Endovascular Treatments Performed Collaboratively by the Society of Korean Endovascular Neurosurgeons Members: A Nationwide Multicenter Survey

Tae Gon Kim, Oki Kwon, Yong Sam Shin, Jae Hoon Sung, Jun Seok Koh, Bum-Tae Kim

Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, Seoul, Korea
Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea

Objective: Since less invasive endovascular treatment was introduced to South Korea in 1994, a considerable proportion of endovascular treatments have been performed by neuroradiology doctors, and endovascular treatments by vascular neurosurgeons have recently increased. However, few specific statistics are known regarding how many endovascular treatments are performed by neurosurgeons. Thus, authors compared endovascular treatments collaboratively performed by vascular neurosurgeons with all cases throughout South Korea from 2013 to 2017 to elucidate the role of neurosurgeons in the field of endovascular treatment in South Korea.

Methods: The Society of Korean Endovascular Neurosurgeons (SKEN) has issued annual reports every year since 2014. These reports cover statistics on endovascular treatments collaboratively or individually performed by SKEN members from 2013 to 2017. The data was requested and collected from vascular neurosurgeons in various hospitals. The study involved 77 hospitals in its first year, and 100 in its last. National statistics on endovascular treatment from all over South Korea were obtained from the Healthcare Bigdata Hub website of the Health Insurance Review & Assessment Service based on the Electronic Data Interchange (EDI) codes (in the case of intra-arterial (IA) thrombolysis, however, statistics were based on a combination of the EDI and I63 codes, a cerebral infarction disease code) from 2013 to 2017. These two data sets were directly compared and the ratios were obtained.

Results: Regionally, during the entire study period, endovascular treatments by SKEN members were most common in Gyeonggi-do, followed by Seoul and Busan. Among the endovascular treatments, conventional cerebral angiography was the most common, followed by cerebral aneurysmal coiling, endovascular treatments for ischemic stroke, and finally endovascular treatments for vascular malformation and tumor embolization. The number of endovascular treatments performed by SKEN members increased every year.

Conclusion: The SKEN members have been responsible for the major role of endovascular treatments in South Korea for the recent 5 years. This was achieved through the perseverance of senior members who started out in the midst of hardship, the establishment of standards for the training/certification of endovascular neurosurgery, and the enthusiasm of current SKEN members who followed. To provide better treatment to patients, we will have to make further progress in SKEN.

Key Words: Endovascular procedures ∙ Big data ∙ Data interpretation, Statistical.
INTRODUCTION

We live in an era of many medical upheavals. For instance, the development of technology and medical knowledge due to material engineering and basic sciences have led to rapid advances in medical equipment. In addition, rapid changes in national medical policies, such as introduction of telemedicine, abolition of uncovered health services or the reduced workload for residents as 80-hour per week, have changed the medical environment. Vascular neurosurgeons must adapt to these changes to stay current. Recently, vascular neurosurgery has become more popular, even though it is perceived as 3D-jobs in the neurosurgical field, because vascular neurosurgeons have begun to perform less invasive endovascular treatment as well as the traditional open surgical treatments. In fact, younger vascular neurosurgeons view endovascular treatment as a necessity, not an option, and so-called “hybrid” vascular neurosurgeons who can perform both craniotomies and endovascular surgery are taken for granted. Relatedly, the residents’ training regulations of the Korean Neurosurgical Society have been changed to allow more endovascular treatment in training programs.

Although, a considerable proportion of endovascular treatment in South Korea since 1994 has been carried out by neuroradiology doctors, endovascular treatment performed by vascular neurosurgeons had been increased gradually, and they have increased much more since the establishment of standards for the training and certification of endovascular neurosurgery in South Korea has been firstly published. However, few specific statistics are known regarding how many endovascular treatments are performed by neurosurgeons, so the role of neurosurgeons in this field is unclear. For this reason, the annual reports of the Society of Korean Endovascular Neurosurgeons (SKEN) from 2013 to 2017 have included a statistical report on endovascular treatment performed in each year. Firstly, the editorial director of the annual report notified each hospital via e-mail. The hospitals then sent data via e-mail using the data sheet (Fig. 1). The data were also requested and collected from vascular neurosurgeons of various hospitals, including certified institutions of the SKEN via one-on-one telephone calls and text messages by the editorial director. This data collection was carried out over about 3 months each year from 2014 to 2018. The number of hospitals involved ranged from 77 to 100, and the number of endovascular treat-

Category	Number of case	Total
1. DSA		
2. Cerebral aneurysm		
IA thrombolysis for acute stroke		
Extracranial PTA or stent for extracranial stenosis		
Intracranial PTA or stent for intracranial stenosis		
3. Ischemic stroke		
AVM embol with glue/Onyx		
Dural AVF and CCF embolization		
4. Vascular malformations		
5. Tumor embolization		

Fig. 1. Required statistical data sheet delivered to SKEN members. The number of aneurysmal treatments reported in this annual report was counted as the number of aneurysms, which is different from the number in the HIRA, which was counted by patient. SKEN: The Society of Korean Endovascular Neurosurgeons, HIRA: the Health Insurance Review & Assessment Service, DSA: digital subtraction angiography, PAO: parent artery occlusion, UIA: unruptured intracranial aneurysms, PTA: percutaneous transluminal angioplasty, CAS: carotid artery stenting, AVM: arteriovenous malformation, AVF: arteriovenous fistula, CCF: carotid-cavernous fistula.
ments was assumed to be the number of patients, except in the case of aneurysms, whereby the number of aneurysm itself was recorded. In this regard, the report differed from the HIRA, in which the number of patients with aneurysm was counted. This was taken into account during data analysis. The present study analyzed these clinical data from annual SKEN report between 2013 and 2017.

Data collection and period from the Healthcare Bigdata Hub of HIRA

National statistics on endovascular treatment in South Korea were obtained from the Healthcare Bigdata Hub website of the HIRA. The target period for data collection was also 2013–2017. These data were collected in accordance with the Electronic Data Interchange (EDI) code, which was matched to the endovascular treatments on the data sheet distributed to SKEN members (Table 1). However, in the case of intra-arterial (IA) thrombolysis, data collection was based on a combination of the EDI and I63 codes, a cerebral infarction disease code, because the HIRA provided additional data on combining the EDI and I63 codes. We believe that the combined data are more accurate than data from the EDI code only.

Data analysis

This study was approved by the Institutional Review Board (IRB) of CHA Bundang Medical Center, CHA University School of Medicine on July 4th, 2019 as a deliberative exemption (IRB No. CHAMC 2019-06-035). Authors directly compared the data collected from SKEN with the nationwide data from the Healthcare Bigdata Hub of the HIRA. However, the category of extracranial percutaneous transluminal angioplasty or stent including carotid artery stenting (“EC-PTA or stent [CAS]”) and EC-PTA or stent excluding carotid artery stenting (“EC-PTA or stent [the rest of CAS]”) in the data collected from SKEN were combined into “EC-PTA or stent (including CAS)” and compared to the “EC-PTA or stent (including CAS)” in HIRA’s data. Authors also obtained the ratio between the data collected from SKEN and the nationwide data. Using these data, authors analyzed the flow and trends of endovascular treatments performed in South Korea from 2013 to 2017.

RESULTS

Endovascular treatments performed collaboratively by vascular neurosurgeons from 2013 to 2017

In the years 2013 to 2017, 77, 82, 85, 93, and 100 hospitals participated in the survey, respectively. The data for each hospital were analyzed by region and category, and the overall data were analyzed according to each category (Table 2). Regionally, in all the years analyzed, endovascular treatments were most common in Gyeonggi-do, followed by Seoul and Busan (Fig. 2). With regards to specific endovascular treatments, conventional cerebral angiography was the most common (that is digital subtraction angiography; “DSA”), followed by cerebral aneurysmal coiling and treatments for ischemic stroke, vascular malformation,

Table 1. Endovascular treatments and EDI codes matched

Endovascular treatments	EDI code
DSA	HA 601, HA602, HA603, HA604, HA605, HA606, HA691, HA692, HA693, HA694
Coiling	M1662
Stent or balloon assisted coiling	M1661
IA thrombolysis for cerebral infarction*	M6630, M6631, M6633, M6636 + I63
Extracranial PTA or Stent	M6602, M6594
Intracranial PTA or Stent	M6601, M6593
AVM embolization	M1663, M1667, M1668, M1669
Dural AVF or CCF embolization	M1664, M1665, M1666
Tumor embolization	M1673, M1674, M1675

*Exceptionally, in the case of IA thrombolysis, it was based by combining EDI code and I63, a cerebral infarction disease code. EDI : Electronic Data Interchange, DSA : digital subtraction angiography, IA : intra-arterial, PTA : percutaneous transluminal angioplasty, AVM : arteriovenous malformation, AVF : arteriovenous fistula, CCF : carotid-cavernous fistula
Endovascular Treatments by SKEN Members

Kim TG, et al.

J Korean Neurosurg Soc 62 (5) : 502-518

and tumor embolization (Fig. 3). The number of hospitals participating in data collection gradually increased during the study period, as did the number of endovascular treatments performed collaboratively by SKEN members. However, the increase in the

Table 2. Data from SKEN members according to category from 2013 to 2017

Year	The number of participating hospitals	DSA	Coiling	PAO	Stent or balloon	Sub total*	UIA	Ruptured	Sub total†	IA thrombolysis for cerebral infarction	EC PTA or stent (CAS)	EC PTA or stent (the rest of CAS)	IC PTA or stent	AVM	Dural AVF or CCF	Tumor embolization
2013	77	25889	3275	83	1944	5302	3303	1999	5302	1179	1197	0	422	177	184	295
2014	82	28354	3577	77	2117	5665	3959	2270	5865	1570	1378	194	466	226	170	258
2015	85	33357	4022	107	2481	6610	4233	2377	6610	1738	1425	300	540	246	243	349
2016	93	38860	4513	112	3104	7729	5300	2699	7729	2187	1598	240	532	249	305	427
2017	100	44596	4935	118	3348	8401	5563	2838	8401	2666	1820	226	719	221	276	401
Ratio of 2017/2013	129.9	172.3	150.7	142.2	172.2	158.4	168.4	142.0	158.4	226.1	152	116.5*	170.4	124.9	150	135.9

*The meaning of this 'subtotal' is the sum of the 'coiling', 'PAO' and 'Stent or balloon'. †The meaning of this 'subtotal' is the sum of the 'UJA' and 'Ruputred'. ‡Ratio of 2014 to 2017. SKEN: The Society of Korean Endovascular Neurosurgeons, DSA: digital subtraction angiography, PAO: parent artery occlusion, UJA: unruptured intracranial aneurysms, IA: intra-arterial, ECPTA: extracranial percutaneous transluminal angioplasty, CAS: carotid artery stenting, ICPTA: intracranial percutaneous transluminal angioplasty, AVM: arteriovenous malformation, AVF: arteriovenous fistula, CCF: carotid-cavernous fistula.
Table 3. Comparison between data collected from SKEN members and nationwide data from the Healthcare Bigdata Hub of the HIRA from 2013 to 2017

Year	DSA	Cerebral aneurysm	Ischemic stroke	Vascular malformation	Tumor embolization														
	SKEN	M1662	SKEN*	M6630, 1,3,6 + I63	SKEN	M6602, M6594	SKEN	M6601, M6593	SKEN	M1663, 7-9	SKEN	M1664 -6	SKEN	M1673-5					
2013	25889 (55.6%)	46541	3358 (101.5%)	3307	1944	3236	1179 (72.8%)	1620	1197 (52.1%)	2297	637	422	177 (60.8%)	291	143	184	242	295	616
2014	28354 (54.6%)	51975	3654 (98.6%)	3707	2211	3409	1570 (83.5%)	1880	1572 (66.7%)	2358	466	643	226 (61.4%)	368	170	271	258	622	
2015	33537 (49.6%)	67651	4129 (102.0%)	4050	2481	3691	1738 (69.0%)	2520	1725 (71.0%)	2431	540	700	246 (70.7%)	348	243	284	349	661	
2016	38860 (50.5%)	77024	4625 (105.9%)	4369	3104	4684	2187 (75.1%)	2912	1838 (68.8%)	2672	532 (73.9%)	720	249 (73.9%)	337	305	320	427	722	
2017	44596 (53.6%)	83268	5053 (108.5%)	4655	3438	5258	2666 (77.5%)	3442	2046 (69.9%)	2929	719 (87.2%)	825	221 (66.2%)	334	276	343	401	878	
Ratio of 2017/2013	172.3	178.9	150.5	140.8	172.2	162.5	226.1	212.5	170.9	127.5	170.4	129.5	124.9	114.8	150	141.7	135.9	142.5	

*These data from SKEN members may include non-cerebral infarction cases, for example, when IA thrombectomy were performed for the thromboembolism that occurred during any endovascular procedures. SKEN: The Society of Korean Endovascular Neurosurgeons, DSA: digital subtraction angiography, PAO: parent artery occlusion, IA: intra-arterial, EC: extracranial, PTA: percutaneous transluminal angioplasty, CAS: carotid artery stenting, IC: intracranial, AVM: arteriovenous malformation, AVF: arteriovenous fistula, CCF: carotid-cavernous fistula
Table 4. Comparison between data collected from SKEN members and nationwide data from the Healthcare Bigdata Hub of the HIRA in 2013

Category	Cerebral aneurysm		Ischemic stroke		Vascular malformation		Tumor embolization											
	DSA	Coiling+PAO	Stent or balloon	IIA thrombolysis for cerebral infarction	EC PTA or stent (including CAS)	IC PTA or stent	AVM	Dural AVF or CCF										
SKEN	HA601-6, HA691-4	SKEN M1662	SKEN M1661	SKEN M6630, M6631, M6633, M6636 + I63	SKEN M6602, M6594	SKEN M6601, M6593	SKEN M1663, M1667, M1668, M1669	SKEN M1664, M1665, M1666										
Seoul	3270	14448	774	1163	218	833	97	302	164	592	31	171	52	135	55	141	69	366
Busan	3843	4452	377	312	315	385	201	157	164	190	71	60	24	26	24	20	48	45
Incheon	2207	2048	171	156	71	64	83	57	72	85	41	24	9	9	7	0	13	12
Daegu	2922	3152	307	241	184	170	179	200	78	143	14	27	22	20	13	5	3	8
Gwangju	384	1491	91	85	57	56	9	117	26	87	10	38	5	7	3	6	0	0
Daejeon	1450	1927	205	193	122	159	91	81	50	136	31	36	8	9	1	1	1	3
Ulsan	724	791	133	13	69	167	36	26	18	24	8	5	2	3	7	4	2	3
Gyeonggi-do	5351	8463	605	497	446	671	152	213	235	440	70	117	32	44	49	41	133	143
Gangwon-do	660	959	78	62	64	59	54	53	66	85	19	21	4	4	7	4	6	4
Chungcheongbuk-do	974	1272	87	73	70	116	39	60	54	88	18	3	0	3	0	1	0	0
Chungcheongnam-do	509	1225	33	107	61	134	12	22	33	93	33	32	1	5	6	3	3	4
Jeollabuk-do	1264	1854	112	121	81	60	42	150	112	135	35	54	1	2	1	3	8	7
Jeollanam-do	0	109	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gyeongsangbuk-do	1571	2258	165	49	61	155	101	71	73	81	25	21	13	16	5	1	1	2
Gyeongsangnam-do	207	1570	170	186	89	180	61	91	31	97	0	6	1	6	5	11	6	17
Jeju-do	553	522	50	49	36	27	22	20	21	26	7	3	2	1	1	1	2	2
Total	25889	46541	3358	3307	1944	3236	1179	1620	1197	2297	422	637	177	291	184	242	295	616

SKEN : The Society of Korean Endovascular Neurosurgeons, HIRA : the Health Insurance Review & Assessment Service, DSA : digital subtraction angiography, PAO : parent artery occlusion, IA : intra-arterial, EC : extracranial, PTA : percutaneous transluminal angioplasty, CAS : carotid artery stenting, AVM : arteriovenous malformation, AVF : arteriovenous fistula, CCF : carotid-cavernous fistula
Table 5. Comparison between data collected from SKEN members and nationwide data from the Healthcare Bigdata Hub of the HIRA in 2014

Category	DSA	Cerebral aneurysm	IA thrombolysis for cerebral infarction	Ischemic stroke	Vascular malformation	Tumor embolization
		Coiling+PAO	EC PTA or stent (including CAS)		AVM	
		Stent or balloon	IC PTA or stent		Dural AVF or CCF	

	SKEN	HA601-6, HA691-4	SKEN	M1661	SKEN	M6630, M6631, M6633, M6636 + I63	SKEN	M6602, M6594	SKEN	M6601, M6693	SKEN	M1663, M1667, M1668, M1669	SKEN	M1664, M1665, M1666	SKEN	M1673, M1674, M1675
Seoul	3446	15556	733	1218	256	825	142	296	177	540	23	127	35	161	40	130
Busan	4082	5031	478	346	386	462	263	208	224	253	52	60	40	30	28	25
Incheon	1922	2276	203	186	70	74	113	64	60	64	64	42	16	16	8	5
Daegu	3117	3516	346	301	222	247	180	258	86	136	17	20	33	31	11	10
Gwangju	300	1556	68	60	82	77	20	106	20	74	3	33	2	3	9	0
Gwangju	300	1556	68	60	82	77	20	106	20	74	3	33	2	3	9	0
Gyeonggi-do	6593	10150	658	582	548	771	222	314	368	462	156	157	49	57	46	54
Gangwon-do	764	1124	109	96	57	56	43	33	85	75	37	36	9	8	3	2
Chungcheongbuk-do	504	1005	58	50	37	98	23	45	28	53	1	12	0	4	0	0
Chungcheongnam-do	731	1430	119	116	127	172	33	29	75	109	15	23	5	13	8	4
Jeollabuk-do	1249	1798	112	133	96	40	136	161	146	165	33	40	1	2	3	5
Jeollanam-do	0	302	0	1	0	4	0	22	0	12	0	11	0	0	0	0
Gyeongsangbuk-do	2209	2843	182	75	58	139	112	80	96	92	31	27	5	7	3	1
Gyeongsangnam-do	356	1575	123	176	60	151	86	102	40	99	1	10	3	8	2	6
Jeju-do	340	653	53	57	29	22	61	36	30	40	7	24	3	2	2	2
Total	28354	51975	3654	3707	2211	3409	1570	1880	1572	2358	467	643	226	368	170	271

	SKEN	HA601-6, HA691-4	SKEN	M1661	SKEN	M6630, M6631, M6633, M6636 + I63	SKEN	M6602, M6594	SKEN	M6601, M6693	SKEN	M1663, M1667, M1668, M1669	SKEN	M1664, M1665, M1666	SKEN	M1673, M1674, M1675
Seoul	3446	15556	733	1218	256	825	142	296	177	540	23	127	35	161	40	130
Busan	4082	5031	478	346	386	462	263	208	224	253	52	60	40	30	28	25
Incheon	1922	2276	203	186	70	74	113	64	60	64	64	42	16	16	8	5
Daegu	3117	3516	346	301	222	247	180	258	86	136	17	20	33	31	11	10
Gwangju	300	1556	68	60	82	77	20	106	20	74	3	33	2	3	9	0
Gwangju	300	1556	68	60	82	77	20	106	20	74	3	33	2	3	9	0

SKEN : The Society of Korean Endovascular Neurosurgeons, HIRA : the Health Insurance Review & Assessment Service, DSA : digital subtraction angiography, PAO : parent artery occlusion, IA : intra-arterial, EC : extracranial, PTA : percutaneous transluminal angioplasty, CAS : carotid artery stenting, AVM : arteriovenous malformation, AVF : arteriovenous fistula, CCF : carotid-cavernous fistula
Table 6. Comparison between data collected from SKEN members and nationwide data from the Healthcare Bigdata Hub of the HIRA in 2015

Category	DSA	Cerebral aneurysm	Ischemic stroke	Vascular malformation	Tumor embolization
	SKEN	HA601-6, HA691-4	SKEN M1662	SKEN M1661	SKEN M1663, M1667, M1668, M1669
Seoul	6046	198.83	852	1180	421 948
Busan	4462	66.29	508	393 387 468	239 228 186 226 51 50
Incheon	1789	2693	254	236 69 66	83 95 42 64 15 18
Daegu	2201	416.3	262	304 157 193	106 267 65 132 10 20
Gwangju	643	191.5	77	68 54 52	30 123 14 49 2 16
Daejeon	2245	292.4	368	295 176 179	114 97 109 120 37 39
Ulsan	767	154.5	131	69 51 151	44 58 17 23 13 21
Gyeonggi-do	8447	138.18	759	675 679 922	329 471 417 548 158 150
Gangwon-do	963	170.9	153	131 65 69	62 52 111 90 43 56
Chungcheongbuk-do	432	181.5	72	83 41 73	43 94 44 64 4 26
Chungcheongnam-do	769	187.4	107	113 109 155	32 44 68 129 22 25
Jeollabuk-do	1151	206.7	146	151 72 39	49 175 97 137 37 46
Jeollanam-do	0	54.3	0	11 0 12	0 23 0 21 0 8
Gyeongsangbuk-do	2222	379.8	250	128 66 164	144 140 99 91 29 35
Gyeongsangnam-do	926	200.4	118	152 106 180	162 171 62 88 42 16
Jeju-do	474	77.1	72	61 28 20	63 37 15 25 16 17
Total	33537	676.51	412.9	4050 (67.2%)	2481 3691 (69.0%)

SKEN: The Society of Korean Endovascular Neurosurgeons, HIRA: the Health Insurance Review & Assessment Service, DSA: digital subtraction angiography, PAO: parent artery occlusion, IA: intra-arterial, EC: extracranial, PTA: percutaneous transluminal angioplasty, CAS: carotid artery stenting, AVM: arteriovenous malformation, AVF: arteriovenous fistula, CCF: carotid-cavernous fistula
Table 7. Comparison between data collected from SKEN members and nationwide data from the Healthcare Bigdata Hub of the HIRA in 2016

Category	DSA	Cerebral aneurysm	Ischemic stroke	Vascular malformation	Tumor embolization									
		Coiling+PAO	Stent or balloon	IA thrombolysis	AVM									
				for cerebral	Dural AVF or									
				infarction	CCF									
				EC PTA or stent										
				(including CAS)										
				IC PTA or stent										
SKEN	HA601-6,	SKEN	M1662	SKEN	M1661	SKEN	M6630,	M6631,	M6633,	M6636	SKEN	M6601,	M6602,	M6594
Seoul	8380	21915	1055	1266	570	1273	327	502	397	609	85	150	12	1055
	2998	249	261	81	71	136	144	67	95	11	13	18	12	18
	3984	4983	370	330	245	228	260	285	79	137	18	12	12	12
	488	2120	63	63	55	57	51	142	26	88	2	25	5	8
	2061	3305	309	221	166	274	124	115	96	157	35	42	19	22
	283	1936	101	91	66	198	35	52	17	41	12	11	7	10
	8579	15140	938	726	834	1076	375	559	455	534	152	183	43	48
	1514	2042	162	144	89	79	93	80	110	85	51	60	7	11
	615	2165	85	106	45	114	30	86	48	87	13	27	0	3
	1005	2495	123	134	158	228	58	79	65	174	32	41	9	4
	1317	2548	179	209	119	55	68	151	96	150	22	46	7	2
	784	0	10	10	0	18	0	71	0	44	0	10	0	0
	2669	4068	292	159	83	186	152	137	83	83	29	31	3	4
	827	2717	79	123	87	273	182	236	58	131	33	22	0	6
	611	734	72	62	21	25	53	42	30	31	2	11	1	1
	834	3054	289	309	161	274	2187	2912	1838	2672	532	720	249	337
	724	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16
	559	1437	67	77	103	171	195	301	202	294	48	756	16	16

SKEN : The Society of Korean Endovascular Neurosurgeons, HIRA : the Health Insurance Review & Assessment Service, DSA : digital subtraction angiography, PAO : parent artery occlusion, IA : intra-arterial, EC : extracranial, PTA : percutaneous transluminal angioplasty, CAS : carotid artery stenting, AVM : arteriovenous malformation, AVF : arteriovenous fistula, CCF : carotid-cavernous fistula
Category	DSA	Coiling-PAO	Embolization	Sanger or balloon for cerebral (including CAS)	Ischemic stroke	SAH	Vascular malformation	AVM	AVF	CCF		
SKEN	M6631, M6632, M6633, M6634, M6635, M6636	M6636.4	SKEN HA601-6, HA691-4	SKEN M6602, SKEN M6594, SKEN M6593, SKEN M6669, SKEN M6668, SKEN M6667	Tumor embolization	IA	IA thrombolysis	CTA or stent	Dural AVF or CCF			
Seoul	8954	24477	1162	1392	252	263	282	147	16	16	16	2
Busan	5310	7326	482	478	418	462	427	667	103	195	50	5
Incheon	2470	3825	314	272	107	114	161	138	102	125	28	30
Daegu	412	2358	56	55	54	98	62	159	22	14	10	1
Gwangju	4012	4655	301	391	317	245	147	16	16	16	16	
Daejeon	2632	3345	340	204	241	296	147	16	16	16	16	
Ulsan	839	2154	129	82	142	227	67	75	32	19	14	14
Gyeongdo	10667	17000	1291	1109	507	527	585	748	195	180	45	45
Gyeongbuk	1699	2286	192	171	108	114	101	99	37	9	9	9
Gangwon	2501	3196	201	171	108	114	101	99	37	9	9	9
Chungcheongbuk	307	2457	79	121	111	142	37	116	73	114	28	24
Chungcheongnam	1602	2578	192	171	108	114	101	99	37	9	9	9
Jeollabuk	1088	2518	196	201	109	74	42	165	63	37	9	9
Jeollanam	2617	2427	118	116	116	116	116	116	116	116	116	116
Gyeongsangbuk	728	3196	94	148	65	522	197	262	48	118	24	38
Gyeongsangnam	547	659	73	70	28	30	54	45	23	12	7	7
Jeju	547	659	73	70	28	30	54	45	23	12	7	7
Total	44596	81286	7503	4655	3248	528	2666	3442	2046	2929	719	282

SKEN: The Society of Korean Endovascular Neurosurgeons, HIRA: the Health Insurance Review & Assessment Service, DSA: digital subtraction angiography, PAO: parent artery occlusion, IA: intra-arterial, EC: extracranial, PTA: percutaneous transluminal angioplasty, CAS: carotid artery stenting, AVM: arteriovenous malformation, AVF: arteriovenous fistula, CCF: carotid-cavernous fistula.

Table 8. Comparison between data collected from SKEN members and nationwide data from the Healthcare Bigdata Hub of the HIRA in 2017.
number of endovascular treatments was greater than the increase in the number of participating hospitals. Specifically, the rate of increase in each category was higher than the rate of increase in the number of participating hospitals (from 77 to 100; 29.9%), with the exception of “EC-PTA or stent (the rest of CAS)”, which increased from 194 to 226 patients (16.5%), and treatment for arteriovenous malformation (“AVM”), which increased from 177 to 221 patients (24.9%) (Table 2). The rates of increase exceeded 50% in “DSA”, simple coilings (“coiling”), stent- or balloon-assisted coilings (“stent or balloon”), “IA thrombolysis for cerebral infarction”, “EC/IC PTA or stent (CAS)”, “intracranial (IC)-PTA or stent” and dural arteriovenous fistula or carotid-cavernous fistula (“dural AVF or CCF”), especially in the case of “IA thrombolysis for cerebral infarction”, which showed an increase of more than 200% (Table 2). The increase in the number of unruptured intracranial aneurysms (“UIA”, from 3303 to 5563; 68.4%) was higher than the increase in the number of ruptured aneurysms (“Ruptured”, from 1999 to 2838; 42%).

Nationwide data from the Healthcare Bigdata Hub of the HIRA from 2013 to 2017

Nationwide data from the HIRA between 2013 and 2017 were analyzed by region and category, and the overall data were analyzed according to each category (Tables 3-8). Regionally, endovascular treatment was the most common in Seoul, followed by Gyeonggi-do and Busan in all years ana-
lyzed. Concerning specific endovascular treatments, “DSA” was the most common, followed by cerebral aneurysmal coiling and treatments for ischemic stroke, vascular malformation, and tumor embolization.

Additionally, national data showed an overall increase in the number of endovascular treatments during the study period, and the rates of increase exceeded 50% in “DSA”, aneurysm (“coiling + parent artery occlusion [“PAO”]” and “stent or balloon”), and “IA thrombolysis for cerebral infarction”; “IA thrombolysis for cerebral infarction” showed an increase of more than 200% (Table 3). The rates of increase were about 40% in “dural AVF or CCF” and “tumor embolization”, about 30% in “EC-PTA or stent (including CAS)” and intracranial percutaneous transluminal angioplasty or stent (“IC-PTA or stent”), and about 15% in “AVM”.

Comparison between data collected from SKEN members and nationwide data from the Healthcare Bigdata Hub of the HIRA from 2013 to 2017

During the 5 years from 2013 to 2017, SKEN members participated in 50–55% of “DSA”, 70–80% of “IA thrombolysis for cerebral infarction”, 50–70% of “EC-PTA or stent (including CAS)”, 65–85% of “IC-PTA or stent”, 60–75% of “AVM”, 75–95% of “dural AVF or CCF”, 40–60% of “tumor embolization” (Tables 3-8; Fig. 4). Although the overall number of endovascular treatments performed by SKEN members increased during the study period, there were no significant changes in the categories “DSA”, “IA thrombolysis for cerebral infarction”, “AVM”, “dural AVF or CCF”, and “tumor embolization” with regard to the ratio of data from SKEN members to those from HIRA. An increase in the ratio was observed for “EC-PTA or stent (including CAS)” and “IC-PTA or stent” (Tables 3-8). In the category of aneurysm treatments, SKEN members participated in approximately 100–108% of “coiling” and about 60–65% of “stent or balloon” (Tables 3-8). Because the number of aneurysmal treatments involving SKEN members was counted as the number of aneurysms, while the number of aneurysmal treatments in the HIRA was counted as the number of patients, authors could not directly compare the two data sets, so the derived ratios cannot be meaningful (100–108% and 60–65%). During the 5-year study period, there were no significant changes in the ratio of aneurysmal data between SKEN members and the HIRA (Tables 3-8).

In summary, the ratio of data from SKEN members to that from HIRA was about 50–70% for “DSA”, aneurysm (“coiling + PAO” and “stent or balloon”), and “AVM”, 70–90% for “IA thrombolysis for cerebral infarction” and “dural AVF or CCF”, and 45–60% for “tumor embolization”; these ratios did not change much over the 5-year study period. For “EC-PTA or stent (including CAS)” and “IC-PTA or stent”, the ratios were 50–70% and 65–85%, respectively, and the increasing trend was significant.

DISCUSSION

Clinical and autopsy studies suggest that intracranial aneurysms have a frequency of 1–8%9), and that the incidence of subarachnoid hemorrhage due to ruptured aneurysms ranges from 6 to 8 people per 100,000 in western populations5). In the 1960s, McKissock et al.6-8) were the first to report some controlled trials into the conservative and surgical treatment of ruptured aneurysms. They showed better outcomes using surgical management6-8). Since then, surgical techniques, instruments, and management methods have developed greatly, resulting in better outcomes. In 1991, electrolytically detachable coils (Guglielmi detachable coils; Boston scientific/Target Therapeutics, Freemont, CA, USA) were introduced to treat ruptured aneurysms using an endovascular approach. They were approved by United States Food and Drugs Administration (FDA) in 19954). Since then, endovascular coiling has widely been used to treat ruptured and unruptured aneurysms12,15). In particular, the serial trial known as the International Subarachnoid Aneurysm Trial, which was carried out from 2002 to 2015, proved the efficacy and safety of endovascular coiling methods11-14). With these successful trials, endovascular coiling could be recommended in the 2012 guidelines as a first option to treat patients with ruptured aneurysms judged to be technically amenable to both endovascular coiling and neurosurgical clipping10). In unruptured aneurysms, endovascular coiling is associated with lower procedural morbidity and mortality than surgical clipping in selected cases, and it is recommended at Class IIa with Level of Evidence B10).

In South Korea, endovascular treatment research meetings began in 1994. In particular, two meetings were started by neurosurgeons and neuroradiologists, respectively. Each meeting then developed into a society: the SKEN, as well as the Korean Society of Interventional Neuroradiology (KSIN).
At first, endovascular treatments were mainly performed by neuroradiologists. However, many vascular neurosurgeons eventually became interested and involved in endovascular treatment. Recently, endovascular treatment has been performed by neurosurgeons, neuroradiology doctors, or both, and the specific situations vary among hospitals.

According to data collected from SKEN members over 5 years from 2013 to 2017, the number of endovascular treatments performed collaboratively by SKEN members continuously increased over the period. Big cities such as Gyeonggi-do, Seoul, and Busan led this, but the phenomenon was observed nationwide. Among the endovascular treatments, conventional cerebral angiography was the most common, followed by cerebral aneurysmal coiling, endovascular treatments for ischemic stroke, and finally endovascular treatments for vascular malformation and tumor embolization. With the number of hospitals participating in data collection increasing year by year, it was natural that the total number of endovascular treatments performed would increase (Fig. 3). However, the rate of increase in endovascular treatments was higher than that participating hospitals; even when each category was analyzed separately, the rate of increase was higher in all categories of endovascular treatment than in the number of participating hospitals, except for the categories of “EC-PTA or stent (the rest of CAS)”, and “AVM” (Table 2). In several categories, the rate showed an increase of more than 50%, and in the “IA thrombolysis for cerebral infarction” category it showed an increase of more than 200% (Table 3). This shows that the number of endovascular treatments performed by SKEN members has increased, although this may have been due to the increase in hospital participation in some cases.

According to data collected from SKEN members, the “EC-PTA or stent (the rest of CAS)” category likely showed a lower rate of increase because this category lies outside the traditional remit of neurosurgery, and the absolute case number of such procedures was small. Authors expect that there will be little future change in this category of “EC-PTA or stent”. In the category of “AVM”, it is likely that trial known as “A Randomized trial of Unruptured Brain Arteriovenous Malformations” (ARUBA) released in 2014 was the cause of the lower rate of increase. In the ARUBA trial, medical management alone was superior to medical management with interventional therapy in the prevention of death or stroke in patients with unruptured brain AVMs. Therefore, endovascular treatment for unruptured AVM was probably reduced. Unless other studies contradict the results of the ARUBA trial, there may be no change in the rate of increase in the “AVM” category. In the category of aneurysms, there was a higher rate of increase in the number of unruptured aneurysm than in the number of ruptured aneurysms, perhaps because diagnostic tools such as brain computed tomography angiography or magnetic resonance angiography have been developed, or because health screening has been applied nationwide.

According to national data from HIRA from 2013 to 2017, the number of endovascular treatments continuously increased over the 5-year period and were the highest in Seoul, followed by Gyeonggi-do and Busan, which is slightly different from the trend for SKEN data, according to which endovascular treatments were most common in Gyeonggi-do (Tables 3-8). During the study period, the rate of increase in endovascular treatments exceeded 50% in “DSA”, aneurysm (“coiling + PAO” and “stent or balloon”) and “IA thrombolysis for cerebral infarction”, was about 40% in “dural AVF or CCF” and “tumor embolization”, and was about 15% in “AVM”, which were similar to the results from SKEN data (Table 3). In contrast, the rate of increase was about 30% in “EC-PTA or stent (including CAS)” and “IC-PTA or stent”, which was different from the results from SKEN data, according to which the rate of increase was about 70% (Table 3). These results are consistent with the following analysis from a different point of view. Compared with the national data collected from HIRA, there were no significant changes in the ratio of data from SKEN members to data from HIRA in “DSA”, aneurysm (“coiling + PAO” and “stent or balloon”), “IA thrombolysis for cerebral infarction”, “AVM”, “dural AVF or CCF” and “tumor embolization”, however, an increase in the ratio was noted for “EC-PTA or stent (including CAS)” and “IC-PTA or stent” (Table 3).

The categories of “DSA” and aneurysm (“coiling” + “PAO” and “stent or balloon”) showed a 50–60% ratio for data from SKEN members and from HIRA and “IA thrombolysis for cerebral infarction” showed a 70–80% ratio, which did not change significantly and the rates of increase exceeded 50% during the 5-year study period (Table 3). The reasons might be as follows. Diseases belonging to these categories are representative ones that require endovascular treatment and are quite common, so many of these categories have already been performed by vascular neurosurgeons since 2013. Therefore, this
Table 9. The list of the hospitals participated in the 2018 survey

Hospital	Regions
Gachon University Gill Medical Center	Incheon
Catholic Kwandong University International St. Mary’s Hospital	Incheon
The Catholic University of Korea Daejeon St. Mary’s Hospital	Daejeon
The Catholic University of Korea Bucheon St. Mary’s Hospital	Gyeonggi-do
The Catholic University of Korea Seoul St. Mary’s Hospital	Seoul
The Catholic University of Korea St. Vincent’s Hospital	Gyeonggi-do
The Catholic University of Korea Uijeongbu St. Mary’s Hospital	Gyeonggi-do
The Catholic University of Korea Incheon St. Mary’s Hospital	Incheon
Kyung Hee University Hospital at Gangdong	Seoul
Ulsan University Gangneung Asan Hospital	Gangwon-do
Kangwon National University Hospital	Gangwon-do
Konkuk University Hospital	Chungcheongbuk-do
Konyang University Hospital	Daejeon
Gumdun Top General Hospital	Incheon
Kyungpook National University Hospital	Daegu
Gyeongsang National University Hospital	Gyeongsangnam-do
Kyunghee National University Hospital	Seoul
Kyunghee University Medical Center E&C Jungang General Hospital	Gyeongsangnam-do
Keimyung University Dongsan Medical Center	Daegu
Korea University Ansan Hospital	Gyeonggi-do
Kosin University Gospel Hospital	Busan
National Medical Center	Seoul
Bongseng Memorial Hospital	Busan
Namyangju Hanyang General Hospital	Gyeonggi-do
New Korea Hospital	Gyeonggi-do
Dankook University Hospital	Chungcheongnam-do
Daegu Catholic University Medical Center	Daegu
Daegu Fatima Hospital	Daegu
Sun Medical Center	Daejeon
Daejeon Hankook Hospital	Daejeon
Dongkang Medical Center	Ulsan
Dongguk University Gyeongju Hospital	Gyeongsangbuk-do
Dongguk University Ilsan Hospital	Gyeonggi
Donggunsan General Hospital	Jeollabuk-do

Table 9. Continued

Hospital	Regions
Dongro-Bumsung Hospital	Busan
Dong-A University Hospital	Busan
Dong-Eui Medical Center	Busan
Mediplex Sejong Hospital	Gyeonggi-do
Myongji Hospital	Gyeonggi-do
Myongji St. Mary’s Hospital	Seoul
Pusan National University Hospital	Busan
Seoul National University Bundang Hospital	Gyeonggi-do
Bundang Jeaheung Hospital	Gyeonggi-do
Seodaegu Hospital	Daegu
Ulsan University Asan Medical Center	Seoul
Seoul Medical Center	Seoul
SMG-SNU Boramae Medical Center	Seoul
Kangbuk Samsung Hospital	Seoul
Sungkyunkwan University Samsung Changwon Hospital	Gyeongsangnam-do
Pohang Semyong Christian Hospital	Gyeongsangbuk-do
Soon Chun Hyang University Hospital Gumi	Gyeongsangbuk-do
Soon Chun Hyang University Hospital Buceon	Gyeonggi-do
Soon Chun Hyang University Hospital Seoul	Seoul
Soon Chun Hyang University Hospital Cheonan	Chungcheongnam-do
Asan Chungmu Hospital	Chungcheongnam-do
Ajou University Hospital	Gyeonggi-do
Andong Medical Group Hospital	Gyeongsangbuk-do
Andong Sungsan Hospital	Gyeongsangbuk-do
Pohang Stroke and Spine Hospital	Gyeongsangbuk-do
Yonsei University Gangnam Severance Hospital	Seoul
Yonsei University Severance Hospital	Seoul
Wonju Severance Christian Hospital	Gangwon-do
Yeungnam University Medical Center	Daegu
Presbyterian Medical Center	Jeollabuk-do
On Hospital	Busan
Ulsan University Ulsan Hospital	Ulsan
Wonkwang University Hospital	Jeollabuk-do
Sun Medical Center	Daejeon
Eulji University Nowon Eulji Medical Center	Seoul
Eulji University Daejeon Eulji Medical Center	Daejeon
Ewha Womans University Mokdong Hospital	Seoul
Hallym Hospital	Incheon
ratio is expected to proceed in a similar trend into the future. And in the category of aneurysmal treatments, the ratio in “coiling” was more than 100%, while in the “stent or balloon” it was 60–65%. The number of aneurysmal treatments involving SKEN members was counted as the number of aneurysms, while the number in the HIRA was counted as the number of patients. Therefore, it was not possible to directly compare the two data sets. However, assuming that multiple aneurysms occur in 25% of cases, SKEN members likely participated in the treatment of more than 50% of aneurysms. In addition, even though the ratio itself was meaningless, there were no significant changes in the ratio of aneurysmal data between SKEN members and the HIRA over the 5-year study period, which may indicate that the data collected by the SKEN were quite reliable. In the category of “IA thrombolysis for cerebral infarction”, the rates of increase was above 200%, which was from that the treatment performance improved greatly due to the rapid development of treatment technology in recent years (Table 3). Therefore, the ratio of data from SKEN members to those from HIRA will be similar, but the total number will continue to increase.

“AVM” showed a 60–75% ratio, which did not change significantly during the study period. The rate of increase was about 15–25% during the study period, which was assumed to remain unchanged per the ARUBA trial, as mentioned above. The categories “dural AVF or CCF” and “tumor embolization” showed 75–95% and 40–60% ratios, which did not change significantly over the 5-year study period. The rate of increase was about 40–50% and 30–40%, respectively. Although these categories are not common, they are likely of interest to vascular neurosurgeons. The categories “EC-PTA or stent (including CAS)” and “IC-PTA or stent” showed 50–70% and 65–85% ratios, respectively, and the difference in the rate of increase between SKEN members and HIRA was found to be 30–40%. These ratios seem to change from conventional surgical (in the case of “EC-PTA or stent [including CAS]”) or medical (in the case of “IC-PTA or stent”) treatment to endovascular treatment, possibly led by vascular neurosurgeons (SKEN members).

In 1997, Veith19), the President of the Society for Vascular Surgery, delivered the Presidential address in celebration of the 50th anniversary of the foundation of the Society. In that speech, he mentioned the threats to the specialized field of vascular surgery, emphasizing that advances in technology have allowed less-invasive, more cost-effective treatments, and that fiscal policy has encouraged it. This has increased the possibility that vascular surgery will become extinct. The less-invasive treatments of vascular disease he mentioned were endovascular treatments such as catheter-guidewire-imaging techniques involving catheters, balloons, atherectomy devices, stents, stented grafts, etc. He thought these were threats to the vascular surgeons because they confer similar or better results.
to open surgical treatments, and because they can be performed by non-surgical interventional specialists with training in radiology or cardiology\(^\text{19}\). For this reason, he argued that vascular surgeons must learn and practice endovascular treatment skills, and that, if they do not, they will be culled.

This was the situation in the US vascular surgery (not vascular neurosurgery) around 1997, and it is surprisingly similar to the situation of vascular neurosurgery in South Korea since 1994. At that time, endovascular treatment began in South Korea, but no one could be sure about the potential of the treatment for development. Fortunately, our forerunners had foresight and tried to adapt to these changes in the environment. Since 1994, they have established a research meeting and developed it into a society (SKEN) to continue and expand the role of vascular neurosurgeons. Of course, this development process produced many difficulties. While conventional open surgery was already established, endovascular treatment was a field in which results had to be made: there were many trials and errors, and it was difficult to be recognized by the Korean Neurosurgical Society. Furthermore, there were many conflicts with neuroradiologists, who had already taken an important positions in the field of endovascular treatment. Despite these difficulties, our forerunners did not stop their efforts. As the result, a substantial proportion of endovascular treatment in South Korea is now carried out by vascular neurosurgeons, as shown above. The SKEN, which has grown in quantity and quality, still makes such efforts and will continue to do so.

Limitations of the study

The data from the present study were collected from vascular neurosurgeons across the country over 5 years, with 77–100 hospitals involved (Table 9). However, this number does not include all hospitals with vascular neurosurgeons. In other words, the data in this study reflect only a subsection of all vascular neurosurgeons in South Korea. As mentioned earlier, aneurysm cases collected by the SKEN were based on the number of treated aneurysms, while the cases in the HIRA were based on the number of patients. Therefore, it was not possible to directly compare them. If comparisons were made using the same criteria, more accurate results could be obtained.

CONCLUSION

The SKEN members have been responsible for the major role of endovascular treatments in South Korea for the recent 5 years. This was achieved through the perseverance of senior members who started out in the midst of hardship, the establishment of standards for the training/certification of endovascular neurosurgery, and the enthusiasm of current SKEN members who followed. To provide better treatment to patients, we will have to make further progress in SKEN.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

INFORMED CONSENT

This type of study does not require informed consent.

AUTHOR CONTRIBUTIONS

Conceptualization : BTK
Data curation : TGK, OKK, YSS, JHS, JSK, BTK
Formal analysis : TGK
Funding acquisition : TGK, BTK
Methodology : TGK, BTK
Project administration : BTK
Visualization : TGK
Writing - original draft : TGK
Writing - review & editing : BTK

• **Acknowledgements**

This work was supported by the Bio Industrial Strategic Technology Development Program (20001234) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and Soonchunhyang University Research Fund.

Authors would like to express deep gratitude to the hospitals and SKEN members who responded to the survey.
References

1. Brilstra EH, Rinkel GJ, van der Graaf Y, van Rooij WI, Algra A: Treatment of intracranial aneurysms by embolization with coils: a systematic review. *Stroke* 30: 470-476, 1999

2. Byrne JV, Molyneux AJ, Brennan RP, Renowden SA: Embolisation of recently ruptured intracranial aneurysms. *J Neurol Neurosurg Psychiatry* 59: 616-620, 1995

3. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al.: Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke* 43: 1711-1737, 2012

4. Guglielmi G, Viñuela F, Dion J, Duckwiler G: Electrothrombosis of sacular aneurysms via endovascular approach. Part 2: preliminary clinical experience. *J Neurosurg* 75: 8-14, 1991

5. McKissock W, Richardson A, Walsh L: “Posterior-communicating” aneurysms: a controlled trial of the conservative and surgical treatment of ruptured aneurysms of the internal carotid artery at or near the point of origin of the posterior communicating artery. *The Lancet* 275: 1203-1206, 1960

6. McKissock W, Richardson A, Walsh L: Middle-cerebral aneurysms further results in the controlled trial of conservative and surgical treatment of ruptured intracranial aneurysms. *The Lancet* 280: 417-421, 1962

7. McKissock W, Richardson A, Walsh L: Anterior communicating aneurysms: a trial of conservative and surgical treatment. *Lancet* 1: 874-876, 1965

8. Meyer FB, Morita A, Puumala MR, Nichols DA: Medical and surgical management of intracranial aneurysms. *Mayo Clin Proc* 70: 153-172, 1995

9. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al.: Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. *Lancet* 383: 614-621, 2014

10. Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shirrington J, et al.: International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. *Lancet* 360: 1267-1274, 2002

11. Molyneux AJ, Birks J, Clarke A, Sneade M, Kerr RS: The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the international subarachnoid aneurysm trial (ISAT). *Lancet* 385: 691-697, 2015

12. Molyneux AJ, Kerr RS, Birks J, Ramzi N, Yarnold J, Sneade M, et al.: Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the international subarachnoid aneurysm trial (ISAT): long-term follow-up. *Lancet Neurol* 8: 427-433, 2009

13. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, et al.: International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. *Lancet* 366: 809-817, 2005

14. Nichols DA: Endovascular treatment of the acutely ruptured intracranial aneurysm. *J Neurosurg* 79: 1-2, 1993

15. Park HR, Park SQ, Kim JH, Hwang JC, Lee GS, Chang JC: Geographic analysis of neurosurgery workforce in Korea. *J Korean Neurosurg Soc* 61: 105-113, 2018

16. Shin DS, Park SQ, Kang HS, Yoon SM, Cho JH, Lim DJ, et al.: Standards for endovascular neurosurgical training and certification of the society of korean endovascular neurosurgeons 2013. *J Korean Neurosurg Soc* 55: 117-124, 2014

17. Thompson BG, Brown RD Jr, Amin-Hanjani S, Broderick JP, Cockroft KM, Connolly ES Jr, et al.: Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke* 46: 2368-2400, 2015

18. Veith FJ: Presidential address: Charles Darwin and vascular surgery. *J Vasc Surg* 25: 8-18, 1997

19. Veith FJ: Presidential address: Charles Darwin and vascular surgery. *J Vasc Surg* 25: 8-18, 1997