HIV-1 Subtype C, Tenofovir, and the Relationship With Treatment Failure and Drug Resistance

Huldrych F. Günthard and Alexandra U. Scherrer
Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich and Institute of Medical Virology, Switzerland

(See the major article by White et al on pages 1302–8.)

Keywords. HIV-1; drug resistance; subtype C; tenofovir; treatment failure; antiretroviral treatment.

Tenofovir disoproxil fumarate (TDF) has emerged as a cornerstone of initial antiretroviral therapy (ART) [1, 2]. However, human immunodeficiency virus type 1 (HIV) subtype C, the most prevalent worldwide subtype, accounting for >50% of all HIV infections, harbors polymorphisms in reverse transcriptase codons 64, 65, and 66, which lead to more-rapid in vitro selection of the K65R mutation [3], the signature mutation conferring resistance to TDF [4]. Subtype C viruses may only require a single point mutation at position 65 to select for K65R. Several clinical studies have suggested that this mechanism may contribute to higher treatment failure rates and higher rates of the emergence of the K65R mutations observed in HIV subtype C–infected, compared with subtype B–infected, individuals treated with TDF-containing regimens [5–9], although others could not confirm different resistance rates between subtype B and C [10–12].

In this issue of The Journal of Infectious Diseases, White et al report a comprehensive study on this issue [13]. They analyzed data from the UK Collaborative HIV Cohort (CHIC) Study (available at: http://www.ukchic.org.uk) and included 8746 patients who had initiated ART containing TDF, plus lamivudine or emtricitabine and either a nonnucleoside reverse transcriptase inhibitor (NNRTI; efavirenz or nevirapine) or a ritonavir-boosted protease inhibitor (lopinavir, atazanavir, or darunavir), and were followed for a median of 3.3 years. Unadjusted analyses indicated an approximately 2-fold higher virological failure rate for subtype C–infected individuals as compared to subtype B–infected individuals. However, when they adjusted for demographic and clinical factors, no differences in treatment response between subtype C– and subtype B–infected patients was seen. The analysis of emerging resistance showed that in patients who failed treatment, the K65R mutation occurred significantly more often in subtype C than in B or non B/C infected individuals. The authors concluded from their analysis that there is no intrinsic effect of viral subtype C on the efficacy of tenofovir-containing first-line regimens.

A strength of the UK CHIC study is that it only analyzed TDF-containing first-line regimens, that they had large absolute numbers of subtype B– and subtype C–infected patients obtaining these first-line regimens, and that the study was conducted in a single large national health system where all HIV-infected patients have similar access to ART and care. The clinical and demographic data available allowed them to adjust for potential confounding factors such as ethnicity, which may be associated with adherence to therapy, baseline viral load, baseline CD4+ T-cell count, time of enrollment, and transmission groups.

Why is it that some previous studies demonstrated increased failure and resistance rates in subtype C– as compared to subtype B–infected patients treated with TDF [5–9]? The major factor explaining these discrepancies most likely is confounding by adherence or continuous access to treatment, which was more difficult to adjust for in other studies that were performed across various countries and healthcare systems. Within the same healthcare system, it has been shown that black ethnicity of sub-Saharan origin was associated with higher treatment failure rates, compared with white or Asian ethnicities [14, 15]. In addition, among patients treated in resource-limited settings, detection of viral failure is often delayed because of lack of viral monitoring [8, 16], and in some studies definition of viral load failure was set considerably higher (e.g., >1000 HIV RNA copies/mL or 2 consecutive viral loads of >1000 HIV RNA copies/mL) [6, 7], when compared to those used by White et al (2 consecutive viral loads of >200 HIV RNA copies/mL). This means that in the previous studies, replicating viruses were exposed to the selection pressure exerted by TDF for longer periods and, thus, that the chance to acquire the K65R mutation was higher. Another potential factor explaining differences may be that White et al looked at relatively modern treatments: the median year of ART initiation was 2008 for subtype B–infected subjects and 2009 for subtype C–infected subjects, and 70.2%
and 66.3% of the treatments, respectively, consisted of EFV + TDF + FTC or 3TC. Most likely, the majority of these regimens consisted of coformulated TDF and FTC (Truvada), although this was not specified in the article. It has previously been shown that NNRTI-containing regimens including TDF and 3TC showed higher rates of treatment failure and resistance when compared to TDF/FTC-containing regimens [17, 18], although if corrected for pill burden and ethnicity, the differences between the 2 nucleoside reverse transcriptase inhibitor backbones waned [14, 18]. Potentially, 3TC was less effective than TDF [19]. Therefore, it is possible that the differences between TDF and 3TC were not due to pill burden or ethnicity, but rather to the reverse transcriptase inhibitor used.

The majority of patients infected with subtype C did not respond to treatment in an optimal treatment setting, treatment failures can be identified early, most importantly through viral load monitoring, optimally every 3–6 months [1], or that strategies such as the recently proposed viral-load-informed differentiated care [21] are also adopted.

Notes

Acknowledgments. We thank Roger Kouyos for critical reading of this manuscript.

Financial support. This work was supported by the Swiss National Science Foundation (grant 159 868 to H. F. G.) and a University of Zurich clinical research program title titled Viral Infections Diseases, Zurich Primary human immunodeficiency virus Infection.

Potential conflict of interest. H. F. G. has been an adviser and/or consultant for Gilead, Boehringer Ingelheim, Merck, and Bristol-Myers Squibb and has received unrestricted research and educational grants from Roche, Gilead, Gilead, GlaxoSmithKline, and Merck Sharp and Dohme. A. U. S. certifies no potential conflicts of interest. Both authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Gunthard HF, Aberg JA, Eron JJ, et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA 2014; 312:410–25.

2. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. 2013. Available at: http://www.who.int/hiv/pub/guidelines/arv2013/download/en/.

3. Brenner RG, Oliveira M, Doualla-Bell F, et al. HIV-1 subtype C viruses rapidly develop K65R resistance to tenofovir in cell culture. AIDS 2006; 20:F9–13.

4. Wensing AM, Calvez V, Gunthard HF, et al. 2015 Update of the drug resistance mutations in HIV-1. Top Antivir Med 2015; 23:132–41.

5. Haggblom A, Svehle V, Singh K, Sonnerborg A, Neogi U. Virological failure in patients with HIV-1 subtype C receiving antiretroviral therapy: an analysis of a prospective national cohort in Sweden. Lancet HIV 2016; 3:e166–74.

6. Kantor R, Smeaton L, Yardehanabulti S, et al. Pre-treatment HIV drug resistance and HIV-1 subtype C are independently associated with virologic failure: results from the multinational PEARLS (ACTG A5175) clinical trial. Clin Infect Dis 2011; 60:1541–9.

7. Sunpath H, Wu B, Gooden M, et al. High rate of K65R for antiretroviral therapy-naive patients with subtype C HIV infection failing a tenofovir-containing first-line regimen. AIDS 2012; 26:1679–84.

8. TenoRes Study G. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study. Lancet Infect Dis 2016; 16:565–75.

9. Thys K, Vercauteren J, Snoek J, et al. HIV-1 subtype C is an independent predictor of reverse transcriptase mutation K65R in HIV-1 patients treated with combination antiretroviral therapy including tenofovir. Antimicrob Agents Chemother 2013; 57:1053–6.

10. Chaix ML, Seng R, Frange P, et al. Increasing HIV-1 non-B subtype primary infections in patients in France and effect of HIV subtypes on virological and immunological responses to combined antiretroviral therapy. Clin Infect Dis 2013; 56:880–7.

11. Scherrer AU, Ledergerber B, von Wyl V, et al. Improved virological outcome in White patients infected with HIV-1 non-B subtypes compared to subtype B. Clin Infect Dis 2011; 53:1143–52.

12. Wittkop L; on behalf of the EuroCoord-CHAIN subtype project team. Effect of HIV-1 subtypes on virological and immunological response to initial combination antiretroviral therapy (cART) – a European multicohort study, 20th Conference on Retroviruses and Opportunistic Infections [abstract M-163]. Atlanta, USA, 3–6 March 2013.

13. White E, Smit E, Churchill D, et al. No evidence that HIV-1 subtype C infection compromises the efficacy of tenofovir-containing regimens: cohort study in the United Kingdom. J Infect Dis 2016; 214:302–8.

14. Yang W, Koyos RD, Chaix ML, et al. Assessing efficiency of different nucleos(t)ide backbones in NNRTI-containing regimens in the Swiss HIV Cohort Study. J Antimicrob Chemother 2013; 70:3323–31.

15. Staelin C, Keiser O, Calmy A, et al. Longer term clinical and virological outcome of sub-Saharan African participants on antiretroviral treatment in the Swiss HIV Cohort Study. J Acquir Immune Defic Syndr 2012; 59:79–85.

16. Gupta RK, Hill A, Sawyer AW, et al. Virological monitoring and resistance to first-line highly active antiretroviral therapy (HAART) – a European multicohort study. Lancet Infect Dis 2009; 9:409–17.

17. Roks C, Fibriani A, van de Vijver DA, et al. Increased virological failure in naive HIV-1-infected patients taking lamivudine compared with emtricitabine in combination with tenofovir and efavirenz or nevirapine in the Dutch nationwide ATHENA cohort. Clin Infect Dis 2015; 60:143–53.

18. Tang MW, Kanji PJ, Shafer RW. A review of the virological efficacy of the 4 World Health Organization-recommended tenofovir-containing regimens for initial HIV therapy. Clin Infect Dis 2012; 54:862–75.
19. Margot NA, Kitrinos KM, Fordyce M, McCallister S, Miller MD, Callebaut C. Rare emergence of drug resistance in HIV-1 treatment-naive patients after 48 weeks of treatment with elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide. HIV Clin Trials 2016; 17:78–87.

20. Rhee SY, Blanco JL, Jordan MR, et al. Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance: an individual-patient- and sequence-level meta-analysis. PLoS Med 2015; 12:e1001810.

21. Working Group on Modelling of Antiretroviral Therapy Monitoring Strategies in Sub-Saharan Africa. Phillips A, Shroufi A, et al. Sustainable HIV treatment in Africa through viral-load-informed differentiated care. Nature 2015; 528:568–76.