Assessing of supply chain performance by adopting Supply Chain Operation Reference (SCOR) model

E Prasetyaningsih*, C R Muhamad and S Amolina
Industrial Engineering Program Study, Universitas Islam Bandung, Bandung, Indonesia
*endangpras@gmail.com

Abstract. This paper aims at assessing of a supply chain performance by adopting the Supply Chain Operation Reference (SCOR) Model. The supply chain activities are divided into five core processes, i.e. plan, source, make, delivery and return. Each level of the SCOR model is weighted using Fuzzy Analytical Hierarchy Process (FAHP). The mapping of SCOR Model consists of 5 core processes at 1st level, 21 performance matrices at 2nd level, and 28 Key Performance Indicator (KPI) at 3th level. The result shows that the supply chain performance is 68,231. Referring to the performance indicators, the performance achieved by the supply chain at this time is in the average category. Proposed improvement strategies are designed based on lean supply chain principles, through the implementation of Gemba Kaizen which consists of 17 proposed strategies.

1. Introduction
Procurement activity is an upstream activity in the supply chain that systematically and strategically involves manufacturers and suppliers [1]. The purpose of the material procurement activity is to obtain required materials, start from designing relationships with suppliers to evaluating supplier performance. The material procurement activities should have efficiency through the integration of all acquisition of material and material storage in the company [2].

In practical conditions, constraints often occur between manufacturer and suppliers. These constraints include difficulties to select suppliers who able to meet the required quality and/or quantity material, and to meet due dates. These problems will affect the production activities such as defective products due to inappropriate material quality, uncertain production costs, unfulfilled customer demand, and/or delays to deliver finished products to the customers. To anticipate these problems, manufacturers often order material more than is needed so that a buildup of material in the warehouse occurs. This shows the inefficiency of procurement, and it will detrimental to the company both in terms of time and cost. Therefore, it is necessary to measure the performance of the Procurement Department and make improvements.

Supply chain performance measurement can be done with the Supply Chain Operation Reference (SCOR) Model proposed by the Supply Chain Council. Performance measurement with SCOR Model is done by identifying supply chain performance indicators through the company's supply chain process so that it can be used to evaluate and improve the performance [3]. The SCOR model provides a systemic approach to improve strategy, define structure (including human capital), manage processes, and measure performance [4].
Measurement of supply chain performance with the SCOR Model has been carried out by several researchers, including [5,6] combine SCOR and FAHP; [7] combines SCOR Model and fuzzy-TOPSIS; [8] align SCOR with business process and information technology in the ERP system; [9] develops a Financial Components Reference Model (FCOR) based on SCOR Model; [10] integrates AHP and SCOR (ASIM); [11] Apply SCOR Model in the footwear industry; and [12] measures the performance of construction logistics.

This study aims at measuring the performance of the Procurement Department by combining the SCOR Model and FAHP, referring to Arif [5] and Azmiyati [13]. After the performance is measured, the causes of the problems are identified and then improvements are recommended. This article is organized as follows: Section 2 describes research methodology, Section 3 shows the result and discusses the result, and Section 4 states the conclusion.

2. Research methodology

Supply Chain Operation Reference (SCOR) Model and Fuzzy Analytical Hierarchy Process (FAHP) are chosen to measure the Supply Chain (SC) performance. The SCOR model divides SC activities into 3 levels. Level 1 consists of five core processes, i.e. plan, source, make, delivery, and returns. At level 2 all core processes are configured into the SCOR performance matrix, i.e. reliability, responsiveness, agile, cost and assets. Furthermore, each SCOR level 2 performance matrix is broken down into key performance indicators (KPI) at level 3. The KPIs are then weighted using FAHP, where in the FAHP method, variables (l, m, u) are used to represent each criterion in the form of triangular fuzzy numbers arranged according to a set of linguistics [14].

Each performance indicator has a different weight so that the parameters should be normalized. The normalization process uses the Snorm De Boer Equation as follows:

Larger is Better: \[Snorm = \frac{(S_i - S_{min})}{(S_{max} - S_{min})} \times 100 \]

Lower is Better: \[Snorm = \frac{(S_{max} - S_i)}{(S_{max} - S_{min})} \times 100 \]

Where:
- \(S_i \): The value of actual achievement indicator
- \(S_{min} \): The worst achievement value of performance indicator
- \(S_{max} \): The best achievement value of performance indicator

Each weight of a performance indicator is converted into intervals of 0 to 100, where 0 means the worst and 100 means the best performance indicator. Monitoring system of performance indicators can be seen at Table 1.

Monitoring System	Performance Indicators
<40	Poor
40-50	Marginal
50-70	Average
70-90	Good
>90	Excellent

3. Result and discussion

To provide an overview of supply chain performance measurements by the SCOR Model and FAHP, a plastic company is taken as a case study. This company has a problem about delayed delivery of their products to customer. Based on observation, it is found that suppliers often do not meet the agreements stated in the MoU between suppliers and manufacturers. This shows that there are inefficiencies in the
Procurement Department. The assessing result of Procurement Department using SCOR Model and discussion the results can be described as follows.

3.1. Result

Supply chain flow of the case study company can be seen in Figure 1.

![Figure 1. Supply chain flow of the case study company.](image)

3.1.1. Validated performance indicator determination. The first step to measure performance with the SCOR Model is to identify the Procurement Department's performance indicators, followed by the validation step of the performance indicators. The plant managers are chosen to validate the indicators by facing validation techniques. The validated performance indicators are shown in Table 2.

Code	Performance Indicator	Unit	Code	Performance Indicator	Unit
PR1	Suppliers selection	Supplier	MR1	Product defects due to material quality	(%)
PR2	Preparing purchase order (PO)	PO	MRe1	Suitability of production output (%)	
PR3	Documentation of procurement activities	Document	MRe2	Product lead time (day)	
PRe1	Submission purchase order (PO)	PO	MF1	Machine setup time (Minute)	
PF1	Material quantity planning	(Kg)	MC1	Flexibility of Production volume (%)	
PF2	Fulfilment of supplier selection criteria	(%)	MA1	Production cost (Rp)	
PC1	Maximize order cost	(Rp)	MA2	Number of “injek” Machine (Unit)	
PA1	Finished goods inventory management	(%)	DR1	Number of crushing Machine (Unit)	
SR1	Management of materials in the warehouse	(%)	DRe1	Material quantity received (%)	
SRe1	Material procurement of suppliers	(%)	DC1	Delivery time (%)	
SF1	Allocation of material inventory	(%)	DA1	Material payment (Rp)	
SC1	Labour cost	(Rp)	RR1	Material delivery transportation (%)	
SA1	Utilization of company resources	(%)	RRe1	material Quality control (%)	
SA2	Change assets into money	(%)			

3.1.2. The SCOR hierarchy. The validated procurement performance indicators are then mapped as the SCOR hierarchy starting from level 1 to level 3. The result shows that level 1 of the SCOR hierarchy consists of five SCOR core processes, i.e. plan, source, make, delivery and return. Level 2 of the SCOR hierarchy consists of 21 elements that show SCOR's performance matrix, i.e. Reliability, Responsiveness, Agility, Costs and Assets. Level 3 of the SCOR hierarchy consists of 28 validated KPIs. The SCOR hierarchy of level 1, level 2 and level 3 can be seen in Figure 2.

3.1.3. Total performance calculation. The total performance of the SCOR model can be calculated through the weighting stage using the FAHP method, i.e. determine the level of importance of each performance indicator. The next process is multiplying the weighted value of the SCOR model with the normalization result of the actual achievement of each performance indicator. The results of the performance value can be seen in Table 3.
Figure 2. SCOR hierarchy of procurement department.

Table 3. Total performance calculation.

Key Performance Indicator	Metric Weights	Score	Performance index
Suppliers selection	0.0069	50.00	0.345
Preparing purchase order (PO)	0.0212	50.00	1.058
Documentation of procurement activities	0.0179	25.00	0.449
Submission purchase order (PO)	0.0483	50.00	2.415
Material quantity planning	0.0193	100.00	1.932
Fulfilment of supplier selection criteria	0.0290	80.00	2.318
Maximize order cost	0.0506	68.25	3.453
Finished goods inventory management	0.0368	0.01	0.00037
Management of materials in the warehouse	0.0552	0.00	0.00
Material procurement of suppliers	0.0504	100.00	5.040
Allocation of material inventory	0.0456	30.43	1.388
Labour cost	0.0552	60.00	3.312
Utilization of company resources	0.0133	90.00	1.199
Change assets into money	0.0227	75.73	1.718
Product defects due to material quality	0.0324	91.53	2.966
Suitability of production output	0.0396	91.42	3.620
Product lead time	0.0240	100.00	2.400
Machine setup time	0.0360	60.00	2.160
Flexibility of Production volume	0.0570	100.00	5.700
Production cost	0.0660	38.25	2.525
“injek” Machine	0.0248	100.00	2.475
crushing Machine	0.0203	100.00	2.025
Material quantity received	0.0580	100.00	5.800
Delivery time	0.0540	100.00	5.400
Material payment	0.0560	66.67	3.734
Material delivery transportation	0.0320	50.00	1.600
material Quality control	0.0180	80.00	1.440
Material return	0.0220	80.00	1.760
Total Performance			68.231
3.2. Discussion
Table 3 shows that the measured Procurement Department's performance score of 68.231. Referring to the monitoring system shown in Table 1, the measured Procurement Department performance is in the average category because it is in the range of 50-70. Based on the results of these performance measurements, it is necessary to improve strategies based on five core processes, namely plan, source, make, delivery and return. The proposed improvement strategy is designed based on the Gemba Kaizen principle through the adoption of 5S and the application of the PDCA cycle to the Procurement Department to create continuous improvement. The proposed improvement is formulated as 17 strategies that are related one to another. Therefore, the strategies should be done in parallel starting from the plan to the return process. Table 4 shows the proposed improvements.

Table 4. Proposed strategies.

Proposed Strategy	Code	Key Performance Indicator
SP-1 Improvement of coordination and collaboration between manufacturer, customers and suppliers.	PR1	Suppliers selection
SP-1 Improvement of coordination and collaboration between manufacturer, customers and suppliers.	PR2	Preparing purchase order (PO)
SP-1 Improvement of coordination and collaboration between manufacturer, customers and suppliers.	PRe1	Documentation of procurement activities
SP-2 Keep bookkeeping for each procurement activity	PR3	Submission purchase order (PO)
SP-2 Keep bookkeeping for each procurement activity	PF1	Material quantity planning
SP-2 Keep bookkeeping for each procurement activity	PF2	Fulfilment of supplier selection criteria
SP-3 Increase supplier loyalty	PC1	Maximize order cost
SP-4 Increase storage of finished products	PA1	Finished goods inventory management
SS-1 Apply 5S method	SR1	Management of materials in the warehouse
SS-1 Apply 5S method	SF1	Material procurement of suppliers
SS-1 Apply 5S method	SRe1	Allocation of material inventory
SS-2 Understand the market situation	SA1	Labour cost
SS-2 Understand the market situation	SA2	Utilization of company resources
SS-3 Increase employee loyalty	SC1	Change assets into money
SM-1 Increase product quality	MR1	Product defects due to material quality
SM-2 Improving delivery accuracy according to customer requests	MR2	Suitability of production output
SM-2 Improving delivery accuracy according to customer requests	MF1	Product lead time
SM-3 Shorten product lead time	MRe1	Machine setup time
SM-4 Decrease setup time	MRe2	Flexibility of Production volume
SM-5 Increase profit	MC1	Production cost
SM-6 Increase production capacity	MA1	“injek” Machine
SM-6 Increase production capacity	MA2	crushing Machine
SD-1 Increase material quality	DR1	Material quantity received
SD-2 Improve the timeliness of material delivery	DRe1	Delivery time
SD-3 Improve the timeliness of payment	DC1	Material payment
SR-1 Apply Kaizen	DA1	Material delivery transportation
SR-1 Apply Kaizen	RR1	material Quality control
SR-1 Apply Kaizen	RRe1	Material return

4. Conclusion
In the case study, it was found that the SCOR Model mapped the Procurement Department activities into 3 SCOR levels. Level 1 consists of five core processes (plan, source, make, delivery, and return), Level 2 configures SCOR's main matrix, i.e. customer-facing (Reliability, Responsiveness, and Agility) and internal-facing (Cost and Assets) into 21 performance matrices. All SCOR level 2 performance
matrices are broken down into 28 Key Performance Indicators (KPI) at level 3. The measurement of the Procurement Department's performance of 68.231 which is in the average category.

There are 17 proposed strategies designed with reference to the application of the Gemba Kaizen principle through the application of 5S and the application of the PDCA cycle. The detailed design of each strategy becomes an opportunity for further research.

Acknowledgment
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References
[1] Turban E and Volonino L 2010 *Information Technology for Management: Transforming Organizations in The Digital Economy* (New Jersey: Pearson Prentice Hall, Inc.)
[2] Siahaya W 2012 *Manajemen Pengadaan Procurement Management* (Bandung: Alfabeta)
[3] Jamehshooran B G, Shaharoun A M and Haron HN 2015 Assessing supply chain performance through applying the SCOR model. *Int J Supply Chain Manag* 4 pp 1–11
[4] Supply Chain Council 2012 *Supply Chain Operations Reference Model: Overview - Version 10.0* (Supply Chain Council, USA)
[5] Arif-Uz-Zaman K and Ahsan AMMN 2014 Lean supply chain performance measurement. *Int J Product Perform Manag* 63 5 pp 588–612
[6] Abbaspour A 2019 Supply chain analysis and improvement by using the SCOR model and Fuzzy AHP: A Case Study. *Int. J of Industrial Engineering & Manag Sci* 6 2 pp 51-73
[7] Lima F R and Carpinetti LCR 2016 Evaluating supply chain performance based on SCOR® model and fuzzy-TOPSIS. 2016 *IEEE Int Conf Fuzzy Syst* pp 2075–2082
[8] Millet P A, Schmitt P and Botta-Genoulaz V 2009 The SCOR model for the alignment of business processes and information systems *Enterp Inf Syst* 3 pp 393–407
[9] Moreno M A, Lara L and Rojas O 2016 Financial Components Operations Reference Model: a SCOR-based financial model *Int J of Combinatorial Opt Problems and Informatics* 7 1 pp 10–19
[10] Nazim R, Yaacob R and Ahmad IR 2017 Criteria for supplier selection: An application of AHP-SCOR integrated model (ASIM) *Int J Sup Chain Manag* 6 3 pp 284–290
[11] Sellitto M A, Pereira G M, Borchardt M, Da Silva R I, and Viegas CV 2015 A SCOR-based model for supply chain performance measurement: Application in the footwear industry. *Int J Prod Res* 53 16 pp 4917–4926
[12] Thunberg M and Persson F 2014 Using the SCOR models performance measurements to improve construction logistics. *Prod Plan Control* 25 pp 1065–1078
[13] Azmiyati S and Hidayat S 2016 Pengukuran kinerja rantai pasok pada PT. Louserindo Megah Permai menggunakan Model SCOR dan FAHP *J Al-Azhar Indones Seri Sains dan Teknol* 3 pp 163–170
[14] Hakan A, Ince M and Yigit T 2015 A Fuzzy AHP approach to select learning management system. *Int J Comput Theory Eng* 7 pp 499–502
[15] Volby H 2000 *Performance Measurement and Improvement Supply Chain* (Thienekers)