Taking snapshots of the jet-ISM interplay with ALMA: the case of the CSS PKS 0023–26

Raffaella Morganti
ASTRON, Kapteyn Institute

Tom Oosterloo, Clive Tadhunter
Suma Murthy and many others....
Role of radio jets for feedback

Hundreds of kpc-scales

Maintenance mode: prevent cooling of gas: radiative inefficient radio AGN

hot gas/cavities
radio plasma

-200 kpc

Hundreds of kpc-scales
but the impact of jets starts already in the very inner regions and when the radio source is young!

Sutherland & Bicknell 2007
Wagner, Bicknell et al. 2011; Mukherjee et al. 2015
Role of radio jets for feedback

but the impact of jets starts already in the very inner regions and when the radio source is young!

Impact can be traced by gas in different phases, e.g. outflows common in warm ionised gas (especially in CSS/GPS), but the most massive component in cold gas

We use the cold molecular gas as tracer

Sutherland & Bicknell 2007
Wagner, Bicknell et al. 2011; Mukherjee et al. 2015
Complex multi-parameter space to explore!

- Radio power
- Evolutionary stage/age
- Multi-phase outflows and location
- Orientation jet/ISM

Our ALMA (and NOEMA) sample of GPS/CSS observed so far

High spatial resolution (~0.2 arcsec) to follow the molecular gas across the radio emission

See also talk by Suma Murthy (Friday's session)
Complex multi-parameter space to explore!

- **radio power**
- **evolutionary stage/age**
- **multi-phase outflows and location**
- **orientation jet/ISM**

our ALMA (and NOEMA) sample of GPS/CSS observed so far

- High spatial resolution (~0.2 arcsec) to follow the molecular gas across the radio emission

see also talk by Suma Murthy (Friday’s session)
PKS 0023-26 a young (CSS) radio galaxy....

PKS 0023-26 ($z = 0.321$): young but evolved powerful jet (~ 4 kpc)
Also powerful optical AGN

FarIR bright and young stellar population \rightarrow SFR ~ 24 M_\odot/yr

Redshift $z = 0.32188$

Chandra observations on-going (PI Siemiginowska)

X-ray observations

X-ray spectrum

Merlin 4.9 GHz

X-Shooter - Santoro et al. 2020

Optical, Ramos Almeida et al. 2013
PKS 0023-26 view by ALMA

- Mass of molecular gas: about $10^{10} \, M_\odot$
 - distributed on ~20 kpc, with tidal streams

- Large amount of molecular gas, accretion from companions and cooling of the hot halo: similar to cases found in clusters?

- Bright central region of molecular gas
 - piling up of gas or effect of higher excitation due to AGN (will require more transition to check this)

- Low brightness at the location of the lobes

Ideal system for the study of the impact of the (radio) AGN, but the kinematics of the gas had some surprises
• High velocity dispersion at the location of the radio lobes.
• Radio lobes tend to avoid regions rich in molecular gas or they have pushed it aside (seen in intensity and kinematics)
not fast outflows of molecular gas @lobes → possible reasons: density of the gas not high enough for a fast cooling + strong interaction from the powerful jet...

BUT

the high velocity dispersion at the location of the radio source suggests the jets/lobes are in the process of pushing the gas aside

Jet power \((4 \times 10^{46} \text{ erg/s})\) can provide enough energy....

Star formation in the host galaxy not yet strongly affected!
PKS 0023-26 and friends: what have we learned so far...

Complex multi-parameter space to explore!

radio power

evolutionary stage/age

multi-phase outflows and location

orientation jet/ISM

age (<10^6 yr)

radio power

Morganti et al. 2015; Oosterloo et al. 2017, 2019, Maccagni et al. 2017, Murthy et al. in prep.
Outflows of cold (molecular) gas in the inner (sub-kpc) region

Outflows of cold (molecular) gas in the inner (sub-kpc) region

• Outflows of cold (molecular) gas in the inner (sub-kpc) region

origin of molecular outflows: jet interacting with dense clouds followed by fast cooling

Highest mass outflow rate (>400 M_☉/yr)
in the powerful radio source PKS1549-79
but outflows also in low power

Oosterloo, Morganti et al. 2019

ALMA
PKS 1549-79
~0.2 kpc

ALMA
PKS 1549-79
~0.2 kpc

Position-velocity plot of the CO(3-2) ALMA data of IC5063
Data
Modelling

B2 0258+35 - NOEMA CO(1-0)
Murthy et al. in prep.
See Murthy’s talk tomorrow
Properties of the outflows of molecular gas...

- **Physical properties** of the molecular gas affected by the interaction: high ratio CO(2-1)/CO(1-0) indicates high excitation and/or optical thin conditions in the region most affected by the jet.

 Kinetic temperatures in the range 20–100 K and densities between 10^5 and 10^6 cm^{-3} (best fit of ratio line transitions suggests a clumpy medium)

Mass outflow rates: tens to a few hundred M_☉/yr

BUT

Small fraction of gas leaves the galaxy: most of the gas raining back, fountain-like effect

Impact of gas outflows limited even in objects with ideal conditions for AGN-driven (jet-driven) feedback: outflows cannot be the entire story!
Not only outflows: changing the impact while evolving...

Jet further expands (PKS 0023-26): lower gas density (longer cooling times) \Rightarrow jet drives mild shocks into the ISM, pushing aside the (molecular) gas, bubble-like structures \Rightarrow this will affect the entire host galaxy when the radio source expands (next few $\times 10^7$ yr)

transition from outflows to maintenance mode \Rightarrow heating of the ISM

Impact on the e.g. star formation may not be on the same time-scale as the AGN

see also Harrison et al. 2019
Scholtz et al. 2020

Adapted from Huseman et al. 2019
Some summary thoughts.....

- Evidence of **impact of jets in young** radio galaxies: observations consistent with predictions from jet simulations
- **Outflows** of cold (molecular) gas in the inner (sub-kpc) regions
- **Small fraction of gas** is leaving the galaxy, the rest “rains” back
 main effect: inject energy, turbulence, redistribute gas
- As the radio lobes **expand in the host galaxy** → mild shocks pushing aside the gas.

- Impact of jets possibly evolving/changing as the jet expands: from driving outflows in the first phase (sub-kpc) to “maintenance” mode (stop gas from cooling) when the jet reaches kpc scales
- This evolution needs to be considered - ideal for linking nuclear region to CGM
- Effect on star formation may be visible only on longer time-scales
- What will the X-ray observations tell us?