ON MULTI-VARIABLE ZASSENHAUS FORMULA

LINSONG WANG, YUN GAO, AND NAIHUAN JING†

ABSTRACT. In this paper, we give a recursive algorithm to compute the multi-variable Zassenhaus formula

\[e^{X_1 + X_2 + \cdots + X_n} = e^{X_1}e^{X_2}\cdots e^{X_n} \prod_{k=2}^\infty e^{W_k} \]

and derive an effective recursion formula of \(W_k \).

1. Introduction

The celebrated Baker-Campbell-Hausdorff (BCH) is a fundamental identity in Lie theory [1, 2, 3] connecting Lie algebra with Lie group. The BCH says that for any linear operators \(X, Y \) in a bounded Hilbert space one has the formula

\[e^X e^Y = e^{X+Y+\sum_{k=2}^\infty Z_k(X,Y)}, \tag{1.1} \]

where \(\exp \) is defined in the usual sense and \(Z_k(X,Y) \) is a degree \(k \) homogeneous Lie polynomial in the noncommutative variables \(X \) and \(Y \). The first few terms are

\[Z_2 = \frac{1}{2} [X,Y], \quad Z_3 = \frac{1}{12} ([X,Y,X] - [Y,X,Y]), \]
\[Z_4 = \frac{1}{24} [X,Y,Y,X]. \]

and the general expressions of \(Z_k(X,Y) \) can be explicitly computed by combinatorial formulas.

The dual form of the BCH is the famous Zassenhaus formula which establishes that the exponential \(e^{X+Y} \) can be uniquely decomposed as

\[e^{X+Y} = e^X e^Y \prod_{m=2}^\infty e^{W_m(X,Y)} \tag{1.2} \]
\[= e^X e^Y e^{W_2(X,Y)} e^{W_3(X,Y)} \cdots e^{W_k(X,Y)} \cdots, \]

where \(W_k(X,Y) \) is a homogeneous Lie polynomial in \(X \) and \(Y \) of degree \(k \) [4]. The first few terms are

\[W_2 = -\frac{1}{2} [X,Y], \quad W_3 = \frac{1}{3} [Y,[X,Y]] + \frac{1}{6} [X,[X,Y]], \]
\[W_4 = -\frac{1}{24} [X,[X,Y]] - \frac{1}{8} ([Y,[X,[X,Y]]] + [Y,[Y,[X,Y]]]). \]

† Corresponding author: jing@math.ncsu.edu
MSC (2010): Primary: 16W25; Secondary: 22E05, 16S20
Keywords: Baker-Campbell-Hausdorff formula, Zassenhaus formula.
There are several methods to compute W_k [5, 6, 7, 8]. In particular, a recursive algorithm has been proposed in [9] to express directly W_k with the minimum number of independent commutators required at each degree k.

Similar to the BCH formula, the Zassenhaus formula is useful in many different fields: q-analysis in quantum groups [10], quantum nonlinear optics [13], the Schrödinger equation in the semiclassical regime [12], and splitting methods in numerical analysis [11], etc.

We now consider the multivariate BCH and Zassenhaus formulas. It is easy to obtain the multivariable BCH formula by repeatedly using the usual BCH:

$$e^{X_1}e^{X_2}\cdots e^{X_n} = e^{X_1+X_2+\cdots+X_n+\sum_{m=2}^{\infty} z_m(X_1,X_2,\ldots,X_n)},$$ (1.3)

where z_m is a Lie polynomial in the X_i of degree m. On the other hand, we also have the multivariable Zassenhaus formula

$$e^{X_1+X_2+\cdots+X_n} = e^{X_1}e^{X_2}\cdots e^{X_n} \prod_{k=2}^{\infty} e^{W_k}$$ (1.4)

where the product is ordered and W_k is a homogeneous Lie polynomial in the X_i of degree k. However, it is more complicated to express W_k in terms of X_i’s.

The existence of the formula (1.4) is a consequence of Eq. (1.3). In fact, it is clear that $e^{-X_1}e^{X_1+X_2+\cdots+X_n} = e^{X_2+X_3+\cdots+X_n+D}$, where D involves Lie polynomials of degree > 1. Then $e^{-X_2}e^{X_2+X_3+\cdots+X_n+D} = e^{X_3+X_4+\cdots+X_n+W_2+D_1}$, where D_1 is an infinite Lie power series in the X_i with minimum degree > 2. Note that $W_2' \neq W_2$, we need to repeat the process $(n - 1)$ times to determine W_2, i.e.

$$e^{-X_{n-1}}e^{X_{n-1}+X_n+W_2^{(n-3)}+W_3^{(n-4)}+\cdots+W_{n-2}'+D_{n-3}}$$

$$= e^{X_n+W_2+W_3^{(n-3)}+\cdots+W_{n-2}'+D_{n-2}}$$

where D_{n-2} involves Lie polynomials of degree > $(n - 1)$. Finally, we can get the formula (1.4) by repeating the process.

In this paper, we will give a new recursive algorithm to compute W_k in (1.4). Our method is inspired by the recent algorithm in [9], and our formula is based on a new formula for $f_{1,k}$ using compositions of integers.

The paper is organized as follows. In Section 2, we give our recursive algorithm and a concrete procedure to compute $W_k, k = 1, 2, 3, 4, 5$. In Section 3, we establish a combinatorial formula of $f_{1,k}$ (see Theorem 3.1). We will show that our formula can give a slightly better recursion formula of W_k when $k > 5$ in Theorem 3.2. Finally we use examples to show how the $f_{1,k}$ are used to derive Lie polynomial formulas of W_k in terms of the operators X_1, \ldots, X_n. The latter set of formulas are expected be useful in the quantum control problem.

2. Multivariable Zassenhaus terms

2.1. A recurrence. For the operators X_1, \ldots, X_n we consider the following function of t:

$$e^{t(X_1+X_2+\cdots+X_n)} = e^{tX_1}e^{tX_2}\cdots e^{tX_n}e^{2W_2}e^{3W_3}\cdots$$ (2.1)
where the W_k can be determined by differential equations step by step, and it is easy to see that W_k is a polynomial of degree k in the X_i. Note that the multivariable
Zassenhaus formula (1.4) is the case when $t = 1$.

First we consider the iterated system of equations

$$R_1(t) = e^{-tX_n} \cdots e^{-tX_2} e^{-tX_1} e^{t(X_1 + X_2 + \cdots + X_n)}, \quad (2.2)$$
$$R_m(t) = e^{-tW_m} R_{m-1}(t), \quad m \geq 2. \quad (2.3)$$

It follows from (2.3) that

$$R_m(t) = e^{m+1W_{m+1}} e^{m+2W_{m+2}} \cdots, \quad m \geq 1. \quad (2.4)$$

We then take the logarithmic differentiation

$$F_m(t) = B_m(t) R_m(t)^{-1} \quad m \geq 1. \quad (2.5)$$

For $m = 1$, we have that

$$F_1(t) = -X_n - e^{-tad_{X_n}} X_{n-1} - e^{-tad_{X_n}} e^{-tad_{X_n-1}} X_{n-2} - \cdots - e^{-tad_{X_n}} \cdots e^{-tad_{X_2}} X_1$$
$$= e^{-tad_{X_n}} (e^{-tad_{X_n-1}} \cdots e^{-tad_{X_2}} e^{-tad_{X_1}} - I) X_n$$
$$+ e^{-tad_{X_n}} e^{-tad_{X_n-1}} (e^{-tad_{X_n-2}} \cdots e^{-tad_{X_2}} e^{-tad_{X_1}} - I) X_{n-1}$$
$$+ e^{-tad_{X_n}} e^{-tad_{X_n-1}} e^{-tad_{X_n-2}} (e^{-tad_{X_n-3}} \cdots e^{-tad_{X_2}} e^{-tad_{X_1}} - I) X_{n-2} + \cdots$$
$$+ e^{-tad_{X_n}} e^{-tad_{X_n-1}} \cdots e^{-tad_{X_3}} (e^{-tad_{X_2}} e^{-tad_{X_1}} - I) X_2$$
$$+ e^{-tad_{X_n}} e^{-tad_{X_n-1}} \cdots e^{-tad_{X_2}} (e^{-tad_{X_1}} - I) X_2$$
$$= \sum_{k=1}^{\infty} (-t)^k \sum_{i=2}^{n} \sum_{j_1 + \cdots + j_i \geq 1} \frac{ad_{X_n}^{j_n} \cdots ad_{X_2}^{j_2} ad_{X_1}^{j_1}}{j_1! j_2! \cdots j_i!} X_i,$$

where $ad_AB = [A, B]$ and we have used the well-known formula

$$e^{A}Be^{-A} = e^{ad_AB} = \sum_{n \geq 0} \frac{1}{n!} ad_A^n B,$$

as well as the fact that $e^{ad_X} X = X$. Write

$$F_1(t) = \sum_{k=1}^{\infty} f_{1,k} t^k, \quad (2.6)$$

then

$$f_{1,k} = (-1)^k \sum_{i=2}^{n} \sum_{j_1 + \cdots + j_i \geq 1} \frac{ad_{X_n}^{j_n} \cdots ad_{X_2}^{j_2} ad_{X_1}^{j_1}}{j_1! j_2! \cdots j_i!} X_i. \quad (2.7)$$
A similar expansion can be obtained for $F_m(t)$, $m \geq 2$, by using $R_m(t)$ in (2.3). More specifically,

$$F_m(t) = -m W_m t^{m-1} + e^{-t m W_m} R'_{m-1}(t) R_{m-1}^{-1}(t) e^{t m W_m}$$

$$= -m W_m t^{m-1} + e^{-t m W_m} F_{m-1}(t)$$

$$= e^{-t m W_m} (F_{m-1}(t) - m W_m t^{m-1}).$$

Writing $F_m(t) = \sum_{k=m}^{\infty} f_{m,k} t^k$, we immediately get that

$$f_{m,k} = \sum_{j=0}^{[\frac{k}{m}]-1} \frac{(-1)^j}{j!} a d W_m f_{m-1,k-mj}, \quad k \geq m \quad (2.8)$$

where $[\frac{k}{m}]$ denotes the integer part of $\frac{k}{m}$.

On the other hand, if we take the logarithmic derivative of $R_m(t)$ using the expression (2.4), we arrive at

$$F_m(t) = (m + 1) W_{m+1} t^m + \sum_{j=m+2}^{\infty} j t^{j-1} e^{t^{j-1} a d W_{m+1}} \cdots e^{t^{j-1} a d W_1} W_j. \quad (2.9)$$

Comparing the coefficients of the terms t, t^2, t^3 and t^4 in (2.6) and (2.9) for $F_1(t)$, we get that

$$f_{1,1} = 2 W_2, \quad f_{1,2} = 3 W_3, \quad f_{1,3} = 4 W_4, \quad f_{1,4} = 5 W_5 + 3[W_2, W_3],$$

so that

$$W_2 = \frac{1}{2} f_{1,1}, \quad W_3 = \frac{1}{3} f_{1,2}, \quad W_4 = \frac{1}{4} f_{1,3}, \quad W_5 = \frac{1}{5} f_{1,4} - \frac{1}{10} [f_{1,1}, f_{1,2}] \quad (2.10)$$

Similarly, comparing (2.8) and (2.9), we get

$$f_{m,m} = (m + 1) W_{m+1},$$

therefore

$$W_{m+1} = \frac{1}{m+1} f_{m,m} = \frac{1}{m+1} f_{\frac{m}{2},m}, \quad m \geq 4,$$

i.e.

$$W_m = \frac{1}{m} f_{\frac{m-1}{2},m-1}, \quad m \geq 5 \quad (2.12)$$

2.2. Examples of W_k. When $k = 1$ in the expression (2.7), the summation of the first $i - 1$ terms is already at least 1, so we have the formula

$$f_{1,1} = - \sum_{i=2}^{n} \sum_{j_1 + \cdots + j_{i-1} = 1} \frac{a d^{j_{i-1}} X_{i-1} \cdots a d^{j_2} X_2 a d^{j_1} X_1}{j_1! j_2! \cdots j_{i-1}!} X_i$$

$$= \sum_{1 \leq i < j \leq n} [X_j, X_i].$$

Thus

$$W_2 = \frac{1}{2} f_{1,1} = \frac{1}{2} \sum_{1 \leq i < j \leq n} [X_j, X_i].$$
Similarly for $k = 2$ in (2.7), we have

$$f_{1,2} = \sum_{i=2}^{n} \sum_{j_1, \ldots, j_{i-1} \geq 1, j_1 + \cdots + j_{i-1} = 2} \frac{ad_{X_i} \cdots ad_{X_{j_1}} ad_{X_{j_i}}}{j_1! j_2! \cdots j_{i-1}!} X_i$$

$$= \sum_{i=2}^{n} \left(\sum_{j_1, \ldots, j_{i-1} = 1, i \leq \leq n} \frac{ad_{X_i} ad_{X_{j_{i-1}}} \cdots ad_{X_{j_i}}}{j_1! j_2! \cdots j_{i-1}!} X_i \right) + \sum_{i=2}^{n} \frac{ad_{X_{j_{i-1}}} \cdots ad_{X_{j_i}}}{m_1! m_2!} X_i$$

$$= - \sum_{i \geq j} [X_i [X_i, X_j]] + \sum_{i > j} \frac{1}{m_j} ([X_i [X_{j_2}, X_{j_1}] - [X_i, [X_{j_2}, X_{j_1}]])$$

$$= - \sum_{i > j} [X_i [X_i, X_j]] - 2 \sum_{i > j} [X_i [X_i, X_j]] + \sum_{i > j} [[X_i X_j, X_k]] + \sum_{i > j} \frac{1}{2} [[X_i X_j, X_j]]$$

$$= \sum_{1 \leq i, j, k \leq n} [[X_j, X_i], X_k] + \frac{1}{2} \sum_{1 \leq i, j \leq n} [[X_j, X_i], X_i],$$

where m_i is the multiplicity of j_i

Therefore

$$W_3 = \frac{1}{3} f_{1,2} = \frac{1}{3} \sum_{1 \leq i, j, k \leq n} [[X_j, X_i], X_k] + \frac{1}{6} \sum_{1 \leq i, j \leq n} [[X_j, X_i], X_i].$$

We list the first few other terms as follows:

$$f_{1,3} = -\left(\sum_{1 \leq i, j, k \leq n} [X_i, [X_k, [X_i, X_j]]] + \frac{1}{2} \sum_{1 \leq i, j, k \leq n} [X_k, [X_k, [X_i, X_j]]]$$

$$+ \frac{1}{2} \sum_{1 \leq i, j, k \leq n} [X_k, [X_i, [X_i, X_j]]] + \frac{1}{6} \sum_{1 \leq i, j \leq n} [X_i, [X_i, [X_i, X_j]]])$$

$$= \frac{1}{6} \sum_{1 \leq i, j \leq n} [[[X_j, X_i], X_i], X_i] + \frac{1}{2} \sum_{1 \leq i, j \leq n} [[[X_j, X_i], X_i], X_k]$$

$$+ [[[X_j, X_i], X_k], X_k] + \sum_{1 \leq i, j \leq n} [[[X_j, X_i], X_k], X_i].$$
so that

\[
W_4 = \frac{1}{24} \sum_{1 \leq i < j \leq n} [[[X_j, X_i], X_i], X_i] + \frac{1}{8} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_k]
+ [[[X_j, X_i], X_k], X_k]) + \frac{1}{4} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_k].
\]

\[
f_{1,4} = \frac{1}{24} \sum_{1 \leq i < j \leq n} [[[X_j, X_i], X_i], X_i], X_i] + \frac{1}{6} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_i], X_k]
+ [[[X_j, X_i], X_k], X_k]) + \frac{1}{4} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_k], X_k]
+ \frac{1}{2} \sum_{1 \leq i < j, k \leq n, k < l \leq n} ([[[X_j, X_i], X_k], X_i], X_k) + [[[X_j, X_i], X_k], X_k])
+ [[[X_j, X_i], X_k], X_k]) + \sum_{1 \leq i < j, k \leq n, k < l \leq n} [[[X_j, X_i], X_k], X_k], X_k].
\]

\[
f_{1,5} = \frac{1}{120} \sum_{1 \leq i < j \leq n} [[[X_j, X_i], X_i], X_i], X_i] + \frac{1}{24} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_i], X_k]
+ [[[X_j, X_i], X_k], X_k]) + \frac{1}{12} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_k], X_k]
+ [[[X_j, X_i], X_k], X_k]) + \frac{1}{6} \sum_{1 \leq i < j, k \leq n, k < l \leq n} ([[[X_j, X_i], X_k], X_i], X_k) + [[[X_j, X_i], X_k], X_k])
+ \frac{1}{4} \sum_{1 \leq i < j, k \leq n, k < l \leq n} ([[[X_j, X_i], X_k], X_k], X_k) + [[[X_j, X_i], X_k], X_k])
+ \frac{1}{2} \sum_{1 \leq i < j, k \leq n, k < l \leq n} [[[X_j, X_i], X_k], X_k], X_k]
+ [[[X_j, X_i], X_k], X_k]) + \sum_{1 \leq i < j, k \leq n, k < l < m \leq n} [[[X_j, X_i], X_k], X_k], X_k], X_m].
\]

3. Iteration Formulas

To reveal the explicit rule for \(f_{1,k}(k \geq 1) \) based on the computations we gave in Section 2, we recall the definition of partitions and compositions [14].
3.1. **Formulation in terms of partitions.** A partition of a positive integer \(m \) is an integral unordered decomposition \(m = \lambda_1 + \cdots + \lambda_l \) such that \(\lambda_1 \geq \cdots \geq \lambda_l > 0 \), denoted by \(\lambda = (\lambda_1 \lambda_2 \ldots \lambda_l) \) and \(\lambda \vdash m \). Here \(\lambda_i \) are called the parts and \(l \) is the length of the partition. A composition is an ordered integral decomposition of \(m \): \(m = \lambda_1 + \cdots + \lambda_l \) such that \(\lambda_i > 0 \) and denoted by \(\lambda \models m \), in another words, compositions of \(m \) are obtained by permuting the unequal parts of the associated partition of \(m \). The set of partitions of \(m \) is denoted by \(\mathcal{P}(m) \) and the cardinality is denoted by \(p(m) \).

For example, the partitions of 4 are:

\[
\begin{align*}
(\lambda)^1 &= (4), \\
(\lambda)^2 &= (3, 1), \\
(\lambda)^3 &= (2, 2), \\
(\lambda)^4 &= (2, 1, 1), \\
(\lambda)^5 &= (1, 1, 1, 1).
\end{align*}
\]

Therefore, \(p(4) = 5 \). The associated compositions are distinct permutations of the partitions: \((4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1) \).

Accordingly the formulas of \(f_{1,k} \) go as follows. For \(f_{1,1} \), \(p(1) = 1 \),

\[
(\lambda)^1 = (1) : \sum_{1 \leq i < j \leq n} [X_j, X_i].
\]

For \(f_{1,2} \), \(p(2) = 2 \),

\[
\begin{align*}
(\lambda)^1 &= (2) : \frac{1}{2!} \sum_{1 \leq i < j \leq n} [[[X_j, X_i], X_i], \\
(\lambda)^2 &= (1, 1) : \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_k], X_k].
\end{align*}
\]

For \(f_{1,3} \), \(p(3) = 3 \),

\[
\begin{align*}
(\lambda)^1 &= (3) : \frac{1}{3!} \sum_{1 \leq i < j \leq n} [[[X_j, X_i], X_i], X_i], \\
(\lambda)^2 &= (2, 1) : \frac{1}{2!} \sum_{1 \leq i < j, k \leq n} ([[[X_j, X_i], X_i], X_k] + [[[X_j, X_i], X_k], X_k]), \\
(\lambda)^3 &= (1, 1, 1) : \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_k], X_i].
\end{align*}
\]

7
For $f_{1,4}$, $p(4) = 5$,

\[
(\lambda)^1 = (4) : \frac{1}{4!} \sum_{1 \leq i < j \leq n} [[[X_j, X_i], X_i], X_i], X_i],
\]

\[
(\lambda)^2 = (3, 1) : \frac{1}{3!} \sum_{1 \leq i < j, k \leq n} \left([[[X_j, X_i], X_i], X_k] + [[[X_j, X_i], X_k], X_k]\right),
\]

\[
(\lambda)^3 = (2, 2) : \frac{1}{2!2!} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_k], X_k],
\]

\[
(\lambda)^4 = (2, 1, 1) : \frac{1}{2!} \sum_{1 \leq i < j, k \leq n} \left([[[X_j, X_i], X_i], X_k] + [[[X_j, X_i], X_k], X_k]\right)
+ [[[X_j, X_i], X_k], X_k], X_k],
\]

\[
(\lambda)^5 = (1, 1, 1, 1) : \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_k], X_k], X_h].
\]

We define the long commutator inductively as follows.

\[
[X_1, X_2] = X_1X_2 - X_2X_1,
\]

\[
[X_1, X_2, X_3] = [[X_1, X_2], X_3],
\]

\[
[X_1, X_2, X_3, \cdots, X_l] = [[X_1, X_2], X_3, \cdots, X_l].
\]

Fix a partition $\lambda = (\lambda_1\lambda_2 \cdots \lambda_l)$ of k, and for each composition out of λ: $(k_1k_2 \cdots k_l) \models k$ which is a rearrangement of λ by permuting its parts, we associate the commutator

\[
[X_{j_1}, X_{i_1}, \cdots, X_{i_s}, X_{i_2}, \cdots, X_{i_l} \cdots, X_{i_l}] \tag{3.1}
\]

where the multiplicity of i_s is k_s for $1 \leq s \leq l$. For this reason, we will write (3.1) as $[X_jX_{i_1}^{k_1}X_{i_2}^{k_2} \cdots X_{i_l}^{k_l}]$. Then we have the following result.

Theorem 3.1. For each k, the following formula holds

\[
f_{1,k} = \sum_{(k_1 \cdots k_l) = k} \frac{1}{k_1!k_2! \cdots k_l!} \sum_{1 \leq i_1 < j_1 \leq n} \sum_{i_2 < i_3 < \cdots < i_l \leq n} [X_jX_{i_1}^{k_1}X_{i_2}^{k_2} \cdots X_{i_l}^{k_l}]
\]

3.2. **Determination of $W_m (m \geq 6$).** We have given the formulas of W_k for $1 \leq k \leq 5$ in terms of $f_{1,k}$ (2.10). We now give the next a few terms as follows.
Theorem 3.2. For each $k \geq 2$ the exponents W_m in the multi-variable Zassenhaus formula (1.4) for $m = 6k + i$, where $i = 0, 1, 2, 3, 4, 5$ are given by

\[
W_{6k} = \frac{1}{6k}(f_{2k-2,6k-1} - ad_{W_{2k-1}} f_{2k-2,4k} + \frac{1}{2!}ad_{W_{2k-1}}^2 f_{2k-2,2k+1} - ad_{W_{2k}} f_{2k-2,4k-1} + ad_{W_{2k}} ad_{W_{2k-1}} f_{2k-2,2k} - ad_{W_{2k+1}} f_{2k-2,4k-2} + ad_{W_{2k+1}} ad_{W_{2k-1}} f_{2k-2,2k-1} - ad_{W_{2k+2}} f_{2k-2,4k-3} - ad_{W_{2k+3}} f_{2k-2,4k-4} - \cdots - ad_{W_{3k}} f_{2k-2,3k}).
\]

(3.7)

\[
W_{6k+1} = \frac{1}{6k+1}(f_{2k-1,6k} - ad_{W_{2k}} f_{2k-1,4k} + \frac{1}{2!}ad_{W_{2k}}^2 f_{2k-1,2k} - ad_{W_{2k+1}} f_{2k-1,4k-1} + ad_{W_{2k+1}} ad_{W_{2k}} f_{2k-1,2k} - ad_{W_{2k+2}} f_{2k-1,4k-2} - ad_{W_{2k+3}} f_{2k-1,4k-3} - \cdots - ad_{W_{3k+1}} f_{2k-1,3k}).
\]

(3.8)

\[
W_{6k+2} = \frac{1}{6k+2}(f_{2k-1,6k+1} - ad_{W_{2k}} f_{2k-1,4k+1} + \frac{1}{2!}ad_{W_{2k}}^2 f_{2k-1,2k+1} - ad_{W_{2k+1}} f_{2k-1,4k} + ad_{W_{2k+1}} ad_{W_{2k}} f_{2k-1,2k} - ad_{W_{2k+2}} f_{2k-1,4k-1} - ad_{W_{2k+3}} f_{2k-1,4k-2} - ad_{W_{2k+4}} f_{2k-1,4k-3} - \cdots - ad_{W_{3k+1}} f_{2k-1,3k+1}).
\]

(3.9)

\[
W_{6k+3} = \frac{1}{6k+3}(f_{2k-1,6k+2} - ad_{W_{2k}} f_{2k-1,4k+2} + \frac{1}{2!}ad_{W_{2k}}^2 f_{2k-1,2k+2} - ad_{W_{2k+1}} f_{2k-1,4k+1} + ad_{W_{2k+1}} ad_{W_{2k}} f_{2k-1,2k+1} - ad_{W_{2k+2}} f_{2k-1,4k} + ad_{W_{2k+2}} ad_{W_{2k}} f_{2k-1,2k} - ad_{W_{2k+3}} f_{2k-1,4k-1} - ad_{W_{2k+4}} f_{2k-1,4k-2} - \cdots - ad_{W_{3k+1}} f_{2k-1,3k+1}.
\]

(3.10)

We postpone the verification of these formulas till the general result. The following result gives the general iterative formula for the multivariable Zassenhaus formula.

Theorem 3.2. For each $k \geq 2$ the exponents W_m in the multi-variable Zassenhaus formula (1.4) for $m = 6k + i$, where $i = 0, 1, 2, 3, 4, 5$ are given by
\[
W_{6k+4} = \frac{1}{6k+4} (f_{2k,6k+3} - adW_{2k+1}f_{2k,4k+2} + \frac{1}{2!} ad^2_{W_{2k+1}} f_{2k,2k+1} - adW_{2k+2}f_{2k,4k+1} - adW_{2k+3}f_{2k,4k} - adW_{2k+4}f_{2k,4k-1} - \cdots - adW_{3k+1}f_{2k,3k+2}). \tag{3.11}
\]
\[
W_{6k+5} = \frac{1}{6k+5} (f_{2k,6k+4} - adW_{2k+1}f_{2k,4k+3} + \frac{1}{2!} ad^2_{W_{2k+1}} f_{2k,2k+2} - adW_{2k+2}f_{2k,4k+2} + adW_{2k+2}adW_{2k+1}f_{2k,2k+1} - adW_{2k+3}f_{2k,4k+1} - adW_{2k+4}f_{2k,4k} - adW_{2k+5}f_{2k,4k-1} - \cdots - adW_{3k+2}f_{2k,3k+2}). \tag{3.12}
\]

Proof. As we know that \(W_m = \frac{1}{m} f_{\left\lfloor \frac{m-1}{2} \right\rfloor, m-1}, \ m \geq 5\) in Section 2, we divide \(m\) into even and odd integers.

When \(m = 2a + 1, a \geq 2\),
\[
f_{\left\lfloor \frac{m-1}{2} \right\rfloor, m-1} = f_{a, m-1} \quad \left(\left\lfloor \frac{m-1}{a} \right\rfloor = 2\right)
= f_{a-1, m-1} - ad_{a} f_{a-1, a},
\]
if \(a = 2\), we stop the computation since we reach \(f_{1, k}\). Otherwise,
\[
\left\lfloor \frac{m-1}{a} \right\rfloor = \left\lceil \frac{2}{a-1} \right\rceil = \begin{cases} \begin{array}{ll} 3, & a = 3; \\ 2, & a \geq 4. \end{array} \end{cases}
\]
so that if \(a = 3\),
\[
f_{\left\lfloor \frac{m-1}{3} \right\rfloor, m-1} = f_{a-2, m-1} - ad_{a-1} f_{a-2, a+1} + \frac{1}{2!} ad^2_{a-1} f_{a-2, 2} - ad_{a} f_{a-2, a},
\]
we stop the computation. If \(a \geq 4\),
\[
f_{\left\lfloor \frac{m-1}{3} \right\rfloor, m-1} = f_{a-2, m-1} - ad_{a-1} f_{a-2, a+1} - ad_{a} f_{a-2, a}.
\]
Repeating the procedure, we obtain (3.3) and (3.5) as well as (3.8), (3.10), (3.12) in the theorem by using induction.

Similarly, when \(m = 2a, a \geq 3\),
\[
f_{\left\lfloor \frac{m-1}{2} \right\rfloor, m-1} = f_{a-1, m-1} \quad \left(\left\lfloor \frac{m-1}{a-2} \right\rfloor = 2, a \geq 3\right)
= f_{a-2, m-1} - ad_{a-1} f_{a-2, a},
\]
if \(a = 3\), we stop the computation. Otherwise,
\[
\left\lfloor \frac{m-1}{a-2} \right\rfloor = \left\lceil \frac{3}{a-2} \right\rceil = \begin{cases} \begin{array}{ll} 3, & a = 4; \\ 3, & a = 5; \\ 2, & a \geq 6. \end{array} \end{cases}
\]
\[
\left\lfloor \frac{a}{a-2} \right\rfloor = \left\lceil \frac{2}{a-2} \right\rceil = \begin{cases} \begin{array}{ll} 2, & a = 4; \\ 1, & a \geq 5. \end{array} \end{cases}
\]
so that if \(a = 4 \),

\[
\hat{f}_{\frac{m-1}{2},m-1} = f_{a-3,m-1} - ad_{W_{a-2}} f_{a-3,a+1} + \frac{1}{2!} ad_{W_{a-2}}^2 f_{a-3,3} - ad_{W_{a-1}} f_{a-3,a} + ad_{W_{a-1}} ad_{W_{a-2}} f_{a-3,2},
\]

we stop the computation. If \(a = 5 \),

\[
\hat{f}_{\frac{m-1}{2},m-1} = f_{a-3,m-1} - ad_{W_{a-2}} f_{a-3,a+1} + \frac{1}{2!} ad_{W_{a-2}}^2 f_{a-3,3} - ad_{W_{a-1}} f_{a-3,a}.
\]

If \(a \geq 6 \)

\[
\hat{f}_{\frac{m-1}{2},m-1} = f_{a-3,m-1} - ad_{W_{a-2}} f_{a-3,a+1} - ad_{W_{a-1}} f_{a-3,a}.
\]

Repeating the procedure, we obtain (3.2), (3.4) and (3.6) as well as (3.7), (3.9), (3.11) in Theorem 3.2 using induction. \(\square\)

According to Theorem 3.2, we know that \(W_m (m \geq 5) \) can be expressed as a linear combination of \(f_{1,k} (k \geq 1) \) in the end, then we use \(f_{1,k} (k \geq 1) \) given in Theorem 3.1 to obtain \(W_m (m \geq 5) \). To explain how this works, we give the explicit formulas of \(W_5, W_6 \) according to (2.10) and (3.2):

\[
W_5 = \frac{1}{5} (f_{1,4} - ad_{W_2} f_{1,2}) = \frac{1}{120} \sum_{1 \leq i<j \leq n} [[[X_j, X_i], X_i], X_i] + \frac{1}{30} \sum_{1 \leq i<j,k \leq n} ([[[X_j, X_i], X_i], X_i], X_k] + \frac{1}{20} \sum_{1 \leq i<j,k \leq n} ([[[X_j, X_i], X_k], X_k]) + \frac{1}{20} \sum_{1 \leq i<j,k \leq n} ([[[X_j, X_k], X_k], X_k]) + \frac{1}{20} \sum_{1 \leq i<j,k \leq n} ([[[X_k, X_i], X_k], X_k]) + \frac{1}{5} \sum_{1 \leq i<j,k \leq n} ([[[X_j, X_i], X_i], X_i], X_h] + \frac{1}{10} \sum_{1 \leq i<j,k \leq n} ([[[X_j, X_k], X_h], [X_{j1}, X_{i1}]] + \frac{1}{20} \sum_{1 \leq i<j,k \leq n} ([[[X_{j1}, X_{i1}], X_{i1}], [X_{j1}, X_{i1}]]).
\]
$$W_0 = \frac{1}{6} (f_{1,5} - adW_{1,3})$$

$$= \frac{1}{720} \sum_{1 \leq i < j \leq n} \left([[[X_j, X_i], X_i], X_i], X_i] + \frac{1}{144} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_i], X_i], X_k]$$

$$+ [[[X_j, X_i], X_i], X_k], X_k], X_k] + \frac{1}{72} \sum_{1 \leq i < j, k \leq n} ((([[X_j, X_i], X_i], X_i], X_i], X_k]$$

$$+ [[[X_j, X_i], X_k], X_k], X_k], X_k] + \frac{1}{36} \sum_{1 \leq i < j, k \leq n} [[[X_j, X_i], X_i], X_i], X_k]$$

$$+ [[[X_j, X_i], X_i], X_k], X_k], X_k] + \frac{1}{24} \sum_{1 \leq i < j, k \leq n, k < l \leq n} ((([[X_j, X_i], X_i], X_i], X_k], X_l]$$

$$+ [[[X_j, X_i], X_k], X_k], X_k], X_k] + \frac{1}{12} \sum_{1 \leq i < j, k \leq n, k < l \leq n} ((([[X_j, X_i], X_k], X_k], X_k], X_k]$$

$$+ [[[X_j, X_k], X_k], X_k], X_k], X_k]$$

Acknowledgments

N. Jing’s work was partially supported by the National Natural Science Foundation of China (Grant No.11531004) and Simons Foundation (Grant No. 523868).

References

[1] Baker H F. Alternants and continuous groups. Proc Lond Math Soc, 1905, 3(2): 24–47
[2] Campbell J E. On a law of combination of operators. Proc Lond Math Soc, 1898, 29: 14–32
[3] Hausdorff F. Die symbolische Exponentialformel in der Gruppentheorie. Sitzungsber Sächsischen Akad Wissenschaft Leipzig Math Nat Sci Sect Band 116, 1906, 58: 19–48
[4] Magnus W. On the exponential solution of differential equations for a linear operator. Comm Pure Appl Math, 1954, 7: 649–673
[5] Suzuki M. On the Convergence of Exponential Operators-the Zassenhaus Formula, BCH Formula and Systematic Approximants. Comm Math Phys, 1977, 57: 193–200
[6] Weyrauch M, Scholz D. Computing the Baker-Campbell-Hausdorff series and the Zassenhaus product. Commun Comput Phys, 2009, 180: 1558–1565
[7] Scholz D, Weyrauch M. A note on the Zassenhaus product formula. J Math Phys, 2006, 47: 033505
[8] Kimura T, Explicit description of the Zassenhaus formula. Prog Theor Exp Phys, 2017, 4: 041A03
[9] Casas F, Murua A, Nadinic M. Efficient computation of the Zassenhaus formula. Commun Comput Phys, 2012, 183: 2386–2391
[10] Quesne C. Disentangling q-exponentials: a general approach. Internat J Theoret Phys, 2004, 43: 545–559
[11] Geiser J, Tanoglu G. Operator-splitting methods via the Zassenhaus product formula. J Appl Math Comput, 2011, 217: 4557–4575
[12] Bader P, Iserles A, Kropielnicka K, Singh P. Effective Approximation for the semiclassical Schrödinger Equation. Found Comput Math, 2014, 14: 689–720
[13] Quesada N, Sipe J E. Effects of time ordering in quantum nonlinear optics. Phys Rev A, 2014, 90: 063840
[14] Andrews G E. The Theory of Partitions. New York: Addison-Wesley Publishing, 1976

School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China
E-mail address: lslswls@qq.com

Department of Mathematics and Statistics, York University, Toronto
E-mail address: ygao@yorku.ca

School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
E-mail address: jing@math.ncsu.edu