Blood type A associates with critical COVID-19 and death in a Swedish cohort

Michael Hultström1,2*, Barbro Persson3†, Oskar Eriksson3, Miklos Lipscey1, Robert Frithiof3† and Bo Nilsson3†

To the editor,

Coronavirus disease 2019 (COVID-19) is primarily associated with respiratory failure, but both renal and circulatory failure is common in patients that require critical care or die of the disease [1]. A recently published GWAS showed a strong association between severe COVID-19 and the ABO blood group locus in a cohort from Italy and Spain, with a higher risk for patients with blood group A [2]. This is consistent with data on susceptibility to COVID-19 being associated with blood group in Chinese [3]. Although the GWAS dataset did not include data on mortality, there is a preliminary report in an American cohort that blood group A is associated with both severity of COVID-19 and death [4].

Here, we present data on blood type distribution from a Swedish critical care cohort (n = 64) compared to the blood type distribution in the population as a whole: A 43%, AB 4%, B 9%, and O 44% giving a dichotomized distribution of A/AB 47% to B/O 53% [5]. Blood typing was performed using routine clinical procedures at the Clinical Immunology and Transfusion Medicine at the University Hospital in Uppsala.

Using the population blood type distribution to estimate the expected frequencies, we found an association of blood type A with the risk of requiring critical care (HR (95% CI) = 2.01 (1.23–3.28)) and increased risk of death within 30 days (HR (95% CI) = 3.16 (1.28–7.77)) in COVID-19 (Fig. 1). This indicates that the findings in the previous studies are consistent also in a northern European population.

Although the present study does not investigate the mechanism behind the association, one potential mechanism that may be involved in the increased risk linked to blood type antigen A is that it contains a galactose as end group saccharide. Both blood type B and O have a galactose amine in this position, which may explain the difference between the blood groups. The spike protein of SARS-COV-2 has been shown to bind carbohydrates, and a strong affinity between the A antigen and the virus could facilitate uptake of the virus into the cells [6].

Limitations of the present dataset is a relatively low number of patients, which in this case goes with a difference in the average age of 63 years for the A/AB group compared to 55 years for the B/O group. In addition, there is a difference in sex distribution of 81% male in the A/AB and 69% in the B/O. Both of these effects...
would tend to lead to an overestimation of the effect of blood type A/AB in the present dataset, which would tend to bring the results more in line with the previously published risk profile [6].

In conclusion, we show that blood type A or AB is associated with an increased risk of requiring critical care or dying of COVID-19 in the Swedish population. Taken together, with previously published data, this indicates that blood group A is a risk factor for disease severity and death in COVID-19 irrespective of the genetic background.

Acknowledgements
The authors thank research nurses Joanna Wessbergh and Elin Söderman and the biobank assistants Erik Danielsson and Philip Karlsson for their expertise in compiling the study.

Authors’ contributions
All authors participated in the conception and design of the study. All authors had access to the data and participated in data collection and interpretation. MH drafted the manuscript, and all authors contributed to manuscript revision and gave approval of the final version.

Funding
The study was funded by the SciLifeLab/KAW National COVID-19 research program project grant to MH (KAW 2020.0182); the Swedish Research Council to RF (2014-02569 and 2014-07606), BN (2016-01606, 2020-05672), and OE (2015-06429); and the Swedish Heart-Lung Foundation to BN (HLF 2020-0398).

Availability of data and materials
Data in the current study is available from the corresponding author on a reasonable request.

Ethics approval and consent to participate
The presented data is part of a study approved by the National Ethical Review Agency (EPN; no. 2020-01623). Informed consent was obtained from the patient or next of kin if the patient was unable to give consent. The Declaration of Helsinki and its subsequent revisions were followed.

Competing interests
The authors declare that they have no conflicts of interest.

Author details
1Anesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden. 2Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden. 3Clinical Chemistry, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.

Received: 28 July 2020 Accepted: 3 August 2020
Published online: 12 August 2020

References
1. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.
2. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, Fernandez J, Prati D, Baseli G, Asselta R, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020.
3. Li J, Wang X, Chen J, Cai Y, Deng A, Yang M. Association between ABO blood groups and risk of SARS-CoV-2 pneumonia. Br J Haematol. 2020;190(1):24–7.
4. Zietz M, Tatonetti NP. Testing the association between blood type and COVID-19 infection, intubation, and death. medRxiv 2020. https://doi.org/10.1101/2020.04.08.20058073.
5. Reid ME, Lomas-Francis C, Olsson M: The blood group antigen facts book, 3 edn. San Diego: Elsevier Ltd.; 2012.
6. Chiodo F, Brujns SCM, Rodriguez E, Li RIE, Molinara A, Silipo A, Di Lorenzo F, Garcia-Rivera D, Valdes-Balbin Y, Verez-Bencomo V et al: Novel ACE2-independent carbohydrate-binding of SARS-CoV-2 spike protein to host lectins and lung microbiota. bioRxiv 2020. https://doi.org/10.1101/2020.05.13.092478.