Short Communication

Rotavirus Infection in Children with Diarrhea at Korle-Bu Teaching Hospital, Ghana

Susan Damanka1, Theophilus K. Adiku2*, George E. Armah1, Onike Rodrigues1, Eric S. Donkor2, David Nortey4, and Richard Asmah5

1Noguchi Memorial Institute for Medical Research, University of Ghana, Legon; 2Department of Microbiology, University of Ghana Medical School, Accra; 3Department of Child Health, Korle Bu Teaching Hospital, Accra; 4Korle Bu Polyclinic, Accra; and 5Department of Medical Laboratory Sciences, University of Ghana School of Allied Health Sciences, Legon, Ghana

SUMMARY: Human rotavirus infection was studied over a 13-month period (January 2004 to January 2005) in children <5 years of age admitted with severe diarrhea at the Korle-Bu Teaching Hospital in Accra, Ghana. During this period, 206 hospitalizations for diarrhea were recorded, with 34.0% (70/206) being positive for rotavirus infection. Infection occurred throughout the year, with peak rotavirus infection occurring during the month of March. Hospitalization associated with rotaviruses was most common in the 6–8 month age group. The case fatality rate of rotavirus infection was 2.9% (2/70) and occurred in children <12 months of age. Four rotavirus VP7 genotypes (G1, G2, G3, and G9) were detected. The predominant genotypes were G2 (22.9%), G1 (17.1%), G9 (17.1%) and G3 (12.9%). Mixed G types were also detected. The predominant VP4 genotypes (P types) were P[6] (38.6%), P[8] (21.4%), P[4] (4.3%) and P[9] (1.4%). The predominant rotavirus strains infecting children in Accra were G9P[6] (10.0%) and G1P[8] (8.6%). Strains with unusual genotypes such as G2P[8] and G(2/3)P[6] were also detected.

Rotavirus has been recognized as the single most important cause of severe diarrhea in children worldwide and an important public health problem, particularly, in developing countries (1–3). Prevention of rotavirus infection through vaccination appears to be the only effective option because rotavirus infections show a similar incidence in children throughout the world regardless of hygiene and development standards (3). Currently, there are 2 main rotavirus vaccines in use, including RotaTeq (Merck & Co., Whitehouse Station, NJ, USA) and Rotarix (GlaxoSmithKline, Rixensart, Belgium), and are based on VP7 and/or VP4 outer capsid proteins of the virus (4). The RotaTeq vaccine formulation includes G1–G4 genotypes and the human P[8] genotype, whereas the Rotarix vaccine includes G1P[8] which provides cross-protection against most other serotypes. The World Health Organization (WHO) recommends surveillance of the burden of rotavirus disease and the circulating rotavirus strains, before and after the inclusion of rotavirus vaccination in national expanded programs on immunization (5).

In Ghana, there are several surveillance reports on rotavirus (6–11). However, rotavirus surveillance appears to have been focused on the northern part of the country, where the climate contrasts sharply with that of southern Ghana. Rotavirus surveillance in Ghana provides evidence of the changing pattern of genotypes, which has important implications for vaccination (6). In this paper, we describe rotavirus infections and genotypes, including unusual gene variants, among children hospitalized with diarrhea at a tertiary hospital in southern Ghana prior to the introduction of the rotavirus vaccine in the country.

This study was conducted at Korle-Bu Teaching Hospital in Ghana from January 2004 to January 2005. All children aged <5 years admitted to the hospital with diarrhea on the day of the visit were included in this study. Diarrhea, in this study, was defined as the passage of more than 3 loose-than-normal stools in a 24-h period. Basic demographic and clinical information of the study participants was collected using a structured questionnaire. Fecal specimens were then collected from all eligible children into sterile containers and transported on ice to Noguchi Memorial Institute for Medical Research (NMIMR) in Accra, where they were stored at −20°C until rotavirus testing was performed. Follow-up data on the outcome of admission and the date of discharge were retrieved from hospital folders of all study participants and were entered into Microsoft Access (Microsoft, Redmond, WA, USA).

The protocol of the study was approved by the Ethical and Protocol Review Committee of the University of Ghana Medical School, and informed consent was obtained from the parents/guardians of the pediatric subjects enrolled in the study.

An enzyme-linked immunosorbent assay for rotavirus group A was performed using a commercially available DAKO Rotavirus ELISA kit (Rotavirus IDEIA; Dako Diagnostic, Cambridgeshire, UK) with a 10% suspension of fecal material in phosphate-buffered saline. Viral double-stranded ribonucleic acid (dsRNA) was extracted from the stool suspension by the Bender buffer.
Table 1. Age distribution of rotavirus infection

Age Group (Month)	Viral positivity	Man (%)	Woman (%)	Total (%)
0-2		2/1771 (11.8)	3/11 (27.3)	5/28 (17.9)
3-5		5/12 (41.7)	7/17 (41.2)	12/29 (41.4)
6-8		10/19 (52.6)	6/11 (54.5)	16/30 (53.3)
9-11		10/28 (35.7)	6/14 (42.9)	16/42 (38.1)
12-17		10/23 (43.5)	6/15 (40.0)	16/38 (42.1)
18-24		3/7 (42.9)	1/11 (9.1)	4/18 (22.2)
≥25		0/10 (0)	1/11 (9.1)	1/21 (4.8)
TOTAL (%)		40/116 (34.5)	30/90 (33.3)	70/206 (34.0)

1): No. of positive samples/No. of samples tested.

Of the 206 stool samples collected, rotavirus was detected in 70 (34.0%) (Table 1). Infection occurred throughout the year, with peak rotavirus infection occurring in March (Fig. 1). Infection was most common in the 3–17 month age group (43.2%; 60/139) with a peak hospitalization of 52.6% in the 6–8 month age group (Table 1). In this study, more male children (34.5%; 40/116) had shed rotavirus than female children (33.3%; 30/90) (Table 1), however, this was statistically insignificant. Rotavirus infection was associated with a mean hospital stay of 4.8 days and a range of 1–46 days. Diarrhea mortality, in the study, was 3.9% (8/206), with a 2.9% (2/70) case fatality rate of rotavirus infection (data not shown). Four rotavirus VP7 genotypes (G1, G2, G3, and G9) were detected. The predominant genotypes were G2 (22.9%), G1 (17.1%), G9 (17.1%), and G3 (12.9%) (Table 2). Mixed G types were also common. Four VP4 types (P[6], P[8], P[4], and 1 unusual VP4 type, P[9]) were detected (Table 2). In this study, the predominant rotavirus strains infecting children in Accra were found to be G9P[6] (10.0%) and G1P[8] (8.6%). The following unusual genotypes and mixed infections were observed: G2P[8] (5.7%), G(2/3)P[6] (2.3%), G(3/4)P[4] (2.3%), and G(8/9)P[6] (2.3%).

The overall percentage of rotavirus infection of diarrhea cases detected in the present study (34.0%) is slightly higher than that previously observed in the Upper East Region of Ghana (25.5%) (7); it is also higher than that observed in Cameroon (21.4%) (17). It is, however, lower than the overall percentage of rotavirus infection observed in Navrongo in the Kassena-Nankana District of the Upper East Region of Ghana (40.5%) (6). The present study has demonstrated that rotavirus infection occurred mostly in children below the age of 24 months. This conforms with previous studies in Ghana (8), West Indies (18), and other places (19,20). The sharp decline in rotavirus infection in children beyond the age of 17 months could be explained by the immunity build-up due to multiple exposures to rotavirus in the early part of life (21). The median age of rotavirus infection in the present study (6–8 months) is similar to that reported in previous studies (8,9). This is lower than the median age reported in the developed...
countries (14–18 months) and is probably due to the fact that rotavirus infection displays a distinct seasonal pattern in temperate climates, with epidemic peaks occurring in the cooler months of the year and being absent or uncommon during the warmer months of the year (19,22). In tropical areas, rotavirus disease has been reported to occur throughout the year with seasonal peaks occurring during the cool dry months of the year (8,20). Additionally, our data (Table 2) suggest that Ghanaian children are exposed to a wide range of different genotypes, probably more than what children in developed countries are exposed to. This may partly clarify the higher incidence of rotavirus disease among children in the developing world compared with those in the developed world. The monthly distribution of rotavirus observed in this study is in accordance with findings reported previously (8,9). In this study, peak rotavirus infection (53.6%) was observed in March, however, the monthly infection peak is known to vary from year to year, and from country to country (23). No significant difference in the prevalence of rotavirus infection between male and female children was observed, which is also consistent with a previous report (24). On the other hand, several studies have reported significantly higher prevalence rates in men compared with women (25,26). It is difficult to explain why no significant gender differences in rotavirus infection were observed; we believe that this finding may be coincidental.

VP7 and VP4 characterizations were determined by molecular methods using genotype-specific primers. The major neutralization antigen VP7 is the primary target for neutralizing antibodies (27). VP4 determines virulence in humans; in addition, this structural protein elicits neutralizing antibodies (28). Sixty-eight percent of G types detected (G1, G2, and G3) were globally common, suggesting that the efficacy of the current rotavirus vaccine might be satisfactory in Accra, Ghana. G4, one of the most common worldwide G types (28), which also formed the basis for the development of the rotavirus vaccine, was detected only in one of the samples with dual infection. The most common rotavirus G type detected in this study was G2 (16/70), constituting 22.9% of all G types detected, followed by G9 and G1. The genotype distribution in the current study is slightly different from that reported by Enweronu-Laryea et al. in southern Ghana (10). Their study was conducted 3 years after the present study, and the main genotypes identified included G1 (50.9%), G2 (18.8%), G3 (12.8%), P[8] (36.1%), and P[6] (30.7%) (10). Evidence from both studies highlights the great diversity of rotavirus strains circulating in Ghana. Recent studies in other regions of the world have also documented other circulating serotypes. Studies in Brazil showed that a significant number of infections (60%) were caused by strains other than those contained in the vaccine (29,30). In Malawi, rotavirus strains with novel G/P combinations, such as G8P[6] and G8P[4] were identified in more than 42% of specimens examined (31).

Table 2: Genotype distribution of rotavirus in Accra, Ghana (Jan. 2004–Jan. 2005)

G type	G1	G2	G3	G4	G9	G mix	G nt
P[4]	0	1	0	0	0	2	0
P[6]	1	3	4	0	7	2	10
P[8]	6	4	0	0	7	0	0
P[9]	1	4	0	0	0	0	0
P mix	1	1	0	0	2	2	3
P nt	2	3	2	1	0	1	1

TOTAL (%) 3 (4.3) 27 (38.6) 15 (21.4) 1 (1.4) 14 (20.0) 70 (100.0)

nt, not typable.

REFERENCES
1. Black RE, Cousens S, Johnson HL, et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet. 2010;375:1969-87.
2. Million Death Study Collaborators, Bassani DG, Kumar R, et al. Causes of neonatal and child mortality in India: a nationally representative mortality survey. Lancet. 2010;376:1853-60.
3. Parashar UD, Hummelman EG, Bresee JS, et al. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis. 2003;9:565-72.
4. Dennehy PH. Rotavirus vaccines: an overview. Clin Microbiol Rev. 2008;21:198-208.
5. World Health Organization (WHO). Meeting of the immunization strategic advisory group of experts, April 2009-conclusions.
and recommendations. Wkly Epidemiol Rec. 2009;84:220-36.
6. Armah GE, Steele AD, Binka FN, et al. Changing patterns of rotavirus genotypes in Ghana: emergence of human rotavirus G9 as a major cause of diarrhea in children. J Clin Microbiol. 2003;41:2317-22.
7. Armah GE, Essel EK, Asmah RH, et al. Detection of human group C rotavirus in Ghanaian children. Ghana Med J. 2000;34:3-8.
8. Armah GE, Mingle JA, Dodoo AK, et al. Seasonality of rotavirus infection in Ghana. Ann Trop Paediatr. 1994;14:223-9.
9. Armah GE, Pager CT, Asmah RH, et al. Prevalence of unusual human rotavirus strains in Ghanaian children. J Med Virol. 2001;63:67-71.
10. Enweronu-Laryea CC, Sagoe KW, Damanka S, et al. Rotavirus genotypes associated with childhood severe acute diarrhea in southern Ghana: a cross-sectional study. Virol J. 2013;10:287.
11. Asmah RH, Green J, Armah GE, et al. Rotavirus G and P genotypes in rural Ghana. J Clin Microbiol. 2001;39:1981-4.
12. Flook PK, Wilson MD, Post RJ. The use of repetitive DNA probes in the analysis of natural populations of insects and parasites. In: Berry RJ, Crawford TJ, Hewitt GM editors. Genes in Ecology. Oxford, UK: British Ecological Society/Blackwell Scientific Publication; 1992. p. 484-486.
13. Herring AJ, Inglis NF, Ojeh CK, et al. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol. 1982;16:473-7.
14. Gouvea V, Glass RI, Woods PA, et al. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol. 1990;28:276-82.
15. Santos N, Riepenhoff-Talty M, Clark HF, et al. VP4 genotyping of human rotavirus in the United States. J Clin Microbiol. 1994;32:205-8.
16. Gentsch JR, Glass RI, Woods PA, et al. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol. 1992;30:1365-73.
17. Esona MD, Armah GE, Steele AD. Molecular epidemiology of rotavirus infection in Western Cameroon. J Trop Pediatr. 2003;49:160-3.
18. Henry FJ, Bartholomew RK. Epidemiology of rotavirus infections and diarrhea in St. Lucia, West Indies. West Indian Med J. 1990;39:205-12.
19. Mutanda LN, Kinoti SN, Gemert W, et al. Age distribution and seasonal pattern of rotavirus infection in children in Kenya. J Diarrhoeal Dis Res. 1984;2:147-50.
20. Molbak K, Fischer TK, Mikkelsen CS. The estimation of mortality due to rotavirus infections in sub-Saharan Africa. Vaccine. 2000;19:393-5.
21. Velazquez FR, Matson DO, Calva JJ, et al. Rotavirus infections in infants as protection against subsequent infections. N Engl J Med. 1996;335:1022-8.
22. Puerto FJ, Polanco GG, Gonzalez MR, et al. Role of rotavirus and enteric adenovirus in acute paediatric diarrhoea at an urban hospital in Mexico. Trans R Soc Trop Med Hyg. 1989;83:396-8.
23. Parashar UD, Bresee JS, Gentsch JR, et al. Rotavirus. Emerg Infect Dis. 1998;4:561-70.
24. Junaid SA, Umeh C, Olabode AO, et al. Incidence of rotavirus infection in children with gastroenteritis attending Jos university teaching hospital, Nigeria. Virol J. 2011;8:233.
25. Bass CW, Dorsey KN. Rotavirus and other agents of viral gastroenteritis. In: Richard E, Behrman F, editors. Nelson Textbook of Pediatrics. Philadelphia, PA: Raven Press; 2004. p. 107-110.
26. Kazemi A, Tabatabaie F, Agha-Ghazvini MR, et al. The role of rotavirus in acute pediatric diarrhea in Isfahan, Iran. Pak J Med Sci 2006;22:282-5.
27. Estes MK, Graham DY, Dimitrov DH. The molecular epidemiology of rotavirus gastroenteritis. Prog Med Virol. 1984;29:1-22.
28. Burke B, Desselberger U. Rotavirus pathogenicity. Virology. 1996;218:299-305.
29. Santos N, Lima RCC, Pereira CFA, et al. Detection of rotavirus types G8 and G10 among Brazilian children with diarrhea. J Clin Microbiol. 1998;36:2727-9.
30. Leite JPG, Alfieri AA, Woods PA, et al. Rotavirus G and P types circulating in Brazil: characterization by RT-PCR, probe hybridization and sequence analysis. Arch Virol. 1996;141:2365-74.
31. Cunliffe NA, Gondwe JS, Broadhead RL, et al. Rotavirus G and P types in children with acute diarrhea in Blantyre, Malawi, from 1997 to 1998: predominance of novel P[6]G8 strains. J Med Virol. 1999;57:308-12.
32. Watanabe M, Nakagomi T, Koshimura Y, et al. Direct evidence for genome segment reassortment between concurrently circulating human rotavirus strains. Arch Virol. 2001;146:557-70.