Research Article

Preparation of Aluminium dodecaboride (AlB_{12}) powder by Self-propagating High-temperature Synthesis (SHS)

Chao Wang¹*, Xiaoming Cao², Mengge Dong³, Lu Zhang⁴, Jianxing Liu³, Xiaozhou Cao³ and Xiangxin Xue³*

¹Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
²Institute of Metal Research, Chinese Academy of Science, Shenyang, Liaoning, 110016, China
³School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, China
⁴School of Energy and Environment, Anhui University of Technology, Ma'anshan, 243002, China

Abstract

Self-propagating High-temperature Synthesis (SHS) process is used to prepare Aluminium dodecaboride (AlB_{12}). The phase analysis results of preparing AlB_{12} with Al and B_{2}O_{3} as raw materials show that under air and argon conditions, the self-propagating and acid-washed self-propagating powders all have α-Al_{2}O_{3} impurities when Mg, Al and B_{2}O_{3} are used as raw materials. The phase analysis results of the preparation of AlB_{12} show that under argon conditions, the self-propagating and acid-washed, self-propagating powder has un-removable MgAl_{2}O_{4} impurities, and the root cause of the low purity of AlB_{12} prepared by the self-propagating method is the presence of un-removable impurities.

Introduction

Most of the borides are crystals with high hardness and melting point [1-4]. Stable chemical properties and a wide range of applications make it widely used in composite materials, semiconductors, and in various areas of national defense, such as radiation protection [5-8]. Among them, AlB_{12} has a special electronic structure and bonding characteristics [9,10]. It can effectively adjust the conductivity of semiconductor materials, and thus is extensively employed in conductors and semiconductor materials. In addition to the above characteristics, the content of boron in AlB_{12} is extremely high, reaching 82.8%, which is very promising as neutron shielding material [11-13].

Ceramic powders are usually synthesized by traditional sintering methods [14-16]. However, the use of this method to synthesize ceramic powder takes a long time, consumes a great deal of energy and pollution [17]. Self-propagating high-temperature synthesis (SHS) is a unique technique for synthesizing materials by self-heating and self-conduction of high chemical reaction heat between reactants. This technology was first discovered by Merzhanov et al., in their research on the combustion of solid propellants in rockets and was announced in 1967. Compared with the conventional sintering method, the advantages of the SHS method can be summarized as follows: (1) It is time saving and makes full use of energy [18]. (2) It requires only simple equipment and processes [19]. (3) The high product purity and product conversion rate are close to 100% [20]. (4) It can not only produce ceramic powder, but if the proper amount of pressure is applied at the same time, high-density combustion products can also be produced [21]. (5) High output [22].

In previous studies, AlB_{12} powder was fabricated by using the SHS method [23-25]. The calculation results of preparing
AlB\textsubscript{12} with Mg, Al\textsubscript{2}O\textsubscript{3} and B\textsubscript{2}O\textsubscript{3} as raw materials show that the adiabatic temperature of the system is 2789.5K, which satisfies the self–propagating reaction conditions. Further, the phase analysis results show that there is no matter in air or argon, the self–propagating powder and the acid–washed self–propagating powder all have Mg\textsubscript{0.4}Al\textsubscript{2.4}O\textsubscript{4} impurities, and the purity of the prepared AlB\textsubscript{12} is not high.

Although AlB\textsubscript{12} is produced, Mg\textsubscript{0.4}Al\textsubscript{2.4}O\textsubscript{4} has not been removed and still exists. In this work, Al, B\textsubscript{2}O\textsubscript{3} and Mg, Al, B\textsubscript{2}O\textsubscript{3} were used as raw materials to conduct experimental studies on self–propagating synthesis of AlB\textsubscript{12}.

Experimental procedure

The starting materials used in this research were Al powder (purity>99% Al, average particle size 50 μm, provided by Dandong Chemical Research Institute, Dandong, China), B\textsubscript{2}O\textsubscript{3} powder (purity>99%, average particle size 96 μm, provided by Dandong Chemical Research Institute, Dandong, China), and Mg powder (purity>98%, average particle size 100 μm, provided by Dandong Chemical Research Institute, Dandong, China).

The steps used in the self–propagating process to synthesize AlB\textsubscript{12} ceramic powder are as follows: (1) Weigh a certain amount (in proportion to the reaction equation) of the original material powder, place it in the ball milling tank, and mix the ball mill for 2 hours. (2) Intercept the resistance wire and connect it to the two poles of the self–propagating device and place the material in the atmosphere with one end close to the resistance wire. (3) Start the ignition device and slowly increase the current. When the pointer fluctuates sharply, reduce the current and keep the current increasing steadily. Finally, the resistance wire will reach a molten state when the material is induced to burn, and the current is turned off. (4) The reaction product is pulverized and sieved with 160 meshes, and samples under the sieve are sampled for detection and analysis.

The phase analysis of the synthesized powder was carried out using an X–ray diffractometer (XRD, X’Pert Pro MRD, Netherlands) with a Philips diffractometer using Cu Ka. The microstructure of powders and elements analysis were investigated using a scanning electron microscope with EDS detector (SEM, S–3400N, Japan).

This article focuses on the study of two reaction systems, system 1: Al and B\textsubscript{2}O\textsubscript{3}, and system 2: Mg, Al, and B\textsubscript{2}O\textsubscript{3}. Two experimental atmospheres are used in both systems (Table 1).

Serial condition	Reactant	Atmosphere	Pickling
S1	Al+B\textsubscript{2}O\textsubscript{3}	Air	Before pickling
S2	Al+B\textsubscript{2}O\textsubscript{3}	Air	After pickling
S3	Al+B\textsubscript{2}O\textsubscript{3}	Ar	Before pickling
S4	Al+B\textsubscript{2}O\textsubscript{3}	Ar	After pickling
S5	Mg+Al+B\textsubscript{2}O\textsubscript{3}	Ar	Before pickling
S6	Mg+Al+B\textsubscript{2}O\textsubscript{3}	Ar	After pickling

In the Al–B\textsubscript{2}O\textsubscript{3} system, the following chemical reactions mainly occur:

\[
13\text{Al}+6\text{B}_2\text{O}_3 \rightarrow \text{AlB}_{12}+6\text{Al}_2\text{O}_3 \tag{1}
\]

In the Mg–Al–B\textsubscript{2}O\textsubscript{3} system, the following chemical reactions mainly occur:

\[
3\text{Mg}+\text{B}_2\text{O}_3 \rightarrow 2\text{B}+3\text{MgO} \tag{2}
\]

\[
\text{Al}+12\text{B} \rightarrow \text{AlB}_{12} \tag{3}
\]

After the combustion synthesis, the extraneous components were leached out from the synthesized powder with 60° C in diluted HCl (pH value is 3).

Results and discussion

Figure 1 is the X-ray diffraction pattern of Al and B\textsubscript{2}O\textsubscript{3} prepared under both air conditions (before and after pickling) and argon conditions (before and after pickling) respectively. It can be seen from the figure that in either air or argon conditions, irremovable Al\textsubscript{2}O\textsubscript{3} is found in the bottom. Analysis of its crystal
structure revealed that the α-Al$_2$O$_3$ is corundum, an extremely stable substance that is difficult to remove through physical and chemical reactions. Therefore, AlB$_{12}$ prepared from Al and B$_2$O$_3$ contains a large amount of inseparable corundum, which contributes to the failure of the self-propagating preparation of AlB$_{12}$ using Al and B$_2$O$_3$ as raw materials.

Figure 2 is the X-ray diffraction pattern of powder prepared with Mg, Al and B$_2$O$_3$ under argon conditions (before pickling). From the results of phase analysis, the main components of the coarse powder before pickling are MgO, Mg$_3$B$_2$O$_6$, MgAl$_2$O$_4$, and AlB$_{12}$, while in the powder after pickling, when MgO and Mg$_3$B$_2$O$_6$ are removed, the main impurity is MgAl$_2$O$_4$. This shows that the purity of AlB$_{12}$ is not high when prepared by self-propagating, self-propagation when the raw materials used are Mg, Al and B$_2$O$_3$.

Figure 3 shows the microscopic morphology of powder prepared through use of the self-propagating method under argon conditions with Al and B$_2$O$_3$ as raw materials after pickling. From an analysis of the energy spectrum results, the A particles – with obvious layering phenomenon on the left are Al$_2$O$_3$ particles – while the B particles – with more obvious granular shape on the right – are AlB$_{12}$. This situation shows that despite the pickling treatment, Al$_2$O$_3$ is still untreated. It also shows that the unremovable by-product Al$_2$O$_3$ uses Al and B$_2$O$_3$ as raw materials and is the biggest obstacle to self-propagating preparation of AlB$_{12}$.

Table 2 shows the elemental analysis results of EDS analysis after pickling of Al and B$_2$O$_3$ as raw materials and self-propagating preparation of AlB$_{12}$ with Mg, Al, and B$_2$O$_3$ as raw materials. From the results in the table, the acid wash product prepared with the use of Al and B$_2$O$_3$ as raw materials has the highest content of O element, followed by B and Al. Observing the test samples, there are still insoluble substances, so the test results are also relatively incomplete. This shows that under argon conditions, using Al and B$_2$O$_3$ as raw materials to prepare AlB$_{12}$ and using the self-propagating method, the purity of AlB$_{12}$ in the prepared product is low, and the B content is insufficient.

Table 2: The results of elementary analysis (mass fraction, %)

Serial
S4
S6

	B	Mg	Al	O
S4	12.6	—	2.21	85.19
S6	58.5	9.62	3.43	28.45

Summary

The phase analysis results of preparing AlB$_{12}$ using Al and B$_2$O$_3$ as raw materials shows that there are α-Al$_2$O$_3$ impurities in the self-propagating powder regardless of either the air condition or the argon condition, and it cannot be removed. Consequently, the purity of the prepared AlB$_{12}$ is not high. The phase analysis results of preparing AlB$_{12}$ using Mg, Al and B$_2$O$_3$ as raw materials indicates that the self-propagating and acid-washed self-propagating powder has unremovable MgAl$_2$O$_4$ impurities under argon conditions, and the purity of the prepared AlB$_{12}$ is not high, causing self-propagation. The fundamental reason for the low purity of AlB$_{12}$ prepared by this method is the existence of impurities that cannot be removed. For future research work, it may be very promising to consume Al$_2$O$_3$ through aluminum electrolysis.

Notes

The authors declare that they have no competing financial interest.
Acknowledgements

This work was supported by the fundamental, scientific-research business resources of the central universities (award # N10062020).

References

1. Wang C, Yue X, Cao X, Yang H (2012) Effect of BN Addition on Mechanical Properties and Microstructure of TiB2-Al Composites. Journal of Northeastern University (Natural Science) 19. Link: https://bit.ly/37nZLbX

2. Cao X, Wang C, Shi L, Yang H, Xue X, et al. (2013) Effect of Ni addition on pressurless sintering of tungsten diboride. International Journal of Refractory Metals and Hard Materials 41: 597-602. Link: https://bit.ly/2NzrKhg

3. Cao X, Wang C, Xue X, Yang H (2014) Preparation of tungsten boride ceramic by pressurless sintering. Journal of Inorganic Materials 29: 498-502. Link: https://bit.ly/3jJuOyZk

4. Matovich VI (1977) Boron and refractory borides, Springer. Link: https://bit.ly/370sAS0

5. Cao X, Wang C, Yue X, Cheng G (2015) Effect of ti addition on the residual aluminium content and mechanical properties of the BC3-Al composites produced by vacuum infiltration. Archives of Metallurgy and Materials 60: 2493-2398. Link: https://bit.ly/3s4v3tY

6. Dong M, Xue X, Yang H, Liu D, Wang C, et al. (2016) A novel comprehensive utilization of vanadium slag: as gamma ray shielding material. Journal of Hazardous Materials 318: 751-757. Link: https://bit.ly/3qsAm7

7. Qi D, Yong G, Zhiheng R, Xiaoming C, Cao W, et al. (2019) Preparation and Erosion Performance for Co-continuous Phase Composites of Si3N4/1Cr18Ni9Ti, Chinese Journal of Materials Research 33: 34-42. Link: https://bit.ly/3dkcH61

8. Cao X, Wang H, Meng X, Wang C, Yang H, et al. (2011) High temperature electrochemical synthesis of tungsten boride from molten salt. Advanced Materials Research. 463-466. Link: https://bit.ly/3qt80L2

9. Gosset D, Guerry M, Kryger B (1991) Thermal properties of some boron-rich compounds (<8nC> and AlB12). AIP Conference Proceedings American Institute of Physics 231: 380-383. Link: https://bit.ly/3npnQwX3

10. Cao W, Cao X, Jiang T, Rong Y, Zhang J, et al. (2013) Research Progress on Preparation of AlB12 and γ-AlB12 and Synthesis (SHS). Open Journal of Chemistry 7(1): 025-028. DOI: https://dx.doi.org/10.17352/ojc.000025

11. Hiagishi I (2000) Crystal chemistry of α-AlB12 and γ-AlB12. Journal of solid state chemistry 154: 168-176. Link: https://bit.ly/3s3wM8s

12. Mahesh V, Nair PS, Rajan T, Pai B, Hubli R (2011) Processing of surface-treated boron carbide-reinforced aluminium matrix composites by liquid-metal stir-casting technique. Journal of Composite Materials 45: 2371-2378. Link: https://bit.ly/3psSDA4

13. Mahmoudi M, Wang C, Moreno S, Burlson SR, Alatalo D, et al. (2020) Three-Dimensional Printing of Ceramics through "Carving" a Gel and "Filling in" the Precursor Polymer. ACS Appl Mater Interfaces 12: 31984-31991. Link: https://bit.ly/3ptAS43

14. Luo X, Wang Z, Hu X, Shi Z, Gao B, et al. (2009) Influence of metallic additives on densification behaviour of hot-pressed TiB2, Light Metals 1151-1155. Link: https://bit.ly/3hozukX

15. Wang C, Hossain Bhuiyan ME, Moreno S, Minary-Jolandan M (2020) Direct-Written Printing Copper–Nickel (Cu/Ni) Alloy with Controlled Composition from a Single Electrolyte Using Co-Electrodeposition. ACS Applied Materials & Interfaces 12: 18683-18691. Link: https://bit.ly/3asMa4J

16. Chao W, Xiangxin X, Xiaozhou C, Lu Z, Jian Z, et al. (2013) A New Method of Fabricating AlN-TiB2 Composite Ceramics. Materials and Manufacturing Processes 28: 953-956. Link: https://bit.ly/3TfnVwF

17. Chao W, Xiangxin X, Xiaozhou C, He Y, Gongjin C (2013) The effect of Ti addition on the microstructure and fracture toughness of BN-Al composite materials synthesized by vacuum infiltration. Archives of Metallurgy and Materials 58: 509-512. Link: https://bit.ly/3qmZvFw

18. Cao X, Xu L, Wang C, Li S, Wu D, et al. (2020) Electrochemical Behavior and Electrodeposition of Sn Coating from Choline Chloride–Urea Deep Eutectic Solvents. Coatings 10: 1154. Link: https://bit.ly/3d8d4A4

19. Tao W, Wang Z, Chen G, Shi Z, Gao B, et al. (2009) Finite element analysis of thermo-electric coupled field in 400KA large-scale aluminium reduction cell. 2009 World Non-Grid-Connected Wind Power and Energy Conference. IEEE 1-4. Link: https://bit.ly/3TrfJRM

20. Subrahmanyam J, Vijayakumar M (1992) Self-propagating high-temperature synthesis. Journal of Materials Science 27: 6249-6273. Link: https://bit.ly/3dm5S8Y

21. Merzhanov A (1995) History and recent developments in SHS. Ceramics International 21: 371-379. Link: https://bit.ly/3qpyA4N

22. Yukhvid V (1992) Modifications of SHS processes. Pure Appl Chem 64: 977-988. Link: https://bit.ly/3qoHungY

23. Wang C, Ma B, Zhang L, Cao X, Yang H, et al. (2014) Elementary research on preparation of AlB12 powder by self-propagating high-temperature synthesis (SHS), Materials Science Forum. Trans Tech Publ 365-369. Link: https://bit.ly/3pLjLwF

24. Oadawara O (2010) Mass-forced SHS technology of ceramic materials. Trans Tech Publ 302-311. Link: https://bit.ly/3q8HouY

25. Huang KJ, Yan L, Kou HM, Xie CS (2010) Synthesis of Al2O3/AlB12/Al composite ceramic powders by a new laser-induction complex heating method and a study of their mechanical properties. Applied Mechanics and Materials 596-601. Link: https://bit.ly/2Zmne8u

Discover a bigger Impact and Visibility of your article publication with Peeretczh Publications

Highlights

- Signatory publisher of ORCID
- Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
- Articles archived in world's renowned service providers such as Portico, CNKI, AGRIS, TDNet, Base (Sheffield University Library), CrossRef, Scilit, J-Gate etc.
- Journals indexed in ICMJE, E-HERP/ROMEO, Google Scholar etc.
- OA/P-MH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated editorial board for every journal
- Accurate and rapid peer review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).

Peertechz journals wishes everlasting success in your every endeavours.