Abstract

The various descent and duality relations among BPS and non-BPS D-branes are classified using topological K-theory. It is shown how the descent procedures for producing type-II D-branes from brane-antibrane bound states by tachyon condensation and \((-1)^F\) projections arise as natural homomorphisms of K-groups generating the brane charges. The transformations are generalized to type-I theories and type-II orientifolds, from which the complete set of vacuum manifolds and field contents for tachyon condensation is deduced. A new set of internal descent relations is found which describes branes over orientifold planes as topological defects in the worldvolumes of brane-antibrane pairs on top of planes of higher dimension. The periodicity properties of these relations are shown to be a consequence of the fact that all fundamental bound state constructions and hence the complete spectrum of brane charges are associated with the topological solitons which classify the four Hopf fibrations.
1. Introduction

One of the most interesting recent realizations about string solitons is that their charges take values in terms of a generalized cohomology theory of their Chan-Paton gauge bundles known as K-theory [1]–[8]. The original observation [9] that D-branes couple to spacetime Ramond-Ramond (RR) fields suggests that their worldvolume topological charges should be measured by ordinary cohomology classes, and it was long thought that supersymmetry was necessary to ensure the stability of these solitonic configurations. However, in other recent developments [10]–[13] it has been shown that the spectra of superstring theories can also contain states which correspond to non-BPS solitons but which are nevertheless stable because they carry conserved quantum numbers which prevents them from decaying into the supersymmetric vacuum state. In this framework, D-branes are realized as topological solitons coming from condensation of the tachyon field on the worldvolumes of higher dimensional unstable configurations of branes. These facts tie in nicely with the properties of the K-groups of a spacetime which can be much more general than the corresponding cohomology groups. For instance, the K-group can have torsion while the cohomology group is torsion free [1], lending a natural explanation to the fact that some D-branes carry torsion charges [10].

The main property of K-theory which parallels the soliton constructions of [10]–[13] is its intimate relationship with homotopy theory. A given category of fiber bundles always possesses a classifying space which provides a universal bundle for it. The K-groups of the category are then related to the homotopy groups of the classifying space. In some instances it is possible to realize this equivalence in terms of stable homotopy groups of finite dimensional homogeneous spaces. In this paper we will exploit the stable homotopy properties of K-theory to describe the various relationships that exist between stable and unstable string solitons. Such connections between different types of D-branes are known as ‘descent relations’ [2, 3, 12] and they form a remarkable web of mappings between BPS and non-BPS branes that provides various different ways of thinking about the origins of D-branes. The situation for type-II D-branes is depicted in fig. 1 [12]. If we consider, say, a Dp-brane anti-Dp-brane (or Dp-brane) bound state pair of type-IIB string theory (p odd), then the spectrum contains a tachyonic excitation whose ground state corresponds to the supersymmetric vacuum configuration. However, one can consider instead a tachyonic kink solution on the brane-antibrane pair which describes a non-BPS D($p-1$)-brane of the IIB theory. This system also contains a tachyonic excitation in its worldvolume field theory, so that one can consider a tachyonic kink solution on the D($p-1$)-brane which results in a BPS D($p-2$)-brane of IIB.

Another set of relations comes from modding out the p-\overline{p} brane pair by the operator
Figure 1: The relationships between different D-branes in type-II superstring theory. The squares represent stable supersymmetric BPS branes or a combination of such a brane with its antibrane, while the circles depict unstable non-BPS configurations. The horizontal arrows represent the result of quotienting the theory by the operator \((-1)^F_L\), the vertical arrows the effect of constructing a tachyonic kink solution in the brane worldvolume field theory, and the diagonal arrows the usual T-duality transformations.

\((-1)^F_L\) which acts as \(-1\) on all the Ramond sector states in the left-moving part of the fundamental string worldsheet, and leaves all other sectors unchanged. A careful study of the open string spectrum of this configuration reveals that the result is a non-supersymmetric Dp-brane of IIA, and that a further quotient by \((-1)^F_L\) yields a supersymmetric p-brane of IIB \([12, 14]\). When combined with the usual T-duality transformations between the type IIB and IIA theories, we find that any p-brane configuration in type-II superstring theory may be obtained from a chain of higher dimensional brane configurations. In particular, all branes of the type-II theories descend from a bound state of spacetime filling D9-D9 pairs, which agrees with standard mathematical constructions in K-theory \([4, 5]\).

The new understanding of the tachyon in an unstable brane configuration as a Higgs type excitation in the spectrum of string states leads to a topological classification of the resulting brane charges \([13]\) when D-branes are viewed as the tachyonic solitons. Generally, the topological charges of these objects are determined by the homotopy groups of a homogeneous space \(G/H\), where \(G\) is a compact Lie group and \(H\) is a closed subgroup of
The fibration $H \xrightarrow{i} G \xrightarrow{\pi} G/H$, with i the inclusion and π the canonical projection, induces a long exact sequence of homotopy groups,

$$\ldots \rightarrow \pi_{n-1}(H) \xrightarrow{i^*} \pi_{n-1}(G) \xrightarrow{\pi^*} \pi_{n-1}(G/H) \xrightarrow{\partial^*} \pi_{n-2}(H) \rightarrow \ldots$$

(1.1)

In this paper we shall be primarily interested in two instances of this homotopy sequence. The first one will be related to the weak Bott periodicity theorem for the classical Lie groups \[13\]–\[18\], in which case the induced boundary homomorphism ∂^* is an isomorphism so that $\pi_{n-1}(G/H) = \pi_{n-2}(H)$. In this case, G is the worldvolume gauge group of a given configuration of branes and the tachyon scalar field T is a Higgs field for the breaking of the gauge symmetry down to the subgroup H. The tachyonic soliton must be accompanied by a worldvolume gauge field A of corresponding topological charge in the vacuum manifold G/H, in order that the energy per unit worldvolume of the induced lower dimensional brane be finite. A careful study of the tachyon potential \[3, 10\] shows that the brane worldvolume field theory contains finite energy, static soliton solutions which have asymptotic pure gauge configurations at infinity,

$$T \simeq \lambda_0 U \quad , \quad A \simeq U^{-1} dU$$

(1.2)

where λ_0 is a constant, and U is a G/H valued function corresponding to the identity map (of a given winding number) from the asymptotic boundary of the worldvolume soliton to the group manifold of G/H. If the induced brane configuration has codimension n in the higher dimensional worldvolume, then the corresponding soliton carries topological charge taking values in $\pi_{n-1}(G/H)$.

Another instance of (1.1) that will be considered in the following will involve the construction of K-theory classes based on the properties of spinor modules. This mapping is known as the Atiyah-Bott-Shapiro (ABS) construction \[17, 19, 20\] and it is equivalent to the physical realization of a D-brane as the tachyonic soliton in the worldvolume of a bound state system of higher dimensional branes. It is based on an intimate relationship between K-theory and the structure of Clifford algebras, and it yields an explicit form for the classical tachyon field as Clifford multiplication by a vector in the sphere bundle

$$SO(n) \xrightarrow{\iota} SO(n+1) \xrightarrow{\pi} S^n$$

(1.3)

over the transverse space to the D-brane. This construction will be related to the case where ∂^* is a trivial mapping, i.e. $\ker \partial^* = \pi_{n-1}(G/H)$, so that $\pi_{n-1}(G/H) = \pi_{n-1}(G)/\pi_{n-1}(H)$. As we will see, one of the natural consequences of this construction is that the induced D-brane is represented as the topological soliton associated with the Hopf fibration \[21\]

$$S^{n-1} \xrightarrow{\iota} S^{2n-1} \xrightarrow{\pi} S^n$$

(1.4)
There are only four non-trivial Hopf fibrations, for \(n = 1, 2, 4, 8 \), which correspond respectively to the real, complex, quaternion and octonion division algebras over the field of real numbers. The classifying map of the fibration is a generator of

\[
\pi_{n-1}(\text{spin}(n)) / \pi_{n-1}(\text{spin}(n-1)) = \begin{cases}
\mathbb{Z}_2, & n = 1 \\
\mathbb{Z}, & n = 2, 4, 8
\end{cases}
\]

As we will show, the Hopf fibrations determine all the fundamental bound state constructions of branes in type-I and type-II superstring theories, and hence the complete spectrum of D-brane charges rests on the fact that there are only four such bundles. For \(n \neq 1 \), the topological charge of the corresponding soliton is given by the Pontryagin number density which is proportional to \(\text{tr}(F^{n/2}) \), where \(F \) is the curvature of the associated topologically non-trivial gauge field configuration. For \(n = 1 \) the charge is determined by a \(\mathbb{Z}_2 \)-valued Wilson line, as in the standard construction of non-BPS branes in type-I string theory [10]. This fact therefore also realizes all D-branes in terms of more conventional solitons, such as the Dirac monopole and the \(SU(2) \) Yang-Mills instanton, and it moreover determines the explicit forms of the non-trivial gauge fields living on the brane worldvolumes.

In this paper we will give a systematic and exhaustive mathematical classification of the D-brane descent relations based on the periodicity theorems of topological K-theory. In addition to providing many deeper insights into the existing properties of branes within their K-theory/bound state constructions, this analysis will also predict various new descent relations and symmetries among D-branes. All facts about K-theory that are used are explained throughout the paper. We will consider only the simplest case of a flat ten dimensional spacetime manifold and topologically trivial worldvolume embeddings, leaving the analysis of curved manifolds as an interesting and important future generalization of the present description (global aspects of the bound state constructions are discussed in [2, 4]).

In section 2 we will analyse the type-II theories, mainly to introduce the relevant notations, constructions and ideas that will be used later on in the case of more involved brane configurations. We begin by analysing the weak Bott periodicity theorem for the stable homotopy groups of unitary symmetric spaces using the ABS construction and the standard proof of Bott periodicity based on the structure of Clifford algebra representations [18]. We describe in detail the descent relations among various branes in this formalism, and relate them to the analysis of [11]. We then proceed to show that these natural isomorphisms are nothing but the \(T \)-duality transformations between the IIB and IIA superstring theories. The K-theoretic realization of \(T \)-duality has been discussed in [3–8]. For completeness, we shall give some further insight into the structure of the \(T \)-duality maps in complex K-theory, in a slightly different spirit than the previous analyses by em-
phasizing the transformation properties of the worldvolume fields. We also show how the \((-1)^{F_L}\) transformations are realized as natural homomorphisms in terms of equivariant K-theory\[^1\] and show that the mapping between the IIA and IIB theories under the \((-1)^{F_L}\) projection is formally the same as their relationship under T-duality. We compare this K-theory construction with a boundary state formalism \[14\] which demonstrates that the \((-1)^{F_L}\) quotient is a genuine nonperturbative symmetry of type-II string theory.

In section 3 we turn our analysis to type-I superstring theory and its associated type-II orientifolds. The type-I theories were discussed in \[2, 3, 8\], while the K-theoretic description of orbifolds was examined in \[4\] and an analysis of various orientifold theories in \[3, 4, 8\]. Here we examine the weak Bott homotopy sequence associated with real K-theory through a careful analysis of real spinor representations, which now takes us naturally through a chain of type-II orientifolds in various dimensions. From this analysis we are able to completely classify the vacuum manifolds for all of these orientifold theories, and from the ABS isomorphism we construct the explicit forms of the classical tachyon scalar fields in each case. This in turn identifies the field content on the brane worldvolumes which are relevant to the bound state constructions in these theories. We show how the Bott periodicity theorem in these cases naturally encodes information about the diversities of brane constructions in various dimensions, and again compare with the bound state constructions of \[10, 11\]. Generally, the K-theoretic description of type-I superstring theory is only valid at weak string coupling, but S-duality can still be used in a heuristic way to say something about the perturbative spectrum of heterotic strings \[2\]. We briefly describe the dual models related to each of these type-II orientifolds, and as an example we discuss, using equivariant K-theory, some relationships to conventional orbifolds of the type-II theories as have been described in \[12, 13\]. These K-theoretical constructions could have important ramifications for the structure of the moduli spaces of these theories, which have been recently re-examined in \[22\]. We also describe the analogs of the \((-1)^{F_L}\) transformations, pointing out the qualitative differences with the corresponding projections of the type-II models.

In section 4 we present a more systematic analysis of the periodicity properties of the orientifold models through a more thorough description of the stable equivariant homotopy sequence and the ABS construction for Real K-theory\[23\]. We show that the extended Bott periodicity here implies an unexpected descent relation whereby a \(p - 2\)-brane localized at a singular plane of a type-II orientifold theory is realized as a \(\mathbb{Z}_2\)-equivariant magnetic monopole in the worldvolume of a \(p\)-\(\overline{p}\) brane pair located over an orientifold plane of one higher dimension. These structures illuminate the internal symmetries inherent in the Real K-theory and also how these groups take into account the RR-charges.

\[^1\]Our analysis of the \((-1)^{F_L}\) projections differs from the results of \[3\].
carried by the orientifold planes. We also illustrate how Real K-theory encompasses all of the brane constructions in a unifying description. Within this description, the fundamental brane constructions are all determined as solitonic configurations associated with the four Hopf fibrations. This determines string solitons in terms of magnetic monopoles in the type-II theories, while in the type-I theories we obtain non-BPS branes as kinks, BPS branes as $SU(2)$ instantons, and both BPS and non-BPS branes as $spin(8)$ instantons (along with their equivariant versions in the case of orbifold and orientifold models). The internal orientifold symmetries are then determined by equivariant monopoles which also relate both supersymmetric and non-supersymmetric D-branes.

1.1. K-theory Conventions

In the remainder of this section we shall introduce the relevant K-theoretical conventions that will be used in this paper. For concise introductions to the subject, see [17, 20, 21, 24]. Given a compact topological space X, the Grothendieck group $K(X)$ is defined as the set of equivalence classes of pairs of complex vector bundles $[(E, F)] = [E] - [F]$ over X, where $(E, F) \equiv (E \oplus G, F \oplus G')$ for any pair of vector bundles (G, G') (which will correspond to brane-antibrane creation and annihilation with respect to the supersymmetric vacuum). The group operation is induced by the Whitney sum of vector bundles and the inverse of the class $[(E, F)]$ is $[(F, E)]$. The map $X \to K(X)$ is a contravariant functor from the category of compact topological spaces to the category of abelian groups. The inclusion $i : pt \hookrightarrow X$ and the projection $X \to pt$ with respect to a fixed basepoint of X induce a split short exact sequence in cohomology which leads to the decomposition

$$K(X) = \tilde{K}(X) \oplus K(pt) \quad (1.6)$$

with $K(pt) = \mathbb{Z}$. The subgroup $\tilde{K}(X) = \ker i^*$ is the reduced K-group of X consisting of classes of pairs of vector bundles of equal rank (as will be required by tadpole anomaly cancellation in type-I and type-II superstring theory). We shall only work in K-theory with compact support (this will correspond to the statement that a brane has finite tension). This means that for each class $[(E, F)]$, there is a map $T : E \to F$ which is an isomorphism of vector bundles outside an open set $U \subset X$ whose closure \overline{U} is compact (U will represent the region of the transverse space where the topological soliton charge is localized while T will be the tachyon field of a given unstable configuration of branes). This condition automatically implies that E and F have the same rank, and hence we shall mostly deal with the reduced K-group $\tilde{K}(X)$ (this means that we always measure brane charges with respect to that of the supersymmetric vacuum). The corresponding virtual bundle may then be represented as

$$[(E, F)] = [(\ker T, \coker T)] \quad (1.7)$$
When X is not compact, we define $K(X) = \widetilde{K}(X^+)$, where X^+ is the one-point compactification of X. We shall denote the trivial bundle of rank k over X by I^k.

The higher K-group $K^{-1}(X)$ is defined as the abelian group of equivalence classes of pairs $[(E_\alpha, E_\sigma)]$, where α is an automorphism of E (σ denotes the identity automorphism) and E_α is the vector bundle over $S^1 \times X$ with total space $[0, 1] \times E$ modulo the identification $(0, v) \equiv (1, \alpha(v)) \forall v \in E$. With this definition we have $K^{-1}(X) \subset \widetilde{K}(S^1 \times X)$ and $K^{-1}(\text{pt}) = 0$, so that $K^{-1}(X) = \widetilde{K}^{-1}(X)$. Similarly one also defines higher degree K-groups $K^{-n}(X)$, with $K^0(X) = K(X)$.

We shall be frequently interested in the K-groups of the product of two spaces Y and W. For this, we introduce the reduced join $Y \vee W$ of Y and W, i.e. their disjoint union with a basepoint of each space identified, which can be viewed as the closed subspace $Y \times \text{pt} \cup \text{pt} \times W$ of the Cartesian product $Y \times W$. Let $Y \wedge W = Y \times W/Y \vee W$ be the smash product of Y and W. Note that when $W = S^1$, $Y \wedge S^1 = \Sigma Y$ is the reduced suspension of the topological space Y, so that

$$\widetilde{K}^{-n}(\Sigma Y) = \widetilde{K}^{-n-1}(Y) \quad (1.8)$$

The inclusion $Y \vee W \hookrightarrow Y \times W$ and the canonical projection $Y \times W \to Y \wedge W$ induce a split short exact sequence in reduced K-theory, leading to

$$\widetilde{K}^{-n}(Y \times W) = \widetilde{K}^{-n}(Y \vee W) \oplus \widetilde{K}^{-n}(Y \wedge W)$$
$$= \widetilde{K}^{-n}(Y) \oplus \widetilde{K}^{-n}(W) \oplus \widetilde{K}^{-n}(Y \wedge W) \quad (1.9)$$

The tensor product of vector bundles induces a cup product which gives $K(X)$ the structure of a \mathbb{Z}_2-graded ring. This yields the canonical homomorphisms

$$K(Y) \otimes_{\mathbb{Z}} K(W) \to K(Y \times W)$$
$$\widetilde{K}(Y) \otimes_{\mathbb{Z}} \widetilde{K}(W) \to \widetilde{K}(Y \wedge W) \quad (1.10)$$

which are induced by the cup product and the canonical projection in (1.9). When either $K(Y)$ or $K(W)$ is a free abelian group, the mappings in (1.10) are isomorphisms, leading to the usual cohomological Künneth theorem.

2. Descent Equations in Type-II Theories

The basic tool in the K-theory correspondence for type-II theories is the ABS construction for the complex K-groups of even dimensional spheres [19]. Let $\text{spin}(m)$ be the spin group of dimension $2^\lfloor \frac{m}{2} \rfloor$ which is a double cover of the isometry group $SO(m)$ of the sphere
S^{n-1}. Let Δ_{2n+1} be the $\text{spin}(2n+1)$-module corresponding to the unique irreducible representation of the complexified Clifford algebra $C_{2n+1}^c = \mathbb{C}(2^n)$ of dimension 2^n, and let Δ_{2n}^\pm denote the $\text{spin}(2n)$-modules corresponding to the two 2^n-1 dimensional irreducible representations of $C_{2n}^c = \mathbb{C}(2^{n-1} \oplus \mathbb{C}(2^{n-1})$ (Generally, $\mathbb{F}(m)$ denotes the \mathbb{R}-algebra of $m \times m$ matrices with entries in the field \mathbb{F}). Let $R[\text{spin}(m)]$ be the (complex) representation ring of $\text{spin}(m)$, i.e. the Grothendieck group constructed from the abelian monoid generated by the irreducible representations, with respect to the direct sum and tensor product of $\text{spin}(m)$-modules. Then the natural embedding $\text{spin}(2n) \hookrightarrow \text{spin}(2n+1)$ induces the graded ring isomorphism

$$R[\text{spin}(2n)] / R[\text{spin}(2n+1)] \cong \widetilde{K}(S^{2n})$$

(2.1)

The groups in (2.1) are isomorphic to \mathbb{Z}, while they would vanish for odd-dimensional spheres. This leads to the usual integer spectrum of alternating dimension Dp-brane charges (with p odd for IIB and even for IIA branes).

2.1. Bott Periodicity

For type-II D-branes, the basic relation we shall study is the weak Bott periodicity theorem for stable homotopy groups of unitary homogeneous spaces,

$$\ldots \to \pi_{2k-1}(U(N)) \to \pi_{2k}(U(2N)/[U(N) \times U(N)]) \to \pi_{2k+1}(U(2N)) \to \ldots$$

(2.2)

where $N = 2^{k-1}$ and $2k = 9 - p$ is the codimension of a type-IIB p-brane worldvolume \mathcal{M}_{p+1} in the spacetime manifold X. Our first observation will be that the T-duality mapping between the type-IIB and type-IIA theories is precisely the natural isomorphism between homotopy groups at each step in (2.2), showing how a p-brane of IIB is mapped into a $p-1$-brane of IIA, and vice versa. In this subsection we shall start by describing the details of the isomorphism at the level of the homotopy groups [18].

Consider a p-brane in the type-IIB theory constructed as the tachyonic soliton of a bound state of $N = 2^{k-1}$ 9-brane \mathcal{N}-brane pairs [4]. The rank 2^k spinor bundle of the $2k$-dimensional transverse space has a natural grading $S_N^+ \oplus S_N^-$ induced by the chirality grading of the associated Clifford bundle, where S_N^\pm are the chiral spinor bundles of rank 2^{k-1} which carry the irreducible representation Δ_{2k}^\pm of the Clifford algebra of the transverse space. The generators Γ_i of $\Delta_{2k}^\pm \oplus \Delta_{2k}^-$ act off-diagonally as $\Gamma_i : \Delta_{2k}^\pm \to \Delta_{2k}^\mp$. The spinor bundles may be extended over the whole spacetime X [2]. The bundle S_N^+ (resp. S_N^-) is then identified as the Chan-Paton bundle carried by the 9-branes (resp. \mathcal{N}-branes), so that these spinor bundles produce a K-theory class $[(S_N^+, S_N^-)] = [S_N^+] - [S_N^-] \in \widetilde{K}(X)$. The gauge symmetry on the spacetime filling 9-brane worldvolume is $U(N) \times U(N)$. The tachyon field lives in the bifundamental $\mathbf{N} \otimes \mathbf{\overline{N}}$ representation of the gauge group (as
required by tadpole anomaly cancellation) and is a map $T_N^{(B)}: S_N^+ \to S_N^-$. It vanishes on
the worldvolume \mathcal{M}_{p+1} and approaches its vacuum expectation value $T_N^{(B)0}$ at infinity in X, where we assume that the eigenvalues of $T_N^{(B)0}$ all have the same modulus $[3, 1]$. It therefore breaks the 9-brane gauge symmetry to the type-IIB vacuum manifold $U(N) \times U(N)/U(N)_{\text{diag}} = U(N)$ (topologically) which represents the stable vortex configurations of the tachyon field. The p-brane charge is determined by the winding number of the
tachyon field at infinity which generates the homotopy group $\pi_{2k-1}(U(N))$. The explicit
representation of the tachyonic configuration is via Clifford multiplication by an element
of the sphere bundle $[\text{1.3}]$ for $n = 2k$:

$$T_N^{(B)}(x) = \sum_{i=1}^{2k} \Gamma_i x^i = \sum_{i=1}^{2k} \begin{pmatrix} 0 & \gamma_i^+ x^i \\ \gamma_i^- x^i & 0 \end{pmatrix}$$

(2.3)

where x^i are local coordinates of the transverse space to \mathcal{M}_{p+1} in X and γ_i^\pm are the
generators of Δ_{2k}^\pm. The prescription described above embeds the K-group $\tilde{K}(\mathcal{M}_{p+1})$ of
the p-brane worldvolume into the spacetime K-group $\tilde{K}(X)$, such that the RR-charge
takes values in the K-group

$$\tilde{K}(S^{2k}) = \pi_{2k-1}(U(N)) = \mathbb{Z}$$

(2.4)

of the transverse space. The precise mapping is given via the cup product in $[\text{1.10}]$, leading to

$$\lambda_N : K(\mathcal{M}_{p+1}) \otimes \mathbb{Z} K(S^{2k}) \xrightarrow{\approx} K(X)$$

$$[(E, F)] \mapsto \lambda_N \left([(E \otimes S_N^+ \oplus F \otimes S_N^- \otimes S_N^\perp \oplus F \otimes S_N^\perp)] \right)$$

(2.5)

where $[(E, F)] \in \tilde{K}(\mathcal{M}_{p+1})$ and we have used the fact that $K(S^m)$ for any m is a free
abelian group.

There is a canonical mapping of this system onto a configuration in the type-IIA theory
representing a $p-1$-brane of codimension $2k+1$ in X, constructed as the tachyonic vortex
of a system of unstable 9-branes [3]. There are now $2N$ 9-branes (unstable \mathcal{F}-branes in
the IIA theory are indistinguishable from unstable 9-branes as they carry no conserved charge), with gauge symmetry $U(2N)$, whose tachyon condensate $T_N^{(A)0}$ has an equal
number of positive and negative eigenvalues [3]. The 9-brane gauge symmetry is therefore
broken to the type-IIA vacuum manifold $U(2N)/[U(N) \times U(N)]$ representing the stable
soliton configurations of the tachyon field $T_N^{(A)}$ which lives in the adjoint representation of

\footnote{Here and in the following it is always implicitly understood that the tachyon field is multiplied by a
convergence factor which approaches 1 near \mathcal{M}_{p+1} (so that the soliton is located at $x^i = 0$) and ensures
that at $|x| \to \infty$, $T_N^{(B)}(x)$ takes values in the type-IIB vacuum manifold, as in $[\text{1.2}]$.}
the $U(2N)$ gauge group and generates the homotopy group $\pi_{2k}(U(2N)/[U(N) \times U(N)])$. Promoting one of the coordinates x^{p+1} of \mathcal{M}_{p+1} to the transverse space, we identify the $U(2N)$ Chan-Paton bundle carried by the 9-branes as the irreducible rank 2^k spinor bundle \mathcal{S}_N of the $2k+1$ dimensional transverse space to the new $p-1$-brane worldvolume \mathcal{M}_p.

Then the tachyon field is a map $T^{(A)}_N : \mathcal{S}_N \to \mathcal{S}_N$ which produces a higher degree K-theory class $[(\mathcal{S}_{\tau_N}, \mathcal{S}_I)] \in K^{-1}(X)$, where

$$\tau_N = -\exp \pi i T^{(A)}_N$$

acts by the natural adjoint action on \mathcal{S}_N. The natural embedding $spin(2k) \hookrightarrow spin(2k+1)$ identifies the corresponding $2k+1$ generators of Δ_{2k+1} as the Γ_i in (2.3) along with the chirality matrix

$$\Gamma_{2k+1} = (-i)^k \Gamma_1 \cdots \Gamma_{2k} = (\sigma_3)^{\otimes k}$$

(2.7)

where σ_i will always denote the standard Pauli spin matrices. This gives a natural map $T^{(B)}_N(x) \mapsto T^{(A)}_N(x, x^{p+1}) = \sum_i \Gamma_i x^i + \Gamma_{2k+1} x^{p+1}$ on $\pi_{2k-1}(U(N)) \to \pi_{2k}(U(2N)/[U(N) \times U(N)])$, i.e.

$$T^{(A)}_N(x, x^{p+1}) = T^{(B)}_N(x) + \left(x^{p+1} I_N \begin{pmatrix} 0 & 0 \\ 0 & -x^{p+1} I_N \end{pmatrix} \right)$$

(2.8)

where $T^{(B)}_N(x)$ is the IIB tachyon field (2.3) and I_N is the $N \times N$ identity matrix. The map (2.8) generates the higher degree K-group

$$K^{-1}(S^{2k+1}) = \pi_{2k}(U(2N)/[U(N) \times U(N)]) \cong \mathbb{Z}$$

(2.9)

of the transverse space which labels the induced $p-1$-brane RR charge. The construction above defines an embedding $\tilde{K}(\mathcal{M}_p) \to K^{-1}(X)$, again via the cup product (1.10) giving

$$\tilde{\lambda}_N : K(\mathcal{M}_p) \otimes_{\mathbb{Z}} K^{-1}(S^{2k+1}) \cong K^{-1}(X)$$

(2.10)

$$\left[(E, F) \right] \mapsto \tilde{\lambda}_N \left(\left[\left((E \otimes \mathcal{S}_N)_{1 \otimes T_N}, (F \otimes \mathcal{S}_N)_{1 \otimes T_N} \right) \right] \right)$$

for $[(E, F)] \in \tilde{K}(\mathcal{M}_p)$. The transformation described here is actually nothing but the T-duality mapping between the type-IIB and type-IIA theories. Starting with the type-IIB theory, a T-duality transformation along one of the longitudinal directions of the p-brane transforms it into a transverse space direction and maps the p-brane onto a $p-1$-brane. It acts on the K-theory classes of X by mapping the 9-brane-antibrane pairs onto N 8-brane-antibrane pairs, of codimension 1 in X, which can each be represented as the tachyonic kink of an unstable 9-brane in the type-IIA theory. This is represented by the diagonal matrix in (2.8). The $p-1$-brane itself is then represented as the codimension $2k$ tachyonic soliton of the bound state of the 8-brane $\tilde{8}$-brane pairs connected together by the same tachyon field $T^{(B)}_N(x)$ as in the IIB case.
Finally, we come to the second isomorphism in (2.2), which gives a natural map from the type-IIA system above to the type-IIB theory describing a $p - 2$-brane, with worldvolume \mathcal{M}_{p-1} obtained by promoting the coordinate x^p of \mathcal{M}_p to the transverse space, which is described in terms of the bound state of $2N$ 9-brane $\mathfrak{9}$-brane pairs. The spinor representation of $SO(2k)$ may be mapped into that of $SO(2k+2)$ by defining $2k + 1$ dimensional generators $\hat{\Gamma}_i$ of $\Delta^+_{2k+2} \oplus \Delta^-_{2k+2}$ via

$$\hat{\Gamma}_i = \sigma_3 \otimes \Gamma_i, \quad \hat{\Gamma}_{2k+1,2k+2} = \sigma_{1,2} \otimes I_{2N}$$

(2.11)

The new tachyon configuration whose vortex core corresponds to the $p - 2$-brane worldvolume and which generates $\tilde{K}(S^{2k+2}) = \pi_{2k+1}(U(2N))$ is thus $T^{(B)}_{2N}(x, x^p, x^{p+1}) = \sum_i \hat{\Gamma}_i x^i + \hat{\Gamma}_{2k+1} x^p + \hat{\Gamma}_{2k+2} x^{p+1}$, i.e.

$$T^{(B)}_{2N}(x, x^p, x^{p+1}) = \begin{pmatrix} T^{(B)}_N(x) & 0 \\ 0 & -T^{(B)}_N(x) \end{pmatrix} + \begin{pmatrix} 0 & (x^p - i x^{p+1}) I_{2N} \\ (x^p + i x^{p+1}) I_{2N} & 0 \end{pmatrix}$$

(2.12)

Again the form of (2.12) is naturally explained by T-duality. Applying a T-duality transformation to the IIA system above maps the 8-branes and $\mathfrak{8}$-branes to N 7-branes and 7-branes, which are each of codimension 2 in X and whose tachyonic vortex representation in terms of 9-brane-antibrane pairs is given by the off-diagonal block matrix in (2.12) [3]. The $p - 2$-brane is represented as the tachyonic soliton in the 7-brane worldvolume. In this case, the unstable 9-branes of the IIA-theory are mapped into unstable 8-branes of the IIB-theory, each of which gives rise to a tachyonic kink representing a 7-brane or 7-brane. The result is the addition of an extra set of N 7-7 pairs required for K-theoretic stability [4, 3] of the bound state construction, so that the full system of 7-branes are connected together by the tachyon field given by the block diagonal matrix in (2.12). In this stabilizing operation, the extra set of 7-branes does not interact via the tachyon field with the original set of 7-branes.

The intermediate configuration (2.8) can also be regarded as a $p - 1$-brane of the type-IIB theory, obtained as the codimension 1 tachyonic kink of a $p \overline{p}$ brane pair. However, the tachyon field $T^{(A)}_N$ has winding number 0 in codimension 2k and so this configuration maps to the trivial (identity) element of $\tilde{K}(X)$. This is simply the K-theoretic statement that the $p - 1$-brane is an unstable non-BPS configuration of type-IIB superstring theory. It becomes stable upon another tachyon condensation in codimension 1, giving (2.12).

The map between the tachyon fields (2.3) and (2.12) (relating p-branes and $p - 2$-branes in the IIB theory) is a typical example of the strong Bott periodicity isomorphism in complex K-theory [17]

$$\tilde{K}^{-n}(X) = \tilde{K}^{-n-2}(X)$$

(2.13)

3Notice that the above construction (and the others to follow) applies equally well starting in the type-IIA theory with a brane configuration of codimension $2k + 1$ in X, by decomposing the spin group $spin(2k + 1) \supset spin(2k)$ and applying the construction to the $2k$ dimensional subspace.
which, according to (2.1) and the above construction, can be described by the ABS map

\[
\begin{bmatrix}
(S_N^+, S_N^-)
\end{bmatrix} \mapsto \begin{bmatrix}
(S_N^+ \otimes (S_1^+ \oplus S_1^-), S_N^- \otimes (S_1^+ \oplus S_1^-))
\end{bmatrix}
\]

\[T_N \mapsto \begin{pmatrix}
T_N \otimes I_2 & -I_{2N} \otimes T_1^* \\
I_{2N} \otimes T_1 & T_N^* \otimes I_2
\end{pmatrix}
\]

(2.14)

The block diagonal matrix in (2.12) corresponds to the representation of \(p\)-branes and \(\overline{p}\)-branes as bound states of \(N = 2^{k-1}\) spacetime-filling 9-brane-antibrane pairs, while the off-diagonal block matrix in (2.12) corresponds to the tachyonic vortex configuration of a \(p-2\)-brane constructed as the bound state of the \(p-\overline{p}\) pair in codimension 2. Thus the transformation from (2.3) to (2.12) represents the process of tachyon condensation of the \(p\)-brane bound state into a \(p-2\)-brane, regarded as the Bott periodicity map (2.14) on the spacetime K-theory group \(\tilde{K}(X) \to \tilde{K}(X)\).

The mod 2 periodicity (2.13) follows from the periodicity \(C^e_{i+2} = C^e_i \otimes \mathbb{C}(2)\) of complexified Clifford algebras [20], and the isomorphism (2.14) comes from the cup product on the K-groups. Taking \(W = S^2\) and \(Y\) to be the \(n\)-th reduced suspension of \(X\) in (1.10) gives \(\tilde{K}(\Sigma^n X) \otimes \mathbb{Z} \tilde{K}(S^2) = \tilde{K}(\Sigma^n X \wedge S^2)\), which using (1.8) yields the isomorphism

\[
\alpha : \tilde{K}^{-n}(X) \otimes \mathbb{Z} \tilde{K}(S^2) \cong \tilde{K}^{-n-2}(X)
\]

(2.15)

The generator \([\mathcal{N}_C] - [I]^1\) of \(\tilde{K}(S^2) = \mathbb{Z}\) may be described by taking \(\mathcal{N}_C\) to be the canonical line bundle over \(\mathbb{C}P^1\), which is associated with the Hopf fibration \(S^3 \to S^2\). Then the isomorphism (2.13) is given by the mapping

\[
[(E, F)] \mapsto \alpha \left(\left[(E \otimes \mathcal{N}_C, F \otimes \mathcal{N}_C)\right]\right)
\]

(2.16)

for \([(E, F)] \in \tilde{K}^{-n}(X)\). This construction shows that the codimension 2 tachyonic soliton in the worldvolume of a \(p-\overline{p}\) brane pair which represents a type-II \(p-2\)-brane may be identified with the usual Dirac monopole associated with the complex Hopf bundle \(\mathcal{N}_C\) [25]. This K-theoretic fact agrees with the construction of [11] of a vortex-type solution on the membrane-antimembrane pair in type-IIA string theory, whereby the asymptotic field configurations (1.12) on the membrane worldvolume resemble exactly those of a magnetic monopole configuration with charges living in \(\pi_1(U(1)) = \mathbb{Z}\).

2.2. T-duality Transformations

To formalize the T-duality transformation of the spacetime K-groups, we compactify one of the \(p\)-brane worldvolume directions on a circle \(S^1\), so that the spacetime manifold is now the product space \(X = Y \times S^1\). To study the K-theory of this compactification,
we use \((1.8)\) and the product formula \((1.9)\) with \(W = S^1\) to get

\[
\tilde{K}(Y \times S^1) = K^{-1}(Y) \oplus \tilde{K}(Y) \quad (2.17)
\]

\[
K^{-1}(Y \times S^1) = (\tilde{K}(Y) \oplus \mathbb{Z}) \oplus K^{-1}(Y) \quad (2.18)
\]

where we have used Bott periodicity. The splitting of the K-groups here can be understood by noting that the natural embedding \(i : Y \hookrightarrow Y \times S^1\) induces a projection on K-theory \(i^* : \tilde{K}^{-n}(Y \times S^1) \to \tilde{K}^{-n}(Y)\) such that \(\ker i^* = \tilde{K}^{-n-1}(Y) \oplus \tilde{K}^{-n}(S^1)\). It follows that the group \(\tilde{K}^{-n}(Y)\) labels the corresponding Kaluza-Klein modes that arise from the compactification of the spacetime on \(S^1\). The other factor \(\tilde{K}^{-n-1}(Y) \oplus \tilde{K}^{-n}(S^1)\) represents the unwrapped modes of the D-brane configurations. That this interpretation is indeed precise can be proven by taking \(W\) to be the topological space consisting of a single point in \((1.9)\), which gives

\[
\tilde{K}^{-n}(Y \times \text{pt}) = \tilde{K}^{-n}(Y) \quad (2.19)
\]

where we have used \(\tilde{K}^{-n}(\text{pt}) = 0\). Eq. \((2.19)\) shows that as the compactified direction is shrunk to a point, only the Kaluza-Klein modes contribute to the D-brane charges which are now determined by the K-theory classes of the uncompactified nine dimensional space \(Y\).

The extra integer subgroup in the IIA case \((2.18)\) relative to the IIB case \((2.17)\) labels the large gauge transformations of the tachyon field \((2.8)\) around the compactified direction \(x^{p+1} \in S^1\). The \(T^{(B)}_N\) part of the IIA tachyon field \((2.8)\) generates the \(\tilde{K}(Y)\) subgroup of \((2.18)\) representing the unwrapped brane charges, and the map \(T^{(A)}_N \mapsto \tau_N\) in \((2.6)\) used to define an element of \(K^{-1}(X)\) has kernel which is isomorphic to \(\mathbb{Z}\). It is invariant under the shift

\[
T^{(A)}_N \rightarrow T^{(A)}_N + w \sigma_3 \otimes I_N \quad , \quad w \in \mathbb{Z} \quad (2.20)
\]

corresponding to the windings of the tachyon field around the \(S^1\). More precisely, the IIB tachyon field \(T^{(B)}_N(x)\) is the transition function on the overlap \(S^2_+ \cap S^2_- = S^{2k-1}\) (generating \(\pi_{2k-1}(U(N))\)) that allows one to piece together topologically trivial gauge fields on the contractible upper and lower hemispheres \(S^2_+ \subset S^{2k}\) to obtain a gauge field on \(S^{2k}\) with non-trivial topological \(U(N)\) charge. This configuration represents the unbroken part of the \(U(2N)\) gauge field carried by the unstable 9-branes of the IIA theory \([3]\), showing how the large gauge transformations arise upon target space compactification. On the other hand, the automorphism \((2.6)\) generates \(\pi_{2k+1}(U(2N))\) \([3, 18]\), so that the effect of the large gauge transformations disappears when going from the IIA theory to the IIB theory. Thus the \(T\)-duality mapping in \((2.17)\) and \((2.18)\) shows explicitly how under \(T\)-duality a longitudinal brane coordinate is mapped onto a gauge field configuration winding around the compactified direction, and moreover how \(T\)-duality interchanges Kaluza-Klein modes.
and unwrapped D-brane configurations. The isomorphism mod \mathbb{Z} between (2.17) and (2.18) is therefore precisely the natural transformation between the IIB and IIA tachyon generators, regarded as the Bott periodicity isomorphism on $\widetilde{K}(Y \times S^1) \rightarrow K^{-1}(Y \times S^1)$.

At the level of unreduced K-theory, the relation (1.6) along with (2.17) and (2.18) show that the T-duality mapping is indeed a natural isomorphism of the spacetime K-groups. However, the isomorphism deteriorates in the decompactification limit, whereby only the unwrapped D-brane configurations contribute to the charge. This can be seen through the suspension isomorphism [17]

$$K^{-n}(Y \times \mathbb{R}) = K^{-n-1}(Y)$$

which illustrates the usual result that the T-dual equivalence between the IIB and IIA theories only holds upon compactification down to nine dimensions. Upon descending to lower dimensional D-branes (as in (2.12)), we encounter higher dimensional type-II toroidal compactifications. The appropriate generalization of (2.17,2.18) may be found inductively from (1.8) and (1.9) to be

$$\widetilde{K}(Y \times T^m) = K^{-1}(Y) \oplus 2^{m-1} \oplus \mathbb{Z} \oplus (2^{m-1} - 1)$$

(2.22)

$$K^{-1}(Y \times T^m) = (\widetilde{K}(Y) \oplus 2^{m-1} \oplus \mathbb{Z}) \oplus K^{-1}(Y) \oplus 2^{m-1} \oplus \mathbb{Z} \oplus (2^{m-1} - 1)$$

(2.23)

The K-groups (2.22) and (2.23) are again isomorphic mod \mathbb{Z}. Now the decompositions correctly incorporate the dimensionality 2^{m-1} of the spinor representation of the T-duality group $O(m, m; \mathbb{Z})$ [1], and hence of the fact that IIB (resp. IIA) D-branes belong to the chiral (resp. antichiral) spinor representations of $SO(2m)$ which are interchanged under a T-duality transformation on T^m with m odd. These factors arise from the total number of possible wrappings (spin structures) around the cycles of T^m. The $\widetilde{K}(Y) \oplus 2^{m-1}$ subgroup of (2.23) representing unwrapped brane charges is generated by the $T^B_N \otimes (\sigma_3) \otimes (m-1)$ part of the IIA tachyon generator $T^{(A)}_{2mN}$, while the extra integer subgroups in both the IIA and IIB cases come from the higher degree winding numbers of the tachyon fields (see (2.12)).

2.3. $(-1)^F_L$ Transformations

We shall now describe the relationships between branes that arise via application of the Klein operator $(-1)^F_L$, where F_L is the left-moving spacetime fermion number operator.

4The extra charges which appear in (2.17,2.18) (see also (2.22,2.23) and section 3.2) may be attributed to vacuum charges that can be removed by adding a copy of the relevant compactification manifold at infinity [6]. The T-duality isomorphism is then generated at the level of the corresponding relative K-theory groups. This correspondence comes from the usual identification of brane charges relative to that of the supersymmetric vacuum state. However, insofar as the descent mechanisms which implement the T-duality relationship between D-branes at the level of the Bott periodicity sequence are concerned, the correct decompositions are as above with the extra charges attributed to additional winding modes of the tachyon field at infinity. We therefore keep this identification to correctly follow the descent equations. Afterwards, one should identify the charges at the level of relative K-theory, as discussed in [6].
Quotienting by \((-1)^{FL}\) maps type-IIB superstring theory into the type-IIA theory. The operator \((-1)^{FL}\) acts on the field content of the string theory by changing the sign of all spacetime fields in the RR sector, and therefore the RR charge of a BPS D-brane changes sign and it gets mapped to its antibrane under \((-1)^{FL}\). The induced map on \(\tilde{K}(X)\) is the involution defined by \([(E, F)] \rightarrow [(F, E)]\) and therefore the brane configurations which survive the \((-1)^{FL}\)-projection are those whose K-theory class is even under this \(\mathbb{Z}_2\) action.

The action on K-theory thereby induces a map

\[
\tilde{K}(X) \longrightarrow K_{\mathbb{Z}_2}^{-1}(X \times \mathbb{R}^{0,1})
\]

(2.24)

where in general \(\mathbb{R}^{p,q}\) is the \(p+q\) dimensional real space in which an involution acts as a reflection of the last \(q\) coordinates, and \(K_{\mathbb{Z}_2}\) denotes the equivariant K-functor for the discrete group \(\mathbb{Z}_2\). It acts as the conventional K-functor on the category of \(\mathbb{Z}_2\)-equivariant bundles over the space \(X \times S^1\), i.e. the complex vector bundles \(E\) whose fiber projection \(E \rightarrow X \times S^1\) commutes with the action of \(\mathbb{Z}_2\). The equivariant K-theory used in (2.24) is a simplified version of the Hopkins K-groups \(K_\pm(X)\) whereby, since \((-1)^{FL}\) acts only on the spectrum of the string theory, the \(\mathbb{Z}_2\) action on \(X \times S^1\) is simply taken as an orientation reversing symmetry of \(S^1\), with no further geometrical action on the spacetime \(X\).

We shall first give an elementary calculation of the right-hand side of (2.24) which will also prove useful later on when we discuss orientifolds. The basic theorem we shall use is the six term exact sequence of equivariant K-theory

\[
K_{\mathbb{Z}_2}^{-1}(M, A) \longrightarrow K_{\mathbb{Z}_2}^{-1}(M) \longrightarrow K_{\mathbb{Z}_2}^{-1}(A) \\
\partial^* \uparrow \quad \downarrow \partial^*
\]

(2.25)

where \(A\) is a closed \(\mathbb{Z}_2\)-subspace of a locally compact \(\mathbb{Z}_2\)-space \(M\), and the relative K-theory is defined by \(K_{\mathbb{Z}_2}^{-n}(M, A) = \tilde{K}_{\mathbb{Z}_2}^{-n}(M/A)\) (when the quotient space makes sense). The horizontal maps in (2.25) are induced by the canonical inclusion and projection, while the vertical ones come from the boundary homomorphisms \(\partial\). The advantage of using this exact sequence is that one may take \(A\) to be the fixed point set of the group action on \(M\), such that the quotient space \(M/A\) has a free group action on it and its equivariant cohomology can be computed as the ordinary cohomology of its quotient by \(\mathbb{Z}_2\).

In the present case, we take \(M = X \times \mathbb{R}^{0,1}\) and \(A = X \times \{0\}\). Then \(M/A\) is homotopic to two copies of \(X \times \mathbb{R}\) which are exchanged by the involution. Since the \(\mathbb{Z}_2\) action on \(M/A\) is free, the equivariant K-groups may be computed by using the homotopy invariance of the K-functor and the suspension isomorphism (2.21) to get

\[
K_{\mathbb{Z}_2}^{-n}(X \times \mathbb{R}) \cong K^{-n}(X \times \mathbb{R}) = K^{-n-1}(X)
\]

(2.26)
On A the \mathbb{Z}_2 action is trivial, so that

$$K^{-n}_\mathbb{Z}_2(X \times \{0\}) = K^{-n}(X \times \text{pt}) \otimes R[\mathbb{Z}_2] \quad (2.27)$$

where

$$R[\mathbb{Z}_2] = \mathbb{Z} \oplus \mathbb{Z} \quad (2.28)$$

is the representation ring of the cyclic group \mathbb{Z}_2. Finally, since in this case A is an equivariant retract of M, we have $\ker \partial^* = K^{-n}_\mathbb{Z}_2(A)$ and so the horizontal exact sequences in (2.25) split. In this way we arrive at

$$\widetilde{K}^{-n}_\mathbb{Z}_2(X \times \mathbb{R}^{0,1}) = \left(\widetilde{K}^{-n}(X) \otimes R[\mathbb{Z}_2]\right) \oplus \widetilde{K}^{-n-1}(X) \quad (2.29)$$

where we have used (2.19). The doubling of the group $\widetilde{K}^{-n}(X)$ in (2.29) from its product with the representation ring (2.28) just indicates that each brane has a mirror image coming from the equivalence relation generated by $(-1)^{F_L}$. According to the above derivation it comes from the trivial part of the \mathbb{Z}_2 action and as such represents the untwisted brane charges. The other group $\widetilde{K}^{-n-1}(X)$ comes from the free part of the \mathbb{Z}_2 action and represents the twisted sector.

To construct explicitly the K-group mapping (2.24) onto the type-IIA theory, we need to act on type-IIB brane configurations (K-group classes) which are invariant under the action of $(-1)^{F_L}$. Such objects are the p-\mathcal{P} pairs corresponding to stable Dp-brane configurations (on which quotienting by $(-1)^{F_L}$ makes sense). To describe this pair as an element of the spacetime K-group $\widetilde{K}(X)$, we represent the p-brane as the tachyonic vortex formed by $N = 2^{k-1}$ 9-\mathcal{O} brane pairs, which define the K-theory class $[(S^+_N , S^-_N)] \in \widetilde{K}(X)$ with tachyon generators $T^{(B)\pm}_N$ acting on the chiral and antichiral spinor bundles S^\pm_N, as defined in (2.3). Likewise, we represent the \mathcal{P}-brane in terms of the bound state of another set of N 9-\mathcal{O} brane pairs which define the spacetime K-theory class $[(S^-_N , S^+_N)]$ with tachyon generators $T^{(B)\pm}_N$, where S^\pm_N are the conjugate spinor bundles defined by complex-conjugating the transition functions of S^\pm_N (note the change in sign of the RR charge of the \mathcal{P}-brane relative to the p-brane). Of course, $S^\pm_N = S^\pm_N$, but we shall keep the two sets of bundles arbitrary to represent the pairing of a brane with its mirror antibrane in (2.29). The p-\mathcal{P} brane pair therefore determines the K-theory class

$$[(S^+_N , S^-_N)] + [(S^-_N , S^+_N)] = [(S^+_N \oplus S^-_N , S^-_N \oplus S^+_N)] \in \widetilde{K}(X) \quad (2.30)$$

and tachyon field $T^{(B)}_N \oplus (T^{(B)}_N)^\dagger$. More precisely, the class (2.30) is determined by a pair (E, F) of Chan-Paton bundles each transforming under $SO(2k)$ rotations in the indicated spinor representation Δ^\pm_{2k} in their fibers. The operator $(-1)^{F_L}$ acts on the category of vector bundles by interchanging the p-brane and \mathcal{P}-brane, i.e. $S^\pm_N \leftrightarrow S^\pm_N$, and on K-theory classes by interchanging spacetime filling 9-branes and \mathcal{O}-branes, i.e. $[(E, F)] \leftrightarrow [(F, E)]$.
and $T^{(B)}_N \leftrightarrow (T^{(B)}_N)\dagger$. The K-group elements of the form (2.30) are therefore even under the action of the Klein operator and correspond to the elements of the first direct summand in (2.29) for $n = 1$ which survive the projection. The other direct summand $K^{-1}(X)$ represents the IIB brane configurations which are projected out of the spectrum by $(-1)^{F_L}$.

The equivalence relation generated by the $(-1)^{F_L}$ involution identifies the classes $[S_N^+ \oplus S_N^-] \equiv [S_N^+ \oplus S_N^+]$ when embedded as elements of the equivariant K-group $K^{-1}_\mathbb{Z}_2(X \times \mathbb{R}^{0,1})$. It follows that there is a well-defined mapping from the subset of classes (2.30) to $K^{-1}(X)$ given by the projection

$$
[S_N^+ \oplus S_N^-] \mapsto \left((S_N^+ \oplus S_N^-) - \exp T^{(A)}_N \right), \quad (S_N^+ \oplus S_N^-) \in K^{-1}(X)
$$

(2.31)

The canonical choice of IIA tachyon field $T^{(A)}_N$ acting on $S_N^+ \oplus S_N^-$ is $T^{(B)+}_N \oplus T^{(B)-}_N$ (which is a well-defined operator because of the equivalence relation). However, this tachyon configuration has winding number 0 in codimension $2k + 1$ and as such it is trivial in $K^{-1}(X)$. This simply represents the fact that the $p \bar{p}$ brane pair of the IIB theory is mapped by the $(-1)^{F_L}$-projection to an unstable p-brane configuration in the IIA theory. To obtain a non-trivial K-theory class, we must let the tachyon condense in codimension 1, leading to the appropriate IIA tachyon field

$$
T^{(A)}_N = T^{(B)+}_N \oplus T^{(B)-}_N + T^{(1)} \sigma_3 \otimes I_N
$$

(2.32)

where $T^{(1)} = x^{h+1}$ is the codimension 1 tachyon field. With (2.32), the class (2.31) defines a non-trivial element of $K^{-1}(X)$ in (2.29). This element is the representation of a stable $p - 1$-brane configuration as the tachyonic soliton of a collection of 2^{k-1} 9-branes, used for the bound state construction of the original IIB p-brane, and 2^{k-1} $\bar{9}$-branes, used to build the \bar{p}-brane. Because of the equivalence relation in $K^{-1}_\mathbb{Z}_2(X \times \mathbb{R}^{0,1})$, the $\bar{9}$-branes are identified in the IIA theory as 9-branes, and hence we obtain the usual K-theoretic representation of the $p - 1$-brane in terms of 2^k unstable 9-branes of type-IIA string theory.

The “naive” choice of tachyon field in (2.32) (represented by the first term) suggests that one should consider it as a soliton configuration of the IIB theory. To do so, we need a well-defined projection onto $\tilde{K}(X)$. Since the “naive” tachyon field represents the identity class of $K^{-1}(X)$, it is trivially invariant under an additional $(-1)^{F_L}$-projection (as it represents an unstable non-BPS configuration, it carries no RR charge, and so is unaffected by the action of $(-1)^{F_L}$). Generally, the brane configurations which survive the modding out of the type-II theory m times by $(-1)^{F_L}$ are represented by the K-group

$$
\tilde{K}^{-n}_{\mathbb{Z}_2}(X \times \mathbb{R}^{0,m}) = (\tilde{K}^{-n}(X) \otimes R[\mathbb{Z}_2]) \oplus \tilde{K}^{-n-m}(X)
$$

(2.33)

whose decomposition is found as before. For the case at hand, the relevant group (2.33) is obtained for $n = m = 2$, so that the $(-1)^{F_L}$-invariant states reside in the first summand.
and the configurations which are projected out are the same as those in (2.29) for \(n = 1 \). The equivalence relation generated by the \((-1)^F\) involution now gives
\[[(S_N^-, \overline{S}_N)] \equiv [(S_N^+, \overline{S}_N^+)] \]
as elements of the equivariant cohomology \(\widetilde{K}_{Z_2}(X \times \mathbb{R}^{0,2}) \). The well-defined projection onto the type-IIB theory is now represented by the mapping of classes
\[
[S_N^+ \oplus S_N^-] \mapsto [(S_N^+, \overline{S}_N^-)] \in \widetilde{K}(X) \tag{2.34}
\]
and the corresponding tachyon field
\[
\tilde{T}^{(B)}_N = T^{(B)+}_N \oplus T^{(B)-}_N \tag{2.35}
\]
This class of \(\widetilde{K}(X) \) represents a stable BPS \(D_p \)-brane constructed out of the bound state of \(2^{k-1} \) 9-\(\overline{g} \) brane pairs.

It is instructive to compare the K-theory construction above to the boundary state formalism for the D-branes \([10]\). A supersymmetric \(D_p \)-brane boundary state of the type-IIB theory is the sum of contributions from the Neveu-Schwarz (NS) and Ramond sectors which is invariant under the appropriate GSO projection,
\[
|D_p\rangle = \frac{1}{2} (|Bp, +\rangle_{NS} - |Bp, -\rangle_{NS}) \pm \frac{1}{2} (|Bp, +\rangle_{R} + |Bp, -\rangle_{R}) \tag{2.36}
\]
where the \(\pm \) label the different spin structures, and the relative sign between the NS-NS and RR contributions distinguishes a brane from its antibrane. The RR contribution flips sign under the action of \((-1)^F\), while the NS-NS part is invariant. In order to describe the projection of the string Hilbert space onto those states which are even under \((-1)^F\), the natural procedure is to cancel the odd RR part of the \(D_p \)-brane boundary state. This may be achieved by the superposition of a \(p \)-brane with a \(\overline{p} \)-brane which is described by the boundary state
\[
|\overline{Bp}\rangle = |Dp\rangle + |D\overline{p}\rangle = |Bp, +\rangle_{NS} - |Bp, -\rangle_{NS} \tag{2.37}
\]
This state describes an unstable \(p \)-brane configuration of the type-IIA theory \([3]\) and is the configuration considered in \([12]\). On the other hand, one can analyse the twisted and untwisted sectors of the string Hilbert space and show that the result of quotienting by \((-1)^F\) projects onto the NS-NS parts of all IIB \(p \)-brane boundary states, as in (2.37) \([14]\). In this latter case, we find that the transformation on the spacetime-filling 9-branes leaves an equal number of (identical) 9-branes and \(\overline{9} \)-branes in the type-IIA theory. That this is also the configuration that comes from quotienting the \(p-\overline{p} \) system is a natural consequence of the K-theoretic approach above. Namely, the final configuration of \(2^k \) unstable 9-branes of the type-IIA theory comes from combining the \(2^{k-1} \) 9-branes used in the bound state construction of the \(p \)-brane and the \(2^{k-1} \) \(\overline{9} \)-branes of the mirror \(\overline{p} \)-brane, as is implicit in the analysis of \([12]\). This is in contrast to the naive expectation that the

18
The relations among BPS and non-BPS D-branes in type-II superstring theory may be succinctly summarized in the following diagram representing the K-theory analog of fig. 1:

\[
\begin{align*}
K(X) &\xrightarrow{(-1)^F_L} K_{Z_2}^{-1}(X \times \mathbb{R}^{0,1}) &\xrightarrow{(-1)^F_L} K_{Z_2}^{-2}(X \times \mathbb{R}^{0,2}) &\xrightarrow{\Pi_1} K(X) \\
\beta &\downarrow &\beta \circ \Pi_1 &\downarrow &\sqrt{K(Y \times S^1)=K^{-1}(Y \times S^1)} \\
K^{-1}(X) &\xrightarrow{\beta} K^{-1}(X) &\xrightarrow{\sqrt{K(Y \times T^2)=K^{-1}(Y \times T^2)}} K(X) = K^{-2}(X)
\end{align*}
\]

where \(\beta \) is the Bott periodicity isomorphism representing tachyon condensation in codimension 1, and \(\Pi_1 \) is the projection onto the first direct summand of (2.33). The map \(\beta^2 \) realizes a type-II \(p-2 \)-brane as a Dirac magnetic monopole in the worldvolume of a \(p-\bar{p} \) brane pair. The T-duality transformations and the \((-1)^F_L\) projections are formally identical, in that each one comes from mappings between subgroups of K-group decompositions in (2.17,2.18) and (2.33), respectively (compare also (2.8) and (2.32)). This shows how the K-theory description presents a unified description of the D-brane descent relations and provides further insight into the symmetry transformations between the IIA and IIB theories.

3. Descent Equations in Type-I Theories

Type-I superstring theory may be defined as the quotient of the type-IIB theory by the twist operator \(\Omega \) which reverses the orientation of the fundamental string worldsheet. It acts on Chan-Paton bundles by conjugation and therefore the D-brane configurations which survive the \(\Omega \)-projection are those whose gauge bundles are real, i.e. have structure group \(O(N) \). The corresponding K-theory classes now live in the real K-group \(KO(X) \) [2]. Many of the transformations described before based on the structure of Clifford algebras carry through in the same way, except that one must now taken into account the \((-1)^F_L\) projection would just eliminate all \(\bar{F} \)-brane contributions. Moreover, the K-theory derivation above shows why the twisted sectors of the \((-1)^F_L\) projection do not contribute to the RR-charge [14], in that the \(K^{-1}(X) \) subgroup of (2.29) comes from the trivial part of the \(Z_2 \) action on \(X \times S^1 \).
reality properties of the spinor modules [20, 21]. The only real spinor modules (or, more precisely, the only ones which are complexifications of real representations) are $\Delta_{8k\pm 1}, \Delta_{8k}$, while the representations $\Delta_{8k+3}, \Delta_{8k+4}, \Delta_{8k+5}$ are the restrictions of quaternionic Clifford modules. The remaining modules $\Delta_{8k+2}, \Delta_{8k+6}$ are complex. This property modifies the ABS isomorphism (2.1) to

$$\tilde{KO}(S^m) \cong RO[spin(m)] / RO[spin(m+1)] = \begin{cases}
\mathbb{Z} & \text{for } m \equiv 0, 4 \mod 8 \\
\mathbb{Z}_2 & \text{for } m \equiv 1, 2 \mod 8 \\
0 & \text{otherwise}
\end{cases} \quad (3.1)$$

where $RO[spin(m)]$ is the representation ring of real $spin(m)$-modules.

3.1. Bott Periodicity and Type-II Orientifolds

The weak Bott periodicity isomorphism for real K-theory has period 8 and may be represented by the stable homotopy groups

$$\ldots \xrightarrow{\pi_{l-1}} (O(N)) \xrightarrow{\pi_{l}} (O(2N)/[O(N) \times O(N)]) \xrightarrow{\pi_{l+1}} U(2N)/O(2N) \xrightarrow{\pi_{l+2}} Sp(2N)/U(2N) \xrightarrow{\pi_{l+3}} Sp(2N) \xrightarrow{\pi_{l+4}} Sp(4N)/[Sp(2N) \times Sp(2N)] \xrightarrow{\pi_{l+5}} U(8N)/Sp(4N) \xrightarrow{\pi_{l+6}} O(16N)/U(8N) \xrightarrow{\pi_{l+7}} O(16N) \xrightarrow{\ldots} \quad (3.2)$$

where $N = 2^{[l/2]}$. For type-I branes the codimension $l = 9 - p$ may in general be even or odd [9, 10]. Thinking of the type-I theory as the Ω-projection of IIB superstring theory, a D-brane of codimension $l = 2k$ in X comes from the bound state of 2^{k-1} type-IIB $9-S$ brane pairs with bundles (S^+_T, S^-_T) associated with the rank 2^{k-1} spinor modules Δ_{2k}. Since the 9-brane RR charge is Ω-invariant, we are left with 2^{k-1} 9-S brane pairs plus their mirror images under the equivalence relation generated by Ω. Since the conjugate of S^+_T is S^-_T, the 2^{k-1} mirror 9-S pairs support the gauge bundles (S^-_T, S^+_T) and so represent the corresponding codimension l antibrane. The total configuration of 2^l 9-brane-antibrane pairs in the type-I theory therefore determines a K-theory class $[(E, F)]$ where the fibers of the real gauge bundles E and F each transform under $SO(2k)$ rotations as $\Delta_{2k} \oplus \Delta_{2k}^-$. As we did in subsection 3.3, we may think of $[(E, F)]$ as a K-theory class $[(S^+_T \oplus S^-_T, S^+_T \oplus S^-_T)]$ whereby branes are identified with their antibranes under the equivalence relation generated by the given involution. Similarly, when $l = 2k + 1$, the p-brane configuration is described in terms of 2^k 9-brane-antibrane pairs whose gauge
bundles \((E, F)\) transform under the spinor representation \(\Delta_{2k+1}\) of the transverse rotation group.

In either case the tachyon field is given by

\[
T^{(l)}_N(x) = \sum_{i=1}^l \Gamma_i x^i
\]

(3.3)

and it breaks the \(O(N) \times O(N)\) 9-brane gauge symmetry down to \(O(N)_{\text{diag}}\). The vacuum manifold of the type-I theory is therefore homeomorphic to \(O(N)\) and the winding number of the tachyonic soliton configuration labels the induced \(p\)-brane charge which lives in the real \(K\)-group

\[
\widetilde{KO}(S^l) = \pi_{l-1}(O(N))
\]

(3.4)

The integer-valued charges in (3.4) and (3.1) correspond to the usual stable type-I BPS \(Dp\)-brane configurations for \(p = 1, 5, 9\) whose type-IIB RR-charge is invariant under the \(\Omega\)-projection, i.e. whose boundary states \(|Bp, \pm\rangle_R\) in (2.36) are even under \(\Omega\). The \(\mathbb{Z}_2\)-charges correspond to stable but non-BPS type-I \(Dp\)-brane configurations for \(p = -1, 0, 7, 8\). For \(p = -1, 7\) they may be constructed as the \(\Omega\)-projection of the corresponding \(p\)-brane-antibrane configuration of the type-IIB theory. For these values of \(p\), \(\Omega\) exchanges IIB \(p\)-branes with \(\overline{p}\)-branes, i.e. \(\Omega |Bp, \pm\rangle_R = -|Bp, \pm\rangle_R\), so that the combination (2.37) is \(\Omega\)-invariant. For \(p = 0, 8\) there is no IIB RR charge and the state is automatically even under \(\Omega\). In all of the cases the net effect of the \(\Omega\)-projection is to eliminate the tachyon leading to a stable brane configuration [10].

\(I-I'\) Duality

We shall now describe the sequence of isomorphisms (3.2) in the language of brane configurations, as we did in the type-II case. For definiteness we shall take \(l = 2k\) to be even. The isomorphism in the first line of (3.2) arises in a similar way as in the type-II case by representing a \(p-1\)-brane in codimension \(2k+1\) in terms of \(2N\) unstable 9-branes. The induced charge takes values in the higher KO-group

\[
\widetilde{KO}^{-1}(S^{l+1}) = \pi_l(O(2N)/[O(N) \times O(N)])
\]

(3.5)

and the KO-class is determined by the rank \(2N\) spinor bundle \(S_\frac{N}{2} \oplus S_\frac{N}{2}\) with tachyon field

\[
T^{(1)}_N = T^{(1)}_N \oplus T^{(1)}_N + T^{(1)} \sigma_3 \otimes I_N
\]

(3.6)

As in (3.3), eq. (3.6) shows that the given set of spacetime filling 9-branes interact via tachyon fields only among themselves and not with their mirror images. There is, however, a subtlety with this transformation which is related to the doubling (3.6) in rank
of the spinor modules due to the mirror IIB 9-branes (representing again a K-theoretic stabilization). Under a T-duality transformation on S^1 the operator Ω is mapped to $\Omega \cdot I_1$, where I_1 is the geometrical operator which reflects the compactified target space direction. The T-dual of the type-I theory is type-I$'$ superstring theory which is obtained as the \mathbb{Z}_2 orientifold projection of the type-IIA theory by $\Omega \cdot I_1$. The relevant K-theory is given by the Real K-group $KR(X)$ \cite{2,23}, i.e. the group of virtual bundles $[(E, F)]$ with an antilinear involution on both E and F which commutes with the induced action of I_1 by pullback. As the type-I$'$ theory contains $2N$ unstable 9-branes, its D-brane charges live in the Real K-group $\tilde{KR}^{-1}(X)$ \cite{3}. The relation to the present homotopy analysis comes from the fact that if the KR-involution is taken to act trivially on X, then there is a natural isomorphism

$$KR^{-n}(X) = KO^{-n}(X)$$ \hspace{1cm} (3.7)

The precise equivariant homotopy properties inherent in Real K-theory will be discussed in more detail in the next section.

We see that the periodicity theorem (3.2) will in fact go beyond describing just toroidal compactifications of the type-I theories. A T-duality transformation of type-I superstring theory on T^m gives a type-II orientifold on T^m/\mathbb{Z}_2 by the operator $\Omega \cdot I_m$ (I_m, along with appropriate factors of $(-1)^{F_L}$, reflects all of the coordinates of the compactification torus T^m). In the following we shall also describe the structure of these orientifold theories using K-theoretic properties. A general orientifold has 2^m orientifold planes which are the fixed points of the $\Omega \cdot I_m$ involution and which fill all of the non-compact spacetime. They have dimension $9 - m$ and carry -2^{4-m} units of $9 - m$-brane RR-charge. We will denote them by $O(9-m)^-$. Far away from the orientifold planes, the spacetime looks like the original X along with its mirror image under the action of the KR-involution which interchanges the two copies. An elementary result of K-theory shows that for a trivial \mathbb{Z}_2 action on the space X \cite{23}

$$KR^{-n}(X \amalg X) = KR^{-n}(X \times S^{0,1}) = K^{-n}(X)$$ \hspace{1cm} (3.8)

where $S^{p,q}$ denotes the $p+q-1$ dimensional unit sphere in $\mathbb{R}^{p,q}$. The theory far away from the singularities is therefore equivalent to the original type-II theory. On the other hand, branes on top of an orientifold plane have their generic unitary gauge symmetry broken to the real subgroup, in accordance with the first part of the sequence (3.2). As we did in the type-II cases, we shall follow the orbit of the original stable 9-$\overline{9}$ brane pairs in the homotopy sequence, and in addition keep track of the structure of the orientifold planes since their RR-charges will be measured by the relevant K-theory groups. At the level of (3.3,3.6), there are N stable 8-$\overline{8}$ brane pairs and two O8$^-$ planes which each carry -8 units of RR-charge. Tadpole anomaly cancellation requires that the 8-branes be arranged
so as to cancel out the orientifold charge in the supersymmetric vacuum configuration. Note that the K-group mapping between (3.4) and (3.3), i.e. the basic I-I′ T-duality, involves the homotopy groups of real symmetric spaces.

\[m = 2 \]

Next we come to the first isomorphism in the second line of (3.2). This corresponds to the toroidal compactification of the type-I theory which is T-dual to type-IIB superstring theory on the \(T^2/\mathbb{Z}_2 \) orientifold. There are now four \(O7^- \) planes, each with \(-4\) units of 7-brane RR-charge, and \(N \) 7-\(\overline{7} \) brane pairs which are described in terms of \(2N \) 9-5 brane pairs, as in (2.12). The appearance of the unitary group in (3.2) is due to the following facts. The chiral spinor modules \(\Delta^\pm_2 \) are complex, so that the desired map must be taken with respect to the real spinor module \(\Delta^+_2 \oplus \Delta^-_2 \), as in (2.12) (see also (2.14)). This means that the relevant homotopy is defined with respect to a unitary symmetric space.

Physically, the appearance of a unitary gauge symmetry can be understood from the analysis of [27] (see also [28]) where the requirement of closure of the worldsheet operator product expansion was shown to put stringent restrictions on the actions of discrete gauge symmetries on Chan-Paton bundles. In particular, the square of the worldsheet parity operator \(\Omega \) acts on Chan-Paton indices as

\[
\Omega^2 : \langle Dp; ab \rangle \mapsto (\Lambda_{\Omega})^a_a' \langle Dp; a'b' \rangle (\Lambda_{\Omega}^{-2})^{b'}_b = (\pm i)^{(9-p)/2} \langle Dp; ab \rangle \quad (3.9)
\]

where \(a, b \) are the open string endpoint Chan-Paton labels of a Dp-brane state of the IIB theory, and \(\Lambda \) denotes the (adjoint) representation of the orientifold group in the Chan-Paton gauge group. While the 9-branes have the standard orthogonal subgroup projection (as required by tadpole anomaly cancellation), (3.9) leads to an inconsistency on 7-branes which are therefore quantized using the unprojected unitary gauge bundles. Thus, while the naive gauge group on the spacetime filling 9-branes is \(O(2N) \times O(2N) \subset O(4N) \), the inconsistent \(\Omega \)-projection on IIB 7-branes enhances the orientifold symmetry to \(U(2N) \) because from the point of view of worldvolume gauge fields the 9-branes are indistinguishable from \(\overline{7} \)-branes due to the reality property of the relevant spinor bundles. The requisite tachyon field \(T_{2N}^{(I)} \) of the corresponding virtual bundle \([(E, F)] \) can be regarded as a section of \(E \otimes F \) and so is required to be \(\mathbb{Z}_2 \)-equivariant with respect to the orientifold projection (this ensures that the resulting lower dimensional brane configurations are invariant under the \(\mathbb{Z}_2 \)-action), i.e. it transforms under the orientifold group as

\[
T_{2N}^{(I)} \rightarrow \Lambda_\Omega T_{2N}^{(I)} \Lambda_\Omega^{-1} \quad (3.10)
\]

As shown in [2], the tachyon vertex operator for a \(p-\overline{p} \) brane pair acquires the phase \((\pm i)^{7-p}\) under the action of \(\Omega^2 \). For the 7-branes this operator is even under \(\Omega^2 \), and...
so the eigenvalues of the vacuum expectation value $T_{2N}^{(I)0}$ are real. Thus the tachyon field breaks the $U(2N)$ gauge symmetry down to its orthogonal subgroup $O(2N)$, and the induced brane charge is given by the winding numbers around the vacuum manifold $U(2N)/O(2N)$ of the IIB orientifold on T^2/\mathbb{Z}_2.

What is particularly interesting about this orientifold is that it is equivalent to a more general, dual description in terms of F-theory [29]. In this description, F-theory on the third complex Kummer surface $K3$ is the compactification of type-IIB superstring theory on the base space of the elliptic fibration $K3 \rightarrow \mathbb{C}P^1$ with complex structure modulus of the fiber given by the axion-dilaton modular parameter of the IIB theory. At the special point of the $K3$ moduli space where it can be identified with the orbifold T^4/\mathbb{Z}_2 (i.e. the degenerate $K3$ with eight D_2 singularities), the fiber acquires singularities and the base space is the orbifold limit T^2/\mathbb{Z}_2 of $\mathbb{C}P^1$. The orientifold planes split into 7-branes in this description and have some dynamics (although they cannot support perturbative gauge fields). The equivalence between F-theory on $K3$ and type-I superstring theory on T^2 is then a starting point for a K-theory description of F-theory. In this particular compactification of F-theory, the relevant vacuum manifold for tachyon condensation is $U(2N)/O(2N)$ and a K-theory subgroup of the full compactification is $\tilde{K}R^{-2}(Y \times T^{1,2})$ (or equivalently $\tilde{KO}(Y \times T^2)$ [8] as we show in the next subsection). Here we have used the definition $T^{1,m} = (S^{1,1})^m$. The relevant K-theory incorporates the charges of the orientifold planes, as we will discuss further in the following.

$m = 3$

The second isomorphism in the second line of (3.2) describes the mapping onto the I' theory on T^3 which is T-dual to the T^3/\mathbb{Z}_2 orientifold of the type-IIA string. There are eight $O6^-$ planes each with -2 units of 6-brane RR-charge. The appearance of a symplectic gauge group follows from the mathematical fact that the complex spinor module Δ_3 is the restriction of a quaternionic Clifford module, so that the appropriate augmentation of the spin bundles on the 9-branes is taken with respect to the rank 4 real representation $\Delta_3 \oplus \Delta_3$. This means that there are now $4N$ unstable 9-branes which have an $Sp(2N)$ worldvolume gauge symmetry and whose KO-theory class is represented by the spin bundle $S_N \oplus S_N$ with tachyon field

$$T_{2N}^{(I')} = T_{2N}^{(I)} \oplus T_{2N}^{(I)} + T^{(1)} \sigma_3 \otimes I_{4N} \quad (3.11)$$

This enhanced $Sp(2N)$ gauge symmetry comes from the intermediate representation of a given type-I' $p - 3$-brane in terms of 6-$\bar{6}$ brane pairs and will be more easily understood below at the next isomorphism in terms of 5-branes. Again by \mathbb{Z}_2 equivariance the tachyon field breaks this symmetry to its complex subgroup $U(2N)$, so that the vacuum manifold
is $Sp(2N)/U(2N)$. As shown in 3, the codimension 3 tachyonic soliton in (3.11) coincides with the usual 't Hooft-Polyakov magnetic monopole.

Since M-theory compactified on a circle is the type-IIA string, a careful analysis [30] reveals that this orientifold model is equivalent to M-theory defined on the orbifold limit T^4/Z_2 of the 4-manifold $K3$. This lends another clue to the puzzle of how to describe M-theory in K-theoretic terms [2, 3]. The equivalence with the IIA theory when compactified on a circle shows that its description must then reduce to a vacuum manifold $U(2N)/[U(N) \times U(N)]$ describing the stable soliton configurations which represent the branes with K-group $K^{-1}(X)$, while the equivalence of the type-IIA orientifold on S^1/Z_2 to the M-theory orientifold on S^1/Z_2 is described in terms of the vacuum manifold $O(2N)/[O(N) \times O(N)]$ and the KR-group $\tilde{KR}^{-1}(Y' \times S^1)$. Now we see that the duality between M-theory compactified on a $K3$ surface and type-I$'$ superstring theory on T^3 implies that this 11-dimensional compactification has vacuum manifold $Sp(2N)/U(2N)$ and K-theory group $\tilde{KO}^{-3}(Y \times T^{1,3})$ (or equivalently $\tilde{KR}^{-3}(Y \times T^{1,3})$ [8] as we discuss in the next subsection).

$m = 4$

Now we come to the isomorphisms in the third line of (3.2). The superstring theory is type-I on T^4 which is T-dual to the orientifold of type-IIB on T^4/Z_2 which has 16 $O5^-$ planes each with a negative unit of 5-brane RR charge. The rank 2 spin modules Δ^{\pm}_4 are again the restrictions of quaternionic Clifford modules and yield the real chiral spinor representations $\Delta^{\pm}_4 \oplus \Delta^{\pm}_4$. There are now $4N$ 9-\mathcal{O} brane pairs which determine the KO-theory class $[(S^+_{2N} \oplus S^-_{2N}, S^+_{2N} \oplus S^-_{2N})]$ with tachyon field

$$T^{(l)}_{4N} = T^{(l)}_{2N} \otimes (\sigma_3 \oplus \sigma_3) + T^{(l)}_{2N} \otimes I_{4N} \quad (3.12)$$

where the codimension 2 tachyon field $T^{(l)}_2$ is defined as in (2.12). The quaternionic gauge symmetry is naturally explained by (3.9) which shows that $\Omega^2 = -1$ when acting on the N 5-brane-antibrane states (and also on the corresponding tachyon vertex operator). The 5-branes must therefore be quantized using pseudo-real gauge bundles, i.e. Chan-Paton bundles with structure group $Sp(2N)$ on the 9-branes and on the \mathcal{O}-branes. This fact explains, via T-duality transformations, the appearence of symplectic gauge groups in the $m = 3$ case above and in the cases to follow. An alternative explanation [2] utilizes the fact that a type-I 5-brane is equivalent to an instanton on the spacetime filling 9-branes [31]. The tachyon field breaks the $SO(4N) \times SO(4N)$ gauge symmetry of the 9-\mathcal{O} brane configuration to the diagonal subgroup $SO(4N)_{\text{diag}}$, which is then further broken down to $Sp(2N)$ by the instanton field.
K-theory defined with pseudo-real bundles is denoted $KSp(X)$. The induced $p - 4$-brane charge of type-I superstring theory on T^4 is labelled by the homotopy groups of the vacuum manifold $Sp(2N) \times Sp(2N)/Sp(2N)_{\text{diag}}$ which yield the KSp-group

$$\tilde{K}Sp(S^{4+4}) = \pi_{l+3}(Sp(2N)) \quad (3.13)$$

In the language of the orientifold theory, the replacement of the KR-involution by a \mathbb{Z}_4 generator defines the pseudo-Real K-group $KH(X)$ appropriate to orientifold theories with symplectic Chan-Paton bundles. The present model is dual to a conventional orbifold of the type-IIA theory on T^4/\mathbb{Z}_2 and its moduli space coincides with that of IIA strings on $K3$. $m = 5$

The situation for type-I$'$ theory on T^5 introduces a new chain of dualities which may be attributed to the fact that the orientifold planes now begin acquiring fractional RR-charges. This theory is T-dual to the T^5/\mathbb{Z}_2 orientifold of type-IIA superstring theory with 32 O4$^-$ planes each of fractional magnetic charge $-\frac{1}{2}$. This new duality chain can also be understood in the K-theory language from the change of nature of the Chan-Paton spinor bundles on the 9-branes at the $m = 4$ case above. Again the spinor module Δ_5 is quaternionic in origin and yields the eight dimensional real spinor representation $\Delta_5 \oplus \Delta_5$. This is consistent with the physical expectations from T-duality of the pseudo-real vacuum manifold associated with $8N$ unstable 9-branes carrying the Chan-Paton bundle $S_{2N} \oplus S_{2N}$ (with tachyon field $T^{[1]}_{4N}$ defined analogously to (2.8)) which appears in the second isomorphism of the third line of (3.2). A candidate dual theory is the $K3 \times S^1$ compactification of type-IIB superstring theory, which may then be conjectured to be dual to a T^5/\mathbb{Z}_2 orientifold of M-theory. This chiral M-theory orientifold has no D-branes but rather M5-branes on which M2-branes can end. The chiral lift of the $m = 5$ string orientifold should then be related to various equivalent K-groups given by $KR^{-5}(Y \times T^{1.5})$, $KO(Y \times T^5)$, $\tilde{K}Sp(Y' \times S^1)$ and $\tilde{KH}^{-1}(Y' \times S^{1.1})$. Along with the recent construction of M2-branes as tachyonic-type solitons in the worldvolume of M5-M$\overline{5}$ brane configurations, this could shed more light on the interpretation of M-theory using K-theory (some related results can also be found in [33]).
The type-I superstring on T^6 is T-dual to the IIB string on T^6/Z_2 which has 64 O3$^-$ planes each of fractional RR-charge $-\frac{1}{4}$ filling the non-compact space. The N 3-\FF brane pairs, which are described as the tachyonic kinks of 8N 9-\FF brane pairs, have the same fate according to (3.9) as the 7-branes, and hence the 9-brane gauge symmetry is the unprojected $U(8N)$. Algebraically this owes to the fact that the spinor modules Δ_6^\pm are complex and thus form the real spinor representation $\Delta_6^+ \oplus \Delta_6^-$. The corresponding KO-group element is thus $[(S_{4N}^+ \oplus S_{-4N}^+ , S_{4N}^- \oplus S_{-4N}^-)]$, and Z_2 equivariance of the tachyon field implies that it breaks the $U(8N)$ gauge symmetry to its pseudo-real subgroup $Sp(4N)$. Again this model can be described as the limit of an F-theory compactification on the orbifold T^8/Z_2 which has terminal singularities and is not the limit of any suitable smooth 8-manifold. This F-theory compactification should thus reduce to the vacuum manifold $U(8N)/Sp(4N)$ around which the tachyonic windings give rise to K-theory classes in $KR^{-6}(Y \times T^{1,6})$ (or the various other equivalent K-groups).

$m = 7$

The T^7/Z_2 orientifold of the type-IIA theory has 128 O2$^-$ planes each of electric charge $-\frac{1}{8}$. The spinor module Δ_7 is real, so that the 16N unstable 9-branes support the spinor bundle $S_{4N}^i \oplus S_{-4N}^i$ and have a real $O(16N)$ gauge symmetry. This reality condition arises from the intermediate 2-\FF brane pairs and again will be explained at the next isomorphism in terms of D-strings. The tachyon field breaks the $O(16N)$ gauge symmetry to the unitary subgroup $U(8N)$, as follows from equivariance with respect to the orientifold group. This model can be mapped to the compactification of M-theory on T^8/Z_2, from which we can identify another limiting vacuum manifold $O(16N)/U(8N)$ and K-group $KR^{-7}(Y \times T^{1,7})$.

$m = 8$

The final isomorphism in the sequence (3.2) maps us into the type-I theory on T^8 which is T-dual to the type-IIB orientifold on T^8/Z_2 that has 256 O1$^-$ planes each of RR-charge $-\frac{1}{16}$. The vacuum manifold is now the real orthogonal group $O(16N)$ because the intermediate IIB D-strings have the usual orthogonal projection according to (3.3). This is consistent with the fact that the rank 8 chiral spinor modules Δ_8^\pm are real, and thus the 16N 9-\FF brane pairs support Chan-Paton bundles which each transform under the $\Delta_{2k+8}^+ \oplus \Delta_{2k+8}^-$ spinor representation of the transverse rotation group, similarly to the case we started with. This orientifold is equivalent to the ordinary orbifold compactification of type-IIA superstring theory on T^8/Z_2, which has fundamental strings condensed in the supersymmetric vacuum. This latter property and its K-theory origin may again
be combined with the analysis of [35] which shows that the solitonic description of an M2-brane from the annihilation of a coincident pair of M5-M5 branes reduces (upon compactification on S^1) to a fundamental string stretched between an annihilating pair of D4-D4 branes in the IIA theory. The closure of the Bott periodicity sequence (3.2) at this stage implies that there is no new physics at lower compactifications, as is indeed precisely the case.

Hopf Maps

The strong Bott periodicity isomorphisms for real and pseudo-real K-theory take the form

$$
\tilde{KO}^{-n-8}(X) = \tilde{KO}^{-n}(X), \quad \tilde{KR}^{-n-8}(X) = \tilde{KR}^{-n}(X) \tag{3.14}
$$

$$
\tilde{KSp}^{-n-4}(X) = \tilde{KO}^{-n}(X), \quad \tilde{KH}^{-n-4}(X) = \tilde{KR}^{-n}(X) \tag{3.15}
$$

They can again be deduced from the periodicity relations $C_{t+8} = C_t \otimes \mathbb{R}(16)$ and $C_{t+4} = C_t \otimes \mathbb{R} \mathbb{H}(2)$ of the corresponding Clifford algebras [20]. As mappings on K-theory classes they can be represented via cup products involving spinor bundles, as in (2.14), or equivalently by using Hopf fibrations as in (2.15, 2.16). The isomorphism of KO-groups in (3.14) comes from taking the cup product of an element of $\tilde{KO}^{-n}(X)$ with the generator $[N_R] - [I^7]$ of $\tilde{KO}(S^8) = \mathbb{Z}$, where N_R is the rank 7 Hopf bundle over $\mathbb{R}P^8$ associated with the real Hopf fibration $S^{15} \rightarrow S^8$. The corresponding mapping on the Real K-theory groups is obtained via the natural Real structure on the complex Hopf bundle over $\mathbb{C}P^7$ [23]. This shows that the construction of a p-brane in terms of $p + 8$-branes (e.g. a type-I D-particle from 8-8 brane pairs) is determined by a D-string solitonic configuration which gives another explicit physical realization of the $spin(8)$ instanton [6]. The corresponding eight dimensional non-trivial gauge connections, and the associated spinor structures, may be found in [37]. This minimizing solution of the eight dimensional Euclidean Yang-Mills equations satisfies a generalized duality condition with respect to the topological 4-form $F \wedge F$ constructed from the associated field strength. This identifies the explicit form of the worldvolume gauge fields living on the $p + 8$-$\bar{8}$ brane pair required to produce the finite energy solitonic p-brane configuration as [37]

$$
A_i(x) = -2i \sum_{j=1}^{8} \Gamma_{ij} \frac{x^j}{(1 + |x|^2)^2} \tag{3.16}
$$

where Γ_{ij} are the generators of $spin(8)$. These gauge field configurations are $spin(9)$ symmetric (thereby preserving the manifest spacetime symmetries) and carry unit topological charge.

[6] Note that for the orientifold models, the equivariance condition (3.10) on the tachyon field and a similar one on the worldvolume gauge fields implies that the topological defects arising from the Hopf fibrations are always equivariant versions of these solitons.
Similarly, the isomorphism of pseudo-real K-groups in (3.15) comes from taking the cup product with the class of the rank 2 instanton bundle \mathcal{N}_{II} associated with the pseudo-real Hopf fibration $S^7 \to S^4$ [2], i.e. the holomorphic vector bundle of rank 2 over $\mathbb{C}P^3$. Thus the relationship between a BPS p-brane and a BPS $p+4$-brane is a 5-brane soliton which may be identified with an $SU(2)$ Yang-Mills instanton field. This descent relation was noted in [11] in the case of a type-I D-string in the worldvolume of a $5\overline{5}$ brane pair. The worldvolume gauge symmetry is $SU(2) \times SU(2)$ and the tachyon field transforms in its $2 \otimes \overline{2}$ representation. The Ω-projection identifies the vacuum manifold of the 5-brane configuration as $SU(2) = Sp(1)$, and the finite energy static string solution in the corresponding 5+1 dimensional field theory has asymptotic boundary S^3. By choosing the asymptotic form of the tachyon field as in (1.2), the topological stability of the string is guaranteed by the homotopy group $\pi_3(SU(2)) = \mathbb{Z}$. Arranging the asymptotic form of the gauge field on the 5-brane as in (1.2) (and that on the $\overline{5}$-brane to vanish), the string soliton carries 1 unit of instanton number which is a source of D-string charge in type-I string theory [31]. These arguments agree precisely with the general homotopy analysis of the $m = 4$ case above.

We see that the descent relations in type-II and type-I superstring theory give natural realizations of all three higher Hopf fibrations. The elementary Hopf fibration $S^1 \to S^1$ with discrete fiber \mathbb{Z}_2 arises in the construction of a type-I non-BPS brane as a codimension 1 kink of a brane-antibrane pair, e.g. the type-I D-particle from a D-string anti-D-string pair [2, 11]. The double cover of S^1 corresponds to the pair of D-strings, and the winding number of the tachyon field is labelled by the homotopy group $\pi_0(\mathbb{Z}_2) = \mathbb{Z}_2$ of the fiber corresponding to the discrete gauge transformation $T^{(1)} \to -T^{(1)}$. This agrees with the degenerate situation of describing an 8-brane in terms of a single 9-$\overline{5}$ brane pair [3], whereby the vacuum manifold is $O(1) = \{ \pm T^{(1)} \}$ and one of the 9-branes carries a \mathbb{Z}_2 Wilson line. The cup product with the generator of $\tilde{KO}(S^1) = \mathbb{Z}_2$ then achieves the mapping of \mathbb{Z}_2-valued KO-theory classes. Therefore, the four fundamental Hopf fibrations are responsible for the complete spectrum of D-brane charges in type-II and type-I superstring theory.

These cup products also shed light on the appearance of the rich spectrum of brane charges in the type-I theories as compared to the type-II theories. Since any real vector bundle may be regarded as complex, and any complex one as quaternionic, there is a natural homomorphism between the K-groups of the type-I and type-II theories,

$$\tilde{KO}^n(X) \to \tilde{K}^{-n}(X) \to \tilde{KS}p^{-n}(X)$$ \hspace{1cm} (3.17)

As an example of this map, consider the generator of $\tilde{K}(S^4) = \mathbb{Z}$, which is the pseudo-real instanton bundle described above. To realize it as a generator of $\tilde{KO}(S^4) = \mathbb{Z}$, which labels type-I 5-brane charge, it must be embedded in the orthogonal structure group as
\[SO(4) = SU(2) \times SU(2) \] which then doubles the 5-brane charge \[\mathbb{Z} \]. Thus the natural map between the integer-valued K-groups \(\tilde{K}(S^4) \) and \(\tilde{KO}(S^4) \) is multiplication by \(2, \mathbb{Z} \to 2\mathbb{Z} \). Upon forming cosets in the ring structure of the KO-groups (see (3.1)), we see how extra \(\mathbb{Z}_2 \) charged objects arise in the spectrum of the type-I theories (see [20] for the mathematical details).

3.2. Duality Transformations

We shall now describe the various transformations among the dual theories described in the previous section. We will first discuss the duality between the type-I and type-I’ theories. As in subsection 2.2 we may readily compute

\[
\tilde{KO}(Y \times S^1) = \left(\tilde{KO}^{-1}(Y) \oplus \mathbb{Z}_2 \right) \oplus \tilde{KO}(Y) \quad (3.18)
\]

\[
\tilde{KR}^{-1}(Y \times S^{1,1}) = \left(\tilde{KO}(Y) \oplus \mathbb{Z} \right) \oplus \tilde{KO}^{-1}(Y) \quad (3.19)
\]

where we have used (3.7) and the fact that the orientifold group does not act on the non-compact space \(Y \). Modulo the usual discrete groups of gauge transformations, the K-groups (3.18) and (3.19) of the type-I and type-I’ theories are the same. The cyclic subgroup in (3.18) comes from (3.1), while the integer subgroup in (3.19) comes from the identity [23]

\[
\tilde{KR}^{-n}(S^{p,q}) = \tilde{KR}^{q+1-n-p}(S^{1,0}) = \tilde{KO}^{q+1-n-p}(S^0) \quad (3.20)
\]

It arises in exactly the same way as in the type-II case, i.e. from the tachyon field (3.3) which is the large gauge transformation of the \(O(N) \) gauge bundle over the sphere \(S^1 \).

The cyclic subgroup of (3.18) comes from the \(\mathbb{Z}_2 \) gauge transformation in the degenerate codimension 1 vacuum manifold, as explained above. Thus the duality transformations between the type-I and I’ theories correctly account for the relevant changes of gauge field configurations living on the brane worldvolumes, just as in the type-II theories.\(^7\)

Again at the level of un-reduced K-theory, the two K-groups coincide. By iterating (3.18) and (3.19), we find that the same is true of the higher dimensional toroidal compactifications demonstrating the explicit mod \(\mathbb{Z} \) equivalence of the type-I and type-I’ models, or equivalently of their \(T \)-dual type-II orientifold theories,

\[
KO(Y \times T^m) = \bigoplus_{n=0}^{m} KO^{-n}(Y)^{\oplus \binom{m}{n}} \quad (3.21)
\]

\[
KR^{-m}(Y \times T^{1,m}) = \bigoplus_{n=0}^{m} KO^{n-m}(Y)^{\oplus \binom{m}{n}} \quad (3.22)
\]

The decompositions of K-groups in (3.21,3.22) contain the relevant degeneracies of wrapped branes around the cycles of \(T^m \), which in the case of (3.22) identifies the distribution

\(^7\)For an alternative construction of the \(\mathbb{Z}_2 \) Wilson lines, see [8]
of brane charges over the 2^m orientifold planes. As in subsection 2.2, each subgroup $KO^{n-m}(Y)\oplus(\mathbb{Z}/2^n)$ is generated by a descendent tachyon field as one cycles through the periodicity maps in (3.2). Upon writing the isomorphism between (3.21) and (3.22) in terms of reduced K-groups, we obtain winding numbers of the tachyon fields corresponding to large gauge transformations around the various cycles. In the type-II cases, these winding numbers indicated the precise degeneracy 2^{m-1} associated with the fact that the branes transformed under the spinor representation of the target space duality group. In the present case, we do not know the full duality group of a generic type-II orientifold, much less the representation that the brane charges carry. The decompositions into reduced groups in (3.22) should be a clue as to what the appropriate group theoretic properties are of the target space dualities in this case. The results are summarized in table 1.

Orbifold Dualities

As discussed in the previous subsection, all of the type-II orientifold string theories are conjectured to be dual to more general conventional orbifold theories (see the second column of table 1). Although we cannot test these relations in general, we can make a heuristic analysis for the $m = 4, 5, 8$ cases in table 1. The relevant K-groups for the type-IIA orbifolds on T^m/\mathbb{Z}_2 are given by the equivariant cohomology $K^{-1}_{\mathbb{Z}_2}(Y \times T^{1,m})$. These groups can be computed as in subsection 2.3 using the six term exact sequence (2.25), with the results

$$K^{-1}_{\mathbb{Z}_2}(Y \times T^{1,4}) = (K^{-1}(Y)^{\oplus 16} \otimes R[\mathbb{Z}_2]) \oplus K^{-1}(Y)$$

(3.23)

$$K^{-1}_{\mathbb{Z}_2}(Y \times T^{1,8}) = (K^{-1}(Y)^{\oplus 256} \otimes R[\mathbb{Z}_2]) \oplus K^{-1}(Y)$$

(3.24)

For the type-IIB orbifold on $S^1 \times T^4/\mathbb{Z}_2$, we use in addition the decompositions (2.17, 2.18) to get

$$\widetilde{K}_{\mathbb{Z}_2}(Y \times S^1 \times T^{1,4}) = (\widetilde{K}(Y)^{\oplus 16} \oplus K^{-1}(Y)^{\oplus 16} \oplus \mathbb{Z}^{\oplus 15}) \otimes R[\mathbb{Z}_2]$$

$$\oplus K^{-1}(Y) \oplus \widetilde{K}(Y)$$

(3.25)

Let us compare the $m = 4$ line of table 1 with the complex K-group (3.23) which represents the spectrum of D-brane charges in the orbifold limit of the IIA compactification on $K3$. Both decompositions contain the multiplicities of brane charges localized on the 16 fixed point 5-planes of the given involution. The orientifold K-groups (3.22) contain in addition the tachyon field winding numbers around cycles of T^4 as well as the appropriate windings around the various vacuum manifolds as dictated by the general homotopy analysis of subsection 3.1. On the other hand, the orbifold K-group (3.23) contains the mirror image brane charges on the orbifold planes along with the contribution from the unwrapped IIA brane configurations (represented by the second $K^{-1}(Y)$...
m	Dual theory	Vacuum manifold	$\tilde{KR}^{-m}(Y \times T^{1,m})$
0	Type-I	$O(N)$	$\tilde{KO}(X)$
1	Type-I'	$\frac{O(2N)}{O(N) \times O(N)}$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y) \oplus \mathbb{Z}$
2	F-theory on $K3$	$\frac{U(2N)}{O(2N)}$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y)^{\oplus 2}$ $\oplus \tilde{KO}^{-2}(Y) \oplus \mathbb{Z} \oplus (\mathbb{Z}_2)^{\oplus 2}$
3	M-theory on $K3$	$\frac{Sp(2N)}{U(2N)}$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y)^{\oplus 3}$ $\oplus \tilde{KO}^{-2}(Y)^{\oplus 3} \oplus \tilde{KO}^{-3}(Y)$ $\oplus \mathbb{Z} \oplus (\mathbb{Z}_2)^{\oplus 6}$
4	IIA on $K3$	$Sp(2N)$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y)^{\oplus 4}$ $\oplus \tilde{KO}^{-2}(Y)^{\oplus 4} \oplus \tilde{KO}^{-3}(Y)^{\oplus 4}$ $\oplus \tilde{KO}^{-4}(Y) \oplus \mathbb{Z} \oplus (\mathbb{Z}_2)^{\oplus 10}$
5	IIB on $K3 \times S1$	$\frac{Sp(4N)}{Sp(2N) \times Sp(2N)}$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y)^{\oplus 5}$ $\oplus \tilde{KO}^{-2}(Y)^{\oplus 10} \oplus \tilde{KO}^{-3}(Y)^{\oplus 10}$ $\oplus \tilde{KO}^{-4}(Y)^{\oplus 5} \oplus \tilde{KO}^{-5}(Y)$ $\oplus \mathbb{Z}^{\oplus 6} \oplus (\mathbb{Z}_2)^{\oplus 15}$
6	F-theory on T^8/\mathbb{Z}_2	$\frac{U(8N)}{Sp(4N)}$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y)^{\oplus 6}$ $\oplus \tilde{KO}^{-2}(Y)^{\oplus 15} \oplus \tilde{KO}^{-3}(Y)^{\oplus 20}$ $\oplus \tilde{KO}^{-4}(Y)^{\oplus 15} \oplus \tilde{KO}^{-5}(Y)^{\oplus 6}$ $\oplus \tilde{KO}^{-6}(Y) \oplus \mathbb{Z}^{\oplus 16} \oplus (\mathbb{Z}_2)^{\oplus 21}$
7	M-theory on T^8/\mathbb{Z}_2	$\frac{O(16N)}{U(8N)}$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y)^{\oplus 7}$ $\oplus \tilde{KO}^{-2}(Y)^{\oplus 21} \oplus \tilde{KO}^{-3}(Y)^{\oplus 35}$ $\oplus \tilde{KO}^{-4}(Y)^{\oplus 35} \oplus \tilde{KO}^{-5}(Y)^{\oplus 21}$ $\oplus \tilde{KO}^{-6}(Y)^{\oplus 7} \oplus \tilde{KO}^{-7}(Y)$ $\oplus \mathbb{Z}^{\oplus 36} \oplus (\mathbb{Z}_2)^{\oplus 28}$
8	IIA on T^8/\mathbb{Z}_2	$O(16N)$	$\tilde{KO}(Y) \oplus \tilde{KO}^{-1}(Y)^{\oplus 8}$ $\oplus \tilde{KO}^{-2}(Y)^{\oplus 28} \oplus \tilde{KO}^{-3}(Y)^{\oplus 56}$ $\oplus \tilde{KO}^{-4}(Y)^{\oplus 70} \oplus \tilde{KO}^{-5}(Y)^{\oplus 56}$ $\oplus \tilde{KO}^{-6}(Y)^{\oplus 28} \oplus \tilde{KO}^{-7}(Y)^{\oplus 8}$ $\oplus \tilde{KO}^{-8}(Y) \oplus \mathbb{Z}^{\oplus 71} \oplus (\mathbb{Z}_2)^{\oplus 36}$

Table 1: Type-II orientifolds on spacetimes $X = Y \times T^{1,m}$. The general dual orbifold model in each case is listed along with the corresponding vacuum manifold for tachyon condensation in the worldvolume of $2\frac{32}{3} + 1 N$ spacetime filling 9-branes. The last column represents the distribution of brane charges over the various orientifold planes and their relevant multiplicities according to some representation of the target space duality group of the orientifold theory.
The natural map (3.17) between real and complex K-groups shows how the IIA orbifold charges correspond to precisely the orientifold charges from a given tachyon configuration, along with the appropriate multiplicity of 2 as discussed at the end of the previous subsection. The remnant large gauge symmetry of the orientifold charges are then represented by unwrapped orbifold charges. This provides a new relationship between the given type-II orientifold theory and its dual. Of course, this heuristic comparison only holds at the level of the orbifold limit of the $K3$ moduli space of the IIA orbifold theory. A more precise analysis of this duality should make a comparison with the full $K3$ compactification.

The group (3.23) can be seen to account for the usual BPS branes of the IIA orbifold theory [12, 13]. This spectrum contains fractional D-particles of unit charge with respect to the twisted $U(1)$ RR gauge fields at the orbifold planes, with the correct multiplicity of 4 arising from the possible bulk and twisted charges of the states at each plane giving a total of 64 such states. The spectrum also contains wrapped D2-branes around non-vanishing supersymmetric cycles, and D4-branes which wrap around the entire compact space. However, it is less clear how to identify the spectrum of stable non-BPS configurations directly from the decomposition (3.23). For instance, the IIA theory on T^4/Z_2 should contain a Z_2-charged non-BPS 4-brane which comes from the D-particle in the dual type-I string theory. The spectrum of Z_2-charges in general can only be identified under the natural homomorphism between (3.23) and table 1, so that we can take the latter groups to represent the full brane spectrum of the orbifold theory. The problem can be traced back to the fact that the duality map in the present case involves an intermediate S-duality transformation [13], whose description in the K-theoretic formalism is at present not known [2, 5]. Other non-BPS states in the spectrum of the present model include D-particles stuck at the fixed point planes, and D-strings stretched between pairs of orbifold fixed points with the same magnitude of charge as those of the fractional BPS D-particles [13].

A similar comparison holds between the last line of table 1 and the complex K-group (3.24) which represents the type-IIA orbifold compactification on T^8/Z_2. The duality between the $m = 5$ line of table 1 and (3.23), which represents the orbifold limit of the IIB compactification on $K3 \times S^1$, is more involved because the latter group contains extra unwrapped and wrapped brane charges. The 32 $O4^-$ planes of the IIB orientifold have brane charges distributed according to table 1. On the other hand, the brane charges localized at the 16 fixed point 5-planes of the IIB orbifold (along with the mirror images) split evenly into two sets of type-II charges corresponding to wrapped and unwrapped configurations around the extra S^1. Now the mapping between the two K-groups according to (3.17) matches the symmetrical splitting of the KO-group decomposition for $m = 5$, 33
and one may take the K-groups of table 1 to represent the non-BPS configurations of these dual models. It would be interesting to test this matching by explicit string theoretical constructions.

3.3. \((-1)^{Fl}\) Transformations

The generalization of the action of the Klein operator \((-1)^{Fl}\) on the type-I theories and on the type-IIB orientifolds can be deduced from their relationships with the type-II theories. Let us start from the type-I theory, regarded as the quotient of type-IIB superstring theory by worldsheet parity \(\Omega\). Regarding the type-IIA theory as the quotient of IIB by \((-1)^{Fl}\), the type-I’ theory may then be obtained as the quotient of IIB by the involution \(\Omega \cdot (-1)^{Fl} \cdot I_1\). The Grothendieck group \(KR_{\pm}(X)\) of virtual complex vector bundles with such an involution is a generalization of the Hopkins K-groups to the category of Real vector bundles over \(X\). Thus the action on K-theory by the \((-1)^{Fl}\) projection on the type-I theory should induce a map

\[
\tilde{KO}(X) \rightarrow \tilde{KR}_{\pm}(X)
\]

(3.26)

The problem we encounter at this stage is a mathematical one. The theory of Hopkins groups \(K_{\pm}(X)\) has not been investigated much in the literature, much less its Real generalization. In particular, a product formula such as that given by the right-hand side of (2.24) is not known in this case. In [5] it was suggested that an analog of the Hopkins formula could be

\[
KR_{\pm}(X) = KR_{\mathbb{Z}_2}(X \times \mathbb{R}^{1,1})
\]

(3.27)

where the cyclic group acts as the product of the action of \(I_1\) on \(X\) and an orientation reversing symmetry of the real space \(\mathbb{R}^{1,1}\).

This relationship exemplifies the fact that duality transformations and orbifold operations do not always commute \([38]\), in this case within the various interrelationships between the type-I and type-II theories. Instead of the mapping (3.26), there is a more natural candidate which comes about in analogy with the \(T\)-duality transformations of the type-I theories. One could consider the action of \((-1)^{Fl}\) directly on the type-I’ theory, thereby obtaining the map (2.24) into Real virtual bundles. The relevant K-group for the operation of modding out the type-I’ theory \(m\) times by \((-1)^{Fl}\) is then

\[
\tilde{KR}^{-m}_{\mathbb{Z}_2}(X \times \mathbb{R}^{0,m}) = \left(\tilde{KR}^{-m}(X) \otimes R[\mathbb{Z}_2]\right) \oplus \tilde{KR}(X)
\]

(3.28)

with a trivial \(\mathbb{Z}_2\) action on the spacetime \(X\). The decomposition (3.28) follows using the methods of subsection 2.3 applied to the KR-groups and the suspension isomorphism \([20]\)

\[
KR^{-n}(X \times \mathbb{R}^{p,q}) = KR^{q-p-n}(X)
\]

(3.29)
for Real K-theory. The projection onto the first direct summand in (3.28), representing the states which survive the \((-1)^F_L\) projections, can be carried out explicitly on the invariant brane-antibrane configurations as in subsection 2.3. The other summand \(KR(X)\) then always represents the orientifold states projected out by the \((-1)^F_L\) involution. The subsequent \((-1)^F_L\) projections now take us through the entire sequence of type-II orientifolds described in subsection 3.1. It would be interesting to test the mappings described here directly using explicit string theoretical constructions (for example, a boundary state calculation along the lines of [14]).

3.4. Summary

Again we may succinctly summarize the descent relations among type-I branes and those of type-II orientifolds by a diagram representing the various mappings on K-groups:

\[
egin{align*}
KO(X) & \xrightarrow{\beta} KO^{-1}(X) \xrightarrow{\beta} \cdots \xrightarrow{\beta} KO^{-8}(X) \\
(-1)^F_L \downarrow & \quad \downarrow_{KO(Y \times S^1)} = KR^{-1}(Y \times S^{1,1})
\end{align*}
\]

\[
egin{align*}
KR^{-1}_{Z_2}(X \times \mathbb{R}^{0,1}) & \xrightarrow{\beta \oplus \Pi_1} KR^{-1}(X) \\
(-1)^F_L \downarrow & \quad \downarrow_{KO(Y \times T^2)} = KR^{-2}(Y \times T^{1,2})_Y
\end{align*}
\]

\[
egin{align*}
KR^{-2}_{Z_2}(X \times \mathbb{R}^{0,2}) & \xrightarrow{\beta \oplus \Pi_1} KR^{-2}(X) \\
(-1)^F_L \downarrow & \quad \downarrow_{KO(Y \times T^3)} = KR^{-3}(Y \times T^{1,3})_Y
\end{align*}
\]

\[
\vdots
\]

\[
egin{align*}
KR^{-8}_{Z_2}(X \times \mathbb{R}^{0,8}) & \xrightarrow{\Pi_1} KR(X) \\
(-1)^F_L \downarrow & \quad \downarrow_{KO(Y \times T^8)} = KR(Y \times T^{1,8})_Y
\end{align*}
\]

(3.30)

Again \(\beta\) is the Bott periodicity isomorphism representing tachyon condensation in codimension 1, except that now in general it leads to a stable brane configuration (non-trivial K-theory class). In particular, \(\beta\) realizes a type-I non-BPS \(p - 1\)-brane as a kink in the worldvolume of a \(p - \overline{p}\) pair. The map \(\beta^4\) acts on KO-groups according to

\[
\beta^4 KO(X) = KSp(X)
\]

(3.31)

and it realizes a BPS \(p - 4\)-brane as an \(SU(2)\) Yang-Mills instanton in the worldvolume of
four p-\overline{p} pairs. The map β^8 realizes a $p-8$-brane as a spin(8) instanton in the worldvolume of 16 p-\overline{p} pairs. The projections Π_1 are as before. Note that the statements about KR-groups above can be translated into ones about KO-groups upon taking the KR-involution to act trivially on the spacetime X.

4. Orientifold Symmetries

One subtlety in our description of type-II orientifolds in the previous section is that the homotopy classification of KR-theory requires a slightly refined definition. This is in turn related to a more general periodicity property of Real K-theory. In this final section we will describe these general symmetries of the orientifold models in some detail, thereby exposing the rich internal symmetries predicted by the K-theory formalism.

4.1. Periodicity in Real K-theory

The definition of the higher KR-groups that we have used thus far has been done with respect to suspensions whereby the KR-involution acts trivially on the sphere. There is a more general class of Real K-groups which are defined by the double index suspensions

$$KR_{p,q}(X) = KR(\Sigma^{p,q}X) \quad \text{with} \quad \Sigma^{p,q}X = X \wedge \mathbb{R}^{p,q}$$

(4.1)

With this definition we have

$$KR^{-n}(X) = KR^{n,0}(X)$$

(4.2)

Taking the cup product with the class of the complex Hopf line bundle $N_{\mathbb{C}}$ over $\mathbb{C}P^1$ with its natural Real structure (given by the anti-linear complex conjugation involution) induces the strong Bott periodicity isomorphism [23]

$$KR^{p+1,q+1}(X) = KR^{p,q}(X)$$

(4.3)

showing that in fact $KR^{p,q}(X) = KR^{q-p}(X)$. Identifying $\mathbb{R}^{1,1}$ as the space \mathbb{C} with complex conjugation, this $(1,1)$ periodicity may be cast in the form of a suspension isomorphism

$$KR(X) = KR(X \times \mathbb{C})$$

(4.4)

Thus the K-theory of the orientifold models described in the previous section is naturally contained within this two-index set of KR-groups.

To understand what the periodicity (4.3) means physically in terms of brane charges, we appeal to the ABS construction for Real K-theory. For this, we define a two-parameter
set of Clifford algebras $C_{n,m}$ of the real space $\mathbb{R}^{n,m}$ as the usual algebra associated with \mathbb{R}^{n+m} together with an involution generated by the I_m involution acting on $\mathbb{R}^{n,m}$. A Real module over $C_{n,m}$ is then a finite-dimensional representation together with a \mathbb{C}-antilinear involution which preserves the Clifford multiplication. The corresponding representation ring $R[spin(n, m)]$ is naturally isomorphic to the Grothendieck group generated by the irreducible \mathbb{R}-modules $\Delta_{n,m}$ of the Clifford algebra of the space $\mathbb{R}^n \oplus \mathbb{R}^m$ with quadratic form of Lorentzian signature (n, m). The ABS map is now the graded ring isomorphism \[KR(R^{n,m}) \cong R[spin(n, m)] / R[spin(n + 1, m)] = KO^{n-m}(S^0) \] (4.5)

This isomorphism relates the groups on the left-hand side of (4.5) to the Clifford algebras $C_{n,m}$, so that the $(1, 1)$ periodicity (1.3) is reflected in the $(1, 1)$ periodicity of the Clifford algebras, $C_{n+1,m+1} = C_{n,m} \otimes \mathbb{R}(2)$. \[\]

Let us now consider a p-brane of codimension $l = n+m$ in a type-II orientifold by $\Omega \cdot I_m$. The p-brane charge is induced by the tachyon field which is given by Clifford multiplication on the transverse space $\mathbb{R}^{n,m}$, i.e. $T(x) = \sum_i \Gamma_i x^i$ where Γ_i are the generators of the spinor module $\Delta_{n,m}$, and which generates $KR(\mathbb{R}^{n,m})$. Under the ABS isomorphism above, this KR-theory class is multiplied, via the cup product, by the Hopf generator of $KR(\mathbb{C}P^1) = \mathbb{Z}$, or equivalently by the spin bundles which carry the spinor representation $\Delta_{1,1}$. This gives a class with tachyon field that generates the KR-group of the new transverse space $\mathbb{R}^{n+1,m+1}$. This class represents a $p−2$-brane of the type-II orientifold by $\Omega \cdot I_{m+1}$.

From this mathematical fact we may deduce a new descent relation for type-II orientifold theories. A $p−2$-brane localized at an $O(8−m)$-plane in a type-II $\Omega \cdot I_{m+1}$ orientifold may be constructed as the tachyonic soliton of a bound state of a p-\overline{p} pair located on top of an $O(9−m)$-plane in a type-II $\Omega \cdot I_m$ orientifold. This realizes the branes of a type-II orientifold as equivariant magnetic monopoles in the worldvolumes of brane-antibrane pairs of an orientifold with fixed point planes of one higher dimension. The former orientifold has $2^{m+1} O(8−m)$-planes each carrying RR-charge $-2^{3−m}$, while the latter one has $2^m O(9−m)$-planes of charge $-2^{4−m}$. In a sense, in this process of tachyon condensation the number of fixed point planes is doubled while their charges are lowered by a factor of 2 by a combined operation of charge transfer and dimensional reduction through the orientifold planes. An example is the non-BPS state consisting of a $D5$-brane on top of an orientifold 5-plane in the type-IIB theory [10], which may be constructed via a tachyon condensate from a pair of $D7-\overline{D7}$ branes on an orientifold 6-plane in the type-IIA theory. The 8 $O6^-$-planes each carrying charge -2 are transfered to the 16 $O5^-$-planes of charge -1.

This new sort of internal symmetry among the type-II orientifolds may be thought of as a type of T-duality symmetry acting on the RR-charges of the orientifold planes,
in analogy with the transformations described in subsection 3.1. By repeated iteration as before, we obtain an entire hierarchy of novel bound state constructions of D-branes in various higher dimensions. To describe the field content, however, we must be careful about identifying the appropriate homotopy of the relevant vacuum manifolds. The classifying spaces for Real vector bundles are described in [39]. Consider an orientifold of the type-IIB theory, and a set of brane-antibrane pairs with worldvolume gauge symmetry $U(N) \times U(N)$. The $U(N)$ gauge group is endowed with its complex conjugation involution whose fixed point set is the real subgroup $O(N)$. The tachyon field T is equivariant with respect to the orientifold group, so that

$$T(x, -y) = T(x, y)^*$$ \hspace{1cm} (4.6)$$

where $(x, y) \in \mathbb{R}^n \oplus \mathbb{R}^m$. It breaks the worldvolume gauge symmetry down to $U(N)_{\text{diag}}$. The relevant homotopy group generated by (4.6) comes from decomposing the one-point compactification of $\mathbb{R}^{n,m}$ into upper and lower hemispheres as described in subsection 2.2, such that the tachyon field is the transition function on the overlap. The D-brane charges thereby reside in the KR-group of the transverse space which is given by

$$\tilde{KR}(\mathbb{R}^{n,m}) = \pi_{n,m}(U(N))_R$$ \hspace{1cm} (4.7)$$

where the equivariant homotopy group is defined by the maps $S^{n,m} \to U(N)$ which obey the Real equivariance condition (4.6). The refined weak Bott periodicity theorem for stable equivariant homotopy in KR-theory then reads

$$\pi_{n,m}(U(N))_R = \pi_{n+1,m+1}(U(2N))_R$$ \hspace{1cm} (4.8)$$

In a similar way one may relate the Real K-groups $\tilde{KR}^{-1}(\mathbb{R}^{n,m}) = \tilde{KR}(\mathbb{R}^{n+1,m})$ to the stable equivariant homotopy of the complex Grassmanian manifold $U(2N)/[U(N) \times U(N)]$. In this way we arrive at the Real version of the homotopy sequence (2.2). The first isomorphism from a type-IIB orientifold to a type-IIA orientifold preserves the structure of the orientifold planes, while the second step of the sequence decreases the fixed point plane dimension by 1.

This gives a novel generalization of the T-duality and descent relations between IIA and IIB orientifolds, which would be very interesting to reproduce using string theoretic arguments, as in [10]. Note that the relevance of the Dirac monopole in the orientifolds is not surprising, given its prominent role in the type-II theories of section 2. Having identified these orientifold symmetries, we may now restrict our attention to D-brane charges living in the groups (4.2), and hence proceed to the real Bott periodicity relations, as in subsection 3.1. The sequence of homotopy groups in (3.2) now arises from the fact [39] that if the KR-involution acts freely, then the classifying space for stable equivariant
homotopy reduces to the coset space $U(2N)/O(2N)$. The rest of the isomorphisms now follow as before. Note that the gauge fields living on the brane worldvolumes in these cases must also satisfy an equivariance condition like (4.6). A similar analysis can be done for the $(1,1)$ periodicity of KH-theory \cite{12} which gives internal relations among branes localized on $O(9-m)^+$-planes.

4.2. Internal Symmetries

The Real K-groups are in a certain sense “universal” as they contain all of the other generalized cohomology theories. This feature follows from the many further internal symmetries present in KR-theory. In particular, there are the natural periodicity isomorphisms \cite{23}

$$KR(X \times S^{0,m}) = KR^{-2m}(X \times S^{0,m})$$

for $m = 1, 2, 4$. The periodicity of KR-theory with coefficients in $S^{0,m}$ follows by using the multiplication in the fields $\mathbb{R}, \mathbb{C}, \mathbb{H}$, respectively, and $(1,1)$ periodicity. Note that for $m = 1$ we have the isomorphism (3.8), so that (4.9) then reduces to the complex Bott periodicity theorem (2.13), while the $m = 4$ case leads immediately to the real periodicity theorem (3.14). In fact, there is the usual decomposition \cite{23}

$$KR^{-n}(X \times S^{0,m}) = KR^{-n}(X) \oplus KR^{-n+m+1}(X) \quad \forall m \geq 3$$

The case $m = 2$ is special and the corresponding KR-groups are isomorphic to the Grothendieck groups generated by the category of self-conjugate vector bundles over X \cite{23}. This self-conjugate K-theory has Bott periodicity 4, which from (3.13) we see is associated with symplectic Chan-Paton gauge bundles. This fact has been exploited in \cite{8} to relate this type of K-theory to certain orientifold compactifications of type-II theories without vector structure \cite{40}, i.e. those with the same number of both $O(9-m)^-$ and $O(9-m)^+$ planes of cancelling charge that require no D-branes in the vacuum configuration, and hence have no gauge group. The T-duality transformations in these theories is also explained in \cite{8}. These transformations, as well as the brane descent relations in these models, are now natural consequences of the periodicity and homotopy properties of the KR-groups explained in the previous subsection. It would be interesting to construct these transformations more explicitly, thus verifying the results of \cite{8}. It would also be interesting to see if the various duality properties of orientifold compactifications without vector structure \cite{40}, which differ somewhat from those described in section 3, can be deduced from the internal symmetries described in this section.

Thus the internal symmetries of KR-theory encompass most of the brane descent relations which are based on periodicity theorems, and they further emphasize the role
played by Hopf fiber bundles in the topological classification of D-branes. In addition, the further symmetry relations in orbifold models may be thought of as originating within the equivariant structure of KR-theory, and from the usual Bott periodicities of the given equivariant K-groups, with solitonic configurations provided by equivariant versions of the four canonical solitons coming from the Hopf fibrations. It would also be interesting to study more closely the internal symmetries of type-II orientifolds arising from quotients by the operator \((-1)^{F_L \cdot \mathcal{I}_m}\), which induce the Hopkins K-groups \(K^\pm(X)\). For instance, as discussed in [3], the products with the Thom spaces of \(\mathbb{C}\) and \(\mathbb{C}/\mathbb{Z}_2\) induce, respectively, the periodicity isomorphisms which identify the Hopkins K-groups of \(\mathbb{R}^{n,m}\) with \(\mathbb{R}^{n+2,m}\), and of \(\mathbb{R}^{n,m}\) with \(\mathbb{R}^{n,m+2}\). The first periodicity builds a \(p-2\)-brane from a \(p-\bar{p}\) brane pair through the usual monopole and leaves the orientifold plane structure unchanged, while the second one realizes a \(p-2\)-brane inside a \(p-\bar{p}\) pair through a \(\mathbb{Z}_2\)-equivariant monopole and lowers the dimension of the orientifold planes by 2. This phenomenon is similar to that described above for the \(\Omega \cdot \mathcal{I}_m\) orientifolds, and the monopole symmetries can be seen to naturally arise from the definition of the Hopkins K-functor as the usual equivariant K-functor (see the right-hand side of (2.24)). Again it would be most interesting to carry out these constructions from a more physical standpoint.

Acknowledgements: We thank P. Di Vecchia, F. Lizzi, J. Møller, R. Nest, N. Obers, S. Schwede, G. Semenoff and G. Sparano for helpful discussions, and P. Hořava and G. Landi for comments on the manuscript.
References

[1] R. Minasian and G. Moore, J. High Energy Phys. 9711 (1997) 002.
[2] E. Witten, J. High Energy Phys. 9812 (1998) 019.
[3] P. Hořava, Adv. Theor. Math. Phys. 2 (1998) 1373.
[4] H. García-Compéan, D-branes in Orbifold Singularities and Equivariant K-theory, hep-th/9812226, to appear in Nucl. Phys. B.
[5] S. Gukov, K-theory, Reality and Orientifolds, hep-th/9901042.
[6] K. Hori, D-branes, T-Duality and Index Theory, hep-th/9902102, to appear in Adv. Theor. Math. Phys.
[7] E. Sharpe, D-branes, Derived Categories and Grothendieck Groups, hep-th/9902116.
[8] O. Bergman, E.G. Gimon and P. Hořava, J. High Energy Phys. 9904 (1999) 010.
[9] J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724.
[10] A. Sen, J. High Energy Phys. 9806 (1998) 007; 9808 (1998) 010, 012; 9810 (1998) 021;
 O. Bergman and M.R. Gaberdiel, Phys. Lett. B441 (1998) 133;
 M. Frau, L. Gallot, A. Lerda and P. Strigazzi, Stable Non-BPS D-branes in Type-I String Theory, hep-th/9903123.
[11] A. Sen, J. High Energy Phys. 9809 (1998) 023.
[12] A. Sen, J. High Energy Phys. 9812 (1998) 021;
 A. Lerda, Lectures at the School Quantum Aspects of Gauge Theories, Supersymmetry and Unification, Leuven, Belgium, January 18–23 1999.
[13] O. Bergman and M.R. Gaberdiel, J. High Energy Phys. 9903 (1999) 013.
[14] K. Dasgupta and J. Park, Phys. Lett. B457 (1999) 47.
[15] G.W. Semenoff and K. Zarembo, Solitons on Branes, hep-th/9903140, to appear in Nucl. Phys. B.
[16] R. Bott, Ann. Math. 70 (1959) 313.
[17] M. Karoubi, K-Theory (Springer-Verlag, 1978).
[18] B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern Geometry (Springer-Verlag, 1990).
[19] M.F. Atiyah, R. Bott and A. Shapiro, Topology 3 (1964) 3.
[20] H.B. Lawson and M.-L. Michelsohn, Spin Geometry (Princeton University Press, 1989).
[21] D. Husemoller, Fibre Bundles (Springer-Verlag, 1994).
[22] T. Banks, W. Fischler and L. Motl, J. High Energy Phys. 9901 (1999) 019;
 L. Motl and T. Banks, H. High Energy Phys. 9905 (1999) 015.
[23] M.F. Atiyah, Quart. J. Math. Oxford 17 (1966) 367.
[24] M.F. Atiyah, K-Theory (Benjamin, 1967).
[25] A. Trautman, Int. J. Theor. Phys. 16 (1977) 561; J. Nowakowski and A. Trautman, J. Math. Phys. 19 (1978) 1100.

[26] G.B. Segal, Publ. Math. IHES (Paris) 34 (1968) 113; 129.

[27] E.G. Gimon and J. Polchinski, Phys. Rev. D54 (1996) 1667.

[28] M.R. Douglas and G. Moore, D-branes, Quivers and ALE Instantons, hep-th/9603167.

[29] C. Vafa, Nucl. Phys. B469 (1996) 403; A. Sen, Nucl. Phys. B475 (1996) 562; K. Dasgupta, D. Jatkar and S. Mukhi, Nucl. Phys. B523 (1998) 465.

[30] N. Seiberg, Phys. Lett. B384 (1996) 81; N. Seiberg and E. Witten, in: The Mathematical Beauty of Physics, eds. J.-M. Drouffe and J.-B. Zuber (World Scientific, 1997) p. 333.

[31] E. Witten, Nucl. Phys. B460 (1996) 541; M.R. Douglas, in: Strings, Branes and Dualities, eds. L. Baulieu, P. Di Francesco, M.R. Douglas, V.A. Kazakov, M. Picco and P. Windey (Dordrecht, Kluwer Academic, 1999), p.267.

[32] J.L. Dupont, Math. Scand. 24 (1969) 27.

[33] M. Bershadsky, V. Sadov and C. Vafa, Nucl. Phys. B463 (1996) 399.

[34] E. Witten, Nucl. Phys. B463 (1996) 383; K. Dasgupta and S. Mukhi, Nucl. Phys. B465 (1996) 399.

[35] P. Yi, Nucl. Phys. B550 (1999) 214.

[36] H. Awata, S. Hirano and Y. Hyakutake, Tachyon Condensation and Graviton Production in Matrix Theory, hep-th/9902158; N. Kim, S.-J. Rey and J.-T. Yee, J. High Energy Phys. 9904 (1999) 003.

[37] B. Grossman, T.W. Kephart and J.D. Stasheff, Comm. Math. Phys. 96 (1984) 431; 100 (1985) 311; Phys. Lett. B220 (1989) 431; G. Landi, Lett. Math. Phys. 11 (1986) 171; P. Budinich and A. Trautman, Lett. Math. Phys. 11 (1986) 315; L. Dabrowski and A. Trautman, J. Math. Phys. 27 (1986) 2022.

[38] A. Sen, Nucl. Phys. B474 (1996) 361.

[39] A.L. Edelson, Trans. Amer. Math. Soc. 157 (1971) 179.

[40] E. Witten, J. High Energy Phys. 9802 (1998) 006.