Afrotropical flea beetle genera: a key to their identification, updated catalogue and biogeographical analysis (Coleoptera, Chrysomelidae, Galerucinae, Alticini)

Maurizio Biondi¹, Paola D’Alessandro¹

¹ Department of Health, Life and Environmental Sciences, University of L’Aquila, 67100 Coppito-L’Aquila, Italy

Corresponding author: Maurizio Biondi (maurizio.biondi@univaq.it)

Abstract
A revision of the Alticini genera from the Afrotropical region is reported. The paper includes the following for the flea beetle fauna occurring in Sub-Saharan Africa and Madagascar: a key to their identification; habitus photos of all the genera; microscope and scanning electron micrographs of many diagnostic morphological characters; and an updated annotated catalogue with biogeographical notes that include new distributional data. The following new synonymies are proposed: Aphthona Chevrolat, 1836 = Ethiopia Scherer, 1972 syn. n.; Sanckia Duvivier, 1891 = Eugonotes Jacoby, 1897 syn. n.; Eurylegna Weise, 1910a = Eurylegniella Scherer, 1972 syn. n.; Kimongona Bechyné, 1959a = Mesocrepis Scherer, 1963 syn. n.; Diphathulacosoma Jacoby, 1892a = Neoderina Bechyné, 1952 syn. n.; Sesquiphaera Bechyné, 1958a = Paropsiderma Bechyné, 1958a syn. n.; Podagrica Chevrolat, 1836 = Podagricina Csiki in Heikertinger & Csiki, 1940 syn. n.; Amphimela Chapuis, 1875 = Sphaerophysa Baly, 1876a syn. n. The following new combinations are proposed: Blepharida insignis Brancsik, 1897 = Xanthophysca insignis (Brancsik, 1897) comb. n.; Blepharida multiguttata Duvivier, 1891 = Xanthophysca multiguttata (Duvivier, 1891) comb. n.; Hemipyxis balyana (Csiki in Heikertinger & Csiki, 1940) = Pseudadorium balyanum (Csiki in Heikertinger & Csiki, 1940) comb. n.; Hemipyxis brevicornis (Jacoby, 1892a) = Pseudadorium brevicornis (Jacoby, 1892a) comb. n.; Hemipyxis cyanoea (Weise, 1910b) = Pseudadorium cyanoeum (Weise, 1910b) comb. n.; Hemipyxis gynandromorpha Bechyné, 1958c = Pseudadorium gynandromorphum (Bechyné, 1958c) comb. n.; Hemipyxis laticucula Bechyné, 1958c = Pseudadorium laticuculum (Bechyné, 1958c) comb. n.; Hemipyxis soror (Weise, 1910b) = Pseudadorium soror (Weise, 1910b) comb. n. The genera Buphonella Jacoby, 1903a and Halticopis Fairmaire, 1883a are transferred to the tribe Galerucini; the genus Biodontocnema Biondi, 2000 stat. prom. is considered to be valid and reinstated at generic level. Finally, a zoogeographical analysis of the flea beetle fauna in the Afrotropical region is provided.
Keywords
Taxonomy, Afrotropical region, Chrysomelidae, Galerucinae, Alticini, flea beetle genera, identification key, catalogue, synonymies, new combinations, status promotus

Table of contents

Introduction ... 6
Materials and methods ... 8

Key to the identification of afrotropical flea beetle genera................................. 9
Key to groups... 9

Group A .. 10
Group B .. 10
Group C .. 11
Group D .. 14
Group E .. 14
Group F .. 18
Group G .. 19
Group H .. 19

Catalogue of afrotropical flea beetle genera ...26

Abrarius Fairmaire, 1902 .. 26
Afroaltica Biondi & D’Alessandro, 2007 .. 26
[Afroalytus Scherer, 1961] ... 27
Afrocrepis Bechyné, 1954b ... 27
Afrorestia Bechyné, 1959b ... 27
[Allomorpha Jacoby, 1892b] ... 28
Alocypha Weise, 1911 ... 28
Altica Geoffroy, 1762 .. 28
Amphimela Chapuis, 1875 .. 29
Anaxerta Fairmaire, 1902 ... 30
Angulaphthona Bechyné, 1960b ... 30
Antanemora Bechyné, 1964 .. 30
Aphthona Chevrolat, 1836 .. 31
Argopistes Motschulsky, 1860 ... 31
Argopistoides Jacoby, 1892b ... 32
[Argopus Fischer, 1824] .. 32
[Argosomus Wollaston, 1867] ... 32
[Aridohespera Selman, 1963] .. 32
[Asiorestia Jacobson, 1925] .. 32
[Asphaera Chevrolat, 1843] ... 33
Bangalaltica Bechyné, 1960a ... 33
[Balanomorpha Chevrolat, 1836] ... 33
Bechuana Scherer, 1970...
Bechynella Biondi & D’Alessandro, 2010 ... 34
Bezekaltica Đoćerl, 2012 .. 34
Bikasha Maulik, 1931 ... 34
Biodontocnema Biondi, 2000 stat. prom. .. 35
Blepharida Chevrolat, 1836 .. 36
[Blepharidina Chevyné, 1968] ... 36
[Blepharidula Weise, 1916] .. 36
[Brincaltica Chevyné, 1959b] .. 37
[Buphonella Jacoby, 1903a] ... 37
[Calatheca Heyden, 1887] .. 37
Carcharodis Weise, 1910b .. 37
Celisaltica Biondi, 2001a .. 38
[Cercyonia Weise, 1901] ... 38
Chabria Jacoby, 1887 .. 38
Chaetocnema Stephens, 1831 .. 38
Chaillucola Chevyné, 1968 .. 39
[Chaloenus Westwood, 1862] .. 39
Chirodica Germar, 1834 .. 39
[Cladocera Hope, 1840] .. 40
[Cladotelia Kolbe, 1894] .. 40
Collartaltica Chevyné, 1959a .. 40
[Crepidodera Chevrolat, 1836] .. 40
[Cyrtoma Clark, 1863] .. 41
Decaria Weise, 1895 ... 41
[Decarthrocera Laboissière, 1937] .. 41
[Derocrepis Weise, 1886] ... 41
Diamphidia Gerstaecker, 1855 .. 42
Dibolia Latreille, 1829 .. 42
[Diboloides Jacoby, 1897] .. 42
[Dibolosoma Jacoby, 1897] .. 42
Dimonikaea Chevyné, 1968 ... 43
Diphaulacosoma Jacoby, 1892a ... 43
Djallonia Chevyné, 1955b .. 43
Drakensbergianella Biondi & D’Alessandro, 2003 ... 44
Dunbrodya Jacoby, 1906 .. 44
[Embolimus Weise, 1902b] ... 44
[Entymosina Weise, 1910b] ... 44
Epitrix Foudras, 1860 .. 45
[Eremiella Weise, 1910a] ... 45
Eriotica Harold, 1877a .. 45
[Escaleriella Weise, 1907a] .. 46
[Ethiopia Scherer, 1972] ... 46
[Eugonotes Jacoby, 1897] ... 46
Euplecnema Jacoby, 1906 ... 46
Eurylegna Weise, 1910a .. 46
[Europelgia Scherer, 1972] .. 47
[Eutheca Baly, 1878c] .. 47
Eutornus Clark, 1860 ... 47
[Exorhina Weise, 1886] .. 47
Gabonia Jacoby, 1893 .. 47
[Gas trida Chapuis, 1879] .. 48
[Graptodera Chevrolat, 1836] .. 48
Guilerelia Weise, 1924 .. 48
Guinerestia Scherer, 1959 .. 49
[Haltica Illiger, 1801] ... 49
[Halticella Jacoby, 1899b] ... 49
[Halticorta Csiki, 1940 in Heikertinger & Csiki 1940] 49
Halticaris Fairmaire, 1886 .. 50
[Halticova Fairmaire, 1898] ... 50
[Haltitarsus Berthold, 1827] ... 50
Hemipyxis Chevrolat, 1836 ... 50
[Hermaeopha Foudras, 1859] .. 51
Hespera Weise, 1889 ... 51
Hildebrandtina Weise, 1910b .. 51
Homichloda Weise, 1902a .. 52
Hyphasis Harold, 1877b ... 52
Jacobyana Maulik, 1926 ... 53
[Jamesonia Jacoby, 1895] ... 53
Kanonga Bechyné, 1960b ... 53
Kenialctica Bechyné, 1960b ... 53
Kimongona Bechyné, 1959a ... 54
[Lactica Erichson, 1847] ... 54
Lampedona Weise, 1907a .. 55
Lepialtica Scherer, 1962a ... 55
[Livolia Jacoby, 1903] .. 55
Longitarsus Berthold, 1827 ... 55
Luperomorpha Weise, 1887 ... 56
Lypnea Baly, 1876a ... 56
[Macroorthocrepis Pic, 1921] ... 57
Malvernia Jacoby, 1899b ... 57
Manobia Jacoby, 1885 .. 57
[Mantura Stephens, 1831] .. 58
[Mediafra Scherer, 1961] ... 58
[Mesocrepis Scherer, 1963] ... 58
Metroserrapha Bechyné, 1958a .. 58
[Monodalctica Bechyné, 1955b] .. 59
Montiapthona Scherer, 1961 ... 59
[Musaka Bechyné, 1958a] .. 59
Myrcina Chapuis, 1875 .. 59
[Myrcinella Jacoby, 1901] .. 60
Neodera Duvivier, 1891 .. 60
[Neoderina Bechyné, 1952] .. 60
[Neumannia Weise, 1907b] .. 60
[Niphraea Baly, 1878a] ... 60
Nisotra Baly, 1864 ... 60
Notomela Jacoby, 1899b ... 61
Ntaolalita Biondi & D'Alessandro, in press ... 61
Nzerekorena Bechyné, 1955b ... 61
[Ochrosis Foudras, 1860] .. 62
[Oedionychis Latreille, 1829] .. 62
[Orneates Jacoby, 1899b] .. 62
Orthocrepis Weise, 1888 .. 62
Paradibolia Baly, 1875 .. 63
[Paropsiderma Bechyné, 1958a] .. 63
Perichilona Weise, 1919 ... 63
Philopona Weise, 1903 ... 64
Phygasia Chevrolat, 1836 .. 64
Phyllotreta Chevrolat, 1836 .. 64
Physodactyla Chapuis, 1875 ... 65
Physoma Clark, 1863 .. 65
Physomandroya Bechyné, 1959 .. 66
Physonychis Clark, 1860 .. 66
[Plectroscelis Chevrolat, 1836] ... 66
Podagrica Chevrolat, 1836 ... 67
[Podagricina Csiki in Heikertinger & Csiki, 1940] 67
[Podagrixena Bechyné, 1968] ... 67
[Poephila Weise, 1895] .. 67
Pollyclada Chevrolat, 1836 ... 68
Pratima Maulik, 1931 ... 68
[Prototrigona Chevrolat, 1837] ... 68
Pseudadorium Fairmaire, 1885 ... 69
[Pseudonisotra Bechyné, 1968] ... 69
Pseudophygasia Biondi & D’Alessandro, in press 70
Pyliodes Berthold, 1827 ... 70
Pydaristes Harold, 1875 ... 70
Sanckia Duvivier, 1891 ... 71
Serraphula Jacoby, 1897 ... 71
Sesquiphaera Bechyné, 1958a ... 72
Seychellalita Biondi, 2002b ... 72
Introduction

The Chrysomelidae is one of the largest phytophagous insect families and includes approximately 37,000 to 40,000 species (Jolivet and Verma 2002). The monophyletic tribe Alticini is closely related to the tribe Galerucini, both contained within in the subfamily Galerucinae (Bouchard et al. 2011). The relationship between these two tribes, often considered as different subfamilies, is an area of active research regarding Chrysomelidae phylogeny (Duckett et al. 2004; Gómez-Zurita et al. 2007; Ge et al. 2011, 2012). In our paper, Alticini and Galerucini are considered to be separate suprageneric taxa because of the metafemoral spring in Alticini, as well as specific structures of the spermatheca, median lobe of aedeagus and hind wing venation of these two groups (cf. Furth and Suzuki 1994, 1998). In our opinion, some of the recently established groupings, based on DNA sequences, still need further in-depth analysis because they are phylogenetically and biogeographically incomplete (cf. Ge et al. 2011, 2012). The Alticini is a tribe composed of minute to medium sized beetles, whose enlarged hind femora and renowned jumping ability have earned them the common name of ‘flea beetles’. They are highly specialised phytophagous insects. Both the adult and larval stages feed on stems, leaves or roots, and rarely on flowers, in almost all the higher plant families (Konstantinov and Vandenber 1996). The tribe Alticini in-

Species	Page
Sjostedtinia Weise, 1910a	72
Sphaeroderma Stephens, 1831	73
[Sphaerophysa Baly, 1876b]	73
Stegnaspea Baly, 1877	73
Stuckenberghiana Scherer, 1963	74
Terpnochlorus Fairmaire, 1904	74
[Torodera Weise, 19082a]	75
Toxaria Weise, 1903	75
Trachytetra Sharp, 1886	75
Tritonaphthona Bechyné, 1960b	75
[Thrymnes Weise, 1895]	76
[Tropidophora Thomson, 1858]	76
Utembaltica Bechyné, 1960b	76
[Weiseana Jacoby, 1906]	76
Xanthophysca Fairmaire, 1901	76
[Xenaltica Baly, 1875]	77
Yemenaltica Scherer, 1985	77
Zomba Bryant, 1922b	77
Discussion	77
Figure plates	82
Acknowledgements	142
References	142
cludes 4,000 to 8,000 species, grouped in approximately 500 genera. This taxon has a world-wide distribution, but occurs mainly in the tropical regions of South America, Africa and Asia (Konstantinov and Vandenberg 1996; Santiago-Blay 2004; Biondi and D’Alessandro 2010a).

We recently published an annotated catalogue of the Afrotropical flea beetle genera, based largely on data from the literature (Biondi and D’Alessandro 2010a). Subsequent to a deeper and more extensive examination of type material, and the study of new Afrotropical flea beetle material preserved in the institutions listed below, it was possible to compile an updated catalogue that contains new synonymies, new combinations, new genera and new distribution records. Even so, many details concerning the composition of the Afrotropical flea beetle fauna remain incomplete (Biondi and D’Alessandro 2010a). The discrepancy in the number of morphogenera, and morphospecies in particular, preserved in public and private collections of African entomological material, and those that have been officially described, highlights this shortcoming. Current scientific literature includes over 300 research papers dedicated as a whole, or in part, to Sub-Saharan and Madagascan Alticini. These publications include contributions on taxonomy, faunistics and ecology (Biondi and D’Alessandro 2010a). The chronological trend in the number of publications over time is summarized in Fig. 1, the first appearing as early as 1830. However, the first significant contribution on the Afrotropical (including Madagascar) flea beetle fauna was made by the English coleopterist, Joseph Sugar Baly (1816–1890). Subsequently, in the twenty years following

![Figure 1](image-url). Chronology of publications on the Afrotropical flea beetle fauna. ASC: Afrotropical Scientific Contributions (update from Biondi & D’Alessandro 2010a).
Baly’s death (1890−1910), there were three respected entomologists working on this fauna: Léon Fairmaire (1820−1906), a French specialist on Coleoptera and Hemiptera; Julius Weise (1844−1925), a German coleopterist that, during his life, published a large number of scientific papers, not only on Chrysomelidae but also on Coccinellidae, Curculionoidea and others; and Martin Jacoby (1842−1907), a German musician and coleopterist, who published 150 articles on leaf beetles after moving to London.

A decrease in the number of publications on the Afrotropical flea beetle fauna followed, until a revival in 1930−1940, initiated by the English coleopterist Gilbert Ernest Bryant (1878−1965) and the French chrysomelid specialist Victor Laboissière (1875−1942). Jan Bechyné (1920−1973) and Gerhard Scherer (1929-2012), specialists on the Alticinae, then published many monographs (see References) on the flea beetle fauna of Sub-Saharan Africa and, to a lesser extent, Madagascar. They described many new genera and species between 1950 and 1970. More recently, contributions on the Afrotropical flea beetle fauna were published by Gerhard Scherer, Maurizio Biondi, Paola D’Alessandro, Manfred Döberl, Serge Doguet, and Elizabeth Grobbelaar (see References).

Materials and methods

The catalogue is arranged alphabetically by generic names. Names in bold refer to flea beetle genera primarily occurring in the Afrotropical region; those in square brackets refer to: synonymies; genera incorrectly reported in the Afrotropical region; in some cases genera transferred to Galerucini; or genus-group names that are unavailable. The rules of the International Commission on Zoological Nomenclature (1999) are adhered to the Fourth Edition of the International Code of Zoological Nomenclature.

In addition to the author and date of publication, each genus-group name is accompanied by: a) synonymies, exclusively those for the Afrotropical region; b) bibliographic references, including the original description, other important taxonomic contributions, and distribution data; c) type species, including the method of species assignment; d) geographic distribution in the Afrotropical region (cf. Graf and Cummings 2007) and other zoogeographical regions (cf. Sclater 1858); e) ecological remarks, mainly host-plants and/or habitat preferences in the Afrotropical region; f) notes, including the number of Afrotropical species and significant taxonomic information.

Specimens were examined and dissected using WILD MZ12.5 and LEICA M205C binocular microscopes. Photomicrographs were taken using a Leica DFC500 camera and the Auto-Montage Pro 2006 software (license number: 15224*syn2459*153a2112_maurizio_266836). Scanning electron micrographs were taken using a PHILIPS SEM XL30 CP and HITACHI TM-1000. Morphometric measures were taken using the image analysis software Image-Pro Insight 8.0 (license number: 03080000-5385).

The type material examined during this study is preserved in the following institutions: BAQ: collection of M. Biondi, University of L’Aquila, Italy; BMNH: The Natural History Museum, London, United Kingdom; ISNB: Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium; MNHN: Muséum Na-
Afrotropical flea beetle genera: a key to their identification, updated catalogue...

Abbreviations. Morphology - LAN: length of antennae; LB: total length of body; LE: length of elytra; LHT: length of hind tibia; LHTS: length of hind tibial spur; LP: length of pronotum; WE: width of elytra; WP: width of pronotum. Regions - AFR: Afrotropical; AUR: Australian; CAF: Central Afrotropical; EAF: Eastern Afrotropical; ORR: Oriental; MAD: Madagascar; MAS: Mascarene Islands; NAR: Nearctic; NTR: Neotropical; PAR: Palaearctic; SAF: Southern Afrotropical; SEY: Seychelles Islands; SSA: Sub-Saharan Africa; WAF: Western Afrotropical. (?) record to be confirmed; (!) new record; (i) introduced.

Key to the identification of afrotropical flea beetle genera

A new key for the identification of the Afrotropical flea beetle genera is proposed. In comparison with the key previously proposed by Scherer (1961), our key includes all the known flea beetle genera occurring in Sub-Saharan Africa, Madagascar, Seychelles and the Mascarene Islands. The first key below identifies eight different generic groups, labelled with an uppercase letter (group A, group B etc.). Our generic groups are, on the whole, similar to the seven numbered groups (group 1, group 2 etc.) proposed by Scherer (1961). For widespread genera, we have primarily concentrated on the morphological and chromatic variability displayed by those species of the genus in question, known to occur in the Afrotropical region.

Key to groups

1. Antennae with 10 antennomeres...Group A
 – Antennae with 11 antennomeres..2
2. Apical tarsomere of metatarsus distinctly swollen (Figs 200, 237)...
 – Apical tarsomere of metatarsus not swollen (Figs 144, 149, 166, 169).......3
3. Dorsal margin of middle and hind tibiae with distinct ciliate dentate emargination, acute or subrounded apically (Figs 144, 148, 154, 163, 258)Group C
Dorsal margin of middle and hind tibiae without distinct ciliate dentate emargination... 4

4 Pronotum with a distinct but poorly defined median depression near each lateral margin with surface more strongly punctate (Fig. 135)........ Group D

− Pronotum uniformly or sparsely punctate, but never with more strongly punctate median depression near lateral margin.. 5

5 Pronotum with ante-basal transverse sulcus (Figs 120, 121, 126, 206, 209, 212, 225, 246).. Group E

− Pronotum without ante-basal transverse sulcus.. 6

6 Pronotal base with two short sublateral longitudinal striae (Figs 85–86) [sometimes also with two distinct longitudinal grooves on anterior pronotal margin (Figs 217–218)]... Group F

− Pronotal base without short sublateral longitudinal striae 7

7 Pronotum with distinct sublateral mesal callosity bounded by more or less deeply impressed diagonal sulcus laterally (Figs 133, 153)........ Group G

− Pronotum without sublateral callosity.. Group H

Group A

1 Elytral punctation arranged in regular rows (Fig. 91). Metatarsus preapically inserted on tibia (Fig. 248). Procoxal cavities closed posteriorly..................

.. Psylliodes Berthold, 1827 (Fig. 91)

− Elytral punctation confused (Fig. 32). Metatarsus apically inserted on tibia. Procoxal cavities open posteriorly Decaria Weise, 1895 (Fig. 32)

Group B

1 Elytral punctation arranged in regular rows (Fig. 109). Procoxal cavities closed posteriorly................................. Zomba Bryant, 1922 (Fig. 109)

− Elytral punctation confused. Procoxal cavities open posteriorly 2

2 Elytral epipleura vertically orientated in distal 2/3s, not visible in lateral view (Fig. 238).. 3

− Elytral epipleura horizontally or obliquely downward orientated in distal 2/3s, visible in lateral view (Figs 184, 229, 233) ... 4

3 Pronotum with anterior angles distinctly produced towards anterior and distinctly thickened; posterior angles rounded (Fig. 236). Hind tibiae often curved towards inside (Fig. 237). First metatarsomere wide and subtriangular (Fig. 237). Apical tarsomere of metatarsus moderately swollen (Fig. 237)....

... Physomandroya Bechyné, 1959 (Fig. 83)

− Pronotum with anterior angles not thickened, dentiform apically, indistinctly produced forwards anterior; posterior angles dentiform apically (Fig. 199).
Hind tibiae straight (Fig. 200). First metatarsomere narrow, subcylindrical (Fig. 200). Apical tarsomere of metatarsus distinctly swollen (Fig. 200)........4

..Hyphasis Harold, 1877 (Fig. 54)

 Vertex of head distinctly and densely punctate (Fig. 239). Frontal tubercles wide, subtriangular, well defined, and closely associated lengthwise (Fig. 239)..Physonychis Clark, 1860 (Fig. 84)

 – Vertex of head smooth or indistinctly and sparsely punctate (Figs 234–235). Frontal tubercles small, generally poorly defined (Figs 234–235)........5

 Frons distinctly sharp-edged distally in lateral view or clearly produced anteriorly, forming a smooth wide surface, often with evident laminate extensions (Figs 234–235)..Physoma Clark, 1863 (Fig. 82)

 – Frons arcuate distally in lateral view, never with eversion or laminate extensions ...6

 Pronotum distinctly rounded laterally, generally at least 2x wider than long (WP/LP > 2.00); pronotal base depressed, sometimes with distinct transverse ante-basal sulcus, more distinctly impressed near posterior angles of pronotum (Fig. 78) ..Philopona Weise, 1903 (Fig. 78)

 – Pronotum almost straight or very slightly rounded laterally, less than 2x wider than long (WP/LP ≤ 2.00); pronotal base generally not depressed, never with distinct transverse ante-basal sulcus (Figs 183, 232)7

 Elytral epipleura obliquely downward orientated in apical 2/3s, easily visible in lateral view (Fig. 184). Elytra subparallel or widening slightly laterally towards posterior, distinctly bordered and finely channeled laterally (Fig. 44). Pronotum generally more transverse (WP/LP > 1.90), indistinctly bordered laterally, with not uniformly distributed punctuation (Fig. 183). Dorsal integument always with strongly impressed punctuation (Figs 44, 183, 184). Elytra pale brown with longitudinal black stripes (Fig. 44). Body smaller (generally LB ≤ 7.50 mm)..Eutornus Clark, 1860 (Fig. 44)

 – Elytral epipleura horizontally orientated in apical 2/3s, little visible in lateral view (Fig. 233). Elytra widening distinctly laterally towards posterior, narrowly bordered laterally (Fig. 81). Pronotum generally less transverse (WP/LP ≤ 1.90), finely bordered laterally, with uniformly distributed punctuation (Fig. 232). Dorsal integument generally from finely to moderately punctate (Figs 81, 233). Elytra unicolor, never with longitudinal black stripes (Fig. 81). Body larger (generally LB > 7.50 mm)Physodactyla Chapuis, 1875 (Fig. 81)

Group C

1 First metatarsomere distinctly shorter than second (Fig. 267). Elytral punctuation arranged in 11 rows (+1 long sutural row), partially irregular only in sutural area (Fig. 102). Prothorax subcylindrical. Eyes roundish, distinctly protuberant (Fig. 266)Terpnochiorus Fairmaire, 1904 (Fig. 102)
First metatarsomere as long as second or longer (Figs 117, 121, 124, 163). Elytral punctation confused or arranged in 9 single or double rows (+1 short sutural row). Prothorax distinctly depressed dorsally. Eyes generally subelliptical, not distinctly protuberant (Figs 146, 150, 158)................. 2

First metatarsomere narrow, subcylindrical or subrectangular (Figs 144, 154, 258). Claws simple or subappendiculate (Figs 144, 154). Body smaller (generally LB < 4.00 mm)... 3

First metatarsomere wide, subtriangular (Figs 148, 149). Claws generally appendiculate (Fig. 162). Body larger (generally LB ≥ 4.00 mm)............................. 7

Hind tibiae with dorsal margin distinctly bidentate (Figs. 144, 258) 4

– Hind tibiae with dorsal margin unidentate (Fig. 154) [in Chaetocnema schlaflii (Stierlin, 1866) and Chaetocnema major (Jacquelin du Val, 1852), the dorsal tibial margin may appear bidentate, but Seychellatica is easily distinguishable from these two species mainly by having the frontal sulci very short, not visible around eyes (Fig. 252), and the first pro- and mesotarsomeres distinctly asymmetrical (Fig. 254); while Biodontocnema is easily distinguishable by having a wider socket on the hind tibia with inner margin dentiform (Figs 142–144); weakly developed metasternum (Fig. 145); antennomeres 6–10 distinctly shorter, as long as wide (Figs 22); and first metatarsomere that is laterally compressed (Fig. 142); in addition, Biodontocnema has shorter antennae that do not reach half of the elytral length and distinctly smaller size (LB > 3.00 mm; LB < 2.50 mm) (Fig. 22)] ... 5

Frontal sulci very short, not visible around eyes (Fig. 257). Antennae longer, reaching half of elytral length (Fig. 97). Antennomeres 6–10 distinctly longer than wide (Fig. 97). Body elongate, with pronotum distinctly transverse (generally WP/LP > 1.57); humeral calli distinct (Fig. 97). Ratio of metaster nal width/metasternal length ≤ 2.50 (Fig. 260). First metatarsomere at least twice as long as second and third together, not laterally compressed (Fig. 258). First pro- and mesotarsomeres distinctly asymmetrical (Fig. 259). Hind tibial socket narrow without dentiform inner margin (Fig. 258)..................

.. Seychellatica Biondi, 2002 (Fig. 97)

– Frontal sulci elongate, distinctly visible around eyes (Fig. 141). Antennae shorter, only reaching base of elytra (Fig. 22). Antennomeres 6–10 about as long as wide. Body oval, with pronotum slightly transverse (generally WP/LP ≤ 1.57); humeral calli absent (Fig. 22). Ratio of metaster nal width/metasternal length > 2.50 (Fig. 145). First metatarsomere shorter than second and third together, and laterally compressed (Figs 142–144). First pro- and mesotarsomeres symmetrical. Hind tibial socket wide with distinctly dentiform inner margin (Figs 142–143)................. Biodontocnema Biondi, 2000 stat. prom. (Fig. 22)

Interocular space with at least a distinct transverse carina (Fig. 150). Distal margin of frons distinctly incised medially (Fig. 150). Interantennal space at least twice as wide as length of first antennomere (Fig. 150)

.. Carcharodis Weise, 1910 (Fig. 25)
Interocular space without transverse carinae. Distal margin of frons medially not incised. Interantennal space less than twice as wide as of first antennomere length (Fig. 159) ... 6

Prosternum distinctly convex anteriorly (Fig. 160), most of mouthparts fitting into this convexity when head is in resting position, except labrum and mandibles, which act as a ‘cover’ (Fig. 159); maxillae and labium sunken (Fig. 159). Pronotal punctuation variable, displaying punctures of different sizes (Fig. 158) Collartatica Bechyné, 1959 (Fig. 31)

Prosternum moderately convex anteriorly, mouthparts do not fit into this convexity when head is in resting position; maxillae and labium exposed and not sunken. Pronotal punctuation uniform ..

.. Collartatica Bechyné, 1959 (Fig. 31)

Procoxal cavities closed posteriorly. Antennomere 4 about as long as antennomere 3, or shorter (Figs 147, 273, 274). Elytral punctuation generally arranged in regular rows, more rarely partially in irregular double rows or confused (Figs 23, 107). Antennae shorter, not reaching half elytral length (Figs 23, 107) .. 8

Procoxal cavities open posteriorly. Antennomere 4 at least double length of antennomere 3 (Figs 161, 240, 241). Elytral punctuation always confused, densely and uniformly impressed (Figs 33, 87). Antennae longer, reaching half elytral length (Figs 33, 87) ... 9

Pronotum with distinct apical, median or basal impressions, always with two sublateral series of large and deeply impressed punctures from anterior margin to middle of pronotum (subgenus Blepharidina Bechyné) (Fig. 146); pronotal punctuation not uniformly distributed (Fig. 146). Hind tibiae broadly channeled dorsally (Fig. 148). Frontal sulci deeply impressed (subgenus Blepharidina Bechyné) (Fig. 147). Eyes generally very elongate longitudinally (Fig. 147). Elytral punctuation from moderately to distinctly impressed, generally arranged in regular rows (Figs 23, 148) (in Afrotropical region only B. geminata Bryant, 1944 shows elytral punctuation arranged in regular partially double rows). Posterior margin of hind femora indistinctly or moderately emarginated Blepharida Chevrolat, 1836 (Fig. 23)

Pronotum without distinct impressions; pronotal punctuation uniformly distributed (Figs 107, 273). Hind tibiae indistinctly channeled dorsally (Fig. 275). Frontal sulci moderately impressed (Fig. 274). Eyes less elongate longitudinally, sometimes roundish (Fig. 274). Elytral punctuation moderately impressed, arranged in double partially regular rows (Figs 107, 275) or mostly confused. Posterior margin of hind femora often distinctly emarginated (Fig. 275) Xanthophysca Fairmaire, 1901 (Fig. 107)

Antennae filiform with antennomeres 4–10 filiform or slightly enlarged (Fig. 161) .. Diamphidia Gerstaecker, 1855 (Fig. 33)

Antennae with antennomeres 4–10 pectinate or flabellate in male and serrate in female (Figs 240–241) Polyclada Chevrolat, 1836 (Fig. 87)
Group D

1 Pronotum with two very short but distinct longitudinal sublateral impressions basally; transverse sulcus absent ante-basally (Fig. 103). Elytral punctation confused, finely but distinctly and densely impressed, mainly in basal half (Fig. 103). Body larger (LB > 3.90 mm), subsharpeical (Fig. 103)

..

\textit{Toxaria} Weise, 1903 (Fig. 103)

– Pronotum with transverse sulcus ante-basally, sometimes very slightly impressed. Elytral punctation generally very slightly or indistinctly impressed (Fig. 101), sometimes subseriate (Fig. 18). Body smaller (LB ≤ 3.90 mm), oval or elliptical (Fig. 18, 101).................................

..

2 Pronotum comparatively smaller (LE/LP > 2.80), slightly rounded laterally; transverse sulcus always distinctly impressed ante-basally, bounded by two distinct longitudinal striae laterally (Fig. 101) ...

..

\textit{Stuckenbergiana} Scherer, 1963 (Fig. 101)

– Pronotum comparatively larger (LE/LP ≤ 2.80), more distinctly rounded laterally; transverse sulcus very slightly impressed ante-basally, not bounded laterally and sometimes only visible medially (Fig. 18).................................

..

\textit{Bechiana} Scherer, 1970 (Fig. 18)

Group E

1 Dorsal integument distinctly pubescent (Fig. 40, 41).................................

– Dorsal integument apparently glabrous. Elytra sometimes very sparsely pubescent in \textit{Lampedona} and \textit{Lypnea}...

..

2 Pronotum as wide as elytra basally, subparallel or convergent towards anterior laterally; sulcus more or less deeply impressed ante-basally, bounded by two short longitudinal striae laterally (Fig. 40). Frontal tubercles very small, elongate and narrow (Fig. 180). Antennomere 4 distinctly shorter than antennomeres 2–3 together. Body less elongate (LB/WE < 2.00) (Fig. 41). Elytra not modified apically in male \textit{Epitrix} Foudras, 1860 (Fig. 40)

– Pronotum narrower than elytra basally, divergent towards anterior laterally; transverse sulcus finely impressed ante-basally, not bounded by longitudinal striae laterally (Fig. 41). Frontal tubercles larger, subrectangular or subtriangular, often elongate towards upper ocular margin (Fig. 181). Antennomere 4 as long as antennomeres 2–3 together. Body more elongate (LB/WE ≥ 2.00) (Fig. 41). Elytra generally with modified structures apically in male (Fig. 41)................................. \textit{Eriotica} Harold, 1877 (Fig. 41)

3 Hind tibia with two apical spurs (Fig. 216)... \textit{Myrcina} Chapuis, 1875 (Fig. 69)

– Hind tibia with only one apical spur.................................

4 Pronotum with transverse sulcus bounded laterally by two short longitudinal striae ante-basally or touching basal margin (Figs 126, 170, 209, 225, 246) ...
– Pronotum with transverse sulcus not bounded by longitudinal striae laterally and ante-basally; sulcus interrupted laterally, or touching lateral margin or posterior angles (Figs 120, 121, 212)..20

5 Antennomere 3 distinctly longer than antennomere 1 (Figs 12, 73). Frons distinctly elongate (Figs 127, 222, 223). Genae about 1.5x length of vertical ocular diameter (Figs 127, 223). Antennae comparatively elongate (LB/LAN < 1.20) (Figs 12, 73)...6

– Antennomere 3 shorter than antennomere 1 (Fig. 210). Frons short. Genae distinctly shorter than vertical ocular diameter. Antennae comparatively short (LB/LAN ≥ 1.20)...7

6 Elytral punctation arranged in 9 regular rows, partially confused in sutural area; interstriae distinctly convex on disc, and subcarinate laterally (Figs 73, 222). Anterior angles of pronotum not bevelled, distinctly dentiform apically (Fig. 221). Antennae extraordinarily elongate in male (LB/LAN < 0.90), with antennomeres 3–6 distinctly enlarged; antennae in female not enlarged and little shorter than the body (Fig. 73). Body elongate and slightly convex (Figs 73, 222). Ntaolaltica Biondi & D’Alessandro, in press (Fig. 73)

– Elytral punctation entirely confused (Fig. 12). Anterior angles of pronotum bevelled, moderately dentiform apically (Fig. 126). Antennae filiform in both sexes (LB/LAN ≥ 0.90), without enlarged antennomeres or only moderately enlarged only in male (Fig. 12). Body thickset and distinctly convex (Fig. 12). Antanemora Bechyné, 1964 (Fig. 12)

7 Pronotum with ante-basal transverse sulcus not bounded by longitudinal striae laterally, and touching basal margin (Figs 170, 246).............................8

– Pronotum with ante-basal transverse sulcus bounded by two short longitudinal striae laterally (Fig. 225)..13

8 Elytral punctation arranged in regular, or sometimes partially irregular, single or double rows ...9

– Elytral punctation entirely confused ..10

9 Antennae in female robust, generally with antennomere 2 as long as antennomere 3; antennomeres 9–11 in male distinctly enlarged, about as wide as long (Fig. 90). Elytral punctuation indistinctly impressed, sometimes hardly visible amongst interstrial punctuation (Fig. 247). Pronotum distinctly rounded and widely bordered laterally (Fig. 246)...Pseudophygasia Biondi & D’Alessandro, in press (Fig. 90)

– Antennae filiform with antennomere 2 distinctly shorter than antennomere 3; antennomeres 9–11 elongate (Fig. 210). Elytral punctuation distinctly impressed (Fig. 64). Pronotum slightly rounded and finely bordered laterally (Fig. 209) ...Lypnea Baly, 1876a (Fig. 64)

10 Pronotum distinctly arcuate laterally, distinctly narrower basally; posterior angles distinctly laterally produced at apex (Fig. 170). Frontal tubercles rounded, distinctly raised (Figs 170–171). Antennae more robust, often with
distinctly enlarged distal antennomeres (Fig. 171) ..
... *Diphaulacosoma* Jacoby, 1892a (Fig. 36)
– Pronotum moderately rounded, slightly narrower basally; posterior angles very indistinctly produced laterally, finely dentiform at apex. Frontal tubercles generally subtriangular, flat or slightly raised. Antennae filiform, never with distinctly enlarged antennomeres ... 11

11 Frontal tubercles extended distally between antennae, forming two parallel, acute apically longitudinal carinae which surround clypeus distally (Fig. 207). Body smaller (generally LB < 2.60 mm). Pronotum with distinctly impressed transverse sulcus ante-basally (Fig. 61) *Lepialtica* Scherer, 1962 (Fig. 61)
– Frontal tubercles not extended distally between antennae; frontal carina simple. Body larger (generally LB ≥ 2.60 mm). Pronotum with indistinctly impressed transverse sulcus ante-basally ... 12

12 Elytra widely bordered laterally (Fig. 77). Frontal carina narrow and acute apically (Fig. 228). Interantennal space narrow, about as wide as 1/3 of length of first antennomere (Fig. 228) *Perichilona* Weise, 1919 (Fig. 77)
– Elytra narrowly bordered laterally (Fig. 42). Frontal carina wider and rounded apically (Fig. 182). Interantennal space wider, about as wide as length of first antennomere (Fig. 182) *Eurylegna* Weise, 1910 (Fig. 42)
 [= *Eurylegniella* Scherer, 1972 syn. n. (Fig. 43)]

13 Elytral punctation arranged in simple or double rows, sometimes partially irregular ... 14
– Elytral punctation entirely confused .. 17

14 Elytral punctation arranged in double partially irregular rows (Fig. 118). Elytra generally with a distinct longitudinal carina laterally (Fig. 118) *Afrocrepis* Bechyné, 1954 (Fig. 4)
– Elytral punctation arranged in single regular rows. Elytra never with longitudinal carinae laterally ... 15

15 Anterior tibiae distinctly enlarged distally, with a deep longitudinal depression in distal half (Fig. 188). Interocular space distinctly punctate (Fig. 187) ... *Guinerestia* Scherer, 1959 (Fig. 47)
– Anterior tibiae normally shaped. Interocular space impunctate or very sparsely punctate (Figs 119, 205) ... 16

16 Procoxal cavities open posteriorly. Pronotal sulcus curved towards base medially, bounded by two short longitudinal striae laterally (Figs 58, 59). Elytra with distinct basal calli (Figs 58, 59). Frontal carina narrow, acute apically (Fig. 205). Frontal tubercles next to each other (Fig. 205) ...
... *Kimongona* Bechyné, 1959 (Fig. 58)
 [= *Mesocrepis* Scherer, 1963 syn. n. (Fig. 59)]
– Procoxal cavities closed posteriorly. Pronotal sulcus straight, bounded by two longer longitudinal striae laterally (Fig. 5). Elytra without basal calli (Fig. 5). Frontal carina wide, subrounded apically (Fig. 119). Frontal tubercles distant from each other (Fig. 119) *Afrorestia* Bechyné, 1959 (Fig. 5)
Antennae comparatively short (LB/LAN ≥ 2.20), with antennomeres 6–11 as long as wide (Fig. 10) *Anaxerta* Fairmaire, 1902 (Fig. 10)

– Antennae comparatively long (LB/LAN < 2.20), with antennomeres 6–11 distinctly longer than wide.......................... 18

Procoxal cavities closed posteriorly. Pronotum moderately rounded laterally; posterior angles not dentiform apically (Fig. 70). Antennae often with alternate groups of black and yellowish antennomeres (Fig. 70).........................

.. *Neodera* Duvivier, 1891 (Fig. 70)

– Procoxal cavities open posteriorly. Pronotum distinctly rounded laterally; posterior angles distinctly dentiform apically. Antennae never with alternate groups of black and yellowish antennomeres.......................... 19

Antennomere 2 about as long as antennomere 3 or slightly shorter (Fig. 225). Frontal tubercles indistinctly defined posteriorly, and slightly raised (Fig. 226). Pronotum narrowly bordered laterally Fig. 225)............................

.. *Orthocrepis* Weise, 1888 (Fig. 75)

– Antennomere 2 distinctly shorter than antennomere 3 (Fig. 230). Frontal tubercles distinctly defined posteriorly, and distinctly raised (Fig. 230). Pronotum widely bordered laterally (Fig. 79).... *Phygasia* Chevrolat, 1836 (Fig. 79)

Elytral punctation entirely confused [see also *Guilielmia* at couplet 24].... 21

– Elytral punctation arranged in simple or double rows, more or less irregular only in *Guilielmia*...

22

Procoxal cavities closed posteriorly (157). Anterior and middle femora enlarged, particularly in male (Fig. 157) ...

.............. *Chirodica* Germar, 1834 (see also Group H couplet 28) (Fig. 30)

– Procoxal cavities open posteriorly. Anterior and middle femora not enlarged... 22

Pronotum with distinctly impressed transverse sulcus ante-basally, often touching lateral margins of pronotum (Fig. 121); anterior angles generally rounded apically. Interantennal space narrower than length of first antennomere (Fig. 121). Frontal carina narrow and acute (Fig. 121). Pronotal punctuation generally indistinctly impressed (Fig. 121). Dorsal integument usually blue or green, always with distinct metallic luster (Fig. 7).........................

.. *Altica* Geoffroy, 1762 (Fig. 7)

– Pronotum with slightly impressed transverse sulcus ante-basally, never touching lateral margins of pronotum (Fig. 1); anterior angles obliquely bevelled apically . Interantennal space distinctly wider than length of first antennomere (Fig. 120). Frontal carina wide and flat. Pronotal punctuation distinctly impressed (Fig. 120). Dorsal integument brownish with partially blackened elytra, without metallic luster (Fig. 6) *Alocypha* Weise, 1911 (Fig. 6)

23

Humeral calli absent. Ante-basal pronotal sulcus barely visible (Figs 26, 46).... 24

– Humeral calli distinct. Ante-basal pronotal sulcus always distinctly impressed, medially at least (Figs 172, 206, 212) .. 25

24

Elytral punctation arranged in 9 regular rows. Dorsal integument from yellowish to brownish *Celisaltica* Biondi, 2001a (Fig. 26)
– Elytral punctation more or less irregular. Dorsal integument dark..................
...

25 Antennomere 2 as long as antennomere 1 and at least twice as long as antennomere 3 (Fig. 172). Procoxal cavities closed posteriorly
...

.........................Guilielmia Weise, 1924 (Fig. 46)

– Antennomere 2 distinctly shorter than antennomere 1 and about as long as antennomere 3. Procoxal cavities open posteriorly
...

26 Antennomere 1 at least 2.5 times longer than antennomere 2. Pronotal base not, or very slightly, sinuous (Fig. 206). Body larger (LB ≥ 4.50 mm). Elytra comparatively elongate (LE/WE > 1.60) (Fig. 60)
...

.........................Lampedona Weise, 1907 (Fig. 60)

– Antennomere 1 about 1.5 times longer than antennomere 2. Pronotal base distinctly sinuous (Figs 204, 212). Body smaller (LB < 4.50 mm). Elytra comparatively short (LE/WE ≤ 1.60) (Figs 57, 66)
...

27 Frontal tubercles distinctly defined posteriorly. Pronotum with distinctly impressed transverse sulcus ante-basally, touching lateral margins of pronotum; posterior angles distinctly dentiform apically (Fig. 212). Dorsal integument with distinctly impressed punctuation (Fig. 66). First metatarsomere longer than second and third together. Elytra with prominent basal calli (Fig. 66)..
...

.........................Manobia Jacoby, 1885 (Fig. 66)

– Frontal tubercles not distinctly defined posteriorly. Pronotum with a moderately or indistinctly impressed transverse sulcus ante-basally, not touching the lateral margins of pronotum; posterior angles subrounded apically, never distinctly dentiform (Fig. 204). Dorsal integument with slightly or moderately impressed punctuation (Fig. 57). First metatarsomere shorter than second and third together. Elytra with basal calli barely visible (Fig. 57).........................
...

.........................Kenialtica Bechyné, 1960 (Fig. 57)

Group F

1 Anterior margin of pronotum without distinct longitudinal impressions, with very short incisions at most. Pronotum slightly narrower than elytra basally. Body generally less convex and more elongate (Figs 85–86)........
...

...........................Podagrica Chevrolat, 1836 (Fig. 85)

[= Podagricina Csiki in Heikertinger & Csiki, 1940 syn. n. (Fig. 86)]

– Anterior margin of pronotum with two longitudinal groove-like impressions, often deeply impressed (Figs 217–218) and sometimes reaching middle of pronotum. Pronotum as wide as elytra basally (Figs 71, 217, 218). Body thickset and distinctly convex (Fig. 71)..............Nisotra Baly, 1864 (Fig. 71)
Group G

1. Body more elongate, less convex, with comparatively elongate elytra (LE/WE < 1.25) (Fig. 16). Elytral margin in dorsal view well visible in its all length. Pronotum with straight sublateral sulci, basally obliquely slanted and distally never touching the lateral margin of pronotum (Fig. 133). .. *Argopistoides Jacoby, 1892b* (Fig. 16)

 – Body subsphaerical, distinctly convex, with comparatively short elytra (LE/WE ≥ 1.25) (Fig. 27). Elytral margin in dorsal view generally not visible or visible only basally. Pronotum with sinuous sublateral sulci, basally starting sub-parallel to lateral margin of pronotum and distally sometimes touching it (Fig. 153).. *Chabria Jacoby, 1887* (Fig. 27)

Group H

1. Apical spur of hind tibiae distinctly serrate (Fig. 252, 253, 277)..............2

 – Apical spur of hind tibiae differently shaped but never serrate..............3

2. Elytral punctation distinctly impressed, arranged in regular rows (Fig. 251). First metatarsomere longer than 2/3s length of hind tibia and dorsally or preapically inserted on hind tibia (Fig. 252). Apical spur of hind tibiae distinctly elongate (LHT/LHTS ≤ 8.00) (Figs 252–253) ..

 .. *Serraphula Jacoby, 1897* (Fig. 94)

 – Elytral punctation slightly impressed, poorly visible and only partially arranged in regular rows (Fig. 276). First metatarsomere at most as long as half of hind tibial length and apically inserted on hind tibia (Fig. 276). Apical spur of hind tibiae very short (LHT/LHTS > 8.00) (Figs 276–277)

 .. *Yemenalctica Scherer, 1985* (Fig. 108)

3. Metatarsus dorsally inserted at about half of tibial length (Fig. 213)..........

 ..*Metroserapha Bechyné, 1958a* (Fig. 67)

 – Metatarsus apically inserted on tibia ..4

4. Apical spur of hind tibiae distally bifid or trid (Figs 179, 270)...............5

 – Apical spur of hind tibiae simple [in *Trachytetra* hind apical spur thickset, subtruncate, sometimes apparently bifid (Fig. 269); but this genus is easily distinguishable from *Dunbrodya* and *Dibolia* by having distinctly defined frontal tubercles; and frons that is elongate distally in lateral view]8

5. Apical spur of hind tibiae obtusely pointed apically (Fig. 270). Antennae about as long as body (Fig. 105). Habitus similar to *Longitarsus*

 .. *Tritonaphthona Bechyné, 1960* (Fig. 105)

 – Apical spur of hind tibiae bifid apically (Fig. 179). Antennae generally short, at most reaching half of elytra..............6
First metatarsomere about 1/3 of length of hind tibia (Fig. 178). Pronotum less transverse, lateral margins converging slightly towards anterior (WP/LP ≤ 1.70) (Fig. 176). Frons with distinct longitudinal carina medially (Fig. 177). Body elongate and slightly convex (Fig. 39). Habitus similar to Aphthona

- First metatarsomere about 1/5 of length of hind tibia (Fig. 166). Pronotum distinctly transverse, laterally margins converging distinctly towards anterior (WP/LP > 1.70) (Fig. 164). Frons without or with very short longitudinal carina medially (Figs 165, 227). Body thickset and distinctly convex (Figs 34, 76)

- Eyes small, widely separated dorsally; interocular distance at least 3 times wider than length of second antennomere (Fig. 165)

- Eyes very large, closely associated dorsally; interocular space as wide as length of second antennomere (Fig. 227)

- Elytra distinctly reduced, obliquely truncate apically (Fig. 262). Pronotum subtrapezoidal, with maximum width at anterior angles; lateral margins straight (Fig. 261)

- Elytral surface distinctly and uniformly pubescent

- Elytral surface apparently glabrous, rarely very sparsely setose towards apex

- First metatarsomere about half length of tibia (Fig. 250). Elytral punctation arranged in regular rows (Figs 92–93)

- Elytral punctation confused, densely and finely impressed (Figs 53, 198). Elytral surface with short dense pubescence (Fig. 198). Frontal tubercles not defined posteriorly. Antennae short, not reaching middle of elytra (Fig. 53). First metatarsomere shorter than length of second and third together (Fig. 198). Elytral margins widely bordered laterally (Fig. 198)

- Elytral punctation arranged in regular or partially irregular rows, distinctly impressed (Figs 49, 52). Elytral surface with longer sparse pubescence (Fig. 191). Frontal tubercles well defined posteriorly (Figs 190, 196, 197). Antennae longer, reaching beyond middle of elytra. First metatarsomere longer than second and third together (Fig. 191). Elytral margins narrowly bordered laterally (Fig. 191)
13 Pronotal punctation distinctly impressed on surface with distinct transverse and longitudinal carinae, sulci and/or protuberances (Figs 196–197). Frontal tubercles medially separated by deep longitudinal sulcus (Figs 196–197)..............

Hildebrandtina Weise, 1910 (Fig. 52)

14 Body slightly elongate, often subsphaerical (LB/WE < 1.70). Pronotum more transverse (generally WP/LP > 1.80)...15

– Body distinctly elongate, never subsphaerical (LB/WE ≥ 1.70). Pronotum less transverse (generally WP/LP ≤ 1.70)..24

15 Pronotum with anterior setigerous pore near middle of lateral margin (Fig. 201). Antennomere 3 as long as, or longer than, antennomeres 4–5 together (Fig. 202)...

Jacobyana Maulik, 1926 (Fig. 55)

– Pronotum with anterior setigerous pores near anterior angles. Antennomere 3 distinctly shorter than antennomeres 4–5 together.................................16

16 Body smaller (LB < 1.60 mm). Elytral punctation with scutellar stria long, reaching apical declivity of elytra (Fig. 138). Apical spur of hind tibia very small and slenderBezkaltica Döberl, 2012 (Fig. 20)

– Body larger (LB ≥ 1.60 mm). Elytral punctuation with scutellar stria short, not reaching middle of elytra. Apical spur of hind tibia robust..............................17

17 Pronotum with lateral margins diverging from base towards middle, then converging slightly towards anterior; maximum pronotal width in anterior third; anterior angles distinctly dentiform apically (Fig. 219). Pronotal punctation very distinctly impressed especially laterally (Fig. 219). Elytra with submarginal stria of distinctly and deeply impressed punctures laterally, delimiting wide and distinctly raised lateral band (Fig. 220)..........................

Notomela Jacoby, 1899 (Fig. 72)

– Pronotum with lateral margins converging distinctly towards anterior; maximum pronotal width at base; anterior angles not distinctly dentiform apically. Pronotal punctuation from finely to moderately impressed. Elytra lacking submarginal stria with distinctly impressed punctures and distinctly raised lateral band...18

18 Frontal tubercles and frontal carina absent (Fig. 122). Interantennal space at least as wide as transverse ocular diameter (Fig. 122). Elytral interstriae always densely punctuatedAmphimela Chapuis, 1875 (Fig. 8)

[= Sphaerophysa Baly, 1876b syn. n. (Fig. 9)]

– Frontal tubercles distinctly defined. Frontal carina narrow, often raised. Interantennal space narrower than transverse ocular diameter. Elytral interstriae generally not densely punctuated...19

19 Pronotal base regularly rounded, not sinuate ...20

– Pronotal base bisinuate ..22
20 Elytral punctation regularly striate. Scutellum not visible (Fig. 265). Body smaller (LB < 2.30 mm), distinctly convex (Fig. 100) ... Stegnaspea Baly, 1877 (Fig. 100)

– Elytral punctation confused and finely impressed. Scutellum distinctly visible. Body larger (LB ≥ 2.30 mm), moderately convex 21

21 Frontal carina not prolonged towards clypeus (Fig. 244). Frons distinctly raised distally in lateral view. Elytra with distinct basal calli (Fig. 89). Pronotum with anterior angles distinctly thickened, projecting distinctly towards anterior (Fig. 243). Body more convex (Fig. 89). Hind tibiae narrowly and less deeply channeled dorsally (Fig. 245) Pseudadorium Fairmaire, 1885 (Fig. 89)

– Frontal carina prolonged towards clypeus (Fig. 193). Frons not raised distally in lateral view. Elytra without distinct basal calli (Fig. 50). Pronotal anterior angles slightly or moderately thickened, not projecting towards anterior, but sometimes dentiform laterally (Fig. 192). Body less convex (Fig. 50). Hind tibiae broadly and more deeply channeled dorsally (Fig. 194) ... Hemipyxis Chevrolat, 1836 (Fig. 50)

22 Hind tibiae with distinct preapical tooth on inside (Fig. 132). Hind femora at least as wide as length of hind tibia (Fig. 131). Eyes elongate, closely associated dorsally, separated by less than transverse ocular diameter (Fig. 130). First abdominal ventrite medially with two distinct longitudinal ridges forward convergent (Fig. 131) Argopistes Motschulsky, 1860 (Fig. 15)

– Hind tibiae lacking distinct preapical tooth on inside. Hind femora narrower than length of hind tibia. Eyes rounded, widely separated dorsally, separated by transverse ocular diameter at least. First abdominal ventrite without distinct longitudinal ridges ... 23

23 Pronotum wider (WP/LP ≥ 2.30), distinctly bisinuate basally; anterior angles projecting distinctly towards anterior; apically widely rounded and completely bordered by thickened margin (Figs 254–255). Elytral epipleura obliquely upward orientated, generally not visible in lateral view (Fig. 256). Elytral punctation confused, finely impressed (Figs 95–96). Body subsphaerical (Figs 95–96) .. Sesquiphaera Bechyné, 1958 (Fig. 95) [= Paropsiderma Bechyné, 1958 syn. n. (Fig. 96)]

– Pronotum narrower (WP/LP < 2.30), moderately bisinuate basally; anterior angles projecting slightly towards anterior; apically not completely bordered by thickened margin, limited to lateral edge of pronotum (Fig. 263). Elytral epipleura horizontally or slightly obliquely downward orientated, well visible in lateral view (Fig. 264). Elytral punctation often more or less seriate, punctures more distinctly impressed. Body generally short and oval, rarely subsphaerical (Fig. 99) Sphaeroderma Stephens, 1831 (Fig. 99)

24 Apical spur of hind tibiae robust, often very short, generally absent on anterior and middle tibiae. Antennomere 2 about as long as antennomere 4 (only in some Chirodica antennomere 4 distinctly longer than antennomere 2 but
Afrotropical flea beetle genera: a key to their identification, updated catalogue... 23

– Anterior and middle femora enlarged and procoxal cavities closed posteriorly. Elytra apparently not pubescent. Body slightly elongate. Apical spur very slender and present on all tibiae; hind apical spur always elongate but sometimes very short on anterior and middle tibiae. Antennomere 2 much shorter than antennomere 4. Elytra or apical part of elytra very sparsely pubescent (Fig. 174). Body distinctly elongate. Habitus similar to Galerucini. .. 25

25 First metatarsomere as long or longer than half tibial length (Figs 137, 140, 208) .. 26

– First metatarsomere shorter than half tibial length ... 26

26 Elytral punctation confused. Longitarsus Berthold, 1827 (Fig. 62)
– Elytral punctation regularly seriate. .. 27

27 First metatarsomere about same length as tibia (Fig. 137). Interantennal space about as wide as transverse ocular diameter; frontal carina apically rounded, moderately raised (Fig. 136). Apical spur of hind tibiae long (LHT/LHTS ≤ 10.00) (Fig. 137). Dorsal integument from yellowish to pale brown (Fig. 19). Bechynella Biondi & D’Alessandro, 2010b (Fig. 19)
– First metatarsomere about half length of tibia (Fig. 140). Interantennal space distinctly narrower than transverse ocular diameter; frontal carina apically acute and raised (Fig. 139). Apical spur of hind tibiae shorter (LHT/LHTS > 10.00). Dorsal integument generally darker with more or less distinct metallic reflections (Figs 21, 140) .. 28

– Elytral punctation regularly seriate. .. 27

28 Procoxal cavities closed posteriorly (Fig. 157). Anterior and middle femora distinctly enlarged, particularly in male (Fig. 157). Pronotum sometimes with a very small transverse sulcus ante-basally. Second maxillary palpomere about as wide as first (Fig. 156) ... 29

– Procoxal cavities open posteriorly. Anterior and middle femora not enlarged. Pronotum never with a transverse sulcus ante-basally. Second maxillary palpomere generally wider than first ... 29

29 Antennomeres 7–11 or 8–11 more enlarged than those remaining (Figs 2, 3, 111) .. 30

– Antennomeres 7–11 similar in width to those remaining .. 31

30 Humeral calli absent (Fig. 3). Pronotum distinctly convex, very narrowly bordered laterally; anterior angles rounded or slightly bevelled; posterior angles rounded (Fig. 114). Metasternum shorter than length of mid-coxal cavity (Fig. 117). Middle and hind tibiae distinctly enlarged from base to apex, particularly in male; middle tibiae with distinct triangular hollow ventrally in male (Fig. 115) Afroaltica Biondi & D’Alessandro, 2007 (Fig. 3)
– Humeral calli distinct (Figs 2, 110). Pronotum moderately convex, distinctly bordered laterally; anterior angles distinctly dentiform and widely bevelled; posterior angles acute, often dentiform (Fig. 110). Metasternum longer than
length of mid-coxal cavity (Fig. 112). Middle and hind tibiae moderately enlarged from base to apex; middle tibiae without distinct hollow ventrally in male...Abrarius Fairmaire, 1902 (Fig. 2)

31 Frontal carina narrow and distinctly raised with few large superficial punctures, and a narrow longitudinal groove distally between antennae (Fig. 242). Elytral and often also pronotal punctuation, exceptionally dense and strongly impressed (Fig. 88) ...Pratima Maulik, 1931 (Fig. 88)
– Frontal carina wide, flat or convex but never grooved longitudinally. Elytral punctuation from indistinctly to moderately impressed ...Montiaphtona Scherer, 1961 (Fig. 68)

32 Anterior angles of pronotum not obliquely bevelled (Fig. 214). Humeral calli absent (Figs 68, 215). Elytral apex subtruncate (Fig. 215)...............................
– Anterior angles of pronotum obliquely bevelled. Humeral calli generally visible. Elytral apex generally rounded ..Phyllotreta Chevrolat, 1836 (Fig. 80)

33 Frontal tubercles absent or indistinctly defined (Fig. 231). Anterior angles of pronotum not widely and obliquely bevelled (Fig. 231). Elytral punctuation confused. Body flatter and more elongate (Fig. 80)...
– Frontal tubercles distinctly defined. Anterior angles of pronotum widely and obliquely bevelled. Elytral punctuation sometimes partially regularly striate. Body more convex and less elongate ..Trachytetra Sharp, 1886 (Fig. 104)

34 Apical spur of hind tibiae thickset, subtruncate apically, often apparently bifid (Fig. 269). Frons elongate distally in lateral view (Fig. 268). Elytral punctuation confused ...Bikasha Maulik, 1931 (see also couplet 27) (Fig. 21)
– Apical spur of hind tibiae slender, acute apically, never apparently bifid. Frons short and regularly arcuate distally in lateral view. Elytral punctuation confused, seriate or subseriate ...Phyllotreta Chevrolat, 1836 (Fig. 80)

35 Elytra with poorly defined but distinct basal calli (Fig. 140). Humeral calli bounded posteriorly by distinct, often deeply impressed, depression (Fig. 140). Frontal tubercles always well defined (Fig. 140). Elytral punctuation seriate or subseriate, always distinctly impressed, and never confused (Fig. 140)...Bikasha Maulik, 1931 (see also couplet 27) (Fig. 21)
– Elytra lacking basal calli. Humeral calli bounded posteriorly by more or less flat area. Frontal tubercles often not well defined. Elytral punctuation generally confused, rarely seriate or subseriate; in this case punctuation is slightly impressed and frontal tubercles are generally not distinct...Maurizio Biondi & Paola D'Alessandro / ZooKeys 253: 1–158 (2012)

36 Pronotum subtrapezoidal, straight or very slightly rounded and widely bordered laterally; anterior angles generally thickened, distinctly dentiform apically; posterior angles with distinct, laterally produced, tubercle at apex (Fig. 123). Pronotal base finely but distinctly sinuate (Fig. 123). Frontal tubercles elongate, V-shaped (Fig. 124). Elytra more widely bordered laterally, always with distinctly impressed punctuation (Fig. 125). Dorsal integuments blue
with distinct metallic reflections (Figs 11, 125). Spermatheca with coiled ductus..............*Angulaphthona Bechyné, 1960* (Fig. 11)

– Pronotum subrectangular, more distinctly rounded and finely bordered laterally; anterior angles not thickened, not dentiform apically; posterior angles subrounded apically or slightly dentiform, without distinct tubercles (Fig. 128). Pronotal base generally not sinuate (Fig. 128). Frontal tubercles subtriangular or roundish, rarely elongate. Elytra narrowly bordered laterally, generally with slightly or moderately impressed punctuation (Fig. 129). Dorsal integument varies in colour. Spermatheca with uncoiled ductus, very rarely coiled..................*Aphthona Chevrolat, 1836* (Fig. 13) [≡ *Ethiopia Scherer, 1972 syn. n.* (Fig. 14)]

37 Pronotum with distinct oblique or transverse sublateral impressions medially (Figs 17, 29, 74) ...38

– Pronotum without impressions...40

38 Antennomeres 3 and 4 about same length, each about three times longer than antennomere 2; antennomeres 6–11 shorter and subequal in length (Fig. 134)...*Bangalaltica Bechyné, 1960* (Fig. 17)

– Antennomere 3 very much shorter than antennomere 4 (Figs 155, 224)........39

39 Antennomere 1 as long as antennomeres 2–4 together (Fig. 155). Antennae in male with antennomeres 2–3 very strongly reduced and 6–7 distinctly enlarged (Fig. 155). Pronotum distinctly more transverse (WP/LP > 1.65) (Fig. 29)...*Chaillucola Bechyné, 1968* (Fig. 29)

– Antennomere 1 much shorter than antennomeres 2–4 together (Fig. 224). Antennae similar in both sexes. Pronotum distinctly less transverse (WP/LP ≤ 1.65)...*Nzerekorena Bechyné, 1955* (Fig. 74)

40 First metatarsomere distinctly compressed laterally (Figs 169, 272)41

– First metatarsomere not compressed laterally..42

41 Antennomeres 4–11 subglobose; antennomere 3 about twice as long as antennomere 4 (Fig. 271). Hind femora without processes or projections........

..*Upembaltica Bechyné, 1960* (Fig. 106)

– Antennomeres 4–11 not subglobose; antennomere 3 as long as antennomere 4 (Fig. 167). Hind femora of male with a distinct subtriangular, dentiform process, situated medially on ventral side (Fig. 168)..

..*Dimonikaea Bechyné, 1968* (Fig. 35)

42 Antennomere 4 about as long as antennomere 3, but considerably shorter than antennomere 5; antennomere 5 about as long as antennomeres 2–4 together (Fig. 203). Female unknown........*Kanonga Bechyné, 1960* (Fig. 56)

– Antennomere 4 longer than antennomere 3 or as long as antennomere 5....43

43 Antennomeres 8–10 very small, subglobose, each distinctly shorter than antennomeres 4–7 (Fig. 211)......................*Malvernia Jacoby, 1899* (Fig. 65)

– Antennomeres differently shaped. In *Gabonia*, males often with antennae with distinctly modified segments, but never as in *Malvernia*........44
Metasternum shorter than length of mid-coxal cavity (Fig. 175). Legs very elongate, particularly hind femora and tibiae (Fig. 38). Antennae normally longer than body, particularly in male (Fig. 38). Elytra comparatively short (LE/LP ≤ 2.60); humeral calli absent (Fig. 38). Wings vestigial

Drakensbergianella Biondi & D’Alessandro, 2003 (Fig. 38)

Metasternum at least 1.5x longer than length of mid-coxal cavity (Fig. 186). Legs not elongate (Figs 45, 63). Antennae very rarely longer than body (Figs 45, 63). Elytra comparatively elongate [LE/LP > 2.60 (normally > 3.00)]; humeral calli present. Wings well developed Luperomorpha Weise, 1887 (Fig. 63)

[Gabonia Jacoby, 1893 (see Notes on page 48) (Fig. 45)]

Catalogue of afrotropical flea beetle genera

Abrarius Fairmaire, 1902
http://species-id.net/wiki/Abrarius
Figs 2, 110–112, 278

= Entymosina Weise, 1910 (synonymized by Bechyné 1958c)

References. Fairmaire 1902: 261; Weise 1910b: 438; Bechyné 1947a: 44 (as Entymosina); 1958c: 9; Biondi and D’Alessandro 2010a: 402.

Type species. Abrarius: Abrarius cribrosus Fairmaire, 1902: 261 (Madagascar: Plateau de l’Ankara), designation by monotypy; Entymosina: Entymosina parvula Weise, 1910b: 439 (Madagascar: Nossibé), by present designation.

Distribution. Madagascar (Fig. 278).

Ecology. No information.

Notes. Endemic to Madagascar and comprises about ten known species. The Neotropical genus Gioia Bechyné (1955d: 77) is very similar to Abrarius, and may well be a synonym.

Afroaltica Biondi & D’Alessandro, 2007
http://species-id.net/wiki/Afroaltica
Figs 3, 113–117, 279

References. Biondi and D’Alessandro 2007: 99; 2010a: 402; D’Alessandro and Biondi 2011: 365.

Type species. Afroaltica subaptera Biondi & D’Alessandro, 2007: 100 (Republic of South Africa, KwaZulu-Natal, Karkloof area), by original designation.

Distribution. Republic of South Africa (KwaZulu-Natal, Limpopo, and Mpumalanga) (Fig. 279).
Ecology. *Afroaltrica subaptera* was collected in an open field on Poaceae (also known as Gramineae) (Biondi and D’Alessandro 2007).

Notes. Two species have been described.

[Afroalytus Scherer, 1961]
= *Manobia* Jacoby, 1885

Afrocrepis Bechyné, 1954b
http://species-id.net/wiki/Afrocrepis
Figs 4, 118, 280

References. Bechyné 1954b: 680; Heikertinger 1925: 99 (as *Derocrepis* Weise 1886); Biondi and D’Alessandro 2010a: 403.

Type species. *Crepidodera carinipennis* Jacoby, 1903a: 12 (KwaZulu-Natal, Malvern), by original designation.

Distribution. Madagascar (!) [Ambalamanankana (NHMB); Perinet (NHMB); Andohahela (BAQ)] and the Republic of South Africa (Fig. 280).

Ecology. No information.

Notes. Three species are known. *Crepidodera betiokyensis* Bechyné (1954a: 46) from Madagascar, erroneously attributed to this genus by Bechyné (1964: 152), was placed in *Afrorestia* Bechyné (cf. Scherer 1962b: 57; Biondi and D’Alessandro 2010a: 403). However, it is here confirmed that this genus does occur in Madagascar.

Afrorestia Bechyné, 1959b
http://species-id.net/wiki/Afrorestia
Figs 5, 119, 281

References. Bechyné 1959b: 232; Biondi and D’Alessandro 2010a: 403.

Type species. *Crepidodera laeviuscula* Csiki in Heikertinger and Csiki 1940: 297 (West Africa), by original designation.

Distribution. Burundi, Democratic Republic of the Congo, Ethiopia, Madagascar, Republic of South Africa, Rwanda, Tanzania, Uganda, and Zimbabwe (Fig. 281).

Ecology. Some species of this genus have been collected from plants in the family Apiaceae in South Africa (personal data).

Notes. About twenty described species. *Crepidodera betiokyensis* Bechyné (1954a: 46) from Madagascar, erroneously attributed to *Afrocrepis* Bechyné by Bechyné (1964: 152), was transferred to this genus (cf. Scherer 1962b: 57; Biondi and D’Alessandro 2010a: 403). *Crepidodera sjostedti* Weise (1910a: 221) from Kilimanjaro was incorrectly attributed to *Asiorestia* Jacobson, 1925 (a genus that does not occur in the Afrotropical region) by Bechyné (1957: 181). This species was transferred to *Afrorestia* Bechyné by Biondi and D’Alessandro (2010a: 403).
Allomorpha Jacoby, 1892b

= *Hespera* Weise, 1889

Alocypha Weise, 1911

http://species-id.net/wiki/Alocypha

Figs 6, 120, 282

References. Weise 1911: 170; Biondi and D’Alessandro 2010a: 403.

Type species. *Alocypha litura* Weise, 1911: 171 (East Africa: Lindi) [= *Aphthona bimaculata* Jacoby, 1903a: 11] (KwaZulu-Natal), designation by monotypy.

Distribution. Botswana, Malawi, Mozambique, Namibia, Republic of South Africa (KwaZulu-Natal), Tanzania and Zambia (Fig. 282).

Ecology. *Alocypha bimaculata* is a harmful pest of Sesame (*Sesamum indicum* L.) (Pedaliaceae) crops, particularly in Tanzania (Mponda et al. 1997).

Notes. Only one species is known.

Altica Geoffroy, 1762

http://species-id.net/wiki/Altica

Figs 7, 121, 283

= *Haltica* Illiger, 1801 (unjustified emendation)

= *Graptodera* Chevrolat, 1836 (synonymized by Weise 1888)

References. Geoffroy 1762: 244; Illiger 1801: 138; Chevrolat 1836: 388; Weise 1888: 825; Allard 1889a: 43 (as *Graptodera*); Bechyné 1954a: 43; 1955a: 209; 1960b: 77; Döberl 2008: 35; Biondi and D’Alessandro 2010a: 403.

Type species. *Altica: Chrysomela oleracea* Linnaeus, 1758: 372 (Europe), by subsequent designation by Latreille (1810: 432); *Graptodera: Chrysomela oleracea* Linnaeus, 1758: 372 (Europe), by subsequent designation by Chevrolat (1845: 307).

Distribution. All zoogeographical regions (Fig. 283).

Ecology. Polyphagous. This genus has been found associated with herbaceous plants, shrubs and trees belonging to several plant families (cf. Jolivet and Hawkeswood 1995).

Notes. About fifty species are known from Madagascar and Sub-Saharan Africa.
Amphimela Chapuis, 1875
http://species-id.net/wiki/Amphimela
Figs 8, 9, 122, 284

= Cercyonia Weise, 1901 (synonymized by Scherer 1961)
= Diboloides Jacoby, 1897 (synonymized by Scherer 1961)
= Dibolosoma Jacoby, 1897 (synonymized by Biondi and D’Alessandro 2010a)
= Halticella Jacoby, 1899b (name preoccupied by Halticella Stephens 1829: 36, Hymenoptera, Chalcidoidea)
= Halticorthaea Csiki in Heikertinger and Csiki, 1940 (new name for Halticella Jacoby 1899; synonymized by Scherer 1961)
= Halticova Fairmaire, 1898 (synonymized by Biondi and D’Alessandro 2010a)
= Sphaerophysa Baly, 1876 syn. n.

References. Chapuis 1875: 34; Baly 1875: 27; 1876b: 582; Jacoby 1897: 553, 559; 1899b: 357; Fairmaire 1898: 428; Weise 1901: 303; Maulik 1929: 307 (as Diboloides); Csiki in Heikertinger and Csiki 1940: 418; Bechyné 1958c: 10; Scherer 1961: 252; Biondi and D’Alessandro 2010a: 403.

Type species. Amphimela: Amphimela mouhoti Chapuis, 1875: 36 (Indonesia), designation by monotypy; Cercyonia: Cercyonia variabilis Weise, 1901: 303 (Tanzania: Bagamoyo, Kunow), designation by monotypy; Diboloides: Diboloides bicolor Jacoby, 1897: 553 (Mashonaland), designation by monotypy; Dibolosoma: Dibolosoma quadripustulatum Jacoby, 1897: 560 (Madagascar: Diego-Suarez), designation by monotypy; Halticella: Halticella flavopustulata Jacoby, 1899b: 357 (Natal, Frere), designation by monotypy; Halticova: Halticova rufoguttata Fairmaire, 1898: 428 (Madagascar), designation by monotypy; Sphaerophysa: Sphaerophysa clavicornis Baly, 1876b: 582 (Madagascar), designation by monotypy.

Distribution. Afrotropical (including Madagascar), Australian, Eastern Palaearctic and Oriental regions (Fig. 284).

Ecology. Amphimela bryanti (Csiki in Heikertinger and Csiki 1940) on Bersama sp. (Meliaceae) in Uganda (Bryant 1936, as Cercyonia quadrinotata Bryant, 1936: 218); A. citri (Bryant 1922: 474) cited as a harmful pest of citrus in West Africa (Bryant 1922a).

Notes. About thirty-five species have been described in the Afrotropical region. Bechyné (1964: 161) established the synonymy between Dibolosoma quadripustulatum Jacoby, 1897 [as 4-punctata (sic!)] and Halticova rufoguttata Fairmaire, 1898; while Weise (1910b: 496) established the synonymy between Sphaerophysa Baly and Dibolosoma Jacoby. Moreover, there are no important diagnostic characters distinguishing Sphaerophysa from Amphimela, this latter characterized by a wide variability in the Afrotropical region. Therefore, the following new synonymy is proposed: Amphimela Chapuis, 1875 = Sphaerophysa Baly, 1876b syn. n. Material examined: Sphaerophysa clavicornis Baly (det. J. Bechyné), “Madagascar, Tananarive”, 2 specimens (NMPC).
Anaxerta Fairmaire, 1902
http://species-id.net/wiki/Anaxerta
Figs 10, 285

References. Fairmaire 1902: 267; Biondi and D’Alessandro 2010a: 403.
 Type species. Anaxerta castanea Fairmaire, 1902: 268 (Madagascar: Ankarahitra),
 designation by monotypy.
 Distribution. Madagascar (Fig. 285).
 Ecology. No information.
 Notes. A single species has been described.

Angulaphthona Bechyné, 1960b
http://species-id.net/wiki/Angulaphthona
Figs 11, 123–125, 286

References. Bechyné 1960b: 74; Scherer 1978: 265; Gruev 1981: 55; Medvedev 1996:
 261.
 Type species. Aphthona heteromorpha Bechyné 1955c: 62 (Madagascar: Bas Mangoky),
 by original designation.
 Distribution. Egypt, Tchad, Sudan, Somaliland, Sierra Leone, Nigeria, Democratic
 Republic of Congo, Uganda, Zambia (!) [50 km W Kasama (BAQ)], Malawi (!) [Dedza
 (BAQ)], Mozambique, Republic of South Africa (!) [KwaZulu-Natal: Durban (SANC)],
 Madagascar, and Arabian Peninsula (Saudi Arabia and North Yemen) (Fig. 286).
 Ecology. Angulaphthona heteromorpha collected on cotton plants, Gossypium sp.
 (Malvaceae) (Bechyné 1955c, as Aphthona).
 Notes. Five species are known from the Afrotropical region.

Antanemora Bechyné, 1964
http://species-id.net/wiki/Antanemora
Figs 12, 126–127, 287

Lactica Erichson, 1847 (pars)

References. Bechyné 1950: 220 (as Lactica); 1964: 145; Bechyné and Bechyné 1975:
 26; Biondi and D’Alessandro 2010a: 403.
 Type species. Lactica carbonaria Bechyné, 1948a: 7 (Madagascar: Environs de
 Rogez; Ankazoabo), by original designation.
 Distribution. Madagascar (Fig. 287).
 Ecology. No information.
 Notes. There are about twenty known species (personal data).
Aphthona Chevrolat, 1836
http://species-id.net/wiki/Aphthona
Figs 13, 14, 128–129, 288

= *Ethiopia* Scherer, 1972 syn. n.
= *Pseudeugonotes* Jacoby, 1899 (synonymized by Biondi and D’Alessandro 2010a)

References. Chevrolat 1836: 391; Jacoby 1899a: 531; Bechyné 1955c: 62; 1960b: 67, 74; Scherer 1972: 7; 1978: 265 (as *Ethiopia*); Biondi and D’Alessandro 2010a: 404, 407 (as *Ethiopia*).

Type species. *Aphthona: Altica cyparissiae* Koch, 1803: 80 (Europe), by subsequent designation by Chûjô (1937: 119); *Ethiopia: Ethiopia tricolor* Scherer, 1972: 7 (Ethiopia: Agheresalam), by original designation; *Pseudeugonotes: Pseudeugonotes vannutellii* Jacoby, 1899a: 531 (Ethiopia: Sancurar-Amarr Burgi), designation by monotypy.

Distribution. Afrotropical (including Madagascar), Australian, Nearctic, Oriental and Palaearctic regions (Fig. 288). All the species from the Neotropical region described as *Aphthona* should be attributed to different genera (cf. Konstantinov and Vandenberg 1996; Konstantinov 1998).

Ecology. Genus mainly associated with Euphorbiaceae, but also with Geraniaceae, Cistaceae, Rosaceae, Linaceae, Iridaceae, Malvaceae and Lythraceae (cf. Bechyné 1955c; Jolivet and Hawkeswood 1995).

Notes. About one hundred species are described from Madagascar and Sub-Saharan Africa. There are no important diagnostic characters distinguishing *Ethiopia* Scherer from *Aphthona*. Therefore, the following new synonymy is proposed: *Aphthona* Chevrolat, 1836 = *Ethiopia* Scherer, 1972 syn. n. Type material examined: *Ethiopia tricolor* Scherer, holotype ♂ and paratype ♀, “Ethiopia, Agheresalam, 7.6.1963, Linnavuori” (MZHF).

Argopistes Motschulsky, 1860
http://species-id.net/wiki/Argopistes
Figs 15, 130–132, 289

References. Motschulsky 1860: 236; Weise 1895: 335; Bryant 1922a: 474; Biondi and D’Alessandro 2010a: 404.

Type species. *Argopistes biplagiata* Motschulsky, 1860: 236 (Siberia), designation by monotypy.

Distribution. Central, Eastern and Southern Africa, and Madagascar; Australian, Eastern Palaearctic, Nearctic, Northern Neotropical and Oriental regions (Fig. 289).

Ecology. Many species of this genus are associated with Oleaceae in Sub-Saharan Africa, especially with Olive trees (*Olea europaea* var. *africana* (Mill.)), on which the larvae are leaf miners and adults defoliators (cf. Jolivet and Hawkeswood 1995; personal data).

Notes. About fifteen species recorded from Madagascar and Sub-Saharan Africa (personal data).
Argopistoides Jacoby, 1892b

http://species-id.net/wiki/Argopistoides

Figs 16, 133, 290

= Torodera Weise, 1902a (synonymized by Medvedev 2009)

References. Jacoby 1892b: 932; Weise 1902a: 163; Scherer 1987: 67 (as Torodera); Biondi 1994 (as Torodera): 437; Medvedev 2009: 40; Biondi and D’Alessandro 2010a: 404 (as Torodera).

Type species. Argopistoides septempunctata Jacoby, 1892b: 932 [Burma (=Myanmar): Carin Chebà], designation by monotypy; Torodera: Torodera octomaculata Weise, 1902a: 164 (Kwai), by subsequent designation by Scherer (1987:67).

Distribution. Republic of the Congo, Democratic Republic of the Congo, Guinea, Kenya, Rwanda (!) [Nyungwe National Park, Kamiranzovu (BAQ)], Republic of South Africa (KwaZulu-Natal), Sierra Leone, Sudan, Tanzania, Uganda, Zimbabwe, and Oriental region (Fig. 290).

Ecology. Genus reported from Poaceae (also known as Gramineae) (Oryza) in Kenya [cf. Jolivet and Hawkeswood 1995 (as Torodera)].

Notes. The Afrotropical region has four described species.

[Argopus Fischer, 1824]

Not present in the Afrotropical region.

References. Fischer 1824: 184; Weise 1902a: 171; Laboissière 1941: 319.

Notes. Argopus maculiceps Boheman (1859: 200) was transferred to the genus Toxaria Weise by Laboissière (1941); A. pusillus Gerstaecker (1871: 85) was transferred to the genus Sphaeroderma Stephens by Weise (1902a).

[Argosomus Wollaston, 1867]

= Sphaeroderma Stephens, 1831

[Aridohespera Selman, 1963]

= Eriotica Harold, 1877a

[Asiorestia Jacobson, 1925]

Not present in the Afrotropical region.

References. Jacobson 1925: 274; Bechyné 1957: 181; 1959b: 233.
Notes. Bechyné (1957) attributed *Crepidodera sjostedti* Weise (1910a: 221) from Kilimanjaro to this genus. This species was recently transferred to *Afrorestia* Bechyné by Biondi and D’Alessandro (2010a: 404).

Asphaera Chevrolat, 1843

Not present in the Afrotropical region.

References. Chevrolat 1843: 227; Fairmaire 1886: 93; Jacoby 1892a: 573; Bechyné 1959c: 319.

Notes. Three species wrongly attributed to this Neotropical genus were transferred to the genera *Physomandroya* Bechyné and *Hemipyxis* Chevrolat by Bechyné (1959c).

Bangalaltica Bechyné, 1960a

http://species-id.net/wiki/Bangalaltica

Figs 17, 134, 291

References. Bechyné 1960a: 9; Biondi and D’Alessandro 2003: 104; 2010a: 404.

Type species. *Bangalaltica antennalis* Bechyné, 1960a: 9 (Democratic Republic of the Congo: Bangala; Lubutu-Kituri), designation by monotypy.

Distribution. Democratic Republic of the Congo and Republic of the Congo (Fig. 291).

Ecology. No information.

Notes. One species is known.

Balanomorpha Chevrolat, 1836

= *Mantura* Stephens, 1831

Bechuana Scherer, 1970

http://species-id.net/wiki/Bechuana

Figs 18, 135, 292

References. Scherer 1970: 301; Biondi and D’Alessandro 2010a: 404.

Type species. *Bechuana nigripes* Scherer, 1970: 302 (Free State: Boshof; North-West Province: Vryburg), by original designation.

Distribution. Republic of South Africa (Eastern Cape Province, Free State, Gauteng, KwaZulu-Natal, North-West Province and Western Cape Provinces) (Fig. 292).

Ecology. No information.

Notes. There are two known species. *Ochrosis natalensis* Jacoby (1906: 17) was attributed to this genus by Biondi and D’Alessandro (2010a).
Bechynella Biondi & D’Alessandro, 2010
http://species-id.net/wiki/Bechynella
Figs 19, 136–137, 293

Serraphula Jacoby, 1897 (pars)

References. Biondi and D’Alessandro 2010b: 28; Bechyné 1955b: 517 (as Serraphula); 1959a: 13 (as Serraphula).

Type species. Serraphula bohumilae Bechyné, 1955b: 517 (French Guinea: Dala-ba), by original designation.

Distribution. Cameroon, Democratic Republic of the Congo, Guinea, Ivory Coast and Nigeria (Fig. 293).

Ecology. No information.

Notes. The three species attributed to this genus were described by Bechyné (1955b, 1959a) as Serraphula Jacoby (Biondi and D’Alessandro 2010b).

Bezekaltica Döberl, 2012
http://species-id.net/wiki/Bezekaltica
Figs 20, 138, 294

References. Döberl 2012: 434.

Type species. Bezekaltica socotrana Döberl, 2012: 435 (Socotra Island), by original designation.

Distribution. Yemen (Socotra Island) (Fig. 294).

Ecology. Collected in November in Dracaena (Dracenaceae) Forest.

Notes. Only one species has been described.

Bikasha Maulik, 1931
http://species-id.net/wiki/Bikasha
Figs 21, 139–140, 295

References. Maulik 1931: 256; Konstantinov and Prathapan 2008: 387; Biondi and D’Alessandro 2010a: 404.

Type species. Bikasha tenuipunctata Maulik, 1931: 257 (Seychelles), by original designation.

Distribution. Burundi (!) [Kibira National Park (BAQ)], Democratic Republic of the Congo (!) [Kivu, Mbingi (BAQ)], Kenya (!) [Mt. Kenya (BAQ); Kikuyu (BAQ)], Madagascar (!) [NW of Ranomafana (ZMHB); Andasibe (BAQ)], Malawi (!) [Dedza (BAQ)], Republic of South Africa (!) (KwaZulu-Natal, 17 km NE of Empangeni
Afrotropical flea beetle genera: a key to their identification, updated catalogue...

(MZLU)], Rwanda (!) [Nyungwe National Park, Pindura (BAQ)]; Seychelles, Sierra Leone (!) [Bumbuna (BAQ); S of Freetown (MZLU)], Eastern Palaearctic and Oriental regions (Fig. 295).

Ecology. In Seychelles, *B. tenuipunctata* Maulik and *B. fortipunctata* Maulik (1931: 258) were collected in forest, and *B. minor* Maulik (1931: 259) in wet coastal meadows.

Notes. About ten species are known from the Afrotropical region (personal data).

Biodontocnema Biondi, 2000 stat. prom.
http://species-id.net/wiki/Biodontocnema
Figs 22, 141–145, 296

References. Biondi 2000: 347; 2002b: 356; Biondi and D’Alessandro 2010a: 404; Konstantinov et al. 2011: 19.

Type species. *Biodontocnema brunnea* Biondi, 2000: 348 (Namibia, Kaross), designation by monotypy.

Distribution. Namibia (Fig. 296).

Ecology. *Biodontocnema brunnea* is the only species in this genus, and it is associated with moist habitats (Biondi 2000).

Notes. One species has been described. This genus was erroneously synonymized with *Chaetocnema* Stephens by Konstantinov et al. (2011). These authors did not examine material of *Biodontocnema* and based their synonymy only on the examination of some photos and figures. *Chaetocnema schlaeflii* (Stierlin, 1866: 31) and *C. major* (Jacquelin du Val, 1852: 717), display an apparently bidentate dorsal tibial margin, which differs from the bidentate dorsal tibial margin of *Biodontocnema* (Fig. 144). These two species are easily distinguishable from this Namibian genus by having: hind tibial socket narrow with no dentiform inner margin [hind tibial socket wide with dentiform inner margin in *Biodontocnema* (Figs 142–143)]; ratio of metasternal width/metasternal length ≤ 2.50 (> 2.50 in *Biodontocnema* (Fig. 145)); first metatarsomere not laterally compressed [laterally compressed in *Biodontocnema* (Fig. 142)]; antennomeres 6–10 distinctly longer than wide [antennomeres 6–10 about as long as wide in *Biodontocnema* (Figs 22)]; distinctly larger size (LB > 3.00 mm) (LB < 2.5 mm in *Biodontocnema*); longer antennae that reach at least the middle of the elytra [antennae shorter reaching only base of elytra in *Biodontocnema* (Fig. 22)]; Moreover, *Biodontocnema* is phylogenetically more closely related to *Carcharodis* Weise than to *Chaetocnema* (Biondi, 2002b). On the basis of these considerations, we regard *Biodontocnema* Biondi, 2000 as a valid genus.
Blepharida Chevrolat, 1836

http://species-id.net/wiki/Blepharida

Figs 23, 146–149, 297

= *Blepharidella* Weise, 1910a (synonymized by Scherer 1961)

= *Blepharidula* Weise, 1916 (an unnecessary new name for *Eutheca* Baly, 1878)

= *Calotheca* Heyden, 1887 (new name for *Eutheca* Baly, 1878; synonymized by Scherer 1961)

= *Eutheca* Baly, 1878c (name preoccupied by *Eutheca* Kiesenwetter in Erichson 1877: 155, Coleoptera: Anobiidae)

subgen. *Blepharidina* Bechyné, 1968

References. Chevrolat 1836: 394; Baly 1878c: 204; Heyden 1887: 98; Duvivier 1891: 242; Weise 1910a: 220; 1916: 39; Laboissière 1942: 95; Bryant 1944a: 129; Scherer 1961: 252; Bechyné 1968: 1725; Furth 1998: 12; Furth and Lee 2000: 26; Becerra 2004: 116; Biondi and D’Alessandro 2010a: 404.

Type species. *Blepharida: Chrysomela rhois* Forster, 1771: 21 (North America), by subsequent designation by Chevrolat (1842: 606); *Blepharidella: Blepharidella sjostedti* Weise, 1910a: 219 (Kilimanjaro, Kibonoto), by subsequent designation by Furth (1998: 12); *Blepharidina: Blepharida guttulata* Baly, 1881: 52 (Angola), by original designation; *Eutheca: Eutheca haroldi* Baly, 1878c: 205 (Lake Nyassa), designation by monotypy.

Distribution. Afrotropical (excluding Madagascar), Nearctic, Neotropical and Southern Palaearctic (Egypt, Israel, and Saudi Arabia) regions (Fig. 297).

Ecology. The Afrotropical species of *Blepharida* are generally associated with shrubs of *Rhus* (Anacardiaceae) (Furth and Young 1988: 496; Prathapan and Chaboo 2011: 97–105; personal data).

Notes. Sub-Saharan Africa has about thirty-five described species. Two species from Madagascar previously attributed to this genus, *B. multiguttata* Duvivier (1891: 242) and *B. insignis* Brancsik (1897: 130), are transferred to *Xanthophysca* Fairmaire. The nominotypical subgenus of *Blepharida* is mainly widespread in Nearctic and Neotropical regions, whereas the subgenus *Blepharidina* Bechyné is restricted to the Afrotropical region (Furth 1998).

[Blepharidina Bechyné, 1968]

subgenus of *Blepharida* Chevrolat, 1836

[Blepharidula Weise, 1916]

= *Blepharida* Chevrolat, 1836

References. Weise 1916: 39; Baly 1878c: 204; Heyden 1887: 98.

Notes. An unnecessary new name proposed by Weise (1916) for *Eutheca* Baly, 1878 (nec *Eutheca* Kiesenwetter in Erichson 1877: 155, Coleoptera: Anobiidae). Weise
(1916) incorrectly regarded the previous replacement name for *Eutheca* (*Calotheca* Heyden, 1887) as unavailable because it was already in use for a plant genus of Poaceae (also known as Gramineae) (cf. Palisot de Beauvois 1812: 85).

[Brinckaltica Bechyné, 1959b]

= Chaetocnema Stephens, 1831

[Buphonella Jacoby, 1903a]

Fig. 24

The genus *Buphonella* (Fig. 24) is here transferred to the tribe Galerucini.

References. Jacoby 1903a: 37; Laboissière 1922: 178; Biondi and D’Alessandro 2010a: 405.

Type species. *Apophylia murina* Gerstaecker, 1871: 83 (Zanzibar), by subsequent designation by Laboissière (1922: 179).

Distribution. Central, Eastern and Southern Africa.

Ecology. Associated with Poaceae (also known as Gramineae). *Buphonella murina* (Gerstaecker) and *B. nigroviolacea* (Allard, 1889b: LXXI, LXXIV) can damage maize (cf. Drinkwater 1989: 315).

Notes. Four species have been described. Furth and Suzuki (1994: 123, Fig. 10) report a metafemoral spring for this genus, including a drawing, but re-examination of the specimens they examined revealed that they belong to the genus *Hespera* Weise. Dissection of a variety of *Buphonella* specimens did not reveal any structure comparable to a metafemoral spring either. We therefore transfer the genus *Buphonella* Jacoby to the tribe Galerucini.

[Calotheca Heyden, 1887]

= Blepharida Chevrolat, 1836

Carcharodis Weise, 1910b

http://species-id.net/wiki/Carcharodis

Figs 25, 150, 298

References. Weise 1910b: 434; Bechyné 1954b: 683; Biondi 2002b: 356; Biondi and D’Alessandro 2010a: 405.

Type species. *Chaetocnema rugiceps* Baly, 1877: 308 (Madagascar), by subsequent designation by Bechyné (1954b: 683).

Distribution. Central and Southern Africa, and Madagascar (Fig. 298).

Ecology. Species of this genus live in moist habitats and are probably associated with plants of the family Cyperaceae (personal data).

Notes. There are seven known species.
Celisaltica Biondi, 2001a

http://species-id.net/wiki/Celisaltica

Figs 26, 151–152, 299

References. Biondi 2001a: 644; Biondi and D’Alessandro 2010a: 405.

Type species. *Celisaltica ruwenzorica* Biondi, 2001a: 644 (Ruwenzori), by original designation.

Distribution. Uganda (Fig. 299).

Ecology. This is the only species in this genus. It lives at high altitudes (3200–4000 m) on the Ruwenzori Massif, and is associated with the *Ericetum* (Ericaceae) plant community (Biondi 2001a).

Notes. One species.

Chabria Jacoby, 1887

http://species-id.net/wiki/Chabria

Figs 27, 153, 300

References. Jacoby 1887: 92; Biondi and D’Alessandro 2012a: 3.

Type species. *Chabria nigroplagiata* Jacoby, 1887: 92 (Sri Lanka: Bogawantalawa), by subsequent designation by Maulik (1926: 312).

Distribution. Cameroon (probably introduced); Madagascar, and Republic of South Africa (KwaZulu-Natal) (probably introduced), Australian and Oriental regions; (Fig. 300).

Ecology. There is no information for the Afrotropical region. *Chabria* species were collected on *Melastoma* (Melastomataceae) in Malaysia (Jolivet and Hawkeswood 1995), in cacao plantations [*Theobroma cacao* L. (Malvaceae)] in Sulawesi (Indonesia) (Medvedev 2008) and in primary forest in Mindanao (Philippines) (Medvedev 2002).

Notes. Four species are known from Afrotropical region, one from Sub-Saharan Africa, probably introduced, and three from Madagascar.

Chaetocnema Stephens, 1831

http://species-id.net/wiki/Chaetocnema

Figs 28, 154, 301

= *Brinckaltica* Bechyné, 1959b (synonymized by Scherer 1961)

= *Exorhina* Weise, 1886 (synonymized by Heikertinger and Csiki 1940)

= *Plectroscelis* Chevrolat, 1836 (synonymized by Weise 1886)

References. Stephens 1831: 325; Chevrolat 1836: 393; Baly 1877: 166; Weise 1886: 750; Bryant 1928: 393; Heikertinger and Csiki 1940: 376; Laboissière 1942: 81;
Bechyné 1959b: 236; 1960b: 91; Scherer 1961: 259; Biondi 2001b: 233; 2002a: 266; 2002b: 356; Biondi and D’Alessandro 2006: 720; 2010a: 405.

Type species. *Chaetocnema: Chrysomela concinna* Marsham, 1802 (Europe), by subsequent designation by Westwood (1840: 42); *Exorhina: Haltica chlorophana* Duftschmid, 1825: 286 (Austria), by subsequent designation by Döberl (2010: 508); *Brinckalctica: Chaetocnema subaterrima* Jacoby, 1900: 254 (Natal), by original designation.

Distribution. All zoogeographical regions (Fig. 301).

Ecology. This genus is mainly associated with plants in the families Chenopodiaceae, Cyperaceae, Juncaceae, Poaceae (also known as Gramineae), and Polygonaceae (cf. Jolivet and Hawkeswood 1995). In the Afrotropical region some *Chaetocnema* are serious pests of rice (Biondi and D’Alessandro 2008a).

Notes. Over one hundred species are known from Madagascar and Sub-Saharan Africa.

Chaillucola Bechyné, 1968

http://species-id.net/wiki/Chaillucola

Figs 29, 155, 302

References. Bechyné 1968: 1713; Biondi and D’Alessandro 2003: 104; 2010a: 405.

Type species. *Chaillucola formicicornis* Bechyné, 1968: 1714 (Republic of Congo: Mbila), by original designation.

Distribution. Cameroon (!) [N’Kongsamba (MCSN)] and Republic of Congo (Fig. 302).

Ecology. No information.

Notes. A single species has been described.

[*Chaloenus* Westwood, 1862]

Not present in the Afrotropical region.

References. Westwood 1862: 216; Bryant 1927: 615; Bechyné 1955b: 543.

Notes. *Terpnocholorus perrieri* Faïmaire, 1904 (= *Chaloenus viridis* Bryant, 1927); this species was incorrectly attributed to the Oriental genus *Chaloenus* (Bechyné 1955b).

Chirodica Germar, 1834

http://species-id.net/wiki/Chirodica

Figs 30, 156–157, 303

References. Germar 1834: 2; Baly 1876a: 441; Scherer 1983: 173; Biondi 1998b: 17, 45; Biondi and D’Alessandro 2010a: 406.
Type species. *Chirodica chalcoptera* Germar, 1834: 16 (Cape of Good Hope), designation by monotypy.

Distribution. Namibia and the Republic of South Africa (Fig. 303).

Ecology. This genus is strictly associated with the plant family Proteaceae (mainly *Protea* spp. and *Leucadendron* spp.) (Biondi 1998b).

Notes. Eight species have been described.

Cladocera Hope, 1840

= *Polyclada* Chevrolat, 1836

Cladotelia Kolbe, 1894

= *Polyclada* Chevrolat, 1836

Collartaltica Bechyné, 1959a

http://species-id.net/wiki/Collartaltica

Figs 31, 158–160, 304)

References. Bechyné 1959a: 27; Biondi 2002b: 358; Biondi and D’Alessandro 2004: 286; 2010a: 406.

Type species. *Collartaltica cryptostoma* Bechyné, 1959a: 27 (Democratic Republic of the Congo: Faradje, Tomati), designation by monotypy.

Distribution. Central African Republic, Democratic Republic of the Congo, Kenya, Nigeria, Republic of South Africa, Sudan, Tanzania and Zimbabwe (Fig. 304).

Ecology. This genus is associated with Poaceae (also known as Gramineae) in moist meadows and forest clearings (Biondi and D’Alessandro 2004).

Notes. There are six known species.

Crepidodera Chevrolat, 1836

Not present in the Afrotropical region.

References. Chevrolat 1836: 391.

Notes. Afrotropical species initially attributed to this genus (cf. Bryant 1927; Jacoby 1899b, 1903a, 1906, Weise 1902b, 1910a, 1924) have mostly been transferred to the genera *Afrorestia* Bechyné, *Afrocrepis* Bechyné and *Orthocrepis* Weise, 1888.
[**Cyrtoma** Clark, 1863]
Nomen nudum.

Notes. Clark (1863: 165) uses this genus-name, without any description, for an unpublished species from Madagascar [“apicale, Clark’’ synonymized with “4-maculata, Chevr.” and “Madecassae, Chevr.” (the latter two were also never published)].

Decaria Weise, 1895
http://species-id.net/wiki/Decaria
Figs 32, 305

= *Embolimus* Weise, 1902

References. Weise 1895: 344; 1902b: 303; Biondi and D’Alessandro 2003: 104; 2010a: 406.

Type species. *Decaria: Decaria tricolor* Weise, 1895: 344 (Sierra Leone, Bang-Haas), designation by monotypy; *Embolimus: Embolimus pauli* Weise, 1902b: 304 (Kwai), designation by monotypy.

Distribution. Afrotropical region (excluding Madagascar) (Fig. 305).

Ecology. *Decaria* is associated mainly with plans from the genera *Heliotropium* (Boraginaceae), *Cola* (Sterculiaceae) and *Ocimum* (Lamiaceae) (cf. Jolivet and Hawkeswood 1995).

Notes. About twenty species have been described.

[**Decarthrocera** Laboissière, 1937]

References. Laboissière 1937: 27; Furth and Suzuki 1994: 131.

Notes. This genus was transferred to the subfamily Galerucinae (currently tribe Galerucini) by Furth and Suzuki (1994).

[**Derocrepis** Weise, 1886]
Not present in the Afrotropical region.

References. Weise 1886: 676, 686; Heikertinger 1925: 95.

Notes. Species initially attributed to this Palaearctic genus were transferred to the genera *Afrocrepis* Bechyné and *Afrorestia* Bechyné.
Diamphidia Gerstaecker, 1855
http://species-id.net/wiki/Diamphidia
Figs 33, 161–163, 306

References. Gerstaecker 1855: 638; Baly 1861: 198; Laboissière 1942: 109; Biondi and D’Alessandro 2010a: 406.

Type species. Diamphidia femoralis Gerstaecker, 1855: 638 (Sena and Port Natal), designation by monotypy.

Distribution. Central, Eastern, and Southern-Eastern Africa (Fig. 306).

Ecology. A genus associated with shrubs and trees of Commiphora (Burseraceae) (cf. Jolivet and Hawkeswood 1995; Chaboo, Grobbelaar and Larsen 2007).

Notes. Seventeen species are known.

Dibolia Latreille, 1829
http://species-id.net/wiki/Dibolia
Figs 34, 164–166, 307

= Haltitarsus Berthold in Latreille 1827 (synonymy reported by Heikertinger and Csiki 1940)

References. Latreille 1829: 155; Berthold in Latreille 1827: 401; Baly 1876b: 598; Weise 1926: 24 (as Haltitarsus); Heikertinger and Csiki 1940: 485; Bechyné 1960b: 101; Biondi and D’Alessandro 2010a: 406.

Type species. Dibolia: Halictica occultans Koch, 1803: 22 (Europe), by subsequent designation by Chûjô (1936: 84).

Distribution. Sub-Saharan Africa (absent in Madagascar); Nearctic, Neotropical and Palaearctic regions (Fig. 307).

Ecology. A genus associated mainly with plants in the family Lamiaceae, but also with plants in the Scrophulariceae, Asteraceae and Apicaeae (cf. Jolivet and Hawkeswood 1995).

Notes. About twenty species in Sub-Saharan Africa.

[Diboloides Jacoby, 1897]
= Amphimela Chapuis, 1875

[Dibolosoma Jacoby, 1897]
= Amphimela Chapuis, 1875
Dimonikaea Bechyné, 1968
http://species-id.net/wiki/Dimonikaea
Figs 35, 167–169, 308

References. Bechyné 1968: 1711; Bioni and D’Alessandro 2003: 104; 2010a: 406.

Type species. *Dimonikaea descarpentriesi* Bechyné, 1968: 1712 (Republic of Congo: Dimonika), by original designation.

Distribution. Republic of Congo and Gabon (!) [Makokou (NMHN)] (Fig. 308).

Ecology. No information.

Notes. A single species is known. Bechyné (1968) incorrectly included *Gabonia miraculosa* Scherer (1963: 652) in this genus (Bioni and D’Alessandro 2010a).

Diphaulacosoma Jacoby, 1892a
http://species-id.net/wiki/Diphaulacosoma
Figs 36, 170–171, 309

=* Neoderina* Bechyné, 1952 (subgenus of *Neodera* Duvivier, 1891) syn. n.

References. Jacoby 1892a: 574; Bechyné 1952: 251; Bioni and D’Alessandro 2010a: 406.

Type species. *Diphaulacosoma: Diphaulacosoma laevipenne* Jacoby, 1892a: 574–575 (Madagascar), designation by monotypy; *Neoderina: Neodera (Neoderina) crassicornis* Bechyné, 1952: 251 (Madagascar, Ambohitsitondrona), designation by monotypy.

Distribution. Madagascar (Fig. 309).

Ecology. No information.

Notes. Four species (personal data). No diagnostic characters distinguish *Neoderina* Bechyné from *Diphaulacosoma*. Therefore, the following new synonymy is proposed: *Diphaulacosoma* Jacoby, 1892a = *Neoderina* Bechyné, 1952 syn. n. Material examined: *Neodera (Neoderina) crassicornis* Bechyné, “Madagascar, Ambohitsitondrona, x-xii.47, Michel leg., “typus” ♂ and “cotypus” ♀ (MNHN).

Djallonia Bechyné, 1955b
http://species-id.net/wiki/Djallonia
Figs 37, 172, 310

References. Bechyné 1955b: 534; Scherer 1962a: 57; Bioni and D’Alessandro 2010a: 406.

Type species. *Djallonia maindra* Bechyné, 1955b: 534 (French Guinea: Dalaba), designation by monotypy.

Distribution. Democratic Republic of the Congo and Guinea (Fig. 310).

Ecology. No information.

Notes. Only one species is known.
Drakensbergianella Biondi & D’Alessandro, 2003

http://species-id.net/wiki/Drakensbergianella

Figs 38, 173–175, 311

References. Biondi and D’Alessandro 2003: 100; 2010a: 406.

Type species. *Drakensbergianella rudebecki* Biondi & D’Alessandro, 2003: 100 (Republic of South Africa, Drakensberg), designation by monotypy.

Distribution. Republic of South Africa (Free State and KwaZulu-Natal) (Fig. 311).

Ecology. *Drakensbergianella rudebecki* is the only species in this genus. It lives in alpine meadows (> 2,000 m) on the Drakensberg and was collected on the inflorescences of *Senecio* and *Helichrysum* (Asteraceae) (Biondi and D’Alessandro 2003).

Notes. A single species has been described.

Dunbrodya Jacoby, 1906

http://species-id.net/wiki/Dunbrodya

Figs 39, 176–179, 312

References. Jacoby 1906: 19; Biondi and D’Alessandro 2010a: 407.

Type species. *Dunbrodya nitida* Jacoby, 1906: 20 (Cape Colony), designation by monotypy.

Distribution. Ethiopia (!) [Sidamo (BAQ)] and the Republic of South Africa [Eastern (!): Kirkwood (SANC), Grahamstown (SANC), Uitenhage (BAQ); Northern (!): Port Nolloth (SANC); and Western Cape Provinces] (Fig. 312).

Ecology. *Dunbrodya nitida* was collected on an *Asparagus* sp. (Asparagaceae) (Jacoby 1906).

Notes. Two species are known (personal data).

[**Embolimus** Weise, 1902b]

= *Decaria* Weise, 1895

[**Entymosina** Weise, 1910b]

= *Abrarius* Fairmaire, 1902
Afrotropical flea beetle genera: a key to their identification, updated catalogue...

Epitrix Foudras, 1860
http://species-id.net/wiki/Epitrix
Figs 40, 180, 313)

= *Euplecnema* Jacoby, 1906 (synonymized by Scherer 1963)

References. Foudras 1860: 147; Jacoby 1906: 22; Scherer 1963: 672; Biondi and D’Alessandro 2010a: 407.

Type species. *Epitrix: Epitrix atropae* Foudras, 1860: 55 (Europe), by subsequent designation by Maulik (1926: 130, 133); *Euplecnema: Euplecnema nigrita* Jacoby, 1906: 22 (Dunbrody, Cape Colony), designation by monotypy.

Distribution. All zoogeographical regions (Fig. 313).

Ecology. The genus *Epitrix* is mainly associated with plants in the family Solanaceae. Some species can be harmful to plants of economic importance (cf. Jolivet and Hawkeswood 1995).

Notes. About a dozen species are known from Madagascar and Sub-Saharan Africa.

[**Emriella Weise, 1910a**]

= *Eurylegna* Weise, 1910a

Eriotica Harold, 1877a
http://species-id.net/wiki/Eriotica
Figs 41, 181, 314)

= *Aridohespera* Selman, 1963 (synonymized by Selman 1968)

= *Niphraea* Baly, 1878a (synonymized by Harold 1878)

References. Harold 1877a: 107; 1878: 206; Baly 1878a: 40; Ferreira 1963: 516; Selman 1963: 1156; 1968: 248; Biondi and D’Alessandro 2010a: 407.

Type species. *Eriotica: Eriotica fuscipennis* Harold, 1877a: 107 (Nyassa), designation by monotypy; *Aridohespera: Aridohespera mateui* Selman, 1963: 1157 (Terr. N. Tchad, Ouedi Saala, Mortcha), by original designation. *Niphraea: Niphraea hirtipennis* Baly, 1878a (Lake Nyassa), designation by monotypy.

Distribution. Ethiopia, Kenya (!) [S of Garissa (BAQ); NW of Garsen (BAQ); Taita, Mwatate (BAQ)], Malawi, Mozambique, Tanzania and Socotra Island (Yemen) (Fig. 314).

Ecology. No information.

Notes. Seven species are known.
[**Escaleriella** Weise, 1907a]
= **Lypnea** Baly, 1876a

[**Ethiopia** Scherer, 1972]
= **Aphthona** Chevrolat, 1836

[**Eugonotes** Jacoby, 1897]
= **Sanckia** Duvivier, 1891

[**Euplecnema** Jacoby, 1906]
= **Epitrix** Foudras, 1860

Eurylegna Weise, 1910a
http://species-id.net/wiki/Eurylegna
Figs 42, 43, 182, 315

= **Eremiella** Weise, 1910a (synonymized by Scherer, 1972)
= **Eurylegniella** Scherer, 1972 syn. n.

References. Weise 1910a: 228; Scherer 1972: 10, 12; Biondi and D’Alessandro 2010a: 407.

Type species. **Eurylegna: Eurylegna fulva** Weise, 1910a: 228 (Kilimanjaro), designation by monotypy; **Eremiella: Eremiella rubra** Weise, 1910a: 229 (Kilimanjaro in Kiboscho, 3,000 m), designation by monotypy; **Eurylegniella: Eurylegna guineensis** Bechyné, 1955b: 528 (French Guinea: Mount Gangan; Dalaba; Nzérékoré; Mount Nimba), by original designation.

Distribution. Nigeria, Guinea, Ethiopia, Democratic Republic of the Congo, Uganda (!) [Budongo Forest, Sonso (BAQ)], Rwanda, and Malawi (!) [Dedza (BAQ)] (Fig. 315).

Ecology. No information.

Notes. Six species have been described. There are no important diagnostic characters distinguishing **Eurylegniella** Scherer from **Eurylegna.** The following synonymy is therefore proposed: **Eurylegna** Weise, 1910 = **Eurylegniella** Scherer, 1972 syn. n. Material examined: **Eurylegniella guineensis** (Bechyné) (det. G. Scherer), “Imperial College, Expdn. Ghana 1960, 24.8.60, Bobiri Forest, Kumasi, Ashanti”, 1 specimen (ZSM); “Congo Belge, P.N.G., Miss. H. De Saeger, Mt Embe, 20-iv-1952, H. De Saeger, 3347”, 1 specimen (MRAC).
[**Eurylegniella Scherer, 1972**]

= *Eurylegna* Weise, 1910a

[**Eutheca Baly, 1878c**]

= *Blepharida* Chevrolat, 1836

Eutornus Clark, 1860

http://species-id.net/wiki/Eutornus

Figs 44, 183–184, 316

Oedionychus Berthold, 1827 (pars)

References. Clark 1860: 64; Bechyné 1959c: Biondi and D’Alessandro 2010a: 407.

Type species. *Oedionychus (Eutornus) africanus* Clark, 1860: 65, by original designation.

Distribution. Madagascar and Sub-Saharan Africa (absent in the northern-eastern part of EAF) (Fig. 316).

Ecology. No information.

Notes. About eight species are known, one of which is from Madagascar.

[**Exorhina Weise, 1886**]

= *Chaetocnema* Stephens, 1831

Gabonia Jacoby, 1893

http://species-id.net/wiki/Gabonia

Figs 45, 185–186, 317

= *Jamesonia* Jacoby, 1895 (unnecessary new name for *Gabonia* Jacoby; synonymized by Weise 1902a)

= *Orneates* Jacoby, 1899b (synonymized by Weise 1910a)

= *Thrymnes* Weise, 1895 (synonymized by Weise 1902a)

References. Jacoby 1893: 101; 1895: 341; 1899b: 345; Weise 1895: 338; 1902a: 173; 1910a: 231; Bechyné 1955b: 489; Scherer 1962a: 21; Scherer and Boppré 1997: 10, 32; Biondi and D’Alessandro 2003: 105; 2010a: 407.

Type species. *Gabonia: Gabonia unicostata* Jacoby, 1893: 101 (Gabon), designation by monotypyy; *Orneates: Orneates nigritus* Jacoby, 1899b: 345 (Natal), designation by monotypyy; *Thrymnes: Thrymnes custos* Weise, 1895: 339 (Ashante), by present designation.
Distribution. Afrotropical region (excluding Madagascar) and Arabian Peninsula (?) (Fig. 317).

Ecology. Polyphagous. This genus has been associated with several plant families (cf. Jolivet and Hawkeswood 1995; personal data).

Notes. About one hundred and fifty species are known to occur in Sub-Saharan Africa. According to Biondi and D’Alessandro (2003), *Gabonia* is closely related to *Luperomorpha* Weise, 1887. The latter genus is widespread and prevalent in the Australian and Oriental regions, and is probably a synonym of the former genus. Many species currently attributed to *Gabonia* do not show any significant differences from *Luperomorpha* species. The diagnostic character reported by Scherer and Boppré (1997) for separating these two genera is the apical spur on the hind tibia: long and straight in *Gabonia*; very short in *Luperomorpha*. However, this character is not always reliable. In view of the wide spectrum of variability displayed by the genus *Gabonia*, and the need to consider various other genera, synonymy with *Luperomorpha* may be confirmed by a detailed and careful comparative study of this complicated African genus in the future (Biondi and D’Alessandro 2010a; Doguet 1979).

[Gastrida Chapuis, 1879]

References. Chapuis 1879: 20; Furth and Suzuki 1994: 131.

Notes. This genus was transferred to the subfamily Galerucinae (currently tribe Galerucini) by Furth and Suzuki (1994).

[Graptodera Chevrolat, 1836]

= *Altica* Geoffroy, 1762

Guilielmia Weise, 1924

http://species-id.net/wiki/Guilielmia

Figs 46, 318

References. Weise 1924: 23; Scherer 1961: 269; Biondi and D’Alessandro 2003: 97; 2010a: 408.

Type species. *Guilielmia monticola* Weise, 1924: 24 (Birunga, Mount Mukeno), designation by monotypy.

Distribution. Uganda and Rwanda (Fig. 318).

Ecology. The only species in this genus was collected at a high altitude (3100 m) (Weise 1924).

Notes. A single species is known.
Guinerestia Scherer, 1959
http://species-id.net/wiki/Guinerestia
Figs 47, 187–188, 319

References. Scherer 1959: 243–244; 1962a: 57; Biondi and D’Alessandro 2010a: 408.

Type species. *Guinerestia rubripes* Scherer, 1959: 244 (Nigeria-Cameroon: Mammfe), by original designation.

Distribution. Democratic Republic of the Congo, Guinea, Nigeria and Rwanda (Fig. 319).

Ecology. No information.

Notes. Three species have been described.

[Haltica Illiger, 1801]
= *Altica* Geoffroy, 1762

[Halticella Jacoby, 1899b]
= *Amphimela* Chapuis, 1875

[Halticopsis Fairmaire, 1883a]
Fig. 48
The genus *Halticopsis* (Fig. 48) is here transferred to the tribe Galerucini.

References. Fairmaire 1883a: 197, 1883b: 112; Biondi and D’Alessandro 2010a: 408.

Type species. *Halticopsis spissicornis* Fairmaire, 1883b: 112 (Mountains of Abyssinia), designation by monotypy.

Distribution. Ethiopia.

Ecology. No information.

Notes. This Afrotropical genus, including a single species known from Ethiopia, is here transferred to the tribe Galerucini because of the absence of a metafemoral spring.

[Halticorthaea Csiki, 1940 in Heikertinger & Csiki 1940]
= *Amphimela* Chapuis, 1875
Halticotropis Fairmaire, 1886
http://species-id.net/wiki/Halticotropis
Figs 49, 189–191, 320

References. Fairmaire 1886: 95; Bechyné 1964: 158; Biondi and D’Alessandro 2010a: 408.

Type species. Halticotropis multiplicata Fairmaire, 1886: 95 (Madagascar), designation by monotypy.

Distribution. Madagascar (Fig. 320).

Ecology. No information.

Notes. Two species have been described.

[Halticova Fairmaire, 1898]
= Amphimela Chapuis, 1875

[Haltitarsus Berthold, 1827]
= Dibolia Latreille, 1829

Hemipyxis Chevrolat, 1836
http://species-id.net/wiki/Hemipyxis
Figs 50, 192–194, 321

= Sebaethe Baly, 1864 (synonymized by Monró and Bechyné 1956)
Asphaera Chevrolat, 1843 (pars)

References. Chevrolat 1836: 387; 1843: 227; Baly 1864: 438; Monró and Bechyné 1956: 1134; Bechyné 1958b: 193; 1960b: 110; Biondi and D’Alessandro 2010a: 408.

Type species. Hemipyxis: Haltica troglodytes Olivier, 1808: 700 (India), by subsequent designation by Chevrolat (1845: 6); Sebaethe: Haltica badia Erichson, 1834: 274 (Philippines), by original designation.

Distribution. Afrotropical (excluding Madagascar), Australian, Eastern Palaearctic, and Oriental regions (Fig. 321).

Ecology. Polyphagous. This genus has been associated with herbaceous plants and shrubs belonging to many plant families (cf. Jolivet and Hawkeswood 1995).

Notes. About thirty species are known from Sub-Saharan Africa. Six species of Hemipyxis, known from Madagascar, are here transferred to the genus Pseudadorium Fairmaire (see Notes in Pseudadorium).
Hermaeophaga Foudras, 1859

Not present in the Afrotropical region.

References. Foudras 1859: 147.

Notes. Species originally described in this Palaearctic genus were subsequently transferred to *Orthocrepis* Weise by Scherer (1961: 267).

Hespera Weise, 1889

http://species-id.net/wiki/Hespera

Figs 51, 195, 322

= *Allomorpha* Jacoby, 1892b (synonymized by Maulik 1926)

References. Weise 1889: 638; Jacoby 1892b: 934; Maulik 1926: 137; Biondi and D’Alessandro 2010a: 408.

Type species. *Hespera: Hespera sericea* Weise, 1889: 639 (China), by original designation; *Allomorpha: Allomorpha sericea* Jacoby, 1892b: 934 [Burma (=Myanmar): Carin Chebà], designation by monotypy.

Distribution. Afrotropical (excluding Madagascar), Eastern Palaearctic, and Oriental regions (Fig. 322).

Ecology. The Afrotropical species of this genus are mainly associated with plants in the families Anacardiaceae and Ericaceae (cf. Jolivet and Hawkeswood 1995; personal data).

Notes. About thirty species are known from Sub-Saharan Africa.

Hildebrandtina Weise, 1910b

http://species-id.net/wiki/Hildebrandtina

Figs 52, 196–197, 323

References. Weise 1910b: 464; Laboissière 1932: 584; Bechyné 1948b: 99; 1964: 131; Biondi and D’Alessandro 2010a: 408.

Type species. *Hildebrandtina variegata* Weise, 1910b: 465 (Madagascar), by original designation.

Distribution. Madagascar (Fig. 323).

Ecology. No information.

Notes. This genus, with about ten species known to occur in Madagascar, was transferred from the subfamily Galerucinae to the Alticinae (currently the tribe Alticinae) by Biondi and D’Alessandro (2010a). The reason being the presence of a metafemoral spring, very similar to that described for the Oriental genus *Mandarella* Duvivier (1892b: 433) (cf. Furth and Suzuki 1994).
Homichloda Weise, 1902a
http://species-id.net/wiki/Homichloda
Figs 53, 198, 324

= *Weiseana* Jacoby, 1903a (synonymized by Cox 1997)

References. Weise 1902a: 165; Jacoby 1903a: 16, 1906: 23 (as *Weiseana*); Cox 1997: 939.

Type species. *Homichloda: Homichloda pauli* Weise, 1902a: 166 (Kwai), designation by monotypy; *Weiseana: Weiseana barkeri* Jacoby, 1903: 16 (Natal, Malvern), by original designation.

Distribution. Kenya, Republic of South Africa (KwaZulu-Natal), Tanzania and Zambia (Fig. 324).

Ecology. A genus that has been associated with a variety of *Acacia* species, trees in the family Fabaceae (Cox 1997).

Notes. Three species have been described.

Hyphasis Harold, 1877b
http://species-id.net/wiki/Hyphasis
Figs 54, 199–200, 325

= *Hyphasoma* Jacoby, 1903b (synonymized by Chen 1936)
Physoma Clark, 1863 (pars)

References. Clark 1863: 165; Harold 1877b: 434; Jacoby 1901: 298; 1903b: 110; Maulik 1926: 158, 166; Chen 1936: 627; Heikertinger and Csiki 1940: 457; Bechyné 1948a: 10; 1958a: 90 (as *Hyphasoma*); Konstantinov and Vanderberg 1996: 369.

Type species. *Hyphasis: Oedionychis magica* Harold, 1877b: 434 (India), by original designation. *Hyphasoma: Hyphasoma inconspicua* Jacoby, 1903b: 111 (India), by subsequent designation of Maulik (1926: 156).

Distribution. Mascarene Islands (probably introduced), Oriental region and South-Eastern part of the Palaearctic region (Fig. 325).

Ecology. This genus is associated with plants in the families Verbenaceae and Lamiaceae (cf. Jolivet and Hawkeswood 1995).

Notes. The Malagasy species initially attributed to this Oriental genus were previously transferred to *Hyphasoma* Jacoby (Heikertinger and Csiki 1940) and then to *Physoma* Clark (Bechyné 1948a). Bechyné (1958a) reports *Hyphasis* (as *Hyphasoma*) *sita* (Maulik 1926: 158), described from Sri Lanka (= Ceylon), as an introduced species on the Mascarene Islands (Mauritius). We here confirm that this flea beetle genus does occur on the island of Mauritius.
Jacobyana Maulik, 1926
http://species-id.net/wiki/Jacobyana
Figs 55, 201–202, 326

References. Maulik 1926: 284, 302–303; Biondi and D’Alessandro 2011: 49.

Type species. *Sphaerophysa piceicollis* Jacoby, 1889c: 195 (Burma), by original designation.

Distribution. Democratic Republic of the Congo, Malawi, Republic of South Africa (Eastern Cape Province), Zimbabwe (!) [Bulawayo, Shangani (BAQ)], and the Oriental region (Fig. 326).

Ecology. No information for Afrotropical region.

Notes. Three species have been described.

Jamesonia Jacoby, 1895
= *Gabonia* Jacoby, 1893

Kanonga Bechyné, 1960b
http://species-id.net/wiki/Kanonga
Figs 56, 203, 327

References. Bechyné 1960a: 54; Biondi and D’Alessandro 2003: 104; 2010a: 409.

Type species. *Kanonga atra* Bechyné, 1960b: 54 (Upemba National Park: Kanonga), by original designation.

Distribution. Democratic Republic of the Congo and Togo (Fig. 327).

Ecology. No information.

Notes. One species is known.

Kenialtica Bechyné, 1960b
http://species-id.net/wiki/Kenialtica
Figs 57, 204, 328

= *Mediafra* Scherer, 1961 (synonymy reported in Seeno and Wilcox 1982)

References. Bechyné 1960b: 75; Scherer 1961: 266; Seeno and Wilcox 1982: 136; Biondi and D’Alessandro 2010a: 409.

Type species. *Kenialtica Aphthona muhavura* Bechyné, 1955a: 207 (Rwanda, East of Muhavura), by original designation; *Mediafra Aphthona muhavura* Bechyné, 1955a: 207 (Rwanda, East of Muhavura), by original designation.
Distribution. Democratic Republic of the Congo, Kenya, Madagascar, Republic of South Africa (Limpopo), Republic of the Congo, Rwanda, Sierra Leone and Uganda (!) [Budongo Forest, Sonso (BAQ)] (Fig. 328).

Ecology. No information.

Notes. Seven species have been described.

Kimongona Bechyné, 1959a

http://species-id.net/wiki/Kimongona

Figs 58, 59, 205, 329

= *Mesocrepis* Scherer, 1963 syn. n.

References. Bechyné 1959a: 19; Scherer 1963: 668; Biondi and D’Alessandro 2010a: 409, 410.

Type species. *Kimongona: Kimongona callifera* Bechyné, 1959a: 19 (Democratic Republic of the Congo: Mayumbe, Kimongo), by original designation. *Mesocrepis: Mesocrepis lindemannae* Scherer, 1963: 669 (Tanzania: Njombe), by original designation.

Distribution. Democratic Republic of the Congo, Republic of South Africa (Mpumalanga), Rwanda, and Tanzania (Fig. 329).

Ecology. No information.

Notes. Three species are known. There are no significant diagnostic characters distinguishing *Mesocrepis* Scherer from *Kimongona*. Therefore, the following new synonymy is proposed: *Kimongona* Bechyné, 1959 = *Mesocrepis* Scherer, 1963 syn. n. Type material examined: *Mesocrepis lindemannae* Scherer, “Tanganjika, Uwemba b. Njombe, 2000 m, 8–11.XI.1958, leg. C. Lindemann”, paratypes 1♀ and 1♂ (NHMB).

[Lactica Erichson, 1847]

Not present in the Afrotropical region.

References. Erichson 1847: 173; Weise 1902b: 302; Bryant 1940: 46; Bechyné 1959a: 19.

Notes. The Afrotropical species initially attributed to this Neotropical genus were transferred to *Phygasia* Chevrolat (Weise 1902b; Bryant 1940) and *Orthocrepis* Weise (Döberl 2012: 438); and the Malagasy species were transferred to *Antanemora* Bechyné (Bechyné 1959a).
Lampedona Weise, 1907a
http://species-id.net/wiki/Lampedona
Figs 60, 206, 330

References. Weise 1907a: 399; Biondi and D’Alessandro 2010a: 409.

Type species. Lampedona tarsalis Weise, 1907a: 399 (Spanish Guinea), designation by monotypy.

Distribution. Democratic Republic of the Congo, Equatorial Guinea, Republic of the Congo and Tanzania (Fig. 330).

Ecology. No information.

Notes. There are three described species.

Lepialtica Scherer, 1962a
http://species-id.net/wiki/Lepialtica
Figs 61, 207, 331

References. Scherer 1962a: 30; Biondi and D’Alessandro 2010a: 409.

Type species. Lepialtica bicolor Scherer, 1962a: 31 (Garamba National Park), designation by monotypy.

Distribution. Democratic Republic of the Congo, Malawi (!) [Mulanje Mts (BAQ); Kasungu(BAQ)] and Zambia (!) [35 km S of Kasama (BAQ)] (Fig. 331).

Ecology. No information.

Notes. Four species are known (personal data).

Livolia Jacoby, 1903

References. Jacoby 1903a: 16; Furth and Suzuki 1994: 132.

Notes. Genus transferred to the subfamily Galerucinae (currently tribe Galerucini) by Furth and Suzuki (1994).

Longitarsus Berthold, 1827
http://species-id.net/wiki/Longitarsus
Figs 62, 208, 332

References. Berthold 1827: 401; Bechyné 1958c: 8; 1960b: 55; Biondi and D’Alessandro 2008b: 719; 2010a: 409.

Type species. Chrysomela atricilla Linnaeus, 1761: 166 (Europe), by subsequent designation by Maulik (1926: 333).

Distribution. All zoogeographical regions (Fig. 332).
Ecology. This genus is polyphagous and has been associated with several plant families, particularly the Boraginaceae, Asteraceae, Lamiaceae and Scrophulariaceae (cf. Jolivet and Hawkeswood 1995; personal data).

Notes. Over one hundred species known from Madagascar and Sub-Saharan Africa (personal data).

Luperomorpha Weise, 1887
http://species-id.net/wiki/Luperomorpha
Figs 63, 333

References. Weise 1887: 202; 1915: 179; Bechyné 1959a: 1; Doguett 1979: 308; Biondi and D’Alessandro 2010a: 409; Döberl 2012: 439.

Type species. *Luperomorpha trivialis* Weise, 1887: 204 (Siberia: Raddefka; Chin-gan), by original designation.

Distribution. Cameroon, Democratic Republic of the Congo, Equatorial Guinea, Ethiopia (!) [Oromia region (BAQ)], Nigeria, and Saudi Arabia, Socotra Island (Yemen) and the Australian, Eastern Palaearctic and Oriental regions (Fig. 333).

Ecology. Polyphagous (cf. Jolivet and Hawkeswood 1995). There is no ecological information on this genus for the Afrotropical region. *Luperomorpha biondii* Döberl (2012: 439) was collected in Socotra on *Cephalocroton socotranus* (Euphorbiaceae).

Notes. Two species have been described for the Afrotropical region: *Luperomorpha vittula* (Weise, 1915) [described as *Jamesonia* Jacoby but then transferred to *Luperomorpha* by Bechyné (1959a)] and *Luperomorpha biondii* Döberl. Concerning the presence of this genus in the Afrotropical region, we refer to the comments reported for *Gabonia* Jacoby.

Lypnea Baly, 1876a
http://species-id.net/wiki/Lypnea
Figs 64, 209–210, 334)

= *Escalarieilla* Weise, 1907 (synonymized by Scherer 1961)
= *Poephila* Weise, 1895 (name preoccupied by *Poephila* Gould, 1842: 93 [pl.], Aves, Estrildidae)
= *Poephilina* Csiki in Heikertinger and Csiki 1940 (new name for *Poephila* Weise, 1895; synonymized by Bechyné 1968)

References. Baly 1876a: 446; Weise 1895: 342; 1907a: 396; Csiki in Heikertinger and Csiki 1940: 349; Bechyné 1960a: 15; 1968: 1717–1718; Scherer 1961: 267; Biondi and D’Alessandro 2010a: 409.

Type species. *Lypnea: Lypnea flava* Baly, 1876a: 446 (New Guinea, Batchian), designation by monotypy; *Escalarieilla: Escalerieilla marginata* Weise, 1907: 398 [Span-
ish Guinea (= Equatorial Guinea)], by present designation; *Poephila: Poephila laccisita* Weise, 1895: 342 (Addah), designation by monotypy.

Distribution. Afrotropical (including Madagascar), Australian, Eastern Palaearctic, and Oriental regions (Fig. 334).

Ecology. *Lypnea flaveola* (Bryant, 1944) collected on *Oncoba echinata* Oliver (Flacourtiaceae) (Bryant 1944b, as *Poephila*).

Notes. About ten species are known from Madagascar and Sub-Saharan Africa. Bechyné (1968: 1718) considered *Escaleriella* Weise and *Lypnea* Baly to be separate genera because of the difference in the shape of their elytral epipleura: expanded in *Lypnea*, but straight and narrow in *Escaleriella*.

[Macroorthocrepis Pic, 1921]

= *Phygasia* Chevrolat, 1836

Malvernia Jacoby, 1899b

http://species-id.net/wiki/Malvernia

Figs 65, 211, 335

References. Jacoby 1899b: 346; Biondi 1998a: 37; Biondi and D’Alessandro 2003: 104; 2010a: 410.

Type species. *Malvernia varicornis* Jacoby, 1899b: 347 (KwaZulu-Natal, Malvern), designation by monotypy.

Distribution. Malawi and the Republic of South Africa (Eastern Cape Province, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, and North-West Province) (Fig. 335).

Ecology. *Malvernia varicornis* has been collected on the flowers of *Burchellia bubalina* (L. f.) Simms (Rubiaceae) (Biondi 1998a).

Notes. Two known species.

Manobia Jacoby, 1885

http://species-id.net/wiki/Manobia

Figs 66, 212, 336

= *Afroalytus* Scherer, 1961 (synonymized by Biondi 2001a)

References. Jacoby 1885: 73; Scherer 1961: 269; 1962a: 54; Biondi 2001a: 648; Biondi and D’Alessandro 2010a: 410.

Type species. *Manobia: Manobia nigripennis* Jacoby, 1885: 73 (Sumatra), by subsequent designation by Maulik (1926: 285, 407); *Afroalytus: Afroalytus kivuensis* Scherer, 1961: 269, 286 (Kivu: T. Kalehe, 2850 m), by original designation.
Distribution. Central, Eastern [Kenya (!), Taita Hills, Ngangao (BAQ)] and Western Africa; Australian, Eastern Palaeartic, and Oriental regions (Fig. 336).

Ecology. This genus is probably polyphagous and has been reported mainly from the following plant families: Epacridaceae, Urticaceae, Cyatheaceae, Asteraceae and Arecaceae (cf. Jolivet and Hawkeswood 1995).

Notes. About fifteen species described from Sub-Saharan Africa.

[Mantura Stephens, 1831]
Not present in the Afrotropical region.

= *Balanomorpha* Chevrolat, 1836 (synonymy reported in Heikertinger and Csiki 1940)

References. Stephens 1831: 285, 322; Chevrolat 1836: 393; Weise 1907b: 222; Bechyné 1955a: 220.

Notes. *Mantura quadriplagiata* Jacoby (1895: 321) transferred to *Podagrica* Chevrolat by Bechyné (1955a); *Balanomorpha aethiopica* Chapuis (1879: 13) transferred to *Neumannia* Weise nom. preocc. (= *Podagrica* Csiki; = *Podagrica* Chevrolat) by Weise (1907).

[Mediafra Scherer, 1961]
= *Kenialtica* Bechyné, 1960a

[Mesocrepis Scherer, 1963]
= *Kimongona* Bechyné, 1959a

Metroserrapha Bechyné, 1958a
http://species-id.net/wiki/Metroserrapha
Figs 67, 213, 337

References. Bechyné 1958a: 86; Doguet 1974: 120; Biondi and D’Alessandro 2010a: 410.

Type species. *Metroserrapha prima* Bechyné, 1958a: 86 (Mauritius Island), by original designation.

Distribution. Madagascar and the Mascarene Islands (Fig. 337).

Ecology. The species in this genus are probably polyphagous, and have been associated mainly with plants in the Ericaceae, Asteraceae and Polygonaceae (cf. Jolivet and Hawkeswood 1995).

Notes. Seven species are known from the Mascarene Islands and about ten, as yet undescribed, from Madagascar (personal data).
[**Monodaltica** Bechyné, 1955b]

= *Trachytetra* Sharp, 1886

Montiaphtona Scherer, 1961

http://species-id.net/wiki/Montiaphtona

Figs 68, 214–215, 338

References. Scherer 1961: 282; 1962a: 17; Biondi and D’Alessandro 2003: 98; 2010a: 410.

Type species. *Montiaphtona monticola* Scherer, 1961: 285 (Kivu: Mont Muhi), by original designation.

Distribution. Democratic Republic of the Congo, Kenya, Republic of South Africa (!) [Mpumalanga, Mount Sheba (BAQ)], Rwanda, Tanzania and Uganda (Fig. 338)

Ecology. The species of this genus generally live at altitudes above 2,500 m in mixed bamboo forests.

Notes. Six species have been described.

[**Musaka** Bechyné, 1958a]

= *Sphaeroderma* Stephens, 1831

Myrcina Chapuis, 1875

http://species-id.net/wiki/Myrcina

Figs 69, 216, 339

= *Myrcinella* Jacoby, 1901 (synonymized by Bechyné 1964)

= *Xenaltica* Baly, 1875 (synonymized by Laboissière 1942)

References. Chapuis 1875: 124, 126; Baly 1875: 25; Jacoby 1901: 301; Laboissière 1942: 50; Bechyné 1964: 150; Biondi and D’Alessandro 2010a: 410.

Type species. *Myrcina: Myrcina nigra* Chapuis, 1875: 127 (Vieux-Calabar), by original designation; *Myrcinella: Myrcina spectabilis* Baly, 1878b: 232 (Madagascar), by subsequent designation by Bechyné, (1964: 150); *Xenaltica: Xenaltica murrayi* Baly, 1875: 26 (Old Calabar) (= *Myrcina nigra* Chapuis, 1875: 127), by present designation.

Distribution. Madagascar and Sub-Saharan Africa (absent in the southern part of SAF) (Fig. 339).

Ecology. Some species of this genus were collected from *Spathodea* sp. (Bignoniaceae) in Eastern Africa (cf. Jolivet and Hawkeswood 1995).

Notes. Twenty-three species are known.
[Myrcinella Jacoby, 1901]
= Myrcina Chapuis, 1875

Neoderina Bechyné, 1952
http://species-id.net/wiki/Neoderina
Figs 70, 340

References. Baly 1864: 437; Bechyné 1955a: 220; 1959d: 153; 1960b: 88; 1968: 1719; Biondi and D’Alessandro 2010a: 411.

Type species. Neoderina picticornis Harold, 1877a: 107 (Madagascar), by present designation.

Distribution. Madagascar. Weise (1923: 122) described Neoderina australis from specimens from Australia (Queensland); however the generic placement of this species is not correct (C. Reid 2010, pers. comm.) (Fig. 340).

Ecology. No information.

Notes. About fifteen known species. The subgenus Neoderina Bechyné (1952) is here considered to be a synonym of Diphaulacosoma Jacoby (see above).

Nisotra Baly, 1864
http://species-id.net/wiki/Nisotra
Figs 71, 217–218, 341

= Pseudonisotra Bechyné, 1968 (synonymized by Biondi and D’Alessandro 2010a)

References. Baly 1864: 437; Bechyné 1955a: 220; 1959d: 153; 1960b: 88; 1968: 1719; Biondi and D’Alessandro 2010a: 411.

Type species. Nisotra: Haltica gemella Erichson, 1834: 275 (Philippines: Luzon), by subsequent designation by Chapuis (1875: 42); Pseudonisotra: Crepidodera tosta Gerstaecker, 1871: 85 (Kenya: Mombasa), by original designation.
Distribution. Afrotropical (including Madagascar), Australian, Eastern Palaearctic and Oriental regions (Fig. 341).

Ecology. Species in this genus are mainly associated with plants in the family Malvaceae (cf. Jolivet and Hawkeswood 1995).

Notes. About seventy species of this genus are known to occur in Madagascar and Sub-Saharan Africa.

Notomela Jacoby, 1899b

http://species-id.net/wiki/Notomela

Figs 72, 219–220, 342

References. Jacoby 1899b: 357; Bryant 1931: 255; Scherer 1969: 371; Biondi and D’Alessandro 2010a: 411.

Type species. *Notomela cyanipennis* Jacoby, 1899b: 357 (Cameroon), designation by monotypy.

Distribution. Cameroon, Democratic Republic of the Congo, Equatorial Guinea (Fernando Poo Island), Ivory Coast, Liberia, Nigeria, Republic of South Africa (North-West Province and KwaZulu-Natal), Rwanda and Uganda, (Fig. 342).

Ecology. *Notomela fulvicollis* Bryant, 1931 was collected on *Xanthoxylum capense* (Thunb.) Harv. (Rutaceae) in South East Africa (Bryant 1931).

Notes. Four species have been described.

Ntaolaltica Biondi & D’Alessandro, in press

http://species-id.net/wiki/Ntaolaltica

Figs 73, 221–223, 343

References. Biondi and D’Alessandro, in press.

Type species. *Ntaolaltica antennata* Biondi and D’Alessandro, in press (Madagascar: Analamerana, 50 km SE of Diégo-Suarez), by original designation.

Distribution. Madagascar (Fig. 343).

Ecology. No information.

Notes. A single species has been described.

Nzerekorena Bechyné, 1955b

http://species-id.net/wiki/Nzerekorena

Figs 74, 224, 344

References. Bechyné 1955b: 507; Scherer 1959: 190; Scherer and Boppré 1997: 10, 32; Biondi and D’Alessandro 2003: 104; 2010a: 411.
Type species. *Nzerekorena cerambycina* Bechyné, 1955b: 507 (French Guinea: Nzérékoré; Liberia: Kaouyéké; Dahomey: Forêt de Ketou), by original designation.

Distribution. Benin, Cameroon, Democratic Republic of the Congo, Guinea, Kenya, Liberia, Malawi (!) [Mulanje Mts. (BAQ)], Nigeria and Uganda (Fig. 344).

Ecology. No information.

Notes. Nine species are known.

[Ochrosis Foudras, 1860]

Not present in the Afrotropical region.

References. Foudras 1860: 147; Jacoby 1906: 17; Biondi and D’Alessandro 2010a: 411.

Notes. The species *O. natalensis* Jacoby (1906) was first attributed to this Palaeartic genus. However, examination of the type material resulted in the transfer of this species to the genus *Bechuana* Scherer (Biondi and D’Alessandro 2010a).

[Oedionychis Latreille, 1829]

Not present in the Afrotropical region.

References. Latreille 1829: 154; Konstantinov and Vanderberg 1996: 367.

Notes. Currently, four species that occur in southwestern Europe and North Africa are attributed to this genus (Konstantinov and Vanderberg 1996). Afrotropical species described as *Oedyonichis* were previously transferred to the genera *Eutornus* Clark, *Philopona* Weise, *Physodactyla* Chapuis, *Physoma* Clark, and *Physomandroya* Bechyné.

[Orneates Jacoby, 1899b]

= *Gabonia* Jacoby, 1893

Orthocrepis Weise, 1888

http://species-id.net/wiki/Orthocrepis

Figs 75, 225–226, 345

Crepidodera Chevrolat, 1836 (pars)
Hermaeophaga Foudras, 1860 (pars)
Lactica Erichson, 1847 (pars)

References. Weise 1888: 850; Bechyné 1948a: 4 (as *Hermaeophaga*); 1954b: 677; 1955a: 224; 1964: 141; Scherer 1961: 267; 1963: 664; Biondi and D’Alessandro 2010a: 411.
Type species. *Haltica ruficollis* Lucas, 1849: 546 (Algeria), designation by monotypy.

Distribution. Afrotropical (including Madagascar), Oriental and Palaearctic regions (Fig. 345).

Ecology. The species in this genus are mainly associated with plants in the family Euphorbiaceae, but also with Leguminosae and Malvaceae (cf. Jolivet and Hawkeswood 1995; Pollard 1957).

Notes. About twenty-five species have been recorded in Sub-Saharan Africa and sixteen from Madagascar.

Paradibolia Baly, 1875

http://species-id.net/wiki/Paradibolia

Figs 76, 227, 346

References. Baly 1875: 31; Weise 1912: 157; Bryant 1927: 617; Biondi and D’Alessandro 2010a: 411.

Type species. *Paradibolia indica* Baly, 1875: 31 (India), designation by monotypy.

Distribution. Cameroon, Democratic Republic of the Congo, Guinea, Namibia (!) [Fish River Canyon (ZMHB); Hereroland (ZMHB); Windhoek (BAQ); Waterberg National Park (BAQ)], Republic of South Africa, Sierra Leone, Australian and Oriental regions (Fig. 346).

Ecology. Species in this genus are associated with plants from the family Lamiaceae in South Africa (personal data).

Notes. Three species are known.

[Paropsiderma Bechyné, 1958a]

= *Sesquiphaera* Bechyné, 1958a

Perichilona Weise, 1919

http://species-id.net/wiki/Perichilona

Figs 77, 228, 347

References. Weise 1919: 202; Biondi and D’Alessandro 2010a: 411.

Type species. *Perichilona rufa* Weise, 1919: 203 (Gaviro, Kwiro), by present designation.

Distribution. Tanzania (Fig. 347).

Ecology. No information.

Notes. Two species have been described.
Philopona Weise, 1903
http://species-id.net/wiki/Philopona
Figs 78, 229, 348

Oedionychus Berthold 1827 (pars)

References. Weise 1903: 216; Laboissière 1942: 105; Biondi and D’Alessandro 2010a: 411.

Type species. Oedionychis (?) vernicata Gerstaecker, 1871: 84 (Zanzibar), by original designation.

Distribution. Afrotropical (excluding Madagascar), Australian, Oriental and Southern-Eastern Palaearctic regions (Fig. 348).

Ecology. Philopona usambarica Csiki (in Heikertinger and Csiki 1940: 453) collected on Thunbergia alata Bojer ex Sims (Acanthaceae) in Kenya (Furth 1985).

Notes. About twenty species known from Sub-Saharan Africa.

Phygasia Chevrolat, 1836
http://species-id.net/wiki/Phygasia
Figs 79, 230, 349

= Macroorthocrepis Pic, 1921 (synonymized by Bechyné 1960b)
Lactica Erichson, 1847 (pars)

References. Chevrolat 1836: 387; Harold 1877b: 365; Fairmaire 1888: 156; Pic 1921: 14; Bryant 1940: 46; Bechyné 1960b: 82; Biondi and D’Alessandro 2010a: 412; in press.

Type species. Phygasia: Altica unicolor Olivier, 1808: 699 (India), by original designation; Macroorthocrepis: Macroorthocrepis pallidicolor Pic, 1921: 14 (Abyssinia), designation by monotypy.

Distribution. Afrotropical (excluding Madagascar), Oriental and Palaearctic regions (Fig. 349).

Ecology. Species in this genus are mainly associated with plants in the family Asclepiadaceae (cf. Jolivet and Hawkeswood 1995).

Notes. About thirty-five species have been described in Sub-Saharan Africa. The Madagascan species previously attributed to this genus have been transferred to the genus Pseudophygasia Biondi and D’Alessandro, in press.

Phyllotreta Chevrolat, 1836
http://species-id.net/wiki/Phyllotreta
Figs 80, 231, 350

References. Chevrolat 1836: 391; Bryant 1942a: 145; Heikertinger 1943: 33; Bechyné 1955c: 61; Biondi and D’Alessandro 2010a: 412.
Type species. *Chrysomela brassicae* Fabricius, 1787: 78 (Europe), by subsequent designation by Chevrolat (1845: 6).

Distribution. All zoogeographical regions (Fig. 350).

Ecology. A genus that has mainly been associated with plants in the families Cruciferae (= Brassicaceae), Resedaceae, and Capparidaceae (cf. Jolivet and Hawkeswood 1995).

Notes. About forty species are known from the Arabian Peninsula, Madagascar and Sub-Saharan Africa.

Physodactyla Chapuis, 1875
http://species-id.net/wiki/Physodactyla
Figs 81, 232–233, 351

Oedionychus Berthold, 1827 (pars)

References. Chapuis 1875: 83, 88; Scherer 1962a: 72; Biondi and D’Alessandro 2010a: 412.

Type species. *Physonychis africana* Chapuis, 1875: 89 (East Africa), by original designation.

Distribution. Democratic Republic of the Congo, Kenya, Republic of South Africa (Mpumalanga and KwaZulu-Natal), Sudan and Tanzania (Fig. 351).

Ecology. *Physodactyla rubiginosa* (Gerstaecker, 1871: 84) was collected from *Thunbergia alata* Bojer ex Sims (Acanthaceae) in Kenya (Furth, 1985); *P. africana* (Chapuis) from *Digera arvensis* Forssk. (Amaranthaceae) in Sudan (Pollard, 1957, as *Physonychis*).

Notes. Six described species.

Physoma Clark, 1863
http://species-id.net/wiki/Physoma
Figs 82, 234–235, 352

= *Tropidophora* Thomson, 1858: 217 (synonymized by Jacoby 1888)

Hyphasis Harold, 1877 (pars)

Hyphasoma Jacoby, 1903 (pars)

Oedionychus Berthold, 1827 (pars)

References. Clark 1863: 165; Thomson 1858: 217; Chapuis 1875: 83, 87; Harold 1877b: 434; Weise 1895: 344; Jacoby 1888: 205; 1903b: 110; Bechyné 1959c: 318; Scherer 1962a: 73 (as *Physonychis*); Biondi and D’Alessandro 2010a: 412.

Type species. *Physoma: Physoma tripartitum* (Thomson, 1858) (Gabon) (= *Physonychis rugicollis* Clark, 1860 in litteris), by subsequent designation by Chapuis (1875); *Tropidophora: Tropidophora tripartita* Thomson, 1858: 217 (Gabon), designation by monotypy.

Distribution. Central and Western Africa, and Madagascar (Fig. 352)

Ecology. No information.
Notes. Two species known from Sub-Saharan Africa and about twenty from Madagascar. The genus-name *Tropidophora* Thomson is not available because it was ambiguously applied (ICZN, 1999: art. 12.2.5).

Physomandroya Bechyné, 1959
http://species-id.net/wiki/Physomandroya
Figs 83, 236–238, 353

Asphaera Chevrolat, 1843 (pars)
Oedionychus Berthold, 1827 (pars)

References. Chevrolat 1843: 227; Bechyné 1959c: 318; Biondi and D’Alessandro 2010a: 412.

Type species. *Physomandroya decorsei* Bechyné, 1959c: 319 (Madagascar: Ambo-wombé), by original designation.

Distribution. Madagascar (Fig. 353).

Ecology. No information.

Notes. Seven described species. Bechyné (1959c) also transferred *Asphaera melanarthra* Fairmaire, 1886: 94 (= *Asphaera madagascariensis* Jacoby, 1892a: 573) to this genus.

Physonychis Clark, 1860
http://species-id.net/wiki/Physonychis
Figs 84, 239, 354

References. Clark 1860: 29; Duvivier 1891: 424; Bechyné 1959c: 321; Biondi and D’Alessandro 2010a: 412.

Type species. *Physonychis smaragdina* Clark, 1860: 31 (Western Africa), by original designation.

Distribution. Sub-Saharan Africa (absent in the southern-western part of SAF and Madagascar). *Physonychis varicornis* Duvivier, 1891 from Madagascar was transferred to the genus *Physoma* Clark by Bechyné (1959c) (Fig. 354).

Ecology. No information.

Notes. About thirty known species.

[Plectroscelis Chevrolat, 1836]*
=* Chaetocnema* Stephens, 1831
Podagrica Chevrolat, 1836
http://species-id.net/wiki/Podagrica
Figs 85, 86, 355

= Neumannia Weise, 1907 (name preoccupied by Neumannia Lebert, 1879: 357, Acari, Unionicolidae)
= Podagricina Csiki in Heikertinger and Csiki, 1940 (new name for Neumannia Weise, 1907) syn. n.
= Podagrixena Bechyné, 1968 (synonymized by Biondi and D’Alessandro 2010a)

References. Chevrolat 1836: 394; Csiki in Heikertinger and Csiki 1940: 364; Weise 1907b: 223; Bryant 1942b: 229; Bechyné 1960b: 84; 1968: 1719; Biondi and D’Alessandro 2010a: 412.

Type species. Podagrica: Altica fuscipes Fabricius, 1775: 114 (Europe), by subsequent designation by Maulik, (1926: 273); Neumannia: Balanomorpha aethiopica Chapuis, 1879: 13 (Ethiopia), by present designation; Podagrixena: Podagrica decolorata Duvivier, 1892a: 60 (Democratic Republic of the Congo: Ibembo), by original designation.

Distribution. Afrotropical [including Madagascar (!): Nossibé (ZMHB); Rano-hira (ZMHB); Tamatave (ZMHB)], Oriental, and Palaearctic regions (Fig. 355).

Ecology. The species in this genus are mainly associated with plants in the family Malvaceae (cf. Jolivet and Hawkeswood 1995: 128); some are known to cause damage to cotton crops, Gossypium sp. (Malvaceae).

Notes. About fifty species are known from Sub-Saharan Africa, with one having been recorded from Madagascar. There are no significant diagnostic characters distinguishing Podagricina Csiki from Podagrica. Therefore, the following new synonymy is proposed: Podagrica Chevrolat, 1836 = Podagricina Csiki in Heikertinger and Csiki, 1940 syn. n. Type material examined: Balanomorpha aethiopica Chapuis, “Bogos, 1870, Keren, O. Beccari”, 4 syntypes (MCSN).

[Podagricina Csiki in Heikertinger & Csiki, 1940]
= Podagrica Chevrolat, 1836

[Podagrixena Bechyné, 1968]
= Podagrica Chevrolat, 1836

[Poephila Weise, 1895]
= Lypnea Baly, 1876a
[Poephilina Csiki in Heikertinger & Csiki, 1940]
= Lypnea Baly, 1876a

Polyclada Chevrolat, 1836
http://species-id.net/wiki/Polyclada
Figs 87, 240–241, 356

= Cladocera Hope, 1840 (synonymy reported in Achard 1922)
= Cladotelia Kolbe, 1894 (synonymy reported in Achard 1922)

References. Chevrolat 1836: 375; Hope 1840: 169; Baly 1861: 198; Kolbe 1894: 86; Achard 1922: 4; Medvedev 1996: 261; Biondi and D’Alessandro 2010a: 413.

Type species. Polyclada: Clythra pectinicornis Olivier, 1789: 31 (Africa), designation by monotypy.

Distribution. Sub-Saharan Africa (absent in the south-western part of SAF and Madagascar), Saudi Arabia, and Yemen (Fig. 356).

Ecology. This genus is generally associated with plants in the family Anarcadiaceae (cf. Jolivet and Hawkeswood 1995; Chaboo, Grobbelaar and Larsen 2007).

Notes. Sixteen species have been described.

Pratima Maulik, 1931
http://species-id.net/wiki/Pratima
Figs 88, 242, 357

References. Maulik 1931: 253; Bechyné 1958a: 84; Biondi and D’Alessandro 2010a: 413.

Type species. Pratima variabilis Maulik 1931: 253 (Seychelles: Silhouette and Mahe), by original designation.

Distribution. Indian Ocean (Seychelles and Mascarene Islands) (Fig. 357).

Ecology. The species of this genus live in forests (300–700 m) (Maulik 1931).

Notes. There are eight known species.

[Prototrigona Chevrolat, 1837]
Nomen nudum.

Notes. Chevrolat (1837: 411) uses this genus-name, without a description, for the following two unpublished species: “Glaucia, Dej.” from Madagascar, and “Viridana, Dej.” from an unknown locality. “Glaucia, Dej.” was also synonymized with “Prasinipennis, Chevr.”; this was also never published.
Pseudadorium Fairmaire, 1885
http://species-id.net/wiki/Pseudadorium
Figs 89, 243–245, 358

Asphaera Chevrolat, 1843 (pars)
Hemipyxis Chevrolat, 1836 (pars)

References. Fairmaire 1885: 239; Bechyné 1958b: 193.

Type species. *Pseudadorium vernicatum* Fairmaire, 1885: 239 (Madagascar), designation by monotypy.

Distribution. Only found on Madagascar (Fig. 358).

Ecology. No information.

Notes. About twenty described species. We define this genus in a broader sense than Bechyné (1958b) did. He separated *Pseudadorium* from *Hemipyxis* Chevrolat on the basis of the distinctly vertically orientated elytral epipleura alone; not visible laterally in dorsal view (horizontally orientated and visible in lateral view in *Hemipyxis*). However, the elytral epipleural configuration is variable. Other diagnostic characters are more useful for separating these two genera, such as: frontal carina not extended towards the clypeus (Fig. 244) in *Pseudadorium* [extended in *Hemipyxis* (Fig. 193)]; frons distinctly raised distally (Fig. 244) in *Pseudadorium* [not raised in *Hemipyxis* (Fig. 193)]; elytra with distinct basal calli in *Pseudadorium* (absent in *Hemipyxis*); pronotum with anterior angles distinctly thickened and produced towards anterior (Fig. 243) in *Pseudadorium* [slightly thickened and not distinctly produced towards the anterior in *Hemipyxis* (Fig. 192)]; hind tibiae narrowly and less deeply channeled dorsally in *Pseudadorium* (Fig. 245) [broadly and more deeply channeled in *Hemipyxis* (Fig. 194)]. The following species from Madagascar, previously attributed to *Hemipyxis*, are here transferred to *Pseudadorium*: *Hemipyxis balyana* (Csiki in Heikertinger and Csiki 1940: 461) = *Pseudadorium balyanum* (Csiki in Heikertinger and Csiki 1940) comb. n.; *Hemipyxis brevicornis* (Jacoby, 1892a: 573) = *Pseudadorium brevicornis* (Jacoby, 1892a) comb. n.; *Hemipyxis cyanea* (Weise, 1910b: 439) = *Pseudadorium cyaneum* (Weise, 1910b) comb. n.; *Hemipyxis gynandromorpha* Bechyné, 1958c: 195 = *Pseudadorium gynandromorphum* (Bechyné, 1958c) comb. n.; *Hemipyxis latiuscula* Bechyné, 1958c: 195 = *Pseudadorium latiusculum* (Bechyné, 1958c) comb. n.; *Hemipyxis soror* (Weise, 1910b: 469) = *Pseudadorium soror* (Weise, 1910b) comb. n.

[Pseudonisotra Bechyné, 1968]
= *Nisotra* Baly, 1864
Pseudophygasia Biondi & D’Alessandro, in press
http://species-id.net/wiki/Pseudophygasia
Figs 90, 247–248, 359

Phygasia Chevrolat, 1836 (pars)

References. Biondi and D’Alessandro, in press; Bechyné 1952: 249.
Type species. *Crepidodera analis* Harold, 1877a: 107 (Madagascar), by original designation.
Distribution. Only found on Madagascar (Fig. 359).
Ecology. No information.
Notes. Nine described species. All the species previously attributed to the genus *Phygasia* Chevrolat from Madagascar have been moved to *Pseudophygasia* (Biondi and D’Alessandro, in press).

Psylliodes Berthold, 1827
http://species-id.net/wiki/Psylliodes
Figs 91, 248, 360

References. Berthold 1827: 401; Biondi 1996: 257; Nadein 2007: 317; Biondi and D’Alessandro 2010a: 413; Döberl 2012: 444.
Type species. *Chrysomela chrysocephala* Linnaeus, 1758: 372 (Europe), by subsequent designation by Maulik (1926: 144).
Distribution. Found in all the zoogeographical regions. In the Afrotropical region this genus is known from Ethiopia, Kenya, Republic of South Africa, Tanzania and Socotra Island (Yemen) (Fig. 360).
Ecology. Known host plants for this genus fall in the plant families Cruciferae (= Brassicaceae), Solanaceae and Poaceae (also known as Gramineae) (cf. Jolivet and Hawkeswood 1995).
Notes. There are seven described species.

Pydaristes Harold, 1875
http://species-id.net/wiki/Pydaristes

References. Harold 1875: 446; Scherer 1961: 252; Biondi and D’Alessandro 2010a: 413.
Type species. *Pydaristes attagenoides* Harold, 1875: 447 (Africa), designation by monotypy.
Distribution. “Africa”.
Ecology. No information.
Notes. Only one species is known. Unfortunately, the location for the type material is unknown. The original description of *Pydaristes* appears to be identical or
very close to that of *Amphimela* Chapuis. The synonymy proposed by Scherer (1961) between *Pydaristes* and *Blepharida* Chevrolat is unconvincing, because of the absence of dentiform emargination on the hind tibiae in *Pydaristes* (according to the original description), such emargination is characteristically present in *Blepharida*.

Sanckia Duvivier, 1891
http://species-id.net/wiki/Sanckia
Figs 92, 93, 249–250, 361

= *Eugonotes* Jacoby, 1897 syn. n.

References. Duvivier 1891: 316; Jacoby 1897: 558; Bechyné 1956: 173; Medvedev 1995: 479; Biondi and D’Alessandro 2010a: 413.

Type species. *Sanckia: Sanckia johanna* Duvivier, 1891: 316 (Madagascar: Antsinanaka Forest), by original designation; *Eugonotes: Eugonotes longicornis* Jacoby, 1897: 559 (Madagascar: Diego-Suarez), designation by monotypy.

Distribution. Burundi (!) [Bururi (ZSM)], Democratic Republic of the Congo, Ethiopia, Guinea, Kenya, Madagascar, Rwanda, Senegal, Uganda, and the Oriental region (Fig. 361).

Ecology. No information.

Notes. About twenty species are known from the Afrotropical region, most of these are from Madagascar. There are no significant diagnostic characters distinguishing *Eugonotes* Jacoby from *Sanckia*. The following new synonymy is therefore proposed: *Sanckia* Duvivier, 1891 = *Eugonotes* Jacoby, 1897 syn. n. Type material examined: *Eugonotes longicornis* Jacoby, “Madagascar, Diego Suarez”, syntype ♀ (BMNH).

Serraphula Jacoby, 1897
http://species-id.net/wiki/Serraphula
Figs 94, 251–253, 362

References. Jacoby 1897: 556; Maulik 1929: 308; Biondi and D’Alessandro 2010a; 413; 2010b: 3.

Type species. *Serraphula aenea* Jacoby, 1897: 557 (Mashonaland), designation by monotypy.

Distribution. Republic of South Africa (Limpopo, Mpumalanga, Free State, KwaZulu-Natal, Eastern, and Western Cape Provinces) and Zimbabwe (Fig. 362).

Ecology. Species in this genus are known to be associated with plants in the family Asteraceae (Biondi and D’Alessandro 2010b).

Notes. Nineteen species have been described.
Sesquiphaera Bechyné, 1958a
http://species-id.net/wiki/Sesquiphaera
Figs 95, 96, 254–256, 363
= Paropsiderma Bechyné, 1958a syn. n.

References. Bechyné 1958a: 92; Scherer 1961: 275; Biondi and D’Alessandro 2010a: 411, 413.

Type species. Sesquiphaera: Sphaeroderma mashonanum Jacoby, 1900: 252 (Mashonaland: Salisbury), by original designation; Paropsiderma: Sphaeroderma anthrax Brancsik, 1910: 185 (Madagascar), designation by monotypy.

Distribution. Democratic Republic of the Congo, Guinea, Guinea Bissau, Madagascar, Namibia, Republic of South Africa (Gauteng, Mpumalanga, and KwaZulu-Natal), Rwanda, Tanzania, and Zimbabwe (Fig. 363).

Ecology. No information.

Notes. There are about ten described species. No significant diagnostic characters distinguish Paropsiderma Bechyné from Sesquiphaera. The following new synonymy is therefore proposed: Sesquiphaera Bechyné, 1958 = Paropsiderma Bechyné, 1958 syn. n. Material examined: Paropsiderma anthrax (Brancsik) (det. J. Bechyné), “Madagascar, Joffreville, 13.V.1953, F. Kaiser”, 1 specimen (NHMB).

Seychellaltica Biondi, 2002b
http://species-id.net/wiki/Seychellaltica
Figs 97, 257–260, 364

References. Biondi 2002b: 358; Biondi and D’Alessandro 2010a: 413.

Type species. Chaetocnema mahensis Maulik, 1931: 250 (Seychelles: Mahé), by original designation.

Distribution. Indian Ocean (Seychelles) (Fig. 364).

Ecology. The species in this genus are associated with indigenous forests in the Seychelles.

Notes. Four species have been described.

Sjostedtinia Weise, 1910a
http://species-id.net/wiki/Sjostedtinia
Figs 98, 261–262, 365

References. Weise 1910a: 205; Bryant 1953: 162; Scherer 1963: 648; Biondi and D’Alessandro 2010a: 413.

Type species. Sjostedtinia montivaga Weise, 1910a: 206 (Kilimanjaro: Kibocho), by original designation.
Distribution. Kenya, Tanzania, and Uganda, (Fig. 365).

Ecology. This genus lives at high altitudes on Kilimanjaro and Mount Elgon. *Sjostedtiniina montivaga* has been collected from *Lobelia deckeni* (Asch.) Hemsl. (Lobi-liaeae) (Weise 1910a), and *S. fordi* Bryant, 1953 from a *Senecio* sp. (Asteraceae) in Uganda (Bryant 1953), and from a *Lobelia* sp. in Kenya (S. Zoia 2009, pers. comm.).

Notes. Two species are known.

Sphaeroderma Stephens, 1831
http://species-id.net/wiki/Sphaeroderma
Figs 99, 263–264, 366

= *Argosomus* Wollaston, 1867 (synonymized by Scherer 1961)
= *Musaka* Bechyné, 1958a (synonymized by Scherer 1961)

References. Stephens 1831: 328; Wollaston 1867: 152; Bryant 1943: 487; Bechyné 1958a: 89; 1968: 1702; Scherer 1961: 252; Biondi and D’Alessandro 2010a: 414.

Type species. *Sphaeroderma: Altica testacea* Fabricius, 1775: 114 (Europe), by subsequent designation by Maulik, (1926: 316); *Argosomus: Argosomus epilachnoides* Wollaston, 1867: 152 (Cape Verde Islands: Brava), by subsequent designation by Konstantinov and Vanderberg (1996: 351); *Musaka: Sphaeroderma freyi* Bechyné, 1955b: 563 (Cameroon), by original designation.

Distribution. Afrotropical (including Madagascar) and Australian, Oriental, and Palearctic regions. The species of *Sphaeroderma* reported from the Neotropical and Nearctic regions should be attributed to different genera (cf. Savini and Furth 2001) (Fig. 366).

Ecology. Species in this genus are mainly associated with plants in the families Asteraceae and Ranunculaceae (cf. Jolivet and Hawkeswood 1995).

Notes. Over fifty species have been recorded from Sub-Saharan African and about ten from Madagascar.

[Sphaerophysa Baly, 1876b]
= *Amphimela* Chapuis, 1875

Stegnaspea Baly, 1877
http://species-id.net/wiki/Stegnaspea
Figs 100, 265, 367

References. Baly 1877: 181; Biondi and D’Alessandro 2010a: 414; D’Alessandro, Grobbelaar and Biondi 2012: 12.

Type species. *Stegnaspea trimeni* Baly, 1877: 182 (Cape of Good Hope), designation by monotypy.
Distribution. Republic of South Africa (Western Cape Province) and Tristan da Cunha (Fig. 367).

Ecology. *Stegnaspea trimeni* collected from Poaceae (also known as Gramineae) in meadows (D’Alessandro, Grobbelaar and Biondi 2012).

Notes. Six species are known.

Stuckenbergiana Scherer, 1963
http://species-id.net/wiki/Stuckenbergiana
Figs 101, 368

References. Scherer 1963: 670; Biondi and D’Alessandro 2010a: 414.

Type species. *Podagrica glabrata* Jacoby, 1899b: 349 (KwaZulu-Natal: Umtenweni River; Eastern Cape Province: Port St. John), by original designation.

Distribution. Republic of South Africa [Mpumalanga, KwaZulu-Natal, and Eastern Cape Province] (Fig. 368).

Ecology. No information.

Notes. Only one species is known.

Terpnochlorus Fairmaire, 1904
http://species-id.net/wiki/Terpnochlorus
Figs 102, 266–267, 369

Chaloenus Westwood, 1862 (pars)

References. Fairmaire 1904: 269; Laboissière 1932: 575; Bryant 1927: 615 (as *Chaloenus*); Bechyné 1955b: 543; 1960b: 101; Furth and Suzuki 1994: 130; Biondi 2002b: 364; Biondi and D’Alessandro 2010a: 414.

Type species. *Terpnochlorus perrieri* Fairmaire, 1904: 269 (Madagascar: Soalala), designation by monotypy.

Distribution. Botswana, Democratic Republic of the Congo, Gambia, Guinea Bissau, Madagascar, Mali, Namibia, Sierra Leone, and South America (Venezuela and Mexico) (Fig. 369).

Ecology. This genus lives in moist habitats generally associated with plants from the family Juncaceae (Biondi 2002b).

Notes. Two species have been described from the Afrotropical region. Bechyné (1955b) synonymised *Chaloenus viridis* Bryant (Bryant, 1927) with *Terpnochlorus perrieri* Fairmaire [*Terpnochlorus perrieri* Fairmaire = *Chaloenus viridis* Bryant (Bryant, 1927)].
[Toroderia Weise, 1908a] = Argopistoides Jacoby, 1892b

Toxaria Weise, 1903
http://species-id.net/wiki/Toxaria
Figs 103, 370

References. Weise 1903: 215; 1912: 157; Laboissière 1941: 318; Bryant 1943: 488; Biondi and D’Alessandro 2010a: 414.

Type species. Galleruca indica Fabricius, 1798: 98 (Western Cape), by original designation.

Distribution. Democratic Republic of the Congo, Kenya, the Republic of South Africa, and Uganda (Fig. 370).

Ecology. No information.

Notes. Five species are known.

Trachytetra Sharp, 1886
http://species-id.net/wiki/Trachytetra
Figs 104, 268–269, 371

= Monodaltica Bechyné, 1955b (synonymized by Konstantinov and Prathapan 2008)

References. Sharp 1886: 448; Bechyné 1955b: 509; Scherer 1962a: 18 (as Monodaltica); Konstantinov and Prathapan 2008: 413; Biondi and D’Alessandro 2010a: 414.

Type species. Phyllotreta rugulosa Broun, 1880: 636 (New Zealand), by original designation; Monodaltica: Monodaltica guineensis Bechyné, 1955b: 510 (French Guinea), by original designation.

Distribution. Cameroon, Democratic Republic of the Congo, Ghana, Guinea, Nigeria, Sierra Leone, and Australian, Eastern Palaearctic, and Oriental regions (Fig. 371).

Ecology. No information.

Notes. Five species have been described from Sub-Saharan Africa.

Tritonaphthona Bechyné, 1960b
http://species-id.net/wiki/Tritonaphthona
Figs 105, 270, 372

References. Bechyné 1960b: 70; Biondi and D’Alessandro 2010a: 416.

Type species. Aphthona longicornis Laboissière, 1942: 21 (Albert National Park), by original designation; Biondi and D’Alessandro 2010a: 415.
Distribution. Democratic Republic of the Congo (Fig. 372).

Ecology. No information.

Notes. One described species.

[**Thrymnes Weise, 1895**]

= Gabonia Jacoby, 1893

[**Tropidophora Thomson, 1858**]

= Physoma Clark, 1863

Upembaltica Bechyné, 1960b

http://species-id.net/wiki/Upembaltica

Figs 106, 271–272, 373

References. Bechyné 1960b: 53; Biondi and D’Alessandro 2003: 104; 2010a: 416.

- **Type species.** Upembaltica scolytina Bechyné, 1960b: 53–54 (Upemba National Park: Lupiala; Kaswabilenga), by original designation.

- **Distribution.** Democratic Republic of the Congo (Fig. 373).

- **Ecology.** No information.

- **Notes.** Only one species has been recorded.

[**Weiseana Jacoby, 1906**]

= Homicloda Weise, 1902

Xanthophysca Fairmaire, 1901

http://species-id.net/wiki/Xanthophysca

Figs 107, 273–275, 374

References. Fairmaire 1901: 242; Achard 1915: 31; Bechyné 1954a: 46; Biondi and D’Alessandro 2010a: 417.

- **Type species.** Xanthophysca perrieri Fairmaire, 1901: 242 (Madagascar: Saberbieville), designation by monotypy.

- **Distribution.** Madagascar (Fig. 374).

- **Ecology.** No information.

- **Notes.** Five species have been described. These usually display different colour varieties. Two species from Madagascar, previously included in the genus Blepharida, are here attributed to this genus: Xanthophysca multiguttata (Duvivier, 1891: 242) comb. n. and Xanthophysca insignis (Brancsik, 1897: 130) comb. n.
[**Xenaltica Baly, 1875**]

= **Myrcina** Chapuis, 1875

Yemenaltica Scherer, 1985

http://species-id.net/wiki/Yemenaltica

Figs 108, 276–277, 375

References. Scherer 1985: 86; Medvedev 1996: 261; Biondi and D’Alessandro 2010a: 417; Döberl 2012: 444.

Type species. **Yemenaltica scorteccii** Scherer, 1985: 86 (Yemen: El Kasaba), by original designation.

Distribution. Arabian Peninsula and Socotra Island (Yemen) (Fig. 375).

Ecology. No information.

Notes. Two species have been described.

Zomba Bryant, 1922b

http://species-id.net/wiki/Zomba

Figs 109, 376

References. Bryant 1922a: 263; Biondi and D’Alessandro 2010a: 417.

Type species. **Zomba gossypii** Bryant, 1922a: 264 (Nyasaland: Luchenza; N.W. Rhodesia: Livingstone), designation by monotypy.

Distribution. Malawi and Zimbabwe (Fig. 370).

Ecology. The only species in this genus was collected from Cotton plants, *Gossypium* sp. (Malvaceae) (Bryant 1922a).

Notes. Only one species is known. This genus is particularly interesting because it is the only representative of the tribe Monoplatini in the Afrotropical region. This tribe occurs almost exclusively in the Neotropical and southern part of the Nearctic regions. The only exceptions are the genera *Zomba* and *Opisthopygme* Blackburn (1896: 41); this last genus is occurring with two species in the Australian region.

Discussion

There are 99 flea beetle genera known from the Afrotropical region. Of these, 83 occur in continental Sub-Saharan Africa, with the different regions each having a varying number of species: CAF: 63; EAF: 55; SAF: 58; and WAF: 44. Furthermore, 39 genera are known from Madagascar, 9 from the Mascarene Islands and 5 from the Seychelles Islands (Table 1, Fig. 377). However, these numbers are still provisional as information concerning the Afrotropical flea beetle fauna is limited, particularly for Madagascar.
Table 1. Occurrence of Alticinae genera of the Chrysomelidae in different areas of the Afrotropical region and other zoogeographical areas (see text for abbreviations) (updated from Biondi & D’Alessandro, 2010a).

Genus	WAF	CAF	EAF	SAF	MAD	SEY	MAS	PAR	NAR	NTR	ORR	AUR	
Abrarius													
Afroaltica		X											
Afrocrepis				X									
Afrorestia			X	X									
Alocypha					X								
Altica	X		X	X	X								
Amphimela	X	X		X									
Anazerta												X	
Angulaphthona		X	X	X									
Antanemora												X	
Aphthona	X	X	X	X									
Argopistes	X	X		X									
Argopistoides		X	X	X									
Bangalaltica												X	
Bechuana												X	
Bechynella		X											
Bezdekaltica												X	
Bikasha	X												
Biodontocnema												X	
Blepharida	X	X	X										
Carcharodis	X												
Celisaltica												X	
Chabria	i?	?	X										
Chaetocnema	X	X	X	X	X	X	X	X	X	X			
Chaillucola												X	
Chirodica												X	
Collartaltica	X	X	X										
Decaria	X	X											
Diamphidia	X												
Dibolia	X	X											
Dimonikaea												X	
Diphaulacosoma												X	
Djallonia		X											
Drakensbergianella												X	
Dunbrodyia		X											
Epiphrix	X	X	X	X									
Eriotica												X	
Eurylegna	X	X											
Eutornus	X	X	X	X									
Gabonia	X	X	X										
Guieliemia												X	
Guinerestia												X	
Halticotropis												X	
Hemiptyxis		X	X										
Hespera		X	X										
Hildenbrandtina												X	
Genus	WAF	CAF	EAF	SAF	MAD	SEY	MAS	PAR	NAR	NTR	ORR	AUR	
---------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	
Homichloda	X	X	X										
Hypphasis								X			X		
Jacobyana	X	X	X									X	
Kanonga	X	X											
Kenialtica	X	X	X										
Kimongona	X	X											
Lampedona	X	X											
Lepialtica	X	X											
Longitarsus	X	X	X	X	X	X	X	X	X				
Luperomorpha	X	X								X			
Lypnea	X	X	X							X			
Malvernia		X											
Manobia	X	X									X		
Metroserapha										X			
Montiaphthona	X	X											
Myrcina	X	X	X										
Neodera													X
Nisotra	X	X	X	X						X			
Notomela	X	X											
Ntaolaltica													X
Nzerekorena	X	X											
Orthocrepis	X	X	X	X									
Paradiholia	X	X											X
Perichilona													X
Philopona	X	X	X										
Phygasia	X	X	X										
Phyllotreta	X	X	X	X								X	
Physodactyla	X	X											
Physoma													X
Physomandroya													X
Physonychis	X	X											
Podagrica	X	X	X										
Polyclada	X	X	X										
Pratina													X
Pseudadorium													X
Pseudophygasia													X
Pyllliodes	X	X								X			
Sanckia	X	X	X										X
Serraphula													X
Sesquiphaeva	X	X	X	X									
Seychellaltica													X
Spodetina	X	X											
Sphaeroderma	X	X	X	X									
Stegnaspea													X
Stuckenberghiana													X
Terpnochlorus	X	X	X										
Toxaria	X	X	X										
Trachytyteta	X	X											X
Our preliminary analysis indicates that this fauna is distinct and can be separated from the faunas of other zoogeographical regions. In Fig. 381, a dendrogram obtained from the cluster analysis [Coincidence index and Weighted Pair Group Method using Arithmetic averaging (WPGMA) (cf. Biondi 2006; Biondi and D’Alessandro 2010a)] performed, using the presence/absence data of flea beetle genera in each of the OGUs (Operational Geographical Unit) considered, is reported. Results reveal a main Sub-Saharan cluster, including the four continental OGUs, these in turn form two subclusters, namely a central-western (WAF-CAF) subcluster and a southern-eastern (EAF-SAF) subcluster. Madagascar (MAD) also forms part of the Sub-Saharan cluster, completing the “Afrotropical group”.

The Seychelles (SEY) and the Mascarene islands (MAS) are more closely associated with the other zoogeographical regions [(NAR-NTR)(PAR-ORR)AUR] because of the occurrence of a high percentage of widespread genera that characterize the flea beetle fauna of these two archipelagoes. Moreover, faunistic similarity based on the widespread flea beetle genera also clusters the other zoogeographical regions together in two distinct groups, namely the Palaearctic-Oriental-Australian regions [(PAR-ORR)AUR] and Nearctic-Neotropical regions (NAR-NTR).

The geographic distribution of Afrotropical flea beetle genera is therefore well characterized and it has distinct Malagasy and Sub-Saharan African components (Fig. 381).

The percentage of Alticini genera endemic to the Afrotropical region is very high (71.0%), with the following distribution: Sub-Saharan Africa, 52 genera; Madagascar, 12; Seychelles Islands, 1; Sub-Saharan Africa-Madagascar, 4; Madagascar-Mascarene Islands, 1; Seychelles-Mascarene Islands, 1 (Fig. 378). Within the endemic Sub-Saharan Africa component, only 6 genera occur in all four subregions, while 25 genera occur only in one subregion (SAF: 11; CAF: 9; EAF: 5). There are no exclusively endemic flea beetle genera in WAF (Fig. 378).

The percentage of genera occurring in both the Afrotropical and another zoogeographical region is 32.0%, with the cosmopolitan component significant and well represented [8.0% of the total of 99] (Fig. 379). The Afrotropical region shares the highest percentage of genera with the Oriental (27.0%) and Palaearctic (27.0%) regions (Fig. 380). The co-occurrence of genera in both the Afrotropical and Oriental regions, often called Palaeotropical distribution, may be due to a possible Gondwanian origin., Sanckia is such an example, although the genus occurs mainly in Madagascar, species are also found in Sub-Saharan Africa and the southern part of the Oriental region. Other examples are the genera Argo-
pistoides and Jacobyana which occur in Sub-Saharan Africa and the Oriental region and are absent from Madagascar; and Amphimela, Chabria, Nisotra, and Paradibolia, which occur

Genus	WAF	CAF	EAF	SAF	MAD	SEY	MAS	PAR	NAR	NTR	ORR	AUR
Tritonaphthona	X											
Upembaltica	X											
Xanthophysca		X										
Yemenalitica	X			X								
Zomba			X	X								
in the Afrotropical, Oriental and the Australian regions. Other genera, such as *Bikasha*, *Hemipyxis*, *Luperomorpha*, *Lypnea*, *Manobia*, *Philopona* and *Trachytetra* occur not only in the Afrotropical (including Madagascar, although infrequently), Oriental and, generally Australian regions, but also in the eastern part of the Palaeartec region. More specifically, the Palaeartic region shares 27 flea beetle genera with the Afrotropical region (Fig. 380), including the unique Pan-African flea beetle genus, *Angulaphthona*, which occurs in Mediterranean Africa, Sub-Saharan Africa and Madagascar (cf. Biondi and D’Alessandro 2006). A significantly lower percentage of genera (20.0%) occur in both the Afrotropical and Australian regions, although all of these can also be found throughout the Oriental region.

As expected, the lowest percentage of genera occur in both the Afrotropical/Nearctic regions (10.0%) and Afrotropical/Neotropical regions (10.0%). All genera common to the Afrotropical, Nearctic and Neotropical regions are also found in all other zoogeographical regions with the exception of the genus *Terpnochlorus*, which only occurs in the Afrotropical region, Venezuela and Mexico (cf. Furth and Suzuki 1994). Moreover, the possible synonymy between the genera *Abrarius* from Madagascar and *Gioia* from South America (see above), if confirmed, could indicate an interesting zoogeographical connection among the ancient regions of Gondwana (Biondi and D’Alessandro 2010a).

As reported in Biondi and D’Alessandro (2010a), other likely Gondwanian elements in the Afrotropical flea beetle fauna are:

The unique Afrotropical genus *Zomba* belonging to the tribe Monoplatini, which mainly occurs in the Neotropical region with a few species found in the Nearctic region. The genus *Opisthopygme*, also from the Monoplatini, is also present in Australia (see above).

Two new, as yet undescribed, flea beetle genera that occur in Madagascar and South Africa (Western Cape Province). Both these genera have clavate or subclavate antennae with 11 segments, are subsphaerical in shape and very small, characteristics they share with related genera in Central America, such as: *Bubiscus* Savini, Furth and Joly (2009: 53), a recently described Costa Rican genus (1 species); *Normaltica* Konstantinov (2002: 2), an endemic genus from Great Antilles (2 species); *Clavicornaltica* Scherer (1974: 58), a genus occurring in the Oriental (18 species) and Australian regions (1 species) (cf. Konstantinov and Duckett 2005). Other very closely related flea beetle genera, but with a reduced number of antennal segments, are: *Kiskeya* Konstantinov and Chamorro-Lacayo (2006: 276), which has nine-segmented clavate antennae - 2 species in the Dominican Republic; and *Monotalla* Bechyné (1956: 588), which has ten-segmented clavate antennae, with 1 species in Guadalupe (cf. Savini and Furth 2001: 907).

There are 39 flea beetle genera known from Madagascar, 13 of which are endemic. One of them, *Metroserrapha* Bechyné, also occurs in the Mascarene Islands (Biondi and D’Alessandro 2010a; 2012, in press). Some of these Madagascan genera, such as *Neodera*, (*Physomandroya*, *Pseudadorium*, *Pseudophygasia*, and *Xanthophysca*, show clear African affinities, but *Antanemora*, *Ntaolaltica*, and *Metroserrapha* are more closely related to Oriental genera (Biondi and D’Alessandro 2012, in press). The remaining endemic Malagasy genera, *Anaxerta*, *Diphaulacosoma*, *Halictotropis*, and *Hildebrandtina*, are probably all very ancient. Establishing their affinities with certainty, whether African or Oriental, is very difficult using only a comparative morphological approach.
Figure plates

Figures 2–10. Habitus. 2 Abrarius cribrosus Fairmaire 3 Afroalctica subaptera Biondi & D’Alessandro 4 Afrocrepis malvernensis (Jacoby) 5 Afrorestia peringueyi (Jacoby) 6 Alocypha bimaculata (Jacoby) 7 Altica madagascariensis (Allard) 8 Amphimela bryanti (Csiki) 9 Amphimela (ex Sphaerophysa Baly) heikertingeri (Bechné) 10 Anaxerta castanea Fairmaire.
Figures 11–19. Habitus. 11 *Angulaphthona heteromorpha* (Bechyné) 12 *Antanemora ghesquierei* (Bechyné) 13 *Aphthona senegalensis* Jacoby 14 *Aphthona* (ex *Ethiopia* Scherer) *tricolor* (Scherer) 15 *Argopistes sexvittatus* Bryant 16 *Argopistoides africanus* (Bryant) 17 *Bangalaltaica antennalis* Bechyné 18 *Bechuana nigripes* Scherer 19 *Bechynella pallens* (Bechyné).
Figures 20–28. Habitus. 20 Bezdekaltica socotrana Döberl 21 Bikasha tenuipunctata Maulik 22 Biodontocnema brunnea Biondi 23 Blepharida ornata Baly 24 Buphonella nigroviolacea (Allard) (genus transferred to Galerucini) 25 Carcharodis rugiceps (Baly). 26 Celisaltica ruwenzorica Biondi 27 Chabria bezanozana Biondi & D’Alessandro 28 Chaetocnema purpurea Jacoby.
Figures 29–37. Habitus. 29 Chaillucola formicicornis Bechyné 30 Chirodica chaleoptera Germar 31 Collartaltica cryptostoma Bechyné 32 Decaria abdominalis Jacoby 33 Diamphidia nigroornata Stål 34 Dibolia bimaculata Jacoby 35 Dimonikaea descarpentriesi Bechyné 36 Diphaulacosoma laevispenne Jacoby 37 Djallonia maindra Bechyné.
Figures 38–46. Habitus. 38 *Drakensbergianella rudebecki* Biondi & D’Alessandro 39 *Dunbrodya nitida* Jacoby 40 *Epitrix aethiopica* Weise 41 *Eriotica fuscipennis* Harold 42 *Eurylegna fulva* Weise 43 *Eurylegna* (ex *Eurylegniella* Scherer) *guineensis* Bechyné 44 *Eutornus rugicollis* (Jacoby) 45 *Gabonia unicostata* Jacoby 46 *Guilielmia monticola* Weise.
Figures 47–55. Habitus. 47 Guinerestia rubra Scherer 48 Halticopsis spissicornis Fairmaire (genus transferred to Galerucini) 49 Halticotropis costipennis Bechyné 50 Hemipyxis africana (Allard) 51 Hespera africana Jacoby 52 Hildebrandtsina similis Bechyné 53 Homichloda barkeri (Jacob) 54 Hyphasis sita (Maulik) 55 Jacobyana bezdeki Biondi & D’Alessandro.
Figures 56–64. Habitus. 56 Kanonga atra Bechyné 57 Kenialtica muhavura Bechyné 58 Kimongona callifera Bechyné 59 Kimongona (ex Mesocrepis Scherer) lindemannae (Scherer) 60 Lampedona testacea Bechyné 61 Lepialtica bicolor Scherer 62 Longitarsus africanus Jacoby 63 Luperomorpha biondii Döberl 64 Lypnea costatipennis (Jacoby).
Figures 65–73. Habitus. 65 Malvernia varicornis Jacoby 66 Manobia africana Laboissière 67 Metro-serrapha sp 68 Montiaphtboma gedyei (Bryant) 69 Myrcina vandenplaasi Laboissière 70 Neodera fraternal Duvivier 71 Nisota aruwimiana Weise 72 Notomela fulvicollis Bryant 73 Ntaolahica antennata Biondi & D’Alessandro.
Figures 74–82. Habitus. 74 *Nzerekorena filicornis* Scherer & Boppré 75 *Orthocrepis togoensis* Weise 76 *Paradibolia abdominalis* (Jacoby) 77 *Perichilona bicolor* Weise 78 *Philopona fulvicollis* (Fabricius) 79 *Phygasia rubripennis* Weise 80 *Phyllotreta puncticollis* (Jacoby) 81 *Physodactyla rubiginosa* (Gerstaecker) 82 *Physoma costuliferum* Bechyné.
Figures 83–91. Habitus. 83 Physomandroya melanarthra (Fairmaire) 84 Physonychis violaceipennis (Baly) 85 Podagrica oneili (Jacoby) 86 Podagrica (ex Podagricina Csiki) aethiopica (Chapuis) 87 Polyclada bohemani (Baly) 88 Pratima variabilis Maulik 89 Pseudadorium amplum (Weise) 90 Pseudophygasia analis (Harold) 91 Psylliodes calcarata (Bryant).
Figures 92–100. Habitus. 92 Sanckia lebisi Bechyné 93 Sanckia (ex Eugonotes Jacoby) longicornis (Jacoby) 94 Serraphula elongata Jacoby 95 Sesquiphaera mashonana (Jacoby) 96 Sesquiphaera (ex Paropsiderma Bechyné) near vadoni (Bechyné) 97 Seychellaltica mahensis (Maulik) 98 Sjostedinia montivaga Weise 99 Sphaeroderma femoratum Jacoby 100 Stegneaspea trimeni Baly.
Figures 101–109. Habitus. 101 Stuckenber gia glabrata (Jacoby) 102 Terpnochlorus perrieri Fairmaire 103 Toxaria indica (Fabricius) 104 Trachytetra guineensis (Bechyné) 105 Tritonaphthona longicornis (Laboissière) 106 Upembaltica scolytina Bechyné 107 Xanthophysca perrieri Fairmaire 108 Yemenaltica scorteccii Scherer 109 Zomba gossipii Bryant.
Figures 110–115. Morphological characters. 110 Abrarius aethiops (Weise), head and pronotum in dorsal view 111 Ditto, head and right antenna in dorsal view 112 Abrarius cribrosus Fairmaire, ventral parts 113 Afroaltica parvula D’Alessandro & Biondi, head in frontal view 114 Afroaltica subaptera Biondi & D’Alessandro, head and pronotum in dorsal view 115 Ditto, triangular hollow on ventral side of middle tibiae in male.
Figures 116–121. Morphological characters. **116** *Afroalctica subaptera* Biondi & D’Alessandro, prothorax. **117** Ditto, meso- and metathorax (white arrow). **118** *Afrocrepis carinipennis* (Jacoby), pronotum and elytra in sublateral view. **119** *Afrorestia jonesi* (Bryant), head in frontal view. **120** *Alocypha bimaculata* (Jacoby), head and pronotum in dorsal view. **121** *Altica nigrita* Laboissière, head and pronotum in dorsal view.
Figures 122–127. Morphological characters. 122 *Amphimela citri* (Bryant), head in frontal view 123 *Angulaphthona latipennis* (Pic), head and pronotum in dorsal view 124 Ditto, head in frontal view 125 Ditto, elytra in dorsal view 126 *Antanemora ghesquierei* (Bechyné), head and pronotum in dorsal view 127 Ditto, head in frontal view.
Figures 128–133. Morphological characters. 128 *Aphthona braunsi* (Jacoby), head and pronotum in dorsal view 129 Ditto, elytra in dorsal view 130 *Argopistes silvestrii* Weise, head in frontal view 131 Ditto, ventral parts 132 *Argopistes sexvittatus* Bryant, apical part of hind tibia 133 *Argopistoides africanus* (Bryant), sublateral sulci on pronotum.
Figures 134–139. Morphological characters. 134 *Bangalaltica antennalis* Bechyné, head and right antenna in dorsal view 135 *Bechuana nigripes* Scherer, sublateral depression on pronotum 136 *Bechynella pallens* (Bechyné), head in frontal view 137 Ditto, hind tibia and metatarsus 138 *Bezdekaltica socotrana* Döberl, elytra in dorsal view 139 *Bikasha fortipunctata* Maulik, head in frontal view.
Figures 140–145. Morphological characters. 140 Bikasha fortipunctata Maulik, hind leg and elytra in lateral view 141 Biodontocnema brunnea Biondi, head in frontal view 142 Ditto, distal half of hind tibia and metatarsus 143 Ditto, hind tibial socket 144 Ditto, dentiform process (white arrow) in inner apical side of hind tibiae 145 Ditto, ventral parts.
Figures 146–151. Morphological characters. 146 Blepharida intermedia Jacoby, head and pronotum in dorsal view 147 Blepharida reticulata (Baly), head in frontal view 148 Blepharida ugandae Bryant, hind leg 149 Blepharida geminata Bryant, metatarsus 150 Carcharodis malvernensis Bechyné, head in frontal view 151 Celisalita ruwenzorica Biondi, prosternum.
Figures 152–157. Morphological characters. 152 Celisaltica ruwenzorica Biondi, metasternum and abdomen 153 Chabria betsimisaraka Biondi & D’Alessandro, sublateral sulci on pronotum 154 Chaetocnema sudafiricana Biondi & D’Alessandro, ciliate dentate emargination of hind tibiae 155 Chaillucola formicicornis Bechyné, head and right antenna in dorsal view in male 156 Chirodica simifilula Biondi, buccal parts 157 Chirodica chaleoptera Germar, prosternum and anterior femora in ventral view.
Figures 158–163. Morphological characters. 158 *Collartaltica tenebrosa* (Laboissière), head and pronotum in dorsal view 159 Ditto, head in ventral view 160 Ditto, prosternum 161 *Diamphidia femoralis* Gerstaecker, left antenna in dorsal view 162 Ditto, mesotarsus 163 *Diamphidia nigroornata* Stål, hind leg and elytral punctuation.
Figures 164–169. Morphological characters. 164 *Dibolia thoracica* Jacoby, head and pronotum in dorsal view 165 Ditto, head in frontal view 166 Ditto, hind leg and elytral punctation 167 *Dimonikaea descarpentriesi* Bechyné, head and right antenna in dorsal view 168 Ditto, dentiform process on ventral side of hind femora in male 169 Ditto, metatarsus in lateral (left) and dorsal (right) view.
Figures 170–175. Morphological characters. 170 Diphaulacosoma laevipenne Jacoby, head and pronotum in dorsal view 171 Ditto, head and right antenna in dorsal view 172 Djallonia maindra Bechyné, head, pronotum and right antenna in dorsal view 173 Drakensbergianella rudebecki Biondi & D’Alessandro, head in frontal view 174 Ditto, elytral surface 175 Ditto, meso- and metasternum.
Figures 176–181. Morphological characters. 176 *Dunbrodya nitida* Jacoby, head and pronotum in dorsal view 177 Ditto, head in frontal view 178 Ditto, hind leg 179 Ditto, bifid apical spur of hind tibiae 180 *Epitrix aethiopica* Weise, head in frontal view 181 *Eriotica fuscipennis* Harold, head in frontal view.
Figures 182–187. Morphological characters.

182 Eurylegna rubra (Weise), head in frontal view

183 Eutornus dilatatus Bryant, head and pronotum in dorsal view

184 Eutornus taeniatus Bechyné, elytra in lateral view

185 Gabonia nigripennis (Jacoby), head in frontal view

186 Ditto, meso- and metasternum

187 Guinerestia rubra Scherer, head in frontal view.
Figures 188–193. Morphological characters. 188 Guinerestia rubra Scherer, longitudinal hollow in distal half of anterior tibiae 189 Halticotropis costipennis Bechyné, head and pronotum in dorsal view 190 Ditto, head in frontal view 191 Ditto, hind leg and elytral surface 192 Hemipyxis burgeoni (Laboissière), head and pronotum in dorsal view 193 Ditto, head in frontal view.
Figures 194–199. Morphological characters. 194 *Hemipyxis obscurestaceum* (Thomson), hind tibia and metatarsus 195 *Hespera maculicollis* Jacoby, head and pronotum in dorsal view 196 *Hildebrandtina obscura* Bechyné, head and pronotum in dorsal view 197 *Hildebrandtina similis* Bechyné, head and pronotum in dorsal view 198 *Homichloda barkeri* (Jacoby), hind tibia and metatarsus and elytral surface 199 *Hyphasis sita* (Maulik), head and pronotum in dorsal view.
Figures 200–205. Morphological characters. **200** *Hyphasis sita* (Maulik), hind tibia and metatarsus

201 *Jacobyana bezdeki* Biondi & D’Alessandro, head and pronotum in dorsal view

202 Ditto, ventral parts

203 *Kanonga atra* Bechyné, head and right antenna in dorsal view

204 *Kenialtica muhatura* Bechyné, head and pronotum in dorsal view

205 *Kimongona callifera* Bechyné, head in frontal view.
Figures 206–211. Morphological characters. 206 Lampedona testacea Bechyné, head and pronotum in dorsal view 207 Lepialtica bicolor Scherer, head in frontal view 208 Longitarsus africanus Jacoby, hind leg in lateral view 209 Lypnea flaveola (Bryant), head and pronotum in dorsal view 210 Lypnea costatipennis (Jacoby), head and right antenna in dorsal view 211 Malvernia varicornis Jacoby, head and right antenna in dorsal view.
Figures 212–217. Morphological characters. 212 *Manobia africana* Laboissière, head and pronotum in dorsal view 213 *Metroserrapha* sp., hind leg and elytral punctation 214 *Montiapithona gedyei* (Bryant), head and pronotum in dorsal view 215 Ditto, elytra in sublateral view 216 *Myrcina vandenplaasi* Laboissière, double apical spur of hind tibia 217 *Nisotra aruwimiana* Weise, head and pronotum in dorsal view.
Figures 218–223. Morphological characters. 218 *Nisotra* sp., head and pronotum in dorsal view 219 *Notomela viridipennis* Bryant, head and pronotum in dorsal view 220 Ditto, elytra in lateral view 221 *Ntaolaltica antennata* Biondi & D’Alessandro, head and pronotum in dorsal view 222 Ditto, head and pronotum in lateral view 223 Ditto, head in frontal view.
Figures 224–229. Morphological characters. 224 _Nzerekorena filicornis_ Scherer & Boppré, head and right antenna in dorsal view 225 _Orthocrepis kibonotensis_ (Weise), head and pronotum in lateral view 226 Ditto, head in frontal view 227 _Paradibolia abdominalis_ (Jacoby), head in frontal view 228 _Perichilona bicolor_ Weise, head in frontal view 229 _Philopona sulcicollis_ (Jacoby), elytra in lateral view.
Figures 230–235. Morphological characters. 230 **Phygasia sulphuripennis** Jacoby, head in frontal view 231 **Phyllotreta natalensis** Jacoby, head and pronotum in lateral view 232 **Physodactyla rubiginosa** (Gerstaecker), head and pronotum in lateral view 233 **Physodactyla gerstaeckeri** (Jacoby), elytra in lateral view 234 **Physoma atripes** (Fairmaire), head in sublateral view 235 **Physoma costuliferum** Bechyné, head in sublateral view.
Figures 236–241. Morphological characters. 236 *Physomandroa melanarthra* (Fairmaire), head and pronotum in dorsal view 237 Ditto, hind tibia and metatarsus 238 *Physomandroa punctulifera* Bechyné, elytra in lateral view 239 *Physonychis viridipennis* (Dalman), head in frontal view 240 *Polyclada smythi* Bryant, left antenna in male in dorsal view 241 Ditto, left antenna in female in dorsal view.
Figures 242–247. Morphological characters 242 *Pratima vinsoni* Bechyné, head in frontal view 243 *Pseudadorium balyanum* (Csiki), head and pronotum in dorsal view 244 Ditto, head in frontal view 245 Ditto, hind leg in sublateral view 246 *Pseudophygasia analis* (Harold), head and pronotum in dorsal view 247 Ditto, elytral punctuation.
Figures 248–253. Morphological characters. 248 Psylliodes teresae Biondi, apical part of hind tibia and preapical insertion of metatarsus 249 Sanckia sp., head in frontal view 250 Sanckia longicornis (Jacoby), hind leg 251 Serraphula grobbelaariae Biondi & D’Alessandro, hind leg and elytral punctation 252 Serraphula elongata Jacoby, hind leg 253 Serraphula audisiana Biondi & D’Alessandro, serrate apical spur of hind tibiae.
Figures 254–259. Morphological characters. 254 *Sesquiphaera mashonana* (Jacoby), head and pronotum in dorsal view 255 Ditto, head and anterior margin of pronotum in subfrontal view 256 *Sesquiphaera nigrosignata* (Bryant), elytra in lateral view 257 *Seychellaltica krishna* (Maulik), head and pronotum in dorsal view 258 Ditto, hind tibia and metatarsus 259 Ditto, protarsus in dorsal view.
Figures 260–265. Morphological characters. 260 *Seychellatricula mahensis* (Maulik), pro-, meso- and metasternum 261 *Sjostedtinia fordi* Bryant, head and pronotum in dorsal view 262 Ditto, hind leg and elytra in dorsal view 263 *Sphaeroderma nigripennis* Bryant, head and pronotum in dorsal view 264 *Sphaeroderma iyengari* Bechyné, elytra in lateral view 265 *Stegnaspea trimeni* Baly, basal part of elytra.
Figures 266–271. Morphological characters. 266 Terpnochlorus perrieri Fairmaire, head in subfrontal view. 267 Ditto, metatarsus in dorsal view. 268 Trachytetra guineensis (Bechyné), head and pronotum in lateral view. 269 Ditto, hind tibia, metatarsus and apical spur. 270 Tritonaphthona longicornis (Laboissière), trifid apical spur of hind tibiae. 271 Upembalita scolytina Bechyné, head and right antenna in dorsal view.
Figures 272–277. Morphological characters. 272 Upembaltica scolytina Bechyné, metatarsus in lateral (left) and dorsal (right) view 273 Xanthophysca perrieri Fairmaire, head and pronotum in dorsal view 274 Ditto, head in subfrontal view 275 Ditto, hind leg and elytral punctuation 276 Yemenaltica scorteccii Scherer, hind leg and elytral punctuation 277 Yemenaltica furthi Döberl, serrate apical spur of hind tibiae.
Figures 278–283. Maps of distribution. 278 Abrarius Fairmaire 279 Afroaltica Biondi & D’Alessandro 280 Afrocrepis Bechyné 281 Afrorestia Bechyné 282 Alocypha Weise 283 Altica Geoffroy.
Figures 284–289. Maps of distribution. 284 Amphimela Chapuis 285 Anaxerta Fairmaire 286 Angulaphthona Bechyné 287 Antanemora Bechyné 288 Aphonota Chevrolat 289 Argopistes Motschulsky.
Figures 290–295. Maps of distribution. 290 *Argopistoides* Jacoby 291 *Bangalaltica* Bechyné 292 *Bechuanella* Scherer 293 *Bechynella* Biondi & D’Alessandro 294 *Bezdekaltica* Döberl 295 *Bikasha* Maulik.
Figures 296–301. Maps of distribution. 296 Biodontocnema Biondi 297 Blepharida Chevolat 298 Carcharodis Weise 299 Celisaltica Biondi 300 Chabria Jacoby 301 Chaetocnema Stephens.
Figures 302–307. Maps of distribution. 302 Chaillucola Bechyné 303 Chirodica Germar 304 Collartaltica Bechyné 305 Decaria Weise 306 Diamphidia Gerstaecker 307 Dibolia Latreille.
Figures 308–313. Maps of distribution. 308 Dimonikaea Bechyné 309 Diphaulacoma Jacoby 310 Djallonia Bechyné 311 Drakensbergenella Biondi & D’Alessandro 312 Dunbrodya Jacoby 313 Epitrix Foudras.
Figures 314–319. Maps of distribution. 314 Erionota Harold 315 Eurylegna Weise 316 Eutornus Clark 317 Gabonia Jacoby 318 Guilielmia Weise 319 Guinerestia Scherer.
Figures 320–325. Maps of distribution. 320 *Halticotropis* Fairmaire 321 *Hemipyxis* Chevrolat 322 *Hespera* Weise 323 *Hildebrandtina* Weise 324 *Homicloda* Weise 325 *Hyphasis* Harold.
Figures 326–331. Maps of distribution. 326 *Jacobyana* Maulik 327 *Kanonga* Bechyné 328 *Kenialtica* Bechyné 329 *Kimongona* Bechyné 330 *Lampedona* Weise 331 *Lepialtica* Scherer.
Figures 332–337. Maps of distribution. 332 Longitarsus Berthold 333 Luperomorpha Weise 334 Lypenea Baly 335 Malvernia Jacoby. 336 Manobia Jacoby 337 Metroserrapha Bechyné.
Figures 338–343. Maps of distribution. 338 Montiapthona Scherer 339 Myrcina Chapuis 340 Neo-dera Duvivier 341 Nisotra Baly. 342 Notomela Jacoby 343 Ntaolaltica Biondi & D’Alessandro.
Figures 344–349. Maps of distribution. 344 Nzerekorena Bechyné 345 Orthocrepis Weise 346 Paradi-bolia Baly 347 Perichilona Weise 348 Philopona Weise 349 Phygasia Chevrotat.
Figures 350–355. Maps of distribution.

350 Phyllostreta Chevrolat 351 Physodactyla Chapuis 352 Physoma Clark 353 Physomandroja Bechyné 354 Physonychis Clark 355 Podagrica Chevrolat.
Figures 356–361. Maps of distribution. 356 Polyclada Chevrolat 357 Pratima Maulik 358 Pseudadorium Fairmaire 359 Pseudophygasia Biondi & D’Alessandro, in press 360 Psyllodes Berthold 361 Sanckia Duvivier.
Figures 362–367. Maps of distribution. 362 Serraphula Jacoby 363 Sesquiphaera Bechyné 364 Seychellaltica Biondi 365 Sjostedinia Weise 366 Sphaeroderma Stephens 367 Stegaspea Baly.
Figures 368–373. Maps of distribution. 368 Stuckenbergiana Scherer 369 Terpnocholorus Fairmaire 370 Toxaria Weise 371 Trachytetra Sharp 372 Tritonaphthona Bechyné 373 Upembaltica Bechyné.
Figures 374–376. Maps of distribution. 374 Xanthophysca Fairmaire 375 Yemenaltica Scherer 376 Zomba Bryant.
Figure 377. Number of flea beetle genera occurring in the various areas of the Afrotropical region (CAF: Central Afrotropical; EAF: Eastern Afrotropical; MAD: Madagascar; MAS: Mascarene Islands; SAF: Southern Afrotropical; SEY: Seychelles Islands; WAF: Western Afrotropical.) (updated from Biondi & D’Alessandro, 2010a).
Figure 378. Number of flea beetle genera endemic to the various areas of the Afrotropical region (CAF: Central Afrotropical; EAF: Eastern Afrotropical; MAD: Madagascar; MAS: Mascarene Islands; SAF: Southern Afrotropical; SEY: Seychelles Islands; SSA: Sub-Saharan Africa; WAF: Western Afrotropical.) (updated from Biondi & D’Alessandro, 2010a).

Figure 379. Distribution of Afrotropical flea beetle genera in the different zoogeographical regions (AFR: Afrotropical; AUR: Australian; ORR: Oriental; NAR: Nearctic; NTR: Neotropical; PAR: Palaearctic) (updated from Biondi & D’Alessandro, 2010a).
Figure 380. Percentage of flea beetle genera co-occurring in the Afrotropical and another zoogeographical region (AFR: Afrotropical; AUR: Australian; ORR: Oriental; NAR: Nearctic; NTR: Neotropical; PAR: Palaearctic) (updated from Biondi & D’Alessandro, 2010a).
Figure 381. Faunistic similarities of the different areas of the Afrotropical region with those of other zoogeographical regions [Coincidence index and WPGMA clustering method (Weighted Pair Group Method using Arithmetic averaging) (cf. Biondi, 2006)] (AFR: Afrotropical; AUR: Australian; CAF: Central Afrotropical; EAF: Eastern Afrotropical; ORR: Oriental; MAD: Madagascar; MAS: Mascarene Islands; NAR: Nearctic; NTR: Neotropical; PAR: Palaearctic; SAF: Southern Afrotropical; SEY: Seychelles Islands; SSA: Sub-Saharan Africa; WAF: Western Afrotropical) (modified from Biondi & D’Alessandro, 2010a).

Acknowledgements

We are very grateful to all the colleagues who enabled us to study the valuable material preserved in their respective institutions. A special thank you to Elizabeth Grobbelaar (SANC) and David G. Furth (National Museum of Natural History, Smithsonian Institution, Washington, USA) for his valuable suggestions and linguistic improvements, and to Fabrizia Urbani (University of L’Aquila, Italy) for the construction of the maps of distribution. This contribution was partially granted by the Italian PRIN 20085YJMT (Research Programmes of National Interest).

References

Achard J (1915) Halticides malgaches du genre Xanthophysca Fairm. Annales de la Société Entomologique de France 84: 459–462.
Afrotropical flea beetle genera: a key to their identification, updated catalogue...

Achard J (1922) Descriptions de nouveaux Halticini (Col. Chrysomelidae). Fragmenta Entomologiques 1922: 3–10.
Allard E (1889a) Diagnoses de Coléoptères nouveaux. Le Naturaliste (série 2) 47: 43.
Allard E (1889b) Note sur les Galérucides, Coléoptères Phytophages. Annales de la Société Entomologique de Belgique 33: lxvi-lxxiii.
Baly JS (1861) Descriptions of new genera and species of Phytophaga. Journal of Entomology 1: 193–206.
Baly JS (1864) Descriptions of new genera and species of Phytophaga. Annals and Magazine of Natural History (third series) 14: 433–442.
Baly JS (1875) Descriptions of new genera and species of Phytophaga. Transactions of the Entomological Society of London 1875: 23–31.
Baly JS (1876a) Descriptions of new genera and species of Halticinae. Transactions of the Entomological Society of London 1876: 433–449.
Baly JS (1876b) Descriptions of new genus and of new species of Halticinae. Transactions of the Entomological Society of London 1876: 581–602.
Baly JS (1877) Descriptions of new genera of uncharacterized species of Halticinae. Transactions of the Entomological Society of London 1877: 157–184; 283–323.
Baly JS (1878a) Characters of new genera and of some undescribed species of phytophagous beetles. Annals and Magazine of Natural History (fifth series) 1: 38–44. doi: 10.1080/00222937808682287
Baly JS (1878b) Characters of undescribed species of Halticinae. Annals and Magazine of Natural History (fifth series) 1: 223–233. doi: 10.1080/00222937808682414
Baly JS (1878c) Diagnoses of a new genus and some undescribed species of African Phytophaga. Entomol. Mon. Mag. 14: 204–206.
Baly JS (1881) Descriptions of new species of Galerucidae. Transactions of the Entomological Society of London 1881: 51–59.
Becerra JX (2004) Molecular systematics of Blepharida beetles (Chrysomelidae: Alticinae) and relatives. Molecular Phylogenetics and Evolution 30: 107–117. doi: 10.1016/S1055-7903(03)00158-1
Bechyné J (1947a) Chrysomeloidea Madagassa (Coleoptera). Acta Entomologica Musei Nationalis Praeae 25: 29–47.
Bechyné J (1947b) Notes sur le genre Neodera Duviv. (Col. Phytophaga, Alticidae). Bulletin Mensuel de la Société Linnéenne de Lyon 16: 139–140.
Bechyné J (1948a) Novi Halticidi z Madagascaru. De novis speciebus Halticidarum Madagascanisium (Col. Phytophaga). Acta Societatis Entomologicae Cechosloveniae 45: 3–11.
Bechyné J (1948b) Nouveaux Galerucides de Madagascar (Col. Phytophaga). Bulletin Mensuel de la Société Linnéenne de Lyon 17: 99–101.
Bechyné J (1950) Tableau analytique des Lactica de Madagascar (Col. Phytophaga, Alticidae). Bulletin Mensuel de la Société Linnéenne de Lyon 19: 220–224.
Bechyné J (1952) Nouveaux Alticides de Madagascar. Bulletin Mensuel de la Société Linnéenne de Lyon 21: 248–251.
Bechyné J (1954a) Notes sur les Chrysomoidea de Madagascar (Col. Phytophaga). Rev. Fr. Entomol. 21: 41–47.
Bechyné J (1954b) Reise des Herrn G. Frey in Süd-Afrika: Alticinae (Col. Phytoph.). Entomologische Arbeiten aus dem Museum Georg Frey 5: 675–685.

Bechyné J (1955a) Contributions a l'étude de la faune entomologique du Ruanda Urundi (Mission P. Basilewsky, 1953) (pars Alticinae). Annales du Musée Royal du Congo Belge, Zoologie 40: 204–230.

Bechyné J (1955b) Über die Westafrikanischen Alticiden (Col. Phytophaga). Entomologische Arbeiten aus dem Museum Georg Frey 6: 486–568.

Bechyné J (1955c) Description de deux nouveaux Alticides de Madagascar (Col. Phytophaga). Le Naturaliste Malgache 7: 61–62.

Bechyné J (1955d) Reise des Herrn G. Frey in Südamerika Alticidae (Col. Phyt.). Entomologische Arbeiten aus dem Museum Georg Frey 6: 74–266.

Bechyné J (1956) Tableau analytique de espèces malgaches du genre *Sanckia* Duvivier. Bulletin Mensuel de la Société Linnéenne de Lyon 25: 173–176.

Bechyné J (1957) Die von Dr. Christa Lindemann und Nina Pavlitzki in Tanganjika gesammelten Alticiden (Col. Phytophaga). Veröffentlichungen der Zoologischen Staatssammlung München 4: 151–182.

Bechyné J (1958a) Contribution a l’étude des Chrysomeloidea des Iles Mascareignes. II. Alticidæ. Mauritius Institute Bulletin 5:83–93.

Bechyné J (1958b) Notes sur quelques Oedionychini de Madagascar. Bulletin Mensuel de la Société Linnéenne de Lyon 28: 318–323.

Bechyné J (1958c) Notes sur les Alticides de Madagascar (Col. Phytophaga). Bulletin Mensuel de la Société Linnéenne de Lyon 27: 193–196.

Bechyné J (1959a) Observations sur les Alticides recueillis au Congo Belge par M.A. Collart (Coleoptera, Phytophaga). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 35: 1–36.

Bechyné J (1959b) Coleoptera: Chrysomelidae II. South African Animal Life 6: 227–238.

Bechyné J (1959c) Notes sur quelques Oedionychini de Madagascar. Bulletin Mensuel de la Société Linnéenne de Lyon 28: 318–323.

Bechyné J (1959d) Tableau analytique du genre *Nisotra* Baly de Madagascar (Col. Phytophaga, Alticidae). Bulletin Mensuel de la Société Linnéenne de Lyon 28: 153–157.

Bechyné J (1960a) Notes sur les Alticides Africains des collections de l’Institut Royal des Sciences Naturelles de Belgique (Coleoptera, Phytophaga). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 36: 1–32.

Bechyné J (1960b) Alticidae (Coleoptera, Phytophaga). Exploration du Parc National de l’Upemba. Mission G.F. de Witte. Institut Parcs Nationaux du Congo Belge (Bruxelles) 59: 39–114.

Bechyné J (1964) Notizen zu den madagassischen Chrysomeloidea (Col. Phytophaga). Mitteilungen der Munchner Entomologische Gesellschaft 54: 68–161.

Bechyné J (1968) Contribution a la faune du Congo (Brazzaville). Mission A. Villiers et A. Descarpentries. LXXXI. Coleopteres Alticidae. Bulletin de L’institut Français d’Afrique Noire (série A) 30: 1687–1728.
Bechyné J, Springlova de Bechyné B (1975) Notas sobre la serie filetica de Monomacra y sus formas convergentes (Col. Phytophaga, Alticidae). Revista de la Facultad de Agronomía, Universidad Central de Venezuela, Maracay 8: 25–140.

Berthold AA (1827) In: Latreille’s Naturliche Familien des Thierreichs. Aus dem Französischen. Mit Ammerkungen und Zusätzen. Landes-Industrie-Comptoir, Weimar, 606 pp.

Biondi M (1994) Contributo alla conoscenza dei Chrysomelidae Alticinae (Coleoptera) della Sierra Leone. 1a. Nota. Quaderni dell’Accademia Nazionale dei Lincei 267: 423–438.

Biondi M (1996) The genus Psylliodes in the Afrotropical Region with description of four new species from Kenya, Tanzania and South Africa (Coleoptera, Chrysomelidae). Fragmenta entomologica 28: 257–276.

Biondi M (1998a) The genus Malvernia Jacoby with description of a new species from South Africa (Coleoptera, Chrysomelidae). Nouvelle Revue d’Entomologie (N.S.) 15: 37–43.

Biondi M (1998b) Revision of the Genus Chirodica Germar with description of five new species (Coleoptera Chrysomelidae). In: Biondi M, Daccordi M, Furth DG (Eds), Proceedings of the Fourth International Symposium on the Chrysomelidae. Proceedings of XX I.C.E. Firenze, 1996. Museo Regionale di Scienze Naturali, Torino, 17–48.

Biondi M (2000) Biodontocnema brunnea n.gen. and n.sp. from South Africa (Coleoptera: Chrysomelidae: Alticinae). Coleopt. Bull. 54: 347–350. doi: 10.1649/0010-065X(2000)054[0347:BBNGAN]2.0.CO;2

Biondi M (2001a) New flea beetle genus and species (Coleoptera: Chrysomelidae, Alticinae) from Central Africa. Can. Entomol. 133: 643–649. doi: 10.4039/Ent133643-5

Biondi M (2001b) Revision of the Chaetocnema species from Madagascar (Coleoptera, Chrysomelidae, Alticinae). Eur. J. Entomol. 98: 233–248.

Biondi M (2002a) Checklist of the Afrotopical species of the genus Chaetocnema Stephens (Coleoptera, Chrysomelidae: Alticinae): synonymies and geographical distributions. Afr. Entomol. 10: 265–284.

Biondi M (2002b) Comparative analysis of Chaetocnema Stephens and its kindred genera, with description of a new genus from the Indian Ocean (Seychelles) (Coleoptera, Chrysomelidae, Alticinae). Italian Journal of Zoology 69: 355–366. doi: 10.1080/11250000209356481

Biondi M, (2006) Il calcolo della somiglianza con dati binari nelle analisi biogeografiche. Biogeographia 37: 227–251.

Biondi M, D’Alessandro P (2003) Drakensbergianella rudebecki, new genus and new species from the mountains of the Southern Africa, and taxonomic observations on Gabonia Jacoby and related genera (Coleoptera: Chrysomelidae, Alticinae). Zoologischer Anzeiger 242: 97–106. doi: 10.1078/0044-5231-00090

Biondi M, D’Alessandro P (2004) Revision of the Afrotopical flea beetle genus Collartaltica Bechyné with description of two new species (Coleoptera, Chrysomelidae, Alticinae). Insect Systematics & Evolution 35: 285–298. doi: 10.1163/187631204788920239

Biondi M, D’Alessandro P (2006) Biogeographical analysis of the flea beetle genus Chaetocnema in the Afrotopical Region: distribution patterns and areas of endemism. J. Biogeogr. 33: 720–730. doi: 10.1111/j.1365-2699.2006.01446.x
Biondi M, D’Alessandro P (2007) *Afroaltica subaptera*, new genus and new species of flea beetles from the southern Africa (Coleoptera: Chrysomelidae: Alticinae). Eur. J. Entomol. 104: 99–103.

Biondi M, D’Alessandro P (2008a) Revision of the *Chaetocnema* pulla species-group from the Afrotropical region with description of a new species from Central Africa (Coleoptera, Chrysomelidae). In: Jolivet P, Santiago-Blay J, Schmitt M (Eds), Research on Chrysomelidae, Volume 1. Brill, Leiden-Boston, The Netherlands, 265–285.

Biondi M, D’Alessandro P (2008b) Taxonomical revision of the *Longitarsus capensis* species-group: An example of Mediterranean-southern African disjunct distributions (Coleoptera: Chrysomelidae). Eur. J. Entomol. 105: 719–736.

Biondi M, D’Alessandro P (2010a) Genus-group names of Afrotropical flea beetles (Coleoptera: Chrysomelidae: Alticinae): Annotated catalogue and biogeographical notes. Eur. J. Entomol. 107: 401–424.

Biondi M, D’Alessandro P (2010b) Revision of the Afrotropical flea beetle genus *Serraphula* Jacoby and description of *Bechynella*, a new genus from Western and Central Africa (Coleoptera, Chrysomelidae, Alticinae). Zootaxa 2444: 1–44.

Biondi M, D’Alessandro P (2011) *Jacobyana* Maulik, an Oriental flea beetle genus new for the Afrotropical Region with description of three new species from Central and Southern Africa (Coleoptera, Chrysomelidae, Alticinae). ZooKeys 86: 47–59. doi: 10.3897/zookeys.86.804

Biondi M, D’Alessandro P (2012) The genus *Chabria* Jacoby: first records in the Afrotropical region with description of three new species and annotated worldwide species catalogue (Coleoptera, Chrysomelidae, Galerucinae, Alticinae). Zoologischer Anzeiger (2012), doi: 10.1016/j.jcz.2012.03005

Biondi M, D’Alessandro P (in press) *Ntaolaltica* and *Pseudophygasia*, two new flea beetle genera from Madagascar. European Journal of Entomology.

Blackburn T (1896) Further notes on Australian Coleoptera, with descriptions of new genera and species. Trans. R. Soc. S. Aust. 19: 35–109.

Boheman CH (1859) Coleoptera. Species novas descripsit. In Kongliga Svenska Fregatten Eugenies Resa omkring Jorden. Zoologi, 1, Insecta. Vetenskapliga Iakttagelser, Stockholm, pp. 113–218.

Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, Newton AF, Reid CAM, Schmitt M, Slipinski SA, Smith ABT (2011) Family-group names in Coleoptera (Insecta). ZooKeys 88: 1–972. doi: 10.3897/zookeys.88.807

Brancsik C (1897) Coleoptera africana nova. Jahresheft des Naturwissenschaftlichen Vereines des Trencséner Comitates 19–20 (1896–1897): 108–131.

Brancsik K (1910) Species et varietates novae. Coleopterorum exoticorum ac palaearcticorum. Jahresheft des Naturwissenschaftlichen Vereines des Trencséner Comitates 33: 176–190.

Broun T (1880) Manual of the New Zealand Coleoptera. Part I. Office of James Hughes, Lambton Quay, Wellington, 651 pp.

Bryant GE (1922a) Some new injurious Phytophaga from Africa. Bull. Entomol. Res. 12: 473–475. doi: 10.1017/S0007485300045144
Bryant GE (1922b) New injurious Phytophaga from India and Brazil. Bull. Entomol. Res. 13: 261–263. doi: 10.1017/S0007485300045338
Bryant GE (1927) New Halticinae (Col.) from Africa and Haiti. Annals and Magazine of Natural History (ninth series) 19: 615–622. doi: 10.1080/00222932708655548
Bryant GE (1928) Revision of the African species of Chaetocnema (Col. Halticinae). Annals of Natural History (tenth series) 2: 393–407. doi: 10.1080/00222932808672900
Bryant GE (1931) Some new injurious Phytophaga from South Africa. Bull. Entomol. Res. 22: 253–257. doi: 10.1017/S0007485300035239
Bryant GE (1936) Some new injurious Phytophaga from British East Africa (Col.). Proceedings of the Royal Entomological Society of London (series B) 5: 217–219
Bryant GE (1940) New species of African Phytophaga (Col.). Proceedings of the Royal Entomological Society of London (series B) 9: 41–48.
Bryant GE (1942a) On the African species Phyllotreta (Col. Alt.). Bull. Entomol. Res. 32: 145–152. doi: 10.1017/S000748530005356
Bryant GE (1942b) New species of Podagrica (Halt. Col.) from Africa. Bull. Entomol. Res. 33: 229–234. doi: 10.1017/S0007485300026559
Bryant GE (1943) New species of African Sphaeroderma (Halticinae, Col.). Annals and Magazine of Natural History (eleventh series) 10: 486–494.
Bryant GE (1944a) New species of Blepharida from Africa (Halticinae, Col.). Annals and Magazine of Natural History (eleventh series) 12: 129–137. doi: 10.1080/00222934508527496
Bryant GE (1944b) Two injurious species of Phytophaga (Halticinae) from Ivory Coast. Bull. Entomol. Res. 35: 141–142. doi: 10.1017/S0007485300017363
Bryant GE (1953) Chrysomelidae. In: Ruwenzori Expedition 1934–35 3 (11): 151–164.
Chaboo CS, Grobbelaar E, Larsen A (2007) Fecal ecology in Leaf Beetles: Novel records in the African arrow-poison beetles, Diamphidia Gerstaecker and Polyelada Chevrolat (Chrysomelidae: Galerucinae). Coleopt. Bull. 61: 297–309. doi: 10.1649/0010-065X(2007)61[297:FEILBN]2.0.CO;2
Chapuis F (1875) In: Lacordaire T (Ed) Histoire naturelle des insectes. Genera des Coléoptères. Vol. 11, Famille des Phytophages. Libraire Encyclopédique de Roret, Paris, 420 pp., 11 pls.
Chapuis F (1879) Phytophages Abyssiniens du Musée Civique d’Histoire Naturelle de Génes. Annali del Museo Civico di Storia Naturale di Genova 15: 5–31.
Chen SH (1936) Genera of Oriental Halticinae. Sinensia 10: 625–667.
Chevrolat LAA (1836) In: Dejean PFMA (Ed) Catalogue des Coléoptères de la collection de M. le Comte Dejean. Deuxième édition, revue, corrigée et augmentée, livr. 5. Librairie Méquignon-Marvis Père et Fils, Paris, pp. 361–442.
Chevrolat LAA (1837) In: Dejean PFMA (Ed) Catalogue des Coléoptères de la collection de M. le Comte Dejean. Troisième édition, revue, corrigée et augmentée, livr. 5. Librairie Méquignon-Marvis Père et Fils, Paris, pp. 385–503.
Chevrolat LAA (1842) In: d’Orbigny CD (Ed) Dictionnaire universel d’histoire naturelle, Vol. 2. C. Renard, Paris, 795 pp.
Chevrolat LAA (1843) In: d’Orbigny CD (Ed) Dictionnaire universel d’histoire naturelle, Vol. 3. C. Renard, Paris, 744 pp.
Chevrolat LAA (1845) In: d’Orbigny CD (Ed) Dictionnaire universel d’histoire naturelle, Vol. 6. C. Renard, Paris, 792 pp.

Chûjô M (1936) Studies on the Chrysomelidae in the Japanese Empire (VIII), subfamily Halticinae (4–6). Transactions of the Natural History Society of Formosa 148: 15–30, 84–92, 108–114.

Chûjô M (1937) Studies on the Chrysomelidae in the Japanese Empire (VIII), subfamily Halticinae (7–10). Transactions of the Natural History Society of Formosa 162: 52–58; 164: 113–128.

Clark H (1860) Catalogue of Halticidae in the collection of the British Museum. Physapodes and Oedipodes. Part I. Order of Trustees, London, 301 pp., 10 pls.

Clark H (1863) Catalogue of Halticidae; being a continuation of the British Museum Catalogue, Part 1, 1860. Journal of Entomology 9: 163–174.

Cox ML (1997) *Homichloda barkeri* (Jacoby) (Coleoptera: Chrysomelidae: Alticinae), a candidate agent for the biocontrol of prikly acacia, *Acacia nilotica* (Mimosaceae) in Australia. J. Nat. Hist. 31: 935–964. doi: 10.1080/0022293700770461

D’Alessandro P, Biondi M (2011) The Afrotropical genus *Afroaltica* Biondi & D’Alessandro (Coleoptera, Chrysomelidae, Alticinae): new data and description of a second new species from Limpopo (Republic of South Africa). Annales de la Société Entomologique de France (n.s.) 47: 365–370.

D’Alessandro P, Grobbelaar E, Biondi M (2012) Revision of the genus *Stegnaspea* Baly with descriptions of five new species from southern Africa (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insect Systematics and Evolution 43: 11–33. doi: 10.1163/187631212X626032

Döberl M (2008) Über die Typen einiger afrikanischer Arten der Gattung *Altica* Geoffroy, 1762 (Coleoptera: Chrysomelidae: Alticinae). Acta Coleopterologica 24: 35–39.

Döberl M (2010) Alticinae. In: Löbl I, Smetana A (Eds) Catalogue of Palaearctic Coleoptera. Vol. 6. Apollo Books, Stentrup, 491–563.

Döberl M (2012) Alticinae (Coleoptera: Chrysomelidae) of Socotra Island. In: Hájek J, Bezděk J (Eds) Insect biodiversity of Socotra Archipelago. Acta Entomologica Musei Nationalis Pragae 52 (Supplementum 2): 429–447.

Doguet S (1974) Contribution a l’étude des Alticinae des Iles Mascareignes (Col. Chrysomelidae). Nouvelle Revue d’Entomologie 4: 119–126.

Doguet S (1979) Insects of Saudi Arabia. Coleoptera: Fam. Chrysomelidae, Subfam. Halticinae. Fauna of Saudi Arabia 1: 308–316.

Drinkwater TW (1989) *Buphonella murina* Gerstaecker (Coleoptera Chrysomelidae) another Maize rootworm in South Africa. Phytophylactica 21: 315–316.

Duckett CN, Gillespie JJ, Kjer KM (2004) Relationships among the subfamilies of Chrysomelidae inferred from small subunit ribosomal DNA and morphology, with special emphasis on the relationship among the flea beetles and the Galerucinae. In: Jolivet PH, Santiago-Blay JA, Schmitt M (Eds) New contributions to the biology of Chrysomelidae. SPB Academic Publishers, The Hague, The Netherlands, 3–18.

Duftschmid K (1825) Fauna Austriæ, oder Beschreibung der österreichischen Insecten für angehende Freunde der Entomologie. Dritter Teil. Akademische Kunst-, Musik- und Buchhandlung, Linz, Leipzig, 289 pp.
Afrotropical flea beetle genera: a key to their identification, updated catalogue...

Duvivier A (1891) Diagnoses de Phytophages madégasses. Annales de la Société Entomologique de Belgique 35: 238–245; 313–321; 423–424.

Duvivier A (1892a) Diagnoses de Coléoptères nouveaux du Congo. Annales de la Société Entomologique de Belgique 36: 56–60.

Duvivier A (1892b) Les Phytophages du Chota-Nagpore. 2e Note. Annales de la Société Entomologique de Belgique 36: 396–449.

Erichson WF (1834) Coleoptera. Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde, von Dr. F. J. F. Meyen. Nova Acta Academiae Caesareae Leopoldino-Carolinae 16, Supplementum: 219–284.

Erichson WF (1847) Conspectus Insectorum Coleopterorum, quae in Republica Peruana observata sunt. Archiv für Naturgeschichte 13: 67–185.

Erichson WF (1877) Naturgeschichte der Insekten Deutschlands. Vol. 5. Coleoptera. Nicolaische Verlags-Buchhandlung, Berlin, 877 pp.

Fabricius JC (1775) Systema Entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus. Officina Libraria Kortii, Flensburgi et Lipsiae, xxx + 832 pp.

Fabricius JC (1787) Mantissa Insectorum sistens eorum species nuper detectas adiectis characteribus generis differentiis specificis, emendationibus, observationibus. Tom. I. Impensis C.G. Proft, Hafniae, xx + 348 pp.

Fabricius JC (1798) Supplementum entomologiae systematicae. Prof et Storch, Hafniae, iv + 572 pp.

Fairmaire L (1883a) Diagnoses de Coléoptères Abyssins. Le Naturaliste (série 2) 25: 197.

Fairmaire L (1883b) Descriptions de Coléoptères nouveaux ou peu connus recoltes par Mr. Raffray en Abyssinie. Annales de la Société Entomologique de France 3: 89–112.

Fairmaire L (1885) Note sur les Coléoptères recueillis par M. Ach. Raffray à Madagascar et descriptions des espèces nouvelles. 1re Pârtie. Annales de la Société Entomologique de France 4: 225–242.

Fairmaire L (1886) Notes sur les Coléoptères par M. Raffray a Madagascar et descriptions des espèces nouvelles. Annales de la Société Entomologique de France 6: 31–96.

Fairmaire L (1888) Notes sur les Coléoptères des environs de Pekin. Rev. Fr. Entomol. 7: 111–160.

Fairmaire L (1898) Materiaux pour la faune coleopterique de la region malgache. 5ª note. Annales de la Société Entomologique de Belgique 42: 390–439.

Fairmaire L (1901) Materiaux pour la faune coleopterique de la region malgache (11° note). Rev. Fr. Entomol. 20: 101–248.

Fairmaire L (1902) Materiaux pour la faune coleopterique malgache. 13° note. Annales de la Société Entomologique de Belgique 46: 236–271.

Fairmaire L (1904) Materiaux pour la faune coleopterique malgache 18° note. Annales de la Société Entomologique de Belgique 48: 225–276.

Ferreira MC (1963) Catalogo dos Coleópteros de Moçambique: Chrysomelidae Alticinae. Revista de Entomologia de Moçambique 6: 515–520.
Fischer von Waldheim G (1824) Entomographia imperii russici; genera insectorum systematica exposita et analysi iconographica instructa, vol. 2. Société Impériale des Naturalistes, Mosquæ, 262 pp.

Forster JR (1771) Novae Species Insectorum. Centuria I. Davies and White, London, 100 pp.

Foudras ACME (1860) Altisides. Annales de la Société Linnéenne de Lyon 6: 1–384.

Furth DG (1985) Some flea beetles and their foodplants from Kenya (Chrysomelidae: Alticinae). Coleopt. Bull. 39: 259–263.

Furth DG (1998) New world Blepharida Chevrolat 1836 (Coleoptera: Chrysomelidae: Alticinae). Memoirs of the Entomological Society of Washington 21: 3–109.

Furth DG, Lee JE (2000) Similarity of the Blepharida-group genera using larval and adult characters (Coleoptera: Chrysomelidae: Alticinae). J. N.Y. Entomol. Soc. 108: 26–51. doi: 10.1664/0028-7199(2000)108[0026:SOTBGG]2.0.CO;2

Furth DG, Suzuki K (1994) Character correlation studies of problematic genera of Alticinae in relation to Galerucinae (Coleoptera: Chrysomelidae). In: Furth DG (Ed) Proceedings of the Third International Symposium on the Chrysomelidae, Beijing 1992. Backhuys Publishers, Leiden, 116–135.

Furth DG, Suzuki K (1998) Studies of Oriental and Australian Alticinae genera based on the comparative morphology of the metafemoral spring, genitalia, and hind wing venation. In: Biondi M, Daccordi M, Furth DG (Eds) Proceedings of the Fourth International Symposium on the Chrysomelidae. Proceedings of XX I.C.E. Firenze, 1996. Museo Regionale di Scienze Naturali, Torino, 91–124.

Furth DG, Young DA (1988) Relationships of herbivore feeding and plant flavonoids (Coleoptera: Chrysomelidae and Anacardiaceae: Rhus). Oecologia 74: 496–500. doi: 10.1007/BF00380045

Ge D, Chesters D, Gómez-Zurita J, Zhang L, Yang X, Vogler AP (2011) Anti-predator defence drives parallel morphological evolution in flea beetles. Proceedings of the Royal Society B 278: 2133–2141. doi: 10.1098/rspb.2010.1500

Ge D, Gómez-Zurita J, Chesters D, Yang X, Vogler AP (2012) Suprageneric systematics of flea beetles (Chrysomelidae: Alticinae) inferred from multilocus sequence data. Molecular Phylogenetics and Evolution 62: 793–805. doi: 10.1016/j.ympev.2011.11.028

Geoffroy EL (1762) Histoire abrégée des insects qui se trouvent aux environs de Paris, dans laquelle ces animaux sont ranges suivant un ordre méridique. Vol. 1. Durand, Paris, xxviii + 523 pp., 10 pls.

Germar EF (1834) Description du genre Chirodica. Revue Entomologique 2. Deuxième Partie: Descriptions d’espèces nouvelles: 16, pl. 18.

Gerstaecker CEA (1871) Beiträge zur Insektenfauna von Zanzibar. III. Coleoptera. Archiv für Naturgeschicht 37: 42–86.

Gerstaecker CEA (1855) Diagnosen der von Peters in Mossambique gesammelten Kafer u. Hymenoptera. Monatsberichte der Akademie der Wissenschaften zu Berlin 1855: 636–639.

Gómez-Zurita J, Hunt T, Kopliku F, Vogler AP (2007) Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of Angiosperms and their insect herbivores. PLoS ONE 2(4): e360. doi: 10.1371/journal.pone.0000360
Gould J (1842) [Meeting of February 8, 1842]. Mr. Gould pointed out the generic characters of two new genera of Finches. Proceedings of the Zoological Society of London 10: 17–18.

Graf DL, Cummings KS (2007) Review of the systematics and global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies 73: 291–314. doi: 10.1093/mollus/eym029

Gruve B (1981) Bemerkungen über die Arten der Gattung Angulaphthona Bechyné, 1960, mit Beschreibung einer neuen Art aus Jemen (JAR) (Coleoptera, Chrysomelidae, Alticinae). Reichenbachia 19(10): 55–58.

Harold von E (1875) Pydaristes, eine neue Gattung der Halticidae. Stettiner Entomologische Zeitung 36: 446–448.

Harold von E (1877a) Coleopterorum species novae. Mitteilungen der Münchener Entomologischen Vereins 1: 97–111.

Harold von E (1877b) Beiträge zur Kaferfauna von Japan (zweites stück). Berliner Entomologische Zeitschrift 21: 337–367.

Harold von E (1878) Synonymies. Petites Nouvelles Entomologiques 2: 206.

Heyden von L (1887) Kleine coleopterologische Mitteilungen. Wiener Entomologische Zeitung 6: 98.

Heikertinger F (1925) Monographie der Halticinengattung Derocrepis Weise (Coleopt., Chrysomelidae). Wiener Entomologische Zeitung 42: 95–178.

Heikertinger F, Csiki C (1940) Coleopterorum Catalogus auspiciis et auxilio W. Junk editus a S. Schenkling. Partes 160 et 169. Chrysomelidae: Halticinae, vol. 25. Uitgeverij Dr. Junk, Gravenhage, pp. 337–635.

Heikertinger F (1943) Die Phyllotreta-Arten des äthiopischen Faunengebietes (Coleoptera: Chrysomelidae). Eine Bestimmungstabelle. Arbeiten über morphologische und taxonomische Entomologie aus Berlin-Dahlem 10 (1): 33–56.

Hope FW (1840) The coleopterist’s manual, part the third, containing various families, genera, and species, of beetles, recorded by Linneus and Fabricius. Also, descriptions of newly discovered and unpublished insects. Bowdery & Kerby, London, 191 pp.

Illiger JCW (1801) Namen der Insekten-Gattungen, ihr Genitiv, ihr Grammaticisches Geschlecht, ihr Silbenmass, ihre Herleitung; zugleich mit den deutschen Benennungen. Magazin Insekten 1: 125–155.

International Commission on Zoological Nomenclature 1999: International Code of Zoological Nomenclature. Fourth Edition. International Trust for Zoological Nomenclature, The Natural History Museum, London, xxix + 306 pp.

Jacobson GG (1925) Chrysomelidae (Coleoptera) palaearctici novi vel parum cogniti. V–VI. Annals Museum Zoology of Leningrad 26: 231–276.

Jacoby M (1885) Descriptions of new genera and species of phytophagous coleoptera from the Oriental and Austro-Malayan subregions, contained in the Genoa Civic Museum. Annali del Museo Civico di Storia Naturale di Genova (serie 2°) 2: 20–76.

Jacoby M (1887) Descriptions of the Phytophagous Coleoptera of Ceylon, obtained by Mr. George Lewis during the years 1881–82. Proceedings of the Scientific Meeting of the Zoological Society of London 1887: 65–119.
Jacoby M (1888) Descriptions of new or little-known species of phytophagous Coleoptera from Africa and Madagascar.Transactions of the Entomological Society of London 1888: 189–206.

Jacoby M (1889) List of the phytophagous Coleoptera obtained by Signor L. Fea at Burmah and Tenasserim, with descriptions of new species. Annali del Museo Civico di Storia Naturale di Genova (serie 2ª) 7: 147–237.

Jacoby M (1892a) Descriptions of some new genera and new species of phytophagous Coleoptera from Madagascar. Proceedings of the Royal Entomological Society of London 1892: 564–579.

Jacoby M (1892b) Viaggio di Leonardo Fea in Birmania e regioni vicine. LI. Description of the new genera and species of the phytophagous Coleoptera. Annali del Museo Civico di Storia Naturale di Genova (serie 2ª) 12: 869–999.

Jacoby M (1893) Descriptions of some new species of Eumolpidae and Halticidae from Africa (Gaboon). Entomologist 26, Supplementum: 97–102.

Jacoby M (1895) Contributions to the knowledge of African phytophagous Coleoptera. Part II. Transactions of the Entomological Society of London 1895: 317–341.

Jacoby M (1897) Further contributions to the knowledge of the phytophagous Coleoptera of Africa, including Madagascar. Proceedings of the Royal Entomological Society of London 1897: 527–577.

Jacoby M (1899a) Some new genera and species of phytophagous Coleoptera Collected during Captain Bottego’s last expedition. Annali del Museo Civico di Storia Naturale di Genova (serie 2ª) 19: 521–535.

Jacoby M (1899b) Additions to the knowledge of the phytophagous Coleoptera of Africa. Part II. Proceedings of the Royal Entomological Society of London 1899: 339–380.

Jacoby M (1889c) List of the Phytophagous Coleoptera obtained by Signor L. Fea at Burmah and Tenasserim, with descriptions of the new species. Annali del Museo Civico di Storia Naturale di Genova, (serie 2ª) 7: 147–237.

Jacoby M (1900) On new genera and species of phytophagous Coleoptera from South and Central Africa. Proceedings of the Royal Entomological Society of London 1900: 203–266.

Jacoby M (1901) Descriptions of some new genera and species of phytophagous Coleoptera from Madagascar. Annales de la Société Entomologique de Belgique 45: 287–303.

Jacoby M (1903a) A further contribution to our knowledge of African phytophagous Coleoptera. Part II. Transactions of the Entomological Society of London 1903: 1–38.

Jacoby M (1903b) Descriptions of the new genera and species of phytophagous Coleoptera obtained by Mr. H.-L. Andrewes and Mr. T.-R.-D. Bell at the Nilgiri Hills and Kanara. Annales de la Société Entomologique de Belgique 67: 80–128.

Jacoby M (1906) Descriptions of new genera and species of African Halticinae and Galerucinae. Transactions of the Entomological Society of London 1906: 11–52.

Jacquelin du Val PNC (1852) Description de deux genres nouveaux et de plusieurs espèces nouvelles de Coléoptères propaes a la faune francaise. Annales de la Société Entomologique de France 10: 695–718.
Afrotropical flea beetle genera: a key to their identification, updated catalogue...

Jolivet P, Hawkeswood TJ (1995) Host-plants of Chrysomelidae of the World. An essay about the relationships between the leaf-beetles and their food-plants. Backhuys Publishers, Leiden, 281 pp.

Jolivet P, Verma KK (2002) Biology of leaf beetles. Intercept Publishers, Andover, Hampshire, xiv + 332 pp.

Kiesenwetter von H (1877) In: Erichson WF (Ed) Naturgeschichte der Insecten Deutschlands. Erste Abtheilung. Coleoptera. Fünfter Band, Erste Lieferung, Bogen 1−12. Nicolaische Verlags-Buchhandlung, Berlin, 887 pp.

Koch JDW (1803) Monographie der Floehkaefer. Entomologische Hefte 2(1): 3–90.

Kolbe HJ (1894) Die Pfeilgiftkafer der Kalahari-Wuste, Diamphidia simplex Péring. (locusta Fairm.). Stettiner Entomologische Zeitung 55: 79–86.

Konstantinov AS (1998) Revision of the Palearctic species of Aphthona Chevrolat and cladistic classification of the Aphthonini (Coleoptera: Chrysomelidae: Alticinae). Memoirs on Entomology 11: 1–429.

Konstantinov AS (2002) A new genus of flea beetles from Greater Antilles (Coleoptera: Chrysomelidae). Zootaxa 124: 1–24.

Konstantinov AS, Baselga A, Grebennikov VV, Prena J, Lingafelter SW (2011) Revision of the Palearctic Chaetocnema species (Coleoptera: Galerucinae: Alticinae). Pensoft, Sofia-Moscow, 363 pp.

Konstantinov AS, Chamorro-Lacayo ML (2006) A new genus of moss-inhabiting flea beetles (Coleoptera: Chrysomelidae) from the Dominican Republic. Coleopt. Bull. 60: 275–290. doi: 10.1649/0010-065X(2006)60[275:ANGOMF]2.0.CO;2

Konstantinov AS, Duckett CN (2005) New species of Clavicornalitica Scherer (Coleoptera: Chrysomelidae) from continental Asia. Zootaxa 1037: 49–64.

Konstantinov AS, Prathapan KD (2008) New generic synonyms in the Oriental flea beetles (Coleoptera: Chrysomelidae). Coleopt. Bull. 62: 381–418. doi: 10.1649/1089.1

Konstantinov AS, Vanderberg NJ (1996) Handbook of Palearctic Flea Beetle (Coleoptera: Chrysomelidae: Alticinae). Contribution on Entomology 1: 237–439.

Laboissière V (1922) Étude des Galerucini de la Collection du Musée du Congo belge. Première Partie. Revue Zoologique africaine 10: 131–183.

Laboissière V (1932) Synopsis des genres de Galerucini de Madagascar. Société Entomologique de France, Livre du Centenaire. Paris, 575–592.

Laboissière V (1937) Nouveaux Galerucinae paleartiques. Bull. Soc. Entomol. Fr. 42 :27–31.

Laboissière V (1941) Nouveaux Halticinae et Galerucinae de la Collection du Musée du Congo. Revue de Zoologie et de Botanique africaines 34: 316–321.

Laboissière V (1942) Exploration du Parc National Albert. Mission G.F. De Witte (1933–1935). Halticinae (Coleoptera Phytophaga). Fam. Chrysomelidae. Institut des Parcs Nationaux du Congo Belge 39: 3–130.

Latreille PA (1810) Considérations générales sur l’ordre naturel des animaux composant les classes des Crustacés, des Arachnides, et des Insectes. Avec un tableau méthodique de leurs genres, disposés en familles. F. Schoell, Paris, 444 pp.
Latreille PA (1829) Les crustaces, les arachnides et les insectes distribués en familles naturelles, ouvrage formant les tomes 4 et 5 de celui de M. Le Baron Cuvier sur le règne animale (deuxième édition), vol. 1. Déterville Libraire, Paris, 584 pp.

Lebert H (1879) Hydrachnides du Léman. In Forel F.A.(ed.): Fauna profonde du Lac Léman. Bulletin de la Société Vaudoise des Sciences Naturelles 16: 327–377.

Linnaeus C (1758) Systema Naturae per regna tria naturae,: secundum classes, ordines, genera, species cum caracteribus, differentiis, synonymis, locis. Tomus I. Editio Decima, reformata. Laurentii Salvii, Stockholmiae, 824 pp.

Linnaeus C (1761) Fauna Svecica sistens Animalia Sveciae regni: Mammalia, Aves, Amphibia, Pisces, Insecta, Vermes. Distributa per classes & ordines, genera & species, cum differentiis specierum, synonymis auctorum, nominibus incolarum, locis natalium, descriptionibus insectorum. Laurentii Salvii, Stockholmiae, 578 pp.

Lucas PH (1849) Histoire naturelle des Animaux Articulés. Deuxième Partie. Insectes. In: Exploration scientifique de l’Algérie pendant les années 1840, 1841, 1842, publié par ordre du gouvernement et avec le concours d’une commission académique. Sciences physiques. Zoologie III. Imprimerie Nationale, Paris, 590 pp.

Marsham T (1802) Entomologia Britannica, sistens insecta Britanniae indigena, secundum methodum Linneanum disposita. I. Coleoptera. J. White, London, xxxi + 548 pp.

Maulik S (1926) The Fauna of British India, including Ceylon and Burma. Coleoptera. Chrysomelidae (Chrysomelinae and Halticinae). Taylor and Francis, London, xiv + 443 pp.

Maulik S (1929) On the structure of the hind femur in halictine beetles. Proceedings of the Royal Entomological Society of London 1929: 305–308.

Maulik S (1931) Coleoptera, Chrysomelidae, Eumolpinae, Galerucinae and Halticinae. Percy Sladen Trust Expedition,1905. Transactions of the Linnean Society of London (series 2), Zoology 19: 241–260.

Medvedev LN (1995) New species of Alticinae (Coleoptera, Chrysomelidae) from South Asia. Entomologica Basiliensia 18: 479–488.

Medvedev LN (1996) The Chrysomelidae of Arabia. Fauna of Saudi Arabia 15: 215–263.

Medvedev LN (2002) New and poorly known Chrysomelidae from the Philippines (Insecta, Coleoptera). Spixiana 25: 59–67.

Medvedev LN (2008) New species of Chrysomelidae (Coleoptera) from Sulawesi. Entomologica Basiliensia et Collectionis Frey 30: 243–261.

Medvedev L (2009) Alticinae of Indochina. KMK Scientific Press, Moscow, 224 pp.

Monrós F., Bechyné J (1956) Über einige verkannte Chrysomeliden-Namen. Entomologische Arbeiten aus dem Museum Georg Frey 7: 1118–1137.

Motschulsky V (1860) Coleopteres de la Siberie orientale et en particulier des rives de l’Amour. In: Schrenck L von (Ed) Reisen und Forschungen im Amurlande. Vol. 2. St. Petersburg, pp. 77–257.

Mponda OKK, Gibbon D, Arthur E, Morse S (1997) Involving farmers in the design of a low-input control programme for sesame flea beetles in Southern Tanzania. Experimental Agriculture 33: 313–320. doi: 10.1017/S0014479797003116
Nadein KS (2007) On the taxonomy and classification of the genus *Psylliodes* Latreille, 1825 (Coleoptera, Chrysomelidae, Galerucinae). Entomologica Basiliensia et Collectionis Frey 29: 307–332.

Olivier GA (1789) Encyclopédie Méthodique, ou par ordre de Matières; par une Société de Gens de Lettres, de savans et d’Artistes; précédée d’un vocabulaire universel, servant de table pour tout l’ouvrage, ornée des portraits de MM. Diderot & D’Alembert, premiers éditeurs de l’Encyclopédie. Histoire Naturelle. Insectes. Tome IV. Chez Panckoucke, Paris, 519 pp.

Olivier GA (1808) Entomologie, ou histoire naturelle des Insectes, avec leurs caractères génériques et spécifiques, leur description, leur synonymie et leur figure enluminée. Coléoptères, Tome VI. Desray Libraire, pp. 613–1104.

Palisot de Beauvois AMFJ (1812) Essai d’une nouvelle agrostographie, ou, Nouveaux genres des graminées: avec figures représentant les caractères de tous les genres. Imprimé de l’auteur, Paris, lxiv + 182 pp., xxv pls.

Pic M (1921) Notes diverses, descriptions et diagnoses. Echange 37: 1–6, 9–10, 13–15.

Pollard DG (1957) Halticinae of the Sudan. Bull. Entomol. Res. 47: 73–87. doi: 10.1017/S0007485300046538

Prathapan KD, Chaboo CS (2011) Biology of *Blepharida*-group flea beetles with first notes on natural history of *Podontia congregata* Baly, 1865 an endemic flea beetle from southern India (Coleoptera, Chrysomelidae, Galerucinae, Alticini). ZooKeys 157: 95–130. doi: 10.3897/zookeys.157.1472

Santiago-Blay JA (2004) Leaf-mining chrysomelids. In Jolivet P., Santiago-Blay J.A., Schmitt M. (eds): New developments on the biology of Chrysomelidae. SPB Academic Publishing bv, The Hague, The Netherlands. pp. 305–306 and pp. 1–83 of CD-ROM.

Savini V, Furth DG (2001) The status of *Heikertingerella, Monotalla, Pseudodibolia*, and *Sphaeroderma* (Coleoptera: Chrysomelidae: Alticinae) in the New World. Proc. Entomol. Soc. Wash. 103: 903–912.

Savini V, Furth DG, Joly LJ (2009) *Bubiscus*, un género nuevo neotropical (Coleoptera, Chrysomelidae, Alticinae). Boletin Sociedad Entomológica Aragonesa 44: 53–61.

Sharp D (1886) On New Zealand Coleoptera, with description of new genera and species. Transactions Royal Dublin Society 3: 351–456.

Scherer G (1959) Die Alticiden-Ausbeute der Expedition des Museums G. Frey nach Nigeria-Kamerun 1955/56 (Col. Phytoph.). Entomologische Arbeiten aus dem Museum Georg Frey 10: 177–265.

Scherer G (1961) Bestimmungsschlussel der Alticinae-Genera Afrikas. Entomologische Arbeiten aus dem Museum Georg Frey 12: 251–288.

Scherer G (1962a) Beitrag zur Kenntnis der Alticiden-fauna Zentral-Afrikas (Coleoptera Chrysomelidae Alticinae). Annales de Musée Royal de l’Afrique Centrale de Tervuren, Belgique, Series in 8°, Sciences Zoologiques 113: 7–82.

Scherer G (1962b) Alticinae (Coleoptera, Phytophaga) Fam. Chrysomelidae. Exploration du Parc National de la Garamba. Mission H. De Saeger (1949–1952). Institut Parcs Nationaux du Congo et du Rwanda (Bruxelles) 31: 3–86.

Scherer G (1963) Beitrag zur Kenntnis der Alticidenfauna Afrikas (Coleoptera, Chrysomelidae, Alticinae). Entomologische Arbeiten aus dem Museum Georg Frey 14: 648–684.
Scherer G (1969) Contribution à la connaissance de la faune entomologique de la Côte-d’Ivoire (J. Decelle, 1961–1964). XLIII. Coleoptera Chrysomelidae Alticinae. Annales de Musée Royal de l’Afrique Centrale de Tervuren, Belgique, , Series in 8°, Sciences Zoologiques 175: 365–371.

Scherer G (1970) Beitrag zur Kenntnis der Alticinae Afrikas (Coleoptera - Chrysomelidae - Alticinae). Entomologische Arbeiten aus dem Museum Georg Frey 21: 298–304.

Scherer G (1972) Coleoptera aus Nordostafrika. Chrysomelidae: Alticinae. Notulae Entomologicae 52 :1–17.

Scherer G (1974) *Clavicornaltilica* a new genus from Ceylon (Coleoptera-Chrysomelidae-Alticinae). Revue Suisse de Zoologie 81: 57–68.

Scherer G (1978) Missione 1965 del professor Giuseppe Scortecci nello Yemen (Arabia meridionale). Coleoptera Chrysomelidae: Alticinae. Atti della Società Italiana di Scienze naturali e del Museo Civico di Storia naturale di Milano 119: 264–266.

Scherer G (1983) Review of the genus *Chirodica* Germar. Entomologische Arbeiten aus dem Museum Georg Frey 31–32: 173–175.

Scherer G (1985) *Yemenaltilica*, eine neue Gattung aus dem Yemen (Coleoptera Chrysomelidae Alticinae). Atti della Società Italiana di Scienze naturali e del Museo Civico di Storia naturale di Milano 126: 85–88.

Scherer G (1987) The Genus *Torodera* Weise (Coleoptera - Chrysomelidae - Alticinae). Entomologische Arbeiten aus dem Museum Georg Frey 35–36: 67–71.

Scherer G, Boppré M (1997) Attraction of *Gabonia* and *Nzerekorena* to pyrrolizidine alkaloids - with description of 13 new species and notes on male structural peculiarities (Insecta, Coleoptera, Chrysomelidae, Alticinae). Spixiana 20: 7–38.

Selater P (1858) On the general distribution of the members of the Class Aves. Journal of the Linnean Society, Zoology, London 2: 130–145.

Sclater P (1858) On the general distribution of the members of the Class Aves. Journal of the Linnean Society, Zoology, London 2: 130–145.

Selman BJ (1963) Coléopterès Chrysomelides récoltés par M.J. Mateu dans l’Ennedi et au Tchad. Bulletin de l’Institut Français d’Afrique Noire (série A) 25: 1148–1162.

Selman BJ (1968) A revision of the genus *Eriotica* Harold (Halticidae: Coleoptera). J. Nat. Hist. 2: 247–251. doi: 10.1080/00222936800770901

Stephens JF (1829) The nomenclature of British insects. A compendious list of such species as are contained in the Systematic Catalogue of British insects, and of those discovered subsequently to its publication; forming a guide to their classification. Baldwin & Craddock, London, 68 pp. doi: 10.5962/bhl.title.51800

Stephens JF (1831) Illustrations of British Entomology; or, a Synopsis of Indigenous Insects: containing their generic and specific distinctions; with an account of their metamorphoses, times of appearance, localities, food, and economy, as far as practicable. Mandibulata. Vol. IV. Baldwin & Craddock, London, 366 pp.

Stierlin G (1866) Coleopterologisches. Mittheilungen der Schweizer Entomologischen Gesellschaft 1866–1868: 30–32.

Thomson J (1858) Voyage au Gabon. Archives Entomologiques 2: 9–471.
Weise J (1886) In: Erichson WF (Ed) Naturgeschichte der Insecten Deutschlands. Erste Abteilung. Coleoptera. Sechster Band, Vierte Lieferung, Bogen 37–48. Nicolaische Verlags-Buchhandlung, Berlin, 569–768.

Weise J (1887) Neuer sibirischer Chrysomelidae und Coccinelliden. Archiv für Naturgeschichte 53: 164–209.

Weise J (1888) In: Erichson WF (Ed) Naturgeschichte der Insecten Deutschlands. Erste Abteilung. Coleoptera. Sechster Band, Fünfter Lieferung, Bogen 49–60. Nicolaische Verlags-Buchhandlung, Berlin, 769–960.

Weise J (1889) Insecta a Cl. G.N. Potanin in China et in Mongolia novissime Lecta. IX. Chrysomelidae et Coccinellidae. Horae Societatis Entomologicae Rossicae 23: 560–653.

Weise J (1895) Neue Chrysomeliden nebst synonymischen Bemerkungen. Deutsche Entomologische Zeitschrift 1895: 327–352.

Weise J (1901) Einige neue afrikanische Chrysomeliden. Deutsche Entomologische Zeitschrift 2: 301–310.

Weise J (1902a) Afrikanische Chrysomeliden. Archiv für Naturgeschichte 68: 119–174.

Weise J (1902b) Afrikanische Halticinen. Deutsche Entomologische Zeitschrift 1902: 301–304.

Weise J (1903) Afrikanische Chrysomeliden. Archiv für Naturgeschichte 69: 197–226.

Weise J (1907a) Chrysomelidae et Coccinellidae aus dem Spanischen Guinea. Memorias de la Real Sociedad Española de Historia Natural 1: 379–403.

Weise J (1907b) Neue Chrysomeliden und Coccinelliden von der Ausbeute der Herren Oskar Neumann und Baron von Erlanger in Abyssinien. Archiv für Naturgeschichte 73: 210–232.

Weise J (1910a) Chrysomelidae und Coccinellidae. In: Sjostedt Y. (Ed): Ergebnisse der schwedischen Expedition nach Kilimandjaro. Vol. 7. P. Palmquists Aktiebolag, Stockholm, pp. 153–266.

Weise J (1910b) Chrysomelidae von Madagaskar, den Comoren und den Inseln Ostafrikas. In: Voeltzkow A (Ed) Reise in Ostafrika in den Jahren 1903–1905, Band II, Heft 5. E. Schweizerbartsche Verlagsbuchhandlungen, Nägele & Dr. Sproesser, Stuttgart, 419–506.

Weise J (1911) Neue Chrysomeliden. Annales de la Société Entomologique de Belgique 55: 166–175.

Weise J (1912) Chrysomelidae. In: Schubotz H (Ed) Wissenschaftliche Ergebnisse der Deutschen Zentral-Afrika-Expedition 1907–1908 unter Führung Adolf Friedrichs, Herzogs zu Mecklenburg. Klinkhardt & Biermannn, Leipzig, 127–163.

Weise J (1915) Chrysomelidae and Coccinellidae: In: Schubotz H (Ed) Ergebnisse der Zweiten Deutschen Zentral-Afrika-Expedition 1910–1911 unter Führung Adolf Friedrichs, Herzogs zu Mecklenburg. Klinkhardt & Biermannn, Leipzig, 155–184.

Weise J (1916) Synonymische Mitteilungen. Deutsche Entomologische Zeitschrift 1916: 37–41.

Weise J (1919) Afrikanische Chrysomeliden und Coccinelliden. Archiv für Naturgeschichte 83: 174–207.

Weise J (1923) Results of Dr. E. Mjöberg’s Swedish Scientific Expeditions to Australia 1910–1913. 31. Chrysomeliden und Coccinelliden aus Queensland. Arkiv für Zoologi 15: 1–150.
Weise J (1924) Zoological results of the Swedish expedition to Central Africa, 1921. Insecta 7. Chrysomelidae und Coccinellidae. Arkiv för Zoologi 16: 1–30.
Weise J (1926) Ueber Bekannte und neue Chrysomeliden und Coccinelliden aus dem Reichsmuseum zu Stockholm. Arkiv för Zoologi 18: 13–34.
Westwood JO (1840) An Introduction to the modern classification of insects, vol. 2. Longman, Orme, Brown, Green, and Longmans, London, 587 pp.
Westwood JO (1862) Description and figures of a new genus and species of Gallerucidae. Journal of Entomology 1: 216–218.
Wollaston TV (1867) Coleoptera Hesperidium, being an enumeration of the Coleopterous Insects of the Cape Verde Archipelago. Van Voorst, London, 285 pp. doi: 10.5962/bhl.title.48651