Review Article

Nabilah Afiqah Mohd Radzuan*, Abu Bakar Sulong, Anil Verma, and Norhamidi Muhamad

Layup sequence and interfacial bonding of additively manufactured polymeric composite: A brief review

https://doi.org/10.1515/ntrev-2021-0116
received July 2, 2021; accepted October 21, 2021

Abstract: Additively manufactured polymeric composites exhibit customised properties beyond those offered by conventionally fabricated ones. However, in many cases, the mechanical performance mainly depends on the processing parameters, tools, and material selection. Yet, one of the issues of the additive manufacturing process especially in the material extrusion process is the inability to control the printing layups, thereby causing interlaminar damage. Thus far, literature and research have focused on improving the mechanical performance of such polymeric composites by focusing on the interlaminar shear strength under a transverse load transfer. Polymeric composites prepared using the material extrusion technique namely fused deposition modelling (FDM) are discussed upon its layup sequence and orientation. This article proposes that by realising a homogenous distribution of the transverse load, the orientation and the printing direction can maximise the printed load bearing. Moreover, the layup sequence and the interlayer diffusion are key for controlling the mechanical properties of the polymeric composites. By able to control the layup sequence, one can control the mechanical performance based on specific functionality.

Keywords: fused deposition modelling, polymer composite, mechanical properties, interfacial bonding

1 Introduction

Additively manufactured polymeric composites, particularly those produced by fused deposition modelling (FDM), are well-known in research and industrial fields. This technology has gained significant attention because of its simple operation and strong ability to produce customised parts at minimum cost [1,2]. Conventional polymer composite fabrication processes include injection moulding [3,4], compression moulding [5,6], thermoforming [7,8], and extrusion, [9,10]. The advantages and disadvantages of these fabrication methods have been extensively discussed in past decades [11–13]. Yet, what interests the researchers and industries of the FDM is the ability to control the performance while removing the post-process phase [14,15]. However, the fluctuations and inconsistencies in the printed parts owing to the use of different equipment as well as the limited customisation of the filament result in varied mechanical performance [16]. Because the FDM technology has rapidly developed, approaches that can overcome the
above limitations are yet to be identified, requiring detailed study and future consideration, particularly of the layup sequences [17]. Consequently, since 2010, there has been an interest in studying the layup sequence of printed polymeric composites and its mechanical performance (Figure 1). In the first quarter of 2021, 38 published articles were recorded in ScienceDirect, showing the importance of this issue.

For further development of the FDM technique, adapting it to different types of materials with different compositions is crucial because this can widen its applications. However, manufacturing by FDM can be challenging because adjusting the compositions of polymeric composites at high fibre loading leads to fibre breakage during the U-turn printing motion or inappropriate bonding of the materials themselves [7,18,19]. Similar findings on Nylon-woven composites indicated the evidence of fibre breakage that caused migration of damage initiation and crack propagation, which was 13% lower than the predicted simulated model [20]. This issue of a sudden 50% reduction in tensile break strength due to the deformation phenomenon [21] also occurred when using pure polymer in stacking sequence [90°/0° printing direction]. This deformation, experienced by the pure polymer or even by the polymeric composites, suggested a relationship with the interlayer bonding during the printing process [22,23]. This further results in material shrinkage and therefore speeds up the fracture occurrence [22,24,25]. Synchronisation within the materials’ composition as well as the processing parameters are expected to cure the printed bonding with minimum macroscopic void and fibre breakage [26–28]. In the year 2021, studies on laminated theory on polymer composites clearly exhibited that there is maximum appearance of porosity, especially in the region with the highest amount of fibre recorded in random printed composites [16,28,29]. Studies on the printed thermoplastic (polyethylene terephthalate glycol, PETG) reported necking behaviour as the deformation occurrence as porosity started to aggravate [23,30]. Consequently, the interaction within the layup sequence adjacent to the intermolecular slips within the printed materials will weaken [29,31,32]. These slips might be due to the poor intermolecular diffusion as the two surfaces bond together at above the glass transition temperature, also known as the diffusion theory of adhesion [33,34].

Additive manufactured polymeric composites are critical when it comes to maintaining their mechanical performance with a limited amount of fibre breakage [35]. A study by Dickson and Dowling [36] highlighted the need...
for larger sweeping corners to avoid high corner radii of less than 2 mm as they are nylon-coated carbon fibre (CF) and printed as a woven structure. During the process, they printed the nylon-coated CF on top of the unheated polyvinyl acetate (PVA)-coated Garolite plate and succeeded in allowing adequate adhesion during the printing process [36]. Also, the inability to maintain peak mechanical performance is due to the fact that printed materials often experience material blockage [37], “no travel move” or known as fibre bundles folding back [36], overlapped fibres [20], incompetent continuous fibre [38], poor interfacial adhesion [39,40], and poor placement of printed path (minimum stress trajectories) [41]. These issues are mainly due to the filament itself, which is customised via several techniques, including filler coating [39], in-nozzle impregnation [20,35], mechanical mixing (twin screw extruder) [37], and extrusion [38,42], as ways to ensure peak mechanical performance.

Hence, to address such challenges due to the printing complexity, an advanced technique with a layer-by-layer printing process is required. Therefore, this study serves as a review of recent modifications in the layup sequences [43] and interlayer diffusion [44,45] of additively manufactured polymeric composites. The review initially highlights the modern progression of polymeric composites from the prospect of additive manufacturing. Subsequently, the issues of delamination, static stress distribution, and interlaminar shear strength are discussed in detail, which are considered as the main challenges in the current FDM technology [46]. Following this, the efforts for overcoming these challenges are highlighted in terms of the filament scale geometries and the relation between the printed orientation and the layup sequences of polymeric composites [17,47]. The bonding formation and the effects of the structural alignment on the mechanical performance of such materials are discussed based on the performance of the parameters in terms of printing speed, temperature, infill, and others. Thus, the fact that the layup sequence can improve the interlayer diffusion must be considered during the FDM printing process to ensure best performance.

2 Modern progression of FDM of polymeric composites

Owing to the advancement of additive manufacturing and the successful development of metals [48,49], ceramics [50], plastics [51], and composite materials [52,53], intense research has been conducted to realise integrated technologies for printing dissimilar materials. Additive manufacturing has been expanded to metamaterials for predefined optical and acoustic applications, containing meta-atom structures accumulated on complex structures [54,55]. Such technologies, which rapidly manufacture complex product outcomes, are beneficial for both industries and economic growth. Hashemi Sanatgar et al. [56] emphasised the need of using polymers with strong diffusion of chainlike molecules to ensure excellent adhesion during polylactic acid (PLA)-polyamide (PA) printing process. The diffusion theory, which explains the need for having adhesion force of deposited polymer nanocomposites, minimised the deposited layer break strength as mentioned by Shi et al. [57]. The increase in adhesion generally relates to the interfacial bonding within the fibre-matrix, which deteriorates with the increase in fibre content, according to a study employing CF-acrylonitrile butadiene styrene (ABS) composites [58]. These were supported by Dickson et al. [59] who explained that these phenomena were due to the increment in air voids. Researchers have been investigating the benefits of multi-materials in terms of a wide range of properties and functionalities since the early 2015s [60]. Although the use of multi-materials has sufficient potential for future industries, their multi-step fabrication processes frequently increase the overall costs [61,62] and result in poor adhesion and interfacial bonding [60]. Recent studies exhibited that fabrication using multi-materials requires techniques such as laser powder bed fusion [63], material jetting [64,65], and material extrusion [2,66]. Tee et al. [64] developed a multi-material rubber-like composite that was printed using material jetting and had a maximum tensile stress of 7 MPa. According to the study, these were caused by crack propagation that starts in the softer material regions [64]. These findings suggest that some additive manufacturing processes, such as material jetting, are not truly ideal for ensuring multi-materials’ peak performance. Hence, employing FDM techniques on multi-materials (PLA, ABS, and high impact polystyrene (HIPS)) was reported to be practical due to the thermoplasics having equivalent heat capacities with maximum tensile strength of 10.78 MPa [67]. In 2020, Baca and Ahmad [68] reported that the multi-material FDM printed by a multi-nozzle increased the tensile strength by 30%. Employing multi-materials gave a huge advantage in controlling the type of materials used based on its specific need. Sanz-Horta et al. [69] used the FDM technique to print poly-e-caprolactone (PCL) and PLA in porous structures, while maintaining a Young’s modulus of up to 400 MPa. However, the major drawbacks are the inability to align the manufacturing parameters of different printing systems and the poor printing precision [68,70]. In addition, the adhesive thickness in single-material parts has been extensively studied;
in contrast, few investigations have been conducted on multi-materials or composites [65,71]. In view of the demand for multi-materials, the addition of fibres in a polymer matrix leads to various functionalities, such as the ability to balance the mechanical, thermal, and electrical performance based on the fabrication mechanism [72]. In 2020, several strategies were adopted to adapt the FDM technique for producing tissue engineering scaffolds or even printing environmental sensors using a gelatin hydrogel on PLA [72,73]. Thus, in research, the FDM technique is preferred over other additive manufacturing processes available in the market. The approaches for the FDM technique, particularly for printing complex structures using tandem or multiple input feeders, have sufficient potential; however, the issues of homogenous mixing and others of significance are yet to be examined [51,74].

Although the FDM process has been used in industries for sufficient time, research and development are still conducted to understand the unique properties achieved using it. One of the interesting features of the FDM technique is its ability to control and modify the mechanical properties of the composite materials. However, interference on the printing path frequently destroys the fibre orientation, and hence, causes fibre damage, thereby deteriorating its overall performance [72]. Several studies reported the occurrence of warpage of the finished parts, which were initially related to the differences in the arrangements of the printed particles during the process [64,75,76]. One study employing PA6/CF composites reported that there was evidence of a 230% increase in tensile strength when the composites were printed in an XY orientation [77]. The degree of residual strains that fit the printed arrangement was accountable for this outstanding performance [78]. This contributes to an anisotropic diffusion in the flow printing direction, thereby adversely affecting the mechanical performance of the printed materials [79,80]. This was proven in a study on an ABS–CF specimen, which showed based on the force–displacement data, a decrease in displacement by 44% for the ABS–CF composite compared to ABS at 160 N. Further investigation reported that the ABS–CF composite possesses a lower fracture toughness (0.49 kJ/m²) than pure ABS (2.1 kJ/m²) [79]. The lowering of the performance was caused by the significant plastic deformation during crack growth, as shown in Figure 2. Apparently, during the printing process, the CF filler was either completely separated from or partially bonded to the ABS resin. In addition, the existence of voids or micro-voids is the most common challenge in the printed thermoplastic materials. Studies have revealed that the poor adhesion between the fillers and resin, apart from the vaporisation of the volatile compounds, contributes to the propagation of large defects under stress loading [80–82]. Adhesion in composite materials is crucial, particularly in biomaterial applications, because adhesion aids in spreading growth cells onto the printed scaffolds [19,82,83]. Therefore, it is critical to not only focus on the parameters and processing of the FDM technique but also to address in detail the major contribution of the mechanical performance of the printed polymer composite parts under the effect of their structural behaviour.

3 Filament scale geometry

Controlling the distribution of the printed materials to achieve appropriate alignment in a precise localised area will aid in improving the interlayer fusion. This will lead to strengthening of the overall printed structure owing to the avoidance of delamination and voids during the process. A single void or even weak interlayer bonding of a printed material frequently causes structural failure and deteriorates the overall performance. Interlayer fusion is a common issue in most additive manufacturing processes,

Figure 2: Micrograph images of ABS and ABS–CF fracture surfaces. Reproduced with permission [79].
including vat photopolymerisation, material extrusion, and selective laser melting [84,85]. However, latest findings in 2020 clearly indicated that it is not the poor interlayer bonding which is frequently claimed to deteriorate the mechanical performance of the printed composite materials, but the filament scale geometry is the feature affecting the mechanical performance the most [73,86,87]. Simulation studies by Aliheidari et al. [88] claimed that materials printed in the diagonal F-direction (Figure 3a) are more localised and can maintain the peak mechanical performance (40%) compared to those in the Z-direction (Figure 3b). This is because Z-direction printing causes grooves on the surface, resulting in a poor load-bearing area that cannot sustain more load than the F-direction printed materials [88]. These results clearly indicated that adjusting the printed geometrical scale is dependent on the anisotropic behaviour of the materials, allowing the performance to be altered based on the demand [87–89].

Figure 3: Schematic of (a) longitudinal cross section and (b) relative load-bearing area of F specimen. Schematic of (c) transverse cross section and (d) relative non-load-bearing area of Z specimen. (e–g) Printed layup sequence tracks of interfacial adhesion at various widths. Reproduced with permission [1,87].
The mechanical performance of the polymer composites is reliant on several factors, including geometry [87], interlayer adhesion behaviour [88,90], threshold volume fraction [89], and absorption-desorption [91]. This finding was supported by a study on polymer-structured materials prepared using the FDM technique, which highlighted the problem of positioning printed materials in the Z-direction causing visible void accumulation in the range of 5 x 10^5 to 6 x 10^5 μm^3 [26]. Therefore, to reduce this void generation, the printed materials were heated using infrared preheating systems (IPS), leading to a quasi-homogenous appearance as the voids disappeared [26]. Although there is no such evidence for a groove structure under heat application, an increase in the thermal energy is expected, which will affect the polymer chains in composite materials and their quasi-static properties [92,93]. Adjusting the scale geometry of a printed material relies on the interlayer cooling time for maintaining its quasi-static mechanical properties. Different aspects were addressed by performing experiments on the composite materials. Occasionally, some findings highlighted that adjusting the parameters, including the printer temperature, does not have a significant effect on the mechanical performance [86,87,94]. However, the findings on wood polymer composites prepared using the conventional compression mould technique indicated that the cool-down process significantly improves the crystallinity of the composite materials [95].

In 2018, a research on ABS-reinforced chopped CFs prepared using the FDM technique reported that a rapid cool-down does not allow the minimum time for appropriate polymer chain entanglement, and hence, significantly deteriorates and reduces the bond strength with adjacent rasters [79]. It is worth noting that controlling the interlayer bonding temperature is an effective approach for tuning the material strength. Studies reveal that the composite materials should be cooled down to below the glass transition temperature to allow excellent correlation between the interlayer cooling and the mechanical properties of the adjacent materials, which is attributed to the prolonged cooling and the weakened interlayer bonding as illustrated in Figure 4 [57,92]. Using infrared radiation to preheat a printed surface allows the materials to cool down to below the glass transition temperature before printing the next layer on top [96]. Clearly, a fundamental study on the cooling mechanism is required in the near future because it will enable the adjustment of the properties of the composite materials.

4 Relation between printed orientation, layup sequence, and interfacial adhesion

Laminated and oriented composite materials have been used since the 1960s because they ensure material performance based on application needs [97,98]. Apart from the filament scale geometry, the orientation and the layup sequence are interesting features to be considered in the near future [99]. Although lamination of composite materials is frequently based on standard quad laminates of 0°, ±45°, and 90° plies, it is difficult to study the different stiffness parameters of different composite materials [99,100]. The study reported that this phenomenon occurred because of the high interfacial bonding strength between the adherend and the adhesive, particularly when θ increased from 45° to 90°, based on the interlocking theory [101]. This has become the interest regarding composite materials for decades. A latest study on laminated composite materials revealed the importance of the removal of air and volatiles owing to the damage caused by them [102,103]. However, studies on blade turbines...
using CF-reinforced composites indicated that the failure of composite materials also depends on the structural design because these structures are subjected to stress loads [102]. According to Ahmed et al. [104], having the right materials composition and printing structure allows for better flow properties, as opposed to only increasing filler content. Since it is well-known that adding more filler content degrades the strength properties of the composites, suitable percolation threshold for composite materials must be established [104]. In contrast, according to a study published in 2020, the mechanical performance of the composite materials is strongly correlated with the build-plate temperature, as it has a close relationship with interlayer adhesion [105]. Peng et al. [105] showed that the interfacial bonding of a single-lap shear sample with zigzag infill pattern (Figure 5a and b) increases up to 116% from 3 to 6.5 MPa when the build-plate temperature increases from 30 to 105°C (Figure 5c and d). It should be emphasised that the research of polymer composites necessitated the extension analysis of single-lap shear joints, particularly to confirm the interfacial bonding of the upper and lower printed parts. According to Yap et al. [106], a study on different adhesive (epoxy and cyanoacrylate (CA)) on the acrylonitrile styrene acrylate (ASA) and Nylon 12 carbon fibre (NCF) samples revealed that CA has higher adhesive strength than epoxy, even at higher temperatures as shown in Figure 5e. Also, as discussed by Striernann et al. [26], post-manufacturing or assistance is required during the post-processing, such as using an IPS [26]. The study mentioned that the aid of IPS (printed samples in the printing chamber) enhances the interlayer contact zone which leads to higher interlayer bonding performance [26,107]. In addition, opposing findings were reported for conventional machining processes (materials, glass fibre composites, etc.) according to which temperature is dependent on the adhesion between the adherend and the adhesive [108,109].

In 2021, a study revealed the importance of having strong interfacial adhesion between matrix and fibre bonding which was fabricated by introducing the creation of flake-like structures in order to increase the contact surface area [110]. A study on CF/PLA showed that the square nozzle shape is one of the bonding mechanism which creates better contact surface in comparison to circular nozzle by reducing inter voids by 12% [111]. This is due to the ability of the square nozzle to build flat-like structure for the adjacent bed, resulting in a higher contact surface as illustrated in Figure 6 [112]. These will undoubtedly lessen the pull-out mechanism, while also avoiding coarse surfaces that may result in higher fracture energy, particularly when printing nanoscale-size composites. This phenomenon clearly highlights that the increase in interfacial properties tend to increase fibre ability to transfer load from the polymeric matrix [113]. However, according to Lee et al. [114], too many fibre loading will disturb the fibre wetting, hence disturbing the load-transfer mechanism. Therefore, controlling sufficient amount of fibre to boost the load transfer while maintaining interfacial adhesion to the upmost level is crucial. Although the interfacial adhesion will improve the polymeric composites’ performance, studies suggested on applying multifunctional fibres purposely to interconnecting nanoparticles or even using ultrasound transducer to improve the interfacial adhesion between layup sequences [71]. These include the need of adjusting processing temperature during three-dimensional (3D) printing of polymeric composites in order to compromise good adhesion within the printing layer [24,115]. Hence, it is crucial to ensure that the temperature reaches right above the glass transition temperature (Tg) to ensure good adhesion and heat transfer. In fact, researchers are now moving towards predicting the interfacial adhesion of printed tracks and layers by studying the printed layer width as shown in Figure 3(e-g) [1,116]. These are due to the fact that there is a strong relation between the bonding formation and air gap which will be discussed further in this article. Having a good interfacial adhesion between layers are crucial due to the fact that it reflected the mechanical performance of the polymeric composites. Studies on unidirectional carbon/epoxy composites highlighted that laminated structures frequently encounter loss of the fibre support in the polymer matrix during the delamination process [46,101]. Hence, this phenomenon can be directly related to the inability of load transfer even under a low-velocity impact, which can be compensated by using the tuft technique, particularly for composite materials prepared using conventional manufacturing processes [101]. However, interlocking theory showed the importance of radial orientation in materials, while depositing single fibre on top of another does not increase the mechanical interlock. Hence, orientation favours a stronger interlocking behaviour among fibres [117,118]. Theoretically, the mechanical performance of the polymer composite materials is significantly dependent on the geometry, size, aspect ratio, and orientation of the filler; further improves the interlocking either within the filler or between the filler and the matrix [118,119]. These phenomena have been discussed in the context of materials prepared using conventional processes. However, when adapting to 3D printing technology, the theoretical results are highlighted and adjusted to fit the fabrication process use. A study on meso-structured composite materials showed that orientation and skewedness
modify the anisotropy behaviour of the overall structure [120,121]. Hence, focusing on the stacking sequence or the layup sequence of the printed materials, as study suggested, a 50% improvement in Young’s modulus occurred when compared to the fibre-reinforced polymer prepared with undefined printing sequence [120,122]. In 2018, using a fibre-reinforced polymer, a maximum Young’s modulus of 6.4 GPa was achieved [122]. In comparison, similar materials

Figure 5: Illustrations of CF/PA6 of (a) single-lap shear, (b) FDM printed with infill support, (c) single-lap strength at different build-plate temperature, (d) optical images of damage surface at varying build-plate temperatures of 30–105°C. Reproduced with permission [105]. (e) Mechanical properties of ASA and NCF adhered with epoxy and CA at normal and heat treated conditions. Reproduced with permission [106].
5 Region of bonding formation and effects of structural alignment and air gap

The layup sequence is frequently related to the underlying interlayer bonding formation of the polymer composites, and various studies have been performed to explore the bonding region that strengthens the structure mechanism [63,123]. In 2020, the bonding formation of multi-materials produced by laser powder bed fusion was investigated to ensure a strong bonding interface by adapting the in situ technique at a nano-hardness of 7.1 GPa [63]. However, for other techniques applied to polymer composite materials, material extrusion is preferable for controlling the filler arrangement and filaments made by controlling the extrudate swell to minimise the weak layer-to-layer bonding formation [53,123,124]. Filament arrangement is expected to aid in controlling the friction as the wear rate is manageable in the range of 25–34% [123]. This phenomenon was explained based on the debonding of the materials; particularly the bonding in the transverse and parallel directions weakened as the fibres became easily detached. Hence, the study recommended printing a polymer composite material in a direction that only exposes its tip [123,125]. Therefore, using lamination or a layup sequence will minimise the filament fibres from tipping off or detaching from the surface and prevent the deterioration of the mechanical performance [126].

Thus, the infill of a polymeric composite structure frequently creates an air gap and weakens its strength. Studies using ABS materials in 2017 demonstrated that when the printing process was performed under vacuum condition, an average stress of 19.7 N/mm² under 21 inHg of vacuum pressure was attained [127]. This result suggested that performing the printing process under vacuum condition can realise excellent bonding because rapid cooling and heating processes are minimised [127]; moreover, it can reduce the stress concentration [128] because there is adequate time to enhance the bonding within the layers [129]. The adjacent air gap is crucial as it affects the overall performance of the composite materials. In a study in 2019 using CF-reinforced PLA, for two parallel layers prepared using the FDM technique, an air gap between 0.4 and 0.5 mm (Figure 7) was measured [130]. The air gap was attributed to the main limitation, the return radius, in FDM. During the FDM process, if the volume fraction is less than the void volume fraction, the polymer composite material will experience fibre breakage, which is the most common limitation of the FDM technique [64,131]. A study in 2018 using fibre-reinforced thermoplastic composites presented similar findings regarding the existence of voids or intra-traces, including fibre breakage, which lowered the mechanical properties of the composites [131]. Therefore, adapting a secondary fibre size that can fill the gap will maximise the composite performance; this approach has been extensively applied in conventional processes [132,133]. Notably, the air gap induced during the printing process can be adjusted based on the printing temperature. Figure 8(a–f) demonstrates the air gap or evidence of void disappearing as the temperature rises from 220 to 240°C and hence resulting in larger contact areas which ease the layer-by-layer bonding and overall performance [88,134]. This phenomenon is similarly reported when adjusting the bed temperature as the void decreases and improves the contact areas as the bed temperature rises [88,134,135]. Studies reveal that the contact areas often related to contact pressure control the bond quality as shown in Figure 8(g–i) [88]. In the figure, it is clearly indicated that as the layer height
Figure 7: (a) Interlayer bonding of continuous CF-reinforced PLA, (b) fibre return path, and (c) fibre breakage during U-turn. Reproduced with permission [130].

Figure 8: Micrograph images of cross sectional 3D print at different nozzle temperatures of (a) 220°C, (b) 230°C, and (c) 240°C, different bed temperatures of (d) 85°C, (e) 95°C, and (f) 105°C. An optical image of (g) fracture surface and a micrograph image of (h) layer by layer dissociation, while (i) shows the cross section of the layers. Reproduced with permission [88].
decreases, the contact area increases and the layer width of the materials is maximised [136,137].

6 Mechanical performance of printed composite materials

The layup sequence is a promising technique for improving the mechanical performance as it modifies the orientation behaviour of the composite materials. A study in 2020 using carbon black-reinforced ABS polymer composites reported that an orientation of 45° is frequently the best choice to reduce fibre debonding failure [138]. In comparison with 0 and 90°, adjacent linear crack propagation is the major limitation in FDM. Studies on aligned magnetised-CF indicated that the crack propagation mainly due to the lack of interfacial adhesion as the fibre acted as rupture arrestors forced tearing in longer paths with greater fracture surface areas [139,140]. This phenomenon involved not only in additive manufactured polymeric composites via FDM yet applied in others fabrication processes. Studies on polymeric composites for biomaterial applications clearly indicated that the mechanical properties are correlated with the printing process and the filler loading [141,142]. The flexural strength was reported to be 50% less than that obtained using conventional injection moulding because the major limitation of 3D printing is the minimum amount of filler loading (between 10 and 40 wt%) [141]. This phenomenon was clearly explained by the percolation theory, according to which the maximum amount of filler reaches the percolation threshold, and hence, stagnates the material performance [119,143]. Therefore, this clearly suggests that 3D printing achieves a higher porosity as well as a lower filler content than the conventional compression moulding process. In addition, the orientation of the filler content contributed to the homogeneity, leading to an improvement 15 times larger than the unreinforced materials [144,145]. Details of different polymeric composites and their printing parameters are provided in Table 1. Analysis on the mechanical performance based on the orientation prospects are investigated extensively, yet minimum reported experimental based on having fibre orientated opposed the loading directions as in Figure 3(c and d). Li et al. [146] demonstrated that printing at 0° increases the flexural strength of PLA-CF by 13.8% when compared to pure PLA. Fibre-matrix interface are weak outside the 0°, according to Li et al. [146], resulting in fibre pull-out. According to a study on fatigue analysis published in 2020, the fibre layer oriented at 0° has a better fatigue response with 150 more load cycles N in the 95% S_{ud} [147]. According to Pertuz et al. [147], CF tends to be longer (Figure 9) due to loading conditions (95% of S_{ud}), demonstrating the fibre ability to withstand load at 0° orientation. Shammugam et al. [148] suggested that these phenomena were influenced significantly by the reinforcement distribution and compression response. These phenomena are due to the fact that as the load is applied in the opposite direction (such as in transverse direction), the material will experience delamination caused by inhomogeneity in the stress field [149]. In fact, considering the stress distribution inside the fibre depending on the load applied, the fibre surface regions are increased, creating greater stress concentrations that lead to fibre breakage and worst crack opening which deteriorate its mechanical performance [147,150,151].

It should be noted that some studies often used commercialised filament as listed in Table 1 while some were customised using several techniques, mainly material extrusion [38,42]. Mei et al. [38] recommended implementing hot pressing process (200°C of pressing temperature) after 3D printing nylon-CF composites as it boosted the tensile strength up to ~95 MPa. This technique is important as studies have shown the printed commercialised PLA-CF composites recorded an average tensile strength of 50 MPa [130,162]. Meanwhile, the extruded (customised 20 wt% CF) PLA-CF filament is able to reach a maximum of 75 MPa (164). Sang et al. [164] clearly indicated that the increment in the tensile properties is explained by the long fibres and minimum fibre breakage during the filament preparation. Thus, to maintain the maximum fibre length, Liu et al. [39] prepared the continuous fibre by pre-impregnating CF on top of polyamide and recorded the maximum flexural strength of 550 MPa. These clearly demonstrate that controlling the composition and filament preparation result in overall enhancement of the mechanical properties as the interfacial performance improves. Studies reveal interface enhancement by sizing treatment as the CF/filler are fully immersed in a resin impregnation to ease the adhesion upon printing [35]. Hu and Qin [165] have detailed the use of sizing and coating in order to enhance the interphase within the printed polymer composite. It is important to note that the balance between fibre length and interlayer bonding is crucial [166]. Shofner et al. [167] recorded a maximum tensile strength of 37.4 MPa (10 wt% of CF-ABS), which is below the average performance due to weak intralayer and interlayer bondings as polymer chain mobility increases. These clearly indicate that the strategies for interfacial mechanisms during filament feedstock will aid in adhesion and interfacial bonding within the fibre-polymer [141,168].
Table 1: Mechanical performance of polymeric composites prepared using additive manufacturing technique

Materials	Filament specification (model/type)	Parameter	Output	Ref.
Aluminium/PLA–polyester		Temperature: 230°C	Force: 25–30 kN	[152]
Thermoplastic polyurethane/PLA		Bed: 55°C	UTS: 35–38 MPa (parallel)	[51]
		Speed: 20 mm/s	17–19 MPa (perpendicular)	
			Young’s modulus: 700–900 MPa (parallel)	
			550–590 MPa (perpendicular)	
Poly-ε-caprolactone		Nozzle temperature: 160°C	Tensile strength: 79.7 MPa	[153]
		Bed temperature: 40°C		
		Print speed: 5 mm/s		
		Nozzle diameter: 0.5 mm		
Nylon/fibres (carbon, glass, Kevlar)		Nozzle diameter: 0.4 mm	Tensile strength: 524 MPa	[16]
Nylon polymer			Stiffness: 73 GPa	
			Stiffness: 32 MPa	
			Stiffness: 0.84 GPa	
PEEK	PEEK OPTIMA™ LT1	Layer height: 0.2 mm	Tensile: 85 MPa	[115]
Ultem 1010 (polyetherimide)		Extrusion width: 1 mm		
		Extrusion temperature: 360°C		
		Bed temperature: 160°C		
PLA/CF/jute		Filament diameter: 2.85 mm	Tensile: 47.9–51.7 MPa	[76]
Commercial PLA material		Extruder temperature: 140°C		
ABS			Fracture resistance: 3,500–4,000 J/m²	[85]
ABS/chopped CF (20 wt%)		Nozzle diameter: 5 mm	Fracture energy: 5–12 kJ/m²	[96]
		Print speed: 3.8 cm/s		
		Layer time: 93 s		
		Width layer: 6.1 mm		
Carbon black/ABS		Orientations of 0°/90°, 45°/−45°, and 0°	Stress: 30 MPa	[138]
		–	Shear strain: 25 MPa	
ABS-glass fibre	ABS-GF10	Extrusion nozzle: 0.35 mm	Fracture toughness: 0.5 kJ/m²	[79]
PLA		Extrusion temperature: 235°C	Fracture toughness: 3.1 kJ/m²	
CF/ABS	Polyac PA-747	Bed temperature: 95°C		
High-power microwave CF/ABS				
ABS		Nozzle diameter: 0.04 mm	Surface roughness: 13.7–14.41 μm	[156]
		Layer thickness 0.2–0.4 mm		
		Amplitude: 10 μm		
ABS		Layer thickness: 0.25 mm	Stress: 12–19.7 N/mm²	[127]
		Vacuum pressure: 21, 24, 27, 30 inHg	Strain: 4.7–5.55%	
ABS				
		Nozzle temperature: 215, 225, and 235°C	Young modulus: 100–150 MPa	[157]
		Printing speed: 20, 40, and 60 mm/s		
ABS			Yield strength: 0.2–0.3 ksi	
			UTS: 4.7–5.5 ksi	[158]
ABS glue		Nozzle: 0.4 mm		
		Layer thickness: 0.2 mm		
		Print speed: 40 mm/s		
		Nozzle temperature: 220°C		
		Bed temperature: 90°C		

(Continued)
Table 1: Continued

Materials	Filament specification (model/type)	Parameter	Output	Ref.
Polymeric gyroid lattice		Filament diameter: 1.75 mm	Compressive strength: 1.1–2.99 MPa	[159]
		Interlayer bond: diameter (12 mm) and height (30 mm)		
		Nozzle velocity: 50 mm/s		
		Extrusion rate: 40 mm/min		
		Pressure: 2.5–4.5 MPa		
		Temperature: 335 and 355°C		
Thermoplastic polyimide (TPI)			Interlayer bonding: 50–350 N	[107]
ABS	Filament diameter: 1.75 mm			
PLA	Filament diameter: 1.75 mm			
	Nozzle velocity: 50 mm/s			
	Extrusion rate: 40 mm/min			
	Pressure: 2.5–4.5 MPa			
	Temperature: 335 and 355°C			
			UTS: 12–22 MPa	[92]
			Strength: 40 MPa (Z-direction)	[87]
			Temperature: 210°C	
			Bed temperature: 60°C	
			Young’s modulus: 2.4–2.6 GPa	[26]
			Stress: 7.5 wt% CF-45 MPa	[160]
			Toughness 12 J/m3	
			Ductility 3%	
PLA	Nozzle: 0.4 mm			
	Extrusion bed: 0.5 mm			
	Layer height: 0.2 mm			
	Extrusion temperature: 260°C			
	Velocity: 10 mm/s			
			Tensile strength: 35–41 MPa	
Formulate conductive material	For BFB3000 3D printer			
carbon black			Stress: 7.5 wt% CF-45 MPa	[161]
PLA (pre-impregnated)	Markforged, Inc., USA			
PLA	PLA 02-B-0015			

Figure 9: Micrograph images of nylon-carbon fibre at 0° orientation and (a) 80% of S_{ut} and (b) 95% of S_{ut}. Reproduced with permission [147].
7 Four-dimensional (4D) printing

Based on the importance of oriented and aligned structures by printing in additive manufacturing, 4D printing must be considered to ensure best desired output. Until now, studies have focused on 4D printing because of its ability to control the magnitude of and dynamically vary each input [169–171]. However, 4D printing is frequently associated with swelling dynamics, as elucidated in composites 4D printed using a morphing nozzle. This phenomenon, in turn, promotes a minimum proportion of oriented fibres as the filaments shift from anisotropic to isotropic swelling properties ($p < 0.001$) [169,172]. These fundamental modifications occur in 4D printing as the swelling effect alters the filler arrangement without reorientation as well as minimises the effect of misalignment [173,174]. Hence, this allows better control and manipulation of the printing shapes and customisation of the functionalities of the end product [53,174]. Although 4D printing is currently a future direction, the manipulation of the fibres in the printing process has received attention in terms of its void formation, poor adhesion, method and parameter application, blockage issues, and material selection [53,169–171,174]. Clearly, detailed findings and progressive research are required to fully fill the gap related to 4D printing.

8 Conclusion and future prospects

The literature presented provides a correlation between polymeric composite materials fabricated by additive manufacturing and their mechanical performance. In the past five years, most of the research on polymeric composites, specifically using FDM techniques, reported various optimum parameters. Although such studies are promising, different tools frequently using different parameters for operation is a major limitation in the current modern world. Therefore, this review describes the details of the approaches for improving the mechanical properties of the polymeric composites. In addition, this study is anticipated to broaden and strengthen the overall mechanical performance as well as become a reference for interlayering of printed polymeric composites. The conclusions are summarised as follows:

(a) Fabricating polymeric composites is frequently related with filaments or feeders because they maintain and control the mechanical properties. Researchers are continuing to develop composite materials by considering the filament scale geometry. Techniques for manufacturing composite filaments, such as coating, impregnating, or mechanical mixing (extrusion), must be carefully considered, since different filament fabrication processes will alter the amount of fibre breakage and hence affect the interfacial adhesion of fibre-matrix. Also, when fabricating using the FDM technique, one should consider the load-bearing activity of the printed materials owing to its contribution to the overall performance.

(b) Additively manufactured polymeric composites are frequently associated with layer-by-layer printing, which might cause delamination or failure owing to the inhomogeneous transverse load transfer. This further causes a minimum interlaminar shear strength in the composite structures. Therefore, one should consider printing the structure in terms of the layup sequence or the laminated orientation, which can improve the bonding and minimise the static stress of the materials. Utilising a printing orientation of 0° allows for better stress distribution, thereby improving tensile strength and fatigue response as the fibres tend to elongate more at 0°.

(c) Adjusting the structural alignment can minimise the air gap between the printed materials, thereby improving the bonding formation. These phenomena will allow higher fibre loading that are tailored to the structural alignment, similar to the printed orientation allowing low fibre breakage and broadening of the functionalisation of the materials. Therefore, further studies should be conducted to maximise the fibre loading (>40 wt%) because currently industries and researchers are relying on the filaments or feeders as supplied by the manufacturer.

(d) Based on the findings presented in this article, it is noted that the structural orientation can improve the load transfer of the materials. Thus, detailed analysis should be conducted to elucidate the fracture mechanism and interlaminar behaviour of the polymeric composites when subjected to the layup sequence because until now very few studies have been reported. Further research and analysis on these issues will lead to the future development of FDM, because based on all tabulated data and detailed information, we can adopt a conventional analytical model to predict the mechanical properties of additively manufactured polymeric composites.

Acknowledgement: The authors wish to express their gratitude and appreciation for the Ministry of Higher Education (MOHE), Malaysia and the Center for Research and Instrumentation Management (CRIM), UKM for their financial support under Grant Number FRGS/1/2020/TK0/UKM/02/18, which enabled them to complete this study.
Funding information: Ministry of Higher Education (MOHE), Malaysia and the Center for Research and Instrumentation Management (CRIM), UKM for their financial support under Grant Number FRGS/1/2020/TKO/UKM/02/18.

Author contributions: Conceptualisation: N.A.M.R. and A.B.S.; formal analysis: N.A.M.R., A.B.S., N.M., and A.V.; writing-review and editing: N.A.M.R. and A.B.S.N.A.M.R., A.B.S., A.V., and N.M. contributed equally to this work. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

[1] Tofangchi A, Han P, Izquierdo J, Iyengar A, Hsu K. Effect of ultrasonic vibration on interlayer adhesion in fused filament fabrication 3D printed ABS. Polymers (Basel). 2019;11(2):315.
[2] Zindani D, Kumar K. An insight into additive manufacturing of fiber-reinforced polymer composite. Int J Light Mater Manuf. 2019;2(4):267–78.
[3] Razak Z, Sulong AB, Muhamad N, Che Haron CH, Radzi MKFM, Ismail NF, et al. Effects of thermal cycling on physical and tensile properties of injection moulded kenaf/carbon nanotubes/polypropylene hybrid composites. Compos Part B. 2019;168(December 2018):159–65.
[4] Kuo J, Chen C. A novel Nylon-6–5316L fiber compound material for injection molded PEM fuel cell bipolar plates. J Power Sources. 2006;162:207–14.
[5] Azam FAA, Royan NRR, Yuhana NY, Radzuan NAM, Ahmad S, Sulong AB. Fabrication of porous recycled HDPE biocomposites foam: effect of rice husk filler contents and surface treatments on the mechanical properties. Polymers (Basel). 2020;12(2):4–17.
[6] Du C, Ming P, Hou M, Fu J, Fu Y, Luo X, et al. The preparation technique optimization of epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells. J Power Sources. 2010;195(16):5312–9.
[7] Mohd Radzuwan NANA, Tholibon D, Sulong ABAB, Muhamad N, Haron CHCHC. New processing technique for biodegradable kenaf composites: a simple alternative to commercial automotive parts. Compos Part B Eng. 2020;184(December 2019):107644.
[8] Margossian A, Bel S, Hinterhoelzl R. On the characterisation of transverse tensile properties of molten unidirectional thermoplastic composite tapes for thermofoming simulations. Compos Part A Appl Sci Manuf. 2016;88:48–58.
[9] Mohd Radzuwan NA, Sulong AB, Iswandi I. Effect of multi-sized graphite filler on the mechanical properties and electrical conductivity. Sains Malaysiana. 2021;50(7):2025–34.
[10] Radzuwan NAMNAM, Sulong ABABAB, Husaini T, Majlan EHEH, Rosli MIIMI, Aman MMFM, et al. Fabrication of multi-filler MCF/MWCNT/S6-based bipolar plates. Ceram Int. 2019;45(6):7413–8.
[11] Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, et al. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci. 2018;87:197–227.
[12] Albdiry MT, Yousif BF, Ku H, Lau KT. A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. J Compos Mater. 2013;47(9):1093–115.
[13] Mahesh V, Joladarashii S, Kulkarni SM. A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def Technol. 2021;17(1):257–77.
[14] Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf. 2016;83:98–112.
[15] van de Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehranl M. Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf. 2020;31:100962.
[16] Saeed K, McIlhagger A, Harkin-Jones E, Kelly J, Archer E. Predication of the in-plane mechanical properties of continuous carbon fibre-reinforced 3D printed polymer composites using classical laminated-plate theory. Compos Struct. 2021;259(July):113226.
[17] Yavas D, Zhang Z, Liu Q, Wu D. Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing. Compos Part B Eng. 2021;204:108460.
[18] Zhang H, Gao C, Li H, Pang F, Zou T, Wang H, et al. Analysis of functionally graded carbon nanotube-reinforced composite structures: a review. Nanotechnol Rev. 2020;9(1):1408–26.
[19] Zhang P, Wang Z, Li J, Li X, Cheng L. From materials to devices using fused deposition modeling: a state-of-art review. Nanotechnol Rev. 2020;9(1):1594–609.
[20] Zhang H, Dickson AN, Sheng Y, McGrail T, Dowling DP, Wang C, et al. Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading. Compos Part B Eng. 2020;186(January):107835.
[21] Nakajima J, Fayazbakhsh K, Teshima Y. Experimental study on tensile properties of 3D printed flexible kirigami specimens. Addit Manuf. 2020;32(October 2019):101100–828.
[22] Jin M, Neuber C, Schmidt HW. Tailoring polypropylene for extrusion-based additive manufacturing. Addit Manuf. 2020;33:101101.
[23] Amza CG, Zapciu A, Constantin G, Baciu F, Vasile MI. Enhancing mechanical properties of polymer 3D printed parts. Polymers (Basel). 2021;13(4):1–18.
[24] Lepoivre A, Boyard N, Levy A, Sobotka V. Heat transfer and adhesion study for the FFF additive manufacturing process. Proc Manuf. 2020;47(2019):948–55.
[25] Wu PH, Kim HS, Jang IT. Recent developments in polymers/ polymer nanocomposites for additive manufacturing. Prog Mater Sci. 2020;21:111.
[26] Striemann P, Hilbusbusch D, Niedermeier M, Walther F. Optimization and quality evaluation of the interlayer bonding performance of additively manufactured polymer structures. Polymers (Basel). 2020;12:5.
[27] Chen RDE, Huang CF, Hsu SH. Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications. Carbohydr Polym. 2019;212(1):75–88.
[28] Velu R, Vaheed NM, Venkatesan C, Raspall F, Krishnan M. Experimental investigation on fabrication of thermoset pre-preg composites using automated fibre placement process and 3D printed substrate. Proc CIRP. 2020;85:293–8.

[29] Pagani A, Sanchez-Majano AR. Stochastic stress analysis and failure onset of variable angle tow laminates affected by spatial fibre variations. Compos Part C Open Access. 2021;4(October 2020):100991.

[30] Popescu D, Zapcic A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test. 2018;69:157–66.

[31] Pinho AC, Piedade AP. Influence of build orientation, geometry and artificial saliva aging on the mechanical properties of 3D printed poly(e-caprolactone). Materials (Basel). 2021;14(12):3335.

[32] Ehrmann G, Ehrmann A. Pressure orientation-dependent recovery of 3D-printed PLA objects with varying infill degree. Polymers (Basel). 2021;13(8):1–13.

[33] Rabbi MF, Chalivendra V. Interfacial fracture characterization of multi-material additively manufactured polymer composites. Compos Part C Open Access. 2021;5(February):100145.

[34] Nie L, Lee K, Lee S, Shi T, Liao G. Void control in adhesive bonding using thermosetting polymer. Sens Actuators A Phys. 2011;167(2):398–405.

[35] Matsuzaki R, Nakamura T, Sugiyama K, Ueda M, Todoroki A, Hirano Y, et al. Effects of set curvature and fiber bundle size on the printed radius of curvature by a continuous carbon fiber composite 3D printer. Addit Manuf. 2018;24:93–102.

[36] Dickson AN, Dowling DP. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing. Compos Struct. 2019;212(January):381–8.

[37] Singh R, Singh H, Farina I, Colangelo F, Fraternali F. On the additive manufacturing of an energy storage device from recycled material. Compos Part B Eng. 2019;156:259–65.

[38] Mei H, Ali Z, Yan Y, Ali I, Cheng L. Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites. Addit Manuf. 2019;27(November 2018):150–8.

[39] Liu T, Tian X, Zhang M, Abliz D, Li D, Ziegmann G. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PAGM composites. Compos Part A Appl Sci Manuf. 2018;114(July):368–76.

[40] Stark MS. Improving and understanding inter-filament bonding in 3D-printed polymers. Univ Tenn Honor Thesis Proj. 2016;1–25.

[41] Zhang H, Yang D, Sheng Y. Performance-driven 3D printing of continuous curved carbon fibre reinforced composites: a preliminary numerical study. Compos Part B Eng. 2018;151:256–64.

[42] Billah KMM, Lorenzana FAR, Martinez NL, Wicker RB, Espalin D. Thermomechanical characterization of short carbon fiber and short glass fiber-reinforced ABS used in large format additive manufacturing. Addit Manuf. 2020;35(April):101299.

[43] Bhandari S, Lopez-Anido RA, Gardner DJ. Enhancing the interlayer tensile strength of 3D printed short carbon fiber-reinforced PETG and PLA composites via annealing. Addit Manuf. 2019;30:100922.

[44] Gao X, Qi S, Kuang X, Su Y, Li J, Wang D. Fused filament fabrication of polymer materials: a review of interlayer bond. Addit Manuf. 2021;37:101658.

[45] Rostom S, Dadmun MD. Improving heat transfer in fused deposition modeling with graphene enhances inter-filament bonding. Polym Chem. 2019;10(44):5967–78.

[46] Islam MS, Prabhakar P. Interlaminar strengthening of multidirectional laminates using polymer additive manufacturing. Mater Des. 2017;133:332–9.

[47] Khosravani MR, Reinicke T. Effects of raster layup and printing speed on strength of 3D-printed structural components. Proc Struct Integr. 2020;28:720–5.

[48] Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol. 2013;67(5–8):1721–54.

[49] Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23(6):1917–28.

[50] Avila JD, Alrawahi Z, Bose S, Bandyopadhyay A. Additively manufactured Ti6Al4V Si-hydroxyapatite composites for articulating surfaces of load-bearing implants. Addit Manuf. 2020;34(April):101241.

[51] Kennedy ZC, Christ JF. Printing polymer blends through in situ active mixing during fused filament fabrication. Addit Manuf. 2020;36(August 2019):101233.

[52] Shen X, Chu M, Hariri F, Vedula G, Naguib HE. Binder jetting fabrication of highly flexible and electrically conductive graphene/PVOH composites. Addit Manuf. 2020;36(August):101565.

[53] Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Compos Struct. 2017;182(August):36–53.

[54] Askari M, Hutchins DA, Thomas PJ, Astolfi L, Watson RL, Abdi M, et al. Additive manufacturing of metamaterials: a review. Addit Manuf. 2020;36(August):101562.

[55] Penumakala PK, Santo J, Thomas A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B Eng. 2020;201(August):108336.

[56] Hashemi Sanatgar R, Campagne C, Nierstrasz V. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: effect of FDM printing process parameters. Appl Surf Sci. 2017;403:551–63.

[57] Shi X, Chen B, Tuo X, Gong Y, Guo J. Study on performance characteristics of fused deposition modeling 3D-printed composites by blending and lamination. J Appl Polym Sci. 2021;138(9):32495.

[58] Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love L, Naskar AK, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol. 2014;105:144–50.

[59] Dickson AN, Barry JN, McDonnell KA, Dowling DP. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf. 2017;16:146–52.

[60] Han D, Lee H. Recent advances in multi-material additive manufacturing: methods and applications. Curr Opin Chem Eng. 2020;28:158–66.

[61] Chueh YH, Zhang X, Ke JCR, Li Q, Wei C, Li L. Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion. Addit Manuf. 2020;36(July):101665.
[62] Lai KC, Lee LY, Hiew BYZ, Yang TCK, Pan GT, Thangalazhy-Gopakumar S, et al. Utilisation of eco-friendly and low cost 3D graphene-based composite for treatment of aqueous Reactive Black 5 dye: characterisation, adsorption mechanism and recyclicity studies. J Taiwan Inst Chem Eng. 2020;114:57–66.

[63] Tan C, Zhang X, Dong D, Attard B, Wang D, Kuang M, et al. In situ synthesised interlayer enhances bonding strength in additively manufactured multi-material hybrid tooling. Int J Mach Tools Manuf. 2020;155(June):103592.

[64] Tee YL, Tran P, Leary M, Pille P, Brandt M. 3D Printing of polymer composites with material jetting: mechanical and fractureographic analysis. Addit Manuf. 2020;36(August):101558.

[65] Liu F, Li T, Jiang X, Jia Z, Xu Z, Wang L. The effect of material mixing on interfacial stiffness and strength of multi-material additive manufacturing. Addit Manuf. 2020;36(January):101502.

[66] Balla VK, Kate KH, Satyawou J, Singh P, Tadimeti JGD. Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B Eng. 2019;174(March):106956.

[67] Singh R, Kumar R, Farina I, Colangelo F, Feo L, Fraternali F. Multi-material additive manufacturing of sustainable innovative materials and structures. Polymers (Basel). 2019;11(1):1–14.

[68] Baca D, Ahmad R. The impact on the mechanical properties of multi-material polymers fabricated with a single mixing nozzle and multi-nozzle systems via fused deposition modelling. Int J Adv Manuf Technol. 2020;106(9–10):4509–20.

[69] Sanz-Horta R, Elvira C, Gallardo A, Reinecke H, Rodríguez-Hernández J. Fabrication of 3d-printed biodegradable porous scaffolds combining multi-material fused deposition modelling and supercritical CO2 techniques. Nanomaterials. 2020;10(6):1080.

[70] Yadav D, Chhabra D, Gupta RK, Phogat A, Ahlawat A. Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS. Mater Today Proc. 2020;21:5592–604.

[71] Wolcott PJ, Hehr A, Pawlowski C, Dapino MJ. Process improvements and characterization of ultrasonic additive manufactured structures. J Mater Process Technol. 2016;233:44–52.

[72] Gill EL, Wang W, Liu R, Huang YYS. Additive batch electro-spinning patterning of tethered gelatin hydrogel fibres with swelling-induced fibre curling. Addit Manuf. 2020;36(July):101456.

[73] Xiang D, Zhang Z, Han Z, Zhang X, Zhou Z, Zhang J, et al. Effects of non-covalent interactions on the properties of 3D printed flexible piezoresistive strain sensors of conductive polymer composites. Compos Interfaces. 2020;00(00):1–15.

[74] Angelopoulos PM, Samouhos M, Taixarchou M. Functional fillers in composite filaments for fused filament fabrication; a review. Mater Today Proc. 2021;37:4031–43.

[75] Ligon SC, Liska R, Stampfl J, Gurr M, Mühlaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–90.

[76] Regalla SP, Karwa SS, Rajesh S, Shyam PV, Shrivastava PN. Strength and fracture behaviour of polymer matrix composite layered structures made by additive manufacturing. Mater Today Proc. 2019;28:1030–8.

[77] Badini C, Padovano E, De Camillis R, Lambertini VG, Pietroluongo M. Preferred orientation of chopped fibers in polymer-based composites processed by selective laser sintering and fused deposition modeling: effects on mechanical properties. J Appl Polym Sci. 2020;137(38):1–12.

[78] Kousiatza C, Tzetzis D, Karalekas D. In situ characterization of 3D printed continuous fiber-reinforced composites: a methodological study using fiber Bragg grating sensors. Compos Sci Technol. 2019;174:134–41.

[79] Young D, Wetmore N, Czabaj M. Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene. Addit Manuf. 2018;22(February):883–90.

[80] Laguna OH, Lietor PF, Godino FJL, Corpas-Iglesias FA. A review on additive manufacturing and materials for catalytic applications: milestones, key concepts, advances and perspectives. Mater Des. 2021;208:109927.

[81] Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci. 2019;98:101162.

[82] Zeng L, Li P, Yao Y, Niu B, Niu S, Xu B. Recent progresses of 3D printing technologies for structural energy storage devices. Mater Today Nano. 2020;12:100094.

[83] Siharaman B, Shi X, Walboomers XF, Liao H, Cuijpers V, Wilson LJ, et al. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone. 2008;43(2):362–70.

[84] Kong D, Dong C, Ni X, Li X. Corrosion of metallic materials fabricated by selective laser melting. npj Mater Degrad. 2019;3(1):1–14.

[85] Haghhighi A, Li L. A hybrid physics-based and data-driven approach for characterizing porosity variation and filament bonding in extrusion-based additive manufacturing. Addit Manuf. 2020;36(May):101399.

[86] Yuan C, Wang F, Rosen DW, Ge Q. Voxel design of additively manufactured digital material with customized thermomechanical properties. Mater Des. 2021;197:109205.

[87] Allum J, Moetzadzian A, Gleedall A, Silberschmidt VV. Interlayer bonding has bulk-material strength in extrusion additive manufacturing: new understanding of anisotropy. Addit Manuf. 2020;34(June):101297.

[88] Allheidari N, Christ J, Tripruraneni R, Nadimpalli S, Ameli A. Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process. Mater Des. 2018;156:351–61.

[89] Wang SF, Ogale AA. Simulation of percolation behavior of anisotropic short-fiber composites with a continuum model and non-cubic control geometry. Compos Sci Technol. 1993;46(4):389–98.

[90] Ji H, Zhang X, Huang X, Zheng L, Ye X, Li Y. Effect of extrusion on viscoelastic slurry 3D print quality: numerical analysis and experiment validation. SN Appl Sci. 2019;1(9):1036.

[91] Kakanuru P, Pochiraju K. Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Addit Manuf. 2020;36(August):101529.
Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling. Proc CIRP. 2016;42(2):749–53.

Türk D-A, Kussmaul R, Zogg M, Klahn C, Leutenecker-Twelsiek B, Meboldt M. Composites part production with additive manufacturing technologies. Proc CIRP. 2017;66(Section 4):306–11.

Wei K, Xiao X, Chen J, Wu Y, Li M, Wang Z. Additively manufactured bi-material metamaterial to program a wide range of thermal expansion. Mater Des. 2021;198:109643.

Taufiq MJ, Mansor MR, Mustafa Z. Characterisation of wood plastic composite manufactured from kenaf fibre-reinforced recycled-unused plastic blend. Compos Struct. 2018;189:510–5.

Kishore V, Ajiñjeru C, Nycz A, Post B, Lindahl J, Kunc V, et al. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit Manuf. 2017;14:7–12.

Han J, Hoa SV. A three-dimensional multilayer composite finite element for stress analysis of composite laminates. Int J Numer Methods Eng. 1993;36(22):3903–14.

Iremantab T. Three-dimensional stress analysis of bolted single-lap composite joints. Compos Struct. 1998;43:195–216.

Iragi M, Pascual-González C, Esnaola A, Lopes CS, Aretxabaleta L. Ply and interlaminar behaviours of 3D printed continuous fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure. Addit Manuf. 2019;30(July):100884.

Sanei SHR, Popescu D. 3D-printed carbon fiber reinforced polymer composites: a systematic review. J Compos Sci. 2020;4(3):98.

Verma KK, Viswarupachari CH, Gaddikeri KM, Ramesh S, Kumar S, Bose S. Unfolding the effects of tuft density on compression after impact properties in unidirectional carbon/epoxy composite laminates. Compos Struct. 2021;258(July 2020):113378.

Fal M, Hussein R, Chandrashekhara K, Abutunis A, Menta V. Experimental and numerical failure analysis of horizontal axis water turbine carbon fiber-reinforced composite blade. J Renew Sustain Energy. 2021;13:1.

Sezer HK, Eren O. FDM 3D printing of MWCNT-reinforced ABS nano-composite parts with enhanced mechanical and electrical properties. J Manuf Process. 2019;37(December 2018):339–47.

Ahmed W, Alnajjar F, Zaneldin E, Al-Marzouqi AH, Gochoo M, Khalid S. Implementing FDM 3D printing strategies using natural fibers to produce biomass composite. Materials (Basel). 2020;13:18.

Peng X, Zhang M, Guo Z, Sang L, Hou W. Investigation of processing parameters on tensile performance for FDM-printed carbon fiber-reinforced polyamide 6 composites. Compos Commun. 2020;22(2):July:100478.

Yap YL, Toh W, Koneru R, Lin R, Chan KL, Guang H, et al. Evaluation of structural epoxy and cyanacrylate adhesives on jointed 3D printed polymeric materials. Int J Adhes Adhes. 2020;100(March):102661.

Wu W, Ye W, Geng P, Wang Y, Li G, Hu X, et al. 3D printing of thermoplastic PI and interlayer bonding evaluation. Mater Lett. 2018;229(October):206–9.
Blok LG, Longana ML, Britton TB, Pilli H, et al. Mechanical properties and microstructure of additively manufactured stainless steel with laser welded joints. Mater Des. 2021;208:109921.

Cai S, Wu C, Yang W, Liang W, Yu H, Liu L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 2020;9(1):971–89.

Cui G, Zhang Z, Song S, Bai Y, Wu D. Tensile and fatigue behaviour of continuous carbon fibre-reinforced polymer composites. Compos Struct. 2019;225(April):111147.

Gebisa AW, Lemu HG. Influence of 3D printing FDM process parameters on tensile property of ULTEM 9085. Proc Manuf. 2019;30:331–8.

Heidari-Ranani M, Rafiee-Afari M, Zahedi AM. Mechanical characterization of 3D printing of continuous carbon fiber-reinforced PLA composites. Compos Part B Eng. 2019;175(June):107147.

Blok LG, Longana ML, Yu H, Woods BKS. An investigation into 3D printing of fibre-reinforced thermoplastic composites. Addit Manuf. 2018;22(November 2017):176–86.

Mohd Radzuan NA, Yusuf Zakaria M, Sulong AB, Sahari J. The effect of milled carbon fiber filler on electrical conductivity in highly conductive polymer composites. Compos Part B Eng. 2017;110:153–60.

Zakaria MY, Sulong AB, Sahari J, Suherman H. The effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material. Compos Part B Eng. 2015;83:75–80.

Papon EA, Haque A, Mulani SB. Process optimization and stochastic modeling of void contents and mechanical properties in additively manufactured composites. Compos Part B Eng. 2019;177(February):107325.

Papon EA, Haque A. Fracture toughness of additively manufactured carbon fibre reinforced composites. Addit Manuf. 2019;26:41–52.

Bahraini B, Ayatollahi MR, Sedighi I, Pérez MA, García-Granada AA. The effect of in-plane layer orientation on mixed-mode I-II fracture behavior of 3D-printed polycarbonate specimens. Eng Fract Mech. 2020;231(Febuary):107018.

Kamaal M, Anas M, Rastogi H, Bhardwaj N, Rahaman A. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Prog Addit Manuf. 2021;6(1):63–9.

Rabbi MF, Chalivendra V. Strain and damage sensing in additively manufactured CB/ABS polymer composites. Polym Test. 2020;90(June):106688.
[154] Yanamandra K, Chen GL, Xu X, Mac G, Gupta N. Reverse engineering of additive manufactured composite part by toolpath reconstruction using imaging and machine learning. Compos Sci Technol. 2020;198:108318.

[155] Fayazbakhsh K, Movahedi M, Kalman J. The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication. Mater Today Commun. 2019;18:140–8.

[156] Maidin S, Mohamed AS, Mohamed SB, Wong JHU, Sivarao S. Effect of multiple piezoelectric transducer on fused deposition modeling to improve parts surface finish. J Adv Manuf Technol. 2018;12(1 Special Issue 2):101–16.

[157] Malekipour E, Attoye S, El-Mounayri H. Investigation of layer-based thermal behavior in fused deposition modeling process by infrared thermography. Proc Manuf. 2018;26:1014–22.

[158] Maitin S, Wong JHU, Arif NM, Mohamed AS. Strengthening of fused deposition modeling printer bed adhesion intensity using ABS glue. Int J Recent Technol Eng. 2019;8(1):17–21.

[159] Maharjan GK, Khan SZ, Riza SH, Masood SH. Compressive behaviour of 3D printed polymeric gyroid cellular lattice structure. IOP Conf Ser Mater Sci Eng. 2018;455(1):012047.

[160] Ning F, Cong W, Qiu J, Wei J, Wang S. Additive manufacturing of carbon fiber-reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng. 2015;80:369–78.

[161] Leigh SJ, Bradley RJ, Purssel CP, Billson DR, Hutchins DA. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One. 2012;7(1):1–6.

[162] Zhang K, Zhang W, Ding X. Multi-axis additive manufacturing process for continuous fibre reinforced composite parts. Proc CIRP. 2019;85:114–20.

[163] Liparoti S, Sofia D, Romano A, Marra F, Pantani R. Fused filament deposition of PLA: the role of interlayer adhesion in the mechanical performances. Polymers (Basel). 2021;13(3):399.

[164] Sang L, Han S, Li Z, Yang X, Hou W. Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Compos Part B Eng. 2019;164(December 2018):629–39.

[165] Hu C, Qin QH. Advances in fused deposition modeling of discontinuous fiber/polymer composites. Curr Opin Solid State Mater Sci. 2020;24(5):100867.

[166] Nikzad M, Masood SH, Sbarski I. Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des. 2011;32(6):3448–56.

[167] Shofner ML, Lozano K, Rodri FJ. Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci. 2002;89:3081–90.

[168] Rahim TNAT, Abdullah AM, Md Akil H. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev. 2019;59(4):589–624.

[169] Armstrong CD, Todd N, Alsharhan AT, Bigio DI, Sochol RD. A 3D printed morphing nozzle to control fiber orientation during composite additive manufacturing. Adv Mater Technol. 2021;6(1):1–10.

[170] Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem. 2020;16:1–26.

[171] Agarwala S, Goh GL, Goh GD, Dikshit V, Yeong WY. 3D and 4D printing of polymer/CNTs-based conductive composites. 3D and 4D printing of polymer nanocomposite materials. Elsevier; 2020. p. 297–324.

[172] Joshi A, Goh JK, Goh KEJ. Polymer-based conductive composites for 3D and 4D printing of electrical circuits. 3D and 4D printing of polymer nanocomposite materials: processes, applications, and challenges. Elsevier Inc; 2019. p. 45–83.

[173] Burela RG, Kamineni IN, Harursampath D. Multifunctional polymer composites for 3D and 4D printing. 3D and 4D printing of polymer nanocomposite materials. Elsevier; 2020. p. 231–57.

[174] González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci. 2019;94:57–116.