Dendritic cells (DC) are a heterogeneous population of innate immune cells that are fundamental to initiating responses against invading pathogens and regulating immune responses. Myeloid DC (mDC) act as a bridge between the innate and adaptive immune response during virus infections but their role in immunity to human immunodeficiency virus (HIV) remains ill-defined. This review examines aspects of the mDC response to HIV and its simian counterpart, simian immunodeficiency virus (SIV), and emphasizes areas where our knowledge of mDC biology and function is incomplete. Defining the potentially beneficial and detrimental roles mDC play during pathogenic and stable infection of humans and nonhuman primates is crucial to our overall understanding of AIDS pathogenesis.

Introduction

Dendritic cells (DC) are a heterogeneous cell population known to bridge the gap between the innate and adaptive immune responses. The family of DC includes myeloid DC (mDC) and plasmacytoid DC (pDC) subsets, which differentiate from precursors found in the bone marrow and inhabit the periphery as immature cells. In humans and nonhuman primates, DC are defined by the absence of T, B and monocytic cell lineage markers, the presence of major histocompatability complex class-II (MHC-II), and high expression of CD123 and CD11c on pDC and mDC, respectively. Upon exposure to invading pathogens, pDC migrate through high endothelial venules to lymphatic tissue and excrete copious quantities of antiviral type I interferon, which can slow viral replication and contribute to an inflammatory environment. Through a separate pathway, mDC recognize viral particles, mature, produce pro-inflammatory cytokines and migrate through afferent lymphatics to lymph nodes where they stimulate and polarize the antigen-specific adaptive immune response.

The effects of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection on pDC have been the focus of multiple reviews, but new studies have renewed interest in the complex role of mDC in these infections. As the focus of this brief review, mDC can be thought of as having a “dendrite in every pie” as they are active participants in multiple processes of the immune response including instigating, maintaining and controlling immunity and inflammation. We will consider each of these factors in discussing mDC in HIV and SIV infection, particularly those areas that remain controversial.

Nonhuman Primate Models for HIV Pathogenesis

In order to elucidate the mechanism of HIV pathogenesis and to test vaccines and treatment therapies, the use of a nonhuman primate infection model that mirrors the course of human disease is invaluable. Continued overactivation of the immune system is a key predictor of disease course in HIV-infected individuals, and comparing pathogenic and nonpathogenic nonhuman primate models of SIV infection can reveal insights into its cause. The SIV disease course in Asian nonhuman primate species such as rhesus macaques is comparable to HIV infection in humans in that it exhibits an early and strong type-I interferon response, which chronically persists ultimately contributing to immune dysfunction and progressive disease. In contrast, natural infection of African nonhuman primates such as the sooty mangabey and African green monkey is characterized by the rapid control of the type I interferon response and lack of manifestations of disease, despite high virus loads. Crucial to the use of nonhuman primates as models of AIDS, it has been determined that DC subsets from nonhuman primates are phenotypically and functionally comparable to DC of humans. Thus, the study of progressive and non-progressive models of SIV infection in nonhuman primates can be very informative in determining whether mDC play a beneficial role in controlling SIV infection, or a detrimental role in promoting immune activation and disease.
The Role of mDC in Disseminating HIV and SIV from the Site of Infection

The relative contribution of direct and indirect infection of mDC in virus dissemination in HIV infection is still not well understood. Throughout maturation and migration mDC express the required receptors for HIV and SIV entry and can become productively infected; thus mDC can potentially transport virus from the primary site of exposure in mucosal tissues to secondary sites of viral replication. However, in the absence of direct infection, mDC may form conjugates with T lymphocytes and facilitate their infection. In addition, mDC may trans-infect CD4+ T lymphocytes by engulfing viral particles associated with either CD4 or DC-SIGN and traveling to lymph nodes where the virus is then spread through virological synapses. In SIV-infected macaques, the proportion of mDC that are productively infected during the peak virus replication in lymph nodes at day 14 post infection is minor, suggesting that mDC do contribute to virus dissemination it is through these indirect mechanisms. In a recently updated model of viral dissemination, pDC are rapidly recruited to mucosal surfaces following vaginal exposure to SIV, where they secrete pro-inflammatory cytokines and chemokines that drive subsequent recruitment of CD4+ T lymphocytes to the site of infection, thus counter-intuitively creating a local expansion of target cells and viral replication. As an example of knowledge-directed therapeutics, local administration of the antimicrobial agent glycerol monolaurate inhibits the very cytokines and chemokines that are required to establish inflammation and SIV infection through vaginal inoculation of rhesus macaques.

The Dynamics of the mDC Response in HIV and SIV Infection

Many aspects of mDC biology in HIV and SIV infection remain poorly defined or controversial, including the dynamics of circulating mDC with and without anti-retroviral therapy (ART). During chronic and late-stage infection, mDC are depleted from the blood of infected patients. A conflicting study argues that mDC are only depleted in patients with high viral loads, as depletion was only detected in patients with viral loads of > 5,000 copies/ml and ART diminished this defect. Likewise, a general consensus remains to be agreed upon regarding effective treatment aiding in circulating mDC reconstitution. Administration of the nucleoside analog reverse-transcriptase inhibitor AZT or 8 weeks of ART increases mDC frequencies to 3.5-fold higher than pre-infection levels. It had been hypothesized that mDC are lost from circulation because they become infected by HIV and SIV and apoptose, but as discussed above the overall magnitude of mDC loss in the periphery does not match their low rate of infection, at least in SIV-infected macaques, suggesting other factors may contribute to mDC disappearance. Certainly a likely factor in loss of mDC from blood is increased migration of mDC to inflamed lymphatic tissue. In fact, mDC taken from progressively infected rhesus macaques express more of the lymph node homing receptor CCR7 while lymph node tissues express significantly higher levels of the CCR7 ligand CCL19. Furthermore, HIV is linked with imbalanced cytokine secretion in lymphatic tissue that causes increased cellular recruitment and retention leading to lymphadenopathy.

Innate Function of mDC when Responding to Infection

mDC engulf extracellular pathogens and recognize generic pathogen associated molecular patterns through pattern recognition receptors like members of the Toll-like receptor (TLR) family. mDC can detect bacterial and viral infection through the expression of TLR 1, 2, 3, 4, 5, 6 and 8 with TLR8 serving as the principle receptor for HIV single stranded RNA. The effect that HIV and SIV infection has on the ability of mDC to respond to invading pathogens and the impact this has on immune activation remains controversial. A correlative study suggests that reconstitution of IL-12 producing mDC after ex vivo TLR8 stimulation allows for CD4+ T lymphocyte stabilization in the blood, suggesting that functional mDC are required for appropriate maintenance of the CD4+ T lymphocyte population. Furthermore, PBMC from HIV infected individuals stimulated with a TLR8 synthetic agonist produce more IL-10 and less IL-12, suggesting that mDC from infected individuals are driving immune modulation rather than activation. Perpetual TLR7/8 activation through either R-848 or single-stranded RNA oligonucleotide administration in mice creates a disease resembling HIV disease. Because viremia in patients is positively correlated with TLR expression and ART is able to return TLR mRNA levels to normal, the presence of HIV may be making mDC hypersensitive to TLR agonists. Increased spontaneous production of cytokines by mDC from HIV infected patients suggests that the presence of virus is chronically stimulating the TLR pathway leading to persistent immune activation and creating a chronically enflamed environment. Furthermore, mDC are shown to be hyper-functional when responding to patients that experienced low mDC frequencies despite ART as compared with long-term non-progressing patients that had elevated numbers of mDC. In the blood of SIVmac251-infected rhesus macaques, low mDC frequencies at viral set point predicts rapidly progressing disease. Additionally, a separate group of animals in the same cohort experiencing stable infection exhibit elevated numbers of mDC in the blood, and ART further boosts mDC frequencies to 3.5-fold higher than pre-infection levels. These studies indicate that mDC pressure during infection could aid in controlling infection or may be a marker of a more fully constituted immune system
The HIV protein Nef down-modulates MHC-I molecules on the lymphocytes, although more work in this area is urgently needed. There is evidence that HIV infection has a significant impact on immune system, such as mDC and cause killer cells (NK) to proliferate, secrete IFN-γ, and induce cytolysis.71-75 NK cells are active effectors of the innate immune system that provide immediate antigen independent mechanisms to control viral infection.76,77 Importantly, at early stages of infection NK cells are implicated in partially controlling HIV replication prior to cell-mediated immune responses.78 NK cells can kill HIV-infected cells and inhibit viral entry and replication through ample secretion of IFN-γ, TNF-α, and CCR5 binding chemokines.79,80 Although HIV is shown to affect the interplay between pDC and NK cells,81,82 infection does not affect NK cell induction by mDC.83

Impact of HIV Infection on Induction of Adaptive Immunity by mDC

There is evidence that HIV infection has a significant impact on the capacity of mDC to prime and stimulate antigen-specific T lymphocytes, although more work in this area is urgently needed. The HIV protein Nef down-modulates MHC-I molecules on the surface of DC, which impacts antigen presentation to CD8+ T lymphocytes. Nef also specifically inhibits cytotoxic T cell lysis of infected CD4+ T lymphocytes and DC.84-86 Furthermore, Nef specifically restricts the peptides being presented by MHC-II molecules, thereby inhibiting CD4+ T lymphocyte activation through antigen presentation.87 There is also evidence that DC from HIV infected individuals have a reduced capacity to stimulate naïve CD4+ T lymphocytes.40 DC taken from lymph nodes of HIV infected individuals have decreased expression of co-stimulatory markers CD80 and CD86,88 and splenic DC have decreased expression of the maturation marker CD83,89 potentially providing a link between a lack of DC maturation and an inability of mDC to stimulate T cells. HIV-specific CD4+ T cell proliferation is substantially impaired in infected patients during early stages of infection,90 but whether suppressed mDC function plays any part in this failure of CD4+ T cell function has yet to be explored.

Potential Involvement of mDC in Imbalance between Regulatory T Cells and TH17 Cells

The literature on whether induction of regulatory T cells (Treg) is beneficial or detrimental to HIV disease outcome is conflicting. Natural SIV infection of African green monkeys reveals an early induction of Treg including TGF-β and IL-10 elevations during acute infection.91 Data in pathogenic SIV infection of macaques is conflicting, as Treg depletion92 and accumulation93 have both been reported. In HIV-infected individuals depletion of Treg results in a greater anti-HIV-specific immune response, thus suggesting that Treg suppress the normal anti-HIV response and promote persistence of viremia.94-96 In contrast, premature induction during acute infection and accumulation of Treg in lymphoid tissue and mucosal tissue during chronic infection is found in rhesus macaques and humans.97-99 Moreover, the products of Treg induction including TGF-β and indoleamine 2,3-dioxygenase are more abundant in the tonsils of untreated HIV infected individuals100 and in the spleen and gut mucosa of progressively infected macaques.101 This accumulation could lead to immune suppression, thus inhibiting an appropriate response to HIV and opportunistic diseases.

HIV causes semi-mature, pro-apoptotic mDC to accumulate in lymph nodes102-104 and these cells are implicated in inducing Treg. In addition, recent advancements in the research of the gut mucosa in the small intestine of mice reveal a population of CD103+ mDC that are particularly suited for inducing Treg and this is further confirmed in the mesenteric lymph nodes of humans.105 CD103+ DC are lost from the gut mucosa in SIV-infected macaques, providing a potential mechanism for disruption to Treg induction.107 However, the issue is likely to be complicated, as while mature mDC from mesenteric lymph nodes of SIV infected rhesus macaques can stimulate Treg, this is unrelated to expression of CD103.108 Found in the gut mucosa and opposing Treg in the balance between regulation and inflammation, TH17 CD4+ T lymphocytes function to promote inflammation to fight infection of bacteria and fungi.109,110 An imbalance of TH1 and TH17 cell types noted in pathogenic SIV infection, which is absent in nonprogressive disease models, is implicated in the loss of integrity of the gut mucosa,110-112 and this in turn could contribute to microbial translocation, persistent plasma lipopolysaccharide, and immune activation.110 Whether DC found in the gut mucosa of humans and nonhuman primates...
are linked with direct T₃₁⁷ induction, and whether this is altered in HIV and SIV infection, remains to be determined.

Conclusions and Future Perspectives

As summarized in Figure 1 and discussed throughout this review, mDC functions after HIV and SIV infection can have opposing contributions to disease control or progression. For several functions of mDC the impact of HIV and SIV infection are yet to be fully determined. Continued studies in HIV infected individuals and particularly in nonhuman primates with progressive and non-progressive SIV infection may reveal insights into the more favorable actions of mDC that may limit virus burden and immune activation and promote T cell immunity. A more complete understanding of mDC biology may also lead to development of therapeutics designed to either enhance or suppress aspects of the mDC response to ultimately control HIV and SIV infection.

Acknowledgments

For their contributions, we extend our thanks to members of the Barratt-Boyes laboratory, the Center for Vaccine Research, the Department of Infectious Diseases and Microbiology and the Department of Immunology at the University of Pittsburgh. Support was provided by US National Institutes of Health grants AI071777 and the ARRA supplement AI071777-03S1 to S.M.B.-B. -
18. Hazenberg MD, Otto SA, van Benthen BH, Roos MT, Coutinho RA, Lange JM, et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 2003; 17:1881-8; http://dx.doi.org/10.1097/00002030-200309050-00006

19. Cha harmidi A, Bosinger SE, Vanderford TH, Paiardini M, et al. Simian SIV in African green monkeys without inducing immunologic virus replicates to high levels in naturally infected Feinberg MB, Allan JS. Simian immunodeficiency virus replication in dendritic cells in cynomolgus macaques. Virology 2007; 365:356-68; PMID:17490699; http://dx.doi.org/10.1016/j.virol.2007.03.055

20. Mortara L, Ploquin MJ, Faye A, Scott-Algara D, Vailin B, Buroc C, et al. Phenotype and function of myeloid dendritic cells depleted from African green monkey blood monocytes. J Immunol Methods 2006; 308:138-55; PMID:16325847; http://dx.doi.org/10.1016/j.jim.2005.10.005

21. Brown KN, Trichel A, Barratt-Boyes SM. Parallel loss of myeloid and plasmacytoid dendritic cells from blood and lymphoid tissue in simian AIDS. J Immunol 2007; 178:6598-67; PMID:17513745

22. Bosinger SE, Hodgkin SL, Silver S, Kazar J, Layton DC, et al. Intercellular spread of influenza virus to T cells requires CXCR3+ CD8+ T cells. J Immunol 2008; 180:5487-98; PMID:18453600

23. Estes JD, Gordon SN, Zeng M, Chahroudi AM, Dunham RM, Stappans SI, et al. Early resolution of acute HIV-1 infection and induction of PD-1 in SIV-infected simian macrophages distinguishes nonpathogen from pathogenic infection in rhesus macaques. J Immunol 2008; 180:6798-807; PMID:18453600

24. Broussard SR, Staprans SI, White R, Whitehead EM, M, Barnes M, et al. Simian immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 1998; 72:2733-7; PMID:9525591

25. MacDougall TH, Shattock RJ, Madsen C, Chain BM, Kara DR. Regulation of primary HIV-1 isolate replication in dendritic cells. Clin Exp Immunol 2002; 127:66-71; PMID:11882034; http://dx.doi.org/10.1046/j.1365-2249.2002.01715.x

26. Pandrea I, Ribeiro RM, Gautam R, Gaufin T, Pattison PM, Chen D, Wei Y, Isidell F, et al. Efficient interaction of HIV-1 with purified dendritic cells via principle chemokine receptors. J Exp Med 1996; 184:2433-8; PMID:8976200; http://dx.doi.org/10.1084/jem.184.6.2433

27. Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM. Immature dendritic cells selectively replicate macrophagotropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol 1998; 72:2733-7; PMID:9525591

28. Papasavvas E, Jerandi G, et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 2001; 98:3016-21; PMID:11698285; http://dx.doi.org/10.1182/blood.2001.98.10.V8.3016

29. Morelli AE, Murphey-Corb M, Thomson AW, et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. PLoS Pathog 2010; 6: e1001235; PMID:21218777; http://dx.doi.org/10.1371/journal.ppat.1001235

30. Teleshova N, Kenney J, Jones J, Marshall J, Van Nest A, M, Barnes M, et al. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol 2001; 75:22627-5; PMID:11667030; http://dx.doi.org/10.1128/JVI.75.22627-2251.2001

31. Coates PT, Barratt-Boyes SM, Zhang L, Donnenberg VS, O’Connell PJ, Logar AJ, et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 2003; 102:2513-21; PMID:12829324; http://dx.doi.org/10.1182/blood-2002-09-2295

32. Pandrea I, Ribeiro RM, Gauran R, Gauftin T, Partison M, Barnes M, et al. Simian immunodeficiency virus SIVagm dynamics in African green monkeys. J Virol 2008; 82:3713-24; PMID:18216122; http://dx.doi.org/10.1128/JVI.02402-07

33. Brown KN, Wijewardana Y, Liu X, Barratt-Boyes SM, Rapid influx and death of plasmacytoid dendritic cells in cynomolgus macaques. Virology 2007; 365:356-68; PMID:17490699; http://dx.doi.org/10.1016/j.virol.2007.03.055

34. Reaves RK, Fultz PN. Disparate effects of acute and chronic infection with SIVmac239 or SHIV-89.6P on macrophage and dendritic cell function and survival. J Virol 2007; 81:1172-1182; http://dx.doi.org/10.1128/JVI.01974-06

35. Granelli-Piperno A, Moser B, Pope M, Chen D, Wei Y, Isidell F, et al. Efficient interaction of HIV-1 with purified dendritic cells via principle chemokine receptors. J Exp Med 1996; 184:2433-8; PMID:8976200; http://dx.doi.org/10.1084/jem.184.6.2433

36. MacDougall TH, Shattock RJ, Madsen C, Chain BM, Kara DR. Regulation of primary HIV-1 isolate replication in dendritic cells. Clin Exp Immunol 2002; 127:66-71; PMID:11882034; http://dx.doi.org/10.1046/j.1365-2249.2002.01715.x

37. Donaghy H, Gazzard B, Gotch F, Patterson S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood 2003; 101:4505-11; PMID:12576311; http://dx.doi.org/10.1182/blood-2002-10-3189

38. Spra AI, Marx PA, Partison BK, Mahoney J, Koup RA, Wolinsky SM, et al. Cellular targets of infection and rate of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med 1996; 183:215-25; PMID:8551225; http://dx.doi.org/10.1083/jem.183.1.215

39. Pope M, Betjes MG, Romani N, Hirmand H, Cameron PU, Hoffman L, et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 1994; 78:1385-98; PMID:7701115; http://dx.doi.org/10.1006/1092-6771(94)90418-9

40. Wu L, KewalRamani VN. Dendritic cell interactions with HIV infection and viral dissemination. Nat Rev Immunol 2006; 6:859-68; PMID:17063186; http://dx.doi.org/10.1038/nri1960

41. Brown KN, Wijewardana Y, Liu X, Barratt-Boyes SM, Rapid influx and death of plasmacytoid dendritic cells in lymph nodes mediate death in acute simian immunodeficiency virus infection. PLoS Pathog 2009; 5:e1000413; PMID:19424421; http://dx.doi.org/10.1371/journal.ppat.1000413

42. Li Q, Estes JD, Blyveis N, Palmer BE, MaWhinney S, Brosnahan AJ, et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 2001; 98:3016-21; PMID:11698285; http://dx.doi.org/10.1182/blood.98.10.V8.3016

43. Morelli AE, Murphey-Corb M, Thomson AW, et al. Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 2004; 78:5223-32; PMID:15113904; http://dx.doi.org/10.1128/JVI.78.10.5223-5232.2004
69. Chang JJ, Lacas A, Lindsay RJ, Doyle EH, Asten KL, Perez-Gomez D, Hesketh H, et al. Potential regulation of Toll-like receptor pathways in acute and chronic HIV-1 infection. AIDS 2012; 26:533-41; http://dx.doi.org/10.1097/QAD.0b013e32834f5167

70. Sahado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E, et al. Evidence of dysregulation of dendritic cells in primary HIV infection. Blood 2010; 116:3839-52; PMID:20603428; http://dx.doi.org/10.1182/blood-2010-03-273763

71. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Befler D, Suter M, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5:405-11; PMID:10202929; http://dx.doi.org/10.1016/S0969-8986(00)80002-X

72. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-52; PMID:9521319; http://dx.doi.org/10.1038/35288

73. Steinman RM. Some interfaces of dendritic cell biology. J Exp Med 2001; 194:863-9; PMID:11561001; http://dx.doi.org/10.1084/jem.194.6.863

74. Jarrossay D, Baldani-Guerra B, Nisii C, Marchesini V, Fernandez NC, Lozier A, Flreten C, Ricciardi-Castagnoli P, Befler D, Suter M, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5:405-11; PMID:10202929; http://dx.doi.org/10.1016/S0969-8986(00)80002-X

75. Steinkman RM. Some interfaces of dendritic cell biology. J Exp Med 2001; 194:863-9; PMID:11561001; http://dx.doi.org/10.1084/jem.194.6.863

76. Jarrossay D, Baldani-Guerra B, Nisii C, Marchesini V, Fernandez NC, Lozier A, Flreten C, Ricciardi-Castagnoli P, Befler D, Suter M, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5:405-11; PMID:10202929; http://dx.doi.org/10.1016/S0969-8986(00)80002-X

77. Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and viruses: myeloid DCs and CNS infection. Hum Retroviruses 2009; 25:1029-37; PMID:1969336; http://dx.doi.org/10.1089/aid.1998.14.508

78. Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and viruses: myeloid DCs and CNS infection. Hum Retroviruses 2009; 25:1029-37; PMID:1969336; http://dx.doi.org/10.1089/aid.1998.14.508

79. Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and viruses: myeloid DCs and CNS infection. Hum Retroviruses 2009; 25:1029-37; PMID:1969336; http://dx.doi.org/10.1089/aid.1998.14.508

80. Bandyopadhyay S, Ziegner U, Campbell DE, Miller DS, Kornfeld C, Ploquin MJ, Pandrea I, Faye A, Onanga M, et al. Evidence of dysregulation of dendritic cell precursors by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol 2007; 81:8180-91; PMID:17507480; http://dx.doi.org/10.1128/JVI.00421-07

81. Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and viruses: myeloid DCs and CNS infection. Hum Retroviruses 2009; 25:1029-37; PMID:1969336; http://dx.doi.org/10.1089/aid.1998.14.508

82. Altfeld M, Fadda L, Frleta D, Bhardwaj N. DCs and viruses: myeloid DCs and CNS infection. Hum Retroviruses 2009; 25:1029-37; PMID:1969336; http://dx.doi.org/10.1089/aid.1998.14.508

83. Benlahrech A, Gotch F, Kelleher P, Patterson S. Loss of NK stimulatory capacity by plasmacytoid and monocyte-derived DC but not myeloid DC in HIV-1 infected individuals. AIDS Res Hum Retroviruses 1998; 14:505-13; PMID:9566553; http://dx.doi.org/10.1089/aid.1998.14.508

84. Bienenstock J, Kuchroo VK, Brainard D, Sallusto F, Steinman RM. Some interfaces of dendritic cell biology. J Exp Med 2001; 194:863-9; PMID:11561001; http://dx.doi.org/10.1084/jem.194.6.863

85. Andrieu M, Chassin D, Desoutter JF, Bouchaert I, Meineweg MA, et al. Defective plasmacytoid dendritic cells in primary cells against killing by cytotoxic T lymphocytes. Nature 1998; 391:397-401; PMID:9450757; http://dx.doi.org/10.1038/34929

86. Andreu M, Chassin D, Desoutter JF, Bouchaert I, Meineweg MA, et al. Defective plasmacytoid dendritic cells in primary cells against killing by cytotoxic T lymphocytes. Nature 1998; 391:397-401; PMID:9450757; http://dx.doi.org/10.1038/34929

87. Stumptner-Cuvelette P, Morchoisne S, Dugast M, et al. Endogenously expressed HIV-1 nef down-regulates antigen-presenting molecules, not only class I MHC but also CD1a, in immature dendritic cells. Virology 2004; 326:79-89; PMID:15262497; http://dx.doi.org/10.1016/j.virol.2004.06.004

88. Lorée K, Sonnier-Bonnet, Broström C, Goh LE, Perrin L, McDade H, et al. Activation of DC-SIGN+CD40+ dendritic cells with placed CD80 and CD86 expression in lymphoid tissue during acute HIV-1 infection. AIDS 2002; 16:683-92; PMID:11964524; http://dx.doi.org/10.1097/00002030-200203290-00003

89. McFadyen D, Aturan B, Claeuw JP, Oksenhendler E, Debet P, Hominal A. Low CD23, but normal MHC class II and contumulatory molecule expression, on splenic dendritic cells from HIV+ patients. AIDS Res Hum Retroviruses 1998; 14:505-13; PMID:9566553; http://dx.doi.org/10.1089/aid.1998.14.505

90. Nabel CG, Ploquin MJ, Pandrea I, Faye A, Onanga M, et al. Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS. J Clin Invest 2005; 115:1082-91; PMID:15761496

91. Kornfeld C, Ploquin MJ, Pandrea I, Faye A, Onanga M, et al. Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS. J Clin Invest 2005; 115:1082-91; PMID:15761496

92. Qin S, Sui Y, Solof C, Janecko BA, Kuchroo VC, Murphy-Corb MA, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 1997; 278:1447-50; PMID:8979594; http://dx.doi.org/10.1126/science.278.5342.1447

93. Kornfeld C, Ploquin MJ, Pandrea I, Faye A, Onanga M, et al. Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS. J Clin Invest 2005; 115:1082-91; PMID:15761496

94. Aandahl EM, Michaëlsson J, Moretto WJ, Hecht FM, Nason DF. Human CD4a+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol 2004; 78:2454-6; PMID:15465527; http://dx.doi.org/10.1128/JVI.02215-04

95. Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carboneil L, Levy Y. Human immunodeficiency virus-driven expansion of CD4a+CD25+ regulatory T cells, which suppress HIV-specific T-cell responses in HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T-cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004; 200:331-43; PMID:15204019; http://dx.doi.org/10.1083/jem.20032009
97. Nilsson J, Boasso A, Velilla PA, Zhang R, Vaccari M, Franchini G, et al. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 2006; 108:3808-17; PMID:16902147; http://dx.doi.org/10.1182/blood-2006-05-021576

98. Epple HJ, Loddenkemper C, Kunkel D, Tröger H, Maul J, Moos V, et al. Mucosal but not peripheral FOXP3+ regulatory T cells are highly increased in untreated HIV infection and normalize after suppressive HAART. Blood 2006; 108:3072-8; PMID:16728694; http://dx.doi.org/10.1182/blood-2006-04-016923

99. Allers K, Loddenkemper C, Hofmann J, Unbehaun A, Kunkel D, Moos V, et al. Gut mucosal FOXP3+ regulatory CD4+ T cells and Nonregulatory CD4+ T cells are differentially affected by simian immunodeficiency virus infection in rhesus macaques. J Virol 2010; 84:3259-69; PMID:20071575; http://dx.doi.org/10.1128/JVI.01118-09

100. Andersson J, Boasso A, Nilsson J, Zhang R, Shire NJ, Lindback S, et al. The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J Immunol 2005; 174:3143-7; PMID:15749840

101. Boasso A, Vaccari M, Hryniewicz A, Fuchs D, Nacsa J, Cecchinato V, et al. Regulatory T-cell markers, indoleamine 2,3-dioxygenase, and virus levels in spleen and gut during progressive simian immunodeficiency virus infection. J Virol 2007; 81:11593-603; PMID:17715231; http://dx.doi.org/10.1128/JVI.00760-07

102. Dillon SM, Friedlander LJ, Rogers LM, Meditz AL, Folkvord JM, Connick E, et al. Blood myeloid dendritic cells from HIV-1-infected individuals display a proapoptotic profile characterized by decreased Bcl-2 levels and by caspase-3+ frequencies that are associated with levels of plasma viremia and T cell activation in an exploratory study. J Virol 2011; 85:397-409; PMID:20962079; http://dx.doi.org/10.1128/JVI.00760-07

103. Dillon SM, Robertson KB, Pan SC, Mawhinney S, Meditz AL, Folkvord JM, et al. Plasmacytoid and myeloid dendritic cells with a partial activation phenotype accumulate in lymphoid tissue during asymptomatic chronic HIV-1 infection. J Acquir Immune Defic Syndr 2008; 48:1-12; PMID:18306699; http://dx.doi.org/10.1097/QAI.0b013e3181664b60

104. Krathwohl MD, Schacker TW, Anderson JL. Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis 2006; 193:494-504; PMID:16425128; http://dx.doi.org/10.1093/jid/193.3.494

105. Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 2008; 205:2139-49; PMID:18710932; http://dx.doi.org/10.1084/jem.20080414

106. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 2009; 58:1481-9; PMID:19570762; http://dx.doi.org/10.1136/gut.2008.175166

107. Klärt NR, Estes JD, Sun X, Ortiz AM, Barber JS, Harris LD, et al. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol 2012; PMID:22643849; http://dx.doi.org/10.1038/mi.2012.38

108. Presicce P, Shaw JM, Miller CJ, Shacklett BL, Chossegner CA. Myeloid dendritic cells isolated from tissues of SIV-infected Rhesus macaques promote the induction of regulatory T cells. AIDS 2012; 26:263-73; PMID:22095196; http://dx.doi.org/10.1097/QAD.0b013e32834ed8df

109. Steinman L. A brief history of TH17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 2007; 13:139-45; PMID:17290272; http://dx.doi.org/10.1038/nm1551

110. Favre D, Ledeter S, Kanwar B, Proll S, Kasakaw Z, et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog 2009; 5:e1000295; PMID:19214220; http://dx.doi.org/10.1371/journal.ppat.1000295

111. Brenchley JM, Patardini M, Knox KS, Asker Al, Ceravsi B, Asker TE, et al. Differential Th17 CD4+ T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 2008; 112:2826-35; PMID:18664624; http://dx.doi.org/10.1182/blood-2008-05-159301

112. Cecchinato V, Trindade CJ, Laurence A, Heward JM, Brenchley JM, Ferrari MG, et al. Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunol 2008; 1:279-88; PMID:19079189; http://dx.doi.org/10.1038/mi.2008.14

www.landesbioscience.com Virulence 7