Relativistic quantum games in noninertial frames

Salman Khan and M Khalid Khan
Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
E-mail: sksafi@phys.qau.edu.pk

Received 20 February 2011, in final form 17 June 2011
Published 10 August 2011
Online at stacks.iop.org/JPhysA/44/355302

Abstract
We study the influence of the Unruh effect on quantum non-zero sum games. In particular, we investigate the quantum Prisoners’ Dilemma both for entangled and unentangled initial states and show that the acceleration of the noninertial frames disturbs the symmetry of the game. It is shown that for the maximally entangled initial state, the classical strategy \(\hat{C} \) (cooperation) becomes the dominant strategy. Our investigation shows that any quantum strategy does no better for any player against the classical strategies. The miracle move of Eisert et al (1999 Phys. Rev. Lett. 83 3077) is no more a superior move. We show that the dilemma-like situation is resolved in favor of one player or the other.

PACS numbers: 02.50.Le, 03.67.Bg, 03.67.Ac, 03.65.Aa.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Quantum game theory began from the seminal paper of Meyer [1]. It deals with classical games in the domain of quantum mechanics. Over the last few years much valuable work has been done in this area. Various quantum protocols have been developed and many classical games have been extended to the domain of quantum mechanics. It has been shown that quantum superposition and prior quantum entanglement between the players’ states ensure quantum players to outperform the classical counterparts through quantum mechanical strategies [2–9]. Quantum entanglement is one of the powerful tools of quantum mechanics and plays the role of a kernel in quantum information and quantum computation. A prior quantum entanglement between two spatially separated parties increases the number of classical information communicated between them to twice the number of classical bits communicated in the case of the unentangled state [10, 11]. Recently, the behavior of prior entanglement shared between two spatially separated parties has been extended to the relativistic setup in noninertial frames [12–17] and interesting results have been obtained. Alsing et al [12] have shown that the entanglement between the two modes of a free Dirac field is degraded by the
Unruh effect and asymptotically reaches a nonvanishing minimum value in the limit of an infinite acceleration.

In this paper, we study the influence of the Unruh effect on the payoff function of the players in the quantum non-zero sum games. In particular, we concentrate on the quantum Prisoners’ Dilemma [2]. We show that the payoff functions of the players are strongly influenced by the acceleration of the noninertial frame and the symmetry of the game is disturbed. It is shown that under some particular situations, the classical strategy \hat{C} becomes the dominant strategy and the classical strategy profiles (\hat{C}, \hat{C}) and (\hat{D}, \hat{D}) are no more the Pareto optimal and the Nash equilibrium, respectively. We show that the dominance of the quantum player ceases in the presence of acceleration of the noninertial frame. In the infinite limit of acceleration, new Nash equilibrium arises. Furthermore, the dilemma-like situation under every condition, we consider here, is resolved in the favor of one player or the other or both.

2. The Prisoners’ Dilemma

The Prisoners’ Dilemma is a well-known non-zero sum game, which has a widespread applications in many areas of science. Each of the two players (Alice and Bob) has to choose one of the two pure strategies simultaneously. The two pure strategies are called cooperation (C) and defection (D). The reward to the action of a player depends not only on his own strategy but also on the strategy of his opponent. The classical payoff matrix of the game has the structure given in table 1. The first number in each pair of the matrix corresponds to Alice’s payoff and the second number in a pair to Bob’s payoff. This is a symmetric noncooperative game where each player tries to maximize his/her own payoff. The catch of the dilemma is that D is the dominant strategy, that is, rational reasoning forces each player to defect, and thereby doing substantially worse than if they would both decide to cooperate. The quantum form of the Prisoners’ Dilemma was studied for the first time by Eisert et al [2].

3. Calculation

We consider that Alice and Bob share an entangled initial state $|\psi_i\rangle = \hat{J}(00)_{A,B}$ of two qubits (one for each player) at a point in flat Minkowski spacetime. The subscripts A, B of the ket stand, respectively, for Alice and Bob, which means that the first entry in the ket corresponds to Alice and the second entry corresponds to Bob. The unitary operator \hat{J} is an entangling operator and is given by

$$\hat{J} = \exp \left[i \gamma \hat{D}_1 \otimes \hat{D}_1 \right],$$

where $\gamma \in [0, \pi/2]$ and is a measure of the degree of entanglement in the initial state. The initial state is maximally entangled when $\gamma = \pi/2$. The operator \hat{D}_1 is given by

$$\hat{D}_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$
Figure 1. Rindler spacetime diagram: a uniformly accelerated observer Bob (B) moves on a hyperbola with constant acceleration a in region I and a fictitious observer anti-Bob (\bar{B}) moves on a corresponding hyperbola in causally disconnected region II. The coordinates τ and ξ are the Rindler coordinates in Bob’s frame, which represent constant proper time and constant position, respectively. Lines H^\pm are the horizons that represent Bob’s future and past and correspond to $\tau = +\infty$ and $\tau = -\infty$. Alice and Bob share an entangled initial state at point P and Q is the point where Alice crosses Bob’s future horizon.

The entangling operator \hat{J} must be symmetric with respect to the interchange of the two players in order to execute a fair game and must be known to both players for the knowledge of the degree of entanglement in the initial state. The initial state, after the entangling operator is applied, becomes

$$|\psi_i\rangle = \cos \frac{\gamma}{2} |00\rangle_{A,B} + i \sin \frac{\gamma}{2} |11\rangle_{A,B}. \tag{3}$$

We consider that Bob then moves with a uniform acceleration and Alice stays stationary. Each player is equipped with a device which is sensitive only to a single mode in their respective regions. To cover Minkowski space, two different sets of Rindler coordinates (τ, ξ) (see figure 1) that differ from each other by an overall change in sign and define two Rindler regions (I, II) are necessary (for detail see [12] and references therein). A uniformly accelerated particle (observer) in one Rindler region is causally disconnected from the other Rindler region at the opposite side. Thus, an observer in region I has no access to the information that leaks into region II. The opposite is true for an observer in region II. An observer in region II is called antiobserver (antiparticle) of the observer in region I. The inaccessible information that leaks into the opposite region is as the system is decohered. The decoherence effects in quantum games in inertial frames are studied by a number of authors [18–20]. Particularly, in [18] the decoherence effects on quantum Prisoners’ Dilemma have been studied using various quantum channels. However, the results of our calculations in the relativistic setup of the game in noninertial frames are different from the one obtained in [18, 19]. The creation operator (a_k) of particle and the annihilation operator (b_k) of antiparticle in Minkowski space are related
to the creation operator c_k^\dagger in region I and the annihilation operator $d_k^{\Pi\dagger}$ in region II by the following Bogoliubov transformation:

$$
\begin{pmatrix}
 a_k \\
 b_k
\end{pmatrix} = \begin{pmatrix}
 \cos r & -e^{i\phi} \sin r \\
 e^{i\phi} \sin r & \cos r
\end{pmatrix}
\begin{pmatrix}
 c_k^\dagger \\
 d_k^{\Pi\dagger}
\end{pmatrix},
$$

(4)

where k represents a single mode in each region and ϕ is an unimportant phase that can always be absorbed into the definition of the operators and r is the dimensionless acceleration parameter given by $\cos r = (e^{-2\pi\omega a/c} + 1)^{-1/2}$. The constants ω, c and a in the exponential stand, respectively, for the Dirac particle’s frequency, speed of light in vacuum and Bob’s acceleration. The parameter $r = 0$ when acceleration $a = 0$ and $r = \pi/4$ when $a = \infty$. We see that the transformation in equation (4) mixes a particle in region I and an antiparticle in region II. A similar transformation exists for an antiparticle’s operator in region I and a particle’s operator in region II [12]. In fact, a given Minkowski mode of a particular frequency spreads over all positive Rindler frequencies ($\omega/(a/c)$) that peaks about the Minkowski frequency [21, 22]. However, to simplify our problem we consider a single mode only in the Rindler region I, an approximation that results into equation (4). This is valid if the observers’ detectors are highly monochromatic that detects the frequency $\omega_A \sim \omega_B = \omega$.

From equation (4) one can find that

$$
a_k = \cos r c_k^\dagger - e^{-i\phi} \sin r d_k^{\Pi\dagger}.
$$

(5)

From the accelerated Bob’s frame, with the help of equation (5), one can show that the Minkowski vacuum state is found to be a two-mode squeezed state

$$
|0\rangle_M = \cos r |0\rangle_I |0\rangle_{\Pi} + \sin r |1\rangle_I |1\rangle_{\Pi}.
$$

(6)

Note that in equation (6), we put I and II in the subscript of the kets to represent the Rindler modes in region I and region II, respectively. Equation (6) shows that the noninertial observer moves with a constant acceleration in region I sees a thermal state instead of the vacuum state. This effect is called the Unruh effect [23, 24]. Similarly, using the adjoint of equation (5) one can easily show that the excited state in Minkowski spacetime is related to Rindler modes as follow:

$$
|1\rangle_M = |1\rangle_I |0\rangle_{\Pi}.
$$

(7)

In terms of Minkowski mode for Alice and Rindler modes for Bob, the entangled initial state of equation (3) by using equations (6) and (7) becomes

$$
|\psi\rangle_{A, I, II} = \cos \frac{\gamma}{2} \cos r |0\rangle_A |0\rangle_I |0\rangle_{\Pi} + \cos \frac{\gamma}{2} \sin r |0\rangle_A |1\rangle_I |1\rangle_{\Pi} + i \sin \frac{\gamma}{2} |1\rangle_A |1\rangle_I |0\rangle_{\Pi}.
$$

(8)

Since Bob is causally disconnected from region II, we must take trace over all the modes in region II. This leaves the following mixed density matrix between the two players:

$$
\rho_{A, B I} = \begin{pmatrix}
 \cos^2 r \cos^2 \frac{\gamma}{2} & 0 & 0 & -i \cos r \cos \frac{\gamma}{2} \sin \frac{\gamma}{2} \\
 0 & \cos^2 r \sin^2 \frac{\gamma}{2} & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 i \cos r \cos \frac{\gamma}{2} \sin \frac{\gamma}{2} & 0 & 0 & \sin^2 \frac{\gamma}{2}
\end{pmatrix}.
$$

(9)

In the quantum Prisoners’ Dilemma, the strategic moves of Alice and Bob are unitary operators which are given by [2]

$$
\hat{U}_N(\alpha, \theta) = \begin{pmatrix}
 e^{i\alpha N} \cos \frac{\theta}{2} & i \sin \frac{\theta}{2} \\
 i \sin \frac{\theta}{2} & e^{-i\alpha N} \cos \frac{\theta}{2}
\end{pmatrix},
$$

(10)

where the subscript $N = A, B$ represents Alice and Bob, $\theta \in [0, \pi]$ and $\alpha \in [0, 2\pi]$. If cooperation and defection are associated with the state $|0\rangle$ and the state $|1\rangle$, respectively, then
the quantum strategy \(\hat{C}\) corresponds to \(\hat{U}_N(0, 0)\) and the quantum strategy \(\hat{D}\) corresponds to \(\hat{U}_N(0, \pi)\). To ensure that the classical game be a subset of the quantum one, Eisert et al [2] argued that the operator \(\hat{J}\) must commute with the tensor product of any pair of the moves \(\hat{C}\) and \(\hat{D}\). Since fermionic system in noninertial frames is a physically realizable system, we hope that the encoding of the game might be practically possible. Once decisions are made, the final density matrix prior to the measurement becomes [2]

\[
\rho = \hat{J}^\dagger (\hat{U}_A \otimes \hat{U}_B) \rho_{A,1} (\hat{U}_C \otimes \hat{U}_D) \hat{J},
\]

where \(\hat{J}\) is applied to disentangle the final density matrix. The expected payoffs of the players are then found by using the following equation:

\[
P_{i,j}^{h,j'} = \sum_i S_{N,i,j}^{h,i,j'} \rho_i,
\]

where \(\rho_i (i \in [0, 1])\) are the diagonal elements of the final density matrix and \(S_{N,i,j}^{h,i,j'}\) \((j_1, j_2 \in [C, D])\) are the classical payoffs of the players from table 1.

4. Results and discussion

The payoffs of the players for the unentangled initial state \((\gamma = 0)\), when each of them is allowed to play one of the two classical strategies, that is, \(\hat{C} = \hat{U}_N(0, 0)\) or \(\hat{D} = \hat{U}_N(0, \pi)\), are given in table 2. The payoffs become the function of \(r\).

One can easily see that the results of table 2 reduce to the classical results of table 1 when the acceleration \(a = 0\) \((r = 0)\). The presence of acceleration in the payoff functions of the players disturbs the symmetry of the game. Neither the strategy profile \((\hat{C}, \hat{C})\) nor the strategy profile \((\hat{D}, \hat{D})\) is an equilibrium outcome of the game in the range of acceleration \(0 < r \leq \pi / 4\). In this range of acceleration, Alice always wins by playing \(\hat{D}\) and always loses by playing \(\hat{C}\). The dilemma-like situation is resolved in the favor of Alice. At infinite acceleration \((r = \pi / 4)\), the strategy profiles \((\hat{C}, \hat{C}) = (\hat{C}, \hat{D}) = (3/2, 4)\), which means that if Alice plays \(\hat{C}\), Bob strategy becomes irrelevant and he wins all the time. Similarly, the strategy profiles \((\hat{D}, \hat{C}) = (\hat{D}, \hat{D}) = (3, 3/2)\), Alice is victorious, regardless of what strategy Bob executes. None of the strategy profiles is either Pareto optimal or Nash equilibrium.

However, for a maximal entangled state \((\gamma = \pi / 2)\), the situation is entirely different. When both the players are restricted only to the classical region of moves, the payoffs of the players for different strategy profiles are given by

\[
P_{A,B}^{CC} = 1 + \cos r + \cos^2 r + \frac{5}{4} \sin^2 r,
\]

\[
P_{A,B}^{DD} = \frac{1}{8} (17 - 8 \cos r - \cos 2r).
\]
Figure 2. The payoffs for the maximally entangled initial state are plotted against the acceleration parameter r of Bob’s frame. The players are allowed to choose only the classical moves. The subscripts stand for the players and the superscripts represent a strategy profile.

\[P_{CD}^A = P_{DC}^B = \frac{1}{2} \cos^2 \frac{r}{2} (9 + \cos r), \]
\[P_{DC}^A = P_{CD}^B = \frac{1}{2} (9 - \cos r) \sin^2 \frac{r}{2}. \]

(13)

It can easily be seen from the payoffs function of equation (13) that the payoff matrix is symmetric and that for $r = 0$, the classical results are obtained. Also, the strategy profiles (\hat{C}, \hat{C}) and (\hat{D}, \hat{D}) are equilibrium points for the whole range of the acceleration of Bob’s frame. However, unlike the classical form and the unentangled initial state of the quantum form in inertial frames of the game, the strategy \hat{C} in this case becomes the dominant strategy and it always results in payoff > 2.83 for all values of the acceleration of Bob’s frame. Moreover, the strategy profile (\hat{C}, \hat{C}) becomes the Nash equilibrium and the strategy profile (\hat{D}, \hat{D}) becomes the Pareto optimal of the game for all values of acceleration a. The payoffs of equation (13), as function of r for all the possible strategy profiles, are plotted in figure 2. It can be seen from the figure that playing \hat{C} is the best option for any player and hence resolves the dilemma-like situation.

Now, we consider the case in which the players are allowed to choose any strategy from the allowed quantum mechanical strategic space. We first consider the quantum strategy \hat{Q} of Eisert et al [2], which is given by

\[\hat{Q} = \hat{U}(0, \pi/2) = \begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix}. \]

(14)

The payoffs of the players when Alice chooses \hat{Q} are given by

\[P_{A,B}^{\hat{Q}_A} = \frac{1}{4} \left[9 - \cos r((\cos r + 5) \cos \theta_B + 2 \cos 2\alpha_B(\cos \theta_B + 1) \pm 5) \right], \]

(15)

where $\theta_B = 0$ or π gives strategy \hat{C} or strategy \hat{D}, respectively. Now, if Bob plays \hat{C}, then $P_{A,C}^{\hat{Q}_A}$ is an equilibrium point of the game. If Bob plays \hat{D} then $P_{B}^{\hat{Q}_D} = P_{A}^{\hat{Q}_C} > P_{B}^{\hat{Q}_C} > P_{A}^{\hat{Q}_D}$ for all values of the acceleration of Bob’s frame. This means that the quantum strategy \hat{Q} does no better for Alice against any of the two classical strategies of Bob. In other words, \hat{D} is the dominant strategy for Bob against Alice strategy \hat{Q}. The same is true for Alice, if Bob
plays the quantum strategy \(\hat{Q} \). In fact, the strategy profile \((\hat{Q}, \hat{C})\) or \((\hat{C}, \hat{Q})\) is a Pareto optimal outcome. However, if both players execute \(\hat{Q} \), the payoffs \(P_{QQ}^{AA} = P_{QQ}^{BB} = P_{CC}^{AB} \) and hence the strategy profile \((\hat{Q}, \hat{Q})\) is the Nash equilibrium.

Finally, we consider the unfair game and the effect of the miracle move of Eisert et al [2]. That is, if one player is restricted to the classical strategic space, then, in the case of inertial frames, the quantum player outsmarts the classical player all the time if he or she plays the miracle move \(\hat{M} \).

\[
\hat{M} = \hat{U} \left(\frac{\pi}{2}, \frac{\pi}{2} \right) = \frac{i}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.
\] (16)

However, this is not true in the case of noninertial frames. Let Alice plays \(\hat{M} \) and Bob is restricted to the classical strategies, the payoffs of the players become

\[
P_{MA}^{M0} = \frac{1}{4} (-3 \cos^2 r \sin \theta_B + \cos r (\sin \theta_B - 7) + 9),
\]
\[
P_{MB}^{M0} = \frac{1}{4} (7 \cos^2 r \sin \theta_B + \cos r (\sin \theta_B + 3) + 9).
\] (17)

It can easily be checked that \(P_{MA}^{M0} < P_{MB}^{M0} \) irrespective of what strategy Bob executes. This result is symmetric with respect to the interchange of the players. That is, if Alice is restricted to the classical strategies and Bob plays \(\hat{M} \), then the payoffs of the players in equation (17) interchange and \(\theta_B \) is replaced with \(\theta_A \). The quantum player should never go for playing the quantum miracle move of the inertial frames. The dominance of quantum player over the classical one ceases in the case of noninertial frames. However, the miracle move \(\hat{M} \) always results in a winning payoff against the quantum move \(\hat{Q} \). Logically, putting \(r = 0 \) in equation (17) should give the results of quantum Prisoners’ Dilemma in the inertial frames but this is not so. Equation (17) gives inverted results when \(r = 0 \), that is, Alice’s payoff becomes Bob’s payoff of the inertial frame and vice versa. We have no explanation for this inconsistency.

5. Conclusion

We have studied the influence of the Unruh effect on the payoff function of the players in the quantum Prisoners’ Dilemma. For the unentangled initial state, the Unruh effect gives rise to an asymmetric payoff matrix in contrast to the payoff matrix for the classical form and quantum form in the inertial frames of the game. It is shown that for the unentangled initial state, Alice wins all the time if she plays \(\hat{D} \) and loses if she plays \(\hat{C} \). As a result none of the classical strategies profile is either Pareto optimal or Nash equilibrium. We have shown that the Unruh effect limits the dominance of the quantum player. The classical moves \(\hat{C} \) or \(\hat{D} \) become dominant against the quantum moves depending on the initial state entanglement. It is shown that the miracle move \(\hat{M} \) of the inertial frames becomes the worst move that always results in loss against any classical move. Nevertheless, against the quantum move \(\hat{Q} \), it always gives a winning payoff. It is shown that the dilemma-like situation is resolved in favor of one or the other player or for both players depending on the degree of entanglement in the initial state of the game.

Acknowledgment

SK is thankful to World Federation of Scientists, Geneva, Switzerland for partially supporting this work under the National Scholarship Program for Pakistan.
References

[1] Meyer D A 1999 Phys. Rev. Lett. 82 1052
[2] Eisert J et al 1999 Phys. Rev. Lett. 83 3077
[3] Marinatto L and Weber T 2000 Phys. Lett. A 272 291
[4] Li H, Du J and Massar S 2002 Phys. Lett. A 306 73
[5] Lo C F and Kiang D 2004 Phys. Lett. A 321 94
[6] Flitney A P and Abbott D 2002 Phys. Rev. A 65 062318
[7] Iqbal A and Toor A H 2002 Phys. Rev. A 65 052328
[8] Flitney A P, Ng J and Abbott D 2002 Physica A 314 35
[9] Goldenberg L, Vaidman L and Wiesner S 1999 Phys. Rev. Lett. 82 3356
[10] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[11] Brassard G 2003 Found. Phys. 33 1593
[12] Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326
[13] Ling Y et al 2007 J. Phys. A: Math. Theor. 40 9025
[14] Gingrich R M and Adami C 2002 Phys. Rev. Lett. 89 270402
[15] Pan Q and Jing J 2008 Phys. Rev. A 77 024302
[16] Fuentes-Schuller I and Mann R B 2005 Phys. Rev. Lett. 95 120404
[17] Terashima H and Ueda M 2003 Int. J. Quantum Inform. 1 93
[18] Chen L K, Ang H, Kiang D, Kwek L C and Lo C F 2003 Phys. Lett. A 316 317
[19] Flitney A P and Abbott D 2005 J. Phys. A: Math. Gen. 38 449
[20] Khan S, Ramzan M and Khan M K 2010 Int. J. Theor. Phys. 49 31
[21] Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1
[22] Alsing P M, McMahon D and Milburn G J 2004 J. Opt. B: Quantum Semiclass. Opt. 6 834
[23] Davies P C W 1975 J. Phys. A: Math. Gen. 8 609
[24] Unruh W G 1976 Phys. Rev. D 14 870