A generalized Alon-Boppana bound and weak Ramanujan graphs

Fan Chung
Department of Mathematics
University of California, San Diego
La Jolla, CA, U.S.A.
fan@ucsd.edu

Submitted: Feb 10, 2016; Accepted: Jun 24, 2016; Published: Jul 8, 2016
Mathematics Subject Classifications: 05C50

Abstract

A basic eigenvalue bound due to Alon and Boppana holds only for regular graphs. In this paper we give a generalized Alon-Boppana bound for eigenvalues of graphs that are not required to be regular. We show that a graph \(G \) with diameter \(k \) and vertex set \(V \), the smallest nontrivial eigenvalue \(\lambda_1 \) of the normalized Laplacian \(\mathcal{L} \) satisfies

\[\lambda_1 \leq 1 - \sigma \left(1 - \frac{c}{k} \right) \]

for some constant \(c \) where \(\sigma = 2 \sum_v d_v \sqrt{d_v - 1} / \sum_v d_v^2 \) and \(d_v \) denotes the degree of the vertex \(v \).

We consider weak Ramanujan graphs defined as graphs satisfying \(\lambda_1 \geq 1 - \sigma \). We examine the vertex expansion and edge expansion of weak Ramanujan graphs and then use the expansion properties among other methods to derive the above Alon-Boppana bound.

1 Introduction

The well-known Alon-Boppana bound [8] states that for any \(d \)-regular graph with diameter \(k \), the second largest eigenvalue \(\rho \) of the adjacency matrix satisfies

\[\rho \geq 2 \sqrt{d - 1} \left(1 - \frac{2}{k} \right) - \frac{2}{k}, \tag{1} \]

*Research supported in part by AFSOR FA9550-09-1-0090.
A natural question is to extend Alon-Boppana bounds for graphs that are irregular. Hoory [6] showed that for an irregular graph, the second largest eigenvalue ρ of the adjacency matrix satisfies
\[
\rho \geq 2\sqrt{d-1} \left(1 - \frac{c \log r}{r} \right)
\]
if the average degree of the graph after deleting a ball of radius r is at least d where $r, d > 2$.

For irregular graphs, it is often advantageous to consider eigenvalues of the normalized Laplacian for deriving various graph properties. For a graph G, the normalized Laplacian \mathcal{L}, defined by
\[
\mathcal{L} = I - D^{-1/2} A D^{-1/2}
\]
where D is the diagonal degree matrix and A denotes the adjacency matrix of G. One of the main tools for dealing with general graphs is the Cheeger inequality which relates the least nontrivial eigenvalue λ_1 to the Cheeger constant h_G:
\[
2h_G \geq \lambda_1 \geq h_G^2
\]
where $h_G = \min_S |\partial(S)|/\text{vol}(S)$ for S ranging over all vertex subsets with volume $\text{vol}(S) = \sum_{u \in S} d_u$ no more than half of $\sum_{u \in V} d_u$ and $\partial(S)$ denotes the set of edges leaving S. For k-regular graphs, we have $\lambda_1 = 1 - \rho/k$ where ρ denotes the second largest eigenvalue of the adjacency matrix. In general,
\[
\frac{\rho}{\max_v d_v} \leq 1 - \lambda_1 \leq \frac{\rho}{\min_v d_v}
\]
which can be used to derive a version of the Cheeger inequality involving ρ which is less effective than (2) for irregular graphs.

In this paper, we will show that for a connected graph G with diameter k, λ_1 is upper bounded by
\[
\lambda_1 \leq 1 - \sigma (1 - \frac{c}{k})
\]
for a constant c where $\sigma = 2 \sum_v d_v \sqrt{d_v - 1} / \sum_v d_v^2$. The above inequality will be proved in Section 6.

The above bound of Alon-Boppana type improves a result of Young [10] who derived a similar eigenvalue bound using a different method. In [10] the notion of (r, d, δ)-robust graphs was considered and it was shown that for a (r, d, δ)-robust graph, the least nontrivial eigenvalue λ_1 satisfies
\[
\lambda_1 \leq 1 - \frac{2d \sqrt{d-1}}{\delta} \left(1 - \frac{c}{r} \right).
\]
Here (r, d, δ)-robustness means for every vertex v and the ball $B_r(v)$ consisting of all vertices with distance at most r, the induced subgraph on the complement of $B_r(v)$ has
average degree at least \(d\) and \(\sum_{v \in B_r(v)} d_v^2/|V \setminus B_r(v)| \leq \delta\). We remark that our result in (3) does not require the condition of robustness.

We define weak Ramanujan graphs to be graphs with eigenvalue \(\lambda_1\) satisfying

\[
\lambda_1 \geq 1 - \sigma \geq \frac{1}{2}
\]

(5)

where \(\sigma = 2 \sum_v d_v \sqrt{d_v - 1}/\sum_v d_v^2\).

To prove the Alon-Boppana bound in (3), it suffices to consider only weak Ramanujan graphs. Weak Ramanujan graphs satisfy various expansion properties. We will describe several vertex-expansion and edge-expansion properties involving \(\lambda_1\) in Section 3, which will be needed later for proving a diameter bound for weak Ramanujan graphs in Section 4. The diameter bound and related properties of weak Ramanujan graphs are useful in the proof of the Alon-Boppana bound for general graphs.

We will also show that the largest eigenvalue \(\lambda_{n-1}\) of the normalized Laplacian satisfies

\[
\lambda_{n-1} \geq 1 + \sigma(1 - \frac{c}{k}).
\]

(6)

The proof will be given in Section 7.

2 Preliminaries

For a graph \(G = (V, E)\), we consider the normalized Laplacian

\[
\mathcal{L} = I - D^{-1/2}AD^{-1/2}
\]

where \(A\) denotes the adjacency matrix and \(D\) denotes the diagonal degree matrix with \(D(v, v) = d_v\), the degree of \(v\). We assume that there is no isolated vertex throughout this paper. For a vertex \(v\) and a positive integer \(l\), let \(B_l(v)\) denote the ball consisting of all vertices within distance \(l\) from \(v\). For an edge \(\{x, y\} \in E\) we say \(x\) is adjacent to \(y\) and write \(x \sim y\).

Let \(\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_{n-1}\) denote eigenvalues of \(\mathcal{L}\), where \(n\) denotes the number of vertices in \(G\). It can be checked (see [2]) that \(\lambda_1 > 0\) if \(G\) is connected. The Alon-Boppana bound obviously holds if \(\lambda_1 = 0\). In the remainder of this paper, we assume \(G\) is connected.

Let \(\varphi_i\) denote the orthonormal eigenvector associated with eigenvalue \(\lambda_i\). In particular, \(\varphi_0 = D^{1/2}1/\sqrt{\text{vol}(G)}\) where \(1\) is the all 1’s vector and \(\text{vol}(G) = \sum_{v \in V} d_v\). We can then write

\[
\lambda_1 = \inf_{g \perp \varphi_0} \frac{\langle g, \mathcal{L}g \rangle}{\langle g, g \rangle} = \inf_{f \perp D^1} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum z f^2(z) d_z} = \inf_{f \perp D^1} R(f)
\]

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.4
where f ranges over all functions satisfying $\sum_u f(u)d_u = 0$ and the sum $\sum_{x\sim y}$ ranges over all unordered pairs $\{x, y\}$ where x is adjacent to y. Here $R(f)$ denote the Rayleigh quotient of f, which can be written as follows:

$$R(f) = \frac{\int |\nabla f|}{\int \|f\|^2}$$

where $\int \|f\|^2 = \sum_x f^2(x)dx$

and $\int |\nabla f| = \sum_{x\sim y} (f(x) - f(y))^2$.

For eigenfunction ϕ_i, the function $f_i = D^{-1/2}\phi_i$, called the combinatorial eigenfunction associated with λ_i, satisfies

$$\lambda_i f(u)d_u = \sum_{v\sim u} (f(u) - f(v))$$

for each vertex u. In particular, for f satisfying $\sum_u f(u)d_u = 0$, we have

$$\langle f, Af \rangle \leq (1 - \lambda_1)\langle f, Df \rangle$$

and

$$|\langle f, Af \rangle| \leq \max_{i \neq 0} (1 - \lambda_i)\langle f, Df \rangle.$$
Lemma 1. Let S be a subset of vertices in G. Then

$$\frac{\lvert \partial(S) \rvert}{\text{vol}(S)} \geq \lambda_1 \left(1 - \frac{\text{vol}(S)}{\text{vol}(G)}\right).$$

Proof. Suppose f is defined by

$$f = \frac{1_S}{\text{vol}(S)} - \frac{1_{\overline{S}}}{\text{vol}(\overline{S})}$$

where 1_S denotes the characteristic function defined by $1_S(v) = 1$ if $v \in S$ and 0 otherwise.

The Rayleigh quotient $R(f)$ satisfies

$$\lambda_1 \leq R(f) = \frac{\lvert \partial(S) \rvert}{\text{vol}(S)} \cdot \frac{\text{vol}(G)}{\text{vol}(\overline{S})}.$$

For the expansion of the vertex boundary, the Tanner bound [9] for regular graphs can be generalized as follows.

Lemma 2. Let $\lambda = \min_{\lambda_i \neq 0} |1 - \lambda_i|$. Then for any vertex subset S in a graph,

$$\frac{\text{vol}(\delta(S))}{\text{vol}(S)} \geq \frac{1 - \lambda^2}{\lambda^2 + \frac{\text{vol}(S)}{\text{vol}(G)}}. \tag{10}$$

The proof of the above inequality is by using the following discrepancy inequality (as seen in [2]).

Lemma 3. In a graph G, for two subset X and Y of vertices, the number $e(X, Y) = \lvert E(X, Y) \rvert$ of edges between X and Y satisfies

$$\left| e(X, Y) - \frac{\text{vol}(X) \text{vol}(Y)}{\text{vol}(G)} \right| \leq \bar{\lambda} \sqrt{\frac{\text{vol}(X) \text{vol}(Y) \text{vol}(\overline{X}) \text{vol}(\overline{Y})}{\text{vol}(G)}} \tag{11}$$

where $\bar{\lambda} = \min_{\lambda_i \neq 0} |1 - \lambda_i|$. The proof of Lemma 3 follows from (9) and can be found in [2]. The proof of (12) results from (11) by setting $X = S$ and $Y = S \cup \delta(S)$.

Here we will give a version of the vertex-expansion bounds for general graphs which only rely on λ_1 and are independent of other eigenvalues.

Lemma 4. In a graph G with vertex set V and the first nontrivial eigenvalue λ_1, for a subset S of V with $\text{vol}(S \cup \delta(S)) \leq \text{evol}(G) \leq \text{vol}(G)/2$, the vertex boundary of S satisfies

(i) $$\frac{\text{vol}(\delta(S))}{\text{vol}(S)} \geq \frac{2\lambda_1}{1 - \lambda_1 + 2\epsilon}. \tag{12}$$

(ii) If $1/2 \leq \lambda_1 \leq 1 - 2\epsilon$, then

$$\frac{\text{vol}(\delta(S))}{\text{vol}(S)} \geq \frac{1}{(1 - \lambda_1 + 2\epsilon)^2}. \tag{13}$$
Proof. The proof of (i) follows from Lemma 1 since
\[
\frac{\text{vol}(\delta(S))}{\text{vol}(S)} \geq \frac{|\partial(S \cup \delta(S))| + |\partial(S)|}{\text{vol}(S)} \\
\geq \frac{\lambda_1(1-\epsilon)(\text{vol}(S) + \text{vol}(\delta(S))) + \lambda_1(1-\epsilon)\text{vol}(S)}{\text{vol}(S)}
\]
Therefore
\[
\frac{\text{vol}(\delta(S))}{\text{vol}(S)} \geq \frac{2\lambda_1(1-\epsilon)}{1 - \lambda_1(1-\epsilon)} \geq \frac{2\lambda_1}{1 - \lambda_1 + 2\epsilon}
\]
To prove (ii), we set \(f = 1_S + \gamma 1_{\delta(S)} \) where \(\gamma = 1 - \lambda_1 \). Consider \(g = f - c 1_V \) where \(c = \sum_u f(u) d_u / \text{vol}(G) \). By the Cauchy-Schwarz inequality, we have
\[
c^2 = \frac{1}{(\text{vol}(G))^2} \left(\sum_{u \in S \cup \delta(S)} f(u) d_u \right)^2 \leq \frac{\text{vol}(S \cup \delta(S))}{(\text{vol}(G))^2} \sum_u f^2(u) d_u \\
\leq \frac{\epsilon}{\text{vol}(G)} \sum_u f^2(u) d_u.
\]
Using the inequality in (8), we have
\[
\langle f, Af \rangle \leq \langle g, Ag \rangle + c^2 \text{vol}(G) \\
\leq \gamma \langle g, Dg \rangle + c^2 \text{vol}(G) \\
= \gamma \langle f, Df \rangle + (1 - \gamma) c^2 \text{vol}(G) \\
\leq (\gamma + \epsilon) \langle f, Df \rangle \\
= (\gamma + \epsilon) (\text{vol}(S) + \gamma^2 \text{vol}(\delta(S))).
\]
Let \(e(S, T) \) denote the number of ordered pairs \((u, v) \) where \(u \in S, v \in T \) and \(\{u, v\} \in E \). Since \(\gamma = 1 - \lambda \leq 1/2 \), we have
\[
\langle f, Af \rangle \geq e(S, S) + 2\gamma e(S, \delta(S)) \\
\geq (1 - 2\gamma) e(S, S) + 2\gamma \text{vol}(S) \\
\geq 2\gamma \text{vol}(S)
\]
Together we have
\[
\frac{\text{vol}(\delta(S))}{\text{vol}(S)} \geq \frac{\gamma - \epsilon}{\sigma^2(\gamma + \epsilon)} \\
\geq \frac{1}{(\gamma + 2\epsilon)^2}
\]
since \(\gamma \geq 2\epsilon \).
\[\square\]
Recall that weak Ramanujan graphs have eigenvalue \(\lambda_1 \) satisfying
\[
\lambda_1 \geq 1 - \sigma
\]
(14)
where \(\sigma = 2 \sum_v d_v \sqrt{d_v - 1} / \sum_v d_v^2 \). Lemma 1 implies that for \(S \) with \(\text{vol}(S \cup \delta(S)) \leq \epsilon \text{vol}(G) \),
\[
\frac{\text{vol}(\delta(S))}{\text{vol}(S)} \geq \frac{1}{(\sigma + 2\epsilon)^2}.
\]

For \(k \)-regular Ramanujan graphs with eigenvalue \(\lambda_1 = 1 - 2\sqrt{k-1}/k \), the above inequality is consistent with the bound
\[
\frac{\text{vol}(\delta(S))}{\text{vol}(S)} = \frac{|\delta(S)|}{|S|} \geq \frac{1}{(\frac{2\sqrt{k-1}}{k} + 2\epsilon)^2}
\]
which is about \(k/4 \) when \(\text{vol}(S) \) is small. The factor \(k/4 \) in the above inequality was improved by Kahale [4] to \(k/2 \). There are many applications (see [1]) that require graphs having expansion factor to be \((1 - \epsilon)k \). Such graphs are called lossless expanders. In [1], lossless graphs were constructed explicitly by using the zig-zag construction but the method for deriving the expansion bounds does not use eigenvalues. In this paper, the expansion factor as in Lemma 4 is enough for our proof later.

4 Weak Ramanujan graphs

We recall that a graph is said to be a weak Ramanujan graph as in (14) if
\[
\lambda_1 \geq 1 - \sigma \geq \frac{1}{2}
\]
where
\[
\sigma = 2 \sum_v d_v \sqrt{d_v - 1} / \sum_v d_v^2.
\]
(15)
To prove the Alon-Boppana bound, it is enough to consider only weak Ramanujan graphs.

Lemma 5. As defined in (15), \(\sigma \) satisfies
\[
\frac{2\sqrt{\bar{d} - 1}}{\bar{d}} \leq \sigma \leq \frac{2\sqrt{\bar{d} - 1}}{\bar{d}}
\]
where \(\bar{d} \) denotes the average degree in \(G \) and \(\bar{d} \) denote the second order degree, i.e.,
\[
\bar{d} = \frac{\sum_v d_v}{n} \quad \text{and} \quad \bar{d} = \frac{\sum_v d_v^2}{\sum_v d_v}.
\]
Proof. The proof is mainly by using the Cauchy-Schwarz inequality. For the upper bound, we note that

$$\sigma = 2 \frac{\sum_v d_v \sqrt{d_v} - 1}{\sum_v d_v^2} \leq 2 \frac{\sqrt{\sum_v d_v^2 \sum_v (d_v - 1)}}{\sum_v d_v^2}$$

$$= 2 \frac{\sqrt{\sum_v (d_v - 1)}}{\sqrt{\sum_v d_v^2}}$$

$$\leq 2 \frac{\sqrt{\sum_v (d_v - 1)}}{\sum_v d_v/\sqrt{n}}$$

$$\leq 2 \frac{\sqrt{\sum_v (d_v - 1)}}{\frac{d}{\sqrt{n}}} \leq 2 \frac{\sqrt{d-1}}{d}.$$

For the upper bound, we will use the fact that for $a, b > 1$ and $a + b = c$,

$$a \sqrt{a - 1} + b \sqrt{b - 1} \geq c \sqrt{\frac{c}{2} - 1}$$

and therefore

$$\sum_v d_v \sqrt{d_v - 1} \geq \sum_v d_v \sqrt{\frac{\sum_v d_v}{n} - 1}.$$

Consequently, we have

$$\sigma = 2 \frac{\sum_v d_v \sqrt{d_v} - 1}{\sum_v d_v^2} \geq 2 \frac{\sum_v d_v \sqrt{\frac{\sum_v d_v}{n} - 1}}{\sum_v d_v^2 \sum_v d_v} \geq 2 \frac{\sqrt{d-1}}{d}$$

as desired. \qed

We remark that for graphs with average degree at least 20, we have $\sigma < 1/2 < \lambda_1$.

Theorem 6. Suppose a weak Ramanujan graph G has diameter k. Then for any $\epsilon > 0$, we have

$$k \leq (1 + \epsilon) \frac{2 \log \text{vol}(G)}{\log \sigma^{-1}}$$

provided that the volume of G is large, i.e., $\text{vol}(G) \geq c \sigma^\log(\sigma)/\epsilon$ for some small constant c.

Proof. We set

$$t = \lceil (1 + \epsilon) \frac{\log(\text{vol}(G))}{\log \sigma^{-1}} \rceil.$$

It suffices to show that for every vertex v, the ball $B_t(v)$ has volume more than $\text{vol}(G)/2$.

Suppose $\text{vol}(B_t(v)) \leq \text{vol}(G)/2$. Let

$$s_j = \frac{\text{vol}(B_j(u))}{\text{vol}(G)}.$$
By part (i) of Lemma 4, we have $\text{vol}(\delta(B_u(j))) \geq 0.5\text{vol}(B_u(j))$ for $j \leq t - 1$ and therefore $s_{j+1} \geq 1.5s_j$. Thus, if $j \leq t - c_1 \log(\sigma^{-1})$, then $s_j \leq \sigma^4$ where c_1 is some small constant satisfying $c_1 \leq 4(\log 1.5)^{-1}$.

Now we apply part (ii) of Lemma 4 and we have, for $j \leq t - c_1 \log(\sigma^{-1})$,

$$\frac{s_{j+1}}{s_j} = \frac{\text{vol}(B_{j+1}(u))}{\text{vol}(B_j(u))} \geq \frac{\text{vol}(\delta(B_j(u)))}{\text{vol}(B_j(u))} \geq \frac{1}{(\sigma + 2s_j)^2} \geq \frac{1}{(\sigma + 2\sigma^4)}.$$

This implies, for $l \leq t - c_1 \log(\sigma^{-1})$,

$$\frac{s_l}{s_0} \geq \prod_{0 < j < l} \frac{1}{(\sigma + 2s_j)^2} \geq \prod_{0 < j < l} \frac{1}{(\sigma + 2\sigma^4)^2} \geq \frac{1}{\sigma^{2l}(1 + 2\sigma^4)^{2l}}.$$

Since $s_0 \geq 1/\text{vol}(G)$ and $s_t \leq s_t \leq 1/2$, we have

$$\text{vol}(G) \geq \frac{1}{\sigma^{2l}(1 + 2\sigma^4)^{2l}}.$$

Hence

$$l \leq \frac{\log(\text{vol}(G))}{\log(\sigma^{-1}) + 2\sigma^4}.$$

However,

$$(1 + \epsilon)\frac{\log(\text{vol}(G))}{\log(\sigma^{-1})} \leq t \leq c_1 \log(\sigma^{-1}) + \frac{\log(\text{vol}(G))}{\log(\sigma^{-1}) + 2\sigma^4}$$

which is a contradiction for G with $\text{vol}(G)$ large, say, $\text{vol}(G) \geq \sigma^{2c_1 \log \sigma} / \epsilon$. Thus we conclude that $s_t \geq 1/2$ and Theorem 6 is proved.

Theorem 7. For a weak Ramanujan graph with diameter k, for any vertex v and any $l \leq k/4$, the ball $B_v(l)$ has volume at most $\epsilon \text{vol}(G)$ if $k \geq c \log \epsilon^{-1}$, for some constants c.

Proof. We will prove by contradiction. Suppose that for $j_0 = \lceil k/4 \rceil$, there is a vertex u with $\text{vol}(B_v(j_0)) > \epsilon \text{vol}(G)$. Let r denote the largest integer such that

\[s_r = \frac{\text{vol}(B_u(r))}{\text{vol}(G)} > \frac{1}{2}. \]

By the assumption, we have $r > k/4$ and $s_{j_0} > \epsilon$. There are two possibilities:

Case 1: $r \geq k/2$.

By part (i) of Lemma 4, we have $\text{vol}(\delta(B_u(j))) \geq 0.5\text{vol}(B_u(j))$ for $j \leq k/2$ and therefore $s_{j+1} \geq 1.5s_j$. Thus, for $j \leq k/2 - c_1 \log \epsilon^{-1}$, we have $s_j \leq \epsilon$ where $c_1 = 1/\log 1.5$. Since $k/4 \leq k/2 - c_1 \log \epsilon^{-1}$, we have a contradiction.
Case 2: $r < k/2$.

We define

$$s_j = \frac{\text{vol}(V \setminus B_u(j))}{\text{vol}(G)}.$$

Thus $s_j < 1/2$ for all $j \geq k/2$. We consider two subcases.

Subcase 2a: Suppose $\bar{s}_j \geq \epsilon$ for $j \geq k/2$.

Using Lemma 4, for j where $r \leq j \leq k/2$, we have $\bar{s}_j \geq 1.5\bar{s}_{j+1}$. Thus, for some $j_1 \geq k/2 - c_1 \log \epsilon^{-1}$, we have $\bar{s}_j \geq 1/2$ or equivalently, $s_j \leq 1/2$. By using Lemma 4 again, for $j \leq j_1$, we have $s_{j+1} \geq 1.5s_j$ and therefore for any $j \leq j_1 - c_1 \log \epsilon^{-1}$ we have $s_j \leq \epsilon$. Since $j_1 - c_1 \log \epsilon^{-1} \geq k/2 - 2c_1 \log \epsilon^{-1} \geq k/4$, we again have a contradiction to the assumption $s_{j_0} \geq \epsilon$.

Subcase 2b: Suppose $\bar{s}_j < \epsilon$ for $j \geq k/2$

We apply part (ii) of Lemma 4 and we have, for $j \geq k/2$,

$$\frac{s_j}{s_{j+1}} \geq \frac{1}{(\sigma + 2\epsilon)^2}.$$

This implies, for $j_2 = \lceil k/2 \rceil$,

$$\frac{s_{j_2}}{s_k} \geq \prod_{k/2 < j \leq k} \frac{1}{(\sigma + 2s_j)^2} \geq \frac{1}{(\sigma + 2\epsilon)^k}.$$

Since $s_k \geq 1/\text{vol}(G)$, we have

$$\bar{s}_{j_1} \geq \frac{1}{\text{vol}(G)(\sigma + 2\epsilon)^k}.$$

Since the assumption of this subcase is $\bar{s}_{j_1} < \epsilon$, we have

$$k \geq \frac{\log n + \log \epsilon^{-1}}{\log \sigma^{-1}}.$$

We now use Lemma 4 and we have, for $j = k/2 - j' \geq r$,

$$\bar{s}_j \geq \frac{1}{\text{vol}(G)(\sigma + 2\epsilon)^{k+2j'}}.$$

Therefore, for some $j \leq k/2 - \log \epsilon^{-1}/\log \sigma^{-1}$, we have $s_j > 1/2$ which implies $r \geq k/2 - \log \epsilon^{-1}/\log \sigma^{-1}$.

Now we use the same argument as in Case 1 except shifting r by $\log \epsilon^{-1}/\log \sigma^{-1}$. For some $j \leq r - c_1 \log \epsilon^{-1} \leq k/2 - \log \epsilon^{-1}/\log \sigma^{-1} - c_1 \log \epsilon^{-1}$, we have $s_j < \epsilon$. Since $\log \epsilon^{-1}/\log \sigma^{-1} + c_1 \log \epsilon^{-1} < k/4$, this leads to a contradiction and Theorem 7 is proved.
5 Non-backtracking random walks

Before we proceed to the proof of the Alon-Boppana bound, we will need some basic facts on non-backtracking random walks.

A non-backtracking walk is a sequence of vertices \(p = (v_0, v_1, \ldots, v_t) \) for some \(t \) such that \(v_{i-1} \sim v_i \) and \(v_{i+1} \neq v_{i-1} \) for \(i = 1, \ldots, t - 2 \). The non-backtracking random walk can be described as follows: For \(i \geq 1 \), at the \(i \)th step on \(v_i \), choose with equal probability a neighbor \(u \) of \(v_i \) where \(u \neq v_i - 1 \), move to \(u \) and set \(v_{i+1} = u \). To simplify notation, we call a non-backtracking walk an NB-walk. The modified transition probability matrix \(\tilde{P}_k \), for \(k = 0, 1, \ldots, t - 1 \), is defined by

\[
\tilde{P}_k(u, v) = \begin{cases}
P^k(u, v) & \text{if } k = 0 \\
\sum_{p \in \mathcal{P}^{(k)}_{u,v}} w(p) & \text{if } k \geq 1
\end{cases}
\]

where the weight \(w(p) \) for an NB-walk \(p = (v_0, v_1, \ldots, v_t) \) with \(t \geq 1 \) is defined to be

\[
w(p) = \frac{1}{d_{v_0} \prod_{i=1}^{t-1} (d_{v_i} - 1)}
\]

and \(\mathcal{P}^{(k)}_{u,v} \) denotes the set of non-backtracking walks from \(u \) to \(v \). For a walk \(p = (v_0) \) of length 0, we define \(w(p) = 1 \).

Although a non-backtracking random walk is not a Markov chain, it is closely related to an associated Markov chain as we will describe below (also see [6]).

For each edge \(\{u, v\} \in E \), we consider two directed edges \((u, v)\) and \((v, u)\). Let \(\hat{E} \) denote the set consisting of all such directed edges, i.e. \(\hat{E} = \{(u, v) : \{u, v\} \in E\} \). We consider a random walk on \(\hat{E} \) with transition probability matrix \(P \) defined as follows:

\[
P((u, v), (u', v')) = \begin{cases}
\frac{1}{d_{u} - 1} & \text{if } v = u'\text{and } u \neq v' \\
0 & \text{otherwise.}
\end{cases}
\]

Let \(1_E \) denote the all 1’s function defined on the edge set \(E \) as a row vector. From the above definition, we have

\[
1_E P = 1_E.
\]

In addition, we define the vertex-edge incidence matrix \(B \) and \(B^* \) for \(a \in V \) and \((b, c) \in \hat{E}\) by

\[
B(a, (b, c)) = \begin{cases}
1 & \text{if } a = b, \\
0 & \text{otherwise}
\end{cases}
\]

\[
B^*((b, c), a) = \begin{cases}
1 & \text{if } c = a, \\
0 & \text{otherwise.}
\end{cases}
\]
Let 1_V denote all 1’s vector defined on the vertex set V. Then
\[1_V B = 1_E. \] (19)

Although \tilde{P}_k is not a Markov chain, it is related to the Markov chain determined by P on \tilde{E} as follows:

Fact 1: For $l \geq 1$,
\[\tilde{P}_l = D^{-1} B P^l B^* \] (20)
and for the case of $l = 0$, we have $\tilde{P}_0 = I$.

By combining (19) and (20), we have

Fact 2:
\[1_V D \tilde{P}_l = 1_E B^* = 1_V D. \] (21)

Note that $1_V D$ is just the degree vector for the graph G. Therefore (21) states that the degree vector is an eigenvector of \tilde{P}_l. Using Fact 1 and 2, we have the following:

Lemma 8.

(i) For a fixed vertex x and any integer $j \geq 0$, we have
\[\sum_u d_u \sum_{p \in \mathcal{P}_{u,x}^{(j)}} w(p) = d_x \] (22)

(ii) For a fixed vertex u, we have
\[\sum_x \sum_{p \in \mathcal{P}_{u,x}^{(j)}} w(p) = 1_u (I + \tilde{P}_1 + \ldots + \tilde{P}_l) 1^* = l + 1 \] (23)

where 1_u denotes the characteristic function which assumes value 1 at u and 0 else where.

Proof. The proof of (22) and (23) follows from the fact that
\[1_V D \tilde{P}_j(x) = 1_V D (D^{-1} B P^j B^*) = 1_E P^j B^* = 1_V (I + \tilde{P}_1 + \ldots + \tilde{P}_l) 1^* = l + 1 \]
and $1_u \tilde{P}_j(x) = w(p)$ for $p \in \mathcal{P}_{u,x}^{(j)}$. \qed

6 An Alon-Boppana bound for λ_1

Theorem 9. In a graph $G = (V, E)$ with diameter k, the first nontrivial eigenvalue λ_1 satisfies
\[\lambda_1 \leq 1 - \sigma \left(1 - \frac{c}{k} \right) \]
where σ is as defined in (15), provided $k \geq c' \log \sigma^{-1}$ and $\text{vol}(G) \geq c'' \sigma^{\log \sigma}$ for some absolute constants c's.

THE ELECTRONIC JOURNAL OF COMBINATORICS 23(3) (2016), #P3.4 12
Proof. If G is not a weak Ramanujan graph, we have $\lambda_1 \leq 1 - \sigma$ and we are done. We may assume that G is weak Ramanujan.

From the definition of λ_1, we have

$$\lambda_1 \leq \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f^2(x) dx} = R(f)$$

where f satisfies $\sum_x f(x) dx = 0$.

We will construct an appropriate f satisfying $R(f) \leq 1 - \sigma(1 - c/k)$ and therefore serve as an upper bound for λ_1. We set

$$t = \left\lfloor \frac{\log(\text{vol}(G))}{\log \sigma^{-1}} \right\rfloor$$

and choose ϵ satisfying

$$\epsilon \leq \frac{\sigma}{t} \leq \frac{c \sigma}{k}$$

by using Theorem 6 where σ is as defined in (15).

We consider a family of functions defined as follows. For a specified vertex u and an integer $l = \lceil k/4 \rceil$, we consider a function $g_u : V \to \mathbb{R}^+$, defined by

$$g_u(x) = \left(1_u (I + \tilde{P}_1 + \ldots + \tilde{P}_l)(x)\right)^{1/2}$$

$$= \left(\sum_{j=0}^{l} \sum_{p \in \mathcal{P}_u^{(j)}} w(p)\right)^{1/2}$$

where \tilde{P}_j is as defined in (20) and 1_u is treated as a row vector. In other words, g_u denotes the square root of the sum of non-backtracking random walks starting from u taking i steps for i ranging from 0 to l.

Claim A:

$$\sum_u d_u \sum_x g_u^2(x) dx = \sum_{j=0}^{l} \sum_x d_u w(p) dx = (l + 1) \sum_x d_x^2$$

where the weight $w(p)$ of a walk p is as defined in (17).

Proof of Claim A: From the definition of g_u and (16), we have

$$\sum_u d_u \sum_x g_u^2(x) dx = \sum_{j=0}^{l} \sum_x d_u w(p)$$

$$= \sum_u d_u 1_u B(I + \tilde{P}_1 + \ldots + \tilde{P}_l)(x)$$
= \sum_u d_u \sum l_u \mathbf{1}_u D^{-1} \mathbf{BP}^i B^*(x) d_x + \sum_x d_x^2

= \sum l_u \sum u \mathbf{1}_u \mathbf{BP}^i B^*(x) d_x + \sum_x d_x^2

= \sum l \mathbf{1}_E \mathbf{BP}^i B^*(x) d_x + \sum_x d_x^2

= l \mathbf{1}_E B^*(x) d_x + \sum_x d_x^2

= (l + 1) \sum_x d_x^2.

Claim A is proved.

Claim B:

\[
\sum_u d_u \sum_{x \sim y} (g_u(x) - g_u(y))^2 \leq (l + 1 - l\sigma) \sum_x d_x^2,
\]

where \(\sum_{x \sim y}\) denotes the sum ranging over unordered pairs \(\{x, y\}\) where \(x\) is adjacent to \(y\).

Proof of Claim B:

We will use the following fact for \(a_i, b_i > 0\).

\[
\left(\sqrt{\sum_i a_i} - \sqrt{\sum_i b_i}\right)^2 \leq \sum_i \left(\sqrt{a_i} - \sqrt{b_i}\right)^2
\]

which can be easily checked.

For a fixed vertex \(u\), we apply Claim B:

\[
\sum_{x \sim y} (g_u(x) - g_u(y))^2
\]

\[
= \sum_{x \sim y} \left(\sqrt{\sum_{p \in \mathcal{P}^{(t)}_{u,x}} w(p)} - \sqrt{\sum_{p' \in \mathcal{P}^{(t)}_{u,y}} w(p')}\right)^2
\]

\[
\leq \sum_{t \leq l - 1} \sum_r \sum_{p \in \mathcal{P}^{(t)}_{u,r}} \left(\sqrt{w(p)} - \sqrt{w(p')}\right)^2 + \sum_{p \in \mathcal{P}^{(l)}_{u,r}} w(p)(d_x - 1)
\]

\[
\leq \sum_{t \leq l - 1} \sum_r \sum_{x} \sum_{p \in \mathcal{P}^{(t)}_{u,r}} \left(\sqrt{w(p)} - \sqrt{w(p)}\right)^2 (d_x - 1) + \sum_{p \in \mathcal{P}^{(l)}_{u,r}} \sqrt{w(p)}(d_x - 1)
\]
\[
\sum_{t \leq l - 1} \sum_{x} \sum_{p \in \mathcal{P}^{(t)}_{u,x}} w(p) \left(1 + \frac{1}{d_x - 1} - \frac{2}{\sqrt{d_x - 1}} \right) (d_x - 1) + \sum_{p \in \mathcal{P}^{(l)}_{u,x}} w(p) (d_x - 1)
\]

\[
\sum_{t \leq l - 1} \sum_{x} \sum_{p \in \mathcal{P}^{(t)}_{u,x}} w(p) \left(d_x - 2 \sqrt{d_x - 1} \right) + \sum_{p \in \mathcal{P}^{(l)}_{u,x}} w(p) (d_x - 1).
\]

Using Fact 3, we have

\[
\sum_u d_u \sum_{x \sim y} (g_u(x) - g_u(y))^2
\]

\[
\leq \sum_{t \leq l - 1} \sum_u d_u \sum_{p \in \mathcal{P}^{(t)}_{u,x}} w(p) \left(d_x - 2 \sqrt{d_x - 1} \right) + \sum_u d_u \sum_{p \in \mathcal{P}^{(l)}_{u,x}} w(p) (d_x - 1)
\]

\[
= l \sum_x d_x (d_x - 2 \sqrt{d_x - 1}) + \sum_x d_x^2
\]

\[
= l(1 - \sigma) \sum_x d_x^2 + \sum_x d_x^2
\]

\[
= (l + 1 - l\sigma) \sum_x d_x^2
\]

This proves Claim B.

Claim C: There is a vertex \(u \) satisfying

\[
R(g_u) \leq 1 - \sigma \left(1 - \frac{1}{l + 1} \right)
\]

Proof of Claim C:
Combining Claim A and B, we have

\[
\sum_u d_u \sum_{x \sim y} (g_u(x) - g_u(y))^2
\]

\[
\leq \left(l + 1 - l\sigma \right) \sum_x d_x^2
\]

\[
\leq \left(l + 1 - l\sigma \right) \left(\frac{1}{l + 1} \right) \sum_u d_u \sum_x g_u^2(x) d_x
\]

\[
= \left(1 - \frac{l\sigma}{l + 1} \right) \sum_u d_u \sum_x g_u^2(x) d_x
\]

(26)

Thus we deduce that there is a vertex \(u \) such that

\[
R(g_u) = \frac{\sum_{x \sim y} (g_u(x) - g_u(y))^2}{\sum_x g_u^2(x) d_x}
\]

\[
\leq 1 - \frac{l\sigma}{l + 1}.
\]

(27)
We define
\[\alpha_v = \frac{\sum_x g_v(x)dx}{\sum_x dx} = \frac{\sum_x g_v(x)dx}{\text{vol}(G)} \]

We consider the function \(g'_u \) defined by
\[g'_u(x) = g_u(x) - \alpha_u \]

Clearly, \(g'_u \) satisfies the condition that
\[\sum_x g'_u(x)dx = 0 \]

Hence, we have
\[\lambda_1 \leq R(g'_u) = \frac{\sum_{x \sim y} (g'_u(x) - g'_u(y))^2}{\sum_x g'^2_u(x)dx} = \frac{\sum_{x \sim y} (g_u(x) - g_u(y))^2}{\sum_x g^2_u(x)dx - \alpha^2 u \text{vol}(G)}. \quad (28) \]

Note that by the Cauchy-Schwarz inequality, we have
\[\left(\sum_{x \in B_u(l)} g_u(x)dx \right)^2 \leq \text{vol}(B_u(l)) \sum_{x \in B_u(l)} g^2_u(x)dx. \]

and therefore
\[\alpha^2_u \leq \frac{\text{vol}(B_u(l))}{\text{vol}(G)^2} \sum_x g'^2_u(x)dx. \]

By substitution into (28) and using (35), we have
\[\lambda_1 \leq R(g'_u) \leq \frac{R(g)}{1 - \frac{\text{vol}(B_u(l))}{\text{vol}(G)}} \leq \frac{1 - \sigma(1 - \frac{1}{l+1})}{1 - \frac{\text{vol}(B_u(l))}{\text{vol}(G)}} \quad (29) \]
\[\leq 1 - \sigma \left(1 - \frac{1}{l+1} \right) + \frac{\text{vol}(B_u(l))}{\text{vol}(G)} \quad (30) \]
\[\leq 1 - \sigma \left(1 - \frac{c}{l+1} \right) \quad (31) \]

The last inequality follows from Theorem 7 and the choice of \(\epsilon = \sigma/k \). This completes the proof of Theorem 9. \(\square \)
7 A lower bound for λ_{n-1}

If a graph is bipartite, it is known (see [2]) that $\lambda_i = 2 - \lambda_{n-i-1}$ for all $0 \leq i \leq n - 1$ and, in particular, $\lambda_{n-1} = 2 - \lambda_0 = 2$. If G is not bipartite, it is easy to derive the following lower bound:

$$\lambda_{n-1} \geq 1 + 1/(n-1)$$

by using the fact that the trace of L is n. This lower bound is sharp for the complete graph. However if G is not the complete graph, is it possible to derive a better lower bound? The answer is affirmative. Here we give an improved lower bound for λ_{n-1}.

Theorem 10. In a connected graph $G = (V, E)$ with diameter k, the largest eigenvalue λ_{n-1} of the normalized Laplacian L of G satisfies

$$\lambda_{n-1} \geq 1 + \sigma \left(1 - \frac{c}{k}\right)$$

where σ is as defined in (15), provided $k \geq c' \log \sigma^{-1}$ and $\text{vol}(G) \geq c'' \sigma \log \sigma$ for some absolute constants c's.

Proof. By definition, λ_{n-1} satisfies

$$\lambda_{n-1} \geq \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x f^2(x)dx} = R(f)$$

for any $f : V \rightarrow \mathbb{R}$.

We will construct an appropriate f such that $R(f) \geq 1 + \sigma (1 - c/\gamma)$ by considering the following function $f_u : V \rightarrow \mathbb{R}^+$, for a fixed vertex u, defined by

$$\eta_u(x) = \begin{cases}
(-1)^t \chi_u (\tilde{P}_t(x))^{-1/2} & \text{if dist}(u, x) = t \leq l \\
0 & \text{otherwise}
\end{cases}$$

where $l \leq \gamma/2$. Note that $|\eta_u(x)| = g_u(x)$ since we assume that $l \leq \gamma/2$. Using the same proof in Claim A, we have

Claim A’:

$$\sum_u d_u \sum_x \eta_u^2(x)dx = \sum_{j=0}^l \sum_x \sum_{p \in \mathcal{P}_{u,x}^{(j)}} d_u w(p)dx = (l + 1) \sum_x d_x^2.$$

Claim B’:

$$\sum_u d_u \sum_{x \sim y} (\eta_u(x) - \eta_u(y))^2 \geq (l + 1 + l\sigma) \sum_x d_x^2.$$
Proof of Claim B’: The proof is quite similar to that of Claim B. For a fixed vertex \(u \), the sum over unordered pair \(\{x, y\} \) where \(x \sim y \),

\[
\sum_{x \sim y} (\eta_u(x) - \eta_u(y))^2
\]

\[
\leq \sum_{t \leq l-1} \sum_{r \in V} \sum_{p \in \mathcal{R}_{u,r}^{(t)}} \left(\sqrt{w(p)} + \sqrt{w(p')} \right)^2 - \sum_{p \in \mathcal{R}_{u,r}^{(t+1)}} w(p)(d_x - 1)
\]

\[
\leq \sum_{t \leq l-1} \sum_{x} \sum_{p \in \mathcal{R}_{u,x}^{(t)}} \left(\sqrt{w(p)} + \sqrt{w(p)} \right)^2 (d_x - 1) - \sum_{p \in \mathcal{R}_{u,x}^{(t)}} \sqrt{w(p)}(d_x - 1)
\]

\[
\leq \sum_{t \leq l-1} \sum_{x} \sum_{p \in \mathcal{R}_{u,x}^{(t)}} w(p)\left(1 + \frac{1}{d_x - 1} + \frac{2}{\sqrt{d_x - 1}}\right)(d_x - 1) - \sum_{p \in \mathcal{R}_{u,x}^{(t)}} w(p)(d_x - 1)
\]

\[
\leq \sum_{t \leq l-1} \sum_{x} \sum_{p \in \mathcal{R}_{u,x}^{(t)}} w(p)(d_x + 2\sqrt{d_x - 1}) - \sum_{p \in \mathcal{R}_{u,x}^{(t)}} w(p)(d_x - 1).
\]

Using Fact 3, we have

\[
\sum_{u} d_u \sum_{x \sim y} (\eta_u(x) - \eta_u(y))^2
\]

\[
\geq \sum_{t \leq l-1} \sum_{u} d_u \sum_{p \in \mathcal{R}_{u,x}^{(t)}} w(p)(d_x + 2\sqrt{d_x - 1}) - \sum_{u} d_u \sum_{p \in \mathcal{R}_{u,x}^{(t)}} w(p)(d_x - 1)
\]

\[
= l \sum_{x} d_x(d_x + 2\sqrt{d_x - 1}) - \sum_{x} d_x^2
\]

\[
= l(1 + \sigma) \sum_{x} d_x^2 - \sum_{x} d_x^2
\]

\[
= (l - 1 + l\sigma) \sum_{x} d_x^2
\]

This proves Claim B’.

Combining Claims A’ and B’, we have

\[
\sum_{u} d_u \sum_{x \sim y} (\eta_u(x) - \eta_u(y))^2
\]

\[
\geq (l - 1 + l\sigma) \sum_{x} d_x^2
\]

\[
\geq (l - 1 + l\sigma) \left(\frac{1}{l+1} \right) \sum_{u} d_u \sum_{x} \eta_u^2(x)d_x
\]

\[
= \left(1 + \frac{l\sigma}{l-1} \right) \sum_{u} d_u \sum_{x} \eta_u^2(x)d_x
\]

(34)
Thus we deduce that there is a vertex u such that

$$R(\eta_u) = \frac{\sum_{x \sim y} (\eta_u(x) - \eta_u(y))^2}{\sum_x \eta_u^2(x)d_x} \leq 1 + \frac{l\sigma}{l-1}. \quad (35)$$

We consider the function η'_u defined by

$$\eta'_u(x) = \eta_u(x) - \alpha_u$$

where

$$\alpha_v = \frac{\sum_x \eta_v(x)d_x}{\sum_x d_x} = \frac{\sum_x \eta_v(x)d_x}{\text{vol}(G)}$$

so that η'_u satisfies the condition that

$$\sum_x \eta'_u(x)d_x = 0$$

Hence, we have

$$\lambda_{n-1} \geq R(\eta'_u) = \frac{\sum_{x \sim y} (\eta'_u(x) - \eta'_u(y))^2}{\sum_x \eta'_u^2(x)d_x} \geq \frac{\sum_{x \sim y} (\eta_u(x) - \eta_u(y))^2}{\sum_x \eta_u^2(x)d_x - \alpha_u^2 \text{vol}(G)} \geq 1 + \sigma(1 + \frac{c}{l}) - \frac{\text{vol}(B_u(l))}{\text{vol}(G)}.$$

This completes the proof of Theorem 10. \qed

References

[1] M. Capalbo, O. Reingold, S. Vadhan and A. Wigderson. Randomness conductors and constant-degree lossless expanders, Proceedings of the 34th Annual ACM symposium on Theory of Computing, 659–668, 2002.

[2] F. Chung, Spectral Graph Theory, AMS Publications, vii+207 pages, 1997.

[3] J. Friedman, A proof of Alon’s second eigenvalue conjecture and related problems, Mem. Amer. Math. Soc., 195, viii+100 pages, 2008.

[4] N. Kahale, Eigenvalues and expansion of regular graphs, JACM, 42 (5): 1091–1106, 1995.

[5] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1): 26–30, 1935.
[6] S. Hoory, A lower bound on the spectral radius of the universal cover of a graph, *J. Combin. Theory B*, 93: 33–43, 2005.

[7] S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, *Bull. Amer. Math. Soc.*, 43: 439–561, 2006.

[8] A. Nilli, On the second eigenvalue of a graph, *Discrete Math.*, 91: 207–210, 1991.

[9] R. M. Tanner, Explicit construction of concentrators from generalized n-gons, *SIAM J. Algebraic Discrete Methods*, 5: 287–294, 1984.

[10] S. J. Young, The weighted spectrum of the universal cover and an Alon-Boppana result for the normalized Laplacian, preprint.
Corrigendum – added 3th November 2017

1. In the abstract, line 6-8, the statement of the main result should be replaced by

\[\lambda_1 \leq 1 - \sigma \left(1 - \frac{5}{k} \right) \]

provided \(\sigma = 2 \sum_v d_v \sqrt{d_v - 1} / \sum_v d_v^2 \leq 1/2 \) and \(k(1.5)^k \geq \sigma^{-1} \) where \(d_v \) denotes the degree of the vertex \(v \) with minimum degree at least 2.

Also, page 12, line -3 to -1, the statement of Theorem 9 should be similarly replaced as above.

2. Page 3, line 13, the constant \(c \) should be replaced by 5.

3. Page 9, line -9. “... for some constant \(c \).” should be replaced by “... for \(c = 1/\log 1.5 \).”

4. Page 9, line -6. Replace “... largest ...” by ”... least ...”.

5. Page 10, line 3, \(\bar{s}_j \) should be replaced by \(\bar{s}_{j+1} \).

6. Page 3, line 7 to 11. Delete “We set ... as defined in (15).” Note that \(\epsilon \) was defined later near the end of the proof of Theorem 9.

7. Page 16, line -6, replace “... using (35), ...” by “... using (27), ...”.

8. Page 16, line -3. Replace “\(c/(l+1) \)” by “\(5/k \)”.

9. Page 16, line -2. Replace “... the choice of \(\epsilon = \sigma/k \)” by “... the choice of \(\epsilon = \sigma/k \) which satisfies \(k \geq (\log \epsilon^{-1}) / \log 1.5 \)”

10. Page 17, line 11 to line 13, the statement of Theorem 10 should be replaced by

\[\lambda_{n-1} \geq 1 + \sigma \left(1 - \frac{5}{k} \right) \]

provided \(\sigma = 2 \sum_v d_v \sqrt{d_v - 1} / \sum_v d_v^2 \leq 1/2 \) and \(k(1.5)^k \geq \sigma^{-1} \) where \(d_v \) denotes the degree of the vertex \(v \) with minimum degree at least 2.