A cross-sectional study of visual impairment in elderly population in residential care in the South Indian state of Andhra Pradesh: a cross-sectional study

Srinivas Marmamula,1,2,3 Chandra Sekhar L V Ravuri,1,4 Mei Ying Boon,5 Rohit C Khanna1

INTRODUCTION

Visual impairment (VI) is a public health challenge affecting over 285 million people worldwide, including 39 million blind.1 The research both from India and other parts of the world has revealed that VI increases with increasing age.1 2 It is also estimated that people aged 50 years and older comprise 65% and 82% of the total visually impaired and blind, respectively.1 Studies have also shown a higher prevalence of VI in elderly people living in nursing homes compared with those living in non-institutionalised settings.3–5 Possible reasons for this include poor awareness by professional care givers ‘of residents’ visual function, visual status, need for spectacles or ocular disease or lack of referral.5 Even if referral is done unless...
measures are taken to facilitate the process, the uptake of services is reported to be low.6,5 Furthermore, VI may lead to falls, in turn leading to fractures with adverse impact on the quality of life of the individuals.7–11 It has been noted that correcting refractive error with single vision spectacles and the use of cataract surgery when required may be effective ways of preventing falls from a population perspective.10

India is witnessing a demographic transition with an increasing proportion of older individuals with increased life expectancy.12 The social structure too is changing from joint families to nuclear families. Owing to these changes, there is a likelihood that the proportion of elderly people living in ‘home for the aged’ institutions may increase to proportions seen in developed countries today. In the context of the current study, the ‘homes for the aged’ institutions are those where elderly people enrol themselves or are enrolled by their kin owing to lack of financial resources or dedicated time to take care of the elderly in their own homes. Typically, these institutions are run by non-government organisations (NGOs) with partial support from government funds and donations from philanthropists. Some of the institutions are managed by private individuals with a monthly fee which is paid either by the elderly person or by their kin. Most of these institutions offer food and accommodation. Private institutions are well staffed with support staff (including nursing assistants and domestic help) helping the elderly in the daily routine tasks.

To our knowledge, there are no studies on VI which focus on the institutionalised elderly population in a rural setting in India. Understanding the prevalence and the causes of VI can help plan strategies to provide services and contribute towards ‘healthy aging’ in these populations.

\section*{METHODS}

The study was undertaken in the Prakasam district in the South Indian state of Andhra Pradesh. The study covered all the 26 ‘home for the aged’ institutions of the district. Of the 26 institutions, 17 of them are run by NGO with partial funding from the Government of Andhra Pradesh, India. The remaining institutes are run by private agencies. A list containing the addresses and details of the old-age institutions was obtained from Department of Health and Family Welfare, Government of Andhra Pradesh.

Using a prevalence estimate of 8\% VI, power of 80\%, 20\% precision on either side of the prevalence estimate (6.4–9.6\%), 95\% confidence limits and 10\% non-response, the sample size required was 345 individuals. As this study was a part of service delivery strategy, all the residents enrolled in 26 institutions were studied.

The study protocol was approved by the Institutional Review Board of L V Prasad Eye Institute in 2011. The study was conducted in accordance with the tenets of the Declaration of Helsinki. Data collection was accomplished between June and September 2011. All the institutions were visited and after explaining the study objectives and protocol, due approval was obtained from the respective head of the institution for inclusion in the study. Written informed consent was obtained from each study participant before starting the examination.

\section*{Data collection}

A study team consisting of one ophthalmic officer and one field assistant was involved in data collection. The rapid assessment of visual impairment (RAVI) examination protocol was used for the study.13 Data collected through an interview included the details pertaining to the participant’s age, education and usage of spectacles. Any history of eye surgery in either eye such as place and cost of surgery was recorded.

Unaided visual acuity (VA) in each eye was measured using a Snellen ‘E’ chart at a distance of 6 m. The chart was fixed on the wall where sufficient natural light was available. Participants with VA <6/18 in either of the eyes were re-assessed using a multiple pinhole occluder. Aided VA was assessed if a participant reported the use of spectacles. Direct ophthalmoscopy through undilated pupils was performed to screen for the presence of cataract, other media opacities and posterior segment disease.

\section*{Study definitions}

Indian definitions for blindness and moderate VI were used. VI was defined as presenting VA <6/18 in the better eye.14 It encompasses both moderate VI (presenting VA <6/18 to 6/60 in the better eye) and blindness (presenting VA <6/60 in the better eye). Uncorrected refractive errors were defined as presenting VA <6/18, but improving to 6/18 or better with pinhole. Cataract was defined as an opacity of the crystalline lens in the pupillary area and causing VI (presenting VA <6/18 and not improving with pinhole). Posterior capsular opacification (PCO) was deemed to be present if there was a dull glow or no glow on direct ophthalmoscopy in the absence of corneal opacities among those operated for cataract.

In cases where there was more than one cause of VI, the cause which was more easily treatable or correctable to achieve a VA 6/18 or better was considered as the primary cause. For example, if an individual had cataract and uncorrected refractive error, the primary cause for VI was considered to be uncorrected refractive error. The causes of VI were evaluated separately for each eye and then for the person. All persons with presenting VA <6/18 in either eye and/or uncorrected presbyopia were referred to the nearest eye care facility for management. All such referred participants received a referral letter with details on the VA and probable diagnosis and visits to clinics were facilitated.

The data were entered in the database created in MS Access (Microsoft Office 2007). Data analysis was done
using SPSS V.16.0 (SPSS Inc, Chicago, Illinois, USA). Point prevalence estimates and 95% CI were calculated. Continuous variables were compared using Student t test while categorical variables were analysed using \(\chi^2 \) test. A p value of 0.05 was considered as significant. The \(\chi^2 \) test was used to assess the association between VI and other categorical variables.

RESULTS

Of the 524 residents enumerated from 26 institutions for the elderly, 494 (94.3%) were available for examination. Fifteen residents had other morbidities (bed ridden owing to fractures, systemic illness and mentally unsound) and examination could not be conducted. Another 15 residents were not available during the visit. Among those examined, 78.1% were women and 72.1% had no formal schooling. The mean age of the participants was 70 years (SD=8.6 years; median=70 years). Nearly 92% of those examined were aged 60 years and older.

Prevalence and causes of visual impairment

The categories of VI and participants characteristics are presented in table 1. VI was present in 280/494 individuals (56.7%; 95% CI 52.3 to 61.1). This included 104/494 (21%; 95% CI 17.4 to 24.6) individuals with blindness and 176/494 (35.6%; 95% CI, 31.4 to 39.8) individuals with moderate VI, respectively (table 1). VI was found to be significantly association with age (p<0.01; \(\chi^2 \) test) but not with gender (p=0.96). Using the WHO definition (presenting VA <3/60 in better eye), the prevalence of blindness was 20% (95% CI 16.5 to 23.5). Cataract accounted for most of the VI (57.1%) followed by uncorrected refractive errors (26.4%) and other conditions, including posterior segment disease (12.1%; table 2). The prevalence of VI based on presenting VA <6/12 in the better eye was 70.9% (95% CI 66.9 to 74.9).

Visual outcomes after cataract surgery

In total, 365 eyes of 231 individuals were found to have previously undergone cataract surgery at the time of assessment. Among these, 111 (30.4%) eyes had moderate VI and 89 (24.4%) eyes were blind even after cataract surgery. The majority were operated in private and non-governmental organisations at no cost. More than 78% of the operated eyes had intraocular lens implants. There was no association between place of surgery (p=0.25) and paying status (paid or free surgery; p=0.258). However, those with intraocular lens implants were found to have significantly better visual outcomes compared with those with aphakia (p<0.01; table 3).

Table 1	Participant’s characteristics and categories of visual impairment (n=494)			
Age groups (years)	Presenting VA \(\geq 6/18 \) in the better eye n (%)	Presenting VA <6/18 to 6/60 in the better eye n (%)	Presenting VA <6/60 in the better eye n (%)	Total n (%)
50–59	28 (13.1)	6 (3.4)	5 (4.8)	39 (7.9)
60–69	77 (36.0)	59 (33.5)	39 (37.5)	175 (35.4)
70–79	81 (37.9)	74 (42.0)	34 (32.7)	189 (38.3)
80 and above	28 (13.1)	37 (21.0)	26 (25.0)	91 (18.4)
Gender				
Male	47 (22.0)	34 (19.3)	27 (26.0)	108 (21.9)
Female	167 (78.0)	142 (80.7)	77 (74.0)	386 (78.1)
Total	214 (100)	176 (100)	104 (100)	494 (100)

Table 2	Causes of visual impairment (n=280)		
Presenting VA <6/18 to 6/60 in the better eye n (%)	Presenting VA <6/60 in the better eye n (%)	All visually impaired n (%)	
Cataract	82 (46.6)	78 (75.0)	160 (57.1)
Refractive error	61 (34.7)	13 (12.5)	74 (26.4)
Posterior segment disease	26 (14.8)	8 (7.7)	34 (12.1)
Posterior capsular opacification	5 (2.8)	2 (1.9)	7 (2.5)
Other causes	2 (1.1)	3 (2.9)	5 (1.8)
Total	176 (100)	104 (100)	280 (100)

VA, visual acuity.
DISCUSSION

We found a very high prevalence of VI in the institutionalised elderly population in Andhra Pradesh, India similar to other studies on elderly institutionalised population. Consistent with other studies, we found cataract and uncorrected or inadequately corrected refractive errors are the leading causes of VI both of which are easily avoidable.

The prevalence of VI using 6/12 definition ranged from as high as 57 to 15%. Using the same definition we found a very high prevalence of VI (70.9%) in our study population. Our blindness prevalence estimates were also higher compared with those in other studies reporting from residential care (table 5). These differences could partly be explained by the difference in age distribution of the participants and other sociodemographic factors. Most of these studies were conducted in developed countries where the reasons for enrolment in the residential homes could be very different. This is the first study to report on institutionalised elderly in India.

Although we had no control group from the general population, the reports from previous studies revealed a high prevalence of VI among residents in institutional care compared with their peers of similar age in community. When compared with results from a previous population-based study conducted in the same state, the prevalence of VI and blindness were about 2.5 times higher than those found in the present study. Only limited inferences can be made from comparison of these studies as the age groups and the study settings are different. Our findings re-emphasise the need for rigorous screening for VI coupled with provision of service among residents in institutional care on similar lines of school eye screening programmes in India.

Even after cataract surgery, several people had uncorrected refractive errors so a pair of spectacles can help a high proportion of the elderly people living in these institutions. We found a significant proportion of those operated for cataract had PCO causing VI. Posterior capsular opacification causing VI is also reported from earlier population-based studies. Therefore, there is a need for follow-up of residents who undergo cataract surgery to assess their need for laser capsulotomy procedures to help these individuals regain their vision. Though earlier studies found better visual outcomes among those operated in private and non-governmental setting at no cost, no such differences were found in the current study. This possibly could be attributed to the smaller sample and lack power to detect the true difference. However, the finding of better VA among pseudophakia compared with aphakia was consistent with other studies from the same state.

The results of visual outcomes after cataract surgery reported in this study should not be used as a measure of the quality of services in the region. We reported cross-sectional data that included people operated at different time periods, including the transition from operated eyes (table 4). Among 134 individuals who had undergone bilateral cataract surgery, only 78 (58.2%) had presented VA 6/18 or better and 13/134 (9.7%) participants were blind. Posterior segment pathology (46.4%) and refractive error (41.1%) were the leading causes of VI among those who had bilateral cataract surgery (table 4).

Table 3

Place of surgery	Presenting VA ≥6/18 in the better eye n (%)	Presenting VA <6/18 to 6/60 in the better eye n (%)	Presenting VA <6/60 in the better eye n (%)	Total n (%)
Non-government hospitals*	113 (68.5)	71 (64.0)	57 (64.0)	241 (66.0)
Government hospital	21 (12.7)	23 (20.7)	20 (22.5)	64 (17.5)
Eye camp	31 (18.8)	17 (15.3)	12 (13.5)	60 (16.4)
Paying status				
Free	108 (65.5)	83 (74.8)	61 (68.5)	252 (69.0)
Paid	57 (34.5)	28 (25.2)	28 (31.5)	113 (31.0)
Lens status†				
Aphakia	21 (12.7)	20 (18.0)	36 (42.9)	77 (21.4)
Pseudophakia	144 (87.3)	91 (82.0)	48 (57.1)	283 (78.6)

*Included hospitals managed by non-government organisations that offer free cataract surgeries and private clinics.
†Five eyes where lens could not be examined were excluded from this analysis.

Table 4

Cause	Visual impairment (presenting visual acuity <6/18)	
	Eyes, n (%)	Persons, n (%)
Posterior segment pathology	104 (52.0)	26 (46.4)
Refractive error	50 (25.0)	23 (41.1)
Posterior capsular opacity	37 (18.5)	7 (12.5)
Corneal opacity	9 (4.5)	0 (0.0)
	200 (100)	56 (100)

Visual impairment in elderly in residential care
intracapsular cataract extraction to extracapsular cataract extraction and then to small incision cataract surgery with intraocular implantations.

Our study had a few limitations. We used pinhole VA as a surrogate to define refractive errors. Use of direct ophthalmoscopy without pupillary dilatation may have lead to overestimation of cataract. It is possible that some of those with media opacities may have glaucoma, diabetic retinopathy and/or other posterior segment diseases like age-related macular degeneration. The impact of vision impairment was not assessed using patient-reported outcomes. Although it is ideal to have an ophthalmologist examine all the participants, we had an ophthalmic officer performing a complete eye examination as the protocol was simple and logistically more feasible.

Research with more robust protocols that include comprehensive examination are required to assess the causes of VI in future studies including impact of VI on visual function and its improvement following an intervention. Despite these limitations, the study has provided insights into VI in institutionalised elderly in a rural area of India for the first time. VI can be addressed in this population largely through the provision of spectacles and cataract surgery. The results also emphasise the importance of refraction and correction of refractive errors even after cataract surgery. These simple interventions can go a long way in helping these elderly individuals lead healthier lives, lesser falls and accidents.

Author affiliations
1Allen Foster Community Eye Health Research Centre, International Centre for Advancement of Rural Eye care, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
2Bausch & Lomb School of Optometry, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
3Dana Center for Preventive Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
4Community Health & Nutrition Office, Area Hospital, Kandukur, Andhra Pradesh, India
5School of Optometry & Vision Science, University of New South Wales, Sydney, New South Wales, Australia

Data sharing statement
No additional data are available.

Acknowledgements The authors thank the volunteers for their participation in the study.

Contributors SM and CSLV contributed to the design and conduct of the study, data collection and management; SM, CSLV and MYB were involved in analyses and interpretation of data; SM, MYB and RCK were involved in preparation of manuscript; and SM, MYB, CSLV and RCK reviewed or approved the manuscript.

Funding The financial support for this study was provided in part by the Andhra Pradesh Right to Sight Society, India and by Hyderabad Eye Research Foundation, India.

Competing interests None.

Ethics approval Institutional Review Board of L V Prasad Eye Institute, India. The study adhered to the tenets of the Declaration of Helsinki.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

REFERENCES
1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 2011;96:614–18.
2. Dandona L, Dandona R, Srinivas M, et al. Blindness in the Indian state of Andhra Pradesh. Invest Ophthalmol Vis Sci 2001;42:908–16.
3. Mitchell P, Hayes P, Wang JJ. Visual impairment in nursing home residents: the Blue Mountains Eye Study. Med J Aust 1997;166:73–6.
4. Owseley C, McGwin G, Scilley K, et al. The visual status of older persons residing in nursing homes. Arch Ophthalmol 2007;125:925–30.
5. Sinoe MM, Kort HS, Duijnstee MS. Visual functioning in nursing home residents: information in client records. J Clin Nurs 2012;21:1913–21.
6. Friedman DS, Munoz B, Roche KB, et al. Poor uptake of cataract surgery in nursing home residents: the Salisbury Eye Evaluation in Nursing Home Groups Study. Arch Ophthalmol 2005;123:1581–7.
Visual impairment in elderly in residential care

19. Araujo Filho A, Blakie A, MacEwen CJ, et al. Visual impairment in elderly patients with hip fracture: causes and associations. Eye (London) 2005;19:652–6.

20. Dev MK, Shrestha GS, Paudel N, et al. Visual status and ocular morbidity in older adults living in residential care. Graefes Arch Clin Exp Ophthalmol 2012;250:1387–93.

21. Lamoureux EL, Ferrick E, Moore K, et al. Impact of the severity of distance and near-visual impairment on depression and vision-specific quality of life in older people living in residential care. Invest Ophthalmol Vis Sci 2009;50:4103–9.

22. Nottle HR, McCarty CA, Hassell JB, et al. Detection of vision impairment in people admitted to aged care assessment centres. Clin Experiment Ophthalmol 2000;28:162–4.

23. Sainz-Gomez C, Fernandez-Robredo P, Salinas-Alaman A, et al. Prevalence and causes of bilateral blindness and visual impairment among institutionalized elderly people in Pamplona, Spain. Eur J Ophthalmol 2010;20:442–50.

24. Tielsch JM, Javitt JC, Coleman A, et al. The prevalence of blindness and visual impairment among nursing home residents in Baltimore. N Engl J Med 1995;332:1205–9.

25. Van-Newkirk MR, Wein L, McCarty CA, et al. Visual impairment and eye diseases in elderly institutionalized Australians. Ophthalmology 2000;107:2203–8.

26. Khanna RC, Marmamula S, Krishnaiah S, et al. Changing trends in the prevalence of blindness and visual impairment in a rural district of India: systematic observations over a decade. Indian J Ophthalmol 2012;60:492.

27. Li Z, Cui H, Zhang L, et al. Cataract blindness and surgery among elderly in rural southern Harbin, China. Ophthalmic Epidemiol 2009;16:78–83.

28. Murthy GV, Vashist P, John N, et al. Prevalence and vision-related outcomes of cataract surgery in Gujarat, India. Ophthalmic Epidemiol 2009;16:400–9.

29. Salomao SR, Soares FS, Berezovsky A, et al. Prevalence and outcomes of cataract surgery in Brazil: the Sao Paulo eye study. Am J Ophthalmol 2009;148:199–206 e2.

30. Khanna RC, Pallerla SR, Eeda SS, et al. Population based outcomes of cataract surgery in three tribal areas of Andhra Pradesh, India: risk factors for poor outcomes. PLoS ONE 2012;7:e35701.

31. Dandonda L, Dandonda R, Anand R, et al. Outcome and number of cataract surgeries in India: policy issues for blindness control. Clin Experiment Ophthalmol 2003;31:23–31.

32. Lord SR. Visual risk factors for falls in older people. Age Ageing 2006;35(Suppl 2):i42–5.

33. Wood JM, Lacherez P, Black AA, et al. Risk of falls, injurious falls, and other injuries resulting from visual impairment among older adults with age-related macular degeneration. Invest Ophthalmol Vis Sci 2011;52:5088–92.

34. Khanna RC, Marmamula S, Pallerla SR, Eeda SS, et al. Prevalence and vision-related outcomes of cataract surgery in India: policy issues for blindness control. Indian J Public Health 2009;53:50–5.

35. Cox A, Blakie A, MacEwen CJ, et al. Visual impairment in elderly patients with hip fracture: causes and associations. Eye (London) 2005;19:652–6.

36. Felson DT, Anderson JJ, Hannan MT, et al. Impaired vision and hip fracture. The Framingham Study. J Am Geriatr Soc 1989;37:495–500.

37. Ivers RO, Norton R, Cumming RG, et al. National Programme for Control of Blindness – a review. Indian J Public Health 1997;41:25–30, 32.

38. Abdelhafiz AH, Austin CA. Visual factors should be assessed in older people presenting with falls or hip fracture. Age Ageing 2003;32:26–30.

39. Evans JR, Fletcher AE, Wormald RP, et al. Prevalence of visual impairment in people aged 75 years and older in Britain: results from the MRC trial of assessment and management of older people in the community. Br J Ophthalmol 2002;86:795–800.

40. Khanna RC, Marmamula S, Krishnaiah S, et al. Changing trends in the prevalence of blindness and visual impairment in a rural district of India: systematic observations over a decade. Indian J Ophthalmol 2012;60:492–7.

41. Li Z, Cui H, Zhang L, et al. Cataract blindness and surgery among elderly in rural southern Harbin, China. Ophthalmic Epidemiol 2009;16:78–83.

42. Murthy GV, Vashist P, John N, et al. Prevalence and vision-related outcomes of cataract surgery in Gujarat, India. Ophthalmic Epidemiol 2009;16:400–9.

43. Salomao SR, Soares FS, Berezovsky A, et al. Prevalence and outcomes of cataract surgery in Brazil: the Sao Paulo eye study. Am J Ophthalmol 2009;148:199–206 e2.

44. Khanna RC, Pallerla SR, Eeda SS, et al. Population based outcomes of cataract surgery in three tribal areas of Andhra Pradesh, India: risk factors for poor outcomes. PLoS ONE 2012;7:e35701.

45. Dandonda L, Dandonda R, Anand R, et al. Outcome and number of cataract surgeries in India: policy issues for blindness control. Clin Experiment Ophthalmol 2003;31:23–31.
Correction

Marmamula S, Ravuri CSLV, Boon MY, et al. A cross-sectional study of visual impairment in elderly population in residential care in the South Indian state of Andhra Pradesh: a cross-sectional study. BMJ Open 2013;3:e002576.

The title of this article is incorrect and should be: ‘A cross-sectional study of visual impairment in elderly population in residential care in the South Indian state of Andhra Pradesh.’ We apologise for this error.

BMJ Open 2013;3:e002576corr1. doi:10.1136/bmjopen-2013-002576corr1