Recombination Parameters of the Diffusion Region and Depletion Region for Crystalline Silicon Solar Cells under Different Injection Levels

Qiaoqiao Bai, Hong Yang, Xiaoli Cheng and He Wang *

MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049, China; dandelion6666@stu.xjtu.edu.cn (Q.B.); hong.y@xjtu.edu.cn (H.Y.); miss7634@stu.xjtu.edu.cn (X.C.)
* Correspondence: pv_group@126.com

Received: 17 June 2020; Accepted: 12 July 2020; Published: 16 July 2020

Abstract: In order to maximize performance in all conditions of use, and to model exactly the performance of solar cells, it is very important to study the recombination parameters under different injection levels. In this paper, the recombination parameters and their effect on the output performance of solar cells are investigated under different injection levels for the full-area aluminum back surface field (Al-BSF) solar cell and passivated emitter and rear cell (PERC) solar cell for the first time. It is found that the recombination parameter \(J_{01} \) of the diffusion region and the recombination parameter \(J_{02} \) of the depletion region for the PERC solar cell are smaller than those of the Al-BSF solar cell under the same injection level. A new finding is that the recombination parameter \(J_{01} \) of Al-BSF solar cells increases quickly with the decreasing injection level compared with PERC solar cells. Finally, the \(J_{01}/J_{02} \) of Al-BSF and PERC solar cells is investigated, and the effects of \(J_{01}/J_{02} \) on the electrical parameters are also analyzed for Al-BSF and PERC solar cells under different injection levels. The obtained conclusions not only clarify the relationship between the recombination parameters and injection levels, but also help to improve cell processes and accurately model daily energy production.

Keywords: recombination parameter; silicon; solar cells; injection level

1. Introduction

The conversion efficiency of crystalline silicon solar cells strongly depends on the carrier recombination behavior [1–3]. The recombination properties of the diffusion region and depletion region are related to light injection levels, i.e., cumulative integrated irradiance. Characterizing the recombination for solar cells under different injection levels is very important to maximize the outdoor performance of solar cells and accurately model daily energy production under non-standard test conditions [4–6]. However, clarifying the recombination parameters in different regions of a solar cell is very complicated, particularly for solar cells with different technologies and under different injection levels [7–9]. Chih-Tang Sah et al. made a contribution to the theory of carrier generation–recombination in the space-charge region of a p–n junction, where the recombination behavior can be expressed by the reverse saturation current density [10]. Kane and Swanson estimated the emitter saturation current density by measuring the effective lifetime [11]. Fa-Jun Ma et al. gave an advanced model of the effective minority carrier lifetime for passivated crystalline silicon wafers [12]. Andres Cuevas et al. studied carrier transportation and surface passivation in solar cells [13]. Robert Dumbrell et al. made a contribution on metal contact recombination [14]. Achim Kimmerle et al. studied the origin of the apparently reduced recombination parameter of highly doped regions [15–17]. Other authors have used the measured current–voltage (I–V) characteristics of solar cells in conjunction with computer
simulations to obtain the recombination parameters in solar cells under equilibrium conditions [18–22]. However, recently, Andres Cuevas indicated that the reverse saturation current density of a solar cell under illumination differs from that in equilibrium. He thought that the reverse saturation current density should be called the recombination parameter when a solar cell is illuminated [23]. Although some researchers ever investigated the recombination parameters of solar modules using a double-diode model, the estimated parameter of a solar module could not reflect the recombination behavior of a solar cell accurately, owing to soldering and encapsulation [24–29]. People often understand the recombination behavior of solar cells by measuring minority carrier lifetime and modeling, but it is generally not possible to detangle recombination in the different regions for solar cells [30]. To date, almost no one has studied the recombination parameter j_{01} of the diffusion region and the recombination parameter j_{02} of the depletion region for full-area aluminum back surface field (Al-BSF) and passivated emitter and rear cell (PERC) silicon solar cells under different injection levels [31–33]. Few studies have been conducted on the recombination parameters and their effect on the output performance of solar cells that change with the injection level.

At present, the PERC silicon solar cell and the Al-BSF silicon solar cell are the two main structures in the photovoltaic industry. Although Al-BSF silicon solar cells and PERC solar cells feature a homogeneous emitter on the front side, the structure of PERC solar cells is slightly different from that of Al-BSF solar cells. The recombination behavior of PERC solar cells is different from that of Al-BSF solar cells when the two types of solar cells are biased in the forward direction [34–37]. A quantitative analysis of recombination behavior for PERC solar cells and Al-BSF solar cells under different injection levels is very important for process optimization and device modeling. In this paper, incorporating the measured current density–voltage characteristic under different injection levels, the recombination parameters of the diffusion region and the depletion region and their effect on output performance are investigated for Al-BSF silicon solar cells and PERC silicon solar cells for the first time. It is found that the recombination parameter j_{01} of the diffusion region and the recombination parameter j_{02} of the depletion region of PERC solar cells are smaller than those of Al-BSF solar cells under the same injection level. This result shows that a PERC silicon solar cell has high carrier collection efficiency under different injection levels compared with an Al-BSF solar cell. According to the obtained recombination parameters, the current–voltage equation of solar cells can be established under different injection levels, and the daily energy production can be calculated accurately. An interesting finding is that the j_{01} of an Al-BSF solar cell increases quickly with the decreasing injection level compared with a PERC silicon solar cell. This reveals that the output performance of an Al-BSF solar cell decreases rapidly when the injection level is getting low compared with a PERC silicon solar cell. In order to improve the performance of Al-BSF solar cells under low irradiance, the j_{01} must be reduced by decreasing process contamination and good passivation. Finally, the relationship between the j_{01}/j_{02} and injection level for Al-BSF and PERC solar cells is investigated under different injection levels, and the effects of j_{01}/j_{02} on open-circuit voltage, short-circuit current density, and fill factor are also analyzed under different injection levels. The results indicate that the recombination behavior of different cell regions will change with the injection level, and the ratio of j_{01}/j_{02} under different injection levels will affect the output performance of Al-BSF and PERC solar cells. The conclusions obtained in this article not only clarify the relationship between the recombination parameter and injection levels under non-standard test conditions, but also help to optimize solar cell processes and accurately model daily energy production for crystalline silicon solar module energy rating purposes.

2. Experiments and Methods

In this work, the Al-BSF silicon solar cell and PERC silicon solar cell were fabricated by typical industrial processes and production equipment, respectively. The material used in this work was 156.75 mm × 156.75 mm boron-doped Czochralski-grown pseudo-square silicon wafers with 1–2 Ωcm base resistivity and an initial wafer thickness of 190 um. The area of silicon wafer was
244.3155 cm2. After standard cleaning and alkaline texturing, a wet chemical single-sided polishing step, which removes about 4–6 µm of silicon from the rear surface, was carried out.

The emitter layer of the Al-BSF solar cell was formed in a closed tube furnace using a POCl$_3$ liquid source at 800 °C. The phosphorus diffusion resulted in a 90–100 Ω/sq emitter with a peak doping concentration of about 2 \times 1019 cm$^{-3}$. The p–n junction depth was about 0.4 µm. After the POCl$_3$ diffusion, laser doping was carried out so as to form a front selective emitter. The phosphosilicate glass removal, edge isolation, and rear side polishing were fulfilled simultaneously in a Rena wet bench. After a cleaning step, the plasma-enhanced chemical vapor deposition of SiNx:H thin film was used for passivation and anti-reflective purposes on the front side of the solar cell. At last, the screen-printed silver paste back contact, screen-printed aluminum paste back surface field, and silver paste front contact were prepared and co-fired rapidly in a belt furnace made by Centrotherm photovoltaics AG.

For the PERC solar cell, the formation of the emitter layer was the same as that for the Al-BSF solar cell. As the next step in the process, the rear side of the solar cell was passivated with an atomic-layer deposition of AlOx capped with a plasma-enhanced chemical vapor deposition of a SiNx:H thin film. An 80 nm SiNx:H antireflection coating layer was deposited by plasma-enhanced chemical vapor deposition on the front side of the solar cell. Then, the rear contact pattern was formed by laser ablation with a 532 nm ps laser. Screen printing and co-firing were used for front and rear side metallization of the PERC solar cell.

Finally, the electrical performance of the Al-BSF solar cell and the electrical performance of the PERC solar cell were tested by a Gsolar testing system (XJCC-10, AAA class pulsed solar simulator, in accordance with IEC 60904-9, 200–1200 W/m2 by steps of 100 W/m2). The light injection level can be calibrated by the reference cell, and can be set via the target voltage. Table 1 lists the measured parameters of the Al-BSF solar cell and the PERC solar cell under standard test conditions (STC: 1 kW/m2 irradiance, 25 °C module temperature, and AM1.5 global spectrum). In Table 1, η is the conversion efficiency of the solar cell; V_{oc} is the open-circuit voltage; J_{sc} is the short-circuit current density; V_{mp} is the maximum power point voltage; J_{mp} is the maximum power point current density; P_m is the optimal power delivered by the solar cell under STC; FF is the fill factor; and R_s and R_{sh} are the series resistance and the shunt resistance in ohms, respectively. The schematic structures for the Al-BSF solar cell and the PERC solar cell are shown in Figure 1.

Table 1. The measured parameters of the full-area aluminum back surface field (Al-BSF) solar cell and the passivated emitter and rear cell (PERC) solar cell under standard test conditions (STC).

Parameter	η (%)	V_{oc} (V)	J_{sc} (mA/cm2)	V_{mp} (V)	J_{mp} (mA/cm2)	P_m (W)	FF (%)	R_s (mΩ)	R_{sh} (Ω)
Al-BSF solar cell	20.30	0.6426	39.35	0.5454	37.22	4.960	80.28	2.01	334.25
PERC solar cell	22.45	0.6842	40.66	0.5843	38.43	5.486	80.71	2.40	509.76

STC: 1 kW/m2 irradiance, 25 °C module temperature, and AM 1.5 global spectrum.

Figure 1. Schematic structures of an Al-BSF solar cell (a) and a PERC solar cell (b).
3. Results and Discussion

3.1. Theoretical Analysis of the Recombination Parameters of the Diffusion Region and Depletion Region for Silicon Solar Cells

The recombination parameter \(J_{01} \) of the diffusion region and the recombination parameter \(J_{02} \) of the depletion region are distinguished by the double-diode exponential model exactly [38–41]. Figure 2 presents the experimental silicon solar cells and the double-diode model. According to the double-diode model’s equivalent circuit, the expression of the current density–voltage (J-V) relationship of the solar cells is given by

\[
J = J_{ph} - J_{d1} - J_{d2} - \frac{V + JR}{R_{sh}} \tag{1}
\]

where

\[
J_{d1} = J_{01}\left(\exp \frac{V + JR}{n_1V_T} - 1\right) \tag{2}
\]

\[
J_{d2} = J_{02}\left(\exp \frac{V + JR}{n_2V_T} - 1\right) \tag{3}
\]

then

\[
J = J_{ph} - J_{01}\left(\exp \frac{V + JR}{n_1V_T} - 1\right) - J_{02}\left(\exp \frac{V + JR}{n_2V_T} - 1\right) - \frac{V + JR}{R_{sh}} \tag{4}
\]

where \(V_T \) is the thermal voltage, \(V_T = kT/q \); \(k \) is the Boltzmann constant; \(q \) is the electronic charge in coulombs; \(T \) is the temperature in degrees Kelvin; \(n_1 \) and \(n_2 \) are quality factors in the quasi-neutral region and in the space-charge region, respectively; \(V \) is the applied forward bias in volts; and \(J_{ph} \) is the photo-generated current density, which is nearly equal to \(J_{sc} \).

(a)Experimental silicon solar cell (b)Double-diode model’s equivalent circuit

Figure 2. The experimental silicon solar cell and the double-diode model.

For calculating the recombination parameter \(J_{01} \) of the diffusion region and the recombination parameter \(J_{02} \) of the depletion region, we used the current density and voltage at the maximum power point, at the short-circuit point, and at the open-circuit point. Equations (2) and (3) can be obtained as follows:

\[
J_{01} = \frac{(I_{sc} - J_m - \frac{V_{oc} + J_R}{R_{sh}})(\exp \frac{V_{oc}}{n_2V_T} - 1) - (I_{sc} - \frac{V_{oc}}{R_{sh}})(\exp \frac{V_{oc} + J_R}{n_2V_T} - 1)}{(\exp \frac{V_{oc} + J_R}{n_2V_T} - 1)(\exp \frac{V_{oc}}{n_2V_T} - 1)} \tag{5}
\]

\[
J_{02} = \frac{(I_{sc} - J_m - \frac{V_{oc} + J_R}{R_{sh}})(\exp \frac{V_{oc}}{n_2V_T} - 1) - (I_{sc} - \frac{V_{oc}}{R_{sh}})(\exp \frac{V_{oc} + J_R}{n_1V_T} - 1)}{(\exp \frac{V_{oc} + J_R}{n_2V_T} - 1)(\exp \frac{V_{oc}}{n_1V_T} - 1)} \tag{6}
\]
The \(J_{01}/J_{02} \) ratio can be derived by Equations (5) and (6).

\[
\frac{J_{01}}{J_{02}} = \frac{(J_{sc} - J_m - \frac{V_{sc} + \frac{I_m}{R_{sh}}}{R_{sh}})(\exp \frac{V_{sc}}{n_2 V_T} - 1) - (J_{sc} - \frac{V_{oc}}{R_{sh}})(\exp \frac{V_{sc} + \frac{I_m}{R_{sh}}}{n_2 V_T} - 1)}{(J_{sc} - \frac{V_{oc}}{R_{sh}})(\exp \frac{V_{sc}}{n_2 V_T} - 1) - (J_{sc} - J_m - \frac{V_{sc} + \frac{I_m}{R_{sh}}}{R_{sh}})(\exp \frac{V_{sc}}{n_1 V_T} - 1)}
\]

(7)

For an eligible solar cell, \(R_{sh} \) is sufficiently large, and the \((V_m + I_m R_{sh})/R_{sh} \) and \(V_{oc}/R_{sh} \) terms can be neglected. Usually, \(V_{oc} \) is large enough so that \(V_{oc}/(n_2 V_T) \) and \(V_{oc}/(n_1 V_T) \) are very much larger than unity at 300 K or so. Since the \(\exp[V_{sc}/(n_2 V_T)] \) and \(\exp[V_{oc}/(n_1 V_T)] \) variables are far greater than 1, the factor of unity in the brackets can be neglected. So, the \(J_{01}/J_{02} \) ratio can be written as:

\[
\frac{J_{01}}{J_{02}} = \frac{(J_{sc} - J_m) \exp \frac{V_{sc}}{n_2 V_T} - J_{sc} \exp \frac{V_{sc} + \frac{I_m}{R_{sh}}}{n_2 V_T} (J_{sc} - J_m) \exp \frac{V_{sc}}{n_1 V_T}}{(J_{sc} - J_m) \exp \frac{V_{sc} + \frac{I_m}{R_{sh}}}{n_1 V_T}}.
\]

(8)

If the current density–voltage relationships of an Al-BSF solar cell and a PERC solar cell can be measured under different injection levels, the relationships between \(J_{01}/J_{02} \) and open-circuit voltage, short-circuit current, and fill factor can be obtained according to Equation (8).

In our analytical method, the root mean square error (RMSE) of current density was used to compare the variation in simulation accuracy. The RMSE of current density is defined as follows:

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{m} (J_{i,\text{meas}} - J_{i,\text{cal}})^2}{m}}
\]

(9)

where \(J_{i,\text{meas}} \) and \(J_{i,\text{cal}} \) are the measured and calculated values of output current density in point \(i \), respectively, and \(m \) is the number of points.

Figure 3 illustrates the flowchart to find \(J_{01} \) and \(J_{02} \) under different injection levels. In this work, \(R_s \) and \(R_{sh} \) under different injection levels are given by the measured values. It is necessary to assign good initial values for solving the above nonlinear Equations (1)–(8). When the root mean square error (RMSE) of current density gets to its minimum, the accuracy of the entire curve is satisfied, and the calculated \(J_{01} \) and \(J_{02} \) under different injection levels are derived.
Table 2 shows the J_{01}, J_{02}, and RMSE of current density for an Al-BSF solar cell at typical injection levels. Table 3 lists the J_{01}, J_{02}, and RMSE of current density for a PERC solar cell at typical injection levels. From Tables 2 and 3, it is found that the RMSE of current density is less than 1% for the Al-BSF solar cell and the PERC solar cell at typical injection levels. These results suggest that the difference between calculated and experimental data is very small, and the obtained J_{01} and J_{02} values could reveal the recombination behavior of the diffusion region and depletion region for Al-BSF solar cells and PERC solar cells at typical injection levels.

Injection Level (W/m²)	200	400	600	800	1000	1200
RMSE (%)	0.73	0.62	0.48	0.36	0.39	0.42
J_{01} (×10^{-12} A/cm²)	1.9440	1.8401	1.7220	1.6223	1.5442	1.4404
J_{02} (×10^{-8} A/cm²)	0.2034	0.3257	0.4519	0.6599	1.5564	2.7720

Table 3. The J_{01}, J_{02}, and root mean square error (RMSE) of current density for a PERC solar cell.

Injection Level (W/m²)	200	400	600	800	1000	1200
RMSE (%)	0.68	0.59	0.45	0.36	0.38	0.41
J_{01} (×10^{-12} A/cm²)	0.2698	0.2501	0.2311	0.2135	0.1887	0.1805
J_{02} (×10^{-8} A/cm²)	0.0612	0.0790	0.0997	0.1664	0.4962	0.9863

25 °C cell temperature and AM 1.5 global spectrum.

Figure 4 displays a comparison of the RMSE of current density for an Al-BSF solar cell and a PERC solar cell under different injection levels. From Figure 4, it can be seen that the RMSEs of current density for the Al-BSF solar cell and the PERC solar cell are nearly the same according to our analytical method under different injection levels. The results show that J_{01} and J_{02} could be used to explain discrepancies in recombination behavior for the Al-BSF solar cell and the PERC solar cell under different injection levels.

![Figure 4. Comparison of the RMSE of current density for an Al-BSF solar cell and a PERC solar cell under different injection levels.](image-url)
3.2. Investigation into the Recombination Parameters of the Diffusion Region and Depletion Region for a PERC Silicon Solar Cell and an Al-BSF Silicon Solar Cell under Different Injection Levels

The relationship between J_{01} and the injection level at 25 °C and AM1.5G for the Al-BSF solar cell and the PERC solar cell is depicted in Figure 5. From Figure 5, it is found that the J_{01} of a PERC solar cell is always lower than that of an Al-BSF solar cell no matter how much the injection level changes. These results suggest that a PERC solar cell has higher carrier collection efficiency under different injection levels compared with an Al-BSF solar cell. As observed, the J_{01} of the Al-BSF solar cell was 1.54×10^{-12} A/cm2 under STC, but the J_{01} of the PERC solar cell was only 1.89×10^{-13} A/cm2 under STC. This is because a PERC solar cell with AlO$_x$ and SiN$_x$H rear passivation has a lower back surface recombination velocity compared with an Al-BSF solar cell. This result agrees with other authors’ works [42–44]. A new finding is that the J_{01} of an Al-BSF solar cell increases quickly with the decreasing injection level compared with a PERC silicon solar cell. These results reveal that the output performance of an Al-BSF solar cell decreases rapidly when the injection level is getting low compared with a PERC silicon solar cell.

![Figure 5. J_{01} versus injection level for an Al-BSF solar cell and a PERC solar cell at 25 °C and AM1.5G.](image)

Figure 6 shows the comparison of J_{02} for these two kinds of solar cells at 25 °C and AM1.5G. From Figure 6, it is found that the J_{02} of Al-BSF and PERC solar cells increase with the increasing injection level. This is because the effective minority carrier lifetime in the depletion region decreases sharply in high injection levels [45,46]. Meanwhile, owing to rear passivation, the J_{02} of PERC solar cell is always lower than that of Al-BSF solar cells under the same injection level. It is also observed that the J_{02} variation of a PERC solar cell is significantly smaller than that of an Al-BSF solar cell as the injection level is varied from 200 W/m2 to 1200 W/m2. Specifically, when the injection level increases from 900 W/m2 to 1200 W/m2, the J_{02} of a PERC solar cell increases from 2.94×10^{-9} A/cm2 to 9.86×10^{-9} A/cm2, but the J_{02} of an Al-BSF solar cell increases rapidly from 9.12×10^{-9} A/cm2 to 2.77×10^{-8} A/cm2. The obtained result agrees with other publications [47,48].
Figure 6. J_{02} of an Al-BSF solar cell and a PERC solar cell as a function of the injection level at 25 °C and AM1.5G.

Figure 7 describes the variation in the I_{01}/I_{02} ratio of an Al-BSF solar cell and a PERC solar cell as a function of the injection level at 25 °C and AM1.5G. As can be seen from Figure 7, it is found that both the I_{01}/I_{02} ratio of the Al-BSF solar cell and the I_{01}/I_{02} ratio of the PERC solar cell increase with the decreasing injection level. This is because the low injection level leads to a small I_{02} value. These results suggest that I_{02} could be neglected only at a low injection level. Whether it is under high injection or under low injection, the I_{01}/I_{02} ratio of a PERC solar cell is always smaller than that of an Al-BSF solar cell under the same injection level. Moreover, the I_{01}/I_{02} ratio of a PERC solar cell increases slowly with the decreasing injection level compared with an Al-BSF solar cell. These results show that a PERC solar cell performs well when the injection level varies from low to high compared with an Al-BSF solar cell [46].

Figure 7. Variation in I_{01}/I_{02} of an Al-BSF solar cell and a PERC solar cell as a function of injection level at 25 °C and AM1.5G.
3.3. Effect of \(J_{01}/J_{02} \) on Electrical Parameters of PERC Silicon Solar Cells and Al-BSF Silicon Solar Cells under Different Injection Levels

The relative magnitude of the recombination parameter of the diffusion region and the recombination parameter of the depletion region can be expressed by the \(J_{01}/J_{02} \) ratio. Figure 8 shows the variation in open-circuit voltage with the \(J_{01}/J_{02} \) ratio for PERC and Al-BSF silicon solar cells under different injection levels. From Figure 8, it is clearly observed that the open-circuit voltages of PERC and Al-BSF silicon solar cells are strongly influenced by the \(J_{01}/J_{02} \) ratio, i.e., the open-circuit voltages of these two silicon solar cells increase with the decreasing \(J_{01}/J_{02} \) ratio. It is also found that the open-circuit voltages of PERC silicon solar cells are larger than those of Al-BSF silicon solar cells at the same injection level. That is because the PERC structure featuring an AlOx dielectric rear passivation can decrease the total recombination parameter compared with Al-BSF silicon solar cells. The smaller the recombination parameter, the higher the open-circuit voltage of a solar cell [49–51].

![Figure 8](image_url)

Figure 8. Variation in open-circuit voltage \((V_{oc}) \) with the \(J_{01}/J_{02} \) ratio for PERC and Al-BSF silicon solar cells under different injection levels.

Figure 9 depicts the effect of the \(J_{01}/J_{02} \) ratio on short-circuit current density \((J_{sc}) \) for PERC and Al-BSF silicon solar cells under different injection levels. As can be seen from Figure 9, as the \(J_{01}/J_{02} \) ratio decreases and the injection level is varied from 200 W/m\(^2\) to 1200 W/m\(^2\), the \(J_{sc} \) of PERC silicon solar cells increases more quickly than that of Al-BSF silicon solar cells at 25 °C. This is because the PERC solar cell has a higher carrier collection efficiency compared with Al-BSF solar cells.
Figure 9. Effect of the J_{01}/J_{02} ratio on short-circuit current density (J_{sc}) for PERC and Al-BSF silicon solar cells under different injection levels.

Figure 10 shows the variation in FF with the J_{01}/J_{02} ratio for PERC and Al-BSF silicon solar cells under different injection levels. The fill factors of PERC and Al-BSF silicon solar cells decrease with the decrease in J_{01}/J_{02}. At the same temperature and injection level, the FF of a PERC silicon solar cell is always higher than that of an Al-BSF silicon solar cell. This result agrees with [52].

Figure 10. Variation in fill factor (FF) with the J_{01}/J_{02} ratio for PERC and Al-BSF silicon solar cells under different injection levels.

4. Conclusions

The recombination parameters of crystalline silicon solar cells are dependent on the excess carrier concentration. In order to improve the collection efficiency of photo-generated carriers, and to model
exactly the performance of solar cells in the field, it is very important to investigate the recombination parameters of solar cells under different injection levels. In this work, the recombination parameters of different regions were investigated under different injection levels for Al-BSF and PERC silicon solar cells. As expected, the recombination parameter \(J_{01} \) of the diffusion region and the recombination parameter \(J_{02} \) of the depletion region for PERC solar cells are smaller than those of Al-BSF solar cells at the same injection level. An interesting finding is that the recombination parameter \(J_{01} \) of Al-BSF solar cells increases quickly with the decreasing injection level compared with PERC silicon solar cells. It can be concluded that the output performance of Al-BSF solar cells decreases rapidly at low injection levels compared with PERC solar cells. Finally, the \(J_{01}/J_{02} \) ratio of the Al-BSF solar cell and the \(J_{01}/J_{02} \) ratio of the PERC solar cell were investigated under different injection levels. The effects of the \(J_{01}/J_{02} \) ratio on open-circuit voltage, short-circuit current density, and fill factor were also analyzed for Al-BSF and PERC solar cells under different injection levels. The results show that the recombination behavior of different cell regions will change with the injection level, and the output performance of Al-BSF and PERC solar cells is affected by the ratio of \(J_{01}/J_{02} \) under different injection levels. The conclusions obtained in this paper not only clarify the relationship between the recombination parameters and injection levels under non-standard test conditions, but also help to improve solar cell processes and accurately model daily energy production for crystalline silicon solar module energy rating purposes.

Research is underway at our institute to find the differences in recombination parameters between PERC and Al-BSF silicon solar cells under different temperatures.

Author Contributions: Conceptualization, H.Y.; Methodology, H.Y.; Investigation, Q.B.; writing—original draft preparation, Q.B.; formal analysis, X.C.; software, X.C.; writing—review and editing, H.W.; funding acquisition, H.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China, grant number 2018YFB1500700.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Daliento, S.; Mele, L.; Bobeico, E.; Lancellotti, L.; Morvillo, P. Analytical modelling and minority current measurements for the determination of the emitter surface recombination velocity in silicon solar cells. *Sol. Energy Mater. Sol. Cells* 2007, 91, 707–713. [CrossRef]
2. Ahrenkiel, R.K. Recombination processes and lifetime measurements in silicon photovoltaics. *Sol. Energy Mater. Sol. Cells* 2003, 76, 243–256. [CrossRef]
3. Melskens, J.; VandeLoo, B.; Macco, B.; Black, L.E.; Smit, S.; Kessels, W. Passivating contacts for crystalline silicon solar cells: From concepts and materials to prospects. *IEEE J. Photovolt.* 2018, 8, 373–388. [CrossRef]
4. Rodriguez, J.; Wang, E.C.; Chen, N.; Ho, J.W.; Li, M.; Buatis, J.K.; Nagarajan, B.; Xu, L.; Choy, W.L.; Shanmugam, V.; et al. Towards 22% efficient screen-printed bifacial n-type silicon solar cells. *Sol. Energy Mater. Sol. Cells* 2018, 187, 91–96. [CrossRef]
5. Chen, Y.; Shen, H.; Alternatt, P. Analysis of recombination losses in screen-printed aluminum-alloyed back surface fields of silicon solar cells by numerical device simulation. *Sol. Energy Mater Sol. Cells* 2014, 120, 356–362. [CrossRef]
6. Min, B.; Muller, M.; Wagner, H.; Fischer, G.; Brendel, R.; Alternatt, P.P.; Neuhaus, H. A Roadmap toward 24% efficient PERC solar cells in industrial mass production. *IEEE J. Photovolt.* 2017, 7, 1541–1549. [CrossRef]
7. Mckel, H.; Varner, K. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. *Prog. Photovolt. Res. Appl.* 2013, 21, 850–866. [CrossRef]
8. Schmidta, J.; Peibst, R.; Brendel, R. Surface passivation of crystalline silicon solar cells: Present and future. *Sol. Energy Mater. Sol. Cells* 2018, 187, 39–54. [CrossRef]
9. Huang, H.; Lv, J.; Bao, Y.; Xuan, R.; Sun, S.; Sneck, S.; Li, S.; Modanese, C.; Savin, H.; Wang, A. 20.8% industrial PERC solar cell: ALD Al₂O₃ rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%. *Sol. Energy Mater. Sol. Cells* 2017, 161, 14–30. [CrossRef]
10. Sah, C.T.; Noyce, R.N.; Shockley, W. Carrier generation and recombination in p-n junctions and p-n junction characteristics. *Proc. IRE* 1957, 45, 1228–1243. [CrossRef]
11. Kane, D.E.; Swanson, R.M. Measurement of the Emitter Saturation Current by A Contactless Photoconductivity Decay Method. In Proceedings of the 18th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 21–25 October 1985; pp. 578–583.

12. Ma, F.J.; Samudra, G.G.; Peters, M.; Aberle, A.G.; Werner, F.; Schmidt, J.; Hoex, B. Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers. J. Appl. Phys. 2012, 112, 054508. [CrossRef]

13. Cueva, A.; Warke, H.; Kukadiya, K.; Panchal, A.K. Accurate expressions for single-diode-model solar cell parameters. Sol. Energy Mater. Sol. Cells 2018, 184, 38–47. [CrossRef]

14. Dumbrell, R.; Juhl, M.K.; Trupke, T.; Hameiri, Z. Extracting metal contact recombination parameters from effective lifetime data. IEEE J. Photovolt. 2018, 8, 1413–1420. [CrossRef]

15. Kimmerle, A.; Greulich, J.; Wolf, A. Carrier-diffusion corrected J0-analysis of charge carrier lifetime measurements for increased consistency. Sol. Energy Mater. Sol. Cells 2015, 142, 116–122. [CrossRef]

16. Saint-Cast, P.; Werner, S.; Greulich, J.; Jager, U.; Lohmüller, E.; Höfler, H.; Preu, R. Analysis of the losses of industrial-type PERC solar cells. Phys. Status Solidi A 2017, 214, 1600708. [CrossRef]

17. Brendel, R.; Hampe, C.; Merkle, A.; Schimanke, S.; Dorn, S.; Hannebauer, H.; Dullweber, T. Emitter saturation currents of 22 fA/cm² applied to industrial PERC cells approaching 22% conversion efficiency. Prog. Photovolt. Res. Appl. 2017, 25, 509–514. [CrossRef]

18. Sinton, R.A.; Swanson, R.M. Recombination in highly injected silicon. IEEE Trans. Electron. Dev. 1987, 34, 1380–1389. [CrossRef]

19. Liopis, F.; Tobias, I. The role of rear surface in thin silicon solar cells. Sol. Energy Mater. Sol. Cells 2005, 87, 481–492. [CrossRef]

20. Adachi, D.; Hernandez, L.; Yamamoto, K. Impact of carrier recombination on fill factor for large area hetero junction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 2015, 107, 233506. [CrossRef]

21. Kerr, M.J.; Cueva, A. General parametrization of Auger Recombination in crystalline silicon. J. Appl. Phys. 2002, 91, 2473–2480. [CrossRef]

22. Meng, F.Y.; Liu, J.N.; Shen, L.L.; Shi, J.H.; Han, A.J.; Zhang, L.P.; Liu, Y.C.; Yu, J.; Zhang, J.K.; Zhou, R.; et al. High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells. Front. Energy 2017, 11, 78–84. [CrossRef]

23. Cueva, A. The Recombination Parameter J0. Energy Procedia 2014, 55, 53–62. [CrossRef]

24. Ghani, F.; Rosengarten, G.; Duke, M. The characterisation of crystalline silicon photovoltaic devices using the manufacturer supplied data. Sol. Energy 2016, 132, 15–24. [CrossRef]

25. Et-Torabi, K.; Nassar-Eddine, I.; Obbadi, A.; Errami, Y.; Rmaily, R.; Sahnoun, S.; ElFajri, A.; Agunaou, M. Parameters estimation of the single and double diode photovoltaic models using a Gauss-Seidel algorithm and analytical method: A comparative study. Energy Convers. Manag. 2017, 148, 1041–1054. [CrossRef]

26. Kumar, M.; Kumar, A. An efficient parameters extraction technique of photovoltaic models for performance assessment. Sol. Energy 2017, 158, 192–206. [CrossRef]

27. Babu, B.C.; Gurjar, S. A novel simplified two-diode model of photovoltaic (PV) module. IEEE J. Photovolt. 2014, 4, 1156–1161. [CrossRef]

28. Lineykin, S.; Averbukh, M.; Kuperman, A. An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel. Renew. Sustain. Energ. Rev. 2014, 30, 282–289. [CrossRef]

29. Vandana, J.; Triar, U.S. An improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic models. Int. J. Photoenergy 2017, 2017, 2532109. [CrossRef]

30. Kimmerle, A.; Rudiger, M.; Wolf, A.; Hermle, M.; Biro, D. Validation of analytical modelling of locally contacted solar cells by numerical simulations. Energy Procedia 2012, 27, 219–226. [CrossRef]

31. Boutana, N.; Mellit, A.; Rugli, V.; Pavan, A.M. Assessment of implicit and explicit models for different photovoltaic modules technologies. Energy 2017, 122, 128–143. [CrossRef]

32. Hasan, M.A.; Parida, S.K. An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint. Renew. Sustain. Energ. Rev. 2016, 60, 75–83. [CrossRef]

33. Mehta, H.K.; Warke, H.; Kukadiya, K.; Panchal, A.K. Accurate expressions for single-diode-model solar cell parameterization. IEEE J. Photovolt. 2019, 9, 803–810. [CrossRef]

34. Liu, J.J.; Yao, Y.; Xiao, S.Q.; Gu, X.F. Review of status developments of high-efficiency crystalline silicon solar cells. J. Appl. Phys. 2018, 115, 054508. [CrossRef]

35. Blakers, A. Development of the PERC Solar Cell. IEEE J. Photovolt. 2019, 9, 629–635. [CrossRef]
36. Wasmer, S.; Horst, A.; Saint-Cast, P.; Greulich, J. Modeling-free efficiency gain analysis of passivated emitter and rear silicon solar cells. *IEEE J. Photovolt.* 2018, 8, 689–696. [CrossRef]
37. Ruediger, M.; Hermle, M. Numerical analysis of locally contacted rear surface passivated silicon solar cells. *Jpn. J. Appl. Phys.* 2012, 51, 600–610. [CrossRef]
38. Humada, A.M.; Hojabri, M.; Mekhilef, S.; Hamada, H.M. Solar cell parameters extraction based on single and double-diode models: A review. *Renew. Sustain. Energ. Rev.* 2016, 56, 494–509. [CrossRef]
39. Ishaque, K.; Salam, Z.; Taheri, H. Simple, fast and accurate two-diode model for photovoltaic modules. *Sol. Energy Mater. Sol. Cells* 2011, 95, 586–594. [CrossRef]
40. Alhajri, M.F.; El-Naggar, K.M.; Alrashidi, M.R.; Al-Othman, A.K. Optimal extraction of solar cell parameters using pattern search. *Renew. Energy* 2012, 44, 238–245. [CrossRef]
41. Chan, D.S.H.; Phang, J.C.H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. *IEEE Trans. Electron. Dev.* 1987, 34, 286–293. [CrossRef]
42. Kruse, C.N.; Bothe, K.; Brendel, R. Comparison of free energy loss analysis and synergistic efficiency gain analysis for PERC solar cells. *IEEE J. Photovolt.* 2018, 8, 683–688. [CrossRef]
43. Green, M.A. The passivated emitter and rear cell (PERC): From conception to mass production. *Sol. Energy Mater. Sol. Cells* 2015, 143, 190–197. [CrossRef]
44. Duttagupta, S.; Ma, F.J.; Lin, S.F.; Mueller, T.; Aberle, A.G.; Hoex, B. Progress in surface passivation of heavily doped n-type and p-type silicon by plasma-deposited AlOx/SiNx dielectric stacks. *IEEE J. Photovolt.* 2013, 3, 1163–1169. [CrossRef]
45. Cuevas, A.; Yan, D. Misconceptions and misnomers in solar cells. *IEEE J. Photovolt.* 2013, 3, 916–923. [CrossRef]
46. Romer, U.; Peibst, R.; Ohrdes, T.; Lim, B.; Krügener, J.; Bugiel, E.; Wietler, T.; Brendel, R. Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions. *Sol. Energy Mater. Sol. Cells* 2014, 131, 85–91. [CrossRef]
47. Bordihn, S.; Van Delft, J.A.; Mandoc, M.M.; Muller, J.W.; Kessels, W.M.M. Surface passivation and simulated performance of solar cells with Al2O3/SiNx rear dielectric stacks. *IEEE J. Photovolt.* 2013, 3, 970–975. [CrossRef]
48. Hieslmair, H.; Appel, J.; Kasthuri, J.; Guo, J.; Johnson, B.; Binns, J. Impact of the injection-level-dependent lifetime on Voc, FF, ideality m, J02, and the dim light response in a commercial PERC cell. *Prog. Photovolt. Res. Appl.* 2016, 24, 1448–1457. [CrossRef]
49. Wang, H.; Yang, H.; Yu, H.C.; Chen, G.D. Influence of gettering and passivation on uniformity of the electrical parameters in monolithic multicrystalline silicon solar cell. *Solid State Electron.* 2003, 47, 1363–1367. [CrossRef]
50. Wang, H.; Yang, H.; Yu, H.C.; Xi, J.; Hu, H.; Chen, G.D. Weak light effect in multicrystalline silicon solar cells. *Microelectron. J.* 2002, 33, 671–674. [CrossRef]
51. Wolf, A.; Biro, D.; Nekarda, J.; Stumpp, S.; Kimmerle, A.; Mack, S.; Preu, R. Comprehensive analytical model for locally contacted rear surface passivated solar cells. *J. Appl. Phys.* 2010, 108, 124510. [CrossRef]
52. Dadu, M.; Kapoor, A.; Tripathi, K.N. Effect of variation of I01/I02 on short-circuit current and fill factor of a real solar cell having resistive and current leakage losses. *Sol. Energy Mater. Sol. Cells* 2001, 69, 353–359. [CrossRef]