Newborn screening for cystic fibrosis
Jeffrey S. Wagener, MD, Marci K. Sontag, MS, and Frank J. Accurso, MD

Early diagnosis of cystic fibrosis (CF) provides an opportunity to improve disease control and prevent early complications. Of patients with CF in the United States, 10% are identified early through newborn screening (including infants born in Colorado, Massachusetts, New Jersey, New York, Wisconsin, Wyoming, and parts of California, Connecticut, Pennsylvania, and Montana). Successful screening programs in these states have stimulated other states to consider adding CF screening to their newborn programs. Additionally, new technology permits expanded screening for numerous genetic conditions. Genetic screening, such as that used most frequently for CF, creates new challenges for the clinician, including atypical disease presentations and carrier detection. In this review, we examine the many advances in CF newborn screening and early care that were reported during the last few years. Curr Opin Pediatr 2003, 15:309–315 © 2003 Lippincott Williams & Wilkins.

Cystic fibrosis (CF) is diagnosed once in every 4000 live births in the United States, making it six times more common than phenylketonuria and equal in incidence to congenital hypothyroidism (2001 Colorado State Health Department data). Recent technologic advances permit almost unlimited expansion of newborn screening programs, while creating new challenges related to genetic screening and detection of conditions, such as CF, that do not have definitive therapies [1•,2,3]. Newborn screening programs for CF have existed in many countries for nearly 40 years, although debate continues whether these programs should be widespread in North America [4•,5,6]. Following the publication of encouraging outcomes from two large randomized, controlled trials of CF newborn screening, an increasing number of states are beginning to include CF in their public health screening armamentarium [7••,8•]. During the last few years numerous investigators have reported on the benefits related to earlier diagnosis of CF [6,9–11,12•,13–15,16•,17,18]. Additionally, new therapies for CF have been developed to manage many of the complications [19•,20,21•]. These therapies, as well as future new therapies, are likely to have their greatest impact on clinical outcome when early detection is possible. Newborn screening offers the best chance for successful early detection.

Newborn screening for CF, similar to every major medical advance, has generated new challenges (Table 1). Most CF newborn screening programs incorporate genetic screening (ie, testing for specific DNA mutations) [22]. Because the CF gene has many different potential mutations, determining for which mutations to test is important to assure optimal testing sensitivity [23••]. Certain mutations can be related to less severe or atypical disease, adding complexity to the choice of specific mutations to screen [24,25]. Genetic screening for an autosomal recessive disease also means that asymptomatic carriers, or heterozygotes, are often identified [26••]. Thus, although early detection is valuable for the individual patient, genetic detection raises new challenges for the healthcare system [27••]. Future additions to newborn screening programs will likely involve genetic detection, so the experience with CF screening is extremely important [28,29].

Screening rationale
Newborn screening is a program aimed at the early identification of medical conditions for which early interventions can lead to the elimination or reduction of associ-
ated mortality, morbidity, and disability [30••]. CF typically presents during the first year of life with failure to thrive related to fat malabsorption and lower respiratory tract infections from specific bacterial pathogens. Although the median age at diagnosis is 6 months, the mean age at diagnosis is 3.1 years, indicating that a significant percent of patients have the diagnosis delayed for many years [31]. Diagnosis usually occurs after a patient has experienced multiple complications related to CF, unless it is diagnosed by newborn screening or because the patient is tested due to a positive family history. Recently, an increasing number of diagnoses have been made prenatally, either because of echogenic bowel detected by prenatal ultrasound [32], or by amniocentesis and genetic testing in pregnancies at risk for CF.

Mortality is rare in infants with CF during the first year of life. Early mortality is usually related to meconium ileus; however, in one large controlled study of CF newborn screening, the only deaths unrelated to meconium ileus occurred in the conventionally diagnosed group [8•]. Also, serious complications can occur during the first year of life in infants with undiagnosed CF. (Table 2) Life-threatening complications include severe protein-calorie malnutrition (kwashiorkor), hemolytic anemia, and intracranial hemorrhage caused by vitamin K deficiency [33–35,36•]. Although not life-threatening, even mild malnutrition during the first few years of life can affect long-term growth and may affect lung development and later lung function [37]. This malnutrition, as well as failure to recognize early respiratory tract problems, contributes to most infants with CF having abnormal lung function at the time of conventional diagnosis [38••]. Newborn screening avoids this complication and results in superior growth, continuing until at least 13 years of age [39••].

Newborn screening and early detection provide additional benefit to patients with CF with complex medical problems [40]. Holmgren et al. reported three children with bronchopulmonary dysplasia who had prolonged oxygen supplementation and poor weight gain [41]. Because of the existing chronic lung disease, the diagnosis of CF was significantly delayed. Earlier diagnosis would have led to pancreatic enzyme and salt supplementation, probably reducing the degree of failure to thrive and preventing the metabolic alkalosis seen in two of these patients.

Finally, newborn screening and early diagnosis of CF provide a unique opportunity to study, as well as treat, children before the development of airway infection, inflammation, and permanent damage. Investigators are beginning to answer the question of how the abnormal cystic fibrosis transmembrane regulator (CFTR) protein results in the medical problems encountered by the clinician [42]. Infants detected of having CF by newborn screening provide one of the only opportunities to study the pathophysiology of the disease before complications.

Cystic fibrosis screening techniques

Several approaches exist to screen newborns for CF. In 1964, Wiser and Beier suggested measuring albumin in meconium as a screening test for infants [43]. The technique, however, does not lend itself well to statewide screening and lacks sensitivity. In 1979, Crossley et al. reported the use of the dried blood spot to detect immunoreactive trypsin (IRT) as a screen [44]. Initial studies showed that this marker rapidly declined after birth in healthy infants. A two-sample program, where the first blood was drawn by day 3 and a second sample was obtained at 2 weeks or later in initially positive patients, was 95.2% sensitive and 32% to 74% specific, depending on the IRT values used for recall [45••]. This approach, however, requires two blood samples and following the identification of the CF gene in 1989, a two-tier IRT/DNA strategy became possible [46,47]. With this approach, a highly sensitive, but relatively nonspecific point is chosen to define an elevated IRT. Then, samples with an elevated IRT are further tested for one or several CF genetic variants [48]. Although many programs initially screened only for the most common CF mutation (ΔF508), generally a panel of gene mutations should be used, based on the local prevalence of different mutations [23••]. This approach has similar sensitivity to the double-IRT approach, but avoids the need for a second sample. One drawback of the IRT/DNA technique is that it will detect heterozygous individuals who do not have CF but only carry the gene. To further complicate this approach, CF heterozygotes tend to have higher IRTs than the general population, resulting in an increased number of detected carriers who will require genetic counseling [49•,50]. With either screening technique, subjects identified to have the CF mutation...
should have the diagnosis confirmed by standardized sweat electrolyte testing [50–54]. Additionally, because both techniques begin with testing for IRT, they both can be falsely negative in children with meconium ileus at birth [55,56]. Because the diagnosis of meconium ileus mandates further evaluation for CF, this false negative screening result should never lead to a missed diagnosis.

Challenges arising from cystic fibrosis screening

Screening based on DNA has created several challenges that are different from traditional newborn screening. Although CF is a single gene defect, numerous potential mutations exist in the gene. The frequency of specific mutations vary worldwide so that every DNA screening program needs to consider the most common mutations in the region to develop the ideal screening panel [57,58]. Thus, whereas one program might only screen for a few specific mutations, in an area with greater genetic variation, the screen might involve several dozen mutations [59].

Probably the greatest challenge for a DNA-based newborn screening program is how to manage genetic counseling [27•,60]. Heterozygote detection occurs with DNA-based testing and creates a special demand for genetic counseling. If a single CF gene mutation is identified, then patients should be referred for a sweat test to rule out disease. Most commonly, the sweat test will be normal, indicating the patient is most likely a heterozygote without risk for CF. The infant, however, does have the risk of passing on the gene when he/she later has children, and the infant’s parents are identified as having at least one gene for CF. Additionally, the infant and heterozygote parent may or may not be at risk for other, CFTR-related medical problems [24,61•]. Recent studies have shown that heterozygote “carriers” of the CF gene may be at increased risk for pancreatitis, allergic bronchopulmonary aspergillosis, other chronic lung diseases, and infection from atypical mycobacteria [62–65]. This raises the need to discuss medical and genetic risks with the parents, plus potential further screening to look for yet undisclosed CF genes. The risk of undisclosed CF genes is significant and may be as high as 6% [26•].

Infrequently, a single gene is identified and the sweat test is indeterminate (ie, the patient may have an atypical form of CF with a sweat chloride of 40 to 60 mEq/L). Patients with one gene and borderline or “normal” sweat electrolytes are particularly difficult to assess, because the clinician can neither assure the parents that the child does or does not have CF [66]. New specialized tests (eg, measuring nasal electrical potential difference) may eventually aid in diagnosing patients with indeterminate disease [67,68]. Currently, any patient with a borderline sweat test should be evaluated with an expanded genotype, including not only a large panel of CF mutations, but also examination for potential polymorphisms or modifiers (eg, the 5-polythymidine allele) [69,70]. Additionally, complete sequencing of the gene may be necessary to look for less frequent mutations [71,72]. This can be particularly important in different racial groups with different genetic variations [73,74]. Associated conditions that should be monitored include airway colonization with typical CF-related bacterial pathogens, nutritional deficiencies (eg, hypoalbuminemia and fat soluble vitamin deficiencies), fat malabsorption, hypo-electrolytemia, sinusitis, and pancreatitis.

As with many genetic conditions, CF phenotypes vary greatly from individual to individual [75]. Patients with mild disease, with pancreatic sufficiency and minimal lung disease, often have delayed conventional diagnosis [76]. These patients generally have a better long-term prognosis than patients who are symptomatic during the first couple years of life. Early detection by newborn screening may not be a benefit for these few patients. One concern is whether early detection could increase the risk of certain bacterial infections by exposing infants to other patients with CF at an earlier age than would occur with conventional diagnosis. Farrell et al. noted that *Pseudomonas aeruginosa* detection was greater in one CF center, where infants were cared for in the same clinic compared with a second center with a special newborn clinic [77]. These findings suggest that CF center care might put a child at risk for acquiring bacterial pathogens. Subsequent studies with larger populations, however, suggest that this risk is not related to age at diagnosis [78]. Additionally, recent infectious disease guidelines developed by the US CF foundation address techniques to avoid patient-to-patient spread of bacteria.

Finally, genetic testing may have an impact on future reproductive planning. [79•,80,81•]. The potential for impacting family planning has led the American College of Obstetrics and Gynecology to suggest that all pregnant women be offered prenatal genetic testing for CF [82•,83•]. In a study of 4879 women who partook of prenatal testing, 124 were heterozygotes [84]. When 106 partners were tested, 5 couples were identified as having a 25% risk of having a pregnancy with CF. This stimulated four to have prenatal testing. Prenatal CF screening has also been proposed in other countries [85]. How universal prenatal screening would have an impact on the needs for genetic counselors and prenatal testing can only be speculated. [84,86,87]. Likely, this issue will increase as genetic causes for other diseases are identified.

Therapy for early disease

One of the most important benefits of newborn screening and early diagnosis of CF is the ability to treat patients before serious complications occur. Nutritional abnormalities in patients CF are common during the first year of life [88•]. Abman et al. showed that hypoalbu-
minemia could occur by 3 weeks of age, and that low albumin related to an increased chance for serious respiratory infection [89•]. Early use of pancreatic enzymes will prevent hypoalbuminemia. Early diagnosis by newborn screening, however, does not completely avoid the potential for malnutrition in children with CF [90,91]. Although only 59% of infants with CF are enzyme deficient at 2 months of age, 92% will require supplemental enzymes by the time they are a year old [92•]. Previously, malabsorption was diagnosed by a 72-hour stool fat collection, or inferred by poor weight gain. Poor weight gain, however, can be a late finding of malabsorption [93•]. A recently developed test for stool elastase can assist with diagnosing pancreatic deficiency. This non-invasive test has a 92% diagnostic accuracy for detecting pancreatic maldigestion and is superior to the acid starch orat, which is used to diagnose steatorrhea [94,95].

Related to fat malabsorption, essential fatty acid, vitamin, and mineral levels may be low in infants with CF [96,97]. Although pancreatic enzyme supplements will reduce the problem of fat-soluble vitamin absorption, supplements with vitamins A, D, E, and K are advisable to avoid deficiency [98,99]. Another preventable nutritional complication is hypochloremia and dehydration related to excess salt loss through sweating. Early detection allows for salt supplementation in the first year of life. Liver function should also be monitored because cholestasis is common. Ursodeoxycholic acid is effective in treating cholestasis if detected early [100]. Most importantly, early detection by newborn screening combined with treatment in a CF care center results in nutritional improvements that persist for more than a decade when compared with infants who are conventionally diagnosed [7].

Lung disease related to CF is produced by a combination of infection and inflammation. Neutrophil-dominated inflammation results in an excessive release of elastase and reactive oxidants that stress the body’s natural defenses [101]. These injurious chemicals can produce airway damage and the bronchiectasis typically seen in patients with CF. Bacterial pathogens and neutrophils are present in the airways of most patients with CF studied at 1, 2, and 3 years of age [102••,103]. The density and prevalence of these bacteria increases progressively during these years. This increasing bacterial presence correlates with increasing respiratory symptoms and worsening oxygen saturation. To reduce the quantity of bacteria, prophylactic antibiotics have been studied [104]. This approach was successful in one study of patients with CF diagnosed by newborn screening, although concern was raised for increasing the risk of P. aeruginosa colonization [105]. P. aeruginosa is present in over a third of patients by 2 or 3 years of age, and infection accelerates the development of lung disease in CF, contributing to increased mortality and hospitalization by 7 years of age [106•,107,108]. Inhaled tobramycin is currently being studied in these young children. Studies in older children suggest that P. aeruginosa can be eradicated if treated early [109•].

Neutrophil-dominated inflammation increases with increasing bacteria density, although even in the absence of positive cultures, both neutrophils and proinflammatory cytokines may be increased in the airways of infants with CF [102••]. Whether treatment directed toward reducing inflammation can reduce airway damage is still not clear [110]. However, airway damage is more likely in the presence of antioxidant nutritional deficiencies (eg, vitamin E) plus excess oxygen free radicals caused by inflammation. Studies are yet to be conducted that will answer the question if airway damage can be modified by antioxidant or antielastase therapy.

Early treatment requires early detection, as is provided with newborn screening, and close monitoring. Bacterial colonization is usually followed with frequent upper airway cultures [111]. Recent developments in infant pulmonary function testing allow for respiratory monitoring in infants similar to monitoring in older patients [112•,113]. Additionally, care in specialized CF care centers provides expertise in nutritional and psychological support. This close monitoring and early intervention result in an overall improved outcome for patients with CF [16•].

Summary
Life expectancy for patients with CF has been increasing steadily since the original description of the condition in the late 1930s. Many of the advances in care include close monitoring and early intervention for malnutrition and respiratory infection [114,115••]. Newborn screening provides the opportunity to initiate monitoring and treatments at the earliest possible point, with little risk [5]. Care, however, needs to be well organized and care providers need to be well educated about the significance of a positive or negative screen. Importantly, screening for a condition never “rules out” the condition, but only reduces the likelihood a patient has the diagnosis [116]. Confirmatory testing should be obtained for both screen-positive and, if clinically indicated, for screen-negative patients. Finally, because screening often identifies the patient in a preclinical state, the clinician needs to be particularly vigilant in monitoring the patient and educating the family on early signs of pathology.

References and recommended reading
Papers of particular interest, published within the annual period of review, have been highlighted as:
• Of special interest
•• Of outstanding interest

1 Marshall E: Medicine. Fast technology drives new world of newborn screening. Science 2001, 294:2272–2274.
This article describes the new technique of tandem mass spectrometry for neonatal screening.
Newborn screening for cystic fibrosis

Bobadilla JL, Macek Jr M, Fine JP, et al.: Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to newborn screening. Hum Mutat 2002, 19:575–606. This article is a review of the known, worldwide genotypes in patients with CF.

Castellani C, Quinzi C, Altiere S, et al.: A pilot survey of cystic fibrosis clinical manifestations in CFTR mutation heterozygotes. Genet Test 2001, 5:249–254.

Massie RJ, Poplawski N, Wilcken B, et al.: Intron-8 polythymidine sequence in Australasian individuals with CF mutations R117H and R117C. Eur Respir J 2001, 17:1195–1200.

Wheeler PG, Smith R, Dorkin H, et al.: Genetic counseling after implementation of statewide cystic fibrosis newborn screening: two years’ experience in one medical center. Genet Med 2001, 3:411–415. These authors report their experiences during the 2 years following initiation of a new statewide program for CF newborn screening.

Ciske DJ, Haavisto A, Laxova A, et al.: Genetic counseling and neonatal screening for cystic fibrosis: an assessment of the communication process. Pediatrics 2001, 107:699–707. These authors discuss the value of genetic counseling for newborn screening programs. This is particularly important for screening programs that include DNA testing.

Wilfond B, Rothenberg LS: Ethical issues in cystic fibrosis newborn screening: from data to public health policy. Curr Opin Pediatr 2002, 14:529–534.

McCabe LL, Terrell BL, McCabe ER: Newborn screening: rationale for a comprehensive, fully integrated public health system. Mol Genet Metab 2002, 77:267–273.

Serving the family from birth to the medical home. Newborn screening: a blueprint for the future—a call for a national agenda on state newborn screening programs. Pediatrics 2000, 106(2 Pt 2):389–422. This consensus conference report on newborn screening provides comprehensive recommendations for expanding state programs.

Cystic Fibrosis Foundation 2000 Registry. Bethesda, MD: Cystic Fibrosis Foundation.

Al Kouatly HB, Chasen ST, Streiff JB, et al.: The clinical significance of fetal meconium. Am J Perinatol 1991, 8:57–60.

Dolan Jr TF, Rowe DS, Gibson LE: Edema and hypoproteinemia in infants with cystic fibrosis. The hypoalbuminemia sometimes seen is presumably secondary to malabsorption. Curr Clin Pharmacol (Philad) 1970, 9:295–297.

Dolan Jr TF: Hemolytic anemia and edema as the initial signs in infants with cystic fibrosis. Consider this diagnosis even in absence of pulmonary symptoms. Curr Clin Pharmacol (Philad) 1976, 15:597–600.

Konstan MW, Butler SM, Johnson CA, et al.: The relation between nutritional status in early life and pulmonary function in cystic fibrosis. Pediatr Pulmonol Suppl 1999, 19:155–156.

Ranganathan SC, Dezaute C, Bush A, et al.: Airway function in infants newly diagnosed with cystic fibrosis. Lancet 2001, 358:1964–1965. This multicenter study looked at pulmonary function in infants with newly diagnosed CF. A high percentage of these conventionally diagnosed patients already had pulmonary abnormalities.

Farrell PM, Kosorok MR, Rock MJ, et al.: Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Pediatrics 2001, 107:1–13. This article reports the 13-year outcomes from the controlled study of CF newborn screening in Wisconsin. Results show that severe malnutrition persists after delayed diagnosis and that catch-up may not be possible.

Macek Jr M, Macek M, Stuhmann M, et al.: The direct early diagnosis of cystic fibrosis by the detection of the delta F508 CFTR gene mutation in a prenatally delivered boy. Clin Genet 1991, 39:219–222.

Holmgren NL, Faro A, Gondor M, et al.: Cystic fibrosis in three children with bronchopulmonary dysplasia. Pediatr Pulmonol 2001, 31:474–477.

Elphick HE, Demoncheaux EA, Ritson S, et al.: Exhaled nitric oxide is reduced in infants with cystic fibrosis. Thorax 2001, 56:151–152.

Wiser WC, Beier FR: Albumin in the meconium of infants with cystic fibrosis. Chest 1976, 69:600.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Pulmonology

45 Hammond KB, Abman SH, Sokol RJ, et al.: Efficacy of statewide neonatal screening for cystic fibrosis by assay of trypsinogen concentrations. N Engl J Med 1991, 325:769–774.

46 Newborn screening: a blueprint for the future executive summary: newborn screening task force report. Pediatrics 2000, 106(2 Pt 2):386–388.

47 Yamaguchi A, Nepote JA, Kadivar M, et al.: Allele specific PCR with microfluorometry: application to the detection of delF508 mutation in cystic fibrosis. Clin Chim Acta 2002, 316:147–154.

48 Corbetta C, Seia M, Bassotti A, et al.: Screening for cystic fibrosis in newborn infants: results of a pilot program based on a two tier protocol (IRT/ DNA/IRT) in the Italian population. J Med Screen 2002, 9:60–63.

49 Scotet V, De Braekelee M, Audrezet MP, et al.: Prevalence of CFTR mutations in hypertrypsinemia detected through neonatal screening for cystic fibrosis. Clin Genet 2001, 59:42–47.

50 Gomez LM, Benetazzo MG, Marzari MG, et al.: High frequency of cystic fibrosis transmembrane regulator mutation L997F in patients with recurrent idiopathic pancreatitis and in newborns with hypertrypsinemia. Am J Hum Genet 2000, 66:2013–2014.

51 LeGrys VA: Sweat analysis proficiency testing for cystic fibrosis. Pediatr Pulmonol 2000, 30:476–480.

52 LeGrys VA: Assessment of sweat-testing practices for the diagnosis of cystic fibrosis. Arch Pathol Lab Med 2001, 125:1420–1424.

53 Webster HL: A critical appraisal of cystic fibrosis sweat-testing guidelines. Am Clin Lab 2001, 20:39–42.

54 Warwick WJ, Hansen LG, Brown IV, et al.: Sweat chloride: quantitative patch for collection and measurement. Clin Lab Sci 2001, 14:155–159.

55 Lai HC, Kosorok MR, Luxova A, et al.: Nutritional status of patients with cystic fibrosis with meconium ileus: a comparison with patients without meconium ileus and diagnosed early through neonatal screening. Pediatrics 2000, 105:53–61.

56 Evans AK, Fitzgerald DA, McKay KO: The impact of meconium ileus on the clinical course of children with cystic fibrosis. Eur Respir J 2001, 18:784–789.

57 Wong LJ, Wang J, Zhang YH, et al.: Improved detection of CFTR mutations in Southern California Hispanic CF patients. Hum Mutat 2001, 18:296–307.

58 Heim RA, Sugarman EA, Allito BA: Improved detection of cystic fibrosis mutations in the heterogeneous U.S. population using an expanded, pan-ethnic mutation panel. Genet Med 2001, 3:168–176.

59 Bomberi C, Pignatti PF: Cystic fibrosis mutation testing in Italy. Genet Test 2001, 5:229–233.

60 Farrell MH, Certain LK, Farrell PM: Genetic counseling and risk communication services of newborn screening programs. Arch Pediatr Adolesc Med 2001, 155:120–126.

61 Noone PG, Knoxies MR: ‘CFTR-ophiathes’: disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir Res 2001, 2:328–332.

A review of the non-CF conditions possibly related to mutations of the CF gene.

62 Truninger K, Malik N, Ammann RW, et al.: Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. Am J Gastroenterol 2001, 96:2657–2661.

63 Truninger K, Kock J, Wirth HP, et al.: Trypsinogen gene mutations in patients with chronic or recurrent acute pancreatitis. Pancreas 2001, 22:18–23.

64 Tzetis M, Efthymiadou A, Strofas S, et al.: CFTR gene mutations—including three novel nucleotide substitutions—and haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease. Hum Genet 2001, 108:216–221.

65 Marchand E, Verellen-Dumoulin C, Mairesse M, et al.: Frequency of cystic fibrosis transmembrane conductance regulator gene mutations and 67 allele in patients with allergic bronchopulmonary aspergillosis. Chest 2001, 119:762–767.

66 Padoan R, Bassotti A, Seia M, et al.: Negative sweat test in hypotryptysinaemic infants with cystic fibrosis carrying rare CFTR mutations. Eur J Pediatr 2002, 161:212–215.

67 Southern KW, Noone PG, Bosworth DG, et al.: A modified technique for measurement of nasal transepithelial potential difference in infants. J Pediatr 2001, 139:353–358.

68 Zeitlin PL: Advances in the diagnosis of cystic fibrosis in infants. J Pediatr 2001, 139:345–346.

69 Monaghan KG, Feldman GL, Barbarotto GM, et al.: Frequency and clinical significance of the S1235R mutation in the cystic fibrosis transmembrane conductance regulator gene: results from a collaborative study. Am J Med Genet 2000, 95:361–365.

70 Massie J, Gaskin K, Van Asperen P, et al.: Sweat testing following newborn screening for cystic fibrosis. Pediatr Pulmonol 2000, 29:452–456.

71 Wine JJ, Kuo E, Hurlock G, et al.: Comprehensive mutation screening in a cystic fibrosis center. Pediatrics 2001, 107:280–286.

72 Castellani C, Benetazzo MG, Tamarini A, et al.: Analysis of the entire coding region of the cystic fibrosis transmembrane regulator gene in newborn hypertrypsinemia with normal sweat test. J Med Genet 2001, 38:202–205.

73 Wong LJ, Wang J, Woo M, et al.: A novel mutation detected by temporal temperature gradient gel electrophoresis led to the confirmative prenatal diagnosis of a Hispanic CF family. Prenat Diagn 2000, 20:807–810.

74 Wang J, Bowman CM, Wong LJ: A novel CFTR frame-shift mutation, 935delA, in two Hispanic cystic fibrosis patients. Mol Genet Metab 2000, 70:316–321.

75 Drum ML: Modifier genes and variation in cystic fibrosis. Respir Res 2001, 2:125–128.

76 White SM, Lucassen A, Norbury G: Cystic fibrosis: a further case of an asymptomatic compound heterozygote. Am J Med Genet 2001, 103:342–343.

77 Farrell PM, Shen G, Slaingard M, et al.: Acquisition of Pseudomonas aeruginosa in children with cystic fibrosis. Pediatrics 1997, 100:E2.

78 Wang SS, FitzSimmons SC, O’Leary LA, et al.: Early diagnosis of cystic fibrosis in the newborn period and risk of Pseudomonas aeruginosa acquisition in the first 10 years of life: A registry-based longitudinal study. Pediatrics 2001, 107:274–279.

79 Wilfond BS, Fost N: The cystic fibrosis gene: medical and social implications for heterozygote detection. JAMA 1990, 263:2777–2783.

This extensive discussion of the genetic risks of CF screening points out the need for well-trained genetic counselors and a good referral system before instituting CF newborn screening.

80 Mischler EH, Wilfond BS, Fost N, et al.: Cystic fibrosis newborn screening: impact on reproductive behavior and implications for genetic counseling. Pediatr Genet 1998, 10(1 Pt 1):44–52.

81 Henneman L, Bramsen I, Van Os TA, et al.: Attitudes towards reproductive issues and carrier testing among adult patients and parents of children with cystic fibrosis CF. Prenat Diagn 2001, 21:1–9.

This study assessed the reproductive choices of parents of children with CF to get a greater insight into the counseling needs of carrier couples. Most parents and adult patients with CF supported carrier identification and accepted the reproductive choices of carrier couples.

82 Gilbert F: Cystic fibrosis carrier screening: steps in the development of a mutation panel. Genet Test 2001, 5:223–227.

This publication provides guidelines for developing a CF gene mutation panel specific for the population being screened.

83 Grody WW, Cutting GR, Klinger KW, et al.: Laboratory standards and guidelines for population-based cystic fibrosis carrier screening. Genet Med 2001, 3:149–154.

This is an important reference for programs developing carrier screening for CF.

84 Loader S, Caldwell P, Kozyra A, et al.: Cystic fibrosis carrier population screening in the primary care setting. Am J Hum Genet 1996, 59:234–247.

85 Wilson RD, Davies G, Desilets V, et al.: Cystic fibrosis carrier population screening in a prenatal setting. Genet Test 2001, 5:117–125.

86 Grody WW, Desnick RJ: Cystic fibrosis population carrier screening: here at last–are we ready? Genet Med 2001, 3:87–90.

87 Koletsko S, Reinhardt D: Nutritional challenges of infants with cystic fibrosis. Early Hum Dev 2001, 65(suppl):S53–S61.

This is an excellent review of the special nutritional needs of infants with CF.

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
Newborn screening for cystic fibrosis Wagener et al. 315

89 Abman SH, Reardon MC, Accurso FJ, et al.: Hypoalbuminemia at diagnosis as a marker for severe respiratory course in infants with cystic fibrosis identified by newborn screening. J Pediatr 1985, 107:933–935.

Even with newborn screening, infants with CF are at risk for malnutrition and severe respiratory infections. This article reports an association between hypoalbuminemia and early, severe respiratory complications.

90 Bines JE, Truby HD, Armstrong DS, et al.: Energy metabolism in infants with cystic fibrosis. J Pediatr 2002, 140:527–533.

91 Davies PS, Erskine JM, Hambidge KM, et al.: Longitudinal investigation of energy expenditure in infants with cystic fibrosis. Eur J Clin Nutr 2002, 56:940–946.

92 Bronstein MN, Sokol RJ, Abman SH, et al.: Pancreatic insufficiency, growth, and nutrition in infants identified by newborn screening as having cystic fibrosis. J Pediatr 1992, 120(4 Pt 1):533–40.

Results from this well-conducted study show that infants develop worsening pancreatic insufficiency during the first year of life. Close monitoring of nutritional state is necessary to detect the early signs of malabsorption so that therapy can be started.

93 Stapleton D, Kerr D, Gurrin L, et al.: Height and weight fail to detect early signs of malnutrition in children with cystic fibrosis. J Pediatr Gastroenterol Nutr 2001, 33:319–325.

This study further supports the need for close follow-up of patients with CF in specialized care centers where nutritional expertise is available.

94 Carroccio A, Verghi F, Santini B, et al.: Diagnostic accuracy of fecal elastase 1 assay in patients with pancreatic malabsorption: a collaborative study of the Italian Society of Pediatric Gastroenterology and Hepatology. Dig Dis Sci 2001, 46:1335–1342.

95 Van den Neucker AM, Kerkvliet EM, Theunissen PM, et al.: Acid steatocrit: a reliable screening tool for steatorrhea. Acta Paediatr 2001, 90:873–875.

96 Mizesjewski GJ, Pass KA: Fatty acids, alpha-fetoprotein, and cystic fibrosis. Pediatrics 2001, 108:1370–1373.

97 Kretz NF, Westcott JE, Arnold TD, et al.: Abnormalities in zinc homeostasis in young infants with cystic fibrosis. Pediatr Res 2000, 48:256–261.

98 Soltani-Frisk S, Gronowitz H, Anderson H, et al.: Water-miscible tocopherol is not superior to fat-soluble preparation for vitamin E absorption in cystic fibrosis. Acta Paediatr 2001, 90:1112–1115.

99 Wilson DC, Rashid M, Durie PR, et al.: Treatment of vitamin K deficiency in cystic fibrosis: effectiveness of a daily fat-soluble vitamin combination. J Pediatr 2001, 138:851–855.

100 Scher H, Bishop WP, McCray Jr PB: Ursodeoxycholic acid improves cholestasis in infants with cystic fibrosis. Ann Pharmacother 1997, 31:1003–1005.

101 Wood LG, Fitzgerald DA, Gibson PG, et al.: Oxidative stress in cystic fibrosis: dietary and metabolic factors. J Am Coll Nutr 2001, 20(2 Suppl):157–165.

102 Rosenfeld M, Gibson RL, McNamara S, et al.: Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 2001, 32:356–368.

This is an excellent study monitoring the earliest changes in the lungs of infants with CF. Bacterial pathogens and neutrophilic inflammation are identified in symptomatic, as well as asymptomatic infants.

103 Gutierrez JP, Grimwood K, Armstrong DS, et al.: Interlobar differences in bronchoalveolar lavage fluid from children with cystic fibrosis. Eur Respir J 2001, 17:281–286.

104 Smyth A, Walters S: Prephylactic antibiotics for cystic fibrosis (Cochrane Review). Cochrane Database Syst Rev 2001, CD001912.

105 Raljen F, Comes G, Paul K, et al.: Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr Pulmonol 2001, 31:13–16.

106 Burns JL, Gibson RL, McNamara S, et al.: Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 2001, 183:444–452.

Pseudomonas aeruginosa is an important pathogen in CF. These authors followed children for 3 years and identified that bacteria changed over time, suggesting therapy could alter early colonization and infection.

107 Kosorok MR, Zeng L, West SE, et al.: Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 2001, 32:277–287.

108 Nixson GM, Armstrong DS, Carzino R, et al.: Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 2001, 138:699–704.

109 Raljen F, Doring G, Nikolaizik WH: Effect of inhaled tobramycin on early Pseudomonas aeruginosa colonization in patients with cystic fibrosis. Lancet 2001, 358:983–984.

This study shows that inhaled tobramycin is effective in eradicating Pseudomonas aeruginosa from the airways of children with CF when the treatment is applied early.

110 Wojtczak HA, Kerby GS, Wagener JS, et al.: Beclomethasone dipropionate reduced airway inflammation without adrenal suppression in young children with cystic fibrosis: a pilot study. Pediatr Pulmonol 2001, 32:293–302.

111 Equi AC, Pike SE, Davies J, et al.: Use of cough swabs in a cystic fibrosis clinic. Arch Dis Child 2001, 85:438–439.

112 Gappa M, Ranganathan SC, Stocks J: Lung function testing in infants with cystic fibrosis: lessons from the past and future directions. Pediatr Pulmonol 2001, 32:228–245.

These authors review infant pulmonary function testing techniques and their value in patients with CF.

113 Davis S, Jones M, Kisling J, et al.: Comparison of normal infants and infants with cystic fibrosis using forced expiratory flows breathing air and helium. Pediatr Pulmonol 2001, 31:17–23.

114 Doull I: Recent advances in cystic fibrosis. Arch Dis Child 2001, 85:62–66.

115 Orenstein DM, Winnie GB, Altman H: Cystic fibrosis: a 2002 update. J Pediatr 2002, 140:166–164.

This article is a superb review of current clinical care for patients with CF.

116 Padoan R, Gennari S, Moretti E, et al.: Genetic and clinical features of false-negative infants in a neonatal screening program for cystic fibrosis. Acta Paediatr 2002, 91:82–87.