ISSUES IN PUBLIC HEALTH

Caesarean section rates in South Africa: A case study of the health systems challenges for the proposed National Health Insurance

G C Solanki, BChD, BA Hons, MSc, DrPH; J E Cornell, BA, Perf Dip, MA, DHMEd, PhD; E Daviaud, MSc (Economics, Health Economics), MPhil (Sociology of Development); S Fawcus, MA, MB BCh, FRCS

1 Senior Specialist Scientist, Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
2 Honorary Research Associate, Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
3 Principal Consultant, NMG Consultants and Actuaries, Cape Town, South Africa
4 Director of Institutional Development and Planning (retired), Nelson Mandela School of Public Governance, University of Cape Town, South Africa
5 Senior Scholar and Professor Emeritus, Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Cape Town, South Africa

Corresponding author: G C Solanki (geetesh.solanki@wrc.ac.za)

As proposed in the National Health Insurance Bill,[1] National Health Insurance (NHI) will be a strategic purchaser of healthcare services for the entire South African (SA) population. There is a need for broader policy research and debate on the planning and implementation of NHI to be complemented by case studies to examine and understand the issues that will need to be dealt with at micro and macro levels. The objective of this article is to use caesarean section (CS) as a case study to examine the health systems challenges that NHI would need to address in order to ensure sustainability. The specific objectives are to: (i) provide an overview of the key clinical considerations related to CS; (ii) assess the CS rates in the SA public and private sectors; and (iii) use a health systems framework to examine the drivers of the differences between the public and private sectors and to identify the challenges that the proposed NHI would need to address on the road to implementation.

Objectives

To use caesarean section (CS) as a case study to examine the health systems challenges that NHI would need to address in order to ensure sustainability. This case study has been chosen because: (i) maternal and child health is a major public health concern in SA, with 1.2 million recorded births in 2018;[2] (ii) there is growing local and global concern about the appropriateness and safety of increasing CS rates;[3] and (iii) there is a substantial difference between reported CS rates in the SA private and public sectors.[4] This difference provides an ideal opportunity to assess and understand the underlying health systems drivers and how these would need to be addressed in an NHI environment. The specific objectives of the paper are to: (i) provide an overview of the key clinical considerations related to CS; (ii) assess the CS rate in the SA public and private sectors; and (iii) examine the drivers of differences between the public and private sectors and use a health systems framework to identify the challenges that the proposed NHI would need to address on the road to implementation.

CS: The clinical considerations

When indicated for health reasons, CS is an important surgical intervention to save lives of women and children. However, unnecessary CS (without medical/obstetric indication) should be avoided, as maternal mortality is three times higher for CS than for normal vaginal delivery (NVD),[5] which is associated with fewer complications and is more sustainable for healthcare systems.[6] Healthy women prefer to give birth via NVD. A woman who has had a CS is more likely to require one for subsequent births, thus increasing the CS rate.

The 2015 World Health Organization (WHO) statement,[4] based on country data, demonstrates that CS rates >10% - 15% conferred no further benefit in reducing maternal and perinatal mortality. In many countries, CS rates are consistently higher than is considered medically justifiable,[8] and are rising, leading to debates about appropriate rates and concern about the costs associated with inappropriately high rates.[9,10] For many low-income countries, CS rates are too low to save lives. The WHO statement therefore recommends that ‘Every effort should be made to provide CS to women in need, rather than striving to achieve a specific rate’, and further recommends against CS on maternal request based on the finding of increased maternal mortality for CS compared with vaginal delivery.[5] Further reviews of the relationship between CS rates and the reduction of maternal and newborn mortality suggest that CS rates >20% do not confer benefit in reducing mortality. However, if reduction of maternal and newborn morbidity (e.g. severe perineal tears, newborn hypoxic brain injury) is taken into account, rates >20% may be acceptable.[11]

There is global (and in-country) inequity in provision of safe CS, with the case fatality rate (CFR) varying from 21.9 per 100 000 CSs in The Netherlands[12] to an average of 760 for low- to middle-income countries (LMICs).[13] Deaths of women who have CS may be

Creative Commons licence CC-BY-NC 4.0.

This open-access article is distributed under Creative Commons licence CC-BY-NC 4.0. This open-access article is distributed under the terms of the Creative Commons licence CC-BY-NC 4.0.
unrelated to the procedure (e.g. due to pre-eclampsia), but for many the CS may be contributory (e.g. due to a bleeding or anasthetic complication at CS). Increasing CS rates in LMICs need to be accompanied by measures to ensure that the operations are done safely. Complications of CS include bleeding, anasthetic adverse events, sepsis, visceral injury and thromboembolism. In many LMICs there are serious skills shortages in surgery and anasthesia, especially in rural hospitals that are far from urban centres and have limited back-up to manage complications.

CS rates in SA

The provincial public sector CS rates for 2006 and 2015, and the private sector CS rates for 2015, are summarised in Table 1.

The public sector CS rates in Table 1 are based on data from the 2015/16 District Health Barometer.[12] Public sector CS rates increased from 15.1% in 2006 to 24.1% in 2015. The largest increases were in North West, Eastern Cape and Gauteng. There were marked differences in the CS rates between provinces (reflecting inequitable access), with the lowest rates in the predominantly rural provinces. More recent data from 2017 indicate that the CS rate had increased further to 27.4% overall.[13] Of note, CS is not done on maternal request in the public sector.

The private sector CS rates are based on data used for a recent study that analysed 6 542 births in 2015 among members of 10 medical schemes.[14] The overall CS rate for this group was 73.2% in 2015. This is one of the highest rates in the world, and almost three times higher than that reported for the SA public sector. This trend was evident across all provinces, with the largest private-public differences in North West, Northern Cape and Free State. The high CS rate reported by the study is in line with findings of previous studies on the SA private sector. Naidoo and Moodley[16] reported a CS rate of 65% in 2009 based on an audit of private practice. A chapter on maternal deaths in the private sector in the 2011 - 2013 Saving Mothers report gave a CS rate of 67% for the private sector.[17] A press article reported a CS rate of 74% for members of Discovery Health, the largest medical scheme in SA.[18] In its 2017/18 annual report[19] the Council for Medical Schemes reported CS rates of 60 - 70% for the private sector over the period 2007 - 2017, and in its 2018/19 annual report,[20] the CS rate is reported to have increased to >75% in 2018.

While there is no available information on the safety of CS in the private sector, the issues related to safety of CS in the SA public sector are well documented. In line with patterns seen in other countries, the CFR for CS in SA is three times higher than for vaginal delivery.[21] The by-province CFRs for CS overall and for CS associated with bleeding as reported by the Saving Mothers Report for 2017[13] are summarised in Table 2.

The CS-related CFR varies across provinces, ranging from a high of 235.5 per 100 000 CSs for the Free State to a low of 87.5 for the Western Cape. Death from bleeding associated with CS has been noted as a major issue in several African countries by the African Surgical Outcomes Study[22] and by the WHO global meta-analysis of LMICs.[5] SA appears to have a similar issue, with 19.1% of the CS-related CFR associated with bleeding. The variations between provinces in CS-related CFR and the proportion of the fatalities associated with bleeding point to differences between provinces in the safety of CS procedures. One of the key factors identified as contributing to the variation in safety of CS between provinces is the lack of appropriately skilled staff.[23]

CS rate drivers and challenges for the proposed NHI

The evidence on public sector CS rates and safety and underlying provincial inequities highlights urgent issues in the public sector, notably: (i) the importance of more equitable access to safe CS across the country; and (ii) the need to limit further increases in the CS rate, which is thought to be at a ceiling above which no further benefits would be achieved. There is also an imperative to improve safety of CS in the public sector. Doing this requires improving the skills of doctors performing surgery and anaesthesia for CS in all facilities and ensuring an appropriate enabling environment in terms of equipment, infrastructure and supplies to manage complications.

Table 1. CS rates (%) in the SA public and private sectors

Province	Public sector CS 2006	Public sector CS 2015	Private sector CS 2015	Public sector movement, 2015 v. 2006	Private v. public difference, 2015
North West	12.6	27.6	86.5	15.0	59.0
Northern Cape	11.0	16.3	74.7	5.3	58.4
Free State	11.6	16.0	72.9	4.4	56.9
Limpopo	15.1	22.3	73.4	7.2	51.1
Gauteng	13.7	25.6	75.0	11.9	49.5
Mpumalanga	13.1	19.3	68.2	6.2	48.8
KwaZulu-Natal	21.1	28.8	76.8	7.6	48.0
Eastern Cape	9.5	22.7	66.1	13.2	43.4
Western Cape	19.9	28.1	68.2	8.2	40.1
SA	15.1	24.1	73.6	9.0	49.5

CS = caesarean section; SA = South Africa/n.

Table 2. CFR for CS by province in SA, 2017

Province	CFR/100 000 CSs	% of CS with bleeding (B/A)	
North West	128.1	45.2	35.3
Limpopo	208.3	69.4	33.3
Mpumalanga	190.6	41.7	21.9
Northern Cape	111.8	22.4	20.0
Free State	235.5	45.6	19.4
Eastern Cape	144.5	24.1	16.7
Gauteng	127.3	19.1	15.0
KwaZulu-Natal	141.7	17.9	12.7
Western Cape	87.5	10.5	12.0
SA	145.7	27.8	19.1

CFR = case fatality rate; CS = caesarean section; SA = South Africa.
While the public sector CS rate of 27.4% in SA is in line with global trends, the private sector rate of 73% is one of the highest in the world, as is the high differential between public and private sector rates in SA. None of the reported studies have been able to provide specific obstetric indications for the high CS rate in the SA private sector, but it is possible that many are being done without any medical or obstetric indication, either on patient request or at provider suggestion.

The proposed NHI will contract for CS (and other) services from both public and private providers, presenting a key challenge: to develop strategies that allow the public sector to benefit from private sector skills and resources so that services for the entire population are improved. This is particularly important for remote rural and overloaded regional hospitals where there is a serious lack of skills and resources (such as theatre capacity) to meet the service demands for CS. However, any strategy attempting to harness the resources of

Table 3. Drivers, challenges and required action in preparing for NHI

Area	Potential drivers for difference between public and private sector CS rates	Comment	Challenges and required action
Women and community factors	Need: greater need for CS among women using the private sector due to:	Unlikely: in fact, women accessing public sector services are likely to have a higher prevalence of conditions for which CS may be indicated to prevent morbidity, such as HIV, hypertension and diabetes[^23,24]	• Research to assess and confirm the underlying need for CS based on demographic and health status of women
	• demographic differences		• Design and implementation of information campaigns to educate women on the risks and medical issues related to CS and the available choices
	• higher prevalence of medical conditions for which CS would be indicated		
	Demand: greater demand for CS among women belonging to medical schemes	Plausible: women in medical schemes are likely to be of higher SES[^7,11]	
Health professional factors	Training of private sector providers different from public sector providers	Unlikely: most public and private sector providers undergo the same training. However, the low assisted delivery rate in the private sector may reflect a lack of maintaining skills[^4]	• Review training programmes
	Remuneration model in private sector drives high CS rates	Potentially significant: current private sector remuneration models do not consider the time exposure for private practitioners in NVDs	• Continuing skills training in private as well as public sector
	Medicolegal concerns	This is a major driver: potential legal liabilities associated with vaginal deliveries are substantially higher than for CS	• Individual accreditation of competence
Organisational and system factors	Practice model: individual private practice model (v. group/team public model) drives high CS rate in the private sector	Potentially significant: CS offers greater certainty to individual private practitioners regarding scheduling and duration of maternity events	• Review remuneration models (local and international)
	Hospital pressures	Midwifery model of care with doctor/obstetrician back-up for complications is associated with lower CS rates[^9]	• Explore possibilities for implementing time-based remuneration models for deliveries
	Monitoring and regulation	Uncertain: do private hospitals place pressure on providers to carry out CS to increase theatre time and length of stay?	• Review provider-hospital contracting arrangements
	Possible: use of guidelines and routine monitoring of CS rates, indications and outcomes are more established in the public than in the private sector[^13,17,21]		• Regulatory changes to encourage maternity group practices

NHI = National Health Insurance; CS = caesarean section; SES = socioeconomic status; NVD = normal vaginal delivery.

[^23]: August 2020, Vol. 110, No. 8
[^24]: IN PRACTICE
of Cape Town to SF. None of these institutions had any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest. GCS is employed on a contractual basis by NMG Consultants and Actuaries, an independent consulting firm providing consulting and actuarial services to SA private health insurance funds. NMG did not have any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. As such, there were no conflicts of interest in the conduct of the study.

IN PRACTICE

Acknowledgements. The authors acknowledge the institutional support of the South African Medical Research Council (SAMRC), the University of Cape Town and NMG Consultants and Actuaries provided to the study authors.

Author contributions. Conceived and designed the study: GCS, SF. Analysed the data: GCS, SF, ED. Developed the article: GCS, SF, ED, JEC.

Funding. GCS is employed on a contractual basis by the SAMRC and NMG Consultants and Actuaries. Support in the form of salaries was provided by the SAMRC to authors GCS and ED, and by the University of Cape Town to SF. None of these institutions had any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest. GCS is employed on a contractual basis by NMG Consultants and Actuaries, an independent consulting firm providing consulting and actuarial services to SA private health insurance funds. NMG did not have any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. As such, there were no conflicts of interest in the conduct of the study.

Declaration. None.

1. National Department of Health, South Africa. National Health Insurance Bill. 2019. https://www.gov.za/sites/default/files/gcis_document/201908/national-health-insurance-bill-b-1-2019.pdf (accessed 1 February 2020).

2. Statistics South Africa. Mid-year population estimates 2019. Statistical release P0302. Pretoria: Stats SA, 2018. https://www.statssa.gov.za/publications/P0302/P03022019.pdf (accessed 16 February 2020).

3. Rosenmann T, Romanns M, Grodev D, et al. Global epidemiology of use of antidiparities in caesarean sections. Lancet 2018;392(10155):1341-1348. https://doi.org/10.1016/S0140-6736(18)32188-7

4. Soladi G, Fawzi S, Desula E. A cross sectional analytic study of modes of delivery and caesarean section rates in a private health insured South African population. PiLOt ONS 2018:4(0):e219201. https://doi.org/10.1080/20786204.2018.149201 (accessed 1 February 2020).

5. Souza JP, Galetzko R, Lambregton P, et al. Caesarean section without medical indications is associated with an increased risk of adverse short-term maternal outcomes. The 2004 - 2008 WHO Global Survey on Maternal and Perinatal Health (WGH) (2018) BMJ 2018;361:j1743. https://doi.org/10.1136/bmj.j1743

6. World Health Organization. WHO statement on caesarean section rates. April 2015. https://www.who.int/reproductivehealth/publications/maternal_perinatal_health/caesareansection/en/ (accessed 10 February 2020).

7. Betrán AP, Timmerman M, Kingdon C, Mihaldah A, Oytpre N, Tofiri JM. Interventions to reduce unnecessary caesarean sections in healthy women and babies. Lancet 2018;392(10155):1349-1357. https://doi.org/10.1016/S0140-6736(18)31930-1

8. Lou J. Caesarean section – past and present. J Obstet Gynaecol Can 2009;31(12):1311-1316. https://doi.org/10.1016/S1701-211X(09)70299-7

9. Molina G, Winer TG, Lipiste SR, et al. Relationship between caesarean delivery rate and maternal and neonatal mortality. JAMA 2013;310(11):1205-1216. https://doi.org/10.1001/jama.2013.8585.3

10. Kallandari AD, Schuit JM, van Rossumen J, van den Akker T. Maternal mortality after caesarean section in the Netherlands. Eur J Obstet Gynaecol Reprod Biol 2018;229:148-152. https://doi.org/10.1016/j.ejogrb.2018.08.586

11. Sobhi S, Arryes-Mantano D, Marugán N, et al. Maternal and perinatal mortality and complications associated with caesarean section in low-income and middle-income countries: A systematic review and meta-analysis. Lancet 2019;395(10194):1875-1902. https://doi.org/10.1016/S0140-6736(19)31257-4

12. Marzan N, Peer N, English R, Padarath A, Barron D, Day C, et al. District Health Barometer 2015/16. Durban: Health Systems Trust, 2016.

13. National Department of Health, South Africa. Saving Mothers 2017: Annual Report on Confidential Enquiries into Maternal Death in South Africa. Pretoria: NDH, 2017. http://www.health.gov.za/index.php/downloads/2015-03-29-10-42-47/2015-03-30-08-18-10/2014-05-08-24-28/topic5939/saving-mothers-report.pdf (accessed 17 July 2020).

14. National Department of Health, South Africa. 2017 Saving Mothers? Annual Report. Health Systems Trust, 2018. http://www.health.gov.za/index.php/downloads/2015-03-29-10-42-47/2015-03-30-08-18-10/2014-05-08-24-28/topic5939/saving-mothers-report.pdf (accessed 17 July 2020).

15. National Department of Health, South Africa. Saving Mothers 2011 - 2013: Sixth Report of the Confidential Enquiries into Maternal Deaths in South Africa. Pretoria: NDH, 2014. https://www.kmhealth.co.za/doc/Maternal/Saving-Mothers-2011-2013-short-report.pdf (accessed 10 February 2020).

16. Waterman HA. The C-section rate among Discovery members is now up to three times higher than at American celenity hospitals – he’s why Business Insider, 20 April 2019. https://www.businessinsider.co.za/sites/default/files/gcis_document/201908/national-health-insurance-bill-b-1-2019.pdf (accessed 1 July 2020).

17. Council for Medical Schemes. Annual Report 2017/2018: A healthy industry for all. All available on: https://www.medicashemes.com/files/Annual%20Reports/CMS_AnnualReport2017-2018.pdf (accessed 10 February 2020).

18. National Department of Health, South Africa. Saving Mothers 2014 - 2016: Seventh Triennial Report on the Confidential Enquiries into Maternal Deaths in South Africa. Short report. Pretoria: NDH, 2018. https://www.westerncape.gov.za/assets/departments/hhs/saving-mothers_2014-16_-short_report.pdf (accessed 2 July 2020).

19. Mazzoni A, Alkhalea J, Liu NH, et al. Women’s preference for caesarean section: A systematic review and meta-analysis of observational studies. Br J Obstet Gynaecol 2011;118:4-391. https://doi.org/10.1111/j.1471-0528.2010.07979.x

20. World Health Organization. WHO statement on caesarean section rates. April 2015. https://www.who.int/reproductivehealth/publications/maternal_perinatal_health/caesareansection/en/ (accessed 10 February 2020).

21. Sobhi S, Arryes-Mantano D, Marugan N, et al. Maternal and perinatal mortality and complications associated with caesarean section in low-income and middle-income countries: A systematic review and meta-analysis. Lancet 2019;395(10194):1875-1902. https://doi.org/10.1016/S0140-6736(19)31257-4

22. Making N, Peer N, English R, Padarath A, Barron D, Day C, et al. District Health Barometer 2015/16. Durban: Health Systems Trust, 2016.

23. WHO. Prevalence of chronic diseases in the medical schemes population. March 2019. Research and Monitoring Unit, Council for Medical Schemes. Prevalence of chronic diseases in the medical schemes population. 3.

24. Economic Impact of chronic diseases in South Africa. 2019. Available from: https://www.westerncape.gov.za/publications/P0318/P03182017.pdf (accessed 1 July 2020).

25. Statistics South Africa. General household survey, 2017. Statistical release P138. Pretoria: Stats SA, 2017. http://www.statssa.gov.za/publications/P0184/P01842017.pdf (accessed 10 February 2020).

Accepted 30 March 2020.