Supplementary Materials

Investigating the smuts: common cues, signaling pathways, and the role of MAT in dimorphic switching and pathogenesis

Teeratas Kijpornyongpan† and M. Catherine Aime *

Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
Teeratas.Kijpornyongpan@nrel.gov or tkjiporn@purdue.edu
* Correspondence: maime@purdue.edu
† Current affiliation: National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Figure S1 Alignment of bE (HD1) protein sequences. The bE protein sequence from *Ustilago maydis* (UMAG_00577) was used as a reference sequence to determine orthologs in all 16 Ustilaginomycotina genomes. Then, all orthologous sequences were used for the alignment using the MUSCLE algorithm performed in MEGA-X. Note that there are two duplicated bE genes in *Meira miltonrushii*. Species abbreviations are as follows: Acain, *Acaromyces ingoldii*; Cergu, *Ceraceosorus guamensis*; Exova, *Exobasidium vaccinii*; Jamro, *Jaminaea rosea*; Malgl, *Malassezia globosa*; Malsy, *Malassezia sympodialis*; Meimi, *Meira miltonrushii*; Psean, *Pseudozyma antarctica*; Psehu, *Pseudozyma hubeiensis*; Psegl, *Pseudomicrostroma glucosiphilum*; Spore, *Sporisorium reilianum*; Tescy, *Testicularia cyperi*; Tilan, *Tilletiaria anomala*; Tilwa, *Tilletiopsis washingtonensis*; Ustma, *Ustilago maydis*; Viopa, *Violaceomyces palustris*.
Figure S2 Alignment of bW (HD2) protein sequences. The bW protein sequence from Ustilago maydis (UMAG_00578) was used as a reference sequence to determine orthologs in all 16 Ustilaginomycotina genomes. Then, all orthologous sequences were used for the alignment using the MUSCLE algorithm performed in MEGA-X. Species abbreviations are as follows: Acain, Acaromyces ingoldii; Cergu, Ceraceosorus guamensis; Exova, Exobasidium vaccinii; Jamro, Jaminaea rosea; Malgl, Malassezia globosa; Malsy, Malassezia sympodialis; Meimi, Meira miltonrushii; Psea, Pseudozyma antarctica; Psehu, Pseudozyma hubeiensis; Pseil, Pseudomicrostroma glucosiphilum; Spore, Sporisorium reilianum; Tescy, Testicularia cyperi; Tilan, Tilletiaria anomala; Tilwa, Tilletiopsis washingtonensis; Ustma, Ustilago maydis; Viopa, Violaceomyces palustris.
Figure S3 Gene phylogeny of pheromone receptors Pra1. The pheromone receptor protein sequence from *Ustilago maydis* (UMAG_02383) was used as a reference sequence to determine orthologs in all 16 Ustilaginomycotina genomes. All orthologous sequences, plus the ones from each MAT a allele in *Ustilago maydis* and *Sporisorium reilianum*, were retrieved for the analyses. The protein sequences were aligned using the MUSCLE algorithm, and then used for phylogenetic reconstruction through the Neighbor-joining method with JTT as a substitution model and a gamma distribution as a rate heterogeneity among sites. The 1000 replicates of bootstrapping were used as an indicator for node supports. Allele types of pheromone receptors are classified based on monophyletic relationships with reference sequences from *U. maydis* and *S. reilianum*: UMAG_02383 for the a1 allele in *U. maydis*, CAI59749 for the a1 allele in *S. reilianum*, P31303 for the a2 allele in *U. maydis*, Spore_3761 for the a2 allele in *S. reilianum*, and CAI59763 for the a3 allele in *S. reilianum*. Species abbreviations are as follows: Acain, *Acaromyces ingoldii*; Cersp, *Ceraceosorus guamensis*; Exova, *Exobasidium vacciniii*; Jamsp, *Jaminaea rosea*; Malgl, *Malassezia globosa*; Malsy, *Malassezia sympodialis*; Meimi, *Meira miltonrushi*; Psean, *Pseudozyma antarctica*; Psehu, *Pseudozyma hubeiensis*; Rhodsp, *Pseudomicrostroma glucosiphilum*; Spore, *Sporisorium reilianum*; Tescy, *Testicularia cyperti*; Tilan, *Tilletia anomala*; Tilwa, *Tilletiopsis washingtonensis*; Ustma, *Ustilago maydis*; Viopa, *Violaceomyces palustris*. Bar: 0.2 substitution/site.
Table S1 A list of known fungal dimorphism genes from *Ustilago maydis* literature

Categories	Gene name	Function	References
Receptors	*Pra1*	Pheromone receptor	[1]
	Msb2	Transmembrane mucin, multicopy suppressor of a budding defect	[2]
	Sho1	Osmosensor transmembrane protein	[2]
	Ump2	Ammonium transporter	[3]
cAMP/PKA pathway	*Gpa3*	G protein alpha subunit	[4]
	Bpp1	G protein beta subunit	[5]
	Uac1	Adenylate cyclase	[6]
	Ubc1	Regulatory subunit of cAMP-dependent protein kinase A	[6,7]
	Adr1	Catalytic subunit of cAMP-dependent protein kinase A	[8]
	Uka1	cAMP-dependent protein kinase A	[8]
	Umple1/2	Phosphodiesterases	[9]
	Ucn1	Antagonist phosphatase of PKA	[10]
MAPK pathway	*Ubc2*	Pheromone-responsive SH3 domain protein	[11,12]
	Kpp2/Ubc3	MAP kinase	[13,14]
	Kpp4/Ubc4	MAP kinase kinase	[15,16]
	Kpp6	MAP kinase	[17]
	Fuz7/Ubc5	MAP kinase kinase	[16,18]
	Rok1	Dual specificity protein phosphatase	[19]
	Crk1	MAP kinase	[20]
GTPase-mediated signaling	*Ras1, Ras2*	*Ras* family GTPase	[21,22]
	Sql2	Cdc25-like guanyl nucleotide exchange factor	[22]
	Rho1	*Rho* family GTPase	[23]
	Pdc1	14-3-3 homolog	[24]
	Cln4	PAK family kinase	[25]
	Rac1	*Rho* family GTPase	[26]
Transcriptional regulator	*Biz1*	*b* locus-dependent Zn finger transcription factor	[27]
	Hap2	CCAAT-box binding protein	[28]
	Rop1	High-mobility-group (HMG) domain transcription factor	[29]
	Prf1	Pheromone response factor functioning as a transcription factor	[30,31]
	Rhf1	*b* locus-dependent Zn finger transcription factor	[32]
	Cib1	*b* locus-dependent Zn finger transcription factor	[33]
	Gcn5	Histone acetyltransferase	[34]
	Hos2	Histone deacetylase	[35]
	Tup1	General transcriptional repressor	[36]
	Pac2	WOPR family transcriptional repressor	[36]
	Ros1	WOPR family transcriptional regulator	[37]
	Nit2	GATA transcription factor responsive to low nitrogen	[38]
Other downstream molecular players	Med1	Transcription factor	References
-----------------------------------	------	----------------------	------------
Hgl1	Putative regulatory protein	[39]	
Rak1	Seven-WD40 repeat motif protein	[40]	
Mgc5	Class V myosin	[41]	
Kin1, Kin3	Kinesin-1 and 3 required for hyphal growth	[42]	
Rrm4, Khd4	RNA-binding protein for filamentous growth	[43]	
Clb2	B-type cyclin 2	[44]	
Chs5	Chitin synthase V	[45]	
Chs7	Chitin synthase	[46]	
Mcs1	Myosin chitin synthase 1	[47]	
Clp1	Function in nuclei distribution during cell division in dikaryon	[48]	
Yup1	t-SNARE protein for vesicular cycling	[49]	
Sep3	Septin 3 as an effector of cAMP/PKA pathway	[50]	
Tea1, Tea4	Cell end markers	[51]	

References

1. Böcker, M.; Urban, M.; Kahmann, R. The a mating type locus of *Ustilago maydis* specifies cell signaling components. *Cell* 1992, 68, 441–450.
2. Lanver, D.; Mendoza-Mendoza, A.; Brachmann, A.; Kahmann, R. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus *Ustilago maydis*. *Plant Cell* 2010, 22, 2085–2101.
3. Smith, D.G.; Garcia-Pedrajas, M.D.; Gold, S.E.; Perlin, M.H. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. *Mol. Microbiol.* 2003, 50, 259–275.
4. Regenfelder, E.; Spellig, T.; Hartmann, A.; Lauenstein, S.; Böcker, M.; Kahmann, R. G proteins in *Ustilago maydis*: transmission of multiple signals? *EMBO J.* 1997, 16, 1934–1942.
5. Müller, P.; Leibrandt, A.; Teunissen, H.; Cubasch, S.; Aichinger, C.; Kahmann, R. The Gβ-subunit-encoding gene bpp1 controls cyclic-AMP signaling in *Ustilago maydis*. *Eukaryot. Cell* 2004, 3, 806–814.
6. Gold, S.; Duncan, G.; Barrett, K.; Kronstad, J. cAMP regulates morphogenesis in the fungal pathogen *Ustilago maydis*. *Genes Dev.* 1994, 8, 2805–2816.
7. Gold, S.E.; Brogdon, S.M.; Mayorga, M.E.; Kronstad, J.W. The *Ustilago maydis* regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. *Plant Cell* 1997, 9, 1585–1594.
8. Dürrenberger, F.; Wong, K.; Kronstad, J.W. Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in *Ustilago maydis*. *Proc. Natl. Acad. Sci.* 1998, 95, 5684–5689.
9. Agarwal, C.; Aulakh, K.B.; Edelen, K.; Cooper, M.; Wallen, R.M.; Adams, S.; Schultz, D.J.; Perlin, M.H. *Ustilago maydis* phosphodiesterases play a role in the dimorphic switch and in pathogenicity. *Microbiology* 2013, 159, 857–868, doi:10.1099/mic.0.061234-0.
10. Egan, J.D.; Garcia-pedrajas, M.D.; Andrews, D.L.; Gold, S.E. Calcineurin Is an Antagonist to PKA Protein Phosphorylation Required for Postmating Filamentation and Virulence, While PP2A Is Required for Viability in *Ustilago maydis*. *Mol. Plant-Microbe Interact.* 2009, 22, 1293–1301.
11. Klosterman, S.J.; Martinez-Espinoza, A.D.; Andrews, D.L.; Seay, J.R.; Gold, S.E. Ubc2, an ortholog of the yeast
Ste50p adaptor, possesses a basidiomycete-specific carboxy terminal extension essential for pathogenicity independent of pheromone response. *Mol. plant-microbe Interact.* **2008**, 21, 110–121.

12. Mayorga, M.E.; Gold, S.E. The ubc2 gene of *Ustilago maydis* encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. *Mol. Microbiol.* **2001**, 41, 1365–1379.

13. Müller, P.; Aichinger, C.; Feldbrügge, M.; Kahmann, R. The MAP kinase kpp2 regulates mating and pathogenic development in *Ustilago maydis*. *Mol. Microbiol.* **1999**, 34, 1007–1017.

14. Mayorga, M.E.; Gold, S.E. A MAP kinase encoded by the ubc3 gene of *Ustilago maydis* is required for filamentous growth and full virulence. *Mol. Microbiol.* **1999**, 34, 485–497, doi:10.1046/j.1365-2958.1999.01610.x.

15. Müller, P.; Weinzierl, G.; Brachmann, A.; Feldbrügge, M.; Kahmann, R. Mating and pathogenic development of the smut fungus *Ustilago maydis* are regulated by one mitogen-activated protein kinase cascade. *Eukaryot. Cell* **2003**, 2, 1187–1199.

16. Andrews, D.L.; Egan, J.D.; Mayorga, M.E.; Gold, S.E. The *Ustilago maydis* ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. *Mol. plant-microbe Interact.* **2000**, 13, 781–786.

17. Brachmann, A.; Schirawski, J.; Müller, P.; Kahmann, R. An unusual MAP kinase is required for efficient penetration of the plant surface by *Ustilago maydis*. *EMBO J.* **2003**, 22, 2199–2210.

18. Banuett, F.; Herskowitz, I. Identification of fuz7, a *Ustilago maydis* MEK/MAPKK homolog required for a-locus-dependent and-independent steps in the fungal life cycle. *Genes Dev.* **1994**, 8, 1367–1378.

19. Di Stasio, M.; Brefort, T.; Mendoza-Mendoza, A.; Münch, K.; Kahmann, R. The dual specificity phosphatase Rok1 negatively regulates mating and pathogenicity in *Ustilago maydis*. *Mol. Microbiol.* **2009**, 73, 73–88.

20. Garrido, E.; Pérez-Martin, J. The crk1 gene encodes an ime2-related protein that is required for morphogenesis in the plant pathogen *Ustilago maydis*. *Mol. Microbiol.* **2003**, 47, 729–743, doi:10.1046/j.1365-2958.2003.03323.x.

21. Lee, N.; Kronstad, J.W. ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen *Ustilago maydis*. *Eukaryot. Cell* **2002**, 1, 954–966, doi:10.1128/EC.1.6.954-966.2002.

22. Müller, P.; Katzenberger, D.; Loubradou, G.; Kahmann, R. Guanyl Nucleotide Exchange Factor Sql2 and Ras2 Regulate Filamentous Growth in *Ustilago maydis*. *Mol. Microbiol.* **2003**, 2, 609–617, doi:10.1128/EC.2.3.609.

23. Pham, C.D.; Yu, Z.; Bölkner, M.; Gold, S.E.; Perlin, M.H. *Ustilago maydis* Rho1 and 14-3-3 Homologues Participate in Pathways Controlling Cell Separation and Cell Polarity. *Eukaryot. Cell* **2009**, 8, 977–989, doi:10.1128/EC.00009-09.

24. García-pedrajas, M.D.; Nadal, M.; Bölkner, M.; Gold, S.E.; Perlin, M.H. Sending mixed signals: Redundancy vs. uniqueness of signaling components in the plant pathogen, *Ustilago maydis*. *Fungal Genet. Biol.* **2008**, 45, S22–S30, doi:10.1016/j.fgb.2008.04.007.

25. Leveleki, L.; Mahlert, M.; Sandrock, B.; Bölkner, M. The PAK family kinase Cla4 is required for budding and morphogenesis in *Ustilago maydis*. *Mol. Microbiol.* **2004**, 54, 396–406, doi:10.1111/j.1365-2958.2004.04296.x.

26. Mahlert, M.; Leveleki, L.; Hlubek, A.; Sandrock, B.; Bölkner, M. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus *Ustilago maydis*. *Mol. Microbiol.* **2006**, 59, 567–578.

27. Flor-Parrá, I.; Vranes, M.; Kämper, J.; Pérez-Martin, J. Biz1, a zinc finger protein required for plant invasion by *Ustilago maydis*, regulates the levels of a mitotic cyclin. *Plant Cell* **2006**, 18, 2369–2387.

28. Mendoza-Mendoza, A.; Eskova, A.; Weise, C.; Czajkowski, R.; Kahmann, R. Hap2 regulates the pheromone response transcription factor prf1 in *Ustilago maydis*. *Mol. Microbiol.* **2009**, 72, 683–698.
29. Brefort, T.; Müller, P.; Kahmann, R. The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. *Eukaryot. Cell* **2005**, *4*, 379–391.

30. Hartmann, H.A.; Kahmann, R.; Bolker, M. The pheromone response factor coordinates filamentous growth and pathogenicity in *Ustilago maydis*. *Embo J* **1996**, *15*, 1632–1641.

31. Hartmann, H.A.; Krüger, J.; Löttspeich, F.; Kahmann, R. Environmental signals controlling sexual development of the corn smut fungus *Ustilago maydis* through the transcriptional regulator Prf1. *Plant Cell* **1999**, *11*, 1293–1305.

32. Heimel, K.; Scherer, M.; Vranes, M.; Wahl, R.; Pothiratana, C.; Schuler, D.; Vincon, V.; Finkernagel, F.; Flor-Parra, I.; Kämper, J. The Transcription Factor Rbf1 Is the Master Regulator for b-Mating Type Controlled Pathogenic Development in *Ustilago maydis*. *PLoS Pathog.* **2010**, *6*, e1001035.

33. Heimel, K.; Scherer, M.; Schuler, D.; Kämper, J. The *Ustilago maydis* Clp1 protein orchestrates pheromone and b-dependent signaling pathways to coordinate the cell cycle and pathogenic development. *Plant Cell* **2010**, *22*, 2908–22, doi:10.1105/tpc.110.076265.

34. González-prieto, J.M.; Rosas-quiijano, R.; Domínguez, A.; Ruiz-herrera, J. The UmGen5 gene encoding histone acetyltransferase from *Ustilago maydis* is involved in dimorphism and virulence. *Fungal Genet. Biol.* **2014**, *71*, 86–95, doi:10.1016/j.fgb.2014.09.002.

35. Elias-Villalobos, A.; Fernández-Alvarez, A.; Moreno-Sánchez, I. The Hos2 Histone Deacetylase Controls *Ustilago maydis* Virulence through Direct Regulation of Mating-Type Genes. *PLoS Pathog.* **2015**, *11*, e1005134, doi:10.1371/journal.ppat.1005134.

36. Elias-Villalobos, A.; Fernández-Álvarez, A.; Ibeas, J.I. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen. *PLoS Pathog.* **2011**, *7*, e1002235.

37. Tollot, M.; Assmann, D.; Becker, C.; Altmüller, J. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen *Ustilago maydis*. *PLoS Pathog.* **2016**, *12*, e1005697, doi:10.1371/journal.ppat.1005697.

38. Horst, R.J.; Zeh, C.; Saur, A.; Sonnewald, S.; Sonnewald, U.; Voll, L.M. The *Ustilago maydis* Nit2 Homolog Regulates Nitrogen Utilization and Is Required for Efficient Induction of Filamentous Growth. *Eukaryot. Cell* **2012**, *11*, 360–380, doi:10.1128/EC.05191-11.

39. Chacko, N.; Gold, S. Deletion of the *Ustilago maydis* ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response. *Fungal Genet. Biol.* **2012**, *49*, 426–432, doi:10.1016/j.fgb.2012.04.002.

40. Dürrenberger, F.; Laidlaw, R.D.; Kronstad, J.W. The hgl1 gene is required for dimorphism and teliospore formation in the fungal pathogen *Ustilago maydis*. *Mol. Microbiol.* **2001**, *41*, 337–48, doi:mmi2528 [pii].

41. Wang, L.; Berndt, P.; Xia, X.; Kahnt, J.; Kahmann, R. A seven-WD40 protein related to human RACK1 regulates mating and virulence in *Ustilago maydis*. *Mol. Microbiol.* **2011**, *81*, 1484–1498, doi:10.1111/j.1365-2958.2011.07783.x.

42. Weber, I.; Gruber, C.; Steinberg, G. A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen *Ustilago maydis*. *Plant Cell* **2003**, *15*, 2826–2842.

43. Schuchardt, I.; Ålmann, D.; Thines, E.; Schuberth, C.; Steinberg, G. Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus *Ustilago maydis*. *Mol. Biol. Cell* **2005**, *16*, 5191–5201.

44. Becht, P.; Vollmeister, E.; Feldbrügge, M. Role for RNA-Binding Proteins Implicated in Pathogenic Development of *Ustilago maydis*. *Eukaryot. Cell* **2005**, *4*, 121–133, doi:10.1128/EC.4.1.121.

45. Vollmeister, E.; Haag, C.; Zarnack, K.; Baumann, S.; König, J.; Mannhaupt, G.; Feldbrügge, M. Tandem KH
domains of Khd4 recognize AUACCC and are essential for regulation of morphology as well as pathogenicity in *Ustilago maydis*. RNA 2009, 15, 2206–2218, doi:10.1261/rna.1817609.

46. García-Muse, T.; Steinberg, G.; Pérez-Martín, J. Characterization of B-type cyclins in the smut fungus *Ustilago maydis*: roles in morphogenesis and pathogenicity. J. Cell Sci. 2004, 117, 487–506.

47. Weber, I.; Thines, E.; Steinberg, G. Polar Localizing Class V Myosin Chitin Synthases Are Essential during Early Plant Infection in the Plant Pathogenic Fungus *Ustilago maydis*. Plant Cell 2006, 18, 225–242, doi:10.1105/tpc.105.037341.1.

48. Wedlich-Söldner, R.; Bölker, M.; Kähmann, R.; Steinberg, G. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus *Ustilago maydis*. EMBO J. 2000, 19, 1974–1986.

49. Boyce, K.J.; Chang, H.; Dias, C.; Kronstad, J.W. An *Ustilago maydis* septin is required for filamentous growth in culture and for full symptom development on maize. Eukaryot. Cell 2005, 4, 2044–2056, doi:10.1128/EC.4.12.2044-2056.2005.

50. Valinluck, M.; Woraratanadharm, T.; Lu, C. yu; Quintanilla, R.H.; Banuett, F. The cell end marker Tea4 regulates morphogenesis and pathogenicity in the basidiomycete fungus *Ustilago maydis*. Fungal Genet. Biol. 2014, 66, 54–68, doi:10.1016/j.fgb.2014.02.010.

51. Woraratanadharm, T.; Kmosek, S.; Banuett, F. UmTea1, a Kelch and BAR domain-containing protein, acts at the cell cortex to regulate cell morphogenesis in the dimorphic fungus *Ustilago maydis*. Fungal Genet. Biol. 2018, 121, 10–28, doi:10.1016/j.fgb.2018.09.002.