Data in brief 24 (2019) 103932

Data Article

Data set for effect of cetane enhancer on ceramic coated diesel engine fuelled with neat Moringa oleifera methyl ester

V. Karthickeyan

Department of Mechanical Engineering, Sri Krishna College of Engineering and Technology, Kuniamuthur, Coimbatore, 641 008, Tamil Nadu, India

ARTICLE INFO

Article history:
Received 23 March 2019
Accepted 12 April 2019
Available online 19 April 2019

Keywords:
MOME
Diesel engine
Cetane enhancer and ceramic engine

ABSTRACT

The present data article is based on the research work which investigates the effect of cetane enhancer on thermally coated engine fuelled with Moringa oleifera methyl ester (MOME). In this experimental work, Kirloskar TV1 model direct injection water cooled diesel engine with eddy current dynamometer was used. MOME was produced by two-stage transesterification process. The physio-chemical properties of Moringa oleifera methyl ester (MOME) were analysed based on American Standards for Testing Materials (ASTM) standards and data's were presented. Further, the fuel properties were enhanced with the addition of 1% of cetane enhancer (namely Pyrogallol) to MOME and data's related to improved fuel properties were presented. Engine was loaded from minimum load to maximum load using eddy current dynamometer. The combustion chamber components such as piston head, cylinder head and intake and exhaust valves were coated with Yttria Stabilized Zirconia (YSZ) to transfigure the normal engine into low heat rejection engine. Engine tail pipe emissions were determined using AVL, Austria make 444 di-gas analyser and AVL, Austria make 437C smoke meter equipment. Data related to fuel samples like diesel, MOME with and without Cetane enhancer in normal and ceramic engines were presented.

© 2019 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: karthickeyanv@skcet.ac.in.

https://doi.org/10.1016/j.dib.2019.103932
2352-3409/© 2019 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The data presented in this article was based on the experimental study on the effect of cetane enhancer on Moringa oleifera methyl ester in normal and ceramic coated engine. Table 1 represents the data regarding fuel properties of diesel, MOME and MOME+PY based on ASTM testing procedure. Fig. 1 represents the performance characteristics of Moringa oleifera methyl ester depends on the physio-chemical properties like calorific value, cetane number, flash point, kinematic viscosity and density. Engine emission characteristics of Moringa oleifera methyl ester depends on oxygen presence, CHO (Carbon, Hydrogen and Oxygen) and fuel viscosity. Raw Moringa oleifera oil was converted into Moringa oleifera methyl ester using two-stage transesterification process. The physio-chemical properties of MOME were analysed based on ASTM standards. In addition, the fuel properties were improved with the addition of 1% of cetane enhancer namely Pyrogallol (PY) to biodiesel. Low heat rejection was achieved by coating the combustion chamber components using YSZ ceramic material.

2. Experimental design, materials, and methods

Raw Moringa oleifera oil was converted into Moringa oleifera methyl ester using two-stage transesterification process. As acid value of raw oil was high, two stage esterification process was performed [4–6]. Acid esterification was carried out using 6:1 methanol to oil ratio with the addition of 0.5 (w/w)
Table 1
Properties of fuel.

Property	ASTM standards	Diesel	MOME	MOME+PY
Density (kg/m3)a	D1298	835.1	859.3	839.42
Kinematic viscosity at 40 °C (cSt)a	D445	2.57	5.05	3.21
Flash point (°C)a	D93	56	150.1	91
Fire point (°C)a	D93	62	162	95
Gross calorific value (MJ/kg)a	D240	43.26	40.06	42.33
Cetane number	D613	48	56	62
C (mass %)		–	76.32	–
H (mass %)		–	12.21	–
O (mass %)		–	11.46	–
C/H		–	6.25	–

a All properties were determined based on ASTM standards under laboratory condition.

Fig. 1. Yttria stabilized zirconia coated engine components.

Table 2
Brake thermal efficiency in-terms of % at all loads.

Load (%)	Normal engine	Ceramic engine		
	Diesel	MOME+PY	Diesel	MOME+PY
20	5.9	5.5	6.3	6.6
40	12.2	11.6	13.1	13.7
60	16.7	16	17.8	18.5
80	20.1	19.8	21.9	22.8
100	26.9	26.3	27.3	28.1

Table 3
Brake specific fuel consumption in-terms of kg/kWh at all loads.

Load (%)	Normal engine	Ceramic engine		
	Diesel	MOME+PY	Diesel	MOME+PY
20	1.48	1.53	1.37	1.44
40	0.96	1.05	0.88	0.86
60	0.64	0.71	0.56	0.51
80	0.52	0.55	0.41	0.38
100	0.39	0.43	0.32	0.29
of H$_2$SO$_4$ to preheated oil [2,3]. The solution was stirred with magnetic stirrer for 1 hour at the speed of 600 rpm incessantly. From the separation funnel, bottom layer as taken and processed with methanol and potassium hydroxide at reaction time of 1 hour and stirring speed of 60 minutes. The last derived component from separation funnel was called as crude *Moringa oleifera* methyl ester. The methyl ester was purified with warm de-ionized water for thrice. The properties of MOME were evaluated based on ASTM [1,7,8] condition under laboratory condition and blended with 1% of PY to achieve improved fuel properties.

![Fig. 2. Variation of carbon monoxide and hydrocarbon against various engine loads.](image)

![Fig. 3. Variation of oxides of nitrogen and smoke against various engine loads.](image)
In the present work, diesel was considered as the baseline fuel and MOME was blended with 1% of PY. Both samples were investigated in normal and ceramic coated engine at various loads. Kirloskar make TV1 model direct injection diesel engine with water cooled eddy current dynamometer was used for the experimental analysis. The main specification of engine were bore x stroke of 87.5 × 110 mm, compression ratio of 17.5:1, injection pressure of 210 bar, injection timing of 21° before top dead centre and speed of 1500 rpm. Air and fuel flow unit was attached to the electronic flow control unit and linked with National Instrument (NI) based data acquisition system (DAQ). Similarly, all other electronic components associated with engine were linked with NI-DAQ. Matlab based EngineSoft Version 4.0 was used for online plotting and data recording purpose. Engine tail pipe emission was measured using AVL 444 di-gas analyser. Carbon monoxide was measured in the range of 0–10% volume, hydrocarbon in the range of 0–10000 ppm and oxides of nitrogen in the range of 0–5000 ppm. An AVL 437C smokemeter was used for the measurement of smoke in terms of HSU in the range of 0–100.

Acknowledgments

The author wishes to thank the University Grants Commission – South Eastern Regional Office, Hyderabad, India for finical support through Minor research project for teachers.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103932.

References

[1] P.A.L. Anawe, J.A. Folayan, Data on physico-chemical, performance, combustion and emission characteristics of Persea Americana Biodiesel and its blends on direct-injection, compression-ignition engines, Data Br 21 (2018) 1533–1540, https://doi.org/10.1016/j.dib.2018.10.166.

[2] M. Tabatabaei, M. Aghbashlo, B. Najafi, H. Hosseinzadeh-Bandbafha, S. Faizollahzadeh Ardabili, E. Akbarian, E. Khalife, P. Mohammadi, H. Rastegari, H.S. Ghaziaskar, Environmental impact assessment of the mechanical shaft work produced in a diesel engine running on diesel/biodiesel blends containing glycerol-derived triacetin, J. Clean. Prod. (2019), https://doi.org/10.1016/j.jclepro.2019.03.106.

[3] Y.H. Tan, M.O. Abdullah, J. Kansedo, N.M. Mubarak, Y.S. Chan, C. Nolasco-Hipolito, Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones, Renew. Energy 139 (2019) 696–706, https://doi.org/10.1016/j.renene.2019.02.110.

[4] Y.H. Teoh, H.G. How, H.H. Masjuki, M.A. Kalam, A. Alabdulkarem, Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera methyl ester (MOME)-Diesel blends, Renew. Energy (2019), https://doi.org/10.1016/j.renene.2018.12.110.

[5] V. Karthickeyan, Effect of cetane enhancer on Moringa oleifera methyl ester (MOME) in a thermal coated direct injection diesel engine, Fuel 235 (2019) 538–550, https://doi.org/10.1016/j.fuel.2018.08.030.

[6] V. Karthickeyan, Effect of thermal barrier coating on performance and emission characteristics of kapok oil methyl ester in diesel engine, Aust. J. Mech. Eng. (2018), https://doi.org/10.1080/14484846.2018.1546450.

[7] P.A.L. Anawe, F.J. Adewale, Data on physico-chemical, performance, combustion and emission characteristics of Persea Americana Biodiesel and its blends on direct-injection, compression-ignition engines, Data Br 21 (2018) 1533–1540, https://doi.org/10.1016/j.dib.2018.10.166.

[8] V. Hariram, S. Prakash, S. Seralathan, T. Micha Premkumar, Data set on optimized biodiesel production and formulation of emulsified Eucalyptus teriticornisis biodiesel for usage in compression ignition engine, Data Br 20 (2018) 6–13, https://doi.org/10.1016/j.dib.2018.07.053.