Thermally activated conductivity in gapped bilayer graphene

MAXIM TRUSHIN(a)

Institute for Theoretical Physics, University of Regensburg - D-93040 Regensburg, Germany, EU and Department of Physics, University of Texas - 1 University Station C1600, Austin, 78712 T, USA

received 22 March 2012; accepted in final form 24 April 2012
published online 25 May 2012

PACS 72.80.Vp – Electronic transport in graphene
PACS 72.10.Fk – Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect)

Abstract – This is a theoretical study of electron transport in gated bilayer graphene—a novel semiconducting material with a tunable band gap. It is shown that the which-layer pseudospin coherence enhances the subgap conductivity and facilitates the thermally activated transport. The mechanism proposed can also lead to the non-monotonic conductivity vs. temperature dependence at a band gap size of the order of 10 meV. The effect can be observed in gapped bilayer graphene sandwiched in boron nitride where the electron-hole puddles and flexural phonons are strongly suppressed.

Copyright © EPLA, 2012

Introduction. – Graphene [1] is often considered [2] as a most promising material for future semiconductor industry. Indeed, it demonstrates high carrier mobility even at room temperature [3] and is suitable for mass production thanks to the chemical vapor deposition technique developed recently [4,5]. However, pristine graphene [3] does not have a band gap which is a crucial ingredient for the field effect transistor functionality. It is possible to open the gap in bilayer graphene by applying an external electric field perpendicular to the sample, see fig. 1. The effect was predicted by McCann [6] and experimentally proven in ref. [7]. Note that it is also possible to open a gap between hole and conduction bands in bilayer graphene by means of an appropriate chemical doping [8].

In order to control the band gap and carrier density independently the double-gated graphene devices have been utilized [9–12]. The most striking feature observed is that the band gap obtained by infrared spectroscopy [13,14] turns out to be much too large to fit the thermally activated conductivity measurements. There are a few attempts to resolve this discrepancy. An earlier model [15] suggests the formation of midgap states in which charge carriers are localized. The band edge moves locally further into the gap and a hopping mechanism dominates the conduction [9,10]. The most recent approach [16] employs fluctuations of the charged impurity potential separating the electron and hole puddles. Indeed, the first experimental observations [9–11] of the insulating behavior in gapped bilayer graphene have been made in the devices with graphene flakes placed directly on the SiO$_2$ substrate. The substrate impurities are known to cause sizable potential fluctuations which lead to the formation of electron-hole puddles at low carrier densities [17]. If the substrate potential fluctuations are strong enough then the small effective band gap is expected to be due to the percolation through the charge inhomogeneities overwhelming the real spectral gap. The relevance of this mechanism to the subgap conductivity is unquestionable as long as graphene is placed on the SiO$_2$ substrate [16]. In recent experiments [12] carried out on suspended double-gated bilayer graphene the electron-hole puddles are expected to be suppressed; nevertheless, the activation energy deduced from the transport measurements is still smaller than the band gap size. An alternative model [18] suggests that the edge transport plays an important role in these measurements [12]. The phenomenon originates from non-trivial topological properties of the electronic band structure in graphene which are similar to those in spin-orbit induced topological insulators [19].

A question addressed in this paper is whether there is another mechanism responsible for the substantial subgap conductivity which can manifest itself in gapped bilayer graphene sandwiched in boron nitride [20,21]. Such graphene samples are practically insusceptible to the environment making the substrate much less important. Moreover, the electron-hole puddles can be completely screened out in double-layer systems similar to those recently reported in ref. [22]. The edge transport, if any,
The chemical potential μ is counted from the middle of the band gap.

can be precluded in Corbino geometry which has been already utilized in recent experiments carried out on double-gated bilayer graphene [23]. Using the pseudospin coherence concept we predict that the subgap conductivity contribution does not vanish completely even though all abovementioned mechanisms are excluded, see figs. 3, 4. The signature of the mechanism in question is the non-monotonic conductivity vs. temperature dependence at a band gap size of a few tens of meV, see figs. 5, 6. This non-monotonic dependence could not be explained within conventional model [9,10,15] where disorder renormalizes the bandgap to a smaller value just by locally raising or lowering the band edges.

Concept. – We argue that the difference between effective (transport) and actual (spectral) gaps is an intrinsic property of gapped bilayer graphene following from the minimal two-band effective Hamiltonian already employed in ref. [9]. The Hamiltonian can be written as

$$H_0 = \hbar \vec{k} \cdot \vec{\sigma}$$

and $\vec{\sigma}$ are Pauli matrices representing the *pseudospin* [24] degree of freedom for carriers in bilayer graphene which originates from its peculiar crystal lattice shown in fig. 1(a) with the σ_z-pseudospin projection referring to the layer index. Here, \vec{m} is the effective mass, \vec{k} is the two-component particle momentum, $\tan \varphi = k_y/k_x$, and $\Delta = 2U$ is the band gap. The eigenvalues of H_0 are $E_{\sigma k} = \pm \sqrt{\left(\frac{\hbar^2 k^2}{2m} \right)^2 + U^2}$ with $\kappa = \pm$ being the band index, and the eigenstates are $\psi_{\sigma k} (\vec{r}) = e^{i \vec{k} \cdot \vec{r}} |\chi_{\sigma k}\rangle$ with the spinors $|\chi_{+k}\rangle = (\cos \frac{\varphi}{2}, \sin \frac{\varphi}{2} e^{i \vartheta} T, \sin \frac{\varphi}{2} e^{i \vartheta} T)$, $|\chi_{-k}\rangle = (\sin \frac{\varphi}{2}, -\cos \frac{\varphi}{2} e^{i \vartheta} T, \cos \frac{\varphi}{2} e^{i \vartheta} T)$, where $\cos \vartheta_k = U / \sqrt{\left(\frac{\hbar^2 k^2}{2m} \right)^2 + U^2}$. The bands $E_{\sigma k}$ are shown in fig. 1(b). In order to pinpoint the mechanism responsible for the transport gap renormalization we compare the pseudospin-momentum coupled model (1) with the decoupled one in which $H'_0 = \hbar \vec{k} \cdot \vec{\sigma}$, where

$$H'_{0} = \frac{\hbar^2 k^2}{2m} + \vartheta U.$$

The two models have the same energy spectrum but the the eigenstate spinors do not depend on the direction of particle's motion here and read $|\chi_{+k}\rangle = (\cos \frac{\varphi}{2}, \sin \frac{\varphi}{2} T, \sin \frac{\varphi}{2} T)^T$, $|\chi_{-k}\rangle = (\sin \frac{\varphi}{2}, -\cos \frac{\varphi}{2} T, \cos \frac{\varphi}{2} T)^T$. This only difference between two model Hamiltonians (1) and (2) leads to the drastic change in the subgap conductivity behavior: The subgap conductivity of graphene does not vanish even at zero temperature, see fig. 3, whereas it does so within decoupled band model, as shown in fig. 4.

The mechanism can be understood from fig. 2. Due to the pseudospin-momentum coupling in graphene the particle necessarily gets out of its valence band eigenstate while moving between two subsequent collisions with the scatterers. The resulting wave function, to a certain extent, can be seen as a superposition between valence and conduction band states. (The conduction band state obviously represents an evanescent wave function as long
The finite-size Kubo formula follows the procedure described in [25,26] and starts from where (a) \(0\) and (b) \(0\) of both metallic and subband conductivities on weak in this case.

This phenomenon, as many other effects related to the electron-hole pairs. The electron-hole pairs are making the effective band gaps smaller than the actual one, as the energy is below the bottom of conduction band [24].

As consequence the electron and hole states become entangled and in that way can facilitate the conductivity making the effective band gap smaller than the actual one, as seen in figs. 3, 4.

Note that such an entanglement has nothing do with the electron-hole pairs. The electron-hole pairs are entirely classical objects and occur in both graphene and conventional semiconductor material as soon as the temperature reaches the level high enough to excite the valence electrons across the band gap. The interband entanglement is certainly of quantum mechanical nature. This phenomenon, as many other effects related to the quantum mechanical coherence, is sensitive to temperature. In some cases one can observe the competition between the temperature-dependent pseudospin decoherence and thermal activation of the electron-hole pairs which results in the non-monotonic conductivity vs. temperature dependence, see figs. 5, 6.

Methods. – To evaluate the dc conductivity \(\sigma\) we follow the procedure described in [25,26] and start from the finite-size Kubo formula

\[
\sigma = \frac{i\hbar^2}{L^2} \sum_{n,n'} \left(f_{E_n} - f_{E_{n'}} \right) \langle n | v_x | n' \rangle \langle n' | v_x | n \rangle, \tag{3}
\]

where \(L^2\) is the finite-size system area, \(\eta\) is the coupling to source and drain reservoirs, \(v\) is the velocity operator, \(f_{E_n}\) is the Fermi-Dirac distribution function, and |\(n\)\rangle denotes an exact eigenstate of the numerically solved Schrödinger equation for a finite-size disordered system with periodic boundary conditions: \((H_0 + V) \psi_n = E_n \psi_n\), where \(V(r) = u_0 \sum_{i} \delta(r - R_i)\) for the short-range disorder model we consider. The scattering locations \(R_i\) and potential signs of \(u_0\) are random. The Schrödinger equation has been solved using a large momentum-space cutoff \(k^* \approx 7 \cdot 10^5 \text{ cm}^{-1}\) which corresponds to the energy scale at which the split-off bands of bilayer graphene become relevant and our two-band model is no longer applicable [26].

The pseudospin-momentum coupling (the effect in which we are mainly interested here) always occurs in graphene whichever disorder potential is assumed. The model considered here should be seen as a generic one where delta-correlated scattering potential is chosen just for the sake of simplicity even though the short range disorder mixes states in different valleys. The intervalley scattering appears to be irrelevant to any other type of disorder (charged impurities, ripples) and is therefore neglected here. Note that the Thomas-Fermi theory has been recently employed [16] to calculate the electronic structure in the presence of the disorder potential due to charge impurities in gapped bilayer graphene. The theory is quasiclassical and does not include the quantum mechanical entanglement considered here. Most important is that the amplitude of the screened disorder potential fluctuations must be of the order of the gap size \(\Delta\) in order to explain the difference between the spectral band gap and the experimentally extracted transport gap. Here, quite an opposite situation is considered: The scatterer strength \(u_0\) and concentration \(n_s = N_s/L^2\) are chosen to be small enough \((u_0 n_s < \Delta)\) to preclude the percolative regime [16] and substantial band gap renormalization [15]. Such careful choice of disorder.
parameters makes it possible to observe the pseudospin coherence effects.

The Kubo conductivity (3) vanishes at $\eta \rightarrow 0$ as well as at $\eta \rightarrow \infty$. As one can see in fig. 3 (inset), there is an intermediate region near $(\eta mL^2)/(2\pi\hbar^2) = 10$ where the conductivity is not too sensitive to η. It is natural to work in this region to estimate the conductivity at a given system size L. The length L is chosen to be so large that the conductivity curves do not change too much with further increasing of L. Figure 4 (inset) shows the conductivity curves for different sample sizes starting from $1/4L = 0.45 \times 10^{-5}$ cm with 0.45×10^{-5} cm step. One can see that the difference in the conductivity behavior for the lengths $1/4L = 1.35 \times 10^{-5}$ cm and $L = 1.8 \times 10^{-5}$ cm becomes rather small, thus, the latter is chosen to be the typical sample size which allows the scaling with L. The typical scatterer number N_s is a few hundreds for this L. The momentum cut-off k^* and L fix the Hamiltonian matrix dimension at 3362×3362.

The effective mass m for carriers in bilayer graphene has been predicted to be equal to 0.054m_0 [27] with m_0 being the bare electron mass. The latest measurements on suspended bilayer graphene [28] indicate the effective mass of 0.028m_0. In contrast, the charge carriers in bilayer graphene on substrate demonstrate larger effective mass about 0.04m_0 [29] which turns out to be slightly different for electrons and holes. Since the model considered here assumes the electron-hole symmetry and the effects predicted below do not rely on the particular effective mass value such precision seems to be excessive for our purposes and we choose just the round number $m = 0.05m_0$.

The zero-temperature conductivity curves depicted in figs. 3, 4 are smoothed by averaging over an energy interval containing 10–100 levels, over boundary conditions, and over several disorder potential realizations [26]. The finite-temperature conductivity demonstrates much weaker fluctuations, thus, the results shown in figs. 5, 6 are averaged just over a few disorder realizations.

Results. – As one can see from fig. 3, the conductivity does not vanish even though the chemical potential μ gets below the bottom of the conduction band and the temperature is zero. Moreover, the subgap conductivity increases with disorder (cf. ref. [30]). This peculiar behavior can be understood in terms of the disorder-dependent quasiparticle life-time τ and pseudospin decoherence time τ_{dc}.

$\tau_{dc} = \hbar/2E_k$ with E_k being the characteristic particle energy which equals to either μ or $\Delta/2$ whichever is larger. On the one hand, the interband entanglement is obviously weaker for larger energies and stronger for smaller band gap sizes. On the other hand, the evanescent components in the interband entangled states become more important at shorter distances and count in favor of strong disorder. As consequence, the subgap pseudospin-coherent conductivity contribution increases with τ_{dc}/τ — the effect we actually observe in figs. 3, 4. The upper limit for quasiparticle life-time τ (which is the same as the momentum relaxation time in presence of the short-range disorder potential) can be estimated using the Fermi golden-rule at $\mu \gg U$ as $\tau \approx 3 \cdot 10^{-14}$ s corresponding to the mobility 10^3 cm2/Vs for curve (b).

Looking at the plots in fig. 3 one might still think that it is the impurity density of states, rather than the pseudospin-momentum coupling, that is responsible for finite subgap conductivity. In order to clarify this issue let us compare the pseudospin-momentum coupled model (1) with the decoupled one (2). The two models have the same density of states but the the eigenstate spinors do not depend on the direction of particle’s motion in (2). Here, either conduction or valence band eigenstate once created can propagate through the disordered sample without changing its pseudospin orientation even though the direction of motion is altered after each scattering event, as shown in fig. 2. The interband entangled states do not occur here and the conductivity vanishes as soon as the chemical potential reaches the bottom of the conduction band, see dotted lines in fig. 4. In contrast, gapped bilayer graphene demonstrates a substantial subgap conductivity at the same parameters.

Thus, to observe the substantial subgap conductivity i) the pseudospin must be coupled with the particle momentum to create the interband entangled states in disordered samples and ii) the system must be pseudospin-coherent, i.e. τ/τ_{dc} must be smaller than one. Note that $\tau_{dc} = \hbar/2\mu$ (for $\mu > \Delta/2$) decreases with increasing μ making the two conductivities in fig. 4 indistinguishable at higher carrier concentrations. On the other hand the quasiparticle life-time τ is longer in higher mobility samples with less impurities and/or lighter carriers that requires longer τ_{dc} to fulfill the pseudospin coherence criteria.

The difference between bilayer graphene described by eq. (1) and its rival with decoupled bands (2) at best can be seen in the thermally activated conductivity. The calculations can also be considered as a simulation of the charge transport in a field effect transistor turned to the “off” state when the chemical potential is placed exactly in the middle of the band gap hampering both electron and hole transport at low temperatures. As can be seen in fig. 5, the pseudospin-coupled carriers can be excited easier than the decoupled ones. The difference between conductivities in these two cases becomes essential at room temperatures. Note that if $T \ll \Delta$, then the pseudospin-incoherent conductivity can be well described by the classical formula $\sigma_{dc} = \frac{e^2}{m^*} \exp(-\frac{\Delta}{kT})$ indicating that the thermally activated conductivity always increases with temperature. In contrast, the subgap pseudospin-coherent conductivity decreases as soon as T becomes comparable with $\Delta/2$ substituting the latter in the expression for τ_{dc} and breaking down the pseudospin coherence. The competition between these two mechanisms can result in the non-monotonic temperature dependence of graphene’s conductivity, see fig. 5 (inset). Note that if $T \gg \Delta$, then both conductivity curves coincide. (This regime is not shown in figure.)
Thermally activated conductivity in gapped bilayer graphene

Conductivity (e2/h) = 174 meV

$\Delta_2 = 131$ meV

$\Delta_1 = 43.5$ meV

Temperature (K)

0 0.1 0.2 0.3 0.4 0.5

50 100 150 200 250 300

Fig. 5: Thermally activated conductivity at different band gap size Δ for gapped bilayer graphene (solid lines) and decoupled band intrinsic semiconductor (dotted lines) described by eqs. (1) and (2), respectively. The chemical potential is zero, i.e. it is placed exactly in the middle of the gap. The subgap conductivity increases slower with the temperature within the decoupled band model. The inset shows the competition between the temperature-dependent pseudospin decoherence and thermal activation of the electron-hole pairs resulting in the non-monotonic temperature dependence of graphene’s conductivity at smaller band gap. Besides the band gap size shown in the plot, all other parameters are the same as in fig. 3 for curve (b).

The non-monotonic conductivity behavior is robust under moderate change of the disorder strength, see fig. 6. However, as it was mentioned before, the disorder strength $n_s u_0$ must always be smaller than the band gap size in order to preclude the influence of midgap states. The bilayer samples must therefore be relatively clean to observe the non-monotonic conductivity behavior predicted here. The necessary quality can probably be achieved in graphene on boron nitride [21]. It is also important that the phonons, which are not considered here at all, might spoil the effect. The phonon resistivity contribution in bilayer graphene is dominated by flexural phonons and rapidly increases with temperature [31]. The flexural phonons can be again suppressed in graphene sandwiched between boron nitride layers where the charge inhomogeneity and flexural phonon conductivity contributions are substantially reduced.

**

I would like to thank Prof. Allan MacDonald for his hospitality during my stay at the University of Texas at Austin, where a part of this work has been done, and DFG for financial support through the project TR 1019/1-1.

REFERENCES

[1] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V. and Firsov A. A., Nature, 438 (2005) 197.
[2] Schwierz F., Nat. Nanotechnol., 5 (2010) 487.
[3] Geim A. K. and Novoselov K. S., Nat. Mater., 6 (2007) 183.
[4] Jeon I., Yang H., Lee S.-H., Heo J., Seo D. H., Shin J., Chung U.-I., Kim Z. G., Chung H.-J. and Seo S., ACS Nano, 5 (2011) 1915.
[5] Levendorf M. P., Ruiz-Vargas C. S., Garg S. and Park J., Nano Lett., 9 (2009) 4479.
[6] McCann E., Phys. Rev. B, 74 (2006) 161403.
[7] Castro E. V., Novoselov K. S., Morozov S. V., Peres N. M. R., dos Santos J. M. B. L., Nilsson J., Guinea F., Geim A. K. and Castro Neto A. H., Phys. Rev. Lett., 99 (2007) 216802.
[8] Ohta T., Bostwick A., Seyller T., Horn K. and Rotenberg E., Science, 313 (2006) 951.
[9] Oostinga J. B., Heersche H. B., Liu X., Morpurgo A. F. and Vandersypen L. M. K., Nat. Mater., 7 (2008) 151.
[10] Taychatanapat T. and Jarillo-Herrero P., Phys. Rev. Lett., 105 (2010) 166601.
[11] Zou K. and Zhi J., Phys. Rev. B, 82 (2010) 081407.
[12] Weitz R. T., Allen M. T., Feldman B. E., Martin J. and Yacoby A., Science, 330 (2010) 812.
[13] Zhang Y., Tang T.-T., Girit C., Hao Z., Martin M. C., Zettl A., Crommie M. F., Shen Y. R. and Wang F., Nature, 459 (2009) 820.
[14] Mak K. F., Lui C. H., Shan J. and Heinz T. F., Phys. Rev. Lett., 102 (2009) 256405.
[15] Nilsson J. and Castro Neto A. H., Phys. Rev. Lett., 98 (2007) 126801.
[16] Rossi E. and Das Sarma S., Phys. Rev. Lett., 107 (2011) 155502.
[17] Martin J., Akerman N., Ulbricht G., Lohmann T., Smet J. H., von Klitzing K. and Yacoby A., Nat. Phys., 4 (2008) 144.
[18] Li J., Martin I., Butttiker M. and Morpurgo A. F., Nat. Phys., 7 (2011) 38.
[19] Hasan M. Z. and Kane C. L., Rev. Mod. Phys., 82 (2010) 3045.
[20] Mayorov A. S., Gorbachev R. V., Morozov S. V., Britnell L., Jalil R., Ponomarenko L. A., Blake P., Novoselov K. S., Watanabe K., Taniguchi T. and Geim A. K., Nano Lett., 11 (2011) 2396.
[21] Dean C. R., Young A. F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K. L. and Hone J., Nat. Nanotechnol., 5 (2010) 722.
[22] Ponomarenko L. A., Geim A. K., Zhukov A. A., Jalil R., Morozov S. V., Novoselov K. S., Grigorieva I. V., Hill E. H., Cheianov V. V., Fal'ko V. I., Watanabe K., Taniguchi T. and Gorbachev R. V., Nat. Phys., 7 (2011) 958.
[23] Yan J. and Fuhrer M. S., Nano Lett., 10 (2010) 4521.
[24] Katsnelson M. I., Novoselov K. S. and Geim A. K., Nat. Phys., 2 (2006) 620.
[25] Nomura K. and MacDonald A. H., Phys. Rev. Lett., 98 (2007) 76602.
[26] Trushin M., Kailasvuori J., Schliemann J. and MacDonald A. H., Phys. Rev. B, 82 (2010) 155308.
[27] McCann E., Abergel D. S. and Fal'ko V. I., Solid State Commun., 143 (2007) 110.
[28] Mayorov A. S., Elias D. C., Mucha-Kruczynski M., Gorbachev R. V., Tudorovskiy T., Zhukov A., Morozov S. V., Katsnelson M. I., Fal'ko V. I., Geim A. K. and Novoselov K. S., Science, 333 (2011) 860.
[29] Zou K., Hong X. and Zhi J., Phys. Rev. B, 84 (2011) 095408.
[30] Bardarson J. H., Tworzydło J., Brouwer P. W. and Beenakker C. W. J., Phys. Rev. Lett., 99 (2007) 106801.
[31] Ochoa H., Castro E. V., Katsnelson M. I. and Guinea F., Phys. Rev. B, 83 (2011) 235416.