Variants in \textit{GNAI1} cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia

Alison M. Muir1,3, Jennifer F. Gardner2,3,3, Richard H. van Jaarsveld4, Iris M. de Lange5, Jasper J. van der Smagt3, Golder N. Wilson4, Holly Dubbs2, Ethan M. Goldberg6, Lia Zitano6, Caleb Bupp6, Jose Martinez2, Myriam Srou6, Andrea Accogli6, Afnan Alhakeem6, Meira Meltzer6, Andrea Groppman6, Carole Brewer10, Richard C. Caswell11,12, Tara Montgomery13, Corinna Powell15, Pradeep C. Vasudevan15, Angela F. Brady16, Shelagh Joss17, Carolyn Tysoe18, Grace Noh19, Mark Tarnopolsky20, Lauren Brady20, Muhammad Zafar21, Samantha A. Schrier Vergano2, Brianna Murray22, Lindsey Sawyer22, Ryan E. Hainline23, Katherine Sapp23, Danielle DeMarzo24, Darcy J. Huismann25, Ingrid M. Wentzensen25, Rhonda E. Schnur25, Kristin G. Monaghan25, Jane Juusola25, Lindsay Rhodes25, William B. Dobyns1,26, Francois Lecoquiere27, Alice Goldenberg27, Tilman Polster28, Susanne Axer-Schaefer28, Konrad Platter29, Chiara Klöckner29, Trevor L. Hoffman29, Daniel G. MacArthur30,31,32, Melanie C. O’Leary30, Grace E. VanNoy30, Eleina England30, Vinod C. Varghese2 and Heather C. Mefford6,30

\textbf{PURPOSE:} Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorder. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the \textit{GNAI1} gene.

\textbf{METHODS:} Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in \textit{GNAI1}, which encodes the inhibitory Go1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual.

\textbf{RESULTS:} We identified 16 unique variants in \textit{GNAI1} in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy.

\textbf{CONCLUSION:} This collaboration establishes \textit{GNAI1} variants as a cause of NDDs. \textit{GNAI1}-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.

\textit{Genetics in Medicine} (2021) 23:881 – 887; https://doi.org/10.1038/s41436-020-01076-8

\textbf{INTRODUCTION}

Neurodevelopmental disorders (NDDs) are heterogeneous disorders, often with a broad and overlapping range of features that commonly include developmental delay, intellectual disability, and autism spectrum disorder. This group of disorders also has an increased incidence of comorbidities such as epilepsy. Advances in genomic technologies have led to an exponential increase in the number of genes associated with NDDs. However, up to half of those affected do not have an identified genetic etiology, presenting challenges in understanding the long-term prognosis and accessing appropriate support. Phenotype-based genetic investigations of NDDs are hampered by the highly variable clinical manifestations, the phenotypic overlap with other closely related disorders, and the rarity of particular genetic subtypes. Instead, more recently, large-scale trio-based exome sequencing...
of clinically heterogeneous populations coupled with international data-sharing has proven a powerful strategy for discovering NDD-associated genes.1,2

G-protein subunits belong to a family of proteins that have previously been associated with NDDs.3,4 Heterotrimeric G proteins, composed of α, β, and γ subunits, transmit the signals of extracellular ligands bound to G-protein-coupled receptors (GPCRs) to intracellular signaling pathways.5 G-protein signaling has been implicated in a diverse range of biological functions including neuronal development and synaptic function.6

Here, we describe 24 unrelated individuals with trimeric G-proteins. A recent study found a significant enrichment of de novo variants in GNAI1 (MIM 139310) encodes the inhibitory G protein α1 subunit of heterotrimeric G-proteins. A recent study found a significant enrichment of de novo variants in GNAI1 in a diverse cohort of individuals with NDDs.5,6 Here, we describe 24 unrelated individuals with GNAI1 variants (23 de novo variants and 1 inherited from a mosaic parent) and delineate the associated phenotypic features, which include global developmental delay with intellectual disability, hypotonia, and seizures.

MATERIALS AND METHODS

Individuals with pathogenic and likely pathogenic variants in GNAI1 (NM_000269.5) were identified via the Deciphering Developmental Disorders (DDD) research study5 and international collaboration facilitated by GeneMatcher8 and MyGene2. Variants were classified using American College of Medical Genetics and Genomics (ACMG) guidelines.2 Individuals were identified via trio exome sequencing by the DDD study7 (individuals 11, 14, 16, 18–20, and 24), clinical trio exome sequencing at GeneDx as previously described10 (1–3, 5, 7–10, 15, 17, 22–23), trio exome sequencing via clinical practice (4, 6, 12), or by research-based trio exome sequencing (13, 21). The genetic details from 13 of these individuals was previously reported (2, 3, 7–11, 14, 16, 18–20, 24) with minimal clinical details;7 we obtained additional, detailed clinical information for these individuals for this study.

RESULTS

We identified 27 unrelated individuals (16 female) with rare variants in GNAI1 (GenBank: NM_000269.6). For three individuals with GNAI1 variants, parental samples were unavailable for testing (Table S1); clinical information for these individuals has not been included in this report. The remaining 24 variants would meet the criteria to be classified as likely pathogenic or pathogenic according to ACMG guidelines if GNAI1 were an established disease gene1 (Fig. 1, Table 1). Of these, 23 variants were de novo in the affected individual (somatic mosaic in Individual 2), while one variant was inherited from a mother with low-level mosaicism (individual 3, 6.0% alternate allele frequency). Where applicable, de novo status of variants and parental relationships were confirmed.

Among the 24 individuals with variants in GNAI1, there were 16 unique variants, with 7 recurrent variants identified in two or three individuals each. At three residues (Gly40, Thr48, Lys270), there were two different pathogenic variants resulting in different amino acid changes. Of the 16 variants, 12 were missense variants, 3 were small in-frame deletions, and 1 was a protein-truncating variant. The majority of missense and coding deletion variants (9/15; 60%) affect amino acids within the guanine nucleotide binding motifs of GNAI1 (Fig. 1). Variants predominantly cluster in the first GDP binding motif (also known as the Walker A motif or P-loop), where five variants at three sites (Gly40, Gly45, and Thr48) accounted for 10/24 individuals (42%), while variants at Arg270 and Ala326 affect residues in the fourth and fifth guanine nucleotide binding motifs, respectively.

We performed detailed phenotyping of the 24 affected individuals with de novo GNAI1 variants (Table 2, Table S1). Age at last medical review ranged from 3 years 10 months to 18 years (median age 11 years). All participants have global developmental delays ranging in severity from mild to profound. Speech is significantly affected with language delays reported in 21/23 (91%) individuals; 16 individuals are nonverbal (at ages 3–18 years), and only 1 individual has achieved fluent speech. Gross motor delays are also common. Delayed sitting was reported in 18/21 (86%) individuals, 5 of whom cannot yet sit independently (at ages 18 months–18 years). Delayed walking was reported in 19/23 (83%) individuals; 9 individuals remain nonambulatory (ages 18 months–18 years). Intellectual disability was reported in all individuals for whom data were available (20/20) and ranged from mild (3/20; 15%) to severe/profound (11/20; 55%).

Other prominent phenotypic features include hypotonia (20/23 individuals, 87%), and epilepsy (17/23 individuals, 74%). For many patients, hypotonia was severe and had a significant effect on daily functioning. Median age of seizure onset was 5 months (range 36 hours to 7 years), with seizures beginning in the first six months of life in 10/15 (67%) individuals for whom data were available. Seizure types were variable with the most common being absence seizures (n = 5), generalized tonic–clonic seizures (n = 5), and focal onset impaired awareness seizures (n = 4).

While behavioral anomalies were present in 17/19 individuals (89%), they were variable across the cohort. The most common behavioral features included aggression and temper tantrums (n = 7), autism (n = 7), hypersensitivity (n = 5), and hand stereotypies (n = 6). Other variable features included feeding difficulties (n = 9) and obesity (n = 7). Magnetic resonance image (MRI) abnormalities were reported for 10/20 (50%) individuals, with the most common finding being brain atrophy seen in four individuals.

Dysmorphic features were reported in 16/21 (76%) individuals (Fig. 2); however, the described physical features were variable. The most commonly reported features included tapered fingers (n = 9), a markedly long hallux (n = 5), and a short, upturned nose (n = 8). Other common facial features included a tented upper lip or open mouth appearance (n = 5), and a thin upper lip or prominent lower lip (n = 4).

DISCUSSION

We describe a novel, severe neurodevelopmental disorder due to de novo variants in the GNAI1 gene, which encodes Gai1, a member of the Gi/o inhibitory family of G-protein α-subunits. Heterotrimeric G-proteins act as a molecular switch. The GDP-bound Ga subunit binds the Gβγ dimer, maintaining the heterotrimeric protein in an inactive state. In response to an extracellular stimulant, bound GDP is replaced by GTP, resulting in a conformational change leading to the disassociation of the Ga subunit from the Gβγ dimer. Once separated, the Ga subunit and the Gβγ dimer are able to activate (or inhibit) downstream signaling pathways via modulation of cAMP levels. The intrinsic GTPase activity of the Ga subunit will eventually result in GDP hydrolysis, returning the protein to its GDP-bound inactive heterotrimeric state.

Gai1 is part of the Gi/o inhibitory family of α-subunits named for their ability to inhibit adenyl cyclase activity. In the central nervous system, Gai1 has been shown to mediate major signaling pathways Akt-mTOR1 and Erk–MAPK1,12 and control the gating of G protein-activated potassium channels.10 Other G-protein subunits have also been implicated in neurological disease including GNAO1 (MIM 600099) associated with Sturge-Weber syndrome, GNAI (MIM 139312) associated with dystonia, GNAO1 (MIM 139311) in which loss-of-function variants are associated withdevelopmental and epileptic encephalopathy while gain-of-function variants are associated with movement disorders.14 and GNB1 (MIM 139380) associated with developmental delay. Individuals with loss-of-function variants in GNB1, a β-subunit of heterotrimeric G-proteins, have a strikingly similar phenotype to individuals with de novo GNAI1 variants, including profound developmental delay commonly accompanied by hypotonia and
seizures, suggesting there may be a common pathogenetic disease mechanism between GNB1 and GNAI1. Ga α proteins contain five highly conserved guanine nucleotide binding motifs that fold to form a single deep pocket for binding guanine nucleotides. Of the 16 pathogenic or likely pathogenic variants in GNB1 reported in this study and one previously reported variant (p.Lys46Glu), nine variants at six sites (Gly40, Gly45, Lys46, Thr48, Lys270, and Ala326) are located in the guanine nucleotide binding pocket of GNAI1. Gly40 lies at the mouth of the nucleotide binding pocket immediately N-terminal to a series of GDP-interacting residues, including Gly45 and Thr48. Notably, although Arg270 and Ala326 are distant in the linear sequence to Gly45 and Thr48, they lie in close spatial proximity on the opposite face of the GDP binding pocket. Gly45, Thr48, and Lys270 make direct contacts with the GDP ligand and therefore the Gly45Asp, Thr48Lys, Thr48Ile, Lys270Asn, and Lys270Arg substitutions are likely to disrupt these interactions. While Gly40 does not directly interact with the GDP ligand, structural modeling predicts that the Gly40Arg and Gly40Cys substitutions will have a significant destabilizing effect on the GDP binding pocket (increases in free energy compared with the native structure of ~9.4 kcal/mol and ~27.6 kcal/mol respectively; values >3 kcal/mol are generally regarded as strongly destabilizing). As such, the pathogenic variants in guanine nucleotide binding motifs of Ga αi1 are all predicted to have adverse effects on Ga αi1 ability to bind GDP and GTP and/or hydrolyze GTP.

GNAI1 is predicted to be intolerant to loss-of-function variants (pLI = 0.91; e/o = 0.12 [0.05–0.38]). Of the 16 variants in...
Individual	Variant	cDNA position	Protein position	Genomic coordinates	Protein domain	CADD	M-CAP score (prediction)	phastCons 100way vertebrate	gnomAD AC
1	chr7:g.79764594G>C	c.118G>C	p.(Gly40Arg)	chr7:g.79764594G>C	GDP binding, GoLoco binding	33	0.910 (PP)	9.041	0
2	chr7:g.79764594G>T	c.118G>T	p.(Gly40Cys)	chr7:g.79764594G>T	GDP binding, GoLoco binding	34	0.938 (PP)	9.041	0
3	chr7:g.79818282G>A	c.134G>A	p.(Gly45Asp)	chr7:g.79818282G>A	GDP binding	29.2	0.549 (PP)	9.75805	0
4	chr7:g.79818291C>A	c.143C>A	p.(Thr48Lys)	chr7:g.79818291C>A	GDP binding	32	0.432 (PP)	7.6889	0
5	chr7:g.79818291C>T	c.143C>T	p.(Thr48Ile)	chr7:g.79818291C>T	GDP binding	32	0.329 (PP)	7.6889	0
6	chr7:g.79833076A>T	c.518A>T	p.(Asp173Val)	chr7:g.79833076A>T	GDP binding	29.8	0.255 (PP)	9.1759	0
7	chr7:g.79840365G>A	c.671G>A	p.(Cys224Tyr)	chr7:g.79840365G>A	GDP binding	32	0.611 (PP)	9.24465	0
8	chr7:g.79842120A>G	c.809A>G	p.(Lys270Arg)	chr7:g.79842120A>G	GDP binding	32	0.596 (PP)	6.72193	0
9	chr7:g.79842121G>C	c.810G>C	p.(Lys270Asn)	chr7:g.79842121G>C	GDP binding	27.5	0.596 (PP)	6.26325	0
10	chr7:g.79842143dup	c.832dupA	p.(Leu278Asnfs*20)	chr7:g.79842143dup	NA	NA	6.26325	0	
11	chr7:g.79846720G>C	c.976G>C	p.(Ala326Pro)	chr7:g.79846720G>C	GDP binding	28.6	0.406 (PP)	7.818	0
12	chr7:g.79846739T>A	c.995T>A	p.(Val322Glu)	chr7:g.79846739T>A	None	27.6	0.540 (PP)	7.98329	0

AC allele count, cDNA complementary DNA, GDP guanosine diphosphate, NA not applicable, PP possibly pathogenic.
Individual	Sex	Variant	DD	Delayed sitting	Delayed walking	Language delays	Intellectual disabilities	Autism	Seizures	Tone	MRI anomalies
1	M	p.(Gly40Arg)	+	nr	nr	nr	nr	+	+		Hypotonia
2	F	p.(Gly40Arg)	+	nr	−	−	−	+	−		Hypotonia
3	M	p.(Gly40Cys)	+	nr	+	S	+	Normal	+		
4	F	p.(Gly40Cys)	P	Not achieved	Not achieved	Nonverbal	S	n	+		Hypertonia
5	M	p.(Gly45Asp)	+	+	−	Nonverbal	nr	+			Hypotonia
6	F	p.(Thr48Lys)	+	+	+	Nonverbal	P	−	+		Hypertonia
7	M	p.(Thr48Lys)	+	Not achieved	−	Nonverbal	n	May			
8	M	p.(Thr48Lys)	P	Not achieved	Not achieved	Nonverbal	P	n	+		Hypotonia
9	M	p.(Thr48Ile)	+	+	−	Nonverbal	S	+	−		Hypotonia
10	F	p.(Thr48Ile)	+	−	+	nr	−	−	−		Hypotonia
11	M	p.(Gln52Pro)	+	+	Not achieved	Nonverbal	S	+	+		Hypotonia
12	F	p.(Ser75del)	S	+	Not achieved	Nonverbal	S−P	−	+		Hypotonia
13	M	p.(Gln172del)	P	Not achieved	Not achieved	Nonverbal	S−P	−	+		Hypotonia
14	F	p.(Gln172del)	+	+	−	Nonverbal	S	−	−		nr
15	F	p.(Asp173Val)	+	−	+	+	Mi	−	+		Hypotonia
16	F	p.(Glu186_Phe189del)	+	−	+	Nonverbal	+	−	nr		Hypotonia
17	F	p.(Cys224Tyr)	Mo−S	+	−	+	Mo−S	−	+		Hypotonia
18	F	p.(Cys224Tyr)	+	+	+	−	Mo	−	+		Hypotonia
19	F	p.(Lys270Arg)	+	+	+	−	Mo	−	+		Hypotonia
20	M	p.(Lys270Arg)	+	+	+	Nonverbal	S	−	+		Hypotonia
21	M	p.(Lys270Arg)	+	Not achieved	Not achieved	Nonverbal	Mo	−	+		Hypotonia
22	F	p.(Ile278AsnsX20)	P	Not achieved	Not achieved	Nonverbal	S−P	−	+		Hypotonia
23	F	p.(Ala326Pro)	+	+	+	Mi	−	−		Hypotonia	
24	F	p.(Val332Glu)	+	+	Not achieved	Nonverbal	+	nr	+		Hypertonia

Totals 24/24 18/21 21/23 20/20 7/21 17/23 22/23 10/20

DD developmental delay, **F** female, **M** male, **Mi** mild, **Mo** moderate, **MRI** magnetic resonance image, **nr** not reported, **P** profound, **S** severe, + present, − absent, ^ somatic mosaic variant.
GNAI1 identified in 24 individuals, only one was a truncating variant: p.(Ile278Asnfs*20) frameshift identified in a single individual with profound developmental delay, axial hypotonia, and seizures; this variant is located within the last 50 bp of the penultimate exon and is predicted to escape nonsense-mediated decay. We identified one additional individual with an early truncating variant, but inheritance information was not available (Supplementary Table 1). We also previously identified large, heterozygous deletions encompassing GNAI1 (and additional genes) in two unrelated individuals with epilepsy.17 In one case, the deletion segregated in a large family, with at least five affected individuals in three generations; all had variable types of generalized epilepsy (ranging from mild to severe) and learning difficulties. Additional individuals with truncating variants need to be identified to determine if there are differences in phenotypes between individuals with missense and truncating variants in GNAI1.

GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features, though there is range of severity for all phenotypic features associated with pathogenic variants in GNAI1. Like many NDDs that have been recently described, GNAI1-related disorder may not be distinctly recognizable; many features overlap with other single-gene disorders including GNB1,4 PPP3CA,18 TANC2,19 and others. While many individuals have severe developmental delay accompanied by several additional comorbidities, there are also some more mildly affected individuals. In some cases, additional genetic variants may contribute to the phenotype; for example, individual 9 has a de novo, likely pathogenic variant in ACTA1, which can cause myopathy and may contribute to hypotonia or club feet in this case. Although we identified seven recurrent variants, our cohort is too small to determine whether there are clear genotype–phenotype correlations. The two individuals with p.(Lys270Arg) variants (individuals 19 and 20) have similar presentations, with similar ages at sitting and walking, development of some speech, and seizures. In contrast, for the two individuals with p.(Gln172del) variants, one is nonverbal, nonambulatory, and has intractable seizures (individual 13), while the other (individual 14) is ambulatory, has aggressive behaviors and has not had seizures. This lack of clear genotype–phenotype correlation will make it difficult to predict the severity of the disease progression in newly diagnosed individuals.

In summary, we report 24 individuals with de novo variants in GNAI1 and a neurodevelopmental disorder characterized by global developmental delay, intellectual disability, hypotonia, and seizures. While there is a spectrum of severity associated with pathogenic variants in GNAI1, most individuals are profoundly affected. Identification of additional cases as well systematic studies that implement uniform tools to evaluate phenotypes such as behavior and cognitive functioning will provide further insight into the full spectrum of neurological features associated with GNAI1 and potentially elucidate subtle genotype–phenotype correlations not apparent in this cohort.

URLS
- gnomAD v2.1.1: https://gnomad.broadinstitute.org/. CADD: http://cadd.gs.washington.edu/. FoldX suite: http://foldxsuite.crg.eu/. GeneMatcher: https://www.genematcher.org/. MyGene2: https://mygene2.org/MyGene2/. Matchmaker Exchange: https://www.matchmakerexchange.org/. M-CAP Score: http://bejerano.stanford.edu/mcap/. OMIM: https://www.omim.org/.

DATA AVAILABILITY
All methods and data are available on request.
REFERENCES

1. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 519, 223–228 (2015).

2. Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 586, 757–762 (2020).

3. Nakamura, K. et al. De novo mutations in GNAQ1, encoding a Gαq subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am. J. Hum. Genet. 93, 496–505 (2013).

4. Petrovski, S. et al. Germline de novo mutations in GNB1 cause severe neurodevelopmental disability, hypotonia, and seizures. Am. J. Hum. Genet. 98, 1001–1010 (2016).

5. McCudden, C. R., Hains, M. D., Kimple, R. J., Siderovski, D. P. & Willard, F. S. G-protein signaling: back to the future. Cell. Mol. Life Sci. 62, 551–577 (2005).

6. Vassilatis, D. K. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. U. S. A. 100, 4903–4908 (2003).

7. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 542, 433–438 (2017).

8. Sobreroa, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).

9. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

10. Retterer, K. et al. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 18, 696–704 (2016).

11. Cao, C. et al. Galphai(1) and Galphai(3) are required for epidermal growth factor-mediated activation of the Akt-mTORC1 pathway. Sci. Signal. 2, ra17 (2009).

12. Marshall, J. et al. Antidepressive action of BDNF requires and is mimicked by Galphai/3 expression in the hippocampus. Proc. Natl. Acad. Sci. U. S. A. 115, E3549–E3558 (2018).

13. Peleg, S., Varon, D., Ivanina, T., Dessauer, C. W. & Dascal, N. G(α)i controls the gating of the G protein-activated K+ channel, GIRK. Neuron. 33, 87–99 (2002).

14. Feng, H. et al. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology. 89, 762–770 (2017).

15. Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L. & Tawfik, D. S. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 369, 1318–1332 (2007).

16. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536, 285–291 (2016).

17. Mefford, H. C. et al. Rare copy number variants are an important cause of epileptic encephalopathies. Am. Neurol. 70, 974–985 (2011).

18. Myers, C. T. et al. De novo mutations in PPP3CA cause severe neurodevelopmental disease with seizures. Am. J. Hum. Genet. 101, 516–524 (2017).

19. Guo, H. et al. Disruptive mutations in TAN2 cause a neurodevelopmental syndrome associated with psychiatric disorders. Nat. Commun. 10, 4679 (2019).

ACKNOWLEDGEMENTS

We thank all affected individuals and their families for participating in this study. A.M. M. received support from the American Epilepsy Society. H.C.M. received support from the National Institute of Neurological Disorders and Stroke (R01 NS069605). F.L. and A.G. received funding from European Union and Région Normandie in the context of Recherche Innovation Normandie (RIN 2018). FL and AG received fundings from European Union and Région Normandie in the context of Recherche Innovation Normandie (RIN 2018) and the European Regional Development Fund (ERDF). Sequencing and analysis were provided by the Broad Institute of MIT and Harvard Center for Mendelian Genomics (Broad CMG) and was funded by the National Human Genome Research Institute, the National Eye Institute, and the National Heart, Lung and Blood Institute grants U10 HG008900, R01 HG009141 and by the Chan Zuckerberg Initiative to the Rare Genomes Project. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009–003). This study makes use of DECIPHER (http://decipher.sanger.ac.uk), which is funded by Wellcome. See Nature PMID: 25533962 or www.ddduk.org/access.html for full acknowledgement.

AUTHOR CONTRIBUTIONS

Conceptualization: L.R., A.M.M., J.F.G., V.C.V., H.C.M. Data curation: A.M.M., J.F.G., R.H.v.J., I.M.d.L., J.J.v.d.S., G.N.W., H.D., E.M.G., L.Z., C.Bu., J.M., M.S., A.Ac., A.AI., M.M., A.Go., C.Bu., R.C.C., T.M., C.M., S.M., C.P., P.C.V., A.F.B., S.J., C.T., G.N., M.T., L.B., M.Z., S.A.S.V., B.M., L.S., B.E.H., K.S., D.D., D.J.H., I.M.W., R.E.S., K.G.M., J.J., L.R, W.B.D., F.L., A.Gr., T.P., S.A.-S., K.P., C.K., T.L.H., D.G.M., M.C.O., G.E.V., E.E., V.C.V., H.C.M. Formal analysis: L.R., A.M.M., J.F.G., V.C.V., H.C.M. Writing—original draft: A.M.M., J.F.G., H.C.M. Writing—review & editing: R.H.v.J., A.M.M., J.F.G., H.C.M.

COMPETING INTERESTS

I.M.W., R.E.S., K.G.M., J.J., and L.R. are employees of GeneDx, Inc.

ETHICS DECLARATION

This study was approved by local institutional review boards of the participating centers (University of Washington and UK Ethics Research Committee). Informed consent was obtained from all individuals or was provided by a parent or legal guardian in the case of minors or individuals with intellectual disability. Their permission for inclusion in this case series, including photographs, was obtained locally.

ADDITIONAL INFORMATION

The online version of this article (https://doi.org/10.1038/s41436-020-01076-8) contains supplementary material, which is available to authorized users.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.