COCENTER OF p-ADIC GROUPS, II: INDUCTION MAP

XUHUA HE

Abstract. In this paper, we study some relation between the cocenter $\bar{H}(G)$ of the Hecke algebra $\mathcal{H}(G)$ of a connected reductive group G over a nonarchimedean local field and the cocenter $\bar{H}(M)$ of its Levi subgroups M.

Given any Newton component of $\bar{H}(G)$, we construct the induction map \bar{i} from the corresponding Newton component of $\bar{H}(M)$ to it. We show that this map is surjective. This leads to the Bernstein-Lusztig type presentation of the cocenter $\bar{H}(G)$, which generalizes the work [13] on the affine Hecke algebras. We also show that the map \bar{i} we constructed is adjoint to the Jacquet functor and in characteristic 0, the map \bar{i} is an isomorphism.

Introduction

0.1. Let G be a connected reductive group over a nonarchimedean local field F of arbitrary characteristic and $G = \mathbb{G}(F)$. Let R be an algebraically closed field of characteristic not equal to p, where p is the characteristic of residue field of F. Let \mathcal{H}_R be the Hecke algebra of G over R and $\bar{\mathcal{H}}_R = \mathcal{H}_R/[\mathcal{H}_R, \mathcal{H}_R]$ be its cocenter. Let $\mathfrak{R}(G)_R$ be the R-vector space with basis the isomorphism classes of irreducible smooth admissible representations of G over R. Then we have the trace map

$$\text{Tr}_R : \bar{\mathcal{H}}_R \to \mathfrak{R}(G)_R^*.$$

On the representation side, we have the induction functor and the Jacquet functor

$$i_{M,R} : \mathfrak{R}(M)_R \to \mathfrak{R}(G)_R, \quad r_{M,R} : \mathfrak{R}(G)_R \to \mathfrak{R}(M)_R,$$

where M is a Levi subgroup of G.

What happens on the cocenter side?

The functor adjoint to the induction functor i_M is the restriction map $\bar{r}_{M,R} : \bar{\mathcal{H}}(G)_R \to \bar{\mathcal{H}}(M)_R$. It can be expressed explicitly via the Van Dijk’s formula. In this paper, we investigate the functor $\bar{i}_{M,R} : \bar{\mathcal{H}}_R(M) \to \bar{\mathcal{H}}_R(G)$, which is adjoint to the Jacquet functor $r_{M,R} : \mathfrak{R}(G)_R \to \mathfrak{R}(M)_R$.

0.2. We first describe the properties we expect for the map $\bar{i}_{M,R}$ and then discuss the approach toward it.

First, instead of working over various algebraically closed fields R, it is desirable to have the map \bar{i}_M defined on the integral form $\bar{\mathcal{H}}$ (the cocenter of the Hecke algebra of $\mathbb{Z}[\frac{1}{p}]$-valued functions). Such map, if exists, provides not only a uniform approach to the map $\bar{i}_{M,R}$ for all R, but also some useful information on the mod-l
representations (see Theorem [4] in the introduction and a future work [6] for some results in this direction).

Second, in [11], we introduced the Newton decomposition. Roughly speaking,
\[G = \sqcup G(v) \text{ and } H = \bigoplus H(v), \]
where \(v \) runs over the set of dominant rational coweights of \(G \). Such description is expected to play an important role in the representation theory of \(p \)-adic groups. In order to relate the Newton decomposition with the representations, we would like to know that the Newton decomposition is compatible with the map \(\tilde{i}_M \).

0.3. Now we discuss several approaches in the literature towards the understanding of the map \(\tilde{i}_M \).

Over \(\mathbb{C} \), the spectral density Theorem of Kazhdan [14] asserts that the trace map \(\text{Tr}_C: \tilde{H}_C \rightarrow \mathfrak{R}(G)^*_C \) is injective. Hence the map \(\tilde{i}_{M,C} \) is uniquely determined by the adjunction formula
\[\text{Tr}_C^M(f, r_{M,C}(\pi)) = \text{Tr}_C^G(\tilde{i}_{M,C}(f), \pi). \]
However, if \(R \) is of positive characteristic, the trace map \(\text{Tr}_R \) may not be injective and thus the map \(\tilde{i}_{M,R} \) is not uniquely determined by the adjunction formula.

In those cases, one may use the categorical description of the cocenter to give a definition of \(\tilde{i}_{M,R} \). Bernstein’s second adjointness theorem implies that the map \(\tilde{i}_{M,R} \) defined in this way is adjoint to the Jacquet functor (see [7, (1.8)]). However, it is not clear that this map preserves the integral structure (see some discussion in [7, §4.27]). Also it is not clear if this description is compatible with the Newton decomposition.

0.4. A different, but more explicit approach is given by Bushnell in [2].

Note that the induction functor \(i_{M,R} \) on the representations of \(M \) depends not only on the Levi subgroup \(M \), but also on the parabolic subgroup \(P \) with Levi factor \(M \). However, when passing to the Grothendieck group of the representations, the dependence of \(P \) disappears. On the other hand, the Jacquet functor \(r_{M,R} \), even if one passes to the Grothendieck groups of the representations, still depend on the choice of parabolic subgroup.

Let \(v \) be a rational coweight. Then \(v \) determines a Levi subgroup \(M = M_v \) and the parabolic subgroup \(P_v = MN_v \). Let \(\mathcal{K} \) be a “nice” open compact subgroup of \(G \) (e.g. the \(n \)-th congruent subgroup \(\mathcal{Z}_n \) of an Iwahori subgroup) and \(\mathcal{K}_M = \mathcal{K} \cap M \). Bushnell introduced the \(P_v \)-positive elements of \(M \) and the subalgebra \(H^v(M, \mathcal{K}_M) \) of \(H(M, \mathcal{K}_M) \), consisting of compactly supported \(\mathcal{K}_M \)-biinvariant functions supported in the \(P_v \)-positive elements. Then he proves that

(a) The algebra \(H(M, \mathcal{K}_M) \) is isomorphic to the localization of \(H^v(M, \mathcal{K}_M) \) at a strongly positive element \(f_z \).

(b) The map
\[j_{v,\mathcal{K}}: H^v(M, \mathcal{K}_M) \longrightarrow H(G, \mathcal{K}), \delta_{\mathcal{K}_M m \mathcal{K}_M} \longrightarrow \delta_{P_v}(m)^{-\frac{1}{2}} \mu_G(\mathcal{K}) \mu_M(\mathcal{K}_M) \delta_{\mathcal{K}_M m \mathcal{K}} \]
is an injective algebra homomorphism.

(c) The map \(j_{v,\mathcal{K}} \) is adjoint to the Jacquet functor \(r_{M,\mathcal{K},R}: \mathfrak{R}_{\mathcal{K}}(G)_R \rightarrow \mathfrak{R}_{\mathcal{K} \cap M}(M)_R \) relative to \(P_v \). Here \(\mathfrak{R}_{\mathcal{K}}(G)_R \subset \mathfrak{R}(G)_R \) consists of representations generated by their \(\mathcal{K} \)-fixed vectors.
Moreover, Bushnell’s map \(j_{v,K} \) also preserves the integral structure of the Hecke algebra.

0.5. It is tempting to apply Bushnell’s result to the cocenter of Hecke algebras. However, there are several obstacles.

If \(K \) is the Iwahori or pro-\(p \) Iwahori subgroup, then the map \(j_{v,K} \) extends to an algebra homomorphism \(H(M, K \cap M) \to H(G, K) \). In this case, the localization of Hecke algebra \(H^v(M, K \cap M) \) is consistent with the Bernstein-Lusztig presentation ([10] and [18]). However, as pointed out in [2], these are essentially the only cases of this kind. Thus one may only use \(j_{v,K} \) to deduce the induction map from part of the cocenter of \(H(M) \) to the cocenter of \(H(G) \).

The Newton strata of \(M \) with integral dominant Newton points are positive, but the strata with rational (but not integral) Newton point may not be positive for any parabolic \(P \). Those strata are not in the domain of the maps \(j_{v,K} \).

Also if one fixes \(M \) and \(P \), the maps \(j_{v,K} \) are not compatible with the change of open compact subgroups \(K \), even at the cocenter level (see §2.5). Thus the maps \(j_{v,K} \) does not induce a well-defined map \(\tilde{i}_v : \tilde{H}(M; v) \to \tilde{H} \).

0.6. The idea behind Bushnell’s map \(j_{v,K} \) is to enlarge the open compact subset \(K_M m \mathcal{K}_M \) of \(M \) to the open compact subset \(K m \mathcal{K} \) of \(G \) by multiplying the open compact subgroup \(K \).

Let \(v \) be a rational coweight and \(P = MN_v \) be the associated parabolic subgroup. The elements in the Newton stratum \(M(v) \) may not be \(P_v \)-positive, but a sufficiently large power of it is \(P_v \)-positive. One may enlarge an open compact subset inside \(M(v) \) by multiplying a suitable open compact subgroup of \(G \) to obtain an open compact subset of \(G \). Unlike the situation in [2], the lack of \(P_v \)-positivity condition prevents us to give an explicit open compact subgroup of \(G \) that works in our situation. We have to use sufficiently small open compact subgroup of \(G \). Since \(v \) is strictly positive with respect to \(N_v \), we finally show that our construction is independent of the choice of such open compact subgroups. We have

Theorem A. Let \(v \) be a rational coweight and \(M = M_v \). Let \(\bar{v} \) be the \(G \)-dominant coweight associated to \(v \). Then

1. **[Theorem 3.1]** The map
 \[
 \delta_{mK_M} \mapsto \delta_{P_v(m)}^{-\frac{1}{2}} \mu_M(K_M) \delta_{mK_M K} + [H, H]
 \]
 for sufficiently small open compact subgroup \(K \) of \(G \) gives a well-defined map
 \[\tilde{i}_v : \tilde{H}(M; v) \to \tilde{H} \].

2. **[Theorem 4.1]** The image of \(\tilde{i}_v \) equals \(\tilde{H}(G; \bar{v}) \).

3. **[Theorem 6.5]** If moreover, \(\text{char}(F) = 0 \), then the map \(\tilde{i}_v \) gives a bijection between \(\tilde{H}(M; v) \) and \(\tilde{H}(G; \bar{v}) \).

Theorem B *(Theorem 5.2).* Let \(v \) be a rational coweight and \(M = M_v \). Then for any \(f \in \bar{H}_R(M; v) \) and \(\pi \in \mathcal{R}(G)_R \), we have the following adjunction formula

\[
\text{Tr}^M_R(f, r_{v,R}(\pi)) = \text{Tr}^G_R(\tilde{i}_v(f), \pi).
\]

Here \(r_{v,R} : \mathcal{R}(G)_R \to \mathcal{R}(M)_R \) is the Jacquet functor relative to \(P_v \).
0.7. Now we discuss some applications. In [11], we introduced the rigid cocenter $H^{\text{rig}} = \bigoplus H(v)$, where v runs over rational central coweights.

Now for any standard Levi subgroup M, we introduce the $+\text{-rigid}$ part $\check{H}(M)^{+\text{,rig}} = \bigoplus \check{H}(M; v)$, where v runs over rational dominant coweights with $M = M_v$. We then have the well-defined map

$$\tilde{i}_M^+ = \bigoplus_v \tilde{i}_v^+ : \check{H}(M)^{+\text{,rig}} \rightarrow \check{H}.$$

As an application of Theorem A and the Newton decomposition of \check{H} (see [11, Theorem 3.1]), we have

Theorem C. We have the decomposition of the cocenter \check{H} into $+\text{-rigid}$ parts:

$$\check{H} = \bigoplus M \text{ is a standard Levi subgroup } \tilde{i}_M^+ (\check{H}(M)^{+\text{,rig}}).$$

For affine Hecke algebras, such decomposition is first obtained in [13] via an elaborate analysis on the minimal length elements in the affine Weyl groups of G and its Levi subgroups M. In loc.cit., such decomposition is called the Bernstein-Lusztig presentation of the cocenter of affine Hecke algebras, since the explicit expression of \tilde{i}_M^+ there is given in terms of the Bernstein-Lusztig presentation. Although there is no Bernstein-Lusztig type presentation for H, we follow [13] and still call the decomposition in Theorem C the Bernstein-Lusztig presentation of the cocenter \check{H}. It is also worth mentioning that the proof in this paper does not involve the elaborate analysis on the minimal length elements as in [13], but based on the compatibility between the change of different open compact subgroups K of G.

Theorem C asserts that the rigid cocenters of Levi subgroups form the “building blocks” of the whole cocenter \check{H}. We also show that that they are compatible with the trace map in the following way.

Theorem D (Theorem 6.1). Let R be an algebraically closed field of characteristic not equal to p. Then we have

$$\ker \text{Tr}_R = \bigoplus M \text{ is a standard Levi subgroup } \tilde{i}_M^+ (\ker \text{Tr}_R^M \cap \check{H}_R(M)^{+\text{,rig}}).$$

If $R = \mathbb{C}$, we have the spectral density theorem and the kernel of the trace map is zero. Theorem D is trivial in this case. However, if R is of positive characteristic, especially when the spectral density theorem fails, then Theorem D would provide useful information toward the understanding of those representations.

0.8. The outline of the proof is as follows. In [12] we introduce the notion of quasi-positive elements and we use some remarkable properties on the minimal length elements established in [12] to show that any element in the Newton stratum $M(v)$ is quasi-positive. Then in [8], we use the quasi-positivity to show that the map in Theorem A(1) is well-defined and factors through $\check{H}(M; v)$. This proves part (1) of Theorem A.

As to part (2) of Theorem A, we first prove in Proposition 4.2 that $M(v) \subset G(\bar{v})$. Then by the admissibility of Newton strata ([11, Theorem 3.2]), any open compact subset X of $M(v)$ enlarged by a sufficiently small open compact subgroup is still contained in $G(\bar{v})$. This shows that the image of \tilde{i}_v is contained in $\check{H}(G; \bar{v})$. The key ingredients in the proof of surjectivity are

- The notation of P-alcove elements introduced in [8].
• The Iwahori-Matsumoto presentation of $\tilde{H}(G; \tilde{v})$ ([11, Theorem 4.1]).

By the quasi-positivity, for any $f \in H(M; v)$, $f^l \in H^v(M)$ for sufficiently large l. Theorem [A] follows from the adjunction formula proved in [2], the comparison between $i_v(f)^l$ with $j_v, \ast (f^l)$ and a trick of Casselman [4].

Finally, the injectivity in part (3) of Theorem A follows from the adjunction formula (Theorem B), the spectral density theorem and the freeness of the cocenter \bar{H} (which is only known in the case of $\text{char}(F) = 0$).

0.9. **Acknowledgment.** We thank Dan Ciubotaru and Sian Nie for many enjoyable discussions and valuable suggestions. We also thank Guy Henniart and Marie-France Vigneras for discussions on the freeness of cocenter and thank Maarten Solleveld for his useful comments on a preliminary version of the paper.

1. **Preliminary**

1.1. Let G be a connected reductive group over a nonarchimedean local field F of arbitrary characteristic. Let $G = G(F)$. We fix a maximal F-split torus A and an alcove a_C in the corresponding apartment, and denote by T the associated Iwahori subgroup.

Let $Z = Z_G(A)$. We denote by $W_0 = N_G(A)/Z(F)$ the relative Weyl group and $\tilde{W} = N_G(A)/Z_0$ the Iwahori-Weyl group, where Z_0 is the unique parahoric subgroup of $Z(F)$.

We fix a special vertex of a_C and identify \tilde{W} as

$$\tilde{W} \cong X_s(Z)_{\text{Gal}(\bar{F}/F)} \rtimes W_0 = \{ t^\lambda w; \lambda \in X_s(Z)_{\text{Gal}(\bar{F}/F)}, w \in W_0 \}.$$

We have a semidirect product

$$\tilde{W} = W_a \rtimes \Omega,$$

where W_a is the affine Weyl group associated to \tilde{W} and Ω is the stabilizer of the alcove a_C in \tilde{W}. Let \tilde{S} be the set of affine simple reflections of W_a determined by the fundamental alcove a_C. The groups W_a and \tilde{W} are equipped with a Bruhat order \preceq and a length function ℓ.

The subgroup Ω of \tilde{W} is the subgroup consisting of length-zero elements.

1.2. For any $K \subset \tilde{S}$, let W_K be the subgroup of \tilde{W} generated by $s \in K$. Let $K^{\tilde{W}}$ be the set of elements $w \in \tilde{W}$ of minimal length in the cosets W_Kw.

Let $\Phi = \Phi(G, A)$ be the set of roots of G relative to A and Φ^+ be the set of positive roots so that a_C is contained in the antidominant chamber of V determined by Φ^+. Let $R = \{ \alpha \}$ be the set of affine roots on \mathcal{A}. We choose a normalization of the valuation on F so that if $\alpha \in R$, then so is $\alpha \pm 1$ (see [11, §5.2.23]). For any $n \in \mathbb{N}$, let \mathcal{I}_n be the n-th Moy-Prasad subgroup associated to the barycenter of a_C [15]. This is the subgroup of G generated by the n-th congruence subgroup of $Z(F)$ and the affine root subgroup X_{a+n} for $\alpha \in R_+$. For any $n \in \mathbb{N}$ and a subgroup G' of G, we set $G'_n = G' \cap \mathcal{I}_n$. We write $\mathcal{I}_{G'}$ for $G' \cap \mathcal{I}$.
1.3. Let μ_G be the Haar measure on G such that the pro-p Iwahori subgroup \mathcal{I}' has volume 1. As in \cite[Section 1]{[11]}, we denote by $H = H(G)$ the Hecke algebra of locally constant, compactly supported, $K \times K$-invariant $\mathbb{Z}^{[\frac{1}{p}]}$-valued functions on G. We have

$$H = \lim_{\longrightarrow} H(G, K),$$

where K runs over open compact subgroups of G and $H(G, K)$ is the space of compactly supported, $K \times K$-invariant $\mathbb{Z}^{[\frac{1}{p}]}$-valued functions on G, i.e., $H(G, K) = \bigoplus_{g \in K \backslash G / K} \delta_{gK} \mathbb{Z}^{[\frac{1}{p}]}/KgK$, where δ_{gK} is the characteristic function on KgK.

We define the action of G on H by $xf(g) = f(x^{-1}gx)$ for $f \in H$, $x, g \in G$. By \cite[Proposition 1.1]{[11]}, the commutator $[H, H]$ of H is the $\mathbb{Z}^{[\frac{1}{p}]}$-submodule of H spanned by $f - xf$ for $f \in H$ and $x \in G$. Let $\tilde{H} = H/[H, H]$ be the cocenter of H.

1.4. Now we recall the Newton decomposition introduced in \cite{[11]}.

Set $V = X_*(\mathbb{Z}_{\text{Gal}(\bar{F}/F)} \otimes \mathbb{R})$ and V_+ be the set of dominant elements in V. For any $w \in \tilde{W}$, there exists a positive integer l such that $w^l = l^\lambda$ for some $\lambda \in X_*(\mathbb{Z}_{\text{Gal}(\bar{F}/F)})$. We set $\nu_w = \lambda/l \in V$ and $\tilde{\nu}_w$ to be the unique dominant in the W_0-orbit of ν_w. The element ν_w and $\tilde{\nu}_w$ are independent of the choice of l.

Let $\mathfrak{N} = \Omega \times V_+$. We have a map (see \cite[§2.1]{[11]})

$$\pi = (\kappa, \tilde{\nu}) : \tilde{W} \rightarrow \mathfrak{N}, \quad w \mapsto (wW_a, \tilde{\nu}_w).$$

We denote by \tilde{W}_{\min} be the subset of \tilde{W} consisting of elements of minimal length in their conjugacy classes. For any $\nu \in \mathfrak{N}$, we set

$$X_{\nu} = \bigcup_{w \in \tilde{W}_{\min} : \pi(w) = \nu} \tilde{W} : \mathcal{I} \quad \text{and} \quad G(\nu) = G \cdot_{\tilde{\nu}} X_{\nu}.$$

Here $\cdot_{\tilde{\nu}}$ means the conjugation action of G. Let $H(\nu)$ be the submodule of H consisting of functions supported in $G(\nu)$ and let $\tilde{H}(\nu)$ be the image of $H(\nu)$ in the cocenter \tilde{H}. The Newton decomposition of \tilde{H} is established in \cite[Theorem 3.1 (2)]{[11]}.

Theorem 1.1. We have that

$$\tilde{H} = \bigoplus_{\nu \in \mathfrak{N}} \tilde{H}(\nu).$$

In this paper, we are mainly interested in the V-factor of \mathfrak{N}. For any $\nu \in V_+$, we also set $G(\nu) = \bigcup_{\tau \in \Omega} G(\nu)$, $H(\nu) = \bigoplus_{\tau \in \Omega} H(\nu)$ and $\tilde{H}(\nu) = \bigoplus_{\tau \in \Omega} \tilde{H}(\nu)$.

1.5. Let M be a semistandard Levi subgroup of G, i.e., a Levi subgroup of some parabolic subgroup of G that contains Z. Let $\mathcal{I}_M = \mathcal{I} \cap M$ be the Iwahori subgroup of M and $\tilde{W}(M)$ be the Iwahori-Weyl group of M. We denote by $S(M)$ the set of affine simple reflections of $\tilde{W}(M)$ determined by the Iwahori subgroup \mathcal{I}_M.

We may regard $\tilde{W}(M)$ as a subgroup of \tilde{W} in a natural way. However, the length function ℓ_M on $\tilde{W}(M)$ does not equal to the restriction of \tilde{W} of the length function ℓ on \tilde{W}.

Let Ω_M be the subgroup of $\tilde{W}(M)$ consisting of length-zero elements with respect to the length function ℓ_M. We have $\Omega_M \cong \tilde{W}(M)/W_a(M)$, where $W_a(M)$ is the affine Weyl group of the subgroup of $\tilde{W}(M)$. We have $W_a(M) \subset W_a$ and
thus a natural map $\Omega_M \cong \hat{W}(M)/W_a(M) \to \hat{W}/W_a \cong \Omega$. Let V_M^M be the set of M-dominant elements in V. We set $\mathcal{N}_M = \Omega_M \times V_M^M$ and we have a map $\pi_M = (\kappa_M, \bar{v}_M) : \hat{W}(M) \to \mathcal{N}_M$.

We also have a natural map $\mathcal{N}_M \to \mathfrak{g}$ sending (τ, v) to (τ', \bar{v}), where τ' is the image of τ in Ω and \bar{v} is the unique (G)-dominant element in the W_v-orbit of v.

Let μ_M be the Haar measure on M such that the pro-p Iwahori subgroup of M has volume 1. Let $H(M)$ be the Hecke algebra of M and $\hat{H}(M)$ be its cocenter. For any $\nu_M \in \mathcal{N}_M$, we denote by $\hat{H}(M; \nu_M)$ the corresponding Newton component of $H(M)$. By Theorem [11], we have

$$\hat{H}(M) = \oplus_{\nu_M \in \mathcal{N}_M} \hat{H}(M; \nu_M).$$

2. Quasi-positive elements

2.1. The semistandard Levi may be described as the centralizer of elements in V. For any $v \in \mathfrak{g}$, we set $\Phi_v = \{a \in \Phi; \langle a, v \rangle = 0\}$ and $\Phi_v^+ = \{a \in \Phi; \langle a, v \rangle > 0\}$.

Let $M_v \subset G$ be the Levi subgroup generated by Z and $U_a(F)$ for $a \in \Phi_v^0$ and $N_v \subset G$ be the unipotent subgroup generated by $U_a(F)$ for $a \in \Phi_v$. Set $P_v = M_v N_v$.

Then P_v is a semistandard parabolic subgroup and M_v is a Levi subgroup of P_v. We denote by $P_v^- = M_v N_v^-$ the opposite parabolic. Let $\mu_{N_v}, \mu_{N_v^-}$ be the Haar measures on N_v and N_v^- respectively such that $\mu_G(nmn^-) = \mu_{N_v}(n)\mu_{M_v}(m)\mu_{N_v^-}(n^-)$ for $n \in N_v, m \in M_v, n^- \in N_v^-$. For $m \in M_v$, set $\delta_v(m) = \frac{\mu_{N_v}(mN_v^am^{-1})}{\mu_{N_v}(N_v^a)}$. For $\nu = (\tau, v) \in \mathfrak{g}$, we may also write M_v for $M_v, N(\nu)$ for N_v and $N^-(\nu)$ for N_v^-.

If v is dominant, then P_v is a standard parabolic subgroup of G and M_v is a standard Levi subgroup of G.

2.2. Let $v \in \mathfrak{g}$. Following [3, Definition 6.5 & Definition 6.14], we call an element $m \in M_v$ a (P_v, I_n)-positive element if

$$mN_v m^{-1} \subset N_v, \text{ and } m^{-1}N_v^- m \subset N_v^-.$$

We call an element z in the center of M_v a strongly P_v-positive element if the sequences $z^n N_v^0 z^{-n}, z^{-n} N_v^- z^n$ both tend monotonically to 1 as $n \to \infty$.

Following [2, §3.1], let $H^v(M_v, M_v, n)$ be the subalgebra of $H(M_v, M_v, n)$ of functions with support consisting of (P_v, I_n)-positive elements. The following result is proved in [2, Proposition 5].

Proposition 2.1. The map $\delta_{M_v, n} : H^v(M_v, M_v, n) \to \hat{H}(G, I_n)$ defines an injective algebra homomorphism

$$j_{v, n} : H^v(M_v, M_v, n) \hookrightarrow H(G, I_n).$$

The formula we have here differs from [2] by the factor $\delta_v(m)^{-\frac{1}{2}}$, since in [2] the map is adjoint to the (unnormalized) Jacquet functor while we consider the (normalized) Jacquet functor.

By [2, §3.2], $H(M_v, M_v, n) = S^{-1} H^v(M_v, M_v, n)$ is the localization of $H^v(M_v, M_v, n)$, where $S = (\delta_{M_v, n} M_v, n)$ is the the multiplicative closed set of the function $\delta_{M_v, n} M_v, n$ with a strongly P_v-positive element z. It is pointed out in [2, Remark 5] that the map $j_{v, n}$ does not extend to an algebra homomorphism $H(M_v, M_v, n) \to H(G, I_n)$ for $n > 0$.

2.3. Let $v \in V$ be a rational coweight and $M = M_v$. For any $l \in \mathbb{N}$ with $lv \in X_* (Z)$, the element lv is strongly P_v-positive. However, in general, the element in $M(v)$ may not be (P_v, \ast)-positive. Therefore, one cannot deduce a map from $H(M; v)$ to H via the map $j_{v,n}$.

Example 2.2. Let G be split GL_5 and $M = GL_3 \times GL_2$. Let $v = (\frac{2}{3}; \frac{2}{3}; \frac{2}{3}; \frac{1}{2}; \frac{1}{2})$. Then $M = M_v$. The element $w = f^{(1,1,0,1,0)}(132)(45)$ of W has Newton point v. However, $w(e_1 - e_3) = e_5 - e_2 - 1$ is a negative affine root. Therefore the element \tilde{w} is not (P_v, \ast)-positive.

2.4. To overcome the difficulty, we introduce the quasi-positive elements.

An element $m \in M_v$ is called P_v quasi-positive if there exists $l \in \mathbb{N}$ such that

(a) $m^l N_{v,n} m^{-l} \subset N_{v,n+1}$, and $m^{-1} N_{v,n} m^l \subset N_{v,n+1}$ for any $n \in \mathbb{N}$.

For any $n \in \mathbb{N}$, $w \in \tilde{W}$ and $g \in I \tilde{w} I$, we have $g I_{n+\ell(w)} g^{-1} \subset I_n$. So

(b) Let $w \in \tilde{W}(M)$ and $m \in I_M \tilde{w} I_M$. If m satisfies (a), then we have

$m^n N_{v,n'} + (l-1)(w)m^{-n} \subset N_{v,n'}$, and $m^{-n} N_{v,n'+(l-1)(w)} m^n \subset N_{v,n'}$ for any $n, n' \in \mathbb{N}$.

We first discuss some properties on the quasi-positive elements.

Proposition 2.3. Let $v \in V$ and $M = M_v$. Let $w \in \tilde{W}(M)$ and $m \in I_M \tilde{w} I_M$.

Suppose that m satisfies the inclusion relation (2.2) (a).

(1) For any $n \in \mathbb{N}$, any element in $m I_{n+\ell(l-w)} I_n$ is conjugate by an element in $I_{n+\ell(l-w)} I_n$ to an element in $m I_{n+\ell(l-w)} I_n$.

(2) For any $n, n' \in \mathbb{N}$ and $g \in I_{n+\ell(l-w)} I_n$, we have

$$\delta_m g I_{n+\ell(l-w)} I_n + g' \equiv \delta_m I_{n+\ell(l-w)} I_n + g' \mod [H, H].$$

Proof. (1) We first show that

(a) For any $i \in \mathbb{N}$, any element in $m M_{n+\ell(l-w)} I_n + (l-w) I_{n+i}$ is conjugate by I_{n+i} to an element in $m M_{n+\ell(l-w)} I_n + (l-w) I_{n+i}$.

Note that any element in $m M_{n+\ell(l-w)} I_{n+\ell(l-w)} I_{n+i}$ is conjugate by $I_{n+\ell(l-w)} I_{n+i}$ to an element of the form $u'g'$ with $u' \in N_{v,n+\ell(l-w)} I_{n+i}$, $g' \in m M_{n+\ell(l-w)} I_{n+i}$ and $u' N_{v,n+\ell(l-w)} I_{n+i}$. By (2.3) (b), $g u g^{-1} \in N_{v,n+i}$. We have $(u', g u g^{-1}) \in (I_{n+\ell(l-w)} I_{n+i}, I_{n+i}) \subset I_{n+\ell(l-w)} I_{n+i+1}$. Now we have

$$u' g u g^{-1} g \in (g u g^{-1}) u' I_{n+\ell(l-w)} I_{n+i+1}.$$ So $u'g$ is conjugate by I_{n+i} to an element in

$$u' I_{n+\ell(l-w)} I_{n+i+1} g (g u g^{-1}) = u' I_{n+\ell(l-w)} I_{n+i+1} (g^2 u (g^2)^{-1}) g = u' (g^2 u (g^2)^{-1}) I_{n+\ell(l-w)} I_{n+i+1} g = (g^2 u (g^2)^{-1}) u' I_{n+\ell(l-w)} I_{n+i+1} g.$$ By the same procedure, for any $l \in \mathbb{N}$, $u'g$ is conjugate by I_{n+i} to an element in

$$(g^l u (g^l)^{-1}) u' I_{n+\ell(l-w)} I_{n+i+1} g.$$ By (2.3) (a), $g^l u (g^l)^{-1} \in I_{n+\ell(l-w)} I_{n+i+1}$. Hence $u'g$ is conjugate by I_{n+i} to an element in $u' I_{n+\ell(l-w)} I_{n+i+1} g = u' g I_{n+\ell(l-w)} I_{n+i+1} g$. By the same argument, any element in $u' g I_{n+\ell(l-w)} I_{n+i+1} g$ is conjugate by I_{n+i} to an element in $g I_{n+\ell(l-w)} I_{n+i+1}$.

(a) is proved.

Let $g_0 \in m M_{n+\ell(l-w)} I_n$. By (a), we may construct inductively an element $z_i \in I_{n+i}$ for $i \in \mathbb{N}$ such that $g_{i+1} := z_i^{-1} g_i z_i$ is contained in $m M_{n+\ell(l-w)} I_{n+\ell(l-w) + i}$.
The convergent product \(z := z_1 z_2 \cdots \) is a well-defined element in \(\mathcal{I}_n \) and \(z^{-1} g z \in mM_{n+1}(l-1)(l(w)) \).

(2) By part (1), there exists \(h \in \mathcal{I}_{n+n'} \) such that \(h m g h^{-1} \in mM_{n+1}(l-1)(l(w)) \). We have \((\mathcal{I}_{n+n'}, M_{n+1}(l-1)(l(w))) \subset (\mathcal{I}_{n+n'}(l-1)(l(w))) \). Therefore \(M_{n+1}(l-1)(l(w)) \mathcal{I}_{n+n'+1}(l-1)(l(w)+n') \) is a subgroup of \(\mathcal{I} \) and is stable under the conjugation action of \(\mathcal{I}_{n+n'} \). Thus \(h m g M_{n+1}(l-1)(l(w)) \mathcal{I}_{n+n'+1}(l-1)(l(w)+n')h^{-1} = mM_{n+1}(l-1)(l(w)) \mathcal{I}_{n+n'+1}(l-1)(l(w)+n') \). The statement is proved.

2.5. We say that \(m \in M \) is \(P_v \) strictly positive if for any \(n \in \mathbb{N} \), we have

\[
mN_{v,n} m^{-1} \subset N_{v,n+1}, \text{ and } m^{-1} N_{v,n} m \subset N_{v,n+1}.
\]

We denote by \(H^v(M) \) the subalgebra of \(H(M) \) consisting of functions with support consisting of \(P_v \) strictly positive elements. Note that the limit of the support of \(j_{v,n}(\delta Z_0) \) for \(v \) dominant regular, as \(n \) goes to infinite, is just \(Z_0 \) itself, but the support of \(j_{v,n}(\delta Z_0) \) for each \(n \) contains of non-split regular semisimple elements. Thus the maps \(\{j_{v,n}\} \) are not compatible with the natural maps \(H^v(M, M_n) \to H^v(M, M_{n+1}) \).

However, we have the following compatibility result for \(P_v \) strictly positive part.

Corollary 2.4. Let \(n \in \mathbb{N} \). Then the following diagram commutes

\[
\begin{array}{ccc}
\tilde{H}^v(M, M_n) & \xrightarrow{j_{v,n}} & \tilde{H}(G, \mathcal{I}_n) \\
\downarrow & & \downarrow \\
\tilde{H}^v(M, M_{n+1}) & \xrightarrow{j_{v,n+1}} & \tilde{H}(G, \mathcal{I}_{n+1}).
\end{array}
\]

Proof. Let \(m \in M \) be \(P_v \) strictly positive. Then \(\delta_{M_n M_n} \in H^v(M, M_n) \subset H^v(M, M_{n+1}). \) By definition,

\[
j_{v,n+1}(\delta_{M_n M_n}) = \delta_v(m) - \frac{1}{2} \frac{\mu_M(M_{n+1})}{\mu_G(I_n)} \delta_{I_{n+1}M_n M_n I_{n+1}}.
\]

Note that \(I_{n+1}M_n = M_n I_{n+1} \) is a subgroup of \(\mathcal{I} \). We have

\[
I_n m I_n = \cup \{(i_1, i_2, i'_1, i'_2) : i_1 i'_1 I_{n+1} M_n m M_n I_{n+1} i'_2 i_2 \},
\]

where \(\{(i_1, i_2, i'_1, i'_2) \} \subset N_n \times N_n \times N_n^* \times N_n^* \) is a finite subset. By Proposition 2.3 (2), for \(i_1, i_2 \in N_n \) and \(i'_1, i'_2 \in N_n^* \), we have

\[
\delta_{i_1 i'_1 I_{n+1} M_n m M_n I_{n+1} i'_2 i_2} \equiv \delta_{I_{n+1} M_n M_n I_{n+1}} \mod [H, H].
\]

Thus

\[
j_{v,n}(\delta_{M_n M_n}) \equiv \delta_v(m) - \frac{1}{2} \frac{\mu_M(M_n)}{\mu_G(I_n)} \mu_G(I_{n+1}) \mu_G(I_{n+1} m M_n I_{n+1}) \delta_{I_{n+1} M_n M_n I_{n+1}} \mod [H, H].
\]

It remains to show that

\[
\frac{\mu_M(M_{n+1})}{\mu_G(I_{n+1})} = \frac{\mu_M(M_n)}{\mu_G(I_n)} \frac{\mu_G(I_{n+1} m M_n I_{n+1})}{\mu_G(I_{n+1} m M_n I_{n+1})}.
\]

Suppose that \(m \in I_M w I_M \) for some \(w \in W(M) \). By Lemma 4.6,

\[
\frac{\mu_G(I_n m I_n)}{\mu_G(I_n)} = \frac{\mu_G(I_{n+1} m I_{n+1})}{\mu_G(I_{n+1})} = q^v(w), \quad \frac{\mu_M(M_n m M_n)}{\mu_M(M_n)} = \frac{\mu_M(M_{n+1} m M_{n+1})}{\mu_M(M_{n+1})} = q^v(M).\]
Now we have
\[
\begin{align*}
\frac{\mu_M(M_n)}{\mu_G(I_n)} & = \frac{\mu_M(M_n)}{\mu_G(I_{n+1})} \quad \frac{\mu_G(I_n m I_n)}{\mu_G(I_{n+1} m I_{n+1})} \\
& = \frac{\mu_M(M_n)}{\mu_G(I_{n+1})} \quad \frac{\mu_G(I_n m I_n)}{\mu_G(I_{n+1} m I_{n+1})} \\
& = \frac{\mu_M(M_n)}{\mu_G(I_{n+1})} \quad \frac{\mu_M(M_{n+1} m I_{n+1})}{\mu_G(I_{n+1} m I_{n+1})} \\
& = \frac{\mu_M(M_n)}{\mu_G(I_{n+1})} \quad \frac{\mu_M(M_{n+1} m I_{n+1})}{\mu_G(I_{n+1} m I_{n+1})} \\
& = \frac{\mu_M(M_n)}{\mu_G(I_{n+1})} \quad \frac{\mu_M(M_{n+1})}{\mu_G(I_{n+1})}.
\end{align*}
\]

The statement is proved. □

Proposition 2.5. Let \(v \in V \) be a rational coweight and \(M = M_v \). Let \(w \in \hat{W}(M) \). Then there exists a positive integer \(i_{v,w} \) such that for any \(m \in I_M \hat{w} I_M \cap M(v) \) and \(n \geq i_{v,w} \), we have
\[
m_{v,w} v_n(m_{v,w}^{-1}) \subset N_{v,n+1}, \quad (m_{v,w})^{-1} N_{v,n} m_{v,w} \subset N_{v,n+1}.
\]

2.6. The proof relies on some remarkable properties of the Iwahori-Weyl group, which we recall here.

For \(w, w' \in \hat{W} \) and \(s \in \hat{S} \), we write \(w \overset{s}{\rightarrow} w' \) if \(w' = sws \) and \(\ell(w') \leq \ell(w) \). We write \(w \rightarrow w' \) if there is a sequence \(w = w_0, w_1, \ldots, w_n = w' \) of elements in \(\hat{W} \) such that for any \(1 \leq k \leq n \), \(w_{k-1} \overset{s_k}{\rightarrow} w_k \) for some \(s_k \in \hat{S} \). We write \(w \approx w' \) if \(w \rightarrow w' \) and \(w' \rightarrow w \). It is easy to see that if \(w \rightarrow w' \) and \(\ell(w) = \ell(w') \), then \(w \approx w' \).

We have that
(a) If \(w \overset{s}{\rightarrow} w' \) and \(\ell(w) = \ell(w') \), then for any \(g \in I\hat{w}I \), there exists \(g' \in I\hat{s}I \) such that \(g'g(g')^{-1} \in I\hat{w}'I \).

(b) If \(w \overset{s}{\rightarrow} w' \) and \(\ell(w') < \ell(w) \), then for any \(g \in I\hat{w}I \), there exists \(g' \in I\hat{s}I \) such that \(g'g(g')^{-1} \in I\hat{w}'I \sqcup I\hat{s}\hat{w}I \).

An element \(w \in \hat{W} \) is called straight if \(\ell(w^n) = n\ell(w) \) for any \(n \in \mathbb{N} \). A triple \((x, K, u)\) is called a standard triple if \(x \in \hat{W} \) is straight, \(K \subset \hat{S} \) with \(W_K \) finite, \(x \in \hat{K}W \) and \(\text{Ad}(x)(K) = K \), and \(u \in \hat{W}_K \). By definition,
(c) For any \(n \in \mathbb{N} \) and \(g_1, \ldots, g_n \in I\hat{w}I \), we have \(g_1g_2\cdots g_n \in (I\hat{w}I)(I\hat{w}^nI) \).

It is proved in [12, Theorem A & Proposition 2.7] that

Theorem 2.6. For any \(w \in \hat{W} \), there exists a standard triple \((x, K, u)\) such that \(ux \in \hat{W}_{\min} \) and \(w \rightarrow ux \). In this case, \(\pi(w) = \pi(x) \).

Following [12, §4.3], we write \(w \overset{s}{\rightarrow} w' \) if either \(w \overset{s}{\rightarrow} w' \) or \(w' = sw \) and \(\ell(w') > \ell(sws) \), and we write \(w \rightarrow w' \) if there exists a sequence \(w = w_0, w_1, \ldots, w_n = w' \) of elements in \(\hat{W} \) such that for any \(1 \leq k \leq n \), \(w_{k-1} \overset{s_k}{\rightarrow} w_k \) for some \(s_k \in \hat{S} \). It is easy to see that if \(w \in \hat{W}_{\min} \) and \(w \rightarrow w' \), then \(w \approx w' \).

We show that

Lemma 2.7. Let \(w \in \hat{W} \) and \(g \in I\hat{w}I \). Then there exists a standard triple \((x, K, u)\), a sequence \(w = w_0, w_1, \ldots, w_n = ux \) of distinct elements in \(\hat{W} \) and a sequence \(g = g_0, g_1, \ldots, g_n \) of elements in \(G \) such that
\[
\begin{enumerate}
\item \(ux \in \hat{W}_{\min} \);
\item \(\text{for any } 0 \leq k \leq n, \ g_k \in I\hat{w}_kI \);
\end{enumerate}
\]
Remark 2.8. By definition, if $w \rightarrow w'$, then $w' \in wW_a$ and $\ell(w') \leq \ell(w)$. In particular, the length of the sequence is at most $\sharp\{x \in W_a; \ell(x) \leq \ell(w)\}$.

Proof. We argue by induction on $\ell(w)$.

If $w \in \hat{W}_{\text{min}}$, by Theorem 2.6 there exists a standard triple (x, K, u) with $ux \in \hat{W}_{\text{min}}$ and a sequence $w = w_0, w_1, \ldots, w_n = ux$ of distinct elements in \hat{W} such that for any $1 \leq k \leq n$, $w_{k-1} \overset{k}{\rightarrow} w_k$ for some $s_k \in \hat{S}$. Since $w \in \hat{W}_{\text{min}}$, we have $\ell(w_k) = \ell(w)$ for all k. Now the statement follows from (2.6) (a).

If $w \notin \hat{W}_{\text{min}}$, then by Theorem 2.6 there exists a sequence $w = w_0, w_1, \ldots, w_n$ of distinct elements in \hat{W} such that $\ell(w) = \ell(w_n)$, for any $1 \leq k \leq n$, $w_{k-1} \overset{k}{\rightarrow} w_k$ for some $s_k \in \hat{S}$ and there exists $s \in \hat{S}$ with $sw_{n}s < w_n$. Then we have $\ell(w_k) = \ell(w)$ for all k. By (2.6) (a), for any $1 \leq k \leq n$, there exists $h_k \in \mathcal{I}_k\mathcal{I}$ such that $g_k = h_kg_{k-1}h_k^{-1}$. By (2.6) (b), there exists $h_{n+1} \in \mathcal{I}\mathcal{I}$ such that $h_{n+1}g_nh_{n+1}^{-1} \in \mathcal{I}\hat{w}_{n+1}\mathcal{I}$ with $w_{n+1} \in \{sw, sws\}$. Now the statement follows from inductive hypothesis on w_{n+1}. \hfill \square

2.7. Proof of Proposition 2.5. Let $N_0 = \sharp\{w' \in W_a(M); \ell(M(w')) \leq \ell(M(w))\}$. By Lemma 2.7 and remark 2.8 there exists a standard triple (x, K, u) of $W(M)$ and an element $h \in \cup_{z \in W_a(M); \ell(z) \leq N_0}\mathcal{I}_M\mathcal{I}_M$ such that $ux \in \hat{W}(M)_{\text{min}}$, $w \rightarrow ux$ and $h \hat{m}h^{-1} \in \mathcal{I}_M\hat{u}x\mathcal{I}_M$.

Let i be a positive integer with $iv \in X_\ast(Z)$. Then $x^i = t^iv \in \hat{W}$ represents a central element in M. By (2.6) (c), for any $l \in \mathbb{N}$,

$$ (h \hat{m}h^{-1})^l \in (\mathcal{I}_M W_K \mathcal{I}_M)(\mathcal{I}_M t^iv \mathcal{I}_M). $$

Let $N_1 = \max_{K \subset \hat{S}(M); W_K}$ finite $\sharp W_K$. Let $i_{v, w} = (2N_0 + N_1 + 1)i$. Then for any $\alpha \in \Phi_{v, +}$, $(i_{v, w} + \alpha) \geq 2N_0 + N_1 + 1$. Note that $m_{v, w} = h^{-1}(g_1g_2)h$ with $h \in \cup_{w' \in W(M); \ell(w') \leq N_0}\mathcal{I}_M\hat{u}w'\mathcal{I}_M$, $g_1 \in \cup_{w' \in W(M); \ell(w') \leq N_1}\mathcal{I}_M\hat{u}w'\mathcal{I}_M$ and $g_2 \in \mathcal{I}_M t^iv, w' \mathcal{I}_M$. So

$$ m_{v, w} N_{v, n}(m_{v, w})^{-1} = h^{-1}g_1g_2hN_{v, n}h^{-1}g_1^{-1}h $$
$$ \quad \subset h^{-1}g_1g_2N_{v, n}N_{v, n}g_2^{-1}g_1^{-1}h $$
$$ \quad \subset h^{-1}g_1N_{v, n}N_{v, n}(2N_0 + N_1 + 1)g_1^{-1}h $$
$$ \subset h^{-1}N_{v, n}N_{v, n}(2N_0 + N_1 + 1)N_{v, n} $$
$$ \subset N_{v, n}N_{v, n}(2N_0 + N_1 + 1)N_{v, n} = N_{v, n+1}. $$

Similarly, $m^{-i_{v, w}} N_{v, n} m^{i_{v, w}} \subset N_{v, n+1}^-.$

3. THE MAP \tilde{i}_ν

We define the induction map \tilde{i}_ν, which is the main object in this paper.

Theorem 3.1. Let M be a semistandard Levi subgroup of G and $\nu \in \mathcal{R}_M$ with $M = M_\nu$. Then

1. For $m \in M$ and an open compact subgroup K_M of \mathcal{I}_M with $mK_M \subset \mathcal{M}(\nu)$, the map

$$ \delta_{mK_M} \mapsto \delta_\nu(m)^{-\frac{1}{2}} \frac{\mu_M(K_M)}{\mu_G(K_M)} \delta_{mK_M} + [H, H] $$
from $H(M; \nu)$ to $\bar{H}(\bar{\nu})$ is independent the choice of sufficiently small open compact subgroup K of G

(2) The map $i_\nu : H(M; \nu) \to \bar{H}$ defined above induces a map

$$i_\nu : H(M; \nu) \to \bar{H}.$$

Remark 3.2. Unlike the map $j_{\nu,n}$, the map \tilde{i}_ν does not send $\bar{H}(M, M_n; \nu)$ to $H(G, \mathcal{I}_n, \bar{\nu})$. One needs to replace \mathcal{I}_n by a smaller open compact subgroup of G. However, by the Iwahori-Matsumoto presentation of $\bar{H}(M, M_n; \nu)$ ([11] Theorem 4.1) and Proposition [2.5] there exists a positive integer n' (depending on ν) such that $\tilde{i}_\nu : H(M, M_n; \nu) \to H(G, \mathcal{I}_{n+n'}; \bar{\nu})$ for any $n \in \mathbb{N}$.

Proof. (1) Let ν be the V-factor of ν. Let $w \in \hat{W}(M)$ with $m \in \mathcal{I}_M w \mathcal{I}_M$. Let $i_{\nu,w}$ be an positive integer in Proposition 2.5. Let l be a multiple of $i_{\nu,w}(w)$ with $M_l \subset K_M$. By Proposition 2.3 (2), for any $n \in \mathbb{N}$ and $g \in \mathcal{I}_l$, we have

$$\delta_{m'gM_l \mathcal{I}_{l+n}} \equiv \delta_{m'M_l \mathcal{I}_{l+n}} \mod [H, H].$$

Let $K, K' \subset$ be open compact subgroups of G with $K, K' \subset \mathcal{I}_l$. Let $n \in \mathbb{N}$ with $\mathcal{I}_{l+n} \subset K, K'$. Now we have

$$\delta_{mK_M K} = \sum_{m' \in mK_M K} \delta_{m'M_l K} \equiv \sum_{m' \in mK_M K} \frac{\mu_G(M_K)}{\mu_G(M_l \mathcal{I}_{l+n})} \delta_{m'M_l \mathcal{I}_{l+n}}$$

$$\equiv \frac{\mu_G(M_K)}{\mu_G(M_l \mathcal{I}_{l+n})} \delta_{mK_M K} \mod [H, H].$$

As K_M is stable under the right multiplication of M_l, we have $\mu_G(K_M \mathcal{I}_{l+n}) = \overline{\delta}(K_M/M_l) \mu_G(M_l \mathcal{I}_{l+n})$ and $\mu_G(M_K \mathcal{I}_{l+n}) = \mu_G(K_M \mathcal{I}_{l+n})$. Thus for any $n \in \mathbb{N}$, we have

$$\frac{\mu_G(K_M)}{\mu_G(K_M \mathcal{I}_{l+n})} \delta_{mK_M K} \equiv \frac{\mu_G(K_M)}{\mu_G(K_M \mathcal{I}_{l+n})} \delta_{mK_M K} \mod [H, H].$$

Similarly, $\frac{\mu_G(K_M)\delta_{mK_M K'}}{\mu_G(K_M \mathcal{I}_{l+n})} \delta_{mK_M K} \equiv \mu_G(K_M)\delta_{mK_M \mathcal{I}_{l+n}} \mod [H, H]$. Part (1) is proved.

(2) By [11] §3.3 (2), $[H(M), H(M)] = \bigoplus_{\nu \in \mathcal{R}_M} ([H(M), H(M)] \cap H(M))$, the kernel of the map $H(M) \nu \to H(M)\bar{\nu}$ is spanned by $\delta_{mK_M} - h \delta_{mK_M}$ for $h, m \in M$ and open compact subgroup K_M of \mathcal{I}_M such that $mK_M \subset M_\nu$. It remains to prove that $i_\nu(\delta_{mK_M}) = i_\nu(h \delta_{mK_M})$.

Set $m' = hm^{-1}$ and $K'_M = hK_M h^{-1}$. By part (1), there exists a sufficiently small open compact subgroup \mathcal{K} of G such that

$$i_\nu(\delta_{mK_M}) \equiv \delta_\nu(m) \frac{1}{\mu_G(K_M)\delta_{mK_M K}} \mod [H, H],$$

$$i_\nu(\delta_{m'K'_M}) \equiv \delta_\nu(m') \frac{1}{\mu_G(K'_M)\delta_{m'K'_M K'}} \mod [H, H].$$

Here $K'_M = hK_M h^{-1}$.

We have $\delta_{m'K'_M K} = \delta_{h(mK_M K)h^{-1}} \equiv \delta_{mK_M K} \mod [H, H]$. Part (2) is proved. □

3.1. In the rest of this section, we show that the maps \tilde{i}_ν are compatible with conjugating the Levi subgroups.

For any semistandard Levi subgroup M, we have a natural projection

$$X_+(Z)_{\text{Gal}(F/F)}/Z\Phi_M^\nu \cong \Omega_M$$
Proposition 3.3. Let \(\nu \in \mathcal{N}_M \). The natural action of \(W_0 \) on \(X_*(Z)_{\text{Gal}(F/F)} \times V \) induces the following commutative diagram for any \(w \in W_0 \)

\[
\xymatrix{
X_*(Z)_{\text{Gal}(F/F)} \times V \ar[r]^-w \ar[d] & X_*(Z)_{\text{Gal}(F/F)} \times V \\
\mathcal{N}_M \ar[r] & \mathcal{N}_{wM\hat{w}^{-1}}.
}
\]

We denote the induced map \(\mathcal{N}_M \to \mathcal{N}_{wM\hat{w}^{-1}} \) still by \(w \). If moreover, \(w \in W_M \), i.e. \(w \) sends the positive roots of \(M \) to the positive roots of \(\hat{w}M\hat{w}^{-1} \), then we have \(\hat{w}I_M\hat{w}^{-1} = I_{wM\hat{w}^{-1}} \). By definition, the \(M \)-fundamental alcove is the unique \(M \)-alcove that contains the \(G \)-fundamental alcove. Since the conjugation by \(\hat{w} \) sends the Iwahori-subgroup of \(M \) to the Iwahori-subgroup of \(\hat{w}M\hat{w}^{-1} \), it also sends the \(M \)-fundamental alcove to the \(\hat{w}M\hat{w}^{-1} \)-fundamental alcove, and thus induces a length-preserving map from \(\hat{W}(M) \) to \(\hat{W}(\hat{w}M\hat{w}^{-1}) \). In particular, the conjugation by \(w \) sends the minimal length elements of \(\hat{W}(M) \) (with respect to \(\ell_M \)) to the minimal length elements of \(\hat{W}(\hat{w}M\hat{w}^{-1}) \) (with respect to \(\ell_{wM\hat{w}^{-1}} \)). Therefore, by the definition of Newton strata, we have that

(a) Let \(M \) be a semistandard Levi subgroup \(M \) and \(\nu \in \mathcal{N}_M \). Let \(w \in W_0 \) and \(M' = \hat{w}M\hat{w}^{-1} \), then

\[
\hat{w}M(\nu)\hat{w}^{-1} = M'(w(\nu)).
\]

Proposition 3.3. Let \(M \) be a semistandard Levi subgroup and \(\nu \in \mathcal{N}_M \) and \(w \in W_0 \). Then for any \(m \in M' \) and an open compact subgroup \(K_M \) of \(I_M \) with \(mK_M \subseteq M' \) and \(\hat{w}K_M\hat{w}^{-1} \subseteq I_{wM\hat{w}^{-1}} \), we have

\[
i_{\nu}(\delta_{mK_M}) = i_{w(\nu)}(\delta_{w^{m}K_M\hat{w}^{-1}}) \in \hat{H}.
\]

Proof. The proof is similar to the proof of Theorem 3.1 (2).

Set \(M' = \hat{w}M\hat{w}^{-1} \), \(m' = \hat{w}m\hat{w}^{-1} \) and \(K_{M'} = \hat{w}K_M\hat{w}^{-1} \). By Theorem 3.1 (1), there exists a sufficiently small open compact subgroup \(K \) of \(G \) such that

\[
i_{\nu}(\delta_{mK_M}) \equiv \delta_{\nu}(m)^{-\frac{1}{2}} \frac{\mu_M(K_M)}{\mu_G(K_M)} \delta_{mK_MK} \mod [H, H],
\]

\[
i_{w(\nu)}(\delta_{mK_{M'}}) \equiv \delta_{w(\nu)}(m')^{-\frac{1}{2}} \frac{\mu_M(K_{M'})}{\mu_G(K_{M'}K')} \delta_{m'K_{M'}K'} \mod [H, H].
\]

Here \(K' = \hat{w}K^{-1} \).

We have \(\delta_{m'K_{M'}K'} = \delta_{w^{mK_MK}\hat{w}^{-1}} \equiv \delta_{mK_MK} \mod [H, H] \). The statement is proved.

Corollary 3.4. Let \(M \) be a semistandard Levi subgroup of \(G \) and \(\nu \in \mathcal{N}_M \) with \(M = M_\nu \). Then for any \(w \in W_0 \),

\[
\text{Im}(i_{\nu} : \bar{H}(M; \nu) \to \bar{H}) = \text{Im}(i_{w(\nu)} : \bar{H}(\hat{w}M\hat{w}^{-1}; w(\nu)) \to \bar{H}).
\]

4. THE IMAGE OF THE MAP \(\bar{t}_\nu \)

The main result of this section is

Theorem 4.1. Let \(M \) be a semistandard Levi subgroup and \(\nu \in \mathcal{N}_M \) with \(M = M_\nu \). Then the image of the map \(\bar{t}_\nu : \bar{H}(M; \nu) \to \bar{H} \) equals \(\bar{H}(\nu) \).

We first compare the Newton strata of \(G \) and its Levi subgroups.
Proposition 4.2. Let M be a semistandard Levi subgroup and $\nu \in \mathcal{X}$. Then we have $M(\nu) \subset G(\bar{v})$.

Proof. The idea is similar to the proof of [11, Theorem 2.1].

By [11, Remark 2.6], after conjugating by a suitable element in W_0, we may assume that M is a standard Levi subgroup. Since $M = M_\nu$, the V-factor of ν is G-dominant. By the Newton decomposition of G ([11, Theorem 2.1]), it suffices to prove that $M(\nu) \cap G(\nu') = \emptyset$ for any $\nu' \in \mathcal{X}$ with $\nu' \neq \bar{v}$.

Let $\nu = (\tau, v)$ and $\nu' = (\tau', v')$. If the image of τ in Ω does not equal to τ', then $M(\nu) \cap G(\nu') = \emptyset$. Now we assume that the Ω-factor matches. Since $\nu' \neq \bar{v}$, we have $\nu' \neq v$.

By [11, Remark 2.6],

$$M(\nu) = \cup_{(x, K, u) \in \mathcal{X} \cap W_0} p_{x, K, u}(\mathcal{U}_M) \cdot \bar{x},$$

where (x, K, u) runs over standard triples of \mathcal{U} such that $ux \in \mathcal{U}(M)_{\min}$ and $\pi(x) = \nu$. (x', K', u') runs over standard triples of \mathcal{U} such that $u'x' \in \mathcal{U}(M)_{\min}$ and $\pi(x') = \nu'$.

If $M(\nu) \cap G(\nu') \neq \emptyset$, then there exists standard triples (x, K, u) and (x', K', u') as above and $h \in \mathcal{U}_M \cdot \bar{x}$, $h' \in \mathcal{U}_M \cdot \bar{x}'$, $g \in G$ such that $ghg^{-1} = h'$. For any $n \in \mathbb{N}$, we have $g h^n g^{-1} = (h')^n$. By [11, Remark 2.6], we have $h^n \in (\mathcal{U}_M \bar{u}) \mathcal{U}_M$, $(h')^n \in (\mathcal{U}_M \bar{u}) \mathcal{U}_M$.

Let $l > 0$ with $l v \cdot l v' \in \mathcal{X}$. Suppose that $g \in \mathcal{U} \bar{x}$ for some $z \in \mathcal{U}$. Then for any $n \in \mathbb{N}$, we have

$$\mathcal{U} \bar{x} \mathcal{U} l v \mathcal{U} \bar{x} \mathcal{U} l v' \mathcal{U} \cap \mathcal{U} \mathcal{U} l v \mathcal{U} \bar{x} \mathcal{U} l v' \mathcal{U} \neq \emptyset.$$

Similar to the argument in [11, §2.6], this is impossible for $n \gg 0$. The statement is proved.

Corollary 4.3. The image of the map \tilde{i}_ν is contained in $\tilde{H}(\bar{v})$.

Proof. Let $m \in M$ and K_M be an open compact subgroup of \mathcal{I}_M with $m K_M \subset M(\nu)$. By Proposition 4.2, $m K_M \subset G(\bar{v})$. Let \mathcal{X} be an open compact subset of G with $m K_M \subset X$. By [11, Theorem 3.2], there exists $n \in \mathbb{N}$ such that $\mathcal{X} \cap G(\bar{v})$ is stable under the right multiplication by \mathcal{I}. In particular, $m K_M \mathcal{I}_n \subset G(\bar{v})$. Thus $\tilde{i}_\nu(\delta m K_M) \subset \tilde{H}(\bar{v})$.

4.1. In order to prove the other direction, we use the notion of alcove elements in [8] and [9].

Let $w \in \mathcal{U}$. We may regard w as an affine transformation. Let $p : \text{Aff}(V) = V \ltimes GL(V) \to GL(V)$ be the natural projection map. Let $v \in V$. We say that w is a v-alcove element if

- $p(w)(v) = v$;
- $N_v \cap w \mathcal{I} \mathcal{I}_w^{-1} \subset N_v \cap \mathcal{I}$.

Note that the first condition implies that $w M_v w^{-1} = M_v$. We have the following result.

Theorem 4.4. Let $w \in \mathcal{U}$. If w is a v_w-alcove element, then any element in $\mathcal{U} w \mathcal{I}$ is conjugate by \mathcal{I} to an element in $w \mathcal{I} M_v w$.
Proposition 2.3 (1), \(H \sim \) Here any by an element in \(a \) exists a root \(\nu \) in \(a \). By the definition of \(N \) in \(a \), \(\delta \) can be proved in the same way.

Now we start with an element in \(\dot{\mu} \). By Corollary 4.3, the image of \(\bar{\nu} \) and conjugates the given element to an element in \(\dot{\mu} M \) (and that the conjugator can be taken to be small when \(r \) is large).

If \(I[r] \subset I_M I[r + 1] \), then we may absorb the \(I_M \) part into \(i_M \). Otherwise, there exists a root \(a \) outside \(M \) such that \(I[r] = X_{\alpha + \epsilon} I[r + 1] \) and \(X_{\alpha + \epsilon} \subset I[r + 1] \) for any \(\epsilon > 0 \).

We show that each element \(\dot{w} i_M [r] \) with \(i_M \in I_M \) and \(i[r] \in I[r] \) is conjugate by an element in \(I \) to an element in \(\dot{\mu} I_M I[r + 1] \) (and that the conjugator can be taken to be small when \(r \) is large).

Let \(\nu \) be a positive integer in Proposition 2.5. By definition, \([\nu : w] \in M \) and \(\nu' = \pi_M [w] \in M' \).

Let \(i_{\nu', w} \) be a positive integer in Proposition 2.5. By definition, \(H_w \) is spanned by \(\delta_{g, n} \) for \(g \in \dot{\mu} I \) and \(n > i(\nu', w) \ell(w) \). By the proof of Theorem 3.1 (1), for any \(n > i(\nu', w) \ell(w) \) and \(g \in \dot{\mu} I_M \), \(\delta_{g, n} + [H, H] \) is contained in the image of \(i_{\nu', \nu} \).

Let \(g \in \dot{\mu} I \). By Theorem 4.3 there exists \(i \in I \) and \(g' \in \dot{\mu} I_M \) such that \(g = ig' i^{-1} \). Then

\[\delta_{g, n} = \delta_{g' I, n} i^{-1} \equiv \delta_{g, n} \mod [H, H]. \]

Therefore \(H_w \) is contained in the image of \(i_{\nu', \nu} \). By Proposition 3.3 \(H_w \) is also contained in the image of \(i_{\nu'} \).
5. Adjunction with the Jacquet Functor

5.1. Let \(R \) be an algebraically closed field of characteristic \(\neq p \). Set \(H_R = H \otimes_{\mathbb{Z}[\frac{1}{p}]} R, \) \(H_R = H \otimes_{\mathbb{Z}[\frac{1}{p}]} R \) and \(H_R(v) = H(v) \otimes_{\mathbb{Z}[\frac{1}{p}]} R \). Recall that \(\mathcal{R}(G)_R \) is the \(R \)-vector space with basis the isomorphism classes of irreducible smooth admissible representations of \(G \) over \(R \). We consider the trace map

\[
\text{Tr}_R^G : \overline{H}_R \to \mathcal{R}(G)_R^*.
\]

Similarly, for any semistandard Levi subgroup \(M \), we have

\[
\text{Tr}_R^M : \overline{H}_R(M) \to \mathcal{R}(M)_R^*.
\]

Let \(v \in V \) and \(M = M_v \). Let \(r_{v,R} : \mathcal{R}(G)_R \to \mathcal{R}(M)_R \) be the (normalized) Jacquet functor. Note that the Jacquet functor does not only depend on the Levi \(M \), but also depends on the direction \(v \) (or equivalently, the parabolic subgroup \(P_v \) with Levi factor \(M \)). The following result is proved by Bushnell in [2, Corollary 1].

Proposition 5.1. Let \(n \in \mathbb{N} \). Let \(v \in V \) and \(M = M_v \). Then for any \(f \in H_R^0(M,M_n) \), and \(\pi \in \mathcal{R}(G)_R \), we have

\[
\text{Tr}_R^M(f, r_{v,R}(\pi)) = \text{Tr}_R^G(j_{v,n}(f), \pi).
\]

The main result of this section is the following adjunction formula.

Theorem 5.2. Let \(M \) be a semistandard Levi subgroup and \(v \in \mathcal{R}_M \). Suppose that \(M = M_v \). Then for any \(f \in H_R(M; v) \) and \(\pi \in \mathcal{R}(G)_R \), we have

\[
\text{Tr}_R^M(f, r_{v,R}(\pi)) = \text{Tr}_R^G(\tilde{\iota}_v(f), \pi).
\]

5.2. Let \((x, K, u)\) be a standard triple of \(\hat{W}(M) \) such that the Newton point of \(x \) is \(v \). Let \(i \) be the smallest positive integer with \(tv \in X_v(Z) \). Let \(i \in \mathbb{N} \) such that for any \(\alpha \in \Phi_{v,+}, (iv, \alpha) \geq \sharp W_K + (i-1)\ell(x) + 1 \). Let \(l \geq i \). Then \(l = i', j \) for some \(i' \geq i \) and \(0 \leq j < i \). Then for any \(m_1, \ldots, m_l \in I_M \hat{u}\hat{x}I_M \), by [26] (c), we have

\[
m_1m_2 \ldots m_l \in (I_M W_K I_M)(I_M \hat{u}\hat{x}I_M)(I_M t^{i'u}I_M).
\]

Note that for \(g \in I t^{i'u}I, gN_n g^{-1} \subset N_{n+\sharp W_K+(i-1)\ell(x)+1} \). Also \((I W_K I)(I \hat{x}I) \subset \bigcup_{u \in \hat{W}, \ell(u) \leq \sharp W_K+(i-1)\ell(x)} I \hat{u}I \). Thus \((m_1 \ldots m_l)N_n(m_1 \ldots m_l)^{-1} \subset N_{n+1}. Similarly \((m_1 \ldots m_l)^{-1} N_n^{-}(m_1 \ldots m_l) \subset N_{n+1} \)

(a) Let \(l \geq ii \) and \(m_1, \ldots, m_l \in I_M \hat{u}\hat{x}I_M \), then \(m_1m_2 \ldots m_l \) is \(P_v \) strictly positive element.

Moreover, for any \(n, l' \in \mathbb{N} \) and \(m_1, \ldots, m_l' \in I_M \hat{u}\hat{x}I_M \), we have

\[
(m_1 \ldots m_l)N_{n+\sharp W_K+(i-1)\ell(x)}(m_1 \ldots m_l)^{-1} \subset N_n,
\]

\[
(m_1 \ldots m_l)^{-1} N_{n+\sharp W_K+(i-1)\ell(x)}(m_1 \ldots m_l) \subset N_n^{-}.
\]

One deduces that

(b) Let \(n, l' \in \mathbb{N} \), and \(g_1, \ldots, g_v \in N_{n+\sharp W_K+(i-1)\ell(x)}I_M \hat{u}\hat{x}I_M N_{n+\sharp W_K+(i-1)\ell(x)}^{-} \). Then \(g_1 \ldots g_v \in N_nM N_n^{-} \).
represent the element l

We have the following commutative diagram

$suffices to prove that for M

Proof of Theorem 5.2. By [11, Theorem 4.1 & §4.6], it suffices to prove it for locally constant functions on M, supported in $M \hat{u} \hat{v} M$, where (x, K, u) is a standard triple of $\hat{W}(M)$ and the Newton point of x is v.

Let $n > 2W_K + (i - 1)\ell(x)$ such that $\pi \in R_{\mathcal{I}_n}(G)$. It is enough to consider the function $f = \delta_{M_m M_n}$, where $m \in M \hat{u} \hat{v} M$.

Let $n' \gg n$ and $\hat{f} = \frac{\delta_v(m)^{-\frac{1}{2}}}{\mu_N(N_v)^{-\frac{1}{2}} \delta_{n', M_m M_n N_{n'}}}$. By Theorem 3.1 (1), \hat{f} represents the element $\tilde{i}_v(f) \in \hat{H}$. By Casselman’s trick [4, Corollary 4.2], it suffices to prove that for $l \gg 0$, $\text{Tr}_R(f^l, r_v(\pi)) = \text{Tr}_R(\hat{f}^l, \pi)$.

Let $p_M : (M_n m M_n)^l \rightarrow M$ and $p_G : (N_{n'} M_n M_n N_{n'})^l \rightarrow G$ be the multiplication map. Since $l \gg 0$, by [5,2](a) and (b), any element in $\text{Im}(p_M)$ is p_v strictly positive and

$$\text{Im}(p_G) \subset N_n \text{Im}(p_M) N_n^\perp \cong N \times \text{Im}(p_M) \times N^{-}.$$

We have the following commutative diagram

$$
\begin{array}{ccc}
(N_{n'}, M_n m M_n N_{n'})^l & \xrightarrow{p_G} & \text{Im}(p_G) \\
pr \downarrow & & \downarrow pr_1 \\
(M_n m M_n)^l & \xrightarrow{p_M} & \text{Im}(p_M),
\end{array}
$$

where $pr : N \times M \times N^{-} \rightarrow M$ is the projection map and pr_1 is the restriction of pr to $\text{Im}(p_G)$.

Let $m' \in \text{Im}(p_M)$. Then

$$\mu_{G'}(p_G^{-1} pr_1^{-1}(M_n m' M_n)) = \mu_{G'}((pr)^{-1} p_M^{-1}(M_n m' M_n)) = \mu_N(N_{n'})^{-1} \mu_{N^{-} (n')} \mu_{M'}(p_M^{-1}(M_n m' M_n)).$$

By Proposition 2.3 (2), $\delta_{\mathcal{I}_{n'} M_n m' M_n M_{n'}} \equiv \delta_{\mathcal{I}_{n'} M_n m' M_n M_{n'}} \mod [H, H]$ for any $i \in N_n$ and $i' \in N_{n'}$. Thus

$$\hat{f}^l = \frac{\delta_v(m)^{-\frac{1}{2}}}{\mu_N(N_v)^{-\frac{1}{2}} \delta_{n', M_n M_{n'}}} \sum_{m' \in M_n \backslash M / M_n} \mu_{G'}(p_G^{-1} pr_1^{-1}(M_n m' M_n)) \delta_{pr_1^{-1}(M_n m M_n)}$$

$$\equiv \sum_{m' \in M_n \backslash M / M_n} \delta_v(m)^{-\frac{1}{2}} \mu_M(p_M^{-1}(M_n m' M_n)) \delta_{pr_1^{-1}(M_n m M_n)}$$

$$\equiv \sum_{m' \in M_n \backslash M / M_n} \delta_v(m)^{-\frac{1}{2}} \mu_M(p_M^{-1}(M_n m' M_n)) \delta_{\mathcal{I}_{n'} M_n m' M_n M_{n'}} \mod [H, H].$$

On the other hand,

$$f^l = \sum_{m' \in M_n \backslash M / M_n} \frac{\mu_M(p_M^{-1}(M_n m' M_n))}{\mu_M(M_n m' M_n)} \delta_{M_n m' M_n}.$$

By Corollary 2.3, we have

$$j_{v, n}(f^l) \equiv j_{v, n'}(f^l)$$

$$= \sum_{m' \in M_n \backslash M / M_n} \delta_v(m)^{-\frac{1}{2}} \mu_M(p_M^{-1}(M_n m' M_n)) \mu_M(M_n) \mu_G(\mathcal{I}_{n'}) \delta_{\mathcal{I}_{n'} M_n m' M_n M_{n'}} \mod [H, H].$$
Since the elements in $M_\mu m'M_\nu$ are P, strictly positive, we have $\mathcal{I}_n M_\mu m'M_\nu = N_\mu (M_\mu m'M_\nu) N_\nu$ and
\[
\mu_G(\mathcal{I}_n M_\mu m'M_\nu) = \mu_N(N_\mu)\mu_{N-,N_\mu} M_\mu m'M_\nu = \frac{\mu_G(\mathcal{I}_n)}{\mu_M(M_\mu m')} M_\mu m'M_\nu.
\]
So $\tilde{f} \equiv j_{\nu,n}(f^I) \mod [H, H]$ and $\text{Tr}_{\tilde{R}}^M(f^I, r_\nu(\pi)) = \text{Tr}_{\tilde{R}}^G(\tilde{f}^I, \pi).

6. The kernel of the trace map

6.1. Let M be a semistandard Levi subgroup of G. Let M^0 be the subgroup of G generated by the parahoric subgroups of M. Then we have $M/M^0 \cong \Omega_M$. Let $\Psi(M)_R = \text{Hom}_\mathbb{Z}(M/M^0, R^\times)$ be the torus of unramified characters of M.

Let $i_{M,R}: \mathcal{R}(M)_R \to \mathcal{R}(G)_R$ be the induction functor. Then for any $\sigma \in \mathcal{R}(M)_R$ and $f \in \tilde{H}_R$, the map
\[
\Psi(M)_R \to R, \quad \chi \mapsto \text{Tr}_{\tilde{R}}(f, i_{M,R}(\sigma \circ \chi))
\]
is an algebraic function over $\Psi(M)_R$.

6.2. Let $v \in V$ and $M = M_v$. Recall that
\[(a) \quad \hat{H}(M; v) = \bigoplus_{\nu_M \in \mathcal{R}_M; \nu=(\tau_M, v)} \text{ for some } \tau_M \in \Omega_M \hat{H}(M; v),
(b) \quad \hat{H}(\bar{v}) = \bigoplus_{\nu \in \mathcal{R}; \nu=(\tau, \bar{v})} \text{ for some } \tau \in \Omega \hat{H}(\nu).
\]

Note that if $\tau_M, \tau'_M \in \Omega_M$ are mapped under κ to the same element in Ω, then they differ by a central cocharacter of M. By the definition of the map $\pi = (\kappa, \bar{v})$, if both (τ_M, v) and (τ'_M, v) are in the image of π_M and that $\kappa(\tau_M) = \kappa(\tau'_M)$, then $\tau_M = \tau'_M$. In other words, there is a natural bijection between the components appear on the right hand sides of (a) and (b). We define
\[
\tilde{i}_v = \bigoplus_{\nu_M \in \mathcal{R}_M; \nu=(\tau_M, v)} \text{ for some } \tau \in \Omega_M \tilde{i}_v : \hat{H}(M; v) \to \hat{H}(\bar{v}).
\]

Theorem 6.1. Let $v \in V$ and $M = M_v$. Let $f \in \tilde{H}(\bar{v})$. If $\text{Tr}_{\tilde{R}}^G(f, i_{M,R}(\sigma)) = 0$ for all $\sigma \in \mathcal{R}(M)_R$, then $f \in \tilde{i}_v(\ker \text{Tr}_{\tilde{R}}^M)$.

Proof. For $\sigma \in \mathcal{R}(M)_R$ and $\chi \in \Psi(M)_R$, the map
\[
\chi \mapsto \text{Tr}_{\tilde{R}}^G(\tilde{i}_v(f), i_{M,R}(\sigma \circ \chi))
\]
is an algebraic function on χ. We consider its “positive part”, i.e. the linear combination of the terms $\langle \chi, \lambda \rangle$ for dominant coweight λ. It is obvious that if an algebraic function is zero, then its “positive part” is also zero.

By the Mackey formula [10 §5.5], we have
\[
\text{Tr}_{\tilde{R}}^G(\tilde{i}_v(f), i_{M,R}(\sigma \circ \chi)) = \text{Tr}_R^M(f, r_{M,R} \circ i_{M,R}(\sigma \circ \chi))
= \sum_{w \in M W M} \text{Tr}_R^M(f, i_{M,M \setminus w M,R} \circ \bar{w} \circ r_{M \setminus m w^{-1} M,R}^M(\sigma \circ \bar{w})).
\]

As $w \in M W M$ and $M = M_v$, $w(v)$ is dominant if and only if $w = 1$. Therefore the “positive part” of $\text{Tr}_{\tilde{R}}^G(\tilde{i}_v(f), i_{M,R}(\sigma \circ \chi))$ is $\text{Tr}_R^M(f, \sigma \circ \chi)$.

Therefore if $\text{Tr}_{\tilde{R}}^G(f, i_{M,R}(\sigma)) = 0$ for any $\sigma \in \mathcal{R}(M)_R$ and $\chi \in \Psi(M)_R$, then $\text{Tr}_R^M(f, \sigma \circ \chi) = 0$ for any $\sigma \in \mathcal{R}(M)_R$ and $\chi \in \Psi(M)_R$. Hence $f \in \ker \text{Tr}_R^M$. \(\square\)
Corollary 6.2. Let \(v \in V \) and \(M = M_v \). Then
\[
\tilde{\iota}_v^{-1}(\ker \Tr^G_R |_{H_R(\tilde{\nu})}) = \ker \Tr^M_R |_{H_R(M;v)}.
\]

Proof. If \(f \in \ker \Tr^M_R \), then \(\Tr^M_R(f, r_{M,R}(\pi)) = 0 \) for any \(\pi \in \mathfrak{H}(G)_R \). By Theorem 5.2 \(\Tr^G_R(\tilde{\iota}_v(f), \pi) = 0 \). Thus \(\tilde{\iota}_v(f) \in \ker \Tr^G_R \). The other direction follows from Theorem 6.1. \(\square \)

Theorem 6.3. We have \(\ker \Tr^G_R = \bigoplus_{v \in V_+} (\ker \Tr^G_R \cap \tilde{H}_R(v)) \).

Remark 6.4. In general, \(\bigoplus_{v \in \mathfrak{H}} \ker \Tr^G_R \cap \tilde{H}_R(v) \langle \ker \Tr^G_R \rangle \). However, the equality may not hold. For example, if \(\Omega = \{1, \tau\} \) is finite of order 2 and characteristic of \(R \) is also 2, then for any \(\lambda \in X_+(Z)_+ \) and \(f \in H(\lambda) \), we have \(f + \tau f \in \ker \Tr^G_R \).

Proof. The idea is similar to the proof of [23 Theorem 7.1].

Let \(f = \sum_{v \in V_+} a_v f_v \in \ker \Tr^G_R \), where \(f_v \in H_v \) and \(a_v \in R \). Let \(M \) be a minimal standard Levi subgroup such that \(a_v \neq 0 \) for some \(v \in V_+ \) with \(M = M_v \). Then for \(\sigma \in R(M) \) and \(\chi \in \Psi(M)_R \), we have
\[
\text{tr}_{M,R}(f, i_{M,R}(\sigma \circ \chi)) = \sum_{v \in V_+, M = M_v} a_v \text{tr}_{R}(f_v, i_{M,R}(\sigma \circ \chi)) + \sum_{v \in V_+, M \neq M_v} a_v \text{tr}_{R}(f_v, i_{M,R}(\sigma \circ \chi)).
\]

This is an algebraic function on \(\Psi(M)_R \). Note that in (a), the first part is more regular in \(\Psi(M)_R \) than the second part. Therefore we have
\[
\sum_{v \in V_+, M = M_v} a_v \text{tr}_{R}(f_v, i_{M,R}(\sigma \circ \chi)) = 0
\]
for all \(\sigma \in R(M) \) and \(\chi \in \Psi(M)_R \). As an algebraic function on \(\Psi(M)_R \), the “leading term” of \(\text{tr}_{R}(f_v, i_{M,R}(\sigma \circ \chi)) \) is a multiple of \(\langle v, \chi \rangle \). Hence \(a_v \text{tr}_{R}(f_v, i_{M,R}(\sigma \circ \chi)) = 0 \) for every \(v \in V_+ \) with \(M = M_v \). By Theorem 6.1
\[
a_v f_v \in \tilde{\iota}_v(\ker \Tr^M_R |_{R(M;v)}). \quad \square
\]

Finally, we have

Theorem 6.5. Assume that \(\text{char}(F) = 0 \). Let \(M \) be a semistandard Levi subgroup and \(\nu \in \mathfrak{H}_M \) with \(M = M_\nu \). Then the map
\[
\tilde{\iota}_\nu : \tilde{H}(M;\nu) \simarrow \tilde{H}(\tilde{\nu})
\]
is an isomorphism.

Proof. Let \(f \in \ker \tilde{\iota}_\nu \). Set \(\tilde{f} = f \otimes 1 \in \tilde{H}_C(M;\tilde{\nu}) \). By Theorem 6.1 (2), we have \(\tilde{f} \in \ker \Tr^M_C \). By the spectral density theorem [14 Theorem 0], \(\tilde{f} = 0 \in \tilde{H}(M)_C \). By [17], \(\tilde{H}(M) \) is free. Hence \(f = 0 \in H(M) \). \(\square \)

References

[1] F. Bruhat and J. Tits, Groupes réductifs sur un corps local I, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251.
[2] C. J. Bushnell, Representations of reductive p-adic groups: localization of Hecke algebras and applications, J. London Math. Soc. (2) 63 (2001), 364–386.
[3] C. J. Bushnell and P.C. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), 582–634.
[4] W. Casselman, Characters and Jacquet modules Math. Ann. 230 (1977), 101–105.
[5] D. Ciubotaru and X. He, Cocenters and representations of affine Hecke algebra, arXiv:1409.0902, to appear in JEMS.
[6] D. Ciubotaru and X. He, Cocenters of p-adic groups, III: Elliptic cocenter and rigid cocenter, in preparation.
[7] J.-F. Dat, On the K_0 of a p-adic group, Invent. Math. 140 (2000), no. 1, 171–226.
[8] U. Görtz, T. Haines, R. Kottwitz, D. Reuman, Affine Deligne-Lusztig varieties in affine flag varieties, Compos. Math. 146 (2010), 1339–1382.
[9] U. Görtz, X. He and S. Nie, P-alcoaves and nonemptiness of affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 48 (2015), 647–665.
[10] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635.
[11] X. He, Cocenters of p-adic groups, I: Newton decomposition, 1610.04791.
[12] X. He and S. Nie, Minimal length elements of extended affine Weyl group, Compos. Math. 150 (2014), 1903–1927.
[13] X. He and S. Nie, P-alcoaves, parabolic subalgebras and cocenters of affine Hecke algebras, Selecta. Math. 21 (2015), 995–1019.
[14] D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math. 47 (1986), 1–36.
[15] A. Moy, G. Prasad, Unrefined minimal K-types for p-adic groups Invent. Math. 116 (1994), 393–408.
[16] M.-F. Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec $l \neq p$, Progress in Math. 137, Birkhäuser, 1996.
[17] M.-F. Vignéras, Intégrales orbitales modulo l pour un groupe réductif p-adique, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), Amer. Math. Soc., Providence, RI, 1999, 241, 327–338.
[18] M.-F. Vignéras, The pro-p-Iwahori-Hecke algebra of a reductive p-adic group, II, Compos. Math. 152 (2016), no. 4, 693–753.

Department of Mathematics, University of Maryland, College Park, MD 20742 and Institute for Advanced Study, Princeton, NJ 08540
E-mail address: xuhuahe@math.umd.edu