Meson-baryon coupling constants of the SU(3) baryons with flavor SU(3) symmetry breaking

Ghil-Seok Yang1, and Hyun-Chul Kim2,3

1Department of Physics, Soongsil University, Seoul 06978, Republic of Korea
2Department of Physics, Inha University, Incheon 22212, Republic of Korea
3School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, Republic of Korea

(Dated: July 25, 2018)

We investigate the strong coupling constants for the baryon octet-octet, decuplet-octet, and decuplet-decuplet vertices with pseudoscalar mesons within a general framework of the chiral quark-soliton model, taking into account the effects of flavor SU(3) symmetry breaking to linear order in the expansion of the strange current quark mass. All relevant dynamical parameters are fixed by using the experimental data on hyperon semileptonic decays and the singlet axial-vector constant of the nucleon. The results of the strong coupling constants for the baryon octet and the pseudoscalar meson octet are compared with those determined from the Jülich-Bonn potential and the Nijmegen extended soft-core potential for hyperon-nucleon scattering. The results of the strong decay widths of the baryon decuplet are in good agreement with the experimental data. The effects of SU$_f$(3) symmetry breaking are sizable on the η' coupling constants. We predict also the strong coupling constants for the Ω baryons.

Keywords: meson-baryon coupling constants, strong decay widths, the chiral quark-soliton model

* E-mail: ghsyang@ssu.ac.kr
† E-mail: hchkim@inha.ac.kr
I. INTRODUCTION

The meson-baryon coupling constants are the essential quantities in understanding the structure of SU(3) baryons and in describing various productions such as meson-baryon scattering, baryon-baryon scattering, photoproduction and electroproduction of hadrons. The strong coupling constants are often determined with flavor SU(3) symmetry assumed. Knowing the $\pi N N$ coupling constants and the ratio $\alpha = F/(F + D)$, where F and D are the two couplings arising from the SU(3) Wigner-Eckart theorem for computing the matrix elements of the axial-vector current [1], one can determine the pseudoscalar meson octet (P_s) and baryon octet (B_s) coupling constants:

$$g_{P_s^B B_s^B} = g \left[i \alpha f_{ijk} + (1 - \alpha)d_{ijk} \right],$$

with $g = g_{\pi NN}$. The ratio α can be found from the five known experimental data on hyperon semileptonic decay (HSD) constants $(g_1/f_1)B_s^s \rightarrow B_s^s$ [2, 3]. Almost all theoretical works on the hyperon-nucleon interaction use it obtained in this way [4-9]. However, the empirical values of F and D determined from the HSD constants contain tacitly the effects of flavor SU(3) symmetry breaking, though F and D are defined with SU(3) symmetry assumed.

The strong coupling constants for the baryon decuplet (B_{10})-octet and pseudoscalar meson octet vertices are less known. Even the $\pi N \Delta$ coupling constant, which is the essential quantity in describing the NN and πN interactions, is not at all given in consensus. The $\pi N \Delta$ coupling constant is usually determined by the decay width of $\Delta \rightarrow \pi N$, which yields $f_{\pi N \Delta} \approx 2.24$. In describing πN scattering, $f_{\pi N \Delta} \approx 2.0 - 2.5$ was used [10-12]. On the other hand, the full Bonn potential for the NN interaction [13], $f_{\pi N \Delta} = 1.678$ was employed, which was taken from the relation in an SU(6) quark model $f_{\pi N \Delta}^\text{SU(6)} = 72f_{\pi NN}^\text{SU(3)}/25$ [14]. A recent work determined $f_{\pi N \Delta} = 1.256$, which is much smaller that that from the decay width, based on the global fit to the πN and γN data [15]. When it comes to the coupling constants for the other members of the baryon decuplet, information is much less known.

In the mean time, new experimental programs with strangeness of $S = -3$ are now under way at the J-PARC [16] and a new excited Ω resonance was reported by the Belle Collaboration [17]. The HAL Collaboration in lattice QCD predicted the dibaryon ($\Omega \Omega$) with strangeness $S = -6$ [18]. The $N \Omega$ interaction was studied in a meson-exchange picture [19] very recently. The baryon decuplet and octet interactions were investigated [20]. In this regard, it is highly required to provide information on the baryon and pseudoscalar meson coupling constants in a quantitative manner.

In the present work, we want to study the coupling constants for the vertices of the baryon decuplet-octet (also decuplet) and pseudoscalar mesons in a pion mean-field approach that is often called the the chiral quark-soliton model (χSM). In Refs. [21, 22], we reexamined the mass splittings of the SU(3) baryon octet and the decuplet, fixing all the parameters unequivocally to the experimental data. The effects of SU(3) symmetry breaking and isospin symmetry breaking due to both the electromagnetic interaction and current quark mass difference [21, 22] were systematically included, which made it possible to exploit the experimental data to fix the parameters. Since we have fixed all unknown parameters in the baryon wavefunctions, we can proceed to the study of the axial-vector transitions, again fixing relevant parameters by utilizing the experimental data on the HSD constants and the flavor-singlet axial-vector charge $g_A^{(0)}$. Though similar works were done already [24, 27], it was then not possible to fix all the parameters unambiguously because of the absence of isospin symmetry breaking which is inevitable in incorporating the experimental data for the baryon octet. Recently, we have shown that all the relevant parameters for the HSD constants can be fixed without any ambiguity [28]. Once they are known, we can compute all possible axial-vector transitions between the baryon multiplets. As a result, we are able to determine the coupling constants for the vertices of the baryon decuplet-octet (decuplet) and pseudoscalar mesons without any additional parameters introduced, taking into account the effects of explicit SU(3) symmetry breaking.

This paper is outlined as follows: Section 2, we briefly review the general formalism of the χSM to compute the axial-vector transitions between the baryon multiplets and show how to fix the parameters for the axial-vector transitions. In Sec. 3, we present the results of the coupling constants for the baryon multiplets and pseudoscalar meson vertices. We show also the decay widths of the baryon decuplet to the octet. In Sect. 4, we discuss the results for the η (η'), and baryon coupling constants, applying a usual mixing between the octet η_8 and the singlet η_0. In the final Section we summarize the present work and draw conclusions.

II. BARYON MATRIX ELEMENTS OF THE AXIAL-VECTOR CURRENTS

The baryon matrix elements of the axial-vector currents are expressed in terms of three form factors

$$\langle B_s | A_{\mu}^s | B_s \rangle = \bar{u}_{B_s}(p_2, s_2) \left[g^{B_s^s \rightarrow B_s^s}(q^2)\gamma_\mu + ig_2^{B_s^s \rightarrow B_s^s}(q^2)\sigma_{\mu\nu}q^{\nu} + g_3^{B_s^s \rightarrow B_s^s}(q^2)q_\mu \right] \gamma_5 u_{B_s}(p_1, s_1).$$

\[(2) \]
where the axial-vector currents are defined as

$$A^a_\mu(x) = \bar{\psi}(x) \gamma_\mu \gamma_5 \frac{1}{2} \lambda^a \psi(x).$$

The λ^i stand for flavor Gell-Mann matrices for strangeness conserving $\Delta S = 0$ transitions ($i = 3, 8, (1 \pm i 2)$) and for $\Delta S = 1$ ones ($i = 4, 5 \pm i 5$), respectively. The $q^2 = -Q^2$ denotes the square of the momentum transfer $q = p_2 - p_1$. The form factors g_i are real quantities due to CP-invariance, depending only on the square of the momentum transfer. We can neglect $g^B_s \to B_s$, because its contribution to the decay rate is proportional to the ratio $m^2_l/M^2_B \ll 1$, where m_l represents a mass of the lepton (e or μ) in the final state and that of the baryon in the initial state, M_B, respectively.

The $g^B_s \to B_s$ is finite only with the effects of SU$_f(3)$ symmetry and isospin symmetry breakings because of its opposite G parity to the axial-vector current, so it is very small for the baryon octet.

In the χQSM, the collective operator for the axial-vector constants can be defined in terms of the SU$_f(3)$ Wigner D functions [24, 26]:

$$\hat{g}_1 = a_1 D^{(8)}_{X^3} + a_2 d_{pq3} D^{(8)}_{X p q} j^3_q + \frac{a_3}{\sqrt{3}} D^{(8)}_{X^8} j^8_3 + \frac{a_4}{\sqrt{3}} d_{pq3} D^{(8)}_{X p} D^{(8)}_{s q}$$

$$+ a_5 \left(D^{(8)}_{X^3} D^{(8)}_{s 8} + D^{(8)}_{X^8} D^{(8)}_{s 3} \right) + a_6 \left(D^{(8)}_{X^3} D^{(8)}_{s 8} - D^{(8)}_{X^8} D^{(8)}_{s 3} \right),$$

where a_i denote dynamical parameters encoding the specific dynamics of a χQSM [29, 31]. Note that a_1 parametrizes the leading-order contribution, a_2 and a_3 come from the rotational $1/N_c$ corrections, and a_4, a_5, and a_6 are originated from SU$_f(3)$ symmetry breaking, in which the strange current quark mass m_s is contained. j_q and j_3 stand for the q-th and third components of the collective spin operator of the baryons, respectively. The $D^{(8)}_{ab}$ are the SU(3) Wigner D functions in the octet representation.

The baryon wavefunctions for the baryon octet and decuplet are written in terms of the SU$_f(3)$ Wigner D functions in the χSM [21, 32]:

$$\langle A|R, B(Y T T_3, Y' J J_3) \rangle = \Psi^{(R; Y T T_3)}_{(R^*; Y' J J_3)}(A)$$

$$= \sqrt{\text{dim}(R)} (-)^{J_3 + Y'/2} D^{(R)_*}_{(Y, T, T_3)(-Y', J, J_3)}(A),$$

where R designates the allowed irreducible representations of the SU$_f(3)$ group, i.e. $R = 8, 10, \cdots$. Y, T, T_3 denote the corresponding hypercharge, isospin and its third component, respectively. The right hypercharge is constrained to be $Y' = 1$ in such a way that it selects a tower of allowed SU$_f(3)$ representations. The baryon octet and decuplet, which are the lowest representations, coincide with those of the quark model. This has been considered as a success of the collective quantization and gives a hint about certain duality between the chiral soliton picture and the constituent quark model.

When the effects of SU$_f(3)$ symmetry breaking are taken into account, a baryon state is no more pure state but the state mixed with those in higher representations. Thus, the wavefunctions for the baryon octet and the decuplet are given by

$$|B_8\rangle = |8_{1/2}, B\rangle + c^B_{10} |10_{1/2}, B\rangle + c^B_{27} |27_{1/2}, B\rangle,$$

$$|B_{10}\rangle = |10_{3/2}, B\rangle + a^B_{27} |27_{3/2}, B\rangle + a^B_{35} |35_{3/2}, B\rangle,$$

where the spin indices J_3 have been dropped from the states. The mixing coefficients in Eq. (6) contain the strange current quark mass m_s and are expressed as

$$c^B_{10} = c^B_{27} = \frac{\sqrt{5}}{6}, c^B_{27} = c_{27} = \begin{bmatrix} \sqrt{3} \\ 2/\sqrt{6} \end{bmatrix}, a^B_{27} = a_{27} = \begin{bmatrix} \sqrt{5}/2 \\ 2/\sqrt{3} \end{bmatrix}, a^B_{35} = a_{35} = \begin{bmatrix} 5/\sqrt{14} \\ 2\sqrt{5}/7 \end{bmatrix}.$$
As for the explicit definitions of I_i where I_i is a moment of inertia for the soliton. α and γ are the parameters appearing in the collective Hamiltonian. For the explicit definitions of I_i, α and γ, we refer to Ref. [21], where one can find also a detailed discussion as to how they are fixed unambiguously, and relevant references.

Since the baryon wavefunctions contain the corrections of linear SUf(3) symmetry breaking as shown in Eq. (6), the axial-vector transition constants $g^A_{1 \to \Lambda B}$ acquire yet another linear m_s corrections, when the collective operator g_1 is sandwiched between the baryon states. Thus, we have the two different linear m_s corrections to the axial-vector transition constants, i.e., one from a_4, a_5 and a_6, and the other from the baryon wavefunctions. Recently, we have shown how the parameters a_i are unequivocally fixed in detail [28]. The experimental data on the HSD constants $(g_1/f_1)^{B_s_1 \to B_s}$ and the flavor-singlet axial-vector charge $g^{(0)}_A$, listed in Table 1, will be the input for fixing a_i. The parameters a_i are related to the experimentally known axial-vector HSD constants and $g^{(0)}_A$ in a form of the matrix equation:

$$g = B \cdot a,$$

where

$$g = \left((g_1/f_1)^{n \to p} , (g_1/f_1)^{\Lambda \to p} , (g_1/f_1)^{\Sigma^- \to n} , (g_1/f_1)^{\Xi^- \to \Lambda} , (g_1/f_1)^{\Xi^0 \to \Sigma^+} , g^{(0)}_A \right),$$

$$B = \begin{bmatrix}
-\frac{7}{10} & -\frac{3}{40} & \frac{2}{5} & \frac{2}{5} & \frac{2}{5} & \frac{2}{5} \\
-\frac{1}{15} & \frac{1}{6} & \frac{1}{30} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{6} & \frac{1}{30} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{6} & \frac{1}{30} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{1}{6} & \frac{1}{30} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
0 & 0 & 1 & 0 & 1 & 0
\end{bmatrix},$$

$$a = (a_1, a_2, a_3, a_4, a_5, a_6).$$

Inverting B, we can easily derive the parameters a_i, of which the numerical values are listed in Table 1. All other unmeasured HSD constants for the baryon octet and decuplet were predicted in Ref. [28].

Experimental data	References	
$g_1/f_1 (n \to p)$	1.2723 ± 0.0023	PDG [2]
$g_1/f_1 (\Lambda \to p)$	0.718 ± 0.015	PDG [2]
$g_1/f_1 (\Sigma^- \to n)$	−0.340 ± 0.017	PDG [2]
$g_1/f_1 (\Xi^- \to \Lambda)$	0.25 ± 0.05	PDG [2]
$g_1/f_1 (\Xi^0 \to \Sigma^+)$	1.22 ± 0.05	PDG [2]
$g^{(0)}_A$	0.36 ± 0.03	Bass et al. [33]
TABLE II. Numerical values of the dynamical parameters a_i

a_1	a_2	a_3	a_4	a_5	a_6
-3.509 ± 0.011	3.437 ± 0.028	0.604 ± 0.030	-1.213 ± 0.068	0.479 ± 0.025	-0.735 ± 0.040

III. COUPLING CONSTANTS FOR THE B_8-B$_{10}$ AND P_8-B$_{10}$-B$_{10}$ VERTICES

The matrix elements of the $B_{10} \rightarrow B_8$ and $B_{10} \rightarrow B_{10}$ transitions with the axial-vector current are parametrized in terms of the Adler form factors $C^A_{4,5}, B_{10} \rightarrow B_8$ [34, 36]

\[
\langle B_8(p', s') | A^A_\mu | B_{10}(p, s) \rangle = \pi(p', s') \left\{ \frac{C^A_{4,5} B_{10} \rightarrow B_8(q^2)}{M_8} \gamma^\alpha + \frac{C^A_{4} B_{10} \rightarrow B_8(q^2)}{M_8^2} p^\alpha \right\} (q_\alpha g_{\mu \nu} - q_\nu g_{\alpha \mu})
\]

\[
+ C^A_5 B_{10} \rightarrow B_8(q^2) g_{\mu \nu} + \frac{C^A_6 B_{10} \rightarrow B_8(q^2)}{M_8} q_\mu q_\nu \right\} u^\nu(p, s),
\]

(13)

\[
\langle B_{10}(p', s') | A^A_\mu | B_{10}(p, s) \rangle = \pi(p', s') \left\{ g_{\alpha \beta} \left(h_1(q^2) \gamma^\mu \gamma_5 + h_3(q^2) \frac{q_\mu}{2M_{10}} \gamma_5 \right)
\]

\[
+ \frac{g_{\alpha \beta}}{4M_{10}} \left(h_1'(q^2) \gamma^\mu \gamma_5 + h_3'(q^2) \frac{q_\mu}{2M_{10}} \gamma_5 \right) \right\} u^\beta(p, s),
\]

(14)

where the u^ν represents the Rarita-Schwinger spinor for the baryon decuplet. q_μ denotes the momentum transfer $q_\mu = (p' - p)_\mu$. The axial-vector constant $C^A_{4,5} B_{10} \rightarrow B_8$ can be related to the strong coupling constants for P_8-B$_{10}$-B$_{10}$ vertices by the partially conserved axial-vector current (PCAC) hypothesis. The pseudoscalar meson decay constant f_8 is defined as the transition matrix element of the axial-vector current from the physical pion state to the vacuum

\[
\langle 0 | A^a_{\mu}(x) | \pi^b(p) \rangle = ip_\mu f_8 e^{-ipx} \delta^{ab},
\]

(15)

which will be used for the relations of the pseudovector coupling constants $f_{P_8 B_8 B_{10}}$ and $f_{P_8 B_{10} B_{10}}$ to the Adler form factors. In the present work, we will determine only C^4_{5} and h_1.

The effective Lagrangians for the $P_8 B_8 B_{10}$ and $P_8 B_{10} B_{10}$ vertices are expressed as

\[
\mathcal{L}_{P_8 B_8 B_{10}} = \frac{f_{P_8 B_8 B_{10}}}{m_8} \bar{B}_{10}^{\mu} Z_{\mu \nu} I \left(\begin{array}{c} 3 \\ 2 \\ 2 \\ 2 \end{array} \right) B_{8} \partial^\nu M_8 + \text{h.c.},
\]

\[
\mathcal{L}_{P_8 B_{10} B_{10}} = \frac{f_{P_8 B_{10} B_{10}}}{m_8} \bar{B}_{10}^{\alpha} Z_{\alpha \beta} I \left(\begin{array}{c} 3 \\ 2 \\ 3 \\ 2 \end{array} \right) B_{10}^\beta \partial_\beta M_8 + \text{h.c.},
\]

(16)

where the pseudovector coupling constants are defined as

\[
f_{P_8 B_8 B_{10}} = \frac{m_8}{f_8} C^4_5(0),
\]

(17)

\[
f_{P_8 B_{10} B_{10}} = \frac{m_8}{f_8} h_1(0),
\]

(18)

m_8 denotes the mass of the pseudoscalar meson. The field operators B_{10}^{μ}, B_8, and P_8 correspond respectively to a decuplet baryon, an octet baryon, and a pseudoscalar octet meson. The $Z_{\mu \nu}$ and $Z_{\alpha \beta}$ stand for the tensors including the off-shell effects arising from the Rarita-Schwinger field quantization, defined as $Z_{\mu \nu} = g_{\mu \nu} - x_{\Delta} \gamma_\mu \gamma_\nu$ with the off-shell parameter x_{Δ}. $I(3/2, 1/2)$ and $I(3/2, 3/2)$ are isospin transition matrices.

For completeness, we also want to mention that the pseudoscalar strong coupling constants can be derived from the generalized Goldberger-Treiman (GT) relation [37, 38], which is defined as

\[
g_{P_8 B_8 B_{10}} \approx \frac{M_8 + M_{10}}{f_8} C^4_5(0).
\]

(19)
However, there is a caveat in Eq. (19). Keeping in mind that certain effects on the GT relation will arise from the flavor SU(3) symmetry breaking. In Ref. [39], it was shown that loop corrections to the GT relation, which come from the pion mass, are indeed very small (~2%). So, we expect that the strange current quark mass will not yield much effects on the relation. Thus, as often assumed in the hyperon-nucleon potentials, one still can use Eq.(19), if one wants to derive the strong coupling constants $g_{PBB_{10}}$.

In effect, the numerical values of the C^A_{f} (0) were already presented in the previous work [28]. Thus, we will show the results for the pseudovector coupling constants and decay widths of the baryon decuplet in this work, using the experimental data on the meson decay constants, $f_{π} = 92.4$ MeV and $f_{K} = 113.0$ MeV. In Table III we list the results of the pseudoscalar coupling constants for the various $Q_{BB_{10}}$ vertices, i.e. $g_{PBB_{10}}$. The second column represents those in the SU(3) symmetric case, whereas the third one denotes those with explicit SU(3) symmetry breaking taken into account. The results are compared with those determined from the extended soft-core Nijmegen hyperon-nucleon (YN) potential (ESC08a) [8] and Jülich-Bonn YN potential, employing the generalized GT relation for kaon vertices. Except for the coupling constants of the vertices $πΣΣ$ and $KΩ$, the present results are in good agreement with the those from both the Nijmegen and Jülich-Bonn potentials. When the effects of the SU(3) symmetry breaking are taken into account, the present results are more deviated from those taken from the Nijmegen potential. Note that both the Nijmegen and Jülich-Bonn potentials have assumed SU(3) symmetry and the following relations for the $Q_{BB_{10}}$ vertices are obtained in exact SU(3):

$$f_{πNΔ} = \sqrt{2}f_{πΛΣ^*} = -\sqrt{2}f_{πΣΣ^*} = \sqrt{2}f_{πΞΞ^*},$$

$$f_{KΣΔ} = \sqrt{2}f_{KNN^*} = -\sqrt{2}f_{KΣΣ^*} = -\sqrt{2}f_{KΞΞ^*} = \sqrt{2}/3f_{KΞΩ},$$

which can be found in various works already.

$Q_{BB_{10}}$	$g_{PBB_{10}}$	$g_{PBB_{10}}^{(total)}$	ESC08a [8]	Jülich-Bonn [4, 7]
$πNN$	3.524 ± 0.012	3.638 ± 0.018	3.639	3.795
$πΛΣ$	3.129 ± 0.011	3.229 ± 0.016	3.328	2.629
$πΣΣ$	3.356 ± 0.014	3.197 ± 0.019	3.290	3.036
$πΞΞ$	-1.240 ± 0.009	-0.985± 0.015	-1.475	...
$KNΛ$	-3.185 ± 0.030	-3.180 ± 0.032	-3.217	-3.944
$KΝΣ$	0.820 ± 0.009	0.905 ± 0.011	0.975	0.759
$ΚΛΞ$	1.076 ± 0.013	1.316 ± 0.017	0.942	...
$ΚΞΞ$	-3.855 ± 0.037	-3.793 ± 0.037	-3.980	...

TABLE IV. Pseudovector coupling constants for the $P_{BB_{10}}$ vertices. The second column lists the results for the SU(3) symmetric case, whereas the third one does those with explicit SU(3) symmetry breaking taken into account. The last column lists the values of the coupling constants taken from the Jülich-Bonn hyperon-nucleon potential.

$M_{BB_{10}}$	$g_{PBB_{10}}^{(total)}$	$g_{PBB_{10}}^{(total)}$	Jülich-Bonn [4]
$πNΔ$	1.646 ± 0.006	1.777 ± 0.008	1.68
$πΛΣ^*$	1.164 ± 0.004	1.178 ± 0.006	1.18
$πΣΣ^*$	-1.164 ± 0.004	-1.059 ± 0.007	-0.68
$πΞΞ^*$	1.164 ± 0.004	1.111 ± 0.007	...
$KΝΣ^*$	-4.815 ± 0.046	-4.551 ± 0.045	-4.90
$KΣΣ^*$	-3.404 ± 0.032	-3.667 ± 0.038	-2.00
$KΞΞ^*$	3.404 ± 0.032	3.450 ± 0.033	...
$KΞΩ$	8.339 ± 0.079	8.130 ± 0.080	...

In Table IV we list the results of the pseudovector coupling constants for the $P_{BB_{10}}$ vertices. We find that the present value of $f_{πΣΣ^*}$ is different from that taken from the Jülich-Bonn potential by almost 50%. The value of $f_{KΣΣ^*}$ differs by approximately 45%. However, we want to emphasize that the present results of the coupling constants reproduce the experimental data on the decay widths of the decuplet hyperons very well, which will be discussed now.
The partial width for the decay from the baryon decuplet to the octet and pseudoscalar meson P_b is expressed in terms of the pseudovector coupling constant as follows

$$\Gamma_{B_{10} \to \varphi B_b} = \frac{|k|^3}{8\pi m_{b}} \frac{M_{b}}{M_{10}} f_{\varphi B_{10}}^2,$$

(21)

where $|k|$ denotes the three momentum of the pseudoscalar meson in the rest frame of the baryon decuplet. m_b represents the mass of the pseudoscalar meson involved in the decay process. Summing all possible transitions with averaging over the initial states, we can write the decay width for each member of the baryon decuplet as

$$\Gamma \left[\Delta \to \pi N \right] = \frac{3}{2} \Gamma \left[\Delta^+ \to \pi^0 p \right],$$

$$\Gamma \left[\Sigma^* \to \pi A \right] = \Gamma \left[\Sigma^0 \to \pi^0 A \right],$$

$$\Gamma \left[\Sigma^- \to \pi \Sigma^+ \right] = 2 \Gamma \left[\Sigma^+ \to \pi^0 \Sigma^0 \right],$$

$$\Gamma \left[\Xi^* \to \pi \Xi \right] = 3 \Gamma \left[\Xi^0 \to \pi^0 \Xi^0 \right].$$

(22)

Except for the Δ decay, the present results are in good agreement with the experimental data as shown in Table V. There exist also experimental data on the ratio of the decay widths for $\Sigma^* \to \Sigma$ and $\Sigma^* \to \Lambda$. The present result is comparable with the data as shown in the following

$$\frac{\Gamma \left[\Sigma^* \to \Sigma \right]}{\Gamma \left[\Sigma^* \to \Lambda \right]} = 0.180 \pm 0.002 \quad \text{ (experimental data} \ [2]: 0.135 \pm 0.011 \).$$

(23)

Table V. Partial (Γ_i) and full decay widths (Γ) for the decays $B_{10} \to B_8 + \pi$ in units of MeV.

Decay modes	$\Gamma_i^{(8)}$	$\Gamma_i^{(total)}$	Γ	$\Gamma^{(Exp.)}[2]$
$\Delta \to N\pi$	75.98 ± 1.01	88.58 ± 1.31	116 - 120	
$\Sigma^+ \to \Sigma^- \pi^0$	2.59 ± 0.03	3.22 ± 0.06		
$\Sigma^+ \to \Sigma^0 \pi^-$	3.17 ± 0.05	2.62 ± 0.05	36.25 ± 0.42	
$\Sigma^+ \to \Lambda \pi^+$	29.68 ± 0.26	30.41 ± 0.33		
$\Sigma^0 \to \Sigma^- \pi^+$	0	0		
$\Sigma^0 \to \Sigma^\pi^- \pi^+$	3.61 ± 0.11	2.98 ± 0.1	37.21 ± 0.69	
$\Sigma^0 \to \Lambda \pi^+$	31.15 ± 0.47	31.92 ± 0.52		
$\Sigma^- \to \Sigma^- \pi^+$	3.50 ± 0.06	2.89 ± 0.06		
$\Sigma^- \to \Sigma^\pi^- \pi^+$	3.64 ± 0.06	3.01 ± 0.06	38.18 ± 0.48	
$\Sigma^- \to \Lambda \pi^+$	31.50 ± 0.30	32.28 ± 0.37		
$\Xi^\pi \to \Xi^- \pi^+$	4.76 ± 0.05	4.33 ± 0.06	11.26 ± 0.17	
$\Xi^\pi \to \Xi^- \pi^+$	7.61 ± 0.08	6.93 ± 0.10		
$\Xi^\pi \to \Xi^- \pi^+$	8.20 ± 0.13	8.68 ± 0.16	13.01 ± 0.21	

(24)

Table VI. Pseudovector coupling constants for the $P_b B_{10} B_{10}$ vertices. The second column lists the results for the SU$_j(3)$ symmetric case, whereas the third one does those with explicit SU$_j(3)$ symmetry breaking taken into account.

$P_b B_{10} B_{10}$	$f_{\varphi B_{10}}^{(8)}$	$f_{\varphi B_{10} B_{10}}^{(total)}$
$\pi \Delta \Delta$	0.769 ± 0.003	0.780 ± 0.004
$\pi \Sigma^+ \Sigma^*$	0.688 ± 0.003	0.703 ± 0.004
$\pi \Xi^- \Xi^*$	0.421 ± 0.002	0.469 ± 0.002
$\pi \Omega$	0	0
$K \Delta \Sigma^*	-1.423 ± 0.014	-1.375 ± 0.014
$K \Sigma^\pi \Xi^-	-2.013 ± 0.020	-2.014 ± 0.020
$K \Xi^- \Omega	-2.466 ± 0.024	-2.507 ± 0.025

(25)

In Table VI, we list the results on the pseudovector coupling constants for the $P_b B_{10} B_{10}$ vertices. The $\pi \Omega$ coupling constant vanishes, since the isoscalar Ω baryon cannot be coupled to the pion. Note that as the absolute value of strangeness increases, the magnitude of the $P_b B_{10} B_{10}$ coupling constant tends to increase. For example, the magnitude of $|f_{K \Xi^- \Omega}|$ is approximately three times larger than that of $f_{\pi \Delta \Delta}$.

(26)
IV. COUPLING CONSTANTS FOR THE η-B, η'-B VETICES

In this Section, we provide the numerical values of the coupling constants when η and η' are involved. In order to compute them, we have to consider the mixing between the octet η_B and the singlet η_B coupling constants. Following the mixing scheme suggested in Ref. \cite{8} given as

\begin{align}
g_{\eta B_B B_S} &= \cos\theta_p \, g_{\eta_B B_B B_S} - \sin\theta_p \, g_{\eta_0 B_B B_S}, \\
g_{\eta' B_B B_S} &= \sin\theta_p \, g_{\eta_B B_B B_S} + \cos\theta_p \, g_{\eta_0 B_B B_S},
\end{align}

one can easily determine the coupling constants for the η and η' coupling constants. Using the values of $f_0 = 94.0$ MeV, $f_\pi = 94.1$ MeV taken from Refs. \cite{40, 42} and mixing angle $\theta_p = -23.00^\circ$ from Ref. \cite{8}, we obtain the pseudoscalar coupling constants for the $\eta_B B_S$ and $\eta' B_B B_S$ coupling constants.

\eta\eta'	g^{(0)}_{\eta\eta' B_B B_S}	g^{(0)}_{\eta\eta' B_B B_S}	g^{(0)}_{\eta\eta' B_B B_S}	g^{(0)}_{\eta\eta' B_B B_S}
$\eta N\eta'$	1.583 ± 0.126	-0.328 ± 0.027	-0.015 ± 0.002	1.241 ± 0.103
$\eta' N\eta$	1.241 ± 0.103	-0.637 ± 0.044	0.007 ± 0.001	0.611 ± 0.088
$\eta\eta' \Lambda$	-1.947 ± 0.153	1.169 ± 0.097	-0.053 ± 0.005	-0.831 ± 0.086
$\eta\eta' \Sigma$	3.189 ± 0.199	2.272 ± 0.155	0.024 ± 0.002	5.486 ± 0.329
$\eta\eta' \Xi$	3.772 ± 0.288	-1.026 ± 0.086	-0.006 ± 0.003	2.740 ± 0.214
$\eta'\eta\Xi$	-3.590 ± 0.274	1.470 ± 0.124	-0.042 ± 0.004	-2.161 ± 0.177
$\eta'\eta' \Xi$	4.346 ± 0.266	3.747 ± 0.253	0.019 ± 0.001	8.111 ± 0.484

The corresponding numerical results are listed in Table \textbf{VII} and are compared with those from the Nijmegen potentials. Since the effects of SU(3) symmetry breaking seem rather important, we examine the contributions from the SU(3) symmetry breaking more closely. In the case of exact SU(3) symmetry, the results are very similar to those from the Nijmegen potentials. However, when the effects of explicit SU(3) symmetry breaking are taken into account, the values of the η and η' coupling constants are in general much changed. As shown in Table \textbf{VII}, there are two different contributions of the SU(3) symmetry breaking: The one arises directly from the collective operator for the axial-vector constant given in Eq. \textbf{1} and the other comes from the wavefunctions mixed with the states from higher representations as in Eq. \textbf{3}. As clearly shown in the fourth column of Table \textbf{VII}, the wavefunction corrections are negligibly small. However, the linear m_s corrections from the collective operator, in particular, when it comes to the $\eta' B_S B_S$ coupling constants, are sizable, even compared with the contributions of the SU(3) symmetric terms.

In order to understand this, we need to examine carefully the expression for the singlet axial-vector constant $g^{(0)}_{\eta' A}$. As discussed in detail in Ref. \cite{26}, the singlet axial-vector operator $g^{(0)}_{\eta' A}$ is written as

$$g^{(0)}_{\eta A} = a_3 \hat{J}_3 + \sqrt{3}(a_5 - a_6)D^{(8)}_{83},$$

where the leading-order contribution with a_3 vanish. It means that a_3, which is subleading in the $1/N_c$ expansion, plays a leading role \cite{43, 44}. The parameter a_3 in Eq. \textbf{26} comes from the anomalous part of the effective chiral action in the χQSM while in the Skyrme model it arises from the Wess-Zumino term and vanishes in the version of the pseudoscalar mesons. Thus, the effects of SU(3) symmetry breaking are crucial in determining the value of $g^{(0)}_{\eta A}$ quantitatively. Since a_5 and a_6 have different signs as shown in Table \textbf{II}, the m_s correction given in the second term of Eq. \textbf{26} becomes large. As a result, the effects of SU(3) symmetry breaking turn out to be sizable, in particular, in the case of the $\eta' B_S B_S$ coupling constants for which the singlet contributions are large. Thus, the present results imply physically that the effects of SU(3) symmetry breaking are crucial in determining the η and η' coupling constants quantitatively.

In Table \textbf{VIII} we list the results of the $\eta B_S B_{10}$ and $\eta' B_S B_{10}$ coupling constants. In general, the effects of explicit SU(3) symmetry breaking reduce the magnitudes of these coupling constants noticeably. Table \textbf{IX} lists the results of the η and η' coupling constants for the baryon decuplet. Interestingly, the effects of explicit SU(3) symmetry breaking are marginal except for the $\eta\Omega\Omega$ coupling constant, since the matrix elements of $D^{(8)}_{83}$ are small for the baryon decuplet. Note that the $\eta' \Sigma^+ \Sigma^+$ does not acquire any contribution from explicit SU(3) symmetry breaking. In general, the values of the η' coupling constants are much larger than those of the η ones.
In the present work, we have investigated the strong coupling constants for the meson-baryon-baryon vertices within the general framework of the chiral soliton model, taking into account the effects of flavor SU(3) symmetry breaking to linear order. All the relevant dynamical parameters were fixed by using the experimental data on the hyperon semileptonic decays and the singlet axial-vector constant. We were able to determine the strong coupling constants for the baryon octet and pseudoscalar meson octet vertices, those for the transition from the baryon decuplet to the baryon and pseudoscalar meson octets, and those for the baryon decuplet and pseudoscalar meson octet vertices. Except for the $\pi \Xi^+$, $\pi \Sigma^+$, and $K \Sigma^+$ vertices, the present results were in good agreement with those determined from the Nijmegen and Jülich-Bonn potentials. We also computed the decay widths of the baryon decuplet to the baryon octet and the pion. Apart from the Δ decays, the results are in good agreement with the experimental data. We also presented the strong coupling constants for the η and η' mesons. The effects of SU(3) symmetry breaking are in general quite sizable on the η' coupling constants. This can be understood that the leading contribution to the singlet axial-vector constant vanishes in the $1/N_c$ expansion within the present framework and the subleading-order terms play a leading role. Thus, the corrections of the strange current quark mass become relatively more important in the case of the η' coupling constants.

The strong coupling constants for the vector mesons and the baryon octet and decuplet can be examined within the same framework. Since the vector mesons have spin 1, the structure of the coupling constants is more involved. The related work is under investigation.

ACKNOWLEDGMENTS

H.-Ch.K is grateful to M. V. Polyakov for the discussion and hospitality during his visit to the Institute für Theoretical Physics II, Ruhr-Universität Bochum, where part of the work was done. The present work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. NRF-2016R1C1B1012429 (Gh.-S. Y.) and 2018R1A2B2001752(H.-

TABLE VIII. Pseudovector coupling constants $f_{\eta B_0 B_{10}}$ and $f_{\eta' B_0 B_{10}}$ divided by $\sqrt{4\pi}$. The second column lists the results for the SU$_f$(3) symmetric case, whereas the third one corresponds to those from a_4, a_5, and a_6 of the collective operator for the axial-vector constants given in Eq. (4). The fourth one represents the corrections from the symmetry-breaking parts of the collective wavefunctions in Eq. (4). The fifth column presents the total results of the coupling constants.

$f_{\eta B_0 B_{10}}$	$f_{\eta B_0 B_{10}}^{(wf)}$	$f_{\eta B_0 B_{10}}^{(op)}$	$f_{\eta B_0 B_{10}}^{(total)}$	
$f_{\eta B_0 B_{10}}^{(total)}$	3.21 ± 0.25	-0.74 ± 0.06	0.02 ± 0.01	2.48 ± 0.20
$\eta \Sigma^*$	3.46 ± 0.31	-0.01 ± 0.01	0.45 ± 0.28	
$\eta \Xi^*$	3.21 ± 0.25	-0.68 ± 0.06	-0.10 ± 0.01	2.42 ± 0.19
$\eta' \Xi^*$	3.46 ± 0.31	-3.04 ± 0.21	0.08 ± 0.01	0.49 ± 0.28

TABLE IX. Pseudovector strong coupling constants of the baryon decuplet with η and η', divided by $\sqrt{4\pi}$. The second column lists the results for the SU$_f$(3) symmetric case, whereas the third one corresponds to those from a_4, a_5, and a_6 of the collective operator for the axial-vector constants given in Eq. (4). The fourth one represents the corrections from the symmetry-breaking parts of the collective wavefunctions in Eq. (4). The fifth column presents the total results of the coupling constants.

$f_{\eta B_0 B_{10}}$	$f_{\eta B_0 B_{10}}^{(wf)}$	$f_{\eta B_0 B_{10}}^{(op)}$	$f_{\eta B_0 B_{10}}^{(total)}$	
$f_{\eta B_0 B_{10}}^{(total)}$	1.77 ± 0.15	-0.21 ± 0.02	-0.04 ± 0.01	1.51 ± 0.13
$\eta \Delta$	4.58 ± 0.35	-0.02 ± 0.01	-0.01 ± 0.01	3.79 ± 0.32
$\eta' \Sigma^*$	5.06 ± 0.37	-0.01 ± 0.01	-0.01 ± 0.01	5.05 ± 0.37
$\eta' \Xi^*$	0.56 ± 0.07	-0.21 ± 0.02	-0.03 ± 0.01	0.75 ± 0.08
$\eta' \Omega$	5.53 ± 0.39	0.83 ± 0.06	0.02 ± 0.01	6.39 ± 0.43
$\eta' \Omega$	6.00 ± 0.41	-0.83 ± 0.06	0.01 ± 0.01	5.18 ± 0.38
[1] J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963) [Erratum-ibid. 37, 326 (1965)].
[2] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[3] Y. Goto et al. [Asymmetry Analysis Collaboration], Phys. Rev. D 62, 034017 (2000).
[4] B. Holzenkamp, K. Holinde and J. Speth, Nucl. Phys. A 500, 485 (1989).
[5] A. Reuber, K. Holinde, H.-Ch. Kim and J. Speth, Nucl. Phys. A 608, 243 (1996).
[6] T. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59, 21 (1999).
[7] J. Haidenbauer and U.-G. Meißner, Phys. Rev. C 72, 044005 (2005).
[8] T. A. Rijken, M. M. Nagels and Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010).
[9] J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga and W. Weise, Nucl. Phys. A 915, 24 (2013).
[10] C. Schütz, K. Holinde, J. Speth, B. C. Pearce and J. W. Durso, Phys. Rev. C 51, 1374 (1995).
[11] T. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010).
[12] H. Polinder and T. A. Rijken, Phys. Rev. C 72, 065211 (2005).
[13] R. Machleidt, K. Holinde and C. Elster, Phys. Rept. 149, 1 (1987).
[14] G. E. Brown and W. Weise, Phys. Rept. 22, 279 (1975).
[15] H. Kamano, S. X. Nakamura, T.-S. H. Lee and T. Sato, Phys. Rev. C 88, no. 3, 035209 (2013).
[16] H. Takahashi, Nucl. Phys. A 914, 553 (2013).
[17] J. Yelton et al. [Belle Collaboration], [arXiv:1805.09384 [hep-ex]].
[18] S. Gongyo et al., Phys. Rev. Lett. 120, 212001 (2018) [arXiv:1709.00654 [hep-lat]].
[19] T. Sekihara, Y. Kamiya and T. Hyodo, arXiv:1805.04024 [hep-ph].
[20] J. Haidenbauer, S. Petschauer, N. Kaiser, U. G. Meißner and W. Weise, Eur. Phys. J. C 77, no. 11, 760 (2017) [arXiv:1708.08071 [nucl-th]].
[21] G.-S. Yang and H.-Ch. Kim, Prog. Theor. Phys. 128, 397 (2012).
[22] G.-S. Yang and H.-Ch. Kim, J. Korean Phys. Soc. 61, 1956 (2012).
[23] G.-S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011).
[24] H.-Ch. Kim, M. Praszalowicz and K. Goeke, Phys. Rev. D 61, 114006 (2000).
[25] H.-Ch. Kim, M. Praszalowicz and K. Goeke, Acta Phys. Polon. B 31, 1767 (2000).
[26] H.-Ch. Kim, M. Praszalowicz and K. Goeke, Acta Phys. Polon. B 32, 1343 (2001).
[27] G.-S. Yang, H.-Ch. Kim and K. Goeke, Phys. Rev. D 75, 094004 (2007).
[28] G. S. Yang and H.-Ch. Kim, Phys. Rev. C 92, 035206 (2015).
[29] C. V. Christov, A. Blotz, H.-Ch. Kim, P. Pobylitsa, T. Watabe, T. Meissner, E. Ruiz Arriola and K. Goeke, Prog. Part. Nucl. Phys. 37, 91 (1996) [hep-ph/9604441].
[30] H.-Ch. Kim, M. V. Polyakov, M. Praszalowicz and K. Goeke, Phys. Rev. D 57, 299 (1998).
[31] T. Ledwig, A. Silva, H.-Ch. Kim and K. Goeke, JHEP 0807, 132 (2008).
[32] A. Blotz, D. Diakonov, K. Goeke, N. W. Park, V. Petrov and P. V. Pobylitsa, Nucl. Phys. A 555, 765 (1993).
[33] S. D. Bass, Rev. Mod. Phys. 77, 1257 (2005) [hep-ph/0411005].
[34] S. L. Adler, Annals Phys. 50, 189 (1968).
[35] C. H. Llewellyn Smith, Phys. Rept. 3, 261 (1972).
[36] C. Alexandrou, E. B. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato and A. Tsapalis, Phys. Rev. D 87, no. 11, 114513 (2013) [arXiv:1304.4614 [hep-lat]].
[37] L. J. General and S. R. Cotanch, Phys. Rev. C 69, 035202 (2004).
[38] C. Alexandrou, G. Koutsou, T. Leontiou, J. W. Negele and A. Tsapalis, Phys. Rev. D 76, 094511 (2007) Erratum: [Phys. Rev. D 80, 099901 (2009)].
[39] L. Zhu and M. J. Ramsey-Musolf, Phys. Rev. D 66, 076008 (2002).
[40] R. M. Barnett et al. [Particle Data Group], Phys. Rev. D 54, 1 (1996).
[41] H. J. Behrend et al. [CELLO Collaboration], Z. Phys. C 49, 401 (1991).
[42] T. Aihara et al. [TPC/Two Gamma Collaboration], Phys. Rev. Lett. 64, 172 (1990).
[43] M. Wakamatsu and T. Watabe, Phys. Lett. B 312 (1993) 184.
[44] C. V. Christov, A. Blotz, K. Goeke, P. Pobylitsa, V. Petrov, M. Wakamatsu and T. Watabe, Phys. Lett. B 325 (1994) 467 [hep-ph/9312279].