Expression of pituitary adenylate cyclase-activating polypeptide 1 and 2 receptor mRNA in gallbladder tissue of patients with gallstone or gallbladder polyps

Zhen-Hai Zhang, Shuo-Dong Wu, Hong Gao, Gang Shi, Jun-Zhe Jin, Jing Kong, Zhong Tian, Yang Su

Abstract

AIM: To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor 1 (VPCAP-1-R) and VPCAP-2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps.

METHODS: The expression of VPCAP-1-R and VPCAP-2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone, 8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR).

RESULTS: The VPCAP-2-R mRNA expression level in the control group (1.09±0.58) was lower than that in the gallbladder polyp group (1.64±0.56) and the gallstone group (1.55±0.45) (P<0.05) while the VPCAP-1-R mRNA expression level in the control group (1.15±0.23) was not apparently different from that in the gallbladder polyp group (1.28±0.56) and the gallstone group (1.27±0.38).

CONCLUSION: The abnormal expression of VPCAP-2-R mRNA in gallbladder tissue may play a role in the formation of gallstone and gallbladder polyps.

© 2006 The WJG Press. All rights reserved.

Key words: VPCAP-1-R; VPCAP-2-R; RT-PCR; Gallbladder disease

INTRODUCTION

Gallbladder motility and bile delivery to the duodenum involve a complex interplay between neural and hormonal factors. Acetylcholine, cholecystokinin (CCK) and vasoactive intestinal polypeptide (VIP) in the nerve endings function as neurotransmitters, leading to contraction and relaxation of the gallbladder musculature[1-3]. VIP can relax the gallbladder, reduce gallbladder tone and inhibit CCK-stimulated contraction in a dose-dependent manner [4]. VIP exerts its action through receptors on the gallbladder wall and binds to two subtypes of VIP receptors, previously called VIP₁ and VIP₂ receptors. Because these receptors also have a high affinity for pituitary adenylate cyclase-activating polypeptide (PACAP), they have recently been named VPCAP₁ and VPCAP₂ receptors. The purpose of this study was to detect the expression of VPCAP₁-R and VPCAP₂-R mRNA in gallbladder tissue and to define their role in the formation of gallstone and gallbladder polyps.

MATERIALS AND METHODS

Patients

Gallbladder tissue from 25 patients with gallbladder cholesterol stone (12 men, 13 women, mean age 59.6 years, range 34-5 years) and 8 patients with gallbladder cholesterol polyps (2 men, 6 women, mean age 46.8 years, range 26-64 years) was obtained during surgery. Patients who had a history of acute cholecystitis were excluded. Gallbladder tissue from 7 donors of liver transplantation (all men, mean age 41.4 years, range 25-63 years) was used as control. The tissues were frozen in liquid nitrogen and stored at -80 °C.

Extraction of RNA

Total RNA was extracted from 100 mg gallbladder tissue samples using TRIzol reagent according to the manufacturer’s instructions. The concentration and purity of RNA were determined by a spectrophotometer at 260 and 280 nm. All RNA isolates had an OD₂₆₀/OD₂₈₀ value of 1.8±2.0, indicating clean RNA isolates.
Reverse transcription-polymerase chain reaction (RT-PCR)
The primers for amplifying VPCAP-R and VPCAP-B mRNA were designed using the published Homo sapiens VPCAP-R mRNA (NM 004624) and VPCAP-B mRNA (NM 003382) sequences. The sequences of primers for VPCAP-R mRNA were: forward 5'- AGATGCAGCTCACTACCTAT -3' and reverse 5'- TTCAGAGTCCCTCAGTCCCTT-3', which generated a 179-bp amplification product. The sequences of primers for VPCAP-B mRNA were: forward 5'- TGCTGCAACAAGCTCATCCCT -3' and reverse 5'- GACCCAACACTTCAGTTACCAC -3', which generated a 380-bp amplification product.

Two micrograms of total RNA was used as a template for subsequent RT-PCR. The total RNA was mixed with 1 µL oligo(dT)18, 1 µL dNTPs and H2O and preheated at 65°C for 1 min to denature the secondary structure. The mixture was then cooled rapidly to 30°C for 1 min, 10 µL 2X RT buffer, 4 µL 25% MgSO4, 1 µL 22 u/µL AMV, 0.5 µL 40 u/µL RNase-inhibitor were added. Reverse transcriptase was added for a total volume of 20 µL. The RT mixture was incubated at 65°C for 30 min and then stopped by heating at 98°C for 5 min and cooling at 5°C for 5 min.

PCR was performed on a PTC-200 PCR machine using 3 µL of cDNA, 0.1 µL of each oligonucleotide primer, 2 µL of each dNTP, 0.2 µL Taq polymerase and 10 X Taq polymerase buffer in a total volume of 25 µL. The PCR conditions were denaturation at 94°C for 3 min, then a 94°C for 45 s, followed by 35 cycles of annealing of VPCAP-R mRNA at 52.5°C for 1 min and VPCAP-B mRNA at 57.3°C for 1 min, extension at 72°C for 1 min, a final extension at 72°C for 7 min.

The PCR products were analyzed by electrophoresis on 2% agarose gels containing ethidium bromide. The gels were photographed on top of a 280 nm UV light box. The gel images were captured with a digital camera and analyzed with the ID Kodak Imager analysis program. RT-PCR values were presented as a ratio of the receptor mRNA signal divided by the β-actin signal.

Statistical analysis
Data were expressed as mean ± SD. Statistical analyses were performed by the independent two-tailed t test. P<0.05 was considered statistically significant. The SPSS11.5 software was used for statistical analysis.

RESULTS
Total RNA isolated from gallbladder tissues was subjected to reverse transcription-PCR analysis for the expression of VPCAP-R and VPCAP-B mRNA. A 179-bp band and a 380-bp band, specific for VPCAP-R and VPCAP-B mRNA, were found in gallbladder tissue of all the three groups (Figures 1A and 1B). Furthermore, expression of VPCAP-R and VPAC1 P-R mRNA was detected by RT-PCR assay. The levels of PCR amplified VPCAP-R and RT-PCR amplified VPCAP-B mRNA and β-actin mRNA in three groups were compared.

Expression of VPCAP-R mRNA in gallbladder tissue
The VPCAP-R mRNA level in control group (1.15 ± 0.23) was not significantly different from that in gallbladder polyps group (1.28 ± 0.56) and gallstone group (1.27 ± 0.38) (Table 1).

Expression of VPCAP-B mRNA in gallbladder tissue
The VPCAP-B mRNA level in control group (1.09 ± 0.58) was lower than that in gallbladder polyps group (1.64 ± 0.56) and gallstone group (1.55 ± 0.45) (P <0.05) while no difference in the expression of VPCAP-B mRNA was found between these two groups (Table 1).

DISCUSSION
Vasoactive intestinal peptide (VIP), a 28-amino acid peptide capable of inducing vasodilation, was first isolated from porcine intestine[5]. It has many other actions as a neuroendocrine hormone and neurotransmitter. It may play an important role in the central nervous system (CNS)[8]. VIP can stimulate prolactin secretion from the pituitary[1], regulate noncholinergic trans-synaptic functions of the adrenal medulla[9], and inhibits proliferation of T cells in the immune system[9]. Other functions of VIP include protection against oxidant injury[10], stimulation of
electrolyte secretion10, relaxation of smooth muscle11,12. Intrinsnic nerves modulate gallbladder function. Nitric oxide synthase (NOS) and VIP are present in gallbladder neurons and nitric oxide and VIP modulate its epithelial functions13. Intravenous infusion of VIP is associated with the secretion of bicarbonate from the gallbladder mucosa14. Relaxation of canine gallbladder depends on nerve stimulation by adrenergic and non-adrenergic as well as non-cholinergic (NANC) nerves. Nitric oxide and VIP contribute to relaxation of NANC nerves in canine gallbladder15. The effect of VIP on guinea pig gallbladder in vitro suggests that VIP has no effect on basal tone, but produces a 26.7 ± 6.6\% relaxation of CCK-contracted strips16.

The first recombinant receptor for VIP is isolated from rat lung by Ishihara et al17. This receptor is originally described as the VIP receptor and subsequently designated as the VIP\textsubscript{1} receptor18. Messenger RNA encoding the VPCAP\textsubscript{1} receptor is widely distributed in CNS19,20, peripheral tissues of liver21, lung22,23 and intestine24 as well as in T lymphocytes25. The second receptor that responds to VIP and PACAP with comparable affinity has been cloned from the rat olfactory bulb by Lutz et al17. The highest concentration of messenger RNA is found in CNS26. The receptor is also present in several peripheral tissues of pancreas, skeletal muscle, heart, kidney, adipose tissue, testis and stomach27,28.

Researches about the distribution of VIP receptor in the gallbladder tissues are relatively few. Guo et al29 studied VIP receptor expression in patients with gallstones using immunohistochemical technique and found that positive VIP receptor expression level is higher in patients with abnormal fasting gallbladder volume than in patients with normal fasting gallbladder volume. Fu et al30 studied values of the max bind content (Bmax) of VIP receptor in gallbladder wall tissue of guinea pigs by radioisogand binding assay and found that the values of Bmax are obviously increased during formation of gallstone. Dupont et al31 found that there are specific binding sites for VIP in isolated epithelial cells of human gallbladder measured by radioimmunoassay. Their results indicate two functionally independent classes of receptor sites and VIP strongly stimulates adenosine 3':5' monophosphate (cyclic AMP) production.

In our study, the VPCAP\textsubscript{1} receptor mRNA level in gallstone group was significantly different from that in control group; the VPCAP\textsubscript{2} receptor mRNA level in gallstone group was higher than that in control group; predominant VPCAP\textsubscript{2} receptor was found in smooth muscle (in blood vessels and smooth muscle layer of the gastrointestinal and reproductive systems). The main hormonal regulator of gallbladder contraction is CCK. Recent studies suggest that CCK receptor mRNA level is down-regulated in patients with gallstone and animal32,33. Previous studies have shown that human gallbladders with cholesterol stone reduce their contractions in response to agonists such as cholecystokinin, acetylcholine and muscle defects responsible for impaired gallbladder muscle contraction in plasma membranes of smooth muscle cells because of excessive incorporation of cholesterol34,35. The diffuse membrane defect caused by cholesterol may also affect other transmembrane proteins that mediate muscle relaxation. It was reported that gallbladder relaxation is significantly reduced in gallbladders with cholesterol stones36. Up-regulation of VPCAP\textsubscript{2} receptor mRNA may compensate for the abnormal receptor function of cholesterol. But the down-regulation of CCK receptor mRNA cannot compensate for the abnormal receptor function of membranes. Therefore contraction function of gallbladder is greatly affected rather than the relaxation function. Since up-regulation of VPCAP\textsubscript{2} receptor mRNA in epithelial cells can affect their secreting function, the abnormal expression of VPCAP\textsubscript{2} receptor mRNA may play a role in gallstone formation.

Excess cholesterol is the main cause of gallbladder polyps and may reduce the membrane fluidity, which in turn affects receptor function or receptor G-protein interaction. There are two specific binding sites for VIP in isolated epithelial cells of human gallbladder. In our study, VPCAP\textsubscript{2} receptor mRNA was over-expressed in patients with gallbladder polyps, which may be due to the abnormal receptor functions of cholesterol. Over-expression of VPCAP\textsubscript{2} receptor mRNA may occur in epithelial cells, leading to abnormal secretion and absorption of epithelial cells. This disorder may play a role in formation of gallbladder polyps.

A large number of factors, such as genetics, cholesterol saturation, sphincter of Oddi pressure, bacterial contamination of biliary tree, can induce formation of gallbladder stone and gallbladder polyps. The motility disturbances related to up-regulation of VPCAP\textsubscript{2} receptor mRNA may play a role in formation of gallbladder stones and gallbladder polyps. However, what cell membranes does the over-expression of VPCAP\textsubscript{2} receptor mRNA occur needs to be further studied.

REFERENCES

1. Bauer AJ, Hanani M, Muir TC, Szurszewski JH. Intracellular recordings from gallbladder ganglia of opossums. Am J Physiol 1991; 260: C299-C306
2. Talmage EK, Mawe GM. NADPH-diaphorase and VIP are co-localized in neurons of gallbladder ganglia. J Auton Nerv Syst 1993; 43: 83-89
3. Mawe GM, Talmage EK, Combrooks EB, Gokin AP, Zhang L, Jennings LJ. Innervation of the gallbladder: structure, neurochemical coding, and physiological properties of guinea pig gallbladder ganglia. Microsc Res Tech 1997; 39: 1-13
4. Greaves RR, O'Donnell LJ, Battistini B, Forget MA, Farthing MJ. The differential effect of VIP and PACAP on guinea pig gallbladder in vitro. Eur J Gastroenterol Hepatol 2000; 12: 1181-1184
5. Besson J, Sarrieau A, Vial M, Marie JC, Rosselin G, Rostene W. Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res 1986; 349: 329-336
6. Sokolowska P, Dejda A, Nowak JZ. Neuroprotective role of PACAP, VIP, and PHI in the central nervous system. Postepy Hig Med Dosw (Online) 2004; 58: 416-427
7. Egli M, Bertram R, Sellix MT, Freeman ME. Rhythmic secretion of prolactin in rats: action of oxytocin coordinated by vasoactive intestinal polypeptide of suprachiasmatic nucleus origin. Endocrinology 2004; 145: 3386-3394
8. Babinski K, Bodart V, Roy M, De Lean A, Ong H. Pituitary adenylate-cyclase activating polypeptide (PACAP) evokes long-lasting secretion and de novo biosynthesis of bovine adrenal medullary neuropeptides. Neuropeptides 1996; 30: 572-582
9. Delgado M, Gonzalez-Rey E, Ganea D. VIP/PACAP preferentially attract Th2 effectors through differential regulation
of chemokine production by dendritic cells. FASEB J 2004; 18: 1435-1453
10 Said SI, Dickman KG. Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide. Regul Pept 2000; 93: 21-29
11 Buresi MC, Vergnolle N, Sharkey KA, Keenan CM, Andrade-Gordon P, Cirino G, Cirillo D, Hollenberg MD, MacNaughton WK. Activation of proteinase-ac tivated receptor-1 inhibits neurally evoked chloride secretion in the mouse colon in vitro. Am J Physiol Gastrointest Liver Physiol 2005; 288: G337-G345
12 Van Geldre LA, Lefebvre RA. Interaction of NO and VIP in gastrointestinal smooth muscle relaxation. Curr Pharm Des 2004; 10: 2483-2497
13 Meedeniya AC, Schloitte AC, Touuli J, Saccone GT. Characterization of the intrinsic and extrinsic innervation of the gall bladder epithelium in the Australian Brush-tailed possum (Trichosurus vulpecula). Neurogastroenterol Motil 2003; 15: 383-392
14 Nilsson B, Valantinas J, Hedin L, Friman S, Svanvik J. Acetazolamide inhibits stimulated feline liver and gallbladder bicarbonate secretion. Acta Physiol Scand 2002; 174: 117-123
15 Alcon S, Morales S, Camelio PJ, Sa lido GM, Miller SM, Pozo MJ. Relaxation of canine gallbladder to nerve stimulation involves adrenergic and non-adrenergic-non-cholinergic mechanisms. Neurogastroenterol Motil 2001; 13: 555-566
16 Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992; 8: 811-819
17 Lutz EM, Sheward WJ, West KM, Morrow JA, Fink G, Harmar AJ. The VIP receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBs Lett 1993; 334: 3-8
18 Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, Cha CI. Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 2004; 476: 388-413
19 Karacay B, O’Doriso MS, Kasov K, Hol lenback C, Krahe R. Expression and fine mapping of murine vasoactive intestinal peptide receptor 1. J Mol Neurosci 2001; 17: 311-324
20 Ren YH, Qin XQ, Guan CX, Luo ZQ, Zhang CQ, Sun XH. The temporal and spatial distribution of vasoactive intestinal peptide and its receptor in the development of airway hyperresponsiveness. Zhonghua Jie He Hu Xi Za Zhi 2004; 27: 224-230
21 Lara-Márquez M, O’Doriso M, O’Doriso T, Shah M, Karacay B. Selective gene expression and activation-dependent regulation of vasoactive intestinal peptide receptor type 1 and type 2 in human T cells. J Immunol 2001; 166: 2522-2530
22 Harmar AJ, Sheward WJ, Morrison CF, Waser B, Gugger M, Reubi JC. Distribution of the VPAC2 receptor in peripheral tissues of the mouse. Endocrinology 2004; 145: 1203-1210
23 Krempels K, Usdin TB, Harta G, Mezey E. PACAP acts through VIP type 2 receptors in the rat testis. Neuropeptides 1995; 29: 315-320
24 Usdin TB, Bonner TI, Mezey E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 1994; 135: 2662-2680
25 Wi Y, Mojsov S. Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide: implications for their role in human physiology. J Neuroendocrinol 1996; 8: 811-817
26 Gao G, Ding ZQ, Zou SQ. The changes of vasoactive intestinal polypeptide and VIPR expression in the patients with cholesterol gallstone. J Clin Surg 2004; 12: 224-226
27 Fu HQ, Jiang XQ, Xiong BJ, TAN ZT, ZOU SB, HU ZQ. Study on somatostatin and vasoactive intestinal peptide in guinea pig during gallstone formation. Zhonghua shiyan waike zazhi 2000; 17: 28-29
28 Dupont C, Broyrat JP, Broer Y, Chenut B, Laburthe M, Roselin G. Importance of the vasoactive intestinal peptide receptor in the stimulation of cyclic adenosine 3’,5’-monophosphate in gallbladder epithelial cells of man. Comparison with the guinea pig. J Clin Invest 1981; 67: 742-752
29 Sato N, Miyasaka S, Suzuki S, Kanai S, Ohta M, Kawanami T, Yoshida Y, Takiguchi S, Noda T, Takata Y, Funakoshi A. Lack of cholecystokinin-A receptor enhanced gallstone formation: a study in CCK-A receptor gene knockout mice. Dig Dis Sci 2003; 48: 1944-1947
30 Shuai J, Zhang SD, Han TQ, JIANG Y, LEI RQ, CHENG S. Correlation between gene expression of CCK2A receptor and gallbladder emptying in gallstone patients. Zhonghua waike zazhi 1999; 37: 292-294
31 Jazrawi RP, Pazzi P, Petroni ML, Prandini N, Paul C, Adam JA, Gullini S, Northfield TC. Postprandial gallbladder motor function: refilling and turnover of bile in health and in cholelithiasis. Gastroenterology 1995; 109: 582-591
32 Behar J, Lee KY, Thompson WR, Biancapi P. Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology 1989; 97: 1479-1484
33 Chen Q, Amaral J, Oh S, Biancapi P, Behar J. Gallbladder relaxation in patients with pigment and cholesterol stones. Gastroenterology 1997; 113: 930-937

S- Editor Guo SY L- Editor Wang XL E- Editor Cao L