ABSTRACT

Magnetic fields may play a dominant role in gamma-ray bursts, and recent observations by Fermi indicate that GeV radiation, when detected, arrives delayed by seconds from the onset of the MeV component. Motivated by this, we discuss a magnetically dominated jet model where both magnetic dissipation and nuclear collisions are important. We show that, for parameters typical of the observed bursts, such a model involving a realistic jet structure can reproduce the general features of the MeV and a separate GeV radiation component, including the time delay between the two. The model also predicts a multi-GeV neutrino component.

Key words: gamma-ray burst: general – gamma rays: stars – magnetic fields – neutrinos – X-rays: stars

1. INTRODUCTION

Recent observations with the Fermi satellite have shown the presence of GeV emission in gamma-ray bursts (GRBs), delayed by seconds relative to the usual MeV radiation (e.g., Abdo et al. 2009a; Ackermann et al. 2010). In some bursts, this delayed GeV radiation appears as a distinct spectral component (Ackermann et al. 2010; Abdo et al. 2009b). There have also been indications that the outflow in such bursts may be magnetized (e.g., Zhang & Pe’er 2009; Fan 2009). Also on the theoretical side, there has been an increasing interest in magnetically dominated but baryon-loaded GRB models (e.g., Thompson 1994; Drenkhahn & Spruit 2002; Lyutikov & Blandford 2003; Metzger et al. 2011; McKinney & Uzdensky 2011).

The fast rotating central engine, whether a black hole or a magnetar, can lead to a highly magnetized outflow which is initially Poynting dominated, with a sub-dominant baryon load at the base of the flow. The outflow can be expressed as

\[\Gamma(r) \approx \begin{cases} \left(\frac{r}{r_0} \right)^{1/3} & \text{for } r \leq r_{\text{sat}} \\ \eta & \text{for } r \geq r_{\text{sat}}, \end{cases} \]

where \(r_0 = 10^7 \text{r}_{0.7} \) is the base of the outflow and \(r_{\text{sat}} \approx r_0 \eta^3 \) is the radius at which the bulk Lorentz factor \(\Gamma \) has saturated, the outflow having become approximately matter dominated. One way to roughly understand this dynamic behavior is as follows. The comoving reconnection time is \(t'_r \sim \lambda' / v_p' \sim \Gamma_1^2 v_A / v_F \), the outflow will be self-similar, and \(\gamma' \geq 1 \), a dimensionless quantity, can be expressed as a dimensionless combination of dimensional quantities in the flow. There are only two physically independent dynamical quantities, \(t'_r \) and \(t'_\gamma \), suggesting \(\gamma' \propto t'_r / t'_\gamma \propto \Gamma^3 / r \). The conversion of internal energy during the expansion is what leads to the growth of the bulk kinetic energy, and energy conservation requires \(\gamma^3 \Gamma \sim \text{const} \propto \Gamma^3 / r \), or \(\Gamma \propto r^{1/3} \). The final bulk Lorentz factor is the same (\(\Gamma \approx n \)) as in the pure hydrodynamical regime, but the growth is slower, because at each e-folding in radius, only part of the magnetic internal energy gets converted directly into kinetic energy, and the other part gets converted first into thermal energy, and then into kinetic energy only after another e-folding.

Longitudinal pion optical depth. In a simple flow which initially moves with a single bulk Lorentz factor, nuclear elastic collisions couple \(n \) and \(p \) with a cross section \(\sigma_{\text{nuc}} \sim \sigma_\pi (c / v_{\text{rel}}) \), where \(v_{\text{rel}} \) is the relative drift velocity between...
\(n \) and \(p \), and \(\sigma_\pi \sim 3 \times 10^{-26} \text{cm}^2 \). When \(v_{\text{rel}} \rightarrow c \), the nuclear collisions become inelastic resulting in the production of pions, muons, and eventually \(e^\pm \) pairs and neutrinos. The latter escape, but \(\sim 1/4 \) of the collision energy ends up in pairs and photons, which are trapped in the optically thick flow, adding to its thermal energy.

In such simple homogeneous flows, the nuclear collisions become inelastic (resulting in pions) when the comoving expansion time \(t_{\text{ex}}' \sim r/c \Gamma \) becomes shorter than the comoving collision time \(t_{\text{coll}}' \sim 1/(n'_p \sigma_\pi c) \), or \(t_{\text{ex}}' \sim t_{\text{coll}}' \sim n'_p \sigma_\text{sat}/\Gamma \sim 1 \). Here, \(n'_p \) is the comoving proton density,

\[
 n'_p = \frac{L_x}{4\pi r^3 \theta^2 \eta} \Gamma \, .
\]

where \(L \) is the total kinetic luminosity, and \(x = n_p/n_n \equiv n_p/(n_p+n_n) \) is the proton fraction of the baryon density \(n_b = n_p+n_n \). The radius at which pion production occurs is

\[
 \frac{r_{\pi}}{r_0} = \frac{L \sigma_\pi \chi}{4\pi m_p c^3 r_0 \eta T} \equiv \frac{x}{\eta T} \equiv \frac{x}{\eta \Gamma^2} \, .
\]

Thus, the photosphere is typically larger than the longitudinal pionosphere by a factor

\[
 \frac{r_{\text{ph}}}{r_{\pi}} \sim \left(\frac{\sigma_T}{\sigma_\pi} \right)^{3/5} \sim 6.4 \, .
\]

\[\text{For } \eta > \eta_T(\eta < \eta_T) \text{ the photosphere occurs at } r < r_{\text{sat}} \] (\(r > r_{\text{sat}} \)), at a radius

\[
 \frac{r_{\text{ph}}}{r_0} = \begin{cases}
 \eta_T^3(\eta_\pi/\eta)^{1/5} & \text{for } r < r_{\text{sat}}(\eta > \eta_T) \\
 \eta_T^3(\eta_\pi/\eta)^{3/5} & \text{for } r > r_{\text{sat}}(\eta < \eta_T)
 \end{cases}
\]

The scaling, as well as the definition of \(\eta_T \), again differs from those in, e.g., Mészáros & Rees (2000b) or Beloborodov (2010), due to our using here the magnetized outflow dynamics. Thus, the photospheric radius could be a factor \(\gtrsim 4^{3/5} \sim 2.3 \) larger than its value without pairs in Equations (7), (8), and (9).

Thus, the reconnection process can also produce pairs, whose effects could be significant (McKinney & Uzdensky 2011; Metzger et al. 2011). Assuming that the two effects contribute a comparable change in the lepton density, this increases \(L \) by a factor \(\gtrsim 4 \) in Equations (7), (8), and (9).

\[\frac{r_{\text{ph}}}{r_{\pi}} \gtrsim 10-15r_{\pi} \, . \]

Transverse pion optical depth. Neutrons, if present outside the jet, can drift sideways into the jet channel unhindered by magnetic fields. The lab-frame transverse nuclear collision optical depth of a jet of opening half-angle \(\theta \) at radius \(r \) is

\[
 \tau_{\pi,\perp} = \frac{n_p \sigma_\pi r \theta}{r \, \eta} \, .
\]

Thus, the jet becomes transversely optically thin at

\[
 \frac{r_{\pi,\perp}}{r_0} = \eta_T^3 \frac{\theta}{\eta} \, .
\]

Thus, for a jet opening half-angle \(\theta = 10^{-2}\theta_{-2} \), we have the following radii:

\[
 r_{\pi} \sim 6 \times 10^{12} L_{54}^{3/5} r_{0.7}^{-3/5} \eta_0^{-1/5} \eta_0^{1/5} \text{ cm},
\]

\[
 r_{\text{ph}} \sim 6 \times 10^{13} L_{54}^{3/5} r_{0.7}^{-3/5} \eta_0^{-3/5} \text{ cm},
\]

\[
 r_{\pi,\perp} \sim 9 \times 10^{14} L_{54} \eta_0^{1/5} \eta_{-2} \text{ cm},
\]

\[
 r_{\text{sat}} \sim 2 \times 10^{15} r_{0.7} \eta_0 \text{ cm} \, .
\]

Transverse jet structure and neutron drift. In a realistic jet the properties vary also in the transverse direction. Hydrodynamical simulations (e.g., Morrissey et al. 2010) indicate a Lorentz factor tapering off toward the edges, while MHD force-free simulations (Tchekhovskoy et al. 2008) show models where, depending on the stellar pressure profile and the magnetic symmetries, the jet opening angle can initially narrow with increasing radius, with an inner jet core accelerating initially more slowly than the outer jet portions, but before exiting the star the inner jet becomes faster than the outer sheath, after which

\[\text{For } \eta > \eta_T(\eta < \eta_T) \text{ the photosphere occurs at } r < r_{\text{sat}} \] (\(r > r_{\text{sat}} \)), at a radius

\[
 \frac{r_{\text{ph}}}{r_0} = \begin{cases}
 \eta_T^3(\eta_\pi/\eta)^{1/5} & \text{for } r < r_{\text{sat}}(\eta > \eta_T) \\
 \eta_T^3(\eta_\pi/\eta)^{3/5} & \text{for } r > r_{\text{sat}}(\eta < \eta_T)
 \end{cases}
\]
the jet opening angle remains constant. As a simple idealized model, we can consider the transverse structure outside the star as a two-step jet, consisting of an inner jet core with, e.g., a nominal constant half-angle $\theta = 10^{-2}\theta_{-2}$ with $\eta = 600\eta_{600}$, and a slower outer jet or sheath with, say, $\eta_{out} \sim 100$, where both inner core and outer sheath have been populated with protons and free neutrons already near the black hole, where most nuclei get photodissociated (Beloborodov 2003; Metzger et al. 2008). One can expect neutrons from the outer sheath to drift into the jet core, and for $\eta_{out} \lesssim 10^{2} \sim \theta_{-1}$ the neutrons can penetrate transversely the entire jet core. Also, the relative radial Lorentz factor ratio between indrift neutrons and jet core baryons (either p or n) is $\Gamma_{rel} \sim \eta/\eta_{out} > 1$, so the collisions will be inelastic, leading again to pions.

Over a timescale t the thermal neutrons from an outer sheath where the lab-frame neutron density is n_{n} and the thermal neutron velocity is v_{n} will diffuse transversely into the jet, their flux being

$$\phi_{n} \sim \left(\frac{v_{n} \ell}{t} \right)^{1/2} n_{n} \sim \beta_{t} \left(\frac{n_{nc} \ell}{\sigma_{}\ell} \right)^{1/2} t^{1/2},$$

(14)

where $\ell \sim 1/(n_{n} \sigma_{\text{mc}})$, $\sigma_{\text{mc}} \sim \sigma_{\gamma}(c/v_{t})$, and $\beta_{t} = v_{t}/c$. Taking a jet transverse area of $A \sim \pi \theta^{2}$, on a timescale t the total number of neutrons drifting transversely into the jet core will be, roughly,

$$N_{n,\perp} \sim \pi \theta^{2} \phi_{n} \sim \pi \theta^{2} \beta_{t} (n_{nc} \ell / \sigma_{\gamma} \ell)^{1/2},$$

(15)

while over the same timescale the number of baryons (n and p) passing longitudinally through the jet core is

$$N_{b,\parallel} \sim \pi \theta^{2} r_{\perp}^{2} c t \sim \pi \theta^{2} (L/4 \pi r^{2} m_{p} c^{2} \eta) c t,$$

(16)

The number of collisions is maximized when $N_{n,\perp} \gtrsim N_{b,\parallel}$, that is $\beta_{t} (n_{nc} \ell / \sigma_{\gamma} \ell)^{1/2} \gtrsim (c / \eta_{\text{mc}}) (\eta_{\text{mc}} \ell / n_{nc} \ell)^{2}$, and when the jet transverse pion optical depth $\tau_{\pi,\perp} \sim 1$, i.e., $r \sim r_{\pi,\perp}$.

For the first condition, we can estimate the outer sheath neutron thermal velocity v_{t} since we know that the comoving baryon temperature becomes trans-relativistic ($T = \text{GeV}$) at the saturation radius $r_{\text{sat, out}} = r_{0,p} \eta_{out} \sim 10^{3}$ cm, where $v_{t} \sim c$, after which they cool with $T \propto r^{-2/3}$, so at $r_{\perp,\perp}$ we have $\beta_{t}^{2} = (v_{t}/c)^{2} \sim (kT_{pl} / m_{p} c^{2}) \sim (r_{\text{sat, out}} / r_{\perp,\perp})^{-2/3} \sim 10^{-3/3}$. These two conditions are met when at $r \sim r_{\pi,\perp}$ the neutron density in the outer sheath is

$$n_{n} \gtrsim \frac{c t}{\pi \sigma_{\gamma} \eta^{2}_{\text{mc}}} \frac{1}{r_{\perp}^{2} \theta^{4} \beta_{t}^{2}} \sim 4 \times 10^{11} L_{54}^{2} r_{\gamma}^{-2} L_{54}^{2} n_{600}^{2} t^{1/3} \text{ cm}^{-3},$$

(17)

over a timescale t. The density in Equation (17) is comparable to what might be expected in an outer jet sheath.

3. SPECTRUM FORMATION

GeV radiation. The “prompt” component of the GeV radiation is expected to arise from the transverse drift nuclear collision mechanism at $r_{\pi,\perp}$ discussed above. The $\gamma \gamma$ photons to $E = 10$ GeV photons can be roughly estimated as (Beloborodov 2010) $r_{\gamma \gamma}(E) \sim 10^{15} (E/10$ GeV) $^{3/2} n_{600}^{-5/2}$ cm, so that $r_{ph} < r_{\gamma \gamma}(10$ GeV) $\lesssim r_{\pi,\perp}$.

$$r_{ph} < r_{\gamma \gamma}(10$ GeV) $\lesssim r_{\pi,\perp},$$

(18)

the right inequality holding for $\eta_{600} \gtrsim 1$. Thus, at $r_{\pi,\perp}$, which is at or outside $r_{\gamma \gamma}$ for $\eta_{600} \gtrsim 1$, multi-GeV photons will be copiously produced by transverse indrift neutron collisions with jet core baryons, and these photons can escape unhindered. The energy in this GeV component, for the conditions discussed in the previous section, is a significant fraction of the kinetic luminosity. Most pions will be formed approximately at rest in the frame of the jet, and the processes $p, N \rightarrow \pi^{+} \pi^{-} \pi^{0}$, where $N = (p, n)$, occur in approximately equal ratios. Thus, $1/3$ of the collisions on average yield two photons from $\pi^{0} \rightarrow 2 \gamma$ decays at an observer frame energy which is broadly distributed around a central energy $\eta_{\text{mc}}^{-1} \sim \eta (m_{\pi} c^{2}/2)/(1+z) \sim 7\eta_{600}(5/1+z)$ GeV, extending up to twice that value and down to a fraction of it.

GeV time delay. The relative time delay between MeV photons from the central photosphere (see below) and the observed onset of the GeV emission, which arises at $r_{\pi,\perp}$ from neutrons from an outer jet sheath moving with bulk Lorentz factor η_{out} which drift into the inner jet at the radius $r_{\pi,\perp}$ where their effect becomes significant is

$$\Delta t \sim \frac{r_{\pi,\perp}}{2c \eta_{out}^{2}} \sim 1 L_{54}^{1/3} B_{0.7}^{1/3} \eta_{600}^{-1} n_{out,10}^{-2} \left(\frac{1}{\eta_{600}} \right) s,$$

(19)

in the lab frame at the source. In the observer frame this is lengthened by a factor (1 + z). For a burst at $z \sim 4$ such as GRB 080916C this is similar to the observed GeV–MeV delay of ~ 5 s observed by Fermi in that object.

MeV radiation. The MeV (Band) spectrum may be expected to arise from the dissipative photosphere of the inner jet at $r_{ph} \sim 6 \times 10^{13}$ cm (Equation (13)). This MeV spectrum may be attributed to synchrotron radiation following magnetic or shock dissipation near r_{ph} with typical bulk Lorentz factors $\Gamma_{\gamma} \sim 1$. This would result in random magnetic fields $B' \sim (32\pi e_{\gamma} m_{e} c^{2} n_{ph}^{1/2} \Gamma_{\gamma})$, where $n_{ph} = L/(4\pi r_{ph}^{2} \eta_{\Gamma_{\gamma}})$ is the baryon comoving density at r_{ph}, where for the nominal jet parameters used we have $\Gamma_{\gamma} = (r_{ph}/r_{0,p})^{1/3} \sim 180 L_{54}^{2/3} r_{ph,15}^{1/3} \eta_{600}$, so $n_{ph} \sim 5 \times 10^{12} L_{54}^{2/3} r_{ph,15}^{-2/3} L_{54}^{2/3} r_{ph,15}^{1/3} / 15^{1/3} \sim 10^{18}$. The same magnetic dissipation leading to semi-relativistic shocks with comoving bulk Lorentz factors $\Gamma_{\gamma} \sim 1$ near r_{ph} will accelerate electrons to average non-thermal random Lorentz factors of $\gamma_{e}' \sim (m_{e} / m_{p}) \Gamma_{\gamma} \sim 10^{7}$, assuming equipartition between baryons and electrons, leading to an observer frame synchrotron radiation peak at $E_{\text{ph}} = \gamma_{e}' \Gamma_{\gamma}(1+z)^{-1} \sim 0.3 r_{ph}^{1/2} L_{54}^{1/2} \Gamma_{\gamma}^{-1} (5/1+z)$ MeV. This non-thermal component will dominate over a much weaker photospheric thermal component at $kT_{\text{ph}} \sim 1$ keV. Comptonization may boost a fraction of the synchrotron photons to higher energies, but using the expression above for $r_{\gamma \gamma}$ a cutoff is obtained at $E_{\gamma \gamma} \sim 3$ MeV $L_{54}^{2/3} \Gamma_{\gamma}^{1/3}$ ph,180. Thus, the photosphere allows escape of MeV but not GeV photons. A decreasing fraction of increasing energy photons could arise from dissipation at larger radii (Beloborodov 2010), as $r_{\gamma \gamma}$ increases, but significant GeV escape compatible with a second spectral component is only expected from radii where transverse neutron drift is drift is important.

Outer jet photosphere. The outer jet has a photosphere beyond its saturation radius, at $r_{ph, out} \sim 2.5 \times 10^{14} L_{54}^{1/3} \eta_{out,100}$ cm. If there was dissipation at this outer photosphere, a calculation similar to the inner jet’s would give a synchrotron peak at $E_{\gamma \gamma, out} \sim 25 L_{54}^{1/3} \eta_{out,100}^{1/3} \Gamma_{\gamma}^{1/3} (5/1+z)$ keV. However, magnetic dissipation is not expected to occur above the saturation...
radius, and neither does nuclear collisional dissipation, since the n, p components do not decouple for this $\eta < \eta_0 \sim 130$. Thus, unless some other form of dissipation occurs near the outer photosphere, it would have a quasi-blackbody spectrum with $kT \sim 0.2 L_{54}^{1/2} \eta_0^{1/2} T_7^{2/3} \eta_{100}^{5/3} (5 + z) \text{ keV}$ and a luminosity

$$L_{\text{ph, out}} \sim \epsilon_{\text{rad}} L_0 (r_{\text{sat}} / r_{\text{ph}})^{\eta_0} \lesssim 10^{-2} (\epsilon_{\text{rad}} / 0.5) L_0,$$

well below the kinetic luminosity L_0.

Internal shocks. In principle, these would not be expected if the magnetization remains significant beyond the saturation radius (cf. Zhang & Yan 2011). If they did occur, the earliest would need to be at $r_{\text{IS}} \sim 2 \epsilon_{\nu} \eta_0^{1/3} t_7 \gtrsim 2 \times 10^{15} \eta_{100}^{2/3} \text{ cm}$ at an observer time $t_\nu \sim 50 L_{54}^{-1/2} \eta_0^{-1/3} \eta_{100}^{-1} (1 + z) / 5$ s. With the usual assumption about magnetic field and electron energy equipartition, and $\Gamma \sim \eta / 2$ at r_{IS}, the FS synchrotron spectrum of the inner jet peaks at $
u_{\text{IS}} \sim 2 \epsilon_{\nu}^{1/2} \eta_{100}^{1/2} \epsilon_{\nu,0} (5 + z) \text{ keV}$. For the usual power-law electron distribution accelerated at the shock, this synchrotron spectrum extends as a power law into the GeV range (Ghisellini et al. 2010; Kumar & Barniol Duran 2010), providing the long-term GeV afterglow, the external shock being well outside $r_{\text{FS}} (10 \text{ GeV})$. The earliest prompt GeV radiation, however, appears to require a separate origin, as considered by Toma et al. (2011), He et al. (2011), De Pasquale et al. (2010), and Corsi et al. (2010) in the context of non-magnetic outflows.

The outer jet deceleration radius is $r_{\text{d, out}} \sim 5.3 \times 10^{17} L_{54}^{-1/3} \eta_0^{1/3} \eta_{100,\text{out}}^{-1} \text{ cm}$ at an observer time $t_{\text{d, out}} \sim 2 \times 10^{12} L_{54}^{-1/3} \eta_0^{-1/3} \eta_{100,\text{out}}^{-1} (1 + z) / 5$ s, and the outer jet FS synchrotron spectral peak is at $
u_{\text{FS, out}} \sim 2 \epsilon_{\nu,0}^{1/2} \eta_{100,\text{out}}^{1/2} (5 + z) \text{ keV}$.

If the magnetization parameter of the ejecta σ has become small at r_d, a reverse shock may form (Mimica et al. 2009; Zhang & Yan 2011). With the usual assumptions for an equipartition magnetic field in a reverse shock with $\Gamma_r \sim 1$ and $\Gamma_r \sim \epsilon_{\nu,0}^{1/2} \Gamma_r^{1/2}$, the inner jet RS synchrotron peak occurs at $\nu_{\text{RS}} \sim 70 \epsilon_{\nu,0}^{1/3} \eta_0^{1/3} \eta_{100,\text{out}}^{1/3} \epsilon_{\nu,0}^{1/2} \Gamma_r^{2/3} \eta_{100}^{2/3} (5 + z) \text{ eV}$, while the outer jet reverse shock synchrotron spectrum peaks at $\nu_{\text{RS, out}} \sim 20 \text{ eV}$, with the same scaling.

Neutrino spectrum. Also, as a result of the charged pion decays, $1/3$ of the collisions yield on average a muon neutrino of energy broadly centered around $\nu_{\nu} \sim 3 \eta_{100} (5 + z) \text{ GeV}$ (again extending up to twice that value and down to a fraction of it), and a muon neutrino as well as an electron neutrino centered at energy $\nu_{\nu} \sim 3 \eta_{100} (5 + z) \text{ GeV}$, while another $1/3$ of the collisions leads to the corresponding antineutrinos of similar energies. These are in the sensitivity range of the Deep Core array of the IceCube neutrino detector.

4. DISCUSSION

We have presented a GRB model based on a magnetically dominated, baryon-loaded outflow, where both magnetic reconnection and nuclear p, n collisions lead to dissipation around and above a photon photosphere. We have discussed the dynamics of the magnetized jets based on a simplified reconnection prescription and an idealized jet transverse structure, deriving the radii at which the photon-scattering photosphere occurs as well as the radii at which radial and transverse drifts between proton and neutron components lead to nuclear collisional dissipation, in the context of the magnetic jet dynamics. Although the detailed structure and dynamics could depend on various assumptions about the stellar envelope pressure profile, the magnetic field configuration, etc. (Tchekhovskoy et al. 2008; McKinney & Uzdensky 2011; Metzger et al. 2011), the present model qualitatively captures a number of the essential features. In particular, the characteristic radii and their scalings differ from those in a purely hydrodynamical jet. Both in this and in more general magnetic models, a slower acceleration rate generically leads to larger photospheric and dissipation radii relative to the hydrodynamic case, in line with previous hints from Fermi observational results indicating larger emission radii.

Using parameters inferred from Fermi observations of bursts showing significant emission in the LAT instrument in the GeV energy range, which typically are of very high luminosity and higher than average Lorentz factor (Zhang et al. 2011), we discussed the gross properties of the MeV and GeV photon production spectra. For a simplified structured jet model consisting of a central faster jet core and a slower outer jet surrounding it, we showed that for reasonable parameters a significant GeV component is produced, with a time delay of seconds relative to the onset of the MeV component, in rough agreement with the observations of GRB 080916C (e.g., Abdo et al. 2009a). Related to the photon emission, a multi-GeV neutrino emission component is also expected, whose luminosity is comparable to that of the multi-GeV photon emission. More detailed calculations, which are beyond the scope of this Letter, will be needed in order to make detailed spectral fits to specific bursts.

We thank NASA NNX09AL40G, NSF PHY-0757155, the Royal Society, and the Institute of Astronomy, Cambridge, for partial support, and Dr. K. Toma and the referee for useful comments.

REFERENCES

Abdo, A. A., et al. 2009a, Science, 323, 1688

Abdo, A. A., et al. 2009b, ApJ, 706, L138

Ackermann, M., et al. 2010, ApJ, 716, 1178

Bahcall, J. N., & Mészáros, P. 2000, Phys. Rev. Lett., 85, 1362

Beloborodov, A. 2003, ApJ, 588, 931

Beloborodov, A. M. 2010, MNRAS, 407, 1033

Beloborodov, A. M. 2011, arXiv:1011.6005

Corsi, A., et al. 2010, ApJ, 729, 1098

De Pasquale, M., et al. 2010, ApJ, 709, L146

Drenkhahn, G. 2002, A&A, 387, 714

Drenkhahn, G., & Spurk, H. C. 2002, A&A, 391, 1141

Fan, Y. 2009, MNRAS, 397, 1539

Ghisellini, G., Ghirlanda, G., Nava, L., & Celotti, A. 2010, MNRAS, 403, 926

Giannios, D., & Spurk, H. C. 2007, A&A, 469, 1

Granot, J., Komissarov, S. S., & Spitkovsky, A. 2011, MNRAS, 411, 1323

He, H.-N., Wu, X.-F., Toma, K., Wang, X.-Y., & Mészáros, P. 2011, ApJ, 733, 22

Ioka, K. 2010, Prog. Theor. Phys., 124, 667

Komissarov, S., Vlahakis, N., Koenigl, A., & Barkov, M. 2009, MNRAS, 394, 1182

Kumar, P., & Barniol Duran, R. 2010, MNRAS, 409, 226

Lyutikov, M., & Blandford, R. D. 2003, arXiv:astro-ph/0312347

McKinney, J. C., & Uzdensky, D. A. 2011, MNRAS, in press (arXiv:1011.1904)

Mészáros, P., & Rees, M. J. 2000a, ApJ, 541, L5

Mészáros, P., & Rees, M. J. 2000b, ApJ, 530, 292
Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E. 2011, MNRAS, in press (arXiv:1012.0001)
Metzger, B. D., Thompson, T. A., & Quataert, E. 2008, ApJ, 676, 1130
Mimica, P., Giannios, D., & Aloy, M. A. 2009, A&A, 494, 879
Morsony, B., Lazzati, D., & Begelman, M. 2010, ApJ, 717, 239
Pe’er, A., Zhang, B.-B., Ryde, F., McGlynn, S., Zhang, B., Preece, R., & Kouveliotou, C. 2011, ApJ, submitted (arXiv:1007.2228)
Pe’er, A., et al. 2006, ApJ, 642, 995
Rees, M. J., & Mészáros, P. 2005, ApJ, 628, 847
Rossi, E., Beloborodov, A., & Rees, M. J. 2006, MNRAS, 369, 1797
Ryde, F., et al. 2010, ApJ, 709, L172
Tchekhovskoy, A., McKinney, J. C., & Narayan, R. 2008, MNRAS, 388, 551
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2010, New Astron., 15, 749
Thompson, C. 1994, MNRAS, 270, 480
Toma, K., Wu, X.-F., & Meszaros, P. 2011, arXiv:1002.2634
Vurm, I., Beloborodov, A., & Poutanen, J. 2011, arXiv:1104.0394
Zhang, B., & Pe’er, A. 2009, ApJ, 700, L65
Zhang, B., & Yan, H. 2011, ApJ, 726, 90
Zhang, B.-B., et al. 2011, ApJ, 730, 141