High Resolution Structure of the Phosphohistidine-activated Form of Escherichia coli Cofactor-dependent Phosphoglycerate Mutase*

Charles S. Bond, Malcolm F. White‡, and William N. Hunter§

From the Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom

The active conformation of the dimeric cofactor-dependent phosphoglycerate mutase (dPGM) from Escherichia coli has been elucidated by crystallographic methods to a resolution of 1.25 Å (R-factor 0.121; R-free 0.168). The active site residue His610, central in the catalytic mechanism of dPGM, is present as a phosphohistidine with occupancy of 0.28. The structural changes on histidine phosphorylation highlight various features that are significant in the catalytic mechanism. The C-terminal 10-residue tail, which is not observed in previous dPGM structures, is well ordered and interacts with residues implicated in substrate binding; the displacement of a loop adjacent to the active histidine brings previously overlooked residues into positions where they may directly influence catalysis. E. coli dPGM, like the mammalian dPGMs, is a dimer, whereas previous structural work has concentrated on monomeric and tetrameric yeast forms. We can now analyze the sequence differences that cause this variation of quaternary structure.

Phosphoglycerate mutases (PGMs)1 are enzymes involved in glycolysis and gluconeogenesis. They can be subdivided into two types: cofactor-dependent PGM (dPGM) and cofactor-independent PGM (iPGM). Whereas vertebrates, yeasts, and many bacteria have only dPGM, and higher plants, nematodes, archaea, and many other bacteria have only iPGM, a small number of bacteria including Escherichia coli have both (1).

dPGMs have three catalytic activities. The main activity is that of a mutase (EC 5.4.2.1), catalyzing the interconversion between 2-phosphoglycerate and 3-phosphoglycerate. A second activity is as a phosphatase (EC 3.1.3.13), converting 2,3-bisphosphoglycerate and water to 3-phosphoglycerate or phosphate. The third activity is the synthase activity (EC 5.4.2.4), where 1,3-bisphosphoglycerate is converted to 2,3-bisphosphoglycerate. The label “cofactor-dependent” comes from the observation in vitro that to be active, the native protein must be phosphorylated by 2,3-bisphosphoglycerate.

The crystal structure of Saccharomyces cerevisiae dPGM2 was first published in 1974 (Protein Data bank code 3PGM (2, 3)), and structures of different crystal forms and inhibitor complexes at increasing resolution have followed (4PGM, 5PGM, 1BQ3, 1BQ4, 1QHF (4–7)). Schizosaccharomyces pombe dPGM has been studied by NMR, and a backbone assignment has been published (8). In most organisms for which a dPGM has been characterized, including E. coli and mammals, the active enzyme exists as a dimer. S. cerevisiae dPGM, however, is tetrameric, and S. pombe dPGM is monomeric. Most recently, the crystal structure of the iPGM from Bacillus stea-thermod-philus has been solved (9, 10), highlighting the absence of any similarity to dPGM in all aspects except its main mutase activity.

dPGM is the archetype of the “phosphoglycerate mutase-like” protein fold superfamily (SCOP (11)), which also contains the phosphatase domain of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase family as well as prostatic acid phosphatase and phytase. The common fold of these proteins is commensurate with their use of phosphohistidine as a catalytic intermediate.

Other examples of N-phosphorylation at histidine occur in bacterial signaling proteins (12) and in enzymes such as fructose permease (13), nucleoside diphosphate kinase (14), and succinyl-CoA synthetase (15). Structures of intact phosphohistidine-containing proteins are particularly rare, those of HPr by NMR (16) and succinyl-CoA synthetase (15) and nucleoside diphosphate kinase (14) by x-ray crystallography being the only examples to date. None of these structures represent the phosphoglycerate mutase-like fold family.

We now report the structure of E. coli dPGM in its phosphorylated, active conformation. The structure of a dimeric dPGM provides a basis for examining the residues involved in interactions in the varying oligomerization states observed in dPGMs. The establishment of this structure as representative of the active conformation of the enzyme and comparison with the available dephosphorylated structures provide new information regarding the roles of specific residues in the complex catalytic mechanism of this class of enzymes.

EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification—The E. coli (K12) pgm1 gene was amplified from genomic DNA by a polymerase chain reaction using the 5′ and 3′ end-specific primers 5′-CCC-GCG-CAT-ATG-GCT-GTA-ACT-AAG 3′ and 5′-CCC-GGA-TCC-CTT-TCT-GGC-ACC-CTG 3′. These oligonucleotides (Amersham Pharmacia Biotech) introduced Ndel and BamHI restriction sites, respectively (underlined). Taq po

* This work was funded by the Wellcome Trust. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed. Tel.: 44-1382-345745; Fax: 44-1382-345764; E-mail: W.N.Hunter@dundee.ac.uk.

§ To whom correspondence should be addressed. Tel.: 44-1382-345764; Fax: 44-1382-345745; E-mail: W.N.Hunter@dundee.ac.uk.

1 The abbreviations used are: PGM, phosphoglycerate mutase; dPGM, cofactor-dependent PGM; iPGM, cofactor-independent PGM.
lymerase, DNA ligase, and the relevant restriction enzymes were obtained from Promega. The polymerase chain reaction product (~0.75 kilobases) was gel-purified (Qiagen extraction kit, Qiagen) and cloned into pUC18 (SureClone, Amersham Pharmacia Biotech), and positive clones were identified by restriction digest. The DNA fragment was ligated into the BamHI/NdeI-cleaved plasmid pET3a (Novagen) to give the pET3a-pgm construct that was amplified in E. coli JM109 (Novagen), and the integrity of the gene was confirmed by sequencing. E. coli strain BL21(DE3)pLysS (Novagen) was heat shock-transformed with pET3a-pgm and selected on Luria-Bertani agar plates containing ampicillin and chloramphenicol. Single colonies were cultured, and the expression of protein with isopropyl-β-D-thiogalactoside was tested under a range of conditions. E. coli dPGM was then overexpressed and purified as described previously (1).

Crystallization—Crystals were grown from hanging drops (2 μl of protein, 1-μl reservoir) from a protein solution containing dPGM (15 mg/ml) in 20 mM Tris-HCl buffer (pH 8.0) with 100 mM NaCl and a reservoir comprising 100 mM Tris-HCl, pH 8.75, 200 mM Li2SO4, and 20% polyethylene glycol 4000. The crystals are orthorhombic (P 2₁2₁2₁ with a = 62 Å, b = 113 Å, and c = 40 Å) with a solvent content of 50%, corresponding to one monomer of protein per asymmetric unit.

Data Processing and Refinement—Data (Table I) were collected at SRS Daresbury station 9.6 (corresponding to one monomer of protein per asymmetric unit). The crystals are orthorhombic (P 2₁2₁2₁) with 20% polyethylene glycol 4000. The crystals are orthorhombic (P 2₁2₁2₁ with a = 62 Å, b = 113 Å, and c = 40 Å) with a solvent content of 50%, corresponding to one monomer of protein per asymmetric unit.

Resolution limit

Uniqueness reflections

Completeness

Between 1.26–1.25 Å

Between 3.4–1.3 Å

R(adj) overall

F(000)

Data	Crystalllographic data and refinement statistics
Crystal size	0.3 × 0.3 × 0.2 mm³
Unit cell	a = 61.57 Å, b = 113.00 Å, c = 40.26 Å
Resolution limit	1.25 Å
Uniqueness	67,122
Completeness	85.5%
Between 1.26–1.25 Å	62.7%
Between 3.4–1.3 Å	>92%
R(adj) overall	0.047
F(000)	928
Wilson B (Å²)	8

Model

Final R	0.121
Final R_{merge} (3% of reflect)	0.168
Number of non-H atoms	2,505
Protein atoms	2,069
Ion atoms	11
Water molecules	425
Average thermal parameter (Å²)	8.1
All atoms	14
Protein atoms	12
Ions	14
Water molecules	25

- Mechanically twinned crystals and ice rings caused a reduction in completeness in some resolution ranges.
- Isotropic equivalent to anisotropic thermal parameters, B(eq) = 8π² * [U(1,1) + U(2,2) + U(3,3)] ¹/₃.

RESULTS AND DISCUSSION

Overall Fold—The α/β fold of the monomer of E. coli dPGM is the same as S. cerevisiae dPGM, as expected from their 54% sequence identity (Fig. 2a). In summary, the protein core consists of a six-stranded β-sheet, C-B-D-A-E-F, with all but E being parallel, flanked by six α-helices (Fig. 2b). The active site is located at the C-terminal edge of the β-sheet and is constructed from stretches of sequence dispersed throughout the amino acid sequence.

Quaternary Structure—The active dimer is formed by the antiparallel alignment of the C strands of two monomers. Comparison of the dimeric structure with the S. cerevisiae tetramer highlights the structural basis for the different oligomerization states. The S. cerevisiae and E. coli monomers superpose in LSQMAN (28), with a root mean square deviation of 1.2 Å over 227 Ca atoms. Despite having a largely similar backbone structure, the region of lowest sequence similarity (residues 124–145) provides a number of important differences at the S. cerevisiae tetramerization interface. Significant substitutions include Asp¹⁴¹(S. cerevisiae)—Ser¹⁴¹(E. coli), which abolishes a hydrogen bond to Trp¹⁶² (* signifies a residue of another subunit); Pro¹⁴²—Glu¹⁴, which alters the local backbone conformation significantly for a stretch of four residues; Val¹⁴⁴—Glu¹⁴⁶, which breaks a steric clash with Gln¹⁶³; Asp¹⁶⁴—Glu¹⁶⁶, which breaks a salt bridge to Arg¹⁶⁸; and Lys¹⁶⁸—Pro¹⁷⁰, which causes a steric clash with the main chain of Tyr¹⁹⁸. The S. cerevisiae K168P mutant has indeed been shown to reduce the Kₘ of tetramerization (29); but whereas the introduction of this proline into a helix does disrupt the hydrogen bond network, the change in backbone conformation is insignificant, and it is the position of the proline side chain that disrupts the interface interaction (Fig. 3).

An explanation for the inability of S. pombe dPGM to dimerize is less clear, particularly given the lack of a three-dimensional sequence structure. Sequence comparison suggests a number of interactions present in the E. coli and S. cerevisiae proteins that are missing in S. pombe. These dimer-forming interactions are from two stretches of sequence included in residues 58–77 and 136–139. The first stretch forms helix ß3 and the adjacent strand ßC, whereas the second stretch is part of the region discussed above that promotes tetramerization in S. cerevisiae. The positions where the S. pombe sequence differs from both E. coli and S. cerevisiae include Val⁶⁰(E. coli)–Ala⁶⁰(S. pombe), which causes the loss of a hydrophobic contact, and Ala⁷⁶—
Pro81, which is likely to cause some distortion of the backbone. A significant hydrophobic packing interaction of Trp77 with Arg138* and Tyr139* is also lost on substitution of Trp to Asn82 and deletion of the loop from 124–147.

These comparisons reveal that there are no major structural rearrangements between dPGMs. Rather, the differences are restricted to amino acid changes at the subunit interfaces. Given that all dPGMs, whether monomeric, dimeric, or tetrameric, retain essentially the same activity, a question remains as to the biological function of these distinct quaternary assemblies.

Structural Consequences of Histidine Phosphorylation—Although no measurements have been made of the phosphohistidine half-life of \textit{E. coli} dPGM, there was no reason to expect it to be any longer than the 35 min observed for \textit{S. cerevisiae} dPGM; yet the presence of phosphohistidine in the crystals indicates that a certain level of phosphorylation must persist for considerably longer. Whereas the native structure has only 0.28 occupancy phosphohistidine, the remainder of dephosphorylated protein also adopts the active conformation, with water molecules occupying the vacant phosphate oxygen positions. We cannot rule out the possible contribution of crystal-packing forces in aiding the dephosphorylated protein to adopt the active conformation.

The native structure presented here is representative of the enzyme in its competent, phosphorylated form and is used as such in the following discussion; the \textit{S. cerevisiae} structures are typical of an inactive or inhibited dephosphorylated form. Comparison of these two forms indicates significant structural differences. The C-terminal tail of the protein, with the exception of the final two residues, is ordered in the phosphorylated form. This tail, the subject of much speculation regarding its possible role in the catalytic cycle (30), is not modelled in the \textit{S. cerevisiae} structures because of disorder. The conformation of His10 when phosphorylated is distinct from that in the yeast structures, and the adjacent residues in the loop from Arg9 to Thr22 have moved up to 1.7 Å (C\textsubscript{a}–C\textsubscript{a} distance) relative to the equivalent residues in the \textit{S. cerevisiae} structure.

Active Site—dPGM has a cup-shaped active site that is 16 Å deep and 10 by 8 Å wide, with a volume of \(1200 \, \text{Å}^3\) containing up to 36 ordered solvents and 2 sulfates. This extensive cavity is lined by atoms from 43 residues: 9–23, 36, 61, 88–91, 99, 111–116, 183–188, 203–209, and 239–247. The roles of these residues can, to a large extent, be divided into three categories: the catalytic machinery, the residues responsible for substrate binding, and the site of access where substrates enter and products leave (Fig. 4a).

The residues at the base of the active site that surround His10 are strictly conserved among the \textit{E. coli}, \textit{S. cerevisiae}, \textit{S. pombe}, and human dPGM family (black circles in Fig. 2a). Interactions between the phosphohistidine and the rest of the protein are depicted in Fig. 4b, with interatomic distances given in Table II. The His10 side chain is held in position in both the phosphorylated and dephosphorylated forms by a hydrogen bond between N\textsubscript{d1} and the amide oxygen of the adjacent Gly\textsubscript{11}. The length of this hydrogen bond decreases on phosphorylation, accompanied by the movement of residues 9–22. One of these residues, Asn\textsubscript{16}, alters its side chain conformation to allow N\textsubscript{d2} to form a hydrogen bond with a phosphate oxygen (3.18 Å) and the O\textsubscript{d1} to participate in a CH\textsubscript{zzz}O hydrogen bond with C\textsubscript{e1} of His10 (3.14 Å). A second phosphate oxygen accepts a hydrogen bond from His183 N\textsubscript{e1} (2.72 Å), which is itself hydrogen-bonded via its N\textsubscript{e2} atom to Ser277 (data not shown). His183 may also serve as a proton source during catalysis, because it is spatially adjacent to the active site acid Glu88. The other basic residues that bind the phosphate group are Arg61, Arg61, and Arg61.

![Fig. 1. Electron density (blue) at the active site histidine. a, 6\textsubscript{s} F\textsubscript{o} – F, \(\alpha\textsubscript{calc}\) electron density omitting the phosphorus. b, 2\(\sigma\) 2F\textsubscript{o} – F, \(\alpha\textsubscript{calc}\) electron density calculated omitting the atoms shown. The phosphohistidine, at an occupancy of 0.28, is shown as semitransparent ball and stick. The solid ball and stick shows the remaining 0.72 occupancy histidine (blue) with three water molecules (red). Figs. 1, 2b, 3, 4b, and 5 were prepared using Molspec (32) and Raster3D (33).](http://www.jbc.org/Downloaded from http://www.jbc.org/)

Active Form of \textit{E. coli} Phosphoglycerate Mutase

3249

by guest on July 18, 2018

http://www.jbc.org/Downloaded from
which forms a hydrogen bond to the same oxygen as His183 via its Ne atom (2.96 Å), and Arg9, which forms a hydrogen bond to the third phosphate oxygen via Ne (2.74 Å). This oxygen is also hydrogen-bonded to the amide nitrogen of Gly 184, which is the N-terminal residue of a 12-residue α-helix (α8). This helix (gray in Fig. 2b) is conspicuous on a ribbon diagram because it lies more perpendicular to the β-sheet than do the other flanking helices and is oriented such that the N-terminal helix dipole contributes to stabilization of the phosphohistidine, rather than to the stabilization of another substrate phosphate group, as previously proposed (31). In addition to the polar interactions with the phosphoryl group, the aliphatic segments of the side chains of Arg9 and Arg61 also provide a series of hydrophobic contacts that contribute to the orientation of the imidazole ring of His10. Whereas the interactions with Arg61 are conserved on dephosphorylation, those with Arg9 are completely abolished.

The binding and presentation of substrates for phosphoryl-
Fig. 4. a, the surface of dPGM (semi-transparent gray) is cut away to reveal the network of hydrogen bonds linking the catalytic machinery and substrate binding residues to the active site entrance. The sulfate binding sites E1 and E2 are labeled. GRASP (38), Molscript (32), GL_render (L. Esser and J. Deisenhofer, personal communication), and POVRAY were used to prepare this figure. b, the chemical environment of the phosphohistidine. Red spheres represent oxygens, blue spheres represent nitrogens, and yellow spheres represent sulfurs. The phosphohistidine is represented by green bonds, and sulfate is represented by yellow. Residues are represented as follows: blue, basic; red, acidic; gray, apolar; magenta, polar. Hydrogen bonds are shown as cyan dashed lines.

Table II

Phosphohistidine hydrogen bonding interactions
Phosphohistidine atom

N
Nδ1
Cε1
Oγ2
Oγ2
Oγ3
Oγ3
Oγ3
Oγ3
Oγ4
Oγ4
Oγ4
Oγ4

* C–H ⋯ O hydrogen bond.

Action or dephosphorylation is mediated by active site residues between 2 and 12 Å from the active histidine. In addition to the phosphohistidine, the active site of the E. coli structure contains two sulfate ions derived from the crystallization medium. It is likely that these binding sites are formed by residues that are involved in binding the phosphate groups of the mono- and bisphosphoglycerate substrates. Two of the S. cerevisiae crystal forms also have two sulfates in the active site, and in the case of 1QHF a partially occupied 3-phosphoglycerate has been modelled overlapping one of these sulfates (7). It is of particular interest that the two pairs of sulfate binding sites in S. cerevisiae and E. coli are different (their positions are displaced by 3.1 and 4.0 Å, respectively) and thus in combination describe four sites where the phosphate moieties of the substrates may bind, with implications for the enzyme mechanism. For simplicity, the designations E1 and E2 are used to identify the two sites observed in the E. coli structure, and Y1 and Y2 are used to identify those sites identified in the S. cerevisiae structures. When the protein structures are superposed, Y1 is 3.9 Å from the position of the phosphoryl group of the phosphohistidine forming hydrogen bonds to the phosphohistidine-stabilizing residues Arg81 and Asn16 and to Ser13. Site E1 is located further from the phosphohistidine and also participates in a hydrogen bond with Arg81, but its most important interactions are with the amide nitrogens of Thr22 and Gly23. Sites Y2 and E2 are formed, in the main part, by interactions with Arg115 and Arg116, both of which are strictly conserved residues. These arginines form hydrogen bonds with residues in the access site (discussed below) and probably contribute to linking catalytic events to structural change at the access site.

Access Site—The structure of the C-terminal tail of dPGMs has remained a mystery throughout previous structural and
biochemical studies. Most \textit{S. cerevisiae} structures do not include residues past 236 (\textit{E. coli} sequence numbering). 1QHF contains residues up to 242, but those beyond 238 have temperature factors that have been truncated at 100.12 Å\(^2\). In the native structure presented here, the tail is well defined up to Lys\(^{247}\) (Fig. 5). This observation strongly implies that the ordering of the C terminus is commensurate with enzyme phosphorylation and thus typical only of the active enzyme.

The access site as a whole consists of the rim of the active site cavity and the C-terminal tail, which forms a lid. The rim is formed by residues Glu\(^{12}\), Lys\(^{17}\), Asn\(^{19}\), Lys\(^{32}\), Glu\(^{36}\), Ala\(^{100}\), Asp\(^{108}\), Lys\(^{112}\), Glu\(^{204}\), Asn\(^{206}\), and Thr\(^{209}\), whereas the C-terminal tail consists of residues 238–249 (Lys-Ala-Ala-Ala-Ala-Val-Ala-Asn-Gln-Gly-Lys-Ala-Lys) and is highlighted in magenta in Figs. 2 and 4a.

The basic secondary structure of the tail is a \(\beta\)-hairpin based around a \(\beta\)-turn at Ala\(^{241}\)-Gly\(^{246}\). This motif extends away from helix \(\alpha\)10 across the active site opening, forming a number of hydrogen bonds with residues of the rim and substrate binding region (Fig. 5).

Ala\(^{239}\)-O forms a hydrogen bond with Asn\(^{206}\)-N\(^{\delta2}\), whereas Asn\(^{206}\)-O\(^{\delta1}\) accepts a hydrogen bond from the substrate binding residue Arg\(^{116}\). The side chain of Val\(^{242}\) interacts with Lys\(^{247}\), whereas its amide oxygen forms a hydrogen bond with Asn\(^{206}\)-O. Asn\(^{244}\)-O and Gln\(^{245}\) form the hydrogen bond that makes the \(\beta\)-turn. This places Asn\(^{244}\) and Gln\(^{245}\) in the correct orientation to hydrogen-bond to the active site rim residue, Asp\(^{108}\), a residue that is conserved throughout the full-length dPGMs and was previously proposed to bind the C-terminal lysine residues. The observed interactions serve as a clasp to pin the tail over the active site.

It has been proposed that adoption of an ordered conformation by the tail when the protein is phosphorylated prevents solvent access and thus phosphoenzymic hydrolysis (31). The present work shows this to be unlikely because up to 36 ordered water molecules are found in the cavity, but there may be a less direct role in phosphohistidine stabilization. \textit{S. pombe} dPGM is typical of a group of "short" dPGMs (also including \textit{Zymomonas mobilis} and \textit{Haemophilus influenzae}) that have no C-terminal tail. Limited proteolysis of \textit{S. cerevisiae} dPGM, removing the C-terminal seven residues, produces a protein of similar character to \textit{S. pombe} dPGM with markedly reduced mutase activity and enhanced phosphatase activity (30). Most of the residues involved in interactions that hold the tail in place are conserved among all "full-length" dPGMs and link, via one or two residues, directly to the substrate binding region. This hydrogen-bonding network is shown in Fig. 4a.

We propose that Arg\(^{115}\) and Arg\(^{116}\) provide the switch with which the substrate in the active site induces a change between active and inactive forms by making interactions with the tail residues more or less favorable. When the active form is selected, the interactions of the tail with Asp\(^{108}\) provide further stability to the conformation. The key real to preserving the phosphohistidine is the conformation of Asn\(^{16}\). This residue forms two hydrogen bonds with the phosphohistidine and lies on the loop from residues 9–21, which may well be constrained in the active form by the interaction of Asn\(^{19}\) with the C-terminal tail.

The crystal structure of a dPGM in its competent, phosphorylated form advances our understanding of the contributions from various parts of the dPGM structure in determining and regulating catalysis. Of particular importance is the ordered structure of the C-terminal portion of the polypeptide, which has been an enigma for many years. The structure of this tail differs from predictions and redefines the proposed roles of a number of residues. The dimeric structure has allowed us to identify the determinants of the distinct oligomerization states of dPGMs, although it remains unclear why such variety exists. The analysis of the structural changes on phosphorylation suggests important roles for previously overlooked residues, such as Asn\(^{16}\) and Asn\(^{19}\), which can now be investigated through site-directed mutagenesis. The existence of a crystal form of dPGM that diffracts to atomic resolution provides an excellent basis for such studies and also allows further investigation of substrate and inhibitor binding.

Acknowledgments—We thank E. Tetaud and staff at Daresbury Laboratory for their help. This work made use of the Engineering and Physical Sciences Research Council Chemical Data Base Service at Daresbury Laboratory.

REFERENCES

1. Fraser, H. I., Kvaratskhelia, M., and White, M. F. (1999) \textit{FEBS Lett.} \textbf{455}, 344–348
2. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. E., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) \textit{J. Mol. Biol.} \textbf{112}, 535–542
3. Campbell, J. W., Watson, H. C., and Hodgson, G. J. (1974) \textit{Nature} \textbf{250}, 301–303
4. Redden, D. J., Alexeev, D., Phillips, S. E., and Pothergil-Gilmore, L. A. (1998) \textit{J. Mol. Biol.} \textbf{276}, 449–459
5. Rigden, D. J., Walter, R. A., Phillips, S. E., and Pothergil-Gilmore, L. A. (1999) \textit{J. Mol. Biol.} \textbf{290}, 691–699
6. Rigden, D. J., Walter, R. A., Phillips, S. E., and Pothergil-Gilmore, L. A. (1999) \textit{J. Mol. Biol.} \textbf{286}, 1507–1517
7. Crowhurst, G. S., Dalby, A. R., Isupov, M. N., Campbell, J. W., and Littlechild, J. A. (1999) \textit{Acta Crystallogr. Sect. D Biol. Crystallogr.} \textbf{55}, 1822–1826
8. Uhrinova, S., Uhrin, D., Nairn, J., Price, N. C., Fothergill-Gilmore, L. A., and Barlow, P. N. (1997) \textit{J. Biomol. NMR} \textbf{10}, 309–310
9. Jedrzejas, M. J., Chander, M., Setlow, P., and Krishnasamy, G. (2000) \textit{EMBO J.} \textbf{19}, 1419–1431
10. Jedrzejas, M. J., Chander, M., Setlow, P., and Krishnasamy, G. (2000) \textit{J. Biol. Chem.} \textbf{275}, 23146–23153
11. Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) \textit{J. Mol. Biol.} \textbf{247}, 536–540
12. McEvo, M. M., and Dahlquist, F. W. (1997) \textit{Curr. Opin. Struct. Biol.} \textbf{7}, 793–797
High Resolution Structure of the Phosphohistidine-activated Form of *Escherichia coli* Cofactor-dependent Phosphoglycerate Mutase
Charles S. Bond, Malcolm F. White and William N. Hunter

J. Biol. Chem. 2001, 276:3247-3253. doi: 10.1074/jbc.M007318200 originally published online October 18, 2000

Access the most updated version of this article at doi: 10.1074/jbc.M007318200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 38 references, 4 of which can be accessed free at http://www.jbc.org/content/276/5/3247.full.html#ref-list-1