)dt + \sigma(X_t)dW_t, \tag{3.2}
\]

where \( b \) and \( \sigma \) are supposed to be continuously differentiable functionals with bounded derivatives and \( \sigma(x) \neq 0 \) for all \( x \in \mathbb{R}^n \). Let \( \{Y_t, \ t \geq 0\} \) be the associated first variation process given by the stochastic differential equation

\[
dY_t = b'(X_t)Y_t dt + \sum_{i=1}^n \sigma_i'(X_t)Y_t dW^i_t, \quad Y_0 = I_n, \tag{3.3}
\]

where \( I_n \) is the identity matrix of \( \mathbb{R}^n \), primes denote derivatives and \( \sigma_i \) is the \( i \)th column vector of \( \sigma \). The process \( \{X_t, \ t \geq 0\} \) belongs to \( \mathbb{D}^{1,2} \) and its Malliavin derivative is given by

\[
D_r X_t = Y_t Y^{-1} \sigma(X_r)1_{\{r \leq t\}}, \quad r \geq 0 \quad \text{a.s.}, \tag{3.4}
\]

which is equivalent to

\[
Y_t = D_r X_t \sigma^{-1}(X_r) Y_r 1_{\{r \leq t\}} \quad \text{a.s.} \tag{3.5}
\]

The Malliavin derivative has an adjoint operator called Skorohod integral (also known as the divergence operator \( \delta \)). We shall denote the domain of the adjoint operator \( \delta \) by \( \text{Dom}(\delta) \).

**Property P3.** Let \( u \in L^2(\Omega \times [0, \tau_2]) \). Then \( u \) belongs to the domain \( \text{Dom}(\delta) \) of \( \delta \) if for all \( F \in \mathbb{D}^{1,2} \) we have

\[
\left| \mathbb{E} \left[ (DF, u)_{L^2(\Omega)} \right] \right| = \left| \mathbb{E} \left[ \int_0^{\tau_2} D_tF(t)dt \right] \right| \leq c \| F \|_{L^2(\Omega)} \tag{3.6}
\]

where \( c \) is some constant depending on \( u \). If \( u \) belongs to \( \text{Dom}(\delta) \), then

\[
\delta(u) = \int_0^{\tau_2} u_t \delta W_t \tag{3.7}
\]

is the element of \( L^2(\Omega) \) such that the integration by parts formula holds:

\[
\mathbb{E} \left[ \left( \int_0^{\tau_2} D_tF(t)dt \right)^2 \right] = \mathbb{E} \left[ (F, u)_{L^2(\Omega)} \right] \quad \text{for all} \ F \in \mathbb{D}^{1,2}. \tag{3.8}
\]
Let $F$ belong to Property P5.

Property P4. If $u$ is an adapted process belonging to $L^2(\Omega \times [0, \tau_2])$, then

$$\delta(u) = \int_0^{\tau_2} u(t)dW_t.$$  \hfill (3.9)

Further, if the random variable $F$ is $\mathcal{F}_{\tau_2}$-adapted and belongs to $\mathbb{D}^{1,2}$ then, for any $u$ in $\text{Dom}(\delta)$, the random variable $Fu$ will be Skorohod integrable.

Property P5. Let $F$ belongs to $\mathbb{D}^{1,2}$ and $u \in \text{Dom}(\delta)$ such that $\mathbb{E}[\int_0^{\tau_2} F^2 u_t^2 dt] < \infty$. Then $Fu \in \text{Dom}(\delta)$ and

$$\delta(Fu) = F\delta(u) - \int_0^{\tau_2} D_tFu_t dt,$$  \hfill (3.10)

whenever the right hand side belongs to $L^2(\Omega)$. In particular, if $u$ is moreover adapted, we have

$$\delta(Fu) = F \int_0^{\tau_2} u_t dW_t - \int_0^{\tau_2} D_tFu_t dt.$$  \hfill (3.11)

4. Computation of Greeks: the independent case

From the diffusion stochastic differential equation (2.13) with $\rho = 0$, consider the following HJM risk-neutral dynamics of the forward contract at time $t$. We call this the ‘independent case’. Let the future price processes under the risk-neutral measure $\mathbb{Q}$ be given as

$$dF^i(t; \tau_1, \tau_2) = \sigma_i(t; \tau_1, \tau_2)F^i(t; \tau_1, \tau_2)dW^i(t), \quad F^i(0; \tau_1, \tau_2) > 0,$$  \hfill (4.1)

for $E, I = i$. The function $F^i(0; \tau_1, \tau_2)$ represents today’s forward price. We call this, the independent case since $\rho = 0$. Explicitly this can be written as:

$$F^E(\tau_2; \tau_1, \tau_2) = F^E(0; \tau_1, \tau_2) \exp \left( -\frac{1}{2} \int_0^{\tau_2} \sigma^2_E(u; \tau_1, \tau_2) du + \int_0^{\tau_2} \sigma_E(u; \tau_1, \tau_2) dW^E(u) \right)$$

and

$$F^I(\tau_2; \tau_1, \tau_2) = F^I(0; \tau_1, \tau_2) \exp \left( -\frac{1}{2} \int_0^{\tau_2} \sigma^2_I(u; \tau_1, \tau_2) du + \int_0^{\tau_2} \sigma_I(u; \tau_1, \tau_2) dW^I(u) \right),$$

where $W^E$ and $W^I$ are Brownian motions. Here, $\int_0^{\tau_2} \sigma^2_i(t; \tau_1, \tau_2) dt < \infty$ meaning $t \mapsto F^i(t; \tau_1, \tau_2)$ is a martingale. Introduce $g : \mathbb{R} \rightarrow \mathbb{R}$ and $h : \mathbb{R} \rightarrow \mathbb{R}$ measurable functions. The payoff structure of a quanto option on the forwards with maturity at time $\tau_2$ given by

$$C = \mathbb{E}^\mathbb{Q}[g(F^E(\tau_2; \tau_1, \tau_2))h(F^I(\tau_2; \tau_1, \tau_2))],$$  \hfill (4.2)

where $g(x) = \max\{x - K^E, 0\}$ and $h(y) = 1_{\{y \geq K^I\}}$ and the risk-free interest rate $r = 0$. We assume the following integrability conditions:

$$\mathbb{E}[g^2(F^E(\tau_2; \tau_1, \tau_2))] < \infty, \quad \mathbb{E}[h^2(F^I(\tau_2; \tau_1, \tau_2))] < \infty.$$  \hfill (4.3)
At several places, we will require the diffusion matrix $\sigma_i$, $i = E, I$ to satisfy the following condition:

$$\exists \eta > 0 \quad \zeta^* \sigma_i(t; \tau_1, \tau_2) \sigma_i(t; \tau_1, \tau_2) \zeta > \eta |\zeta|^2 \quad \text{for all } \zeta \in \mathbb{R}^n, \ t \in [\tau_1, \tau_2] \text{ with } \zeta \neq 0.$$  

(4.4)

where $i = E, I$ and $\zeta^*$ denotes the transpose of $\zeta$. This is called the uniform ellipticity condition.

The weight function obtained when computing Greeks using the integration by parts formula should not degenerate with probability one, otherwise the computation will not be valid. To avoid this degeneracy we introduce the set $\mathcal{Y}_n$ (see Mhlanga [15]) defined by

$$\mathcal{Y}_n = \{ a \in L^2([0, \tau_2]) \mid \int_0^{\tau_i} a(t) dt = 1 \text{ for all } i = 1, ..., n \}. \quad (4.5)$$

We need the following lemma.

**Lemma 4.1.** Let $a_n$ and $b_n$ be two convergent sequences such that $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$. Then the sequence $a_nb_n$ is convergent and $\lim_{n \to \infty} a_nb_n = ab$.

Finally, we state our results.

**Proposition 4.2.** Assume that the diffusion matrix $\sigma_E$ is uniformly elliptic. Then for all $a \in \mathcal{Y}_n$, the energy delta is given by:

$$\Delta_E = \mathbb{E}_0^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \pi^{\Delta_E} \right], \quad (4.6)$$

where the Malliavin weight $\pi^{\Delta_E}$ is

$$\pi^{\Delta_E} = \int_0^{\tau_2} a(t) \left( \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) \right)^* dW^E(t).$$

**Proof.** Let $g$ be a continuously differentiable function with bounded derivatives. Introduce

$$Y_E(t; \tau_1, \tau_2) = \exp \left( -\frac{1}{2} \int_0^t \sigma_E^2(u; \tau_1, \tau_2) du + \int_0^t \sigma_E(u; \tau_1, \tau_2) dW^E(u) \right).$$

This implies that

$$F^E(\tau; \tau_1, \tau_2) = F^E(0; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2).$$

An application of Property P2 shows that $F^E(\tau_2; \tau_1, \tau_2)$ belongs to $\mathbb{D}^{1,2}$ and we have:

$$D_t F^E(\tau_2; \tau_1, \tau_2) = Y_E(\tau_2; \tau_1, \tau_2) Y^{-1}_E(t; \tau_1, \tau_2) \sigma_E(t; \tau_1, \tau_2) 1_{t < \tau_2}.$$  

This is equivalent to

$$Y_E(\tau_2; \tau_1, \tau_2) 1_{t < \tau_2} = D_t F^E(\tau_2; \tau_1, \tau_2) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2).$$

Multiply both sides by a square function which integrates to 1 on $[0, \tau_2]$

$$Y_E(\tau_2; \tau_1, \tau_2) = \int_0^{\tau_2} D_t F^E(\tau_2; \tau_1, \tau_2) a(t) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt.$$  

Now
where \( g' \) denotes the derivative of \( g \) with respect to \( F^E(0; \tau_1, \tau_2) \). Here, we have used the chain rule property, (Property P1), the integration by parts formula (Property P3), and the fact that the Skorohod integral coincides with the Itô stochastic integral (Property P4).

Now consider the general case \( g(F^E(\tau_2; \tau_1, \tau_2))h(F^I(\tau_2; \tau_1, \tau_2)) \in L^2(\Omega) \). Since smooth functions with compact support \( C^\infty(\mathbb{R}) \) is dense in \( L^2(\mathbb{R}) \), we can find sequences of functions \( g_n \in C^\infty(\mathbb{R}) \) and \( h_n \in C^\infty(\mathbb{R}) \) such that \( g_n \to g \) and \( h_n \to h \) in \( L^2(\mathbb{R}) \).

An application of Lemma 4.1 shows that \( (g_n h_n)_{n \in \mathbb{N}} \) converges uniformly on compact sets to \( gh \) as \( n \to \infty \), that is,

\[
\lim_{n \to \infty} \mathbb{E}^Q \left[ (g_n(F^E(\tau_2; \tau_1, \tau_2))h_n(F^I(\tau_2; \tau_1, \tau_2)) - g(F^E(\tau_2; \tau_1, \tau_2))h(F^I(\tau_2; \tau_1, \tau_2)))^2 \right] \to 0. \tag{4.7}
\]

Denote by

\[
f(x) = \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2))h(F^I(\tau_2; \tau_1, \tau_2)) \right. \int_0^{\tau_2} \left. a(t)(\sigma_{E}^{-1}(t; \tau_1, \tau_2)) Y_E(t; \tau_1, \tau_2) \right]^{*} \, dW^E(t).
\]

Using the obtained result for \( g_n \), together with the Cauchy-Schwartz inequality and the Itô isometry, we obtain

\[
\left| \frac{\partial}{\partial F^E(0; \tau_1, \tau_2)} \mathbb{E}^Q [g_n(F^E(\tau_2; \tau_1, \tau_2))h_n(F^I(\tau_2; \tau_1, \tau_2))] - f(x) \right|
\]

\[
= \left| \mathbb{E}^Q [(g_n(F^E(\tau_2; \tau_1, \tau_2))h_n(F^I(\tau_2; \tau_1, \tau_2)) - g(F^E(\tau_2; \tau_1, \tau_2))h(F^I(\tau_2; \tau_1, \tau_2)))
\]

\[
\times \int_0^{\tau_2} a(t)(\sigma_{E}^{-1}(t; \tau_1, \tau_2)) Y_E(t; \tau_1, \tau_2) \, dW^E(t) \right| \leq \mathbb{E}^Q [(g_n(F^E(\tau_2; \tau_1, \tau_2))h_n(F^I(\tau_2; \tau_1, \tau_2)) - g(F^E(\tau_2; \tau_1, \tau_2))h(F^I(\tau_2; \tau_1, \tau_2)))^2]
\]

\[
\times \mathbb{E}^Q \left[ \int_0^{\tau_2} |a(t)(\sigma_{E}^{-1}(t; \tau_1, \tau_2)) Y_E(t; \tau_1, \tau_2)|^2 \, dt \right]^{\frac{1}{2}}
\]

It follows from (4.7) that the first expression on the right hand side of the above inequality converges uniformly on compact sets to 0. The second expression is a continuous function, hence it is bounded on any compact set. Therefore, we have
\[
\frac{\partial}{\partial F^E(0; \tau_1, \tau_2)} \mathbb{E}^Q \left[ g_n(F^E(\tau_2; \tau_1, \tau_2)) h_n(F^I(\tau_2; \tau, \tau_2)) \right] \to f(x)
\]

uniformly on compact sets. Hence, we conclude that \( \mathbb{E}^Q \left[ g_n(F^E(\tau_2; \tau_1, \tau_2)) h_n(F^I(\tau_2; \tau, \tau_2)) \right] \) is differentiable with respect to \( F^E(0; \tau_1, \tau_2) \) and that the derivative is given by

\[
\frac{\partial}{\partial F^E(0; \tau_1, \tau_2)} \mathbb{E}^Q \left[ g_n(F^E(\tau_2; \tau_1, \tau_2)) h_n(F^I(\tau_2; \tau, \tau_2)) \right] = \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \right] \int_0^{\tau_2} a(t) \left( \sigma^{-1}_E(t; \tau_1, \tau_2) Y^E(t; \tau_1, \tau_2) \right)^* dW^E(t)
\]

which completes the proof.

\( \square \)

Similarly, we obtain the following result.

**Proposition 4.3.** Assume that the diffusion matrix \( \sigma_1 \) is uniformly elliptic. Then for all \( a \in \mathbb{Y}_n \), the temperature delta is given by:

\[
\Delta_I = \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \pi^{\Delta_I} \right],
\]

where the Malliavin weight \( \pi^{\Delta_I} \) is

\[
\pi^{\Delta_I} = \int_0^{\tau_2} a(t) \left( \sigma^{-1}_I(t; \tau_1, \tau_2) Y^I(t; \tau_1, \tau_2) \right)^* dW^I(t).
\]

**Proof.** Follows along the lines of the proof of Proposition of 4.2.

\( \square \)

The following result gives the cross-gamma hedge in the independent case:

**Proposition 4.4.** Assume that the diffusion matrices \( \sigma_i, i = E, I \) are uniformly elliptic. Then for all \( a \in \mathbb{Y}_n \), the cross-gamma is given by:

\[
\Delta_{EI} = \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \pi^{\Delta_{EI}} \right],
\]

where the Malliavin weight \( \pi^{\Delta_{EI}} \) is

\[
\pi^{\Delta_{EI}} = \int_0^{\tau_2} a(t) \left( \sigma^{-1}_E(t; \tau_1, \tau_2) Y^E(t; \tau_1, \tau_2) \right)^* dW^E(t) \int_0^{\tau_2} a(t) \left( \sigma^{-1}_I(t; \tau_1, \tau_2) Y^I(t; \tau_1, \tau_2) \right)^* dW^I(t).
\]

\((4.8)\)

**Proof.** We first assume that \( g \) and \( h \) are continuously differentiable with bounded derivatives. From **Proposition 4.2** we have

\[
\Delta_E = \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \pi^{\Delta_E} \right].
\]

As in **Proposition 4.2**, we introduce

\[
Y^I(t; \tau_1, \tau_2) = \exp \left( - \frac{a}{2} \int_0^t \sigma^2_I(u; \tau_1, \tau_2) du + \int_0^t \sigma_I(u; \tau_1, \tau_2) dW^I(u) \right).
\]

This implies that

\[
F^I(\tau; \tau_1, \tau_2) = F^I(0; \tau_1, \tau_2) Y^I(t; \tau_1, \tau_2).
\]
An application of Property P2 shows that $F^l(t_2; \tau_1, \tau_2)$ belongs to $\mathbb{D}^{1, 2}$ and we have:

$$D_t F^l(t_2; \tau_1, \tau_2) = Y^l(t_2; \tau_1, t) Y^{-1}_l(t; \tau_1, \tau_2) \sigma(t; \tau_1, \tau_2) 1_{t < \tau_2}.$$ 

This is equivalent to

$$Y^l(t_2; \tau_1, \tau_2) 1_{t < t_2} = D_t F^l(t_2; \tau_1, \tau_2) \sigma^{-1}_l(t; \tau_1, \tau_2) Y^l(t; \tau_1, \tau_2).$$

Multiply both sides by a square function which integrates to 1 on $[0, \tau_2]$

$$Y^l(t_2; \tau_1, \tau_2) = \int_0^{\tau_2} D_t F^l(t_2; \tau_1, \tau_2) a(t) \sigma^{-1}_l(t; \tau_1, \tau_2) Y^l(t; \tau_1, \tau_2) dt.$$ 

Now

$$\Delta_{EI} := \frac{\partial^2}{\partial E(0; \tau_1, \tau_2) \partial E(0; \tau_1, \tau_2)} \mathbb{E}^Q \left[ g(F^l(\tau_2; \tau_1, \tau_2)) h(F^l(t_2; \tau, \tau)) \right]$$

$$= \frac{\partial}{\partial E(0; \tau_1, \tau_2)} \Delta_E$$

$$= \frac{\partial}{\partial E(0; \tau_1, \tau_2)} \left[ \mathbb{E}^Q \left[ g(F^l(\tau_2; \tau_1, \tau_2)) h(F^l(t_2; \tau, \tau)) \pi^E \right] \right]$$

$$= \mathbb{E}^Q \left[ g(F^l(\tau_2; \tau_1, \tau_2)) \pi^E h(F^l(t_2; \tau, \tau)) \frac{\partial F^l(t_2; \tau_1, \tau_2)}{\partial E(0; \tau_1, \tau_2)} \right]$$

$$= \mathbb{E}^Q \left[ g(F^l(\tau_2; \tau_1, \tau_2)) \pi^E h(F^l(t_2; \tau, \tau)) Y^l(t_2; \tau_1, \tau_2) \right]$$

$$= \mathbb{E}^Q \left[ \int_0^{\tau_2} g(F^l(\tau_2; \tau_1, \tau_2)) h(F^l(t_2; \tau_1, \tau_2)) \pi^E D_t F^l(t_2; \tau_1, \tau_2) a(t) \sigma^{-1}_l(t; \tau_1, \tau_2) Y^l(t; \tau_1, \tau_2) dt \right]$$

$$= \mathbb{E}^Q \left[ g(F^l(\tau_2; \tau_1, \tau_2)) \pi^E \int_0^{\tau_2} D_t (h(F^l(t_2; \tau_1, \tau_2))) a(t) \sigma^{-1}_l(t; \tau_1, \tau_2) Y^l(t; \tau_1, \tau_2) dt \right]$$

$$= \mathbb{E}^Q \left[ g(F^l(\tau_2; \tau_1, \tau_2)) h(F^l(t_2; \tau_1, \tau_2)) \pi^E \int_0^{\tau_2} a(t) \sigma^{-1}_l(t; \tau_1, \tau_2) Y^l(t; \tau_1, \tau_2) dt \right].$$

Here, we have used the chain rule property (Property P1), the integration by parts formula (Property P3), and the fact that the Skorohod integral coincides with the Itô stochastic integral (Property P4).

Now consider the general case $g(F^l(\tau; \tau_1, \tau_2)) h(F^l(t; \tau, \tau)) \in L^2(\Omega)$. Since the set $C^\infty_K(\mathbb{R})$ of infinitely differentiable functions with compact support is dense in $L^2(\mathbb{R})$, there exist sequences of functions $g_n \in C^\infty_K(\mathbb{R})$ and $h_n \in C^\infty_K(\mathbb{R})$ such that $g_n \to g$ and $h_n \to h$ in $L^2(\mathbb{R})$.

By Lemma 4.1, $(g_n h_n)_{n \in \mathbb{N}}$ converges uniformly on compact sets to $gh$ as $n \to \infty$, that is,

$$\lim_{n \to \infty} \mathbb{E}^Q \left[ (g_n(F^l(\tau; \tau_1, \tau_2)) h_n(F^l(\tau_2; \tau_1, \tau_2)) - g(F^l(\tau; \tau_1, \tau_2)) h(F^l(\tau_2; \tau_1, \tau_2)) \right]^2 \to 0.$$ 

(4.9)

Denote by

$$f(x) = \mathbb{E}^Q \left[ g(F^l(\tau; \tau_1, \tau_2)) h(F^l(\tau_2; \tau_1, \tau_2)) \pi^E \right]$$

with $\pi^E$ given by (4.8).
Using the first step
\[
\frac{\partial^2}{\partial F^E(0; \tau_1, \tau_2) \partial F^I(0; \tau_1, \tau_2)} \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \right]
\]
exists and
\[
\left| \frac{\partial^2}{\partial F^E(0; \tau_1, \tau_2) \partial F^I(0; \tau_1, \tau_2)} \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \right] - f(x) \right| \\
= \left| \mathbb{E}^Q \left[ (g_n(F^E(\tau_2; \tau_1, \tau_2)) h_n(F^I(\tau_2; \tau, \tau_2)) - g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2))) \pi_{\alpha\beta} \right] \right| \\
\leq \mathbb{E}^Q \left[ \left( g_n(F^E(\tau_2; \tau_1, \tau_2)) h_n(F^I(\tau_2; \tau, \tau_2)) - g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2))) \right)^2 \right]^{\frac{1}{2}} \\
\times \mathbb{E}^Q \left[ \left| \pi_{\alpha\beta} \right| ^2 \right]^{\frac{1}{2}}
\]
where we have used the Cauchy-Schwartz inequality. It follows from (4.9) that the first expression on the right hand side of the above inequality converges uniformly on compact sets to 0. Using the Cauchy-Schwartz inequality and Itô isometry one can show that the second expression is finite. Therefore, we have
\[
\frac{\partial^2}{\partial F^E(0; \tau_1, \tau_2) \partial F^I(0; \tau_1, \tau_2)} \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(F^I(\tau_2; \tau, \tau_2)) \right] \rightarrow f(x)
\]
uniformly on compact sets. Hence, we conclude that \( \mathbb{E}^Q \left[ g_n(F^E(\tau_2; \tau_1, \tau_2)) h_n(F^I(\tau_2; \tau, \tau_2)) \right] \) is twice differentiable with respect to \( F^E(0; \tau_1, \tau_2) \) and \( F^I(0; \tau_1, \tau_2) \), and that the desired formula holds. The proof is complete.

\[\square\]

5. Computation of Greeks: the correlation case

We consider the following HJM
\[
dF^E(t; \tau_1, \tau_2) = \sigma_E(t, F^E(t; \tau_1, \tau_2)) dW^E(t), \\
dF^I(t; \tau_1, \tau_2) = \rho \sigma_I(t, F^I(t; \tau_1, \tau_2)) dW^E(t) + \sigma_I(t, F^I(t; \tau_1, \tau_2)) \sqrt{1-\rho^2} d\tilde{W}^I(t).
\]
That is, we consider the case when there is correlation between \( F^E \) and \( F^I \). Suppose the Brownian motions \( B_1 \) and \( B_2 \) are independent. Let \( W_1 = B_1 \) and \( W_2 = \rho B_1 + \sqrt{1-\rho^2} B_2 \). This implies that
\[
g(W_1) h(W_2) = g(B_1) h(\rho B_1 + \sqrt{1-\rho^2} B_2).
\]
In this setting, we have the following quanto option structure:
\[
C = \mathbb{E}^Q \left[ g(F^E(\tau_2; \tau_1, \tau_2)) h(\rho F^E(\tau_2; \tau_1, \tau_2) + \sqrt{1-\rho^2} F^I(\tau_2; \tau_1, \tau_2)) \right].
\]
Now we derive the energy delta.

**Proposition 5.1.** Assume that the diffusion matrix \( \sigma_E \) uniformly elliptic. Then for all \( a \in \mathcal{A}_n \), the energy delta is given by:
\[ \Delta_E = \mathbb{E}^Q \left[ g \left( F^E(t_2; \tau_1, \tau_2) \right) h \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) \pi^\Delta_E (1 + \rho) \right], \]  
(5.3)

where the Malliavin weight \( \pi^\Delta_E \) is

\[ \pi^\Delta_E = \int_0^{t_2} a(t) (\sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2))^* dW^E(t). \]

**Proof.** Let \( g \) be a continuously differentiable function with bounded derivatives. As in Proposition 4.2, introduce

\[ Y_E(t; \tau_1, \tau_2) = \exp \left( -\frac{1}{2} \int_0^t \sigma^2(u; \tau_1, \tau_2) du + \int_0^t \sigma(u; \tau_1, \tau_2) dW^E(u) \right). \]

This implies that

\[ F^E(t; \tau_1, \tau_2) = F^E(0; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2). \]

An application of Property P2 shows that \( F^E(t_2; \tau_1, \tau_2) \) belongs to \( \mathbb{D}^{1,2} \) and we have:

\[ D_t F^E(t_2; \tau_1, \tau_2) = Y_E(t_2; \tau_1, \tau_2) Y_E^{-1}(t; \tau_1, \tau_2) \sigma_E(t; \tau_1, \tau_2)_1_{t < t_2}. \]

This is equivalent to

\[ Y_E(t_2; \tau_1, \tau_2)_1_{t < t_2} = D_t F^E(t_2; \tau_1, \tau_2) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2). \]

Multiply both sides by a square function which integrates to 1 on \([0, t_2]\]

\[ Y_E(t_2; \tau_1, \tau_2) = \int_0^{t_2} D_t F^E(t_2; \tau_1, \tau_2) a(t) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt. \]

Now

\[ \Delta_E = \mathbb{E}^Q \left[ g \left( F^E(t_2; \tau_1, \tau_2) \right) h \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) Y_E(t_2; \tau_1, \tau_2) \right] 
+ \mathbb{E}^Q \left[ \int_0^{t_2} g \left( F^E(t_2; \tau_1, \tau_2) \right) h' \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) \rho Y_E(t_2; \tau_1, \tau_2) dt \right] 
\times D_t F^E(t_2; \tau_1, \tau_2) a(t) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt 
+ \mathbb{E}^Q \left[ \int_0^{t_2} g \left( F^E(t_2; \tau_1, \tau_2) \right) h' \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt \right] 
\times D_t F^E(t_2; \tau_1, \tau_2) a(t) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt 
\times \mathbb{E}^Q \left[ h \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) \right] 
\times \int_0^{t_2} D_t g \left( F^E(t_2; \tau_1, \tau_2) \right) a(t) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt + \rho g \left( F^E(t_2; \tau_1, \tau_2) \right) 
\times \int_0^{t_2} D_t h \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) a(t) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt 
\times \mathbb{E}^Q \left[ h \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) \right] 
\times \int_0^{t_2} D_t g \left( F^E(t_2; \tau_1, \tau_2) \right) a(t) \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) dt 
+ \rho g \left( F^E(t_2; \tau_1, \tau_2) \right) h \left( \rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2 F^l(t_2; \tau_1, \tau_2)} \right) 
\times \int_0^{t_2} a(t) \left( \sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2) \right)^* dW^E(t). \]

As in the proof of Proposition 4.2, we have used the chain rule property (Property P1), the integration by parts formula (Property P3), and the fact that the Skorohod integral coincides with the Itô stochastic integral (Property P4).
The proof for the general case follow similar arguments as in the proof of Proposition 4.2 with minor modifications. We omit the details.

Now we derive the temperature delta in the correlation case.

**Proposition 5.2.** Assume that the diffusion matrix $\sigma_i$ uniformly elliptic. Then for all $a \in Y_n$, the temperature delta is given by:

$$
\Delta_I = \sqrt{1 - \rho^2} E^Q \left[ g(F^E(t_2; \tau_1, \tau_2)) h(\rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2} F^I(t_2; \tau_1, \tau_2)) \pi_{\Delta_I} \right].
$$

where the Malliavin weight $\pi_{\Delta_I}$ is

$$
\pi_{\Delta_I} = \int_0^{t_2} a(t)(\sigma^{-1}_I(t; \tau_1, \tau_2) Y_I(t; \tau_1, \tau_2))^* dW^I(t).
$$

**Proof.** The proof is similar to that of Proposition 5.1 with minor modifications. \qed

The following result gives the cross-gamma hedge in the correlation case.

**Proposition 5.3.** Assume that the diffusion matrices $\sigma_i$, $i = E, I$ are uniformly elliptic. Then for all $a \in Y_n$, the cross-gamma is given by:

$$
\Delta_{EI} = \sqrt{1 - \rho^2} E^Q \left[ g(F^E(t_2; \tau_1, \tau_2)) h(\rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2} F^I(t_2; \tau_1, \tau_2)) \pi_{\Delta_{EI}} \right]
$$

$$
+ \rho \sqrt{1 - \rho^2} E^Q \left[ g(F^E(t_2; \tau_1, \tau_2)) h(\rho F^E(t_2; \tau_1, \tau_2) + \sqrt{1 - \rho^2} F^I(t_2; \tau_1, \tau_2)) \pi_{\Delta_{EI}} \right]
$$

where the Malliavin weight $\pi_{\Delta_{EI}}$ is:

$$
\pi_{\Delta_{EI}} = \int_0^{t_2} a(t)(\sigma^{-1}_E(t; \tau_1, \tau_2) Y_E(t; \tau_1, \tau_2))^* dW^E(t) \int_0^{t_2} a(t)(\sigma^{-1}_I(t; \tau_1, \tau_2) Y_I(t; \tau_1, \tau_2))^* dW^I(t).
$$

**Proof.** The proof follows the same line of argument as in the proof of Proposition 4.4 with minor modifications. The details are omitted. \qed

### 6. Examples

We will provide Malliavin weights in the case where the quanto option payoff functions depend on the terminal value, that is, $\tau_2 = T$

#### 6.1. The independent case

We consider the following stochastic differential equations to describe the energy price $F^E$ and the temperature price $F^I$ dynamics

$$
\frac{dF^E}{F^E} = \sigma_E dW^E_t, \quad F^E(0) > 0
$$

$$
\frac{dF^I}{F^I} = \sigma_I dW^I_t, \quad F^I(0) > 0,
$$

where $\sigma_E$, $\sigma_I$ are deterministic volatilities and $W^E$, $W^I$ are independent Brownian motions. The quanto option pricing formula is then expressed as
\[ C_t = \mathbb{E}^Q\left[ g(F^E)h(F^I) \right], \] (6.3)

with \( g(x) = \max\{x - K^E, 0\} \) and \( h(y) = 1_{\{y \geq K^I\}} \). By using the general formulae developed in the previous sections, we are able to compute analytically the values of different Malliavin weights. Here we set \( a(t) = \frac{1}{T} \). We have

\[ \pi^{AE} = \frac{1}{F^E(0)T} \int_0^T \frac{1}{\sigma_E} dW^E(t). \]
\[ \pi^{AI} = \frac{1}{F^I(0)T} \int_0^T \frac{1}{\sigma_I} dW^I(t). \]
\[ \pi^{EI} = \frac{1}{F^E(0)F^I(0)T^2} \left( \int_0^T \frac{1}{\sigma_E} dW^E(t) \right) \left( \int_0^T \frac{1}{\sigma_I} dW^I(t) \right). \]

### 6.2. The correlation case

Again, we consider the following stochastic differential equations to describe the energy price \( F^E \) and the temperature price \( F^I \) dynamics

\[ \frac{dF^E}{F^E} = \sigma_E dW^E_t, \quad F^E(0) > 0 \] (6.4)
\[ \frac{dF^I}{F^I} = \rho \sigma_I dW^I_t + \sigma_I \sqrt{1 - \rho^2} d\tilde{W}^I_t, \quad F^I(0) > 0, \] (6.5)

where \( W^E_t, W^I_t \) are correlated Brownian motions with correlation parameter \( \rho \in (-1, 1) \).

The system of stochastic differential equations can be written in a matrix form

\[ \begin{pmatrix}
  \frac{dF^E}{F^E} \\
  \frac{dF^I}{F^I}
\end{pmatrix} =
\begin{pmatrix}
  \sigma_E & 0 \\
  \rho \sigma_I & \sigma_I \sqrt{1 - \rho^2}
\end{pmatrix}
\begin{pmatrix}
  dW^E \\
  dW^I
\end{pmatrix}. \]

The inverse matrix of

\[ \begin{pmatrix}
  \sigma_E & 0 \\
  \rho \sigma_I & \sigma_I \sqrt{1 - \rho^2}
\end{pmatrix} \]

is calculated as

\[ \frac{1}{\sigma_E \sigma_I \sqrt{1 - \rho^2}} \begin{pmatrix}
  \sigma_I \sqrt{1 - \rho^2} & 0 \\
  -\rho \sigma_I & \sigma_E
\end{pmatrix} =
\begin{pmatrix}
  \frac{1}{\sigma_E} & 0 \\
  -\frac{\rho}{\sigma_E \sqrt{1 - \rho^2}} & \frac{1}{\sigma_I \sqrt{1 - \rho^2}}
\end{pmatrix}. \]

The quanto option pricing formula, in this setting, is given by

\[ C_t = \mathbb{E}^Q\left[ g(F^E)h\left( \rho F^E + \sqrt{1 - \rho^2} F^I \right) \right], \] (6.6)
with \( g(x) = \max\{x - K^E, 0\} \) and \( h(x, y) = \rho \max\{x - K^E, 0\} \times \sqrt{1 - \rho^2} 1_{\{y \geq K^I\}} \). By using the general formulae developed in the previous sections, we are able to compute analytically the values of different Malliavin weights. Here we set \( a(t) = \frac{1}{T} \). We have

\[
\pi^{\Delta} = \frac{1}{F^E(0) T} \int_0^T \frac{1}{\sigma_E} dW^E(t) - \frac{1}{F^E(0) T} \int_0^T \frac{\rho}{\sqrt{1 - \rho^2}} d\bar{W}^I(t).
\]

\[
\pi^{\Delta I} = \frac{1}{F^I(0) T} \int_0^T \frac{1}{\sigma_I} d\bar{W}^I(t).
\]

\[
\pi^{\Delta EI} = \frac{1}{F^E(0) F^I(0) T^2} \left\{ \left( \int_0^T \frac{1}{\sigma_E} dW^E(t) \right) \left( \int_0^T \frac{1}{\sigma_I} d\bar{W}^I(t) \right) - \int_0^T \frac{\rho}{\sigma_E \sigma_I (1 - \rho^2)} dt \right\}.
\]

### 7. Application to stochastic volatility models

Stochastic volatility models describe the joint evolution of the futures prices (i.e. the energy futures price \( F^E_t \) and the temperature future price \( F^I_t \)) and their corresponding variances.

#### 7.1. The independent case

We consider the following dynamics

\[
\begin{align*}
\frac{dF^E}{F^E} &= \sqrt{\sigma_E} dW^E_t, & d\sigma_E &= -\kappa_1 \sigma_E dt + \eta_1 \sqrt{\sigma_E} dB^E_t, \\
\frac{dF^I}{F^I} &= \sqrt{\sigma_I} dW^I_t, & d\sigma_I &= -\kappa_2 \sigma_I dt + \eta_2 \sqrt{\sigma_I} dB^I_t.
\end{align*}
\]

(7.1) (7.2)

Here, \( W^E_t, B^E_t, W^I_t \) and \( B^I_t \) are independent standard Brownian motions and \( \kappa_1, \kappa_2, \eta_1 \) and \( \eta_2 \) are constants. \( \sigma_E(t) \) and \( \sigma_I(t) \) are the volatility processes.

\[
\begin{pmatrix}
\frac{dF^E}{F^E} \\
\frac{d\sigma_E}{F^E} \\
\frac{dF^I}{F^I} \\
\frac{d\sigma_I}{F^I}
\end{pmatrix} = \begin{pmatrix}
0 \\
-\kappa_1 \sigma_E \\
0 \\
-\kappa_2 \sigma_I
\end{pmatrix} dt + \begin{pmatrix}
\sqrt{\sigma_E} & 0 & 0 & 0 \\
0 & \eta_1 \sqrt{\sigma_E} & 0 & 0 \\
0 & 0 & \sqrt{\sigma_I} & 0 \\
0 & 0 & 0 & \eta_2 \sqrt{\sigma_I}
\end{pmatrix} \begin{pmatrix}
dW^E \\
d\sigma_E \\
dW^I \\
d\sigma_I
\end{pmatrix}.
\]

The inverse of the diffusion matrix is

\[
\begin{pmatrix}
\frac{1}{\sqrt{\sigma_E}} & 0 & 0 & 0 \\
0 & \frac{1}{\eta_1 \sqrt{\sigma_E}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{\sigma_I}} & 0 \\
0 & 0 & 0 & \frac{1}{\eta_2 \sqrt{\sigma_I}}
\end{pmatrix}.
\]

The quanto option pricing formula is then expressed as

\[
C_t = \mathbb{E}^Q[g(F^E(t))h(F^I(t))],
\]

(7.3)
with \(g(x) = \max\{x - K, 0\}\) and \(h(y) = 1_{y \geq K}\). By using the general formulae developed in the previous sections, we are able to compute analytically the values of different Malliavin weights. Here we set \(a(t) = \frac{1}{T}\). We have

\[
\begin{align*}
\pi^A &= \frac{1}{F_E(0)T} \int_0^T \frac{1}{\sqrt{\sigma_E(t)}} dW^E(t). \\
\pi^B &= \frac{1}{F_I(0)T} \int_0^T \frac{1}{\sqrt{\sigma_I(t)}} dW^I(t). \\
\pi^C &= \frac{1}{F_E(0)F_I(0)T^2} \left( \int_0^T \frac{1}{\sqrt{\sigma_E(t)}} dW^E(t) \right) \left( \int_0^T \frac{1}{\sqrt{\sigma_I(t)}} dW^I(t) \right).
\end{align*}
\]

### 7.2. The correlation case

We consider the following dynamics

\[
\begin{align*}
\frac{dF^E}{F^E} &= \sigma_E dW^E_t, & d\sigma_E &= -k_1 \sigma_E dt + \eta_1 \sqrt{\sigma_E} dB^E_t, \\
\frac{dF^I}{F^I} &= \sigma_I dW^I_t, & d\sigma_I &= -k_2 \sigma_I dt + \eta_2 \sqrt{\sigma_I} dB^I_t.
\end{align*}
\]

(7.4) (7.5)

Here, \(W^E_t, B^E_t, W^I_t, B^I_t\) are correlated standard Brownian motions and \(k_1, k_2, \eta_1\) and \(\eta_2\) are constants. \(\sigma_E(t)\) and \(\sigma_I(t)\) are the volatility processes.

For constants \(\rho, \rho_1, \rho_2\) the following hold:

\[
\begin{align*}
W^E_t &= W^{(1)}_t, & B^E_t &= \rho W^{(1)}_t + \sqrt{1 - \rho^2} W^{(2)}_t, \\
W^I_t &= \rho_1 W^{(1)}_t + \sqrt{1 - \rho_1^2} W^{(3)}_t, & B^I_t &= \rho_1 \rho_2 W^{(1)}_t + \rho_2 \sqrt{1 - \rho_1^2} W^{(3)}_t + \sqrt{1 - \rho_2^2} W^{(4)}_t,
\end{align*}
\]

where \(W^{(1)}_t, W^{(2)}_t, W^{(3)}_t\) and \(W^{(4)}_t\) are mutually independent standard Brownian motions.

The system of stochastic differential equations (7.4) and (7.5) can be written in a matrix form

\[
\begin{pmatrix}
\frac{dF^E}{F^E} \\
\frac{d\sigma_E}{\sigma_E} \\
\frac{dF^I}{F^I} \\
\frac{d\sigma_I}{\sigma_I}
\end{pmatrix}
= \begin{pmatrix}
0 \\
-k_1 \sigma_E \\
0 \\
-k_2 \sigma_I
\end{pmatrix}
\begin{pmatrix}
dt \\
0 \\
0 \\
0
\end{pmatrix}
+ \begin{pmatrix}
\sqrt{\sigma_E} & 0 & 0 & 0 \\
\rho \eta_1 \sqrt{\sigma_E} & \eta_1 \sqrt{\sigma_E} \sqrt{1 - \rho^2} & 0 & 0 \\
\rho_1 \sqrt{\sigma_I} & 0 & \sqrt{\sigma_I} \sqrt{1 - \rho_1^2} & 0 \\
\rho_1 \rho_2 \eta_2 \sqrt{\sigma_I} & 0 & \rho_2 \eta_2 \sqrt{\sigma_I} \sqrt{1 - \rho_1^2} & \eta_2 \sqrt{\sigma_I} \sqrt{1 - \rho_2^2}
\end{pmatrix}
\begin{pmatrix}
dW^{(1)}_t \\
dW^{(2)}_t \\
dW^{(3)}_t \\
dW^{(4)}_t
\end{pmatrix}.
\]
The inverse of the diffusion matrix is
\[
\begin{pmatrix}
\frac{1}{\sqrt{\sigma_E}} & 0 & 0 & 0 \\
\frac{\rho}{\sqrt{\sigma_E} \sqrt{1 - \rho^2}} & \frac{1}{\eta_1 \sqrt{\sigma_E} \sqrt{1 - \rho^2}} & 0 & 0 \\
\frac{\rho_1}{\sqrt{\sigma_E} \sqrt{1 - \rho_1^2}} & 0 & \frac{1}{\sqrt{\eta_1} \sqrt{1 - \rho_1^2}} & 0 \\
0 & 0 & -\frac{\rho_2}{\sqrt{\eta_2} \sqrt{1 - \rho_2^2}} & 1
\end{pmatrix}.
\]

The quanto option pricing formula, in this setting, is given by
\[
C_t = \mathbb{E}^Q \left[ g(F^E) h \left( \rho F^E + \sqrt{1 - \rho^2} F^L \right) \right],
\]
with \( g(x) = \max\{x - K^E, 0\} \) and \( h(x, y) = \rho \max\{x - K^E, 0\} \times \sqrt{1 - \rho^2} \cdot 1_{\{y \geq K^E\}} \). By using the general formulae developed in the previous sections, we are able to compute analytically the values of different Malliavin weights. Choosing \( a(t) = \frac{1}{t} \) and making use of the matrix property \((AB)^* = B^* A^*\), for \( A \) and \( B \) matrices, where \( * \) denotes the transpose, we have
\[
\begin{align*}
\pi^A_e &= \frac{1}{F^E(0) T} \left( \int_0^T \frac{1}{\sqrt{\sigma_E(t)}} \, dW^{(1)}(t) - \frac{\rho}{\sqrt{1 - \rho^2}} \int_0^T \frac{1}{\sqrt{\sigma_1(t)}} \, dW^{(2)}(t) - \frac{\rho_1}{\sqrt{1 - \rho_1^2}} \int_0^T \frac{1}{\sqrt{\eta_1} \sqrt{1 - \rho_1^2}} \, dW^{(3)}(t) \right), \\
\pi^A_i &= \frac{1}{F^I(0) \bar{F}(0) T} \left( \int_0^T \frac{1}{\sqrt{1 - \rho_1^2}} \, dW^{(3)}(t) - \frac{\rho_2}{\sqrt{1 - \rho_2^2}} \int_0^T \frac{1}{\sqrt{\eta_1} \sqrt{1 - \rho_2^2}} \, dW^{(4)}(t) \right), \\
\pi^A_{ii} &= \frac{1}{F^E(0) F^I(0) T^2} \left( \int_0^T \frac{1}{\sqrt{\sigma_E(t)}} \, dW^{(1)}(t) - \frac{\rho}{\sqrt{1 - \rho^2}} \int_0^T \frac{1}{\sqrt{\sigma_1(t)}} \, dW^{(2)}(t) \right) \times \left( \frac{1}{\sqrt{1 - \rho_1^2}} \int_0^T \frac{1}{\sqrt{\sigma_1(t)}} \, dW^{(3)}(t) - \frac{\rho_1}{\sqrt{1 - \rho_1^2}} \int_0^T \frac{1}{\sqrt{\eta_1} \sqrt{1 - \rho_1^2}} \, dt \right) \\
&\quad - \frac{\rho^2 \pi^A_e}{F^E(0) \sqrt{1 - \rho_2^2} \int_0^T \sqrt{\sigma_E(t)} \, dW^{(4)}(t)}. \end{align*}
\]

8. The residual risk

If we take the independent delta of energy \( \Delta^\text{Ind} \), say, as the benchmark value and the correlated case as \( \Delta^\text{Corr} \). Then the residual risk is determined by the difference between the independent energy delta and the correlated case as follows:
\[
|\Delta^\text{Corr}_E - \Delta^\text{Ind}_E|,
\]
for each \( \rho \). The same analysis goes for the temperature delta and cross-gamma hedging formulae.

We can state the following robust result.
Proposition 8.1. Let $\Delta_{E}^{\text{Corr}}$ be given by (5.3) and $\Delta_{E}^{\text{Ind}}$ be given by (4.6). Then
\[
\lim_{\rho \to 0} \Delta_{E}^{\text{Corr}} = \Delta_{E}^{\text{Ind}}.
\]

Proof. The application of Cauchy-Schwartz inequality isometry gives
\[
|\Delta_{E}^{\text{Corr}} - \Delta_{E}^{\text{Ind}}| \leq |\mathbb{E}^{Q} [g(F^{E}(\tau_{2}; \tau_{1}, \tau_{2})) h(\rho F^{E}(\tau_{2}; \tau_{1}, \tau_{2}) + \sqrt{1 - \rho^{2}} F^{l}(\tau_{2}; \tau_{1}, \tau_{2})) \pi^{\text{AE}}(1 + \rho)]
- \mathbb{E}^{Q} [g(F^{E}(\tau_{2}; \tau_{1}, \tau_{2})) h(F^{l}(\tau_{2}; \tau_{1}, \tau_{2})) \pi^{\text{AE}}]|
\leq \mathbb{E}^{Q} [||g(F^{E}(\tau_{2}; \tau_{1}, \tau_{2})) h(\rho F^{E}(\tau_{2}; \tau_{1}, \tau_{2}) + \sqrt{1 - \rho^{2}} F^{l}(\tau_{2}; \tau_{1}, \tau_{2}))(1 + \rho)
- h(F^{l}(\tau_{2}; \tau_{1}, \tau_{2})) \pi^{\text{AE}}||]
\leq \mathbb{E}^{Q} [||g(F^{E}(\tau_{2}; \tau_{1}, \tau_{2}))||^{2}] \mathbb{E}^{Q} [||\pi^{\text{AE}}||^{2}]^{1/2}
\times \mathbb{E}^{Q} [||h(\rho F^{E}(\tau_{2}; \tau_{1}, \tau_{2}) + \sqrt{1 - \rho^{2}} F^{l}(\tau_{2}; \tau_{1}, \tau_{2}))(1 + \rho)
- h(F^{l}(\tau_{2}; \tau_{1}, \tau_{2}))||^{2}]^{1/2}.
\]

It follows from the integrability conditions (4.3) that the first expression on the right hand side of the above inequality is finite. Using the Itô isometry it follows that
\[
\mathbb{E}^{Q} [||\pi^{\text{AE}}||^{2}] = \mathbb{E}^{Q} \left[ \int_{0}^{\tau_{2}} |a(t)(\sigma_{E}^{-1}(t; \tau_{1}, \tau_{2}) Y^{E}_{E}(t; \tau_{1}, \tau_{2}))^{*} |^{2} dt \right] < \infty.
\]

The last expression on the right hand side of the above inequality can be bounded uniformly in $\rho$, and hence the result follows by the dominated convergence. \qed

Remark. Following similar arguments, we can obtain robust results for the temperature delta and cross-gamma hedging formulae.

9. Concluding remarks

In this paper, we have derived the energy delta, the temperature delta and the cross-gamma formulae of the quanto energy option written on a forward contract under the HJM framework. Our results show that the hedging formulae can be expressed as the expectation of payoff functionals multiplied by the weight functions. The weight functions are independent of the payoff functionals. The Malliavin calculus approach increases the efficiency when dealing with discontinuous payoff functionals as compared to finite difference approximation. In addition, no extra computation is required for other payoff functionals as long as the payoff functional is a function of the same points of the Brownian motion trajectory. The weighting function smoothen the function in the case of the energy delta and the temperature delta to simulate as the payoff functional does not require to be numerically differentiated. In the case of the cross-gamma it smoothen twice the payoff functional as it reduces a second order partial differentiation to no partial differentiation. This leads to high efficiency for the simulation of the cross-gamma.

We have considered the independent and the correlation cases to facilitate the residual risk analysis. Our results generalize the work in Benth et al. [9] in the sense that they can be to discontinuous payoff functions. In addition, we have also considered application to stochastic volatility models. In Benth et al. [2], the authors analyzed a volatility model for a different payoff structure to the one considered in this paper.
Acknowledgment

The authors would like to thank Prof Fred E. Benth for suggesting the modelling issues in this paper.

Funding

The work of R.K. was supported in part by the National Research Foundation of South Africa (Project No. 90313). The work of F.J.M. was supported in part by the National Research Foundation of South Africa (Grant Number: 105924).

ORCID

Rodwell Kufakunesu http://orcid.org/0000-0002-5410-939X
Farai Julius Mhlanga http://orcid.org/0000-0002-8775-9073
Calisto Guambe http://orcid.org/0000-0003-3863-0908

References

[1] Nualart, D. (2006). The Malliavin Calculus and Related Topics, Vol. 1995. Berlin: Springer.

[2] Benth, F. E., Groth, M., Wallin, O. (2010). Derivative-free Greeks for the Barndorff-Nielsen and Shephard stochastic volatility model. Stochastics. 82(3):291–313. DOI: 10.1080/17442501003629554.

[3] Caporin, M., Preš, J., Torró, H. (2012). Model based Monte Carlo pricing of energy and temperature quanto options. Energy Econ. 34(5):1700–1712. DOI: 10.1016/j.eneco.2012.02.008.

[4] Ho, T. S., Stapleton, R. C., Subrahmanyam, M. G. (2006). Correlation risk, cross-market derivative products and portfolio performance. Eur. Financial Manag. 1(2):105–124. DOI: 10.1111/j.1468-036X.1995.tb00011.x.

[5] Zhang, P. G. (2001). Exotic Options: A Guide to Second Generation Options, Vol. 2001. Singapore: World Scientific.

[6] Heath, D., Jarrow, R., Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica: Journal of the Econometric Society. 60(1):77–105. DOI: 10.2307/2951677.

[7] Benth, F. E., Benth, J. S., Koekebakker, S. (2008). Stochastic Modelling of Electricity and Related Markets, Vol. 11. Singapore: World Scientific.

[8] Clewlow, L., Strickland, C. (2000). Energy Derivatives: Pricing and Risk Management. London: Lacima Publication.

[9] Benth, F. E., Lange, N., Myklebust, T. A. (2015). Pricing and hedging quanto options in energy markets. JEM. 8(1):1–35. DOI: 10.21314/JEM.2015.130.

[10] Benth, F. E., Dahl, L. O., Karlsen, K. H. (2003). Quasi Monte–Carlo evaluation of sensitivities of options in commodity and energy markets. Int. J. Theor. Appl. Finance. 06(08):865–884. DOI: 10.1142/S0219024903002250.

[11] Di Nunno, G., Øksendal, B. K., Proske, F. (2009). Malliavin Calculus for Lévy Processes with Applications to Finance, Vol. 2. Berlin: Springer.

[12] Fourniè, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L., Touzi, N. (1999). Applications of Malliavin calculus to Monte Carlo methods in finance. Finance Stoch. 3(4):391–412. DOI: 10.1007/s007800500068.

[13] Fourniè, E., Lasry, J.-M., Lebuchoux, J., Lions, P.-L. (2001). Applications of Malliavin calculus to Monte-Carlo methods in finance II. Finance Stoch. 5(2):201–236. DOI: 10.1007/PL00013529.
[14] Ocone, D. L., Karatzas, I. (1991). A generalized Clark representation formula, with application to optimal portfolios. Stochastics. 34(3–4):187–220. DOI: 10.1080/17442509108833682.

[15] Mhlanga, F. J. (2011). Computation of Greeks using Malliavin calculus. PhD thesis. University of Cape Town.

[16] Mhlanga, F. J., Becker, R. (2013). Applications of white noise calculus to the computation of Greeks. Commun. Stoch. Anal. 7(4), 493–510 DOI: 10.31390/cosa.7.4.01.

[17] Jackel, P. (2003). Monte Carlo Methods in Finance. Chichester, West Sussex: John Wiley and Sons, Ltd.

[18] Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering: Applications of Mathematics, Vol. 53. New York: Springer-Verlag.

[19] Broadie, M., Glasserman, P. (1996). Estimating security price derivatives using simulation. Manage. Sci. 42(2):269–285. DOI: 10.1287/mnsc.42.2.269.