Potentiation of temozolomide and BCNU cytoxicity by O\textsubscript{6}-benzylguanine: a comparative study in vitro

SR Wedge, JK Porteous, BL May and ES Newlands

Department of Medical Oncology, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK.

A comprehensive study examines the interaction between the antitumour agents temozolomide and BCNU, highlighting the role of O\textsubscript{6}-benzylguanine (O\textsubscript{6}-BG) as an important factor in their combined efficacy. The study employs an in vitro system, using the methylating agent O\textsubscript{6}-BG to assess its synergistic effects with temozolomide in various cell lines.

Summary: Depletion of the DNA repair protein O\textsubscript{6}-alkylguanine-DNA alkyltransferase (AGT) with O\textsubscript{6}-benzylguanine (O\textsubscript{6}-BG) has been widely shown to enhance 1,3-bis(2-chloroethyl)-nitrosourea (BCNU) activity. This study aimed to determine whether temozolomide, a methylating imidazotetrazine, would similarly benefit from combination with O\textsubscript{6}-BG. Seven human cell lines were examined with AGT activities ranging from <6 fmol mg-1 protein to >700 fmol mg-1 protein. Comparisons with BCNU were made on both single and multiple dosing schedules, since temozolomide cytoxicity is highly schedule dependent. In single-dose potentiation studies, cells were preincubated with 100 \mu M O\textsubscript{6}-BG for 1 h, a treatment found to deplete AGT activity by >90% for 24 h. No potentiation of either temozolomide or BCNU cytoxicity was observed in two glioblastoma cell lines with <6 fmol mg-1 protein AGT. In all other cell lines studied potentiation of BCNU cytoxicity by O\textsubscript{6}-BG was between 1.6- and 2.3-fold and exceeded that of temozolomide (1.1- to 1.7-fold). The magnitude of this potentiation was unrelated to AGT activity and the relative potentiation of temozolomide and BCNU cytoxicity was found to be highly variable between cell lines. In multiple-dosing studies two colorectal cell lines (Mawi and LS174T) were treated with temozolomide or BCNU at 24 h intervals for up to 5 days, with or without either 100 \mu M O\textsubscript{6}-BG for 1 h or 1 \mu M O\textsubscript{6}-BG for 24 h, commencing 1 h before alkylating treatment. Extended treatment with 1 \mu M O\textsubscript{6}-BG produced greater potentiation than intermittent treatment with 100 \mu M O\textsubscript{6}-BG. Potentiation of temozolomide cytoxicity increased linearly in Mawi with each subsequent dosing: from 1.4-fold (day 1) to 4.1-fold (day 5). In contrast, no potentiation was observed in LS174T, a cell line that would appear to be 'tolerant' of methylation. Potentiation of BCNU cytoxicity increased in both cell lines with repeat dosing, although the rate of increase was less than that observed with temozolomide and continuous 1 \mu M O\textsubscript{6}-BG in Mawi. These results suggest that repeat dosing of an AGT inhibitor and temozolomide may have a clinical role in the treatment of tumours that exhibit AGT-mediated resistance.

Keywords: temozolomide; BCNU; O\textsubscript{6}-benzylguanine; O\textsubscript{6}-alkylguanine-DNA alkyltransferase
deoxycytidyl]-2-N'-[deoxyguanosinyl]-ethane interstrand cross-link (Tong et al., 1982). It is this ability to cross-link DNA that correlates with chloroethylnitrosourea cytotoxicity (Lown et al., 1978; Bodell et al., 1985; Jiang et al., 1989). AGT can prevent the formation of DNA cross-links not only by the formation of the initial O6-chloroguanine adduct but also by reacting with the O6, N'-ethanoguanine intermediate (Gonzaga et al., 1992). Because AGT can limit BCNU cytotoxicity, there is often a good correlation between cellular sensitivity to BCNU and AGT expression (Erickson et al., 1980; Brent et al., 1985; Mitchell et al., 1992).

Methylating agents such as streptozotocin or temozolomide have been examined in combination with the chloroethylnitrosoureas as an alternative method of depleting AGT (D'Incali et al., 1991; Panella et al., 1992; Mitchell and Dolan, 1993; Plowman et al., 1994). However, a methylating agent itself may benefit from a protocol that involves depletion of AGT by an inhibitor such as O6-BG. This study examined the relationship between temozolomide cytotoxicity and AGT expression and the potentiation of cytotoxicity by O6-BG. These parameters were also examined with BCNU treatment and comparisons made not only with single doses but also with multiple dosing schedules to account for the schedule dependency of temozolomide cytotoxicity.

Materials and methods

Chemicals and drugs

Temozolomide was supplied by Dr J Catino, Schering-Plough Research Institute, Kenilworth, NJ, USA, and BCNU purchased from Bristol Myers Pharmaceuticals, Hounslow, Middlesex, UK. O6-BG was a generous gift from Dr RC Moschel, NCI-Frederick Cancer Research and Development Center, Frederick, MD, USA and the [3H]methyl-labelled DNA substrate for the assay of AGT was kindly supplied by Dr JG Margison, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK. All other chemicals were purchased from Sigma, Poole, UK.

Cell culture

Seven human cell lines were examined within this study. The colon cancer cell line, Mawi, was established at Charing Cross Hospital (Baer et al., 1993). StML-11a, a malignant melanoma cell line (Zouboulis et al., 1989), was obtained from Dr C Zouboulis, Department of Dermatology, The Free University of Berlin, Germany. U87MG and U373MG (glioblastoma astrocytoma), LS174T and HT29 (colon carcinoma) and MCF-7 (breast adenocarcinoma) were obtained from the European Tissue Culture Collection, Porton Down, UK. Cell lines were grown as monolayers in Dulbecco's modified Eagle medium (DMEM) (ICN Biochemicals, High Wycombe, UK). Medium was supplemented with 10% foetal calf serum (Gibco, Paisley, UK; inactivated by heating at 56°C for 30 min), L-glutamine (2 mM), penicillin (100 U ml\(^{-1}\)) and streptomycin (100 μg ml\(^{-1}\)). Cultures were maintained in exponential growth at 37°C in a 5% carbon dioxide / 95% humidified atmosphere. Cell doubling times were determined to be approximately 15 h for Mawi and HT29, 18 h for LS174T, 24 h for U87MG and U373MG, 26 h for StML-11a and 30 h for MCF-7.

Cytotoxicity experiments were performed in 96-well multi-well plates with six well plates being used for each drug concentration (+ O6-BG) or a relevant control (incubated with the corresponding vehicles).

For the measurement of AGT activity, LS174T, HT29, Mawi and MCF-7 were plated in 75 cm\(^2\) flasks and U87MG, U373MG and StML-11a in 175 cm\(^2\) flasks. Cells were incubated for 48 h before a 1 h treatment of O6-BG (100 μM, 0.5% ethanol in DMEM) or vehicle alone. Following treatment cells were rinsed in phosphate-buffered saline (PBS) (10 ml for 5 – 10 s) and the medium replenished. Cells were reincubated for 1 or 24 h, harvested, frozen in liquid nitrogen and then stored at –80°C before AGT determination.

Cytotoxicity assay

Cytotoxicity was evaluated using the sulphorhabdamine-B (SRB) assay for protein (Skehan et al., 1990). The optimal plating density was defined as that which enabled logarithmic cell growth over a period of 8 days and produced an absorbance of 1.0 – 1.5 absorbance units (AU) (λ, 492 nm) when analysed by the SRB assay. This was predetermined for each cell line in 96-well plates and found to be 1000 cells per well for Mawi, 5000 cells per well for StML-11a and MCF-7 and 2000 cells per well for all other cell lines studied. Cells were plated and allowed to grow for 24 h before treatment. In single dosing studies cells were preincubated for 1 h with/without O6-BG (100 μM, 0.5% ethanol in DMEM) and the medium then removed from all plates and replaced with that containing either temozolomide [1 – 1200 μM; 0.66% dimethyl sulphoxide (DMSO) in DMEM] for 3 h or BCNU (0.5 – 300 μM; 0.19% ethanol in DMEM) for 1 h. Stock solutions of temozolomide or BCNU were freshly prepared in DMSO or ethanol and serial dilution into medium and addition to plates accomplished within a period of 10 min to maintain drug integrity. Following drug incubation the medium was replenished with fresh drug-free medium and plates reincubated for a further 7 days before assay. In multiple dosing studies incubation with/without O6-BG followed by treatment with either temozolomide or BCNU was repeated at successive 24 h intervals. This was performed for a maximum of 5 days to give a minimum 'recovery period' of 72 h. For comparison with the 100 μM O6-BG pretreatment (1 h) multiple dosing studies were also conducted with a 1 μM O6-BG incubation, which was added 1 h before temozolomide or BCNU, during drug incubation, and with medium replenishment, thereby attaining continuous exposure for 24 h.

IC\(_{50}\) values were interpolated by cubic spline regression using a SLT 340 ATTC plate reader (SLT Instruments, Austria) and Biolise software (Labtech International, East Sussex, UK). Potentiation of temozolomide or BCNU cytotoxicity by O6-BG was taken to be the ratio between the IC\(_{50}\) value achieved without O6-BG pretreatment divided by the IC\(_{50}\) value achieved with O6-BG pretreatment. Mean interexperimental potentiation was calculated from three independent experiments.

Assay of AGT activity

AGT activity was measured as removal of O6-[3H]methylguanine from a [3H]methylated DNA substrate, using the method of Lee et al. (1991). Briefly, cell extracts were incubated with the substrate, after which the DNA was precipitated with perchloric acid (PCA) and hydrolysed with hydrochloric acid. The protein (containing methylated AGT) was collected by centrifugation and counted at a counting efficiency of 40%. Sp. act. measurements were made under protein-limiting conditions, in which the activity was proportional to the amount of extract added, using a minimum of four points. The AGT activity of an extract was expressed as fmol of [3H]CH\(_3\) transferred from the DNA substrate per mg of protein or per μg of DNA. Protein was determined by the method of Bradford (1976) and DNA using a 33258 Hoechst dye method (Cesarone et al., 1987) with a TKO 100 Dedicated Mini fluorometer (Hoefer Scientific Instruments, San Francisco, CA, USA).

Results

Relationship between AGT activity and temozolomide or BCNU cytotoxicity

A wide range of AGT activity was evident in the cell lines studied; from < 6 fmol mg\(^{-1}\) protein for the glioblastoma cell lines to > 700 fmol mg\(^{-1}\) protein in the breast carcinoma cell line MCF-7 (Table I). There is controversy as to whether the relationship between AGT expressed as activity per cellular
ormula {\text{IC}_{50}} \text{ values ranging from 899} \pm 39 \text{ to 1039} \pm 28 \text{ } \mu\text{M} \text{ (Table I).}

Depletion of AGT by {\text{O}^6\text{-BG}}

Mawi cells, representative of a high AGT-expressing cell line, were chosen to investigate the concentration and time dependency of AGT depletion by treatment with {\text{O}^6\text{-BG}}. Exposure of Mawi cells to varying concentrations of {\text{O}^6\text{-BG}} for 1 h, followed by incubation in fresh medium for 1 h, resulted in an inhibition profile that ranged from no inhibition of AGT activity by 0.01 } \mu\text{M } {\text{O}^6\text{-BG}}, \text{ to >95} \% \text{ inhibition by 1 } \mu\text{M } {\text{O}^6\text{-BG}} \text{ (Figure 3). If cells were maintained in fresh medium for 24 h following } {\text{O}^6\text{-BG}} \text{ treatment, partial regeneration of AGT activity was observed; the AGT activity of cells treated with 1 } \mu\text{M } {\text{O}^6\text{-BG}} \text{ was restored to 70} \% \text{ of the untreated control value. To deplete over 90} \% \text{ of AGT activity for 24 h a 1 h preincubation with 100 } \mu\text{M } {\text{O}^6\text{-BG}} \text{ was required. A similar inhibition of AGT activity was also demonstrated by 100 } \mu\text{M } {\text{O}^6\text{-BG}} \text{ in all other cell lines with > 100 fmol mg}^{-1} \text{ protein AGT (Table I). This concentration also depleted AGT activity in U87MG and U373MG to a level which was undetectable, and was selected for use in sensitisation studies.}

Figure 1 Relationship between AGT activity expressed as a ratio with total cellular protein or with cellular DNA. Cell lines in order of increasing AGT activity are, U87MG, U373MG, StML-11a, LS174T, HT29, Mawi and MCF-7. Data (mean values±s.e.) are taken from Table I. The broken line represents linear regression analysis, where r=0.996. Linear regression analysis of data plotted on a linear/linear scale also gave an r-value of >0.99.

Figure 2 Relationship between AGT activity and IC_{50} value after a single treatment with temozolomide () or BCNU (). Cell lines appear in order of increasing AGT activity as in Figure 1. Each point represents a mean, with horizontal error bars indicating the standard deviation of five separate AGT measurements and vertical error bars the standard deviation of three separate IC_{50} determinations.
Potentiation of temozolomide or BCNU cytotoxicity by O°-BG: single-dose schedule

No significant potentiation of temozolomide or BCNU cytotoxicity was achieved by pretreatment with O°-BG in the glioblastoma cell lines U87MG and U373MG. Potentiation of cytotoxicity by O°-BG pretreatment is illustrated for the remaining five cell lines in Figure 4. In each cell line, potentiation of BCNU cytotoxicity always exceeded that observed with temozolomide. Some proportionality between AGT activity and the potentiation of cytotoxicity was evident in HT29, Mawi and MCF-7, although this correlation did not extend to all cell lines. Variation in the potentiation of BCNU cytotoxicity was greatest, with maximum potentiation occurring in cell lines with an AGT activity of < 200 fmol mg⁻¹ protein and > 700 fmol mg⁻¹ protein, but with substantially less potentiation being evident in cell lines with intermediate AGT activity. It was also of interest to note the variation between the potentiation of methylation and chloroethylylation cytotoxicity within the same cell line. This was exemplified in LS174T, in which least potentiation of temozolomide cytotoxicity was apparent, and yet maximal potentiation of BCNU cytotoxicity was observed.

Potentiation of temozolomide or BCNU cytotoxicity by O°-BG: multiple dosing schedule (days 1–5)

Two colorectal cell lines, a tumour type renowned for being chemoresistant (Moertel, 1973; Redmond et al., 1991), were chosen to evaluate potentiation following repeat dosing with O°-BG and either temozolomide or BCNU (Table II). LS174T was selected to determine whether the lack of potentiation observed with O°-BG and temozolomide on a single-dose schedule could be circumvented by repeat dosing, whereas Mawi was selected as being representative of a cell line in which depletion of AGT clearly did potentiate temozolomide cytotoxicity (Figure 4).

Table II Cytotoxicity data following repeated exposure to temozolomide or BCNU, with or without O°-BG

Cell line	Drug treatment	O°-BG treatment	IC₅₀ (µM)	Cycles of treatment (days)			
			1	2	3	4	5
Mawi	Temozolomide	None	967±45	526±25	425±19	375±7.8	353±9.0
		Pretreatment (100 µM; 1 h)	654±135	305±22	215±1.8	182±2.9	156±9.7
		Continuous (1 µM)	774±78	278±26	153±17	112±17	87±15
Mawi	Temozolomide	None	242±10	165±6.8	142±9.2	126±8.1	119±9.9
		Pretreatment (100 µM; 1 h)	125±9.2	80±4.6	61±1.0	51±5.3	46±4.8
		Continuous (1 µM)	90±1.5	59±2.8	41±2.4	35±4.6	27.5±3.7
LS174T	Temozolomide	None	918±77	524±92	374±48	318±38	328±49
		Pretreatment (100 µM; 1 h)	784±23	488±40	344±47	326±46	289±31
		Continuous (1 µM)	707±86	417±69	277±22	280±24	232±32
LS174T	BCNU	None	112±5.1	67±6.1	50±4.5	38±5.0	32±6.7
		Pretreatment (100 µM; 1 h)	50±3.0	28±2.8	20±0.7	13±2.6	13±10
		Continuous (1 µM)	26±2.5	13±0.8	8.8±1.3	5.9±0.5	6.7±1.1

Mawi or LS174T cells received between one and five treatments (one every 24 h) of temozolomide or BCNU, with or without either 100 µM O°-BG (1 h) or 1 µM O°-BG (24 h) commencing 1 h before alkylating treatment. Cells were incubated in drug-free medium following treatment and cytotoxicity assessed 8 days after plating. All values represent mean ± s.e., with IC₅₀ values for temozolomide or BCNU alone being calculated from six separate experiments and IC₅₀ values involving an O°-BG treatment from three separate experiments.
The progressive reduction in mean IC₅₀ values, produced by multiple doses of temozolomide or BCNU, was consistently less with each additional drug treatment (Table II). This phenomenon may be attributable to the development of resistance or to the variation in post-treatment incubation time, even though the shortest recovery period (72 h) would have accommodated at least four cell divisions of Mawi or LS174T. The mean intraexperimental potentiation of temozolomide cytotoxicity was found to increase linearly between days 1 and 5 (Figure 5a), which would suggest that this assay did have the capacity to measure relative changes in cytotoxicity produced by treatment with O⁶-BG. In Mawi, potentiation of temozolomide cytotoxicity increased from 1.5±0.2- to 2.2±0.1-fold (days 1 to 5, mean±s.e.) with 100 µM O⁶-BG pretreatment, whereas BCNU cytotoxicity increased from 1.8±0.1- to 2.7±0.1-fold (Figure 5). Continuous 1 µM O⁶-BG markedly increased the potentiation of temozolomide cytotoxicity (1.4±0.1- to 4.4±0.6-fold) and also further increased BCNU cytotoxicity, although by relatively less (2.6±0.2- to 3.8±0.3-fold). No appreciable potentiation of temozolomide cytotoxicity could be achieved in LS174T by repeat dosing with O⁶-BG treatment (Figure 6a), even though potentiation of BCNU cytotoxicity was greatest in this cell line (Figure 6b). Increasing potentiation of BCNU cytotoxicity was conferred by repeat dosing in both cell lines but was often limited to the first four doses. However, even when comparisons were restricted to between days 1 and 4, the net increase in potentiation of temozolomide cytotoxicity (mean±s.e.) afforded by repeat dosing with continuous 1 µM O⁶-BG was 2.5±0.3-fold in Mawi, which exceeded that observed with BCNU in either Mawi (0.6±0.1-fold) or LS174T (1.6±0.4-fold).

Discussion

This study was performed to contrast the potentiation of therapeutic methylation and chloroethylation by AGT depletion, and thereby determine whether the combination of temozolomide with O⁶-BG is worthy of consideration for clinical development.
The relatively greater cytotoxicity of BCNU is a consequence of the DNA cross-link, a lesion which is highly toxic by virtue of its ability to obstruct RNA transcription and DNA replication (Erickson et al., 1980; Pieper et al., 1989) and which is responsible for the severe myelosuppression that often accompanies clinical usage of the chloro-ethynitrosourea. In contrast, methylation cytotoxicity is comparatively less: temozolomide is tolerated at an approximately 10-fold greater dose than its chloroethylylating analogue mitozolomide (Newlands et al., 1985; Newlands et al., 1991).

A linear correlation between AGT activity and chloro-ethynitrosourea cytotoxicity has been described in a number of studies (Brent et al., 1985; Gerson et al., 1992; Sarker et al., 1993) and increasing evidence suggests that a similar relationship may also exist with chemotherapeutic methylators such as MNNG (Scudiero et al., 1984), MTIC (Gibson et al., 1986) or temozolomide (Tisdale, 1987). The results of this study support the existence of a correlation between temozolomide cytotoxicity and AGT activity, although exceptions were apparent. In particular, the colorectal cell line LS174T was as resistant to temozolomide as cell lines with 2.5 to 3.5-fold greater AGT activity. That resistance to temozolomide in this cell line was not dependent upon AGT activity was confirmed with both single and repeat dosing studies, in which depletion of AGT by O6-BG did not afford an increase in temozolomide cytotoxicity (Figures 4 and 6). This tolerance to methylation may be attributable to loss of the mismatch repair pathway, which would normally generate DNA strand breaks and thereby induce cell death during the futile attempt to find a complementary base for O6-methylguanine (Griffin et al., 1994). Defects in DNA mismatch binding are relatively common in human colorectal adenocarcinoma cell lines (Parsons et al., 1993; Umat et al., 1994; Branch et al., 1995) and result in DNA microsatellite instability (Branch et al., 1993), a phenomenon also apparent in LS174T (Shibata et al., 1994). Mismatch recognition is known to involve a heterodimer (Palombo et al., 1994) consisting of two homologues of the Escherichia coli MutS protein (Su and Modrich, 1986); hMSh2 (Fisheh et al., 1993) and GTBP/p160 (Drummond et al., 1995; Palombo et al., 1995). This structure interacts with another heterodimer consisting of hPMS2 and hMLH1 proteins (Li and Modrich, 1995), which are homologues of the E. coli MutL repair protein (Grilley et al., 1989). Thus, although extracts from LS174T have been found to exhibit normal G-T mismatch binding in a bandshift assay (Branch et al., 1995), a binding defect may exist within the interaction of the human MutaL complex with a MutL homologue. The many additional instances in which methylating cytotoxicity and AGT activity appear unrelated (Baker et al., 1979; Schutte and Ziegler, 1993), which are homologues of the E. coli MutL repair protein (Grilley et al., 1989). Therefore, extracts from LS174T have been found to exhibit normal G-T mismatch binding in a bandshift assay (Branch et al., 1995), a binding defect may exist within the interaction of the human MutL complex with a MutL homologue. The many additional instances in which methylation cytotoxicity and AGT activity appear unrelated (Baker et al., 1979; Schutte and Ziegler, 1993), which are homologues of the E. coli MutL repair protein (Grilley et al., 1989).

It should also be noted that the relationship between AGT activity and BCNU cytotoxicity is not always linear and that tumour cells besides the glioblastoma U87MG in this study (Figure 3) are known to show resistance to BCNU mediated resistance to chloroethylylating agents (Dolan et al., 1991; Silber et al., 1992). Alternative mechanisms of resistance to BCNU include the activity of cellular glutathione S-transferases and glutathione levels, which may quench chloroethylylated DNA monoadducts (Ali-Osman, 1989) or directly inactivate BCNU by denitrosation (Smith et al., 1985; Wedge et al., 1988) or by decreased cellular levels of the cytochrome P450 mono-oxygenase system (Potter and Reed, 1983). In addition, polyamine metabolism has been implicated in resistance to some alternative component of BCNU cytotoxicity, which is independent of cross-link formation (Seidenfeld et al., 1987).

Potentiation of a single dose of chloroethylylating or methylating agent in vitro usually occurs when the addition of an enhancement of cytotoxicity of up to 5-fold, although potentiation of 10- to 12-fold has been documented (Marathi et al., 1993; Dolan et al., 1985a; Aida et al., 1987; Gerson et al., 1988). It is suggested that this potentiation is dependent upon the level of AGT expression, with no potentiation being evident in cells with little AGT activity (Gerson et al., 1988; Dolan et al., 1991; Baer et al., 1993; Plowman et al., 1994). The results obtained with the glioblastoma cell lines, U87MG and U373MG, would support this finding, since the AGT activity of these cell lines was less than 6 fmol mg-1 protein and no potentiation of BCNU or temozolomide cytotoxicity could be achieved by pretreatment with O6-BG (Table I). However, the enhancement of temozolomide or BCNU cytotoxicity in all other cell lines did not correlate with AGT activity (Figure 4). This observation could not be accounted for by differences in cell doubling time and may imply that alternative resistance mechanisms are induced following AGT depletion. DNA alkylation may also produce perturbations of the cell cycle, which could conceivably affect the rate of AGT regeneration. This would have a more pronounced effect on the potentiation of temozolomide, not only because the repair protein has a greater affinity for O6-methyl adducts than for O6-chloroethyl adducts (Pegg et al., 1984; Brent, 1986) but also because post-replicative AGT regeneration will be of importance in regulating the cytotoxicity of methylation, which is dependent upon multiple rounds of cell division (Catapano et al., 1987). That the potentiation of temozolomide cytotoxicity following a single O6-BG treatment was almost less than that observed with BCNU may also be attributable to the de novo synthesis of AGT following O6-BG treatment but is also likely to be a consequence of the greater toxicity of the DNA cross-link.

It is probable that the schedule-dependent activity of temozolomide is related to progressive AGT depletion, with each additional exposure to the drug increasing the retention of O6-methylguanine adducts (Lee et al., 1994). Thus it is not surprising to find that potentiation of temozolomide cytotoxicity by an AGT inhibitor should increase with repeat dosing (Figure 5a). The maximal potentiation of temozolomide cytotoxicity observed in this study, following five consecutive doses, was 4- to 5-fold, which is in contrast to the 300-fold potentiation reported in a similar preliminary experiment (Baer et al., 1993). However, the results of this latter investigation would seem extremely unlikely, given the magnitude of potentiation reported in the rest of the literature.

Extended 1 \mu M O6-BG treatment was clearly more efficacious than intermittent 100 \mu M O6-BG (1 h pretreatment every 24 h) in enhancing either BCNU or temozolomide cytotoxicity on five repeat doses (Figures 5 and 6b). That optimal sensitisation to BCNU is dependent upon prolonged depletion of AGT would correlate with the findings of Aida et al. (1987; 1993) and also the recent report by Sarker et al. (1995) that increased O6-BG following repeated dosing of 100 \mu M O6-BG would be expected to be marginal, given that a single treatment inhibits AGT by greater than 90% for 24 h (Table 1). These results emphasise that relatively low levels of AGT can have profound effects on the cytotoxicity of methylation and chloroethylylating agents.

Although the O6-BG treatments used in this study were not growth inhibitory, continual exposure to O6-BG alone for a period of 5 days did not significantly alter the growth of cell lines with an AGT activity as diverse as that of Mawi (>500 fmol mg-1 protein) and U87MG (<3 fmol mg-1 protein) (data not shown). This non-specific toxicity should be kept in mind when considering the use of extended depletion studies, since the baseline activities on single culture are generally considered to be non-toxic (Grilley et al., 1988) and the toxicological consequences of such treatments may also be important in the selection of inhibitors, besides the capacity to deplete AGT and compound solubility.

One potential hazard associated with a potentiation of DNA methylation is the possibility that mutagenesis will also be enhanced, since the mispairing of O6-methylguanine in replication may result in G-C to A-T transitions (Yang et al., 1994; Mitra et al., 1990). Correlations between mutagenic activity and AGT activity have previously been demonstrated (Liu et al., 1994; Yarosh, 1985), which suggests that the probability
of carcinogenesis may also be increased if a methylating agent is combined with O6-BG. This may also apply to a combination of BCNU and O6-BG, since BCNU can form the carcinogenic lesion 6-(β-hydroxyethyl)guanine (Tong et al., 1981). Carcinogenicity will, however, depend upon a number of kinetic factors such as the level of cell proliferation and the possibility that AGT regeneration rates may vary in different tissues (Dolan et al., 1988). Whether such parameters will severely limit the use of O6-BG as a therapeutic adjuvant is unclear, although the risk of inducing a secondary malignancy may be outweighed by the potential to significantly improve patient survival.

The fact that temozolomide does show clinical activity and is well tolerated (up to 6 weeks continuous administration in the current phase I study) suggests that a clinical combination of temozolomide with O6-BG may be considered to a regimen involving BCNU and O6-BG, simply because the chloroethylnitrosoureas are more inherently toxic. Although O6-BG may exacerbate the relatively mild myelosuppression produced by temozolomide (Fairburn et al., 1995) this could, if necessary, be managed by autologous bone marrow infusion and the administration of haematopoietic growth factors. It is also possible that the gene for AGT (Tano et al., 1990) could be transfected into bone marrow cells before infusion and thereby confer greater haematological resistance to such therapy.

In conclusion, this study reinforces the importance of AGT as a determinant of methylating and chloroethylnitrosoureas agent cytotoxicity but also emphasises that alternative mechanisms of resistance may equally regulate sensitivity to these compounds. It also suggests that the combination of temozolomide with an inhibitor of AGT may have a clinical role in the treatment of tumours that exhibit AGT-mediated resistance, when administered via a repeat dosing schedule.

Acknowledgements

This work was supported by the Cancer Research Campaign, UK, and by Schering-Plough Research Institute, Kenilworth, NJ, USA. The authors would like to thank Dr RC Moschel for the supply of O6-BG and Dr GP Margison for the tritiated DNA substrate. We would also like to thank Dr J Catino (Schering-Plough Research Institute) for supplying us with temozolomide and Dr P Karran (Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK) for informative discussions concerning mismatch binding mutations.

References

AIDA T, CHEITLIN RA AND BODELL WJ. (1987). Inhibition of O6-alkylguanine-DNA alkytransferase activity potentiates cytotoxicity and induction of SCEs in human glioma cell resistant to 1,3-bis(2-chloroethyl)-1-nitrosourea (Carmustine, 8, 1219–1223).

ALI-OSMAN F. (1989). Quenching of DNA cross-linking by glutathione. *Cancer Res.*, 49, 5258–5261.

BAER JC, FREEMAN AA, NEWLANDS ES, WATSON AJ, RAFFERTY JA AND MARGISON GP. (1993). Depletion of O6-alkylguanine-DNA alkytransferase correlates with potentiation of temozolomide and CNU toxicity in human tumour cells. *Br. J. Cancer*, 67, 1299–1302.

BAKER RM, VAN VOORHIS WC AND SPENCER LA. (1979). HeLa cell variants that differ in sensitivity to monofunctional alkylating agents with independence of cytotoxic and mutagenic responses. *Proc. Natl Acad. Sci. USA*, 76, 5249–5253.

BODELL WJ, GEROSA M, AIDA T, BERGER MS AND ROSENBLUM ML. (1985). Inhibition of resistance to DNA cross-linking agents in 9L cell lines with different sensitivities to chloroethylnitrosoureas. *Cancer Res.*, 45, 3460–3464.

BRADFORD MM. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. *Anal. Biochem.*, 2, 248–254.

BRANCH P, AQUILINA G, BIGNAMI M AND KARRAN P. (1993). Defective mismatch binding and a mutant phenotype in cells tolerant to DNA damage. *Nature*, 362, 652–654.

BRANCH P, HAMPSON R AND KARRAN P. (1995). DNA mismatch binding and DNA damage tolerance to alkylating agents in human colorectal carcinoma cell lines. *Cancer Res.*, 55, 2304–2309.

BRENT TP. (1986). Inactivation of purified human O6-alkylguanine-DNA alkytransferase by alkylating agents or alkylated DNA. *Cancer Res.*, 46, 2320–2323.

BRENT TP, HOUGHTON PJ AND HOUGHTON JA. (1985). O6-Alkylguanine-DNA alkytransferase activity correlates with the therapeutic response of human rhabdomyosarcoma xenografts to 1-(2-chloroethyl)-3-(trans-4-methyl cyclohexyl)-1-nitrosourea. *Proc. Natl Acad. Sci. USA*, 82, 2985–2989.

BRENT TP, LESTRUD SO, SMITH DG AND REMACK JS. (1987). Formation of DNA interstrand crosslinks by the novel chloroethylnitrosourea agent 2-chloroethyl(methylsulfonyl)methane sulfonate: suppression by O6-alkylguanine-DNA alkytransferase purified from human leukemic lymphoblasts. *Cancer Res.*, 47, 3384–3387.

CARTER SK AND WASSERMAN TH. (1976). The nitrosoureas: thoughts for the future. *Cancer Treat. Rep.*, 60, 807–811.

CITRON M, DECKER R, CHEN S, SNYDER S, GRAVER M, KLEYNRMAN L, KAHN LB, WHITE A, SCHAEHNOS M AND YAROSH D. (1991). O6-Methylguanine-DNA methyltransferase in human normal and tumour tissue from brain, lung and ovary. *Cancer Res.*, 51, 4131–4134.

DENNY BJ, WHEELHOUSE RT, STEVEN S MFG, TSANG LH AND SLACK JA. (1994). NMR and molecular modeling investigation of the mechanism of activation of the antitumour drug temozolomide and its interaction with DNA. *Biochemistry*, 33, 9045–9051.

D'INCALCI M, TAVERTA P, ERBA E, FILIPPESC H, SOTENZA P, MARIANI L, CITTI L AND CATAPANO C. (1991). O6-Methylguanine and temozolomide can reverse the resistance to chloroethylnitrosoureas of a mouse L1210 leukemia. *Anticancer Res.*, 11, 115–122.

DOLAN ME, CORSICO CD AND PEGG AE. (1985a). Exposure of HeLa cells to O6-alkylguanines increases sensitivity to the cytotoxic effects of alkylating agents. *Biochem. Biophys. Res. Commun.*, 132, 178–185.

DOLAN ME, MORIMOTO K AND PEGG AE. (1985b). Reduction of O6-alkylguanine-DNA alkytransferase activity with O6-alkylguanines. *Cancer Res.*, 45, 6413–6417.

DOLAN ME, MITCHELL RB, MUMMERT C, MOSCHEL RC AND PEGG AE. (1991). Effect of O6-benzylguanine analogues on sensitivity of human tumour cells to the cytotoxic effects of alkylating agents. *Cancer Res.*, 51, 3367–3372.

DOLAN ME, PEGG AE, HORA NK AND ERICKSON LC. (1988). Effect of O6-methylguanine on interstrand cross-link formation by chloroethylnitrosoureas and 2-chloroethyl(methylsulfonyl)-methanesulfonate. *Cancer Res.*, 48, 3603–3606.

DOLAN ME, PEGG AE, MOSCHEL RC AND GRINDLEY GB. (1993). Effect of O6-benzylguanine on the sensitivity of human colon tumour xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). *Biochem. Pharmacol.*, 46, 285–290.

CATAPANO CV, BROGGINI M, ERBA E, PONTI M, MARIANI L, CITTI L AND D'INCALCI M. (1987). *In vitro and in vivo* methazolastone-induced DNA damage and repair in L1210 leukemia sensitive and resistant to chloroethylnitrosoureas.

Cancer Res., 47, 4884–4889.

CECCOTTI S, DOGLIOTTI E, GANNON J, KARRAN P AND BIGNAMI M. (1993). O6-Methylguanine in DNA inhibits replication *in vitro* by human cell extracts. *Biochemistry*, 32, 13664–13672.

CESARONE C, BOLOGNESI C AND SANTI L. (1987). Improved microfluorometric DNA determination in biological material using 33258 Hoechst. *Anal. Biochem.*, 102, 188–197.

ABBREVIATIONS

Temozolomide, 8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3-tetrazine-4(3H)-one, also known as NSC 362856, CCRG 81045 and SCH 52365; AGT, O6-alkylguanine-DNA alkytransferase (EC 2.1.1.63); MTIC, 5-(3-methyl-1-triazeno)imidazole-4-carboxamide; BCNU, 1,3-bis(2-chloroethyl)-1-nitrosourea (Carmustine); O6-BG, O6-benzylguanine; DMSO, dimethyl sulfoxide; PBS, phosphate-buffered saline.

of the future. *Cancer Treat. Rep.*, 60, 807–811.
Jiang B, Bawr B, Hsiang Y, Shen T, Potmesil M and Silver R (1989). Lack of drug-induced DNA cross-links in chlorambucil-resistant Chinese Hamster Ovary cells. Cancer Res., 49, 5514–5517.

Jiricny J, Hughes M, Corman N and Ruddink BR (1988). A human 200-kDa protein binds selectively to DNA fragments containing GT mismatches. Proc. Natl Acad. Sci. USA, 85, 8860–8864.

Karran P and Bignami M (1992). Self-destruction and tolerance in resistance of mammalian cells to alkylating damage. Nucleic Acid Res., 20, 2933–2940.

Karran P, Macpherson P, Cecchetti S, Dogliotti E, Griffin S and Bignami M (1993). O6-Methylguanine residues elicit DNA repair synthesis by human cell extracts. J. Biol. Chem., 268, 15878–15886.

Kat A, Thilly WG, Fang WH, Longley MJ, Li GM and Mardijk P. (1993). An alkylaton-tolerant, mutant cell line is deficient in strand-specific mismatch repair. Proc. Natl Acad. Sci. USA, 90, 6424–6428.

Lee CM, Thatchet N and Margison GP. (1991). O6-alkylguanine-DNA alkyltransferase depletion and regeneration in human peripheral lymphocytes following Dacarbazine and Potassium. Cancer Res., 51, 619–623.

Lee SM, Thatchet N, Crowther D and Margison GP. (1994). Inactivation of O6-alkylguanine-DNA alkyltransferase in human peripheral blood mononuclear cells by temozolomide. Br. J. Cancer, 69, 452–456.

Li G-M and Mardijk P. (1995). Restoration of mismatch repair to nuclear extracts of H6 colorectal tumour cells by a heterodimer of human MuT2 homologs. Proc. Natl Acad. Sci. USA, 92, 1950–1954.

Liu L, Allay E, Dumenico L and Gerson SL (1994). Rapid repair of O6-methylguanine-DNA adducts protects transgenic mice from N-methyl-N-nitrosourea-induced thymic lymphomas. Cancer Res., 54, 4646–4652.

Lown JW, Mclaughlin LW and Chang YM. (1978). Mechanism of action of 2-haloethylnitrosoureas on DNA and its relation to their antileukemic properties. Bioorg. Chem., 7, 97–110.

Macarthur UC, Kroses RA, Dolen ME and Ericsson LC. (1993). Prolonged depletion of O6-alkylguanine DNA methyltransferase activity following exposure to O6-methylguanine with or without streptozotocin enhances 1,3-bis(2-chloroethyl)-1-nitrosourea sensitivity in vitro. Cancer Res., 53, 4281–4286.

Macarthur UC, Dolen ME and Ericsson LC. (1994). Extended depletion of O6-alkylguanine-DNA methyltransferase activity following O6-benzyl-2-deoxyguanosine or O6-alkylguanine combined with streptozotocin treatment enhances 1,3-bis(2-chloroethyl)-1-nitrosourea cytotoxicity. Cancer Res., 54, 4371–4375.

Margison GP and O'Connor PJ. (1990). Biological consequences of reactions with DNA: Role of specific lesions. Chemical Carcinogenesis and Mutagenesis. In Handbook of Experimental Chemotherapy, Grover PL and Phillips DH (eds), pp 547–571. Springer: Heidelberg.

Mitchell RB, Moschel RC and Dolen ME. (1992). Effect of O6-benzylguanine on the sensitivity of human tumour xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea and on DNA interstrand cross-link formation. Cancer Res., 52, 1171–1175.

Mitchell RB and Dolen ME. (1993). Effect of temozolomide and dacarbazine on O6-alkylguanine-DNA alkyltransferase activity and sensitivity of human tumour cells and xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemother. Pharmacol., 32, 59–63.

Mitra G, Paully GT, Kumar R, Pei GK, Hughes SH, Moschel RC and Barbadic M. (1989). Molecular analysis of O6-substituted guanine-induced mutagenesis of ras oncogenes. Proc. Natl Acad. Sci. USA, 86, 8650–8654.

Moertel GC. (1973). Therapy of advanced gastrointestinal cancer with the nitrosothes. Cancer Chemother. Rep., 4, 27–32.

Montgomery JA, James R, McCaleb GS and Johnston TP. (1967). The modes of decomposition of 1,3-bis(2-chloroethyl)-1-nitrosourea and related compounds. J. Med. Chem., 10, 668–674.

Newlands ES, Blackledge G, Slack JA, Goddard C, Brindley CJ, Holden L and Stevens MG. (1985). Phase I clinical trial of mitozolomide. Cancer Treat. Rep., 69, 801–805.

Newlands ES, Blackledge GRP, Slack JA, Rustin GJ, Smith DB, Stuart NS, Quarterman CP, Hoffman R, Stevens MG, Frampton MH and Gibbon AC. (1992). Phase I trial of temozolomide (CCIRG 81045: M & B 39831: NSC 362856). Br. J. Cancer, 65, 287–291.
O'REILLY SM, NEWLANDS ES, GLASER MG, BRAMPTON M, RICE EDWARDD RD, LINNORTH RD, RICHARDS PG, KENNARD C, COLOQUHOUN IR, LEWIS P AND STEVENS MFG. (1993). Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur. J. Cancer, 29A 940–942.

PALOMBO F, GALLINARI I, JACARINO J, LETTIERI T, HUGHES D, A'IRGO A, TRUONG O AND HSUAN J. (1994). Mismatch repair and cancer. Nature, 367, 417.

PALOMBO F, GALLINARI I, JACARINO J, LETTIERI T, HUGHES D, A'IRGO A, TRUONG O, HSUAN J AND JIRICNY J. (1995). GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science, 268, 1912–1914.

PANELLA TJ, SMITH DC, SCOLD SC, ROGERS WP, WINER EP, FINE RL, CRAWFORD J, HENDRON II JE AND TRUMP DL. (1992). Modulation of O6-alkylguanine-DNA alkyltransferase-mediated C aristostatum resistance using Sietopzoetin: a phase I trial. Cancer Res., 52, 2456–2459.

PAPADOPOULOS N, NICOLAIDES NC, LIU B, PARSONS R, LENGAUER C, PALOMBO F, A'IRGO A, MARKOWITZ S, WILLSON JK, KINZLER KW, JIRICNY J AND VOGELSTEIN B. (1995). Mutations of GTBP in genetically unstable cells. Science, 268, 1915–1917.

PARSONS R, LI G-M, LONGLEY MJ, FANG W, PAPADOPOULOS N, JEN J, DE LACHELLE A, KINZLER KW, VOGELSTEIN B AND MORDICH P. (1993). Hypermutability and mismatch repair deficiencies in human tumour cells. Cell, 72, 1227–1236.

PEGG AE. (1993). Alkylation and subsequent repair of DNA after exposure to dimethylnitrosamine and related carcinogens. Rev. Biochem. Toxicol., 5, 83–133.

PEGG AE, SCI CCHITANO D AND DOLAN ME. (1984). Comparison of the rates of repair of O6-alkylguanines in DNA by rat liver and bacterial O6-alkylguanine-DNA alkyltransferase. Cancer Res., 44, 3806–3811.

PFEFFER RO, FUTSCHER BW AND ERICKSON LC. (1989). Transcription termination lesions induced by bifunctional alkylating agents in vitro. Carcinogenesis, 10, 1307–1314.

PLANT JE AND ROBERTS JJ. (1971). Extension of the pre-DNA synthetic phase of the cell cycle as a consequence of DNA alkylation in Chinese hamster cells: a possible mechanism of DNA repair. Chemico-Biol. Interact., 3, 343–351.

PLOWMAN J, WAUD WR, KOUTSOUKOS AD, RUBINSTEY LN, MOORE TD AND GREVER MR. (1994). Preclinical antitumour activity of temozolomide in mice: efficacy against brain tumour xenografts and synergism with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res., 54, 3793–3799.

POTTER DW AND REED DJ. (1983). Involvement of FMN and phenobarbital cytochrome P-450 in stimulating a one electron reductive denitrosation of 1-(2-chloroethyl)-3-(cylohexyl)-1-nitrosourea catalysed by NADPH-cytochrome P-450 reductase. J. Biol. Chem., 258, 6606–6611.

REDMOND SMS, JONCOURT F, BUSER K, ZIEMIECKI A, ALTER HAY, HEY, MARGISON G AND CERNY T. (1991). Assessment of P-glycoprotein, glutathione-based detoxifying enzymes and O6-alkylguanine-DNA alkyltransferase as potential indicators of constitutive drug resistance in human colorectal tumours. Cancer, 51, 2092–2097.

SARKER A, DOLAN ME, GONZALEZ GC, MARTON LJ, PEGG AE, AND DEEN DF. (1993). The effects of O6-benylnitrosoguanine and hyposia on the cytotoxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea in nitrosourea-resistant SF-763 cells. Cancer Chemother. Pharmacol., 32, 477–481.

SCUDIERO DA, MEYER SA, CLATTERBUCK BE, MATTERN MR, ZIOLKOWSKI CH AND DAY RS III. (1984). Relationship of DNA repair phenotypes of human fibroblast and tumour strains to killing by N-methyl-N-nitro-N-nitrosoguanidine. Cancer Res., 44, 961–969.

SEIDENFELD J, BARNES D, BLOCK AL AND ERICKSON LC. (1987). Comparison of DNA intrastrand cross-linking and strand breakage by 1,3-bis(2-chloroethyl)-1-nitrosourea in polyamine-depleted and control human adenocarcinoma cells. Cancer Res., 47, 4538–4543.

SHIBATA D, PEINADO MA, IONOV Y, MALIKHOSEYAN S AND PERUCHO M. (1994). Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nature Genet., 6, 273–281.

SILBER JR, BOBOLA MS, EWERS TG, MURAMOTO M AND BERGER MS. (1992). O6-alkylguanine DNA-alkyltransferase is not a major determinant of sensitivity to 1,3-bis(2-chloroethyl)-1-nitrosourea in four medulloblastoma cell lines. Oncology Res., 4, 241–248.

SKEHAN P, STORENG R, SCUDIERO D, MONKS A, MCMAHON J, VISTICA D, WARREN JT, BOKESCH H, KENNEY S AND BOYD MR. (1990). New colorimetric assay for anti-cancer drug screening. J Natl Cancer Inst., 82, 1107–1118.

SMITH MT, EVANS CG, DOANE-SETZER P, CASTRO VM, TAHIR MK AND MANNERRIK B. (1989). Denitrosation of 1,3-bis(2-chloroethyl)-1-nitrosourea by class μ glutathione transferases and its role in cellular resistance in rat brain tumour cells. Cancer Res., 49, 2621–2625.

SU SS AND MODRICH P. (1986). Escherichia coliform-encoded protein binds to mismatched DNA base pairs. Proc. Natl Acad. Sci. USA, 83, 5057–5061.

TANO K, SHIOTA S, COLLIER J, FOOTE BS AND MITRA S. (1990). Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc. Natl Acad. Sci. USA, 87, 686–690.

TUSDALE MJ. (1987). Antitumour imidazotetrazines–XV. Role of O6 alkylation in the mechanism of cytotoxicity of imidazotetraziones. Biochem. Pharmacol., 36, 457–462.

TONG WP, KIRK MC AND LUDLUM DB. (1981). Molecular pharmacology of the haloxythyl nitrosoureas: formation of 6-hydroxyethylguanine in DNA treated with BCNU (N,N′-bis[2-chloroethyl]-N-nitrosourea). Biochem. Biophys. Res. Commun., 100, 351–357.

TONG WP, KIRK MC AND LUDLUM DB. (1982). Formation of the cross-link [1-N(2-deoxyxytidyl)-2-N(2-deoxyguanosynol)-ethane, in DNA treated with N,N′-bis[2-chloroethyl]-N-nitrosourea (BCNU). Cancer Res., 42, 3102–3105.

UMAR A, BOYER JC, THOMAS DC, NGUYEN DG, RISINGER JI, BOYD J, IONOV Y, PERUCHO M AND KUNKHEL T. (1994). Defective mismatch repair in extract of colorectal and endometrial cell lines exhibiting microsatellite instability. J. Biol. Chem., 269, 14367–14370.

WALKER MD AND HURWITZ BS. (1970). BCNU (1,3-bis(chloroethyl)-1-nitrosourea: NSC 409962) in the treatment of malignant brain tumours. A preliminary report. Cancer Chemother. Rep., 54, 263–271.

WEINKAM RY AND LIN HS. (1979). Reactions of BCNU (1,3-bis[2-chloroethyl]-1-nitrosourea) and CCNU ([1,2-chloroethyl]-3-cyclohexyl-1-nitrosourea) in aqueous solution. J. Med. Chem., 22, 1193–1198.

YANG J, Hsieh F, Lee P AND Tseng HR. (1994). Strand and sequence-specific attenuation of N-methyl-N′-nitro-N-nitrosoguanidine-induced GC to AT transitions by expression of human O6-methylguanine-DNA methyltransferase in Chinese Hamster Ovary cells. Cancer Res., 54, 3857–3865.

YAROSH DC. (1985). The role of O6-methylguanine-DNA methyltransferase in cell survival, mutagenesis and carcinogenesis. Mutat. Res., 145, 1–16.

YOUNG WC, DEVITA VT JR, SERPICK AA AND CANELLOS CP. (1971). Treatment of advanced Hodgkin's disease with [1,3-bis(chloroethyl)-1-nitrosourea] BCNU., N. Engl J. Med., 285, 475–479.

ZOBBOULIS C, GARBE C AND ORFANOS CE. (1989). Factors influencing the in vitro growth of human melanoma cell lines. Skin Cancer, 4, 63–72.