Phenome-Wide Association Study of UMOD Gene Variants and Differential Associations With Clinical Outcomes Across Populations in the Million Veteran Program a Multiethnic Biobank

Elvis A. Akwo1,2,3,11, Hua-Chang Chen4,11, Ge Liu5, Jefferson L. Triozi1, Ran Tao4,6, Zhihong Yu4, Cecilia P. Chung3,6,7,8, Ayush Giri8,9,10, T. Alp Ikizler1,2,3, C. Michael Stein8, Edward D. Siew1,2,3, Qiping Feng8, Cassianne Robinson-Cohen1,2,3 and Adriana M. Hung1,2,3, on behalf of the VA Million Veteran Program12

1Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; 2Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA; 3VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA; 4Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; 5Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; 6Vanderbilt Genetics Institute, Nashville, Tennessee, USA; 7Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; 8Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; 9Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and 10Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Introduction: Common variants in the UMOD gene are considered an evolutionary adaptation against urinary tract infections (UTIs) and have been implicated in kidney stone formation, chronic kidney disease (CKD), and hypertension. However, differences in UMOD variant-phenotype associations across population groups are unclear.

Methods: We tested associations between UMOD/PDILT variants and up to 1528 clinical diagnosis codes mapped to phenotype groups in the Million Veteran Program (MVP), using published phenome-wide association study (PheWAS) methodology. Associations were tested using logistic regression adjusted for age, sex, and 10 principal components of ancestry. Bonferroni correction for multiple comparisons was applied.

Results: Among 648,593 veterans, mean (SD) age was 62 (14) years; 9% were female, 19% Black, and 8% Hispanic. In White patients, the rs4293393 UMOD risk variant associated with increased uromodulin was associated with increased odds of CKD (odds ratio [OR]: 1.22, 95% CI: 1.20–1.24, \(P = 5.90 \times 10^{-111} \)), end-stage kidney disease (OR: 1.17, 95% CI: 1.11–1.24, \(P = 2.40 \times 10^{-69} \)), and hypertension (OR: 1.03, 95% CI: 1.00–1.05, \(P = 2.11 \times 10^{-66} \)) and significantly lower odds of UTIs (OR: 0.94, 95% CI: 0.92–0.96, \(P = 1.21 \times 10^{-10} \)) and kidney calculi (OR: 0.85, 95% CI: 0.83–0.86, \(P = 4.27 \times 10^{-66} \)). Similar findings were observed across UMOD/PDILT variants. The rs77924615 PDILT variant had stronger associations with acute cystitis in White female (OR: 0.73, 95% CI: 0.59–0.91, \(P = 4.98 \times 10^{-3} \)) versus male (OR: 0.99, 95% CI: 0.89–1.11, \(P = 8.80 \times 10^{-1} \)) \(P \) interaction = 0.01) patients. In Black patients, the rs77924615 PDILT variant was significantly associated with pyelonephritis (OR: 0.65, 95% CI: 0.54–0.79, \(P = 1.05 \times 10^{-6} \)), whereas associations with UMOD promoter variants were attenuated.

Conclusion: Robust associations were observed between UMOD/PDILT variants linked with increased uromodulin expression and lower odds of UTIs and calculi and increased odds of CKD and hypertension. However, these associations varied significantly across ancestry groups and sex.

Kidney Int Rep (2022) 7, 1802–1818; https://doi.org/10.1016/j.ekir.2022.05.011

KEYWORDS: genetic renal disease; hypertension; kidney stones; multiethnic; urinary tract infection; uromodulin

Published by Elsevier Inc. on behalf of the International Society of Nephrology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondence: Adriana M. Hung, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, 1161 21st Ave South, S2223, Nashville, Tennessee 37232-2372, USA. E-mail: adriana.hung@vumc.org

11EAA and HCC are co-first authors.

12Members of VA Million Veteran Program are listed in the Supplementary VA Million Veteran Program: Core Acknowledgment for Publications.

Received 2 December 2021; revised 22 April 2022; accepted 9 May 2022; published online 18 May 2022.
Uromodulin (Umod) is an 85-kilodalton glycoprotein that is exclusively synthesized in the kidney by epithelial cells of the thick ascending limb of the loop of Henle and the distal convoluted tubule. It is the most abundant protein in healthy human urine. Umod is encoded by the UMOD gene on chromosome 16p12.3.

Prior studies have suggested several physiological roles including regulation of ion (sodium ion and potassium ion) transport by interactions with the NKCC2 cotransporter and the ROMK channel, defense against UTIs by binding uropathogenic Escherichia coli; preventing formation of calculi by impairing aggregation of calcium oxalate crystals; and playing a role in innate immunity by binding immunoglobulins and cytokines or activating monocytes and dendritic cells by Toll-like receptor 4.

Recent genetic studies revealing common UMOD variants as important contributors to the architecture of renal traits (across multiple populations) and blood pressure, have reignited interest in Umod physiology. Because UMOD risk variants directly increase Umod expression, assessing their effect on clinically relevant phenotypes is paramount. More importantly, there may be relevant differences in the association between UMOD risk variants and clinical phenotypes across different ancestry groups given documented heterogeneity in the genetic basis of complex traits across population groups. However, this has been underexplored. We performed a PheWAS of common UMOD variants in non-Hispanic White, Black, Asian, and Hispanic patients in the MVP to investigate the pleiotropic effects of increased Umod expression on clinically relevant phenotypes and to evaluate differences in UMOD-phenome associations between population groups.

METHODS

The data that support the findings of this study are available from the corresponding author on reasonable request.

Study Design

This study was designed as a PheWAS, which is a bioinformatics approach that enables the scanning of a broad range of clinical phenotypes (the clinical phenotype) available in the electronic health record (EHR) of patients for associations with a genetic variant so as to evaluate the pleiotropic effects in several clinical phenotypes that share genetic architecture.

Study Population for Primary Analysis

The main study population for this study was participants enrolled in the MVP, which is a large multiethnic longitudinal cohort and mega biobank designed to investigate the genetic underpinnings of common medical conditions among US veterans. The MVP data combine EHR data with genomic data to facilitate bioinformatic investigations. Full details of the MVP design and methods have been published elsewhere. Briefly, participants were recruited from 63 Veterans Affairs clinics beginning in 2011. At enrolment, participants provided blood samples for genotyping and biomarker studies and completed baseline questionnaires for demographic and lifestyle data. Participants also agreed for their medical records to be accessed. The study was approved by the Veterans Affairs Central Institutional Review Board, and patients signed informed consent. For the current study, 648,593 MVP participants (Table 1 and Figure 1) who had available genotyping and phenotypic data at the time of this study were included in this PheWAS.

MVP Genotyping

Genotyping was performed using a customized Affymetrix Axiom Biobank Array using DNA extracted from whole blood with content added to provide coverage of African and Hispanic haplotypes. Details of the MVP genotyping methods have been described elsewhere. Briefly, standard QC and genotype calling algorithms were applied to the data using the Affymetrix Power Tools Suite. Duplicate samples and samples with an excess of missing genotype calls or a discordance of genetically inferred sex versus self-report were excluded. Related individuals as measured by the KING software were also excluded. Before imputation, poorly called variants or single nucleotide polymorphisms (SNPs) deviating from their expected allele frequency based on the 1000 genomes reference panel (1000G) were excluded. After prephasing using EAGLE version 2, genotypes from the 1000G reference panel were imputed into MVP participants by Minimac3 software. Principal component analysis was performed using the FlashPCA software to generate the top 30 principal components explaining the greatest variability in ancestry. After the imputation, variant-level quality control was performed using the EasyQC package, and the following exclusion benchmarks were applied: ancestry-specific Hardy–Weinberg equilibrium $P < 1 \times 10^{-20}$, posterior call probability <0.9, imputation quality r^2 or INFO score <0.3, minor allele frequencies (MAFs) $<0.03\%$, call rate $<97.5\%$ for common variants (MAF $>1\%$), and call rate $<99\%$ for rare variants (MAF $<1\%$). Variants were also excluded if they deviated...
Race/Ethnicity/Ancestry in MVP

Racial/ethnic groups in the MVP were assigned using a harmonized ancestry and race/ethnicity variable based on an algorithm that integrates genetically inferred ancestry based on the top 30 principal components with self-identified race/ethnicity. Details have been described elsewhere. On the basis of the harmonized ancestry and race/ethnicity variable, MVP participants with genotype data are assigned to 1 of the following 4 nonoverlapping groups: non-Hispanic White, non-Hispanic Black, non-Hispanic Asian, and Hispanic patients.

UMOD/PDILT Genetic Variants

The common UMOD variants referenced in this study are synonymous SNPs identified in genome-wide association studies (GWASs) of renal traits, blood pressure, and urinary uromodulin that in individuals of European ancestry are all within the same linkage disequilibrium block spanning the UMOD promoter. The ancestral alleles of these UMOD SNPs have allele frequencies of approximately 80% in the 1000G among persons of European ancestry (CEU). These variants include rs4293393 (A/G), rs12917707 (G/T), rs12922822 (C/T), rs13333226 (A/G), and rs13329952 (T/C). The squared correlation (r^2) between these variants ranges from 0.91 to 1.0 for the 1000G CEU population (Supplementary Figure S1).

Table 1. Demographic characteristics and clinical phenotypes captured by phecodes in Million Veteran Program participants

Characteristics	Non-Hispanic Whites	Non-Hispanic Blacks	Hispanics
	$n = 464,961$	$n = 123,120$	$n = 52,183$
Demographics			
Age, mean (SD)	64 (14)	58 (12)	55 (16)
Female, n (%)	34,438 (7.4)	16,993 (13.8)	5142 (9.9)
Years of follow-up in the EHR, median (25th, 75th)	13.2 (8.0, 17.7)	15.0 (9.3, 18.9)	12.3 (6.5, 17.1)
General comorbidities			
Hypertension	74.7	87,896	28,089
Type 2 diabetes	35.1	47,407	2817
Gout	9.3	13,193	2842
Proteinuria	2.2	4357	2817
Complications of CKD			
Anemia in CKD	1.7	4347	1056
Anemia of chronic disease	3.3	6641	1593
Other anemias	19.6	29,742	7150
Hyperpotassemia	3.8	4517	1567
Secondary hyperparathyroidism (renal)	1.1	2860	1567
UTI complications			
UTI	10.7	13,886	4488
Pyelonephritis	0.7	797	364
E. coli infection	0.5	711	231
Urolithiasis-related phenotypes			
Hematuria	9.0	11,005	3746
Gross hematuria	3.1	3922	1175
Urinary calculus	8.8	5323	3289
Calculus of kidney	7.3	4435	2713
Calculus of ureter	2.1	1201	775
Calculus of lower urinary tract	0.6	394	209
Hydronephrosis	1.5	1364	530
Structure/obstruction of ureter	0.6	534	223

Notes:
- CKD, chronic kidney disease; E. coli, Escherichia coli; EHR, electronic health record; PheWAS, phenome-wide association study; UTI, urinary tract infection.
- Represents the group-specific sample size with genotype and phenotype data.
- Represents the total number of cases + controls for each phenotype after the PheWAS algorithm but excluded patients not meeting the phecode-specific case or control definition.
The linkage disequilibrium patterns of UMOD variants in 1000G African Americans (Supplementary Figure S2), 1000G Mexican ancestry (Supplementary Figure S3), and 1000G Han Chinese individuals (Supplementary Figure S4) are considerably different to that in 1000G CEU, but the frequencies of the major alleles are all $>70\%$. We also investigated the effects of PDILT (upstream of the UMOD locus) variants, including rs12446492 (T/A), rs77924615 (G/A), and rs11864909 (C/T), that have been reported in GWAS of renal traits.

Definition of Outcomes for PheWAS Analysis in the MVP

In the MVP, the outcomes for the PheWAS analysis were clinical phenotypes (phecodes) derived from International Classification of Disease, ninth revision (ICD-9) and International Classification of Disease, tenth revision (ICD-10) diagnosis codes. ICD-9–based phenotypes were defined by mapping ICD-9 codes occurring in the EHR of patients to PheWAS codes, as previously described by Denny et al.26,46 Meanwhile, ICD-10 codes were first mapped to ICD-9 codes using a crosswalk and then subsequently mapped to the phecodes. Additional information on the mapping between phecodes and both ICD-9 and ICD-10 codes (including exclusion phecodes for each phecode) are publicly available at: https://phewascatalog.org/phecodes and https://phewascatalog.org/phecodes_icd10.

As described in previous studies, for each phenotype, a patient was defined as being a case if they had ≥ 2 phecodes on 2 different dates.46 Meanwhile, controls for the phenotype in question were individuals who had no phecodes for that phenotype and did not have phecodes for related phenotypes for that disease grouping (exclusion phecodes).26,46 Furthermore, individuals with 1 phecode for a given phenotype were not considered a case or a control and were thus excluded from the analysis for that specific phenotype (Figure 1). A list of all phecodes tested in the MVP is included in Supplementary Table S1.

Statistical Methods for PheWAS Analysis in the MVP

Clinical phenotypes with fewer than 200 cases were excluded \textit{a priori} from the analysis given that ORs for rare events are unreliable.47 After these exclusions, the

Figure 1. Flowchart for MVP Participants included in the UMOD PheWAS. HARE, harmonized ancestry and race/ethnicity; MVP, Million Veteran Program; PheWAS, phenome-wide association study.
number of phenotypes available for PheWAS analyses in non-Hispanic White, White female, White male, Black, Asian, and Hispanic patients was 1528, 853, 1439, 1237, 256, and 930, respectively.

In each population, the primary analyses were conducted using the rs4293393 UMOD and rs77924615 PDILT variants as predictor variables. For each variant, a batch of logistic regression models (1 per phenotype totaling 256 to 1528 depending on the number of phecodes meeting the a priori criteria for a given population) was fit to investigate the association with clinical phenotypes. All models were adjusted for age, sex (except for sex-stratified analysis), and 10 principal components.

ORs (95% CI) for significant SNP-phenotype associations were reported. Bonferroni correction (0.05/number of phenotypes tested) was used to correct for multiple testing. Hence, statistical significance was defined as a P value $< 0.05/1528$ (or 3.27×10^{-5}) for non-Hispanic White patients. Similarly, the thresholds for statistical significance in non-Hispanic Black, Hispanic, Asian, White female, and White male patients were 4.04×10^{-05}, 5.38×10^{-05}, 1.95×10^{-04}, 5.86×10^{-05}, and 3.47×10^{-05}, respectively. In White female patients, we also reported ORs for phenotypes at a nominal significance level of 5.0×10^{-03} considering the smaller sample. We investigated variant-and-sex and variant-and-ancestry interactions by leveraging the difference in the stratum-specific log ORs and their variances to perform 2-sample Z-tests of interaction assuming asymptotic normality of the test statistics for large samples, as described elsewhere.48,49 P interaction < 0.05 was considered significant.

In sensitivity analyses, the PheWAS analyses were repeated using the other UMOD/PDILT variants (in high linkage disequilibrium with SNPs used in the primary analyses) to assess the consistency of the findings. In MVP, all UMOD/PDILT variants used in the PheWAS were either directly genotyped or imputed with high imputation quality (Supplementary Table S4). PheWAS regression analysis was performed adjusting for age, sex, 10 principal components, and length of EHR. For the replication studies, a less conservative nominal significance level was chosen, $P < 0.05$. All analyses for the BioVU data were performed on Vanderbilt’s Computing cluster.

For White British participants in the UK Biobank, data for clinical phenotypes associated with a given genetic variant including P values and number of samples per phenotype are available online at pheweb.org/UKB-SAIGE/. PheWAS analyses were conducted using SAIGE (a generalized mixed model), adjusting for genetic relatedness, sex, birth year, and the first 4 principal components.

RESULTS

The mean (SD) age of the 648,593 MVP participants included in this UMOD PheWAS was 62 (14) years; 9% were female, 19% Black, 8% Hispanic, and 1.3% Asian. Table 1 illustrates the frequency of clinical phenotypes captured using phecodes. Hypertension and type 2 diabetes were common with case frequencies ranging from 62.8 to 74.7 and 35.1 to 43.5, respectively, across population groups. Supplementary Table S5 illustrates
the characteristics of non-Hispanic White ($n = 63,029$) and non-Hispanic Black patients ($n = 14,521$) who were included in the BioVU replication. The proportion of female patients was 56% and 62%, respectively, in both groups, and the mean (SD) age was 57 (22) and 47 (21) years. Supplementary Table S6 illustrates the population characteristics of the UK Biobank participants. The mean age was 56 (8) years, 54.4% were female, 27.1% had hypertension, and $>5.3\%$ had self-reported diabetes.

In MVP, among non-Hispanic White patients, the MAFs of the rs4293393 and rs77924615 variants were 18% and 20%, respectively (Supplementary Table S7). The corresponding MAFs for these variants in non-Hispanic Black patients were 21% and 6%. In Hispanic and non-Hispanic Asian patients, the MAFs for these variants were 21% and 20% and 10% and 20%, respectively.

PheWAS of UMOD and PDILT Variants in Non-Hispanic Whites—Discovery and Replication

In non-Hispanic White patients, the rs4293393 *UMOD* promoter variant was significantly associated with 29 clinical phenotypes at the 3.27×10^{-05} threshold (Table 2).

Each copy of the A allele of rs4293393 (that correlates with increased Umod expression) was associated with a significant 22% higher odds (OR: 1.22, 95% CI: 1.20–1.24) of CKD, 11% higher odds (OR: 1.11; 95% CI: 1.08–1.13) of diabetic kidney disease, 17% higher odds (OR: 1.17; 95% CI: 1.17–1.24) of end-stage kidney disease, and 6% higher odds (OR: 1.06; 95% CI: 1.04–1.09) of acute kidney injury (AKI). The A allele of rs4293393 was also associated with increased odds of proteinuria (OR: 1.10, 95% CI: 1.05–1.14), anemia of CKD (OR: 1.20, 95% CI: 1.14–1.25), secondary hyperparathyroidism of renal origin (OR: 1.21, 95% CI: 1.14–1.21), hypertension (OR: 1.03, 95% CI: 1.02–1.05), hypertensive CKD (OR: 1.20, 95% CI: 1.17–1.22), hypertensive heart or renal disease (OR: 1.10, 95% CI: 1.09–1.12), hyperkalemia (OR: 1.07, 95% CI: 1.04–1.10), and gout (OR: 1.04, 95% CI: 1.02–1.06). Conversely, the A allele of rs4293393 was significantly associated with lower odds of UTI (OR: 0.94, 95% CI: 0.92–0.96), urinary calculus (OR: 0.85, 95% CI: 0.83–0.86), calculus of the kidney (OR: 0.83, 95% CI: 0.81–0.85), calculus of the ureter (OR: 0.81, 95% CI: 0.78–0.84), and hematuria (OR: 0.95, 95% CI: 0.93–0.97). These findings were consistent with those observed for the other primary analysis using the rs77924615 *PDILT* variant (Figure 2a and b) and further confirmed in supplementary analyses using other *UMOD* promoter and *PDILT* variants (Supplementary Tables S8–S13 and Supplementary Table S5).

Overall, the findings for most of these clinical phenotypes were replicated in the UK Biobank and/or BioVU at $\alpha = 0.05$ (Table 2 and Supplementary Tables S14 and S15). For example, in BioVU, the OR (95% CI) per copy of the A allele of rs4293393 for calculus of the kidney, UTI, and CKD stage 3 was 0.85 (95% CI: 0.79–0.92, $P = 4.02 \times 10^{-05}$), 0.94 (95% CI: 0.90–0.98, $P = 1.00 \times 10^{-02}$), and 1.13 (95% CI: 1.05–1.22, $P = 1.5 \times 10^{-03}$), respectively.

PheWAS of UMOD/PDILT Variants in Non-Hispanic Black Patients

In Black patients, there were significant differences in the patterns of association between clinical phenotypes and both *UMOD* promoter variants (rs4293393 and rs12917707) and the *PDILT* variant (77924615; Figure 2c and d). The rs77924615 *PDILT* variant was significantly associated with phenotypes in 4 domains of interest (CKD, hypertension, calculus, and UTI). Each copy of the G allele of the rs77924615 variant was associated with increased odds of CKD stage III (OR: 1.15, 95% CI: 1.08–1.23, $P = 2.27 \times 10^{-05}$) and hypertensive CKD (OR: 1.15, 95% CI: 1.08–1.22, $P = 2.78 \times 10^{-06}$) and lower odds of urinary calculus (OR: 0.82, 95% CI: 0.76–0.89, $P = 1.68 \times 10^{-06}$), calculus of the kidney (OR: 0.81, 95% CI: 0.74–0.89, $P = 4.52 \times 10^{-06}$), and pyelonephritis (OR: 0.65, 95% CI: 0.54–0.79, $P = 1.05 \times 10^{-05}$) (Figure 2). However, no phenome-wide significant associations were observed between the rs4293392 *UMOD* promoter variant and any of the 4 domains of clinical phenotypes observed in non-Hispanic White patients, despite the number of cases for these phenotypes varying between 5323 and 87,895 (Table 3). The P values for differential effects between non-Hispanic White and Black patients for the association of the rs4293393 *UMOD* promoter variant and the 4 domains of clinical phenotypes observed in non-Hispanic Whites were 1.47×10^{-02} for CKD, 1.59×10^{-02} for hypertension, 2.15 $\times 10^{-05}$ for UTI, and 2.35×10^{-05} for urinary calculus (Supplementary Table S16). For the rs12917707 *UMOD* promoter variant, the G allele was significantly associated with 18% lower odds (OR: 0.82, 95% CI: 0.76–0.89, $P = 6.0 \times 10^{-06}$) of urinary calculus (Supplementary Table S5).

PheWAS of UMOD and PDILT Variants in Hispanic and Non-Hispanic Asian Patients

In Hispanic patients, both *UMOD* promoter and *PDILT* variants had phenome-wide significant associations with renal phenotypes that were observed among non-Hispanic White patients. For example, each copy of the A allele of the rs4293393 *UMOD* promoter variant was associated with increased odds of CKD (OR: 1.15, 95% CI:
Table 2. Significant associations of the rs4293393 (A/G) *UMOD* variant with clinical phenotypes among non-Hispanic White patients in the Million Veteran Program and Replication results from BioVU (Vanderbilt’s Biobank) and UK Biobank.

Clinical phenotypes	PheWAS code description	Cases	Controls	OR (95% CI) per copy of the A allele	P value	Replication cohorts
Increased risk						
CKD		56,757	354,568	1.22 (1.20–1.24)	5.90 × 10^{-11}	Yes* Yes
	CKD, stages I–II	8236	411,510	1.11 (1.07–1.19)	3.29 × 10^{-05}	No* No
	CKD, stage III	37,099	379,128	1.24 (1.21–1.26)	2.79 × 10^{-06}	Yes No
	CKD, stage IV	8918	416,152	1.23 (1.19–1.29)	1.33 × 10^{-23}	Yes No
Diabetic kidney disease	Type 2 diabetes with renal manifestations	21,706	395,843	1.11 (1.08–1.13)	2.76 × 10^{-14}	No No
Proteinuria	Proteinuria	9030	411,051	1.10 (1.06–1.14)	4.31 × 10^{-06}	Yes No
End-stage kidney disease and related disorders	End-stage renal disease	5334	421,018	1.17 (1.11–1.24)	2.40 × 10^{-09}	No No
Renal failure, NOS		5950	416,270	1.16 (1.10–1.22)	4.20 × 10^{-09}	No Yes
	Secondary hyperparathyroidism of renal origin	4716	421,292	1.21 (1.14–1.28)	1.69 × 10^{-11}	No No
Anemia of CKD		7330	416,175	1.20 (1.14–1.25)	7.31 × 10^{-15}	No Yes
Disorders resulting from impaired renal function		6104	418,597	1.17 (1.12–1.23)	1.79 × 10^{-10}	No No
Acute kidney injury	Acute renal failure	37,825	367,058	1.06 (1.04–1.09)	5.50 × 10^{-10}	No Yes
Electrolyte imbalance	Electrolyte imbalance	61,138	338,927	1.04 (1.02–1.05)	2.33 × 10^{-06}	No No
Hyperkalemia	Hyperkalemia	15,510	396,633	1.07 (1.04–1.10)	2.62 × 10^{-06}	No Yes
Hypertension and complications	Hypertension	303,313	102,754	1.03 (1.02–1.05)	2.11 × 10^{-06}	No Yes
Essential hypertension		301,525	104,191	1.03 (1.02–1.05)	3.08 × 10^{-06}	No Yes
Hypertensive CKD		30,565	381,368	1.20 (1.17–1.22)	1.89 × 10^{-03}	No Yes
Hypertensive heart or renal disease		53,251	348,382	1.10 (1.08–1.12)	5.11 × 10^{-09}	No Yes
Gout	Gout	38,796	379,147	1.04 (1.02–1.06)	1.94 × 10^{-05}	Yes No
Anemia	Anemia of chronic disease	13,675	403,118	1.13 (1.08–1.16)	9.05 × 10^{-13}	No No
Other anemias		76,540	313,641	1.03 (1.02–1.05)	2.00 × 10^{-05}	No Yes
Decreased risk						
UTIs		42,133	351,924	0.94 (0.92–0.96)	1.21 × 10^{-10}	Yes No
Urinary calculi	Urinary calculi	36,238	376,038	0.85 (0.83–0.86)	1.45 × 10^{-54}	Yes Yes
Calculus of the kidney		30,249	383,255	0.83 (0.81–0.85)	4.27 × 10^{-09}	Yes No
Calculus of the ureter		8817	413,932	0.81 (0.78–0.84)	1.77 × 10^{-23}	Yes No
Calculus of the lower urinary tract		2784	423,008	0.81 (0.76–0.87)	4.93 × 10^{-10}	No Yes
Hydronephrosis		6559	415,441	0.88 (0.84–0.92)	9.20 × 10^{-09}	No Yes
Hematuria		36,418	388,018	0.95 (0.93–0.97)	4.40 × 10^{-57}	No No
Gross hematuria		12,904	405,647	0.94 (0.91–0.97)	3.26 × 10^{-55}	No No

BioVU, biorepository; CKD, chronic kidney disease; NOS, not otherwise specified; OR, odds ratio; PheWAS, phenome-wide association study; UTI, urinary tract infection.

*Means that the association was replicated in BioVU or the UK Biobank.

*No means that the association was not replicated in BioVU or the UK Biobank.

All associations listed were significant at the Bonferroni-corrected significance level of 3.27 × 10^{-05}.

1.09–1.22, P = 7.10 × 10^{-07}) and hypertensive CKD (OR: 1.16, 95% CI: 1.08–1.24, P = 4.27 × 10^{-05}) and lower odds of calculus of the kidney (OR: 0.84; 95% CI: 0.79–0.90, P = 1.55 × 10^{-07}, Supplementary Figure S6). These effect estimates were similar for the rs12917707 *UMOD* promoter variant and the rs77924615 *PDILT* variant (Supplementary Table S5). However, no significant association was observed with UTI despite a considerable number of observed cases, n = 4428 (Supplementary Tables S17 and S18). In non-Hispanic Asian patients, no phenome-wide significant phenotypes were observed for the rs4293393 *UMOD* promoter variant. However, for the rs77924615 *PDILT* variant, 1 phenotype namely CKD stage III (OR: 1.90, 95% CI: 1.34–2.04, P = 3.25 × 10^{-5}) reached phenome-wide significance.

Sex Differences in the PheWAS of *UMOD* and *PDILT* Variants in Non-Hispanic White Patients

In non-Hispanic White male patients, the findings for the *UMOD* promoter and *PDILT* variants were consistent with the patterns observed in the total pool of non-Hispanic White patients with similar effect sizes and P values (Figure 3c and d). In White female patients, there were 3 clinical phenotypes reaching phenome-wide significance for the rs77924615 *PDILT* variant and 2 for the *UMOD* promoter variants.
rs12917707 and rs4293393 (Figure 3a and b). For example, each copy of the A allele of the rs4293393 variant was associated with 27% increased odds of CKD (OR: 1.27, 95% CI: 1.14–1.40) and 19% lower odds (OR: 0.81, 95% CI: 0.74–0.88) of calculus of the kidney (Table 4). Six other phenotypes reached nominal significance ($P = 5 \times 10^{-3}$), specifically hypertensive CKD, hypertensive heart or renal disease, CKD stage 3, elevated white blood cell count, urinary calculus, and calculus of the ureter. Overall, the difference in effect sizes for these phenotypes was minimal between the sexes. However, for acute cystitis, the effect was considerably stronger among White female patients with an OR (95% CI) per copy of the G allele of the rs77924615 PDILT variant of 0.73 (95% CI: 0.59–0.91, $P = 4.98 \times 10^{-3}$) compared with 0.99 (95% CI: 0.89–1.11, $P = 8.80 \times 10^{-1}$) among White male patients (P interaction $= 0.01$) [Supplementary Tables S16 and S19]. The G allele of the rs77924615 variant was associated with increased odds of heart failure with preserved ejection fraction (OR: 1.28, 95% CI: 1.09–1.50, $P = 3.01 \times 10^{-3}$) among White male patients. Among White male patients, the effect estimate was 1.00 (95% CI: 0.97–1.03, $P = 0.89$).

DISCUSSION

In this PheWAS of common UMOD/PDILT gene variants using data from large multiethnic biobanks, we report significant associations of UMOD risk variants...
with increased risk of CKD and hypertension and lower risk of UTIs and kidney stones. Importantly, we observed differential patterns in the pleiotropic effects of UMOD risk variants on clinical phenotypes related to Umod physiology across ancestry groups, which have not been previously reported.

In non-Hispanic White patients, there were consistent SNP-phenotype associations across UMOD promoter and PDILT variants. UMOD promoter and PDILT risk variants (alleles associated with increased Umod expression) were significantly associated with increased risk of kidney disease phenotypes (CKD, diabetic kidney disease, and end-stage kidney disease), hypertension, and complications of hypertension (hypertensive heart or renal disease) while being protective for UTIs and urolithiasis. Conversely, in Black patients, clear differences in SNP-phenotype associations were observed between variants in the UMOD promoter and PDILT locus with variants in the latter having significant effects with the aforementioned Umod-related phenotypes. In particular, the rs77924615 PDILT variant had strong protective effects for pyelonephritis. The variant-phenotype associations in Hispanic patients were mostly consistent with those observed in non-Hispanic White patients but the associations with UTIs were null (ORs close to 1) raising potential questions regarding the causal variants in Hispanic patients. The variant-phenotype associations for pyelonephritis. The variant-phenotype associations in Hispanic patients were mostly consistent with those observed in non-Hispanic White patients but the associations with UTIs were null (ORs close to 1) raising potential questions regarding the causal variants in Hispanic patients. The variant-phenotype associations for pyelonephritis. The variant-phenotype associations in Hispanic patients were mostly consistent with those observed in non-Hispanic White patients but the associations with UTIs were null (ORs close to 1) raising potential questions regarding the causal variants in Hispanic patients. The variant-phenotype associations for pyelonephritis. The variant-phenotype associations in Hispanic patients were mostly consistent with those observed in non-Hispanic White patients but the associations with UTIs were null (ORs close to 1) raising potential questions regarding the causal variants in Hispanic patients. The variant-phenotype associations for pyelonephritis. The variant-phenotype associations in Hispanic patients were mostly consistent with those observed in non-Hispanic White patients but the associations with UTIs were null (ORs close to 1) raising potential questions regarding the causal variants in Hispanic patients. The variant-phenotype associations for pyelonephritis. The variant-phenotype associations in Hispanic patients were mostly consistent with those observed in non-Hispanic White patients but the associations with UTIs were null (ORs close to 1) raising potential questions regarding the causal variants in Hispanic patients.
preserved ejection fraction in White female versus male patients which needs to be investigated further in future work.

Previous GWAS have established the association between common UMOD variants and CKD in cohorts from multiple populations, including European, Icelandic, and multiethnic. Case-control data have also revealed significant associations with hypertension and incident cardiovascular disease independently of eGFR. Our PheWAS findings extend these prior data by revealing significant associations with both early and advanced stages of CKD and both renal and cardiovascular complications of hypertension in clinical settings, for UMOD promoter risk variants among non-Hispanic White patients. Our findings corroborate those previously reported by Shang et al. who found significant associations for the rs28544423 UMOD variant (in complete linkage disequilibrium with rs4293393) with CKD stage 3 in 78,638 European ancestry individuals in the eMERGE network. However, in our multiethnic PheWAS, these associations with CKD and hypertension and hypertensive complications were not observed for UMOD promoter risk variants in non-Hispanic Black patients. Notably, in a previous GWAS of kidney traits conducted exclusively in African Americans in the CARE consortium, the rs4293393 UMOD promoter variant did not have a significant association with CKD and urinary albumin-to-creatinine ratio and only reached nominal significance for eGFR. These findings

Figure 3. Volcano plot illustrating key clinical phenotypes significantly associated with UMOD promoter (rs4293393) and PDILT variants (rs77924615) in non-Hispanic White female (a, b) and male (c, d) patients in the Million Veteran Program. In each plot, the red line indicates the significance threshold for Bonferroni correction as a reference whereas the green line indicates nominal significance at $\alpha = 5 \times 10^{-3}$. Phenotypes in the right upper quadrant have increased odds per copy of the allele associated with increased Umod expression, whereas phenotypes in the left quadrant have decreased odds. All clinical phenotypes typically associated with Umod expression had significant associations with UMOD promoter and PDILT variants in White male patients. In White female patients, significant variant-phenotype associations were observed for CKD, urinary calculus, and calculus of the kidney. Nominally significant associations were observed with acute cystitis and heart failure with preserved EF. AKI, acute kidney injury; CKD, chronic kidney disease; EF, ejection fraction; ESKD, end-stage kidney disease; NS, nonsignificant; T2DM, type 2 diabetes mellitus; UTI, urinary tract infection.
Table 4. Association of the rs4293393 (A/G) UMOD variant with key clinical phenotypes across sex groups in non-Hispanic White patients in the MVP

Clinical phenotypes	PheWAS code description	Cases	Controls	OR (95% CI) per copy of the A allele	P value
Females					
CKD	CKD	1685	28,924	1.30 (1.18–1.44)	2.87 × 10^{-7}*
	CKD, stage III	1154	29,725	1.26 (1.10–1.45)	2.39 × 10^{-4}
	CKD, stage IV	263	31,007	1.62 (1.24–2.11)	4.00 × 10^{-4}
Hypertensive complications	Hypertensive CKD	774	30,108	1.28 (1.11–1.49)	7.50 × 10^{-4}
	Hypertensive heart or renal disease	1567	28,773	1.17 (1.06–1.30)	2.20 × 10^{-3}
UTIs	UTI	7840	18,560	0.98 (0.98–1.05)	4.03 × 10^{-1}
	Cystitis	977	28,707	0.87 (0.78–0.98)	2.01 × 10^{-2}
	Acute cystitis	245	30,151	0.84 (0.68–1.05)	1.31 × 10^{-1}
	Pyelonephritis	584	30,061	0.92 (0.79–1.07)	2.62 × 10^{-1}
Urinary calculi	Urinary calculus	1990	28,328	0.86 (0.79–0.93)	1.73 × 10^{-4}
	Calculus of the kidney	1710	28,751	0.84 (0.77–0.91)	4.98 × 10^{-6}*
	Calculus of the ureter	518	30,514	0.77 (0.66–0.89)	5.37 × 10^{-4}
Males					
CKD	CKD	55,072	325,644	1.22 (1.20–1.24)	2.09 × 10^{-105}*
	CKD, stage III	35,945	349,403	1.23 (1.21–1.26)	2.82 × 10^{-83}
	CKD, stage IV	86655	385,145	1.23 (1.18–1.28)	1.54 × 10^{-21}
Hypertension complications	Hypertensive chronic kidney disease	29,791	351,260	1.19 (1.17–1.22)	4.31 × 10^{-51}
	Hypertensive heart or renal disease	51,684	317,609	1.10 (1.06–1.12)	3.68 × 10^{-27}
UTIs	UTI	34,293	333,364	0.93 (0.92–0.95)	4.35 × 10^{-11}
	Cystitis	3638	385,756	0.97 (0.92–1.03)	3.44 × 10^{-1}
	Acute cystitis	1096	391,828	0.92 (0.83–1.02)	1.26 × 10^{-1}
	Pyelonephritis	2232	391,619	0.91 (0.84–0.98)	9.18 × 10^{-3}
Urinary calculi	Urinary calculus	34,248	347,710	0.85 (0.83–0.86)	1.45 × 10^{-41}
	Calculus of the kidney	28,539	354,504	0.83 (0.81–0.85)	4.20 × 10^{-65}
	Calculus of the ureter	8239	383,418	0.81 (0.78–0.84)	5.22 × 10^{-27}

CKD, chronic kidney disease; MVP, Million Veteran Program; OR, odds ratio; PheWAS, phenome-wide association study; UTI, urinary tract infection.

*Represents phenotypes reaching PheWAS significance among non-Hispanic White female (5.86 × 10^{-10}) and male patients (3.47 × 10^{-10}) in the MVP.

contrast with those from large multiethnic studies,21,53 whose results are likely driven by the larger European cohorts in the meta-analysis. Our multiethnic PheWAS suggests differences in the effect of UMOD promoter risk variants on advanced CKD and hypertensive renal and/or heart disease between patients of European and African ancestry, and this observed heterogeneity in allele effects for UMOD promoter risk variants is novel and may portend potential clinical relevance. Prior data from Trudu et al.24 had established Umod as a potential therapeutic target for blood pressure lowering and nephroprotection. Trudu et al.24 reported that increased Umod expression in transgenic mice led to salt-sensitive hypertension (owing to Umod-mediated hyperactivation of NKCC2 in the thick ascending limb) and the development of age-dependent lesions in the kidney that were similar to those observed in older patients that are homozygous for high-risk alleles of UMOD promoter variants, such as the carriers of the AA genotype of the rs4293393 variant reported in the current study. Trudu et al.24 also reported that pharmacologic inhibition of the NKCC2 cotransporter using furosemide was more effective on blood pressure lowering in patients with hypertension who are homozygous for UMOD promoter risk variants than in other patients with hypertension revealing a link between genetic susceptibility to hypertension and CKD to Umod expression levels and Umod-mediated reabsorption of sodium chloride in the thick ascending limb. Devuyst et al.45 thus highlighted a potential personalized medicine recommendation for furosemide which may be more efficacious in patients with hypertension who are homozygous for UMOD promoter risk variants. Our findings further extend this potential precision medicine recommendation by highlighting that the possible benefit of SNP-dependent furosemide effects may also be ancestry dependent. Although patients with hypertension of European ancestry who are homozygous for UMOD promoter risk variants may have more potent furosemide effects, this may not be the case for patients of African ancestry. However, the observed effect of the rs77924615 PDILT variant on hypertensive CKD in patients of African ancestry does raise the question whether this variant maybe a better potential candidate—compared with the UMOD promoter variants—to explore for precision medicine approaches in this patient population.
The observed deleterious effects of UMOD risk variants on diabetic kidney disease and proteinuria in patients of European ancestry may be an important finding that is relevant to ongoing research on therapies for diabetic kidney disease. In future work, it may be of interest to investigate whether the presence of UMOD risk variants modifies the beneficial effect of nephroprotective drugs (RAAS inhibitors, SGLT2 inhibitors, and mineralocorticoid antagonists) in diabetic patients. In our eGFR GWAS, the observed UMOD effect on kidney function was greater in patients with diabetes versus patients without diabetes. 6 The effect of extraluminal Umod may be attributed to the proximity of the thick ascending limb to the macula densa where Umod may interfere with the tubuloglomerular feedback increasing intraglomerular pressure.

UMOD risk variants were also associated with increased AKI risk. The consistent findings across UMOD and PDILT variants and concurrent significant signals with accompanying signs of AKI such as hyperkalemia provide some corroboration to the observed UMOD-AKI association. However, this association may have been confounded by underlying CKD observed UMOD-AKI association. However, this asso-
ciation may likely be nondifferential across alleles of the UMOD variants on nephrolithiasis and UTIs in this study among individuals of European ancestry corroborate previous data. 11–13,68–70 Umod’s propensity to reduce kidney stone formation has been linked to its sialylated negatively charged glycans that inhibit aggregation of calcium oxalate and calcium phosphate crystals. 70,71 Meanwhile, although Umod has been known to protect against UTIs by binding uropathogenic Escherichia coli, 12,72 the precise mechanism was poorly understood until the landmark paper by Weiss et al. They revealed that the Umod filament consists of a zigzag-shaped backbone with laterally protruding arms. Specifically, Umod acts as a multivalent ligand for FimH on the bacterial pili, presenting several specific glycan epitopes which outcompete glycan receptors on the urothelium. 11,73 Several Umod- uropathogen interactions occur between the multiple binding sites of the Umod filament and several pili on the bacterium causing bacterial aggregation and preventing attachment to the urothelium and clearance by micturition. 73

In Black patients, no protective effects on urolithiasis were observed for the major allele of the rs4293393 UMOD promoter variant. These effects were observed for the rs12917707 and rs77924615 variants. The latter also had a strong protective effect on pyelonephritis. Similarly, in White female patients, stronger effects were observed for the rs77924615 PDILT variant on acute cystitis compared with UMOD promoter variants. In a transethnic eGFR GWAS in >1 million individuals, Wuttke et al. 21 found that the rs77924615 PDILT variant had a strong causal regulatory role on the UMOD gene and Umod expression in the kidney by extension. This strong regulatory role of the rs77924615 variant on uromodulin production and urinary uromodulin levels may explain its greater effect on UTIs in female patients.

The strengths of our study include the large sample of patients with available genetic data, racial/ethnic diversity, and the presence of long follow-up time in the EHR, which increases the potential to capture clinical phenotypes using diagnostic codes. In addition, the Veterans Affairs is a closed health care system where patients have continuity of care which further minimizes ascertainment bias for patient outcomes. Furthermore, although the primary findings were obtained using MVP data, a replication phase was conducted in BioVU and the UK Biobank. Several limitations exist including the exclusive utilization of diagnostic codes to define outcomes. However, Cai et al. 45 revealed PPVs of 80% to 100% for major cardiovascular phenotypes in their PheWAS of IL6R variants in the MVP. Requiring at least 2 codes to ascertain a case for each phenotype in our study reduces false positives. Furthermore, eliminating “uncertain” cases from the case-control pool makes the comparison groups more biologically disparate and likely increases the signal-to-noise ratio in this study. Moreover, assuming any potential outcome misclassification may likely be nondifferential across alleles of the UMOD variants; the ORs would be, at worst, biased toward the null. Dense phenotyping information on study outcomes (e.g., information on bacteriology for UTIs and antibiotic treatments) would have facilitated more in-depth analyses. However, as these extraneous factors are unlikely to have different distributions across alleles of the UMOD variants (which are antecedent by definition), they are unlikely to confound the ORs reported in this study. The absence of data on urinary uromodulin levels to supplement the reported genetic effects is another limitation. Although the PheWAS analyses in non-Hispanic White and Black patients were adequately powered for the main findings (Supplementary Table S20), our analysis in Hispanic patients (Supplementary Table S21) and non-Hispanic White female patients was limited by lower statistical power.

In summary, we found significant associations between UMOD/PDILT risk variants linked with
increased Umod expression and increased risk of CKD and hypertension and lower odds of UTIs and nephrolithiasis. However, these associations varied significantly across ancestry groups and sex.

Implications
Using a PheWAS approach in multiethnic biobanks, we have highlighted significant heterogeneity in the pleiotropic effects of increased Umod expression on human disease between population groups—differences that may portend future relevance to personalized medicine for patients from diverse populations.

ACKNOWLEDGMENTS
This research is based on data from the Million Veteran Program, Veterans Health Administration’s Office of Research and Development, Veterans Health Administration, and was supported by the CSR&D Merit award title Genetics of CKD and Hypertension—Risk Prediction and Drug Response in the MVP (#CX001897 to AMH). This publication does not represent the views of the Department of Veteran Affairs or the US Government. Acknowledgment of the Million Veteran Program leadership and staff contributions can be found in the supplementary material entitled “MVP core acknowledgements.”

AUTHOR CONTRIBUTIONS
Study design: AMH and EAA. Data acquisition: AMH and CMS. Data analysis and interpretation: EAA, HC, GL, ZH, AG, QF, RT, AMH. Drafting of the manuscript: EAA. Critical revision of the manuscript for intellectual content: HC, CPC, AG, CR, TAI, CMS, EDS, QF, RT, AMH. All authors approve the final version of the manuscript.

SUPPLEMENTARY MATERIAL
Supplementary File (Word)
Figure S1. Linkage disequilibrium patterns between UMOD promoter and PDILT variants among individuals of European ancestry (CEU) in the 1000 Genomes reference panel.
Figure S2. Linkage disequilibrium patterns between UMOD promoter and PDILT variants among African Americans (ASW) in the 1000 Genomes reference panel.
Figure S3. Linkage disequilibrium patterns between UMOD promoter and PDILT variants among individuals of Mexican ancestry (MXL) in the 1000 Genomes reference panel.
Figure S4. Linkage disequilibrium patterns between UMOD promoter and PDILT variants among individuals of Han Chinese ancestry (CHB) in the 1000 Genomes reference panel.
Figure S5. Volcano plot showing clinical phenotypes significantly associated with the rs4293393 UMOD promoter and rs77924614 PDILT variants in non-Hispanic Asian and Hispanic patients in the Million Veteran Program.
Figure S6. Volcano plot illustrating key clinical phenotypes significantly associated with the rs12917707 UMOD promoter in the 4 populations (non-Hispanic White, non-Hispanic Black, non-Hispanic Asian, and Hispanic patients) in the Million Veteran Program.
Table S1. List of Phecodes tested in MVP and BioVU participants.
Table S2. Imputation quality scores (R2) for UMOD/PDILT variants in MVP.
Table S3. List of Phecodes that were tested in MVP but not in the UK Biobank.
Table S4. Imputation quality scores (R2) for UMOD/PDILT variants in BioVU and UK Biobank participants.
Table S5. Characteristics of BioVU (Vanderbilt’s Biobank) participants that were included in the UMOD PheWAS.
Table S6. Baseline characteristics of UK Biobank participants (n = 502,650).
Table S7. Allele frequencies of UMOD and PDILT variants across population groups in the Million Veteran Program.
Table S8. Association of the rs12917707 (G/T) UMOD promoter variant with clinical phenotypes that were significant in the primary analysis using the rs4293393 (A/G) UMOD promoter variant in non-Hispanic White patients in the MVP.
Table S9. Association of the rs12922822 (C/T) UMOD promoter variant with clinical phenotypes that were significant in the primary analysis using the rs77924615 (G/A) PDILT variant in non-Hispanic White patients in the MVP.
Table S10. Association of the rs13333226 (A/G) UMOD promoter variant with clinical phenotypes that were significant in the primary analysis using the rs4293393 (A/G) UMOD promoter variant in non-Hispanic White patients in the MVP.
Table S11. Association of the rs13329952 (T/C) UMOD promoter variant with clinical phenotypes that were significant in the primary analysis using the rs4293393 (A/G) UMOD promoter variant in non-Hispanic White patients in the MVP.
Table S12. Association of the rs12446492 (T/A) PDILT variant with clinical phenotypes that were significant in the primary analysis using the rs77924615 (G/A) PDILT variant in non-Hispanic White patients in the MVP.
Table S13. Association of the rs11864909 (C/T) PDILT variant with clinical phenotypes that were significant in the primary analysis using the rs77924615 (G/A) PDILT variant in non-Hispanic White patients in the MVP.
Table S14. Effect estimates in BioVU participants for the association of the rs4293393 (A/G) UMOD promoter variant with clinical phenotypes that were significant in MVP non-Hispanic White patients.
Table S15. Effect estimates in UK Biobank participants for the association of the rs4293393 (A/G) UMOD promoter variant with clinical phenotypes that were significant in MVP non-Hispanic White patients.
Table S16. P values for the test of differential effects of the rs4293393 (A/G) UMOD variant on key clinical phenotypes in non-Hispanic White versus Non-Hispanic Black patients in the Million Veteran Program.
Table S17. Association of the rs4293393 (A/G) UMOD variant with UTIs across population groups in the Million Veteran Program.
Table S18. Association of the rs77924615 (G/A) PDILT Variant with UTIs across population groups in the Million Veteran Program.

Table S19. Association of the rs77924615 (G/A) PDILT variant with key clinical phenotypes across sex groups in the Million Veteran Program.
Table S20. Power estimates for the association between the rs4293393 UMOD variant and key clinical phenotypes in non-Hispanic White and Black patients.
Table S21. Power estimates for the association between the UMOD/PDILT variants and key clinical phenotypes in Hispanic patients.

Supplementary VA Million Veteran Program: Core Acknowledgment for Publication.

STROBE Statement.

REFERENCES

1. Mount DB. Thick ascending limb of the loop of Henle. *Clin J Am Soc Nephrol*. 2014;9:1974–1986. https://doi.org/10.2215/CJN.04480413
2. Rampoldi L, Scolari F, Amoroso A, et al. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. *Kidney Int*. 2011;80:338–347. https://doi.org/10.1038/ki.2011.134
3. Tamm I, Horsfall FL Jr. Characterization and separation of an inhibitor of viral hemagglutination present in urine. *Proc Soc Exp Biol Med*. 1950;74:106–108.
4. Bachmann S, Dawny AB, Bouby N, Bankir L. Tamm-Horsfall protein excretion during chronic alterations in urinary concentration and protein intake in the rat. *Ren Physiol Biochem*. 1991;14:236–245. https://doi.org/10.1159/000173411
5. Goodall AA, Marshall RD. Effects of freezing on the estimated amounts of Tamm-Horsfall glycoprotein in urine, as determined by radioimmunoassay. *Biochem J*. 1980;189:533–539. https://doi.org/10.1042/bj1890533
6. Rindler MJ, Naik SS, Li N, et al. Uromodulin (Tamm-Horsfall glycoprotein/uromodulin) is a phosphatidylinositol-linked membrane protein. *J Biol Chem*. 1990;265:20784–20789. https://doi.org/10.1016/S0021-9258(17)45284-7
7. Serafini-Cessi F, Malagolini N, Cavallone D. Tamm-Horsfall glycoprotein: biology and clinical relevance. *Am J Kidney Dis*. 2003;42:658–676. https://doi.org/10.1016/s0272-6386(03)00829-1
8. Devuyst O, Dahan K, Pinson Y. Tamm-Horsfall protein or uromodulin: new ideas about an old molecule. *Nephrol Dial Transplant*. 2005;20:1290–1294. https://doi.org/10.1093/ndt/gfh851
9. Mutig K, Kahi T, Saritas T, et al. Activation of the bumetanide-sensitive Na+,K+,2Cl– cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. *J Biol Chem*. 2011;286:30200–30210. https://doi.org/10.1074/jbc.M111.222968
10. Renigunta A, Renigunta V, Saritas T, et al. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROK2 and regulates its function. *J Biol Chem*. 2011;286:2224–2235. https://doi.org/10.1074/jbc.M110.149880
11. Pak J, Pu Y, Zhang ZT, et al. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. *J Biol Chem*. 2001;276:9924–9930. https://doi.org/10.1074/jbc.M008010200
12. Mo L, Zhu XH, Huang HY, et al. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated *Escherichia coli*. *Am J
13. Ghiroto S, Tassi F, Barbujani G, et al. The uromodulin gene locus shows evidence of pathogen adaptation through human evolution. *J Am Soc Nephrol*. 2016;27:2983–2996. https://doi.org/10.1681/ASN.2015070830

14. Mo L, Huang HY, Zhu XH, et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. *Kidney Int*. 2004;66:1159–1166. https://doi.org/10.1111/j.1523-1755.2004.00867.x

15. Saemund MD, Weichhart T, Zeya M, et al. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. *J Clin Invest*. 2005;115:468–475. https://doi.org/10.1172/JCI22720

16. El-Achkar TM, Wu XR, Rauchman M, et al. Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. *Am J Physiol Ren Physiol*. 2008;295:F534–F544. https://doi.org/10.1152/ajprenal.00083.2008

17. Köttgen A, Glazer NL, Dehghan A, et al. Multiple loci associated with indices of renal function and chronic kidney disease. *Nat Genet*. 2009;41:712–717. https://doi.org/10.1038/ng.377

18. Pattaro C, Teulner A, Gorski M, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. *Nat Commun*. 2016;7:10023. https://doi.org/10.1038/ncomms10023

19. Devuyst O, Pattaro C. The UMOD locus: insights into the pathogenesis and prognosis of kidney disease. *J Am Soc Nephrol*. 2018;29:713–726. https://doi.org/10.1681/ASN.2017070716

20. Wuttke M, Köttgen A. Insights into kidney diseases from genome-wide association studies. *Nat Rev Nephrol*. 2016;12:549–562. https://doi.org/10.1038/nrneph.2016.107

21. Wuttke M, Li Y, Li M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. *Nat Genet*. 2019;51:957–972. https://doi.org/10.1038/s41588-019-0407-x

22. Padmanabhan S, Melander O, Johnson T, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. *PLOS Genet*. 2010;6:e1001177. https://doi.org/10.1371/journal.pgen.1001177

23. Olden M, Corre T, Hayward C, et al. Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. *J Am Soc Nephrol*. 2014;25:1869–1882. https://doi.org/10.1681/ASN.2013070781

24. Trudu M, Janas S, Lanzani C, et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. *Nat Med*. 2013;19:1655–1660. https://doi.org/10.1038/nm.3384

25. Fang H, Hui Q, Lynch J, et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. *Am J Hum Genet*. 2019;105:763–772. https://doi.org/10.1016/ajhg.2019.08.012

26. Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. *Nat Biotechnol*. 2013;31:1102–1110. https://doi.org/10.1038/nbt.2749

27. Pendergrass SA, Brown-Gentry K, Dudek S, et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) network. *PLOS Genet*. 2013;9:e1003087. https://doi.org/10.1371/journal.pgen.1003087

28. Bush WS, Oetjens MT, Crawford DC. Unraveling the human genome-phenome relationship using phenome-wide association studies. *Nat Rev Genet*. 2016;17:129–145. https://doi.org/10.1038/nrg.2015.36

29. Rastegar-Mojarad M, Ye Z, Kolesar JM, et al. Opportunities for drug repositioning from phenome-wide association studies. *Nat Biotechnol*. 2015;33:342–345. https://doi.org/10.1038/nbt.3183

30. Gaziano JM, Concato J, Brophy M, et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. *J Clin Epidemiol*. 2016;70:214–223. https://doi.org/10.1016/j.jclinepi.2015.09.016

31. Bick AG, Akwo E, Robinson-Cohen C, et al. Association of APOL1 risk alleles with cardiovascular disease in Blacks in the Million Veteran Program. *Circulation*. 2019;140:1031–1040. https://doi.org/10.1161/CIRCULATIONAHA.118.036589

32. Giri A, Hellwege JN, Keaton JM, et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. *Nat Genet*. 2019;51:51–62. https://doi.org/10.1038/s41588-018-0303-9

33. Hunter-Zinzic H, Shi Y, Li M, et al. Measuring genetic variation in the multi-ethnic Million Veteran Program (MVP). *bioRxiv*. Published online January 7, 2020. https://doi.org/10.1101/20210101.01.06.896613

34. Manichaikul A, Mychaleckyj JC, Rich SS, et al. Robust relationship inference in genome-wide association studies. *Bioinformatics*. 2010;26:2867–2873. https://doi.org/10.1093/bioinformatics/btq559

35. Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. *Nature*. 2015;526:88–94. https://doi.org/10.1038/nature15393

36. Loh PR, Danecek P, Palamara PF, et al. Reference-based phasing and conduct of genome-wide association meta-analyses. *Nat Rev Genet*. 2014;15:475–485. https://doi.org/10.1038/nrg.3679

37. Consortium GP, Abecasis GR, Altshuler D, et al. A map of human genome variation from population-scale sequencing. *Nature*. 2010;467:1061–1073. https://doi.org/10.1038/nature09534

38. Das S, Forer L, Schonherr S, et al. Next-generation genotype imputation service and methods. *Nat Genet*. 2016;48:1284–1287. https://doi.org/10.1038/nbg3656

39. Abraham G, Inouye M. Fast principal component analysis of human genetic variation. *Nature*. 2016;539:745–748. https://doi.org/10.1038/nature06200

40. Winkler TW, Day FR, Croteau-Chonka DC, et al. Quality control and conduct of genome-wide association meta-analyses. *Nat Protoc*. 2014;9:1192–1212. https://doi.org/10.1038/nprot.2014.071

41. Klarin D, Damrauer SM, Cho K, et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. *Nat Genet*. 2018;50:1514–1523. https://doi.org/10.1038/s41588-018-0222-9
42. Hyde CL, Nagle MW, Tian C, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 2016;48:1031–1036. https://doi.org/10.1038/ng.3623
43. 1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526:68–73. https://doi.org/10.1038/nature15393
44. Devuyst O, Olinge E, Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol. 2017;13:525–544. https://doi.org/10.1038/nrneph.2017.101
45. Cai T, Zhang Y, Ho Y-L, et al. Association of interleukin 6 receptor variant with cardiovascular disease effects of interleukin 6 receptor blocking therapy: a phenome-wide association study. JAMA Cardiol. 2018;3:849–857. https://doi.org/10.1001/jamacardio.2018.2287
46. Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205–1210. https://doi.org/10.1093/bioinformatics/btq126
47. King G, Zeng L. Logistic regression in rare events data. Pol Anal. 2001;9:137–163. https://doi.org/10.1093/oxfordjournals.pan.a004868
48. Buckley JP, Doherty BT, Keil AP, Engell SM. Statistical approaches for estimating sex-specific effects in endocrine disruptors research. Environ Health Perspect. 2017;125. https://doi.org/10.1289/EHP1334
49. Paternotste R, Brame R, Mazerolle P, Piquero A. Using the correct statistical test for the equality of regression coefficients. Criminology (Beverly Hills). 1998;36:859–866. https://doi.org/10.1111/j.1745-9125.1998.tb01268.x
50. Roden DM, Pulley JM, Basford MA, et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin Pharmacol Ther. 2008;84:362–369. https://doi.org/10.1038/cpt.2008.89
51. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med. 2015;12: e1001779. https://doi.org/10.1371/journal.pmed.1001779
52. Sveinbjornsson G, Mikaelsdottir E, Palsson R, et al. Rare gene-disease associations. Pol Anal. 2001:9:137–163. https://doi.org/10.1093/oxfordjournals.pan.a004868
53. Mahajan A, Rodan AR, Le TH, et al. Trans-ethnic fine mapping highlights kidney-function genes linked to salt sensitivity. Am J Hum Genet. 2014;23:6935–6943. https://doi.org/10.1038/hmg.2013399
54. Mahajan A, Rodan AR, Le TH, et al. Trans-ethnic fine mapping highlights kidney-function genes linked to salt sensitivity. Am J Hum Genet. 2016;99:636–646. https://doi.org/10.1016/j.ajhg.2016.07.012
55. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–860. https://doi.org/10.1056/NEJMoa011303
56. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–869. https://doi.org/10.1056/NEJMoa0111161
57. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–2306. https://doi.org/10.1056/NEJMoa1811744
58. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–1446. https://doi.org/10.1056/NEJMoa2024816
59. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–334. https://doi.org/10.1056/NEJMoa1519520
60. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657. https://doi.org/10.1056/NEJMoa1611925
61. Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691–704. https://doi.org/10.1016/S2213-8587(18)30141-4
62. Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383:2219–2229. https://doi.org/10.1056/NEJMoa2025845
63. Hellwege JN, Velez Edwards DR, Giri A, et al. Mapping eGFR loci to the renal transcriptome and phenotype in the VA Million Veteran Program. Nat Commun. 2019;10:3842. https://doi.org/10.1038/s41467-019-11704-w
64. Padmanabhan S, Graham L, Ferreri NR, et al. Uromodulin, an emerging novel pathway for blood pressure regulation and hypertension. Hypertens (Dallas: Tex). 2014;64:918–923. https://doi.org/10.1161/HYPERTENSIONAHA.114.03132
65. Yoshida T, Kurella M, Beato F, et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 2002;61:1646–1654. https://doi.org/10.1046/j.1523-1755.2002.00341.x
66. El-Acktar TM, McCracken R, Liu Y, et al. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am J Physiol Ren Physiol. 2010;299:F478. https://doi.org/10.1152/ajprenal.00243.2012
67. Parkinen J, Virkola R, Korhonen TK. Identification of factors and uropathogenic E. coli during chronic infection. Infect Immun. 1988;56:2623–2630. https://doi.org/10.1128/iai.56.10.2623-2630.1988
68. Conover MS, Ruer S, Taganna J, et al. Inflammation-induced adhesin-receptor interaction provides a fitness advantage to uropathogenic E. coli during chronic infection. Cell Host Microbe. 2016;20:482–492. https://doi.org/10.1016/j.chom.2016.08.013
69. Liu Y, Mo L, Goldfarb DS, et al. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Ren Physiol. 2010;299:F469–F478. https://doi.org/10.1152/ajprenal.00243.2010
71. Coe FL, Evan A, Worcester E. Pathophysiology-based treatment of idiopathic calcium kidney stones. *Clin J Am Soc Nephrol.* 2011;6:2083–2092. https://doi.org/10.2215/CJN.11321210

72. Serafini-Cessi F, Monti A, Cavallone D. N-Glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. *Glycoconj J.* 2005;22:383–394. https://doi.org/10.1007/s10719-005-2142-z

73. Weiss GL, Stanisich JJ, Sauer MM, et al. Architecture and function of human uromodulin filaments in urinary tract infections. *Science.* 2020;369:1005–1010. https://doi.org/10.1126/science.aaz9866