An Optimal Gap Theorem in a Complete Strictly Pseudoconvex CR \((2n + 1)\)-Manifold

Shu-Cheng Chang\(^1\) · Yen-Wen Fan\(^2\)

Received: 13 April 2015 / Published online: 6 August 2015
© Mathematica Josephina, Inc. 2015

Abstract In this paper, by applying a linear trace Li–Yau–Hamilton inequality for a positive \((1, 1)\)-form solution of the CR Hodge-Laplace heat equation and monotonicity of the heat equation deformation, we obtain an optimal gap theorem for a complete strictly pseudoconvex CR \((2n + 1)\)-manifold with nonnegative pseudohermitian bisectional curvature and vanishing torsion. We prove that if the average of the Tanaka–Webster scalar curvature over a ball of radius \(r\) centered at some point \(o\) decays as \(o(r^{-2})\), then the manifold is flat.

Keywords Gap theorem · Li–Yau–Hamilton inequality · CR Hodge–Laplace · CR Moment type estimate · Heat kernel · Subelliptic operator

Mathematics Subject Classification Primary 32V05 · 32V20, Secondary 53C56

1 Introduction

In [14,41] and [43], it is conjectured that a complete noncompact Kähler manifold of positive holomorphic bisectional curvature of complex dimension \(m\) is biholomorphic
phic to \mathbb{C}^m. The first result concerning this conjecture was obtained by Mok–Siu–Yau ([29]) and Mok ([27]). Let M be a complete noncompact Kähler manifold of nonnegative holomorphic bisectional curvature of complex dimension $m \geq 2$. They proved that M is isometrically biholomorphic to \mathbb{C}^m with the standard flat metric under the assumptions of the maximum volume growth condition

$$V_o (r) \geq \delta r^{2m}$$

for some point $o \in M$, $\delta > 0$, $r(x) = d(o, x)$ and the scalar curvature R decays as

$$R(x) \leq \frac{C}{1 + r^{2+\epsilon}}, \quad x \in M$$

for $C > 0$ and any arbitrarily small positive constant ϵ. Since then there are several further works aiming to prove the optimal result; the reader is referred to [7, 8, 26, 33] and [35]. A key common ingredient used in the previous works such as [29, 33] and [35] is to solve the so-called Poincaré–Lelong equation

$$\sqrt{-1} \partial \bar{\partial} u = \rho,$$

for a given d-closed real $(1,1)$-form ρ and then show that $\text{trace}(\rho) = 0$ by using (1.1). In particular in [35], Ni and Tam showed that the solution $u(x)$ of $\sqrt{-1} \partial \bar{\partial} u = Ric$ is of $o(\log r(x))$ growth with the extra condition $\liminf_{r \to \infty} \exp(-ar^2) \int_{B_o(r)} R^2(y) d\mu(y) < \infty$ for some $a > 0$. Then the result follows from the Liouville theorem for plurisubharmonic functions which asserts that any continuous plurisubharmonic function with upper growth bound of $o(\log r(x))$ must be a constant.

In 2012, L. Ni finally obtained an optimal gap theorem ([31]) on M with nonnegative bisectional curvature without the maximum volume growth condition, provided the following scalar decays

$$\frac{1}{V_o (r)} \int_{B_o(r)} R(y) d\mu(y) = o\left(r^{-2}\right).$$

In the paper of [31], L. Ni adapted a different method which has also succeeded in the recent resolution of the fundamental gap conjecture in [1]. The key step is, using a sharp differential estimate and monotonicity of the heat equation deformation of positive $(1,1)$-forms as in ([30]), it provided an alternate argument of proving the above-mentioned Liouville theorem.

A Riemannian version of ([29]) was proved in [15] shortly afterward. The present paper is concerned with an analogue of CR gap theorem on a complete noncompact strictly pseudoconvex CR $(2n + 1)$-manifold with nonnegative bisectional curvature. Recently, enlightened by the work of [30] as above, we obtained the linear trace version of Li–Yau–Hamilton inequality for positive solutions of the CR Lichnerowicz–Laplacian heat equation and then CR monotonicity of the heat equation deformation of positive $(1, 1)$-forms is available in order to prove the following CR gap theorem:

Theorem 1.1 Let M be a complete noncompact strictly pseudoconvex CR $(2n + 1)$-manifold with nonnegative bisectional curvature and vanishing torsion. Then M is flat if

$$\frac{1}{V_o (r)} \int_{B_o(r)} R(y) d\mu(y) = o\left(r^{-2}\right).$$
\[
\frac{1}{V_o(r)} \int_{B_o(r)} S(y) \, d\mu(y) = o\left(r^{-2}\right),
\]
for some point \(o \in M\). Here \(S(y)\) is the Tanaka–Webster scalar curvature and \(V_o(r)\) is the volume of the ball \(B_o(r)\) with respect to the Carnot–Carathéodory distance. As a consequence if \(M\) is not flat, then

\[
\liminf_{r \to \infty} \frac{r^2}{V_o(r)} \int_{B_o(r)} S(y) \, d\mu(y) > 0
\]
for any \(o \in M\).

Here we adapt the method as in [31]. Below is the main idea in our proof. We first work on degenerated parabolic systems in CR manifolds which are different from Kähler manifolds:

\[
\begin{align*}
\frac{\partial}{\partial t} \phi(x,t) &= \Delta_H \phi(x,t), \\
\phi(x,0) &= Ric(x) \geq 0.
\end{align*}
\]

Here \(\Delta_H\) is the CR Hodge–Laplacian operator, \(Ric(x) = i R_{\alpha\overline{\beta}} \theta^\alpha \wedge \overline{\theta^\beta}\) is the pseudohermitian Ricci form of a strictly pseudoconvex CR \((2n + 1)\)-manifold.

Let \(M\) be a complete noncompact strictly pseudoconvex CR \((2n + 1)\)-manifold with nonnegative bisectional curvature and vanishing torsion. It follows from Proposition 3.1 that there exists a long time solution \(\phi(x,t)\) with \(\phi(x,t) \geq 0\) on \(M \times [0, \infty)\). Now let \(u(x, t) = \Lambda(\phi)\) which is nonnegative and satisfies the CR heat equation with \(u(x, 0) = S(x)\). The Li–Yau–Hamilton Harnack quantity (4.6) and monotonicity property (5.13) with vanishing mixed-term implies that \(tu(x, t)\) is nondecreasing in \(t\) for any \(x\). Finally, the Assumption (1.2) and CR moment type estimate (3.10) imply \(\lim_{t \to \infty} tu(x, t) = 0\). Hence the monotonicity and maximum principle imply \(tu(x, t) \equiv 0\) for all \(t > 0\) and any \(x \in M\). The flatness then follows from \(u(x, 0) = 0\) which is clear by continuity.

The rest of the paper is organized as follows. In Sect. 2, we give an introduction to pseudohermitian manifolds and some notation. In Sect. 3, we obtain the CR moment type estimate which is the first key estimate for the proof of main theorem. In Sect. 4, we relate the linear trace Li–Yau–Hamilton type inequality of the CR Lichnerowicz–Laplacian heat equation to a monotonicity formula of the heat solution. In Sect. 5, we prove the CR optimal gap theorem.

2 Preliminaries

First we introduce some basic material on pseudohermitian \((2n + 1)\)-manifolds (see [20,21] for more details). Let \((M, \xi)\) be a \((2n + 1)\)-dimensional, orientable, contact manifold with contact structure \(\xi\). A CR structure compatible with \(\xi\) is an endomorphism \(J : \xi \to \xi\) such that \(J^2 = -1\). We also assume that \(J\) satisfies the following integrability condition: If \(X\) and \(Y\) are in \(\xi\), then so are \([JX, Y] + [X, JY]\) and \(J([JX, Y] + [X, JY]) = [JX, JY] - [X, Y]\).

Let \(\{T, Z_\alpha, Z_{\overline{\alpha}}\}\) be a frame of \(TM \otimes \mathbb{C}\), where \(Z_\alpha\) is any local frame of \(T_{1,0}\). \(Z_{\overline{\alpha}} = \overline{Z_\alpha} \in T_{0,1}\) and \(T\) is the characteristic vector field. Then \(\{\theta, \theta^\alpha, \theta^\overline{\alpha}\}\), which is the
coframe dual to \{T, Z_\alpha, \bar{Z_\beta}\}, satisfies

\[d\theta = ih_{\alpha\bar{\beta}}\theta^\alpha \wedge \theta^{\bar{\beta}} \] \hspace{1cm} (2.1)

for some positive definite Hermitian matrix of functions \((h_{\alpha\bar{\beta}})\); if we have this contact structure, we call such \(M\) a strictly pseudoconvex CR \((2n + 1)\)-manifold.

The Levi form \(\langle\cdot,\cdot\rangle_{L_\theta}\) is the Hermitian form on \(T_{1,0}\) defined by

\[\langle Z, W\rangle_{L_\theta} = -i\langle d\theta, Z \wedge W\rangle. \]

We can extend \(\langle\cdot,\cdot\rangle_{L_\theta}\) to \(T_{0,1}\) by defining \(\langle Z, W\rangle_{L_\theta}\) for all \(Z, W \in T_{1,0}\). The Levi form induces naturally a Hermitian form on the dual bundle of \(T_{1,0}\), denoted by \(\langle\cdot,\cdot\rangle_{L^*_\theta}\), and hence on all the induced tensor bundles. Integrating the Hermitian form (when acting on sections) over \(M\) with respect to the volume form \(d\mu = \theta \wedge (d\theta)^n\), we get an inner product on the space of sections of each tensor bundle.

The Levi form \(\langle\cdot,\cdot\rangle_{L_\theta}\) gives rise to the pseudohermitian connection of \((J, \theta)\) by

\[\nabla Z_\alpha = \theta^{\alpha\beta} \otimes Z_\beta, \quad \nabla \bar{Z_\alpha} = \theta^{\bar{\alpha}\bar{\beta}} \otimes \bar{Z_{\bar{\beta}}}, \quad \nabla T = 0, \]

where \(\theta^{\alpha\beta}\) are the 1-forms uniquely determined by the following equations:

\begin{align*}
 d\theta^\beta &= \theta^\alpha \wedge \theta^{\alpha\beta} + \theta \wedge \tau^\beta, \\
 0 &= \tau_\alpha \wedge \theta^\alpha, \\
 0 &= \theta^\alpha_{\beta} + \theta^{\bar{\alpha}}_{\bar{\beta}}.
\end{align*}

We can write (by Cartan’s lemma) \(\tau_\alpha = A_{\alpha\gamma} \theta^\gamma\) with \(A_{\alpha\gamma} = A_{\gamma\alpha}\). The curvature of Webster–Stanton connection, expressed in terms of the coframe \(\theta = \theta^0, \theta^\alpha, \theta^{\bar{\alpha}}\), is

\begin{align*}
 \Pi^\alpha_{\beta} &= \Pi^{\alpha}_{\bar{\beta}} = d\omega_{\beta\alpha} - \omega_{\beta\gamma} \wedge \omega_{\gamma\alpha}, \\
 \Pi^0_{\alpha} &= \Pi^{\alpha}_{\bar{0}} = \Pi^{\bar{0}}_{\bar{\alpha}} = \Pi^{\bar{1}}_{\bar{\beta}} = \Pi^{\bar{0}}_{\bar{0}} = 0.
\end{align*}

Webster showed that \(\Pi^\alpha_{\beta}\) can be written

\[\Pi^\alpha_{\beta} = R^\alpha_{\rho\sigma\rho\sigma} \theta^\rho \wedge \theta^{\sigma} + W^\alpha_{\rho\sigma\rho\sigma} \theta^\rho \wedge \theta - W^\alpha_{\bar{\rho}\bar{\sigma}\bar{\rho}\bar{\sigma}} \theta^{\bar{\rho}} \wedge \theta + i\theta^\beta \wedge \tau^\alpha - i\tau^\beta \wedge \theta^\alpha \]

where the coefficients satisfy

\[R^\rho_{\bar{\sigma}\rho\sigma} = R^\alpha_{\rho\sigma\rho\sigma} = R^\rho_{\rho\sigma\rho\sigma} = R_{\rho\bar{\sigma}\rho\sigma}, \quad W_{\rho\sigma\rho\sigma} = W_{\rho\sigma\rho\sigma}. \]

Here \(R^\delta_{\alpha\bar{\beta}}\) is the pseudohermitian curvature tensor, \(R_{\alpha\bar{\beta}} = R_{\gamma\alpha\bar{\beta}}\) is the pseudohermitian Ricci curvature tensor, \(S = R_{\alpha\bar{\sigma}}\) is the Tanaka–Webster scalar curvature and \(A_{\alpha\bar{\beta}}\) is the torsion tensor. Furthermore, we define the bi-sectional curvature
\[R_{\alpha\bar{\alpha}\beta\bar{\beta}}(X, Y) = R_{\alpha\bar{\alpha}\beta\bar{\beta}}X_\alpha X_\beta Y_{\bar{\beta}} Y_{\bar{\alpha}} \]

and the bi-torsion tensor

\[T_{\alpha\bar{\beta}}(X, Y) := i(A_{\bar{\beta};\rho}X_\rho Y_\alpha - A_{\rho;\beta}X_{\bar{\rho}} Y_{\bar{\beta}}) \]

and the torsion tensor

\[Tor(X, Y) := h^{\alpha\bar{\beta}} T_{\alpha\bar{\beta}}(X, Y) = i(A_{\bar{\alpha};\rho}X_\rho Y_\alpha - A_{\rho;\alpha}X_{\bar{\rho}} Y_{\bar{\alpha}}) \]

for any \(X = X_\alpha Z_\alpha, \ Y = Y_{\bar{\alpha}} Z_{\bar{\alpha}} \) in \(T_{1,0} \).

We will denote components of covariant derivatives with indices preceded by a comma; thus write \(A_{\alpha\beta,\gamma} \). The indices \(\{0, \alpha, \bar{\alpha}\} \) indicate derivatives with respect to \(\{T, Z_\alpha, Z_{\bar{\alpha}}\} \). For derivatives of a scalar function, we will often omit the comma, for instance, \(u_\alpha = Z_\alpha u, \ u_{\alpha\bar{\beta}} = Z_{\bar{\beta}} Z_\alpha u - \omega_{\alpha\gamma}(Z_{\bar{\beta}})Z_{\gamma} u. \)

For a smooth real-valued function \(u \), the subgradient \(\nabla_b u \) is defined by \(\nabla_b u \in \xi \) and \(\langle Z, \nabla_b u \rangle_{L_0} = du(Z) \) for all vector fields \(Z \) tangent to the contact plane. Locally \(\nabla_b u = \sum_{\alpha} u_{\bar{\alpha}} Z_\alpha + u_\alpha Z_{\bar{\alpha}} \). We also denote \(u_0 = Tu \).

We can use the connection to define the subhessian as the complex linear map

\[\left(\nabla^H \right)^2 u : T_{1,0} \oplus T_{0,1} \to T_{1,0} \oplus T_{0,1} \]

by

\[\left(\nabla^H \right)^2 u(Z) = \nabla_Z \nabla_b u. \]

In particular,

\[|\nabla_b u|^2 = 2u_\alpha u_{\bar{\alpha}}, \quad |\nabla^2_b u|^2 = 2(u_{\alpha\beta} u_{\bar{\alpha}\bar{\beta}} + u_{\alpha\bar{\beta}} u_{\bar{\alpha}\beta}). \]

Also

\[\Delta_b u = Tr \left(\left(\nabla^H \right)^2 u \right) = \sum_{\alpha}(u_{\alpha\bar{\alpha}} + u_{\bar{\alpha}\alpha}). \]

The Kohn–Rossi Laplacian \(\Box_b \) on functions is defined by

\[\Box_b \varphi = 2\overline{\partial^*_b \partial_b} \varphi = (\Delta_b + inT) \varphi = -2\varphi_{\alpha\bar{\alpha}} \]

and on \((p, q)\)-forms is defined by

\[\Box_b = 2(\overline{\partial^*_b \partial_b} + \overline{\partial_b \partial^*_b}). \]
Next we recall the following commutation relations ([20]). Let \(\varphi \) be a scalar function and \(\sigma = \sigma_\alpha \theta^\alpha \) be a \((1, 0)\)-form, then we have

\[
\varphi_\alpha \beta = \varphi_\beta \alpha, \\
\varphi_\alpha \bar{\beta} - \varphi_{\bar{\beta}} \alpha = ih_{\alpha \bar{\beta}} \varphi_0, \\
\varphi_0 \alpha - \varphi_\alpha 0 = A_{\alpha \beta} \varphi_{\bar{\beta}}, \\
\sigma_{\alpha, 0 \beta} - \sigma_{\alpha, \beta 0} = \sigma_{\alpha, \bar{\gamma}} A_{\gamma \beta} - \sigma_{\gamma} A_{\alpha \beta, \bar{\gamma}}, \\
\sigma_{\alpha, 0 \bar{\beta}} - \sigma_{\alpha, \bar{\beta} 0} = \sigma_{\alpha, \gamma} A_{\bar{\gamma} \bar{\beta}} + \sigma_{\gamma} A_{\bar{\gamma} \bar{\beta}, \alpha},
\]

and

\[
\sigma_{\alpha, \beta \gamma} - \sigma_{\alpha, \gamma \beta} = i A_{\alpha \gamma} \sigma_{\bar{\beta}} - i A_{\alpha \beta} \sigma_{\gamma}, \\
\sigma_{\alpha, \bar{\gamma} \bar{\beta}} - \sigma_{\alpha, \bar{\beta} \bar{\gamma}} = ih_{\alpha \bar{\beta}} A_{\bar{\gamma} \bar{\rho}} \sigma_{\rho} - ih_{\alpha \gamma} A_{\bar{\beta} \bar{\rho}} \sigma_{\rho}, \\
\sigma_{\alpha, \bar{\beta} \bar{\gamma}} - \sigma_{\alpha, \bar{\gamma} \bar{\beta}} = ih_{\beta \bar{\gamma}} \sigma_{\alpha, 0} + R_{\alpha \beta \gamma} \sigma_{\rho}.
\]

Moreover for multi-index \(I = (\alpha_1, \ldots, \alpha_p) \), \(\bar{I} = (\bar{\alpha}_1, \ldots, \bar{\alpha}_q) \), we denote \(I(\alpha_k = \mu) = (\alpha_1, \ldots, \alpha_{k-1}, \mu, \alpha_{k+1}, \ldots, \alpha_p) \). Then

\[
\eta_{I \bar{J}, \mu \lambda} - \eta_{\bar{I} J, \lambda \mu} = i \sum_{k=1}^{p} (\eta_{I(\alpha_k = \mu) \bar{J}} A_{\alpha_k \lambda} - \eta_{I(\alpha_k = \lambda) \bar{J}} A_{\alpha_k \mu}) - i \sum_{k=1}^{q} (\eta_{\bar{I} \bar{J}(\bar{\alpha}_k = \bar{\rho})} h_{\bar{\alpha}_k \mu} A_{\bar{\lambda} \bar{\rho}} - \eta_{\bar{I} \bar{J}(\bar{\alpha}_k = \bar{\gamma})} h_{\bar{\alpha}_k \lambda} A_{\bar{\rho} \bar{\mu}}),
\]

and

\[
\eta_{I \bar{J}, \bar{\lambda} \bar{\mu}} - \eta_{\bar{I} \bar{J}, \bar{\mu} \bar{\lambda}} = ih_{\lambda \bar{\mu}} \eta_{I \bar{J}, 0} + \sum_{k=1}^{p} \eta_{I(\alpha_k = \gamma) \bar{J}} R_{\alpha_k \gamma \bar{\rho}} + \sum_{k=1}^{q} \eta_{\bar{I} \bar{J}(\bar{\alpha}_k = \bar{\rho})} R_{\bar{\alpha}_k \bar{\gamma} \bar{\lambda}}, \eta_{I \bar{J}, 0 \mu} - \eta_{\bar{I} \bar{J}, 0 \mu} = A_{\mu \bar{J}} \eta_{I \bar{J}, \bar{\rho}} - \sum_{k=1}^{p} A_{\alpha_k \mu, \bar{\rho}} \eta_{I(\alpha_k = \rho) \bar{J}} + \sum_{k=1}^{q} A_{\mu \rho, \bar{\alpha}_k} \eta_{I \bar{J}(\bar{\alpha}_k = \bar{\rho})}.
\]

Finally, we recall the following definition.

Definition 2.1 A piecewise smooth curve \(\gamma : [0, 1] \to M \) is said to be horizontal if \(\gamma'(t) \in \xi \) whenever \(\gamma'(t) \) exists. The length of \(\gamma \) is then defined by

\[
l(\gamma) = \int_{0}^{1} |\gamma'(t), \gamma'(t)|^{\frac{1}{2}}_{L_0} dt.
\]

The Carnot–Carathéodory distance between two points \(p, q \in M \) is

\[
d_c(p, q) = \inf \left\{ l(\gamma) \mid \gamma \in C_{p,q} \right\},
\]

where \(C_{p,q} \) is the set of all horizontal curves joining \(p \) and \(q \).
3 CR Moment-Type Estimates

Let \((M, J, \theta)\) be a strictly pseudoconvex CR \((2n + 1)\)-manifold. In our recent paper ([6] and [5]), we consider the CR Hodge–Laplacian

\[
\Delta_H = -\frac{1}{2} (\Box_b + \Box_{\bar{b}})
\]

for Kohn–Rossi Laplacian \(\Box_b\). For any \((1, 1)\)-form \(\phi(x, t) = \phi_{\alpha\bar{\beta}} \theta^\alpha \wedge \theta^{\bar{\beta}}\), we study the CR Hodge–Laplacian heat equation on \(M \times [0, T)\)

\[
\frac{\partial}{\partial t} \phi(x, t) = \Delta_H \phi(x, t). \tag{3.1}
\]

It follows from the CR Bochner–Weitzenböck formula ([5]) that the CR parabolic equation (3.1) is equivalent to the CR analogue of the Lichnerowicz–Laplacian heat equation:

\[
\frac{\partial}{\partial t} \phi_{\alpha\bar{\beta}} = \Delta_b \phi_{\alpha\bar{\beta}} + 2R_{\alpha\bar{\gamma}\mu\bar{\beta}} \phi_{\gamma\bar{\mu}} - (R_{\gamma\bar{\beta}} \phi_{\alpha\gamma} + R_{\alpha\bar{\gamma}} \phi_{\gamma\bar{\beta}}). \tag{3.2}
\]

In this section, we consider the following Dirichlet problem of degenerate parabolic systems:

\[
\begin{align*}
\left(\frac{\partial}{\partial t} - \Delta_H \right) \phi &= 0, & \text{on } \Omega \times [0, \infty), \\
\phi(x, t) &= 0, & \text{on } \partial \Omega \times [0, \infty), \\
\phi(x, 0) &= \phi_{\text{ini}}(x) & \text{on } \Omega.
\end{align*} \tag{3.3}
\]

In contrast to the Kähler case, the regularity of a solution for \(\Delta_H\) up to \(\partial \Omega\) may depend on the geometry around the characteristic point at the boundary ([16] and [17]) in the CR setting. In fact,

Proposition 3.1 There exist “sweetsop” exhaustion domains \(\Omega_\mu\) such that the solutions \(\phi_\mu\) of (3.3) are \(C^2, a(\Omega_\mu, \Lambda^{1,1}, [0, T])\).

We will give a detailed proof of Proposition 3.1 in Appendix. After the construction of the “sweetsop” exhaustion domain \(\Omega_\mu\) for \(\Delta_H\) as in Proposition 3.1, one is able to apply the semigroup method ([38]) to obtain better regularity of the solution of the CR Lichnerowicz–Laplacian heat equation (3.3) which depends on regularity of the initial condition. One more tensor maximum principle below is needed in the proof of the main theorem in order to have nonnegativity of the constructed solution \(\phi_\mu\) if the initial data is nonnegative.

Proposition 3.2 Let \((M, J, \theta)\) be a strictly pseudoconvex CR \((2n + 1)\)-manifold with nonnegative bisectional curvature. Let \(\Omega\) be a bounded domain in \(M\). Assume that \(\phi(x, t)\) is a \((1, 1)\)-form that satisfies

\[
\begin{align*}
\left(\frac{\partial}{\partial t} - \Delta_H \right) \phi &= 0, & \text{on } \Omega \times [0, \infty), \\
\phi(x, t) &\geq 0, & \text{on } \partial \Omega \times [0, \infty), \\
\phi(x, 0) &\geq 0 & \text{on } \Omega.
\end{align*}
\]

Then \(\phi(x, t) \geq 0\) on \(\Omega \times [0, \infty)\).
The first key estimate for the proof of the main theorem is the moment type estimate. This estimate is first introduced by L. Ni ([32]). By using a Li–Yau type heat kernel estimate, he proved that a nonnegative solution $u(x, t)$ of the heat equation is $t^{d/2}$ growth if and only if the average function $k(x, r) := \frac{1}{V(r)} \int_{B_r(x)} f(y) dy$ of the initial data $f(y)$ grows as r^d in a certain complete Kähler manifold. In our CR setting, we only have the CR moment type estimate for a nonnegative heat solution which can be expressed as $P_t f$ for a smooth bounded function f on M. In contrast to the Kähler case, in general, we do not know if any nonnegative heat solution could hold.

To introduce our version, we will follow the semigroup method as in [24] (also [2]). It is known that the heat semigroup $(P_t)_{t \geq 0}$ is given by

$$P_t = \int_0^\infty e^{-\lambda t} dE_\lambda$$

for the spectral decomposition of $\Delta_b = -\int_0^\infty \lambda dE_\lambda$ in $L^2(M)$. It is a one-parameter family of bounded operators on $L^2(M)$. We denote

$$P_t f(x) = \int_M p(x, y, t) f(y) d\mu(y),$$

for $f \in C^\infty_0(M)$. Here $p(x, y, t) > 0$ is the so-called symmetric heat kernel associated with P_t. Due to the hypoellipticity of Δ_b, the function $(x, t) \to P_t f(x)$ is smooth on $M \times (0, \infty)$.

In the following we use $V(r)$ and $B_\delta (r)$ to denote the volume of a unit ball with respect to the Carnot–Carathéodory distance and measure $d\mu = \theta \wedge (d\theta)^n$. We recall some facts from [24] (also [3] and [2]). For $f, g, h \in C^\infty(M)$, we define

$$\Gamma(f, g) = \frac{1}{2} \Delta_\theta (fg) - f \Delta_b g - g \Delta_b f.$$

(i)

$$\Gamma_2(f, g) = \frac{1}{2} \left[\Delta_\theta \Gamma(f, g) - \Gamma(f, \Delta_b g) - \Gamma(g, \Delta_b f) \right].$$

(ii)

$$\Gamma^Z(f, g, h) = f \Gamma^Z(g, h) + g \Gamma^Z(f, h).$$

(iii)

$$\Gamma^Z_2(f, g) = \frac{1}{2} \left[\Delta_\theta \Gamma^Z(f, g) - \Gamma^Z(f, \Delta_b g) - \Gamma^Z(g, \Delta_b f) \right].$$

(iv)

Here we denote $\Gamma(f) = \Gamma(f, f)$, $\Gamma_2(f) = \Gamma_2(f, f)$, $\Gamma^Z(f) = \Gamma^Z(f, f)$ and $\Gamma^Z_2(f) = \Gamma^Z_2(f, f)$. Note that in a complete strictly pseudoconvex CR $(2n + 1)$-manifold with vanishing torsion one can have $\Gamma(f, f) = (\nabla_b f, \nabla_b f)$ and $\Gamma_2(f) = \|\nabla_b f\|^2 + Ric(\nabla_b f, \nabla_b f) + \frac{n}{2} \|\nabla T \nabla_b f\|^2$ and $\Gamma^Z(f, g) = (\nabla_T f, \nabla_T g)$.
Definition 3.1 We say that \((M, J, \theta)\) satisfies the generalized curvature-dimension inequality \(CD(\rho_1, \rho_2, \kappa, d)\) with respect to \(\Delta_b\) if there exist constants \(\rho_1\) a real number, \(\rho_2 > 0, \kappa \geq 0,\) and \(d \geq 2\) such that the inequality
\[
\Gamma_2(f) + v\Gamma_Z(f) \geq \frac{1}{d} (\Delta_b f)^2 + \left(\rho_1 - \frac{\kappa}{v} \right) \Gamma(f) + \rho_2 \Gamma_Z(f)
\]
holds for every \(f \in C^\infty(M)\) and every \(v > 0\).

We define
\[
D := d \left(1 + \frac{3\kappa}{2\rho_2} \right) \quad (3.4)
\]
and
\[
\rho_1^- = \max \left(-\rho_1, 0 \right).
\]

Lemma 3.1 (i) ([24, Theorem 4]) Let \((M, J, \theta)\) be a complete strictly pseudoconvex \(CR(2n+1)\)-manifold of vanishing torsion with \(\text{Ric} \geq \rho_1\).

Then \(M\) satisfies the generalized curvature-dimension inequality \(CD(\rho_1, \frac{n}{2}, 1, 2n)\) with \(\rho_2 = \frac{n}{2}, \kappa = 1\) and \(d = 2n\). Moreover for any given \(R_0 > 0\), there exists a constant \(C(d, \kappa, \rho_2) > 0\) such that
\[
\mu(B(x, R)) \leq C(d, \kappa, \rho_2) \frac{\exp \left(2d\rho_1^- R_0^2 \right)}{R_0^D \mu(x, x, R_0^2)} \mu \left(B \left(x, \sqrt{t} \right) \right)^\frac{1}{2} \mu \left(B \left(y, \sqrt{t} \right) \right)^\frac{1}{2} \exp \left(-d^2(x, y) \frac{(4 + \varepsilon)}{4 + \varepsilon} t \right) \quad (3.5)
\]
for every \(x \in M\) and \(R \geq R_0\). In particular if \(M\) is a complete strictly pseudoconvex \(CR(2n+1)\)-manifold of nonnegative Ricci curvature and vanishing torsion, then there exists a constant \(C_1 > 0\) such that
\[
\mu(B(x, R)) \leq \frac{C_1}{R_0^D \mu(x, x, R_0^2)} \mu \left(B \left(x, \sqrt{t} \right) \right)^\frac{1}{2} \mu \left(B \left(y, \sqrt{t} \right) \right)^\frac{1}{2} \exp \left(-d^2(x, y) \frac{(4 + \varepsilon)}{4 + \varepsilon} t \right) \quad (3.6)
\]
for \(R \geq R_0\).

(ii) ([3]) Let \((M, J, \theta)\) be a complete strictly pseudoconvex \(CR(2n+1)\)-manifold of nonnegative Ricci curvature and vanishing torsion. Then, for any \(\varepsilon > 0\), there exists a constant \(C_2(d, \rho_2, \kappa, \varepsilon) > 0\) such that
\[
p(x, y, t) \leq \frac{C(d, \rho_2, \kappa, \varepsilon)}{\mu(B(x, \sqrt{t}))^{\frac{1}{2}} \mu(B(y, \sqrt{t}))^{\frac{1}{2}} \exp \left(-d^2(x, y) \frac{(4 + \varepsilon)}{4 + \varepsilon} t \right) \exp \left(\frac{d^2(x, y)}{4 + \varepsilon} t \right) \quad (3.6)
\]

(iii) ([2]) Let \((M, J, \theta)\) be a complete strictly pseudoconvex \(CR(2n+1)\)-manifold of nonnegative Ricci curvature and vanishing torsion. Then there exists a constant \(C_2 > 0\) such that
\[
p(x, x, 2R^2) \geq \frac{C_2}{\mu(B(x, R))} \quad (3.7)
\]
Remark 3.1 Let \((M, J, \theta)\) be a complete strictly pseudoconvex CR \((2n+1)\)-manifold of nonnegative Ricci curvature and vanishing torsion. Inequalities (3.5) and (3.7) together imply the doubling property. That is,

\[
\mu(B(x, R)) \leq \frac{C_1}{R_0^D} p(x, x, R_0^2) R^D \leq C \left(\frac{R}{R_0} \right)^D \mu(B(x, \frac{R_0}{\sqrt{2}})).
\]

(3.8)

By taking \(R_0 = \frac{R}{\sqrt{2}}\), then there exists a constant \(C_4 > 0\) such that

\[
\mu(B(x, R)) \leq C_4(n, D) \mu\left(B\left(x, \frac{R}{2}\right)\right).
\]

(3.9)

Applying Lemma 3.1 above, we are able to prove the following moment type estimate for those solutions of form \(P_t f\).

Theorem 3.1 Let \((M, J, \theta)\) be a complete strictly pseudoconvex CR \((2n+1)\)-manifold of nonnegative Ricci curvature and vanishing torsion. Assume that \(u\) is a solution of the CR heat equation

\[
\frac{\partial}{\partial t} u = \Delta_h u
\]

such that

\[
u(x, t) = P_t f
\]

for a nonnegative bounded function \(f\). Assume that for any \(a > 0\) (where \(D = 2n + 6\) is defined in (3.4)), we have

\[
\frac{1}{V(r)} \int_{B_x(r)} f(y) d\mu(y) \leq Ar^a
\]

for a constant \(A > 0\) and \(r \geq R \geq 1\). Then there exists a constant \(C(n, d)\) such that

\[
u(x, t) \leq C(n, d) A t^\frac{a}{2}
\]

(3.10)

for all \(t \geq R^2\).

Proof Let \(\delta = \frac{d(x, y)}{\sqrt{t}}\). Thus

\[
B_x\left(\sqrt{t}\right) \subset B_y\left((\delta + 1)\sqrt{t}\right).
\]

(3.11)

It follows from (3.9) and (3.11) that

\[
V_x\left(\sqrt{t}\right) \leq V_y\left((\delta + 1)\sqrt{t}\right) \leq C(d, \kappa, \rho_2)(\delta + 1)^D V_y\left(\sqrt{t}\right).
\]

That is,

\[
\frac{V_x\left(\sqrt{t}\right)}{V_y\left(\sqrt{t}\right)} \leq C(d, \kappa, \rho_2)(\delta + 1)^D.
\]

(3.12)
We can rewrite (3.6) as
\[p(x, y, t) \leq \frac{C (d, \rho_2, \kappa, \epsilon)}{\mu (B(x, \sqrt{t}))^{1/2}} \frac{\mu (B(y, \sqrt{t}))^{1/2}}{\mu (B(x, \sqrt{t}))} \exp \left(-\frac{d^2(x, y)}{(4 + \epsilon) t} \right) \]
\[\leq \frac{C (d, \rho_2, \kappa, \epsilon)}{\mu (B(x, \sqrt{t}))} \left(\frac{\mu (B(y, \sqrt{t}))}{\mu (B(x, \sqrt{t}))} \right)^{1/2} \exp \left(-\frac{d^2(x, y)}{(4 + \epsilon) t} \right) \]
\[\leq \frac{C (d, \rho_2, \kappa, \epsilon)}{\mu (B(x, \sqrt{t}))^{1/2}} \exp \left(-\frac{d^2(x, y)}{(4 + \epsilon) t} \right) . \] \hspace{1cm} (3.13)

Then, based on (3.12) and (3.13), Theorem 3.1 follows from the proof of Theorem 3.1 in [32] in the case where \(u(x, t) = P_t f \) for a nonnegative bounded function \(f \). The use of volume comparison can be replaced by (3.8). \QEDB

4 CR Linear Trace Li–Yau–Hamilton Type Inequality

In this section, we first relate the linear trace Li–Yau–Hamilton type inequality of the CR Lichnerowicz–Laplacian heat equation to a monotonicity formula of the heat solution. More precisely, let \(\eta_{\alpha\bar{\beta}} (x, t) \) be a symmetric \((1, 1)\)-tensor satisfying the CR Lichnerowicz–Laplacian heat equation
\[\frac{\partial}{\partial t} \eta_{\alpha\bar{\beta}} = \Delta_b \eta_{\alpha\bar{\beta}} + 2R_{\alpha\bar{\gamma}\mu\bar{\beta}} \eta_{\gamma\bar{\mu}} - (R_{\gamma\bar{\beta}} \eta_{\alpha\bar{\gamma}} + R_{\alpha\bar{\gamma}} \eta_{\gamma\bar{\beta}}) \] \hspace{1cm} (4.1)
on \(M \times [0, T) \). As in the paper of [5], we define the following Harnack quantity
\[Z(x, t)(V) := k_1 \left(\frac{1}{2} \left((\text{div}\eta)_{\alpha, a} + (\text{div}\eta)_{a, \alpha} \right) + (\text{div}\eta)_a V_a + (\text{div}\eta)_{\alpha} V_{\bar{a}} + V_{\bar{a}} V_{\beta} \eta_{\alpha\bar{\beta}} \right) + \frac{H}{t} \]
for any vector field \(V \in T^{1,0}(M) \), \(H = h^{a\bar{b}} \eta_{a\bar{b}} \) and \(0 < k_1 \leq 8 \). We proved

Theorem 4.1 ([5]) Let \((M, J, \theta) \) be a complete strictly pseudoconvex CR \((2n + 1)\)-manifold of nonnegative bisectional curvature and vanishing torsion. Let \(\eta_{\alpha\bar{\beta}} (x, t) \) be a symmetric \((1, 1)\)-tensor satisfying the CR Lichnerowicz–Laplacian heat equation (4.1) on \(M \times (0, T) \) with
\[\eta_{\alpha\bar{\beta}} (x, 0) \geq 0, \]
and
\[\nabla_T \eta (x, 0) = 0. \]
Then
\[Z(x, t) \geq 0 \]
on $M \times (0, T)$ for any $(1, 0)$ vector field V and $0 < k_1 \leq 8$ if there exists a constant $a > 0$ such that

\[
\int_0^T \int_M e^{-ar^2} \| \eta(x, t) \|^2 d\mu dt < \infty, \quad (4.2)
\]

\[
\int_0^T \int_M e^{-ar^2} \| \nabla_T \eta(x, t) \|^2 d\mu dt < \infty, \quad (4.3)
\]

\[
\int_M e^{-ar^2} \| \eta(x, 0) \| d\mu < \infty. \quad (4.4)
\]

Let ϕ be a (p, q)-form. Define the contraction operator $\Lambda : \Lambda^{p,q} \to \Lambda^{p-1,q-1}$ as follows

\[
(\Lambda \phi)_{\alpha_1 \cdots \alpha_{p-1} \beta_1 \cdots \beta_{q-1}} = \frac{1}{\sqrt{-1}} (-1)^{p-1} h^{\alpha \beta} \phi_{\alpha \alpha_1 \cdots \alpha_{p-1} \beta_1 \cdots \beta_{q-1}}.
\]

Then by a straightforward computation, we have

Lemma 4.1 ([6]) Let (M, J, θ) be a strictly pseudoconvex CR $(2n + 1)$-manifold. We have the Kähler type identities

\[
[\partial_b, \Lambda] = -\sqrt{-1} \bar{\partial}^* b \quad \text{and} \quad [\bar{\partial}_b, \Lambda] = \sqrt{-1} \partial_b^*. \quad (i)
\]

\[
[\bar{\partial}_b, \Box_b] = 2iT \bar{\partial}_b \quad \text{and} \quad [\partial_b, \Box_b] = 0. \quad (ii)
\]

\[
[\bar{\partial}_b, \Delta_H] = -iT \bar{\partial}_b \quad \text{and} \quad [\Lambda, \Delta_H] = 0. \quad (iii)
\]

Lemma 4.2 Let ϕ be a nonnegative $(1, 1)$-form. Define $Q(\phi, V)$ as

\[
Q(\phi, V, k_2) = k_2 \left(\frac{1}{2\sqrt{-1}}(\bar{\partial}_b^* \partial_b^* - \partial_b^* \bar{\partial}_b^*)\phi + \frac{1}{\sqrt{-1}}(\bar{\partial}_b^* \phi)_V - \frac{1}{\sqrt{-1}}(\partial_b^* \phi)_V + \phi_V, \bar{\phi}_V \right) + \frac{\Lambda \phi}{t}. \quad (4.5)
\]

Then this is equivalent to

\[
Q(\eta, V, k_2) = k_2 \left(\frac{1}{2} ((\text{div} \eta)_{\alpha, \bar{\alpha}} + (\text{div} \eta)_{\bar{\alpha}, \alpha}) + (\text{div} \eta)_\alpha V_{\bar{\alpha}} + (\text{div} \eta)_{\bar{\alpha}} V_{\alpha} + \eta_{\alpha \beta} V_{\alpha} V_{\beta} \right) + \frac{H}{t}
\]
An Optimal Gap Theorem in a Complete Strictly Pseudoconvex...

for a symmetric (1, 1)-tensor \(n_{\alpha\bar{\beta}} := \frac{1}{\sqrt{-1}} \phi_{\alpha\bar{\beta}}. \) In particular, by taking \(V = 0 \) and \(k_2 = 2 \), we have

\[
Q(\phi, V) = -\Delta_H \Lambda \phi + (\tilde{\partial}_b^* \Lambda \tilde{\partial}_b + \text{conj}) \phi + \frac{u}{t}
\]

(4.6)

for \(u = \Lambda \phi. \)

Proof As in [5], we have the formula for a \((p, q+1)\)-form \(\psi \)

\[
(\tilde{\partial}_b^* \psi)_{\alpha_1\cdots\alpha_p\bar{\beta}_1\cdots\bar{\beta}_q} = (-1)^p \frac{1}{q+1} \sum_{i=1}^{q+1} (-1)^i \nabla_\mu \psi_{\alpha_1\cdots\alpha_p\bar{\beta}_1\cdots\bar{\beta}_{i-1}\bar{\mu}\bar{\beta}_i\cdots\bar{\beta}_q}
\]

and a \((p+1, q)\)-form \(\varphi \)

\[
(\partial_b^* \varphi)_{\alpha_1\cdots\alpha_p\bar{\beta}_1\cdots\bar{\beta}_q} = (-1)^p \frac{1}{p+1} \nabla_{\bar{\mu}} \varphi_{\mu\alpha_1\cdots\alpha_p\bar{\beta}_1\cdots\bar{\beta}_q}.
\]

Thus for a \((1, 1)\)-form \(\phi \), we have

\[
(\partial_b^* \phi)_{\bar{\gamma}} = -\nabla_{\bar{\mu}} \phi_{\mu\bar{\gamma}}
\]

and

\[
\tilde{\partial}_b^* \partial_b^* \phi = \nabla_{\bar{\gamma}} (\nabla_{\bar{\mu}} \phi_{\mu\bar{\gamma}}).
\]

Then the first term of (4.5) becomes

\[
\frac{1}{2\sqrt{-1}} (\tilde{\partial}_b^* \partial_b^* - \partial_b^* \tilde{\partial}_b^*) \phi = \frac{1}{2\sqrt{-1}} \tilde{\partial}_b^* \partial_b^* \phi + \text{conj}.
\]

\[
= \frac{1}{2\sqrt{-1}} \nabla_{\bar{\gamma}} (\nabla_{\bar{\mu}} \phi_{\mu\bar{\gamma}}) + \text{conj}.
\]

\[
= \frac{1}{2} \left((\text{div} \eta)_{\alpha\bar{\alpha}} + \text{conj} \right)
\]

We are done. On the other hand, taking \(V = 0 \) and \(k_2 = 2 \), by Lemma 4.1 we have

\[
\frac{2}{2\sqrt{-1}} (\tilde{\partial}_b^* \partial_b^* - \partial_b^* \tilde{\partial}_b^*) \phi = \tilde{\partial}_b^* [\tilde{\partial}_b, \Lambda] \phi - \partial_b^* [\partial_b, \Lambda] \phi
\]

\[
= -\tilde{\partial}_b^* \partial_b \Lambda \phi - \partial_b^* \partial_b \Lambda \phi + \tilde{\partial}_b^* \Lambda \tilde{\partial}_b \phi + \partial_b^* \Lambda \partial_b \phi
\]

\[
= -\Delta_H \Lambda \phi + \tilde{\partial}_b^* \Lambda \tilde{\partial}_b \phi + \partial_b^* \Lambda \partial_b \phi.
\]

Here we use the fact that \(\tilde{\partial}_b^* f = \partial_b^* f = 0 \) for any scalar function. Then formula (4.6) follows. \(\Box \)

Remark 4.1 The regularity of the heat solution in Proposition 3.1 and the following lemma are used to prove the “mix-term” \((\tilde{\partial}_b^* \Lambda \tilde{\partial}_b + \text{conj}) \phi \) in (4.6) vanishes as in (5.13) and (5.14), which is the key step in the proof of our main theorem.
Lemma 4.3 Let \((M, J, \theta)\) be a complete strictly pseudoconvex CR \((2n+1)\)-manifold with nonnegative bisectional curvature and vanishing torsion. Let \(\phi\) be a solution of the CR Hodge–Laplace heat equation (3.2). Then \(\|\Lambda \partial^b \phi\|\) satisfies
\[
\left(\frac{\partial}{\partial t} - \Delta_b\right) \|\Lambda \partial^b \phi\| \leq ||T \partial_b \phi||.
\]

Proof We have the formula for a \((p, q)\)-form \(\psi\)
\[
(\bar{\partial}_b \psi)_{\alpha_1 \ldots \alpha_p \bar{\beta}_1 \ldots \bar{\beta}_q + 1} = (-1)^p \sum_{i=1}^{q+1} (-1)^{i-1} \nabla_{\bar{\beta}_i} \psi_{\alpha_1 \ldots \alpha_p \bar{\beta}_1 \ldots \bar{\beta}_{i-1} \bar{\beta}_i + 1}.
\]
So that
\[
(\bar{\partial}_b \phi)_{\alpha \bar{\beta} \bar{\gamma}} = -\nabla_{\bar{\beta}} \phi_{\alpha \bar{\gamma}} + \nabla_{\bar{\gamma}} \phi_{\alpha \bar{\beta}}
\]
and
\[
(\Lambda \partial^b \phi)_{\bar{\gamma}} = i h_{\alpha \bar{\beta}} \nabla_{\bar{\beta}} \phi_{\alpha \bar{\gamma}} - i h_{\alpha \bar{\beta}} \nabla_{\bar{\gamma}} \phi_{\alpha \bar{\beta}}
\]
\[
= h_{\alpha \bar{\beta}} \nabla_{\bar{\beta}} \eta_{\alpha \bar{\gamma}} - h_{\alpha \bar{\beta}} \nabla_{\bar{\gamma}} \eta_{\alpha \bar{\beta}}
\]
\[
= (\text{div} \eta) \bar{\gamma} - \nabla_{\bar{\gamma}} u.
\]

Note that \(\Lambda \partial^b \phi\) satisfies the CR Hodge–Laplace heat equation, i.e.,
\[
\left(\frac{\partial}{\partial t} + \Delta_H\right) \Lambda \partial^b \phi = -\Lambda \partial^b \Delta_H \phi + \Delta_H \Lambda \partial^b \phi
\]
\[
= -\Lambda \Delta_H \partial^b \phi + \Delta_H \Lambda \partial^b \phi + i \Lambda T \partial^b \phi
\]
\[
= [\Delta_H, \Lambda] \partial^b \phi + i \Lambda T \partial^b \phi
\]
\[
= i \Lambda T \partial^b \phi.
\]

Hence we have
\[
\left(\frac{\partial}{\partial t} - \Delta_b\right) \sqrt{\|\Lambda \partial^b \phi\|^2} = \frac{\Lambda \partial^b \phi}{\|\Lambda \partial^b \phi\|} \cdot (-\Delta_H \Lambda \partial^b \phi - \Delta_b \Lambda \partial^b \phi) + \frac{\Lambda \partial^b \phi}{\|\Lambda \partial^b \phi\|} \cdot i \Lambda T \partial^b \phi
\]
\[
= -\frac{1}{\|\Lambda \partial^b \phi\|} R_{\alpha \bar{\beta}} \left(\Lambda \partial^b \phi\right)_\alpha \left(\Lambda \partial^b \phi\right)_\bar{\beta} + \frac{\Lambda \partial^b \phi}{\|\Lambda \partial^b \phi\|} \cdot i \Lambda T \partial^b \phi
\]
where in the second line we use formula (3.1) of [5] for \((1, 0)\)-form \(\Lambda \partial^b \phi\). \(\Box\)

Before going any further for the proof of our main theorem, we need two more lemmas.

Lemma 4.4 ([35]) Let \(f \geq 0\) be a function on a complete noncompact Riemannian manifold \(M^m\) with
\[
R_{ij} \geq -(m-1) K
\]
for some \(K \geq 0 \). Let

\[
 u(x, t) := \int_M H(x, y, t) f(y) \, dy.
\]

Assume that \(u \) is defined on \(M \times [0, T] \) for some \(T > 0 \) and that for \(0 < t \leq T \),

\[
 \lim_{r \to \infty} \exp\left(-\frac{r^2}{20t}\right) \int_{B_o(r)} f = 0.
\] (4.7)

and \(p \geq 1 \),

\[
 \frac{1}{V_o(r)} \int_{B_o(r)} u^p \, dx \\leq C_{m,p} \left[\frac{1}{V_o(4r)} \int_{B_o(4r)} f^p \, dx \\right. \\
 + \left(C_2(K, t) \int_{4r}^{\infty} \left(\frac{s}{t} \right)^2 \exp\left(-\frac{s^2}{40t} \right) \frac{1}{V_o(s)} \int_{B_o(s)} f \, dx \right)^p \right]
\]

where \(C_2(K, t) = C_m t e^{C_m Kt} \) and \(C_m \) is a constant that depends only on the dimension \(M \).

Lemma 4.5 ([19]) Let \((M, J, \theta)\) be a complete strictly pseudoconvex CR \((2n + 1)\)-manifold and \(f(x, t) \) be the subsolution of the heat equation satisfying

\[
 \left(\frac{\partial}{\partial t} - \Delta_b \right) f(x, t) \leq 0 \text{ on } M \times [0, T)
\]

with \(f(x, 0) \leq 0 \) on \(M \). Then \(f(x, t) \leq 0 \) for all \(t < T \) if there exists \(a > 0 \) such that

\[
 \int_{0}^{T} \int_{M} f^2(x, t) e^{-ar^2} \, d\mu(x) \, dt < \infty.
\]

5 Proof of CR Optimal Gap Theorem

In this section, by using the CR moment type estimate (Theorem 3.1) and the linear trace LYH inequality (Theorem 4.1), we are able to prove the CR optimal gap theorem.

Proof of the main theorem:

Proof Here is the main idea: In the following we first use Proposition 3.1 to construct \(\eta_{\mu} \) on exhaustion domain \(\Omega_{\mu} \). Schauder estimates provide the convergence of \(\eta_{\mu} \) (**Step 1**) to a unique solution \(\eta \). Define \(u := tr_h \eta \) and \(u \) is a solution of a sub-Laplacian heat equation with initial condition \(S(y) \). By the uniqueness Theorem ([9]) of the nonnegative heat solution we have \(u^{(i)} \to u \). Now this allows us on the one hand using a trace linear Harnack estimate on \(tr_h \eta \) to obtain monotonicity formula

\[
 (tu)_t \geq 0
\] (5.1)
which applies to every nonnegative heat solution, and on the other hand using a moment type estimate (which applies only to a heat solution with $P_t f$ type and f is bounded) on $u^{(i)} := P_t \rho^{(i)} S$ to obtain that

$$u^{(i)} = o\left(t^{-1}\right).$$

Hence as well as u. Combing these results, the initial conditions are forced to be zero and the gap theorem holds.

Note that we derived the monotonicity property (5.1) by Lemmas 4.2, 4.3, and the vanishing of the mixed term in the LYH quantity (4.6). The condition (1.2) is applied while we use Theorem 3.1 for $a = -2$ to obtain

$$u = o\left(t^{-1}\right).$$

Now we split the detailed proof into two steps:

(i) **Step 1:** Convergence of $\eta^{(i)}_\mu$: Let Ω_μ be a sweetsop exhaustion domain, $\rho^{(i)}$ be a cut-off function support in $B(2R_i)$ such that $0 \leq \rho^{(i)} \leq 1$, $\rho^{(i)} = 1$ in $B(R_i)$, $\|\nabla_b^m \nabla_T^m \rho^{(i)}\| \leq \frac{C}{R_i}$ for $m_1, m_2 = 0, 1, 2$, $m_1 + m_2 \geq 1$ and some constant C. Note that for each i, there exists N_i such that for $\mu \geq N_i$, $B(2R_i) \subset \Omega_\mu$. Let $\eta^{(i)}_\mu$ be the solution as in Proposition 3.1 on Ω_μ for any $\mu \geq N_i$ with initial condition $\rho^{(i)}Ric$. Now we define

$$u^{(i)}(x,t) := \int_M p(x,y,t) \rho^{(i)} S(y) d\mu(y).$$

Then $u^{(i)}(x,t)$ satisfies

$$\frac{\partial}{\partial t} u^{(i)}(x,t) - \Delta_b u^{(i)}(x,t) = -\varepsilon^2 u^{(i)}_{00}(x,t), \quad (5.2)$$

where $\Delta_b = \Delta_b + \varepsilon^2 T^2$ is the Riemannian Laplacian with respect to the adapted metric $h_\varepsilon := h + \varepsilon^{-2} \theta^2$. Moreover, Proposition 3.2 implies $\eta^{(i)}_\mu(x,t)$ is nonnegative and

$$\|\eta^{(i)}_\mu(x,t)\| \leq tr h \eta^{(i)}_\mu(x,t) \leq u^{(i)}(x,t), \quad (5.3)$$

for all $\mu \geq N_i$. Now we estimate $u^{(i)}_{00}(x,t)$ first. Since $u^{(i)}(x,t)$ is a solution of the sub-Laplacian heat equation, we have

$$\frac{\partial}{\partial t} u^{(i)}_{00}(x,t) - \Delta_b u^{(i)}_{00}(x,t) = 0$$

due to vanishing torsion. We define $l^{(i)}(x,t) = |u^{(i)}_{00}(x,t)|$, and observe that it is a subsolution of the heat equation with initial conditions satisfying the following:
\[l^{(i)}(x, t)(x, 0) = \left| \nabla_T \nabla_T \rho^{(i)} S(y) \right| \leq \frac{C}{R_i} \chi_{B(2R_i \setminus R_i)} S(y), \]

where \(\chi_{B(2R_i \setminus R_i)}(y) \) is a function with 1 in the annulus \(B(2R_i) \setminus B(R_i) \) and zero elsewhere. By the maximum principle \(l^{(i)}(x, t) \) is controlled by a sub-Laplacian heat solution.

Next we define
\[g(x, t) := \int_M p(x, y, t) \frac{C}{R_i} \chi_{B(2R_i \setminus R_i)} S(y) \, dy. \]

By a moment type estimate
\[g(x, t) = \frac{1}{R_i} o\left(t^{-1} \right), \quad (5.4) \]
where the particular coefficient in \(o\left(t^{-1} \right) \) does not depend on \(i \). To summarize, we have
\[\left| u_{00}^{(i)}(x, t) \right| = l^{(i)}(x, t) \leq g(x, t) = \frac{1}{R_i^2} o\left(t^{-1} \right). \quad (5.5) \]

We return to equation (5.2). Now we are restricted on \(B(r) \times [\epsilon, T] \) and try to obtain an estimate that does not depend on index \(i \). Now we define
\[L^{(i)}(x, t) = u^{(i)}(x, t) + \varepsilon^2 e^{T-t} \sup_{B(r) \times [\epsilon, T]} g(x, t) \]
so that \(L^{(i)}(x, t) \) satisfy
\[\frac{\partial}{\partial t} L^{(i)}(x, t) - \Delta_\epsilon L^{(i)}(x, t) \leq 0. \quad (5.6) \]

Applying the mean value theorem (Theorem 1.2 in [22]) to the function \(L^{(i)}(x, t) \), we have
\[\sup_{B_\epsilon((1-\delta)r) \times [\epsilon, T]} L^{(i)} \leq C_16 \left\{ \frac{1}{(\delta r)^{2n+3}} V_\epsilon \left(\frac{2}{\epsilon^2}, 2r \right) \left(r \frac{\sqrt{2}}{\epsilon} \coth \left(r \frac{\sqrt{2}}{\epsilon} \right) + 1 \right) \exp \left(C_{17} \frac{2}{\epsilon^2 T} \right) \right\} \]
\[\times \int_\epsilon^T ds \int_{B_\epsilon(r)} L^{(i)}(y, s) \, d\mu_\epsilon(y) + (1 + \epsilon_1) \sup_{B_\epsilon(r)} L^{(i)}(\cdot, \epsilon). \]
Let $B_{e}(r), \, d\mu_{e}(y)$ denote the ball with radius r and volume element with respect to metric h_{e}. The above inequality also means

$$\sup_{B_{e}((1-\delta)r) \times [\varepsilon, T]} u^{(i)} \leq C_{16} \left[\frac{1}{(\delta r)^{2n+3}} \frac{V_{e} \left(\frac{2}{\sqrt{1}}, 2r \right)}{V_{e}(r)} \left(r \frac{2}{\varepsilon} \coth \left(r \frac{2}{\varepsilon} \right) + 1 \right) \exp \left(C_{17} \frac{2}{\varepsilon^{2}} T \right) \right] \times \int_{0}^{T} ds \int_{B_{e}(r)} L^{(i)}(y, s) \, d\mu_{e}(y)$$

$$+ (1 + \varepsilon_{1}) \sup_{B_{e}(r)} u^{(i)}(\cdot, \varepsilon) + (1 + \varepsilon_{1}) \varepsilon^{2} e^{T - \varepsilon} \sup_{B_{e}(r)} g(x, \varepsilon). \quad (5.7)$$

We only need to estimate the first term of (5.7) below, since the other terms are bounded. We define

$$L_{e}^{(i)}(y, s) := \int_{M} H_{e}(x, y, t) \|\rho^{(i)}S\| (y) \, d\mu_{e}(y)$$

and again we have

$$L^{(i)}(y, s) \leq L_{e}^{(i)}(y, s) + \varepsilon^{2} e^{T} \sup_{B(r) \times [\varepsilon, T]} g(x, t) \leq L_{e}^{(i)}(y, s) + \varepsilon^{2} e^{T} \sup_{B(r) \times [\varepsilon, T]} g(x, t) \leq L_{e}^{(i)}(y, s) + \varepsilon^{2} e^{T} \frac{o(t)}{R_{1}^{2}}. \quad (5.8)$$

Now the first term of (5.7) is estimated by using (5.8) and Lemma 4.4 as follows:

$$\frac{1}{V_{0,e} (r)} \int_{B_{0}(r)} L_{e}^{(i)}(y, t) \, d\mu_{e}(y) \leq C_{m, 1} \frac{1}{V_{0,e} (4r)} \int_{B_{0,e}(4r)} \|\rho^{(i)}S\| (y) \, d\mu_{e}(y) + C_{m} e^{C_{m} \frac{1}{t}} \int_{4r}^{\infty} \left(\frac{s}{\sqrt{t}} + \frac{s^{2}}{t} \right) \exp \left(- \frac{s^{2}}{40t} \right) \frac{1}{V_{0,e}(s)} \int_{B_{0,e}(s)} \|\rho^{(i)}S\| (y) \, d\mu_{e}(y) \, d \left(\frac{s^{2}}{t} \right). \quad (5.9)$$

The integral $\int_{B_{0,e}(4r)} \|\rho^{(i)}S\| (y) \, d\mu_{e}(y)$ inside both terms in (5.9) is estimated by Assumption (1.2) and is controlled by a quantity that does not depend on i. Hence (5.7) and (5.9) imply

$$\sup_{B_{e}((1-\delta)r) \times [\varepsilon, T]} u^{(i)} \leq C \left(\varepsilon, r, T, n, \rho^{(i)}S \right) \quad (5.10)$$

and

$$\max_{B_{e}(r) \times [\varepsilon, T]} tr_{h, \eta^{(i)}_{\mu}}(x, t) \leq C \left(\varepsilon, r, T, n, \rho^{(i)}S \right). \quad (5.11)$$

Now the interior Schauder estimate can be applied to extract a convergent subsequence $\eta^{(i)}_{\mu_{k}} \rightarrow \eta^{(i)}$ that satisfies the CR Lichnerowicz-sub-Laplacian heat equation on $[0, T]$.
Note that $tr_h \eta^{(i)}(x, 0) = u^{(i)}(x, 0)$, and by the uniqueness of the bounded sub-Laplacian heat solution (from Lemma 4.5) we actually have

$$tr_h \eta^{(i)}(x, t) = u^{(i)}(x, t).$$

By (5.2), (5.5), (5.10) and Schauder estimates, there is a subsequence $u^{(i_j)} \to u$ and $\eta^{(i_j)} \to \eta$ in any fixed compact subset with an arbitrarily chosen Hölder norm (by choosing β_0 large for a sweetsop domain; see Appendix). Note that in (5.5) as i goes to infinity we can conclude $\nabla T \nabla_T u(x, t) = 0$ and similarly $\nabla_T u(x, t) = 0$ and $\nabla_T \eta(x, t) = 0$ by using that $\|\eta_0^{(i)}\|$ is a subsolution of the sub-Laplacian heat equation as follows:

$$\left(\frac{\partial}{\partial t} - \Delta_b\right) \|\eta_0^{(i)}\| = \frac{1}{\|\eta_0^{(i)}\|} \left(2R_{\mu\beta\gamma\bar{\alpha}}\eta_0^{(i)} - (R_{\gamma\beta\eta_0^{(i)}} + R_{\alpha\eta_0^{(i)}})h_{\beta\xi}h_{\xi\alpha}\right) \leq 0.$$

Here we use the facts that bisectional curvature is nonnegative and vanishing torsion. Moreover, the requirement for applying the maximum principle is guaranteed by a similar argument as for (5.3); we have

$$\|\eta_0^{(i)}\|(x, t) \leq C \int p(x, y, t) |\nabla \rho| S(y) d\mu(y) \leq \frac{C}{R_0} o\left(t^{-1}\right). \quad (5.12)$$

As i goes to infinity, $\eta_0 = 0$. However, by now we do not know yet through the subsequence if the two functions $tr_h \eta(x, t)$ and $u(x, t)$ are the same even though they have the same initial condition. One regards both $u(x, t)$ and $tr_h \eta(x, t)$ as solutions of Laplacian heat equations associated with adapted metric (due to $\nabla_T u(x, t) = \nabla_T tr_h \eta(x, t) = 0$), and the manifold are seen as Riemannian manifold with Riemannian curvature bounded below by $-\frac{1}{\epsilon}$ (Theorem 4.9 in [4]). Now by the uniqueness of the nonnegative Laplacian heat solution ([9]) on complete manifold with Riemannian Ricci curvature bounded below, we can conclude that

$$u(x, t) = tr_h \eta(x, t).$$

Note that u is the unique sub-Laplacian heat solution with $\nabla_T u(x, t) = 0$, and since for any such u we can find a sequence of $u^{(i)}$ that satisfies the moment type estimates converging to u. Hence u satisfies the moment type estimate.

(ii) **Step 2:** Monotonicity of tu: By our assumptions on Ric, and the upper bound of $\eta(x, t)$ by $u(x, t) = o\left(t^{-1}\right)$, (4.2), (4.3) and (4.4) in Theorem 4.1 are satisfied. Hence by Lemma 4.2 and (4.6), $tr_h \eta$ satisfy

$$u_t + (\tilde{\Delta}_b + \text{conj}) \phi + \frac{u}{t} \geq 0. \quad (5.13)$$
In the following we are going to prove the mixed terms \((\tilde{\partial}_b^* \Lambda \tilde{\partial}_b + conj) \phi \) of (5.13) vanishing so the monotonicity
\[
(tu)_t \geq 0
\] (5.14)
follows. Hence
\[
tu(x, t) \equiv 0,
\]
for any \(x \) and \(t > 0 \). The flatness then follows from \(u(x, 0) \equiv 0 \).

In fact, we first define \(\sigma(i) := \Lambda \tilde{\partial}_b \eta(i) \) (note \(\eta(i) = \frac{1}{\sqrt{-1}} \phi(i) \)). Then direct calculation shows that
\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) \| \eta_{\mu_k}^{(i)} \|^2 \leq -2 \| \nabla \eta_{\mu_k}^{(i)} \|^2.
\]
We integrate on both sides over \(\Omega_{\mu_k} \) and apply Dirichlet condition (using boundary regularity in Proposition 3.1). After taking \(\mu_k \to \infty \), we have
\[
2 \int_0^t \int_M \| \nabla_b \eta^{(i)} \|^2 (x, s) \, d\mu \, ds \leq \int_M \| \eta^{(i)} (x, 0) \|^2 \, d\mu = \int_M \| \rho^{(i)} Ric \|^2 \, d\mu.
\] (5.15)
Due to \(\| \sigma^{(i)} \| (x, t) \leq \| \nabla_b \eta^{(i)} \| (x, t) \) (5.15) and Assumption (1.2) we have for some \(a' > 0 \),
\[
\int_0^t \int_M e^{-a' r^2} \| \sigma^{(i)} \| (x, s) \, d\mu \, ds < \infty.
\] (5.16)
By Lemma 4.3, and direct calculation shows that
\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) \| \sigma^{(i)} \| (x, t) \leq \| \sigma_0^{(i)} \|.
\]
Since \(\| \sigma_0^{(i)} \| \leq \| \nabla_0^{(i)} \| \) and \(\eta_0^{(i)} (x, t) \) satisfy 5.12, by Schauder estimates \([42]\) we have for any \(\tilde{\varepsilon} > 0 \), there exists \(n_{\tilde{\varepsilon}} > 0 \) such that \(\| \sigma^{(i)}_0 \| \leq \| \nabla \eta_0^{(i)} \| \leq \tilde{\varepsilon} \) for any \(i \geq n_{\tilde{\varepsilon}} \). This shows that for any \((x, t) \in [0, T) \)
\[
\left(\frac{\partial}{\partial t} - \Delta_b \right) \| \sigma^{(i)} \| (x, t) + e^{T-t} \tilde{\varepsilon} \leq 0.
\]
We define \(v^{(i)} (x, t) \) as follow
\[
v^{(i)} (x, t) = \int_M p(x, y, t) \Lambda \tilde{\partial}_b \left(\rho^{(i)} Ric \right) (y) \, d\mu (y).
\]
Duo to (5.16) and maximum principle we have
\[
\| \sigma^{(i)} \| (x, t) + e^{T-t} \tilde{\varepsilon} \leq v^{(i)} (x, t) + e^{T-t} \tilde{\varepsilon}.
\]
Since torsion is vanishing, it implies $\partial_\theta Riem = 0$ and by nonnegativity of Ricci curvature it follows that

$$\| \Lambda \tilde{\partial} \left(\rho^{(i)} Riem \right) \| (y) \leq \frac{C}{R_i} \chi_{B_{2R_i \setminus R_i}} S (y). \quad (5.17)$$

Similarly as (5.4), (5.17) gives that $v^{(i)} \to 0$ uniformly on any compact subset as $i \to \infty$. Since $\tilde{\epsilon}$ is arbitrary, we have

$$\| \sigma \| (x, t) = 0.$$

Finally, as a result we have $(tu)_t \geq 0$ and then $u = o (t^{-1})$. This completes the proof. \hfill \Box

6 Appendix

In this Appendix, we construct “nice” domains to avoid the possibility of the bad regularity for heat solutions in the case of degenerated parabolic systems. In fact, we will give a proof on existence and regularity result for $(1, 1)$-form ϕ of the Lichnerowicz-sub-Laplacian heat equation. In the proof of main theorem, one required some regularity of the heat solution in order to prove the mixed terms $(\tilde{\partial}_\theta \Lambda \tilde{\partial}_b + conj) \phi$ of (5.13) vanishing (then the monotonicity follows). While we construct heat solution on complete manifolds with exhaustion domains, we need the interior regularity at least $C^{2, \alpha} (\Omega_{\mu})$ and boundary regularity as continuous function in $C (\bar{\Omega}_{\mu})$. This requirement are needed for Arzela Ascoli theorem and integration by part in (5.15). In semigroup method, better regularity of evolution equation comes from the regularity of infinitesimal generator.

We denote $C^{2, \alpha} (\Omega, \Lambda^{1,1})$ as $C^{2, \alpha}$ sections of $\Lambda^{1,1}$ on bounded domain Ω. In our case, it is Δ_H on Banach space $C^{2, \alpha} (\Omega, \Lambda^{1,1}) \cap C (\bar{\Omega}, \Lambda^{1,1})$. Note $\Delta_H = -\frac{1}{2} (\Box_b + \Box_{\theta})$. Here we denote u as solution of following Dirichlet problem

$$\Box_b \phi = g \quad (6.1)$$

de $g \in C^\infty (\Omega, \Lambda^{1,1})$. First we state some results:

Theorem 6.1 (Kohn) Let M be a strictly pseudoconvex CR $(2n + 1)$-manifold. If $1 \leq q \leq n - 1$, then $\| \phi \|^2_2 \leq C \left[(\Box_b \phi, \phi) + \| \phi \|^2_0 \right]$ for $\phi \in C^\infty (\Lambda^{0,q})$. $\| . \|^s$ stands for the L^2 Sobolev norm of order s.

Remark 6.1 1. From the hypothesis in above theorem it requires $n \geq 2$. When $n = 1$, one refers to [16].

2. Even though the operator \Box_b is not Δ_H, in [17] (see p. 146) they actually prove the case for $\alpha = 0$. Moreover, we have $\Delta_H = \mathcal{L}_\alpha$ with $\alpha = 0$ up to lower order terms. Here $\mathcal{L}_\alpha = -\Delta_b + i\alpha T$.

The following is the interior and boundary regularity result by Jerison [16].
Theorem 6.2 Let U be the open subset of M containing no characteristic points of $\partial \Omega$. If $\psi, \varphi \in C^\infty_0(U)$, $\psi = 1$ in the neighborhood of the support of φ, and u satisfies (6.1) with $\psi g \in \Gamma_\beta (\bar{\Omega}, \Lambda^{0,q})$, then $\varphi \phi \in \Gamma_{\beta + 2} (\bar{\Omega}, \Lambda^{0,q})$ and

$$\|\varphi \phi\|_{\Gamma_{\beta + 2}} \leq c \left(\|\psi g\|_{\Gamma_\beta} + \|\psi \phi\|_{L^2} \right).$$

When an isolated characteristic boundary point occurs, Jerison proved the regularity result when the neighborhood have strictly convexity property. The convexity is defined by Folland-Stein local coordinates $\Theta(p, -) : U \to \mathbb{H}^n$, and the boundary near point p is corresponding to graph $i = \sum \alpha_i x_i^2 + \beta_j y_j^2 + e (\bar{x}, \bar{y})$, where $e (\bar{x}, \bar{y}) = O \left(|\bar{x}|^3 + |\bar{y}|^3 \right)$. Strictly convex means $\alpha_i, \beta_j > 0$ (see Eq. (7.4) and A.3 in [17]). In the following we state the theorem in the form we want. Reader who is confused can refer to Theorem 7.6, Proposition 7.11, and Corollary 10.2 in [17].

Theorem 6.3 Let p be an isolated characteristic point on $\partial \Omega$ and in some neighborhood U_p of p the geometry $U_p \cap \Omega$ is like the domain $\{(x, y, t) : M_c \left(|x|^2 + |y|^2 \right) < t \}$ in the Heisenberg group, where M_c a positive number. Then $\varphi \phi \in \Gamma_{\beta + 2} (\bar{\Omega}, \Lambda^{0,q})$, where the best β depends on M_c. Moreover, as $M_c \nearrow \infty$, one can choose $\beta \nearrow \infty$.

Remark 6.2 In Theorem 6.3, one required $g \in \Gamma_\beta (\bar{\Omega}, \Lambda^{0,q})$ for $\beta > 2$. Moreover, β has upper bound $\beta_0 - 2$, where β_0 is an index related to the geometry of the boundary. In [17], they proved $M_c \nearrow \infty$, then $\beta_0 \nearrow \infty$.

In order to construct a $C^{2, \alpha}$ Lichnerowicz-sub-Laplacian heat solution, we need the exhaustion domain which satisfy the property above. In the following we prove that it is possible by perturbing the boundary of exhaustion domain.

Theorem 6.4 For any given positive number M_c, there exists exhaustion domains Ω_μ such that $\partial \Omega_\mu$ consist only isolated characteristic points with property as in Theorem 6.3 with given M_c.

Proof: We construct the exhaustion domain with smooth boundary arbitrarily. Since $\partial \Omega_\mu$ is compact, we define Ξ_μ the set consisting all the characteristic points. Then the closure of Ξ_μ is compact. At each point there exist coordinate V_p such that we can express the boundary as $r (z, t) = t - q (z) + e (x, y)$ in $B_p (\varepsilon_p)$ for some ε_p depend on p, where $q (z) = \alpha_i x_i^2 + \beta_j y_j^2$ for some real numbers α_i, β_j. Since injective radius (with respect to some adapted metric) is uniformly bounded below on $\partial \Omega_\mu$, ε_p can be chosen to not depend on p but μ only. These Folland-Stein coordinate neighborhoods form an open covering for $\tilde{\Xi}_\mu$.

Now we claim there is a small modification to boundary so that $\tilde{\Xi}_\mu$ contains only isolated characteristic points.

Assume $B_{p_1} (\varepsilon)$ are the covering of $\tilde{\Xi}_\mu$, we can choose $\varepsilon_1 < \varepsilon_2 < \varepsilon$ such that $B_{p_1} (\varepsilon_1)$ are still a covering of $\tilde{\Xi}_\mu$. We start at point p_1. First we deform the graph in the coordinate of $B_{p_1} (\varepsilon_1)$ to plane $t = 0$ and smoothly attached to graph on $\partial B_{p_1} (\varepsilon_2)$. Under the deformation we keep point p_1 as the only characteristic point. This is possible by noticing that we only need to take $q (z)$ into consideration (because
this term dominate all the other inside small ball.) and we only need to consider the case in the Heisenberg group with graph \(t = q (z) \) in \(B_{p_1} (\varepsilon) \). We modify \(q(z) \) into new one \(\tilde{q} (z) \) by define \(\tilde{q} (z) = - \max_{|z| = \varepsilon_2} q (z) \) in \(B_{p_1} (\varepsilon_1) \) and \(\varphi (|z|, \theta) \) in \(B_{p_1} (\varepsilon_2) \setminus B_{p_1} (\varepsilon_1) \) where \(\varphi (|z|, \theta) \) is a smooth monotone function in \(|z|\) for each \(\theta \) such that the function smoothly attached to the value \(q(z) \) on \(\partial B_{p_1} (\varepsilon_2) \) and \(\tilde{q} (z) = q (z) \) on \(B_{p_1} (\varepsilon) \cap B_{p_1}^c (\varepsilon_2) \). This modification clearly imply the origin is the only characteristic point in \(B_{p_1} (\varepsilon_1) \). Moreover, we can choose \(\varphi (|z|, \theta) \) very steep so that all the point \((z, q(z))\) for \(z \in B_{p_1} (\varepsilon_2) \setminus (0, 0) \) are noncharacteristic. We define the new domain as \(\Omega_{\mu, 1} \). Specifically,

\[
\Omega_{\mu, 1} = \left\{ \Omega_{\mu} \setminus B_{p_1} (\varepsilon_2) \right\} \cup \left(M \cap \left\{ (z, t) : t > \tilde{q} (z) - R (z, t) \text{ for } z \in B_{p_1} (\varepsilon_2) \right\} \right).
\]

Then we continue the same process on \(p_2 \), and the new domain is \(\Omega_{\mu, 2} \). Observe that the process do not create new characteristic points but eliminate all the characteristic point inside \(B_{p_1} (\varepsilon_2) \) except \(p_i \). Continuing this process we are able to deform domain \(\Omega_{\mu} \) into new one that only consist isolated characteristic points on the boundary with \(M_e = 0 \).

To modify \(M_e \) into any value we want is easier. One can do the same process by deforming the graph into parabolic.

For convenience, we call the domain in the above theorem a sweetsop domain.

Remark 6.3 The above theorem can be simplified if we can construct strictly convex domain in \(M \). But the existence to this kind of exhaustion domain isn’t known yet.

We recall theorems from semigroup method. For the definition of analytic semigroup, one can refer to definition 12.30 in [39] ([38]). We cited the characterization of infinitesimal generator of analytic semigroups. Notation here \(X \) is Banach space and \(A \) is operator defined on \(X \). Note \(A \) can be unbounded operator \(A : D (A) \to X \), where \(D(A) \) is a subset in \(X \) such that \(Ax \) can be defined. As before, we denote \(\Gamma_{\beta} \) the Lipschitz classes associated with nonisotropic distance (referred [17]) and \(\Gamma_{\beta} (\tilde{\Omega}, \Lambda^{1,1}) \) the restriction to \(\tilde{\Omega} \) of sections of \(\Lambda^{1,1} \) with coefficients in \(\Gamma_{\beta} (\tilde{\Omega}) \). We denote \(\|\cdot\|_{\Gamma_{\beta}} \) the norm of Banach space \(\Gamma_{\beta} (\tilde{\Omega}, \Lambda^{1,1}) \), and \(R_{\lambda} (A) \) as the inverse operator of \(A_{\lambda} := A - \lambda I \) as \(A_{\lambda} \) is one-to-one. The resolvent set of the operator \(A \) is the subset of \(\mathbb{C} \) that \(R_{\lambda} (A) \) exists, bounded, and the domain is dense in \(X \). When we apply, we let \(X = \Gamma_{\beta} (\tilde{\Omega}, \Lambda^{1,1}) \) and \(A = \Delta_H \). Here we state general theorems for following evolution systems

\[
\dot{u} = Au + f
\]

where \(f \in X \).

Theorem 6.5 ([39, Theorem 12.31]) A closed, densely defined operator \(A \) in \(X \) is the generator of an analytic semigroup if and only if there exists \(\omega \) a real number such that the half-plane \(\text{Re} \lambda > \omega \) is contained in the resolvent set of \(A \) and, moreover, there is a constant \(C \) such that

\[
\| R_{\lambda} (A) \| \leq \frac{C}{|\lambda - \omega|}
\]

for \(\text{Re} \lambda > \omega \) and \(\| \cdot \| \) is the norm of \(X \).

\(\Box \) Springer
Theorem 6.6 ([39, Theorem 12.33]) Let A be the infinitesimal generator of an analytic semigroup and assume that the spectrum of A is entirely to the left of the line $\Re\lambda = \omega$. Then there exists a constant M such that

$$\| e^{At} \| \leq M e^{\omega t},$$

where $\| \cdot \|$ is the norm of X.

One can refer to Sect. 7.1 in [38] or page 421 in [10] for the application of semigroup theory for A is a strong elliptic operator. In our case, the missing boundary regularity is replaced by Theorem 6.3 (refer to [12, 13]). Then one can follow Stewart [40] and consider Hölder spaces as interpolation space [18] to obtain the resolvent estimates 6.2. As a result, the regularity of the parabolic systems follows by Theorem 6.6.

In conclusion, we are able to choose exhaustion domain with β_0 large enough, then follow theorem above, we can choose β large enough to make sure the function space X is contained in $C^{2,\alpha}$. This is possible by relation $C^\beta \subset \Gamma^\beta \subset C^{\beta/2}$ as in 20.5, 20.6 of [11]. This completes the proof of Proposition 3.1.

References

1. Andrews, B., Clutterbuck, J.: Proof of the fundamental gap conjecture. J. Am. Math. Soc. 24, 899–916 (2011)
2. Baudoin, F., Bonnefont, M., Garofalo, N., Munive, I.H.: volume and distance comparison theorems for Sub-Riemannian manifolds. J. Funct. Anal. 267(7), 2005–2027 (2014)
3. Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. 358(3–4), 833–860 (2014)
4. Chang, S.-C., Chiu, H.-L.: Nonnegativity of CR Paneitz operator and its application to the CR Obata’s theorem in a pseudohermitian (2n+1)-manifold. J. Geom. Anal. 19, 261–287 (2009)
5. Chang, S.-C., Chang, T.-H., Fan, Y.-W.: Linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-Laplacian heat equation. J. Geom. Anal. Online (August 2013). doi:10.1007/s12220-013-9446-1
6. Chang, D.-C., Chang, S.-C., Tie, J.-Z.: Calabi–Yau theorem and Hodge–Laplacian heat equation in a closed strictly pseudoconvex cr manifold. J. Differ. Geom. (to appear)
7. Chen, B.-L., Tang, S.-H., Zhu, X.-P.: A uniformization theorem for complete non-compact Kaehler surfaces with positive bisectional curvature. J. Differ. Geom. 67(3), 519–570 (2004)
8. Chen, B.-L., Zhu, X.-P.: On complete noncompact Kaehler manifolds with positive bisectional curvature. Math. Ann. 327, 1–23 (2003)
9. Donnelly, H.: Uniqueness of positive solutions of the heat equation. AMS 99(2) (1987)
10. Evans, L.C.: Partial differential equations. Graduate studies in math. AMS. 19 (2010)
11. Folland, G.B., Stein, E.M.: Estimates for the $\bar{\partial}$ complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)
12. Gianazza, U., Vespri, V.: Analytic semigroups generated by square Hormander operators. Rend. Istit. Mat. Univ. Trieste Suppl XXVIII, 201–220 (1997)
13. Gianazza, U., Vespri, V.: Generation of analytic semigroups by degenerate elliptic operators. NoDEA 4, 305–324 (1997)
14. Greene, R.-E., Wu, H.: Analysis on non-compact Kaehler manifolds. Proc. Symp. Pure. Math. Part II, Am. Math. Soc. 30 (1977)
15. Greene, R.-E., Wu, H.: Gap theorems for noncompact Riemannian manifolds. Duke Math. J. 49(3), 731–756 (1982)
16. Jerison, D.S.: The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, I and II, J. Funct. Anal. 43, 97–141 and 429–522 (1981)
17. Jerison, D.S.: Boundary regularity in the Dirichlet problem for \square_b on CR manifolds. C.P.A.M. XXXVI, 143–181 (1983)
18. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems, PNLDE 16. Birkhäuser, Berlin (1995)
19. Li, P.: Geometry Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)
20. Lee, J.M.: Pseudo-Einstein structure on C^R manifolds. Am. J. Math. 110, 157–178 (1988)
21. Lee, J.M.: The Fefferman metric and Pseudohermitian invariants. Trans. Am. Math. Soc. 296, 411–429 (1986)
22. Li, P., Tam, L.-F.: The heat equation and harmonic maps of complete manifolds. Invent. Math. 105, 1–46 (1991)
23. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)
24. Munive, I.H.: Stochastic completeness and volume growth in sub-Riemannian manifolds. Manuscr. Math. 138, 299–313 (2012)
25. Morrey, C.: Multiple Integrals in Calculus of Variations. Springer, New York (1966)
26. Mok, N.: The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differ. Geom. 27, 179–214 (1988)
27. Mok, N.: An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties. Bull. Soc. Math. Fr. 112, 197–258 (1984)
28. Miner, R.R.: Spherical CR manifolds with amenable holonomy. Int. J. Math. 1, 479–510 (1990)
29. Mok, N., Siu, Y.-T., Yau, S.-T.: The Poincaré-Lelong equation on complete Kähler manifolds. Compos. Math. 44, 183–218 (1981)
30. Ni, L.: A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature. J. Am. Math. Soc. 17, 909–946 (2004)
31. Ni, L.: An optimal gap theorem. Invent Math. 189, 737–761 and Erratum (2012)
32. Ni, L.: The Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact Kähler manifolds. Indiana Univ. Math. J. 51, 679–704 (2002)
33. Ni, L.: Vanishing theorems on complete Kähler manifolds and their applications. J. Differ. Geom. 50, 89–122 (1998)
34. Ni, L., Tam, L.-F.: Plurisubharmonic functions and the Kähler-Ricci flow. Am. J. Math. 125, 623–654 (2003)
35. Ni, L., Tam, L.-F.: Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature. J. Differ. Geom. 64(3), 457–524 (2003)
36. Ni, L., Tam, L.-F.: Kähler-Ricci flow and Poincaré-Lelong equation. Commun. Anal. Geom. 12(1), 111–114 (2004)
37. Ni, L., Niu, Y.-Y.: Sharp differential estimates of Li-Yau-Hamilton type for positive (p, p)-forms on Kähler manifolds. Commun. Pure Appl. Math. 64, 920–974 (2011)
38. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
39. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, New York (2004)
40. Bruce Stewart, H.: generation of analytic semigroups by strongly elliptic operators. Trans. Am. Math. Soc. 199, 141–162 (1974)
41. Siu, Y.-T.: Pseudoconvexity and the problem of Levi. Bull. Am. Math. Soc. 84, 481–512 (1978)
42. Simon, L.: Schauder estimates by scaling. Calc. Var. Partial Differ. Equ. 5, 391–407 (1997)
43. Yau, S.-T.: Problem section. In: Yau, S.T. (ed.) Seminar on Differential Geometry. Princeton Univ. Press, Princeton (1982)