Effect of Weather Parameters on the Incidence of Thrips, *Thrips tabaci* Lindeman on *Bt* Cotton

R. Sunitha Devi * and S. G. Mahadevappa b

Department of Entomology, College of Agriculture, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500 030, Telangana, India.

bAgricultural College, Professor Jayashankar Telangana State Agricultural University, Palanampet, Mahabubnagar, Telangana – 509215, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

ABSTRACT

The field experiments were conducted during kharif season of year 2014 & 2015 at Agricultural Research Station, Rajendranagar, Hyderabad, Telangana state, India to study the influence of weather parameters on the incidence of thrips population on *Bt* cotton. The results revealed that the peak incidence of thrips population was recorded on 35th Standard Week i.e., last week of August (32.87 thrips leaf⁻¹) during kharif, 2014 and two peaks i.e., 35th Standard Week i.e., last week of August (33.93 thrips leaf⁻¹) and 40th Standard Week i.e., the first week of October (40.40 thrips leaf⁻¹) were recorded during kharif, 2015. Thereafter, its population declined gradually during both seasons. Correlations worked out between thrips population and weather parameters revealed that, one week (0.51*) and two weeks lag (0.65**) minimum temperature, one week lag (0.56**) morning relative humidity showed significant and positive influence, while one week lag (– 0.44*) evaporation showed significant negative influence on thrips incidence. The prediction model developed for the thrips population revealed that the model explained the variation to an extent of 54 per cent in thrips incidence under the influence of minimum temperature and morning relative humidity.

*Corresponding author: E-mail: sunitha_gln@yahoo.co.in;
Keywords: Bt Cotton; correlations; regressions; thrips; weather parameters.

1. INTRODUCTION

Cotton is important commercial crop grown under diverse agro-climatic conditions around the world and vulnerable to attacked from several insect pests. In India with the introduction and successful implementation of transgenic Bt cotton not only solved the problem of bollworm complex but also cut down the number of insecticidal sprays which probably lead severe incidence of sucking pests such as cotton aphids (Aphis gossypii Glover), cotton jassids (Amrasca biguttula biguttula) (Ishida)), thrips (Thrips tabaci Lindeman), and whiteflies (Bemisia tabaci (Gennadius)) and occupied major pest status and causing considerable damage in traditional and Bt cotton in India at present [1]. Sap feeders have been reported to cause loss in yield to the extent of 8.45 q/ha in hirsutum cotton [2]. Among the various sap feeding insect pests, thrips, Thrips tabaci Lindeman is major factor limiting profitable cultivation of cotton. This species overwinters in ploughed soil, plant debris, and perennial weeds and becomes active in the spring. With its rapid life cycle and high reproductive capacity, it has become a perennial and serious pest of seedling to mid-season cotton in many cotton regions in India [3]. A common sign of a heavy thrips infestation is the distorted leaves that have turned brownish around the edges and cup upward. Thrips also found on underside of the leaves damaging them by piercing the epidermis of the tissues and sucking the sap oozing out of wounds [4]. As a result, leaves became slivery due to formation of white patches or streaks which finally caused scarring and distortion of leaves [5].

Climatic conditions have a great influence on the population, survival, development, out-breaks, reproductive capacity and activity of pest as well as predators and parasites either directly or indirectly [6]. For developing a weather based pest fore-casting system, information regarding population dynamics in relation to prevalent meteorological parameters (temperature, relative humidity, rainfall etc.) is needed. Moreover, the same meteorological parameters also influence the growth and development of crop. Thus, the knowledge about incidence of pest during cropping season and the influence of meteorological parameters on thrips of cotton will help to develop a forecasting system which in turn will be helpful in decision making system and timely application of suitable insecticides for effective management of thrips (T. tabaci) in cotton agro-ecosystem. Therefore, the present investigation was undertaken to find out the relationship between the population dynamics of thrips (T. tabaci) on Bt cotton with meteorological parameters to fulfill the objective.

2. MATERIALS AND METHODS

2.1 Experimental Procedure

The field experiments were conducted during Kharif season of year 2014 & 2015 at Agricultural Research Station, Rajendranagar (17.19 N’ Latitude and 78.23E’ Longitude 542 m above mean sea level), Hyderabad, Telangana to investigate seasonal incidence of thrips on Bt cotton and to know the impact of weather parameters on population dynamics of thrips population. The crop was raised in three plots each with a plot size of 10.8x4.8 m with a spacing of 90 x 60 cm. All the agronomic practices like weeding, fertilizer application etc. were accomplished according to the standard recommendations. No plant protection measures were followed to the crop to allow the pest population build up under natural conditions.

2.2 Observations

Observations on the population of thrips were recorded at weekly intervals from 10 randomly selected plants from each plot starting from the initiation of insect pests and continued till the end of crop growth. Population of thrips was recorded by observing three leaves, each from upper, middle and lower portion of each plant. The thrips counts were made during early morning hours (8:00-10:00), based on standard meteorological week (SMW).

2.3 Meteorological Data

Weather parameters like maximum temperature, minimum temperature, morning relative humidity, evening relative humidity, average wind speed, sunshine hours and rainfall were obtained from the meteorological observatory, Agro Climate Research Centre (ACRC), Agricultural Research Station, Rajendranagar.

2.4 Data Analysis

With a view to study the impact of different weather parameters on pest incidence, a simple
correlation between pest population and weather parameters and regression analysis was worked out by using SPSS statistical software.

3. RESULTS AND DISCUSSION

Population of thrips in Bt cotton recorded with a range of 0.00 to 32.87 thrips leaf\(^{-1}\) during \textit{kharif}, 2014 and 0.00 to 40.40 during \textit{kharif}, 2015. Results on the seasonal incidence of thrips population revealed that the population of thrips commenced its activity from 32nd Standard Week \textit{i.e}, the second week of August (1.75 thrips leaf\(^{-1}\)) onwards during \textit{kharif}, 2014 and 33rd Standard Week \textit{i.e}, the third week of August (2.93 thrips leaf\(^{-1}\)) during \textit{kharif}, 2015. Its population increased rapidly from 34th Standard Week onwards during both the years. Peak incidence was observed on 35th Standard Week \textit{i.e}, last week of August (32.87 thrips leaf\(^{-1}\)) during \textit{kharif}, 2014 and two peaks \textit{i.e}, 35th Standard Week \textit{i.e}, last week of August (33.93 thrips leaf\(^{-1}\)) and 40th Standard Week \textit{i.e}, the first week of October (40.40 thrips leaf\(^{-1}\)) were recorded during \textit{kharif}, 2015. Thereafter, its population declined gradually during both the seasons (Fig.1). The present investigation is in partial agreement with Gupta et al. [7] who observed that the peak population of thrips was recorded during the second fortnight of August to the first fortnight of October with 30\textdegree{}C temperature and 74–85\% relative humidity on the cotton in Madhya Pradesh. Gosalwad et al. [8] studied the population dynamics of major insect pests of cotton and reported that thrips attained their peak in August. Makwana et al. [9] revealed that the activity of thrips was highest (22.4 thrips 3 leaves\(^{-1}\) plant\(^{-1}\)) in 4th week of September. Muchhadiya et al. [10] reported that the average data of four years indicated that the pest appeared from 4th week of July and reached its peak 2.94/3 leaves on 3rd week of September and then decreased in subsequent weeks. The thrips occurrence started with peak incidence of 9.35 thrips leaf\(^{-1}\) and 8.33 thrips leaf\(^{-1}\) in 31st MSW \textit{i.e}, after three week of sowing and its infestation remained throughout the crop growth in both Bt and non Bt cotton crops [11].

The data on association between thrips incidence and weather parameters during \textit{kharif}, 2014 are presented in Table 1. The results revealed that one week lag (\(r=0.54**\)) minimum temperature, current week (\(r=0.68^*\)) and one week lag (\(r=0.70**\)) morning relative humidity showed significant and positive influence, while current week (\(r= -0.57^*\)) and one week lag (\(r= -0.65^*\)) evaporation showed significant negative influence on thrips incidence.

Correlation worked out between thrips population and weather parameters during \textit{kharif}, 2015 are presented in Table 2. The results revealed that, one week (\(r=0.64^*\)) and two weeks lag (\(r=0.67**\)) minimum temperature, current week (\(r=0.59^*\)) and one week lag (\(r=0.61**\)) morning relative humidity and one week lag rainy days (\(r=0.56^*\)) showed significant and positive influence, while current week evaporation (\(r= -0.60^*\)) showed significant negative influence on thrips incidence.

![Fig. 1. Seasonal incidence of thrips in Bt cotton at ARI, Rajendranagar during kharif, 2014 & 2015](image-url)
Correlations worked out between thrips population and weather parameters (pooled data of two years i.e., kharif, 2014 and kharif, 2015) are presented in Table 3. one week \((r=0.51^*)\) and two weeks lag \((r=0.65**\) minimum temperature, one week lag \((r=0.56**\) morning relative humidity showed significant and positive influence, while one week lag \((r = –0.44^*)\) evaporation showed significant negative influence on thrips incidence. Similarly, Muchhadiya et al. [10] reported that thrips population showed significantly positive correlation with minimum temperature. The results are in conformity with the results of Sitaramaraju et al. [12] who reported that minimum temperatures showed positive and significant effect on thrips incidence. According to Ahmed et al. [13] thrips population was significant and positively correlated with the minimum temperature followed by the average daily temperature and humidity. Madankar et al. [14] revealed that thrips population showed a positive correlation with morning relative humidity. The positive significant correlation was found between thrips population and minimum temperature \((Bt \text{ r } r = 0.518^*)\) (non \(Bt \text{ r } r = 0.480^*\)), morning humidity \((Bt \text{ r } r = 0.455^*)\) (non \(Bt \text{ r } r = 0.424^*\)) and rainy days \((Bt \text{ r } r = 0.409^*)(\text{non Bt r } r = 0.440^*)\) in \(Bt\) and non \(Bt\) cotton reported by Panwar et al. [11]. In contrast to the present results Kadam et al. [15] reported that thrips showed negatively significant relationship with relative humidity. The results are in conformity with the results of Sitaramaraju et al. [12] who reported that minimum temperatures showed positive and significant effect on thrips incidence. According to Ahmed et al. [13] thrips population was significantly and positively correlated with the minimum temperature followed by the average daily temperature and humidity. Madankar et al. [14] revealed that thrips population showed a positive correlation with morning relative humidity. The positive significant correlation was found between thrips population and minimum temperature \((Bt \text{ r } r = 0.518^*)\) (non \(Bt \text{ r } r = 0.480^*\)), morning humidity \((Bt \text{ r } r = 0.455^*)\) (non \(Bt \text{ r } r = 0.424^*\)) and rainy days \((Bt \text{ r } r = 0.409^*)(\text{non Bt r } r = 0.440^*)\) in \(Bt\) and non \(Bt\) cotton (Panwar et al. 2015) [11]. In contrast to the present results Kadam et al. [15] reported that thrips showed negatively significant relationship with relative humidity.

Table 1. Correlation coefficients between thrips and weather parameter in \(Bt\) cotton during kharif, 2014

Weather parameters	Current week	Preceding 1 week	Preceding 2 weeks
\(T_{\text{max.}}\) (°C)	–0.49	–0.56	–0.16
\(T_{\text{min.}}\) (°C)	–0.03	0.54*	0.36
\(RHI _I\) (%)	0.68*	0.70*	0.46
\(RHI _II\) (%)	0.34	0.40	0.31
Rainfall (mm)	0.12	0.27	0.02
RD (days)	0.03	0.12	0.23
SSH	–0.31	–0.54	–0.43
WS (km h\(^{-1}\))	–0.33	0.02	0.06
Evap (mm)	–0.57*	–0.65*	–0.27
\(T_{\text{mean.}}\) (°C)	–0.35	–0.08	0.18

Note: \(T_{\text{max.}}\) (Maximum temperature °C), \(T_{\text{min.}}\) (Minimum temperature °C), \(RHI _I\) (Morning relative humidity %), \(RHI _II\) (Evening relative humidity %), RF (Rainfall, mm), RD (Rainy days), SSH (Sunshine hours), \(T_{\text{mean.}}\) (Mean temperature)

Table 2. Correlation coefficients between thrips and weather parameter in \(Bt\) cotton during kharif, 2015

Weather parameter	Current week	Preceding 1 week	Preceding 2 weeks
\(T_{\text{max.}}\) (°C)	–0.20	0.04	0.01
\(T_{\text{min.}}\) (°C)	0.49	0.64*	0.67*
\(RHI _I\) (%)	0.59*	0.61*	0.33
\(RHI _II\) (%)	0.48	0.43	0.19
Rainfall (mm)	0.41	0.36	–0.02
RD (days)	0.38	0.56	0.28
SSH	–0.47	0.23	0.21
WS (km h\(^{-1}\)) (WS)	–0.01	–0.13	0.09
Evap (mm)	–0.60	–0.41	–0.32
\(T_{\text{mean.}}\) (°C)	0.20	0.40	0.37

Note: \(T_{\text{max.}}\) (Maximum temperature °C), \(T_{\text{min.}}\) (Minimum temperature °C), \(RHI _I\) (Morning relative humidity %), \(RHI _II\) (Evening relative humidity %), RF (Rainfall, mm), RD (Rainy days), SSH (Sunshine hours), \(T_{\text{mean.}}\) (Mean temperature)
Table 3. Correlation coefficients between thrips and weather parameter in Bt cotton during kharif, 2014 & 2015

Weather parameters	Current week	Preceding 1 week	Preceding 2 weeks
T max. (°C)	-0.11	-0.09	-0.11
T min. (°C)	0.30	0.51	0.65
RH I (%)	0.40	0.56	0.35
RH II (%)	0.20	0.40	0.18
Rainfall (mm)	0.18	0.15	0.00
RD (days)	0.03	0.16	0.17
SSH	-0.28	-0.29	-0.12
WS (km h⁻¹) (WS)	-0.21	-0.21	-0.15
Evap (mm)	-0.43	-0.44	-0.01
T mean (°C)	0.08	0.21	0.22

Note: T max. (Maximum temperature °C), T min. (Minimum temperature °C), RH I (Morning relative humidity, %), RH II (Evening relative humidity %), RF (Rainfall, mm), RD (Rainy days), SSH (Sunshine hours), T mean (Mean temperature)

Table 4. Regression model for prediction of thrip population in Bt cotton (Two years pooled data of kharif, 2014 & 2015)

Insect pest	Model Equation	R²
Thrips	Y = -79.688+1.02*RH I–1	0.11
	Y = -19.336+1.435*T min–1	0.20
	Y = -266.63+1.92*RH I–1+5.27*T min–1	0.54

Note: RH I–1 (Preceding one week morning relative humidity) T min–1 (Preceding one week minimum temperature)

The regression coefficient of pest population on weather parameters is presented in Table 4. In simple regression analysis impact of weather parameters on the thrips population revealed that one week lag morning relative humidity exerted an 11% role in thrips population variation while one week lag minimum temperature contributed 20%. When both i.e., one week lag morning relative humidity and one week lag minimum temperature was added than the impact was 54% on thrips population. The prediction model developed for the thrips population revealed that the model explained the variation to an extent of 54% in thrips incidence under the influence of minimum temperature and morning relative humidity. The present findings corroborated with the results of Ahmed et al. [13] who revealed that regression analysis showed a linear increase in the thrips population with minimum temperature. The highest thrips populations were noted when minimum temperature was 25°C but at high temperature there was no effect. Thrips counts were highest at temperature (34-35°C) but declined at high temperature. Further, they reported that, although there was a positive relationship between the thrips population and percent humidity yet relationship was weak but maximum thrips population was noted in the range of 75 to 85 percent. Similarly, Gupta et al. [7] reported that a positive correlation of relative humidity with the thrips population. The present investigations are also supported by findings of Khan et al. [3] who noticed that incidence of thrips was highly affected by weather factors like mean air temperature; relative humidity and rainfall. They revealed that temperature played a significant and positive role in thrips (r=0.65) population development. Relative humidity and rainfall were also positively associated with the thrips population.

4. CONCLUSION

The studies on seasonal incidence of thrips population in Bt cotton clearly indicated that thrips were the predominant pests than other sucking pests viz., aphids, jassids and whiteflies as their incidence recorded throughout the season during both the years i.e., kharif, 2014 and 2015. The correlation studies indicated that the correlation exist between thrips population with different weather parameters. Also there was a combined effect of weather parameters on thrips population and their incidence on cotton. Mostly, the correlation between thrips population with weather parameters obtained was positive and definite as the incidence of thrips on Bt cotton was due to the variation in weather parameters like minimum temperature and morning relative humidity, these weather
parameters were found favourable for the multiplication of the thrips population.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Zala MB, Patel CK, Bharpoda TM. Impact of sowing periods on incidence of sucking pests and their relation to weather parameters in Bt cotton. Ecocan. 2014;6:345-354.

2. Radhika P, Sudhakar K, Sahadeva Reddy B, Basha Mohiddin S. Field evaluation of cotton genotype against Amrasca biguttula biguttula (Dist.). Journal of Cotton Research and Development. 2006;20:134-134.

3. Khan MA, Khalik A, Subhani MN, Saleem MW. Incidence and development of Thrips tabaci and Tetranychus urticae on field grown cotton. International Journal of Agriculture and Biology. 2008;10(2):232–234.

4. Sanjta S, Chuahan U. Survey of thrips (Thysanoptera) and their natural enemies in vegetables from mid hills of Himachal Pradesh. Ecocan. 2015;9(3&4):713-715.

5. Patel Y, Patel P. Evaluation of cotton (Gossypium hirsutum L.) genotypes for their reaction to Thrips tabaci Lindemann. Research in Environment and Life Sciences. 2014;7(4):267-270.

6. Arif MJ, Abbas G, Saeed S. Cotton in danger. Dawn, The Internet Edition. 4. (http://DAWN.com); 2007.

7. Gupta MP, Sharma S, Shrivastava SK. Population build-up of some sap sucking insects on cotton in Madhya Pradesh. Journal of Insect Science. 1997;10(2):153–156.

8. Gosalwad SS, Gupta GP, Kamble SK, Wadnerkar DW, Hasan B. Population dynamics of major insect pests of cotton and their natural enemies. Journal of Cotton Research and Development. 2009; 23(1):117–125.

9. Makwana DK, Duleria JG. Seasonal incidence of sucking pests with relation to weather parameters in Bt cotton. Gujarat Journal of Extension Education. 2018; 29(2):167–170.

10. Muchhadiya DV, Damasia DM, Saradava DA, Kabaria BB. Seasonal incidence of sucking insect pests of Bt cotton in relation to different weather parameters. Journal of Agrometeorology. 2014;16(2):227-229.

11. Panwar TS, Singh SB, Vinod Kumar G. Influence of meteorological parameters on population dynamics of thrips (Thrips tabaci Lindeman) and aphid (Aphis gossypii Glover) in Bt and non Bt cotton at Malwa region of Madhya Pradesh. Journal of Agrometeorology. 2015;17(1):136–138.

12. Sitaramaraju S, Prasad NVVSD, Krishnaiah PV. Seasonal incidence of sucking insect pests on Bt cotton in relation to Weather parameters. Annals of Plant Protection Sciences (India). 2010; 18(1):49–52.

13. Ahmed MH, Ullah MI, Bakar A, Afzal M, Khaliq A, Itikkar Y, Aatif HM. Population dynamics of Thrips tabaci (Lindeman) in relation to abiotic climate factors on Bt and Non-Bt cotton cultivars. Pakistan Journal of Zoology. 2017;49(6):1937-1943.

14. Madankar S, Aware P. Influence of weather parameters on population dynamics of thrips and whitefly on Bt cotton. Trends in Biosciences. 2015;8(12): 3118–3120.

15. Kadam DB, Kadam DR, Umate SM. Effects of weather parameters on incidence sucking pests on Bt cotton. International Journal of Plant Protection. 2015;8(1):211–213.