Pathogenesis of Epilepsy: Challenges in Animal Models

Yow Hui Yin 1, Nurulumi Ahmad 1, Mohd Makmor-Bakry 1 *

1 Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia

INTRODUCTION

Epilepsy is a neurological disorder characterized by recurrent and unpredictable interruptions of normal brain function, called epileptic seizure (1). It is one of the most common chronic disorders affecting around 50 million individuals of all ages worldwide (2). The median prevalence of life-time epilepsy for developed countries was 5.8 per 1,000 and for developing countries up to 15.4 per 1,000 (3). The median prevalence of active epilepsy despite treatment was 4.9 per 1,000 for developed countries and up to 12.7 per 1,000 for developing countries (3). This showed that prevalence of epilepsy is higher in developing countries compared to developed countries. In Asia, the median life-time prevalence is estimated at 6 per 1,000, which is lower than in developing countries in other areas of the world (4).

According to the causal etiology, epilepsy can be divided into 3 categories: idiopathic, acquired (symptomatic) and cryptogenic (presumed symptomatic) (5-7). Idiopathic epilepsy is epilepsy without underlying structural brain lesion or other neurologic signs or symptoms, which is presumed to be genetic and generally has onset during childhood. Acquired epilepsy is epileptic seizures as a result of one or more identifiable structural lesions of the brain. Cryptogenic epilepsy refers to the epilepsy that is believed to be symptomatic, with unidentified cause (5, 6). Among the epilepsy cases, approximately 40% have known etiology (8), including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, central nervous system infections, brain tumors, several neurodegenerative diseases, and prolonged acute symptomatic seizures such as complex febrile seizures or status epilepticus (SE) (6,7,9).

On the other hand, the International League against Epilepsy has classified seizures into two major types namely generalized seizures which involve both hemispheres of brain and partial (focal) seizures which begin locally in one hemisphere of the brain (10). Majority of patients with epilepsy suffer from partial seizures (11). Temporal lobe epilepsy (TLE) is the most common and difficult-to-treat type of partial epilepsy (10, 11). This may be attributed to temporal lobe structures, typically the hippocampus, the amygdala and the piriform cortex which are most susceptible to epileptogenesis-triggering brain insult (12). Therefore, TLE is commonly investigated in order to understand the mechanism underlying epileptogenesis, anti-epileptic pharmacoresistance and to discover antiepileptogenic or disease-modifying therapy. Animal models of epilepsy have been suggested to play important roles in these mechanistic studies (13, 14). Hence, this review article discusses the known and postulated mechanisms of epileptogenesis and challenges in using the animal models.
mechanisms of epileptogenesis and challenges in using the animal models in epilepsy study. The databases that were used for literature searching included Science direct, PubMed and Wiley Online Library. The search keywords included pathogenesis of epilepsy, epileptogenesis, animal models, neurotransmission pathway, channelopathies, neurogenesis and rewiring pathway, inflammatory pathway, apoptotic pathway, gene regulation and other related keywords. Only articles published in English were reviewed.

Pathogenesis of epilepsy

Definition of epileptogenesis

Currently, there is no universally accepted definition for epileptogenesis. The term epileptogenesis is defined as a process that leads to the occurrence of the first spontaneous seizure and recurring epileptiform events after the brain insult (Figure 1) (15). Latency period refers to seizure-free or pre-epileptic periods between the brain insult and the occurrence of the first spontaneous seizure (15, 16). There is evidence that neurobiological changes that occur during the latency period continue to progress even after diagnosis of epilepsy and contribute to its progression (17, 18). Hence, the proposed definition for epileptogenesis includes processes that involve both development and progression of epilepsy (19). Nevertheless, recently, Sloviter Bumanglag proposed and defined secondary changes or progression process after epileptogenesis as 'epileptic maturation'. They reviewed ‘epileptogenesis’ and ‘epileptic maturation’ as two distinct processes (15).

Mechanism of epileptogenesis

Epileptogenesis can involve various biological pathways or processes, structural and functional changes. In general, it is unclear which mechanisms are required or necessary for the genesis of epilepsy. However, several experimental studies have provided some insights into the actual and postulated mechanisms of epileptogenesis.

Neurotransmission signaling pathway

Glutamate and γ-aminobutyric acid (GABA) are the two neurotransmitters that have been studied extensively in relation to epilepsy. Both glutamatergic and GABAergic system play crucial roles in epileptic phenomena. It has been hypothesized that the neuronal hyperexcitability in epilepsy is due to imbalance between glutamate-mediated excitation and GABA-mediated inhibition (12). Glutamate is a main excitatory neurotransmitter in brain that is responsible for generating excitatory postsynaptic potentials by depolarizing the neurons (20, 21). Generally, glutamate receptors are classified into ionotropic (ligand-gated cation channels) receptors: α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA), N-methyl-D-aspartic acid (NMDA) and kainate, and metabotropic (G protein-coupled) receptors (20-22). Glutamatergic molecular mechanisms that are involved during initiation and progression of epilepsy include upregulation of glutamate receptors (23-25), elevation in extracellular glutamate concentration (26, 27), abnormalities in glutamatergic transporters (27, 28) and autoimmune mechanism (29). These mechanisms contribute to excessive glutamatergic activity,
which plays an important role in hyperexcitability and epilepsy (12). This phenomenon recorded as an interictal spike on electroencephalogram, known as ‘paroxysmal depolarizing shift’ is intracellularly associated with epileptic discharges in neurons (20, 30, 31). Paroxysmal depolarizing shift is associated with depolarization due to a giant excitatory synaptic potential with characteristic of burst discharge, which is dependent on activation of AMPA receptors as initial components and NMDA receptors as later components (30).

Conversely, GABA is recognized as the main inhibitory neurotransmitter, which generates inhibitory presynaptic potentials by hyperpolarizing the neurons (32, 33). GABAergic system has an important role in counter-balancing the neuronal excitation and therefore suppressing the epileptiform discharges (32). There are two types of GABA receptors that are involved in pathogenesis of epilepsy, namely GABA_A and GABA_B receptors. GABA_A receptors (ligand-gated ion channels) mediate rapid inhibitory presynaptic potentials by increasing influx of chloride, and GABA_B receptors (G-protein-coupled receptors) mediate slow inhibitory presynaptic potentials by increasing the potassium conductance and decreasing the calcium entry (33-35). It is hypothesized that reduction or loss of GABAergic inhibition may increase the probability of generating excitatory postsynaptic potentials and synchronizing burst discharges, and therefore induce epileptogenesis (12, 31). The GABAergic mechanisms that have been proposed include impairment of GABA release (36), changes in GABA receptors (37, 38), impairment of GABA synthesis (39, 40) and neuronal loss (41, 42).

Another neurotransmitter such as serotonin, noradrenaline and dopamine also play a role in epileptic mechanism. Serotonin, also known as 5-hydroxytryptamine is a monoamine neurotransmitter that is derived from amino acid tryptophan. There are several serotonin receptor subtypes expressed in the central nervous system, such as 5-HT_A, 5-HT_C and 5-HT_7. Receptors are present on cortical and/ or hippocampal neurons (43, 44). Experimental data from animal models and humans reveal that serotonergic neurotransmission is significantly involved in pathogenesis of epilepsy: depletion of brain serotonin in genetically epilepsy-prone rat model of audiogenic seizures (45, 46); lower seizure thresholds in mutants mice lacking 5-HT_A or 5-HT_C receptor subtype (47, 48); decrease in 5-HT_A receptor binding in epileptogenic zone of TLE patients (49). The serotonergic system in modulating neuronal excitability has been complicated by diversity of serotonin receptor subtypes. Generally, neuronal excitability can be reduced during hyperpolarization of glutamatergic neurons by 5-HT_A receptors, depolarization of GABAergic neurons by 5-HT_C receptors and inhibition of 5-HT_3 and 5-HT_7 receptors (44).

Noradrenaline is a catecholamine produced from dopamine, which is released either as a hormone from adrenal medulla or as a neurotransmitter in the central and sympathetic nervous systems from noradrenergic neurons (50). Multiple studies demonstrate that endogenous noradrenaline has an anticonvulsant role in epilepsy. These include noradrenaline depletion increased susceptibility to seizure induction (51, 52) and noradrenaline loss increased neuronal damage in various limbic regions of rats after seizure induction (53). It is postulated that the protective effect of noradrenaline is attributed to counteraction of an epileptic circuit formation and modification in the epilepsy-induced neuronal changes (54).

Another catecholamine neurotransmitter, dopamine, exerts an ambiguous and complex pathway in pathogenesis of epilepsy. Researchers have found that dopaminergic pathway is associated with pathophysiology of two idiopathic epilepsies, i.e. autosomal dominant nocturnal frontal lobe epilepsy with significant reduction in dopamine D1 receptor binding (55) and juvenile myoclonic epilepsy with decrease in binding potential to the dopamine transporter (56). This is consistent with the hypothesis that decrease in inhibitory dopaminergic activity predisposes to hyperexcitability and epilepsy (57). However, activation of different dopamine receptor families (D1 and D2) may produce diverging effects on neuronal excitability, in which D1 receptor has proconvulsant effect (58) and D2 receptor has anticonvulsant effect (58-60). A recent study in TLE patients found that there was a decrease in dopamine D2/D3 receptor binding in epileptogenic zone of these patients (61). These evidences show that dopamine might play a specific role in modulating seizures.

Molecular and genetic mechanisms: Ion channels and receptors

Recent advances in genetics and molecular biology have demonstrated that several epilepsy syndromes are attributed to mutations in genes encoding ion channel proteins that lead to hyperexcitability of neurons (31, 62, 63). Channelopathy is a term used to describe ion channel dysfunction or defect (63). Ion channels are pore-forming proteins along the lipid membrane of cells that allow movement of selected ions across cell membranes to maintain negative resting membrane potential inside the cells (63, 64). There are two types of ion channels, which are voltage-gated channels controlled by changes in membrane potential and ligand-gated channels that are...
activated by ligand binding such as GABA and acetylcholine neurotransmitters (63). Ion channels are involved in generating electric currents via ion charges. Generally, cation channels mainly generate action potentials and contribute to neuronal excitability, in contrast, anion channels are involved in inhibitory mechanism for neuronal excitatory process (65). Hence, it is hypothesized that in imbalance of ion charges due to channelopathies, either anion or cation channel can induce epileptogenesis (65).

Channelopathies are key factors of pathogenesis in human epilepsy, predominantly in idiopathic epilepsy (66, 67). Mutations in genes expressing channels of potassium, sodium, chloride, calcium and receptors of acetylcholine and GABA have been reported in idiopathic epilepsy (Table 1) (63, 68). In addition, channelopathies can also be the pathogenesis in acquired epilepsy due to secondary changes in ion channels via transcriptional and post-translational mechanisms (66, 67).

On the other hand, recent studies have found that channelopathy involves the hyperpolarization-activated cyclic nucleotide gated (HCN) channels that may contribute to TLE (69) and absence seizure (70). HCN channels are voltage-gated ion channels that conduct the hyperpolarization-activated cationic current, I_h, which regulate resting membrane potential of neurons (71, 72). HCN channels are activated by membrane hyperpolarization and lead to inhibitory effects of I_h on neuronal excitability (71, 72). Experimental animal model studies have shown that down regulation of HCN channels and loss of channel expression subsequently cause a reduction in I_h density, and ultimately contribute to neuronal hyperexcitability (69, 73). Hence, HCN channelopathy may play a role in epileptogenesis.

Neurogenesis and rewiring pathway: Structural, neurochemical and cellular changes

Aberrant hippocampal neurogenesis, a process of new neuron generation, and new circuit creation has been proposed as another important pathogenesis in epilepsy (74, 75). Various changes include structural, neurochemical and cellular changes which may occur following acute seizures in patients with brain insults (76).

Multiple structural alterations in the hippocampus could occur after acute seizures, including degeneration of dentate hilar neurons and CA1 – CA3 pyramidal neurons, aberrant sprouting and synaptogenesis of mossy fibers and loss of inhibitory GABAergic interneurons (76). Mossy fiber sprouting involves synaptic reorganization of mossy fibers, which are axons of dentate granule cells for forming new synaptic contacts with an abnormal location, the inner third molecular layer of dentate gyrus or the supragranular area (77, 78). This structural reorganization would be attributable to synapse elimination due to neuronal death of mossy cells, which are principal excitatory neurons in dentate hilus that normally project to the supragranular area (78, 79). As a consequence of axon sprouting and synaptogenesis in mossy fiber pathway, the new neuronal circuitry forms a

Table 1. Channelopathies in idiopathic epilepsy (62, 68)
Epilepsy phenotype
Autosomal dominant nocturnal frontal lobe epilepsy
Benign familial neonatal infantile seizures
Benign familial neonatal seizures
Childhood absence epilepsy
Epilepsy with grand mal seizures on awakening
Episodic ataxia type 1
Episodic ataxia type 2
Familial hemiplegic migraine
Febrile seizures
Generalized epilepsy with febrile seizures plus
Generalized epilepsy with paroxysmal dyskinesia
Intractable childhood epilepsy with generalized tonic-clonic seizures
Juvenile absence epilepsy
Juvenile myoclonic epilepsy
Myokymia
Severe myoclonic epilepsy of infancy
Spinocerebellar ataxia type 6

Iran J Basic Med Sci, Vol. 16, No. 10, Oct 2013
recurrent excitatory circuit in dentate granule cells that is expected to increase excitatory drive and eventually promote epileptogenesis (78, 79). Another proposed hypothesis of structural reorganization is the functional disconnection of dormant basket (inhibitory) cells with excitatory neurons. This hypothesis implies that GABAergic interneurons (basket cells) survive after an epileptogenic injury, but they remain in dormant state and are unable to provide feedback inhibition to granule cells due to seizure-induced death of major excitatory neurons (mossy cells) that results in reducing excitatory drive on these basket cells (80, 81). Dormancy of basket cells leads to loss of inhibition, possibly contributing to epileptogenesis.

Apart from structural changes, acute seizures can also up regulate several neurotropic factors and other proteins in the hippocampus. These include nerve growth factor (82, 83), brain-derived neurotrophic factor (82, 83), fibroblast growth factor-2 (84), vascular endothelial growth factor (VEGF) (85) and sonic hedgehog (86). The neurotrophins, i.e. nerve growth factor, brain-derived neurotrophic factor and fibroblast growth factor-2, have a role in neuronal survival, differentiation, growth, synaptic plasticity and excitability (32). VEGF induces angiogenesis, but increase in VEGF could contribute to blood brain barrier disruption and inflammation in brain (85). On the other hand, sonic hedgehog is a secreted protein that regulates the proliferation and survival of neuronal and glial precursors (86). Up-regulation of these proteins might contribute to neurogenesis in hippocampus (76).

Cellular changes are also involved in the hippocampus following acute seizures. These changes include increase of neurogenesis, abnormal migration of newly born granule cells into dentate hilus and dentate molecular layer, and occurrence of hilar basal dendrites in newly added granule cells (74-76). All these changes might form an aberrant circuitry that contributes to generation of epileptiform activity by creating excitatory loops and thus enhance seizure initiation and propagation.

Immunological and inflammatory pathway

Cytokines are polypeptide mediators that are associated with activation of immune system and inflammatory reactions (87). Recent studies in animal models have shown that inflammatory cytokines are involved in the pathogenesis of epilepsy. The inflammatory cytokines such as interferleukin (IL)-1β, IL-6 and tumor necrosis factor-α have been shown to be up-regulated and over-expressed in brain regions involved in generating and propagating epileptic activity (88-90). Glial cells, particularly microglia and astrocytes, the non-neuronal cell components in central nervous system, are known to be sources for the inflammatory cytokines in the epileptic tissues (90-92). Hence, glial cells play a role in regulating immune or inflammatory response during epileptogenesis. The release of inflammatory cytokines in microglia and astrocytes is usually followed by a cascade of downstream inflammatory events which can recruit neurons and activate adaptive immune system (93, 94).

However, there is concern on how the activated inflammatory pathway contributes to pathogenesis of epilepsy. It has been revealed that these inflammatory cytokines have deleterious effects on neurons via alteration of neuronal excitability, production of toxic mediators and increase impermeability of blood-brain barrier (BBB) (91,94). IL-1β can induce the activation of NMDA receptor, thus enhancing NMDA-mediated ion calcium influx into neurons and ultimately promoting neuronal hyperexcitability (95, 96). Similar to IL-1β, tumor necrosis factor-α can also induce neuronal excitability via up-regulation of AMPA receptors which favors the ion calcium influx into neuron and down-regulation of GABA receptors in which the inhibitory synapse strength decreases(97). Apart from excitotoxic effects, inflammatory cytokines may contribute to apoptotic neuronal death, which is likely due to production of neurotoxic mediators and NMDA- and AMPA-mediated glutamatergic excitotoxicity (95). Besides, inflammation reactions may alter the BBB permeability (90, 91). The BBB disruption may induce epileptogenesis by uptake of serum albumin into astrocytes via binding to transforming growth factor-β receptor and triggering subsequent events that contribute to neuronal hyperexcitability and eventually epileptiform activity (98,99).

In addition, Febene and colleagues (100) showed that inflammatory cell adhesion has a role in seizure pathogenesis. They showed that expression of vascular cell adhesion molecules is elevated and leukocyte adhesion to endothelial cells is enhanced in cerebral blood vessels, which is mediated by leukocyte mucin P-selectin glycoprotein ligand-1 and leukocyte integrins after pilocarpine-induced seizure (100). Consequently, this results in a cascade of events including increased leukocyte extravasation, cerebral inflammation, BBB leakage, enhance neuronal excitatory and ultimately epileptogenesis (100).

Apoptotic pathway

Apoptosis is a programmed cell death process during normal growth and development in multicellular organisms for maintaining cell homeostasis (101). Experimental and clinical data have shown that significant neuronal cell loss occurs
after brain insults and apoptotic pathway may be involved in this cell loss in addition to other mechanisms such as excitatory glutamate-mediated toxicity (102-105). There are two major families of genes that regulate the apoptosis pathway in mammals: caspases and Bcl-2 family proteins (106). Caspases are a family of cysteine proteases and mainly function as apoptotic initiator (caspases 2, 8, 9, 10) or executioner (caspases 3, 6, 7) in apoptosis process (102). Bcl-2 family proteins are important regulators of the apoptosis process in cellular life and death decision. This characteristic is attributed to its anti-apoptotic (e.g. Bcl-2, Bcl-XL, Bcl-W and Mcl-1) and pro-apoptotic members (e.g. Bax, Bak, Bad, Bid and other BH-3 only proteins) (102, 107). Apart from caspases and Bcl-2, other proteins such as p53, tumor necrosis factor, Fas ligand and nuclear factor-kB are also essential in regulating the cell death mechanisms (102, 108).

In experimental models of epilepsy and epileptogenesis, researchers have revealed that executioner caspase-3 and -6 are activated and actively expressed in the hippocampus (103, 109, 110). Besides, Bcl-2 family proteins such as Bax and Bcl-2 are also involved in pathogenesis of human temporal lobe epilepsy models (102, 106, 111). These evidences suggested that apoptotic pathway may play a role in the pathogenesis of epilepsy.

Gene and protein regulation

Several studies have demonstrated that alteration in gene expression is triggered after brain insults and have proposed that this might be regulated by transcription factors. Cellular immediate early genes or inducible transcription factors such as members of the Jun family (c-jun, junB, junD) and the Fos family (c-fos, fosB and fos-related antigenesfra-1 and fra-2) are believed to be involved in pathogenesis of seizures (112). Both of these gene families encode transcription factors c-fos and c-jun, which are the major components of the transcription factor activator protein-1 (113). Early up-regulation and expression of c-fos and c-jun mRNA have been demonstrated in hippocampal neurons during experimental seizures (114, 115) or cerebral ischemia (116). The specific roles of IEGs immediate early genes in epileptogenesis have not been elucidated. Generally, in central nervous system, transcription factors of Fos and Jun families are involved in gene transcription, cell proliferation, regeneration and cell death (112, 113, 117, 118). The expression of immediate early genes may partly form the biological cascade that induces apoptotic cell death of neurons (117).

Another transcription factor, inducible cyclic adenosine monophosphate (cAMP) early repressor (ICER) also plays a role in epileptogenesis. ICER is a group of proteins produced from the cAMP-responsive element modulator (CREM) gene and ICER messenger RNAs that are transcribed by an internal promoter of the CREM (119). ICER serves as an endogenous repressor of cAMP-responsive element (CRE)-mediated gene transcription (120, 121). With this characteristic, ICER plays a role as important transcriptional regulator of neuronal plasticity and apoptosis in nervous system by repressing CRE-mediated gene transcription and antagonizing activity of cAMP-responsive element binding protein (CREB) transcription factor. CREB is an activator for CRE transcription that is crucial for neuronal survival (120, 121). Up-regulation of ICER expression in neurons after excitotoxic stimuli and over-expression of ICER in cultured neurons have shown apoptotic effect (122). Controversially, recent studies have suggested that high expression of ICER suppresses the kindling process in experimental animal models (123, 124). Therefore, the mechanism of ICER in epileptogenesis still remains unclear.

Changes of neuropeptides expression in hippocampus following seizure have been observed in experimental studies. These neuropeptides include neuropeptide Y (NPY), somatostatin, cholecystokinin, neurokinin B, galanin, thyrotropin-releasing hormone and cortistatin (125-127). In hippocampus, NPY is co-localized in GABAergic interneurons and, hence, it has inhibitory actions on neuronal excitation (128, 129). Over-expression of NPY and its mRNA in hippocampus (125,126,130) and aberrant expression of NPY in hippocampal granule cells and mossy fibers that normally do not contain this peptide (130, 131) have been reported in experimental seizure studies. It has been suggested that these findings represent endogenous adaptive mechanism to counteract the hyperexcitability state during seizure stimulation (129). Collaterally, this concept is supported by studies that show NPY gene therapy in animal models reduced the spontaneous seizure and delayed the progression of seizure (132, 133).

Another neuropeptide, galanin also has been demonstrated to be involved in modulating seizure activity (134). Galanin is widely distributed throughout the central nervous system and is involved in various brain functions (135). It is well-known as a universal neurotransmitter inhibitor, by inhibiting the release of neurotransmitters including glutamate, acetylcholine and noradrenaline (135). In other words, it serves as a seizure modulator by restoring the balance between glutamatergic excitation and galaninergic inhibition in dentate gyrus of hippocampus (135) through the activation of galanin receptors GalR1 and GalR2 (136, 137). Depletion of stored galanin in dentate hilar has been observed after exposure to seizure stimuli,
interestingly the galanin expression reappeared and increased a few hours after the stimulation (134). In addition, studies on over-expression of galanin in animal models have shown that galanin played a significant role in decreasing the susceptibility of seizure during seizure induction (138). The available evidences supported the role of gene and protein regulation in epileptogenesis.

Animal models for epileptogenesis

A variety of animal models have been developed to study epilepsy and epileptic seizures. Each animal model demonstrates different types of epilepsy (Table 2) (14, 44). However, each model is unique for a specific study purpose (14, 139). The objective of each experiment is essential for selection of a suitable animal model. For example, mechanism of epileptogenesis can be explored using several models such as kindling, post-SE with spontaneous recurrent seizure, traumatic brain injury-induced epilepsy, stroke-induced epilepsy and febrile seizure models (8, 140). In addition, genetic animal models of generalized epilepsy, such as tottering mice with spontaneous recurrent seizures and genetically epilepsy prone rats with reflex seizures can also be employed (8, 141). Nevertheless, not all these models are suitable for the testing antiepileptogenic or disease-modifying therapies (139).

Table 2. Experimental animal models and types of epilepsy (14, 44)

Type of epilepsy	Animal models*
Partial seizures	
Acute seizures	Electrical stimulation, e.g. 6-Hz
	Electrical or chemical kindling
	Topical chemoconvulsants, which block inhibition, e.g. penicillin, bicuculline, picrotoxin, pentyletetrazol, strychnine
Chronic seizures	Implantation metals, e.g. Al₂O₃, cobalt
	Freeze lesion or partially isolated cortical slab
	Experimental febrile seizures
	Post-traumatic epilepsy (PTE) induced by lateral fluid percussion brain injury
	Hippocampal sclerosis model, e.g. kainic acid, pilocarpine, post-status epilepticus models
	Focal dysplasia model, e.g. neonatal lir eze, prenatal radiation, methylazoxymethanol
Post-status epilepticus	
models with spontaneous	Electrical status epilepticus induction, e.g. periorbital path, basolateral amygdala
recurrent seizures	Chemical status epilepticus induction, e.g. pilocarpine, kainate
Generalized seizures	
Generalized tonic-clonic seizures	Electrical stimulation, e.g. maximal electroshock
	Chemoconvulsants, e.g. pilocarpine, kainate, pentyletetrazol, bicuculline, picrotoxin, fluoroethyl
	Genetic models, e.g. genetically epilepsy-prone rats, Mongolian gerbil, DBA/2J mice, photosensitive baboons, knockout mice
Absence seizure	Chemoconvulsants, e.g. low dose pentyletetrazol, gamma-hydroxybutyrate
	Genetic models, e.g. genetic absence rats from Strasbourg, Wistar Albino Glaxo/Rijswijk, tottering mice, stargazer mice, lethargic mice, slow-wave epilepsy mice, mocha mice, ducky mice

Common animals used are rats and mice
(e.g. electrical stimulation of hippocampus via perforant path, angular bundle or CA3 of ventral hippocampus and lateral or basolateral amygdala) and chemically induced models (e.g. pilocarpine or kainate) (13, 14, 146, 147). The spontaneous recurrent, partial and secondarily generalized seizures, damage of hippocampal and extrahippocampal, and alterations of behavior and cognition produced by the pilocarpine- and kainate-induced models resemble clinical characteristics of TLE, hence, both are considered as representative models for TLE (32, 147).

Challenges in animal models

Undoubtedly, animal models have provided useful information in addressing critical research issues, including mechanism of epileptogenesis, which are impossible to study in humans due to ethical concerns. However, what is the degree that these models reflect the actual condition in humans with epilepsy? The actual mechanisms underlying epilepsy may be more complicated. For example, in TLE studies, post-SE models involved an acute triggering SE process that was frequently followed by a latency period with subsequent development of spontaneous motor seizure (148, 149) and hippocampal lesions similar to that showed in TLE patients (150-152). Nevertheless, these models cause neuronal loss not only in hippocampus and amygdale of the limbic area, but also extralimbic regions such as thalamus, hypothalamus and certain areas of cerebral cortex, which are usually not involved in human TLE (147, 151). Hence, there is a need to develop new animal models that are able to reproduce unique characteristics of epilepsy as faithfully as possible and therefore, enhance the extrapolation of animal data to human condition.

The animal models have a different etiologic process compared to status epilepticus in human, which is usually associated with traumatic brain injury and ischemic stroke (6, 9). Hence, it is difficult to justify whether animal models are able to ideally or adequately model human epileptogenesis process. Generally, it is believed that common mechanisms might underlie human and animal epileptogenesis (152). Another challenge for the animal model is related to various subtypes of either generalized or partial seizures in human epilepsy such as generalized myoclonic seizure, generalized atonic seizure and absence seizure (10). However, animal models usually manifest generalized tonic-clonic and limbic seizures only (140), which represent subpopulation of patients with these types of epilepsy. Hence, this can limit current understanding on epileptogenesis in other epilepsy phenotypes.

Application of the animal models in understanding other epileptic related conditions such as cognitive and behavioral changes could be improved. Many patients with TLE suffer from cognitive and behavioral alterations, such as depression, anxiety, psychosis and memory loss, which may be associated with morphologic and functional alterations in the temporal lobe (153). These behavioral alterations are difficult to evaluate directly in the current available models. Different tests have been designed to complement the assessment of behavioral alteration in animals, for instance, test for anxiety-related behavior (e.g. light/dark box test, elevated plus-maze and open-field tests), Irwin test for evaluating physiologic reflexes and behavioral abnormalities, and test for depression-like behavior (e.g. forced swimming test and tail suspension test) (154). These tests are useful for predicting the anxiety level in mice and provide insight into association between epilepsy and behavioral alterations.

There is a substantial degree of variability among individual animals in response to epileptogenic or convulsive stimuli in a specific model. In rodents for example, strain, gender and age factors affected the response to epileptogenic stimuli (151, 155, 156). Immature rats were more susceptible to status epilepticus than were adult rats, but immature hippocampi exhibit markedly less hippocampal damage and changes compared to adults after treatment with kainate or repeated kindling (157). Apart from age, different strains and genders may have different responses to epileptogenic stimuli. Female Sprague-Dawley rats were more sensitive to basolateral amygdala stimulation compared to Wistar rats in terms of status epilepticus induction and development of epilepsy after SE (156). Besides diversity in susceptibility to stimuli, strain factor also influences the patterns of hippocampal damage and neurodegeneration in affected brain areas (158). Such variability in animals may give results that cannot be reproduced from one laboratory to another and consequently, increases the difficulties in generalizing the findings in a specific model (159).

Currently, these animal models still remain valuable research tools in view of presence of an intact central nervous system, which provides an opportunity for studying the mechanism underlying epileptogenesis. There is no general agreement about which animal model may be most appropriate and relevant to human condition and none of the available models have been clinically validated (7). For a model to be validated, it should be highly predictive of clinical response, which is usually complicated by many forms of epilepsy with different pathophysiology (141). Hence, to improve current animal models, the limitations and confounding factors should be taken into consideration in developing a novel animal model.
Conclusion

A greater understanding of pathogenesis of epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process, or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Animal models play a crucial and significant role in providing additional insight into mechanism of epileptogenesis, predominantly kindling and post-SE with spontaneous recurrent seizure models (7,140). With the help of these models, epileptogenesis process has been demonstrated to be involved in various molecular and biological pathways or processes. These include neurotransmission signaling pathway, molecular and genetic mechanism, neurogenesis and rewiring pathway, immunology and inflammatory pathway, apoptotic pathway, gene and protein regulation and other mechanisms that are not discussed in this article. However, it still remains unclear which mechanisms are required or necessary for genesis of epilepsy in human. Besides, there are some challenges that arise from the use of animal models in experimental studies, such as degree of representation from animal models to epileptic human models, different etiologies of seizure induction between animal models and human models, difficulty of evaluating behavioral alteration in animal models and variability among individual animals. In order to overcome these challenges, currently available animal models should be used with caution, validated and all the limitations and confounding factors should be taken into consideration. This could provide a more accurate picture of the epileptogenesis process and ultimately, contribute to development of new antiepileptogenic or disease-modifying therapies, which provide new hope for epileptic patients.

References

1. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46:470–472.
2. World Health Organization (WHO). Epilepsy: Factsheet. c2009 [cited 2012 Oct 9]. Available at: http://www.who.int/mediacentre/factsheets/fs999/en/index.html
3. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of burden of active and lifetime epilepsy: A meta-analytic approach. Epilepsia 2010; 51:883–890.
4. Mac TL, Tran DS, Quet F, Odermatt P, Preux PM, Tan CT. Epidemiology, aetiology and clinical management of epilepsy in Asia: A systematic review. Lancet Neurol 2007; 6:533–543.
5. Engel J. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: Report of ILAE Task Force on classification and Terminology. Epilepsia 2001; 42:796–803.
6. Commission on Classification and Terminology of the International League Against Epilepsy (ILAE). Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30:389–399.
7. Loscher W, Brandt C. Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research. Pharmacol Rev 2010; 62:668–700.
8. Banerjee PN, Filippi D, Hauser WA. The descriptive epidemiology of epilepsy – A review. Epilepsie Res 2009; 85:31–45.
9. Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: Contributions of the Rochester epidemiology project. Mayo Clin Proc 1996; 71:570–575.
10. Engel J. Introduction to temporal lobe epilepsy. Epilepsie Res 1996; 26:141–150.
11. Loscher W, Gernert M, Heinemann U. Cell and gene therapies in epilepsy-Promising avenues or blind alleys? Trends Neurosci 2008; 31:62–73.
12. Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MF. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsie Res 2008; 78:102–116.
13. Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsie Res 2002; 50:105–123.
14. Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011; 20:359–368.
15. Sloviter RS, Bumanglag AV. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 2012; 69:3–15.
16. Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011; 10:173–186.
17. Pitkanen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 2002; 1:173–181.
18. William PA, White AM, Clark S, Ferraro DJ, Swierz W, Staley KJ, et al. Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci 2009; 29:2103–2112.
19. Pitkanen A, Boldkvadze T, Immonenc R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci Lett 2011; 497:163–171.
20. Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsie Res 1999; 36:189–204.
21. Voglis G, Tavarnarakis N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep 2006; 7:1104–1110.
22. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 2005; 179:4–29.
23. Seifert G, Schroder W, Hinterkeuser S, Schumacher T, Schramm J, Steinhauser C. Changes in...
flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy. Epilepsia 2002; 43:162–167.

24. Debanne D, Thompson SM, Gabwiler BH. A brief period of epileptiform activity strengthens excitatory synapses in the rat hippocampus in vitro. Epilepsia 2006; 47:247–256.

25. Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA. Upregulation of metabotropic glutamate receptor subtype mGlur3 and mGlur5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 2000; 12:2333–2344.

26. DeLorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: The calcium hypothesis of the induction and maintenance of epilepsy. Pharmacol Ther 2005; 105:229–266.

27. Yi J, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 2006; 48:394–403.

28. Touret M, Parrot S, Denoroy L, Berlin MF, Didier-Bazes M. Glutamatergic alterations in the cortex of genetic absence epilepsy rats. BMC Neurosci 2007; 8:69–75.

29. Bien CG, Granata T, Antozzi C, Cross JH, Dulac O, Kurthen M, et al. Pathogenesis, diagnosis, and treatment of Rasmussen encephalitis: A European consensus statement. Brain 2005; 128:454–460.

30. Chapman AG. Glutamate and epilepsy. J Nutr 2000; 130:1043S–1045S.

31. Acharya JN. Recent advances in epileptogenesis. Curr Sci 2002; 82:679–688.

32. Morimoto K, Fahnstock M, Racine RJ. Kindling and status epilepticus models of epilepsy. Prog Neurobiol 2004; 73:1–60.

33. Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia 2001; 42:8–12.

34. Olsen RW, Avoli M. GABA and epileptogenesis. Epilepsia 1997; 38:399–407.

35. Meldrum BS. GABAergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Clin Pharmac 1989; 27:35–115.

36. Buzzi A, Chkiladze M, Falcicchia C, Parrot S, Denoroy L, Berlin MF, Didier-Bazes M. Glutamatergic alterations in the cortex of genetic absence epilepsy rats. BMC Neurosci 2007; 8:69–75.

37. Schwizer C, Tsunashima K, Wanzenbock C, Fuchs K, Sieghart W, Sperk G. GABAα receptor subunits in the rat hippocampus II: Altered distribution in kainic acid-induced temporal lobe epilepsy. Neurosci Lett 2002; 324:116–1172.

38. Brooks-Kayal AR, Shumate MD, Jin H, Richter TY, Coulter DA. Selective changes in single cell GABAα receptor subunit expression and function in temporal lobe epilepsy. Nat Med 1998; 4:1166–1172.

39. Dinkel K, Meinck HM, Jury KM, Karges W, Richter W. Inhibition of γ-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann Neurol 1998; 44:194–201.

40. Butler MH, Solimena M, Dirkx R, Hayday A, De Camilli P. Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in stiff-man syndrome. J Exp Med 1993; 178:2097–2106.

41. Kobayashi M, Buckmaster PS. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 2003; 23:2440–2452.

42. Knopp A, Frahm C, Fidzinski P, Witte OW, Behr J. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. Brain 2008; 131:1516–1527.

43. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropsychopharmacology 1999; 38:1083–1152.

44. Bagdy G, Kecskemeti V, Ribas P, Jakus R. Serotonin and epilepsy. J Neurochem 2007; 100:857–873.

45. Dailey JW, Yan Q, Adams-Curtis LE, Ryu JR, Ko KH, Mishra PK, et al. Neurochemical correlates of antiepileptic drugs in the genetically epilepsy-prone rat (GEP). Life Sci 1996; 58:259–266.

46. Dailey JW, Mishra PK, Ko KH, Penny JE, Jube PC. Serotonergic abnormalities in central nervous system of seizure-naïve genetically epilepsy-prone rats. Life Sci 1992; 50:319–326.

47. Sarnyai Z, Shihle EL, Pavlides C, Fenster RJ, McEwen BS, Toth M. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin 1A receptors. Proc Natl Acad Sci USA 2000; 97:14731–14736.

48. Appleget CD, Tecott LH. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp Neurol 1998; 154:522–530.

49. Merlet I, Ryvlin P, Costes N, Dufournel D, Isnard J, Fainelon I, et al. Statistical parametric mapping of 5-HT1A receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG. Neuroimage 2004; 22:886–896.

50. Tully K, Bolslavsky Y. Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Mol Brain 2010; 3:15.

51. Corcoran ME, Mason ST. Role of forebrain catecholamines in amygdaloid kindling. Brain Res 1980; 190:473–484.

52. Szt P, Weinsken D, White SS, Robbins CA, Rust NC, Schwartzzoin FA, et al. Norepinephrine-deficient mice have increased susceptibility to seizure-inducing stimuli. J Neurosci 1999; 19:10985–10992.

53. Giorgi FS, Ferrucci M, Lazzeri G, Pizzanelli C, Lenz P, Alessandrini MG, et al. A damage to locus coeruleus neurons converts sporadic seizures into self-sustaining limbic status epilepticus. Eur J Neurosci 2003; 17:2593–2601.

54. Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F. The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci Biobehav Rev 2004; 28:507–524.

55. Pedri M, Berkovic SF, Scheffer IE, O’Keefe G, Marini C, Mulligan R, et al. Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2008; 71:795–798.

56. Ciumas C, Robins Wahlin TB, Jucaite A, Lindstrom P, Halldin C, Savic I. Reduced striatal dopamine transporter binding in patients with juvenile myoclonic epilepsy. Neurology 2008; 71:788–794.

57. Benardo LS, Prince DA. Dopamine modulates a Ca2+–activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 1982; 297:76–79.
58. Barone P, Palma V, DeBartolomeis A, Tedeschi E, Muscatelà G, Campanella G. Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium-pilocarpine. Eur J Pharmacol 1991; 195:157–162.

59. Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 2000; 20:8643–8649.

60. Clinchens R, Smolders I, Meurs A, Ebinger G, Michotte Y. Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D2 and 5-HT1A receptors. J Neurochem 2004; 89:834–843.

61. Werhahn KJ, Landvogt C, Klimpe S, Buchholz H, Yakushev I, Siessmeier T, et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study. Epilepsia 2006; 47:1392–1396.

62. Hirose S. A new paradigm of channelopathy in epilepsy syndromes: Intracellular trafficking abnormality of channel molecules. Epilepsy Res 2006; 70S:S206–S217.

63. Graves TD. Ion channels and epilepsy. Q J Med 2006; 99:201:217.

64. Kass RS. The channelopathies: Novel insights into molecular and genetic mechanism of human disease. J Clin Invest 2005; 115:1986–1989.

65. Hirose S, Okada M, Kaneko S, Mitsudome A. Are some idiopathic epilepsies disorders of ion channels? A working hypothesis. Epilepsy Res 2000; 41:191–204.

66. Helbig I, Scheffer IE, Mulley JC, Berkovic SF. Navigating the channels and beyond: Unravelling the genetics of the epilepsies. Lancet Neurol 2008; 7:231–245.

67. Berkovic SF, Mulley JC, Scheffer IE, Petrou S. Human epilepsies: Interaction of genetic and acquired factors. Trends Neurosci 2006; 29:391–397.

68. Scheffer IE, Berkovic SF. The genetics of human epilepsy. Trends Pharmacol Sci 2003; 24:428–433.

69. Richichi C, Brewster AL, Simeone TA, Zha Q, Yin HZ, et al. Mechanisms of seizure-induced 'transcriptional channelopathy' of hyperpolarization-activated cyclic nucleotide gated channels. Neurobiol Dis 2008; 29:297–305.

70. Kuisle M, Wanaverbeek N, Brewster AL, Frere SGA, Pinault D, Baram TZ, et al. Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy. J Physiol 2006; 575:83–100.

71. Poolos NP. The h-channel: A potential channelopathy in epilepsy? Epilepsy Behav 2005; 7:51–56.

72. Bender RA, Baram TZ. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog Neurobiol 2008; 86:1:29–140.

73. Jung S, Jones TD, Lugo JN, Sheerin AH, Miller JW, D’Ambrosio R, et al. Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J Neurosci 2007; 27:13012–13021.

74. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 2006; 59:81–91.

75. Scharfmann HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: Functional implications of seizure-induced neurogenesis. J Neurosci 2000; 20:6144–6158.

76. Kuruba R, Hattiangady B, Shetty AK. Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 2009; 14:65–73.

77. Cavazos JE, Golari G, Sutula TP. Mosdy fiber synaptic reorganization induced by kindling: Time course of development, progression and permanence. J Neurosci 1991; 11:2795–2803.

78. Sutula TP. Seize-induced axonal sprouting: Assessing connections between injury, local circuits and epileptogenesis. Epilepsy Curr 2002; 2:86–91.

79. McNamara JO. Cellular and molecular basis of epilepsy. J Neurosci 1994; 14:3413–3425.

80. Sloviter RS. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991; 1:41–66.

81. Bekenstein JW, Lothman EW. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 1993; 259:97–100.

82. Zafra F, Lindholm D, Castren E, Hartikka J, Thoenen H. Regulation of brain-derived neurotropic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci 1992; 12:4793–4799.

83. Suzuki F, Junier MP, Guilhem D, Sorensen JC, Onteniente B. Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor. Neuroscience 1995; 64:665–674.

84. Gomez-Pinilla F, van der Wal EA, Cotman CW. Possible coordinated gene expressions for FGF receptor, FGF-5 and FGF-2 following seizures. Exp Neurol 1995; 13:164–174.

85. Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 2004; 548:57–68.

86. Banerjee SB, Rajendran R, Dias BG, Ladiwala U, Tole S, Vaidya VA. Recruitment of the Sonic hedgehog signaling cascade in eletroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci 2005; 22:1570–1580.

87. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system: I. Expression and recognition. Trends Neurosci 1995; 18:83–88.

88. Plata-Salaman CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, et al. Kindling modulates the IL-1β system, TNF-α, TGF-β1 and neuropeptide mRNAs in specific brain regions. Mol Brain Res 2000; 75:248–258.

89. Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, et al. Functional role of inflammatory cytokines and anti-inflammatory molecules in seizures and epileptogenesis. Epilepsia 2002; 43:30–35.
90. Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008; 29:142–160.

91. Vezzani A, Ravizza T, Balossio S, Aronica E. Glia as a source of cytokines: Implications for neuronal excitability and survival. Epilepsia 2008; 49:24–32.

92. Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia 2012; 60:1258–1268.

93. Nguyen MD, Julien JP, Rivest S. Innate immunity: The missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 2002; 3:216–227.

94. Vezzani A, Granata T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia 2005; 46:1724–1743.

95. Vezzani A, Baram TZ. New roles for interleukin-1 beta in the mechanism of epilepsy. Epilepsy Curr 2007; 7:45–50.

96. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003; 23:8692–8700.

97. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 2005; 25:3219–3228.

98. Seifert E, Dreier JP, Ivins S, Bedschmann I, Tomkins O, Heinemann U, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004; 24:7829–7836.

99. Cacheaux LP, Ivins S, David Y, Lakher Al, Bar-Klein G, Shapira M, et al. Transcription profile revealing TGF-β signaling involvement in epileptogenesis. J Neurosci 2009; 29:8927–8935.

100. Fabene PF, Mora GN, Martinello M, Rossi B, Merigo F, Ottoboni L, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008; 14:1377–1383.

101. Bursch H, Karwan A, Mayer M, Dornetshuber J, Fehrenbauer B, Schulte-Hermann R, et al. Cell death and autophagy: Cytokines, drugs and nutritional factors. Toxicology 2008; 254:147–157.

102. Liu AK, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: A review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 2003; 69:103–142.

103. Narkilahti S, Pitkanen A. Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy. Neuroscience 2005; 131:887–897.

104. Xu S, Pang Q, Liu Y, Shang W, Zhai G, Ge M. Neuronal apoptosis in the resected sclerotic hippocampus in patients with mesial temporal lobe epilepsy. J Clin Neurosci 2007; 14:835–840.

105. Moghadam M, Moghimi A, Jalal R, Behnam-Roushi M, Mahdavi-Shahri S. Effects of infantile repeated hyperglycemia on neuronal density of hippocampus and pentylenetetrazol induced convulsions in male wistar rats. Iran J Basic Med Sci 2012; 15:951–957.

106. Henshall DC, Simon RP. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 2005; 25:1557–1572.

107. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2:647–656.

108. Albensi BC. Potential roles for tumor necrosis factor and nuclear factor-kB in seizure activity. J Neurosci Res 2001; 66:151–154.

109. Narkilahti S, Pittirila TJ, Lukasiuk K, Tuunanen J, Pitkanen A. Expression and activation of caspase 3 following status epilepticus in the rat. Eur J Neurosci 2003; 18:1486–1496.

110. Weise J, Engelhorn T, Dorfler A, Aker S, Bahri M, Hufnagel A. Expression time course and spatial distribution of activated caspase-3 after experimental status epilepticus: Contribution of delayed neuronal cell death to seizure-induced neuronal injury. Neurobiol Dis 2005; 18:582–590.

111. Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: The ABCs of the seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol 2009; 1:97–115.

112. Gass P, Herdegen T. Neuronal expression of AP-1 proteins in excitotoxic-neurodegenerative disorders and following nerve fiber lesions. Progr Neurobiol 1995; 47:257–290.

113. Kovacs KJ. c-Fos as a transcription factor: A stressful (re)view from a functional map. Neurochem Int 1998; 33:287–297.

114. Beer J, Mielle K, Zip M, Zimmermann M, Herdegen T. Expression of c-jun, junB, c-fos, fra-1 and fra-2 mRNA in the rat brain following seizure activity and axotomy. Brain Res 1990; 794:255–266.

115. Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO. Induction of c-fos mRNA by kindled seizures: Complex relationship with neuronal burst firing. J Neurosci 1993; 73:744–751.

116. Gibby KL, Armstrong JN, Currie RW, Currie RW, Robertson HA. The effects of hypoxia-ischemia on expression of c-Fos, c-Jun and Hsp 70 in the young rat hippocampus. Brain Res Mol Brain Res 1997; 4837–96.

117. Lee MC, Rho JL, Kim MK, Woo YJ, Kim JH, Nam SC, et al. c-JUN Expression and Apoptotic Cell Death in Kainate-Induced Temporal Lobe Epilepsy. J Korean Med Sci 2001; 16:649–656.

118. Herdegen T, Skene P, Bahm M. The c-Jun transcription factor – Biopotent mediator of neuronal death, survival and regeneration. Trends Neurosci 1997; 20:227–231.

119. Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducible and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 1993; 75:875–886.

120. Borlikova G, Endo S. Inducible cAMP early repressor (ICER) and brain functions. Mol Neurobiol 2009; 40:73–86.

121. Mioduszewska B, Jaworski J, Kaczmarek L. Inducible cAMP early repressor (ICER) in the nervous system: a transcriptional regulator of neuronal plasticity and programmed cell death. J Neurochem 2003; 87:1313–1320.

122. Jaworski J, Mioduszewska B, Sanchez-Capelo A, Figiel I, Habas A, Godzie A, et al. Inducible cAMP early repressor, an endogenous antagonist of cAMP.
agonists and the role of G-protein-mediated signaling. J Pharmacol Exp Ther 2006; 318:700–708.
138. Kanter-Schlifke I, Toft Sorensen A, Ledri M, Kuteeva E, Hokfelt T, Kokaia M, Galanin gene transfer
curtailed generalized seizures in kindled rats without altering hippocampal synaptic plasticity.
Neuroscience 2007; 150:984–992.

139. Stables JP, Bertram E, Dudek FE, Holmes G, Mathern G, Pitkanen A, et al. Therapy discovery for
pharmacoresistant epilepsy and for disease modifying therapeutics: Summary of the
NIH/NINDS/AES Models II Workshop. Epilepsia 2003; 44:1472–1478.
140. Pitkanen A, Kharatishvili I, Karhunen H, Lukiasiuk K, Immonen R, Nairismagi J, et al.
Epileptogenesis in experimental models. Epilepsia 2007; 48:13–20.
141. Stables JP, Bertnam EH, White HS, Coulter DA, Dichter MA, Jacobs MP, et al. Models of epilepsy and
epileptogenesis: Report from NIH workshop, Bethesda, Maryland. Epilepsia 2002; 43:1410–1420.
142. McNamara JO, Bonhaus DW, Shin C. The
kindling model of epilepsy. In: Schwartzkroin PA, editor. Epilepsy: Models, mechanism and concepts.
New York: Cambridge University Press; 1993. p. 27–47.
143. McIntyre DC, Poulter MO, Gilby K. Kindling: Some old and some new. Epileps Res 2002; 50:79–92.
144. Gupta YK, Veerendra Kumar MH, Srivastava AK. Effect of Centella asiatica on pentylentetrazole
induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav 2003; 74:579–585.
145. Silva LF, Pereira P, Elisabetsky E. A neuropharmaco logical analysis of PTZ-induced
kindling in mice. Gen Pharm 1998; 31:47–50.
146. Nissinen J, Halonen T, Koivistio E, Pitkanen A. A new model of chronic temporal lobe epilepsy induced
by electrical stimulation of the amygdala in rat. Epilepsys Res 2000; 38:177–205.
147. Covolan L, Mello LE. Temporal profile of neuronal injury following pilocarpine or kainic acid
induced status epilepticus. Epilepsys Res 2000; 39:133–152.
148. Leite JP, Garcia-Cairasco N, Cavalheiro EA. New
sights from the use of pilocarpine and kainate models. Epilepsys Res 2002; 50:93–103.
149. Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE. Recurrent spontaneous motor seizures after
repeated low-dose systemic treatment with kainate: Assessment of a rat model of temporal lobe epilepsy.
Epilepsys Res 1998; 31:73–84.
150. Skoviter R. Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with
hippocampal sclerosis: The importance of the ‘latent period’ and other concepts. Epilepsys 2008; 49:85–92.
151. Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial temporal lobe
epilepsy: Pathogenesis, induced rodent models and lesions. Toxicol Pathol 2007; 35:984–998.
152. Fritschy M. A new animal model of temporal lobe epilepsy. Epilepsiology 2004; 21:21–28.
153. Marcangelo MJ, Ovsiew F. Psychiatric aspects of epilepsy. Psychiatr Clin North Am 2007; 30:781–802.
154. Grbic I, Hoffmann K, Loscher W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol 2007; 207:329–349.
155. McCord MC, Lorenzana A, Bloom CS, Chancer ZO, Schauwecker PE. Effect of age on kainate-induced seizure severity and cell death. Neuroscience 2008; 154:1143–1153.
156. Brandt C, Glien M, Potschka H, Volk H, Loscher W. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Res 2003; 55:83–103.
157. Haas KZ, Sperber EF, Opanashuk LA, Stanton PK, Moshe SL. Resistance of immature hippocampus to morphologic and physiologic alteration following status epilepticus or kindling. Hippocampus 2001; 11:615–625.
158. Schauwecker PE. The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res 2011; 97:1–11.
159. Cole AJ, Koh S, Zheng Y. Are seizures harmful: What can we learn from animal models? Prog Brain Res 2002; 135:13–23.