Proteomic analysis reveals that a global response is induced by subinhibitory concentrations of ampicillin

Lina Xiong, Dongjiang Liao, Xinpeng Lu, He Yan, Lei Shi, and Ziyao Mo

ABSTRACT
In this study, a recipient-donor co-culture system was used to research the effect of subinhibitory concentrations of antibiotics on horizontal transmission in bacteria and the influence of antibiotics on protein expression. We employed two-dimensional gel electrophoresis combined with mass spectrometry to compare the protein expression profiles in systems with or without 0.5 × the minimum inhibitory concentration of ampicillin. RT-PCR was used to assess the transcriptional levels of the differentially expressed genes. Fifty-seven different proteins were induced or suppressed. The upregulated proteins were involved in transcription and translation, cell wall synthesis, bacterial SOS response, and detoxifying functions, and the downregulated proteins were involved in metabolism. These results indicated that a global response was induced in the recipient-donor co-culture system by the subinhibitory concentration of ampicillin. Further analysis revealed that a global regulatory network based on key pathways was induced in the system in response to the antibiotic pressure. These findings provide a new, more comprehensive view for research on antibiotic-resistance mechanisms in recipient-donor co-culture.

KEYWORDS
ampicillin; antibiotic resistance; proteomics analysis; subinhibitory concentration

Introduction
The widespread use of antibiotics gives rise to the generation of antibiotic concentration gradients in the environment. Thus, bacteria are frequently exposed to subinhibitory concentrations of antibiotics, and recent evidence indicates that this is likely to have an important role in the dissemination and accumulation of resistance genes in bacteria.1-3 One of the main ways for the evolution of antibiotic resistance is the horizontal transfer of mobile genetic elements.4 Thus, researchers introduced a recipient-donor co-culture system (RDCS) to study the effect of subinhibitory concentrations of antibiotics on horizontal transfer among environmental microorganisms.5-7 In previous related studies, plating methods and molecular tests based on gene expression levels were generally used.5,7 However, it was difficult to obtain a complete picture of the effects of subinhibitory concentrations of antibiotics on the system and to understand the mechanisms underlying the observed effects.

Classical proteomic approaches provide valuable information about microorganisms. Proteomic methodologies, which can be used to analyze global changes in bacteria, have been used to study antimicrobial resistance mechanisms.8 It points out not only a few proteins that are directly related to an antibiotic resistance mechanism, but also a large number of differentially regulated proteins involved in various metabolic procedures, most of which are irrelevant to antibiotic used. Thus, it is difficult for researchers to find out the key proteins or mechanism. But then it contributes in the understanding of metabolic networks and their effect on antibiotic resistance. The changes in the protein expression patterns that occur in various microorganisms in response to β-lactam antibiotics have been studied.9,10 Nevertheless, to date, there are no published studies on the global effect of subinhibitory concentration of ampicillin (AMP) on a bacterial RDCS.

Here, we employed two-dimensional gel electrophoresis (2-DE) combined with MALDI TOF MS
spectrometry (MS) to compare the protein expression profiles in *Escherichia coli* RDCSs cultured with or without \(0.5 \times \) minimum inhibitory concentration (MIC) of AMP. The pathways involved were identified by bioinformatics. Finally, the transcriptional levels of the differentially expressed genes were validated by real-time reverse-transcription PCR (real-time RT-PCR). These findings provide a global view of a RDCS in the presence of subinhibitory concentrations of AMP from a proteomic perspective, and the discovery of relevant proteins may be helpful to develop new drugs which have synergistic effect on existing antibiotics and surmise the possible transmission mechanism of resistance gene.

Results

MIC testing and measurement of growth rates

The MIC of AMP was determined following the Clinical and Laboratory Standards Institute recommendations, and the MICs for the donor and recipient strains were both \(1 \mu g/mL\). To analyze the influence of subinhibitory concentrations of AMP on the RDCS, the system was treated with \(0.5 \times \) MIC AMP (0.5 \(\mu g/mL\)). Compared to the control, AMP had little effect on the bacterial growth rate (Fig. 1). Based on the growth profile, we identified the mid-logarithmic growth phase (at 6h, the donor/recipient ratios in RDCSs with and without AMP were both approximately 2.06) as the time point at which to harvest strains for protein extraction.

To gain insight into the physiological changes induced in the RDCS by a subinhibitory concentration of AMP, we compared the protein profiles in the RDCSs with and without AMP using 2-DE electrophoresis. The reproducibility of spots detected under the same experimental conditions was assessed by determining the number of spots and the level of overlap in replicate gels. After 6 h of culture with \(0.5 \times \) MIC of AMP, 59 protein spots were identified (Fig. 2).

Protein identification

The 59 spots were successfully identified as 57 different proteins by MS. To determine the functions of these proteins, we grouped them according to their functional categories. As shown in Table 1, in response to \(0.5 \times \) MIC of AMP, 33 proteins were upregulated, contained 5 proteins involved in transcription regulation, 7 in SOS repair, 3 in detoxifying functions, 3 translocators, 7 in metabolism regulation, 6 in peptidoglycan synthesis, and 2 hypothetical proteins of unknown function. However, one translocator, 22 proteins involved in metabolism regulation, and 1 in peptidoglycan synthesis were downregulated (Table 2).

Transcriptional profiles of genes encoding differentially expressed proteins

To validate the differential expressions of identified proteins, real-time RT-PCR analysis was performed. The total RNA from the untreated RDCS and the RDCS treated with \(0.5 \times \) MIC of AMP was extracted in parallel for more than three separate experiments. The mRNA levels of each gene in the control RDCS was arbitrarily set to one. The relative expression ratios of these genes between the AMP-treated RDCS and the control RDCS were shown in Supplementary file 1. These results confirmed that the changes of the gene transcriptions were in accord with those of the protein expressions.

Protein-protein networks analyses

In order to know the relationships among the proteins that were differentially expressed in the RDCS
in response to AMP, we analyzed the protein-protein interaction networks by using the STRING program (Version 10.0a.). As shown in Fig. 3a, the upregulated proteins from different pathways were linked to each other; however, the relationships among them were incompact. In contrast, most of the downregulated proteins were more closely related, creating an intricate web of associations.

Table 1. Identity of differentially expressed (upregulated) protein spots in the RDCS with 0.5 × MIC of AMP.

Spot	Description	Protein	Accession number	MW*	pI	Score	Functional category	
1	Periplasmic binding protein/LacI transcriptional regulator	YcjW	gi	338768107	30935.4	6.85	191	Transcription
2	D-ribose-binding periplasmic protein	RbsB	gi	3318867	28457.1	5.99	475	Transcription
3	Ribosomal protein S2	RpsB	gi	315616348	49725.3	9.57	458	Transcription
4	30S ribosomal protein S2	RpsB	gi	26106512	23227.9	6.23	193	SOS
5	Putative transcriptional regulator	GalS	gi	306815563	20357.1	7.85	107	Transcription
6	Signal recognition particle	Ffh	gi	15988320	22110.6	5.68	481	SOS
7	DNA protection during starvation protein	Dps	gi	331646031	23076.2	9.1	176	SOS
8	Putative signal transduction protein	YjcC	gi	110643299	20535.7	7.85	107	Transcription
9	Osmotically-inducible protein	OsmY	gi	331616006	19373.9	5.42	363	SOS
10	Universal stress protein	UspD	gi	315616476	15939.3	6.03	173	SOS
11	Universal stress protein	UspD	gi	15804512	16264.5	6.37	72	SOS
12	FKB-type peptidyl-prolyl cis-trans isomerase	SylD	gi	15803860	34404.1	7.39	445	SOS
13	Putative transcriptional regulator	GalS	gi	218701122	21864.9	5.84	363	Detoxifying
14	DNA protection during starvation protein	Dps	gi	331646031	22110.6	5.68	481	SOS
15	Putative signal transduction protein	YjcC	gi	110643299	20535.7	7.85	107	Transcription
16	Osmotically-inducible protein	OsmY	gi	331616006	19373.9	5.42	363	SOS
17	Universal stress protein	UspD	gi	315616476	15939.3	6.03	173	SOS
18	Universal stress protein	UspD	gi	15804512	16264.5	6.37	72	SOS
19	FKB-type peptidyl-prolyl cis-trans isomerase	SylD	gi	15803860	34404.1	7.39	445	SOS
20	Modulator of drug activity	B	gi	74313566	21864.9	5.84	363	Detoxifying
21	Glutathione S-transferase	GST	gi	15802049	22853.8	5.85	218	Detoxifying
22	Chain A, Crystal Structure Of	The E. Coli Manganese Superoxide Dismutase Mutant Y174F						
23	PTS system, galactitol-specific II B component	GatB	gi	194436028	16995.9	5.3	225	APH-sys
24	Sulfate ABC transporter, periplasmic sulfate-binding protein	CysP	gi	1991168981	37604.3	8.44	198	ABC-trans
25	Glutamine transporter subunit	GlnH	gi	16128777	26714.1	6.08	166	ABC-trans
26	Gluconate kinase	GmkA	gi	218998834	20787.6	5.97	352	Metabolism
27	3(‘2),5(‘3)-bisphosphate nucleotidase	CysQ	gi	188493062	27190.7	5.59	163	Metabolism
28	Lipoamide synthase	LipA	gi	297521963	35261.9	7.79	77	Metabolism
29	Nitrogenase family protein	MdA	gi	300947059	26351.7	6.45	313	Metabolism
30	Quinone oxidoreductase, NADPH-dependent	YtfG	gi	26250832	35178.6	8.86	197	Metabolism
31	ATP-dependent protease peptide subunit	HslV	gi	15804523	19081.1	5.96	139	Metabolism
32	N-acetylmuramoylmeso-5-phosphate 2-epimerase	NanE	gi	157156014	24073.4	4.89	123	PGN-syn
33	Aspartate carbamoyltransferase catalytic subunit	PyrB	gi	15804836	34457.7	6.12	105	PGN-syn
34	Grotte phosphohistidine transferase	PyrE	gi	15804183	23522.2	5.33	110	PGN-syn
35	Peptidoglycan-binding LysM	YgaI	gi	308089541	35717.7	9.42	90	PGN-syn
36	Murine L,D-transportase	YnhG	gi	16129634	36059.9	9.42	372	PGN-syn
37	Chain A, maltoporin maltose complex	LamB	gi	1941963	47355.2	4.72	633	PGN-syn
38	Uropa1272 protein ycfP	YcfP	gi	222032861	21028.7	6.13	256	Unknown
39	YbfU domain-containing protein	YbfU	gi	323973122	18964.2	6.06	493	Unknown

* Molecular weight; †, phosphotransferase system; ‡, ABC transport; §, peptidoglycan synthesis.
The comprehensive protein-protein network in the RDCS in response to AMP stress (Supplementary file 2) showed that the upregulated and downregulated proteins were likely coordinated and affected each other.

Table 2. Identity of differentially expressed protein spots (downregulated) in the RDCS with 0.5 × MIC of AMP.

Spot	Description	Accession number	MW *	pl	Score	Functional category
20	Lysine-arginine-ornithine-binding periplasmic protein	ArgT gi	26990.6	5.22	74	ABC transporter
21	Class II aldolase, tagatose bisphosphate family	GatF gi	32492.4	5.88	330	Metabolism
22	1-Phosphofructokinase	PfkB gi	33752.3	5.37	265	Metabolism
23	Glyceraldehyde-3-phosphate dehydrogenase	GapA gi	21490.9	5.92	119	Metabolism
24	Succinyl-CoA synthetase subunit alpha	SucD gi	29758.5	6.32	694	Metabolism
25	Succinate dehydrogenase, flavoprotein subunit	SdhA gi	64397.1	5.85	668	Metabolism
26	Fumarate hydratase (fumarase A), aerobic Class I	FumA gi	60207.5	6.01	780	Metabolism
27	Fructokinase	YnaA gi	32484.2	4.98	510	Metabolism
28	2-Ketogluconate reductase	GhrB gi	35302	5.5	101	Metabolism
31	Transaldolase A	TalA gi	35622.5	5.89	360	Metabolism
32	DAHP+ synthase, tryptophan repressible	AroH gi	38710.6	6.42	256	Metabolism
33	L-Lactate dehydrogenase	LldD gi	62727.7	5.12	144	Metabolism
35	Alanine racemase	DaaX gi	36021.3	6.8	137	Metabolism
36	Bifunctional acetaldehyde-CoA/alcohol dehydrogenase	AdhE gi	96096.7	6.32	146	Metabolism
37	Cysteine synthase A	CysK gi	34498.3	5.83	561	Metabolism
39	Sulphite reductase (NADPH) hemoprotein, beta-component	CysJ gi	63957.9	7.29	305	Metabolism
40	Tryptophan synthase subunit A	TrpA gi	24403.9	5.09	156	Metabolism
41	Tryptophanase	TnaA gi	52738.6	6.14	480	Metabolism
42	Tryptophanase	TnaA gi	52707.6	5.88	481	Metabolism
43	D-Amino acid dehydrogenase, small subunit	DadA gi	46966.5	6.03	144	Metabolism
44	Acetylornithine deacylase	ArgE gi	43730.1	5.54	551	Metabolism
45	Ornithine carbamoyltransferase	Argl gi	37240.7	5.45	96	Metabolism
47	3-Ketoacyl-CoA thiolase	FadA gi	44512.2	9.11	161	Metabolism
51	Chain A, E. coli glucosamine-6-P synthase in complex with glucose-6p and 3-oxo-L-norleucine	GlmS gi	66721.6	5.56	107	PGN-syn

*, molecular weight; †, 3-Deoxy-D-arabino-heptulosonate-7-phosphate; ‡, peptidoglycan synthesis.

Discussion

AMP is a β-lactam antibiotic that can bind to transpeptidases and inhibit the biosynthesis of peptidoglycan in bacterial cell walls. To gain insight into the

(Fig. 3b). The comprehensive protein-protein network in the RDCS in response to AMP stress (Supplementary file 2) showed that the upregulated and downregulated proteins were likely coordinated and affected each other.
physiological changes in the RDCS exposed to subinhibitory concentration of AMP, we analyzed the expression of proteins of RDCS in the presence of 0.5 × MIC of AMP, and detected 57 proteins that were induced or suppressed. These proteins are involved in transcription and translation regulation, bacterial SOS response, detoxifying functions, substance transportation, metabolism, and peptidoglycan synthesis (Tables 1 and 2).

Five proteins, including YcjW, RbsB, RpsB, GalS, and Ffh, were identified as transcription and translation regulation proteins. Previous reports showed that upregulation of RbsB could promote the conjugation of plasmid in *E. coli* and RpsB was an important ribosomal protein for antibiotic resistance in gram-negative bacteria. In addition, our results also showed that two Lacl-type transcriptional regulators, YcjW and GalS, were involved in the response to AMP stress. Study has indicated that Lacl-type transcriptional regulator conserved among *Mycobacteria* and *Corynebacteria* that plays a role in the regulation of cell wall biogenesis. Considering the stabilizing mechanism of AMP, so we conjecture that upregulation of YcjW and GalS may be related with negative feedback. Thus, the results suggest that transcription and translation regulation are involved in the response to AMP stress, and the proteins involved may play a role in generation and spread of drug resistance.

Seven proteins related to the bacterial SOS response, LexA, Dps, YjcC, OsmY, UspG, UspD, and SlyD, were upregulated in the presence of AMP. Our finding of Dps as an upregulated protein is an only SOS protein consistent with an earlier report describing the genomic changes in wild type *E. coli* in response to 0.5 × MIC AMP. In this study, we used *E. coli* DH5α, a recA and gyrA deficient strain as a recipient. It may be the reason why unusually high number of SOS pathway genes being affected on ampicillin treatment despite that AMP does not cause direct DNA damage in *E. coli*.

Three proteins involved in oxidative stress response and detoxifying functions were upregulated, GST, MdaB, and SodA. It is generally known that oxidative stress induces most mutagenesis, and increased expression of Gst, MdaB, and SodA could protect *E. coli* from spontaneous mutagenesis.

Surprisingly, there were 30 differential proteins (50% of the total) that were involved in metabolic pathways, such as glycometabolism and amino acid metabolism. Among these proteins, 76.7% were decreased and 23.3% were increased in the presence of AMP. It is interesting to note that 92.3% of the proteins involved in the four most affected metabolic pathways (glycolysis, gluconeogenesis, the citrate cycle, and amino acid metabolism) were decreased; whereas only two proteins, GntK and GmhA, were increased (Fig. 4a). The upregulated GntK likely promoted the accumulation of sedoheptulose-7-phosphate, which is converted by GmhA to d-glycero-d-mannoheptose in the first step of lipopolysaccharide biosynthesis. In addition, many other metabolic pathways, such as lipoic acid, polypeptide, and protein metabolism, also appear to be involved in the response to AMP. Thus, in accordance with the results of Lin X *et al.*, who showed that downregulation of metabolic pathways is required for *E. coli* to respond to chlorotetacycline stress, proteins from most metabolic pathways were downregulated in the RDCS in the presence of subinhibitory concentrations of AMP. Based on the above findings, we conclude that fluctuations in metabolic pathways may be a tactic for antibiotic resistance. Thus, the relevant proteins could be used as drug targets for the development of synergistic antibiotics.

Additionally, four translocators were differential expressed; ArgT was downregulated, and the other three including GatB, CysP and GlnH were upregulated. GatB is one of the polypeptide chains of a galactitol-specific transporter that is involved in a signaling cascade that regulates transport, metabolism, and chemotaxis. CysP, GlnH, and ArgT are parts of three different ABC transporters involved in the uptake and metabolism of sulfate, glutamine, and lysine-arginine-ornithine, respectively. We speculate their expression fluctuations may be connected with fluctuations in metabolic pathways.

In another pathway, peptidoglycan synthesis, one protein was decreased and six were increased in the presence of AMP. Previous studies have indicated that YnhG and LamB are related with AMP resistance. Our study also showed that upregulation of NanE, PyrB, PyrE, YgaU and downregulation of GlmS probably facilitate peptidoglycan synthesis (Fig. 4b). Based on the antibacterial mechanism of AMP, fluctuations in this pathway indicate that negative feedback regulation plays an important role in the mechanism underlying defense against antibiotics.
The numerous changes in protein abundance observed in the RDCS in the presence of AMP suggested that various molecular changes in many metabolic pathways occur which allow the bacteria to adapt to adverse environmental conditions. In this study, 57 identifiable proteins were classified into six functional taxonomies. Among these functional taxonomies, the SOS response and detoxifying functions are known to be important for the response to adverse environmental conditions, and peptidoglycan synthesis may be associated with negative feedback regulation. The roles of the three other pathways are still unclear, and further experiments are needed to clarify their role in the response to AMP stress. However, it is noteworthy that metabolic products such as sedoheptulose-7-phosphate, fructosamine-6-phosphate, and ribose-5-phosphate are used as substrates in peptidoglycan biosynthesis. NADPH from the pentose pathway is required for reducing glutathione by GST to protect cells. Because of the ability of SodA and MdaB to reduce the bacterial mutation rate, their increased levels in AMP treatment RDCSs may be correlated with the increased abundance of Dps, which is classified as an SOS protein. In addition, decreased arginine synthesis (Fig. 4a) has been shown to slow cell growth and proliferation. As a result, the cell
growth rate falls below the maximal growth rate, which induces the expression of UspG and UspD. Based on the above findings, we deduce that the proteins from six functional taxonomies that are induced in the RDCS in response to AMP are not independent systems. Combined with our analysis of proteins network using STRING (Fig. 3 and Supplementary file 2), we conclude that there are multiple regulatory systems in the RDCS that functions cooperatively against antibiotics stress.

Since proteomic approaches provide information on protein species, but not the activity of these proteins, it is necessary to determine the roles of proteins in biological systems using relevant metabolomics and interaction studies.

Conclusion

In this study, analysis of the differential proteome showed that a global response is activated by *E. coli* in RDCSs in response to AMP, and this response includes upregulation of proteins involved in transcription and translation, SOS response, detoxifying functions, and cell wall synthesis and downregulation of proteins involved in metabolism. Our finding of these pathways associated with AMP resistance provides clear, accurate targets for new antibiotics. Moreover, our study also showed that a complex global regulation network based on several key pathways, including metabolic pathways, is involved in the response to stress in this RDCS. These findings provide a new, more comprehensive perspective for research on the mechanism of antibiotic resistance acquisition.

Material and methods

Strains and growth conditions

Bacterial strains and plasmids used in this study are listed in Table 3. In the RDCS, *E. coli* BL21 carrying plasmid pR388 was used as the donor and *E. coli* DH5α carrying plasmid pACYC184-4 was used as the recipient.

Luria-Bertani (LB) broth (OXOID, UK) was used for bacterial growth and selective media included antibiotics as needed at the following concentrations: 50 mg/mL for chloramphenicol (CM), sulfamethoxazole (SMZ), and trimethoprim (TMP). Before coculture, the donor and recipient strains were cultured overnight at 37°C in Luria-Bertani (LB) broth supplemented with appropriate antibiotics, respectively. The bacterial cells were collected and washed three times in phosphate buffered saline for subsequent testing.

Minimal inhibitory concentration (MIC) determination

MICs were determined using the standard microdilution method recommended by the Clinical and Laboratory Standards Institute. Serial dilutions (216-0.125 μg/mL) of AMP were prepared in Müller-Hinton broth (Oxoid) in a volume of 50 μL per well in a 96-well plate, and then 50 μL of bacterial solution (1 × 10⁶ CFU/mL) was added. The plate was incubated for 18 h at 37°C without shaking. The lowest concentration of AMP without visible bacterial growth was defined as the MIC. MIC determinations were done in duplicate and as a minimum repeated thrice.

Determination of the optimum duration of exposure to AMP

The donor and the recipient strains were cultured overnight in LB broth supplemented with 50 μg/mL SMZ and TMP or 50 μg/mL CM, respectively. Collected cells from the overnight cultures were washed three times in phosphate buffered saline, and resuspended in LB broth (without antibiotics) and diluted to an OD₆₀₀ of ~0.1. Then mix up the donor suspension with the recipient suspension at the ratio of 2:1 quickly. Five milliliters of the mixture was transferred...
into two Erlenmeyer flasks containing 100 mL of LB broth (0.5 µg/mL of AMP were added into one of the flasks, and an equal volume of water was added to the other flask as a control), and the flask was incubated at 37°C with rotary shaking (200 rpm). At intervals of 2 h, the bacterial suspensions were serially diluted and plated in triplicate on LB-C, LB-ST, and LB agar plates supplemented with 50 µg/mL CM, SMZ, and TMP (LB-STC). Data represent the mean at least three biological replicates.

Proteome analysis

Cells were collected after 6 h of culture with either 0.5 µg/mL of AMP or water, and then washed with phosphate buffered saline three times. A portion of the collected cells was used for protein extraction, and the remaining cells were preserved at -80°C for subsequent total RNA purification. For the proteome analysis, 2-DE, gel image analysis, and MALDI TOF MS spectrometry were employed, as previously described. In brief, 2-DE was performed using pH 3-10 IPG gel strips (17 cm; Bio-Rad) and 12.5% SDS polyacrylamide gels in a Protean IEF Cell (Bio-Rad) with a Universal PowerPac (Bio-Rad). The gels were stained with silver and analyzed using ImageMaster 2D Elite 5.0 software (GE Healthcare). This program grouped the gel images into two classes containing biological triplicates of each condition: EC-C (RDCS without AMP) and EC-A (RDCS with 0.5 µg/mL of AMP).

MALDI TOF MS spectrometry analysis was conducted using a 4800 plus MALDI TOF/TOF Analyzer (Applied Biosystems) according to the method of Rao et al. The search parameters were as follows: taxonomy restrictions to Bacteria and trypsin digestion with one missed cleavage allowed. Proteins with a score above the threshold (p < 0.05) were considered positive. Proteomics experiments were repeated six times.

RT-PCR

Total RNA extraction and reverse transcription were performed using the RNAiso Plus Kit and PrimeScriptTM RT reagent Kit, respectively, according to the manufacturer’s (Takara) instructions. The primers used are shown in Supplementary file 3. The E. coli 16S rRNA gene was amplified as the internal control. The RT-PCR protocol and reaction mixture, which included SYBR® Premix Ex Taq™ II (Takara), were according to the manufacturer’s instructions. The quantitative PCR data were analyzed using the relative expression software tool REST2009 v2.0.13.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by the State Key Lab of Respiratory Disease, Guangzhou Medical College (2012-2014); Project of Guangdong Province training outstanding young university teachers [Yq2013117]; the National Natural Science Foundation of China [31201363] and the Science and Technology Planning Project of Guangdong Province, China [2014A020214001].

References

[1] Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7:e1002158. doi:10.1371/journal.ppat.1002158. PMID:21811410

[2] Laureti L, Matic I, Gutierrez A. Bacterial responses and genome instability induced by subinhibitory concentrations of antibiotics. Antibiotics. 2013;2:100-14. doi:10.3390/antibiotics2010100. PMID:27029295

[3] Andersson DI, Hughes D. Microbiological effects of sub-lethal levels of antibiotics. Nat Rev Microbiol. 2014;12(7):465-78. doi:10.1038/nrmicro3270. PMID:24861036

[4] Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006;119:S3-10. doi:10.1016/j.amjmed.2006.03.011. PMID:16735149

[5] Cantas L, Middlyng PJ, Serum H. Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiol. 2012;12:37. doi:10.1186/1471-2180-12-37. PMID:22429905

[6] Klümper U, Droumpali A, Dechesne A, Smets BF. Novel assay to measure the plasmid mobilizing potential of mixed microbial communities. Front Microbiol. 2014;5:730. PMID:25566238

[7] Schuurmans JM, Piet JR, Händel N, Smelt J, Brul S, ter Kuile BH. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains. Plasmid. 2014;72:1-8. doi:10.1016/j.plasmid.2014.01.002. PMID:24525238

[8] dos Santos K, Diniz CG, Veloso Lde C, de Andrade HM, Giusta Mda S, Pires Sda F, Santos AV, Apolônio AC, de Carvalho MA, Farias Lde M. Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol. 2010;161:268-75. doi:10.1016/j.resmic.2010.03.006. PMID:20381611
[9] Vashist J, Tiwari V, Kapil A, Rajeswari MR. Quantitative profiling and identification of outer membrane proteins of β-lactam resistant strain of Acinetobacter baumannii. J Proteome Res. 2010;9:1121-8. doi:10.1021/pr9011188. PMID:20041708

[10] Gutierrez A, Laureti L, Crussard S, Abida H, Rodriguez-Rojas A, Blázquez J, Baharoglu Z, Mazel D, Darfeuille F, Vogel J, et al. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replica fidelity. Nat Commun. 2013;4:1610. doi:10.1038/ncomms2607. PMID:23511474

[11] Torbochkina LI. Molecular mechanism of inhibition of biosynthesis of peptidoglycan of bacterial cell walls by antibiotics. Antibiotiki. 1970;15:465-76. PMID:4915727

[12] Zhang PY, Xu PP, Xia ZJ, Wang J, Xiong J, Li YZ. Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol Lett. 2013;348:149-56. doi:10.1111/1574-6968.12282. PMID:24111668

[13] Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother. 2003;47:3675-81. doi:10.1128/ AAC.47.12.3675-3681.2003. PMID:14638464

[14] Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J. IpaA, a novel LcrV-type regulator, is required for inositol-derived lipid formation in Corynebacteria and streptomycin promotes the conjugation of Escherichia coli. FEMS Microbiol Lett. 2013;348:149-56. doi:10.1111/1574-6968.12282. PMID:24111668

[15] Sanchez-Alberola N, Campoy S, Emerson D, Barbe J, Erill I. An SOS regulon under control of a noncanonical LexA-binding motif in the Betaproteobacteria. J Bacteriol. 2015;197:2622-30. doi:10.1128/JB.00035-15. PMID:25986903

[16] Moore JM, Magnan D, Mojica AK, Nunez MA, Bates D, Rosenburg SM, Hastings PJ. Roles of nucleoid-associated proteins in stress-induced mutagenic break repair in starving Escherichia coli. Genetics. 2015;201:1349-62. doi:10.1534/genetics.115.178970. PMID:26500258

[17] Kuchinski KS, Brimacombe CA, Westbye AB, Ding H, Beatty JT. The SOS response master regulator LexA regulates the gene transfer agent of rhodobacter capsulatus and represses transcription of the signal transduction protein CckA. J Bacteriol. 2016;198:1137-48. doi:10.1128/JB.00035-15. PMID:26833411

[18] Bernstein C, Bernstein H, Payne CM, Beard SE, Schneider J. Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol. 1999;39:68-72. doi:10.1007/s002849900420. PMID:10398829

[19] Diez A, Gustavsson N, Nyström T. The universal stress protein A of Escherichia coli is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway. Mol Microbiol. 2000;36:1494-1503. doi:10.1046/j.1365-2958.2000.01979.x. PMID:10931298

[20] Iida T, Furutani M, Nishida F, Maruyama T. FKBP-type peptidyl-prolyl cis-trans isomerase from a sulfur-dependent hyperthermophilic archaean, Thermococcus sp. KS-1. Gene. 1998;222:249-55. doi:10.1016/S0378-1119(98)00484-3. PMID:9831660

[21] Shaw Kj, Miller N, Liu X, Lerner D, Wan J, Bittner A, Morrow BJ. Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J Mol Microbiol Biotechnol. 2003;5:105-22. doi:10.1159/000069981. PMID:12736533

[22] Xu C, Lin X, Ren H, Zhang Y, Wang S, Peng X. Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics. 2006;6:462-73. doi:10.1002/pmic.200500219. PMID:16372265

[23] Ghanem S. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance. Genet Mol Res. 2011;10:1445-54. doi:10.4238/vol10-3gmr1334. PMID:21823094

[24] Lynch MC, Kuramitsu HK. Role of superoxide dismutase activity in the physiology of Porphyromonas gingivalis. Infect Immun. 1999;67:3367-75. PMID:10377114

[25] Lovric E, Gatalica Z, Eyzaguirre E, Kruslin B. Expression of maspin and gluthationine-S-transferase-pi in normal human prostate and prostatic carcinomas. Appl Immunohistochem Mol Morphol. 2010;18:429-32. PMID:20453817

[26] Joseph P, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH: P450 reductase-activated metabolites of benzo(a)pyrene quinones. Br J Cancer. 1998;77:709-19. doi:10.1038/bjc.1998.117. PMID:9514048

[27] Ruiz-Laguna J, Prieto-Alamo MJ, Pueyo C. Oxidative mutagenesis in Escherichia coli strains lacking ROS-scavenging enzymes and/or 8-oxoguanine defenses. Environ Mol Mutagen. 2000;35:22-30. doi:10.1002/(SICI)1098-2280(2000)35:1%3c22::AID-EM4%3e3.0.CO;2-X. PMID:10692224

[28] Brooke JS, Valvano MA. Biosynthesis of inner core lipopolysaccharide in enteric bacteria characterization and identification of a conserved phosphoheptose isomerase. J Biol Chem. 1996;271:3608-14. doi:10.1074/jbc.271.7.3608. PMID:8631969

[29] Lin X, Kang L, Li H, Peng X. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlorotetracycline stress. Mol Biosyst. 2014;10:901-8. doi:10.1039/C3MB70522F. PMID:24510206

[30] Volpon L, Young CR, Matte A, Gehring K. NMR structure of the enzyme GatB of the galactitol-specific phosphoenolpyruvate-dependent phosphotransferase system and its interaction with GatA. Protein Sci. 2006;15:2435-43. doi:10.1110/ps.062337406. PMID:16963640

[31] Nohno T, Saito T, Hong JS. Cloning and complete nucleotide sequence of the Escherichia coli genome. Mol Genet Genomics. 1998;259:1%3c22::AID-EM4%3e3.0.CO;2-X. PMID:10398829

[32] Sirko A, Zatyka M, Sadowy E, Hulanicka D. Sulfate transport in Escherichia coli. J Bacteriol. 2004;186:2280(2000)35:1%3c22::AID-EM4%3e3.0.CO;2-X. PMID:10692224

[33] Bernath M, Pizzolato MA. 8-Oxoguanine repair and DNA damage. Curr Opin Genet Dev. 2002;12:479-86. doi:10.1016/S0959-437X(02)00053-X. PMID:12143350

[34] Seki S, Kato H, Yamazaki T, Endo H. Analysis of the Ntr operon of Escherichia coli. Mol Gen Genet. 1986;205:260-7. doi:10.1007/BF00430437. PMID:3027504
sulfate- and thiosulfate-binding proteins. J Bacteriol. 1995;177:4134-6. doi:10.1128/jb.177.14.4134-4136.1995. PMID:7608089

[33] Triboulet S, Dubée V, Lecoq L, Bougault C, Mainardi JL, Rice LB, Ethève-Quelquejeu M, Gutmann L, Marie A, Dubost L, et al. Kinetic features of L,D-transpeptidase inactivation critical for beta-lactam antibacterial activity. PLoS One. 2013;8:e67831. doi:10.1371/journal.pone.0067831. PMID:23861815

[34] Rowley G, Spector M, Kormanec J, Roberts M. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol. 2006;4:383-94. doi:10.1038/nrmicro1394. PMID:16715050

[35] Hlaváček J, Pícha J, Vanek V, Jirácek J, Slaninová J, Fucík V, Buděšínský M, Gilner D, Holz RC. Inhibitors of N (alpha)-acetyl-L-ornithine deacetylase: synthesis, characterization and analysis of their inhibitory potency. Amino Acids. 2010;38:1155-64. doi:10.1007/s00726-009-0326-8. PMID:19649769

[36] Nyström T, Neidhardt FC. Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest. Mol Microbiol. 1994;11:537-44. doi:10.1111/j.1365-2958.1994.tb00334.x. PMID:8152377

[37] Veloso Lde C, dos Santos KV, de Andrade HM, Pires Sda F, dos Santos SG, Vaz Trindade MJ, de Farias Lde M, de Carvalho MA. Proteomic changes in Bacteroides fragilis exposed to subinhibitory concentration of piperacillin/tazobactam. Anaerobe. 2013;22:69-76. doi:10.1016/j.anaerobe.2013.04.007. PMID:23618673

[38] Rao AA, Patkari M, Reddy PJ, Srivastava R, Pendharkar N, Rapole S, Mehra S, Srivastava S. Proteomic analysis of Streptomyces coelicolor in response to Ciprofloxacin challenge. J Proteomics. 2014;97:222-34. doi:10.1016/j.jprot.2013.08.013. PMID:23994098