Influence of environmental fertilizer systems on yield formation and grain quality of winter wheat

Dubytskyi O.¹, Kachmar O.², Dubyt ska A.³, Vavrynovych O.⁴
Institute of Agriculture of Carpathian region of NAAS
5 Hrushevskoho Str., Obroshyne, Pustomyty district, Liviv oblast, 81115, Ukraine
e-mail: ¹dubytskyoleksandr@gmail.com, ²oksanaostrowska@ukr.net, ³dubytskalina@gmail.com, ⁴vavrynovychoksana@gmail.com
ORCID: ¹0000-0002-8293-4119, ²0000-0002-0382-6030, ³0000-0002-5685-0237, ⁴0000-0003-3466-1432

Goal. To study the formation of productivity and grain quality of winter wheat in environmental fertilizer systems.

Methods. Field, laboratory, and statistical research. Results. The data are given of research in the influence of environmental fertilizer systems on the productivity of winter wheat. Use of environmental fertilizer systems allowed to increase the number of productive stems to 379 – 462 picks/m2, the productivity of the ear — to 1.26 – 1.48 g, the mass of 1000 seeds — to 33.5 – 41 g, and to get the yield of winter wheat at the level of 4.46 – 5.92 t/ha. The highest content of macronutrients (N, P, K) in the grain of winter wheat was fixed for fertilizer systems based on N₈₀P₄₀K₉₀. The level of potassium and magnesium in the grain was higher than at use in the compositions of fertilizer of straw of peas + N₃₀P₄₀K₅₅. Efficiency and perspectivity were revealed of the use of alternative fertilizers based on by-products with the addition of mineral fertilizers N₉₀P₄₀K₉₀ + organic component (humus or microbiological fertilizer) and treatment of plants with a biostimulator. Due to that grain was yielded with optimal gluten content — 25.6 – 27.6%, protein — 11 – 11.9%, a slight amount of nitrates — 55.8 – 56 mg/kg, and the maximum allowable concentration of micro-elements. Conclusions. It was found that the use of the straw of peas as a by-product at entering N₉₀P₄₀K₅₅ with humus or microbial fertilizer and plant treatment with biostimulant increased winter wheat yield by 52.3 – 59.4%, compared to the variants without fertilization. At the use of mineral (N₉₀P₄₀K₉₀) and organo-mineral fertilizer systems, such an increase made 77.7 – 87.8%, which slightly increased the nitrate content in the grain. Application of natural fertilizer systems revealed a complex positive impact on the field of safe production of winter wheat according to ecological quality indicators.

Key words: mineral fertilizer, organic component, yield, biostimulant, microelements, content of gluten and protein.

DOI: https://doi.org/10.31073/agrovisnyk202007-10

The task of modern and future agriculture is the simultaneous solution of three important problems — increasing the profitability of technologies in crop production, environmental protection and increasing the productivity of cultural agrocenoses and product quality [1, 2]. The latter is especially important for winter wheat, which has a leading place in providing humanity with balanced food.

One of the factors in the formation of optimal yields and environmentally friendly products is the use of environmentally friendly fertilizer systems. They are conceptually characterized by the principle of alternativeness through the use of secondary plant products, appropriate humus, microbiological and chelated fertilizers, treatment of plants with biostimulants, etc. [3, 4].

Components of green manure systems, including the introduction of secondary crop products, micronutrients, humus and microbiological fertilizers, include compliance with natural biological laws, namely the accumulation of organic matter, increased microbiological activity, and thus pave the way for increasing the availability of nutrients for crops [5, 6].

The use of biostimulants increases the productivity of crops, due to the intensification of cell life of plant organisms, acceleration of biochemical processes, which in turn enhances the processes of nutrition, respiration and photosynthesis and, as a result, better realization of plant genetic potential [7]. In the conditions of modern agricultural production for practical use it is necessary to estimate comprehensively quality of the grown production [8], especially it concerns ecological indicators of grain [9]. The nutritional quality of grain, and especially its elemental composition is of considerable interest to both agronomists and nutritionists. The autecological reaction of plants to changes in the content of macro- and microelements in ecological fertilizer systems requires research on the definition of the system “soil-plant” [10].

The purpose of the research is to study the formation of productivity and quality of winter wheat grain under ecological fertilizer systems.

Materials and methods. The research was carried out in the field of winter wheat (Triticum aestivum L.), variety Poliska 90, sown after peas for grain (Pisum Sativum L.). The scheme of the experiment includes 8 options: 1) Control (without fertilizers); 2) Straw peas (g.); 3) Straw g. + N₃₀R₆₀K₅₅ + biostimulator (BS); 4) Straw + N₉₀R₆₀K₅₅ + BS + humus fertilizer (GD); 5) Straw g. + N₃₀R₆₀K₅₅ + BS + microbiological fertilizer (MD); 6) N₉₀P₉₀K₉₀ + BS; 7) N₉₀P₉₀K₉₀+ EC + GD; 8) N₉₀P₉₀K₉₀ + BS + MD. Pea straw was plowed in the amount of 2.5 t/ha, GD — eco-impulse was applied in the pre-sowing period (3 l/ha). BS - terra sorb - twice during the growing season (tillering, tube exit).
dose 0.5 t/ha; MD – eco-soil was applied at the end of tillering – 3.0 t/ha. The object of study – plants and grains of winter wheat. Agrochemical characteristics of gray forest surface-gleyed soil are as follows: rNKSl – 4.85 (DSTU ISO 10390-2007); hydrolytic acidity of 2.4 mg-equiv/100 g of soil (DSTU 7537:2014), content of easily hydrolyzed nitrogen – 9.8 (DSTU 7863:2015), mobile forms of phosphorus and potassium according to Kirsanov (0.2 n HCl) 10.6 and 8.6 mg/100 g of soil (DSTU 4405:2005), total humus – 2.1% (DSTU 4289:2004). Structural analysis of winter wheat plants was performed according to Maisuryan, gluten content according to Lowry, nitrate content by ionometric method, trace element content (ME) by atomic absorption spectrophotometry 116-M method, potassium content, macroelements, macronutrients MVV ashing – 31-497058-024-2005, calcium and magnesium content by trilometric method.

Research results. To obtain high and stable yields of winter wheat, it is important to form an appropriate morphostructure of plants and the structure of crops, which would effectively use the optimal conditions of nutrient supply created by the technology of cultivation. The efficiency of ecological fertilizer systems on the formation of productivity of winter agrophytocenosis of winter wheat Poliska 90, grain yield and its quality were evaluated.

One of the main elements of highly productive agrophytocenoses is the formation of the optimal value of productive stems. The number of productive stalks of winter wheat in 2017–2018 under the conditions of plowing pea straw was 316 pcs/m² against 265 in the control (Table 1).

1. Influence of ecological fertilizer systems on elements of productivity and yield of winter wheat (average 2017–2018)

№ var.	Systems fertilization	Number of productive stems pcs. per 1m²	Mass 1000 grains, g	Weight of grain from the ear, d	Harvest, t/ha	Yield increase to control t/ha	%
1	Control (without fertilizers)	265	28,8	0,97	3,15	0,2 g	9,2
2	Pea straw (g.)	316	29,3	1,05	3,44	1,3 1	41, 6
3	Straw r. + N₉₀P₉₀Κ₉₀ + BS	379	33,5	1,26	4,46	1,8 7	59, 4
4	Straw r. + N₉₀P₉₀Κ₉₀ + BS + GD	409	36,7	1,32	5,02	1,6 5	52, 3
5	Straw r. + N₉₀P₉₀Κ₉₀ + BS + MD	390	34,8	1,29	4,90	1,6 7	52, 4
6	N₉₀P₉₀Κ₉₀ + BS	415	39,1	1,44	5,60	2,4 5	77, 7
7	N₉₀P₉₀Κ₉₀ + BS + GD	462	41,0	1,48	5,92	2,7 7	87, 8
8	N₉₀P₉₀Κ₉₀ + BS + MD	428	40,2	1,46	5,76	2,6 5	82, 5
NIR 0,5		40,7	3,1	0,15	0,17		

The introduction of N₉₀P₉₀Κ₉₀ on the background of pea straw in combination with the treatment of plants with a biostimulator led to an increase in the density of productive stems to the level of 379 pcs/m². The positive effect was manifested when applying humus or microbiological fertilizer both on the background of pea straw + N₉₀P₉₀Κ₉₀ + BS and on the basis of N₉₀P₉₀Κ₉₀ + BS. Productivity of winter wheat is characterized by weight of grains from one ear, weight of 1000 grains, productivity. The largest mass of grain from the ear was found on the background of pea straw + N₉₀P₉₀Κ₉₀ + BS with the addition of humus fertilizer (1.32 g) and on the basis of N₉₀P₉₀Κ₉₀ + BS compatible with GD (1.48 g), respectively, as shown in table 1. The highest weight of 1000 grains (36.7–41.0 g) were obtained under similar conditions, which had a positive effect on the yield of winter wheat. The maximum realization of productivity of winter wheat was provided by the ecological fertilization systems. Thus, the largest increase in yield relative to absolute control was obtained by applying fertilizers at the rate of N₉₀P₉₀Κ₉₀ + BS with the addition of MD or GD 2.61 – 2.77 t/ha. Slightly lower yields were formed by winter wheat with the introduction of pea straw + N₉₀P₉₀Κ₉₀ + BS + GD. The effect of the fertilizer system on the basis of secondary crop products relative to control was – 1.87 t/ha. When plowing only pea straw, the yield of winter wheat decreased to the level of 3.44 t/ha, and at the control – to 3.15 t/ha, respectively.

The use of environmentally friendly fertilizer systems has led to changes in the accumulation of macronutrients in the grain of winter wheat. It was found that in the variant without fertilizers (control) the nitrogen content in the grain was 1.68%. In the variants of the experiment composed on the basis of pea straw, an increase in its content to 1.80–1.90% was noted. Compositions based on N₉₀P₉₀Κ₉₀ provided a nitrogen level of 1.98–2.01%. The content of phosphorus and potassium depending on the ecological fertilizer systems varied similarly. The content of calcium and magnesium was higher than fertilizer systems based on pea straw 0.08–0.09% and 0.14–0.15%, and on the
control 0.05–0.09%, respectively. The decrease in the content of calcium and magnesium in the compositions
against the background of N60P90K90 (0.06–0.07 and 0.011–0.12%), in relation to the variants with secondary plant
products is due to the acidification of the soil solution, and therefore a decrease in their mobility and availability.

The microelement composition of grain is an important indicator of its biological value. According to MN Kuleshov
[11] the content of trace elements in the grain of winter wheat, which is used as food should contain: Zn – 25.0, Cu
– 5.0, Fe – 50.0, Mn – 44.5 mg/kg.

The need of plants for manganese under the conditions of the experiment, compared with the control (Table 2). Such accumulation of trace elements of iron, zinc and copper may
also be due to increased efficiency of their use by wheat plants. Under the conditions of application of fertilizer systems
against the background of N60P90K90 there was an increase in the content of ME in the grain, due to increased
mobility and mobility, against the background of acidification of the soil solution. Under these conditions, there is
also a tendency to increase the cadmium content. By quantitative characteristics, the microelement composition of
can be represented as a series: Fe > Mn > Zn > Cu > Cd. At the same time, this distribution of elements is a
consequence of unequal lyophilicity and the specificity of their functional purpose.

We emphasize that the microelement composition of winter wheat grain is an important diagnostic indicator that
characterizes not only the provision of plants with vital IU, but also determines the environmental friendliness of
winter wheat cenoses. Under the conditions of the experiment, the amount of ME in the grain is within the MPC
(maximum allowable concentrations).

The content of gluten, protein and nitrates is an important indicator of the qualitative characteristics of the winter
wheat harvest. The content of crude gluten under control for an average of three years was 22%. The introduction
of green fertilizer systems increased its number in different variants by 0.4–6.8%.

Studies have shown that fertilizing winter wheat for plowing straw peas + N90P45K45 and the introduction of BS
and GD increased the gluten content in the grain to 25.6 and 27.6%. The highest level of gluten was provided by
fertilizer systems based on N90P60K90. The protein content in the grain of winter wheat in the control was 9.3%. Most
of it was in the variants of organo-mineral fertilizer systems arranged on the background of N60P90K90.

As a result of research it was noted that in the variants of control and plowing only pea straw the content of
nitrates was lower than the maximum allowed (N60P90K90). This increase was 77.7–87.8%, which was accompanied by a slight increase in the content
of nitrates in the grain. The application of ecological fertilizer systems has revealed a complex positive impact on
the production of safe winter wheat products in terms of environmental quality indicators.

2. Content of microelements and heavy metals in winter wheat grain under ecological fertilizer systems,
mg/kg (average 2018–2019)

№ var	Fertilizer systems	Cu	Zn	Mn	Fe	Cd
1	Control	3.04	10.00	12.6	13.9	0.06
2	Pea straw (g.)	3.10	10.30	11.9	14.3	0.04
3	Straw r. + N90P45K45 + BS	3.38	11.42	13.8	17.8	0.05
4	Straw r. + N90P45K45 + BS + GD	3.46	11.02	12.7	16.4	0.05
5	Straw r. + N90P45K45 + BS + Md	3.49	10.76	12.8	16.5	0.05
6	N60P90K90 + BS	3.60	12.28	13.5	19.4	0.09
7	N60P90K90 + BS + GD	3.49	11.42	13.2	18.0	0.09
8	N60P90K90 + BS + Md	3.42	11.22	13.2	17.8	0.09

Our experiments were characterized by an increase in the content of iron, zinc and copper in green fertilizer
systems, compared with the control (Table 2). Such accumulation of trace elements of iron, zinc and copper may
be due to increased efficiency of their use by wheat plants. Under the conditions of application of fertilizer systems
against the background of N60P90K90 there was an increase in the content of ME in the grain, due to increased
mobility and mobility, against the background of acidification of the soil solution. Under these conditions, there is
also a tendency to increase the cadmium content. By quantitative characteristics, the microelement composition of
can be represented as a series: Fe > Mn > Zn > Cu > Cd. At the same time, this distribution of elements is a
consequence of unequal lyophilicity and the specificity of their functional purpose.

We emphasize that the microelement composition of winter wheat grain is an important diagnostic indicator that
characterizes not only the provision of plants with vital IU, but also determines the environmental friendliness of
winter wheat cenoses. Under the conditions of the experiment, the amount of ME in the grain is within the MPC
(maximum allowable concentrations).

The content of gluten, protein and nitrates is an important indicator of the qualitative characteristics of the winter
wheat harvest. The content of crude gluten under control for an average of three years was 22%. The introduction
of green fertilizer systems increased its number in different variants by 0.4–6.8%.

Studies have shown that fertilizing winter wheat for plowing straw peas + N90P45K45 and the introduction of BS
and GD increased the gluten content in the grain to 25.6 and 27.6%. The highest level of gluten was provided by
fertilizer systems based on N90P60K90. The protein content in the grain of winter wheat in the control was 9.3%. Most
of it was in the variants of organo-mineral fertilizer systems arranged on the background of N60P90K90.

As a result of research it was noted that in the variants of control and plowing only pea straw the content of
nitrates was lower than the maximum allowed (N60P90K90). This increase was 77.7–87.8%, which was accompanied by a slight increase in the content
of nitrates in the grain. The application of ecological fertilizer systems has revealed a complex positive impact on
the production of safe winter wheat products in terms of environmental quality indicators.
References

1. Bomba, M. Ya. (2007). Suchasni tendentsii rozvytku svitovoho zemlerobstva [The current trends in world agriculture]. Bulletin of the NAS of Ukraine, 12, 34-40. [In Ukrainian].

2. Kysil, V. I. (2003). Formuvannia ekolohichno bezpechnoho vyrobnytstva v Ukraini [The formation of ecologically safe production in Ukraine]. Bulletin of Agricultural Science, 2, 10-12. [In Ukrainian].

3. Shevchuk, O. V. (2013). Vplyv pisliadii riznykh system udobrennia na dynamiku vmistu azotu v grunty, roslynakh i zerni yachmeniu yaroho [The influence of aftereffect of different fertilizer systems on dynamics of nitrogen content in soil, plants and grain of spring barley]. Bulletin of Kharkiv National Agrarian University. Series: soil science, agrochemistry, agriculture, forestry, 1, 135-139. [In Ukrainian].

4. Lazarev, V. I., & Vartanova, A. B. (2014). Vliyanie kompleksnykh udobreniy s mikroelementami na urozhainost' i kachestvo zerna ozimoy pshenitsy v usloviyakh Kurskoy oblasti [The influence of the complex fertilizers with microelements on the yield and quality of grain of winter wheat in the conditions of the Kursk region]. Bulletin of the Kursk State Agricultural Academy, 6, 45-48. [In Russian].

5. Volkohon, V. V. Nadkrenychna, O. V. Kovalevska, T. M. et al. (Volkohon, V.V (Ed.)). (2006). Mikrobni preparaty u zemlerobstvi teoriia i praktyka [Microbial preparations in agriculture: theory and practice]. Kyiv: Agrarian science. [In Ukrainian].

6. Zanilov, A. Kh., & Shilova, E. P. (2017). Innovatsionnye priemy povysheniya effektivnosti mineralnogo pitaniya rasteniy: metodicheskie rekomendatsii dlya selskokhozyaystvennykh konsultantov [Innovative techniques for improving the efficiency of mineral nutrition of plants: guidelines for agricultural consultants]. Moscow: Rossimagrotekh. [In Russian].

7. Klymenko, I. I. (2015). Vplyv rehulatoriv rostu i mikrodobryv na urozhainist nasinnia linii ta hibrydiv soniashnyku [The influence of growth regulators and microfertilizers on seed yield of sunflower lines and hybrids]. Breeding and seed production, 107, 183-188. [In Ukrainian].

8. Shakaliiy, S. M. (2017). Yakist zerna pshenytsi miakoi ozymoi za vykorystannia pozakorenevoho pidzhyvlennia v umovakh Livoberezhnogo Lisostepu Ukrainy [The grain quality of soft winter wheat at the use of foliar fertilization under the conditions of the Left Bank Forest-Steppe of Ukraine]. Scientific reports of NULES of Ukraine, 65(1), 102-113. [In Ukrainian].

9. Teklic, T., Lončarić, Z., Kovačević, V., & Singh, B. R. (2013). Metallic trace elements in cereal grain—a review: how much metal do we eat? Food and Energy Security, 2(2), 81-95. https://doi.org/10.1002/fes3.24.

10. Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). Boca Raton, FL, USA: CRC Press. [In English].

11. Kuleshov, M. N., & Poluyanov, V. P. (1994). Rol tyazhelykh metallov v prirodnoy sisteme pochva-rastenie i metody ih opredeleniya [The role of heavy metals in the natural soil-plant system and methods for their determination]. Kharkov: Kharkov State Agrarian University named after V. V. Dokuchaev. [In Russian].