COMPLETE INTERSECTION VARIETIES
WITH AMPLE COTANGENT BUNDLES

by

Damian Brotker & Lionel Darondeau

Abstract. — Any smooth projective variety contains many complete intersection subvarieties with ample cotangent bundles, of each dimension up to half its own dimension.

1. Introduction

It is expected that projective varieties with ample cotangent bundles should be abundant, at least under reasonable assumptions; in [Sch92], Schneider proved that such a variety cannot be embedded in projective space in a way that its dimension is larger than its codimension. Yet, not so many examples were known until recently. Looking for such examples and generalizing a question of Schneider in the cited work, one can wonder if a smooth N-dimensional projective variety contains subvarieties with ample cotangent bundles (besides curves). In this paper, we answer this question and establish that, after taking into account Schneider’s condition, subvarieties with ample cotangent bundles are ubiquitous.

Main result. — In any smooth projective variety M, for each $n \leq \dim(M)/2$, there exists a smooth subvariety of dimension n with ample cotangent bundle.

To give some illustrative examples: in view of the aforementioned Schneider’s result, this statement is sharp for $M = \mathbb{P}^N$ (which has anti-ample cotangent bundle), by [Deb05] it is also sharp if M is an abelian variety (which has trivial cotangent bundle), and the statement becomes obviously non-sharp (and trivial) if M itself has ample cotangent bundle.

In an ambient variety M, a natural way to construct subvarieties with ample cotangent bundles is to consider complete intersections of very ample divisors. Indeed, there are several ways to see that cotangent bundles of smooth hypersurfaces carry more “positivity” than the cotangent bundle of the original variety itself (consider e.g. adjunction formula, or observe that cotangent bundles of hypersurfaces are quotients of the cotangent bundle of the ambient variety). Taking the complete intersection of more and more hypersurfaces, it is a natural question to ask at which point the cotangent bundle may become ample. We say that a property holds for a general member of some family, if it holds for any member of the family over a dense Zariski-open subset of the base. In [Deb05], Debarre conjectured that complete intersections in projective space having codimensions at least equal to their dimensions should have ample cotangent bundles, provided the hypersurfaces one intersects are general and sufficiently ample. This conjecture was motivated by his proof of the analogous statement for complete intersections in abelian varieties (see also [Deb13, Ben11]).

2010 Mathematics Subject Classification. — 14M10.
Key words and phrases. — Ample cotangent bundle, symmetric differential forms, complete intersection varieties.

The research of the second author was supported by the USIAS project “Rational Points, Rational Curves and Automorphisms of Special Varieties” of Carlo Gasbarri and Gianluca Pacienza (http://www.usias.fr).
In the spirit of this conjecture, we prove the following statement, which implies our main result.

Theorem 1.1. — On a N-dimensional smooth projective variety M, equipped with a very ample line bundle $\mathcal{O}_M(1)$, for codimensions $N/2 \leq c \leq N$, for each $\delta = (\delta_1, \ldots, \delta_\ell) \in (\mathbb{N}^*)^\ell$ and any sufficiently large multiple

$$(d_1, \ldots, d_\ell) = v \cdot (\delta_1, \ldots, \delta_\ell) \in (\mathbb{Q}_1 \cdot \delta) \cap (\mathbb{N}^*)^\ell \quad \text{with } v \geq v(\delta)$$

the complete intersection $X := H_1 \cap \cdots \cap H_\ell$ of general hypersurfaces $H_1 \in |\mathcal{O}(d_1)|, \ldots, H_\ell \in |\mathcal{O}(d_\ell)|$ has ample cotangent bundle.

During the last steps of the preparation of this paper, we were informed that Xie announced a proof of ampleness of the cotangent bundles of general complete intersections in \mathbb{P}^N, with codimensions at least as large as their dimensions, with a uniform lower bound on the degrees, modulo a technical generalization of our arguments. The present work finds its roots in [Deb05], as well as in the previous work of the first named author. Inspired by the treatment of families defined by Fermat-type hypersurfaces in [Bro15], he also proved that a general complete intersection X of multi-degree (d_1, \ldots, d_ℓ) in \mathbb{P}^N, with codim $X \geq 3 \dim X - 2$, has ample cotangent bundle when $d_\ell \geq 2N + 3$.

The present work finds its roots in [Bro15], and pushes further the ideas initiated there to complete the study of families of complete intersection varieties, here in a fully geometric way. Although our intuitions grew from the geometric interpretation of the cohomological computations arising in [Bro15], to make this approach effective is not a goal of the present text. We rather choose to emphasize the intrinsic simplicity and the geometric nature of the proof.

Let us now outline how we establish Theorem 1.1. The proof relies on two ideas, exploited as follows.

* A polynomial of high degree and its differential are (generically) independent. — This idea was already very present in Debarre’s proof in abelian varieties [Deb05], as well as in the previous work of the first named author. Inspired by the treatment of families defined by Fermat-type hypersurfaces in [Bro15], we consider the family $X \to S$ of complete intersection subvarieties in M cut out by certain bihomogeneous sections (see Section 2.1). For these sections, we show that besides being independent, the differentials furthermore have the same shape as the original sections. Formally, on obtains $2c \geq N$ sections of the same type. After making this idea rigorous, we are able to define a map Ψ from the projectivized(1) relative cotangent bundle $\mathbb{P}(\Omega_{X/S})$ to a certain family $\mathcal{Y} \to \mathcal{G}$ of subschemes in \mathbb{P}^N defined by $2c$ universal equations (see Section 2.2). Since $2c \geq N$, the general fiber of this family has dimension ≤ 0.

* Use the positivity of the parameter space of the family. — This idea was already present in Voisin’s variational method ([Voi96]). However, instead of pulling back the positivity from the parameter space of the family X under consideration, we rather use the map Ψ to pull back the positivity from the family \mathcal{Y}, which is itself easily deduced from the positivity on \mathcal{G}, since the general fibers of $\mathcal{Y} \to \mathcal{G}$ are finite. To the best of our knowledge, this approach is new.

To effectively pull-back the positivity, the central idea is that the images by Ψ of curves lying in general fibers of $\mathbb{P}(\Omega_{X/S})$ should avoid the locus of positive dimensional fibers of $\mathcal{Y} \to \mathcal{G}$. We establish this fact thanks to a result of Benoist [Ben11] which yields that this locus is small. See Section 2.3, 2.4 for full detail.

(1) for a vector bundle E on a variety X we denote by $\pi_E : \mathbb{P}(E) \to X$ the projectivization of rank one quotients of E
2. Ampleness of the cotangent bundle of general complete intersections

We work over an algebraically closed field k of characteristic 0. Recall that M is an N-dimensional smooth projective variety over k, equipped with a very ample line bundle $O_M(1)$.

Throughout this text we use the following notation. We denote by $|J| = \delta$ an $N^{\delta+1}$ subset of multi-integers $J = (J_0, \ldots, J_N)$ such that $|J| := J_0 + J_1 + \cdots + J_N = \delta$. The support of a multi-index J is denoted

$$[J] := \left\{ i \in \{0, 1, \ldots, N \} \mid J_i \neq 0 \right\}.$$

For $\emptyset \subseteq I \subseteq \{0, \ldots, N\}$ with $\# I = (1 + k)$, there are $\binom{N+1}{k}$ multi-indices of length δ with $|J| \subseteq I$. These parametrize non-vanishing degree δ homogeneous monomials on

$$k^I := \left\{ (Z_0, \ldots, Z_N) \in k^{N+1} \mid Z_i = 0, \forall i \notin I \right\}.$$

When we work on a chart V in a trivializing affine covering \mathfrak{B} for $O_M(1)$, for $\sigma \in \mathcal{H}(M, O_M(1))$ we will denote by $\langle \sigma \rangle_V \in \mathcal{O}(V)$ the regular function corresponding to σ under that trivialization.

2.1. Complete intersections cut out by bihomogeneous sections. — We fix $N + 1$ sections in general position, $\zeta_0, \ldots, \zeta_N \in \mathcal{H}(M, O_M(1))$, and we set $D_i := \langle \zeta_i \rangle = 0$ for $i = 0, \ldots, N$. By “general position”, we mean that each of the D_i is smooth, and that the divisor $D = \sum D_i$ is normal crossing.

For a codimension c satisfying the hypothesis $N/2 \leq c < N$ of Theorem 1.1, and two c-tuples of positive integers $\epsilon = (\epsilon_1, \ldots, \epsilon_c), \delta = (\delta_1, \ldots, \delta_c)$, we construct the family X mentioned in the introduction as follows. For $p = 1, \ldots, c$, for $a^p = (a^{p}_j) \in \mathcal{H}^{\epsilon}(M, O_M(\epsilon(p)))_{|\sum \delta_j}$, and for a positive integer r fixed later according to our needs, we consider the bihomogeneous section of $O_M(e_p + (r + 1)\delta_p)$ over M defined by2

$$E^p(a^p, \cdot; x) \mapsto \sum_{|J|<\delta_p} a^p_j(x) \zeta_j(x)^{r+1}j.$$

We rather want to let a^p vary in the parameter space $S_p := \mathcal{H}^{\epsilon}(M, O_M(\epsilon(p)))^{\sum \delta_j}$ and to think at E^p as a section $E^p \in \mathcal{H}^{\epsilon}(S_p \times M, O_M(\delta_p))$ where $d_p := e_p + (r + 1)\delta_p$.

We then consider the family $\overline{X} \subset S_1 \times \cdots \times S_c \times M$ of complete intersection varieties in M defined by those sections, i.e.

$$\overline{X} := \left\{ (a^1, \ldots, a^c; x) \in S_1 \times \cdots \times S_c \times M \mid E^1(a^1, x) = 0, \ldots, E^c(a^c, x) = 0 \right\}.$$

Fact 2.1. — The family $\overline{X} \to S_1 \times \cdots \times S_c$ is generically smooth.

Proof. — To see this, it suffices to produce one smooth member of this family. This is a straightforward induction based on the following statement: Given $\epsilon, \delta > 0$ and a smooth subvariety X of M there exists a section $\sigma = \sum_{i=0}^{N^{\delta+1}} a_i^{r+1} \xi_i^{(r+1)\delta} \in \mathcal{H}^{\epsilon}(M, O_M(\epsilon + (r + 1)\delta))$, where $a_i \in \mathcal{H}^{\epsilon}(M, O_M(\epsilon))$, such that $X \cap (\sigma = 0)$ is smooth. The proof is just a minor modification of the proof of the classical Bertini theorem, we sketch it here for the sake of completeness. Consider the set $\Sigma \subset \mathcal{H}^{\epsilon}(M, O_M(\epsilon))^{\sum \delta_j} \times X$ composed of element of the form (a_0, \ldots, a_N, x) such that the hypersurface H_a defined by $(\sigma := \sum_{i=0}^{N^{\delta+1}} a_i^{r+1}\xi_i^{(r+1)\delta} = 0)$ contains x but $X \cap H_a$ has a singularity at x. Set $H^1(M, O_M(\epsilon))^{\sum \delta_j} = \{ a = (a_0, \ldots, a_N) \mid x \in H_a \}$, this is a hyperplane of $H^1(M, O_M(\epsilon))^{\sum \delta_j}$. For a fixed x we are going to estimate the dimension of $\Sigma_x := pr_x^{-1}(x)$. Fix an affine neighborhood $V \subset M$ of x, where we trivialize $O_M(1)$. Then we have a linear map

$$H^1(M, O_M(\epsilon))^{\sum \delta_j} \overset{\varphi_x}{\to} \Omega_{X/V,x}.$$

defined by $\varphi_x(a) = d(\sigma_a)|_{O_{X/V}}$. Observe that $d(\sigma_a)|_{V} \in \mathcal{O}(V, \Omega_{X/V})$, so it makes sense to restrict it to $\Omega_{X/V,x}$. Observe that $\Sigma_x \cong ker \varphi_x$. Let us prove that φ_x is surjective, to see this it suffices to prove that for $\xi \in T_xX$, there exists a such that $\varphi_x(a)(\xi) \neq 0$. Fixing $\xi \in T_xX$, it suffices to consider $0 \in \mathbb{Z}$ not such that $\zeta_0(x) \neq 0$. But in this case $a^1\zeta_0(x) \neq 0$ for any i, $d(a^i_0)\zeta_0(x) \neq 0$ and $d(a^i_0)\zeta_i(x) = 0$ otherwise (this is possible since $O_M(1)$ is very ample). A direct computation then shows that $\varphi_x(a)(\xi) = d(a^i_0)\zeta_0(x)\xi_0^{r+1}(x) \neq 0$. This shows the desired surjectivity. Therefore,

$$\dim \Sigma_x = h^1(M, O_M(\epsilon))^{\sum \delta_j} - 1 - \text{rank} \varphi_x = h^1(M, O_M(\epsilon))^{\sum \delta_j} - \text{dim} X - 1.$$

From which we infer that $\dim \Sigma_X < h^1(M, O_M(\epsilon))^{\sum \delta_j}$. This implies that Σ does not dominate $H^1(M, O_M(\epsilon))^{\sum \delta_j}$, whence the result. \qed
We will from now on restrict ourselves to the dense open subset \(S \subset S_1 \times \cdots \times S_c \) parametrizing smooth varieties, and we will prove the ampleness of the cotangent bundle of the general members of the universal family
\[
X := \left\{ (a^1, \ldots, a^f; x) \in S \times M \mid E^1(a^1, x) = 0, \ldots, E^f(a^f, x) = 0 \right\}.
\]
We denote \(\text{pr}_1 \) and \(\text{pr}_2 \) the natural projections from \(X \) to the factors of the product \(S \times M \).

After projectivization, the relative cotangent sheaf \(\Omega_{X/S} \) of the family \(X \) gives rise to the family we are interested in, namely
\[
X^{[1]} := \mathbb{P}(\Omega_{X/S}) \subset S \times \mathbb{P}(\Omega_M).
\]
We denote \(\text{pr}_1^{[1]} \) and \(\text{pr}_2^{[1]} \) the natural projections from \(X^{[1]} \) to the factors of the product \(S \times \mathbb{P}(\Omega_M) \). A fiber \((\text{pr}_1^{[1]})^{-1}(a^*) \) of \(X^{[1]} \rightarrow S \) projects onto \(X_{a^*} := (\text{pr}_1)^{-1}(a^*) \) and coincide with \(\mathbb{P}(\Omega_{X_{a^*}}) \).

As mentioned in the introduction, the motivation for the choice of this class of examples comes from the previous work [Bro15] by the first author (where \(\delta_p = 1 \)). See this text for comments on what were there called “Fermat-type” hypersurfaces and the interesting properties these share with our kind of equations.

2.2. Construction of families of non-positive-dimensional subschemes. — We work temporarily on a chart \(V \) in a trivializing affine covering \(\mathcal{B} \) for \(\mathcal{O}_M(1) \). The family \(X^{[1]} \subset S \times \mathbb{P}(\Omega_M) \) is locally defined by the equations \(E^1, dE^1, \ldots, E^f, dE^f \).

The main geometric idea in our proof is the construction of a family \(\mathcal{Y} \) of non-positive-dimensional subschemes defined by universal equations, together with map \(\mathcal{Y}^{[1]} \rightarrow \mathcal{Y} \) used to “pullback positivity”.

We get a number of equations that outreaches the dimension if we use both the equations \(E^a \) and their differentials \(dE^a \).

We consider locally \((\mathcal{Y}^{[1]})_V \) of degree \(\delta_p \) in the variables \(\epsilon^0_p, \ldots, \epsilon^f_p \). Namely, for \(a^p \in S_p \) we consider locally
\[
(E^p(a^p, \cdot))(V) = \sum_{|j| \leq \delta_p} (a^p_j(a^p, \cdot))(\xi^I_j) \in \mathcal{O}(V);
\]
\[
d(E^p(a^p, \cdot))(V) = \sum_{|j| \leq \delta_p} (\theta^p_j(a^p, \cdot))(\xi^I_j) \in H^0(V, \Omega_V);
\]
where \(a^p_j(a^p, \cdot) := a^p \xi^I_j \) and where
\[
(\theta^p_j(a^p, \cdot))(V) := (\xi^I_j)(V) \ d(a^p_j)_V + (r + 1)(a^p_j)_V \ d(\xi^I_j)_V \in H^0(V, \Omega_V).
\]
The local sections \(\theta^p_j \) will soon disappear in favour of global sections that these will help to construct.

Actually, for each \(p = 1, \ldots, c \), for each \(a^p \in S_p \) and \(\xi \in \mathbb{P}(\Omega_M) \), although the two points
\[
(a^p_j(a^p, \xi))_{j \leq \delta_p}, \quad (\theta^p_j(a^p, \xi))_{j \leq \delta_p} \in \mathcal{K}(v^{(\delta_p)})
\]
depend on the choice of trivialization, the vector space \(\Delta_p(a^p, \xi) \) spanned by them does not. Under the assumption that this space is two dimensional, we get a well defined element in the Grassmannian of 2-planes \(\mathcal{G}_2(\mathcal{K}(v^{(\delta_p)})) \). Considering the Plücker embedding \(\mathcal{G}_2(\mathcal{K}(v^{(\delta_p)})) \rightarrow \mathcal{P}(\mathcal{K}(v^{(\delta_p)})) \), one is naturally led to define locally the (relative) differential form
\[
(\beta^p_{J_1, J_2})_V := \det \begin{pmatrix} a^p_{J_1} & a^p_{J_2} \\ \theta^p_{J_1} & \theta^p_{J_2} \end{pmatrix}_V \in H^0(S_p \times V, \Omega_V).
\]

Now, it is a standard exercise to show that these local sections \((\beta^p_{J_1, J_2})_V \) glue together as a global section \(\beta^p_{J_1, J_2} \). Indeed, one can classically define Wroński differential forms:

Lemma 2.2. — Let \(L \rightarrow X \) be a line bundle over a smooth variety \(X \), and let \(\alpha_1, \alpha_2 \in H^0(X, L) \) be global sections. Whereas \(\alpha_1 \alpha_2 \) may not be a global section of the twisted cotangent bundle \(\Omega_X \otimes L \), the Wroński section
\[
\det \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_1 \alpha_2^{\otimes 2} \end{pmatrix}_V \in H^0(S_p \times V, \Omega_V).
\]
is always a global section in \(H^0(X, \Omega_X \otimes L^{\otimes 2}) \).\\

Proof. — The quotient \(\alpha_1/\alpha_2 \) being a rational function on \(X \), we can consider its logarithmic differential, which is a logarithmic form along the divisor \((\alpha_1/\alpha_2 = 0) \). Multiplying by \(\alpha_1 \alpha_2 \) cancels out the poles, and yields a section in \(H^0(X, \Omega_X \otimes L^2) \). A short computation shows that this is precisely the Wroński form of the statement. \(\square \)

(3) to evaluate sections defined on \(M \) at points of \(\mathbb{P}(\Omega_M) \), we only imply the pre-composition by the projection \(\pi_{\Omega_M} : \mathbb{P}(\Omega_M) \rightarrow M \)
Next, it is not hard to see that $\xi^{i_1+\ldots+i_r}p^{j_1}_{i_1,j_1}\in H^0(S_p \times \mathbb{P}(\Omega_M), L(2d_p))$ is the Wronskian section associated to the global sections $d^{j_1}_{i_1} \xi^{i_1+1}j_1$ and $d^{j_2}_{i_2} \xi^{i_2+1}j_2$ in $H^0(S_p \times M, O_M(d_p))$. For more fluidity, we denote

$$L(a) := O_{\mathbb{P}(\Omega_M)}(1) \otimes (\pi_M^*) O_M(a), \quad (\pi_M^* : \mathbb{P}(\Omega_M) \to M).$$

The quotient of $\xi^{i_1+\ldots+i_r}p^{j_1}_{i_1,j_1}$ by $\xi^{i_1+\ldots+i_r}$ yields a rational section; since it has clearly no poles, we obtain

$$(4) \quad \beta^{0}_{i_1,j_1} \in H^0(S_p \times \mathbb{P}(\Omega_M), L(2d_p - 2\delta_0)) = H^0(S_p \times \mathbb{P}(\Omega_M), L(2\delta_0 + 2\delta_0)).$$

These sections give rise to a rational map $\Delta^p : \mathbb{P}(\Omega_M) \to \mathbb{P}(k^{(r)}_{n})$ given by

$$\Delta^p(a^p, \xi) = \{ \beta^{0}_{i_1,j_1}(a^p, \xi) \mid J_1 = \delta_p, |J_2| = \delta_p \} \in \mathbb{P}(k^{(r)}_{n}).$$

This map Δ^p plays a crucial role in our proof, thus we will now investigate its indeterminacy locus (which is precisely the base locus of the family $(\beta^{0}_{i_1,j_1})$).

Let us momentarily work again on an affine open set V on which $O_M(1)$ is trivialized, and for $\xi \in (\pi_M^*)^{-1}(V)$, consider the evaluation map

$$(5) \quad \eta^{0}_{i_1} : a^p \mapsto ((a^p)^{\nu}(a^p, \xi), (\theta^p)^{\nu}(a^p, \xi)).$$

It satisfies the following rank condition.

Lemma 2.3. — For a point $\xi \in (\pi_M^*)^{-1}(V)$, at which

$$\#(i \mid \xi(i) = 0) = (N - k_0) \quad \text{and} \quad \#(i \mid \xi(i) = 0, d\xi(\delta) = 0) = (N - k_1),$$

for $p = 1, \ldots, c$, the rank of the evaluation map $\eta^{0}_{i_1}$ satisfies

$$\text{rank}(\eta^{0}_{i_1}) \geq 2 \left(\frac{k_0 + \delta_p}{k_0} \right) + (k_1 - k_0).$$

Proof. — Since $a^p_{i_1}$ and $\theta^p_{i_1}$ involve only $d\xi$, the linear map $\eta^{0}_{i_1}$ is diagonal by blocks. Each block $H^0(M, O_M(1)) \to k \times k$ corresponds to the map $a^p_{i_1} \mapsto ((a^p)^{\nu}(a^p, \xi), (\theta^p)^{\nu}(a^p, \xi))$ for a certain J. Recall from (2) that locally (for readability, we now drop the “local” notation)

$$a^p_{i_1}(a^p, \xi) = d\xi(\delta)(\xi(\xi))^J \quad \text{and} \quad \theta^p_{i_1}(a^p, \xi) = d\xi(\delta)(\xi(\xi))^J + (r + 1)d\xi(\delta)(\xi(\xi))^J.$$

There is thus two cases, depending on J. Either $(\xi(\xi))^J \neq 0$, or not.

Before discussing these two cases, let us note that (since sections of very ample line bundles separate first order jets) there exists $b_1 \in H^0(M, O_M(1))$ such that $b_1(\delta) = 0$ and $d\xi(\delta) \neq 0$, and there also exists $b_2 \in H^0(M, O_M(1))$ such that $b_2(\delta) \neq 0$.

In the first case, when $(\xi(\xi))^J = 0$, it is now immediate that the rank of the block is ≤ 2 (i.e. maximal). The respective images $(0, \ast_{x_0})$ and (\ast_{x_0}, \ast) of b_1 and b_2 cannot be collinear. Thus the rank of the block is 2.

In the other case, when $(\xi(\xi))^J \neq 0$, clearly $a^p_{i_1}(a^p, \xi) = d\xi(\delta)(\xi(\xi))^J = 0$, whence the rank is at most 1.

We consider only particularly simple instances of the this case, namely, we take monomials $\xi^{i_1+\ldots+i_r}j_1$ with $i \in I := \{ i \mid \xi(i) \neq 0 \}$ and $j \in J := \{ j \mid \xi(j) = 0 \}$ and $d\xi(\delta) \neq 0$—it is left to the reader to check that other instances are substantially more complicated. Then the image of b_2 is $(0, (r + 1)b_2(\delta)(\xi(\xi))^{(r)-1}d\xi(\delta))$.

The entry in the second slot is non zero by assumption on i. Thus the rank of the block is 1.

By assumption I has cardinality $(k_0 + 1)$ and J has cardinality $(k_1 - k_0)$. The announced lower bound for the rank follows, after a count of blocks considered in each case. Notice that if $\delta_p \geq 2$ we have even shown

$$\text{rank}(\eta^{0}_{i_1}) \geq 2 \left(\frac{k_0 + \delta_p}{k_0} \right) + (k_0 + 1)(k_1 - k_0).$$

This Lemma in turn implies the following.

Proposition 2.4. — As soon as $\delta_p \geq 2$, there exists a non-empty open subset $U_{\text{def}, p} \subset S_p$ such that the indeterminacy locus of Δ^p does not intersect $U_{\text{def}, p} \times \mathbb{P}(\Omega_M)$.

Proof. — Given an affine covering $\mathfrak{B} = (V)$ on which $O_M(1)$ is trivialized, with finitely many elements, it suffices to show the announced result on each chart. We fix such a chart V.

Recall that we have fixed $\xi_0, \ldots, \xi_N \in H^0(M, O_M(1))$ in general position. The total space of the cotangent bundle can thus be stratified by contact orders with the $(N + 1)$ hyperplanes $D_i = (\xi_i = 0)$; For $\emptyset \subseteq I \subset I' \subset \{ 0, \ldots, N \}$ of respective cardinalities $(1 + k_0)$ and $(1 + k_1)$, we denote by

$$\Sigma(I, I') \subset \mathbb{P}(\Omega_M)$$
the stratum of points such that
\[I = \{0, \ldots, N\} \setminus \{i \mid \zeta_i(\xi) = 0\}, \]
and
\[I' = \{0, \ldots, N\} \setminus \{i \mid \zeta_i(\xi) = 0, \delta_0(\xi) = 0\}. \]

It has dimension \((k_0 + k_1 - 1)\).

We will establish that on each stratum \(\Sigma(I, I')\), the indeterminacy locus \(B \subset S_p \times \Sigma(I, I')\) of the map \((a^p, \xi) \mapsto \Delta^p(a^p, \xi)\) cannot dominate \(S_p\), and this will prove the proposition. Accordingly, we fix \(I \subset I'\).

By linearity of the determinant, \(B = B^n \cup (B \setminus B^n)\), where
\[B^n := \{(a^p, \xi) \in S_p \times \Sigma(I, I') \mid \alpha_j^p(a^p, \xi) = 0 \forall j\}. \]

To prove that \(B\) does not dominate \(S_p\), it hence suffices to prove that neither \(B^n\) nor \(B \setminus B^n\) dominate \(S_p\).

We first prove the first part of this statement, namely that \(B^n\) does not dominate \(S_p\). Observe that \(B^n\) dominates \(S_p\) if and only if
\[B^n_M := \{(a^p, x) \in S_p \times M \mid (\zeta(x) \neq 0 \Leftrightarrow i \in I \wedge \forall J : \alpha_j^p(a^p, x) = 0)\} \]
does. Fix one \(x\) satisfying the conditions on \(\zeta(x)\). The space of such \(x \in M\) has dimension \(k_0\). One is easily convinced that all \(\alpha_j^p(x) = 0\) if and only if, for all \(J\) which support is included in \(I\), one has \(\alpha_j(x) = 0\). As there are \(k_0 + k_1\) such multi-indices \(J\), we infer that
\[\dim(B^n_M) - \dim(S_p) \leq k_0 + \dim(B^n_M) - \dim(S_p) \leq k_0 - \left(\frac{k_0 + \delta_p^p}{k_0}\right) \leq \max\{-1, -\delta_p^p\}. \]

Hence, \(B^n_M\) does not dominate \(S_p\).

We then prove the second part of the sought statement, namely that \(B \setminus B^n\) does not dominate \(S_p\).

For \(\xi \in \Sigma(I, I')\), fix as above a trivialization of the bundle \(\mathcal{O}_M(1)\) around \(\pi_{2\alpha}(\xi) \in V\), recall
\[\eta_{\xi, \delta}^p(a^p) = (\alpha^p_{\nu}(a^p, \xi), (\theta^p_{\nu})(a^p, \xi)). \]

From the definition of \(\Delta^p\), we see that \((a^p, \xi)\) belongs to the indeterminacy locus of \(\Delta^p\) if and only if the rank of \([(\alpha^p_{\nu}(a^p, \xi), (\theta^p_{\nu})(a^p, \xi))]\) is strictly less than 2. Using the stratification, we can even be more precise. Since \(\xi \notin B^n\), i.e. \((a^p, \xi) \neq 0\), this rank condition means that there exists \(\lambda(a^p, \xi) \in k\) such that
\[(\theta^p_{\nu})(a^p, \xi) = \lambda(a^p, \xi) \cdot (\alpha^p_{\nu})(a^p, \xi). \]

In particular, \(\alpha_j^p(a^p, \xi) = 0 \Rightarrow \theta_j^p(a^p, \xi) = 0\), and we can work with multi-indices \(J\) with \([J] \subset I\). Since no confusion could arise, we still denote \(a^p\) the collection of \(\alpha_j^p\) for such indices \(J\). To sum up, we have a map
\[\eta_{\xi, \delta}^p : B \setminus B^n \to k^{(k_0 + k_1)} \times k \]
such that \(\eta_{\xi, \delta}^p = \eta_{\xi, \delta}^p(\cdot, \xi)\). The dimension of the kernel of this map being precisely \((\dim S_p - \min_{\xi \in \Sigma(I, I')} \text{rank}(\eta_{\xi, \delta}^p))\), it follows that
\[\dim(B \setminus B^n) \leq \left(\frac{k_0 + \delta_p^p}{k_0}\right) + 1 + \dim S_p - \min_{\xi \in \Sigma(I, I')} \text{rank}(\eta_{\xi, \delta}^p) \leq \dim(S_p) + \dim(\Sigma(I, I')). \]

This yields, taking account of the different dimensions and of the above lemma
\[\dim(\Sigma(I, I')) - \dim S_p \leq \left(\frac{k_0 + \delta_p^p}{k_0}\right) + 1 - 2\left(\frac{k_0 + \delta_p^p}{k_0}\right) - (k_1 - k_0) + k_0 + k_1 - 1 \leq 2k_0 - \left(\frac{k_0 + \delta_p^p}{k_0}\right). \]

It is left to the reader to check that since \(\delta_p^p \geq 2\), the last expression is < 0. Therefore \(B \setminus B^n\) does not dominate \(S_p\) and this finishes the proof. \(\square\)

Therefore the restriction \(\Delta^p|_{U_{\text{def}, \delta_1} \times \Omega M}\) is a morphism and not merely a rational map. Denote \(U_{\text{def}} := U_{\text{def}, 1} \times \cdots \times U_{\text{def}, e} \subset S\), and for the sake of readability, denote
\[G_2(\delta) := G_2(H^0(\mathcal{P}^p, O_{\mathcal{P}^p}(\delta))), \]
assume \(\delta_1, \ldots, \delta_e \geq 2\), then we get a map
\[\Psi : U_{\text{def}} \times \mathcal{P}(\Omega M) \to G_2(\delta_1) \times \cdots \times G_2(\delta_e) \times \mathcal{P}^p \]

where
\[(a^*, \xi) \mapsto \left[\left|\mathcal{P}^p(a^*, \xi)\right|, \ldots, \left|\mathcal{P}^p(a^*, \xi)\right|, \left|\xi(\xi)'\right|\right]. \]
Along $\mathcal{X}^{(1)} \cap (U_{def} \times \mathbb{P}^N)$, the map φ factors through the universal family
\[Y := \{(\Delta_1, \ldots, \Delta_k, z) \in G \times \mathbb{P}^k | \forall p \in \Delta_1, \ldots, \Delta_k : P(z) = 0\}, \]
parametrized by $G := G_2(\delta_1) \times \cdots \times G_2(\delta_k)$. Since $2c \geq N$ the projection $\rho : Y \to G$ is generically finite, and might be not surjective.

Formally, if one forgets that $N - 2c$ could be negative, one can think of Y as the universal family of complete intersections of codimension $N - 2c$ and multi-degree $(\delta_1, \delta_1, \ldots, \delta_i, \ldots, \delta_k)$ parametrized by G. Keeping this in mind, thanks a result of Benoist (see Section 2.3 below), we obtain a key ingredient needed in our proof, namely the fact that the locus of elements in G that parametrize positive dimensional schemes is of large codimension in G.

Before proceeding, for technical reasons, we need to introduce the stratification of $\mathcal{X}^{(1)}$ induced by the vanishing of the sections ζ_0, \ldots, ζ_N on the base M. Namely, for each $I \subseteq \{0, \ldots, N\}$ with $|I| = k + 1$, let
\[M_I := \{ x \in M | \zeta_i(x) \neq 0 \Rightarrow i \in I \}, \]
be the k dimensional subspace of M associated to I, pullback this stratification to $P(\Omega_M)$, obtaining $P(\Omega_M|_{M_I}) := (\pi_{\Omega_M})^{-1}(M_I)$, and take the intersection with $\mathcal{X}^{(1)}$. For reasons that will soon become obvious, we are mainly interested in the case where $\dim(M_I) = k + 1$.

\begin{fact}
Let $I = (i_0, \ldots, i_k)$ with $k \geq 1$. Along $\mathcal{X}^{(1)} \cap (U_{def} \times P(\Omega_M|_{M_I}))$, the map φ factors through
\[\mathcal{Y}(I) := \{(\Delta_1, \ldots, \Delta_k, z) \in G \times \mathbb{P}(k') | \forall p \in \Delta_1, \ldots, \Delta_k : P(z) = 0\}. \]
\end{fact}
\begin{proof}
Locally, on an affine open subset $V \subset M$, the variety $X^{(1)} \cap (S \times V)$ is defined precisely by the equations $(\mathcal{E})_V = \sum (\alpha_f)_V(\zeta_i)_V^f$ and $(\mathcal{E})_V = \sum (\beta_f)_V(\zeta_i)_V^f$. A straightforward computation then proves that $\varphi|_{\mathcal{V}(V)}$ factors through \mathcal{Y}. Moreover, by definition, as $\xi \in P(\Omega_M|_{M_I}) = \pi^{-1}_\Omega M_I$ we obtain $(\zeta_i(\xi))' \in \mathbb{P}(k') \subset \mathbb{P}^N$. \qed
\end{proof}

\subsection{Avoiding the exceptional locus.}

Because we want to use the positivity of the base G, it is important to avoid positive dimensional fibers of $\mathcal{Y}(I) \to G$. We denote the exceptional locus of a generically finite morphism $f : X \to Y$ between two varieties by $\text{Exc}(f) := \{ x \in X | \dim(f^{-1}(f(x))) > 0 \}$.

\begin{lemma}
If $\delta_1, \ldots, \delta_k \geq \dim(P(\Omega_M))$, then for each $I = (i_0, \ldots, i_k) \subset \{0, \ldots, N\}$ with $k \geq 1$, there exists a non-empty open subset $U_I \subset S$ such that
\[\varphi(X^{(1)} \cap (U_I \times P(\Omega_M|_{M_I}))) \cap \text{Exc}(\mathcal{Y}(I) \to G) = \emptyset. \]
\end{lemma}
\begin{proof}
For such I, for $\xi \in P(\Omega_M|_{M_I})$, and for an affine neighborhood $V \ni \pi_{\Omega_M}(\xi)$ in which $P(\Omega_M)$ is trivial, the maps $\eta^{\mathcal{E}}_{V,I} : p^\mathcal{E} \mapsto (a^\mathcal{E}(\alpha_i^\mathcal{E}, \beta_i^\mathcal{E}), \theta^\mathcal{E}(\alpha_i^\mathcal{E}, \beta_i^\mathcal{E}))$ already discussed above induce a morphism $\varphi : X^{(1)} \cap (U_{def} \times P(\Omega_M|_{M_I})) \to \mathcal{Y}(I)$ into an affine analogue $\tilde{\mathcal{Y}}(I)$ of the universal family $\mathcal{Y}(I)$. Namely
\[\tilde{\mathcal{Y}}(I) := \{(\alpha_0, \ldots, i_k, \ldots, \alpha_c, \beta_c, z) \in A \times \mathbb{P}(k') | \alpha_i(z) = 0, \beta_i(z) = 0 \forall 1 \leq i \leq c \}, \]
where $A := \bigoplus_{p=1}^c H^0(\mathbb{P}^N, O_{\mathbb{P}^N}(\delta_p))$, is the natural affine analogue of $G(I)$. The restriction map $p : \mathbb{P}^N \to \mathbb{P}(k')$ induces a map $p : A \to A(I) := \bigoplus_{p=1}^c H^0(\mathbb{P}(k'), O_{\mathbb{P}(k')}(\delta_p))$. Consider the variety
\[\tilde{\mathcal{Y}}(I) := \{(\alpha_0, \ldots, i_k, \ldots, \alpha_c, \beta_c, z) \in A(I) \times \mathbb{P}(k') | \alpha_i(z) = 0, \beta_i(z) = 0 \forall 1 \leq i \leq c \}. \]

For shortness, let us denote
\[E := \text{Exc}(\rho : \mathcal{Y}(I) \to G), \quad \hat{E} := \text{Exc}(\hat{\rho} : \tilde{\mathcal{Y}}(I) \to A(I)). \]
Then we define the “non-finite” loci $G^{\infty} = \rho(E)$, $A^{\infty} = \hat{\rho}(\hat{E})$, and $A^{\infty}(I) = \hat{\rho}(\hat{E}(I))$. A straightforward computation shows that
\[A^{\infty} = p^{-1}(A^{\infty}(I)). \]

The framework being set-up, let us count codimension. Fix ξ as above. Since we work locally, the map $\hat{\Phi}_{V,I} : a^\mathcal{E} \mapsto (\eta^{\mathcal{E}}_{V,I}(a^\mathcal{E}), \ldots, \eta^{\mathcal{E}}_{V,I}(a^\mathcal{E}))$ is well-defined. Note that
\[\text{rank}(p \circ \hat{\Phi}_{V,I}) = \sum_{p=1}^c \binom{k + \delta_p}{k} = \dim A(I). \]
Moreover, just as in Lemma 2.3, one proves that
\[\text{rank}(p \circ \hat{\Phi}_{V,I}) = \sum_{p=1}^c \binom{k + \delta_p}{k} = \dim A(I). \]
Hence,
\[\dim \left(X^{[1]} \cap (p_2^{[1]})^{-1}(\xi) \cap \Psi^{-1}(E) \right) \leq \dim \left((p \circ \Phi_{\nu_E})^{-1}(A^w(I)) \right) \leq \dim S - \dim A(I) + \dim A^w(I). \]
This yields
\[\dim \left(X^{[1]} \cap (U_{\text{def}} \times \mathbb{P}(\Omega_{M|S})) \cap \Psi^{-1}(E) \right) - \dim S \leq \dim \mathbb{P}(\Omega_{M|S}) - \operatorname{codim}(A^w(I), A(I)). \]
Now, by Corollary 3.2, and by the hypothesis of the theorem
\[\operatorname{codim}(A^w, A(I)) = \operatorname{codim}(G^w, G(I)) \geq \min \delta_p + 1 > \dim(\mathbb{P}(\Omega_M)) + 1 > \dim(\mathbb{P}(\Omega_{M|S})), \]
whence
\[\dim \left(X^{[1]} \cap (U_{\text{def}} \times \mathbb{P}(\Omega_{M|S})) \cap \Psi^{-1}(E) \right) - \dim S < 0. \]
This dimension count shows that \(X^{[1]} \cap (U_{\text{def}} \times \mathbb{P}(\Omega_{M|S})) \cap \Psi^{-1}(E) \) cannot dominate \(S \).

2.4. Pulling back the positivity. — We are now in position to implement the last part of our strategy, thereby establishing the following stronger version of Theorem 1.1.

Theorem 2.7. — For each choice of \(\delta_1, \ldots, \delta_c \geq \dim \mathbb{P}(\Omega_M) \), there exists an integer \(m(\delta) \) such that for any \(r > 2m(\delta)(|e| + |\delta|) \), the general member of the family \(X = X(\delta, e, r) \) constructed in Section 2.1 has ample cotangent bundle.

By the openness property of ampleness, this immediately implies the following.

Corollary 2.8. — On a \(N \)-dimensional smooth projective variety \(M \), equipped with a very ample line bundle \(\mathcal{O}_M(1) \), for codimensions \(N/2 < c < N \), for any degrees \((d_1, \ldots, d_c) \in (\mathbb{N}^c)^+ \) satisfying
\[
\sum_c \delta_p \leq 3 \epsilon \geq 2 \delta_p + 1 \geq \dim(\mathbb{P}(\Omega_M)) + 1 > \dim(\mathbb{P}(\Omega_{M|S})),
\]
the complete intersection \(X := H_1 \cap \cdots \cap H_c \) of general hypersurfaces \(H_i \in |\mathcal{O}(d_i)|, \ldots, H_c \in |\mathcal{O}(d_c)| \) has ample cotangent bundle.

Condition (\(\dagger \)) will be discussed in Section 2.5 below.

Proof of Theorem 2.7. — It is sufficient to prove that \(\mathcal{O}(\pi_{\Omega_{X^w}}(-1)_{\mu}) = \mathcal{O}(\pi_{\Omega_{X}}) \otimes \mathcal{O}(\pi_{\Omega_{X}}) \) is nef for a sufficiently large \(\mu \) and \(a^* \) general, where we denote \(\pi_{\Omega_{X^w}} : \Omega_{X^w} \to X^w \). For such \(\mu \) and \(a^* \), we have thus to prove that any irreducible curve \(\mathcal{C} \subset \pi_{\Omega_{X^w}} \) satisfies
\[
\mathcal{C} \cdot (\pi_{\Omega_{X}})_{\mu} \otimes \mathcal{O}(\pi_{\Omega_{X}})_{-1} = 0.
\]
Observe that, since \(\mathcal{O}(\Omega_{M|S}) \) stratifies \(\mathcal{O}(\Omega_M) \), for each irreducible curve \(\mathcal{C} \subset \pi_{\Omega_{X^w}} \subset \pi_{\Omega_{X}} \), there exists a unique set \(I = (i_0, \ldots, i_N) \) such that \(\pi_{\Omega_{M|S}} \) contains an open dense subset of \(\mathcal{C} \).

We fix such a curve \(\mathcal{C} \), and the corresponding \(I \). If \(\dim(M_I) = k = 0 \), (\(\ast \)) holds for all \(\mu \) and \(a^* \). If in the contrary \(k \geq 1 \), above notation, we work with the tautological ample line bundle
\[
Q := \mathcal{O}(G_{\Psi_{X}}(\mu) \otimes \mathcal{O}(\pi_{\Omega_{X^w}})) \otimes \mathcal{O}(\pi_{\Omega_{X^w}}) \to \mathbb{G} \times \times \mathbb{G}(i, \delta_\ell).
\]
Since \(Q \) is ample and \(p : (\pi_{\Omega_{X^w}}) \to G \) generically finite, the pullback-bundle \(\rho_{\ast}Q \) is big and nef. Accordingly, its non-ample locus—which, thanks to a theorem due to Nakamaye, is known to coincide with the augmented base locus \(B_{\ast}(\pi_{\Omega_{X^w}}) \), see [Nak00] or e.g. [Laz04] Section 10.3—is exactly the reunion of all positive dimensional fibers of \(\rho_{\ast} \), i.e. the exceptional locus of the map \(\rho_{\ast} \to G \). From the very definition of \(B_{\ast} \), the fact that \(Q \otimes \mathcal{O}_{\Psi_{X^w}}(1) \) is ample, and Noetherianity, we know that there exists an integer \(m_I(\delta_\ell) \) such for \(m \geq m_I(\delta_\ell) \),
\[
B_{\ast}(\rho_{\ast}Q) = B_{\ast}(Q) = B_{\ast}(Q_{\Psi_{X^w}}(1))_{1/I}(1, \delta_\ell).
\]
To sum up, there exists \(m_I(\delta_\ell) \) such that for \(m \geq m_I(\delta_\ell) \),
\[
E(I) := \text{Exc}(\rho_{\ast}Q) = B_{\ast}(Q_{\Psi_{X^w}}(1))_{1/I}. \]
In order to work uniformly on all \(\mathcal{O}(\Omega_{M|S}) \), set
\[
m(\delta) := \max \left\{ m_I(\delta_\ell) \mid I \subseteq \{0, \ldots, N\}, \#I \geq 2 \right\}.
\]
We will now fix \(\mu \). From the definition of the map \(\Delta^E \), we have \(\Delta^E_{\pi_{\Omega_{X^w}}} \mathcal{O}(\pi_{\Omega_{X^w}})_{(1)} = \mathbb{L}(2\epsilon_p + \delta_p) \). It follows at once from the definition of \(\Psi^E \) and from (\(\ast \)) that
\[
\Psi^E_{X^w}(\pi_{\Omega_{X^w}}(\mathcal{O}(\pi_{\Omega_{X^w}}))_{(1)} = \mathcal{O}(\pi_{\Omega_{X^w}})_{(1)} \otimes \mathcal{O}(\pi_{\Omega_{X^w}})(1 - 2\epsilon_p + \delta_p)).
\]
We take \(\mu := cm(\delta) \). Observe the \(-r\), with the assumption on \(r \) in the theorem the above bundle becomes a negative twist of the bundle of symmetric differential forms.
Then, we proceed as follows. Since \(\delta_1, \ldots, \delta_c \geq \dim(\mathbb{P}(\Omega_Y)) \), the conclusion of Lemma 2.6 is satisfied for any \(r \). Hence for \(\alpha^* \in U(I), \Psi(\mathbb{P}(\Omega_{\mathbb{P}^N})) \cap \mathbb{P}(\Omega_{\mathbb{P}^N})) \) \(\cap E(I) = \emptyset \). Therefore,

\[
\mathcal{E} \not\subseteq \Psi^{-1}(E(I)) = \Psi^{-1} \text{Bs}(Q^{\text{cont}}(\delta) \otimes \mathcal{O}_{\mathbb{P}^N}(-1)_{\Psi(I)}).
\]

This implies the existence of a section \(\sigma \in H^d(I, Q^{\text{cont}}(\delta) \otimes \mathcal{O}_{\mathbb{P}^N}(-1)_{\Psi(I)}) \) such that \(\mathcal{E} \not\subseteq (\Psi^* \sigma = 0) \). In particular, \(\mathcal{E} \cdot (\Psi^* \sigma = 0) > 0 \). Therefore by \((+)\),

\[
\mathcal{E} \cdot (O_{\mathbb{P}^N}(\mu) \otimes (\pi_{\mathbb{P}^N})(-r + m(\delta)|e| + |d|)) > 0.
\]

This proves \((+\star)\) for any curve in any stratum, as soon as \(\alpha^* \in \cap_I U(I) \), and thus finishes the proof. \(\square \)

2.5. The condition on the degrees. — Up to taking a multiple, one can assume that all \(\delta_i \) in Theorem 1.1 are larger than \(2N - 1 \). Then by Corollary 2.8, the degrees \(d_i \) for which the conclusion of Theorem 1.1 holds in the direction \(\delta \), are the ones satisfying the following condition.

\[
(\dagger) \quad 3 \varepsilon \cdot (\varepsilon > 1), \quad 3r > 2m(\delta)|e| + |d|: \quad d_p = \delta_p(r + 1) + e_p \quad (p = 1, \ldots, c).
\]

The picture below shows particular solutions, with \(1 \leq e_p \leq \delta_p \), of \((\dagger)\) in an arbitrary direction \(\delta = (\delta_1, \ldots, \delta_c) \), with \(\delta_p \geq 2N - 1 \).

![Figure 1. Some degrees satisfying the condition \((\dagger)\)](image)

As one can see, these solutions lie in a union of rectangular blocks that contains the ray spanned by \(\delta \) starting from a sufficiently large multiple \(\nu(\delta) \delta \) with \(e.g. \nu(\delta) = 4|\delta|m(\delta) + 2 \). So, in particular, we treat all large degrees \((d_1, \ldots, d_c) = \nu(\delta_1, \ldots, \delta_c) \), with a lower bound depending on the direction \(Q_+ \cdot (\delta_1, \ldots, \delta_c) \).

3. On the codimension of the exceptional locus

If one parametrizes complete intersections in \(\mathbb{P}^N \) by products of spaces of homogeneous polynomials, the locus of families of polynomials not parametrizing complete intersections is “small” compared to the entire parameter space. This follows easily from the work of Benoist ([Ben11]), but since it is playing a central role in our proof, we provide all the details here. We do not claim any originality in this section.

Lemma 3.1 ([Ben11, Lemme 2.3]). — Let \(X \subset \mathbb{P}^N \) be a (irreducible) subvariety dimension \(n \). Let \(\mathcal{G} \) be the set of all hypersurfaces of degree \(e \) containing \(X \). Then

\[
\text{codim}(\mathcal{G}, |\mathcal{O}_{\mathbb{P}^N}(e)|) \geq \binom{e + n}{n}.
\]

Proof. — This is the proof found in [Ben11], we translate it here for the reader’s convenience. Let \(L \) be a \((N - n - 1)\)-dimensional linear subspace of \(\mathbb{P}^N \) such that \(L \cap X = \emptyset \). Let \(\pi_L : X \to \mathbb{P}^N \) be the projection induced by \(L \). All the fibers of \(\pi_L \) are non-empty and finite. This proves that if \(C \) is the set of all cones of degree \(e \) with vertex \(L, C \cap \mathcal{G} = \emptyset \), and therefore

\[
\text{codim}(\mathcal{G}, |\mathcal{O}_{\mathbb{P}^N}(e)|) \geq \dim C + 1 = \binom{n + e}{n}.
\]

From this it is straightforward to deduce the required result on complete intersection varieties. For \(\gamma \geq 1 \) and integers \(e_1, \ldots, e_r \), write \(T_{\gamma} := \prod_{i=1}^{r} |\mathcal{O}_{\mathbb{P}^N}(e_i)| \) and \(T_{\gamma}^\circ \) to be the subvariety of \(T_{\gamma} \) parametrizing equations that do not define a complete intersection variety if \(\gamma < N \), or to be the subvariety parametrizing equations that do not define a 0-dimensional scheme if \(\gamma \geq N \). In the case \(\gamma = N \) the two notions coincide. In any case \(T_{\gamma}^\circ \) is closed in \(T_{\gamma} \). Then we have the following.
Complete Intersection Varieties with Ample Cotangent Bundles

Corollary 3.2. — With the above notation,
\[
\text{codim}(T_e^\infty, T_e) \geq \min_{1 \leq i < \min(N, \gamma)} \left(e_i + N - i + 1 \right) \left(N - i + 1 \right).
\]

In particular, this codimension tends to infinity as the \(e_i\)'s tend to infinity, and we have the rough bound \(\text{codim}(T_e^\infty, T_e) \geq \min_{1 \leq i < \gamma}(e_i + 1)\).

Proof. — The proof is an induction on \(\gamma\). If \(\gamma = 1\), it is obvious. Suppose the result holds for \(\gamma < N\). Then for an element \(f_1, \ldots, f_{\gamma+1} \in T_e\), the subscheme \(X_{\gamma+1}\) defined by \(f_1, \ldots, f_{\gamma+1}\) fails to be a complete intersection, either when the subscheme \(X_{\gamma}\) defined by the first \(\gamma\) equations fails to be a complete intersection, either when the hypersurface \((F_{\gamma+1} = 0)\) contains one of the irreducible components of \(X_{\gamma}\).

The codimension of the subset defined by the first condition is greater than \(\min_{1 \leq i < \gamma} \left(e_i + N - i + 1 \right) \left(N - i + 1 \right)\) by induction hypothesis. The codimension of the subset defined by the second condition is greater than \(\left(e_{\gamma+1} + N - \gamma \right) \left(N - \gamma \right)\). This is seen simply by fixing some \(X_i\), which is a complete intersection, so that all irreducible components of \(X_i\) are of dimension \(N - \gamma\) and applying Benoist’s Lemma to each of those irreducible components. This proves the statement for all \(1 \leq \gamma \leq N\), the statement for \(\gamma > N\) follows at once. Indeed, if \(\gamma > N\) then the codimension of \(T_e^\infty\) in \(T_e\) is bigger than the codimension of the set of elements in \(T_e\) whose \(N\) first equations define a finite subscheme of \(\mathbb{P}^N\), and we are reduced to the statement for \(\gamma = N\).

Acknowledgments. — We would like to thank Olivier Benoist for the conversations we had about the content of this paper, and for allowing us to reproduce some of his arguments. We would like to also thank Simone Diverio and Gianluca Pacienza for their friendly support and for useful suggestions. We gratefully appreciated further useful suggestions of Joël Merker and of Christophe Mourougane.

References

[Ben11] O. Benoist – “Le théorème de Bertini en famille”, Bulletin de la Société Mathématique de France 139 (2011), no. 4, p. 555–569.

[Bro14] D. Brothek – “Hyperbolicity related problems for complete intersection varieties”, Compositio Mathematica 150 (2014), no. 3, p. 369–395.

[Bro15] D. BROTHEK – “Symmetric differential forms on complete intersection varieties and applications”, To appear in Mathematical Annalen (2015).

[Deb05] O. DEBARRE – “Varieties with ample cotangent bundle”, Compositio Mathematica 141 (2005), no. 6, p. 1445–1459.

[Deb13] ______. “Corrigendum: Varieties with ample cotangent bundle (Compositio Math. 141 (2005), 1445–1549) [mr2188444]”, Compositio Mathematica 149 (2013), no. 3, p. 505–506.

[Laz04] R. Lazarsfeld – Positivity in algebraic geometry. II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004, Positivity for vector bundles, and multiplier ideals.

[Nak00] M. Nakamaye – “Stable base loci of linear series”, Mathematische Annalen 318 (2000), no. 4, p. 837–847.

[Sch92] M. Schneider – “Symmetric differential forms as embedding obstructions and vanishing theorems”, Journal of Algebraic Geometry 1 (1992), no. 2, p. 175–181.

[Voi96] C. Voisin – “On a conjecture of Clemens on rational curves on hypersurfaces”, Journal of Differential Geometry 44 (1996), no. 1, p. 200–213.

[Xie15] S.-Y. Xie – “On the ampleness of the cotangent bundles of complete intersections”, ArXiv e-prints 1510.06523, October 2015.