Calibrating the Amati relation for Gamma Ray Bursts using measurements from Cosmic Chronometers

Darshan Kumar∗1, Nisha Rani†2, Deepak Jain‡3, Shobhit Mahajan§1, and Amitabha Mukherjee¶1

1Department of Physics and Astrophysics, University of Delhi, Delhi-110007 India.
2Miranda House, University of Delhi, University Enclave, Delhi-110007 India.
3Deen Dayal Upadhyaya College, University of Delhi, Dwarka, New Delhi-110078 India.

December 13, 2022

Abstract

Gamma-Ray Bursts (GRBs) can be used as a tool to probe the universe at high redshift. In this regard, the Amati relation which correlates the isotropic equivalent radiant energy (E_{iso}) and the spectral peak energy in the GRB rest frame (E_p) allows us to use GRBs as distance indicators. However, the circularity issue that arises due to the lack of GRBs at low redshift has motivated several authors to come up with model-independent approaches to investigate this relation. For this same purpose, we use Hubble parameter measurements obtained from the differential age of the galaxies to circumvent the circularity problem. In this work, we apply a non-parametric approach namely Gaussian Process on the observational Hubble data (without assuming any cosmological model or parameters) to determine the luminosity distances needed to calculate E_{iso}. We find that the best fit values of the Amati relation parameters are in concordance with the earlier works.

1 Introduction

Accelerated expansion of the universe is fairly well established now [1, 2, 3, 4]. The simplest model consistent with the observations is the spatially flat ΛCDM model, according to which universe is mostly made of dark energy and dark matter with the baryonic matter being a small fraction. The nature of the dark sector is still unknown and hence it becomes important to analyse the model with different observational data. For the same reason, people have been trying to explore new probes in cosmology. GRB is one such tool that has the potential to explore the universe even at large redshift.

Gamma Ray Bursts (GRBs) are very high energy jets (of the order of tens of keV to GeV) and are believed to form from the collapse of massive spinning stars [5]. On the basis of the burst duration, GRBs are classified in two categories: Short GRBs and Long GRBs. The short GRBs usually last for less than 2 seconds while the long GRBs can last from 2 seconds to several minutes [6]. Though the exact mechanism behind these high energy explosions is not very clear, it is believed that the short and long GRBs form from the mergers of the binary neutron stars and core collapse of supernovae respectively [7, 8].

GRBs have been observed up to very high redshifts ($z \sim 9$). Furthermore, the emission is unaffected by the intervening dust. Due to these reasons, GRBs can be considered a good candidate to study the universe

∗darshanbeniwal11@gmail.com
†nisharani3165@gmail.com
‡djain@ddu.du.ac.in
§sm@physics.du.ac.in
¶am@physics.du.ac.in
at high redshifts. Keeping this in mind, several energy-luminosity correlations for GRBs have been proposed in the literature. The earliest correlation discovered by Amati et al., is known as the “Amati Relation” [9, 10, 11, 12]. Other relations like the “Ghirlanda relation”, “Yonetoku relation” and “Liang-Zhang relation” were also proposed later that could make GRBs more suitable for standard candles [13, 14, 15, 16]. The Ghirlanda relation correlates the collimation-corrected energy of the bursts (E_p) and the source frame peak energy (E_p), i.e., $E_p \propto E_p^{0.7}$. Yonetoku relation is the correlation between the source frame peak energy (E_p) and the isotropic luminosity while according to the Liang-Zhang relation, the isotropic gamma-ray energy (E_{γ}^{iso}) depends on E_p and the rest frame break time of the optical afterglow light curves (t_b). It is believed that the tightest out of all these is the Ghirlanda relation. Liang-Zhang correlation doesn’t have any theoretical explanation, it relies only on the phenomenological considerations unlike the Ghirlanda one. On the other hand, it has been found that the Yonetoku relation weakly depends on the redshift which may be responsible for dispersion in the correlation [17]. Though Ghirlanda is the tightest relation its use is limited. This is because, to use the Ghirlanda relation, observations of the jet break is important which is fairly difficult and hence the sample for testing this relation is very small. On the other hand, Swift and Fermi detector observations have confirmed the Amati relation for the long GRBs, making it a widely used relation.

The Amati relation correlates the isotropic equivalent radiant energy (E_{iso}) with the spectral peak energy in the GRB rest frame (E_p). Isotropic equivalent radiant energy is related to the luminosity distance, ($E_{iso} = 4\pi d_L^2 S(1+z)^{-1}$). Therefore, in order to calculate E_{iso} from the observed GRB prompt fluence (S), we need to first estimate the luminosity distance. However, due to the sparsity of GRBs at low redshift, one has to assume a cosmological model. This means that the Amati relation is calibrated by assuming a cosmological model and a “Circularity Problem” is introduced if the same data is used to constrain the cosmological parameters. Apart from this, the Amati relation has also faced the extrinsic scatter problem. However with better data, the scatter in the data have reduced and the relation has become more realistic.

To overcome the circularity issue in the Amati relation, various methods have been proposed in the literature. Some authors have used the GRB data with the $H(z)$ and BAO data to determine the cosmological and GRB correlation parameters simultaneously [18, 19]. However in another approach, several ancillary probes have been used to determine the luminosity distance in a model independent method. For example, authors have used Type Ia SNe data to calibrate the distance modulus of GRBs in [17, 20, 21, 22]. Observational Hubble data have been used in literature to calibrate the Amati relation and approximate the cosmic evolution through a Bezier parametric curve [18, 24, 25, 26]. In a recent work, the angular diameter distances from galaxy clusters have been used to calibrate the Amati relation at low redshifts [27]. In a similar fashion, without making use of any cosmological model, we calibrate the Amati relation at the low redshifts using the $H(z)$ data obtained from the differential age of galaxies. Our work is different from earlier work in the sense that we have not assumed any parametric form or any cosmological assumption to determine the luminosity distance from the $H(z)$ data.

The paper is organized as follows. We describe the data set and our methodology in Section 2 and Section 3 respectively. Results are discussed in Section 4. Finally in Section 5, we discuss our results and present some conclusions.

2 Data set

2.1 GRB data

We used GRB data having 220 data points (referred as A220) in the redshift range, $0.0331 \leq z \leq 8.20$. This data is consolidated in literature (Tables 7 and 8 of ref. [28]). In the data, corresponding to each sample source, the name of the GRB, its redshift, spectral peak energy in the rest frame (E_p), and measurement of the bolometric fluence (S_{bol}) calculated in the standard rest-frame energy band, i.e. $1-10^4$ keV along with 1σ confidence level are mentioned. A220 is the union of two samples, i.e A118 ($0.3399 \leq z \leq 8.2$) and A102 ($0.0331 \leq z \leq 6.32$). The A118 data that has 118 long GRBs is further composed of two subsamples, i.e. 93 GRBs and 25 GRBs, collected from [29] and [30] respectively. A102 consist of 102 long GRBs taken from [18, 29].
2.2 Observational Hubble Data

To estimate the luminosity distance of the GRBs, we use Hubble data. The Hubble parameter can be obtained by integrating the luminosity distance. Other than this \(H(z) \) can also be obtained (i) from the differential ages of passively evolving galaxies, also referred as ‘Cosmic Chronometers (CC)’ \([31, 32]\) (ii) measurements of the peaks of Baryons Acoustic Oscillations (BAO) \([3, 33, 34, 35, 36]\) and (iii) redshift drift \([37, 38]\).

In FLRW metric, \(H(z) \) can be expressed as

\[
H(z) = -\frac{1}{(1 + z)} \frac{dz}{dt}
\]

(1)

It becomes essential to take proper care when using the differential age approach to estimate \(H(z) \). With the spectroscopy of extragalactic objects, redshift measurement is possible upto an accuracy of \(\delta z / z < 10^{-3} \) but measurement of \(dt \) is crucial. To estimate \(dt \) various methods like full spectrum fitting, absorption feature analysis and calibration of specific spectroscopic features are used \([39, 40, 41]\). One of the important issue while using this approach is the degeneracy between the age-metallicity and age-star formation history. To overcome this, passively evolving red galaxies are used. It is assumed that the star formation in such galaxies has been quenched and hence their spectra are dominated by the older stellar population \([31]\). The measurement of differential age minimizes the systematics that could be there if we measure the absolute age. Measurement of \(H(z) \) in this way does not rely on any cosmological model and is purely spectroscopic, making it a strong candidate to check the viability of any cosmological model and assumption. Recently, Mağan et. al (2018) compiled 31 datapoints measurements of \(H(z) \) using differential ages of passively evolving galaxies \([42]\). For our work, we have used 32 Hubble measurements that includes 31 from the Mağan et. al (2018) compilation and one additional data point compiled by Borghi et al. (2022) at \(z = 0.75 \) \([43]\). The redshift range of the data is \(0.06 \leq z \leq 1.965 \).

3 Methodology

3.1 Gaussian Process

In this work, we need a model-independent estimate of luminosity distance. For this, we first estimate the comoving distance from the Hubble parameter measurements in the redshift range \(0 < z < 2 \). We apply Gaussian Process (GP) to obtain a continuous smooth curve of \(H(z) \) and after integrating the \(H(z) \) values we get the corresponding comoving distances (\(dC \)). GP is a well known hyper-parametric regression method which aims to reconstruct the shapes of physical functions from data without assuming a parametrized form of the function \([44]\). GP has been extensively used and because of its flexibility and simplicity, it is very useful for functional reconstructions. For example, from a set of measurements, we have \(H(z) \) values and the uncertainty, i.e. \(H(z) \pm \sigma_H \), where the value of \(H(z) \) follows a Gaussian distribution at every point of \(z_i \). Suppose, at an unknown point \(z' \), we want to estimate the value of the function. For this, we have a covariance or kernel function \(k(z, z') \) which indicates that the value of function at \(z \) is not independent of its value at \(z' \) but instead the values are correlated by the kernel function.

Gaussian Process is a non-parametric technique because it only depend on the choice of the covariance function not on the model parameters or any functional form. The covariance function often solely depends on the separation between the \(|z - z'| \)-points. In this analysis, we consider the Squared Exponential or Gaussian kernel function \([41, 45]\) since this function has the characteristic of being infinitely differentiable, which is important for reconstructing a derivative of a function. The Squared Exponential kernel function is

\[
k(z, z') = \sigma_f^2 \exp \left(-\frac{(z - z')^2}{2l^2} \right)
\]

(2)
where σ_f and ℓ are the GP hyperparameters which basically regulate the correlation-strength of the function value and the length scale of the correlation in z respectively. Using the observed data, one can estimate the value of σ_f and ℓ parameters by minimizing a log marginal likelihood function. For maximization, we use flat priors for the σ_f and ℓ parameters of kernel function.

Once we get the reconstructed $H(z)$ in the required redshift range, $0 < z < 2$, we use the Simpson $\frac{3}{8}$ method for numerical integration of Eq. [3] to obtain the continuous values of d_C in the same redshift range.

$$d_C(z) = \int_0^z \frac{c dz'}{H(z')}$$

where, c is speed of light.

Finally, to obtain luminosity distance we use $d_L = (1 + z)d_C$. The corresponding uncertainties are obtained by propagating the error obtained in d_C using Gaussian Process as shown in Fig. [1]. The d_L obtained by this method is then used with S_{bolo} given in the GRB data to calculate E_{iso}. It is important to note that only 118 data points lying in the redshift range $0 < z < 2$ of A220 data are considered for this purpose as the Hubble data we have used and hence the luminosity data exists only up to this redshift.

3.2 Parameter Estimation

For this analysis, we use a linear regression relation using the logarithms of E_{iso} and E_P. This relation is generally referred to as the Amati relation which is basically a correlation between isotropic equivalent energy (E_{iso}) and spectrum peak energy in the comoving frame (E_P). The Amati relation can be parametrized as

$$\log \left[\frac{E_P}{1 \text{ keV}} \right] = m \log \left[\frac{E_{\text{iso}}}{1 \text{ erg}} \right] + c$$

where,

$$E_{\text{iso}} = \frac{4\pi d_L^2 S_{\text{bolo}}}{(1 + z)}$$

Here S_{bolo} is the bolometric fluence and d_L is luminosity distance which we estimate from the comoving distance as $d_L = d_C(1 + z)$. The factor $(1 + z)$ accounts for the cosmological time dilation effect. The spectrum peak energy, i.e., E_P in the observer frame is given by

$$E_P = E_{P, \text{obs}} (1 + z)$$

Defining,

$$y \equiv \log \left[\frac{E_P}{1 \text{ keV}} \right], \quad x \equiv \log \left[\frac{E_{\text{iso}}}{1 \text{ erg}} \right]$$

We can rewrite Eq. [4] as

$$y = mx + c$$

And the associated uncertainties with y and x are given as

$$\sigma_y = \frac{1}{\ln(10)} \left(\frac{\sigma_{E_P}}{E_P} \right), \quad \sigma_x = \frac{1}{\ln(10)} \left(\frac{\sigma_{E_{\text{iso}}}}{E_{\text{iso}}} \right)$$
In the Amati relation mentioned above, we have two parameters namely the slope \((m)\) and the intercept \((c)\). These parameters can be estimated by directly fitting Eq. [8] with the observed GRBs data. In this analysis, these parameters are determined by maximizing the likelihood \((\mathcal{L})\) defined as

\[
-2\ln \mathcal{L} = \sum_i \ln 2\pi \sigma_i^2 + \sum_i \frac{[y_i - (mx_i + c)]^2}{\sigma_i^2}
\]

(10)

where \(\sigma_i^2 = \sigma_y^2 + m^2 \sigma_x^2 + \sigma_s^2\) and \(\sigma_s\) denotes the intrinsic scatter which specifies the tightness of the Amati relation.

4 Results

Our aim is to constrain the Amati relation parameters \((m, c)\) and the intrinsic scatter \((\sigma_s)\) by maximising the likelihood. For this we require \(E_P\) and \(E_{\text{iso}}\), where \(E_P\) can be obtained directly from the GRB data. But to estimate \(E_{\text{iso}}\), we need to determine luminosity distance \((d_L)\) corresponding to the redshift of GRBs. We used a non-parametric method (Gaussian Process) to reconstruct luminosity distance from the observational Hubble data. The reconstructed \(d_L\) vs \(z\) curve is shown in Fig. [1]. The red dashed curve represents the reconstructed \(d_L\) line while the dark and light grey colors are 1\(\sigma\) and 2\(\sigma\) confidence regions respectively. Black line shows variation of the luminosity distance with redshift for a flat \(\Lambda\)CDM model with \(\Omega_{m0} = 0.3\).

![Figure 1: Red dashed line indicates the reconstructed \(d_L\) versus \(z\) curve and the black line is for a flat \(\Lambda\)CDM model with \(\Omega_{m0} = 0.3\). Bands in dark and light grey color show the 1\(\sigma\) and 2\(\sigma\) confidence regions respectively. The luminosity distance curve for a flat \(\Lambda\)CDM model lies well within the 68\% confidence region of the reconstructed \(d_L\) estimated from Hubble parameter measurements.](image-url)
The best fit values of m, c and σ_s with 68% confidence level obtained using GRBs dataset.

As stated earlier, the reconstructed d_L values are used to estimate the E_{iso} which are further used in Eq. [10] along with the spectral peak energy to constrain the Amati relation parameters and the intrinsic scatter. The 68%, 95% and 99% contours of m, c and σ_s are displayed in Fig. [2]. The contours have been produced using the emcee package in Python.

Parameters	Galaxy cluster [27]	$H(z)$, our results
m	$0.44^{+0.07}_{-0.09}$	$0.499^{+0.026}_{-0.026}$
c	$-20.10^{+4.62}_{-3.84}$	$-23.545^{+1.373}_{-1.375}$
σ_s	$0.45^{+0.091}_{-0.066}$	$0.317^{+0.016}_{-0.015}$

Table 1: The best fit values of m, c and σ_s with 68% confidence level obtained using GRBs dataset.

Figure 2: 68%, 95% and 99% contours of the Amati relation parameter, i.e. m, c and σ_s for the subset of A220 GRB data upto $z < 2$.

5 Conclusions and Discussions

In order to alleviate the circularity problem, it has been proposed that the Type Ia SNe data available in redshift range as GRBs can be used to calibrate luminosity correlations of GRBs [21, 46]. It is assumed that the objects at same redshift should have the same luminosity distance in any cosmology hence the luminosity distance of the Type Ia SNe can be assigned to the GRBs existing at the same redshift or various model independent methods can also be used to obtain d_L vs z plot. But the lack of Type Ia SNe beyond $z \sim 2$ makes it hard to calibrate the correlation at high redshift. One can only calibrate the relation for low redshift GRBs and extend it to high redshift. In the process of doing so, one has to make an assumption that the
GRBs correlation is not evolving with redshift. As most of the GRBs are available at the high redshift, it becomes crucial to test this hypothesis. For this reason, cosmologists have been trying to test this relation with various data sets and methods.

L. Amati et al. proposed a novel technique to determine d_L from the $H(z)$ data in a model independent way. They approximated the Hubble function corresponding to the OHD data points using a Bezier parametric curve obtained from a linear combination of Bernstein basis polynomials [18]. This approach was further used in literature along with the enlarged Hubble data generated using various machine learning tools and BAO data to investigate the correlation [47, 48]. In a recent work, a model independent approach has been used to constrain the Amati relation parameters and the intrinsic scatter [27]. The authors used a non-parametric technique on the Galaxy cluster data to obtain d_A to the GRBs redshift which is further used to determine d_L assuming CDDR to be valid. Recently, N. Liang et al. (2022) calibrated the Amati relation of GRB using Gaussian Process with the Type Ia SNe data. They obtain GRB Hubble diagram with the A219 and A118 samples of GRB and used it to test ΛCDM and ωCDM models [23].

In this work, we use a non-parametric technique (Gaussian Process) to obtain the d_L as a function of z from the Hubble data having 32 data points of Hubble parameter obtained from the differential age of the galaxies in the redshift range $0.0 < z < 2.0$. We used this luminosity distance and the bolometric fluence s_{bol}, given in the GRB data, to calculate the bolometric isotropic equivalent radiant energy of GRBs (E_{iso}) up to $z \leq 2$. Further, the spectral peak energy (E_p) of the GRBs along with the E_{iso} is used to put constraints on the Amati relation parameters and the intrinsic scatter. We believe that our work is advantageous over the earlier works for the following reasons:

- We use $H(z)$ data obtained from the differential age of galaxies that does not rely on any cosmological assumption other than homogeneity and isotropy. In earlier work, a functional form of $H(z)$ (Bezier Polynomial) was used to obtain d_L from $H(z)$ data. This method was applied to calibrate the Amati relation. However, in our work, we obtained d_L using a non-parametric technique Gaussian Process.

- Recently N. Liang et al. used GP with Type Ia SNe data till redshift $z < 1.4$ [23] and G. Govindaraj et al. with Galaxy cluster data up to $z < 0.9$ [27], to calibrate the Amati relation. In the latter, authors have to assume that the Cosmic Distance Duality Relation (CDDR) is valid to get the luminosity distance from the d_A obtained from Galaxy cluster data. It is important to note that we do not make any such cosmological assumption in our work making our data as well as work purely model independent. Also our data is in redshift range $0 \leq z \leq 2$ making it possible to test the validity of correlation up to comparatively higher redshift which is very crucial as most of the GRBs exist at high redshift. Another point to note is that by using this method, the errors in the parameters are smaller than the errors obtained by using the Galaxy Cluster data method as can be seen from Table 1.

Fig. [1] shows the variation of d_L with redshift obtained on application of the Gaussian Process on the $H(z)$ data. This plot provides us the d_L values at z corresponding to the GRBs data up to $z \sim 2$. The 1σ, 2σ and 3σ contours of the Amati relation parameters and intrinsic scatter along with their best fit values are shown in Fig. [2]. We found that our results are in good concordance with the recent work in which authors have used galaxy cluster data to constrain the Amati relation parameters (See Table 1).

The aforementioned evolutionary effects in GRB correlations is still under debate and several groups have been investigating the relation with different technique and data [49, 50, 51, 52, 53]. Lin et al. reported reasonable evidence of evolution with redshift for four relations and Wang et al. also found the same result for Amati relation [54, 55]. However some authors claimed that there is no redshift evolution in the Amati relation [28, 56, 57]. As a result, it becomes important to further examine the GRB relation in order to consider them as standard candles. For that reason, the Space-based multiband astronomical Variable Objects Monitor (SVOM), a Sino-French mission which is expected to be launched in the middle of the 2023 and is intended to study Gamma-Ray Burst (GRB) has great importance [58]. Another space mission, Transient High Energy Sky and Early universe Surveyor (THESEUS) is planned to be launched in 2032 [59]. It aims to exploit the high redshift Gamma Ray Bursts in order to explore the early universe. In the light...
of these next generation missions, it is expected that we would have data that could provide better insight on the use of GRBs as standard Candles.

Acknowledgements

The authors (NR and DK) acknowledge the facilities provided by the IUCAA Centre for Astronomy Research and Development (ICARD), University of Delhi. Authors would also like to thank Akshay Rana for the useful discussion. DK is supported by an INSPIRE Fellowship under the reference number: IF180293 [SRF], DST India. In this work some of the figures were created with corner [60], numpy [61] and matplotlib [62] Python software packages and to estimate parameters we used the publicly available MCMC algorithm emcee [63].

References

[1] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ 116 (1998) 1009 [astro-ph/9805201].

[2] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, ApJ 517 (1999) 565 [astro-ph/9812133].

[3] D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, R. C. Nichol et al., Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, ApJ 633 (2005) 560 [astro-ph/0501171].

[4] M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik et al., Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501.

[5] P. Kumar and B. Zhang, The physics of gamma-ray bursts & relativistic jets, Phys. Rep. 561 (2015) 1 [1410.0679].

[6] C. Kouveliotou, C. A. Meegan, G. J. Fishman, N. P. Bhat, M. S. Briggs, T. M. Koshut et al., Identification of Two Classes of Gamma-Ray Bursts, ApJ 413 (1993) L101.

[7] E. Nakar, Short-hard gamma-ray bursts, Phys. Rept. 442 (2007) 166 [astro-ph/0701748].

[8] S. E. Woosley and J. S. Bloom, The Supernova Gamma-Ray Burst Connection, ARA&A 44 (2006) 507 [astro-ph/0609142].

[9] L. Amati, F. Frontera, M. Tavani, J. J. M. in’t Zand, A. Antonelli, E. Costa et al., Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts, A&A 390 (2002) 81 [astro-ph/0205230].

[10] L. Amati, The $E_{p,1} - E_{iso}$ correlation in gamma-ray bursts: updated observational status, re-analysis and main implications, MNRAS 372 (2006) 233 [astro-ph/0601553].

[11] L. Amati, C. Guidorzi, F. Frontera, M. Della Valle, F. Finelli, R. Landi et al., Measuring the cosmological parameters with the $E_{p,1} - E_{iso}$ correlation of gamma-ray bursts, MNRAS 391 (2008) 577 [0805.0377].

[12] L. Amati, F. Frontera and C. Guidorzi, Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations, A&A 508 (2009) 173 [0907.0384].

[13] G. Ghirlanda, G. Ghisellini and D. Lazzati, The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νF_ν Spectrum, ApJ 616 (2004) 331 [astro-ph/0405602].
D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A. K. Inoue and K. Ioka, Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation, ApJ 609 (2004) 935 [astro-ph/0309217].

G. Ghirlanda, L. Nava and G. Ghisellini, Spectral-luminosity relation within individual Fermi gamma rays bursts, A&A 511 (2010) A43 [0908.2807].

E. Liang and B. Zhang, Model-independent Multivariable Gamma-Ray Burst Luminosity Indicator and Its Possible Cosmological Implications, ApJ 633 (2005) 611 [astro-ph/0504404].

D. Yonetoku, T. Murakami, R. Tsutsui, T. Nakamura, Y. Morihara and K. Takahashi, Possible Origins of Dispersion of the Peak Energy-Brightness Correlations of Gamma-Ray Bursts, PASJ 62 (2010) 1495 [1201.2745].

L. Amati, R. D’Agostino, O. Luongo, M. Muccino and M. Tantalo, Addressing the circularity problem in the E_p-E_{iso} correlation of gamma-ray bursts, MNRAS 486 (2019) L46 [1811.08934].

N. Khadka and B. Ratra, Constraints on cosmological parameters from gamma-ray burst peak photon energy and bolometric fluence measurements and other data, MNRAS 499 (2020) 391 [2007.13907].

Y. Liu, F. Chen, N. Liang, Z. Yuan, H. Yu and P. Wu, The Improved Amati Correlations from Gaussian Copula, ApJ 931 (2022) 50 [2203.03178].

N. Liang, W. K. Xiao, Y. Liu and S. N. Zhang, A Cosmology-Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram, ApJ 685 (2008) 354 [0802.4262].

A. Montiel, J. I. Cabrera and J. C. Hidalgo, Improving sampling and calibration of gamma-ray bursts as distance indicators, MNRAS 501 (2021) 3515 [2003.03387].

M. Muccino, O. Luongo and D. Jain, Constraints on the transition redshift from the calibrated Gamma-ray Burst E_p-E_{iso} correlation, arXiv e-prints (2022) arXiv:2208.13700 [2208.13700].

G. Govindaraj and S. Desai, Low redshift calibration of the Amati relation using galaxy clusters, J. Cosmology Astropart. Phys. 2022 (2022) 069 [2208.00895].

N. Khadka, O. Luongo, M. Muccino and B. Ratra, Do gamma-ray burst measurements provide a useful test of cosmological models?, J. Cosmology Astropart. Phys. 2021 (2021) 042 [2105.12692].

J. S. Wang, F. Y. Wang, K. S. Cheng and Z. G. Dai, Measuring dark energy with the E_{iso} - E_p correlation of gamma-ray bursts using model-independent methods, A&A 585 (2016) A68 [1509.08558].

F. Fana Dirirsa, S. Razzaque, F. Piron, M. Arimoto, M. Axelsson, D. Kocevski et al., Spectral Analysis of Fermi-LAT Gamma-Ray Bursts with Known Redshift and their Potential Use as Cosmological Standard Candles, ApJ 887 (2019) 13 [1910.07009].

R. Jimenez, L. Verde, T. Treu and D. Stern, Constraints on the Equation of State of Dark Energy and the Hubble Constant from Stellar Ages and the Cosmic Microwave Background, ApJ 593 (2003) 622 [astro-ph/0302560].
[32] J. Simon, L. Verde and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71 (2005) 123001 [astro-ph/0412269].

[33] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope et al., Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey, MNRAS 381 (2007) 1053 [0705.3323].

[34] E. Gaztañaga, A. Cabré and L. Hui, Clustering of luminous red galaxies - IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of $H(z)$, MNRAS 399 (2009) 1663 [0807.3551].

[35] B. Bassett and R. Hlozek, Baryon acoustic oscillations, in Dark Energy: Observational and Theoretical Approaches, P. Ruiz-Lapuente, ed., p. 246, (2010).

[36] N. Benitez, E. Gaztañaga, R. Miquel, F. Castander, M. Moles, M. Crocce et al., Measuring Baryon Acoustic Oscillations Along the Line of Sight with Photometric Redshifts: The PAU Survey, ApJ 691 (2009) 241 [0807.0535].

[37] A. Sandage, The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes., ApJ 136 (1962) 319.

[38] G. C. McVittie, Appendix to The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes., ApJ 136 (1962) 334.

[39] G. Worthey, Comprehensive Stellar Population Models and the Disentanglement of Age and Metallicity Effects, ApJS 95 (1994) 107.

[40] D. Thomas, C. Maraston and J. Johansson, Flux-calibrated stellar population models of Lick absorption-line indices with variable element abundance ratios, MNRAS 412 (2011) 2183 [1010.4569].

[41] M. Moresco, A. Cimatti, R. Jimenez, L. Pozzetti, G. Zamorani, M. Bolzonella et al., Improved constraints on the expansion rate of the Universe up to $z \sim 1.1$ from the spectroscopic evolution of cosmic chronometers, J. Cosmology Astropart. Phys. 08 (2012) 006 [1201.3609].

[42] J. Magaña, M. H. Amante, M. A. Garcia-Aspeitia and V. Motta, The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type Ia supernova data, MNRAS 476 (2018) 1036 [1706.09848].

[43] N. Borghi, M. Moresco and A. Cimatti, Toward a Better Understanding of Cosmic Chronometers: A New Measurement of $H(z)$ at $z \sim 0.7$, ApJ 928 (2022) L4 [2110.04304].

[44] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, 2006.

[45] E. Ó Colgáin and M. M. Sheikh-Jabbari, Elucidating cosmological model dependence with H_0, European Physical Journal C 81 (2021) 892.

[46] V. Vitagliano, J.-Q. Xia, S. Liberati and M. Viel, High-redshift cosmography, J. Cosmology Astropart. Phys. 2010 (2010) 005 [0911.1249].

[47] O. Luongo and M. Muccino, Model-independent calibrations of gamma-ray bursts using machine learning, MNRAS 503 (2021) 4581 [2011.13590].

[48] O. Luongo and M. Muccino, Intermediate redshift calibration of gamma-ray bursts and cosmic constraints in non-flat cosmology, MNRAS 518 (2023) 2247 [2207.00440].

[49] L.-X. Li, Variation of the Amati relation with cosmological redshift: a selection effect or an evolution effect?, MNRAS 379 (2007) L55 [0704.3128].

[50] S. Basilakos and L. Perivolaropoulos, Testing gamma-ray bursts as standard candles, MNRAS 391 (2008) 411 [0805.0875].
[51] G. Ghirlanda, L. Nava, G. Ghisellini, C. Firmani and J. I. Cabrera, *The E_{peak}-E_{iso} plane of long gamma-ray bursts and selection effects*, MNRAS 387 (2008) 319 [0804.1675].

[52] R. Tsutsui, T. Nakamura, D. Yonetoku, T. Murakami, S. Tanabe, Y. Kodama et al., *Constraints on w_0 and w_a of dark energy from high-redshift gamma-ray bursts*, MNRAS 394 (2009) L31 [0807.2911].

[53] F.-Y. Wang, S. Qi and Z.-G. Dai, *The updated luminosity correlations of gamma-ray bursts and cosmological implications*, MNRAS 415 (2011) 3423 [1105.0046].

[54] H.-N. Lin, X. Li and Z. Chang, *Model-independent distance calibration of high-redshift gamma-ray bursts and constrain on the ΛCDM model*, MNRAS 455 (2016) 2131 [1507.06662].

[55] G.-J. Wang, H. Yu, Z.-X. Li, J.-Q. Xia and Z.-H. Zhu, *Evolutions and Calibrations of Long Gamma-Ray-burst Luminosity Correlations Revisited*, ApJ 836 (2017) 103 [1701.06102].

[56] M. Demianski, E. Piedipalumbo, D. Sawant and L. Amati, *Cosmology with gamma-ray bursts. I. The Hubble diagram through the calibrated $E_{\text{p,1}}$-E_{iso} correlation*, A&A 598 (2017) A112 [1610.00854].

[57] Y. Dai, X.-G. Zheng, Z.-X. Li, H. Gao and Z.-H. Zhu, *Redshift evolution of the Amati relation: Calibrated results from the Hubble diagram of quasars at high redshifts*, A&A 651 (2021) L8 [2111.05544].

[58] M. G. Bernardini, B. Cordier and J. Wei, *The svom mission*, Galaxies 9 (2021) 4.

[59] L. Amati, *The Transient High-Energy Sky and Early Universe Surveyor (THESEUS)*, in *The Extragalactic Explosive Universe: the New Era of Transient Surveys and Data-Driven Discovery*, p. 1, Oct., 2019, 1907.00616, DOI.

[60] D. Foreman-Mackey, D. W. Hogg, D. Lang and J. Goodman, *emcee: The MCMC Hammer*, 1202.3665.

[61] T. E. Oliphant, *A guide to NumPy*, vol. 1. Trelgol Publishing USA, 2006.

[62] J. D. Hunter, *Matplotlib: A 2d graphics environment*, Comput. Sci. Eng. 9 (2007) 90.

[63] D. Foreman-Mackey, *corner.py: Scatterplot matrices in Python*, JOSS 1 (2016) 24.