Method Development and Validation of Anabasine and Nornicotine in Human Plasma by LC-MS/MS

P. Rajagopaludu1*, N. Saritha2, N. devanna3 and M. Srinivas4

1Department of Chemistry, Research Scholar Jntua, Anantapur, A.P, India.
2Department of Chemistry, Jntuace, Kalikiri, Chittoor Dist, A.P, India.
3Department of Chemistry, Director Otpri, Jntua, Anantapur, A.P, India.
4Acubio-systems PVT.LTD, Hyderabad-500078, T.S, India.

Authors' contributions

This work was carried out in collaboration among all authors. Author PR designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors NS and ND managed the analyses of the study. Authors ND and MS managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i1731301
Editor(s):
(1) Dr. Syed A. A. Rizvi, Nova Southeastern University, USA.
Reviewers:
(1) Mohan Gandhi Bonthu, Andhra University, India.
(2) Mahmoud Sebaiy, Wake Forest University, USA.
Complete Peer review History: http://www.sdiarticle4.com/review-history/66489

ABSTRACT

Aim: For the Method development and validation of Anabasine and Nornicotine in human plasma LC-MS/MS technique is used.

Methodology: Operated in positive electron spray ionization which removes the hardness in ions. Metoprolol is used as an internal standard. Mass analyzers are used to determine the mass to charge ratio. Liquid chromatography separates mixture components in the basis of differences in affinity for stationary and mobile phase. It removes undesired impurities. It increases reproducibility, sensitivity, robustness, detection of low-level proteins. C18 Column (Phenomenex Luna C18, 5 μm, 50*4.6mm ID) is used to for high resolution and peak area. Calibration curve is constructed with the help of linear regression. During the entire process no instability is found.

Results: m/z values of Anabasine are 162.84(Q1), 134.68(Q3) and for Nornicotine are 148.90(Q1), 79.82(Q3). Back calculated curve is calculated at different concentrations from 1-1000ng/ml and their accuracy range from 97-105% for Anabasine and 93-108% for Nornicotine. In Anabasine and Nornicotine the precision and accuracy are calculated by Intra-batch and inter-batch. In the process
of multi-step preparation, consider n=6 for intra-batch and n=18 for inter-batch the values obtained are between the nominal concentrations i.e., 90-110%. For each analyte the coefficients of variation are below nominal criteria <15%. For Anabasine and Nornicotine the average recovery rate is 98.3% and 94.3%.

Keywords: Nornicotine; anabasine; LC-MS/MS; metoprolol; ESI; pooled human plasma.

1. INTRODUCTION

Nornicotine is also known as 3-pyrrolidin-2-ylpyridine. Its molecular formula is C₉H₁₀N₂. Nornicotine don't contain methyl group except that it is similar to nicotine [1] and in threatening and dispensation of tobacco [2] it acts as antecedent for the cancer-causing agent N-nitrosonornicotine. Nornicotine activates certain receptors in the brain mainly in neuronal communication which converts neurotransmitter binding into membrane electrical depolarization. It bounds to nicotine acetylcholine receptors which increases dopamine related activity in the brain in cortico-limbic ways. This results in allowing the cations of Na, Ca, K in multiple ways leads to conductance. It results in movement of cells membrane potential to a more positive value initiates the channel to open and close in responses to changes in the membrane potential of a cell and permits calcium to pass in to axon. Calcium arouses a small sac to move over plasma membrane and release dopamine into nerve impulse passes from one nerve cell to another nerve cell. The addictive properties of nornicotine were obtained from the receptors which are bound to dopamine [3]. In the adrenal medulla Nornicotine bounds to nicotinic acetylcholine in pheochromocytes. Voltage-gated calcium channels are activated due to binding opens the ion channel flowing sodium leads to depolarization of the cell. Calcium initiates the release of adrenaline into cytosol vesicles causes decrease in the diameter of blood vessels and increase in BP, Pulse and glucose levels.

Anabasine is also known as 3-(piperidin-2-yl)pyridine. Its molecular formula is C₁₀H₁₂N₂. It activates certain receptors in brain and triggers the neuromuscular transmission. It is vulnerable to temperature and dampness and is an unbalanced yellow liquid. It was seen in plant stem and virtual relation between tobacco plant [4]. It is an analog to nicotine [5,6]. It is used as an insect repellent in industrial areas. It is detected in tobacco smoke and in urine [7]. The action of acetyl cholinesterase is suppressed by cholinesterase inhibitor. With this crucial function chemicals get involved with acetyl cholinesterase leads to muscle contractions and eventually death.

According to literature survey for the assessment Nornicotine HPLC-UV [8], LC-MS [9,10] and Anabasine GC-MS [11,12], HPLC-MS [13], LC-MS [14-17] analytical methods were used. Our present work studied about the method development and validation of Anabasine and Nornicotine in human plasma by liquid chromatography and mass spectrometry in human plasma. Several parameters are validated such as linearity, recovery, precision and accuracy, specificity, stability.

![Fig. 1. Structures of Anabasine and Nornicotine](image)

2. METHODOLOGY

2.1 Chemicals and Reagents

Standard working conditions of Anabasine and Nornicotine was attained from Akshaya labs, India. Acetonitrile of HPLC grade by Merck, Ammonium Acetate AR grade obtained from Qualigens fine chemicals and water HPLC grade from Milli-Q RO system were used.

2.1.1 LC-MS/MS instrumentation and chromatographic conditions

Waters TQD LC-MS/MS is used to separate mixture components on the basis of differences in affinity for stationary and mobile phase and removes undesired impurities. LC setup consists of online DGU-20A3 soluble degasser, segment boiler CTO20A, LC20AD drives-2, SIL-HTc sampler, detectors, column. C18 (Phenomenex Luna C18, 5 μm, 50*4.6mm ID) column is used for better retention. LC-MS/MS instrument
Electron spray ionization which is used to overcome the problem of hard ionization. It should have sample of interest in solution and can use the inline separation along with the liquid chromatography. ESI produces multiple charged ions. LC-MS/MS operates in positive ion mode using at collision gas:20, cone gas:20, Desolvation gas:700, source temperature :150°C. Chromatographic conditions are mentioned below.

- **HPLC**: Waters acquity UPLC
- **Pump mode**: Binary gradient
- **Total flow**: 0.2 mL
- **Injection volume**: 10 µL
- **Mobile Phase A**: 0.1% Formic acid in water
- **Mobile Phase B**: 100% Acetonitrile

2.2 Optimization of MS Parameters

With the concentration of 500ng/mL multi-reaction monitoring setting were determined by using infusion of each analyte. Table 1 shows the MS parameters of Anabasine and Nornicotine.

2.3 Preparation of Stock Solution

Dissolve 100mg of Anabasine and Nornicotine by using Acetonitrile and water with 1:1 ratio to obtain a solution of 1mg/ml. solution should be stored at 8°C. The standard stock solution is kept at mobile phase from -2 ± 20 C.

2.4 Selection of HPLC Column

Initially C8 columns were tested and it results in poor separation and peak value. Factors such as mobile phase and PH values were also results in no improvement in chromatographic separation. Finally, C18 results in good resolution. LC which makes use of C18 capillary columns are used for their ability to achieve final separations. For these separated components passed from the column outlet into the flow cell, which is present in the detector. The most commonly used detector is uv detector.

2.5 Internal Standard Selection

By using the metoprolol as an internal standard positive mode analysis is carried out. Anabasine and Nornicotine needs neutral PH after extraction but Metoprolol requires acidic PH which is equally diluted with H₂O for supernate. It results in good resolution and elution.

3. RESULTS AND DISCUSSION

3.1 Validation

Establish the acceptability criteria for each component of the analytical validation before the start of validation i.e., regulatory experiments, guidance documents and biological variation. Validation determines the accuracy, precision, sensitivity, linearity, specificity, matrix effects, carryover etc. pre-validation testing overlaps with method development. It needs blank matrix for best practice acceptability criteria such as no peak or peak area <20% of analyte LLOQ and <5% of internal standard. According to the FDA guidelines acceptability criteria of precision is <15% and bias<15%. At first determine this method is appropriate for concentration determination of target analytes. Start with the construction of calibration curve and the range should be 1-1000ng/ mL. Metoprolol is used as an internal standard.

3.1.1 Construction of calibration curve

By using the same plasma on alternate days prepare the quantitation standards of five replicate sets and prepare the stock solution with 9 different concentration levels. And these are termed as intra-day and inter-day data. This results in the reproducibility and robustness. The main purpose is Quantified lowest level should be assessed. The peak area is calculated from the extracted ion to the internal standard. Linear response is obtained by regression.

Chart 1. Gradient time programme

Time (min.)	%B	Events
0.00	80	Pump B conc.
1.50	80	Pump B conc.
4.00	98	Pump B conc.
4.01	80	Pump B conc.
6.00	80	Pump B conc.
Table 1. Anabasine and Nornicotine MS/MS conditions

Parameter	Value
Ionization type and polarity	Electron spray ionization, +ve ion mode
Ion source	Turbo spray
Scan type	MRM
Q1 Resolution	Unit (1)
Q3 Resolution	Unit (0.75)
Desolvation Temperature	450°C
Source temperature	150°C
Collision Gas:	20
Cone Gas:	20
Desolvation Gas:	700

Fig. 2a. Product ion mass spectra of Anabasine in positive ionization mode

Fig. 2b. Product ion mass spectra of Nornicotine in positive ionization mode
Fig. 3. Representative example of LLOQ chromatogram for Anabasine and Nornicotine

Fig. 4. Representative example of LQC chromatogram for Anabasine and Nornicotine

Fig. 5. Representative example of MQC chromatogram for Anabasine and Nornicotine
Table 2. MRM transition conditions

Compound	Mode of ionization	Q1 mass (m/z)	Q3 mass (m/z)	CE	Cone voltage
Anabasine	+ve	162.84	134.68	4	92
Nornicotine	+ve	148.90	79.82	22	32
Metoprolol	+ve	268.3	116.3	30	68

Table 3. Anabasine back calculated curve data in human plasma

Std conc.	Concentration (ng/mL)	Batch-1	Batch-2	Batch-3	Mean	SD	% CV	%Accuracy
1	1.0	0.99	1.01	1	1	0.01	1	100.0
2	1.76	2.03	1.94	1.94	1.94	0.137477	7.086457	97.0
10	9.99	9.93	10.33	9.99	9.99	0.215716	2.159318	99.9
50.01	49.87	52.20	53.01	52.2	52.2	1.630164	3.122919	104.4
200.03	214.16	208.38	197.24	208.38	208.38	8.600333	4.127235	104.1
500.06	496.38	500.38	458.10	496.38	496.38	23.34151	4.702347	99.2
800.1	826.37	792.35	784.10	792.35	792.35	22.40601	2.827792	99.0
900	796.10	888.24	907.78	888.24	888.24	59.6434	6.714785	98.7
1000	1038.8	947.23	986.5	986.5	986.5	45.98623	4.661554	98.7

Table 4. Nornicotine back calculated curve data in human plasma

Std conc.	Concentration (ng/mL)	Batch-1	Batch-2	Batch-3	Mean	SD	% CV	%Accuracy
1	0.9	1.0	0.9	0.9	0.9	0.1	7.7	93.7
2	2.1	1.9	2.4	2.1	2.1	0.2	11.3	106.5
10	9.4	9.3	9.7	9.5	9.5	0.3	2.7	94.5
50.01	43.9	49.0	46.7	46.5	46.5	2.6	5.6	93.0
200.03	228.1	205.5	212.7	215.5	215.5	11.5	5.4	107.7
500.06	538.1	494.5	507.4	507.4	507.4	26.7	5.3	101.5
800.1	766.7	851.7	792.1	803.5	803.5	43.6	5.4	100.4
900	908.2	905.3	904.2	905.9	905.9	2.1	0.2	100.7
1000	966.2	968.7	981.8	972.2	972.2	8.4	0.9	97.2
Table 5. Precision and accuracy for Anabasine

S.NO	Batch-1	Batch-2	Batch-3						
	LQC	MQC	HQC	LQC	MQC	HQC	LQC	MQC	HQC
1	3.27	573.35	844.75	2.98	566.73	848.07	3.02	597.46	870.47
2	3.89	553.67	840.38	3.06	575.67	850.89	3.04	587.46	870.47
3	3.26	547.99	874.89	2.93	596.06	837.77	3.25	563.43	805.62
4	2.96	519.6	793.54	3.46	593.84	826.7	3.34	507.95	878.78
5	3.61	517.41	828.66	2.95	594.14	835.19	3.72	563.48	846.46
6	3.59	535.38	832.12	3.61	597.87	845.17	3.52	519.61	844.23
MEAN	3.43	541.23	835.72	3.36	578.21	836.49	3.36	558.39	868.91
SD	0.24	21.46	4.0	0.30	30.51	9.14	0.24	38.02	54.79
%CV	6.8	3.2	1.1	7.1	6.3	6.3	6.3	6.3	6.3

Table 6. Precision and accuracy for Nornicotine

S.NO	Batch-1	Batch-2	Batch-3						
	LQC	MQC	HQC	LQC	MQC	HQC	LQC	MQC	HQC
1	3.66	564.42	824.86	3.29	581.71	908.06	3.69	526.66	871.61
2	3.43	538.76	820.61	3.45	598.8	886.05	3.73	557.89	859.98
3	3.31	540.21	865.81	3.8	561.94	884.34	3.86	521.97	880.31
4	3.38	509.32	810.24	3.4	557.36	851.72	3.92	578.67	849.07
5	3.27	512.6	809.54	3.33	544.31	869.28	3.73	589.86	860.21
6	3.88	567.98	863.54	3.21	566.67	882.17	4.02	598.48	880.96
MEAN	3.49	538.88	832.43	3.41	568.47	880.27	3.83	562.26	867.02
SD	0.24	24.76	25.87	0.21	19.23	18.77	0.13	32.41	12.73
%CV	6.8	4.6	3.1	6.1	3.4	2.1	3.4	5.8	1.5

3.1.2 MRM transitions: Production determination

In MRM Q3 detects the product ions and scans the stream of ion fragments, which are emerging from the collision cell to generate a collision induced dissociation spectrum. The spectrum consists of multiple product ions and their respective precursor ions. Anabasine and Nornicotine is present in liquid form and ions are created by spraying the dilute solution of the analyte at atmospheric pressure. These ions are then accelerated towards the mass analyzer depending upon their mass to charge ratio. At each stage collision energies are differing.

3.2 Linearity

In order to determine the linearity, the stock solutions of Anabasine and Nornicotine where taken at five level concentrations ranges from 85% to 115%. In the same concentration tests were carried out for three successive days. By using least squares linear regression analysis peak area Vs concentration data was analyzed. For calibration curve coefficient of correlation was >0.99.

3.3 Accuracy and Precision

Evaluation of agreement between LC-MS/MS test results and true value is called Accuracy. In Anabasine and Nornicotine the precision and accuracy are calculated by Intra-batch and inter-batch. In the process of multi-step preparation, consider n=6 for intra-batch and n=18 for inter-batch the values obtained are between the nominal concentrations i.e., 90-110%. For each analyte the coefficients of variation are below nominal criteria <15%.

3.4 Sensitivity

Sensitivity is depicted by lower limit of quantitation. It is the lowest concentration that can be reproducibly measured. It determined by the imprecision i.e., <20% at LLOQ. It is determined by signal to noise ratio.

3.5 Recovery

For Anabasine and Nornicotine the average recovery rate is 98.3% and 94.3%. Recovery rate of Anabasine and Nornicotine in human plasma from LQC is 98.6% and 92.3% and MQC is 97.7% and 94.9% and HQC is 98.4% and 95.8%.
Table 7. Intra and Inter-run precision and Accuracy for Anabasine and Nornicotine

	Concentration (ng/ml)	Anabasine			Nornicotine		
		LQC 3.5	**MQC(550)**	**HQC (850)**	**LQC (3.5)**	**MQC (550)**	**HQC (850)**
BATCH-1		3.43	541.23	835.72	3.49	538.88	832.43
(N=6)		0.33	21.46	26.38	0.24	24.76	25.67
		9.6	4	3.2	6.8	4.6	3.1
		98.0	98.4	98.32	99.7	98.0	97.9
BATCH-2		3.15	578.21	836.49	3.41	568.47	880.27
(N=6)		0.3	30.51	9.14	0.21	19.23	18.27
		9.57	5.3	1.1	6.1	3.4	2.1
		90.0	105.1	98.4	97.4	103.4	103.6
BATCH-3		3.33	558.39	868.91	3.83	563.26	867.02
(N=6)		0.24	38.02	54.79	0.13	32.41	12.73
		7.14	6.8	6.3	3.4	5.8	1.5
		95.1	101.5	102.2	109.4	102.4	102.0
		3.3	559.3	847.0	3.6	556.9	859.9
INTER-BATCH		0.1	18.5	18.9	0.2	15.8	24.7
(N=18)		4.3	3.3	2.2	6.2	2.8	2.9
		94.3	101.7	99.6	102.9	101.3	101.2

Table 8. Recovery data of Anabasine

	LQC Area (Counts)	**MQC Area (Counts)**	**HQC area (Counts)**			
Aqueous		**Extracted**	**Extracted**			
S.NO	**LQC Area (Counts)**	**MQC Area (Counts)**	**HQC area (Counts)**			
1	29497	28976	876490	899345	1320233	1298436
2	29563	29043	897169	812376	1379846	1398754
3	29339	28764	895361	853582	1368995	1378653
4	29776	29134	864128	842165	1389142	1381342
5	29345	28954	877177	893472	1432822	1367399
6	28435	28765	867591	854312	1569104	1498760
MEAN AREA		**Extracted**	**Extracted**			
	29326	28939	879653	859209	1410024	1387224
% RECOVERY		**Extracted**	**Extracted**			
	98.6	97.7	98.4	98.4		

AVG. %RECOVERY= 98.3; SD= 0.47; CV= 0.48
Fig. 6. Representative example of HQC chromatogram for Anabasine and Nornicotine

Table 9. Recovery data of Nornicotine
S.NO
1
2
3
4
5
6
MEAN AREA
% RECOVERY
AVG. %RECOVERY= 94.3; SD= 1.82; CV= 1.93

Table 10. Showing recovery data of Anabasine and Nornicotine
Analyte
Anabasine
Nornicotine

3.6 Stability

Stability can be determined by three ways i.e., Freeze-thaw, auto-sampler and Bench-top stability. For n=6, LQC, MQC and HQC samples are validated by using Freezing and thawing for three cycles, and in Auto-sampler stability these values are validated by keeping them in auto-sampler for 24 hours at 4°C and in bench-top stability these samples are validated by keeping them at room temperature for 4hours. By comparing the obtained values with the fresh samples, the precision and accuracy are within the range and no instability is found during the entire process.

4. CONCLUSION

This method describes the development and validation of Anabasine and Nornicotine in human plasma by LC-MS/MS. Metoprolol is used as an internal standard and should be operated in positive ion mode. The average recovery of Anabasine is 98.3% and Nornicotine is 94.3%. For n=6 samples the stability is calculated, and no instability is found during the process. The sensitivity is determined by LLOQ. Linearity ranges from 85-115%.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.
CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

The author is thankful to Dr N Saritha for providing samples of drugs.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Balazs Siminszky, Lily Gavilano, Steven W Bowen, Ralph E Dewey. Conversion of nicotine to nornicotine in nicotiana tabacum is mediated by cyp82e4, a cytochrome p450 monooxygenase. Proceedings of the national academy of sciences. 2005;102 (41):14919–14224.

2. Griffith RB, Valleau WD, Stokes GW. Determination and inheritance of nicotine to nornicotine conversion in tobacco. Tabacco Science. 1955;4(121):343-344. PMID:13237990.

3. Jeffrey I. Seeman, Charles G. Chavdarian, Henry V. Secor. Synthesis of the enantiomers of nornicotine. J. Org. Chem. 1985; 50(25): 5419–5421. Available:https://doi.org/10.1021/jo00225a094

4. Brenda B. Suh-Lailam, Carrie J. Haglock-Adler, Heidi J. Carlisle, Trent Ohman, Gwendolyn A. McMillin. Reference Interval Determination for Anabasine: A Biomarker of Active Tobacco Use. Journal of Analytical Toxicology. 2014;38(7):416–420. Available:https://doi.org/10.1093/jat/bku059.

5. Allan B. Watson, Alison M. Brown, Ian J. Colquhoun, Nicholas J. Walton, David J. Robins. Biosynthesis of anabasine in transformed root cultures of Nicotiana species. J. Chem. Soc., Perkin Trans. 1990;1:2607-2610.

6. Edward. Leete, Eduardo G. Gros,Terry J. Gilbertson. The biosynthesis of anabasine. origin of the nitrogen of the piperidine ring. Journal of the American Chemical Society. 1964; 86(18):3907–3908. Available:https://doi.org/10.1021/ja01072a090.

7. Jongwon Oh, Min-Seung Park, Mi-Ryung Chun, Jung Hye Hwang, Jin-Young Lee, Jae Hwan Jee, Soo-Youn Lee. A simple and high-throughput lc–ms-ms method for simultaneous measurement of nicotine, cotinine, 3-oh cotinine, nornicotine and anabasine in urine and its application in the general korean population. Journal of Analytical Toxicology. Available:https://doi.org/10.1093/jat/bkaa177

8. Nahid Moghbel, BoMi Ryu, Kathryn J Steadman. A reversed-phase HPLC-UV method developed and validated for simultaneous quantification of six alkaloids from Nicotiana spp. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1(997):142-5. DOI: 10.1016/j.jchromb.2015.06.006.

9. Teresa R.Gray, Diaa M.Shakleya, Marilyn A.Huestis. Quantification of nicotine, cotinine, trans-3′-hydroxycotinine, nornicotine and norcotinine in human meconium by liquid chromatography/tandem mass spectrometry. Journal of Chromatography B. 2008; 863(1):107-114. Available:https://doi.org/10.1016/j.jchromb.2008.01.001

10. Chao Yuan, Justin Kosewicz, Sihe Wang A simple, fast, and sensitive method for the measurement of serum nicotine, cotinine, and nornicotine by LC–MS/MS. Journal of Separation Science. 2013;36(15):2394-2400. Available:https://doi.org/10.1002/jssc.201300220

11. Mizrahi N, Levy S, Goren ZQ. Fatal poisoning from nicotiana glauca leaves: identification of anabasine by gas-chromatography / mass spectrometry. Journal of Forensic Sciences. 2000; 45(3):736–41. Pmid 10855991

12. Jacob P, Ill Yu L, Liang G, Shulgin AT, Benowitz NL. Gas chromatographic-mass spectrometric method for determination of anabasine, anatabine and other tobacco alkaloids in urine of smokers and smokeless tobacco users. J. Chromatogr. B Biomed. Appl. 1993;619:49–61.

13. Binnian Wei, June Feng, Imran J.Rehmani, Sharyn Miller, James E.McGuffey,
Benjamin C. Blount, Lanqing Wang. A high-throughput robotic sample preparation system and HPLC-MS/MS for measuring urinary anatabine, anabasine, nicotine and major nicotine metabolites. Clinica Chimica Acta. 2014; 436:290-297. Available: https://doi.org/10.1016/j.cca.2014.06.012

14. Linda B. von Weymarn, Nicole M. Thomson, Eric C. Donny, Dorothy K. Hatsukami, Sharon E. Murphy. Quantitation of the minor tobacco alkaloids nornicotine, anatabine, and anabasine in smokers’ urine by high throughput liquid chromatography–mass spectrometry. Chem. Res. Toxicol. 2016;29(3):390–397.

15. Andrew N. Hoofnagle, Thomas J. Laha, Petrie M. Rainey, Sayed M.H. Sadrzadeh. Specific Detection of Anabasine, Nicotine, and Nicotine Metabolites in Urine by Liquid Chromatography–Tandem Mass Spectrometry. American Journal of Clinical Pathology. 2006;126(6):880–887. Available:https://doi.org/10.1309/LQ8U3UL956ET324X

16. Hoofnagle AN, Laha TJ, Rainey PM, Sadrzadeh SMH. Specific detection of anabasine, nicotine, and nicotine metabolites in urine by liquid chromatography-tandem mass spectrometry. Am J Clin Pathol. 2006;126:880–887.

17. Xu X, Iba MM, Weisel CP. Simultaneous and sensitive measurement of anabasine, nicotine, and nicotine metabolites in human urine by liquid chromatography—tandem mass spectrometry. Clin Chem.2004;50(12):2323–2330.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/66489