When should acute exacerbations of COPD be treated with systemic corticosteroids and antibiotics in primary care: a systematic review of current COPD guidelines

Johanna Laue¹, Eirik Reierth² and Hasse Melbye¹

Not all patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) benefit from treatment with systemic corticosteroids and antibiotics. The aim of the study was to identify criteria recommended in current COPD guidelines for treating acute exacerbations with systemic corticosteroids and antibiotics and to assess the underlying evidence. Current COPD guidelines were identified by a systematic literature search. The most recent guidelines as per country/organisation containing recommendations about treating acute exacerbations of COPD were included. Guideline development and criteria for treating acute exacerbations with systemic corticosteroids and antibiotics were appraised. Randomised controlled trials directly referred to in context with the recommendations were evaluated in terms of study design, setting, and study population. A total of 19 COPD guidelines were included. Systemic corticosteroids were often universally recommended to all patients with acute exacerbations. Criteria for treatment with antibiotics were mainly an increase in respiratory symptoms. Objective diagnostic tests or clinical examination were only rarely recommended. Only few criteria were directly linked to underlying evidence, and the trial patients represented a highly specific group of COPD patients. Current COPD guidelines are of little help in primary care to identify patients with acute exacerbations probably benefitting from treatment with systemic corticosteroids and antibiotics in primary care, and might contribute to overuse or inappropriate use of either treatment.

INTRODUCTION
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) occur frequently in the course of COPD.¹ They can differ in severity and many require hospitalisation, but the majority of mild to moderate AECOPD can be managed in primary care.² Antibiotics and systemic corticosteroids are beneficial treatment options that are often used.³⁴ However, the benefit of antibiotics in mild to moderate AECOPD remains controversial,⁵ and their overuse can contribute to the development of bacterial resistance.⁶ Systemic corticosteroids bear the risk of adverse side effects,⁷ especially in patients with co-morbidities.⁸ Inappropriate use of either treatment should be avoided, and targeting patient treatment requires careful patient assessment. Clinical practice guidelines are intended to assist treatment decisions, based on the best available evidence.⁹ A critical appraisal of 15 COPD guidelines found variations in the content and between recommendations on several management strategies for COPD, and concluded that these were rather a result of ‘selective experience’ than based on scientific evidence.⁹ Consequently, we designed this study to identify recommended assessment strategies for treating AECOPD with systemic corticosteroids and antibiotics in COPD guidelines. Furthermore, we aimed to evaluate the quality of guideline development and the applicability of underlying evidence to primary care.

METHODS
A systematic literature review was conducted in Web of Science, SCOPUS, SveMed+, PubMed, Embase, Cihnal (EBSCO) and Ovid MD to identify COPD guidelines. Throughout the entire search, ‘COPD’ as Mesh-term was used whenever applicable. If a database did not support Mesh-terms, ‘COPD’ was searched in keywords, abstract and title. ‘COPD’ was combined with the search phrases ‘guideline’ and ‘recommendation’. The search string used throughout the search was as follows:

- Chronic Obstructive Pulmonary Disease AND (Guideline OR Recommendation).

Our initial search was performed with a time limit set for publications between 2003 and 2013. It was then extended to 8 May 2014 to ensure the inclusion of any new publications during our work on this project. Eligibility assessment was conducted by the first and the last author, and the approach from the preferred reporting items for systematic reviews and meta-analyses statement was followed.⁸ To avoid overlooking documents that were published elsewhere than in the searched databases, a supplemental search was conducted in the guideline databases UpToDate, Best Practice, National Guideline Clearinghouse, Cochrane Library, Guidelines International Network and websites of the Canadian Medical Association, and American College of Physicians. Furthermore, websites of national health authorities (Germany, Denmark, Sweden, Norway, Austria, Switzerland, and Netherlands) were searched for eligible guidelines. This search was not repeated after 2013. Only guidelines and published documents with recommendations on adults with AECOPD and/or infectious diseases of the lungs when containing AECOPD were...
The guidelines from the Netherlands and from the International Committee at least one general practitioner was included. Information about the development committee, and in one guideline the date for planned revision. A total of 14 guidelines provided updating to 15 years between two versions. Four guidelines gave recommendations about patient assessment for treatment with systemic corticosteroids and antibiotics. If recommendations were given separately for inpatients and outpatients, only those for outpatients were considered. Evidence explicitly linked to the recommendations, as described in domain 3 of the AGREE II tool, was obtained, and randomised controlled trials published in scientific medical journals were assessed in terms of study setting, study design, and inclusion and exclusion criteria. Furthermore, we decided to add the trials included in the latest versions of the Cochrane reviews about treating AECOPD with systemic corticosteroids and antibiotics, although not directly referred to in the guidelines.

RESULTS
The systematic database search resulted in 1,417 documents, and the supplemental search in the guideline databases in 873 documents. Further, 10 documents were retrieved from the websites of national health authorities. A total of 64 documents (47, 8, and 9 documents, respectively) remained for full-text screening after excluding duplicates and those not matching the inclusion criteria. After full-text screening, 36 documents remained, of which 17 outdated versions were excluded. Finally, 19 guidelines were included in the study (Figure 1).

Characteristics of guideline development
The guidelines were published between 2004 and 2014, and 12 of these were updates from earlier versions (Table 1). The time between previous and current editions varied from continuous updating to 15 years between two versions. Four guidelines gave a date for planned revision. A total of 14 guidelines provided information about the development committee, and in 10 committees at least one general practitioner was included. The guidelines from the Netherlands and from the International Primary Care Respiratory Group were especially targeted towards primary care physicians, and this was reflected in the high number of general practitioners in the development groups (Table 1). Furthermore, eight guidelines gave separate recommendations for inpatients and outpatients. Information about funding or conflict of interests was provided in 11 guidelines, 5 of which were sponsored by pharmaceutical companies (Table 1). A detailed description of important steps in the guideline development process, such as literature review, was only given in six guidelines (Table 1). AECOPD definitions across the guidelines were symptom based including the terms ‘dyspnoea’, ‘cough’, and ‘changes in sputum’ in the majority of cases.

Criteria for initiating treatment with systemic corticosteroids
A total of 17 of the 19 guidelines addressed the treatment option ‘systemic corticosteroids’, with 11 criteria being identified (Table 2). The guidelines from the European Respiratory Society and Germany addressed infectious diseases and did not contain recommendations about systemic corticosteroids. We found that nine guidelines recommended systemic corticosteroids universally to all AECOPD patients, and the Spanish guideline reserved such treatment to all patients with an at least moderate exacerbation (without providing information about different severity grades). One guideline reserved such treatment to patients with severe underlying COPD, and two guidelines to patients with moderate to severe COPD (Table 2). Three guidelines recommended basing treatment decisions on patients’ actual respiratory symptoms, namely a significant increase in dyspnoea and wheezing. The Dutch guideline recommended waiting for the response to increased dosage of bronchodilators, as first-line emergency treatment, and assessing the patients’ general condition before starting a course with systemic corticosteroids in all patients not requiring hospitalisation. The Swedish guideline was the only guideline to suggest objective measures by clinical examination (respiratory rate and heart rate) and to recommend the use of the diagnostic tests pulse oximetry and blood gas analysis (Table 2).

Characteristics of the primary evidence supporting recommendations for systemic corticosteroids
We found 11 randomised controlled trials directly referred to in context with a certain recommendation and two trials in the Cochrane review, which were not directly referred to in context.
Table 2. Recommendations for assessing outpatients for treatment with systemic corticosteroids and antibiotics

Criteria	No. of guidelines	Countries/organisations applied (ISO codes)
Systemic corticosteroids		
All patients with AECOPD	9	ZA, AU/NZ, IN, NO, SW, ES, ICSI, GOLD, UpToDate
Baseline FEV1% predicted < 50%	1	AT
Stadium III	1	AT
Moderate to severe COPD	2	CA, DK
Significant increase in dyspnoea/wheezing	3	SE, IPCRG, NICE
Impaired general condition	1	NL
Treatment failure of first-line treatment (bronchodilators)	1	NL
Respiratory rate > 25/min, heart rate > 110/min, SpO2 < 90%, PaO2 < 8 kPa	1	SE
Antibiotics		
All patients with AECOPD	2	IN, KSA
Severe underlying COPD	4	DE, NO, ERS, NL
Increase in dyspnoea, cough, sputum volume and purulence	3	CA, IPCRG, NL
Increase in dyspnoea, sputum volume and purulence (2 or 3 of 3 symptoms)	6	ZA, GOLD, ERS, SUI, ICSI, UpToDate
Increase in sputum colour/purulent sputum	2	AT, AU/NZ
Insufficient improvement after 4 days	6	NO, SE, DK, NICE, DE, ES
Clinical signs of pneumonia	2	DK, NICE
Fever	5	AU/NZ, AT, NO, DK, NL
Impaired general condition	2	DK, NL
Use of accessory muscles	1	NL
Respiratory rate > 30/min, heart rate > 120/min	1	NL
Leukocytosis	1	AU/NZ
CRP > 50 mg/l	1	NO
Procalcitonin > 0.1 ng/ml	1	DE
Chest radiography	1	NICE

Abbreviations: AECOPD, acute exacerbation of chronic obstructive pulmonary disease; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; PaO2, partial oxygen pressure; SpO2, blood oxygen saturation.

ISO codes of countries and abbreviations of organisations: AT, Austria; AU/NZ, Australia/New Zealand; CA, Canada; DE, Germany; DK, Denmark; ES, Spain; GOLD, Global initiative for chronic obstructive lung disease; ICSI, Institute for Clinical Systems Improvement; IN, India; IPCRG, International Primary Care Respiratory Group; KSA, Saudi; NICE, National Institute for Health and Care Excellence; NL, Netherlands; NO, Norway; SE, Sweden; SUI, Switzerland; ZA, South Africa.

bTo all patients with at least moderate exacerbation.
with a certain recommendation in the guidelines (Table 3). Publication dates varied between 1980 and 2011, and 9 of the 11 trials were hospital based. The number of study participants ranged from 27 to 210 patients (Table 3). The majority were male, and one trial had included only male patients (Table 3). The percentage of the patients who were finally randomised among those screened for eligibility varied between 14 and 96% (Table 3). Cardiovascular co-morbidities were explicitly described as exclusion criteria in 7 trials (uncontrolled heart failure in 5 trials, diabetes mellitus in 2 trials, and uncontrolled arterial hypertension in 1 trial). The forced expiratory volume after 1 s (FEV1% predicted) or FEV1 in litre at inclusion were provided in 10 trials. Their values ranged between 24.7 and 59.6%, or between 0.5 and 1.3 litre, respectively (Table 3).

Criteria for initiating treatment with antibiotics

All guidelines contained recommendations about treatment with antibiotics, and 12 assessment criteria were identified (Table 2). Two guidelines recommended basing antibiotic treatment on an increase of the respiratory symptoms ‘dyspnoea’, ‘cough’, ‘sputum volume’, or ‘sputum purulence’. A total of eight of these guidelines only recommended changes in sputum (mostly purulent or changes in sputum colour). These guidelines also provided additional criteria (Table 2), which were mostly the severity of underlying COPD or systemic symptoms such as ‘fever’ and ‘impaired general condition’. Only four guidelines recommended conducting additional diagnostic tests: C-reactive protein (CRP), white blood cell count, procalcitonin, and chest radiography (Table 2). The guidelines from India23 and Saudi24 emphasised that the use of biomarkers has no role in the assessment of AECOPD. The Dutch guideline was exceptional, as they did not recommend any of the respiratory symptoms. Here, the focus was only on the patient’s general condition and fever as signs for bacterial infection, in combination with severe underlying COPD and insufficient improvement after 4 days. However, it was stated that a course of antibiotics might be initiated in all patients with a severe exacerbation, characterised by heavy dyspnoea, use of accessory muscles, respiratory rate > 30/min and heart rate > 120/min (Table 2).

Characteristics of the primary evidence supporting recommendations for antibiotics

We found 4 randomised controlled trials that were directly referred to in context with a certain recommendation25–28 and 11 trials in the Cochrane review3 that were not directly referred to in the guidelines28–39 (Table 4). They were published between 1960 and 2013. In four trials, patients were excluded owing to both cardiovascular diseases (left ventricular failure in one trial, severe heart disease in two trials, and stroke in one trial) and a broad range of infectious diseases. Almost all trials included significantly more men than women (Table 4). A total of 11 trials provided information about initial exclusion rates before randomisation, which ranged between 56 and 3%. The average baseline FEV1% predicted or peak expiratory flow of the included study patients was presented in 13 trials, with the FEV1% predicted ranging from 33.9 to 65% and peak expiratory flow from 63 to 295 l/min (Table 4).

DISCUSSION

Main findings

There was a considerable lack of transparency regarding guideline development, as the literature review was often not documented comprehensively. It is also problematic that a considerable number of guidelines were financed by pharmaceutical companies, or their funding sources were not reported.40 Owing to the small number of general practitioners in the guideline development committees, primary care expertise might not be considered sufficiently during guideline development.

Treatment recommendations were mostly universal and unspecific and often recommended for all AECOPD patients or all patients with underlying moderate to severe COPD, or, in terms of antibiotics, patients with certain symptoms. The use of diagnostic tests was only recommended in a few guidelines.

The patients in the trials that the recommendations were based on were a rather selected group of COPD patients. Most trials were conducted in hospitalised patients, the exclusion rates before

Table 3. Characteristics of randomised controlled trials underlying recommendations for treating acute exacerbations of chronic obstructive pulmonary disease with systemic corticosteroids.

Author, year of Publication	No. of patients (m/f)	% Of patients included those initially screened	Cardiovascular co-morbidities in exclusion criteria	Average baseline lung function (FEV1 % predicted or FEV1 in litre) of study patients at the time of inclusion	Study setting (hospital or outpatient)
Albert et al.12	44 (44/0)	NA	No	0.6 l	H
Thompson et al.13	27 (26/1)	19%	Yes	1.3 l	O
Niewoehner et al.14	271 (268/3)	15%	NA	0.8 l	H/O
Davies et al.15	50 (34/16)	20%	Yes	24.7%	H
Maltais et al.16	199 (162/37)	29%	No	NA	H
Aaron et al.17	147 (84/63)	14%	Yes	38.0%	O
DeJong et al.18	210 (157/53)	48%	Yes	37.0%	H
Gunen et al.19	121 (103/18)	NA	No	37.2%	H
Stallberg et al.20	109 (56/53)	NA	No	45.0%	H/O
Alia et al.22	83 (66/17)	23%	Yes	NA	H
Leuppi et al.24	311 (188/123)	43%	No	31.5	H
Trials from the Cochrane review8	96 (50/46)	96%	Yes	59.6%	H
Bullard46	113 (97/16)	82%	No	0.5 l	H

Abbreviations: f, female; FEV1, forced expiratory volume in 1 s; H, hospital-based study; m, male; NA, information not available or unclear; O, study conducted with outpatients.
randomisation were high in many trials, and the patients were often characterised by severely reduced lung function and low prevalence of cardiovascular co-morbidities or diabetes.

Strengths and limitations

We conducted a rigorous and systematic literature search to get hold of the COPD guidelines. However, we might have missed guidelines published in languages other than the ones included.41 As we did not use the AGREE II tool to its full extent, we are limited in making reliable statements on the guideline quality. Further, we only considered primary studies that were explicitly linked to the recommendations in the appraisal of underlying evidence. Whether studies are cited directly linked to a recommendation or not could be owing to the technical presentation of recommendations, and it does not necessarily reflect the existence of the evidence used. However, according to the AGREE II tool, an explicit link between recommendations and evidence is important for judging the source of a recommendation.11 As we additionally appraised the trials included in the latest Cochrane reviews on treating AECOPD with systemic corticosteroids and antibiotics,4 we are able to make a valid statement about the evidence that the current treatment recommendations are based on.

Table 4. Characteristics of randomised controlled trials underlying recommendations for treating acute exacerbations of chronic obstructive pulmonary disease with antibiotics

Author, year of Publication	No. of patients (m/f)	% Of patients included of those initially screened	Cardiovascular co-morbidities in exclusion criteria	Average baseline lung function (FEV1 % predicted, FEV1 in litre or PEF litre/min) of study patients at the time of inclusion	Study setting (hospital or outpatient)
Anthonisen et al.25	173 (124/39)	—	Yes	33.9%	O
Seemungal et al.26	83 (59/24)	—	—	41.3%	O
Patel et al.27	29 (21/8)	—	No	38.7%	O
Nouira et al.28	93 (84/9)	44%	No	0.71	H
Trials from the Cochrane review 4					
Berry et al.29	53 (31/21)*	NA	NA	NA	O
Fear et al.30	62 (NA)	NA	No	NA	O
Elmes et al.31	74 (47/27)	76%	Yes	79.2 l/min	H
Pines et al.32	186 (186/0)	No	—	76.0 l/min	H
Pines et al.33	259 (259/0)	NA	No	146.0 l/min	H
Manresa et al.34	19 (NA)	NA	No	172.0 l/min	H
Jørgensen et al.35	270 (115/278)	97%	Yes	295.0 l/min (circa)	O
Sachs et al.36	71 (30/41)	NA	No	63 l/min	O
Brusse-Keizer37	35 (21/14)	56%	No	48.6%	O
Daniels et al.38	223 (133/90)	70%	No	45.4%	H
Lior et al.39	310 (251/59)	88%	No	65.0%	O

Abbreviations: f, female; FEV1, forced expiratory volume in 1 s; H, hospital-based study; m, male; NA, information not available or unclear; O, study conducted with outpatients; PEF, peak expiratory flow.

*One not recorded.

treatment with antibiotics and systemic corticosteroids. In addition, the authors of the latest Cochrane reviews about antibiotics3 and systemic corticosteroids5 for AECOPD underline that the effect of both treatments in outpatients and patients with mild airflow obstruction still remains unclear. They emphasise the need for diagnostic tests and biomarkers to identify patients who may benefit from the treatment.

Criteria for systemic corticosteroids. According to many guidelines, systemic corticosteroids seemed to be universally useful. Diagnostic tests or clinical examination were rarely recommended, but prescribing a corticosteroid should rather be based on the patient’s respiratory symptoms. It is striking that the recommended criteria for treating AECOPD with systemic corticosteroids resemble in most cases the (clinical) definition of an AECOPD, which is an acute event characterised by a worsening of the patient’s respiratory symptoms that is beyond normal day-to-day variations and leads to change in medication.46 Thus, once the clinical diagnosis of AECOPD is made, most patients would fit the criteria for a course of systemic corticosteroids according to the guidelines. Yet, common adverse side effects, such as hyperglycaemic episodes in patients with diabetes,47 call for a rather critical use of systemic corticosteroids. An ‘increase in dyspnoea’ might be caused by other (non-)respiratory conditions that are not necessarily responsive to systemic corticosteroids.44,45 Therefore, a more careful assessment to identify patients with a clear benefit would be of major importance. Yet, no reliable method for further investigation beyond assessment of symptoms has been established, and this is probably the reason for rather speculative recommendations such as those recommended in the Swedish guidelines (pulse oximetry and blood gas analysis). Interestingly, spirometry was explicitly advised against in, for instance, the Global initiative for chronic obstructive lung disease (GOLD) guidelines, as it is ‘difficult to perform and’ measurements are not accurate enough.47 When looking at clinical trials, we find spirometry being a common outcome measure to quantify airflow obstruction and to show the effect of, for instance, systemic corticosteroids.4 Thus, the arguments to abandon spirometry from the assessment of AECOPD do not seem to be thoroughly

© 2015 Primary Care Respiratory Society UK/Macmillan Publishers Limited

npj Primary Care Respiratory Medicine (2015) 15002
deliberated. Further evaluation in primary care might help identify a role for spirometry in the assessment of AECOPD.

Criteria for antibiotic treatment. Most guidelines recommend antibiotic treatment based on respiratory symptoms, and increased purulence in particular. This recommendation rests on the subgroup analyses in Anthonisen's landmark study. The special weight laid on increased purulence is supported by the increased risk of positive bacterial culture in COPD patients with purulence and, recently, by Miravitlles' study of predictors of treatment failure in AECOPD in patients with mild to moderate disease not treated with antibiotics. However, sputum guided therapy alone resulted in higher prescription rates than failure. Results from another study emphasise the usefulness of disease not treated with antibiotics.49 However, sputum colour alone might not be sufficient to identify patients possibly benefiting from antibiotics, and therefore biomarkers could be very valuable: in the study by Miravitlles, a CRP value > 40 mg/l was found to be the strongest predictor of treatment failure. Results from another study emphasise the usefulness of the CRP test in general practice, as it was found that sputum-guided therapy alone resulted in higher prescription rates than when combined with CRP. However, by now, CRP is only recommended in the Norwegian guideline. 'Procalcitonin', which was recommended in the German and also mentioned in the Suisse guideline, has also been found to be a promising biomarker for targeting antibiotic treatment. It is, however, not yet available as a point-of-care test for use in primary care. The strict clinical criteria in the Dutch guideline indicating a severe AECOPD are similar to those in the systemic inflammatory response syndrome score and in the CRB65 score. Yet, they do not refer to supporting evidence. Although the CRB65 score can be helpful to identify severe AECOPD with high inpatient mortality, it might be problematic to apply these criteria as indicators for antibiotic treatment in AECOPD.

Future perspectives and conclusion

Our results lead to the conclusion that current COPD guidelines are of little help in identifying which AECOPD patients might benefit from treatment with systemic corticosteroids and antibiotics in a primary care setting. Increased purulence has been shown to be a useful criterion for antibiotic treatment in patients with severe disease, but we still do not know whether reliance on purulence leads to over-treatment in patients with mild to moderate disease. Despite little evidence supporting the usefulness of biomarkers, some guidelines have started to include tests in the diagnostic work-up. However, a better understanding of how COPD/AECOPD interferes with other conditions will probably be as important as establishing a test or biomarker to meet the current challenges, such as differentiation between AECOPD and other diseases. Future guidelines will surely be influenced by currently ongoing research on the use of biomarkers in AECOPD. Further, the new understanding of how COPD should be subclassified into phenotypes may also lead to a new way of understanding the exacerbations, which may vary by phenotype. Antibiotics may be more frequently needed in a phenotype associated with chronic bronchitis than in those dominated by emphysema or when the patient can be classified as COPD-asthma overlap. We recommend that future research should, to a larger extent, focus on AECOPD in patients with mild to moderate airflow obstruction (FEV1% predicted > 50%), similar to the study by Llor et al. and consider the concern of multimorbidity in COPD patients. Moreover, we find it necessary to reconsider the uncritical way in which the use of systemic corticosteroids is presented in current COPD guidelines, and to stress the importance of developing better methods for targeting treatment with systemic corticosteroids. Such moves will be necessary to make future guidelines more helpful in primary care and to improve care for COPD patients.

ACKNOWLEDGEMENTS

We thank Nora Willie MacLaren for support with the graphical work.

CONTRIBUTIONS

JL is the main author as she was primarily engaged in designing and conducting the study. ER performed the systematic literature search and contributed with guidance relevant for the method used in the study. HM supervised the whole work and assisted in the eligibility assessment of the search results.

COMPETING INTERESTS

The authors declare no conflict of interest.

FUNDING

The main author, JL, has received grants from the General Practice Research Fund, the Norwegian Medical Association, and the Norwegian Research Council for Science and the Humanities.

REFERENCES

1. O'Reilly JF, Williams AE, Holt K, Rice L. Defining COPD exacerbations: impact on estimation of incidence and burden in primary care. Prim Care Respir J 2006; 15: 346–353.
2. Jeppesen E, Brunberg KG, Vist GE, Wedzicha JA, Wright JJ, Greenstone M et al. Hospital at home for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 5: CD003573.
3. Walters JA, Gibson PG, Wood-Baker R, Hanney M, Walters EH. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2009; 1: CD001288.
4. Vollenweider DJ, Jarrett H, Steurer-Stey CA, Garcia-Aymener J, Puhm MA. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 12: CD010257.
5. Puhm M, Vollenweider D, Steurer J, Bossuyt P, ter Riet G. Where is the supporting evidence for treating mild to moderate chronic obstructive pulmonary disease exacerbations with antibiotics? A systematic review. BMC Med 2008; 6: 28.
6. Goossens H, Ferech M, Vander Stichele R, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 2005; 365: 579–587.
7. Bach PB, Brown C, Gelfand SE, McCrory DC. Management of acute exacerbations of chronic obstructive pulmonary disease: a summary and appraisal of published evidence. Ann Intern Med 2001; 134: 600–620.
8. Graham R, Mancher M, Wolman MD, Greenfield S, Steinberg E (eds). Clinical Practice Guidelines We Can Trust. The National Academies Press: Washington DC, USA, 2011.
9. Lacasse Y, Ferreira I, Brooks D, Newman T, Goldstein RS. Critical appraisal of clinical practice guidelines targeting chronic obstructive pulmonary disease. Arch Intern Med 2001; 161: 69–74.
10. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
11. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ 2010; 182: E839–E842.
12. Albert RK, Martin TR, Lewis SW. Controlled clinical trial of methylprednisolone in patients with chronic bronchitis and acute respiratory insufficiency. Ann Intern Med 1980; 92: 753–758.
13. Thompson WH, Nielsen CP, Carvalho P, Charan NB, Crowley JJ. Controlled trial of oral prednisone in outpatients with acute COPD exacerbation. Am J Respir Crit Care Med 1996; 154: 407–412.
14. Niewoehner DE, Erbland ML, Deupree RH, Collins D, Gross NJ, Light RW et al. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1999; 340: 1941–1947.
15. Davies L, Angus RM, Calverley PM. Oral corticosteroids in patients admitted to hospital with exacerbations of chronic obstructive pulmonary disease: a prospective randomised controlled trial. Lancet 1999; 354: 456–460.
16. Maltais F, Ostinelli J, Bourbeau J, Tonnel AB, Jacquemet B, Haddon J et al. Comparison of nebulized budesonide and oral prednisolone with placebo in the treatment of acute exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Am J Respir Crit Care Med 2002; 165: 698–703.
Acute exacerbations of COPD in primary care
J Lau et al

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
65 Läkemedelsverket. Farmakologisk behandling av kronisk obstruktiv lungesjukdom-KOL. Information från Läkemedelsverket 2009; 2: 13–28.
66 Höffken G, Lorenz J, Kern W, Welte T, Bauer T, Dalhoff K et al. [Epidemiology, diagnosis, antimicrobial therapy and management of community-acquired pneumonia and lower respiratory tract infections in adults. Guidelines of the Paul-Ehrlich-Society for Chemotherapy, the German Respiratory Society, the German Society for Infectiology and the Competence Network CAPNETZ Germany]. Pneumologie 2009; 63: e1–68.
67 National Clinical Guideline Centre. (2010) Chronic Obstructive Pulmonary Disease: Management of Chronic Obstructive Pulmonary Disease in Adults in Primary and Secondary Care. London: National Clinical Guideline Centre. http://guidance.nice.org.uk/CG101/Guidance/pdf/English.
68 Abdool-Gaffar MS, Ambaram A, Ainslie GM, Bolliger CT, Feldman C, Geffen L et al. Guideline for the management of chronic obstructive pulmonary disease-2011 update. S Afr Med J 2011; 101: 63–73.
69 Guidelines and Protocols Advisory Committee. Chronic Obstructive Pulmonary Disease (COPD). British Columbia Medical Association, Medical Services Commission: Victoria, BC, Canada, 2011.
70 Woodhead M, Blasi F, Ewig S, Garau J, Huchon G, leven M et al. Guidelines for the management of adult lower respiratory tract infections-Full version. Clin Microbiol Infect 2011; 17: 1–59.
71 McKenzie DK, Abrahamson M, Crockett AJ, Dabscheck E, Glasgow N, Jenkins S et al. The Australian Lung Foundation. The COPD X-Plan: Australian and New Q12 Zealand Guidelines for the management of Chronic Obstructive Pulmonary Disease V2.32,2011.
72 Helsedirektoratet. KOLS-Nasjonal Faglig Retningslinje og Veleder for Forebygging, Diagnostisering og Oppfølging av Personer med kols. Helsedirektoratet: Oslo, Norway, 2012.
73 Russi EW, Karrer W, Brutsche M, Eich C, Fitting JW, Frey M et al. Diagnosis and management of chronic obstructive pulmonary disease: the Swiss guidelines. Official guidelines of the Swiss Respiratory Society. Respiration 2013; 85: 160–174.
74 Anderson B, Conner K, Dunn C, Kerestes G, Lim K, Myers C. et al. Diagnosis and Management of Chronic Obstructive Pulmonary Disease (COPD). Bloomington, MN, USA: Institute for Clinical Systems Improvement, 2013.
75 Global Initiative for Chronic Obstructive Lung Disease Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Vancouver, WA, USA: GOLD, 2013.
76 Stoller JK. Management of acute exacerbations of chronic obstructive pulmonary disease. UpToDate 2013.
77 Bartlett JG, Sethi S. Management of infection in acute exacerbations of chronic obstructive pulmonary disease. UpToDate 2013.
78 Miravitlles M, Soler-Cataluna JJ, Calle M, Molina J, Almagro P, Quintano JA et al. Spanish guideline for COPD (GesEPOC). Update 2014. Arch Bronconeumol 2014; 50(Suppl 1): 1–16.
79 Emerman CL, Connors AF, Lukens TW, May ME, Effron D. A randomized controlled trial of methylprednisolone in the emergency treatment of acute exacerbations of COPD. Chest 1989; 95: 563–567.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/