Family of melanocortin receptor (MCR) genes in mammals—mutations, polymorphisms and phenotypic effects

M. Switonski · M. Mankowska · S. Salamon

Received: 17 May 2013 / Revised: 11 July 2013 / Accepted: 28 July 2013 / Published online: 31 August 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The melanocortin receptor gene family consists of five single-exon members, which are located on autosomes. Three genes (MC2R, MC4R and MC5R) are syntenic in the human, mouse, cattle and dog genomes, while in the pig, the syntenic group comprises MC1R, MC2R and MC5R. Two genes (MC1R and MC4R) have been extensively studied due to their function in melanogenesis (MC1R) and energy control (MC4R). Conservative organisation of these genes in five mammalian species (human, mouse, cattle, pig and dog), in terms of the encoded amino acid sequence, is higher in the case of MC4R compared to MC1R. Polymorphisms of these two genes are responsible or associated with variation of pigmentation (MC1R) and adipose tissue deposition (MC4R). Polymorphic variants in MC1R, causing coat colour variation, were described in humans and domestic mammals (cattle, horse, pig, sheep, dog), as well as farm red and arctic foxes. The MC4R gene is very polymorphic in humans and it is well known that some variants cause monogenic obesity or significantly contribute to the development of polygenic obesity. Such relationships are not so evident in domestic mammals; however, at least one missense substitution (298Asp>Asn) in the porcine MC4R significantly contributes, at least in some breeds, to fat tissue accumulation, feed conversion ratio and daily weight gain. Knowledge on the phenotypic effects of polymorphisms of MC2R, MC3R and MC5R in domestic mammals is scarce, probably due to the small number of reports addressing these genes. Thus, further studies focused on these genes should be undertaken.

Keywords MC1R · MC2R · MC3R · MC4R · MC5R · Pig · Cattle · Horse · Dog

Introduction

Receptors of melanocortins are encoded by a gene family consisting of five members (MC1R–MC5R). The encoded receptors bind four ligands: α-, β- and γ-melanocyte-stimulating hormone (α-, β-, γ-MSH) and the adrenocorticotropic hormone (ACTH). Among them, MC1R binds preferentially α-MSH, while MC2R binds ACTH. Expression of the MCR genes is tissue-specific: MC1R is mainly expressed in melanocytes, MC2R in the adrenal cortex, MC3R and MC4R in the nervous system, and MC5R in sebaceous glands and other tissues, e.g. the brain, muscles, lung and kidney (Yang 2011).

The physiological role of the melanocortin receptors has been previously reviewed several times (Cone 2006; Eves and Haycock 2010; Yang 2011). Also, the effect of their mutations and polymorphisms in humans was reviewed, especially with regard to cutaneous pigmentation, MC1R (Dessinioti et al. 2011), and obesity, MC3R (Tao 2010b) and MC4R (Santini et al. 2009; Tao 2010a; Loos 2011).

The MCR genes, mainly MC1R and MC4R, were also extensively studied in domestic mammals. Polymorphism of these genes was analysed in terms of coat colour variability or the association with production traits related to fat tissue deposition and feed conversion ratio. These studies have not been reviewed to date. Thus, this article is focused on studies of the MCR gene family polymorphisms in domestic mammals.

Comparative organisation of the MCR genes

The MCR genes contain only a single exon and the encoded number of amino acids varies from 296 (MC2R) to 332 (MC4R). All these genes are located on autosomes (Table 1). Some of them (MC2R, MC4R and MC5R) are located on a single chromosome: 18 in humans and the mouse, 24 in cattle and 1 in the dog. In the case of the pig karyotype, the location is slightly different, since the MC1R, MC2R and MC5R genes
reside on chromosome 6, but not MC4R, which is not syntenic with MC2R and MC5R. This difference reflects chromosome rearrangements which took place during pig karyotype evolution (Goureau et al. 1996).

A comparison of the coding sequences of the two most frequently studied MCR genes (MC1R and MC4R) revealed a higher evolutionary conservatism of the MC4R protein (Tables 2 and 3). In the case of the MC1R protein, the amino acid similarity varied between 74.0 % (mouse vs. dog) and 83.6 % (cattle vs. dog), while for MC4R, it varied between 90.7 % (mouse vs. cattle) and 96.1 % (pig vs. dog). A comparison of nucleotide sequences revealed practically the same level of similarity. For MC4R, it ranged between 75.1 % (mouse vs. cattle) and 85.3 % (pig vs. cattle), while for MC4R, it was between 84.0 % (mouse vs. cattle) and 91.3 % (human vs. pig).

Knowledge on the genetic variants of melanocortin receptor genes and their phenotypic effects is most advanced for the MC1R and MC4R genes, and to a lesser extent for MC3R. Two other genes (MC2R and MC5R) were occasionally studied.

MC1R

The melanocortin receptor type 1 is mainly involved in melanogenesis. Thus, its polymorphism was studied in terms of its effect on hair and skin colour in humans and coat colour in animals. It is estimated that human cutaneous pigmentation (skin, hair and eye) is controlled by approximately 120 genes, but a crucial role in this process is played by MC1R, for which over 100 missense polymorphisms were identified (Dessinioti et al. 2011). Among these variants, functional and/or phenotypic effects were described only for 15 of them.

Coat colour is an important characteristic of breeds in domestic animal species. Thus, it is not surprising that the MC1R gene has been extensively studied. Altogether, 16 causative polymorphisms in seven species (pig 5, dog 3, cattle 2, sheep 2, arctic fox 2, horse 1 and red fox 1) were identified (Table 4). The polymorphic sites were located in extracellular (6), transmembrane (5) or intracellular (5) domains.

In cattle, the black/red coat colour depends on two polymorphic sites, which give a series of three alleles: E^+, E^+ and e. The E^D (p.99Pro) and E^+ wild type (p.99Leu) substitutions are located in the first extracellular loop of the MC1R protein and are responsible for black coat colour and a combination of red or reddish brown/black coat colours, respectively (Klungland et al. 1995). Interestingly, the same mutation was observed in Asian pigs and variant E^D (p.99Pro) also caused black coat colour, while the wild allele (E^+) facilitates the full expression of both pheomelanin and eumelanin (Kijas et al. 1998). The third allele (e) of the bovine MC1R gene was created by a deletion of guanine nucleotide at position 310/311, resulting in a premature stop codon, instead of the presence of tyrosine at the 155 position in the polypeptide (the second intracellular loop). The homozygotes (ee) produce pheomelanin only (Joerg et al. 1996).

In the pig, five polymorphic sites were identified. Interestingly, the genetic background of black colour is different in Asian and European breeds. In Asian breeds, black coat colour depends on the occurrence of the above-mentioned E^D allele (p.99Pro), while in European breeds, the black coating is controlled by the E^D allele (p.121Asn) (Kijas et al. 1998). Red coat colour is caused by a recessive e allele. In this allele, two substitutions are present (p.164Val and p.243Thr), which are located in the fourth and sixth transmembrane domains, respectively. It is not clear if one or both substitutions are responsible for this coat colour (Kijas et al. 1998). Furthermore, the E^P allele responsible for black spotting on the red or white background was identified (Kijas et al. 2001). This phenotype is a consequence of two C nucleotide insertions, at the position of the 67 nucleotide, leading to the frameshift and premature stop codon.

Table 1 Chromosomal location of the MCR genes in mammalian species

Gene	Human	Mouse	Pig	Cattle	Dog
MC1R	16	8	6	18	5
MC2R	18	18	6	24	1
MC3R	20	2	17	13	24
MC4R	18	18	1	24	1
MC5R	18	18	6	24	1

Table 2 Identity (%) of the nucleotide (above the diagonal) and amino acid (below the diagonal) sequences of the MC1R gene in five mammalian species

Species	Human (953 nt*)	Mouse (947 nt)	Pig (963 nt)	Cattle (953 nt)	Dog (952 nt)
Human (317 aa**)	76.9	84.6	82.7	81.9	
Mouse (315 aa)	75.9	74.6	75.1	75.6	
Pig (320 aa)	78.5	72.4	85.3	82.9	
Cattle (317 aa)	81.4	74.6	82.6	81.3	
Dog (317 aa)	80.4	74.0	82.0	83.6	

* nucleotide, ** amino acid

Table 3 Identity (%) of the coding sequence (999 nucleotides, above the diagonal) and the encoded polypeptide (323 amino acids, below the diagonal) in five mammalian species

Species	Human	Mouse	Pig	Cattle	Dog
Human	87.2	91.3	87.2	88.4	
Mouse	93.4	87.8	84.0	86.8	
Pig	95.8	94.0	88.5	89.5	
Cattle	92.8	90.7	94.0	87.2	
Dog	95.2	94.3	96.1	93.1	

* nucleotide, ** amino acid
| Species | Polymorphism | Function → phenotype | References | |
|---|---|---|---|---|
| Dog | C916T | Arg306Stop | Newton et al. (2000) |
| | | | E (wild type) → g.916CC and g.916CT → p.306Arg and p.306Stop → brown/black coat | |
| | | | e → 916 TT → p.360Stop → red/yellow coat | |
| | | | Breeds: Golden Retriever, Yellow Labrador, Irish Setter | |
| G233T | Gly78Val | E^G→g.233TT and g.233CT → p.78Val or p.78Gly/p.78Val phenotype → grizzle or domino | Everts et al. (2000) |
| A790G | Met264Val | E^M→g.790GG or g.790AG → p.264Val or p.264Met → black melanistic mask | Schmutz et al. (2003) |
| Cattle | T296C | p.Leu99Pro | Klungland et al. (1995) |
| | | | E^D→g.296CC → p.99Pro→ dominant black coat colour | |
| | | | E^E→g.296TT → p.99Leu→ wild type→ combination of red or reddish brown and reddish black coat colour | |
| | | | e→p.155* | |
| Sheep | T218A | p.Met73Lys | E^ED→g.218AA and g.361AA→ dominant black phenotype | Våge et al. (1999) |
| | G361A | p.Asp121Asn | Breeds: Norwegian Dala | |
| Horse | C901T | p.Ser83Phe | Marklund et al. (1996) |
| | | | EE→g.901CC→ p.83Ser→ non-chestnut | |
| | | | Ee→g.901CT→ p.83Ser/ p.83Phe→ non-chestnut | |
| | | | ee→g.901TT→ p.83Phe→ chestnut | |
| Pig | T296C | p.Leu99Pro | Kijas et al. (1998) |
| | | | E⁺ (wild type)→ g.296TT→ p.99Leu allows full expression of both pheomelanin and eumelanin | |
| | | | E^ED1→g.296C→ p.99Pro→ dominant black | |
| | | | Breeds: Asian | |
| | | | E^E (wild type)→ g.491C→ g.727G→ p.164Val→ red coat colour | |
| | | | e→ g.491 T g.727-A→ p.164 Val p.243 Thr→ red coat colour | |
| | | | nt67insCC Codon 23 | |
| | | | E<sup+E</sup> (wild type)→ g.67 68CC→ p.23 Ala | Kijas et al. (2001) |
| | | | E⁺→black spotting on red or white background | |
| Red Fox | T373C | Gly5Cys | Våge et al. (1997) |
| | | | E^E→g.373C→ p.125Arg→ Alaskan silver coating | |
| Arctic Fox | G13T | Cys125Arg | Våge et al. (2005) |
| | T839G | Phe280Cys | p.5Cys and p.280Cys→ blue coating | |

Table 4 (continued)

Species	Polymorphism	Function → phenotype	References	
Dog	C916T	Arg306Stop	Newton et al. (2000)	
			E (wild type) → g.916CC and g.916CT → p.306Arg and p.306Stop → brown/black coat	
			e → 916 TT → p.360Stop → red/yellow coat	
			Breeds: Golden Retriever, Yellow Labrador, Irish Setter	
G233T	Gly78Val	E^G→g.233TT and g.233CT → p.78Val or p.78Gly/p.78Val phenotype → grizzle or domino	Everts et al. (2000)	
A790G	Met264Val	E^M→g.790GG or g.790AG → p.264Val or p.264Met → black melanistic mask	Schmutz et al. (2003)	
Cattle	T296C	p.Leu99Pro	Klungland et al. (1995)	
			E^D→g.296CC → p.99Pro→ dominant black coat colour	
			E^E→g.296TT → p.99Leu→ wild type→ combination of red or reddish brown and reddish black coat colour	
			e→p.155*	
Sheep	T218A	p.Met73Lys	E^ED→g.218AA and g.361AA→ dominant black phenotype	Våge et al. (1999)
	G361A	p.Asp121Asn	Breeds: Norwegian Dala	
Horse	C901T	p.Ser83Phe	Marklund et al. (1996)	
			EE→g.901CC→ p.83Ser→ non-chestnut	
			Ee→g.901CT→ p.83Ser/ p.83Phe→ non-chestnut	
			ee→g.901TT→ p.83Phe→ chestnut	
Pig	T296C	p.Leu99Pro	Kijas et al. (1998)	
			E⁺ (wild type)→ g.296TT→ p.99Leu allows full expression of both pheomelanin and eumelanin	
			E^ED1→g.296C→ p.99Pro→ dominant black	
			Breeds: Asian	
			E^E (wild type)→ g.491C→ g.727G→ p.164Val→ red coat colour	
			e→ g.491 T g.727-A→ p.164 Val p.243 Thr→ red coat colour	
			nt67insCC Codon 23	
			E<sup+E</sup> (wild type)→ g.67 68CC→ p.23 Ala	Kijas et al. (2001)
			E⁺→black spotting on red or white background	
Red Fox	T373C	Gly5Cys	Våge et al. (1997)	
			E^E→g.373C→ p.125Arg→ Alaskan silver coating	
Arctic Fox	G13T	Cys125Arg	Våge et al. (2005)	
	T839G	Phe280Cys	p.5Cys and p.280Cys→ blue coating	
Studies on the molecular background of coat colour variation in canids revealed 22 polymorphic sites: ten in the dog, eight in the red fox, three in the arctic fox and one in the Chinese raccoon dog (Nowacka-Woszuk et al. 2013). Among them, six are responsible for coat colour: three in dogs, two in arctic foxes and one in red foxes (Table 4). In dogs, four main alleles were identified: E (wild type), EG, EM and e. The recessive e allele was independently identified by two teams (Newton et al. 2000; Everts et al. 2000). It is a C>T transition at the 916 nucleotide position, causing a premature stop codon, instead of arginine at the 306 position of the encoded polypeptide. The missense variant (p.306STOP, allele e) leads to a reduction of the cytoplasmic tail of the receptor and, as a consequence, results in red/yellow coat colour in dogs. This allele was found in three breeds: Golden Retriever, Yellow Labrador and Irish Setter. The EG (p.78Val) allele produces the so-called “grizzle” phenotype in Saluki and the “domino” phenotype in Afghan Hound breeds (Dreger and Schmutz 2010). The occurrence of a black melanistic mask in 12 dog breeds is controlled by the EM allele, p.264Val (Schmutz et al. 2003). Polymorphisms in the canine MC1R gene are located in the intracellular C-terminal extension (allele e), the second transmembrane domain (EG) and the third extracellular loop (EM). Analysis of data collected from commercial and research Canadian laboratories, performing DNA tests to detect coat colour alleles in dogs, revealed the occurrence of the e and EM alleles also in other breeds: the German Wirehaired Pointer, German Shorthaired Pointer and the Great Dane, while the EM allele occurred in the Basset Hound, Boxer and the Chinese Shar-Pei (Schmutz and Melekhovets 2012). Interestingly, the authors described white dogs with the e/e genotype in the Chow, German Shepherd Dog, Miniature Schnauzer and Puli breeds instead of the expected red or yellow coat colour. It was suggested that an interaction of an unknown gene with the e/e genotype causes elimination of the red pigment.

In red foxes, the E4 allele (p.125Arg), responsible for Alaskan silver coating, was reported by Våge et al. (1997). This coat colour is widely distributed in farm red foxes. Studies on the MC1R polymorphism in the arctic fox revealed two non-synonymous substitutions (p.Gly5Cys and p.Phe280Cys) in a highly conserved region of the protein, which is associated with a constitutive activation of the receptor (Våge et al. 2005). The p.5Cys (extracellular N-terminus) and p.280Cys (third extracellular loop) variants were observed in blue coat variants, which are rare in wild populations (3–5 %) and very frequent in farm populations. Until now, only one silent polymorphism in the coding sequence of the MC1R gene (g.759C>T) was identified in the Chinese raccoon dog (Nowacka-Woszuk et al. 2013).

MC2R

MC2R, also known as the adrenocorticotropic hormone receptor gene (ACTHR), encodes a receptor for the hormone, which plays a crucial role in the regulation of glucocorticoid secretion. The adrenocorticotropic hormone (ACTH) selectively activates the MC2R and induces glucocorticoid production and its secretion in the adrenal cortex, especially in zona fasciculata (Mountjoy et al. 1992; Cone and Mountjoy 1993). Recent studies revealed that small single-pass transmembrane proteins, called melanocortin receptor accessory proteins (MRAP and MRAP2), are essential for the expression of the melanocortin receptor type 2 and its transport to the plasma membrane (for reviews, see Webb and Clark 2010; Novoselova et al. 2013).

A crucial insight into the role of MC2R comes from knockout mice (Chida et al. 2007). The authors showed that it causes neonatal lethality of the majority of such mice. It was also concluded that MC2R knockout mice is a useful model for a rare, autosomal human hereditary disease, familial glucocorticoid deficiency (FGD). Altogether, 25 missense mutations in the human MC2R associated with FGD were identified. A majority of these mutations result in an unsuccessful protein traffic to the cell surface (Webb et al. 2009). Furthermore, some of the human MC2R polymorphisms (e.g. g.-184A, rs2186944) have a protective effect against heroin addiction in the Spanish population (Proudnikov et al. 2008). Moreover, four SNPs (rs1893219, rs1893220, rs2186944 and g.-2T>C) showed an association with responsiveness to ACTH therapy in some types of epileptic encephalopathy, infantile spasms. The TCCT haplotype results in an increased expression of MC2R and a stronger response to ACTH (Liu et al. 2008; Ding et al. 2010). The g.-2T>C mutation is also associated with higher levels of dehydroepiandrosterone, androstenedione and plasma ACTH in children with premature adrenarche (Lappalainen et al. 2008). Taking the above-mentioned data into consideration, it is rather unlikely that functional polymorphisms of the MC2R gene may significantly contribute to the phenotypic variability of production traits in livestock. Thus, it is not surprising that studies on the MC2R polymorphism in domestic animals are very scarce. According to the Single Nucleotide Polymorphism Database (dbSNPs; NCBI Platform), only 11 SNPs in dogs, four in pigs and none in cattle, sheep and horse were identified. In the pig, the MC2R locus was mapped within a QTL region for intramuscular fat content and back fat thickness (Jacobs et al. 2002). The authors showed that the distribution of a silent T>G substitution is different (P<0.01) in some pig breeds.

MC3R

The MC3R gene, similarly to the MC4R gene, plays a crucial role in energy homeostasis (Begriche et al. 2011), but associations of its polymorphisms/mutations with human obesity are not as evident as in case of the MC4R (Tao 2010a). In domestic mammals, this gene was studied only very rarely. In the porcine MC3R, two silent SNPs (522C>T and 549C>T) were described by Civánová et al. (2004). Further studies of one of these SNPs (549C>T), carried out on a small sample
(n = 101) of Czech Large White sows, revealed its association with the estimated breeding value for average daily weight gain (Weisz et al. 2011).

Extensive studies on the MC3R gene in four species of the family Canidae (dog, red fox, arctic fox and Chinese raccoon dog) showed a variable level of its polymorphism (Skorczyk et al. 2011). In total, 16 polymorphisms were described and a dog) showed a variable level of its polymorphism (Skorczyk et al. 2011). In total, 16 polymorphisms were described and a majority of them were found in the 5′-flanking (8) and 3′-flanking (2) regions. The MC3R gene of the red fox (eight polymorphic sites) and the Chinese raccoon dog (six polymorphisms) appeared to be the most polymorphic. In the dog, only two polymorphisms were observed, while the arctic fox was monomorphic. Association studies carried out in red foxes (n = 376) for two polymorphisms (silent substitution c.957A>C and c.*185C>T in the 3′-flanking region), revealed a significant relationship with body weight.

MC4R

The melanocortin receptor type 4 is a well known, major controller of food intake and energy expenditure (for reviews, see Adan et al. 2006; Tao 2010a). Thus, the MC4R gene has been considered as a candidate for human obesity. Altogether, more than 150 variants were identified in this gene (Tao 2009; Loos 2011). The variants are classified into five groups according to the phenotypic effects they evoke (Tao 2009). Class I contains mutations causing defective protein synthesis or its accelerated degradation, resulting in dramatically decreased expression. Class II mutations cause receptor retention inside a cell, probably due to a misfolding of the receptor. Class III represents variants which are present on the cell surface, but their binding capacity or ligand affinity are impaired. Variants causing defective signalling properties (decreased efficacy and/or potency) are categorised as class IV. Variants causing unknown effects form class V. Among the known variants, there are two (Val103Ile and Ile251Leu) which are considered as having a protective role against obesity (Loos 2011). However, sometimes, this effect is not pronounced, especially if small populations are analysed (Nowacka-Woszuk et al. 2011). On the other hand, extensive genome-wide association studies (GWAS) revealed that an SNP located close to the MC4R gene is associated with a predisposition to polygenic obesity. This variant (rs17782313), mapped 188 kb downstream of the gene (Loos et al. 2008), shows a strong association with an elevated BMI (for a review, see Xi et al. 2012).

Association of the MC4R gene variants with human obesity have initiated studies on the relationship with fat tissue accumulation in livestock species. The most extensive studies were carried out in the pig, resulting in the identification of eight polymorphic sites (Table 5). Among them, the missense substitution c.1426G>A (Asp298Asn) was the most extensively studied in terms of its association with production traits, mainly fatness, feed intake and feed conversion ratio. This polymorphism was identified by Kim et al. (2000a) and was originally named c.892G>A.

The Asp298Asn substitution is located in a highly conserved motif within the seventh transmembrane domain. Functional studies revealed that both polymorphic forms of MC4R bind its agonist with similar affinity. However, signal generation should be studied more carefully, since Kim et al. (2004) reported the Asp298 variant’s inability to generate signals, in contrast to Fan et al. (2008), who proved a similar signalling force for both variants. In a majority of studies, it was claimed that allele Asp298 is strongly associated with lower back fat thickness, higher lean meat percentage, slower growth rate and lower feed intake, while the Asn298 allele exhibit lower meat redness and a higher content of saturated fatty acids compared to the GG homozygote. Further studies revealed that allele frequencies differ greatly among pig breeds and lines, probably due to long-term artificial selection. For example, pigs representing lines of the same breed and raised for fresh meat production showed an increased Asp298 allele frequency when compared to those bred for cured ham and loin production (Burgos et al. 2006). Despite those promising reports, some of the subsequent studies failed to confirm an association of Asp298Asn SNP

Table 5 Genetic variants identified in the porcine MC4R gene. Positions numbered according to NM_214173 (positions in brackets numbered according to AB021664)

Location	Position	Effect	References
Proximal	c.-780C>G	Possible disruption of transcription factor binding site	Fan et al. (2009)
promoter			
Proximal	c.-746CA	(6, 7)	Fan et al. (2009)
promoter	c.-702delC		Fan et al. (2009)
Proximal	c.-135C>T	Possible disruption of transcription factor binding site	Fan et al. (2009)
5′UTR			
Exon 1	c.175C>T	Leu59Leu	Ovilo et al. (2006)
	(c.706C>T)		
Exon 1	c.707G>A	Arg236His	Meidtner et al. (2006)
Exon 1	c.892G>A	Asp298Asn	Kim et al. (2000a)
Putative	c.*430A>T		Fan et al. (2009)
3′UTR			
Table 6 Effects of the missense substitution c.892G>A (presently described as c.1426G>A) causing amino acid substitution (Asp298Asn) on pig production traits

Trait	Effect of allele G (Asp) compared to allele A (Asn)	Breed	References
Average daily gain	↓	Duroc	Kim et al. (2006)
		Pietrain × Mangalitsa	Meidtner et al. (2006)
		Lithuanian White	Jokubka et al. (2006)
		Large White	Houston et al. (2004)
		Polish Landrace	Stachowiak et al. (2005)
		Italian Large White; Duroc	Davoli et al. (2012)
		Pulawska breed	Piórkowska et al. (2010)
		Landrace × Large White × Pietrain	Van den Maagdenberg et al. (2007)
		Berkshire × Yorkshire	Fan et al. (2009)
Lean meat content	↑	Duroc	Kim et al. (2006)
		Italian Large White	Davoli et al. (2012)
		Pulawska breed	Piórkowska et al. (2010)
		Landrace × Large White × Pietrain	Van den Maagdenberg et al. (2007)
		Lithuanian White	Jokubka et al. (2006)
		Duroc	Davoli et al. (2012)
		DIv2 line	Chao et al. (2012)
Back fat thickness	↓	Landrace; Large White; Large White × Duroc; Large White × Meishan	Kim et al. (2000a)
		Yorkshire	Fan et al. (2010)
		Large White	Houston et al. (2004)
		Italian Large White; Duroc	Davoli et al. (2012)
		Pulawska Breed; Polish Large White	Piórkowska et al. (2010)
		Landrace × Large White × Pietrain	Van den Maagdenberg et al. (2007)
		Landrace × Large White × Taihu	Ovilo et al. (2006)
		DIv2 line	Chao et al. (2012)
Average feed intake/daily	↓	Pietrain × Mangalitsa	Meidtner et al. (2006)
feed intake		Landrace; Large White; Large White × Duroc; Large White × Meishan	Kim et al. (2000a)
		Large White	Houston et al. (2004)
		Pulawska breed	Piórkowska et al. (2010)
Growth rate	↓	Landrace; Large White; Large White × Duroc; Large White × Meishan	Kim et al. (2000a)
Feed conversion ratio	↓	Italian Large White	Davoli et al. (2012)
	↑	Duroc	Davoli et al. (2012)
Tenth rib back fat	↓	Yorkshire	Fan et al. (2010)
thickness		Berkshire × Yorkshire	Fan et al. (2009)
		Lithuanian White	Jokubka et al. (2006)
		Duroc	Schwab et al. (2009)
Ham weight	↓	Italian Large White, Duroc	Davoli et al. (2012)
	↑	Pulawska breed	Piórkowska et al. (2010)
in the \textit{MC4R} gene with performance and quality traits in pigs (Schwab et al. 2009; Munoz et al. 2011) or reported breed-related differences in the observed effects (Stachowiak et al. 2005; Davoli et al. 2012). It is possible that this mutation might not be the causative one, only closely related to the real quantitative trait nucleotide (QTN), or there might be an epistatic interaction (Bruun et al. 2006).

Another missense substitution (707A>G, Arg236His) was detected in Pietrain, Vietnamese pigs and Berkshire × Yorkshire crossbreds (Kim et al. 2004; Meidtner et al. 2006; Fan et al. 2009). Animals carrying a minor allele A are fatter and grow more slowly than those carrying allele G. According to Fan et al. (2009), this polymorphism co-segregates with four other SNPs (−780C>G in promoter, −135C>T in 5′UTR, 175C>T synonymous substitution in exon 1 and *430A>T in putative 3′ UTR), forming three haplotypes, which exhibit a significant association with average back fat thickness and average daily weight gain. As predicted by the in silico study, the occurrence

Table 6 (continued)	Trait	Effect of allele G (Asp) compared to allele A (Asn)	Breed	References
Live weight at 140 days	↑	Landrace × Large White × Taihu	Otto et al. (2006)	
Colour	Brighter	Pietrain-based crossbreed	Otto et al. (2007)	
Drip loss	↑	Landrace × Large White × Taihu	Otto et al. (2007)	
Intramuscular fat	↑	Polish Landrace, Duroc, Pulawska breed, Duroc; Polish Landrace	Davoli et al. (2012)	
Saturated fatty acids content	↓	Landrace × Large White × Pietrain	Piórkowska et al. (2010)	
Saturated fatty acids content	↓	Landrace × Large White × Taihu	Stachowiak et al. (2005)	

| Table 7 Genetic variants of the bovine MC4R gene and their association with production traits |
|---------------------|-------|-------|-----------|
| Position | Effect on | Breed | References |
| −293C>G | Body weight | −293C/−129A | Nanyang, Qinchuan, Jiaxian Red, Jinnan | Zhang et al. (2009) |
| −129A>G (linked SNPs) | Average daily gain | −129A | Jinxian Red, Jinnan |
| −129A>G | Live weight | G↑ | Qinchuan cattle | Liu et al. (2010) |
| 927C>T | Marbling | T↑ | Hanwoo cattle | Seong et al. (2012) |
| 989G>A | Back fat grade | A↑ | Angus, Holstein | McLean and Schmutz (2011) |
| Ser330Asn | Length of longissimus dorsi area | G↑ | Angus, Holstein | McLean and Schmutz (2011) |
| 1069C>G | Back fat thickness | C↑ | Hanwoo cattle | Seong et al. (2012) |
| Leu 286Val | Marbling | G↑ | Simmental, Angus, Hereford, Charolais, Limousine, Qinchuan, Luxi, Jinnan | Huang et al. (2010) |
| 1343C>A | Carcass weight | C↑ | Qinchuan cattle | Liu et al. (2010) |
| 1786C>T | Live weight | T↑ | Qinchuan cattle | Liu et al. (2010) |
| 1343C>A | Back fat thickness | A↑ | Hanwoo cattle | Seong et al. (2012) |
| 1786C>T | Back fat thickness | C↑ | Hanwoo cattle | Seong et al. (2012) |
of −780C>G and −135C>T SNPs may disrupt several transcription factor binding sites. The influence of these polymorphisms may be an explanation for the above-mentioned inconsistent data on the Asp298Asn association with production traits (Fan et al. 2009).

In the bovine MC4R gene, 17 polymorphic sites were discovered and, among them, 13 were silent mutations and four were missense substitutions. They occurred in the following positions: −293C>G, −193A>T, −192 T>G, −129A>G (Zhang et al. 2009), −84 T>C (Liu et al. 2010), 19C>A, 20A>T, 83 T>C, 128G>A (Huang et al. 2010), 709G>A (Val166Met) (Seong et al. 2012), 747G>A, 927C>T (Valle et al. 2004), 1069C>G (Leu286Val) (Thue et al. 2001), 1343C>A, 1786C>T (Seong et al. 2012), 145Val>Ala and 172Ala>Thr (Haegeman et al. 2001). A majority of them were reported only once, of which six were reported to be associated with production traits (Table 7). The most extensively studied substitution was 1069C>G, for which strong associations with back fat thickness, marbling, carcass and live weight were reported (Huang et al. 2010; Liu et al. 2010; Seong et al. 2012).

Studies of the canine MC4R gene revealed the presence of four SNPs, −637G>T, 777 T>C, *33C>G (Skorczyk et al. 2007) and 868C>T (van den Berg et al. 2010). Among them, only one SNP resulted in amino acid substitution, namely, 637G>T, changing valine to phenylalanine at position 213 (Skorczyk et al. 2007; van den Berg et al. 2010). Analysis of this polymorphism disclosed no association with morphological measures (van den Berg et al. 2010), probably because ligand binding and signalling abilities are not disturbed when compared to the wild variant of the MC4R gene (Yan and Tao 2011). Further studies focused on 5′UTR revealed the presence of two novel indels and three novel SNPs (Nowacka-Woszuk et al. 2012).

Table 8 Polymorphisms of the MC5R gene and their phenotypic effects in humans and pigs

Species	Position	Studied traits	Effect on	Variant present in breed/population	References
Humans	849C>G	Skin condition, acne vulgaris	Association not found	Negro, South Indian, Japanese, Polynesian, Caucasian	Hatta et al. (2001)
	Ala81Ala			Negro, South Indian, Japanese, Polynesian, Caucasian	
	Asp108Asp			Negro, Inuit, Japanese, Caucasian	
	Ser125Ser			Caucasian	
	Thr248Thr			Negro, South Indian, Japanese, Polynesian, Caucasian	
	PsI, PvulI	Obesity	BMI, fat mass, resting metabolic rate	Caucasian (Canada)	Chagnon et al. (1997)
	185G>T	Obesity	BMI	Caucasian (Finland)	Valli-Jaakola et al. (2008)
	849C>G	Type 2 diabetes	Type 2 diabetes	Caucasian (Finland)	Valli-Jaakola et al. (2008)
	Phe209Leu	Mental disorders	G allele predisposes to schizophrenia and bipolar disorder	Caucasian (USA), African American	Miller et al. (2009)
Pigs	303A>G	Fatness traits	Average daily gain, feed intake, feed conversation G ↑	Large White × Landrace	Kovácik et al. (2012)
	Ala109Thr			Landrace, Duroc	Kim et al. (2000b)
		Fat deposition, carcass quality traits	No association studies performed	Berkshire, Duroc, Hampshire, Landrace	Emnett et al. (2001)
		Fat deposition, carcass quality traits	–	Berkshire	Emnett et al. (2001)
		Fat deposition, carcass quality traits	Tenth rib back fat thickness	Hampshire	Emnett et al. (2001)
		Fat deposition, carcass quality traits	Meat colour and tenderness	Landrace	Emnett et al. (2001)
		Fat deposition, carcass quality traits	Intramuscular fat percentage	Yorkshire, Chester White	Kim et al. (2000b)
Among these polymorphisms, there was an 11-bp indel within a putative upstream open reading frame (uORF). This indel segregated with four SNPs, forming two haplotypes. Association studies ($n=381$) did not show any relationship of the haplotypes with body weight.

MC5R

The **MC5R** gene is expressed in the central nervous system and in a variety of peripheral tissues, especially in the skin. The encoded protein is involved in different physiological processes, including lipid metabolism, exocrine function (Yang et al. 2013) and proinflammatory activity (Jun et al. 2010). Together with other members of the melanocortin receptor family, the **MC5R** expression down-regulates leptin secretion in the in vitro cultured adipocytes (Hoggard et al. 2004; Norman et al. 2003), as well as mediates in the interleukin 6 (IL6) production (Jun et al. 2010). Because a high level of the IL6 circulating in blood correlates with insulin resistance (Kristiansen and Mandrup-Poulsen 2005), and leptin takes part in regulating food intake and energy expenditure, melanocortin receptor 5 is a functional candidate gene for obesity in humans or fatness in domestic animals. Also An et al. (2007) demonstrated the involvement of MCR subtype 5 in inducing fatty acid oxidation in skeletal muscles.

Despite a broad range of functions, only several polymorphisms of the **MC5R** gene were described in both humans and the domestic animals (Table 8). In the pig genome, the **MC5R** gene was mapped closely to marker S0059, which is within a QTL for fatness and meat quality. Several reports confirmed an association between porcine back fat thickness or feed intake and polymorphic variants of the **MC5R** gene (Kováčik et al. 2012; Emmett et al. 2001). Also, in humans the **MC5R** polymorphisms were reported to be associated with obesity (Chagnon et al. 1997; Valli-Jaakola et al. 2008). Due to a variety of physiological processes involving **MC5R**, it was also studied in relation to skin condition, metabolic and mental disorders. As a result of these studies, associations with type 2 diabetes, schizophrenia and bipolar disorder were documented (Valli-Jaakola et al. 2008; Miller et al. 2009).

Conclusion

Studies on the melanocortin receptor gene family revealed numerous functional variants, especially in the **MC1R** and **MC4R** genes. It is not surprising that extensive polymorphism of the **MC1R** gene exists in humans and domestic mammals, since skin or coat colour is a variable trait in human ethnic groups, as well as in domestic animal breeds. Thus, further studies on **MC1R** gene polymorphism in domestic animals demonstrating a unique coat colour should be continued. On the other hand, the **MC4R** gene is highly polymorphic in humans (more than 150 variants) and much less polymorphic in domestic mammals. A low level of **MC4R** polymorphism in pigs and cattle may reflect a selection pressure on the decrease of fat tissue content in a carcass. Comparative studies on the polymorphism of this gene, which will include breeds predisposed to adiposity (e.g. pigs of Mangalica and Ossabaw breeds), could verify this hypothesis. Since the role of **MC3R** polymorphism in the development of human obesity is not clear, it seems reasonable to extend studies of this gene in domestic animals, mainly in pigs and dogs, which are considered as valuable model organisms for human hereditary diseases. Finally, we showed that knowledge on the polymorphism of the remaining genes of the **MC** family (**MC2R** and **MC5R**) is scarce, even in humans. It seems that **MC5R** is worthy of further study due to its potential role in lipid metabolism and may bring new insight to knowledge on the association with adipose tissue accumulation in mammals. Finally, the application of functional genomic approaches, including epigenetic modification of **MC3R**, **MC4R** and **MC5R** genes in domestic animals, may elucidate their potential role in the phenotypic variability of production traits related to fatness, daily gain of body mass and feed conversion ratio.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Adan RA, Tiesjema B, Hillebrand JI, La Fleur SE, Kas MJ, de Kron M (2006) The **MC4** receptor and control of appetite. Br J Pharmacol 149:815–827

An JJ, Rhee Y, Kim SH, Kim DM, Han DH, Hwang JH, Jin YJ, Cha BS, Baille JH, Lee WT, Lim SK (2007) Peripheral effect of alpha-melanocyte-stimulating hormone on fatty acid oxidation in skeletal muscle. J Biol Chem 282:2862–2870

Begriche K, Levasseur PR, Zhang J, Rossi J, Skorupa D, Solt LA, Young B, Burris TP, Marks DL, Mynatt RL, Butler AA (2011) Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane G-protein-coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis. J Biol Chem 286(47):40771–40781

Bruun CS, Jørgensen CB, Nielsen VH, Andersson L, Fredholm B (2006) Evaluation of the porcine melanocortin 4 receptor (**MC4R**) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Anim Genet 37:359–362

Burgos C, Carrodeguas JA, Moreno C, Altarriba J, Tarrafeta L, Barcelona JA, Lopez-Buesa P (2006) Allelic incidence in several pig breeds of a missense variant of pig melanocortin-4 receptor (**MC4R**) gene associated with carcass and productive traits; its relation to IGF2 genotype. Meat Sci 73:144–150

Chagnon YC, Chen WJ, Perusse L, Chagnon M, Nadeau A, Wilkison WO, Bouchard C (2007) Linkage and association studies between the melanocortin receptors 4 and 5 genes and obesity-related phenotypes in the Québec Family Study. Mol Med 3:663–673

Chao Z, Wang F, Deng CY, Wei LM, Sun RP, Liu HL, Liu QW, Zheng XL (2012) Distribution and linkage disequilibrium analysis of polymorphisms of **MC4R**, LEP, H-FABP genes in the different populations of pigs, associated with economic traits in DIV2 line. Mol Biol Rep 39:6329–6335
Chida D, Nakagawa S, Nagai S, Sagara H, Katsumata H, Imaki T, Suzuki H, Mitani F, Ogishima T, Shimizu C, Kotaki H, Kakuta S, Sudo K, Koike T, Kubo M, Iwakura Y (2007) Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc Natl Acad Sci U S A 104:18205–18210

Civinová K, Knoll A, Rohrer GA, Cepica S (2004) Linkage mapping of the MC3R gene to porcine chromosome 17. Anim Genet 35(6):467–469

Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endovcr 27(7):736–749

Cone RD, Mountjoy KG (1993) Molecular genetics of the ACTH and melanocyte-stimulating hormone receptors. Trends Endocrinol Metab 4(7):242–247

Davoli R, Braglia V, Valastro V, Annaratone C, Cornella M, Zambonelli P, Nisi I, Gallo M, Buttazzoni L, Russo V (2012) Analysis of MC4R polymorphism in Italian large white and Italian Duroc pigs: association with carcass traits. Meat Sci 90:887–892

Dessiinti C, Antoniou C, Katsambas A, Stratigos AJ (2011) Melanocortin 1 receptor variants: functional role and pigmentary associations. Photochem Photobiol 87(5):978–987

Ding YX, Zou LP, He B, Yue WH, Liu ZL, Zhang D (2010) ACTH receptor (MC2R) promoter variants associated with infantile spasms modulate MC2R expression and responsiveness to ACTH. Pharmacogenet Genomics 20(2):71–76

Dreger DL, Schmutz SM (2010) A new mutation in MC1R explains a coat color phenotype in 2 “old” breeds: Saluki and Afghan hound. J Hered 101(5):644–649

Ermert R, Moeller S, Irwin K, Rothschild MF, Plastow G, Goodwin R (2001) Association studies with leptin receptor, melanocortin-4 receptor, melanocortin-5 receptor, and peroxisome proliferator activated receptor-γ. In: Eastridge ML, Bacon WL, Knipe CL, Meeker DL, Turner TB, Zartman DL. Research and Reviews: Swine 2001 OARD Special Circular 185:57–63

Everts RE, Rothuizen J, van Oost BA (2001) Identification of a premature stop codon in the melanocyte-stimulating hormone receptor gene (MC1R) in Labrador and Golden retrievers with yellow coat colour. Anim Genet 31(3):194–199

Eves PC, Haycock JW (2010) Melanocortin signalling mechanisms. Adv Exp Med Biol 681:19–28

Fan ZC, Sartin JL, Tao YX (2008) Pharmacological analyses of two naturally occurring porcine melanocortin-4 receptor mutations in domestic pigs. Domest Anim Endocrinol 34:383–390

Fan B, Oteru SK, Plastow GS, Rothschild MF (2009) Detailed characterization of the porcine MC4R gene in relation to fatness and growth. Anim Genet 40:401–409

Fan B, Lkhagvadorj S, Cai W, Young J, Smith RM, Dekkers JC (2010) Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci 84:645–650

Gourreau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Frelat G, Gellin J (1996) Porcine and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36(2):252–262

Haegeman A, Coopman F, Jacobs K, Mattheeuws M, Van Zeveren A, Peelman LJ (2002) Characterization of the porcine melanocortin 2 receptor gene (MC2R). Anim Genet 33(6):415–421

Hoeg J, Fries HR, Meijerink E, Stranzinger GF (1996) Red coat color in Holstein cattle is associated with a deletion in the MSHR gene. Mamm Genome 7(4):317–318

Jokubka R, Maak S, Kerzieni S, Swalve HH (2006) Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs. J Anim Breed Genet 123:17–22

Jun DI, Na KY, Kim W, Kwak D, Kwon EJ, Yoon JH, Yes K, Lee H, Kim J, Suh PG, Ryu SH, Kim KT (2010) Melanocortins induce interleukin-6 gene expression and secretion through melanocortin receptors 2 and 5 in 3T3-L1 adipocytes. J Mol Endocrinol 44:225–236

Kijas JM, Wales R, Törnsten A, Chardon P, Moller M, Andersson L (1998) Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150(3):1177–1185

Kijas JM, Moller M, Plastow G, Andersson L (2001) A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics 158(2):779–785

Kim KS, Larsen N, Short T, Plastow G, Rothschild MF (2000a) A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm Genome 11:131–135

Kim KS, Marklund S, Rothschild MF (2000b) The porcine melanocortin-5 receptor (MC5R) gene: polymorphisms, linkage and physical mapping. Anim Genet 31(3):230–231

Kim KS, Reece JM, Hsu WH, Anderson LL, Rothschild MF (2004) Functional and phylogenetic analyses of a melanocortin-4 receptor mutation in domestic pigs. Domest Anim Endocrinol 26:75–86

Kim KS, Lee JJ, Shin HY, Choi BH, Lee CK, Kim JJ, Cho BW, Kim TH (2006) Association of melanocortin 4 receptor (MC4R) and high mobility group AT-hook 1 (HMG1) polymorphisms with pig growth and fat deposition traits. Anim Genet 37:419–421

Klungland H, Våge DI, Gomez-Raya L, Adalsteinsson S, Lien S (1995) The role of melanocortin-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm Genome 6(9):636–639

Kováčik A, Bulla J, Trakovička A, Žitníj J, Rajavová A (2012) The effect of the porcine melanocortin-5 receptor (MC5R) gene associated with feed intake, carcass and physico-chemical characteristics. J Microbiol Biotechnol Food Sci 1:498–506

Krisian森 OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54:S114–S124

Lappalainen S, Utriainen P, Kuulasmaa T, Voutilainen R, Jääskeläinen J (2008) ACTH receptor promoter polymorphism associates with severity of premature adrenarche and modulates hypothalamo-pituitary-adrenal axis in children. Pediatr Res 63(4):410–414

Liu ZL, He B, Fang F, Tang CY, Zou LP (2008) Genetic polymorphisms of MC2R gene associated with responsiveness to adrenocorticotropic hormone therapy in infantile spasms. Chin Med J (Engl) 121(17):1627–1632

Liu H, Tian W, Zan L, Wang H, Cui H (2010) Mutations of MC4R gene and its association with economic traits in Qinchuan cattle. Mol Biol Rep 37:535–540

Loos RJ (2011) The genetic epidemiology of melanocortin 4 receptor variants. Eur J Pharmacol 660:156–164

Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, Inouye AS, Elliott KS, Elliott P, Evans DM, Sadaf Farooqi I, Froguel P, Ghori J, Groves CJ, Gwilliam R, Hadley D, Hall AS, Hattersley AT, Hebebrand J, Heid IM; KORA, Lamina C, Gieger C, Illig T, Hwang M, Gao X, Li JY, Ren HY, Chen JB, Xu SZ (2010) Polymorphisms in MC4R gene and correlations with economic traits in cattle. Mol Biol Rep 37:3941–3944

Jacobs K, Van Poucke M, Mattheeuws M, Chardon P, Yerle M, Rohrer G, Van Zeveren A, Peelman LJ (2002) Characterization of the porcine melanocortin 2 receptor gene (MC2R). Anim Genet 33(6):415–421

Van Zeveren A, Peelman LJ (1996) Red coat color in Holstein cattle is associated with a deletion in the MSHR gene. Mamm Genome 7(4):317–318

Hetta N, Dixon C, Rayner DV (2004) Regulation of adipose tissue leptin secretion by alpha-melanocyte-stimulating hormone and agouti-related protein: further evidence of an interaction between leptin and the melanocortin signalling system. J Mol Endocrinol 32:145–153

Houston RD, Cameron ND, Rance KA (2004) A melanocortin-4 receptor (MC4R) polymorphism is associated with performance traits in divergently selected Large White pig populations. Anim Genet 35:386–390

c Springer
Meitinger T, Wichmann HE, Herrera B, Hinney A, Hunt SE, Jarvelin MR, Johnson T, Jolley JD, Karpe F, Keniry A, Khaw KT, Luben RN, Mangino M, Marchini J, MacArule WL, McGinnis R, Meyre D, Munroe PB, Morris AD, Ness AR, Neville MJ, Nica AC, Ong KK, O’Rahilly S, Owen KR, Palmer CN, Papadakis K, Potter S, Pouita A, Qi L; Nurses’ Health Study, Randall JC, Rayner NW, Ring SM, Sandhu MS, Scherag A, Sams MA, Song K, Soranzo N, Spebiotes EK; Diabetes Genetics Initiative, Syddall HE, Teichmann SA, Timpson NJ, Tobias JH, Uda M; SardiNIA Study, Vogel CI, Wallace C, Waterth MM, Weidman MN; Wellcome Trust Case Control Consortium, Willer CJ; FUSION, Wraith, Yuan X, Zeggini E, Hirschhorn JN, Strachan DP, Ouwehand WH, Caulfield MJ, Samani NJ, Frayling TM, Vollenweider P, Wueher G, Mooser V, Deloukas P, McCarthy MJ, Wareham NJ, Barroso I, Jacobs KB, Chanock SJ, Hayes RB, Lamina C, Gieger C, Illig T, Mettlinger T, Wichmann HE, Kraft P, Hankinson SE, Hunter DJ, Hu FB, Lyon HN, Voight BF, Ridderdstrale M, Groop L, Scheet P, Sanna S, Abecasis GR, Albu G, Nagaraja R, Schlessinger D, Jackson AU, Tuomilehto J, Collins FS, Boehnke M, Mohlke KL (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775

Marklund L, Moller MJ, Sandberg K, Andersson L (1996) A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in mammals. Mamm Genome 7(12):895–899

McLean K, Schmutz S (2011) Melanocortin 4 receptor polymorphism is associated with carcass fat in beef cattle. Can J Anim Sci 91:75–79

Meidtner K, Wermter AK, Hinney A, Remschmidt H, Fries OT (2006) Association of the melanocortin 4 receptor with feed intake and daily gain in F2 Mangalitsa × Pietrain pigs. Anim Genet 37:245–247

Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B, Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B, Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B, Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B, Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B, Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B (2013) Associations of DNA markers with meat quality traits in pigs with emphasis on drip loss. Meat Sci 75:185–195

Ovilo C, Fernández A, Rodríguez MC, Nieto M, Silió L (2006) Association of MC4R gene variants with growth, fattiness, carcass composition and meat and fat quality traits in heavy pigs. Meat Sci 73:42–47

Piorkowska K, Tyra M, Rogoz M, Ropka-Molik K, Oezkowicz M, Różycki M (2010) Association of the melanocortin-4-receptor (MC4R) with feed intake, growth, fattiness and carcass composition in pigs raised in Poland. Meat Sci 85:297–301

Proudino D, Hamon S, Ott J, Kreek MJ (2008) Association of polymorphisms in the melanocortin receptor type 2 (MC2R, ACTH receptor) gene with heroin addiction. Neurosci Lett 435(3):234–239

Santini F, Mafleli M, Pelosini C, Salvetti G, Scartabelli G, Pinchera A (2009) Melanocortin-4 receptor mutations in obesity. Adv Clin Chem 48:95–109

Schmutz SM, Melekhovets Y (2012) Coat color DNA testing in dogs: theory meets practice. Mol Cell Probes 26(6):238–242

Schmutz SM, Berryere TG, Ellinwood NM, Kerns JA, Barsh GS (2003) MC1R studies in dogs with melanistic mask or brindle patterns. J Hered 94(1):69–73

Schwab CR, Mote BE, Du ZQ, Amoako R, Baas TJ, Rothschild MF (2009) An evaluation of four candidate genes for use in selection programmes aimed at increased intramuscular fat in Duroc swine. J Anim Breed Genet 126:228–236

Seong J, Suh DS, Park KD, Lee HK, Kong HS (2012) Identification and analysis of MC4R polymorphisms and their association with economic traits of Korean cattle (Hanwoo). Mol Biol Rep 39:3597–3601

Skorzyczyk A, Stachoikiai M, Szczerszal I, Klukowska-Roetzel J, Schelling C, Dolf G, Switoski M (2007) Polymorphism and chromosomal location of the MC4R (melanocortin-4 receptor) gene in the dog and red fox. Gene 392:247–252

Skorzyczyk A, Fislioski K, Szylowski M, Cieslak J, Friess R, Switoski M (2011) Association of MC3R gene polymorphisms with body weight in the red fox and comparative gene organization in four canids. Anim Genet 42(1):104–107

Stachoikiai M, Szylowski M, Obrazanek-Fojt M, Switoski M (2005) An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful. Anim Genet 37:55–57

Tao YX (2009) Mutations in melanocortin-4-receptor and human obesity. Prog Mol Biol Transl Sci 88:173–204

Tao YX (2010a) The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev 31:506–543

Tao YX (2010b) Mutations in the melanocortin-3-receptor (MC3R) gene: Impact on human obesity or adiposity. Curr Opin Investig Drugs 11(10):1092–1096

Thue TD, Schmutz SM, Buchanan FC (2001) A SNP in the cattle MC4R gene for melanocortin-4 receptor (MC1R) is associated with the chestnut coat color in horses. Mamm Genome 10(1):39–42

Voigt BF, Schelling C, Dolf G, Switoski M (2007) Melanocortin receptor type 2 (MC2R, ACTH receptor) gene with heroin addiction. Neurosci Lett 435(3):234–239

Valli-Jaakola K, Suviolahti E, Schalin-Jäntti C, Ripatti S, Sihlaker K, Oksanen L, Salomaia V, Peltonen L, Kontula K (2008) Further
evidence for the role of ENPP1 in obesity: association with morbid obesity in Finns. Obesity (Silver Spring) 16:2113–2119
van den Berg L, van den Berg SM, Martens EE, Hazewinkel HA, Dijkshoorn NA, Delemarre-van de Waal HA, Heutink P, Leegwater PA, Heuven HC (2010) Analysis of variation in the melanocortin-4 receptor gene (mc4r) in Golden Retriever dogs. Anim Genet 41:557
Van den Maagdenberg K, Stinckens A, Claeys E, Seynaeve M, Clinquart A, Georges M, Buys N, De Smet S (2007) The Asp298Asn missense mutation in the porcine melanocortin-4 receptor (MC4R) gene can be used to affect growth and carcass traits without an effect on meat quality. Animal 1:1089–1098
Webb TR, Clark AJ (2010) Minireview: the melanocortin 2 receptor accessory proteins. Mol Endocrinol 24(3):475–484
Webb TR, Chan L, Cooray SN, Cheetham ME, Chapple JP, Clark AJ (2009) Distinct melanocortin 2 receptor accessory protein domains are required for melanocortin 2 receptor interaction and promotion of receptor trafficking. Endocrinology 150(2):720–726
Weisz F, Urban T, Chalupová P, Knoll A (2011) Association analysis of seven candidate genes with performance traits in Czech Large White pigs. Czech J Anim Sci 56(8):337–344
Xi B, Chandak GR, Shen Y, Wang Q, Zhou D (2012) Association between common polymorphism near the MC4R gene and obesity risk: a systematic review and meta-analysis. PLoS One 7:e45731
Yan J, Tao YX (2011) Pharmacological characterization of canine melanocortin-4 receptor and its natural variant V213F. Domest Anim Endocrinol 41:91–97
Yang Y (2011) Structure, function and regulation of the melanocortin receptors. Eur J Pharmacol 660:125–130
Yang Y, Mishra VK, Chen M, Duffee E, Dimmitt R, Hamon CM (2013) Molecular characterization of human melanocortin-5 receptor ligand-receptor interaction. Biochemistry. Epub ahead of print
Zhang CL, Wang YH, Chen H, Lan XY, Lei CZ, Fang XT (2009) Association between variants in the 5'-untranslated region of the bovine MC4R gene and two growth traits in Nanyang cattle. Mol Biol Rep 36:1839–1843