Dihydroavenanthramide D prevents UV-irradiated generation of reactive oxygen species and expression of matrix metalloproteinase-1 and -3 in human dermal fibroblasts

Jeong-Mi Kim1*, Eun-Mi Noh2*, Kang-Beom Kwon1, Bo-Mi Hwang2, Jin-Ki Hwang1, Yong-Ouk You3, Min Seuk Kim4, Wan Lee5, Jeong-Ho Lee6, Hye-Jung Kim7, Jong-Suk Kim7 and Young-Rae Lee1,3

1Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea; 2Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, South Korea; 3Department of Oral Biochemistry, School of Dentistry, Wonkwang University and Institute of Wonkwang Dental Research, Iksan, South Korea; 4Department of Oral & Macillofacial Radiology, School of Dentistry, Wonkwang University, Iksan, South Korea; 5Department of Oral & Macillofacial Radiology, School of Dentistry, Wonkwang University, Iksan, South Korea; 6Department of Herbal Medicine Resources, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Korea; 7Department of Family Medicine, The Catholic University of Korea, Incheon St. Mary’s Hospital, Incheon, South Korea

Correspondence: Jong-Suk Kim, Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju 560-182, South Korea; Tel.: +82-63-270-3085, Fax: +82-63-274-9833, e-mail: jskim@chonbuk.ac.kr and Young-Rae Lee, Department of Oral Biochemistry, School of Dentistry, Wonkwang University and Institute of Wonkwang Dental Research, Iksan, 570-749, South Korea, Tel.: +82-63-850-6996, Fax: +82-63-842-3138, e-mail: mindyr@wku.ac.kr

*These authors contributed equally to this study.

Abstract: Ultraviolet B (UVB) radiation induces photoaging by upregulating the expression of matrix metalloproteinases (MMPs) in human skin cells. Dihydroavenanthramide D (DHAVD) is a synthetic analog to naturally occurring avenanthramide, which is the active component in oats. Although anti-inflammatory, anti-atherosclerotic and antioxidant effects have been reported, the antiphotoaging effects of DHAVD are yet to be understood. In this study, we investigated the inhibitory effects of DHAVD on UVB-induced production of reactive oxygen species (ROS) and expression of MMPs, and its molecular mechanism in UVB-irradiated human dermal fibroblasts. Western blot and real-time PCR analyses revealed that DHAVD inhibited UVB-induced MMP-1 and MMP-3 expression. It also significantly blocked UVB-induced ROS generation in fibroblasts. Additionally, DHAVD attenuated UVB-induced phosphorylation of MAPKs, activation of NF-κB and AP-1. DHAVD regulates UVB-irradiated MMP expression by inhibiting ROS-mediated MAPK/NF-κB and AP-1 activation. DHAVD may be a useful candidate for preventing UV light-induced skin photoaging.

Key words: DHAVD – MAPK – MMP – ROS – UVB

Accepted for publication 12 September 2013
ROS are generated in response to UV irradiation and act as second messengers in signalling pathways and in the regulation of gene expression by activating transcription factors, such as activator protein-1 (AP-1) and nuclear factor-xB (NF-xB), leading to cellular oxidative stress (4). These transcription factor are regulated by mitogen-activated protein kinases (MAPks) (5,6), which increase MMP expression.

Dihydroavenanthramide D (DHAvD) is a synthetic analog to the naturally occurring avenanthramide, which is the active component in oats (7). Avenanthramide is effective for reducing atherosclerosis (8), inflammation (9) and oxidative stress (10). Recent studies have shown that DHAvD inhibits NF-xB activation (11,12). However, the antiphotageing effects of DHAvD have not yet been reported. In the present study, we evaluated the preventive effects of DHAvD on UVB-induced production of ROS and expression of MMPs and investigated its molecular mechanism in UVB-irradiated HDFs.

Question addressed

We evaluated the antiskin photoageing effects of DHAvD by confirming its inhibitory effect on UVB-induced MMP expression through inhibition of ROS and MAPK/NF-κB in HDFs.

Experimental design

Isolation and culture of HDFs

HDFs were isolated aseptically from human foreskin. Dermal fibroblasts that spread as a radial outgrowth from the attached pieces of dermis were cultured in Dulbecco’s modified Eagle’s medium containing 10% foetal bovine serum and 1% antibiotics, at 37°C in a 5% CO2 incubator.

UV irradiation

HDFs were rinsed twice with PBS and irradiated using a UVB cross-linker (Model CL-508M; Vilber Lourmat, Paris, France). Immediately after irradiation, fresh serum-free medium was added to the HDFs. Responses were measured after incubation for each experimental condition. The same schedule of medium changes without UVB irradiation was followed for the control cells.

Determination of MMP-1 and MMP-3 expression using Western blotting and an enzyme-linked immunosorbent assay

HDFs (2.0 x 10⁶ cells) were irradiated with UVB (25 mJ/cm²), treated with DHAvD (SymCalmin®) (Symrise GmbH & Co, Holzminden, Germany) for 24 h and lysed using 40 μL ice-cold M-PER® Mammalian Protein Extraction Reagent (Pierce Biotechnology, Rockford, IL, USA). The samples were separated using SDS-PAGE.

Active MMP-1 in the culture supernatants was quantified using a Fluorokine E Human Active MMP-1 Fluorescent Assay Kit (R&D Systems, Minneapolis, MN, USA); the MMP-3 level in the cell culture supernatants was determined using a Quantikine ELISA Kit (R&D Systems), according to the manufacturer’s protocol.

Quantification of intracellular ROS

The intracellular concentration of ROS in HDFs was measured using an oxidation-sensitive fluorescent probe dye, DCF-DA. DCF fluorescence was detected using a FACStar flow cytometer (Becton Dickinson).

Electrophoretic mobility shift assay

Activation of NF-κB and AP-1 was assayed with an EMSA using nuclear extracts.

Statistical analysis

Statistical analysis was performed using analysis of variance and Duncan’s test. P-values < 0.05 were considered statistically significant.

Results and discussion

DHAvD inhibits UVB-induced MMP-1 and MMP-3 expression and secretion in HDFs

UV irradiation of cultured HDFs in vitro or human skin in vivo induces expression of MMP-1 and MMP-3, which play important roles degrading ECM components during skin ageing (13–16). Varani et al. (17) reported that MMP levels increase and collagen synthesis decreases with age in sun-protected human skin in vivo. In this study, we examined whether DHAvD inhibited UVB-induced MMP-1 and MMP-3 expression. Analysis by Western blot revealed that UVB irradiation increased MMP-1 and MMP-3 protein levels in HDFs and that DHAvD inhibited UVB-induced upregulation of MMP-1 and MMP-3 (Fig. 1a). We also determined the effect of DHAvD on UVB-induced MMP secretion by ELISA. UVB irradiation of HDFs resulted in an increase in MMP-1 and MMP-3 secretion, and DHAvD significantly diminished UVB-induced MMP-1 and MMP-3 secretion (Fig. 1b). These
results indicate that DHAvD inhibits the UVB-induced expression and secretion of MMP-1 and MMP-3 in HDFs.

DHAvD inhibits UVB-induced ROS generation in HDFs

UV irradiation induces the oxidative processes involved in skin photoaging. Previous studies have examined the generation of ROS following UVB irradiation, leading to the induction of MMP-1 and MMP-3 (14). Intracellular ROS levels were measured by the DCF-DA fluorescent method to determine whether DHAvD functions as a scavenger for UVB-induced ROS. Our results show that the level of ROS in UVB-irradiated cells increased by approximately 1.9-fold when compared with non-irradiated cells. Pretreating cells with DHAvD in culture medium for 24 h decreased fluorescence by approximately 1.3-fold (Fig. 1c). These results indicate that DHAvD significantly inhibited UVB-induced ROS generation in HDFs.

Effect of DHAvD on UVB-induced NF-κB and AP-1 DNA-binding activity

The MMP promoter contains NF-κB and AP-1 binding sites, both of which are centrally involved in MMP gene induction by UVB. To further explore the downstream effects of inhibiting the MAPK pathway by DHAvD in UVB-irradiated HDFs, the DNA-binding activity of NF-κB and AP-1 was examined by EMSA. DHAvD diminished the UVB-induced nuclear translocation and binding activity of NF-κB and AP-1 (Fig. 2). Additionally, we confirmed that the increased translocation of p65 and p50 and IkB degradation/phosphorylation, and phosphorylation of c-Jun increased as a result of UVB irradiation were significantly suppressed by treatment with DHAvD (Fig. S1). Furthermore, MAPKs are known to upregulate the transcription of genes via UVB-induced ROS generation (18). Therefore, we investigated the effect of DHAvD on MAPK signalling pathways. The UVB-induced phosphorylation of ERK, JNK and p38 was detected, and DHAvD attenuated phosphorylated p38, ERK, JNK and MAPK (Fig. S2). Accordingly, these results suggest that inhibiting p38, ERK, JNK and MAPK signalling by DHAvD might attenuate UVB-induced NF-κB and AP-1 activation.

Conclusion

In conclusion, our results provide evidence that DHAvD has an antiphotoaging effect *in vitro*. The DHAvD mechanism may be mediated by inhibiting MMP-1 and MMP-3 expression by inhibiting UVB-irradiated ROS generation. The regulation of MMP expression is possibly controlled by suppressing activation of the MAPK/NF-κB/AP-1 signalling pathways. Therefore, DHAvD may be a useful candidate for preventing UV light-induced skin photoaging.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2011-0030716) and (NRF-2011-0023921).

Author contributions

BMH and EMN performed the research. KBK and YOU made the research design. JMK, MSK, WL, JHL and JKH prepared the essential reagents. JSK and YRL made the research design and wrote the paper.

Conflict of interests

The authors have declared no conflicting interests.

References

1. Jenkins G. Mech Ageing Dev 2002: 123: 801–810.
2. Matsunuma Y, Ananthaswamy H N. Expert Rev Mol Med 2004: 4: 1–22.
3. Palmer D M, Kitchin J S. J Drugs Dermatol 2010: 9: 11–15.
4. Kalbina I, Strid A. Plant, Cell Environ 2006: 29: 1783–1793.
5. Garin M. J Biol Chem 1995: 270: 16483–16486.
6. Madrid L V, Mayo M W, Reuther J Y et al. J Biol Chem 2001: 276: 18934–18940.
7. Heuschkel S, Schirubel J, Schmaus G et al. Eur J Pharm Biopharm 2008: 70: 239–247.
8. Liu L, Zubik L, Collins F W et al. Atherosclerosis 2004: 175: 39–49.
9. Sur R, Nigam A, Grote D et al. Arch Dermatol Res 2008: 300: 569–574.
10. Chen C Y, Milbury P E, Collins F W et al. J Nutr 2007: 137: 1375–1382.
11. Lv N, Song M Y, Lee Y R et al. Biochim Biophys Acta 2009: 1783: 97–102.
12. Lee Y R, Noh E M, Oh H J et al. Biochim Biophys Acta 2011: 1804: 552–557.
13. Park M, Han J, Lee C S et al. Exp Dermatol 2013: 22: 336–341.
14. Breunissen P, Sies H, Schaffetter-Kochanek K. Ann N Y Acad Sci 2002: 79: 313–41.
15. Rittie L, Fischer G J. Ageing Res Rev 2002: 1: 1–705.
16. Kim J K, Mun S, Kim M S et al. Exp Dermatol 2012: 21: 211–216.
17. Varani J, Perone P, Figiel S E et al. J Invest Dermatol 2002: 119: 122–129.
18. Mufti S, Vla T J. Arch Dermatol Res 2009: 302: 5–17.

Supporting Information

Additional Supporting Information may be found in the online version of this article.