Wartość diagnostyczna ultrasonograficznych wskaźników ryzyka onkologicznego w przedoperacyjnym różnicowaniu guzów przydatków

Diagnostic value of ultrasound indicators of neoplastic risk in preoperative differentiation of adnexal masses

Nabil Abdalla, Michał Bachanek, Seweryn Trojanowski, Krzysztof Cendrowski, Włodzimierz Sawicki

Katedra i Klinika Położnictwa, Chorób Kobiecych i Ginekologii Onkologicznej, II Wydział Lekarski, Warszawski Uniwersytet Medyczny, Warszawa, Polska

Adres do korespondencji: Nabil Abdalla, Klinika i Katedra Położnictwa, Chorób Kobiecyh i Ginekologii Onkologicznej, II Wydział Lekarski, Warszawski Uniwersytet Medyczny, ul. Kondratowicza 8, 83-242 Warszawa, e-mail: drnabilabdalla@yahoo.com, tel.: 22 326 58 38

Streszczenie

Cel: Ocena przydatności diagnostycznej wskaźników ryzyka obecności nowotworu złośliwego i prostych reguł ultrasonograficznych w przedoperacyjnym różnicowaniu guzów przydatków. Material i metody: Retrospektywne badanie 87 pacjentek hospitalizowanych z powodu guza przydatków. Dokonano oceny tych zmian według międzynarodowej ultrasonograficznej klasyfikacji guzów jajnika, a następnie obliczono cztery wskaźniki ryzyka obecności nowotworu złośliwego w oparciu o badanie ultrasonograficzne, stężenie markera CA 125 i status menopauzalny. Wyniki: Wiek pacjentek wahał się od 17 do 79 lat, średnio 44,5 roku (odchylenie standardowe SD=16,6 roku). Większość chorych (60,91%) była przed menopauzą. Czułość metody prostych reguł ultrasonograficznych w rozpoznawaniu zmian złośliwych wyniosła 64,71%, a swoistość 90,00%. Wykazano znaczącą różnicę statystyczną obecności procesu złośliwego pod względem wieku, statusu menopauzalnego, stężenia CA 125 i analizowanych punktów ultrasonograficznych. Wszystkie wskaźniki charakteryzowały się podobną czułością i swoistością w przypadku guzów złośliwych. Wnioski: Zastosowanie wieloparametrycznego badania ultrasonograficznego może pomóc wyselekcjonować pacjentki z guzami przydatków do odpowiedniego postępowania – obserwacji, laparotomii, laparoskopii. Parametry te stanowią prostą metodę ambulatoryjnego określenia charakteru guzów przydatków przed skierowaniem pacjentek do właściwego leczenia.
Wstęp

Guzy przydatków należą do najczęstszych przyczyn hospitalizacji na oddziałach ginekologicznych. Przedoperacyjne różnicowanie zmian złośliwych i niezłośliwych jest jednym z istotniejszych etapów w ocenie tych zmian, gdyż decyduje o dalszym postępowaniu(1). Trudności diagnostyczne związane z wykryciem raka jajnika wynikają z faktu, że nie jest to jednolita jednostka chorobowa. Najnowsze doniesienia wskazują, że w większości przypadków rak jajnika pochodzi z komórek jajowodów lub endometrium, natomiast pierwotne nowotwory złośliwe jajnika pochodzące z komórek germinalnych lub podścielska gonad występują stosunkowo rzadko(2). Rozpoznanie ustala się, a następnie przeprowadza wstępną ocenę guzów przydatków na podstawie wywiadu, badania klinicznego, wyniku badania ultrasonograficznego i markerów nowotworowych(3). Badanie ultrasonograficzne jest podstawową metodą, pozwalającą na szczegółową ocenę tych zmian, obarczoną jednak pewną dozą subiektywizmu zależnego od czynników ludzkiego(4,5). W celu ułatwienia stanordyzacji, a jednocześnie obiektywizacji wyników badań ultrasonograficznych stworzono międzynarodową klasyfikację ultrasonograficzną guzów jajnika (IOTA)(6). Grupa IOTA ustaliła proste i przejrzyste reguły interpretacji wyników badań ultrasonograficznych niezależnie od doświadczenia lekarza wykonującego badanie. Dzięki nim możliwa jest klasyfikacja guzów przydatków do grupy złośliwych, niezłośliwych i niesklastyfikowanych. Ta ostatnia wymaga weryfikacji ultrasonograficznej przeprowadzonej przez osoby o większym doświadczeniu(7).

In search of additional and the most objective ultrasound parameters in evaluating adnexal masses, so called cancer risk indices were created. In 1990s, Jacobs et al. presented a simple diagnostic method based on mathematical estimation of adnexal malignancy risk called the risk of malignancy index (RMI). This index was calculated on the basis of simple ultrasound features, menopausal status and serum CA 125 concentration(8). Over the years, RMI was modified and perfected so as to achieve a parameter...
Celem naszego opracowania jest analiza wartości diagnostycznej poszczególnych indeksów ryzyka złośliwości oraz prostych reguł ultrasonograficznych w celu opracowania prostego, obiektywnego klinicznego algorytmu klasyfikacji i różnicowania przypadkowych guzów przydatków. Praca ma charakter doniesienia wstępnego.

Material i metody

Badanie miało charakter retrospektywny i obejmowało 87 pacjentek przyjętych do Katedry i Kliniki Położnictwa, Chorób Kobiecych i Ginekologii Onkologicznej II Wydziału Lekarskiego Warszawskiego Uniwersytetu Medycznego w roku 2011 z powodu guza przydatków. Z badania wyłączono pacjentki, u których nie wykonano badania stężenia CA 125 oraz których ultrasonograficzne badania były przeprowadzone więcej niż na 90 dni przed operacją. Analizie poddano wyniki ultrasonograficznych badań przeprowadzonych. Pozostały wokół guza, jego morfologii i echostruktury w badaniu dopplerowskim oceniono stopień waskularyzacji zmiany.

W przypadku guza powyżej 5 cm wychodzącego poza miednictwo mniej znaczącą ultrasonografię przeprowadzono uzupełniając badaniem przezbrzusznym. Przy zmianach obustronnych do analizy kwalifikowano guz o bardziej złożonej echostrukturze. Badania ultrasonograficzne były wykonywane w trybie ambulatoryjnym przez lekarza prowadzącego przed skierowaniem do szpitala. Używano różnych reguł ultrasonograficznych przez lekarzy w różnym poziomie doświadczenia. Klasyfikację do poszczególnych grup oparto na „prostych regułach ultrasonograficznych” wg IOTA. Według nich określano pięć cech ultrasonograficznych wskazujących na obecność guza złośliwego (M – malignant): M1 – lity guz o nieregularnych zarysach; M2 – wodoodporny; M3 – obecność przynajmniej czterech wyrostków białkowatych; M4 – guz wielokomorowy w nieregularnych zarysach o wymiarze przekraczającym 100 mm z polami litymi; M5 – nasilone unaczynienie obserwowane podczas ultrasonografii zielonej (B – benign) były następujące: B1 – torbiel jednokomorowa; B2 – obecność pół litych w maksymalnym wymiarze nieprzekraczającym 7 mm; B3 – obecność cienia akustycznego; B4 – gładkościenna torbiel wielokomorowa; B5 – brak unaczynienia guza w badaniu kolorowym dopplerem.

Po uzyskaniu tych parametrów guz klasyfikowano jako złośliwy, jeśli wykazywał przynajmniej jedną cechę „M” i jednocześnie nie wystąpiła żadna cecha „B” (reguła 1.) (ryc. 1, 2).

Guz klasyfikowano jako niezłośliwy, jeśli stwierdzono przynajmniej jedną cechę „B” i nie potwierdzono żadnej cechy „M” (reguła 2.) (ryc. 3). Wynik badania ultrasonograficznego of the highest possible values of diagnostic specificity and sensitivity. Thus, subsequent modifications of RMI calculations, including adding the tumor size to the mathematical models, which was put forward by Yamamoto et al., significantly improved the results of this diagnostic method.

The aim of this paper is to analyze the diagnostic value of individual risk of malignancy indices and simple ultrasound-based rules in order to create a simple and objective clinical algorithm for the classification and preoperative differentiation of adnexal masses. The paper constitutes a preliminary report.

Material and methods

The study was retrospective and encompassed 87 subjects, who due to adnexal masses in 2011, were admitted to the Department and Clinic of Obstetrics, Women’s Diseases and Gynaecologic Oncology of the Second Faculty of Medicine of the Medical University of Warsaw. The patients, whose level of CA 125 had not been examined as well as those who had undergone an ultrasound scan earlier than 90 days before the surgery, were excluded from the study. The findings of transvaginal ultrasound examinations were subject to analysis. Apart from the assessment of the tumor size, its morphology and echostructure, the degree of the tumor vascularization was determined in Doppler examination.

If the tumors were larger than 5 cm and extended beyond the pelvis minor, the transvaginal ultrasound was supplemented with transabdominal examination. In the case of bilateral lesions, only the mass of more complex echostructure was subject to analysis. The ultrasound examinations were performed in ambulatory conditions by the attending physician prior to the referral to the hospital. The patients were examined by physicians of various levels of experience by means of various ultrasound apparatuses. The classification into given categories was based on “simple ultrasound-based rules” according to IOTA. Thus, five ultrasound characteristics were determined which indicated the malignant character of the tumor (M): M1 – irregular solid tumor; M2 – ascites; M3 – the presence of at least four papillary projections; M4 – irregular multilocular tumor with the presence of solid components and the size exceeding 100 mm; M5 – increased vascularization detected in color coded Doppler examination. The ultrasound features of benign lesions (B) were as follows: B1 – unilocular cyst; B2 – the presence of solid components where the largest is not greater than 7 mm; B3 – acoustic shadow; B4 – multilocular cyst with smooth walls; B5 – no signs of blood flow in color Doppler examination.

On the basis of these features, the tumor was classified as malignant if it demonstrated at least one “M” feature and no “B” features (rule 1) (figs. 1, 2). The mass was considered benign if at least one “B” feature was present and no “M” features were confirmed (rule 2) (fig. 3).

Finally, the ultrasound findings were considered unclassifiable if both “M” and “B” features were detected simultaneously or none of them occurred (rule 3) (fig. 4) [7]. Next, four risk of malignancy indices (RMI) were calculated as...
traktowano jako niejednoznaczny, jeśli cechy „M” i „B” wystąpiły jednocześnie lub w ogóle nie wystąpiły (reguła 3.) (ryc. 4)\(^9\). W następnej kolejności wyliczono cztery wskaźniki ryzyka obecności nowotworu złośliwego (RMI) opracowane przez różnych autorów: Jacobsa w 1990 r., Tingulstad w 1996 r., Tingulstad w 1999 r. i Yamamoto w 2009 r.\(^8\)–\(^11\)

Wskaźniki te oparte są na trzech parametrach: ultrasonograficznym (U), statusie menopauzalnym (M) i stężeniu markera CA 125 wyrażonym w jednostkach na mililitr. Wskaźnik ultrasonograficzny (U) obejmuje pięć parametrów (do każdej stwierdzonej cechy przyporządkowany jest jeden punkt). These indices are based on three parameters: ultrasound parameter (U), menopausal status (M) and CA 125 concentration expressed in units per milliliter. The ultrasound parameter (U) encompasses five characteristic features (each detected feature is given one score). These parameters constitute: multilocular cyst, presence of solid components within the lesion, evidence for metastases in ultrasound scan, ascites and bilateral character of lesions. The menopausal status was defined as amenorrhea lasting

Fig. 1. Solid-cystic ovarian mass with irregular margins and the size of 43×28 mm. Color Doppler examination shows increased blood flow. According to IOTA, the ultrasound image presents a malignant adnexal tumor

Fig. 2. Low-resistance flow (RI=0.33) in the wall of the ruptured cystic adnexal tumor

Fig. 3. A bilocular cyst of the ovary with smooth walls and the dimensions of 58×68 mm. According to IOTA, the ultrasound image presents a non-malignant adnexal tumor

Fig. 4. Polycystic tumor with solid components of irregular margins and the diameter of about 200 mm visualized in a transabdominal ultrasound examination. Color Doppler scan does not present any features of vascularization. According to IOTA, ultrasound findings are unclassifiable

Nabil Abdalla, Michał Bachanek, Seweryn Trojanowski, Krzysztof Cendrowski, Włodzimierz Sawicki
Parametrami tymi są: obecność torbieli wielokomorowej, obecność pola litego w obrębie zmiany, obecność przerzutów w badaniu ultrasonograficznym, wodobrzusze i oburowo-
ściowo zmian. Stan menopauzalny określano jako brak mie-
ściążki od co najmniej roku lub wiek 50 lat i więcej u pacjen
tek, u których wcześniej wykonano wycięcie macicy. Stężenie
CA 125 w surowicy jest używane bezpośrednio we wszystkich
formularzach obliczania RMI. Wartość RMI stanowi wynik
得太rczącego równania: $\text{RMI} = \text{U} \times \text{M} \times \text{CA} 125$. Wg for-
muły RMI I opracowanej przez Jacobsa i wsp. parametr
U może mieć następujące wartości: $U=0$ (liczba punktów 0),
gdy nie stwierdza się żadnej wymiennej wcześniej cechy;
$U=1$ (liczba punktów 1), gdy stwierdza się jedną cechę; $U=3$ (liczba punktów 2–5), gdy liczba stwierdzonych cech
jest równa lub większa od 2. Parametr M może mieć wartość:
$M=1$, w przypadku pacjentki przed menopauzą, lub $M=3$,
w przypadku pacjentki po menopauzą(10). W RMI II wg
Tingulstad i wsp. U = 1 (liczba punktów 0–1), gdy nie
stwierdza się żadnej lub tylko jedną z wymienionych
cech; $U=4$ (liczba punktów 2 i więcej), gdy występują dwie
lub większa liczba cech. Parametr M może mieć wartość:
$M=1$, w przypadku pacjentki przed menopauzą, lub $M=4$, w
przypadku pacjentki po menopauzą(10). W RMI III wg
Tingulstad i wsp. U = 1 (liczba punktów 0–1), gdy nie
stwierdza się żadnej lub tylko jedną spośród wymienionych
cech; $U=3$ (liczba punktów 2 i więcej), gdy występują dwie
lub większa liczba cech. Parametr M przyjmuje wartość:
$M=1$, w przypadku pacjentki przed menopauzą, lub $M=3$, w
przypadku pacjentki po menopauzą(10). Formuła RMI IV wg
Yamamoto i wsp. obejmuje dodatkowy element ultrasono-
graficzny w postaci największego wymiaru guza przydatków (S), a
wartość RMI IV stanowi wynik następującego równania:
$\text{RMI} = \text{U} \times \text{M} \times \text{CA} 125 \times \text{S}$. W tej formule U = 1
(liczba punktów 0–1), gdy nie stwierdza się żadnej lub tylko jedną spośród wymienionych cech; $U=4$ (liczba punktów 2 i więcej), gdy występują dwie
lub większa liczba cech. Parametr M ma wartość: $M=1$, w
przypadku pacjentki przed menopauzą, lub $M=4$, w
przypadku pacjentki po menopauzą. W tej formule
S = 1, gdy największy wymiar guza jest mniejszy niż 7 cm,
lub S = 2, gdy największy wymiar guza ma 7 cm i więcej(11).

Ze względu na dużą liczbę Badanych parametrów nie ma ściś
lanych wartości progowych tych czterech wskaźników. Zgodnie
z piśmiennictwem w naszej pracy dla wskaźnika RMI I–III
przyjęto, że wartość od 0 do 200 świadczy o zmianie niezło-
śwjej, a powyżej 200 – o zmianie złosławnej, natomiast dla
RMI IV wartość od 0 do 500 i powyżej 500 świadczy odpo-
wiednio o zmianie niezłośwowej i złosławnej(12–13). Ostateczne
orozpoznanie guzów przydatków ustalano na podstawie bada-
ania histopatologicznego materialu pooperacyjnego. Stopień
azawawienia nowotworów złosławnych określano na pod-
stawie klasyfikacji FIGO. W analizie statystycznej guzy o gra-
nicznej złosławności włączono do zmian złosławnych. Wykonano
analizę czułości, czułości i wartości predykcji pozytywnej
igadewnej wskaźników ryzyka nowotworu złosławnego
metody prostych reguł ultrasonograficznych. Używano
testu U celem analizy statystycznej korelacji stężenia CA 125
z rodzajem guzów przydatków oraz używano testu niezależ-
ności chi² w celu analizy statystycznej pacjentek z różnymi
guzami przydatków w stosunku do wieku, statusu menopau-
załnego, punktów ultrasonograficznych oraz wymiarów guza.

Due to the large number of analysed parameters, there are
no exact threshold values for these four indices. According
to the references quoted herein, it was assumed that the
values between 0–200 in RMI I-III indices attested to
a non-malignant lesion and the values above 200 – to
a malignant one. In RMI IV, however, the values between
0–500 and more than 500 are attested to non-malignant
and malignant lesions respectively(12–13). The final diag-
osis of adnexal masses was determined on the basis of
post-operative histopathological examinations. The stage
of malignant neoplasms was determined on the basis of
the FIGO classification. In the statistical analysis, the
tumors of borderline malignancy were considered malli-
nant. The conducted analyses concerned the specificity,
sensitivity as well as positive and negative predictive
values of the risk of malignancy indices and the method of
simple ultrasound-based rules. The Mann-Whitney U test
was used in order to conduct statistical analysis of the
correlation of CA 125 concentration with the types of adnexal
tumors. The chi-squared test of independence was used for
the statistical analysis of the patients with various
tumors in relation to age, menopausal status, ultrasound
score and tumor size.
Wyniki

Grupę badaną stanowiło 87 kobiet w wieku od 17 do 79 lat, średnio 44,5 roku (SD=16,6 roku). U 70 (80,5%) pacjentek wykryto niezłośliwe zmiany przydatków, a u 17 (19,5%) – złośliwe. Wśród złośliwych stwierdzono 7 (41,2%) przypadków torbielakogruczolakoraka surowiczego, 3 (17,6%) guzy przerzutowe z przewodu pokarmowego, 3 (17,6%) przypadki guzów o granicznej złośliwości oraz po jednym przypadku (5,9%) torbielakogruczolakoraka śluzowego, raka jadowodu, raka mieszanego i raka niezróżnicowanego. Stopień zaawansowania nowotworów złośliwych wg FIGO przedstawiał się następująco: I stopień – 7 (41,2%), III stopień – 6 (35,3%), IV stopień – 1 (5,9%) przypadek. Trzy przypadki (17,6%) dotyczyły nowotworów złośliwych pochodzących z przewodu pokarmowego.

Analiza statystyczna wykazała, że czułość prostych metod ultrasonograficznych wg IOTA w przedoperacyjnej ocenie guzów przydatków wyniosła 64,71%, a swoistość – 90,00%, natomiast wartość predykcyjna zmian złośliwych i niezłośliwych odpowiednio 91,67% i 98,44%. W tab. 1 przedstawiono klasyfikację guzów przydatków wg IOTA, według której określono powyższe wskaźniki statystyczne.

W następnym etapie sprawdzono, czy kobiety z różnymi rodzajami zmian w przydatkach różniły się wiekiem, statusem menopauzalnym, punktami ultrasonograficznymi oraz wymiarami guza. W tab. 2 przedstawiono uzyskane wyniki.

Analiza powyższych parametrów wykazała, że istnieje statystycznie istotna różnica pomiędzy grupą pacjentek z niezłośliwymi i złośliwymi guzami przydatków względem wieku, statusu menopauzalnego, punktów ultrasonograficznych oraz wymiarami guza. W tab. 2 przedstawiono uzyskane wyniki.

Analiza powyższych parametrów wykazała, że istnieje statystycznie istotna różnica pomiędzy grupą pacjentek z niezłośliwymi i złośliwymi guzami przydatków względem wieku, statusu menopauzalnego, punktów ultrasonograficznych oraz wymiarami guza. Wśród pacjentek ze zmianami niezłośliwymi i złośliwymi średni wiek wynosił odpowiednio 41,2 i 57,6 roku. W grupie pacjentek ze zmianami niezłożliwymi było 50 (71,43%) kobiet w okreście przedmenopauzalnym i 20 (28,57%) pacjentek w okreście pomenopauzalnym, w porównaniu z 3 (17,65%) i 14 (82,35%) pacjentkami ze zmianami złośliwymi. Analiza reguły Jacobsa wykazała, że wśród pacjentek ze zmianami niezłośliwymi 27 (38,57%) miało 0 punktów, 19 (27,14%) – 1 punkt, a 24 (34,29%) – 2–5 punktów. Z kolei w grupie

Tab. 1. Rodzaje złośliwych wg kryteriów IOTA

Ocena USG	Wynik histopatologiczny	
	Niezłośliwe (n=70)	Złośliwe (n=17)
	Non-malignant (n=70)	Malignant (n=17)
Zmiana niezłośliwa	63	1
Non-malignant lesion	90,00	5,88
Zmiana niejednoznacznna	6	5
Inconclusive finding	8,57	29,41
Zmiana złośliwa	1	11
Malignant lesion	1,43	64,71

Results

The examined group comprised 87 women aged between 17 and 79, the mean age was 44.5 (SD=16.6). In 70 subjects (80.5%), non-malignant adnexal lesions were detected and 17 patients (19.5%) were diagnosed with a malignant tumor. The malignancies included: 7 cases (41.2%) of serous cystadenocarcinoma, 3 cases (17.6%) of metastatic tumors from the gastrointestinal tract, 3 cases (17.6%) of borderline tumors as well as one case of mucinous cystadenocarcinoma, fallopian tube carcinoma, mixed carcinoma and undifferentiated carcinoma (5.9%). The stages of the malignancies according to FIGO classification were as follows: stage I – 7 cases (41.2%), stage III – 6 cases (35.3%), stage IV – 1 case (5.9%). Three cases (17.6%) were related to malignant neoplasms which originated in the gastrointestinal tract.

The statistical analysis showed that in the preoperative assessment of adnexal masses, the sensitivity of simple ultrasound parameters according to IOTA constituted 64.71% and the specificity was on the level of 90.00%. The predictive values of malignant and non-malignant lesions were 91.67% and 98.44% respectively. Tab. 1 presents the classification of adnexal tumors according to IOTA which was the basis for the estimation of the aforementioned statistical data.

The subsequent stage of the study aimed at determining whether the patients with various types of lesions differed in age, menopausal status, ultrasound score and tumor size. The obtained results are presented in tab. 2.

The analysis of the aforementioned parameters demonstrated that there is a statistically significant difference concerning age, menopausal status, ultrasound score and tumor size between the groups of patients with non-malignant and malignant adnexal tumors. The mean age of the patients with non-malignant and malignant tumors constituted 41.2 and 57.6 respectively. The group of subjects with non-malignant masses encompassed 50 premenopausal patients (71.43%) and 20 postmenopausal patients (28.57%). In comparison, the group with malignant lesions, encompassed 3 (17.65%) and 14 (82.35%) pre- and postmenopausal patients respectively. The analysis of Jacobs rule demonstrated that among the patients with benign lesions 27 (38.57%) scored 0,
Diagnosis of ultrasound indicators of neoplastic risk in preoperative differentiation of adnexal masses

Table 2 shows the age, menopausal status, ultrasound score and tumor size in the examined group.

Badany parametr	Rodzaj guza (histopatologia)	Chi², poziom p p level						
	Niezłośliwe	Non-malignant	Złośliwe	Malignant				
	N	% grupy	N	% grupy				
Wiek (lata)	Age (years)							
Do 20 lat Below 20	4	5.71	0	0.00	chi²(3)=18.16, p<0.001			
21–40 lat	38	54.29	2	11.76				
41–50 lat	8	11.43	0	0.00				
Powyżej 50 lat Above 50	20	28.57	15	88.24				
Status menopauzalny	Menopausal status							
Przed menopauzą Before menopause	50	71.43	3	17.65	chi²(1)=16.82, p<0.001			
Po menopauzie After menopause	20	28.57	14	82.35				
Punkty ultrasonograficzne	Ultrasound score							
0 pkt	27	38.57	0	0.00	chi²(2)=15.29, p<0.001			
1 pkt	19	27.14	3	17.65				
2–5 pkt	24	34.29	14	82.35				
Największy wymiar guza	Greatest tumor size							
<7 cm	53	75.71	4	23.53	chi²(1)=15.93, p<0.001			
>7 cm	17	24.29	13	76.47				

Table 3 presents the statistical data for CA 125 concentration in relation to the type of lesion.

Tab. 2. Wiek, status menopauzalny, punkty ultrasonograficzne oraz wymiary guza w grupie badanych kobiet
Tab. 2. Age, menopausal status, ultrasound score and tumor size in the examined group

Tab. 3. Statystyki opisowe dla stężenia CA 125 w zależności od rodzaju zmiany
Tab. 3. Statistical data for CA 125 concentration in relation to the type of lesion

pacjentek ze zmianami złośliwymi u wszystkich punktacji przekraczała 0 – 3 pacjentki (17,65%) miały 1, a 14 (82,35%) – 2–5 punktów. Analiza stężenia markera CA 125 wykazała, że u kobiet ze złośliwą zmianą nowotworową jego poziom był wyższy niż u kobiet z guzem niezłośliwym. W tym celu przeprowadzono analizę testem U Mann-Whitney. W tab. 3 przedstawiono statystyki opisowe z przeprowadzonej analizy.

W tab. 4–7 przedstawiono wyniki przewidywania rodzaju zmiany nowotworowej na podstawie parametrów RMI I, II, III i IV.

19 (27.14%) scored 1 and 24 (34.29%) scored 2–5. In the group with malignant tumors, on the other hand, all patients’ scores exceeded 0. Three subjects (17.65%) scored 1 and 14 (82.35%) scored 2–5. The analysis of CA 125 concentration level, showed that its level was higher in the women with malignant tumors than in those with benign lesions. Here, the Mann-Whitney U test was applied. Tab. 3 presents the statistical data obtained in this analysis.

Tabs. 4–7 present the results of predicting the type of neoplastic lesion on the basis of the parameters in RMI I, II, III and IV.
Analiza testem niezależności chi² wykazała istotne sta-
tystyczne różnice wyniku testu RMI I: chi²(1)=38,43, p<0,001; RMI II: chi²(1)=27,31, p<0,001; RMI III: chi²(1)=35,22, p<0,001; RMI IV: chi²(1)=44,40, p<0,001. Wszystkie indeksy wykazywały podobną czułość diagnostyczną. Wśród nich RMI IV charakteryzował się najwyższą swoistością i wartością predykcji zmian złośliwych. Z kolei RMI I wykazywał najwyższą wartość predykcji.

The chi-squared test of independence has shown statistically significant differences of the RMI I test: chi²(1)=38.43, p<0.001; RMI II: chi²(1)=27.31, p<0.001; RMI III: chi²(1)=35.22, p<0.001; RMI IV: chi²(1)=44.40, p<0.001. All the indices demonstrated a similar diagnostic sensitivity. RMI IV was characterized by the highest specificity and predictive value in the case of malignant lesions. RMI I, on the other hand, demonstrated the highest predictive value.
zmian niezłośliwych. W tab. 8 przedstawiono szczegółowe podsumowanie wyników wartości diagnostycznej poszcze
gólnych testów RMI.

Oświadczenie

Klasyfikacja guzów przydatków wg IOTA i za pomocą wskaźników ryzyka obecności nowotworu złośliwego (RMI) jest prostą metodą diagnostyczną przedoperacyjnego różnicowania zmian złośliwych i niezłośliwych przydatków, która może być zastosowana w warunkach ambula
toryjnych(12). Różnicowanie tych guzów tylko na podstawie jednego ultrasonograficznego schematu diagnostycznego ze względu na subiektywizm tej oceny, wynikającej przede wszystkim z doświadczenia badającego, cechuje się często niewystarczającą swoistością i wartością prognozy nega
tywnej, co utrudnia kwalifikację do odpowiedniego postę
powania(13). Z kolei stężenie markera CA 125 w surowicy obciążone jest dużą liczbą błędów fałszywie pozytywnych, równie obniżających swoistość tego badania(14). Możliwość wykluczenia zmian złośliwych przydatków ma kluczowe znaczenie przede wszystkim u młodych pacjentek, które chcą zachować zdolność rozrodczą. U takich pacjentek możliwe jest leczenie zachowawcze lub minimalnie inwa
dyjne(15). Z drugiej strony pacjentki z podejrzeniem zmiany złośliwej powinny być po starym planowaniu leczenie radykalne, co stanowi podstawowy czynnik prognostyczny i rokowny wpływający na przeżycie 5-letnie(16). U tych kobiet odpowiedni plan chirurgiczny, m.in. laparotomia, cięcie proste łączące dokonanie pełnego „stagingu”, może zmniejszyć jatrogenne ryzyko podwyższenia stopnia zaawansowania nowotworu złośliwego wg FIGO poprzez np. śródroperacyjne pęknienie tych guzów przydatków(17). W związku z tym istnieje konieczność opracowania takiej metody diagnostycznej, która w okresie przedoperacyjnym możliwie najdokładniej szacowaćby ryzyko obecności nowotworu złośliwego. Uważa się, że tylko wieloparame
tryczna ocena pozwala uściślić rozpoznanie w tych trud
nych przypadkach. Wydaje się, że włączenie do ultrasonograficznego algorytmu diagnostycznego ryzyka złośliwości RMI wpisuje się w całości w te potrzeby. Jak wynika z naszych badań, wskaźniki RMI wykazywały dużą czułość w wykrywaniu zmian złośliwych. Wśród nich naj
dalej szanuje swoistość i wartość predykcji zmian złośliwych miał RMI IV. Z kolei RMI I cechował się najwyższą wartością in the case of benign lesions. Tab. 8 presents a detailed summary of the diagnostic value for individual RMI.

Discussion

The classification of tumors according to IOTA and by means of risk of malignancy indices (RMI) is a simple diagnostic method of preoperative discrimination between malignant and benign adnexal masses. It may be performed in ambu
latory conditions(12). The differentiation of such lesions on the basis of one ultrasound model frequently presents insuf
cient levels of specificity and negative prognostic value. This results from the subjectivity of the examination and is related to the examiner’s experience. Consequently, such results prevent the classification of the patients to appro
ciate type of treatment(13). The serum concentration of CA 125 is in turn burdened by a large number of false posi
tive errors which also decrease the specificity of the test(14). The possibility to exclude malignant adnexal lesions is of vit
al importance especially for young patients who wish to conser
ve their reproductive capacity. Conservative treatment or minimally invasive procedures are possible in such patients(15). On the other hand, the patients with the suspicion of malignancies should be treated radically after careful treatment planning. Such radical actions influence the basic prognostic factor determining 5-year survival(16). A proper surgical plan, among others laparotomy and midline vertical incision, which facilitates complete stag
ing, may decrease the iatrogenic risk of increasing FIGO stage by, for instance, intraoperative rupture of the adnexal tumor(17). Therefore, it is crucial to establish a diagnostic method enabling precise risk estimation of the presence of a malignant tumor in a preoperative period. It is believed that only multiparametric assessment allows for precise diagnosis in these difficult cases. It seems that the incor
pation of the risk of malignancy index (RMI) into the ultrasound algorithm fully satisfies these needs. The pre
tened research shows that RMI indices demonstrated high sensitivity in detecting malignant lesions. Out of the assessed indices, the highest specificity and predictive value of malignant lesions was provided by RMI IV. RMI I, in turn, was characterized by the highest value in diagnosing benign lesions. The false positive results were detected in 8 (11.43%), 13 (18.57%), 9 (12.86%) and 4 (5.71%) patients with benign lesions according to RMI I-IV respectively.

RMI	Czułość	Swoistość	PPV	NPV	Dokładność oszacowania
I	88,24	88,57	65,22	96,88	88,51
II	88,24	81,43	53,57	96,61	82,76
III	88,24	87,14	62,50	96,83	87,36
IV	82,35	94,29	77,78	95,65	91,95

PPV – wartość predykcji pozytywnej; NPV – wartość predykcji negatywnej.
wykrywania zmian niezłośliwych. Według wskaźników RMI I–IV wyniki fałszywie dodatnie stwierdzono odpowiednio u 8 (11,43%), 13 (18,57%), 9 (12,86%) i 4 (5,71%) pacjentek ze zmianami niezłośliwymi. Czułość prostych reguł ultrasonograficznych była nieco niższa w porównaniu ze wskaźnikami RMI. W naszym badaniu wyniki ultrasonograficzne były niejednoznaczne w 5 przypadkach, w tym w 3 torbielakogruzołakoraka surowiczowego oraz w jednym torbielakogruzołakoraka słusowego i guza granicznego. Jak widać, mimo coraz doskonałej aparatury ultrasonograficznej guzy przydatków nadal stanowią istotną trudność diagnostyczną. Dotyczy to przede wszystkim zmian złośliwych we wczesnym stopniu zaawansowania, a więc grupy, w której maksymalne uściślenie przedoperacyjnego rozpoznania pozwala wdrożyć odpowiednio postępowanie. To z kolei w istotny sposób wpływa na rokowanie i poprawa wyniki leczenia raka jajnika. Wieloparametrowa ocena ultrasonograficzna, jak wynika z naszego opracowania, może stanowić podstawę do przedoperacyjnego różnicowania guzów przydatków. Z drugiej strony musimy pamiętać, że wyniki badań ultrasonograficznych trzeba uważnie interpretować, najlepiej z całością obrazu klinicznego i popartego wywiadem, a szczególnie onkologicznym, z wynikiem stężenia innych markerów nowotworowych i w razie potrzeby innych metod obrazowych, takich jak tomografia komputerowa i obrazowanie metodą rezonansu magnetycznego18,19.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

Piśmiennictwo/References

1. Radosa MP, Camara O, Vorwergk J, Diebolder H, Winzer H, Mothes A et al.: Preoperative multimodal strategies for risk assessment of adnexal masses: analysis of 1362 cases in a gynecologic cancer center. Int J Gynecol Cancer 2011; 21: 1056–1062.
2. Kohen E, Krumen RJ, Shih IM: Ovarian cancer is an imported disease: fact or fiction? Curr Obst Gynecol Rep 2012; 1: 1–9.
3. Guzel AI, Kuyucucuglu U, Erdemolu M: Adnexal masses in postmenopausal and reproductive age women. J Exp Ther Oncol 2011; 9: 167–169.
4. Guerriero S, Testa AC, Timmerman D, Van Holsbeke C, Ajossa S, Fischerova D et al.: Imaging of gynecological disease (6): clinical and ultrasound characteristics of ovarian dysgerminoma. Ultrasound Obstet Gynecol 2011; 37: 596–602.
5. Walker K, Jayaprakan S, Kaine-Fenning NJ: Ultrasound in benign gynaecology Obstetrics, Gynaecology and Reproductive Medicine 2007; 17: 33–44.
6. Timmerman D, Valentin L, Bourne TH, Collins WP, Verrelst H, Vergote I: International Ovarian Tumor Analysis (IOTA) Group: Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet Gynecol 2000; 16: 500–505.
7. Timmerman D, Testa AC, Bourne T, Aimey L, Jurkovic D, Van Holsbeke C et al.: Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound Obstet Gynecol 2008; 31: 681–690.
8. Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG: A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol 1996; 97: 922–929.
9. Tingulstad S, Hagen B, Skjeldestad FE, Onsrud M, Kiserud T, Halvorsen T et al.: Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. Br J Obstet Gynaecol 1996; 103: 826–831.
10. Tingulstad S, Hagen B, Skjeldestad FE, Halvorsen T, Nustad K, Onsrud M: The risk-of-malignancy index to evaluate potential ovarian cancer in local hospitals. Obstet Gynecol 1999; 93: 448–452.
11. Yamamoto Y, Yamada R, Oguri H, Maeda N, Fukaya T: Comparison of four malignancy risk indices in the preoperative evaluation of patients with pelvic masses. Eur J Obstet Gynecol Reprod Biol 2009; 144: 163–167.
12. Wang LM, Song H, Song X, Zhou XB: An improved risk of malignancy index in diagnosis of adnexal mass. Chin Med J (Engl) 2011; 125: 533–535.
13. Bast RC Jr, Skates S, Lokshin A, Moore RG: Differential diagnosis of a pelvic mass: improved algorithms and novel biomarkers. Int J Gynecol Cancer 2012; 22 Suppl 1: S5–S8.
14. Escudero JM, Auje JM, Filella X, Torne A, Pahisa J, Molina R: Comparison of serum human epidymis protein 4 with cancer antigen 125 as a tumor marker in patients with malignant and nonmalignant diseases. Clin Chem 2011; 57: 1534–1544.
15. Partheen K, Kristiansdottir B, Sundfeldt K: Evaluation of ovarian cancer biomarkers HE4 and CA125 in women presenting with a suspicious cystic ovarian mass. J Gynecol Oncol 2011; 22: 244–252.
16. Stany MP, Maxwell GL, Rose GS: Clinical decision making using ovarian cancer risk assessment. AJR Am J Roentgenol 2010; 194: 337–342.
17. Smorgick N, Barel O, Halperin R, Schneider D, Pansky M: Laparoscopic incision of adnexal cysts: is it possible to decrease inadvertent intraoperative rupture rate? Am J Obstet Gynecol 2009; 200: 237.e1–237.e3.
18. Freydenck MK, Laubender RP, Rack B, Schulmacher L, Jescuhe U, Scholz C: Two-marker combinations for preoperative discrimination of benign and malignant ovarian masses. Anticancer Res 2012; 32: 2003–2008.
19. Grigsby PW: Role of PET in gynecologic malignancy. Curr Opin Oncol 2009; 21: 420–424.