A theory of nice triples and a theorem due to O.Gabber

Ivan Panin*

March 20, 2018

Abstract

In a series of papers [Pan0], [Pan1], [Pan2], [Pan3] we give a detailed and better structured proof of the Grothendieck–Serre’s conjecture for semi-local regular rings containing a finite field. The outline of the proof is the same as in [P1], [P2], [P3]. If the semi-local regular ring contains an infinite field, then the conjecture is proved in [FP]. Thus the conjecture is true for regular local rings containing a field.

The present paper is the one [Pan0] in that series. Theorem 1.2 is one of the main result of the paper. The proof of the latter theorem is completely geometric. It is based on a theory of nice triples from [PSV] and on its extension from [P]. The theory of nice triples is inspired by the Voevodsky theory of standard triples [Voe].

Theorem 1.2 yields an unpublished result due to O.Gabber (see the theorem 1.1=the theorem 3.1).

1 Main results

Let R be a commutative unital ring. Recall that an R-group scheme G is called reductive, if it is affine and smooth as an R-scheme and if, moreover, for each algebraically closed field Ω and for each ring homomorphism $R \rightarrow \Omega$ the scalar extension G_Ω is a connected reductive algebraic group over Ω. This definition of a reductive R-group scheme coincides with [SGA3] Exp. XIX, Definition 2.7. A well-known conjecture due to J.-P. Serre and A. Grothendieck (see [Se] Remarque, p.31), [Gr1] Remarque 3, p.26-27, and [Gr2] Remarque 1.11.a]) asserts that given a regular local ring R and its field of fractions K and given a reductive group scheme G over R, the map

$$H^1_{\text{ét}}(R, G) \rightarrow H^1_{\text{ét}}(K, G),$$

induced by the inclusion of R into K, has a trivial kernel. If R contains an infinite field, then the conjecture is proved in [FP].

For a scheme U we denote by A^1_U the affine line over U and by P^1_U the projective line over U. Let T be a U-scheme. By a principal G-bundle over T we understand a principal

*The author acknowledges support of the RNF-grant 14-11-00456.
$G \times_U T$-bundle. We refer to [SGA3, Exp. XXIV, Sect. 5.3] for the definitions of a simple simply-connected group scheme over a scheme and a semi-simple simply-connected group scheme over a scheme.

Theorem 1.1. Let k be a finite field. Let \mathcal{O} be the semi-local ring of finitely many closed points on a k-smooth irreducible affine k-variety X and let K be its field of fractions. Let G be a simply-connected reductive group scheme over k. Then the map

$$H^1_{et}(\mathcal{O}, G) \to H^1_{et}(K, G),$$

induced by the inclusion \mathcal{O} into K, has trivial kernel.

The latter theorem is an unpublished theorem due to O. Gabber.

Theorem 1.2. Let k be a field. Let \mathcal{O} be the semi-local ring of finitely many closed points on a k-smooth irreducible affine k-variety X and let K be its field of fractions. Let G be a reductive group scheme over k. Let G be a principal G-bundle over U trivial over the generic point of U. Then there exists a principal G-bundle τh over the affine line $A^1_U \simeq \text{Spec } \mathcal{O}[t]$ and a monic polynomial $h(t) \in \mathcal{O}[t]$ such that

(i) the G-bundle τh is trivial over the open subscheme $(A^1_U)_h$ in A^1_U given by $h(t) \neq 0$;

(ii) the restriction of τh to $\{0\} \times U$ coincides with the original G-bundle τ.

(iii) $h(1) \in \mathcal{O}$ is a unit.

If the field k is infinite a stronger result is proved in [PSV, Thm. 1.2]. Theorem 1.2 is easily derived from Theorem 1.3 (Geometric).

Theorem 1.3 (Geometric). Let X be an affine k-smooth irreducible k-variety, and let x_1, x_2, \ldots, x_n be closed points in X. Let $U = \text{Spec } \mathcal{O}_{x_1, x_2, \ldots, x_n}$ and $f \in k[X]$ be a non-zero function vanishing at each point x_i. Then there is a monic polynomial $h \in \mathcal{O}_{x_1, x_2, \ldots, x_n}[t]$, a commutative diagram of schemes with the irreducible affine U-smooth Y

$$\begin{array}{ccc}
(A^1 \times U)_h & \xrightarrow{\tau h} & Y_h := Y_{f(h)} \xrightarrow{(p_X)_h} X_f \\
\text{inc} & & \text{inc} \\
(A^1 \times U) & \xrightarrow{\tau} & Y \xrightarrow{p_X} X
\end{array}$$

and a morphism $\delta : U \to Y$ subjecting to the following conditions:

(i) the left hand side square is an elementary distinguished square in the category of affine U-smooth schemes in the sense of [MV, Defn. 3.1.3];

(ii) $p_X \circ \delta = \text{can} : U \to X$, where can is the canonical morphism;

(iii) $\tau \circ \delta = i_0 : U \to A^1 \times U$ is the zero section of the projection $\text{pr}_U : A^1 \times U \to U$;

(iv) $h(1) \in \mathcal{O}[t]$ is a unit.
The author thanks A. Suslin for his interest in the topic of the present article. He also thanks to A. Stavrova for paying his attention to Poonen’s works on Bertini type theorems for varieties over finite fields. He thanks D. Orlov for useful comments concerning the weighted projective spaces tacitely involved in the construction of elementary fibrations. He thanks M. Ojanguren for many inspiring ideas arising from our joint works with him.

2 Proof of Theorem 1.2

Proof of Theorem 1.2. The U-group scheme G is defined over the base field k. We may and will suppose that the principal G-bundle G' is the restriction to U of a principal G-bundle G' on X, and the restriction of G' to an principal open subset X_f is trivial. If $U = \text{Spec}(\mathcal{O}_{x_1, \ldots, x_n})$, then we may and will suppose that f vanishes at each point x_i.

Theorem 1.3 (=[P, Thm. 1.2]) states that there are a monic polynomial $h \in \mathcal{O}_{x_1, \ldots, x_n}[t]$, a commutative diagram (1) of schemes with the irreducible affine U-smooth Y, and a morphism $\delta : U \to Y$ subjecting to conditions (i) to (iv) from Theorem 1.3.

Now take the monic polynomial $h \in \mathcal{O}_{x_1, \ldots, x_n}[t]$ as the desired polynomial and construct the desired principal G-bundle on $A^1 \times U$ as follows.

Take the pull-back $p^*_X(G')$ of G' to Y. The restriction of $p^*_X(G')$ to Y_h is trivial, since the restriction of G' to X_f is trivial. Take now the trivial G-bundle over the principal open subset $(A^1 \times U)_h$ and glue it with $p^*_X(G')$ via an isomorphism over Y_h. This way we get a principal G-bundle G_t over $A^1 \times U$. Clearly, the monic polynomial h and the principal G-bundle on $A^1 \times U$ are the desired ones.

3 Simply-connected case of a theorem due to Gabber

An unpublished theorem due to Gabber states particularly that if the base field k is finite, then the Grothendieck–Serre conjecture is true for any reductive group scheme G over k. The main aim of the present section is to recover that result in the simply-connected case.

Theorem 3.1. Let k be a finite field and let R be a regular local ring containing k, and let K be its field of fractions. Given a simply-connected reductive group scheme G over k, the map

$$H^1_{\text{et}}(R, G) \to H^1_{\text{et}}(K, G),$$

induced by the inclusion of R into K, has a trivial kernel.

Proof. The case of a general regular local ring containing k is easily reduced to the case, when R is the semi-local ring of a finitely many closed points on an affine k-smooth variety X. Moreover we may and will suppose that G is a simple simply-connected k-group.

The k-group scheme G is defined over k and k is finite, and G is a simple simply-connected k-group. Hence, G contains a k-Borel subgroup scheme. Particularly, G is isotropic. The bundle G_t and the monic polynomial h from Theorem 1.3 satisfy the hypotheses of Theorem [PSV Thm.1.3]. Thus the principal G-bundle G_t from Theorem
1.2 is trivial. Hence the restriction of \mathcal{G}_t to $\{0\} \times U$ is trivial. From the other side the latter restriction coincides with the original G-bundle \mathcal{G}. Hence the original G-bundle \mathcal{G} is trivial.

References

[A] Artin, M. Comparaison avec la cohomologie classique: cas d’un préschéma lisse, in Théorie des topos et cohomologie étale des schémas (SGA 4). Tome 3. Lect. Notes Math., vol. 305, Exp. XI, Springer-Verlag, Berlin-New York, 1973.

[Bh] Bhatwadekar, S.M. Analytic isomorphisms and category of finitely generated modules, Comm. in Algebra, 16 (1988), 1949–1958.

[C-T/O] Colliot-Thélène, J.-L.; Ojanguren, M. Espaces Principaux Homogènes Localement Triviaux, Publ. Math. IHÉS 75 (1992), no. 2, 97–122.

[C-T/S] Colliot-Thélène, J.-L.; Sansuc, J.-J. Principal homogeneous spaces under flasque tori: Applications, Journal of Algebra 106 (1987), 148–205.

[SGA3] Demazure, M.; Grothendieck, A. Schémas en groupes, Lect. Notes Math., vol. 151–153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[D-G] Demazure, Grothendieck. Structure des schémas en groupes réductifs. Lect. Notes Math., vol 153.

[E] Eisenbud, D. Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.

[FP] Fedorov, R.; Panin, I. A proof of Grothendieck–Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field, Preprint, April 2013, http://www.arxiv.org/abs/1211.2678v2.

[Ga] Gabber, O. announced and still unpublished.

[Gil1] Gille, Ph. Torseurs sur la droite affine, Transform. Groups, 7(3):231–245, 2002.

[Gil2] Gille, Ph. Le problème de Kneser-Tits, Astérisque, (326):Exp. No. 983, vii, 39–81 (2010), 2009. Séminaire Bourbaki. Vol. 2007/2008.

[Gr1] Grothendieck, A. Torsion homologique et section rationnelles, in Anneaux de Chou et applications, Séminaire Chevalley, 2-e année, Secrétariat mathématique, Paris, 1958.

[Gr2] Grothendieck, A. Le group de Brauer II, in Dix exposés sur la cohomologique de schémes, Amsterdam,North-Holland, 1968.
[Gr3] Grothendieck, A. Le groupe de Brauer III: Exemples et complémentaires, in Dix exposés sur la cohomologique de schémas, Amsterdam, North-Holland, 1968.

[EGAIII] Grothendieck, A. Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie, Publ. Math. IHÉS 11 (1961), 5–167.

[EGAIV] Grothendieck, A. Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Seconde partie, Publ. Math. IHÉS 24 (1965), 5–231.

[Gr2] Grothendieck, A. Le groupe de Brauer II, in Dix exposés sur la cohomologique de schémas, Amsterdam, North-Holland, 1968.

[MV] Morel, F.; Voevodsky V. A^1-homotopy theory of schemes, Publ. Math. IHÉS, 90 (1999), 45–143.

[Ni1] Nisnevich, E.A. Affine homogeneous spaces and finite subgroups of arithmetic groups over function fields, Functional Analysis and Its Applications 11 (1977), no. 1, 64–66.

[Ni2] Nisnevich, Y. Rationally Trivial Principal Homogeneous Spaces and Arithmetic of Reductive Group Schemes Over Dedekind Rings, C. R. Acad. Sci. Paris, Série I, 299 (1984), no. 1, 5–8.

[OP1] Ojanguren, M.; Panin, I. A purity theorem for the Witt group, Ann. Sci. Ecole Norm. Sup. (4) 32 (1999), no. 1, 71–86.

[OP2] Ojanguren, M.; Panin, I. Rationally trivial hermitian spaces are locally trivial, Math. Z. 237 (2001), 181–198.

[PSV] Panin, I.; Stavrova, A.; Vavilov, N. On Grothendieck—Serre’s conjecture concerning principal G-bundles over reductive group schemes: I, Compositio Math. 151 (2015), 535–567.

[P] Panin, I. Nice triples and a moving lemma for motivic spaces, preprint, June 2017

[P1] Panin, I. On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: I, [arXiv:0905.1418]

[P2] Panin, I. On Grothendieck-Serre conjecture concerning principal G-bundles over regular semi-local domains containing a finite field: II, [arXiv:0905.1423]

[P3] Panin, I. Proof of Grothendieck—Serre conjecture on principal G-bundles over regular local rings containing a finite field, [arXiv:1211.2678]
[Pan0] Panin, I. A theory of nice triples and a theorem due to O.Gabber, Preprint, June 2017.

[Pan1] Panin, I. Nice triples and Grothendieck—Serre’s conjecture concerning principal G-bundles over reductive group schemes, Preprint, June 2017.

[Pan2] Panin, I. Two purity theorems and Grothendieck-Serre’s conjecture concerning principal G-bundles over regular semi-local rings, Preprint, June, 2017.

[Pan3] Panin, I. Proof of Grothendieck–Serre conjecture on principal G-bundles over semi-local regular domains containing a finite field, Preprint, June 2017.

[Poo] Poonen, B., Bertini theorems over finite fields, Annals of Mathematics, 160 (2004), 1099 -1127.

[ChPoo] Charles, F., Poonen, B., Bertini irreducibility theorems over finite fields, arXiv:1311.4960v1, 2013.

[R1] Raghunathan, M.S. Principal bundles admitting a rational section, Invent. Math. 116 (1994), no. 1–3, 409–423.

[R2] Raghunathan, M.S. Erratum: Principal bundles admitting a rational section, Invent. Math. 121 (1995), no. 1, 223.

[R3] Raghunathan, M.S. Principal bundles on affine space and bundles on the projective line, Math. Ann. 285 (1989), 309–332.

[RR] Raghunathan, M.S.; Ramanathan, A. Principal bundles on the affine line, Proc. Indian Acad. Sci., Math. Sci. 93 (1984), 137–145.

[Se] Serre, J.-P. Espaces fibrés algébriques, in Anneaux de Chow et applications, Séminaire Chevalley, 2-e année, Secrétariat mathématique, Paris, 1958.

[SV] Suslin, A., Voevodsky V. Singular homology of abstract algebraic varieties, Invent. Math. 123 (1996), no. 1, 61–94

[Sw] Swan, R.G. Néron—Popescu desingularization, Algebra and Geometry (Taipei, 1995), Lect. Algebra Geom. 2, Internat. Press, Cambridge, MA, 1998, 135–192.

[Voe] Voevodsky, V. Cohomological theory of presheaves with transfers, in Cycles, Transfers, and Motivic Homology Theories, Ann. Math. Studies, 2000, Princeton University Press.