Development of Rapid & Low Cost Archaeological Site Mapping Using Photogrammetric Technique

N A Mohd Azhar and Anuar Ahmad
Department of Geoinformation, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
Email:naniqah2@live.utm.my,

Abstract. In digital photogrammetry, unmanned aerial vehicle (UAV) platform is a new technology that can be used to capture digital images for large scale mapping with accuracy down to centimeter level from various waypoints for archaeological site documentation. UAV is one of the great alternatives to replace piloted aircraft and with combination of non-metric camera, thus it can be applied for small area such as cultural heritage building/archeological site area. With the recent technology of non-metric cameras, this camera is capable of producing high resolution digital images. This study investigates the application of UAV images for documentation and mapping of a simulated archaeological sites. An archaeological site simulation model with dimension of 2.4 m x 3.5 m is used in this study. The accuracy for mapping the archaeological sites based on the UAV system is evaluated and analyzed by performing the Root Mean Square Error (RMSE) derived from the differences of coordinates between reference value and the coordinates observed from photogrammetric output such as digital terrain model and orthophoto. In this application, a simulation model was used to simulate the archaeological site excavation. The results clearly demonstrate the potential and the capability of UAV and non-metric camera in providing the accuracy of centimetre level for this application. From this study, it can be concluded that the UAV and the photogrammetric technique procedure satisfied the needs of archaeological sites survey and documentation.

1. Introduction
Recently, the civilian application of unmanned aerial vehicle (UAV) has been increasingly used for mapping purposes. UAV have several advantages over satellites and piloted or manned aircraft which can capture aerial images from certain flying height and the flying height depends on the size and shape of the UAV. The UAV technologies have become popular among digital photogrammetry users as they are flexible in terms of flying mission and timing. The UAV is capable of flying at low altitude together with small format digital camera and it is suitable for small areas. The advantages of developing the technology of UAV for low altitude photogrammetric mapping are to perform aerial photograph at cloudy days, to get full image of objects from the top, and to supply a cheap and easy system for high frequency needs of aerial photogrammetric survey [1]. As well as their employment and development are cheaper than traditional platforms since the mini-UAV have a low weight (less than 5kg) and small dimensions. Therefore, the object that cannot be displayed clearly by piloted aircraft and satellites images can be obtained in detailed at sub-meter resolution.

Archaeological findings are instructive in explaining the socio-cultural aspects, as well as the placement of the pattern of life and social system of ancient societies [2,3,4]. In archaeological, documentation is one of the important sources for researchers to help then carry out research on

1 To whom any correspondence should be addressed.
an archaeological site. An archaeological site data should be collected quickly so as not to destroy the site or the original site conditions during the process of collecting data in the field. Therefore, a rapid method should be identified to facilitate this process because the excavation site may be exposed to hazards and debris due to soil conditions that might not be stable. Various methods are used for recording archaeological site such as ancient settlements, among them is through the use of GIS and spatial analysis [3]. Among the spatial technology information are remote sensing, Global Positioning System, aerial photo and GIS. These technologies have changed the discipline of geography by giving it the ability to analyze the whole information either quantitatively or qualitatively. Moreover most of the data are converted to numerical format due to the machine being used has a limited memory and limited analytical software [5]. In archaeology, the UAV system has been used to produce DSMs (digital surface model) of the settlement of Pinchango Alto in Peru which was the first archaeological site to be documented photogrammetrically using UAV [6]. Views of archaeological sites from the sky are always breathtaking [7]. Information technology has helped archaeologists in decision making. The overall field of the application of information technology to cultural heritage is rapidly developing. Hence archaeology has embraced virtual technology and known as virtual archaeology [8].

2. Preliminary Study
A preliminary experiment has been conducted in order to evaluate the capability of the UAV attached with digital camera for the purpose of mapping archaeological site. The dimension of the archaeological site simulation model is 2.4m x 3.5m. It consists of sand, some broken porcelains, and some artificial bones. The purpose of this study is to assess the digital camera for mapping archaeological site as well as to evaluate the accuracy that could be achieved by using close range photogrammetry technique.

2.1. Camera Calibration
Before a digital camera is used in photogrammetry, it must be calibrated to ensure that the internal geometry of the camera is known. The method of camera calibration used is self-calibration bundle adjustment. A camera calibration software was used to calibrate the digital camera. The results of the camera calibration are shown in Table 1. There are 8 parameters in camera calibration, which include focal length, principal point offset, radial, tangential and lens distortion.

Parameter	Canon PowerShot SX 230 HS
c	5.1274
x₀	3.054
y₀	1.7517
k₁	1.5940e003
k₂	-4.1140e005
k₃	6.9535e005
p₁	3.2327e004
p₂	3.5932e004

2.2. Equipment
In this study, Canon PowerShot SX 230 HS digital camera has been used in acquiring the simulation model images at resolutions up to 4000 pixels x 2248 pixels or about eight Megapixels. The camera was attached at the bottom of the Hexacopter which has been assembled with complete set gadgets such as GPS on board, pressure board, speed board, gyro and main board as shown in Figure 1. The Hexacopter is more stable and able to capture images from certain altitude.
3. UAV System/Methodology
The Hexacopter uses the autonomous flight control system and controlled by two operators where one act as pilot on ground and the other in charge of monitoring flight mission at ground station. In this experiment, the Hexacopter was equipped with a Canon PowerShot SX 230 HS digital camera in acquiring the simulation model images. The specifications of the Hexacopter UAV are shown in Table 2.

Table 2. Hexacopter UAV Specification

Specification	Value
Weight	1.2kg
Rotor	6 rotor
Endurance	Up to 36 minutes
Payload	1kg
GPS on board	Yes
Special function	Automatically return to home location (1st point)
Stabilizer	Inbuilt stabilizer to deal with wind correction
Capture data	Using software to reached waypoints
Flight control	Manual and autonomous
Camera stand	Flexible camera holder

3.1. Fieldwork
The establishment of ground control point (GCP) and check point (CP) was performed after the acquisition of aerial image. The GCP and CP comprise of black and white target points placed throughout the simulation model in order to achieve the maximum effects of relating the measurements derived from the image with the 3D coordinate system. There are 35 GCPs and 6 CPs were established and were located in the simulation model. The 3D coordinates of these GCPs and CPs were determined using total station.

After the camera calibration and the establishment of GCPs and CPs completed, then the aerial images acquisition is carried out using the Hexacopter. For flight planning, the images must be acquired with the specifications coverage of 60% forward lap and 30% sidelap. The digital camera was used to acquire photographs of the simulation model at a constant distance of 3 meter from the model.

3.2 Image Processing
For photogrammetric image processing, all the images were processed using a digital photogrammetric software. The processing involved interior orientation which requires input camera calibration parameter of the digital camera. Also processing involved exterior orientation where GCPs are used in image processing. In aerial image processing, the bundle adjustment or triangulation is carried out and the result is shown in the form of root mean square error (RMSE). Ideally the RMSE value must be less than 1.0 to indicate good result. The RMSE of unit weight is displayed without unit. In equation (1)
\[RMSE = \pm \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - X_o)^2} \]

Where;
\(n \) = number of checkpoints
\(X_i \) = True value
\(X_o \) = Observed value

4. Result and Analysis

After the process of bundle adjustment or aerial triangulation and the RMSE value is less than 1.0, the 3D stereo model has successfully been formed. Based on this 3D stereomodel, DTM and orthophoto are produced. The digital photogrammetric software allows user to display footprint of the processed aerial photograph. The footprint consist of two (2) overlapping photograph based on the most efficient and reliable means of providing stereoscopic coverage as shown in Figure 2. The aerial triangulation results shows that the result of the Canon PowerShot SX 230 HS digital camera is RMSE ± 0.0337. In this preliminary study, two main results were produced i.e DTM as shown in Figure 3 and orthophoto in Figure 3 respectively.

![Figure 2. Footprint](image1)

![Figure 3. Digital Terrain Model](image2)
The DTM was produced after aerial triangulation using GCP and later tie points were generated automatically. Then the individual orthophoto for each image was generated from the DTM as shown in Figure 4. Orthophoto product is free from any distortion and demonstrates the whole simulation model.

From Table 3 it shows that the RMSE of differences in coordinates from the image processing software and total station were less than 1.0 which indicates the good results that were achieved in this study.
5. Conclusion
For future work real archaeological site will be determined and the aerial image will be captured using fixed wing UAV. Then the digital images will be processed using similar procedure where the GCPs, CPs and camera calibration parameters will be used for digital processing to produce the photogrammetric product. Then the results from these two platforms will be compared for archaeological site. In this preliminary results show that there is no doubt that good result could be produced from the UAV system using photogrammetric technique.

References
[1] Lin Zong Jian 2008 UAV for Mapping-Low Altitude Photogrammetric Survey The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, Part B1 XXXVII 1183-1186
[2] Witschey W R, and Brown C T 2000 Building a GIS System of Ancient Lowland Maya Settlement. Society for American Archaeology Annual Meeting
[3] Van Der Leeuw S E 2004 Why Model? Cybernetics and Systems: An International Journal, 35(2-3) pp 117-128
[4] Okabe A 2006 1- Introduction. In A. Okabe, GIS-Based Studies in the Humanities and Social Science (Boca Raton: CRC Press, Taylor & Francis Group) pp 1-18
[5] McPheerron S P, and Dibble H L 2002 Using Computers in Archaeology: Practical Guide (USA: McGraw-Hill Companies)
[6] Lambers K, Eisenbess H, Saubier M, Kupferschmidt D, Gaisecker T, Sotoodeh S, and Hanusch T 2007 Combining photogrammetry and laser scanning for the recording and modeling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. Journal of Archaeological Science, 34(10): pp 1702-1712
[7] Gerster G, and Trumpler C 2005 The past from above: Aerial photographs of archaeological sites J. Paul Getty Museum Series (Getty Trust Publications, Los Angeles)
[8] J A, Forte M, and Sanders D H 2000 Virtual Reality in Archaeology (ArcheoPress Oxford) British Archaeological Reports International Series pp 843

Acknowledgements
The authors would like to thank Institute of Geospatial Science & Technology (INSTEG), Faculty of Geoinformation, UTM and Pixelgrammetry and Al-Idrisi Research Group (Pi_ALiRG); Centre of Studies Surveying Science and Geomatics, Faculty of Architecture, Planning and Surveying, UiTM. Also the authors would like to thank Sustainability Research Alliance UTM and UiTM Research and Management Institute (RMI-Uitm) for providing the fund to enable this study is carried out.