Syringocystadenocarcinoma papilliferum with orbital invasion: a case report with literature review

Carla Pagano Boza, Joaquin Gonzalez-Barlatay, Shoaib Ugradar, Melina Pol and Eduardo Jorge Premoli

Abstract: We present a case of Syringocystadenocarcinoma papilliferum that originated in the eyelid and extended into the orbit. These tumors are very rare and have the potential to metastasize. A literature review of all the previous cases has been compiled from the Medline, EMBASE, and PubMed databases. We found that the majority of cases present on the head and neck and up to 17% of cases showed metastatic progression. This is the first case to show orbital involvement and highlights the need to remain vigilant with such lesions, as they have a tendency to become aggressive.

Keywords: eyelid, orbit, Syringocystadenocarcinoma papilliferum

Introduction
Syringocystadenocarcinoma papilliferum (SCACP) is a rare malignant sudoriferous gland tumor that is related to its more common, benign counterpart, syringocystadenoma papilliferum (SCAP). Since the original description of SCAP in 1917, only 43 cases of SCACP have been described in the literature. To date, only one has appeared in the eyelid. SCACP is thought to develop from SCAP, nevus sebaceous, and linear nevus verrucous lesions. However, due to the rarity of this tumor, little is known regarding its etiology and origin.

In this study, we report the first case of SCACP with orbital involvement. Interestingly, it recurred following exenteration. An informed written consent was obtained from the patient for the publication of medical data and images.

Case report
A 63-year-old man presented with a lesion on the right upper eyelid that had been present for 7 years. The lesion was nodular, measuring 5.0 cm × 7.0 cm, ulcerated, indurated, and erythematous. It involved the lower eyelid (Figure 1). The patient had no light perception with the right eye, his intraocular pressure could not be measured, and it was found to be 18 mmHg on the left.

The left orbital examination did not reveal any abnormalities. A full examination of his local lymph nodes and lacrimal duct did not reveal any abnormalities. He explained that he did not have any previous therapy for this lesion. He was otherwise systemically well with no relevant family history. He did not have any history of trauma and informed us that he was a farmer by occupation.

A computed tomography (CT) scan of the orbit revealed right anterior orbital invasion with no bony or lacrimal gland involvement (Figure 2). A subsequent incisional biopsy revealed squamous cell invaginations extending from the epidermis into the dermis. The invaginations and papillary projections were lined with a bilayer epithelium: the luminal layer was composed of columnar cells with decapitation secretion and the outer layer was composed of small cuboidal cells. These cells had significant nuclear pleomorphism, prominent nucleoli, and increased mitotic activity (Figure 3). Immunohistochemical staining demonstrated positivity for epithelial membrane antigen (EMA),
Figure 1. Lesion on presentation.

Figure 2. CT imaging of the lesion at presentation.

Figure 3. Hematoxylin and eosin staining (H&E): (a) the transition between squamous and glandular epithelium (100×). (b) Large areas of superficial epithelium were sphacelated. Glandular invaginations showed a characteristic funnel shape. Papillary structures can be identified inside a dermal cyst (100×). (c) The papillary structures are lined with a stratified atypical epithelium. Micropapillae and secretion by decapitation can be seen (100×). (d) At high power magnification, atypical nuclei are evident. Large atypical nuclear shapes are seen and increased mitotic activity is observed (*).
Table 1. Previous case reports on SCACP.

Reference	Age	Sex	Location	Size (mm)	Duration	Diagnosis	Association	Follow-up	Treatment
Dissanayake and Salm	74	F	Scalp	65	30 years	SCACP in situ	SCAP	NED [6.75 years]	Surgery
Seco Navedo and colleagues	50	F	Scalp	65	N/A	SCACP invasive	Nevus sebaceous	NED [7 years]	Surgery
Numata and colleagues	52	F	Chest	130 × 80	20 years	SCACP invasive	N/A	NED [7 years]	Surgery
Bondi and Urso	47	M	Scalp	25	N/A	SCACP invasive	N/A	N/A	Surgery
Ishida-Yamamoto and colleagues	61	M	Perianal	60	10 years	SCACP in situ	N/A	NED [11 months]	Surgery
Arai and colleagues	64	M	Scalp	35	2 years	SCACP in situ	SCAP	N/A	Surgery
Chi and colleagues	60	M	Auricle	40 × 10	Since childhood	SCACP invasive	SCAP	NED [72 months]	Surgery
Woestenborghs and colleagues	81	F	Scalp	15	N/A	SCACP in situ	SCAP	N/A	Surgery
Park and colleagues	65	M	Suprapubic region	35	2 years	SCACP in situ	N/A	NED [24 months]	Surgery
Langner and Ott	83	M	Perianal	15	N/A	SCACP in situ	SCAP	N/A	Surgery
Sroa and colleagues	77	M	Calf	25	9 years	SCACP invasive	N/A	NED [15 months]	Surgery
Kazakov and colleagues	56	F	Neck	20	10 years	SCACP in situ	SCAP	NED [9 months]	Surgery
Kazakov and colleagues	58	M	Forehead	25	25 years	SCACP invasive	SCAP	NED [4 years]	Surgery
46	F	Scalp	35	N/A	SCACP invasive	SCAP	NED [6 years]	Surgery	
67	M	Scalp	25	N/A	SCACP in situ	SCAP	NED [2 years]	Surgery	
60	F	Scalp	30	>30 years	SCACP invasive	SCAP	N/A	Surgery	
81	M	Scalp	20	N/A	SCACP invasive	SCAP	NED [21 months]	Surgery	

(Continued)
Reference	Age	Sex	Location	Size (mm)	Duration	Diagnosis	Association	Follow-up	Treatment
Leeborg and colleagues17	86	F	Neck	45	4 months	SCACP invasive	Invasive	Local recurrence [18 months]	Surgery + Rt
Abrari and Mukherjee18	62	M	Axilla	35	6 months	SCACP invasive	N/A	N/A	Surgery
Aydin and colleagues19	67	M	Scalp	40	Since childhood	SCACP invasive	SCAP	NED [2 years]	Surgery
Hoekzema and colleagues20	83	F	Arm	30	7 years	SCACP invasive	SCAP nevus verrucosus	N/A	Surgery
Hoguet and colleagues21	86	M	Eyelid	4	N/A	SCACP invasive	N/A	NED [3 months]	Surgery
Plant and colleagues22	83	M	Penis	12	N/A	SCACP in situ	N/A	N/A	Surgery
Bakhshi and colleagues23	45	F	Scalp	60 × 30	12 months	N/A	SCAP	NED [12 months]	Surgery in situ
Zhang and colleagues24	75	F	Arm	15	12 months	SCACP invasive	SCAP	NED [6 months]	Surgery
Peterson and colleagues25	65	M	Scalp	30 × 30	12 months	SCACP invasive	SCAP	NED	Surgery
Arslan and colleagues26	66	M	Scalp	N/A	20 years	SCACP invasive	SCAP	3; Local lymph node, lymph node metastasis	Surgery + Rt [NED—15 months]
	66	F	Scalp	30	>12 months	SCACP invasive	N/A	NED [2 years]	Surgery
Castillo and colleagues27	32	F	Scalp	22	N/A	SCACP in situ	N/A	Local recurrence [8 years]	Surgery
Paradiso and colleagues28	88	M	Shoulder	15 × 15	N/A	SCACP invasive	N/A	Died from other cause	N/A
Shan and colleagues29	93	M	Popliteal fossa	20	>10 years	N/A	SCAP	NED	Surgery
Mohanty and colleagues30	80	F	Scalp	50	8 years	SCACP in situ	N/A	NED [5 years]	Surgery
Satter and colleagues31	42	M	Scalp	45 × 40	>1 month	SCACP invasive	SCAP and Nevus sebaceous	Lymph node metastasis	Surgery
Parekh and colleagues32	74	M	Scalp	20	Since childhood	SCACP invasive	SCAP, nevus sebaceous of Jadassohn, trichoblastoma	Lymph node metastasis	Surgery
Reference	Age	Sex	Location	Size (mm)	Duration	Diagnosis	Association	Follow-up	Treatment
---------------------------	-----	-----	------------	-----------	----------	-------------------------------------	--	-----------------------------------	----------------------
Chen and colleagues³⁰	60	F	Scalp	28 × 20	12 months	SCACP in situ	Nevus sebaceous	N/A	Surgery
Singh and colleagues³¹	60	F	Back	15 × 10	>10 years	SCACP in situ with macular amyloidosis	Left axillary lymph node and bilateral lung metastases, DOD 2 months after diagnosis	N/A	Surgery
Zhang and colleagues³²	26	M	Chest	50	22 years	SCACP in situ	Invasive adenocarcinoma subcutis	N/A	Surgery + Ct
	47	M	Abdomen	15	23 years	SCACP in situ	N/A	NED (9 years)	Surgery
	67	M	Left Axilla	20	6 years	SCACP in situ	Invasive adenocarcinoma subcutis	N/A	Surgery + left axilla lymphadenectomy
	64	M	Scalp	20	1 years	SCACP in situ	Invasive adenocarcinoma in dermis + mucinous metaplasia	Metastases to multiple distant lymph nodes and lung metastases, DOD 34 months after diagnosis	Surgery + Rt
	63	M	Chest	10	10 years	SCACP in situ	Invasive adenocarcinoma in dermis	NED (36 months)	Surgery
	74	M	Chest	20	6 years	SCACP in situ	Invasive adenocarcinoma subcutis	NED (30 months)	Surgery
	63	F	Axilla	50	3 months	SCACP in situ	Invasive adenocarcinoma + invasive squamous cell carcinoma	Widespread subcutaneous metastases, DOD 20 months after diagnosis	Surgery + right axilla lymphadenectomy
	40	M	Chest	50	5 years	SCACP in situ	Invasive adenocarcinoma subcutis	NED (14 months)	Surgery + bilateral lymphadenectomy + Ct
	29	F	Forehead	15	2 years	SCACP in situ	Invasive squamous cell carcinoma	NED (10 months)	Surgery
	64	M	Axilla	22	10 years	SCACP in situ	Invasive adenocarcinoma subcutis	NED (3 months)	Surgery + right axilla lymphadenectomy + Ct
Present case	63	M	Eyelid	50 × 70	>6 years	SCACP invasive	SCAP	Local recurrence	Surgery

Ct, chemotherapy; Rt, radiation therapy; N/A, not available; NED, no evidence of disease; DOD, died of disease.

Table 1. (Continued)
Cytokeratin 8/18, and a Cytokeratin cocktail of high and low density (Figure 3). It was negative for GCDFP-15 (protein 15 of the fibrocystic disease of the breast), which excluded a lesion of breast origin and carcinoembryonic antigen (CEA). The diagnosis of SCACP was therefore confirmed. A positron emission tomography (PET) scan did not reveal any metastatic spread.

The patient was treated with exenteration of the right orbit to remove the tumor. After 11 months of follow-up, we noted local recurrence of the original tumor (confirmed with biopsy) in the anophthalmic orbit. There was no associated lymph node enlargement on examination, though the patient refused any further imaging. Radical exenteration with adjuvant radiotherapy has been planned for the patient.

Discussion

SCACP is an extremely rare adnexal neoplasm of the sweat glands and has only been documented 43 times in the literature. It is believed to arise from a malignant transformation of SCAP lesions.\(^4\) Clinically, it may present as an asymptomatic long-standing lesion, which may be flat or nodular, cystic, or ulcerated. We performed a literature review of the Medline, EMBASE, and Cochrane databases to characterize the cases previously listed in the literature (Table 1).

The tumor appears to affect middle-aged or elderly individuals\(^1\) and does not seem to have a gender bias. The most frequent location is the head and neck (53%), with only one case in the eyelid. Other locations where these lesions occur frequently are the back, chest, suprapubic, and perianal regions.

Treatment is based on a complete tumor resection with oncological margins, which is essential for a better prognosis. Mohs surgery has also been successfully used for this purpose.\(^11\) Sentinel lymph node biopsy may be feasible in some cases when there is suspicion of lymph spread, although lymphatic spread has been shown to be rare with this tumor (6 of the 42 documented cases; Table 1). Radiotherapy and chemotherapy have also been used rarely, but the experience with these treatments is scarce due to the rarity of the lesion.\(^25\)

SCACP characteristically presents with squamous cell invaginations extending from the epidermis into the dermis. The invaginations and papillary projections are lined by two-layer epithelium: the luminal layer composed of columnar cells with decapitation secretions and the outer layer composed of small cuboidal cells. The immunohistochemical features of SCACP are still under study, but the most frequently reported markers are CEA,\(^15,20,28\) followed by EMA,\(^9,28\) GDFP-15,\(^20,28,32\) and cytokeratin.\(^11,28,32\)

Of the cases that reported head and neck involvement, 16 (72.72%) were in remission following therapy, 2 (9.09%) had local recurrence, 3 (13.63%) had regional lymphatic invasion, and 1 (4.54%) had distant metastases. Of the reports describing involvement of the thorax, abdomen, and pelvis, 17 (85%) went into remission following therapy, none had local recurrence, 1 (5%) had regional lymphatic invasion and 2 (10%) had distant metastases.

This is the first reported case of SCACP with extension into the anterior orbit. While SCACP is an exceedingly rare tumor, we found that of the reported cases, 16% showed signs of metastasis. It is therefore an important diagnosis to consider when reviewing skin lesions around the orbit. It also encourages us to monitor patients with SCAP more closely as our literature review suggests that SCACP may be more aggressive than previously considered.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

ORCID iD

Shoaib Ugradar https://orcid.org/0000-0003-4479-3033
References

1. Stokes J. A clinico-pathologic study of an unusual cutaneous neoplasm combining nevus syringadenomatous papilliferus and a granuloma. J Cutan Dis 1917; 35: 411–419, https://books.google.com/books?id=9PFYAAAAAYAAJ&pg=PA671&lpg=PA671&dq=A+clinico-pathologic+study+of+an+unusual+cutaneous+nevus+syringadenomatous+papilliferus+and+a+granuloma. (accessed 24 January 2018).

2. Arslan H, Diyarbakrl M and Batur Demirkesen Ş. Syringocystadenocarcinoma papilliferum with squamous cell carcinoma differentiation and with locoregional metastasis. J Craniofac Surg 2013; 24: e38–e40.

3. Hoekzema R, Leenarts MFE and Nijhuis EWP. Syringocystadenocarcinoma papilliferum in a linear nevus verrucosus. J Cutan Pathol 2011; 38: 246–250.

4. Parekh V, Guerrero CE, Knapp CF, et al. A histological snapshot of hypothetical multistep progression from nevus sebaceus to invasive syringocystadenocarcinoma papilliferum. Am J Dermatopathol 2016; 38: 56–62.

5. Dissanayake RV and Salm R. Sweat-gland carcinomas: prognosis related to histological type. Histopathology 1980; 4: 445–466.

6. Seco Navedo MA, Fresno Forcelledo M, Orduna Domingo A, et al. [Syringocystadenoma papilliferum with malignant evolution. Presentation of a case]. Am J Dermatol Venerol 1982; 109: 685–689, http://www.ncbi.nlm.nih.gov/pubmed/7187194

7. Numata M, Hosoe S, Itoh N, et al. Syringadenocarcinoma papilliferum. J Cutan Pathol 1985; 12: 3–7, http://www.ncbi.nlm.nih.gov/pubmed/2982933 (accessed 17 October 2017).

8. Bondi R and Urso C. Syringocystadenocarcinoma papilliferum. Histopathology 1996; 28: 475–477.

9. Ishida-Yamamoto A, Sato K, Wada T, et al. Syringocystadenocarcinoma papilliferum: case report and immunohistochemical comparison with its benign counterpart. J Am Acad Dermatol 2001; 45: 755–759.

10. Arai Y, Kusakabe H and Kiyokane K. A case of syringocystadenocarcinoma papilliferum in situ occurring partially in syringocystadenoma papilliferum. J Dermatol 2003; 30: 146–150.

11. Chi CC, Tsai RY and Wang SH. Syringocystadenocarcinoma papilliferum: successfully treated with Mohs micrographic surgery. Dermatol Surg 2004; 30: 468–471.

12. Woestenborghs H, VanEyken P and Dans A. Syringocystadenocarcinoma papilliferum in situ with pagetoid spread: a case report. Histopathology 2006; 48: 869–870.

13. Park SH, Shin YM, Shin DH, et al. Syringocystadenocarcinoma papilliferum: a case report. J Korean Med Sci 2007; 22: 762–765.

14. Langner C and Ott A. Syringocystadenocarcinoma papilliferum in situ originating from the perianal skin. APMIS 2009; 117: 148–150.

15. Sroa N, Sroa N and Zirwas M. Syringocystadenocarcinoma Papilliferum. Dermatologic Surg 2010; 36: 261–263.

16. Kazakov DV, Requena L, Kutzner H, et al. Morphologic diversity of syringocystadenocarcinoma papilliferum based on a clinicopathologic study of 6 cases and review of the literature. Am J Dermatopathol 2010; 32: 340–347.

17. Leeborg N, Thompson M, Rossmeiler S, et al. Diagnostic pitfalls in syringocystadenocarcinoma papilliferum: case report and review of the literature. Arch Pathol Lab Med 2010; 134: 1205–1209.

18. Abrari A and Mukherjee U. Syringocystadenocarcinoma papilliferum at unusual site: inherent lesional histologic polymorphism is the pathognomon. BMJ Case Rep 2011; 2011: bcr0520114254.

19. Aydin OE, Sahin B, Ozkan HS, et al. A rare tumor: syringocystadenocarcinoma papilliferum. Dermatologic Surg 2011; 37: 271–274.

20. Hoguet AS, Dolphin K, McCormick SA, et al. Syringocystadenocarcinoma papilliferum of the eyelid. Ophthalmic Plast Reconstr Surg 2012; 28: e27–e19.

21. Plant MA, Sade S, Hong C, et al. Syringocystadenocarcinoma papilliferum in situ of the penis. Eur J Dermatol; 22: 405–406.

22. Bakhshi GD, Wankhede KR, Tayade MB, et al. Carcinoma-sarcoma in a case of syringocystadenoma papilliferum: a rare entity. BMJ Case Rep 2011; 2011: bcr0520114254.

23. Zhang YH, Wang W-L, Rapini RP, et al. Syringocystadenocarcinoma papilliferum with transition to areas of squamous differentiation. Am J Dermatopathol 2012; 34: 428–433.

24. Peterson J, Tefft K, Blackmon J, et al. Syringocystadenocarcinoma papilliferum: a rare
tumor with a favorable prognosis. *Dermatol Online J* 2013; 19: 19620.

25. Castillo L, Moreno A and Tardío JC. Syringocystadenocarcinoma papilliferum in situ. *Am J Dermatopathol* 2014; 36: 348–352.

26. Paradiso B, Bianchini E, Cifelli P, *et al.* A new case of syringocystadenocarcinoma papilliferum: a rare pathology for a wide-ranging comprehension. *Case Rep Med* 2014; 2014: 453874.

27. Shan S-J, Chen S, Heller P, *et al.* Syringocystadenocarcinoma papilliferum with intraepidermal pagetoid spread on an unusual location. *Am J Dermatopathol* 2014; 36: 1007–1010.

28. Mohanty SK, Pradhan D, Diwaker P, *et al.* Long-standing exophytic mass in the right infratemporal region. *Int J Dermatol* 2014; 53: 539–542.

29. Satter E, Grady D and Schlocker CT. Syringocystadenocarcinoma papilliferum with locoregional metastases. *Dermatol Online J* 2014; 20: 22335.

30. Chen J, Beg M and Chen S. Syringocystadenocarcinoma papilliferum in situ, a variant of cutaneous adenocarcinoma in situ. *Am J Dermatopathol* 2016; 38: 762–765.

31. Singh S, Khullar G, Sharma T, *et al.* An unusual case of syringocystadenocarcinoma papilliferum in situ with macular amyloidosis. *JAMA Dermatol* 2017; 153: 725–727.

32. Zhang Y, Kong Y-Y, Cai X, *et al.* Syringocystadenocarcinoma papilliferum: clinicopathologic analysis of 10 cases. *J Cutan Pathol* 2017; 44: 538–543.