In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris

Hoang N. H. Tran 1 · Lee Graham 2 · Emmanuel C. Adukwu 2

Abstract

Candida infections are a significant source of patient morbidity and mortality. Candida albicans is the most common pathogen causing Candida infections. Candida auris is a newly described pathogen that is associated with multi-drug-resistant candidiasis and candidaemia in humans. The antifungal effects of various essential oils and plant compounds have been demonstrated against human pathogenic fungi. In this study, the effect of cinnamon leaf and bark essential oils (CEOs) was determined against both C. albicans and C. auris. The disc diffusion (direct and vapour) and broth microdilution method was used to determine antifungal activity of the EOs against selected strains (C. albicans ATCC 10231, C. albicans ATCC 2091 and C. auris NCPF 8971) whilst the mode of action and haemolysin activity of the CEOs were determined using electron microscopy and light microscopy. Direct and vapour diffusion assays showed greater inhibitory activity of bark CEO in comparison with leaf CEO. The minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) of bark CEO for all tested strains was below 0.03% (v/v), which was lower than the MICs of the leaf CEO (0.06–0.13% (v/v) dependent on the strain and the MFCs at 0.25% (v/v). In the morphological interference assays, damage to the cell membrane was observed and both CEOs inhibited hyphae formation. The haemolysin production assay showed that CEOs can reduce the haemolytic activity in the tested C. albicans and C. auris strains. At low concentrations, CEOs have potent antifungal and antihaemolytic activities in vitro against C. albicans and C. auris.

Key points

- Essential oils from Cinnamomum zeylanicum Blume bark and leaf (CBEO and CLEO) demonstrated fungicidal properties at very low concentrations.
- The antifungal activity of CBEO was greater than that of CLEO consistent with other recent published literature.
- The mode of action of CBEO and CLEO was damage to the membrane of C. albicans and C. auris.
- Both CBEO and CLEO inhibited the formation of hyphae and reduced haemolysin production in C. albicans and C. auris.

Keywords Candida infections · Antifungal · Antihaemolytic · Essential oil · Cinnamon

Introduction

Fungal infections are common diseases of the natural world. In humans, fungal infections occur when the immune system is unable to deal with a considerable amount of trespassing fungi or yeast invading an area of the body. There are several classes of fungal infections, and of these, Candida infections are regarded as a significant cause of patient morbidity and mortality (Sardi et al. 2013). Candida infections are caused by commensal fungi Candida spp., especially Candida albicans, which resides on the skin, mucosa and gastrointestinal tract of 30 to 50% of healthy adults at any given time, with everyone being colonized at some point in their lifetime (Brown and Netea 2007). Candida auris is a newly described opportunistic
pathogen, which grows as yeast. C. auris is known to be resis-
tant to several classes of antifungal drugs including the first-line
antifungal, fluconazole, and exhibits variable susceptibility to
other azoles, amphotericin B, and echinocandins (Chowdhary
et al. 2016). Additionally, C. auris has a potential for person-to-
person transmission, challenging clinicians and infection con-
trol teams (Ben-Ami et al. 2017).

Essential oils (EOs) are considered plant-originated com-
plex liquid mixtures of volatile and low molecular weight sub-
stances (Amorati et al. 2013; Raut and Karuppayil 2014). Recently,
natural products extracted from traditional medicine have con-
tributed to the development of innovative modern drugs
(Yunes et al. 2005; Almeida et al. 2001). Antifungal activity against various plant and human pathogenic fungi in-
cluding yeasts have been discovered in numerous EOs (Raut
and Karuppayil 2014; Chen et al. 2013; Bajpai et al. 2009; Li
et al. 2014). Cinnamomum zeylanicum (a synonym of Cinnamomum verum J. Presl) commonly known as Sri Lanka cin-
namon is widely cultivated in India, China, Sri Lanka, and
Australia (Prasad et al. 2009). The EOs made from its leaf
and bark have been described as having useful antiseptic,
immunostimulant, detoxifying, analgesic and antidepressant ef-
facts (Thosar et al. 2013; Gautam et al. 2014; Vaseeharan and
Karuppayil 2014; Chen et al. 2013; Bajpai et al. 2009; Li
et al. 2014). Cinnamomum zeylanicum Blume; CBEO) is often
soaked in water and used as mouthwash solution to treat
dental carries pathogens. The study of Aneja et al. (2009)
showed that Dalchini extract exhibits even much higher anti-
fungal activity than the standard antifungal drug
amphotericin-B on oral pathogens including Saccharomyces
cerevisiae and C. albicans. In addition, the extraction of cin-
namon leaf and bark demonstrated inhibitory activity against
Fusarium graminearum, F. proliferatum, Aspergillus
fumigatus and Trichophyton rubrum in previous studies
(Velluti et al. 2003; Velluti et al. 2004; Khan and Ahmad
2011). In the study by Carvalho et al. (2018), CEOs extracted
from C. zeylancicum were shown to inhibit some virulence
factors in clinical strains of C. albicans such as proteinase
production, germ tube formation and adhesion to buccal epidi-
thal cells. Moreover, previous studies have reported that
cinnamaldehyde and eugenol, which are the main components
of bark and leaf cinnamon essential oils, respectively, have
demonstrated active in vitro tested against dermatophyte
strains isolated from patients with dermatophytosis inhibiting
80% of the dermatophyte strains tested (Guenwald et al.
2010). However, to our knowledge, there is little data avail-
able demonstrating the possibility of utilizing CEOs to treat
infections caused by C. albicans and no evidence to date of
EO activity against C. auris.

The focus of this study was to investigate the antifungal
activities and the antihaemolytic effects of the oils extracted
from leaf and bark of C. zeylanicum Blume against
C. albicans and C. auris.

Methods

Fungal organisms

Three organisms were used in this study which included two
strains of C. albicans: ATCC 10231 and ATCC 2091 and one
strain of C. auris: NCPF 8971. The C. albicans strains were
provided by the Southmead Hospital, Bristol, UK while the
C. auris was purchased from the National Collection of
Pathogenic Fungi (NCPF) operated by Public Health England
(UK). The organisms were maintained on Sabouraud Dextrose
agar (SDA, CM0041, Oxoid Ltd., UK) at 30 and 4 °C until
used in tests. The inoculum was prepared from C. albicans and
C. auris cultures, plated on SDA and incubated at 30 °C for
48 h and prior to each experiment, was standardized using 0.5
McFarland with a final concentration at approximately 106
colony-forming units per millilitre (CFU/mL).

Essential oils used in this study

The bark CEO (Cinnamomum zeylanicum Blume; CBEO) was donated by Amphora Aromatics Ltd., UK for research
purposes and the leaf CEO (Cinnamomum zeylanicum
Blume; CLEO) was purchased from Freshskin Beauty Ltd.,
UK. The EOs were kept at room temperature throughout the
experimental period.

Gas chromatography mass spectroscopy

Using similar methods to Zeng et al. (2015), gas chromatog-
raphy mass spectroscopy (GC-MS) analysis was performed
using the Agilent 6890 N Gas Chromatograph system
(Agilent Technologies, USA) to identify the component pro-
files in the tested oils. Data acquisition and analysis was per-
formed using the Agilent MassHunter software (Agilent
Technologies, USA) based on the retention times and mass
spectra.

Antifungal susceptibility testing using the disc
diffusion assay

Direct contact

The agar disc diffusion method described by Adukwu et al.
(2016) was used for determination of the antifungal properties
of CEOs. Miconazole (Sigma, USA) with the concentration at
10 μg/mL dissolved in DMSO (Sigma) was used as the refer-
ence antifungal drug. Briefly, 100 μL of yeast suspension was
spread onto SDA plates and then paper discs (6 mm, Sigma)
impregnated with 10 μL of essential oils or dissolved micon-
azole were placed over the agar surface, and plates were incu-
bated at 30 °C for 48 h. Plates with discs in the absence of any
treatment were used as reference controls. The diameter of the
resulting inhibition zone in the fungal lawn was measured in millimetres.

Disc volatilisation assay

The antifungal activity of CEOs in vapour phase was investigated using the disc volatilisation technique (Boukhatem et al. 2014). Briefly, 100 μL of yeast suspension was spread onto SDA plates and then paper discs (6 mm, Sigma) impregnated with 10 μL of essential oils or dissolved miconazole were placed on the inside surface of the upper lid. The plate was sealed with parafilm to prevent leakage of the vapour and was promptly inverted on top of the lid. Plates were incubated at 30 °C for 48 h, and the diameter of the zone of inhibition was recorded in millimetres.

Determination of minimum inhibitory concentration and minimum fungicidal concentration using broth dilution method

The method used in this study for determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of CEOs was adapted from Adukwu et al. (2012) with slight modifications. Briefly, Sabouraud Dextrose broth (SDB, Oxoid Ltd., UK) was prepared with a 0.5% (v/v) concentration of Tween 20 (Sigma, USA), used as the EO emulsifier. Both CBEO and CLEO were diluted twofold into SDB with Tween 20 to create a concentration range between 4 and 0.03% (v/v). The amount of 180 μL of the diluted CEOs was transferred into the corresponding wells of a 96-well microdilution plate with 20 μL of yeast suspension. Microplate wells of EO dilutions without yeast, and SDB and yeast suspension, were used as negative controls, and the plates incubated at 30 °C for 48 h. After the appropriate incubation time, the optical density (OD) of each well was recorded at 595 nm using the microplate reader (infinteF200Pro, Tecan, Switzerland). The MIC was defined as the lowest CEO concentration that produced inhibition of yeast growth.

MFC was measured by transferring 20 μL from each treated well of CEO concentration from 4% (v/v) to 0.03% (v/v) to labelled SDA plates followed by incubation at 30 °C for 48 h. The MFC was defined as the lowest CEO concentration that inhibited growth of the yeast or permitted less than three CFUs to occur, resulting thus in 99.9% fungicidal activity (Espinel-Ingroff et al. 2002).

Effect of CEOs on the micromorphology of C. albicans and C. auris

To investigate changes in morphology caused by exposure to the CEOs against C. albicans and C. auris, we adapted the methods of Leite et al. (2014) with some modifications. One hundred microlitres (100 μL) of yeast suspension was spread onto cornmeal agar plates and then paper discs (6 mm, Sigma) were impregnated with 10 μL of essential oils or placed over the agar surface and the plates incubated at 30 °C for 48 h. Agar plates with discs without any treatments were used as reference controls. Plates were then visualised using the light microscope (Olympus, UK), tenfold magnification. Following incubation, two to three fungal colonies at the edge of the inhibitory zone were gently removed and placed on a clean microscope slide. A drop of Lacto-Fuchsin stain was placed on the sample and covered by a coverslip. The slides were examined under light microscope with 40-fold magnification.

Modulation of cell membrane permeability

To assess the integrity of the yeast cell membranes following treatment with the CEO exposure, the cellular content leakage assay method described by Khan et al. (2013) was adapted with some modifications. Briefly, 200 μL of cell suspensions were transferred to wells of the 24-well plates (SLS, UK) containing 1800 μL of diluted CEOs at different concentrations (0.03, 0.015 and 0.008% (v/v) for CBEO; 0.13, 0.06 and 0.03% (v/v) for CLEO). CEOs in PBS served as blank, untreated cells in PBS as controls. Plates were incubated at 30 °C for 24 h. After the incubation period, the samples were centrifuged (1250 rpm, 2 min) and the release of cellular material in the supernatants was determined by using spectrophotometric measurement of cell supernatant at 260/280 nm (corresponding to nucleic acids and proteins).

Scanning electron microscopy

Three sets of samples of the test strains were prepared with treatments at 0.03 and 0.015% (v/v) for CBEO and 0.13 and 0.06% (v/v) for CLEO. Control samples which consisted of the organisms without any treatment were also prepared. Fungal cultures were grown for 48 h in SDB, and 100 μL of the samples were dropped onto sterile metal discs and incubated for 48 h at 30 °C to establish fungal growth. The samples were then fixed using glutaraldehyde fixative. Periodic hourly rinsing of the samples three times with PBS was required to minimize any activity of the CEOs and to allow for clearing of any debris, which could affect the viewing of the samples. After that, samples were dehydrated using ethanol at different concentrations from 20 to 100% (v/v) and hexamethyldisilazane. Samples were then air dried, gold coated and visualized using the FEI Quanta FEG 650 SEM (Thermo Fisher Scientific, USA).
Assessment of Haemolytic activity

Haemolytic activities of Candida strains and CEOs

To determine haemolytic activity of the Candida isolates, SDA medium containing 7% (v/v) horse blood (TCS Biosciences Ltd. UK) with or without 3% (w/v) glucose was used. A 10-μL yeast suspension or diluted CEOs at different concentrations from 4% (v/v) to 0.03% (v/v) was inoculated onto plates in triplicate; these were then incubated at 37 °C for 24 h in aerobic condition. After incubation, a transparent/semi-transparent zone around the inoculation site was considered positive haemolytic activity. The ratio of the diameter of the colony to that of the translucent zone of haemolysis (mm) was used as the haemolytic index, as described by Wan et al. (2015).

Effect of CEOs on the haemolytic activity of Candida isolates

The inhibition of haemolysin production in tested strains was conducted using the method of Manns et al. (1994) with some modifications. Briefly, Candida isolates were grown in SDB with 8% (v/v) glucose and CBEO at final concentrations of 0.03, 0.015 and 0.008% (v/v) and CLEO at final concentrations of 0.13, 0.06 and 0.03% (v/v) and incubated at 37 °C for 48 h. The SDB without CEOs was used as a control. The supernatant was collected from the incubated broth cultures by centrifuging at 5000 rpm for 30 min. Freshly washed sterile RBCs from horse blood (TCS Biosciences Ltd. UK) suspended in sterile PBS and enriched with 5% (w/v) glucose were mixed in a ratio of 1:1 with the supernatant and incubated at 37 °C for 3 h. Tubes were centrifuged at 2000 rpm for 10 min and read at 540 nm. Mean absorbance values were used to calculate the reduction percentage in the production of haemolysin in treated samples over untreated controls.

Results

Analysis of chemical composition (GC-MS)

The qualitative and quantitative composition of the used CBEO and CLEO is shown in Table 1. The number of identified components was greater in CLEO representing approximately 93% of the entire EO than the CBEO representing approximately 95%. The CLEO was characterized by high amounts of eugenol at 62.57% whilst in the CBEO this component was only 5.28%. The main component of CBEO was trans-cinnamaldehyde (66.43%) with <2% of this compound identified in the CLEO.

Antifungal susceptibility screening

Results from the antifungal susceptibility tests are summarized in Table 2. Both CBEO and CLEO demonstrated stronger antifungal activity against tested strains when compared with miconazole—an antifungal drug that is typically used in treatment of skin infections including those caused by yeast, e.g. candidiasis. The CBEO demonstrated greater inhibitory activity against C. albicans and C. auris in comparison with CLEO in the direct disk diffusion and disk volatilisation assays (Table 2). The CBEO was approximately twice as effective as the CLEO (direct contact) and approximately between 2 to 3.5 times more effective than CLEO (vapour assay).

Inhibitory and fungicidal activity

Results in Table 3 showed that C. albicans and C. auris were susceptible to CBEO and CLEO at low concentrations with both yeast species exhibiting greater susceptibility to CBEO with MIC and MFC activity observed at concentrations below 0.03% (v/v). The inhibitory action of CLEO against the Candida spp. at low concentrations between 0.06 and 0.13% (v/v) was effective at inhibiting the growth of C. albicans and C. auris strains; however, fungicidal activity of CLEO was observed at 0.25% (v/v).

Effect of CEOs on the micromorphology of C. albicans and C. auris

Results from the cornmeal agar assay showed that the C. albicans strains were predominantly comprised of filaments and after exposure to the EOs, hyphae formation was noticeably reduced in both C. albicans strains, especially C. albicans ATCC 9011. No change in morphology in the C. auris isolate was observed before and after exposure to both CEOs.

Actions of CEOs on cell membrane permeability

The mechanism of action of CBEO and CLEO on C. albicans and C. auris was determined by cellular content leakage assay and scanning electron microscopy (SEM) morphological analysis following treatment with both CBEO and CLEO. The cellular content leakage assay shows that the envelop of the Candida spp. under investigation was damaged by the CEOs, demonstrated by the nucleic acid and protein release, i.e. cell lysis (Figs. 1 and 2). These results were supported by SEM images, which revealed receding of the cell membrane and shrinkage of cell surfaces (Fig. 3).

In the cell content leakage assay, an increase in OD 280 nm indicates a release of nucleic acid whilst the OD 260 nm shows protein release. Following exposure of the test organisms to CBEO, nucleic acid and protein release were observed (p < 0.05). In addition, the higher the concentration, the
greater the nucleic acid and protein leakage. Figure 2 also demonstrates cell content leakage following exposure to CLEO at the MIC and concentrations below the MIC; however, the cell content leakage was not significantly different \((p > 0.05)\) from the untreated samples at 0.06 and 0.03% \((v/v)\).

The MIC and MFC of CBEO were found to be below the test concentration range < 0.03% \((v/v)\) and at 0.015% \((v/v)\); the three test organisms were damaged and had lost turgidity and integrity when exposed to these concentrations (observed by SEM). *C. albicans* ATCC 2091 and *C. auris* NCPF 8971 were killed at 0.13% \((v/v)\) of CLEO while the control cells appeared turgid and whole with smooth cell membrane (Fig. 3a–c). Figure 3 (m–o) shows some undamaged cells when the cells were exposed to CLEO at 0.06% \((v/v)\; \text{MIC for } C. \text{ albicans } \text{ATCC 2091 and } C. \text{ auris } \text{NCPF 8971}) which is a confirmation of fungistatic activity at that concentration and at 0.13% \((v/v)\), the cells were damaged by the CLEO.

Haemolysin activities of Candida isolates

In the glucose-enriched agar plates, two different types of haemolysis were observed circumscribing the yeast “colony” when viewed with transmitted light. The first was a totally translucent ring identical to beta-haemolysis, and the second was a greenish-black halo comparable with alpha-haemolysis. At 24 h incubation, only alpha-haemolysis was observed in the glucose-free plates. However, after 48 h incubation, only beta-rings were observed in glucose-free plates. We clearly observed greater haemolytic activity in the three tested strains in the glucose-enriched plates compared with the glucose-free plates.

Results in Table 4 show the haemolysin activities of Candida isolates. In both glucose-enriched and glucose-free plates, haemolysis activity was higher in *C. albicans* ATCC 10231 with the mean diameters of alpha- and beta-rings in

Components	Cinnamon leaf (%)	Cinnamon bark (%)
Bicyclo [3.1.1] hept-2-ene, 3,6,6-trimethyl-	2.54	–
Alpha-Phellandrene	2.27	–
Benzene, 1-methyl-4-(1-methylethyl)-	1.7	–
Cyclohexene, 1-methyl-5-(1-methylethenyl)-, (R)-	1.43	–
1,6-Octadien-3-ol, 3,7-dimethyl-	3.79	7.61
Eugenol	62.57	5.28
Caryophyllene	4.17	–
Benzyl benzoate	4.09	2.86
Phenol, 2-methoxy-4-(2-propenyl)-, acetate	3.49	–
trans-Cinnamaldehyde	1.92	66.43
1,3-Benzodioxole, 5-(2-propenyl)-	1.73	–
2-Propen-1-ol, 3-phenyl-, acetate	2.3	–
Eucalyptol	0.33	6.63
Butane, 2-methyl-	–	4.74
Benzaldehyde	0.27	1.04
Percentage of total components in the EO	92.6	94.59

Table 2 Inhibitory zones (mm) of fungal growth in C. albicans and C. auris by bark CEO, leaf CEO and miconazole (10 \(\mu\)g/mL) after 48 h of incubation

Selected yeasts	Mode of exposure or treatment	Bark CEO	Leaf CEO	Miconazole			
		Mean (mm)	SE	Mean (mm)	SE	Mean (mm)	SE
C. albicans ATCC 10231		53.00	1.68	26.32	0.67	24.33	1.37
C. albicans ATCC 2091	Direct contact	56.68	0.85	30.17	0.76	31.33	0.97
C. auris NCPF 8971		70.40	1.53	39.67	1.00	32.82	0.39
C. albicans ATCC 10231		55.52	0.65	15.08	0.82	NA	NA
C. albicans ATCC 2091	Vapour exposure	59.72	1.07	18.90	0.33	NA	NA
C. auris NCPF 8971		77.37	1.72	35.40	1.08	NA	NA

Results were from three independent experiments performed in triplicate \((N = 3)\)
glucose-enriched plates after 24 h incubation being 15.51 ± 0.36 and 21.46 ± 0.6 mm, respectively. Meanwhile, in the glucose-free agar plates, the mean diameter of alpha-rings of \(C. \) albicans ATCC 10231 was 11.42 ± 0.31 mm. After 48 h incubation, the mean diameters of alpha- and beta-rings of \(C. \) albicans ATCC 10231 in glucose-added plates were still the highest among three tested stains. The mean diameter of beta-rings of \(C. \) albicans ATCC 10231 in glucose-free plates was 16.63 ± 0.41 mm. In contrast, haemolysis was lower in \(C. \) auris NCPF 8971 with mean alpha- and beta-rings in glucose-enriched plates after 24 h incubation were 10.61 ± 0.54 and 16.43 ± 0.43 mm, respectively. After 48 h incubation, the mean diameter of beta-rings of \(C. \) auris NCPF 8971 in glucose-free plates was 14.56 ± 0.23 mm.

Effects of bark and leaf CEOs on the haemolytic activity of \(C. \) albicans and \(C. \) auris

An antifungal agent may either increase or attenuate the virulence factors released by fungal cells (Khan and Ahmad, 2013). Clinical performance of an antifungal compound is not only determined by its fungicidal or fungistatic activity but also by its influence on virulence factor release (Lopes et al. 2013). To ensure that the CEO concentration in this test was not directly responsible for the haemolytic activity following the challenge with the yeast species under investigation, assays to test the haemolysis activity of CBEO and CLEO were conducted on horse blood agar (Fig. 4). The results indicated that both CEOs could cause haemolytic activity at high concentration; however, at concentrations ≤1% (v/v) for CBEO and < 0.5% (v/v) for CLEO, both CEOs did not cause any haemolytic activity in vitro.

The results from the inhibitory effects of CBEO and CLEO on the haemolytic activity of \(C. \) albicans and \(C. \) auris are shown in Table 3. The antifungal activity of bark and leaf CEO (MICs and MFCs) against \(C. \) albicans and \(C. \) auris was presented in Fig. 5. Following treatment with both CEOs at different concentrations, haemolytic activity was reduced in all tested organisms. CBEO at 0.03% (v/v) and 0.015% (v/v) reduced haemolysis in the tested strains to lower than 20% overall and at 0.008% (v/v) haemolysis was reduced by approximately 30% (Fig. 5a). At the same concentration, haemolysis was reduced by over 80%. CLEO also reduced haemolytic activity of \(C. \) albicans and \(C. \) auris at the MIC and the concentration 2× MIC (Fig. 5b). At the sub-inhibitory concentration, 0.5× MIC, there was no significant difference between the treated and untreated strain (\(C. \) albicans ATCC 10231; \(p > 0.05 \)).

Discussion

Analysis of chemical composition (GC-MS)

The GC-MS results in this study were similar to that of Mayaud et al. (2008) with the exception of cinnamaldehyde, which was not found in the CLEO, analysed in their paper. Previous studies have shown that both trans-cinnamaldehyde and eugenol, the key components of CBEO and CLEO, respectively have been are antimicrobial against bacteria and fungi. In a recent review article by Doyle and Stephens (2019), trans-cinnamaldehyde was found to be responsible for causing damage to the bacterial cells via different methods; cell release activity, anti-quorum sensing activity, effect on ATP etc. Eugenol, on the other hand, has been shown to cause morphological changes and damage to Candida albicans-adherent cells and biofilms (He et al. 2007). To our knowledge, very little is known on the effects of EOs against the new pathogen \(C. \) auris and there are no published reports on the effects of CEOs against this pathogen.

Antifungal activity of CBEO and CLEO

The susceptibility of \(C. \) albicans and \(C. \) auris to the antifungal effects of bark and leaf CEO when in contact with the fungal lawns and in vapour phase was determined. The results were consistent with the studies by Brnawi et al. (2018) and Ranasinghe et al. (2002) who found CBEO to be a more effective antimicrobial than CLEO. Research into the antimicrobial vapour investigations using EOs is gaining interest, and our results further support this with CBEO demonstrating strong antimicrobial activity in vapour phase while CLEO produces major inhibition in direct contact. The main component of CBEO is trans-cinnamaldehyde and that of CLEO is eugenol. The study by Sanla-Ead et al. (2012) investigated the antifungal activity of trans-cinnamaldehyde and eugenol and
found that trans-cinnamaldehyde displayed stronger antifungal activity in vapour phase which might explain why CBEO was more effective in vapour phase when compared with CLEO. Antimicrobial activity via vapour diffusion offers a
different delivery mode for the CEOs and other essential oils for the treatment and management of infections, e.g. in clinical settings to improve air quality by means of decontamination.

Both CBEO and CLEO demonstrated fungicidal properties at very low concentrations. *C. auris* has been described as a notorious nosocomial pathogen requiring urgent efforts to understand and to identify therapeutic options due to high transmissibility, challenges with identification, incorrect use of antifungal drugs and treatment failures, which lead to high mortality (Sears and Schwartz 2017; Sardi et al. 2018). The experiment was carried out on three separate occasions (*N* = 3) with the bars showing mean values (± SE).

Fig. 2 Assessment of (a) nucleic acid release, OD 260 nm and (b) protein release OD 280 nm from *C. albicans* and *C. auris* after treatment with cinnamon leaf essential oil at 0.03, 0.06 and 0.13% (v/v). This experiment was carried out on three separate occasions (*N* = 3) with the bars showing mean values (± SE).
Fig. 3 Scanning electron microphotographs of *C. albicans* ATCC 10231 (column 1), *C. albicans* ATCC 2091 (column 2) and *C. auris* NCPF 8971 (column 3). (a–c) Untreated cells; (d–f) Bark CEO 0.03% (v/v) treated cells; (g–i) Bark CEO 0.015% (v/v) treated cells; (j–l) leaf CEO 0.13% (v/v) treated cells; (m–o) The white arrows indicate fungal cells which are undamaged or having a minor damage under treatments. Magnification, ×5000.
limited antifungal treatment options for this important pathogen creates a need to develop new alternative treatments in line with the global antimicrobial resistance strategies, which indicates the development of new treatments and reduce reliance on existing conventional antimicrobials as an important step.

Table 4 Diameters of α- and β-rings (mm) representing haemolytic activity of *C. albicans* ATCC 10231, *C. albicans* ATCC 2091 and *C. auris* NCPF 8971 with and without glucose enrichment after incubation for 24 and 48 h

Organisms	Glucose conc. (w/v)	Incubation time (h)	α-Ring (mm)	β-Ring (mm)
Candida albicans ATCC 10231	3	24	15.51 (± 0.36)	21.46 (± 0.60)
	0	24	11.42 (± 0.31)	0 (non-haemolytic)
	3	48	17.72 (± 0.15)	28.83 (± 0.46)
	0	24	0 (non-haemolytic)	16.63 (± 0.41)
Candida albicans ATCC 2091	3	24	14.26 (± 0.33)	20.7 (± 0.43)
	0	24	10.96 (± 0.27)	0 (non-haemolytic)
	3	48	17.7 (± 0.35)	26.2 (± 0.75)
	0	24	0 (non-haemolytic)	16.38 (± 0.37)
Candida auris NCPF 8971	3	24	10.61 (± 0.40)	16.43 (± 0.43)
	0	24	9.7 (± 0.16)	0 (non-haemolytic)
	3	48	15.11 (± 0.36)	24.54 (± 0.43)
	0	24	0 (non-haemolytic)	14.56 (± 0.23)

Results were from three independent experiments performed in triplicate (*N* = 3)

Fig. 4 Photographs depicting the hemolysis of horse blood agar (supplemented with 3% w/v of glucose) induced by different concentrations of bark CEO (1, 2) and leaf CEO (3, 4). Panel a shows pure bark CEO (a) and pure leaf CEO (k) served as positive control; Sabouraud dextrose broth +0.5% Tween 20 served as negative control (j); bark CEO 4% (b); bark CEO 2% (c); bark CEO 1% (d); bark CEO 0.5% (e); bark CEO 0.25% (f); bark CEO 0.125% (g); bark CEO 0.06% (h); bark CEO 0.03% (i); leaf CEO 4% (l); leaf CEO 2% (m); leaf CEO 1% (n); leaf CEO 0.5% (o); leaf CEO 0.25% (p); leaf CEO 0.125% (q); leaf CEO 0.06% (r); and leaf CEO 0.03% (s)
Effect of CEOs on the micromorphology of \textit{C. albicans} and \textit{C. auris}

Germination is considered one of the major virulence factors known to contribute to \textit{Candida} pathogenesis (Larkin et al. 2017). In \textit{C. albicans}, virulence gene expression is linked to its ability to transition from yeast form to hyphal form (Gow et al. 2002). The yeast-to-hyphal transition in \textit{C. albicans} is known to promote virulence because hyphae can exert mechanical force to breach and damage endothelial cells (Thompson et al. 2011). Moreover, macrophages and neutrophils can be lysed by the growth of \textit{C. albicans} hyphae (Lo
et al. 1997). In the presence of CEOs, hyphal formation was inhibited in the \textit{C. albicans} strain ATCC 2091, suggesting a potential mechanism of action of the EO as hyphae formation is associated with release of virulence factors. The findings also showed that under similar test conditions, \textit{C. auris} NCPF 8971 did not germinate, form hyphae or produce chlamydomospores. Since the ability of \textit{Candida} to invade endothelial cells is important in causing candidemia and candidiasis, the inability to form hyphae of \textit{C. auris} NCPF 8971 suggests that virulence as described in other studies is likely as a result of other factors and requires further investigation.

\textbf{Actions of CEOs on cell membrane permeability}

The mechanism of action of CBEO and CLEO on \textit{C. albicans} and \textit{C. auris} was damage to the envelop, evident by the shrinkage of the cell surfaces and receding of cytoplasm leading to lysis of cells. In addition, the level of membrane damages of \textit{Candida} cells correlated with the concentration of CEOs used. This finding suggests that the membrane-destructive action of both CBEO and CLEO depends on the concentration of oils. This conclusion was re-confirmed by the increase in the level of nucleotide and protein in the extracellular media. Khan et al. (2013) proposed that membranous structures such as cell wall and cell membrane of fungal cells are the target sites of trans-cinnamaldehyde and eugenol. This activity, in part, can be due to lipophilic properties of these compounds for their partition into the lipid bilayer of the plasma membrane (Knobloch et al. 1989), leading to the disruption of the structure of different membrane layers and subsequently permeability. Another study by Shahina et al. (2018) using utilizing atomic force microscopy (AFM) imaging, laser scanning confocal Microscopy (LSCM) imaging and Congo red staining techniques, demonstrated cell surface exfoliation, altered ultrastructure, delayed cell cycle and reduced cell wall integrity in \textit{C. albicans} cells following exposure to CBEO. In their study, the findings suggested that not only cinnamaldehyde possess the ability to compromise cell membrane and wall integrity but also minor components of CBEO such as limonene, eugenyl acetate, linalool and benzyl benzoate contribute to CBEO antifungal activity by other routes of impact such as introducing spindle defect or arresting cell cycle in the anaphase. Further assays are needed to determine other sites of action of the CEOs on \textit{Candida} spp., e.g. transmission electron microscopy, sorbitol protection assay or flowcytometry. However, the results from this study clearly demonstrate antifungal activity of both CBEO and CLEO against the \textit{C. albicans} and for the first time, against \textit{C. auris}. Both species of \textit{Candida} irrespective of morphology switching action had significantly damaged cell membrane structures when exposed to low concentrations of the EOs.

\textbf{Antihaemolytic effect of CEOs}

To date, very few studies have investigated the haemolytic activity of \textit{C. auris} although it has been shown to be a great source of nosocomial bloodstream infections (Sardi et al. 2018). Haemolytic activity has been demonstrated in several studies and is a factor in the pathogenesis of \textit{C. albicans} (Luo et al. 2001; Favero et al. 2014). In our study, both \textit{C. albicans} and \textit{C. auris} produced haemolysis in the glucose-enriched blood media, which is of importance as haemolysis activity in the presence of glucose has been indicated as a possible factor in the pathogenesis of \textit{Candida} in diabetic patients (Malcok et al. 2009). However, with the presence of CEOs, at MIC and sub-MICs, both CBEO and CLEO inhibited production of haemolysin factors in \textit{C. albicans} and \textit{C. auris} which offers some insight into a not well-described activity of EOs on \textit{Candida} spp. supporting our initial findings from the cornmeal agar assay where switching to hyphal form was inhibited in the presence of the CEOs. In the review article by Nayak et al. (2013), there is enhanced haemolytic activity in \textit{C. albicans} which is characterized by iron uptake leading to and secretion of haemolysin, facilitating hyphal invasion during candidiasis infections. Thus, the reduction of haemolytic activity, the prevention of morphology switching from spore to hyphae and damage to the membrane are demonstrated here as some of the mechanisms of action of the cinnamon EOs against the \textit{Candida} species. The potential of cinnamon EO as an antifungal agent is also evident with the inhibitory and fungicidal action against \textit{C. albicans} and \textit{C. auris} at low concentrations of both leaf and bark oils. Both EOs were shown to be fast-acting antimicrobials against \textit{Pseudomonas aeruginosa} in a recent study by Elcocks et al. (2020), and with such promising action against two troublesome pathogenic \textit{Candida} species, there is a clear need to explore this EO further as a treatment option for candidiasis infections.

In summary, the findings reported here demonstrate for the first time the potential of both bark and leaf CEOs to exert antifungal activity against \textit{C. auris}, which is a newly found \textit{Candida} spp., along with \textit{C. albicans}. Mode of action of these oils towards fungal cells determined by SEM analysis, highlight their ability to damage the membranous structures of fungal cells. In this study, test \textit{Candida} strains and CEOs at high concentrations all showed haemolytic activities. At MIC and sub-MICs, both bark and leaf CEOs reduced the germnation and haemolysin factors in \textit{C. albicans} and \textit{C. auris}. Further in vivo studies are needed to assess any potentially toxic effect of CEOs; however, the antifungal and antihaemolytic activity raise another interesting field in researching antifungal therapeutic interventions in both clinical and industrial applications.

\textbf{Acknowledgements} The authors would like to thank Dr. David Patton and Mr. Paul Bowdler from the Centre for Research in Bioscience
References

Adukwu EC, Allen SC, Phillips CA (2012) The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. J Appl Microbiol 113:1217–1227. https://doi.org/10.1111/j.1365-2672.2012.05418.x

Adukwu EC, Bowles M, Edwards-Jones V, Bone H (2016) Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl Microbiol Biotechnol 100:9619–9627. https://doi.org/10.1007/s00253-016-7807-y

Almeida R, Navarro D, Barbosa-Filho J (2001) Plants with central analgesic activity. Phytomed 8:310–322. https://doi.org/10.1076/phyt.7113-00050

Amaroti R, Feti MC, Valjimigil L (2013) Antioxidant activity of essential oils. J Agric Food Chem 61:10835–10847. https://doi.org/10.1021/jf403496k

Aneja KR, Joshi R, Sharma C (2009) Antimicrobial activity of Dalchini (Cinnamonum zeylancicum bark) extracts on some dental caries pathogens. J Pharm Res 2:1387–1390

Bajpai VK, Jung IY, Sun CK (2009) Antifungal potential of essential oil and various organic extracts of Nandina domestica Thunb. Against skin infectious fungal pathogens. Appl Microbiol Biotechnol 83:1127–1133. https://doi.org/10.1007/s00253-009-00253-0

Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, Maor Y, Tarabia J, Schechner V, Adler A, Finn T (2017) Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis 23:195–203. https://doi.org/10.3201/eid2302.161486

Boukhateem MN, Ferhat MA, Kameli A, Saidi F, Kebir HT (2014) Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J Med 9:25431. https://doi.org/10.3402/ljm.v9.25431

Barnawi WI, Hettiarachchy NS, Horax R, Kumar-Phillips G, Seo HS, Marcy J (2018) Comparison of cinnamon essential oils from leaf and bark with respect to antimicrobial activity and sensory acceptability in strawberry shake. J Food Sci 83:475–480. https://doi.org/10.1111/1750-3841.14041

Brown GD, Netea MG (2007) Immunology of fungal infections. Springer, Dordrecht. https://doi.org/10.1017/1-4020-5492-0

Chen Y, Zeng H, Tian J, Ban X, Ma B, Wang Y (2013) Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. J Med Microbiol 62:1175–1183. https://doi.org/10.1099/jmm.0.055467-0

Carvalho PCL, Sá NP, Lacerda ICA, Pataro C, Rosa LH, Alves RS, Lyon JP, Rosa CA, Johann S (2018) Anti-candida activity of cinnamon inhibition of virulence factors of clinical strains of Candida albicans by essential oil of Cinnamomum zeylacianum. PSM Microbiol 3:4–12

Chowdhary A, Voss A, Meis J (2016) Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J Hosp Infect 94:209–212. https://doi.org/10.1016/j.jhin.2016.08.004

Doyle AA, Stephens JC (2019) A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 11:104405. https://doi.org/10.1016/j.fitote.2019.104405

Elcocks E, Spencer-Phillips P, Adukwu E (2020) Rapid bactericidal effect of cinnamon bark essential oil against Pseudomonas aeruginosa. J Appl Microbiol 128:1025–1037. https://doi.org/10.1111/jam.14538

Espinel-Ingroff A, Chaturvedi V, Fothergill A, Rinaldi M (2002) Optimal testing conditions for determining MICs and minimum fungicidal concentrations of new and established antifungal agents for uncommon molds: NCCLS collaborative study. J Clin Microbiol 40:3776–3781. https://doi.org/10.1128/JCM.40.10.3776-3781.2002

Favero D, Furlaneto-Maia L, França EJ, Gões HP, Furlaneto MC (2014) Hemolytic production by clinical isolates of Candida species. Curr Microbiol 68:161–166. https://doi.org/10.1007/s00284-013-0459-6

Gautam N, Mantha AK, Mittal S (2014) Essential oils and their constituents as anticancer agents: a mechanistic view. Biomed Res Int 2014. https://doi.org/10.1155/2014/154106

Gow NA, Brown AJ, Odds FC (2002) Fungal morphogenesis and host invasion. Curr Opin Microbiol 5:366–371. https://doi.org/10.1016/S1369-5274(02)00338-7

Guenewald J, Freder J, Armbruster N (2010) Cinnamon and health. Crit Rev Food Sci Nutr 50:822–834. https://doi.org/10.1080/10408390902773052

He M, Du M, Fan M, Bian Z (2007) In vitro activity of eugenol against Candida albicans biofilms. Mycopathologia 163:137–143. https://doi.org/10.1007/s11036-007-0097-2

Khan MSA, Ahmad I (2011) Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl Microbiol Biotechnol 90:1083–1094. https://doi.org/10.1007/s00253-011-3152-3

Khan MSA, Ahmad I (2013) In vitro inhibition of growth and virulence factors production in azole-resistant strains of non-albinacs Candida by Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini and Syzygium aromaticum essential oils. J Biol Act Prod Nat 3:139–153. https://doi.org/10.1080/22311866.2013.817729
