HIGHER TODA BRACKETS AND MASSEY PRODUCTS

HANS-JOACHIM BAUES, DAVID BLANC, AND SHILPA GONDHALI

Abstract. We provide a uniform definition of higher order Toda brackets in a general setting, covering the known cases of long Toda brackets for topological spaces and Massey products for differential graded algebras, among others.

Introduction

Toda brackets and Massey products have played an important role in homotopy theory ever since they were first defined in [Mas] and [To1, To2]: in applications, such as [Ad2, BJM, MP], and in a more theoretical vein, as in [Ad1, Ba3, He, Kri, Mar, Sa, SpI]. There are a number of variants (see, e.g., [Al, HKM, Mi, PS] and [Ba1, §3.6.4]), as well as higher order versions including [Kl, Kra, KM, Mau, Mo, P1, P2, Re, Sp2, W]. In recent years they have appeared in many other areas of mathematics, including symplectic geometry, representation theory, deformation theory, topological robotics, number theory, mathematical physics, and algebraic geometry (see [BT, BKS, FW, G, Kl, La, LS, R]).

Toda brackets were originally defined for diagrams of the form

\[(0.1)\quad S^n \xrightarrow{f} S^p \xrightarrow{g} S^k \xrightarrow{h} X,\]

with \(g \circ f\) and \(h \circ g\) nullhomotopic.

If we choose nullhomotopies \(F : g \circ f \sim 0\) and \(G : h \circ g \sim 0\), they fit into a diagram of cones as in Figure 0.2.

Date: March 10, 2015.

1991 Mathematics Subject Classification. Primary: 18G55; secondary: 55S20, 55S30, 55Q35, 18D20.

Key words and phrases. higher order homotopy operation, higher order cohomology operation, Toda bracket, Massey product, chain complex, enriched category, path object, monoidal model category.
This yields an element $\langle h, g, f \rangle$ in $[S^{n+1}, X]$, called the Toda bracket. The value we get depends on the choices of nullhomotopies F and G, so it is not uniquely determined. The Toda bracket is thus more properly a certain double coset of $h_{\#}\pi_{n+1}(S^k) + \Sigma f_{\#}\pi_{n+1}(X)$.

If we view $[h]$ as an element in π_*X, while $[g]$ is seen as a primary homotopy operation acting trivially on $[f]$ and $[h] \circ [g] = 0$ is a relation among primary operations, we can think of the Toda bracket as a secondary homotopy operation. Similarly, a diagram of the form

\[(0.3) \quad X \xrightarrow{f} K(G, n) \xrightarrow{g} K(G', p) \xrightarrow{h} K(G'', k)\]

with $g \circ f \sim 0 \sim h \circ g$ defines a secondary cohomology operation in the sense of [Ad2].

On the other hand, the Massey product in cohomology – defined whenever we have three classes $\alpha, \beta, \gamma \in H_*X$ with $\alpha \cdot \beta = 0 = \beta \cdot \gamma$ – is a different type of secondary cohomology operation which does not fit into this paradigm.

All three examples have higher order versions, though the precise definitions are not always self-evident or unique (cf. [W] and [Man, Kl]). Nevertheless, these higher order operations play an important role in homotopy theory – for instance, in enhancing our theoretical understanding of spectral sequences (cf. [BB]) and in providing a conceptual full invariant for homotopy types of spaces (see [Ta] and [BJT2]).

The main goal of this note is to explain that higher order Toda brackets and higher Massey products have a uniform description, covering all cases known to the authors (including both the homotopy and cohomology versions).

The setting for our general notion of higher Toda brackets is any category \mathcal{C} enriched in a suitable monoidal category \mathcal{M}. In fact, the minimal context in which higher Toda brackets can be defined is just an enrichment in a monoidal category equipped with a certain structure of “null cubes”, encoded by the existence of an augmented path space functor $PX \to X$ satisfying certain properties (abstracted from those enjoyed by the usual path fibration of topological spaces). We call such an \mathcal{M} a monoidal path category – see Section 1.

In this context we can define the notion of a higher order chain complex: that is, one in which the identity $\partial \partial = 0$ holds only up to a sequence of coherent homotopies (see Section 2). This suffices to allow us to define the values of the corresponding higher order Toda bracket (see Section 3, where higher Massey products are also discussed).

However, in order for these Toda brackets to enjoy the expected properties, such as homotopy invariance, \mathcal{M} must be also be a simplicial model category. In this case there is a model category structure on the category \mathcal{M}-\mathbf{Cat} of categories enriched in \mathcal{M}, due to Lurie, Berger and Moerdijk, and others, in which the weak equivalences are Dwyer-Kan equivalences (see §4.10). This is explained in Section 4, where we prove:

Theorem A. Higher Toda brackets are preserved under Dwyer-Kan equivalences. [See Theorem 4.21 below].

We also show that the usual higher Massey products in a differential graded algebra correspond to our definition (see Proposition 4.35).

In Section 5 we study the case of ordinary Toda brackets for chain complexes, and show their interpretation as secondary Ext-operations.
0.4. Notation. The category of sets will be denoted by \textbf{Set}, that of compactly generated topological spaces by \textbf{Top} (cf. [St], and compare [V]), and that of pointed compactly generated spaces by \textbf{Top}_*. If R is a commutative ring with unit, the category of R-modules will be denoted by \textbf{Mod}_R (though that of abelian groups will be denoted simply by \textbf{AbGp}). The category of non-negatively graded R-modules will be denoted by $\text{grMod}^\geq_0 R$, with objects $E_* = \{E_n\}_{n \geq 0}$, and so on. The category of \mathbb{Z}-graded chain complexes over Mod_R will be denoted by Ch_R, with objects A_*, B_*, and so on, where
\[A_* := (\ldots A_n \xrightarrow{\partial_n} A_{n-1} \xrightarrow{\partial_{n-1}} A_{n-2} \xrightarrow{\partial_{n-2}} A_{n-3} \ldots). \]
The category of nonnegatively graded chain complexes over Mod_R will be denoted by $\text{Ch}^\geq_0 R$. A chain map $f : A_* \to B_*$ inducing an isomorphism $f_* : H_n A_* \to H_n B_*$ for all n is called a quasi-isomorphism.

Finally, the category of simplicial sets will be denoted by \textbf{S}, and that of pointed simplicial sets by \textbf{S}_*.

0.5. Acknowledgements. We wish to thank Stefan Schwede for a helpful pointer on symmetric spectra.

1. Path functors in monoidal categories

Higher order homotopy operations in a pointed model category \mathcal{C}, such as \textbf{Top}_*, \textbf{S}_*, or \textbf{Ch}_R, are usually described in terms of higher order homotopies, which can be defined in turn in terms of an enrichment of \mathcal{C} in an appropriate monoidal model category \mathcal{M} (see, e.g., [BJT1]). We here abstract the minimal properties of such an \mathcal{M} needed for the construction of higher operations.

1.1. Definition. A monoidal path category is a functorially complete and cocomplete pointed monoidal category $\langle \mathcal{M}, \otimes, 1 \rangle$, equipped with a path endofunctor $P : \mathcal{M} \to \mathcal{M}$ and natural transformations $\theta^L : PX \otimes Y \to P(X \otimes Y)$, $\theta^R : X \otimes PY \to P(X \otimes Y)$.

We require that the following diagrams commute:

(a) Constant path combinations:

\begin{equation}
\begin{aligned}
P X \otimes Y & \xrightarrow{\theta^L} P(X \otimes Y) \\
X \otimes Y & \xrightarrow{= \ 	ext{Id}_{X \otimes Y}} X \otimes Y
\end{aligned}
\end{equation}

(b) Coalgebra structure:

\begin{equation}
\begin{aligned}
P (P X) & \xrightarrow{P(p_X)} P X \\
PX & \xrightarrow{p_X} X
\end{aligned}
\end{equation}
(c) Left and right constants:

\[
\begin{array}{ccc}
PX \otimes PY & \xrightarrow{\theta^R} & P(PX \otimes PY) \\
\downarrow & & \downarrow P \eta L \\
P(X \otimes PY) & \xrightarrow{P \eta R} & P^2(X \otimes Y)
\end{array}
\]

\[(1.4) \]

(d) From (1.4) we see that there are natural transformations

\[\theta^{(i,j)} : P^i X \otimes P^j Y \to P^{i+j}(X \otimes Y) \]

for any \(i, j \geq 0 \), defined

\[\theta^{(i,j)} := P^{i+j-1}(\theta^L) \circ \ldots \circ P^j(\theta^L) \circ P^j(\theta^R) \circ \ldots \circ \theta^R. \]

These are required to be associative, in the obvious sense.

(e) If we let \(P^n X \) denote the result of applying the functor \(P : \mathcal{M} \to \mathcal{M} \) to \(X \) \(n \) times (with \(P^0 := \text{Id}_X \)), we have \(n+1 \) different natural transformations

\[\partial^n_i : P^{n+1}X \to P^nX \quad (i = 0, \ldots, n), \]

\[(1.5) \]

\[\partial_i = \partial^n_i := P^i(p_{p-n-i}X). \]

The natural transformations \(\theta^{(i,j)} \) are required to satisfy the identities:

\[\partial^{n-1}_k \circ \theta^{(i,j)} = \begin{cases}
\theta^{(i-1,j)} \circ (\partial^{i-1}_k \otimes \text{Id}) & \text{if } 0 \leq k < i \\
\theta^{(i,j-1)} \circ (\text{Id} \otimes \partial^{j-1}_{k-i}) & \text{if } i \leq k < n
\end{cases} \]

for every \(0 \leq k < i + j = n \).

1.7. Remark. The commutativity of (1.3) implies that the natural transformations of (1.5) satisfy the usual simplicial identities

\[\partial^{n-1}_i \circ \partial^n_j = \partial^{n-1}_j \circ \partial^n_i \]

for all \(0 \leq i < j \leq n \).

1.9. Paths and cubes. The natural setting where such path categories arise is when a monoidal category \(\mathcal{M} \) is also simplicial, in the sense of II, §1. More specifically, we require the existence of an unpointed path functor \((-)^I : \mathcal{M} \to \mathcal{M} \) which behaves like a mapping space from the interval \([0,1] \), so we have natural transformations

(a) \(e^0, e^1 : X^I \to X \) (evaluation at the two endpoints),

(b) \(s : X \to X^I \) with \(e^0s = e^1s = \text{Id} \) (the constant path), and

(c) \(\tilde{\theta}^L : X^I \otimes Y \to (X \otimes Y)^I \) and \(\tilde{\theta}^R : X \otimes Y^I \to (X \otimes Y)^I \) (paths in a product).

These make the following diagrams commute:

\[(1.10) \]

\[X^I \otimes Y \xrightarrow{\tilde{\theta}^L} (X \otimes Y)^I \quad X \otimes Y^I \xrightarrow{\tilde{\theta}^R} (X \otimes Y)^I \]

\[X \otimes Y \xrightarrow{s \otimes \text{Id}} X \otimes Y \quad X \otimes Y \xrightarrow{\text{Id} \otimes s} X \otimes Y \]

\[\left[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
e^X \otimes \text{Id}_Y
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}\right] \quad \left[\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
e^X \otimes \text{Id}_Y
\end{array}
\end{array}
\end{array}
\end{array}\right]
\end{array} \]
for \(i = 0, 1 \), as well as

\[
\begin{array}{ccc}
X^I & \xrightarrow{(e_X)^I} & X^I \\
\downarrow & & \downarrow \\
X & \xrightarrow{e_X} & X
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
X^I \otimes Y^I & \xrightarrow{\tilde{\partial}^R} & (X^I \otimes Y)^I \\
\downarrow & & \downarrow \\
(X \otimes Y^I)^I & \xrightarrow{(\tilde{\partial}_2)^I} & (X \otimes Y)^{I^2}
\end{array}
\tag{1.11}
\]

for \(i, j \in \{0, 1\} \).

We may then define the required (pointed) path functor \(P : M \to M \) by the functorial pullback diagram:

\[
\begin{array}{ccc}
PX & \xrightarrow{PB} & X^I \\
\downarrow & & \downarrow \theta_0 \\
* & \equiv & X^0
\end{array}
\tag{1.12}
\]

The commutativity of the right hand square in (1.11) allows us to define either composite to be the natural transformation \(\tilde{\theta}^{(1,1)} : X^I \otimes Y^I \to (X \otimes Y)^{I^2} \).

We see that \(\tilde{\partial}^L \) induces a natural transformation \(\theta^L : PX \otimes Y \to P(X \otimes Y) \), and similarly \(\theta^R : X \otimes PY \to P(X \otimes Y) \), making (1.2) commute.

Moreover, from (1.10) we see that (1.4) commutes, and that the natural transformations \(\theta^{(i,j)} \) are associative and satisfy (1.6).

1.13. Example. The motivating example is provided by \(M = \text{Top}_* \), with the monoidal structure given by the smash product \(\otimes := \land \), and \(X^I := \text{map}_*(I, X) \) the mapping space out of the interval \(I := \Delta[1]_+ \). Thus \(PX \) is the usual pointed path space. Here \(\text{map}_*(X, Y) \) denotes the set \(\text{Hom}_{\text{Top}_*}(X, Y) \) equipped with the compact-open topology.

1.14. Example. Similarly for \(S_* \), again with the smash product \(\otimes := \land \) and \(X^I := \text{map}_*(\Delta[1]_+, X) \), where \(\text{map}_*(X, Y) \in S_* \) denotes the simplicial mapping space with \(\text{map}_*(X, Y)_n := \text{Hom}_*(X \times \Delta[n]_+, Y) \).

When \(X \) is a Kan complex, we can use Kan’s model for \(PX \), where \((PX)_n := \text{Ker}(d_1 d_2 \ldots d_{n+1} : X_{n+1} \to X_0) \), and \(p_X : PX \to X \) is \(d_0^n \) in simplicial dimension \(i \).

1.15. Example. Another variant is provided by a suitable category \(Sp \) of spectra with strictly associative smash product \(\land \), such as the \(S \)-modules of [EKMM], the symmetric spectra of [HSS], and the orthogonal spectra of [MMSS]. One again has function spectra \(\text{map}_{Sp}(X, Y) \), which can be used to define \(X^I \) and \(PX \). The unit is the sphere spectrum \(S^0 \).

1.16. Example. For chain complexes of \(R \)-modules we have a monoidal structure with the tensor product \((A \otimes B)_n := \bigoplus_{i+j=n} A_i \otimes B_j \).

Recall that the function complex \(\text{Hom}(A_*, B_*) \) is given by

\[
\text{Hom}(A_*, B_*) := \prod_{i \in \mathbb{Z}} \text{Hom}(A_i, B_{i+n})
\tag{1.17}
\]

with \(\partial_n((f_i)_{i \in \mathbb{Z}}) := (\partial^B_{i+n} f_i - (-1)^n f_{i-1} \partial^A_i)_{i \in \mathbb{Z}} \) for \((f_i : A_i \to B_{i+n})_{i \in \mathbb{Z}} \).
Thus for $\mathcal{M} = \text{Ch}_R$ we may set $X^I := \text{Hom}(C_*(\Delta[1]; R), X)$, and see that PA_* has
\begin{equation}
(1.18) \quad (PA)_n = A_n \oplus A_{n+1} \quad \text{with} \quad \partial(a, a') = (\partial a, \partial a' + (-1)^{n+1}a),
\end{equation}
and $p_\mathcal{A}_*$ the projection.

1.19. **Cores and elements.** In any monoidal path category $\langle \mathcal{M}, \otimes, 1, (-)^I \rangle$ and for any $X \in \mathcal{M}$, we can think of $\text{Hom}_{\mathcal{M}}(1, X)$ as the ‘underlying set’ of X, and think of a map $f : 1 \to X$ in \mathcal{M} as an ‘element’ of X.

More generally, we may have a suitable monoidal subcategory \mathcal{I} of \mathcal{M}, which we call a core, and define a generalized element of X to be any map $f : \alpha \to X$ in \mathcal{M} with $\alpha \in \mathcal{I}$.

1.20. **Example.** We may always choose $\mathcal{I} = \{1\}$ to consist of the unit of \mathcal{M} alone. However, in some cases other natural choices are possible:

(a) In the three examples of §1.13, §1.14 and §1.15 we can let $\mathcal{I}_S := \{S^n\}_{n=0}^\infty$ consist of all (non-negative dimensional) spheres – this is evidently closed under $\otimes = \wedge$.

(b) In the category of chain complexes over a ring R (§1.16), we let $\mathcal{I}_R := \{\tilde{M}(R, n)_*\}_{n \in \mathbb{Z}}$, where $\tilde{M}(R, n)_*$ is the Moore chain complex with $\tilde{M}(R, n)_i = R$ for $i = n$, and 0 otherwise. Again we see that $\tilde{M}(R, p)_* \otimes \tilde{M}(R, q)_* = \tilde{M}(R, p + q)_*$, so \mathcal{I}_R is indeed a monoidal subcategory of $(\text{Ch}_R, \otimes, \tilde{M}(R, 0)_*)$.

We see that a generalized element in a chain complex A_* is now a map $f : \tilde{M}(R, n)_* \to A_*$ in Ch_R – that is, an n-cycle in A_*.

(c) Other examples are also possible – for example, if $\mathcal{I}' := \{\mathcal{M}(\mathbb{Z}/p, n)\}_{n=1}^\infty$ is the collection of mod p Moore spaces, representing mod p homotopy groups (see [N]), then it is not itself a monoidal subcategory of $(\text{Top}_*, \wedge, S^0)$, since it is not closed under smash products. However, when p is odd, the collection of finite wedges of such Moore spaces is monoidal, by [N, Corollary 6.6].

2. **Higher order chain complexes**

The structure defined in the previous section suffices to define higher order chain complexes, as in [BB]:

2.1. **Categories enriched in monoidal path categories.** Let \mathcal{C} be a category enriched in a monoidal path category $\langle \mathcal{M}, \otimes, 1, P \rangle$, so that for any $a, b \in \text{Obj } \mathcal{C}$ we have a mapping object $\text{map}_\mathcal{C}(a, b)$ in \mathcal{M}, and for any $a, b, c \in \text{Obj } \mathcal{C}$ we have a composition map
\[\mu = \mu_{a,b,c} : \text{map}_\mathcal{C}(b, c) \otimes \text{map}_\mathcal{C}(a, b) \to \text{map}_\mathcal{C}(a, c) \]
(written in the usual order for a composite), satisfying the standard associativity rules.

As in §1.19 we can think of a morphism $f : 1 \to \text{map}_\mathcal{C}(a, b)$ in \mathcal{M} as an ‘element’ of $\text{map}_\mathcal{C}(a, b)$, or simply a map $f : a \to b$. In particular, we have ‘identity maps’ Id_a in $\text{map}_\mathcal{C}(a, a)$ for each $a \in \text{Obj } \mathcal{C}$, satisfying the usual unit rules.

In addition, a morphism $F : 1 \to P\text{map}_\mathcal{C}(a, b)$ is called a nullhomotopy of $f := \Phi \text{map}_\mathcal{C}(a, b) \circ F$. Higher order nullhomotopies are defined by maps $F : 1 \to P^n\text{map}_\mathcal{C}(a, b)$.

The functoriality of P implies that we can also compose (higher order) nullhomotopies by means of the composite of
\[
P^{i}\text{map}_{e}(b,c) \otimes P^{j}\text{map}_{e}(a,b) \xrightarrow{\partial^{(i,j)}} P^{i+j}\text{map}_{e}(b,c) \otimes \text{map}_{e}(a,b) \xrightarrow{\mu^{i+j}} P^{i+j}\text{map}_{e}(a,c),
\]
which we denote by $\mu^{i,j} : P^{i}\text{map}_{e}(b,c) \otimes P^{j}\text{map}_{e}(a,b) \to P^{i+j}\text{map}_{e}(a,c)$. Again, the maps $\mu^{(i,j)}$ are associative.

For a general core $\mathcal{I} \subseteq \mathcal{M}$ (cf. [1.19]), we have generalized elements given by maps $f : \alpha \to \text{map}_{e}(a,b)$ for $\alpha \in \mathcal{I}$. We use the fact that \mathcal{I} is a monoidal subcategory to define the composite of $f : \alpha \to \text{map}_{e}(a,b)$ with $g : \beta \to \text{map}_{e}(b,c)$ ($\beta \in \mathcal{I}$) to be the composite in \mathcal{M} of
\[
\beta \otimes \alpha \xrightarrow{\otimes_{\mathcal{I}}} \text{map}_{e}(b,c) \otimes \text{map}_{e}(a,b) \xrightarrow{\mu_{i,j}} \text{map}_{e}(a,c),
\]
and similarly for generalized (higher order) nullhomotopies.

From [1.6] we see that:
\[
\partial^{n-1}_{k} \circ \mu^{i,j} \equiv \begin{cases}
\mu^{i-1,j} \circ (\partial^{n-1}_{k} \otimes \text{Id}) & \text{if } 0 \leq k < i \\
\mu^{i,j-1} \circ (\text{Id} \otimes \partial^{n-1}_{k-i}) & \text{if } i \leq k < i + j
\end{cases}
\]
for every $0 \leq k < i + j = n$.

2.5. Remark. If the path structure P comes from an unpointed path structure $(-)^I$ as in [1.9] a morphism $F : 1 \to \text{map}_{e}(a,b)^I$ in \mathcal{M} is called a homotopy $F : f_0 \sim f_1$ between $f_0 := e^0_0 \text{map}_{e} \circ F$ and $f_1 := e^1_1 \text{map}_{e} \circ F$.

Higher order homotopies are defined by maps $F : 1 \to \text{map}_{e}^{I^I}(a,b)$, and the functoriality of $(-)^I$ implies that we can compose (higher order) homotopies by means of the composite of
\[
\text{map}_{e}(b,c)^{I^I} \otimes \text{map}_{e}(a,b)^{I^I} \xrightarrow{\otimes_{\mathcal{I}}} \text{map}_{e}(b,c)^{I^I} \otimes \text{map}_{e}(a,b)^{I^I} \xrightarrow{\mu^{I^I}} \text{map}_{e}(a,c)^{I^I},
\]
which we denote by $\mu^{i,j} : \text{map}_{e}(b,c)^{I^I} \otimes \text{map}_{e}(a,b)^{I^I} \to (\text{map}_{e}(a,c))^{I^I}$. These induce the maps μ^{I^I}, as in [1.9].

2.6. Definition. Assume given a monoidal path category $(\mathcal{M}, \otimes, 1, P)$ with core \mathcal{I} in \mathcal{M} (cf. [1.19]), and choose an ordered set $\Gamma = (\gamma_1, \ldots, \gamma_N)$ of N core elements.

An n-th order chain complex $\mathcal{K} = \langle K, \{F^{k}_{(i)}\}_{i=0}^{N} \rangle_{k=0}^{n}$ over \mathcal{M} (for Γ) of length $N \geq n + 2$ consists of:
(a) A category K enriched over \mathcal{M}, with $\text{Obj}(K) = \{a_0, \ldots, a_N\}$ and
\[
\text{map}_{K}(a_i, a_j) = \begin{cases}
1 & \text{if } i = j \\
\ast & \text{if } i < j
\end{cases}
\]
K will be called the underlying category of the n-th order chain complex \mathcal{K}.
(b) For each $0 \leq k \leq N$ and $i = k + 1, \ldots, N$, generalized elements
\[
F^{k}_{(i)} : \gamma_{i-k} \otimes \ldots \otimes \gamma_{i} \to P^{k}\text{map}_{K}(a_i, a_{i-k-1})
\]
such that
\[
\partial_{t} \circ F^{k}_{(i)} = \mu^{k-t-1,t}(F^{k-t-1}_{(i-t-1)} \otimes F^{t}_{(i)})
\]
for all $0 \leq t < k$.

When \(N = n + 2 \), we simply call \(\mathcal{K} \) an \(n \)-th order chain complex.

2.9. Remark. Typically we are given a fixed category \(\mathcal{C} \) enriched in a monoidal path category \((\mathcal{M}, \otimes, 1, P) \), and the underlying category \(\mathcal{K} \) for a higher order chain complex \(\mathcal{K} \) will simply be a finite subcategory of \(\mathcal{C} \) (usually not full, because of condition (2.7)). Such a \(\mathcal{K} \) will be called an \(n \)-th order chain complex in \(\mathcal{C} \).

2.10. Definition. Given an \(n \)-th order chain complex \(\mathcal{K} = \langle K, \{\{F^k_{(i)}\}_{i=k+1}^N\}_{k=0}^n \rangle \) over \(\mathcal{M} \) (for \(\Gamma \)) of length \(N \), and an enriched functor \(\phi : K \to L \) over \(\mathcal{M} \) (which we may assume to be the identity on objects, with \(L \) also satisfying (2.7)), the induced \(n \)-th order chain complex \(\mathcal{L} = \langle L, \{\{G^k_{(i)}\}_{i=k+1}^N\}_{k=0}^n \rangle \) over \(\mathcal{M} \) (for the same \(\Gamma \)) is defined by setting

\[
G^k_{(i)} := \phi(F^k_{(i)}): \gamma_{i-k} \otimes \ldots \otimes \gamma_i \to P^k \text{map}_{L}(a_i, a_{i-k-1})
\]

for all \(0 \leq k \leq n \) and \(k < i \leq N \).

2.11. Remark. Note that we do not assume that we have \(n \)-th order nullhomotopies \(F^r_{(i)} \in P^r \text{map}_K(a_i, a_{i-r-1}) \) (for \(i > n \)) satisfying (2.8).

However, from (2.8) and (2.9) we see that:

\[
\partial_s \circ \partial_t \circ F^k_{(i)} = \mu^{k-t-2,1}(\mu^{k-s-t-2,s}(F^{k-s-t-2}_{(i-s-t-2)} \otimes F^s_{(i-t-1)}) \otimes F^t_{(i)})
\]

if \(s + t < k - 1 \), and

\[
\partial_s \circ \partial_t \circ F^k_{(i)} = \mu^{k-t-1,1}(\mu^{k-s-t-2,s}(F^{k-s-t-2}_{(i-s-t-2)} \otimes F^s_{(i-t-1)}))
\]

if \(k - 1 \leq s + t \). Thus from the simplicial identity \(\partial_s \circ \partial_t = \partial_{t-1} \circ \partial_s \) for \(0 \leq s < t \) we deduce that the maps \(\{F^k_{(i)}\} \) must satisfy:

\[
(2.12)
\]

\[
\mu(F^r_{(i-s-t-2)} \otimes F^s_{(i-t-1)} \otimes F^t_{(i)}) \begin{cases}
\mu(F^r_{(i-s-t-3)} \otimes F^s_{(i-t-1)} \otimes F^t_{(i)}) & \text{if } s < t \\
\mu(F^r_{(i-r-s-2)} \otimes F^s_{(i-r-1)} \otimes F^t_{(i)}) & \text{if } s \geq r \text{ and } t = 0 \\
\mu(F^r_{(i-r-3)} \otimes F^s_{(i-t-1)} \otimes F^t_{(i)}) & \text{if } s \geq r \text{ and } t > 0
\end{cases}
\]

where we have simplified the notation using the associativity of \(\mu \).

2.13. A cubical description. Higher order chain complexes were originally defined in [13] §4 in terms of a cubical enrichment, which is well suited to describing higher homotopies. In general, for an \((n-1) \)-st order chain complex

\[
(2.14)
\]

we may describe the choices of higher homotopies \(F^k_{(i)} \) succinctly by arranging them as the collection of all the cubical faces in the boundary of \(I^{n+2} \) containing a fixed vertex (which is indexed by \(F^0_{(1)} \otimes F^0_{(2)} \otimes \ldots F^0_{(n)} \otimes F^0_{(n+1)} \)).

The \(k \)-faces are indexed by

\[
(2.15)
F^{k_1}_{(i_1)} \otimes \ldots \otimes F^{k_r}_{(i_r)} \in P^{k_1} \text{map}_K(a_{i_1}, a_0) \otimes \ldots \otimes P^{k_r} \text{map}_K(a_{i_r}, a_{n-k_r})
\]

with \(\sum_{j=1}^r k_j = k \), \(i_j = \sum_{t=1}^{j-1} (k_t + 1) \), and \(r = n - k + 1 \) (so \(i_1 = k_1 + 1 \) and \(i_r = n + 1 \)).

By intersecting the corner of \(\partial I^{n+2} \) with a transverse hyperplane in \(\mathbb{R}^{n+1} \) we obtain an \((n+1) \)-simplex \(\sigma \), whose \(n \)-faces correspond to the \((n+1) \)-facets of the corner, and so on. More precisely, the cone on this simplex (with cone point the chosen vertex \(v \) of \(I^{n+2} \)) is homeomorphic to \(I^{n+2} \), with each \((n+1) \)-face of
the cone obtained from an \((n+1)\)-facet \(\tau\) of the corner by identifying the \(n\)-corner opposite \(v\) in \(\tau\) to a single \(n\)-simplex in the base of the cone. See Figure 2.16.

This explains why the maps \(\partial_i^n : P^{n+1}X \to P^nX\) of §11 which relate the various \(\otimes\)-composites appearing as facets of \(\partial I^{n+1}\), satisfy simplicial, rather than cubical, identities.

2.17. Example. Consider a second order chain complex

\[
\begin{array}{ccccccccc}
& \ast & & \ast & & \ast & & \ast & & \ast \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
& & & & & & & & & \\
\end{array}
\]

in \(\text{Top}_\ast\), say, in which we have \(n+1 = 4\) composable maps: \(F_{(1)}^0 = f\), \(F_{(2)}^0 = g\), and so on, with all adjacent composites nullhomotopic.

In this case we may choose nullhomotopies as indicated, namely: \(F_{(2)}^1 = f \circ g\) in \(\text{map}_\ast(c,e)^{I_1}\) (with \(e^0(f \circ g) = \ast\) and \(e^1(f \circ g) = f g\)), \(F_{(3)}^1 = g \circ h\) in \(\text{map}_\ast(b,d)^{I_1}\), and \(F_{(4)}^1 = h \circ k\) in \(\text{map}_\ast(a,c)^{I_1}\) — so that in fact \(f \circ g\) is in the pointed path space \(P\text{map}_\ast(c,e)\). Similarly, \(F_{(4)}^2 = f \circ g \circ h\) is a homotopy of nullhomotopies between \(h^*(f \circ g)\) and \(f^*(g \circ h)\).

The more suggestive notation \(f \circ g\), and so on, is motivated by the cubical Boardman-Vogt \(W\)-construction of [BV, §3], as explained in [BB, §5]: we think a \(k\)-th order homotopy as a \(k\)-cube in the appropriate mapping spaces.

If we apply the usual composition map

\[\mu : \text{map}_\ast(c,d) \otimes \text{map}_\ast(a,c)^{I_1} \to \text{map}_\ast(a,d)^{I_1}\]
to \(g \otimes h \circ k \), we obtain a nullhomotopy of \(ghk \), and similarly for \(g \circ h \otimes k \) in \(\text{map}_s(b, d)^1 \otimes \text{map}_s(a, b) \). Thus we may ask if these two nullhomotopies are themselves homotopic (relative to \(ghk \)): if so, we have a 2-cube \(g \circ h \otimes k \) in \(\text{map}_s(a, d)^1 \), which in fact lies in \(P^2 \text{map}_s(a, d) \). The “formal” post-composition with \(f \in \text{map}_s(d, e) \) yields \(f \otimes g \circ h \otimes k \) in \(\text{map}_s(d, e) \otimes P^2 \text{map}_s(a, d) \). Together with the other two formal composites \(f \circ g \circ h \otimes k \) in \(P^2 \text{map}_s(b, e) \otimes \text{map}_s(a, b) \) and \(f \circ g \otimes h \circ k \) in \(\text{map}_s(c, e) \otimes \text{map}_s(a, e) \), it fits into the corner of the 3-cube described in Figure 2.19 (where we use both notations \(F^2_{(2)} = f \circ g \), and so on, to label facets).

![Figure 2.19. The cubical corner](image)

All vertices but the central one represent the zero map, and the dotted edges represent the trivial nullhomotopy of the zero map (and similarly for the invisible facets of the cube, representing the trivial second-order homotopy of the trivial nullhomotopy).

2.20. Remark

The cubical formalism may be used to describe the iterated path complex \(P^n \mathbf{A}_\ast \) in the category of chain complexes (see 1.16):

We may use the conventions of 2.19 to identify the \(k \)-faces of the corner of an \(n \)-cube \(I^n \) (adjacent to a fixed vertex \(v \)), for \(0 \leq k \leq n \), with the \((k-1)\)-dimensional faces \(\sigma^k_{(i)} \) of the standard \((n-1)\)-simplex \(\Delta[n-1] \) for \(0 \leq i \leq \binom{n}{k} - 1 \) (see Figure 2.19). Thus \(I^n \) itself is labelled \(\sigma^0_{(0)} \) (corresponding to \(\Delta[n-1] \)), with the \(n \) \((n-1)\)-facets of \(I^n \) adjacent to \(v \) labelled \(\sigma^{n-1}_{(0)} = d_0 \sigma^0_{(0)} \), \(\sigma^{n-1}_{(i)} = d_i \sigma^0_{(0)} \), and so on. The vertex \(v \) is labelled \(\sigma^0_{(0)} \) (not corresponding to any real face of \(\Delta[n-1] \)).

Then

\[
(P^n \mathbf{A})_j = \bigoplus_{0 \leq k \leq n} \bigoplus_{0 \leq i < \binom{n}{k}} A^{|\sigma^k_{(i)}|}_{j+k},
\]

with the differential \(\partial^{P^n \mathbf{A}} : (P^n \mathbf{A})_j \to (P^n \mathbf{A})_{j-1} \) sending \(a \in A^{|\sigma^k_{(i)}|}_{j+k} \) to \(\partial^A(a) \) in the summand \(A^{|\sigma^k_{(i)}|}_{j+k-1} \) of \((P^n \mathbf{A})_{j-1}\), and to \((-1)^{n+k+i}a\) in the summand \(A^{|d_i \sigma^k_{(i)}|}_{j+k-1} \).

The structure maps \(\partial^n : P^n \mathbf{A}_\ast \to P^{n-1} \mathbf{A}_\ast \) are given by the projections onto the summands labelled by the \(i \)-th simplicial facet of \(\Delta[n] \) and its simplicial faces, for \(0 \leq i \leq n-1 \).
2.22. Example. The double path complex \(P^2A_* \) is given by
\[
(P^2A)_j = A_j \oplus A_{j+1} \oplus A_{j+1} \oplus A_{j+2}
\]
with
\[
\partial(x, a, a', y) = (\partial x, \partial a + (-1)^{j+1} x, \partial a' + (-1)^{j+1} x, \partial y + (-1)^j (a - a')).
\]

2.25. Example. Similarly, \((P^3A)_j \) is given by
\[
A_j[\sigma^0_0] \oplus A_{j+1}[\sigma^1_0] \oplus A_{j+1}[\sigma^1_1] \oplus A_{j+2}[\sigma^2_0] \oplus A_{j+2}[\sigma^2_1] \oplus A_{j+3}[\sigma^3_0]
\]
and
\[
\partial(a, b_0, b_1, b_2, c_0, c_1, c_2, d) = (\partial a, \partial b_0 - \tau x, \partial b_1 - \tau x, \partial b_2 - \tau x, \\
\partial c_0 + \tau (b_1 - b_0), \partial c_1 + \tau (b_2 - b_1), \partial c_2 + \tau (b_2 - b_1), \partial d - \tau (c_2 - c_1 + c_1))
\]
for \(\tau = (-1)^j \).

3. Higher Toda brackets

We now show how one may define the higher Toda bracket corresponding to a higher order chain complex. First, we need to define the object housing it:

3.1. Definition. In any monoidal path category \(\langle M, \otimes, 1, (-)^I \rangle \) we define the (modified) \(n \)-fold loop functor \(\Omega^n : M \to M \) to be the limit:
\[
\Omega^n X := \lim_{1 \leq k \leq n} P^k X
\]
where the limit is taken all the natural maps \(\partial^k : P^k X \to P^{k-1} X \) of \(\|1.1\| \). By \(\|2.13\| \) we may think of this as a diagram indexed by the dual of the standard \(n \)-simplex.

The simplicial identities \(\|1.8\| \) imply that there is a natural map
\[
\sigma^X_n : P^{n+1} X \to \Omega^n X,
\]
which composes with the structure maps \(\pi_X : \Omega^n X \to P^n X \) for the limit to yield the face maps \(\partial_i : P^{n+1}X \to P^n X \) \((i = 0, \ldots, n) \), since \(\Omega^n X \) is the \(n \)-th matching object for the restricted augmented simplicial object \(P^\bullet X \) (cf. \[H1 \], \|16.3.7\|).

For \(n = 0 \) we set \(\Omega^0 X := X \).

3.4. Example. By \(\|2.13\| \) we may think of \(\|3.2\| \) as the limit of a diagram indexed by the dual of the standard \(n \)-simplex. Thus \(\Omega^1 X \) is the pullback in:
\[
\begin{array}{ccc}
\tilde{\Omega}^1 X & \to & P^X \\
\downarrow & & \downarrow \pi_X \\
PX & \to & X,
\end{array}
\]

\[
\text{PB}
\]
3.7. Definition. Let \mathcal{K} be an $(n - 1)$-st order chain complex (of length $n + 1$) enriched in a monoidal path category $\langle \mathcal{M}, \otimes, 1, (-)^I \rangle$ (for a set $\Gamma = (\gamma_1, \ldots, \gamma_{n+1})$ of core elements), as in \(\ref{2.6}\). If we apply the iterated composition map to each k-face of the form \(\ref{2.15}\), we obtain an ‘element’

\[
\mu(F^{k_1}_{(i_1)} \otimes \ldots \otimes F^{k_r}_{(i_k)}) : \gamma_1 \otimes \ldots \gamma_{n+1} \to P^k \text{map}_K(a_{n+1}, a_0)
\]

(3.8) (using the associativity of μ).

From \(\ref{2.8}\) and \(\ref{2.4}\) we see that these elements \(\ref{3.8}\) are compatible under the face maps $\partial_i : P^k \text{map}_K(a_{n+1}, a_0) \to P^{k-1} \text{map}_K(a_{n+1}, a_0)$, so that they fit together to define an element

\[
\langle \mathcal{K} \rangle : \gamma_1 \otimes \ldots \gamma_{n+1} \to \tilde{\Omega}^{n-1} \text{map}_K(a_{n+1}, a_0)
\]

(3.9) which we call the value of the n-th order Toda bracket associated to the chain complex \mathcal{K}.

If $\langle \mathcal{K} \rangle$ lifts along the map $\tilde{\sigma}^{-1}_X : P^n X \to \tilde{\Omega}^{n-1} X$ of \(\ref{3.3}\), we say that this value of the Toda bracket vanishes.

3.10. Remark. Given an $(n - 1)$-st order chain complex $\mathcal{K} = \langle K, \{\{F^k_{(i)}\}_{i=k+1}^{n+1}\}_{k=0}^{n-1} \rangle$ over \mathcal{M} (for Γ), any enriched functor $\phi : K \to L$ over \mathcal{M} as in \(\ref{2.10}\) takes $\langle \mathcal{K} \rangle$ to

\[
\langle \mathcal{L} \rangle : \gamma_1 \otimes \ldots \gamma_{n+1} \to \tilde{\Omega}^{n-1} \text{map}_L(a_{n+1}, a_0)
\]

where \mathcal{L} is the $(n - 1)$-st order chain complex induced by ϕ, by functoriality of the limits in \mathcal{M}.

3.11. Massey products. Massey products (and their higher order versions) also fit into our setting, although they cannot be defined as ordinary Toda brackets in a model category. This is because a (unital associative) differential graded algebra \mathbf{A} over a commutative ground ring R can be thought of as a category \mathcal{C} with a single object ξ enriched in $\langle \text{Ch}_R, \otimes, R, \text{M}(R, 0)_* \rangle$, with $\text{Hom}_c(\xi, \xi) := \mathbf{A}$.

In this context we choose the core of Ch_R to be \mathcal{I}_R as in \(\ref{1.20}\)(b). Thus an $(n - 1)$-st order chain complex in \mathbf{A} consists of:

(a) The sequence of objects – necessarily $a_i = \xi$ for all i.

(b) A sequence of generalized maps $F^0_{(i)} : \tilde{\text{M}}(R, m_i)_* \to \text{Hom}_c(\xi, \xi)$ for $i = 1, \ldots, n + 1$, which may be identified with an m_i-cycle $H^0_i \in \mathbb{Z}_{m_i} \mathbf{A}$ (see \(\ref{1.20}\)(b)).
(c) A sequence of generalized nullhomotopies $F^1_{(i)} \in P \mathbf{A}_*$, $(i = 2, \ldots, n + 1)$, with $p_{\mathbf{A}_*}(F^1_{(i)}) = \mu(f_{i-1} \otimes f_i)$. From the description in §1.16 we see that $F^1_{(i)}$ is completely determined by an element $H^1_{(i)} \in A_{m_i+m_i-1+1}$ with $d(H^1_{(i)}) = H^0_{i-1} \cdot H^0_{i}$ (where d is the differential and \cdot is the multiplication in \mathbf{A}_*).

(d) From (2.22) we see that a ‘second-order nullhomotopy’ $F^2_{(i)} \in P^2 \mathbf{A}_*$ $(i = 3, \ldots, n+1)$, which is a $(j+2)$-cycle for $j := m_i+m_i-1+m_{i-2}$, is determined uniquely by the element $H^2_j \in A_j$ (the last summand in (2.23)). From the last term in (2.24) we see that $F^2_{(i)}$ being a cycle means that

$$d(H^2_j) = (-1)^{j+1} (H^0_{i-2} \cdot H^1_i - H^1_{i-1} \cdot H^0_i).$$

(e) In general, for each $1 \leq k < n$ and $i = k+1, \ldots, n+1$, we have a (generalized) $F^k_{(i)} \in P^k \mathbf{A}_*$ which is a $(j+k)$-cycle for $j := \sum_{t=i-k}^t m_t$, with

$$\partial_t \circ F^k_{(i)} = F^{k-t-1}_{(i-t-1)} \cdot F^t_{(i)};$$

and from the description in (2.20) we see that again $F^k_{(i)}$ is completely determined by the component H^k_i in the summand A_{j+k}, with

$$d(H^k_j) = (-1)^{k+j+1} \sum_{t=0}^{k-1} (-1)^t H^t_{i-k+t} \cdot H^{k-t-1}_i.$$

Thus by Definition 3.7 we see that the value of the $(n+1)$-st order Toda bracket associated to this $(n-1)$-st order chain complex in \mathbf{A}_* is the element in $\mathbf{\Omega}^{n-1} \mathbf{A}_* = \lim_{1 \leq k < n} P^k \mathbf{A}_*$ determined by the coherent choice of elements

$$H^t_{i-k+t} \cdot H^{n-t} \in A_{j+n} \quad \text{for} \quad t = 1, \ldots, n,$$

where $j := \sum_{t=1}^n m_t$.

4. Higher Toda Brackets in Model Categories

In order to define the values of higher Toda brackets, all we need is a category enriched in a monoidal path category \mathcal{M}. However, in applications we want to use such Toda brackets, either as obstructions to rectifying diagrams, or as invariants used in computations (e.g., of differentials in spectral sequence). For this we need to make an additional

4.1. Definition. A path model category is a pointed monoidal model category $(\mathcal{M}, \otimes, 1)$ in the sense of [Ho] Ch. 4 which satisfies the conditions of either of [BM] Theorem 1.9, Theorem 1.10, and which is also a simplicial model category as in [Q], II, §2, equipped with a core \mathcal{I} (cf. [L1.19]) consisting of cofibrant objects, and a natural transformation

$$\zeta_{X,Y,K} : X^K \otimes Y^K \rightarrow (X \otimes Y)^K$$

(natural in $X, Y \in \mathcal{M}$ and $K \in \mathbb{S}$).

4.3. Remark. By [Ho] Proposition 4.2.19, a path model category actually has a \mathbb{S}_*-model category structure – that is, we have functors $(-)^K : \mathcal{M} \rightarrow \mathcal{M}$ and $(-) \otimes K : \mathcal{M} \rightarrow \mathcal{M}$ for every pointed simplicial set $K \in \mathbb{S}_*$, satisfying the usual axioms.
4.4. Examples. In practice we shall be interested only in the following examples:

(a) The monoidal structure on Top is cartesian, so we actually have a natural homeomorphism $\tilde{\zeta} : X^K \times Y^K \cong (X \times Y)^K$. It is readily verified that in the pointed version $(\text{Top}_s, \wedge, S^0)$ of $(\text{Top}_s, \wedge, S^0)$ the map $\tilde{\zeta}$ induces $\zeta : X^K \wedge Y^K \to (X \wedge Y)^K$.

(b) The monoidal structure on S is also cartesian, so in the pointed version (S_s, \wedge, S^0) of $(\text{Top}_s, \wedge, S^0)$ we also have an induced map as in (4.2).

(c) If we use symmetric spectra as our model for Sp (cf. [11.15]) we see that the spectrum X^K is defined levelwise, so we have (4.2) as for Top_s.

(d) In the category $\langle \text{Ch}_R, \otimes, \mathbf{M}(R, 0)_s \rangle$ of chain complexes of R-modules ([11.16]), the monoidal structure is not cartesian, but the simplicial structure is defined by setting $A_s^K := \text{Hom}(C_sK, A_s)$ (where C_sK is the simplicial chain complex of $K \in S$). The natural transformation (4.2) is induced by the diagonal $\Delta : K \to K \times K$ in S.

Note that all of these satisfy the hypotheses of one of [BM] Theorem 1.9, Theorem 1.10, by [BM] §1.8 and [LM] Proposition A.3.2.4-A.3.2.24, so they are in fact path model categories.

4.5. Remark. In this case the simplicial structure defines the functor $(-)^I : M \to M$, with $X^I := X^\Delta[1]$ (cf. [Q] II, §1], and $PX \hookrightarrow X^\Delta[1]$ is defined by the pullback (1.12). We can therefore identify P^kX for each $k \geq 0$ with the subobject of $X^{[0,1]^k}$ consisting of all maps of the k-cube sending the corner opposite a fixed vertex to the basepoint (see Figure 2.19).

Thus $\tilde{\Omega^n}X$ is a subobject of $\lim_k \text{map}_*([0,1]^k, X)$, which by adjunction may be identified with $X^{\text{colim}_k[0,1]^k}$. Thus $\tilde{\Omega^n}X$ itself is just $\text{map}_*(\text{colim}_k[0,1]^k, X)$, where the colimit is now taken over all proper faces of $[0,1]^{n+1}$, and we identify the corner opposite our chosen vertex of $[0,1]^{n+1}$ to a point. This colimit is homeomorphic to an n-sphere, so $\tilde{\Omega^n}X$ is homotopy equivalent to the n-fold loop space Ω^nX, defined as usual by iterating the functor $\Omega : M \to M$ given by the pullback

\begin{equation}
\Omega X \xrightarrow{\text{PB}} PX \xrightarrow{p_X} X.
\end{equation}

4.7. Remark. In any path model category M, for any fibrant object X we have an equivalence relation \sim on the set of morphisms $\text{Hom}_M(1, X)$ (cf. [11.19]), given by:

$f \sim g \iff \exists F : 1 \to X^I$ such that $e^0 \circ F = f$ and $e^1 \circ F = g$.

We then define the (pointed) set of components π_0X to be the set of equivalence classes in $\text{Hom}_M(1, X)$ under \sim.

Now let \mathcal{E} be a category enriched in M, and assume the mapping objects $\text{map}_\mathcal{E}(a, b)$ are fibrant (e.g., if all objects in M are fibrant, as in Top_s). If we denote $\pi_0\text{map}_\mathcal{E}(a, b)$ simply by $[a, b]$, from (2.1) we see that μ induces an associative composition on $[-,-]$, so that this serves as the set of morphisms in the homotopy category $\text{ho}\mathcal{E}$ of the M-enriched category \mathcal{E} (with the same objects as \mathcal{E}).

4.8. Definition. More generally, if \mathcal{I} is the core of a path model category M, for any core element γ (which is cofibrant by Definition 4.1) the simplicial enrichment map_M in M allows us to identify $[\gamma, X]$ with $\pi_0\text{map}_M(\gamma, X)$ (see [Q] II, 2.6)).
Thus if \mathcal{C} is enriched in \mathcal{M}, we may set
\[[a, b]_\gamma := \pi_0 \text{map}_\mathcal{M}(\gamma, \text{map}_\mathcal{C}(a, b)) . \]
for any $a, b \in \mathcal{C}$ and $\gamma \in \mathcal{I}$.

Note that for any $\gamma, \delta \in \mathcal{I}$ and $i \geq 0$, the bifunctor \otimes, the map $\zeta_{X,Y,\Delta[i]}$ of (3.9), for $X := \text{map}_\mathcal{C}(b, c)$ and $Y := \text{map}_\mathcal{C}(a, b)$, and the composition $\mu : X \otimes Y \to Z$ (for $Z := \text{map}_\mathcal{C}(a, c)$) induce natural maps of sets
\[(\text{map}_\mathcal{M}(\gamma, X) \times \text{map}_\mathcal{M}(\delta, Y))_i = \text{Hom}_\mathcal{M}(\gamma, X^{\Delta[i]}) \times \text{Hom}_\mathcal{M}(\delta, Y^{\Delta[i]}) \to \text{Hom}_\mathcal{M}(\gamma \otimes \delta, X^{\Delta[i]} \otimes Y^{\Delta[i]}) \to \text{Hom}_\mathcal{M}(\gamma \otimes \delta, (X \otimes Y)^{\Delta[i]}) \to \text{Hom}_\mathcal{M}(\gamma \otimes \delta, Z^{\Delta[i]}) = (\text{map}_\mathcal{M}(\gamma \otimes \delta, Z))_i \]
and thus a composition map $\nu : \text{map}_\mathcal{M}(\gamma, X) \times \text{map}_\mathcal{M}(\delta, Y) \to \text{map}_\mathcal{M}(\gamma \otimes \delta, Z)$ in \mathcal{S}. Thus induces an associative composition map
\[(4.9) \quad \nu_* : [b, c]_\gamma \times [a, b]_\delta \to [a, c]_{\gamma \otimes \delta} . \]

Thus we have an \mathcal{I}-graded category denoted by $\text{ho}^\mathcal{I} \mathcal{C}$, called the \mathcal{I}-homotopy category of \mathcal{C}.

4.10. Definition. Assume given a path model category \mathcal{M} with core \mathcal{I}. We say that a category K enriched in \mathcal{M} is fibrant if $\text{map}_\mathcal{M}(a, b)$ is fibrant in \mathcal{M} for any $a, b \in K$. Note that since each $\gamma \in \mathcal{I}$ is cofibrant, this implies that $\text{map}_\mathcal{M}(\gamma, \text{map}_\mathcal{M}(a, b))$ is a fibrant simplicial set, by SM7.

An enriched functor $\phi : K \to L$ between categories K and L enriched in \mathcal{M} is a Dwyer-Kan equivalence if
(a) For all $a, b \in \mathcal{C}$, $\phi : \text{map}_\mathcal{M}(a, b) \to \text{map}_\mathcal{L}(\phi(a), \phi(b))$ is a weak equivalence in \mathcal{M}.
(b) The induced functor $\phi_* : \text{ho}^\mathcal{I} K \to \text{ho}^\mathcal{I} L$ is an equivalence of \mathcal{I}-graded categories.

See [SS], and compare [BM].

We say that such a Dwyer-Kan equivalence is a trivial fibration if each $\phi : \text{map}_\mathcal{M}(a, b) \to \text{map}_\mathcal{L}(\phi(a), \phi(b))$ is a fibration in \mathcal{M}.

By Definition 4.11 and [BM] Theorem 1.9-1.10] we have:

4.11. Theorem. There is a canonical model category structure on the category \mathcal{M}-Cat of small categories enriched in any path model category \mathcal{M}, in which the trivial fibrations and fibrant categories are defined object-wise, and the weak equivalences are the Dwyer-Kan equivalences.

4.12. Definition. Let \mathcal{M} be a path model category with core \mathcal{I}, and let $K^{(0)} = \langle K, \{F^{(i)} \}_{i=1}^{n+1} \rangle$ be a fixed fibrant 0-th order chain complex of length $n+1$ over \mathcal{M} for $\Gamma \subseteq \mathcal{I}$. We define $\mathcal{L}_K^{(0)}$ to be the collection of all possible fibrant $(n-1)$-st order chain complexes \mathcal{K} of length $n+1$ extending $K^{(0)}$.

Each $\mathcal{K} \in \mathcal{L}_K^{(0)}$ has a value $\langle \mathcal{K} \rangle : \gamma_1 \otimes \ldots \otimes \gamma_{n+1} \to \Omega^{n-1} \text{map}_\mathcal{M}(a_{n+1}, a_0)$, as in (3.3), which we may identify with a 0-simplex in the corresponding simplicial mapping space
\[(4.13) \quad \langle \mathcal{K} \rangle \in \text{map}_\mathcal{M}(\gamma_1 \otimes \ldots \otimes \gamma_{n+1}, \tilde{\Omega}^{n-1} \text{map}_\mathcal{M}(a_{n+1}, a_0))_0 . \]
By Remark 4.5, $\Omega^{n-1}\text{map}_K(a_{n+1}, a_0)$ is weakly equivalent to the $(n-1)$-fold loop space on the mapping space $\text{map}_M(a_{n+1}, a_0)$ in M (cf. [Q I, §2]). Moreover, we have a natural isomorphism

\begin{equation}
\text{map}_M(Y, X^L) \cong \text{map}_S(L, \text{map}_M(Y, X))
\end{equation}

for any $X, Y \in M$ and $L \in S$ any finite simplicial set, by [Q II, §1], so we may identify the path component $[\mathcal{K}]$ of this 0-simplex with the corresponding element in

$$
\pi_0 \text{map}_M(\gamma_1 \otimes \ldots \otimes \gamma_{n+1}, \Omega^{n-1}\text{map}_K(a_{n+1}, a_0))
\cong \pi_0 \Omega^{n-1}\text{map}_M(\gamma_1 \otimes \ldots \otimes \gamma_{n+1}, \text{map}_K(a_{n+1}, a_0))
\cong \pi_{n-1} \text{map}_M(\gamma_1 \otimes \ldots \otimes \gamma_{n+1}, \text{map}_K(a_{n+1}, a_0))
$$

We call the set

$$
\{[\mathcal{K}] \in \pi_{n-1} \text{map}_M(\gamma_1 \otimes \ldots \otimes \gamma_{n+1}, \text{map}_K(a_{n+1}, a_0)) : \mathcal{K} \in \mathcal{L}_K^{(0)}\}
$$

the n-th order Toda bracket for $\mathcal{K}^{(0)}$. We say that it vanishes if $0 \in \{[\mathcal{K}]\}$. Of course, $\{[\mathcal{K}]\}$ may be empty (if there are no $(n-1)$-st order chain complexes \mathcal{K} extending $\mathcal{K}^{(0)}$). It vanishes if and only if there is an n-th order chain complex extending $\mathcal{K}^{(0)}$.

4.15. Remark. When K is a higher chain complex in $\mathcal{C} = \mathcal{M}$ in a monoidal path category enriched over itself (e.g., for $\mathcal{M} = \text{Top}_s$, or \mathcal{S}_s), the homotopy class $[\langle K \rangle]$ may be thought of as an element in the group

$$
[\Sigma^{n-1}\gamma_1 \otimes \ldots \otimes \gamma_{n+1} \otimes a_{n+1} \otimes a_0]_s
$$

Moreover, $[\langle K \rangle]$ vanishes if and only if it represents the zero element in this group.

4.16. Lemma. If \mathcal{M} is a simplicial model category and $f : X \to Y$ is a (trivial) fibration between fibrant objects in \mathcal{M}, then the induced maps $P^k f : P^k X \to P^k Y$ and $\tilde{\Omega}^k f : \tilde{\Omega}^k X \to \tilde{\Omega}^k Y$ are (trivial) fibrations for all $k \geq 1$. Furthermore, if $f : X \to Y$ is a weak equivalence between fibrant and cofibrant objects in \mathcal{M}, so are $P^k f : P^k X \to P^k Y$ and $\tilde{\Omega}^k f : \tilde{\Omega}^k X \to \tilde{\Omega}^k Y$.

Proof. Using Axiom SM7 for the simplicial model category \mathcal{M}, the natural isomorphism \((\text{1.14})\), and SM7 for S itself (cf. [Q II, §1-3]), we see that

(a) Any (trivial) cofibration $i : K \to L$ in \mathcal{S} induces a (trivial) fibration $i^* : X^L \to X^K$, as long as $X \in \mathcal{M}$ is fibrant.

(b) Any (trivial) fibration $f : X \to Y$ in \mathcal{M} induces a (trivial) fibration $f_* : X^K \to Y^K$ for any (necessarily cofibrant) $K \in \mathcal{S}$.

In particular, let C^n_+ denote the sub-simplicial set of the cube boundary ∂I^n consisting of all facets adjacent to a fixed corner v (i.e., the cubical star of v in ∂I^n), with ∂C^n_+ its boundary (the cubical link of v). The cofibration $i : \partial C^n_+ \to C^n_+$ makes $i^# : X^{C^n_+} \to X^{\partial C^n_+}$ a fibration in \mathcal{M}, by (a).

In particular, the pullback square

\begin{equation}
\begin{array}{ccc}
\tilde{\Omega}^{n-1} X & \xrightarrow{PB} & X^{C^n_+} \\
* & \downarrow & \downarrow i^# \\
& & X^{\partial C^n_+}
\end{array}
\end{equation}
defining \(\tilde{\Omega}^{n-1}X \) (see \(\text{(3.1)} \) and compare \(\text{(2.13)} \)) is a homotopy pullback (see \(\text{[Ma]} \)).

Thus if \(f : X \to Y \) is a (trivial) fibration in \(\mathcal{M} \), then the induced map \(\Omega^{n-1}f : \tilde{\Omega}^{n-1}X \to \tilde{\Omega}^{n-1}Y \) is a (trivial) fibration, by (b).

Similarly, if we consider the (pointed) cofibration sequence in \(\mathcal{S}_\ast \):

\[
S^0 = \{0, *\} \hookrightarrow \Delta[1]_+ = [0, 1] \cup \{*\} \twoheadrightarrow \Delta[1] = [0, 1]
\]

(with * as basepoint in the first two, and 0 as the basepoint in the cofiber), we see from the corresponding fibration sequence in \(\mathcal{M} \):

\[
P_X = X^{\Delta[1]} \hookrightarrow X^I \twoheadrightarrow X^{S^0} = X
\]

that if \(f : X \to Y \) is a (trivial) fibration in \(\mathcal{M} \), so is \(Pf : PX \to PY \), by (b) again (see \(\text{4.13} \) above).

4.18. **Lemma.** If \(X \) is a fibrant object in a simplicial model category \(\mathcal{M} \), then for each \(n \geq 0 \) the map \(\tilde{\sigma}^n_X : P^{n+1}X \to \Omega^nX \) of \(\text{(3.3)} \) is a fibration.

Note that for \(n = 0 \), \(\tilde{\Omega}^0X = X \) and \(\tilde{\sigma}^0_X \) is simply \(p_X : PX \to X \).

Proof. If we consider the map of cofibration sequences (pushouts to \(* \)) in \(\mathcal{S} \):

\[
\begin{array}{ccc}
\partial C_n^+ & \to & C_n^+ \\
\downarrow & & \downarrow \\
C_n^- & \to & I^n \\
\end{array}
\]

\[
\begin{array}{c}
\partial C_n^+ \\
\downarrow \\
C_n^- \\
\end{array}
\to
\begin{array}{c}
C_n^+ / \partial C_n^+ \\
\downarrow \\
I^n / \partial C_n^- \\
\end{array}
\]

we see that the natural map \(C_n^+ / \partial C_n^+ \to I^n / \partial C_n^- \) is an inclusion (cofibration) in \(\mathcal{S}_\ast \), so the natural map it induces – namely, \(\tilde{\sigma}^n_X : P^{n+1}X \to \tilde{\Omega}^nX \) – is a fibration by (b) above.

For \(n = 0 \) this follows directly because \(p_X \) is a pullback in the following diagram:

\[
\begin{array}{ccc}
P_X & \to & X^I \\
\downarrow_{p_X} & & \downarrow_{e^0 \circ e^1} \\
X & \xrightarrow{\text{Id} \times \ast} & X \times X
\end{array}
\]

where \(e^0 \circ e^1 \) is a fibration since it is induced by the cofibration \(\{0, 1\} \hookrightarrow \Delta[1] \) in \(\mathcal{S} \).

4.21. **Theorem.** Let \(\mathcal{M} \) be a path model category with core \(\mathcal{I} \), and let \(K^{(0)} = \langle K, \{F^0(i)_{i=1}^{n+1}\} \rangle \) and \(L^{(0)} = \langle L, \{G^0(i)_{i=1}^{n+1}\} \rangle \) be 0-th order chain complexes of length \(n+1 \) over \(\mathcal{M} \) (for the same \(\Gamma \subseteq \mathcal{I} \)) with \(K \) and \(L \) fibrant, and let \(\phi^{(0)} : K^{(0)} \to L^{(0)} \) be a map of 0-th order chain complexes which is a Dwyer-Kan equivalence. Then the resulting equivalence of categories \(\phi_\ast : \text{ho}^I \mathcal{K} \to \text{ho}^I \mathcal{L} \) induces a bijection between \(\langle K^{(0)} \rangle \) and \(\langle L^{(0)} \rangle \).

Proof. We assume for simplicity that \(\phi \) is the identity on objects, so we may identify both \(\pi_0 \text{map}_X(\gamma, \text{map}_K(\gamma, a, a')) \) and \(\pi_0 \text{map}_X(\gamma, \text{map}_L(\gamma, a, a')) \) as \([a, a']_\gamma \). Similarly we may identify the groups \(\pi_\ast \text{map}_M(\gamma, \text{map}_K(\gamma, a, a')) \) and \(\pi_\ast \text{map}_M(\gamma, \text{map}_L(\gamma, a, a')) \).
Given an \((n - 1)\)-st order chain complex \(K\) extending \(K^{(0)}\), \(\phi\) induces an \((n - 1)\)-st order chain complex \(L\) extending \(L^{(0)}\), as in \([2.10]\) and takes the value \((K) \in [a_{n+1}, a_0]_{\gamma_1 \otimes \ldots \otimes \gamma_{n+1}}\) to \((L)\).

(a) First assume that \(\phi^{(0)} : K^{(0)} \rightarrow L^{(0)}\) is a trivial fibration.

To show that the above correspondence is a bijection, let \(L\) be an \((n - 1)\)-st order chain complex extending \(L^{(0)}\). We show by induction on \(k \geq 0\) that we have an \(k\)-th order chain complex \(K^{(k)}\) extending \(K^{(0)}\), where \(\phi_\ast K^{(k)}\) agrees with \(L\) to \(k\)-th order (by assumption this holds for \(k = 0\)).

In the induction step, we have a \((k - 1)\)-st order chain complex \(K^{(k-1)}\) such that \(\phi_\ast K^{(k-1)}\) agrees with \(L\) to \((k - 1)\)-st order, which we wish to extend to \(K^{(k)}\). Thus we have a commuting diagram

\[
\begin{array}{ccc}
G^{(i)}_K & & \map K(a_1, a_{i-k-1}) \\
\downarrow \psi & & \downarrow \sigma_K^{i-1} \\
\Omega^{k-1} \map K(a_1, a_{i-k-1}) & \xrightarrow{\sim} & \Omega^{k-1} \map L(a_1, a_{i-k-1})
\end{array}
\]

in which \(Q_i\) is the pullback as indicated, and \(\alpha_K : \gamma_{i-k} \otimes \ldots \otimes \gamma_i \rightarrow \Omega^{k-1} \map K(a_1, a_{i-k-1})\) into the limit is induced by the maps \(F^{k-1}_{(t)}(t = 0, \ldots, k - 1)\).

Here \(p_2\) is a trivial fibration and \(p_1\) is a fibration by base change (using Lemmas \([4.16]\) and \([4.18]\)). The maps \(\psi : \gamma_{i-1} \otimes \gamma_i \rightarrow Q_i\) and \(\xi : \map K(a_1, a_{i-k-1}) \rightarrow Q_i\) exist by the universal property, and \(\xi\) is a weak equivalence by the 2 out of 3 property. Factor \(\xi\) as

\[
P^k \map K(a_1, a_{i-k-1}) \xrightarrow{j} \widehat{P}^k \map K(a_1, a_{i-k-1}) \xrightarrow{\hat{\xi}} Q_i,
\]

where \(j\) a trivial cofibration and \(\hat{\xi}\) is a trivial fibration. Since \(\gamma_{i-k} \otimes \ldots \otimes \gamma_i \in I\) is cofibrant, we have a lifting as indicated in the solid commuting square:

\[
\begin{array}{ccc}
& & \map K(a_1, a_{i-k-1}) \\
\gamma_{i-k} \otimes \ldots \otimes \gamma_i & \xrightarrow{\psi} & Q_i
\end{array}
\]

Since \(j\) is a trivial cofibration and \(\sigma_K^{i-1}\) is a fibration (for \(X := \Omega^{k-1} \map K(a_1, a_{i-k-1})\)) by Lemma \([4.18]\) we have a lift \(\zeta\) as indicated in:

\[
\begin{array}{ccc}
P^k \map K(a_1, a_{i-k-1}) & \xrightarrow{\zeta} & P^k \map K(a_1, a_{i-k-1}) \\
\downarrow & & \downarrow \sigma_K^{i-1} \\
\widehat{P}^k \map K(a_1, a_{i-k-1}) & \xrightarrow{\hat{\xi}} & \Omega^{k-1} \map K(a_1, a_{i-k-1}),
\end{array}
\]
for $\hat{\sigma} := p_1 \circ \hat{\xi}$. Thus if we set $F^k_{(i)} : \gamma_{i-k} \otimes \ldots \otimes \gamma_i \rightarrow P^k \text{map}_K(a_i, a_{i-k-1})$ equal to $\zeta \circ \hat{\psi}$, we see that

$$\pi_t \circ \sigma^{k-1}_K \circ F^k_{(i)} = \partial_t \circ F^k_{(i)} = \mu^{k-t-1,l}(F^{k-t-1}_{(i-l-1)} \otimes F^l_{(i)})$$

(see \cite[3.1]{SH} and \cite[2.8]{NR}) for all $0 \leq t < k$, and $\phi \circ F^k_{(i)} = G^k_{(i)}$. Thus by induction we see that any $(n-1)$-st order chain complex $L^{(n-1)}$ extending $L^{(0)}$ lifts along ϕ to $K^{(n-1)}$, so that ϕ_* is surjective.

On the other hand, since ϕ is a trivial fibration in map_M, in particular $\tilde{\Omega}^{n-1} \phi : \tilde{\Omega}^{n-1} \text{map}_K(a_{n+1}, a_0) \rightarrow \tilde{\Omega}^{n-1} \text{map}_L(a_{n+1}, a_0)$ is a trivial fibration in M, so it induces an isomorphism

$$\pi_{n-1} \text{map}_M(\gamma_1 \ldots \gamma_{n+1}, \text{map}_K(a_{n+1}, a_0)) \cong \pi_{n-1} \text{map}_M(\gamma_1 \ldots \gamma_{n+1}, \text{map}_L(a_{n+1}, a_0))$$

by SM7. Thus if $\langle \phi_*, \mathcal{K} \rangle = \langle \phi, \mathcal{K} \rangle$ in $\pi_{n-1} \text{map}_M(\gamma_1 \ldots \gamma_{n+1}, \text{map}_L(a_{n+1}, a_0))$, then $\langle \mathcal{K} \rangle = \langle \mathcal{K} \rangle$ in $\pi_{n-1} \text{map}_M(\gamma_1 \ldots \gamma_{n+1}, \text{map}_K(a_{n+1}, a_0))$.

We can see directly that $\langle L^{(n-1)} \rangle$ vanishes if and only if it lifts to $F^k_{(n+1)} : \gamma_0 \otimes \ldots \otimes \gamma_{n+1} \rightarrow P^{n+1} \text{map}_K(a_{n+1}, a_0)$, this happens if and only if the corresponding value $\langle K^{(n-1)} \rangle$ vanishes, too.

(b) Now assume that $\phi^{(0)} : \mathcal{K}^{(0)} \rightarrow L^{(0)}$ is an arbitrary weak equivalence, but that $\mathcal{K}^{(0)}$ and $L^{(0)}$ are both fibrant and cofibrant. Factoring $\phi^{(0)}$ as a trivial cofibration followed by a trivial fibration, by (a) it suffices to assume that $\phi^{(0)}$ is a trivial fibration. This implies that we have a lifting as indicated in the diagram of \mathcal{M}-categories

\[
\begin{array}{ccc}
\mathcal{K}^{(0)} & \xrightarrow{=} & \mathcal{K}^{(0)} \\
\phi \downarrow & \approx & \rho \downarrow \\
L^{(0)} & \rightarrow & * \\
\end{array}
\]

using Theorem \ref{4.11}. Thus by \cite[Proposition 1.2.8]{Ho}, ϕ is a homotopy equivalence (with strict left inverse ρ). Therefore, if $H : L^{(0)} \rightarrow (\mathcal{L}^{(0)})^\bigtriangleup$ is a right homotopy $\phi \circ \rho \sim \text{Id}$ into a path object for $L^{(0)}$ in \mathcal{M}-Cat (cf. \cite[I, \S 1]{Q}), the two trivial fibrations $d_0, d_1 : (\mathcal{L}^{(0)})^\bigtriangleup \rightarrow L^{(0)}$ induce the required bijection by (a).

(c) Finally, if $\phi : \mathcal{K}^{(0)} \rightarrow L^{(0)}$ is any Dwyer-Kan equivalence, with cofibrant replacements $\psi : \hat{\mathcal{K}}^{(0)} \rightarrow \mathcal{K}^{(0)}$ and $\xi : \hat{\mathcal{L}}^{(0)} \rightarrow L^{(0)}$ in \mathcal{M}-Cat (so both ψ and ξ are trivial fibrations), we have a lifting

\[
\begin{array}{ccc}
* & \xrightarrow{=} & \mathcal{L}^{(0)} \\
\psi \downarrow & \approx & \phi \downarrow \\
\hat{\mathcal{K}}^{(0)} & \rightarrow & \mathcal{K}^{(0)} \\
\end{array}
\]

where ρ is a Dwyer-Kan equivalence between fibrant and cofibrant \mathcal{M}-categories, so it induces a bijection as required by (b), while ψ and ξ are trivial fibrations in \mathcal{M}-Cat, so they induce the required bijections by (a). Since the lower right quadrangle in \ref{4.26} commutes, ϕ also induces a bijection as required. \hfill \square

4.27. Definition. Given a path model category \mathcal{M} with core \mathcal{I}, let \mathcal{C} be a (small) subcategory of \mathcal{M}-Cat consisting of fibrant 0-th order chain complexes of length
$N = n + 1$ for $\Gamma \subseteq \mathcal{I}$. If \sim is the equivalence relation on \mathcal{C} generated by Dwyer-Kan equivalences, let $\ho^{\Gamma} \mathcal{C} := \mathcal{C}/\sim$. An equivalence class in $\ho^{\Gamma} \mathcal{C}$ will be called a homotopy chain complex for Γ.

4.28. Example. Our motivating example is when \mathcal{C} is an \mathcal{M}-subcategory of a model category \mathcal{C}', whose weak equivalences $f : X \to Y$ between fibrant objects are maps inducing an isomorphism in $f_* : \pi_* \map_{\mathcal{M}}(\gamma, \map_{\mathcal{C}'}(Z, X)) \to \pi_* \map_{\mathcal{M}}(\gamma, \map_{\mathcal{C}'}(Z, Y))$ for every cofibrant $Z \in \mathcal{C}'$ and every $\gamma \in \mathcal{I}$. Examples include those of §4.13 and with \mathcal{I} as in §1.20.

In this case a homotopy chain complex Λ of length $n + 1$ in $\ho^{\Gamma} \mathcal{C}$ is represented by a sequence of elements

$\nu_* (\varphi_{i-1}, \varphi_i) = 0 \quad \text{in} \quad [a_i, a_{i-2}]_{\gamma_{i-1} \otimes \gamma_i} \quad (i = 2, \ldots, n + 1),$

In particular, when $\mathcal{I} = \{1\}$, Λ may be described by a diagram:

$$a_{n+1} \xrightarrow{\varphi_{n+1}} a_n \xrightarrow{\varphi_n} a_{n-2} \to \ldots \to a_1 \xrightarrow{\varphi_1} a_0,$$

such that $\varphi_{n+1} = a_0$ for $i = 2, \ldots, n + 1$.

However, in the context of Massey products (cf. §3.11), we do not have such a model category \mathcal{C}' available. In this case, we let \mathcal{C} be a set of DGAs over R with a given homology algebra, $\Gamma = \mathcal{I}_R$ as in §1.20(b), and a homotopy chain complex Λ in $\ho^{\Gamma} \mathcal{C}$ is a quasi-isomorphism class of DGAs in \mathcal{C}.

4.31. Definition. Given a path model category \mathcal{M} with core \mathcal{I}, a category \mathcal{C} as in §4.27 for $\Gamma \subseteq \mathcal{I}$, and a homotopy chain complex Λ of length $n + 1$ for Γ, the corresponding n-th order Toda bracket $\langle \langle \Lambda \rangle \rangle$ is defined to be $\langle \langle \mathcal{K}^{(0)} \rangle \rangle \subseteq \pi_{n-1} \map_{\mathcal{M}}(\gamma_1 \otimes \ldots \otimes \gamma_{n+1}, \map_R(a_{n+1}, a_0))$ for some representative $\mathcal{K}^{(0)}$ of Λ.

4.32. Remark. By Theorem 4.21 $\langle \langle \Lambda \rangle \rangle$ is well-defined.

4.33. Massey products in DGAs. Since Ch_R is a model category, we can consider higher Toda brackets for a differential graded algebra A_\ast, as in §3.11 (we think of A_\ast as a chain complex, rather than a cochain complex, but since we allow arbitrary Z-grading, this is no restriction).

A chain complex Λ of length $n + 1$ in $\ho A_\ast$ consists of a sequence $(\gamma_i)_{i=1}^{n+1}$ of homology classes in $H_i A_\ast$, with $\gamma_i \cdot \gamma_{i+1} = 0$ for $i = 1, \ldots, n$. If we choose an n-th order chain complex (that is, a DGA A_\ast) realizing Λ, as above, we obtain the element given by (3.13) in $\tilde{\Omega}^{n-1} A_\ast$. However, because we are working over Mod_R we can define the identification $\tilde{\Omega}^{n-1} A_\ast \cong \Omega^{n-1} A_\ast$ using the Dold-Kan equivalence (essentially, by the homotopy addition theorem – cf. [Mu]), and thus obtain the value

$$\sum_{t=1}^{n} (-1)^t H_{i-k+t}^t \cdot H_{i}^{n-t} \in A_{j+n}$$

in $\Omega^{n-1} A_\ast$, which is readily seen to be a $(j + n - 1)$-cycle for $j := \sum_{t=1}^{n} m_t$.

By comparing this formula with the classical definition of the higher Massey product (see, e.g., [Ta (V.4)]), we find:
4.35. **Proposition.** The higher Toda brackets in a differential graded algebra A_\ast are identical with the usual higher Massey products.

5. Toda brackets for chain complexes

We now study Toda brackets in the category Ch^\geq_0 of non-negatively graded chain complexes over a hereditary ring R, such as \mathbb{Z}. It turns out that in this case even ordinary Toda brackets have a finer “homological” structure, which we describe.

5.1. Chain complexes over hereditary rings. Since R is hereditary, if $Q_0(G)$ is a functorial free cover of an R-module G, we have a projective presentation

$$0 \to Q_1(G) \overset{\alpha_G}{\to} Q_0(G) \overset{r}{\to} G \to 0,$$

where $Q_1(G) := \text{Ker}(r)$.

We then define the n-th Moore complex $M(G,n)_\ast$ for an R-module G to be the chain complex with $\partial_{n+1} = \alpha_G$. This yields a functor $\hat{C}_\ast : \text{grMod}^\geq_0 \to \text{Ch}^\geq_0$ with

$$\hat{C}_\ast(E_\ast) := \bigoplus_{n \geq 0} M(E_n,n)_\ast.$$

Recall that Ch^\geq_0 has a model structure in which quasi-isomorphisms are the weak equivalences, and a chain complexes is cofibrant if and only if it is projective in each dimension (see [Ho, §2.3]). Because R is hereditary, any $A_\ast \in \text{Ch}^\geq_0$ is uniquely determined up to weak equivalence by the graded R-module $H_\ast A_\ast$ (cf. [D1, Theorem 3.4]).

Therefore, if we enrich grMod^\geq_0 over Ch_R by setting

$$\text{Hom}(E_\ast,F_\ast) := \text{Hom}(\hat{C}_\ast(E_\ast),\hat{C}_\ast(F_\ast))$$

(see §1.16), \hat{C}_\ast becomes an enriched embedding, and in fact:

5.3. **Lemma.** The functor $\hat{C}_\ast : \text{grMod}^\geq_0 \to \text{Ch}^\geq_0$ is a Dwyer-Kan equivalence over Ch_R.

Since the right-hand side of (5.2) is a coproduct, we see that $\text{Hom}(E_\ast,F_\ast)$ naturally splits as a product

$$\prod_{n \geq 0} (\text{Hom}(M(E_n,n)_\ast,M(F_n,n)_\ast) \times \text{Hom}(M(E_n,n)_\ast,M(F_{n+1},n+1)_\ast)) \times P,$$

where P is a product of similar terms, but with $H_0P = 0$. Moreover, since

$$[M(E,n)_\ast,M(F,n)_\ast] \cong \text{Hom}_R(E,F)$$

and $[M(E,n)_\ast,M(F,n+1)_\ast] \cong \text{Ext}_R(E,F)$,

we see that (5.4) is an enriched version of the Universal Coefficient Theorem for chain complexes, stating that for chain complexes over a hereditary ring R there is a (split) short exact sequence:

$$0 \to \prod_{n > 0} \text{Ext}_R(H_{n-1}A_\ast,H_nB_\ast) \to [A_\ast,B_\ast] \to \prod_{n \geq 0} \text{Hom}_R(H_nA_\ast,H_nB_\ast) \to 0$$

(cf. [D2, Corollary 10.13]). Note that in our version for grMod^\geq_0, the splitting is natural!
5.6. Notation. From (5.4) we see that there are two kinds of indecomposable maps of chain complexes (and their nullhomotopies) (see (5.7)):

(a) ‘Hom-type’ maps \(H(f) : M(E, n)_* \to M(F, n)_* \), determined by
\[
f^0_n : Q_0(E) \to Q_0(F) \quad \text{and} \quad f^{11}_n : Q_1(E) \to Q_1(F).
\]
A nullhomotopy \(H(S) : \tilde{H(f)} \sim 0 \) is given by \(S^{01}_n : Q_0(E) \to Q_1(F) \), the factorization of \(f^{00}_n \) through \(Q_1(F) \hookrightarrow Q_0(F) \). If it exists, it is unique.

(b) ‘Ext-type’ maps
\[
E(f) : M(E, n)_* \to M(F', n + 1)_*,
\]
determined by \(f^{11}_n : Q_1(E) \to Q_0(F') \). A nullhomotopy \(E(S) : \tilde{E(f)} \sim 0 \) is given by \(S^{01}_n : Q_0(E) \to Q_0(F') \) and \(S^{11}_n : Q_1(E) \to Q_1(F') \).

5.8. Secondary chain complexes in \(\text{grMod}_R^{\geq 0} \). In light of the above discussion, we see that any secondary chain complex
\[
\hat{C}_*(E_*) \xrightarrow{f} \hat{C}_*(F_*) \xrightarrow{g} \hat{C}_*(G_*) \xrightarrow{h} \hat{C}_*(H_*)
\]
in the \(\text{Ch}_R \)-enriched category \(\text{grMod}_R^{\geq 0} \) is a direct sum of secondary chain complexes of one of the following four elementary forms:

\[
(M(E, n)_*) \xrightarrow{H(f) \sqcup E(f)} (M(F, n)_* \oplus M(F_{n+1}, n+1)_*) \xrightarrow{H(g) \sqcup E(g)}
\]

\[
(M(G_{n+1}, n + 1)_* \xrightarrow{H(f)} (M(F, n)_* \oplus M(F_{n+1}, n+1)_*) \xrightarrow{H(g) \sqcup E(g)}
\]

\[
(M(E, n)_*) \xrightarrow{H(f) \sqcup E(f)} (M(F, n)_* \oplus M(G_{n+1}, n + 1)_*) \xrightarrow{H(h) \sqcup E(h)}
\]

\[
(M(E, n)_*) \xrightarrow{E(f)} (M(F_{n+1}, n+1)_* \xrightarrow{H(g) \sqcup E(g)}
\]

Two additional hypothetical forms, namely:
in fact are irrelevant to Toda brackets, for dimensional reasons.

Moreover, the four elementary secondary chain complexes may or may not split further into one of the following six atomic forms:

(i) \(M(E_n, n)_* \xrightarrow{H(f)} M(F_n, n)_* \xrightarrow{H(g)} M(G_n, n)_* \xrightarrow{H(h)} M(H_n, n)_* \)

(ii) \(M(E_n, n)_* \xrightarrow{E(f)} M(F_{n+1}, n + 1)_* \xrightarrow{E(g)} M(G_{n+2}, n + 2)_* \xrightarrow{E(h)} M(H_{n+3}, n + 3)_* \)

5.14. Secondary Toda brackets in \(\text{grMod}^0_R \). By Definition 4.31 a secondary Toda bracket in the \(\text{Ch}_R \)-enriched category \(\text{grMod}^0_R \) is associated to a homotopy chain complex \(\Lambda \) of length 3 in \(\text{ho grMod}^0_R \) as in (4.30). This means that we replace the actual chain maps in each of the twelve examples of §5.8 by their homotopy classes: that is, elements in \(\text{Hom}_R(E, F) \) or \(\text{Ext}_R(E, F) \), respectively.

The compositions \(\text{Hom}(E, F) \otimes \text{Ext}(F, G) \rightarrow \text{Ext}(E, G) \) \(\text{Ext}(E, F) \otimes \text{Hom}(F, G) \rightarrow \text{Ext}(E, G) \) simply define the functoriality of \(\text{Ext} \), while \(\text{Ext}(E, F) \otimes \text{Ext}(F, G) \rightarrow \text{Ext}(E, G) \) vanishes for dimension reasons. Nevertheless, the associated Toda bracket may be non-trivial.

Note that in this case, as in the original construction of Toda in [Sp1] (see also [Sp2]), the subset \(\langle \langle \Lambda \rangle \rangle \) of \([\Sigma \mathcal{E}_*, \mathcal{H}_*] \) is actually a double coset of the group

\[(\Sigma f)\Sigma F_*, \mathcal{H}_* + h[\Sigma \mathcal{E}_*, \mathcal{G}_*],\]

so we can think of \(\langle \langle \Lambda \rangle \rangle \), which we usually denote simply by \(\langle h, g, f \rangle \), as taking value in the quotient abelian group

\[
\langle h, g, f \rangle \in (\Sigma f)\Sigma F_*, \mathcal{H}_* \setminus [\Sigma \mathcal{E}_*, \mathcal{H}_*] / h[\Sigma \mathcal{E}_*, \mathcal{G}_*].
\]

Thus the elementary examples of §5.8 may be interpreted as secondary operations in \(\text{Ext}_R \) defined under certain vanishing assumptions, and with an explicit indeterminacy (which may be less than that indicated in (5.15) in any specific case).

For example, in (5.11) (case (e) above), the operation is defined for elements in the pullback of

\[
\text{Hom}(E_n, F_n) \otimes \text{Ext}(F_n, G_{n+1}) \otimes \text{Ext}(G_{n+1}, H_{n+2})
\]

\[
\text{Ext}(E_n, G_{n+1}) \otimes \text{Ext}(G_{n+1}, H_{n+2})
\]

\[
\text{Ext}(E_n, F_{n+1}) \otimes \text{Hom}(F_{n+1}, G_{n+1}) \otimes \text{Ext}(G_{n+1}, H_{n+2})
\]

and takes value in the quotient group \(\text{Ext}(E_n, H_{n+1}) / h[\text{Hom}(E_n, G_n) \otimes \text{Ext}(E_n, H_{n+1})] \) under precomposition with all elements of \(\text{Hom}(E_n, G_n) \).
It turns out that cases (a) and (d) are trivial for dimension reasons, but we shall now provide examples of non-triviality for four of the remaining cases.

5.16. Example. Consider the homotopy chain complex Λ in $\text{hgrMod}_{R}^{\geq 0}$ given by $E_0 = \mathbb{Z}/2$, $F_0 = \mathbb{Z}/4$, $G_0 = \mathbb{Z}/2$, and $H_1 = \mathbb{Z}/2$, with the corresponding maps

\[
\begin{align*}
 f & = 2 \in \mathbb{Z}/2 = \text{Hom}(E_0, F_0) = \text{Hom}(\mathbb{Z}/2, \mathbb{Z}/4) \\
 g & = 1 \in \mathbb{Z}/2 = \text{Hom}(F_0, G_0) = \text{Hom}(\mathbb{Z}/4, \mathbb{Z}/2) \\
 h & = 2 \in \mathbb{Z}/2 = \text{Ext}(F_0, H_1) = \text{Ext}(\mathbb{Z}/2, \mathbb{Z}/2).
\end{align*}
\]

By Remark 4.32, we may choose any cofibrant chain complexes in $\text{Ch}_{\mathbb{Z}}$ to realize Λ, not necessarily the functorial versions $\hat{C}^*_{s}(\mathcal{E}_s)$, and so on. In our case we shall use the following minimal secondary chain complex:

\[
\begin{array}{ccccccccc}
A_1 & \longrightarrow & B_1 & \longrightarrow & C_1 & \longrightarrow & D_1 \\
\alpha^A_0 = 2 & & \alpha^B_0 = 4 & & \alpha^C_0 = 2 & & \alpha^D_0 = 2 \\
S^0_{1} & \mapsto & g^0_{1} & \mapsto & h^0_{1} & \mapsto & h^0_{1} & \mapsto & h^0_{1}
\end{array}
\]

The Toda bracket is given by:

\[
\begin{array}{ccccccccc}
(\Sigma A)_2 & = & \mathbb{Z} & \longrightarrow & \cdots & \longrightarrow & D_2 & = & \mathbb{Z} \\
\downarrow & & -2 & & \downarrow & & 2 \\
(\Sigma A)_1 & = & \mathbb{Z} & \longrightarrow & \cdots & \longrightarrow & D_1 & = & \mathbb{Z}
\end{array}
\]

The indeterminacy is given by

\[
(\Sigma f)^t [\Sigma \mathcal{F}_s, \mathcal{H}_s] + h_2 [\Sigma \mathcal{E}_s, \mathcal{G}_s] = \Sigma f^t \text{Hom}(F_0, H_1) + h_2 \text{Hom}(E_0, G_1) = 2 \cdot (\mathbb{Z}/2) + 0 = 0.
\]

Hence the Toda bracket $\langle h, g, f \rangle$ does not vanish.

5.17. Example. Consider the homotopy chain complex in $\text{hgrMod}_{R}^{\geq 0}$ given by $E_0 = \mathbb{Z}/2$, $F_1 = \mathbb{Z}/4$, $G_1 = \mathbb{Z}/4$, and $H_2 = \mathbb{Z}$, with the corresponding maps $f = 1 \in \mathbb{Z}/2 = \text{Ext}(\mathbb{Z}/2, \mathbb{Z}/4)$, $g = 2 \in \mathbb{Z}/4 = \text{Hom}(\mathbb{Z}/4, \mathbb{Z}/4)$, and $h = 2 \in \mathbb{Z}/4 = \text{Ext}(\mathbb{Z}/4, \mathbb{Z})$.
We choose the following associated secondary chain complex:

\[B_2 = \mathbb{Z} \xrightarrow{g_0^1 = 2} C_2 = \mathbb{Z} \xrightarrow{h_1^0 = 2} D_2 = \mathbb{Z} \]

\[A_1 = \mathbb{Z} \xrightarrow{f_0^1 = 1} B_1 = \mathbb{Z} \xrightarrow{g_0^0 = 2} C_1 = \mathbb{Z} \]

\[A_0 = \mathbb{Z} \]

The Toda bracket is represented as follows:

\[(\Sigma A)_2 = \mathbb{Z} \xrightarrow{1} D_2 = \mathbb{Z} \]

\[(\Sigma A)_1 = \mathbb{Z} \]

which is a generator of \(\text{Ext}(\mathbb{Z}/2, \mathbb{Z}) = \mathbb{Z}/2 \). The indeterminacy is

\[(\Sigma f)^2[\Sigma F_*, H_*] + h_2[\Sigma E_*, G_*] = \Sigma f^2 \text{Hom}(F_0, H_1) + h_2 \text{Hom}(E_0, G_1) = 1 \cdot 0 + 2 \cdot (\mathbb{Z}/2) = 0. \]

Hence the Toda bracket \(\langle h, g, f \rangle \) does not vanish.

5.18. **Example.** Consider the homotopy chain complex in \(\text{ho} \text{grMod}_{R}^{>0} \) given by \(E_0 = \mathbb{Z}/8, \quad F_1 = \mathbb{Z}/4, \quad G_1 = \mathbb{Z}/4, \) and \(H_2 = \mathbb{Z} \), with the corresponding maps \(f = 1 \in \mathbb{Z}/4 = \text{Hom}(\mathbb{Z}/8, \mathbb{Z}/4), \quad g = 2 \in \mathbb{Z}/4 = \text{Ext}(\mathbb{Z}/4, \mathbb{Z}/4), \) and \(h = 1 \in \mathbb{Z}/4 = \text{Ext}(\mathbb{Z}/4, \mathbb{Z}). \)

We may choose the following associated secondary chain complex:

\[C_2 = \mathbb{Z} \xrightarrow{h_1^0 = 1} D_2 = \mathbb{Z} \]

\[A_1 = \mathbb{Z} \xrightarrow{g_0^0 = 2} C_1 = \mathbb{Z} \]

\[A_0 = \mathbb{Z} \]

The Toda bracket is given by:

\[(\Sigma A)_2 = \mathbb{Z} \xrightarrow{1} D_2 = \mathbb{Z} \]

\[(\Sigma A)_1 = \mathbb{Z} \]

which is a generator of \(\text{Ext}(\mathbb{Z}/8, \mathbb{Z}) = \mathbb{Z}/8 \). The indeterminacy is

\[(\Sigma f)^2[\Sigma F_*, H_*] + h_2[\Sigma E_*, G_*] = f^2 \text{Ext}(F_0, H_2) + h_2 \text{Hom}(E_0, G_1). \]
A generator of $f^4 \operatorname{Ext}(F_0, H_2) = 1 \cdot \operatorname{Ext}(\mathbb{Z}/4, \mathbb{Z}) = \mathbb{Z}/4$ in $\operatorname{Ext}(E_0, H_2)$ is given by

$$(\Sigma A)_2 = \mathbb{Z} \rightarrow (\Sigma B)_2 = \mathbb{Z} \xrightarrow{1} D_2 = \mathbb{Z}$$

while a generator of $h_4 \operatorname{Hom}(E_0, G_1) = 1 \cdot \operatorname{Hom}(\mathbb{Z}/8, \mathbb{Z}/4) = \mathbb{Z}/4$ in $\operatorname{Ext}(E_0, H_2)$ is given by

$$(\Sigma A)_2 = \mathbb{Z} \rightarrow (\Sigma B)_2 = \mathbb{Z}$$

so the total indeterminacy is the subgroup $\mathbb{Z}/4 \subseteq \mathbb{Z}/8 = \operatorname{Ext}(\mathbb{Z}/8, \mathbb{Z}) = \operatorname{Ext}(E_0, H_2)$. Since the Toda bracket $\langle h, g, f \rangle$ is represented by a generator of this $\mathbb{Z}/8$, it does not vanish.

5.19. Example. Consider the homotopy chain complex in $\text{hoGrMod}^{\geq 0}_{R_E}$ given by $E_0 = \mathbb{Z}/16$, $F_0 = \mathbb{Z}/8$, $F_1 = \mathbb{Z}/16$, $G_1 = \mathbb{Z}/16$, and $H_2 = \mathbb{Z}/16$, with the corresponding maps $f = 1 \in \mathbb{Z}/8 = \operatorname{Hom}(E_0, F_0)$, $f' \in \mathbb{Z}/16 = \operatorname{Ext}(E_0, F_1)$, $g = 4 \in \mathbb{Z}/8 = \operatorname{Ext}(F_0, G_1)$, $g' \in \mathbb{Z}/16 = \operatorname{Hom}(F_1, G_1)$ and $h = 2 \in \mathbb{Z}/16 = \operatorname{Hom}(G_1, H_1)$.

We may choose the following associated secondary chain complex:

The Toda bracket is given by:

$$((\Sigma f)_2)^4(\Sigma F_*, H_*) + h_4(\Sigma E_*, G_*) = f^4 \operatorname{Hom}(F_0, H_1) + h_4 \operatorname{Hom}(E_0, G_1).$$
A generator of \(f^4 \text{Hom}(F_0, H_1) = 1 \cdot \text{Hom}(\mathbb{Z}/8, \mathbb{Z}/16) = \mathbb{Z}/8 \) in \(\text{Hom}(E_0, H_1) \) is given by

\[
\begin{array}{c}
\text{Hom}(Z/8, Z/16) = Z/8 \\
\end{array}
\]

while a generator of \(h_2 \text{Hom}(E_0, G_1) = 2 \cdot \text{Hom}(\mathbb{Z}/16, \mathbb{Z}/16) = \mathbb{Z}/8 \) in \(\text{Hom}(E_0, H_1) \) is given by

\[
\begin{array}{c}
\text{Hom}(\mathbb{Z}/16, \mathbb{Z}/16) = \mathbb{Z}/8 \\
\end{array}
\]

so the Toda bracket \(\langle h, g, f \rangle \) does not vanish.

5.20. Remark. See [Ba2, §6.12] for a calculation relating Toda brackets in topology with a certain operation in homological algebra.

REFERENCES

[Ad1] J.F. Adams, “On the structure and applications of the Steenrod algebra”, Comm. Math. Helv. 32 (1958), 180–214.
[Ad2] J.F. Adams, “On the non-existence of elements of Hopf invariant one”, Ann. Math. (2) 72 (1960), No. 1, pp. 20-104.
[Al] J.C. Alexander, “Cobordism Massey products”, Trans. AMS 166 (1972), pp. 197-214.
[BT] I.K. Babenko & I.A. Taimanov, “Massey products in symplectic manifolds”, Mat. Sb. 191 (2000), pp. 3-44.
[BJMM] M.G. Barratt, J.D.S. Jones & M.E. Mahowald, “Relations amongst Toda brackets and the Kervaire invariant in dimension 64”, J. Lond. Math. Soc. 30 (1984), pp. 533-550.
[Ba1] H.-J. Baues, Obstruction Theory on Homotopy Classification of Maps, Springer-Verlag Lect. Notes Math. 628, Berlin-New York, 1977.
[Ba2] H.-J. Baues, Homotopy type and Homology, Oxford Mathematical Monographs, New York, 1996.
[Ba3] H.-J. Baues, The Algebra of secondary cohomology operations, Progress in Math. 247, Birkhäuser, 2006
[BB] H.-J. Baues & D. Blanc “Higher order derived functors and the Adams spectral sequence”, J. Pure Appl. Alg. 219 (2015), pp. 199-239.
[BKS] D. Benson, H. Krause, & S. Schwede, “Introduction to realizability of modules over Tate cohomology”, in Representations of algebras and related topics, AMS, Providence, RI, 2005, pp. 81–97.
[BM] C. Berger & I. Moerdijk, “On the homotopy theory of enriched categories”, Q. J. Math. 64 (2013), pp. 805–846.
[BJT1] D. Blanc, M.W. Johnson, & J.M. Turner, “Higher homotopy operations and cohomology”, J. K-Theory 5 (2010), 167–200.
[BJT2] D. Blanc, M.W. Johnson, & J.M. Turner, “Higher homotopy operations and André-Quillen cohomology”, textitAdv. Math. 230 (2012), pp. 777-817.
[BV] J.M. Boardman & R.M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Springer-Verlag Lect. Notes Math. 347, Berlin-New York, 1973.
[D1] A. Dold, “Homology of symmetric products and other functors of complexes”, Ann. Math. (2) 68 1958 pp. 54–80.
[D2] A. Dold, Lectures on algebraic topology. Springer-Verlag, Berlin, 1995.
[EKMM] A.D. Elmendorf, I. Kříž, M.A. Mandell, & J.P. May, *Rings, modules, and algebras in stable homotopy theory*, AMS, Providence, RI, 1997.

[FW] D. Fuchs & L.L. Weldon, “Massey brackets and deformations”, *J. Pure Appl. Alg.* **156** (2001), pp. 215–229.

[G] M. Grant, “Topological complexity of motion planning and Massey products”, in *Algebraic topology—old and new*, Polish Acad. Sci. Inst. Math., Warsaw, 2009, pp. 193–203.

[HKM] K.A. Hardie, K.H. Kamps, & H.J. Marcum, “A categorical approach to matrix Toda brackets”, *Trans. AMS* **347** (1995), pp. 4625-4649.

[He] A. Heller, “Stable homotopy categories”, *Bull. AMS* **74** (1968), pp. 28-63.

[Hi] P.S. Hirschhorn, *Model Categories and their Localizations*, Math. Surveys & Monographs **99**, AMS, Providence, RI, 2002.

[Ho] M.A. Hovey, *Model Categories*, Math. Surveys & Monographs **63**, AMS, Providence, RI, 1998.

[HSS] M.A. Hovey, B.E. Shipley, J.H. Smith, “Symmetric spectra”, *Jour. AMS* **13** (2000), 149–208

[Ki] M. Kim, “Massey products for elliptic curves of rank 1”, *J. AMS* **23** (2010), pp. 725–747.

[Kl] S. Klaus, “Towers and Pyramids, I”, *Fund. Math* **13** (2001), No. 5, pp. 663-683.

[Kra] D.P. Kraines, “Massey higher products”, *Trans. AMS* **124** (1966), 431-449.

[Kri] L. Kristensen, “On secondary cohomology operations”, *Math. Scand.* **12** (1963), 57–82.

[KM] L. Kristensen & I.H. Madsen, “On evaluation of higher order cohomology operations”, *Math. Scand.* **20** (1967), pp. 114-130.

[La] G. Laures, “Toda brackets and congruences of modular forms”, *Alg. Geom. Top.* **11** (2011), pp. 1893-1914.

[LS] P. Laurence & E. Stredulinsky, “A lower bound for the energy of magnetic fields supported in linked tori”, *C.R. Acad. Sci. Paris I, Math.* **331** (2000), pp. 201–206.

[Lu] J. Lurie, *Higher Topos Theory*, Princeton U. Press, Princeton, 2009.

[MP] M.E. Mahowald & F.P. Peterson, “Secondary operations on the Thom class”, *Topology* **2** (1964), pp. 367-377

[MMSS] M.A. Mandell, J.P. May, S. Schwede, & B. Shipley, “Model categories of diagram spectra”, *Proc. London Math. Soc.* (3) **82** (2001), 441-512.

[Mar] H.R. Margolis, *Spectra and the Steenrod Algebra: Modules over the Steenrod Algebra and the Stable Homotopy Category*, North-Holland, Amsterdam-New York, 1983.

[Mas] W.S. Massey, “A new cohomology invariant of topological spaces”, *Bull. AMS* **57** (1951), p. 74.

[Mat] M. Mather, “Pull-backs in homotopy theory”, *Can. J. Math.* **28** (1976), pp. 225-263.

[Mau] C.R.F. Maunder, “Cohomology operations of the N-th kind”, *Proc. Lond. Math. Soc.* (2) **13** (1963), pp. 125-154.

[Mi] T. Mizuno, “On a generalization of Massey products”, *J. Math. Kyoto Univ.* **48** (2008), pp. 639–659.

[Mo] M. Mori, “On higher Toda brackets”, *Bull. College Sci. Univ. Ryukyus* **35** (1983), pp. 1-4.

[Mu] J.R. Munkres, “The special homotopy addition theorem”, *Mich. Math. J.* **2** (1953/54), 127-134.

[N] J.A. Neisendorfer, *Primary homotopy theory*, Mem. AMS **25** AMS, Providence, RI, 1980.

[PS] F.P. Peterson & N. Stein, “Secondary cohomology operations: two formulas”, *Amer. J. Math.* **81** (1959), pp. 231-306.

[P1] G.J. Porter, “Higher order Whitehead products”, *Topology* **3** (1965), 123-165.

[P2] G.J. Porter, “Higher products”, *Trans. AMS* **148** (1970), 315-345.

[Q] D.G. Quillen, *Homotopical Algebra*, Springer-Verlag *Lec. Notes Math.* **20**, Berlin-New York, 1963.

[Re] V.S. Retakh, “Lie-Massey brackets and n-homotopically multiplicative maps of differential graded Lie algebras”, *J. Pure & Appl. Alg.* **89** (1993) No. 1-2, pp. 217-229.

[Ri] C. Rizzi, “Infinitesimal invariant and Massey products”, *Man. Math.* **127** (2008), pp. 235–248.

[Sa] S. Sagave, “Universal Toda brackets of ring spectra”, *Trans. AMS* **360** (2008), pp. 2767-2808.
S. Schwede & B. Shipley, “Equivalences of monoidal model categories”, \textit{Alg. Geom. Topol.} \textbf{3} (2003), 287–334.

E.H. Spanier, “Secondary operations on mappings and cohomology”, \textit{Ann. Math. (2)} \textbf{75} (1962) No. 2, pp. 260-282.

E.H. Spanier, “Higher order operations”, \textit{Trans. AMS} \textbf{109} (1963), pp. 509-539.

N.E. Steenrod, “A convenient category of topological spaces”, \textit{Michigan Math. J.}, \textbf{14} (1967), pp. 133-152.

D. Tauré, \textit{Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan}, Springer-Verlag \textit{Lec. Notes Math.} \textbf{1025}, Berlin-New York, 1983.

H. Toda, “Generalized Whitehead products and homotopy groups of spheres”, \textit{J. Inst. Polytech. Osaka City U., Ser. A, Math.} \textbf{3} (1952), pp. 43-82.

H. Toda, \textit{Composition methods in the homotopy groups of spheres}, Adv. in Math. Study \textbf{49}, Princeton U. Press, Princeton, 1962.

R.M. Vogt, “Convenient categories of topological spaces for homotopy theory”, \textit{Arch. Math. (Basel)} \textbf{22} (1971), pp. 545-555.

G. Walker, “Long Toda brackets”, in \textit{Proceedings of the Advanced Study Institute on Algebraic Topology, Vol. III (Aarhus, 1970)}, Aarhus, 1970, 612–631.

\textbf{Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany}

\textit{E-mail address}: baues@mpim-bonn.mpg.de

\textbf{Department of Mathematics, University of Haifa, 31905 Haifa, Israel}

\textit{E-mail address}: blanc@math.haifa.ac.il

\textbf{Department of Mathematics, University of Haifa, 31905 Haifa, Israel}

\textit{E-mail address}: sgondhal@math.haifa.ac.il, shilpa.s.gondhali@gmail.com