Regulation of Eosinophil and Group 2 Innate Lymphoid Cell Trafficking in Asthma

Marie-Chantal Larose, Anne-Sophie Archambault, Véronique Provost, Michel Laviolette and Nicolas Flamand*

Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada

Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines and by an infiltration of eosinophils to the airways. While the production of Type 2 cytokines has been associated with T_{H}2 lymphocytes, increasing evidence indicates that group 2 innate lymphoid cells (ILC2) play an important role in the production of the Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of eosinophils from the blood to the airways. In that regard, recent asthma treatments have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These treatments mainly result in decreased blood or sputum eosinophil counts as well as decreased asthma symptoms. This supports that therapies blocking eosinophil recruitment and activation are valuable tools in the management of asthma and its severity. Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the airways, with an emphasis on eotaxins, other chemokines as well as their receptors. We also discuss the involvement of other chemoattractants, notably the bioactive lipids 5-oxo-eicosatetraenoic acid, prostaglandin D_{2}, and 2-arachidonoyl-glycerol. Given that eosinophil biology differs between human and mice, we also highlight and discuss their responsiveness toward the different eosinophil chemoattractants.

Keywords: eosinophil, group 2 innate lymphoid cells, 2-arachidonoyl-glycerol, chemokine, eotaxin, asthma

INTRODUCTION

Asthma is a respiratory disease characterized by inflammation and hyperresponsiveness of the airways and roughly affects 300 million people worldwide (1). Eosinophils play a pivotal role in asthma by generating many mediators inducing bronchoconstriction and/or contributing to inflammation and remodeling (2). Airway eosinophilia is observed in many subjects with asthma and increases with disease severity and exacerbations (3). The anti-inflammatory treatment of asthma is primarily based on inhaled corticosteroids (4). The dose is adjusted to decrease eosinophil counts in the blood and/or in induced sputum, which results in a reduction of asthma exacerbations. However, the chronic use of corticosteroids is linked with significant systemic side effects even at low doses, and some severe asthmatics remain symptomatic and have high sputum eosinophil counts despite the use of high doses of corticosteroids (5). This stresses the need of developing new therapeutics that could limit both bronchoconstriction and inflammation.
Increased eosinophil numbers are observed in many asthmatics, notably those characterized by a Type 2-like inflammation, characterized by an increased production of the cytokines interleukin (IL)-4, IL-5, and IL-13 (6). As such, it is well accepted that the Type 2 cytokines IL-4, IL-5, and IL-13 are linked to increased eosinophil numbers, either by promoting eosinophil survival (IL-5) or by inducing the production of eosinophil chemoattractants (IL-4 and IL-13) (7, 8). While Th2 lymphocytes participate in the release of Type 2 cytokines, group 2 innate lymphoid cells (ILC2) are being increasingly recognized as a significant source of Type 2 cytokines as well (9, 10). Asthma treatments that focused on blocking Type 2 cytokines (IL-4, IL-5, and IL-13) decrease blood or sputum eosinophil counts and asthma symptoms in subjects with severe asthma presenting a high eosinophil count in their induced sputum (11–25). This article reviews the current evidence regarding eosinophil and ILC2 chemoattractants and their involvement in asthma and its severity.

DISCOVERY TIMELINE OF THE MAIN EOSINOPHIL CHEMOTACTANTS

The extensive investigation of how eosinophils were recruited really began in the 1970s. Complement component 5a (C5a) has been known to induce guinea pig eosinophil migration since 1970 (26–29), and its impact on human eosinophils was documented in 1973 (26). Histamine was next documented as an eosinophil chemoattractant in 1975 (30) although its effect is limited (31–34).

In 1980s, other eosinophil chemoattractants were characterized, notably platelet-activating factor (PAF), leukotriene (LT) B4, and N-formylmethionyl-leucyl-phenylalanine (fMLP). Numerous reports indicate that PAF induces the migration of eosinophils (29, 35–41). Even if LTB4 is mainly characterized as a neutrophil chemoattractant, it also induces human eosinophil migration (29, 37, 42, 43). fMLP is a weak chemoattractant for eosinophil migration: some studies unraveled a weak migration of eosinophils (29, 37, 42, 43) while others did not find any effect (38, 46).

The expansion of the chemokine field in the 1990s allowed the characterization of additional eosinophil chemoattractants. CCL5 [regulated on activation, normal T cell expressed and secreted (RANTES)] was the first chemokine documented as a human eosinophil chemoattractant in 1992 (47) and was shown to induce both the migration and transmigration of human eosinophils (48–57). The effect of CCL3 (MIP-1α) on human eosinophil migration was also evaluated in 1992 (47). However, the ability of CCL3 as an eosinophil chemoattractant is low, as later reports indicated that at optimal concentration, the CCL3-induced migration of eosinophil corresponded to about 33% of that induced by CCL5 (48, 52, 57). Of note, one study showed that ~20% of individuals responded to CCL3 to the same extent than CCL11, while the others poorly responded to CCL3 and this was linked to CCR1 (58). In mid-1990s, other chemokines were tested for their ability to elicit human eosinophil migration, notably CCL7 (MCP-3), CCL8 (MCP-2), and CCL13 (MCP-4) (34, 48, 50–53, 55–57, 59, 60). However, their impact on human eosinophil migration was limited.

The discovery of eotaxins was a substantial leap forward in understanding how eosinophils were selectively recruited into the tissues. CCL11 (eotaxin-1) was first discovered by Jose et al. in guinea pigs (61, 62). Two years later it was confirmed as a selective chemoattractant of human eosinophils in 1996 (63) and several studies confirmed its potency in several migration models (55, 64–66). A year later, CCL24 (eotaxin-2) was discovered (67) and was confirmed as being as efficient as CCL11 (34, 55–57, 65). Last but not the least, CCL26 (eotaxin-3) was discovered in 1999 (68, 69), and it is the most efficient eotaxin to induce the migration or transmigration of asthmatic eosinophils (65).

Of note, CCL26 appears also critical for eosinophil migration/tissue eosinophilia in other human disorders characterized by eosinophil recruitment, notably eosinophilic esophagitis and Churg–Strauss syndrome (70, 71).

It was also in the mid-1990s that additional bioactive lipids from the 5-lipoxygenase pathway were documented as human eosinophil chemoattractants. 5-Oxo-eicosatetraenoic acid (5-KETE) was identified as a potent chemoattractant of eosinophils in 1996 (72, 73). To this date, 5-KETE is the most efficient human eosinophil chemotactic factor in cellulo (41, 43, 65, 66). LTD4 was the first cysteinyl leukotriene (CysLTs) to be defined as a direct chemoattractant of human eosinophils (74) but induces a weak migration (75–78). It was also reported that LTC4, and LTE4, induce an eosinophil migration comparable to LTD4 (79).

The new millennia also expanded our knowledge on how human eosinophils could be recruited into the tissue. In that regard, CXCL12 (SDF-1) was shown to induce the recruitment of eosinophils (65, 80, 81). Furthermore, a 2001 study demonstrated that prostaglandin (PG) D2 selectively induced the migration of eosinophils, Th2 lymphocytes cells, and basophils (82), and increasing evidence support the development of DP2/CXCR4 antagonists for the management of asthma (83). However, PGD2 seems to induce a limited recruitment of eosinophils (66, 84–88). Of note, PGD2 increases CCL11- and 5-KETE-induced-eosinophil migration (87). Finally, in 2004, the endocannabinoid 2-arachidonoyl-glycerol (2-AG) was identified as an eosinophil chemoattractant (89); this effect of 2-AG involves the CB2 receptor and is largely potentiated by IL-3, IL-5, and GM-CSF (66, 90, 91).

HUMAN EOSINOPHIL RECRUITMENT AND ASTHMA

As underscored in the previous section, many soluble mediators and chemokines can induce human eosinophil recruitment and thus participate in asthma pathogenesis. In this section, we review how these chemoattractants contribute to eosinophil recruitment in a context of asthma. A differential eosinophil recruitment could be observed in asthma severity and/or during asthma exacerbations if there is a dysregulation in the release of the different chemoattractants or their receptors, notably by desensitization or internalization. To this end, our data (Figure 1) indicate that with the exception of the CXCR4 and the CB2 receptors, the expression of chemoattractant receptors do not change, at the mRNA level, in human eosinophils isolated from the blood
FiGURe 1 | Expression of chemokines and lipid mediator receptors by human eosinophils. Human eosinophils were isolated from the blood of healthy controls, mild asthmatics, and severe eosinophilic asthmatics as defined and described in Ref. (92). mRNAs were quantitated by qPCR array using a custom qPCR array (RT² Profiler qPCR Multiplex Array Kit, Qiagen, ON, Canada). Chemokine receptor expression (A) and bioactive lipid receptor expression (B) are represented by the ratio between mRNAs and 18S rRNA control. Results are the mean (±SEM) of 3–4 donors for each group. Approval from the local ethics committee was obtained, and all volunteers signed an informed consent form.

of healthy subjects, mild and severe eosinophilic asthmatics, as defined in Ref. (92). This supports the notion that perhaps the increased recruitment of eosinophils is rather the consequence of increased chemotactants in the bronchial tissue.

CHEMOKINES

The most studied chemokines in asthma are CCL5 and eotaxins, probably because their levels are usually increased in asthmatics compared to healthy controls in all body fluids tested, namely bronchoalveolar lavages (BAL), induced sputum, blood, and bronchial biopsies (92–115). Moreover, these chemokines are linked to poor asthma control and increased eosinophil recruitment to the airways. Indeed, CCL5 levels are greater in induced sputum from poorly controlled asthmatics than from controlled asthmatics (116, 117); subjects undergoing acute exacerbations have higher CCL11 levels in induced sputum and plasma samples than subjects with stable asthma or healthy controls (111, 118–120); and CCL24 and CCL26 expression in airway epithelial cells are associated with lower forced expiratory volume in 1 s (FEV1), more asthma exacerbations, and increased sputum eosinophil counts (92, 121).

It is not clear whether one chemokine is more important than the others and if we could target these chemotactic proteins to limit eosinophil recruitment and asthma exacerbation. In that regard, different studies evaluated the expression of these chemokines during allergen challenges, and the obtained data rather indicate that eosinophil-recruiting chemokines are not necessarily present at the same time and might have different as well as overlapping roles. CCL5 levels correlate with eosinophil counts in BAL 4 h after the challenge (122), but not 24 h after the challenge (123). CCL11 levels are increased in BAL, induced sputum and bronchial biopsies of asthmatics, and are associated with eosinophil numbers 4 and 24 h after the challenge (104, 124, 125). That being said, one study reported that CCL11 levels are similar in bronchial biopsies from asthmatics before and 24 h after allergen challenge (103). CCL24 expression is significantly increased in bronchial mucosa from asthmatics 48 h after allergen challenge (126), but is similar before and 24 h after allergen challenge (103). As for CCL26, its expression in bronchial biopsies increases 24 and 48 h after allergen challenge (103, 126), but its expression in bronchial submucosa did not correlate with eosinophil counts 48 h after allergen challenge (126). Additionally, some research groups documented the impact of these chemokines on eosinophil migration in asthma in cellulo. CCL11 and CCL26 induce a greater migration of eosinophils from asthmatics than from healthy subjects (65, 127). Finally, while most evidence reflects an
important role of CCL5 and the eotaxins in asthma, some studies reported that there was no increase in CCL5 or eotaxin expression in BAL, airway epithelium brushings, or bronchial biopsies between asthmatics and healthy controls (92, 103, 121, 128, 129).

Studies on CCL3, CCL7, CCL8, CCL13, and CXCL12 in relation with asthma are limited. Among the latter, CCL13 is better associated with eosinophilia and asthma. Its expression is higher in BAL, bronchial biopsies, induced sputum, and plasma samples from asthmatics than from healthy controls (99, 100, 105, 130, 131). One study reported increased CCL3 levels in BAL from asthmatics compared to healthy controls (93). Increased CCL7 levels and CCL7-expressing cells are found in bronchial biopsies and BAL from asthmatics compared to healthy controls (94, 95, 100), and serum CCL8 levels are higher in asthmatics compared to healthy controls (132). CXCL12 levels in bronchial mucosa and BAL are greater in asthmatics than in healthy controls (133, 134), and CXCL12 levels in BAL correlate with eosinophil numbers (134).

LIPID MEDIATORS AND OTHERS

Other soluble mediators might also participate in the recruitment of eosinophils in asthma. In that regard, CysLT1 receptor blockade usually decreases eosinophil counts, although it is not clear whether this is a direct or indirect effect (135–144). LTB4, histamine, C5a, and PGD2 are all associated with asthma, but their involvement in eosinophil recruitment in asthma is not well defined. Even if LTB4 levels in blood and exhaled breath condensate are increased in asthma (145–147), the LTB4 receptor antagonist, LY293111, decreases neutrophil but not eosinophil counts in BAL from asthmatics (148). As for PGD2, some studies demonstrated similar PGD2 levels in BAL or induced sputum of asthmatics, atopics, and healthy subjects (149–152), but its levels can increase in the BAL after an allergen challenge (149, 153, 154). Of note, the antagonism of the PGD2 receptor 2 (DP2/CRTH2) improves lung function and the quality of life of asthmatics compared to placebo (155, 156). Finally, C5a levels are increased in BAL and in induced sputum from asthmatics compared to healthy controls after an allergen challenge (157, 158), and a haplotype of the C5a gene was identified to be protective against asthma (159).

As for PAF, 5-KETE, fMLP, and 2-AG, their association with asthma is not well documented and this requires further investigations. For example, we have no idea to which extent 2-AG and 5-KETE levels are modulated in asthma and its severity.

ASTHMA SEVERITY

As underscored with the data from the allergen challenges presented in the previous section, it is not possible to pinpoint one chemoattractant explaining the recruitment of human eosinophils. They rather indicate that they collaborate together and that they might be involved at different times during the asthmatic response. In addition, it is possible that the mediators responsible for eosinophil recruitment might also change as the disease worsens. For example, CCL11 and/or CCL26 levels are greater in induced sputum from severe or moderate asthmatics than from mild asthmatics or healthy controls (92, 160). In plasma samples, CCL11 levels are associated with asthma severity and are not significantly affected by corticosteroid treatment (161). Coleman et al. demonstrated that CCL24 and CCL26, but not CCL11, mRNA expression in bronchial epithelium increases with asthma severity and is associated with sputum eosinophil counts, lower FEV1, and more asthma exacerbations (121). In contrast, subjects with severe eosinophilic asthma have lower CCL24 levels in bronchoalveolar lavage fluids and similar CCL24 levels in bronchial epithelial cells compared to healthy controls (92, 121). For CCL5, Saad-El-Din demonstrated that serum CCL5 levels are greater in subjects with severe or moderate asthma compared to subjects with mild asthma and are associated with blood eosinophil number (114). As for CXCL12, it induces a greater migration of corticosteroid-treated eosinophils than untreated eosinophils and that the expression of the CXCL12 receptor, CXCR4, increases in corticosteroid-treated eosinophils (80), raising the possibility that CXCL12 plays a more important role in unstable severe eosinophilic asthmatics which are taking large doses of corticosteroids.

In asthma, CysLTs levels in induced sputum are increased in moderate asthmatics compared to severe asthmatics and healthy controls (162). Also, similar sputum CysLTs levels were found in severe eosinophilic and non-eosinophilic asthmatics (162). In contrast, exhaled breath condensate levels of CysLTs correlate with asthma severity (163). In mild-to-moderate asthmatics or eosinophilic asthmatics, the CysLT1 antagonist montelukast, alone or in combination with corticosteroids, decreases sputum or blood eosinophil counts (136, 138, 141, 164). On the other hand, severe eosinophilic asthmatics, severe non-eosinophilic asthmatics, and moderate uncontrolled asthmatics have similar sputum or blood eosinophil counts between montelukast-treated and placebo-treated individuals or between montelukast/corticosteroid-treated and corticosteroid-treated asthmatics (165–167). Of note, PGD2 and DP2/CRTH2 levels are increased in asthma severity in BAL (151, 152), and the DP2/CRTH2 antagonist OC000459 improves FEV1, and the quality of life of subjects with eosinophilic uncontrolled asthma and steroid-free subjects with moderate persistent asthma (155, 156). Finally, C5a receptor expression on bronchial epithelium is greater in subjects with fatal asthma than mild asthmatics and healthy controls (168).

OF MICE AND MEN

The potential and/or documented roles of multiple chemoattractant involved in eosinophil recruitment in asthma underscore the need to revisit this concept and to establish when and how those actors are involved. The development of experimental asthma models with mice, rats, or guinea pigs has been very helpful to broaden our knowledge about asthma pathogenesis and to identify some eosinophil and ILC2 chemoattractants in allergic asthma. However, eosinophils and their functional responses are very different between species (169). In that regard, some chemoattractants and their receptors in humans are not expressed in mice. For instance, the 5-KETE receptor OXE is not expressed in mice (170, 171), resulting in an absence of 5-KETE-induced eosinophil migration (170). Additionally, CCL26 is not expressed...
in mice (170) and human CCL26 does not induce the migration of mouse eosinophils (172, 173). Furthermore, CCL5 does not induce the migration of mouse eosinophils (172, 174–176). Globally, three of the most efficient human eosinophil chemoattractants described so far (CCL5, CCL26, and 5-KETE) do not induce the migration of eosinophils from mice, illustrating major differences in eosinophil recruitment between mice and humans and underscoring that transposing eosinophil recruitment data from mice to humans might be hazardous. The impact of the different chemoattractants on the migration of eosinophils from humans and mice is summarized in Table 1 in which the number of migrated eosinophils in different migration assays is compared. It should be kept in mind that the presented data involve different eosinophil migration assays and that a true comparison between the presented chemoattractant is somewhat subjective. This is why we defined the different efficiencies using %migration intervals.

MEDIATORS PROMOTING ILC2 RECRUITMENT

First identified in 2010, ILC2 are defined as lymphoid cells lacking specific lymphocytes lineage markers and the expression of the DP/CRT2H2 and ST2, the IL-33 receptor (214–218). They produce, in response to IL-25, IL-33 or thymic stromal lymphopoietin (TSLP), large amounts of the TH2 cytokines IL-5, IL-13 and, to a lesser extent, IL-4. Of note, the number of ILC2 correlate with sputum eosinophils in allergic asthma (219).

Since IL-25, IL-33, and TSLP are potent activators of ILC2, their ability to induce the migration of ILC2 was first evaluated. IL-33 and TSLP induce a weak migration of human ILC2 (218, 222, 223). However, the impact of IL-25 remains a matter of debate, as one study reported a weak IL-25-induced ILC2 migration (223), while another found no effect of IL-25 (218). PGD₂ and CysLTs are defined as potent chemoattractants of ILC2. Indeed, PGD₂ is almost five times more potent than IL-33 (218, 224), and the PGD₂-induced migration is greater in ILC2 from allergic subjects compared to healthy subjects (224). Furthermore, mice lacking DP₂/CRT2H2 or treated with a DP₂/CRT2H2 antagonist have lower ILC2 levels in the lungs after intranasal administration of PGD₂ (225). As for CysLTs, ILC2 express the receptor CysLTR1, and its expression is increased in atopic subjects (223, 226, 227).

Interestingly, a research group recently demonstrated that all CysLTs induce the migration of human ILC2 in vitro, LTE₄ >> LTD₄ > LTC₄ ≈ IL-33, indicating that perhaps another CysLT receptor might be involved in this process (223).

Although only IL-33, TSLP, PGD₂, and the CysLTs have been identified as chemoattractants of ILC2, some studies reported that human ILC2 express the chemokine receptor CCR4 and mouse ILC2 express the LTβ receptor BLT₂. Furthermore, TGF-β increases the basal migration of murine ILC2, which suggests that it could enhance their response to other chemoattractants (228). Other studies are thus needed to delineate how ILC2 migrate to the bronchial tissue.

CONCLUDING REMARKS AND FUTURE DIRECTIONS

This review highlights that many chemokines and soluble mediators are very good to excellent at inducing the migration of eosinophils *ex vivo* and their recruitment *in vivo*. This

Table 1 | Eosinophil chemoattractants and their receptors of human and mice.

Eosinophil chemoattractants	Human Receptors	Efficiency
CCL11/11	CCR3 (177–179)	++ (65, 56, 64, 66)
CCL24/etoxin-2	CCR3 (179, 182)	++ (65, 56)
CCL26/etoxin-3	CCR3 (68, 69)	+++ (65, 68, 69)
CCL5/RANTES	CCR1, CCR3 (58, 177, 183, 184)	++ (47, 52, 56, 56)
PAF	PAAR (185, 186)	++ (29, 37, 52)
C5a	C5aR (188–190)	++ (29, 37, 52)
2-AG	C8b (69, 194)	+ (66, 90)
5-KETE	OXE (171, 195, 196)	++ (41, 43, 66)
LTβ	BLT (197, 198)	(29, 37, 64)
PGD₂	DP₂/CRT2H2 (82, 87)	+ (87)
fMLP	FPR (204–206)	+ (29, 37, 52)
CCL3/MIP-1α	CCR1, CCR3 (58, 177, 183, 184)	± (47, 48, 52, 57)
CCL7/MCP-3	CCR1–CCR3 (178, 183, 209)	+ (52, 55)
CCL8/MCP-2	CCR1–CCR3 (183, 184, 209)	+ (62)
CCL13/MCP-4	CCR1–CCR3 (177, 183, 209)	+ (66)
CXCL12/SDF-1	CXCR4 (80, 210)	+ (66, 80)
LTD₄	CysLTR₁, CysLTR₂ (211, 212)	+ (74–77)

Mice Receptors	Efficiency
CCR3 (172, 180)	++ (181)
CCR3 (172, 180)	+ (172, 173)
CCR3 (172, 180)	– (172, 173)
CCR1, CCR3, CCR5 (172, 180)	– (172, 174, 175)
PAF (187)	+ (181)
C5aR (191, 192)	++ (174, 193)
n/a	n/a
n/a	– (173)
BLT (197)	+ (199)
DP₂/CRT2H2 (200, 201)	+ (202, 203)
n/a	+ (193, 207)
CCR1, CCR3 (172, 180)	± (172, 173, 181, 208)
CCR1–CCR3 (172, 180)	n/a
CCR1–CCR3 (172, 180)	n/a
CCR1–CCR3 (172, 180)	n/a
CXC4R4 (172)	n/a
CysLTR₁, CysLTR₂ (213)	– (199)

++: migration over 50%; *+:* migration usually between 30 and 50%; *±:* migration between 30 and 50%; *−:* no migration; *n/a:* not available; *n/e:* not expressed; *PFPA*: platelet-activating factor; *PG*: prostaglandin.
underscores that targeting eosinophil recruitment as a therapeutic approach in asthma might not be readily successful, as suggested with the attempt at blocking the eotaxin receptor CCR3 (229). Additionally, many questions remain unanswered. For instance, it remains unclear when all those chemoattractants actually play a role during the asthmatic response and this needs to be addressed, notably by defining the presence of all eosinophil and ILC2 chemoattractants in the same samples and at different stages of the disease/exacerbation. Experimental restrictions such as species (mouse vs. humans) or the number of chemoattractants being investigated in a given study make the obtained data a little blurry, sometimes raising more questions than answering them. In addition, the involvement of the different chemoattractants as the disease worsens remains anecdotal. Given that severe asthmatics are frequently older than mild and moderate asthmatics, it is possible that the set of chemoattractant changes with age and perhaps, with gender as well [keeping in mind that aging modulates sex hormones, which could affect the synthesis of the different chemoattractants as it is the case for 5-lipoxygenase derivatives (230)]. Another important aspect of this review is the illustration that some of the best chemoattractants for human eosinophils are not present or are effectless in murine models (Table 1), raising the question that perhaps data obtained from animal models should be taken cautiously until they are validated in humans. Finally, if ILC2 play a prominent role in asthma as it is proposed from mouse data, it will be of crucial importance to rapidly understand the regulation of their recruitment into the airways, by defining which chemokines, lipids, and other chemoattractants are promoting their recruitment both in mice and humans, as well as all the receptors involved in that process.

AUTHOR CONTRIBUTIONS

All the authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

ACKNOWLEDGMENTS

This work was supported by a grant to ML and NF from the J-D-Bégin Research Chair. M-CL is supported by a doctoral training award from the Canadian Institutes of Health Research (CIHR, GSD-141736). A-SA was supported by a doctoral training award the Fond de recherche du Québec—Santé (FRQS). M-CL and A-SA were supported by the CIHR—Québec Respiratory Health Network Training Program. ML and NF are members of the inflammation regroupment of the Respiratory Health Network of the FRQS.

REFERENCES

1. Kroegel C. Global initiative for asthma (GINA) guidelines: 15 years of application. Expert Rev Clin Immunol (2009) 5:239–49. doi:10.1586/eci.09.1
2. Busse WW, Sedgwick JB. Eosinophils in asthma. Ann Allergy (1992) 68:286–90.
3. Aleman F, Lim HF, Nair P. Eosinophilic endotype of asthma. Immunol Allergy Clin North Am (2016) 36:539–68. doi:10.1016/j.iac.2016.03.006
4. Directors ABO. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. This official statement of the American Thoracic Society was adopted by the ATS board of directors, November 1986. Am Rev Respir Dis (1987) 136:225–44.
5. Walsh GM, Sexton DW, Blaylock MG. Corticosteroids, eosinophils and bronchial epithelial cells: new insights into the resolution of inflammation in asthma. J Endocrinol (2003) 178:37–43. doi:10.1677/joe.0.1780037
6. Fahy JV. Type 2 inflammation in asthma – present in most, absent in many. Nat Rev Immunol (2001) 1:440–9. doi:10.1038/35068550
7. Busse WW, Lemanske RF Jr. Asthma. N Engl J Med (2001) 344:350–62. doi:10.1056/NEJMc0010214
8. Lemanske RF Jr, Busse WW. 6. Asthma. J Allergy Clin Immunol (2003) 111:S502–19. doi:10.1016/j.jaci.2003.09.005
9. Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res (2010) 690:24–39. doi:10.1016/j.mrmm.2009.09.005
10. Chang YJ, Dekruyff RH, Umetu DT. The role of type 2 innate lymphoid cells in asthma. J Leukoc Biol (2013) 94:333–40. doi:10.1189/jlb.0313127
11. Haldar P, Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J (2013) 41:330–8. doi:10.1183/09031936.00234411
12. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med (2013) 368:2455–66. doi:10.1056/NEJMoa1304048
13. Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med (2015) 3:692–701. doi:10.1016/S2213-2600(15)00197-6
14. Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax (2015) 70:748–56. doi:10.1136/thoraxjnl-2014-206719
15. Pelaia G, Varella A, Maselli R. The potential of biologics for the treatment of asthma. Nat Rev Drug Discov (2012) 11:958–72. doi:10.1038/nrd3792
16. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J (2013) 41:330–8. doi:10.1183/09031936.00234411
17. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med (2013) 368:2455–66. doi:10.1056/NEJMoa1304048
18. Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med (2015) 3:692–701. doi:10.1016/S2213-2600(15)00197-6
19. Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax (2015) 70:748–56. doi:10.1136/thoraxjnl-2014-206719
20. Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P, Paggiaro P, et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med (2016) 4:781–96. doi:10.1016/S2213-2600(16)30265-X
21. Khorasanzadeh M, Eskian M, Assaad AH, Camargo CA Jr, Rezaei N. Efficacy and safety of benralizumab, a monoclonal antibody against IL-5Ralpha, in uncontrolled eosinophilic asthma. Int Rev Immunol (2016) 35:294–311. doi:10.3109/08830185.2015.1128901
22. Li J, Lin C, Du J, Xiao B, Du C, Sun J, et al. The efficacy and safety of reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: a systematic review and meta-analysis. J Asthma (2017) 54:300–7. doi:10.1080/027707903.2016.1212371
23. Ortega HG, Yancey SW, Mayer B, Gunsoy NB, Keene ON, Bleecker ER, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med (2016) 4(7):549–56. doi:10.1016/S2213-2600(16)30031-5
24. Wenzel S, Castro M, Corren J, Maspero J, Wang L, Zhang B, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled
pivotal phase 2b dose-ranging trial. *Lancet* (2016) 388:31–44. doi:10.1016/S0140-6736(16)30307-5
25. Verani G, Bagus M, Bernhard O, Poggianni F, Passalacqua G, Canonica GW. Mepolizumab in the management of severe eosinophilic asthma in adults: current evidence and practical experience. *Ther Adv Respir Dis* (2017) 11:40–5. doi:10.1177/1753468716673303
26. Kay AB. Studies on eosinophil leucocyte migration. I. Eosinophil and neutrophil accumulation following antigen-antibody reactions in guinea-pig skin. *Clin Exp Immunol* (1970) 7:675–86.
27. Kay AB. Studies on eosinophil leucocyte migration. II. Factors specifically chemotactic for eosinophils and neutrophils generated from guinea-pig serum by antigen-antibody complexes. *Clin Exp Immunol* (1970) 7:723–37.
28. Kay AB, Shin HS, Austen KF. Selective attraction of eosinophils and synergism between eosinophil chemotactic factor of anaphylaxis (ECF-A) and a fragment cleaved from the fifth component of complement (C5a). *Immunology* (1977) 23:969–76.
29. Morita E, Schroder JM, Christophers E. Differential sensitivities of purified human eosinophils and neutrophils to defined chemotaxins. *Scand J Immunol* (1989) 29:709–16. doi:10.1111/j.1365-3083.1989.tb01175.x
30. Clark RA, Gallin JI, Kaplan AP. The selective eosinophil chemotactic activity of histamine. *J Exp Med* (1975) 142:1462–76. doi:10.1084/jem.142.6.1462
31. Turnbull LW, Evans DP, Kay AB. Human eosinophils, acidic tetrapeptides (ECF-A) and histamine. Interactions in vitro and in vivo. *Immunology* (1977) 23:52–67.
32. Wadew AA, Anderson R, Sher R. In vitro effects of histamine on eosinophil migration. *Int Arch Allergy Appl Immunol* (1980) 63:322–9. doi:10.1159/000232643
33. O’Reilly M, Alpert R, Jenkinson S, Gladue RP, Foo S, Trim S, et al. Identification of a histamine H4 receptor on human eosinophils – role in eosinophil chemotaxis. *J Recept Signal Transduct Res* (2002) 22:431–48. doi:10.1081/RSS-120014612
34. Ling P, Ngo K, Nguyen S, Thurmond RL, Edwards JP, Karlsson L, et al. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. *Br J Pharmacol* (2004) 142:161–71. doi:10.1039/bj070089r
35. Wardlaw AJ, Moqbel R, Cromwell O, Kay AB. Platelet-activating factor. A potent chemotactic and chemokinetic factor for human eosinophils. *J Clin Invest* (1986) 78:1701–6. doi:10.1172/JCI112765
36. Hakansson L, Venge P. Inhibition of neutrophil and eosinophil chemotactic responses to PAF by the PAF-antagonists WEB-2086, L-652,731, and SRL-63441. *Leukoc Biol* (1990) 47:449–56.
37. Erger RA, Casale TB. Comparative studies indicate that platelet-activating factor is a relatively weak eosinophilotactic mediator. *Am J Respir Cell Mol Biol* (1995) 12:65–70. doi:10.1165/ajrcmb.12.1.8711471
38. Resnick MB, Colgan SP, Parkos CA, Delp-Archer C, Mcguirk D, Weller PF, et al. Human eosinophils migrate across an intestinal epithelium in vivo: synergistic effects of platelet-activating factor and eosinophil-active cytokines. *Am J Respir Cell Mol Biol* (1997) 158:2340–9.
39. Stellato C, Collins P, Ponath PD, Soler D, Newman W, La RG, et al. Production of the novel C-C chemokine MCP-4 by airway cells and comparison of its biological activity to other C-C chemokines. *J Clin Invest* (1997) 99:926–36. doi:10.1172/JCI19257
40. Liu L, Zuuribier AE, Mul FP, Verhoeven AJ, Lutter R, Knol EF, et al. Triple role of platelet-activating factor in eosinophil migration across monolayers of lung epithelial cells: eosinophil chemotactant and priming and epithelial cell activator. *J Immunol* (1998) 161:3064–70.
41. Nagase H, Yamaguchi M, Ijichi S, Yamada H, Ohta K, Kawasaki H, et al. Eosinophil chemotaxis by chemokines: a study by a simple photometric assay. *Res Commun Mol Pathol Pharmacol* (1994) 59:4944–50. doi:10.3103/s0091-9400959910084.x
42. Shahabuddin S, Ponath P, Schleimer RP. Migration of eosinophils across endothelial cell monolayers: interactions among IL-5, endothelial-activating cytokines, and C-C chemokines. *J Immunol* (2000) 164:3847–54. doi:10.4049/jimmunol.164.7.3847
43. Umland SP, Wan Y, Shortall J, Shah H, Jakway J, Garlisi CG, et al. Receptor reserve analysis of the human CCR3 receptor in eosinophils and CCR3-transfected cells. *J Leukoc Biol* (2000) 67:441–7.
44. Phillips RM, Stubbs VE, Henson MR, Williams TJ, Pease JE, Sabroe I. Variations in eosinophil chemokine responses: an investigation of CCR1 and CCR3 functions, expression in atopy, and identification of a functional CCR1 promoter. *J Immunol* (2003) 170:6180–91. doi:10.4049/jimmunol.170.12.6180
45. Ugucioni M, Loetscher P, Forssmann U, Dewald B, Li H, Lima SH, et al. Monocyte chemotactic protein 4 (MCP-4), a novel structural and functional analogue of MCP-3 and eotaxin. *J Exp Med* (1996) 183:2379–84. doi:10.1084/jem.183.5.2379
46. Luster AD. Chemokines – chemotactic cytokines that mediate inflammation. *N Engl J Med* (1998) 338:436–45. doi:10.1056/NEJ199802123380706
47. Jose PJ, Adcock IM, Griffiths-Johnson DA, Berkman N, Wells TN, Williams TJ, et al. Eotaxin: cloning of an eosinophil chemotactant cytokine and increased mRNA expression in allergen-challenged guinea-pig lungs. *Biochem Biophys Res Commun* (1994) 205:788–94. doi:10.1006/bbrc.1994.2734
48. Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NE, et al. Eotaxin: a potent eosinophil chemotactant cytokine detected in a guinea pig model of allergic airways inflammation. *J Exp Med* (1994) 179:881–7. doi:10.1084/jem.179.3.881
63. García-Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD. Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med (1996) 2:449–56. doi:10.1038/nm0996-449

64. Kikuchi I, Kikuchi S, Kobayashi T, Hagiwara K, Sakamoto Y, Kanazawa M, et al. Eosinophil trans-base membrane migration induced by interleukin-8 and neutrophils. Am J Respir Cell Mol Biol (2006) 34:760–5. doi:10.1165/rcmb.2005-0303OC

65. Provost V, Larose MC, Langlois A, Rola-Pleszczynski M, Flamand N, Laviolette M. CCL2/eotaxin-3 is more effective to induce the migration of eosinophils of asthmatics than CCL11/eotaxin-1 and CCL24/eotaxin-2. J Leukoc Biol (2013) 94:213–22. doi:10.1189/jlb.0212074

66. Larose MC, Turcotte C, Chouinard F, Ferland C, Martin C, Provost V, et al. Mechanisms of human eosinophil migration induced by the combination of IL-5 and the endocannabinoid 2-arachidonoylglycerol. J Allergy Clin Immunol (2014) 133:1480–2.e1481–1483. doi:10.1016/j.jaci.2013.12.1081

67. Forssmann U, Forssmann WR, Uguccioni M, Loetscher P, Dahinden CA, Langen H, Thelen M, et al. Expression of CXCR4 in eosinophils: functional analyses and cytokine-dependent regulation of human eosinophil locomotion and adhesion molecule expression via a CXCR4 antagonist. J Immunol (2002) 168:9956–65. doi:10.4049/jimmunol.168.17.9956

68. Saito K, Nagata M, Kikuchi I, Kobayashi T, Hagiwara K, Sakamoto Y, Kanazawa M, et al. Mechanisms of human eosinophil migration induced by the combination of IL-5 and the endocannabinoid 2-arachidonoylglycerol. J Allergy Clin Immunol (2014) 133:1480–2.e1481–1483. doi:10.1016/j.jaci.2013.12.1081

69. Shinkai A, Yoshihisa H, Koike M, Shoji E, Nakagawa S, Saito A, et al. A novel human CC chemokine, eotaxin-3, which is expressed in IL-4-stimulated vascular endothelial cells, exhibits potent activity toward eosinophils. J Immunol (1999) 163:1602–10.

70. Blanchard C, Wang N, Stringer KF, Mishra A, Fullerton PC, Abonia JP, et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J Clin Invest (2006) 116:536–47. doi:10.1172/JCI26679

71. Polzer K, Karonitsch T, Neumann T, Eger G, Haberler C, Soleiman A, et al. Eotaxin-3 is involved in Churg-Strauss syndrome – a serum marker closely correlating with disease activity. Rheumatology (Oxford) (2008) 47:804–8. doi:10.1093/rheumatology/ket03

72. Powell WS, Chung D, Gravel S. 5-Oxo-6,8,11,14-eicosatetraenoic acid is a potent stimulator of human eosinophil migration. J Immunol (1999) 163:1602–10.

73. Spada CS, Krauss AH, Nieves AL, Woodward DF. Effects of leukotriene B4 on transendothelial migration, superoxide generation, and degranulation via a potent stimulator of human eosinophil migration. Am J Respir Cell Mol Biol (1997) 16:919–25. doi:10.1165/ajrccm.160.6.9811089

74. Powell WS, Chung D, Gravel S. 5-Oxo-6,8,11,14-eicosatetraenoic acid is a potent stimulator of human eosinophil migration. J Immunol (1999) 163:1602–10.

75. Ohshima N, Nagase H, Koshino T, Miyamasu M, Yamaguchi M, Hirai K, et al. PPARγ agonists on the migration of mature and immature eosinophils. PPAR Res (2012) 2012:235231. doi:10.1155/2012/235231

76. Smith SG, Imaoka H, Punia N, Irshad A, Janssen LL, Sehmi R, et al. The effect of PPAR agonists on the migration of mature and immature eosinophils. PPAR Res (2012) 2012:235231. doi:10.1155/2012/235231
Azazi EA, Bakir SM, Mohtady HA, Almonem AA. Circulating chemokine...109. Azazi EA, Bakir SM, Mohtady HA, Almonem AA. Circulating chemokine

Scheicher ME, Teixeira MM, Cunha FQ, Teixeira AL Jr, Filho JT, Vianna EO. Cytokine...104. Lilly CM, Nakamura H, Belostotsky OI, Haley KJ, Garcia-Zepeda EA, ...tum.

Ying S, Meng Q, Zeibecoglou K, Robinson DS, Macfarlane A, Humbert M, et al. Eotaxin in induced sputum of asthmatics: relationship with eosinophils and chemokine protein in sputum. Allergy (2000) 55:392–7. doi:10.1034/j.1398-9995.2000.00474.x

Berkman N, Ohnoma S, Chung FK, Breuer R. Eotaxin-3 but not eotaxin gene expression is upregulated in asthmatics 24 hours after allergen challenge. Am J Respir Cell Mol Biol (2001) 24:682–7. doi:10.1165/ajrcmb.24.4.4301

Lilly CM, Nakamura H, Belostotsky OI, Haley KJ, Garcia-Zepeda EA, Luster AD, et al. Eotaxin expression after segmental allergen challenge in subjects with atopic asthma. Am J Respir Crit Care Med (2001) 163:1609–75. doi:10.1164/09031936.01.000280

Yamaeda H, Yamaguchi M, Yamamoto K, Nakajima T, Hirai K, Morita Y, et al. Eotaxin in induced sputum of asthmatics: relationship with eosinophils and chemokine protein in sputum. Allergy (2000) 55:392–7. doi:10.1034/j.1398-9995.2000.00474.x

Kim HB, Kim CK, Iijima K, Kobayashi T, Kita H. Protein microarray analysis from asthmatic patients correlate negatively with levels of IL-5 and eotaxin. J Allergy Clin Immunol (2004) 113: 657–62. doi:10.1016/j.jaci.2003.01.077

Kim CK, Choi J, Callaway Z, Iijima K, Volcheck G, Kita H. Increased in airway eosinophilia and a th1 cytokine during the chronic asymptomatic phase of asthma. Respir Med (2010) 104:1436–43. doi:10.1016/j.rmed.2010.03.023

Saeed-EI-Din BS, Abo EI-Magd GH, Mabrouk MM. Serum chemokines RANTES and monocyte chemoattractant protein-1 in Egyptian patients with atopic asthma: relationship to disease severity. Arch Med Res (2012) 43:36–41. doi:10.1016/j.arcmed.2012.01.009

Hosoki K, Ying S, Corrigan C, Qih K, Kurosky A, Jennings K, et al. Analysis of a panel of 48 cytokines in BAL fluids specifically identifies IL-8 levels as the only cytokine that distinguishes controlled asthma from uncontrolled asthma, and correlates inversely with FEV1. PLoS One (2015) 10:e0126035. doi:10.1371/journal.pone.0126035

Konno S, Gono kami Y, Kurokawa M, Kawazu K, Asano K, Okamoto K, et al. Eotaxin concentrations in sputum of asthmatic patients. Int Arch Allergy Immunol (1996) 109:72–8. doi:10.1159/000237234

Romagnoli M, Vacher I, Tarode DLE, Mezziane H, Chavis C, Bousquet J, et al. Eosinophilic inflammation in sputum of poorly controlled asthmatics. Eur Respir J (2002) 20:1370–7. doi:10.1183/09031936.02.00029202

Lilly CM, Woodruff PG, Cameron CA Jr, Nakamura H, Drazen JM, Nadler ES, et al. Elevated plasma eotaxin levels in patients with acute asthma. J Allergy Clin Immunol (1999) 104:786–90. doi:10.1016/S0091-6749(99)07288-5

Park SW, Kim DJ, Chang HS, Park SJ, Lee YM, Park JS, et al. Association of interleukin-5 and eotaxin with acute exacerbation of asthma. Int Arch Allergy Immunol (2003) 131:283–90. doi:10.1159/000072140

Daldegan MB, Teixeira MM, Talvani A. Concentration of CCL11, CXCL8 and TNF-alpha in sputum and plasma of patients undergoing asthma or chronic obstructive pulmonary disease exacerbation. Braz J Med Biol Res (2005) 38:1359–65. doi:10.1590/S0091-6749(2005)000000100100
of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast clinical research study group. Arch Intern Med (1998) 158:1213–20.

Diamant Z, Grootendorst DC, Veselic-Charvat M, Timmers MC, De SM, Leff JA, et al. The effect of montelukast (MK-0476), a cysteinyi leukotriene receptor antagonist, on allergen-induced airway responses and sputum cell counts in asthma. Clin Exp Allergy (1999) 29:42–51. doi:10.1046/j.1365-2222.1999.00447.x

Pizzi chinii E, Leff JA, Reiss TF, Hendeles L, Boulet LP, Wei LX, et al. Montelukast reduces airway eosinophilic inflammation in asthma: a randomized, controlled trial. Eur Respir J (1999) 14:12–8. doi:10.1183/09031936.1999.14a0123

Yoshida S, Ishizaki Y, Shoji T, Onuma K, Nakagawa H, Nakabayashi M, et al. Effect of pranlukast on bronchial inflammation in patients with asthma. Clin Exp Allergy (2000) 30:1008–14. doi:10.1046/j.1365-2222.2000.00834.x

Yamauchi K, Tanifuji Y, Pan LH, Yoshida T, Sakuragi S, Goto S, et al. Effects of pranlukast, a leukotriene receptor antagonist, on airway inflammation in mild asthmatics. J Asthma (2001) 38:51–7. doi:10.1081/IAS-100000021

Minoguchi K, Kohno Y, Minoguchi H, Kihara N, Sanoy, Yasuhara H, et al. Reduction of eosinophilic inflammation in the airways of patients with asthma using montelukast. Chest (2002) 121:732–8. doi:10.1378/chest.121.3.732

Horiguchi T, Tachikawa S, Kondo R, Miyazaki J, Shiga M, Hirose M, et al. Comparative evaluation of the leukotriene receptor antagonist pranlukast versus the steroid inhalant fluticasone in the therapy of aged patients with mild bronchial asthma. Arzneimittelforshung (2007) 57:87–91. doi:10.1055/s-0028-104031-1296588

Tamaoki J, Isoino K, Taira M, Tagaya E, Nakata J, Kawatani K, et al. Role of regular treatment with inhaled corticosteroid or leukotriene receptor antagonist in mild intermittent asthma. Allergy Asthma Proc (2008) 29:189–96. doi:10.2500/aap.2008.29.3100

Kazani S, Planaguma A, Ono E, Bonini M, Shinmura K, et al. Exhaled breath condensate eicosanoid levels associate with asthma and its severity. J Allergy Clin Immunol (2013) 132:547–53. doi:10.1016/j.jaci.2013.01.058

Evans DJ, Barnes PJ, Spathis SM, Van Alstyne EL, Mitchell MI, O’Connor BJ. Increased LTB4 metabolites and PGD2 in BAL fluid after methacholine compared with mometasone alone in patients with chronic asthma. J Asthma (2011) 58:11213

Samitas K, Chorianopoulos D, Vittorakis S, Zervas E, Economidou E, et al. Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir Med (1999) 160:1905–9. doi:10.1164/ajrccm.160.6.9903114

Fajt ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, Holguin F, et al. Comparison of asthma treatment given in addition to inhaled corticosteroids. J Asthma (2013) 50:750–6. doi:10.1080/09031936.06.00102605

Pardov ID, Ward R, Woltmann G, Wardlaw AJ, Sheller JR, Dworski R, et al. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Cellular, mediator, and permeability changes. Am Rev Respir Dis (1991) 144:51–8. doi:10.1164/ajrccm/144.1.51

Nowak D, Griminger F, Jorres R, Oldigs M, Rabe KF, Seeger W, et al. Increased LTb4 metabolites and PGD2 in BAL fluid after methacholine challenge in asthmatic subjects. Eur Respir J (1993) 6:605–12.

Petitpher R, Hunter MG, Collins LP, Lewis T, Bailliet M, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy (2012) 42:38–48. doi:10.1111/j.1365-2222.2011.03813.x

Balzar S, Fajt ML, Comhair SA, Erzurum SC, Bleecker E, Busse WW, et al. Failure of montelukast to reduce sputum eosinophilia in high-dose inhaled corticosteroid-dependent asthma. Am J Respir Crit Care Med (2004) 169:1110–7. doi:10.1164/rccm.200306-85SO

Tateno H, Nakamura H, Minematsu N, Nakajima T, Takahashi S, Nakamura M, et al. Plasma eosinophil level and severity of asthma treated with corticosteroid. Respir Med (2004) 98:782–90. doi:10.1016/j.rmed.2004.01.005

Aggarwal S, Moodley YP, Thompson PJ, Misso NL. Prostaglandin E2 and cysteinyI leukotriene concentrations in sputum: association with asthma severity and eosinophilic inflammation. Clin Exp Allergy (2010) 40:85–93. doi:10.1111/j.1365-2222.2009.03836.x

Sofas K, Hidayalrahambous C, Yoshikawa T, Handy RL, Powell J, Anderson IK, et al. Contribution of eotaxin-1 to eosinophil chemotactic activity of moderate and severe asthmatic sputum. Am J Respir Crit Care Med (2004) 169:1110–7. doi:10.1164/rccm.200306-85SO

Green RH, Brightling CE, McKenna S, Hargaden B, Neale N, Parker D, et al. Comparison of asthma treatment given in addition to inhaled corticosteroids on airway inflammation and responsiveness. Eur Respir (2006) 27:1144–51. doi:10.1183/09031936.06.0012605

Barnes N, Lavoilette M, Allen D, Flood-Page P, Hargreave F, Corris P, et al. Effects of montelukast compared to double dose budesonide on airway inflammation and asthma control. Respir Med (2007) 101:1652–8. doi:10.1016/j.rmed.2007.03.007

Lee J, Jacobsen EA, Ochkur SI, Mcgarry MP, Condjella RM, Doyle AD, et al. Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red.” J Allergy Clin Immunol (2012) 130:572–84. doi:10.1016/j.jaci.2012.07.025

Powell WS, Rokach J. The eosinophil chemoattractant 5-oxo-ETE and the OX2 receptor. Prog lipid Res (2013) 52:651–65. doi:10.1016/j.plipres.2013.09.001
172. Borchers MT, Ansary T, Desalle R, Daugherty BL, Shen H, Metzger M, et al. In vitro assessment of chemokine receptor-ligand interactions mediating mouse eosinophil migration. *J Leukoc Biol* (2002) 71:1035–41.

173. Keller NM, Gwinn WM, Donnelly RP, Constant SL, Keegan AD. IL-4 engagement of the type I IL-4 receptor complex enhances mouse eosinophil migration to eotaxin-1 in vitro. *PLoS One* (2012) 7:e39673. doi:10.1371/journal.pone.0039673

174. Campbell EM, Proudfoot AE, Yoshimura T, Allot B, Wells TN, White AM, et al. Recombinant guinea pig and human RANTES activate macrophages but not eosinophils in the guinea pig. *J Immunol* (1997) 159:1498–9.

175. Nabe T, Yamamura H, Kohno S. Eosinophil chemotaxis induced by several biologically active substances and the effects of apafant on it in vitro. *Arzneimittelforschung* (1997) 47:1112–6.

176. Teixeira MM, Williams TJ, Hellewell PG. Description of an in vivo model for the assessment of eosinophil chemotactic substances in the mouse. *Mem Inst Oswaldo Cruz* (1997) 92(Suppl 2):211–4. doi:10.1590/S0074-02761997000000029

177. Borchers MT, Ansay T, Desalle R, Daugherty BL, Shen H, Metzger M, et al. In vivo assessment of the C5a-receptor pathways in normodense and hypodense eosinophils and inhibition of eosinophil effector functions by anti-C5a antibodies. Identification of a potential ligand binding site on the NH2-terminal domain. *Biochem Pharmacol* (2001) 62:667–75.

178. Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, Larosa GJ, et al. Recombinant guinea pig and human RANTES activate macrophages but not eosinophils in the guinea pig. *J Immunol* (1997) 159:1498–9.

179. Sun FF, Crittenden NJ, Czuk CI, Taylor BM, Stout BK, Johnson HG. Increased responsiveness of murine eosinophils to MIP-1beta (CCL4) and TCA-3 (CCL3) is mediated by their specific receptors, CCR5 and CCR8. *J Leukoc Biol* (2002) 71:1019–25.

180. Oliveira SH, Lira S, Martinez A, Wiekowski M, Sullivan L, Lukacs NW. Interplay between signaling via the formyl peptide receptor (FPR) and chemokine receptor 3 (CCR3) in human eosinophils. *Proc Natl Acad Sci U S A* (1995) 92:8960–4. doi:10.1073/pnas.92.19.8960

181. Rothenberg ME, Luster AD, Leder P. Murine eotaxin: an eosinophil chemotactic substance that binds to the CCR3 receptor and activates human eosinophils. *J Leukoc Biol* (1997) 62:667–75.

182. Patel VP, Kreider BL, Li Y, Li H, Leung K, Salcedo T, et al. Molecular and functional characterization of two novel human C-C chemokines that binds to the CCR3 receptor and activates human eosinophils. *J Leukoc Biol* (1997) 62:667–75.

183. Daugherty BL, Siciliano SJ, Demartino JA, Malkowitz L, Sirotina A, Springer MS. Increased responsiveness of murine eosinophils to MIP-1beta (CCL4) and TCA-3 (CCL3) is mediated by their specific receptors, CCR5 and CCR8. *J Leukoc Biol* (2002) 71:1019–25.

184. Chou CC, Fine JS, Pugliese-Sivo C, Gonsiorek W, Davies L, Deno G, et al. Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. *J Immunol* (2005) 174:783–9. doi:10.4049/jimmunol.174.2.783

185. Hirai H, Abe H, Tanaka K, Takatsu K, Sugamura K, Nakamura M, et al. Gene expression and characterization of a novel murine C5a receptor homologous to human C5aR. *J Biol Chem* (2005) 280:20133–40. doi:10.1074/jbc.M508718200

186. Beldner R, Fuchs B, Bausch T, Zwirner J, Kohl J, Hoymann HG, et al. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. *J Immunol* (2003) 170:7483–9. doi:10.4049/jimmunol.170.7.7483

187. Ukena D, Krogel C, Dent G, Yukawa T, Sybrecht G, Barnes PJ. PAF-receptors and neutrophil chemokines in asthma and enzima catalase. *Am J Pathol* (1981) 105:149–53.

188. Chouinard E, Lefebvre JS, Navarro P, Bouchard L, Ferland C, Lanclante-Hebert M, et al. The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. *J Immunol* (2011) 186:3188–96. doi:10.4049/jimmunol.1002853

189. Ogawa H, Kunkel SL, Fantone JC, Ward PA. Comparative study of eosinophil and neutrophil chemokines and enzyme catalyst. *Science* (2000) 287:2013–7. doi:10.1126/science.287.5460.2013

190. Patnode ML, Bando JK, Krummel MF, Locksley RM, Rosen SD. Leukotriene B4 amplifies eosinophil accumulation in response to nematodes. *J Exp Med* (2014) 211:1281–8. doi:10.1084/jem.20132336

191. Karsten CM, Laumonnier Y, Eurich B, Ender F, Broker K, Roy S, et al. Monitoring and cell-specific deletion of C5aR1 using a novel floxed GFP-C5aR1 reporter knock-in mouse. *J Immunol* (2015) 194:1841–55. doi:10.4049/jimmunol.1401401

192. Svennson L, Redwali E, Johnsson M, Stenfeldt AL, Dahlgren C, Werners C. Interplay between signaling via the formyl peptide receptor (FPR) and chemokine receptor 3 (CCR3) in human eosinophils. *J Leukoc Biol* (2009) 86:327–36. doi:10.1189/jlb.0908514

193. Prevette N, Rossi FW, Rivelles E, Lamacchia D, Pelosi C, Lobasso A, et al. Helicobacter pylori HP(2-20) induces eosinophil activation and accumulates in superficial gastric mucosa and stimulates VEGF-alpha and TGF-beta release by interacting with formyl-peptide receptors. *Int J Immunopathol Pharmacol* (2013) 26:647–62. doi:10.1177/039463201302600308

194. Sun FF, Crippenden NJ, Cukz CI, Taylor BM, Stout BK, Johnson HG. Biochemical and functional differences between eosinophils from animal species and man. *J Leukoc Biol* (1991) 50:140–20.

195. Lukacs NW, Standiford TJ, Chenswue SW, Kunkel RG, Sttier MR, Kunkel SL. C-C chemokine-induced eosinophil chemotaxis during allergic airway inflammation. *J Leukoc Biol* (1996) 60:573–8.

196. Dunzendorfer S, Kaneider NC, Kaser A, Woel I, Frade JM, Mellado M, et al. Functional expression of chemokine receptor 2 by normal human eosinophils. *J Allergy Clin Immunol* (2001) 108:581–7. doi:10.1067/mcl.2001.118518
Larose et al.

Mediators Recruiting Eosinophils and ILC2 in Asthma

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Larose, Archambault, Provost, Laviolette and Flamand. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.