A multiplicator ZCS turn on boost converter with high-efficiency and high-voltage-gain

Jiongjiong Mo¹, Haoyu Dai¹, Zhiyu Wang¹, a), Hua Chen¹, Faxin Yu¹

Abstract This paper presents a multiplicator ZCS turn on boost converter with high-efficiency and high-voltage-gain. A resonant multiplicator structure combined with two-phase technique is provided. Based on this structure, the problem of switches turn-on loss and inductor current ripple is minimized. The voltage resonant multiplicator also shows a good scalability. And the presented prototype is well adapted for multiphase dc–dc converters. The converter is tested for an application requiring the output power of 100W~500W, operating with 12V input voltage and 220V output voltage. The measured peak efficiency equals to 95.4% with the gain of 18.333.

Keywords: resonant multiplicator, high gain, high efficiency, good scalability;
Classification: Electron devices, circuits and modules (silicon, compound semiconductor, organic and novel materials)

1. Introduction

Nowadays, global warming resulting from carbon emissions is a severe challenge faced by humanity. The importance of renewable energy has increased many folds [1,2]. A high step-up gain and high efficiency converter is one of the critical points of energy conversion. Mostly conventional boost converter is used to increase the output voltage from low input voltage systems. But the main disadvantage of boost converters is that it cannot work in high ration duty cycle. Therefore, many solutions are proposed.

The voltage multiplicator composed of traditional diodes and capacitors [3, 4, 5], combined with traditional boost [6, 7, 8, 9], forward, flyback and buck-boost [10] circuits, can reduce the voltage stress of the devices and increase the voltage gain. Adding a transformer [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] to the classical circuit achieves the same effect. But the commutation loss has not been reduced. Ying [24, 25] and Kerui Li [26] used boost resonant inverter cascaded voltage doubler rectifier to achieve boost. But its zero-voltage turn-on (ZVS) reduces switching losses, its device voltage and current are far greater than traditional circuits and its actual efficiency is low. Lin [27] used a dual-phase boost circuit to reduce the inductor current stress. But its commutation loss is not reduced.

In order to reduce switching losses, while satisfying high gain and low voltage and current stress, a multiplicator composed of inductors and diodes and capacitor ZCS boost converter is presented in the paper. The converter realizes the dual-tube ZCS turn-on at the same time.

2. Operating principle of proposed converter

Fig. 1 represents a use of the classical interleaved boost converter connected with the inverting VM cells [3].

Fig. 1 The classical interleaved boost converter connected with the VM cells

In order to reduce the converter commutation losses, allowing the operation with low voltage and current stress, maintaining high efficiency, the converter is designed is shown in Fig.2. The structure of the provided resonant multiplicator cell is composed by the diodes (D_b1, D_a11, D_a12), the capacitors (C_b1, C_a12, C_a11) and the resonant inductor L_r. The inclusion of this inductance L_r allows the switch to operate with ZCS turn-on.

Fig. 2 The new resonant multiplicator cell integrated with two-phase boost converter

The working process of the circuit is composed of

¹School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
a) zywang@zju.edu.cn

DOI: 10.1587/elex.19.20210410
Received September 27, 2021
Accepted January 05, 2022
Published January 13, 2022

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers
six stages. Better operation characteristics are obtained when the converter operates in continuous conduction mode (CCM). Thus, the operation stages (Figs.3) and the theoretical waveforms (Fig.4) are presented for CCM operation.

![Operating circuit diagrams of proposed converter.](image)

Fig. 3 Operating circuit diagrams of proposed converter.
(a) First Stage t_1-t_2; (b) Second Stage t_2-t_3; (c)Third Stage t_3-t_4; (d) Fourth Stage t_4-t_5; (e) Fifth Stage t_5-t_6; (f) Sixth Stage t_6-t_11

![The main theoretical waveforms of the proposed converter.](image)

Fig. 4 The main theoretical waveforms of the proposed converter. During t_1-t_2, the tube S_6 has just turned on, and S_6 is in the conduction state before. According to the law of conservation of charge \(dU=\Delta Q/C\), the voltage of the capacitor \(C_{b1}\) and \(C_{a12}\) is expressed by (1) and (2). At the instant \(t_0\), the resonant inductor current \(i_{L_r}\) is equal to the inductor \(L_b\) current. The current in the tube \(S_b\) is zero and the tube \(S_b\) realizes ZCS turn-on.

\[
V_{C_{b1}}(t) = V_{C_{b1}}(t_0) - \int_{t_0}^{t} \frac{i_{L_r}(t)}{C_{b1}} dt \\
V_{C_{a12}}(t) = V_{C_{a12}}(t_0) + \int_{t_0}^{t} \frac{i_{L_r}(t)}{C_{a12}} dt
\]

where \(i_{L_r}\) is expressed by

\[
i_{L_r}(t) = i_{L_b}(t_0) \cdot \frac{(V_{C_{a12}}(t) - V_{C_{b1}}(t))}{L_r} \\
\]

In the t_1-t_3 stage, the tube \(S_b\) turns on, and \(S_a\) is also in the on state before. After the resonant current reaches zero, the current oscillation period is as shown in the following formula (4). The leakage inductance energy oscillates in the parasitic capacitance of \(L_r\) and \(D_{a11} (C_{T_{D11}})\) added the parasitic capacitance of \(D_{a12} (C_{T_{D12}})\). Since the oscillation amplitude is much smaller than the operating current, the voltage values of \(C_{a12}\) and \(C_{a11}\) are approximately unchanged.

\[
t_{on} = \frac{2\pi}{\sqrt{L_r \cdot C_{eq}}} \\
C_{eq} = C_{T_{D11}} + C_{T_{D12}}
\]
During t2-t3, the tube S_b turns off and the tube S_a turns on, and the resonant inductor current i_{L_r} increases linearly in the reverse direction. In the meanwhile, output diode (D_o) is freewheeling.

$$V_{Ca3}(t) = V_{Ca3}(t_2) + \int_{t_2}^{t} \frac{i_{L_r}(t)}{C_{b1}} dt$$ \hspace{1cm} (7)

$$V_{Ca2}(t) = V_{Ca2}(t_2) + \int_{t_2}^{t} \frac{i_{L_r}(t)}{C_{a12}} dt$$ \hspace{1cm} (8)

where i_{L_r} and i_{Ca} in the formula (7)-(8) can be obtained from the following formula.

$$i_{L_r}(t) = -\frac{V_o - V_{Ca2}(t) + V_{Ca3}(t) - V_{Ca1}(t)}{L_r}$$ \hspace{1cm} (9)

In the t1-t3 stage, the tube S_a has just turned on before S_b is in the conduction state. The diode D_a is reversely cut off and D_{a12} linearly continues to flow to zero as defined by. The working status is similar to the t0-t1 stage.

$$V_{Ca3}(t) = V_{Ca3}(t_3) + \int_{t_3}^{t} \frac{i_{La}(t)}{C_{a1}} dt$$ \hspace{1cm} (10)

where i_{La} in the formula (10) can be obtained from the following formula.

$$i_{La}(t) = i_{La}(t_3) - \frac{V_{Ca2}(t) - V_{Ca3}(t)}{L_a}$$ \hspace{1cm} (11)

In the t3-t4 stage, the working status is similar to the t1-t2 stage.

$$V_{Ca3}(t) = V_{Ca3}(t_4) + \int_{t_4}^{t} \frac{i_{La}(t)}{C_{b1}} dt$$ \hspace{1cm} (12)

$$V_{Ca2}(t) = V_{Ca2}(t_4) + \int_{t_4}^{t} \frac{i_{La}(t)}{C_{a12}} dt$$ \hspace{1cm} (13)

where i_{La} and i_{Ca} in the formula (13) can be obtained from the following formula.

$$i_{La}(t) = i_{La}(t_4) - \frac{D_{a}V_o / (1 - D_a)}{L_a}$$ \hspace{1cm} (14)

3. Steady state analysis of the proposed converter

3.1 DC conversion ratio and circuit stress

From the working state t3-t4, the voltage of the capacitor C_{a1}, C_{a2} can be derived as

$$V_{Ca2} = V_{in} \frac{1}{1 - D_a}$$ \hspace{1cm} (23)

$$V_{Ca2} = V_{in} \frac{1}{1 - D_a} + V_{b1}$$ \hspace{1cm} (24)

Similarly from the working state t2-t3, the voltage of the capacitor C_{b1} can be derived as

$$V_{Cb3} = V_{in} \frac{1}{1 - D_b} + V_{b1} = V_{in} \frac{1}{1 - D_a} + V_{b1} \frac{1}{1 - D_b}$$ \hspace{1cm} (25)

Hence the gain expression G of the circuit is as follows.

$$G = \frac{V_{out}}{V_{in}} = \frac{2}{1 - D_a} + M \frac{1}{1 - D_b}$$ \hspace{1cm} (26)

where D_a, D_b are switch duty-cycles.

Voltage stress: the maximum voltage applied across the power switches (S_a and S_b) is equal to the output diodes (D_{a1}, D_{a12}, D_{a2}, D_{b}) reverse voltage (assuming duty cycle $D_{a1}=D_{a2}=D$).

$$V_{Sa} = V_{Sb} = V_{b1} = V_{b12} = V_{b0} = V_{in} \frac{1}{1 - D}$$ \hspace{1cm} (27)

Table I shows that the voltage gains and the voltage stresses of the proposed converter. It is nearly to other structures.

Ref.	Normalized voltage stress across the power	Voltage gain G
28	$(G+1)/(4G)$	$(3+D)/(1-D)$
29	$(G+1)/(4G)$	$(1+3D)/(1-D)$
30	$(G+1)/(4G)$	$(3+D)/(1-D)$
	work	0.333

Fig.5(a) illustrates the voltage gain curves versus duty cycle. Considering Table I and Fig. 5(a), the voltage gain of the proposed converter is higher than the boost structures and nearly equal to [28]-[30].
The normalized voltage stresses across the power switches are plotted in Fig.5(b). The voltage stresses across the power switches are almost equal to the related structures.

3.2 Component selection

Passive components: The design of the input inductance is based on its current ripple, considering the efficiency equal to 92%.

\[
I_w = \frac{P_o}{V_{in} \cdot \eta} = 45.29 \text{A}
\]

\[
L_o = L_a = \frac{P \cdot V_o \cdot D \cdot \Delta t_{L_a} \cdot f}{V_{C1}} = 7.38 \mu H
\]

The minimum capacitance of the voltage multiplier capacitor depends on the maximum output power, the multiplier capacitor drop voltage \(\Delta V\), (0.1 times output voltage) and the switching frequency \(f_s\).

\[
C \geq \frac{P_{\text{out}}}{0.5AV_c \cdot f_s} = 27.8 \mu F
\]

Resonant inductor: The resonant inductor can be defined by the maximum current variation (di/dt) at the turn-on commutation. In the operation stage \((t_{a1} - t_{b1})\), the reduction of the resonant inductor current occurs at the switch turn-on. The current variation is limited by the presence of the resonant inductor, defined by

\[
\frac{di}{dt} = \frac{V_{\text{Cap2}} - V_{\text{Cap1}}}{L_r}
\]

Considering the maximum resonant inductor variety at the \(S_o\), turn-on commutation equal to 100A/\mu s, \(L_r\) value is defined by

\[
L_r = \frac{V_{\text{Cap2}} - V_{\text{Cap1}}}{\frac{di}{dt}} = 0.6 \mu H
\]

Table II shows the parameters of this work according to the formula (23)-(32).

Parameters and Symbols	This work
Input Voltage: \(V_{in}/\text{V}\)	12
Output Voltage: \(V_{C1}/\text{V}\)	220
Output power: \(P_{out}/\text{W}\)	500
Switching Frequency: \(f_s/\text{kHz}\)	300
Number of multiplier stages: \(M\)	1
Parallel stages: \(P\)	2
\(L_a\), \(L_o\)	L=10\mu H, DCR=0.88m
\(S_a\), \(S_b\)	IXFA130N15X3 (\(V_{\text{fem}} = 150\text{V}, R_{\text{on}} = 9\text{m}\))
\(L_r\)	L=0.68\mu H, DCR=1.4m
\(D_{a1}, D_{a2}, D_{a3}, D_o\)	DSS 6-015AS (\(V=150\text{V}, V_f=0.62\text{V}\))
\(C_{a11}\)	CKG57NX7S2A226M500JH (\(C=22\mu F\times5\))
\(C_{b11}, C_{a12}\)	C4AJLBW5900M30K (\(C=90\mu F\))

3.3 Component losses and theoretical efficiency

The switching loss is divided into turn-on loss and turn-off loss. Turn-on loss is the most important factor affecting the efficiency of the circuit. The commutation loss is reduced in the proposed converter because the converter is in ZCS state. The switch current \(I_{\text{Sat(off)}}\) is 20.833A at turn off time \((t_{\text{off}}=62\text{ns})\) and the conduction resistance \(R_{\text{on}}\) of the tube \(S\), \(S_o\) is equal to 10m\Omega.

\[
P_{\text{on}} = 2 \cdot I_{\text{Sat(off)}} \cdot R_{\text{on}} + 2 \cdot \left(\frac{1}{2} \cdot \frac{V_o}{1 - D} \cdot I_{\text{Sat(off)}} \cdot t_{\text{s}} \cdot f_s\right) = 35.604W
\]

The average current \((P_o/V_o)\) in four diodes \((D_{\text{a1}}, D_{\text{a2}}, D_{\text{a3}}, D_o)\) is equal to the output current in the two-phase structure. The conduction voltage \(V_f\) is 0.6V. The conduction losses of all diodes is calculated by

\[
P_o = 4 \cdot \frac{P_o}{V_o} \cdot V_f = 6.364W
\]

The dc resistance \(R_{\text{f}}\) of the inductor is 0.7m\Omega. The loss of the filter inductor is presented in

\[
P_{\text{L}} = 2 \left(\frac{I_{\text{on}}}{2}\right)^2 \cdot R_{\text{f}} = 0.903W
\]

The final value of the efficiency calculation is as follows.

\[
\eta = \left(1 - \frac{P_o}{P_o + P_{\text{Sat}}}\right) \cdot 100\% = 92.1\%
\]
4. Experimental results

A prototype is also designed to verify the feasibility of the system as shown in Fig.8. The test system employs UCC27523 as the integrated driving circuit of the DC-DC converter. The PID compensator and DPWM are realized through DSP.

Fig. 8 Prototype of proposed converter

Fig. 9(a) shows the case with resonant multiplicator. when the drain-to-source voltage of the tube S_a and S_b returns to zero, the current I_{Sa} and I_{Sb} flowing through the MOS tube is almost zero. The turn-on loss of the two switches is zero.

Fig. 9(b) shows the current waveforms of the multiphase and resonant inductors. The phase difference of the current I_{La} and I_{Lb} is 180 degrees. When the current of the resonant inductor linearly increases to the maximum, the value of the current I_{Lb} is nearly equal to I_{La}. According to Kirchhoff's law, the current flowing through the tube S_b is zero. It realizes ZCS turn-on.

Fig.10 shows the measured efficiency of the proposed converter. The peak efficiency is 95.4% at the power of 250W. The efficiency is 91.6% at the maximum power.

Table III. Performance comparison between the circuit in this work and other reported high-gain power supplies with the same type

structure	This work [31]	[32]	[33]	
V_{in}/V	12	20	35	
V_{out}/V	220	300	380	400
f/kHz	300	50	500	50
gain	18.333	15	10.85	13.333
P_{out}/W	100–500	300	280	100–1000
efficiency	peak; 95.4% at 250W; 91.6% at max power	93.07%	91.8%	
	95% at 300W; 93.6% at max power	95%	93.6%	

5. Conclusion

A multiplicator ZCS turn on boost converter is presented in this paper, which is capable to provide a large voltage gain to boost up a source voltage of 12V to a voltage of 220V at the output side. The presented converter contains an interleaved boost stage and a resonant multiplier circuit for the voltage boosting purpose. The experimental evaluation is conducted to confirm the performance feasibility of the converter. The measured peak efficiency equals to 95.4% with the gain of 18.333. This work can be well adapted for low input to high output voltage and high power applications such as photovoltaic and fuel cell system.
References

[1] V. Karthikeyan, et al.:: “High Step-Up Gain DC–DC Converter With Switched Capacitor and Regenerative Boost Configuration for Solar PV Applications,” IEEE Transactions on Circuits and Systems 66 (2019) 2022 (DOI: 10.1109/TCSII.2019.2892144).

[2] K. Li, S. Tan, et al.:: “DC-Shifted Harmonics-Boosted Resonant DC-DC Converter with High-Step-Up Conversion Ratio with ZVS Over the Full Load Range,” IEEE Applied Power Electronics Conference and Exposition (2019) 1307 (DOI: 10.1109/APEC.2019.872066).

[3] G. Wu, et al.:: “Nonisolated High Step-Up DC–DC Converters Adopting Switched-Capacitor Cell,” IEEE Transactions on Industrial Electronics 62 (2015) 383 (DOI: 10.1109/TIE.2014.2327000).

[4] B. P. Baddipadiga, et al.:: “A high-voltage-gain dc-dc converter based on modified dickson charge pump voltage multiplier,” IEEE Transactions on Power Electronics 32 (2017) 7707 (DOI: 10.1109/TPEL.2016.2594016).

[5] M. Prudente, et al.:: “Voltage Multiplier Cells Applied to Non-Isoalted DC–DC Converters,” IEEE Transactions on Power Electronics 23 (2008) 871 (DOI: 10.1109/TPEL.2007.915762).

[6] B. Wu, et al.:: “A New Hybrid Boosting Converter for Renewable Energy Applications,” IEEE Transactions on Power Electronics 31 (2016) 1203 (DOI: 10.1109/TPEL.2015.2420994).

[7] A. Iqbal, et al.:: “DC-Transformer Modelling, Analysis and Comparison of the Experimental Investigation of a Non-Inverting and Non-Isoalted Nx Multilevel Boost Converter (Nx MBC) for Low to High DC Voltage Applications,” IEEE Access 6 (2018) 70935 (DOI: 10.1109/ACCESS.2018.2881391).

[8] V. A. K. Prabhala, et al.:: “A DC–DC Converter With High Voltage Gain and Two Input Boost Stages,” IEEE Transactions on Power Electronics 31 (2016) 4206 (DOI: 10.1109/TPEL.2015.2476377).

[9] L. Schmitz, et al.:: “Generalized High Step-Up DC-DC Boost-Based Converter With Gain Cell,” IEEE Transactions on Circuits and Systems I 64 (2017) 480 (DOI: 10.1109/TCSII.2016.2603782).

[10] Y. Lu, et al.:: “A Family of Isolated Buck-Boost Converters Based on Semiactive Rectifiers for High-Output Voltage Applications,” IEEE Transactions on Power Electronics 31 (2016) 6327 (DOI: 10.1109/TPEL.2015.2501405).

[11] C. Shen, et al.:: “Dual-Input Isolated Converter With Dual-Charge-Pump Cell for High Step-Up Voltage Achievement,” IEEE Transactions on Industrial Electronics 67 (2020) 9383 (DOI: 10.1109/TIE.2019.2952793).

[12] D. DELSHAD, et al.:: “High step-up zero-voltage switching current-fed isolated pulse width modulation DC–DC converter,” IET power electronics 4 (2011) 316 (DOI:10.1049/iet-pel.2009.0246).

[13] C. Leu, et al.:: “A Novel Current-Fed Boost Converter With Ripple Reduction for High-Voltage Conversion Applications,” IEEE Transactions on Industrial Electronics 57 (2010) 2018 (DOI:10.1109/TIE.2010.2044114).

[14] T. Liang, et al.:: “Novel Isolated High-Step-Up DC–DC Converter With Voltage Lift,” IEEE Transactions on Industrial Electronics 60 (2013) 1483 (DOI:10.1109/TIE.2011.2177789).

[15] M. L. Alghaythi, et al.:: “A High Step-Up Interleaved DC-DC Converter With Voltage Multiplier and Coupled Inductors for Renewable Energy Systems,” IEEE Access 8 (2020) 123165 (DOI: 10.1109/ACCESS.2020.3007137).

[16] F. Evran, et al.:: “Isolated High Step-Up DC–DC Converter With Low Voltage Stress,” IEEE Transactions on Power Electronics 29 (2014) 3591 (DOI:10.1109/TPEL.2013.2292813).

[17] W. Li, et al.:: “General Derivation Law of Nonisolated High-Step-Up Interleaved Converters With Built-In Transformer,” IEEE Transactions on Industrial Electronics 59 (2012) 1650 (DOI:10.1109/TIE.2011.2163375).

[18] L. Schmitz, et al.:: “Comprehensive Conception of High Step-Up DC–DC Converters With Coupled Inductor and Voltage Multipliers Techniques,” IEEE Transactions on Circuits and Systems I 167 (2020) 2140 (DOI:10.1109/TCSII.2020.2973154).

[19] K. C. Tseng, et al.:: “Novel Isolated Bidirectional Interleaved Converter for Renewable Energy Applications,” IEEE Transactions on Industrial Electronics 66 (2019) 9278 (DOI: 10.1109/TIE.2019.2892673).

[20] Z. Aleem, et al.:: “Single-Phase Transformer-based HF-Isolated Impedance Source Inverters With Voltage Clamping Techniques,” IEEE Transactions on Industrial Electronics 66 (2019) 8434 (DOI: 10.1109/TIE.2018.2889615).

[21] Y. E. Wu, et al.:: “A Novel Bidirectional Isolated DC-DC Converter With High Voltage Gain and Wide Input Voltage,” IEEE Transactions on Power Electronics 36 (2021) 7973 (DOI: 10.1109/TPEL.2020.3045986).

[22] C. Pan, et al.:: “A High-Efficiency High Step-Up Converter With Low Switch Voltage Stress for Fuel-Cell System Applications,” IEEE Transactions on Industrial Electronics 57 (2010) 1998 (DOI: 10.1109/TIE.2009.2042100).

[23] W. Li, et al.:: “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications,” IEEE Transactions on Industrial Electronics 58 (2011) 1239 (DOI: 10.1109/TIE.2010.2049715).

[24] Y. Huang, et al.:: “Reverse Electrodialysis Energy Harvesting System Using High-Gain Step-Up DC/DC Converter,” IEEE Transactions on Sustainable Energy 9 (2018) 1578 (DOI: 10.1109/TSTE.2017.2973720).

[25] Y. Huang, et al.:: “Nonisolated Harmonics-Boosted Resonant DC/DC Converter With High-Step-Up Gain,” IEEE Transactions on Power Electronics 33 (2018) 7770 (DOI:1109/TPEL.2017.2769165).

[26] K. Li, et al.:: “Resonant-Inductive-Boosting DC-DC Converter with Very High Voltage Gain,” IEEE Applied Power Electronics Conference and Exposition (2020) 935 (DOI:10.1109/APEC39645.2020.9124423).

[27] G. Lin, et al.:: “Low Input Ripple High Step-Up Extensible Hybrid DC-DC Converter,” IEEE Access 7 (2019) 158744 (DOI: 10.1109/ACCESS.2019.2950524).

[28] Y. Tang, et al.:: “A switched-capacitor-based active-network converter with high voltage gain,” IEEE Transactions Power Electronic 29 (2014) 2509 (DOI: 10.1109/TPEL.2013.2272639).

[29] M. A. Salvador, et al.:: “High-step-up dc–dc converter with active switch-inductor and passive switch-capacitor networks,” IEEE Transactions on Industrial Electronics 65 (2018) 5644 (DOI: 10.1109/TIE.2017.2782239).

[30] M. A. Salvador, et al.:: “Nonisolated high-step-up dc–dc converter derived from switched-inductors and switched-capacitors,” IEEE Transactions on Industrial Electronics 67 (2020) 8506 (DOI: 10.1109/TIE.2019.2949555).

[31] M. Meraj, et al.:: “Non-Isoalted DC–DC Power Converter With High Gain and Inverting Capability,” IEEE Access 9 (2021) 62084 (DOI:10.1109/ACCESS.2021.3074459).

[32] K. Li, et al.:: “DC-Shifted Harmonics-Boosted Resonant DC-DC Converter With High-Step-Up Conversion Ratio with ZVS Over the Full Load Range,” IEEE Applied Power Electronics Conference and Exposition (2019) 1307 (DOI:10.1109/APEC.2019.8722066).

[33] M. Forouzesh, et al.:: “High-Efficiency High Step-Up DC–DC Converter With Dual Coupled Inductors for Grid-Connected Photovoltaic Systems,” IEEE Transactions on Power Electronics 33 (2018) 5967 (DOI:10.1109/TPEL.2017.2746750).