GPR56 Functions Together with α3β1 Integrin in Regulating Cerebral Cortical Development

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Jeong, Sung-Jin, Rong Luo, Kathleen Singer, Stefanie Giera, Jordan Kreidberg, Daiji Kiyozumi, Chisei Shimono, Kiyotoshi Sekiguchi, and Xianhua Piao. 2013. “GPR56 Functions Together with α3β1 Integrin in Regulating Cerebral Cortical Development.” PLoS ONE 8 (7): e68781. doi:10.1371/journal.pone.0068781. http://dx.doi.org/10.1371/journal.pone.0068781.
Published Version	doi:10.1371/journal.pone.0068781
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:11717567
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
GPR56 Functions Together with α3β1 Integrin in Regulating Cerebral Cortical Development

Sung-Jin Jeong1,2*, Rong Luo1,3, Kathleen Singer1, Stefanie Giera1, Jordan Kreidberg3, Daiji Kiyozumi4, Chisei Shimono4, Kiyotoshi Sekiguchi4, Xianhua Piao1

1 Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America, 2 Convergence Brain research Department, Korea Brain Research Institute (KBRI), Daegu, South Korea, 3 Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America, 4 The Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan

Abstract

Loss of function mutations in GPR56, which encodes a G protein-coupled receptor, cause a specific human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Studies from BFPP postmortem brain tissue and Gpr56 knockout mice have previously showed that GPR56 deletion leads to breaches in the pial basement membrane (BM) and neuronal ectopias during cerebral cortical development. Since α3β1 integrin also plays a role in pial BM assembly and maintenance, we evaluated whether it functions together with GPR56 in regulating the same developmental process. We reveal that loss of α3 integrin enhances the cortical phenotype associated with Gpr56 deletion, and that neuronal overmigration through a breached pial BM occurs earlier in double knockout than in Gpr56 single knockout mice. These observations provide compelling evidence of the synergism of GPR56 and α3β1 integrin in regulating the development of cerebral cortex.

Introduction

The interaction between cells and their environment is essential to brain development. Dystroglycan and integrins are two major cell surface receptors that mediate cell-extracellular matrix (ECM) interactions [1–4]. Recently, the family of adhesion G protein-coupled receptors (GPCRs) was identified as the third major category of ECM receptors [5,6]. Adhesion GPCRs are characterized by the presence of a large extracellular region and a G protein regulatory site (GPR) domain that cleaves the receptor into N- and C-terminal fragments [7–9]. Mutations in one such adhesion GPCR, GPR56, cause a specific human brain malformation called bilateral frontoparietal polymicrogyria (BFPP) [10]. BFPP is a recessively inherited genetic disorder affecting human cerebral cortical development and characterized by disorganized cortical lamination that is most severe in the frontal and parietal lobes [10–13]. Histological analyses of postmortem human BFPP brain samples and Gpr56 knockout mice indicated that the histopathology of BFPP is a cobblestone-like brain malformation [14,15].

Cobblestone lissencephaly, also called type II lissencephaly, is defined as aberrant migration of cortical neurons through breaches in the pial basement membrane (BM), resulting in neuronal ectopias on the surface of the brain [16]. Cobblestone cortex is typically seen in three distinct human congenital muscular dystrophy syndromes: Muscle-eye-brain disease (MEB), Fukuyama-type muscular dystrophy (FCMD), and Walker-Warburg syndrome (WWS) [16]. These three disorders are autosomal recessive diseases that encompass congenital muscular dystrophy, ocular malformations, and cobblestone lissencephaly. MEB, FCMD, and some WWS cases are caused by aberrant glycosylation of α-dystroglycan, a receptor for laminin [17–20].

Defects in some members of the integrin family and their ligand, laminin, have been implicated in the pathogenesis of BM breakdown and neuronal ectopias [21–24]. Furthermore, our previous work demonstrated that loss of GPR56 diminishes the adhesion of rostrally derived granule cells to laminin [25]. Integrin α3 (gene symbol, Itga3) always associates with β1 integrin to form the α3β1 dimeric protein on the cell surface, serving as one of the major receptors for laminin [26,27]. We therefore investigated how GPR56 functionally interacts with α3β1 integrin in vivo by studying Gpr56 and Itga3 compound mutant mice. We demonstrate that loss of α3β1 integrin exacerbates the Gpr56-associated cortical phenotype in a dose dependent manner, indicating that the two receptors function synergistically during cortical development.
Results

Loss of Itga3 Enhances the Cortical Phenotype Associated with Gpr56 Deletion

Since Itga3\(^{-/-}\) mice die at birth with kidney and lung defects and moderate skin blistering, we crossed Gpr56\(^{-/-}\) with Itga3\(^{-/-}\) mice and intercrossed the F1 offspring to generate compound mutant mice [29]. Genotype for various mutant mice was confirmed by PCR as previously described [14,28]. The absence of protein expression was verified by immunohistochemistry (IHC) for \(\alpha_3\) integrin (Figure S1) and western blot analysis for GPR56 (Figure S2). First, we evaluated the overall cortical lamination at P0 by Nissl staining of various coronal sections of compound mutant mouse brains. Consistent with our previous study, Gpr56 single knockout mice revealed neuronal ectopias (Table 1), while Gpr56 heterozygous mice appear phenotypically normal (data not shown) [14]. Loss of \(\alpha_3\) integrin was previously shown to result in poor neuronal migration and the formation of heterotopia [29,30]. However, we did not observe any discernible lamination defect in Itga3 single knockout mouse brains, except mild neuronal overmigration in one out of 11 P0 Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) brains (Figure 1N and Table 1). Double heterozygous mice (Itga3\(^{-/-}\)/Gpr56\(^{-/-}\)/Itga3\(^{-/-}\)) were also lacking any obvious brain phenotype (Table 1).

Interestingly, Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) and Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) mice showed more severe cortical defects than what is observed in Gpr56 single knockout mouse brains (Figure 1C, D, G and H). To further reveal the cortical lamination defects, we performed layer marker staining with Cux1 for layer II–IV, CTIP2 for layer V, and Tbr1 for layer VI, as well as CTIP2-positive neurons were detected in the ependymal clusters, indicating that the developmental abnormalities affects to both superficial and deeper layer neurons (Figure 1J–L and N–P).

To further quantify the severity of the cortical defects in various compound mutant mice, we performed semi-quantitative analyses of Nissl-stained brain sections at E16.5. We defined the cortical ectopias as small, medium, and large based on the width of the ependymal outgrowth (Figure 2A–C). Compared to Gpr56 single knockout mice, there was a significantly greater number of large size cortical ectopias in Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) and Itga3\(^{-/-}\)/Gpr56\(^{-/-}\)– mice, with Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) mice being the most severely affected (Figure 2D–G). Again, we did not identify any discernible cortical phenotype in Itga3\(^{-/-}\)/Gpr56\(^{+/+}\), Itga3\(^{-/-}\)/Gpr56\(^{+/+}\) and Itga3\(^{-/-}\)/Gpr56\(^{+/+}\) mice at E16.5 (Table 1). These data confirmed that cortical ectopias are only associated with Gpr56 mutation and that loss of \(\alpha_3\beta_1\) integrin enhances the Gpr56-associated cortical phenotype, with each additional allele loss corresponding to a more severe phenotype, suggesting a possible functional interaction between \(\alpha_3\beta_1\) integrin and GPR56 during cortical development.

Earlier Pial BM Breakdown with Associated Neuronal Overmigration was Observed in the Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) and Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) Neocortices

We have previously showed that the pial BM was properly formed in Gpr56 single knockout mouse embryonic brains before E12.5 (10 am on the 12\(^{th}\) day of vaginal plugging), and regional pial BM breaches started to occur at E12.8 (6 pm on the 12\(^{th}\) day of vaginal plugging) [14]. Based on the fact that more severe cortical ectopias were observed in Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) and Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) mice, we hypothesized that pial BM breaches would occur earlier in these two mutant mice. To test this hypothesis, we performed a detailed time course study of the occurrence of the breached pial BM and overmigrated neurons in double mutant mice. Double IHC of TuJ1 and laminin revealed that the pial BM was well formed in E10.5 neocortices of double mutant mice (Table 1, Figure 3C, E, I and K). Regional breakdown of the pial BM with concurrent neuronal overmigration was observed at E11.5 (Figure 3D, F, J, and L). Again, we observed migrating neurons piercing through a well-formed pial BM at approximately E12.0 in Gpr56 single knockout mice (Figure 3B and H) [14]. The notably earlier onset of BM breaching and neuronal overmigration seen in Gpr56 and Itga3 double mutant mice further supports the notion that \(\alpha_3\) integrin has a cooperative function with GPR56 during cortical development. Although the onset of BM breaching and neuronal overmigration was observed at a similar developmental stage by immunostaining in both Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) and Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) mice, the number of large ectopias was significantly higher in Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) mice (Figure 2D–G). The possible explanation could be that immunostaining is not sensitive enough to detect the difference in the onset of pial BM breakdown between both Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) and Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) mice.

To investigate the relationship of migrating neurons, radial glial endfeet, and pial BM, we performed triple IHC on E11.5 Itga3\(^{-/-}\)/Gpr56\(^{-/-}\) neocortices. Interestingly, both migrating neurons and radial glial endfeet were protruded through seemingly well formed pial BM (Figure 4D and H). Taken together, our data suggests a possibility that migrating neurons and radial glial endfeet pierce through a previously well formed pial BM.

Loss of Itga3 Disrupted Collagen III-mediated Neuronal Migration Inhibition

On a cellular level, the binding of GPR56 and its ligand collagen III causes an inhibition of neuronal migration [34]. To elucidate the synergistic function of GPR56 and \(\alpha_3\beta_1\) integrin at the cellular level, we questioned whether loss of \(\alpha_3\) integrin affects collagen III-mediated neuronal migration inhibition. Neuronal migration assays were conducted to determine whether deleting Itga3 would lead to a decrease in the inhibition of migration. Neurospheres established from E13.5 cortices of either wild type, Gpr56\(^{-/-}\), or Itga3\(^{-/-}\) mice were cultured in neuron culture medium containing 84 nM of purified collagen III or control solution (acetic acid). After two days in culture, the neureospheres were assessed for being either positive or negative for migration, using criteria described previously [34]. Neurospheres derived from Itga3\(^{-/-}\) cortices had a significantly diminished migration inhibition in comparison to wild type (Figure 5E, F, and G).

Integrin \(\alpha_3\beta_1\) does not Bind Directly to Collagen III

Thus far, we have demonstrated that GPR56 functions together with \(\alpha_3\beta_1\) integrin in regulating cerebral cortical development. Mechanistically, there are two possibilities to account for this synergistic activity of the two receptors: (1) GPR56 and \(\alpha_3\beta_1\) integrin function in the same receptor complex and bind collagen III as a common ligand; (2) the two receptors act indirectly through an unknown mediator, which requires the activation of GPR56 pathway. To investigate the first possibility, we conducted a solid phase binding assay using recombinant \(\alpha_3\beta_1\) and \(\alpha_2\beta_1\) integrins, the natural receptors for collagen III, as the positive control [35,36]. Recombinant human \(\alpha_3\beta_1\), \(\alpha_2\beta_1\), \(\alpha_3\beta_1\), and \(\alpha_6\beta_1\) integrins were tested for their ability to bind to human collagen III and recombinant human laminin-511 coated on 96-well plates in the presence of 1 mM Mn\(^{2+}\) or 10 mM EDTA. Integrins \(\alpha_3\beta_1\) and \(\alpha_2\beta_1\) bound to collagen III as expected (Figure 6A and B). However, \(\alpha_3\beta_1\) and \(\alpha_6\beta_1\) integrins did not bind to collagen III (Figure 6C and D). The biological activities of \(\alpha_3\beta_1\) and \(\alpha_6\beta_1\) integrins were confirmed by their binding to laminin-511 (Figure 6C and D). This result is consistent with our
previous publication, in which loss of GPR56 reduced the adherence of granule cells to integrin ligands, laminin and fibronectin, without direct binding to these two substrates (further discussed below) [25].

To determine the nature of the cooperation between these proteins, we next investigated the localization of the two proteins in the developing neocortex. We performed double IHC of GPR56 and α3 integrin on E10.5 and E11.5 mouse brain sections. The specificity of anti-α3 integrin was confirmed on Itga3−/− mouse embryonic brains as well as 1 day in vitro (1DIV) cultured progenitor cells (Figure S1). Similar to the expression pattern of GPR56, α3 integrin was present throughout the cerebral wall at both stages, with strong signals in radial glial cells as well as on the basal surface of the neocortex where preplate neurons reside.

Figure 1. Dual deletion of Itga3 and Gpr56 results in cortical lamination defect. (A–D) Nissl staining on coronal sections of P0 Itga3+/−/Gpr56+/− (A), Itga3−/−/Gpr56+/− (B), Itga3+/−/Gpr56−/− (C), and Itga3−/−/Gpr56−/− (D). Normal cortical lamination was observed in Itga3+/−/Gpr56−/− (A) and Itga3−/−/Gpr56−/− (B), while cortical ectopias were seen in Itga3+/−/Gpr56−/− (C) and Itga3−/−/Gpr56−/− (D) brains. (E–H) Higher magnification of boxed regions in A–D. (I–L) Cux1(red) IHC. (M–P) Double IHC of Tbr1 (red) and CTIP2 (green). In contrast to the well organized cortical layers in Itga3+/−/Gpr56+/− brains (I and M), regional overmigration of both superficial and deeper layer neurons were observed in Itga3−/−/Gpr56−/− (J and N), Itga3+/−/Gpr56−/− (K and O), and Itga3−/−/Gpr56−/− (L and P) brains. Scale bars: A–D, 500 μm; E–P, 100 μm.

doi:10.1371/journal.pone.0068781.g001
progenitor cells. As shown in Figure S3U, some positive cells indeed express GPR56. To further demonstrate that GPR56 and integrin are expressed in the same cells, we performed a double immunostaining using GPR56 and α3 integrin antibodies on 1DIV cultured progenitor cells. As shown in Figure S3U, some α3 integrin-positive cells indeed express GPR56.

Taken together, our data suggests that α3β1 integrin functions together with GPR56 in regulating cortical development, probably via an unknown mediator that requires the activation of GPR56 pathway (Figure 7).

Discussion

This study demonstrates synergistic activities of GPR56 and α3β1 integrin during cerebral cortical development. A more severe cortical phenotype was uncovered in compound mutants reflecting the fact that several receptors must function together in regulating cortical development. The requirement of both α3β1 integrin and GPR56 for the proper cortical development illustrates that the regulation of the pial BM integrity and cortical lamination are integrated processes and suggests a link with two different signaling pathways.

Integrins are heterodimeric transmembrane receptors composed of noncovalently associated α and β chains [38]. While some α chains bind to multiple β chains, α3 integrin is always associated with β1 to form a mature α3β1 integrin receptor on the cell surface [39]. Integrin α3β1 was described as a promiscuous receptor for many ligands, among which is laminin-5 [40]. However, α3β1 integrin does not bind directly to collagen III, which serves as the ligand of GPR56 (Figure 6). This is consistent with our previous study on the developing cerebellum [25]. GPR56 is expressed specifically in the rostral granule cells perinatally and absence of GPR56 causes loss of adhesion of rostrally derived granule cells to laminin-1 and fibronectin, known to be the ligands of integrin. However, this cell-matrix adhesion is not through direct binding of GPR56 to the matrix proteins because neither addition of soluble GPR56 to the media in the granule cell adhesion assay nor overexpression of full-length mouse GPR56 in HEK 293T cells altered cell adhesion to laminin-1 and fibronectin [25]. Taken together, our previous and current study results suggest a functional link between integrin and GPR56, despite the lacking of a common binding partner.

Loss of α3 integrin was previously shown to result in poor neuronal migration and the formation of heterotopia [29,30]. We did not observe any obvious cortical defect in Itga3 single knockout mice, presumably due to differences in mouse genetic background (129/BL6 vs 129/BL6/FvB). However, Gpr56 and Itga3 double knockout mice developed a more severe cortical malformation manifested by neuronal ectopias and an earlier occurrence of pial BM breachment and neuronal overmigration, compared to Gpr56 single knockout mice. Our finding is consistent with other reports relevant to α3 integrin. For example, α3 and α6 integrins double knockout mice exhibit regional breakdown of pial BM with concurrent neuronal ectopias [22]. Studies of β1 integrin, as well as integrin associated downstream partners, integrin-linked kinase (ILK) and focal adhesion kinase (FAK), also support the notion that α3β1 integrin is essential to maintaining and reforming the pial basement membrane, with ILK, FAK, and β1 integrin knockout mice exhibiting neuronal ectopias on the brain surface with concurrent regional fragmentation in the basal lamina, features of cobblestone-like cortical malformation [41–43].

The leading pathology of cobblestone-like cortical malformation is thought to be a defective pial BM [16]. However, recent literature suggests that abnormal neuronal migration could be partly responsible [44,45]. We have previously showed that (1) a gradient expression of GPR56 in preplate neurons that matches the regional cortical defects associated with loss of GPR56, in spite of the fact that no such pattern is apparent in the radial glia [37]; (2) neurons have direct contact with the pial BM during early cortical development [34]; and (3) the interaction of GPR56 and collagen III inhibits neuronal migration [34]. In this study, we further demonstrated the expression of α3 integrin in the preplate neurons as well as an attenuated collagen III-mediated neuronal migration inhibition in Itga3−/− neural progenitor cells. Taken together, it is likely that GPR56 functions together with α3β1 integrin in mediating the interaction between the pial BM and preplate neurons as well as radial glial endfeet, thus defining the boundary between the neocortex and the meninges while providing a framework for the developing cortex (Figure 7).

Materials and Methods

Ethics Statement

Experiments were performed in accordance with National Institutes of Health guidelines for the care and use of laboratory...
in Itga3 knockout mice. N indicates number of embryos examined.

Figure 2. More severe dysplasias were observed in Itga3/Gpr56 compound mutant mice. (A–C) Representatives of small (A), medium (B), and large (C) ectopias. The base of the neuronal ectopia between the two arrowheads was measured and grouped into small (<50 μm), medium (50–100 μm), and large (>100 μm) categories for semi-quantification. (D–F) Nissl staining on sagittal sections of E16.5 Itga3+/−/Gpr56+/− (D), Itga3+/−/Gpr56−/− (E) and Itga3−/−/Gpr56−/− (F) brains. Scale bar, 100 μm. (G) Semi-quantification data are presented as means ± S.E.M. *P < 0.17, **P < 0.05, t-test. Cortical dysplasias were more severe in Itga3−/−/Gpr56−/− and Itga3−/−/Gpr56+/− than Gpr56−/− single knockout mice. N indicates number of embryos examined.

doi:10.1371/journal.pone.0068781.g002

animals, and with approval of the Animal Care and Use Committee of Boston Hospital Boston (approval ID: A3303–01).

Mice

Gpr56 knockout mice were obtained from Genentech, maintained in a mixed genetic background of 129/BL6/FvB. Itga3 knockout mice were generated on a 129 background [28]. Crossing Gpr56−/− with Itga3+/− produced Gpr56+/Itga3 double mutant mice in a mixed 129/BL6/FvB genetic background. Fetal stage was calculated from the day when a vaginal plug was observed (considered as E0.5).

Antibodies

Mouse anti-GPR56 (H11, 1:200) [37], rabbit anti-alpha 3 integrin (EMD Millipore Co., 1:700). It is worth noting that there were significant variations between lots of Millipore rabbit anti-alpha 3 integrin antibody, in which only those that worked for western blots also worked for IHC. Rat anti-c-cuxl (Santa Cruz Biotechnology, 1:50), rat anti-Ctip2 (Abcam, 1:500), rabbit anti-λaminin (Sigma, 1:250), rabbit anti-Thrb1 (gift from R. Hevner, University of Washington, Seattle, WA, USA, 1:500), mouse or rabbit anti-Tuj1 (Covance, 1:1000), goat anti-Collagen IV (Southern Biotech, 1:10), mouse anti-Nestin (BD Transduction Lab, 1:200). A biotinylated anti-VE-cadherin polyclonal antibody (against ACID/BASE-coiled-coil peptides contained in recombinant integrins) was kindly provided by Dr. Junichi Takagi (Institute for Protein Research, Osaka University, Osaka, Japan) [46]. A streptavidin–HRP conjugate was purchased from ZYMED Laboratories.

Histology and Immunohistochemistry

Histological analysis was carried out as previously described [14,37]. Embryonic brains of E10.5 to E12.5 were fixed for frozen sectioning in 4% PFA for 2–3 hr at 4°C. E16.5 brains and P0.5 brains were fixed in 4% PFA at 4°C for 48 hrs or 24 hrs, respectively, cryoprotected by 30% sucrose in PBS at 4°C sinking, embedded in OCT compound (Tissue Tek, Sakura Finetek USA INC.), and stored at −80°C until sectioned. For double IHC of α3 integrin and GPR56 at E10.5 and E11.5, the sections were retrieved by boiling for 8 min followed by cooling them down at room temperature (RT) for 30 min. After washing the slides with PBS three times, they were incubated with 1% SDS for 5 min followed by washing three times again with PBS. The sections were incubated with rabbit anti-α3 integrin and mouse anti-GPR56 antibodies overnight at 4°C and washed with normal PBS one time, PBS containing 2.7% NaCl (instead of 0.8% NaCl for normal PBS) twice, and normal PBS once. Primary antibodies were visualized by goat anti-rabbit Alexa-546 and goat anti-mouse Alexa-488 secondary antibodies. Nuclei were stained with Hoechst 33342 (Invitrogen, 1:2000). Images were captured using a Nikon 80i upright microscope or a Olympus confocal FluoView Laser System (FluoView VF1000).

For double IHC of Thrb1 and Ctip2, TSA-TMR (Perkin Elmer) was used to amplify the Thrb1 signal in a 1:50 dilution followed by incubation of peroxidase-conjugated goat anti-rabbit IgG antibody (Sigma) for 30 minutes.

Semi-quantitative Measurements of Cortical Dysplasia

Neuronal ectopias in various compound mutant brains at E16.5 were captured by a Nikon 80i upright microscope and subjected to blind quantitative analysis. Sagittal cryostat sections (8 μm) were obtained serially from lateral to medial, starting from the point when the posterior horn of the lateral ventricle could be clearly viewed. Every six continuous sections were collected and stained with 0.1% cresyl violet/0.5% acetic acid for semi-quantitative analysis. For each brain, 15 sections in total were analyzed. The base of the neuronal cluster invading the marginal zone was measured and the ectopic cluster was defined as large (>100 μm), medium (50–100 μm), and small (<50 μm) (Figure 2 A–C). Data are presented as means ± S.E.M. Statistical analysis was performed using t-test with P<0.05 considered significant.

Vector Construction

Expression vectors for recombinant human α3β1 and α6β1 integrins were prepared as described previously [47]. The cDNAs encoding the extracellular domains of human integrin α1 and α2 subunits were generated by reverse transcription-PCR using premade double-stranded cDNAs derived from human fetal tissues (Clontech). The primers for human integrin α1 subunit were 5’-AAGGTACCAG-
The primers for human integrin α2 subunit were 5'-AAGGTACCACCATGGGGCCAGAACGGA-3' and 5'-TTTGCGGCCGCGGCTTTCTCATCAGGTTTCATTATCAT-3'. The resulting cDNA fragments were inserted into the KpnI/NotI sites of pcDNA3.1(+) ACID-FLAG vector followed by sequence verification.

Expression and Purification of Recombinant Proteins

The recombinant human integrins were designed as heterodimeric soluble proteins composed of the extracellular domains of integrins with ACID/BASE coiled-coil peptides and FLAG/6xHis tag sequences at their C-termini for solid-phase binding assays [46,47]. Recombinant integrins were produced using a FreeStyle™ 293 Expression System (Invitrogen). Briefly, 293F cells were simultaneously transfected with expression vectors for α and β subunits using 293fectin (Invitrogen), according to the manufacturer’s instructions, and grown in serum-free FreeStyle™ 293 Expression medium for 72 h. The conditioned media were collected and clarified by centrifugation, and then subjected to affinity chromatography using an anti-FLAG® M2-agarose (Sigma) column. The column was washed with Tris-buffered saline (TBS) containing 1 mM MgCl₂ and 1 mM CaCl₂, TBS (+). The bound proteins were eluted with TBS (+) containing 100 µg/ml FLAG peptide (Sigma) and dialyzed against TBS. Recombinant human laminin-511 was produced using a FreeStyle™ 293 Expression System (Invitrogen) and purified from conditioned media as described previously [48]. The protein concentrations of all the recombinant products were determined using a BCA protein assay kit (Thermo Scientific) using bovine serum albumin.

Figure 3. Earlier pial BM breakdown with concurrent neuronal overmigration in double mutant mouse neocortices. (A–F) Double IHC of Tuj1 (green) and laminin (red) during E10.5–E12.8 coronal sections of various compound mutant mouse brains as indicated in the figure. Neuronal overmigration and pial BM breaches were first observed at E12.8 in Gpr56 single knockout mice (B), whereas they occur at E11.5 in both Itga3^{−/−}Gpr56^{−/−} and Itga3^{−/−}Gpr56^{−/−} mice (D and F). (G–L) Higher magnification of boxed regions in A–F. Scale bars: A–F, 100 µm; G and H, 25 µm; I–L, 50 µm.
doi:10.1371/journal.pone.0068781.g003

Figure 4. Concurrent events of neuronal overmigration and radial glial endfeet misplacement. (A–D) Triple IHC of collagen IV (red, A), Tuj1 (blue, B), and Nestin (green, C) on E11.5 Itga3^{−/−}Gpr56^{−/−} neocortices. A cluster of neurons and radial glial endfeet were detected beyond the appeared to be an intact pial BM. (E–H) Higher magnification of boxed regions in A–D. Scale bars : A–D, 50 µm; E–H, 25 µm.
doi:10.1371/journal.pone.0068781.g004
(BSA) as a standard. The expression vectors for recombinant human laminin-511 were constructed as described previously [48,49].

Solid-phase Binding Assays

Ninety six-well microtiter plates were coated with human type III collagen (BD Bioscience) and recombinant human laminin-511, and BSA (10 nM, 50 μl/well) overnight at 4°C, and then blocked with TBS containing 1% BSA and 0.02% Tween-20 for 1 h at RT. Next, the plates were washed with TBS containing 0.1% BSA, 0.02% Tween-20, and 1 mM MnCl₂ (Buffer A) or TBS containing 0.1% BSA, 0.02% Tween-20, and 10 mM EDTA (Buffer B). Diluted integrins (10 nM, 50 μl/well) were added to the plates and allowed to bind to the substrate-adsorbed ligand proteins in the presence of 1 mM MnCl₂ or 10 mM EDTA for 3 h at RT. The plates were washed three times with Buffer A or Buffer B, and the bound integrins were quantified by an enzyme-linked immunosorbent assay as reported previously [47].

Primary Neural Culture and Immunocytochemistry (ICC)

Primary neural culture was performed as previously described [37]. Briefly, cortical cells were harvested from E13.5 mouse cortices with the meninges removed. Dissociated cells were seeded on 10 ml tissue culture dish at 37°C for 10 min to deplete the fibroblasts. The cells (1×10⁶/ml) were placed on cover glasses precoated with poly-D-lysine (100 μg/ml) and cultured in neural culture medium (neurobasal medium supplemented with B27, 1% penicillin/streptomycin, and 1% L-glutamate) for one day (1DIV).

To perform ICC, the cultured primary neuronal cells were fixed in cold 95% ethanol and 5% glacial acetic acid for double ICC of H11 and α3 integrin, followed by three washes with PBS. Cells were permeabilized with 0.1% Triton-X 100 in PBS for 10 min followed by three washes with PBS. After blocking with 10% goat serum, 1% BSA, and 0.1% Triton-X100 in PBS for 30 min, the primary antibodies were incubated at 4°C overnight and visualized by appropriate fluorophore-conjugated secondary anti-

Figure 5. Loss of Itga3 attenuates Collagen III-mediated neuronal migration inhibition. (A–F) Neurosphere migration assays were performed with neural progenitor cells (NPC) derived from WT (A and D), GPR56⁻/⁻ (B and E), and Itga3⁻/⁻ (C and F) mouse cortices in the presence of collagen III (D–F) or carrier solution (A–C). Representative images are shown. (G) The degree of collagen III-mediated migration inhibition was quantified as a percentage of the migrating neurospheres. Data are presented as mean ± S.D.; n = 3. *P = 0.04, **P = 0.002, Student t-test.

doi:10.1371/journal.pone.0068781.g005

Figure 6. The binding of integrins to collagen III and laminin-511. (A–D) Integrins α1β1 and α2β1 bind to collagen III (A, B). In contrast, integrins α3β1 and α6β1 bind to laminin-511 (C, D). Both collagen III and laminin binding only occur in the presence of 1 mM Mn²⁺. The results are shown as mean ± S.D.; n = 3.

doi:10.1371/journal.pone.0068781.g006
binding of GPR56 to collagen III activates RhoA via G

The regulation of neural migration and the coordinated activities of both GPR56 and α3β1 integrin pathways. The binding of GPR56 to collagen III activates RhoA via Gα12/13 pathway, thus inhibits neural migration. Upon the binding to laminin, α3β1 integrin induces FAK phosphorylation. doi:10.1371/journal.pone.0068781.g007

Migration Assay

Neurosphere generation and migration assay were performed as previously described [34]. Briefly, E13.5 mouse cerebral cortex bodies (Invitrogen, 1:1000). Nuclei were stained with Hoechst 33342 (Invitrogen, 1:2000). Images were captured using a Nikon 80i upright microscope.

Acknowledgments

We thank Dr. R. Hevner for providing Tbr1 antibodies; the Gpr56 knockout mice, kindly provided by Genentech (South San Francisco, CA, USA), were produced in collaboration between Genentech and Lexicon Genetics to analyze the function of about 500 secreted and transmembrane proteins.

Author Contributions

Conceived and designed the experiments: XP. Performed the experiments: SJJ RL KS DK CS. Analyzed the data: SJJ RL KS DK CS. Contributed reagents/materials/analysis tools: SG JK KS. Wrote the paper: SJJ RL KS XP.

Supporting Information

Figure S1 Integrin α3 immunostaining on Itga3−/−, Itga3−/+ , and Itga3−/−Gpr56−/− brain sections and progenitor cells. (TIF)

Figure S2 Absence of GPR56 protein in mutant mouse brains. (TIF)

Figure S3 GPR56 and α3 integrins are coexpressed in the developing neocortex. (TIF)

Author Contributions

Conceived and designed the experiments: XP. Performed the experiments: SJJ RL KS DK CS. Analyzed the data: SJJ RL KS DK CS. Contributed reagents/materials/analysis tools: SG JK KS. Wrote the paper: SJJ RL KS XP.

References

1. Montanaro F, Carbonetto S (2003) Targeting dystroglycan in the brain. Neuron 37: 193–196.
2. Waite A, Brown SC, Blake DJ (2012) The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci 35: 487–496.
3. Fishman RB, Hatten ME (1993) Multiple receptor systems promote CNS neural migration. J Neurosci 13: 3485–3495.
4. Schmid RS, Anton ES (2003) Role of integrins in the development of the cerebral cortex. Cereb Cortex 13: 219–224.
5. Strokes N, Piao X (2011) Adhesion-GPCRs in the CNS. Adv Exp Med Biol 706: 87–97.
6. Singer K, Luo R, Jeong SJ, Piao X (2013) GPR56 and the developing cerebral cortex: matrix, neuron, and neuronal migration. Mol Neurobiol 47: 186–196.
7. Baramoutin TK, Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, et al. (2004) The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84: 23–33.
8. brainstorming TK, Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, et al. (2004) The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84: 23–33.
9. Yona S, Lin HH, Siu WO, Gordon S, Stacey M (2008) Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci 33: 493–500.
10. Stacey M, Lin HH, Gordon S, McKnight AJ (2000) LNC-1/7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25: 284–289.
11. Piao X, Hill SS, Bodell A, Chang BS, Basel-Vanagaite L, et al. (2004) G-protein-coupled receptor-dependent development of human frontal cortex. Science 303: 2033–2036.
12. Piao X, Basel-Vanagaite L, Straussberg R, Grant PE, Pugh EW, et al. (2002) An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2–21. Am J Hum Genet 70: 1028–1033.
13. Chang BS, Piao X, Bodell A, Basel-Vanagaite L, Straussberg R, et al. (2003) Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16. Ann Neurol 53: 596–606.
14. Piao X, Chang BS, Bodell A, Woods K, Benzerev B, et al. (2005) Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 58: 680–687.
15. Li S, Jin Z, Koitla S, Bu L, Xu L, et al. (2008) GPR56 regulates pial basement membrane integrity and cortical laminarization. J Neurosci 28: 5817–5826.
16. Baba-Baissen N, Poizier K, Boddarac N, Fallet-Bianco C, Spector N, et al. (2010) GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133: 3194–3209.
17. Olson EC, Walsh CA (2002) Smooth, rough and upside-down neocortical development. Curr Opin Genet Dev 12: 320–327.
18. Kohayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Ida E, et al. (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394: 388–392.
19. Yoshida A, Kohayashi K, Manya H, Taniguchi K, Kano H, et al. (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. POMGnT1. Dev Cell 1: 717–724.
20. Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, et al. (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418: 421–422.
21. Yamamoto T, Kato Y, Kawauchi M, Shibata N, Kohayashi M (2004) Expression and localization of fukutin, POMGnT1, and POMT1 in the central nervous system: consideration for functions of fukutin. Med Electron Microsc 37: 200–207.
34. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, et al. (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and laminar. Proc Natl Acad Sci U S A 108: 12925–12930.

35. Kim JK, Xu Y, Xu X, Keene DR, Garsasiddappa S, et al. (2005) A novel binding site in collagen type III for integrins alpha1beta1 and alpha2beta1. J Biol Chem 280: 32512–32520.

36. Nylestv P, Tu H, Ivaska J, Kapyla J, Pihlajaniemi T, et al. (2000) Distinct recognition of collagen subtypes by alpha1beta1 and alpha2beta1 integrins. J Biol Chem 275: 8235–8241.

37. Jeong SJ, Luo R, Li S, Strokes N, Piao X (2012) Characterization of G protein-coupled receptor 56 protein expression in the mouse developing neocortex. J Comp Neurol 520: 2930–2940.

38. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687.

39. Kreidberg JA (2000) Functions of alpha3beta1 integrin. Curr Opin Cell Biol 12: 548–553.

40. Carter WG, Ryan MC, Gahr PJ (1991) Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell 65: 599–610.

41. Beggs HE, Schalin-Reed D, Zang K, Goebels S, Nave KA, et al. (2003) FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron 40: 501–514.

42. Graus-Porta D, Blaess S, Senden M, Littlewood-Evans A, Damsky C, et al. (2001) Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367–379.

43. Niewmierzycka A, Mills J, St-Arnaud R, Dedhar S, Reichardt LF (2005) Integrin-linked kinase deletion from mouse cortex results in cortical lamination defects resembling cobblestone lissencephaly. J Neurosci 25: 7022–7031.

44. Jaylin XH, Poirier K, Saillour Y, Buhler E, Tian G, et al. (2009) Mutations in the beta-tubulin gene TUBBR2 result in asymmetrical polymicrogyria. Nat Genet 41: 746–752.

45. Voss AK, Britto JM, Dixon MP, Sherkh BN, Collin C, et al. (2008) C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment. Development 135: 2139–2149.

46. Takagi J, Erickson HP, Springer TA (2001) Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367–379.

47. Almouzni B, Aikawa P, Hara Y, Ito H, Yagi Y, et al. (2006) Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha2beta1, and alpha3beta4 integrins. Matrix Biol 25: 108–197.

48. Ito H, Harada K, Futaki S, Hayashi Y, Nishiochi R, et al. (2004) Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10. J Biol Chem 279: 10946–10954.

49. Hayashi Y, Kim KH, Fujisawa H, Shimono C, Yamashita M, et al. (2002) Identification and recombiant production of human laminin alpha4 subunit splice variants. Biochem Biophys Res Commun 299: 498–504.