CONNECTED AND OUTER-CONNECTED DOMINATION NUMBER OF MIDDLE GRAPHS

FARSHAD KAZEMNEJAD, BEHNAZ PAHLAVSAY, ELISA PALEZZATO, AND MICHELE TORIELLI

Abstract. In this paper, we study the notions of connected domination number and of outer-connected domination number for middle graphs. Indeed, we obtain tight bounds for this number in terms of the order of the graph $M(G)$. We also compute the outer-connected domination number of some families of graphs such as star graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and some operation on graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the outer-connected domination number of middle graphs.

Keywords: Connected Domination number, Outer-Connected Domination number, Domination number, Middle graph, Nordhaus-Gaddum-like relation.

1. Introduction

Domination problems and its many generalizations have been intensively studied in graph theory since 1950, see for example [6], [7], [8], [12], [14] and [15]. In this paper, we use standard notation for graphs and we assume that every graph is non-empty, finite, undirected and simple. We refer to [2] as a general reference on the subject.

Given a simple graph G, a dominating set of G is a set $S \subseteq V(G)$ such that $N_G[v] \cap S \neq \emptyset$, for any vertex $v \in V(G)$, where $N_G[v]$ is the closed neighborhood of v. The domination number of G is the minimum cardinality of a dominating set of G and it is denoted by $\gamma(G)$.

An important subclass of the dominating sets, that is central to this paper, is the class of connected dominating sets introduced in [4].

Definition 1.1. A dominating set S of a graph G is called connected dominating set if the induced subgraph $G[S]$ is connected. The minimum cardinality taken over all connected dominating sets in G is called the connected domination number of G and is denoted by $\gamma_c(G)$. Moreover, a connected dominating set of G of cardinality $\gamma_c(G)$ is called a γ_c-set of G.

Date: July 1, 2022.
In [3], the authors, taking inspiration from the notion of connected dominating set, introduced the concept of outer-connected dominating set.

Definition 1.2. A dominating set S of a graph G is called an outer-connected dominating set if the graph $G - S$ is connected. The minimum cardinality of an outer-connected dominating set of G is called the outer-connected domination number of G and it is denoted by $\gamma^c(G)$.

Following our previous works [9], [10] and [11], the aim of this paper is to study connected dominating sets and outer-connected dominating set of middle graphs. The concept of middle graph of a graph was first introduced in [5] as an intersection graph.

Definition 1.3. The middle graph $M(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$, where two vertices x, y in the vertex set of $M(G)$ are adjacent in $M(G)$ if one of the following holds

1. $x, y \in E(G)$ and x, y are adjacent in G;
2. $x \in V(G), y \in E(G)$, and x, y are incident in G.

Notice that, by definition, if G is a graph of order n and size m, then $M(G)$ is a graph of order $n + m$ and size $2m + |E(L(G))|$, where $L(G)$ is the line graph of G.

In order to avoid confusion throughout the paper, we will use a “standard” notation for the vertex set and the edge set of the middle graph $M(G)$. In particular, if $V(G) = \{v_1, v_2, \ldots, v_n\}$, then we set $V(M(G)) = V(G) \cup M$, where $M = \{m_{ij} \mid v_iv_j \in E(G)\}$ and $E(M(G)) = \{v_im_{ij}, v_jm_{ij} \mid v_iv_j \in E(G)\} \cup E(L(G))$.

The paper is organized as follows. In Section 2, we recall few known results on outer-connected domination numbers and domination numbers. In Section 3, we compute the connected domination number of the middle graph of a connected graph. In Section 4, we present some upper and lower bounds for $\gamma^c(M(G))$ in terms of the order of the graph G, we relate the outer-connected domination number of $M(G)$ to the edge cover number of G and we compute explicitly $\gamma^c(M(G))$ for several known families of graphs. In Section 5, we compute the outer-connected domination number of the middle graphs of graphs obtained by some special operation. In Section 6, we present some Nordhaus-Gaddum like relations for the outer-connected domination number of middle graphs. We then conclude the paper with a section composed of open problems and conjectures.

2. Preliminaries

In this short section, we recall three results which will be useful for our investigation.
Theorem 2.1 (ρ). If G is a connected graph of order n, then
$$\gamma_c(G) \leq n - \delta(G),$$
where $\delta(G)$ is the minimum degree of a vertex in G.

Theorem 2.2 (ρ). Let G be a graph with $n \geq 2$ vertices. Assume G has no isolated vertices, then
$$\lceil \frac{n}{2} \rceil \leq \gamma(M(G)) \leq n - 1.$$

Theorem 2.3 (ρ). Let G be a graph of order $n \geq 2$ with no isolated vertex. Then
$$\gamma(M(G)) = \rho(G),$$
where $\rho(G)$ is the edge cover number of G, i.e., the minimum cardinality of an edge cover of G.

3. Connected domination number of middle graphs

In this section, we calculate the exact value of the connected domination number $\gamma_c(M(G))$ for any connected graph G of order $n \geq 3$.

Theorem 3.1. For any connected graph G of order $n \geq 3$
$$\gamma_c(M(G)) = n - 1.$$

Proof. To fix notation, let G be a connected graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$. Then $V((M(G))) = V(G) \cup M$ where $M = \{m_{ij} | v iv_j \in E(G)\}$. First assume that $G = T$ is a tree. Obviously, M forms a unique minimal connected path in $M(T)$ such that $N_{M(T)}[M] = V(M(T))$. This implies that M is the minimal connected dominating set of $M(T)$ with $|M| = n - 1$, and hence $\gamma_c(M(G)) = n - 1$.

Now assume that G is not tree. Then consider a spanning tree H of G, and let $M_1 \subseteq M$ be the vertices subdividing the edges set of H in $M(H)$. Obviously, M_1 forms a connected path in $M(H)$ such that $N_{M(H)}[M_1] = V(M(H))$. Consider $M_2 = M \setminus M_1$. Clearly, M_1 dominates all the vertices in M_2, and hence $N_{M(G)}[M_1] = M_2 \cup V(M(H)) = V(M(G))$. This implies that M_1 forms the minimal connected path in $M(G)$ with $|M_1| = n - 1$, and hence, $\gamma_c(M(G)) = n - 1$. □

4. Outer-connected domination number of middle graphs

As we will see in this section, the computation of the outer-connected domination number is more intricate than the one for the connected domination number.

We start our study by describing a lower and an upper bound for the outer-connected domination number of the middle graph.

Theorem 4.1. Let G be a connected graph with $n \geq 2$ vertices. Then
$$\left\lceil \frac{n}{2} \right\rceil \leq \gamma_c(M(G)) \leq n.$$
Proof. If we consider \(D = V(G) \), then \(D \) is an outer-connected dominating set of \(M(G) \), and hence, \(\gamma_c(M(G)) \leq n \), proving the second inequality.

By Theorem 2.2 we have \(\gamma_c(M(G)) \geq \left\lceil \frac{n}{2} \right\rceil \), proving the first inequality. \(\square \)

As an immediate consequence of 2.3, we have the following result.

Corollary 4.2. Let \(G \) be a graph of order \(n \geq 2 \) with no isolated vertex. Then

\[
\gamma_c(M(G)) \geq \rho(G).
\]

In the next theorem, we calculate the outer-connected domination number of the middle graph of a tree.

Theorem 4.3. Let \(T \) be a tree with \(n \geq 2 \) vertices. Then

\[
\gamma_c(M(T)) = n.
\]

Proof. Let \(T \) be a tree of order \(n \) with \(V(T) = \{v_1, \ldots, v_n\} \). Then \(V(M(T)) = V(T) \cup M \) where \(M = \{m_{ij} \mid v_i v_j \in E(T)\} \). Let \(L = \{v_i \in V \mid d_T(v_i) = 1\} \) be the set of leaves of \(T \) with \(|L| = l\), and consider

\[
M_1 = \{m_{ij} \mid v_i \in L \text{ or } v_j \in L\},
\]

\[
M_2 = M \setminus M_1.
\]

If there exists a vertex \(v_i \in L \) such that \(v_i \notin D \), since \(N_{M(T)}[v_i] \cap D \neq \emptyset \), then \(N_{M(T)}[v_i] \cap D = \{m_{ij}\} \) for some \(m_{ij} \in M_1 \). As a consequence \(m_{ij} \in D \) and \(v_i \notin D \), and hence \(M(G) - D \) is disconnected, which is a contradiction. This implies that \(L \subseteq D \) and \(|D \cap L| = l\).

Let \(m_{ij} \in M_2 \) be such that \(m_{ij} \notin D \). Then, obviously \(M(G) - D \) is disconnected, which is a contradiction. As a consequence, \(M_2 \cap D = \emptyset \).

Now since for any \(v_i \in V(T) \setminus L \) we have that \(N_{M(T)}[v_i] \cap D \neq \emptyset \) and \(N_{M(T)}[v_i] \cap D \subseteq M_1 \cup (V(T) \setminus L) \), and for every distinct \(v_i, v_j \in V(T) \setminus L \) we have that \((N_{M(T)}[v_i] \cap D) \cap (N_{M(T)}[v_j] \cap D) = \emptyset \), this implies that \(|D \cap (M_1 \cup (V(T) \setminus L))| \geq n - l\). Hence

\[
|D| = |D \cap L| + |D \cap (M_1 \cup (V(T) \setminus L))| \geq l + (n - l) = n.
\]

By Theorem 4.1, we conclude that \(\gamma_c(M(T)) = n \). \(\square \)

Remark 4.4. By Theorem 4.3, the upper bound described in Theorem 4.1 is tight.

Corollary 4.5. If \(T \) is a tree of order \(n \), then

\[
\gamma_c(T) < \gamma_c(M(T)).
\]

Proof. By Theorem 4.3 \(\gamma_c(M(T)) = n \). On the other hand, \(\gamma_c(T) \leq n - 1 \) by Theorem 2.1, and hence we obtain the described inequality. \(\square \)
Recall that the line graph \(L(G) \) of a graph \(G \) is the graph with vertex set \(E(G) \), where vertices \(x \) and \(y \) are adjacent in \(L(G) \) if and only if the corresponding edges \(x \) and \(y \) share a common vertex in \(G \). Directly from this definition and Theorem 4.3, we obtain the following result.

Corollary 4.6. For any tree \(T \) of order \(n \geq 2 \),

\[
\gamma_c(L(T)) < \gamma_c(M(T)).
\]

Proof. By definition \(V(L(T)) = E(T) \) and hence, \(|V(L(T))| = n - 1 \). This clearly implies that \(\gamma_c(L(T)) \leq n - 1 \). Hence \(\gamma_c(L(T)) \leq n - 1 < n = \gamma_c(M(T)) \) by Theorem 4.3. \(\square \)

By Theorem 4.3, we can characterize the trees by looking at the outer-connected domination number of their middle graph.

Theorem 4.7. Let \(G \) be a connected graph with \(n \geq 4 \) vertices. Then

\[
\gamma_c(M(G)) = n \text{ if and only if } G \text{ is a tree.}
\]

Proof. Assume that \(V(G) = \{v_1, \ldots, v_n\} \). Then \(V(M(G)) = V(G) \cup M \) where \(M = \{m_{ij} \mid v_iv_j \in E(G)\} \). If \(G \) is a tree, then \(\gamma_c(M(G)) = n \), by Theorem 4.3. On the other hand, assume that \(\gamma_c(M(G)) = n \) and \(G \) is not tree. Then \(G \) contains at least a cycle of order \(n \geq 3 \) as an induced subgraph. Without loss of generality, assume that \(G[v_1, v_2, \ldots, v_k] \) is a cycle of length \(k \), for some \(k \geq 3 \). Consider \(D = \{v_3, v_4, \ldots, v_n\} \cup \{m_{12}\} \). Then \(D \) is an outer-connected dominating set of \(M(G) \) with \(|D| = n - 1 \), and hence \(\gamma_c(M(G)) \leq n - 1 \), which is a contradiction. This implies that \(G \) is a tree. \(\square \)

In the next theorem we calculate outer-connected domination number for complete graph \(K_n \) where \(n \geq 3 \). Notice that \(K_2 \) is a tree and hence \(\gamma_c(M(K_2)) = 2 \) by Theorem 4.3.

Theorem 4.8. For any complete graph \(K_n \) of order \(n \geq 3 \), we have

\[
\gamma_c(M(K_n)) = \lceil n/2 \rceil
\]

Proof. Assume that \(V(M(K_n)) = V(K_n) \cup M \) where \(V(K_n) = \{v_1, \ldots, v_n\} \) and \(M = \{m_{ij} \mid v_iv_j \in E(G)\} \). When \(n = 3 \), it is easy to check that \(\gamma_c(M(K_n)) = 2 \), by considering \(D = \{v_1, m_{23}\} \). Now let \(n \geq 4 \). Assume that \(n \) is even and consider

\[
D = \{m_{12}, m_{34}, \ldots, m_{(n-1)n}\}.
\]

Then \(D \) is an outer-connected dominating set of \(M(G) \) with \(|D| = \lceil n/2 \rceil \). Similarly, if \(n \) is odd, consider

\[
D = \{m_{12}, m_{34}, \ldots, m_{(n-2)(n-1)}, m_{(n-1)n}\}.
\]

Then \(D \) is an outer-connected dominating set of \(M(G) \) with \(|D| = \lceil n/2 \rceil \). This show that \(\gamma_c(M(K_n)) \leq \lceil n/2 \rceil \). On the other hand, by Theorem 4.1, \(\gamma_c(M(K_n)) \geq \lceil n/2 \rceil \). \(\square \)
Remark 4.9. By Theorem 4.8, the lower bound described in Theorem 4.1 is tight.

Theorem 4.10. For any cycle C_n of order $n \geq 3$,
$$\gamma_c(M(C_n)) = n - 1.$$

Proof. To fix the notation, assume that $V(C_n) = \{v_1, \ldots, v_n\}$ and $E(C_n) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}$. Then $V(M(C_n)) = V(C_n) \cup M$, where $M = \{m_{i(i+1)} \mid 1 \leq i \leq n-1\} \cup \{m_{1n}\}$. Consider $D = \{v_3, \ldots, v_n\} \cup \{m_{12}\}$, then D is an outer-connected dominating set with $|D| = n - 1$, and hence $\gamma_c(M(C_n)) \leq n - 1$.

Let D be a minimal outer-connected dominating set of $M(C_n)$.

If $M \cap D = \emptyset$, then $N_{M(C_n)}[v_i] \cap D \neq \emptyset$ for every $1 \leq i \leq n$, implies that $V \subseteq D$ and hence $|D| \geq n$, contradicting the minimality of D.

Assume that $|M \cap D| = 1$. Without loss of generality, we can assume that $m_{12} \in D$. Then $N_{M(C_n)}[v_i] \cap D \neq \emptyset$ for $i \neq 1, 2, 3$, implies that $\{v_3, \ldots, v_n\} \subseteq D$ and so $\gamma_c(M(C_n)) \geq n - 1$, proving our statement.

Assume that $|M \cap D| = 2$. Let $m_{ij}, m_{pq} \in D$ for some i, j, p, q.

First, assume that m_{ij} is adjacent to m_{pq} in $M(C_n)$. Without loss of generality, we can assume that $m_{12}, m_{23} \in D$. Since $M(C_n) - D$ is connected, then $v_2 \in D$. Moreover, $N_{M(C_n)}[v_i] \cap D \neq \emptyset$ for $i \neq 1, 2, 3$, implies that $\{v_3, \ldots, v_n\} \subseteq D$ and hence $|D| \geq (n - 4 + 1) + 3 = n$, contradicting the minimality of D. Assume now that m_{ij} is non-adjacent to m_{pq} in $M(C_n)$ with $i < j < p < q$. Since $m_{ij}, m_{pq} \notin N_{M(C_n)}[v_k]$ for every $k \in \{1, 2, \ldots, n\} \setminus \{i, j, p, q\}$, then $|D \cap V(C_n)| \geq n - 4$. On the other hand, since $M(C_n) - D$ is connected then $v_j, v_p \in D$. This implies that $|D| = |D \cap V(C_n)| + |D \cap M| \geq (n - 2) + 2 = n$, contradicting the minimality of D.

Assume that $|M \cap D| = k \geq 3$. Since $M(C_n) - D$ is connected, then $k < n - 1$. Without loss of generality, we can assume that $M \cap D = \{m_{i_1(i_1+1)}, \ldots, m_{i_k(i_k+1)}\}$ where $i_1 < i_2 < \cdots < i_k$. If $i_j + 1 < i_{j+1}$ for some $1 \leq j \leq k - 1$, then $M(C_n) - D$ is disconnected. This implies that $i_j + 1 = i_{j+1}$ for all $1 \leq j \leq k - 1$. Let $I = \{i, i + 1 \mid m_{i(i+1)} \in D\}$, $V_1 = \{v_i \in V \mid i \notin I\}$. $N_{M(C_n)}[v_i] \cap D \neq \emptyset$ for $v_i \in V_1$, implies that $V_1 \subseteq D$. Moreover, since $M(C_n) - D$ is connected, $v_{i_1+1}, \ldots, v_{i_k} \in D$.

As a consequence, $D = \{m_{i_1(i_1+1)}, \ldots, m_{i_k(i_k+1)}\} \cup V_1 \cup \{v_{i_1+1}, \ldots, v_{i_k}\}$. This implies that $|D| = k + (n - k - 1) + k - 1 = n + k - 2 \geq n + 1$, contradicting the minimality of D.

Therefore, $\gamma_c(M(C_n)) = n - 1$.

\[\square\]

Theorem 4.11. For any wheel W_n of order $n \geq 4$,
$$\gamma_c(M(W_n)) = \lfloor n/2 \rfloor.$$

Proof. To fix the notation, assume $V(W_n) = V = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(W_n) = \{v_0v_1, v_0v_2, \ldots, v_0v_{n-1}\} \cup \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_1\}$. Then we have $V(M(W_n)) = V(W_n) \cup M$, where $M = \{m_{0i} \mid 1 \leq i \leq n-1\} \cup \{m_{i(i+1)} \mid 1 \leq i \leq n-2\} \cup \{m_{1(n-1)}\}$. Assume that n is even and
consider\(D = \{m_{12}, m_{34}, \ldots, m_{(n-3)(n-2)}\} \cup \{m_{0(n-1)}\}\). Then \(D \) is an outer-connected dominating set of \(M(G) \) with \(|D| = [n/2] \). Similarly, if \(n \) is odd, consider \(D = \{m_{12}, m_{34}, \ldots, m_{(n-2)(n-1)}\} \cup \{m_{0(n-1)}\}\). Then \(D \) is an outer-connected dominating set of \(M(G) \) with \(|D| = [n/2] \).

This show that \(\gamma_c(M(W_n)) \leq [n/2] \). On the other hand, by Theorem 4.1, \(\gamma_c(M(W_n)) \geq [n/2] \). □

Theorem 4.12. Let \(K_{n_1, n_2} \) be the complete bipartite graph with \(n_2 \geq n_1 \geq 2 \). Then
\[
\gamma_c(M(K_{n_1, n_2})) = n_2.
\]

Proof. To fix the notation, assume \(V(K_{n_1, n_2}) = \{v_1, \ldots, v_{n_1}, u_1, \ldots, u_{n_2}\} \) and \(E(K_{n_1, n_2}) = \{v_iu_j \mid 1 \leq i \leq n_1, 1 \leq j \leq n_2\} \). Then \(M(K_{n_1, n_2}) = V(K_{n_1, n_2}) \cup M \), where \(M = \{m_{ij} \mid 1 \leq i \leq n_1, 1 \leq j \leq n_2\} \). Let \(D \) be an outer-connected dominating set of \(M(K_{n_1, n_2}) \). Since \(D \) is a dominating set for \(M(K_{n_1, n_2}) \), it has to dominate \(u_1, \ldots, u_{n_2} \) that are all disconnected. This implies that \(\gamma(M(K_{n_1, n_2})) \geq n_2 \). Now since \(D = \{m_{11}, m_{22}, \ldots, m_{n_1}\} \cup \{m_{n_1(n_1+1)}, m_{n_1(n_1+2)}, \ldots, m_{n_1n_2}\} \) is an outer-connected dominating set of \(M(K_{n_1, n_2}) \) with \(|D| = n_1 + n_2 - n_1 = n_2 \), this implies that \(\gamma_c(M(K_{n_1, n_2})) = n_2 \). □

Theorem 4.13. Let \(F_n \) be the friendship graph with \(n \geq 2 \). Then
\[
\gamma_c(M(F_n)) = n + 1.
\]

Proof. To fix the notation, assume \(V(F_n) = \{v_0, v_1, \ldots, v_{2n}\} \) and \(E(F_n) = \{v_0v_1, v_1v_2, \ldots, v_{2n-1}v_{2n}\} \). Then \(M(F_n) = V(F_n) \cup M \), where \(M = \{m_i \mid 1 \leq i \leq 2n\} \cup \{m_{i(i+1)} \mid 1 \leq i \leq 2n - 1 \) and \(i \) is odd\}.

By Theorem 2.2, \(\gamma(M(F_n)) \geq \lceil \frac{2n+1}{2} \rceil = n + 1 \). Now since \(D = \{m_{i(i+1)} \mid 1 \leq i \leq 2n - 1 \) and \(i \) is odd\} \cup \{v_0\} \) is an outer-connected dominating set for \(M(F_n) \) with \(|D| = n + 1 \), we have \(\gamma_c(M(F_n)) = n + 1 \). □

Putting together Theorems 4.10 and 3.1, we have the following result.

Corollary 4.14. There exists a connected graph \(G \) of order \(n \geq 3 \) such that
\[
\gamma_c(M(G)) = \gamma_c(M(G)).
\]

Remark 4.15. Comparing Theorem 3.1 and Theorem 4.3 we conclude that for any tree \(T \) we have
\[
\gamma_c(M(T)) < \gamma_c(M(T)).
\]

Similarly, comparing Theorems 3.1 and 4.10 we conclude that for any cycle
\[
\gamma_c(M(C_n)) = \gamma_c(M(C_n)).
\]

Finally, comparing Theorem 3.1 and Theorems 4.8 and 4.11 we conclude that
\[
\gamma_c(M(K_n)) = \gamma_c(M(W_n)) < \gamma_c(M(K_n)) = \gamma_c(M(W_n)).
\]
As a consequence, if G be a connected graph of order n, then one may not conclude that
\[\gamma_c(M(G)) \geq \bar{\gamma}_c(M(G)) \text{ or } \gamma_c(M(G)) \leq \bar{\gamma}_c(M(G)) \]

5. Operation on graphs

In this section, we study the outer-connected domination number for the middle graph of the corona, 2-corona and other types of graphs.

Definition 5.1. The corona $G \circ K_1$ of a graph G is the graph of order $2|V(G)|$ obtained from G by adding a pendant edge to each vertex of G. The 2-corona $G \circ P_2$ of G is the graph of order $3|V(G)|$ obtained from G by attaching a path of length 2 to each vertex of G so that the resulting paths are vertex-disjoint.

Theorem 5.2. For any connected graph G of order $n \geq 2$,
\[n + [n/2] \leq \bar{\gamma}_c(M(G \circ K_1)) \leq 2n. \]

Proof. Assume $V(G) = \{v_1, \ldots, v_n\}$, then $V(G \circ K_1) = \{v_1, \ldots, v_{2n}\}$ and $E(G \circ K_1) = \{v_1v_{n+1}, \ldots, v_nv_{2n}\} \cup E(G)$. As a consequence, $V(M(G \circ K_1)) = V(G \circ K_1) \cup \mathcal{M}$, where $\mathcal{M} = \{m_{i(n+i)} | 1 \leq i \leq n\} \cup \{m_{ij} | v_iv_j \in E(G)\}$. Since $\{v_1, \ldots, v_{2n}\}$ is an outer-connected dominating set of $M(G \circ K_1)$, we have $\bar{\gamma}_c(M(G \circ K_1)) \leq 2n$.

Let D be an outer-connected dominating set of $M(G \circ K_1)$. Assume $v_{n+i} \notin D$ for some $1 \leq i \leq n$, then since D is a dominating set of $M(G \circ K_1)$ this implies that $m_{i(n+i)} \in D$ and so $M(G \circ K_1) - D$ is disconnected, which is a contradiction. As a consequence $D_1 = \{v_{n+1}, \ldots, v_{2n}\} \subseteq D$. Now since \(N_{M(G \circ K_1)}[v] \cap D_1 = \emptyset \) for all $v \in V(M(G))$, by Theorem 2.2, we have
\[\bar{\gamma}_c(M(G \circ K_1)) \geq n + \gamma(M(G)) \geq n + [n/2]. \]

\[\square \]

Remark 5.3. The upper bound in Theorem 5.2 is tight. In fact, when G is a tree, then $G \circ K_1$ is also a tree and so $\bar{\gamma}_c(M(G \circ K_1)) = 2n$ by Theorem 4.3.

Moreover, also the lower bound in Theorem 5.2 is tight. To see it, consider $G = K_n$ and
\[D = \{v_{n+i} | 1 \leq i \leq n\} \cup \{m_{12}, m_{34}, \ldots, m_{(n-1)n}\} \]
when n is even, and
\[D = \{v_{n+i} | 1 \leq i \leq n\} \cup \{m_{12}, m_{34}, \ldots, m_{(n-2)(n-1)m_{(n-1)n}}\} \]
when n is odd. In each case, D is an outer-connected dominating set of $M(K_n \circ K_1)$ with $|D| = n + [n/2]$.

Similarly to Theorem 5.2, we can describe lower and upper bounds for the outer-connected domination number of the middle graph of a 2-corona graph.
Theorem 5.4. For any connected graph G of order $n \geq 2$,
\[2n + \lceil n/2 \rceil \leq \gamma_c(M(G \circ P_2)) \leq 3n. \]

Proof. Assume $V(G) = \{v_1, \ldots, v_n\}$, then $V(G \circ P_2) = \{v_1, \ldots, v_{3n}\}$ and $E(G \circ P_2) = \{v_iv_{n+i}, v_{n+i}v_{2n+i} \mid 1 \leq i \leq n\} \cup E(G)$. As a consequence, we have that $V(M(G \circ P_2)) = V(G \circ P_2) \cup M$, where $M = \{m_{i(n+i)}, m_{(n+i)(2n+i)} \mid 1 \leq i \leq n\} \cup \{m_{ij} \mid v_iv_j \in E(G)\}$. Since \{v_1, \ldots, v_{3n}\} is an outer-connected dominating set of $M(G \circ P_2)$, we have \[\gamma_c(M(G \circ P_2)) \leq 3n. \]

Let D be an outer-connected dominating set of $M(G \circ P_2)$. To prove first inequality, we claim that
\[|D| = |\{v_{2n+i}, m_{(n+i)(2n+i)} \mid 1 \leq i \leq n\} \cap D| \geq 2n \]
Assume $v_{2n+i} \notin D$ for some $1 \leq i \leq n$. Since D is a dominating set of $M(G \circ P_2)$ this implies that $m_{(n+i)(2n+i)} \in D$ and so $M(G \circ P_2) - D$ is disconnected, which is a contradiction. Hence \{v_{2n+i} \mid 1 \leq i \leq n\} \subseteq D. Now assume $v_{n+i} \notin D$ for some $1 \leq i \leq n$. Since D is a dominating set of $M(G \circ P_2)$ this implies that $m_{(n+i)(2n+i)} \in D$ or $m_{i(n+i)} \in D$. If $m_{i(n+i)} \in D$, then $M(G \circ P_2) - D$ is disconnected, which is a contradiction, and hence $m_{i(n+i)} \in D$. This shows that for every $1 \leq i \leq n$, we have that $v_{n+i} \in D$ or $m_{(n+i)(2n+i)} \in D$. Now since by construction of D_1, we have that $N_{M(G \circ P_2)}[v] \cap D_1 = \emptyset$ for all $v \in V(M(G))$, this implies
\[\gamma_c(M(G \circ P_2)) \geq 2n + \gamma(M(G)) \geq 2n + \lceil n/2 \rceil \]
by Theorem 2.2.

\[\square \]

Remark 5.5. The upper bound in Theorem 5.4 is tight. This is because when G is a tree, then also $G \circ P_2$ is a tree and hence $\gamma_c(M(G \circ P_2)) = 3n$ by Theorem 4.3.

Moreover, also the lower bound in Theorem 5.4 is tight. Consider $G = K_n$, and
\[D = \{v_{n+i}, v_{2n+i} \mid 1 \leq i \leq n\} \cup \{m_{12}, m_{34}, \ldots, m_{(n-1)n}\} \]
when n is even, and
\[D = \{v_{n+i}, v_{2n+i} \mid 1 \leq i \leq n\} \cup \{m_{12}, m_{34}, \ldots, m_{(n-2)(n-1)m_{(n-1)n}}\} \]
when n is odd. In both cases, D is an outer-connected dominating set of $M(K_n \circ P_2)$ with $|D| = 2n + \lceil n/2 \rceil$.

In the next two theorems, we study the outer-connected domination number of the middle graph of the join of a graph with $\overline{K_p}$.

Theorem 5.6. For any connected graph G of order $n \geq 2$ and any integer $p \geq n$,
\[\gamma_c(M(G + \overline{K_p})) = p. \]
Proof. Assume $V(G) = \{v_1, \ldots, v_n\}$ and $V(\overline{K}_p) = \{v_{n+1}, \ldots, v_{n+p}\}$. Then $V(M(G+\overline{K}_p)) = V(G+\overline{K}_p) \cup M_1 \cup M_2$ where $M_1 = \{m_{ij} \mid v_i v_j \in E(G)\}$ and $M_2 = \{m_{i(n+j)} \mid 1 \leq i \leq n, 1 \leq j \leq p\}$.

By [9, Theorem 2.15], we have that $\gamma(M(G+\overline{K}_p)) = p$, and hence $\gamma_c(M(G+\overline{K}_p)) \geq \gamma(M(G+\overline{K}_p)) = p$.

On the other hand, if we consider $D = \{m_{i(n+i)} \mid 1 \leq i \leq n\} \cup \{m_{1(n+j)} \mid n+1 \leq j \leq n\}$, then D is an outer-connected dominating set of $M(G+\overline{K}_p)$ with $|D| = p$, and hence $\gamma_c(M(G+\overline{K}_p)) \leq p$. \qed

Theorem 5.7. For any connected graph G of order $n \geq 2$ and any integer $p < n$,
\[\lceil \frac{n+p}{2} \rceil \leq \gamma_c(M(G+\overline{K}_p)) \leq n. \]

Proof. The first inequality follows directly from Theorem 4.1. On the other hand, using the same notation as in the proof of Theorem 5.6, if we consider $D = \{m_{i(n+i)} \mid 1 \leq i \leq p\} \cup \{v_i \mid p+1 \leq j \leq n\}$, then D is an outer-connected dominating set of $M(G+\overline{K}_p)$ with $|D| = n$, and hence we obtain the second inequality. \qed

Remark 5.8. Both inequalities in Theorem 5.7 are sharp. In fact, if we consider $G = C_4$ and $p = 2$, then a direct computation shows that $\gamma_c(M(C_4 + \overline{K}_2)) = 3 = \lceil \frac{n+p}{2} \rceil$. Similarly, if we consider $G = C_4$ and $p = 3$, then $\gamma_c(M(C_4 + \overline{K}_3)) = 4 = n$.

6. NORDHAUS-GADDUM-LIKE RELATIONS

Finding a Nordhaus-Gaddum-like relation for any parameter in graph theory is one of the traditional works which started after the following theorem by Nordhaus and Gaddum from [13].

Theorem 6.1 ([13]). For any graph G of order n, $2\sqrt{n} \leq \chi(G) + \chi(\overline{G}) \leq n + 1$.

In this section, we find Nordhaus-Gaddum-like relations for the outer-connected domination number of middle graphs. In particular, by Theorems 4.1 and 3.1, we have the following result.

Corollary 6.2. Let G be a connected graph with $n \geq 4$ vertices, where G is not a tree. Then
\[n + \frac{n}{2} - 1 \leq \gamma_c(M(G)) + \gamma_c(M(G)) \leq 2n - 2, \]
\[\lceil \frac{n}{2} \rceil (n - 1) \leq \gamma_c(M(G)) \cdot \gamma_c(M(G)) \leq (n - 1)^2. \]

Remark 6.3. The upper bounds in Corollary 6.2 are both tight, for example when G is a cycle, by Theorem 4.10 and Theorem 3.1.

Similarly, also the lower bounds in Corollary 6.2 are tight, for example when G is a complete graph K_n or a wheel graph W_n, by Theorems 4.8, 4.11 and 3.1.
CONNECTED AND OUTER-CONNECTED DOMINATION NUMBER OF MIDDLE GRAPHS

7. Open problems

We conclude the paper with a series of observations and open problems related to the notion of outer-connected domination number.

By Corollary 4.5, if G is a tree of order n, then $\bar{\gamma}_c(G) < \bar{\gamma}_c(M(G))$. On the other hand, by Theorems 4.8, 4.10, 4.11, 4.12, 4.13 and [3], it is easy to see that

$$1 = \bar{\gamma}_c(K_n) = \bar{\gamma}_c(W_n) < \bar{\gamma}_c(M(K_n)) = \bar{\gamma}_c(M(W_n)) = \lceil n/2 \rceil,$$

$$1 = \bar{\gamma}_c(F_n) < \bar{\gamma}_c(M(F_n)) = n + 1,$$

$$2 = \bar{\gamma}_c(K_{n1,n_2}) < \bar{\gamma}_c(M(K_{n1,n_2})) = n_2$$

and

$$n - 2 = \bar{\gamma}_c(C_n) < \bar{\gamma}_c(M(C_n)) = n - 1.$$ These facts all support the following conjecture.

Conjecture 7.1. Let G be a graph of order $n \geq 2$. Then

$$\bar{\gamma}_c(G) < \bar{\gamma}_c(M(G)).$$

Similarly to the previous conjecture, it is natural to compare the outer-connected domination number of the middle graph and of the line graph.

By Corollary 4.6, if T is a tree, then $\bar{\gamma}_c(L(T)) < \bar{\gamma}_c(M(T))$. On the other hand we can obtain similar results for some known families.

Proposition 7.2. For any cycle C_n of order $n \geq 3$,

$$\bar{\gamma}_c(L(C_n)) < \bar{\gamma}_c(M(C_n)).$$

Proof. By definition of line graph, C_n is isomorphic to $L(C_n)$ for every $n \geq 3$. This implies that $\bar{\gamma}_c(C_n) = \bar{\gamma}_c(L(C_n)) = n - 2$ by [3]. On the other hand $\bar{\gamma}_c(M(C_n)) = n - 1$ by Theorem 4.10, and hence $\bar{\gamma}_c(L(C_n)) < \bar{\gamma}_c(M(C_n)).$ □

Proposition 7.3. For any wheel W_n of order $n \geq 5$,

$$\bar{\gamma}_c(L(W_n)) < \bar{\gamma}_c(M(W_n)).$$

Proof. Let $V(W_n) = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(W_n) = \{v_0v_1, \ldots, v_0v_{n-1}\} \cup \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_1\}$. Then $V(M(W_n)) = V(W_n) \cup \mathcal{M}$, where $\mathcal{M} = \{m_{0i} | 1 \leq i \leq n-1\} \cup \{m_{1(i+1)} | 1 \leq i \leq n-2\} \cup \{m_{1(n-1)}\} = V(L(W_n))$ and $E(L(W_n)) = \{m_{ij} \cap \{i, j\} \cap \{p, q\} = \{1\}$. Assume that n is even and consider $D = \{m_{1(i+1)} | 1 \leq i \leq \lceil n/2 \rceil - 2\} \cup \{m_{01i}\}$. Then D is an outer-connected dominating set of $L(G)$ with $|D| = \lceil n/2 \rceil - 1$. Similarly, if n is odd, consider $D = \{m_{0(i+1)} | 1 \leq i \leq \lceil n/2 \rceil - 1\}$. Then D is an outer-connected dominating set of $L(G)$ with $|D| = \lceil n/2 \rceil - 1$. This shows that $\bar{\gamma}_c(M(L_n)) \leq \lceil n/2 \rceil - 1$. By Theorem 4.11, $\bar{\gamma}_c(L(W_n)) \leq \lceil n/2 \rceil - 1 < \lfloor n/2 \rfloor = \bar{\gamma}_c(M(W_n)).$ □
Proposition 7.4. There exists a connected graph G of order $n = 4$ such that
$$\gamma_c(L(G)) = \gamma_c(M(G)).$$

Proof. Consider $G = W_4$ with $V(G) = \{v_0, v_1, v_2, v_3\}$ and $E(G) = \{v_0v_1, v_0v_2, v_0v_3, v_1v_2, v_2v_3, v_1v_3\}$. Then $V(M(G)) = V \cup M$ where $M = \{m_{ij} \mid v_iv_j \in E(G)\}$ and $V(L(G)) = M$. Assume that D is a dominating set of $L(G)$ with $|D| = 1$. Then there exists an index i for some $1 \leq i \leq 3$ such that $N_{L(G)}[m_{ij}] \cap D = \emptyset$ which is a contradiction. This implies that $\gamma(L(G)) \geq 2$, and hence that $\gamma_c(L(G)) \geq 2$. Now since $D = \{m_{12}, m_{03}\}$ is an outer-connected dominating set of $L(G)$ with $|D| = 2$, we have $\gamma_c(L(G)) = 2$. By Theorem 4.11 $\gamma_c(L(G)) = \gamma_c(M(G)) = 2$. □

As a consequence of Proposition 7.4, it is natural to ask the following

Problem 7.5. Can we classify the graphs G such that
$$\gamma_c(L(G)) = \gamma_c(M(G))?$$

In addition, the previous results also all support the following conjecture.

Conjecture 7.6. Let G be a graph of order $n \geq 2$. Then
$$\gamma_c(L(G)) \leq \gamma_c(M(G)).$$

Acknowledgements. During the preparation of this article the fourth author was supported by JSPS Grant-in-Aid for Early-Career Scientists (19K14493).

References

[1] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Applied Mathematics, 161 (2013), 466–546.
[2] J. A. Bondy and U. S. R. Murty, Graph theory, Graduate texts in mathematics, vol. 244, Springer Science and Media, 2008.
[3] Cyman, J. The outer-connected domination number of a graph. Australasian Journal of Combinatorics 38 (2007), 35-46.
[4] E. Sampathkumar and H. B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci., 13:607-613, 1979.
[5] T. Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Mathematics, 14 (1976) 247–255.
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[8] M. A. Henning and A. Yeo, Total domination in graphs, Springer Monographs in Mathematics, 2013.
[9] F. Kazemnejad, B. Pahlavsay, E. Palezzato and M. Torielli, Domination number of middle graphs. To appear in Transactions on Combinatorics. https://doi.org/10.22108/TOC.2022.131151.1927
[10] F. Kazemnejad, B. Pahlavsay, E. Palezzato and M. Torielli, Total dominator coloring number of middle graphs. To appear in Discrete Mathematics, Algorithms and Applications. https://doi.org/10.1142/S1793830922500768.

[11] F. Kazemnejad, B. Pahlavsay, E. Palezzato and M. Torielli, Total domination number of middle graphs. Electronic Journal of Graph Theory and Applications, 10(1), 275–288, 2022. http://dx.doi.org/10.5614/ejgta.2022.10.1.19.

[12] F. Kazemnejad and S. Moradi, Total Domination Number of Central Graphs, Bulletin of the Korean Mathematical Society, 56(2019), No. 4, pp. 1059-1075.

[13] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly, 63 (1956), 175-177.

[14] B. Pahlavsay, E. Palezzato and M. Torielli, 3-tuple total domination number of rook’s graphs. Discussiones Mathematicae Graph Theory. 42, 15-37, 2022. https://doi.org/10.7151/dmgt.2242.

[15] B. Pahlavsay, E. Palezzato and M. Torielli, Domination in latin square graphs. Graphs and Combinatorics, 37(3), 971-985, 2021.

Farshad Kazemnejad, Department of Mathematics, School of Sciences, Ilam University, P.O.Box 69315-516, Ilam, Iran.

Email address: kazemnejad.farshad@gmail.com

Behnaz Pahlavsay, Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan.

Email address: pahlavsayb@gmail.com

Elisa Palezzato, Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan.

Email address: palezzato@math.sci.hokudai.ac.jp

Michele Torielli, Department of Mathematics, GI-CoRE GSB, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan.

Email address: torielli@math.sci.hokudai.ac.jp