Involvement of Cytochrome P450, Glutathione S-Transferase, and Epoxide Hydrolase in the Metabolism of Aflatoxin B₁ and Relevance to Risk of Human Liver Cancer

F. Peter Guengerich,¹ William W. Johnson,¹ Yune-Fang Ueng,¹ Hiroshi Yamazaki,² and Tsutomu Shimada²

¹Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee; ²Osaka Prefectural Institute of Public Health, Osaka, Japan

In recent years there has been considerable interest in the effect of variations in activities of xenobiotic-metabolizing enzymes on cancer incidence. This interest has accelerated with the characterization of human enzymes, both those involved in activation and detoxication, and the development of methods for analyzing genetic polymorphisms. However, progress in epidemiology has been slow and the contributions of polymorphisms to risks from individual chemicals and mixtures are often controversial. A series of studies is presented to show the complexities encountered with a single chemical, aflatoxin B₁ (AFB₁). AFB₁ is oxidized by human cytochrome P450 enzymes to several products. Only one of these, the 8,9-epoxide, appears to be mutagenic and the others are detoxication products. P450 3A4, which can both activate and detoxicate AFB₁, is found in the liver and the small intestine. In the small intestine, the first contact after oral exposure, epoxidation would not lead to liver cancer. The (nonenzymatic) half-life of the epoxide has been determined to be approximately 1 sec at 23°C and neutral pH. Although the half-life is short, AFB₁, 8,9-epoxide does react with DNA and glutathione S-transferase. Levels of these conjugates have been measured and combined with the rate of hydrolysis in a kinetic model to predict constants for binding of the epoxide with DNA and glutathione S-transferase. A role for epoxide hydrolase in alteration of AFB₁ hepatocarcinogenesis has been proposed, although experimental evidence is lacking. Some inhibition of microsome-generated genotoxicity was observed with rat epoxide hydrolase; further information on the extent of contribution of this enzyme to AFB₁ metabolism is not yet available. — Environ Health Perspect 104(Suppl 3):557–562 (1996)

Key words: aflatoxin B₁, cytochrome P450, glutathione, glutathione S-transferase, epoxide hydrolase, metabolism of mycotoxins, metabolism of chemical carcinogens

Introduction

The role of enzymatic transformation in the activation and detoxication of chemical carcinogens has been recognized for half a century (1). Studies on these enzymes have shown their multiplicity in many cases, as well as the large extent of variation of levels of individual enzymes that can occur (2). With experimental animal systems, there is considerable evidence that alterations in levels of some of these enzymes can have dramatic effects in influencing the incidence of cancer from chemical carcinogens, both in the classical initiation and promotion phases (3–7). This background in experimental models has led to hypotheses that variations in the activities of individual enzymes involved in xenobiotic transformation influence cancer incidence in humans (7,8). In the late 1980s it became possible to assign roles in the activation of many chemical carcinogens to individual P450 enzymes on the basis of in vitro results (8,9) (Table 1). The same approaches have been used with other enzymes such as GST and N-acetyltransferase. In some cases, the dominance of a particular enzyme (especially cytochrome P450) in the metabolism of a drug has made it possible to make in vivo evaluations of the contributions to the human metabolism of a carcinogen, especially if low levels of the carcinogen can be administered to humans (7,8,11).

The above information has led to studies involving what is often referred to as molecular epidemiology, particularly in the effort to associate cancer risks with levels of enzymes or with genetic polymorphisms in the enzymes. The difficulty in the approach may be exemplified by the results of efforts to relate levels of P450 2D6 with tobacco-induced lung cancer, where equivocal results have been obtained in different laboratories over the course of a decade (12–15). Part of the difficulty in this situation may be a result of the myriad of potential carcinogens found in tobacco smoke and the lack of P450 2D6 to dominate in the activation of any of these (16–18).

Aflatoxin B₁ (AFB₁) is generally considered to play a major role in human liver cancer in some parts of the world (19,20), and much is now known about its mechanism of genotoxicity, which appears to be the result of the formation of a single initial DNA adduct (at the guanyl N7 atom) (21,22). We have considered some of the complexities of the metabolism of AFB₁ and the relevance to efforts to implicate individual enzyme levels as factors in risk.

Methods

Chemicals

AFB₁ was purchased from Sigma Chemical Co. (St. Louis, MO) and was further purified by thin-layer chromatography under dim light (silica gel G) before use in
the genotoxicity experiments. AFB1-8,9-epoxide was synthesized with the use of dimethyldioxirane (23) by T. M. Harris, and the exo isomer was crystallized from a (CH3)2CO:CHCl3 mixture (24). 8-(S-glutathionyl), 9-hydroxy AFB1 (GS-AFB1) (25) was also a gift from Harris’ laboratory. AFB1-8,9-dihydrodiol was prepared by the addition of aqueous HCl to AFB1-8,9-epoxide.

Enzymes

Recombinant human P450s 1A2 (26) and 3A4 (27) were produced in *Escherichia coli* and purified as described. Rabbit liver NADPH-P450 reductase (28) and cytochrome b5 (29) were isolated as described. Recombinant (rat) glutathione S-transferase (GST) 3-3 was a gift from R. N. Armstrong. Rat and human liver epoxide hydrolases (EHs) were purified using modifications of procedures published elsewhere (30).

Assays

GS-AFB1 (products of exo and endo epoxides) and AFB1-8,9-dihydrodiol were separated by high-performance liquid chromatography (HPLC) and quantified (A360) as described elsewhere (25,31). Genotoxicity assays involved measurement of the *umu* (SOS) response in *Salmonella typhimurium* TA1535 harboring the plasmid pSK1001 using general procedures described elsewhere (32). Experiments involving kinetics of AFB1-8,9-epoxide hydrolysis were done using an Applied Photophysics SX-17-MV system (Leatherbarrow, U.K.) equipped with fluorescence and UV-diode array detectors and software for analysis of results. Kinetic simulations were done with the KINSIM (33) software run on a Macintosh PowerMac computer (Apple Computer, Inc., Cupertino, CA) equipped with a Software FPU coprocessing simulator.

Results

Oxidation of AFB1 by P450 Enzymes

P450 3A4 has been shown to play a major role in the activation of AFB1 due to its intrinsic activity towards this substrate and the high level of this enzyme present in human liver (9,31,34–37) (Table 2). P450 1A2 and some other human P450s can also contribute, but they play a lesser role, even at relatively low AFB1 concentrations (31,35,36,38,39). P450 3A4 forms only the genotoxic AFB1-8,9-exo-epoxide; P450 1A2 forms both the exo and the nongenotoxic endo isomers (Figure 1)(31).

P450s can also detoxicate AFB1 (Figure 1). P450 3A4 forms AFQ1, the 3α-hydroxylation product, which does not appear to be a good substrate for epoxidation (37). P450 1A2A forms AFM1 (by 9α hydroxylation), which also seems to be a detoxication product (31,37). In animal studies, the induction of P450 1A2 and production of AFM1 have been reported to account for the lower levels of AFB1-induced hepatocellular cancer after administration of polycyclic hydrocarbons (40,41). Which of the human P450s form aflatoxin P1 is not known.

Flavonoids can modulate the metabolism of AFB1, as first reported by Conney’s laboratory (42,43). α-Naphthoflavone inhibits all activities of P450 1A2 (31); it also inhibits AFB1 3α-hydroxylation (to form AFQ1) by P450 3A4 but stimulates 8,9-epoxidation (31,37). The influence on the kinetic profiles is postulated to reflect an allosteric mechanism (44).

Conjugation of AFB1-8,9-epoxides with Glutathione

Several lines of evidence suggest that the extent of glutathione (GSH) conjugation of AFB1-8,9-epoxide is a major factor in influencing the risk of different experimental animal species to AFB1-induced hepatocellular carcinoma (Figure 2) (6,45). At neutral pH, there is essentially no nonenzymatic reaction of GSH with AFB1-8,9-epoxide (25). With crude liver cytosolic
fractions, the order of (enzymatic) GST activity is mouse > rat > human (25). The relative extent of GSH-AFB1 conjugate formation by some human GSTs is shown in Table 3.

AFB1-8,9-epoxide Hydrolysis

Previous work has shown that the **exo epoxide**, the major isomer formed (24,31), is also less stable in CH₃OH/H₂O mixtures (46). Other work has suggested that the half-life (t₁/₂) of the **exo epoxide** was < 10 sec (47).

Preliminary studies have indicated that the UV spectrum of AFB1-8,9-dihydrodiol is distinct from that of the epoxide (Figure 3A). The fluorescence spectra are even more distinct, with the dihydrodiol having more than two orders of magnitude more fluorescence than the epoxide. Kinetics of hydrolysis were measured in a stopped-flow apparatus in a pH 7.0 buffer, with 9% (CH₃)₂CO present (final concentration). The t₁/₂ was approximately 1 sec when either UV or fluorescence traces were measured (Figure 3B).

Further studies indicated that the observed hydrolysis rate constant was rather constant between pH 4 and pH 9 but was increased at <pH 4, with a slope of the log₁₀ observed versus pH having a slope of unity.

Interaction of AFB1-8,9- **exo-epoxide with Glutathione S-Transferase 3-3 and DNA**

In earlier studies the relative rates of reaction of GSTs with AFB1-8,9-epoxides had been estimated by quantitation of GSH-AFB1 with fixed concentrations of GSTs and time points (Table 3) (25). To examine the aspects of these interactions, we measured the extent of GS-AFB1 formation after mixing varying concentrations of AFB1-8,9-epoxide and GST 3-3 in the presence of GSH (Figure 4).

To estimate constants for the reactions, we set up the equations

$$ A + B \overset{k_{eq}} \rightarrow AB \overset{k_1} \rightarrow C \quad \text{and} \quad A \overset{k_2} \rightarrow D $$

where $A = [\text{AFB1-8,9-exo-epoxide}]$, $B = [\text{GST 3-3}]$, $C = [\text{GS-AFB1}]$ and $D = [\text{AFB1-8,9-dihydrodiol}]$ and utilized the KINSIM program (33) to evaluate various values of K_{eq} and k_1 that would give match values of C and D experimentally measured at various concentrations of A and B (Figure 4). The same approach was used with DNA and previously measured values (48) and with $B = \text{DNA}$ and $C = \text{DNA N7-guanyl adduct}$. The estimates are presented in Table 4, along with the measured k_r.

Figure 3. Nonenzymatic hydrolysis of AFB1-8,9-exo-epoxide. A, A solution of AFB1-8,9-exo-epoxide [in dry (CH₃)₂CO] was mixed with 10 volumes of 50 mM potassium phosphate buffer (pH 7.0) at 23°C in the stopped-flow spectrophotometer and UV spectra were recorded approximately every 20 msec with the use of a diode array detector. B, In a similar experiment, the increase in fluorescence (excitation 357 nm, emission 452 nm) was recorded as a function of time.
Interactions of AFB\textsubscript{1}-8,9-exo-epoxide and Epoxide Hydrolase

The action of EH on AFB\textsubscript{1}-8,9-exo-epoxide has been postulated before (49,50), but definite results regarding this possibility are not available. The rapid rate of nonenzymatic hydrolysis (Figure 3B, Table 4) renders direct measurement of the reaction difficult. We could not see a definite effect of purified rat human EH on the recovery of N7-guanyl DNA adducts in experiments where AFB\textsubscript{1}-8,9-epoxide was mixed with DNA or where EHs were added to a system containing P450 3A4 (plus all accessory components needed for oxidation) and a suboptimal amount of GST. However, in other experiments we have been able to increase the observed rate of AFB\textsubscript{1}-8,9-exo-epoxide hydrolysis (from 0.64 to 0.78/sec) in the presence of 19 μM rat EH. This result needs to be further evaluated.

We also used another system in which a very low concentration of P450 3A4 (and accessory components) was used to activate AFB\textsubscript{1} in an S. typhimurium system in which an umu end point was measured (Figure 5). Under such conditions a very high ratio of EH:P450 can be achieved. Both rat and human EH could partially inhibit the genotoxicity response under these conditions.

Summary

Further studies are needed to evaluate the role of EH in the metabolism of AFB\textsubscript{1}-8,9-epoxide. The report of McGlynn et al. (49) is surprising in that the EH allele variant was linked with higher levels of AFB\textsubscript{1}-albumin adduct, even though the major AFB\textsubscript{1} protein adduct is thought to be derived from AFB\textsubscript{1}-8,9-dihydrodiol (51). The dihydrodiol results from the enzymatic or nonenzymatic hydrolysis of the epoxide. The possibility of direct reaction of protein with the epoxide cannot be ruled out at this time; however, the effect of the allelic variation on the catalytic activity of EH is not well established. The report of lower activity is the result of lower levels of expression in a transient system, not intrinsic catalytic activity (52).

The complexity of the enzyme systems involved in the metabolism of AFB\textsubscript{1} points out the difficulties in doing molecular epidemiology studies, even when a single chemical carcinogen has been identified. The roles of at least two P450s in the activation process have been considered. There is suggestive evidence that human GSTs in the alpha, mu, and theta families may all have roles in the detoxication of the epoxide (25,53–55). Further work is needed to establish whether there is a role for EH. With all of the enzymes, there is a need

Table 4. Reactions of AFB\textsubscript{1} 8,9-exo-oxide with GST 3-3 or DNA.

\(k_o\)	\(k_{pr}\)	\(k_{pe}\)	\(k_{pr}\times k_{pe}\)
\(K_m\)	\(K_m\)	\(K_m\)	\(K_m\)
GST 3-3	0.03 μM	0.08/sec	1.96 x 10-3/M/sec
DNA	0.05 μM	0.20/sec	3.92 x 10-3/M/sec

(See text for kinetic model.)

Figure 4. Formation of GS-AFB\textsubscript{1} by GST 3-3. AFB\textsubscript{1}-8,9-epoxide, in dry acetone, was mixed with varying amounts of GST 3-3 and 10 mM GSH in 50 μl of 50 mM potassium phosphate buffer (pH 7.4) at 23°C. The final concentration of AFB\textsubscript{1}-8,9-exo-epoxide was 4 (●), 12 (●), or 24 (●) nM. After 15 sec, 20 μl of 2.0 M aqueous CH\textsubscript{3}CO\textsubscript{2}H was added and the protein was precipitated by centrifugation at 3 x 103 x g for 10 min. Aliquots of the supernatant were analyzed for AFB\textsubscript{1}-8,9-dihydrodiol and GS-AFB\textsubscript{1} by HPLC as described elsewhere (25,31).

Figure 5. Effect of purified EH on genotoxicity of AFB\textsubscript{1} activated by P450 3A4. AFB\textsubscript{1} (20 μM) was activated in the presence of a recombinant P450 3A4 (10 nM)-based oxidation system (31) in the presence of an NADPH-generating system, S. typhimurium TA1535 containing plasmid pSK1001, and the indicated concentrations of purified rat (●) or human (▲, ●) EH (the latter two samples were prepared from human liver samples, HL96 and HL105, of two different individuals). The response to heat-inactivated rat EH is also shown (○). The umu response was monitored by β-galactosidase response and is expressed as described by Shimada et al. (32).

Figure 6. Complications involved in the metabolism of AFB\textsubscript{1} and relevance to hepatocellular cancer.

Considerations:
- AFB\textsubscript{1} intake
- Relative levels of enzymes
 - Regulation: genetics and environment (variation over time?)
 - Influence of inhibitors and stimulators
- Locations
- DNA repair
- Correlation of adducts with cancer
- HBV status, inflammation, and other nongenotoxic influences
ENZYMES INVOLVED IN AFLATOXIN METABOLISM

REFERENCES

1. Mueller GC, Miller JA. The metabolism of 4-dimethylaminozobenzene by rat liver homogenates. J Biol Chem 176:535–544 (1948).

2. Guengerich FP. Metabolic activation of carcinogens. Pharmacol Ther 54:17–61 (1992).

3. Conney AH, Miller EC, Miller JA. The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res 16:450–459 (1956).

4. Nebert DW. The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Crit Rev Toxicol 20:153–174 (1989).

5. Boberg FW, Liem A, Miller EC, Miller JA. Inhibition by pentachlorophenol of the initiating and promoting activities of 1’-hydroxyxafrole for the formation of enzyme-altered foci and tumors in rat liver. Carcinogenesis 8:531–539 (1987).

6. Bolton MG, Muñoz A, Jacobson LP, Groopman JD, Maxuxenko YY, Roeuck BD, Kessler TW. Transient intervention with oltipraz protect against aflatoxin-induced hepatic tumorigenesis. Cancer Res 53:3499–3504 (1993).

7. Guengerich FP. Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res 48:2946–2954 (1988).

8. Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 4:391–407 (1991).

9. Shimada T, Iwashiki M, Martin MV, Guengerich FP. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA1535/pSK1002. Cancer Res 49:3218–3228 (1991).

10. Guengerich FP, Shimada T. Human cytochrome P-450 enzymes and chemical carcinogenesis. In: Human Drug Metabolism: From Molecular Biology to Man (Jeffrey EH, ed). Boca Raton, FL:CRC Press, 1993:5–12.

11. Guengerich FP. Human cytochrome P450 enzymes. In: Cytochrome P450 (Ortiz de Montellano PR, ed). New York:Plenum Press, 1995:473–535.

12. Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hettzel MR. Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature 312:169–170 (1984).

13. Drakoulis N, Minks T, Ploch M, Orte F, Heinemeyer G, Kampf D, Loddenkemper R, Roots I. Questionable association of debrisoquine hydroxylator phenotype and risk for bronchial carcinoma. Acta Pharmacol Toxicol 59(Suppl 5):220 (1986).

14. Daly AK, Cholerton S, Armstrong M, Idle JR. Genotyping for polymorphisms in xenobiotic metabolism as a predictor of disease susceptibility. Environ Health Perspect 102(Suppl 9):55–61 (1994).

15. Boobis AR, Davies DS. Debrisoquine oxidation phenotype and susceptibility to lung cancer. Br J Clin Pharmacol 30:653–656 (1990).

16. Wolff T, Disterath LM, Worthington MT, Groopman JD, Hammons GJ, Kadlubar FF, Prough RA, Martin MV, Guengerich FP. Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylation studied using immunonochemical inhibition and chemical modeling. Cancer Res 45:2116–2122 (1985).

17. Shimada T, Guengerich FP. Activation of amino-α-carbonile, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes. Cancer Res 51:5284–5291 (1991).

18. Crespi CL, Penman BW, Gelbou HV, Gonzalez FJ. A tobacco smoke-derived nitrosamine, 4-(methylidinosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P450D6. Carcinogenesis 12:1197–1201 (1991).

19. Busby WF, Wogan GN. Aflatoxins. In: Chemical Carcinogens (Searle GE, ed). Washington:American Chemical Society, 1984:945–1136.

20. Wogan GN. Aflatoxins as risk factors for hepatocellular carcinoma in humans. Cancer Res 52(Suppl 7):2114s–2118s (1992).

21. Essigmann JM, Croy RG, Nadzan AM, Busby WF Jr, Reinhold VN, Büchi G, Wogan GN. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc Natl Acad Sci USA 74:1870–1874 (1977).

22. Lin JK, Miller JA, Miller EC. 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Cancer Res 37:4430–4438 (1977).

23. Baetse SW, Runay KD, Stone MP, Harris TM. Preparation of the 8,9-epoxide of the mycotoxin aflatoxin B1: the ultimate carcinogenic species. J Am Chem Soc 110:7929–7931 (1988).

24. Runay KD, Coles B, Guengerich FP, Harris TM. The endo 8,9-epoxide of aflatoxin B1: a new metabolite. Chem Res Toxicol 5:333–335 (1992).

25. Runay KD, Meyer DJ, Ketterer B, Harris TM, Guengerich FP. Glutathione conjugation of aflatoxin B1, epoxide and endo epoxides by rat and human glutathione S-transferases. Chem Res Toxicol 5:470–478 (1992).

26. Sandhu P, Guo Z, Baby T, Martin MV, Tukey RH, Guengerich FP. Expression of modified human cytochrome P450 IA2 in Escherichia coli: stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch Biochem Biophys 309:169–177 (1994).

27. Gillam EM, Baby T, Kim B-R, Ohmori S, Guengerich FP. Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme. Arch Biochem Biophys 305:123–131 (1993).

28. Yasukochi Y, Masters BSS. Some properties of a detergent-solubilized NADPH-cytochrome c (cytochrome P-450) reductase.

Environmental Health Perspectives • Vol 104, Supplement 3 • May 1996
purified by biospecific affinity chromatography. J Biol Chem 251:5337–5344 (1976).

29. Funae Y, Imaoka S. Simultaneous purification of multiple forms of rat liver microsomal cytochrome P-450 by high-performance liquid chromatography. Biochim Biophys Acta 842:119–132 (1985).

30. Guengerich FP, Wang P, Mitchell MB, Mason PS. Rat and human liver microsomal epoxide hydratase. Purification and evidence for the existence of multiple forms. J Biol Chem 254:12248–12254 (1979).

31. Ueng Y-F, Shimada T, Yamazaki H, Guengerich FP. Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem Res Toxicol 8:218–225 (1995).

32. Shimada T, Oda Y, Yamazaki H, Mimura M, Guengerich FP. SOS function tests for studies of chemical carcinogenesis in Salmonella typhimurium TA 1535/pSK1002, NM2009, and NM3009. In: Methods in Molecular Genetics. Vol 5 (Adolph KW, ed). Orlando: FL: Academic Press, 1994;342–355.

33. Barshop BA, Wrenn RF, Frieden C. Analysis of numerical methods for computer simulation of kinetic processes: development of KINSIM—a flexible, portable system. Anal Biochem 130:134–145 (1985).

34. Shimada T, Guengerich FP. Evidence for cytochrome P-450, the nilepide oxigenase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci USA 86:462–465 (1989).

35. Aoyama T, Yamano S, Guzelian PS, Gelboin HV, Gonzalez FJ. 5 of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc Natl Acad Sci USA 87:4790–4793 (1990).

36. Forrester LM, Neal GE, Judah DJ, Glancy MJ, Wolf CR. Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B1 metabolism in human liver. Proc Natl Acad Sci USA 87:8306–8310 (1990).

37. Raney KD, Shimada T, Kim D-H, Groopman JD, Harris TM, Guengerich FP. Oxidation of aflatoxins and sterigmatocystin by human liver microsomes: significance of aflatoxin Q1 as a detoxication product of aflatoxin B1. Chem Res Toxicol 5:202–210 (1992).

38. Crespi CL, Penman BW, Leakey JAE, Arlottop MP, Stark A, Parkinson A, Turner T, Steimel DT, Rudo K, Davies RL, Langenbach R. Human cytochrome P450IIIA3: cDNA sequence, role of the enzyme in the metabolic activation of pro-mutagens, comparison to nitrosamine activation by human cytochrome P450IIE1. Carcinogenesis 11:1293–1300 (1990).

39. Yun C-H, Shimada T, Guengerich FP. Purification and characterization of human liver microsomal cytochrome P-450 2A6. Mol Pharmacol 40:679–685 (1991).

40. Faletto MB, Koser PL, Battula N, Townsend GK, Maccubbin AE, Gelboin HV, Gurttoo HL. Cytochrome P-450 cDNA encodes aflatoxin B1-4-hydroxylase. J Biol Chem 263:12187–12189 (1988).

41. Koser PL, Faletto MB, Maccubbin AE, Gurttoo HL. The genetics of aflatoxin B1 metabolism: association of the induction of aflatoxin B1-4-hydroxylase with the transcriptional activation of cytochrome P-450 genes. J Biol Chem 263:12584–12595 (1988).

42. Buening MK, Fornter JG, Kappas A, Conney AH. 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin B1 to mutagens by human liver. Biochem Biophys Res Comm 82:344–355 (1978).

43. Buening MK, Chang RL, Huang MB, Fornter JG, Wood AW, Conney AH. Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res 41:67–72 (1981).

44. Guengerich FP, Kim B-R, Gillam EMJ, Shimada T. Mechanisms of enhancement and inhibition of cytochrome P450 catalytic activity. In: Proceedings of the 8th International Conference on Cytochrome P450. Biochemistry, Biophysics, and Molecular Biology (Lechner MC, ed). Chichester, U.K.: John Libbey Eurotext, 1994;97–101.

45. Roebuck BD, Liu YL, Rogers AE, Groopman JD, Kessler TW. Protection against aflatoxin B1-induced hepatocarcinogenesis in F344 rats by 5-(2-pyrazinyl)-4-methyl-1,2-dithiole-3-thione (oltipraz): predictive role for short-term molecular dosimetry. Cancer Res 51:5501–5506 (1991).

46. Iyer R, Coles B, Raney KD, Thier R, Guengerich FP, Harris TM. DNA adduction by the potent carcinogen aflatoxin B1 mechanistic studies. J Am Chem Soc 116:1603–1609 (1994).

47. Baertschi SW, Raney KD, Shimada T, Harris TM, Guengerich FP. Comparison of rates of enzymatic oxidation of aflatoxin B1, aflatoxin G1, and sterigmatocystin and activities of the epoxides in forming guanyl-N7 adducts and inducing different genetic responses. Chem Res Toxicol 2:114–122 (1989).

48. Raney KD, Gopalakrishnan S, Byrd S, Stone MP, Harris TM. Alteration of the aflatoxin cyclopentenone ring to a cyclic d-lactone reduces intercalation with DNA and decreases formation of guanine N7 adducts by aflatoxin epoxides. Chem Res Toxicol 3:254–261 (1990).

49. McGlynn KA, Rosvold EA, Lsgarder RD, Yu H, Clapper ML, Zhou T, Wild CP, Xia X-L, Baffoe-Bonnie A, Ofiordi-Adjei D, Chen G-C, London WT, Shen F-M, Buetow KH. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1. Proc Natl Acad Sci USA 92:2384–2387 (1995).

50. Ch’i Ji, Lin T, Devlin TM. Activation and deactivation of aflatoxin B1 in isolated rat hepatocytes. Biochem Biophys Res Comm 110:668–674 (1983).

51. Sambioni G, Skipper PL, Buchi G, Tannenbaum SR. Isolation and characterization of the major serum albumin adduct formed by aflatoxin B1 in vivo in rats. Carcinogenesis 8:819–824 (1987).

52. Hasset C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydroxase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 3:421–428 (1994).

53. Liu YH, Taylor J, Linko P, Luier GW, Thompson CL. Glutathione S-transferase μ in human lymphocyte and liver: role in modulating formation of carcinogen-derived DNA adducts. Carcinogenesis 12:2269–2275 (1991).

54. Languoet S, Coles B, Morel F, Becquemort L, Beaune PH, Guengerich FP, Ketterer B, Guillouzo A. Inhibition of CYP1A2 and CYP3A4 by oltipraz in reduction of aflatoxin B1 metabolism in human hepatocytes in primary culture. Cancer Res 55:5574–5579 (1995).

55. Shimada T, Yamazaki H, Oda Y, Hiratsu S, Watabe T, Guengerich FP. Activation and inactivation of carcinogenic dihaloalkanes and other compounds by glutathione S-transferase 1-5 in Salmonella typhimurium tester strain NM5004. Chem Res Toxicol 9:333–340 (1996).