Useful plant species diversity in homegardens and its contribution to household food security in Hawassa city, Ethiopia

Reta Regassa

Department of Biology, Hawassa College of Teacher Education, P. O. Box 115, Hawassa, Ethiopia.

The study was conducted on homegardens of Hawassa city, Southern Ethiopia with the aim of documenting useful plant species; identifying the internal and external household factors related to useful plant species diversity in and around home gardens and examining its contribution to household food security and income generation. A random sample of 120 homegardens from eight sub-cities of Hawassa city was used to collect useful plant species data. Techniques used were focus group discussion, semi-structured interviews, home garden tour, market survey, free listing, priority ranking, and preference ranking. A total of 258 useful plant species were documented, of which 47.29% were ornamental plants, 29.75% food plants, and 15.89% medicinal plants. Fabaceae was the dominant family represented by 9 genera and 20 species, followed by Euphorbiaceae and Asteraceae with 17 and 16 species each respectively. Homegarden size of the study area ranged from 220 to 1235 m² with a mean size of 571 m². The age of homegarden is ranged from 15 years old to 55 years old with a mean aged of 28. The number of species in the homegarden ranges from 10 to 45 with the mean of 23. The study indicates that home gardens are contributing to food security, income generation and livelihoods in Hawassa city through production of ornamental, food plants, fodder, medicinal, timber and construction. The study recommended that the management of useful plant species in homegardens will be scaled up and further expanded and assisted by agricultural extensions in urban areas in Ethiopia.

Key words: Urban home garden, plant species diversity, household livelihood, food security.

INTRODUCTION

Homegardens are production system of diverse crop plants, which is easily accessible and adjacent to household (Sunwar et al., 2006). It is the site of highest species diversity where several landraces, cultivars and rare/endangered species have been maintained and conserved (Watson and Eyzaguirre, 2002). The compositions of crops grown in home gardens can be grouped based on function as ornamental, fruits, food crops, vegetables, medicinal, spices and fodder, building materials and fuel woods (Kumar and Nair, 2004).
Homegarden systems provide an additional food supply and cash income for the people (Das and Das, 2005). Worldwide, homegardens are a community's most adaptable and accessible land resources and important components in reducing vulnerability and ensuring food security (Buchmann, 2009). The features of homegardens are year round production of food, decreased risks of production failure due to high diversity of species, increased resource productivity over time, expansion of the amount and quality of labour applied in the farm, provision of output flexibility and alternative production (Senanayake et al., 2009).

Homegardens in Ethiopia may broadly be categorized into two types (Zemede, 2001; Tesfaye, 2005). The first category of home gardens is small-sized gardens in which vegetables, spices, oil seeds and fruits are cultivated to supplement cereals and pulses raised in adjoining fields. This type of gardens is characteristic of cereal crop based farming areas of the country and is also found in urban centers. The other type of homegardens, which is characterized by a diverse mixture of crop plants with *enset* (*Ensete ventricosum*) making the basic framework, is found that in the south and southwestern part of the country. Advocates of gardening cite evidence that home gardening can be a sustainable strategy for improving food security and incomes when gardens are well adapted to local agronomic and resource conditions, cultural traditions and preferences (Midmore et al., 1991; IIRR, 1991). Plant diversity is often used as a measure of health of biological system (Naeem, 2002). It is threatened by the agricultural expansion, deforestation, and development activities including rapid urban expansion (Ricketts and Imhoff, 2003). Urbanization is one of the recent important issues in the enormous reduction of plant diversity. Currently the world urban population (3.2 billion) exceeds the number living in rural areas. People create rapid demands for food, settlements, jobs, waste management, and all basic needs for living (Rizvi, 2007). Dense settlements, traffic congestion, air and soil pollution, and waste dumps, reduce the space for plants, especially natural domestic plants (Mckinney, 2002).

Although urbanization is a global phenomenon, its magnitude differs widely among regions (Reid, 1998). In Ethiopia, cities are currently growing rapidly. Hence addressing the global problem of reversing plant diversity in urban areas requires multiple innovative ways. Urban and suburban home gardens play a major role in providing food, breeding sites, shelter for animals and plants also modifying microclimate (Smith et al., 2006).

In the present study most of the useful plant species diversity are almost lost by human impact and hence, there is glaring loss of biodiversity, disruption of indigenous knowledge, practices and culture are becoming evident due to limited integration of traditional practices and modern science in the study area, and the value of traditional home gardening in the conservation and management of useful plant species by indigenous people of Hawassa city is minimal and there is a problem of food insecurity in and around Hawassa city (Reta, 2013). Thus, the purpose of this study was to document, identify the internal and external household factors related to useful plant species diversity in and around home gardens of Hawassa city and examining its contribution to the household food security.

MATERIALS AND METHODS

Study area

The study was conducted in homegardens of Hawassa city (07° 05' latitude North and 38° 29' longitude east) with an altitude of 1680 m above sea level and covers total area of 157.2 km² and has a mean annual rainfall and temperature of 953.4 mm and 20.3°C, respectively (SNNPRS, 2005). Hawassa is the capital city of Southern Nations, Nationalities and Peoples Regional state and Sidama zone, located 273 km from Addis Ababa, capital of Ethiopia. It is surrounded by Lake Hawassa in the west, Hawassa zuria woreda in the south and east part and Oromiya Region in the north. Based on figures from CSA (2007), Hawassa city has an estimated population of 304,479; 1 is home to about more than 50 ethnic groups. Each ethnic group has their own composition of tribes with distinctive language, custom, traditional beliefs and cultural diversity. It is sub divided in to 8 sub city, namely Tabore, Hayekdar, Menaharia, Misrak, Bahale adarash, Addis Ketema, Mehale Ketema and Awela Tula in which the present study was carried out and 32 kebeles (Figure 1). The land form is plain with reddish volcano soil which is ideal for construction.

Data collection

The study of homegarden was carried out in the Hawassa city in 2014. Field work was conducted during the period from February 2014 to September 2015. Each site was visited three times including the reconnaissance survey. Techniques used were homegarden tour, complete plant inventory, focus group discussion, semi-structured interviews, free listing, market survey, priority ranking, and preference ranking. The interview and discussions was conducted in Amharic language and translated into English language during data analysis. Ethno botanical techniques were employed to collect data on knowledge and management of home garden plants used by people in Hawassa city as described in Martin (1995) and Cotton (1996). A total of 120 home gardens were randomly selected from seven sub cities (17 homegardens from each sub city). Forty five homegardens (6 from each sub city) were preferentially selected for detailed study, which represented 37.5% of the garden visited. The distance between each home garden was 300 m apart. During the different visits to the households semi-structured interviews with both household heads were conducted on different aspects: Categories of use of plants in the garden; preferred useful plant species by home gardeners, planting, consumption, income they get, benefits and source habitats of spicy plants; history of the garden, observed change in homed gardens in Ethiopia may broadly be categorized

Data analysis

Descriptive statics such frequency and percentage was used for
analysis and summarizing the data. The diversity indices, Shannon-Weaver index (SWI), Evenness index and Simpson's index were employed to determine the species richness, evenness and dominance of the species in the homegardens. Free listing was used by asking participants to list the name of all useful plants found in their homegardens and the uses of each plant. Jaccard's similarity coefficient (JSC) was estimated for comparing homegardens number of species in eight purposively selected study areas in different regions of the country. The formula used was JSC = c/ (c+a+b), where, a = number of species found in the study area but not in other study site, b = number of species absent in the study area, and c = number of species common to the study area (Jaccard, 1912).

RESULTS

Useful plant species diversity

In the surveyed homegardens a total of 258 useful plant species were observed and identified, including 14 (5.43%) vegetable plant species, 23 (8.92%) fruit plant species, 15 (5.81%) spices plant species, 12 (4.65%) root and tubers plant species, 8 (3.1%) cereals, pulses and oil seeds plant species, 3 (1.16%) stimulant plant species, 12 (4.65%) fragrant plant species, 122 (47.29%) ornamental plant species, 39 (15.12%) firewood plant species, 4 (1.55%) animal feed plant species, and 41 (15.89%) medicinal plant species. The average plant species per household was 21 ranging from 10 to 45 throughout the homegardens.

A total of 258 plant species belonging to 186 genera and 76 families were inventoried from home gardens of Hawassa city. Fabaceae was the highest number of species followed by Euphorbiaceae and Asteraceae. The genera represented by the highest number of species were Euphorbia (8 species) followed by Astera 7 species. Out of the 258 useful plant species 244 species were Angiosperms, 10 species were Gymnosperms and 4 species were Pteridophytes.

Multipurpose trees showed the highest and the most frequent occurrence (Appendix I and II). Useful species such as Cordia africana, Moringa stenopetala, Melia azedarach, Croton macrostachys, Calpurnia aurea were showed the highest frequency. The most cultivated useful
food plant species in the homegarden were *Enset ventricosum*, *Carica papaya*, *Persea americana*, *Coffee arabica*, *Musa paradisca*, *Mangifera indica* and *Zea mays*.

Most species (83% of identified) were cultivated, 5% were both cultivated and wild, 12% were wild plants. Most home garden species were perennials (83%), annuals (15%) and biennials (2%). Among 258 species, 64 species (24.8%) were trees, 70 (27.13%) shrubs, 115 (44.57%) herbs, 16 (6.2%) climbers (Figure 2). Herbs were the most numerous species in the homegardens studied followed by shrubs (27.13%), trees 64(24.8%) and climbers 16(6.2%). Among 258 useful plant species recorded, 83(32.17%) was native to Ethiopia, 15(5.81%) was unidentified, 160 (62.02%) was introduced from other parts of the world.

Family wise distribution shows that **Fabaceae** is the most dominant family with 20 species; **Euphorbiaceae** is the second dominant family with 17 species and **Asteraceae** is the third dominant family with 16 species followed by **Solanaceae** (13 species), **Lamiaceae** (10 species), **Rutaceae** (8 species), **Verbenaceae** and **Poaceae** (7 species each), **Apiaceae** (6 species); **Malvaceae**, **Apocynaceae** and **Rosaceae** (5 species each). The twenty most dominant families represent 150(27.9%) of the total number of species recorded. Top 20 useful plant species families in the home garden of Hawassa city are given in Figure 3.

Food plants

The food plant constitutes 72(27.91%) species of the total useful plant flora of Hawassa city home garden. Among food plants fruits comprises 23(31.94%), spices 15(20.83%), vegetables 14(19.4%), root and tuber crops 12(16.7%), cereals, pulses and oils 8(11.1%). A high number of food plants belonged to the **Dioscoriaceae**, **Euphorbiaceae** and **Amaranthaceae** families.
Lamiaceae and Rutaceae (8 species each) followed by Apiaceae and Fabaceae (5 species each), Araceae, Euphorbiaceae and Verbenaceae (4 species each), Asteraceae, and Myrtaceae (3 species each). The most widely distributed food crops are Zea mays with a frequency of occurrence (118), E. ventricosum (117), M. paradisiaca (115), M. indica (99), C. papaya (97), P. americana (89), Sccharum officinarum (85) and Brassica rapa (84) respectively (Appendix II). The majority food crops cultivated are used for household consumption. Fruit species commonly found in the study homegardens are Papaya (Carica papaya), Banana (M. paradisiaca), Avocado (P. persea), Guava (Psidium guajava), Mango (M. indica), and Roman (Punica granatum).

Ornamental plants

The ornamental plant use category consisted of 122 species from which 18(14.75%) are native to Ethiopia, 104(85.25%) is exotic. The ornamental plant species are distributed among 73 families with Euphorbiaceae, Lamiaceae (12 species each) and Asteraceae (11 species each) presented the largest number of species corresponding to 30.7% of the total ornamental plants found in the homegardens. Most of the plants surveyed in the homegardens of Hawassa city are exotic and widely disseminated throughout Hawassa city. Ornamental plants are found in more than 87% of home gardens. The most frequently distributed ornamental plants are Melia azedarach, Jacaranda mimosifolia, Cupressus lusitanica, Callistemon citrinus, Hibiscus rosa-sinensis, Senna spectabilis, Duranta repens, Duranta erecta, Bougainvillea glabra, Nerium olander, Terminalia menthals, Araucaria heterophylla, Thevetia peruviana, cuperus lusitaniae and Ficus benjamina.

The homegardens consisted of 122 (47.29%) of ornamental plants. Among these 208 were perennials plant species. Mean number of ornamental plant species in the homegardens was 15 with the range of 10 to 35 for all surveyed households. Euphorbiaceae contained the highest number of ornamental species (12), Asteraceae is the second number of ornamental species with 11 species, Verbenaceae and Malvaceae contained 5 species each, while Asparagaceae, Lamiaceae, Apocynaceae and Bignoniaceae contained 4 species each.

Medicinal plants

A total of 41 plant species with medicinal value were recorded and this accounted for 15.89% of the total plant species documented. Species of family Asteraceae and Solanaceae were the most used for remedies representing nearly 24.39% of all medicinal plants. The majority of medicinal plants are herbs 16 (39.02%) followed by trees 15(36.58%), shrubs 9(21.95%), climbers 1(2.44%). The most frequently utilized plant parts were leaf 22(53.66%), stem 8(19.51%) followed by root 6 (14.63%). Ninety seven percent of medicinal plants documented in the study area are indigenous. Top ten medicinal plants species occurred in more than 50% of the homegardens, namely Acharantesaspera, C. papaya, Artemisia absinthium, Artemisia afra, Ocimum lamiifolium, Withania somnifera, Veronia amygdalina, Ruta chalepensis, Croton macrostachyus and Cucumis ficifolius (Appendix III).

Spices

A total of 16 spices plant species were documented. It is distributed among 8 genera and 9 families. Spices plants consisting of 6.202% of the total useful plant species documented. A high number of spices belonged to Lamiaceae (5 species), Alliaceae (2 species), Solanaceae (2 species), verbenaceae (2), and Rutaceae and Brassicaceae (1 species each). The most commonly used spices were Allium sativum (Onion), Allium cepa, R. chalpensis, Zingiber officinale, Rosmarinus officinalis, Ocimum basilicum, Becium filamentasum and Brassica nigra.

Fragrant, stimulants and fodder plant species

A total of 12 species of fragrants, 3 stimulants and 4 fodder species were documented. The three use categories togeother consisted of 7.36% of the total useful plant species documented. The five most commonly used fragrant plant species in the majority of homegardener were Olea europea, Cymogen citrates, Lippia adoensis, A.absinthium, and A. abyssinica.

Timber (furniture) plants

Timber plant species constitute 29 plant species which accounted 11.4% of all plant species documented. Timber species which occured in more than 50% of the homegarden namely Melia azedarach, Grevillea robusta, Cupressus lusitanica, Cordia africana, Casuarina equisetifolia, Acacia melanoxylon. Among 29 plant species recorded 17 were indigenous plants which were highly treated in the forest namely Prunus africana, Hagenia abyssinica, Juniperus procera, Podocarpus falcatus, O. europea, Celtis africana, and Aningeria adolfindiederici (Appendix IV and V).

The highest Shannon-Wiener Diversity Index (H') of useful plant species was recorded for Tabor sub city (H' = 5.87) followed by Haik dar subcity (H' = 3.80) and the lowest diversity index was recorded at Menhara sub city (H' = 2.77) (Table 1).
Table 1. Shannon-Wiener Diversity Index (H') for seven study sites.

Study sites	Species richness	Shannon's index (H')
Haikadar	45	3.80
Tabor	48	3.87
Misrak	35	3.55
Addis Ketema	30	3.40
Bahiadrash	27	3.29
Mehal Ketema	28	3.33
Menhara	16	2.77

Table 2. Jaccard's similarity coefficient for comparing homegardens number of plant species composition in the homegardens of Hawassa City with other areas of Ethiopia.

Study site	Sabata town	Holeta town	Arba Minch Zuria	Sidama zone	Basketo and Kefa	Gedeo zone	Wolyta zone	Selected areas of Amhara
Total number of species	135	112	133	198	224	165	159	85
Common species	120	106	70	120	50	130	58	30
JCS	0.465	0.421	0.272	0.44	0.12	0.443	0.22	0.096
Percentage similarity	46.5	42.1	27.2	44	12	44.3	22	9.6
Source	Habtamu and Zemede (2011)	Mekonen et al. (2014)	Belachew et al. (2006)	Tesfaye (2005)	Feleke (2011)	Solomon (2011)	Talemos et al. (2013)	Fentahun (2008)

The highest vaues of Jaccard's Coefficient of Similarity index (JCS) indicate a higher similarity in homegarden species diversity. The JCS result indicates that homegardens of Hawassa city was the highest similarity with homegarden composition of Sabata town (JCS = 0.46), Gedeo zone (JCS = 0.43) and Sidama zone (JCS = 0.44). Home gardens of selected areas of Amhara (JCS = 0.096), Basketo and Kefa (JCS = 0.12) and Wolyta (0.22) showed the weakest similarity coefficient (Table 2).

Contribution of urban homegarden to household food security

In Hawassa city, the role of homegarden for cash income generation and house hold consumption was highly increased particularly in Haikidar sub-city, while it is decreased at the center of the city. The ornamental function of home gardens increased particularly in the center of the city, where 50% of the gardeners mentioned decoration as the main function of their gardens in the study survey. About 40% of the respondents report that home garden is a supplementary source of their income and 50% use home garden as a place of enjoyment. Poverty and unemployment is high in Hawassa city, most youth rely on cultivation of ornamental plants to generate income by selling ornamental plants to support their families at road side of the city. About 75% of the homegardeners explained that they conserve useful plant species for foods, 10% for income generation, 25% for pleasure, 25% for medicinal use, 15% for construction and other livelihood needs. The study showed that the majority of homegardeners are under food insecurity especially the poor urban dwellers. Food security assessment survey indicates that 25% of the homergardeners were found food secured throughout the year, 15% of the gardeners are food secured only for six months. The poor homegardeners attained food security through production in their own garden but the reach homegardeners purchase from local market.

The homegardens contributions to household's annual income was 35% of the total income, among which 20% from food plants, 10% from ornamental plants, 0.5% from medicinal plants and 4.5% from others (Figure 4). *Araucaria heterophylla* is the most expensive ornamental plant species sold in the market. One plant of *A. heterophylla* is sold at 500 to 1500 ETB ($24 to 72). *Terminalia mentalis* is the second expensive ornamental plant sold. One plant species of *T. mentalis* is sold as up to 250 to 500 ETB ($12 to 24). Medicinal plants are no direct income to households. Poor urban women are preparing *E. ventricosum* corm kocho for food security (Figure 5).

Only a few homegardeners has sufficient food for a year. The homegardens in the Hawassa city only contributes 10% fresh vegetables. Livestock and poultry farming in the homegardens also another source of
income generation contributes 15%, cow milk (10%), poultry (15%), pig (0.5%) chickens (5%), ducks (0.5%). Sugar cane (S. officinarum), Kocho (E. ventricosum), Muzi (M. paradisiaca) accounted for about 35% of the homegardens income contribution. Income from homegarden increases an average household income from 1177 to 4580 Birr.

Preference ranking of top ten useful food plant species by home gardeners for household income generation shows that M. paradisiaca is the most preferable food crops in the first rank with a score of 120 with maximum yearly income generation of 15000 Ethiopian Birr (ETB), S. officinarum is the second with a score of 117 with yearly income generation of 10000 ETB and E. ventricosum and Zea mays are the third and forth places with income generation of 6000 and 5500 ETB respectively (Table 3).

The categories of use identified are ornamental, medicine, food, firewood, timber, construction, fodder, spices, fragrant and others. A total of 71 species are reported as having one use type, 103 species having two use types and 86 species with three use types. The most numerous species were ornamental 122 species followed by food crops, medicinal plants, fuel wood and constructions (Figure 6).

Gender role in the homegarden management

The management of homegardens includes tree planting, watering, weeding and fencing. The homegardeners maintain their homegarden soil fertility by using animal manure and leaf litter. Both men and women are involved in the management of homegardens. Mostly the old aged people are spent most of their time in the management of homegardens in the Hawassa city.
Table 3. Top ten ranking food crops of HG as determined by preference ranking with income generation.

S/N	Scientific name	Household use rank	Total score	Yearly income generation(ETB)	Yearly income generation(ETB)	
				minimum	maximum	
1	Lactuca sativa	9th	99	500	2500	5th
2	Brassica rapa	4th	84	300	2000	6th
3	Musa x paradisiaca	5th	120	5000	15000	1st
4	Saccharum officinarum	3rd	117	1000	10000	2nd
5	Ensete ventricosum	2nd	114	1500	6000	3rd
6	Persea americana	6th	80	250	900	7th
7	Carica papaya	10th	79	200	850	8th
8	Mangifera indica	8th	69	370	600	9th
9	Zea mays	1st	110	2500	5500	4th
10	Dioscorea sagittifolia	7th	55	150	450	10th

Figure 6. Categories of uses identified in the homegardens of Hawassa city.

Females managed 47% of useful plant species diversity by planting, watering, weeding and selling while males managed 53% by cultivation of food crops, ornamental, medicinal plants, fencing, digging, designing, searching seeds and other useful plants (Figure 7).

Most youth participated in the cultivation of ornamental plants near road side of the city for income generation (Figure 8).

Constraints of homegardens in Hawassa city

According to the semi structured interview report the main constraints of homegardens of the study area were knowledge gap in plant breeding (66.7%), lack of planting materials and seeds (63.3%), lack of agricultural support system (57.5%), and lack of awareness (55%) respectively (Table 4).

The main source of planting materials in the study homegardener are market (45%), cultivating in their homegardens (20.83%) and from relatives (16.67%). Agricultural office, local and international NGOs are the least source of planting materials (Table 5).

DISCUSSION

A total of 258 species (64 trees, 70 shrubs, 115 herbs and 16 climbers) belonging to 186 genera under 76 family were documented. In Hawassa city, more than 50 ethnic groups are living which have different language, culture, custom, beliefs and religion. Cultural diversity in Hawassa city helps to conserve useful plant species biodiversity in homegardens. Different ethnicity, culture and religion make a unique plant species diversity in the homegardens of Hawassa city (Reta, 2013). Sthapit et al.
Figure 7. The role of Men and Women in the management of Home garden in Hawassa.

Figure 8. One of the youth selling ornamental plants at the road side in Hawassa city.

Table 4. Challenges of homegarden with percentage distribution with frequency (n = 120).

Challenges	Frequency	Percentage	Rank
Knowledge gap in plant breeding	80	66.66	1
Lack of planting materials & seeds	76	63.3	2
Lack of agricultural support system	69	57.5	3
Lack of awareness	66	55	4
Water lodging during winter season	45	37.5	5
Lack of water availability	35	29.17	6
Destruction by animals	21	17.5	7
Disease infestation	20	16.66	9
Lack of access to land (Size of home garden)	18	15	8
(2004) showed that the composition of unique plants in homegardens varies with ethnicity, food culture, religion and spirituality. The total numbers of species recorded in the homegardens of Hawassa city are greater than number of species was reported from other parts of Ethiopia. For example, Feleke (2011) reported 224 plant species from homegardens of Basketo and Kafa, Sothern Ethiopia; Mathewos et al. (2013) reported 214 plant species from homegardens of Dworo zone, southern Ethiopia; Tesfaye (2005) reported 198 plant species from homegardens of Sidama, Sothern Ethiopia; Solomon (2011) reported 165 plant species from Gedeo zone. The present study reported 72(27.9%) of food plant species from the total record of 258 useful plants species from homegardens of Hawassa city. Zemed (1997) reported about 126 (75% of the total record) plant species used as food from Ethiopian homegardens. Moreover, Belachew et al. (2003) and Habtamu (2008) reported 48 and 37 edible plant species from homegardens of Arbaminch and Sebeta areas respectively. Solomon (2011) identified about 68 plant species used as food from homegardens areas in Kochere Wereda. Feleke (2011) and Mathewos et al (2013) reported 102 and 77 food plants from homegardens of Basketo and Dworo zone, respectively.

Urban homegardens are sources of food crops, vegetables, cereals, pulses, fruits, spice, milk and livestock etc. Therefore, it is important contributors to household food security of poor urban dwellers and the rich ones also. Urban homegardening is one of the best methods for food production which feed high population, as food security is a major concern in many parts of the world and in many of urban and rural areas of Ethiopia. Urban home garden is a future promising agricultural activity that reduces urban food insecurity. In Ethiopia, cities are not practicing urban agriculture even though there are enough free spaces in and around city gardeners. Mohammed (2002) reported that Ethiopia is the country where existence and significant contribution of urban agriculture was not only disregarded and unrecognized by researchers but also underestimated and given very little attention by urban development studies. Limited homegarden size available for gardeners make them to grow different homegarden species. In the present study the majority of home gardens even though they have large home garden size, they contain low number of species diversity due to lack of knowledge gaps on cultivation, management and conservation of useful plant species.

The total number of species in a single homegarden was found to be a maximum of 45 with more than 85% households having the species numbers up to 10 to 45. The highest number of species was highest in the Haikdar sub-city and Tabor sub-city respectively (45 and 35 species) because there is sufficient irrigation water and large garden size in Hayikdar sub city and large home garden size in Tabor sub-city. The home gardens was the richest as more than 60% of the home gardens had more than 30% species per homegarden and Bahladarash, Mehalketema, Menaheria sub cities are the poorest species diversity where more than 65% homegardens had less than 20 species in home garden. In Ethiopia, there are very few studies on useful plant species diversity and its contribution to food security in urban homegardens. Many studies on home gardening and plant diversity have concentrated on rural areas (Das and Das, 2005). There are very few systematic studies on domestic garden diversity in urban or sub urban areas (Smith et al., 2005). Urban homegardening ensures households food security by providing vegetables, fruits, medicinal plants, fuel wood, ornamental plants, fodders, construction materials, root and tubers. About 25% of the respondents reported that annually they earned a high income of 10,000 and 25,000 ETB from selling various products of useful plant species.

The most useful plant species cultivated in the home gardens of Hawassa city were ornamental plants (47.29%) and food plants (27.91%). Ornamental plant species are the most diversified, abundant and species rich use category. Similar study was report from homegardens of Tihakgameng in which 57% were ornamental plants and 27% were food plants (Molebatsi, 2011). Cilliers (2010) also reported 28% of food plants in Ganyesa home gardens. This shows that most poor peoples in urban areas are largely dependent on cultivation of ornamental plants for aesthetic value, selling to sustain their livelihood and food plants for consumption purposes.

According to Nair (1993), the high number of ornamental plants is associated with the aesthetic role of home gardens in cities, since they are not used for

Source	No. of respondents	Percentage
Market	54	45.0
Relatives	20	16.67
Neighbors	10	8.33
Cultivate in their homegarden	25	20.83
Agricultural office	6	5.0
NGOs	5	4.17

Table 5. Source of plant materials in the homegardens of Hawassa city.
subsistence in urban areas except among low income populations (Ninez, 1984). The number of ornamental plants has increased in areas near, as well as in urban areas in response to the process of modernization and the large supply of these plants in cities (Moura and Andrade, 2007).

The major contributor to diversity of urban environments is horticultural floras which are mostly characterized by ornamental plants and vegetables (Gaston et al., 2005, Marco et al., 2008). The most cultivated crops in the homegarden were E. ventricosum, C. papaya, P. americana, C. arabica, M. paradisica, P. guajava and M. indica. Zea mays was the most widely used cereal crops in the homegardens of Hawassa city as it occurred in 85% of sampled households.

Within home garden the number of species per homegarden ranged from 10 to 45 and the mean was 21. Similar research reports on the number of species in home garden of different areas by different researchers for instance, Kabir and Webb (2009) reported 419 species of plants with an average of 34 species per household across 402 homegardens from Bangladesh. Mendez et al. (2001) reported a total of 324 species with nine different uses from Nicaragua with an average of 70 species per homegarden. Tynsong and Tiulari (2010) reported 197 plant species with an average of 89 plant species per homegarden average size of 750 m². Tesfaye et al. (2010) reported 78 cultivated crops within 44 homegardens from Sidama southern Ethiopia with an average as an average number of species per farms. Mekonnen et al. (2014) reported 112 plant species in the homegardens of Hola town with the mean of 22 species per homegarden.

Olajide-Taiwe et al. (2010) reported 36 plant species in homegarden from Ibadan, Oyo state. The total number of species and average number of species per homegarden in the present study was less compared to the previous report. Fabaceae had the highest number of species recorded in the homegardens study.

The dominance of Fabaceae was reported from other homegarden studies in Ethiopia (Tefera, 2010; Mekonnen et al., 2014). This may indicate that homegardener mostly cultivated Fabaceae for food security purposes.

The present study agrees with many previous researches finding on significance of homegarden to household food security. For examples, Olajide-Taiwode et al. (2010) reported 36 plant species from Ibadan, Oyo state showed that homegarding increased family supply. Marooyi (2009) reported 69 plant species from Nhema, Zimbabwe indicated homegarden as important for poor households to overcome adversity and meet basic needs. Tynsong and Tiwari (2010) finding from Meghalaya, India showed that homegarden contributed 7% of the total household income.

Tesfaye (2005) found that richness is positively related with household income, evenness of species is low in homegarden owned by rich household compared to that of poorer households. Kumari (2009) has argued that the higher the household expenses, the higher the food plant density and the lower the total plant diversity. The same author has observed that rich households in urban areas tend to plant more ornamental plants with higher economic values in their home gardens (Kumari, 2009).

Conclusion

The homegardens of the study area is home for many useful plant species diversity. These useful plant species are a great value for household income generation, food security, medicinal, ornamental, and other non food livelihood needs of poor urban dwellers. The present study indicates that high useful plant species diversity documented in the homegarens of Hawassa city was associated with diversity of ethnicity with different language, culture, custom and beliefs. In addition to this, Hawassa city is the fastest growing city in Ethiopia. This also have ement contribution to high useful plant species diversity in the area. The poor urban dwellers are highly interested in homegarden activities to sustain their livelihoods. The number of ornamental plant species diversity in the study area is higher. This shows that urban homegardeners gave more piority for ornamental plant cultivation for aesthetic value. The rich people have not shown much interest in the cultivation of food crops eventhough they have large homegarden size. The rich people gave more piority for conservation and management of ornamental plant species while the poor urban dwellers gave more piority for conservation and management of food crops to sustain their livelihoods. Proper management of homegardens has a great potential for biodiversity conservation, improving food security and provides contribution for ecosystem services in the study area. The present study indicates that there is a knowledge gap in the cultivation, conservation and management of useful plant species in the homegardeners. Therefore, incorporating indigenous knowledge with scientific management and conservation of useful plant species, creating awarness among urban dwellers’, will promote urban agriculture in Ethiopia in general and Hawassa city in particular.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The author is highly grateful to the urban homegarden owners for allowing the study as well as sharing their knowledge and time without which the study was impossible. He extends his thanks to his friend...
REFERENCES

Belachew W, Zemed A, Sebsebe D (2003). Ethnobotanical study of useful plants in Danilo Gade (homegardens) in southern Ethiopia. Ethiop. J. Biol. Sci. 2(2):119-141.

Belachew W, Zemed A, Sebsebe D (2006). Ethnobotanical study of food and medicinal plants of Danilo Gade (home-garden) in southern Ethiopia. In: Dryland Ecosystems: Challenges and Opportunities for Sustainable Natural Resource Management, (Nikundwe, A.M.and Kablgumlla, J.D.L eds). Arusha, Tanzania. pp. 62-63.

Buchmann C (2009). Cuban home gardens and their role in social-ecological resilience. Hum. Ecol. 37:705-721.

Cilliers SS (2010). Social aspects of urban biodiversity: an overview. In: Müller N, Werner P, Kelcey J (eds) Urban biodiversity and design: implementing the convention on biological diversity in towns and cities, Blackwell Publishing, United Kingdom, pp. 81-100.

Cotton CM (1996). Ethnobotany: Principles and applications. John Wiley and Sons Ltd. Chichaister, England.

CSA (2007). Central Statistics Agency. The Population and Housing Census of Ethiopia Results for Hawasa city, Ethiopia.

Das T, Das AK (2005). In ventoring plant biodiversity in homegardens: Acase study in Barak Valley, Assam, North East India. Curr. Sci. 89:155-163.

Feleke W (2011). Home gardens and Spices of Basketo and Kafa (South west Ethiopia): Plant Diversity, Product Valorization and Implications to Biodiversity Conservation. PhD Thesis, Addis Ababa University, Addis Ababa.

Fentahun M (2008). Fruit Trees Species in the Wild and in Homegarden agroforestry: Species Composition, Diversity and Utilization in western Amhara Region, Ethiopia. PhD Thesis, Addis Ababa University, Addis Ababa.

Gaston, KJ, Warren PH, Thompson K, Smith RM (2005). Urban domestic gardens (IV): the extent of the resource and its associated features. Biodivers. Conserv. 14(14):3237-3249.

Habtamu H (2008). Homegardens and agrobiodiversity conservation in Sebeto town, Oromia National Regional State. Ethiopia. MSc thesis unpublished. Addis Ababa University, Addis Ababa.

Habtamu H, Zemed A (2011). Home-gardens and agrobiodiversity conservation in Sabata Town, Oromia National Regional State, Ethiopia. SINET: Ethiop. J. Biol. Sci. 41(1):1-16.

HCA-Hawassa City Administration (2011). Socio-economic profile. Finance and Economic Development Department.

IIRR-International Institute of Rural Reconstruction (1991). Afamily food production program in Negros Occidental, 1986-1990.Silang Cavite, the Philippines.

Jaccard P (1912). The distribution of the flora of the alpine zone. New Phytol. 11(2):37-50.

Kabir ME, Webb EL (2009). Household and homegarden characteristics in southwestern Bangladesh. Agroforestry Syst. 75(2):129-45.

Kumar BM, Nair PKR (2004). The enigma of tropical homegardens. Agrofor. Syst. 61:135-152.

Kumari MAS (2009). Plant Diversity in Homegardens and its Contribution to Household Economy in Suburban Areas in Sri Lanka. M.Sc. Dissertation, University of Mahidol, Thailand.

Marco A, Dutot T, Deschamps-Cottin M, Mauffrey JF, Vennetier M, Bertaudiere-Montes V (2008). Gardens in urbanizing rural areas reveal an unexpected floral diversity related to housing density. C R Biol. 331:452-465.

Maroyi A (2009). Traditional homegardens and rural livelihoods in Nhema, Zimbabwe: A sustainable agroforestry system. Int. J. Sustain. Dev. World Ecol. 16(1):1-8.

Martin GJ (1995). Ethnobotany: A Method Manual. Chapman and Hall, London, 268p.

Mathews A, Sebsese D, Zemed A (2013). Indigenous knowledge on management of home gardens and plants in Loma and Gene Bosa Districts (Weredas) of Dawro Zone, southern Ethiopia: Plant biodiversity conservation, sustainable utilization and environmental protection. Int. J. Sci. Basic Appl. Res. 10(1):63-99.

McKenney ML (2002). Urbanization, Biodiversity, and Conservation. BioScience 52(10):883-890.

Mekonnen A, Mekuria A, Zemed A (2014). The role of homegardens for in situ conservation of plant biodiversity in Holeta Town, Oromia National Regional State, Ethiopia. Int. J. Biodivers. Conserv. 6(1):8-16.

Mendez VE, Lok R, Somarriba E (2001). Interdisciplinary analysis of homegardens in nicaragua: Microzonation, plant use and socioeconomic importance. Agrofor. Syst. 51:85-96.

Midmore D, Nínez V, Venkataraman R (1991). Household gardening projects in Asia: Past experience and future directions. Asian Vegetable research and Development Center, Technical Bulletin No. 19.

Mohammed J (2002). Urban agriculture initiatives in Addis Ababa with practical evidences from selected vegetable producing cooperative and households in the city, Master Thesis in Regional and Local Development Studies (RLDS) Faculty of Business and Economics, Addis Ababa University, Ethiopia.

Moleabatsi LY (2011). An assessment of the useful plant diversity in homegardens and communal land of Tšakgæmeng, North-West. Dissertation submitted in fulfilment of the requirements for the degree Master of Science (Botany) at the Potchefstroom Campus of the North-West University, South Africa.

Moura CL, Andrade LHC (2007). Etnobotânica em quintais urbanos nordestinos: um estudo no bairro da Muribeca, Jaboatão dos Guararapes – PE. Rev. Bras. Biociênc. 5(Suppl. 1):219-221.

Naem S (2002). Biodiversity: biodiversity equals instability. Nature 416:23-24.

Nair PKR (1993). An Introduction to Agroforestry. Dordrecht, The Netherlands.

Nínez V K (1984). Household gardens: theoretical considerations on an old survival strategy. Potatoes in Food Systems Research Series 1: 1-41.

Olajide-Taiwo FB, Adeoye IB, Adebisi-Adelani O, Odeleye OMO (2010). Assessment of the benefits and constraints of homegardening in the neighborhood of the national horticultural institute, Ibadan, Oyo state. Am. Euraian J. Agric. Environ. Sci. 7:478-483.

Reid WV (1958). Biodiversity hotspots. Trends Ecol. Evol. 13(7):275-280.

Reta R (2013). Assessment of indigenous knowledge of medicinal plant practice and mode of service delivery in Hawassa city, southern Ethiopia. J. Med. Plants Res. 7(9):517-535.

Ricketts T, Imhoff M (2003). Biodiversity, urban areas, and agriculture: locating priority ecoregions for conservation. Conserv. Ecol. 8(2):1.

Rivière H (2007). Environment: Biodiversity shrinks as cities expand. Inter press service. English news wire, High Beam Research [online] Available: http://www.ipnews.net [Accessed on 19 August 2007].

Senanayake RL, Sangakkara UR, Pushpakumara DKN, Stamp P (2009). Vegetation composition and ecological benefits of home gardens in the Meegahakulia region of Sri Lanka. Trop. Agric. Res. 21:1-9.

Smith RM, Thompson K, Hodgson JG, Warren PH, Gaston KJ (2006). Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. Biol. Conserv. 129(3):312-322.

Smith RM, Thompson K, Hodgson JG, Warren PH, Gaston KJ (2005). Urban Domestic gardens (ix): Composition and richness of the vascular plant flora, and Implications for biodiversity. Biol. Conserv. 129(3):312-322.

SNNPRS (2005). Southern Nations, Nationalities and Peoples Regional State. Investment revised Guideline in English. Southern, Ethiopia.

Solomon T (2011). Study of Useful Plants in and around GATE UDUMA (Traditional Gedeo Homegardens) in Kocbere Wereda of Gedeo Zone, Ethiopia: an Ethnobotonical Approach. M.Sc. thesis Addis Ababa, Ethiopia.

Sthapit B, Resham G, Eyzaguirre P (2004). The value of home gardens to small farmers. In. Home Gardens in Nepal: Proceedings of a national workshop, 6–7 August 2004, in R. Gautam, B. Sthapit, and P. Shrestha (eds) LI-BIRD, Bioversity International, SDC, Pokhara,
Nepal.
Sunwar S, Thornstrom CG, Subde A, Bystrom M (2006). Homegardens in western Nepal: opportunities and challenges for on-farm management of agro-biodiversity. Biodiv. Conserv. 15:4211-4238.
Talemos S, Sebsebe D, Zemede A (2013). Home gardens of Wolayta, southern Ethiopia: An ethnobotanical profile. Acad. J. Med. Plants 1(1):14-30.
Tefera M (2010). Home gardens Agrobiodiversity Conservation in Sebeta-Hawas Wereda, Southwestern Shewa Zone of Oromia Region, Ethiopia.M.Sc. Thesis, Addis Ababa University, Ethiopia.
Tesfaye A (2005). Diversity in homegarden agroforestry systems of Southern Ethiopia. Ph.D. Thesis, Wageningen University. Wageningen, Netherlands.
Tesfaye A, Wiersum KF, Bongers F (2010). Spatial and temporal variation in crop diversity in agroforestry homegardens of southern Ethiopia. Agrofor. Syst. 78:309-322.
Tynsong HB, Tiwari K (2010). Plant diversity in the homegardens and their significance in the livelihoods of War khasi community of Meghalaya, North- East India. J. Biodivers. 1:1-11.

Watson JW, Eyzaguirre PB (2002). Homegardens and in situ conservation of plant genetic resources in farming systems. Proceedings of the Second International Home gardens Workshop, 17-19 July 2001, Witzenhausen, Federal Republic of Germany.
Zemede A (1997). Survey of indigenous food crops, their preparations and home-gardens in Ethiopia. In. Indigenous African food crops, and useful plants, (Okigbo, B.N., ed.) ICIPE Science Press, Nairobi. 65 p.
Zemede A (2001). The role of home-gardens in the production and conservation of medicinal plants. In. Conservation and Sustainable use of Medicinal plants in Ethiopia, (Medhin Zewdu and Abebe Demissie, eds.). Proceedings of the National Workshop on Biodiversity Conservation and Sustainable Use of Medicinal Plants in Ethiopia. 28 April-1 May, 1998. Institute of Biodiversity Conservation and Research, Addis Ababa, Ethiopia. pp. 76-91.
Appendix I. List of ornamental plants, their local name, family, status, duration and frequency of occurrence (n=120).

No.	Scientific name	Family	Local name	Habit	Fr.	Status	Duration
1	*Acacia melanoxylon* R.Br.	Fabaceae	Omedlla(A)mh	Tree	67	C	P
2	*Acalypha wilkesiana* Mull. Arg.	Euphorbiaceae	Abeba	Shrub	23	C	P
3	*Achillea millefolium* L.	Asteraceae	Abeba	Herb	12	C	P
4	*Agave americana* L.	Agavaceae		Shrub	14	C	P
5	*Agave americana* var marginata	Agavaceae		Shrub	25	C	P
6	*Alcea rosea* L.	Malvaceae	Abeba	Herb	45	C	P
7	*Aloe vera* L.	Aloaceae	Argisaa	Herb	8	C	P
8	*Aloe* gilbertii Reynolds	Aloaceae	Argisaa	Herb	7	C	P
9	*Alocasia macrorrhizos* (L.)G.Don	Araceae	Elephant ears	Herb	29	C	p
10	*Araucaria heterophylla* (Salisb.)Franco	Araucariaceae	Yeferejitid	Tree	10	C	P
11	*Arundinaria alpina* K. Schum.	Poaceae	Kerkeha	shrub	5	C	P
12	*Asparagus setaceus* (Kunth) Jessop	Asparagaceae	Seriti	Cl	13	C	P
13	*Asparagus africanus*	Asparagaceae	Seriti	Cl	15	C	P
14	*Azadirachta indica* A.Juss.	Meliaceae	Neem	Tree	6	C	P
15	*Bougainvillea glabra* Choisy	Nyctaginaceae	Bugambe	Shrub	24	C	P
16	*Bougainvillea spectabilis* Wild.	Nyctaginaceae	Bugambe	Shrub	20	C	P
17	*Brugmansia x candida* Pers.(Pro.sp)	Solanaceae	Angel's trumpets	Shrub	18	C	P
18	*Calathea zebrina* (Sims)Lindl	Marantaceae		Herb	36	C	P
19	*Callistemon citrinus* (Curtis) Seekls	Myrtaceae	Bottle brush	Tree	47	C	P
20	*Canna indica* L.	Cannaceae	Siet-akuri	Herb	35	C	P
21	*Canna x generalis* L. H. Bailey	Cannaceae	Enset abebe	Herb	10	C	P
22	*Chrysanthemum coronarium* L.	Asteraeae	Abeba	Herb	43	C	A
23	*Casuarina equisetifolia* L.	Casuarinaceae	Shewshewe	Tree	76	C	P
24	*Casuarina cunninghamiana*	Casuarinaceae	Shewshewe	Tree	C	P	
25	*Catharanthus roseus* (L.)G.Don	Apocynaceae	Abeba	Herb	37	C	A/P
26	*Ceiba pentandra* (L.) Gaertn	Bombacaceae		Tree	8	C	P
27	*Centella asiatica* (L.) Urb.	Apiaceae		Herb	C	P	
28	*Clerodendrum myricoides* (Hochst.) Vatke.	Lamiaceae		Herb	6	C	P
29	*Codiaeum variegatum* (L.)A.Juss.	Euphorbiaceae	Masincho	Shrub	22	C	P
30	*Codiaeum spp.*	Euphorbiaceae	Masincho	Shrub	21	C	P
31	*Cordia collinum* Fresen.	Combretaceae		Tree	5	W/C	P
32	*Cordyline terminalis*	Agavaceae		Herb	26	C	P
33	*Cosmos bipinnatus* Cav	Asteraceae	Abeba	Herb	7	C	P
34	*Crassula schimper* Fisch. & Mey.	Crasulaceae	Abeba	Herb	13	C	P
35	*Croton gratissimus* Burch.	Euphorbiaceae	Masincho ferenje	Shrub	21	C	P
36	*Cupressus lusitanica* Mill.	Cupressaceae	Homme	Tree	74	C	P
	Scientific Name	Family	Common Name	Vegetative Coding	Height	Seedling	
---	---	---------------------	----------------------	-------------------	--------	----------	-----
37	Cyperus bulbosus Vahl	Cyperaceae	Kunti	Herb	11	C	P
38	Cyperus rotundus L.	Cyperaceae		Herb	C	P	
39	Dahlia pinnata Cav.	Asteraceae	Abeba	Herb	10	C	P
40	Datura metel L.	Solanaceae		Herb	5	C	A/P
41	Delonix regia (Boj.ex Hook.)Ref.	Fabaceae	Yedirezaf	Tree	38	C	P
42	Dianthus caryophyllus L.	Caryophyllaceae	Abeba	H	9	C	P
43	Dracaena afrormontana	Dracaenaceae	Abeba	Tree	5	C	P
44	Dracaena steudneri Engl.	Dracaenaceae	Lanticho	Tree	28	C	P
45	Dracaena sanderia	Dracaenaceae	Happy plant	Herb	47	C	P
46	Duranta erecta L.	Verbenaceae	Sky flower	Shrub	49	C	P
47	Duranta erecta aureo-variegata	Verbenaceae		Shrub	20	C	P
48	Duranta repens L.	Verbenaceae		Shrub	48	C	P
49	Duranta repens Linn.var.variegata	Verbenaceae		Shrub	44	C	P
50	Epipremnum aureum L. (L.)Engi.	Araceae		Cl	3	C	P
51	Euphorbia antiquorum L.	Euphorbiaceae		Herb	6	C	P
52	Euphorbia cotinifolia L.	Euphorbiaceae	Duomo daraaro	Shrub	15	C	P
53	Euphorbia baioensis S.Carter	Euphorbiaceae		Herb	C	P	
54	Euphorbia griffithii Hook.F.	Euphorbiaceae		Shrub	9	C	P
55	Euphorbia myrsinites L.	Euphorbiaceae		Herb	13	C	P
56	Euphorbia pulcherrima (R.Grah.)Wild.	Euphorbiaceae	daraaro	Shrub	12	C	P
57	Euphorbia mili (Bojex Hook.)Ursch & Leandri	Euphorbiaceae	Ye'aklil eshoh	Shrub	8	C	P
58	Ficus benjamina L.	Moraceae	Ornamental fig	Shrub	5	C	P
59	Ficus elastica Roxb.	Moraceae	Yegoma zaf	Tree	6	C	P
60	Gazania rigens var. rigens (L)Gaertn. var. uniflora (L.f.) Roessler	Asteraceae	Abeba	Herb	7	C	P
61	Grevillea robusta R.Br.	Proteaceae	Temenjazaf	Tree	39	C	P
62	Hibiscus acetasella Welw. ex Hiern	Malvaceae	Abeba	Shrub	11	C	P
63	Hibiscus rosa-sinensis L.	Malvaceae	Abeba	Shrub	18	C	P
64	Hibiscus sp.	Malvaceae	Abeba	Shrub	23	C	P
65	Hippeastrum puniceum (Lam.) Kuntze	Amaryllidaceae		Herb	10	C	P
66	Hypericum revolutum Vahl	Hypericaceae	Garaanbicho	Shrub	2	C	P
67	Indigofera spicata Forssk. Var.spicata	Fabaceae	Abeba	Herb	6	C	P
68	Ipomoea purpurea (L.)Roth.	Convolvulaceae	Abeba	Cl	9	C	P
69	Iresine herbstii Hook.ex Lindi.	Amaranthaceae	Abeba	Herb	39	C	P
70	Jacaranda mimosifolia D.Don.	Bignoniaceae	Jacaranda	Tree	78	C	P
71	Juniperus procera HochstexEngl.	Cupresaceae	Honcho	Tree	12	C	P
72	Kalanchoe lanceolata (Forssk.)Perr.	Crassulaceae	Hanculuulle	Herb	5	C	P
73	Lantana camara L.	Verbenaceae	Yewofkolo	Shrub	25	C/W	P
No.	Species	Family	Type	Growth Form	Height	Notes	
-----	-------------------------------------	-------------------	----------------	-------------	--------	-----------	
74	Matteuccia struthiopteris (L.) Todaro	Dryopteridaceae	Ferns	Herb	45	C	
75	Melia azedar L.	Meliaceae	Neem	Tree	99	C	
76	Mirabilis jalapa L.	Nyctaginaceae	Abeba	Herb	39	C	
77	Nephrolepis cordifolia (L.) Presl	Polypodiaceae	Farnii	Herb	65	C	
78	Nerium oleander L.	Apocynaceae	Shrub	Herb	81	C	
79	Oenothera biennis L.	Onagraceae	Herb	Herb	5	C	
80	Olea europaea L. ssp. Cuspidata (Wall.ex G.Don) Cif.	Oleaceae	Ejeru	Tree	37	C	
81	Passiflora caerulea L.	Passifloraceae	Cl	Herb	7	C	
82	Phalaris arundinaceae L.	Poaceae	Herb	Herb	12	C	
83	Phoenix reclinata Jacq.	Areceae	Saticho	Tree	40	C	
84	Pavonia urens Cav.	Malvaceae	Abeba	Herb	6	C	
85	Pelargonium x hortorum L.H.Bail.	Geraniaceae	Abeba	Herb	12	C	
86	Pelargonium zonale (L.) L’He’r. ex Aiton	Geraniaceae	Abeba	H	13	C	
87	Pinus patula L.	Pinaceae	Patula	Tree	18	C	
88	Pinus radiata L.	Pinaceae	Tree	Tree	13	C	
89	Plumbago auriculata Lam.	Plumbaginaceae	Abeba	Shrub	5	C	
90	Plumeria alba L.	Apocynaceae	Plumeria	Shrub	14	C	
91	Plumeria rubra L.	Apocynaceae	Imera	Shrub	15	C	
92	Pyrostegia venusta (Ker Gawl.) Miers	Bignoniaceae	Flame vine	Cl	11	C	
93	Rosa richardii Hart.	Rosaceae	Tsereda	Shrub	49	C	
94	Salvia leucahtana Cav.	Lamiaceae	Abeba	Herb	10	C	
95	Salvia splendens Sellow ex Roem & Schult.	Lamiaceae	Abeba	Herb	7	C	
96	Scadoxus multiflorus (Martyn) Raf.	Amaryllidaceae	Arfaasa	Herb	2	C	
97	Sansevieria trifasciata var. laurentii (DeWild.)	Asparagaceae	Herb	Herb	37	C	
98	Sansevieria trifasciata Prain.	Asparagaceae	Mother low's tongue	Herb	38	C	
99	Schefflera arboricola (Hayata) Merr.	Araliaceae	Umbrella tree	Shrub	10	C	
100	Schinus molle L.	Anacardiaceae	Kundebereberb	Tree	12	C	
101	Senna siamea (Lam.)H.S.Irwin & Barneby	Caesalpiniaceae	Siamese cassis	Shrub	13	C	
102	Senna spectabilis (Dc.)Irwin & Barneby	Caesalpiniaceae	Siamese cassis	Shrub	18	C	
103	Sisyrinchium californicum Ker Gawler Dryander	Iridaceae	Yellow eyed grass	Herb	16	C	
104	Solenostemon scultellaroides (L.) Cord	Lamiaceae	Yellow eyed grass	Herb	49	C	
105	Spathodea campanulata P. Beauv. ssp. nilotica.	Bignoniaceae	Tree	Tree	8	C	
106	Tagetes erecta L.	Asteraceae	Herb	Herb	13	C	
107	Tagetes minuta L.	Asteraceae	Herb	Herb	11	C	
108	Tagetes patula L.	Asteraceae	Herb	Herb	9	C	
109	Tecoma capensis (Thunb.) Spach	Bignoniaceae	Shrub	Shrub	6	C	
110	Tecoma stans (L.) Juss ex kunth	Bignoniaceae	Shrub	Shrub	8	C	
Appendix I. Contd.

No.	Scientific name	Family	Local name	Habit	Fr.	Status	Parts Used	Duration
111	*Terminalia mentalis* (T. Mantaly)	Combretaceae	Terminalia	Tree	39	C	P	
112	*Thuja orientalis* L.	Cupresaceae	Thuja orientalis	Tree	11	C	P	
113	*Thevetia peruviana* Luckey Nut (Eng.)	Apocynaceae	Thevetia	Shrub	16	C	P	
114	*Tradescantia pallida* (Rose) D.R. Hunt.	Commelinaceae	Tradescantia	Herb	13	C	P	
115	*Tradescantia zebrina* Bosse	Commelinaceae	Tradescantia	Herb cc lent	19	C	A/P	
116	*Tradescantia spathacea* Sw.	Commelinaceae	Tradescantia	Herb	13	C	P	
117	*Tropaeolum majus* L.	Tropaeolaceae	Tropaeolum	Tree	21	C	P	
118	*Vinca minor* L.	Apocynaceae	Vinca minor	Herb	17	C	P	
119	*Vitis vinifera* L.	Vitaceae	Vitis vinifera	Liana	5	C	P	
120	*Washingtonia robusta* (Lindl.) H. Wendl.	Arecaceae	Washingtonia	Tree	21	C	P	
121	*Zamioculcas zamiifolia* (Lodd. et al) Engl.	Araceae	Zamioculcas zamiifolia	Shrub	10	C	P	
122	*Zephyranthes candida* (Lindl.) Her.	Amaryllidaceae	Zephyranthes	Herb	7	C	P	

Appendix II. List of food plant species documented in Hawassa city homegardens.

No.	Scientific name	Family	Local name	Habit	Fr.	Status	Parts Used	Duration
1	*Allium sativum* L.	Alliaceae	Nechishinkurt	H	8	C	Bulb	P
2	*Allium cepa* L.	Alliaceae	Keyishnkurt	H	15	C	Bulb	P
3	*Amaranthus hybridus* L.	Amaranthaceae	Gomen	H	11	W/C	Leaves	A
4	*Brassica carinata* A.Br.	Brassicaceae	Gomen	H	49	C	Leaves	A
5	*Brassica integrifolia* L.	Brassicaceae	Yeguragegomen	H	51	C	Leaves	A
6	*Brassica oleracea* L.	Brassicaceae	Tiklegomen	H	45	C	Leaves	P
7	*Brassica oleracea* L.var.capitata	Brassicaceae	Tiklegomen	H	32	C	Leaves	P
8	*Beta vulgaris* L.	Brassicaceae	Kosta	H	39	C	Leaves	A
9	*Lycopersicon esculentum* Mill.	Solanaceae	Timaatim	H	67	C	Fruits	A
10	*Lactuca sativa* L.	Asteraceae	Selata	H	78	C	Leaves	A
11	*Saccharum officinarum* L.	Poaceae	Shonkora	H	81	C	Stem	P
12	*Solanum nigrum* L.	Solanaceae	Tunayee	H	49	W/C	Leaves	A
13	*Solanum melongena* L.	Solanaceae	Sarajan/eggplant	H	23	C	Fruits	P
14	*Moringa stenopetala*	Moringinaceae	Shifera/Halako	T	56	C	Leaves	P
15	*Solanum tuberosum* L.	Solanaceae	Dinichi	H	21	C	Leaves	A

Root Crops

No.	Scientific name	Family	Local name	Habit	Fr.	Status	Parts Used	Duration
1	*Beta vulgaris* L.	Chenopodiacea	Keysir	H	78	C	Root	B
2	*Colocasia esculenta* (L.) Schott	Araceae	Godare	H	90	C	Root	A
3	*Daucus carota* L.	Apiaceae	Karot	H	25	C	Root	B
Appendix II. Contd.

No.	Common Name	Family	Scientific Name	Genus	Species	Type	Part	Code	Cereal, pulses and oil crops
4	Dioscorea alata L.	Dioscoreaceae	Dioscorea alata L.	Dioscorea	alata	Root	A	59	C
5	Dioscorea bulbifera L.	Dioscoreaceae	Dioscorea bulbifera L.	Dioscorea	bulbifera	Root	A	22	C
6	Dioscorea sagittifolia Pax.	Dioscoreaceae	Dioscorea sagittifolia Pax.	Dioscorea	sagittifolia	Root	A	43	C
7	Dioscorea praehensilis Benth	Dioscoreaceae	Dioscorea praehensilis Benth	Dioscorea	praehensilis	Root	A	42	C
8	Ensete ventricosum (Welw.) Cheesman	Musaceae	Ensete ventricosum (Welw.) Cheesman	Musa	ventricosum	Root	A	117	C
9	Ipomoea batatas (L.) Lam.	Convolvulaceae	Ipomoea batatas (L.) Lam.	Convolvulaceae	batatas	Root	A	54	C
10	Manihot esculenta Crantz	Euphorbiaceae	Manihot esculenta Crantz	Euphorbiaceae	esculenta	Root	A	29	C
11	Solanum tuberosum L.	Solanaceae	Solanum tuberosum L.	Solanum	tuberosum	Root	A	21	C
12	Xanthosoma sagittifolium (L.) Schott	Araceae	Xanthosoma sagittifolium (L.) Schott	Arum	sagittifolium	Root	A	73	C

Fruit crops

No.	Common Name	Family	Scientific Name	Genus	Species	Type	Part	Code	Cereal, pulses and oil crops	
1	Ananas comosus (L.) Merr.	Bromeliaceae	Ananas comosus (L.) Merr.	Ananas	comosus	Herb	C	2	Fruit	P
2	Annona squamosa L.	Annonaceae	Annona squamosa L.	Annona	squamosa	Tree	C	70	Fruit	P
3	Carica papaya L.	Caricaceae	Carica papaya L.	Carica	papaya	Tree	C	97	Fruit	P
4	Casimiroa edulis Laliave	Rutaceae	Casimiroa edulis Laliave	Casimiroa	edulis	Tree	C	89	Fruit	P
5	Citrus aurantium	Rutaceae	Citrus aurantium	Citrus	aurantium	Tree	C	69	Fruit	P
6	Citrus aurantifolia (Christm.)Swingle	Rutaceae	Citrus aurantifolia (Christm.)Swingle	Citrus	aurantifolia	Tree	C	25	Fruit	P
7	Citrus sinensis (L.) Osbeck	Rutaceae	Citrus sinensis (L.) Osbeck	Citrus	sinensis	Tree	C	16	Fruit	P
8	Cucumis sativus	Cucurbitaceae	Cucumis sativus	Cucumis	sativus	Tree	C	59	Fruit	A
9	Balanites aegyptica	Balanitaceae	Balanites aegyptica	Balanites	aegyptica	Tree	W	21	Fruit	P
10	Dovyalis caffra (Hook. f. & Harv.)	Flacourtiaceae	Dovyalis caffra (Hook. f. & Harv.)	Flacourtiaceae	caffra	Tree	W	49	Fruit	P
11	Ficus carica	Moraceae	Ficus carica	Ficus	carica	Tree	W	18	Fruit	P
12	Mangifera indica L.	Anacardiaceae	Mangifera indica L.	Anacardiaceae	indica	Tree	W	98	Fruit	P
13	Malus sylvestris Mill.	Rosaceae	Malus sylvestris Mill.	Rosaceae	sylvestris	Tree	W	24	Fruit	P
14	Morus alba L.	Moraceae	Morus alba L.	Moraceae	alba	Tree	W	19	Fruit	P
15	Musa x paradisiaca L.	Musaceae	Musa x paradisiaca L.	Musa	x paradisiaca	Tree	W	99	Fruit	P
16	Passiflora edulis Sims.	Passifloraceae	Passiflora edulis Sims.	Passifloraceae	edulis	Tree	W	11	Fruit	P
17	Persea americana Mill.	Lauraceae	Persea americana Mill.	Lauraceae	americana	Tree	W	98	Fruit	P
18	Prunus persica (L.) Batsch.	Rosaceae	Prunus persica (L.) Batsch.	Rosaceae	persica	Tree	W	2	Fruit	P
19	Psidium guajava L.	Myrtaceae	Psidium guajava L.	Myrtaceae	guajava	Tree	W	97	Fruit	P
20	Syzygium guineense (Willd.) Dc	Myrtaceae	Syzygium guineense (Willd.) Dc	Myrtaceae	guineense	Tree	W	30	Fruit	P

Cereal, pulses and oil crops

No.	Common Name	Family	Scientific Name	Genus	Species	Type	Part	Code	Cereal, pulses and oil crops	
1	Cajanus cajan (L.) Mill.	Fabaceae	Cajanus cajan (L.) Mill.	Fabaceae	cajan	Shrub	C	20	Seeds	P
2	Canavalia africana L.	Fabaceae	Canavalia africana L.	Fabaceae	africana	Shrub	C	54	Seeds	A
3	Carthamus tinctorius L.	Asteraceae	Carthamus tinctorius L.	Asteraceae	tinctorius	Shrub	C	43	Seeds	A
Appendix II. Contd.

	Common Name	Family	Type	Height	C	Seeds	
4	*Jatropha curcas* L.	Euphorbiaceae	Shrub	14	C	Seeds	P
5	*Phaseolus vulgaris* L.	Fabaceae	Climber	40	C	Seeds	A
6	*Phaseolus lunatus* L.	Fabaceae	Climber	45	C	Seeds	A
7	*Ricinus communis* L.	Euphorbiaceae	Shrub	52	C/W	Seeds	P
8	*Zea mays* L.	Poaceae	Herb	118			

List of spices

	Common Name	Family	Type	Height	C	Seeds	
1	*Allium sativum* L.	Alliaceae	Herb/Bulb	16			P
2	*Allium cepa* L.	Alliaceae	Herb/Bulb	23			P
3	*Becium filamentasum* (Forssk.) Cliab.	Lamiaceae	Herb/Fruit	5			B
4	*Brassica nigra* (L.) Koch	Brassicaceae	Herb/Seed	5			A
5	*Capsicum annuum* L.	Solanaceae	Herb/Fruit	14			A
6	*Capsicum frutescens* L.	Solanaceae	Herb/Fruit	12			A
7	*Coriandrum sativum* L.	Apiaceae	Herb/Fruit	52			A
8	*Lippia adoensis* var. kosert Sebsebe	Verbenaceae	Shrub/Leaves	10			P
9	*Lippia adoensis*	Verbenaceae	Shrub/Leaves	15			P
10	*Menta spicata* L.	Lamiaceae	Herb/Leaves	14			P
11	*Ocimum basilicum* L.	Lamiaceae	Herb/Leaves	37			A
12	*Ocimum basilicum* var. basilicum L.	Lamiaceae	Herb/Leaves	20			A
13	*Rhamnus prinoides* L'Herit	Rhamnaceae	Shrub/Leaves	6			P
14	*Rosmarinus officinalis* L.	Lamiaceae	Shrub/Leaves	68			P
15	*Ruta chalpensis* L.	Rutaceae	Herb/Leaves and seed	79			P
16	*Zingiber officinale* L.	Zingiberaceae	Herb/Stem	2			P

List of stimulant species

	Common Name	Family	Type	Height	C	Seeds	
1	*Catha edulis* (vahl.) Forssk. ex Endl.	Celastraceae	Shrub/Leaves	12			P
2	*Coffee arabica* L.	Rubiaceae	Shrub/Fruits	97			P
3	*Nicotiana tobacum* L.	Solanaceae	Herb/Leaves	13			A

List of fragrant plant species

	Common Name	Family	Type	Height	C	Seeds	
1	*Artemisia absinthium* L.	Asteraceae	Herb/Leaves	5	C		P
2	*Artemisia abyssinica* L.	Asteraceae	Herb/Leaves	12	C		P
3	*Cymopogen citrates* (DC.) Stapf.	Poaceae	Herb/Leaves	29	C		P
4	*Faeniculum vulgare*	Apiaceae	Herb/Leaves	11	C		B
5	*Lippia adoensis* var adoensis Hochst.ex Walp	Verbenaceae	Shrub/Leaves	33	C		P
6	*Lippia adoensis* var koseret Sebsebe	Verbenaceae	Shrub/Leaves	45	C		P
7	*Myrtus communis* L.	Myrtaceae	Herb/Leaves	4	C		P
8	*Ocimum lamiifolium* Hochst.ex Benth.	Lamiaceae	Shrub/Leaves	89	C		P
9	*Otostogia integrifolia* Benth.	Lamiaceae	Shrub/Leaves	6	C		A
10	*Olea europea*	Oleaceae	Tree/Leaves/stem	23	C		P
Appendix II. Contd.

List of fodder species

No.	Scientific name	Family	Local name	Habit	Parts used	Disease treated
11	*Ruta chalepensis* L.	Rutaceae	Tena adam	Herb	Leaves	115 C P
12	*Rosmarinus officinalis* L.	Lamiaceae	Siga metibesha	Shrub	Leaves	68 C P

List of medicinal plants documented in the Hawassa city homegardens.

No.	Scientific name	Family	Local name	Habit	Parts used	Disease treated
1	*Achranthes aspera* L.	Amaranthaceae	Telnji	H	Root	Pneumonia
2	*Allium sativum* L.	Alliaceae	Nechshinkurt	H	Bulb	Malaria
3	*Aloe vera* (L.) Burm.f.	Aloaceae	Ret	H	Stem	Malaria, wound
4	*Azadichia indica*	Meliaceae	Neem	T	Leaves	Malaria
5	*Artemisia abyssinica* L.	Asteraceae	Ariti	H	Leaves	Evil eye, stomach ache
6	*Artemisia absinthium* L.	Asteraceae	Chkun	H	Leaves	Hemorrhoid
7	*Artemisia afraisy*	Asteraceae	H	Leaves	Evileye	
8	*Carica papaya*	Caricaceae	Papaya	T	Leaves	Malaria
9	*Carissa edulis*	Apocynaceae	Agam	Sh	Stem	Eviil eye
10	*Cassia occidentalis* (L.) Link.	Fabaceae	Hamashaqa	H	Leaves	Body swelling
11	*Coffee arabica* L.	Rubiaceae	Bunna	Sh	Seeds	Gastric illness
12	*Commelina benghalensis* L.	Commelinaceae	H	Stem	Wound	
13	*Croton macrostachyus*	Euphorbiaceae	Bisana	T	Leaves	Cancer
14	*Cucumis ficifolius* A.Rich	Cucurbitaceae	Yemed emboy	Cl	Leaves, fruits	Cold, heart disease
15	*Datura stramonium* L.	Solanaceae	Asangira	H	Leaves, seeds	Wound,
16	*Dodonaea angustifolia*	Sapindaceae	Ittancha	T	Stem	Tooth ace
17	*Eucalyptus globulus*	Myrtaceae	Nechi barzaf	T	Leaves	Common cold
18	*Euphorbia tirucalli*	Euphorbiaceae	Qincib	Sh	Stem fluid	Hemorrhoid
19	*Foeniculum vulgare*	Apiaceae	Insilal	H	Leaves	Stomach pain, urine problem
20	*Hagenia abyssinica*	Rosaceae	Kosso	T	Flowers	Tape worm
21	*Juniperus procera*	Cupressaceae	Yeabesha tid	T	Seeds	Flue
22	*Kalchoe petittiana* A.Rich	Crassulaceae	Hancululée	H	Leaves	Swelling
23	*Melia azedaracha*	Meliaceae	Niimi	T	Shoot tip	Malaria, toothache
24	*Milletia ferruginea* (Hochst.) Bak	Fabaceae	Hengedicho	Tree	Stem bark	Ecto- parasite
25	*Moringa stenopetala* L.	Moringaceae	Shifera	Tree	Leaves	Malaria, hypertension
Appendix III. Contd.

No.	Scientific name	Local name	Family	Habit	Frequency	Duration
26	*Nicotiana tabacum* L.	Solanaceae	Araddo	Herb Leaves	Common cold	A
27	*Olea europaea* ssp. *cuspidata*	Olaceae	Ejersu	Tree Stem	Tooth ache	P
28	*Ocimum lamifolium*	Lamiaceae	Damakasse	Shrub Leaves	Sun stroke	A
29	*Phytolacca dodendcandra* L. Herit	Phytolacceae	Endod	Shrub Root, leaves	Blahariza	P
30	*Podocarpus falcatus* (Thunb.)Mirb	Podocarpaceae	Zigiba	Tree Stem bark	Jaundice	P
31	*Prunus africana* (Hook.F.)Kal.	Rosaceae	Garbicho	Tree Bark	Cancer	P
32	*Rhamnus prinoides* L'Herit.	Rhamnaceae	Xaddo	Shrub Leaves	Skin infection	P
33	*Rumex nepalensis* Spreng.	Polygonaceae	Sharbicho	Herb Leaves/root	Ear problem, body Swelling	A
34	*Ruta chalepensis* L.	Rutaceae	Sunkurta	Herb Leaves	Stomach problem	A
35	*Ricinus communis* L.	Euphorbiaceae	Qomboho	Tree Root	Pneumonia	P
36	*Sesbania sesban* (L.) Merr.	Fabaceae	Arbeti	Shrub Root	Body swelling	P
37	*Solanum incanum* L.	Solanaceae	Borbodho	Shrub Root	Intestinal parasites	P
38	*Solanum nigrum* L.	Solanaceae	Xunaye	Herb Leaves	Intestinal parasites	A
39	*Vernonia amygdalina* Del.	Asteraceae	Hecho	Tree Leaves	Malaria	P
40	*Vernonia auriculiferi* Hiern.	Asteraceae	Rejicho	Shrub Leaves	Wound	P
41	*Withania somnifera* (L.) Dunal.	Solanaceae	Gizawa	Herb Root	Pneumonia	P

Appendix IV. Timber (Furniture) tree species encountered in the study area.

No.	Scientific name	Local name	Family	Habit	Frequency	Duration
1	*Acacia albida*	Fabaceae	Tree	12	P	
2	*Acacia melanoxylon* R.Br.	Fabaceae	Tree	67	P	
3	*Acacia tortilis* (Forssk.)	Fabaceae	Tree	14	P	
4	*Albizia gummifera* (J.F.Gmel.	Fabaceae	Tree	5	P	
5	*Albizia schimperiana var.* schimperiana	Fabaceae	Tree	4	P	
6	*Aningeria adolfi-friedericii*	Sapotaceae	Tree	6	P	
7	*Arundo donax*	Poaceae	Shrub	9	P	
8	*Azadirachta indica*	Meliaceae	Tree	3	P	
9	*Casuarina equisetifolia* L.	Casuarinaceae	Tree	87	P	
10	*Cellis quinquefolia* L.	Ulmaceae	Tree	8	P	
11	*Cordia africana* Lam.	Boraginaceae	Tree	97	P	
12	*Croton macrostachyus* Del.	Euphorbiaceae	Tree	33	P	
13	*Cupressus lusitanica* Mill.	Cupresaceae	Tree	98	P	
14	*Eucalyptus camaldulensis* Dehn.	Myrtaceae	Tree	29	P	
15	*Eucalyptus globulus*	Myrtaceae	Tree	4	P	
16	*Eucalyptus saligna* Smith.	Myrtaceae	Tree	54	P	
Appendix IV. Contd.

No.	Scientific name	Local name	Family	Habit	Fr.	Duration
17	*Ficus sur* Forssk.	Odakko	Moraceae	Tree	8	P
18	*Ficus vasta*		Moraceae	Tree	14	P
19	*Grevillea robusta* R.Br.	Temenjazaf	Proteaceae	Tree	99	P
20	*Hagenia abyssinica* (Bruce) J.F.Gmel.	Dadako	Rosaceae	Tree	6	P
21	*Juniperus procera* Hochst ex Engl.	Honcho	Cupresaceae	Tree	13	P
22	*Melia azedarach* L.	Neem,	Meliaceae	Tree	118	P
23	*Olea europaea* L.ssp. Cuspidata (Wall.ex G.Don) Cif.	Egersu	Oleaceae	Tree	7	P
24	*Pinus patula* L.	Patula	Pinaceae	Tree	16	P
25	*Pinus radiata*		Pinaceae	Tree	5	P
26	*Podocarpus falcatus* (Thunb.) Mirb.	Dagucho	Podocarpaceae	Tree	11	P
27	*Prunus africana* (Hook.f.)Kalkm	Garbo	Rosaceae	Tree	9	P
28	*Syzygium guineense* (Wild.)DC.	Duwancho	Myrtaceae	Tree	3	P
29	*Balanites aegyptiaca* (L.) Del.	Badana	Balanitaceae	Tree	4	P

Appendix V. List of plants used as fire wood.

No.	Scientific name	Local name	Family	Habit	Fr.	Duration
1	*Acacia abyssinica* Hochst Ex Benth	Wacho	Fabaceae	Tree	12	P
2	*Acacia albida*	Grar	Fabaceae	Tree	24	P
3	*Acacia etbaica* Schweinf.	Grar	Fabaceae	Tree	10	P
4	*Acacia mearnsii* DeWild.	Yeferjegrar	Fabaceae	Tree	32	P
5	*Acacia nilotica*	Cheba	Fabaceae	Tree	6	P
6	*Acacia seyal* Del.	Wachu	Fabaceae	Tree	15	P
7	*Acacia melanoxylon* R.Br.	Omedella	Fabaceae	Tree	55	P
8	*Acacia tortilis* (Forsk.)Hayne	Dewenigrar	Fabaceae	Tree	20	P
9	*Albizia gummifera* (J.F.Gmel.	Maxicho	Fabaceae	Tree	4	P
10	*Albizia schimperiana* var. schimperiana	Gorbe	Fabaceae	Tree	3	P
11	*Azadirachta indica*	Neem	Meliaceae	Tree	2	P
12	*Senna didymobotrya* (Fresen.) Irwin & Barneby	Harashaqa	Caesalpinioideae	Shrub	4	P
13	*Casuarina equisetifolia* L.	Arezalbano	Casuarinaceae	Tree	77	P
14	*Cellis africana* Burm.f	Amalaka	Ulmaceae	Tree	4	P
15	*Combretum collinum* Fresen.	Wanza	Combretaceae	Tree	5	P
16	*Cordia africana* Lam.	Masincho	Borrinaceae	Tree	114	P
17	*Croton macrostachyus* Del.	Homme	Euphorbiaceae	Tree	68	P
18	*Cupressus lusitanica* Mill.	Etancha	Cupresaceae	Tree	76	P
19	*Dodonaea angustifolia* L.	Etancha	Sapindaceae	Tree	7	P
20	*Eucalyptus camaldulensis* Dehn.	Duumebahirzafe	Myrtaceae	Tree	78	P
Appendix V. Contd.

No.	Species Name	Common Name	Family	Life Form	Height	Code
21	*Eucalyptus globulus*	Duume bahirzafe	Myrtaceae	Tree	2	P
22	*Ficus sur* Forssk.	Odakko	Moraceae	Tree	7	P
23	*Grevillea robusta* R.Br.	Temenjazaf	Proteaceae	Tree	89	P
24	*Hagenia abyssinica* (Bruce)J.F.Gmel.	Dadako	Rosaceae	Tree	12	P
25	*Jacaranda mimosifolia* D.Don.	Jacaranda	Bignoniaceae	Tree	79	P
26	*Justicia schimperiana* (Hochst ex.Nees)	Cikkicho	Acanthaceae	Shrub	23	P
27	*Maytenus arbutilloia* (A.Rich,)Wilczek	Cucco	Cleastraceae	Tree	5	P
28	*Melia azedarch* L.	Neem,	Meliaceae	Tree	116	P
29	*Millettia ferruginea* (Hochst.)Bak.	Hengedicho	Fabaceae	Tree	10	P
30	*Olea europaea* L.ssp. *Cuspidata* (Wall.ex G.Don) Cif.	Ejersu	Oleaceae	Tree	19	P
31	*Pinus patula* L.	Patula	Pinaceae	Tree	36	P
32	*Podocarpus falcatus* (Thunb.) Mirb.	Dagucho	Podocarpaceae	Tree	24	P
33	*Prunus africana* (Hook.f.)Kalkm	Garbicho	Rosaceae	Tree	18	P
34	*Schinus molle* L.	Kunde berbere	Anacardiaceae	Tree	63	P
35	*Sesbania sesban* (L.) Merr.	Arbeti	Fabaceae	Shrub	39	P
36	*Spathodea campanulata* P.Beauv. ssp. nilotica.	Spathoda	Bignoniaceae	Tree	45	P
37	*Syzygium guineense* (Wild.,DC.	Duwancho	Myrtaceae	Tree	5	P
38	*Vernonia amygdalina* Del.	Hecho	Asteraceae	Shrub	74	P
39	*Balanites aegyptiaca* (L.) Del.	Badano	Balanitaceae	Tree	12	P

Cl, climbers; P, Perennial; A, Annual; C, Cultivated; W, Wild; T, Tree; Sh, Shrub; H, Herb.