NON-EXISTENCE OF TRANSLATION-INVARIANT DERIVATIONS ON ALGEBRAS OF MEASURABLE FUNCTIONS

ALEKSEY BER
Department of Mathematics, National University of Uzbekistan, Vuzgorodok, 100174, Tashkent, Uzbekistan.
E-Mail aber1960@mail.ru

JINGHAO HUANG*
School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, Australia.
E-Mail jinghao.huang@unsw.edu.au

KARIMBERGEN KUDAYBERGENOV
Department of Mathematics, Karakalpak State University, Ch. Abdirov 1, Nukus 230113, Uzbekistan.
E-Mail karim2006@mail.ru

FEDOR SUKOCHEV
School of Mathematics and Statistics, University of New South Wales, Kensington, 2052, Australia.
E-Mail f.sukochev@unsw.edu.au

Abstract. Let $S(0,1)$ be the $*$-algebra of all classes of Lebesgue measurable functions on the unit interval $(0,1)$ and let $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ be a complete symmetric Δ-normed $*$-subalgebra of $S(0,1)$, in which simple functions are dense, e.g., $L_\infty(0,1)$, $L_{\text{log}}(0,1)$, $S(0,1)$ and the Arens algebra $L^\infty(0,1)$ equipped with their natural Δ-norms. We show that there exists no non-trivial derivation $\delta : \mathcal{A} \rightarrow S(0,1)$ commuting with all dyadic translations of the unit interval. Let \mathcal{M} be a type II (or I$_\infty$) von Neumann algebra, \mathcal{A} be an arbitrary abelian von Neumann subalgebra of \mathcal{M}, let $S(\mathcal{M})$ be the algebra of all measurable operators affiliated with \mathcal{M}. We show that there exists no non-trivial derivation $\delta : \mathcal{A} \rightarrow S(\mathcal{A})$ which admits an extension to a derivation on $S(\mathcal{M})$. In particular, we answer an untreated question in [8].

Mathematics Subject Classification (2020): 46L57, 47B47, 46L51, 26A24.

Key words: Murray-von Neumann algebras, derivations, approximately differentiable functions, dyadic translations.

*Corresponding author.
1. Introduction. Let A be an algebra over the field of complex numbers. A linear operator $\delta : A \to A$ is called a derivation if δ satisfies the Leibniz rule, i.e., $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in A$. The theory of derivations is an important and well studied part of the general theory of operator algebras, with significant applications in mathematical physics (see, e.g., [13], [40]). The development of non-commutative integration theory initiated in [41] has brought about new classes of (not necessarily Banach) algebras of unbounded operators, which by their algebraic and order-topological structure are still somewhat similar to C^*, W^* and AW^*-algebras. Special importance here is attached to the algebras $S(M)$ ($S(M, \tau)$) of all measurable (τ-measurable, respectively) operators affiliated with a von Neumann algebra M with a faithful normal semifinite trace τ. The two classes certainly agree in the case of a finite von Neumann algebra equipped with a faithful normal tracial state, but not in general (see for example [20, Theorem 2.46(5)]. In the classical case, when $M = L_\infty(0, 1)$, the algebra $S(M)$ coincides with the familiar space $S(0, 1)$ of all (classes of) measurable functions on $(0, 1)$. This development has naturally led to the question concerning the description of derivations on algebras $S(M)$ and their properties. One of the most important examples of derivations is the usual differential operator $\frac{d}{dt}$ on the algebra $D(0, 1)$ consisting of all classes in $S(0, 1)$ which contain functions having finite derivative almost everywhere in $(0, 1)$. In [6] (see also [5]), the problem of existence of non-trivial derivations in the setting of von Neumann regular commutative algebras was considered. As an application, it was established in [6] that the algebra $S(0, 1)$ of all Lebesgue measurable complex functions (with identification m-a.e.) on the interval $(0, 1)$ admits non-trivial derivations [6, Theorem 3.1] (see also [32, Remark 6.3] for an alternative proof), where m is the Lebesgue measure. In particular, it is established in [6, Theorem 3.1] that there exist derivations on the algebra $S(0, 1)$ of all classes of measurable functions on $(0, 1)$ which extend the unbounded derivation $\frac{d}{dt}$ on the algebra $D(0, 1)$. A natural question is

what properties of $\frac{d}{dt}$ on $D(0, 1)$ are shared by its extension?

A very important property of $\frac{d}{dt}$ is the translation-invariance property, which has been widely studied since the 1970s. In particular, S. Sakai [39, Proposition 1.17] proved that a closed derivation on $C(\mathbb{T})$ commuting with translations by elements of \mathbb{T} is a constant multiple of $\frac{d}{dt}$, where \mathbb{T} is the one-dimensional torus.

Let $x \in S(0, 1)$. Set

\[
(\alpha_n(x))(t) = x \left(\left\{ t - \frac{1}{2^n} \right\} \right), \quad n \in \mathbb{N},
\]

where \{t\} stands for the fractional part of the number t. Note \{\alpha_n\} generates the group G of dyadic-rational translations of $S(0, 1)$ (see Section 3.2 for the definition), which is a subgroup in the group $Aut(S(0, 1))$ of all automorphisms of $S(0, 1)$.

It is well-known (see Section 2.3) that the (approximately-)differential operator $\frac{d}{dt}$ (respectively, ∂_{AD}) is translation-invariant on $D(0, 1)$ (respectively, the algebra $AD(0, 1)$ of all classes of approximately differentiable functions on $(0, 1)$). We are interested in studying the translation-invariance property of derivations on
the larger algebra $S(0,1)$:

$$
\begin{align*}
\alpha_n & \quad \Omega \\
D(0,1) \subset AD(0,1) \subset S(0,1) \\
\frac{d}{dt} & \subset \partial_{AD} \subset \delta \\
S(0,1) = S(0,1) \subset S(0,1)
\end{align*}
$$

where $\delta|_{AD(0,1)} = \partial_{AD}$ and $\partial_{AD}|_{D(0,1)} = \frac{d}{dt}$.

The main result of the present paper is an interesting property of derivations on $S(0,1)$, which shows that non-trivial derivations on $S(0,1)$ do not commute with all α_n. This is in strong contrast with the result by Sakai[39].

Theorem 1.1. Let $(\mathcal{A}, \|\cdot\|_\mathcal{A})$ be a complete symmetric Δ-normed $*$-subalgebra of $S(0,1)$ in which simple functions are dense in the $\|\cdot\|_\mathcal{A}$-norm topology. Let δ be a derivation from \mathcal{A} into $S(0,1)$ commuting with all α_n, $n \in \mathbb{N}$. Then δ is trivial. In particular, the approximately differential operator ∂_{AD} has no translation-invariant extension as a derivation on the algebra $S(0,1)$.

In [8], a noncommutative analogue $AD(\mathcal{R})$ of the algebra $AD(0,1)$ for the hyperfinite type II_1 factor \mathcal{R} was introduced (all necessary definitions can be found in Section 2.3 below or in [8]). It was also established that the classical approximately differential operator on the algebra $AD(0,1)$ admits an extension to a derivation δ from $AD(\mathcal{R})$ into $S(\mathcal{R})$ with $\delta|_{AD(0,1)} = \partial_{AD}$, where $AD(0,1)$ can be viewed as a subalgebra of $S(\mathcal{R})$ (see Section 2.3 below or [8]).

In [8], the question whether the approximately differential operator ∂_{AD} on $AD(\mathcal{R})$ has an extension to the algebra $S(\mathcal{R})$ was left unanswered. Now using the main result of the paper [9], we are able to answer this question.

Proposition 1.2. Let \mathcal{M} be a type II (or I_∞) von Neumann algebra, \mathcal{A} be an arbitrary abelian von Neumann subalgebra of \mathcal{M}. Suppose that δ is a derivation on $S(\mathcal{M})$ such that the range $\delta|_{\mathcal{P}(\mathcal{A})}$ of the projection lattice $\mathcal{P}(\mathcal{A})$ of \mathcal{A} is contained in $S(\mathcal{A})$. Then δ vanishes on $S(\mathcal{A})$. In particular,

(i). if a derivation $\delta : \mathcal{A} \to S(\mathcal{A})$ can be extended to a derivation on $S(\mathcal{M})$, then δ is trivial;

(ii). there exists no derivation $\delta : S(\mathcal{R}) \to S(\mathcal{R})$ such that $\delta|_{AD(0,1)} = \partial_{AD}$, where \mathcal{R} is the type II_1 hyperfinite factor.

Observe that item (i) of the above proposition is in strong contrast with the main result in [6] for commutative algebras, showing that $\frac{d}{dt} : D(0,1) \to S(0,1)$ admits an extension to the whole algebra $S(0,1)$.
2. Preliminaries. In this section, we briefly list some necessary facts concerning algebras of measurable operators.

Let H be a Hilbert space and let $B(H)$ be the $*$-algebra of all bounded linear operators on H. A von Neumann algebra \mathcal{M} is a weakly closed unital $*$-subalgebra in $B(H)$. For details on von Neumann algebra theory, the reader is referred to [15, 27, 30, 42, 43]. General facts concerning measurable operators may be found in [35, 41] (see also [44, Chapter IX] and the forthcoming book [17]). For convenience of the reader, some of the basic definitions are recalled below.

2.1. Murray-von Neumann algebras. Let \mathcal{M} be a semifinite von Neumann algebra. A densely defined closed linear operator $x: \text{dom}(x) \to H$ (here the domain $\text{dom}(x)$ of x is a linear subspace in H) is said to be affiliated with \mathcal{M} if $yx \subset xy$ for all y from the commutant \mathcal{M}' of the algebra \mathcal{M}.

Denote by $P(\mathcal{M})$ the set of all projections in \mathcal{M}. Recall that two projections $e, f \in P(\mathcal{M})$ are called equivalent (denoted by $p \sim q$) if there exists an element $u \in \mathcal{M}$ such that $u^*u = e$ and $uu^* = f$. For projections $e, f \in \mathcal{M}$, the notation $e \leq f$ means that there exists a projection $q \in \mathcal{M}$ such that $e \sim q \leq f$. A projection $p \in \mathcal{M}$ is called finite, if the conditions $q \leq p$ and q is equivalent to p imply that $q = p$. If the unit 1 of the von Neumann algebra \mathcal{M} is a finite projection in \mathcal{M}, then \mathcal{M} is called finite.

A linear operator x affiliated with \mathcal{M} is called measurable with respect to \mathcal{M} if $e^{[x]}(\lambda, \infty)$ is a finite projection\(^1\) for some $\lambda > 0$. Here $e^{[x]}(\lambda, \infty)$ is the spectral projection of $|x|$ corresponding to the interval $(\lambda, +\infty)$.

The development of non-commutative integration theory was initiated by Murray and von Neumann [34] and by Segal [41], who introduced new classes of (not necessarily Banach) algebras of unbounded operators, in particular the algebra $S(\mathcal{M})$ of all measurable operators affiliated with a von Neumann algebra \mathcal{M}. The specific interest of the study of $S(\mathcal{M})$ when \mathcal{M} is a II_1 von Neumann algebra, is also recorded in von Neumann’s talk at the International Congress of Mathematicians, Amsterdam, 1954 [37, pp. 231–246]. In the special case when \mathcal{M} is a finite von Neumann algebra, the algebra $S(\mathcal{M})$ of all densely defined closed operators affiliated with \mathcal{M} is frequently referred as the Murray-von Neumann algebra associated with \mathcal{M}, which is the algebra of all densely defined closed operators affiliated with \mathcal{M} (see e.g. [28, 29]).

Let $x, y \in S(\mathcal{M})$. It is well known that $x + y$ and xy are densely-defined and preclosed operators. Moreover, the (closures of) operators $x + y, xy$ and x^* are also in $S(\mathcal{M})$. When equipped with these operations, $S(\mathcal{M})$ becomes a unital $*$-algebra over \mathbb{C} (see [14]). It is clear that \mathcal{M} is a $*$-subalgebra of $S(\mathcal{M})$.

From now on, we shall always assume that \mathcal{M} is a finite von Neumann algebra equipped with a faithful normal finite trace τ. Consider the measure topology t_τ on $S(\mathcal{M})$, which is defined by the following neighborhoods of zero:

$$N(\varepsilon, \delta) = \{x \in S(\mathcal{M}) : \exists \varepsilon \in P(\mathcal{M}), \tau(1 - e) \leq \delta, xe \in \mathcal{M}, \|xe\|_\infty \leq \varepsilon\},$$

where ε, δ are positive numbers, 1 is the unit in \mathcal{M} and $\|\cdot\|_\infty$ denotes the operator

\(^1\)Note that $e^{[x]}(\lambda, \infty)$ is not necessarily a τ-finite projection.
norm on \mathcal{M}. The algebra $S(\mathcal{M})$ equipped with the measure topology is a topological algebra.

Let $x \in S(\mathcal{M})$ and let $x = v|x|$ be the polar decomposition of x [16, 33]. Then $l(x) = vv^*$ and $r(x) = v^*v$ are left and right supports of the element x, respectively.

We define the so-called rank metric ρ on $S(\mathcal{M})$ by setting

$$\rho(x, y) = \tau(r((x - y))) = \tau(l(x - y)), \quad x, y \in \mathcal{A}.$$

In fact, the rank-metric ρ was firstly introduced in a general case of regular rings by von Neumann in [36], where it was shown that ρ is a metric on $S(\mathcal{M})$. By [14, Proposition 2.1], the algebra $S(\mathcal{M})$ equipped with the metric ρ is a complete topological ring. We note that if $\{x_n\}_{n=1}^{\infty}$ is a sequence of self-adjoint operators in $S(\mathcal{M})$ having pairwise orthogonal supports, then $\sum_{n=1}^{\infty} x_n$ exists in the topology induced by ρ and also in measure. In the special case when $\mathcal{M} = L^2(0, 1)$, the metric ρ on the regular algebra $S(\mathcal{M}) = S(0, 1)$ is the same as in [6, 9].

2.2. Symmetrically Δ-normed spaces of measurable functions. For convenience of the reader, we recall the definition of Δ-norms. Let E be a linear space over the field \mathbb{C}. A function $\|\cdot\|$ from E to \mathbb{R} is a Δ-norm, if for all $x, y \in E$ the following properties hold:

$$\begin{align*}
\|x\| &\geq 0, \quad \|x\| = 0 \iff x = 0; \\
\|\alpha x\| &\leq \|x\|, \quad \forall \alpha \in \mathbb{C}, |\alpha| \leq 1; \\
\lim_{\alpha \to 0} \|\alpha x\| & = 0; \\
\|x + y\| &\leq C_E \cdot (\|x\| + \|y\|)
\end{align*}$$

for a constant $C_E \geq 1$ independent of x, y. The couple $(E, \|\cdot\|)$ is called a Δ-normed space. We note that the definition of a Δ-norm given above is the same as in [31]. It is well-known that every Δ-normed space $(E, \|\cdot\|)$ is metrizable and conversely every metrizable topological linear space can be equipped with a Δ-norm [31, p. 5]. In particular, when $C_E = 1$, E is called an F-normed space [31, p. 3]. We note that every Δ-norm has an equivalent F-norm [31, Chapter 1.2]. We say that a Δ-norm $\|\cdot\|_\mathcal{A}$ on a subspace \mathcal{A} of $S(0, 1)$ is invariant with respect to translations, if for any translation α on $[0, 1)$, we have $\alpha(\mathcal{A}) \subseteq \mathcal{A}$ (i.e., \mathcal{A} is translation-invariant) and $\|\alpha(x)\|_\mathcal{A} = \|x\|_\mathcal{A}$.

We now come to the definition of the main object of this paper.

Definition 2.1. Let \mathcal{E} be a linear subspace in $S(0, 1)$ equipped with a Δ-norm $\|\cdot\|_\mathcal{E}$. We say that \mathcal{E} is a symmetrically Δ-normed space if for $x \in \mathcal{E}$, $y \in S(0, 1)$ and $\mu(y) \leq \mu(x)$ imply that $y \in \mathcal{E}$ and $\|y\|_\mathcal{E} \leq \|x\|_\mathcal{E}$ [3, 22, 21]. Here, $\mu(f)$ stands for the decreasing rearrangement of $f \in S(0, 1)$ [33, 16].

Clearly, symmetric Δ-norms are invariant with respect to translation. We note that convergence in the topology induced by any symmetric Δ-norm implies convergence in the measure topology on $S(0, 1)$ [3, 22, 21]. It is also known [3, 22] that any symmetric Δ-normed space contains all simple functions in $S(0, 1)$. In particular, if the symmetric Δ-norm is order continuous (see [23] for the definition), then
all simple functions are dense in this symmetrically Δ-normed space [23, Remark 2.9].

It is well-known [22, 24, 3] that the *-algebra $S(0, 1)$ can be equipped with a complete symmetric Δ-norm. Indeed, by defining that

$$\|X\|_S = \inf_{t > 0} [t + \mu(t; x)], \ X \in S(0, 1),$$

we obtain a symmetric F-norm $\|\cdot\|_S$ on $S(0, 1)$ [22, Remark 3.4] (indeed, the constant for the quasi-triangle inequality is 1). Moreover, the topology induced by $\|\cdot\|_S$ is equivalent to the measure topology [22, Proposition 4.1]. Important examples of subalgebras of $S(0, 1)$, such as $L_\infty(0, 1)$, $L_{\log}(0, 1)$ [18] and the Arens algebra $L^\omega(0, 1)$ [2], can be equipped with complete symmetric F-norms.

2.3. Approximately differentiable functions.

Let us recall the concept of approximately differentiable functions. Consider a Lebesgue measurable set $E \subset \mathbb{R}$, a measurable function $f : E \to \mathbb{R}$ and a point $t_0 \in E$, where E has Lebesgue density equal to 1. If the approximate limit

$$f'_{ap}(t_0) := \text{ap} - \lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0}$$

exists and it is finite, then it is called approximate derivative of the function f at t_0 and the function is called approximately differentiable at t_0 (see [19] for the details). We note that all simple functions on $(0, 1)$ are approximately differentiable. However, it is clear that simple functions are not dense in $(AD(0, 1), \rho)$.

Remark 2.1. Let $AD(0, 1)$ be the set of all classes $[f] \in S(0, 1)$, for which f have finite approximate derivatives almost everywhere in $(0, 1)$ (for simplicity, we denote $[f]$ by f). We note that the algebra $AD(0, 1)$ is the ρ-completion of the subalgebra in $S(0, 1)$, generated by the algebra $C^{(1)}(0, 1)$ of all (classes of) continuously differentiable functions on $(0, 1)$ and by the algebra of all simple functions on $(0, 1)$. Moreover, for any $x \in AD(0, 1)$, there exist a partition of the unit $\{\chi_{A_n}\}_{n \geq 1}$ and a sequence $\{x_n\}_{n \geq 1}$ in $C^{(1)}(0, 1)$ such that $\chi_{A_n} x = \chi_{A_n} x_n$ for all $n \geq 1$ [8, Proposition 4.7].

Since the differential operator $\frac{d}{dt}$ commutes with all dyadic-rational translations of the unit interval $(0, 1)$, it follows that the approximately differential operator $\partial_{AD} : f \mapsto f'_{ap}$ also commutes with all α_n, that is,

$$\partial_{AD} \circ \alpha_n = \alpha_n \circ \partial_{AD}.$$
view $S(D) = S(0, 1)$ as a \ast-subalgebra of $S(\mathcal{R})$ [8]. It is established in [9] that the classical approximately differential operator on $AD(0, 1)$ admits an extension to a derivation δ from $AD(\mathcal{R})$ into $S(\mathcal{R})$ with $\delta|_{AD(0, 1)} = \delta_{AD}$.

3. Translation-invariance of derivations. Let \mathcal{A} be a \ast-algebra and let δ be a derivation on \mathcal{A}. Set

$$\delta_1(x) = \frac{\delta(x) + \delta(x^*)}{2}, \quad x \in \mathcal{A}$$

and

$$\delta_2(x) = \frac{\delta(x) - \delta(x^*)}{2i}, \quad x \in \mathcal{A}.$$

Then, δ_1, δ_2 are \ast-derivations (that is, $\delta_1(x^*) = \delta_1(x)^*$ and $\delta_2(x^*) = \delta_2(x)^*$) and $\delta = \delta_1 + i\delta_2$. Without loss of generality, from now on, we may assume that all derivations in this section are \ast-derivations.

3.1. The lack of extension of the differential operator $\frac{d}{dt}$ up to $S(\mathcal{R})$. Each element a in an algebra \mathcal{A} implements a derivation $ad(a)$ on \mathcal{A} defined as

$$ad(a)(x) = [a, x] = ax - xa, \quad x \in \mathcal{A}.$$

Such derivations $ad(a)$ are called inner derivations. For a detailed exposition of the theory of derivations on operator algebras we refer to the monograph of Sakai [40].

It is known that every derivation on a von Neumann algebra \mathcal{M} is necessarily inner [25, 38] (see [11, 12] for more general results for derivations with values into ideals of a von Neumann algebra). However, the properties of derivations of the algebra $S(\mathcal{M})$ are far from being similar to those exhibited by derivations on von Neumann algebras \mathcal{M}. In [4], Ayupov asked for a full description of derivations on $S(\mathcal{M})$ for any von Neumann algebra has been obtained recently in [9]. In particular, for any type II or I_∞ von Neumann algebra \mathcal{M}, derivations on $S(\mathcal{M})$ are automatically inner. However, for the commutative von Neumann algebra $\mathcal{M} = L_\infty(0, 1)$, the algebra $S(\mathcal{M})$ coincides with $S(0, 1)$, and the latter algebra admits non-trivial (and hence, non-inner) derivations [5, 6].

In general, problems in the non-commutative setting are more complicated than their commutative counterparts. However, due to the fact that there exist non-inner derivations on $S(0, 1)$ [6] and any derivations on $S(\mathcal{M})$ are inner when \mathcal{M} is a type II (or I_∞) von Neumann algebra [9], the proof yielding the lack of extension of differential operator up to $S(\mathcal{R})$ is much simpler than that for $S(0, 1)$.

We now present a proof of Proposition 1.2.

Proof of Proposition 1.2. Let $\delta : S(\mathcal{M}) \to S(\mathcal{M})$ be a derivation such that $\delta(P(\mathcal{A})) \subset S(\mathcal{A})$. By [9], δ is inner, in particular, it is continuous in the measure
topology. Since \(\delta(\mathcal{P}(\mathcal{A})) \subset S(\mathcal{A}) \), for any projection \(e \in \mathcal{A} \) we have \(\delta(e) = 0 \). Indeed, we have
\[
\delta(e) = \delta(e^2) = \delta(e)e + e\delta(e) = 2e\delta(e).
\]
Multiplying the above equality by \(e \), we obtain \(e\delta(e) = 2e\delta(e) \). Hence, \(e\delta(e) = 0 \), and therefore \(\delta(e) = 0 \). Thus, \(\delta \) vanishes on the set of all linear combinations of mutually orthogonal projections from \(\mathcal{A} \). Since \(\delta \) is continuous in measure and the set of all linear combinations of mutually orthogonal projections from \(\mathcal{A} \) is dense in measure in the real part \(S(\mathcal{A})_h \), it follows that \(\delta \) also vanishes on \(S(\mathcal{A})_h \). By linearity of derivations, \(\delta \) vanishes on \(S(\mathcal{A}) \).

Let \(\mathcal{R} \) be the hyperfinite type II\(_1\) factor and \(\mathcal{D} \) be its diagonal masa. Recall that \(\partial_{\mathcal{AD}} \) maps \(\mathcal{AD}(\mathcal{D})(\cong \mathcal{AD}(0,1)) \) into \(\mathcal{S}(\mathcal{D})(\cong \mathcal{S}(0,1)) \) and \(\mathcal{P}(\mathcal{D}) \subset \mathcal{AD}(\mathcal{D}) \) (see Section 2.3). Let \(\delta \) be a derivation on \(\mathcal{S}(\mathcal{R}) \) as an extension of \(\partial_{\mathcal{AD}} \). Setting \(\mathcal{M} = \mathcal{R} \) and \(\mathcal{A} = \mathcal{D} \), the first assertion of the proposition yields that \(\partial_{\mathcal{AD}} = \delta|_{\mathcal{AD}(\mathcal{D})} = 0 \), which is a contradiction.

We note that for a derivation vanishing on the abelian subalgebra \(\mathcal{A} \), there exist non-trivial extensions of this derivation on \(\mathcal{S}(\mathcal{M}) \).

Example 3.1. Let \(\mathcal{R} \) be the hyperfinite II\(_1\) factor and let \(\mathcal{D} \) be its diagonal masa. Recall that every derivation \(\delta: \mathcal{S}(\mathcal{R}) \to \mathcal{S}(\mathcal{R}) \) is implemented by an element in \(\mathcal{S}(\mathcal{R}) \) [9]. Let \(a \in \mathcal{D}\setminus \mathbb{C}1 \). We define a derivation \(\text{ad}(a)(x), x \in \mathcal{S}(\mathcal{R}) \). In particular, \(\text{ad}(a) = 0 \) on \(\mathcal{D} \) and therefore on \(\mathcal{S}(\mathcal{D}) \). However, it is non-trivial on \(\mathcal{S}(\mathcal{R}) \). Indeed, if \(\text{ad}(a) \) is trivial on \(\mathcal{S}(\mathcal{R}) \), then \(a \) is in \(\mathcal{R}' \). However, \(\mathcal{R} \) is a factor. Hence, \(a \in \mathbb{C}1 \), which is a contradiction with the assumption of \(a \).

3.2. The proof of Theorem 1.1. From now on, we concentrate on the algebra \(\mathcal{S}(0,1) \) of all classes of Lebesgue measurable functions on \((0,1) \).

Recall that \(\mathcal{G} \) is the group of all automorphisms of \(\mathcal{S}(0,1) \) generated by the dyadic translations of the unit interval \((0,1) \), that is, any element \(\alpha \) of \(\mathcal{G} \) is defined as follows
\[
\alpha(x)(t) = x(t-r), \quad x \in \mathcal{S}(0,1), \quad t \in (0,1),
\]
where \(r \) is the dyadic number from \([0,1) \) and \(\{a\} \) is the fractional part of the real number \(a \). We say that a derivation \(\delta \) of \(\mathcal{S}(0,1) \) commutes with \(\mathcal{G} \) or is \(\mathcal{G} \)-invariant, if
\[
\alpha \circ \delta = \delta \circ \alpha
\]
for all \(\alpha \in \mathcal{G} \).

The following theorem is the main result of the present section.

Theorem 3.2. Let \((\mathcal{A}, \| \cdot \|_\mathcal{A}) \) be a complete symmetric \(\Delta \)-normed *-subalgebra of \(\mathcal{S}(0,1) \) in which simple functions are dense in the \(\| \cdot \|_\mathcal{A} \)-norm topology. Let \(\delta \) be a derivation from \(\mathcal{A} \) into \(\mathcal{S}(0,1) \) commuting with \(\mathcal{G} \). Then \(\delta \) is trivial.

From now on, we always assume that \(\delta \) is a non-trivial *-derivation from \(\mathcal{A} \) into \(\mathcal{S}(0,1) \) commuting with \(\mathcal{G} \). We construct below an element \(h \) from \(\mathcal{A} \) such that
\[\delta(h) \notin S(0,1). \] After that, we will present some properties of \(h \), which allow us to show that the \(G \)-invariance of \(\delta \) fails at this element.

For any real-valued \(f \in S(0,1) \), we have \(\delta(f) = \delta(f)^* \), that is, \(\delta(f) \) is also real. Since \(\delta \) is a non-trivial \(* \)-derivation, there exists an element \(f \in \mathcal{A} \) such that \(\delta(f) \neq 0 \). If necessary, replacing \(f \) with \(-f\), we can assume that the positive part of \(\delta(f) \) is non zero. Then we can find positive numbers \(\lambda < \mu \) and a measurable subset \(A \subset (0,1) \) with a positive measure such that

\[\lambda \chi_A \leq \chi_A \delta(f) \leq \mu \chi_A. \]

Note that \(\delta(e) = 0 \) for any projection \(e \in \mathcal{A} \) (see e.g. [6, Proposition 2.3. (iii)]). Therefore, \(\delta(\chi_A f) = \chi_A \delta(f) \) and we obtain that

\[\lambda \chi_A \leq \delta(\chi_A f) \leq \mu \chi_A. \]

By replacing \(f \) with \(\frac{1}{\chi_A f} \), we may assume that \(f \) is a function such that

\[\chi_A \leq \delta(f) \leq \gamma \chi_A, \quad (3.2) \]

where \(\gamma := \frac{\mu}{\lambda} > 1. \)

Since there are countably many dyadic numbers, it follows that we can numerate all dyadic translations of \((0,1)\) as \(\beta_n, n = 0, 1, \cdots \), i.e., \(G = \{ \beta_n : n \geq 0 \} \) (\(\beta_0 \) is the identity map on \((0,1)\)). Set

\[B = \bigcup_{n \geq 0} \beta_n(A). \]

Observe that for each \(k \geq 0 \), we have \(\beta_k(B) = B \). Since the group \(G \) acts on \((0,1)\) ergodically (see [30, p. 927]), it follows that either \(m(B) = 0 \) or \(m((0,1) \setminus B) = 0 \). Since \(m(B) > 0 \), it follows that

\[m((0,1) \setminus B) = 0. \quad (3.3) \]

Set

\[B_0 = \beta_0(A) = A, \]
\[B_n = \beta_n(A) \setminus \bigcup_{k=0}^{n-1} \beta_k(A), \quad n \geq 1. \]

We note that all \(B_n, n \geq 0 \), are pairwise disjoint (note that \(B_n \) may be the empty set for some \(n \)) and

\[B = \bigcup_{n \geq 0} B_n. \]

Taking into account into (3.3) and the last equality, we obtain that

\[\sum_{n \geq 0} \chi_{B_n} = \chi_{[0,1)} \text{ a.e.} \]
Denote by \(\tilde{\beta}_k \) an automorphism of \(S(0,1) \) generated by the translation \(\beta_k, \ k \geq 0 \), that is, \(\tilde{\beta}_k(x) = x \circ \beta_k^{-1}, \ x \in S(0,1) \). Set

\[
(3.4) \quad g = \sum_{k=0}^{\infty} \chi_{B_k} \tilde{\beta}_k(f),
\]

where the series is considered in \(\rho \)-topology (see Section 2.1). Using (3.2) and the translation-invariance of \(\delta \), we have

\[
(3.5) \quad \chi_{B_n} \leq \chi_{B_n} \tilde{\beta}_n(\delta(f)) = \chi_{B_n} \delta(\tilde{\beta}_n(f)) \leq \gamma \chi_{B_n}
\]

for all \(n \geq 0 \). Taking into account that \(\delta \) is \(\rho \)-continuous [8, Proposition 2.4], we obtain that

\[
\delta(g) = \sum_{k=0}^{\infty} \chi_{B_k} \tilde{\beta}_k(\delta(f)) \leq \sum_{k=0}^{\infty} \chi_{B_k} \tilde{\beta}_k(f).
\]

Then, summing the above inequalities over all \(n \), we obtain that

\[
1 \leq \delta(g) \leq \gamma.
\]

Due to the assumption that simple functions are dense in \(A \), for every \(k \geq 1 \), there exists a simple function \(s_k \in S(0,1) \) such that \(\|g - s_k\|_A \leq \frac{1}{(2\gamma)^{k^2} C_A^{k^2+1}} \).

Setting \(g_k := g - s_k \), we have that

\[
(3.7) \quad \|g_k\|_A \leq \frac{1}{(2\gamma)^{k^2} C_A^{k^2+1}}
\]

where \(C_A \) is the constant for the quasi-triangle inequality for \(\|\cdot\|_A \). By (3.6) and the fact that \(\delta(s_k) = 0 \) (see e.g. [6, Proposition 2.3, (ii)]), we obtain that

\[
(3.8) \quad 1 \leq \delta(g_k) \leq \gamma, \ \forall k \geq 1.
\]

Recall that for any \(k \geq 1 \), we have defined automorphism \(\alpha_k \) of \(S(0,1) \) by

\[
(\alpha_k(x))(t) = x \left(\left\{ t - \frac{1}{2^k} \right\} \right).
\]

By the definition of \(\alpha_k \) (see (1.1)), it is clear that \(\alpha_n = \alpha_k^{2^{k-n}}, \ k > n \). Here, we denote the composition of \(\alpha_m \) with itself \(i \)-times by \(\alpha_m^i \), that is, \(\alpha_m^i = \alpha_{m-1} \circ \alpha \) for \(i \geq 2 \) with \(\alpha_m^1 = \alpha_m \). Set

\[
(3.9) \quad h_k = \gamma^{k^2} \sum_{i=1}^{2^k} (-1)^i \alpha_k^i \left(\chi_{[0, \frac{1}{2^k})} g_k \right).
\]
Appealing to the definition of symmetric \(\Delta \)-norms, we obtain that
\[
\left\| \alpha_k^i \left(\chi_{[0, \frac{1}{2^k})} g_k \right) \right\|_A \leq \|g_k\|_A \leq \frac{1}{(2\gamma)^{k^2} C_A^{2k+1}},
\]
for all \(1 \leq i \leq 2^k \). Hence, by the quasi-triangle inequality, we obtain that
\[
\|h_k\|_A \leq C_A^k \sum_{i=1}^{2^k} \frac{\gamma^k}{(2\gamma)^{k^2} C_A^{2k+1}} = \frac{1}{2^{k^2-k} C_A^{2k}}.
\]

Note that
\[
\left\| \sum_{k=l}^{n} h_k \right\|_A \leq \sum_{k=l}^{n} C_A^k \|h_k\|_A \leq \sum_{k=l}^{n} C_A^k \frac{1}{2^{k^2-k} C_A^{2k}} \leq \sum_{k=l}^{n} \frac{1}{2^{k^2-k}} \to 0 \text{ as } l \to \infty.
\]

Thus, \(\left\{ \sum_{k=1}^{n} h_k \right\}_{n \geq 1} \) is a Cauchy sequence in \((A, \| \cdot \|_A) \). We define
\[
(3.10) \quad h := \lim_{n \to \infty} \sum_{k=1}^{n} h_k
\]
converges in \((A, \| \cdot \|_A) \). In particular, \(h \in S(0, 1) \).

Having constructed the element \(h \in S(0, 1) \), we shall now show that \(h \) is the required element, at which the \(G \)-invariance of \(\delta \) fails. Before proceeding to the proof of Theorem 3.2, we collect some relations between \(h_k \) and \(\alpha_n, k > n \).

From now on, the notations \(h_k, k \in \mathbb{N} \), and \(h \) always stand for the functions defined in (3.9) and (3.10), respectively.

The following lemma shows that the elements \(h_k, k \geq 1 \), are well-behaved with respect to translations \(\alpha_n, n \geq 1 \).

LEMMA 3.3. Let \(n \geq 1 \). Let \(\alpha_n \) be defined as (1.1) and \(h_k, k \in \mathbb{N} \), be as defined in (3.9). Then
\[
(3.11) \quad \alpha_n(h_n) = -h_n
\]
and
\[
(3.12) \quad \alpha_n(h_k) = h_k
\]
for all \(k > n \).

Proof. When \(k = n \), we have
\[
\alpha_n(h_n) \overset{(3.9)}{=} \gamma n^2 \sum_{i=1}^{2^n} (-1)^i \alpha_n \left(\alpha_n^i \left(\chi_{[0, \frac{1}{2^n})} g_n \right) \right) = \gamma n^2 \sum_{i=1}^{2^n} (-1)^i \alpha_n^{i+1} \left(\chi_{[0, \frac{1}{2^n})} g_n \right) = -\gamma n^2 \sum_{i=1}^{2^n} (-1)^{i+1} \alpha_n^{i+1} \left(\chi_{[0, \frac{1}{2^n})} g_n \right) = -h_n.
\]
Recall that \(\alpha_n = \alpha_k^{2^n}, k > n, \) and \(\alpha_k^{2^k+i} = \alpha_k^{i}. \) Hence, we obtain that

\[
\alpha_n(h_k) = \sum_{i=1}^{2^k} (-1)^i \alpha_n \left(\alpha_k^i \left(\chi_{[0, \frac{1}{2^k})} g_k \right) \right) = \sum_{i=1}^{2^k} (-1)^i \alpha_k^{2^n+i} \left(\chi_{[0, \frac{1}{2^k})} g_k \right) = h_k.
\]

We provide below uniform estimates for the differences between \(\alpha_n(\delta(h_k)) \) and \(\delta(h_k), n, k \geq 1. \) Recall that \(\delta \) is a derivation on \(S(0, 1) \) commuting with \(G. \)

Lemma 3.4. Let \(n \geq 1 \) be fixed. For every \(k \geq 1, \) we have\(^2\)

\[
|\alpha_n(\delta(h_k)) - \delta(h_k)| \leq 2\gamma^{k^2+1},
\]

and

\[
|\alpha_n(\delta(h_n)) - \delta(h_n)| \geq 2\gamma^{n^2}.
\]

Proof. Recall that \(\delta(e) = 0 \) for any projection \(e \in \mathcal{A} \) (see e.g. \cite[Proposition 2.3. (iii)]{6}, see also the proof of Proposition 1.2). Using (3.8) we have

\[
\chi_{\left[\frac{1}{2^n}, \frac{k+i}{2^n}\right]} \leq \alpha_k^i \left(\delta \left(\chi_{\left[0, \frac{1}{2^n}\right]} g_k \right) \right) = \alpha_k^i \left(\chi_{\left[0, \frac{1}{2^n}\right]} \delta(g_k) \right) \leq \gamma \chi_{\left[\frac{i}{2^n}, \frac{i+1}{2^n}\right]}
\]

for all \(i = 1, \ldots, 2^k - 1 \) and

\[
\chi_{\left[0, \frac{1}{2^n}\right]} \leq \alpha_k^{2^k} \left(\delta \left(\chi_{\left[0, \frac{1}{2^n}\right]} g_k \right) \right) \leq \gamma \chi_{\left[0, \frac{1}{2^n}\right]}.
\]

Since the derivation \(\delta \) is \(G \)-invariant, it follows that

\[
\delta(h_k) = \sum_{i=1}^{2^k} (-1)^i \alpha_k^i \left(\chi_{\left[0, \frac{1}{2^n}\right]} g_k \right) \left(\chi_{\left[0, \frac{1}{2^n}\right]} g_k \right) = \sum_{i=1}^{2^k} (-1)^i \alpha_k^i \left(\chi_{\left[0, \frac{1}{2^n}\right]} g_k \right)
\]

(3.16)

and, therefore, by (3.14) and (3.15), we have

\[
|\delta(h_k)| \leq \gamma^{k^2+1}.
\]

Hence, \(|\alpha_n(\delta(h_k))| \leq \gamma^{k^2+1}. \) By the triangle inequality, we obtain that

\[
|\alpha_n(\delta(h_k)) - \delta(h_k)| \leq 2\gamma^{k^2+1}.
\]

\(^2\)We note that when \(k > n, \) we have \(\alpha_n(\delta(h_k)) - \delta(h_k) = \delta(\alpha_n(h_k)) - \delta(h_k) \stackrel{(3.12)}{=} 0. \)
On the other hand, we have
\[
|\delta(h_n)\chi_{[0, \frac{1}{2\pi})}^{(3.16)}| = |\gamma n^2 \sum_{i=1}^{2^n} (-1)^i \alpha_n^i \left(\delta \left(\chi_{[0, \frac{1}{2\pi})} g_n\right)\right)\chi_{[0, \frac{1}{2\pi})}^{(3.15)} \geq \gamma n^2 \chi_{[0, \frac{1}{2\pi})},
\]
and for any \(i = 1, 2, \ldots, 2^{n-1}\), we have
\[
|\delta(h_n)\chi_{[\frac{i}{2^n}, \frac{i+1}{2^n})}^{(3.16)}| = |\gamma n^2 \sum_{i=1}^{2^n} (-1)^i \alpha_n^i \left(\delta \left(\chi_{[\frac{i}{2^n}, \frac{i+1}{2^n})} g_n\right)\right)\chi_{[\frac{i}{2^n}, \frac{i+1}{2^n})}^{(3.14)} \geq \gamma n^2 \chi_{[\frac{i}{2^n}, \frac{i+1}{2^n})}.
\]
That is,
\[
|\delta(h_n)| \geq \gamma n^2.
\]
Taking (3.11) into account, i.e., \(\alpha_n(h_n) = -h_n\), we obtain that
\[
|\alpha_n(\delta(h_n)) - \delta(h_n)| = |\delta(\alpha_n(h_n)) - \delta(h_n)| = |-2\delta(h_n)| \geq 2\gamma n^2,
\]
which completes the proof. \(\square\)

In the next lemma, we provide a uniform estimate for the sum of the difference between \(\delta(h_k)\) and \(\alpha_n(\delta(h_k))\) over all \(k = 1, \ldots, n\).

Lemma 3.5. There exists a number \(N\) such that for any \(n \geq N\), we have
\[
(3.17) \quad \left| \sum_{k=1}^{n} \alpha_n(\delta(h_k)) - \delta(h_k) \right| \geq \gamma n^2.
\]
Proof. By Lemma 3.4, we have
\[
|\alpha_n(\delta(h_k)) - \delta(h_k)| \leq 2\gamma k^2 + 1.
\]
Recall that \(\gamma > 1\) and note that for sufficiently large \(n\), we have
\[
\sum_{k=1}^{n-1} \gamma k^2 + 1 \leq (n - 1)\gamma (n-1)^2 + 1 \leq \gamma n \cdot \gamma (n-1)^2 + 1 = \gamma n^2 - n + 2.
\]
We infer that
\[
(3.18) \quad \left| \sum_{k=1}^{n-1} \alpha_n(\delta(h_k)) - \delta(h_k) \right| \leq \sum_{k=1}^{n-1} |\alpha_n(\delta(h_k)) - \delta(h_k)| \leq 2 \sum_{k=1}^{n-1} \gamma k^2 + 1 \leq 2\gamma n^2 - n + 2.
\]
When \(k = n\), by (3.13), we have that
\[
(3.19) \quad |\alpha_n(\delta(h_n)) - \delta(h_n)| \geq 2\gamma n^2.
\]
Combining inequalities (3.18) and (3.19), we conclude that

\[
\left| \sum_{k=1}^{n} \alpha_n(\delta(h_k)) - \delta(h_k) \right| \geq |\alpha_n(\delta(h_n)) - \delta(h_n)| - \left| \sum_{k=1}^{n-1} \alpha_n(\delta(h_k)) - \delta(h_k) \right|
\]

\[
\geq 2\gamma^{n^2} - 2\gamma^{n^2-n+2} = \gamma^{n^2} + (\gamma^{n^2} - 2\gamma^{n^2-n+2})
\]

\[
= \gamma^{n^2} + \gamma^{n^2-n+2}(\gamma^{n-2} - 2) \geq \gamma^{n^2}
\]

for all sufficiently large \(n \).

The following lemma is the key ingredient in our proof. It shows that an estimate similar to that of Lemma 3.5 holds for the infinite sum \(h = \sum_{k=1}^{\infty} h_k \in S(0,1) \).

Lemma 3.6. There exists a number \(N \) such that for any \(n \geq N \), we have

\[
(3.20) \quad |\alpha_n(\delta(h)) - \delta(h)| \geq \gamma^{n^2}.
\]

Proof. Let \(N \) be large enough such that (3.17) holds and let \(n \geq N \). Recall that \(\| \cdot \|_A \)-convergence implies measure-convergence (see Section 2.2). Recall the symmetric \(\Delta \)-norm \(\| \cdot \|_S \) on \(S(0,1) \) induced by the measure topology (see Section 2.2). Hence, \(\| \sum_{k=l}^{\infty} h_k \|_S \rightarrow 0 \) as \(l \rightarrow \infty \). For any \(l > n \), we have

\[
\| \alpha_n \left(\sum_{k=n+1}^{\infty} h_k \right) - \sum_{k=n+1}^{\infty} h_k \|_S \leq \| \alpha_n \left(\sum_{k=n+1}^{l} h_k \right) - \sum_{k=n+1}^{l} h_k \|_S + \| \alpha_n \left(\sum_{k=l}^{\infty} h_k \right) \|_S + \| \sum_{k=l}^{\infty} h_k \|_S \]

\[
\overset{(3.12)}{=} 2 \left\| \sum_{k=l}^{\infty} h_k \right\|_S \rightarrow 0 \quad \text{as} \quad l \rightarrow \infty.
\]

Hence, \(\alpha_n \left(\sum_{k=n+1}^{\infty} h_k \right) = \sum_{k=n+1}^{\infty} h_k \). By the assumption, \(\delta \) is \(G \)-invariant and hence it commutes with \(\alpha_n, n \geq 1 \). This implies that for any \(n \geq N \), we have

\[
|\alpha_n(\delta(h)) - \delta(h)| = |\delta(\alpha_n(h)) - \delta(h)| = |\delta(\alpha_n(h) - h)|
\]

\[
\overset{(3.10)}{=} \left| \delta \left(\alpha_n \left(\sum_{k=n+1}^{\infty} h_k \right) - \sum_{k=n+1}^{\infty} h_k \right) + \delta \left(\sum_{k=1}^{n} (\alpha_n(h_k) - h_k) \right) \right|
\]

\[
= \left| \delta \left(\sum_{k=1}^{n} (\alpha_n(h_k) - h_k) \right) \right| = \left| \sum_{k=1}^{n} \alpha_n(\delta(h_k)) - \delta(h_k) \right| \overset{(3.17)}{\geq} \gamma^{n^2}.
\]

Here, the series \(\sum_{k=n+1}^{\infty} \alpha_n(h_k) \) and \(\sum_{k=n+1}^{\infty} h_k \) are considered in the topology with respect to \(\| \cdot \|_A \) and therefore, in the measure topology. \(\square \)
The following lemma is a simple observation. For the sake of completeness, we incorporate a detailed proof for it.

Lemma 3.7. Let \(F : \mathbb{N} \to \mathbb{R} \) be an increasing function with \(\lim_{n \to \infty} F(n) = \infty \). For any \(y \in S(0,1) \), the inequality

\[
|\alpha_n(y) - y| \geq F(n)
\]

fails for all sufficiently large numbers \(n \).

Proof. Take a closed subset \(A \) in \((0,1)\) with the Lebesque measure \(m(A) > \frac{3}{4} \) such that

\[
|y|_{\chi_A} \leq c
\]

for some \(c > 0 \). Further, for each \(n \geq 1 \), the closed subset \(A_n := \left\{ t + \frac{1}{2^n} : t \in A \right\} \) satisfies \(m(A_n) = m(A) > \frac{3}{4} \) and

\[
|\alpha_n(y)|_{\chi_{A_n}} = |\alpha_n(y)|_{\alpha_n(\chi_A)} = \alpha_n(|y|_{\chi_A}) \leq c.
\]

For each \(n \geq 1 \), we have that \(m(A \cap A_n) > \frac{1}{2} \) and

\[
|\alpha_n(y) - y|_{\chi_{A \cap A_n}} \leq 2c_{\chi_{A \cap A_n}}.
\]

Assume by way of contradiction that \(F(n) \leq |\alpha_n(y) - y| \) for all sufficiently large \(n \). Then,

\[
F(n)_{\chi_{A \cap A_n}} \leq |\alpha_n(y) - y|_{\chi_{A \cap A_n}} \leq 2c_{\chi_{A \cap A_n}},
\]

which implies that \(F(n) \leq 2c \) for all sufficiently large \(n \). This is a contradiction with the assumption on the function \(F \).

Now we are in a position to present the proof of our main result, Theorem 3.2.

Proof of Theorem 3.2. Assume by contradiction that there exists a non-trivial \(\delta : \mathcal{A} \to S(0,1) \) commuting with \(G \). Let \(h \) be defined as in (3.10). By Lemma 3.6, the function \(y := \delta(h) \in \mathcal{A} \) satisfies inequality (3.20). Setting \(F(n) = \gamma n^2 \), \(n \in \mathbb{N} \), we obtain a contradiction with Lemma 3.7. Hence, there exists no non-trivial derivation \(\delta : \mathcal{A} \to S(0,1) \) commuting with \(G \).

The following result is an immediate consequence of Theorem 3.2, which shows that the translation invariance property of \(\frac{d}{dt} \) is not shared by its extension.

Corollary 3.8. The differential operator \(\frac{d}{dt} : D(0,1) \to S(0,1) \) has no translation-invariant extension to the algebra \(S(0,1) \).
Theorem 3.2 holds for a subalgebra \((A, \|\cdot\|_A)\) of \(S(0,1)\) in which simple functions are dense. However, simple functions are not dense in \((AD(0,1), \rho)\). By Theorem 3.2, for any complete symmetric \(\Delta\)-normed subalgebra \((A, \|\cdot\|_A)\) of \(S(0,1)\) in which simple functions are dense, there exists no derivation from \(A\) into \(S(0,1)\) commuting with all dyadic-rational translations on \((0,1)\). Also, recall that it is shown in [8] that the algebra \(AD(0,1)\) is the maximal subalgebra of \(S(0,1)\) admitting unique extension of \(\frac{d}{dt} : D(0,1) \rightarrow S(0,1)\). It is interesting to drop the “symmetric \(\Delta\)-normed” assumption and consider the following problem.

Problem 3.9. Is the algebra \(AD(0,1)\) a maximal subalgebra in \(S(0,1)\) admitting a translation-invariant derivation as an extension of \(\frac{d}{dt} : D(0,1) \rightarrow S(0,1)\)?

Acknowledgements. The fourth author was supported by the Australian Research Council (FL170100052). The authors would like to thank the anonymous reviewer for numerous useful comments and suggestions.

References

1. S. Albeverio, Sh.A. Ayupov, and K.K. Kudaybergenov, Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, *J. Funct. Anal.* **256** (2009), 2917–2943.
2. R. Arens, The space \(L^\omega(0;1)\) and convex topological rings, *Bull. Amer. Math. Soc.* **52** (1946), 931–935.
3. S.V. Astashkin, Interpolation of operators in quasinormed groups of measurable functions, *Siberian Math. J.* **35**(6) (1994), 1075–1082.
4. Sh.A. Ayupov, Derivations in algebras of measurable operators, *Dokl. Uzbek Akad. Nauk* **3** (2000), 14–17.
5. A.F. Ber, V.I. Chilin, and F.A. Sukochev, Derivations in regular commutative algebras, *Math. Notes.* **75** (2004), 418–419.
6. _______________, Non-trivial derivations on commutative regular algebras, *Extracta Math.* **21** (2006), 107–147.
7. _______________, Continuous derivations on algebras of locally measurable operators are inner, *Proc. London Math. Soc.* **109** (2014), 65–89.
8. A.F. Ber, K. Kudaybergenov, and F. Sukochev, Notes on derivations of Murray-von Neumann algebras, *J. Funct. Anal.* **279** (2020), 108589.
9. _______________, Derivations of Murray-von Neumann algebras, submitted for publication.
10. A.F. Ber, B. de Pagter, and F.A. Sukochev, Derivations in algebras of operator-valued functions, *J. Operator Theory* **66** (2011), 261–300.
11. A. Ber and F. Sukochev, Commutator estimates in \(W^*\)-factors, *Trans. Amer. Math. Soc.* **364**(10) (2012), 5571–5587.
12. _______________, Commutator estimates in \(W^*\)-algebras, *J. Funct. Anal.* **262**(2) (2012), 537–568.
13. O. Bratteli and D. Robinson, *Operator algebras and quantum statistical mechanics*, Vol. 1, Springer-Verlag, New York/Heidelberg, 1979.

14. L.J. Ciach, Linear-topological spaces of operators affiliated with von Neumann algebra, *Bull. Polish Acad. Sc.* 31(3–4) (1983), 161–166.

15. J. Dixmier, *Les algèbres d’opérateurs dans l’Espace Hilbertien, 2nd ed.*, Gauthier-Vallars, Paris, 1969.

16. P. Dodds and B. de Pagter, Normed Köthe spaces: A non-commutative viewpoint, *Indag. Math.* 25 (2014), 206–249.

17. P. Dodds, B. de Pagter, and F. Sukochev, Theory of noncommutative integration, unpublished manuscript, (to appear).

18. K. Dykema, F. Sukochev, and D. Zanin, Algebras of Log-integrable functions and operators, *Complex Anal. Oper. Theory* 10(8) (2016), 1775–1787.

19. H. Federer, *Geometric Measure Theory*, Springer-Verlag, Heidelberg/New York, 1996.

20. S. Goldstein and L.E. Labuschagne, *Notes on noncommutative L_p and Orlicz spaces*, Lodz University Press, Lodz, 2020.

21. J. Huang, G. Levitina, and F. Sukochev, Completeness of symmetric Δ-normed spaces of τ-measurable operators, *Studia Math.* 237(3) (2017), 201–219.

22. J. Huang and F. Sukochev, An interpolation between $L_0(M, \tau)$ and $L_\infty(M, \tau)$, *Math. Z.* 293 (2019), 1657–1672.

23. J. Huang, F. Sukochev, and D. Zanin, Logarithmic submajorization and order-preserving isometries, *J. Funct. Anal.* 278(4) (2020), 108352.

24. H. Hudzik and L. Maligranda, An interpolation theorem in symmetric function F-spaces, *Proc. Amer. Math. Soc.* 110(1) (1990), 89–96.

25. R. Kadison, Derivations of Operator Algebras, *Ann. Math.* 83(2) (1966), 280–293.

26. R. Kadison and Z. Liu, Derivations of Murray-von Neumann algebras, *Math. Scand.* 115 (2014), 206–228.

27. R. Kadison and J. Ringrose, *Fundamentals of the Theory of Operator Algebras I*, Academic Press, Orlando, 1983.

28. R.V. Kadison and Z. Liu, A note on derivations of Murray-von Neumann algebras, *PNAS* 111(6) (2014), 2087–2093.

29. R.V. Kadison, Z. Liu, and A. Thom, A note on commutators of unbounded operators, *Expo. Math.* 38(2) (2020), 232–239.

30. R.V. Kadison and J.R. Ringrose, *Fundamentals of the Theory of Operator Algebras*, Vol. II, Academic Press, Inc., Orlando, 1986.

31. N. Kalton, N. Peck, and J. Rogers, *An F-space Sampler*, London Math. Soc. Lecture Note Ser., Vol.89, Cambridge University Press, Cambridge, 1985.

32. A.G. Kusraev, Automorphismshms and derivations on a universally complete complex f-algebra, *Siberian Math. J.* 47(1) (2006), 77–85.

33. S. Lord, F. Sukochev, and D. Zanin, Singular traces. Theory and applications, De Gruyter Studies in Mathematics, Vol. 46, De Gruyter, Berlin, 2013.

34. F. Murray and J. von Neumann, On rings of operators, *Ann. Math.* 37(1) (1936), 116–229.
35. E. Nelson, Notes on non-commutative integration, *J. Funct. Anal.* **15**(2) (1974), 103–116.

36. J. von Neumann, Continuous rings and their arithmetics, *Proc. Nat Acad. Sci. U.S.A.* **23** (1937), 341–349.

37. M. Rédei and M. Stoltzner, *John von Neumann and the foundations of Quantum Physics*, Vienna Circle Institute Yearbook, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.

38. S. Sakai, Derivations of W^*-algebras, *Ann. Math.* **83** (1966), 273–279.

39. S. Sakai, *The theory of unbounded derivations in C^*-algebras*, Lecture Notes, Univ. of Copenhagen and Univ. of Newcastle upon Tyne, 1977.

40. S. Sakai, *Operator algebras in dynamical systems*, Cambridge University Press, Cambridge, 1991.

41. I.E. Segal, A non-commutative extension of abstract integration, *Ann. Math.* **57** (1953), 401–457.

42. A.M. Sinclair and R.R. Smith, *Finite von Neumann algebras and masas*, London Mathematical Society Lecture Note Series: 351, Cambridge University Press, Cambridge, 2008.

43. M. Takesaki, *Theory of Operator Algebras I*, Springer-Verlag, New York, 1979.

44. M. Takesaki, *Theory of Operator Algebras II*, Springer-Verlag, Berlin/Heidelberg/New York, 2003.

Received 3 November, 2021 and in revised form 24 February, 2022.