Circumbinary disks: Numerical and physical behaviour

Daniel Thun1, Wilhelm Kley1, and Giovanni Picogna2

1 Institut für Astronomie und Astrophysik, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
e-mail: \{daniel.thun@, wilhelm.kley\}@uni-tuebingen.de

2 Universitäts-Sternwarte, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 München, Germany
e-mail: picogna@usm.lmu.de

\textbf{ABSTRACT}

\textbf{Aims.} Disks around a central binary system play an important role in star and planet formation as well as for the evolution of galactic disks. These circumbinary disks are strongly disturbed by the time varying potential of the binary system and display a complex dynamical evolution that is not well understood. Our goal is to investigate the impact of disk and binary parameters to the dynamical aspects of the disk.

\textbf{Methods.} We study the evolution of circumbinary disks under the gravitational influence of the binary using two-dimensional hydrodynamical simulations. To distinguish between physical and numerical effects we apply three hydrodynamical codes. First we analyse in detail numerical issues concerning the conditions at the boundaries and grid resolution. We then perform a series of simulations with different binary (eccentricity, mass ratio) and disk parameters (viscosity, aspect ratio) starting from a reference model with Kepler-16 parameter.

\textbf{Results.} Concerning the numerical aspects we find that the inner grid radius must be of the order of the binary semi-major axis, with free outflow conditions applied such that mass can flow onto the central binary. A closed inner boundary leads to unstable evolutions. We find that the inner disk turns eccentric and precesses for all investigated physical parameters. The precession rate is slow with periods \(T_{\text{prec}}\) starting at around 500 binary orbits \(T_{\text{bin}}\) for high viscosity and large \(H/R\) where the inner hole is smaller and more circular. Reducing \(\alpha\) and \(H/R\) increases the gap size and \(T_{\text{prec}}\) reaches 2500 \(T_{\text{bin}}\). For varying binary mass ratios \(q_{\text{bin}}\) the gap size remains constant whereas \(T_{\text{prec}}\) decreases for increasing \(q_{\text{bin}}\).

For varying binary eccentricities \(e_{\text{bin}}\) we find two separate branches in the gap size and eccentricity diagram. The bifurcation occurs at around \(e_{\text{crit}} \approx 0.18\) where the gap is smallest with the shortest \(T_{\text{prec}}\). For \(e_{\text{bin}}\) smaller and larger than \(e_{\text{crit}}\) the gap size and \(T_{\text{prec}}\) increase.

Circular binaries create the most eccentric disks.

\textbf{Key words.} Hydrodynamics – Methods: numerical – Planets and satellites: formation – Protoplanetary disks – Binaries: close

\section{1. Introduction}

Circumbinary disks are accretion disks that orbit a binary system that consists for example of a binary star or a binary black hole system. A very prominent example of a circumbinary disk orbiting two stars is the system GG Tau. Due to the large star separation, the whole system (stars and disk) could be directly imaged by interferometric methods (Guilloteau et al. 1999). Later data yielded constraints on the size of the dust in the system and have indicated that the central binary may consist of a multiple stellar systems, see Andrews et al. (2014), Di Folco et al. (2014) and references therein. More recent observations pointed to possible planet formation (Dutrey et al. 2014) and streamers from the disk onto the stars (Yang et al. 2017). A summary of the properties of the GG Tau system is given in Dutrey et al. (2016).

An additional important clue for the existence and importance of circumbinary disks is given by the observed circumbinary planets. These are planetary systems where the planets orbit not only one star but a binary star system. Such systems have been detected in the past years by the \textit{Kepler Space Mission} and have inspired an intense research activity. The first such circumbinary planet, Kepler-16b, orbits its host system, consisting of a K-type main-sequence star and a M-type red dwarf, in a so called P-type orbit with a semi-major axis of 0.7048 au and a period of 228.7 days (Doyle et al. 2011) Presently there are ten Kepler circumbinary planets known and a summary of the properties of the first five discovered systems is given in Welsh et al. (2014) . The observations have shown that in these systems the stars are mutually eclipsing each other, as well as the planets. The simultaneous eclipses of several objects are a clear indication for the flatness of the system because the orbital plane of the binary star has to coincide nearly exactly with the orbital plane of the planet. In this respect these systems are flatter than our own Solar System. Because planets form in disks, the original protoplanetary disk in these systems had to orbit around both stars, hence it must have been a circumbinary disk, that was also coplanar with respect to the orbital plane of the central binary.

In addition to their occurrence around younger stars, circumbinary disks are believed to orbit supermassive black hole binaries in the centres of galaxies (Begelman et al. 1980), where they may play an important role in the evolution of the host galaxies (Armitage & Natarajan 2002). In the early phase of the Universe there were many more close encounters between the young galaxies that had already black holes in their centres. Further known main sequence binaries with circumbinary planets besides Kepler-16 are: Kepler-34 and 35 (Welsh et al. 2012), Kepler-38 (Orosz et al. 2012a), Kepler-47 (Orosz et al. 2012b), Kepler-59 (Schwamb et al. 2013), Kepler-413 (Kostov et al. 2014), Kepler-453 (Welsh et al. 2015) and Kepler-1647 (Kostov et al. 2016).
tars. The gravitational tidal forces between them often resulted in new merged objects that consisted of a central black hole binary surrounded by a large circumbinary disk (see e.g. Cuadra et al. 2009; Lodato et al. 2009, and references therein). The dynamical behaviour of such a system is very similar to the one described above, where we have two stars instead of black holes.

To understand the dynamics of disks around young binary stars such as GG Tau or the planet formation process in circumbinary disks or the dynamical evolution of a central black hole binary in a galaxy it is important to understand in detail the behaviour of a disk orbiting a central binary. The strong gravitational perturbation by the binary generates spiral waves in the disk which transport energy and angular momentum from the binary to the disk (Pringle 1991) and alters subsequently the evolution of the binary (Artymowicz et al. 1991). The most important impact of the angular momentum transfer to the disk is the formation of an inner cavity in the disk with a very low density whose size depends on disk parameters (such as viscosity or scale height), and on the binary properties (mass ratio, eccentricity) (Artymowicz & Lubow 1994).

The numerical simulation of such circumbinary disks is not trivial and over the years several attempts have been made. The first simulations of circumbinary disk used the smoothed particle hydrodynamics method, a Lagrangian method where the fluid is modelled as individual particles (Artymowicz & Lubow 1996). On the one hand this method has the advantage that the whole system can be included in the computational domain and hence the accretion onto the single binary components can be studied. On the other hand, because of the finite mass of the SPH-particles, the maximum density contrast, that can be resolved, is limited.

Later Rozyczka & Laughlin (1997) simulated circumbinary disks with the help of a finite difference method on a polar grid. The grid allowed for a much larger range in mass resolution than the so far used SPH codes. A polar grid is well suited for the outer parts of a disk but suffers from the fact that there will always be an inner hole in the computational domain, since the minimum radius R_{min} cannot be made arbitrarily small. Decreasing the minimum radius will also strongly reduce the required numerical time step, rendering long simulations unfeasible. But since circumbinary disk simulations have to be simulated for tens of thousand of binary orbits to reach a quasi steady state, the minimum radius is often chosen in a way that the motion of the central stars is not covered by the computational domain, and the mass transfer from the disk to the binary cannot be studied.

Günther & Kley (2002) used a special dual-grid technique to use the best of the two worlds, the high resolution of the grid codes and the coverage of the whole domain of the particle codes. For the outer disk they used a polar grid and they overlaid the central hole with a Cartesian grid. In this way it was possible to study the complex interaction between the binary and the disk in greater detail. All these simulations indicated that despite the formation of an inner gap, material can enter the inner regions around the stars crossing the gap through stream like features to become eventually accreted onto the stars and influence their evolution (Bate et al. 2002).

Another interesting feature of circumbinary disks concerns their eccentricity. As shown in hydrodynamical simulations for planetary mass companions, disks develop a global eccentric mode even for circular binaries (Papaloizou et al. 2001). The eccentricity is confined to the inner disk region and shows a very slow precession (Kley & Dirksen 2006). These results were confirmed for equal mass binaries on circular orbits (MacFadyen & Milosavljević 2008). The disk eccentricity is excited by the 1:3 outer eccentric Lindblad resonance (Lubow 1991; Papaloizou et al. 2001) which is operative for a sufficiently cleared out gap. For circular binaries a transition in the disk structure from more circular to eccentric has been suggested to occur for a mass ratio of secondary to primary above 1/25 (D’Orazio et al. 2016).

However, this appears to contradict the mentioned results by Papaloizou et al. (2001) and Kley & Dirksen (2006) who show that this transition occurs already for a secondary in the planet mass regime with details depending on disk parameters such as pressure and viscosity.

Driven by the observation of planets orbiting eccentric binary stars and the possibility to study eccentric binary black holes, a large number of numerical simulations have been performed over the last few years dealing with disks around eccentric central binaries (e.g. Pierens & Nelson 2013; Kley & Haghighipour 2014; Dunhill et al. 2015). The recent simulations of circumbinary disk by Pierens & Nelson (2013), Kley & Haghighipour (2014) and Lines et al. (2015) used grid-based numerical methods on a polar grid with an inner hole. This raises questions about the location and imposed boundary conditions at the innermost grid radius R_{min}. In particular, the value of R_{min} must be small enough to capture the development of the disk eccentricity through gravitational interaction between the binary and the disk, especially through the 1:3 Lindblad resonance (Pierens & Nelson 2013). Therefore R_{min} has to be chosen in a way that all important resonances lie inside the computational domain.

Besides the position of the inner boundary, there is no agreement on which numerical boundary condition better describes the disk. In simulations concerning circumbinary planets mainly two types of boundary conditions are used: a closed inner boundary (Pierens & Nelson 2013; Lines et al. 2015) that does not allow for mass flow onto the central binary, and outflow boundary conditions (Kley & Haghighipour 2014, 2015) that do allow for accretion onto the binary. While Lines et al. (2015) do not find a significant difference between these two case, Kley & Haghighipour (2014) see clear impact on the surface density profile and additionally they were able to construct disks with (on average) constant mass flow through the disk which is not possible for closed boundaries. Driven by these discussions in the literature we decided to perform dedicated numerical studies to test the impact of the location of R_{min}, the chosen boundary condition and other numerical aspects in more detail. During our work we became aware of other simulations that were tackling similar problems. In October 2016 alone three publications appeared on astro-ph that described numerical simulations of circumbinary disks (Fleming & Quinn 2017; Miranda et al. 2017; Mutter et al. 2017). While the first paper considered SPH-simulations in the latter two papers grid-codes were used and in both the boundary condition at R_{min} is discussed in more detail.

In our paper we start out with numerical considerations and investigate the necessary conditions at the inner boundary in more detail, and we shall discuss aspects of the other recent results in the presentation of our findings below. Additionally, we present a detailed parameter study of the dynamical behaviour of circumbinary disks as a function of binary and disk properties.

We organised this paper in the following way. In Sect. 2 we describe the numerical and physical setup of our circumbinary simulations. In Sect. 3 we briefly describe the numerical methods of the different codes we used for our simulations. In Sect. 4 we examine the disk structure by varying the inner boundary condition and its location. The influence of different binary parameters are examined in Sect. 5. Different disk parameters and
their influence are studied in Sect. 6. Finally we summarise and discuss our results in Sect. 7.

2. Model setup

To study the evolution of circumbinary disks we perform locally isothermal hydrodynamical simulations. As reference system we consider a binary star having the properties of Kepler-16, whose dynamical parameter are presented in Table 1. This system has a typical mass ratio and a moderate eccentricity of the orbit, and has been studied frequently in the literature. In our parameter study we will start from this reference system and vary different aspects systematically.

2.1. Physics and equations

Inspired by the flatness of the observed circumbinary planetary systems, for example in the Kepler-16 system the motion takes place in single plane to within 0.5° (Doyle et al. 2011), we make the following two assumptions:

1. The vertical thickness \(H \) of the disk is small compared to the distance from the centre \(R \).
2. There is no vertical motion.

It is therefore acceptable to reduce the problem to two dimensions, by vertically averaging the hydrodynamical equations. In this case it is meaningful to work in cylindrical coordinates \((R, \varphi, z) \) and the averaging process is done in the \(z \)-direction. Furthermore we choose the centre of mass of the binary as the origin of our coordinate system with the vertical axis aligned with the rotation axis of the binary. The averaged hydrodynamical equations are then given by

\[
\frac{\partial \Sigma}{\partial t} + \nabla \cdot (\Sigma \mathbf{u}) = 0, \\
\frac{\partial (\Sigma \mathbf{u})}{\partial t} + \nabla \cdot (\Sigma \mathbf{u} \otimes \mathbf{u} - \mathbf{Π}) = -\nabla P - \Sigma \nabla \Phi,
\]

where \(\Sigma = \int_{-\infty}^{\infty} \rho \, dz \) is the surface density, \(P = \int_{-\infty}^{\infty} p \, dz \) the vertically integrated pressure and \(\mathbf{u} = (u_\varphi, u_z) \) the two dimensional velocity vector. We close this system of equations with a locally isothermal equation of state

\[
P = c_s^2(R)\Sigma,
\]

with the local sound speed \(c_s(R) \).

The gravitational potential \(\Phi \) of both stars is given by:

\[
\Phi = -\sum_{k=1}^{2} \frac{GM_k}{\left| (R - \mathbf{R}_k) \right|^2 + (\varepsilon H)^2}^{1/2}.
\]

Here \(M_k \) denotes the mass of the \(k \)-th star, \(G \) is the gravitational constant and \(\mathbf{R} - \mathbf{R}_i \) a vector from a point in the disk to the primary or secondary star. From a numerical point of view the smoothing factor \(\varepsilon H \) is not necessary, if the orbit of the binary is not inside the computational domain. We use this smoothing factor to account for the vertically extended three dimensional disk in our two dimensional case (Müller et al. 2012). For all simulations we use a value of \(\varepsilon = 0.6 \).

In our simulations with no bulk viscosity the viscous stress tensor \(\mathbf{Π} \) is given in tensor notation by

\[
\Pi_{ij} = 2\eta \left[\frac{1}{2} (u_{j,i} + u_{i,j}) - \frac{1}{3} \delta_{ij} \nabla \cdot \mathbf{u} \right],
\]

where \(\eta = \Sigma v \) is the vertically integrated dynamical viscosity coefficient. To model the viscosity in the disk we use the \(\alpha \)-disk model by Shakura & Sunyaev (1973), where the kinematic viscosity is given by \(\nu = \alpha c_s H \). The parameter \(\alpha \) is smaller than one and for our reference model we use \(\alpha = 0.01 \).

To calculate the aspect ratio \(h = \delta/R \) we assume a vertical hydrostatic equilibrium

\[
\frac{1}{\rho} \frac{\partial p}{\partial z} = -\frac{\partial \Phi}{\partial z},
\]

with the density \(\rho \) and pressure \(p \). To solve this equation we use the full three dimensional potential of the binary \(\Phi = -\sum_k \frac{GM_k}{\left| \mathbf{R} - \mathbf{R}_k \right|} \) and the isothermal equation of state \(p = c_s^2(R)\rho \) (we also assume an isothermal disk in the \(z \) direction). Integration over \(z \) yields

\[
\rho = \rho_0 \exp \left\{ -\frac{1}{2} \frac{z^2}{H^2} \right\},
\]

with the disk scale height (Günther & Kley 2002)

\[
H = \left[\sum_{k=1}^{2} \frac{GM_k}{\left| \mathbf{R} - \mathbf{R}_k \right|^2} \right]^{-\frac{1}{2}},
\]

and the midplane density

\[
\rho_0 = \frac{\Sigma}{\sqrt{2\pi\nu H}},
\]

which can be calculated by using the definition of the surface density.

If we concentrate the mass of the binary \(M_{\text{bin}} = M_A + M_B \) in its centre of mass (\(\mathbf{R}_k \to 0 \)) this reduces to

\[
H = \frac{c_s(R)}{u_K},
\]

with the Keplerian velocity \(u_K = \sqrt{GM_{\text{bin}}/R} \). Test calculations with the simpler disk height (10) showed no significant difference compared to calculations with the more sophisticated disk height (8). Therefore we use the simpler disk height in all our calculation to save some computation costs.

For our locally isothermal simulations we use a temperature profile of \(T \propto R^{-1} \), which corresponds to a disk with constant aspect ratio. The local sound speed is then given by \(c_s(R) = h u_K \propto R^{-1/2} \). If not stated otherwise we use a disk aspect ratio of \(h = 0.05 \).

Table 1. Orbital parameters of the Kepler-16 system.

\(M_A \) [M\(_{\odot}\)]	\(M_B \) [M\(_{\odot}\)]	\(a_{\text{bin}} \) [au]	\(\varepsilon_{\text{bin}} \)	\(f_{\text{bin}} \) [d]	
0.69	0.20	0.29	0.22	0.16	41.08

Notes. Values taken from Doyle et al. (2011) (rounded to two decimals). The mass ratio is defined as \(q_{\text{bin}} = M_B/M_A \).
2.2. Initial disk parameters

For the initial disk setup we follow Lines et al. (2015). The initial surface density in all our models is given by

\[\Sigma(t = 0) = f_{\text{gap}} \Sigma_{\text{ref}} R^{-2\alpha}, \]

with the reference surface density \(\Sigma_{\text{ref}} = 10^{-4} M_0 \text{ au}^{-2} \). The initial slope is \(\alpha = 1.5 \) and the gap function, which models the expected cavity, created by the binary-disk interaction, is given by

\[f_{\text{gap}} = \left[1 + \exp \left(\frac{R - R_{\text{gap}}}{\Delta R} \right) \right]^{-1} \]

(Günther & Kley 2002). With the transition width \(\Delta R = 0.1 R_{\text{gap}} \) and the approximate size of the gap \(R_{\text{gap}} = 2.5 a_{\text{bin}} \) (Artyomowicz & Lubow 1994). The initial radial velocity is set to zero \(u_r(t = 0) = 0 \), and for the initial azimuthal velocity we choose the local Keplerian velocity \(u_\varphi(t = 0) = u_K \).

2.3. Initial binary parameters

For models run with PLUTO or FARGO we start the binary in its apastron at time \(t = 0 \) (upper signs in equation (13) and (14)). Models carried out with Rh2b start the binary in its apastron (lower signs in equation (13) and (14)).

\[R_A = \left(\frac{K_1 a_{\text{bin}} (1 \pm e_{\text{bin}})}{1 + e_{\text{bin}}} \right) \quad \text{and} \quad v_A = \left(\frac{K_1 2\pi a_{\text{bin}}}{1 \pm e_{\text{bin}}} \right), \]

\[R_B = \left(\frac{-K_2 a_{\text{bin}} (1 \pm e_{\text{bin}})}{1 + e_{\text{bin}}} \right) \quad \text{and} \quad v_B = \left(\frac{-K_2 2\pi a_{\text{bin}}}{1 \pm e_{\text{bin}}} \right) \]

with \(K_1 = M_B/M_{\text{bin}}, \) \(K_2 = M_A/M_{\text{bin}} \) and the period of the binary \(T_{\text{bin}} = 2\pi \left(a_{\text{bin}}^3 / (GM_{\text{bin}}) \right)^{1/2} \).

2.4. Numerics

In our simulations we use a logarithmic increasing grid in the radial and a uniform grid in the \(\varphi \)-direction. The physical and numerical parameter for our reference system used in our extensive parameter studies in Sect. 5 and Sect. 6 are quoted in Table 2 below. In the radial direction the computational domains range from \(R_{\text{min}} = 0.25 \text{ au} \) to \(R_{\text{max}} = 15.4 \text{ au} \) and in the azimuthal direction from 0 to \(2\pi \), with a resolution of 762 \times 582 grid cells. For our numerical studies we used also different configurations as explained below.

Because of the development of an inner cavity, where the surface density drops significantly, we use a density floor \(\Sigma_{\text{floor}} = 10^{-9} \) (in code units) to avoid numerical difficulties with too low densities. Test simulations using lower floor densities did not show any differences.

At the outer radial boundary we implement a closed boundary condition where the azimuthal velocity is set to the local Keplerian velocity. At the inner radial boundary the standard outflow condition as in Kley & Haghighipour (2014) or Miranda et al. (2017) but we test also different possibilities such as closed boundaries or the viscous outflow condition (Kley & Nelson 2008; Mutter et al. 2017).

The open boundary is implemented in a way that gas can leave the computational domain but cannot reenter it. This is done by using zero-gradient boundary conditions \((\partial / \partial R = 0) \) for \(\Sigma \) and negative \(u_r \). For positive \(u_r \) we use a reflecting boundary to prevent mass in-flow. Since there is no well defined Keplerian velocity at the inner boundary due to the strong binary-disk interaction, we also use a zero-gradient boundary condition for the angular velocity \(\Omega_K = u_r / R \). By using the zero-gradient condition for the angular velocity instead of the azimuthal velocity we ensure a zero-torque boundary. In the \(\varphi \)-direction we use periodic boundary conditions.

In all our simulations we use dimensionless units. The unit of length is \(R_0 = 1 \text{ au} \), the unit of mass is the sum of the primary and secondary mass \(M_0 = M_A + M_B \) and the unit of time is \(t_0 = \left(R_0^3 / (GM_0) \right) \) so that the gravitational constant \(G \) is equal to one. The unit density is then given by \(\Sigma_0 = M_0 / R_0^2 \).

2.5. Monitored parameters

Since our goal is to study the evolution of the disk under the influence of the binary we calculated ten times per binary orbit the disk eccentricity \(e_{\text{disk}} \) and the argument of the disk periastron \(\varpi_{\text{disk}} \). To calculate these quantities we treat each cell as a particle, with the cells mass and velocity, on an orbit around the centre of mass of the binary. The eccentricity vector of a cell is given by

\[e_{\text{cell}} = \frac{\mathbf{u} \times \mathbf{j}}{GM_{\text{bin}}} - \frac{R}{|R|}, \]

with the specific angular momentum \(\mathbf{j} = R \times \mathbf{u} \) of that cell. We have a flat system, thus the angular momentum vector has only a \(z \)-component. The eccentricity \(e_{\text{cell}} \) and longitude of periastron \(\varpi_{\text{cell}} \) of the cells orbit are therefore given by

\[e_{\text{cell}} = |e_{\text{cell}}|, \quad \varpi_{\text{cell}} = \arctan2(e_y, e_x). \]

The global disk values are then calculated through a mass-weighted average of each cells eccentricity and longitude of periastron (Kley & Dirksen 2006)

\[e_{\text{disk}} = \left[\int_{R_1}^{R_2} \int_{\varphi}^{2\pi} \Sigma_{\text{cell}} R \, d\varphi \, dR \right] / \left[\int_{R_1}^{R_2} \int_{\varphi}^{2\pi} \Sigma R \, d\varphi \, dR \right], \]

\[\varpi_{\text{disk}} = \left[\int_{R_1}^{R_2} \int_{\varphi}^{2\pi} \Sigma_{\text{cell}} R \, d\varphi \, dR \right] / \left[\int_{R_1}^{R_2} \int_{\varphi}^{2\pi} \Sigma R \, d\varphi \, dR \right]. \]

The integrals are simply evaluated by summing over all grid cells. The lower bound is always \(R_1 = R_{\text{min}} \). For the disk eccentricity we integrate over the whole disk \((R_2 = R_{\text{max}}) \) if not stated otherwise, whereas for the disks longitude of periastron it is suitable to integrate only over the inner disk \((R_2 = 1.0 \text{ au}) \) to obtain a well defined value of \(\varpi_{\text{disk}} \) since animations clearly show a precession of the inner disk (see e.g. Kley & Haghighipour 2015). The radial eccentricity distribution of the disk is given by:

\[e_{\text{ring}} = \left[\int_{R}^{R_E} \int_{\varphi}^{2\pi} \Sigma_{\text{cell}} R \, d\varphi \, dR' \right] / \left[\int_{R}^{R_E} \int_{\varphi}^{2\pi} \Sigma R' \, d\varphi \, dR' \right]. \]

3. Hydrodynamic codes

Since the system under analysis is, in particular near the central binary, very dynamical we decided to compare the results from
three different hydrodynamic codes to make sure that observed features are physical and not numerical artefacts. We use codes with very different numerical approaches. Pluto solves the hydrodynamical equations in conservation form with a Godunov-type shock-capturing schemes whereas R2o and Fargo are a 2nd-order upwind methods on a staggered mesh. In the following sections we describe each code and its features briefly.

3.1. Pluto

We use an in-house developed GPU version of the Pluto 4.2 code (Mignone et al. 2007). Pluto solves the hydrodynamic equations using the finite-volume method which evolves volume averages in time. To evolve the solution by one time step three substeps are required. First the cell averages are interpolated to the cell interfaces, where then in a second step a Riemann problem is solved. In a last step the averages are evolved in time using the interface fluxes.

For all three substeps Pluto offers plenty different numerical options. As it turned out the circumbinary disk model is very sensitive to the combination of these options. Third order interpolation and time evolution methods lead very fast to a negative density from which the code cannot recover although we are setting a density floor. We therefore use a second order reconstruction of states and a second order Runge-Kutta scheme for the time evolution. Another important parameter is the limiter, which is used during the reconstruction step to avoid strong oscillations. For the most diffusive limiter, the minmod limiter, no convergence is reached for higher grid resolutions. For the least diffusive limiter, the mc limiter, the code produces again negative densities and aborts the calculation. Thus we use the vanleer limiter which, in kind of diffusion, lies between the minmod and the mc limiter.

For the binary position we solve Kepler’s equation using the Newton–Raphson method at each Runge-Kutta substep.

3.2. R2o

The R2o code is a two-dimensional radiation hydrodynamics code originally designed to study boundary layers in accretion disks (Kley 1989) but later extended to perform flat disk simulations with embedded objects (Kley 1999). It is based on the 2nd order upwind method described in Hawley et al. (1984) and Rozyczka (1985). It used a staggered grid with 2nd order spatial derivatives and through operator-splitting the time integration is semi-second order. Viscosity can be treated explicitly or implicitly, artificial viscosity can be applied, and the Fargo-algorithm has also been added. The motion of the binary stars is integrated using a fourth-order Runge-Kutta algorithm.

3.3. Fargo

We adopted the adsg version of Fargo (Masset 2000; Baruteau & Masset 2008) updated by Müller & Kley (2012). This code uses a staggered mesh finite difference method to solve the hydrodynamic equations. Conceptually the Fargo code used the same methods as R2o or the Zeus code but has the special Fargo-algorithm implemented that avoids the time step limitations due to the rotating shear flow (Masset 2000). In our situation the application of the Fargo-algorithm is not always beneficial due to the larger deviations from pure Keplerian flow near the binary. The position of the binary stars is calculated by a fifth-order Runge-Kutta algorithm.

4. Numerical Considerations

Before going into describing our results on the disk dynamics we present a section on two important numerical issues that can have dramatic influence on the outcome of the simulations. This concerns the inner boundary condition (open or closed) and the location of the inner radius of the disk. We show that ‘unfortunate’ choices can lead to wrong results. In this section we use a numerical setup different from that in Table 2. Specifically, the base model has a radial extent from \(R_{\text{min}} = 0.25 \, \text{au} \) to \(R_{\text{max}} = 4.0 \, \text{au} \), which is covered with \(448 \times 512 \) gridcells for simulations with R2o and Fargo, and \(512 \times 580 \) with Pluto (see Appendix A for an explanation why we use different resolutions for different codes). For simulations with varying inner radii the number of gridcells in the radial direction are adjusted to give always the same resolution in the overlapping domain.

4.1. Inner boundary condition

All simulations using a polar-coordinate grid suffer from the fact that there will be a hole in the computational domain, because \(R_{\text{min}} \) cannot be zero. Usually this hole exceeds the binary orbit. Therefore the area where gas flows from the disk onto the binary and where circumstellar disks around the binary components form is not part of the simulation. The existence of such a complex gas flow around the binary has been shown for example by Günther & Kley (2002) with a special dual-grid technique that allowed to cover the whole inner cavity. That code is presently no longer in use and modern efficient codes (Fargo and Pluto) that run in parallel do not have the option of a dual-grid.

To reproduce nevertheless some results of Günther & Kley (2002) we carried out a simulation on a polar grid with an inner radius of \(R_{\text{min}} = 0.02 \, \text{au} \), so that both orbits of the primary and secondary lie well inside the computational domain. A snapshot of this simulation is plotted in Fig. 1. Colour-coded is the logarithm of the surface density. The orbits of the primary and secondary are shown in white and green. The white inner region (the red cross marks the centre of mass of the binary) lies outside the computational domain. A video of the shown simulation can be found online.
computational domain. Figure 1 shows the existence of circumstellar disks around the binary components as well as a complex gas flow through the gap onto the binary. Although including the binary orbit inside the computational would be desirable, it is at the moment not feasible for long-term simulations, because of the strong time-step restriction resulting from the small cell size at the inner boundary. This means that for simulations where the binary orbit is not included in the computational domain, the boundary condition at the inner radius has to allow for flow into the inner cavity, at least approximately. Two boundary conditions are usually used in circumbinary disk simulations: closed boundaries (Lines et al. 2015; Pierens & Nelson 2013) and outflow boundaries (Kley & Haghighipour 2014, 2015; Miranda et al. 2017).

Given by the importance of the boundary condition at R_{min} we carried out dedicated simulations for a model adapted to Lines et al. (2015) and used an inner radius of $R_{\text{min}} = 0.345$ au but otherwise identical to our standard model. We applied closed boundaries as well as open ones in order to examine their influence on the disk structure. Additionally, we also varied different numerical parameters (resolution, radial grid spacing, integrator) for this simulation series.

The top panel of Fig. 2 shows the azimuthally-averaged density profiles for different grid resolutions and spacings after 16 000 binary orbits. All these simulations were performed with Pluto and a closed inner boundary. The strong dependence of the density distribution and inner gap size on the numerical setup stands out. This dependence on numerics is very surprising and not at all expected, since the physical setup is identical in all these simulations and therefore the density profiles should all be similar and converge upon increasing resolution. Not only the gap size shows this strong dependence but also the radial eccentricity distribution (bottom panel of Fig. 2). To examine this dependence further, which could be in principle the result of a bug in our code, we rerun the identical physical setup with a different code, Rh2d. The results of these Rh2d simulations show the same strong numerical dependence as the Pluto results. In Fig. 3 the total disk eccentricity time evolution for the Rh2d simulations is plotted. Again one would expect that different numerical parameters would produce approximately the same disk eccentricity. But our simulations show a radical change in the disk eccentricity if the numerical methods are slightly different.

We remark that the usage of a viscous outflow condition where the radial velocity at R_{min} is fixed to $-\beta \nu r/(2R)$ with $\beta = 5$ (as suggested by Mutter et al. (2017)) resulted in the same dynamical behaviour as the closed boundary condition. The reason for this lies in the fact that the viscous speed is very small in comparison to the radial velocity induced by the perturbations of the central binary and hence there is little difference between closed and viscous boundary.

In contrast to the closed inner boundary simulations, simulations with a zero-gradient outflow inner boundary reach a quasi steady state. For the open boundaries Pluto simulations with different numerical parameters produce very similar surface density and radial disk eccentricity profiles (Fig. 4) for different resolutions and grid spacings. Only the values for the uniform radial grid with a resolution of 395×512 (purple line in Fig. 4) deviates. Here the resolution in the inner computational domain is not high enough, because a simulation with a higher resolution uniform grid $(790 \times 512$, orange line in Fig. 4) produces approximately the same results as the simulations with a logarithmic radial grid spacing.

Fig. 2. Azimuthally averaged surface density profiles (top) and radial disk eccentricity (bottom) for our Kepler-16 reference setup (using here $R_{\text{min}} = 0.345$ au) with a closed inner boundary condition at $t = 16 000 T_{\text{bin}}$. Coloured solid lines show results from simulations with different resolutions or different grid-spacing in the R-direction (logarithmic and uniform spacing). The initial density profile is also shown as a dashed black line. All simulations were performed with Pluto.

Fig. 3. Time evolution of the total disk eccentricity for simulations of the standard model with closed inner boundary and $R_{\text{min}} = 0.345$ au. Different numerical parameters like grid spacing, time integrator and operator splitting have been used. The legend refers to: std standard integrator (operator and directional splitting), unsplit no directional splitting, Rk2 2nd order RK time integrator, uni uniform grid, squared squared grid cells. All simulations were performed with Rh2d.
Fig. 4. Azimuthally-averaged surface density profiles (top) and radial disk eccentricity (bottom) for our reference setup ($R_{\text{min}} = 0.345$ au) with a zero-gradient outflow inner boundary condition after 16 000 binary orbits. Coloured solid lines show results from simulations with different resolutions or different grid-spacing in the R-direction (logarithmic and uniform spacing). The initial density profile is also shown as a dashed black line. All simulations were performed with PLUTO.

We do not have a full explanation for this strong variability and non-convergence of the flow upon using the closed inner boundary but this result seems to imply that this problem is ill-posed. A closed inner boundary creates a closed cavity which apparently implies in this case that the details of the flow depend sensitively on numerical diffusion as introduced by different spatial resolutions, time integrators or codes. As a consequence, for circumbinary disk simulations a closed inner boundary is not recommended for two reasons. Firstly, it produces the described numerical instabilities and secondly for physical reasons the inner boundary should be open because otherwise no material can flow onto the inner region and be accreted by the stars. This is also indicated in Fig. 1 which shows mass flow through the inner gap, which cannot be modelled with a closed inner boundary.

4.2. Location of the inner radius

After having identified the necessity of a zero gradient outflow condition we use it now in all the following simulations and investigate in a second step the optimal location of R_{min}. It should be placed in a way to insure simultaneously: reliable results and computational efficiency. For the excitation of the disk eccentricity through the binary-disk interaction, non-linear mode coupling and the 3:1 Lindblad resonance are important (Pierens & Nelson 2013). Therefore the location of the inner boundary is an important parameter and R_{min} should be chosen in a way that all major mean-motion resonances between the disk and the binary, lie inside the computational domain. To investigate the influence of the inner boundary position, we set up simulations with an inner radius from $R_{\text{min}} = 0.12$ au to $R_{\text{min}} = 0.5$ au for the standard system parameter as noted in Table 2. Fig. 5 shows the results of these simulations. Displayed are the azimuthally averaged surface density and the radial disk eccentricity distribution after 16 000 binary orbits. In agreement with Kley & Haghighipour (2014) we find that the radial disk eccentricity does not depend much on the location of the inner radius and remains small in the outer disk ($R \gtrsim 2$ au). Only for a large inner radius of $R_{\text{min}} = 0.5$ au we observe almost no disk eccentricity growth (brown line in Fig. 5). In this case the 3:1 Lindblad resonance ($R_{3:1} = 0.46$ au) lies outside the computational domain, confirming the conclusion from Pierens & Nelson (2013) about the importance of the 3:1 Lindblad resonance for the disk eccentricity growth. The variation of the radial disk eccentricity for inner radii smaller than 0.3 au is due to the fact that the precessing disks are in different phases after 16 000 binary orbits. Contrary to the eccentricity distribution the azimuthally averaged surface density shows a stronger dependence on the inner radius. As seen in the top panel of Fig. 5 the maximum of the surface density increases monotonically as the location of the inner boundary decreases. This is because a smaller inner radius means also that the “area” where material can leave the computational domain

Article number, page 7 of 20
decreases. For inner radii smaller than \(R_{\text{min}} \leq 0.25 \) au the change in the maximum surface density becomes very small upon further reduction of \(R_{\text{min}} \). This implies that for too large \(R_{\text{min}} \) there is too much mass leaving the domain and it has to chosen small enough to capture all dynamics. Although the maximum value of the surface density increases, the position of the maximum does not depend on the inner radius and remains at approximately \(R = 1.1 \) au, as long as the 3:1 Lindblad resonance lies inside the computational domain. Furthermore we notice that the slope of the surface density profile at the gap’s edge does not depend on the location of the inner boundary. These results are in contrast to Mutter et al. (2017) who find a stronger dependence of the density profile on the location of the inner radius. However, their results may be a consequence of the viscous outflow condition used.

As will be discussed below the disk becomes eccentric with a slow precession that depends on the binary eccentricity, \(e_{\text{bin}} \). To explore how the location of the inner radius impacts the disk dynamics we ran additional simulations with varying \(R_{\text{min}} \) for different \(e_{\text{bin}} \). We chose \(e_{\text{bin}} = 0.08 \) and \(e_{\text{bin}} = 0.32 \) in addition to the Kepler-16 value of \(e_{\text{bin}} = 0.16 \), which lies near the bifurcation point, \(e_{\text{crit}} \). Fig. 6 shows the precession period of the inner gap for varying inner radii and three different binary eccentricities where the blue curve refers to the model shown above with \(e_{\text{bin}} = 0.16 \). For a higher binary eccentricity of \(e_{\text{bin}} = 0.32 \) (green curve in Fig. 6) and on the upper branch of bifurcation diagram the disk dynamics seems to be well captured even for larger values of \(R_{\text{min}} \). Only for values smaller than \(R_{\text{min}} = 0.22 \) au deviations are seen. But the simulation with \(R_{\text{min}} = 0.20 \) au was more unstable, probably because the secondary moved in and out of the computational domain on its orbit. On the lower branch of the bifurcation diagram the convergence with decreasing \(R_{\text{min}} \) is slower as indicated by the case \(e_{\text{bin}} = 0.08 \) (red curve in Fig. 6). Here, an inner radius of \(R_{\text{bin}} = a_{\text{bin}} \) or even slightly lower may be needed. One explanation for this behaviour is the fact that on the lower branch (for small \(e_{\text{bin}} \)) the inner gap is smaller but nevertheless quite eccentric such that the disk is influenced more by the location of the inner boundary. The convergence of the results for smaller inner radii is also visible in the azimuthally averaged surface density and radial eccentricity profiles for \(e_{\text{bin}} = 0.08 \) and \(e_{\text{bin}} = 0.32 \) that are displayed in Fig. 7.

![Fig. 6. Variation of precession period of the inner gap of the disk for varying inner radii, \(R_{\text{min}} \), and different binary eccentricities, \(e_{\text{bin}} \).](image)

In summary, from the results shown in Figs. 5, 6 and 7 we can conclude that to model the circumbinary disk properly the inner radius should correspond to \(R_{\min} = a_{\text{bin}} \). This should be used in combination with a zero-gradient outflow (from now on just outflow) condition. Since a smaller inner boundary increases the number of radial cell and imposes a stricter condition on the time-step, long-term simulations with a small inner radius are very expensive. As a compromise to make long-term simulations possible we have chosen in all simulations below an inner radius of \(R_{\text{min}} = 0.25 \) au.

4.3. Location of the outer radius

While investigating the numerical conditions at the inner radius we used an outer radius of \(R_{\max} = 4.0 \) au and assumed that this value is large enough, so that the outer boundary would not interfere with the dynamical behaviour of the inner disk. During our parameter study of different binary and disk parameter it turned out, that in some cases this assumption is not true. Especially for binary eccentricities greater than 0.32 reflections from the outer boundary interfered with the complex inner disk structure. Therefore we increased the outer radius of all the following simulations to \(R_{\max} = 15.4 \) au = \(70 a_{\text{bin}} \), a value used by Miranda et al. (2017). In order to keep the same spatial resolution as before we increased also the resolution to 762 \(\times \) 582 cells. This assures that in the radial direction we still have 512 grid cells between 0.25 au and 4.0 au. To save computational time one could also use a smaller outer radius (\(R_{\max} = 40 a_{\text{bin}} \)) with a damping zone where the density and radial velocity are relaxed to their zone value. A detailed description of the implementation of such a damping zone can be found in de Val-Borro et al. (2006).

Hence, for our subsequent simulations we use from now on the numerical setup quoted in Table 2, unless otherwise stated. To study the dependence on different physical parameter we start from the standard values of the Kepler-16 system in Table 2 and vary individual parameter separately.

5. Variation of binary parameters

In this section we study the influence of the central binary parameter specifically its orbit eccentricity and mass ratio on the disk structure. Throughout this section we use a disk aspect ratio of \(h = 0.05 \) and a viscosity \(\alpha = 0.01 \). For the inner radius and

Binary parameters	\(a_{\text{bin}} \)	0.22 au
\(e_{\text{bin}} \)	0.16	
\(q_{\text{bin}} \)	0.29	

Disk parameters

Parameter	Value
\(h \)	0.05
\(\alpha \)	0.01
5.1. Dynamics of the inner cavity

Before discussing in detail the impact of varying e_{bin} and q_{bin} we comment first on the general dynamical behaviour of the inner disk. Fig. 8 shows snapshots of the inner disk after 16 000 binary orbits for different binary eccentricities. As seen in several other studies (as mentioned in the introduction) we find that the inner disk becomes eccentric and shows a coherent slow precession. In the figure we overplot ellipses (white dashed lines) that are approximate fits to the central inner cavity where we indicated waves near the gaps edges, most clearly seen in the first and last panel. We prepared some online videos to visualize the dynamical behaviour of the inner disk.

An alternative way to characterize the disk gap dynamically are the orbital elements ($e_{\text{max}}, a_{\text{max}}$) of the cell with the highest surface density. These orbital elements can be calculated with equation (15) and the vis-viva equation

$$a_{\text{gap}} = 0.5 \left(R_{\text{apa}} + R_{\text{per}} \right),$$

$$e_{\text{gap}} = R_{\text{apa}}/a_{\text{gap}} - 1.$$ \hspace{1cm} (23) (24)

As shown in Fig. 8 this purely geometrical construction matches the shape of the central cavity very well. Even though the overall disk behaviour shows a rather smooth slow precession one can notice the dynamical action of the central binary at the spiral waves near the gaps edges, most clearly seen in the first and last panel. We prepared some online videos to visualize the dynamical behaviour of the inner disk.

The periastron of the gap R_{peri} is defined analogously as the minimum radius along the line $(R, \varphi_{\text{max}} + \pi)$ in the opposite direction which fulfills

$$\Sigma(R, \varphi_{\text{max}} + \pi) \geq 0.1 \cdot \Sigma(R_{\text{max}}, \varphi_{\text{max}}).$$ \hspace{1cm} (21)

The periastron of the gap R_{peri} is defined analogously as the minimum radius along the line $(R, \varphi_{\text{max}} + \pi)$ in the opposite direction which fulfills

$$\Sigma(R, \varphi_{\text{max}} + \pi) \geq 0.1 \cdot \Sigma(R_{\text{max}}, \varphi_{\text{max}}).$$ \hspace{1cm} (22)

Using the apastron and periastron of the gap as defined above the eccentricity and semi-major axis of the gap are given by

As shown in Fig. 8 this purely geometrical construction matches the shape of the central cavity very well. Even though the overall disk behaviour shows a rather smooth slow precession one can notice the dynamical action of the central binary at the spiral waves near the gaps edges, most clearly seen in the first and last panel. We prepared some online videos to visualize the dynamical behaviour of the inner disk.

The time evolution of these gap characteristics are plotted in Fig. 9. The gap’s size and eccentricity show in phase oscillatory behaviour with a larger amplitude in the eccentricity variations.
A&A proofs: manuscript no. cb

Fig. 8. Structure of the inner disk for different binary eccentricities after 16,000 binary orbits. Colour-coded is the surface density in cgs-units. The orbits of the primary and secondary around the centre of mass (central point) are shown in blue and red. The white dashed line represents an approximate ellipses fitted to match the extension of the inner gap (see explanation in text). Videos of these simulations can be found online.

The period of the oscillation is identical to the precession period of the disk. Clearly, the extension of the gap lies always inside of the location of maximum density \(a_{\text{gap}} \leq a_{\text{max}} \), but for the eccentricities the ordering is not so clear. The radial variations of the disk eccentricity as shown in Figs. 4 and 5 indicate that the inner regions of the disk have typically a higher eccentricity. In Fig. 9 \(\epsilon_{\text{disk}} \) is smallest because it is weighted with the density which is very small in the inner disk regions. The eccentricity for the gap \(\epsilon_{\text{gap}} \) stems from a geometric fit to the very inner disk regions and is the largest. Inside of the maximum density and even slightly beyond that radius the disk precesses coherently in the sense that the pericentres estimated at different radii are aligned. The data show further that when the disk eccentricity is maximal the disk is fully aligned with the orbit of the secondary star, i.e. the pericentre of disk and binary lie in the same direction (see also appendix A).

5.2. Binary eccentricity

For simulations in this section we fixed \(q_{\text{bin}} = 0.29 \) and varied \(\epsilon_{\text{bin}} \) from 0.0 to 0.64. The binary eccentricity strongly influences the size of the gap as well as the disk precession period of the inner disk.

In Fig. 10 the azimuthally averaged surface density profiles are shown for the various \(\epsilon_{\text{bin}} \) at 16,000 binary orbits. In all cases there is a pronounced density maximum visible which is the strongest for the circular binary with \(\epsilon_{\text{bin}} = 0 \) (red curve). The position of the peak varies systematically with binary eccentricity. Increasing \(\epsilon_{\text{bin}} \) from zero to larger values one can see how the peak shifts inward. But not only the gap size decreases also the maximum surface density drops for increasing \(\epsilon_{\text{bin}} \) until a minimum at \(\epsilon_{\text{bin}} = 0.18 \) is reached. Increasing \(\epsilon_{\text{bin}} \) further causes the density peak to move outward again, whereas the maximum
surface density stays roughly constant for higher binary eccentricities.

As mentioned above, the eccentric disks precess slowly and in Fig. 11 the longitude of the inner disk’s pericentre is shown versus time over 16,000 binary orbits. The disk displays a slow prograde precession with inferred period of several thousand binary orbits. For the measurement of the precession period we discarded the first 6,000 binary orbits, since plots of the longitude of periastron show that during this time span the precession period is not constant yet (see Fig. 11). The period is then calculated by averaging over at least two full periods. To be able to average over two periods, models with a very long T_{prec} (e.g. $e_{\text{bin}} = 0.64$) were simulated for more than 16,000 binary orbits.

Fig. 12 summarises the results from simulations with varying binary eccentricities. The top panel of Fig. 12 shows different measures for the gap size for varying binary eccentricities. Besides the radial position where the azimuthally averaged surface density reaches its maximum (R_{peak}) we plot the positions where the density drops to 50 and 10 percent of its maximum value ($R_{0.5}$ and $R_{0.1}$). $R_{0.5}$ was used by Kley & Haghighipour (2014) as a measure for the gap size whereas Miranda et al. (2017) used $R_{0.1}$ and Mutter et al. (2017) R_{peak}. Starting from a non eccentric binary the curves for R_{peak} and $R_{0.5}$ decrease with increasing binary eccentricity. For $e_{\text{bin}} \approx 0.18$ the gap size reaches a minimum and then increases again for higher binary eccentricities. In agreement with Miranda et al. (2017) we see an almost monotonic increase of $R_{0.1}$ for increasing binary eccentricities. The
The middle panel of Fig. 12 shows the eccentricity of the inner cavity, calculated with the method described in Sec. 5.1. The disk eccentricity changes also systematically with e_{bin}. For circular binaries it reaches $e_{\text{gap}} \approx 0.44$ and then it drops down to about 0.25 for the turning point $e_{\text{bin}} = 0.18$ and increases again reaching $e_{\text{gap}} \approx 0.4$ for the largest $e_{\text{bin}} = 0.64$. Hence, for nearly circular binaries e_{gap} can be larger that for more eccentric binaries. A similar variation of the disk’s eccentricity and precession rate with binary eccentricity has been noticed by Fleming & Quinn (2017) who attribute this to the possible excitation of higher order resonances for larger disk eccentricities.

The bottom panel of Fig. 12 shows the precession period of the inner disk ($R < 1$ au) for different binary eccentricities. The curve for the precession period shows a similar behaviour as the upper curves for the gap size. To investigate the correlation of the gap size (here represented by $R_{0.3}$) and the precession period further, we show in Fig. 13 the two quantities plotted against each other. Two branches can be seen as indicated by the dashed curves. One starts at $e_{\text{bin}} = 0.0$ and goes to $e_{\text{bin}} = 0.18$ where the gap size and precession period decrease for increasing binary eccentricities, and the other branch starts at the minimum at $e_{\text{bin}} = 0.18$ where both gap properties increase again for increasing binary eccentricities. These two branches may indicate two different physical processes that are responsible for the creation of the eccentric inner gap and show the direct correlation between precession period and gap size.

In our simulations all disks became eccentric and showed a prograde precession, and we did not find any indication for ‘stand still’ disks that are eccentric but without any precession. In contrast, Miranda et al. (2017) find for their disk setup ($h = 0.1, \alpha = 0.1$) that the disk does not precess for binary eccentricities between 0.2 and 0.4. We do not find this behaviour for our disk models, but note that we use a disk with a lower aspect ratio and a smaller α-value. To investigate this further we set up a simulation with the same numerical parameters as Miranda et al. (2017) and used a physical setup where they did not observe a precession of the disk ($q_{\text{bin}} = 1.0$, $e_{\text{bin}} = 0.4$, $h = 0.1$ and $\alpha = 0.1$). We carried out two simulations, one with an inner radius of $R_{\text{min}} = (1 + e_{\text{bin}}) q_{\text{bin}}$ and one with an inner radius of $R_{\text{min}} = 1.136 a_{\text{min}}$. The first radius was used by Miranda et al. (2017) and in this case we observe as well no precession of the disk. The second radius corresponds to $R_{\text{min}} = 0.25$ au, which is the radius we established in Sect. 4.2 as the optimum location of the inner boundary. In the case with the smaller inner radius we observe a clear precession of the inner disk (Fig. 14) with a relatively short precession period T_{prec} as expected for high vis-

![Fig. 12. Influence of different binary eccentricities on gap size, gap eccentricity and precession rate. Top: Different measures of the gap size are shown, averaged over several thousand binary orbits. R_{peak} refers to the location of maximum of the averaged surface density (see Fig. 10), while $R_{0.5}$ and $R_{0.1}$ refer to density drops of 50 and 10 percent of the maximum value. Middle: Eccentricity of the gap. Bottom: Precession period of the disk gap.](image-url)
Fig. 14. Disk longitude of periastron for different inner radii of the computational domain. The red line shows results from a simulation with the Miranda et al. (2017) setup where no precession of the disk is observable. The blue line shows results from the same physical setup but with a smaller inner disk radius. In this case a clear precession of the inner disk is visible.

Fig. 15. Azimuthally averaged density profiles for varying binary mass ratio, after 16 000 binary orbits.

cosity and high h (see below). This is another indication of the necessity of choosing R_{min} sufficiently small to capture all effects properly.

5.3. Binary mass ratio

In this section we study the influence of the binary mass ratio. We carried out simulations with a mass ratio from $q_{\text{bin}} = 0.1$ to $q_{\text{bin}} = 1.0$, all other parameters were set according to Table 2. Fig. 15 shows the azimuthally averaged density profiles for varying binary mass ratios. The density profiles do not show such a strong variation as in simulations with varying binary eccentricities. Only the density profiles of the two lowest simulated mass ratios $q_{\text{bin}} = 0.1$ and $q_{\text{bin}} = 0.2$ differ significantly from the other profiles. The position of the peak surface density is for this models closer to the binary and the maximum surface densities roughly 20 percent lower. The different gap size measures, introduced in the previous section, are shown in the top panel of Fig. 16. In general, the variations of all three gap-size-indicators with mass ratio q_{bin} are relatively weak. All three gap size measurements remain nearly constant for mass ratios greater than 0.3. Since the density profiles do not show a significant variation this is not surprising. At the same time the size and eccentricity of the gap do not vary significantly and lie in the range $a_{\text{gap}} \approx 4 a_{\text{bin}}$ and $e_{\text{gap}} \approx 0.27$. Overall, compared to simulations with varying binary eccentricity the binary mass ratio has not such a strong influence on the inner disk structure for $q_{\text{bin}} \geq 0.3$.

In contrast, the precession period of the inner disk shows a far stronger dependence on the binary mass ratio than the gap size (bottom panel of Fig. 16). Disks around binaries with a higher mass ratio have a lower precession period than disks around binaries with a low mass ratio. This dependence can be understood in terms of free particle orbits around a binary star that also display a reduction of the precession period with increasing q, as we discuss in more detail in appendix B.

6. Variation of disk parameters

In this section we explore the influence of disks parameters, namely the aspect ratio and the alpha viscosity, on the inner disk structure. We use the Kepler-16 values for the binary and our standard numerical setup (Table 2).

While performing the simulations for this paper we observed that models with low pressure (small H/R) and high viscosity (large α) seem to be very challenging for the Riemann-Code
The drop in simulations with \(h \) decided to mix simulation results from both codes always show the same trend. Therefore we reduce results with such good agreement, but the simulation results show (Fig. 17) a decreasing gap size for larger eccentricities. In general one might explain a drop related to the gap size, an observation we already have seen for different binary eccentricities. The gaps precession period is again directly correlated to the gap size, an observation we already have seen for different binary eccentricities. In general one might explain a drop in \(T_{\text{prec}} \) for larger \(h \) because an increase in pressure will tend to reduce the gap size which will in turn lead to a faster precession. This trend is indeed observed in our simulations for larger \(h \). For simulations with \(h < 0.05 \) we observed a decrease in gap size and precession period. The drop in \(T_{\text{prec}} \) for lower values of \(h \) may be due partly to the lack of numerical resolution. Or the lack of pressure support does not allow for coherent disk precession any more.

6.2. Alpha viscosity

In this section we discuss the influence of the magnitude of viscosity on the disk structure and therefore set up simulations with different viscosity coefficients ranging from \(\alpha = 0.001 \) to \(\alpha = 0.1 \). We then analysed the structure and behaviour of the inner cavity as before. The results are summarised in Fig. 18. A clear trend is visible for the gap size as well as the precession period of the gap. For higher viscosities the gap size shrinks and the precession period decreases. Again we see the direct correlation of gap size and precession rate, as already observed for aspect ratio and binary eccentricity variations. The decrease in the disk’s gap size can be explained, because for larger \(\alpha \) values the viscous spreading of the disk increases. This viscous spreading counteracts the gravitational torques of the binary, which are responsible for the gap creation.

7. Summary and discussion

Using two dimensional hydrodynamical simulations, we studied the structure of circumbinary disks for different numerical and physical parameters. Since these simulations are, from a numerical point of view, not trivial and often it is not easy to distinguish physical features and numerical artefacts, we checked our results with three different numerical codes. In the following we

Fig. 17. Influence of different disk aspect ratio on gap size and precession rate. Top: Radius where the density drops to 50 percent of its maximum value, averaged over several thousand binary orbits. Since results from two different codes are shown we omit the two other measurements for the gap size presented in previous sections. Bottom: Precession period of the disk gap. For \(\epsilon_{\text{bin}} = 0.16 \) we observed that \textsc{Pluto} simulations can switch between two states, an upper state (red) and a lower state (green). For \textsc{RH2D} simulations we only observed the lower state (blue). This is discussed in more detail in Appendix A.

Fig. 18. Influence of different disk viscosity on gap size and precession rate. Top: Different measures of the gap size, averaged over several thousand binary orbits. Bottom: Precession period of the disk gap.
summarise the most important results from our simulations with different numerical and physical parameters.

Concerning the numerical treatment the most crucial issue with simulations using grid codes in cylindrical coordinates is the treatment of the inner boundary condition. As there has been some discussion in the literature about this issue (Pierens & Nelson 2013; Kley & Haghighipour 2014; Lines et al. 2015; Miranda et al. 2017; Mutter et al. 2017), we decided to perform a careful study of the location of the inner boundary and the conditions on the hydrodynamical variables at R_{min}. Our results can be summarised as follows:

- **Inner boundary condition.** Since there was no agreement which type of inner boundary condition should be used for circumbinary disk simulations, especially if closed or open boundary conditions should be used, we investigated the influence of the inner boundary condition through dedicated simulations with two different codes. As it turned out, closed boundaries can lead to numerical instabilities for all codes used in our comparison and no convergence to a unique solution could be found. The use of a viscous outflow condition where the velocity is set to the mean viscous disk speed produced very similar results to the closed boundary, because the viscous speed is very small in comparison to the velocities induced by the dynamical action of the binary stars. Open inner boundaries on the other hand lead to numerical stable results and are also, from a physical point of view, more logical, because material can flow onto the binary and be accreted by one of the stars. Hence, open boundaries with free outflow are the preferred conditions at R_{min}.

- **Location of inner boundary.** Not only the boundary type plays an important role also the location of the inner boundary is an important numerical parameter. Since an inner hole in the computational domain cannot be avoided in polar coordinates the inner radius has to be sufficient small to capture all relevant physical effects. In particular, all important mean motion resonances, that may be responsible for the development of the eccentric inner cavity, should lie inside the computational domain. Through a parameter study we could determine that the radius of the inner boundary R_{min} has to be of the order of the binary separation q_{bin}, to capture all physical effects in a proper way.

After having determined the best choice on numerical issues we performed in the second part of the paper a careful study to determine the physical aspects that determine the dynamics of circumbinary disks. Starting from a reference model, where we chose the binary parameter of Kepler-16, we varied individual parameters of the binary and the disk and studied their impact on the disk dynamics. First of all, for all choices of our parameters the models produce an eccentric inner disk that shows a tendency all relevant physical effects. However, the size of the gap, its eccentricity and precession rate depend on the physical parameter of binary and disk. Our results can be summarised as follows:

- **Binary parameter** To study the influence of the binary star on the disk we varied systematically the eccentricity (e_{bin}) and the mass ratio (q_{bin}) of the binary. The parameter study showed that e_{bin} has a strong influence on the gap size as well as the precession period of the gap. We found that two regimes exist where the disk behaves differently to an increasing binary eccentricity, see Fig. 8. The two branches bifurcate at a critical binary eccentricity, $e_{\text{crit}} = 0.18$ from each other. From $e_{\text{bin}} = 0.0$ to e_{crit} the gap size and precession period decreases and from $e_{\text{bin}} = 0.18$ onward both gap parameters become larger again, as displayed in Fig. 13. The bifurcation of the two branches near $e_{\text{crit}} = 0.18$ strongly suggests that different physical mechanism, responsible for the creation of the eccentric inner cavity, operate in the two regimes. For the lower branch the excitation at the 3:1 outer Lindblad resonance may be responsible which is supported by a simulation where the inner boundary was outside the 3:1 radius and no disk eccentricity was found. For the upper branch (high e_{bin}) nonlinear effects may set as suggested by Fleming & Quinn (2017) who found similar behaviour.

As second binary parameter we varied the mass ratio of the secondary to the primary star, q_{bin}, between [0.1, 1.0] and studied its impact on the gap size and precession period. Overall the variation of R_{gap} with q_{bin} is weak. For small q_{bin} the gap size increases until it becomes nearly constant for $q_{\text{bin}} \geq 0.3$ with $R_{\text{gap}} = 4.6 q_{\text{bin}}$ as shown in Fig. 16. The precession period decreases on average with increasing T_{pre} and for large q_{bin} the behaviour is equivalent to a single particle at a separation of 4.9 au, as we discuss in more detail in appendix B.

- **Disk parameter** We also varied disk parameters, namely the pressure (through the aspect ratio $h = H/R$ and the viscosity (through α). The results are displayed in Figs. 17 and Fig. 18. For changes in the aspect ratio no clear trend was visible, both gap size and precession period first increase with increasing h till they reach a maximum at $h = 0.05$ from there both gap properties decrease then again for an increasing aspect ratio. For large h the behaviour can be understood in term of the gap closing tendency of higher disk pressure. On the other hand, for very low pressure it may be more difficult to sustain a coherent precession of a large inner hole in the disk due to the reduced sound speed. Additionally, the damping action of the viscosity becomes more important for disks with lower sound speed.

A clear monotonic trend was visible for the viscosity variation, where higher α lead to smaller gaps and shorter gap precession periods. This can be directly attributed to the gap closing tendency of viscosity.

To allow for an alternative view of the impact of different binary and disk parameters on the dynamical structure of the disk we display in Fig. 19 the eccentricity (top) and the precession period (bottom) of the gap plotted against the semi-major axis of the gap for all our simulations where different colours stand for different model series. Pμro simulations are represented by dots whereas squares stand for Rn2s simulations. The reference model is marked with a star. Interestingly the majority of models lie on a 'main sequence' branch which has the trend of increasing eccentricity and precession period with increasing gap width. The smaller branch that bifurcates near the reference model represents the low e_{bin} sequence which has higher e_{gap} but smaller T_{pre}. By coincidence our reference model with the Kepler-16 parameter lies near the bifurcation point.

How the location of the bifurcation point depends of the disk and binary parameter needs to be explored in subsequent numerical studies. A first simulation series with $q_{\text{bin}} = 0.6$ suggest that this critical eccentricity does not depend on the mass ratio of the binary. As outlined in the Appendix, for parameters very near to the critical e_{bin} the models can have the tendency to switch between the two states during a single simulation. The physical cause of the bifurcation needs to be analysed in subsequent simulations.

In addition, there are a more possibilities to further improve our model. First, the use of a non isothermal equation should be
considered, to study the effects of viscous heating and radiative cooling. Especially for simulations, which also evolve planets inside the disk, Kley & Haghighipour (2014) showed that radiative effects should be taken into account. Self-gravity effects have been studied by Lines et al. (2015) and Mutter et al. (2017) and are important for galactic disks around a central binary black hole. Also the backreaction of the disk onto the binary could be considered in more detail. Angular momentum exchange with the binary occurs through gravitational torques from the disk and direct accretion of angular momentum from the material that enters the central cavity. The first part always leads a decrease of the binary semi-major axis and an increase of eccentricity (Kley & Haghighipour 2015), while Miranda et al. (2017) pointed out that angular momentum advection might even be dominant leading to a binary separation.

Another interesting question is the evolution of planets inside the circumbinary disk and their influence on the disk structure. Since an in-situ formation of the observed planets seems very unlikely, the migration and final parking position of planets is an interesting topic, that requires further investigations. In view of our extensive parameter studies there is the indication that in several past studies (Pierens & Nelson 2013; Kley & Haghighipour 2014, 2015) a too large inner radius was considered that did not allow for a full disk dynamics.

Fig. 19. Eccentricity (top) and precession period (bottom) of the inner gap plotted against the semi-major axis of the gap. Colour-coded are different simulation series. Both the measured gap eccentricity and gap semi-major axis are averaged over several thousand binary orbits. PLUTO simulations are represented by dots and squares stand for R2D simulations. The reference model with Kepler-16 parameter is marked with an interesting topic, that requires further investigations. In view of our extensive parameter studies there is the indication that in several past studies (Pierens & Nelson 2013; Kley & Haghighipour 2014, 2015) a too large inner radius was considered that did not allow for a full disk dynamics.

References

Andrews, S. M., Chandler, C. J., Isella, A., et al. 2014, ApJ, 787, 148
Armitage, P. J. & Natarajan, P. 2002, ApJ, 567, L9
Artymowicz, P., Clarke, C. J., Lubow, S. H., & Pringle, J. E. 1991, ApJ, 370, L35
Artymowicz, P. & Lubow, S. H. 1994, ApJ, 421, 651
Artymowicz, P. & Lubow, S. H. 1996, ApJ, 467, L77
Baruteau, C. & Masset, F. 2008, ApJ, 672, 1054
Bate, M. R., Bonnell, I. A., & Bromm, V. 2002, MNRAS, 336, 705
Begelman, M. C., Aarseth, S. J., & Rees, M. J. 1980, Nature, 287, 307
Cuadra, J., Artymowicz, P. J., Alexander, R. D., & Begelman, M. C. 2009, MNRAS, 393, 1423
de Val-Borro, M., Edgar, R. G., Artymowicz, P., et al. 2006, MNRAS, 370, 529
Di Folco, E., Dutrey, A., Le Bouquin, J.-B., et al. 2014, A&A, 565, L2
D’Orazi, D. J., Haiman, Z., D’Aiuto, F., & Farris, B. 2016, MNRAS, 459, 2379
Doyon, L. R., Carter, J. A., Fabrycky, D. C., et al. 2011, Science, 333, 1602
Dunhill, A. C., Cuadra, J., & D’Ago, G. 2015, MNRAS, 448, 3545
Dutrey, A., Di Folco, E., Beck, T., & Guilloiteau, S. 2016, A&A Rev., 24, 5
Dutrey, A., Di Folco, E., Guilloiteau, S., et al. 2014, Nature, 514, 600
Fleming, D. P. & Quinn, T. R. 2017, MNRAS, 464, 3343
Georgarakos, N. & Eggl, S. 2015, ApJ, 802, 94
Guilloiteau, S., Dutrey, A., & Simon, M. 1999, A&A, 348, 570
Günter, R. & Kley, W. 2002, A&A, 387, 550
Hawley, J. F., Smart, L. L., & Wilson, J. R. 1984, ApJS, 55, 211
Hawley, J. D. 2007, Computing In Science & Engineering, 9, 90
Kley, W. 1989, A&A, 208, 98
Kley, W. 1999, MNRAS, 303, 696
Kley, W. & Dirksen, G. 2006, A&A, 447, 369
Kley, W. & Haghighipour, N. 2014, A&A, 564, A72
Kley, W. & Haghighipour, N. 2015, A&A, 581, A20
Kley, W. & Nelson, R. P. 2008, A&A, 486, 617
Kostov, V. B., McCullough, P. R., Carter, J. A., et al. 2014, ApJ, 784, 14
Kostov, V. B., Orosz, J. A., Welsh, W. F., et al. 2016, ApJ, 827, 86
Leung, C. K. & Lee, M. H. 2013, ApJS, 176, 30
Lines, S., Leinhardt, Z. M., Baruteau, C., Paardekooper, S.-J., & Carter, P. J. 2015, A&A, 582, A5
Liu, B., Muñoz, D. J., & Lai, D. 2015, MNRAS, 457, 747
Lodato, G., Nayakshin, S., King, A. R., & Pringle, J. E. 2009, MNRAS, 398, 1392
Lubow, S. H. 1991, ApJ, 381, 259
MacFadyen, A. I. & Milosavljević, M. 2008, ApJ, 672, 83
Masset, F. 2000, A&AS, 141, 165
Mignone, A., Bodó, G., Massaglia, S., et al. 2007, ApJS, 170, 228
Miranda, R., Muñoz, D. J., & Lai, D. 2017, MNRAS, 466, 1170
Morris, K. & Nakagawa, Y. 2004, ApJ, 609, 1065
Müller, T. W. A. & Kley, W. 2012, A&A, 539, A18
Müller, T. W. A., Kley, W., & Meru, F. 2012, A&A, 541, A123
Mutter, M. M., Pierens, A., & Nelson, R. P. 2017, MNRAS, 465, 4735
Orosz, J. A., Welsh, W. F., Carter, J. A., et al. 2012a, ApJ, 758, 87
Orosz, J. A., Welsh, W. F., Carter, J. A., et al. 2012b, Science, 337, 1511
Papaloizou, J. B. C., Nelson, R. P., & Masset, F. 2001, A&A, 366, 263
Pierens, A. & Nelson, R. P. 2013, A&A, 556, A134
Pringle, J. E. 1991, MNRAS, 248, 754
Rozycka, M. 1985, A&A, 143, 59
Rozycka, M. & Laughlin, G. 1997, in Astronomical Society of the Pacific Conference Series, Vol. 121, IAU Colloq. 163: Accretion Phenomena and Related Outflows, ed. D. T. Wickramasinghe, G. V. Bicknell, & L. Ferrari, 792
Schwamb, M. E., Orosz, J. A., & Carter, J. A., et al. 2013, ApJ, 768, 127
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337
Welsh, W. F., Orosz, J. A., Carter, J. A., & Fabrycky, D. C. 2014, in IAU Symposium, Vol. 293, IAU Symposium, ed. N. Haghighipour, 125–132
Welsh, W. F., Orosz, J. A., Carter, J. A., et al. 2012, Nature, 481, 475
Welsh, W. F., Orosz, J. A., Short, D. R., et al. 2015, ApJ, 809, 26
Yang, Y., Hashimoto, J., Hayashi, S. S., et al. 2017, AJ, 153, 7

Acknowledgements. Daniel Thun was funded by grant KL 650/26 of the German Research Foundation (DFG), and Giovanni Picogna acknowledges DFG support grant KL 650/21 within the collaborative research program ‘The first 10 Million Years of the Solar System’. Most of the numerical simulations were performed on the bwForCluster BinAC, supported by the state of Baden-Wuerttemberg through bwHPC and the German Research Foundation (DFG) through grant INST 39/963-1 FUGG. All plots in this paper have been made with the Python library matplotlib (Hunter 2007).

Through fully three-dimensional simulations it will be possible to study the dynamical evolution of inclined disks.

Article number, page 16 of 20
Table A.1. Disk precession rate for different resolutions.

Resolution	$T_{\text{prec}} [T_{\text{bin}}]$
448×512	1277.49
512×580	1321.48
600×1360	1349.50

Appendix A: Convergence Study

The strong gravitational influence of the binary onto the disk, and the complex dynamics of the inner disk presents a big challenge for numerical schemes of grid codes. We therefore study in this appendix the dependence of the disk structure on numerical parameters, like the numerical scheme or the grid resolution. First we simulated our reference system, with an open inner boundary and an inner radius of $R_{\text{min}} = 0.25 \text{ au}$, with different codes described in Sec. 3.

In Fig. A.1 the long-time evolution of the disk eccentricity (top) and of the longitude of periastron (bottom) are shown. All three codes produce comparable results, although we have to note that to get this agreement simulations performed with

Pluto need a slightly higher resolution.
P

Pluto simulations with a resolution of 448×512 grid cells produce a slightly smaller precession period of the inner disk (red line in Fig. A.3, see also Table A.1). One possible explanation for this could be the size of the numerical stencil.

Fargo and Rn20 have a very compact stencil, because they use a staggered grid. In contrast, Pluto has a wider stencil because a collocated grid, where all variables are defined at the cell centres, is used. In particular the viscosity routine of Pluto has a very wide stencil to achieve the correct centering of the viscous stress tensor components. This could explain why for Pluto a slightly higher resolution is needed.

The π-shift of the longitude of periastron calculated with Rn20 compared to the values calculated with Pluto and Fargo (bottom Panel of Fig. A.1) can be explained in the following way. Simulations performed with Pluto and Fargo started the binary in its periastron with the pericentre of the secondary at $\varphi = \pi$ (see red ellipses in Fig. 8), whereas Rn20 started the binary in its apastron with the pericentre of the secondaries orbit at $\varphi = 0$. The data show that when the disk eccentricity has its maximum the disk is aligned with the orbit of the secondary star. Since the pericentre of the secondary in Rn20 simulations is shifted by π we can also see this π-shift in the disk’s longitude of periastron.

Fig. A.2 shows the azimuthally-averaged density profiles at $t = 16\,000\,T_{\text{bin}}$. Even after such a long time span all three codes agree very well. All codes produce roughly the same density maximum and the same density slopes.

To check the influence of the numerical resolution on the disk structure we run Pluto simulations with different resolutions, summarised in table A.1. The results of this resolution test are shown in Fig. A.3. The disk eccentricity converges to the same value whereas it seems that the disk precession rates increases for higher resolution. A closer look at the data shows that after around 6000 orbits the precession rate for the higher resolution converged. Table A.1 summarises the measured precession rate for different resolutions. Since there is no large variation between 512×580 and 600×1360 grid cells we used a resolution of 512×580 grid cells for our Pluto simulations.

As already discussed in Sect. 4.2 in some cases (for example large binary eccentricities) an outer radius of $R_{\text{max}} = 4.0 \text{ au}$ lead to wave reflections which interfere with the inner disk. Therefore we increased the outer boundary to $R_{\text{max}} = 15.4 \text{ au} = 70\, \alpha_{\text{bin}}$ (and to ensure the same resolution between 0.25 au and 4.0 au we increased also the number of grid point to 762×582). Figure A.4 compares the effect of different outer radii for the case of varying binary eccentricities. For binary eccentricities greater than 0.32 a larger outer radius makes a difference. Also, around the bifurcation point, at $e_{\text{bin}} = 0.18$, a larger outer radius changes the gap size and precession rate of the disk. We also added results from Rn20 simulations with an outer radius of $R_{\text{max}} = 18.18\, \alpha_{\text{bin}}$. These Rn20 results follow the same trend as Pluto simulations, although for most binary eccentricities we could not reproduce the very good agreement of the $e_{\text{bin}} = 0.16$ case. Around $e_{\text{bin}} = 0.18$, the critical binary eccentricity where the two branches bifurcate, simulations tend to switch between two states. This jump happens after roughly 3000 binary orbits and does not depend on physical parameters. Changes in numerical parameters, like the CFL condition or R_{max}, can trigger the jump. This can be seen in Fig. A.4 for $e_{\text{bin}} = 0.16$ where simulations with $R_{\text{max}} = 18.18\, \alpha_{\text{bin}}$ (red curve) and $R_{\text{max}} = 70.0\, \alpha_{\text{bin}}$ (blue curve) produce different values for the gap size and the precession period. An outer radius of $R_{\text{max}} = 18.18\, \alpha_{\text{bin}}$ is in the case of $e_{\text{bin}} = 0.16$ not to small, since a simulation with $R_{\text{max}} = 100\, \alpha_{\text{bin}}$ produced again the same values for the gap size and the precession period. For simulations with e_{bin} far away from e_{crit} we did not observe these jumps between states. So far
we only observed these jumps in simulations carried out with Pluto.

Appendix B: Comparison with massless test particle

In our circumbinary disk evolution we found that the inner disk becomes eccentric with a constant precession rate. In this section we compare this to test particle trajectories around the binary and investigate how a massless particle with orbital elements similar to the disk gap (Fig. 19) would behave under the influence of the binary potential. In particular, we would like to know at what distance from the binary a test particle has to be positioned such that its precession period agrees approximately with that of the disk. Using secular perturbation theory for the coplanar motion of a massless test particle around an eccentric binary star Moriwaki & Nakagawa (2004) derived the following formula for the particle’s precession period for small binary eccentricities

\[T_{\text{prec}} = \frac{4}{3} \left(\frac{q_{\text{bin}} + 1}{q_{\text{bin}}} \right)^2 \left(a_p \right)^{7/2} \left(1 + \frac{3}{2} e_{\text{bin}}^2 \right)^{-1} T_{\text{bin}}, \]

(B.1)

where \(a_p \) is the semi-major axis of the particle. The same relation was quoted by Miranda et al. (2017) based on results by Liu et al. (2015). A similar relation was given by Leung & Lee (2013) without the \(e_{\text{bin}} \) term.

In order to verify the applicability of expression (B.1) upon variation of binary and planet parameter, we performed series of 3-body simulations with very small planet mass \((10^{-6} M_\odot)\) where we varied individually \(q_{\text{bin}}, e_{\text{bin}}, \) and \(a_p \). In addition we varied the planet eccentricity \(e_p \). For the simulations we used the parameter...
of the Kepler-16 systems as a reference (see Table 1) and integrated the system for several 10 000 binary orbits. Our results of these 3-body simulations are shown in Fig. B.1. We find that the precession rate scales with \(q_{\text{bin}} \), \(a_p \) and \(e_{\text{bin}} \) exactly as expected from relation (B.1). The fourth panel of Fig. B.1 indicates that the precession period also depends on the particle eccentricity as \(T_{\text{prec}} \sim (1 - e_p^2)^{3/2} \), where we plotted the average eccentricity of the orbit which is equivalent to the particle’s free eccentricity. The agreement holds up to about \(e_p^2 \approx 0.5 \) for the used \(a_p \). Clearly, for large values of \(e_p \) the particle’s orbit will be unstable as this leads to close encounters with the binary. The value of \(e_p \) where this happens depends on the distance from the binary star. For smaller \(a_p \) the range will be more limited. In summary, we find for the precession period of a particle around a binary star

\[
T_{\text{prec}} = \frac{4}{3} \frac{(q_{\text{bin}} + 1)^2}{q_{\text{bin}}} \left(\frac{a_p}{a_{\text{bin}}} \right)^{7/2} \frac{(1 - e_p^2)^{3/2}}{\left(1 + \frac{3}{2} e_{\text{bin}}^2\right)} T_{\text{bin}}. \tag{B.2}
\]

This relation is plotted in Fig. B.1 as the solid black line. In addition to the scaling behaviour we find that the numerical results are about 3–5% smaller than the theoretical estimate. The agreement of the numerical results with the theoretical prediction becomes better for larger \(a_p \) because eq. (B.2) is derived from an approximation for large \(a_p/q_{\text{bin}} \). The full relation (B.2) can directly be inferred from eq. (11) in Georgakarakos & Eggl (2015).

Now we compare the particle precession rate to our disk simulations. The best option for this comparison is to check the scaling of the precession rate for models where \(q_{\text{bin}} \) has been varied because for binary mass ratio greater than \(q_{\text{bin}} = 0.3 \) the gap size and eccentricity does not change much (purple points in Fig. 19). This is supported by the small variation of the gap radii in Fig. 16. For higher mass ratios the gap size is approximately \(a_{\text{gap}} = 4.0 a_{\text{bin}} \) and \(e_{\text{gap}} = 0.27 \). As seen from eq. (B.2), a test particle with these orbit elements would have a precession period far too short. However, if we assume that the test particle has a semi-major axis of \(a_p = 4.9 q_{\text{bin}} \) (roughly 20 percent more than \(a_{\text{gap}} \)), the precession period of the gap and the particle match very well for different \(q_{\text{bin}} \) (Fig. B.2), at least for the larger mass ratios. In general however, due to the strong sensitivity of the precession period with \(a_p \) an exact agreement will be difficult to obtain.

Fig. B.1. Scaling of the precession period of a particle orbiting a binary stars. As base binary parameter we chose the Kepler-16 parameter and for the planet \(a_p = 1.50 \text{ au} \) and \(e_p = 0.05 \). As an exception we chose for the 1st panel \(a_p = 1.0 \text{ au} \). The black curves refer directly to eq. (B.2) and the corresponding scaling is indicated.
Fig. B.2. Comparison of the precession period of the inner disk with the precession period of free particle. For the particle we used \(a_p = 4.9 a_{ \text{gap}} \), \(\epsilon_p = 0.25 \). To obtain the shown agreement the particle’s semi-major axis \(a_p \) has to be roughly 20 percent higher than \(a_{ \text{gap}} \). The theoretical line was calculated with equation (B.2).