INTEGRAL ESTIMATES FOR THE TRACE OF SYMMETRIC OPERATORS.

M. BATISTA AND H. MIRANDOLA

Abstract. Let \(\Phi : T M \to T M \) be a positive-semidefinite symmetric operator of class \(C^1 \) defined on a complete non-compact manifold \(M \) isometrically immersed in a Hadamard space \(\bar{M} \). In this paper, we given conditions on the operator \(\Phi \) and on the second fundamental form to guarantee that either \(\Phi \equiv 0 \) or the integral \(\int_M \text{tr} \Phi \, dM \) is infinite. We will given some applications. The first one says that if \(M \) admits an integrable distribution whose integrals are minimal submanifolds in \(\bar{M} \) then the volume of \(M \) must be infinite. Another application states that if the sectional curvature of \(\bar{M} \) satisfies \(\bar{K} \leq -c^2 \), for some \(c \geq 0 \), and \(\lambda : M^m \to [0, \infty) \) is a nonnegative \(C^1 \) function such that gradient vector of \(\lambda \) and the mean curvature vector \(H \) of the immersion satisfy \(|H + p \nabla \lambda| \leq (m-1)c\lambda \), for some \(p \geq 1 \), then either \(\lambda \equiv 0 \) or the integral \(\int_M \lambda^s \, dM \) is infinite, for all \(1 \leq s \leq p \).

1. Introduction

Let \(f : M^m \to \bar{M} \) be an isometric immersion of an \(m \)-dimensional Riemannian manifold \(M \) in a Riemannian manifold \(\bar{M} \) and \(II \) the second fundamental form of \(f \). Let \(\Phi : TM \to TM \) be a symmetric operator on \(M \) of class \(C^1 \). Consider the following definitions:

Definition 1.1. The \(\Phi \)-mean curvature vector field of the immersion \(f \) is the normal vector field \(H_\Phi : M \to T^\perp M \) to the immersion \(f \) defined by the trace:

\[
H_\Phi = \text{tr} \{(X,Y) \in TM \times TM \mapsto \Pi(\Phi X, Y)\}
\]

Note that \(H_\Phi \) coincides with the mean curvature vector if \(\Phi \) is the identity operator \(I : TM \to TM \).

Definition 1.2. The divergence of \(\Phi \) is the tangent vector field on \(M \) defined by

\[
\langle \text{div} \Phi, X \rangle = \text{tr} \{Y \in TM \mapsto (\nabla_Y \Phi)X = \nabla_Y(\Phi X) - \Phi(\nabla_Y X)\},
\]

Date: May 10, 2014.
2010 Mathematics Subject Classification. 53C42; 53C40.
for all tangent vector field $X : M \to TM$. Note that if $\Phi = \lambda I$, where $\lambda : M \to \mathbb{R}$ is a C^1 function, then $\text{div} \, \Phi$ coincides with the gradient vector of λ.

It is a well known fact that a complete noncompact minimal submanifold in a Hadamard manifold must have infinite volume (see for instance [9]). Our first theorem says the following:

Theorem 1.1. Let $f : M \to \bar{M}$ be an isometric immersion of a complete noncompact manifold M in a complete simply-connected manifold \bar{M} with nonpositive radial curvature with respect to some base point $q_0 \in f(M)$. Let $\Phi : TM \to TM$ be a positive-semidefinite symmetric operator of class C^1 such that $\text{tr} \, \Phi(q_0) > 0$. Assume that

$$|H_\Phi + \text{div} \, \Phi| \leq \frac{1}{r + \epsilon} \text{tr} \, \Phi,$$

for some $\epsilon > 0$, where $r = d_{\bar{M}}(\cdot, q_0)$ is the distance in \bar{M} from q_0. Then the rate of growth of the integral $\int_M \text{tr} \, \Phi$ is at least logarithmic with respect to the geodesic balls centered at q_0, that is,

$$\liminf_{\mu \to \infty} \frac{1}{\log(\mu)} \int_{B_\mu(q_0)} \text{tr} \, \Phi > 0,$$

where B_μ denote the geodesic balls of M centered at q_0. In particular, the integral $\int_M \text{tr} \, \Phi$ must be infinite.

Before we enunciate the next results, we will to consider a consequence of Theorem 1.1. Let M be a manifold with nonpositive radial curvature with respect to some base point q_0. It is easy to show that the radial curvature of the product manifold $\bar{M} = M \times \mathbb{R}$ with respect to the base point $(q_0, 0)$ is also nonnegative. Furthermore, the inclusion map $j : M \to \bar{M}$ given by $j(x) = (x, 0)$ is a totally geodesic embedding. Thus the result below follows directly from Theorem 1.1.

Corollary 1.1. Let M be a complete simply-connected manifold with nonpositive radial curvature with respect to some base point q_0. Let $\Phi : TM \to TM$ be a positive-semidefinite symmetric operator such that $\text{tr} \, \Phi(q_0) > 0$. Assume that

$$|\text{div} \, \Phi| \leq \frac{1}{r + \epsilon} \text{tr} \, \Phi,$$

for some $\epsilon > 0$, where $r = d_\bar{M}(\cdot, q_0)$. Then the rate of growth of the integral $\int_M \text{tr} \, \Phi$ is at least logarithmic with respect to the geodesic balls centered at q_0. In particular, the integral $\int_M \text{tr} \, \Phi$ is infinite.

The next theorem says the following:
Theorem 1.2. Let \(f : M \to \tilde{M} \) be an isometric immersion of a complete noncompact manifold \(M \) in a Hadamard manifold \(\tilde{M} \). Let \(\Phi : TM \to TM \) be a positive-semidefinite symmetric operator of class \(C^1 \). Assume that
\[
\text{div} \Phi = H_\Phi = 0.
\]
Then, for all \(q \in M \), we have that either \(\Phi(q) = 0 \) or the rate of growth of the integral \(\int_M \text{tr} \Phi \) is at least linear with respect to the geodesic balls of \(M \) centered at \(q \), that is,
\[
\liminf_{\mu \to \infty} \frac{1}{\mu} \int_{B_\mu(q)} \text{tr} \Phi > 0,
\]
where \(B_\mu(q) \) denotes the geodesic ball of \(M \) of radius \(\mu \) and centered at \(q \). In particular, either \(\Phi \) vanishes identically or the integral \(\int_M \text{tr} \Phi \) is infinite.

The following result is a non-direct application of Theorem 1.2. It will be proved in section 3 below.

Corollary 1.2. Let \(f : M \to \tilde{M} \) be an isometric immersion of a complete noncompact manifold \(M \) in a complete simply-connected manifold \(\tilde{M} \) with nonpositive radial curvature with respect to some base point in \(f(M) \). Let \(D \) be a \(k \)-dimensional integrable distribution on \(M \), with \(k \geq 1 \), such that each integral of \(D \) is a minimal submanifold in \(\tilde{M} \). Then the rate of volume growth of \(M \) is at least linear.

To state our next applications of Theorems 1.1 and 1.2 we need to recall some notations. Let \(B : TM \to TM \) be a symmetric operator of class \(C^1 \).

We recall that \(B \) satisfies the Codazzi equation if the following holds:
\[
(\nabla_X B)Y = (\nabla_Y B)X,
\]
for all tangent vector fields \(X \) and \(Y \) on \(M \). The Newton operators \(P_j = P_j(B), \ j = 1, \ldots, m \), associated to \(B \), are the symmetric operators on \(M \) defined inductively by:
\[
P_0 = I;
\]
\[
P_j = S_j I - BP_{j-1}, \ \text{with} \ j \geq 1,
\]
where \(S_j = S_j(B) = \sum_{i_1 < \ldots < i_j} \lambda_{i_1} \ldots \lambda_{i_j} \) is the \(j \)th-elementary symmetric polynomial evaluated on the eigenvalues \(\lambda_1, \ldots, \lambda_m \) of \(B \).

A result due to Alencar, Santos and Zhou [1] says the following:

Theorem A (Corollary 2.2 of [1]). Let \(f : M^m \to Q^{m+1}_c \) be a noncompact properly immersed hypersurface in a space form \(Q^{m+1}_c \), with \(c \leq 0 \). Let \(P_j = P_j(A), \ j = 1, 2, \ldots, \) be the Newton operators associated to the shape operator \(A \) of the immersion \(f \). Assume that
\[
S_j \geq 0 \quad \text{and} \quad S_{j+1} = 0,
\]
for some \(1 \leq j \leq m-1 \). Then either \(S_j \equiv 0 \) or the integral \(\int_M S_j \) is infinite.
Actually, under the hypotheses of Theorem A, Alencar, Santos and Zhou proved that, for each \(q \in M \), it holds that either \(S_j(q) = 0 \) or the rate of growth of the integral \(\int_M S_j \) is at least linear with respect to the geodesic balls of \(M \) centered at \(q \).

The result below is a non-direct consequence of Theorem 1.1. It will be proved in section 3.

Theorem 1.3. Let \(f : M^m \to \tilde{M} \) be a complete non-compact isometric immersion in a complete simply-connected manifold \(\tilde{M} \) with nonpositive radial curvature with respect to some base point \(q_0 \in f(M) \). Let \(P_j = P_j(B) \), \(j = 1, 2, \ldots \), be the Newton operators associated to a symmetric operator \(B : TM \to TM \) that satisfies the Codazzi equation. Assume that \(S_{j+1}(B) = 0 \), \(S_j(B(q_0)) \neq 0 \) and \(S_j(B) \) does not change of sign, for some \(1 \leq j \leq m - 1 \). Assume further that the \(P_j \)-mean curvature vector satisfies

\[
|H_{P_j}| \leq \frac{1}{r + \epsilon},
\]

where \(r = d_{\tilde{M}}(\cdot, q_0) \). Then the rate of growth of the integral \(\int_M |S_j(B)| \) is at least logarithmic with respect to the geodesic balls of \(M \) centered at \(q_0 \).

Note that if \(f : M^m \to Q_c^{m+1} \) is a hypersurface and \(A : TM \to TM \) is the shape operator then the Newton operator \(P_j = P_j(A) \) satisfies

\[
H_{P_j} = \text{tr} (AP_j) = (j + 1)S_{j+1}.
\]

Thus the result below improves Theorem A and it follows as a consequence of Theorem 1.2.

Theorem 1.4. Let \(f : M^m \to Q_c^{m+1} \) be a complete non-compact hypersurface \(M \) in a space form \(Q_c^{m+1} \), with \(c \leq 0 \). Let \(P_j = P_j(A) \), \(j = 1, 2, \ldots \), be the Newton operators associated to the shape operator \(A \) of the immersion \(f \). Assume that

\[
S_{j+1} = 0 \quad \text{and} \quad S_j \quad \text{does not change of sign},
\]

for some \(1 \leq j \leq m - 1 \). Then either the rank \(\text{rk}(A(q)) \leq j - 1 \) or the rate of growth of the integral \(\int_M |S_j| \) is at least linear with respect to the geodesic balls of \(M \) centered at \(q \).

Our next theorem says the following:

Theorem 1.5. Let \(f : M^m \to \tilde{M} \) be an isometric immersion of a complete non-compact manifold \(M \) in a complete simply-connected manifold \(\tilde{M} \). Assume that the radial curvature of \(\tilde{M} \) with respect to some base point \(q_0 \in f(M) \) satisfies \(K_{\text{rad}} \leq -c^2 \), for some constant \(c \geq 0 \). Let \(\Phi : TM \to TM \) be
a positive-semidefinite symmetric operator of class C^1 such that $\text{tr } \Phi(q_0) > 0$. Assume that

$$|H_\Phi + \text{div } \Phi| \leq \frac{(m - 1)c}{m} \text{tr } \Phi$$

Assume further that $|\Phi \nabla r| \leq \frac{m}{m - 1} \text{tr } \Phi$, where $r = d_M(\cdot, q_0)$ and $\nabla r = (\nabla r)^T$ denotes the orthogonal projection of the gradient vector ∇r to TM. Then it holds that

$$\liminf_{\mu \to \infty} \frac{\mu^{-1}}{\text{tr } \Phi(q_0)} \int_{B_{\mu}(q_0)} \text{tr } \Phi > 0.$$

Moreover the limit in (1) does not depend of q_0. In particular, the integral $\int_M \text{tr } \Phi$ is infinite.

The result below follows from Theorem 1.5 by considering $\Phi = \lambda^s I$, with $1 \leq s \leq p$, where $\lambda : M \to \mathbb{R}$ is a nonnegative C^1-function.

Corollary 1.3. Let $f : M^m \to \bar{M}$ be an isometric immersion of a complete non-compact manifold M in a Hadamard manifold \bar{M} with sectional curvature satisfying $\bar{K} \leq -c^2$, for some constant $c \geq 0$. Let $\lambda : M \to [0, \infty)$ be a nonnegative C^1 function satisfying:

$$|\lambda H + p \nabla \lambda| \leq (m - 1)c \lambda,$$

for some constant $p \geq 1$, where $H = \text{tr } II$ is the mean curvature vector field of the immersion f. Then, for all $q \in M$, either $\lambda(q) = 0$ or the rate of growth of the integral $\int_M \lambda^s$ satisfies

$$\liminf_{\mu \to \infty} \frac{\mu^{-1}}{\lambda^s(q)} \int_{B_{\mu}(q)} \lambda^s > 0,$$

for all $1 \leq s \leq p$. Moreover the limit in (2) does not depend of q. In particular, either $\lambda \equiv 0$ or the integral $\int_M \lambda^s$ is infinite, for all $1 \leq s \leq p$.

Let M be a Hadamard manifold with sectional curvature satisfying $K \leq -c^2$, for some constant $c \geq 0$. It is simple to show that the warped product space $\bar{M} = \mathbb{R} \times \text{cosh}(ct)$ M is also a Hadamard manifold with sectional curvature satisfying $\bar{K} \leq -c^2$. Furthermore the inclusion map $i : M \to \{0\} \times M \subset \bar{M}$ is a totally geodesic embedding. Thus it follows from Corollary 1.3 the result below:

Corollary 1.4. Let M be a Hadamard manifold with sectional curvature satisfying $K \leq -c^2$, for some constant $c \geq 0$. Let $\lambda : M \to \mathbb{R}$ be a nonnegative C^1 function satisfying $|\nabla \lambda| \leq \frac{(m - 1)c}{m} \lambda$, for some constant $p \geq 1$. Then either $\lambda \equiv 0$ or the rate of growth of $\int_M \lambda^s$ satisfies

$$\liminf_{\mu \to \infty} \frac{\mu^{-1}}{\lambda^s(q)} \int_{B_{\mu}(q)} \lambda^s > 0,$$
for all $1 \leq s \leq p$. Moreover the limit in (4) does not depend of q. In particular, either $\lambda \equiv 0$ or the integral $\int_M \lambda^s$ is infinite, for all $1 \leq s \leq p$.

Finally we will enunciate our last theorem. We recall that an end E of M is an unbounded connected component of the complement set $M - \Omega$, for some compact subset Ω of M. We say that a manifold \bar{M} has bounded geometry if it has sectional curvature bounded from above and injective radius bounded from below by a positive constant. By results of Frensel [9], Cheng, Cheung and Zhou [5] and do Carmo, Wang and Xia [6] we know the following theorem.

Theorem B. Let $f : M \to \bar{M}$ be an isometric immersion of a complete non-compact manifold M in a manifold \bar{M} with bounded geometry. If the mean curvature vector of f is bounded in norm then each end of M has infinite volume.

Actually, Cheng, Cheung and Zhou [5] improve Theorem B by showing that the volume growth of each end E of M is at least linear, that is

$$\liminf_{\mu \to \infty} \frac{\text{vol}(B_\mu(q) \cap E)}{\mu} > 0,$$

for all $q \in E$. Moreover the limit (4) does not depend of of q (see Proposition 2.1 of [5]).

Our last theorem says the following:

Theorem 1.6. Let $f : M^m \to \bar{M}$ be an isometric immersion of a complete non-compact manifold M in a manifold \bar{M} with bounded geometry. Let E be an end of M and $\lambda : E \to \mathbb{R}$ a nonnegative C^1 function. Assume that the mean curvature vector field $H = \text{tr} II$ of the immersion f satisfies

$$|H \lambda + p \nabla \lambda| \leq \kappa \lambda$$

in E, for some constant $\kappa \geq 0$. Then it holds that $\lim_{x \to \infty} \lambda(x) = 0$ or the integrals $\int_E \lambda^s$ are infinite, for all $1 \leq s \leq p$.

Note that if M has bounded geometry then the product manifold $\bar{M} = M \times \mathbb{R}$ also has bounded geometry. Since the inclusion map $i : M \to M \times \{0\} \subset \bar{M}$ is a totally geodesic embedding, the result below follows from Theorem 1.6.

Corollary 1.5. Let E be an end of a complete non-compact manifold with bounded geometry. Let $\lambda : E \to [0, \infty)$ be a nonnegative C^1 function. Assume that

$$|\nabla \lambda| \leq \kappa \lambda$$

in E, for some constant $\kappa \geq 0$. Then it holds that $\lim_{x \to \infty} \lambda(x) = 0$ or the integrals $\int_E \lambda^p$ are infinite, for all $p \geq 1$.

2. Preliminaries

Let \(f : M^m \rightarrow \bar{M} \) be an isometric immersion of an \(m \)-dimensional Riemannian manifold \(M \) in a Riemannian manifold \(\bar{M} \). For the sake of simplicity, henceforth we shall make the usual identification of the points \(f(q) \) with \(q \) and the vectors \(df_qv \) with \(v \), for all \(q \in M \) and \(v \in T_qM \). Let \(\Phi : TM \rightarrow TM \) be a symmetric operator of class \(C^1 \). We consider the following definition:

Definition 2.1. The \(\Phi \)-divergence of a vector field \(X : M \rightarrow T\bar{M} \) of class \(C^1 \) is given by the following:

\[
D_\Phi X = \text{tr} \left\{ Z \in TM \mapsto \Phi \left(\nabla_Z X \right)^T \right\},
\]

Note that if \(\Phi = I : TM \rightarrow TM \) is the identity operator then \(D_\Phi X \) coincides with the divergence \(\text{div}_M X \).

Let \(u = (u^1, \ldots, u^m) \) be a local coordinate system on \(M \). Let \(\{ \frac{\partial}{\partial u^1}, \ldots, \frac{\partial}{\partial u^m} \} \) and \(\{ du^1, \ldots, du^m \} \) be the frame and coframe associated to \(u \), respectively.

Using the Einstein’s summation convention, let \(g_{ij} = \langle \, , \, \rangle \) be the metric of \(M \). The Cheng-Yau square operator \([4]\) associated to the symmetric \((0,2)\)-tensor \(\phi = \phi_{ij} du^i \otimes du^j \), where \(\phi_{ij} = \langle \Phi(\frac{\partial}{\partial u^i}), \frac{\partial}{\partial u^j} \rangle = \Phi^{k}g_{kj} \), is defined by

\[
\Box_{\phi} f = D_\Phi (\nabla f).
\]

It was proved in \([4]\) that the operator \(\Box_{\phi} \) is self-adjoint on the space of the all Sobolev functions with null trace if, and only if, the covariant derivative of \(\Phi \) satisfies \(\Phi_{;ji} = 0 \), for all \(j \). Let \(X : M \rightarrow TM \) be a vector field of class \(C^1 \) and write \(X^T = X^j \frac{\partial}{\partial u^j} \). Using that \(\nabla_{\frac{\partial}{\partial u^j}} X^T = \nabla_{\frac{\partial}{\partial u^j}} (X^j \frac{\partial}{\partial u^j}) = X^j \frac{\partial}{\partial u^j} \), we have that

\[
\Phi(\nabla_{\frac{\partial}{\partial u^j}} X^T) = \Phi(X^j \frac{\partial}{\partial u^j}) = X^j \Phi_k \frac{\partial}{\partial u^k}.
\]

Thus we have that \(D_\Phi(X^T) = X^j \Phi^i_{;j} \). Since \(\Phi(X^T) = X^j \Phi(\frac{\partial}{\partial u^j}) = X^j \Phi^i_{;j} \frac{\partial}{\partial u^i} \), we obtain

\[
\text{div}_M(\Phi(X^T)) = (X^j \Phi^i_{;j})_i = X^j_i \Phi^i_{;j} + X^j_i \Phi^i_{;j, i} = D_\Phi X^T + (\text{div} \Phi)^*(X^T),
\]

where \((\text{div} \Phi)^* \) the 1-form defined by \((\text{div} \Phi)^* = \Phi_{;ji}^i du^j \). Using that \(\nabla_{\frac{\partial}{\partial u^j}} \Phi = \Phi^k_{;j;i} \frac{\partial}{\partial u^k} \), we have that

\[
(\nabla_{\frac{\partial}{\partial u^j}} \Phi)X^T = X^j(\nabla_{\frac{\partial}{\partial u^j}} \Phi) \frac{\partial}{\partial u^j} = X^j \Phi^k_{;j;i} \frac{\partial}{\partial u^k}. \]

This implies that

\[
(\text{div} \Phi)^*(X^T) = X^j \Phi^i_{;j,i} = \text{tr} \left\{ Y \in TM \mapsto (\nabla Y \Phi)X^T \right\} = \langle \text{div} \Phi, X^T \rangle.
\]
Proposition 2.1. Let $X : M^m \to TM$ be a C^1 vector field and $f : M \to \mathbb{R}$ a C^1 function. Then the following statements hold:

(A) $\mathcal{D}_\Phi X = \mathcal{D}_\Phi X^T - \langle H_\Phi, X \rangle$;
(B) $\mathcal{D}_\Phi(fX) = f\mathcal{D}_\Phi X + \langle \Phi(X^T), \nabla f \rangle$;
(C) $\mathcal{D}_\Phi X = \text{div}_M(\Phi(X^T)) - \langle (H_\Phi + \text{div}_M \Phi), X \rangle$.

Proof. Write $X = X^T + X^N$, where X^N is the orthogonal projection of X to $T^\perp M$. Let $\{e_1, \ldots, e_m\}$ be a local orthonormal frame of M. We have that

$$\mathcal{D}_\Phi X = \sum_{i=1}^m \langle \Phi(\nabla_{e_i} X)^T, e_i \rangle = \sum_{i=1}^m \langle \Phi(\nabla_{e_i} X^T), e_i \rangle + \sum_{i=1}^m \langle \Phi(\nabla_{e_i} X^N)^T, e_i \rangle$$

which proves Item (A). Now,

$$\mathcal{D}_\Phi(fX) = \sum_{i=1}^m \langle \Phi(\nabla_{e_i} fX)^T, e_i \rangle = \sum_{i=1}^m \langle e_i(f)\Phi(X^T) + f\Phi(\nabla_{e_i} X)^T, e_i \rangle$$

which proves Item (B). Using (A), (6) and (7) we obtain that

$$(8) \quad \mathcal{D}_\Phi X = \text{div}_M(\Phi(X^T)) - \langle (H_\Phi + \text{div}_M \Phi), X \rangle,$$

which proves Item (C). \hfill \Box

Remark 1. By (C) and the divergence theorem we have that

$$(9) \quad \int_D \mathcal{D}_\Phi X = \int_{\partial D} \langle \Phi X^T, \nu \rangle - \int_D \langle (H_\Phi + \text{div}_M \Phi), X \rangle,$$

where D is a bounded domain with Lipschitz boundary ∂D and ν is the exterior conormal along ∂D. Equation (9) holds in the sense of the trace.

Example 2.1. Take $p \in M$ and let $x = (x^1, \ldots, x^n)$ be a coordinate system in a normal neighborhood V of p in \bar{M}. Write $\frac{\partial^T}{\partial x^T} = (\frac{\partial}{\partial x^T})^T = a^i_l \partial \frac{\partial}{\partial x^l}$ and $\Phi(\frac{\partial^T}{\partial x^l}) = \tilde{\phi}^i_j \partial \frac{\partial}{\partial x^j}$. We have that

$$\Phi \left(\nabla \frac{\partial}{\partial x^l} \right)^T = a^k_l \tilde{\Gamma}^l_{kj} \Phi \left(\frac{\partial}{\partial x^j} \right) = a^k_l \tilde{\Gamma}^l_{kj} \tilde{\phi}^i_j \frac{\partial}{\partial x^i},$$

where $\tilde{\Gamma}^l_{kj}$ are the Christoffel symbols of the Riemannian connection $\tilde{\nabla}$ of \bar{M}. This implies that $\mathcal{D}_\Phi(\frac{\partial}{\partial x^l}) = a^k_l \tilde{\Gamma}^l_{kj} \tilde{\phi}^i_j$. Using (1) it holds the following:

$$\mathcal{D}_\Phi(\frac{\partial}{\partial x^l}) = h a^k_l \tilde{\Gamma}^l_{kj} \tilde{\phi}^i_j + \tilde{\phi}^i_j \frac{\partial h}{\partial x^k},$$
for all \(h \in C^1(M) \). As a particular case, consider the vector field \(Y = r\nabla r \), where \(r : M \to [0, \infty) \) is the distance function \(r(q) = d_M(q, q_0) \), for some \(q_0 \in M \). Using that \(r^2(q) = (x^1(q))^2 + \ldots + (x^n(q))^2 \), for all \(q \in V \), we have that \(Y(q) = \frac{1}{2} \nabla r^2 = x^j(q) \frac{\partial}{\partial x^j} \). Using that \(Y = x^j \frac{\partial}{\partial x^j} \) and \(\tr M \Phi = \bar{\phi}^i_i \), we obtain that

\[
D\Phi(Y) = x^j a^k_i \bar{\Gamma}^{il}_{kj} \bar{\phi}_l^i + \bar{\phi}^i_j \frac{\partial x^j}{\partial x^k} = \tr M \Phi + x^j a^k_i \bar{\Gamma}^{il}_{kj} \bar{\phi}_l^i.
\]

In particular, if \(\bar{M} \) is flat then \(D\Phi(Y) = \tr \Phi \). Since \(Y = 2^{-1}\nabla r^2 \), using (A) and (A), we obtain that

\[
2^{-1} \Box \Phi r^2 = D\Phi(Y) + r \langle H\Phi, \nabla r \rangle = \tr \Phi + r \langle H\Phi, \nabla r \rangle + x^j a^k_i \bar{\Gamma}^{il}_{kj} \bar{\phi}_l^i.
\]

Let \(K : \mathbb{R} \to \mathbb{R} \) be an even continuous function. Let \(h \) be a solution of the Cauchy problem

\[
\begin{cases}
h'' + Kh = 0, \\
h(0) = 0, h'(0) = 1.
\end{cases}
\]

Let \(I = (0, r_0) \) be the maximal interval where \(h \) is positive.

Let \(M \) be a Riemannian manifold and \(B = B_{r_0}(q_0) \) the geodesic ball of \(\bar{M} \) with center \(q_0 \) and radius \(r_0 > 0 \). Consider the radial vector field

\[X = h(r) \nabla r, \]

defined on \(B \cap V \), where \(r = d_M(\cdot, q_0) \), for some fixed point \(q_0 \in M \), and \(V \) is a normal neighborhood of \(q_0 \) in \(M \). The result below generalizes Example 2.1 and will be useful is the proof of Theorem 1.1.

Proposition 2.2. Let \(f : M^m \to \bar{M} \) be an isometric immersion of a manifold \(M \) in the manifold \(\bar{M} \). Assume that the radial curvature of \(\bar{M} \) with respect to the basis point \(q_0 \in M \) satisfies \(\bar{K}_{\text{rad}} \leq K(r) \) in \(B \cap V \). Let \(\Phi : TM \to TM \) be a symmetric operator. Assume that one of the following conditions hold:

(i) \(\Phi \) is positive-semidefinite; or
(ii) \(\bar{K}_{\text{rad}} = K(r) \),

Then, it holds that

\[
D\Phi(X) \geq h'(r) \tr \Phi.
\]

Moreover, the equality occur if (ii) holds.

Proof. Take \(q \in M \cap V \). Let \(\xi = \{e_1, \ldots, e_m\} \) be an orthonormal basis of \(T_qM \) by eigenvectors of \(\Phi \) and \(\{\lambda_1, \ldots, \lambda_m\} \) the corresponding eigenvalues.
We extend the basis ξ to an orthonormal frame on a neighborhood of q in M. Then, at the point q, we have

$$D_\Phi \nabla_r = \sum_{i=1}^m \left(\Phi(\nabla_{ei} \nabla_r)^T, e_i \right) = \sum_{i=1}^m \lambda_i \left(\nabla_{ei} \nabla_r, e_i \right) = \sum_{i=1}^m \lambda_i (\text{Hess}_{\tilde{M}} r)_q(e_i, e_i),$$

where $\text{Hess}_{\tilde{M}} r$ is the Hessian of r.

Let \tilde{M} be the Euclidean ball of \mathbb{R}^m of radius r_0 and center at the origin 0 endowed with the metric \tilde{g}, which in polar coordinates can be written as

$$\tilde{g} = d\rho^2 + h(\rho)^2 d\omega^2,$$

where $d\omega^2$ represents the standard metric on the Euclidean unit sphere S^{m-1}. Consider the distance function $\tilde{r} = d_{\tilde{M}}(\cdot, 0)$. Then, for $x = \rho \omega$ with $\rho > 0$ and $\omega \in S^{m-1}$, the Hessian of \tilde{r} satisfies:

$$\text{Hess}(\tilde{r}) = h'(h - d\tilde{r} \otimes d\tilde{r}),$$

Furthermore, the function $K(\tilde{r}) = -\frac{h''(\tilde{r})}{h(\tilde{r})}$ is the radial curvature of \tilde{M} with respect to the basis point 0. Thus since the radial curvature of \bar{M} with respect to some basis point q_0 satisfies $\bar{K}_{\text{rad}} \leq K(r)$ it follows from the Hessian comparison theorem (see Theorem A page 19 of [10]) the following:

$$(\text{Hess}_{\bar{M}} r)(e_i, e_i) \geq h'(h)(1 - \langle \nabla_r, e_i \rangle^2).$$

Moreover, the equality in (12) holds when $\bar{K}_{\text{rad}} = K(r)$. Since $\langle \Phi e_i, e_j \rangle_q = \lambda_i \delta_{ij}$, for all i, j, we obtain

$$(13) \quad D_\Phi X = D_\Phi (h(r) \nabla_r) = h(r) D_\Phi \nabla_r + h'(r) \langle \nabla_r, \Phi \nabla_r \rangle
= h(r) \sum_{i=1}^m \lambda_i (\text{Hess}_{\bar{M}} r)_q(e_i, e_i) + h'(r) \langle \nabla_r, \Phi \nabla_r \rangle.$$

Using that the hypothesis (i) and (ii), it follows from (12) and (13) that

$$(14) \quad D_\Phi X \geq h(r) \frac{h'(r)}{h(r)} \sum_{j=1}^m \lambda_j \left(1 - \langle \nabla_r, e_j \rangle^2 \right) + h'(r) \langle \nabla_r, \Phi \nabla_r \rangle
= h'(r) (\text{tr} \Phi - \langle \nabla_r, \Phi \nabla_r \rangle) + h'(r) \langle \nabla_r, \Phi \nabla_r \rangle
= h'(r) \text{tr} \Phi.$$

Moreover, the equality in (14) holds when $\bar{K}_{\text{rad}} = K(r)$. □

Corollary 2.1. Under the hypotheses of Proposition 2.2 we have that

$$\int_{\partial D} h(r) \langle \Phi \nabla_r, \nu \rangle \geq \int_D \langle h'(r) \text{tr} \Phi - h(r) H_\Phi + \text{div}_M \Phi \rangle,$$
where D is a bounded domain compactly contained in $V \cap B$ with Lipschitz boundary ∂D, and ν is the exterior conormal along ∂D.

Proof. Using (C) we have that $\text{div}_M(\Phi X^T) = \mathcal{D}_\Phi X + \langle H_\Phi + \text{div} \Phi, X \rangle$. Since $|\nabla r| = 1$, using (11) and the divergence theorem (see for instance [7]), we obtain that

$$
\int_{\partial D} h(r) \langle \Phi \nabla r, \nu \rangle \geq \int_D h'(r) \text{tr} \Phi + \int_D h(r) \langle H_\Phi + \text{div} \Phi, \bar{\nabla} r \rangle
$$

(15)

$$
\geq \int_D (h'(r) \text{tr} \Phi - h(r)|H_\Phi + \text{div}_M \Phi|).
$$

Corollary 2.1 is proved. \qed

We denote by \bar{R}_{q_0} the injectivity radius of \bar{M} at the point q_0 and $B_\mu(q)$ the geodesic ball of M with center q and radius μ. Let $\alpha : [0, \infty) \rightarrow [0, \infty)$ be a nonnegative C^1 function. We consider the following positive number:

$$
(16) \quad \mu_{K, \alpha} = \sup \left\{ t \in (0, r_0); \frac{h'(t)}{h(t)} > \alpha(t) \text{ and } \alpha'(t) \geq -\frac{h'(t)^2}{h(t)^2} - K(t) \right\}.
$$

3. proof of Theorem 1.1, Theorem 1.2 and Corollary 1.2

The main tool of this section is the following result:

Theorem 3.1. Let $f : M \rightarrow \bar{M}$ be an isometric immersion of a complete noncompact manifold M in a manifold \bar{M}. Assume that the radial curvature of \bar{M} with base point in some $q_0 \in f(M)$ satisfies $\bar{K}_{\text{rad}} \leq K(r)$, where $r = d_M(\cdot, q_0)$ and $K : \mathbb{R} \rightarrow \mathbb{R}$ is an even continuous function. Let $\Phi : TM \rightarrow TM$ be a positive-semidefinite symmetric operator such that $\text{tr} \Phi(q_0) > 0$. Assume further that

$$
|H_\Phi + \text{div} \Phi| \leq \alpha(r) \text{tr} \Phi,
$$

where $\alpha : [0, \infty) \rightarrow [0, \infty)$ is a nonnegative C^1 function. Then, for each $0 < \mu_0 < \min \{ \mu_{K, \alpha}, \bar{R}_{q_0} \}$, there exists a positive constant $\Lambda = \Lambda(q_0, \mu_0, M)$ satisfying

$$
\int_{B_\mu(q_0)} \text{tr} \Phi \geq \Lambda \int_{\mu_0}^\mu e^{-\int_{\mu_0}^s \alpha(s) \text{d}s} \text{d}r,
$$

for all $\mu_0 \leq \mu < \min \{ \mu_{K, \alpha}, \bar{R}_{q_0} \}$.

Proof. Take $0 < \mu < \bar{R}_0 = \min \{ \mu_{K, \alpha}, \bar{R}_{q_0} \}$ and let $B_\mu = B_\mu(q_0)$. Note that the distance function $\rho = d_M(\cdot, q_0)$ satisfies $r \leq \rho$. This implies that B_μ is contained in the geodesic ball $B_{\bar{R}_0}(q_0)$ of \bar{M} with center q_0 and radius \bar{R}_0. Since M is a complete noncompact manifold and ρ is a Lipschitz function we obtain that the ball B_μ is a bounded domain of M with Lipschitz boundary $\partial B_\mu \neq \emptyset$. Since $|\nabla \rho| = 1$ a.e. in B_μ, using Corollary 2.1 equation (17) and
Thus, it follows from (18) that
\[\int_{\partial B_\mu} h(r) \langle \Phi \nabla r, \nu \rangle \geq \int_{B_\mu} \left(\frac{h'(r) - \alpha(r)h(r)}{h(r)} \right) h(r) \text{tr} \Phi \]
\[= \int_{0}^{\mu} \int_{\partial B_r} \left(\frac{h'(r)}{h(r)} - \alpha(r) \right) h(r) \text{tr} \Phi, \]
for almost everywhere \(0 < \mu < \bar{R}_0\), where \(\nu\) is the exterior conormal along \(\partial B_\mu\).

Take \(q \in M\) and let \(\{e_1, \ldots, e_m\} \subset T_q M\) be an orthonormal basis by eigenvectors of \(\Phi\) at the point \(q\). Consider \(\{\lambda_1, \ldots, \lambda_m\}\) the corresponding eigenvalues. Since \(\Phi\) is positive-semidefinite we have that \(\lambda_i \geq 0\), for all \(i\). Since \(|\nabla r| \leq 1\), using Cauchy-Schwartz inequality, we obtain
\[\langle \Phi \nabla r, \nu \rangle = \sum_{i=1}^{m} \lambda_i \langle \nabla r, e_i \rangle \langle \nu, e_i \rangle \leq \sum_{i=1}^{m} \lambda_i |\nabla r||\nu| = (\text{tr} \Phi)|\nabla r| \leq \text{tr} \Phi. \]
Thus, it follows from (18) that
\[\int_{\partial B_\mu} h(r) \text{tr} \Phi \geq \int_{0}^{\mu} \int_{\partial B_r} \left(\frac{h'(r)}{h(r)} - \alpha(r) \right) h(r) \text{tr} \Phi, \]
for a.e. \(0 < \mu < \bar{R}_0\).

We define the following functions
\[F : \mu \in (0, \bar{R}_0) \mapsto F(\mu) = \int_{\partial B_\mu} h(r) \text{tr} \Phi; \]
\[G : \mu \in (0, \bar{R}_0) \mapsto G(\mu) = \int_{0}^{\mu} \int_{\partial B_r} \left(\frac{h'(r)}{h(r)} - \alpha(r) \right) h(r) \text{tr} \Phi, \]
It follows from (20) that
\[F(\mu) \geq G(\mu), \]
for a.e. \(0 < \mu < \bar{R}_0\).

Note that \(\alpha'(t) \geq -\frac{h'(t)^2 - K(t)}{h(t)^2}\) is equivalent to say that \(\left(\frac{h'(t)}{h(t)} - \alpha(t) \right)' \leq 0\). Thus, by hypothesis, the function \(t \in (0, \mu_{K, \alpha}) \mapsto \frac{h'(t)}{h(t)} - \alpha(t)\) is positive and non-increasing. Since the function \(r = d_{\mathcal{M}}(\cdot, q_0)\) satisfies \(r \leq \tau\) in \(\partial B_\tau\) we have that \(\frac{h'(r)}{h(r)} - \alpha(r) \geq \frac{h'(\tau)}{h(\tau)} - \alpha(\tau) > 0\) in \(\partial B_\tau\), for all \(0 < \tau < \bar{R}_0\). This implies that \(G(\mu) > 0\), for all \(0 < \mu < \bar{R}_0\), since \(G \geq 0\), \(G\) is nondecreasing and \(G(\mu) > 0\), for all \(\mu > 0\) sufficiently small (recall that \(\text{tr} \Phi(q_0) > 0\)).

Using (21) and (22), we have that
\[G'(\mu) = \left(\frac{h'(\mu)}{h(\mu)} - \alpha(\mu) \right) F(\mu) \geq \left(\frac{h'(\mu)}{h(\mu)} - \alpha(\mu) \right) G(\mu), \]
for a.e. $0 < \mu < \bar{R}_0$. Thus we obtain
\[(23) \quad \frac{d}{d\mu} \ln G(\mu) = \frac{G'(\mu)}{G(\mu)} \geq \frac{h'(\mu)}{h(\mu)} - \alpha(\mu) = \left(\frac{d}{d\mu} \ln h(\mu) \right) - \alpha(\mu),\]
for a.e. $0 < \mu < \bar{R}_0$. Integrating (23) over (μ_0, μ), with $0 < \mu_0 < \mu$, we obtain that
\[\ln \frac{G(\mu)}{G(\mu_0)} \geq \ln \frac{h(\mu)}{h(\mu_0)} - \int_{\mu_0}^{\mu} \alpha(s)ds.\]
This implies that
\[(24) \quad G(\mu) \geq \Lambda(\mu_0, \mu_0, M)h(\mu)e^{-\int_{\mu_0}^{\mu} \alpha(s)ds}, \]
where $\Lambda = \Lambda(\mu_0, \mu_0, M) = \frac{G(\mu_0)}{h(\mu_0)}$.

Now, we define the function $f(\mu) = \int_{\partial B_\mu} \text{tr } \Phi$, with $0 < \mu < \bar{R}_0$. Since $h(\mu) \leq h(\mu)$ in ∂B_μ it follows from (22), (24) and the coarea formula that
\[f'(\mu) = \int_{\partial B_\mu} \text{tr } \Phi \geq \frac{1}{h(\mu)} \int_{\partial B_\mu} h(\mu) \text{tr } \Phi = \frac{F(\mu)}{h(\mu)} \geq \frac{G(\mu)}{h(\mu)} \geq \Lambda e^{-\int_{\mu_0}^{\mu} \alpha(s)ds}, \]
for a.e. $0 < \mu < \bar{R}_0$. Since $f(\mu_0) \geq 0$ we have that
\[\int_{B_\mu} \text{tr } \Phi = f(\mu) \geq \Lambda \int_{\mu_0}^{\mu} e^{-\int_{\mu_0}^{\tau} \alpha(s)ds} d\tau.\]
This concludes the proof of Theorem 3.1. □

Now we are able to prove Theorem 1.1, Theorem 1.2, Corollary 1.2 and Theorem 1.3.

3.1. Proof of Theorem 1.1. First we observe that the injectivity radius $\bar{R}_{q_0} = +\infty$, since \bar{M} has nonpositive radial curvature with base point q_0. We take the functions $K(t) = 0$, with $t \in \mathbb{R}$, and $\alpha(t) = \frac{1}{1 + t}$, with $t \geq 0$. The function $h(t) = t$, with $t > 0$, is the maximal positive solution of (10). Furthermore, we have that $\mu_{K, \alpha} = \infty$. Since $K_{\text{rad}} \leq 0 = K(r)$ and $\text{tr } \Phi(q_0) > 0$, Theorem 3.1 applies. Thus it holds that
\[\int_{B_\mu} \text{tr } \Phi \geq \Lambda \int_{\mu_0}^{\mu} e^{-\int_{\mu_0}^{\tau} \alpha(s)ds} d\mu = \Lambda(\mu_0 + \epsilon) \log \left(\frac{\mu + \epsilon}{\mu_0 + \epsilon} \right), \]
for all $0 < \mu_0 < \mu$, where Λ is a positive constant depending only on q_0, μ_0 and M. This implies that
\[\liminf_{\mu \to \infty} \frac{1}{\log(\mu)} \int_{B_\mu(q_0)} \text{tr } \Phi > 0.\]
Theorem 1.1 is proved.
3.2. Proof of Theorem 1.2. Similarly as in the proof of Theorem 1.1 we have that R_{g_0}. Consider the function $K(t) = 0$, with $t \in \mathbb{R}$, and $\alpha(t) = 0$, with $t \geq 0$. We have that $\mu_{K,\alpha} = +\infty$ and Theorem 3.1 applies. Thus we obtain that $\int_{B_{\mu}(q_0)} \text{tr} \Phi \geq \Lambda(\mu - \mu_0)$, for all $0 < \mu_0 < \mu$, where Λ is a positive constant depending only on q_0, μ_0 and M. This implies that

$$\liminf_{\mu \to \infty} \frac{1}{\mu} \int_{B_{\mu}(q_0)} \text{tr} \Phi \geq \Lambda > 0.$$

Theorem 1.2 is proved.

3.3. Proof of Corollary 1.2. Fix $q \in M$. Let $\{E_1, \ldots, E_m\}$ and $\{\tilde{E}_1, \ldots, \tilde{E}_k\}$ be orthonormal frames of TM and D defined in a neighborhood U of q in M, respectively. Since $P_D(v) = \langle v, E_l \rangle E_l$, for all $v \in TU$, we obtain that

$$\begin{align*}
\text{div} P_D &= \sum_{i=1}^m (\nabla_{E_i} P_D) E_i = \sum_{i=1}^m \nabla_{E_i} (P_D(E_i)) - P_D(\nabla_{E_i} E_i) \\
&= \sum_{i=1}^m \sum_{l=1}^k \left(E_i \langle E_i, \tilde{E}_l \rangle \right) \tilde{E}_l + \langle E_i, \tilde{E}_l \rangle \nabla_{E_i} \tilde{E}_l - \langle \nabla_{E_i} E_i, \tilde{E}_l \rangle \tilde{E}_l \\
&= \sum_{i=1}^m \sum_{l=1}^k \langle E_i, \nabla_{E_i} \tilde{E}_l \rangle \tilde{E}_l + \langle E_i, \tilde{E}_l \rangle \nabla_{E_i} \tilde{E}_l \\
&= \sum_{l=1}^k (\text{div}_M(\tilde{E}_l)) \tilde{E}_l + \sum_{l=1}^k \nabla_{\sum_{i=1}^m \langle E_i, \tilde{E}_l \rangle E_i} \tilde{E}_l \\
&= \sum_{l=1}^k (\text{div}_M(\tilde{E}_l)) \tilde{E}_l + \sum_{l=1}^k \nabla_{E_i} \tilde{E}_l.
\end{align*}$$

(25)

Since the distribution D is integrable, there exists an embedded submanifold $S \subset M$ satisfying $q \in S$ and $T_xS = D(x)$, for all $x \in S$. Let $\{\tilde{E}_1, \ldots, \tilde{E}_k\}$ be an orthonormal frame, defined in a small neighborhood U of q in S, that is geodesic at q with respect to the connection of S, namely,

$$\begin{align*}
(\nabla_{\tilde{E}_l} \tilde{E}_s)_q = P_D(\nabla_{\tilde{E}_l} \tilde{E}_s)_q = 0,
\end{align*}$$

for all $l, s = 1, \ldots, k$. Now, let $\{\tilde{E}_{k+1}, \ldots, \tilde{E}_m\}$ be an orthonormal frame of the normal bundle TS^\perp defined in a small neighborhood of q in S, that we can also assume to be U. We extend the frame $\{\tilde{E}_1, \ldots, \tilde{E}_m\}$ to an orthonormal frame defined in a small tubular neighborhood W of U in M by parallel transport along minimal geodesics from U to the points of W. In particular, it holds that $(\nabla_{\tilde{E}_l} \tilde{E}_l)_x = 0$, for all $x \in U$, $l = 1, \ldots, k$ and
\(\beta = k + 1, \ldots, m \). This fact, together with (26), imply that

\[
(27) \quad (\text{div}_M(\tilde{E}_l))_q = \sum_{i=1}^{k} \left\langle (\nabla^{S}_{i} \tilde{E}_l)_q, \tilde{E}_l(q) \right\rangle + \sum_{\beta=k+1}^{m} \left\langle (\nabla^{S}_{\beta} \tilde{E}_l)_q, \tilde{E}_\beta(q) \right\rangle = 0,
\]

for all \(l = 1, \ldots, k \). Thus, by (25), (26) and (27) we obtain that

\[
(28) \quad (\text{div}_P)_{q} = \sum_{l=1}^{k} \sum_{\beta=k+1}^{m} \left\langle (\nabla^{S}_{\beta} \tilde{E}_l)_q, \tilde{E}_\beta(q) \right\rangle \tilde{E}_\beta(q) = \sum_{l=1}^{k} \tilde{\Pi}^{S} (\tilde{E}_l(q), \tilde{E}_l(q)),
\]

where \(\tilde{\Pi}^{S} \) is the second fundamental form of the submanifold \(S \) in \(M \).

On the other hand, the second fundamental form \(\tilde{\Pi} \) of the restriction \(f|_S : S \to \bar{M} \) is given by:

\[
(29) \quad \tilde{\Pi}(v, v) = \Pi^{S}_M(v, v) + \Pi(v, v) = \Pi^{S}_M(v, v) + \Pi(P_D v, v),
\]

for all \(v \in T_x S = D(x) \), with \(x \in S \), where \(\Pi \) denotes the second fundamental form of the immersion \(f : M \to M \). Thus, by (28) and (29), we have that

\[
(30) \quad \text{tr} \, \tilde{\Pi} = \text{div} P_D + H_P.
\]

By hypothesis the isometric immersion \(f|_S : S \to \bar{M} \) is minimal. Thus, by (30), it holds that \(\text{tr} \, \tilde{\Pi} = \text{div} P_D + H_P = 0 \). Since \(\text{tr} P_D = k \geq 1 \) it follows from Theorem 1.2 that the rate of growth of the volume \(\text{vol}(M) = \frac{1}{k} \int_M \text{tr} P_D \) is at least linear with respect to the geodesic balls centered at any point of \(M \). Corollary 1.2 is proved.

4. Proof of Theorem 1.3 and Theorem 1.4

Before we prove Theorem 1.3 we need some preliminaries. Let \(W^m \) be an \(m \)-dimensional vector space and \(T : W \to W \) a symmetric linear operator on \(W \). Consider the Newton operators \(P_j(T) : W \to W \), \(j = 0, \ldots, m \), associated to \(T \). It is easy to shows that each \(P_j(T) \) is a symmetric linear operator with the same eigenvectors of \(T \). Let \(\{ e_1, \ldots, e_m \} \) be an orthonormal basis of \(W \) by eigenvectors of \(T \) and \(\{ \lambda_1, \ldots, \lambda_m \} \) the corresponding eigenvalues. Let \(W_j = \{ e_j \}^\perp \), \(j = 1, \ldots, m \), be the orthogonal hyperplane to \(e_j \) and consider \(T_j = T|_{W_j} : W_j \to W_j \). The two lemmas below were proved for the case that \(T \) is the shape operator \(A(p) \) associated to a hypersurface of a Riemannian manifold evaluated at some point \(p \) (see Lemma 2.1 of [2] and Proposition 2.4 of [1], respectively). The proof in the general case follows exactly the same steps.

Lemma 4.1. For each \(1 \leq j \leq m - 1 \), the following items hold:

(a) \(P_j(T)e_k = S_j(T_k)e_k \), for each \(1 \leq k \leq m \);
(b) \(\text{tr} (P_j(T)) = \sum_{k=1}^{m} S_j(T_k) = (m - j)S_j(T) \);
\((c) \) \(\text{tr} \left(T P_j(T) \right) = \sum_{k=1}^{m} \lambda_k S_j(T_k) = (j + 1) S_{j+1}(T) \);
\((d) \) \(\text{tr} \left(T^2 P_j(T) \right) = \sum_{k=1}^{m} \lambda_k^2 S_j(T_k) = S_1(T) S_{j+1}(T) - (j + 2) S_{j+2}(T) \).

Lemma 4.2. Assume that \(S_{j+1}(T) = 0 \), for some \(1 \leq j \leq n - 1 \). Then \(P_j(T) \) is semidefinite.

We also need of the following lemmas:

Lemma 4.3. Assume that \(S_{j-1}(T) = S_j(T) = 0 \), for some \(2 \leq j \leq m \).

Then the rank of \(T \) satisfies \(\text{rk}(T) \leq j - 2 \).

Proof. If \(T = 0 \) then there is nothing to prove since \(\text{rk}(T) = 0 \leq m - 2 \). Thus we can assume that \(T \neq 0 \). We will prove Lemma 4.3 by induction on \(m = \dim W \).

First we assume that \(m = 2 \). Since

\[
\|T\|^2 := \lambda_1^2 + \lambda_2^2 = (\lambda_1 + \lambda_2)^2 - 2 \lambda_1 \lambda_2 = S_1(T)^2 - 2 S_2(T) = 0
\]

it follows that \(T = 0 \).

Now we assume that Lemma 4.3 is true for any symmetric operator \(Q : V^k \to V^k \) defined on a \(k \)-dimensional vector space \(V \), with \(2 \leq k \leq m - 1 \).

Since \(S_{j-1}(T) = S_j(T) = 0 \), for some \(2 \leq j \leq m \), it follows from Lemma 4.2 that the operators \(P_{j-2}(T) \) and \(P_{j-1}(T) \) are semidefinite. Thus using that

\[
\text{tr} \left(P_{j-1}(T) \right) = (m - j + 1) S_{j-1}(T) = 0
\]

it follows that \(P_{j-1}(T) = 0 \). Furthermore, the operator \(T^2 P_{j-2}(T) \) is also semidefinite with trace satisfying

\[
\text{tr} \left(T^2 P_{j-2}(T) \right) = S_1(T) S_{j-1}(T) - j S_j(T) = 0,
\]

which implies that \(T^2 P_{j-2} = 0 \). Since \((T^2 P_{j-2}) e_k = \lambda_k^2 S_{j-2}(T_k) e_k = 0 \) we obtain that \(\lambda_k = 0 \) or \(S_{j-2}(T_k) = 0 \). Thus, using that \(S_{j-1}(T_k) = \langle P_{j-1}(T) e_k, e_k \rangle = 0 \) and \(\dim(W_k) = m - 1 \), we obtain by the induction assumption that \(\lambda_k = 0 \) or \(\text{rk}(T_k) \leq j - 3 \). Since \(T \neq 0 \) there exists some eigenvalue \(\lambda_k \neq 0 \). Thus we obtain that \(\text{rk}(T_k) \leq j - 3 \) which implies that \(\text{rk}(T) \leq j - 2 \). \(\square \)

Lemma 4.4. Let \(B : TM \to TM \) be a symmetric operator of class \(C^1 \) that satisfies the Codazzi equation. Then it holds that \(\text{div} \left(P_j(B) \right) = 0 \).

Proof. We denote by \(P_j = P_j(B) \), with \(j = 1, \ldots, m \). Take \(p \in M \) and let \(\{E_1, \ldots, E_m\} \) be an orthonormal frame defined on an neighborhood \(V \) of \(p \).
in \(M \), geodesic at \(p \). We have that
\[
\text{div } P_j = \sum_{i=1}^{m} (\nabla E_i P_j) E_i = \sum_{i=1}^{m} (\nabla E_i S_j I - BP_{j-1}) E_i \\
= \sum_{i=1}^{m} (E_i(S_j) E_i - \nabla E_i (BP_{j-1}) E_i) \\
= \nabla(S_j) - \sum_{i=1}^{m} ((\nabla E_i B) P_{j-1}(E_i) + B(\nabla E_i P_{j-1}) E_i) \\
= \nabla(S_j) - B(\text{div } P_{j-1}) - \sum_{i=1}^{m} (\nabla E_i B) P_{j-1}(E_i).
\]

(31)

Let \(X \) be a \(C^1 \) vector field on \(M \). Since \((\nabla_X B) \) is a symmetric operator and \((\nabla E_i B) X = (\nabla_X B) E_i \), for all \(i = 1, \ldots, m \), we obtain that
\[
\sum_{i=1}^{m} \langle (\nabla E_i B) P_{j-1}(E_i), X \rangle = \sum_{i=1}^{m} \langle P_{j-1}(E_i), (\nabla_X B) E_i \rangle \\
= \text{tr} (P_{j-1}(\nabla_X B)).
\]

(32)

It was proved by Reilly \[11\] (see Lemme A of \[11\]) that \(\text{tr} (P_{j-1}(\nabla_X B)) = \langle \nabla(S_j), X \rangle \). Thus, using (32), we obtain that
\[
\sum_{i=1}^{m} (\nabla E_i B) P_{j-1}(E_i) = \nabla(S_j).
\]

(33)

Using (31) and (33), we obtain that
\[
(\text{div } P_j)_p = (\nabla S_j)(p) - B(\text{div } P_{j-1})_p - (\nabla S_j)(p) = -B(\text{div } P_{j-1})_p.
\]

Since \(P_0 = I \) we obtain by recurrence that \(\text{div } P_j = (-1)^j B^j(\text{div } I) = 0 \).
This concludes the proof of Lemma \[1.4\] \(\square \)

Now, we are able to prove Theorem \[1.3\] and Theorem \[1.4\]

4.1. \textbf{Proof of Theorem \[1.3\]} Since \(S_{j+1}(B) = 0 \) it follows from Lemma \[4.2\] that the operator \(P_j(B)(p)) : T_p M \rightarrow T_p M \) is semidefinite at each point \(p \in M \). Since \(S_j \) does not change of sign we obtain that \(\Phi = \epsilon P_j \) is positive-semidefinite, for some constant \(\epsilon \in \{-1, 1\} \). Since \(B \) satisfies the Codazzi equation it follows from Lemma \[4.4\] that \(\text{div } \Phi = \epsilon \text{div } P_j = 0 \). Since \(|H_{\Phi} + \text{div } \Phi| = |H_{P_j}| \leq \frac{1}{r + \epsilon} \), where \(r \) is the distance function of \(M \) from \(q_0 \) and \(\text{tr } \Phi(q_0) = |\text{tr } P_j(q_0)| = (m - j)|S_j(B(q_0))| > 0 \) we can apply Theorem \[1.1\] to conclude that the rate of growth of \(\int_M \text{tr } \Phi = (m - j) \int_M |S_j(B)| \) is at least logarithmic with respect to the geodesic balls of \(M \) centered at \(q_0 \). Theorem \[1.3\] is proved.

\[\text{div } P_j = \sum_{i=1}^{m}(\nabla E_i P_j) E_i = \sum_{i=1}^{m}(\nabla E_i S_j I - BP_{j-1}) E_i = \sum_{i=1}^{m}(E_i(S_j) E_i - \nabla E_i (BP_{j-1}) E_i)
= \nabla(S_j) - \sum_{i=1}^{m}((\nabla E_i B) P_{j-1}(E_i) + B(\nabla E_i P_{j-1}) E_i)
= \nabla(S_j) - B(\text{div } P_{j-1}) - \sum_{i=1}^{m}(\nabla E_i B) P_{j-1}(E_i).
\]

(31)
4.2. **Proof of Theorem 1.4** Since \(S_{j+1} = S_{j+1}(A) = 0 \) it follows from Lemma 4.2 that the operator \(P_j(A(p)) : T_p M \to T_p M \) is semidefinite at each point \(p \in M \). Since \(S_j \) does not change of sign we obtain that \(\Phi = \epsilon P_j \) is positive-semidefinite, for some constant \(\epsilon \in \{-1, 1\} \). Since the shape operator \(A \) satisfies the Codazzi equation it follows from Lemma 4.4 that \(\text{div} \Phi = \epsilon \text{div} P_j = 0 \). Since \(|H_\Phi + \text{div} \Phi| = |H_{P_j}| = (j + 1)S_{j+1} = 0 \) and \(\text{tr} \Phi(q_0) = |\text{tr} P_j(q_0)| = (m - j)|S_j(A(q_0))| > 0 \) we can apply Theorem 1.2 to conclude that the rate of growth of the integral \(\int_M \text{tr} \Phi = (m - j) \int_M |S_j(A)| \) is at least linear with respect to the geodesic balls of \(M \) centered at \(q_0 \). Theorem 1.4 is proved.

5. **Proof of Theorem 1.5, Corollary 1.3 and Theorem 1.6**

The main tool of this section is the following result:

Theorem 5.1. Let \(f : M \to \tilde{M} \) be an isometric immersion of a complete noncompact manifold \(M \) in a manifold \(\tilde{M} \). Assume that the radial curvature of \(\tilde{M} \) with base point in some \(q_0 \in f(M) \) satisfies \(\tilde{K}_{\text{rad}} \leq K(r) \), where \(r = d\tilde{M}(\cdot, q_0) \) and \(K : \mathbb{R} \to \mathbb{R} \) is an even continuous function. Let \(\Phi : TM \to TM \) be a positive-semidefinite symmetric operator such that \(\text{tr} \Phi(q_0) > 0 \). Assume further that

\[
|H_\Phi + \text{div} \Phi| \leq \alpha(r) \text{tr} \Phi \quad \text{and} \quad m|\Phi \nabla r| \leq \text{tr} \Phi,
\]

where \(\alpha : [0, \infty) \to (0, \infty) \) is a nonnegative \(C^1 \)-function. Then

\[
\int_{B_\mu(q_0)} \text{tr} \Phi \geq m \text{tr} \Phi(q_0) \int_0^\mu h(\tau)^{m-1} e^{-m} \int_0^\tau \alpha(s) ds d\tau.
\]

for all \(0 < \mu < \min\{\mu_{\kappa, \alpha}, \tilde{R}_{q_0}\} \), where \(h : (0, r_0) \to (0, \infty) \) is the maximal positive solution of (44).

Proof. By following exactly the same steps as in the proof of Theorem 3.1 we obtain that

\[
\int_{\partial B_\mu} h(\tau) \langle \Phi \nabla r, \nu \rangle \geq \int_0^\mu \int_{\partial B_r} \left(\frac{h'(r)}{h(r)} - \alpha(r) \right) h(\tau) \text{tr} \Phi,
\]

for almost everywhere \(0 < \mu < \tilde{R}_0 = \min\{\mu_{\kappa, \alpha}, \tilde{R}(q_0)\} \), where \(B_\mu = B_\mu(q_0) \) and \(\nu \) is the exterior conormal along \(\partial D \).

Since \(|\nu| = 1 \) and \(|\Phi \nabla r| \leq \frac{\text{tr} \Phi}{m} \), using Cauchy-Schwartz inequality, we obtain that \(\langle \Phi \nabla r, \nu \rangle \leq \frac{\text{tr} \Phi}{m} \). Using (35) we obtain

\[
\int_{\partial B_\mu} h(\tau) \text{tr} \Phi \geq m \int_0^\mu \int_{\partial B_r} \left(\frac{h'(r)}{h(r)} - \alpha(r) \right) h(\tau) \text{tr} \Phi,
\]

for a.e. \(0 < \mu < \tilde{R}_0 \).
Consider the following functions

\[F : \mu \in (0, \tilde{R}_0) \mapsto F(\mu) = \int_{\partial B_\mu} h(r) \text{tr} \Phi \]

\[G : \mu \in (0, \tilde{R}_0) \mapsto G(\mu) = \int_0^\mu \int_{\partial B_r} \left(\frac{h'(r)}{h(r)} - \alpha(r) \right) h(r) \text{tr} \Phi. \]

It follows by (36) that

\[F(\mu) \geq m G(\mu), \]

for a.e. \(\mu \in (0, \tilde{R}_0) \).

Note that \(G(\mu) > 0 \), for all \(0 < \mu < \tilde{R}_0 \), since \(G \geq 0 \), \(G \) is nondecreasing and \(G(\mu) > 0 \), for \(\mu > 0 \) sufficiently small (recall that \(\text{tr} \Phi(\alpha) > 0 \)). Thus, by (37), we obtain

\[G'(\mu) = \left(\frac{h'(\mu)}{h(\mu)} - \alpha(\mu) \right) F(\mu) \geq m \left(\frac{h'(\mu)}{h(\mu)} - \alpha(\mu) \right) G(\mu), \]

for a.e. \(0 < \mu < \tilde{R}_0 \). This implies that

\[
\frac{d}{d\mu} \ln G(\mu) = \frac{G'(\mu)}{G(\mu)} \geq m \left(\frac{h'(\mu)}{h(\mu)} - \alpha(\mu) \right) = m \left(\left(\frac{d}{d\mu} \ln h(\mu) \right) - \alpha(\mu) \right)
\]

\[= \left(\frac{d}{d\mu} \ln h(\mu)^m \right) - m \alpha(\mu), \]

for a.e. \(\mu \in (0, \tilde{R}_0) \). Integrating (38) over \((\mu_0, \mu)\), with \(0 < \mu_0 < \mu \), we obtain that

\[\ln \left(\frac{G(\mu)}{G(\mu_0)} \right) \geq \ln \left(\frac{h(\mu)^m}{h(\mu_0)^m} \right) - m \int_{\mu_0}^\mu \alpha(s) ds. \]

Thus, we obtain

\[G(\mu) \geq \frac{G(\mu_0)}{h(\mu_0)^m} h(\mu)^m e^{-m \int_{\mu_0}^\mu \alpha(s) ds}, \]

for all \(0 < \mu_0 < \mu < \tilde{R}_0 \).

Using that \(r \leq \mu \) in \(B_\mu \) and the function \(\mu \in (0, \tilde{R}_0) \mapsto \frac{h'(\mu)}{h(\mu)} - \alpha(\mu) \) is non-decreasing we have from the coarea formula that

\[G(\mu) = \int_{B_\mu} \left(\frac{h'(r)}{h(r)} - \alpha(r) \right) h(r) \text{tr} \Phi \geq \left(\frac{h'(\mu)}{h(\mu)} - \alpha(\mu) \right) \int_{B_\mu} \text{tr} \Phi, \]

for all \(0 < \mu < \tilde{R}_0 \). Since \(\lim_{t \to 0} \frac{h(t)}{t} = h'(0) = 1 \) and \(h(0) = 0 \) we obtain

\[\lim_{\mu_0 \to 0} \frac{G(\mu_0)}{h(\mu_0)^m} \geq \lim_{\mu_0 \to 0} \left(\frac{\mu_0}{h(\mu_0)} \right)^m \lim_{\mu_0 \to 0} \left(\frac{1}{\mu_0^m} \int_{B_{\mu_0}} (h'(r) - \alpha(r)h(r)) \text{tr} \Phi \right) \]

\[= \left(h'(0) - \alpha(0)h(0) \right) \text{tr} \Phi(\alpha_0) = \text{tr} \Phi(\alpha_0). \]

Thus, using (39), (40) and taking \(\mu_0 \to 0 \), we obtain that

\[G(\mu) \geq \text{tr} \Phi(\alpha_0) h(\mu)^m e^{-m \int_0^\mu \alpha(s) ds}, \]
for all $0 < \mu < \bar{R}_0$.

Now we consider the function

$$\mu \in [0, \bar{R}_0) \mapsto f(\mu) = \int_{B_\mu} \text{tr } \Phi.$$

Since $h(r) \leq h(\mu)$ in ∂B_μ and $F(\mu) \geq m G(\mu)$, using the coarea formula and (41), we obtain

$$f'(\mu) = \int_{\partial B_\mu} \text{tr } \Phi \geq \frac{1}{h(\mu)} \int_{\partial B_\mu} h(r) \text{tr } \Phi = \frac{F(\mu)}{h(\mu)} \geq m G(\mu)$$

$$\geq m \text{tr } \Phi(q_0) h(\mu)^{m-1} e^{-m \int_0^\mu \alpha(s) ds}.$$

Since $f(0) = 0$, by integration $f'(\mu)$ on $(0, \mu)$, we have that

$$\int_{B_\mu} \text{tr } \Phi = f(\mu) \geq m \text{tr } \Phi(q_0) \int_0^\mu h(\tau)^{m-1} e^{-m \int_0^\mu \alpha(s) ds} d\mu.$$

This concludes the proof of Theorem 5.1. \square

Now we are able to prove Theorem 1.5 and Theorem 1.6.

5.1. Proof of Theorem 1.5. First we observe that the injectivity radius of \bar{M} at the point q_0 satisfies $\bar{R}_{q_0} = +\infty$ since the radial curvature of \bar{M} with base point q_0 is nonpositive. We consider constant functions

$$K(t) = -c^2 \quad \text{and} \quad \alpha(t) = \frac{(m-1)c}{m},$$

for all t. The maximal positive solution of (10) is given by $h(t) = \frac{1}{c} \sinh(ct)$, with $t > 0$. Since $\cosh(t) \geq \sinh(t)$, for all $t \geq 0$, we obtain

$$h'(t) = \cosh(ct) > \frac{(m-1)c}{m} h(t) \quad \text{and} \quad 0 = \alpha'(t) \geq -c^2 \left(\text{coth}(ct) \right)^2 - 1 = -\frac{h'(t)^2}{h(t)^2} - K(t),$$

for all $t > 0$, which implies that $\mu_{K,\alpha} = \infty$. Thus, using Theorem 5.1, we obtain that

$$\int_{B_\mu} \text{tr } \Phi \geq \frac{m}{2^m-1} \text{tr } \Phi(q_0) \int_0^\mu \sinh(c \tau)^{m-1} e^{-(m-1)c \tau} d\tau$$

$$\geq \frac{m}{(2c)^m-1} \text{tr } \Phi(q_0) \int_0^\mu (1 - e^{-2c \tau})^{m-1} d\tau$$

$$\geq \frac{m}{(2c)^m-1} \text{tr } \Phi(q_0) \int_0^\mu (1 - (m-1)e^{-2c \tau}) d\tau.$$
The last inequality follows from the Bernoulli’s inequality since $e^{-2cτ} < 1$. This implies that

$$\liminf_{μ \to ∞} \frac{μ^{-1}}{tr Φ(q_0)} \int_{B_μ} tr Φ ≥ \frac{m}{(2c)^{m-1}}.$$

Theorem 1.5 is proved.

5.2. Proof of Theorem 1.6. Since \bar{M} has bounded geometry, there exist constants $c > 0$ and $\bar{R}_0 > 0$ such that the sectional curvature of \bar{M} satisfies $K_{\bar{M}} \leq c^2$ and the injectivity radius satisfies $\bar{R}_q ≥ \bar{R}_0$, for all $q \in \bar{M}$. We consider the constant functions $K(t) = c^2$ and $α(t) = κ ≥ 0$, for all t. The function $h(t) = \frac{1}{c} \sin(\frac{1}{c} t)$, with $t ∈ (0, \frac{π}{2c})$, is the maximal positive solution of (10). We take $0 < t_0 ≤ \frac{π}{2c}$ the maximal positive number satisfying:

$$h'(t) = \cos(\frac{1}{c} t) > \frac{κ}{c} \sin(\frac{1}{c} t) = α(t) h(t),$$

for all $0 < t < t_0$. Since $0 = α'(t) ≥ -\frac{h'(t)^2}{h(t)} - K(t)$, for all $t ∈ (0, \frac{π}{2c})$, we obtain that $μ_{K,α} = t_0$. Let E be an end of M and $λ : E → [0, ∞)$ a nonnegative C^1 function. The operator $Φ(v) = λ(q)v$, for all $q ∈ E$ and $v ∈ T_qM$, satisfies $|Φ(∇r)| = λ|∇r| ≤ λ = \frac{tr Φ}{m}$, since $|∇r| ≤ 1$ and $tr Φ = mλ$. Thus Theorem 5.1 applies. Thus, for all $0 < μ < min{μ_{K,α}, \bar{R}_0}$ and $q_0 ∈ E$ such that $B_μ(q_0) ⊂ E$, the following holds:

$$∫_{B_μ(q_0)} λ ≥ \sum_{k=1}^N ∫_{B_{μ_k}(q_k)} λ ≥ Nδ ∫_{μ_k(q_k)} λ ≥ Nδ ∫_{E} λ ≥ +∞.$$

Theorem 1.6 is proved.

ACKNOWLEDGEMENT

The authors thank Waley Santos and Detang Zhou for helpful suggestions during the preparation of this article.
References

[1] Alencar, H., Santos, W. and Zhou, D., Curvature integral estimates for complete hypersurfaces, to appear in Illinois Math. Journal.
[2] Barbosa, J. L. M. and Colares, A. G., Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. Geom. 15 (1997), no. 3, 277 – 297.
[3] Cao, H.-D., Shen, Y. and Zhu, S., The structure of stable minimal hypersurfaces in R^{n+1}. Math. Res. Lett. 4 (1997), no. 5, 637 – 644.
[4] Cheng, S.-T. and Yau, S.-T., Hypersurfaces with constant scalar curvature, Math. Ann. 255 (1977), 195 – 204.
[5] Cheng, X., Cheung, L.-F. and Zhou, D., The structure of weakly stable constant mean curvature hypersurfaces. Tohoku Math. J. (2) 60 (2008), no. 1, 101 – 121.
[6] do Carmo, M. P., Wang, Q., Xia, C., Complete submanifolds with bounded mean curvature in a Hadamard manifold. J. Geom. Phys. 60 (2010), no. 1, 142 – 154.
[7] Federer, H., Geometric Measure Theory, Springer-Verlag New York Inc., New York, 1969, Die Grundlehren der mathematischen Wissenschaften, Band 153.
[8] Federer, H., Curvature Measures, Trans. Amer. Math. Soc. 93 (1959), no. 3, 418 – 491.
[9] Frensel, K. R., Stable complete surfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 27 (1996), no. 2, 129 – 144.
[10] Greene, R. E. and Wu, H., Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979.
[11] Reilly, R., Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973), 465 – 477.
[12] Rosenberg, H., Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), no. 2, 211 – 239.

Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, CEP 57072-970, Brazil.
E-mail address: mbhs28@gmail.com

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21945-970, Brazil.
E-mail address: mirandola@ufrj.br