A Beckwith-Wiedemann syndrome case with de novo 24 Mb duplication of chromosome 11p15.5-14.3

Huling Jiang¹#, Zepeng Ping¹#, Jianguo Wang¹#, Xiaodan Liu¹, Yuxia Jin¹, Suping Li¹, Chiyan Zhou¹, Pinghua Huang¹, Yi Jin¹, Jie Chen¹²*, Ling Ai¹*

¹Department of Prenatal Diagnosis Center, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, 314000, China
²Department of Pediatric Surgery, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, 200092, China

#These authors contributed equally to this work.
*Corresponding author: Tel: +86-82051729
E-mail address: jiechen1974@163.cn, 13736836830@163.cn

ABSTRACT

Background: Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome (BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An accurate diagnosis of BWS requires a complete molecular method to analyze epigenetic changes.

Case presentation: We reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The genetic analysis showed a de novo duplication of 24 Mb at 11p15.5-14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5 (three copies) at 11p15. The duplication of paternal origin with
increase of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1.

Conclusion: Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.

Keywords: Beckwith-Wiedemann syndrome (BWS), Chromosome 11p15.5, Paternal duplication, Single Nucleotide polymorphism (SNP) array analysis, Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)

1 Introduction

Beckwith-Wiedemann syndrome (BWS) (OMIM#130650) is an imprinting disorder characterized by variable presence of macroglossia and over-growth, abdominal wall defects, hypoglycemia and embryonal tumor predisposition[1-2]. Although BWS might present prenatally or in adult life, it is most commonly diagnosed in the neonatal period or in early childhood, with an estimated prevalence of one affected child per 10,340 live births[3]. BWS is caused mainly by genetic or epigenetic defects within the evolutionary conserved imprinted gene cluster located
at chromosome 11p15.5 region[4] which consists of two imprinted domains, \textit{IGF2/H19} and \textit{CDKN1C/KCNQ1OT1}, \textit{H19DMR(IC1)} and \textit{KvDMR1(IC2)}[5-7]. Among several causative alterations identified so far, gain of methylation (GOM) at \textit{H19DMR}(5–10%), loss of methylation (LOM) at \textit{KvDMR1}(50%) which leads to biallelic expression of \textit{KCNQ1OT1} and biallelic silencing of \textit{CDKN1C}, and 11p15 paternal uniparental disomy (UPD) (20%), loss-of-function pathogenic variants of \textit{CDKN1C} (5%), and 11p15.5 copy-number variants (CNVs, 1-4%)are isolated epi-mutations[8].

We investigated a patient with clinical features of BWS. Genetic analyses revealed that the patient harbored pUPD and copy number variation. This is a rare reported case of a patient with 24Mb duplication, which is much longer than ever reported.

2 Materials and methods

Patient report

The female infant was the first-born baby to non-consanguineous, healthy, Chinese parents after 36 weeks and 6 days of gestation in Jiaxing maternal and Child Health Hospital. Her birth weight was 3790 g, and she exhibit edcolumnar head, collapse of nasal bridge, wide distance of eyes, right hand through the palm, mild tricuspid regurgitation(Opposite velocity: 2.88M/S, PG:33.2mmHg), patent ductus arteriosus, the right
ventricle is markedly enlarged (Fig. 1a). Bilateral ventricle dilation (Fig. 1b Left: body: 9.3mm, Relief angle: 19.7mm. Right: Body: 6.6mm, Relief angle: 17.5mm). Abdominal hydrocele (Fig. 1c Left lower abdomen: 15×8mm anechoic area. Right abdomen: 47×13mm anechoic area) lower xiphoid process abdominal bulge, rectus abdominis separation, renal hypertrophy (Fig. 1d Left kidney: 54×27mm, Right kidney: 56×29mm), Long QT syndrome, thickened pulmonary texture, enlarged heart shadow, pulmonary hypertension, expanded perineal anal junction, mixed echo of right lobe of liver. This research was approved by the Ethics Committee of the Jiaxing Maternity and Child Health Care Hospital.

Genetic analyses

DNA isolation

Sample was collected and genomic DNA was extracted from the peripheral blood of the patient. Isolation and purification of the genomic DNA were performed using a Qiagen DNeasy Tissue Kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany).

SNP array analysis

Single nucleotide polymorphism (SNP) array analysis was performed with CytoScan 750K/HD array (Carlsbad, CA, USA) according to the manufacturer’s protocol. The microarray was used to investigate the CNVs and absence of heterozygosity (AOH) events.

The locations of the CNVs and the UPD events were determined based
on a human genome assembly from February 2009 (GRCH37/h19). OMIM genes and Ref-Seq genes were used to evaluate the CNVs identified in this study. The criteria used for interpreting whether a CNV was pathogenic or benign were according to the guidelines recommended by the American College of Medical Genetics (ACMG)[9].

MS-MLPA

Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was carried out as a parallel test to confirm the variations observed by SNP array. The MS-MLPA probe (ME030 for BWS/SRS, MRC-Holland, Amsterdam, The Netherlands) was used to detect copy number changes and to analyze CpG island methylation statuses of the 11p15 region. The MS-MLPA procedure was performed according to the manufacturer’s instructions. The products were detected via capillary electrophoresis using an ABI-3100 genetic analyzer (Applied Biosystems) and were analyzed using Gene Marker software (SoftGenetics, Pa., USA).

3 Results

Identifying Pathogenic CNVs via SNP array analysis

The SNP array result showed a 24,170kbp duplication at 11p15.5-14.3 including genes from *DEAF1* to *FANCF* (arr[hg19]11p15.5p14.3 (230,680-24,400,276)×3) (Fig.1e).
MS-MLPA Analysis

MS-MLPA analysis was used to validate the results observed with CMA. MS-MLPA for 11p15.5 showed copy number changes with a peak height ratio value of 1.5 (three copies) at 11p15 (Fig.1f) in comparison with a ratio value of 1 (two copies) from a normal control. MS-MLPA indicated methylation index of 0.68 at IC1 and methylation index of 0.37 at IC2 (Fig.1g). We indentified this patient with duplication of the BWS critical region.

Fig. 1 Ultrasound images, SNP array analysis and MS-MLPA results of this patient. (a) Ultrasound examinations demonstrated cardiac ultrasound results. (b) Cranial ultrasound showed bilateral ventricular dilatation. (c) Abdominal ultrasound showed abdominal hydrocele. (d) Renal ultrasound showed that both kidneys were larger. (e) The SNP array revealed a 24,170 kb duplication at (arr[hg19] 21q11.2q22.3(15,016,486-
Discussion

In this study, we report a Chinese BWS case with de novo paternally derived duplication and SNP-array test revealed a 24 Mb duplication at 11p15.5-14.3, involving 210 OMIM genes. A number of paternal reciprocal translocations associated with 11p15.5 duplications in the affected children have been reported[10-14]. It has been reported that patients with BWS due to a paternally inherited 11p15.5 duplication exhibit macroglossia, distinct craniofacial features, including prominent occiput and forehead, a round face with full cheeks, broad and flat nasal bridge, micrognathia, hypertelorism as well as deep set eyes with epicanthus.

Although our patient’s clinical phenotype fits well to this description, and the results from SNP array and MS-MLPA analysis fulfilled the diagnostic criteria for BWS, the 24 Mb duplication at 11p15.5-14.3 is much longer than ever reported[15-16]. Qin Wang reported two Chinese cases with BWS, One case was a de novo paternal origin duplication spanning 896Kb at 11p15.5. Case 2 was referred at 2-month old and the genetic analysis showed a de novo 228.8Kb deletion at 11p15.5 telomeric end and a de novo duplication of 2.5 Mb at 11p15.5-15.4. Both duplications are of paternal origin with gain of methylation at the
imprinting center 1[14]. In our case, the de novo duplication of 24 Mb is much longer and involving more genes.

We consider that most of the symptoms in our patient is caused or modulated by the duplication of these genes, including the OMIM genes \textit{H19}, \textit{IGF2}, \textit{TH}, \textit{KCNQ1}, \textit{STIM1} and so on, involving 210 OMIM genes. \textit{H19}(103280) plays a key role in the development of Beckwith-Wiedemann syndrome, Silver-Russell syndrome and it had been hypothesized that loss of \textit{H19} expression may be involved in Wilms tumorigenesis[17]. \textit{H19} is a developmentally regulated gene with putative tumor suppressor activity. \textit{IGF2} (147470) is a protein hormone involved in the regulation of cell proliferation, growth, migration, differentiation, and survival. It has been found that aberrant processing of pro-\textit{IGF2} by PCSK4 may be a cause of intrauterine growth restriction, a leading cause of perinatal mortality[18]. The expression of the \textit{IGF2} and \textit{H19} genes is imprinted. Although these neighboring genes share an enhancer, \textit{H19} is expressed only from the maternal allele, and \textit{IGF2} only from the paternally inherited allele. The region of paternal-specific methylation upstream of \textit{H19} appears to be the site of an epigenetic mark that is required for the imprinting of these genes. The \textit{KCNQ1OT1}(604115) gene was expressed preferentially from the paternal allele [19], while \textit{KCNQ1} transcription is silent. In most patients with BWS, \textit{KCNQ1OT1} is abnormally expressed from both the paternal and
maternal alleles. 21 of 36 (58%) BWS patients showed loss of maternal allele-specific methylation of a CpG island upstream of \textit{KCNQ1OT1}. The authors determined that LOI of \textit{KCNQ1OT1} is the most common genetic alteration in BWS [20].

Chang reported a patient with a loss of heterozygosity in the region of chromosome 11p14.3 to 11p15.5. This region is similar to the case in this article. The results suggest that paternal uniparental isodisomy and mosaicism[21].

In this case, because the increase of paternal gene’s copy number, the \textit{H19} methylation index of 0.68 at IC1 is increased in comparison with normal control methylation index of 0.54 at IC1. And the \textit{KCNQ1OT1} methylation index of 0.37 at IC2 is decreased in comparison with normal control methylation index of 0.57 at IC2. A recent study in a serial of over 400 BWS cases also indicated that copy number changes in the 11p15.5 region contributed significantly to the etiology of the BWS [22]. For this patient, physical examination should be performed routinely for potential intellectual disability and the possible clinical effect involving the deleted genes. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling. Furthermore, SNP arrays can be helpful in clarifying the molecular diagnosis in patient with BWS, especially to discriminate
between pUPD and duplications[23].

Funding

This work was funded by support from Zhejiang Provincial Natural Science Foundation of China (LY20C1100), The Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (2020KY962). The Lin He’s Academician Workstation of New Medicine and Clinical Translation.

Conflict of interest

The authors have no competing financial interests to declare.

Acknowledgements

The authors appreciate the family to take part in this study and permission for the publication of the report.

References

1. Mussa A, Russo S, De Crescenzo A, et al. Prevalence of Beckwith-Wiedemann syndrome in North West of Italy. Am J Med Genet A.2013;161:2481-2486.
2. Brioude F, Kalish JM, Mussa A, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14:229-249.
3. Mussa, A. et al. Prevalence of Beckwith-Wiedemann syndrome in North West of Italy. Am. J. Med. Genet. Part A 161, 2481–2486 (2013).
4. Choufani, S., Shuman, C. & Weksberg, R. Beckwith- Wiedemann syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 154C, 343-354 (2010).
5. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010;18:8-14.4.
6. Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2010;154C:343-354.
7. Soejima H, Higashimoto K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J Hum Genet 2013;58:402-409.
8. Baskin B, Choufani S, Chen YA, et al. High frequency of copy number variations
(CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome. Hum Genet. 2014;133:321-330.

9. Satoh Y. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms’ tumours. Br J Cancer 2006;95:541-7.

10. Smith AC, Suzuki M, Thompson R, et al. Maternal gametic transmission of translocations or inversions of human chromosome 11p15.5 results in regional DNA hypermethylation and down regulation of CDKN1C expression. Genomics. 2012;99:245-50.

11. Krajewska-Walasek M, Gutkowska A, Mospinek-Krasnopolska M, et al. A new case of Beckwith-Wiedemann syndrome with an 11p15 duplication of paternal origin [46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)pat]. Acta Genet Med Gemellol. 1996;45:245-50.

12. Slavotínek A, Gaunt L, Donnai D. Paternally inherited duplications of 11p15.5 and Beckwith-Wiedemann syndrome. J Med Genet. 1997;34:819-26.

13. Heide S, Chantot-Bastaraud S, Keren B, et al. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences. J Med Genet. 2018;55:205-13.

14. Qin Wang, Qian Geng, Qinghua Zhou, et al. De novo paternal origin duplication of chromosome 11p15.5: report of two Chinese cases with Beckwith-Wiedemann syndrome. Molecular Cytogenetics. 2017: 10:46

15. Caroline Lekszas, Indrajit Nanda, Barbara Vona, et al. Unbalanced segregation of a paternal t(9;11)(p24.3;p15.4) translocation causing familial Beckwith-Wiedemann syndrome: a case report. BMC Medical Genomics. 2019; 12:83

16. Bachmann N, Crazzolara R, Bohne F, et al. Novel deletion in 11p15.5 imprinting center region 1 in a patient with Beckwith-Wiedemann syndrome provides insight into distal enhancer regulation and tumorigenesis. Pediatr Blood Cancer. 2017;64:e26241.

17. Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 1998;12:3693-702.

18. Calvello M, Tabano S, Colapietro P, et al. Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. Epigenetics. 2013;8(10):1053-60.

19. Vals MA, Kahre T, Mee P, et al. Familial 1.3-Mb 11p15.5p15.4 duplication in three generations causing silver-Russell and Beckwith-Wiedemann syndromes. Mol Syndromol. 2015;6(3):147-51.

20. Soejima H, Higashimoto K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J Hum Genet. 2013;58(7):402-9.

21. Chang JG, Tsai WC, Chong IW, et al. β-thalassemia major evolution from β-thalassemia minor is associated with paternal uniparental isodisomy of chromosome 11p15. Haematologica. 2008.93(6):913-6.
22. Baskin B, Choufani S, Chen YA, et al. High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome. Hum Genet. 2014;133(3):321-30.

23. Keren B, Chantot-Bastaraud S, Brioude F, et al. SNP arrays in Beckwith-Wiedemann syndrome: an improved diagnostic strategy. Eur J Med Genet 2013;56:546-50.