W boson mass, dark matter and $(g - 2)_\mu$ in ScotoZee neutrino mass model

Ritu Dcruz

Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA

Anil Thapa

Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714, USA

We present a model of radiative neutrino masses, Scotogenic model with a singly charged scalar (ScotoZee model), which resolves recently reported deviations in W boson mass as well as lepton $g - 2$, and naturally admits a scalar or a fermion dark matter. We find that the mass splitting, of ~ 100 GeV among the inert doublets fields, required by the shift in W boson mass can be evaded by introducing a singlet scalar, which also is a key to resolving $(g - 2)_\mu$ (also, $(g - 2)_{\mu\tau}$) anomaly with in 1σ. We show consistency of this framework with dark matter relic abundance, while satisfying constraints from charged lepton flavor violation, direct detection as well as collider constraints. We show that the model gives predictions for the lepton flavor violating processes testable in upcoming experiments.

Introduction: The CDF collaboration at Fermilab [1] reported a precision measurement of W boson mass, $M_W^{CDF} = (80.4335 \pm 0.0094)$ GeV, which is in tension with the Standard Model (SM) prediction, $M_W^{SM} = (80.357 \pm 0.004)$ GeV [2] with an excess at 7σ level, which may be an indication of new physics (NP) beyond the Standard Model (SM). Some possible explanations to the W boson mass shift that break custodial symmetry can arise at tree level [3–18], or at loop level [19–35], along with the prospect of reconciling one or more discrepancies [36–54] such as flavor anomalies and dark matter. Several other papers [55–83] also examine the consequence of the CDF M_W anomaly on new physics scenarios.

Independently, muon $(g - 2)$ collaboration at Fermilab [84] has confirmed the long standing discrepancy in the anomalous magnetic moment (AMM) of muon measurement at BNL in 2006 [85] at a combined 4.2σ deviation, $\Delta a_{\mu}^{exp} = (2.51 \pm 0.59) \times 10^{-9}$, from the SM prediction [86]. In addition to these recent anomalies, astrophysical and cosmological observations [87–89] has provided a compelling evidence for the existence of dark matter (DM), for which the SM fails to provide an explanation. Moreover, one of the major shortcomings of the SM is its inability to explain the origin of non-zero neutrino mass substantiated by several experiments [90].

In this work we show that by a simple extension of the Scotogenic model [91] with the charged singlet (ScotoZee model) can simultaneously address all the puzzles previously mentioned. Our novel ScotoZee model\(^1\) is the simplest model that furnish a direct link between neutrino mass generation, dark matter, AMM of muon and also provide an upward mass shift in W boson in agreement with the CDF measurement. Additionally, the presumed anomaly in the AMM of electron [96–98] can also be addressed within the same framework. We explore the parameter space of the ScotoZee model spanned by both the bosonic and fermionic DM candidates, while being consistent with the current experimental constraints.

Model: The proposed ScotoZee model is a simple charged singlet $S^+ (1, 1; -)$ extension of the Scotogenic [91] model, which contains Majorana singlet fermions $N_{R_i} (1, 0; -)$ and the scalar doublet $(\eta^+, \eta^0) \equiv \eta (2, 1/2; -)$, under the gauge group $SU(2)_L \times U(1)_Y \times Z_2$. Note that all the new particles are odd under Z_2, whereas the SM particles are even which guarantees the stability of the DM candidate, the lightest among the new neutral Z_2-odd particles. The charged scalar singlet S^+ not only gives rise to anomalous magnetic moment of muon and electron via mixing with charged doublet, but also serve as portal to generate correct relic abundance for fermionic DM. This naturally interlink the AMM of lepton and dark matter with the small Majorana neutrino masses generated at one-loop order. The effective Yukawa Lagrangian in the extended model can be written as

$$Y_{ij} \bar{L}_i \bar{\eta} N_{R_j} + f_{ij} \bar{\tau}_{R_i} S - \bar{N}_{R_j} + h.c.$$ \hspace{1cm} (1)

The Z_2 symmetry, being exact, prevents η^0 from obtaining a non-zero vacuum expectation value (VEV) and neutrinos remain massless at tree level. Moreover, the SM Higgs h is decoupled from the new CP-even $(Re(\eta^0) \approx H)$ and -odd $(Im(\eta^0) \approx A)$ scalars. The charged scalars $\{\eta^+, S^+\}$ mix giving rise to mass eigenstates $\{H^+_1, H^+_2\}$.

The masses of the scalar fields in the physical basis are:

$$m_h = \lambda_1 v^2, \quad m_{H(A)}^2 = \mu_a^2 + \frac{v^2}{2} (\lambda_3 + \lambda_4 \pm \lambda_5),$$ \hspace{1cm} (2)

$$m_{H^+_1}^2 = \frac{1}{2} \left(\mu_2 + \mu_3 \pm \sqrt{(\mu_2 - \mu_3)^2 + 2\mu_1^2 v^2} \right),$$

where, $\mu_2 = \mu_{\eta}^2 + \frac{\lambda_2}{2} v^2$, $\mu_3 = \mu_{S}^2 + \frac{\lambda_3}{2} v^2$. Here $\mu_{\eta,S}, \lambda_i$,
and μ are the bare-mass terms, quartic couplings, and cubic coupling. The mixing angle between the charged scalar fields is given by

$$\sin 2\theta = \frac{-\sqrt{2}\mu v}{m_H^2 - m_\eta^2}.$$

with the VEV $v \simeq 246$ GeV. In this work, we comply with the perturbative and vacuum stability conditions [99, 100] constraining the scalar couplings. The Majorana mass term $\frac{1}{2} M_N N_i N_i$ along with the scalar quartic term $\frac{\lambda}{8} \{ (\phi^\dagger \eta)^2 + \text{h.c.} \}$ breaks the lepton number by two units, allowing for the one-loop generation of neutrino mass M_ν as given in Fig. 1 (top). This can be expressed as

$$(M_\nu)_{ij} = \sum_k Y_{ik} \Lambda_k Y^*_{kj},$$

$$\Lambda_k = \frac{M_N}{16\pi^2} \left[\frac{m_H^2}{m_H^2 - M_N^2} \log \frac{m_H^2}{M_N^2} - (m_H \leftrightarrow m_A) \right].$$

Here the lightest mass eigenstates $\{H, A\}$ and N_i can serve as viable bosonic and fermionic DM candidates. It is important to point out that unlike the Scotogenic model, where M_N can be at canonical seesaw scale of 10^9 GeV or the Yukawa coupling Y arbitrarily small, the $(g-2)_\mu$ in the model requires the scale to be in the (sub) TeV range along with $O(0.1 - 1.0)$ Yukawa coupling. Thus, a successful explanation of $m_\nu \sim 0.1$ eV would naturally require m_H to be nearly degenerate with m_A.

Correction to W boson mass: The shift in W boson mass [101] can be evaluated as a function of the oblique parameters, S, T and U [102, 103] that quantify the deviation of a new physics model from the SM through radiative corrections arising from shifts in gauge boson self-energies. The oblique parameters in our model get corrections from the extended Higgs sector which is same as in Zee model [104] except for the \mathbb{Z}_2 charges preventing the mixing between the SM and the extra Higgs doublets. So we use the expressions for S, T and U given in [105] under the alignment limit [106]. The corrections to U at one-loop level is suppressed compared to S and T.

With the new precision measurement of M_W by CDF, it is reasonable to expect some electroweak (EW) observables to suffer from new tensions. We incorporate the global EW fit performed by Ref. [4] with the new CDF data to quote the 2σ allowed ranges of oblique parameters. We confirm the necessity of mass splitting in 2HDM [24, 25] to accommodate the recent CDF results and show that the introduction of the charged singlet scalar allows the components of the inert doublet fields to be degenerate as can be seen from Fig 2, opening up the parameter space for scalar DM. The splitting $\delta_H = m_{H^+} - m_H$ depends on the mixing angle, for instance, it can be at most ~ 140 GeV for $\sin \theta = 0.2$.

Muon’s Magnetic Moment: The charged scalar contributions to anomalous magnetic moment at one-loop [107] as shown in Fig. 1 (bottom) is

$$\Delta a_\mu^{H_1^+} = \frac{m_\ell^2}{16\pi^2} \left(|Y_\ell| \sin^2 \theta + |f_\ell|^2 \cos^2 \theta \right) G[m_{H^+}, 2] + \frac{M_N}{m_\ell} \text{Re}(Y_\ell f_\ell^*) \sin 2\theta G[m_{H^+}, 1],$$

where,

$$G[M, \varepsilon] = \int_0^1 \frac{x^\varepsilon (x - 1)}{m_\ell^2 x^2 + (M^2 - m_\ell^2)x + M_N^2 (1 - x)}$$

![FIG. 1: Radiative neutrino mass generation at one-loop (top). The dominant correction to AMMs arising through the chiral enhancement (bottom). The cross (×) represents mass insertion whereas $\ell = e, (\mu)$ for electron (muon) AMM.](image1)

![FIG. 2: Mass splitting between the components of doublet scalar required by the new CDF measurement of W boson mass using 2σ ranges for S and T from Ref. [4]](image2)
and $\Delta \alpha^\mu_3 = \Delta \alpha^H_3 (\theta \rightarrow \frac{\pi}{2} + \theta)$. The dominant contribution to $\Delta \alpha^\mu_3$ comes from the Majorana neutrino mass enhancement aided by the mixing of the charged scalar mediators as shown in Fig. 1 (b). The sign of the product of Yukawa couplings and the mixing angle can be chosen independently of each other. This in turn allows for the simultaneous explanations of $\Delta \alpha^\ell_3 (\ell = \mu, e)$. Any choice of $Y_{i\ell} f^{\pm}_{i\ell}$ can explain $(g-2)_\mu$. Moreover, we find the upper limit on mass of Majorana neutrino (charged scalar) from $\Delta \alpha^\mu_3$ is of order 15 (6.5) TeV by allowing the Yukawa of $f, Y \leq 1$. The mass limit is more relaxed in the case of $(g-2)_e$.

Note that the Yukawa couplings and the masses of charged scalars are severely restricted by the cLFV processes such as radiative decay $\ell \rightarrow \ell \gamma$ [108]; such processes are enhanced in our model by the mass insertion of Majorana neutrinos. Moreover, though trilepton decay such $\mu \rightarrow 3e$ do not occur at tree-level, they can occur at the loop-level and contribute large branching ratios as shown in Ref. [109]. The same is also true for $\mu - e$ conversion in the nuclei. We impose these constraints in our parameter scan.

DM Phenomenology: In addition to explaining W boson mass shift and $\Delta \alpha^\ell$, the proposed model can easily accommodate both the scalar (lightest of H and A) and fermionic (lightest among N_i) dark matter candidates (χ). We consider both options and analyze the parameter space by implementing the model in **SARAH** [113] and numerically evaluating the relic abundance using the software **MicrOMEGAs** [114]. The relic density of DM is achieved through standard thermal freeze-out mechanism.

For the case of Majorana fermion as a DM ($\chi \equiv N$) candidate, the annihilation channel which determines the observed relic density are DM self-(co-)annihilation into charged leptons $\ell^+_\alpha \ell^-_\beta$ (light neutrinos ν_α, ν_β) through t-channel processes mediated by the Z_2-odd scalars, H^\pm_1 (H, A) via Yukawa couplings Y and/or f. Note that neutrino masses and oscillations determine the flavor structure of Y, thus it is natural to take Y relatively small and doublet scalar η mass heavy $\sim \mathcal{O}$ (TeV), such that LFV constraints are automatically satisfied. Thus, we chose $f_{ii} = 1$ ($i = 1, 2$) and degenerate N_i to maximize the contribution to annihilation of $\chi \chi \rightarrow \ell \ell$ via S^+; the allowed region of parameter space in the mass plane can be seen in Fig 3 (top) along with allowed region for muon AMM for specific choice of $\kappa = Y^* f \sin \theta = 0.015$.

In the case of scalar dark matter, which we choose to be the CP-even $H \equiv \chi$ (nearly degenerate with A and $\lambda_5 < 0$), pair of DM can annihilate to W^+W^-, ZZ, $\nu_\alpha\nu_\beta$, $h h$, $\ell \ell$, and $q\bar{q}$. The low mass regime suffer a strong constraint form LEP [112] which can be fulfilled if one assumes $m_\chi > M_Z/2$, $m_{H^+_1} > M_W/2$ and $m_{H^+_1} + m_\chi > M_W$. For larger DM mass, it dominantly annihilates to pair of W^+W^-, ZZ, for which the allowed region is $m_\chi > 500$ GeV and mass splitting $\delta_{H^+} = m_{H^+_1} - m_\chi \lesssim 30$ GeV as shown in Fig. 3 (bottom). This can be relaxed by making the Higgs quartic coupling larger $\gtrsim 1$, however, such a choice is strongly constrained by direct detection bound [116–119].

In this work we take the $\lambda_3 + \lambda_4 + \lambda_5 \ll 1$ to automatically satisfy direct detection bound obtained from DM interacting with nucleus through tree level Higgs h boson. Moreover, it is favoured to take couplings $Y_{\alpha\beta}$ small and

2 The mass splitting is of order $\mathcal{O}(100)$ keV [115] to evade direct detection.
FIG. 4: Biased scattered plot assuming the fermionic DM with the same parameter space given in Fig. 3 (top). Colored shaded regions are the current exclusion limit [120], where as dotted-dashed line represents the future projected sensitivity [121]. Green dots correspond to solutions that satisfies $(g - 2)_{\mu}$, observed relic density as well as neutrino oscillation observables with in their 2σ measured values [122].

M_N to be large from neutrino fit, which implies that the model is indistinguishable from the known inert doublet model (IDM). It turns out that the CDF measurement disfavours simple Scotogenic/IDM while simultaneously satisfying the correct relic abundance. However, the mixing of the charged doublet with the new charged singlet scalar evades this complication in our model, allowing the CP-even H to be a viable DM candidate, as shown in Fig. 3 (bottom).

Neutrino Fit/ Lepton Flavor violation: The neutrino mass formula of Eq. (4), muon $g - 2$ and the dark matter analysis have close-knit correlation through Yukawa matrix Y, Majorana fermion, and new scalars. As mentioned before, simultaneous explanation of muon $g - 2$ and neutrino mass fixes the upper bound on the doublet scalar masses, there by forcing the parameter space in the region $m_A \simeq m_H$. In order to check the consistency with the neutrino oscillation data and efficiently probe the model with LFV observables, we adopt Casas-Ibarra parametrization from Ref. [123] to rewrite the Yukawa matrix Y of Eq. (4) in terms of neutrino mass parameters

$$Y = \sqrt{\Lambda}^{-1} R \sqrt{M_{\nu}^{\text{diag}}} U_{\text{PMNS}}^\dagger,$$

where R is an arbitrary complex orthogonal matrix. The neutrino oscillation parameters are scanned to within the 2σ allowed ranges from Ref. [122] to obtain the Yukawa matrix. As mentioned before, product of Yukawa couplings $Y_{ii}f_{ii}$ can explain $(g - 2)_{\mu}$, however $Y_{12}f_{2i}$ is severely constrained by $\mu \rightarrow e\gamma$ [124] due to the Majorana fermion mass enhancement. This chiral enhancement to $\mu \rightarrow e\gamma$ is avoided by choosing $f_{ii}(i = 1, 2)$ nonzero and $Y_{12} = Y_{21} = 0$. We then compute the branching fractions for $\ell_i \rightarrow \ell_j \gamma$ and $\ell_i \rightarrow 3\ell_j$ process at one-loop level as stated before. This allows us to check the consistency of our fit with LFV and make testable predictions for fermionic DM (see Fig. 4) whereas, in the case of scalar DM, since Yukawa coupling f does not play any role in relic abundance, there is more freedom in the choice of parameters and yield no sizeable predictions.

Conclusions: In the light of recent experimental results confirming a 4.2σ discrepancy in the measurement of $(g - 2)_{\mu}$ and a possible 7σ excess in the mass of W boson it is imperative to investigate new physics contributions for clarification. We propose the ScotoZee model, a simple charged singlet extension of the Scotogenic model, to show a direct correlation between these anomalies and the observed neutrino oscillation data as well as dark matter relic abundance. We explore the parameter space spanned by both the bosonic and fermionic dark matter candidates and provide a coherent resolution to the AMM and M_W anomaly while evading dangerous LFV processes like $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$, which are enhanced by the Majorana neutrino mass entering through the mixing of the charged scalars. In contrast to the simple Scotogenic/IDM models, where the small mass splitting $\Delta_{H^+} = m_{H^+} - m_H$ required for the production of observed relic abundance is disfavored by the CDF measurement, the scalar DM candidate in our model survives due to the presence of the extra charged singlet. This model predicts large rates for LFV process $\tau \rightarrow \ell \gamma$ which can be tested in the future experiments.

Acknowledgements: AT would like to thank Julian Heeck, K.S. Babu, Vishnu P.K., and D. Raut for useful discussions. RD thanks the U.S. Department of Energy for the financial support, under grant number DE-SC 0016013.

Appendix A: Scalar potential

The most general renormalizable scalar potential of the ScotoZee model is given by:

$$V = \mu_\phi^2 \phi^\dagger \phi + \mu_\eta^2 \eta^\dagger \eta + \frac{\lambda_1}{2}(\phi^\dagger \phi)^2 + \frac{\lambda_2}{2}(\eta^\dagger \eta)^2 + \lambda_3(\phi^\dagger \phi)(\eta^\dagger \eta) + \lambda_4(\phi^\dagger \eta)(\eta^\dagger \phi) + \frac{\lambda_5}{2}(\phi^\dagger \phi)^2 + \text{h.c.}$$
$+ \frac{\lambda_6}{2} (S^- S^+)^2 + \lambda_7 (\phi^\dagger \phi)(S^- S^+) + \lambda_8 (\eta^\dagger \eta)(S^- S^+) + \frac{\mu_2}{2} [\varepsilon_{\alpha \beta} \phi^\alpha \eta^\beta S^- + \text{h.c.}]$.

(8)

Appendix A: Oblique parameters

$\delta H_+ = 1 \text{ GeV}$

$\delta H_+ = 100 \text{ GeV}$

$\delta H_+ = 200 \text{ GeV}$

$\sin(\theta)$ as a function of charged scalar mass m_{H^+} for different mass splitting between the doublet fields, $\delta_{H^+} = m_{H^+} - m_H$ (top) and mass of neutral scalars as a function of mass splitting between the doublet fields for different choices of charged singlet scalar mass (bottom). These plots show the parameter space required to explain the upward shift in M_W reported by CDF measurement, consistent with the 2σ ranges of S and T from Ref. [29].

FIG. 5: Mixing angle θ as a function of charged scalar mass m_{H^+} for different mass splitting between the doublet fields, $\delta_{H^+} = m_{H^+} - m_H$ (top) and mass of neutral scalars as a function of mass splitting between the doublet fields for different choices of charged singlet scalar mass (bottom). These plots show the parameter space required to explain the upward shift in M_W reported by CDF measurement, consistent with the 2σ ranges of S and T from Ref. [29].

* E-mail: rdcruz@okstate.edu
† E-mail: wtd8kz@virginia.edu

[1] CDF Collaboration, T. Aaltonen et al., “High-precision measurement of the W boson mass with the CDF II detector,” *Science* 376 no. 6589, (2022) 170–176.

[2] M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, “Precise prediction for the W boson mass in the standard model,” *Phys. Rev. D* 69 (2004) 053006, [hep-ph/0311148].

[3] A. Strumia, “Interpreting electroweak precision data including the W-mass CDF anomaly,” [2204.04191].

[4] P. Asadi, C. Cesarotti, K. Fraser, S. Homiller, and A. Parikh, “Oblique Lessons from the W Mass Measurement at CDF II,” [2204.05283].

[5] E. Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, “SMEFT Analysis of m_W,” [2204.05260].

[6] L. Di Luzio, M. Nardecchia, and C. Toni, “Light vectors coupled to anomalous currents with harmless Wess-Zumino terms,” [2204.05945].

[7] T.-K. Chen, C.-W. Chiang, and K. Yagyu, “Explanation of the W mass shift at CDF II in the Georgi-Machacek Model,” [2204.12898].

[8] P. Perez Fileviez, H. H. Patel, and A. D. Plascencia, “On the W-mass and New Higgs Bosons,” [2204.07144].

[9] A. Ghoshal, N. Okada, S. Okada, D. Raut, Q. Shafi, and A. Thapa, “Type III seesaw with R-parity violation in light of m_W (CDF),” [2204.07138].

[10] D. Borah, S. Mahapatra, and N. Sahu, “Singlet-Doublet Fermion Origin of Dark Matter, Neutrino Mass and W-Mass Anomaly,” [2204.09671].

[11] P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, D. Stöckinger, and A. Voigt, “Precise calculation of the W boson pole mass beyond the Standard Model with FlexibleSUSY,” [2204.05285].

[12] E. d. S. Almeida, A. Alves, O. J. P. Eboli, and M. C. Gonzalez-Garcia, “Impact of CDF-II measurement of m_W on the electroweak legacy of the LHC Run II,” [2204.10130].

[13] A. Addazi, A. Marciano, A. P. Morais, R. Pasechnik, and H. Yang, “CDF II W-mass anomaly faces first-order electroweak phase transition,” [2204.10315].

[14] J. Heeck, “W-boson mass in the triplet seesaw model,” [2204.10274].

[15] M. Du, Z. Liu, and P. Nath, “CDF W mass anomaly
from a dark sector with a Stueckelberg-Higgs portal,” [2204.09024].

16] Y.-P. Zeng, C. Cai, Y.-H. Su, and H.-H. Zhang, “Extra boson mix with Z boson explaining the mass of W boson,” [2204.09487].

17] Y. Cheng, X.-G. He, F. Huang, J. Sun, and Z.-P. Xing, “Dark photon kinetic mixing effects for CDF W mass excess,” [2204.10156].

18] C. Cai, D. Qiu, Y.-L. Tang, Z.-H. Yu, and H.-H. Zhang, “Corrections to electroweak precision observables from mixings of an exotic vector boson in light of the CDF-W mass anomaly,” [2204.11570].

19] X. Liu, S.-Y. Guo, B. Zhu, and Y. Li, “Unifying gravitational waves with W boson, FIMP dark matter, and Majorana Seesaw mechanism,” [2004.04834].

20] H. Song, W. Su, and M. Zhang, “Electroweak Phase Transition in 2HDM under Higgs, Z-pole, and W precision measurements,” [2204.05085].

21] T. Biekkö, S. Heinemeyer, and G. Weiglein, “Excesses in the low-mass Higgs-boson search and the W-boson mass measurement,” [2204.05975].

22] A. Crivellin, M. Kirk, T. Kitahara, and F. Mescia, “Correlating t → cZ to the W Mass and B Physics with Vector-Like Quarks,” [2004.05962].

23] Y. Heo, D.-W. Jung, and J. S. Lee, “Impact of the CDF W mass anomaly on two Higgs doublet model,” [2204.05728].

24] H. Bahl, J. Braathen, and G. Weiglein, “New physics effects on the W-boson mass from a doublet extension of the SM Higgs sector,” [2204.05269].

25] Y. H. Ahn, S. K. Kang, and R. Ramos, “Implications of New CDF-II W Boson Mass on Two Higgs Doublet Model,” [2004.06485].

26] L. M. Carpenter, T. Murphy, and M. J. Smylie, “Changing patterns in electroweak precision with new color-charged states: Oblique corrections and the W boson mass,” [2204.08546].

27] O. Popov and R. Srivastava, “The Triplet Dirac Seesaw in the View of the Recent CDF-II W Mass Anomaly,” [2204.08568].

28] K. Ghorbani and P. Ghorbani, “W-Boson Mass Anomaly from Scale Invariant 2HDM,” [2004.09001].

29] C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “Electroweak Precision Fit and New Physics in light of W Boson Mass,” [2204.03796].

30] X.-F. Han, F. Wang, L. Wang, J. M. Yang, and Y. Zhang, “A joint explanation of W-mass and muon g-2 in 2HDM,” [2204.06505].

31] J. J. Heckman, “Extra W-Boson Mass from a D3-Brane,” [2204.05302].

32] J. Cao, L. Meng, L. Shang, S. Wang, and B. Yang, “Interpreting the W mass anomaly in the vectorlike quark models,” [2204.09477].

33] S. Lee, K. Cheung, J. Kim, C.-T. Lu, and J. Song, “Status of the two-Higgs-doublet model in light of the CDF m_W measurement,” [2204.10338].

34] H. Abouabid, A. Arhrib, R. Benbrik, M. Krab, and M. Ouchemhou, “Is the new CDF m_W measurement consistent with the two higgs doublet model?,” [2204.12018].

35] R. Benbrik, M. Boukidi, and B. Manaft, “W-mass and 96 GeV excess in type-III 2HDM,” [2204.11755].

36] S. Baek, “Implications of CDF W-mass and (g − 2)_µ on U(1)_Lμ−Lτ model,” [2204.09585].

37] A. Bhaskar, A. A. Madathil, T. Mandal, and S. Mitra, “Combined explanation of W-mass, muon g − 2, R_K^{(*)} and R_D^{(π^*)} anomalies in a singlet-triplet scalar leptoquark model,” [2204.09031].

38] T. A. Chowdhury, J. Heeck, S. Saad, and A. Thapa, “W boson mass shift and muon magnetic moment in the Zee model,” [2204.08390].

39] K. Cheung, W.-Y. Keng, and P.-Y. Tseng, “Iso-doublet Vector Leptoquark solution to the Muon g − 2, R_K^{(*)}, R_D^{(π^*)}, and W-mass Anomalies,” [2204.05942].

40] K. S. Babu, S. Jana, and V. P. K., “Correlating W-Boson Mass Shift with Muon g − 2 in the 2HDM,” [2204.05303].

41] H. M. Lee and K. Yamashita, “A Model of Vector-like Leptons for the Muon g − 2 and the W Boson Mass,” [2204.06024].

42] P. Athron, A. Fowlie, C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “The W boson Mass and Muon g − 2: Hadronic Uncertainties or New Physics?,” [2204.03996].

43] J. M. Yang and Y. Zhang, “Low energy SUSY confronted with new measurements of W-boson mass and muon g-2,” [2004.04202].

44] X. K. Du, Z. Li, F. Wang, and Y. K. Zhang, “Explaining The Muon g − 2 Anomaly and New CDF II W-Boson Mass in the Framework of (Extra)Ordinary Gauge Mediation,” [2204.04286].

45] K.-Y. Zhang and W.-Z. Feng, “Explaining W boson mass anomaly and dark matter with a U(1) dark sector,” [2204.08067].

46] B.-Y. Zhu, S. Li, J.-G. Cheng, R.-L. Li, and Y.-F. Liang, “Using gamma-ray observation of dwarf spheroidal galaxy to test a dark matter model that can interpret the W-boson mass anomaly,” [2204.04688].

47] G. Cacciapaglia and F. Sannino, “The W boson mass weighs in on the non-standard Higgs,” [2004.04514].

48] Y.-Z. Fan, T.-P. Tang, Y.-L. S. Tsai, and L. Wu, “Inert Higgs Dark Matter for New CDF W-boson Mass and Detection Prospects,” [2204.03693].

49] C.-R. Zhu, M.-Y. Cui, Z.-Q. Xia, Z.-H. Yu, X. Huang, Q. Yuan, and Y. Z. Fan, “GeV antiproton/gamma-ray excesses and the W-boson mass anomaly: three faces of ~ 60 − 70 GeV dark matter particle?,” [2003.03767].

50] A. Batra, S. K. A., S. Mandal, and R. Srivastava, “W boson mass in Singlet-Triplet Scotogenic dark matter model,” [2204.09376].

51] G. Arcadi and A. Djouadi, “The 2HD+a model for a combined explanation of the possible excesses in the CDF M_W measurement and (g − 2)_µ with Dark Matter,” [2204.08406].

52] K. I. Nagao, T. Nomura, and H. Okada, “A model explaining the new CDF II W boson mass linking to muon g − 2 and dark matter,” [2204.07411].

53] J. Kawamura, S. Okawa, and Y. Omura, “W boson mass and muon g − 2 in a lepton portal dark matter model,” [2204.07022].

54] T.-P. Tang, M. Abdughani, L. Feng, Y.-L. S. Tsai, and Y.-Z. Fan, “NMSSM neutralino dark matter for W-boson mass and muon g − 2 and the promising prospect of direct detection,” [2204.04356].

55] J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits,”
Z. Péli and Z. Trócsányi, “Vacuum stability and scalar K.-S. Sun, W.-H. Zhang, J.-B. Chen, and H.-B. Zhang, “The M.-D. Zheng, F.-Z. Chen, and H.-H. Zhang, “The S. Kanemura and K. Yagyu, “Implication of the W-boson mass in the light of the CDF II result,” [2204.04770].

J. Fan, L. Li, T. Liu, and K.-F. Lyu, “W-Boson Mass Electroweak Precision Tests and SMEFT,” [2204.04805].

F. Arias-Aragón, E. Fernández-Martínez, M. González-López, and L. Merlo, “Dynamical Minimal Flavour Violating Inverse Seesaw,” [2204.04672].

A. Paul and M. Valli, “Violation of custodial symmetry from W-boson mass measurements,” [2204.05267].

J. Gu, Z. Liu, T. Ma, and J. Shu, “Speculations on the W-Mass Measurement at CDF,” [2204.05296].

L. Di Luzio, R. Gröber, and P. Paradisi, “Higgs physics confronts the M_W anomaly,” [2204.05824].

Y. Cheng, X.-G. He, Z.-L. Huang, and M.-W. Li, “Type-II Seesaw Triplet Scalar and Its VEV Effects on Neutrino Trident Scattering and W mass,” [2204.05031].

M. Endo and S. Mishima, “New physics interpretation of W-boson mass anomaly,” [2204.05065].

X. K. Du, Z. Li, F. Wang, and Y. K. Zhang, “Explaining The New CDF II W-Boson Mass Data In The Georgi-Machacek Extension Models,” [2204.05760].

R. Balkin, E. Madge, T. Menzo, G. Perez, Y. Soreq, and J. Zupan, “On the implications of positive W mass shift,” [2204.05992].

N. V. Krasnikov, “Nonlocal generalization of the SM as an explanation of recent CDF result,” [2204.06327].

M.-D. Zheng, F.-Z. Chen, and H.-H. Zhang, “The Wtlt-vertex corrections to W-boson mass in the R-parity violating MSSM,” [2204.06541].

K.-S. Sun, W.-H. Zhang, J.-B. Chen, and H.-B. Zhang, “The lepton flavor violating decays of vector mesons in the MRSSM,” [2204.06234].

Z. Péli and Z. Trócsányi, “Vacuum stability and scalar masses in the superweak extension of the standard model,” [2204.07100].

S. Kanemura and K. Yagyu, “Implication of the W boson mass anomaly at CDF II in the Higgs triplet model with a mass difference,” [2204.07511].

P. Mondal, “Enhancement of the W boson mass in the Georgi-Machacek model,” [2204.07844].

H. B. T. Tan and A. Derevianko, “Implications of W-boson mass anomaly for atomic parity violation,” [2204.11991].

V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, and T. Tong, “Beta-decay implications for the W-boson mass anomaly,” [2204.08440].

D. Borah, S. Mahapatra, D. Nanda, and N. Sahu, “Type II Dirac Seesaw with Observable ΔNeff in the light of W-Mass Anomaly,” [2204.08266].

T. Yang, S. Qian, S. Deng, J. Xiao, L. Gao, A. M. Levin, Q. Li, M. Lu, and Z. You, “The physics case for a neutrino lepton collider in light of the CDF W mass measurement,” [2204.11871].

R. Rahaman, “On two-body and three-body spin correlations in leptonic tZ production and anomalous couplings at the LHC,” [2204.12152].

M. Pellen, R. Poncelet, A. Popescu, and T. Vitos, “Angular coefficients in W+j production at the LHC with high precision,” [2204.12394].

R. Dermisek, J. Kawamura, E. Lunghi, N. McGinnis, and S. Shin, “Leptonic cascade decays of a heavy Higgs boson through vectorlike leptons at the LHC,” [2204.13272].

L.-B. Chen, L. Dong, H. T. Li, Z. Li, J. Wang, and Y. Wang, “One-loop squared amplitudes for hadronic tW production at next-to-next-to-leading order in QCD,” [2204.13500].

P. Perez Fileviez, H. H. Patel, and A. D. Plascencia, “On the W-mass and New Higgs Bosons,” [2204.07144].

R. S. Gupta, “Running away from the T-parameter solution to the W mass anomaly,” [2204.13690].

Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 141801, [2104.03281].

Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73 (2006) 072003, [hep-ex/0602035].

T. Aoyama et al., “The anomalous magnetic moment of the muon in the Standard Model,” Phys. Rept. 887 (2020) 1–166, [2006.04822].

Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571 (2014) A16, [1303.5076].

WMAP Collaboration, E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. 192 (2011) 18, [1001.4538].

Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, [1807.06209]. [Erratum: Astron.Astrophys.652, C4 (2021)].

Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.

E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D 73 (2006) 077301, [hep-ph/0601225].

R. Longas, “Inert extension of the Zee model,” Nucl. Part. Phys. Proc. 267-269 (2015) 342–344.

R. Longas, D. Portillo, D. Restrepo, and O. Zapata, “The Inert Zee Model,” JHEP 03 (2016) 162, [1511.01873].

A. Beníwal, J. Herrero-García, N. Leerdam, M. White, and A. G. Williams, “The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model,” JHEP 21 (2020) 136, [2010.05937].

A. Gaviria, R. Longas, and O. Zapata, “Charged lepton flavor violation and electric dipole moments in the inert Zee model,” JHEP 10 (2018) 188, [1809.00655].

D. Hanneke, S. Fogwell, and G. Gabrielse, “New Measurement of the Electron Magnetic Moment and the Fine Structure Constant,” Phys. Rev. Lett. 100
A. Pierce and J. Thaler, “Natural Dark Matter from...

H. E. Haber and D. O'Neil, “Basis-independent CP-conserving limit, custodial symmetry, and the methods for the two-Higgs-doublet model III: The strongly interacting Higgs sector,” Phys. Rev. Lett. 85 (1995) 964–967.

M. E. Peskin and T. Takeuchi, “A New constraint on a strongly interacting Higgs sector,” Phys. Rev. Lett. 65 (1990) 964–967.

M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Phys. Rev. D 46 (1992) 381–409.

A. Zee, “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation,” Phys. Lett. B 93 (1980) 389. [Erratum: Phys.Lett.B 95, 461 (1980)].

J. Herrero-García, T. Ohlsson, S. Riad, and J. Wirén, “Full parameter scan of the Zee model: exploring Higgs lepton flavor violation,” JHEP 04 (2017) 130, [1701.05345].

H. E. Haber and D. O’Neil, “Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U,” Phys. Rev. D 83 (2011) 055017, [1011.6188].

J. P. Leveille, “The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models,” Nucl. Phys. B 137 (1978) 63–76.

L. Lavoura, “General formulae for f(1) → f(2) gamma,” Eur. Phys. J. C 29 (2003) 191–195, [hep-ph/0302221].

T. Tomà and A. Vicente, “Lepton Flavor Violation in the Scotogenic Model,” JHEP 01 (2014) 160, [1312.2840].

CMS Collaboration, A. M. Sirunyan et al., “Search for supersymmetric partners of electrons and muons in proton-proton collisions at √s = 13 TeV,” Phys. Lett. B 790 (2019) 140–166, [1806.05264].

A. Pierce and J. Thaler, “Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale,” JHEP 08 (2007) 026, [hep-ph/0703056].

A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte, and M. Thomas, “Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and non-LHC Dark Matter Searches,” Phys. Rev. D 97 no. 3, (2018) 035011, [1612.00609].

F. Staub, “SARAH,” [0806.0538].

G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “MicroMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model,” Comput. Phys. Commun. 176 (2007) 367–382, [hep-ph/0607059].

C. Arina, F.-S. Ling, and M. H. G. Tytgat, “IDM and iDM or The Inert Doublet Model and Inelastic Dark Matter,” JCAP 10 (2009) 018, [0907.0430].

DEAP Collaboration, B. Lehnert, “DEAP-3600 Recent Dark Matter Results,” in 53rd Rencontres de Moriond on Cosmology, pp. 311–314. 2018. [1812.04764].

LUX-ZEPLIN Collaboration, D. S. Akerib et al., “Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment,” Phys. Rev. D 101 no. 5, (2020) 052002, [1802.06039].

XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302, [1805.12562].

CDMS-II Collaboration, Z. Ahmed et al., “Dark Matter Search Results from the CDMS II Experiment,” Science 327 (2010) 1619–1621, [0912.3582].

BaBar Collaboration, B. Aubert et al., “Searches for Lepton Flavor Violation in the Decays tau+ → e+ gamma and tau+ → mu+ gamma,” Phys. Rev. Lett. 104 (2010) 021802, [0908.2381].

Belle, Belle-II Collaboration, K. Hayasaka, “Results and prospects on lepton flavor violation at Belle/Belle II,” J. Phys. Conf. Ser. 408 (2013) 012069.

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 09 (2020) 178, [2007.14792].

J. A. Casas and A. Ibarra, “Oscillating neutrinos and μ → e, γ,” Nucl. Phys. B 618 (2001) 171–204, [hep-ph/0103065].

MEG Collaboration, J. Adam et al., “New constraint on the existence of the μ+ → e+γ decay,” Phys. Rev. Lett. 110 (2013) 201801, [1303.0754].