Algebraic Geometry

Cubic symmetroids and vector bundles on a quadric surface

Cubiques symétroides et fibrés vectoriels sur une surface quadrique

Sukmoon Huh

Department of Mathematics, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746, Republic of Korea

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I 351 (2013) 557–560

ARTICLE INFO

Article history:
Received 26 April 2013
Accepted after revision 23 July 2013
Available online 2 August 2013
Presented by Claire Voisin

Abstract

We investigate the jumping conics of stable vector bundles E of rank 2 on a smooth quadric surface Q with the Chern classes $c_1 = \mathcal{O}_Q(-1, -1)$ and $c_2 = 4$ with respect to the ample line bundle $\mathcal{O}_Q(1, 1)$. As a consequence, we prove that the set of jumping conics $S(E)$ uniquely determines E and that the moduli space of such bundles is rational.

Résumé

Nous étudions les coniques de saut des fibrés vectoriels stables E de rang 2 sur une surface quadrique lisse Q de classes de Chern $c_1 = \mathcal{O}_Q(-1, -1)$ et $c_2 = 4$ relativement au fibré en droites ample $\mathcal{O}_Q(1, 1)$. Nous en déduisons que l'ensemble des coniques de saut $S(E)$ détermine E de manière unique et que l'espace de modules de ce type de fibrés est rationnel.

1. Introduction

Throughout the article, our base field is \mathbb{C}, the field of complex numbers.

Let Q be a smooth quadric in $\mathbb{P}_3 = \mathbb{P}(V)$, where V is a 4-dimensional vector space, and $\mathcal{M}(k)$ be the moduli space of stable vector bundles of rank 2 on Q with the Chern classes $c_1 = \mathcal{O}_Q(-1, -1)$ and $c_2 = k$ with respect to the ample line bundle $\mathcal{L} = \mathcal{O}_Q(1, 1)$. $\mathcal{M}(k)$ forms an open Zariski subset of the projective variety $\mathcal{M}(k)$, whose points correspond to the semi-stable sheaves on Q with the same numerical invariants. The Zariski tangent space of $\mathcal{M}(k)$ at E is naturally isomorphic to $H^1(Q, \mathcal{E}nd(E))$ [8] and so the dimension of $\mathcal{M}(k)$ is equal to $h^1(Q, \mathcal{E}nd(E)) = 4k - 5$, since E is simple. In [6], we define the jumping conics of $E \in \mathcal{M}(k)$ as points in \mathbb{P}_3^2 and prove that the set of jumping conic is a symmetric determinantal hypersurface of degree $k - 1$ in \mathbb{P}_3^2. It enables us to consider a morphism:

$$S: \mathcal{M}(k) \to |\mathcal{O}_{\mathbb{P}_3^2}(k - 1)| \simeq \mathbb{P}_N.$$

We conjecture in [6] that the general $E \in \mathcal{M}(k)$ is uniquely determined by $S(E)$ and prove that this map S is generically injective for $k \leq 3$.

In this article, we prove that the conjecture is true when $k = 4$. For $E \in \mathcal{M}(4)$, $S(E)$ is a cubic symmetroid surface, i.e. a symmetric determinantal cubic hypersurface in \mathbb{P}_3^2. In terms of short exact sequences that E admits, we can obtain the relation between the singularity of $S(E)$ and the dimension of cohomology of the restriction of E to its hyperplane section.

1 The author is supported by the Basic Science Research Program 2010-0009195 through NRF funded by MEST.

E-mail address: sukmoonh@skku.edu.
It turns out that $S(\mathcal{E})$ has exactly 4 singular points. It enables us to derive the rationality of $\mathcal{M}(4)$, which was proven in a much more general setting in [2]. Lastly, we give a brief description of $S(\mathcal{E})$ for non-general bundles of $\mathcal{M}(4)$. We will denote the dimension of the cohomology $H^i(X, \mathcal{F})$ for a coherent sheaf \mathcal{F} on X by $h^i(X, \mathcal{F})$, or simply by $h^i(\mathcal{F})$ if there is no confusion.

The work in this article has been done during my stay at the Politecnico di Torino and I deeply appreciate the hospitality and support of Prof. Malaspina. I am also deeply grateful to the anonymous referee for a number of corrections and suggestions.

2. Preliminaries

Let Q be a smooth quadric surface isomorphic to $\mathbb{P}(V_1) \times \mathbb{P}(V_2)$ for two 2-dimensional vector spaces V_1 and V_2. Then Q is embedded into $\mathbb{P}_3 = \mathbb{P}(V)$ by the Segre map, where $V = V_1 \otimes V_2$. Let us denote $f^*O_P(1) = g^*O_P(1)$ by $O_Q(a, b)$ and $E \otimes O_Q(a, b)$ by $E(a, b)$ for coherent sheaves E on Q, where f and g are the projections from Q to each factors. Then the canonical line bundle K_Q of Q is $O_Q(-2, -2)$. As a direct consequence of the Kunneth formula, we have:

$$H^i(P, O_Q(a + b)) = \begin{cases} 0, & \text{if } a = -1; \\ H^i(P, O_P(a + b)^{\oplus(a+1)}), & \text{if } a \geq 0. \end{cases}$$

Now let us denote the ample line bundle $O_D(1, 1)$ by L and let $\mathcal{M}(k)$ be the moduli space of semi-stable sheaves of rank 2 on Q with the Chern classes $c_1 = O_Q(-1, -1)$ and $c_2 = k$ with respect to L. The existence and projectivity of $\mathcal{M}(k)$ are shown in [4] and it has an open Zariski subset $\mathcal{M}(k)$ consisting of the stable vector bundles with the given numeric invariants. By Bogomolov’s inequality [8], $\mathcal{M}(k)$ is empty if $4k < c_1^2 = 2$ and so we consider only the case of $k \geq 1$. The dimension of $\mathcal{M}(k)$ can be computed to be $h^1(Q, E\text{nd}(E)) = 4k - 5$. Note that $E \cong E^*(-1, -1)$ and by the Riemann–Roch theorem [5], we have $\chi(E(m, m)) = 2m^2 + 2m + 1 - k$ for $E \in \mathcal{M}(k)$. For a hyperplane H in \mathbb{P}_3, let $C_H := Q \cap H$ be the corresponding hyperplane section on Q.

Definition 2.1. The conic $C \subset Q$ is called a jumping conic if $h^0(E|_C) \geq 1$.

Remark 2.2. Since any conic $C \subset Q$ is a hyperplane section, we define the set $S(\mathcal{E})$ of jumping conics of \mathcal{E} as a subset of \mathbb{P}_3^*. More precisely,

$$S(\mathcal{E}) := \{ H \in \mathbb{P}_3^* \mid h^0(E|_H) \geq 1 \}.$$

When C_H is smooth, it is a jumping conic if the vector bundle E splits non-generically over it.

Theorem 2.3. (See [6].) For a Hulsbergen bundle $E \in \mathcal{M}(k)$, $S(\mathcal{E})$ is a symmetric determinantal hypersurface of degree $k - 1$ in \mathbb{P}_3^* and it has a singular point at $H \in \mathbb{P}_3^*$ if $h^0(E|_H) \geq 2$.

Remark 2.4. The referee pointed out that the converse might not be true in general. Indeed, the determinant of the following matrix is singular along a line but the ideal of 2×2 minors has length 4:

$$\begin{pmatrix} t_0 & t_1 & t_3 \\ t_1 & t_0 + t_3 & t_2 \\ t_3 & t_2 & 0 \end{pmatrix}.$$

Theorem 2.3 enables us to consider a morphism $S : \mathcal{M}(k) \rightarrow |O_{P^3}(k - 1)| \cong \mathbb{P}_N$ with $N = (k + 2)^2 - 1$. In [6] and [7], the cases of $k = 2, 3$ are dealt in detail. For example, when $k = 2$, the morphism S extends to an isomorphism from $\mathcal{M}(2) \rightarrow \mathbb{P}_3$ and $\mathcal{M}(2)$ is isomorphic to $\mathbb{P}_3 \setminus Q$. In particular, $S(\mathcal{E})$ determines uniquely $E \in \mathcal{M}(2)$. A similar result also holds for $k = 3$.

3. Results

From now on, we will investigate $S(\mathcal{E})$ for $E \in \mathcal{M}(4)$, which is now a cubic symmetroid surface, i.e. a symmetric determinantal cubic surface in \mathbb{P}_3^*. Note that a nonsingular cubic surface cannot be symmetrically determinantal [3]. Since $\chi(E(1, 1)) = 1$ and E is stable, it admits an exact sequence:

$$0 \rightarrow O_Q \rightarrow E(1, 1) \rightarrow I_Z(1, 1) \rightarrow 0,$$

where Z is a zero-dimensional subscheme of Q with length 4 and $I_Z(1, 1)$ is the tensor product of the ideal sheaf of Z and $O_Q(1)$. Let us assume that Z is in general position and then we have $h^0(E(1, 1)) = 1$, which leads us to conclude that for $k = 4$, a general E is a Hulsbergen bundle. In particular, Z is uniquely determined by E. Note that $\mathbb{P} \text{ Ext}^1(Z(1, 1), O_Q) \cong \mathbb{P} H^0(O_Z)^* \cong \mathbb{P}^3$. A general point in this family of extensions corresponds to a stable vector bundle [1] and so $\mathcal{M}(4)$ is
birational to a \mathbb{P}_3-bundle over the Hilbert scheme $\mathfrak{M}^{[4]}$ of zero-dimensional subscheme of Q with length 4. It is consistent with the fact that the dimension of $\mathfrak{M}(4)$ is 11. Note that $\mathfrak{M}^{[4]}$ is a resolution of singularity of $S^4 Q$, the fourth symmetric power of Q, and in particular it is 8-dimensional [9].

Assume that Z is not contained in any hyperplane section. If $|Z \cap H| = 3$ for a hyperplane section H of \mathbb{P}^4_3, we can tensor the sequence (1) with \mathcal{O}_{C_H} to obtain:

$$0 \to \mathcal{O}_{C_H} \to \mathcal{E}(1, 1)|_{C_H} \to \mathcal{O}_{C_H}(-p) \oplus \mathcal{C}_1 \oplus \mathcal{C}_2 \oplus \mathcal{C}_3 \to 0,$$

where p is a point on C_H. The last surjection gives a surjective map $\mathcal{E}(1, 1)|_{C_H} \to \mathcal{O}_{C_H}(-p)$ and its kernel is $\mathcal{O}_{C_H}(3p)$ for degree reason. Twisting by $\mathcal{O}_{C_H}(-2p)$, we obtain:

$$0 \to \mathcal{O}_{C_H}(p) \to \mathcal{E}|_{C_H} \to \mathcal{O}_{C_H}(-3p) \to 0.$$

Since $h^0(\mathcal{E}|_{C_H}) = 2$, H is a singular point of $S(\mathcal{E})$ by Theorem 2.3 and so $S(\mathcal{E})$ has at least 4 singular points.

Proposition 3.1. For a general vector bundle \mathcal{E} in $\mathfrak{M}(4)$, there are exactly 4 singular points and 6 lines in $S(\mathcal{E})$, i.e. $S(\mathcal{E})$ is a Cayley surface.

Proof. Similarly as above, we can prove that H is a point of $S(\mathcal{E})$ if $|Z \cap H| = 2$, and not a point of $S(\mathcal{E})$ if $|Z \cap H| = 1$. Thus the intersection of $S(\mathcal{E})$ with the hyperplane containing a singular point above is the union of three distinct lines, and in particular $S(\mathcal{E})$ contains 6 lines. Let $Z' = \{p_1, \ldots, p_4\} \subset S(\mathcal{E})$ be the set of 4 singular points above and denote the line connecting p_1, p_2 by l_{ij}. For an arbitrary line $l \subset S(\mathcal{E})$ which is different from l_{ij}, let us assume that l does not intersect with l_{ij}. If $\pi : \mathbb{P}_3^3 \to \mathbb{P}_3^2$ is the projection from p_1, then the images of l and l_{ij}, $i, j \neq 1$ intersect. It implies that l and l_{ij} intersect for $i, j \neq 2$. It is impossible, since the plane containing p_2, p_3, p_4 would contain l. The case of l meeting l_{ij} can be shown impossible similarly. Thus $S(\mathcal{E})$ contains exactly the 6 lines above and in particular $S(\mathcal{E})$ is not a cone over a plane cubic curve. If $S(\mathcal{E})$ is not normal, then its singular locus would have a 1-dimensional part of degree d and multiplicity m. Its intersection with a generic hyperplane section is a plane cubic curve, and so we have $d = 1$ and $m = 2$. In other words, the singular locus of $S(\mathcal{E})$ would be a line, which is one of the 6 lines above. It is impossible, since its multiplicity must be 1, and thus $S(\mathcal{E})$ is normal. We can also easily check that $S(\mathcal{E})$ is irreducible, and so the singularities of $S(\mathcal{E})$ are rational double points. Now, without loss of generality, let us assume that $p_1 = [1, 0, 0, 0]$ and write the equation f of $S(\mathcal{E})$ by $f = t_0 f_2(t_1, t_2, t_3) + f_3(t_1, t_2, t_3)$, where f_i is a homogeneous polynomial of degree i. It is easy to check that if $p = [a_0, a_1, a_2, a_3] \in S(\mathcal{E})$ is a singular point of $S(\mathcal{E})$, then the conic $V(f_2)$ and the cubic $V(f_3)$ intersect at $[a_1, a_2, a_3]$ with multiplicity at least 2. From the irreducibility of $S(\mathcal{E})$, $V(f_2)$ and $V(f_3)$ do not share common components. So the other singular points than p_1 must be contained in the 6 lines above and, by the Bézout theorem, they must be the remaining points in Z'. Hence $S(\mathcal{E})$ contains exactly 4 singular points and 6 lines connecting them.

Remark 3.2. Considering a \mathbb{P}_2-family of hyperplanes of \mathbb{P}_3 that contains a point of Z, the intersection of \mathbb{P}_2 with $S(\mathcal{E})$ is a cubic plane curve. Since there are 3 hyperplanes in this family, that contain 3 points of Z, so the intersection of the \mathbb{P}_2-family with $S(\mathcal{E})$ is the union of three lines.

Conversely, let us consider a cubic hypersurface S_3 in \mathbb{P}^4_3 with exactly 4 singular points, say $H_1, \ldots, H_4 \subset \mathbb{P}_3$. Then H_i’s are 4 hyperplanes of \mathbb{P}^4_3 in general position. If S_3 is equal to $S(\mathcal{E})$ for some $\mathcal{E} \in \mathfrak{M}(4)$ with the exact sequence (1), then there are 3 points of Z on each H_i. The intersection of C_{H_i} with H_i, $i = 2, 3, 4$ is two points of Z and so 3 points of Z are determined. The last point is just the intersection of H_2, H_3 and H_4.

Theorem 3.3. The morphism $S : \mathfrak{M}(4) \to |\mathcal{O}_{\mathbb{P}^4_3}(3)|$ is generically injective. In other words, the set of jumping conics of $\mathcal{E} \in \mathfrak{M}(4)$ uniquely determines \mathcal{E} in general.

Proof. It is enough to check that for two different stable vector bundles \mathcal{E} and \mathcal{E}' that fit into the sequence (1) with the same Z, $S(\mathcal{E})$ and $S(\mathcal{E}')$ are different. From the previous argument, they have the same singular points. Now, \mathcal{E} and \mathcal{E}' are in the extension family $\mathcal{Ext}^1(\mathcal{I}_Z(1, 1), \mathcal{O}_Q)$, which is isomorphic to $H^1(\mathcal{I}_Z(-1, -1))^*$. From the short exact sequence $0 \to \mathcal{I}_Z(-1, -1) \to \mathcal{I}_Z \to \mathcal{O}_{C_H} \to 0$, where C_H is a smooth conic that does not intersect with Z, we have:

$$0 \to H^1(\mathcal{I}_Z)^* \to H^1(\mathcal{I}_Z(-1, -1))^* \xrightarrow{\text{res}} H^0(\mathcal{O}_{C_H})^* \to 0.$$

Here, the map ‘res’ sends \mathcal{E} to $\mathcal{E}|_{C_H}$. Note that $H^1(\mathcal{I}_Z)^*$ is a corank 1-subspace of $H^1(\mathcal{I}_Z(-1, -1))^*$. If we choose H properly so that the image of $H^1(\mathcal{I}_Z)^*$ contains \mathcal{E}, but not \mathcal{E}', then their splitting will be different. To be precise, we have $\mathcal{E}|_{C_H} = \mathcal{O}_{C_H}(-2p) \oplus \mathcal{O}_{C_H}$ and $\mathcal{E}'|_{C_H} = \mathcal{O}_{C_H}(-p)^{\oplus 2}$, where p is a point on C_H. In particular, $S(\mathcal{E})$ and $S(\mathcal{E}')$ are different.

In fact, the argument after Proposition 3.1 can be applied to any symmetric determinantal cubic hypersurface with 4 singular points; we obtain the following:
Corollary 3.4. \(M(4) \) is birational to the variety of the symmetric determinantal cubic hypersurfaces \(\mathbb{P}^3 \) with 4 singular points whose corresponding hyperplanes in \(P_3 \) satisfy the property that any three hyperplanes among them have the intersection point on \(Q \).

Proof. It is known in [3] that cubic surfaces with 4 rational double points are projectively isomorphic to the Cayley 4-nodal cubic surface, which is a cubic surface with 4 nodal points defined by:

\[
t_0t_1t_2 + t_0t_1t_3 + t_0t_2t_3 + t_1t_2t_3 = \det \begin{pmatrix} t_0 & 0 & t_2 \\ 0 & t_1 & -t_2 \\ -t_3 & t_2 & t_3 \end{pmatrix},
\]

which has 4 nodal points \([1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] \) and \([0, 0, 0, 1] \). It means that we have a 3-dimensional family of cubic symmetroids for each fixed 4 points as singularities. Here \(3 = \text{dim} \text{PGL}(4) - \text{dim}(\mathbb{P}^3) \). So the assertion follows automatically from the previous theorem, because the dimension of the variety of the cubic symmetroids in the assertion is \(11 = \text{dim}(\text{PGL}(4)) - 4 \), which is the dimension of \(M(4) \). \(\square \)

Corollary 3.5. (See Theorem 4.7 in [2].) \(M(4) \) is rational.

Proof. Let us prove that the variety \(Y \) of the cubic symmetroids with 4 singular points whose corresponding hyperplanes have 4 intersection points on \(Q \) is rational. First of all, the variety \(X \) of cubic symmetroids with 4 singular points generically has a \(P_3 \)-bundle structure over \(\mathbb{P}^3 \) and it is transitively acted by \(\text{PGL}(4) \). Thus \(X \) is rational and we have a dominant map \(\pi : X \rightarrow \mathbb{P}^3 \) to a rational variety \(\mathbb{P}^3 \). Since \(Y \) is a subvariety of \(X \) that is generically a \(P_3 \)-bundle over \(\mathbb{P}^3 \) from \(\pi \) and \(\mathbb{P}^3 \) is rational, so \(Y \) is a rational variety. \(\square \)

Now let us consider a special case when \(Z \) is coplanar. In this case, \(S(\mathcal{E}) \) is a cubic surface with a unique singular point corresponding to the hyperplane containing \(Z \), say \(H \). Note that \(h^0(\mathcal{E}(1, 1)) = 2 \). Then there is a 1-dimensional family of zero-dimensional subscheme \(Z \) for which \(\mathcal{E} \) fits into the sequence \((1)\). Such \(Z \) should be contained in \(C_H \). For each \(Z \), we can consider the \(P_1 \)-family of hyperplanes that contain two points of \(Z \), and this corresponds to a line contained in \(S(\mathcal{E}) \). So we can find 6 lines contained in \(S(\mathcal{E}) \) out of one such \(Z \). As we vary \(Z \) in the 1-dimensional family, we have infinitely many lines through \(H \) contained in \(S(\mathcal{E}) \). Thus we obtain the following statement:

Proposition 3.6. For the vector bundle \(\mathcal{E} \) fitted into the sequence \((1)\) with coplanar \(Z \), \(S(\mathcal{E}) \) is a cone over a cubic curve in \(\mathbb{P}^2 \) with the vertex point contained in the hyperplane containing \(Z \).

References

[1] F. Catanese, Footnotes to a theorem of I. Reider, in: Algebraic Geometry, L’Aquila, 1988, in: Lect. Notes Math., vol. 1417, Springer, Berlin, 1990, pp. 67–74.
[2] L. Costa, R.M. Miro-Roig, Rationality of moduli spaces of vector bundles on rational surfaces, Nagoya Math. J. 162 (2002) 43–69.
[3] I. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, UK, 2012, xii+639 pp.
[4] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2) 106 (1) (1977) 45–60.
[5] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977.
[6] S. Huh, Jumping conics on a smooth quadric in \(P_3 \), Ann. Mat. Pura Appl. (4) 190 (2) (2011) 195–208.
[7] S. Huh, Moduli of stable sheaves on a smooth quadric and a Brill–Noether locus, J. Pure Appl. Algebra 215 (9) (2011) 2099–2105.
[8] J. Le Potier, Lectures on Vector Bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997, Translated by A. Maciocia.
[9] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999.