Highly stable multivalue collocation methods

Dajana Conte¹, Raffaele D’Ambrosio², Maria Pia D’Arienzo¹, Beatrice Paternoster¹

¹ Department of Mathematics, University of Salerno
² Department of Information Engineering and Computer Science and Mathematics, University of L’Aquila

E-mail: dajconte@unisa.it, raffaele.dambrosio@univaq.it, mdarienzo@unisa.it, beapat@unisa.it

Abstract. The paper is focused on the development of A-stable collocation based multivalue methods for stiff problems. This methods are dense output extensions of discrete multivalue methods, since the solution is approximated by a piecewise collocation polynomial with high global regularity. The underlying multivalue method is assumed to be diagonally implicit and with uniform order of convergence, thus it does not suffer from order reduction, as it happens for classical one-step collocation methods. The effectiveness of the approach is also confirmed by the numerical evidence.

1. Introduction
In this paper, we aim to consider the numerical solution of well-posed initial value problems based on ordinary differential equations (ODEs)

\[
\begin{align*}
 y'(t) &= f(y(t)), \quad t \in [t_0, T], \\
 y(t_0) &= y_0,
\end{align*}
\]

with \(f : \mathbb{R}^d \to \mathbb{R}^d \). The employed methodology relies on the employ of the so-called multivalue numerical methods, providing a multivalue extension of Runge-Kutta methods. In other terms, these methods updates a vector of solution related informations along the grid; this vector does not only contain the approximation of the solution of the problem in the step points, but also other related quantities. This idea allows to simultaneously approximate many needed quantities as well as to involve a larger number of degrees of freedom for better order and stability barriers in comparison with the usual one-step or multistep cases. A comprehensive treatise on the topic can be found in the monographs [3, 66], while the extension to second order problems is object of [37, 39, 40, 52, 55]; the employ of multivalue methods as geometric numerical integrators is discussed in [4, 5, 17, 35, 36, 38, 42, 43].

Recently, in [57], the authors have introduced the idea of multivalue collocation, extending the classical idea of one-step collocation. Collocation is a technique based on the idea of approximating the exact solution of a given functional equation with a continuous approximant belonging to a chosen finite dimensional space, chosen coherently with the properties of the solution. This approximant satisfies interpolation conditions in the grid points and exactly satisfies the equation on a given set of points, called collocation points.
The classical idea of collocation belongs to one-step methods and is first presented in the papers by Guillon and Soulle [62] and Wright [82]. In correspondence of the uniform grid \(I_h = \{t_0 + ih, i = 0, 1, \ldots, N\} \), with \(h = (T - t_0)/N \), the collocation extension of a one-step method is a polynomial exactly interpolating the numerical solution in \(t_n \) and satisfies the system

\[
P_n(t_n + c_i h) = f(P_n(t_n + c_i h)), \quad i = 1, 2, \ldots, m,
\]

where \(c_1, c_2, \ldots, c_m \) are the collocation points. The solution in \(t_{n+1} \) is computed from the function evaluation \(y_{n+1} = P_n(t_{n+1}) \). Collocation methods are a class of implicit Runge-Kutta methods. Other extension of the collocation ideas outside implicit methods led to perturbed and discontinuous collocation methods [73, 74] and to multistep collocation methods [69, 70].

One-step collocation methods suffer from order reduction when applied to stiff problems [3, 63]. An attempt to remove this phenomenon has been given in [41, 45, 46, 51], where two-step almost collocation methods have been introduced. However A-stable two-step almost collocation methods are not of maximal order. In [57], the authors have obtained A-stable methods of maximal order when applied to stiff problems.

In this paper we aim to provide the collocation extension of A-stable diagonally implicit multivalue methods. After a brief introduction on dense output multivalue methods based on collocation, given in Section 2. The construction of A-stable diagonally implicit multivalue methods based on collocation is presented in Section 3. A numerical evidence is shown in Section 4. Some conclusions are given in Section 5.

2. Dense output multivalue methods

Multivalue methods can be expressed in the general linear methods (GLM) form on the uniform grid \(I_h \), in the following form

\[
Y_i^{[n]} = h \sum_{j=1}^{m} a_{ij} f\left(Y_j^{[n]}\right) + \sum_{j=1}^{r} u_{ij} y_j^{[n-1]}, \quad i = 1, 2, \ldots, m, \tag{2}
\]

\[
y_i^{[n]} = h \sum_{j=1}^{m} b_{ij} f\left(Y_j^{[n]}\right) + \sum_{j=1}^{r} v_{ij} y_j^{[n-1]}, \quad i = 1, 2, \ldots, r,
\]

where \(m \) is the number of internal stages and \(r \) is the number of external stages, \(c = [c_1, c_2, \ldots, c_m]^T \) is the abscissa vector and \(A = [a_{ij}], U = [u_{ij}], B = [b_{ij}] \) and \(V = [v_{ij}] \) are four coefficient matrices, with:

\[
A \in \mathbb{R}^{m \times m}, \quad U \in \mathbb{R}^{m \times r}, \quad B \in \mathbb{R}^{r \times m}, \quad V \in \mathbb{R}^{r \times r}.
\]

Following [57], we assume that the vector of internal stages is in Nordsieck form

\[
y^{[n]} = \begin{bmatrix} y_1^{[n]} \\ y_2^{[n]} \\ \vdots \\ y_r^{[n]} \end{bmatrix} \approx \begin{bmatrix} y(x_n) \\ hy'(x_n) \\ \vdots \\ h^{r-1}y^{r-1}(x_n) \end{bmatrix}. \tag{3}
\]

Correspondingly, the collocation extension has the form of a piecewise collocation polynomial

\[
P_n(t_n + \theta h) = \sum_{i=1}^{r} a_i(\theta) y_i^{[n]} + h \sum_{i=1}^{m} \beta_i(\theta) f(P_n(t_n + c_i h)), \quad \theta \in [0, 1], \tag{4}
\]
providing a dense approximation to the solution of (1). The computation of (4) relies on the following interpolation

\[P_n(t_n) = y_1^n, \quad P_n'(t_n) = y_2^n, \quad \ldots \quad P_n^{(r-1)}(t_n) = y_{r-1}^n, \]

and collocation conditions

\[P_n'(t_n + c_i h) = f(P_n(t_n + c_i h)), \quad i = 1, 2, \ldots, m. \]

The underlying multivalue method depend on the coefficient matrices

\[A = [\beta_j(c_i)]_{i,j=1,\ldots,m}, \quad U = [\alpha_j(c_i)]_{i=1,\ldots,m,j=1,\ldots,r}, \]

\[B = [\beta_j^{(i-1)}(1)]_{i=1,\ldots,m,j=1,\ldots,r}, \quad V = [\alpha_j^{(i-1)}(1)]_{i,j=1,\ldots,r}. \]

Remark 1. Let us discuss the global regularity of the piecewise approximant (4). We first observe that it is globally of class \(C^{r-1} \) while most interpolants based on Runge-Kutta methods only have global \(C^1 \) continuity [59, 60, 61, 65]. The practical value of highly continuous interpolants is visible in many different situations already shown in the existing literature such as scientific visualization [72], functional differential equations with state-dependent delay [64], numerical solution of differential-algebraic equations and nonlinear equations [68, 81], optimal control problems [78], discontinuous initial value problems [60, 79, 80] or, more in general, whenever a smooth dense output is needed [65, 75].

We, now, recall some important results regarding the accuracy of the method [57].

Theorem 2. A multivalue collocation method given by the approximation \(P_n(t_n + \theta h) \) in (4), \(\theta \in [0, 1] \), is an approximation of uniform order \(p \) to the solution of the well-posed problem (1) if and only if

\[\beta_1(0) = 1 \]
\[\frac{\theta^\nu}{\nu!} - \alpha_{\nu+1}(\theta) - \sum_{i=1}^{m} \frac{\epsilon^{\nu-1}_i}{(\nu - 1)!} \beta_i(\theta) = 0, \quad \nu = 1, \ldots, r - 1, \]
\[\frac{\theta^\nu}{\nu!} - \sum_{i=1}^{m} \frac{\epsilon^{\nu-1}_i}{(\nu - 1)!} \beta_i(\theta) = 0, \quad \nu = r, \ldots, p. \]

Corollary 3. The uniform order of convergence for a multivalue collocation method (4) is \(m + r - 1 \).

Theorem 4. An A-stable multivalue collocation method (4) fulfills the constraint \(r \leq m + 1 \).

Theorem 5. The order conditions in (5)-(7) are equivalent to:

\[\alpha_j(0) = \delta_{j1}, \quad \alpha_j^{(\nu)}(0) = \delta_{j,\nu+1}, \quad j = 1, 2, \ldots, r, \quad \nu = 1, 2, \ldots, r - 1, \]
\[\beta_j(0) = \beta_j^{(\nu)}(0) = 0, \quad j = 1, 2, \ldots, m, \quad \nu = 1, 2, \ldots, r - 1, \]
\[\alpha_j'(c_i) = 0, \quad i = 1, 2, \ldots, r, \quad j = 1, 2, \ldots, m, \]
\[\beta_j'(c_i) = \delta_{ij}, \quad i, j = 1, 2, \ldots, m, \]

being \(\delta_{ij} \) the usual Kronecker delta.
3. Construction of diagonally implicit methods

We want to present an example of multivalue collocation methods with \(m = 2 \) and lower triangular coefficient matrix \(A \), so we have to determine the functional basis \(\{ \beta_j(\theta), j = 1, ..., m \} \) such that \(\beta_j(c_i) = 0 \) for \(i > j \), so:

\[
\beta_j(\theta) = \omega_j(\theta) \prod_{k=1}^{j-1} (\theta - c_k), \quad j = 1, ..., m, \tag{12}
\]

where \(\omega_j(\theta) \) is a polinomial of degree \(r - m + 1 \):

\[
\omega_j(\theta) = \sum_{k=0}^{r-m+1} \mu_k^{(j)} \theta^k, \tag{13}
\]

To achieve the purpose, we have to relax some of the collocation conditions. We observe that \(\beta_j(\theta), j = 1, ..., m, \) are polynomial of degree \(r \) and conditions (6) permit to compute the functions \(\alpha_i(\theta), i = 1, ..., r, \) from \(\beta_j(\theta) \). In the remainder of the treatise, we fix \(r = m + 1 \). The parameters \(\mu_k^{(j)} \) are free parameters which can be chosen by imposing conditions (7) for some values of \(\nu \) or can be found in order to obtain A-stable methods.

The construction of A-stable methods relies on the analysis of the stability matrix:

\[
M(z) = V + zB(I - zA)^{-1}U,
\]

where \(I \) is the identity matrix in \(\mathbb{R}^{m \times m} \). In particular, we are interested in the computation of the roots of the stability function of the method

\[
p(\omega, z) = \det(\omega I - M(z)).
\]

This roots have to lie in the unit circle for all \(z \in \mathbb{C} \) such that \(\text{Re}(z) \leq 0 \). By the maximum principle, this situation holds true if the denominator of \(p(\omega, z) \) does not have poles in the negative half plane \(\mathbb{C}_- \) and if the roots of the \(p(\omega, iy) \) are in the unit circle for all \(y \in \mathbb{R} \). The last condition can be verified using the following Schur criterion.

We present an example of A-stable methods with \(m = 2 \) and \(r = 3 \), so \(\omega_j(\theta) \) are polynomial of degree 2. The uniform order of those methods is 3. We consider

\[
P_n(t_n + \vartheta h) = y_1^{[n]} + \alpha_2(\vartheta)y_2^{[n]} + \alpha_3(\vartheta)y_3^{[n]} + (\beta_1(\vartheta)f(P(t_n + c_1 h)) + \beta_2(\vartheta)f(P(t_n + c_2 h))).
\]

The Butcher tableau of the considered methods is given by

\[
\begin{bmatrix}
A & U \\
B & V
\end{bmatrix} = \begin{bmatrix}
\beta_1(c_1) & 0 & 1 & \alpha_2(c_1) & \alpha_3(c_1) \\
\beta_2(c_1) & \beta_2(c_2) & 1 & \alpha_2(c_2) & \alpha_3(c_2) \\
\beta_1(1) & \beta_2(1) & 1 & \alpha_2(1) & \alpha_3(1) \\
\beta_1'(1) & \beta_2'(1) & 0 & \alpha_2'(1) & \alpha_3'(1) \\
\beta_1''(1) & \beta_2''(1) & 0 & \alpha_2''(1) & \alpha_3''(1)
\end{bmatrix}.
\]

Some values for the parameters \(\mu_k^{(j)} \) have been chosen by imposing the condition (7) for \(\nu = r \)

\[
\begin{align*}
\mu_0^{(1)} &= \frac{c_2^2}{c_1}, & \mu_0^{(2)} &= \frac{c_2}{c_1}, \\
\mu_1^{(1)} &= \frac{c_2}{c_1}, & \mu_1^{(2)} &= \frac{c_2}{c_1}, \\
\mu_2^{(1)} &= \frac{c_2}{c_1}, & \mu_2^{(2)} &= \frac{c_2}{c_1}.
\end{align*}
\]
The remaining ones have been chosen by performing the Schur analysis of the characteristic polynomial of the stability matrix corresponding to the aforementioned Butcher tableau, obtaining

\[
\mu_0^{(2)} = 0, \quad \mu_1^{(2)} = 0, \quad \mu_3^{(1)} = \frac{-c_1 + 4c_2}{3c_1(c_1^2 - 4c_1c_2 + 3c_2^2)},
\]

so

\[
\alpha_2(\vartheta) = \frac{-4\vartheta^3 + 3\vartheta^2(c_1 + c_2) + 3c_1\vartheta(c_1 - 3c_2)}{3c_1(c_1 - 3c_2)}, \quad \alpha_3(\vartheta) = \frac{2\vartheta^3 + 3\vartheta^2(c_2 - c_1)}{6(3c_2 - c_1)},
\]

\[
\beta_1(\vartheta) = \frac{\vartheta^2(\vartheta(c_1 - 4c_2) + 3c_2^2)}{3c_1(c_1^2 - 4c_1c_2 + 3c_2^2)}, \quad \beta_2(\vartheta) = \frac{\vartheta^2(\vartheta - c_1)}{c_1^2 - 4c_1c_2 + 3c_2^2}.
\]

Figure 1 shows the corresponding region of A-stability in the \((c_1, c_2)\) plane, obtained from the Schur analysis of the collocation method with piecewise approximant (4) and basis functions (14).

![Figure 1. Region of A-stability in the \((c_1, c_2)\) plane.](image)

As an example, we choose \(c_1 = 22/10\) and \(c_2 = 9/10\), obtaining

\[
\alpha_2(\vartheta) = \frac{1}{33} \vartheta \left(40\vartheta^2 - 93\vartheta + 33\right), \quad \alpha_3(\vartheta) = \frac{1}{30} \vartheta^2 \left(20\vartheta - 39\right),
\]

\[
\beta_1(\vartheta) = \frac{1}{429} \vartheta^2 \left(140\vartheta - 243\right), \quad \beta_2(\vartheta) = -\frac{4}{13} \vartheta^2 \left(5\vartheta - 11\right),
\]

which is the continuous \(C^2\) extension of uniform order \(p = 3\) of the A-stable diagonally implicit
multivalue method with Butcher array

\[
\begin{bmatrix}
A & U \\
B & V
\end{bmatrix} =
\begin{bmatrix}
11 & 0 & 1 & 22 & 121 \\
15 & 15 & 150 & 150 \\
-243 & 81 & 1 & -549 & -567 \\
1100 & 50 & 1100 & -1000 \\
\end{bmatrix}.
\]

(15)

4. Numerical evidence

Let us now present the numerical evidence arising from the application of the diagonally implicit collocation-based multivalue method (15) to the Prothero-Robinson problem [3, 63]

\[
\begin{align*}
\dot{y}(t) &= \lambda(y(t) - \sin(t)) + \cos(t), \quad t \in [0, 10], \\
y(t_0) &= y_0,
\end{align*}
\]

with \(\text{Re}(\lambda) < 0 \). The purpose of the experiment is the confirmation of the uniform order 3 of convergence of the method (15), also when the problem is stiff, i.e., when \(|\text{Re}(\lambda)| \gg 1 \). This is in contrast with classical collocation based Runge-Kutta methods, suffering from order reduction [3]. The method, hereinafter denoted as GLM2, is compared with the two-stage Gaussian Runge-Kutta method (denoted as RK2)

\[
\begin{bmatrix}
\frac{1}{2} - \frac{\sqrt{3}}{6} \\
\frac{1}{2} + \frac{\sqrt{3}}{6}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{4} \\
\frac{1}{4} - \frac{\sqrt{3}}{6}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{4} \\
\frac{1}{4} + \frac{\sqrt{3}}{6}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{4} \\
\frac{1}{4}
\end{bmatrix}
\]

which is A-stable, of order 4 and uniform order 2. The comparison is provided in a fixed stepsize environment and shows both the error in the final point and the observed orders of convergence. As shown in Tables 1 and 2, for \(\lambda = -10^6 \), the problem is stiff and the Runge-Kutta method exhibits order reduction, while this is not the case for GLM2. Actually, GLM2 converges even with one order more, since for the specific problem the leading error term annihilates.

5. Conclusions

In this paper we have introduced diagonally implicit multivalue collocations methods suited to solve stiff problems without exhibiting any order reduction phenomenon. The methods are A-stable and, in comparison with classical collocation based methods, they appear to be more efficient when applied to stiff problems, due to their higher uniform order of convergence. Future issues of this work regard the extension of the idea to other kind of problem such as stochastic differential equations [18, 19, 25, 48], fractional differential equations [2, 11, 14, 20, 34], partial differential equations [12, 24, 47, 49, 53, 56], Volterra integral equations [6, 7, 8, 9, 10, 13, 15, 21, 23, 29, 30, 31, 33], oscillatory problems [26, 27, 28, 32, 50, 54, 58, 71, 77, 76], as well as to the development of algebraically stable high order collocation based multivalue methods [22, 44].
Table 1. Observed errors (in the final step point) and orders of convergence for the GLM2 applied to the Prothero-Robinson problem

h	$\lambda = -10^6$	
	error	p
1/10	$1.51 \cdot 10^{-7}$	
1/20	$9.21 \cdot 10^{-9}$	4.03
1/40	$5.69 \cdot 10^{-10}$	4.02
1/80	$3.45 \cdot 10^{-11}$	4.04

Table 2. Observed errors (in the final step point) and orders of convergence for the RK4 method applied to the Prothero-Robinson problem

h	$\lambda = -10^6$	
	error	p
1/10	$1.52 \cdot 10^{-4}$	
1/20	$3.84 \cdot 10^{-5}$	1.98
1/40	$9.99 \cdot 10^{-6}$	1.94
1/80	$2.78 \cdot 10^{-6}$	1.85

Acknowledgments
The authors are members of GNCS-INDAM. This work is supported by GNCS-INDAM.

References
[1] K. Burrage, J.C. Butcher, Non-linear stability of a general class of differential equation methods, BIT 20, 185–203 (1980).
[2] K. Burrage, A. Cardone, R. D’Ambrosio, B. Paternoster, Numerical solution of time fractional diffusion systems, Appl. Numer. Math. 116, 82-94 (2017).
[3] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 3rd Edition, John Wiley & Sons, Chichester, 2016.
[4] J. Butcher, R. D’Ambrosio, Partitioned general linear methods for separable Hamiltonian problems, Appl. Numer. Math. 117, 09-86 (2017).
[5] J.C. Butcher, Y. Habib, A. Hill, T. Norton, The control of parasitism in G-symplectic methods, Siam J. Numer. Anal. 52(5), 2440-2465 (2014).
[6] G. Capobianco, D. Conte, An efficient and fast parallel method for Volterra integral equations of Abel type, J. Comput. Appl. Math. 189(1-2) 481-493 (2006).
[7] G. Capobianco, D. Conte, I. Del Prete, High performance numerical methods for Volterra equations with weakly singular kernels, J. Comput. Appl. Math., 228 (2009).
[8] G. Capobianco, D. Conte, B. Paternoster, Construction and implementation of two-step continuous methods for Volterra Integral Equations, Appl. Numer. Math. 119, 239-247 (2017).
[9] A. Cardone, D. Conte, Multistep collocation methods for Volterra Integro-Differential Equations, Appl. Math. Comput., 221, 770-785 (2013).
[10] A. Cardone, D. Conte, B. Paternoster, A family of multistep collocation methods for Volterra integro-differential equations, AIP Conference Proceedings 1168, 358-361 (2009).
[11] A. Cardone, D. Conte, B. Paternoster, Two-step collocation methods for fractional differential equations, Discr. Cont. Dyn. Sys. – B 23(7), 2709-2725 (2018).

[12] A. Cardone, R. D’Ambrosio, B. Paternoster, Exponentially fitted IMEX methods for advection-diffusion problems, J. Comput. Appl. Math. 316, 100-108 (2017).

[13] A. Cardone, R. D’Ambrosio, B. Paternoster, High order exponentially fitted methods for Volterra integral equations with periodic solution, Appl. Numer. Math. 114C, 18-29 (2017).

[14] A. Cardone, R. D’Ambrosio, B. Paternoster, A spectral method for stochastic fractional differential equations, Applied Numerical Mathematics 139, 115-119 (2019).

[15] A. Cardone, L. Gr. Ixaru, B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms 55, 467–480 (2010).

[16] J.R. Cash, Efficient numerical method for the solution of stiff initial-value problems and differential algebraic equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2032), 797–815 (2003).

[17] V. Citro, R. D’Ambrosio, Nearly conservative multivalue methods with extended bounded parasitism, Appl. Numer Math., doi: 10.1016/j.apnum.2019.12.007 (2019).

[18] V. Citro, R. D’Ambrosio, Nearly conservative multivalue methods with extended bounded parasitism, Appl. Numer Math., doi: 10.1016/j.apnum.2019.12.007 (2019).

[19] V. Citro, R. D’Ambrosio, S. Di Giovaicchio, A-stability preserving perturbation of Runge-Kutta methods for stochastic differential equations, Appl. Math. Lett. 102, 106098 (2020).

[20] D. Conte, G. Califano, Optimal Schwarz Waveform Relaxation for fractional diffusion-wave equations, Appl. Numer. Math. 127, 125-141 (2018).

[21] D. Conte, R. D’Ambrosio, B. Paternoster, Two-step diagonally-implicit collocation-based methods for Volterra Integral Equations, Appl. Numer. Math. 62(10), 1312-1324 (2012).

[22] D. Conte, R. D’Ambrosio, Z. Jackiewicz, B. Paternoster, Numerical search for algebraically stable two-step continuous Runge-Kutta methods, J. Comput. Appl. Math. 239, 304-321 (2013).

[23] D. Conte, R. D’Ambrosio, G. Izzo, Z. Jackiewicz, Natural Volterra Runge-Kutta methods, Numer. Algorithms 65(3), 421-445 (2014).

[24] D. Conte, R. D’Ambrosio, B. Paternoster, GPU acceleration of waveform relaxation methods for large differential systems, Numer. Algorithms 71(2), 293-310 (2016).

[25] D. Conte, R. D’Ambrosio, B. Paternoster, On the stability of theta-methods for stochastic Volterra integral equations, Discr. Cont. Dyn. Sys. - B 23(7), 2695-2708 (2018).

[26] D. Conte, R. D’Ambrosio, M. Moccaldi, B. Paternoster, Adapted explicit two-step peer methods, J. Numer. Math. 27(2), 69–83 (2019).

[27] D. Conte, E. Esposito, B. Paternoster, L. Gr. Ixaru, Some new uses of the $\eta_m(Z)$ functions, Comput. Phys. Commun. 181, 128–137 (2010).

[28] D. Conte, L. Gr. Ixaru, B. Paternoster, G. Santomauro, Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval, J. Comput. Appl. Math. 255, 725–736 (2014).

[29] D. Conte, Z. Jackiewicz, B. Paternoster, Two-step almost collocation methods for Volterra integral equations, Appl. Math. Comput., 204 (2008), 839–853.

[30] D. Conte, B. Paternoster, A Family of Multistep Collocation Methods for Volterra Integral Equations, In: Numerical Analysis and Applied Mathematics ed. by T. E. Simos, G. Psihoyios, Ch. Tsitouras; AIP Conference Proceedings 936, Springer (2007), 128–131.

[31] D. Conte, B. Paternoster, Multistep collocation methods for Volterra integral equations, Appl. Numer. Math. 59, 1721–1736 (2009).

[32] D. Conte, B. Paternoster, Modified Gauss-Laguerre exponential fitting based formulae, J. Sci. Comput., 69 (1), 227–243 (2016).

[33] D. Conte, B. Paternoster, Parallel methods for weakly singular Volterra Integral Equations on GPUs, Appl. Numer. Math. 114,30-37 (2017).

[34] D. Conte, S. Shahmorad, Y. Talaei, New fractional Lanczos vector polynomials and their application to system of Abel–Volterra integral equations and fractional differential equations, J. Comput. Appl. Math. 366, 112409 (2020).

[35] R. D’Ambrosio, G. De Martino, B. Paternoster, Construction of nearly conservative multivalue numerical methods for Hamiltonian problems, Commun. Appl. Ind. Math. 3(2), e412, doi:10.1685/journal.caim.412 (2012).

[36] R. D’Ambrosio, G. De Martino, B. Paternoster, Numerical integration of Hamiltonian problems by G-symplectic methods, Adv. Comput. Math. 40(2), 553-575 (2014).

[37] R. D’Ambrosio, G. De Martino, B. Paternoster, Order conditions of general Nystrom methods, Numer. Algorithms 65(3), 579-595 (2014).

[38] R. D’Ambrosio, G. De Martino, B. Paternoster, A symmetric nearly preserving general linear method for Hamiltonian problems, Discrete Contin. Dyn. Syst., 330-339 (2015).
[39] R. D’Ambrosio, G. De Martino, B. Paternoster. General Nyström methods in Nordsieck form: error analysis, J. Comput. Appl. Math. 292, 694-702 (2016).
[40] R. D’Ambrosio, E. Esposito, B. Paternoster, General linear methods for $y'' = f(y(t))$, Numer. Algor. 61(2), 331–349 (2012).
[41] R. D’Ambrosio, M. Ferro, Z. Jackiewicz, B. Paternoster, Two-step almost collocation methods for ordinary differential equations, Numer. Algor. 53(2-3), 195–217 (2010).
[42] R. D’Ambrosio, E. Hairer, Long-term stability of multi-value methods for ordinary differential equations, J. Sci. Comput. 60(3), 627–640 (2014).
[43] R. D’Ambrosio, E. Hairer, C.J. Zbinden, G-symplecticity implies conjugate-symplecticity of the underlying one-step method, BIT Numer. Math 53(4), 867–872 (2013).
[44] R. D’Ambrosio, G. Izzo, Z. Jackiewicz, Search for highly stable two-step Runge-Kutta methods for ODEs, Appl. Numer. Math. 62(10), 1361-1379 (2012).
[45] R. D’Ambrosio, Z. Jackiewicz, Continuous two-step Runge-Kutta methods for ordinary differential equations, Numer. Algor. 54(2), 169–193 (2010).
[46] R. D’Ambrosio, Z. Jackiewicz, Construction and implementation of highly stable two-step continuous methods for stiff differential systems, Math. Comput. Simul. 81(9), 1707–1728 (2011).
[47] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts, Comput. Math. Appl. 74(5), 1029-1042 (2017).
[48] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Numerical preservation of long-term dynamics by stochastic two-step methods, Discr. Cont. Dyn. Sys. - B 23(7), 2763-2773 (2018).
[49] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems, Comput. Phys. Commun. 226, 55-66 (2018).
[50] R. D’Ambrosio, M. Moccaldi, B. Paternoster, Federico Rossi, Adapted numerical modelling of the Belousov-Zhabotinsky reaction, J. Math. Chem. 56(10), 2867-2897 (2018).
[51] R. D’Ambrosio, B. Paternoster, Two-step modified collocation methods with structured coefficients matrix for Ordinary Differential Equations, Appl. Numer. Math. 62(10), 1325–1334 (2012).
[52] R. D’Ambrosio, B. Paternoster, P-stable general Nyström methods for $y'' = f(x,y)$, J. Comput. Appl. Math. 262, 271-280 (2014).
[53] R. D’Ambrosio, B. Paternoster, Numerical solution of a diffusion problem by exponentially fitted finite difference methods, Springer Plus 3(1), 425-431 (2014).
[54] R. D’Ambrosio, B. Paternoster, Exponentially fitted singly diagonally implicit Runge-Kutta methods, J. Comput. Appl. Math. 263, 277-287 (2014).
[55] R. D’Ambrosio, B. Paternoster, A general framework for numerical methods solving second order differential problems, Math. Comput. Simul. 110(1), 113-124 (2015).
[56] R. D’Ambrosio, B. Paternoster, Numerical solution of reaction-diffusion systems of lambda-omega type by trigonometrically fitted methods, J. Comput. Appl. Math. 294 C, 436-445 (2016).
[57] R. D’Ambrosio, B. Paternoster, Multivalue collocation methods free from order reduction, J. Comput. Appl. Math., doi: 10.1016/j.cam.2019.112515 (2019).
[58] R. D’Ambrosio, B. Paternoster, G. Santomauro, Revised exponentially fitted Runge-Kutta-Nyström methods, Appl. Math. Lett. 30, 56-60 (2014).
[59] W.H. Enright, K.R. Jackson, S.P. Norsett, P.G. Thomsen, Interpolants for Runge-Kutta formulas, ACM Trans. Mat. Soft., 12(3) (1986), 193–218.
[60] W.H. Enright, K.R. Jackson, S.P. Norsett, P.G. Thomsen, Effective solution of discontinuous IVPs using a Runge-Kutta formula pair with interpolants, Appl. Math. Comp. 27(4) (1988), 313-335.
[61] W. H. Enright, P. H. Muir, Super-convergent Interpolants for the Collocation Solution of Boundary Value Ordinary Differential Equations,SIAM J. Sci. Comput. 21(1) (1999), 227–254.
[62] A. Guillou, F.L. Soulé, La resolution numerique des problemes differentiels aux conditions initiales par des methodes de collocation, RAIRO Anal. Numer. Ser. Rouge R-3, 17–44 (1969).
[63] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential–Algebraic Problems, Springer–Verlag, Berlin, 2002.
[64] F. Hartung, T. Krisztin, H. Walther, J. Wu, Functional Differential Equations with State-Dependent Delays: Theory and Applications, In: Handbook of Differential Equations: Ordinary Differential Equations 435–545 (2006).
[65] D.J. Higham, Highly continuous Runge-Kutta interpolants, ACM Trans. Mat. Soft., 17(3), 368–386 (1991).
[66] Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations, John Wiley & Sons, Hoboken, New Jersey, 2009.
[67] Z. Jackiewicz, S. Tracogna, A general class of two-step Runge-Kutta methods for ordinary differential equations, SIAM J. Numer. Anal. 32, 1390–1427 (1995).
[68] M.T. Lawder, V. Ramadesigan, B. Suthar, V.R. Subramanian, Extending explicit and linearly implicit ODE solvers for index-1 DAEs, Comput. Chem. Eng. 82, 283–292 (2015).
[69] I. Lie, The stability function for multistep collocation methods, Numer. Math. 57(8), 779–708 (1990).
[70] I. Lie, S.P. Norsett, Superconvergence for Multistep Collocation, Math. Comp. 52(185), 65–79 (1989).
[71] L. Gr. Ixaru, B. Paternoster, A Gauss quadrature rule for oscillatory integrands, Comput. Phys. Comm. 133(2–3), 177–188 (2001).
[72] Z. Liu, R.J. Moorhead, J. Groner, An advanced evenly-spaced streamline placement algorithm, IEEE Trans. Vis. Comput. Graph. 12(5), 965–972 (2006).
[73] S.P. Norsett, Collocation and perturbed collocation methods, in Numerical analysis, Proc. 8th Biennial Conf., Univ. Dundee, Dundee, 1979), 119–132; Lecture Notes in Math. 773, Springer, Berlin, 1980.
[74] S.P. Norsett, G.Wanner, Perturbed collocation and Runge Kutta methods, Numer. Math. 38(2), 193–208 (1981).
[75] S.N. Papakostas, Ch. Tsitouras, Highly continuous interpolants for one-step ode solvers and their application to Runge-Kutta methods, SIAM J. Numer. Anal. 34(1), 22–47 (1997).
[76] B. Paternoster, Two step Runge-Kutta-Nyström methods for \(y' = f(x, y) \) and P-stability, in Computational Science - ICCS 2002, ed. by P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra, A.G. Hoekstra, Lecture Notes in Computer Science 2331, Part III, 459–466, Springer Verlag, Amsterdam (2002).
[77] B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70-th anniversary, Comput. Phys. Commun. 183, 2499–2512 (2012).
[78] R. Quirynen, M. Vukov, M. Zanon, M. Diehl, Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators, Optim. Contr. Appl. Meth. 36(5), 685–704 (2015).
[79] A. Tatashev, M. Yashina, Self-Organization of Two-Contours Dynamical System with Common Node and Cross Movement, Trans. Math. 18, 373–378 (2019).
[80] H. True, A.P. Engsng-Karup, D. Bigoni, On the numerical and computational aspects of non-smoothnesses that occur in railway vehicle dynamics, Math. Comput. Simul. 95, 78–97 (2014).
[81] H. Vazquez-Leal, Generalized homotopy method for solving nonlinear differential equations, Comput. Appl. Math. 33(1), 275–288 (2014).
[82] K. Wright, Some relationships between implicit Runge-Kutta, collocation and Lanczos \(\tau \)-methods, and their stability properties, BIT 10 (1970), 217–227.