Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2023 (Volume 63): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2021): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY
A new record and descriptions of males of two *Stigmaeus* species from Turkey (Acari: Stigmaeidae)

İsmail Uluçay

(Hakkari University Colemerek Vocational School 30000, Hakkari, Turkey. iulucay@gmail.com)

ABSTRACT — *Stigmaeus pulchellus* Kuznetzov, 1978, reported for the first time from Turkey, is described and illustrated based on females. In addition to the male and nymphal stages of this species, the male of *Stigmaeus kumalariensis* Akyol and Koç, 2007 is also described and illustrated in this article for the first time. The males and females presented differences in chaetotaxy, notably the absence of seta *h*3 in the male of *S. pulchellus*.

KEYWORDS — Prostigmata; Raphignathoidea; *Stigmaeus pulchellus*; *Stigmaeus kumalariensis*; Turkey

INTRODUCTION

Stigmaeidae is a family within the superfamily Raphignathoidea. These mites live in or on soil, grass, leaf, mulch, lichen, bark, beetle frass, crevices in rock and leaf cavities, and a few of them are parasitic on phlebotomine flies (Meyer 1969; Ueckermann and Meyer 1987; Doğan and Ayyıldız 2003a, b; Akyol and Koç 2007, 2010; Noei et al. 2007; Dönel and Doğan 2011; Uluçay and Koç 2014). Currently this family consists of more than 500 species in 32 valid genera (Doğan et al. 2011; Bagheri et al. 2012; Nazari et al. 2012). Up to now *Agistemus* Summers, *Cheylostigmaeus* Willmann, *Eustigmaeus* Berlese, *Ledermuelleriopsis* Willmann, *Mediolata* Canestrini, *Stigmaeus* Koch, *Prostigmaeus* Kuznetsov, *Storchia* Oudemans, *Villersia* Oudemans, *Zettellia* Oudemans and *Eryngiopus* Summers have been reported from Turkey (Doğan 2007; Dönel and Doğan 2011; Özçelik and Doğan 2011; Doğan et al. 2015; Uluçay 2015). In this article, the male, deutonymph and protonymph of *Stigmaeus pulchellus* Kuznetzov, 1978 and the male of *S. kumalariensis* are described and illustrated for the first time. *Stigmaeus pulchellus* Kuznetzov, 1978 reported for the first time from Turkey.

MATERIALS AND METHODS

The soil and litter samples taken from various habitats in Hakkari Province in 2014 and Hatay Province in 2014 were brought to the laboratory in nylon bags, and extracted by Berlese funnels for five to seven days. Mites were collected in 70% ethanol. Stigmaeid mites were picked from the samples under a stereomicroscope and mounted on slides in Hoyer’s medium. The mite figures were drawn and measured by means of a Leica DM 4000 B re-
search microscope with special software (Leica Application Suite Version 3.6.0 - Build:488) for measurements. The setal nomenclature follows that of Kethley (1990). The specimens are slide mounted and deposited in the Acari Collection of Hakkari University, Hakkari, Turkey. All measurements are given in micrometers (µm). Measurements of legs have been taken from base of femur to tip of tarsal claw.

RESULTS

Family: Stigmaeidae Oudemans, 1931
Type genus: Stigmaeus Koch, 1836
Type species: Stigmaeus cruentus Koch, 1836.

Stigmaeus pulchellus Kuznetzov, 1978

Female (n = 13) (Figures 1-2): Idiosoma oval, length of body (including gnathosoma) 505 – 552; width of body 269 – 311. Gnathosoma (Figure 2e). Length of gnathosoma 60 – 67; subcapitulum with two pairs of subcapitular setae (m and n), m 23 – 30, n 21 – 29 and two pairs of adoral setae, or1 and or2; distances m–m 29 – 38, n–n 23 – 26; palpi five segmented, palp tarsus with five simple setae + one tridental eupathidium + one solenidion; palp tibia with two setae + one seta-like accessory claw + one well-developed claw; palp genu with one seta; palp femora with three setae; palp trochanter without seta.

Dorsum (Figure 1a) — Body elongated. Dorsum with 14 pairs of setae (setae h3 present); all dorsal shields reticulated; propodosomal shield with tree pairs of setae (vi, ve and sci); setae sce located on small auxiliary shields; eyes and postocular bodies absent; central shield elongate and with 2 pairs of setae (c1 and d1); humeral shields with seta c2; marginal shields elongate and with setae d2; median zonal shield divided and with seta e1; lateral zonal...
shields wide and with setae e₂; intercalary shields with f₁; suranal shield entire, recessed posteriorly and with 3 pairs of setae (h₁, h₂ and h₃); dorsal body setae faintly spinulate; c₁ is the longest dorsal seta.

Length of setae as follows: vi 26 – 29, ve 37 – 48, sci 29 – 32, sce 36 – 44, c₁ 29 – 34, c₂ 42 – 57, d₁ 26 – 35, d₂ 29 – 35, e₁ 29 – 36, e₂ 26 – 37, f₁ 32 – 38, h₁ 36 – 44, h₂ 35 – 45, h₃ 24 – 26; distances between dorsal setae: vi – vi 28 – 36, ve – ve 45 – 60, vi – sci 29 – 34, sci – sce 49 – 53, c₁ – c₁ 51 – 66, c₁ – d₁ 61 – 76, d₁ – d₁ 40 – 46, d₁ – d₂ 68 – 87, d₁ – e₁ 73 – 80, e₁ – e₂ 49 – 62, e₁ – f₁ 50 – 61, e₁ – f₂ 38 – 47, f₁ – f₂ 52 – 76, h₁ – h₁ 31 – 40, h₁ – h₂ 15 – 17, h₁ – h₃ 10 – 13, h₂ – h₂ 68 – 94, h₃ – h₃ 93 – 101; ratios vi / vi 0.8 – 1, c₁ / c₁ 0.5 – 0.6, d₁ / d₁ 0.6 – 0.8, e₁ / e₁ 0.5 – 0.7, f₁ / f₁ 0.5 – 0.6.

Venter (Figure 1b) — Endopodal shields separated, with subcutaneous reticulation and with ventral setae 1a 20 – 23, 3a 20 – 24, 4a 21 – 25; aggenital shields with subcutaneous reticulation and bearing four pairs of aggenital setae (ag₁-ag₄), length of ag₁ 17 – 20, ag₂ 18 – 20, ag₃ 19 – 21, ag₄ 21 – 29; anogenital area with two pairs of genital setae and three pairs of pseudanal setae (ps₁-ps₃); length of anogenital setae; g₁ 18 – 22, g₂ 25 – 31, ps₁ 40 – 53, ps₂ 50 – 54, ps₃ 21 – 25.

Legs (Figures 2a-d) — Length of legs I-IV: Leg I 157 – 186; leg II 125 – 151; leg III 129 – 151; leg IV 149 – 173; counts of setae (solenidia and setae κ included) of legs I-IV: coxae 2, 2, 2, 2; trochanters 1, 1, 2, 1; femur 4, 4, 3, 2; genua 6(κ), 5, 2, 2; tibiae 7(φ, ψ), 6(φp), 6(φp); tarsi 14(ω), 10(ω), 8(ω).

Male (n = 9) (Figure 3): Length of body (including gnathosoma) 343 – 391; width of body 159 – 192. Gnathosoma (Figure 3g). Length of gnathosoma 52 – 57; subcapitulum with two pairs of subcapitular setae (m and n), m 19 – 24, n 17 – 22 and two pairs of adoral setae, or₁ and or₂; distances m-m 25 – 31, n-n 17 – 20; m:n 0.9 – 1; palpal chaetotaxy as in female.

Dorsum (Figure 3a) — All dorsal shields reticulated; propodosomal shield with tree pairs of setae (vi, ve and sci); setae sce located on small auxil-
Figure 3: Stigmaeus pulchellus Kuznetzov, 1978 (male): a – dorsal view, b – ventral view, c – leg I, d – leg II, e – leg III, f – leg IV, g – palp.
Venter (Figure 3b) — Ventral view similar to that of the female. Lengths of setae: $1a$ 18 – 20, $3a$ 16 – 19, and $4a$ 16 – 18 and ratio $1a:3a:4a$ 1-1.2:1-1.2:1. Aggenital area with three pairs of setae, ag_1 16 – 19, ag_2 19 – 21 and ag_3 18 – 22; anogenital area with three pairs of pseudanal setae ps_1, 6, ps_2 9 – 10 and ps_3 17 – 19.

Legs (Figures 3c-f) — Length of legs: leg I 135 – 150, leg II 110 – 120, leg III 106 – 120, leg IV 125 – 139. Setal formulae of leg segments as follows: coxae 2, 2, 2, 2; trochanters 1, 1, 2, 0; femora 4, 4, 3, 2; genua 5(κ), 3, 0, 0; tibiae 7(ϕ_1, ϕ_2), 6(ϕ_3), 6(ϕ_4), 6(ϕ_5); tarsi 14(ω), 10(ω), 8(ω), 8(ω).

Protonymph (n = 7) (Figure 5): Length of body (including gnathosoma) 311 – 399, width 161 – 238. Gnathosoma (Figure 5g). Length of gnathosoma 50 – 53; subcapitulum with one pair of subcapitular setae n 16 – 17 and two pairs of adoral setae, or_1 and or_2; distances $n-n$ 20 – 25; palpal chaetotaxy as in female.

Dorsum (Figure 4a) — Dorsal view similar to that of the female except suranal shield without setae h_5; length of dorsal setae: vi 21 – 24, ve 34 – 39, sci 26 – 27, sce 32 – 35, c_1 25 – 28, c_2 42 – 44, d_1 22 – 29, d_2 27 – 30, e_1 27 – 30, e_2 29 – 33, f_1 32, h_1 34 – 39, h_2 32 – 36, h_3 24 – 26; distances between dorsal setae: vi 22 – 24, ve 34 – 39, sci 23 – 36, c_1 51 – 60, c_1 62 – 66, d_1 33 – 38, d_1 53 – 58, e_1 50 – 67, c_1 40 – 46, e_2 45 – 54, f_1 34 – 39, f_1 52 – 57, h_1 26 – 30, h_1 12 – 16, h_2 55 – 65; ratios vi/vi 0.6 – 0.8, c_1/c_1 0.5, d_1/d_1 0.6 – 0.8, e_1/e_1 0.6 – 0.7, f_1/f_1 0.6.

Venter (Figure 3c) — Ventrual view similar to that of the female. Lengths of setae: $1a$ 17 – 20, $3a$ 17 – 18, $4a$ 15 – 18; aggenital shields with subcutaneous reticulation and bearing three pairs of aggenital setae (ag_1, ag_3), length of ag_1 13 – 15, ag_2 15 – 16 and ag_3 12 – 17; anogenital area with three pairs of pseudanal setae (ps_1, ps_2); length of anogenital setae; ps_1 32 – 34, ps_2 31 – 42, ps_3 18 – 22.

Legs (Figures 4c-f) — Length of legs I–IV: Leg I 114 – 124; Leg II 114 – 127; Leg IV 123 – 137; counts of setae (solenidia and setae n included) of legs I – IV: coxae 2, 2, 2, 2; trochanters 1, 1, 2, 0; femora 4, 4, 3, 2; genua 5(ϕ), 3, 0, 0; tibiae 7(ϕ_1, ϕ_2), 6(ϕ_3), 6(ϕ_4), 6(ϕ_5); tarsi 14(ω), 10(ω), 8(ω), 8(ω).
Figure 4: Stigmaeus pulchellus Kuznetzov, 1978 (deutonymph): a – dorsal view, b – ventral view, c – leg I, d – leg II, e – leg III, f – leg IV, g – palp.
FIGURE 5: Stigmaeus pulchellus Kuznetzov, 1978 (protonymph): a – dorsal view, b – ventral view, c – leg I, d – leg II, e – leg III, f – leg IV, g – palp.
Figure 6: Stigmaeus kumalariensis Akyol & Koç 2007 (male): a – dorsal view, b – ventral view, c – leg I, d – leg II, e – leg III, f – leg IV, g – palp, h – setae c₁, i – setae d₁.
pseudanal setae (ps1−ps3); length of anogenital setae; ps1 17 – 22, ps2 13 – 19, ps3 14 – 17.

Legs (Figures 5c-f) — Length of legs I-IV: Leg I 121 – 130; leg II 97 – 104; leg III 95 – 101; leg IV 98 – 105; counts of setae (solenidia and setae k included) of legs I-IV: coxae 2, 2, 2, 0; trochanters 0, 0, 1, 0; femora 4, 4, 3, 1; genua 5(κ), 3, 0, 0; tibiae 7(ϕ, ϕ, p), 6(ϕ, p), 6(ϕ, p); tarsi 14(ω), 10(ω), 8(ω), 7(ω).

Material examined: 13 females, 6 deutonymph and 7 protonymph from litter and soil under Astragalus sp., Turkey, Hakkari, Berçelan Mountain (37°43’075”N, 43°44’264”E, 3075 m), 25 June 2014.

The Turkish specimens resemble the type specimens and Iran specimens in most respects but differ in the length of body (including gnathosoma) 505 – 552. It is seen that the Turkish specimens are bigger: the length of body is 350 – 388 in the type specimen. The length of dorsal setae is similar to that of type specimen and longer than those of Iranian specimen. Apart from these, the other measurements and the features of our specimens resemble those of the type specimen in all respects (Kuznetsov 1978; Zarei and Bagheri 2012). Males of this species exhibit the same features of the female descriptions, except that the male tarsi I-IV are with two solenidia instead of one solenidion in female; intercalary shield entire, with setae f1; suranal shield entire, with two pairs of setae, h1 and h2. Dorsal body setae shorter with a few faint serrations and all hysterosomal setae terminally expanded and serrated (Figures 6h-i). Dimensions of setae as follows: vi 26 – 32, ve 36 – 47, sci 16 – 19, sce 32 – 36, c1 29 – 33, c2 30 – 36, d1 28 – 34, d2 31 – 35, e1 31 – 34, e2 33 – 38, f1 17 – 23, h1 39 – 47; distances between dorsal setae: vi-vi 15 – 17, ve-ve 30 – 41, vi-ve 22 – 25, ve-sci 19 – 24, sci-sce 10 – 12, sci-sci 65 – 76, sce-sce 75 – 99, sce-c1 25 – 31, c1-c1 42 – 50, c1-d1 35 – 40, c2-c2 129 – 157, d1-d1 39 – 48, d1-d2 36 – 42, d1-e1 22 – 30, e1-e1 31 – 35, e1-e2 22 – 27, e1-f1 19 – 24, f1-f2 50 – 59, f2-h1 21 – 26, h1-h1 20 – 25, h1-h2 8 – 10, h2-h2 40 – 48; ratios vi/vi-vi 1.6 – 1.9, c1/c1-c1 0.6 – 0.7, d1/d1-d1 0.7 – 0.8, e1/e1-e1 0.9 – 1.0, f1/f1-f1 0.7 – 0.8.

Venter (Figure 6b) — Ventral cuticle transversely striate between coxisternal regions II-III; coxisternal shields I-II and II-III are surrounded by longitudinal striae. Lengths of setae: 1a 13 – 15, 3a 14, and 4a 12 – 13 and ratio 1a3a:4a 1.2:1.2:1. Aggenital area with three pairs of setae, ag1 11 – 14, ag2 12 – 15 and ag3 18 – 24; anogenital valves with three pairs of pseudanal setae, ps1, 7, ps2 7 – 9 and ps3 14 – 17.

Male (n = 5) (Figure 6f): Length of body (including gnathosoma) 246 – 279; width of body 117 – 163. Gnathosoma (Figure 6g). Length of gnathosoma 46 – 48; subcapitulum with two pairs of subcapitular setae (m and n), m 15 – 16, n 9 – 11 and two pairs of dorsal setae, or1 and or2; palp five segmented, palpal tarsus with five simple setae + one tridentate eupathidium + one solenidion; palp tibia with two setae + one accessory claw + one well-developed claw; palp genu with two setae; palp femora with three setae; palp trochanter without setae.

Dorsum (Figure 6a) — Dorsal shields with thick reticulum. Propodosomal shield with three pairs of setae, one pair of eyes located between setae ve and sci. Setae sce located on small auxiliary shields. Central shield with two pairs of setae, e1, d1; setae c2 on humeral shield ventrolaterally; marginal shield with setae d2; median zonal shield divided with and setae e1; lateral zonal shields with setae e2; intercalary shield entire, with setae f1; suranal shield entire, with two pairs of setae, h1 and h2. Dorsal body setae sword shaped with a few faint serrations and all hysterosomal setae terminally expanded and serrated (Figures 6h-i).

Stigmaeus kunalariensis Akyol & Koç 2007

Material examined: 5 males from litter and soil under Pinus sp., Turkey, Hatay, Payas Village (36°45’32”N, 36°11’51”E, 4 m), 22 May 2014.

This species was described by Akyol and Koç (2007) from litter under Astragalus sp., Crateagus sp.,
Quercus sp. Verbascum sp. and Populus sp. in Afyonkarahisar and based on a female (Akyol and Koç 2007). Male specimens were described from litter and soil under Pinus sp. Males of this species exhibit the same features of the female descriptions, except that the male tarsi I-IV are with two solenidia instead of one solenidion in female; length of body and dorsal setae shorter than those of the female and intercalary shield fused (separate in the female).

DISCUSSION

Reference to the presence of seta h_3 in the males and immature stages of *Stigmaeus* species is seldom made. The following species are only known from their females and all of them have seta h_3.

- *S. planus* Kuznetesov 1978, *S. makouensis* Bagheri & Maleki 2013, *S. cariae* Khanjani, Pishehvar, Mirmoayedi & Khanjani 2012, *S. kermanshahiensis* Khanjani, Pishehvar, Mirmoayedi & Khanjani 2012, *S. marandiensis* Bagheri & Ueckermann 2011, *S. isfahanensis* Bagheri, Jafari & Saboori, 2014, *S. reductus* Bagheri & Maleki 2014, *S. berwariensis* Bingül, Dilkaraoğlu & Fan 2015, *S. devlethanensis* Bagheri & Ueckermann 2011, *S. sariensis* Doğan, Sevsay & Bal 2012, *S. erzincanus* Kuznetsov & Petrova, 1979, *S. planus* Kuznetesov 1978, *S. karabagiensis* Bagheri & Maleki 2014, *S. urucensis* Bagheri & Maleki 2014, *S. alvandis* Khanjani & Ueckermann, 2002, *S. raneyi* Summers 1962, *S. kumaFormation* Akyol & Koç 2007, *S. hashtrudiensis* Bagheri & Maleki 2014, *S. shabestariensis* Haddad, Lotfolahi & Akbari 2010, *S. ladanae* Nazari Khanjani & Kamali, 2012, *S. maraghehiensis* Bagheri & Ueckermann 2012, *S. cataloniensis* Faraji & Ueckermann 2006, *S. additicus* Dönel & Doğan 2011, *S. dazkirienensis* Akyol & Koç 2007, *S. devlethenensis* Akyol & Koç 2007, *S. purpurascens* Summers 1962, *S. lucaris* Summers 1962, *S. uckermanni* Pahlavan-Yali, Khanjani, Razmjou 2011, *S. sariensis* Bagheri 2014, *S. reductus* Barilo 1986, *S. uncus* Summers, 1962, *S. gracilimus* Summers 1962, *S. conspicus* Summers, 1962, *S. sternus* Kuznetso & Petrova, 1979, *S. amasianus* Dönel, Doğan, Sevsay & Bal 2012, *S. erzincanus* Dönel, Bingül, Dilkaraoglu & Fan 2015, *S. bertwarianis* Uluçay 2015.

The female of *S. luteus* bears 3 setae on the suranal shield, and the male has merely 2 (Summers, 1962, p 516). *S. arboricola* female bears h_3, whereas the male does not; trochanteral and genital chaetotaxy are the same in the female and the male; the female has 4 aggenital setae and the male has 3 aggenital setae (Fan and Zhang 2005, p 92).

In *S. brevisetis* the female has h_3 but the male and protonymph do not; trochanteral chaetotaxy of the male 1, 1, 2, 0 and that of the female 1, 1, 2, 1; genital chaetotaxy of the male 5(κ), 2, 0, 0 and that of the female 6(κ), 5, 2, 2; the female bears 4 aggenital setae and the male bears 2 aggenital setae (Wood 1973, p 370; Fan and Zhang 2005, p 93).

The male of *S. candidus* has been additionally described: the length of seta h_3 on the female is given, but that of the male isn’t stated; trochanteral chaetotaxy of the male 1, 1, 2, 0 and that of the female 1, 1, 2, 1; genital chaetotaxy of the male 5(κ), 3, 0, 0 and that of the female 6(κ), 5, 2, 2; the female bears 4 aggenital setae and the male bears 3 aggenital setae.

Males of genus *Stigmaeus* differ from females in that they have aedeagus, two solenidia (ω) on tarsi I-IV, the body smaller; setae $ps_{1,2}$ reduced and peg-like, dorsal setae shorter, genital and anal openings fused and genital setae absent. The leg chaetotaxy and the number of aggenital setae can be identical or different in the female and male. These characters can be used for identification of the male of *Stigmaeus*.

The males of *S. brevisetis*, *S. candidus* and *S. pulchellus* are with fewer setae on the segments of the legs than the females. The male of *S. kumalariensis* leg chaetotaxy and the number of aggenital setae are the same with those of the adult female.

The nymphal stages of *Stigmaeus* differ from the females mainly in a reduction of leg setae. The deutonymph differs in the absence of genital folds and trochanter IV nude (Fan and Zhang 2005). The pronymph lacks seta $4a$, one subcapitular seta.
and has fewer setae in aggenital area (Fan and Zhang 2005).

REFERENCES

Akyol M., Koç K. 2007 — Four new species of the genus *Stigmaeus* (Acari: Stigmaeidae) from Turkey — Archives des Sciences, 60: 41-50.

Akyol M., Koç K. 2010 — Contributions to the raphignathoid fauna of Turkey, with a description of a new species of *Cryptognathus* Kramer (Acari: Actinida: Raphignathoidea) — Turkish Journal of Zoology, 34(2): 159-167.

Bagheri M., Ghorbani H., Ueckermann E.-A., Bonab R.-N., Saber S., Mehrvar A. 2012 — *Stigmaeus maraghehiensis* Koch (Acari: Stigmaeidae) from northwest Iran — Internat. J. Acarol., 38(1): 35-39. doi:10.1080/01647954.2011.583272

Doğan S., Ayyıldız N. 2003a — New species of *Eustigmea* Koch, 1901 (Acari: Stigmaeidae) from Turkey — Journal of Natural History, 37(17): 2113-2117. doi:10.1080/00222930210133282

Doğan S. 2007 — Checklist of raphignathoid mites (Acari: Raphignathoidea) of Turkey — Zootaxa, 1454: 1-26.

Doğan S., Ayyıldız N. 2003b — *Stigmaeus kamili* Berlese, 1910 (Acari: Stigmaeidae) from Turkey with new data of other stigmaeid mites — Archives des Sciences, 56: 1-10.

Doğan S., Dönel G., Özçelik S. 2011 — A new eyeless mite species of the genus *Stigmaeus* Berlese (Acari: Stigmaeidae) from Turkey — Turkish Journal of Zoology, 35: 175-181.

Doğan S., Bingül M., Dikarağlı S., Fan Q.-H. 2015 — Description of a new species of the genus *Stigmaeus* Koch (Acari: Stigmaeidae) from Turkey, with a list of described species in the world — Internat. J. Acarol., (Published online: 24 Mar 2015) doi:10.1080/01647954.2015.1028441

Dönel G., Doğan S. 2011 — The stigmaeis mites (Acari: Stigmaeidae) of Kelkit Valley (Turkey) — Zootaxa, 2942: 1-56.

Fan Q.-H., Li L. 1993 — Descriptions of three new species of Superfamily Raphignathoidea (Acari: Actinedida) — Journal of Fujian Agricultural University. 22(23): 321-324.

Fan Q.-H., Zhang Z.-Q. 2005 — Raphignathoidea (Acari: Prostigmata). — Fauna of New Zealand, 52, Manaaki Whenua Press: 400 pp.

Kethley J. 1990 — Acarina: Prostigmata (Actinedida). In: Dindal DL, ed. Soil Biology Guide — New York: John Wiley and Sons Publisher: pp. 667-756.

Koch C.-L. 1836 — Deutschlands Crustaceen, Myriapoden und Arachnidan — Regensburg, Fasc 4(9): 1-40.

Kuznetsov N.-N. 1978 — Revision of the genus *Stigmaeus* (Acariformes, Stigmaeidae) — Zoologicheskii Zhurnal, 57: 682-694.

Meyer M.-K.-P. 1969 — Some stigmaeid mites from South Africa (Acari: Trombidiformes) — Acarologia, 11(2): 227-271.

Nazari A., Khanjani M., Kamali K. 2012 — Two new eyeless mite species from the western provinces of Iran: *Stigmaeus ladaneae* n. sp. and *Stigmaeus nasrinae* n. sp. (Acari: Stigmaeidae) — Acarologia, 52(2): 173-182. doi:10.1051/acarologia/20122047

Noei J., Hajizadeh J., Salehi L., Ostovan H., Faraji F. 2007 — Stigmaeid mites associated with stored rice in northern Iran (Acari: Stigmaeidae) — Internat. J. Acarol., 33(2): 153-156. doi:10.1080/01647950708684516

Oudemans A.-C. 1931 — Acarologische aanteekeningen CVIII — Entomologische Berichten, Amsterdam, 8(179): 251-263.

 Özçelik S., Doğan S. 2011 — A systematic investigation on stigmaeid mites (Acari: Stigmaeidae) of Uzunoluk forest (Erzurum, Turkey) — Turkish Journal of Entomology, 35(4): 699-719 (in Turkish with English abstract).

Summers F.M. 1962 — The genus *Stigmaeus* (Acarina: Stigmaeidae). Hilgardia, 33: 491-537. doi:10.3733/hilg.v33n10p491

Ueckermann E.-A., Meyer M.-K.-P. 1987 — Afrotropical Stigmaeidae (Acari: Prostigmata) — Phytophylactica, 19: 371-397.

Uluçay İ. 2015 — Two species of stigmaeid mites from Turkey: *Eryngiopus coheni* Vacante & Gerson, 1987 and *Stigmaeus berwariensis* n. sp. (Acari: Stigmaeidae) — Internat. J. Acarol., 41(3): 214-219. doi:10.1080/01647954.2015.1026392

Uluçay İ., Koç K. 2014 — A new record for the Turkish fauna: *Stigmaeus dogani* (Acari: Stigmaeidae) — Pers. J. Acarol., 3(2): 137-143.

Wood T.G. 1973 — Revision of Stigmaeidae (Acari: Prostigmata) in the Berlese Collection — Acarologia, 15: 76-95.

Yeşilayer A., Çobanoğlu S. 2013 — Determination of Raphignathoid mites (Acari: Prostigmata: Raphignathoidea) ornamental plants of Istanbul (Turkey) — Turkish Journal of Entomology, 37(1): 93-103 (in Turkish with English abstract).

Zarei E., Bagheri M. 2012 — A new species and new record of *Stigmaeus* Koch (Acari: Stigmaeidae) from northwest Iran — Systematic & Applied Acarology, 17(2): 210-216.
