Synchronization phenomena of coupled nonlinear oscillators are omnipresent and play an important role in physical, chemical and biological systems [11, 2]. Understanding the synchronization mechanisms is crucial for many practical applications. One of the most interesting and challenging phenomena when coupling nonlinear systems is the synchronization of chaotic dynamics [3]. In order to characterize the synchronization effects, stability properties are a key issue. Noise can, for instance, cause intermittent desynchronization. This behavior is called bubbling [4] and has been observed for example in optical [5, 6] and electrical [7] systems.

Semiconductor lasers are of particular interest in the study of chaos synchronization. The synchronization properties may facilitate new secure communication schemes. However, if two identical semiconductor lasers are optically coupled over a finite distance, it has been observed that the coupling delay leads to spontaneous symmetry breaking, and only generalized synchronization of leader-laggard type occurs [8]. A passive relay in form of a semitransparent mirror or an active relay in form of a third laser in between the two lasers have been shown to stabilize the isochronous synchronization in the compound cavity’s antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

We theoretically study chaos synchronization of two lasers which are delay-coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low frequency fluctuation regimes with the transverse instability of some of the compound cavity’s antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

The arriving signals between the systems. Each system receives a delayed signal from the relay

\[\dot{X}_j = f(X_j) + K Y(t-\tau/2) \quad (j = 1, 2). \] (1)

Here \(X_j, Y \in \mathbb{R}^n \) are the state vectors of the system \(j \) and the relay, respectively, \(f \) is a nonlinear function, \(K \) is the relay-to-system coupling matrix, and \(\tau \) is the propagation delay between system 1 and system 2. The overdot denotes the derivative with respect to time \(t \).

For the active relay we consider the equation

\[\dot{Y} = g(Y) + \frac{1}{2} L X_1(t-\tau/2) + \frac{1}{2} L X_2(t-\tau/2), \] (2)

where \(L \) is the system-to-relay coupling matrix and the function \(g \) describes the internal dynamics of the relay. For the passive relay we consider the algebraic equation

\[Y(t) = \frac{1}{2} [X_1(t-\tau/2) + X_2(t-\tau/2)]. \] (3)

Equation (1) together with the relay equation (2) or (3) allow for an isochronous (or zero-lag) solution \(X_1(t) = X_2(t) \), respectively. The SM is thus invariant. To analyse the stability of this solution we introduce a symmetric variable \(S = \frac{1}{2}(X_1 + X_2) \) and an antisymmetric variable \(A = \frac{1}{2} (X_1 - X_2) \). Equation (1) can then be rewritten in the new variables

\[\dot{S} = \frac{1}{2} [f(S + A) + f(S - A)] + K Y(t-\tau/2), \] (4)

\[\dot{A} = \frac{1}{2} [f(S + A) - f(S - A)]. \] (5)

Note that due to the symmetric coupling the delay terms and all the coupling parameters in Eq. (5) vanish. Equation (4), taken at \(A = 0 \) has a solution \(A = 0 \) which represents the isochronously synchronized state. Its stability is determined by linearizing Eqs. (4) and (5) in the
variable A around $A = 0$, i.e., we linearize orthogonal to the SM:

$$
\dot{S} = f(S) + KK(t - \tau/2), \quad (6)
$$

$$
\dot{A} = Df(S)A. \quad (7)
$$

Here, $Df(S)$ denotes the Jacobian of f evaluated at the position S. Since S depends on time, Eq. (7) constitutes a time-dependent variational equation.

For both relay types the dynamics within the SM resembles the dynamics of a single system with either self-feedback (passive relay)

$$
\dot{S} = f(S) + KS(t - \tau) \quad (8)
$$
or coupling to the active relay

$$
\dot{S} = f(S) + KY(t - \tau/2), \quad \dot{Y} = g(Y) + LS(t - \tau/2). \quad (9)
$$

In both cases the stability of the synchronized solution is governed by Eq. (7). However, the trajectory $S(t)$ will be different and the synchronized state may thus have different stability properties.

Bubbling occurs [4, 15] when an invariant set I, for example a periodic orbit, in the SM is transversally unstable, while the chaotic attractor in the SM is still transversally stable, i.e. the largest transversal Lyapunov exponent of the attractor is negative, $\lambda_\perp < 0$. In this situation the trajectory can be pushed towards the unstable set by noise and leave the SM. If there is no other attractor present, the trajectory will eventually come back to the SM and the systems will synchronize again. The point where the invariant set I loses its transversal stability is called bubbling bifurcation, while the point where the invariant set I gains stability is called bubbling only takes place during the power dropouts. In the regime with noise is switched off in the simulations, the two lasers stay perfectly synchronized. In the regime with $\lambda_\perp > 0$ we observe desynchronization bursts even without noise, i.e., the system exhibits on-off intermittency. Figure 3a depicts the bubbling behavior for values of K above $B2$ where the laser operates in the CC regime. Figure 3b corresponds to a lower pump current, where the synchronized lasers operate in the LFF regime. In this regime bubbling only takes place during the power dropouts. In both cases, when the noise amplitude is decreased, the desynchronization peaks occur less frequently, the maximum height, however, does not decrease.

We now relate the desynchronization dynamics to the transverse stability of the ECMs in the SM. These modes organize the dynamics in the SM in the CC and the LFF regime. The ECMs are rotating wave solutions of the Lang-Kobayashi equations and are located on an ellipse in the (ω, n)-plane (see inset of Fig. 4a). The modes on the top and bottom half of the ellipse are called modes $n_0 = 10$ is the carrier density at threshold and $\beta = 10^{-5}$ is the spontaneous emission factor. Carrier noise has not been taken into account at this level.

If the relay is realized through a semitransparent mirror (passive relay), the dynamics within the SM is given by Eqs. (11) with

$$
E(t - \tau) = E_j(t - \tau), \quad (i.e., an effectively decoupled laser. For this configuration we calculate the maximum parallel Lyapunov exponents λ_\parallel (within the SM) as well as the maximum transversal Lyapunov exponents λ_\perp by simulating the dynamics in the SM without noise and applying the method developed in [15]. Figure 2a displays the Lyapunov exponents as a function of the feedback strength K. There are two blow-out bifurcations [19] at $K \approx 0.008$ ($B1$) and at $K \approx 0.09$ ($B2$), where λ_\perp changes sign and the chaotic attractor loses its transversal stability. Similar behavior is found for an active relay (Fig. 2b). Over a wide range of K (Fig. 2b) in which the attractor is stable and the dynamics is chaotic, we observe bubbling induced by spontaneous emission noise. In these regimes, when the noise is switched off in the simulations, the two lasers stay perfectly synchronized. In the regime with $\lambda_\perp > 0$ we observe desynchronization bursts even without noise, i.e., the system exhibits on-off intermittency. Figure 3a depicts the bubbling behavior for values of K above $B2$ where the laser operates in the CC regime. Figure 3b corresponds to a lower pump current, where the synchronized lasers operate in the LFF regime. In this regime bubbling only takes place during the power dropouts. In both cases, when the noise amplitude is decreased, the desynchronization peaks occur less frequently, the maximum height, however, does not decrease.

Figure 2: (Color online) Maximum transversal Lyapunov exponent λ_\perp (red dashed) and maximum parallel Lyapunov exponent λ_\parallel (blue solid) as a function of the feedback strength K for a) passive relay b) active relay ($\rho_{\text{relay}} = 4.0$). At the two blow-out bifurcations $B1$ and $B2$ the maximum transversal Lyapunov exponent of the chaotic attractor changes sign. Other parameters: $T = 200\, p = 1.0, \tau = 1000, \alpha = 4, \varphi = 0$.
and antimodes, respectively.

Figure 3: Carrier density of the symmetric variable \(n_S = \frac{1}{2}(n_1 + n_2) \) and intensity difference \(|I_1 - I_2|/(I_1 + I_2) \) (normalized by the mean intensity) representing the deviation from the synchronized state vs. time. a): Bubbling in the coherence collapse regime \((p = 1.0) \). b): Bubbling in the low frequency fluctuation regime during power dropouts \((p = 0.1) \). Other parameters: \(T = 200, K = 0.12, \tau = 1000, \alpha = 4 \).

The transverse stability of an ECM is governed by the variational equation \[7\] where \(S(t) \) is the ECM solution. To determine the stability, we transform the laser equations into a rotating frame \[21\] \(E_\theta = E \exp(-i\omega t) \). In these coordinates, an ECM \(E = A \exp(i\omega t + i\psi) \) is transformed into a family of fixed points \(E_0 = A \exp(i\psi) \).

Splitting the complex electric field \(E_{0j} = x_j + iy_j \) and using the vector \(X_j = (x_j, y_j, n_j) \) Eqs. \[11\] can be written in the form of Eq. \[1\] and the above analysis applies. The eigenvalues of the Jacobian in the rotating frame then determine the ECM’s transverse stability. Figure 4a displays the position of the ECMs in the \((\omega, n) \)-plane and their stability for a choice of parameters. The black trajectory displays the projection of the symmetric variable \(n_S \).

The bubbling behavior in the CC regime and the correlation of the desynchronization with the power dropouts in the LFF regime can be understood as follows. In the CC regime the dynamics comprises chaotic itinerancy among the modes and global antimode dynamics \[22\] (see Fig. 4a). The modes involved in the chaotic itinerancy are transversally stable (blue circles). The antimodes on the other hand are transversally unstable (red squares). Thus, when the trajectory approaches the antimode, noise can lead to desynchronization and bubbling occurs. The yellow diamonds in Fig. 4a mark the onset of desynchronization, showing that bubbling always occurs in the vicinity of the antimodes (independent of the power). Please note that due to the role of noise not every approach to an antimode results in a bubbling excursion.

In the LFF regime \[23\] the dynamics is similar. The intensity buildup process in between power dropouts is characterized by chaotic switching between different attractors (ghosts) of unstable ECMs with a drift towards the ECM with minimal \(n \). All ECMs involved in the buildup process are transversally stable and we observe no desynchronization. After a transient time, a power dropout takes place. During the dropout the trajectory collides with an antimode in a crisis. Again, the vicinity to transversally unstable antimodes - rather than the drop in power - leads to bubbling behavior.

The transverse stability of the ECMs depends on the laser and coupling parameters as well as on the parameters of the particular ECM. Note that modes and antimodes are not necessarily transversally stable or unstable, respectively. The modes on the lower right-hand side in Fig. 4a, for instance, are transversally unstable. With decreasing coupling strength \(K \), more modes become transversally unstable until the whole chaotic attractor loses its transversal stability. This leads to the blowout bifurcation \(B2 \) in Fig. 2.

With increasing feedback strength the bubbling occurs less frequently and the average synchronization interval \(\Delta \) increases; however, we did not find a transition to a bubbling-free state in a physically reasonable range of \(K \). Note that neither \(K \) nor the other parameters of our model are normal parameters in the sense of Ref. [5]. Thus we do not observe power-law scaling of \(\Delta \) as in [6] [13]. The parallel Lyapunov exponent \(\lambda_{||} \) approaches...
zero with increasing K and the chaoticity decreases, making this situation less interesting for chaos-based applications.

If the elements are coupled via an active relay, the synchronized lasers behave like two delay-coupled lasers (see Eq. (9)). If we choose $\mathbf{f} = \mathbf{g}$ and $K = L$, we obtain a system of two identical mutually coupled semiconductor lasers, which has been studied before [8, 24, 25]. Such a system has rotating wave solutions of the form $E_S(t) = A_S \exp(i\omega t)$, $E_Y(t) = A_Y \exp(i\omega t + iv)$, $n_S(t) = n_S$, $n_Y(t) = n_Y$, called compound mode lasers (CLMs). Their spectrum is more complex than for the ECMs: besides the synchronized solutions (which correspond to ECMs), there exist antisymmetric modes, for which the relay and the synchronized solution are in anti-phase ($\psi = \pi$), as well as asymmetric modes where the relay has a different intensity than the outer lasers.

The positions of the transversally unstable modes are close to those of the ECMs of a single laser in the (ω, n) parameter space. Also the dynamics of three identical coupled lasers is similar to the behavior in the presence of a passive relay. Indeed, we find bubbling in both the LFF and CC regime.

In the experiments reported in [12] all the coupling parameters in the setup are chosen identical, i.e., $L = 2K$ in Eqs. (1) and (2). But also in this case we observe qualitatively similar laser dynamics, with a trajectory in parameter space coming close to the transversally unstable CLMs.

To suppress the bubbling while maintaining strong chaos, we apply a sufficiently higher pump current to the relay laser ($p_{\text{relay}} = 4.0$) than to the outer lasers ($p = 1.0$). For this configuration we have calculated $\lambda_1 \approx 0.026$, $\lambda_\perp \approx -0.032$, confirming that the system is in the chaotic regime (cf. Fig. 2b). The system still iterates among the compound laser modes, but there is no global antimode dynamics. Moreover, in contrast to the behavior for the symmetric case $p_{\text{relay}} = 1.0$, the active relay now suppresses the bubbling and there is no desynchronization (see Fig. 3b). Inspecting Fig. 4b, we can conclude that the CLMs involved in the dynamics are indeed transversally stable. If the middle laser is pumped less strongly than the outer ones, the opposite effect is observed.

In conclusion, we have demonstrated a mechanism for desynchronization by bubbling in a very general setting of two delay-coupled lasers with either passive or active relay. We have shown that in the CC and LFF regimes the occurrence of bubbling is related to the transverse instability of some of the compound cavity’s antimodes, and that, by tuning of the active relay, it is possible to suppress the bubbling. These synchronization properties are decisive for the setup of chaos-synchronization based applications and provide a strategy how to achieve stable synchronization.

We thank P. Ashwin, T. Gavrielides, and C. Mirasso for fruitful discussions. O.D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for her fellowship and for project support. This work was partially supported by the Belgian Science Policy Office under grant IAP-VI10 "photronics@be", by the EC Project GABA FP6-NEST contract 043309, and by DFG in the framework of Sfb 555.

[1] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, Phys. Rep. 366, 1 (2002).
[2] A. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001).
[3] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[4] P. Ashwin, J. Buescu, and I. Stewart, Phys. Lett. A 193, 126 (1994).
[5] J. R. Terry, K. S. Thornburg, D. J. DeShazer, G. D. VanWiggeren, S. Zhu, P. Ashwin, and R. Roy, Phys. Rev. E 59, 4036 (1999).
[6] M. Sauer and F. Kaiser, Phys. Lett. A 243, 38 (1998).
[7] D. J. Gauthier and J. C. Bienfang, Phys. Rev. Lett. 77, 1751 (1996).
[8] J. Mulet, C. R. Mirasso, T. Heil, and I. Fischer, J. Opt. B 6, 97 (2004).
[9] L. B. Shaw, I. B. Schwartz, E. A. Rogers, and R. Roy, Chaos 16, 015111 (2006).
[10] E. Klein, N. Gross, M. G. Rosenblum, W. Kinzel, L. Khaykovich, and I. Kanter, Phys. Rev. E 73, 066214 (2006).
[11] A. S. Landsman and I. B. Schwartz, Phys. Rev. E 75, 026201 (2007).
[12] I. Fischer, R. Vicente, J. M. Buldú, M. Peil, C. R. Mirasso, M. C. Torrent, and J. García-Ojalvo, Phys. Rev. Lett. 97, 123902 (2006).
[13] R. Vicente, C. R. Mirasso, and I. Fischer, Opt. Lett. 32, 403 (2004).
[14] V. Ahlers, U. Parlitz, and W. Lauterborn, Phys. Rev. E 58, 7208 (1998).
[15] S. C. Venkataramani, B. R. Hunt, E. Ott, D. J. Gauthier, and J. C. Bienfang, Phys. Rev. Lett. 77, 5361 (1996).
[16] R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[17] P. M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux, Phys. Rev. A 53, 4429 (1996).
[18] J. D. Farmer, Physica D 4, 366 (1982).
[19] E. Ott and J. C. Sommerer, Phys. Lett. A 188, 39 (1994).
[20] J. Mørk, B. Tromborg, and J. Mark, IEEE J. Quantum Electron. 28, 93 (1992).
[21] S. Yanchuk, Math. Meth. Appl. Sci. 28, 363 (2005).
[22] J. Mulet and C. R. Mirasso, Phys. Rev. E 59, 5400 (1999).
[23] T. Sano, Phys. Rev. A 50, 2719 (1994).
[24] H. Erzgräber, D. Lenstra, B. Krauskopf, E. Wille, M. Peil, I. Fischer, and W. Elsäßer, Opt. Commun. 255, 286 (2005).
[25] H. Erzgräber, B. Krauskopf, and D. Lenstra, SIAM J. Appl. Dyn. Syst. 5, 30 (2006).