Assessing the exposure and hazard of diesel exhaust in professional drivers: a review of the current state of knowledge

Shanon Lim 1 · Lois Holliday 2 · Benjamin Barratt 1,3 · Chris J. Griffiths 2,4 · Ian S. Mudway 1,3,4

Received: 18 December 2020 / Accepted: 19 May 2021 / Published online: 2 June 2021
© The Author(s) 2021

Abstract
It is well-established that traffic-related air pollution has a detrimental impact on health. Much of the focus has been on diesel exhaust emissions due to a rapid increase in vehicle numbers and studies finding that this pollutant is carcinogenic. Unsurprisingly, the highest diesel exposures that the general population experiences are during urban daily commutes; however, few studies have considered professional drivers who are chronically exposed to the pollutant due to their work in transport microenvironments. In this narrative review, we address the literature on professional drivers’ exposure to diesel exhaust and advocate that a modern exposure science approach utilised in commuter personal exposure studies is needed. This type of evaluation will provide a more detailed understanding of the time-activity of professional drivers’ exposures which is required to identify specific interventions to reduce their risk to diesel exhaust emissions.

Keywords Diesel exhaust · Occupational drivers · Personal exposures · Black carbon

Introduction
The rapid and sustained growth in vehicle numbers has resulted with engine emissions substantially contributing to urban air pollution issues (Health Effects Institute 2010). This growth has occurred in parallel to an increased appreciation of the health impacts of traffic-related pollutants on human health over the life course. Adverse associations have been observed with birth outcomes (Smith et al. 2017), suboptimal lung (Mudway et al. 2019) and cognitive development (Alvarez-Pedrerol et al. 2017), the development and exacerbation of chronic respiratory (Gehring et al. 2015; Pfeffer et al. 2018; Samoli et al. 2016) and cardiovascular disease (Alexeeff et al. 2018; Atkinson et al. 2010; Bell et al. 2014), increased risk of dementia (Carey et al. 2016) and cancer (Hart et al. 2015) and ultimately premature death (Atkinson et al. 2016; Hoek et al. 2002).

Alongside traffic-related air pollution, the increase in vehicle numbers has also led to concerns over their contribution to global warming, leading the European Commission in the 1990s to incentivise diesel vehicles due to their lower carbon dioxide emissions compared to gasoline vehicles (Cames and Helmers 2013). As a result, in the last 20 years, there has been an increase of 45 million diesel cars in Europe (Cames and Helmers 2013), with diesel vehicles increasing from 27.1% in 2005 to comprise 42.4% of the European vehicle fleet by 2017 (European Environment Agency 2018). Whilst they do emit less carbon dioxide, the increase in diesel vehicles has led to the concern that they are disproportionately adding to the air pollution health burden. Regulators have found they emit significantly higher levels of fine particulate matter compared to gasoline vehicles, with estimates that diesel vehicles contribute greater than 90% of total exhaust emissions in the UK (Monks et al. 2012).

Whilst the health effects of traffic-related pollution are now well-established, studies have identified that exposure to diesel exhaust is highest for the general population during the daily commute (Karana siou et al. 2014). However, few studies
have considered professional drivers who are chronically exposed to the pollutant due to their prolonged work in transport microenvironments (Knibs and Morawska 2012). This paper reviews our current knowledge on the hazard and exposure of diesel exhaust in professional drivers. We briefly outline methods employed which identified the health risks of diesel exhaust emissions and provide a narrative review on studies which have measured professional drivers’ occupational exposure to diesel exhaust. The paper concludes by highlighting how a modern exposure science approach utilised in commuter studies can enhance our understanding of professional drivers’ risk of diesel exhaust exposure and assist in identifying strategies to reduce adverse health outcomes in this occupation.

Assessing the health effects of diesel exhaust emissions

The evidence of the health effects of traffic-related pollution was initially identified by assessing health metrics of populations who live nearby to heavy traffic. These studies have found increased cardiopulmonary mortality, asthma and reduced lung function for those living near major roads (Brunekreef et al. 2009; Health Effects Institute 2010; Hoek et al. 2002; Janssen et al. 2003), with one study finding that an increase in diesel truck traffic resulted in an exacerbation of asthma symptoms (Brunekreef et al. 2009). More recently, studies addressing the impact of traffic-related air pollution on health, link health data to estimates of individual exposures within the population, with nitrogen dioxide (NO2) most often used as a proxy for traffic-related pollution (Atkinson et al. 2016; Samoli et al. 2016).

Increasingly, there has been focus on the measurement of primary combustion particles from the tailpipe of vehicles, using a variety of metrics such as black carbon (BC), elemental carbon (EC) or particle number concentrations. Concentrations of these traffic-derived pollutants have been measured at urban background sites in major cities and then related to daily variations in deaths and hospital admissions (Atkinson et al. 2016; Samoli et al. 2016), and models have been developed to estimate individual exposures in more spatial detail, both in Europe and North America (de Hoogh et al. 2018; Jones et al. 2020). Those studies that have compared the impacts of total ambient PM mass against these refined estimates of tailpipe exposure have generally found the latter to be more strongly associated with adverse health effects (Atkinson et al. 2016; Janssen et al. 2011; Samoli et al. 2016), with diesel exhaust emissions thought to contribute disproportionately to these pollutant concentrations (Janssen et al. 2011).

The statistical associations observed between traffic-derived air pollution and adverse health effects are also supported by experimental studies in which human volunteers have been exposed to diesel exhaust under controlled conditions. These studies have demonstrated the induction of acute pulmonary and systemic inflammation (Salvi et al. 1999), as well as cardiovascular effects (Mills et al. 2007) using diluted exhaust from engines operating under idling and loaded conditions (Barath et al. 2010).

The health studies reported are often criticised due to uncertainty around whether the proxy values or controlled concentrations used are an accurate surrogate for actual exposure (Brauer et al. 2002). Exposure misclassification is the difference between estimated exposure (through fixed monitors or models) and an individuals’ true exposure (Health Effects Institute 2010). It is thought that exposure misclassification is higher for those populations that have disproportionately higher exposure (Health Effects Institute 2010) such as those living, working or going to school near busy roads, or those who work in highly polluted environments such as professional drivers. Personal monitoring, where participants carry a portable monitor to assess how much air pollution they inhale as they go about their typical day is often viewed as the gold standard for exposure assessment (Brokamp et al. 2019; Health Effects Institute 2010). This type of monitoring is utilised to reduce exposure misclassification and provide better dose exposure response estimates. Several studies have utilised personal monitoring for short time periods (typically over 1–2 h) and examined the responses of individuals, both healthy and with pre-existing disease (asthma, chronic obstructive lung disease, ischaemic heart disease, etc.) to real-world exposures in high diesel vehicle microenvironments (McCranor et al. 2007; Sinharay et al. 2018). These studies have also shown impacts on lung function, airway inflammation and vascular indices (McCranor et al. 2007; Sinharay et al. 2018).

Personal monitoring was initially conducted to better characterise occupational exposures, associated health risks and to provide better working conditions for employees. Occupations where diesel emissions are prevalent have been scrutinised with studies finding excess lung cancer deaths associated with exposure to EC in miners (Silverman et al. 2012) and truck workers in the USA (Garshick et al. 2012). Diesel engine exhaust was also estimated to be the third most harmful substance (after asbestos and silica) related to occupational lung cancer in the UK (Rushton et al. 2012). These studies contributed to diesel exhaust being classified as a class 1 carcinogen (International Agency for Research on Cancer 2012), and is therefore a known occupational risk to individuals who are chronically exposed to this pollutant including professional drivers. Whilst there are known health effects, there is minimal evidence in published literature as to what can be done to reduce drivers’ exposure to diesel emissions.
Studying diesel exposures in the real world

Ambient air pollution represents a heterogenous mixture of particles and gases, derived from mixed sources. To assess the contribution of diesel engine exhaust to this mixture requires the use of surrogate measures, where the contribution of diesel is greater than that of other mixed sources. Recent studies have moved toward the measurement of BC or EC as a proxy for diesel emissions (Janssen et al. 2011; Samoli et al. 2016).

Although BC and EC both represent the carbonaceous aerosol, they represent slightly different properties of particulate matter, with BC described as a light absorbing substance composed of carbon and EC as the carbonaceous fraction that is thermally stable in an inert atmosphere (Petzold et al. 2013). In practice, they largely differ only in their measurement technique, where EC is based on thermal-optical methods, whilst BC by optical absorption methods (Briggs and Long 2016). Despite this difference, in locations where the primary source of carbonaceous aerosol is diesel exhaust they are highly correlated (Hessey et al. 2017; Salako et al. 2012). This is particularly relevant in Europe and North America as 70% of emissions of BC are estimated to be from diesel engines (Bond et al. 2013). EC is often measured in occupational studies as a marker of diesel engine exhaust due to approved measurement methods from NIOSH (National Institute for Occupational Safety and Health 1994); however, given the high correlation, we suggest that BC should also be accepted in occupational exposure assessment of diesel exposure as well. This is primarily due to the differences in measurement technique with EC required to be measured on filters making high time-resolved measurements difficult. BC can be measured at resolutions as low as one second (Cheng and Lin 2013), and this can provide an improved understanding on the causes of high exposure during a working day and a better tool with which to manage at-risk populations to diesel exposure. There is also growing interest in employing BC for regulatory air quality assessments, with reports from the World Health Organisation (2012), US Environment Protection Agency (2012) and European Environment Agency (2013) all emphasising the burden associated with this pollutant metric on human health.

Professional drivers and occupational exposure to diesel exhaust

It has been acknowledged in a number of studies that the urban commuting microenvironment most intensely contributes to people’s daily air pollution exposure (Dons et al. 2011; Karanasiou et al. 2014; Lim et al. 2015). Studies have also found that although people typically spend only 6–10% of their day in the commute environment, this contributes between 20 and 30% of their daily exposure (Dons et al. 2012; Williams and Knibbs 2016). The average exposure during commuting has been found to be up to eight times higher than in the home environment (Dons et al. 2011).

However, most of these studies focus on in-vehicle exposures in individuals during their daily commute to and from a fixed place of work. In comparison, there has been a relative absence of studies addressing the occupational exposures of urban professional drivers to air pollution (Gany et al. 2017; Knibbs and Moraw ska 2012). Whilst typically the commute for the majority of workers only takes up to a couple of hours each day, those employed to drive as part of their job such as couriers, bus drivers, taxi drivers, waste removal, emergency service workers and other such occupations can spend up to 12 h of their day in urban transport microenvironments. One study that investigated occupational exposures found that truck drivers in a high polluted urban environment in Beijing had over a third higher exposure to EC compared to office workers (Baccarelli et al. 2014), supporting the view that professional drivers are likely exposed to far higher concentrations of traffic-related air pollutants than typical office workers. It is therefore highly likely that individuals who are in-vehicles for most of their working day are disproportionately affected by air pollution.

Current occupational epidemiological studies have been criticised for the use of imprecise proxies for diesel exposure, with occupational mortality often linked to years in job or against workers in non-exposed occupations (Fang et al. 2010; Sun et al. 2014). There have been reviews investigating the health effects of ambient pollution to commercial drivers (Lawin et al. 2018), biomarkers of occupational exposure (Brucker et al. 2020) and occupational exposures to diesel exhaust (Prnk et al. 2009). However, none have identified studies investigating where and when the highest exposures for professional drivers occur and how these exposures could be mitigated. Here, we summarise occupational professional driver exposure studies to BC and EC conducted between 2000 and 2020. An electronic search was conducted in PubMed using the terms “drivers”, “occupational”, “diesel”, “black carbon”, “elemental carbon” and “exposure”. Studies were included if they physically measured personal exposure for professional drivers and were observational. No experimental or intervention studies were included.

We identified 16 studies which measured personal professional drivers’ exposure (Table 1). Average shift exposures ranged from 1 to 64 μg/m³ for EC and BC. Seven studies were conducted in Asia, four in North America, four in Europe and one in Africa. The highest exposures were measured in Africa (64 μg/m³) and Asia (4 to 28 μg/m³). Unlike the European and North American studies, there is uncertainty around whether the high exposures in African and Asian countries predominantly relate to diesel emissions, due to other sources of EC and BC in these countries such as biomass burning (Salako et al. 2012). The highest exposure recorded in high-income countries was 10 μg/m³ in Estonia in 2002. The
lowest exposures were found in all four studies in the USA (1 to 3 μg/m³), which is not surprising given the comparatively low proportion of diesel vehicles in the country (Chambers and Schmitt 2015). It is important to note that a number of these studies were conducted over 10 years ago, and since this time regulations for new vehicles have decreased tailpipe emissions by up to 90% particularly in European and North American locations (Anenberg et al. 2017; Fiebig et al. 2014). Despite more stringent emission regulations, the latest studies in 2017 and 2019 on taxi drivers in Europe found exposure to EC and BC between 3 and 9 μg/m³ (Hachem et al. 2021; Moreno et al. 2019). This is a concern as a study found that a lifetime occupational exposure of 1 μg/m³ of EC would lead to 17 excess lung cancer deaths per 10,000 individuals, above agreed occupational risk limits in the USA and Europe (Vermeulen et al. 2014).

Only two of the studies reviewed (Baccarelli et al. 2014; Davis et al. 2007) sampled more than 80 shifts with the majority less than 20 and focussed on a single sector such as taxi, bus or truck drivers, making it difficult to assess whether these studies are representative of the industry as a whole. Only five out of the 16 studies employed time-resolved instrumentation (Gany et al. 2017; Hachem et al. 2020, 2021; Lee et al. 2015; Moreno et al. 2019) using a portable aethalometer to measure BC at a 1-min time resolution. All other studies used time-integrated assessment for the duration of the drivers shift or for one study over a 24-h period. The issue with the time-integrated studies is that they cannot provide time or location specific information on where the driver experienced most of their exposure and hence it is difficult to provide advice on interventions and encourage behaviour change to reduce their exposure. Of the five high time-resolved studies, 17 waste truck workers had their personal BC exposure measured in a study in Seoul, Korea (Lee et al. 2015); with the study reporting that better engine emission standards, lower tonnage and placement of tail pipes had a significant influence on the workers exposure, highlighting some potential interventions which could reduce occupational exposures. The second study in New York City measured BC and PM$_{2.5}$ exposures to seven taxi cab drivers and found that in-vehicle exposures were almost double those of background monitors (Gany et al. 2017). The three other studies measured 20 taxi driver shifts in Lebanon (Hachem et al. 2020), 14 taxi driver shifts in Barcelona (Moreno et al. 2019) and 50 taxi driver shifts in Paris (Hachem et al. 2021) and suggested that drivers’ BC exposure was affected by meteorology, vehicle type, window position and ventilation settings. Whilst these studies help illustrate the high exposures of drivers, the sample sizes are small and variations in design and monitoring make an integrative summary difficult. Utilising time-resolved monitors alongside GPS devices can also assist in identifying locations and times where the highest exposure occurs and provide better information to assist drivers, employers and regulators to reduce diesel exposure in this occupation. This is particularly important for professional drivers, as unlike most other occupations they move across large distances and through heterogenous locations.

As an illustration of this point, we have included some representative BC exposure data collected from a taxi driver in London, across a single shift (Fig. 1). This highlights several key points: (1) the extremely high peak exposures occurring when travelling through the most congested parts of the city (> 90 μg/m³); (2) the extended duration of in-vehicle peak concentrations (in this instance this lasts over 30 min); (3) the independence of the in-vehicle exposures from stationary roadside BC measurement over the same period; and (4) the very high proportion of BC exposure experienced during work, versus time spent at the office or at home. This short example provides an insight into the type of information that is lacking in most studies, but which would improve our understanding of professional drivers’ exposures to diesel exhaust.

Fig. 1 Representative black carbon concentrations measured by a taxi driver working in London. The upper panel illustrates in-vehicle black carbon exposure during a journey from west (Heathrow) to east (Bethnal Green) London, starting at 18:10, 20 April 2018, with a peak measured concentration > 90 μg/m³. The lower two panels show the real-time measurements of black carbon between 14:00 and 00:00, including the journey illustrated in the upper panel, at 1 and 15-min resolution. The personal exposure for the taxi driver within the office and home environment are also marked for comparison. In the lower panel, roadside black carbon concentrations measured at a London roadside site are illustrated to show the potential mismatch between population exposures at a fixed roadside monitor and within vehicles in the congested urban environment.
Table 1 Summary of occupational exposure measurements for professional drivers to black carbon (BC) and elemental carbon (EC) since 2000, ordered from highest measured exposure to lowest

Author	Year and season of data collection	Location	Monitor	Occupation	Pollutant	Mean exposure (μg/m3) (GM = geometric mean, M = Median)	Standard deviation (μg/m3) (GSD = geometric SD)	Shifts monitored	Time monitored (h)	Time resolution of monitor
Ngo et al. 2015	Dry season, 2011	Nairobi, Kenya	BGI sampler, teflon filter	Bus drivers	BC	63.9 (18.6)	7 (8)	Duration of shift		
Jinsart et al. 2012	Dry season 2009	Bangkok, Thailand	Sibata pump, quartz filter	Bus, taxi and tuk tuk drivers	EC	31 (10)	32 (6)	Duration of shift		
Jinsart et al. 2012	Rainy season 2008	Bangkok, Thailand	Sibata pump, quartz filter	Bus, taxi and tuk tuk drivers	EC	28 (10)	37 (6)	Duration of shift		
Miller-Schulze et al. 2010	Summer, 2007	Shenyang, China	Sibata pump, quartz filter	Taxi drivers	EC	25.7 (5.6)	23 (8 - 10)	Duration of shift		
Baccarelli et al. 2014	Summer, 2008	Beijing, China	Apex pump, teflon filter	Truck drivers	EC	17.3 (6.7)	120 (8)	Duration of shift		
Du et al. 2011	Autumn, 2006	Beijing, China	SKC pump, teflon filter	Taxi drivers	BC	15.4 (6.0)	20 (24)	Full day		
Lee et al. 2015a	Summer, 2014	Seoul, South Korea	MicroAetholometer AE 51, Aethlabs	Waste removal workers	BC	9.6 (3.5)	17 (8)	1 min		
Boffeta et al. 2002	2002	Estonia	IOM sampler and quartz filter	Bus drivers	EC	9.5 (2.1)	5 (6.5)	Duration of shift		
Moreno et al. 2019	Autumn, 2017	Barcelona, Spain	Personal environmental monitor, quartz filter	Taxi drivers	EC	9.4 (M)	14 (6)	Duration of shift		
Lewne et al. 2007	2002–2004	Stockholm, Sweden	Pump and quartz filter	Taxi drivers	EC	6.7 (GM) (1.6 (GSD))	4 (~ 16)	Duration of shift		
Moreno et al. 2019a	Autumn, 2017	Barcelona, Spain	Mini-aethalometer (Magee Scientific)	Taxi drivers	EC	6.5 (M)	14 (6)	10 s		
Lewne et al. 2007	2002–2004	Stockholm, Sweden	Pump and quartz filter	Taxi drivers	EC	6.4 (GM) (2.9 (GSD))	10 (~ 16)	Duration of shift		
Lee et al. 2015	Summer, 2014	Seoul, South Korea	MSA pump, quartz filter	Waste removal workers	BC	5.8 (4.8)	72 (8)	Duration of shift		
Hachem et al. 2020a	Summer, 2019	Beirut, Lebanon	MicroAetholometer AE 51, Aethlabs	Taxi drivers	BC	5.2 (1.9)	20 (5)	1 min		
Wu et al. 2011	Summer 2008	Beijing, China	SKC pump, quartz filter	Taxi drivers	EC	4.2 (M)	48 (12)	Duration of shift		
B. K. Lee et al. 2005	2003	Detroit, US	BGI sampler, teflon filter	Truck drivers	EC	3.1 (4.0)	32 (8–12)	Duration of shift		
Hachem et al. 2021a	2019	Paris, France	MicroAetholometer AE 51, Aethlabs	Taxi drivers	BC	2.9 (M)	50 (~ 10)	1 min		
Gany et al. 2017a	Winter 2012–2013	New York City, US	MicroAetholometer AE 51, Aethlabs	Taxi drivers	BC	2.4 (0.6)	7 (6–12)	1 min		
Ramachandran et al. 2005	2005	Minneapolis, US	MSA pump, quartz filter	Bus drivers	EC	2.0 (1.3)	39 (6.3)	Duration of shift		
Davis et al. 2007	2001–2005	36 locations in US	BGI sampler, teflon filter	Local pickup and delivery truck drivers	EC	1.6 (2.3)	576 (~ 10.5)	Duration of shift		
Davis et al. 2007	2001–2005	36 locations in US	BGI sampler, teflon filter	Long haul truck drivers	EC	1.4 (0.8)	349 (~ 10.5)	Duration of shift		

a Indicate studies monitoring with time-resolved methods whilst all other studies used time-integrated methods.
2013), the number of commuting exposure studies focussing on diesel emissions in the last 10 years has rapidly increased. An electronic search was therefore conducted in PubMed using a combination of these terms “black carbon”, “elemental carbon”, “diesel”, “exposure”, “vehicle”, “commute” for studies between 2000 and 2020. We provide a broad review of these commuter exposure papers to identify insights which can be employed to enhance occupational assessments and improve our understanding of professional driver exposure to diesel exhaust.

We identified 27 studies measuring in-vehicle exposure to BC and EC (Table 2); the studies were restricted to vehicles which professional drivers were likely to drive such as cars, buses and vans and excluded any modelled exposures. Twenty-five of the studies measured commuting exposure at high time resolution, with some studies measuring exposures at a 1-s resolution. There was a significant variation between studies with in-vehicle BC exposure ranging from 0.5 to 77.5 μg/m³ across 16 countries. This is likely due to a number of reasons including differences in location (meteorology, traffic characteristics, levels of congestion), duration, study design (averaging time, replications, ventilation settings) and vehicle type and age.

These studies are unlikely to represent professional drivers’ exposures, as they largely focused on short commutes in morning and evening rush hours on fixed routes with the researcher simulating expected commuter behaviour. However, insights on the determinants of commuters’ exposures could be similar for professional drivers and should be further investigated. Determinants of personal exposure in transport are typically grouped in four ways, personal factors, mode of transport (bus, train, bicycle, walk, car, etc.), traffic factors and meteorology (Kaur et al. 2007). In-vehicle exposure can be highly variable in time and space due to meteorology, season, fuel type, ventilation settings, traffic levels, filters, driver behaviour, proximity to pollution source, dispersion of emissions in roads and street canyons (determined by wind speed and direction, turbulence and boundary layer factors), air tightness of vehicle, vehicle age, type of vehicle and other vehicle characteristics (Dons et al. 2013; Ham et al. 2017; Karanasiou et al. 2014; Li et al. 2015; Tartakovsky et al. 2013) (Fig. 2).

Studies have found a high variability of in-vehicle traffic-related pollutant concentrations depending on street type and density of vehicles (Li et al. 2015). Intersections and highways have been found in previous studies to have the highest in-cabin exposure levels for BC (Dons et al. 2013), with heavy-duty diesel vehicles thought to be the highest contributor to exposure (Li et al. 2015). Peak hours have also been associated with the highest exposure, with congestion thought to be the main contributor for elevated in-vehicle exposure (Dons et al. 2013; Good et al. 2016; Zurbvier et al. 2010).

Micrometeorology within street canyons or tunnels could also be of influence, as this can cause high accumulation of pollutants in localized areas (Vardoulakis et al. 2003), leading to infiltration into vehicles.

Studies have found that ventilation settings in vehicles can reduce exposure by up to 75% (Ham et al. 2017). With having the windows open being the worst way to ventilate your vehicle compared to other ventilation modes such as outside air and recirculate modes (Li et al. 2015; Okokon et al. 2017; Williams and Knibbs 2016). However, even when windows are open, and are subsequently closed and recirculate mode is employed, this can lead to a drastic reduction in BC, suggesting that pollutants can be efficiently removed from the cabin (Li et al. 2015). Other ways to reduce in-vehicle exposure are to install filters or air purifiers on the ventilation system, with one study finding that purifiers reduced fine particle concentrations by up to 99% compared to the outside air (Tartakovsky et al. 2013). The air tightness of the vehicle is also an important consideration for in-vehicle exposures. A vehicle with a greater air exchange rate has been found to increase in-cabin exposures (Bos et al. 2021; Karanasiou et al. 2014).

There is insufficient evidence to suggest whether in-vehicle exposure is affected by different vehicle types and fuel. There is further uncertainty on the effect of self-pollution in-vehicles; however, one study has found that self-pollution can contribute up to 30% of PM2.5 exposure experienced by car occupants (Harik et al. 2017), potentially indicating higher exposure to drivers of diesel cars. Self-pollution in buses has also been suggested due to the frequency of door opening and exhaust location with newer bus fleets having lower in-cabin concentrations compared to older fleets (F. Yang et al. 2015; Zhang and Zhu 2010; Zurbvier et al. 2010). Despite a number of studies investigating the determinants of in-vehicle exposures, there is still significant difficulty in identifying which variables should be prioritised to reduce exposure.

This evidence suggests that there may be practical behaviour changes, new technology and different cabin types that can reduce exposures to professional drivers; however, we did not identify any studies that tested this hypothesis in a real-world setting. There is uncertainty whether similar interventions for this occupation would be effective in reducing exposures as their activity is likely to be substantially different to the everyday commuter. Furthermore, whilst these commuter studies focus on driving exposures, it is unknown whether exposures would also be high for professional drivers when they are working but not driving, separating these microenvironments throughout the working day will also be an important facet for accurate exposure assessment in this occupation.
Table 2 Summary of in-vehicle black carbon and elemental carbon measurement studies since 2000

Author	Year and season of data collection	Type	Location	Equipment	Vehicle type and setting	Mean exposure (µg/m³) (GM = Geometric Mean, M = Median)	Std Dev (µg/m³) (GSD = Geometric Std Dev, R = Range)	Number of trips	Time of trip (min)	Time resolution of monitor (s)		
Adams et al. 2002	Summer, 1999, Winter, 2000	Fixed route	London, UK	Pump and Teflon Filters	Car (Summer), Bus (Summer), Car (Winter), Bus (Winter)	21.6 (GM), 13.6 (GM), 27.3 (GM), 18.6 (GM)	2.1 (GSD), 1.9 (GSD), 2.0 (GSD), 2.3 (GSD)	15	16 to 59	Duration of trip		
Adar et al. 2007	Spring 2002	Fixed route	St Louis, US	Magee Scientific Aethalometer MicroAetholometer AE 51, Aethlabs	Auto Rickshaw, Car Tata Indica, Car Tata Indica	43.0, 49.0, 29.0	–, –, –	–	47	180, 60		
Apte et al. 2011	Spring, Summer 2010	Fixed route	New Dehli, India	MicroAetholometer AE 51, Aethlabs	Auto Rickshaw, Car Tata Indica, Car Tata Indica	43.0, 49.0, 29.0	–, –, –	–	5	10		
de Nazelle et al. 2012	Summer, 2009	Fixed route	Barcelona, Spain	MicroAetholometer AE 51, Aethlabs	2008 Renault Clio diesel bus, Caprice Sedan	19.5, 16.1	1.8 (GSD), 1.5 (GSD)	36	120	1		
Dons et al. 2012	Winter, 2010–2011	Uncontrolled	Flanders, Belgium	MicroAetholometer AE 51, Aethlabs	Car drive, Car passenger, Bus Passenger	7.6, 6.4, 6.6	–, –, –	–	Not reported	Not reported		
Fruin et al. 2004	Autumn, 1997	Fixed route	Los Angeles, US, Sacramento, US	AE16 Aethalometer, Magee	1991 Chevrolet Caprice, 2005 Ford Taurus	16, 9	16, 11	16	120	60		
Ham et al. 2017	2014–2015	Uncontrolled	Seoul, Korea	MicroAetholometer AE 51, Aethlabs	Private Vehicle	All, Outside air, Windows Open	0.5, 0.4, 0.6, 0.3, 0.4, 0.6, 0.4, 0.3	101, 22, 22, 10, Not reported, Not reported, Not reported	Unknown, Unknown	300	1688	
Jeong and Park 2017	Summer-Winter 2015–2016	Uncontrolled	Seoul, Korea	MicroAetholometer AE 51, Aethlabs	Car, taxi and motorcycle, Van and Minibus	4.2, 7.5	2.7, 9.5	Unknown	Unknown	300		
Lee et al. 2010	Spring, 2007	Fixed route	Lexington, US	MicroAetholometer AE 51, Aethlabs	2005 Ford Taurus	Car	Windows closed, Windows open	1.5 to 2.5, 8.6, 11.8, 7.3, 5.5	–, 12, 12, 12	39, 60, 30	60, 40 - 160, 30	
Lei et al. 2017	Autumn, 2015	Fixed route	Shanghai, China	MicroAetholometer AE 51, Aethlabs	Car, Taxi Bus, Car/Taxi, BRT-Bus	41.0 (M), 77.5 (M)	2.9 (GSD), 2.8 (GSD)	6, 20	12, 90	30, 15		
Li et al. 2015	Summer, 2014	Fixed route	Shanghai, China	MicroAetholometer AE 51, Aethlabs	Car, Taxi Bus, Car/Taxi, BRT-Bus	41.0 (M), 77.5 (M)	2.9 (GSD), 2.8 (GSD)	6, 20	12, 90	30, 15		
Morales Betancourt et al. 2017	Dry season 2015	Fixed route	Bogota, Colombia	MicroAetholometer AE 51, Aethlabs	Euro 2 or 3 Bus	Unknown	5.5, 5.5, 5.5, 5.5, 5.5	3.6, 3.6, 3.6, 3.6, 3.6	Not reported, Not reported, Not reported, Not reported, Not reported	Unknown, Unknown	300	1688
Table 2 (continued)

Author	Year and season of data collection	Type	Location	Equipment	Vehicle type	Ventilation Settings	Mean exposure (μg/m³) (GM = Geometric Mean, M= Median)	Std Dev (μg/m³) (GSD = Geometric Std Dev, R= Range)	Number of trips	Time of trip (min)	Time resolution of monitor (s)
Merritt et al. 2019	2013	Fixed route	Stockholm, Sweden	MicroAetholometer AE 51, Aethlabs	2012 Volvo C50 hybrid Bus	Closed Windows	2.0	0.0 to 19.0 (R)	663	~ 7	60
Okokon et al. 2017	Spring, 2011	Fixed route	Helsinki, Finland	MicroAetholometer AE 51, Aethlabs	Ford Focus Wagon (2008-2010)	Open Windows	2.7	0.2 to 37.2 (R)	1251	~ 11	60
							7.8	4.3	6	20	60
							2.8	2.3	6	20	60
							4.6	4.4	6	23	60
			Rotterdam, Netherlands			Open Windows	6.4	3.3	6	23	60
							6.3	3.4	6	23	60
							4.3	2.6	6	27	60
							10.9	9.9	6	21	60
							4.7	3.4	6	21	60
Pant et al. 2017	2014–2016	Fixed route	New Dehi, India	MicroAetholometer AE 51, Aethlabs	Bus	Unknown	8.5	5.1	6	32	Unknown 60
Patton et al. 2016	2007–2014	Fixed route	New Jersey Turnpike, US	MicroAetholometer AE 51, Aethlabs	Varied Cars	Windows closed, outside air	4.0 (M)	-	190	Unknown 1	60
Rivas et al. 2017	Spring, 2016	Fixed route	London, UK	MicroAetholometer AE 51, Aethlabs	Petrol Peugeot 208 Active 1.2	Windows closed and recirculate	4.4 (GM)	2.5 (GSD)	90	49 to 66	10
Sarnat et al. 2014	2009 - 2011	Fixed route	Atlanta, US	MicroAetholometer AE 51, Aethlabs	Bus	Unknown	5.4 (GM)	2.3 (GSD)	47	33	78 120 Not reported
Targino et al. 2018	Autumn 2014	Fixed route	Londrina, Brazil	MicroAetholometer AE 51, Aethlabs	Unspecified Bus	Mixed	9.6	12.2	8	120	Not reported
Tan et al. 2017	Dry season 2013	Fixed route	Singapore	MicroAetholometer AE 51, Aethlabs	Taxi	Windows closed and recirculate	2.9 (GM)	3.9 (GSD)	23	8	1
Vouitis et al. 2014	Spring 2011	Fixed route	Thessaloniki, Greece	MicroAetholometer AE 51, Aethlabs	Bus	Unknown	3.2 (GM)	3.3 (GSD)	23	7	24
Author	Year and season of data collection	Type	Location	Equipment	Vehicle type	Ventilation Settings	Mean exposure (μg/m³) (GM = Geometric Mean, M = Median)	Std Dev (μg/m³) (GSD = Geometric Std Dev, R = Range)	Number of trips	Time of trip (min)	Time resolution of monitor (s)
------------------------	-----------------------------------	--------------------	---------------------------	---	-------------------------------------	----------------------	---	--	----------------	---------------------	-----------------------------
Wagon Petrol	2008-2010 Ford Focus Wagon Petrol	Windows closed	4.2	2.8	12	~ 21					
Weichenthal et al. 2015	Summer and Winter, 2010	Fixed route	Toronto, Canada	MicroAetholometer AE 51, Aethlabs	Chevrolet Grand Caravans 2009–2012	Windows Closed	7.4	3.1	67	180	1
	Winter, 2012 and Summer, 2013		Vancouver, Canada		Chevrolet Grand Caravans 2009–2012	Windows Closed	2.0 (M)	0.2 to 7.3 (R)	113	180	
	Winter 2011		Montreal, Canada		Chevrolet Grand Caravans 2009–2012	Windows Closed	1.5 (M)	0.4 to 2.7 (R)	14	180	
Williams and Knibbs 2016	Not reported	Uncontrolled	Brisbane and Eden, Australia	MicroAetholometer AE 51, Aethlabs	Chevrolet Grand Caravans 2009–2012	Windows closed and recirculate	1.7	4.0	Not reported	Not reported	30
Yang et al. 2015	Summer, 2103	Fixed route	Hong Kong, China	MicroAetholometer AE 51, Aethlabs	Diesel Bus, LPG Bus	Unknown	2.4	2.8	~ 120	1	
					Diesel Bus, LPG Bus	Unknown	11.6	7.6	~ 120	1	60
					Diesel Bus, LPG Bus	Unknown	7.5	3.2	~ 120	4	~ 120
					Diesel Bus, LPG Bus	Unknown	2.8	3.4	~ 120	1	~ 120
					Diesel Bus, LPG Bus	Unknown	0.4	0.3	~ 120	0.3	~ 120
Zhang and Zhu 2010	Spring 2008	Fixed route	Beeville, USA	AE42 Magee Scientific Aethalometer	Windows closed, Electric Bus	Unknown	14.2	11.3	12	120	Duration of trip
					Windows closed, Electric Bus	Unknown	7.9	3.1	12	120	of trip
					Windows closed, Electric Bus	Unknown	12.9	4.1	15	120	
Zuurbier et al. 2010	2007–2008	Fixed route	Arnhem, Netherlands	Model M43D smoke stain reflectometer Converted soot into elemental carbon	Diesel Car, Gasoline Car	Windows closed, A/C on	14.7	4.6	15	120	

Indicates measurement of elemental carbon and time-integrated studies, the remaining studies measured black carbon using time-resolved methods
Conclusion

Exposure studies have highlighted that some of the highest exposures to traffic-related pollutants are experienced by people commuting, especially those driving within highly congested urban areas. These exposures are influenced by several factors including cabin air tightness, the use of ventilation and the type of air inlet filters, but there are few studies that address these exposures in detail, and no large studies which assess the effectiveness of these changes. Given the evidence that acute exposures to diesel exhaust is a class 1 carcinogen and have been associated with adverse acute respiratory and cardiovascular effects, it is surprising that the exposures of professional drivers have not received wider attention from a health and safety perspective.

Those people that are required to work in traffic are likely to be disproportionately affected by exposure to air pollution, and whilst this has been acknowledged in occupational health studies, a modern exposure science approach on the time-activity of a professional driver has not been applied. Understanding their activity patterns is essential in providing better information on how to reduce their exposure. Professional drivers represent one of the largest occupational groups, many being self-employed, or employed on temporary contracts. There is an urgent need to better understand exposures in this group and to parameterise the chief determinants of their exposures during the working day, such that low cost, effective mitigation measures can be put in place. The advent of reliable portable sensors for indicators of diesel exhaust exposure alongside use of GPS devices will allow large-scale evaluations of this issue and the cooperation between industry and academia afford the opportunity for the co-design of studies to provide evidence lead solutions to an underappreciated issue. There is therefore a clear need for larger experimental campaigns to fully parameterise the level and chief determinants of in-vehicle exposures in occupational drivers.

Code availability Not applicable.

Funding This research was funded by the Institution of Occupational Safety and Health. IM and BB received further support from the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health at Imperial College in partnership with Public Health England (PHE). The views expressed in this paper are those of the authors and should not be taken to reflect the official position of the funders.
Not applicable.

Not applicable.

The authors declare no conflict of interest.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide the link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Adams H, Nieuwenhuijsen MJ, Colville RN, Older MJ, Kendall M (2002) Exposure science & environmental epidemiology 26(2):125–132. PubMed. https://doi.org/10.1038/jes.2015.65

Baccarelli AA, Zheng Y, Zhang X, Chang D, Liu L, Wolf KR, Zhang Z, McCracken JP, Diaz A, Bertazzi PA, Schwartz J, Wang S, Kang C-M, Koutrakis P, Hou L (2014) Air pollution exposure and lung function in highly exposed subjects in Beijing, China: a repeated-measure study. Particle and Fibre Toxicology 11(1):51. https://doi.org/10.1186/s12989-014-0051-7

Barath S, Mills NL, Lundbäck M, Tömqvist H, Lucking AJ, Langrish JP, Söderberg S, Bornman C, Westerholm R, Lundahl J, Donaldson K, Mudway IS, Sandström T, Newby DE, Blomberg A (2010) Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Particle and Fibre Toxicology 7(1):19. https://doi.org/10.1186/1743-8977-7-19

Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ, Koutrakis P, Wang Y, Dominici F, Peng RD (2014) Associations of PM2.5 constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts (USA) for persons ≥65 years of age. Environ Health Perspect 122(2):138–144. https://doi.org/10.1289/ehp.1306656

Boffetta P, Cherrie J, Hughson G., & Pitard A (2002). Cancer risk from diesel emissions exposure in Central and Eastern Europe: A feasibility study. (HEI Special Report. Research Directions to Improve Estimates of Human Exposure and Risk from Diesel Exhaust. A Special Report of the Institute’s Diesel Emission Working Group., pp. 57–78. Health Effects Institute; Boston, MA

Boni TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Gattikudia SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos 118(11):5380–5552. https://doi.org/10.1002/jgrd.50171

Boz B, Lim S, Hedges M, Molden N, Boyle S, Mudway I, Barratt B (2021) Taxi drivers’ exposure to black carbon and nitrogen dioxide in electric and diesel vehicles: a case study in London. Environ Res 195:110736. https://doi.org/10.1016/j.envres.2021.110736

Brauer M, Brumm J, Vedal S, Petkaiu AJ (2002) Exposure misclassification and threshold concentrations in time series analyses of air pollution health effects. Risk Anal 22(6):1183–1193. https://doi.org/10.1111/1539-6924.00282

Briggs NL, Long CM (2016) Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos Environ 144:409–427. https://doi.org/10.1016/j.atmosenv.2016.09.002

Brokamp C, Brandt EB, Ryan PH (2019) Assessing exposure to outdoor air pollution for epidemiological studies: model-based and personal sampling strategies. J Allergy Clin Immunol 143(6):2002–2006. https://doi.org/10.1016/j.jaci.2019.04.019

Brucker N, Nascimento SN, Bernardini L, Charão MF, Garcia SC (2020) Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic-related air pollution: a review. J Appl Toxicol, jat.3940 40:722–736. https://doi.org/10.1002/jat.3940

Brunekreef B, Stewart AW, Andersen R, Lai CKW, Strachan DP, Pearce N (2009) Self-reported truck traffic on the street of residence and symptoms of asthma and allergic disease: a global relationship in ISAAC Phase 3. Environ Health Perspect 117(11):1791–1798. https://doi.org/10.1289/ehp.0800467

Carnes M, Helmers E (2013) Critical evaluation of the European diesel car boom—Global comparison, environmental effects and various national strategies. Environ Sci Eur 25(15)

Carey IM, Anderson HR, Atkinson RW, Beevers S, Cook DG, Dajnak D, Gulliver J, Kelly FJ (2016) Traffic pollution and the incidence of cardiorespiratory outcomes in an adult cohort in London. Occup Environ Med 73(12):849–856. https://doi.org/10.1136/oemed-2015-103531
Petzold A, Ogren JA, Fiebig M, Laj P, Li S-M, Baltensperger U, Holzer-Popp T, Kinne S, Pappalardo G, Sugimoto N, Wehrl C, Wiedensohler A, Zhang X-Y (2013) Recommendations for reporting ‘black carbon’ measurements. Atmos Chem Phys 13(16): 8365–8379. https://doi.org/10.5194/acp-13-8365-2013

Pfeiffer PE, Donaldson GC, Mackay AJ, Wiedzicha JA (2018) Increased chronic obstructive pulmonary disease exacerbations of likely viral etiology follow elevated ambient nitrogen oxides. Am J Respir Crit Care Med 199(5):581–591. https://doi.org/10.1164/rccm.201712-25060C

Proska C, Coble J, Stewart PA (2009) Occupational exposure to diesel engine exhaust: a literature review. Journal of Exposure Science & Environmental Epidemiology 19(5):443–457. PubMed. https://doi.org/10.1038/jes.2009.21

Ramachandran G, Paulsen D, Watts W, Kittelson D (2005) Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit 7(7):728–735. https://doi.org/10.1039/B503854E

Rivas I, Kumar P, Hagen-Zanker A (2017) Exposure to air pollutants during commuting in London: are there inequalities among different socio-economic groups? Environ Int 101:143–157. https://doi.org/10.1016/j.envint.2017.01.019

Rushton L, Hutchings SJ, Fortuneo L, Young C, Evans GS, Brown T, Bevan R, Slack R, Holmes P, Bagga S, Cherrie JW, Van Tongeren M (2012) Occupational cancer burden in Great Britain. British Journal of Cancer, 107 Suppl 1(Suppl 1):S3–S7. PubMed. https://doi.org/10.1038/bjc.2012.112

Salako GO, Hopke PK, Cohen DD, Begum BA, Biswas SK, Pandit GG, Lodysamba S, Wimolwattanaporn W, Bumpropob S, Chung Y-S, Rahman SA, Hanah MS, Davy P, Markwitiz A, Shagijamiba D (2012) Exploring the Variation between EC and BC in a Variety of Locations. Aerosol Air Qual Res 12(1):1–7. https://doi.org/10.4209/aapqr.2011.09.0150

Salvi S, Blomberg A, Rudell B, Kelly F, Sandström T, Holgate S, Frew A (1999) Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 159(3):702–709. PubMed. https://doi.org/10.1164/ajrccm.159.3.9790083

Samoli E, Atkinson RW, Analitis A, Fuller GW, Green DC, Mudway I, Anderson HR, Kelly FJ (2016) Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occup Environ Med 73(5): 300–307. https://doi.org/10.1136/oemed-2015-103136

Sarnat JA, Golan R, Greenwald R, Raysoni AU, Kewada P, Winquist A, Sarnat SE, Dana Flinders W, Mirabello MC, Zora JE, Bergin MH, Yi F (2014) Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters. Environ Res 133:66–76. https://doi.org/10.1016/j.envres.2014.05.004

Silverman DT, Samanic CM, Lubin JH, Blair AE, Stewart PA, Vermeulen R, Coble JB, Rothman N, Schleiff PL, Travis WD, Ziegler RG, Wacholder S, Attfield MD (2012) The diesel exhaust in miners study: a nested case-control study of lung cancer and diesel exhaust. JNCI: Journal of the National Cancer Institute 104(11):855–868. https://doi.org/10.1093/jnci/djs034

Sinhaary R, Gong J, Barratt B, Ohman-Strickland P, Ernst S, Kelly FJ, Zhang J, Collins P, Cullinan P, Chung KF (2018) Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet 391(10118):339–349. https://doi.org/10.1016/S0140-6736(17)32643-0

Smith RB, Fecht D, Gulliver J, Beever SD, Dajnak D, Blangiardo M, Ghosh RE, Hansell AL, Kelly FJ, Anderson HR, Toledano MB (2017) Impact of London’s road traffic air and noise pollution on birth weight: retrospective population based cohort study. BMJ 359: j5299. https://doi.org/10.1136/bmj.j5299

Sun Y, Bochmann F, Nold A, Mattenklott M (2014) Diesel exhaust exposure and the risk of lung Cancer—a review of the epidemiologic evidence. Int J Environ Res Public Health 11(2):1312–1340. https://doi.org/10.3390/ijerph110201312

Tan SH, Roth M, Velasco E (2017) Particle exposure and inhaled dose during commuting in Singapore. Atmos Environ 170:245–258. https://doi.org/10.1016/j.atmosenv.2017.09.056

Targino AC, Rodrigues MVC, Krecel P, Cipoli YA, Ribeiro JPM (2018) Commuter exposure to black carbon particles on diesel buses, on bicycles and on foot: a case study in a Brazilian city. Environ Sci Pollut Res 25(2):1132–1146. https://doi.org/10.1007/s11356-017-0517-x

Tartkovsky L, Baibikov V, Czerwiński J, Gutman M, Kasper M, Popescu D, Veinblat M, Zvirin Y (2013) In-vehicle particle air pollution and its mitigation. Atmos Environ 64:320–328. https://doi.org/10.1016/j.atmosenv.2012.10.003

U.S. Environment Protection Agency. (2012). Report to congress on black carbon (p. 351). https://19january2017snapshot.epa.gov/www3/airquality/blackcarbon/2012report/fullreport.pdf

Vardoulakis S, Fisher B, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: A review. Atmos Environ 37:155–182

Vermeulen R, Silverman D, Garshick E, Vlaanderen J, Portengen L, Steenland K (2014) Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122(2):172–177. https://doi.org/10.1289/ehp.1306880

Voutilainen I, Taimisto P, Kelessis A, Samaras Z (2014) Microenvironment particle measurements in Thessaloniki, Greece. Urban Climate, 10, Part 4:608–620. https://doi.org/10.1016/j.uclim.2014.03.009

Weichenthal S, Van Ryswyk K, Kulka R, Sun L, Wallace L, Joseph L (2015) Diesel exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122(7):S3–S7. PubMed. https://doi.org/10.1289/ehp.1304034

Williams RD, Knibbs LD (2016) Daily personal exposure to black carbon: a pilot study. Atmos Environ 132:296–299. https://doi.org/10.1016/j.atmosenv.2016.03.023

World Health Organisation. (2012). Health Effects of Black Carbon (p. 86). http://www.euro.who.int/en/publications/abstracts/health-effects-of-black-carbon-2012

Wu S, Deng F, Niu J, Huang Q, Liu Y, Guo X (2011) Exposures to PM2.5 components and heart rate variability in taxi drivers around the Beijing 2008 Olympic Games. Sci Total Environ 409(13):2478–2485. https://doi.org/10.1016/j.scitotenv.2011.03.034

Yang F, Kaul D, Wong KC, Westerdahl D, Sun L, Ho K, Tian L, Brimblecombe P, Ning Z (2015) Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos Environ 109:42–51. https://doi.org/10.1016/j.atmosenv.2015.03.009

Zhang Q, Zhu Y (2010) Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas. Atmos Environ 44(2):253–261. https://doi.org/10.1016/j.atmosenv.2009.09.044

Zuurbier M, Hock G, Oldenwening M, Lelters V, Meliste K, van den Hazel P, Brunekreef B (2010) Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 118(6):783–789. https://doi.org/10.1289/ehp.0901622

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.