Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag$^{+}$-dissolved organic matter solution

Yongguang Yin a,b, Dan Han a,c, Chao Tai c, Zhiqiang Tan a, Xiaoxia Zhou a, Sujuan Yu a, Jingfu Liu b,*, Guibin Jiang a

a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b Institute of Environment and Health, Jianghan University, Wuhan 430056, China
c Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China

A R T I C L E I N F O

Article history:
Received 5 November 2016
Received in revised form 6 February 2017
Accepted 21 March 2017
Available online 26 March 2017

Keywords:
Silver nanoparticles
Dissolved organic matter
Photo-reduction
Iron
Electron shuttle

A B S T R A C T

Photo-reduction of Ag$^{+}$ to silver nanoparticle (AgNPs) by dissolved organic matter (DOM) is a possible source of naturally occurring AgNPs. However, how this photo-reduction process is influenced by ubiquitous metal ions is still not well understood. In addition, in previous studies, the formation of AgNPs in DOM solution was usually monitored by UV-Vis spectroscopy, and there is still lack of quantitative analysis for the formed AgNPs. In the present study, the role of Fe$^{2+}$/Fe$^{3+}$ at environmental concentration level on this photochemical process was investigated, and the enhanced formation of AgNPs by Fe$^{2+}$/Fe$^{3+}$ was probed and quantified by using UV-Vis spectroscopy, transmission electron microscopy, and liquid chromatography-inductively coupled plasma mass spectrometry. It was demonstrated that while Fe$^{3+}$ can oxidize AgNPs to release Ag$^{+}$, Fe$^{2+}$ can reduce Ag$^{+}$ into AgNPs. However, the DOM-induced reduction of Fe$^{3+}$ makes iron an effective electron shuttle between DOM and Ag$^{+}$, and both Fe$^{2+}$ and Fe$^{3+}$ enhanced AgNPs formation. The impacts of environmentally relevant factors, including DOM concentration and solution pH, on this process were studied comprehensively, which showed that the catalytic role of iron was more significant at higher DOM concentration and lower pH. This iron-enhanced formation of AgNPs in photo-irradiated Ag$^{+}$-DOM solution have great environmental implications on the formation of natural AgNPs and the transformation of engineered AgNPs in acidic surface water with high iron content.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The antimicrobial capability of silver nanoparticles (AgNPs) and other conventional forms of silver (e.g., silver metal and silver salt) has been utilized in numerous consumer products and medical devices in recent years (Chernousova and Epple, 2013). In their production, use and disposal, the release of silver ion (Ag$^{+}$) and AgNPs from these silver-containing consumer products and medical devices is inevitable (Benn and Westerhoff, 2008; Geranio et al., 2009; Gottschalk and Nowack, 2011; Mitrano et al., 2014). The released AgNPs readily transform in the environment through processes like oxidative dissolution (Dobias and Bernier-Latmani, 2013; Liu and Hurt, 2010; Liu et al., 2010) and sulfidation (Levard et al., 2011; Liu et al., 2011), which not only modifies their properties, but also have great impacts on their transport, bioavailability, and toxicity (Levard et al., 2012). The oxidative dissolution of AgNPs releases Ag$^{+}$, which increases the toxicity of AgNP significantly (Kittler et al., 2010; Xi et al., 2012; Yang et al., 2012). However, recently it was also discovered that ubiquitous dissolved organic matter (DOM) can reduce Ag$^{+}$ into AgNPs with DOM as both reductant and coating agent (Adegboyega et al., 2013; Akaighe et al., 2011; Hou et al., 2013; Yin et al., 2012, 2014). This reduction process is not only a possible source of naturally occurring AgNPs (Akaighe et al., 2011; Yin et al., 2012), but also has great impacts on the fate and transformation of engineered AgNPs (Yu et al., 2014). Further studies showed that this reduction process is influenced by thermal (Adegboyega et al., 2013; Akaighe et al., 2011) or sunlight irradiation (Hou et al., 2013; Yin et al., 2012), pH (Hou et al., 2013; Yin et al., 2012), source (Akaighe et al., 2011; Yin et al., 2012) and redox states of DOM (Maurer et al., 2012). However, effect of ubiquitous metal ions on this reduction process is still largely
unknown. In aquatic ecosystems, light-induced redox cycling of Fe$^{2+}$/Fe$^{3+}$ plays important role in numerous chemical processes (Emmenegger et al., 2001; Song et al., 2005), e.g., the catalytic reduction of Cr(VI) (Agrawal et al., 2009; Gaberell et al., 2003). Recently, Adegbeye et al. showed that Fe$^{3+}$ or Fe$^{2+}$ ions in the mixtures of Ag$^+$ and DOM enhanced the formation of AgNPs under heating (90 °C) (Adegbeye et al., 2014) or UV irradiation (Adegbeye et al., 2016). However, how the presence of Fe$^{3+}$/Fe$^{2+}$ in Ag$^+$-DOM system on the formation of AgNPs under other more environment-relevant conditions (e.g., under sunlight irradiation) is still not well understood. In addition, in previous studies, the formation of AgNPs in DOM solution was usually monitored by UV-Vis spectrometry (Adegbeye et al., 2014, 2016; Yin et al., 2012), and there is still lack of quantitative characterization for the formed AgNPs.

In the present study, we have demonstrated that the catalytic role of Fe$^{3+}$/Fe$^{2+}$ at environmental concentration level on the photo-reduction of Ag$^+$ by DOM. The formation of AgNPs was demonstrated by using UV-Vis spectroscopy and transmission electron microscopy (TEM), and further quantitative analysis for the formed AgNPs was performed by using the liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS). Environmental factors including the DOM concentration and solution pH, have been studied comprehensively, focusing on the catalytic role of Fe$^{3+}$/Fe$^{2+}$. This Fe$^{3+}$/Fe$^{2+}$-enhanced formation of AgNPs in photo-irradiated Ag$^+$-DOM solution have great environmental implications on the formation of natural AgNPs and the transformation of engineered AgNPs in acidic surface water with high iron content.

2. Experimental section

2.1. Materials

AgClO$_4$, Na$_2$B$_4$O$_7$, and H$_2$B$_2$O$_7$ were purchased from Beijing Chemicals (Beijing, China). FeClO$_4$$_3$ (>98%) and FeClO$_4$$_2$ (>98%) were from Sigma-Aldrich. HNO$_3$ (65%) was from Merck (Darmstadt, Germany). Polyvinylpyrrolidone (PVP, molecular weight 58 000) was from Aladdin Chemistry Co. Ltd. (Shanghai, China). Water was set as 20 °C and 0.7 mL min$^{-1}$, respectively. The injection volume was 100 µL. Into 1 mL sample was added 20 µL 1 mol L$^{-1}$ Na$_2$S$_2$O$_3$, and then the sample was injected for LC-ICP-MS measurement. Due to the complexation of Ag$^+$ with S$_2$O$_3$$_2^-$ in sample and mobile phase, the adsorbed Ag$^+$ can well desorbed from AgNPs and DOM, and then be separated effectively from AgNPs. Under the above conditions, AgNPs and Ag$^+$ in the sample can be well separated in 5 min. Then the Ag$^+$ in sample was quantified according to Ag$^+$ standard and the concentration of AgNPs was obtained by subtracting the Ag$^+$ from the total Ag, which was determined directly by ICP-MS after digestion (Zhou et al., 2014). The spiked recovery of Ag$^+$ in 30 mg L$^{-1}$ DOM solution of this LC-ICP-MS method was 98.7 ± 0.6%.

2.2. Transformation of silver under dark or simulated sunlight

The experiments were performed in 100 mL quartz glass bottles with quartz caps under dark conditions or in a sunlight simulator (TEMI880, Beijing LiHui, Beijing, China) equipped with three wind-refrigerated 2500 W Xe lamp. The total volume of the solution was 100 mL. The intensity of the light was set as 550 W m$^{-2}$. The spectrum of the simulated sunlight was given in our previous study (Yin et al., 2014). During the experiment, the reaction temperature was maintained at ~35 °C by a water bath. Although phosphate is usually used as buffer to cover a wide range of pH, considering the low solubility of Ag$_5$PO$_4$ in water (Ksp(Ag$_5$PO$_4$) = 1.46 × 10$^{-18}$) (Fu et al., 2007), phosphate is not a suitable buffer in our study. Therefore, acetic acid-acetate (pH 3.6), 2-(N-morpholino) ethanesulfonic acid (MES)-NaOH (pH 5.5 and 6.3), and borate (pH 7.4 and 8.0) were used as buffers for different pH conditions. The oxidation of AgNPs by Fe$^{2+}$ and reduction of Ag$^+$ by Fe$^{3+}$ in the absence of DOM were performed at room temperature under dark or simulated irradiation. In the photo-irradiated Ag$^+$-Fe$^{2+}$/Fe$^{3+}$-DOM systems, the parameters, including concentration of Fe$^{3+}$/Fe$^{2+}$ and DOM, and pH of solution, were investigated, focusing on the catalytic role of Fe$^{3+}$/Fe$^{2+}$.

2.3. Characterizations and quantification of the species of silver

2.3.1. UV-vis spectrometry

UV-vis spectra were recorded on a Shimadzu UV–vis–NIR Spectrophotometer (UV-3600, Japan). The wavelength scanning was performed from 200 to 800 nm at 0.5 nm wavelength interval.

2.3.2. Transmission electron microscopy

TEM analysis was performed on a Hitachi H-7500 (Hitachi, Japan) or JEOL 2110 (Herts, England) transmission electron microscope. TEM samples were prepared by placing 5 µL aliquots of the aqueous sample onto an ultrathin carbon-coated copper grid and drying at room temperature.

2.3.3. Quantification of Ag$^+$ and AgNPs

The Ag$^+$ in irradiated sample was quantified by LC-ICP-MS according to our previous study (Zhou et al., 2014). An amino column with the 500 Å pore size (Venusil Durashell-NH$_2$, 5 µm particle size, 250 × 4.6 mm) purchased from Bonna-Agela Technologies Inc. (Tianjin, China) was used for the separation of Ag$^+$ and AgNPs. The mobile phase was 0.1% (v/v) FL-70 (mixture of nonionic and anionic surfactants from Fisher Scientific, Fair Lawn, NJ) and 2 mmol L$^{-1}$ Na$_2$S$_2$O$_3$. The column temperature and flow rate of mobile phase were set as 20 °C and 0.7 mL min$^{-1}$, respectively. The injection volume was 100 µL. Into 1 mL sample was added 20 µL 1 mol L$^{-1}$ Na$_2$S$_2$O$_3$, and then the sample was injected for LC-ICP-MS measurement. Due to the complexation of Ag$^+$ with S$_2$O$_3$$_2^-$ in sample and mobile phase, the adsorbed Ag$^+$ can well desorbed from AgNPs and DOM, and then be separated effectively from AgNPs. Under the above conditions, AgNPs and Ag$^+$ in the sample can be well separated in 5 min. Then the Ag$^+$ in sample was quantified according to Ag$^+$ standard and the concentration of AgNPs was obtained by subtracting the Ag$^+$ from the total Ag, which was determined directly by ICP-MS after digestion (Zhou et al., 2014). The spiked recovery of Ag$^+$ in 30 mg L$^{-1}$ DOM solution of this LC-ICP-MS method was 98.7 ± 0.6%.

3. Results and discussion

3.1. Reduction of Ag$^+$ by Fe$^{2+}$

To probe the possible reduction of Ag$^+$ by Fe$^{2+}$, the reaction of Ag$^+$ and Fe$^{2+}$ under simulated irradiation was monitored by UV-vis spectroscopy. As shown in Fig. 1A, a small absorption peak was evident at about 410 nm at 0.5 h, which was ascribed to the surface plasmon resonance (SPR) of AgNPs (Chinnapongse et al., 2011). The SPR peak enhanced over time from 0.5 to 2 h, indicating the further formation of AgNPs. However, the SPR peaks further broadened and shift to longer wavelength at 4 h-8 h, which was ascribed to the formation of AgNP aggregates (Yin et al., 2012) due to the absence of capping agent. Considering the relatively lower concentration of
AgNPs formed, the solution was concentrated by ultrafiltration with Amicon Ultra-15 centrifugal filter (with 3 kDa nominal molecular weight cut-off) before TEM characterization. It should be noted that the ultrafiltration and TEM sample preparation could possibly induce the aggregation of AgNPs, however, which should not influence the formation of AgNPs. As shown in Fig. 1B, AgNPs with sizes ranged from several nm to over 100 nm were observed and the lattice planes observed in high resolution TEM image (Fig. S2) can be indexed to face-centered cubic (fcc) silver metal. These results demonstrated that dissolved Fe$^{2+}$ can reduce Ag$^{+}$ into AgNPs according to reaction 1.

$$Fe^{2+} + Ag^{+} \rightarrow Fe^{3+} + Ag^0 \quad (1)$$

Previous study also showed that adsorbed Fe$^{2+}$ in mixed Fe$^{2+}$/Fe$^{3+}$ hydroxides (green rusts) can reduce Ag$^{+}$ to submicron-sized particles of Ag0 under dark conditions (O’Loughlin et al., 2003). These results suggested that Fe$^{2+}$ should play important role in the formation of naturally occurring AgNPs.

To further validate the formation of AgNPs by Fe$^{2+}$ in the presence of capping agent, PVP was added into the mixture of Fe$^{2+}$ and Ag$^{+}$ before simulated irradiation. The results (Fig. 1C) showed a significant absorption between 350 nm and 700 nm, indicating a polydispersed distribution of AgNPs. The TEM (Fig. 1D) showed that the size of AgNPs ranged from several nm to about 50 nm.

Compared with AgNPs in the absence of PVP, the AgNPs formed in PVP solution is more dispersed in aqueous solution, which was ascribed to the stabilization effect of PVP as capping agent. This result also suggested that DOM in solution should also have similar stabilization effect to the Fe$^{2+}$-reduced AgNPs.

3.2. Oxidation of AgNPs by Fe$^{3+}$

The possible oxidation of AgNPs by Fe$^{3+}$ under dark conditions was investigated under various pH. As shown in Fig. 2A, in the absence of Fe$^{3+}$, the absorption intensity of AgNPs located at about 400 nm decreased with solution pH, suggesting oxidative
dissolution of AgNPs is favorable at lower pH (Liu and Hurt, 2010). This result was further validated by measuring of dissolved Ag$^+$ in AgNPs solution by LC-ICP-MS. As shown in Fig. 2B, with the decreasing of solution pH, the concentration of dissolved Ag$^+$ increased accordingly. Superoxide and hydrogen peroxide are possibly involved in the accelerated-oxidative dissolution of AgNPs at lower pH (reaction 2–4) (Jones et al., 2011).

$$\text{Ag}^0 + \text{O}_2 \rightarrow \text{Ag}^+ + \text{O}_2^-$$ \hspace{1cm} (2)

$$2\text{O}_2^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$$ \hspace{1cm} (3)

$$\text{Ag}^0 + 2\text{H}_2\text{O}_2 \rightarrow \text{Ag}^+ + \text{O}_2^- + 2\text{H}_2\text{O}$$ \hspace{1cm} (4)

In the presence of 50 μmol L$^{-1}$ Fe$^{3+}$, at pH 3.6, the UV-vis absorption of AgNPs decreased significantly when compared with that in the absence of Fe$^{3+}$, indicating the Fe$^{3+}$-enhanced oxidative dissolution of AgNPs (Fig. 2A). However, at pH 5.5, the impact of Fe$^{3+}$ on the dissolution is not significant. At pH 7.4, in the presence of Fe$^{3+}$, the UV-vis absorption of AgNPs decreased and the SPR peak shifted to the longer wavelength, indicating the Fe$^{3+}$-induced aggregation of AgNPs. However, at pH 8.0, the variation of SPR peak was not significant, possibly due to the fast precipitation of Fe$^{3+}$ as Fe(OH)$_3$ at alkaline pH. According to a previous study (Pham et al., 2006), the formation rate of Fe(OH)$_3$ precipitation is the fastest at pH 8.0 in the range of 6.0–9.5, which may result in a fast Fe$^{3+}$ depletion and inhibit the Fe$^{3+}$-induced dissolution or aggregation of AgNPs. As the UV-vis absorption of AgNPs is influenced not only by the concentration of AgNPs, but also the size and aggregation of AgNPs, the oxidative dissolution of AgNPs in the presence of Fe$^{3+}$ at various pH was further probed by LC-ICP-MS, as shown in Fig. 2B. The result clearly showed that the Fe$^{3+}$-enhanced oxidative dissolution of AgNPs was more significant at lower pH (pH 3.6 and 5.5) ($P < 0.05$). For example, the dissolution ratio of AgNPs at pH 3.5 increased from 24.8% to 46.6% after addition of Fe$^{3+}$. However, the presence of Fe$^{3+}$ have no influence on the dissolution at pH 7.4 and 8.0, possibly due to the lower concentration of dissolved Fe$^{3+}$ at alkaline pH and the aggregation-inhibited dissolution. The above results demonstrated that at lower pH, Fe$^{3+}$ facilitates the oxidative dissolution of AgNPs, according to reaction 5:

$$\text{Fe}^{3+} + \text{Ag}^0 \rightarrow \text{Fe}^{2+} + \text{Ag}^+$$ \hspace{1cm} (5)

3.3. Catalytic role of Fe$^{2+}$/Fe$^{3+}$ in the formation of AgNPs in photo-irradiated Ag$^+$-DOM solution

In previous studies, it has been observed that iron can accelerate the photo-reduction of Cr(VI) by DOM (Gaberell et al., 2003). Considering the similar Fe$^{2+}$/Fe$^{3+}$ redox cycling in photo-irradiated Ag$^+$-Fe-DOM system, it is reasonable that Fe$^{2+}$/Fe$^{3+}$ could also accelerate the photo-reductive formation of AgNPs in DOM solution. Therefore, the effect of concentration of Fe$^{2+}$/Fe$^{3+}$ and DOM, as well as pH was investigated in the photo-reductive formation of AgNPs in DOM solution, with emphasizing on the catalytic role of Fe$^{2+}$/Fe$^{3+}$.

3.3.1. Concentration of Fe$^{2+}$/Fe$^{3+}$

Considering the concentration of filtered iron (including both dissolved and particulate iron that pass through filters) in environmental waters can be up to 12.34 μmol L$^{-1}$ (Lofts et al., 2008),
the concentration of Fe$^{2+}$/Fe$^{3+}$ on the reduction of Ag$^+$ was investigated at the environmental concentration level (0–10 μmol L$^{-1}$). At 0.5 h, the SPR intensity of AgNPs increased with Fe$^{2+}$/Fe$^{3+}$ concentration from 2 to 7 μmol L$^{-1}$, and the SPR peak of AgNPs broadened at 10 μmol L$^{-1}$ Fe$^{2+}$/Fe$^{3+}$ (Fig. S3A and B), possibly due to the formation of AgNP aggregates or larger AgNPs. At 0.5 h, the SPR intensity of AgNPs increased with Fe$^{2+}$/Fe$^{3+}$ concentration from 2 to 7 μmol L$^{-1}$, and the SPR peak of AgNPs broadened at 10 μmol L$^{-1}$ Fe$^{2+}$/Fe$^{3+}$ (Fig. S3A and B), possibly due to the formation of AgNP aggregates or larger AgNPs. At 8 h, the SPR peak of AgNPs further broadened and shifted to longer wavelength, with the increasing the concentration of Fe$^{2+}$/Fe$^{3+}$ (Fig. S3C and D). The result of LC-ICP-MS (Fig. 3) demonstrated that the presence of Fe$^{2+}$/Fe$^{3+}$ at environmental concentration level enhanced the reductive formation of AgNPs. As shown in Fig. 3, in the presence of 5 or 10 μmol L$^{-1}$ Fe$^{2+}$, the AgNP concentration increased by ~50%. Similarly, the AgNP concentration increased by 18% in the presence of 5 μmol L$^{-1}$ Fe$^{3+}$, and then increased by 52% when further increased Fe$^{3+}$ concentration to 10 μmol L$^{-1}$. The catalytic role of Fe$^{3+}$ for the AgNPs formation was ascribed to the redox cycling of Fe$^{2+}$/Fe$^{3+}$ in the presence of DOM under light irradiation (as shown in reaction 1, 6 and 7) (Emmenegger et al., 2001), in which Fe$^{2+}$/Fe$^{3+}$ serve as electron shuttle to enhance the transfer of electron from DOM to Ag$^+$ (Adegboyega et al., 2014).

\[
\text{DOM} + O_2 \xrightleftharpoons{hr} \text{DOM}^+ + O_2^- \tag{6}
\]

\[
\text{Fe}^{3+} + O_2^- \rightarrow \text{Fe}^{2+} + O_2 \tag{7}
\]

The AgNPs in photo-irradiated Ag$^+$-DOM systems with or without Fe$^{2+}$/Fe$^{3+}$ were characterized by TEM. In Ag$^+$-DOM system without Fe$^{2+}$/Fe$^{3+}$, the AgNPs were spherical and well dispersed in solution (Fig. 4A and B). However, in the presence of Fe$^{2+}$/Fe$^{3+}$, AgNPs with irregular morphology were evident (Fig. 4C–F), which was ascribed to the Fe$^{2+}$/Fe$^{3+}$-induced aggregation and subsequent aggregation-induced fusion of AgNPs (Yin et al., 2014).

3.3.2. Concentration of DOM

To investigate the role of DOM in reduction, different concentration of DOM was added into the mixture of Ag$^+$ and Fe$^{2+}$/Fe$^{3+}$ to a final concentration of 5, 10, 20 and 30 mg L$^{-1}$ dissolved organic carbon, respectively. After simulated sunlight irradiation, the UV-vis spectra were recorded, as shown in Fig. S4. In the absence of Fe$^{2+}$/Fe$^{3+}$, the SPR intensity of AgNPs significantly increased with DOM concentration, which is consistent with our previous study (Yin et al., 2012). In the presence of Fe$^{2+}$ or Fe$^{3+}$, the SPR peak of AgNPs broadened and shift to the longer wavelength, suggesting the formation of larger AgNPs or aggregates of AgNPs. The aggregation of AgNPs induced by multivalent metal ion can reduce the distance between AgNPs and consequently fuse small AgNPs to form “new” larger AgNPs (Yin et al., 2014). However, with the increasing concentration of DOM, the red-shift and peak-broaden were partially inhibited, suggesting DOM improved the dispersion of AgNPs (Yin et al., 2014). The quantitative measurement of AgNPs at different DOM concentration was shown in Fig. 5. In the absence or presence of Fe$^{2+}$/Fe$^{3+}$, the AgNP concentration significantly increased with the increase of DOM concentration. More importantly, at all investigated DOM concentration, Fe$^{2+}$/Fe$^{3+}$ enhanced the formation of AgNPs. Comparably, the catalytic role on formation of AgNPs is more significant for Fe$^{2+}$ than Fe$^{3+}$, and the increase of DOM concentration facilitates the catalytic role of Fe$^{2+}$/Fe$^{3+}$. As DOM serving as electron donor in the photo-reduction process, higher

![TEM images of AgNPs in the absence or presence of Fe$^{2+}$/Fe$^{3+}$ in photo-irradiated Ag$^+$-DOM solution. (A and B), without Fe$^{2+}$/Fe$^{3+}$; (C and D), 10 μmol L$^{-1}$ Fe(ClO$_4$)$_2$; (E and F), 10 μmol L$^{-1}$ Fe(ClO$_4$)$_3$. Other conditions: 30 mg L$^{-1}$ DOM, 1 mmol L$^{-1}$ AgClO$_4$, pH 6.3, 8 h light irradiation.](image-url)
concentration of DOM can promote the reduction of Fe$^{3+}$ (Chen et al., 2003; Fukushima and Tatsumi, 1999), and thus the catalytic role of Fe$^{2+}$/Fe$^{3+}$.

3.3.3. Effect of pH

The effect of pH on the reduction formation of AgNPs was investigated in the range from 5.5 to 8.0, covering the pH range of most surface waters (Lofts et al., 2008). As shown in Fig. 6A and B, the presence of Fe$^{2+}$ or Fe$^{3+}$ enhanced the SPR intensity of AgNPs at pH 5.5 and 6.3, but reduced the SPR intensity of AgNPs at pH 8.0 (Fig. 6C). The formation of AgNPs at pH 5.5 and 8.0 was further quantified by LC-ICP-MS. As shown in Fig. 6D, at pH 5.5, the presence of Fe$^{2+}$ or Fe$^{3+}$ enhanced the formation of AgNPs by 37.0% and 27.3%, respectively. Comparably, the enhancement of AgNPs formation was more significant in the presence of Fe$^{2+}$ than that of Fe$^{3+}$. At pH 8.0, however, the formation of AgNPs in the presence of Fe$^{2+}$/Fe$^{3+}$ was even lower than that in the absence of Fe$^{2+}$/Fe$^{3+}$ (by ~13%). These results suggested that the catalytic role of Fe$^{2+}$/Fe$^{3+}$ was distinct at acidic pH, but was inhibited at alkaline environment.

Similar pH-dependent photo-reduction of Cr(VI) was also observed in the presence of low-molecular-weight organic acids and Fe$^{2+}$/Fe$^{3+}$ (Hug et al., 1997; Sun et al., 2009), in which the pH-dependent photo-reduction was ascribed to the following two possible reasons: (i) The pH-dependent reduction of Fe$^{3+}$ to Fe$^{2+}$; and (ii) the pH-dependent reduction of Cr(VI) by Fe$^{2+}$. However, it has been demonstrated that the reduction of Cr(VI) by Fe$^{2+}$ in the absence of low-molecular-weight organic acids enhanced with the increased pH (5.0–9.0) (Buerge and Hug, 1997; Pettine et al., 1998). Therefore, this pH-dependent photo-reduction in the presence of organic...
matter and Fe2+/Fe3+ should be ascribed to the pH-dependent reduction of Fe3+ to Fe2+ by DOM. It is well known that the reductive potential of DOM decreased with increased pH (Yin et al., 2012), which is favorable for the reduction of metal ions. However, the photo-reductive formation of Fe3+ in the presence of DOM would also decreased with increasing pH (Emmenegger et al., 2001), possibly due to the formation of ferric hydroxide (reaction 5). Thus, the decreased concentration of Fe3+ at higher pH subsequently decreased the reduction of Ag+ to AgNPs.

\[
\text{Fe}^{3+} + 3 \text{OH}^- \rightarrow \text{Fe(OH)}_3
\]

(8)

4. Environmental implications

This study demonstrated that in the presence of DOM, dissolved iron can enhance the reductive formation of AgNPs under simulated sunlight. Considering the concentration of iron and pH conditions investigated in this study is environment-relevant (Lofts et al., 2008), our study, combined with the previous study by Adegboyega et al. (2016, 2014), have great environmental implications for the formation of naturally occurring AgNPs and the transformation and cycling of engineered AgNPs. Previous studies also showed that adsorbed iron or iron-containing minerals can mediate the reductive formation of metals (Cr(VI), Te(VII), U(VI), Pu(IV), and Np(V)) (Lloyd et al., 2000, 2002; VanEngelen et al., 2008) in the presence of microorganisms. It is also well known that Ag+ can be reduced to AgNPs by microorganism and plant (Yin et al., 2015). Therefore, the reduction of Ag+ into AgNPs could also potentially be accelerated by iron-containing minerals or clays due to the redox cycling of Fe3+/Fe2+ mediated by organisms (Byrne et al.; Dong et al., 2003; Fredrickson et al., 1998; Roden and Urrutia, 2002). Besides iron, it is reported that other transition metals (e.g., Cu (Maithreepala and Doong, 2008) and Mn (Lovley et al., 2004)) and even biochar (Kappler et al., 2014) can serve as electron shuttles for the reduction of metal and organic pollutants. Therefore, it is reasonable these electron shuttles could also enhance the reductive formation of AgNPs in chemical or biological processes.

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14020101), the National Natural Science Foundation of China (21522705, 21377156, 21307151), and Key Research Projects of the Frontier Science of the Chinese Academy of Sciences (QYZDB-SSW-DQC018). Y. Yin acknowledges the support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences. We thank the Beijing National Center for Electron Microscopy for TEM characterizations.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.envpol.2017.03.048.

References

Adegboyega, N.F., Sharma, V.K., Cizmas, L., Sayes, C.M., 2016. UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. Environ. Chem. Lett. 14, 353–357.

Adegboyega, N.F., Sharma, V.K., Siskova, K., Zboril, R., Sohn, M., Schultz, B.J., et al., 2013. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environ. Sci. Technol. 47, 757–764.

Adegboyega, N.F., Sharma, V.K., Cizmas, L., Sayes, C.M., 2016. UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. Environ. Chem. Lett. 14, 353–357.

Adegboyega, N.F., Sharma, V.K., Siskova, K., Zboril, R., Sohn, M., Schultz, B.J., et al., 2013. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environ. Sci. Technol. 47, 757–764.
reduction. Adv. Microb. Physiol. 49, 219–286.
Maithreepala, R.A., Doong, R.A., 2008. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions.
Chemosphere 70, 1405–1413.
Maurer, F., Christl, I., Hoffmann, M., Kretzschmar, R., 2012. Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver.
Environ. Sci. Technol. 46, 8808–8816.
Mitran, D.M., Rimmele, E., Wichser, A., Erni, R., Hecht, M., Nowack, B., 2014. Presence of nanoparticles in wash water from conventional silver and nanosilver textiles.
ACS Nano 8, 7208–7219.
O’Loughlin, F.J., Kelly, S.D., Kenner, K.M., Csenicsits, R., Cook, R.E., 2003. Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust.
Chemosphere 53, 437–446.
Pettine, M., D’Ottone, L., Campanella, L., Millero, F.J., Passino, R., 1998. The reduction of chromium (VI) by iron (II) in aqueous solutions.
Geochim. Cosmochim. Acta 62, 1509–1519.
Pham, A.N., Rose, A.L., Feitz, A.J., Waite, T.D., 2006. Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0–9.5 and 25 °C.
Geochim. Cosmochim. Acta 70, 640–650.
Roden, E.E., Urrutia, M.M., 2002. Influence of biogenic Fe(II) on bacterial crystalline Fe(II) oxide reduction.
Geomicrobiol. J. 19, 209–251.
Song, W.J., Ma, W.H., Ma, J.H., Chen, C.C., Zhao, J.C., 2005. Photochemical oscillation of Fe(II)/Fe(III) ratio induced by periodic flux of dissolved organic matter.
Environ. Sci. Technol. 39, 3121–3127.
Sun, J., Mao, J.D., Gong, H., Lan, Y.Q., 2009. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
J. Hazard. Mater 168, 1569–1574.
VanEngelen, M.R., Peyton, B.M., Mormile, M.R., Pinkart, H.C., 2008. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.
Biodegradation 19, 841–850.
Xiu, Z.M., Zhang, Q.B., Puppala, H.L., Covin, V.L., Alvarez, P.J.J., 2012. Negligible particle-specific antibacterial activity of silver nanoparticles.
Nano Lett. 12, 4271–4275.
Yang, X.Y., Gondikas, A.P., Marinakos, S.M., Auffan, M., Liu, J., Hsu-Kim, H., et al., 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.
Environ. Sci. Technol. 46, 1119–1127.
Yin, Y.G., Liu, J.F., Jiang, G.B., 2012. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter.
ACS Nano 6, 7910–7919.
Yin, Y.G., Shen, M.H., Zhou, X.X., Yu, S.J., Chao, J.B., Liu, J.F., et al., 2014. Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle.
Environ. Sci. Technol. 48, 9366–9373.
Yin, Y.G., Yu, S.Y., Yang, X.Y., Liu, J.F., Jiang, G.B., 2015. Source and pathway of silver nanoparticles to the environment.
In: Liu, J.F., Jiang, G.B. (Eds.), Silver Nanoparticle in the Environment. Springer-Verlag, Berlin Heidelberg, pp. 43–72.
Yu, S.J., Yin, Y.G., Chao, J.B., Shen, M.H., Liu, J.F., 2014. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+. Environ. Sci. Technol. 48, 403–411.
Zhou, X.X., Liu, R., Liu, J.F., 2014. Rapid chromatographic separation of dissoluble Ag(I) and silver-containing nanoparticles of 1-100 nanometer in antibacterial products and environmental waters.
Environ. Sci. Technol. 48, 14516–14524.