Computational details for the main text

0.1 Data preparation for gravity model

The gravity model that quantifies the population flow between any two cities is inspired by Newton’s law of gravity. The resident population and GDP per capita in each city can be regarded as the “mass” of each city. The demographic data used in this study are listed in following table.

Table 1: The resident population and GDP per capita in selected cities. Note: GDP (CNY), population (ten thousand). Source: Statistical Yearbook of China 2019 [1].

City	Wuhan	Beijing	Chengdu	Dongguan	Foshan	Fuyang	Guangzhou	Guiyang	Hangzhou
GDP/capita	135136	140211	94782	98939	127691	21589	155491	78449	140180
Population	1108.1	2154.2	1633	839.22	790.57	820.7	1490.44	488.19	980.6

City	Hefei	Huizhou	Jinan	Kunming	Langfang	Nanjing	Nanning	Ningbo	Shanghai
GDP/capita	97470	85418	106302	76387	64906	152886	60626	132603	134982
Population	808.7	483	746.04	685	483.66	843.62	725.41	820.2	2423.78

City	Shenzhen	Suzhou	Tianjin	Wenzhou	Wuxi	Xi’an	Changsha	Zhengzhou	Zhongshan
GDP/capita	189568	173765	120710	72657	174270	85114	134933	101349	110585
Population	1302.66	1072.17	1559.6	925	657.45	1000.37	815.47	1013.6	331

City	Chongqing	Zhoukou
GDP/capita	65933	30817
Population	3101.79	867.78

Before applying the gravity model in main text, we first adjust the data to the same order of magnitude. Here we reduce the value of GDP by 100 times, and then use the
mean of it and population size as the “mass” of each city. That is

\[M_i = \frac{1}{2}(GDP_i/100 + Population_i), \quad (A.1) \]

where \(GDP_i \) and \(Population_i \) are the GDP per capita and resident population in city \(\Omega_i \), respectively.

0.2 The ODE models for parameter estimation

Assume that the infected individuals and net growth rate are homogeneous in each city \(\Omega_i \), we integrate the original model (3) on the initial outbreak city \(\Omega_0 \), and get

\[\frac{dI(t, \Omega_0)}{dt} = \gamma \int_{\Omega_0} \Delta p(t, x) dx + R(t, \Omega_0)I(t, \Omega_0). \quad (A.2) \]

The divergence theorem derives

\[\int_{\Omega_0} \Delta p(t, x) dx = \int_{\partial \Omega_0} \nabla p(t, x) \cdot dS(x). \quad (A.3) \]

Note that the right term in this equation is not well defined before we introduce a Dirac vector function \(\delta(x) \) [2] on the boundary \(\partial \Omega_0 \). With this Dirac vector function, the gradient of \(p(t, x) \) on the discontinuous boundary \(\partial \Omega_0 \) is

\[\nabla p(t, x) = \delta(x)(p(t, \Omega_0^{outside}) - p(t, \Omega_0^{inside})). \quad (A.4) \]

In the early stages of the COVID-19 outbreak in China, the epidemic in Wuhan is far worse than other cities. Thus, we approximate the gradient as

\[\nabla p(t, x) = -\delta(x)I(t, \Omega_0)/|\Omega_0|. \quad (A.5) \]
Consequently,
\[
\int_{\Omega_0} \Delta p(t, x) dx = -\int_{\partial \Omega_0} \delta(x) \cdot dS(x) I(t, \Omega_0) = -\frac{|\partial \Omega_0|}{|\Omega_0|} I(t, \Omega_0). \tag{A.6}
\]
Therefore, we get a ODE model for the epidemic in the city \(\Omega_0 \)
\[
\frac{dI(t, \Omega_0)}{dt} = \gamma_0 I(t, \Omega_0) + R(t, \Omega_0) I(t, \Omega_0), \tag{A.7}
\]
where \(\gamma_0 = -|\partial \Omega_0|/|\Omega_0| \gamma \) is the total outflow rate from the initial outbreak city \(\Omega_0 \).

Before the lockdown in Wuhan, the infected individuals mainly spread from Wuhan to other cities. We generalize the ODE model for city \(\Omega_0 \) to a general form for each city \(\Omega_i \), yields
\[
\frac{dI(t, \Omega_i)}{dt} = \gamma_i I(t, \Omega_0) + R(t, \Omega_i) I(t, \Omega_i), \tag{A.8}
\]
where \(\gamma_i \) is the movement rate of population form the initial outbreak city \(\Omega_0 \) to another city \(\Omega_i \).

0.3 Source-sink method

Based on the behavior-related growth rate \(R(t_0, \Omega_i, \epsilon) \), we distinguish the subregions into source subregion with \(R(t_0, \Omega_i, \epsilon) > 0 \) and sink subregion with \(R(t_0, \Omega_i, \epsilon) < 0 \). After getting the estimated potential \(V(\Omega_1) > V(\Omega_2) > ... > V(\Omega_m) \), we first give a basic matrix \(J \) with the element
\[
J_{i,j} = max\left\{ \left(V(\Omega_j) - V(\Omega_i) \right)/D(\Omega_i, \Omega_j), 0 \right\}, \tag{A.9}
\]
where $D(\Omega_i, \Omega_j)$ is the diffusion distance between Ω_i and Ω_j. And then, we test the patch model (15) using this matrix J as a mobility matrix. For every $i = 1, \ldots, m$, we calculate the right term of patch model (15). For

$$\sum_{j=1}^{m} (J_{i,j}I(t_0, \Omega_j) - J_{j,i}I(t_0, \Omega_i)) + R(t_0, \Omega_i, \epsilon)I(t_0, \Omega_i) > \text{threshold}, \quad (A.10)$$

we orderly set $\bar{J}_{i,j} = 0 \ (j = 1, \ldots, m)$ if Ω_j is a sink subregion until the left term of the inequality (A.10) is non-positive or all sink subregions have been traversed, and $\bar{J}_{i,j} = J_{i,j}$ otherwise. In this way, we reduce the risk of a short-term outbreak of the epidemic in subregion Ω_i due to the population flow from the sink subregion Ω_j. To further reduce the rebound probability of infectious diseases, we traverse source subregions and repeat the above process. Larger threshold in (A.10) means higher population flow following the gradient of potential V. We set $\text{threshold} = 0.1$ and introduce noise into the balance equation (16) in the main text to discuss the effect of its changes. The positive noise in main text has a similar effect on population flow matrix.

With the updated matrix $\bar{J} = \{\bar{J}_{i,j}\}$, we calculate the right term of patch model (15) again. For every $i = 1, \ldots, m$, if

$$\sum_{j=1}^{m} (\bar{J}_{i,j}I(t_0, \Omega_j) - \bar{J}_{j,i}I(t_0, \Omega_i)) + R(t_0, \Omega_i, \epsilon)I(t_0, \Omega_i) < 0, \quad (A.11)$$

we denote

$$\vartheta_i = \frac{\sum_{j=1}^{m} \bar{J}_{j,i}I(t_0, \Omega_j) - R(t_0, \Omega_i, \epsilon)I(t_0, \Omega_i)}{\sum_{j=1}^{m} \bar{J}_{j,i}I(t_0, \Omega_j) + \epsilon}, \quad (A.12)$$

where $\epsilon > 0$ is small enough to ensure that the denominator is not zero. And then, we
update
\[\tilde{J}_{i,j} = \min\{\vartheta, \bar{J}_{i,j}, J_{i,j}\}. \] (A.13)

In this process, we promote the movement of population to subregions with low potential, while ensuring that the elements of the mobility matrix do not exceed the basic matrix to avoid population gathering in specific areas.

0.4 Theory Supplement

Here, we list the theoretical results used to determine the available subregions and travel fluxes in epidemic areas.

Lemma 1. For any continuous (piecewise continuous) function \(g(x) \) with \(\int_{\Omega} g(x) d\mu(x) \leq 0 \) in the measure space \((X, A, \mu)\), there is a integrable function \(h(x) \) with \(\int_{\Omega} h(x) d\mu(x) = 0 \), such that \(g(x) + h(x) \leq 0 \) for any \(x \in \Omega \subset X \).

Proof. We decompose the function \(g(x) \) by

\[g(x) = g_+(x) + g_-(x) \]

with \(g_+(x) \geq 0 \) and \(g_-(x) \leq 0 \).

Let

\[A = \int_{\Omega} g_+(x) d\mu(x), \quad B = \int_{\Omega} g_-(x) d\mu(x). \]

If \(B = 0 \) (i.e., \(g_-(x) = 0 \)), then \(g(x) = 0 \). We take \(h(x) = 0 \).

If \(B < 0 \), then \(\frac{A}{B} + 1 \geq 0 \). We take \(h(x) = \frac{A}{B} g_-(x) - g_+(x) \).

\[\square \]
Lemma 2 (Special case of Theorem 2 from Coifman et al. [3]). Assume that the data set \(\{x_1, x_2, \ldots, x_m\} \) are obtained from a probability density \(f(x) \) supported on manifold \(\Omega \subset \mathbb{R}^k \). Given a rotation-invariant kernel \(k_\delta(x, y) = \left(\frac{\delta}{\pi} \right)^{k/2} e^{-\delta \|x-y\|^2} \) for points \(x \) and \(y \). Set \(b_\delta(x_i) = \sum_{j=1}^{m} k_\delta(x_i, x_j) \), \(k_\alpha,\delta(x_i, x_j) = \frac{k_\delta(x_i, x_j)}{b_\delta^2(x_i)}, \) \(d_\alpha,\delta(x_i) = \sum_{j=1}^{m} k_\alpha,\delta(x_i, x_j) \), and \(P_\alpha,\delta(x_i, y_j) = \frac{k_\alpha,\delta(x_i, x_j)}{d_\alpha,\delta(x_i)} \) is the transition kernel of matrix \(P_m \), then the graph Laplacian \(L_{\delta,m} = 4 \delta (P_m - E) \) converges to an infinitesimal generator \(L_\alpha \) of the diffusion, i.e.,

\[
\lim_{\delta, m \to \infty} L_{\delta,m} \phi = L_\alpha \phi = 2(1 - \alpha) \nabla (\ln f) \cdot \nabla \phi + \Delta \phi \text{ for any smooth function } \phi \in C^2(\Omega).
\]

Proof. When the sample size \(m \) are large enough, the law of large numbers yields

\[
b_\delta(x) = \lim_{m \to \infty} m \sum_{j=1}^{m} k_\delta(x, x_j) = \int_{\Omega} k_\delta(x, y) f(y) dy.
\]

Using the Taylor expansion of \(f(y) \), we have

\[
b_\delta(x) - f(x) = \int_{\Omega} k_\delta(x, y) \left((y - x) \nabla f + \frac{1}{2} (y - x) H(y - x)^T + O(\|y - x\|^3) \right) dy,
\]

where \(\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_k})^T \) is the gradient of \(f \) and \(H \) is the corresponding Hessian.

First, for \(i \neq j \),

\[
\int_{\Omega} k_\delta(x, y)(y - x)_i dy = 0, \quad \int_{\Omega} k_\delta(x, y)(y - x)_j dy = 0.
\]

Second, for \(i = j \),

\[
\int_{\Omega} k_\delta(x, y)(y - x)_i^2 dy = \left(\frac{\delta}{\pi} \right)^{k/2} \int_{\Omega} (y - x)_i^2 e^{-\delta \|x-y\|^2} dy = \frac{1}{2 \delta}.
\]

Further, we have

\[
\int_{\Omega} k_\delta(x, y) \|y - x\|^3 dy = \left(\frac{\delta}{\pi} \right)^{k/2} \int_{\Omega} \|y - x\|^3 e^{-\delta \|x-y\|^2} dy = O(\delta^{-\frac{3}{2}}).
\]
These equations (A.14-A.16) immediately imply that

\[
b_\delta(x) = \int_\Omega k_\delta(x, y) f(y) dy = f(x) + \frac{1}{4\delta} \sum_{i=1}^{k} \frac{\partial^2 f(x)}{\partial x_i^2} + o\left(\frac{1}{\delta}\right) \tag{A.17}
\]

\[
= f(x) + \frac{1}{4\delta} \Delta f(x) + o\left(\frac{1}{\delta}\right).
\]

Similarly, we can calculate \(d_{\alpha,\delta}(x)\) by

\[
d_{\alpha,\delta}(x) = \lim_{m \to \infty} \sum_{j=1}^{m} k_{\alpha,\delta}(x_i, x_j) = \int_\Omega k_{\alpha,\delta}(x, y) f(y) dy \tag{A.18}
\]

\[
= \frac{1}{b_\delta^2(x) f^{1-\alpha}(x)} \left[1 + \frac{1}{4\delta} \left(\frac{\Delta(f^{1-\alpha}(x))}{f^{1-\alpha}(x)} - \alpha \Delta f(x) \right) + o\left(\frac{1}{\delta}\right) \right].
\]

Consequently, the shift operator \(P_{\alpha,\delta}\), which is the limitation of the transition matrix \(P_m\) for infinite samples, has the asymptotic expansion as

\[
P_{\alpha,\delta}\phi(x) = \frac{1}{d_{\alpha,\delta}(x)} \int_\Omega k_{\alpha,\delta}(x, y) \phi(y) f(y) dy
\]

\[
= \phi(x) + \frac{1}{4\delta} \left[\Delta(\phi(x)f^{1-\alpha}(x)) \frac{\Delta f^{1-\alpha}(x)}{f^{1-\alpha}(x)} - \phi(x) \Delta f^{1-\alpha}(x) \right] + o\left(\frac{1}{\delta}\right)
\]

since

\[
\int_\Omega k_{\alpha,\delta}(x, y) \phi(y) f(y) dy = \frac{1}{b_\delta^2(x) f^{1-\alpha}(x)} \left[\phi(x) + \frac{1}{4\delta} \left(\frac{\Delta(\phi(x)f^{1-\alpha}(x))}{f^{1-\alpha}(x)} - \alpha \phi(x) \frac{\Delta f(x)}{f(x)} \right) + o\left(\frac{1}{\delta}\right) \right].
\]

Therefore, we have the infinitesimal generator \(\mathcal{L}_\alpha\) of the diffusion as

\[
\mathcal{L}_\alpha \phi = \lim_{\delta \to \infty} 4\delta (P_{\alpha,\delta} - E) \phi = \frac{\Delta(\phi f^{1-\alpha})}{f^{1-\alpha}} - \frac{\Delta(f^{1-\alpha})}{f^{1-\alpha}} \phi = 2(1-\alpha) \nabla (\ln f) \cdot \nabla \phi + \Delta \phi.
\]

\[
\square
\]
References

[1] National Bureau of Statistics of China, *Statistical Yearbook of China 2019*, (China Statistics Press, 2019).

[2] I. M. Gel’fand, N. Y. Vilenkin, *Generalized functions: applications of harmonic analysis*, vol. 4 (Academic Press, 2014).

[3] R. R. Coifman, S. Lafon, *Applied and computational harmonic analysis* 21, 5 (2006).