Charm and Charmonium Spectroscopy

B. Aa. Petersena (From the BABAR Collaboration)

aPhysics Department, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA

Recent experimental results in charm and charmonium spectroscopy are reviewed.

1. INTRODUCTION

The last few years have seen a revival of interest in charm spectroscopy with more than a dozen new states being reported and hundreds of new theoretical investigations being published. The advent of the B-factories \textcite{1,2}, with their large, charm-rich data samples, has proven crucial to the discovery and investigation of new charm hadron states, but other experiments have confirmed and complemented the B-factory observations. Much interest has been generated by several new states that do not appear to be easily incorporated in the conventional picture of charm and charmonium mesons. Here, the focus is on the latest experimental results in charm spectroscopy and the determination of the nature of the recently discovered states.

2. CHARM MESONS

Before the start of the B-factories, only four charm-strange mesons had been observed: the S-wave states D_s^+ and D_s^+ with $J^P = 0^+$ and 1$^-$, and two P-wave states, $D_{s1}(2536)^+$ and $D_{s2}(2573)^+$, assigned to be 1$^+$ and 2$^+$ states. Two additional P-wave states, 0$^+$ and 1$^+$, were expected, but predicted by potential models to have a large decay width to a non-strange charm meson and a kaon \textcite{3,4}. The observations of two narrow charm-strange mesons below the DK threshold, the $D_{sJ}^*(2317)^+$ \textcite{5} and $D_{sJ}(2460)^+$ \textcite{6}, by the BABAR and CLEO collaborations have led to much speculation whether these are the missing 0$^+$ and 1$^+$ states or perhaps new types of particles \textcite{7}.

Several experimental studies of the $D_{sJ}^*(2317)^+$ and $D_{sJ}(2460)^+$ have been performed recently to understand their nature. BABAR has performed a comprehensive study \textcite{8} of the possible decay to a D_s^+ meson and up to two γ or π^0 particles. The $D_{sJ}^*(2317)^+$ is only observed in decay mode $D_s^+\pi^0$, while the $D_{sJ}(2460)^+$ is observed in three modes: $D_s^+\pi^0$, $D_s^+\pi^+\pi^-$ and $D_s^+\gamma$. None of these decays are in disagreement with the assignment of 0$^+$ and 1$^+$ for the two states. No other decay modes are observed and limits on the branching ratios are measured \textcite{8}. Isospin partners for the $D_{sJ}^*(2317)^+$ are searched for in decays to $D_s^+\pi^\pm$, but none are observed \textcite{8}.

A separate study by BABAR measures the absolute branching fractions of $D_{sJ}(2460)^+$ decays \textcite{9}. The analysis selects $B\bar{B}$ events where one B meson is fully reconstructed and used to determine the rest frame of the second B meson. An additional D^\pm, D^0 or $D^{\pm\mp}$ meson from the second B is reconstructed and its recoil mass spectrum studied. A signal is found for $D_{sJ}(2460)^+$ and is used to measure $B(B \to D^{(*)}D_{sJ}(2460))$. This is combined with previous branching fraction product measurements \textcite{10} to obtain absolute branching fractions for $D_{sJ}(2460)^+$ decays. The branching fractions for the three observed modes add up to $(76 \pm 20)\%$, indicating that most of the $D_{sJ}(2460)^+$ decay modes have been observed.

B meson decays have also been used to determine the spin of the two new D_s^+ states. In the decays $B \to DD_{sJ}^*(2317)^+$, $D_{sJ}^*(2317)^+ \to D_s^+\pi^0$ \textcite{11} and $B \to DD_{sJ}(2460)^+$, $D_{sJ}(2460)^+ \to D_s^+\gamma$ \textcite{11,10}, the angular distribution of the D_s^+ meson with respect to the D meson in the D_s^+ rest
frame is measured. This distribution is consistent with a flat for the $D_{sJ}^+(2317)^+$ and quadratic for the $D_{sJ}(2460)^+$, establishing that these states have spin 0 and 1, respectively. The $D_{sJ}^+(2317)^+$ therefore has to be a 0^+ state, while for $D_{sJ}(2460)^+$ the possibility of being a 1^- state can be excluded by a similar angular analysis of $D_{sJ}(2460)^+ \rightarrow D_s^+\pi^0$ decays. This result indicates that the two D_{sJ}^+ states are regular charm-strange mesons, but does not explain why the potential models underestimate their mass.

The SELEX collaboration has reported the possible existence of a new, narrow charm-strange meson decaying to $D_s^+\eta$ and D^0K^+ with a mass of about 2632 MeV/c^2. This state, $D_{sJ}(2632)^+$, is not observed by FOCUS [13], Belle [14] or BABAR [15] even though all three have significantly larger reconstructed samples of the nearby $D_{s2}(2573)^+ \rightarrow D^0K^+$ decays. This appears to exclude the existence of this state.

Further studies of the D^0K^+ mass spectrum by BABAR [16] instead show a peaking structure around 2.86 GeV/c^2. The peak is visible using either $D^0 \rightarrow K^-\pi^+$ or $D^0 \rightarrow K^-\pi^+\pi^0$ decays and the same peak is also seen in the $D^+K_S^0$ mass spectrum. No signal is seen in simulated events or with D^0 mass sideband events. Nor is the peak due to pions misidentified as kaons. A combined fit to the D^0K^+ and $D^+K_S^0$ mass spectrums gives a mass of 2856.6 ± 1.5 ± 5.0 MeV/c^2 and a width of 48 ± 7 ± 10 MeV. The spin-parity of this state has not yet been established, though it has already been speculated that it could be a $J^P = 3^-$ D-wave state [17] or a radially excitation of the $D_{sJ}^+(2317)^+$ [18].

A broad structure is also observed just below 2.7 GeV/c^2. A fit with an additional Breit-Wigner gives a mass of 2688 ± 4 ± 3 MeV/c^2 and a width of 112 ± 7 ± 36 MeV for this structure. However, the fit is not particularly good and there is a hint of structure in the same region when using events from a D^0 mass sideband. BABAR is therefore not able to establish whether this is a new state1.

3. CHARM BARYONS

Charm baryons with two light quarks provide an even richer particle spectrum than charm mesons. Of the states without internal orbital angular momentum ($L = 0$), all nine $J^P = 1^+$ states have been known for years [20], while observation of the last of the six $J^P = 2^+$ states, the Ω^*_c, has been reported very recently [21]. Several possibly orbitally excited charm baryons have already been observed, the latest of which are summarized below.

One new charm baryon has been found to decay to D^0p. A fit to a Breit-Wigner shape folded with experimental resolution yields a mass of 2939.8 ± 1.3 ± 1.0 MeV/c^2 and a width of 17.5 ± 5.2 ± 5.9 MeV. A second, larger peak is fit with a mass of 2881.9 ± 0.1 ± 0.5 MeV/c^2 and a width of 5.8 ± 1.5 ± 1.1 MeV and is identified as the $\Lambda_c(2880)^+$, previously discovered in decays to $\Lambda_c^++\pi^+\pi^-$ decays [22]. These are the first charm baryons observed to decay to a charm meson and a charmless baryon. The new state is identified as the isospin scalar $\Lambda_c(2940)^+$, due to the absence of an isospin partner in the D^+p mass spectrum. The existence of the $\Lambda_c(2940)^+$ has been confirmed by Belle [24], who observed it in the final state $\Sigma_c(2455)^+\pi^0\pi^+$. Its spin-parity has yet to be determined.

Besides single charm baryons, double charm baryons are expected to exist with a mass between 3.5 and 3.8 GeV/c^2 for the lightest states [25]. The only evidence for their existence comes from SELEX, which reports an excess of events in $\Lambda^+_cK^-\pi^+$, $D^{*-}\overline{p}K^+$ at a mass of 3510 ± 1 MeV/c^2. No evidence of this state is found by FOCUS [28], BABAR [29] or Belle [30], even though they have $O(10)$ (FOCUS) and $O(100)$ (BABAR, Belle) more reconstructed charm baryons than SELEX.

In the same $\Lambda^+_cK^-\pi^+$ mass spectrum used to search for double charm baryons by Belle, two new regular Ξ_c states are observed with masses of 3275.5 ± 2.1 ± 2.0 MeV/c^2 and 3076.7 ± 0.9 ± 0.5 MeV/c^2 and widths of 43.5 ± 7.5 ± 7.0 MeV and 6.2 ± 1.2 ± 0.8 MeV [31]. The non-zero widths preclude these two states, $\Xi_c(2980)^+$ and $\Xi_c(3077)^+$, from being double-charm baryons. The exis-

1 After this talk was given, Belle reported a possible D^0K^+ state in $B^+ \rightarrow D^0\overline{D}^+K^+$ decays with a mass of ~2715 MeV/c^2. This might be the same state.
Charm and Charmonium Spectroscopy

tence of these two states has since been confirmed by BABAR \cite{51}. Belle also observes the isospin partner \(\Xi_c(3077)^0 \) in the decay \(\Xi_c(3077)^0 \rightarrow \Lambda_c^+ K_0^+ \pi^- \).

4. CHARMONIUM-LIKE STATES

Many new charmonium or charmonium-like states have been found in recent years. Several of these have received particular attention, since they do not seem to fit in the standard \(c\bar{c} \) spectroscopy picture. The most studied of the new states is the \(X(3872) \), which was first discovered by Belle \cite{32} in \(B^\pm \rightarrow K^\pm X(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^- \) decays. The observation has since been confirmed by several experiments \cite{33,34,35}. The latest measurements of this decay \cite{36,37} yield a mass \(3871.2 \pm 0.6 \) MeV/c\(^2\) and an upper limit on the width of \(\Gamma < 2.3 \) MeV at 90\% CL.

Several other decay modes of the \(X(3872) \) have been observed. Both Belle and BABAR have measured the radiative decay \(X(3872) \rightarrow \gamma J/\psi \) \cite{38,39} with a branching ratio of \((19\pm7)\% \) relative to the \(X(3872) \rightarrow J/\psi \pi^+ \pi^- \) decay mode. The observation of this mode implies that the \(X(3872) \) has even charge-conjugation parity. The rate is much lower than what one would expect if the \(X(3872) \) was a \(\chi_c^0 \) state \cite{40}. Belle also observes the decay \(X(3872) \rightarrow D^0 D^0 \pi^0 \) \cite{41}. This decay mode appears to be dominant as it is measured to have a branching fraction \(9.7 \pm 3.4 \) times higher than the \(X(3872) \rightarrow J/\psi \pi^+ \pi^- \) decay mode.

The quantum numbers \(J^{PC} \) of the \(X(3872) \) have been studied using the angular distributions of \(X(3872) \rightarrow J/\psi \pi^+ \pi^- \) decays. Both \(B \rightarrow X(3872) K \) decays \cite{36} and inclusively produced \(X(3872) \) mesons at CDF \cite{42} have been used. The combined analysis exclude all possibilities except \(1^{++} \) and \(2^{++} \). The \(J = 2 \) hypothesis is disfavored by the observation of the near-threshold decay \(X(3872) \rightarrow D^0 \bar{D}^0 \pi^0 \). \(J = 1^{++} \) is consistent with the \(X(3872) \) being a \(\chi_{c1}^0 \) or a \(D^0 \bar{D}^0 \) bound state \cite{43,44}. The latter is currently viewed as the most likely explanation, though tetra-quark models \cite{45} have not been ruled out.

A second interesting charmonium-like state is the \(Y(4260) \), discovered by BABAR in initial-state radiation (ISR) events, \(e^+e^- \rightarrow \gamma_{\text{ISR}} Y(4260) \), \(Y(4260) \rightarrow J/\psi \pi^+ \pi^- \) \cite{40}. It is a wide state with a mass of \(4259 \pm 8 \) MeV/c\(^2\) and a width of \(88 \pm 23 \) MeV. The observation of \(Y(4260) \) in ISR events requires that \(J^{PC} = 1^{--} \). The state has been confirmed by CLEO. They performed an energy scan and observe a large increase in the cross section of \(e^+e^- \rightarrow J/\psi \pi^+ \pi^- \) and \(e^+e^- \rightarrow J/\psi \pi^0 \pi^0 \) at \(\sqrt{s} = 4260 \) MeV \cite{47}. The \(e^+e^- \rightarrow J/\psi \pi^+ \pi^- \) cross-section section is consistent with that measured by BABAR in ISR events. The observation of \(Y(4260) \rightarrow J/\psi \pi^0 \pi^0 \) implies that it has isospin \(I = 0 \). BABAR has searched for several other possible decay modes of the \(Y(4260) \): \(p\bar{p} \) \cite{48}, \(\phi \pi^+ \pi^- \) \cite{49}, and \(D\bar{D} \) \cite{50}. No signals are observed and upper limits on the decay rates are set. The upper limit for the \(D\bar{D} \) mode is 7.6 times \(B(Y(4260) \rightarrow J/\psi \pi^+ \pi^-) \) at 95\% CL, which is much smaller than for example \(\frac{B(\psi(3770) \rightarrow D\bar{D})}{B(\psi(4160) \rightarrow D\bar{D})} \approx 500 \) \cite{51}. This suggests that the \(Y(4260) \) is not a radially excited \(\psi \) state, such as \(\psi(4S) \). Currently the most favored explanation is that of a \(c\bar{c}g \) hybrid state \cite{52}, which is predicted in this mass region.

BABAR also searched for \(Y(4260) \rightarrow (2S)\pi^+ \pi^- \) decays \cite{53}. No signal for the \(Y(4260) \) state is found, but a peak is observed at slightly higher mass. The peak is also not consistent with the \(\psi(4115) \). A fit with a Breit-Wigner gives a mass of \(4354 \pm 16 \) MeV/c\(^2\) and a width \(106 \pm 19 \) MeV. If \(Y(4260) \) is the lowest mass hybrid state, this \(Y(4350) \) could be an excitation. However, more studies of are needed to confirm the existence of this state and understand its properties.

5. SUMMARY

Charm spectroscopy has seen a lot of activity in the last few years. The \(D_{sJ}^*(2317)^+ \) and \(D_{sJ}(2460)^+ \) mesons appear to be regular \(0^+ \) and \(1^+ \) charm-strange mesons, but new charm mesons and baryons have been found that need further study. In charmonium the \(X(3872) \) and \(Y(4260) \) have been found to be \(1^{++} \) and \(1^{--} \), but their decay modes and masses suggest that these are not regular \(c\bar{c} \) states. They could be the first examples of a bound \(D^0 \bar{D}^0 \) and a \(c\bar{c}g \) hybrid state, re-
respectively. More experimental studies are needed to confirm or refute these hypotheses.

REFERENCES
1. B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
2. A. Abashian et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 117 (2002).
3. S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
4. M. Di Pierro and E. Eichten, Phys. Rev. D 64, 114004 (2001).
5. B. Aubert et al., Phys. Rev. Lett. 92, 242001 (2003).
6. D. Besson et al., Phys. Rev. D 68, 032002 (2003).
7. T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003).
8. B. Aubert et al., Phys. Rev. D 74, 032007 (2006).
9. B. Aubert et al., Phys. Rev. D 74, 031103 (2006).
10. B. Aubert et al., Phys. Rev. Lett. 93, 181801 (2004).
11. K. Abe et al., BELLE-CONF-0461 (2004).
12. A. V. Evdokimov et al., Phys. Rev. Lett. 93, 242001 (2004).
13. R. Kutschke et al., ES31-doc-701-v2 (2004).
14. B. Yabsley, AIP Conf. Proc. 792, 875 (2005).
15. B. Aubert et al., hep-ex/0408087.
16. B. Aubert et al., submitted to Phys. Rev. Lett., hep-ex/0607082.
17. P. Colangelo, F. De Fazio and S. Nicoti, hep-ph/0607245.
18. E. Beveren and G. Rupp, hep-ph/0606110.
19. K. Abe et al., hep-ex/0608031.
20. W.-M. Yao et al., Jour. of Phys. G 33, 1 (2006).
21. B. Aubert et al., submitted to Phys. Rev. Lett., hep-ex/0608055.
22. B. Aubert et al., submitted to Phys. Rev. Lett., hep-ex/0603052.
23. M. Artuso et al., Phys. Rev. Lett. 86, 4479 (2001).
24. K. Abe et al., hep-ex/0608043.
25. M. J. Savage and M. B. Wise, Phys. Lett. B 248, 177 (1990).
26. M. Mattson et al., Phys. Rev. Lett. 89, 112001 (2002).
27. A. Ocherashvili et al., Phys. Lett. B 628, 18 (2005).
28. S. P. Ratti et al., Nucl. Phys. Proc. Suppl. 115, 33 (2003).
29. B. Aubert et al., Phys. Rev. D 74, 011103 (2006).
30. R. Chistov et al., submitted to Phys. Rev. Lett., hep-ex/0606051.
31. B. Aubert et al., hep-ex/0607042.
32. S.-K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003).
33. D. Acosta et al., Phys. Rev. Lett. 93, 072001 (2004).
34. V. M. Abazov et al., Phys. Rev. Lett. 93, 162002 (2004).
35. B. Aubert et al., Phys. Rev. D 71, 071103 (2005).
36. K. Abe et al., hep-ex/0505038.
37. B. Aubert et al., Phys. Rev. D 73, 011101 (2006).
38. K. Abe et al., hep-ex/0505037.
39. B. Aubert et al., submitted to Phys. Rev. D, hep-ex/0607050.
40. E. S. Swanson, Phys. Lett. B 598, 197 (2004).
41. G. Gokhroo et al., submitted to Phys. Rev. Lett., hep-ex/0606055.
42. I. Kravchenko, eConf C060409, 016 (2006).
43. N. Tornqvist, Phys. Lett. B 590, 209 (2004).
44. E. Braaten, M. Kusunoki and S. Nussinov, Phys. Rev. Lett. 93, 162001 (2004).
45. L. Maiani et al., Phys. Rev. D 71, 014028 (2005).
46. B. Aubert et al., Phys. Rev. Lett. 95, 142001 (2005).
47. T. E. Coan et al., Phys. Rev. Lett. 96, 162003 (2006).
48. B. Aubert et al., Phys. Rev. D 73, 012005 (2006).
49. B. Aubert et al. to be submitted to Phys. Rev. Lett.
50. B. Aubert et al., hep-ex/0607083.
51. N. E. Adam et al., Phys. Rev. Lett. 96, 082004 (2006).
52. S. Zhu, Phys. Lett. B 625, 212 (2005).
53. B. Aubert et al. to be submitted to Phys. Rev. Lett.