第五章
聚合物流变学基础

Polymer rheology
第五章 聚合物流变学基础

本章内容

- 5.1 聚合物熔体的流动
- 5.2 聚合物流体的奇异流变现象
- 5.3 聚合物熔体剪切粘度的影响因素
- 5.4 聚合物流变性能测定
- 5.5 聚合物熔体的压力流动
聚合物成型加工技术几乎都是依靠外力作用下聚合物的流动与变形，来实现从聚合物材料到制品的转变。

聚合物流变学正是研究聚合物熔体和溶液流动及变形规律的科学。
聚合物从合成到最终材料与制品之间要经过一个复杂的工艺过程。这个过程包括了聚合物共混、复合、化学改性与成型。

聚合物加工

共混、复合与改性

高分子材料

成型

制品

流变学是研究材料的形变与流动的一门学问。
材料的流变性质：

钢 胶泥 水 橡胶

弹性 塑性 粘性 粘弹性

h
5.1 聚合物熔体的流动

绝大多数聚合物的成型加工都是在其熔融状态下进行的，加工力场与温度场不仅直接影响聚合物熔体的流动性，而且能够影响聚合物制品的最终结构与性能。

例：PET瓶的注射拉伸吹塑
例：PET瓶胚拉伸吹塑过程模拟
5.1.1 流动类型

根据成型条件下的流速、外力作用形式、流道几何形状和热量传递情况，聚合物熔体可表现出不同的流动类型。

(1) 层流和湍流

雷诺准数\(Re \)：
- \(Re \leq 2300 \) 为层流
- \(2300 < Re < 4000 \) 为过渡区
- \(Re \geq 4000 \) 为湍流

聚合物成型时，高粘度熔体呈现层流状态，\(Re \leq 1 \)。熔体经小浇口注射进入模腔，会出现弹性湍流。
（2）稳定流动与不稳定流动

稳定流动：流动状况及其影响因素不随时间而变化。

不稳定流动：流动状况及其影响因素随时间而变化。

（3）等温流动和非等温流动

等温流动：流体各处温度不随时间而变化。

非等温流动：流体各处温度随时间而变化。
（4）拉伸流动和剪切流动

拉伸流动：流体质点速度沿着流动方向发生变化。
例：PP的熔融纺丝（单轴拉伸）

PE的薄膜吹塑（双轴拉伸）

剪切流动：流体质点速度垂直于流动方向而变化。

拖曳流动 — 由边界运动而产生
例：混炼胶的擦胶

压力流动 — 由外力作用而产生
例：PP管材的挤出成型
5.1.2 非牛顿型流动

剪切流动是聚合物加工过程中最简单的流动形式，按剪切应力与剪切速率的关系，可以分为牛顿型流动和非牛顿型流动。

（1）牛顿型流动

流体粘度不随剪切速率或剪切应力而变化的粘性流体称为牛顿流体。其流变方程为：

\[\tau = \eta \dot{\gamma} \]

剪切应力 粘度 剪切速率

牛顿流体是纯粘性流体，粘度与温度相关。低分子化合物的气体、液体或溶液属于牛顿流体。
(2) 非牛顿型流动

流体粘度随剪切速率或剪切应力而变化的粘性流体称为非牛顿流体。包括宾汉流体、塑性流体、假塑性流体和膨胀性流体。
①**宾汉流体**：流体静止时内部有凝胶性结构，使得流动前存在剪切屈服应力。其流变方程为：

\[
\tau - \tau_y = \eta_p \dot{\gamma} \quad (\tau > \tau_y)
\]

聚合物浓溶液和凝胶性糊塑料属于宾汉流体。

②**假塑性流体**：粘度随剪切速率或剪切应力的增大而降低的剪切变稀流体。其流变方程为：

非牛顿指数 \((n<1)\) 表观粘度

\[
\tau = K \dot{\gamma}^n = \eta_a \dot{\gamma} \quad K、n和\eta_a与温度有关
\]

橡胶和大部分塑料的熔体和溶液属于假塑性流体。
膨胀性流体：粘度随剪切速率或剪切应力的增大而升高的剪切增稠流体。其流变方程为：

非牛顿指数（\(n > 1 \)）

流变方程：

\[\tau = K \dot{\gamma}^n = \eta_a \dot{\gamma} \]

\(K, n \) 和 \(\eta_a \) 与温度有关

高固含量悬浮液、高浓度聚合物分散体、高填充塑料熔体属于膨胀性流体。

例：
① 剪切增稠流体防刺服
② PVC 增塑糊

高速剪切使悬浮液中的颗粒产生碰撞，无法保持颗粒表面的充分润滑。
④ 塑性流体：存在屈服值的假塑性流体。

存在屈服值的原因：
分散体系在静止时能形成分子间或颗粒间的键合力网络，呈现出粘度无穷大的固体特性。

对剪切应力的响应：
若外力小于网络键合力，固体网络仅发生弹性形变；若外力大于网络键合力，固体网络解体产生假塑性流动。

例：油墨、果酱、牙膏、化妆品
在常见的聚合物成型条件下，剪切速率处在$10 \sim 10^4 \text{s}^{-1}$范围内，大多数聚合物熔体呈现假塑性的流变行为。

低剪切速率 \rightarrow 第一牛顿区 $\rightarrow \eta_0$

高剪切速率 \rightarrow 第二牛顿区 $\rightarrow \eta_\infty$
5.2 聚合物流体的奇异流变现象

聚合物具有多层次的内部结构：

① 聚合物形态结构
 大分子链变形与取向、缠结密度、结晶形态等

② 聚合物共混体系
 不相容体系、部分相容体系、完全相容体系

③ 聚合物复合体系
 粒子的形状、大小、分布与取向

当聚合物流体在外力或外力矩作用下，能够表现出既非胡克弹性体，又非牛顿粘性流体的奇异流变性质。
5.2.1 高粘度与剪切变稀行为

剪切变稀效应是聚合物流体最典型的非牛顿流动性质。在高分子材料成型加工时，随着成型工艺方法的变化以及剪切应力或剪切速率的不同，物料粘度往往会发生1～3个数量级的大幅度变化。

N — 牛顿流体
P — 聚合物流体

Viscosity
Shear Rate
5.2.2 Weissenberg效应

两烧杯中分别盛有低分子液体和高分子液体，当插入其中的圆棒旋转时，低分子液体的液面形成凹形，而高分子液体的液面呈现凸形。此现象被称为Weissenberg效应，也被称为爬杆或包轴现象。
当聚合物熔体从口模挤出时，挤出物尺寸大于口模尺寸、截面形状也发生变化。聚合物熔体具有的这种记忆特性被称为**Barus效应**，也称之为**挤出胀大**、**出口膨胀**或**离模膨胀**现象。
5.2.4 不稳定流动与熔体破裂

聚合物熔体从口模挤出时，当挤出速率超过某一临界剪切速率后，随着挤出速率的增大，挤出物可能先后出现波浪形、鲨鱼皮形、竹节形和螺旋形畸变，最后导致完全无规则的挤出物断裂，称之为熔体破裂现象。
5.2.5 无管虹吸与无管侧吸

将管子插入盛有聚合物流体的容器，并将流体吸入管中；在流动过程中，将管子从容器中缓慢提起，当管子离开液面后仍有液体流入管子。该现象称为无管虹吸效应。

将一杯高分子溶液侧向倾倒流出，若将烧杯的位置部分回复，使杯中平衡液面低于烧杯边缘，然而高分子液体仍能沿壁爬行，继续维持流出烧杯，直至杯中的液体全部流光为止。该现象称为无管侧吸效应。
5.2.6 次级流动

当聚合物流体在均匀压力梯度下通过非圆形管道流动时，除了纯轴向流动外，可能出现局部区域性的环流，称为次级流动或二次流动。聚合物流体在通过截面有变化的流道时，有时也发生类似现象。
5.2.7 触变性和震凝性

触变性和震凝性是指某些液体的流动粘度随外力作用时间的长短而发生变化的性质。粘度变小的称为触变性，而粘度变大的称为震凝性。
5.2.8 湍流减阻与渗流增阻

湍流减阻效应是指在高速的湍流管道中，若加入少许亲水性高分子物质，如聚氧化乙烯或聚丙烯酰胺等，则管道阻力将显著减小的现象。

渗流增阻现象是指渗流可使流体经历拉伸流动，产生了较大的拉伸粘度，从而起到了阻流作用。
5.3 聚合物熔体剪切粘度的影响因素

大多数聚合物熔体属于假塑性流体，其剪切粘度受到各种因素的影响。

①剪切速率
②熔体温度
③熔体压力
④分子结构
⑤添加剂
5.3.1 剪切速率的影响

聚合物熔体的粘度随剪切速率的增加而下降。对于剪切敏感性较强的塑料，可提高剪切速率来降低熔体粘度，有利于注射充模。

例：聚合物熔体粘度对剪切速率的敏感性

敏感性较高：LDPE、PP、PS、ABS、PMMA、POM
敏感性一般：HDPE、PSF、PBT、PA1010
敏感性微弱：PA6、PA66、PC
5.3.2 温度的影响

聚合物熔体的粘度随温度的升高而下降。

聚合物熔体的粘流活化能越大，其粘度对温度越敏感；当温度升高时，其粘度下降越明显。

例：聚合物熔体粘度对粘流活化能的敏感性

敏感性微弱：PE、POM

敏感性较高：PC、PMMA
5.3.3 压力的影响

聚合物熔体的粘度随压力的升高而增大。压力增加 Δp 与温度下降 ΔT 对熔体粘度的影响是等效的。对于一般的聚合物熔体，压力和温度对粘度影响的等效换算因子 $(\Delta T/\Delta p)_\eta$ 为 $0.3\sim0.9$ ℃/MPa。
5.3.4 分子结构的影响

①分子量

聚合物的分子量越大，熔体的粘度越大。

②分子量分布

分子量分布宽的聚合物熔体对剪切速率的敏感性大于分子量分布窄的聚合物熔体。

③分子链支化

在分子量相同的情况下，短支链聚合物的粘度低于直链聚合物；粘度随支链长度增加而上升；支链越多、越短而粘度越低。
5.3.5 添加剂的影响

①增塑剂

增塑剂能降低熔体的粘度，提高成型加工的流动性。

②润滑剂

润滑剂通过降低熔体之间以及熔体与设备之间的摩擦与粘附，改善加工流动性，提高生产能力和制品外观质量。

③填充剂

填充剂能够降低聚合物熔体的加工流动性。影响程度与填充剂的类型、粒径、用量和表面性质有关。
5.4 聚合物流变性能测定

流变仪以及相关的流变模拟软件能够将各种边界条件下可测量的物理量（如压力、扭矩、转速、频率、线速度、流量、温度等）与描述聚合物流变性质但不能直接测量的物理量（如应力、应变、应变速率、粘度、模量、法向应力差系数等）关联起来。
5.4.1 毛细管流变仪

毛细管流变仪具有较高的剪切速率范围，能够涵盖挤出、注射等成型工艺。在测试过程中，还可观察到熔体的出口膨胀以及高剪切速率下的熔体破裂现象。

恒速率型毛细管流变仪通过测量流量、压力和温度之间关系，得出聚合物熔体的流变曲线。

\[\text{液柱推力} \]
\[L \]
\[\Delta p \]
\[2R \]
\[\text{粘滞阻力} \]

\[\text{柱塞} \]
\[\text{料筒} \]
\[\text{试样} \]
\[\text{加热器} \]
\[\text{熔体温度传感器} \]
\[\text{熔体压力传感器} \]
可根据长圆管中的压力流动，得到完全发展流动区各流场参数的表达式。

（1）剪切应力
① 剪切应力 \(\tau = \frac{\Delta pr}{2L} \)
② 剪切速率 \(\dot{\gamma} = \frac{\Delta pr}{2\eta L} \)
③ 速度分布
\[v(r) = \frac{\Delta pR^2}{4\eta L} \left[1 - \left(\frac{r}{R} \right)^2 \right] \]
④ 体积流量
\[q_v = \int_0^R v_{(r)} 2\pi r dr = \frac{\pi \Delta p R^4}{8\eta L} \]

⑤ 剪切粘度
\[\eta_w = \frac{\tau_w}{\dot{\gamma}_w} = \frac{\Delta p \pi R^4}{8QL} \]
例：按圆管内的压力流动计算牙膏挤出时管壁的剪切速率

已知：牙膏流率 \(Q = 1\text{cm}^3/\text{s} \)，细管半径 \(R = 0.25\text{cm} \)。

解：圆管壁的剪切速率为

\[
\dot{\gamma}_R = -\frac{\Delta p R}{2\eta L} = \frac{4Q}{\pi R^3} = \frac{4 \times 1 \times 10^{-6}}{3.14 \times 0.0025^3} = 81.53(\text{s}^{-1})
\]

例：典型过程的剪切速率

抹洗手液 \(10000 \sim 20000 \text{ s}^{-1} \)
血液流动 \(0.1 \sim 250 \text{ s}^{-1} \)
从瓶中倾倒液体 \(50 \sim 200 \text{ s}^{-1} \)
注射器注射药物 \(1000 \sim 10000 \text{ s}^{-1} \)
(2) 非牛顿型流体

①剪切应力
\[\tau = \frac{\Delta pr}{2L} \]

②剪切速率
\[\dot{\gamma} = \left(\frac{\Delta pr}{2KL} \right)^\frac{1}{n} \]

③速度分布
\[v(r) = \left(\frac{n}{n+1} \right) \left(\frac{\Delta p}{2KL} \right)^\frac{1}{n} R^{\frac{n+1}{n}} \left[1 - \left(\frac{r}{R} \right)^\frac{n+1}{n} \right] \]

④体积流量
\[q_v = \int_0^R v(r) 2\pi r \, dr = \left(\frac{\pi n}{3n+1} \right) \left(\frac{\Delta p}{2KL} \right)^\frac{1}{n} R^{\frac{3n+1}{n}} \]

⑤剪切粘度
\[\eta_w = \frac{\tau_w}{\dot{\gamma}_w} \]
5.4.2 旋转流变仪

旋转流变仪可用于测定材料的粘弹性和流变性能。它是通过扭矩来进行测量的，根据测量转子的几何构造可分为锥-板型、平行板型（板-板型）和同轴圆筒型。

锥板测量转子是由一个锥度很小的圆锥体和一块固定的平板所组成。当圆锥体以一定角速度旋转时，带动锥板间的液体产生拖曳流动。

特点：流场中任意一点的剪切速率和剪切应力处处相等。
(1) 粘度测量

① 锥板间距 \(H = r \cdot \tan \theta_c \approx r \theta_c \)

② 速度分布 \(v_\phi = \omega r \cdot \frac{r(\frac{\pi}{2} - \theta)}{r(\frac{\pi}{2} - \theta_0)} = \omega r \cdot \frac{\frac{\pi}{2} - \theta}{\theta_c} \)

③ 剪切速率 \(\dot{\gamma}_\phi = \frac{\partial v_\phi}{\partial [r(\frac{\pi}{2} - \theta)]]} = \frac{\omega}{\theta_c} \) (常数)
④ 剪切应力

根据扭矩等于转子表面积与应力和半径乘积之定义，可写出扭矩的数学表达式：

\[M = \int_0^R r \cdot \tau_{\theta \phi} \cdot ds = \tau_{\theta \phi} \int_0^R r \cdot d(\pi r^2) = \tau_{\theta \phi} \int_0^R r \cdot 2\pi r \cdot dr = \frac{2\pi \tau_{\theta \phi} R^3}{3} \]

则 \[\tau_{\theta \phi} = \frac{3M}{2\pi \cdot R^3} \] （常数）

⑤ 剪切粘度 \[\eta_a = \frac{\tau_{\theta \phi}}{\dot{\gamma}_{\theta \phi}} = \frac{3M \theta_c}{2\pi R^3 \omega} \]

锥板测试计算方法适用于牛顿型流体和粘弹性流体。
（2）动态粘弹性测量

转子作频率可调的小振幅正弦振荡。若从转子输入正弦振荡的应变，可测得正弦振荡的应力响应，两者频率相同但存在相位差。

①测量值
应变振荡振幅 γ_0
应力振荡振幅 σ_0
相位差 δ

②计算值
储能模量 $G'(\omega)$ 、损耗模量 $G''(\omega)$ 、损耗角正切 $\tan \delta$
复数模量 $G^*(\omega)$ 、复数粘度 $\eta^*(\omega)$
5.4.3 转矩流变仪

转矩流变仪可模拟材料的实际加工过程。它是通过扭矩来进行测量的，其测量装置包括密闭式混合器、行星式混合器、螺杆挤出机和各种类型的挤出口模。

密闭式混合器在测试过程中，被转子高度剪切的物料产生非线性的粘弹性相应。被测试样品反抗混合的阻力与样品粘度成正比，转矩流变仪借助于转子上的反作用扭矩来测定这种阻力。
密闭式混合器的实验结果有：转矩随时间的变化曲线、温度随时间的变化曲线、机械能随时间的变化曲线等。

例：硬质PVC配方的塑化曲线
5.5 聚合物熔体的压力流动

压力作用下聚合物熔体在通道内的流动称为压力流动。聚合物熔体的粘度很高，且服从非牛顿流体的幂律定律，在通常情况下为稳态层流。

为简化分析及计算过程，可对聚合物熔体作如下假定：属于不可压缩流体；在流道内作等温流动；无滑动边界条件成立；流体粘度不随时间变化。
5.5.1 聚合物熔体在圆管通道中的流动

聚合物在毛细管流变仪、熔融指数仪、乌氏粘度计、圆形挤出口模中的流动都属于圆管通道中的压力流动。

\[\Delta p = p_1 - p_2 > 0 \]

① 熔体流速
\[v_z = \frac{n}{n+1} \left(\frac{\Delta p}{2KL} \right)^{\frac{1}{n}} \left[R^{\frac{n+1}{n}} - r^{\frac{n+1}{n}} \right] \]

② 体积流量
\[q_v = 2\pi \int_0^R v_z \, r \, dr = \frac{\pi n}{3n+1} \left(\frac{\Delta p}{2KL} \right)^{\frac{1}{n}} \, R^{\frac{3n+1}{n}} \]
③平均流速 \[\bar{v} = \frac{q_v}{\pi R^2} = \frac{n}{3n+1} \left(\frac{\Delta p}{2KL} \right)^{\frac{1}{n}} R^{\frac{n+1}{n}} \]
5.5.2 聚合物熔体在狭缝通道中的流动

聚合物薄壁制品的注射成型过程和片材、板材的挤出成型过程，属于聚合物熔体在狭缝通道中的压力流动。

① 剪切速率 \(\dot{\gamma} = \frac{4n + 2}{n} \frac{q_v}{bh^2} \)

② 体积流量 \(q_v = \frac{2n}{2n + 1} \left(\frac{\Delta p}{KL} \right)^\frac{1}{n} b \left(\frac{h}{2} \right)^\frac{2n + 1}{n} \)

③ 压力降 \(\Delta p = \left(\frac{4n + 2}{n} \right)^n q_v^n \frac{2KL}{b^n h^{2n + 1}} \)