ABSTRACT. Tim Maudlin’s argument for the inconsistency of Cramer’s Transactional Interpretation (TI) of quantum theory has been considered in some detail by Joseph Berkovitz, who has provided a possible solution to this challenge at the cost of a significant empirical lacuna on the part of TI. The present paper proposes an alternative solution in which Maudlin’s charge of inconsistency is evaded but at no cost of empirical content on the part of TI. However, Maudlin’s argument is taken as ruling out Cramer’s heuristic “pseudotime” explanation of the realization of one transaction out of many.

1. Introduction

John Cramer’s Transactional Interpretation (TI) (Cramer, 1986) is based on the Wheeler-Feynman emitter-absorber theory of radiation (Wheeler and Feynman 1945), which proposed that electromagnetic interactions involve time-reversed “advanced waves” as well as the usual retarded solutions to the wave equation. Cramer extended the notion of advanced wave solutions to the quantum domain, proposing that in any quantum mechanical interaction, both types of waves are present. That is, he proposed that the complex conjugate of the Schrödinger equation and its solution, ψ^*, play an equal role with the usual Schrödinger equation, and that the latter represents an advanced
wave while the usual solution ψ, represents the retarded wave. He used these premises to derive an elegant ontological account of the relationship of quantum mechanical amplitudes to observable probabilities (i.e., the Born rule), as well as a proposed resolution of the problem of wave-function “collapse” and other puzzles.

In TI, a quantum system is produced by a source S which plays the role of an “emitter” in the Wheeler-Feynman theory. However, unlike in standard quantum theory, the source emits both a quantum mechanical wave ψ and a time-reversed counterpart, ψ^*, exactly out of phase with ψ.

Cramer refers to the future-directed ψ-wave as an “offer wave” (OW). This wave continues on until it interacts with an absorber, which absorbs the wave and in response emits a “confirmation wave” (CW) also having two components, both advanced and retarded. Offer waves and confirmation waves extending forward in time beyond the absorber and backward in time beyond the emitter are exactly out of phase. If the absorber’s returned confirmation wave is equal in amplitude to the offer wave, the “pre-emission” waves and the “post-absorption” wave mutually cancel; the only nonzero field that remains is on the worldline connecting the source and the absorber, where a retarded OW and an advanced CW “overlap.” The final amplitude of this standing wave is $\psi^*\psi$, which reflects the Born probability in an elegant manner.

After the advanced CW reaches S, there is a possibility for a transaction to occur, which according to Cramer involves an “echoing” process in which the emitter and the absorber interaction cyclically repeats. At some point S “accepts” or reinforces the CW resulting in a realized transaction and an actual, observable event (such as the detection of a particle), and which reflects the Born probability as an intrinsic dynamical feature. Thus, under TI it is only as a result of completed transactions that observable, empirically verifiable events can be said to occur. Quantum particles such as electrons are thus to
be identified with the transactions that give them detectable reality; in some sense, an electron does not fully exist until a transaction has occurred.

2. Maudlin’s thought experiment

Tim Maudlin (2002) has presented the following challenge to TI (Refer to Figure 1):

\[|\psi\rangle = \frac{1}{\sqrt{2}}(|L\rangle + |R\rangle) \]
with obvious notation. To the right is a detector “A” 1 unit away and behind it another detector “B” 2 units away, also initially on the right but with the capability of being swung quickly over to the left. A may detect a particle with a probability of $\frac{1}{2}$. If A does not detect the particle after the requisite time interval has passed, then, at time t_1, B is swung quickly around to the left to detect the particle. To avoid ambiguities and practical problems arising from experimenter intervention, we can assume that B, initially located on the right behind A, is equipped with a timed circuit that will automatically cause it to be swung to the left after the appropriate time interval, unless it receives an ‘abort’ signal from the detection of the particle at A. So the detection process is fully automated.

According to TI, offer waves of amplitude $\frac{1}{\sqrt{2}}$ are emitted to the right and to the left. Detector A returns a confirmation wave of amplitude $\frac{1}{\sqrt{2}}$ but detector B cannot return a confirmation wave since it is being blocked by A. However, if no realized transaction occurs between the source and A, then B is swung over to the left and then it returns a confirmation wave of amplitude $\frac{1}{\sqrt{2}}$, while detecting the particle with certainty.

Maudlin argues that, since whenever a confirmation wave is returned from B, the particle is certain to be detected there, it is inconsistent for the amplitude of that confirmation wave to be only $\frac{1}{\sqrt{2}}$, since that implies a probability of only $\frac{1}{2}$ for detection of the particle at B. He concludes, based on this argument, that “Cramer’s theory collapses.”

Besides this apparent inconsistency between predicted frequency of detection at B being unity whenever B is in place and the intrinsic probability of $\frac{1}{2}$ based on the L-confirmation wave, there is another difficulty raised by this thought experiment. This second difficulty concerns the role of what Cramer terms a “pseudotime” cyclic sequence, in which the particular realized transaction is supposed to result from an echoing back and forth of offer and confirm-
tion waves between the emitter and the absorbers, until an outcome occurs in which the appropriate conservation laws (such as energy, momentum, etc.) are satisfied. As Maudlin points out, such an “echoing” process is reminiscent of the usual way of thinking about interior field values being determined as a result of fixed boundary conditions. But in this example, the boundary conditions are not fixed, but are instead causally dependent on the very outcomes that—according to Cramer’s presentation of his theory—are supposed to be determined, at least in part, by those boundary conditions.

So the Maudlin challenge to TI can be characterized by two distinct aspects: (1) the apparent inconsistency between the predicted frequency and the intrinsic probability of detection at L; and (2) the apparent inadequacy of the TI description of the realized transaction as resulting from fixed and independent boundary conditions, in the face of a realizable experimental situation in which the boundary conditions are not fixed and independent.

Concerning (2), the pseudotime narrative talks about a sequence of events in which (i) an offer wave is emitted, (ii) various absorbers return confirmation waves to the emitter, and then (iii) the emitter responds to the confirmation waves, with the process repeating (iv) until a transaction is realized. Thus, at least as seen in pseudotime, the transaction and corresponding outcome does not occur until step (iv). But in this experiment, the nature of the particular confirmation waves arising in step (ii) is dependent on the outcome of the experiment—that is, what is supposed to be as yet undecided until step (iv). So the process of “echoing” leading to the realized transaction cannot include the left-hand component of the offer wave, which will only result in a confirmation wave based on a definite outcome of “particle not on the right” having already occurred, presumably at step (ii). Therefore, if it turns out that the particle is detected on the left, it can’t be because of any echoing process between the emitter and absorber B.
This shows that there is something wrong with the pseudotime narrative which asserts that the realized transaction does not occur until the “echoing” process of step (iv). So, whether or not Maudlin’s argument against the probabilities ultimately holds up, it seems clear that the picture of the realized transaction coming about through a cyclic echoing process, based on fixed boundary conditions, is suspect.

However, arguably the heuristic “pseudotime” account is not crucial to Cramer’s interpretation. In fact the core of TI is the assertion that advanced waves from absorbers play an important and heretofore neglected role as the ontological basis of the probability of an outcome. In this paper I take the point of view that the “pseudotime” account, however discredited by the Maudlin thought experiment, is not fundamentally constitutive of TI and can be discarded without significant harm to the basic interpretation. It is assumed here that the main thrust of TI is that the relationship between an emitter and a set of absorbers “carves up” the probability space corresponding to the possible outcomes defined by that configuration. Specifically, it is assumed that the weights of possible transactions define a partitioning of the probability space. More details of this picture will be provided in section 4.

3. Berkovitz’ account of frequencies in causal loops

J. Berkovitz (2002) offers an analysis of Maudlin’s problem in terms of different interpretations of the probabilities involved, and concludes that Cramer’s TI can evade the charge of inconsistency given the appropriate interpretation of the probabilities prescribed by TI. The argument essentially consists of the claim that Maudlin’s experiment constitutes a causal loop, and that intrinsic probabilities (such as those suggested by the initial conditions of the experiment in terms of the offer waves and confirmation waves in place at t_0) cannot be expected to equal (or be close to) the long-run frequencies in causal loops.

Berkovitz’ basic illustration of an indeterministic causal loop is that of a
coin toss: A balanced coin is tossed (A), which indeterministically causes the result “heads” (B), which deterministically causes my perception of “heads” (C), which deterministically and in the reverse time direction causes the coin flip (A). While a coin toss outside of a loop would have a long-run frequency of 1/2 for “heads,” in this loop that frequency is 1 due to the constraints of the loop: whenever the coin toss occurs, we know that outcome “heads” occurs.

Berkovitz argues that such a loop can be seen as consistent by noting that the reference class of causal states (A) giving rise to (B) is biased due to the reverse-time deterministic connection between (C) and (A). That is, whether or not the cause (A) occurs is not independent of its effect (B). Therefore, the long-run frequency of (B) should not be expected to correspond to its unbiased probability in the reference class of (A) and the discrepancy between the two is not an indication of inconsistency. Berkovitz also notes that the conditional probability of B given A in the causal circumstances of the loop is unity, i.e., \(P(B|A) = 1 \), which is equal to the long run frequency. Either of these facts can be seen as showing the consistency of the loop, i.e. that such a loop is physically possible.

To be more precise about Berkovitz’argument we need to briefly review the formulation he presents, which takes off from Butterfield’s proposal to distinguish between “many-spaces” and “big-space” probabilities (Butterfield 1989, 1992). Consider an experiment with possible states \(\lambda_i \) and measurement settings \(S_j \) and possible outcomes X or Y. The “many-spaces” approach assigns a different probability space to each of the possible experimental conditions defined by the states and settings, with the probabilities for each outcome defined only within that space. Butterfield translates this approach in logical terms as

‘conditional with a probabilistic consequent’: \((S_j \& \lambda_i) \rightarrow (pr(X) = x) \)

where \(x \) is a number between 0 and 1.
The notation for the many-spaces probability of outcome X in the reference class of state λ_k and setting S_l is $P_{\lambda_k,S_l}(X)$. In the case of the coin-toss loop (Berkovitz’ “Loop 1”), the many-spaces probability of “heads” (B) on a balanced coin toss (A) is written as $P_A(B) = 1/2$.

In contrast, the “big-space” approach uses a single probability space to assign probabilities to outcomes with reference to particular states and settings, as conditional probabilities defined in the usual way (as the conjunction of all the events divided by the probability of the settings and states). Thus the “big-space” probability of X for the same state and setting as above is written $P(X|\lambda_k,S_l)$.

The crucial conceptual difference between these two approaches is the following. In the big-space approach, absolute probabilities must be defined for all possible states and settings. In contrast, the many-spaces approach treats states and measurement settings as “exogenous” variables whose probabilities are undefined. If a particular experiment involving setting S_j is being performed, then probabilities of outcomes for a different (counterfactual) setting S_k are treated as subjunctive probabilities. Thus in this sense, the “many-spaces” approach treats the different spaces as separate possible worlds whose intrinsic probabilities are undefined and irrelevant to the question being asked.

Butterfield (1992, p. 47) motivates this picture in the following way:

“The big space is committed to probabilities for acts of measurement, which the many space construal avoids...for an act of measurement surely need not have a probability. Why should every proposition or event have a probability? And since a is a feature of a complex apparatus, and is fixed or at least influenced by the choice of the experimenter, it seems a good candidate for not having a probability.”

Berkovitz provides persuasive arguments for the “many-spaces” approach in the context of Bell-type experiments testing a relativistic parameter-dependent
(PD) hidden variable theory. While Arntzenius (1994) has presented an inconsistency proof for such theories, Berkovitz argues that the proof is dependent on a big-space approach which is inappropriate in that it often reflects the specific experimental setup rather than the structure of the theory under consideration. He argues that a many-spaces approach blocks the proof because it involves a causal loop in which the many-space probabilities should not be expected to equal either the long-run frequencies or conditional probabilities associated with the loop.

Berkovitz bolsters his argument against the applicability of big-space probabilities in the context of Bell-type experiments by showing that using the “big-space” approach leads to an absurd conclusion that Bohm’s theory is inconsistent. However, while offering relativistic PD theories a way out of Arntzenius’ impossibility proof, Berkovitz notes that a further difficulty faced by such theories is a lacuna in their prediction of the “unconditional” frequencies of outcomes, in the face of the causal loops they create. In a many-spaces approach, the loops will result in an apparently unspecifiable deviation of the long-run frequencies from the many-spaces probabilities of outcomes. Also, the big-space approach not only runs afoul of the proof but fails to pin down unique long-run frequencies because the constraints of the loop are too weak.

4. Berkovitz’ solution, its price, and an alternative

Berkovitz’ suggested evasion of the Maudlin confirmation-wave inconsistency is for TI to define the probability for detection at B (on the left) as the many-spaces probability $P_\psi(L)$ and point out that the conditional frequency $f(L|\psi)$ should not be expected to be equal to this probability in a causal loop. This is a legitimate approach, but as in the relativistic PD theory case, many-spaces probabilities applied to causal loops will fail to provide unambiguous predictions for long-run unconditional frequencies of specific outcomes such as detection on the left (L) or on the right (R).
It will be argued below that in fact Cramer’s theory can provide unconditional frequencies for L and R outcomes if one abandons the account of a pseudotime “echoing” among non-fixed absorbers, and interprets Cramer’s theory as providing for an unambiguous partitioning of a “big” probability space based on the intrinsic weight of the possible transactions. It will also be necessary to adopt a fully time-symmetric account of causal dependence, which, if somewhat radical, can be seen as consistent with the explicit time-symmetry of TI.

Firstly, it should be noted that, under Cramer’s theory, it is not necessary to have a complete set of absorbers (that is, an absorber for every possible outcome of a complete set of observables) in order to define a complete set of definite outcomes. For example, consider the trivial version of Maudlin’s experiment in which there is no detector B at all. Only one possible transaction can be formed, as there will only be a confirmation wave returned from A. But the probability that this transaction will be realized is still only 1/2: the particle may or may not be detected at A. Thus the two possible outcomes in this experiment are “particle detected at A,” denoted R_d and “particle not detected at A,” denoted $\neg(R_d)$, each with a probability of 1/2. The latter “null” outcome corresponds to there being no transaction formed, always a possibility in Cramer’s theory if there are not absorbers present for every possible eigenvalue of an observable.

Recall also that under TI an emitter emits both the usual retarded wave and also an advanced wave which propagates in the direction of decreasing time index. According to TI, this advanced wave is exactly out of phase with any confirmation waves returned from absorbers. Thus when there is a complete set of absorbers (i.e., when the sum of the confirmation “echoes” from all the absorbers is equal in amplitude to that of the offer wave), the advanced wave from the emitter is exactly canceled. However, when the set of absorbers is
not complete, the emitter’s advanced wave is not completely canceled.

In the single-absorber case discussed above, there is only a confirmation wave
\[\frac{1}{\sqrt{2}} \langle R \mid \text{returned from A}, \] which when added to the emitter advanced wave, \[-\frac{1}{\sqrt{2}} (\langle L \mid + \langle R \mid), \] leaves a remaining emitter advanced wave of \[-\frac{1}{\sqrt{2}} \langle L \mid. \]

Returning to the two possible loops in Maudlin’s experiment, we see that the loop based on detection at A will be accompanied by a remnant of emitter advanced wave as calculated above, while the loop based on detection at B will be accompanied by zero emitter advanced wave, owing to the fact that there is a complete set of absorbers and therefore complete cancellation of the emitter’s advanced wave as discussed above.

In the usual application of TI, the set of absorbers (whether complete or incomplete) is fixed throughout the experiment, as is the emitter state (including confirmation waves arriving back at the emitter from any absorbers). One can therefore think of the emitter state at the time of emission as the single “branch” event having several possible futures, say indexed by \(i \). It is then easy to think of the past (relative to the branch event) as fixed and the future (again, relative to the branch event) as indeterminate, in the usual time-asymmetric way, and assign to these possible futures the “unconditional” probabilities or frequencies corresponding to the weight of the corresponding transaction (\(\psi_i^* \psi_i \)).

However, in the Maudlin example the past, up to and even including the emission event, is not fixed. We therefore cannot think of the emission event as a “branch” point and cannot define unconditional probabilities for the two outcomes in the usual way. Hence Berkovitz’ claim that it appears to be impossible to calculate unconditional frequencies for the outcomes L and R.

Nevertheless, it is proposed here that since TI is a fully time-symmetric interpretation and moreover since that time symmetry is reflected in causal effects “radiating,” as it were, out in both temporal directions from the loop’s two
possible outcomes (as discussed above in terms of the varying emitter advanced waves), that this problem can be solved by attacking the problem from a time-symmetric standpoint. This means that we should expect neither the past nor the future (relative to the branching event) to be fixed. But we also have to identify a different branching event than the emission state at \(t_0\), since as Berkovitz points out, this state itself depends on the outcome and is therefore not independent.

The correct time-symmetric branch point will be found by identifying the event which is shared by both loops (just as the emission event is shared by both branches in the usual time-asymmetric situation). It is what both loops have in common: the overlap of the offer and confirmation waves corresponding to \(R\), i.e., the field \(\psi_R + \psi_R^*\) (where \(\psi_R\) denotes the component of the offer wave absorbed by \(R\)), between \(t_0\) and \(t_1\). In both loops this field exists; however in one of the loops (\(R\)) it becomes a realized transaction and in the other (\(L\)) it becomes a failed transaction. There is no way to predict whether this field will end up as a detected particle or not (and absent the “pseudotime” account we don’t as yet even have a heuristic way to understand this process), but TI provides for the probability of each outcome—\(1/2\)—and this is precisely the unconditional frequency of each outcome \(R\) and not-\(R\), if we view this event as the branch point.

With this probability assignment, we can define a big-space probability for the Maudlin experiment as follows (see Figure 2.) Maudlin’s experiment provides for two possible measurement processes, each of which is deterministically dependent on the outcomes, each of which has an unconditional probability of \(1/2\). As discussed above, the minimal absorber arrangement allows us to define two basic outcomes, \(R\)-emission/detection \(R_e = R_d\), and \(\neg(R_d)\). When \(B\) is on the left then \(\neg(R_d) = L_d\). The big probability space is therefore divided in half according to these possible outcomes, with the probability of each be-
ing 1/2. Now Maudlin’s experiment dictates the probabilities of measurement setting according to these possible outcomes in the following way: the region associated with \(\neg(R_d) \) corresponds to the probability of measurement of both R and L; yet in this region the outcome is of course known to be \(L_d \). The other region associated with \(R_d \) corresponds to the probability of measurement of R only. Therefore, the “augmented” initial states of the emitter are labeled (as in Berkovitz 2002) in each respective region of the big probability space by \(\psi_C \) and \(\psi'_C \), where the former includes confirmation waves from A and B and the latter includes only a confirmation wave from A.

Figure 2. Big probability space for the Maudlin experiment.
We can now obtain conditional big-space probabilities so as to enable Cramer to escape from the trap, in the following way:

\[P(L_d | \psi_C) = \frac{P(L_d \& \psi_C)}{P(\psi_C)} = \frac{(1/2)(1/2)}{1} = 1 \]

Referring again to Figure 2, the two equal portions of the big probability space can be intuitively thought of as two distinct possible worlds created by the minimal emitter/absorber configuration. The incipient transaction corresponding to the field \(\psi_R + \psi_R^* \) can be thought of as an unstable “bifurcation line” between the two worlds. When that transaction succeeds, the system enters the right-hand region; when it fails, the system enters the left-hand region. Since in the latter case B swings over to the left and emits a confirmation wave \(\Psi^*_L \), what would have otherwise been a null outcome becomes a realized transaction resulting in \(L_d \). (Note that this account is only possible if we abandon the idea that there is cyclic “echoing” between B and the emitter if such echoing is taken as reflective of an uncertainty in outcome. For the measurement of L-emission takes place only when the outcome is already certain; the system has already entered the left-hand region of the probability space.)

The fact that the amplitude of the confirmation wave from B is only \(\frac{1}{\sqrt{2}} \) shows that confirmation waves are properly interpreted as reflecting the entire big-space probability structure: despite the fact that when B is moved to left the outcome is already manifest, the confirmation wave still “knows” that the particle will only be detected at B in 1/2 of the trials—that only half the offer wave is directed toward the left. It thus retains the full information corresponding to the set of both loops, and therefore must not be a property of only \(\psi_c \) but the entire experimental arrangement which contains the possibility of \(\psi_c' \) as well. This point is perfectly in keeping with the well-known phenomenon
of “quantum wholeness” and should therefore not be entirely unexpected.

5. Is there a bilking problem due to the emitter advanced wave?

There might appear to be a possible snag with this proposed solution. As discussed above, the emitter advanced wave differs for each loop. This means that events prior to the spacetime point of the emission differ for each outcome/loop. That is, suppose it happens that outcome/loop R_d occurs at t_0. Then there exists a nonzero emitter advanced wave for all times $t < t_0$ and the future outcome from the standpoint of any of these earlier times is apparently already decided. Might this give rise to a bilking problem, i.e., could a contradiction be arranged wherein a different outcome is brought about?

The answer is “no,” because there is no way to detect the existence of the nonzero emitter advanced wave. That is, in order to create a bilking problem one would need to discover the nature of the emitter advanced wave, and then arrange it so that that advanced wave could never be produced, presumably by cancelling the proposed experiment, or modifying it appropriately. But there doesn’t appear to be any way to detect this remnant of offer wave coming from the future; in order to somehow engage it in a transaction (which is the way things are detected in TI), a retarded offer wave would have to be perfectly in phase with it.

Thus, relative to a time prior to t_0, even though the world they inhabit will in some sense “already” bear the imprint of the future outcome of the Maudlin experiment—whether R or L—the human experimenters have no access to that information, and in fact it isn’t even “actual” for them. (Recall that under TI “actualized” events, or empirical facts, result only from realized transactions). So from their perspective, the result of the experiment is still uncertain, even though the causal effects of the experiment radiate out in both temporal directions.

Huw Price explores the issue of advanced causal effects (what he terms “ad-
vanced action”) and their relationship to the bilking problem in detail in his (1996), Chapter 7. He argues (similarly to Michael Dummett (1954, 1964) decades earlier) that it is consistent to assert that an effect can precede its cause provided that the claimed earlier effect is epistemically inaccessible to anyone who might try to set up a bilking problem as described above. Price concludes (in arguing for the time symmetry of counterfactual dependence) that the past should not be considered to be “cast in stone” and that questions about what we can affect are properly answered in terms of epistemological accessibility, not temporal relationships:

“Even if experience teaches us that whatever we know about via memory and the senses lies in the past, this does not imply that anything that lies in the past is something that might in principle be known about...In fact, it seems that the relationship between temporal location and epistemological accessibility is not only contingent (in both directions), but rather underdetermined by our actual experience.” (Price 1996, p. 175)

In these terms, it is coherent to claim that the incipient transaction between the emitter and A (i.e., the field $\psi_R^* + \psi_R$) is the cause of various effects that lie not only in the future of the emission event but also in its past. As an independent cause of these effects, the incipient transaction can legitimately be considered the independent “branch point” and its probabilities of occurrence and non-occurrence can be considered the independent probabilities needed to provide the unconditional frequencies of the outcomes L and R.

6. Conclusion.

Berkovitz’ proposed escape route for Cramer’s Transactional Interpretation from Maudlin’s causal loop inconsistency claim requires assuming a many-spaces approach to probabilities together with an argument that the deviation of long-run frequencies from those probabilities is unproblematic. However, that solution comes with the price that TI can make no empirical prediction
for the frequencies of the two possible outcomes.

An alternative solution has been proposed, based on a big-space approach to probability which applies the explicit time-symmetry of TI to the causal dependence of events, in order to define unconditional frequencies of outcomes. The transactional event which is common to both possible loops in the Maudlin example is treated as the independent “branch point” relative to which independent probabilities, determined by the weights of the respective transactions, can be assigned.

It is argued that Maudlin’s thought experiment shows that the pseudotime “echoing” account of the realized transaction is flawed; the big-space approach presented here depends on abandoning that pseudotime account which appears to require that the realization of a transaction depends on all possible absorbers, whether fixed or not. Nevertheless, it is argued that the pseudotime narrative is merely heuristic and is not a crucial part of Cramer’s theory.

The big-space probability reflects the fact that the specific measurement settings and states are governed by a clearly defined probability structure, as opposed to a many-spaces approach in which these quantities are arbitrary or undefined. It also provides a natural explanation of the puzzling feature that the amplitude of the confirmation wave from B is only $\frac{1}{\sqrt{2}}$, in terms of “quantum wholeness”: the confirmation wave retains information about the entire experimental arrangement.

Acknowledgements

The author is indebted to Joseph Berkovitz, Tim Maudlin, and David Miller for valuable discussions and correspondence.
References.

Arntzenius, Frank (1994), “Space-Like Connections,” *British Journal for the Philosophy of Science* 45: 201-217.

Berkovitz, Joseph (2002), “On Causal Loops in the Quantum Realm,” in T. Placek and J. Butterfield (eds.), *Non-locality and Modality*, Proceedings of the NATO Advanced Research Workshop on Modality, Probability and Bells Theorems, Kluwer, pp. 233-255.

Butterfield, Jeremy (1989), “A Space-Time Approach to the Bell Inequality,” in Cushing and McMullin, eds. (1989). pp. 114-144.

Butterfield, Jeremy (1992), “Bell’s Theorem: What It Takes,” *British Journal for the Philosophy of Science* 42: 41-83.

Cramer, John G. (1980), “Generalized Absorber Theory and the Einstein-Podolsky-Rosen Paradox,” *Phys. Rev. D* 22: 362-376.

Cramer, John G. (1986), “The Transactional Interpretation of Quantum Mechanics, *Rev. Mod. Phys.* 58: 647-688.

Cushing, J. and E. McMullin, eds. (1989), *Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem*, Notre Dame: University of Notre Dame Press.

Dummett, Michael (1954), “Can an Effect Precede Its Cause?,” *Proceedings of the Aristotelian Society, Supplementary Volume* 38: 27-44.

Dummett, Michael (1964), “Bringing about the Past,” *Philosophical Review* 73: 338-359.

Maudlin, Tim (2002), *Quantum Non-Locality and Relativity*, Second Edition, Oxford: Blackwell.

Price, Huw (1996), *Time’s Arrow and Archimedes’ Point*, Oxford: Oxford University Press.

Wheeler, J. A. and R. P. Feynman (1945), “Interaction with the Absorber as the Mechanism of Radiation,” *Reviews of Modern Physics* 17: 157-181.