Abstract: In the present study, we surveyed the ascomycetes from bamboo of *Phyllostachys* across Sichuan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny confirmed seven species, including one new genus, two new species, and five new host record species. A novel genus *Parallonectiosporina* is introduced to accommodate *Pa. sichuanensis* that was collected from leaves of *Phyllostachys violascens*. Moreover, the newly introduced species *Bifusisporella sichuanensis* was isolated from leaves of *P. edulis*, and five species were newly recorded on bamboos, four species belonging to *Apiospora*, viz. *Ap. yunnana*, *Ap. neosubglobosa*, *Ap. jiangxiensis*, and *Ap. hyalina*, and the last species, *Seriascoma yunnanense*, isolated from dead culms of *P. heterocycla*. Morphologically similar and phylogenetically related taxa were compared. Comprehensive descriptions, color photo plates of micromorphology are provided.

Keywords: bambusicolous fungi; molecular phylogeny; one new genus; systematics; two new species
identifications were conducted lacking molecular data and detailed micromorphology, and as most bamboos are unidentified, the relationship of bambusicolous fungi with bamboo species is not clear.

Due to the high fungal diversity on *Phyllostachys*, an ongoing investigation was conducted in several main producing or planting areas of bamboo *Phyllostachys* in Sichuan Province, China, including Ya’an City, Qionglai City, Chengdu City, and Yibin City. In this study, we provide detailed taxonomic features combining morphology and phylogeny on the fungi associated with *Phyllostachys* from Sichuan Province, China, which is a fundamental task for the bioresource collection on bambusicolous fungi.

2. Materials and Methods

2.1. Specimen Collection and Morphological Study

From 2020 to 2021, the specimens were collected from leaves, branches, and culms. The samples were kept in plastic bags and taken back to the laboratory after being photographed with a Sony DSC-HX3 digital camera. The fungi were isolated into pure culture based on single spore isolation [25]. Glass slide specimens were prepared by free-hand slicing with double-sided blades for morphologic observation. Morphological characteristics of ascomata and sporodochia were observed using a dissecting microscope, the NVT-GG (Shanghai Advanced Photoelectric Technology Co. Ltd., Shanghai, China), and photographed with a VS-800C micro-digital camera (Shenzhen Weishen Times Technology Co. Ltd., Shenzhen, China). An Olympus BX43 compound microscope with an Olympus DP22 digital camera was used to observe and photograph the microstructure of asci, ascospores, conidiophores, and conidia. Measurements were performed using Tarosoft® Image Frame Work v.0.9.7 (Tarosoft (R), Nonth Buri, Thailand). Specimens were deposited at the Herbarium of Sichuan Agricultural University, Chengdu, China (SICAU), and pure cultures were deposited at the Culture Collection in Sichuan Agricultural University (SICAUCC).

2.2. DNA Extraction, PCR Amplification, and Nucleotide Sequencing

Genomic DNA was extracted from fresh mycelia which was cultured on PDA at 25 °C for 15–30 days, using a Trelief™ Plant Genomic DNA Kit. Primers ITS5/ITS4 [26], NS1/NS4 [26], LR0R/LR5 [27], T1/Bt2b [28,29], RP1B1-Ac/RPB1-Cr [30,31], and fRPB2-5F/fRPB2-7cR [32] were used for the amplification of internal transcribed spacers (ITS), the partial small subunit nuclear rDNA (SSU), the partial large subunit nuclear rDNA (LSU), the β-tubulin gene (tub2), the large subunit of RNA polymerase I (rpb1), and RNA polymerase II second largest subunit (rpb2) genes, respectively. Primers EF1-983F/EF1-2218R [33] and EF1-728F/EF2 [34,35] were employed for translation elongation factor 1-alpha (tef1-α) genes.

Amplification reactions were performed in 25 μL of total reaction that contained 22 μL Master Mix (Beijing TsingKe Biotech Co., Ltd., Beijing, China), 1 μL each of forward and reverse (10 μM) primers and 1 μL of DNA template. The amplification reactions were performed as described by Dai et al. [16] and Wang et al. [36]. PCR products were purified and sequenced at TsingKe Biological Technology Co., Ltd. (Chengdu, China). The resulting sequences were submitted to GenBank.

2.3. Sequence Alignment and Phylogenetic Analyses

Based on blast searches in GenBank, using ITS, LSU, SSU, tef1-α, tub2, rpb1, or rpb2 sequence data, separate phylogenetic analyses were carried out to determine the placements of each fungal group (Table 1). Sequences for phylogenetic analyses were selected mainly from recently published literature and phylogenetic related sequences based on BLAST searches in GenBank (Table A1). Datasets were aligned using MAFFT v.7.407 [37], and ambiguous regions were excluded with BioEdit version 7.0.5.3 [38]. Maximum likelihood (ML) and Bayesian inference (BI) were constructed as described in Xu et al. [39]. The
phylogram was visualized with FigureTree v. 1.4.3 and edited using Adobe Illustrator CS6 (Adobe Systems Inc., San Jose, CA, USA).

Table 1. Selected genes for polymerase chain reaction of each genus.

Genera	Sequences Dataset
Apiospora	ITS, LSU, tub2, tef1-α
Bifusisporella	ITS, LSU, tef1-α, rpb1
Paralloneottiosporina	ITS, LSU, SSU, tef1-α
Seriascom	ITS, LSU, SSU, tef1-α, rpb2

3. Results
3.1. Phylogenetic Analyses

A combined dataset (ITS, LSU, tef1-α, tub2) comprising 138 taxa within Apiosporaceae, which is rooted with Pestalotiopsis chamaeropis (CBS 237.38) and Pe. colombiensis (CBS 118553) (Pestalotiopsidaceae, Amphisphaeriales), was used for the phylogenetic analyses. The alignment contained 5875 characters (ITS = 999, LSU = 1382, tef1-α = 1651, tub2 = 1844), including gaps. The best scoring RAxML tree with a final likelihood value of -36198.939448 is presented. The matrix had 2337 distinct alignment patterns, with 64.85% of undetermined characters or gaps. Estimated base frequencies were as follows: $A = 0.237208, C = 0.257370, G = 0.253511, T = 0.251911$, with substitution rates $AC = 1.104968, AG = 2.746651, AT = 1.143208, CG = 0.910079, CT = 4.335389, GT = 1.000000$. The gamma distribution shape parameter $\alpha = 0.269105$, and the tree length = 3.509694. In the phylogenetic trees generated from ML and BI analyses, the strain SICAUCC 22-0032 clustered with the known species Apiospora hydei (KUMCC 16-0204, CBS 114990) in a clade with 97% ML and 0.99 BYPP support value, strain SICAUCC 22-0070 clustered with Ap. jiangxiensis (CGMCC 3.18381, LC4578) with high support values (100% ML and 1.00 BYPP), strain SICAUCC 22-0071 clustered with Ap. neosubglobosa (JHB006, JHB007) in a clade with 100% ML and 1.00 BYPP support value, and strain SICAUCC 22-0072 clustered with the Ap. yunnana (MFLUCC 15-0002) in a clade with 100% ML and 1.00 BYPP support values (Figure 1).

Phylogenetic analyses of a concatenated aligned dataset (ITS, LSU, rpb1, tef1-α), including 70 taxa within Magnaportheaceae and Pyriculariaceae, were conducted and rooted with Ophioceras dolichostomum (CBS 114926) and O. leptosporum (CBS 894.70) (Ophioceraceae, Magnaporthales). The alignment contained 4094 characters (ITS = 899, LSU = 1105, rpb1 = 1047, tef1-α = 1043), including gaps. The best scoring RAxML tree with a final likelihood value of -31022.648763 is presented. The matrix had 1923 distinct alignment patterns, with 36.77% of undetermined characters or gaps. Estimated base frequencies were as follows: $A = 0.243596, C = 0.275654, G = 0.281915, T = 0.198836$, with substitution rates $AC = 1.103727, AG = 2.292134, AT = 1.431191, CG = 0.918700, CT = 5.773674, GT = 1.000000$. The gamma distribution shape parameter $\alpha = 0.319184$, and the tree length = 3.313974. In the phylogenetic tree (Figure 2), the novel species Bifusisporella sichuanensis constitutes a highly supported independent lineage (ML = 100%, BYPP = 1.00) with B. sorghi (URM 7864, URM 7442).

The concatenated aligned dataset of ITS, LSU, SSU, tef1-α sequences, including 124 ingroup taxa within Phaeosphariaceae and two outgroup taxa in Leptosphaeriaceae, were used for the phylogenetic analyses of Paralloneottiosporina. The alignment contained 5851 characters (ITS = 1469, LSU = 1433, SSU = 1548, tef1-α = 1401), including gaps. The best scoring RAxML tree with a final likelihood value of -46908.078740 is presented. The matrix had 2382 distinct alignment patterns, with 36.77% of undetermined characters or gaps. Estimated base frequencies were as follows: $A = 0.243596, C = 0.275654, G = 0.281915, T = 0.198836$, with substitution rates $AC = 1.103727, AG = 2.292134, AT = 1.431191, CG = 0.918700, CT = 5.773674, GT = 1.000000$. The gamma distribution shape parameter $\alpha = 0.319184$, and the tree length = 3.313974. In the phylogenetic tree (Figure 2), the novel species Bifusisporella sichuanensis constitutes a highly supported independent lineage (ML = 100%, BYPP = 1.00) with B. sorghi (URM 7864, URM 7442).

The concatenated aligned dataset of ITS, LSU, SSU, tef1-α sequences, including 124 ingroup taxa within Phaeosphariaceae and two outgroup taxa in Leptosphaeriaceae, were used for the phylogenetic analyses of Paralloneottiosporina. The alignment contained 5851 characters (ITS = 1469, LSU = 1433, SSU = 1548, tef1-α = 1401), including gaps. The best scoring RAxML tree with a final likelihood value of -46908.078740 is presented. The matrix had 2382 distinct alignment patterns, with 36.77% of undetermined characters or gaps. Estimated base frequencies were as follows: $A = 0.243596, C = 0.275654, G = 0.281915, T = 0.198836$, with substitution rates $AC = 1.103727, AG = 2.292134, AT = 1.431191, CG = 0.918700, CT = 5.773674, GT = 1.000000$. The gamma distribution shape parameter $\alpha = 0.319184$, and the tree length = 3.313974. In the phylogenetic tree generated from ML and BI analyses, the novel species Paralloneottiosporina sichuanensis (SICAUCC 22-0074, SICAUCC 22-0075) constitutes a moderately supported independent lineage (63%
ML/0.99 BYPP statistical support) with the species *Alloneottiosporina thailandica* (MFLUCC 15-0576) (Figure 3).

Figure 1. Cont.
Figure 1. Phylogram generated from RAxML analysis based on combined ITS, LSU, tub2, and tef1-α sequence data of Apiosporaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red. Arthrinium species with yellow background were temporarily not combined to Apiospora.
Figure 2. Phylogram generated from RAxML analysis based on combined ITS, LSU, rpb1, and tef1-α sequence data of Magnaporthaceae and Pyriculariaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.
A combined dataset (ITS, LSU, SSU, tef1-α, rpb2) comprising 25 taxa within Bambusico-laceae, Biatriosporaceae, Rousselloaceae, Torulaceae, and Paradictyoarthriniaceae was used for phylogenetic analyses of Seriascoma, and the Westernykella ornata (CBS 379.55) (Sporormiaceae) was used as outgroup taxon. The alignment contained 6569 characters (LSU = 1383, SSU = 1741, tef1-α = 1346, rpb2 = 2099), including gaps. The best scoring RAxML tree with a final likelihood value of −22606.776997 is presented. The matrix had 1406 distinct alignment patterns, with 48.40% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.250203, C = 0.247742, G = 0.269455, T = 0.232600, with substitution rates AC = 1.348170, AG = 4.119625, AT = 1.278817, CG = 1.296090, CT = 9.080955, GT = 1.000000. The gamma distribution shape parameter α = 0.146142, and the tree length = 1.192279. According to the phylogenetic tree (Figure 4), the strain (SICAUCC 22-0059) clustered with Seriascoma yunnanense (MFLU 19-0690) in a clade with 100% ML and 1.00 BYPP statistical support.

Figure 3. Cont.
Figure 3. Phylogram generated from RAxML analysis based on combined ITS, LSU, SSU, and tef1-α sequence data of Phaeosphaeriaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red.

3.2. Taxonomy

Apiosporaceae D.K. Hyde, J. Fröhl., Joanne E. Taylor & M.E. Barr, Sydowia. 50 (1): 23 (1998).

Apiospora hydei (Crous) Pintos & P. Alvarado, Fungal Systematics and Evolution. 7: 206 (2021) (Figure 5).

≡ Arthrinium hydei (Crous) IMA Fungus 4(1): 142 (2013).

Saprobiic on dead culms of Phyllostachys nigra (Lodd. ex Lindl.) Munro. Sexual morph: Asciostromata 421–1343 × 174–387 × 176–245 µm (X = 705 × 267 × 198 µm, n = 30), solitary to gregarious, immersed, fusiform to ellipsoid, dark brown to black, multi-loculate, with long axis. Peridium 17–46 µm wide, composed of 8–15 layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 2–6.5 µm wide, composed of dense, long, septate, and unbranched paraphyses. Ascii 81–123 × 16–23 µm, (X = 116 × 180 µm, n = 50), 8–spored, unitunicate, broadly cylindrical, slightly curved, with a short pedicel, apically rounded. Ascospores 24–30 × 7–11 µm, (X = 26 × 10 µm, n = 50), 2-seriate, elliptical, 1–septate, with a large, curved upper cell and small lower cell, with narrowly rounded ends, hyaline, guttules, smooth-walled, surrounded by gelatinous sheath. Asexual morph: see Crous et al. [40].

Material examined: China, Sichuan Province, Chengdu City, Wenjiang District (19°30′42.22″ N, 103°51′19″ E, Alt. 528 m), on dead culms of Phyllostachys nigra, 14 March 2021, Yi-cong Lv, LYC202103003 (SICAU 22-0032), living culture SICAUCC 22-0032.

Culture characters: Ascospores germinate within 24 h. Colonies grow fast on PDA, reaching 6 cm after one week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, and white from above and light yellow below, with irregular edge.
Notes: *Apiospora hydei* was introduced based on the asexual morph characters and phylogeny analyses by Crous et al. [40]. Morphological comparisons were impossible due to the lack of sexual morph between our isolates and the ex-type strain (CBS 114990), but it is similar to *A. hydei* in sexual descriptions provided by Dai et al. [41]. Nucleotide comparisons of ITS, LSU, *tef1*-α and *tub2* (SICAUCC 22-0033) showed high homology with the sequences of *A. hydei* (CBS 114990), similarities are 100% (528/528, 0 gaps), 99.77% (896/898, 0 gaps), 99.71% (355/356, 0 gaps), and 98.82% (754/763, 0 gaps), respectively. *Apiospora jiangxiensis* (M. Wang & L. Cai) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 206 (2021) (Figure 6).

Figure 4. Phylogram generated from RAxML analysis based on combined ITS, LSU, *rpb2*, and *tef1*-α sequence data of isolates within Bambusicolaceae and other representative species in Biatriosporaceae, Rousoellaceae, Torulaceae, and Paradictyoarthriniaeeae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.

≡ *Arthrinium jiangxense* M. Wang & L. Cai, in Wang, Tan, Liu & Cai, MycoKeys 34(1): 14 (2018).

Saprobic on dead culms of *Phyllostachys heteroclada* Oliver. Sexual morph: Ascostromata 575–1334 × 274–444 × 134–157 µm (x = 876 × 355 × 143 µm, n = 30), solitary to gregarious, multi-loculate, immersed, fusiform to ellipsoid, black, with long axis broken at the top. *Peridium* 9.0–44 µm wide (x = 21 µm, n = 25), composed of several layers of brown to hyaline cells of *textura angularis* to *prismatica*. *Hamathecium* 4.0–11 µm wide, composed of dense,
long, septate, unbranched, paraphyses. *Ascii* 83–114 × 18–28 μm (μ = 104 × 23 μm, n = 50), 8–spored, unitunicate, broadly cylindrical to long clavate, with a short pedicel, slightly curved, apically rounded. *Ascospores* 32–37 × 9.6–11 μm (μ = 34 × 10 μm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. *Asexual morph*: see Wang et al. [36].

Figure 5. *Apiospora hydei* (SICAU 22-0032). (a) Ascostromata developing on bamboo branches. (b) Vertical sections of ascostromata. (c) Peridium. (d) Paraphyses. (e,f) Asci. (g,h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (b) = 50 μm, (c–i) = 10 μm.

Material examined: China, Sichuan Province, Luzhou City, Xuyong District (27°53′28″ N, 105°16′36″ E, Alt. 1350 m), on dead culm of *Phyllostachys heteroclada*, 26 July 2021, Qian Zeng, ZQ202107133 (SICAU 22-0070), living culture SICAUCC 22-0070.

Culture characters: Ascospores germinate on PDA within 24 h. Colonies grow fast on PDA, reaching 6 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, white, circular, with irregular edge.
Figure 6. *Apiospora jiangxiensis* (SICAU 22-0070). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (f–h) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 µm, (c) = 100 µm, (d–k) = 10 µm.

Notes: Specimen in our study shared similar morphology with the original description of *Apiospora jiangxiensis* by Wang et al. [36]. Nucleotide comparisons of ITS, LSU, and tub2 (SICAUCC 22-0070) showed high homology with the sequences of *Ap. jiangxiensis* (CGMCC 3.18381), similarities are 100% (541/541, 0 gaps), 99.09% (436/440, 0 gaps), and 98.22% (717/730, 0 gaps), respectively. However, the latter lack *tef1*-α sequences for further comparisons.

Apiospora neosubglobosa (D.Q. Dai & H.B. Jiang) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 206 (2021) (Figure 7).

≡ *Arthrinium neosubglobosum* D.Q. Dai & H.B. Jiang, Mycosphere 7(9): 1337 (2017).

Saprobic on dead culms of *Phyllostachys bissetii* McClure. Sexual morph: Ascostromata 330–1092 × 198–354 × 134–224 µm (x = 632 × 250 × 174 µm, n = 30), gregarious, immersed, multi-loculate, fusiform to ellipsoid, dark brown to black, with long axis broken at the top. Peridium 17.0–46 µm wide (x = 19 µm, n = 25), composed of several layers of brown to hyaline, cells of *textura angularis* to *prismatica*. Hamathecium 3.5–6.0 µm wide, composed of dense, long, septate, unbranched, paraphyses. Asci 94–137 × 23–40 µm (x = 125 × 31 µm, n = 50), 8-spored, unitunicate, broadly cylindrical to long clavate, with a short pedicel, slightly curved, apically rounded. Ascospores 28–36 × 13–15 µm (x = 32 × 14 µm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and small lower cell, with
narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. *Asexual morph*: see Dai et al. [16].

Figure 7. *Apiospora neosubglobosa* (SICAU 22-0071). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (f–h) Asci. (i) Ascospores. (j) Germinating ascospore. (k,l) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 µm, (c) = 50 µm, (d–j) = 10 µm.

Material examined: CHINA, Sichuan Province, Luzhou City, Xuyong District (27°52′5″ N, 105°16′23″ E, Alt. 1470 m), on dead culm of *Phyllostachys bissetii*, 26 July 2021, Qian Zeng, ZQ202107128 (SICAU 22-0071), living culture SICAUCC 22-0071.

Cultural characters: Ascospores germinate on PDA within 24 h. Colonies grow fast on PDA, reaching 4 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, initially white, then brown, with regular edge.

Notes: *Apiospora neosubglobosa* was described by Dai et al. based on the morphological characteristics and molecular phylogeny [16]. Strain SICAUCC 22-0071 clustered with ex-type strain (JHB007) with high bootstrap support (100% ML and 1.00 BYPP). Nucleotide comparisons of ITS and LSU (SICAUCC 22-0071) showed high homology with the sequences of *Ap. neosubglobosa* (JHB007), similarities are 99.84% (649/650, 0 gaps), 100% (1173/1173, 0 gaps), respectively.

Apiospora yunnana (D.Q. Dai & K.D. Hyde) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 207 (2021) (Figure 8).
Figure 8. *Apiospora yunnana* (SICAU 22-0072). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (f–h) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 µm, (c) = 100 µm, (d–f) = 10 µm, (g–k) = 20 µm.

≡ *Arthrinium yunnanum* D.Q. Dai & K.D. Hyde, Fungal Diversity 82: 69 (2016).

Saprobic on culms of *Phyllostachys aurea* Carr. ex A. et C. Riv. Sexual morph: Ascostromata 624–1307 × 253–510 × 165–211 µm (\(\bar{X} = 892 \times 359 \times 188 \) µm, \(n = 30 \)), gregarious, multiloculate, immersed, fusiform to ellipsoid, black, with long axis broken at the top. Peridium 8.5–43 µm wide (\(\bar{X} = 17 \) µm, \(n = 25 \)), composed of several layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 3.5–8.0 µm wide, composed of dense, long, septate, unbranched paraphyses. Asci 89–144 × 18–40 µm (\(\bar{X} = 120 \times 32 \) µm, \(n = 50 \)), 8–spored, unitunicate, broadly cylindrical to long clavate, no pedicel, slightly curved, apically rounded. Ascospores 30–42 × 10–13 µm (\(\bar{X} = 36 \times 12 \) µm, \(n = 50 \)), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and a small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. Asexual morph: see Dai et al. [16].

Material examined: China, Sichuan Province, Yibin City, Changning District (28°28′8″ N, 105°0′16″ E, Alt. 890 m), on dead culm of *Phyllostachys aurea*, 23 July 2021, Qian Zeng, ZQ202107027 (SICAU 22-0072), living culture, SICAUCC 22-0072.

Culture characters: Ascospores germinate on PDA within 24 h and germ tubes produced from sides. Colonies grow fast on PDA, reaching 6 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, and white with irregular edge.
Notes: The sexual and asexual morph of *Apiospora yunnana* was reported by Dai et al. [16]. Morphologically, our observations were identical to the sexual descriptions provided by Dai et al. [16]. Nucleotide comparisons of ITS and LSU (SICAUCC 22-0072) showed high homology with the sequences of *Ap. yunnana* (MFLUCC 15-0002), similarities are 99.85% (667/668, 0 gaps), 100% (847/847, 0 gaps), respectively. However, the latter lack *tef1-α* and *tub2* sequences for further comparisons.

Magnaporthales Thongkantha, Vijaykrishna & K.D. Hyde. Fungal Diversity. 34: 157–173 (2009).

Magnaporthaceae P.F. Cannon, Systema Ascomycetum 13: 26 (1994).

Bifusisporella R.M.F. Silva, R.J.V. Oliveira, J.D.P. Bezerra, J.L. Bezerra, C.M. Souza-Motta & G.A. Silva, Mycological Progress 18(6): 852 (2019).

Type species: *Bifusisporella sorghi* R.M.F. Silva, R.J.V. Oliveira, J.D.P. Bezerra, J.L. Bezerra, C.M. Souza-Motta & G.A. Silva.

Description: Endophytic and parasitic fungi on Poaceae. Sexual morph: Ascomata separate or gregarious, subglobose, black, coriaceous, semi-immersed, unilocular or multilocular. *Peridium* with hyaline to brown cells of *textura angularis*. *Hamathecium* hyaline, with distinct septa, wider at the base, tapering towards the apex. *Asci* 8–spored, cylindrical, with a J-, apical ring, developing from the base and periphery of the ascomata, with a short pedicel. *Ascospores* biseriate, hyaline, fusiform, with distinct septa, with narrowly rounded ends, without appendages.

Asexual morph: Found in *Bifusisporella sorghi* cultures by Silva et al. [42].

Notes: *Bifusisporella* was introduced as a new genus to accommodate *B. sorghi* based on morphology and phylogeny. At present, *Bifusisporella* comprises only the ex-type species *B. sorghi*, and no records on its sexual morph. The new species *B. sichuanensis* is well-supported within *Bifusisporella*, which suggests that there is a need to amend the morphological circumscriptions of the genus.

Bifusisporella sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang, sp. nov. (Figure 9).

Index Fungorum: IF559625

Etymology: Refers to the region from where the fungus was collected.

Holotype: SICAU 22-0073

Parasitic on living leaves of *Phyllostachys edulis* (Carriere) J. Houzeau. Sexual morph: Ascostromata 536–1672 × 332–849 × 125–245 μm (x = 1103 × 591 × 193 μm, n = 30), separate or gregarious, subglobose, black, coriaceous, semi-immersed, unilocular or multilocular, glabrous. *Peridium* 14–34 μm wide (x = 20 μm, n = 30), composed of 3–9 layers, with hyaline to brown cells of *textura angularis*. *Hamathecium* hyaline, cellular, with distinct septa. *Asci* 79–126 × 9.5–13 μm (x = 99 × 11 μm, n = 30), 8–spored, bitunicate, cylindrical, with an apical chamber and a short pedicel. *Ascospores* biseriate, hyaline, fusiform, with distinct septa, with narrowly rounded ends, overlapping, biseriate, hyaline, fusiform, 3–septate, rarely constricted at septate, with narrowly rounded ends, smooth-walled, guttules, without gelatinous sheath. Asexual morph: Undetermined.

Material examined: China, Sichuan Province, Yibin City, Xingwen District (28°15′22″ N, 105°6′29″ E, Alt. 850 m), on living to nearly dead leaves of *Phyllostachys edulis*, 25 July 2021, Qian Zeng, ZQ202107111 (SICAU 22-0073 holotype), ex-type living culture, SICAUCC 22-0073.

Culture characters: Ascospores germinate in sterilized water within 12 h at 25 °C. Colonies grow slow on PDA, reaching approximately 2 cm in 30 days at 25 °C, under 12 h light/12 h dark, and are irregular, black, frilly with white margin, and black on the back of colonies.

Notes: *Bifusisporella sichuanensis* is phylogenetically close (100% ML and 1.00 BYPP) to *B. sorghi* (URM 7442) introduced by Silva et al. [42], which is described with asexual morph. However, striking base-pair differences are noted, viz. 11.43% (55/481, 0 gaps), 3.36% (27/803, 0 gaps), 5.11% (24/469, 0 gaps), 9.04% (64/708, 0 gaps) in the ITS, LSU, *tef1-α* and *rpb1*, respectively. Hence, our collection is proposed as a new species.
Figure 9. *Bifusisporella sichuanensis* (SICAU 22-0073). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (f-i) Asci. (j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (b) = 500 µm, (c) = 100 µm, (d-k) = 10 µm.

Pleosporales Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987).
Phaeosphaeriaceae M.E. Barr, Mycologia 71: 948 (1979).
Paralloneottiosporina Q. Zeng, Y.C. Lv & C.L. Yang, gen. nov.
Index Fungorum: IF559626.
Type species: *Paralloneottiosporina sichuanensis* Q. Zeng, Y.C. Lv & C.L. Yang.
Etymology: Name reflects the morphological similarity to the genus *Alloneottiosporina*.

Parasitic on living to nearly dead leaves of *Phyllostachys violascens* ‘Prevernalis’ S.Y. Chen et C.Y. Yao. Sexual morph: Ascomata visible as raised to superficial on host, gregarious, globose to subglobose or dome shape, dark brown to black, unilocular, glabrous. Ostiole single, circular, centrally located. Peridium multi-layered, brown to dark brown cells of textura angularis. Hamathecium hyaline, numerous, septate, often constricted at septa. Asci 8-spored, bitunicate, rounded at apex, cylindrical, curved, with a short pedicel. Ascospores hyaline, fusiform, 1–2 septate, constricted at the septum, guttules, smooth-walled, with narrowly rounded ends. Asexual morph: Conidiomata brown to dark brown, globose to long ellipsoid, coriaceous, semi-immersed, unilocular, gregarious, glabrous. Conidiomatal wall comprising multi-layered, dark brown to black cells of textura angularis. Conidia ellipsoid to ovoid, 1–septate, slightly constricted at the septum, smooth-walled, hyaline, with a rounded apex and a truncated base, guttules.

Notes: *Paralloneottiosporina* resembles *Alloneottiosporina* in asexual status having semi-immersed, unilocular, gregarious, glabrous conidiomata, but *Paralloneottiosporina* differs in absent of microconidia, conidia without mucoid appendages, bigger conidia, fewer layers of
conidiomatal wall. The macroconidia of *Alloneottiosporina* species are usually accompanied with mucoid appendages at both ends, and microconidia are produced near the ostiolar channel. Moreover, colonies are whitish to bright orange-pink on PDA in *Paralloneottiosporina*, but olivaceous-black in *Alloneottiosporina* [43]. Based on morphological characteristics and molecular phylogeny, the new genus is introduced in Phaeosphaeriaceae.

Paralloneottiosporina sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang, sp. nov. (Figures 10 and 11).

Figure 10. *Paralloneottiosporina sichuanensis* (SICAU 22-0074, holotype). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e–g) Asci. (h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (a) = 1 mm, (b) = 500 µm, (c,d) = 20 µm, (e–i) = 10 µm.

Index Fungorum: IF559627.

Etymology: In reference to Sichuan Province where the specimens were collected.

Holotype: SICAU 22-0074.

Associated with leaf blight on living to nearly dead leaves of *Phyllostachys violascens* (Poaceae). *Sexual morph: Ascomata* 106–343 × 39–196 × 55–112 µm (x = 168 × 111 × 89 µm, n = 30), separate, gregarious to confluent, globose to subglobose, dark brown to black, superficial, unilocular, glabrous. *Ostiole* single, circular, centrally located. *Peridium* 17–38 µm wide (x = 29 µm, n = 30), composed of 7–12 layers, with brown cells of *textura angularis*. *Hamathecium* hyaline, dense, cellular, with distinct septa. *Asci* 49–97 × 8.5–19 µm (x = 71 × 13 µm, n = 30), 8-spored, bitunicate, cylindrical, curved, with a short pedicel. *Ascospores* 15–21 × 5.0–7.5 µm (x = 18 × 6.0 µm, n = 50), overlapping biseriate, straight, hyaline, fusiform, 1–2 septate, constricted at the septum, smooth-walled, with narrowly rounded ends. *Asexual morph: Conidiomata* 90–191 × 61–132 × 81–123 µm (x = 132 × 102 × 105 µm, n = 30), globose to long ellipsoid, coriaceous, semi-immersed, black, unilocular, gregarious, glabrous. *Conidiomatal wall* 7.5–21 µm wide (x = 13 µm), comprising 3–6 layers, brown cells of *textura angularis*. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cell* 3.0–6.5 × 2.5–5.0 µm (x = 5.0 × 3.5 µm, n = 20), hyaline, ampulliform to subcylindrical, smooth. *Conidia* 11–20 × 4.0–6.5 µm (x = 17 × 5.0 µm, n = 50), ellipsoid to ovoid, 1–septate,
slightly constricted at the septum, smooth-walled, hyaline, with a rounded apex and a
truncated base.

Figure 11. *Paralloneottiosporina sichuanensis* (SICAU 22-0075, paratype). (a, b) Conidiomata on the host. (c) Vertical sections of conidiomata. (d) Peridium. (e) Conidiogenous cells and developing conidia. (f) Conidia. (g) Germinating conidium. (h, i) Cultures on PDA. Scale bars: (a) = 500 µm, (b) = 200 µm, (c) = 20 µm, (d–g) = 10 µm.

Material examined: China, Sichuan Province, Ya’an City, Yucheng District (29°56’49.54” N, 102°56’46.03” E, Alt. 807 m), on living to nearly dead leaves of *Phyllostachys violascens*, 13 May 2020, Qian Zeng, ZQ202005002 (SICAU 22-0074, holotype), ex-type living culture, SICAUCC 22-0074; CHINA, Sichuan Province, Qionglai City, Linjiang Town (30°19’4.42” N, 103°17’23.06” E, Alt. 518 m), on living leaves of *P. violascens*, 8 November 2020, Qian Zeng, ZQ202011012 (SICAU 22-0075, paratype), living culture, SICAUCC 22-0075.

Culture characteristics: Ascospores germinate in sterilized water within 24 h at 25 °C. Colonies grow slow on PDA, reaching approximately 2.5 cm in 30 days at 25 °C, circular, white aerial mycelium, whitish to bright orange-pink on the surface, and brown on the back.

Pleosporales Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987).

Bambusicolaceae D.Q. Dai & K.D. Hyde, Fungal Diversity. 63 (1): 49 (2013).

Seriascoma yunnanense Rathnayaka & K.D. Hyde, Asian Journal of Mycology 2(1): 250 (2019) (Figure 12).

Saprobic on dead culm of *Phyllostachys edulis* (Carriere) J. Houzeau. Sexual morph: *Ascostronata* 110–200 × 120–150 × 120–140 µm (x = 160 × 140 × 130 µm, n = 20), solitary to gregarious, immersed, globose to subglobose, coriaceous, dark brown to black. *Peridium* 12–26 µm wide (x = 4.0 µm, n = 20), composed of 4–9 layers of brown to hyaline cells of *textura angularis*. *Hamathecium* 1.5–2.0 µm wide, composed of dense, branched, long, septate. *Asci* 52–80 × 12–16 µm, (x = 60 × 14 µm, n = 50), 8-spored, bitunicate, broadly cylindrical, with a short pedicel, straight or slightly curved, with an apical chamber. *Ascosporas* 20–30 × 6.0–7.5 µm (x = 23 × 7.0 µm, n = 50), 2–seriate, 1–septate, slightly constricted at the
septum, fusiform, narrowly acute at both ends, straight to curved, hyaline, smooth-walled, surrounded by a gelatinous sheath.

Asexual morph: Undetermined.

Figure 12. *Seriascoma yunnanense* (SICAU 22-0059). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (f–h) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (c) = 50 µm, (d–k) = 10 µm.

Material examined: China, Sichuan Province, Chengdu City, Jin’niu District (30°45'57" N, 104°7'34" E, Alt. 539 m), on dead culm of *Phyllostachys edulis*, 8 April 2021, Yicong Lv, LYC202104043 (SICAU 22-0059), living culture SICAUCC 22-0059.

Culture characteristics: Ascospores germinate in sterile water within 12 h at 25 °C. Colonies grow slowly on PDA, and reach 6 cm after 30 days at 25 °C, circular, brown to dark brown.

Notes: On the morphology, our observations were identical to the descriptions of *Seriascoma yunnanense* provided by Rathnayaka et al. [44]. Nucleotide comparisons of SSU, LSU, tef1-α and rpb2 (SICAUCC 22-0059) showed high homology with the sequences of *S. yunnanense* (MFLU 19-0690), similarities are 98.37% (847/861, 0 gaps), 100% (841/841, 0 gaps), 96.59% (396/410, 0 gaps), 99.65% (855/858, 0 gaps), respectively. We report our collection as *S. yunnanense*.

4. Discussion

In this study, we confirmed seven species of saprophyte or parasitism from leaves and culms of *Phyllostachys*, corresponding to four genera. Microfungi are abundant on culms
and leaves of bamboo as pointed out by Dai et al. [45]. Ascomycetes are the most abundant species on bamboo, with about 1150 taxa having been recorded [45]. Furthermore, the number of saprophytic fungi is more than that of pathogenic fungi [16,36].

The genus *Apiospora* Sacc. was recognized and described by Saccardo considering *Ap. montagnei* designated as the type species [46]. *Apiospora* has been widely accepted as a synonym for *Arthrinium* after Ellis [47]. Crous and Groenewald combined *Apiospora* species to be sexual morphs of *Arthrinium* species and synonymized under *Arthrinium* [40]. However, Pintos and Alvarado found that the morphological and ecological differences between *Apiospora* and *Arthrinium* are sufficient to support the taxonomic separation of the two genera. As a result, fifty-five species of *Arthrinium* were combined to *Apiospora* [48]. In this study, given the phylogenetic analysis with species of *Apiospora* and *Arthrinium*, in which 10 species of *Arthrinium* (*Ar. agari, Ar. arctoscopi, Ar. fermenti, Ar. koreanum, Ar. mori, Ar. phaeospermum, Ar. pusillispermum, Ar. sargassi, Ar. taeanense, Ar. marinum*) are clustered in a well-supported clade within *Apiospora*, future studies are needed to better understand the combination of previous *Arthrinium* species with *Apiospora*. *Apiospora* species have a worldwide distribution and can be found on various hosts. Most species occurred on the plants in Poaceae, although some were known from Amaranthaceae, Juncaceae, Euphorbiaceae, Cyperaceae, Restionaceae, Fagaceae, even seaweeds [48,49]. To date, more than 25 species have been found on bamboo, most species were saprobic on dead bamboo culms, and a few species have been reported as pathogens. For example, *Ap. arundinis* causes brown culm streak of *Phyllostachys praecox*, and *Ap. kogelbergensis* causes blight disease of *Bambusa intermedia* [16,41,50,51]. *Apiospora. hydei*, *Ap. neosubglobosa*, and *Ap. jiangxiensis* were saprophytic on unidentified bamboo culms and leaves [41,52]. *Apiospora yunnanensis* has been reported on bamboo culms of *Phyllostachys nigra* and *P. heteroclada*, which can cause bamboo blight disease of *P. heteroclada* [53,54]. In this study, four known species, *Apiospora hydei*, *Ap. neosubglobosa*, *Ap. jiangxiensis*, and *Ap. yunnanensis*, were newly recorded on *Phyllostachys nigra*, *P. heteroclada*, *P. bisetti*, and *P. aurea* respectively.

At present, *Bifusisporella* only comprises the ex-type species *B. sorgi*. In this study, we provide taxonomic details for another new species, *B. sichuanensis*, that was collected from living leaves of *Phyllostachys edulis*. *B. sorgi* was isolated as an endophyte from healthy sorghum leaves in Brazil by Silva et al. [42]. However, *B. sichuanensis* is pathogenic, causing tar spot on bamboo leaves. In addition, the sexual stage in this genus is supplemented.

Phaeosphaeriaceae is one of the most important and species-rich families in Pleosporales with diverse lifestyles [55,56], and may be found on herbaceous stems or monocotyledonous culms, branches, leaves, flowers, and woody substrates [57,58]. Currently, more than 70 genera are accommodated in Phaeosphaeriaceae [59]. Most genera in this family were introduced as monotypic genera, such as *Acericola, Banksiophoma, Bhagirathimyces, Bhatiellae, Brunneomurispora, Camarosporioides, Elongaticollum, Equiseticola, Hydeopsis, Jeremyomyces, Mauginiella, Melnikia, Neophiobolus, Neosphaerellopsis, Neostagonospora, Ophiobolopsis, and Parastagonospora*, among others. Due to these genera being represented by a single species, resulting in few samples that could be used for taxon, the phylogenetic relationships with the related genera are sometimes not well-resolved. Based on morphological characteristics and multigene phylogey, a novel genus, *Paralloneottiosporina*, is introduced to accommodate *Pa. sichuanensis* sp. nov. According to the field investigation, *Pa. sichuanensis* can cause leaf blight that eventually leads to leaf necrosis and plant decline in severe cases. Besides *Ph. violascens*, leaf blight caused by *Pa. sichuanensis* has also been observed on *P. heterocycla* and *P. tianmuensis*. This indicates that *Pa. sichuanensis* may be a common parasitic fungus on bamboos.

As only three species are accommodated within *Seriascoma*, more research is also needed for better understanding this genus [60]. *Seriascoma* is presently known as saprobic on decaying wood and dead bamboo in the terrestrial or freshwater habitats distributed in China and Thailand [16,44,61,62]. *Seriascoma. yunnanense* is found on dead branches of bamboo in Yunnan. In this study, *S. yunnanense* was saprophytic on *Phyllostachys edulis*.
The previous studies have revealed a high fungal diversity associated with bamboo *Phyllostachys*. In recent years, 10 species belonging to seven genera have been described from bamboo of *Phyllostachys*, including two new genera, *Neostagonosporella* and *Parakarstennia*, established by Yang et al. on *P. heteroclada* in Sichuan Province [54,58,63–69]. However, the knowledge about bambusicolous fungi is incomplete and mainly remains at cataloguing stage [14]. The previous studies of identification were mostly based on morphological characteristics, and lacked molecular data. Moreover, their hosts were poorly documented or unknown [70], and specimens were absent for further re-examination. Therefore, these species need to be recollected, epitypified, and sequenced [10], and new species need to be discovered and described.

Author Contributions: Q.Z. and C.-L.Y.: conceptualization. Q.Z.: data curation. Q.Z. and Y.-C.L.: formal analysis, methodology, and writing—original draft. Q.Z., Y.-C.L., Y.D. and F.-H.W.: investigation. C.-L.Y. and Y.-G.L.: project administration. C.-L.Y. and X.-L.X.: supervision. C.-L.Y., X.-L.X., S.-Y.L. and L.-J.L.: writing—review and editing. All authors contributed to the article and approved the submitted version. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets presented in this study can be found in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/), Index Fungorum (http://www.indexfungorum.org/Names/Names.asp) (all accessed on 8 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A. Molecular Data Used in This Study and GenBank Accession Numbers

Species	Strains	GenBank Accession Numbers							
		ITS	LSU	tub2	tef1-a	rpb1	SSU	rpb2	References
Apiospora acutiapica	KUMCC 20-0209	MT946342	MT946338	–	–	–	–	–	[71]
Apiospora acutiapica	KUMCC 20-0210	MT946343	MT946339	–	–	–	–	–	[71]
Apiospora aquaticum	MFLU 18-1628 T	MK828608	MK835806	–	–	–	–	–	[55]
Apiospora arundinis	CBS 114316	KF144884	KF144928	KF144974	KF145016	–	–	–	[40]
Apiospora arundinis	CBS 450.92	AB220259	–	AB220306	–	–	–	–	[71]
Apiospora arundinis	AP1118A	MK014868	MK014835	MK017974	MK017945	–	–	–	[72]
Apiospora aurereum	CBS 244.83 T	AB220251	KF144935	KF144981	KF145023	–	–	–	NCBI
Apiospora baiarica	CBS 145129 T	MK014869	MK014836	MK017975	MK017946	–	–	–	[72]
Apiospora bambusicola	MFLUCC 20-0144 T	MW173030	MW173087	–	MW183262	–	–	–	[73]
Apiospora biserialis	CGMCC 3.20135 T	MW481708	–	MW522955	MW522938	–	–	–	[52]
Apiospora camelliae-sinensis	LC5007 T	KF944704	KF944780	KF705173	KF705103	–	–	–	[36]
Apiospora camelliae-sinensis	LC8181	KF944761	KF944837	KF705229	KF705157	–	–	–	[36]
Apiospora chiangraenise	MFLU:21-0046	MZ542520	MZ542524	MZ546409	–	–	–	–	[49]
Apiospora chromolaenaenae	MFLUCC 17-1505 T	MT214342	MT214436	–	–	–	–	–	[74]
Apiospora cyclobalanopsidis	CGMCC 3.20136 T	MW481713	–	MW522962	MW522945	–	–	–	[52]
Apiospora descalsii	CBS 145130 T	MK014870	MK014837	MK017976	MK017947	–	–	–	[72]
Apiospora dichotomanthi	CGMCC 3.18332 T	KY944697	KY944832	KY705167	KY705096	–	–	–	[36]
Apiospora dichotomanthi	LC8175	KY944735	KY944831	KY705223	KY705151	–	–	–	[36]
Apiospora esporlensis	CBS 145136 T	MK014878	MK014845	MK017983	MK017954	–	–	–	[72]
Apiospora euphoriae	IMI 285638b	AB220241	–	AB220288	–	–	–	–	[71]
Apiospora gaeyouensis	CFCC 52301	MH917124	–	MH236789	MH236793	–	–	–	[53]
Apiospora gaeyouensis	CFCC 52302	MH9217125	–	MH236790	MH236794	–	–	–	[53]
Apiospora garthjonesii	JHB004	KF356086	KF356091	–	–	–	–	–	[41]
Apiospora garthjonesii	HKAS 96289 T	NR_154736	NG_057131	–	–	–	–	–	[41]
Apiospora gelatinosa	HKAS:111962	–	–	–	–	–	–	–	[52]
Apiospora guizhouensis	LC5318	KY944708	KY944784	KF705177	KF705107	–	–	–	[36]
Apiospora guizhouensis	CGMCC 3.18334 T = LC5322	KY944709	KY944785	KF705178	KF705108	–	–	–	[36]
Apiospora hispanica	IMI 326877	AB220242	AB220336	AB220289	–	–	–	–	[71]
Apiospora hydeci	CBS 114990 T	KF144890	KF144936	KF144982	KF145024	–	–	–	[40]
Apiospora hydeci	KUMCC 16-0204	KY356087	KY356092	–	–	–	–	–	[41]
Apiospora hydeci	SICAUCC 22-0032	ON183998	ON185553	ON221313	ON221312	–	–	–	This study
Apiospora hypophodii	MFLUCC 15-003 T	KR069110	KR069111	–	–	–	–	–	[75]
Species	Strains	GenBank Accession Numbers							
-------------------------	--------------------------	---------------------------							
		ITS	**LSU**	**tub2**	**tef1-a**	**rpb1**	**SSU**	**rpb2**	**References**
Apiospora hyphopodii	KUMCC 16-0201	KY356088	KY356093	–	–	–	–	–	[41]
Apiospora hysterina	AP15318	MK014873	MK014840	MK017979	MK017950	–	–	–	[72]
Apiospora hysterina	ICPM6889	MK014874	MK014841	MK017980	MK017951	–	–	–	[72]
Apiospora hysterina	AP29717	MK014875	MK014842	MK017981	MK017952	–	–	–	[72]
Apiospora hysterina	AP2410173	MK014876	MK014843	–	–	–	–	–	[72]
Apiospora hysterina	AP12118	MK014877	MK014844	MK017982	MK017953	–	–	–	[72]
Apiospora hysterina	CBS 145132 \(^T\)	MK014879	MK014846	MK017984	MK017955	–	–	–	[72]
Apiospora hysterina	CBS 135835 \(^T\)	KRO11352	MH877577	KRO11350	KRO11351	–	–	–	[76]
Apiospora hysterina	CBS 145138 \(^T\)	MK014880	MK014847	MK017985	MK017956	–	–	–	[72]
Apiospora hysterina	AP2210137 \(^T\)	MK014881	MK014848	MK017986	MK017957	–	–	–	[72]
Apiospora jagropheae	CBS 134262 \(^T\)	NR_154675	–	–	–	–	–	–	[77]
Apiospora jagropheae	MMI 00051 = CBS:134262	JQ246355	–	–	–	–	–	–	[77]
Apiospora jiangxiensis	CGMCC 3.18381 \(^T\)	KY494693	–	KY705163	KY705092	–	–	–	[36]
Apiospora jiangxiensis	LC5478	KY494694	KY494770	KY705164	KY705093	–	–	–	[36]
Apiospora jiangxiensis	SICAUCC 22-0070	ON227094	ON227098	ON244342	ON244341	–	–	–	This study
Apiospora kogelbergensis	CBS 113332	KF144891	KF144937	KF144983	KF145025	–	–	–	[40]
Apiospora kogelbergensis	CBS 113333 \(^T\)	KF144892	KF144938	KF144984	KF145026	–	–	–	[40]
Apiospora kogelbergensis	CBS 113335	KF144893	KF144939	KF144985	KF145027	–	–	–	[40]
Apiospora kogelbergensis	CBS 117206	KF144895	KF144941	KF144987	KF145029	–	–	–	[40]
Apiospora locuta-pollinis	LC11683	MF939595	–	MF939622	MF939616	–	–	–	[78]
Apiospora longistroma	MFLUCC 11-0479	KU940142	KU863130	–	–	–	–	–	[16]
Apiospora longistroma	MFLUCC 11-0481	KU940141	KU863129	–	–	–	–	–	[16]
Apiospora longistroma	MFLU 15-1184 \(^T\)	NR_154716	–	–	–	–	–	–	[16]
Apiospora malaysiana	CBS 102053 \(^T\)	KF144896	KF144942	KF144988	KF145030	–	–	–	[40]
Apiospora marii	CBS 497.90	KF144891	KF144937	KF144983	KF145025	–	–	–	[40]
Apiospora mediterranea	IMI 326875	KF144892	KF144938	KF144984	KF145026	–	–	–	[40]
Apiospora minutispora	CBS 1358133 \(^T\)	KF144893	KF144939	KF144985	KF145027	–	–	–	[40]
Apiospora montagnei	CGMCC 3.18335 \(^T\)	KY494718	KY494794	KY705186	KY806204	–	–	–	[36]
Apiospora mytilomorpha	DAOM 214595	KY494685	–	–	–	–	–	–	[36]
Apiospora neobambusae	CGMCC 3.18335 \(^T\)	KY494718	KY494794	KY705186	KY806204	–	–	–	[36]
Apiospora neobambusae	KUMCC 20-0207	MT946346	MT946340	–	–	–	–	–	[71]
Apiospora neobambusae	LC7107	KY494719	KY494795	KY705187	KY705117	–	–	–	[36]
Apiospora neochinensis	CFCC 53037	MK819292	–	MK818548	MK818546	–	–	–	[81]
Species	Strains	GenBank Accession Numbers							
-----------------------------	--------------------------	--							
Apiospora neochinensis	CFCC 53036 T	MK819291 – MK818547 – MK818545 – – – – – [81]							
Apiospora neogarethjonesii	HKAS 96354 T	MK070897 – MK070898 – – – – – – – – – – – [82]							
Apiospora neosubglobosa	JHB006	KY356089 – KY356094 – – – – – – – – – – – [41]							
Apiospora neosubglobosa	JHB007 T	KY356090 – KY356095 – – – – – – – – – – – [41]							
Apiospora neosubglobosa	SICAUCC 22-0071	ON227095 – ON227099 – ON244430 – ON244429 – – – – – This study							
Apiospora obovata	CGMCC 3.18331 T	KY494696 – KY494834 – KY705166 – KY705095 – – – – – [41]							
Apiospora ovata	LC8177	KY494757 – KY494833 – KY705225 – KY705153 – – – – – [41]							
Apiospora ovata	CBS 115042 T	KF144903 – KF144950 – KF144995 – KF145037 – – – – – [40]							
Arthrinium paraphaeospermum	NCYU 19-0341	MW114315 – MW293936 – – MW288020 – – – – – NCB							
Apiospora paraphaeosperma	MFLUCC 13-0644 T	KX822128 – KX822124 – – – – – – – – – – – [71]							
Apiospora phragmitis	CPC 18900 T	KF144909 – – KF145001 – KF145043 – – – – – – [40]							
Apiospora phragmitis	AP2318	MK014891 – MK014858 – MK017996 – MK017967 – – – – – [72]							
Apiospora phragmitis	AP2410172 A	MK014890 – MK014857 – MK017995 – MK017966 – – – – – [72]							
Apiospora phyllostachydis	MFLUCC 18-1101	– – – KF291949 – – – – – – – – – – [65]							
Apiospora piptatheri	CBS 145149 T	MK014893 – MK014860 – – MK017969 – – – – – – [72]							
Apiospora pseudoparenchymatica	CCGMCC 3.18336 T	KY494743 – KY494819 – KY705211 – KY705139 – – – – – [36]							
Apiospora pseudoparenchymatica	LC8173	KY494753 – KY494829 – KY705221 – KY705149 – – – – – [36]							
Apiospora pseudorasikravindrae	KUMCC 20-0208 T	MT946344 – – – – – – – – – – – – – – – [71]							
Apiospora pseudorasikravindrae	KUMCC 20-0211	MT946345 – – – – – – – – – – – – – – – – [71]							
Apiospora pseudosinensis	CBS 135459 T	KF144910 – KF144957 – – KF145044 – – – – – – – [40]							
Apiospora pseudospogazzini	CBS 102052 T	KF144911 – KF144958 – KF145002 – KF145045 – – – – – – [40]							
Apiospora pterosperma	CBS 123185	KF144912 – KF144959 – KF145003 – – – – – – – – – – [40]							
Apiospora pterosperma	CBS 134000 T	KF144913 – KF144960 – KF145004 – KF145046 – – – – – – [40]							
Apiospora qinlingensis	CFCC 52303 T	MH197120 – – MH236791 – MH236795 – – – – – – – [53]							
Apiospora qinlingensis	CFCC 52304	MH197121 – – MH236792 – MH236796 – – – – – – – [53]							
Apiospora rasikravindrae	NFCCI 2144 T	KF144914 – – – – – – – – – – – – – – – – – – [83]							
Apiospora rasikravindrae	MFLUCC 11-0616	KU940144 – KU863132 – – – – – – – – – – – – – [16]							
Apiospora rasikravindrae	LC5449	KY494713 – KY494789 – KY705182 – KY705112 – – – – – – [36]							
Apiospora rasikravindrae	LC7115	KY494721 – KY494797 – KY705189 – KY705118 – – – – – – [36]							
Species	Strains	GenBank Accession Numbers							
----------------------	------------------------------	--							
		ITS	**LSU**	**tub2**	**tef1-a**	**rpb1**	**SSU**	**rpb2**	**References**
Apiospora rasikravindrae	KUC21351	MH498540	MH498498	MN868932	–	–	–	–	[84]
Apiospora rasikravindrae	KUC21327	MH498541	MH498499	MH544670	–	–	–	–	[84]
Apiospora sacchari	CBS 212.30	KF144916	KF144962	KF145005	KF145047	–	–	–	[40]
Apiospora sacchari	CBS 301.49	KF144917	KF144963	KF145006	KF145038	–	–	–	[40]
Apiospora saccharicola	CBS 191.73	KF144920	KF144966	KF145009	KF145051	–	–	–	[40]
Apiospora saccharicola	CBS 463.83	KF144921	KF144968	KF145010	KF145052	–	–	–	[40]
Apiospora sasae	CBS 146808 T	MW883402	MW883797	MW890120	MW890104	–	–	–	[85]
Apiospora septatum	CGMCC 3.20134 T	MW461711	–	MW522960	MW522943	–	–	–	[52]
Apiospora serenensis	IMI 326869 T	AB220250	–	AB220297	–	–	–	–	[71]
Apiospora setariae	ATCC 76309	AB220240	–	AB220287	–	–	–	–	[71]
Apiospora setostroma	CFCC 54041	MT492004	–	MT497466	MW118456	–	–	–	[86]
Apiospora sinensis	UNKNOW-1 = HKUCC 3143	–	–	–	–	–	–	–	NCBI
Apiospora sinensis	UNKNOW-2	–	–	DQ810215	–	–	–	–	NCBI
Apiospora sorghi	URM<BR$,>9-9300	MK371706	–	–	–	–	–	–	NCBI
Apiospora stipae	CBS 146804	MW883403	MW883798	MW890121	MW890105	–	–	–	[85]
Apiospora subglobosa	MFLUCC 11-0397 T	KR069112	KR069113	–	–	–	–	–	[75]
Apiospora subrosea	LC7291	KY494751	KY494827	KY705219	KY705147	–	–	–	[36]
Apiospora subrosea	CGMCC3.18337 T	KY494752	KY494828	KY705220	KY705148	–	–	–	[36]
Apiospora thailandica	MFLUCC 15-0199	KU940146	KU863134	–	–	–	–	–	[16]
Apiospora thailandica	MFLUCC 15-0202 T	KU940145	KU863133	–	–	–	–	–	[16]
Apiospora thailandica	LC5630	KY494714	KY494790	KY806200	KY705113	–	–	–	[36]
Apiospora tintinnabula	7019-96 (ICMP)	–	–	DQ810216	–	–	–	–	[71]
Apiospora vietnamensis	IMI 99670	KX986096	KX986111	KY019466	–	–	–	–	[88]
Apiospora xenocordella	CBS 478.86 T	KF144925	KY494763	–	–	–	–	–	[40]
Apiospora xenocordella	CBS 595.66	KF144926	KF144971	KF145013	KF145055	–	–	–	[40]
Apiospora yunnana	MFLUCC 15-0002 T	KU940147	KU863135	–	–	–	–	–	[16]
Apiospora yunnana	SICAUCC 22-0072	ON227096	ON227100	ON244426	ON244425	–	–	–	This study
Arthrinium agari	KUC21364	MH498516	–	MH498474	MN868917	–	–	–	[84]
Arthrinium arctoscopi	KUC21347	MH498525	–	MH498483	MN868922	–	–	–	[84]
Arthrinium fermenti	KUC21289	MFL15226	–	MFL15231	MH544667	–	–	–	[84]
Arthrinium koreanum	KUC21350	MH498521	–	MH498479	MN868929	–	–	–	[84]
Arthrinium marinum	KUC21328	MH498538	–	MH498496	MH544669	–	–	–	[84]
Table A1. Cont.

Species	Strains	GenBank Accession Numbers	References							
Arthrinium marinum	KUC21355	MH498535 – MH498493 – MH498494 – MH498492 – MH498490 – MH498366 – MH498365 – GH498364 – [84]								
Arthrinium marinum	KUC21356	MH498535 – MH498493 – MH498494 – MH498492 – MH498490 – MH498366 – MH498365 – GH498364 – [84]								
Arthrinium maro	KUC21354	MH498535 – MH498493 – MH498494 – MH498492 – MH498490 – MH498366 – MH498365 – GH498364 – [84]								
Arthrinium mori	MFLU 18-2514	MW114313 – MW114393 – MW114394 – MW114395 – [89]								
Arthrinium phaeospermum	CBS 114315	KF144905 – KF144952 – KF144953 – KF144954 – [40]								
Arthrinium phaeospermum	CBS 114317	KF144907 – KF144949 – KF144950 – KF144951 – [40]								
Arthrinium phaeospermum	CBS 114318	KF144907 – KF144952 – KF144953 – KF144954 – [40]								
Arthrinium pusillispermum	KUC21357	MH498532 – MH498490 – MH498366 – MH498365 – GH498364 – [84]								
Arthrinium sargassi	KUC21232	KT207750 – KT207648 – MH544676 – MH544675 – [84]								
Pestalotiopsis chamaeropis	CBS 237.38	MH855954 – MH867450 – KM199392 – KM199474 – [76]								
Pestalotiopsis colombiensis	CBS 118553 T	KM199307 – KM116222 – KM199421 – KM199488 – [90]								
Bambusicularia brunnea	CBS 133599 T	KM484830 – KM484948 – KM485043 – [91]								
Bambusicularia brunnea	CBS 133600	AB274436 – KM484974 – KM485044 – [91,92]								
Barretomyces calatheae	CBS 129274 = CPC 18464	KM484831 – KM484950 – KM484951 – KM485045 – [76]								
Bifusisporella sichuanensis	SICAUCC 22-0073 T	ON227097 – ON227101 – ON244427 – ON244428 – This study								
Bifusisporella sorghi	URM 7442 T	MK060155 – MK060154 – MK060153 – MK060152 – MK060151 – MK060150 – [42]								
Bifusisporella sorghi	URM 7864	MK060151 – MK060150 – MK060149 – MK060148 – MK060147 – MK060146 – [42]								
Bussabamycetes longisporis	CBS 125232 T	KM484832 – KM484951 – KM090202 – KM485046 – [94]								
Falciphora oryzae	CBS 125863 T	EU366999 – KJ026705 – JN857963 – KJ026706 – [95]								
Falciporiella solaniterrestris	CBS 117.83 T	KM484842 – KM484959 – KM485058 – [91]								
Gaeumannomyces caricicola	CBS:145041	MK442584 – MK442583 – MK442582 – MK442581 – MK442580 – [96]								
Gaeumannomyces carica	CBS:145041	MK442584 – MK442583 – MK442582 – MK442581 – MK442580 – [96]								
Gaeumannomyces carica	CBS 388.81 T	KM484843 – KM484956 – KM484960 – X0306674 – [91]								
Gaeumannomyces australiensis	CPC 26058 T	KX306480 – KX306550 – KX306683 – KX306619 – [97]								
Gaeumannomyces avenae	CBS 187.65	JX134666 – JX134680 – JX134722 – [93]								
Gaeumannomyces avenue	CBS 870.73 = DAR 20999	KM484833 – DQ341495 – KM485048 – [91]								
Gaeumannomyces californicus	CPC 26044 T	KX306490 – KX306560 – KX306691 – KX306625 – [97]								
Gaeumannomyces ellisiorum	CBS 387.81 T	KM484835 – KM484952 – KM485051 – [91]								
Species	Strains	GenBank Accession Numbers	ITS	LSU	tub2	tef1-a	rpb1	SSU	rpb2	References
---------	---------	----------------------------	-----	-----	------	--------	------	-----	------	------------
Gaeumannomyces floridanus	CPC 26037^T	KX306491 KX306561	–	–	KX306693 KX306626	–	–	[97]		
Gaeumannomyces fusiformis	CPC 26068^T	KX306492 KX306562	–	–	KX306694 KX306627	–	–	[97]		
Gaeumannomyces glyciniolaca	CPC 26266	KX306494 KX306564	–	–	KX306696 KX306629	–	–	[97]		
Gaeumannomyces glyciniolaca	CPC 26057	KX306493 KX306563	–	–	KX306695 KX306628	–	–	[97]		
Gaeumannomyces graminicola	CBS 352.93^T	KM484834 DQ341496	–	–	KX306697 KM485050	–	–	[91]		
Gaeumannomyces graminis	CPC 26045	KX306505 KX306575	–	–	KX306708 KX306640	–	–	[97]		
Gaeumannomyces graminis var. graminis	M33	JF710374 JF414896	–	–	JF710411 JF710442	–	–	[98]		
Gaeumannomyces graminis var. graminis	M54	JF414848 JF414898	–	–	JF710419 JF710444	–	–	[98]		
Gaeumannomyces hylphopodioides	CBS 350.77^T	KX306506 KX306576	–	–	KX306709	–	–	[97]		
Gaeumannomyces hylphopodioides	CBS 541.86	KX306507 KX306577	–	–	KX306717 KX306646	–	–	[97]		
Gaeumannomyces oryzicola	CPC 26063^T	KX306516 KX306586	–	–	KX306717 KX306646	–	–	[97]		
Gaeumannomyces oryzicola	CPC 26030^T	KX306517 KX306587	–	–	KX306718 KX306647	–	–	[97]		
Gaeumannomyces radicicola	CBS 296.53^T	KM009170 KM009158	–	–	KM009206 KM009194	–	–	[94]		
Gaeumannomyces setariicola	CPC 26059	KX306524 KX306594	–	–	KX306725 KX306654	–	–	[97]		
Gaeumannomyces tritici	CBS 273.36	KX306525 KX306595	–	–	KX306729 KX306655	–	–	[97]		
Gaeumannomyces walkeri	CPC 26028^T	KX306543 KX306613	–	–	KX306746 KX306670	–	–	[97]		
Gaeumannomyces wongoonoo	BRIP:60376	JF414848	–	–	JF710444	–	–	[98]		
Kohlmeyeriopsis medullaris	CBS 117849^T = JK5528S	KM484852 KM484968	–	–	KM009198 KM485070	–	–	[91]		
Macgarvieomyces borealis	CBS 461.65^T	M1858669 DQ341511	–	–	KM009198 KM485070	–	–	[94]		
Macgarvieomyces juncicola	CBS 610.82	KM484855 KM484970	–	–	KM009201 KM485071	–	–	[91]		
Magnaporthiopsis agrostidis	BRIP 59300^T	KT364753 KT364754	–	–	KT364756 KT364755	–	–	[100]		
Magnaporthiopsis cynodontis	RS7-2 = CBS 141700^T	KJ855508 KM401646	–	KJ855509 KP282714	KP268930	–	–	[101]		
Magnaporthiopsis cynodontis	RS5-5	KJ855506 KM401646	–	KJ855507 KP282712	KP268928	–	–	[101]		
Magnaporthiopsis cynodontis	RS5-3	KJ855505 KM401645	–	KJ855508 KP282711	KP268927	–	–	[101]		
Magnaporthiopsis incrustans	M35	JF414843 JF414892	–	–	JF710412 JF710437	–	–	[98]		
Magnaporthiopsis majdus	M84	KM009160 KM009148	–	–	KM009196 KM009184	–	–	[94]		
Magnaporthiopsis madis	M85	KM009161 KM009149	–	–	KM009197 KM009185	–	–	[94]		
Magnaporthiopsis meyeri-festucae	FF2	MFI718146 MFI718151	–	–	MFI718167 MFI718162	–	–	[102]		
Magnaporthiopsis meyeri-festucae	SCR11	MFI718150 MFI718155	–	–	MFI718171 MFI718166	–	–	[102]		
Magnaporthiopsis panicorum	CM258^T	KF689643 KF689633	–	–	KF689623 KF689613	–	–	[103]		
Magnaporthiopsis panicorum	CM1082	KF689644 KF689634	–	–	KF689624 KF689614	–	–	[103]		
Magnaporthiopsis poae	TAP35	KJ855511 KM401651	–	–	KP282717 KP268933	–	–	[104]		
Species	Strains	GenBank Accession Numbers								
---------------------------------	----------	---------------------------								
		ITS	LSU	tub2	tef1-a	rpb1	SSU	rpb2	References	
Magnaportheopsis poae	M1	JF414827	JF414876	–	JF710400	JF710425	–	–	[98]	
Magnaportheopsis poae	M12	JF414828	JF414877	–	JF710401	JF710426	–	–	[98]	
Magnaportheopsis rhizophila	M22	JF414833	JF414882	–	JF710407	JF710431	–	–	[98]	
Nakataea oryzae	M21	JF414838	JF414887	–	JF710406	JF710441	–	–	[98]	
Nakataea oryzae	M69	JX134672	JX134685	–	JX134698	JX134726	–	–	[93]	
Nakataea oryzae	M71	JX134673	JX134686	–	JX134699	JX134727	–	–	[93]	
Neogaemanannomyces bambusicola									[105]	
Neopyricularia commelinicola	CBS 128307 = KACC 44083	FJ850125	KM484984	–	KM009199	KM485086	–	–	[91,106]	
Neopyricularia commelinicola	CBS 128308 T	FJ850122	KM484985	–	–	KM485087	–	–	[91,106]	
Neopyricularia dolichostomum	CBS 114926 = HKUCC 3936 = KM 8	JX134677	JX134689	–	JX134703	JX134731	–	–	[93]	
Ophioceras leptosporum	CBS 894.70 T = ATCC 24161 = HME 2955	JX134678	JX134690	–	JX134704	JX134732	–	–	[83]	
Proxypyricularia zingiberis	CBS 132355 = MAFF 240221	AB274433	KM484987	–	–	KM485090	–	–	[91]	
Pseudophialophora eragrostis	CM12m9	KF689648	KF689638	–	KF689628	KF689618	–	–	[103]	
Pseudopyricularia cyperi	CBS 133595 T = MAFF 240229	KM484872	KM484990	–	–	AB818013	–	–	[91]	
Pseudopyricularia kyllingae	CBS 133597 T = MAFF 240227	KM484876	KM484992	–	–	KT950880	KM485096	–	[91]	
Pyricularia ctenantheica		KM484878	KM484994	–	–	KM485098	–	–	[91]	
Pyricularia grisea	BR0029	KM484880	KM484995	–	–	KM485100	–	–	[91]	
Pyricularia grisea	CR0024	KM484882	KM484997	–	–	KM485102	–	–	[91]	
Pyricularia oryzae	CBS 365.52 = MUCL 9451	KM484890	KM485000	–	–	KM485110	–	–	[76]	
Slopeomyces cyindrosorus	BAN-145	JF508361	–	–	–	–	–	–	–	
Slopeomyces cyindrosorus	CG340	AY428776	–	–	–	–	–	–	–	
Ulreichiana cibissia	CBS 128780 = CPC 18916	JF951153	JF951176	–	–	KM485047	–	–	[76]	
Xenopyricularia zizanicola	CBS 132356	KM484946	KM485042	–	KM009203	KM485160	–	–	[91]	
Acericola italicula	MFLUCC 13-0609 T	MF167428	MF167429	–	–	–	MF167430	–	[109]	
Allooneottiosporina thailandica	MFLUCC 15-0576 T	MT177913	MT177940	–	MT45002	MT177968	–	–	[43]	
Allophaeosphaeria muriformia	MFLUCC 13-0349 T	KP765680	KP765681	–	–	KP765682	–	–	[105]	
Amarenographium amnophilae	MFLUCC 16-0296	KU848196	KU848197	–	MG520894	KU848198	–	–	[109]	
Amarenomyces dactylidis	MFLU 17-0498 T	KY775577	KY775575	–	–	–	–	–	[110]	
Ampelomyces quisquisalis	CBS 129.79 T	–	–	–	–	–	–	–	[111]	
Banksiophoma australiensis	CBS 142163 T	KYS97939	KYS97974	–	KYS97689	–	–	–	[112]	
Bhagirinthymicus himalayensis	AMH 10127 T = NFCCI 4580	MK836021	MK836020	–	–	–	–	–	[113]	
Species	Strains	GenBank Accession Numbers								
---------------------------------	----------------------------------	---------------------------								
		ITS	LSU	tub2	tef1-a	rpb1	SSU	rpb2	References	
Bhatiella rosae	MFLUCC 17-0664 \(^T\)	MG828873	MG828989	–	–	–	MG829101	–	[114]	
Brunneomurispora lonicerae	KUMCC 18-0157 \(^T\)	MK356373	MK356346	–	MK359065	–	MK356360	–	[59]	
Camarosporioides phragmitis	MFLUCC 13-0665 \(^T\)	KX572340	KX572345	–	KX572354	–	KX572350	–	[115]	
Chaetosphaeromona achilleae	MFLUCC 16-0476 \(^T\)	KX765265	KX765266	–	–	–	–	–	[115]	
Chaetosphaeromona hispidulum	MFLU:16-1965	MT177915	MT177942	–	–	–	MT177970	–	[43]	
Chaetosphaeromona hispidulum	MFLU:16-2275	MT177914	MT177941	–	MT454003	–	MT177969	–	[43]	
	CBS 216.75	KF251148	KF251652	–	–	–	–	–	[116]	
Dactylidina dactylidis	MFLUCC 13-0618	KP744432	KP744473	–	–	–	–	–	[105]	
Dactylidina dactylidis	MFLUCC 14-0966	MG828886	MG829002	MG829199	–	MG829113	–	MG829116	–	[114]
Dactylidina dactylidis	MFLU:15-2199	–	MG829005	–	–	–	–	–	[114]	
Dematiopleospora mariae	MFLUCC 13-0612 \(^T\)	KJ749654	KJ749653	–	KJ749655	–	KJ749652	–	[117]	
Diedrichomyces ficuzae	CBS 128019	KP170647	–	–	KP170673	–	–	–	[118]	
Diedrichomyces xanthomendoezea	CBS 129666	KP170651	–	–	KP170677	–	–	–	[118]	
Diederichomyces ficuzae	MFLUCC 14-0976	MG828871	MG828987	MG829194	–	MG829099	–	–	[114]	
Equiseticola fusispora	MFLUCC 17-2151 \(^T\)	MT310619	MT214574	MT394633	–	MT226687	–	–	[119]	
Elongaticollum hedychii	MFLUCC 18-1638 \(^T\)	MT321796	MT321810	MT328753	–	MT321803	–	–	[115]	
Embarria clematidis	MFLUCC 14-0977	MG828871	MG828987	MG829194	–	MG829099	–	–	[114]	
Embarria clematidis	MFLUCC 14-0522 \(^T\)	KU987668	KU987669	MG520895	–	KU987670	–	–	[122]	
Gallicola pseudophaeosphaeria	MFLUCC 14-0524	–	–	–	–	–	–	–	[109]	
Hawksworthitha clematidicola	MFLUCC 14-0910 \(^T\)	MG828901	MG829011	MG829202	–	MG829120	–	–	[114]	
Hawksworthitha clematidicola	MFLUCC 14-0955 \(^T\)	MG828902	MG829012	MG829203	–	MG829121	–	–	[114]	
Hydeomyces desertileptosporoides	SQUCC 15260	MK290842	MK290840	MK290849	–	MK290844	–	–	[123]	
Hydeomyces desertileptosporoides	SQUCC 15259 \(^T\)	MK290841	MK290839	MK290848	–	MK290843	–	–	[123]	
Hydeomyces pinicola	GZ-06	MK522506	MK522496	MK523386	–	MK522502	–	–	[124]	
Hydeopsis verrucispora	SD-2016-5	MK522508	MK522498	MK523388	–	MK522504	–	–	[124]	
Italica achilleae	MFLUCC 14-0959 \(^T\)	MG828903	MG829013	MG829204	–	MG829122	–	–	[114]	
Jeremyomyces labinae	CBS 144617 \(^T\)	MK442589	–	–	MK442695	–	–	–	[96]	
Juncaceicola italica	MFLUCC 13-0750	KX500110	KX500107	MG520897	–	KX500108	–	–	[109]	
Juncaceicola luzulae	MFLUCC 13-0780	KX449529	KX449530	MG520898	–	KX449531	–	–	[125]	
Kuanghuaena miscanthi	FU31017	MK503817	MK503823	–	MT009126	–	MK503829	–	[126]	
Leptosphaeria doliolem	CBS 505.75 \(^T\)	JF740205	GU301827	–	GU349069	–	GU296159	–	[127,128]	
Species	Strains	GenBank Accession Numbers	References							
---------------------------------	--------------------------------	---------------------------	------------							
		ITS	**LSU**	**tub2**	**tef1-a**	**rpb1**	**SSU**	**rpb2**		
Leptospora galii	KUMCC 15-0521 ^T	KX99547	KX99548	–	–	MG520899	–	KX99549	[109]	
Leptospora rubella	CPC 11006	DQ195780	DQ195792	–	–	–	–	DQ195803	[129]	
Leptospora thailandica	MFLUCC 16-0385 ^T	KX655559	KX655549	–	KX655564	–	KX655554		[130]	
Loratospora luzulæ	MFLUCC 14-0826 ^T	KT328497	KT328495	–	–	–	KT328496		[121]	
Magniella scictae	CBS 239.58	MH857770	MH869303	–	–	–	–		[76]	
Melmikia anthoxanthii	MFLUCC 14-1010	–	–	KU848204	–	–	KU848205		[131]	
Murichromolaenicola chiangraensis	MFLUCC 17-1488 ^T	MN994582	MN994589	–	MN998163	–	MN994605		[74]	
Muriphaesphaeria galatellae	MFLUCC 15-0769	–	–	KX383340	–	–	KX38332		[132]	
Muriphaesphaeria galatellae	MFLUCC 14-0611 ^T	KT438333	KT438329	–	MG520900	–	KT438331		[132]	
Neophlobolus chromolaenae	MFLUCC 17-1467 ^T	MN994583	MN994562	–	MN998164	–	MN994606		[74]	
Neosetophoma garethjonesii	MFLUCC 14-0528	–	–	–	–	–	KY511402	KY501126		
Neosetophoma roseaena	MFLUCC 17-0768 ^T	MG828928	MG829037	–	–	–	MG829143		[114]	
Neostagonospora arrenether	MFLUCC 15-0464	KX926417	KX910091	–	MG520901	–	KX950402		[134]	
Neostagonospora cariceps	CBS 139092 ^T	KFG51163	KFG51667	–	–	–	–		[76]	
Neostagonospora phragmitis	MFLUCC 16-0493	KX926416	KX910090	–	MG520902	–	KX950401		[134]	
Neostagonospora sichuanensis	MFLUCC 18-1223	MH394690	MH394690	–	MK313854	–	MK296469		[58]	
Neostagonospora sichuanensis	MFLUCC 18-1228 ^T	MH368073	MH368079	–	MK313851	–	MH368088		[58]	
Neosulcatispora streitziæ	CPC 25657	KX228253	KX228305	–	–	–	–		[112]	
Nodulosphaeria guttulatum	MFLUCC 15-0069	–	–	–	–	–	KY514394	KY501115		
Nodulosphaeria multiseptata	MFLUCC 15-0078	KY496748	KY496728	–	–	–	–	–	[133]	
Nodulosphaeria scabiosa	MFLUCC 14-1111 ^T	KU708850	KU708846	–	KU708854	–	KU708842		[135]	
Ophiobolus italicus	MFLUCC 17-1791 ^T	MG520939	MG520959	–	MG520903	–	MG520977		[109]	
Ophiobolus artenicesis	MFLUCC 14-1156 ^T	KT315508	KT315509	–	MG520905	–	MG520979		[109]	
Ophiobolus disseminans	MFLUCC 17-1787	MG520941	MG520961	–	MG520906	–	MG520980		[109]	
Ophiobolus ponticus	MFLUCC 17-2273	MG520943	MG520963	–	MG520908	–	MG520982		[109]	
Ophiobolus tanaceti	MFLUCC 14-0525	KU738890	KU738891	–	MG520910	–	KU738892		[109]	
Ophiobolus herpotricha	KY423	KP690989	–	–	–	–	KP691011		[136]	
Ophiobolus korrae	ATCC 56289	KC848509	–	–	–	–	KC848515		[136]	
Ophiobolus narmari	ATCC 64688	KC848510	–	–	–	–	KC848516		[136]	
Paraleptosphaeria dryadis	CBS 643.86	JF740213	GU301828	–	GU349009	–	KC84632		[127,128]	
Paraleptospora chromolaenae	MFLUCC 17-1481 ^T	MN994587	MN994563	–	MN998167	–	MN994609		[74]	
Species	Strains	GenBank Accession Numbers	References							
-------------------------------	--------------	---	------------							
		ITS	LSU	tub2	tef1-a	rpb1	SSU	rpb2		
Paralloneottiosporina sichuanensis	SICAUCC 22-0074 T	ON226746	ON227102	–	ON244423	–	ON227129	–	This study	
Paralloneottiosporina sichuanensis	SICAUCC 22-0075	ON226747	ON227103	–	ON244424	–	ON227130	–	This study	
Paraloratospora camporesii	MFLU 18-0915 T	MN756639	MN756637	–	–	–	MN756635	–	[113]	
Paraphiobolus arundinis	MFLUCC 17-1789 T	MG520945	MG520965	–	MG520912	–	MG520984	–	[109]	
Paraphiobolus plantaginis	MFLUCC 17-0245 T	KY797641	KY815010	–	–	–	KY815012	–	[109]	
Paraphoma chrysanthemeicola	CBS 522.66	KF251166	KF251670	–	–	–	–	–	[116]	
Paraphoma radicina	CBS 111.79	KF251172	KF251676	–	–	–	–	–	[116]	
Parastagonospora italica	MFLUCC 13-0377 T	KU058714	KU058724	–	MG520915	–	MG520985	–	[109,137]	
Parastagonospora minima	MFLUCC 13-0376	KU058713	KU058723	–	MG520916	–	MG520986	–	[109,137]	
Parastagonosporrella fallopiae	CCTU 1151.1	MH460544	MH460546	–	–	–	MH460550	–	[138]	
Parastagonosporrella fallopiae	CBS 139881 T	MH460543	MH460545	–	–	–	MH460549	–	[138]	
Phaeopaca festucae	MFLUCC 17-0056	KY824766	KY824767	–	–	–	KY824769	–	[134]	
Phaeoscripteosa zae	CBS 144614 T	MK442611	MK442547	–	–	–	MK442702	–	[96]	
Phaeosphaeria chiangrainia	MFLUCC 13-0231 T	KM434270	KM434280	–	–	–	KM434289	–	[57]	
Phaeosphaeria oryzae	CBS 110110 T	KF251186	KF251689	–	–	–	GQ87530	–	[139]	
Phaeosphaeria pleurospera	CBS 460.84	AF439498	–	–	–	–	–	–	[140]	
Phaeosphaeriopsis glaucoptunctata	MFLUCC 13-0265	KJ522473	KJ522477	–	MG520918	–	KJ522481	–	[109,141]	
Phaeosphaeriopsis trispeta	MFLUCC 13-0271	KJ522475	KJ522479	–	MG520919	–	KJ522484	–	[109,141]	
Phaeosphaeriopsis yuccae	MFLUCC 16-0558	KY554482	KY554481	–	MG520920	–	KY554480	–	[109]	
Pimphona vesendalhina	CBS 145032 T	MK442615	MK442551	–	MG442706	–	–	–	[96]	
Poaceicola arundinis	MFLUCC 15-0702 T	KU058716	KU058726	–	MG520921	–	MG520988	–	[109]	
Poaceicola italica	MFLUCC 13-0267	KX926421	KX910094	–	MG520924	–	KX950409	–	[109,134]	
Populocrescentia ammophilae	MFLUCC 17-0665 T	MG828949	MG829059	–	MG829231	–	MG829164	–	[114]	
Populocrescentia forlicenesensis	MFLUCC 14-0651 T	KT306948	KT306952	–	MG520925	–	KT306955	–	[121]	
Populocrescentia rosae	TASM 6125 T	KX928960	–	MG829060	–	MG829232	–	MG829165	–	[114]
Pseudophiobolus mathiei	MFLUCC 17-1784	MG520949	MG520969	–	MG520928	–	MG520991	–	[109]	
Pseudophiobolus rosae	MFLUCC 17-1786 T	MG520952	MG520972	–	MG520930	–	MG520993	–	[109]	
Pseudophiobolus urticola	KUMCC 17-0168 T	MG520955	MG520975	–	MG520933	–	MG520996	–	[109]	
Pseudophiophlaeba huishuiensis	HS-13	MK522509	MK522499	–	–	–	MK522505	–	[124]	
Pseudophaeosphaeria rubi	MFLUCC 14-0259 T	KX765298	KX765299	–	MG520934	–	KX765300	–	[130]	
Sclerostagonospora ericae	CPC 25927 T	KX228268	KX228319	–	–	–	–	–	[112]	
Species	Strains	GenBank Accession Numbers								
-------------------------------	-----------------	--								
		ITS	LSU	tub2	tef1-a	rpb1	SSU	rpb2	References	
Scolicosporium minkeviciusii	MFLUCC 12-0089	–	KF366382	–	–	–	KF366383	–	[142]	
Septoriella phragmitis	CPC 24118 T	KR873251	KR873279	–	–	–	–	–	[143]	
Setomelanomma holmii	CBS 110217	KT389542	GU301871	–	GU349028	–	GU296196	–	[127,144]	
Setophoma terrestris	CBS 335.29	KF251246	KF251749	–	KF253196	–	–	–	[116]	
Stagonospora neglecta	CBS 343.86	AJ496630	–	–	–	–	–	–	[145]	
Sulcispora supratumida	MFLUCC 14-0995 T	KP271443	KP271444	–	MH653666	–	–	–	[146]	
Tintelnotia destructans	CBS 127737 T	KY090652	KY090664	–	–	–	KY090698	–	[147]	
Tintelnotia opuntiae	CBS 376.91 T	KY090651	GU238123	–	–	–	GU238226	–	[147,148]	
Vagicola arundinis	MFLUCC 15-0027 T	KY706139	KY706129	–	MG520936	–	KY706134	–	[109]	
Vittalana mangrovesi	NFCCI 4251 T	MG767311	MG767312	–	MG767314	–	MG767313	–	[149]	
Vrystaatta aleoica	CBS 135107	KF251278	KF251781	–	–	–	–	–	[116]	
Wingfieldomyces cyperi	CBS 141450 T	KX228286	KX228337	–	MK540163	–	–	–	[150]	
Wojnowiciella italica	MFLUCC 13-0447 T	KX342923	KX430001	–	KX430003	–	KX430002	–	[130]	
Wojnowiciella rosicola	MFLUCC 15-0128 T	MG828979	MG829091	–	–	–	MG829191	–	[114]	
Wojnowiciella exigula	CBS 139904 T	KR476741	KR476774	–	–	–	–	–	[76]	
Xenophoma punctetiae	CBS 128022	–	JQ238619	–	KP170686	–	–	–	[118,151]	
Xenoseptoria neosaccardoi	CBS 120.43	KF251280	KF251783	–	KF253227	–	–	–	[116]	
Xenoseptoria neosaccardoi	CBS 128665	KF251281	KF251784	–	KF253228	–	–	–	[116]	
Yunnanensis phragmitis	MFLUCC 17-1361 T	MF684869	MF684865	–	–	–	MF684864	–	[152]	
Yunnanensis phragmitis	MFLUCC 17-0315	MF684862	MF684863	–	–	–	MF684862	–	[152]	
Batrispora marina	CY 1228	–	GQ925848	–	GU479848	–	GQ925835	GU479823	[153]	
Batrispora pereviensis	CCF 4485	–	LN626683	–	LN626671	–	LN626677	LN626665	[154]	
Neoccultibambusa chiangraiensis	MFLUCC 12-0559 T	–	KU764699	–	–	–	KU712458	–	[155]	
Neoroussoella bambusae	MFLUCC 11-0124	–	KJ474839	–	KJ474848	–	KJ474856	–	[156]	
Occultibambusa aquatica	MFLUCC 11-0006	–	KX698110	–	–	–	KX698112	–	[130]	
Occultibambusa bambusae	MFLUCC 11-0394	–	KU863113	–	KU940194	–	KU872117	KU940171	[16]	
Occultibambusa bambusae	MFLUCC 13-0855 T	–	KU863112	–	KU940193	–	KU872116	KU940170	[16]	
Occultibambusa chiangraiensis	MFLUCC 16-0380 T	–	KX655546	–	–	–	KX655551	KX655566	[130]	
Occultibambusa fusispora	MFLUCC 11-0127 T	–	KU863114	–	KU940195	–	KU940172	[16]		
Occultibambusa jonesii	GZCC 16-0117 T	–	KY628322	–	KY814756	–	KY628324	KY814758	[157]	
Occultibambusa kunmingensis	HKAS 102151 T	–	MN913733	–	MT954407	–	MT864342	MT878453	[61]	
Occultibambusa maolensis	GZCC 16-0116	–	KY628323	–	KY814757	–	KY628325	KY814759	[157]	
Occultibambusa pustula	MFLUCC 11-0502	–	KU863115	–	–	–	KU872118	–	[16]	
Paradictyoarthrinium diffraactum	MFLUCC 13-0466	–	KP744498	–	–	–	KP753960	KX437764	[105,158]	
Species	Strains	GenBank Accession Numbers								
---	--------------------------	--								
		ITS	LSU	tub2	tef1-a	rpb1	SSU	rpb2	References	
Paradictyoarthrinium tectonicola	MFLUCC 13-0465 T	–	KP744500	–	–	–	KP753961	KX437763	[105,158]	
Roussoella hysterioides	HH 26988	–	AB524622	–	AB539115	–	AB524481	AB539102	[127]	
Roussoella nitidula	MFLUCC 11-0182	–	KJ474843	–	KJ474852	–	KJ474859		[156]	
Roussoella nitidula	MFLUCC 11-0634	–	KJ474842	–	KJ474851	–	KJ474858		[156]	
Roussoella pustulans	KT 1709	–	AB524623	–	AB539116	–	AB524482	AB539103	[1,127]	
Seriascoma bambusae	KUMCC 21-0021	–	MZ329035	–	MZ325468	–	MZ329031	MZ325470	[159]	
Seriascoma didymospora	MFLUCC 11-0179 T	–	KU863116	–	KU940196	–	KU940173		[16]	
Seriascoma didymospora	MFLUCC 11-0194	–	KU863117	–	KU940197	–	KU940174		[16]	
Seriascoma yunnanense	MFLU 19-0690 T	–	NG_068303	–	MN381858	–	MN174694	MN210324	[44]	
Seriascoma yunnanense	SICAUCC 22-0059	–	ON226771	–	ON567182	–	ON227356	ON567183	This study	
Torula herbarum	CBS 111855	–	KF443386	–	KF443403	–	KF443391	KF443396	[160]	
Westerdykella ornata	CBS 379.55	–	GU301880	–	GU349021	–	GU296208	GU371803	[127]	

Notes: superscript T represents ex-type or ex-epitype isolates. “–” means that the sequence is missing, unavailable or unused. New sequences are listed in bold. Abbreviation: AP: Culture Collection of A. Pintos; ATCC: American Type Culture Collection, U.S.A.; BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Culture Collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC: China Forestry Culture Collection Center, Beijing, China; CGMCC: China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CPC: Culture Collection of P.W. Crous; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; GZCC: Guizhou Academy of Agricultural Sciences Culture Collection, Guizhou, China; IME: Culture Collection of CABI Europe UK Centre, Egham, UK; JHB: Culture Collection of H.B. Jiang; KUMCC: Kunming Institute of Botany Culture Collection, Yunnan, China; LC: Working collection of Lei Cai, housed at the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; MFLU: Herbarium of Mae Fah Luang University, Chiang Rai, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; NCYUCC: National Chiayi University Culture Collection, Chiayi, Taiwan; SICAUCC: Sichuan Agricultural University Culture Collection, Sichuan, China; URM: Culture Collection of the Universidade Federal de Pernambuco, Brazil.
References

1. Tanaka, K.; Hirayama, K.; Yonezawa, H.; Hatakeyama, S.; Harada, Y.; Sano, T.; Shirouzu, T.; Hosoya, T. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs. *Stud. Mycol.* 2009, 64, 175–209. [CrossRef] [PubMed]

2. Shi, J.Y.; Zhou, D.Q.; Ma, L.S.; Yao, J.; Zhang, D.M. Diversity of bamboo species in China. *World Bamboo Ratt.* 2020, 18, 55–65. [CrossRef]

3. Du, S.S. Classification and arrangement of *Phyllostachys* (Poaceae: Bambusoideae), China. *J. Fujian Forestry Sci. Technol.* 2020, 47, 120–123. [CrossRef]

4. Li, Y.G.; Xue, L.; Fan, L.L.; Ye, L.T.; Cheng, L.Y.; He, T.Y.; Zheng, Y.S. Research progress in germplasm resources and applications of *Phyllostachys*. *J. Sic. For. Sci. Technol.* 2019, 40, 117–122. [CrossRef]

5. Bystrakova, N.; Kapos, V.; Lysenko, I.; Stapleton, C.M.A. Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. *Biodivers. Conserv.* 2003, 12, 1833–1841. [CrossRef]

6. Scurlark, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? *Biomass. Bioener.* 2000, 19, 229–244. [CrossRef]

7. Idris, M.A.; Mohamad, A. Bamboo shoot utilization in peninsular Malaysia: A case study in Pahang. *J. Bamboo Rattan.* 2002, 1, 141–155. [CrossRef]

8. Shi, J.Y.; Chen, Q.B.; Huang, J.Y.; Zhou, D.Q.; Ma, L.S.; Yao, J. Biodiversity of the staple food bamboos of giant panda and its important value. *World Bamboo Rattan*. 2020, 18, 10–19. [CrossRef]

9. Wang, X.J.; Wang, T.; Chi, M.; Li, L.B. Research progress of ornamental bamboos in China. *J. Bamboo Ress.* 2019, 38, 3–9. [CrossRef]

10. Hyde, K.D.; Zhou, D.Q.; Mckenzie, E.H.C.; Ho, W.H.; Dalisay, T. Vertical distribution of saprobic fungi on bamboo culms. *Fungal Divers.* 2002, 11, 109–118.

11. Tanaka, E.; Shimizu, K.; Imanishi, Y.; Yasuda, F.; Tanaka, C. Isolation of basidiomycetous anamorphic yeast-like fungus *Meira argove* found on Japanese bamboo. *Mycoscience* 2008, 49, 329–333. [CrossRef]

12. Dai, D.Q.; Bhat, D.J.; Liu, J.K.; Chukeatirote, E.; Zhao, R.L.; Hyde, K.D. *Bambusicola*, a new genus from bamboo with asexual and sexual morphs. *Cryptogamie Mycol.* 2012, 33, 363–379. [CrossRef]

13. Doungporn, M.; Hiroko, K.; Tatsuji, S. Molecular diversity of bamboo–associated fungi isolated from Japan. *FEBS Microbiol. Lett.* 2007, 266, 10–19. [CrossRef]

14. Hyde, K.D.; Zhou, D.; Dalisay, T. Bambusicolous fungi: A review. *Fungal Divers.* 2002, 9, 1–14.

15. Tanaka, K.; Harada, Y. Bambusicolous fungi in Japan (1): Four *Phaeosphaeria* species. *Mycoscience* 2004, 45, 377–382. [CrossRef]

16. Dai, D.Q.; Phookamsak, R.; Wijayawardene, N.N.; Li, W.J.; Bhat, D.J.; Xu, J.C.; Taylor, J.E.; Hyde, K.D.; Chukeatirote, E. Bambusicolous fungi. *Fungal Divers.* 2017, 82, 1–105. [CrossRef]

17. Hatakeyama, S.; Tanaka, K.; Harada, Y. Bambusicolous fungi in Japan (7): A new coelomycteous genus, *Versicolorisporium*. *Mycoscience* 2008, 49, 211–214. [CrossRef]

18. Hatakeyama, S.; Tanaka, K.; Harada, Y. Bambusicolous fungi in Japan (5): Three species of *Tetraploa*. *Mycoscience* 2005, 46, 196–200. [CrossRef]

19. Zhang, Z.Y.; Zhang, X. Potentials of bamboo in traditional Chinese medicine and development of heath products. *World Sci. Technol.* 2000, 3, 54–56. [CrossRef]

20. Zhou, B.Z.; Fu, M.Y.; Xie, J.Z.; Yang, X.S.; Li, Z.C. Ecological functions of bamboo forest: Research and application. *J. Forestry Res.* 2005, 16, 143–147. [CrossRef]

21. Singhal, P.; Bal, L.M.; Satya, S.; Sudhakar, P.; Naik, S.N. Bamboo shoots: A novel source of nutrition and medicine. *Crit. Rev. Food Sci. Nutr.* 2013, 53, 517–534. [CrossRef] [PubMed]

22. Teng, S.C. *Fungi of China*; Mycotaxon, Ltd.: New York, NY, USA, 1996; pp. 1–728.

23. Tai, E.L. *Sylloge Fungorum Sinicum*; Science Press, Academica Sinica: Beijing, China, 1979; pp. 1–1527.

24. Chen, M.M. *Forest Fungi Phytogeography: Forest Fungi Phytogeography of China, North America, and Siberia and International Quarantine of Tree Pathogens*; Pacific Mushroom Research and Education Center: Sacramento, CA, USA, 2002; pp. 1–469.

25. Chomnunti, P.; Hongsanan, S.; Hudson, B.A.; Tian, Q.; Persõh, D.; Dhami, M.K.; Alias, A.S.; Xu, J.C.; Liu, X.Z.; Studler, M.; et al. The sooty moulds. *Fungal Divers.* 2014, 66, 1–36. [CrossRef]

26. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Methods: A Guide to Methods and Applications*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322.

27. Villalvus, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. *J. Bacteriol.* 1990, 172, 4238–4246. [CrossRef] [PubMed]

28. O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. *Mol. Phylogenet. Evol.* 1997, 7, 103–116. [CrossRef] [PubMed]

29. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microb.* 1995, 61, 1323–1330. [CrossRef] [PubMed]

30. Matheny, P.B.; Liu, Y.J.; Ammirati, J.F.; Hall, B.D. Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe*, Agaricales). *Am. J. Bot.* 2002, 89, 688–698. [CrossRef]
60. Hyde, K.D.; Jeewon, R.; Chen, Y.J.; Bhunjun, C.S.; Calabon, M.S.; Jiang, H.B.; Lin, C.G.; Norpanphoun, C.; Sysouphanthong, P.; Pem, D.; et al. The numbers of fungi: Is the descriptive curve flattening? *Fungal Divers.* 2020, 103, 219–271. [CrossRef]

61. Dong, W.; Wang, B.; Hyde, K.D.; McKenzie, E.H.C.; Raja, H.A.; Tanaka, K.; Abdel-Wahab, M.A.; Abdel-Aziz, F.A.; Doilm, M.; Phookamsak, R.; et al. Freshwater Dothideomycetes. *Fungal Divers.* 2020, 105, 319–575. [CrossRef]

62. Boonmee, S.; Wanasinghe, D.N.; Calabon, M.S.; Huanraluek, N.; Chandrasiri, S.K.U.; Jones, G.E.B.; Rossi, W.; Leonardi, M.; Singh, S.K.; Rana, S.; et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Divers.* 2021, 111, 1–135. [CrossRef]

63. Yang, C.L.; Xu, X.L.; Liu, Y.G. Two new species of *Bambusicola* (Bambusicolaceae, Pleosporales) on *Phyllostachys heterocladia* from Sichuan, China. *Novon Hedwigia.* 2019, 108, 527–545. [CrossRef]

64. Yang, C.L.; Xu, X.L.; Liu, Y.G.; Hyde, K.D.; McKenzie, E.H.C. A new species of *Phyllachora* (Phyllachoraceae, Phyllachorales) on *Phyllostachys heterocladia* from Sichuan, China. *Phytotaxa* 2019, 392, 186–196. [CrossRef]

65. Yang, C.L.; Xu, X.L.; Liu, Y.G. *Podonectria sichuanensis*, a potentially mycopathogenic fungus from Sichuan Province in China. *Phytotaxa* 2019, 400, 219–231. [CrossRef]

66. Yang, C.L.; Xu, X.L.; Dong, W.; Wanasinghe, D.N.; Liu, Y.G.; Hyde, K.D. Introducing *Arthrinium minutisporum* sp. nov. (Apiosporaceae, Xylariales) on *Phyllostachys heterocladia* from Sichuan, China. *Phytotaxa* 2019, 406, 91–110. [CrossRef]

67. Yang, C.L.; Xu, X.L.; Jeewon, R.; Boonmee, S.; Liu, Y.G.; *Arthrinium phyllostachium*, a new genus from Schizostachyum brachycladum species in Guangdong Province, China. *Front. Microbiol.* 2020, 11, 2981. [CrossRef]

68. Pintos, A.; Alvarado, P.; Planas, J.; Jarling, R. Six new species of *Arthrinium* from Europe and notes about *A.caricicola* and other species found in Carex spp. hosts. *MycotKeys* 2019, 49, 15–48. [CrossRef]

69. Tang, X.; Goonasekara, I.D.; Jayawardena, R.S.; Jiang, H.B.; Li, J.F.; Hyde, K.D.; Kang, J.C. *Arthrinium bambusicola* (Fungi, Sordariomycetes), a new species from Schizostachyum brachycladum in northern Thailand. *Biodivers Data J.* 2020, 8, e58755. [CrossRef]

70. Mapook, A.; Hyde, K.D.; McKenzie, E.H.C.; Jones, E.B.G.; Bhat, D.J.; Jeewon, R.; Stadler, M.; Samarakoon, M.C.; Malaithong, M.; Tanunchai, B.; et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed *Chromolaena odorata* (Siam weed). *Fungal Divers.* 2020, 101, 1–175. [CrossRef]

71. Senanayake, I.C.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Bhat, J.D.; Jones, E.B.G.; McKenzie, E.H.C.; Dai, D.Q.; Daranagama, D.A.; Dayarahne, M.C.; Goonasekara, I.D.; et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). *Fungal Divers.* 2015, 73, 73–144. [CrossRef]

72. Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houben, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. *Stud. Mycol.* 2018, 91, 23–36. [CrossRef] [PubMed]

73. Sharma, R.; Kulkarni, G.; Sonawane, M.S.; Shouche, Y.S. A new endophytic species of *Arthrinium* (Apiosporaceae) from *Jatropha podagrica*. *Mycoscience* 2014, 55, 118–123. [CrossRef]

74. Zhao, Y.Z.; Zhang, Z.F.; Cai, L.; Peng, W.J.; Liu, F. Four new filamentous fungal species from newly-collected and hive-stored bee pollen. *Mycopest 2018*, 9, 1089–1116. [CrossRef]

75. Das, K.; Lee, S.Y.; Choi, H.W.; Eom, A.H.; Choe, Y.J.; Jung, H.Y. Taxonomy of *Arthrinium minutisporum* sp. nov., *Pezicula neosporulosa*, and *Acrocalymma pterocarpi*: New records from soil in Korea. *Mycobiology* 2020, 48, 450–463. [CrossRef] [PubMed]

76. Allen, W.J.; de Vries, A.E.; Bologna, N.J.; Bickford, W.A.; Kowalski, K.P.; Meyerson, L.A.; Cronin, J.T. Intraspecific and biogeographical variation in foliar fungal communities and pathogen damage of native and invasive *Phragmites australis*. *Glob. Ecol. Biogeogr.* 2020, 29, 1199–1211. [CrossRef]

77. Jiang, N.; Liang, Y.M.; Tian, C.M. A novel bambusicolous fungus from China, *Arthrinium chinense* (Xylariales). *Sydowia* 2020, 72, 77–83. [CrossRef]

78. Hyde, K.D.; Norpanphoun, C.; Maharachchikumbura, S.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.; et al. Refined families of Sordariomycetes. *Mycokeys* 2020, 11, 305–1059. [CrossRef]

79. Schoch, C.L.; Robbertse, B.; Robert, V.; Vu, D.; Cardinali, G.; Irinyi, L.; Meyer, W.; Nilsson, R.H.; Hughes, K.; Miller, A.N.; et al. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for fungi. *Database* 2014, 336–341. [CrossRef]

80. Kwón, S.L.; Park, M.S.; Jang, S.; Lee, Y.M.; Heo, Y.M.; Hong, J.H.; Lee, H.; Jang, Y.; Park, J.H.; Kim, C.; et al. The genus *Arthrinium* (Ascomycota, Sordariomycetes, Apiosporaceae) from marine habitats from Korea, with eight new species. *IMA Fungus* 2021, 12, 13. [CrossRef]
De Gruyter, J.; Aveskamp, M.M.; Woudenberg, J.H.; Verkley, G.J.; Groenewald, J.Z.; Crous, P.W. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. *Mycol. Res.* 2009, 113, 508–519. [CrossRef] [PubMed]

Crous, P.W.; Wingfield, M.J.; Guerrero, J.; Cheewangkoon, R.; van der Bank, M.; Swart, W.I.; Stichigl, A.M.; Cano-Lira, J.F.; Roux, J.; Madrid, H.; et al. Fungal planet description sheets: 154–213. *Persoonia* 2013, 31, 188–296. [CrossRef]

Manawasinghe, L.S.; Kem, D.; Bundhun, D.; Karunaratna, A.; Ekanayaka, A.H.; Bao, D.F.; Li, J.F.; Samarawickrama, M.C.; Chaiwan, N.; Lin, C.G.; et al. Fungal diversity notes 1151–1276. Taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Divers.* 2020, 100, 5–277. [CrossRef]

Wanasinghe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R.; Lee, H.B.; Jones, G.E.B.; Tibpromma, S.; Tennakoon, D.S.; dissanayake, A.J.; Jaysiri, S.C.; et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. *Fungal Divers.* 2018, 89, 1–236. [CrossRef]

Tennakoon, D.S.; Thambugala, K.M.; Wanasinghe, D.N.; Gentekaki, E.; Promputtha, I.; Kuo, C.H.; Hyde, K.D. Additions to Phaeosphaeriaceae (Pleosporales): Elongatocillium gen. nov., Ophiopsphaerella taiwanensis sp. nov., Phaeosphaeriopsis beansicae sp. nov. and a new host record of Neosetophoma pascocellae from Musaceae. *MycoKeys* 2020, 70, 59–88. [CrossRef]

Quaedvlieg, V.; Verkley, G.J.; Shin, H.D.; Barreto, R.W.; Alfenas, A.C.; Swart, W.J.; Groenewald, J.Z.; Crous, P.W. Sizing up *Septoria*. *Stud. Mycol.* 2013, 75, 307–390. [CrossRef] [PubMed]

Wanasinghe, D.N.; Jones, E.B.G.; Camporesi, E.; Boonmee, S.; Karunaratna, S.C.; Thines, M.; Mortimer, P.E.; Xu, J.; Hyde, K.D. *Dinamia* sp. *mariae* gen. sp. nov. from *Ononis Spinosa* in Italy. *Cryptogamie. Mycol.* 2014, 35, 105–117. [CrossRef]

Trakunyingcharoen, T.; Lombard, L.; Groenewald, J.Z.; To-Anun, C.; Alfenas, A.C.; Crous, P.W. *Myco Parish*, *Species of *Sphaerella* and an elichicenic and other genera. *IMA Fungus* 2014, 5, 391–414. [CrossRef] [PubMed]

Phukhamsakda, C.; McKenzie, E.H.C.; Phillips, A.J.; Jones, E.B.G.; Bhat, D.J.; Stanler, M.; Bhunjun, C.S.; Wanasinghe, D.N.; Thongbai, B.; Camporesi, E.; et al. Microfungi associated with *Clematis* (Ranunculaceae) with an integrated approach to delimiting species boundaries. *Fungal Divers.* 2020, 102, 1–203. [CrossRef]

Cui, Y.; Jia, H.; He, D.; Yu, H.; Gao, S.; Yokoyama, K.; Li, J.; Wang, L. Characterization of *Edenia gomezpompa* isolated from a patient with keratitis. *Mycopathologia* 2013, 176, 75–81. [CrossRef]

Artyaywansa, H.A.; Hyde, K.D.; Jaysirsi, S.C.; Buyck, B.; Chetana, K.W.T.; Dai, D.Q.; Dai, Y.C.; Daranagama, D.A.; Jayawardena, R.S.; Lücking, R.; et al. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2015, 75, 27–274. [CrossRef]

Abd-Elsalam, K.A.; Tibpromma, S.; Wanasinghe, D.N.; Camporesi, E.; Hyde, K.D. *Equisetica* gen. nov. (Phaeosphaeriaceae), from *Equisetum* sp. in Italy. *Phytotaxa* 2016, 284, 169–180. [CrossRef]

Maharachchikumbura, S.S.N.; Aryanwansa, H.A.; Wanasinghe, D.N.; Dayaratne, M.C.; Al-Saady, N.A.; Al-Sadi, A.M. Phyllospheric and generic delineation of *Hydeomeces desertileptosporoides* gen. et sp. nov. (Phaeosphaeriaceae) from Jebel Ahkdar Mountain in Oman. *Phytotaxa* 2019, 391, 28–38. [CrossRef]

Zhang, J.F.; Liu, J.K.; Jeewon, R.; Wanasinghe, D.N.; Liu, Z.Y. Fungi from Asian Karst formations III. Molecular and morphological characterization reveal new taxa in Phaeosphaeriaceae. *MycoSphere* 2019, 10, 202–220. [CrossRef]

Tennakoon, D.S.; Hyde, K.D.; Phokamsak, R.; Wanasinghe, D.N.; Camporesi, E.; Promputtha, I. Taxonomy and phylogeny of *Junaceicola* gen. nov. (Phaeosphaeriaceae, Pleosporinae, Pleosporales). *Cryptogamie. Mycol.* 2016, 37, 135–156. [CrossRef]

Karunaratna, A.; Phokamsak, R.; Jayawardena, R.S.; Hyde, K.D.; Kuo, C.H.; Kwanghwana *miscanthi* Karun., C.H. Kuo & K.D. Hyde, gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) from *Miscanthus floridulus* (Labill.) Warb. ex K. Schum. & Lauterb. (Poeaceae). *Cryptogamie. Mycol.* 2020, 41, 119–132. [CrossRef]

Schoch, C.L.; Crous, P.W.; Groenewald, J.Z.; Boehm, E.W.; Burgess, T.I.; de Gruyter, J.; de Hoog, G.S.; Dixon, L.J.; Grube, M.; Gueidan, C.; et al. A class-wide phylogenetic assessment of Dothideomycetes. *Stud. Mycol.* 2009, 64, 1–15. [CrossRef] [PubMed]

De Gruyter, J.; Woudenberg, J.H.; Aveskamp, M.M.; Verkley, G.J.; Groenewald, J.Z.; Crous, P.W. Redisposition of phoma-like anamorphs in Pleosporales. *Stud. Mycol.* 2013, 75, 1–36. [CrossRef] [PubMed]

Crous, P.W.; Verkley, G.J.; Groenewald, J.Z. *Eucalyptus* microfungi known from culture. 1. *Cladoriella* and *Fulvoflagma* genera nova, with notes on some other poorly known taxa. *Stud. Mycol.* 2006, 55, 53–63. [CrossRef] [PubMed]

Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, D.J.; McKenzie, E.H.C.; Jones, E.B.G.; Phokamsak, R.; Artyaywansa, H.A.; Boonmee, S.; Zhao, Q.; et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2016, 80, 1–270. [CrossRef]

Wijayawardene, N.N.; Hyde, K.D.; Wanasinghe, D.N.; Papizadeh, M.; Goonasekara, I.D.; Camporesi, E.; Bhat, D.J.; McKenzie, E.H.C.; Phillips, A.J.; Diederich, P.; et al. Taxonomy and phylogeny of dematiaceous coelomycetes. *Fungal Divers.* 2016, 77, 316–316. [CrossRef]

Phukhamsakda, C.; Artyaywansa, H.A.; Phokamsak, R.; Chomnunti, P.; Bulgakov, T.S.; Yang, J.B.; Bhat, D.J.; Bahkali, A.H.; Hyde, K.D. *Murilphaesphaeria galletiae* gen. et sp. nov. in Pleosporaceae (Pleosporales). *Phytopathol.* 2015, 227, 55–65. [CrossRef]

Tibpromma, S.; Hyde, K.D.; Jeewon, R.; Maharachchikumbura, S.S.N.; Liu, J.K.; Bhat, D.J.; Jones, E.B.G.; McKenzie, E.H.C.; Camporesi, E.; Bulgakov, T.S.; et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2017, 83, 1–261. [CrossRef]
134. Thambugala, K.M.; Wanasinghe, D.N.; Phillips, A.J.L.; Camporesi, E.; Bulgakov, T.S.; Phukhamsakda, C.; Ariyawansa, H.A.; Goonasekara, I.D.; Phookamsak, R.; Dissanayake, A.; et al. Mycosphere notes 1–50: Grass (Poaceae) inhabiting Dothideomycetes. *Mycosphere* 2017, 8, 697–796. [CrossRef]

135. Mapook, A.; Boonme, N.; Ariyawansa, H.A.; Tilbromma, S.; Campesori, E.; Jones, E.B.G.; Bahkali, A.H.; Hyde, K.D. Taxonomic and phylogenetic placement of *Nodulisphaeria*. *Mycol. Progr.* 2016, 15, 1–15. [CrossRef]

136. Flores, F.J.; Marek, S.M.; Orquera, G.; Walker, N.R. Molecular identification and multilocus phylogeny of *Ophiophaerella* species associated with spring dead spot of Bermuda grass. *Crop. Sci.* 2017, 57, 249. [CrossRef]

137. Li, W.J.; Bhat, D.J.; Camporesi, E.; Tian, Q.; Wijayawardene, N.N.; Dai, D.Q.; Phookamsak, R.; Chommunti, P.; Bahkali, A.H.; Hyde, K.D. New asexual morph taxa in Phaeosphaeriaceae. *Mycosphere* 2015, 6, 681–708. [CrossRef]

138. Bakhshi, M.; Arzanlou, M.; Groenewald, J.Z.; Quaedvlieg, W.; Crous, P.W. *Parastagonospora fallopiae* gen. et sp. nov. (Phaeosphaeriaceae) on *Falloppia convolvuloides* from Iran. *Mycol. Progr.* 2019, 18, 203–214. [CrossRef]

139. De Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Groenewald, J.Z.; Crous, P.W. Systematic reappraisal of species in *Phoma* section *Paraphoma*, *Pyrenochaeta* and *Pleurophoma*. *MycoKeys* 2010, 102, 1066–1081. [CrossRef]

140. Camara, M.P.S.; Palm, M.E.; van Berkum, P.; O’Neill, N.R. Molecular phylogeny of *Leptosphaeria* and *Phaeosphaeria*. *Mycolologia* 2002, 94, 630–640. [CrossRef]

141. Thambugala, K.M.; Camporesi, E.; Ariyawansa, H.A.; Phookamsak, R.; Liu, Z.Y.; Hyde, K.D. Phylogeny and morphology of *Phaeosphaeriopsis triceptata* sp. nov., and *Phaeosphaeriopsis glaucopunctata*. *Phytotaxa* 2014, 176, 238–250. [CrossRef]

142. Wijayawardene, N.N.; Camporesi, E.; Song, Y.; Dai, D.Q.; Hyde, K.D. Multi-gene analyses reveal taxonomic placement of *Scelicosporum minnesota* in Phaeosphaeriaceae (Pleosporales). *Cryptogamie Mycol.* 2013, 34, 357–366. [CrossRef]

143. Crous, P.W.; Carris, L.M.; Giraldo, A.; Groenewald, J.Z.; Hawksworth, D.L.; Hernandez-Restrepo, M.; Jaklitsch, W.M.; Lebrun, M.H.; Schumacher, K.C.; Stielow, J.B.; et al. The genera of fungi—Fixing the application of the type species of generic names—*G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrocladium, Milosprium, Protostegia, Paraphoma, Pyrenochaeta, Stagonospora, Torula*, and *Wojnowicia*. *IMA Fungus* 2015, 6, 163–198. [CrossRef]

144. Chen, Q.; Jiang, J.R.; Zhang, G.Z.; Cai, L.; Crous, P.W. Resolving the *Phoma* enigma. *Stud. Mycol.* 2015, 82, 137–217. [CrossRef]

145. Ernst, M.; Mendgen, K.W.; Wirsel, S.G. Endophytic fungal mutualists: Seed-borne *Sagomonospora* spp. enhance reed biomass production in axenic microcosms. *Mol. Plant-Microb. MPMII* 2003, 16, 580–587. [CrossRef]

146. Senanayake, I.C.; Jeewon, R.; Camporesi, E.; Hyde, K.D.; Zeng, Y.J.; Tian, S.L.; Xie, N. *Sulcosporasupratudumida* sp. nov. (Phaeosphaeriaceae, Pleosporales) on *Anthoxanthum odoratum* from Italy. *MycoKeys* 2018, 38, 35–46. [CrossRef] [PubMed]

147. Ahmed, S.A.; Hofmuller, W.; Seibold, M.; de Hoog, G.S.; Harak, H.; Tamm, I.; van Diepeningen, A.D.; Behrens-Baumann, W.; Tintelnot, I. A new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. *Mycoses* 2016, 60, 244–253. [CrossRef] [PubMed]

148. Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.; Verkley, G.J.; Crous, P.W. Highlights of the Didymellaceae: A polyphasic approach to characterise *Phoma* and related pleosporalean genera. *Stud. Mycol.* 2010, 65, 1–60. [CrossRef]

149. Devadatha, B.; Mehta, N.; Wanasinghe, D.N.; Baghela, A.; Venkateswara, V.; Vittaliana, S. *Vittaliana mangrovei* Devadatha, Nikita, A. Baghela & V.V. Sarma, gen. nov. sp. nov. (Phaeosphaeriaceae, Pleosporales) from mangroves near Pondicherry (India), based on morphology and multigene phylogeny. *Cryptogamie Mycol.* 2019, 40, 117–132. [CrossRef]

150. Marin-Felix, Y.; Hernandez-Restrepo, M.; Iturrieta-Gonzalez, I.; Garcia, D.; Gené, J.; Groenewald, J.Z.; Cai, L.; Chen, Q.; Quaedvlieg, W.; Schumacher, R.K.; et al. Genera of phytopathogenic fungi: GOPHY 3. *Stud. Mycol.* 2019, 94, 1–124. [CrossRef] [PubMed]

151. Lawrey, J.D.; Diederich, P.; Nelsen, M.P.; Freebury, C.; Van den Broeck, D.; Sikaroodi, M.; Ertz, D. Phylogenetic placement of lichenicolous *Phoma* species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes). *Fungal Divers.* 2012, 55, 195–213. [CrossRef]

152. Karunarathna, A.; Papizadeh, M.; Senanayake, I.C.; Jeewon, R.; Phookamsak, R.; Goonasekara, I.D.; Wanasinghe, D.N.; Wijayawardene, N.N.; Amoozegar, M.A.; Shahzadeh-Fazeli, S.A.; et al. Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. *Mycosphere* 2017, 8, 1818–1834. [CrossRef]

153. Suetrong, S.; Schoe, C.L.; Spatatora, J.W.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Sakayaroj, J.; Phongpaichit, S.; Tanaka, K.; Hirayama, K.; Jones, E.B.G. Molecular systematics of the marine Dothideomycetes. *Stud. Mycol.* 2009, 64, 155–173. [CrossRef]

154. Kolariik, M.; Spakowicz, D.; Gazis, R.; Shaw, J.; Novakova, A.; Chudickova, M.; Forcina, G.C.; Kang, K.W.; Kelnarova, I.; Skalsksa, D.; et al. *Biatriospora* (Ascomycota: Neurosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. *Plant Syst. Evol.* 2017, 303, 35–50. [CrossRef]

155. Doilom, M.; Dissanayake, A.J.; Wanasinghe, D.N.; Boonme, S.; Liu, J.K.; Bhat, D.J.; Taylor, J.E.; Bahkali, A.H.; McKenzie, E.H.C.; Hyde, K.D. Microfungi on *Tectona grandis* (teak) in Northern Thailand. *Fungal Divers.* 2017, 82, 107–182. [CrossRef]

156. Liu, J.K.; Phookamsak, R.; Dai, D.Q.; Tanaka, K.; Jones, E.B.G.; Xu, J.C.; Chukeatirote, E.; Hyde, K.D. *Roussoellopsis* gen. nov., a new pleosporalean family to accommodate the genera *Neoursoella* gen. nov., *Roussoella* and *Roussoellopsis*. *Phytotaxa* 2014, 181, 1–33. [CrossRef]

157. Zhang, J.F.; Liu, J.K.; Hyde, K.D.; Yang, W.; Liu, Z.Y. Fungi from Asian Karst formations II. Two new species of *Occultibambusa* (Occlulibambuseae, Dothideomycetes) from karst landforms of China. *Mycosphere* 2017, 8, 550–559. [CrossRef]

158. Li, J.; Bhat, D.J.; Phookamsak, R.; Mapook, A.; Lumyong, S.; Hyde, K.D. *Sporidesmioides thailandica* gen. et sp nov. (Dothideomycetes) from northern Thailand. *Mycol. Prog.* 2016, 15, 1169–1178. [CrossRef]
159. Jiang, H.B.; Phookamsak, R.; Hyde, K.D.; Mortimer, P.E.; Xu, J.C.; Kakumyan, P.; Karunarathna, S.C.; Kumla, J. A taxonomic appraisal of bambusicolous fungi in Occultibambusaceae (Pleosporales, Dothideomycetes) with new collections from Yunnan Province, China. *Life* **2021**, *11*, 932. [CrossRef] [PubMed]

160. Ahmed, S.A.; van de Sande, W.W.; Stevens, D.A.; Fahal, A.; van Diepeningen, A.D.; Menken, S.B.; de Hoog, G.S. Revision of agents of black-grain eumycetoma in the order Pleosporales. *Persoonia* **2014**, *33*, 141–154. [CrossRef] [PubMed]