Title
Specific heat and electrical resistivity of CeCu6 below 1 k

Permalink
https://escholarship.org/uc/item/6w80t8p9

Journal
Solid State Communications, 53(3)

ISSN
0038-1098

Authors
Ott, HR
Rudigier, H
Fisk, Z
et al.

Publication Date
1985

DOI
10.1016/0038-1098(85)90042-0

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
SPECIFIC HEAT AND ELECTRICAL RESISTIVITY OF CeCu₆ BELOW 1 K

H.R. Ott and H. Rudigier
Laboratorium für Festkörperphysik, ETH-Hönggerberg, 8093 Zürich, Switzerland

and

Z. Fisk, J.O. Willis and G.R. Stewart
Materials-Science and Technology Division, Los Alamos National Laboratory,
Los Alamos, New Mexico 87545

(Received 10 October 1984 by P. Wachter)

Results of measurements of the electrical resistivity ρ between 0.04 and 1 K and the specific heat Cₚ between 0.06 and 1 K of annealed polycrystalline CeCu₆ are reported. ρ varies proportional to T² below 0.1 K but is linear in T above 0.6 K. The specific heat is proportional to T below 0.5 K and the electronic specific-heat parameter γ = 1.53 J/mole K².

Recent work reported by two different groups has shown that CeCu₆ has many of the properties believed to be characteristic of materials which are now often denoted as dense Kondo- or heavy-electron systems. The reported properties of this compound are remarkably similar to those of CeAl₃. Among them we mention the electrical resistivity which in both cases increases with decreasing temperature below room temperature, reaches a maximum below 50 K and then decreases at still lower temperatures down to 1 K and below. In specific-heat experiments, a strong increase of the Cₚ/T ratio is observed for both substances below 8 K, reaching a value of about 0.85 J/mole K² at 1.8 K with a still steep and negative slope at this temperature. Since it seemed quite natural to check for more similarities of these two materials at even lower temperatures, in this letter we report on measurements of the electrical resistivity ρ and the specific heat Cₚ of CeCu₆ below 1 K.

For these experiments, polycrystalline CeCu₆ was prepared by arc-melting the pure elements together in a water-cooled arc furnace under argon atmosphere. The sample was subsequently annealed for four days at 750°C. This annealing procedure had no apparent effect on the magnitude or temperature dependence of the specific heat above 1 K. It proved, however, to be of paramount importance for the low-temperature behaviour of the electrical resistivity. To illustrate this effect, we show ρ(T) measured on a small piece cut from the annealed sample between 1 and 300 K in Fig. 1. It is characteristic of previously published ρ(T) curves for polycrystalline material and, at liquid-helium temperatures, also lower resistivity values than those reported from experiments on single crystals are observed.

X-ray measurements on both annealed and unannealed material gave essentially the same pattern with line broadening at large angles, probably due in part to cold working on the sample when preparing the X-ray specimen. The results of our resistivity measurements below 1 K are shown in Fig. 2. With decreasing temperature, ρ first decreases linearly with T, amazingly extrapolating to zero resistivity at T = 0 K. Below 0.6 K, however, ρ(T) deviates from this behaviour and approaches a residual resistivity of 7.2 μΩcm at zero temperature. It is not possible to express ρ(T) as a simple power law in temperature below 0.6 K. It is only below 0.1 K that there is any suggestion of a T² dependence of the resistivity as it is, of course, expected for quasiparticle scattering in a Fermi liquid for temperatures well below the Fermi temperature T_F and was clearly observed in CeAl₃ below 0.3 K. In the mentioned limited temperature range, the coefficient of the T² term for our sample of
CeCu₆ is 111 µΩcm/K², roughly a factor of three larger than that observed in CeAl₃. Apart from a clearly higher residual resistivity in our case as compared to that observed in CeAl₃, we only have a weak case for a T² law of ρ(T) because the temperature interval for its approximate validity is obviously too narrow to come to a definite conclusion. It is, however, clear that in both cases of CeCu₆ and CeAl₃ the electrical resistivity is still varying considerably below 1 K, very atypical for ordinary metals and pointing to efficient scattering processes in that temperature range. As shown in Fig. 1, the peak resistivity of CeCu₆ at 13 K is about 100 µΩcm, considerably less than that of CeAl₃ at its peak temperature of 35 K. Interestingly, this reduction of the peak temperature for CeCu₆ as compared to that of CeAl₃ is approximately the same as that observed for the respective temperature intervals where a T² dependence of the electrical resistivity is established. The same factor of three is recognized in the ratio of the T² coefficients for ρ, the scaling between the two compounds being reversed in this case, however.

The specific-heat data obtained for temperatures less than 1 K are shown in Fig. 3. It may readily be seen that the large electronic specific-heat parameter γ suggested by earlier measurements at temperatures above 1.5 K is indeed borne out. The limiting value as T approaches 0 K is 1.53 J/mole K², very close to that reported previously for CeAl₃. It is also clear from Fig. 3 that the cₚ/T ratio is temperature dependent above 0.5 K, as it increases above the mentioned value for T > 0 K and, when taking into account the data published in ref. 2, must pass through a maximum in the vicinity of 1 K. A temperature dependence of this kind for cₚ/T has recently been reported for CeAl₃ with a peak of cₚ/T near 0.5 K. The existence of this peak, which had already been observed in earlier work has been interpreted in ref. 7 as evidence for a coherence effect in the electronic energy spectrum of a dense Kondo system. From our data this evidence is much less well developed in CeCu₆. Moreover, the scaling behaviour that may be recognized when comparing the electrical resistivities of CeCu₆ and CeAl₃ does not seem to be reflected in the low-temperature specific heats of the two compounds.

Taking all the presented data together, CeCu₆ seems to fit comfortably into the framework provided by current thinking of dense Kondo- or heavy-electron Ce-based systems. The lack of any phase transition, magnetic or superconducting, is another analogy with CeAl₃. However, the limiting Fermi-liquid behaviour appears to occur at lower temperatures for CeCu₆, at least as it is indicated by ρ(T). It might be of interest to investigate, how much of the qualitative differences in the properties of CeCu₆ and CeAl₃ may be ascribed to crystal-electric-field effects. In both compounds, the 4f electron J = 5/2 Hund's rule ground state of the Ce²⁺ ions is split into three doublets because of the symmetries of the respective crystal-lattice structures, hexagonal in the case of CeAl₃ and orthorhombic for CeCu₆. Differences in the separation of these energy levels might, in part, account for the differences observed in the ρ(T) data. Since the published specific-heat results and the apparent dependence of ρ(T) upon annealing in CeCu₆ rather contradict the support this conjecture, inelastic neutron-scattering experiments are clearly called for and the availability of single crystals will certainly greatly facilitate such measurements in comparison with CeAl₃, where still only polycrystalline material is available. The same holds for other important experiments such as investigations of possible anisotropies in the physical properties which may now be performed on CeCu₆, a system so much alike the prototype metallic compound CeAl₃, showing Fermi-liquid behaviour of its electronic subsystem at very low temperatures.

Acknowledgements - We wish to thank R.B. Roof for the X-ray measurements. Financial support from the Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung is gratefully acknowledged. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy.
References

1. Y. Onuki, Y. Shimizu, and R. Komatsubara, J. Phys. Soc. Jap. 53, 1210 (1984).
2. G.R. Stewart, Z. Fisk, and M.S. Wire, Phys. Rev. B 30, 482 (1984).
3. K.H.J. Buschow, H.J. van Daal, F.E. Maranzana, and P.B. van Aken, Phys. Rev. B 3, 1662 (1971).
4. K. Andres, J.E. Graebner, and H.R. Ott, Phys. Rev. Lett. 35, 1779 (1975).
5. H.R. Ott, D. Marti, and F. Hulliger, Solid State Commun. 49, 1129 (1984).
6. H.R. Ott, Proc. 17. Int. Conf. Low Temp. Phys., eds. U. Eckern, A. Schmid, W. Weber, and H. Wühl, (North Holland, Amsterdam 1984), in print.
7. C.D. Bredl, S. Horn, F. Steglich, B. Lüthi, and R.M. Martin, Phys. Rev. Lett. 52, 1982 (1984).
8. A. Benoit, A. Berton, J. Chaussy, J. F louquet, J.C. Lasjaunias, J. Odin, J. Palleau, J. Peyrard, and M. Ribault, Valence Fluctuations in Solids, eds. L.M. Falicov, W. Hanke, and M.B. Maple, (North Holland, Amsterdam 1981) p. 283.
9. see e.g., F. Steglich, Proc. 17. Int. Conf. Low Temp. Phys., eds. U. Eckern, A. Schmid, W. Weber, and H. Wühl, (North Holland, Amsterdam 1984), in print.
10. J.H.N. van Vucht and K.H.J. Buschow, J. Less Common Metals 10, 98 (1965).
11. D.T. Cromer, A.C. Larson, and R.B. Roof, Acta Crystallogr. 13, 913 (1960).
12. A.P. Murani, K. Knorr, and K.H.J. Buschow, Crystal-Field Effects in Metals and Alloys, ed. A. Furrer (Plenum, New York 1977) p. 268.