Antifungal Activity of Plant Extracts against Post-harvest Fungal Pathogens

K. Brunda Devi*, Pindi Pavankumar and B. Bhadraiah

Department of Botany, Osmania University, Hyderabad- 500 007, India

*Corresponding author

Abstract

Extracts of certain plants have been used to control the plant diseases since several years. Here we report in-vitro studies to examine the antifungal activity of aqueous leaf extracts of three plants and neem oil against three post-harvest fungal pathogens viz., Rhizopus arrhizus, Sclerotium rolfsii, Fusarium solani and Rhizopus arrhizus. Among the leaf extracts, Duranta erecta showed maximum antifungal activity against the pathogens, followed by Lasonia inermis, Neem oil, and Cocculus hirsutus. The degree of inhibition increased correspondingly with increasing concentrations of the plant extracts. Percentage of inhibitions was high at 20% concentration than 10% concentration, except S. rolfsii treated with 10% neem oil. Highest growth inhibitions was recorded in S. rolfsii treated with D. erecta.

Keywords

Plant extracts, Biological control, post-harvest fungal pathogenic fungi, Sclerotium rolfsii, Fusarium solani and Rhizopus arrhizus.

Introduction

Recently, the exploitation of natural plant products to control decay and prolong storage life of perishables has received more and more attention (Kamlesh Mathur et al., 2007; Archana Singh et al., 2008; Babu et al., 2008; Jeeva Ram and Thakore, 2009; Chandra and Mahesh, 2013). Biologically active natural products have the potential to replace synthetic fungicides. Plant extracts and essential oils are source of antifungal activity against a wide range of fungi (Anuradha Bandopadyay, 2008; Combrinck et al., 2011). A rapid assay to determine antifungal activity in both plant extracts and essential oils has recently been described by Wilson et al. (1997b; Ghasolia et al., 2008; Devchand Salam et al., 2009; Combrinck et al., 2011). Use of oils in the control of plant diseases is of recent development. Some of the advantages of use of oils are low cost, excellent spreading and sticking properties to plant surface and no toxicity towards man and are co-friendly with the nature. The use of oils in the control of plant diseases have been reported by Mishra et al., (1995), Jain and Pathak, (1998), Bernand et al. (1999), Vandana pandey et al. (2002), Sastry (2002), Rattanapitigorn et al., 2006, Achour et al., (2008) and Saban et al., (2009; Combrinck et al., 2011). The efficacy of plant products against post-harvest fungi was found to vary with concentrations used as reported (Madan...
Singh and Jain, 2007; Jeeva Ram and Thakore, 2009; Rathod, 2010; Combrinck, S., et al., 2011; Pawar, (2011). Chandra and Mahesh, 2013). Some plants extracted in different organic solvents have shown inhibitory action against different storage fungi (Singh et al., 1993; Mohamed et al., 1994; Hiremath et al., 1996; Kapoor, 1997; Radhaet al., 1999; Rana et al., 1999; Jeyaseela et al., 2012). However, active principles of some of plants have been isolated phytochemically and have shown strong inhibitory action against post-harvest fungi. In view of these, the attempt was made to screen some leaf extracts against post-harvest pathogenic fungi by food poisoning technique (Ansari, 1995).

Materials and Methods

Three locally available plant extracts viz., *Lawsonia inermis*, *Duranta erecta* and *Cocculus hirsutus* and neem oil were evaluated against the growth of three fungal pathogens *Rhizopus arrhizus*, *Sclerotium rolfsii* and *Fusarium solani* following the procedure given by Ansari (1995) with a slight modification. Fresh leaves, from plants were first washed with tap water and then with sterilized water. Each sample was then homogenized in sterile distilled water at the rate of 1 ml per gram of tissues (1:1 v/w) with a pestle and mortar and filtered through fine muslin cloth. The filtrate was centrifuged at 5000 rpm for 20 min and the supernatant was filtered with sterilized sintered funnel (pore size 1-2 microns), which formed the standard plant extract solution (100%).

The extracts were individually incorporated into PDA medium at 10% and 20% concentrations in 250 ml conical flasks and sterilized at 1.1 kg/cm² for 15 min. These were poured in 90 mm sterilized petri dishes with three replications for each extract. Control was maintained without extracts. All the Petri dishes were inoculated with 7 mm disc of mycelium of the pathogen and incubated at 25º ± 2ºC. After five days the radial growth of mycelium was recorded. The percent growth inhibition over control was calculated out using the formula of Bliss (1934)

\[I = \frac{C-T}{C} \times 100 \]

Where, I is inhibition percent, C is colony diameter in control (mm) and T is colony diameter in treatment (mm).

The data obtained from the present experiments was statistically analyzed using Analysis of Variance (ANOVA). Duncan’s multiple range test (DMRT) at 5% level of significance was used to separate group means when ANOVA was significant.

Results and Discussion

The antifungal activity of three leaf extracts and neem oil against three post-harvest fungal pathogenic fungi is presented in Table 1a and Table 1-4 as inhibition percentage (I%). It was observed from table 1 that all leaf extracts and neem oil showed antifungal activity on post-harvest fungi. Among the plant extracts and neem oil evaluated, the maximum inhibition of mycelial growth was observed in extract of *D. erecta*, the next best were *Lawsonia inermis*, *Cocculus hirsutus* and *Neem oil*. Plant extracts of *Lawsonia inermis*, *Cocculus hirsutus* and Neem oil had no effect on the growth of *R. arrhizus* at both concentrations, but they could inhibit sporangial formation. However, *R. arrhizus* was significantly inhibited by *Duranta erecta* at 20% concentration (Plate -1). Percentage of inhibition increased correspondingly with increasing concentrations of the plant extracts. All plant extracts exhibit their antifungal activity significantly at 20% concentration than 10% concentration, except *S. rolfsii* treated with 10% neem oil (Table -4).
In the case of 10% concentration, *F. solani* could show both highest and lowest growth inhibition when treated with *Lawsonia* and *Cocculus*, respectively. At 20% concentration, maximum inhibition was noticed in *S. rolfsii* treated with *D. erecta* whereas lowest inhibition was found in *F. solani* treated with *Cocculus hirsutus*. Plant extract of *D. erecta* and *Lawsonia inermis* significantly inhibited the growth of *S. rolfsii* (94.89%) and *F. solani* (77%) at 20% concentration, respectively.

Table 1 Effect of plant extract of *Lawsonia inermis*, *Duranta erecta*, *Cocculus hirsutus* and neem oil on the growth of three post-harvest fungi at different concentrations

Plant extract	Fungi	Colony diameter (mm) in control	Percentage of inhibition 10% concentration	Percentage of inhibition 20% concentration
Duranta erecta	*Rhizopus arrhizus*	90.00 ± 0.00	28.14 ± 0.57^{a, b}	52.59 ± 2.28^{a, b}
	Sclerotium rolfsii	64.67 ± 0.51	45.29 ± 2.39^{b, a}	94.82 ± 0.82^{b, a}
	Fusarium solani	33.33 ± 0.51	31.61 ± 7.36^{a, b}	61.88 ± 2.17^{a, b}
Lawsonia inermis	*Rhizopus arrhizus*	90.0 ± 0.00	0.00 ± 0.00^a	0.00 ± 0.00^a
	Sclerotium rolfsii	71.33 ± 2.05	41.05 ± 0.64^{b, a}	42.80 ± 1.75^{b, a}
	Fusarium solani	58.0 ± 0.77	54.02 ± 2.21^{b, a}	76.87 ± 3.47^{b, a}
Cocculus hirsutus	*Rhizopus arrhizus*	90.00 ± 0.00	0.00 ± 0.00^a	0.00 ± 0.00^a
	Sclerotium rolfsii	71.33 ± 2.05	10.61 ± 1.17^{a, b}	10.98 ± 1.90^{b, a}
	Fusarium solani	34.00 ± 0.00	9.80 ± 1.51^{a, b}	17.65 ± 4.53^{b, a}
Neem oil	*Rhizopus arrhizus*	90.00 ± 0.00	0.00 ± 0.00^a	0.00 ± 0.00^a
	Sclerotium rolfsii	52.67 ± 2.82	15.46 ± 4.31^{b, a}	14.18 ± 4.80^{b, a}
	Fusarium solani	41.33 ± 3.34	37.47 ± 4.05^{c, a}	57.02 ± 3.84^{c, b}

The same superscript uppercase letters (CAPITAL) between fungal species within treatment did not differ significantly at 5% level by DMRT; The same superscript lowercase letters (small letters) between treatments did not differ significantly at 5% level by DMRT.

Values are mean ± SEM

Plate 1 Effect of leaf extract of *Duranta erecta* on the radial growth (colony diameter) of five post-harvest fungi at 10% and 20% concentration

Rhizopus arrhizus
Plate 2 Effect of leaf extract of *Lawsonia inermis* on the radial growth (colony diameter) of five post-harvest fungi at 10% and 20% concentration.
Plate 3 Effect of leaf extract of *Cocculus hirsutus* on the radial growth (colony diameter) of five post-harvest fungi at 10% and 20% concentration.
Plate 4 Effect of neem oil (Azadirachta indica) on the radial growth (colony diameter) of five post harvest fungi at 10% and 20% concentration.
Fig.1 Effect of plant extract *Lawsonia inermis* on growth inhibition (%) of fungal pathogens at 10% and 20% concentration.
Fig. 2 Effect of plant extract of Duranta erecta on growth inhibition (%) of fungal pathogens at 10% and 20% concentration

Fig. 3 Effect of plant extract of *Coccus hirsutus* on growth inhibition (%) of fungal pathogens at 10% and 20% concentration
In the present study three plant extracts and neem oil tested, which positively checked the growth of pathogens. The present findings emphasis that besides Lawsonia leaf extract, Duranta erecta was the most effective plant against the pathogens appears a new information. In-vitro studies of leaf extract of L. inermis showed promising antifungal activity with (77%) inhibition of F. solani and 42.97% of S. rolfsii was also recorded (Table-1a). The present results similar to that of Beebi Razeena and Rasheed Ahmad (2007). As reported by Purohit and Vyas (2004), principal colouring mater of henna is lawsoniel 12 hydroxy-1, 4 naphthaquinine, which is present in dried leaf at conc. of 1-4% bahemic, arachidic, stearic, palmitic, etc. Which may responsible for antifungal activity of Lawsonia.

The results of this in-vitro study are in the agreement with the findings of Sheo Raj Singh et al., (2007), who observed Merigold and neem leaf extract reduced the hyphal growth and sclerotial production of S. rolfsii-in-vitro. The present results similar to that of Madan Singh and Jain (2007); Jeeva Ram and Thakore (2009), who observed plant extracts against F. solani.

Acknowledgement

The authors are highly grateful to the UGC for their financial assistance.

References

Ansari, M.M. 1995. Control of sheath blight of rice by plant extracts. Indian Phytopathol., 48: 268-270.
Anuradha Bandopadhyay, Bandopadhyay, A.K. and Samajpati, N. 2008. In vitro antifungal activity of some biocontrol fungi against jute pathogen Macrophomina phaseolina. Indian Phytopath., 61(2): 204-211.
Archan Singh. 2008. Evaluation of bioagents and phytoextracts against Curvularia pennisetii in pearl millet. J. Mycol. Pl. Pathol., 38(2): 396-97.
Babu Lal, J., Gour, H. N. and Sharma Pankaj. 2008. Efficacy of phytoextracts and bioagents against C. gleosporoides causing banana fruit rot. J. Mycol. Pl. Pathol., 38 : 635-38.

Beebi Razeema, P.M. and Rasheed Ahmad. 2007. Control of seed borne fungi of okra with Pseudomonas fluorescens and aqueous leaf extract of henna (Lawsonia inermis L).

Bliss, C.I. 1934. The methods of probits. Sci., 79: 38-39.

Chandra, M., Mahesh, N.M. 2013. Antifungal activity of medicinal plant extracts against seed-borne pathogenic fungi. Acta Biologica Indica. 2(2): 481-485.

Combrinck, S., Regnier, T., Kamatou, G.P.P. 2011. In-vitro activity of eighteen essential oils and some major components against common post-harvest fungal pathogens of fruit. Industrial crops and products, Volume-33, Issue2, P. No. 344-349.

Devchand Salam, Ladpale, N. and Thrimurthy, V.S. 2009. Evaluation of plant extracts against Rhizoctonia solani causing sheath blight of rice. J. Mycol Pl Pathol., 39(3): 523-25.

Ghasolia, R.P. and Shivpuri Asha. 2008. Management of Sclerotinia rot of Indian mustard with plant extracts and fungicides. J. Mycol. Pl. Pathol. 38(2): 400-402.

Hiremath, S. P., Swamy, H. K. S., Badami, S., Meena, S. 1996. Antibacterial and antifungal activities of Strigadensii flora and Strigaorabanchioid. Indian J. Pharm. Sci., 58: 174–176.

Jayasheela, E.C., Vinuja, T., Pathmanathan, K., Jeyodevan, J.P. 2012. Control of plant pathogenic fungi using organic solvent extracts of leaf, flower and fruit of Lawsonia inermis L.

Jeeva Ram and Thakore, B.B.L. 2009. Management of storage rot of ginger by using plant extracts and biocorel agents. J. Mycol Pl Pathol., 39(3):475-79.

Kamlesh Mathur, Gurjar, R.B.S., Sharma S.N. and Kuldeep Sharma. 2007. Efficacy of fungicides, bioagents and plant extracts against pink root rot disease of onion induced by Fusarium solani. J. Mycol. Pl. Pathol., 37(3): 523-24.

Kapoor, A. 1997. Antifungal activity of fresh juice and aqueous extracts of turmeric (Curcuma longa) and ginger (Zingiber officinales. J. Phytopathol. Res., 10: 59–62.

Madan Singh and Jain, K.L. 2007. Management of post harvest Fusarium rot of tomato fruits. J. Mycol. Pl. Pathol., 37(3): 44950.

Mohamed, S., Saka, S., El-Sharkawi, S., Ali, A. M., Muid, S. 1994. Antimycotic activity of Piper betle and other Malaysian plants against fruit pathogens. ASOMPS, Malaysia, p. IIB Abstract no. 86.

Pawar, B.T. 2011. Int. Multidisciplinary Res. J., 1/4:11-13.

Purohit, S.S. and Vyas, S.P. 2004. Medicinal plants cultivation a scientific approach including processing and financial guidelines. 1st edition. Publishers Agrobios, Jodhpur, India, pp. 1-3.

Purohit, S.S. and Vyas, S. P. 2009. Medicinal plant cultivation – A Scientific and Industrial approach. Agro Bios, India, Jodhpur. Pp. 289-485.

Radha, R., Mohan, M. S. S., Anand, A. 1999. Antifungal properties of crude extracts of Syzygium travancoricum. J. Med. Aromatic Plant Sci., 21, 55–56.

Rana, B.K., Taneja, V., Singh, U.P. 1999. Antifungal activity of an aqueous extract of leaves of garlic creeper (Adenocalyymna alliaceum Miers. Pharm. Biol., 37: 13–16.

Rathod, G. 2010. Studies on post-harvest diseases of papaya. Ph.D Thesis, Dr. Babasaheb Ambedkar Maharathwada.
University, Aurangabad - 431004 (M.S.), Sheo Raj Singh, Prajapathi, R. K. Srivastava, S. S. L., Panday, R. K. and Gupta, P. K. 2007. Evaluation of different botanicals and non-target pesticides against *Sclerotium rolfsii* causing collar rot of lentil.
Singh, H. N. P, Prasad, M. M. and Sinha, K. K. 1993a. Efficacy of leaf extract of some medicinal plant against disease development in banana. *Lett. Appl. Microbiol.*, 17: 269-271.
Wilson, C. L., Solar, J. M., El Ghaouth, A. and Wisniewski, M. E. 1997b. Rapid evaluation of plant extracts and essential oils for antifungal activity against *Botrytis cinerea*. *Plant Dis.*, 81: 204-210.

How to cite this article:
Brunda Devi, K., Pindi Pavankumar and Bhadraiah, B. 2017. Antifungal Activity of Plant Extracts against Post-harvest Fungal Pathogens. *Int.J.Curr.Microbiol.App.Sci.* 6(1): 669-679. doi: http://dx.doi.org/10.20546/ijemas.2017.601.081