ON EVOLUTION EQUATIONS GOVERNED BY NON-AUTONOMOUS FORMS

EL-MENNAOUI OMAR AND LAASRI HAFIDA

Abstract. We consider a linear non-autonomous evolutionary Cauchy problem
\[\dot{u}(t) + A(t)u(t) = f(t) \quad \text{for a.e. } t \in [0, T], \quad u(0) = u_0, \]
where the operator \(A(t) \) arises from a time depending sesquilinear form \(a(t, \cdot, \cdot) \) on a Hilbert space \(H \) with constant domain \(V \). Recently a result on \(L^2 \)-maximal regularity in \(H \), i.e., for each given \(f \in L^2(0, T, H) \) and \(u_0 \in V \) the problem \((0.1) \) has a unique solution \(u \in L^2(0, T, V) \cap H^1(0, T, H) \), is proved in [10] under the assumption that \(a \) is symmetric and of bounded variation. The aim of this paper is to prove that the solutions of an approximate non-autonomous Cauchy problem in which \(a \) is symmetric and piecewise affine are closed to the solutions of that governed by symmetric and of bounded variation form. In particular, this provides an alternative proof of the result in [10] on \(L^2 \)-maximal regularity in \(H \).

1. Introduction

In this work we are interested by evolutionary linear equations of the form
\[\dot{u}(t) + A(t)u(t) = f(t), \quad u(0) = u_0, \]
where the operators \(A(t), t \in [0, T] \) arise from time dependent sesquilinear forms. More precisely, let \(H \) and \(V \) denote two separable Hilbert spaces such that \(V \) is continuously and densely embedded into \(H \) (we write \(V \hookrightarrow_d H \)). Let \(V' \) be the antidual of \(V \) and denote by \(\langle \cdot, \cdot \rangle \) the duality between \(V' \) and \(V \). As usual, we identify \(H \) with \(H' \) and we obtain that \(V \hookrightarrow_d H \cong H' \hookrightarrow V' \). These embeddings are continuous and dense (see e.g., [9]). Let
\[a : [0, T] \times V \times V \to \mathbb{C} \]
be a closed non-autonomous form, i.e., \(a(t, \cdot, \cdot) \) is sesquilinear for all \(t \in [0, T] \), \(a(\cdot, u, v) \) is measurable for all \(u, v \in V \),
\[|a(t, u, v)| \leq M \|u\|_V \|v\|_V \quad (t \in [0, T], u, v \in V) \]
and
\[\text{Re} \ a(t, u, u) + \omega \|u\|_V^2 \geq \alpha \|u\|_V^2 \quad (t \in [0, T], u \in V) \]
for some \(\alpha > 0, M > 0 \) and \(\omega \in \mathbb{R} \). The operator \(A(t) \in \mathcal{L}(V, V') \) associated with \(a(\cdot, \cdot) \) on \(V' \) is defined for each \(t \in [0, T] \) by
\[\langle A(t)u, v \rangle = a(t, u, v) \quad (u, v \in V). \]
Seen as an unbounded operator on \(V' \) with domain \(D(A(t)) = V \), the operator \(-A(t) \) generates a holomorphic \(C_0 \)-semigroup \(T_t \) on \(V' \). The semigroup is bounded

\[2010 \text{ Mathematics Subject Classification.} \ 35K90, \ 35K50, \ 35K45, \ 47D06. \]
\[\text{Key words and phrases.} \ \text{Sesquilinear forms, non-autonomous evolution equations, maximal regularity, approximation.} \]
on a sector if $\omega = 0$, in which case \mathcal{A} is an isomorphism. We denote by $A(t)$ the part of $\mathcal{A}(t)$ on H; i.e.,

$$
D(A(t)) := \{ u \in V : \mathcal{A}(t)u \in H \}
$$

$$
A(t)u = \mathcal{A}(t)u.
$$

It is a known fact that $-\mathcal{A}(t)$ generates a holomorphic C_0-semigroup T on H and $T = T|_H$ is the restriction of the semigroup generated by $-\mathcal{A}$ to H. Then $A(t)$ is the operator induced by $a(t, \cdot, \cdot)$ on H. We refer to [1, 10, 23, Chap. 2] and also by Bardos [8] under additional regularity assumptions on a. In 1961 J. L. Lions proved that the non-autonomous Cauchy problem

$$
(1.2) \quad \dot{u}(t) + A(t)u(t) = f(t), \quad u(0) = u_0.
$$

has L^2-maximal regularity in V':

Theorem 1.1. (Lions) For all $f \in L^2(0, T; V')$ and $u_0 \in H$, the problem (1.2) has a unique solution $u \in MR(V, V') := L^2(0, T; V) \cap H^1(0, T; V')$.

Lions proved this result in [18] (see also [24, Chapter 3]) using a representation theorem of linear functionals due to himself and usually known in the literature as Lions's representation Theorem and using Galerkin's method in [12, XVIII, Chapter 3, p. 620]. We refer also to an alternative proof given by Tanabe [23, Section 5.5].

In Theorem 1.1 only measurability of $a : [0, T] \times V \times V \to \mathbb{C}$ with respect to the time variable is required to have a solution $u \in MR(V, V')$. Nevertheless, in applications to boundary value problems, like heat equations with non-autonomous Robin-boundary-conditions or Schrödinger equations with time-dependent potentials, this is not sufficient. One is more interested in L^2-maximal regularity in H rather than in V', i.e., in solutions which belong to

$$
(1.3) \quad MR(V, H) := L^2(0, T; V) \cap H^1(0, T; H)
$$

rather than in $MR(V, V')$. Lions asked a long time before in [18, p. 68] whether the solution u of (1.2) belongs to $MR(V, H)$ in the case where $a(t; u, v) = a(t; u, v)$ and $t \to a(t; u, v)$ is only measurable.

Dier [14] has recently showed that in general the unique assumption of measurability is not sufficient to have $u \in MR(V, H)$. However, several progress are already has been done by Lions [18, p. 68, p. 94,], [18, Theorem 1.1, p. 129] and [18, Theorem 5.1, p. 138] and also by Bardos [8] under additional regularity assumptions on the form a, the initial value u_0 and the inhomogeneity f. More recently, this problem has been studied with some progress and different approaches by Arendt, Dier, Laasri and Ouhabaz [5], Arendt and Monniaux [6], Ouhabaz [20], Dier [14], Haak and Ouhabaz [10], Ouhabaz and Spina [21]. Results on multiplicative perturbations are also established in [5, 11, 17].

In [15] we proved Theorem 1.1 by a completely different approach developed in [14] and [17]. The method uses an appropriate approximation of the $\mathcal{A}(\cdot)$. Namely, let $\Lambda := (0 = \lambda_0 < \lambda_1 < \ldots < \lambda_{n+1} = T)$ be a subdivision of $[0, T]$. Consider the following approximation $A^S_{\Lambda} : [0, T] \to \mathcal{L}(V, V')$ of \mathcal{A} given by

$$
A^S_{\Lambda}(t) := \begin{cases}
A_k & \text{for } \lambda_k \leq t < \lambda_{k+1}, \\
A_n & \text{for } t = T,
\end{cases}
$$

with

$$
A_k u := \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} \mathcal{A}(r)udr \quad (u \in V, k = 0, 1, \ldots, n).
$$

("S" stands for step). The integral above makes sense since $t \mapsto \mathcal{A}(t)u$ is Bochner integrable on $[0, T]$ with values in V' for all $u \in V$. Note that $\|A(t)u\|_{V'} \leq M\|u\|_V$.
for all \(u \in V \) and all \(t \in [0, T] \). It is worth to mention that the mapping \(t \mapsto \mathcal{A}(t) \)

is strongly measurable by the Dunford-Pettis Theorem [2] since the spaces are assumed to be separable and \(t \mapsto \mathcal{A}(t) \) is weakly measurable.

It has been proved in [15] Theorem 3.2 that for all \(u_0 \in H \) and \(f \in L^2(0, T; V') \), the non-autonomous problem

\[
\dot{u}_\Lambda(t) + A_{\Lambda}(t)u_{\Lambda}(t) = f(t), \quad u_{\Lambda}(0) = u_0
\]

has an (explicit) unique solution \(u_{\Lambda} \in MR(V, V') \), and \((u_{\Lambda}) \) converges weakly in \(MR(V, V') \) as \(|\Lambda| \to 0 \) to the unique solution \(u \) of (1.22). If we consider \(u_0 \in V \) and \(f \in L^2(0, T; H) \) then the solution \(u_{\Lambda} \) of (1.4) belongs to \(MR(V, H) \cap C([0, T]; V) \) (see [17], [15]). If moreover, \(a \) is assumed to be piecewise Lipschitz-continuous on \([0, T]\) then we obtain the convergence of \(u_{\Lambda} \in MR(V, H) \) [15] (see also [5]).

In this paper we are concerned with the recent result obtained in [11]. Instead of (see [17], [15]). If moreover, \(a \) is assumed to be separable and is strongly measurable by the Dunford-Pettis Theorem [2] since the spaces are everywhere to \(p \)-norm \((\Lambda) \) follows.

2. Preliminary

Let \(X \) be a Banach space and \(T > 0 \). Recall that a point \(t \in [0, T] \) is said to be a Lebesgue point of a function \(f : [0, T] \to X \) if

\[
\lim_{h \to 0} \frac{1}{t+h} \int_t^{t+h} \| f(s) - f(t) \|_X \, ds = 0.
\]

Clearly each point of continuity of \(f \) is a Lebesgue point. By [2] Proposition 1.2.2 if \(f \) is Bochner integrable then almost all point are Lebesgue points.

Let \(D \) be another Banach space such that \(D \) is continuously and densely embedded into \(X \) and let \(A : [0, T] \to \mathcal{L}(D, X) \) be a bounded and strongly measurable function, i.e., for each \(x \in D \) the function \(A(.) : [0, T] \to X \) is measurable and bounded.

Let \(\Lambda := (0 = \lambda_0 < \lambda_1 < \ldots < \lambda_{n+1} = T) \) be a subdivision of \([0, T]\). We consider the following approximations of \(A : [0, T] \to \mathcal{L}(D, X) \) by step operator function \(A^S_\Lambda : [0, T] \to \mathcal{L}(D, X) \) and piecewise linear operator function \(A^L_\Lambda : [0, T] \to \mathcal{L}(D, X) \) given by

\[
A^S_\Lambda(t) := \begin{cases} A_k & \text{for } \lambda_k \leq t < \lambda_{k+1}, \\ A_n & \text{for } t = T, \end{cases}
\]

and

\[
A^L_\Lambda(t) := \frac{\lambda_{k+1} - t}{\lambda_{k+1} - \lambda_k} A_k + \frac{t - \lambda_k}{\lambda_{k+1} - \lambda_k} A_{k+1}, \quad t \in [\lambda_k, \lambda_{k+1}],
\]

where

\[
A_k x := \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} A(r) x \, dr \quad (x \in D, k = 0, 1, \ldots, n).
\]

Let \(|\Lambda| := \max_{j=0,1,\ldots,n} (\lambda_{j+1} - \lambda_j) \) denote the mesh of the subdivision \(\Lambda \). Assume that the subdivision \(\Lambda \) is uniform, i.e., \(\lambda_{k+1} - \lambda_k = T/n = |\Lambda| \) for all \(k = 0, 1, \ldots, n \).

In the following Lemma, we show that \(A^S_\Lambda \) and \(A^L_\Lambda \) converge strongly and almost everywhere to \(A \) as \(|\Lambda| \to 0 \), from which the strong convergence with respect to \(L^p \)-norm (\(p \in [1, \infty) \)) follows.

Lemma 2.1. Let \(A^S_\Lambda : [0, T] \to \mathcal{L}(D, X) \) be given as above. Then:

i) For all \(x \in D \) we have \(A^S_\Lambda(t)x \to A(t)x \) \(t \)-a.e. on \([0, T]\) as \(|\Lambda| \to 0 \).

ii) \(A^L_\Lambda(.)(u_{\Lambda}(.)) \to A(.)u(.) \) in \(L^p(0, T; X) \) as \(|\Lambda| \to 0 \) if \(u_{\Lambda} \in L^p(0, T; D) \) such that \(u_{\Lambda} \to u \) in \(L^p(0, T; D) \).
Proof. Let \(C \geq 0 \) such that \(\|A(t)x\|_X \leq C\|x\|_D \) for all \(x \in D \) and for almost every \(t \in [0, T] \). We have \(\|A_kx\|_X \leq C\|x\|_D \) for all \(x \in D \) and \(k = 0, 1, \ldots, n \). Let \(t \) be any Lebesgue point of \(A(\cdot)x \). Let \(k \in \{0, 1, \ldots, n\} \) such that \(t \in [\lambda_k, \lambda_{k+1}) \). Then

\[
A^S_{\lambda(t)}x - A(t)x = \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} (A(r)x - A(t)x)dr
\]

\[
= \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{t} (A(r)x - A(t)x)dr + \frac{1}{\lambda_{k+1} - \lambda_k} \int_{t}^{\lambda_{k+1}} (A(r)x - A(t)x)dr
\]

\[
= \left(\frac{t - \lambda_k}{\lambda_{k+1} - \lambda_k} \right) \frac{1}{t - \lambda_k} \int_{\lambda_k}^{t} (A(r)x - A(t)x)dr + \left(\frac{\lambda_{k+1} - t}{\lambda_{k+1} - \lambda_k} \right) \frac{1}{\lambda_{k+1} - \lambda_k} \int_{t}^{\lambda_{k+1}} (A(r)x - A(t)x)dr.
\]

It follows that \(A^S_{\lambda(t)}x - A(t)x \to 0 \) as \(|\Lambda| \to 0 \). Since almost all points of \([0, T]\) are Lebesgue points of \(A(\cdot)x \) the first assertion follows.

For the second assertion let \(x \in D \) and let \(\Omega \) be a measurable subset of \([0, T]\). We set \(w = x \otimes 1_{\Omega} \). Then \(\|A^S_{\lambda(t)}w - Aw\|_{L^p(0,T;X)} = \int_{\Omega} \|A^S_{\lambda(t)}(x) - A_t(x)\|_X^p dt \to 0 \) as \(|\Lambda| \to 0 \) by i) and Lebesgue’s Theorem. From which follows that \(\|A^S_{\lambda(t)}w - Aw\|_{L^p(0,T;X)} \to 0 \) as \(|\Lambda| \to 0 \) for all simple function \(w \) and thus for all \(w \in L^p(0,T;D) \). Let now \(w_\Lambda \in L^p(0,T;D) \) such that \(w_\Lambda \to w \) in \(L^p(0,T;D) \). Then

\[
\|A^S_{\lambda(t)}w_\Lambda - Aw\|_{L^p(0,T;X)} \leq C\|w_\Lambda - w\|_{L^p(0,T;D)} + \|A^S_{\lambda(t)}w - Aw\|_{L^p(0,T;X)}.
\]

Thus (ii) holds.

Instead of functions that are constant on each subinterval \([\lambda_k, \lambda_{k+1}[\), we consider now those that are linear.

Lemma 2.2. Let \(A : [0, T] \to \mathcal{L}(D, X) \) be a bounded and strongly measurable function. Then the following statements hold:

1. For all \(x \in D \) we have \(A^L_{\lambda(t)}x \to A(t)x \) \(t-a.e. \) on \([0, T]\) as \(|\Lambda| \to 0 \).

2. \(A^L_{\lambda(t)}u_\Lambda(\cdot) \to A(\cdot)u_\Lambda \) in \(L^p(0,T;X) \) as \(|\Lambda| \to 0 \) if \(u_\Lambda \in L^p(0,T;D) \) such that \(u_\Lambda \to u \) in \(L^p(0,T;D) \).

Proof. Let \(x \in D \) and let \(t \in [0, T] \) be an arbitrary Lebesgue point of \(A(\cdot)x \) and \(k \in \{0, 1, \ldots, n\} \) be such that \(t \in [\lambda_k, \lambda_{k+1}) \). Then

\[
A^L_{\lambda(t)}x - A(t)x = \frac{\lambda_{k+1} - t}{\lambda_{k+1} - \lambda_k} (A_kx - A(t)x) + \frac{t - \lambda_k}{\lambda_{k+1} - \lambda_k} (A_{k+1}x - A(t)x)
\]

\[
= I + II
\]

For the first term \(I \) we have

\[
I = \frac{\lambda_{k+1} - t}{\lambda_{k+1} - \lambda_k} \left(A^S_{\lambda(t)}x - A(t)x \right)
\]
which converges to zero as $|\Lambda| \to 0$ by Lemma 2.1. Now we show that II converges also to zero as $|\Lambda|$ goes to 0. Indeed, we have
\begin{equation}
A_{k+1}x - A(t)x = \frac{1}{\lambda_{k+2} - \lambda_{k+1}} \int_t^{\lambda_{k+2}} (A(r) - A(t))xdr
- \frac{1}{\lambda_{k+2} - \lambda_{k+1}} \int_t^{\lambda_{k+2}} (A(r) - A(t))xdr
= (\frac{\lambda_{k+2} - t}{\lambda_{k+2} - \lambda_{k+1}}) \frac{1}{\lambda_{k+2} - \lambda_{k+1}} t \int_t^{\lambda_{k+2}} (A(r) - A(t))xdr
\end{equation}
(2.2)
\begin{equation}
- (\frac{\lambda_{k+2} - t}{\lambda_{k+2} - \lambda_{k+1}}) \frac{1}{\lambda_{k+2} - \lambda_{k+1}} t \int_t^{\lambda_{k+2}} (A(r) - A(t))xdr
\end{equation}
(2.3)
Using again [2, Proposition 1.2.2] we obtain that both terms in (2.2) and (2.3) converge to 0 as $|\Lambda| \to 0$. Consequently II converges to 0. The claim follows since t is arbitrary Lebesgue point of $A(.)x$. The proof of (2) is the same as the proof of (ii) in Lemma 2.1.

3. APPROXIMATION AND CONVERGENCE

In this section H, V are complex separable Hilbert spaces such that $V \hookrightarrow d H$. Let $T > 0$ and let
\[a : [0, T] \times V \times V \to \mathbb{C} \]
be a non-autonomous closed form. This means that $a(t, ., .)$ is sesquilinear for all $t \in [0, T]$, $a(t, u, v)$ is measurable for all $u, v \in V$,
\begin{equation}
|a(t, u, v)| \leq M||u||_V||v||_V \quad (t \in [0, T], u, v \in V)
\end{equation}
and
\begin{equation}
\text{Re} a(t, u, u) + \omega||u|| \geq \alpha||u||^2_V \quad (t \in [0, T], u \in V)
\end{equation}
for some $\alpha > 0, M \geq 0$ and $\omega \in \mathbb{R}$. We assume in addition that a is symmetric; i.e.,
\[a(t, u, v) = \overline{a(t, v, u)} \quad (t \in [0, T], u, v \in V). \]

For almost every $t \in [0, T]$ we denote by $A(t) \in \mathcal{L}(V, V')$ the operator associated with the form $a(t, ., .)$ in V'. The non-autonomous Cauchy problem (1.2) has L^2-maximal regularity in V', i.e., for given $f \in L^2(0, T; V')$ and $u_0 \in H$, (1.2) has a unique solution u in $M_R(V, V') = L^2(0, T; V) \cap H^1(0, T; V')$. The maximal regularity space $M_R(V, V')$ is continuously embedded into $C([0, T], H)$ and if $u \in M_R(V, V')$ then the function $||u(.)||^2$ is absolutely continuous on $[0, T]$ and
\begin{equation}
\frac{d}{dt}||u(.)||^2_H = 2 \text{Re}(\dot{u}(.), u(.))
\end{equation}
see e.g., [22, Chapter III, Proposition 1.2] or [23, Lemma 5.5.1].

For simplicity we may assume without loss of generality that $\omega = 0$ in (1.2). In fact, let $u \in M_R(V, V')$ and let $v := e^{-w}u$. Then $v \in M_R(V, V')$ and it satisfies
\[\dot{v}(t) + (\omega + A(t))v(t) = e^{-wt}f(t) \quad t-a.e. \text{ on } [0, T], \quad v(0) = 0 \]
if and only if u satisfies (1.2). Throughout this section $\omega = 0$ will be our assumption.

Let $\Lambda = (0 = \lambda_0 < \lambda_1 \ldots < \lambda_{n+1} = T)$ be a uniform subdivision of $[0, T]$. Let
\[a_k : V \times V \to \mathbb{C} \quad \text{for } k = 0, 1, \ldots, n \]
be the family of sesquilinear forms given for all $u, v \in V$ and $k = 0, 1, \ldots, n$ by
\begin{equation}
a_k(u, v) := \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} a(r, u, v)dr.
\end{equation}
Remark that a_k satisfies (3.1) and (3.2) for all $k = 0, 1, ..., n$. The associated operators are denoted by $A_k \in \mathcal{L}(V, V')$ and are given for all $u \in V$ and $k = 0, 1, ..., n$ by

$$A_k u := \frac{1}{\lambda_{k+1} - \lambda_k} \int_{\lambda_k}^{\lambda_{k+1}} A(r) u dr.$$

This integral is well defined. Indeed, the mapping $t \mapsto A(t)$ is strongly measurable by the Pettis Theorem [2] since $t \mapsto A(t)$ is weakly measurable and the spaces are assumed to be separable. On the other hand, $\|A(t)u\|_{V'} \leq M\|u\|_V$ for all $u \in V$ and $t \in [0, T]$. Thus $t \mapsto A(t)u$ is Bochner integrable on $[0, T]$ with values in V' for all $u \in V$.

The function V is defined for $t \in [0, T]$ by

$$\mathbb{a}_k^L : [0, T] \times V \times V \to \mathbb{C}$$

defined for $t \in [\lambda_k, \lambda_{k+1}]$ by

$$\mathbb{a}_k^L(t; u, v) := \frac{\lambda_{k+1} - t}{\lambda_{k+1} - \lambda_k} a_k(u, v) + \frac{t - \lambda_k}{\lambda_{k+1} - \lambda_k} a_{k+1}(u, v) \quad (u, v \in V),$$

is a symmetric non-autonomous closed form and Lipschitz continuous with respect to the time variable $t \in [0, T]$. The associated time dependent operator is denoted by

$$A_k^L(t) : [0, T] \to \mathcal{L}(V, V')$$

and is given by

$$A_k^L(t) := \frac{\lambda_{k+1} - t}{\lambda_{k+1} - \lambda_k} A_k + \frac{t - \lambda_k}{\lambda_{k+1} - \lambda_k} A_{k+1} \text{ for } t \in [\lambda_k, \lambda_{k+1}]$$

Since $a_k, k = 0, 1, ..., n$ are symmetric, the function $\mathbb{a}_k(v, t)$ belongs to $W^{1, 1}(a, b)$ and the following rule formula

$$\dot{a}_k(v(t)) := \frac{d}{dt} a_k(v(t)) = 2(A_k v(t) \mid \dot{v}(t))$$

holds whenever $v \in H^1(a, b, H) \cap L^2(a, b, D(A_k))$, for all $[a, b], k = 0, 1, ..., n$ where A_k is the part of A_k in H. For the proof we refer to [3] Lemma 3.1.

Theorem 3.1. Given $f \in L^2(0, T; H)$ and $u_0 \in V$, there is a unique solution $u_\Lambda \in MR(V, H)$ of

$$\dot{u}_\Lambda(t) + A_k^L(t) u_\Lambda(t) = f(t), \quad u_\Lambda(0) = u_0.$$

Moreover, $t \mapsto a_\Lambda(t, u_\Lambda(t)) \in W^{1, 2}(0, T)$ and

$$2 \text{Re}(A_k^L(t) u_\Lambda(t) \mid \dot{u}_\Lambda(t)) = \frac{d}{dt} (\mathbb{a}_k^L(t; u_\Lambda(t)) - \dot{a}_k^L(t; u_\Lambda(t)) \quad t.a.e.$$

Proof. The first part of the theorem follows from [18], [5] Theorem 4.2, [15] since $t \mapsto \mathbb{a}_k^L(t, u, v)$ is piecewise C^1 for all $u, v \in V$. The rule product follows also from [5] Theorem 3.2], but it can be also seen directly from

$$\mathbb{a}_k^L(t; u_\Lambda(t)) = \int_0^t 2 \text{Re}(A_\Lambda(s) u_\Lambda(s) \mid \dot{u}(s)) ds$$

$$+ \int_0^t \dot{a}_k^L(r, u_\Lambda(r)) dr + \mathbb{a}_k^0(0, u_0) \quad (t \in [0, T])$$

which holds for all $t \in [0, T]$. In fact, let $\delta > 0$, $t \in [0, T]$ be arbitrary and let $l \in \{0, 1, ..., n\}$ be such that $t \in [\lambda_l, \lambda_{l+1}]$. In order to apply the classical product
rule (3.10), we seek regularizing u_A by multiplying with $e^{-\delta A_k}$ and $e^{-\delta A_{k+1}}$. Then
\[
\int_{\lambda_k}^{\lambda_{k+1}} (\mathcal A(s)u_A(s)\tilde u_A(s))_H ds
\]
\[
= \lim_{\delta \to 0} \int_{\lambda_k}^{\lambda_{k+1}} \left(\frac{\lambda_{k+1} - \tau}{\lambda_{k+1} - \lambda_k} (\mathcal A_k e^{-\delta A_k} u_A(s)\tilde u_A(s))_H + \frac{\tau - \lambda_k}{\lambda_{k+1} - \lambda_k} (\mathcal A_{k+1} e^{-\delta A_{k+1}} u_A(s)\tilde u_A(s))_H \right) ds
\]
for $k = 0, 1, ..., l-1$. Using (3.10) and integrating by part we obtain by an easy calculation
\[
2 \Re \int_{\lambda_k}^{\lambda_{k+1}} (\mathcal A(s)u_A(s)\tilde u_A(s))_H ds
\]
\[
= \lim_{\delta \to 0} \int_{\lambda_k}^{\lambda_{k+1}} \frac{1}{\lambda_{k+1} - \lambda_k} \left[a_k+1(e^{-\delta A_{k+1}} u_A(\lambda_{k+1})) - a_k(e^{-\delta A_k} u_A(\lambda_k)) \right] ds
\]
\[
= a_{k+1}(u_A(\lambda_{k+1})) - a_k(u_A(\lambda_k)) - \int_{\lambda_k}^{\lambda_{k+1}} \frac{1}{\lambda_{k+1} - \lambda_k} \left[a_k+1(u_A(s)) - a_k(u_A(s)) \right] ds
\]
\[
= a_{k+1}(u_A(\lambda_{k+1})) - a_k(u_A(\lambda_k)) - \int_{\lambda_k}^{\lambda_{k+1}} a_A(s,u_A(s)) ds
\]
for $k = 0, 2, ..., l-1$, here we have use that the restriction of $(e^{-tA_k})_{t \geq 0}$ on V is a C_0-semigroup. By a similar argument as above we obtain for the integral over (λ_l, t)
\[
2 \Re \int_{\lambda_l}^{t} (\mathcal A(s)u_A(s)\tilde u_A(s))_H ds
\]
\[
= \frac{\lambda_{l+1} - t}{\lambda_{l+1} - \lambda_l} a_l(u_A(t)) + \frac{t - \lambda_l}{\lambda_{l+1} - \lambda_l} a_{l+1}(u_A(t)) - a_l(u_A(\lambda_l))
\]
\[
- \int_{\lambda_l}^{t} \frac{1}{\lambda_{l+1} - \lambda_l} \left[a_{l+1}(u_A(s)) - a_l(u_A(s)) \right] ds
\]
\[
= a^L_l(t,u_A(t)) - a_l(u_A(\lambda_l)) - \int_{\lambda_l}^{t} \hat a_A(s,u_A(s)) ds
\]
Consequently
\[
2 \Re \int_{0}^{t} (\mathcal A(s)u_A(s)\tilde u_A(s))_H ds
\]
\[
= 2 \Re \sum_{k=0}^{l-1} \int_{\lambda_k}^{\lambda_{k+1}} (\mathcal A(s)u_A(s)\tilde u_A(s))_H ds + 2 \Re \int_{\lambda_l}^{t} (\mathcal A(s)u_A(s)\tilde u_A(s))_H ds
\]
\[
= -a_0(u_0) + a^L_l(t,u_A(t)) - \int_{0}^{t} \hat a^L_A(r,u_A(r)) dr
\]
This completes the proof. \qed

The next proposition shows that u_A from Theorem 3.1 approximates the solution of (1.2) with respect to the norm of $MR(V, V')$.

Proposition 3.1. Let \(f \in L^2(0, T; H) \) and \(u_0 \in V \) and let \(u_\Lambda \in MR(V, H) \) be the solution of (1.2). Then \(u_\Lambda \) converges strongly in \(MR(V, V') \) as \(|\Lambda| \to 0 \) to the solution of (1.2).

Proof. Let \(f \in L^2(0, T; H) \) and \(u_0 \in V \). Let \(u, u_\Lambda \in MR(V, V') \) be the solution of (1.2) and (3.11) respectively. Set \(w_\Lambda := u_\Lambda - u \) and \(g_\Lambda := (A - A_\Lambda^k)u \). Then \(w_\Lambda \in MR(V, V') \) and satisfies

\[
\dot{w}_\Lambda(t) + A^k_\Lambda(t)w_\Lambda(t) = g_\Lambda(t), \quad w_\Lambda(0) = 0.
\]

From the product rule (3.3) it follows

\[
\frac{d}{dt} \|w_\Lambda(t)\|_H^2 = 2 \text{Re} \{g_\Lambda(t) - A^k_\Lambda(t)w_\Lambda(t), w_\Lambda(t)\}
\]

\[
= -2 \text{Re} \{a^k_\Lambda(t, w_\Lambda(t), w_\Lambda(t)) + 2 \text{Re} \{g_\Lambda(t), w_\Lambda(t)\}\}
\]

for almost every \(t \in [0, T] \). Integrating this equality on \((0, t)\), we obtain

\[
\alpha \int_0^t \|w_\Lambda(s)\|_V^2 ds \leq \int_0^t \|g_\Lambda(s)\|_V^2 \|w_\Lambda(s)\|_V ds.
\]

This estimate and the Young’s inequality

\[
ab \leq \frac{1}{2} (a^2 + \varepsilon b^2) \quad (\varepsilon > 0, \ a, b \in \mathbb{R}).
\]

yield the estimate

\[
\alpha \|w_\Lambda\|_{L^2(0, T; V)}^2 \leq 1/\alpha \|g_\Lambda\|_{L^2(0, T; V')}^2.
\]

The term of the right hand side of this inequality converges by Proposition 2.2 to 0 as \(|\Lambda| \to 0 \). It follows that \(u_\Lambda \to u \) strongly in \(L^2(0, T; V) \). Again from the second assertion of Proposition 2.2 follows that \(A_\Lambda u_\Lambda \to Au \) in \(L^2(0, T; V') \). Letting \(|\Lambda| \) go to 0 in

\[
\dot{w}_\Lambda = \dot{u}_\Lambda - \dot{u} = f - A_\Lambda^k u_\Lambda - \dot{u}
\]

and recalling the continuous embedding of \(MR(V, V') \) into \(C([0, T]; H) \) imply the claim. \(\square \)

Next we assume additionally, as in [10] or [11], that there exists a bounded and non-decreasing function \(g : [0, T] \to L(H) \) such that

\[
|a(t; u, v) - a(s; u, v)| \leq (g(t) - g(s)) \|u\|_V \|v\|_V
\]

for \(u, v \in V, s, t \in [0, T], s \geq t \). Our aim is the show that under this assumption the solution \(u_\Lambda \) of (3.11) converges weakly in \(MR(V, H) \) as \(|\Lambda| \to 0 \) and that the limit satisfies (1.2). Without loss of generality, we will assume that \(g(0) = 0 \). Thus \(g \) is positive. Let

\[
g^k_\Lambda : [0, T] \to [0, \infty[\]

denote the analogous function to (3.8) and (3.9) for \(g \). Assume that the subdivision \(\Lambda \) is uniform, i.e., \(\lambda_{k+1} - \lambda_k = T/n = |\Lambda| \) for all \(k = 0, 1, ..., n \).

Lemma 3.2.

\[
|A^k_\Lambda(t; u, v) - A^k_\Lambda(s; u, v)| \leq |g^k_\Lambda(t) - g^k_\Lambda(s)| \|u\|_V \|v\|_V
\]

for all \(u, v \in V \) and \(t, s \in [0, T] \) with \(s \leq t \).
Proof. It suffices to show (3.11) for \(t, s \in [\lambda_k, \lambda_{k+1}] \) for some \(k \in \{0, 1, \ldots, n\} \). The general case where \(t, s \) belong to two different subintervals follows immediately. Let \(u, v \in V \), then

\[
\begin{align*}
\alpha^L(t; u, v) - \alpha^L(s; u, v) &= \frac{t - s}{\lambda_{k+1} - \lambda_k} a_{k+1}(u, v) - \frac{t - s}{\lambda_{k+1} - \lambda_k} a_k(u, v) \\
&= \frac{t - s}{\lambda_{k+1} - \lambda_k} \frac{n}{T} \int_0^T |a(r + \lambda_{k+1}; u, v) - a(r + \lambda_k; u, v)| dr.
\end{align*}
\]

Thus (3.13) implies

\[
|\alpha^L(t; u, v) - \alpha^L(s; u, v)|
\leq \frac{t - s}{\lambda_{k+1} - \lambda_k} \frac{n}{T} \int_0^T |g(r + \lambda_{k+1}) - g(r + \lambda_k)| dr ||u||_V ||v||_V
\]

\[
= \frac{t - s}{\lambda_{k+1} - \lambda_k} \frac{\lambda_{k+2} - \lambda_{k+1}}{\lambda_{k+1}} \int_{\lambda_{k+1}}^{\lambda_k} g(r) dr
\]

\[
= \frac{t - s}{\lambda_{k+1} - \lambda_k} \frac{1}{\lambda_{k+2} - \lambda_{k+1}} \int_{\lambda_{k+1}}^{\lambda_k} g(r) dr ||u||_V ||v||_V
\]

\[
= |g^L(t) - g^L(s)||u||_V ||v||_V
\]

\[
\boxed{= \|u\|_V \|v\|_V}
\]

\[
\square
\]

The main result of this section is the following

Theorem 3.3. Assume that the non-autonomous closed form \(a \) is symmetric and satisfies (3.12). Let \(f \in L^2(0,T; H) \) and \(u_0 \in V \) and let \(u_A \in MR(V,H) \) be the solution of (3.11). Then \((u_A) \) converges weakly in \(MR(V,H) \) as \(|\Lambda| \rightarrow 0 \) and \(u = \lim_{|\Lambda| \rightarrow 0} u_A \) satisfies (3.3).

Proof. a) First since \(u_A \) satisfies (3.11) then

\[
\|\dot{u}_A(t)\|_H + (A^L(t)u_A(t) \mid \dot{u}_A(t))_H = (f(t) \mid \dot{u}_A(t))_H \ 	ext{a.e}
\]

The product rule (3.12), Cauchy-Schwartz inequality and Young’s inequality imply that for almost every \(t \in [0,T] \)

\[
\|\dot{u}_A(t)\|_H^2 + \frac{d}{dt} (A^L(t; u_A(t))) \leq \|f(t)\|_H^2 + \dot{a}_A^L(t; u_A(t)).
\]

Integrating now this inequality on \([0, t]\), it follows that

\[
\int_0^t \|\dot{u}_A(r)\|_H^2 dr + \alpha \|u_A(t)\|_V^2 \leq M \|u_0\|_V^2 + \int_0^t \|f(r)\|_H^2 dr + \int_0^t \dot{a}_A^L(r; u_A(r)) dr
\]

where \(\alpha \) and \(M \) are the constants in (5.1)-(5.2).

b) Note that by construction the derivative \(\dot{a}_A^L \) of \(a_A^L \) equals

\[
\dot{a}_A^L(r; u) = \frac{a_{k+1}(u) - a_k(u)}{\lambda_{k+1} - \lambda_k} \ 	ext{for a.e.} r \in [\lambda_k, \lambda_{k+1}], \ u \in V.
\]
Now, let $t \in [0, T]$ be arbitrary and let $l \in \{0, 1, \ldots, n\}$ be such that $t \in [\lambda_l, \lambda_{l+1}]$. Then

\[
\int_0^t \dot{a}_X^k(r; u_A(r))dr = \sum_{k=1}^{l-1} \int_{\lambda_k}^{\lambda_{k+1}} a^k(r; u_A(r))dr + \int_{\lambda_l}^t \dot{a}_X^k(r; u_A(r))dr
\]

\[
= \sum_{k=1}^{l-1} \int_{\lambda_k}^{\lambda_{k+1}} \frac{a_{k+1}(u_A(r)) - a_k(u_A(r))}{\lambda_{k+1} - \lambda_k} dr + \int_{\lambda_l}^t \frac{a_{l+1}(u_A(r)) - a_l(u_A(r))}{\lambda_{l+1} - \lambda_l} dr
\]

\[
= \sum_{k=1}^{l-1} \int_{\lambda_k}^{\lambda_{k+1}} \frac{a^k_X(\lambda_{k+1}; u_A(r)) - a^k_X(\lambda_k; u_A(r))}{\lambda_{k+1} - \lambda_k} dr + \int_{\lambda_l}^t \frac{a^k_X(\lambda_{l+1}; u_A(r)) - a^k_X(\lambda_l; u_A(r))}{\lambda_{l+1} - \lambda_l} dr.
\]

By Lemma 3.2 it follows that

\[
\int_0^t \dot{a}_X^k(r; u_A(r))dr \leq \sum_{k=1}^{l-1} \int_{\lambda_k}^{\lambda_{k+1}} \frac{g^k_X(\lambda_{k+1}) - g^k_X(\lambda_k)}{\lambda_{k+1} - \lambda_k} \|u_A(r)\|_V^2 dr + \int_{\lambda_l}^t \frac{g^k_X(\lambda_{l+1}) - g^k_X(\lambda_l)}{\lambda_{l+1} - \lambda_l} \|u_A(r)\|_V^2 dr
\]

\[
= \sum_{k=1}^{l-1} \int_{\lambda_k}^{\lambda_{k+1}} \dot{g}^k_X(r) \|u_A(r)\|_V^2 dr + \int_{\lambda_l}^t \dot{g}^k_X(r) \|u_A(r)\|_V^2 dr
\]

\[
= \int_0^t \dot{g}^k_X(r) \|u_A(r)\|_V^2 dr
\]

c) Using an analogous calculus as in part b) and the fact that

\[
g^k_X(r) = \frac{g_{k+1} - g_k}{\lambda_{k+1} - \lambda_k}
\]

for a.e. $r \in [\lambda_k, \lambda_{k+1}]$

we can easily see that

\[
(3.16)
\]

\[
\int_0^t \dot{g}^k_X(r)dr \leq g(T)
\]

since the function g is positive and non-decreasing.

d) As a consequence of (3.15), the parts b)-c) and Gronwall’s lemma it follows that

\[
\sup_{r \in [0, T]} \|u_A(t)\|_V^2 \leq 1/\alpha [M\|u_0\|_V + \int_0^T \|f(r)\|_H dr] \exp(g(T)/\alpha).
\]

Inserting this estimate into (3.15), we find that there exists $c = c(\alpha, g(T), M) \geq 0$ such that

\[
(3.17)
\]

\[
\int_0^T \|\dot{u}_A(s)\|_H^2 ds \leq c \left[\|u_0\|_V^2 + \|f\|_{L^2(0,T; H)}^2\right]
\]

Since $u_A(t) = u_A(0) + \int_0^t \dot{u}_A(s)ds$, there exists a constant $c = c_H, T)$ with

\[
(3.18)
\]

\[
\int_0^T \|u_A(s)\|_H^2 ds \leq c \left[\|u_0\|_V^2 + \|\dot{u}_A\|_{L^2(0,T; H)}^2\right],
\]

where c_H is the embedding constant of the embedding of V into H. This estimate and (3.17) yield the estimate

\[
(3.19)
\]

\[
\|u_A\|_{L^2(0,T; H)}^2 \leq c \left[\|u_0\|_V^2 + \|f\|_{L^2(0,T; H)}^2\right]
\]
for some constant $c = c(\alpha, M, cH, g(T), T) > 0$ independent of the subdivision Λ.

e) It follows from the parts a) − d) that u_Λ is bounded in $H^1(0, T; H)$. On other hand and as mentioned, Problem (1.2) has a unique solution u in $MR(V, V')$ and we have seen in Proposition 3.1 that $MR(V, H) \ni u_\Lambda \to u$ in $MR(V, V')$. As a consequence $u \in MR(V, H)$. This completes the proof. □

References

[1] W. Arendt. Heat kernels. 9th Internet Seminar (ISEM) 2005/2006. Available at https://www.uni-ulm.de/mawi/iaa/members/professors/arendt.html
[2] W. Arendt, C.J.K. Batty and M. Hieber. F. Neubrander. Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser Verlag, Basel, 2011.
[3] W. Arendt and R. Chill. Global existence for quasilinear diffusion equations in isotropic nondivergence form. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IX (2010), 523-539. Zbl 1223.35202, MR2722654.
[4] W. Arendt, D. Dier and E. M. Ouhabaz. Invariance of convex sets for non-autonomous evolution equations governed by forms. Available at http://arxiv.org/abs/1303.1167
[5] W. Arendt, D. Dier, H. Laasri and E. M. Ouhabaz. Maximal regularity for evolution equations governed by non-autonomous forms, Adv. Differential Equations 19 (2014), no. 11-12, 1043-1066.
[6] W. Arendt, S. Monniaux. Maximal regularity for non-autonomous Robin boundary conditions. 2014. Available at http://arxiv.org/abs/1410.3063v1
[7] B. Augner, B. Jacob and H. Laasri On the right multiplicative perturbation of non-autonomous L^p-maximal regularity. J. Operator Theory 74:2(2015), 391-415.
[8] C. Bardos. A regularity theorem for parabolic equations. J. Functional Analysis, 7 (1971), 311-322.
[9] H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin 2011.
[10] D. Dier. Non-Autonomous Maximal Regularity for Forms of Bounded Variation. J. Math. Anal. Appl. 425 (2015), no. 1 33-54.
[11] D. Dier. Non-autonomous evolutionary problems governed by forms: maximal regularity and invariance. PhD-Thesis, Ulm 2014.
[12] R. Dautray and J.L. Lions. Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Vol. 8, Masson, Paris, 1988.
[13] O. El-Mennaoui, V. Keyantuo, H. Laasri. Infinitesimal product of semigroups. Ulmer Seminare, Heft 16 (2011), 219-230.
[14] O. El-Mennaoui, H. Laasri. Stability for non-autonomous linear evolution equations with L^p–maximal regularity. Czechoslovak Mathematical Journal. 63 (138) 2013.
[15] H. Laasri, A. Sani. Evolution Equations governed by Lipschitz Continuous Non-autonomous Forms. Czechoslovak Mathematical Journal 65 (140) 2015.
[16] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin 1992.
[17] H. Laasri. Problèmes d’évolution et intégrales produits dans les espaces de Banach. Thè se de Doctorat, Faculté des science Agadir 2012.
[18] J.L. Lions. Équations différentielles opérationnelles et problèmes aux limites. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1961.
[19] B. Haak, E. M. Ouhabaz. Maximal regularity for non-autonomous evolution equations.
[20] E. M. Ouhabaz. Maximal regularity for non-autonomous evolution equations governed by forms having less regularity. Arch. Math. 105 (2015), 79-91.
[21] E. M. Ouhabaz and C. Spina. Maximal regularity for nonautonomous Schrödinger type equations. J. Differential Equation 248 (2010),1668-1683.
[22] R. E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
[23] H. Tanabe. Equations of Evolution. Pitman 1979.
[24] S. Thomasesewski. Form Methods for Autonomous and Non-Autonomous Cauchy Problems, PhD Thesis, Universität Ulm 2003.
