Potential for Biomedical Applications of Galactomannans and Xyloglucans from Seeds: An Overview

Guilhermina Rodrigues Noleto* and Carmen Lúcia Oliveira Petkowicz
Departamento de Bioquímica e Biologia Molecular, CP 19046, CEP 81531-980, Universidade Federal do Paraná, Curitiba, Paraná, Brazil

Abstract
Galactomannans and xyloglucans can be isolated from seeds with relatively high purity and yield; they are water soluble, non-toxic, and biocompatible. These polymers have broad spectra of potential use in medicine, from drug delivery systems to biological response modifiers. The biological activity of polysaccharides is intrinsically linked to their structural aspects. In general the chemical modification of galactomannans and xyloglucans, e.g., sulfation and complexation with oxovanadium, potentiate effects such as cytotoxicity against tumor cells, leishmanicidal activity, and activation of macrophages to release proinflammatory mediators. The wide range of seeds and structural variety favor the isolation of galactomannans and xyloglucans. This allows derivatives to be obtained with targeted properties and activity enabling their use in new applications in the biomedical area.

Keywords: Galactomannans; Xyloglucans; Seeds

Introduction
Seeds play a central role in plant reproduction and human nutrition. A seed contains all the genetic material and nutrients required for the successful propagation of the species. After germination, the reserve material is mobilized to sustain the plantlet before it becomes a self-sufficient autotrophic organism [1,2].

Storage compounds can account for up to 90% of the seed’s dry weight and they are usually responsible for the economic value of seeds [1,2]. The main storage compounds accumulated in seeds consist of starch, triacylglycerols, and proteins [1]. Although starch is the most abundant storage carbohydrate, some seeds produce other polysaccharides, which are categorized as reserve compounds [3]. The best studied polysaccharides of this group are galactomannans and xyloglucans. The main reason is the interest due to the economic importance of these polymers, which can be used as thickening and stabilizing agents in the industry [3,4]. In addition, as galactomannans and xyloglucans can be isolated from seeds with relatively high purity and yield, are water soluble, non-toxic, and biocompatible, they are also suited for biological applications [5-10].

Galactomannans
Galactomannans are linear chains of β(1→4) D-mannosyl units, which are substituted by single α(1→6) linked D-galactopyranosyl residues as side chains. They are usually found in the endosperm of leguminous seeds and the Man/Gal ratio is species specific, typically ranging from 1.1 to 5.0 [3,4,11]. The yield of galactomannan can reach up to 38% of the seed weight [11]. It has been pointed out that more than 70 species of the family Leguminosae have been identified storing galactomannans [11]. The Man/Gal ratio and the distribution of the galactose units along the main chain strongly affect the functionalities of galactomannans [4]. On the other hand, the relation between Man/Gal ratio and the biological function of galactomannans has not been established yet [4]. Guar (Cyamopsis tetragonolobus) and locust bean (Ceratonia siliqua) are the main sources of commercial galactomannans, which have Man/Gal ratios of 4:1 and 2:1, respectively. However, several other species have been described to contain galactomannans [11]. Among the alternative sources of galactomannans, Schizolobium amazonicum and Mimosa scabrella seeds have been investigated [3,12].

Regarding the biomedical area, galactomannans have broad spectra of applications, from potential drug delivery systems to biological response modifiers (BRMs) [7,13-18]. The latter ability enables some galactomannans to be used as immunomodulators [17,18]. Since galactomannans are heterogeneous and polydisperse polymers [19-21], several studies indicate that applications and effects of galactomannans are intrinsically linked to structural features of the polymers [4]. For example, matrix tablets of galactomannan from Senna tora seeds showed better ability for sustained release potential of losartan potassium when compared to the matrix tablets from other galactomannans, such as that prepared with guar gum [4]. In this regard, chemical modification of galactomannans can be used to improve specific applications [22-27]. Galactomannans extracted from Mimosa scabrella and Leucaena leucocephala seeds, after sulfation protected against infection by flavivirus [23]. Chrestanet al. [28] also observed antiviral (antherceptic and antivrotavirus) effects by sulfated galactomannan from M. scabrellla. Galactomannans from L. leucacephala seeds and their chemically sulfated derivative, both at the same concentration, were cytotoxic to Vero cells while its unmodified form did not exhibit any effect [24]. Chemically sulfated galactomannan from Dimorphandra gardneriana seed was cytotoxic to Vero cells while its unmodified form did not exhibit any effect [25] and the galactomannan from Senna macranthera showed strong anticoagulant activity after sulfation [26].

Galactomannans and their derivatives oxovanadium (IV/V)-complexes were evaluated for cytotoxicity against tumor cell lines [29], immunomodulation, and leishmanicidal activities [26]. Native galactomannans (GALMAN-A) isolated from seeds of M. scabra and its enzymatically hydrolyzed form (GALMAN-B), as well as their oxovanadium(IV/V) complexes designated GALMAN-A:VO²⁺/VO³⁺ and GALMANB:VO²⁺/VO³⁺, respectively, were evaluated in HeLa cells protecting against infection by flavivirus [23]. Chrestanet al. [28] also observed antiviral (antherceptic and antivrotavirus) effects by sulfated galactomannan from M. scabrellla. Galactomannans from L. leucacephala seeds and their chemically sulfated derivative, both at the same concentration, were cytotoxic to Vero cells while its unmodified form did not exhibit any effect [24]. Chemically sulfated galactomannan from Dimorphandra gardneriana seed was cytotoxic to Vero cells while its unmodified form did not exhibit any effect [25] and the galactomannan from Senna macranthera showed strong anticoagulant activity after sulfation [26].

Galactomannans and their derivatives oxovanadium (IV/V)-complexes were evaluated for cytotoxicity against tumor cell lines [29], immunomodulation, and leishmanicidal activities [26]. Native galactomannans (GALMAN-A) isolated from seeds of M. scabra and its enzymatically hydrolyzed form (GALMAN-B), as well as their oxovanadium(IV/V) complexes designated GALMAN-A:VO²⁺/VO³⁺ and GALMANB:VO²⁺/VO³⁺, respectively, were evaluated in HeLa cells protecting against infection by flavivirus [23]. Chrestanet al. [28] also observed antiviral (antherceptic and antivrotavirus) effects by sulfated galactomannan from M. scabrellla. Galactomannans from L. leucacephala seeds and their chemically sulfated derivative, both at the same concentration, were cytotoxic to Vero cells while its unmodified form did not exhibit any effect [24].
cells [29]. Only the complexed forms promoted cytotoxicity against this cell line and GALMAN-B:VO\(^3+\)/VO\(^3+\) was ~3-fold more potent than GALMAN-A:VO\(^3+\)/VO\(^3+\). In another study, GALMAN-A and GALMAN-A:VO\(^3+\)/VO\(^3+\) preparations modulated macrophages at different intensities to produce pro-inflammatory mediators [27]. The uncomplexed form increased nitric oxide production by ~33% compared to control, while GALMAN-A:VO\(^3+\)/VO\(^3+\) inhibited it. On the other hand, the complexed form increased interleukin-1 beta (IL-1\(\beta\)) and interleukin-6 (IL-6) by 45% and 139%, respectively, compared to GALMAN-A. Both preparations, i.e., GALMAN-A and GALMAN-A:VO\(^3+\)/VO\(^3+\), exhibited leishmanicidal activity against amastigotes of *Leishmania (L.) amazonensis* and reached ~60% toxicity. However, GALMAN-A:VO\(^3+\)/VO\(^3+\) was active against oxidative damage and tumors. According to those authors, the selenious derivative was more potent than the sulfated one.

Xyloglucans

Storage xyloglucans consist of a cellulose-like backbone carrying single α-D-xylopyranosyl units attached to O-6, while some xylosyl residues were further substituted at O-2 by β-D-galactopyranosyl units. They are found in the cotyledons of some leguminous seeds [30]. The content of xyloglucan can reach up to 45% of the seed [6]. The only commercial source is *Tamarindus indica* (tamarind). Other leguminous seeds which were described to contain xyloglucans include *Copaifera langsdorffii*, *Hymenaea courbaril*, and *Mucuna sloanei* [6,30]. Xyloglucans from different sources can differ regarding side chain distribution patterns [6].

Xyloglucans possess broad spectra of application in textile, cosmetic, nutritional, and pharmaceutical industries [31]. Regarding the biomedical area, the main use of xyloglucans is in the preparation of formulations for drug delivery system [32-34] due to their capacity to form thermoreversible gels. When galactose units from xyloglucan are partially removed by enzymatic treatment, the modified polymer exhibits thermoreversible gelation in dilute aqueous solutions [35-37]. Due to the relatively low transition temperature of the gels, it is also used in formulations to sustain viscosity and improve application [38]. *Tamarindus indica* xyloglucan hydrogel scaffolds have also been investigated for neural tissue engineering of the spinal cord [39]. The xyloglucan of *T. indica* seeds is partially removed by enzymatic treatment, the modified polymer is used in formulations to sustain viscosity and improve application [38].

Data from the literature demonstrates that xyloglucans from different sources can exhibit different biological effects due to differences in the fine structure of polymers. In addition, new biological effects can be achieved by xyloglucan modifications.

Conclusions and Perspectives

This minireview shows that galactomannans and xyloglucans from seeds can be readily obtained and possess a wide variety of characteristics, from proper physical chemistry properties that enable them to be used as vehicle to drugs to the ability to modify biological responses. Given the broad range of seeds, these polymers can be obtained at higher amounts to be used in broad spectra of applications.

Immunomodulation is used to improve health by preventing and treating many diseases. In recent years, it has been demonstrated that the cure of leishmaniasis can be reached by activating the immune system. Thus, it can be suggested that many activities exhibited by galactomannans and xyloglucans from seeds, such as ability to form gels and their immunomodulating potential, enable them to be used in formulations for topical use in the treatment of diseases such as cutaneous leishmaniasis since local applications can contribute to treatment efficacy. This possibility is in progress in our group.

References

1. Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6: e0113.

2. Bewley JD, Black M (1986) Seeds germination, structure and composition. In: Seeds: Physiology of Development and Germination. New York: Plenum Press, pp: 1-27.

3. Avigad G, Dey PM (1997) Storage carbohydrates. Plant biochemistry 3: 143-204.

4. Gidley MJ, Reid JG (2006) Galactomannans and other cell wall storage polysaccharides in seeds. Food polysaccharides and their applications 28: 181-215.

5. Persin Z, Stana-Kleinschek K, Foster TJ, Van Dam JE, Boeriu CG, et al. (2011) Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydrate Polymers 84: 22-32.

6. Petkowicz CLO, Vargas-Rechia CG, Busato AP, Reicher F (2006) Carboxihdratos em alimentos regionales iberoamericanos. USP, São Paulo: 1. 125-147.
21. Leung MY, Liu C, Koon JC, Fung KP (2006) Polysaccharide biological response modifiers. Immunol Lett 105: 101-114.
22. Miyazaki S, Suisha F, Kawasaki M, Shikakiiwa M, Yamanota K, et al. (1998) Xyloglucan gels as sustained release vehicles for the intraperitoneal administration of mytomycin C. Int J Pharm 172: 27-32.
23. Miyazaki S, Suisha F, Kawasaki M, Shikakiiwa M, Yamanota K, et al. (1998) Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. Int J Control Release 56: 75-83.
24. Sone Y, Makino C, Misaki A (1992) Inhibitory effect of oligosaccharides from seeds of the Leguminosae. Phytochemistry 49: 737-743.
25. Bento JF, Mazzaro I, de Almeida Silva LM, de Azevedo Moreira R, Ferreira ML, et al. (2013) Diverse patterns of cell wall mannan/galactomann occurrence in seeds of the Leguminosae. Carbohydrate polymers 92: 192-199.
26. Wani SA, Kumar P (2016) Fenugreek: A review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences.
27. Nayak AK, Pal D, Santra K (2015) Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients. Int J Biol Macromol 79: 756-760.
28. Chrestani F, Sierakowski MR, de Andrade Uchoa DE, Nozawa C, Sasaki GL, et al. (2009) In vitro antitherpeptic and antirrotaviral activities of a sulfate prepared from Mimosa scabrella galactomannan. International Journal of biological macromolecules 45: 453-457.
29. Noleto GR, Petkowicz CLO, Mercê ALR, Noseda MD, Mende-Sánchez SC, et al. (2009) Two galactomannan preparations from seeds from Mimosa scabrella (brazacatinga): Complexation with oxovanadium(IV/V) and cytotoxicity on HeLa cells. J Inorg Biochem 103: 749-757.
30. Teixeira-Sá DM, Reicher F, Braga RC, Beltramini LM, de Azevedo Moreira R (2009) Isolation of a lectin and a galactoxygenan from Mucuna sloanei seeds. Phytochemistry 70: 1965-1972.
31. Mishra A, Malhotra AV (2009) Tamarind xyloglucan: a polysaccharide with versatile application potential. Journal of Materials Chemistry. J Mater Chem 19: 8528-8536.
32. Sumathi S, Ray AR (2002) Release behaviour of drugs from tamarind seed polysaccharide tablets. J Pharm Pharm Sci 5: 12-18.
33. Chandramouly V, Firoz S, Vikram A, Mahilta B, Yasmine BR, et al. (2012) Tamarind seed polysaccharide (tsp) - an adaptable excipient for novel drug delivery systems. Int J Pharm Practice & Drug Res 2: 57-63.
34. Ganesan K, Rajaram SK, Chinnathambi A, Murugesan V, Muruganathan K, et al. (2013) A sustained release of tablet granules associated with ZnS nanocrystals using Tamarind seed polysaccharide. J Applied Pharm Sci 3: 544-547.
35. Mora M, Somanath S, Younis M, Xie M (2016) Fractionation, physicochemical properties and immunological activity of polysaccharides from Cassia obtusifolia. Int J Biol Macromol 91: 946-953.
36. Santos JP, de Souza RL, de Almeida Silva LM, de Azevedo Moreira R, Ferreira ML, et al. (2013) Diverse patterns of cell wall mannan/galactomann occurrence in seeds of the Leguminosae. Carbohydrate polymers 92: 192-199.
37. Chen G, Xie J, Yang J, Wang Y, Dong J, et al. (2013) Determination of senna tora (L.) seed polysaccharide. Int J Biol Macromol 60: 83-92.
38. Dey PM (1978) Biochemistry of plant galactomannans. Adv Carbohydr Chem 35: 347-376.
39. Srivastava M, Kapoor VP (2005) Seed galactomannans: an overview. Chem Biodivers 2: 295-317.
40. Pires L, Gorin PA, Reicher F, Sierakowski MR (2001) An active heparrinois obtained by sulphation of a galactomannan extracted from the endosperm of Senna macranthera seeds. Carbohydrate polymers 46: 165-169.
41. Chrestani F, Sierakowski MR, de Andrade Uchoa DE, Nozawa C, Sasaki GL, et al. (2009) In vitro antitherpeptic and antirrotaviral activities of a sulfate prepared from Mimosa scabrella galactomannan. International Journal of biological macromolecules 45: 453-457.
42. Noleto GR, Petkowicz CLO, Mercê ALR, Noseda MD, Mende-Sánchez SC, et al. (2009) Two galactomannan preparations from seeds from Mimosa scabrella (brazacatinga): Complexation with oxovanadium(IV/V) and cytotoxicity on HeLa cells. J Inorg Biochem 103: 749-757.
43. Teixeira-Sá DM, Reicher F, Braga RC, Beltramini LM, de Azevedo Moreira R (2009) Isolation of a lectin and a galactoxygenan from Mucuna sloanei seeds. Phytochemistry 70: 1965-1972.
44. Mishra A, Malhotra AV (2009) Tamarind xyloglucan: a polysaccharide with versatile application potential. Journal of Materials Chemistry. J Mater Chem 19: 8528-8536.
45. Sumathi S, Ray AR (2002) Release behaviour of drugs from tamarind seed polysaccharide tablets. J Pharm Pharm Sci 5: 12-18.
46. Chandramouly V, Firoz S, Vikram A, Mahilta B, Yasmine BR, et al. (2012) Tamarind seed polysaccharide (tsp) - an adaptable excipient for novel drug delivery systems. Int J Pharm Practice & Drug Res 2: 57-63.
47. Ganesan K, Rajaram SK, Chinnathambi A, Murugesan V, Muruganathan K, et al. (2013) A sustained release of tablet granules associated with ZnS nanocrystals using Tamarind seed polysaccharide. J Applied Pharm Sci 3: 544-547.
48. Suisha F, Kawasaki N, Miyazaki S, Shikakiiwa M, Yamanota K, et al. (2008) Xyloglucan gels as sustained release vehicles for the intraperitoneal administration of mytomycin C. Int J Pharm 172: 27-32.
49. Miyazaki S, Suisha F, Kawasaki N, Shikakiiwa M, Yamanota K, et al. (1998) Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. Int J Control Release 56: 75-83.
50. Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, et al. (2001) In situ gelling xyloglucan formulations for sustained release oral delivery of pilocarpine hydrochloride. Int J Pharm 229: 29-36.
51. Manchanda R, Arora SC, Manchanda R (2014) Tamarind seed polysaccharide and its modification- versatile pharmaceutical excipients-a review. Int J PharmTech Res 6: 412-420.
52. Nisbet DR, Moses D, Gengebach TR, Forsythe JS, Finkelstein DI, et al. (2009) Enhancing neurite outgrowth from primary neurones and neural stem cells using thermoresponsive hydrogel scafolds for the repair of spinal cord injury. Journal of Biomedical Materials Research Part A 89: 24-35.
53. Mohamed HA, Mohamed BE, Ahmed KE (2015) Physicochemical Properties of Tamarind (Tamarindus indica) Seed Polysaccharides. J Food Process Technol 6: 5.
54. Katiyar N, Malviya R, Sharma PK (2014) Pharmaceutical Applications and Formulation Based Patents of Tamarindus indica Seed Polysaccharide and Their Modified Derivatives. Adv Biol Res 8: 274-281.
55. Yamatoya K, Shikakiiwa M, Kuwano K, Suzuki J, Mita Murua T (1996) Effects of hydrolyzed xyloglucan on lipid metabolism in rats. Food Hydrocol 10: 369-372.
56. Sone Y, Makino C, Misaki A (1992) Inhibitory effect of oligosaccharides derived from plant xyloglucan on intestinal glucose absorption in rat. J Nutr Sci Vitaminol 38: 391-395.
57. Mastromarino P, Petruzzellii R, Macchia S, Rieti S, Nicolletti R, Orsi N (1997) Antiviral activity of natural and semisynthetic polysaccharides on the early steps of rubella virus infection. J. Antimicrob Chemother 39: 339-345.
58. Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, et al. (2007) Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8: 3697-3704.
59. Cao Y, Ikeda I (2009) Antioxidant activity and antitumor activity (in vitro) of xyloglucan from fenugreek and jackfruit seeds as pharmaceutical excipients. Int J Pharm 381: 231-235.
60. Hensel A, Meier K (1999) Pectins and xyloglucans exhibit antimutagenic activities against nitroaromatic compounds. Planta Med 65: 395-399.
48. Rosário MM, Noleto GR, Bento JF, Reicher F, Oliveira MB, et al. (2008) Effect of storage xyloglucans on peritoneal macrophages. Phytochemistry 69: 464-472.

49. do Rosário MM, Kangussu-Marcolino MM, do Amaral AE, Noleto GR, Petkowicz CL (2011) Storage xyloglucans: potent macrophages activators. Chem Biol Interact 189: 127-133.