Specific heat of Ce$_{0.8}$La$_{0.2}$Al$_{3}$ in magnetic fields: a test of the anisotropic Kondo picture

R. Pietri, K. Ingersent, and B. Andraka

Department of Physics, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440

(July 6, 2000)

The specific heat C of Ce$_{0.8}$La$_{0.2}$Al$_{3}$ has been measured as a function of temperature T in magnetic fields up to 14 T. A large peak in C at 2.3 K has recently been ascribed to an anisotropic Kondo effect in this compound. A 14-T field depresses the temperature of the peak by only 0.2 K, but strongly reduces its height. The corresponding peak in C/T shifts from 2.1 K at zero field to 1.7 K at 14 T. The extrapolated specific heat coefficient $\gamma = \lim_{T \to 0} C/T$ increases with field over the range studied. We show that these trends are inconsistent with the anisotropic Kondo model.

PACS numbers: 75.20.Hr, 75.30.Mb, 75.40.Cx

CeAl$_3$ occupies a particularly important position in the history of heavy fermions. The first report of its unusual low-temperature specific heat [4] a quarter of a century ago led to enormous interest in this and similar systems based on $4f$ or $5f$ elements. For years, CeAl$_3$ was considered a canonical heavy fermion system, and it greatly influenced theoretical work in the field. Indeed, CeAl$_3$ was viewed as a realization of a “standard model” based on the Kondo effect and Fermi-liquid theory. The hallmark properties of this compound are its specific heat and its electrical resistivity. The low-temperature specific heat $C(T)$ is greatly enhanced over that for a conventional metal, with a linear coefficient $\gamma = \lim_{T \to 0} C/T \approx 1250 \text{ mJ/K}^2\text{Ce mol}$. The resistivity above 10 K is described to very high very accuracy by a theory for a Kondo impurity in crystalline electric fields [3]. Below 300 mK the resistivity has a Fermi-liquid form $\rho = \rho_0 + AT^2$, with a strongly enhanced A coefficient. The ratio A/γ^2 is about $10^{-5}\Omega\text{ cm K}^{-2}\text{ mol}^{-2}\text{ J}^{-2}$, a value close to that theoretically predicted for nonmagnetic Kondo lattices [4], and experimentally observed [4] in many other heavy fermion compounds.

The description of CeAl$_3$ in terms of a nonmagnetic Kondo lattice and a heavy Fermi liquid has been challenged by microscopic measurements such as muon spin resonance (μSR) [3] and nuclear magnetic resonance (NMR) [7]. According to these measurements, either short-range magnetic order or strong antiferromagnetic correlations exist below 2 K. In addition, the specific heat itself has an unexplained feature: a maximum in C/T near 0.4 K. A similar maximum is found in another heavy fermion system, CeCu$_2$Si$_2$, around the same temperature. In both compounds, this feature was initially attributed to coherence in the Kondo lattice. However, extensive studies of CeCu$_2$Si$_2$ gave rise to an alternative explanation based on weak magnetic ordering of heavy quasiparticles [8]. A previous alloying study of CeAl$_3$ has similarly pointed to a magnetic origin for the 0.4 K anomaly [4]. When La is partially substituted for Ce in Ce$_{1-x}$La$_x$Al$_3$, this weak feature, observable in C/T but not in C for $x = 0$, gradually evolves for $x \geq 0.05$ into a large peak in both C and C/T. The highest-La-content alloy investigated in Ref. 8, Ce$_{0.8}$La$_{0.2}$Al$_3$, has a pronounced maximum in C near 2.3 K and a corresponding peak in the susceptibility at 2.5 K, reminiscent of an antiferromagnetic transition. The smooth and monotonic increase with x of the temperature position and magnitude of the anomaly suggests that this feature has a common origin in pure and La-doped CeAl$_3$. The apparent enhancement of the magnetic character of the anomaly upon La doping is consistent with Doniach’s Kondo necklace model [4], since doping increases the lattice constants, and therefore decreases the hybridization between f and ligand states. However, an interpretation based on this model is somewhat undermined by the fact that anomalies in C, similarly pronounced to those produced by La substitution, can be induced by replacing Al atoms with either larger or smaller atoms [4].

Recent neutron scattering and μSR studies by Goremychkin et al. [12] on Ce$_{0.8}$La$_{0.2}$Al$_3$ revealed the absence of magnetic Bragg peaks, and estimated the upper limit of any possible ordered moment to be 0.05μ_B. The response function deduced from time-of-flight measurements changes from a quasi-elastic form to an inelastic form around 3 K, the temperature range where features develop in the specific heat and the magnetic susceptibility. This result was attributed to weakly dissipative dynamics consistent with the anisotropic Kondo model (AKM) [13]. μSR spectra showed Lorentzian damping, with a temperature-dependent damping rate that diverges also around 3 K. The divergence was attributed to the development of static magnetic correlations, indicating the possibility of magnetic order of small moments, as seen in other heavy fermion systems [4].

In order to investigate further the applicability of the AKM to Ce$_{0.8}$La$_{0.2}$Al$_3$, and to search for any contribu-
of the anomalies in C and C/T. Also striking is the very weak field dependence of the temperature position of the anomalies. A pronounced peak in C located at $T_M \approx 2.3\,\text{K}$ for $H = 0$ is replaced by a shoulder near $2.1\,\text{K}$ for $H = 14\,\text{T}$. The peak in C/T also shifts slowly with field, T_m decreasing from $2.1\,\text{K}$ at $0\,\text{T}$ to $1.7\,\text{K}$ at $14\,\text{T}$ (see Fig. 4). Note that the difference between T_M and T_m grows with applied field. A difference of the same order has been observed in zero field for Ce$_{1-x}$La$_x$Al$_3$ alloys with $x < 0.2$, where $T_{m} - T_{m}$ grows as x becomes smaller [10]. In this respect, an increase in the magnetic field has a similar effect to a decrease in x.

Another important result is an increase with field of C/T values at low temperatures (below $1\,\text{K}$), signaling a partial restoration of the heavy fermion state present in pure CeAl$_3$. It may be that the large nuclear moments of Al contribute to enhance C/T at the lowest temperatures and the largest fields. Indeed, the 14-tesla C/T data display a low-temperature tail which might be due to a nuclear hyperfine contribution $\Delta C/T \propto 1/T^3$. None of the curves at lower fields show a similar upturn. Therefore, the linear specific heat coefficient γ was extracted from a linear fit to C/T vs T^2 below $1\,\text{K}$, except for the $14\,\text{T}$ data, where γ was determined from the slope of CT^2 vs T^3 below $1\,\text{K}$. As may be seen in Fig. 3, γ seems to saturate in the range $H \lesssim 10\,\text{T}$. (The error bars for γ combine experimental and regression uncertainties.)

It is worth noting that C/T for Ce$_{0.8}$La$_{0.2}$Al$_3$ at $14\,\text{T}$ and C/T for CeAl$_3$ in zero field coincide above $4\,\text{K}$ to within the accuracy of the measurement. This is demonstrated in Fig. 4, which also includes the corresponding curve for Ce$_{0.8}$La$_{0.2}$Al$_3$ at $H = 0$. Since C/T for the pure compound is only weakly field dependent above $4\,\text{K}$ (for fields $\sim 10\,\text{T}$) [11], we can claim that the high-field ($H \sim 14\,\text{T}$) specific heats for these two alloys converge in this temperature regime.
We now attempt to analyze our magnetic-field data in terms of the anisotropic Kondo model (AKM) for a single magnetic impurity. The model assumes an exchange interaction $J_z S_z s_z + J_\perp (S_z s_z + S_y s_y)$ between the impurity spin S and the net conduction-electron spin s at the impurity site. Goremychkin et al. [12] have proposed the AKM as a description for the thermodynamic properties of both Ce$_{0.8}$La$_{0.2}$Al$_3$ and CeAl$_3$. A strong dependence on field orientation in the magnetic susceptibility of CeAl$_3$ single crystals [13] is suggestive of anisotropic behavior corresponding to $J_z \gg J_\perp > 0$, with the magnetic z direction being the crystallographic c axis.

The AKM is known to be equivalent in the limit of low magnetic field $H = 0$, and for $H = 14$ T, and for CeAl$_3$ at $H = 0$.

We have used a renormalization-group calculation [21] of the specific heat and for CeAl$_3$ for the AKM model in various magnetic fields H, with model parameters chosen so that $\alpha = 0.130$ for $H = 0$. See text for details.

Under the assumption that the impurity and the conduction electrons have g factors $g_i = g_z = 2$. (Changing the g factors multiplies the field scale by an overall factor, but does not otherwise affect the results [22].)

The numerical data exhibit three main trends with increasing field: (1) The anomaly in C/T becomes broader and lower. (2) The peak shifts markedly to higher temperatures. (3) C/T decreases at all temperatures below the zero-field value of T_m; the fractional change in γ is greater than that in the peak height, so that $\alpha = \gamma T_m/R$ decreases monotonically with increasing magnetic field, as shown in the legend of Fig. 5.

These numerical results are directly applicable only to single-crystal Ce$_{0.8}$La$_{0.2}$Al$_3$ with a magnetic field along the c axis. For comparison with our polycrystalline data, one must average over all possible field orientations. The Ising-like crystal-field ground state of Ce$^{3+}$ in CeAl$_3$ [23] implies that $g_i = 0$ for the basal-plane components of the magnetic field and, hence, that the specific heat of a polycrystal in field H is an equally weighted average of the single-crystal results for all fields between zero and H. This averaging process preserves trends (1)–(3) above.

Trend (1) accords well with our measurements, but (2) and (3) both run counter to experiment. In Ce$_{0.8}$La$_{0.2}$Al$_3$, T_m does not rise with increasing field, but instead is weakly depressed, while C/T undergoes a small increase at temperatures much below T_m. In particular, γ rises sufficiently fast that α remains essentially constant up to a 14 T field (see Table I), in contrast to the prediction of the AKM.

The preceding comparisons seem to indicate significant shortcomings in the AKM as a description of Ce$_{0.8}$La$_{0.2}$Al$_3$ in magnetic fields. One reason for the inadequacy of the AKM may be the neglect of magnetic correlations around the temperature of the maximum, as identified in the μSR studies of Ref. [12]. It was noted above that the specific heat anomaly is reminiscent of an anti-
TABLE I. Values of the specific heat coefficient γ, the peak temperature T_m, and $\alpha = \gamma T_m / R$ (where R is the gas constant) for Ce$_{0.8}$La$_{0.2}$Al$_3$ in different magnetic fields H.

H (T)	γ (mJ/K2Ce mol)	T_m (K)	α
0	520 ± 20	2.13 ± 0.02	0.133 ± 0.005
5	640 ± 20	1.86 ± 0.02	0.143 ± 0.005
10	690 ± 30	1.75 ± 0.02	0.145 ± 0.006
14	700 ± 40	1.70 ± 0.02	0.143 ± 0.008

The entropy under the peak in C/T is a large fraction (≈50%) of $R \ln 2$, and the linear specific heat coefficient $\gamma = 520$ mJ/K2Ce mol is less than half that of pure CeAl$_3$ ($\gamma = 1250$ mJ/K2Ce mol). However, our field data suggest that any magnetic transition associated with the anomaly is rather unusual. We find that T_M and T_m are depressed in an applied field at a much lower rate than is the Neél temperature in Ce-based heavy fermion systems that order antiferromagnetically. In CeCu$_{5.2}$Au$_{0.8}$, for example, T_N is reduced from 0.7 K to 0 K in a field of about 2.5 T [2]. In CePb$_3$, which exhibits unconventional small-moment ordering at 1.1 K, a field of order 10 T depresses T_N to zero [22].

In summary, we have measured the heat capacity of Ce$_{0.8}$La$_{0.2}$Al$_3$ as a function of temperature in magnetic fields up to 14 T. The field strongly diminishes the peaks found around 2 K in both C and C/T, but only weakly depresses the peak temperatures. The linear specific heat coefficient increases with field in the direction of the value for pure CeAl$_3$, implying partial restoration of the heavy fermion state suppressed by La doping. We have analyzed our data in terms of the anisotropic Kondo model. The model predicts a shift of the peak in C/T to higher temperatures with increasing field, accompanied by a significant reduction in C/T at low temperatures. These two trends are at odds with experiment. Our results do not rule out an alternative theoretical picture based on small-moment magnetism. However, the field-insensitivity of the temperature of the heat-capacity peak remains to be understood within this scenario.

This work was supported in part by Department of Energy grant DE-FG02-99ER45748.

[1] K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 27, 1779 (1975).
[2] Throughout this paper, C and γ are assumed to be normalized per mole of Ce.
[3] B. Cornut and B. Coqblin, Phys. Rev. B 5, 4541 (1972).
[4] T. Takimoto and T. Moriya, Solid State Commun. 99, 457 (1996).
[5] K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).
[6] S. Barth, H. R. Ott, F. N. Gyngax, B. Hitti, E. Lippelt, A. Schenck, C. Baines, B. van den Brandt, T. Konter, and S. Mango, Phys. Rev. Lett. 59, 2991 (1987).
[7] J. L. Gavilano, J. Hunziker, and H. R. Ott, Phys. Rev. B 52, 13106 (1995).
[8] C. D. Bredl, S. Horn, F. Steglich, B. Lüthi, and R. M. Martin, Phys. Rev. Lett. 52, 1982 (1984); B. Andraka, G. R. Stewart, and F. Steglich, Phys. Rev. B 48, 3939 (1993).
[9] B. Andraka, C. S. Jee, and G. R. Stewart, Phys. Rev. B 52, 9462 (1995); R. Pietri and B. Andraka, Physica B 230-232, 535 (1997).
[10] S. Doniach, in Valence instabilities and related narrow band phenomena, ed. by R. D. Parks (Plenum Press New York), p. 169 (1977); S. Doniach, Physica B 91, 231 (1977).
[11] S. Corsepius, M. Lenkewitz, and G. R. Stewart, J. Alloys Comp. 259, 29 (1997).
[12] E. A. Goremychkin, R. Osborn, B. D. Rainford, and A. P. Murani, Phys. Rev. Lett. 84, 2211 (2000).
[13] T. A. Costi and C. Kieffer, Phys. Rev. Lett. 76, 1683 (1996).
[14] C. Broholm, J. K. Kjems, W. J. L. Buyers, P. Matthews, T. T. M. Palstra, A. A. Menovsky, and J. A. Mydosh, Phys. Rev. Lett. 58, 1467 (1987).
[15] A. S. Edelstein, R. A. Fischer, and N. E. Phillips, J. Appl. Phys. 61, 3177 (1977).
[16] B. Andraka and G. R. Stewart (unpublished).
[17] D. Jaccard, R. Cibin, A. Bezing, J. Sierra, K. Matho, and J. Flouquet, J. Magn. Mag. Mater. 76-77, 255 (1988).
[18] S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982); A. J. Bray and M. A. Moore, ibid. 49, 1545 (1982); F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. B 32, 4410 (1985).
[19] T. A. Costi, Phys. Rev. Lett. 80, 1038 (1998); T. A. Costi and G. Zarand, Phys. Rev. B 59, 12398 (1999).
[20] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987); 67, 725(E) (1995).
[21] $C(T)$ was computed as described in C. Gonzalez-Buxton and K. Ingensent, Phys. Rev. B 57, 14254 (1998). We chose $\rho J_L = 10^{-3}$, and found $\rho J_s = 1.90$ from the condition $\alpha (H = 0) = 0.130$. The values of αg and $\alpha e g$ were calculated for $g_s = 2$ and $g_e = 0$; then the field scale was converted to that for $g_s = g_e = 2$.
[22] A magnetic field H enters the partition function of the AKM in the combination $[1 - (2g_e/|g_s|) \tan^{-1} (\pi \rho J_s / 4)] g_s \mu_B H$; see P. B. Vigmann and A. M. Finkel’stein, Zh. Eksp. Teor. Fiz. 75, 204 (1978) [Sov. Phys. JETP 48, 102 (1978)]. For fixed ρJ_s, any change in the g factors can be treated as an effective rescaling of H. In fact, the curves in Fig. 3 were calculated for $g_s = 2$ and $g_e = 0$; then the field scale was converted to that for $g_s = g_e = 2$.
[23] E. A. Goremychkin, R. Osborn, and I. L. Sashkin, J. Appl. Phys. 85, 6046 (1999).
[24] K. Heuser, J. S. Kim, E.-W. Scheidt, T. Schreiner, and G. R. Stewart, Physica B 259-261, 392. (1999).
[25] J. McDonough and S. R. Julian, Phys. Rev. B 53, 14411 (1996), and references therein; T. Ebihara, K. Koizumi, S. Uji, C. Terakura, T. Terashima, H. Suzuki, K. Kizawa, and G. Kido, Phys. Rev. B 61, 2513 (2000).