MATERIALS AND METHODS

Study population
From December 2007 to March 2008, a total of 102 asymptomatic subjects (50 men and 52 women) who visited our hospital between the ages of 14 and 82 years (mean age 46.3 years) were selected for participation in this study (Table 1). The study was approved by the hospital Institutional Review Board. Healthy subjects were recruited from asymptomatic visitors of the Health Screening Center by history-taking. We used this selection method in order to exclude any bias as completely as possible.

Written informed consent was obtained from all subjects. The subjects were carefully screened using a modified neck pain questionnaire and history taking. Individuals were only enrolled if they had never experienced relevant pain in the neck area, shoulder, and elbow joint, never undergone radiation at the up...
per extremities and never had any neurological deficits.

The absence of relevant symptoms in these areas was defined as never having seen a physician, physiotherapist, chiropractor, acupuncture, oriental herb medication, or other such health care professional, and never having missed workday due to these symptoms. The rationale for these criteria was the notion that episodes of transient neck pain are common and less likely to be recalled after spontaneous regression. Cases in which hospitalization treatment was administered for trauma such as a traffic accident were also excluded, because trauma required hospitalization may have undetected cervical diseases.

MR imaging methods

From C2 to T1, magnetic resonance (MR) scans were performed with a 3.0-Tesla imager (Achieva 3.0 T X-series, Philips Medical Systems, the Netherlands) with a dedicated receive-only spine coil. The protocol included sagittal T2-weighted ([2593/120 (repetition time msec/echo time msec)] turbo spin-echo imaging of the entire cervical spine with the following sequence parameters: matrix, 512×256; field of view, 270 mm; section thickness, 3 mm; intersection gap, 0.3 mm; and echo train lengths of 16 for T2-weighted images (T2WI). Though an axial sequence is also necessary to differentiated differences in disc pathology, but the authors use only sagittal imaging for convenience.

All images were sent to the in-hospital picture archive and communication system (PACS; Infinitt PACS, invented by Infinitt Co, Seoul, Korea) and reviewed using a 21.3-inch, 5-megapixel medical flat grayscale display (MFGD 5421, Barco, Kortrijk, Belgium) on a HP xw4400 workstation base unit (Hewlett-Packard Co, CA, USA). The monitor has a 2048×1536 resolution, 0.165 mm pixel pitch, 422.4×337.9 mm active screen area, 800 : 1 dark room contrast, and 700 cd/m² luminance.

Image analysis

The imaging studies in all 102 asymptomatic subjects were read independently by three of the authors (two neurosurgeons and one neuroradiologist) who were not given any information about the subjects. To eliminate potential reading bias, the images of 30 random symptomatic patients were mixed with the subjects’ images. We did not analyze the random 30 patients’ results in final analysis. There was no case of blocked vertebra or fusion. Six cervical disc levels were examined in each subject, and a total of 612 discs were examined.

Degree of degeneration

To establish the criteria for determining disc abnormality, we classified the three measurement categories: hernia-

Table 1. Asymptomatic subject’s mean age and standard deviation

Age range	Total mean age±SD (n)
14-19	16.9±2.1 (12)
20-29	22.0±2.2 (7)
30-39	35.5±3.1 (18)
40-49	44.5±3.1 (18)
50-59	55.1±2.1 (12)
60-69	61.8±2.4 (12)
70-82	73.0±3.9 (13)
Total	46.3±17.8 (102)

SD : standard deviation

Table 2. Degree of disc degeneration

Grade	Herniation*	Annular fissure**	Nucleus degeneration
0	Normal	Normal	Bright
1	Diffuse bulging	Annular fissure-P	Bright-band
2	Protrusion	Annular fissure-A	Bright-narrow
3	Extrusion	Annular fissure-B	Dim
4	Sequestration	Dim-slight	Dim-moderate
5	Dim-moderate	Dim-collapsed	
6	Dim-collapsed		

Table 3. Degree of nucleus degeneration

Nucleus degeneration	Nucleus/Annulus distinction	Nucleus signal	Disc height
Bright	Clear	Hyperintense, homogeneous	Normal
Bright-band	Clear	Hyperintense w/ horizontal dark band	Normal
Bright-narrow	Clear	Hyperintense w/ or w/o horizontal dark band	Decreased
Dim	Unclear	Decreased, slightly or heterogeneous irregularity	Normal
Dim-slight	Unclear	Decreased, slightly or heterogeneous irregularity	Slightly decreased (<1/3)
Dim-moderate	Lost	Decreased, moderately	Moderately decreased (1/3-2/3)
Dim-collapsed	Lost	Decreased, severely	Collapsed (>2/3)
Prevalence of Disc Degeneration in Asymptomatic Korean Subjects

TH Lee, et al.

Disc degeneration correlates with the extent and loss of signal intensity in the nucleus pulposus of the intervertebral disc. Intervertebral disc narrowing was diagnosed in cases in which decrease of more than 33.3% in the intervertebral disc space was present. The seven findings in the cervical intervertebral disc were: bright (homogeneous hyperintense nucleus), bright-band (nucleus clear distinct with horizontal dark band), bright-narrow (nucleus clear with disc height decreased), dim (nucleus unclear distinct with normal height), dim-slight (nucleus unclear with slightly decreased), dim-moderate (nucleus unclear with moderately decreased), dim-collapsed (nucleus unclear with collapsed). For the purpose of this investigation, grade 0-2 were grouped together and grade 3-6 were the more advanced grades of ND (Table 2, 3, Fig. 1).

Analysis of the prevalence of abnormal findings

The prevalence of the various abnormalities was calculated by disc count (DC) and person count (PC). DC is the number of...
The prevalence of the various abnormalities was calculated by averaging the scores of three readers. Inter-observer reproducibility was assessed using Kendall’s coefficient of concordance. The Kendall correlation can be interpreted as the coefficient of concordance to measure the agreement among raters (0, no agreement; 1, complete agreement).

RESULTS

Degree of degeneration

Herniation

Authors found bulging of disc in 142.3 (23.3%) of all 612 discs in 70.0 (68.6%) of the 102 subjects (Table 4). The score of bulging slightly increased along with the age, but not proportional to the age. Bulging was almost not seen at the level of C2/3, but the most common levels were C5/6 and C4/5 (Fig. 2). In protrusion, there are 41.0 (6.7%) of all 612 discs in 30.0 (29.4%) of the 102 subjects (Table 4). The score of protrusion slightly increased along with the age, but not proportional to the age. Protrusion was almost not seen at the level of C2/3, but the most common levels were C5/6. Extrusion of disc was found in 30.7 (5.0%) of all 612 discs in 23.3 (22.9%) of the 102 subjects (Table 4). This showed that a peak point was reached at the level of C5/6 in the 60’s. In the 70’s or older, however, it was reached a peak point at the level of C6/7. Extrusion was not common in cervical levels except the level of C5/6 and C6/7. There were no sequestrations of disc (Table 4).

Annular fissure and high-signal intensity zone

The authors found AF of disc in 266.0 (43.5%) of all 612 discs in 87.7 (85.9%) of the 102 subjects (Table 4). The score of AF was proportional to the age at all levels. Severe ND was found at all levels in elderly group, even in young-aged people at C3/4 and C4/5. The most common level was C5/6, and the level of age-dependent were C6/7>C4/5>C7/T1 in order (Fig. 2).

The results are summarized in Table 4. Table 4 is DC and PC of herniation, annular fissure, and nucleus degeneration of abnormal findings according to subject age and level.

Inter-observer reproducibility

The agreement values for the ND, AF, and HN were 0.968, 0.964, and 0.972 (p<0.0001), using Kendall’s coefficient of concordance.

DISCUSSION

Similar to back pain, neck pain has recently shown to have increasing prevalence. Fejer et al.\(^1\) reported the prevalence of neck pain by performing a meta-analysis. The point, one year, and lifetime prevalence of neck pain was reported to be 7.6%, 37.2%, and 48.5%, respectively. However, cervical disc degeneration is frequently found on MRI, even in the absence of neck pain. Christe et al.\(^5\) reported that disc herniation (above of bulging) was found in 30.6% of asymptomatic subjects.

The authors’ analysis showed that the prevalence of HN, AF, and ND in asymptomatic subjects were 81.4%, 85.9%, and 95.4%, respectively. In our results, abnormal findings on MRI were observed with a high prevalence of more than 80%. Miyazaki et al.\(^12\) reported that the prevalence of degeneration in symptomatic cases was 72.3%. Our results showed higher prevalence than symptomatic cases. These results led us to reconsider the relationships between cervical symptoms and abnormal findings on MRI.

In our results, ND showed higher score than HN and AF. Notably, degeneration was more frequent in the upper cervical segments than in the lower cervical segments, such as C2/3 and 3/4. These findings may come from frequent rotation of the upper segment, rare radiculopathy due to upper cervical disc...
Prevalence of Disc Degeneration in Asymptomatic Korean Subjects | TH Lee, et al.

Fig. 2. Graph of disc degeneration prevalence according to age and level, calculated by disc count. A, B and C : Herniation. D : Annular fissure. E : High-signal intensity zone (HIZ). F : Nucleus degeneration.

Table 5. International literatures comparison of herniation, annular fissure, and nucleus degeneration in asymptomatic subjects (%)

Study	Year	Tesla	Case	Nuclear degeneration	Herniation					
				DC	PC	G	DC	PC	DC	PC
Teresi et al.†	1987	0.3	100							
Boden et al.†	1990	1.5	63	18.6						
Christe et al.‡	2005	1.5	9	50.0	5	38.9				
Authors (Korea)	2011	3.0	102	58.8	95.4	7	43.5	85.9	6.2	26.8

*Autopsy study, †Included protrusion and more advanced herniation (extrusion and sequestration), ‡Included bulging and more advanced herniation (protrusion, extrusion, and sequestration). DC : disc count, PC : person count, G : grade, US : the United States of America, SWZ : Switzerland
Table 6. Comparison of herniation, annular fissure, and nucleus degeneration between the previous reports and authors’ modified results which were changed according to the criteria of previous studies

Study	Year	Case	Nucleus degeneration	Annular fissure	Herniation					
			DC	PC	DC	PC	DC	PC	DC	PC
Criteria 1	Age 20-73	Grade 1-2								
Boden et al. SB (USA)	1990	63								
Authors, modified	2011	85	70.2	96.1						
Criteria 3	Age 50-	AF grade 1								
Christe et al. SB (SWZ)	2005	9	38.9							
Authors, modified	2011	47	61.4	97.9	7.9	29.1				
Criteria 3	Age 20-73	Herniation grade 1-2								
Boden et al. SB (USA)	1990	63								
Authors, modified	2011	85								

* Included protrusion and more advanced herniation (extrusion and sequestration), † Autopsy study. DC : disc count, PC : person count, USA : the United States of America, SWZ : Switzerland, AF : annular fissure

degeneration, high power resolution of 3 T MRI, and so on. Another possibility is the effects of lower disc height and presence of artifacts from surrounding bones (mandible, teeth, mastoid, occiput, and so on).

We reviewed literatures about MR images in asymptomatic subjects (Table 5). The authors didn’t use open call recruitment. We stayed all day long at doctor’s office of Health Screening Center and chose subject by history-taking without mention of study purpose. In the table, there were very high prevalence in HN, AF, and ND.

Because all studies used different criteria, we performed a modified statistical analysis (Table 6). This comparison was made in the same manner as the previous reports, using the previous criteria of grading and selecting age of population. The modified results were similar to the original results.

We used a more detailed grading system to asymptomatic subject, not symptomatic patient. And, we used 3 T MRI. However, the authors think that these factors have a small effect on prevalence. High prevalence would be the population-specific prevalence, especially came from in old peoples.

The overall resolution power of MRI, which was the first used in clinical practice around 1976, improved in spatial resolution by the 3 T MRI. It can make imaging thinner slices7. But, the authors thought that 3 T MRI would not have far superior images in spine than 1.5 T MRI. Therefore, the additional study will be needed on the comparison between 3 T and 1.5 T MRI images in same subjects. However, there is no doubt that 3 T MRI will become more prevalent in future.

The authors performed cervical MRI on asymptomatic subjects, and reported that abnormal findings were detected with high prevalence. With this result, physicians must be thoughtful for these abnormal findings when making a decision of spinal surgery. Because degenerative changes are observed in most subjects aged 40 and older, disc degeneration can be result from both physiological changes and pathological lesions.

CONCLUSION

In asymptomatic Korean subjects, the abnormal findings of 3 T MRI showed a high prevalence in herniation, annular fissure, and nucleus degeneration. Several factors might play important roles in these results, such as population-specific characters, MRI field strength, and disc degeneration grading system.

• Acknowledgements

The authors thank Ji Min Sung, Ph.D. and Dae Hyung Lee, Ph.D., for their assistance in statistical design and testing.

References

1. Aprill C, Bogduk N : High-intensity zone : a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol 65 : 361-369, 1992
2. Boden SD, McCowin PR, Davis DO, Dina TS, Mark AS, Wiesel S : Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72 : 1178-1184, 1990
3. Boos N, Rieder R, Schade V, Spratt KE, Semmer N, Aebi M : 1995 Volvo Award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine (Phila Pa 1976) 20 : 2613-2625, 1995
4. Brant-Zawadzki MN, Jensen MC, Obuchowski N, Ross JS, Modic MT : Interobserver and intraobserver variability in interpretation of lumbar disc abnormalities. A comparison of two nomenclatures. Spine (Phila Pa 1976) 20 : 1257-1263; discussion 1264, 1995
5. Christe A, Läubli R, Guzman R, Berlemann U, Moore RJ, Schroth G, et al. : Degeneration of the cervical disc : histology compared with radiography and magnetic resonance imaging. Neuroradiology 47 : 721-729, 2005
6. Fejer R, Kvyk KO, Hartvigsen J : The prevalence of neck pain in the world population : a systematic critical review of the literature. Eur Spine J 15 : 834-848, 2006
7. Fries P, Runge VM, Kirchin MA, Watkins DM, Buecker A, Schneider G : Magnetic resonance imaging of the spine at 3 Tesla. Semin Musculoske-
11. Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, et al. : MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br 80 : 19-24, 2007
12. Miyazaki M, Hong SW, Yoon SH, Morishita Y, Wang JC : Reliability of a magnetic resonance imaging-based grading system for cervical intervertebral disc degeneration. J Spinal Disord Tech 21 : 288-292, 2008
13. Teresi LM, Lufkin RB, Reicher MA, Moffit BJ, Vinuela FV, Wilson GM, et al. : Asymptomatic degenerative disk disease and spondylosis of the cervical spine : MR imaging. Radiology 164 : 83-88, 1987

8. Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, et al. : Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32 : E708-E712, 2007
9. Harris RL, Macnab I : Structural changes in the lumbar intervertebral discs; their relationship to low back pain and sciatica. J Bone Joint Surg Br 36-B : 304-322, 1954
10. Masaryk TJ, Ross JS, Modic MT, Boumphrey F, Bohlman H, Wilber G : High-resolution MR imaging of sequestered lumbar intervertebral disks. AJR Am J Roentgenol 150 : 1155-1162, 1988