Short time regularity of Navier-Stokes flows with locally L^3 initial data and applications

Kyungkeun Kang∗ Hideyuki Miura† Tai-Peng Tsai‡

Abstract

We prove short time regularity of suitable weak solutions of 3D incompressible Navier-Stokes equations near a point where the initial data is locally in L^3. The result is applied to the regularity problems of solutions with uniformly small local L^3 norms, and of forward discretely self-similar solutions.

Keywords: Navier-Stokes equations, regularity, Herz space, discretely self-similar.

Mathematics Subject Classification (2010): 35Q30, 76D05, 35D30, 35B65

1 Introduction

The Navier-Stokes equations describe the evolution of a viscous incompressible fluid’s velocity field v and its associated scalar pressure π. They are required to satisfy

$$\partial_t v - \Delta v + v \cdot \nabla v + \nabla \pi = 0, \quad \nabla \cdot v = 0,$$

in the sense of distributions. For our purposes, (NS) is applied on $\mathbb{R}^3 \times (0, \infty)$ and v evolves from a prescribed, divergence free initial data $v_0 : \mathbb{R}^3 \to \mathbb{R}^3$. Solutions to (NS) satisfy a natural scaling: if v satisfies (NS), then for any $\lambda > 0$

$$v^\lambda(x, t) = \lambda v(\lambda x, \lambda^2 t),$$

is also a solution with pressure

$$\pi^\lambda(x, t) = \lambda^2 \pi(\lambda x, \lambda^2 t),$$

and initial data

$$v_0^\lambda(x) = \lambda v_0(\lambda x).$$

A solution is called self-similar (SS) if $v^\lambda(x, t) = v(x, t)$ for all $\lambda > 0$ and is discretely self-similar with factor λ (i.e. v is λ-DSS) if this scaling invariance holds for a given $\lambda > 1$. Similarly, v_0 is self-similar (a.k.a. (-1)-homogeneous) if $v_0(x) = \lambda v_0(\lambda x)$ for all $\lambda > 0$ or λ-DSS if this holds for a given $\lambda > 1$. These solutions can be either forward or backward if they are defined on $\mathbb{R}^3 \times (0, \infty)$ or $\mathbb{R}^3 \times (-\infty, 0)$ respectively. In this paper we work exclusively with forward solutions and omit the qualifier “forward”.

∗Department of Mathematics, Yonsei University, Seoul 120-749, South Korea. Email: kkang@yonsei.ac.kr
†Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan. Email: miura@is.titech.ac.jp
‡Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada. Email: ttsai@math.ubc.ca
Self-similar solutions are interesting in a variety of contexts as candidates for ill-posedness or finite time blow-up of solutions to the 3D Navier-Stokes equations (see [11, 15, 16, 24, 30, 31] and the discussion in [2]). Forward self-similar solutions are compelling candidates for non-uniqueness [16, 11]. Until recently, the existence of forward self-similar solutions was only known for small data (see the references in [2]). Such solutions are necessarily unique. In [15], Jia and Šverák constructed forward self-similar solutions for large data where the data is assumed to be Hölder continuous away from the origin. This result has been generalized in a number of directions by a variety of authors [2, 3, 4, 5, 7, 21, 23, 32]; see also the survey [17].

The motivating problem for this paper is the following question: It is shown in Tsai [32] that, if a λ-DSS initial data $v_0 \in C^0_{\text{loc}}(\mathbb{R}^3 \setminus \{0\})$, $0 < \alpha < 1$, with $M = \|v_0\|_{C^0(B_2 \setminus B_1)} < \infty$, and if $\lambda - 1 \leq c_1(M)$ for some sufficiently small positive constant c_1 depending on M, then there is a λ-DSS solution v with initial data v_0 such that v is regular, that is, $v \in L^\infty_{\text{loc}}(\mathbb{R}^4)$. The question is: What if we weaken the assumption of v_0 so that v_0 is in $L^{3,\infty}(\mathbb{R}^3)$ (weak L^3)? Note that for $v_0 \in L^{3,\infty}(\mathbb{R}^3)$ that is λ-DSS and divergence free, Bradshaw and Tsai [2] constructs at least one λ-DSS local Leray solution, based on a weak solution approach. Thus regularity cannot be obtained as a by-product of the existence proof, and one needs to prove the regularity of any such solutions if $\lambda - 1$ is sufficiently small.

Motivated by this problem, we need to study solutions whose initial data is locally in L^3, as it is also shown in [2] that, when v_0 is λ-DSS, then $v_0 \in L^{3,\infty}(\mathbb{R}^3)$ if and only if $v_0 \in L^3(B_\lambda \setminus B_1)$. The following local theorem is our first main result.

Theorem 1.1. There are positive constants ϵ_0, C_1 such that the following holds. For any $M > 0$, there exist $T_1 = T_1(M) \in (0, 1)$ such that, if (v, π) is any suitable weak solution of the Navier-Stokes equations (NS) in $B_1 \times (0, T_1)$ with initial data v_0,

$$\|v_0\|_{L^3(B_1)} \leq \epsilon_0,$$

and

$$\|v\|_{L^\infty_t L^3_x \cap L^4_t H^1_x(\mathbb{R}^3 \times (0, T_1))} + \|\pi\|_{L^3_t L^{3/2}_x(\mathbb{R}^3 \times (0, T_1))} \leq M,$$

then v is regular in $B_{1/4} \times (0, T_1)$ with

$$|v(x, t)| \leq \frac{C_1}{\sqrt{t}}, \quad \text{in} \quad B_{1/4} \times (0, T_1),$$

and

$$\sup_{\frac{1}{r} \in (0, T_1)} \sup_{0 < r < \infty} \frac{1}{r^2} \int_{Q_{z_0, r} \cap B_1 \times (0, T_1)} |v|^3 \, dz \leq 1.$$

We can choose $T_1(M) = \epsilon(1 + M)^{-6}$ for some sufficiently small ϵ independent of M.

Above, we define the parabolic cylinder by $Q_{z_0, r} = B_r(x_0) \times (t_0 - r^2, t_0)$ for $z_0 = (x_0, t_0)$.

Comments for Theorem 1.1:

1. Our result holds for locally (in space) defined suitable weak solutions. In particular, no boundary condition is assumed on $\partial B_1 \times (0, T_1)$.

2. The quantities bounded by M in (1.5) both have dimension 1 in the sense of [6]. This is convenient for the tracking of constants in Corollary 1.2.
3. It should be noted that the constant C_1 is independent of M. Intuitively, the nonlinear term has no effect before $T_1 = T_1(M)$, and hence the solution behaves like a linear solution, and its size is given by the initial data.

4. The boundedness of π in $L^3_t L^{3/2}_x$ is natural for the Leray-Hopf weak solutions defined in \mathbb{R}^3, as π is given by $\pi = R_i R_j (v_i v_j)$, where $R_j = (-\Delta)^{-1/2} \partial_j$ is the Riesz transform, and

$$\|\pi\|_{L^3_t L^{3/2}_x(\mathbb{R}^3 \times (0,T))} \leq C\|v\|^2_{L^4_t L^2_x(\mathbb{R}^3 \times (0,T))} \leq C\|v\|^2_{L^\infty L^2 \cap L^2 \dot{H}^1(\mathbb{R}^3 \times (0,T))}.$$

We will prove the local-in-space pressure bound for local energy solutions in Lemma 3.5.

5. The assumption $\|\pi\|_{L^3_t L^{3/2}_x(B_1 \times (0,T))} \leq M$ can be replaced by, e.g., $\|\pi\|_{L^q(\mathbb{R}^3)} \leq M$ for some $q \in (3/2, 5/3)$. It ensures that $\int_0^T \int_{B_1} |v|^3 + |p|^{3/2}$ is small for sufficiently small $T = T(M)$; thus $q = 3/2$ is not allowed. Our choice of exponents is to maximize the time exponent, so that $T_1(M) = \epsilon (1 + M)^{-m}$ has the smallest $m = 6$.

6. Theorem 1.1 is an extension of Jia-Sverak [15, Theorem 3.1], in which the initial data is assumed in $L^m(B_1)$, $m > 3$. This is similar to the extension of the mild solution theory for the scale subcritical data $v_0 \in L^m(\mathbb{R}^3)$, $m > 3$, of Fabes-Jones-Rivi`ere [8] to the critical data $v_0 \in L^3(\mathbb{R}^3)$ of Weissler [34], Giga-Miyakawa [10], Kato [19] and Giga [9].

Our first set of applications (Corollaries 1.2-1.4) of Theorem 1.1 is concerned with local energy solutions defined globally in \mathbb{R}^3, which are weak solutions of (NS) in $\mathbb{R}^3 \times (0, \infty)$ that are uniformly in time bounded in L^2_{uloc}, and satisfying the local energy inequality. See Section 3 for their definitions and properties. In order to state our result, we introduce the uniformly local L^q spaces. For $q \in [1, \infty)$, we say $f \in L^q_{uloc}$ if $f \in L^q_{uloc}(\mathbb{R}^3)$ and

$$\|f\|_{L^q_{uloc}} = \sup_{x \in \mathbb{R}^3} \|f\|_{L^q(B_1(x))} < \infty. \quad (1.8)$$

We also denote for $\rho > 0$

$$\|f\|_{L^q_{uloc,\rho}} = \sup_{x \in \mathbb{R}^3} \|f\|_{L^q(B_\rho(x))}.$$

Let E^q be the closure of $C_c^\infty(\mathbb{R}^3)$ in L^q_{uloc}-norm. Equivalently, E^q consists of those $f \in L^q_{uloc}$ with $\lim_{|x| \to \infty} \|f\|_{L^q(B_1(x))} = 0$, see [22].

In the following corollary we assume that the initial data belongs to $L^3(B_\delta) \cap E^2$.

Corollary 1.2. Let ϵ_0 and C_1 be the constants from Theorem 1.1. Suppose v is a local Leray solution of the Navier-Stokes equations (NS) with initial data $v_0 \in E^2$ and there is $\delta \in (0, 1]$ such that

$$\|v_0\|_{L^3(B_\delta)} \leq \epsilon_0. \quad (1.9)$$

Then, there exist $T_2 = T_2(\delta, \|v_0\|_{L^2_{uloc}}) > 0$, such that v is regular in $B_{\delta/4} \times (0, T_2)$ with

$$|v(x, t)| \leq C_1 \sqrt{t}, \quad \text{in} \quad B_{\delta/4} \times (0, T_2),$$

3
and
\[\sup_{z_0 \in B_{\delta/4} \times (0,T_2)} \sup_{0 < r < \infty} \frac{1}{r^2} \int_{Q_{z_0,r} \cap [B_{\delta/4} \times (0,T_2)]} |v|^3 \, dz \leq 1.\]

Furthermore, we can take \(T_2 = T_1(M)\delta^2\) with \(M = \frac{C}{\delta} \sup_{x_0} \int_{B_{\delta}(x_0)} |v_0|^2\).

In Corollary 1.3 we assume the initial data \(v_0 \in L^3_{uloc}(\mathbb{R}^3) \cap E^2\).

Corollary 1.3. Let \(\epsilon_0\) be the small constant from Theorem 1.1. Suppose \(v\) is a local Leray solution of the Navier-Stokes equations (NS) with initial data \(v_0 \in L^3_{uloc} \cap E^2\) and there is \(\delta \in (0, \infty)\) such that
\[\sup_{x_0 \in \mathbb{R}^3} \int_{B_{\delta}(x_0)} |v_0|^3 \leq \epsilon_0^3.\] (1.10)

Then, there is \(T > 0\) such that \(v\) is regular in \(\mathbb{R}^3 \times (0,T)\) with
\[|v(x,t)| \leq \frac{C}{\sqrt{t}}, \quad (0 < t < T).\] (1.11)

This result is similar to Maekawa-Terasawa [28, Theorem 1.1 (iii)]. Indeed, [28] constructs local in time mild solutions in the intersection of \(L^\infty(0,T;L^3_{uloc})\) and (1.11), for \(v_0 \in L^3_{uloc}\) that satisfies the smallness condition (1.10). They have \(T = C\delta^2 \|u\|^{-4}_{L^3_{uloc,\delta}}\), and do not assume spatial decay \(v_0 \in E^2\).

In contrast, Corollary 1.3 is a regularity theorem, assuming further the spatial decay of \(v_0\).

In Corollary 1.4 we consider general initial data \(v_0 \in E^2\). Let
\[\rho(x;v_0) = \sup \left\{ r > 0 : v_0 \in L^3(B_r(x)), \int_{B_r(x)} |v_0|^3 \leq \epsilon_0^3 \right\}.\]

We let \(\rho(x;v_0) = 0\) if such \(r\) does not exist.

Corollary 1.4. Suppose \(v_0 \in E^2\) and \(\text{div} \ v_0 = 0\). Let \(\bar{\rho}(x) = \min(\rho(x;v_0),1) \geq 0\), and \(N_r = \sup_{x_0 \in \mathbb{R}^3} \frac{1}{4} \int_{B_r(x_0)} |v_0|^2 \, dx\). Let
\[T(x) = \epsilon(1 + N_{\bar{\rho}(x)})^{-6} \bar{\rho}(x)^2 \geq 0,\]
where the constant \(\epsilon > 0\) is sufficiently small. Then, any local Leray solution \(v\) of the Navier-Stokes equations (NS) with initial data \(v_0\) is regular in the region
\[\Omega = \{(x,t) : x \in \mathbb{R}^3, \ 0 < t < T(x)\},\]
and
\[|v(x,t)| \leq \frac{C_1}{\sqrt{t}} \quad \text{in} \ \Omega.\]

Of course this corollary is interesting only near those \(x\) with \(\rho(x;v_0) > 0\). It is a consequence of Corollary 1.2.

Our second set of applications is for solutions with initial data in the Herz spaces. These spaces contain self-similar and DSS solutions, and are of particular interest to the study of DSS solutions since they are weighted spaces with a particular choice of centre. We now
recall the definitions and basic properties of Herz spaces \cite{13, 29, 33}. Let \(A_k = \{ x \in \mathbb{R}^n : 2^{k-1} \leq |x| < 2^k \} \). For \(n \in \mathbb{N}, s \in \mathbb{R} \) and \(p, q \in (0, \infty) \), the \textit{homogeneous Herz space} \(\dot{K}^s_{p,q}(\mathbb{R}^n) \) is the space of functions \(f \in L^p_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) \) with finite norm

\[
\|f\|_{\dot{K}^s_{p,q}} = \begin{cases}
\left(\sum_{k \in \mathbb{Z}} 2^{ksq} \|f\|_{L^p(A_k)}^q \right)^{1/q} & \text{if } q < \infty, \\
\sup_{k \in \mathbb{Z}} 2^{ks} \|f\|_{L^p(A_k)} & \text{if } q = \infty.
\end{cases}
\]

The \textit{weak Herz space} \(W\dot{K}^s_{p,q}(\mathbb{R}^n) \) are defined similarly, with \(L^p(A_k) \)-norm in the definition replaced by its weak version, \(L^{p,\infty}(A_k) \)-norm.

In what follows we take \(q = \infty \), which is most suitable for our purpose. In this case, \(\dot{K}^s_{p,\infty} \)-norm is equivalent to

\[
\|f\|_{s,p} = \sup_{x \neq 0} \left\{ |x|^s \cdot \|f\|_{L^p(B_{|x|}(x))} \right\}.
\]

Also note \(\dot{K}^s_{p,\infty} \subseteq \dot{B}^{-s}_{p,\infty} \) if \(1 < p < \infty \) and \(0 < s < n(1 - 1/p) \), see \cite[Theorem 1.6 (ii)]{33}.

For \(n = 3 \), let

\[
K_p := \dot{K}^{1-3/p}_{p,\infty}, \quad p \geq 3.
\]

It is invariant under the scaling \(f(x) \to \lambda f(\lambda x) \), i.e., (1.3), the natural scaling of stationary \textit{(NS)} and the following relation holds

\[
K_p \subset \dot{B}^{3/p-1}_{p,\infty} \subset BMO^{-1} \quad (3 < p < \infty).
\]

The space \(K_p \) contains those DSS in \(L^p_{\text{loc}}(\mathbb{R}^3 \setminus \{0\}) \), and thus \(K_3 \) contains all initial data considered in \cite{2, 3}.

We are interested in the Herz spaces because they seem to be natural spaces for DSS solutions of \textit{(NS)}. The existence problem of mild solutions of \textit{(NS)} in the Herz spaces has been studied extensively by Tsutsumi \cite{33}. He proves short time existence for large data in subcritical weak Herz spaces \(W\dot{K}^s_{p,\infty}(\mathbb{R}^3) \), \(0 \leq s < 1 - 3/p \), and global existence for small data in the critical weak Herz space \(W\dot{K}^0_{3,\infty}(\mathbb{R}^3) \).

Theorem 1.5. Let \(\epsilon_0 \) and \(C_1 \) be the constants from Theorem 1.1. Let \(v \) be a local Leray solution of the Navier-Stokes equations \textit{(NS)} with initial data \(v_0 \in K_3 \cap E^2 \). Assume further that there is \(\mu \in (0, 1) \) such that

\[
\sup_{0 \neq x \in \mathbb{R}^3} \int_{B_{|x|}(x)} |v_0|^3 \leq \epsilon_0^3. \tag{1.12}
\]

Then there exist \(\sigma_1 = \sigma_1(\|v_0\|_{K_3}) > 0 \), \(C_2 = C_2(\|v_0\|_{K_3}) \) and \(\sigma_2 = \sigma_2(\mu, \|v_0\|_{K_3}) \in (0, \sigma_1) \), such that, for any \(R > 0 \),

\[
\sup_x \frac{1}{R} \int_{B_R(x)} |v|^2 dx + \sup_x \frac{1}{R} \int_0^{\sigma_1 R^2} \int_{B_R(x)} |\nabla v|^2 dx dt \leq C_2, \tag{1.13}
\]

and

\[
|v(x, t)| \leq \frac{C_1}{\sqrt{t}}, \quad \text{for} \quad 0 < t < \sigma_2 |x|^2. \tag{1.14}
\]
Comments for Theorem 1.5:

1. Estimate (1.14) gives a regularity estimate for the solution below the paraboloid \(t = \sigma_2|x|^2 \), i.e., in the region bounded by \(t = \sigma_2|x|^2 \) and \(t = 0 \).

2. Note that \(K_3 \subset L^2_{uloc} \), and (1.13) is a property for all local Leray solutions, see Section 3. However, We still need to assume \(v_0 \in E^2 \), since \(K_3 \) is not a subset of \(E^2 \) as the following example shows

\[
v_0(x) = \sum_{k=1}^{\infty} \zeta(x - 2^k e_1)
\]

where \(\zeta \) is a smooth cut-off function supported in \(B_1 \) and \(e_1 = (1,0,0) \).

Corollary 1.6. Let \(v \) be a local Leray solution of the Navier-Stokes equations (NS) with initial data \(v_0 \in K_p, \ p > 3 \). Then, the same conclusion of Theorem 1.5 is true, with the constants depending on \(\| v_0 \|_{K_p} \).

This corollary is a direct consequence of Theorem 1.5 since \(K_p \subset K_3 \) and (1.12) follows for \(\mu = C(\varepsilon_0/\| v_0 \|_{K_p})^{p/(p-3)} \) since

\[
\| v_0 \|_{L^3(B_{\mu|x|}(x))} \leq (C\mu|x|)^{1-3/p} \| v_0 \|_{L^p(B_{\mu|x|}(x))} \leq C\delta^{1-3/p} \| v_0 \|_{K_p}.
\]

Corollary 1.7. Let \(\lambda > 1 \) and \(v \) be a \(\lambda \)-DSS local Leray solution of the Navier-Stokes equations (NS) with \(\lambda \)-DSS initial data \(v_0 \in L^{3,\infty}(\mathbb{R}^3) \). Then \(v_0 \in K_3 \), (1.12) holds for some \(\mu > 0 \), and the same conclusion of Theorem 1.5 is true.

Furthermore, there exists \(\lambda_* = \lambda_*(\mu) \in (1,2) \) such that if \(1 < \lambda < \lambda_* \), then \(v \) is regular at any \((x,t) \in \mathbb{R}^3 \times \mathbb{R}^+ \), with

\[
|v(x,t)| \leq \frac{C}{\sqrt{t}} \text{ in } \mathbb{R}^3 \times \mathbb{R}^+.
\]

This corollary answers our motivating problem.

The rest of the paper is organized as follows. In Section 2 we recall auxiliary results, including the theorems of Caffarelli-Kohn-Nirenberg [6], Kato [19], and the localization of divergence free vector fields. In Section 3 we discuss various definitions and properties of local energy solutions including a priori estimates for the pressure. In Section 4 we prove the interior regularity result for the perturbed Stokes equation. Then we address the local analysis of the Navier-Stokes equations and the proof of theorem 1.1 in Section 5. In Section 6 we consider local energy solutions with local \(L^3 \) data, and prove Corollaries 1.2-1.4. In Section 7 we discuss solutions with data in Herz spaces, and prove Theorem 1.5 and Corollaries 1.6-1.7. In Section 8 Appendix 1, we prove properties of local Leray solutions stated in Section 3.

We thank Professors Barker and Prange who kindly sent us their preprint [1] while we are finishing this paper. The preprint [1] contains a result similar to our Corollary 1.2 for local energy weak solutions.
2 Preliminaries

We first recall the following rescaled version of Caffarelli-Kohn-Nirenberg [6, Proposition 1]. It is formulated in the present form in [30, 25], and is the basis for many regularity criteria, see e.g. in [12]. For a suitable weak solution \((v, \pi)\), let

\[
C(r) = \frac{1}{r^2} \int_{Q_r} |v|^3 \, dx \, dt , \quad D(r) = \frac{1}{r^2} \int_{Q_r} |\pi|^{3/2} \, dx \, dt .
\]

Lemma 2.1. There are absolute constants \(\varepsilon_{CKN}\) and \(C_{CKN} > 0\) with the following property. Suppose \((v, \pi)\) is a suitable weak solution of NS with zero force in \(Q_{r_1}\), \(r_1 > 0\), with

\[
C(r_1) + D(r_1) \leq \varepsilon_{CKN},
\]

then \(v \in L^\infty(Q_{r_1/2})\) and

\[
\|v\|_{L^\infty(Q_{r_1/2})} \leq \frac{C_{CKN}}{r_1} .
\]

(2.1)

We next recall the results due to Kato [19] and Giga [9].

Lemma 2.2. There is \(\varepsilon_2 > 0\) such that if \(v_0 \in L^2_\sigma(\mathbb{R}^3)\) with \(\varepsilon = \|v_0\|_2 \leq \varepsilon_2\), then there is a unique mild solution \(v \in L^\infty(0, \infty; L^3(\mathbb{R}^3))\) of (NS) with zero force and initial data \(v_0\) that satisfies

\[
\|v\|_{L^\infty L^3(\mathbb{R}^3)} + \sup_{t > 0} t^{1/2} \|v(t)\|_{L^\infty(\mathbb{R}^3)} \leq C \varepsilon .
\]

(2.2)

We will need the following localization lemma for divergence free vector fields.

Lemma 2.3 (localization). Let \(1 < p < \infty\) and \(0 < r < R\). There is a linear map \(\Phi\) from \(V = \{v \in L^p(B_R; \mathbb{R}^3) : \operatorname{div} v = 0\}\) into itself, and a constant \(C = C(p, r/R) > 0\) such that for \(v \in V\) and \(a = \Phi v \in V\), we have \(\operatorname{supp} a \subset B_{\frac{3}{2}(r+R)}\), \(v = a\) in \(B_r\), and \(\|a\|_{L^p(B_R)} \leq C \|v\|_{L^p(B_R)}\).

Proof. We may assume \(R = 1\), since the general case follows by scaling \(v(x) \rightarrow \tilde{v}(y) = v(Ry), \ x \in B_R\) and \(y \in B_1\). Fix \(\chi \in C_c^\infty(\mathbb{R}^3)\) with \(\chi = 1\) in \(B_r\) and \(\chi(x) = 0\) if \(|x| \geq \frac{1}{2}(r+1)\). We will take

\[
a = \chi v - b,
\]

where the correction \(b\) satisfies

\[
\text{div} b = \nabla \chi \cdot v , \quad \operatorname{supp} b \subset \bar{A}, \quad A := B_{\frac{3}{2}(r+1)} \setminus B_r .
\]

It can be defined by \(b = \Pi(\nabla \chi \cdot v)\), where \(\Pi\) is a Bogovskii-map from \(L^p_0(A)\) to \(W^{1,p}_0(A)\), where

\[
L^p_0(A) = \{ f \in L^p(A) : \int_A f = 0 \} ,
\]

such that \(\text{div} \Pi f = f\) and \(\|\Pi f\|_{W^{1,p}_0(A)} \leq C \|f\|_{L^p_0(A)}\). Since \(\int_A \nabla \chi \cdot v = 0\), \(b\) is defined and we have \(\|b\|_p \leq C \|\nabla b\|_p \leq C \|v\|_p\). Thus \(\|a\|_p \leq C \|v\|_p\). \(\Box\)

We will also recall the following lemma, which is proved by Jia-Sverak [15, Lemma 2.1].
Lemma 2.4. Let \(f \) be a nonnegative nondecreasing bounded function defined on \([0,1]\) with the following property: for some constants \(0 < \sigma < 1, 0 < \theta < 1, M > 0, \beta > 0 \), we have

\[
f(s) \leq \theta f(t) + \frac{M}{(t-s)^\beta}, \quad \sigma < s < t < 1.
\]

Then,

\[
\sup_{s \in [0,\sigma]} f(s) \leq C(\sigma, \theta, \beta)M,
\]

for some positive constant \(C \) depending only on \(\sigma, \theta, \beta \).

3 Local energy solutions and Leray solutions

In this section we discuss the various definitions and properties of local energy solutions, or local Leray solutions, of \((\text{NS})\). We will also show a slightly better time integrality of the pressure.

The class of local Leray solutions was introduced by Lemarié-Rieusset in [22] to provide a local analogue of Leray’s weak solutions [24]. He constructed global in time local Leray solutions if \(v_0 \) belongs to \(E^2 \). (Recall \(L^q_{uloc} \), \(L^q_{uloc,\rho} \), and \(E^q \) are defined in the paragraph after (1.8).) See Kikuchi-Seregin [20] for another construction which treats the pressure carefully. Note that [22], [20] and Jia-Sverak [14, 15] contain alternative definitions of local Leray solutions. As some key properties of the solutions are not explicitly included in the definition of [22], we will discuss only the relation of local energy solutions of [20], and local Leray solutions of [14, 15].

Definition 3.1 (Local energy solutions [20]). A vector field \(v \in L^2_{uloc}(\mathbb{R}^3 \times [0,\infty)) \) is a local energy solution to \((\text{NS})\) with divergence free initial data \(v_0 \in E^2 \) if:

1. for some \(\pi \in L^{3/2}_{uloc}(\mathbb{R}^3 \times [0,\infty)) \), the pair \((v, \pi)\) is a distributional solution to \((\text{NS})\),

2. for any \(R > 0 \),

\[
\text{esssup} \sup_{0 \leq t < R} \sup_{x_0 \in \mathbb{R}^3} \int_{B_R(x_0)} |v(x,t)|^2 \, dx + \sup_{x_0 \in \mathbb{R}^3} \int_0^R \int_{B_R(x_0)} |\nabla v(x,t)|^2 \, dx \, dt < \infty, \quad (3.1)
\]

3. for all compact subsets \(K \) of \(\mathbb{R}^3 \) we have \(v(t) \to v_0 \) in \(L^2(K) \) as \(t \to 0^+ \),

4. \(v \) is suitable in the sense of Caffarelli-Kohn-Nirenberg, i.e., for all cylinders \(Q \) compactly supported in \(\mathbb{R}^3 \times (0,\infty) \) and all non-negative \(\phi \in C^\infty_c(Q) \), we have

\[
\int |v|^2 \phi(t) \, dx + 2 \int_0^t \int |\nabla v|^2 \phi \, dx \, dt \\
\leq \int_0^t \int |v|^2 (\partial_t \phi + \Delta \phi) \, dx \, dt + \int_0^t \int (|v|^2 + 2\pi)(v \cdot \nabla \phi) \, dx \, dt. \quad (3.2)
\]

5. for every \(x_0 \in \mathbb{R}^3 \), there exists \(c_{x_0} \in L^{3/2}(0,T) \) such that

\[
\pi(x,t) - c_{x_0}(t) = \frac{1}{3} |v(x,t)|^2 + \int_{B_2(x_0)} K(x-y) : v(y,t) \otimes v(y,t) \, dy \\
+ \int_{\mathbb{R}^3 \setminus B_2(x_0)} (K(x-y) - K(x_0-y)) : v(y,t) \otimes v(y,t) \, dy \quad (3.3)
\]

in \(L^{3/2}(0,T; L^{3/2}(B_{3/2}(x_0)))) \), where \(K(x) = \text{p.v.} \nabla^2 (\frac{1}{4\pi|x|}) \).
6. for any compact supported \(w \in L^2(\mathbb{R}^3) \),

\[
\text{the function } t \mapsto \int_{\mathbb{R}^3} v(x, t) \cdot w(x) \, dx \text{ is continuous on } [0, \infty). \tag{3.4}
\]

Property 6 in Definition 3.1 is rather mild: Vector fields satisfying Properties 1-5 can be redefined at a subset of time of zero measure so that Property 6 is also satisfied, similar to Leray-Hopf weak solutions.

For any domain \(\Omega \subset \mathbb{R}^3 \), we say \((v, \pi)\) is a suitable weak solution in \(\Omega \times (0, T) \) if it satisfies \((\text{NS})\) in the sense of distributions in \(\Omega \times (0, T) \),

\[
v \in L^\infty L^2(Q) \cap L^2 \dot{H}^1(Q), \quad \pi \in L^{3/2}(Q),
\]

and local energy inequality (3.2) for all cylinders \(Q \) compactly supported in \(\Omega \times (0, T) \) and all non-negative \(\phi \in C^\infty_c(Q) \).

Definition 3.2 (local Leray solutions of [14, 15]). A vector field \(v \in L^2_{\text{loc}}(\mathbb{R}^3 \times [0, \infty)) \) is a local Leray solution to \((\text{NS})\) with divergence free initial data \(v_0 \in E^2 \) if properties 1-4 of Definition 3.1 are satisfied, while properties 5-6 are replaced by

7. for any \(R > 0 \),

\[
\lim_{|x_0| \to \infty} \int_0^{|x_0|} \int_{B_R(x_0)} |v(x, t)|^2 \, dx \, dt = 0, \tag{3.5}
\]

On one hand, Definition 3.1 requires the pressure decomposition formula (3.3) in \(B_1(x_0) \) for every \(x_0 \). On the other hand, in Definition 3.2, the formula (3.3) is replaced by the decay condition (3.5) at spatial infinity. Jia and Šverák claim in [14, 15] that, if \(v \) exhibits this decay, then the pressure decomposition formula (3.3) is valid. Since the decay property is easier to verify for a given solution, this justifies using it in place of the explicit pressure formula (3.3). Since [14, 15] do not provide a proof and we need a better estimate for the pressure, we will prove the equivalence of the two definitions, using ideas contained in a recent preprint of Maekawa, Prange and the second author [27] on the construction of local energy solutions in the half space.

The following lemma from [20] shows that a local energy solution is also a local Leray solution.

Lemma 3.3 ([20], Lemma 2.2). Let \(\chi_R(x) = \chi(\frac{x}{R}) \) and \(\chi(x) \) be a smooth cut-off function in \(\mathbb{R}^3 \) so that \(\chi(x) = 0 \) for \(|x| < 1 \) and \(\chi(x) = 1 \) for \(|x| > 2 \). A local energy solution \((v, \pi)\) with divergence free initial data \(v_0 \in E^2 \) in the sense of Definition 3.1 has the decay estimate

\[
\begin{aligned}
\text{ess sup}_{0 < t < T} \alpha_R(t) + \beta_R(T) + \gamma_R^2(T) + \delta_R^4(T) &\leq C(T, A) \left\{ \left\| \chi_R v_0 \right\|_{L^2_{\text{loc}}}^2 + R^{-2/3} \right\}, \tag{3.6}
\end{aligned}
\]

for any \(T \in (0, \infty) \) and \(R \in (1, \infty) \), where \(A = \text{ess sup}_{0 < t < T} \alpha_0(t) + \beta_0(T) + \gamma_0^2(T) \) and

\[
\begin{aligned}
\alpha_R(t) &= \left\| \chi_R v(\cdot, t) \right\|_{L^2_{\text{loc}}}^2, \quad \beta_R(t) = \sup_{x_0 \in \mathbb{R}^3} \int_0^t \int_{B_1(x_0)} |\chi_R \nabla v|^2 \, dx \, dt, \\
\gamma_R(t) &= \sup_{x_0 \in \mathbb{R}^3} \int_0^t \int_{B_1(x_0)} |\chi_R v|^2 \, dx \, dt, \quad \delta_R(t) = \sup_{x_0 \in \mathbb{R}^3} \int_0^t \int_{B_1(x_0)} |\chi_R (p - c_{x_0})|^{3/2} \, dx \, dt.
\end{aligned}
\]

In particular, a local energy solution \((v, \pi)\) to \((\text{NS})\) satisfies (3.5) and is a local Leray solution to \((\text{NS})\) in the sense of Definition 3.2.
It is standard to see that A is finite by using properties 2–5 and the Sobolev embedding.

The following lemma shows that a local Leray solution is also a local energy solution. It is stated in [14, 15] without a proof. We will give a proof in Appendix 1 (§8) for the sake of completeness.

Lemma 3.4 (pressure decomposition). Suppose (v, π) is a local Leray solution to (NS) with divergence free initial data $v_0 \in E^2$ in the sense of Definition 3.2. For any $x_0 \in \mathbb{R}^3$, $r > 0$, and $T > 0$, we have for $(x, t) \in Q := B_r(x_0) \times (0, T)$,

$$
\pi(x, t) = \pi_{loc}(x, t) + \pi_{far}(x, t) + c_{x_0,r}(t)
$$

for some function $c_{x_0,r}(t) \in L^{3/2}(0,T)$. In particular, (v, π) is a local energy solution to (NS) with initial data v_0 in the sense of Definition 3.1.

The decomposition (3.7) is stronger than (3.3) since the radius r is arbitrary.

We do not have a bound of $c_{x_0,r}$, which is not needed anyway, since the quantity in the equation (NS) is $\nabla \pi$. Formally $c_{x_0,r}(t) = \int_{\mathbb{R}^3 \backslash B_{2r}(x)} K(x-y)(v \otimes v)(y,t) \, dy$, but the integral does not converge.

With both Lemmas 3.3 and 3.4, we can treat local energy solutions and local Leray solutions as the same.

The following lemma is the a priori bounds for the local Leray solutions. In particular the first estimate (3.8) is proved in [14, Lemma 2.2]. We will give a proof in Appendix 1 (§8).

Lemma 3.5 (a priori bounds). Suppose (v, π) is a local Leray solution to (NS) with divergence free initial data $v_0 \in E^2$ and π is decomposed as in Lemma 3.4 in every $B_r(x_0)$. For any $s, q > 1$ with $\frac{2}{s} + \frac{2}{q} = 3$, there exists a positive constant $C(s, q)$ such that

$$
\text{ess sup}_{0 \leq t \leq \sigma^2} \sup_{x_0 \in \mathbb{R}^3} \frac{1}{r} \int_{B_r(x_0)} |v|^2 \, dx + \sup_{x_0 \in \mathbb{R}^3} \frac{1}{r} \int_0^{\sigma^2} \int_{B_r(x_0)} |\nabla v|^2 \, dx \, dt < C_0 N_r, \tag{3.8}
$$

$$
\sup_{x_0 \in \mathbb{R}^3} \frac{1}{r} \|\pi - c_{x_0,r}(t)\|_{L^s(0,\sigma^2;L^q(B_r(x_0)))} \leq C(s, q) N_r \tag{3.9}
$$

where

$$
N_r = \sup_{x_0 \in \mathbb{R}^3} \frac{1}{r} \int_{B_r(x_0)} |v_0|^2 \, dx, \quad \sigma = \sigma(r) = c_0 \min \left\{ (N_r)^{-2}, 1 \right\},
$$

for universal constants C_0 and $c_0 > 0$.

Note that both estimates are stated as the dimension free form in the sense of [6]. Instead of (3.9), the following is given in [15, (3.6)],

$$
\sup_{x_0 \in \mathbb{R}^3} \frac{1}{r^2} \int_0^{\sigma^2} \int_{B_r(x_0)} |\pi - c_{x_0,r}(t)|^{3/2} \, dx \, dt < C N_r^{3/2}, \tag{3.10}
$$
which is a consequence of (3.9) by Hölder inequality. In [20] and [14, 15], the estimate of $\|\pi - c_{x_0,r}(t)\|$ is only in $L^{3/2}(B_r(x_0) \times (0,T))$. This is however not sufficient for our purpose: We need the exponent for time integration to be larger than $3/2$ for the application to Theorem 1.1. In fact, that $p \in L^{5/3}_{t,x,loc}$ seems to be implicitly used in the proof of [15, Theorem 3.1], as explained below [32, (3.3)]. In the regularity theory for (NS), one can often improve the spatial regularity but not the temporal regularity. Hence it is advantageous to start with a higher exponent for the time integrability.

We end this section with summarizing other fundamental properties proved in [20] for the sake of completeness.

Lemma 3.6 ([20], Theorem 1.4). Suppose (v, π) is a local energy solution to (NS) with divergence free initial data $v_0 \in E^2$. Then $v(t) \in E^2$ for all t, $v(t) \in E^3$ for a.e. t, and

$$\lim_{t \to 0^+} \|v(t) - v_0\|_{L^2_{uloc}} = 0.$$ (3.11)

4 Perturbed Stokes system

The following interior result for the perturbed Stokes system is similar to [15, Lemma 2.2]. Instead of Hölder continuity, we claim L^q-integrability for any finite q under a weaker assumption for the perturbed term. Recall $Q_r = B_r \times (-r^2, 0)$.

Proposition 4.1. For any $q \in [5, \infty)$, there is $\delta_0 = \delta_0(q) > 0$ such that the following hold. For any $M > 0$, if $G \in L^5(Q_1; \mathbb{R}^{3 \times 3})$ with $\|G\|_{L^5(Q_1)} \leq M$, $a \in L^5(Q_1)$ with $\text{div} a = 0$, and $\|a\|_{L^5(Q_1)} \leq \delta_0$, $\xi \in \mathbb{R}^3$, $|\xi| \leq 1$, $u \in L^\infty L^2 \cap L^2 H^1(Q_1)$, $p \in L^{3/2}(Q_1)$,

$$\|u\|_{L^3(Q_1)} + \|p\|_{L^{3/2}(Q_1)} \leq M$$

solve the a-perturbed Stokes equations

$$u_t - \Delta u + (a + \xi) \cdot \nabla u + u \cdot \nabla a + \text{div} G + \nabla p = 0, \quad \text{div} u = 0,$$ (4.1)

in Q_1, then we have

$$u \in L^q(Q_{1/2}), \quad \|u\|_{L^q(Q_{1/2})} \leq C(q) M.$$

Proof of Proposition 4.1. Step 1. Initial bounds and localization.

Bounds. Since this equation is linear, we may assume $M = 1$. Because $a \in L^5$ and u is in energy space, we can prove local energy inequality for the a-perturbed Stokes equations (4.1). Fix $1 - 10^{-10} < \sigma < 1$. By the local energy inequality for (4.1), a calculation similar to that in [15, page 242] shows that, for $\sigma < r_1 < r_2 < 1$,

$$E(r_1) \leq \frac{C}{(r_2 - r_1)^2} + (C \|a\|_{L^5(Q_1)} + \frac{1}{2}) E(r_2),$$

where

$$E(r) = \text{ess sup} \int_{-r^2}^{0} \int_{B_r} \frac{|u|^2}{2} dx + \int_{-r^2}^{0} \int_{B_r} |\nabla u|^2 dxdt.$$

By Lemma 2.4, if $\|a\|_{L^5(Q_1)}$ is sufficiently small, we have $E(\sigma) < C$, i.e.,

$$\|u\|_{L^\infty L^2 \cap L^2 H^1(Q_0)} \leq C.$$
Taking the divergence of (4.1), we get \(p \)-equation
\[-\Delta p = \partial_i \partial_j \tilde{G}_{ij}, \quad \tilde{G}_{ij} = (a + \xi)_i u_j + u_i a_j + G_{ij}.\]

Note that
\[\|\tilde{G}\|_{L^{3/2}L^{18/7}(Q_1)} \lesssim (\|a\|_{L^5} + |\xi|)\|u\|_{L^{15/7}L^{90/17}} + \|G\|_{L^5} \leq C.\]

Hence by the elliptic estimate we have
\[\|p\|_{L^{3/2}((-\sigma^2,0);L^{18/7}(R^3,2))} \leq \|\tilde{G}_{ij}\|_{L^{3/2}L^{18/7}(Q_4)} + \|p\|_{L^{3/2}(Q_1)} \leq C. \tag{4.2}\]

Localization of \(a \). By the Bogovski map, we can solve \(\tilde{a} : \mathbb{R}^3 \times (-1,0) \to \mathbb{R}^3 \) such that
\[\text{div} \tilde{a} = 0, \quad \tilde{a}(x,t) = a(x,t) \quad \text{if } |x| < \sigma, \quad a(x,t) = 0 \quad \text{if } |x| > 1,
\]
\[\|\tilde{a}\|_{L^5(\mathbb{R}^3 \times (-1,0))} \leq C\|a\|_{L^5(Q_1)},\]
for a constant \(C \).

Localization of \(u \). Choose \(\chi_0 \in C_c^\infty(\mathbb{R}^3) \), radial, \(\chi_0 \geq 0 \), \(\chi_0 = 1 \) on \(B_\sigma \), \(\chi_0 = 0 \) on \(B_\sigma^c \). Let \(\chi_k(x) = \chi_0(\sigma^{-k}x) \). Let \(\chi = \chi_2 \). Let
\[w = u\chi - \nabla \eta, \quad \pi = p\chi + \partial_t \eta,\]
where \(\eta \) is the function which satisfies \(\Delta \eta = u \cdot \nabla \chi \) and it is given by
\[\eta(x,t) = \int \frac{1}{4\pi|x-y|} (u \cdot \nabla \chi)(y, t) \, dy.\]

Since \(u \cdot \nabla \chi \) is supported in \(Q_1 \), the Calderon-Zygmund estimate shows
\[\|\nabla^2 \eta\|_{L^{10}_t((-\sigma^2,0);(L^{30/13}_x \cap L^{6/5}_x)(\mathbb{R}^3))} \leq C\|u\|_{L^{10}_t(L^{30/13}_x \cap L^{6/5}_x)(Q_4)} \leq C.\]

By the Sobolev embedding and Riesz potential estimates, we have
\[\|\nabla \eta\|_{L^{10}_t((-\sigma^2,0);(L^{6/5}_x \cap L^2_x)(\mathbb{R}^3))} \leq C, \quad \|\nabla \eta\|_{L^{10/3}_t((-\sigma^2,0);(L^6 \cap L^6)(\mathbb{R}^3))} \leq \|u\|_{L^{10/3}_t(L^6 \cap L^6)(Q_4)} \leq C. \tag{4.3}\]

We also have
\[\|\nabla^2 \eta\|_{L^{10/3}_t((-\sigma^2,0) \times \mathbb{R}^3)} \leq \|u\|_{L^{10/3}_t(Q_4)} \leq C
\]
\[\|\nabla \eta\|_{L^{10/3}_t((-\sigma^2,0);L^{\infty}(\mathbb{R}^3))} \leq \|\nabla^2 \eta\|_{L^{10/3}_t((-\sigma^2,0);L^6(\mathbb{R}^3))} + \|\nabla \eta\|_{L^{10/3}_t} \leq C. \tag{4.4}\]

Therefore from (4.3), we obtain
\[\|w\|_{L^{\infty}_tL^2 \cap L^2 \dot{H}^1((-\sigma^2,0) \times \mathbb{R}^3)} \leq C. \tag{4.5}\]

Moreover, \(w \) satisfies
\[w_t - \Delta w + (\tilde{a} + \xi) \cdot \nabla w + w \cdot \nabla \tilde{a} + \nabla \pi = f_0 + \nabla F, \quad \text{div } w = 0 \quad \text{in } \mathbb{R}^3 \times (-1,0), \tag{4.6}\]
where
\[f_0 = u \Delta \chi + [(\tilde{a} + \xi) \cdot \nabla \chi]u + [u \cdot \nabla \chi] \tilde{a} + p \nabla \chi + (\nabla \chi) \cdot G, \]
\[F = F_0 - \xi \otimes \nabla \eta, \tag{4.7}\]
\[F_0 = -2 \nabla \chi \otimes u - \nabla \eta \otimes \tilde{a} - \tilde{a} \otimes \nabla \eta - \chi G.\]
Note that both \(f_0 \) and \(F_0 \) are localized. In terms of size,

\[
f_0 \approx p + \tilde{a}u + u + G, \quad F \approx u + a\nabla \eta + \nabla \eta + G.
\]

Recall that \(p \) and \(\tilde{a}u \) are estimated by (4.2), and \(\nabla \eta \) by (4.3). Thus

\[
\begin{align*}
\|f_0\|_{L^{3/2}(-\sigma^2, 0; (L^{18/7} \cap L^2)(\mathbb{R}^3))} & \leq C, \\
\|F\|_{L^{10/3}(-\sigma^2, 0; (L^{10/3} \cap L^2)(\mathbb{R}^3))} & \leq C.
\end{align*}
\]

(4.8)

Note that \(p \) appears in \(f_0 \), but not in \(F_0 \). This is very helpful because we cannot improve its time integrability. Also note that the correction term \(\nabla \eta \) in the definition of \(w \) is defined by the nonlocal Newtonian potential, which enables us to hide its time derivative \(\partial_t \eta \) in \(\pi \), so that we don’t need to estimate \(\partial_t \eta \). This technique has been used, for example, in [18, 26].

Step 2. A bootstrap lemma.

In this step we prove a bootstrap lemma to improve integrability. We will use the following potential estimates.

Lemma 4.2. Let \(Q = \mathbb{R}^3 \times I, I = (0, T), 0 < T < \infty \). Let

\[
\Phi_0 f_0(t) = \int_0^t e^{(t-s)\Delta} P f_0(s) ds, \quad \Phi_1 F(t) = \int_0^t e^{(t-s)\Delta} P \nabla \cdot F(s) ds,
\]

for \(f_0 \in L^{3/2}(I; L^r(\mathbb{R}^3; \mathbb{R}^3)) \) and \(F \in L^m(\mathbb{R}^3 \times I; \mathbb{R}^{3 \times 3}) \). Here \(P \) denotes the Helmholtz projection on \(\mathbb{R}^3 \). We have

\[
\begin{align*}
\|\Phi_0 f_0\|_{L^q(Q)} & \lesssim T^{\frac{2}{3} \left(1 - \frac{3}{q} + \frac{3}{2r} \right)} \|f_0\|_{L^{3/2}(I; L^r)}, \quad \frac{1}{q} \geq \frac{3}{5r} - \frac{2}{15}, \quad 1 < r \leq q < \infty; \\
\|\nabla \Phi_0 f_0\|_{L^q(Q)} & \lesssim T^{\frac{2}{3} \left(1 - \frac{3}{q} + \frac{3}{2r} \right)} \|f_0\|_{L^{3/2}(I; L^r)}, \quad \frac{1}{q} \geq \frac{3}{5r} + \frac{1}{15}, \quad 1 < r \leq q < \infty; \\
\|\Phi_1 F\|_{L^q(Q)} & \lesssim T^{\frac{2}{3} \left(1 - \frac{m}{q} + \frac{3}{2} \right)} \|F\|_{L^m(Q)}, \quad \frac{1}{q} \geq \frac{1}{m} - \frac{1}{5}, \quad 1 < m \leq q < \infty.
\end{align*}
\]

(4.9) (4.10) (4.11)

Proof. By the decay estimates of \(e^{(t-s)\Delta} P \nabla \cdot \), we have

\[
\|\Phi_1 F(t)\|_{L^q_\varepsilon} \lesssim \int_0^t |t-s|^{-\alpha} \|F(s)\|_{L^q_\varepsilon} ds,
\]

where \(\alpha = \frac{2}{2} \left(\frac{1}{m} - \frac{1}{q} \right) + \frac{1}{2} \in \left[\frac{1}{2}, 1 \right) \), hence \(0 \leq \frac{1}{m} - \frac{1}{q} < \frac{1}{2} \). By the Hardy-Littlewood-Sobolev inequality and \(T < \infty \), we get \(\|\Phi_1 F\|_{L^q(Q)} \lesssim T^{\frac{2}{3} \left(1 - \frac{m}{q} + \frac{3}{2} \right)} \|F\|_{L^m(Q)} \) if

\[
\frac{1}{q} + 1 \geq \alpha + \frac{1}{m}, \quad \text{i.e.,} \quad \frac{1}{m} - \frac{1}{q} \leq \frac{1}{5}.
\]

This shows (4.11). Similarly,

\[
\|\Phi_0 f_0(t)\|_{L^q_\varepsilon} \lesssim \int_0^t |t-s|^{-\alpha} \|f_0(s)\|_{L^q_\varepsilon} ds,
\]

13
where \(\alpha = \frac{3}{2} \left(\frac{1}{q} - \frac{1}{r_1} \right) \in [0, 1) \), hence \(0 \leq \frac{1}{q} < \frac{2}{3} \). By the Hardy-Littlewood-Sobolev inequality and \(T < \infty \), we get \(\| \Phi_0 f_0 \|_{L^q(Q)} \lesssim T^{\frac{1}{2} \left(\frac{1}{q} - \frac{1}{r} + \frac{1}{r'} \right)} \| f_0 \|_{L^{3/2}(I; L^r)} \) if

\[
\frac{1}{q} + 1 \geq \alpha + \frac{2}{3}, \quad \text{i.e.,} \quad \frac{1}{q} \geq \frac{3}{5r} - \frac{2}{15},
\]

which implies \(\frac{1}{q} > \frac{1}{r} - \frac{2}{r_1} \). This shows (4.9). Since the estimate (4.10) is similar to estimates above, we skip its details. \(\square \)

Next we show the bootstrap lemma.

Lemma 4.3. Let \(3 \leq r < \infty, 2 \leq r_0 \leq 9/2 \) and \(2 \leq r_1 \leq 5 \). There are small \(\epsilon = \epsilon(r, r_0, r_1) > 0 \) and \(\tau_0 = \tau_0(r, r_0, r_1) \in (0, 1) \) such that the following hold. Let \(w \in L^\infty L^2 \cap L^2 H^1(Q) \) be a weak solution of the perturbed Stokes system (4.6) in \(Q = \mathbb{R}^3 \times I, I = (t_0, t_1), t_0 < t_1 \leq t_0 + \tau_0 \). Assume that \(w(t_0) \in L^r \cap L^2(\mathbb{R}^3), f_0 \in L^{3/2}(I; L^{r_0} \cap L^2(\mathbb{R}^3)), F \in L^{r_1}(I; L^{r_1} \cap L^2), \left| \xi \right| \leq 1, \text{ div} \tilde{a} = 0, \text{ and } \| \tilde{a} \|_{L^5(Q)} \leq \epsilon \). Let

\[
N := \| w(t_0) \|_{L^r \cap L^2} + \| f_0 \|_{L^{3/2}(I; L^{r_0} \cap L^2)} + \| F \|_{L^{r_1}(I; L^{r_1} \cap L^2)},
\]

Then \(w \in X \) with

\[
\| w \|_X \leq C(r, r_0, r_1) N, \quad X = L^\infty L^2 \cap L^2 \tilde{H}^1 \cap L_q^{t, x}(Q).
\]

Here \(q = \min \left(\frac{3}{r}, q_0, q_1 \right), q_0 = (\frac{3}{2r_0} - \frac{2}{3r})^{-1}, q_1 = (\frac{1}{r_1} - \frac{1}{5})^{-1}, \max (r_0, r_1) \leq q < \infty \).

Proof. Without loss of generality, we may assume \(t_0 = 0 \). We may also assume \(N = 1 \) since it is a linear equation. We define a sequence of approximation solutions of (4.6) by

\[
w_1(t) = e^{t \Delta} w(0) + \Phi_1 F(t) + \Phi_0 f_0(t),
\]

\[
w_{k+1}(t) = w_1(t) - \Phi_1 ((\tilde{a} + \xi) \otimes w_k + w_k \otimes \tilde{a})(t) \quad k = 1, 2, \ldots
\]

Due to the energy inequality for the Stokes system and (4.8), we have

\[
\| e^{t \Delta} w(0) + \Phi_1 F \|_{L^q_t L^2_x \cap L^q_t \tilde{H}^1_x} \leq C \| w(0) \|_{L^2} + \| F \|_{L^q_t L^2_x} \leq C
\]

We observe by (4.10) of Lemma 4.2 that

\[
\| \Phi_0 f_0 \|_{L^q_t L^2_x \cap L^q_t \tilde{H}^1_x} \leq C t_1^{\frac{1}{5}} \| f_0 \|_{L^q_t L^2_x}^{\frac{3}{5}} L^2_x.
\]

Therefore,

\[
\| w_1 \|_{L^q_t L^2_x \cap L^q_t \tilde{H}^1_x} \leq C \| w(0) \|_{L^2} + C \| F \|_{L^q_t L^2_x} + C t_1^{\frac{1}{5}} \| f_0 \|_{L^q_t L^2_x}^{\frac{3}{5}} L^2_x \leq C.
\]

On the other hand, using the \(L^q_t \) estimate of \(e^{t \Delta} w(0) \) (see Giga [9]) and Lemma 4.2, we also have \(\| w_1 \|_{L^q_t L^2_x} \leq C, \) and hence \(\| w_1 \|_{X} \leq K \) for some \(K > 0 \).

We show that \(w_k \in X \) with \(\| w_k \|_X \leq 2K \) provided that \(t_k \) is sufficiently small by induction. Suppose that \(w_k \in X \) with \(\| w_k \|_X \leq 2K \) for some \(k = 0, 1, 2, \ldots \). The energy inequality shows that

\[
\| \Phi_1 ((\tilde{a} + \xi) \otimes w_k + w_k \otimes \tilde{a}) \|_{L^\infty L^2 \cap L^2 \tilde{H}^1} \lesssim \| (\tilde{a} + \xi) \otimes w_k + w_k \otimes \tilde{a} \|_{L^\infty L^2 x}
\]

\[
\lesssim \| \tilde{a} \|_{L^\infty L^2 x} \| w_k \|_{L^{10/3}} + t_1^{\frac{1}{5}} \| w_k \|_{L^\infty L^2}.
\]
Next using Lemma 4.2, we can see that

\[\| \Phi_1((\tilde{a} + \xi) \otimes w_k + w_k \otimes \tilde{a}) \|_{L^2} \leq C(\| \tilde{a} \|_{L^3} + t_1^{1/2}) \| w_k \|_{L^2}. \]

Thus if \(t_0 \) and \(\| \tilde{a} \|_{L^2_{t,x}} \) are sufficiently small, we have

\[\| \Phi_1((\tilde{a} + \xi) \otimes w_k + w_k \otimes \tilde{a}) \|_{X} \leq \frac{1}{2} K, \]

which shows the uniform bound of \(w_k \) in \(X \) by \(2K \).

Denoting \(\delta_k w := w_{k+1} - w_k \), we get

\[\delta_k w = -\Phi_1((\tilde{a} + \xi) \otimes \delta_{k-1} w + \delta_{k-1} w \otimes \tilde{a}), \quad k = 1, 2, \ldots . \]

Following the estimates above, we see that

\[\| \delta_k w(t) \|_{X} \leq C \left(\| \tilde{a} \|_{L^2_{t,x}} + t_1^{1/2} \right) \| \delta_{k-1} w(s) \|_{X}. \]

Therefore, if \(\| \tilde{a} \|_{L^2_{t,x}} \) is sufficiently small, and if \(t_1 > 0 \) is so small such that

\[C t_1^{1/2} \leq 1/4, \quad (4.12) \]

then \(w_k \) is a Cauchy sequence in \(X \), and converges to a mild solution \(\tilde{w} \) of (4.1) in \(X \) with \(\tilde{w}(0) = w(0) \in L^2 \cap L^r(R^3) \). By the uniqueness of the weak solution of the perturbed Stokes system (4.6) in the energy class (which can be proved by energy estimate and Gronwall inequality, using \(\tilde{a} \in L^5_{t,x} \)), we see that \(w = \tilde{w} \). This completes the proof. \(\square \)

Step 3. Intermediate bounds.

Let \(r = 6, \ r_0 = 18/7, \) and \(r_1 = 10/3 \). We have \(f \in L^{3/2}(-7/8, 0; L^{r_0} \cap L^2) \) and \(F \in L^{r_1}(-7/8, 0; L^{r_1} \cap L^2) \) by (4.8). Choose \(\tau = \min(\frac{1}{8}, \tau_0) \), where \(\tau_0 = \tau_0(r = 6, r_0 = 18/7, r_1 = 10/3) \) is decided by Lemma 4.3. Note \(\frac{5}{3}r - q_0 = q_1 = 10 \). Thus we take \(q = 10 \).

Let \(a_n = -n\tau/2, \) and \(I_n = [a_n, a_{n-1}], \) \(n \in \mathbb{Z} \). Choose smallest integer \(N \) so that \(I_N \subset (-\frac{4}{8}, -\frac{4}{3}) \). Since \(w \) is in the energy class, we have

\[\int_{I_n} \left(\int_{R^3} \left| \nabla w \right|^2 + \left| w \right|^2 dx \right) dt \leq C, \quad 1 \leq n \leq N. \]

Thus, there is \(t_n \in I_n \) such that

\[\int_{R^3} \left| \nabla w(t_n) \right|^2 + \left| w(t_n) \right|^2 dx \leq \frac{C}{\tau/2} = C, \quad 1 \leq n \leq N. \]

By Sobolev imbedding, \(\int |w(t_n)|^6 dx \leq C \). By Lemma 4.3, we have

\[w \in L^{10}(J_n \times R^3), \quad J_n = (t_n, t_n + \tau) \cap (-1, 0), \quad 1 \leq n \leq N. \]

Since

\[t_n + \tau \geq a_n + \tau = a_{n-2} \geq t_{n-1}, \quad 2 \leq n \leq N, \]

we have

\[(-3/4, 0) \subset J := \bigcup_{n=1}^{N} J_n = (t_N, 0), \quad t_N \leq -3/4. \]
Hence

\[\|w\|_{L^{10}(J \times \mathbb{R}^3)} \leq C. \quad (4.13) \]

We now show \(w \in L^{\infty}(J; L^{10/3}) \). Indeed, for \(t \in J \),

\[\|w(t)\|_{L_x^{10/3}} \lesssim \|w(t_N)\|_{L_x^6 \cap L^2} + \|\Phi_0 f_0(t)\|_{L_x^{10/3}} + \|\Phi_1 F(t)\|_{L_x^{10/3}} + \|\Phi_1 F_1(t)\|_{L_x^{10/3}} \]

where \(F_1 = (\tilde{a} + \xi) \otimes w + w \otimes \tilde{a} \), and \(\Phi_0 \) and \(\Phi_1 \) are redefined with initial time \(t_N \). Note

\[\|\Phi_1 F_1(t)\|_{L_x^{10/3}} \lesssim \int_{t_N}^t |t - s|^{-1/2} \|F_1(s)\|_{L_x^{10/3}} \, ds \]
\[\lesssim \|F_1\|_{L_t^{10/3}(J \times \mathbb{R}^3)} \]
\[\lesssim (1 + \|a\|_{L_x^6}) \|w\|_{L^{10} \cap L^{10/3}(J \times \mathbb{R}^3)}. \]

Similarly,

\[\|\Phi_0 f_0(t)\|_{L_x^{10/3}} \lesssim \|f_0\|_{L_x^{3/2}L_x^{18/7}} \]
\[\|\Phi_1 F(t)\|_{L_x^{10/3}} \lesssim \|F\|_{L_t^{10/3}}. \]

Thus

\[\|w\|_{L^{\infty}(J; L^{10/3}(\mathbb{R}^3))} \leq C. \]

We also claim \(\nabla w \in L^{10/3}(J \times \mathbb{R}^3) \) and \(w \in L^{10/3}_t(\mathbb{R}^3) \). Indeed,

\[\|\nabla w\|_{L_t^{10/3}(J \times \mathbb{R}^3)} \leq \|\nabla e^{(t-t_N)} w(t_N)\|_{L_t^{10/3}(J \times \mathbb{R}^3)} + \|\nabla \Phi_0 f_0\|_{L_t^{10/3}(J \times \mathbb{R}^3)} + \|\nabla \Phi_1 (F + F_1)\|_{L_t^{10/3}(J \times \mathbb{R}^3)}. \]

By energy estimate,

\[\|\nabla e^{(t-t_N)} w(t_N)\|_{L_t^{10/3}(J \times \mathbb{R}^3)} \leq C \|\nabla w(t_N)\|_{L^2(\mathbb{R}^3)} \leq C. \]

By (4.10) of Lemma 4.2,

\[\|\nabla \Phi_0 f_0(t)\|_{L_x^{10/3}} \lesssim \|f_0\|_{L_x^{3/2}L_x^{18/7}}. \]

By maximal regularity in \(L_{t,x}^{10/3} \),

\[\|\nabla \Phi_1 (F + F_1)\|_{L_t^{10/3}(J \times \mathbb{R}^3)} \leq C \|F + F_1\|_{L_t^{10/3}(J \times \mathbb{R}^3)} \leq C. \]

Thus \(\|\nabla w\|_{L^{10/3}(J \times \mathbb{R}^3)} \leq C \), and by Sobolev inequality,

\[\|w\|_{L_t^{10/3}(J \times \mathbb{R}^3)} \lesssim \|\nabla w\|_{L_t^{10/3}(J \times \mathbb{R}^3)} + \|w\|_{L_t^{10/3}(J \times \mathbb{R}^3)} \leq C. \]

By \(w = u\chi - \nabla \eta \), \(\chi = 1 \) on \(B_{a^3} \), and \(\nabla \eta \) estimates in (4.3)–(4.4), we have

\[\|u\|_{L_t^{10/3} \cap L_x^6 \cap L_x^{10/3} \cap L_x^{10/3} \cap L_x^6 (-\frac{3}{4}, 0) \times B_{a^3}} \lesssim \|\nabla u\|_{L_t^{10/3} (-\frac{3}{4}, 0) \times B_{a^3}} \leq C. \quad (4.14) \]

Note

\[\|au\|_{L^{3/2}((-\frac{3}{4}, 0); L^6(B_{a^3}))} \lesssim \|a\|_{L^5((-\frac{3}{4}, 0); L^5(B_{a^3}))} \|u\|_{L^{15/7}((-\frac{3}{4}, 0); L^\infty(B_{a^3}))} \leq C. \]
From elliptic estimate \((4.2)\) again with spatial exponent 5, we get
\[
\|p\|_{L^{3/2}(\frac{-3}{4}, 0; L^5(B_{\sigma^3}))} \leq \|au\|_{L^{3/2}L^5} + \|u\|_{L^{3/2}L^5} + \|G\|_{L^{3/2}L^5} + \|p\|_{L^{3/2}L^{3/2}} \leq C. \tag{4.15}
\]
Above, the last 4 norms are taken over \((-\frac{3}{4}, 0) \times B_{\sigma^3}.

Step 4. Refined bounds.

We repeat the localization and define again \(w = u\chi - \nabla \eta\), but with \(\chi\) replaced by \(\chi_4(x) = \chi_0(\sigma^{-3}x)\). We now have better estimates than those in Step 1 because of \((4.14)\) and \((4.15)\). We first have
\[
\|\nabla^2 \eta\|_{L^{3/2}_{t,\tau}((-\frac{3}{4}, 0) \cap L^6_{x}) \cap L^5_{x}((-\frac{3}{4}, 0) \times \mathbb{R}^3)} \leq C,
\]
and thus
\[
\|w\|_{L^{3/2}_{t,\tau} \cap L^\infty_{x}(L^2 \cap L^5_{x}) \cap L^5_{x}((-\frac{3}{4}, 0) \times \mathbb{R}^3)} + \|\nabla w\|_{L^{3/2}_{t,\tau} \cap L^\infty_{x}(L^2 \cap L^5_{x})((-\frac{3}{4}, 0) \times \mathbb{R}^3)} \leq C.
\]
Thanks to \(\nabla \eta \in L^\infty_{t,x}\), we have
\[
\|F\|_{L^5_{t,x}((-\frac{3}{4}, 0) \times \mathbb{R}^3)} \leq C\|\tilde{a}\| + \|u\| + \|G\|_{L^5_{t,x}((-\frac{3}{4}, 0) \times B_{\sigma^3})} + \|\nabla \eta\|_{L^5_{t,x}((-\frac{3}{4}, 0) \times \mathbb{R}^3)} \leq C,
\]
and
\[
\|f_0\|_{L^{3/2}_{t,\tau}((-\frac{3}{4}, 0) \cap L^5_{x}(B_{\sigma^3}))} \leq C\|p\| + \|u\| + \|au\| + \|G\|_{L^{3/2}_{t,\tau}((-\frac{3}{4}, 0) \cap L^5_{x}(B_{\sigma^3}))} \leq C.
\]

For any \(q \in (10, \infty)\), let \(r = 3q/5\), \(r_0 = 9/2\), and \(r_1 = 5\). Note \(q_0 = q_1 = \infty\), and \(w \in L^{10/3}((-\frac{3}{4}, 0) \cap L^r(\mathbb{R}^3))\). Choose \(\tau = \min(\frac{1}{\sigma}, \tau_0)\), where \(\tau_0 = \tau_0(r, r_0 = 9/2, r_1 = 5)\) is decided by Lemma 4.3.

By the same argument as in Step 3, we may use time interval partition to get \(u(t_\epsilon) \in L^2 \cap L^r(\mathbb{R}^3)\), and Lemma 4.3 to get \(w \in L^q_{t,x}((-1/2, 0) \times \mathbb{R}^3)\).

Since \(w = u\chi_4 - \nabla \eta\) and \(\nabla \eta \in L^\infty_{t}(L^2 \cap L^\infty_{x})\), we have, if \(1/2 \leq \sigma^5\),
\[
u \in L^q_{t,x}((-1/2, 0) \times B_{1/2}(0)).
\]
This finishes the proof of Proposition 4.1. \(\Box\)

Remark. We can repeat the second part of Step 3 and prove, e.g., \(w \in L^\infty L^q\) for any finite \(q\) if \(\|\tilde{a}\|_{L^q_{t,x}} \leq \delta(q)\) is sufficiently small.

5 Local analysis for the Navier-Stokes equations

In this section we prove Theorem 1.1. The proof is split into 3 subsections.

5.1 Decay estimates for Navier-Stokes

Let \((u, p)\) be a suitable weak solution of the following \(a\)-perturbed Navier-Stokes equations in \(Q = B_1 \times (0, T)\), with \(a \in L^5(Q)\), \(\text{div} \: a = 0\),
\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u + (a + u) \cdot \nabla u + u \cdot \nabla a + \nabla p &= 0, \\
\text{div} \: u &= 0.
\end{align*}
\tag{5.1}
\]
That is, \(u \in L^\infty L^2(Q) \cap L^2 \dot{H}^1(Q) \), \(p \in L^{3/2}(Q) \), the pair solves (5.1) in the distributional sense, and satisfies the \textit{perturbed local energy inequality}: For all non-negative \(\phi \in C^\infty_c(Q) \), we have

\[
\int |u|^2 \phi(t) \, dx + 2 \int_0^t \int |\nabla u|^2 \phi \, dx \, dt \\
\leq \int_0^t \int |u|^2 (\partial_t \phi + \Delta \phi) \, dx \, dt + \int_0^t \int \left(|u|^2 (u + a) + 2pu \right) \cdot \nabla \phi \, dx \, dt \\
+ \int_0^t \int u_j a_i \partial_j (u_i \phi) \, dx \, dt.
\]

This is equivalent to (3.2) for \(v = u + a \) if \(v \) is a weak solution of (NS) in \(Q \) and \(a \) is a strong solution of (NS); see the argument after (5.19) for details.

Let \(z = (x, t) \) and \(Q_r(z) = B_r(x) \times (t - r^2, t) \). We denote

\[
\varphi(u, p, r, z) := \left(\frac{1}{r^2} \int_{Q_r(z)} |u - (u)_{Q_r(z)}|^3 \right)^{\frac{1}{3}} + \left(\frac{1}{r^2} \int_{Q_r(z)} |p - (p)_{B_r(x)}(t)|^{3/2} \right)^{\frac{2}{3}}
\]

where

\[
(u)_{Q_r(z)} = \frac{1}{|Q_r(z)|} \int_{Q_r(z)} u, \quad (p)_{B_r(x)}(t) = \frac{1}{|B_r(x)|} \int_{B_r(x)} p(y, t) \, dy.
\]

Note that \(\varphi \) is dimension-free in the sense of [6], and its form is invariant under scaling.

Lemma 5.1 (Decay estimate). For any \(\alpha \in (0, 1) \), there is a small \(\delta_0 > 0 \) such that the following hold. Let \((u, p) \) be a suitable weak solution to the perturbed Navier-Stokes equations (5.1) in \(Q_r(z) \), with \(a \in L^5(Q_r(z)) \), \(\text{div} \, a = 0 \), \(\|a\|_{L^5(Q_r(z))} = \delta \leq \delta_0 \). Denote \((u)_r = (u)_{Q_r(z)} \). Then, for any \(\theta \in (0, 1/3) \) there exist \(\epsilon = \epsilon(\theta, \alpha) > 0 \) and \(C = C(\alpha) > 0 \) independent of \(\theta \) such that if

\[
r |(u)_r| \leq 1, \quad \varphi(u, p, r, z) + r |(u)_r| \delta < \epsilon,
\]

then

\[
\theta r |(u)_{1\theta}| \leq 1, \quad \varphi(u, p, \theta r, z) \leq C \theta^\alpha \left[\varphi(u, p, r, z) + r |(u)_r| \delta \right].
\]

Proof. Choose \(q \in (5, \infty) \) such that \(\alpha < 1 - \frac{5}{q} \). Choose \(\delta_0 = \delta_0(q(\alpha)) \) according to Proposition 4.1. Since \(\varphi \) and \(r(u)_r \) are dimension-free, we may assume \(r = 1 \). We may assume \(z = 0 \) and skip the \(z \)-dependence in \(\varphi \) without loss of generality. We first show (5.5). Indeed,

\[
\theta |(u)_\theta| \leq \theta |(u - (u)_1)_\theta| + \theta |(u)_1| \\
\leq \theta |Q_\theta|^{-\frac{3}{2}} \|u - (u)_1\|_{L^3(Q_\theta)} + \theta \\
\leq C_3 \theta^{-\frac{2}{3}} \varphi(1) + \theta,
\]

with \(C_3 = |Q_1|^{-\frac{1}{3}} \). By (5.4), \(\varphi(1) \leq \epsilon \), hence \(\theta |(u)_\theta| < 1 \) if

\[
\epsilon \leq \theta^{2/3} / 2C_3.
\]

Next we show the decay estimate (5.6). Here we use a contradiction argument, following a similar argument as given in e.g. [25, Lemma 3.2] and [15, Lemma 2.3]. Since some
modification is required, we give the details for completeness. Suppose that this is not the case. Then there exist solutions \((u_i, p_i)\) of (5.1), \(a_i\) and \(\epsilon_i\) with \(\lim_{i \to \infty} \epsilon_i = 0\) such that
\[
\xi_i = (u_i)_{Q_1}, \quad |\xi_i| \leq 1, \quad \|a_i\|_{L^5(Q_1)} \leq \delta_0, \quad \text{div} \ a_i = 0,
\]
\[
\varphi(u_i, p_i, 1) + |\xi_i|\|a_i\|_{L^5(Q_1)} = \epsilon_i,
\]
\[
\varphi(u_i, p_i, \theta) \geq C_2 \theta^\alpha \epsilon_i.
\]
Here \(C_2 > 0\) is a large constant to be chosen later. Setting \(v_i = (u_i - (u_i)_1)/\epsilon_i\) and \(q_i = (p_i - (p_i)_1(t))/\epsilon_i\), it follows that
\[
\|v_i\|_{L^3(Q_1)} + \|q_i\|_{L^\infty(Q_1)}^2 + \frac{|\xi_i|}{\epsilon_i} \|a_i\|_{L^5(Q_1)} = 1,
\]
\[
\left(\frac{1}{\theta^2} \int_{Q_\theta} |v_i - (v_i)_{Q_\theta}|^3 \right)^{\frac{1}{3}} + \left(\frac{1}{\theta^2} \int_{Q_\theta} |q_i - (q_i)_{B_r(t)}|^3 \right)^{\frac{1}{3}} \geq C_2 \theta^\alpha
\]
(5.9)
and \((v_i, q_i)\) satisfies
\[
\partial_t v_i - \Delta v_i + (\epsilon_i v_i + a_i + \xi_i) \cdot \nabla v_i + \left(v_i + \frac{\xi_i}{\epsilon_i}\right) \cdot \nabla a_i + \nabla q_i = 0, \quad \text{div} \ v_i = 0.
\]
Denote
\[
E_i(r) = \text{ess sup}_{-r^2 < t < 0} \int_{B_r} \frac{|v_i|^2}{2} \, dx + \int_0^{-r^2} \int_{B_r} |\nabla v_i|^2 \, dx \, dt.
\]
By the local energy inequality for (5.1), the calculation in [15, page 242] shows that, for \(3/4 < r_1 < r_2 < 1\),
\[
E_i(r_1) \leq \frac{C}{(r_2 - r_1)^2} + (C\|a_i\|_{L^5(Q_1)} + \frac{1}{2}) E_i(r_2),
\]
By Lemma 2.4, if \(\|a_i\|_{L^5(Q_1)} \leq \delta_0\) is sufficiently small, we have \(E_i(3/4) < C\) for all \(i\).

By the uniform bound \(E_i(3/4) < C\) for all \(i\), there exist \((v, q) \in (L^3 \times L^{3/2})(Q_{3/4})\), \(\xi \in \mathbb{R}^3\) and \(a, G \in L^3(Q_{3/4})\) such that (if necessary, subsequence can be taken)
\[
v_i \to v \quad \text{strongly in} \quad L^3(Q_{3/4}), \quad \xi_i \to \xi,
\]
\[
q_i \to q \quad \text{weakly in} \quad L^\frac{3}{2}(Q_{3/4}), \quad a_i \to a \quad \text{weakly in} \quad L^5(Q_{3/4}),
\]
\[
\frac{(u_i)_1}{\epsilon_i} \otimes a_i \to G \quad \text{weakly in} \quad L^5(Q_{3/4}),
\]
as \(i \to \infty\). Furthermore, \((v, q)\) solves the linear perturbed Stokes system in \(Q_{3/4}\)
\[
\partial_t v - \Delta v + \xi \cdot \nabla v + a \cdot \nabla v + v \cdot \nabla a + \text{div} \, G + \nabla q = 0, \quad \text{div} \ v = 0.
\]
Due to Proposition 4.1, it follows that \(v \in L^q(Q_{1/2}), q > 5\), for the exponent \(q\) chosen at the beginning of the proof. Thus, by the strong convergence of \(v_i\) to \(v\) in \(L^3(Q_{3/4})\), we have for sufficiently large \(i\)
\[
\left(\frac{1}{\theta^2} \int_{Q_\theta} |v_i - (v_i)_a|^3 \, dz \right)^{\frac{1}{3}} \leq C \theta^{1 - \frac{5}{q}}.
\]
(5.10)
On the other hand, by the pressure equation, we decompose $q_i = q_i^R + q_i^H$ such that

$$q_i^R = \frac{1}{(-\Delta)^{-1}} \text{div} \text{div} \left([v \otimes v_i + v_i \otimes a_i + a_i \otimes v_i] \chi_{B^{3/4}_3} \right),$$

Here $\chi_{B^{3/4}_3}$ is the characteristic function of $B^{3/4}_3$. We then see that q_i^R converges strongly to q_i^R in $L^3_t(Q_{3/4})$, where q_i^R is

$$q_i^R = (-\Delta)^{-1} \text{div} \text{div} \left([v \otimes a + a \otimes v] \chi_{B^{3/4}_3} \right).$$

We note that $q_i^R \in L^{l}((Q_{1/2}))$, where $l = \frac{1}{q} + \frac{1}{5}$. Therefore,

$$\left(\frac{1}{\theta^2} \int_{Q_\theta} |q_i^R|^\frac{2}{3} \, dz \right)^{\frac{3}{2}} \leq C \theta^{2-\frac{5}{2}} = C \theta^{1-\frac{5}{q}}.$$

Thus, for large i, we also have

$$\left(\frac{1}{\theta^2} \int_{Q_\theta} |q_i^R|^\frac{2}{3} \, dz \right)^{\frac{3}{2}} \leq C \theta^{1-\frac{5}{q}}.$$

Since q_i^H is harmonic (in x) in $Q_{3/4}$, we see that

$$\left(\frac{1}{\theta^2} \int_{Q_\theta} |q_i^H - (q_i^H)_{B_\theta(t)}|^\frac{3}{2} \, dz \right)^{\frac{3}{2}} \leq C \theta^{\frac{5}{2}}.$$

Adding up the above estimates,

$$\left(\frac{1}{\theta^2} \int_{Q_\theta} |q_i - (q_i)_{B_\theta(t)}|^\frac{3}{2} \, dz \right)^{\frac{3}{2}} \leq C \theta^{1-\frac{5}{q}}. \tag{5.11}$$

The sum of (5.10) and (5.11) contradicts (5.9) if we take C_2 sufficiently large. This completes the proof. \hfill \Box

5.2 Regularity criterion for perturbed Navier-Stokes

In this subsection we prove the following regularity criterion for perturbed Navier-Stokes equations (5.1). It is an extension of the result [15, Theorem 2.2] for the perturbed term $a \in L^m(Q_1)$ with $m > 5$.

Lemma 5.2 (Regularity criterion). For any fixed $\beta \in (0,1)$, there exist small $\epsilon_1(\beta), \delta(\beta) > 0$ with the following properties: Let (u, p) be a suitable weak solution to the perturbed Navier-Stokes equations (5.1) in $Q_{3/4}$, with $a \in L^5(Q_{3/4})$, $\text{div} \, a = 0$, $\|a\|_{L^5(Q_{3/4})} \leq \delta$, and

$$\int_{Q_{3/4}} |u|^3 + |p|^\frac{3}{2} \leq \epsilon_1. \tag{5.12}$$

Then we have

$$\sup_{z_0 = (x_0, t_0) \in Q_{3/4}} \sup_{r < \frac{1}{4}} \frac{1}{r^{2+3\beta}} \int_{Q_r(z_0)} |u|^3 + |p - (p)_{B_r(z_0)}(t)|^{3/2} \, dz < C(\beta). \tag{5.13}$$
Remark. Unlike [15, Theorem 2.2] and [6, Proposition 1], estimate (5.13) does not imply Hölder continuity, but Morrey type regularity.

Proof. For fixed $\beta \in (0, 1)$, choose $\alpha = (1 + \beta)/2$ so that $\alpha \in (\beta, 1)$, and choose $\theta \in (0, 1/3)$ so that the factor $C\theta^{\alpha}$ in (5.6) is bounded by $\frac{1}{2}\theta^{\beta}$, and $\theta^{1-\beta} < \frac{1}{2}$.

In the following we omit the dependence on $z_0 \in Q_{1/4}$ to simplify the notation.

Let $B(r) = r \mid (u)_{Q_+}$ and $\varphi(r)$ be defined by (5.3). It is proved in (5.7) for $r = 1$ that

$$B(\theta r) \leq C_3 \theta^{-\frac{4}{1+\beta}} \varphi(r) + \theta B(r),$$

(5.14)

where $C_3 = |Q_1|^{-1/3}$. The proof for general r is the same. Let

$$\Psi(r) = \varphi(r) + (2C_3)^{-1} \theta^{\frac{2}{1+\beta}} B(r),$$

where C_3 is the constant in (5.14). We want to show by induction that

condition (5.4) is valid, and $\Psi(\theta r) \leq \theta^\beta \Psi(r)$, (5.15)

for $r \in I_k = [\frac{\theta^{k+1}}{4}, \frac{\theta^k}{4}]$, for all $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Let

$$\Psi_k = \sup_{z_0 \in Q_{1/4}, \ r \in I_k} \Psi(r; z_0), \ k \in \mathbb{N}_0.$$

By (5.12),

$$\Psi_0 \leq C(\beta)\epsilon_1^{1/3} \leq \epsilon$$

if $\epsilon_1 = \epsilon_1(\beta)$ is sufficiently small. In particular, the condition (5.4) is uniformly satisfied for every $z_0 = (x_0, t_0) \in Q_{1/4}$ and $r \in I_0$.

Suppose that (5.15) has been proved for $r \in \cup_{j<k} I_j$ and condition (5.4) is satisfied for $r \in I_k$ for some $k \in \mathbb{N}_0$. By (5.6) of Lemma 5.1 and (5.14),

$$\Psi(\theta r) = \varphi(\theta r) + (2C_3)^{-1} \theta^{\frac{2}{1+\beta}} B(\theta r)$$

$$\leq \frac{\theta^\beta}{2} \varphi(r) + \frac{\theta^\beta}{2} \delta B(r) + \frac{\theta^\beta}{2} \varphi(r) + (2C_3)^{-1} \theta^{\frac{2}{1+\beta}} B(r)$$

$$= \theta^\beta \varphi(r) + \theta^\beta \left(C_3 \delta \theta^{-\frac{2}{1+\beta}} + \theta^{1-\beta} \right) (2C_3)^{-1} \theta^{\frac{2}{1+\beta}} B(r),$$

which is bounded by $\theta^\beta \Psi(r)$ if $\delta \leq \min\{\delta_0(\alpha), (2C_3)^{-1} \theta^{\frac{2}{1+\beta}}\}$. This shows (5.15) for $r \in I_k$.

As a result, $\Psi_{k+1} \leq \theta^\beta \Psi_k \leq \ldots \leq \theta^{(k+1)\beta} \Psi_0 \leq \theta^{(k+1)\beta} \epsilon$. Hence

$r \mid (u)_r = B(r) \leq 2C_3 \theta^{-\frac{4}{1+\beta}} \Psi_{k+1} \leq 2C_3 \theta^{-\frac{4}{1+\beta}} \theta^\beta \epsilon \leq 1$

by (5.8),

$r \mid (u)_r \mid \leq 1 \cdot \delta \leq \epsilon/2,$

and

$\varphi(u, p, r, z_0) \leq \Psi_{k+1} \leq \theta^\beta \epsilon \leq \epsilon/2$

for $r \in I_{k+1}$. That is, condition (5.4) is valid for $r \in I_{k+1}$.

By induction, we have shown (5.15) for all $r \leq 1/4$ and all $z_0 \in Q_{1/4}$. In particular, if $r \in I_k$,

$$\Psi(r, z_0) \leq \Psi_k \leq \theta^{k\beta} \epsilon \leq C \epsilon r^\beta,$$

which implies (5.13).
5.3 Proof of Theorem 1.1

We now prove Theorem 1.1. Choose $\alpha = 1/2$, $\beta = 1/4$ and choose $\theta > 0$ so small that $\theta^{\alpha-\beta}$, $\theta^{1-\beta}$ and $\theta^{3/2}$ are sufficiently small in the proof of Lemma 5.2.

By Lemma 2.3, there is $a_0 \in L^3(\mathbb{R}^3)$ with

$$a_0 = v_0 \text{ in } B_{3/4}, \quad a_0 = 0 \text{ in } B_1^c, \quad \text{div} \, a_0 = 0, \quad \|a_0\|_{L^3} \leq C(3, \frac{3}{4})\|v_0\|_{L^3} \leq \varepsilon_2,$$

where ε_2 is the constant in Lemma 2.2. By Lemma 2.2, there is a unique mild solution a of (NS) with zero force and initial data $a(0) = a_0$ that satisfies (2.2). In particular,

$$\|a\|_{L^5_tL^3_x(\mathbb{R}^4)} \leq C\varepsilon_2. \quad (5.16)$$

Let π_a be its corresponding pressure. We have $\pi_a = R_iR_ja_i a_j$, and

$$\|\pi_a\|_{L^{5/2}_tL^4_x(\mathbb{R}^4)} \leq C\|a\|_{L^5_tL^3_x(\mathbb{R}^4)} \leq C\varepsilon_2. \quad (5.17)$$

By the maximal regularity for the inhomogeneous Stokes system, we have

$$\nabla a \in L^{5/2}(\mathbb{R}^4), \quad \nabla \pi_a \in L^{5/3}(\mathbb{R}^4). \quad (5.18)$$

Let $b_0 = v_0 - a_0$, $b = v - a$, and $\pi_b = \pi - \pi_a$. Denote $T = T_1$. Observe that (b, π_b) is a weak solution of the ε-perturbed Navier-Stokes equations (5.1) in $Q = B_1 \times (0, T)$, with $b(x, 0) = b_0(x)$, and $b_0(x) = 0$ in $B_{3/4}$. We claim that (b, π_b) satisfies the perturbed local energy inequality (5.2). This is also stated in [15] without detailed explanation. Indeed, (5.2) and (3.2) for $v = a + b$ are equivalent because they differ by an equality which is the sum of the weak form of a-equation with $2v\phi$ as the test function and the weak form of b-equation with $2a\phi$ as the test function. This equality can be proved because a is a strong solution satisfying (5.16)–(5.18).

By the interpolation, $\|v\|_{L^4_tL^3_x(\mathbb{R}^3)} \leq C\|v\|_{L^{\infty}_tL^2_x \cap L^3_xH^1_x(\mathbb{R}^3)}$. Hence the assumption (1.5) shows

$$\|v\|_{L^3(\mathbb{R}^3)} \leq C\|v\|_{L^4_tL^3_x(\mathbb{R}^3)} T^{\frac{1}{12}} \leq C\sqrt{MT}^{\frac{1}{12}},$$

and

$$\|\pi\|_{L^{3/2}_tL^2_x(\mathbb{R}^3)} \leq C\|\pi\|_{L^{5/2}_tL^4_x(\mathbb{R}^3)} T^{\frac{1}{6}} \leq CMT^{\frac{1}{6}}.$$

Thus, if $T \leq \varepsilon_1^2 M^{-6}$ with ε sufficiently small, we get

$$\int_0^T \int_{B_1} |b|^3 + |\pi_b|^3 \leq C\varepsilon + C\varepsilon^2 \leq \varepsilon_1, \quad (5.19)$$

where ε_1 is the small constant in (5.12) of Lemma 5.2.

Extend a, b, and π_b by zero for $t < 0$ and denote $Q^T_r := B_r \times (T - r^2, T)$. Using that $b_0(x) = 0$ in $B_{3/4}$ and $\|a\|_{L^5}$ is sufficiently small, the standard energy estimate shows that (b, π_b) is a suitable weak solution of (5.1) in $Q^T_{3/4} r$ satisfying the perturbed local energy inequality (5.2), and $\frac{3}{4}(b)_{Q^T_{3/4}} \leq 1$. In particular, (b, π_b) satisfies (5.1) across $t = 0$ in the sense of distributions.

We can now apply Lemma 5.2 to conclude that

$$\sup_{z_0 = (x_0, t_0) \in Q^T_r} \sup_{r < \frac{t_0}{2}} \frac{1}{r^{2+3\delta}} \int_{Q_r(z_0)} |b|^3 + |\pi_b - (\pi_b)_{B_r(x_0)}(t)|^{3/2} \, dz < C.$$
Choose largest \(r_1 \leq 1/4 \) such that \(Cr_1^{3\beta} \leq \frac{1}{2}\varepsilon_{\text{CKN}} \). Hence

\[
\sup_{z_0 = (x_0, t_0) \in Q^2_{\frac{3}{4}}} \sup_{r \leq r_1} r^2 \int_{Q_r(z_0)} |b|^3 + |\pi_b - (\pi_b)_{B_r(x_0)}(t)|^{3/2} dz < \frac{1}{2}\varepsilon_{\text{CKN}}.
\]

We may take \(T \leq 4r_1^2 \) as \(r_1 \) is an absolute constant. For \(r \geq r_1 \) we have

\[
\sup_{z_0 \in B_{\frac{1}{4}} \times (0, T)} \sup_{r \geq r_1} r^2 \int_{Q_r(z_0) \cap Q} |b|^3 dz < \frac{1}{r_1^2} C\varepsilon < \frac{1}{2}.
\]

Since \(v = a + b \) and \(a \in L^5(\mathbb{R}^4) \) small, we have

\[
\sup_{z_0 \in B_{\frac{1}{4}} \times (0, T)} \sup_{0 < r < \infty} \frac{1}{r^2} \int_{Q_r(z_0) \cap Q} |v|^3 dz < 1. \tag{5.20}
\]

Now for any \(z_0 = (x_0, t_0) \in B_{1/4} \times (0, T) \), take \(r = \frac{1}{2}\sqrt{t_0} \). We have \(r \leq r_1 \) and

\[
r^2 < t < 4r^2 \quad \text{if} \, (x, t) \in Q_r(z_0).
\]

For this \(r \), let

\[
\tilde{\pi} = \pi_a + \pi_b - (\pi_b)_{B_r(x_0)}(t).
\]

We have

\[
\frac{1}{r^2} \int_{Q_r(z_0)} |v|^3 + |\tilde{\pi}|^{3/2} dz < \varepsilon_{\text{CKN}}
\]

if \(\|a\|_{L^5} + \|\pi_a\|_{L^{5/2}} \leq C\varepsilon_0 \) is sufficiently small. Since \(v, \tilde{\pi} \) is a suitable weak solution of (NS) in \(Q_r(z_0) \), by Lemma 2.1, we get

\[
|v(z_0)| \leq \|v\|_{L^\infty(Q_{r/2}(z_0))} \leq \frac{C_{\text{CKN}}}{r/2} = \frac{4C_{\text{CKN}}}{\sqrt{t_0}}. \tag{5.21}
\]

This completes the proof of Theorem 1.1. \(\square \)

6 Local Leray solutions with local \(L^3 \) data

In this section, we present the proofs of Corollaries 1.2, 1.3 and 1.4.

Proof of Corollary 1.2. Let

\[
u_0(x) = \delta v_0(\delta x), \quad u(x, t) = \delta v(\delta x, \delta^2 t), \quad p(x, t) = \delta^2 \pi(\delta x, \delta^2 t). \tag{6.1}
\]

Then \((u, p)\) is a local Leray solution of (NS) with initial data \(u_0 \in E^2 \) and \(\|u_0\|_{L^3(B_1)} \leq \epsilon_0. \) By Lemma 3.5 with \((s, q) = (2, 3/2), \)

\[
\text{ess sup} \sup_{0 \leq t \leq \sigma} \int_{B_1(x_0)} |u|^2 dx + \sup_{x_0 \in \mathbb{R}^3} \int_0^\sigma \int_{B_1(x_0)} |\nabla u|^2 dx dt < C_0N_1,
\]

\[
\sup_{x_0} \|p - c_{x_0, 1}(t)\|_{L^2(0, \sigma; L^{3/2}(B_1(x_0)))} \leq C(2, 3/2)N_1,
\]

23
where
\[N_1 = \sup_{x_0 \in \mathbb{R}^3} \int_{B_1(x_0)} |u_0|^2 \, dx = \sup_{x_0 \in \mathbb{R}^3} \frac{1}{\delta} \int_{B_\delta(x_0)} |v_0|^2 \, dx. \]

and \(\sigma(1) = c_0 \min \{(N_1)^{-2}, 1\} \). Note that we have used \(\delta < 1 \) in the last inequality.

We may replace \(p \) by \(p - c_{0,1}(t) \). Then \(u_0, u \) and \(p \) satisfy the assumptions in Theorem 1.1 with \(M = (C_0 + C(2,3/2))N_1 \). By Theorem 1.1, there exists \(T_1 = \epsilon(1 + M)^{-6} \in (0, \sigma] \) such that \(u \) is regular in \(B_{1/4} \times (0, T_1) \) with
\[|u(x,t)| \leq \frac{C_1}{\sqrt{t}}, \quad \text{in} \quad B_{1/4} \times (0, T_1), \]

and
\[\sup_{z_0 \in B_{1/4} \times (0,T_1)} \sup_{0 < r < \infty} \frac{1}{r^2} \int_{Q_r(z_0) \cap |B_1 \times (0, T_1)|} \frac{|u|^3}{dz} \leq 1. \]

The condition \(T_1 \leq \sigma \) is clearly satisfied if we had chosen \(\epsilon \leq c_0 \). Back to \(v \), we have
\[|v(x,t)| \leq \frac{C_1}{\sqrt{t}}, \quad \text{in} \quad B_{\delta/4} \times (0, T_1 \delta^2), \]

and
\[\sup_{z_0 \in B_{\delta/4} \times (0,T_1 \delta^2)} \sup_{0 < r < \infty} \frac{1}{r^2} \int_{Q_r(z_0) \cap |B_{\delta/4} \times (0, T_1 \delta^2)|} \frac{|v|^3}{dz} \leq 1. \]

This completes the proof of Corollary 1.2.

Proof of Corollary 1.3. If \(\delta \in (0,1] \), the Corollary is a direct consequence of Corollary 1.2, since smallness of \(L^3 \)-norm in \(B_{\delta}(x_0) \) is assumed to be uniform in \(x_0 \). If \(\delta > 1 \), then (1.10) is also valid for \(\delta = 1 \) and the Corollary follows from the case \(\delta = 1 \).

Proof of Corollary 1.4. Fix \(x_0 \in \mathbb{R}^3 \) such that \(\rho(x_0) = \rho(x_0; v_0) > 0 \). We may assume \(\rho(x_0) \leq 1 \). By Corollary 1.2, we obtain
\[|v(x,t)| \leq \frac{C_1}{\sqrt{t}}, \quad \text{in} \quad B_{\rho(x_0)/4} \times (0, T(x_0)), \]

with \(T(x_0) = T_1(M)\rho^2(x_0) \) and \(M = CN_{\rho(x_0)} \). The claim then follows by taking \(T_1(M) = \epsilon(1 + M)^{-6} \).

7 Solutions with data in Herz spaces

In this section we prove Theorem 1.5 and Corollary 1.7 for initial data in the Herz space \(K_3 \).

Lemma 7.1. The inclusion \(K_3 \subset L^2_{uloc} \) holds. Moreover there exists a positive constant \(C \) such that
\[N_R := \sup_{x \in \mathbb{R}^3} \frac{1}{R} \int_{B_R(x)} |v_0(x)|^2 \leq CR||v_0||^2_{K_3}, \]
holds for any \(R > 0 \).
Proof. Fix $R > 0$. If $|x| > 2R$, then
\[
\int_{B_R(x)} |v_0|^2 \leq \left(\int_{B_R(x)} |v_0|^3 \right)^{2/3} \|1\|_{L^3(B_R(x))} \leq \left(\int_{B_{1/2}(x)} |v_0|^3 \right)^{2/3} CR
\]
\[
\leq C\|v_0\|^2_{K_3 R}.
\]
On the other hand, if $|x| \leq 2R$, then
\[
\int_{B_R(x)} |v_0|^2 \leq \int_{B_{3R}(0)} |v_0|^2 \leq \sum_{k=0}^{\infty} \int_{x \sim 2^{-k}3R} |v_0|^2 \leq \sum_{k=0}^{\infty} C\|v_0\|^2_{K_3 2^{-k}R} = C\|v_0\|^2_{K_3 R}.
\]
These estimates show the desired bound. \hfill \square

Note that $K_3 \not\subset E^2$, as shown by the example (1.15).

Proof of Theorem 1.5. By Lemma 3.5 with $(s, q) = (2, 3/2)$, for any $R > 0$, we have
\[
\sup_{0 < \tau < \sigma R} \sup_{x \in \mathbb{R}^3} \frac{1}{R} \int_{B_R(x)} |v|^2 + \sup_{x \in \mathbb{R}^3} \frac{1}{R} \int_0^{\sigma R} \int_{B_R(x)} |\nabla v|^2 \leq CN_R \leq C\|v_0\|^2_{K_3},
\]
(7.1)
\[
\sup_{x \in \mathbb{R}^3} \frac{1}{R} \left(\int_0^{\sigma R} \left(\int_{B_R(x)} |\pi - c_{x, R}(t)|^{3/2} \right)^{4/3} \right)^{1/2} \leq C\|v_0\|^2_{K_3},
\]
(7.2)
for $\sigma = \sigma(\|v_0\|_{K_3})$ independent of R.

Let $\mu > 0$ be the small constant in (1.12). For $x_0 \in \mathbb{R}^3$ with $x_0 \neq 0$, let $\delta = \mu|x_0|$. By (1.12), we have
\[
\int_{B_{\delta}(x_0)} |v_0(x)|^3 dx \leq \epsilon_0^3.
\]
(7.3)
Here ϵ_0 is the constant from Theorem 1.1.

By the same proof of Corollary 1.2, we have
\[
|v(x, t)| \leq \frac{C_1}{\sqrt{t}}, \text{ in } B_{\delta/4} \times (0, T \delta^2).
\]
and
\[
\sup_{z_0 \in B_{\delta/4} \times (0, T \delta^2)} \sup_{0 < \tau < \infty} \frac{1}{\tau^2} \int_{Q_t(z_0) \cap [B_{\delta/4} \times (0, T \delta^2)]} |v|^3 dz \leq 1.
\]
We do not need the assumption $\delta \leq 1$ since our a priori bounds (7.1) and (7.2) are valid for all $R \in (0, \infty)$.

This completes the proof of Theorem 1.5. \hfill \square

Proof of Corollary 1.7. By [2, Lemma 3.1], $v_0 \in K_3$. We will show v_0 satisfies (1.12) for some $\mu \in (0, 1)$. Because of the discrete self-similarity, it suffice to consider the region $A := \{x \in \mathbb{R}^3; \frac{1}{2} \leq |x| < \frac{3}{2} \lambda \}$. Since v_0 is locally L^3, there exists $L > 0$ such that $\int_A |v_0|^3 \leq L$. We now define r_i ($i = 1, 2, \cdots$) iteratively as
\[
r_0 = \frac{1}{2}, \quad r_{i+1} = \sup \left\{ r > 0; \int_{r \leq |x| \leq r} |v_0|^3 \leq \frac{\varepsilon}{2} \right\},
\]
25
unless \(r_{i+1} \geq \frac{3}{2} \lambda \). This iteration stops at finite steps, namely, there exists \(j \) such that \(r_j \geq \frac{3}{2} \lambda \). We then set
\[
\mu := \min \left\{ \frac{1}{2} \frac{r_i}{\lambda} : i = 1, 2, \ldots, j \right\}.
\]
If \(1 \leq |x| \leq \lambda \), we can find some \(i = 1, 2, \ldots, j \) such that
\[
B_{\mu|x|}(x) \subset S_i \cup S_{i+1}
\]
where \(S_i := \{ x \in \mathbb{R}^3 : r_i \leq |x| \leq r_{i+1} \} \). Hence by the definition of \(r_i \), we see \(\int_{B_{\mu|x|}(x)} |v_0|^2 \leq \varepsilon \). Now the first part is a direct consequence of Theorem 1.5. The second part can be also shown by the arguments in [32, Lemma 3.3]. Since its verification is similar to that in [32, Lemma 3.3], we omit the details.

\[\square \]

8 Appendix 1: Properties of local Leray solutions

In this appendix we prove Lemmas 3.4 and 3.5. We will prove Lemma 3.4 following the approach of Maekawa-Miura-Prange [27, §3] (our case in \(\mathbb{R}^3 \) is of course simpler), and using the estimates in Maekawa-Terasawa [28].

Lemma 8.1 (Linear \(L^p_{uloc} \) estimate in \(\mathbb{R}^d \) [28] Corollary 3.1). Let \(1 \leq q \leq p \leq \infty \). For \(f \in L^q_{uloc}(\mathbb{R}^d) \) and \(m = 0, 1 \), we have
\[
\left\| \nabla^m e^{t \Delta} f \right\|_{L^p_{uloc}} \leq t^{-m/2} (1 + t^{-\frac{d}{2} \left(\frac{1}{p} - \frac{1}{q} \right)}) \| f \|_{L^q_{uloc}}. \tag{8.1}
\]
\[
\left\| e^{t \Delta} \mathbb{P} \nabla \cdot F \right\|_{L^p_{uloc}} \leq t^{-1/2} (1 + t^{-\frac{d}{2} \left(\frac{1}{p} - \frac{1}{q} \right)}) \| f \|_{L^q_{uloc}}. \tag{8.2}
\]

Proof of Lemma 3.4. By the definition of a local energy solution, there is \(A \in (0, \infty) \) such that
\[
\text{ess sup}_{0 < t < T} \| v(t) \|_{L^2_{uloc}} + \sup_{x \in \mathbb{R}^3} \int_0^T \int_{B_1(x)} |\nabla v|^2 \leq A.
\]
Since \(v_0 \in E^2 \), there are \(v_0^\epsilon \in C_c^\infty \), \(v_0^\epsilon \to v_0 \) in \(L^2_{uloc} \) as \(\epsilon \to 0 \). Fix a radial smooth nonnegative function \(\phi \) such that
\[
\phi = 1 \quad \text{in} \quad B_1, \quad \text{spt} \phi \subset B_{3/2}.
\]
For \(\phi_{\epsilon}(x) = \phi(\epsilon x) \), let
\[
v^\epsilon(t) = e^{t \Delta} v_0^\epsilon + \int_0^t e^{(t-s) \Delta} \mathbb{P} \nabla \cdot [\phi_{\epsilon} v \otimes v](s) ds,
\]
and
\[
\bar{v}(t) = e^{t \Delta} v_0 + \int_0^t e^{(t-s) \Delta} \mathbb{P} \nabla \cdot [v \otimes v](s) ds.
\]
By Lemma 8.1 and \(v \otimes v \in L^\infty(0, T; L^1_{uloc}) \), for \(0 < t < T < \infty \) and \(1 \leq q < 3/2 \)
\[
\left\| v^\epsilon(t), \bar{v}(t) \right\|_{L^q_{uloc}} \leq \| v_0 \|_{L^q_{uloc}} + \int_0^t s^{-1/2} (1 + s^{-\frac{d}{2} \left(\frac{1}{p} - \frac{1}{q} \right)}) \| v \otimes v(s) \|_{L^1_{uloc}} ds
\]
\[
\lesssim \| v_0 \|_{L^2_{uloc}} + (T^{1/2} + T^{-\frac{d}{2} - 1}) \| v \otimes v \|_{L^\infty(0, T; L^1_{uloc})},
\]

26
Thus for any $1 \leq q < 3/2$,
\[
\|v^\varepsilon, \bar{v}\|_{L^\infty(0,T;L^q_{uloc})} \leq C\|v^0\|_{L^2_{uloc}} + C(T^{1/2} + T^{3/2})A. \tag{8.3}
\]
We now show that
\[
\lim_{\varepsilon \to 0^+} \|v^\varepsilon - \bar{v}\|_{L^\infty(0,T;L^q_{uloc})} = 0, \quad \text{for all } q < 3/2. \tag{8.4}
\]
Indeed,\(^1\) for $f^\varepsilon = (1 - \phi_\varepsilon)v \otimes v$ and $0 < \delta < \min(t,1)$, we decompose
\[
\int_0^t e^{-(t-s)A}F^\varepsilon \cdot \nabla f^\varepsilon \, ds = \left(\int_0^{t-\delta} + \int_0^{t-\delta} \right) = I_1 + I_2.
\]
We have
\[
\|I_1\|_{L^q_{uloc}} \leq C \int_{|t-s|<\delta} |t-s|^{-2+\frac{3}{2q}} \|v\|_{L^\infty L^2}^2 \, ds \leq CA \delta^{\frac{3}{2q}-1}.
\]
Rewriting
\[
I_2(x,t) = \int_0^{t-\delta} \int_\mathbb{R}^3 \nabla_x S(x-y,t-s)f^\varepsilon(y,s) \, ds,
\]
where $S(x,y)$ is the Oseen tensor of the Stokes system in \mathbb{R}^3 and using the well-known estimate
\[
|\nabla_x S(x,t)| \leq C_m(|x| + \sqrt{t})^{-4}, \quad m \in \mathbb{N},
\]
we have
\[
|I_2(x,t)| \leq \sum_{k \in \mathbb{Z}^3} \int_0^{t-\delta} \int_{B_1(x+k)} |\nabla_x S(x-y,t-s)||f^\varepsilon(y,s)| \, dy \, ds
\]
\[
\leq \sum_{k \in \mathbb{Z}^3} C((|k| - 1) + \sqrt{\delta})^{-4} \int_0^{t-\delta} \int_{B_1(x+k)} |f^\varepsilon(y,s)| \, dy \, ds
\]
\[
\leq C \delta^{-2} F_\varepsilon,
\]
where $F_\varepsilon = \sup_{y \in \mathbb{R}^3} \int_0^T \int_{B_1(y)} |f^\varepsilon(y,s)| \, dy \, ds$. By assumption (3.5) with $R = \max(1, \sqrt{T})$, we know that $\lim_{\varepsilon \to 0} F_\varepsilon = 0$. For any $\tau > 0$, we can first choose $\delta > 0$ such that $CA \delta^{\frac{3}{2q}-1} < \frac{1}{2} \tau$, and then choose ϵ such that $C \delta^{-2} F_\varepsilon < \frac{1}{2} \tau |B_1|^{-1/q}$. Then
\[
\|I_1 + I_2\|_{L^q_{uloc}}(t) \leq \tau.
\]
Because the choices of δ and ϵ are uniform in t, we have shown (8.4).

Note v^ε is a weak solution of the inhomogeneous Stokes system
\[
\partial_t v^\varepsilon - \Delta v^\varepsilon + \nabla p^\varepsilon = -G_\varepsilon, \quad \text{div } v^\varepsilon = 0, \quad v^\varepsilon|_{t=0} = v^0, \tag{8.6}
\]
\(^1\)This would be quite easy if we further assume
\[
\|(1 - \phi_\varepsilon)v \otimes v : L^\infty(0,T;L^1_{uloc})\| \to 0 \quad \text{as } \varepsilon \to 0. \tag{8.5}
\]
Note that our assumption (3.5) is slightly weaker than such an assumption.
Thus, by the maximal regularity estimate,
\[\| \partial_t v^\varepsilon, \nabla^2 v^\varepsilon, \nabla p^\varepsilon \|_{L^2((0,T) \times \mathbb{R}^3)} \leq C(\epsilon, A, T), \]
and
\[p^\varepsilon(x,t) = \int \frac{1}{4\pi|x-y|} \nabla \cdot G_\varepsilon(y,t)dy \]
\[= -\frac{1}{3} \phi_x |v|^2(x,t) + \int K(x-y): (\psi \phi_x \otimes v)(y,t)dy, \] (8.7)
where \(K(y) = \text{p.v.} \nabla^2(4\pi|y|)^{-1} \).

We now decompose \(p^\varepsilon \). For fixed \(x_0 \in \mathbb{R}^3 \) and \(R > 0 \), we let \(\psi(x) = \phi(\frac{x-x_0}{2R}) \) and decompose (8.7) for \(x \in B_{\frac{3}{2}R}(x_0) \) as
\[p^\varepsilon(x,t) = p^\varepsilon_{\text{loc}}(x,t) + p^\varepsilon_{\text{far}}(x,t) + c^\varepsilon(t) \]
\[p^\varepsilon_{\text{loc}}(x,t) = -\frac{1}{3} \phi_x |v|^2(x,t) + \int K(x-y): (\psi \phi_x \otimes v)(y,t)dy \]
\[p^\varepsilon_{\text{far}}(x,t) = \int [K(x-y) - K(x_0-y)] : ((1-\psi) \phi_x \otimes v)(y,t)dy \]
\[c^\varepsilon(t) = \int K(x_0-y) : ((1-\psi) \phi_x \otimes v)(y,t)dy \]

By the Calderon-Zygmund estimate, for any \(q > 1 \) we have
\[\int_{B_{\frac{3}{2}R}(x_0)} |p^\varepsilon_{\text{loc}}(x,t)|^q dx \leq c_q \int_{B_{3R}(x_0)} |v(x,t)|^{2q} dx. \]

Thus
\[\| p^\varepsilon_{\text{loc}} \|_{L^q(0,T;L^q(B_{\frac{3}{2}R}(x_0)))} \leq c \| v \|_{L^{2q}(0,T;L^{2q}(B_{3R}(x_0)))}^2, \]
which is a priori bounded by \(A \) if \(\frac{2}{s} + \frac{3}{q} \geq \frac{3}{2} \), i.e., \(\frac{2}{s} + \frac{3}{q} \geq 3 \) and if \(1 < q \leq 3 \).

For \(p^\varepsilon_{\text{far}} \) we have a pointwise bound,
\[|p^\varepsilon_{\text{far}}(x,t)| \leq \int_{2R<|y-x_0|} \frac{cR}{|y-x_0|^4} |v(y,t)|^2 dy \]
\[\leq \sum_{0 \neq k \in \mathbb{Z}^3} \int_{B_R(x_0+Rk)} \frac{cR}{|Rk|^4} |v(y,t)|^2 dy \]
\[\leq cR^{-3} \| v(t) \|_{L^2_{\text{uloc},R}}^2. \]

Thus, for \(\frac{2}{s} + \frac{3}{q} \geq 3 \),
\[\| p^\varepsilon_{\text{loc}} \|_{L^s(0,T;L^s(B_{\frac{3}{2}R}(x_0)))} + \| p^\varepsilon_{\text{far}} \|_{L^s(0,T;L^s(B_{\frac{3}{2}R}(x_0)))} \]
\[\leq cA + cT^{1/s} R^{3/q-3} \text{ess sup}_{0<t<T} \| v(t) \|_{L^2_{\text{uloc},R}}^2 \]
\[\leq c(T, R, s, q) A. \] (8.8)
By regarding ∇p^ϵ as a given forcing term in (8.6) with the uniform estimate (8.8), we can invoke the local regularity estimate of the inhomogeneous heat equation, which results in, for any $\delta \in (0, T)$ and $q = r^*$, i.e., $1/r = 1/q - 1/3$,

$$
\|\partial_t v^\epsilon, \nabla^2 v^\epsilon\|_{L^q(\delta; T; L^q(B_R(x_0)))} \\
\leq c\|v^\epsilon\|_{L^1(0, T; L^1(B_{2R}(x_0)))} + c\|\phi_\epsilon v \otimes v\| + |p^\epsilon_{\text{loc}} + p^\epsilon_{\text{far}}|_{L^q(0, T; L^q(B_{\frac{2}{3}R}(x_0)))} \\
\leq C(\delta, T, A, R, s, q). \tag{8.9}
$$

These uniform estimates (8.8) and (8.9) enable us to pass limits. Let $\bar{p}_{x_0, R} = \bar{p}_{\text{loc}} + \bar{p}_{\text{far}}$ in $B_{\frac{2}{3}R}(x_0) \times (0, T)$ with

$$
\bar{p}_{\text{loc}}(x, t) = -\frac{1}{3}|v|^2(x, t) + \int K(x - y) : (\psi v \otimes v)(y, t) dy,
$$

$$
\bar{p}_{\text{far}}(x, t) = \int [K(x - y) - K(x_0 - y)] : ((1 - \psi)v \otimes v)(y, t) dy.
$$

We have the same bound as (8.8),

$$
\|\bar{p}_{x_0, R}\|_{L^q(0, T; L^q(B_{\frac{2}{3}R}(x_0)))} \leq c(T, R, s, q)A, \tag{8.10}
$$

and

$$
p^\epsilon_{\text{loc}} + p^\epsilon_{\text{far}} \rightharpoonup \bar{p}_{x_0, R} \quad \text{weakly in} \quad L^s(0, T; L^q(B_R(x_0)))).
$$

The limit of the weak form of (8.6) shows that $(\bar{v}, \bar{p}_{x_0, R})$ is a distributional solution of

$$
\partial_t \bar{v} - \Delta \bar{v} + \nabla \bar{p} = -\nabla \cdot (v \otimes v), \quad \text{div} \bar{v} = 0, \tag{8.11}
$$

and

$$
\lim_{t \to 0^+} (\bar{v}(t), \zeta) = (v_0, \zeta), \quad \forall \zeta \in C_c^\infty(\mathbb{R}^3).
$$

Note $\nabla \bar{p}_{x_0, R} = \nabla \bar{p}_{y_0, r}$ on $B_R(x_0) \cap B_r(y_0)$. In particular, we may specify \bar{p} by setting $\bar{p} = \bar{p}_{0,1}$ on $B_1(x_0)$, and $\bar{p} = \bar{p}_{0,k} + c_k(t)$ on $B_k(x_0)$, $k \in \mathbb{N}$, where $c_k(t)$ is the unique function of t such that $\bar{p}_{0,1} = \bar{p}_{0,k} + c_k(t)$ on $B_1(x_0)$. Thus \bar{p} is defined in $\mathbb{R}^3 \times (0, T)$. Since $\nabla \bar{p} = \nabla \bar{p}_{x_0, R}$ on $B_R(x_0)$, we have

$$
\bar{p} = \bar{p}_{x_0, R} + c_{x_0, R}(t) \quad \text{on} \quad B_R(x_0)
$$

for some $c_{x_0, R}(t)$. Since $\bar{p}, \bar{p}_{x_0, R} \in L^s(0, T; L^q(B_R(x_0)))$, we get $c_{x_0, R} \in L^s(0, T)$. This establishes the pressure decomposition formula provided we have $\bar{v} = v$. To this end, we now show the spatial decay of \bar{v}. Fix any $q < 3/2$. For any $0 < \delta \ll 1$, by (8.4), there is $\epsilon > 0$ such that $\|\bar{v} - v^\epsilon\|_{L^q(0, T; L^q_{\text{uloc}})} \leq \delta$. Since $v^\epsilon \in L^2(\mathbb{R}^3 \times (0, T))$, there is $R > 0$ such that

$$
\sup_{|x| > R} \int_0^T \int_{B_1(x)} |v^\epsilon|^q < \delta.
$$

Thus

$$
\sup_{|x| > R} \int_0^T \int_{B_1(x)} |\bar{v}|^q \leq C\delta. \tag{8.12}
$$
It remains to show $\bar{v} = v$. Let $u = v - \bar{v}$. It satisfies by (3.5) and (8.12), for any $q < 3/2$,

$$u \in L^{\infty}(0, T; L^q_{uloc}), \quad \lim_{|x| \to \infty} \int_0^T \int_{B_1(x)} |u|^q = 0,$$

(8.13)

and

$$\partial_t u - \Delta u + \nabla \pi = 0, \quad \text{div } u = 0, \quad u(t = 0) = 0.$$ (8.14)

Let $\eta_\epsilon(x) = \epsilon^{-3} \phi(x/\epsilon)$ be a mollification kernel, and $\omega_\epsilon = \eta_\epsilon * \text{curl } u$. The vector field ω_ϵ is a bounded solution of the heat equation with $\omega_\epsilon(t = 0) = 0$. Thus $\omega_\epsilon = 0$ for all $\epsilon > 0$. For any fixed t, $W_{\epsilon, t}(x) = \int_0^t \eta_\epsilon * u(s) \, ds$ is a bounded harmonic vector field which vanishes at spatial infinity. Thus $W_{\epsilon, t} \equiv 0$. Thus $u \equiv 0$.

Proof of Lemma 3.5. Let

$$A_R(t) = \sup_{x \in \mathbb{R}^3} \left\{ \sup_{0 < s < t} \frac{1}{R} \int_{B_R(x)} |v(y, s)|^2 dy + \frac{1}{R} \int_0^R \int_{B_R(x)} |\nabla v(y, s)|^2 dy ds \right\}.$$ (8.15)

The standard energy estimate as in [20, Lemma 3.2] based on the local energy inequality and the pressure estimate (8.10) gives

$$A_R(t) \leq N_R + CR^{-2} \int_0^t (A_R(s) + A_R(s)^3) \, ds.$$ (8.16)

Thus $A(t) \leq 2A_0$ for $t < \lambda R^2$ provided

$$\lambda \leq \frac{c}{1 + A_0^2},$$

which yields (3.8). Estimate (3.9) then follows from (8.10). We have shown Lemma 3.5.

Acknowledgments

We thank Professor Yohei Tsutsui for useful information about the Herz spaces. We also thank Professors Yasunori Maekawa and Christophe Prange for valuable discussions about the pressure decomposition. The research of Kang was partially supported by NRF-2017R1A2B4006484 and by the Yonsei University Challenge of 2017. The research of Miura was partially supported by JSPS grant 17K05312. The research of Tsai was partially supported by NSERC grant 261356-18.

References

[1] Barker, T., and Prange, C., Localized smoothing for the Navier-Stokes equations and concentration of critical norms near singularities, preprint: arXiv:1812.09115

[2] Bradshaw, Z. and Tsai, T.-P., Forward discretely self-similar solutions of the Navier-Stokes equations II, Ann. Henri Poincaré 18 (2017), no. 3, 1095-1119.

[3] Bradshaw, Z. and Tsai, T.-P., Rotationally corrected scaling invariant solutions to the Navier-Stokes equations. Comm. Partial Differential Equations 42 (2017), no. 7, 1065-1087.
[4] Bradshaw, Z. and Tsai, T.-P., Discretely self-similar solutions to the Navier-Stokes equations with Besov space data, Arch. Rational Mech. Anal. (2017). https://doi.org/10.1007/s00205-017-1213-1

[5] Bradshaw, Z. and Tsai, T.-P., Discretely self-similar solutions to the Navier-Stokes equations with data in L^p_{loc} satisfying the local energy inequality. Analysis and PDE, to appear. Preprint: arXiv:1801.08060

[6] Caffarelli, L., Kohn, R. and Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), no. 6, 771-831.

[7] Chae, D., and Wolf, J., Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $L^2_{\text{loc}}(\mathbb{R}^3)$, Ann. I. H. Poincaré - AN, https://doi.org/10.1016/j.anihpc.2017.10.001

[8] Fabes, E. B., Jones, B. F. and Rivière, N. M., The initial value problem for the Navier-Stokes equations with data in L^p, Arch. Rational Mech. Anal. 45 (1972), 222–240.

[9] Giga, Y., Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations 62 (1986), no. 2, 186-212.

[10] Giga, Y. and Miyakawa, T. Solutions in L^r of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89 (1985), no. 3, 267–281.

[11] Guillod, J. and Šverák, V., Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces. arXiv:1704.00560

[12] Gustafson, S.; Kang, K. and Tsai, T.-P., Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations. Comm. Math. Phys. 273 (2007), no. 1, 161-176.

[13] Herz, C., Lipschitz spaces and Bernsteins theorem on absolutely convergent Fourier transforms, J. Math. Mech., 1968, 18: 283-324.

[14] Jia, H. and Šverák, V., Minimal L^3-initial data for potential Navier-Stokes singularities. SIAM J. Math. Anal. 45 (2013), no. 3, 1448-1459.

[15] Jia, H. and Šverák, V., Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. Invent. Math. 196 (2014), no. 1, 233-265.

[16] Jia, H. and Šverák, V., Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268 (2015), no. 12, 3734–3766.

[17] Jia, H., Sverak, V., and Tsai, T.-P., Self similar solutions to the nonstationary Navier Stokes equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 461-507, Springer, 2018.

[18] Kang, K., Miura H., and Tsai, T.-P., Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data, Comm. Partial Differential Equations 37 (2012), no. 10, 1717–1753.
[19] Kato, T., Strong L^p-solutions of the Navier-Stokes equation in R^m, with applications to weak solutions, Math. Z., 187 (1984), pp. 471-480.

[20] Kikuchi, N. and Seregin, G., Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality. Nonlinear equations and spectral theory, 141-164, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007.

[21] Korobkov, M. and Tsai, T.-P., Forward self-similar solutions of the Navier-Stokes equations in the half space, Analysis and PDE 9-8 (2016), 1811–1827.

[22] Lemarié-Rieusset, P. G., Recent developments in the Navier-Stokes problem. Chapman Hall/CRC Research Notes in Mathematics, 431. Chapman Hall/CRC, Boca Raton, FL, 2002.

[23] Lemarié-Rieusset, P. G., The Navier-Stokes problem in the 21st century. CRC Press, Boca Raton, FL, 2016.

[24] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace. (French) Acta Math. 63 (1934), no. 1, 193-248.

[25] Lin, F., A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math. 51 (1998), no. 3, 241-257.

[26] Luo Y. and Tsai, T.-P., Regularity criteria in weak L^3 for 3D incompressible Navier-Stokes equations, Funkcialaj Ekvacioj 58 (2015), no. 3, 387–404.

[27] Maekawa, Y., Miura, H. and Prange, C., Local energy weak solutions for the Navier-Stokes equations in the half-space, arXiv:1711.04486

[28] Maekawa, Y. and Terasawa, Y., The Navier-Stokes equations with initial data in uniformly local L^p spaces. Differential Integral Equations 19 (2006), no. 4, 369-400.

[29] Miyachi, A., Remarks on Herz-type Hardy spaces. Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 2, 339-360.

[30] Nečas, J., Ružička, M., and Šverák, V., On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), 283–294.

[31] Tsai, T.-P., On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rational Mech. Anal. 143 (1998), 29–51.

[32] Tsai, T.-P., Forward discretely self-similar solutions of the Navier-Stokes equations. Comm. Math. Phys. 328 (2014), no. 1, 29-44.

[33] Tsutsui, Y., The Navier-Stokes equations and weak Herz spaces. Adv. Differential Equations 16 (2011), no. 11-12, 1049-1085.

[34] Weissler, F. B., The Navier-Stokes initial value problem in L^p, Arch. Rational Mech. Anal. 74 (1980), no. 3, 219–230.