Measurement of the fraction of \(\Upsilon(1S) \) originating from \(\chi_b(1P) \) decays in \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \)

The LHCb collaboration

Abstract

The production of \(\chi_b(1P) \) mesons in \(pp \) collisions at a centre-of-mass energy of 7 TeV is studied using 32 pb\(^{-1} \) of data collected with the LHCb detector. The \(\chi_b(1P) \) mesons are reconstructed in the decay mode \(\chi_b(1P) \rightarrow \Upsilon(1S)\gamma \rightarrow \mu^+\mu^-\gamma \). The fraction of \(\Upsilon(1S) \) originating from \(\chi_b(1P) \) decays in the \(\Upsilon(1S) \) transverse momentum range \(6 < p_T^{\Upsilon(1S)} < 15 \text{ GeV/c} \) and rapidity range \(2.0 < y^{\Upsilon(1S)} < 4.5 \) is measured to be \((20.7 \pm 5.7 \pm 2.1^{+2.7}_{-5.4})\% \), where the first uncertainty is statistical, the second is systematic and the last gives the range of the result due to the unknown \(\Upsilon(1S) \) and \(\chi_b(1P) \) polarizations.

Submitted to JHEP

\(^{\dagger} \)Authors are listed on the following pages.
C.R. Jones, B. Jost, M. Kaballo, S. Kandybei, M. Karacson, T.M. Karbach, J. Keaveney, I.R. Kenyon, U. Kerzel, T. Ketel, A. Keune, B. Khanji, Y.M. Kim, M. Knecht, O. Kochebina, I. Komarov, R.F. Koopman, P. Koppenburg, M. Korolev, A. Kozlinskiy, L. Kravchuk, K. Kreplin, M. Kreps, G. Krocker, P. Krokovny, F. Kruse, M. Kucharczyk, V. Kudryatsev, T. Kvaratskheliya, V.N. La Thi, D. Lacarrere, G. Lafferty, A. Lai, D. Lambert, R.W. Lambert, E. Lancret, G. Lanfranchi, C. Langenbruch, T. Latham, C. Lazzeroni, R. Le Gac, J. van Leerdam, J.-P. Lees, R. LeFèvre, A. Lefla, J. LeFrançois, O. Leroy, T. Lesiak, L. Li, Y. Li, L. Li Gioi, M. Lieng, M. Liles, R. Lindner, C. Linn, G. Linn, J. von Loeben, J.H. Lopes, E. Lopez Asamar, N. Lopez-March, H. Liu, J. Luisier, A. Mac Raighne, F. Machefer, I.V. Machikhiliya, F. Maciuca, O. Maev, J. Magnin, S. Malde, R.M.D. Mamunur, G. Manca, G. Mancinelli, N. Mangiavacchi, U. Marconi, R. Märki, J. Marks, G. Martelotti, A. Martens, L. Martin, A. Martín Sánchez, M. Martinelli, D. Martinez Santos, A. Massafferri, Z. Mathe, C. Matteuzzi, M. Matveev, E. Maurice, A. Mazurov, J. McCarthy, G. McGregor, R. McNulty, M. Meissner, M. Merk, D.A. Milanes, M.-N. Minardi, J. Molina Rodriguez, S. Monti, D. Moran, R. Morawski, R. Mountain, I. Mou, F. Muheim, K. Müller, R. Muresan, B. Mury, B. Muster, J. Mylove-Smith, P. Naik, T. Nakada, R. Nandakumar, I. Nasteva, M. Needham, N. Neufeld, A.D. Nguyen, M. Nguyen-Mau, M. Nicol, V. Niess, N. Nikitin, T. Nikodem, A. Nomertskii, A. Novoselov, A. Oblakowska-Mucha, V. Obraztsov, S. Oggero, S. Ogilvy, O. Okhridenkov, R. Oldeman, M. Orlandea, J.M. Otalora Goicochea, P. Owen, B.K. Pal, A. Palano, M. Palutan, J. Panman, A. Papanestis, M. Pappagallo, C. Parkes, C.J. Parkinson, G. Passaleva, G.D. Patel, M. Patel, G.N. Patrick, C. Patrignani, C. Pavel-Nicorescu, A. Pazos Alvarez, A. Pellegri, G. Penso, M. Pepe Altarelli, S. Perazzini, D.L. Perez, E. Perez Trigo, A. Perez-Calerio Yzuquierdo, P. Perret, M. Perrin-Terrin, G. Pessina, A. Petrolini, A.Phan, E. Picatoste Olloqui, B. Pie Valls, B. Pietrzyk, T. Pilar, D. Pinci, S. Playfer, A. Polukhov, E. Polycarpou, D. Popov, B. Popovici, C. Potterat, A. Powell, J. Prisciandaro, V. Pugatch, A. Puig Navarro, W. Qian, J.H. Rademacker, B. Rakotomiaranana, M.S. Range, I. Raniu, N. Rauschmayr, G. Raven, S. Redford, M.M. Reid, A.C. dos Reis, S. Ricciardi, A. Richards, K. Rinnert, D.A. Roa Romero, P. Robbe, E. Rodrigues, F. Rodrigues, P. Rodriguez Perez, J.G. Rogers, S. Roiser, V. Romanowsky, A. Romero Vidal, M. Rosello, J. Rouvinet, R. Ruf, H. Ruiz, G. Sabatino, J.J. Saborido Silva, N. Sagidova, P. Sait, B. Saïta, C. Salzmann, B. Sanmartin Sedes, M. Sannino, R. Santacesaria, C. Santamaria Rios, R. Santinelli, E. Santovetti, M. Sapunov, A. Sarti, C. Satriano, D. Savrica, P. Schaeck, M. Schiller, M. Schmelling, B. Schmid, O. Schneider, A. Schopper, M.-H. Schune, R. Schwemmer, B. Sciascia, A. Sciuumba, M. Seco, A. Semennikov, K. Senderowska, I. Sepp, N. Serra, I. Serrano, P. Seyfert, M. Shakpin, I. Shapoval, P. Shatalov, Y. Shcheglov, T. Shears, L. Shekhtman, O. Shevchenko, V. Shevchenko, A. Shires, R. Silva Coutinho, T. Skwarnicki, N.A. Smith, E. Smith, M. Smith, K. Sobczak, F.J.P. Soler, A. Solomin, F. Soomro, D. Souza, B. Souza De Paula, B. Spana, A. Sparkes, P. Spradlin, F. Stagni, S. Stahl, O. Steinkamp, S. Stoica, S. Stone.
B. Storaci38, M. Straticiuc26, U. Straumann37, V.K. Subbiah35, S. Swientek9,
M. Szczekowski25, P. Szczypta36, T. Szumlak24, S. T’Jampens4, M. Teklshyn7,
E. Teodoresci26, F. Teubert35, C. Thomas52, E. Thomas35, J. van Tilburg11, V. Tisserand4,
M. Tobin37, S. Tolk39, S. Topp-Jørgensen52, N. Torr52, E. Tournefier4,50, S. Tourneur36,
M.T. Tran36, A. Tsaregorodtsev6, N. Tuning38, M. Ubeda Garcia35, A. Ukleja25, U. Uwer11,
V. Vagnoni14, G. Valentí14, R. Vazquez Gomez33, P. Vazquez Regueiro34, S. Vecchi16,
J.J. Velthuijs43, M. Veltri17,9, G. Veneziano36, M. Vesterinen35, B. Viald7, I. Videau7,
D. Vieira2, X. Vilasis-Cardona33,n, J. Visniakov34, A. Vollhardt37, D. Volyanskyy10,
D. Voong43, A. Vorobyev27, V. Vorobyev31, C. Voß55, H. Voss10, R. Wald55, R. Wallace12,
S. Wandernoth11, J. Wang53, D.R. Ward44, N.K. Watson42, A.D. Webber51, D. Websdale50,
M. Whitehead45, J. Wicht35, D. Wiedner11, L. Wiggers38, G. Wilkinson52, M.P. Williams45,46,
M. Williams50, F.F. Wilson46, J. Wishahi9, M. Witek23, W. Witzeling35, S.A. Wotton44,
S. Wright44, S. Wu3, K. Wyllie35, Y. Xie47, F. Xing52, Z. Xing53, Z. Yang3, R. Young47,
X. Yuan3, O. Yushchenko32, M. Zangoli14, M. Zavertyaev10,a, F. Zhang3, L. Zhang53,
W.C. Zhang12, Y. Zhang3, A. Zhelezov11, L. Zhong3, A. Zvyagin35.

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12School of Physics, University College Dublin, Dublin, Ireland
13Sezione INFN di Bari, Bari, Italy
14Sezione INFN di Bologna, Bologna, Italy
15Sezione INFN di Cagliari, Cagliari, Italy
16Sezione INFN di Ferrara, Ferrara, Italy
17Sezione INFN di Firenze, Firenze, Italy
18Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19Sezione INFN di Genova, Genova, Italy
20Sezione INFN di Milano Bicocca, Milano, Italy
21Sezione INFN di Roma Tor Vergata, Roma, Italy
22Sezione INFN di Roma La Sapienza, Roma, Italy
23Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
24AGH University of Science and Technology, Kraków, Poland
25Soltan Institute for Nuclear Studies, Warsaw, Poland
26Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
27Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
28Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
29Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
30Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
31Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
32Institute for High Energy Physics (IHEP), Protvino, Russia
33Universitat de Barcelona, Barcelona, Spain
34Universidad de Santiago de Compostela, Santiago de Compostela, Spain
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
37 Physik-Institut, Universität Zürich, Zürich, Switzerland
38 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
39 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
42 University of Birmingham, Birmingham, United Kingdom
43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
45 Department of Physics, University of Warwick, Coventry, United Kingdom
46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
50 Imperial College London, London, United Kingdom
51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
52 Department of Physics, University of Oxford, Oxford, United Kingdom
53 Syracuse University, Syracuse, NY, United States
54 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
55 Institut für Physik, Universität Rostock, Rostock, Germany, associated to

a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
b Università di Bari, Bari, Italy
c Università di Bologna, Bologna, Italy
d Università di Cagliari, Cagliari, Italy
e Università di Ferrara, Ferrara, Italy
f Università di Firenze, Firenze, Italy
g Università di Urbino, Urbino, Italy
h Università di Modena e Reggio Emilia, Modena, Italy
i Università di Genova, Genova, Italy
j Università di Milano Bicocca, Milano, Italy
k Università di Roma Tor Vergata, Roma, Italy
l Università di Roma La Sapienza, Roma, Italy
m Università della Basilicata, Potenza, Italy
n LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
o Hanoi University of Science, Hanoi, Viet Nam
1 Introduction

The production of heavy quarkonium states at hadron colliders is a subject of experimental and theoretical interest [1]. The non-relativistic QCD (NRQCD) factorization approach has been developed to describe the inclusive production and decay of quarkonia [2]. The LHCb experiment has measured the production of inclusive \(J/\psi \rightarrow \mu^+ \mu^-\) [3], \(\psi(2S)\) [4] and \(\Upsilon(nS) \rightarrow \mu^+ \mu^- (n = 1, 2, 3)\) [5] mesons in \(pp\) collisions as a function of the quarkonium transverse momentum \(p_T\) and rapidity \(y\) over the range \(0 < p_T < 15\, \text{GeV}/c\) and \(2.0 < y < 4.5\). A significant fraction of the cross-section for both \(J/\psi\) and \(\Upsilon(nS)\) production is expected to be due to feed-down from higher quarkonium states. Understanding the size of this effect is important for the interpretation of the quarkonia cross-section and polarization data. A few experimental studies of hadroproduction of \(P\)-wave quarkonia have been reported. In the case of the \(\chi_{cJ}\) states, with spin \(J = 0, 1, 2\), measurements from the CDF [6, 7], HERA-B [8] and LHCb [9, 10] experiments exist, while \(\chi_{bJ}\) related measurements have been reported by the CDF [11], ATLAS [12] and D0 [13] experiments.

This paper reports studies of the inclusive production of the \(P\)-wave \(\chi_{bJ}(1P)\) states, collectively referred to as \(\chi_{b}(1P)\) throughout the paper. The \(\chi_{b}(1P)\) mesons are reconstructed through the radiative decay \(\chi_{b}(1P) \rightarrow \Upsilon(1S)\gamma\) in the \(\Upsilon(1S)\) rapidity and transverse momentum range \(2.0 < y_{\Upsilon(1S)} < 4.5\) and \(6 < p_T^{\Upsilon(1S)} < 15\, \text{GeV}/c\). The \(\chi_{b2}\) and \(\chi_{b1}\) states differ in mass by \(20\, \text{MeV}/c^2\) and the \(\chi_{b1}\) and \(\chi_{b0}\) states by \(33\, \text{MeV}/c^2\) [14]. Since these differences are comparable with the experimental resolution, the total fraction of \(\Upsilon(1S)\) originating from \(\chi_{b}(1P)\) decays is reported. The results presented here use a data sample collected at the LHC with the LHCb detector at a centre-of-mass energy of 7 TeV and correspond to an integrated luminosity of \(32\, \text{pb}^{-1}\).

2 LHCb detector

The LHCb detector [15] is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5\), designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the \(pp\) interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system has a momentum resolution \(\Delta p/p\) that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolution of \(20\, \mu\text{m}\) for tracks with high transverse momentum \(p_T\). Charged hadrons are identified using two ring-imaging Cherenkov detectors. Photons, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multwire proportional chambers. The nominal detector performance for photons and muons is described in [15]. The processes of radiative transitions of \(\chi_{cJ} \rightarrow J/\psi \gamma, J = 1, 2\) with similar kinematics of the photons are studied in [9, 10]. Another physical analysis which uses \(\pi^0 \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma\) and \(\eta' \rightarrow \rho^0 \gamma\) is available as [16].
The trigger consists of a hardware stage followed by a software stage which applies a full event reconstruction. The trigger used for this analysis selects a pair of oppositely-charged muon candidates, where either one of the muons has $p_T > 1.8\text{ GeV}/c$ or one of the pair has a $p_T > 0.56\text{ GeV}/c$ and the other has a $p_T > 0.48\text{ GeV}/c$. The invariant mass of the pair is required to be greater than $2.9\text{ GeV}/c^2$. The photons are not used in the trigger decision.

For the simulation, pp collisions are generated using PYTHIA 6.4 [17] with a specific LHCb configuration [18]. Decays of hadronic particles are described by EvtGen [19] in which final state radiation is generated using PHOTOS [20]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [21] as described in Ref. [22]. The simulated signal events contain at least one $\Upsilon(1S) \rightarrow \mu^+\mu^-$ decay with both muons in the LHCb acceptance. In this sample of simulated events the fraction of $\Upsilon(1S)$ mesons produced in $\chi_b(1P)$ decays is 47% and both the $\chi_b(1P)$ and $\Upsilon(1S)$ mesons are produced unpolarized.

3 Event selection

The reconstruction of the $\chi_b(1P)$ meson proceeds via the identification of an $\Upsilon(1S)$ meson combined with a reconstructed photon. The $\Upsilon(nS)$ candidates are formed from a pair of oppositely-charged tracks that are identified as muons. Each track is required to have a good track fit quality. The two muons are required to originate from a common vertex with a distance to the primary vertex less than 1 mm.

The invariant mass distribution of the $\mu^+\mu^-$ candidates is shown in Fig. 1. It is modelled with the sum of three Crystal Ball functions [23], describing the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ signals, and an exponential function for the combinatorial background. The parameters of the Crystal Ball functions that describe the radiative tail of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mass distributions are fixed to the values $a = 2$ and $n = 1$ [5]. The measured $\Upsilon(1S)$ signal yield, mass and width are $N_{\Upsilon(1S)} = 39635\pm252$, $m_{\Upsilon(1S)} = 9449.2\pm0.4\text{ MeV}/c^2$ and $\sigma_{\Upsilon(1S)} = 51.7\pm0.4\text{ MeV}/c^2$, where the uncertainties are statistical only.

The $\Upsilon(1S)$ candidates with a $p_T^{\Upsilon(1S)} > 6\text{ GeV}/c$ and a $\mu^+\mu^-$ invariant mass in the range $9.36 - 9.56\text{ GeV}/c^2$ are combined with photons to form $\chi_b(1P)$ candidates. The photons are required to have $p_T^\gamma > 0.6\text{ GeV}/c$ and $\cos\theta_\gamma^\ast > 0$, where θ_γ^\ast is the angle of the photon direction in the centre-of-mass frame of the $\mu^+\mu^-\gamma$ system with respect to the momentum of this system in the laboratory frame.

The $\chi_b(1P)$ signal peak observed in the distribution of the mass difference, $x = m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-)$, is shown in Fig. 2 for the range $6 < p_T^{\Upsilon(1S)} < 15\text{ GeV}/c$. It is modelled with an empirical function given by

$$
\frac{dN}{dx} = A_1 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-x_0)^2}{2\sigma^2}} + A_2 (x-x_0)^\alpha e^{-(c_1 x^2 + c_2 x^2 + c_3 x^3)},
$$

where A_1, ΔM, σ, A_2, x_0, α, c_1, c_2 and c_3 are free parameters. The Gaussian function describes the signal and the second term models the background. The number of $\chi_b(1P)$
signal decays obtained from the fit is 201 ± 55. The mean value of the Gaussian function is 447 ± 4 MeV/c^2 and its width is 19.0 ± 4.2 MeV/c^2. The expected values of the mass differences for the three $\chi_{bJ}(1P)$ states are $\Delta M(\chi_{b2}) = 452$ MeV/c^2, $\Delta M(\chi_{b1}) = 432$ MeV/c^2 and $\Delta M(\chi_{b0}) = 399$ MeV/c^2 [14]. The peak position in the data lies between $\Delta M(\chi_{b2})$ and $\Delta M(\chi_{b0})$ as expected for any mixture of $\chi_{bJ}(1P)$ states.

4 Fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays

The fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays is determined using the following assumptions. Firstly, all $\Upsilon(1S)$ originating from $\chi_b(1P)$ arise from the radiative decay $\chi_b(1P) \rightarrow \Upsilon(1S) \gamma$. Secondly, the total efficiency for $\Upsilon(1S) \rightarrow \mu^+\mu^-$ as a function of $p_T^{\Upsilon(1S)}$ is the same for directly produced $\Upsilon(1S)$ and for those from feed-down from $\chi_b(1P)$. The total efficiency includes trigger, detection, reconstruction and selection. Thirdly, the photon detection, reconstruction and selection are independent of the $\Upsilon(1S) \rightarrow \mu^+\mu^-$ candidate. Hence the total efficiency for $\chi_b(1P)$ is factorized as $\epsilon_{\text{tot}}(\chi_b) = \epsilon_{\text{cond}}(\chi_b) \cdot \epsilon_{\text{tot}}(\Upsilon)$, where $\epsilon_{\text{tot}}(\Upsilon)$ is the total efficiency for $\Upsilon(1S)$ and $\epsilon_{\text{cond}}(\chi_b)$ is the conditional efficiency for $\chi_b(1P)$ reconstruction and selection after the $\Upsilon(1S) \rightarrow \mu^+\mu^-$ candidate has been selected.

The second assumption is tested by comparing the $\Upsilon(1S)$ efficiencies obtained using simulated events for direct $\Upsilon(1S)$ and for $\Upsilon(1S)$ coming from decays of $\chi_b(1P)$ states. These efficiencies for each $p_T^{\Upsilon(1S)}$ interval agree within the statistical error, which is less
Figure 2: Distribution of the mass difference $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-)$ for selected $\chi_b(1P)$ candidates (black points), together with the result of the fit (solid blue curve), including background (dotted blue curve) and signal (dashed magenta curve) contributions. The solid (red) histogram is an alternative background estimation using simulated events containing a $\Upsilon(1S)$ that does not originate from a $\chi_b(1P)$ decay, normalized to the data. It is used for evaluation of the systematic uncertainty due to the choice of fitting model. The bottom insert shows the pull distribution of the fit. The pull is defined as the difference between the data and fit value divided by the data error.

The conditional $\chi_b(1P)$ reconstruction and selection efficiency is estimated from simulation as

$$\epsilon_{\text{cond}}(\chi_b) = \frac{\epsilon_{\text{tot}}(\chi_b)}{\epsilon_{\text{tot}}(\Upsilon)} = \frac{N_{\text{rec}}^{MC}(\chi_b)}{N_{\text{gen}}^{MC}(\chi_b)} \cdot \frac{N_{\text{rec}}^{MC}(\Upsilon)}{N_{\text{gen}}^{MC}(\Upsilon)},$$

where $N_{\text{rec}}^{MC}(\chi_b)$ and $N_{\text{rec}}^{MC}(\Upsilon)$ are the number of $\chi_b(1P)$ and $\Upsilon(1S)$ mesons obtained from the fit, and $N_{\text{gen}}^{MC}(\chi_b)$ and $N_{\text{gen}}^{MC}(\Upsilon)$ are the number of generated $\chi_b(1P)$ and $\Upsilon(1S)$ mesons, respectively. The value obtained is $\epsilon_{\text{cond}}(\chi_b) = (9.4 \pm 0.1)\%$ for $6 < p_T^{\Upsilon(1S)} < 15 \text{ GeV/c}$ and $2.0 < y^{\Upsilon(1S)} < 4.5$.

The fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays is determined from the ratio
by comparing the relative yields of the reconstructed Υ and longitudinal polarization of the systematic uncertainty. The largest variation is found for the cases of 100% transverse χ studied by repeating the estimation of the efficiencies depends on the polarization of the vector meson. The effect of the polarization has been Studies of quarkonium decays to two muons \cite{3–5, 9, 10} show that the total efficiency per bin is consistent with the measurement obtained in the whole p_T range. No significant p_T dependence is observed. The mean of the measurements performed in the individual bins is consistent with the measurement obtained in the whole p_T range.

Table 1: Number of reconstructed $\chi_b(1P)$ and $\Upsilon(1S)$ signal candidates, conditional efficiency and fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for different p_T bins. The uncertainties are statistical only.

p_T ($\Upsilon(1S)$, GeV/c)	6 – 7	7 – 8	8 – 10	10 – 15	6 – 15
$N_{\text{rec}}(\chi_b)$	41 ± 39	35 ± 22	91 ± 30	82 ± 29	201 ± 55
$N_{\text{rec}}(\Upsilon)$	2730 ± 64	2193 ± 57	2866 ± 64	2627 ± 59	10345 ± 123
$\epsilon_{\text{cond}}(\chi_b)$ in %	6.7 ± 0.2	8.3 ± 0.2	10.0 ± 0.2	12.8 ± 0.2	9.4 ± 0.1
Fraction in %	23 ± 22	20 ± 12	32 ± 10	25 ± 9	21 ± 6

\[
\frac{N_{\text{prod}}(\chi_b)}{N_{\text{prod}}(\Upsilon)} = \frac{N_{\text{rec}}(\chi_b)/\epsilon_{\text{tot}}(\chi_b)}{N_{\text{rec}}(\Upsilon)/\epsilon_{\text{tot}}(\Upsilon)} = \frac{N_{\text{rec}}(\chi_b)/\epsilon_{\text{cond}}(\chi_b)}{N_{\text{rec}}(\Upsilon)},
\]

where $N_{\text{prod}}(\chi_b)$ and $N_{\text{prod}}(\Upsilon)$ are the total numbers of $\chi_b(1P) \rightarrow \Upsilon(1S)\gamma$ and $\Upsilon(1S)$ mesons produced, and $N_{\text{rec}}(\chi_b)$ and $N_{\text{rec}}(\Upsilon)$ are the numbers of reconstructed $\chi_b(1P)$ and $\Upsilon(1S)$ mesons obtained from the fits to the data, respectively. As the muons from the $\Upsilon(1S)$ are explicitly required to trigger the event, the efficiency of the trigger cancels in this ratio. The fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for $6 < p_T < 15$ GeV/c and $2.0 < y \Upsilon(1S) < 4.5$ is found to be $(20.7 \pm 5.7)\%$, where the uncertainty is statistical only.

The procedure is repeated in four bins of p_T, giving the results shown in Table I and Fig. 3. No significant p_T dependence is observed. The mean of the measurements performed in the individual bins is consistent with the measurement obtained in the whole p_T range.

5 Systematic uncertainties

Studies of quarkonium decays to two muons \cite{3–5, 9, 10} show that the total efficiency depends on the polarization of the vector meson. The effect of the polarization has been studied by repeating the estimation of the efficiencies $\epsilon_{\text{tot}}(\chi_b)$ and $\epsilon_{\text{tot}}(\Upsilon)$ for the extreme $\chi_b(1P)$ and $\Upsilon(1S)$ polarization scenarios and taking the difference in $\epsilon_{\text{cond}}(\chi_b)$ as the systematic uncertainty. The largest variation is found for the cases of 100% transverse and longitudinal polarization of the $\Upsilon(1S)$. We assign this relative variation of $+13\%$ as the range due to the unknown polarizations.

The systematic effect due to the unknown $\chi_b J(1P)$, $J = 0, 1, 2$ relative contributions is estimated by varying these fractions in the simulation in such a way that the peak position of the mixture is equal to the peak position observed in the data plus or minus its statistical uncertainty. The maximal relative variation of the result is found to be 7%. This value is taken as a systematic uncertainty due to the unknown $\chi_b J(1P)$ mixture.

The systematic uncertainty due to the photon reconstruction efficiency is determined by comparing the relative yields of the reconstructed $B^+ \rightarrow J/\psi (K^{*+} \rightarrow K^+ \pi^0)$ and
Table 2: Relative systematic uncertainties on the fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays.

Source	Uncertainty (%)
Unknown $\chi_b J(1P)$ mixture	7
Photon reconstruction efficiency	6
Signal and background description	5
Quadratic sum of the above	10

$B^+ \to J/\psi K^+$ decays in data and simulated events. It is assumed that the reconstruction efficiencies of the two photons from the π^0 are uncorrelated. The uncertainty on the photon reconstruction efficiency is studied as a function of p_T^γ. The largest systematic uncertainty is found to be 6% for photons in the range $0.6 < p_T^\gamma < 0.7$ GeV/c, and is dominated by the uncertainties of the B^+ branching fractions.

The systematic uncertainty due to the choice of the background fit model is estimated from simulated events containing an $\Upsilon(1S)$ that does not originate from the decay of a $\chi_b(1P)$. The distribution of the mass difference obtained with these events, using the same reconstruction and selection as for data, is shown in Fig. 2 normalized to the data below 0.38 GeV/c^2. It describes rather well the background contribution above 0.38 GeV/c^2, both in shape and level. The difference between the number of data events and the normalized number of simulated background events in the range 0.38–0.50 GeV/c^2 gives an estimate of the signal yield. For $6 < p_T^{\Upsilon(1S)} < 15$ GeV/c the signal yield obtained using this method is 211 to be compared with 201 ± 55 obtained from the fit. The procedure is repeated in each $p_T^{\Upsilon(1S)}$ bin. We also study the variation of signal yield by changing the normalization range to 0.0 – 0.3 GeV/c^2 or 0.7 – 1.0 GeV/c^2. The maximal relative difference of 5% is taken as the uncertainty due to the choice of the signal and background description. Systematic uncertainties are summarized in Table 2.

6 Results and conclusions

The production of $\chi_b(1P)$ mesons is observed using data corresponding to an integrated luminosity of 32 pb$^{-1}$ collected with the LHCb detector in pp collisions at $\sqrt{s} = 7$ TeV. The fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays in the kinematic range $6 < p_T^{\Upsilon(1S)} < 15$ GeV/c and $2.0 < y^{\Upsilon(1S)} < 4.5$ is measured to be

$$(20.7 \pm 5.7 \pm 2.1^{+2.7 \pm 2.7}_{-3.4})\%,$$

where the first uncertainty is statistical, the second is systematic and the last gives the range of the result due to the unknown polarization of $\Upsilon(1S)$ and $\chi_b(1P)$ mesons.

This result can be compared with the CDF measurement of $(27.1 \pm 6.9 \pm 4.4)\%$ [11], obtained in pp collisions at $\sqrt{s} = 1.8$ TeV in the kinematic range $p_T^{\Upsilon(1S)} > 8$ GeV/c and
Figure 3: Fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for different $p_T^{\Upsilon(1S)}$ bins, assuming production of unpolarized $\Upsilon(1S)$ and $\chi_b(1P)$ mesons, shown with solid circles. The vertical error bars are statistical only. The result determined for the range $6 < p_T < 15$ GeV/c is shown with the horizontal solid line, its statistical uncertainty with the dash-dotted lines, and its total uncertainty (statistical and systematic, including that due to the unknown polarization) with the shaded (light blue) band.

$|\eta^{\Upsilon(1S)}| < 0.7$.

The $\chi_b(1P)$ decays are observed to be a significant source of $\Upsilon(1S)$ mesons in pp collisions. This will need to be taken into account in the interpretation of the measured $\Upsilon(1S)$ production cross-section and polarization.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); CERN; NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS (Romania); MinES of Russia and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.
References

[1] N. Brambilla et al., *Heavy quarkonium: progress, puzzles, and opportunities*, Eur. Phys. J. C71 (2011) 1534, arXiv:1010.5827.

[2] G. T. Bodwin, E. Braaten, and G. P. Lepage, *Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium*, Phys. Rev. D51 (1995) 1125, arXiv:hep-ph/9407339, erratum ibid. D55 (1997) 5853.

[3] LHCb collaboration, R. Aaij et al., *Measurement of J/ψ production in pp collisions at √s = 7 TeV*, Eur. Phys. J. C71 (2011) 1645, arXiv:1103.0423.

[4] LHCb collaboration, R. Aaij et al., *Measurement of ψ(2S) meson production in pp collisions at √s = 7 TeV*, arXiv:1204.1258, to appear in Eur. Phys. J. C.

[5] LHCb collaboration, R. Aaij et al., *Measurement of Υ production in pp collisions at √s = 7 TeV*, Eur. Phys. J. C72 (2012) 2025, arXiv:1202.6579.

[6] CDF collaboration, A. Abulencia et al., *Measurement of σχc2 B(χc2 → J/ψγ)/σχc1 B(χc1 → J/ψγ) in p̅p collisions at √s = 1.96 TeV*, Phys. Rev. Lett. 98 (2007) 232001, arXiv:hep-ex/0703028.

[7] CDF collaboration, F. Abe et al., *Production of J/ψ mesons from χc meson decays in p̅p collisions at √s = 1.8 TeV*, Phys. Rev. Lett. 79 (1997) 578.

[8] HERA-B collaboration, I. Abt et al., *Production of the charmonium states χc1 and χc2 in proton nucleus interactions at √s = 41.6 GeV*, Phys. Rev. D79 (2009) 012001, arXiv:0807.2167.

[9] LHCb collaboration, R. Aaij et al., *Measurement of the cross-section ratio σ(χc2)/σ(χc1) for prompt χc production at √s = 7 TeV*, Phys. Lett. B 714 (2012) 215, arXiv:1202.1080.

[10] LHCb collaboration, R. Aaij et al., *Measurement of the ratio of prompt χc to J/ψ production in pp collisions at √s = 7 TeV*, arXiv:1204.1462.

[11] CDF collaboration, T. Affolder et al., *Production of Y(1S) mesons from χb decays in p̅p collisions at √s = 1.8 TeV*, Phys. Rev. Lett. 84 (2000) 2094, arXiv:hep-ex/9910025.

[12] ATLAS collaboration, G. Aad et al., *Observation of a new χb state in radiative transitions to Y(1S) and Y(2S) at ATLAS*, Phys. Rev. Lett. 108 (2012) 152001, arXiv:1112.5154.

[13] D0 collaboration, V. Abazov et al., *Observation of a narrow mass state decaying into Y(1S) + γ in p̅p collisions at √s = 1.96 TeV*, arXiv:1203.6034.
[14] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001.

[15] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[16] LHCb collaboration, R. Aaij et al., Evidence for the decay $B^0 \rightarrow J/\psi\omega$ and measurement of the relative branching fractions of B^0_s meson decays to $J/\psi\eta$ and $J/\psi\eta'$, arXiv:1210.2631.

[17] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[18] I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.

[19] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.

[20] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[21] GEANT4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; GEANT4 collaboration, S. Agostinelli et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[22] M. Clemencic et al., The LHCb simulation application, GAUSS: design, evolution and experience, J. of Phys. : Conf. Ser. 331 (2011) 032023.

[23] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.