Mobile health (mHealth) usage, barriers, and technological considerations in persons with multiple sclerosis: a literature review

Elizabeth S. Gromisch¹,²,³,⁴, Aaron P. Turner⁵,⁶,⁷, Jodie K. Haselkorn⁵,⁶,⁷,⁸, Albert C. Lo¹, and Thomas Agresta⁹,¹⁰

¹Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, Connecticut, USA, ²Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut, USA, ³Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut, USA, ⁴Department of Neurology, University of Connecticut School of Medicine, Farmington, Connecticut, USA, ⁵Multiple Sclerosis Center for Excellence West, Veterans Affairs, Seattle, Washington, USA, ⁶Rehabilitation Care Service, VA Puget Sound Health Care System, Seattle, Washington, USA, ⁷Department of Rehabilitative Medicine, University of Washington, Seattle, Washington, USA, ⁸Department of Epidemiology, University of Washington, Seattle, Washington, USA, ⁹Department of Family Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA and ¹⁰Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA

Corresponding Author: Elizabeth S. Gromisch, PhD, Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, 490 Blue Hills Avenue, Hartford, CT 06112, USA; elizabeth.gromisch@trinity-healthofne.org

Received 2 April 2020; Revised 1 October 2020; Editorial Decision 13 November 2020; Accepted 18 November 2020

ABSTRACT

Objectives: Persons with multiple sclerosis (MS) can face a number of potential healthcare-related barriers, for which mobile health (mHealth) technology can be potentially beneficial. This review aimed to understand the frequency, current uses, and potential barriers with mHealth usage among persons with MS.

Methods: A query string was used to identify articles on PubMed, MEDLINE, CINAHL, and IEEE Xplore that were published in English between January 2010 and December 2019. Abstracts were reviewed and selected based on a priori inclusion and exclusion criteria. Fifty-nine peer-reviewed research studies related to the study questions are summarized.

Results: The majority of persons with MS were reported as using smartphones, although rates of mHealth utilization varied widely. mHealth usage was grouped into 3 broad categories: (1) disability and symptom measurement; (2) interventions and symptom management; and (3) tracking and promoting adherence. While there have been an increasing number of mHealth options, certain limitations associated with MS (eg, poor dexterity, memory problems) may affect usage, although including persons with MS in the design process can address some of these issues.

Discussion: Given the increased attention to mHealth in this population and the current need for telehealth and at home devices, it is important that persons with MS and healthcare providers are involved in the development of new mHealth tools to ensure that the end product meets their needs. Considerations for addressing the potential mHealth use barriers in persons with MS are discussed.

Key words: multiple sclerosis, mHealth, telemedicine, health services
INTRODUCTION

Up to 1 million people in the United States are estimated to have multiple sclerosis (MS), a chronic neurological disorder. Persons with MS can present with a wide array of symptoms, including difficulties with ambulation, cognition, vision, fine motor abilities, and fatigue. Effectively managing these symptoms and having access to appropriate healthcare services to address their MS-related needs can be challenging. For instance, cognitive dysfunction, which can affect up to 70% of persons with MS, can be progressive in nature and has been associated with greater difficulty completing daily activities, including functional tasks such as medication management, bill paying, decreased social engagement, and poorer health-related quality of life. During the COVID-19 pandemic, persons with MS may not be able to get routine appointments because they are not considered urgent enough for face-to-face visits. In addition, persons with MS can face a number of healthcare-related barriers, including health insurance coverage, transportation, and accessibility.

Because of the potential barriers to healthcare that persons with MS can face, one option for improving access to care has been through mobile health (mHealth) technology. The National Institutes of Health (NIH) defines mHealth as “the use of mobile and wireless devices (cellphones, tablets, wearable devices such as a smartwatch, etc.) to improve health outcomes, healthcare services, and health research.” Many persons with MS have access to mobile technology, with 86.9% reporting in one study that they use the device at least once a day. Even though smartphone usage was high, a German-based survey found that most persons with MS (63%) have no experience using mHealth applications for their MS, with only 18% being current users of this technology. Marrie et al. noted that 46.2% of smart-
phone and tablet users, who were based in the United States, endorsed using a mHealth application at least once. Higher education, income, number of co-occurring conditions, and engagement in physical activity have been associated with greater likelihood of mHealth application use. As with smartphone usage, general self-reported mHealth application use decreased with older age; however, that trend may differ with certain mHealth tools. For instance, Merlo et al. found that older persons with MS were more likely to persist on repeat testing using the computerized MSReactor program.

Current uses of mHealth with persons with MS

Disability and symptom measurement

Several mHealth tools have focused on the measurement of persons’ with MS symptoms and level of disability (Table 1). A number of applications, both mHealth-based and web-based that are accessible with a mobile device, have included patient-reported outcomes as a feature, such as questionnaires and visual analogue scales. Other efforts have focused on the use of mHealth tools to conduct objective measurements, such as remote Expanded Disability Status Scale (EDSS) evaluations using tele-video. While there are several computer-based cognitive assessments used for persons with MS, there have been 2 studies investigating multi-domain evaluations that could be conducted using a tablet, as well as one tablet-based application focusing on processing speed that is included as part of a composite disability assessment. Smartphone-based suites have also included one or more measures of objective cognitive functioning. With mHealth-based cognitive assessments, there is an ongoing debate as to whether a technician needs to be present. Wojcik et al. found largely similar performances on computerized assessments with and without a technician present, although participants were aware there was one nearby should problems with test administration arise.

Interventions and symptom management

Using mHealth as an interventional or symptom management tool has become more common (Table 2), with persons with MS noting that they use mHealth to improve their cognition, manage their stress and mood, and monitor their physical activity and diet. In
Domain	Application/device details	Articles	
Self-report measures	Patient-Reported Outcome Portals	• Baldassari et al.	30
	• Questionnaires included in these portals assess quality of life, fatigue, mood, anxiety, perceived cognition, social support, and physical symptoms (ie, pain, walking, and visual, sexual, bladder, and bowel functioning)	• Bove et al.	15
	• Can be used to track self-reported symptoms longitudinally	• Greiner et al.	17a
		• Jongen et al.	18b
		• Engelhard et al.	16a
		• Midaglia et al.	19
		• Newland et al.	20
		• Kos et al.	24
	Visual Analogue Scales	• Baldassari et al.	30
	• Feasible to administer visual analogue scales for anxiety, fatigue, pain, and quality of life on a smartphone or tablet	• Bove et al.	22
	• Tablet-based administration did not have higher reliability, which may have been partially due to the exclusion of persons with MS with more significant levels of impairment	• Greiner et al.	17a
		• Jongen et al.	18b
		• Engelhard et al.	16a
		• Midaglia et al.	19
		• Newland et al.	20
Remote disability assessments	Modified Tele-EDSS Evaluation¹	• Giedraitiene and	
	• Patient received an “in-home neuro kit” and followed verbal instructions from an examiner via video chat (73% completed with a smartphone and 15% with a tablet)	Kaubrys²⁷	
	• High level of acceptance	• Merlo et al.	14
	• Good correlations between in-clinic and tele-EDSS evaluations, particularly for individuals with higher EDSS scores	• Rao et al.	28
Cognitive evaluations	Cambridge Neuropsychological Test Automated Battery (CANTAB)	• Bove et al.	15
	• Assesses reaction time, spatial planning/executive functioning, visual memory and learning, and spatial working memory	• Midaglia et al.	19
	• Based on the level of difficulty selected, able to differentiate between groups (persons with MS vs healthy controls; stable MS vs recent relapse)	• Baldassari et al.	30
	• MSReactor²	• Rhodes et al.	32
	• Performs stabilized within 2–3 re-evaluations	• Rudick et al.	33
	Processing Speed Test (PST)	• Maillart et al.	31
	• Assesses processing speed and included as part of the MS Performance Test	• Sattarnezhad et al.	34
	• High test–retest reliability	• Boukhvalova et al.	35
	• Significantly associated with T2 lesion load	• Boukhvalova et al.	36
	Smartphone-based Suites	• Composite disability assessments	
	• Includes one or more measures of working memory, executive functioning, complex attention, and verbal fluency	• MSCopilot	
	• Applications also includes self-report measures and measures of motor functioning	• Sola-Valls et al.	17
		• Block et al.	39
		• Block et al.	36
		• Psarakis et al.	40
Composite disability assessments	MSCopilot	• Sola-Valls et al.	17
	• Smartphone-based assessment	• Boukhvalova et al.	35
	• Similar classification accuracy compared to the traditional measures, as well as good test–retest reliability	• Block et al.	39
	• Persons with MS indicated a preference for the mHealth version	• Boukhvalova et al.	36
	MS Performance Test (MSPT)	• Maillart et al.	31
	• Tablet-based assessment	• Sattarnezhad et al.	34
	• Good discriminability between persons with MS and healthy controls	• Boukhvalova et al.	35
	• Performances on the different measures were associated with physical disability-related patient-reported outcomes, as well as MRI metrics	• Composite disability assessments	
	Visual acuity assessments	• Sola-Valls et al.	17
	• iPad-based LogMAR Visual Acuity Chart	• Block et al.	39
	• High level of agreement with conventional analog testing	• Block et al.	36
	Fine motor functioning measures	• Psarakis et al.	40
	• Lower discriminatory power than the Nine-Hole Peg Test, but could be completed by all persons with MS participating in the study	• Tarasenkov et al.	31
	• Stronger correlations with clinician-derived neurological measurements	• Boukhvalova et al.	30
	• Level Test	• Sola-Valls et al.	17
	• Differentiated between persons with MS and healthy controls	• Block et al.	39
	• Related to different neurological functions than the Finger Tapping and Balloon Popping tests, such as cerebellar, proprioception, and reaction time	• Block et al.	36
	Mobility-based evaluations	• Psarakis et al.	40
	• Triaxial Accelerometers	• Block et al.	39
	• Feasible for wrist-worn device to be used to track physical activity for longer periods of time (1 year)	• Psarakis et al.	40
	• Lower step counts were associated with greater disability, as measured by the EDSS	• Sola-Valls et al.	17
	• A cutoff of 3279.3 steps a day differentiated persons with MS with ambulatory impairment from persons with MS who were fully ambulatory with 99% classification accuracy, 90% sensitivity, and 100% specificity	• Block et al.	39

(continued)
Some persons with MS have opted to have text message reminders sent to their mobile phones (vs via email or through a home monitoring system). Similarly, 37% of the survey noted that they use mHealth to remind them about their medications or upcoming appointments.13

Tracking and promoting adherence

Another common use within the MS population has been tracking and promoting adherence: about 44% of persons with MS in one survey noted that they use mHealth to remind them about their medications or upcoming appointments.13 Similarly, 37% of the commercially available MS-related self-management applications focused on medication management.10 Besides using applications to communicate with their clinicians about their care, persons with MS have reported using text messages, although they noted using secure online portals and email more frequently than texts or applications.9

Some persons with MS have opted to have text message reminders sent to their mobile phones (vs via email or through a home monitoring device) to take their disease modifying therapy (DMT) or engage in physical activity.63 Text messages have also been incorporated, along with phone calls and emails, as part of a telemedicine-based patient support program.66

When given the choice, more than half of persons with MS will choose a digital diary over a paper diary to monitor their DMT adherence.67 In addition, using a digital diary with reminders has been associated with a reduced risk of suboptimal adherence.68 Tools such as MSdialog (web- and mobile-based)17 and PatientConcept (mobile-based)69 has been shown to help track DMT usage, and include other features that may promote adherence, such as health reports via patient-reported outcome measures, reminders, and appointment requests. For both applications, persons with MS have endorsed that they were useful in helping them communicate with their healthcare provider. It should be noted that several of the mHealth tools that have been developed for monitoring adherence are associated with specific DMTs, such as MSdialog and interferon beta-1a.17

Potential barriers and technological considerations

While mHealth is being used by persons with MS in a variety of contexts and for a variety of purposes, there are a number of potential barriers that may inhibit its use (Table 3). Although any limitation in function may affect mHealth usage for persons with MS, difficulties related to vision, fine motor dexterity, and cognitive functioning may be more salient, depending on the MS presentation, severity, and course of progression. For instance, persistent visual difficulties are common in MS,70 and as such, individuals with this symptom may struggle to use mHealth tools with small or hard-to-read text.62,71 Allowing for verbal cues or using larger text and buttons11,72,73 may help compensate for these issues. Coupled with sensory and/or fine motor issues,74 the size of the mobile device needs to be considered, particularly with applications with more complex components (eg, longer questionnaires).18 In addition, given that up to 70% of persons with MS experience cognitive impairment,2 including reminders in the application may be a valuable addition and assist with adherence to a mHealth program.75,76

Several of the problems identified in the literature are not unique to persons with MS. For instance, confusing interfaces have been noted to make it difficult for persons with MS to adopt mHealth tools,63,77 which could influence mHealth usage in a variety of users. Other problems, such as cognitive impairment affecting users’ abilities to remember tasks related to the mHealth tool,41,42 can occur in other chronic health conditions. Some of these potential issues can be addressed in the design process, such as allowing users to retake a timed task if something unforeseen interferes with their performance.33 Furthermore, if persons with MS are included throughout the design process, potential limitations can be identified and corrected earlier in development. However, other barriers such as limited cellular network coverage and disruptions in the signal41,61 may be out of developers’ control.

DISCUSSION

Given the healthcare-related challenges that persons with MS can face and the growing need for telehealth, mHealth offers an important option to access needed services and resources. However, in order for mHealth to be meaningful to persons with MS, it needs to be usable, useful, and satisfying. This literature review aimed to better understand persons’ with MS use of mHealth and the potential barriers. Overall, the majority of persons with MS use devices like smartphones on a regular basis. Although rates of mHealth utiliza-

Table 1. continued

Domain	Application/device details	Articles
tracking and promoting adherence	• Daily step count may be more sensitive that the EDSS or the 25-Foot Walk at detecting early changes in ambulatory functioning	Neven et al.41
	• Compensatory movements were associated with greater disability, as measured by the EDSS, and reduced mobility	Chen et al.42
	• Persons‘ with MS self-reported walking ability was poorly associated with objective measurements, with 79.5% underestimating their abilities	Dalla-Costa et al.43
	• Can be used to track activities, which may be omitted from manual logs if there are cognitive issues	

EDSS: Expanded Disability Status Scale; mHealth: mobile health; MS: multiple sclerosis.

*aIndicates that participants in the study could access the application through a mobile device or another electronic device (eg, desktop computer).

†Described as a “web-based program,” but only access with a mobile device was noted.
Some of the factors noted to be associated with mHealth usage (eg, level of education, income, age) may be related to some of the barriers identified in the literature. For instance, older adults may be less likely to use mHealth because of limited digital literacy. Clinicians and researchers working with older persons with MS should consider providing a training session with the device or application to help encourage mHealth usage.

The use of mHealth as a component of MS-related care has grown over the past decade, with increased sophistication and options for end users. For instance, while earlier work investigated the use of a personal digital assistant (PDA) as a compensatory tool (eg, setting alarms and reminders), less than a decade later there are standalone, mHealth-based cognitive training programs that involve domain-specific exercises, allowing for persons with MS to engage in active training whenever and wherever it is convenient for them. The adoption of mobile devices as part of everyday life has also been reflected in individuals needing fewer instruments to engage in technology-based interventions. Rather than needing a home monitoring device connected through a landline to receive reminders, persons with MS can elect to get them sent directly to their cell phones. While several of the identified applications were web-based and could be accessed via a mobile or non-mobile device, a number of applications were designed specifically for smartphones or both devices.

In terms of current uses of mHealth in the MS population, both mHealth-based applications and web-based applications that can be accessed with a mobile device, options ranged from assessment tools used by clinicians to quantify disability to programs that can help persons with MS improve their working memory. Many of these mHealth tools have been developed recently, demonstrating the increased attention and availability of technology in MS-related care. Of the 21 studies that discussed disability and symptom measurement, 72% (n = 18) were initially published between 2017 and 2019, with half of those in 2019 alone. Similarly, 60% (n = 6) of the studies detailing intervention and symptom management mHealth tools were published in 2018 and 2019. Furthermore, smartphone- and tablet-specific programs have become more common, with almost two-thirds of the studies (n = 14) examining them initially published between 2018 and 2019. Although many of the mHealth applications focused on the provider (eg, disability evaluations), several of the identified tools can be used by persons with MS for tracking and improving their symptoms.

While there are a growing number of mHealth options for persons with MS, several potential barriers have been identified that might negatively influence the adoption of mHealth. Although the symptom presentation varies from person to person, many persons with MS experience cognitive, sensory, and/or physical difficulties.
Table 3. Potential barriers and considerations when developing mHealth tools for persons with MS

Potential barriers and issues	Considerations	Articles
• Information provided is false, biased, or outdated	• Provide a list of references	• Winberg et al.²⁴
• Data collected by the application are not accurate	• Allow users to retake the task if something unforeseen interfered in their performance	• Giunti et al.²⁷
• “Noise” due to task disruptions	• Consider using a wearable device that is worn on the waist over the non-dominant hip	• Giunti et al.²⁵
• Variations due to location of wearable device	• Consider using more accurate device if working with persons with MS with greater walking impairment	• Carignan et al.²⁸
• Greater relative error with slower walking speeds with certain devices	• Include an alarm (eg, vibration) to signal the user	• Balto et al.⁷³
• User is unaware when a task ends if there is not a technician present	• Give users the option to share their data (eg, choice to give healthcare providers their ID)	• Boukhvalova et al.³⁵
• Privacy concerns	• Calculate relative location rather than users’ real-time location	• Chen et al.⁴²
• Tracking location or data in real time		• Griffin and Kehoe¹¹
• How data are shared		• Giunti et al.⁷⁷
• Security of users’ data		• Giunti et al.⁷⁵
• Data storage and transmission during use		• Lang et al.⁶⁹
• Limited cellular network or disruptions in the signal		• Ranjan et al.⁸⁰
• Confusing interfaces		• Simblett et al.³²
• Physical considerations related to MS		• Carignan et al.⁷⁸
• Poor dexterity (eg, difficulty turning on and off switches on small devices)		• Boukhvalova et al.³⁵
• Visual impairments (eg, blurry vision)		• Neven et al.⁴¹
• Cognitive difficulties		• D’hooghe et al.⁶⁴
• Forgetting to charge or turn off devices, log activities	• Incorporate tasks into users’ routine	• Jongen et al.⁶³
• Reminders	• Frequency needs to be considered, as persons with MS have expressed dissatisfaction with “constant” notifications	• Giunti et al.⁷⁷
• Use larger text and buttons	• Allow users to retake the task if something unforeseen interfered in their performance	• Karp et al.⁵⁶
• Test different sizes with potential users to find optimal settings	• Use larger devices (eg, tablets) with applications with more complex components	• Winberg et al.⁷⁴
• Allow for verbal cues	• Use larger text and buttons	• Van Kessel et al.⁷¹
• Application is not customizable or options provided are “too general”	• Consider using larger devices (eg, tablets) with applications with more complex components	• Boukhvalova et al.³⁵
• Have customizable sections, such as goal settings	• Use larger text and buttons	• Griffin and Kehoe¹¹
• But include some pre-set options, such as common daily activities	• Test different sizes with potential users to find optimal settings	• Giunti et al.⁶²
• Premature discontinuation with interventions and longitudinal assessments	• Frequent follow-up is needed to maintain adherence	• Thirumalai et al.⁷²
• Costs of device and data plan may be financially unattainable	• Be aware that discontinuation occurs at the highest rate at the beginning and stabilizes over time	• Karp et al.⁵⁶
• Limited digital literacy	• Consider factors such as overage charges depending on the users’ data plan	• Winberg et al.⁷⁴
• Application may collect critical or sensitive data that requires follow-up (eg, possible depression or abnormal lab result)	• Training session with device prior to independent user	• Griffin and Kehoe¹¹
• Implement a system to alert users’ healthcare providers for appropriate follow-up		• Bove et al.¹⁵
		• Engelhard et al.¹⁶
		• Midaglia et al.¹⁹
		• Paul et al.⁵⁷
		• Penkert et al.⁸²
		• Simblett et al.³²
		• Paul et al.⁵⁶
		• Kos et al.²¹
		• Simblett et al.³²
		• Engelhard et al.¹⁶
		• Lang et al.⁶⁹

mHealth: mobile health; MS: multiple sclerosis.
which can impede their usage of certain mHealth tools. Some barriers, such as digital literacy, costs, and interface design can apply to mHealth in general. Even some of the aforementioned disease-related barriers and their associated considerations, such as including reminders or adjusting the text size, can apply to other populations. A number of studies included participants with other conditions besides MS, suggesting that these barriers need to be considered when designing mHealth for a wide variety of patient users.

Some of these issues, such as factoring in the physical manifestations of MS, highlight the need to use user-centered design processes during the development of new mHealth tools for persons with MS. Including persons with MS, as well as healthcare providers, during the design process can elucidate potential disease-related limitations and their solutions prior to the product being tested commercially. For instance, if a mHealth tool involves physical activity where falls or a cardiac event may be a possibility, a healthcare provider might bring up the need to include an emergency contact, while a person with MS may suggest ways of handling potential societal barriers. Furthermore, involving persons with MS throughout the development of new mHealth applications, particularly in the early stages, can increase the likelihood that these tools are meeting the needs of its end users and will be implemented in everyday life. It is important to note that while these procedures were largely used in the included studies, this may not always be the case in commercially available applications, as noted in Salimzadeh et al. review.

With the recent finalization by the Center for Medicare and Medicaid Services of the Interoperability and Patient Access Rule, required as part of the 21st Century Cures Act, all certificated Health Information Technology (IT) systems (electronic health records and Insurance IT systems) will be required to use a standard Application Programming Interface to allow developers to create mHealth tools for persons with MS that interoperate with their clinicians’ systems. This will open up a broad array of new opportunities to develop new tools that meet specific needs. It would be imperative to consider the lessons learned already, as demonstrated by this literature review, to rapidly develop the most effective, user-friendly mHealth tools possible.

Several caveats should be noted in the current review. Given that the review was limited to English language articles, studies published in other languages were not included. As such, mHealth usage may be different in other cultures and communities, potentially over-estimating or under-estimating the frequency of mHealth usage among persons with MS, and other types of mHealth applications and barriers may have been omitted from this review. In addition, as the current study was a literature review rather than a meta-analysis, the efficacy of these mHealth tools were not examined. As the number of mHealth tools available for persons with MS continue to grow, particularly interventional applications, the efficacy of technology-delivered programs compared to those delivered face-to-face will need to be closely examined to ensure patients are receiving efficacious services, even at a distance. Given the rapid development of telehealth services in response to COVID-19, there will likely be a plethora of new literature on mHealth’s efficacy and effectiveness, including optimal delivery mechanisms and its impact on quality of life. Finally, as it was beyond the scope of the current review, other factors that may influence the utility of some of these mHealth tools (eg, costs, frequency of updates, and reliability) were not explored.

In conclusion, the majority of persons with MS have access to smart devices, with several individuals using them for mHealth. While there has been an increasing number of mHealth options for persons with MS, certain physical, cognitive, and technological barriers may affect usage. As such, it is important that persons with MS are involved in the design and testing stages of mHealth development to ensure that the end product meets theirs and their healthcare providers’ needs.

AUTHOR CONTRIBUTIONS
ESG made substantial contributions to the conception, design, acquisition, and drafting of the literature review. All authors made substantial contributions to the interpretation of the data. APT, JKH, ACL, and TA made critical revisions of the manuscript. All authors provided final approval and agree to be accountable for all aspects of this work.

ACKNOWLEDGMENTS
The authors wish to thank Joe Pallis for his assistance with refining the PubMed query string, and Steven Demurjian for his review of an earlier draft of this manuscript.

CONFLICT OF INTEREST STATEMENT
None declared.

DATA AVAILABILITY STATEMENT
No new data were generated or analyzed in support of this research.

REFERENCES
1. Wallin MT, Culpepper WJ, Campbell JD, et al. The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology 2019; 92 (10): e1029–40.
2. Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol 2008; 7 (12): 1139–51.
3. Strober LB, Rao SM, Lee J-C, Fischer E, Rudick R. Cognitive impairment in multiple sclerosis: an 18 year follow-up study. Mult Scler Relat Disord 2014; 3 (4): 473–81.
4. Benito-Leon J, Morales J, Rivera-Navarro J. Health-related quality of life and its relationship to cognitive and emotional functioning in multiple sclerosis patients. Eur J Neurol 2002; 9 (5): 497–502.
5. Kalmar JH, Gaudino EA, Moore NB, Halper J, DeLuca J. The relationship between cognitive deficits and everyday functional activities in multiple sclerosis. Neuropsychology 2008; 22 (4): 442–9.
6. Rogers JM, Panegyres PK. Cognitive impairment in multiple sclerosis: evidence-based analysis and recommendations. J Clin Neurosci 2007; 14 (10): 919–27.
7. Chiu C, Bishop M, Pionke J, Strauser D, Santens RL. Barriers to the accessibility and continuity of health-care services in people with multiple sclerosis: a literature review. Int J MS Care 2017; 19 (6): 313–21.
8. Park S, Young JH, Lee SH, et al. Cognitive function in Korean multiple sclerosis patients. J Neurol Sci 2017; 386: 41–8.
9. Marrie RA, Leung S, Tytly T, Cutter GR, Fox R, Saltar A. Use of eHealth and mHealth technology by persons with multiple sclerosis. Mult Scler Relat Disord 2019; 27: 13–9.
10. Salimzadeh Z, Damanahi S, Kalankesh LR, Ferdousy R. Mobile applications for multiple sclerosis: a focus on self-management. *Acta Inform Med* 2019; 27 (1): 12.

11. Griffen N, Kehoe M. A questionnaire study to explore the views of people with multiple sclerosis of using smartphone technology for health care purposes. *Disabil Rehabil* 2018; 40 (12): 1434–42.

12. Haase R, Schultheiss T, Kempecke R, Thomas K, Ziemssen T. Use and acceptance of electronic communication by patients with multiple sclerosis: a multicenter questionnaire study. *J Med Internet Res* 2012; 14 (5): e135.

13. Apolínário-Hagen J, Menzel M, Hennemann S, Salewski C. Acceptance of mobile health apps for disease management among people with multiple sclerosis: web-based survey study. *JMIR Form Res* 2018; 2 (2): e11977.

14. Merlo D, Darby D, Kalinick T, Butzkueven H, van der Walt A. The feasibility, reliability and concurrent validity of the MSReactor computerized cognitive screening tool in multiple sclerosis. *Tiber Adv Neurol Disord* 2019; 12: 17562841985918.

15. Bove R, White CC, Giovannoni G, et al. Evaluating more naturalistic outcome measures: a 1-year smartphone study in multiple sclerosis. *Neuro Neuromuscul Neurol* 2015; 5 (2): 162.

16. Engelhard MM, Patek SD, Sheridan K, Lach JC, Goldman MD. Remotely engaged: lessons from remote monitoring in multiple sclerosis. *Int J Med Inform* 2017; 100: 26–31.

17. Greiner P, Sawka A, Imeson E. Patient and physician perspectives on MSdialog, an electronic PRO diary in multiple sclerosis. *Patient* 2015; 8 (6): 541–50.

18. Jongen PJ, Sinnige LG, van Geel BM, et al. The interactive web-based program MSmonitor for self-management and multidisciplinary care in multiple sclerosis: concept, content, and pilot results. *Patient Prefer Adherence* 2015; 9: 1741–50.

19. Midaglia L, Mulero P, Montalban X, et al. Adherence and satisfaction of smartphone-and watch-based remote active testing and passive monitoring in people with multiple sclerosis: nonrandomized interventional feasibility study. *J Med Internet Res* 2019; 21 (8): e14863.

20. Newland P, Oliver B, Newland JM, Thomas FP. Testing feasibility of a mobile application to monitor fatigue in people with multiple sclerosis. *J Neurosci Nurs* 2019; 51 (6): 331–4.

21. Kots D, Raeymaekers J, Van Remoortel A, et al. Electronic visual analogue scales for pain, fatigue, anxiety and quality of life in people with multiple sclerosis using smartphone and tablet: a reliability and feasibility study. *Clin Rehabil* 2017; 31 (9): 1215–25.

22. Bove R, Bevan C, Crabtree E, et al. Toward a low-cost, in-home, telemedicine-enabled assessment of disability in multiple sclerosis. *Mult Scler* 2019; 25 (11): 1526–34.

23. Adler G, Lembach Y. Memory and selective attention in multiple sclerosis: cross-sectional computer-based assessment in a large outpatient sample. *Eur Arch Psychiatry Clin Neurosci* 2015; 265 (5): 439–43.

24. Akbar N, Honarmand K, Koo N, Feinstein A. Validity of a computerized version of the Symbol Digit Modalities Test in multiple sclerosis. *J Neurol* 2011; 258 (3): 373–9.

25. De Meijer L, Merlo D, Skibina O, et al. Monitoring cognitive change in multiple sclerosis using a computerized cognitive battery. *Mult Scler J Exp Transl Clin* 2018; 4 (4): 0205521718811551.

26. Golan D, Wilken J, Doniger GM, et al. Validity of a multi-domain computerized cognitive assessment battery for patients with multiple sclerosis. *Mult Scler Relat Disord* 2019; 30: 56–62.

27. Giedraitiene N, Kaubrys G. Distinctive pattern of cognitive disorders during multiple sclerosis relapse and recovery based on computerized CANTAB tests. *Front Neurol* 2019; 10: 572.

28. Rao SM, Losinski G, Mounay L, et al. Processing speed test: validation of a self-administered, iPad-based tool for screening cognitive dysfunction in a clinic setting. *Mult Scler* 2017; 23 (14): 1929–37.

29. Wojcik CM, Rao SM, Schembri AJ, et al. Necessity of technicians for computerized neuropsychological assessment devices in multiple sclerosis. *Mult Scler* 2020; 26 (1): 109–13.

30. Baldassari LE, Nakamura K, Moss BP, et al. Technology-enabled comprehensive characterization of multiple sclerosis in clinical practice. *Mult Scler Relat Disord* 2020; 38: 101525.

31. Maillart E, Labauge P, Cohen M, et al. MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. *Eur J Neurol* 2020; 27 (3): 429–36.

32. Rhodes JK, Schindler D, Rao SM, et al. Multiple sclerosis performance test: technical development and usability. *Adv Ther* 2019; 36 (7): 1741–55.

33. Rudick RA, Miller D, Bethoux F, et al. The Multiple Sclerosis Performance Test (MSPT): an iPad-based disability assessment tool. *J Vis Exp* 2014; (88): e51318.

34. Sattarnezhad N, Farrow C, Kimbrough D, Glanz B, Healy B, Chitnis T. Agreement analysis comparing iPad LCUVA and Sloan testing in multiple sclerosis patients. *Mult Scler* 2018; 24 (8): 1126–30.

35. Bouchkalova AK, Kowalczak E, Harris T, et al. Identifying and quantifying neurological disability via smartphone. *Front Neurol* 2018; 9: 740.

36. Bouchkalova AK, Fan O, Weideman AM, et al. Smartphone Level Test measures disability in several neurological domains for patients with multiple sclerosis. *Front Neurol* 2019; 10: 358.

37. Sola-Valls N, Blanco Y, Sepulveda M, et al. Walking function in clinical monitoring of multiple sclerosis by telemedicine. *J Neurol* 2015; 262 (7): 1706–13.

38. Block V, Lizee A, Crabtree-Hartman E, et al. Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. *J Neurol* 2017; 264 (2): 316–26.

39. Block VJ, Bove R, Zhao C, et al. Association of continuous assessment of step count by remote monitoring with disability progression among adults with multiple sclerosis. *JAMA Netto* 2019; 2 (3): e190370.

40. Psarakis M, Greene DA, Cole MH, Lord SR, Hoang P, Brodie M. Wearable technology reveals gait complications, unstable walking patterns and fatigue in people with multiple sclerosis. *Physiol Meas* 2018; 39 (7): 075004.

41. Neven A, Janssens D, Alders G, Wets G, Wijmeersch BV, Peys P. Documenting outdoor activity and travel behaviour in persons with neurological conditions using travel diaries and GPS tracking technology: a pilot study in multiple sclerosis. *Disabil Rehabil* 2013; 35 (20): 1718–25.

42. Chen K-Y, Harmiss M, Patel S, Johnson K. Implementing technology-based embedded assessment in the home and community life of individuals aging with disabilities: a participatory research and development study, *Disabil Rehabil Assist Technol* 2014; 9 (2): 112–20.

43. Dalla-Costa G, Radaelli M, Maiza S, et al. Smart watch, smarter EDSS: Improving disability assessment in multiple sclerosis clinical practice. *J Neurol Sci* 2017; 383: 166–8.

44. Fischer J, Rudick R, Cutter G, Reingold S, Force N. The Multiple Sclerosis Functional Composite measure (MSFC): an integrated approach to MS clinical outcome assessment. *Mult Scler* 1999; 5 (4): 244–50.

45. Schinzel J, Zimmermann H, Paul F, et al. Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis. *BMC Neurol* 2014; 14 (1): 31.

46. Drake A, Weinstock-Guttman B, Morrow S, Hojnacki D, Munschauer F, Benedict R. Psychometrics and normative data for the Multiple Sclerosis Functional Composite: replacing the PASAT with the Symbol Digit Modalities Test. *Mult Scler* 2010; 16 (2): 228–37.

47. Kurtzke JF. Rating neurologic impairment in multiple sclerosis an expanded disability status scale (EDSS). *Neurology* 1983; 33 (11): 1444.

48. Hoohol M, Orar E, Weiner H. Disease steps in multiple sclerosis A simple approach to evaluate disease progression. *Neurology* 1995; 45 (2): 251–5.

49. Hoohol M, Orar E, Weiner H. Disease steps in multiple sclerosis: a longitudinal study comparing disease steps and EDSS to evaluate disease progression. *Mult Scler* 1999; 5 (5): 349–54.

50. Leemont MY, Moul RW, Sandroff BM, Pula JH, Cadavid D. Validation of patient determined disease steps (PDSS) scale scores in persons with multiple sclerosis. *BMC Neurol* 2013; 13 (1): 37.

51. Marrie RA, Goldman M. Validity of performance scales for disability assessment in multiple sclerosis. *Mult Scler* 2007; 13 (9): 1176–82.

52. Simblett SK, Evans J, Greer B, et al. Engaging across dimensions of diversity: a cross-national perspective on mHealth tools for managing relapsing remitting and progressive multiple sclerosis. *Mult Scler Relat Disord* 2019; 32: 123–32.
