THE FUNDAMENTAL THEOREMS FOR CURVES AND SURFACES IN 3D HEISENBERG GROUP

HUNG-LIN CHIU AND SIN-HUA LAI

Abstract. We study the local equivalence problems of curves and surfaces in 3-dimensional Heisenberg group via Cartan’s method of moving frames and Lie groups, and find a complete set of invariants for curves and surfaces. For surfaces, in terms of these invariants and their suitable derivatives, we also give a Gaussian curvature formula of the metric induced from the adapted metric on H^1, and hence form a new formula for the Euler number of a closed surface.

1. Introduction

In 3-dimensional Euclidean space, it is well known that any unit-speed curve is completely determined by its curvature and torsion. This means that given any two function $k(s)$ and $\tau(s)$ with $k(s) > 0$ everywhere, then there exists a unit-speed curve whose curvature and torsion are k and τ, respectively. In addition, such a unit-speed curve is unique up to a Euclidean rigid motion. This is the fundamental theorem of curves. On the other hand, the fundamental theorem of surfaces says that, instead of the scalar-invariants, the first and second fundamental forms are the complete invariants for surfaces. In this paper we will show that there are the analogous fundamental theorems of curves and surfaces in 3-dimensional Heisenberg group H^1.

The Heisenberg group H^1 is the space \mathbb{R}^3 associated with the group multiplication

\[(x_1, y_1, z_1) \circ (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + y_1 x_2 - x_1 y_2).\]

It is a 3-dimensional Lie group. The space of all left invariant vector fields is spanned by the following three vector fields:

\[\hat{e}_1 = \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}, \quad \hat{e}_2 = \frac{\partial}{\partial y} - x \frac{\partial}{\partial z} \quad \text{and} \quad T = \frac{\partial}{\partial z}.\]

The standard contact bundle on H^1 is the subbundle ξ_0 of the tangent bundle TH^1 which is spanned by e_1 and e_2. It is also defined to be the kernel of the contact form

\[\theta_0 = dz + xdy - ydx.\]
The CR structure on H^1 is the endomorphism $J_0 : \xi_0 \to \xi_0$ defined by
\begin{equation}
J_0(\hat{e}_1) = \hat{e}_2 \quad \text{and} \quad J_0(\hat{e}_2) = -\hat{e}_1.
\end{equation}

We sometimes view the Heisenberg group H^1 as a pseudohermitian manifold when we consider it together with the standard pseudo-hermitian structure (J_0, θ_0). For the details about pseudo-hermitian structure, we refer the readers to [8], [9], or [11]. Let $P_{SH}(1)$ be the group of Heisenberg rigid motions, that is, the group of all pseudo-hermitian transformations on H^1. Recall that a pseudo-hermitian transformation on H^1 is a diffeomorphism on H^1 which preserves the standard pseudo-hermitian structure (J_0, θ_0). In Subsection 3.1, we give an explicit expression for a pseudo-hermitian transformation.

Let $\gamma : (a, b) \to H^1$ be a parametrized curve. For each $t \in (a, b)$, the velocity $\gamma'(t)$ of $\gamma(t)$ has the natural decomposition
\begin{equation}
\gamma'(t) = \gamma'_{\xi_0}(t) + \gamma'_T(t),
\end{equation}
where $\gamma'_{\xi_0}(t)$ and $\gamma'_T(t)$ are, respectively, the orthogonal projection of $\gamma'(t)$ on ξ_0 along T and the orthogonal projection of $\gamma'(t)$ on T along ξ_0.

Definition 1.1. A **horizontally regular curve** is a parametrized curve $\gamma(t)$ such that $\gamma'_{\xi_0}(t) \neq 0$ for each $t \in (a, b)$.

Proposition 4.1 shows that a horizontally regular curve can always be reparametrized by a parameter s such that $|\gamma'_{\xi_0}(s)| = 1$ for every s. We call such a parameter s the horizontal arc-length, which is unique up to a constant.

For a horizontally regular curve $\gamma(s)$ parametrized by the horizontal arc-length s, we define the p-curvature $k(s)$ and T-variation $\tau(s)$ as
\begin{align}
k(s) &= \left< \frac{dX(s)}{ds}, Y(s) \right> \\
\tau(s) &= \left< \gamma'(s), T \right>,
\end{align}
where $X(s) = \gamma'_{\xi_0}(s)$ and $Y(s) = J_0X(s)$. We have the following fundamental theorem for curves in H^1 which says that horizontally regular curves are completely prescribed by the p-curvature and T-variation as well.

Theorem 1.2. Let $\gamma_1(s)$ and $\gamma_2(s)$ be two horizontally regular curves parametrized by the horizontal arc-length. Suppose that they have the same p-curvature $k(s)$ and T-variation $\tau(s)$. Then there exists $g \in P_{SH}(1)$ such that
\begin{equation}
\gamma_2(s) = g \circ \gamma_1(s), \text{ for all } s.
\end{equation}
In addition, given smooth functions $k(s), \tau(s)$, there exists a horizontally regular curve $\gamma(s)$, parametrized by the horizontal arc-length, having $k(s)$ and $\tau(s)$ as its p-curvature and T-variation, respectively.

We say $\gamma(t)$ is a horizontal curve if $\gamma'(t) = \gamma''_{30}(t)$ for each $t \in (a, b)$. By the previous definition $\gamma(s)$ is horizontal if and only if the T-variation $\tau(s) = 0$, we have immediately the following corollary.

Corollary 1.3. Let $\gamma_1(s)$ and $\gamma_2(s)$ be two horizontal unit-speed curves in H^1 with the same p-curvature $k(s)$. Then there exists $g \in \text{PSH}(1)$ such that

$$\gamma_2(s) = g \circ \gamma_1(s), \text{ for all } s.$$

In addition, given a smooth function $k(s)$, there exists a horizontal unit-speed curve $\gamma(s)$ having $k(s)$ as its p-curvature.

In Subsection 4.2, we compute the explicit formulae for the p-curvature and T-variation and get the following theorem.

Theorem 1.4. Let $\gamma(t) = (x(t), y(t), z(t)) \in H^1$ be a horizontally regular curve, not necessarily parametrized by horizontal arc-length. Then the p-curvature $k(t)$ and T-variation $\tau(t)$ are having the forms

$$k(t) = \frac{x' y'' - x'' y'}{((x')^2 + (y')^2)^{3/2}}(t)$$

$$\tau(t) = \frac{xy' - x'y' + z'}{((x')^2 + (y')^2)^{1/2}}(t).$$

As an application, we proceed to compute the p-curvature and T-variation of the geodesics of H^1 in Subsection 4.2 and obtain a characteristic description of the geodesics in H^1.

Theorem 1.5. The geodesics of H^1 are just those horizontally regular curves with vanishing T-variation and constant p-curvature, that is, $\tau = 0$ and $k = c$ for some constant $c \in \mathbb{R}$.

Observing the formula (1.9), which says that the p-curvature of $\gamma(t) = (x(t), y(t), z(t))$ is just the signed curvature of the plane curve $\alpha(t) = \pi \circ \gamma(t) = (x(t), y(t))$, where π is the projection on xy plane along the z-axis. On the other hand, it is well known that the signed curvature completely describes the plane curves, therefore we have immediately the following corollary:

Corollary 1.6. If two horizontally regular curves in H^1 differ by a Heisenberg rigid motion then their projections on xy-plane differ by
a Euclidean rigid motion. In particular, two horizontal curves in H^1 differ by a Heisenberg rigid motion if and only if their projections on xy-plane are congruent in the Euclidean plane.

For a surface $\Sigma \subset H^1$ which is embedded in H^1, we can also say something about fundamental theorem. First of all, we recall that a singular point $p \in \Sigma$ is a point such that, at p, the tangent plane $T_p\Sigma$ coincides with the contact plane $\xi_0(p)$. Therefore outside the singular set (the non-singular part of Σ), it is integrated to be a one-dimensional foliation for the intersection of $T\Sigma$ and ξ_0, which is called the characteristic foliation. Now we define the normal coordinates.

Definition 1.7. Let $F : U \to H^1$ be a parametrized surface with coordinates (u, v) on $U \subset \mathbb{R}^2$. We say F is normal if

(1) $F(U)$ is a surface without singular points;
(2) $F_u = \frac{\partial F}{\partial u}$ defines the characteristic foliation on $F(U)$;
(3) $|F_u| = 1$ for each point $(u, v) \in U$, where the norm is respect to the levi-metric on H^1.

We call (u, v) a normal coordinates.

It is easy to see that every non-singular point $p \in \Sigma$, there exists a normal coordinates around p. For a normal parametrized surface $F : U \to H^1$, let $X = F_u$, $Y = J_0X$ and $T = \frac{\partial}{\partial z}$, we define functions a, b, c, l and m on U by

\[
\begin{align*}
 a &= <F_v, X> \quad b = <F_v, Y> \quad c = <F_v, T> \\
 l &= <F_{uu}, Y> \quad m = <F_{uv}, Y>.
\end{align*}
\]

They satisfy the integrability conditions

\[
\begin{align*}
 a_u &= bl, \quad b_u = -al + m, \quad c_u = 2b \\
 l_u - m_u &= 0.
\end{align*}
\]

The following theorem says that these functions are complete differential invariants for the map F. We call a, b and c the coefficients of the first kind of F, and l, m the second kind.

Theorem 1.8. Let $U \subset \mathbb{R}^2$ be a simply connected open set. Suppose that a, b, c, l and m are functions on U which satisfy the integrability condition (1.11). Then there exists a normal parametrized surface $F : U \to H^1$ having a, b, c and l, m as the coefficients of the first kind and the second kind, respectively. In addition, if $\tilde{F} : U \to H^1$ is another such a normal parametrized surface, then it differs from F by a Heisenberg rigid motion, that is, there exists a motion $g \in PSH(1)$ such that $\tilde{F}(u, v) = g \circ F(u, v)$ for all $(u, v) \in U$.

Note that, from (5.30), we see that \(l \), up to a sign, is independent of the choice of the normal coordinates, hence it is a differential invariant of the surface \(F(U) \). Actually \(l \) is the \(p \)-mean curvature. Therefore \(l = 0 \) means that \(F(U) \) is a \(p \)-minimal surface. Such a parametrization \(F : U \to H^1 \) is called a normal \(p \)-minimal parametrized surface. From the integrability condition (1.11), we see that the second kind of coefficient \(m \) is entirely determined by the first kind as

(1.12) \[m = b_u. \]

The integrability conditions (1.11) hence become to be

(1.13) \[a_u = 0, \quad b_{uu} = 0, \quad c_u = 2b, \]

and thus we obtain the following corollary of Theorem 1.8.

Theorem 1.9. Let \(U \subset \mathbb{R}^2 \) be a simply connected open set. Suppose that \(a, b \) and \(c \) are three functions on \(U \) which satisfy the integrability condition (1.13). Then there exists a normal \(p \)-minimal parametrized surface \(F : U \to H^1 \) having \(a, b \) and \(c \) as the first kind of coefficients of \(F \), and the second kind of coefficient is determined by \(b \) as (1.12). In addition, if \(\tilde{F} : U \to H^1 \) is another such a normal \(p \)-minimal parametrized surface, then it differs from \(F \) by a Heisenberg rigid motion, that is, there exists a motion \(g \in PSH(1) \) such that \(\tilde{F}(u, v) = g \circ F(u, v) \) for all \((u, v) \in U \).

Besides the \(p \)-mean curvature \(l \), in Section 5, we also show that both \(\alpha = \frac{b}{c} \), up to a sign (which is called the \(p \)-variation), and the adapted metric \(g_{\theta_0} \) restricted to the surface are also invariants of the surface \(F(U) \). Actually \(\alpha \) is the function such that the vector field \(\alpha e_2 + T \) is tangent to the surface, where \(e_2 = J_0 e_1 \) and \(e_1 \) is a unit vector field tangent to the characteristic foliation. Let \(e_\Sigma \) be another unit vector field tangent to the surface which is defined by

\[e_\Sigma = \frac{\alpha e_2 + T}{\sqrt{1 + \alpha^2}}. \]

We have that these three invariants satisfy the integrability condition:

(1.14) \[(1 + \alpha^2)^{\frac{3}{2}}(e_\Sigma l) = (1 + \alpha^2)(e_1 e_1 \alpha) - \alpha(e_1 \alpha)^2 + 4\alpha(1 + \alpha^2)(e_1 \alpha) + \alpha(1 + \alpha^2)^2 K + \alpha l(1 + \alpha^2)^{\frac{3}{2}}(e_\Sigma \alpha) + \alpha(1 + \alpha^2)l^2, \]

where \(K \) is the Gaussian curvature with respect to \(g_{\theta_0}|\Sigma \).

The following theorem says that the Riemannian metric induced from the adapted metric together with the \(p \)-mean curvature \(l \) and
p-variation α is a complete system of invariants for a surface without singular point.

Theorem 1.10 (The fundamental theorem for surfaces in H^1). Let (Σ, g) be a Riemannian 2-manifold with Gaussian curvature K, and let α', l' be two real-valued functions on Σ. Assume that K, together with α' and l', satisfy the integrability condition (1.14), with α, l replaced by α', l', respectively. Then for every point $x \in \Sigma$ there exists an open neighborhood U containing x, and an embedding $f : U \to H^1$ such that $g = f^*(g_{\theta_0}), \alpha' = f^*\alpha$ and $l' = f^*l$, where α, l are the induced p-variation and p-mean curvature on $f(U)$. Moreover, f is unique up to a Heisenberg rigid motion.

In the proof of Theorem 1.10, we also get

Theorem 1.11. Let $\Sigma \subset H^1$ be an oriented surface. Then the Gaussian curvature K of the restricted metric $g_{\theta_0}|_\Sigma$ can be expressed by means of l, α and the derivatives of α.

\begin{equation}
K = \frac{(e_1 \alpha)^2 + 2(1 + \alpha^2)(e_1 \alpha) + 4\alpha^2(1 + \alpha^2) - l(e_\Sigma \alpha)(1 + \alpha^2)^{\frac{3}{2}}}{(1 + \alpha^2)^2}.
\end{equation}

By the Gauss-Bonnet formula, we immediately have the following corollary.

Theorem 1.12. Let $\Sigma \subset H^1$ be a closed, oriented surface. Then we have

\begin{equation}
2\pi \chi(\Sigma) = \int_{\Sigma} \frac{(e_1 \alpha)^2 + 2(1 + \alpha^2)(e_1 \alpha) + 4\alpha^2(1 + \alpha^2) - l(e_\Sigma \alpha)(1 + \alpha^2)^{\frac{3}{2}}}{(1 + \alpha^2)^2} d\sigma
= \int_{\Sigma} \frac{(e_1 \alpha)^2 + 2(1 + \alpha^2)(e_1 \alpha) + 4\alpha^2(1 + \alpha^2) - l(e_\Sigma \alpha)(1 + \alpha^2)^{\frac{3}{2}}}{(1 + \alpha^2)^{\frac{3}{2}}} \omega^1 \wedge \theta_0,
\end{equation}

where $d\sigma$ is the area form with respect to the induced metric from the adapted metric g_{θ_0}, and $\chi(\Sigma)$ is the Euler number of Σ.

Substituting the Gaussian curvature formula (1.15) into (1.14), we see that the integrability condition (1.14) is equivalent to the Gaussian equation (1.15) together with the following Codazzi-Like equation:

\begin{equation}
e_{\Sigma} l = \frac{e_1 e_1 \alpha + 6\alpha(e_1 \alpha) + 4\alpha^3 + \alpha l^2}{(1 + \alpha^2)^{\frac{3}{2}}}.
\end{equation}

Remark 1.13. There is also an integrability condition for a surface expressed as a graph of a function u, which is called a Codazzi-Like equation and shown up in [5].
We now give a brief outline of this paper. In section 2, we state the two propositions about uniqueness and existence of mappings of a smooth manifold into a Lie group G which underlie the theory. In section 3, we obtain the representation of $PSH(1)$ which is the group of pseudohermitian transformations on H^1. Also we discuss how the matrix Lie group $PSH(1)$ interpret as the set of ”frames” on the homogeneous space $H^1 = PSH(1)/SO(2)$. Then from the (left-invariant) Maurer-Cartan form, we immediately get the moving frame formula. In section 4, we compute the Darboux derivative of a lift of a horizontally regular curve in H^1 and then to get the fundamental theorem for curves in H^1. Moreover, we compute the p-curvature and the T-variation of a horizontally regular curve and geodesics in H^1. In section 5, we compute the Darboux derivative of the lift of a normal parametrized surface. Then we get complete differential invariants for a normal parametrized surface. In section 6, let Σ be an oriented surface and $f: \Sigma \to H^1$ be an embedding. We compute the Darboux derivative of the lifting of f to get the fundamental theorem for surfaces in H^1. In this section, we also compute the Gaussian formula (1.15) and the integrability condition (1.14). Finally, in section 7, we give another proof for Theorem 1.2.

Acknowledgment. The first author’s research was supported in part by NCTS and in part by NSC 100-2628-M-008-001-MY4. He would like to thank Prof. Jih-Hsin Cheng for his teaching and talking on this topic, Prof. Paul Yang for his encouragement and advising in the research for the last few years. The second author would like to express her thanks to Prof. Shu-Cheng Chang for his teaching, constant encouragement and supports.

2. Calculus on Lie group

Let M be a connected smooth manifold, and let $G \subset GL(n, R)$ be a matrix Lie group with Lie algebra \mathfrak{g} and the (left-invariant) Maurer-Cartan form ω. In this section, we shall give, without proofs, two simple and essential local results concerning smooth maps from a manifold M into a Lie group G. These two results play a fundamental role in whole of the paper. For the details, we refer the readers to [6],[7],[10] and [4]. The first of these is

Theorem 2.1. Given two maps $f, \tilde{f}: M \to G$, then $\tilde{f}^* \omega = f^* \omega$ if and only if $\tilde{f} = g \cdot f$ for some $g \in G$.

The Lie algebra one-form $f^* \omega$ is usually called the **Darboux derivative** of the map $f: M \to G$. The second one is a well-known existence theorem:
Theorem 2.2. Suppose that \(\phi \) is a \(g \)-valued one form on a simply connected manifold \(M \). Then there exists a map \(f : M \to G \) with \(f^*\omega = \phi \) if and only if \(d\phi = -\phi \wedge \phi \).

Moreover, the resulting map \(f \) is unique up to a group action.

The proof of Theorem 2.2 is strongly dependent on the Frobenius theorem.

3. The group of pseudohermitian transformations on \(H^1 \)

3.1. The pseudohermitian transformations on \(H^1 \). A pseudohermitian transformation on \(H^1 \) is a diffeomorphism \(\Phi \) on \(H^1 \) which preserves both the CR structure \(J_0 \) and the contact form \(\theta_0 \), that is, it satisfies

\[
\Phi^* J = J_0 \Phi^* \quad \text{on } \xi_0 \quad \text{and} \quad \Phi^* \theta = \theta.
\]

Let \(L_p \) be the left translation by \(p \) on the Heisenberg group \(H^1 \). It is easy to see that \(L_p \) is a pseudohermitian transformation. We give another pseudohermitian transformation \(\Phi_R : H^1 \to H^1 \) which is defined by

\[
\Phi_R \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} R & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix},
\]

where \(R \in SO(2) \) is a \(2 \times 2 \) orthogonal matrix.

Let \(PSH(1) \) be the group of pseudohermitian transformations on \(H^1 \). The following theorem specifies that the group \(PSH(1) \) consists exactly of all the transformations of the forms \(\Phi_{p,R} = L_p \circ \Phi_R \), that is, a transformation \(\Phi_R \) followed by a left translation \(L_p \). We have

\[
\Phi_{p,R} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax + by + p_1 \\ cx + dy + p_2 \\ (ap_2 - cp_1)x + (bp_2 - dp_1)y + z + p_3 \end{pmatrix},
\]

where \(p = (p_1, p_2, p_3)^t \in H^1 \) and \(R = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SO(2) \).

Theorem 3.1. Let \(\phi : H^1 \to H^1 \) be a pseudohermitian transformation. Then \(\Phi = L_p \circ \Phi_R \) for some \(R \in SO(2) \) and \(p \in H^1 \).

Proof. Let \(\Phi : H^1 \to H^1 \) be a pseudohermitian transformation such that \(\Phi(0) = p \). Then the composition \(L_{p^{-1}} \circ \Phi \) is a transformation fixing the origin. Therefore, we reduce the proof of Theorem 3.1 to prove that any pseudohermitian transformation \(\Phi \) with \(\Phi(0) = 0 \) has the form \(\Phi = \Phi_R \) for some \(R \in SO(2) \). This is equivalent to prove the following Lemma:
Lemma 3.2. Let Φ be a pseudohermitian transformation on H^1 such that $\Phi(0) = 0$. Then, for any $p \in H^1$, the matrix representation of $\Phi_*(p)$ with respect to $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ is

$$
\Phi_*(p) = \begin{pmatrix}
\cos \alpha(p) & -\sin \alpha(p) & 0 \\
\sin \alpha(p) & \cos \alpha(p) & 0 \\
0 & 0 & 1
\end{pmatrix} (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})
$$

for some real constant $\alpha(p)$ which is independent of p. That is Φ_* is a constant matrix.

Now we prove Lemma 3.2. First we compute the matrix representation of $\Phi_*(p)$ with respect to $(\hat{e}_1, \hat{e}_2, T = \frac{\partial}{\partial z})$. Since, for $i = 1, 2$,

$$
\theta_0(\Phi_* \hat{e}_i) = (\Phi^* \theta_0)(\hat{e}_i) = \theta_0(\hat{e}_i) = 0,
$$

we see that ξ_0 is invariant under Φ_*. Furthermore, let h be the Levi metric on ξ_0 defined by $h(X, Y) = d\theta_0(X, J_0Y)$. We have

$$
\Phi^* h(X, Y) = h(\Phi_* X, \Phi_* Y) = d\theta_0(\Phi_* X, J_0 \Phi_* Y)
$$

$$
= d\theta_0(\Phi_* X, \Phi_* J_0 Y) = \Phi^* (d\theta_0)(X, J_0 Y) = d(\Phi^* \theta_0)(X, J_0 Y)
$$

$$
= d\theta_0(X, J_0 Y) = h(X, Y).
$$

That is $h(\Phi_* X, \Phi_* Y) = h(X, Y)$ for every $X, Y \in \xi_0 = \ker \theta_0$. Thus Φ_* is orthogonal on ξ_0. On the other hand,

$$
\theta_0(\Phi_* T) = \theta_0 \left(\Phi_* \frac{\partial}{\partial z} \right) = (\Phi^* \theta_0) \left(\frac{\partial}{\partial z} \right) = \theta_0 \left(\frac{\partial}{\partial z} \right) = 1,
$$

and, for all $X \in \xi_0$,

$$
d\theta_0(X, \Phi_* T) = d\theta_0(\Phi_* \Phi_*^{-1} X, \Phi_* T) = (\Phi^* d\theta_0)(\Phi_*^{-1} X, T)
$$

$$
= (d\Phi^* \theta_0)(\Phi_*^{-1} X, T) = d\theta_0(\Phi_*^{-1} X, T) = 0.
$$

By the uniqueness of the characteristic vector field, we have $\Phi_* T = T$. From the above argument, we conclude that

$$
\Phi_*(p) = \begin{pmatrix}
\cos \alpha(p) & -\sin \alpha(p) & 0 \\
\sin \alpha(p) & \cos \alpha(p) & 0 \\
0 & 0 & 1
\end{pmatrix} (\hat{e}_1, \hat{e}_2, \frac{\partial}{\partial z})
$$

for some real valued function α on H^1.

Next, let $\Phi = (\Phi^1, \Phi^2, \Phi^3)$, we would like to change the matrix representation of $\Phi_*(p)$ from $(\hat{e}_1, \hat{e}_2, \frac{\partial}{\partial z})$ to $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$. Let $p = (p_1, p_2, p_3)$,

$$
\hat{e}_1(p) = \frac{\partial}{\partial x} + p_2 \frac{\partial}{\partial z} \text{ and } \hat{e}_2(p) = \frac{\partial}{\partial y} - p_1 \frac{\partial}{\partial z}.
$$

Then
\[\Phi_*(p) \left(\frac{\partial}{\partial x} \right) = \Phi_*(p) \left[\hat{e}_1(p) - p_2 \frac{\partial}{\partial z} \right] = \Phi_*(p) \left[\hat{e}_1(p) \right] - p_2 \frac{\partial}{\partial z} \]

\[= \cos \alpha(p) \hat{e}_1(\Phi(p)) + \sin \alpha(p) \hat{e}_2(\Phi(p)) - p_2 \frac{\partial}{\partial z} \]

\[= \cos \alpha(p) \frac{\partial}{\partial x} + \sin \alpha(p) \frac{\partial}{\partial y} \]

\[+ \left[\cos \alpha(p) \Phi^2(p) - \sin \alpha(p) \Phi^1(p) - p_2 \right] \frac{\partial}{\partial z}, \]

and

\[\Phi_*(p) \left(\frac{\partial}{\partial y} \right) = \Phi_*(p) \left[\hat{e}_2(p) + p_1 \frac{\partial}{\partial z} \right] = \Phi_*(p) \left[\hat{e}_2(p) \right] + p_1 \frac{\partial}{\partial z} \]

\[= -\sin \alpha(p) \hat{e}_1(\Phi(p)) + \cos \alpha(p) \hat{e}_2(\Phi(p)) + p_1 \frac{\partial}{\partial z} \]

\[= -\sin \alpha(p) \frac{\partial}{\partial x} + \cos \alpha(p) \frac{\partial}{\partial y} \]

\[+ \left[-\sin \alpha(p) \Phi^2(p) - \cos \alpha(p) \Phi^1(p) + p_1 \right] \frac{\partial}{\partial z}. \]

Thus,

\[\Phi_*(p) = \begin{pmatrix} \cos \alpha(p) & -\sin \alpha(p) & 0 \\ \sin \alpha(p) & \cos \alpha(p) & 0 \\ \Phi_2^3(p) & \Phi_2^3(p) & 1 \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}, \]

where

\[\Phi_2^3(p) = \cos \alpha(p) \Phi^2(p) - \sin \alpha(p) \Phi^1(p) - p_2, \]

\[\Phi_3^3(p) = -\sin \alpha(p) \Phi^2(p) - \cos \alpha(p) \Phi^1(p) + p_1. \]

Observing first that, from (3.5), \(\Phi_2^1 = \Phi_3^2 = 0 \), so both \(\Phi_1 \) and \(\Phi_2 \) are function depending only on \(x \) and \(y \), hence so is \(\alpha \). Secondly, since \(\Phi_{xy} = \Phi_{yx} = \Phi_{yx} = \Phi_{yx} \), we have, from (3.5),

\[\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \alpha_x \\ \alpha_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \]

which implies that \(\alpha_x = \alpha_y = 0 \). Thus \(\alpha \) is a constant on \(H^1 \), say \(\alpha = \alpha_0 \). From (3.5) again and note that \(\Phi(0) = 0 \), we have that

\[\Phi^1 = x \cos \alpha_0 - y \sin \alpha_0 \]

\[\Phi^2 = x \sin \alpha_0 + y \cos \alpha_0, \]
which implies that $\Phi^3_x = \Phi^3_y = 0$. Thus

$$\Phi_x(p) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{\varphi}{\varphi_0 \varphi_1 \varphi_2}.$$

This completes the proof. \[\square\]

3.2. Representation of $\text{PSH}(1)$. We can represent $\Phi_{p,R}$ and points of H^1, respectively, as

$$\Phi_{p,R} \leftrightarrow M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ p_1 & a & b & 0 \\ p_2 & c & d & 0 \\ p_3 & ap_2 - cp_1 & bp_2 - dp_1 & 1 \end{pmatrix},$$

and

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \leftrightarrow X = \begin{pmatrix} 1 \\ x \\ y \\ z \end{pmatrix}.$$

Then

$$MX = \begin{pmatrix} 1 \\ \Phi_{p,R} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix}.$$

That is, $\text{PSH}(1)$ may be represented as a matrix group by writing

$$\text{PSH}(1) = \left\{ M \in \text{GL}(4, R) \bigg| M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ p_1 & a & b & 0 \\ p_2 & c & d & 0 \\ p_3 & ap_2 - cp_1 & bp_2 - dp_1 & 1 \end{pmatrix} \right\}.$$

Let $\text{psh}(1)$ be the Lie algebra of $\text{PSH}(1)$. Then it is easy to see that the element of $\text{psh}(1)$ is look as

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ x_1 & 0 & -x_1^2 & 0 \\ x_2 & x_1^2 & 0 & 0 \\ x_3 & x_3 & -x_1 & 0 \end{pmatrix}. $$
Therefore the Maurer-Cartan form of $PSH(1)$ is look like

$$\omega = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \omega^1 & 0 & -\omega^2 & 0 \\ \omega^2 & \omega^1 & 0 & 0 \\ \omega^3 & \omega^2 & -\omega^1 & 0 \end{pmatrix},$$

here ω_i^2 and ω^j, $j = 1,2,3$ are 1-forms on $PSH(1)$.

3.3. The oriented frames on H^1. An oriented frame on H^1 is a frame of the form

$$(p; X, Y, T),$$

where $p \in H^1$, $Y = J_0X$ and $X \in \xi_0(p)$ are unit vectors with respect to the standard Levi metric on H^1. We can also identify $PSH(1)$ with the space of all oriented frames on H^1 as following:

$$(3.14) \quad M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ p_1 & a & b & 0 \\ p_2 & c & d & 0 \\ p_3 & ap_2 - cp_1 & bp_2 - dp_1 & 1 \end{pmatrix} \leftrightarrow (p; X, Y, T),$$

where

$$X = a \frac{\partial}{\partial x} + c \frac{\partial}{\partial y} + (ap_2 - cp_1) \frac{\partial}{\partial t}$$

$$Y = b \frac{\partial}{\partial x} + d \frac{\partial}{\partial y} + (bp_2 - dp_1) \frac{\partial}{\partial t}$$

$p = (p_1, p_2, p_3)^t$.

Actually, we have that $X = a\dot{e}_1(p) + c\dot{e}_2(p)$ and $Y = b\dot{e}_1(p) + d\dot{e}_2(p)$, hence M is the unique 4×4 matrix such that

$$(3.16) \quad (p; X, Y, T) = (0; \dot{e}_1, \dot{e}_2, T)M.$$

3.4. Moving frame formula. Since $PSH(1)$ is a matrix Lie group, the Maurer-Cartan form is to be $\omega = M^{-1} dM$ or $dM = M \omega$. Thus we immediately get that

$$(3.17) \quad (dp; dX, dY, dT) = (p; X, Y, T) \begin{pmatrix} 0 & 0 & 0 & 0 \\ \omega^1 & 0 & -\omega^2 & 0 \\ \omega^2 & \omega^1 & 0 & 0 \\ \omega^3 & \omega^2 & -\omega^1 & 0 \end{pmatrix},$$
that is, we have the following moving frame formula:

\[
\begin{align*}
 dp &= X\omega^1 + Y\omega^2 + T\omega^3 \\
dX &= Y\omega_1^2 + T\omega^2 \\
dY &= -X\omega_1^2 - T\omega^1 \\
dT &= 0.
\end{align*}
\] (3.18)

4. DIFFERENTIAL INVARIANTS OF HORIZONTALLY REGULAR CURVES IN H^1

Proposition 4.1. We can reparametrize a horizontally regular curve $\gamma(t)$ by a horizontal arc-length s

Proof. Define $s(t) = \int_0^t |\gamma'_{\xi_0}(u)| du$. Then any horizontal arc-length differs s by a constant. By the fundamental theorem of calculus, we have \(\frac{ds}{dt} = |\gamma'_{\xi_0}(t)| \). So

\[
\frac{d\gamma}{ds} = \frac{d\gamma}{dt} \frac{dt}{ds} = \frac{\gamma'(t)}{|\gamma'_{\xi_0}(t)|},
\]

hence $\gamma'_{\xi_0}(s) = \frac{\gamma'_{\xi_0}(t)}{|\gamma'_{\xi_0}(t)|}$, that is $|\gamma'_{\xi_0}(s)| = 1$. \[\Box\]

Definition 4.2. A lift of a mapping $f : M \to G/H$ is defined to be a map $F : M \to G$ such that the following diagram commutes:

\[
\begin{array}{ccc}
 F & \downarrow & G \\
 M & \xrightarrow{f} & G/H
\end{array}
\]

where G is a Lie group, H is a closed Lie subgroup and G/H is a homogeneous space. Given a lift F of f, any other lift $\tilde{F} : M \to G$ must be of the form

\[
\tilde{F}(x) = F(x)g(x)
\]

for some map $g : M \to H$.

4.1. **The Proof of Theorem 1.2.** Let $\gamma(s)$ be a horizontally regular curve with horizontal arc-length as parameter. For each point of the curve uniquely determines an oriented frame of H^1 of the form

\[
(\gamma(s); X(s), Y(s), T),
\]

where $X(s) = \gamma'_{\xi_0}(s)$ and $Y(s) = J_0X(s)$. Define $\tilde{\gamma}(s)$ by

\[
\tilde{\gamma}(s) = (\gamma(s); X(s), Y(s), T).
\] (4.3)
Then $\tilde{\gamma}(s)$ is a lift of $\gamma(s)$ to $PSH(1)$, which is uniquely determined by $\gamma(s)$. Let ω be the Maurer-Cartan form of $PSH(1)$. We would like to compute the Darboux derivative $\tilde{\gamma}^* \omega$ of the curve $\tilde{\gamma}(s)$:

First note that all pull back one-forms by $\tilde{\gamma}$ are multiples of ds. By (3.18), we have that

$$d\tilde{\gamma}(s) = \tilde{\gamma}^* dp = Y(s)\tilde{\gamma}^* \omega^2 + T\tilde{\gamma}^* \omega^3. \tag{4.4}$$

On the other hand,

$$d\tilde{\gamma}(s) = \gamma'_\xi(s) ds + \gamma'_T(s) ds = X(s)ds + \gamma'_T(s)ds. \tag{4.5}$$

Comparing (4.4) and (4.5), we get

$$\tilde{\gamma}^* \omega^1 = ds, \quad \tilde{\gamma}^* \omega^2 = 0 \tag{4.6}$$

$$\tilde{\gamma}^* \omega^3 = \langle \gamma'(s), T \rangle ds = \tau(s)ds.$$

Again from (3.18), we have

$$dX(s) = Y(s)\tilde{\gamma}^* \omega^1 + T\tilde{\gamma}^* \omega^2 = Y(s)\tilde{\gamma}^* \omega^1, \tag{4.7}$$

hence

$$\tilde{\gamma}^* \omega^2 = \langle \frac{dX(s)}{ds}, Y(s) \rangle ds = k(s)ds. \tag{4.8}$$

Thus we have already obtained the Darboux derivative of $\tilde{\gamma}$:

$$\tilde{\gamma}^* \omega = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & -k(s) & 0 \\ 0 & k(s) & 0 & 0 \\ \tau(s) & 0 & -1 & 0 \end{pmatrix} ds. \tag{4.9}$$

Now suppose that γ_1 and γ_2 have the same p-curvature $k(s)$ and T-variation $\tau(s)$. Then, from (4.9), we get

$$\tilde{\gamma}_1^* \omega = \tilde{\gamma}_2^* \omega.$$

Therefore, by Theorem 2.1 there exists $g \in PSH(1)$ such that $\tilde{\gamma}_2(s) = g \circ \tilde{\gamma}_1(s)$, hence $\gamma_2(s) = g \circ \gamma_1(s)$, for all s. This completes the uniqueness up to a group action. To finish the proof of Theorem 1.2 we show the existence. Given two functions $k(s)$ and $\tau(s)$ defined on an open interval I. Define a $psh(1)$-valued one-form φ on I by

$$\varphi = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & -k(s) & 0 \\ 0 & k(s) & 0 & 0 \\ \tau(s) & 0 & -1 & 0 \end{pmatrix} ds.$$
Then it is easy to show that \(d\varphi + \varphi \wedge \varphi = 0 \). Thus, by Theorem 2.2, there exists a curve

\[
\tilde{\gamma}(s) = (\gamma(s), X(s), Y(s), T) \in PSH(1)
\]
such that \(\tilde{\gamma}^* \omega = \varphi \). This means, by moving frame formula (3.18),

\[
d\gamma(s) = X(s) ds + \tau(s) T ds \\
dX(s) = k(s) Y(s) ds \\
dY(s) = -k(s) X(s) ds - T ds,
\]

which implies that

\[
X(s) = \gamma'_{\xi_0}(s), \quad \text{and} \\
k(s) = \langle \frac{dX(s)}{ds}, Y(s) \rangle \\
\tau(s) = \langle \frac{d\gamma(s)}{ds}, T \rangle.
\]

This completes the proof of the existence.

4.2. The computation of the \(p \)-curvature and the \(T \)-variation.

In this subsection, we will compute the \(p \)-curvature and the \(T \)-variation of a horizontally regular curve, and thus give the proof of Theorem 1.4. After this, we also want to compute the \(p \)-curvature and the \(T \)-variation of the geodesics of \(H^1 \). Let \(\gamma(t) = (x(t), y(t), z(t)) \) be a horizontally regular curve. The horizontal arc-length \(s \) is defined by

\[
s(t) = \int_0^t |\gamma'_{\xi_0}(u)| du,
\]

where \(\gamma'_{\xi_0}(t) \) is the projection of \(\gamma'(t) \) on \(\xi_0 \) along \(T \) direction. Now

\[
\gamma'(t) = (x'(t), y'(t), z'(t)) = x'(t) \frac{\partial}{\partial x} + y'(t) \frac{\partial}{\partial y} + z'(t) \frac{\partial}{\partial z}
\]

\[
= x'(t)e_1 + y'(t)e_2 + (z'(t) + xy'(t) - yx'(t)) \frac{\partial}{\partial z},
\]

which shows that

\[
\gamma'_{\xi_0}(t) = x'(t)e_1 + y'(t)e_2; \\
\gamma_T(t) = (z'(t) + xy'(t) - yx'(t)) T,
\]

where note that \(\frac{\partial}{\partial z} = T \). Let \(\bar{\gamma}(s) \) be the reparametrization of \(\gamma(t) \) by the horizontal arc-length \(s \). Then we have that \(\gamma'(t) = \bar{\gamma}'(s) \frac{ds}{dt} \), hence,
comparing with (4.14),
\[
\bar{\gamma}_0'(s) = \frac{dt}{ds}(x'(t)e_1 + y'(t)e_2); \\
(4.15)
\]
\[
\bar{\gamma}_T'(s) = \frac{dt}{ds}\left((z'(t) + xy'(t) - yx'(t))T \right).
\]
So the \(T\)-variation is
\[
\tau(s) = \langle \bar{\gamma}'(s), T \rangle = \langle \bar{\gamma}'_T(s), T \rangle
\]
\[
= \frac{dt}{ds}(z'(t) + xy'(t) - yx'(t)) \\
= \frac{xy' - x'y + z'}{((x')^2 + (y')^2)^{3/2}}(t).
\]

For the \(p\)-curvature, first note that \(X(s) = \frac{dt}{ds}(x'(t)e_1 + y'(t)e_2)\), hence \(Y(s) = J_0X(s) = \frac{dt}{ds}(x'(t)e_2 - y'(t)e_1)\). We compute
\[
\frac{dX(s)}{ds} = \left. \frac{dt}{ds} \right(\frac{dt}{ds}(x'(t), y'(t), x'y(t) - xy'(t)) \right) \\
= \left(x''(t) \left(\frac{dt}{ds} \right)^2 + x'(t) \frac{d^2t}{ds^2} \right) e_1 + \left(y''(t) \left(\frac{dt}{ds} \right)^2 + y'(t) \frac{d^2t}{ds^2} \right) e_2.
\]
So
\[
k(s) = \langle \frac{dX(s)}{ds}, Y(s) \rangle \\
= - \left(x''(t) \left(\frac{dt}{ds} \right)^2 + x'(t) \frac{d^2t}{ds^2} \right) y'(t) \frac{dt}{ds} + \left(y''(t) \left(\frac{dt}{ds} \right)^2 + y'(t) \frac{d^2t}{ds^2} \right) x'(t) \frac{dt}{ds} \\
= - \left(x''(t)y'(t) - x'(t)y''(t) \right) \left(\frac{dt}{ds} \right)^3 \\
= \frac{x'y'' - x''y'}{((x')^2 + (y')^2)^{3/2}}(t).
\]
This completes the proof of Theorem 1.4.
Now we make use of (4.18) and (4.16) to compute the \(p\)-curvature and \(T\)-variation of the geodesics in \(H^1\). Recall that the Hamiltonian
we have (4.19)
\[\dot{x}^k (t) = h^{kj} (x(t)) \xi_j (t) \]
\[\dot{\xi}_k (t) = -\frac{1}{2} \sum_{i,j=1}^3 \frac{\partial h^{ij} (x)}{\partial x^i} \xi_i \xi_j, \ k = 1, 2, 3, \]

where
\[h^{ij} (x^1, x^2, x^3) = \begin{pmatrix} 1 & 0 & x^2 \\ 0 & 1 & -x^1 \\ x^2 & -x^1 & (x^1)^2 + (x^2)^2 \end{pmatrix}. \]

So the Hamiltonian system (4.19) can be expressed by
\begin{align*}
\dot{x}^1 (t) &= \xi_1 + x^2 \dot{\xi}_3 \\
\dot{x}^2 (t) &= \xi_2 - x^1 \dot{\xi}_3 \\
\dot{x}^3 (t) &= x^2 \xi_1 - x^1 \xi_2 + \xi_3 \left[(x^1)^2 + (x^2)^2 \right] \\
\dot{\xi}_1 (t) &= \xi_2 \dot{\xi}_3 - x^1 \xi_3^2 \\
\dot{\xi}_2 (t) &= -\xi_1 \xi_3 - x^2 \xi_3^2 \\
\dot{\xi}_3 (t) &= 0.
\end{align*}

Since \(\dot{\xi}_3 (t) = 0 \), thus \(\xi_3 (t) = c_3 \) where \(c_3 \) is some constant. In the case \(c_3 = 0 \), we have that \(x (t) = (c_1 t + d_1, c_2 t + d_2, (c_1 d_2 - c_2 d_1) t + d_3) \), thus \(k (t) = 0 \) and \(\tau (t) = 0 \). Next, in the case \(c_3 > 0 \), we have
\begin{align*}
x (t) &= (x^1 (t), x^2 (t), x^3 (t)), \text{ where} \\
x^1 (t) &= a_1 \sin (2c_3 t) + a_2 \cos (2c_3 t) + d_1 \\
x^2 (t) &= -a_2 \sin (2c_3 t) + a_1 \cos (2c_3 t) + d_2 \\
x^3 (t) &= (a_2 d_1 + a_1 d_2) \sin (2c_3 t) + (a_2 d_2 - a_1 d_1) \cos (2c_3 t) + 2c_3 (a_1^2 + a_2^2) t + d_3,
\end{align*}

hence \(k (t) = -\frac{1}{[a_1^2 + a_2^2]^{\frac{1}{4}}} < 0 \) and \(\tau (t) = 0 \). Finally, in the case \(c_3 < 0 \), we have
\begin{align*}
x (t) &= (x^1 (t), x^2 (t), x^3 (t)), \text{ where} \\
x^1 (t) &= a_1 \sin (-2c_3 t) + a_2 \cos (-2c_3 t) + d_1 \\
x^2 (t) &= a_2 \sin (-2c_3 t) - a_1 \cos (-2c_3 t) + d_2 \\
x^3 (t) &= (a_1 d_1 + a_2 d_2) \sin (-2c_3 t) - (a_2 d_1 - a_1 d_2) \cos (-2c_3 t) + 2c_3 (a_1^2 + a_2^2) t + d_3,
\end{align*}

hence \(k (t) = \frac{1}{[a_1^2 + a_2^2]^{\frac{1}{4}}} > 0 \) and \(\tau (t) = 0 \).
The above computation shows that a horizontal curve is congruent to a geodeic if it has positive constant p-curvature. Conversely, it is easy to see that a symmetry action of a geodesic is still a geodesic. Therefore we complete the proof of Theorem 1.5.

Remark 4.3. Actually, the geodesics (4.21) for $c_3 > 0$ are the reverse of the geodesics (4.22) for $c_3 < 0$. That is, they run in the reverse direction of each other.

5. Differential invariants of parametrized surfaces in H^1

5.1. The proof of Theorem 1.8. First we show the uniqueness. Let $F : U \rightarrow H^1$ be a normal parametrized surface with a, b, c, l and m as the coefficients. That is,

\begin{align}
a &= \langle F_v, X \rangle & b &= \langle F_v, Y \rangle & c &= \langle F_v, T \rangle \\
l &= \langle F_{uu}, Y \rangle & m &= \langle F_{uv}, Y \rangle.
\end{align}

Defining the unique lift \widetilde{F} of F to $PSH(1)$ as

\begin{align}
\widetilde{F} &= \langle F, X, Y, T \rangle, \quad X = F_u, \quad JX = Y,
\end{align}

we would like to compute the Darboux derivative $\widetilde{F}^*\omega$ of \widetilde{F}: By the moving frame formula (3.18), we see that

\begin{align}
dF(u, v) &= X(\widetilde{F}^*\omega^1) + Y(\widetilde{F}^*\omega^2) + T(\widetilde{F}^*\omega^3) \\
&= F_u du + F_v dv.
\end{align}

This implies that

\begin{align}
F_u &= dF\left(\frac{\partial}{\partial u}\right) = X(\widetilde{F}^*\omega^1)\left(\frac{\partial}{\partial u}\right) + Y(\widetilde{F}^*\omega^2)\left(\frac{\partial}{\partial u}\right) + T(\widetilde{F}^*\omega^3)\left(\frac{\partial}{\partial u}\right); \\
F_v &= dF\left(\frac{\partial}{\partial v}\right) = X(\widetilde{F}^*\omega^1)\left(\frac{\partial}{\partial v}\right) + Y(\widetilde{F}^*\omega^2)\left(\frac{\partial}{\partial v}\right) + T(\widetilde{F}^*\omega^3)\left(\frac{\partial}{\partial v}\right),
\end{align}

hence, comparing the coefficients and note that $F_u = X$, we have

\begin{align}
(\widetilde{F}^*\omega^1)\left(\frac{\partial}{\partial u}\right) &= 1, & (\widetilde{F}^*\omega^2)\left(\frac{\partial}{\partial u}\right) &= (\widetilde{F}^*\omega^3)\left(\frac{\partial}{\partial u}\right) = 0,
\end{align}

and

\begin{align}
(\widetilde{F}^*\omega^1)\left(\frac{\partial}{\partial v}\right) &= \langle F_v, X \rangle = a \\
(\widetilde{F}^*\omega^2)\left(\frac{\partial}{\partial v}\right) &= \langle F_v, Y \rangle = b \\
(\widetilde{F}^*\omega^3)\left(\frac{\partial}{\partial v}\right) &= \langle F_v, T \rangle = c.
\end{align}
From (5.3) and (5.6), we get
\[
\tilde{F}^*\omega^1 = du + adv
\]
(5.7)
\[
\tilde{F}^*\omega^2 = bdv
\]
\[
\tilde{F}^*\omega^3 = cdv.
\]
On the other hand, again using the moving frame formula (3.18),
\[
dX(u, v) = Y(\tilde{F}^*\omega^2_1) + T(\tilde{F}^*\omega^2)
\]
(5.8)
\[
= (\tilde{F}^*\omega^2_1)(\frac{\partial}{\partial u})Y du + (\tilde{F}^*\omega^2)(\frac{\partial}{\partial v})Y dv + bT dv.
\]
Note again that \(X = F_u\), we have
\[
dX(u, v) = dF_u(u, v) = F_{uu}du + F_{uv}dv.
\]
Comparing the above two formulae, we obtain
\[
(\tilde{F}^*\omega^2_1)(\frac{\partial}{\partial u}) = \langle F_{uu}, Y \rangle = l
\]
(5.10)
\[
(\tilde{F}^*\omega^2_1)(\frac{\partial}{\partial v}) = \langle F_{uv}, Y \rangle = m
\]
\[
b = \langle F_{uv}, T \rangle
\]
\[
0 = \langle F_{uv}, X \rangle = \langle F_{uu}, X \rangle = \langle F_{uu}, T \rangle.
\]
In particular, combining (5.7) and (5.10), we get the Darboux derivative \(\tilde{F}^*\omega\) which is
\[
\tilde{F}^*\omega = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
bdv & ldu + mdv & 0 & 0 & 0 \\
\end{pmatrix}
\]
(5.11)
This completes the proof of the uniqueness. Now we prove the existence. Suppose \(a, b, c\) and \(m, l\) are functions defined on \(U\). Define a \(psh(1)\)-valued one form \(\phi\) by
\[
\phi = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
bdv & ldu + mdv & 0 & 0 & 0 \\
\end{pmatrix}
\]
(5.12)
Then we have
\[
d\phi = \begin{pmatrix}
0 & 0 & \frac{\partial m}{\partial v} - \frac{\partial m}{\partial u} & 0 & 0 \\
\frac{\partial a}{\partial u} - \frac{\partial a}{\partial v} + \frac{\partial m}{\partial u} & \frac{\partial m}{\partial u} & 0 & 0 & 0
\end{pmatrix} du \wedge dv
\]
(5.13)
\[\phi \wedge \phi = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -lb & 0 & 0 & 0 \\ al - m & 0 & 0 & 0 \\ -2b & -m + al & b & 0 \end{pmatrix} \, du \wedge dv. \]

Therefore we get that \(\phi \) satisfies the integrability condition \(d\phi = -\phi \wedge \phi \) if and only if \(a, b, c, l \) and \(m \) satisfy the integrability condition (1.11). Therefore, by Theorem 2.2, there exists a map \(\tilde{F}^*(u, v) = (F(u, v), X(u, v), Y(u, v), T) \) such that \(\tilde{F}^* \omega = \phi \). Thus, by the moving frame formula (3.18), we see that \(F : U \to H^1 \) is a map with \(a, b, c, l \) and \(m \) as its coefficients.

5.2. Invariants of surfaces. Let \(\Sigma \hookrightarrow H^1 \) be a surface such that each point of \(\Sigma \) is regular. For each point \(p \in \Sigma \), one can choose a parametrization \(F : U \to \Sigma \) with coordinates \((u, v) \) such that

\[F_u = \frac{\partial F}{\partial u} = X, \]

where \(X \) is an unit vector field defining the characteristic foliation around \(p \). We call \(F \) and \((u, v) \) a normal parametrization and a normal coordinates around \(p \), respectively.

Lemma 5.1. The normal coordinates is determined up to a transformation of the form

\[\tilde{u} = \pm u + g(v) \]
\[\tilde{v} = h(v), \]

for some smooth functions \(g(v), h(v) \) such that \(\frac{\partial h}{\partial v} \neq 0 \).

Proof. Suppose that \((\tilde{u}, \tilde{v}) \) is another normal coordinates around \(p \), i.e.,

\[F_{\tilde{u}} = \tilde{X}, \]

where \(\tilde{X} = \pm X \). We have

\[F_u = F_{\tilde{u}} \frac{\partial \tilde{u}}{\partial u} + F_{\tilde{v}} \frac{\partial \tilde{v}}{\partial u}, \]
\[F_v = F_{\tilde{u}} \frac{\partial \tilde{u}}{\partial v} + F_{\tilde{v}} \frac{\partial \tilde{v}}{\partial v}. \]
Expand $F_v = \tilde{a} \tilde{X} + \tilde{b} \tilde{Y} + \tilde{c} \tilde{T}$. By the first identity of (5.18), we have

$$X = \tilde{X} \frac{\partial \tilde{u}}{\partial u} + \left(\tilde{a} \frac{\partial \tilde{v}}{\partial u} \tilde{X} + \tilde{b} \frac{\partial \tilde{v}}{\partial u} \tilde{Y} + \tilde{c} \frac{\partial \tilde{v}}{\partial u} \tilde{T} \right)$$

(5.19)

$$= \left(\frac{\partial \tilde{u}}{\partial u} + \tilde{a} \frac{\partial \tilde{v}}{\partial u} \right) \tilde{X} + \tilde{b} \frac{\partial \tilde{v}}{\partial u} \tilde{Y} + \tilde{c} \frac{\partial \tilde{v}}{\partial u} \tilde{T}.$$ Since p is regular, we see that $\tilde{c} \neq 0$ around p, we conclude from the above formula

(5.20) $\frac{\partial \tilde{v}}{\partial u} = 0$, that is, $\tilde{v} = h(v)$.

for some function $h(v)$. In addition, comparing the coefficient of X, we have

(5.21) $\pm 1 = \frac{\partial \tilde{u}}{\partial u} + \tilde{a} \frac{\partial \tilde{v}}{\partial u} = \frac{\partial \tilde{u}}{\partial u}$,

hence $\tilde{u} = \pm u + g(v)$ for some function $g(v)$. Finally we compute

(5.22) $\det \left(\frac{\partial \tilde{u}}{\partial u} \frac{\partial \tilde{v}}{\partial u} \frac{\partial \tilde{v}}{\partial v} \right) = \det \left(\pm 1 \frac{\partial \tilde{u}}{\partial u} \frac{\partial \tilde{u}}{\partial v} \right) = \pm \frac{\partial h}{\partial v} \neq 0.$

This completes the proof.

Recall that by means of a normal parametrization F, we compute the Darboux derivative $\tilde{F}^* \omega$ as (5.11). One can define four one-forms on Σ locally as follows:

(5.23) $I = \tilde{F}^* \omega^1 = du + adv$, $II = \tilde{F}^* \omega^2 = bdv$, $III = \tilde{F}^* \omega^3 = cdv$

$IV = \tilde{F}^* \omega^4_1 = ldu + mdv$,

where functions a, b, c, m and l are defined as (1.10). Let (\tilde{u}, \tilde{v}) be another normal coordinates around p, we have

Proposition 5.2.

$$\tilde{I} = \pm I, \quad \tilde{II} = \pm II, \quad \tilde{III} = III, \quad \text{and} \quad \tilde{IV} = IV.$$

Proof. From the definition of normal coordinates, we see that $F_{\tilde{u}} = \tilde{X} = \pm X$. By definition

(5.24) $\tilde{I} = d\tilde{u} + \tilde{a} d\tilde{v}$, $\tilde{II} = b d\tilde{v}$, $\tilde{III} = \tilde{c} d\tilde{v}$

$\tilde{IV} = l d\tilde{u} + m d\tilde{v}$,

where

(5.25) $\tilde{a} = < F_{\tilde{u}}, \tilde{X} >$, $\tilde{b} = < F_{\tilde{v}}, \tilde{Y} >$, $\tilde{c} = < F_{\tilde{v}}, T >$,

and

(5.26) $\tilde{t} = < F_{\tilde{u}u}, \tilde{Y} >$, $\tilde{m} = < F_{\tilde{v}v}, \tilde{Y} >$, $\tilde{Y} = J_0 \tilde{X} = \pm Y$.

By lemma 5.1 there exists functions $g(v)$ and $h(v)$ such that
\begin{align}
\tilde{u} &= \pm u + g(v) \\
\tilde{v} &= h(v),
\end{align}
(5.27)

We compute the transformation laws of the coefficients of the fundamental forms:
\begin{align}
a &= \langle F_v, X \rangle = \langle F_{\tilde{u}} \frac{\partial \tilde{u}}{\partial v} + F_{\tilde{v}} \frac{\partial \tilde{v}}{\partial v}, X \rangle \\
&= \langle \pm X \frac{\partial g}{\partial v} + F_{\tilde{v}} \frac{\partial h}{\partial v}, X \rangle \\
&= \pm \left(\frac{\partial g}{\partial v} + \frac{\partial h}{\partial v} \tilde{a} \right).
\end{align}
(5.28)

Similarly, we have
\begin{align}
b &= \pm \frac{\partial h}{\partial v} \tilde{b}, \quad c = \frac{\partial h}{\partial v} \tilde{c}
\end{align}
(5.29)

On the other hand, note that $F_u = \pm F_{\tilde{u}}$, hence $F_{uu} = \pm (F_{\tilde{u}} \frac{\partial \tilde{u}}{\partial u} + F_{\tilde{v}} \frac{\partial \tilde{v}}{\partial u}) = F_{\tilde{uu}}$. Thus
\begin{align}
l &= \pm \tilde{l}.
\end{align}
(5.30)

Similarly we have
\begin{align}
m &= \frac{\partial g}{\partial v} \tilde{m} + \frac{\partial h}{\partial v} \tilde{m}.
\end{align}
(5.31)

From the transformation laws (5.28), (5.29), (5.30) and (5.31), it is easy to see that
\begin{align}
\tilde{I} = \pm I, \quad \tilde{II} = \pm II, \quad \tilde{III} = III, \quad \text{and} \quad \tilde{IV} = IV.
\end{align}

This finishes the proof of the proposition.

Define $\alpha = \frac{b}{c}$ and $\tilde{\alpha} = \frac{\tilde{b}}{\tilde{c}}$, then from (5.29), we see that $\alpha = \pm \tilde{\alpha}$. Actually, α is the function defined on the non-singular part of Σ such that $\alpha e_2 + T \in T\Sigma$. Up to a sign, α is a function which is independent of the choice of the normal coordinates, hence an invariant of Σ on the non-singular part. Similarly, from (5.30), so is for l, which actually is the p-mean curvature.

Remark 5.3. Note that if we restrict us to choose normal coordinates with respect to a fixed orientation of the characteristic foliation on the nonsingular part, we see, from the proof of Proposition 5.2, that $\alpha = \tilde{\alpha}$ and $l = \tilde{l}$. That is, the sign appearing is due to the different choice of orientation.
Besides the two invariants α and l, we now proceed to introduce another invariant of Σ, which is defined on all of Σ, not just on the non-singular part. Again, from Proposition 5.2, it is easy to see that

$$I \otimes I + II \otimes II + III \otimes III = \tilde{I} \otimes \tilde{I} + \tilde{II} \otimes \tilde{II} + \tilde{III} \otimes \tilde{III}. \tag{5.32}$$

Therefore the form $I \otimes I + II \otimes II + III \otimes III$ is again independent of the choice of a normal coordinates, hence also an invariant of Σ.

Lemma 5.4. Let g_{θ_0} be the adapted metric on H^1. Then we have

$$g_{\theta_0}|_{\Sigma} = I \otimes I + II \otimes II + III \otimes III, \tag{5.33}$$

on the non-singular part of Σ.

Proof. This lemma is a easy consequence of the first one of the moving frame formula (3.18).

In the following section, we will show that the form $IV = \tilde{F}^* \omega_1^2$ is completely determined by all g_{θ_0}, α and l. We therefore obtain a complete set of invariants for surfaces on the non-singular part.

6. A complete set of invariants for surfaces in H^1

Let Σ be an oriented surface and suppose $f : \Sigma \to H^1$ be an embedding. For the convenient of expression, we will not distinguish surfaces Σ and $f(\Sigma)$. For each non-singular point $p \in \Sigma$, we specify an orthonormal frame by $(p; e_1, e_2, T)$, here e_1 is tangent to the characteristic foliation and $e_2 = J_0 e_1$. A Darboux frame is a moving frame which is smoothly defined on Σ, except those singular points, hence giving a lifting of f to $PSH(1)$ which is defined by F. Now we would like to compute the Darboux derivative $F^* \omega$ of F. In the following, instead of $\tilde{F}^* \omega$, we still use

$$\omega = \begin{pmatrix}
0 & 0 & 0 & 0 \\
\omega^1 & 0 & -\omega_1^2 & 0 \\
\omega^2 & \omega_1^2 & 0 & 0 \\
\omega^3 & \omega^2 & -\omega^1 & 0
\end{pmatrix}, \tag{6.1}$$

to express the Darboux derivative. It satisfies the integrability condition $d\omega + \omega \wedge \omega = 0$, that is,

$$d\omega^1 = \omega_1^2 \wedge \omega^2$$

$$d\omega^2 = -\omega_1^2 \wedge \omega^1$$

$$d\omega^3 = 2 \omega^1 \wedge \omega^2$$

$$d\omega_1^2 = 0 \tag{6.2}$$
Let $g_{\theta_0} = h + \theta_0^2$ be the adapted metric. From Section 5, which we see that $\omega^2 = \alpha \omega^3$ on the nonsingular part of Σ, it is easy to see that

$$g_{\theta_0}|_{\Sigma} = \omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2 + \omega^3 \otimes \omega^3 = \omega^1 \otimes \omega^1 + (1 + \alpha^2)\omega^3 \otimes \omega^3.$$

Define

$$\hat{\omega}^1 = \omega^1$$
$$\hat{\omega}^2 = \sqrt{1 + \alpha^2} \omega^3.$$

This is an orthonormal coframe of $g_{\theta_0}|_{\Sigma}$ and the dual frame is

$$\hat{e}_1 = e_1$$
$$\hat{e}_2 = e_\Sigma = \frac{\alpha e_2 + T}{\sqrt{1 + \alpha^2}}.$$

Let $\hat{\omega}_1^2$ be the Levi-Civita connection of $g_{\theta_0}|_{\Sigma}$ with respect to the frame $\hat{\omega}^1, \hat{\omega}^2$. By the fundamental theorem in Riemannian geometry, this connection is uniquely defined by

$$\begin{align*}
\omega^1 &= -\hat{\omega}_1^1 \wedge \hat{\omega}^2 \\
\omega^2 &= -\hat{\omega}_1^2 \wedge \hat{\omega}^1 \\
\omega_1^2 &= -\hat{\omega}_1^2.
\end{align*}$$

The following Proposition point out that ω_1^2 is completely determined by the induced fundamental form $g_{\theta_0}|_{\Sigma}$ and the functions α and l.

Proposition 6.1. We have

$$\begin{align*}
\omega_1^2 &= \frac{\alpha}{\sqrt{1 + \alpha^2}} \hat{\omega}_1^1 + \frac{l}{1 + \alpha^2} \hat{\omega}_1^1 + \frac{e_1 \alpha}{(1 + \alpha^2)^2} \hat{\omega}^2 \\
&= l \hat{\omega}^1 + \frac{2\alpha^2 + (e_1 \alpha)}{\sqrt{1 + \alpha^2}} \hat{\omega}^2,
\end{align*}$$

(6.6)

$$\begin{align*}
\hat{\omega}_1^2 &= \frac{\alpha}{\sqrt{1 + \alpha^2}} \omega^1 + \frac{2\alpha}{1 + \alpha^2} \hat{\omega}^2 \\
&= \frac{la}{\sqrt{1 + \alpha^2}} \hat{\omega}^1 + \left(2\alpha + \frac{\alpha(e_1 \alpha)}{1 + \alpha^2}\right) \hat{\omega}^2.
\end{align*}$$
Proof. Note that $\omega^2 = \alpha \omega^3$. Then from the second identity of (6.3), we have

$$d\omega^2 = d\left(\frac{\alpha}{(1 + \alpha^2)^{\frac{3}{2}}} \right) \wedge \hat{\omega}^2 + \frac{\alpha}{(1 + \alpha^2)^{\frac{3}{2}}} d\hat{\omega}^2$$

$$= e_1 \left(\frac{\alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \right) \hat{\omega}^1 \wedge \hat{\omega}^2 - \frac{\alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \hat{\omega}^2 \wedge \hat{\omega}^1$$

$$= \hat{\omega}^1 \wedge \left(e_1 \left(\frac{\alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \right) \hat{\omega}^2 + \frac{\alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \hat{\omega}^1 \right),$$

where at the third equality above, we have used the second formula of the structure equation (6.5) in Riemannian geometry. On the other hand, from the Maurer-Cartan structure equation (6.2)

$$d\omega^2 = -\omega^2 \wedge \omega^1 = \hat{\omega}^1 \wedge \omega^2.$$

Together the above two formulae and by Cartan lemma, we see that there exists a function D such that

$$\omega^2 = e_1 \left(\frac{\alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \right) \hat{\omega}^2 + \frac{\alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \hat{\omega}^1 + D \hat{\omega}^1$$

(6.7)

$$= \frac{e_1 \alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \hat{\omega}^2 + \frac{\alpha}{(1 + \alpha^2)^{\frac{1}{2}}} \hat{\omega}^1 + D \hat{\omega}^1.$$

Similarly, we compute

$$-\hat{\omega}^1 \wedge \hat{\omega}^2 = d\hat{\omega}^1 = d\omega^1$$

$$= \omega^2 \wedge \omega^2$$

$$= \frac{\alpha}{\sqrt{1 + \alpha^2}} \omega_1^2 \wedge \omega^2.$$

(6.8)

Again, by Cartan lemma, there exists a function A such that

$$-\hat{\omega}^2 = \frac{\alpha}{\sqrt{1 + \alpha^2}} \omega_1^2 + A \omega^2.$$

(6.9)
Finally, we compute

\[-\hat{\omega}^2_1 \wedge \hat{\omega}^1 = d\hat{\omega}^2 = d\left((1 + \alpha^2)^{\frac{1}{2}} \omega^3 \right) \]
\[= (1 + \alpha^2)^{\frac{1}{2}} d\omega^3 + d(1 + \alpha^2)^{\frac{1}{2}} \wedge \omega^3 \]
\[= 2\alpha(1 + \alpha^2)^{\frac{1}{2}} \hat{\omega}^1 \wedge \omega^3 + \frac{\alpha}{(1 + \alpha^2)^{\frac{3}{2}}} d\alpha \wedge \omega^3 \]
\[= \left(2\alpha + \frac{\alpha(e_1 \alpha)}{1 + \alpha^2} \right) \omega^1 \wedge \hat{\omega}^2, \]

where we have used the third formula of (6.2) and \(\hat{\omega}^2 \wedge \omega^3 = 0 \). Therefore, there exists a function \(B \) such that

\[(6.11) \quad \hat{\omega}^2_1 = \left(2\alpha + \frac{\alpha(e_1 \alpha)}{1 + \alpha^2} \right) \omega^2 + B\hat{\omega}^1. \]

By (6.7) and (6.9), we get

\[D = \omega^2_1(e_1) - \frac{\alpha}{\sqrt{1 + \alpha^2}} \hat{\omega}^2_1(e_1) \]
\[= \frac{\omega^2_1(e_1)}{1 + \alpha^2} = \frac{l}{1 + \alpha^2}. \]

Similarly, by (6.7), (6.9) and (6.11), we obtain

\[A = \frac{2\alpha}{1 + \alpha^2} \]
\[B = \frac{l\alpha}{\sqrt{1 + \alpha^2}}. \]

These complete the proof. \(\square \)

6.1. The proof of Theorem 1.11 Let \(K \) be the Gaussian curvature of the induced metric \(g_{\theta_0}|_\Sigma \), hence we have

\[(6.13) \quad d\hat{\omega}^2_1 = K d\sigma, \]
where \(d\sigma \) is the area form \(\hat{\omega}^1 \wedge \hat{\omega}^2 \). Using Proposition \(6.1\) and \(6.2\) and \(6.5\), we compute

\[
(6.14)
\]

\[
d\hat{\omega}^2_i = d \left(\frac{\alpha}{\sqrt{1 + \alpha^2}} \hat{\omega}_1^2 + \frac{2\alpha}{1 + \alpha^2} \hat{\omega}^2 \right) \\
= d \left(\frac{\alpha}{\sqrt{1 + \alpha^2}} \right) \wedge \omega_1^2 + d \left(\frac{2\alpha}{1 + \alpha^2} \right) \wedge \hat{\omega}^2 + \frac{2\alpha}{1 + \alpha^2} d\hat{\omega}^2 \\
= \frac{d\alpha}{(1 + \alpha^2)^2} \wedge \omega_1^2 + \frac{2(1 - \alpha^2)d\alpha}{(1 + \alpha^2)^2} \wedge \hat{\omega}^2 - \frac{2\alpha}{1 + \alpha^2} \omega_1^2 \wedge \hat{\omega}^1 \\
= \frac{(e_1\alpha)^2 + 2(1 + \alpha^2)(e_1\alpha) + 4\alpha^2(1 + \alpha^2) - l(e_\Sigma)(1 + \alpha^2)}{(1 + \alpha^2)^2} \omega_1^1 \wedge \hat{\omega}^1.
\]

These completes the proof of Theorem \(1.11\).

6.2. The derivation of the integrability condition \((1.14)\). We compute

\[
(6.15)
\]

\[
0 = d\hat{\omega}^2_i \\
= d \left(\frac{\alpha}{\sqrt{1 + \alpha^2}} \hat{\omega}_1^2 + \frac{l}{1 + \alpha^2} \hat{\omega}^1 + \frac{e_1\alpha}{(1 + \alpha^2)^2} \hat{\omega}^2 \right) \\
= \left\{ -(1 + \alpha^2)^{\frac{3}{2}}(e_\Sigma l) + (1 + \alpha^2)(e_1e_1\alpha) - \alpha(e_1\alpha)^2 + 4\alpha(1 + \alpha^2)(e_1\alpha) \\
+ \alpha(1 + \alpha^2)^2 K + al(1 + \alpha^2)^{\frac{3}{2}}(e_\Sigma\alpha) + \alpha(1 + \alpha^2)l^2 \right\} \frac{\hat{\omega}_1^1 \wedge \hat{\omega}^2}{(1 + \alpha^2)^2}.
\]

Therefore the integrability condition \((1.14)\) is equivalent to \(d\omega_i^2 = 0\).

6.3. The proof of Theorem \(1.10\). First we show the existence. Define an \(psh(1) \)-valued one-form \(\phi \) on the non-singular part of \(\Sigma \) by

\[
(6.16)
\]

\[
\phi = \begin{pmatrix}
0 & 0 & 0 & 0 \\
\hat{\omega}^1 & 0 & -\omega_1^2 & 0 \\
\frac{\alpha}{\sqrt{1 + (\alpha')^2}} \hat{\omega}^2 & \omega_1^2 & 0 & 0 \\
\frac{1}{\sqrt{1 + (\alpha')^2}} \hat{\omega}^2 & \frac{\alpha'}{\sqrt{1 + (\alpha')^2}} \omega_1^2 & -\hat{\omega}^1 & 0
\end{pmatrix},
\]

where

\[
(6.17)
\]

\[
\omega_1^2 = \frac{\alpha'}{\sqrt{1 + (\alpha')^2}} \hat{\omega}_1^2 + \frac{l'}{1 + (\alpha')^2} \hat{\omega}^1 + \frac{e_1\alpha'}{(1 + (\alpha')^2)^2} \hat{\omega}^2.
\]
Then it is easy to check that \(\phi \) satisfies \(d\phi + \phi \wedge \phi = 0 \) if and only if the integrability condition (1.14) holds. Therefore, by Theorem 2.2, for each \(x \in \Sigma \) there exists an open set \(U \) containing \(x \) and an embedding \(f : U \to H^1 \) such that \(g = f^*(g_{\theta_0}) \), \(\alpha = f^*\alpha \) and \(l' = f^*l \). Next we show the uniqueness. By Proposition 6.1, we see that the Darboux derivative is completely determined by the induced metric \(g_{\theta_0}|_{\Sigma} \), the \(p \)-variation \(\alpha \) and the \(p \)-mean curvature \(l \). Therefore, by Theorem 2.1 the embedding into \(H^1 \) is unique up to a Heisenberg rigid motion.

7. Appendix

In this Appendix, we give another proof of Theorem 1.2.

7.1. The second proof of Theorem 1.2 For a horizontally regular curve \(\gamma(s) \) parametrized by horizontal arc-length \(s \), we define a moving frames \((X(s), Y(s), T(s))\) by

\[
(7.1) \quad X(s) = \gamma'(s), \quad Y(s) = JX(s), \quad \text{and} \quad T(s) = T.
\]

Then we have that

\[
X'(s) = k(s)Y(s)
\]

\[
Y'(s) = -k(s)X(s) - T
\]

\[
T'(s) = 0.
\]

Note also that

\[
(7.3) \quad \gamma'(s) = X(s) + \tau(s)T.
\]

Now, assume that two curves \(\gamma(s) \) and \(\bar{\gamma}(s) \) satisfy the conditions

\[
(7.4) \quad k(s) = \bar{k}(s) \quad \text{and} \quad \tau(s) = \bar{\tau}(s), \quad s \in I.
\]

After performing a Heisenberg rigid motion (i.e., a pseudohermitian transformation on \(H^1 \)), we can assume, without loss of generality, that

\[
(7.5) \quad \bar{\gamma}(s_0) = \gamma(s_0), \quad \bar{X}(s_0) = X(s_0), \quad \text{and} \quad \bar{Y}(s_0) = Y(s_0),
\]

for a fixed \(s_0 \in I \). Define \(A(s) = < X(s), \bar{X}(s) > + < Y(s), \bar{Y}(s) > \).

By using the moving frames formula (7.2), we have

\[
(7.6) \quad A'(s) = < X'(s), \bar{X}(s) > + < X(s), \bar{X}'(s) > + < Y'(s), \bar{Y}(s) > + < Y(s), \bar{Y}'(s) >
\]

\[
= k < Y(s), \bar{X}(s) > + \bar{k} < X(s), \bar{Y}(s) > + < -kX - T, \bar{Y}(s) > + < Y, -\bar{k}X - \bar{T} >
\]

\[
= 0.
\]

Since \(A(s_0) = 2 \), we get \(A(s) = 2 \), hence that \(X(s) = \bar{X}(s) \) and \(Y(s) = \bar{Y}(s) \) for each \(s \in I \). In particular, we have \(\gamma'(s) = \bar{\gamma}'(s) \).

Also note that \(\tau(s) = \bar{\tau}(s) \), by (7.3), we have \(\gamma'_{\bar{T}}(s) = \gamma'_{T}(s) \). We
therefore obtain that $\gamma'(s) = \bar{\gamma}'(s)$, which implies that $\gamma(s) = \bar{\gamma}(s) + C$ for some constant C. Since $\gamma(s_0) = \bar{\gamma}(s_0)$, we see that $C = 0$, that is, $\gamma(s) = \bar{\gamma}(s)$ for all $s \in I$.

REFERENCES

[1] Cheng, S.S., Cheng, W.H. and Lam, K.S.: Lecture notes on Differential Geometry.;
[2] Chevalley, C.,: Theory of Lie Groups (Princeton University Press, Princeton, 1946).;
[3] Calin, O., Chang, D.C. and Greiner, P.: Geometric Analysis on the Heisenberg Group and Its Generalizations.;
[4] Calin, O., Chang, D.C.: Sub-Riemannian Geometry: General Theory and Examples (Cambridge ; New York : Cambridge University Press, 2009).;
[5] Cheng, J.-H.; Hwang, J.-F.; Malchiodi, A. and Yang, P.: A Codazzi-Like Equation and the Singular Set for C^1 Smooth surfaces In the Heisenberg Group. J. reine angew. Math. 671 (2012), 131-198;
[6] Griffiths, P.: On Cartan’s Method of Lie Groups and Moving frames as applied to Uniqueness and Existence questions in Differential Geometry, Duke Math. J. 41 (1974), 775-814;
[7] Ivey, T.A. and Landsberg, J.M.: Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. Graduate Studies, in Math. v.61 (2003);
[8] Lee, J.M.: The Fefferman metric and pseudohermitian invariants. Trans. Am. Math. Soc. 296 (1986), 411-429;
[9] Lee, J.M.: Pseudo-Einstein structures on CR manifolds. Am. J. Math. 110 (1988), 157-178;
[10] Sharp, R.W.: Differential Geometry Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts, in Math. v.166 (1997);
[11] Webster, S.M.: Pseudo-Hermitian structures on a real Hypersurface. J. Diff. Geom. 13 (1978), 25-41;

DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG LI, 32054, TAIWAN, R.O.C.
E-mail address: hichiu@math.ncu.edu.tw

DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG LI, 32054, TAIWAN, R.O.C.
E-mail address: 972401001@cc.ncu.edu.tw