Charantoside L, A New Cucurbitane-Type Glycoside from *Momordica charantia* L. with α-Glucosidase Inhibitory Activities

Duong Thi Hai Yen¹, Pham Hai Yen¹², Nguyen Quang Hop³, Nguyen Anh Hung³, Ha Thi Thu Tran⁴⁵, Bui Huu Tai¹², Nguyen Xuan Nhiem¹² and Phan Van Kiem¹²

Abstract

A new cucurbitane-type glycoside (1) and two known compounds (2-3) were isolated from the ethanol extract of the fruits of *Momordica charantia* L. Their chemical structures were determined as (19S,23E)-5β,19-epoxy-19-methoxy cucurbita-6,23-diene-3β,25-diol 3-O-β-D-allopyranoside (1), goyaglycoside d (2), and (19S,23E)-5β,19-epoxy-19-methoxy cucurbita-6,23-diene-5β,25-diol (3) on the basis of the extensive spectroscopic methods, including 1D, 2D NMR, HRESIMS, and in comparison with the reported data. Compounds 1 to 3 were evaluated for α-glucosidase inhibitory effects. Compounds 1 and 2 showed anti-α-glucosidase activity with IC₅₀ values of 134.12 ± 11.20 and 163.17 ± 13.71 µM, respectively, compared with the positive control, acarbose, IC₅₀ 160.99 ± 14.30 µM. Compounds 2 and 3 were first isolated from plant *M. charantia* growing in Vietnam.

Keywords

cucurbitaceae, *momordica charantia*, cucurbitane-type glycoside, α-glucosidase, charantoside L

Received: November 8th, 2021; Accepted: December 7th, 2021.

Introduction

The plant *Momordica charantia* L. (Cucurbitaceae) is widely cultivated in many tropical regions and its fruit has been used as a vegetable, which has effect of reducing blood sugar and therapeutic effect on diabetes. Cucurbitane-triterpenoids are major components of this plant and some of which have been reported to unti-diabetes a bitter stomachic, a laxative, an antidiabetic, and an anthelmintic agents.¹⁻²³ In the previous papers, we reported twenty-one cucurbitane-type glycosides from the fruits of this plant and their α-glucosidase inhibitory effects.²⁰⁻²² Continue researching on bioactive compounds from *M. charantia*, we further reported herein the isolation and structural elucidation of one new and two known cucurbitane-type compounds and their α-glucosidase inhibition activities.

Results and Discussion

Phytochemical study on the water layer of the ethanol extract of *M. charantia* fruits led to the isolation of three compounds (1-3) as white amorphous powders. Compounds 2 and 3 were identified to be (19R,23E)-5β,19-epoxy-19,25-dimethoxy cucurbita-6,23-diene-3β,25-diol 3-O-β-D-allopyranoside (goyaglycoside d)⁶ and (19S,23E)-5β,19-epoxy-19-methoxy cucurbita-6,23-diene-3β,25-diol,²⁴⁻²⁶ respectively (Figure 1 and Table 1).

The molecular formula of 1 was determined to be C₃₇H₆₀O₉Na base on the quasi-molecular ion peaks at m/z 649.4130 [M + H]⁺ (calcd for [C₃₇H₅₁O₉Na]⁺, 649.4130, ∆ = 0 ppm) and m/z 671.4130 [M + Na]⁺ (calcd for [C₃₇H₆₀O₉Na]⁺, 671.4130, ∆ = 0 ppm) in the high-resolution electron spray ionization mass spectrometry (HRESIMS). The ¹³C nuclear magnetic resonance (¹³C NMR) spectrum of 1 showed signals of 37 carbons including 6 non-protonated carbons, 15 CH, 8 CH₂, and 8 CH₃.

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
²Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
³Hanoi Pedagogical University 2, Vinhphuc, Vietnam
⁴Institute of Forestry Research and Development (IFRAD), Thai Nguyen University of Agriculture and Forestry, Thai Nguyen City, Vietnam
⁵Thai Nguyen University of Agriculture and Forestry, Thai Nguyen City, Vietnam

Corresponding Author:
Phan Van Kiem, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
Email: phankiem@vast.vn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Of these, one methoxy group was confirmed at δC 57.1, two double bonds at δC 134.0/129.8 and 125.3/139.5, and one allose moiety at δC 74.0, 72.1, 70.1, 68.2 (5xCH), and 63.0 (CH2) (Supplemental Figures S1-S8). The above observation in comparison with those of 2 suggesting that 1 was a cucurbitane-type glycoside, a typical compound from M. Charantia. The NMR signals at δC 83.9 (C), δC 115.0/δH 4.42 (s), and at δC 57.1/δH 3.69 (s) suggested for the 5β,19-epoxy-19-methoxy structure. The NMR data of 1 were further assigned by 2D NMR spectra (Table 1, [Supplemental Figures S9-S20]). In the heteronuclear multiple bond correlation [HMBC] spectra, the correlations of H3-28 [δH 1.21]/H3-29 [δH 0.88] to C-3 [δC 83.7]/C-4 [δC 38.5]/C-5 [δC 83.9], H-6 [δH 6.11]/H-7 [δH 5.49] to C-5/C-8 [δC 49.7], H-19 [δH 4.42] to C-5/C-8, and methoxy protons [δH 3.69] to C-19 [δC 115.0] were observed. These evidence further confirmed the 5β,19-epoxy-19-methoxy structure. The HMBC correlations from H-26/H-27 to C-24 [δC 139.5]/C-25 [δC 70.7], and from H-1′ [δH 4.80] to C-3 [δC 83.7] indicated that one hydroxy group was at C-25, one double bond at C-23/C-24, and the allose moiety attached to C-3 [Figure 2]. The large J value [15.5 Hz] of H-23/H-24 suggested the trans configuration of this double bond, which was further confirmed by the nuclear overhauser effect spectroscopy [NOESY] cross peak of H2-22 [δH 1.75 and 2.17] and H-24 [δH 5.58] [Figure 3]. The carbon chemical shifts of C-5, C-8, C-10, and C-19 of 1 differed with that of 2 [19R] and similar to that of 3 [19S] [Table 1] suggested 19S configuration, which was further indicated by the cross peaks between H-19 and H-8/H-18 in the NOESY spectrum of 1. The observation of correlation spectroscopy [COZY] cross peaks of H-1′ [δH 4.80]/H-2′ [δH 3.41]/H-3′ [δH 4.26]/H-4′ [δH 3.61]/H-5′ [δH 3.67]/H-6′ [δH 3.90 and 3.77] and H-3′ appeared as a broad singlet at δH 4.26 confirmed the allose moiety of 1. Which was further indicated by the NOESY cross peaks of H-2′/H-3′ and H-3′/H-4′. The large coupling constant of the anomeric proton at δH 4.80 [J = 7.8 Hz] and the NOESY cross peaks of H-1′/H-3′ indicated β-form of the glycosyl linkage. Acid hydrolysis of 1 obtained D-allose, which were identified by the positive sign of their optical rotations and TLC analysis in comparison with authentic monosaccharide. Based on the above evidence, the structure of 1 was elucidated to be [19S,23E]-5β,19-epoxy-19-methoxy cucurbita-6,23-diene-3β,25-diol 3-O-β-D-allopyranoside, a new compound named charantoside L [Figure 1].

The cucurbitane-type glycosides have been reported for their significant anti α-glucosidase activity. Therefore, compounds 1-3 were evaluated for their anti α-glucosidase activity. Acarbose, an antidiabetic drug was used as a positive control in the test. All the experiments were performed in triplicate and the biological results were described in the half maximal inhibitory concentration (IC50). Compounds 1 and 2 showed anti α-glucosidase activities with IC50 values of 134.12 ± 11.20 and 163.17 ± 13.71 μM, respectively, comparing with the positive control (acarbose, IC50 160.99 ± 14.30 μM), whereas compound 3 is inactive (Table 2).
Material and Methods

General Experimental Procedures

Optical rotation was measured on a Jasco P-2000 polarimeter. IR spectrum was recorded on a Spectrum Two FT-IR spectrometer, NMR spectra on a Bruker AvanceNEO 600 MHz spectrometer, HRESIMS on a SCIEX X500 QTOF LC/MS. Fractionation was monitored by thin layer chromatography (TLC) to combine test tubes showing similar TLC pattern. For TLC, a precoated silica gel 60 F254 (0.25 mm, Merck) and RP-18 F 254S plates (0.25 mm, Merck) were used. Column chromatography was performed on silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck) or YMC RP-18 resins (30-50 μm, Fujisilisa Chemical Ltd). Compounds were visualized by UV irradiation (254 and 365 nm) and by spraying with H2SO4 solution (5%) followed by heating with a heat gun. HPLC was carried out using an AGILENT 1100 HPLC system.

Plant Material

The fruits of *Momordica charantia* L. were collected in Thai Binh province in May 2021, and identified by Dr Nguyen The Cuong, Institute of Ecology and Biological Resources. A voucher specimen was deposited at the Institute of Marine Biochemistry, VAST.

Extraction and Isolation

The dried powders of *M. charantia* fruits (2.0 kg) were sonicated with hot ethanol (96°) (3 times × 5 L, each 3 h) to give EtOH extract (200 g) after evaporation of the solvent. The EtOH extract was suspended in water and successively partitioned with EtOAc to obtain the EtOAc extract (MCE, 60 g) and H2O layer (MCW). The MCE extract (58 g) was chromatographed on a silica gel column eluting with gradient solvent of hexane: acetone (40:1, 20:1, 10:1, 5:1, 1:1, and 0:1, v/v) to give six fractions, MCE1-MCE6. Fraction MCE3 (2.2 g) was chromatographed on an RP-18 column eluting with acetone:H2O (3:1, v/v) to give three smaller fractions, MCE3A-MCE3C. MCE3C was chromatographed on a J′sphere H-80 column (150 × 20 mm), solvent condition of 100% CH3CN to give to yield compound 3 (10.2 mg). Fraction MCE5 (6.5 g) was chromatographed on an RP-18 column eluting with acetone:H2O (3:1, v/v) to give four smaller fractions, MCE5A-MCE5D. MCE5B was chromatographed on a J′sphere H-80 column (150 × 20 mm), solvent condition of 70% CH3CN in H2O to give compounds 1 (15.5 mg) and 2 (16.2 mg).

Charantoside L (1). White amorphous powder; [α]D25 \(37.0 \) (c 0.1, EtOH); IR (KBr) \(\nu_{max} \) 3397, 1455, 1376, 1053 cm\(^{-1}\), HRESIMS \(m/z \) 649.4130 [M + H]\(^+\) (calcd for \([C_{37}H_{61}O_{9}]^+\), 649.4130, \(\Delta = 0 \) ppm); 666.4576 [M + NH\(_4\)]\(^+\) (calcd for

| Table 1. NMR Spectroscopic Data for Compounds 1-3 in Deuterated Chloroform. |
|-----------------|-----------------|-----------------|
| Pos. | \(\delta_C \) | \(\delta_H \) (mult., \(J \) in Hz) | \(\delta_C \) | \(\delta_H \) |
| 1 | 17.6 | 1.28 (m), 2.03 (m) | 18.3 | 16.6 |
| 2 | 27.4 | 1.74 (m), 1.83 (m) | 27.3 | 27.1 |
| 3 | 83.7 | 3.48 (m) | 82.6 | 76.2 |
| 4 | 38.5 | – | 38.8 | 37.1 |
| 5 | 83.9 | – | 85.6 | 85.1 |
| 6 | 134.0 | 6.11 (dd, 9.6, 1.2) | 132.1 | 133.1 |
| 7 | 129.8 | 5.49 (dd, 9.6, 3.6) | 132.0 | 130.5 |
| 8 | 49.7 | 2.26 (d, 4.8) | 41.8 | 49.8 |
| 9 | 48.8 | – | 47.8 | 49.0 |
| 10 | 38.5 | – | 41.0 | 37.9 |
| 11 | 21.5 | 1.59 (m), 1.70 (m) | 22.9 | 21.4 |
| 12 | 30.4 | 1.60 (2H, m) | 30.6 | 30.5 |
| 13 | 45.2 | – | 45.0 | 45.2 |
| 14 | 48.1 | – | 48.0 | 48.1 |
| 15 | 33.5 | 1.30 (m), 1.33 (m) | 33.5 | 33.5 |
| 16 | 27.8 | 1.37 (m), 1.95 (m) | 27.9 | 27.8 |
| 17 | 50.2 | 1.44 (m) | 50.1 | 50.2 |
| 18 | 15.0 | 0.87 (s) | 14.6 | 15.0 |
| 19 | 115.0 | 4.42 (s) | 112.5 | 114.8 |
| 20 | 36.2 | 1.51 (m) | 36.1 | 36.2 |
| 21 | 18.6 | 0.88 (d, 7.0) | 18.7 | 18.6 |
| 22 | 39.1 | 1.75 (m), 2.17 (m) | 39.4 | 39.1 |
| 23 | 125.3 | 5.59 (dt, 15.5, 7.0) | 128.5 | 125.3 |
| 24 | 139.5 | 5.58 (d, 15.5) | 136.7 | 139.6 |
| 25 | 70.7 | – | 74.9 | 70.8 |
| 26 | 30.0 | 1.31 (s) | 25.8 | 30.0 |
| 27 | 29.9 | 1.31 (s) | 25.8 | 30.0 |
| 28 | 25.2 | 0.88 (s) | 24.8 | 24.4 |
| 29 | 20.9 | 1.21 (s) | 21.2 | 20.6 |
| 30 | 19.9 | 0.85 (s) | 19.7 | 19.9 |
| 19-OH | 57.1 | 3.69 (s) | 58.4 | 57.3 |
| 19-OMe | 57.1 | 3.69 (s) | 58.4 | 57.3 |

| Figure 2. Important H-H COSY and HMBC correlations of compound 1. |
Conclusions

Three cucurbitane-type glycosides (1-3) were isolated from the ethanol extract of the fruits of *Momordica charantia* L. Their structures were established by extensive spectroscopic analysis. Of which, compound 1 was previously undescribed and compounds 2 and 3 were first reported from Vietnamese *M. charantia* plant. Compounds 1 and 2 showed anti-α-glucosidase activities with IC₅₀ values of 134.12 ± 11.20 and 163.17 ± 13.71 μM, respectively, compared with the positive control (acarbose, IC₅₀ 160.99 ± 14.30 μM), whereas compound 3 is inactive.

Acknowledgments

The authors would like to thank Dr Nguyen The Cuong, Institute of Ecology and Biological Resources, VAST, for the plant identification.

Authors Contribution

Research idea, NX Nhiem, TTT Ha, PH Yen, PV Kiem; Isolation, DTH Yen, NQ Hop, NH Anh; Structure elucidation and writing, BH Tai, PH Yen, PV Kiem.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research is funded by Vietnam Academy of Science and Technology under grant number: UDSXTN.04/20-21.

ORCID iD

Phan Van Kiem https://orcid.org/0000-0003-0756-6990

Supplemental Material

Supplemental material for this article is available online.

References

1. Chi VV. *Dictionary of Medicinal Plants in Vietnam*. Medical Publishing House; 2018:185-186.
2. Karunanayake EH, Weihinda J, Sinannane SR, Adoria GS. Oral hypoglycaemic activity of some medicinal plants of Sri Lanka. J Ethnopharmacol. 1984;11(2):223-231. doi:10.1016/0378-8741(84)90040-0.

3. Chen J, Tian R, Qiu M, Lu L, Zheng Y, Zhang Z. Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry. 2008;69(4):1043-1048. https://doi.org/10.1016/j.phytochem.2007.10.020

4. Okabe H, Miyahara Y, Yamauchi T. Studies on the constituents of Momordica charantia L. III. Characterization of new cucurbitacin glycosides of the immature fruits. Structures of momordicosides G, F1, F2 and I. Chem Pharm Bull. 1982;30(11):3977-3986. https://doi.org/10.1248/cpb.30.3977

5. Okabe H, Miyahara Y, Yamauchi T. Studies on the constituents of Momordica charantia L. IV. Characterization of new cucurbitacin glycosides of the immature fruits (2) structures of the bitter glycosides, momordicosides K and L. Chem Pharm Bull. 1982;30(12):4334-4340. https://doi.org/10.1248/cpb.30.4334

6. Murakami T, Emoto A, Matsuda H, Yoshikawa M. Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, gosaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, soyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L. Chem Pharm Bull. 2001;49(1):54-63. https://doi.org/10.1248/cpb.49.54

7. Kimura Y, Akihisa T, Yuasa N, et al. Cucurbitane-type triterpenoids from the fruits of Momordica charantia. J Nat Prod. 2005;68(5):807-809. https://doi.org/10.1021/np040218p

8. Nakamura S, Murakami T, Nakamura K, Kobayashi H, Matsuda H, Yoshikawa M. Structure of new cucurbitane-type triterpenes and glycosides, karavilagenins and karavilosides, from the dried fruit of Momordica charantia L. in Sri Lanka. Chem Pharm Bull. 2006;54(11):1545-1550. https://doi.org/10.1248/cpb.54.1545

9. Akihisa T, Higo N, Tokuda H, et al. Cucurbitane-type triterpenoids from the fruits of Momordica charantia and their cancer chemopreventive effects. J Nat Prod. 2007;70(8):1233-1239. https://doi.org/10.1021/np068075p

10. Li QY, Chen HB, Liu ZM, Wang B, Zhao YY. Cucurbitane triterpenoids from Momordica charantia. Magn Reson Chem. 2007;45(6):451-456. https://doi.org/10.1002/mrc.1989

11. Harinantena I, Tanaka M, Takaoka S, et al. Momordica charantia constituents and antiadhesive screening of the isolated major compounds. Chem Pharm Bull. 2006;54(7):1017-1021. https://doi.org/10.1248/cpb.54.1017

12. Okabe H, Miyahara Y, Yamauchi T. of momordicosides F1, F2, G, I and L, novel cucurbitacins in the fruits of Momordica charantia L. Tetrahedron Lett. 1982;23(1):77-80. https://doi.org/10.1016/S0040-4039(00)7537-3

13. Liu Y, Ali Z, Khan IA. Cucurbitane-type triterpene glycosides from the fruits of Momordica charantia. Planta Med. 2008;74(10):1291-1294. doi:10.1055/s-2008-1081297

14. Okabe H, Miyahara Y, Yamauchi T, Miyahara K, Kawasaki T. Studies on the constituents of Momordica charantia L. I. Isolation and characterization of momordicosides A and B, glycosides of a pentahydroxy-cucurbitane triterpene. Chem Pharm Bull. 1980;28(9):2753-2762. https://doi.org/10.1248/cpb.28.2753

15. Miyahara Y, Okabe H, Yamauchi T. Studies on the constituents of Momordica charantia L. II. Isolation and characterization of minor seed glycosides, momordicosides C, D and E. Chem Pharm Bull. 1984;29(6):1561-1566. https://doi.org/10.1248/cpb.29.1561

16. Yasuda M, Iwamoto M, Okabe H, Yamauchi T. Structures of momordicines I, II and III, the bitter principles in the leaves and vines of Momordica charantia L. Chem Pharm Bull. 1984;32(5):2044-2047. https://doi.org/10.1248/cpb.32.2044

17. Fatope MO, Takeda Y, Yamashita H, Okabe H, Yamauchi T. New cucurbitane triterpenoids from Momordica charantia. J Nat Prod. 1990;53(6):1491-1497. https://doi.org/10.1021/jp00072a014

18. Chang CI, Chen CR, Liao YW, Cheng HL, Chen YC, Chou CH. Cucurbitane-type triterpenoids from Momordica charantia. J Nat Prod. 2006;69(8):1168-1171. https://doi.org/10.1021/np060808v

19. Chen JC, Liu WQ, Lu L, et al. Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia. Phytochemistry. 2009;70(1):133-140. https://doi.org/10.1016/j.phytochem.2008.10.011

20. Nhiem NX, Kiem PV, Minh CV, et al. α-Glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of Momordica charantia. Chem Pharm Bull. 2010;58(5):720-724. https://doi.org/10.1248/cpb.58.720

21. Nhiem NX, Kiem PV, Minh CV, et al. Cucurbitane-type triterpene glycosides from the fruits of Momordica charantia, Magn Reson Chem. 2010;48(5):392-396. https://doi.org/10.1002/mrc.2582

22. Yen PH, Dung DT, Nhiem NX, et al. Cucurbitane-type triterpene glycosides from the fruits of Momordica charantia. Nat Prod Commun. 2014;9(3):383-386. https://doi.org/10.1177/1934578X1409000327

23. Gao Y, Chen JC, Peng XR, Li ZR, Su HG, Qiu MH. Cucurbitane-type triterpene glycosides from Momordica charantia and their α-glucosidase inhibitory activities. Nat Prod Rep. 2020;10.1007/s11060-020-00241-5

24. Mulholland DA, Sewram V, Osborne R, Pegel KH, Connolly JD. Cucurbitane triterpenoids from the leaves of Momordica foetida. Phytochemistry. 1997;45(2):391-395. doi:10.1016/S0031-9422(96)00314-8

25. Yue J, Xu J, Cao J, Zhang X, Zhao Y. Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). J Funct Foods. 2017;37:624 – 631.

26. Liaw CC, Huang HC, Hsiao PC. 5β,19-epoxycucurbitane triterpenoids from Momordica foetida and their anti-inflammatory and cytotoxic activity. Planta Med. 2015;81(1):62 – 670.

27. Agrawal PK. NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry. 1992;31(10):3307-3330. doi:10.1016/0031-9422(92)83678-R

28. Wronal RE. Food Carbohydrate Chemistry. John Wiley & Sons, Inc;2012:11.

29. Voutquenne-Nazabadioko L, Gevrenova R, Borie N, et al. Triterpenoid saponins from the roots of Gynopodia richomes wender. Phytochemistry. 2013;90:114-127. https://doi.org/10.1016/j.phytochem.2013.03.001.