Evidence of cryptic diversity in freshwater *Macrobrachium* prawns from Indochinese riverine systems revealed by DNA barcode, species delimitation and phylogenetic approaches

Warut Siriwut¹, Ekgachai Jeratthitikul¹, Somsak Panha²,³, Ratmanee Chanabun⁴, Peng Bun Ngor⁵,⁶, Chirasak Sutcharit²*

¹ Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand, ² Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, ³ Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand, ⁴ Program in Animal Science, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, Thailand, ⁵ Inland Fisheries Research and Development Institute (IFReDI), Fisheries Administration, Phnom Penh, Cambodia, ⁶ Wonders of the Mekong Project, Phnom Penh, Cambodia

* chirasak.s@chula.ac.th, jirasak4@yahoo.com

Abstract

The diversity of Indochinese prawns in genus *Macrobrachium* is enormous due to the habitat diversification and broad tributary networks of two river basins: the Chao Phraya and the Mekong. Despite long-standing interest in SE-Asian decapod diversity, the subregional *Macrobrachium* fauna is still not yet comprehensively clarified in terms of taxonomic identification or genetic diversification. In this study, integrative taxonomic approaches including morphological examination, DNA barcoding, and molecular species delimitation were used to emphasize the broad scale systematics of *Macrobrachium* prawns in Indochina. Twenty-seven nominal species were successfully re-verified by traditional and molecular taxonomy. Barcode gap analysis supported broad overlapping of species boundaries. Taxonomic ambiguity of several deposited samples in the public database is related to inter- and intra-specific genetic divergence as indicated by BOLD discordance. Diagnostic nucleotide positions were found in six *Macrobrachium* species. Eighteen additional putative lineages are herein assigned using the consensus of species delimitation methods. Genetic divergence indicates the possible existence of cryptic species in four morphologically complex and wide-ranging species: *M. lancasteri, M. niphanae, M. sintangense*, and some members of the *M. pilimanus* group. The geographical distribution of some species supports the connections and barriers attributed to paleo-historical events of SE-Asian rivers and land masses. Results of this study show explicitly the importance of freshwater ecosystems in Indochinese subregions, especially for the Mekong River Basin due to its high genetic diversity and species composition found throughout its tributaries.
Introduction

DNA barcoding has been promoted as an effective molecular tool for rapid surveys of microbial [1, 2], floral [3], and faunal diversity [4]. Recently, DNA barcode data from single and multiple molecular loci have been integrated with various datasets and applied at broad and specific scales for uses such as food authentication and traceability [5, 6], wildlife forensics [7, 8], and ecological community [9] and systematic studies [10–12]. The selection of gene fragments from different sources of genomic DNA has been proposed to find a standard region for species identification within larger groups of organisms, such as chloroplast genes for plants [13], and mitochondrial genes for animals [14]. In the animal kingdom, the cytochrome C oxidase subunit I (COI) is widely used for species screening [14]. This mitochondrial gene contains a rich informative site, which is desirable for molecular systematic study. Moreover, additional markers for DNA barcode studies such as mitochondrial and nuclear ribosomal genes have been integrated with COI, expanding the power of species delimitation and improving sequence clustering results [15, 16].

The barcoding region has also shown significant utility in biodiversity studies that aim to rapidly identify unknown specimens collected from various habitat and sample types such as soil [17, 18], water [19], feces [20, 21], and dietary products [22, 23]. Moreover, it has been used to construct regional and local DNA barcode libraries for further biodiversity assessment [24, 25]. The use of integrative methods in systematics has shown remarkable ability to resolve species identification problems in organismal groups [26, 27]. Because they are cost-effective tools for species validation, classification, and phylogeography pattern testing, DNA taxonomy based on COI barcode, single-multi locus phylogeny, and species delimitation approaches have become popular in modern systematic research to clarify taxonomic problems, especially in morphologically complex groups [28–34]. As a consequence of applying integrative methods, cryptic diversity and phylogeographical patterns of organisms have been revised, especially in crustacean taxa [34–38]. Taxonomy of several freshwater and marine crustacean species has been refined by using the integration of morphological identification and molecular delimitations [39, 40].

The palaemonid prawn genus *Macrobrachium* Spence Bate, 1868 has economic importance worldwide. Recently, forty-nine *Macrobrachium* species have been promoted for fisheries industries [41]. These include widespread species such as *M. rosenbergii*, *M. lanchesteri*, and *M. sintangense*, which are consumed daily by local people as a protein resource. However, the high genetic diversity, evolutionary relationships and related biological adaptations of indigenous *Macrobrachium* species have only minimally been investigated in Asia; most research has focused on Neotropical American and Australian fauna [42–44]. In SE-Asia, the giant river prawn, *M. rosenbergii*, is the most economically important species [41], with the most advanced breeding program in the aquaculture industry [45]. Another study showed high genetic diversity of this species across drainages in SE-Asia [37]. Some life history traits of other Asian *Macrobrachium* species also have been tested using the integration of molecular, morphological, and ecological data [42, 46, 47].

The distribution of *Macrobrachium* prawns has been associated with river tributary networks across mainland SE-Asia including the Indochina subregion [48–50]. In addition, *Macrobrachium* prawns have been suggested for use in biological and ecological monitoring of Asian river ecosystems [51]. Some indigenous and endemic species are associated with specific habitats in this area such as *M. sirindhorni* and *M. spelaeus* from mountainous and limestone karst territory in Thailand; *M. lanatum* from southern Myanmar; and *M. dalatense*, *M. hungi*, and *M. saigonense*, which are endemic to the Mekong River basin in Cambodia and Vietnam [52–54].
The morphological and physiological changes during the developmental period of aquatic animals is assumed to be related to ecological factors such as current, water level and variation of habitat type [42, 55–58]. Habitat gradient, one of the selective mechanisms in aquatic animals, is thought to have had an impact on species diversification in several phylogenetic lineages of *Macrobrachium* that originated from the paleo ocean and further invaded freshwater habitats since the Mesozoic [59]. The adaptation to live as diadromous species offered high dispersal ability in *Macrobrachium* species (e.g., *M. nipponense*; see Chen, Shih [60]). The presence of environmental gradients in aquatic habitats plays a crucial role and may be a key for speciation in marine and freshwater animals [61]. The effect of altitude gradient on habitat diversification has been suggested in *Macrobrachium* diversity [62]. In Asia, some *Macrobrachium* species live in extreme environments, such as those which occupy subterranean water systems and exhibit troglobitic morphological features and life history adaptations [63–66].

Based on previous taxonomic records, up to forty-seven *Macrobrachium* species have been found throughout river basins of Indochina [48, 50, 52–54, 67–74]. The list of Indochinese *Macrobrachium* species and their type localities are given in Table 1. A group of widespread species such as *M. dienbienphuense*, *M. lanchesteri*, *M. niphanae*, *M. rosenbergii*, and *M. sintangense* were reported to occur together in riverine networks [50]. Some indigenous species were only found from a single locality, such as *M. chainatense*, *M. dolatum*, *M. spelaeus*, and *M. tratense*. Cambodia and Vietnam are less thoroughly explored than other countries in the region, although new species have recently been discovered from several remote areas, including one Cambodian and 12 Vietnamese taxa [52, 53, 73, 75–78]. These reports suggest the need for more integrative taxonomic assessments in the area.

Because of the habitat diversity in Indochina and the insufficient data of taxonomic validity and diversity records, broad scale sampling of freshwater *Macrobrachium* prawns is crucially needed to fill gaps in the existing taxonomic data [48, 50]. Moreover, the decline of several prawn species and populations in their natural habitats is of critical concern because of habitat destruction [79, 80]. This study focuses on the improvement of regional data through integrative taxonomy, emphasizing species identification, species delineation, phylogenetic relationships and geographical distributions. In this study, newly determined COI sequences of twenty-three nominal species of Indochinese prawns are provided. The re-collection of type specimens of some described taxa is used to reconfirm species identity and position within the phylogenetic tree. The representative taxa used in this study cover 53% of all nominal taxa recorded in the Indochina subregion (Table 1). The results of this study can benefit the conservation management of Indochinese freshwater prawns.

Methods

Specimen collection, preparation and identification

Prawns were collected from natural habitats during 2017–2019 in various river systems of Indochinese countries, including Thailand, Laos, Cambodia, and Vietnam (Fig 1). Collecting permission in remote areas of Thailand was granted by the Department of National Parks, Wildlife and Plant Conservation, Thailand (DNP 0907.4/14262). Permission in Cambodia was granted by the Fisheries Administration Ministry of Agriculture, Forestry and Fisheries of Cambodia. Animal use in this project strictly followed the recommended protocols approved by Chulalongkorn University (Protocol Review No. 1723018) and Mahidol University’s Institute Animal Care and Use Committee (MU-IACUC) under approval number MU-IACUC 2018/004.

Prawns were trapped by using artificial baited net traps and by net sieving. GPS coordinates were recorded in each collecting locality. The collecting localities were illustrated in
Table 1. Species records of Indochinese *Macrobrachium* prawns.

Species	Type locality
1. *M. amplimanus* Cai and Dai, 1999	Mengla County, Xishuangbanna, southern China
2. *M. asperulum* (von Martens, 1868)	Shanghai, Eastern China
3. *M. assamense* (Tiwari, 1955)	Someswari River, near Siju, Garo Hill, Assam, India
4. *M. chainatense* Saengphan et al., 2019	Muang Chai Nat, Chai Nat, Thailand
5. *M. chilinhense* Dang, 2012	Chi Linh (Hai Duong), northern Vietnam
6. *M. dalatense* Nguyen, 2003	Mountain stream near the village of Krean, south of Dalat, south Vietnam
7. *M. dienbienphuense* Dang and Nguyen, 1972	Dien Bien Phu, northern Vietnam
8. *M. dolatum* Cai et al., 2004	Trang, south Thailand
9. *M. duri* Wowor and Ng, 2010	Banten, Java, Indonesia
10. *M. equidens* (Dana, 1852)	Singapore
11. *M. eriocheirum* Dai, 1984	Jiangshan, Xishuangbanna, Yunnan, southern China
12. *M. forcipatum* Ng, 1995	Tasek Temengor, Perak, Malaysia
13. *M. hainanense* Parisi, 1919	Hainan Island, China
14. *M. hendersoni* (De Man, 1906)	Darjeeling, Western Bengal, India
15. *M. hirsutimanus* (Tiwari, 1952)	Ban Pon, Nam Gae, north of Ban Sala, Nan, Thailand
16. *M. huaii* Nguyen, 2012	Tonlé Sap Lake, Cambodia
17. *M. ideae* (Heller, 1862)	Borneo
18. *M. lanchesteri* (De Man, 1911)	Songkla, southern Thailand
19. *M. lar* (Fabricius, 1793)	India
20. *M. latidactylus* (Thallwitz, 1891)	Sulawesi, Indonesia
21. *M. malayanum* (Roux, 1934)	Lasah, Plus valley, Perak, Malaysia
22. *M. mekongense* Dang, 1998	Mekong River, Dong Thap, southern Vietnam
23. *M. mieni* Dang, 1975	Hoa Binh, northern Vietnam
24. *M. naiyanetri* Siriwut, 2020	Hui Prik, Cha-wang District, Nakhon Si Thammarat Province, Thailand
25. *M. neglectum* (De Man, 1905)	Mergui Archipelago, Myanmar and northeastern Sumatra, Indonesia
26. *M. niphanumae* Shokita and Takeda, 1989	Nang Rong waterfall, Klong Yai and Khao Chamao, Thailand
27. *M. nipponense* (De Haan, 1849)	Japan
28. *M. palmopilosum* Siriwut, 2020	Tat Man Waterfalls, Pua Sub-district, Chiang Khan District, Nan Province, Thailand
29. *M. phonghaense* Do and Nguyen, 2014	Son Doong cave, Phong Nha-Ke Bang National Park, Quang Binh, Vietnam
30. *M. pilimanus* (De Man, 1879)	Moeatalabaoh [Muara Labuh?], West Sumatra, Indonesia
31. *M. pilosum* Cai and Dai, 1999	Mountain stream near Mengban village, Mengla County, southern China
32. *M. puberimanus* Siriwut, 2020	Mekong River at Wat Tha Khaek, Chiang Khan Sub-district, Chiang Khan District, Loei Province
33. *M. rosenbergii* (De Man, 1879)	Jakarta, Java, Indonesia
34. *M. rogersi* (Tiwari, 1952)	Arakan and Pegu Yomas, Burma
35. *M. saigonense* Nguyen, 2006	Near Hoa An bridge, Bien Hoa, northwest of Ho-Chi-Minh City, southern Vietnam
36. *M. sintangense* (De Man, 1898)	Sintang, Kapuas River, Borneo
37. *M. sirindhorn* Naiyanetr, 2001	Pong Nam Dung waterfall, Mae Soon, Fang, Chiang Mai, northern Thailand
38. *M. spelaeus* Cai and Vidthayanon, 2016	Tham Phra Wangdeng, Pitsanulok Province, northern Thailand
39. *M. suongae* Nguyen, 2003	Stream near An Phu village, South of Pleiku, central Vietnam
40. *M. superbum* (Heller, 1862)	Shanghai, eastern China

(Continued)
geographical map via QGIS v3.18 [81]. The template of hydrological basin was extracted from FAO GeoNetwork opensource database [82]. Some of the collected specimens were photographed for their live habitus coloration in a small aquarium with substrate and background. Specimens were euthanized by the two-step method following AVMA Guidelines for the Euthanasia of Animals [83]. Prawns were anesthetized by the gradual addition of 95% (v/v) ethanol to the container, starting from approximately 5% (v/v) concentration. Later, the fully anesthetized specimens were persevered with 95% (v/v) ethyl alcohol for further morphological and molecular analyses. Morphological identification was made based on taxonomic literature of SE-Asian fauna as follows: Cai, Naiyanetr [48], Hanamura, Imai [50], Xuan [52], Saengphan, Panijpan [69], Saengphan, Panijpan [70], Cai and Dai [84], Holthuis [85], Wowor and Short [86], Cai and Vidthayanon [87], Siriwut, Jeratthitikul [88].

DNA extraction, amplification, and sequencing

Prawn specimens were dissected to obtain somatic tissue. The Nucleospin™ DNA extraction kit (MACHEREY-NAGEL, Germany) was used for genomic DNA extraction. Genomic DNA yield was quantified by Nanodrop spectrophotometer (Thermo Scientific, USA). Cytochrome C oxidase subunit I (COI) gene was amplified using universal LCO1490 forward primer [14, 89] and a newly designed reverse primer specific for *Macrobrachium*, MacroR (5’-GCCTGA-TATGTTATATATTCTC-3’). The standard PCR mixture contained 1 μl of genomic DNA, 2.5 μl of forward and reverse primers, 25 μl of EmeraldAmp PCR Maser Mix (TAKARA BIO, Japan) and 18 μl of ddH₂O.

PCR was carried out by an Eppendorf Master Cycler Pro S (Eppendorf, Germany) with gradient temperature function. The PCR conditions were set as follows: 94°C for 5 min as an initial step followed by 36 cycles of 94°C for 30 s for denaturation, 41–45°C for 40 s, 72°C for 15 s for extension, and then final extension at 72°C for 10 min. The amplicon products were run by 1% agarose gel electrophoresis stained with SYBR Safe illuminant (Invitrogen, USA). Observation was made under a UV gel documentation machine. Later, the target products were purified using a QIAquick purification kit (QIAGEN, Germany). The purified products were sequenced by commercial sequencing company (Macrogen and Bioneer, Korea) using Applied Biosystems automatic sequencer.

Sequence editing, alignment, and phylogenetic reconstruction

Prawn COI gene sequences were aligned with deposited sequences in the GenBank library using the BLASTn algorithm to verify the correct group of organisms from obtained...
Fig 1. Sampling localities of *Macrobrachium* in the Indochinese subregion.

https://doi.org/10.1371/journal.pone.0252546.g001
sequences. The verified sequences were assembled, edited, and aligned using MUSCLE algorithm [90] in MEGA 7 [91]. Input files for each phylogenetic method were configured in MEGA 7 and Mesquite v3.61 [92]. The best fit nucleotide substitution model was sampled by using JModelTest v2.1.10 [93]. In this study, maximum likelihood (ML) and Bayesian inference (BI) methods were applied to reconstruct phylogenetic trees from the COI dataset. For ML analysis, the dataset was analyzed in RAxML 8.0.0v [94] via CIPRES portal [95] and W-IQ-TREE [96] via online server (http://iqtree.cibiv.univie.ac.at/) with 1,000 bootstrapping tests and default parameter settings. The Maximum likelihood phylogenetic tree based on RAxML program was constructed under GTR+CAT model for the best-fit nucleotide substitution. Bayesian inference was conducted in MrBayes, ver. 3.2.6. [97]. Ten million MCMC generations were sampled and the burn-in fragment discarding was configured as 0.5. The consensus tree as implemented from 50% majority rules was harvested at the final stage, and the raw tree topology file was then illustrated in FigTree [98]. Clade support was defined as monophyly when support values exceeded the accepted threshold of the bootstrap values 70% for RaxML and 90% for W-IQ-TREE, and 0.95 of posterior probabilities for BI. A p-distance of nucleotide comparison was calculated in MEGA 7. The number of nucleotide differences and genetic distance were compared for both inter–and intraspecific variation. A bar chart depicting DNA barcode gaps was constructed in Excel and re-drawn in Adobe Illustrator.

DNA barcode analysis

Sequence datasets were registered and deposited in BOLD system [99]. The taxonomic account, voucher specimen ID, collecting locality, and voucher depositor were incorporated into the system for further analysis. Available barcoding sequences from previous literature such as Hanamura, Imai [50], Saengphan, Panijpan [69], Saengphan, Panijpan [70], Siriwut, Jeratthitikul [88], Wowor, Muthu [100] were included in the dataset. A list of sequences used in barcode analysis is presented in Table 2. The analysis tools in BOLD were used to calculate nucleotide diversity, barcoding gap, diagnosis nucleotide, and sequence cluster. All sequences in the dataset were initially registered to obtain Process ID and to check for possible pseudogenes or nuclear copies of mitochondrial DNA (NUMTs) based on the occurrence of stop codons or frameshift mutations in each submitted sequence. The genetic distances among sequences was analyzed using the MUSCLE option in the distance summary tool of the BOLD workbench. The barcode gap analysis was performed to indicate the genetic distance distribution between the operational targeted species and the nearest neighbor species. Two distance models were used: pairwise distance and K2-P distance. The alignment of sequence datasets was carried out under the MUSCLE option. The diagnostic nucleotide of non-singleton species was predicted under K2-P distance model and MUSCLE alignment algorithm. All parameters were set as default. According to a barcode index number (BIN) automatically assigned [101] in the BOLD system, the sequence dataset was checked with BIN records. The clustering result using the Refined Single Linkage algorithm (RESL) initially validated the putative OTUs in the sequence dataset. Alternatively, the DNA barcode gap plot was constructed via MEGA under the distance calculation panel; the dataset obtained from pairwise comparison, intraspecific and interspecific distances of defined sequences was comparatively implemented to construct a barcode gap diagram.

Species delimitation

Species delimitation was performed using four standardized methods: automated barcode gap (ABGD; Puillandre, Lambert [102]), the multi-rate Poisson Tree Processes (mPTP, Kapli, Lutteropp [103]), Bayesian implementation of Poisson Tree Processes model (bPTP, Zhang, Kapli
Table 2. *Macrobrachium* species samples used in this study including previously deposited sequences from BOLD.

Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
M. chainatense	PRSEA144-20	CUMZ_MP00161	Mueang, Chai Nat, Thailand	15°13'19.8192"N, 100°6'6.1158"E	
M. chainatense	PRSEA145-20	CUMZ_MP00162	Mueang, Chai Nat, Thailand	15°13'19.8192"N, 100°6'6.1158"E	
M. dienbienphuense	PRSEA011-20	CUMZ_MP00028	Nam Nao, Phetchabun, Thailand	16°39'2.88"N, 101°46'22.8354"E	
M. dienbienphuense	PRSEA015-20	CUMZ_MP00032	Wang Thong, Phitsanulok, Thailand	16°49°20.6364"N, 100°25'56.5392"E	
M. chainatense	PRSEA026-20	CUMZ_MP00043	Pong, Phayao, Thailand	19°07'11.1"N, 100°16'49.8"E	
M. chainatense	PRSEA044-20	CUMZ_MP00061	Mueang, Sa Kaeo, Thailand	13°48'33.6"N, 102°03'16.8"E	
M. chainatense	PRSEA045-20	CUMZ_MP00062	Mueang, Nakhon Nayok, Thailand	14°11'46.1"N, 101°11'36.5"E	
M. dienbienphuense	PRSEA051-20	CUMZ_MP00068	Det Udom, Ubon Ratchathani, Thailand	14°26'46.2"N, 105°07'16.1"E	
M. chainatense	PRSEA052-20	CUMZ_MP00069	Mueang, Sa Kaeo, Thailand	13°48'33.6"N, 102°03'16.8"E	
M. chainatense	PRSEA053-20	CUMZ_MP00070	Mueang, Trat, Thailand	12°19'30.3"N, 102°30'01.0"E	
M. dienbienphuense	PRSEA055-20	CUMZ_MP00072	Mueang, Chaiyaphum, Thailand	15°56'27.7"N, 102°01'22.2"E	
M. chainatense	PRSEA058-20	CUMZ_MP00075	Lan Saka, Nakhon Si Thammarat, Thailand	8°20'56.8"N, 99°47'47.5"E	
M. chainatense	PRSEA063-20	CUMZ_MP00080	Wang Sam Mo, Udon Thani, Thailand	16°56'52.2"N, 103°28'24.8"E	
M. chainatense	PRSEA070-20	CUMZ_MP00087	Chiang Kham, Phayao, Thailand	19°33'41.7"N, 100°17'42.0"E	
M. dienbienphuense	PRSEA078-20	CUMZ_MP00095	Bueng Sam Phan, Phetchabun, Thailand	15°49'52.5"N, 101°02'08.0"E	
M. chainatense	PRSEA091-20	CUMZ_MP00108	Phu Kradueng, Loei, Thailand	16°51'40.0"N, 101°54'29.6"E	
M. dienbienphuense	PRSEA116-20	CUMZ_MP00133	Soi Dao, Chanthaburi, Thailand	13°07'12.3"N, 102°13'02.6"E	
M. dienbienphuense	PRSEA131-20	CUMZ_MP00148	Det Udom, Ubon Ratchathani, Thailand	14°26'46.2"N, 105°07'16.1"E	
M. dienbienphuense	PRSEA132-20	CUMZ_MP00149	Det Udom, Ubon Ratchathani, Thailand	14°26'46.2"N, 105°07'16.1"E	
M. dienbienphuense	PRSEA133-20	CUMZ_MP00150	Det Udom, Ubon Ratchathani, Thailand	14°26'46.2"N, 105°07'16.1"E	
M. chainatense	PRSEA141-20	CUMZ_MP00158	Noen Maprang, Phitsanulok, Thailand	16°41'46.8"N, 100°39'24.5"E	
M. dienbienphuense	PRSEA150-20	CUMZ_MP00167	Banteay Srei, Siem Reap, Cambodia	13°35'43.1"N, 103°57'42.6"E	
M. dienbienphuense	PRSEA152-20	CUMZ_MP00169	Krolanh, Siem Reap, Cambodia	13°35'29.7"N, 103°24'16.3"E	
M. dienbienphuense	PRSEA153-20	CUMZ_MP00170	Thlea Ma Om, Pursat, Cambodia	12°31'34.7"N, 104°03'16.2"E	
M. dienbienphuense	PRSEA154-20	CUMZ_MP00171	Krolanh River, Siem Reap, Cambodia	13°35'29.7"N, 103°24'16.3"E	
M. dienbienphuense	PRSEA162-20	CUMZ_MP00179	Banteay Srei, Siem Reap, Cambodia	13°35'43.1"N, 103°57'42.6"E	

(Continued)
Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
PRSEA175-20	BOLD: AEC8121	CUMZ_MP00192	Nam Nua River, Dien Bien Phu, Vietnam	21°13’11.1"N, 103°03’10.6"E	
M. equidens	GBCM2468-09	FM958063	Khatib Bongsu, Singapore*		
M. forcipatum	PRSEA113-20	CUMZ_MP00130	Kathu, Phuket, Thailand*		
PRSEA114-20	BOLD: AEC8121	CUMZ_MP00131	Mueang, Phangnga, Thailand*		
M. hendersoni	PRSEA118-20	CUMZ_MP00135	Si Sawat, Kanchanaburi, Thailand	14°23’04.3"N, 99°08’20.0"E	
PRSEA119-20	BOLD: AEC8121	CUMZ_MP00136	Si Sawat, Kanchanaburi, Thailand	14°23’04.3"N, 99°08’20.0"E	
M. hirsutimanus	PRSEA014-20	CUMZ_MP0031	Wang Thong, Phitsanulok, Thailand*		
PRSEA031-20	BOLD: AED0116	CUMZ_MP0048	Wang Thong, Phitsanulok, Thailand*		
PRSEA046-20	BOLD: AED0116	CUMZ_MP0063	Suan Phueng, Ratchaburi, Thailand*		
PRSEA048-20	BOLD: AED0116	CUMZ_MP0065	Tha Yang, Phetchaburi, Thailand*		
PRSEA049-20	BOLD: AED0116	CUMZ_MP0066	Mueang, Nakhon Nayok, Thailand*		
PRSEA050-20	BOLD: AED0116	CUMZ_MP0067	Bo Rai, Trat, Thailand*		
PRSEA054-20	BOLD: AED0116	CUMZ_MP0071	Mueang, Nakhon Nayok, Thailand*		
PRSEA077-20	BOLD: AED0116	CUMZ_MP0094	Noen Maprang, Phitsanulok, Thailand*		
PRSEA122-20	BOLD: AED0116	CUMZ_MP0139	Wang Thong, Phitsanulok, Thailand*		
M. lanatum	GBCM2450-09	FM958081	Bengkulu, Sumatra*		
M. lanchesteri	PRSEA001-20	CUMZ_MP00018	Wang Thong, Phitsanulok, Thailand	16°49’20.3"N, 100°25’51.9"E	
PRSEA002-20	BOLD: AAJ1427	CUMZ_MP00019	Wiang Chai, Chiang Rai, Thailand	19°52’10.7"N, 99°56’42.8"E	
PRSEA004-20	BOLD: AAJ1427	CUMZ_MP0021	Pong, Phayao, Thailand	19°09’25.3"N, 100°16’52.9"E	
PRSEA016-20	BOLD: AAJ1427	CUMZ_MP0033	Chiang Klang, Nan, Thailand	19°17’13.8"N, 100°51’24.6"E	
PRSEA024-20	BOLD: AAJ1427	CUMZ_MP0041	Ban Khok, Uttaradit, Thailand	18°05’38.9"N, 101°07’20.8"E	
PRSEA025-20	BOLD: AAJ1427	CUMZ_MP0042	Ban Khok, Uttaradit, Thailand	18°05’38.9"N, 101°07’20.8"E	
PRSEA042-20	BOLD: AAJ1427	CUMZ_MP0059	Phu Kradueng, Loei, Thailand	16°51’40.0"N, 101°54’29.6"E	
PRSEA066-20	BOLD: AAJ1427	CUMZ_MP0083	Mueang, Nakhon Sawan, Thailand	15°37’16.9"N, 100°05’37.5"E	
PRSEA072-20	BOLD: AAJ1427	CUMZ_MP0089	Sathing Phra, Songkhla, Thailand	7°25’01.4"N, 100°25’04.0"E	

(Continued)
Table 2. (Continued)

Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
PRSEA073-20	BOLD: AAI4127	CUMZ_MBP0090		Sathing Phra, Songkhla, Thailand	7°25′01.4″N, 100°25′04.0″E
PRSEA074-20	BOLD: AAI4127	CUMZ_MBP0091		Wichian Buri, Phetchabun, Thailand	15°34′45.5″N, 101°04′49.6″E
PRSEA076-20	BOLD: AAI4127	CUMZ_MBP0093		La-un, Ranong, Thailand	10°06′37.1″N, 98°45′32.5″E
PRSEA123-20	BOLD: AAI4127	CUMZ_MBP0140		Kabin Buri, Prachin Buri, Thailand	13°56′14.8″N, 101°55′19.1″E
PRSEA124-20	BOLD: AAI4127	CUMZ_MBP0141		Mueang, Kalasin, Thailand	16°27′53.4″N, 103°30′17.7″E
PRSEA125-20	BOLD: AAI4127	CUMZ_MBP0142		Sawang Daen Din, Sakon Nakhon, Thailand	17°28′35.9″N, 103°28′28.8″E
PRSEA147-20	BOLD: AAI4127	CUMZ_MBP0164		Preah Netr Preah, Banteay Meanchey, Cambodia	13°37′20.2″N, 103°11′51.9″E
PRSEA148-20	BOLD: AAI4127	CUMZ_MBP0165		Preah Netr Preah, Banteay Meanchey, Cambodia	13°37′20.2″N, 103°11′51.9″E
PRSEA149-20	BOLD: AAI4127	CUMZ_MBP0166		Preah Netr Preah, Banteay Meanchey, Cambodia	13°37′20.2″N, 103°11′51.9″E
PRSEA156-20	BOLD: AAI4127	CUMZ_MBP0173		Puok, Siem Reap, Cambodia	13°27′16.7″N, 103°44′24.0″E
PRSEA157-20	BOLD: AAI4127	CUMZ_MBP0174		Stoung, Kampong Thom, Cambodia	12°56′41.5″N, 104°34′57.9″E
PRSEA197-20	BOLD: AAI4127	CUMZ_MBP0214		Pakse, Champasak, Laos	15°06′50.7″N, 105°48′49.2″E
PRSEA198-20	BOLD: AAI4127	CUMZ_MBP0215		Pakse, Champasak, Laos	15°06′50.7″N, 105°48′49.2″E
M. latidactylus	PRSEA088-20	BOLD: AEC9506	CUMZ_MBP00105	Mueang, Krabi, Thailand	8°04′48.9″N, 98°55′08.5″E
PRSEA108-20	BOLD: AEC9506	CUMZ_MBP00125		La-ngu, Satun, Thailand	6°54′22.3″N, 99°48′42.2″E
M. malayanum	PRSEA139-20	BOLD: AEC7359	CUMZ_MBP00156	Wang Wiset, Trang, Thailand*	
PRSEA134-20	BOLD: AEC7359	CUMZ_MBP00151		Wang Wiset, Trang, Thailand*	
PRSEA140-20	BOLD: AEC7359	CUMZ_MBP00157		Wang Wiset, Trang, Thailand*	
M. naiyanetri	PRSEA013-20	BOLD: AEC9525	CUMZ_MBP00030	Mueang, Phetchabun, Thailand*	
PRSEA089-20	BOLD: AEC9525	CUMZ_MBP00106		Khlueng, Chanthaburi, Thailand*	
PRSEA111-20	BOLD: AEC9526	CUMZ_MBP00128		Chawang, Nakhon Si Thammarat, Thailand*	
PRSEA112-20	BOLD: AEC9526	CUMZ_MBP00129		Chawang, Nakhon Si Thammarat, Thailand*	
PRSEA117-20	BOLD: AEC9523	CUMZ_MBP00134		Rattaphum, Songkhla, Thailand*	
PRSEA135-20	BOLD: AEC9526	CUMZ_MBP00152		Chawang, Nakhon Si Thammarat, Thailand*	
PRSEA136-20	BOLD: AEC9526	CUMZ_MBP00153		Chawang, Nakhon Si Thammarat, Thailand*	
PRSEA151-20	BOLD: AEC9524	CUMZ_MBP00168		Sangker River, Siem Reap, Cambodia	12°57′06.4″N, 103°08′45.4″E

(Continued)
Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
PRSEA 160-20	BOLD: AEC9524	CUMZ_MP00177		Banteay Srei, Siem Reap, Cambodia	13°35’43.1”N, 103°57’42.6”E
PRSEA 161-20	BOLD: AEC9524	CUMZ_MP00178		Banteay Srei, Siem Reap, Cambodia	13°35’43.1”N, 103°57’42.6”E
M. neglectum	PRSEA056-20	BOLD: ADH8852	CUMZ_MP00073	Mueang, Krabi, Thailand	8°04’48.9”N, 98°55’08.5”E
PRSEA 057-20	BOLD: ADH8852	CUMZ_MP00074		Mueang, Satun, Thailand	6°44’43.5”N, 100’02’08.3”E
PRSEA 065-20	BOLD: ADH8852	CUMZ_MP00082		Klong Yai, Trat, Thailand	11°54’15.1”N, 102°48’37.5”E
PRSEA 084-20	BOLD: ADH8852	CUMZ_MP00101		Mueang, Ranong, Thailand	9°53’13.6”N, 98°38’01.4”E
PRSEA 090-20	BOLD: ADH8852	CUMZ_MP00107		Mueang, Phangnga, Thailand	8°30’48.0”N, 98°30’13.2”E
M. niphanae	PRSEA017-20	BOLD: AAX3492	CUMZ_MP00034	Fak Tha, Uttaradit, Thailand	17°59’48.8”N, 100°52’44.0”E
PRSEA 019-20	BOLD: AAX3492	CUMZ_MP00036		Fak Tha, Uttaradit, Thailand	17°59’48.8”N, 100°52’44.0”E
PRSEA 022-20	BOLD: AAX3492	CUMZ_MP00039		Lom Sak, Phetchabun, Thailand	16°43’46.9”N, 101°14’17.0”E
PRSEA 023-20	BOLD: AAX3492	CUMZ_MP00040		Fak Tha, Uttaradit, Thailand	17°59’48.8”N, 100°52’44.0”E
PRSEA 038-20	BOLD: AAX3492	CUMZ_MP00055		Tha Yang, Phetchaburi, Thailand	12°56’55.8”N, 99°51’16.5”E
PRSEA 040-20	BOLD: AAX3492	CUMZ_MP00057		Thung Song, Nakhon Si Thammarat, Thailand	8°13’59.5”N, 99°40’32.1”E
PRSEA 069-20	BOLD: AAX3492	CUMZ_MP00086		Nam Pat, Uttaradit, Thailand	17°43’46.8”N, 100°41’24.3”E
PRSEA 109-20	BOLD: AAX3492	CUMZ_MP00126		Noen Maprang, Phitsanulok, Thailand	16°43’43.6”N, 100°35’10.3”E
PRSEA 146-20	BOLD: AAX3492	CUMZ_MP00163		Mueang, Chai Nat, Thailand	15°13’20.6”N, 100°06’07.0”E
PRSEA 166-20	BOLD: AAX3492	CUMZ_MP00183		Banteay Srei, Siem Reap, Cambodia	13°35’43.1”N, 103°57’42.6”E
PRSEA 167-20	BOLD: AAX3492	CUMZ_MP00184		Banteay Srei, Siem Reap, Cambodia	13°35’43.1”N, 103°57’42.6”E
PRSEA 168-20	BOLD: AAX3492	CUMZ_MP00185		Banteay Srei, Siem Reap, Cambodia	13°35’43.1”N, 103°57’42.6”E
GBCM D28534-19	BOLD: AAX3492	MF622022		Suphan Buri, Thailand*	
GBCM D28535-19	BOLD: AAX3492	MF622023		Suphan Buri, Thailand*	
GBCM D28536-19	BOLD: AAX3492	MF622024		Suphan Buri, Thailand*	
M. nipponense	PRSEA172-20	BOLD: AEB4023	CUMZ_MP00189	Dien Bien Phu, Vietnam	21°23’15.2”N, 103°00’46.8”E
PRSEA 173-20	BOLD: AEB4023	CUMZ_MP00190		Dien Bien Phu, Vietnam	21°23’15.2”N, 103°00’46.8”E
PRSEA 176-20	BOLD: AEB4023	CUMZ_MP00193		Dien Bien Phu, Vietnam	21°23’15.2”N, 103°00’46.8”E
PRSEA 177-20	BOLD: AEB4023	CUMZ_MP00194		Dien Bien Phu, Vietnam	21°23’15.2”N, 103°00’46.8”E

(Continued)
Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
M. palmopilosum	PRSEA010-20	BOLD: AEC6469	CUMZ_MP00027	Bo Kluea, Nan, Thailand*	
	PRSEA012-20	BOLD: AEC6469	CUMZ_MP00029	Song Khwae, Nan, Thailand*	
	PRSEA020-20	BOLD: AEC6469	CUMZ_MP00037	Pong, Phayao, Thailand*	
	PRSEA021-20	BOLD: AEC6469	CUMZ_MP00038	Pong, Phayao, Thailand*	
	PRSEA027-20	BOLD: AEC8012	CUMZ_MP00044	Rong Kwang, Phrae, Thailand*	
	PRSEA029-20	BOLD: AEC8012	CUMZ_MP00046	Song, Phrae, Thailand*	
	PRSEA030-20	BOLD: AEC6469	CUMZ_MP00047	Chiang Klang, Nan, Thailand*	
M. puberimanus	PRSEA137-20	BOLD: ADX8426	CUMZ_MP00154	Na Yung, Udon Thani, Thailand*	
	PRSEA138-20	BOLD: ADX8426	CUMZ_MP00155	Pak Chom, Loei, Thailand*	
	PRSEA087-20	BOLD: ADX8426	CUMZ_MP00104	Chiang Khan, Loei, Thailand*	
	PRSEA106-20	BOLD: ADX8426	CUMZ_MP00123	Phu Ruea, Loei, Thailand*	
	GBCM D28531-19	BOLD: ADX2465	MF622019	Petchabun, Thailand*	
	GBCM D28530-19	BOLD: ADX8426	MF622018	Mukdahan, Thailand*	
M. rogersi	PRSEA097-20	BOLD: AEC8219	CUMZ_MP00114	La-Ngu, Satun, Thailand	6°54'22.3"N, 99°48'42.0"E
	PRSEA098-20	BOLD: AEC8219	CUMZ_MP00115	Mueang, Trang, Thailand	7°36'30.5"N, 99°33'47.8"E
	PRSEA107-20	BOLD: AEC8219	CUMZ_MP00124	La-Ngu, Satun, Thailand	6°54'22.3"N, 99°48'42.0"E
M. rosenbergii	GBCM D28532-19	BOLD: AAE0347	CUMZ_MP00100	Mueang, Maha Sarakham, Thailand	16°11'01.4"N, 103°27'24.4"E
	PRSEA083-20	BOLD: AAE0347	CUMZ_MP00117	Khung, Chanthaburi, Thailand	12°28'00.0"N, 102°12'11.6"E
	PRSEA100-20	BOLD: AAE0347	CUMZ_MP00118	Mueang, Ranong, Thailand	9°53'13.5"N, 98°38'01.2"E
M. sintangense	PRSEA005-20	BOLD: ADX3382	CUMZ_MP00022	Mueang, Phetchabun, Thailand	16°23'41.8"N, 101°10'15.5"E
	PRSEA018-20	BOLD: ADX3382	CUMZ_MP00035	Mueang, Phetchabun, Thailand	16°23'41.8"N, 101°10'15.5"E
	PRSEA033-20	BOLD: ADX3382	CUMZ_MP00050	Mueang, Prachin Buri, Thailand	16°23'41.8"N, 101°10'15.5"E
	PRSEA034-20	BOLD: ADX3382	CUMZ_MP00051	Kabin Buri, Prachin Buri, Thailand	13°56'14.7"N, 101°55'19.3"E
	PRSEA035-20	BOLD: ADX3382	CUMZ_MP00052	Khuan Don, Satun, Thailand	6°48'11.7"N, 100°05'28.7"E
	PRSEA036-20	BOLD: ADX3382	CUMZ_MP00053	Bo Rai, Trat, Thailand	12°23'48.4"N, 102°39'15.0"E

(Continued)
Table 2. (Continued)

Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
PRSEA037-20	BOLD: ADX3382	CUMZ_MP00054	Bang Ban, Phra Nakhon Si Ayutthaya, Thailand	14°24'27.9"N, 100°28'13.0"E	
PRSEA041-20	BOLD: ADX3382	CUMZ_MP00058	Mueang, Nakhon Sawan, Thailand	15°42'11.6"N, 100°08'30.4"E	
PRSEA043-20	BOLD: ADX3382	CUMZ_MP00060	Mueang, Nakhon Nayok, Thailand	14°16'28.2"N, 101°16'59.0"E	
PRSEA062-20	BOLD: AAX3483	CUMZ_MP00079	Pak Chom, Loei, Thailand	18°01'04.2"N, 101°53'23.4"E	
PRSEA067-20	BOLD: ADX3382	CUMZ_MP00084	Kui Buri, Prachuap Khiri Khan, Thailand	12°05'29.0"N, 99°48'18.2"E	
PRSEA071-20	BOLD: ADX3382	CUMZ_MP00088	Sathing Phra, Songkhla, Thailand	7°30'36.3"N, 100°24'24.4"E	
PRSEA075-20	BOLD: ADX3382	CUMZ_MP00092	Sawi, Chumphon, Thailand	10°12'39.8"N, 99°03'55.5"E	
PRSEA081-20	BOLD: ADX3382	CUMZ_MP00098	Mueang, Trang, Thailand	7°36'30.5"N, 99°33'47.8"E	
PRSEA082-20	BOLD: ADX3382	CUMZ_MP00099	Mueang, Trang, Thailand	7°36'30.5"N, 99°33'47.8"E	
PRSEA092-20	BOLD: ADX3382	CUMZ_MP00109	Khlong, Chanthaburi, Thailand	12°27'59.9"N, 102°12'11.8"E	
PRSEA093-20	BOLD: ADX3382	CUMZ_MP00110	Suk Samran, Ranong, Thailand	9°23'28.3"N, 98°28'19.3"E	
PRSEA094-20	BOLD: AAX3483	CUMZ_MP00111	Chiang Khan, Loei, Thailand	17°54'15.7"N, 101°40'51.2"E	
PRSEA095-20	BOLD: ADX3382	CUMZ_MP00112	Soi Dao, Chanthaburi, Thailand	13°07'12.6"N, 102°13'02.5"E	
PRSEA105-20	BOLD: ADX3382	CUMZ_MP00122	Mueang, Chanthaburi, Thailand	12°35'11.4"N, 102°06'05.0"E	
PRSEA155-20	BOLD: ADX3382	CUMZ_MP00172	Tonle Sap River, Kandal, Cambodia	11°49'01.8"N, 104°48'35.3"E	
PRSEA185-20	BOLD: AAX3483	CUMZ_MP00202	Khemarat, Ubon Ratchathani, Thailand	16°02'37.1"N, 105°13'28.3"E	
PRSEA188-20	BOLD: ADX3382	CUMZ_MP00205	Takeo, Cambodia	10°58'51.2"N, 104°46'43.2"E	
PRSEA190-20	BOLD: ADX3382	CUMZ_MP00207	Prek Thraot River, Kampong Speu, Cambodia	11°27'33.0"N, 104°31'31.1"E	
PRSEA186-20	BOLD: AAX3479	CUMZ_MP00203	Dan Chang, Suphan Buri, Thailand	14°50'57.0"N, 99°40'09.0"E	
PRSEA187-20	BOLD: ADX3382	CUMZ_MP00204	Tonle Sap Lake, Cambodia	12°30'22.1"N, 104°27'17.2"E	
PRSEA193-20	BOLD: AAX3483	CUMZ_MP00210	Muang Khong, Champasak, Laos	14°06'55.4"N, 105°51'20.0"E	
PRSEA194-20	BOLD: AAX3483	CUMZ_MP00211	Muang Khong, Champasak, Laos	14°06'55.4"N, 105°51'20.0"E	
PRSEA195-20	BOLD: AAX3483	CUMZ_MP00212	Pakse, Champasak, Laos	5°07'56.0"N, 105°48'39.5"E	
PRSEA196-20	BOLD: AAX3483	CUMZ_MP00213	Muang Khong, Champasak, Laos	14°06'55.4"N, 105°51'20.0"E	
GBCM D2448-09	BOLD: ADX3382	MF622026	Suphan Buri, Thailand		(Continued)
Table 2. (Continued)

Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
GBCM D28538-19	BOLD: ADX3382		MF622025	Suphan Buri, Thailand	
					100°41′27.4″E
GBCM D28537-19	BOLD: ADX3382		MF622027	Suphan Buri, Thailand	
					100°41′27.4″E
M. sirindhorn	PRSEA007-20		CUMZ_MP00024	Chiang Kham, Phayao, Thailand	
					100°41′27.4″E
	PRSEA008-20		CUMZ_MP00025	Chiang Kham, Phayao, Thailand	
					100°41′27.4″E
	PRSEA009-20		CUMZ_MP00026	Chiang Kham, Phayao, Thailand	
					100°41′27.4″E
	PRSEA110-20		CUMZ_MP00127	Chiang Kham, Phayao, Thailand	
					100°41′27.4″E
M. spelaeus	PRSEA142-20		CUMZ_MP00159	Noen Maprang, Phitsanulok, Thailand	16°40′51.2″N 100°41′27.4″E
	PRSEA143-20		CUMZ_MP00160	Noen Maprang, Phitsanulok, Thailand	16°40′51.2″N 100°41′27.4″E
M. suphanense	GBCM D28543-19		MF622031	Kanchanaburi, Thailand	
					14°33′20.2″N 100°41′27.4″E
	GBCM D28542-19		MF62209	Suphan Buri, Thailand	
					100°41′27.4″E
	GBCM D28541-19		MF62209	Suphan Buri, Thailand	
					100°41′27.4″E
	GBCM D28540-19		MF62208	Suphan Buri, Thailand	
					100°41′27.4″E
	PRSEA184-20		CUMZ_MP00201	Nong Chang, Uthai thani, Thailand	15°23′17.9″N 99°51′14.5″E
M. thai	PRSEA059-20		CUMZ_MP00076	Mueang, Chaiyaphum, Thailand	
					15°57′19.4″N 102°02′01.1″E
	PRSEA060-20		CUMZ_MP00077	Wang Sam Mo, Udon thani, Thailand	16°56′49.7″N 103°28′11.8″E
	PRSEA061-20		CUMZ_MP00078	Phon Phisai, Nong Khai, Thailand	17°59′41.4″N 103°03′48.8″E
M. tratense	PRSEA032-20		CUMZ_MP00049	Bo Rai, Trat, Thailand	
					12°23′48.4″N 102°39′15.0″E
	PRSEA104-20		CUMZ_MP00121	Bo Rai, Trat, Thailand	
					12°23′48.4″N 102°39′15.0″E
M. trompii	GBCM D2447-09		FM958084	Riau, Indonesia	
M. villosimanus	PRSEA099-20		CUMZ_MP00116	La-ngu, Satun, Thailand	
					6°54′22.3″N 99°48′42.2″E
M. yui	PRSEA068-20		CUMZ_MP00085	Mueang, Mae Hong Son, Thailand	19°25′09.9″N 97°59′53.2″E
	PRSEA102-20		CUMZ_MP00119	Mueang, Mae Hong Son, Thailand	19°25′09.9″N 97°59′53.2″E
	PRSEA103-20		CUMZ_MP00120	Mueang, Mae Hong Son, Thailand	19°25′09.9″N 97°59′53.2″E
Putative sp. 1	GBCM16528-19		MH053369	Chainat, Thailand	
					100°41′27.4″E
Putative sp. 2	GBCM D28533-19		MF622021	Suphan Buri, Thailand	
					100°41′27.4″E
Putative sp. 3	PRSEA079-20		CUMZ_MP00096	Mueang, Maha Sarakam, Thailand	16°11′01.4″N 103°27′24.4″E

(Continued)
Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
PRSEA080-20	BOLD: AEC6743	CUMZ_MP00097	Udonthani, Thailand	17˚19'02.5"N, 102˚35'53.0"E	
Putative sp. 4	PRSEA003-20	BOLD: AED0644	CUMZ_MP00020	Nam Pat, Uttaradit, Thailand	17˚43'47.0"N, 100˚41'24.3"E
PRSEA006-20	BOLD: AED0644	CUMZ_MP00023	San Sai, Chiang Mai, Thailand	18˚53'59.1"N, 99˚00'41.1"E	
PRSEA126-20	BOLD: AED0644	CUMZ_MP00143	Mueang, Krabi, Thailand	8˚04'49.1"N, 98˚55'08.6"E	
PRSEA127-20	BOLD: AED0644	CUMZ_MP00143	Bo Rai, Trat, Thailand	12˚23'48.4"N, 102˚39'15.0"E	
PRSEA128-20	BOLD: AED0644	CUMZ_MP00145	Suan Phueng, Ratchaburi, Thailand	13˚32'55.9"N, 99˚17'25.8"E	
PRSEA129-20	BOLD: AED0644	CUMZ_MP00146	Klaeng, Rayong, Thailand	12˚47'05.7"N, 101˚40'59.6"E	
Putative sp. 5	PRSEA174-20	BOLD: AEC6926	CUMZ_MP00191	Dien Bien Phu, Vietnam	21˚23'15.2"N, 103˚00'46.5"E
Putative sp. 6	GBCM23470-09	BOLD: AAX6071	FM958061	Chiangmai, Thailand*	
Putative sp. 7	PRSEA189-20	BOLD: AAK6470	CUMZ_MP00206	Preak Tuek Chhu River, Kampot, Cambodia	10˚33'43.6"N, 104˚04'41.4"E
Putative sp. 8	GBCM23457-09	BOLD: AAX3487	FM958074	Nee Soon, Singapore*	
Putative sp. 9	GBCM23451-09	BOLD: AAX3479	FM958080	Tonle Sap, Cambodia*	
PRSEA180-20	BOLD: AAX3479	CUMZ_MP00197	Bang Ban, Phra Nakhon Si Ayutthaya, Thailand	14˚24'27.9"N, 100˚28'13.0"E	
PRSEA191-20	BOLD: AAX3479	CUMZ_MP00208	Chhnok Tru, Kampong Chhnang, Cambodia	12˚30'21.1"N, 104˚27'17.0"E	
PRSEA192-20	BOLD: AAX3479	CUMZ_MP00209	Chongchom, Kap Choeng, Surin, Thailand	14˚27'11.2"N, 103˚41'29.2"E	
Putative sp. 10	PRSEA096-20	BOLD: AEC06997	CUMZ_MP00113	Khong Chiam, Ubon Ratchathani, Thailand	15˚19'13.3"N, 105˚29'51.7"E
Putative sp. 11	PRSEA178-20	BOLD: AEC06999	CUMZ_MP00195	Tha Tum, Surin, Thailand	15˚19'32.0"N, 103˚40'28.6"E
PRSEA179-20	BOLD: AED0856	CUMZ_MP00196	Tha Uthen, Nakhon Phanom, Thailand	17˚34'31.2"N, 104˚36'12.4"E	
PRSEA181-20	BOLD: AED0856	CUMZ_MP00198	Mueang, Mukdahan, Thailand	16˚32'27.7"N, 104˚43'04.1"E	
Putative sp. 12	PRSEA182-20	BOLD: AEC06997	CUMZ_MP00199	Mueang, Maha Sarakam, Thailand	16˚11'01.4"N, 103˚27'24.4"E
PRSEA183-20	BOLD: AEC6998	CUMZ_MP00200	Mueang, Maha Sarakam, Thailand	16˚11'01.4"N, 103˚27'24.4"E	
Putative sp. 13	PRSEA169-20	BOLD: AED0058	CUMZ_MP00186	Paksong, Champasak, Laos	15˚11'49.7"N, 106˚06'24.1"E
Putative sp. 14	PRSEA170-20	BOLD: AEB5988	CUMZ_MP00187	Paksong, Champasak, Laos	15˚11'49.7"N, 106˚06'24.1"E
PRSEA171-20	BOLD: AEB5988	CUMZ_MP00188	Paksong, Champasak, Laos	15˚11'49.7"N, 106˚06'24.1"E	
PRSEA039-20	BOLD: AEB5988	CUMZ_MP00056	Bueng Hong Long, Bueng Kan, Thailand	17˚58'11.8"N, 104˚02'24.3"E	
GBCM16418-19	BOLD: AEB5988	MH053368	Beung Kan, Thailand*		

(Continued)
Table 2. (Continued)

Operational taxonomic unit ID	BOLD Process ID	BIN	Catalog No/GenBank ID	Locality	GPS coordinates
Putative sp. 15	PRSEA158-20	BOLD:AED0766	CUMZ_MP00175	Phumi Phsar River, Kampong Chhnang, Cambodia	12°22'51.5"N, 104°28'59.6"E
Putative sp. 15	PRSEA159-20	BOLD:AED0766	CUMZ_MP00176	Phumi Phsar River, Kampong Chhnang, Cambodia	12°22'51.5"N, 104°28'59.6"E
Putative sp. 15	PRSEA163-20	BOLD:AED0766	CUMZ_MP00180	Phumi Phsar River, Kampong Chhnang, Cambodia	12°22'51.5"N, 104°28'59.6"E
Putative sp. 15	PRSEA164-20	BOLD:AED0766	CUMZ_MP00181	Stung Sen River, Kampong Thom, Cambodia	12°42'34.7"N, 104°52'24.6"E
Putative sp. 15	PRSEA165-20	BOLD:AED0766	CUMZ_MP00182	Chinit River, Kampong Thom, Cambodia	12°47'27.7"N, 104°49'13.4"E
Putative sp. 16	PRSEA115-20	BOLD:AEC7050	CUMZ_MP00132	Wang Wiset, Trang, Thailand	7°38'43.8"N, 99°31'55.4"E
Putative sp. 17	PRSEA028-20	BOLD:AEC6619	CUMZ_MP00045	Pong, Phayao, Thailand	19°07'11.1"N, 100°16'49.8"E
Putative sp. 18	PRSEA047-20	BOLD:AEC9332	CUMZ_MP00064	Phanom, Surat Thani, Thailand*	15°13'19.812"N, 100°6.61158"E
Putative sp. 18	PRSEA064-20	BOLD:AEC9332	CUMZ_MP00081	Rattaphum, Songkhla, Thailand*	15°13'19.812"N, 100°6.61158"E
Putative sp. 18	PRSEA085-20	BOLD:AED0022	CUMZ_MP00102	Xishuangbanna, China*	16°39'2.88"N, 101°46.228354"E
Putative sp. 18	PRSEA086-20	BOLD:AED0022	CUMZ_MP00103	Xishuangbanna, China*	16°49'20.6364"N, 100°25'56.5392"E
Putative sp. 18	PRSEA120-20	BOLD:AED0409	CUMZ_MP00137	Si Sawat, Kanchanaburi, Thailand*	19°07'11.1"N, 100°16'49.8"E
Putative sp. 18	PRSEA121-20	BOLD:AEC9331	CUMZ_MP00138	Wang Thong, Phitsanulok, Thailand*	13°48'33.6"N, 102°03'16.8"E

The names of OTUs retrieved from the consensus delimitation methods.
*record in literature: Saengphan, Panijpan [70] Siriwut, Jeratthitikul [88] and Wowor, Muthu [100].

https://doi.org/10.1371/journal.pone.0252546.t002

[104]), and the Generalized Mixed Yule Coalescent model (GMYC, Fujisawa and Barraclough [105]). For the ABGD method, the initial distance of intra- and interspecific variations obtained from each sequence was calculated in MEGA 7 and the optimized barcode relative gap analysis was implemented using the ABGD online sever (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html). All parameters were configured as default settings except X (relative gap width), which was set as 1. The operating distance used in ABGD was calculated with Kimura (K80) TS/TV method. The graphical ratio between the number of OTUs and prior interspecific divergence was established to obtain the optimized threshold for barcode gap designation. The equivalent phase of recursive and initial partitions was selected to depict the number of putative OTUs found in the delimitation result.

The mPTP analysis was conducted using the online server (http://mptp.h-its.org). The ML tree generated from RAxML in Nerwick format was uploaded to the web server. The outgroup selection was initially designated for the purpose of tree rooting. The visualisation of the final delimitation tree was set as default. The bPTP species delimitation was carried out by online sever (https://species.h-its.org/). The Bayesian tree was initially calculated in MrBayes under 10 million sampling generations. The tree result was then transformed to either NEXUS or Nerwick format and submitted to the web server. All parameters such as number of MCMC generation and burn-in were set as default. The OTU clustering was estimated under 95% confidence of statistical probability.
In the GMYC method, the initial Bayesian tree was calculated in BEAST v1.10.4 package [106, 107] using a Mixed-Yule coalescent model tree prior. The sequence dataset was transformed into NEXUS format. All parameter settings were configured in BEAUTi v1.8.4. Tracer v1.6 was used to check ESS values and run the trace file. The construction of an ultra-metric tree was done in BEAST v1.10.4 via the CIPRES sever [95]. The maximum clade supported tree result was summarized in TreeAnnotator v1.10.4. The GMYC species delimitation was performed using R program with “splits” package [108].

Integrative taxonomic decision scheme

The results of delimitation methods can be varied due to the criteria of justification: ABGD requires the threshold value from genetic distance, GMYC is processed under ultramatric estimation of gene trees, PTP uses the same fundamental estimation as GMYC does but the effect of branch length proportion and the amount of genetic change is implied. Each molecular method result may be affected by population size, number of species involved, species divergence and number of sampling singletons in dataset. For morphological delimitation, the effect of geographical variation and limitation of samples for comparative study interfered with the species discrimination that reached variable OTU number in delimitation results. For this reason, we implemented the consensus criteria of OTU counts to summarize the final result. The results of five species delimitation methods were compared to find the consensus results, including 1) the traditional morphological identification, 2) molecular phylogenetic clade support from ML and BI reconstruction methods based on COI gene datasets (≥ 70 bootstrap value for ML and ≥ 0.95 posterior probability for BI), 3) the distance gap of COI barcode analysis in BOLD and ABGD, 4) the Poisson Tree Processes model under multi-rate and Bayesian implementation (mPTP and bPTP), and 5) the generalized mixed Yule-coalescent (GMYC). The delimitation criteria for putative clustering were established based on a 66% consensus of five methods [109]. The species boundary was discriminated when the delimitation results showed congruence in at least four of the five methods. Species boundary lines were illustrated on a delimitation tree. Exemption criteria were implied in cases of singleton OTUs of representative taxa in datasets of this study. The BIN discordance result was established to serve as a warning signal for further morphological re-examination and taxonomic revision.

Results

Morphological identification and species occurrences

Twenty-four nominal species from newly collected materials were successfully identified based on comparative morphology using various taxonomic sources. In total, thirty-six morphological species were included in the dataset of this study including identified specimens with deposited sequences from previous molecular taxonomic work. Pictures of some common morphological species groups found in the Indochina subregion are presented in Fig 2. The diagnostic characters have been evaluated and additional taxonomic characters have been recorded. The main taxonomic characters used in species identification were rostrum shape, rostrum teeth, epistome, anteromedial spine on carapace, second pereiopods, uropodal diar-esis, and shape of telson. However, some taxonomic characters were highly variable in some geographical populations. In this study, juvenile specimens of some *Macrobrachium* species such as *M. chainatense*, *M. lanchesteri*, *M. niphanae*, *M. nipponense*, *M. sintangense*, and *M. suphanense* presented similarities in their morphological features, including rostrum shape, rostrum teeth number, and the modification pattern of second pereiopods. This illustrates the problem of taxonomic ambiguity in specimen identification and species richness determination in localities where only juvenile specimens were collected. Moreover, taxonomic
ambiguity was also detected for adult specimens in several common and widespread species such as *M. dienbienphuense*, *M. eriocheirum* [currently synonymized as *M. dienbienphuense*; in Li, Liu [110]], *M. forcipatum*, *M. lanchesteri*, *M. malayanum*, *M. nippanae*, *M. nipponense*, *M. sintangense*, and *M. suphanense*. The diagnostic characters for some species showed a high
proportion of overlap with other species living in the same area, such as number of teeth on fingers of second perieopods, the structure and number of rostrum teeth, and the presence of velvet pubescence on second perieopods. Nevertheless, the integration of morphology and molecular phylogenetic analysis (see below) represented an effective means to clarify the species boundaries among these prawn species.

Molecular phylogeny

One hundred ninety-eight partial sequences of COI gene were successfully obtained. The final aligned dataset contained a total of 678 bp, which included 326 conservative sites, 352 variable sites, and 284 parsimony-informative sites. All sequences were deposited in the BOLD database. BOLD identification numbers are presented in Table 2. The phylogenetic tree and clade composition compiled from three reconstruction methods was illustrated on an ultrametric topology (Figs 3–5). According to the accepted criteria for a monophyletic clade, the bootstrap value in RAxML failed to surpass the threshold value, whereas W-IQ-TREE and BI tree both supported monophyly. However, phylogenetic relationships among some Macrobrachium species are unresolved due to low statistical support at the deep node. The topology supports monophyly in most Macrobrachium species sampled in this study. The ultrametric tree depicts monophyletic clade clustering of samples of eighteen nominal species: *M. chainatense*, *M. hendersoni*, *M. hirsutimanus*, *M. lanchesteri*, *M. latidactylus*, *M. naiyanetri*, *M. neglectum*,

![Clade D-J](https://doi.org/10.1371/journal.pone.0252546.g003)
Fig 4. Ultrametric tree of Indochinese *Macrobrachium* indicating clade support level and species delimitation clustering results (part 2). For abbreviations used on tree see Fig 3.

https://doi.org/10.1371/journal.pone.0252546.g004
Fig 5. Ultrametric tree of Indochinese *Macrobrachium* indicating clade support level and species delimitation clustering results (part 3). For abbreviations used on tree see Fig 3.

https://doi.org/10.1371/journal.pone.0252546.g005
M. niphanae, M. nipponense, M. palmipilosum, M. puberimanus, M. rosenbergii, M. rogersi, M. sintangense, M. suphanense, M. sirindhorn, M. spelaeus, M. thai, and six putative species: putative sp. 4, 9, 12, 14 to 15, and 18. Specimens identified as M. dienbienphuense, M. lanchesteri, M. niphanae, M. sintangense, and M. yui are shown to be highly genetically diversified, and populations are split into several lineages. Some newly amplified sequences of specimens morphologically identical to M. sintangense are represented as a polyphyletic group due to the insertion of the M. suphanense sequence within the clade of M. sintangense.

Within the Macrobrachium clade (Fig 3: clade A), two previously deposited and one newly amplified sequence (GBCM16528-19, GBCM2468-09, and PRSEA099-20), represented as putative sp. 1, M. equidens, and M. villosimanus, are placed in a basal position with low statistical support. Macrobrachium rosenbergii, M. lanchesteri and three putative lineages are grouped into clade B. Macrobrachium lanchesteri exhibits a clade structural pattern with three deeply divergent lineages (clade C). Moreover, one deposited M. lanchesteri sequence (GBCM28533-19) is assembled within a clade of M. rosenbergii.

Three Macrobrachium species, M. hendersoni, M. rogersi, and M. yui are closely clustered (Fig 4), but the relationship has low statistical support from both ML and BI. Inland freshwater and estuarine species are clustered in clades F-J, including M. neglectum, M. latidactylus, M. nipponense, M. sintangense, and M. suphanense. The major clade of M. sintangense (clade J) is shown to have shallow genetic divergence and is differentiated from two specimens from Northeast Thailand, defined as putative sp. 12 (PRSEA183-20 and PRSEA182-20). A relationship between M. sintangense-putative sp. 12 and M. suphanense is identified. Moreover, the incongruence of two nominal species, M. saigonense (GBCM2451-09) and M. tratense (PRSEA104-20 and PRSEA032-20) is detected due to the insertion of these sequences within M. sintangense lineages.

Fig 5 shows that clade K represents the monophyletic clusters of M. niphanae, M. thai, and M. chainatense. Shallow genetic structure of M. niphanae is detected. The delimitation methods suggest two additional putative groups placed closely to M. niphanae lineages (putative sp. 13 and 14). Clade L harbors a group of Macrobrachium with high morphological diversification. Twelve distinct lineages of Macrobrachium species including seven putative species form a monophyletic relationship. Putative sp. 15 is placed as a basal lineage, followed by M. sirindhorn specimens (clade M). The rest of Macrobrachium is separated into two major lineages (node O and clade Q). Phylogenetic position of M. malayanum is not monophyletic due to one distinct sequence with low clade composition credibility support, which is instead assigned by delimitation method to be a new putative singleton sample (putative sp. 16).

Macrobrachium spelaeus and M. naiyanetri show a close relationship with statistical support from both BI and ML analyses (clade P). The samples previously defined as M. forcipatum (based on morphology; PRSEA114-20, PRSEA113-20) are inserted within M. naiyanetri. In clade Q, the ultrametric tree unites the four monophyletic clades among species including putative sp. 18, M. dienbienphuense, M. hirsutimanus, and M. puberimanus. In clade R, a widespread species in Indochina, namely M. dienbienphuense, is united with M. puberimanus. However, the two previously deposited samples of M. dienbienphuense (GBCM28530-19 and GBCM28531-19) are placed inside the M. puberimanus cluster.

In this study, some deposited sequences of SE-Asian Macrobrachium species reported in previous studies are combined in the ultrametric tree, including M. equidens, M. lanatum, M. malayanum, M. rosenbergii, M. trompii, and M. yui. Surprisingly, some sequences are shown as isolated lineages, and not joined congruently with new material based on taxonomic identification in this study, i.e., M. dienbienphuense (GBCM28530-19 and GBCM28531-19), M. forcipatum (PRSEA113-20 and PRSEA114-20), M. lanchesteri (GBCM28532-19), M. malayanum (GBCM2457-09), and M. yui (GBCM2470-09). Furthermore, the monophyletic
relationship of representative OTUs of *M. rogersi* is rejected, probably caused by long-branch attraction of singleton species or similar haplotype sampling conditions.

DNA barcoding

All new sequences deposited in BOLD and GenBank database are shown in Table 2. The project code for barcode analysis was accounted as "PRSEA" in BOLD. All COI sequences successfully passed the check for possible insertion of stop codons. The nucleotide composition of COI fragments used in analysis is as follows. The composition frequency of nucleotides is G: 18.91±0.07%, C: 25.94±0.22%, A: 26.71±0.14%, and T: 28.44±0.14%. The GC content of each codon position is 54.59±0.15% in position 1, 44.20±0.012% in position 2, 35.74±0.73% in position 3 and 44.84±0.29% overall. The genetic divergence distances calculated from 222 sequences retrieved from 36 morphological species in the dataset are 5.52% and 20.25% within species and genus, respectively. The normalized within-species divergence is 3.06±0.12%.

The barcode gap analysis based on comparison between mean/max-intraspecific variation and nearest-neighbor distance was calculated using two alternative models: K2-P and P-distance. The comparison results for singleton species were excluded due to non-applicable data in calculations. In K2-P and P-distance models, the species comparison advocated fourteen species with both max-intra and mean-intra distances higher than nearest neighboring species. A scatter plot warning of high genetic divergence species based on K2-P distances is provided in Fig 6 and a summary of barcode gap comparisons among all *Macrobrachium* species is presented in Table 3.

The DNA diagnostic characters in *Macrobrachium* species with a minimum of three representative sequences in the input dataset were successfully detected. The five categories of nucleotide characters were default assigned: diagnosis, partial or diagnosis, partial or uninformative, invalid and uninformative characters. The frequency of each character level found in the dataset are as follows: six species contained diagnosis character, one species with diagnosis or partial character, and 15 species with partial character. Partial-uninformative and invalid characters were not detected in any of the COI sequences in this study. The COI sequences of *M. sirindhorn* and *M. rogersi* contained four and five diagnosis characters, respectively. The nucleotide position and assigned character category of selected *Macrobrachium* species are summarized in S1 Table.

The BIN discordance analysis indicated five cluster groups which contained non-confirmation of sequence cluster validity based on the BIN comparison of input records within the cluster. These BIN clusters contained previously deposited sequences and the newly obtained sequence dataset from this study. The discordant BIN clusters were identified as follows: *M. dienbienphuense–M. puberimanus* (BOLD:ADX8426), *M. sintangense–M. suphanense* (BOLD: ADX7812), *M. niphanae–Macrobrachium sp.1SS-2018* (BOLD:AEB5988), *M. sintangense–M. tratense* (BOLD:ADX3382) and *M. sintangense–M. saigonense* (BOLD:AAX3479).

Species delimitation

The ABGD method delimited the sequence dataset into 37 MOTU clusters (excluding outgroup taxa). The clustering assigned nine putative lineages from singleton samples. The barcoding gaps calculated from pairwise comparisons of COI sequences are shown in Fig 7. The number of putative MOTUs, counted in the BIN clustering method, are represented by a total of 70 clusters. The BIN algorithm intensively suggested deep genetic divergence in several species such as *M. sintangense, M. lanchesteri, M. dienbienphuense* and putative sp. 6 to 10 and 14. The Poisson tree process (mPTP) indicated 36 MOTUs, which was lower than the result from bPTP delimitation. The bPTP depicted 31 additional MOTUs on the tree. The highest MOTU count was detected in clade M, likely the result of BIN delimitation. The GMYC method
marked 21 additional MOTUs and showed similarity with BIN and bPTP results by high intensity designation of *Macrobrachium* species in clade M.

Furthermore, five delimitation methods revealed the combination of previously deposited sequences from different species. In all methods, a clade comprised of *M. tratense* and *M. sintangense* was designated as single cluster (Fig 4: clade J). The BIN algorithm marked three lumped locations (blue box in Figs 4 and 5) belonging to samples of five species, namely *M. dienbienphuense*, *M. saigonense*, *M. sintangense*, *M. suphanense*, and *M. tratense*. In ABGD, five lumped locations were detected under composite clades of *M. saigonense-M. sintangense*, *M. sintangense-M. suphanense*, *M. niphanae-M. thai*, *M. forcipatum-M. naiyanetri*, *M. dienbienphuense-M. puberimanus*. In mPTP, the detection of clustering yield showed the highest number of recomposed clades. Nine designated groups showed contradictory results from traditional morphological identification due to multiple insertions of samples in different species.
Table 3. Summary of Mean-Max intraspecific variation in each *Macrobrachium* species and the distance to nearest-neighbor species.

NO.	Species	Mean Intra-Sp.	Max Intra-Sp.	Nearest Species	Nearest Neighbor	Distance to NN
1	*M. chainatense*	3.97	3.97	*M. nipponae*	PRSEA038-20	9.85
2	*M. dienbienphuense*	3.94	10.94	*M. puberimanus*	PRSEA138-20	0.6
3	*M. equidens*	N/A	0	*M. sintangense*	PRSEA096-20	20.06
4	*M. forcipatum*	6.69	6.69	*M. naiyanetri*	PRSEA117-20	4.44
5	*M. hendersoni*	1.31	1.61	putative sp. 5	GBCM2470-09	16.55
6	*M. hendersoni*	5	9.06	*M. hirsutimanus*	PRSEA122-20	10.56
7	*M. hirsutimanus*	0.79	1.8	*M. spelaenus*	PRSEA028-20	9.53
8	*M. lanatum*	N/A	0	*M. sintangense*	PRSEA186-20	15.77
9	*M. lanchesteri*	4.79	18.54	*M. rosenbergii*	PRSEA101-20	14.02
10	*M. latidactylus*	0.3	0.3	*M. sintangense*	PRSEA192-20	16.56
11	*M. malayavum*	12.87	23.49	*M. spelaenus*	PRSEA028-20	9.23
12	*M. naiyanetri*	5.59	9.61	*M. forcipatum*	PRSEA114-20	4.44
13	*M. neglectum*	0	0	*M. nipponense*	PRSEA177-20	13.95
14	*M. nipponae*	2.95	7.25	putative sp. 14	GBCM16418-19	0.15
15	*M. nipponense*	0.84	1.34	*M. sintangense*	PRSEA096-20	11.52
16	*M. palmopilosum*	2.22	4.12	*M. spelaenus*	PRSEA028-20	8.85
17	*M. puberimanus*	1.17	1.8	*M. dienbienphuense*	GBCM28530-19	0.6
18	*M. rogersi*	0.2	0.3	*M. suphanense*	GBCM28543-19	16.52
19	*M. rosenbergii*	1	1.83	*M. lanchesteri*	GBCM28533-19	14.02
20	*M. saigonense*	N/A	0	*M. sintangense*	PRSEA192-20	0
21	*M. sintangense*	6.62	16.02	*M. saigonense*	GBCM2451-09	0
22	*M. sirindhorn*	0.22	0.44	*M. naiyanetri*	PRSEA135-20	14.69
23	*M. spelaenus*	4.05	6.08	*M. forcipatum*	PRSEA114-20	5.6
24	*M. suphanense*	4.62	7.02	*M. sintangense*	PRSEA184-20	1.52
25	*M. suphanense*	N/A	0	*M. sintangense*	PRSEA184-20	20.9
26	*M. thai*	0.49	0.74	*M. nipponae*	PRSEA171-20	4.92
27	*M. tratense*	1.04	1.04	*M. sintangense*	PRSEA095-20	0.15
28	*M. trompii*	N/A	0	*M. naiyanetri*	PRSEA112-20	17.76
29	*M. villosimanus*	N/A	0	*M. suphanense*	GBCM28540-19	19.36
30	*M. yui*	5.64	10.96	*M. hirsutimanus*	PRSEA077-20	17.85
31	putative sp. 5	N/A	0	*M. hendersoni*	PRSEA118-20	16.55
32	putative sp. 7	N/A	0	*M. neglectum*	PRSEA090-20	16.67
33	putative sp. 14	N/A	0	*M. nipponae*	PRSEA039-20	0.15
34	putative sp. 15	0.24	0.59	*M. spelaenus*	PRSEA142-20	16.05

Grey highlighting indicates taxa with warning signal of genetic divergence retrieved from barcode gap analysis.

https://doi.org/10.1371/journal.pone.0252546.t003

or genera. The bPTP and GMYC methods depicted a similar lumped pattern among paired species as follows: in *M. sintangense*-*M. saigonense*, *M. sintangense*-*M. suphanense*, *M. dienbienphuense*-*M. puberimanus*.

In total, the five delimitation methods, including morphological and molecular schemes, assigned the number of putative OTUs from the input COI dataset (including outgroups) as follows: 36 groups by morphology, 70 groups by BIN, 37 groups by ABGD, 36 groups by mPTP, 60 groups by bPTP, and 52 groups by GMYC. The delimitation results from each method are illustrated in Figs 3–5 based on topology of the ultrametric tree. The consensus result based on an integrative taxonomic scheme designated 27 nominal and 18 putative species from the COI dataset (excluding two outgroups).
Discussion
Cryptic diversity and morphological variation of *Macrobrachium* prawns in Indochina

In this study, *Macrobrachium* COI sequences retrieved twenty-seven nominal and eighteen unknown putative species under the consensus tree generated from traditional morphology and molecular phylogenetic affinities. Specimens referred to *M. dienbienphuense*, *M. forcipatum*, *M. lanchesteri*, *M. malayanum*, *M. saigonense*, *M. sintangense*, *M. tratensae*, and *M. yui* show some discordance. Morphological examination indicated problematic diagnostic characters used among those species by showing them to be highly variable. For example, 1) the number of rostrum teeth has a broad range of variation in some long-distance dispersal species such as *M. dienbienphuense*, *M. lanchesteri*, and *M. niphanae*; 2) features of the second pereiopod such as spinulation on cuticular surfaces of telopodites, velvet and pubescence, number of teeth on chela and pollex show variation among populations and species; 3) length and shape variation in the second pereiopod podomeres such as the carpus and merus seem to vary among geographical populations and are related to sexual dimorphism (e.g., *M. dienbienphuense* and *M. sirindhorn*). The transitional zones of variation between and within species showed a high degree of overlap (Fig 7). Possible cryptic diversification based on high intraspecific divergence was detected in several species such as *M. lanchesteri* (23.68%), *M. malayanum*.
cies in northern Laos, Vietnam, and Myanmar [49, 50, 53, 113]. In this study, sequences of *tangense* and *niphanae* were successfully sequenced and validated with a previous taxonomic study of Vietnamese fauna [53]. It is unclear whether the distribution of *sintangense* from Vietnam is due to human introduction or native migration. However, a recent study on the phylogeography and population structure of *niphanae* in Indochina is due to geographical distinction in several widespread species. *Macrobrachium lanchesteri*, a common and widespread species, is represented by two morphological patterns based on the following composite characters: the proportional length of palm and finger of second pereiopods, rostrum shape, and body size. In the ultrametric tree, the *M. lanchesteri* clade is shown as two geographically distinct putative groups (putative sp. 3 and 4, Fig 3), which are supported by both BI and ML analyses. The geographical differentiation of *M. lanchesteri* has been previously reported, based on karyotypes [111], microsatellite markers, traditional morphometry, and single locus phylogeny [112]. In the case of rostrum form, *M. lanchesteri* closely resembles other species such as *M. idea*, *M. peguense* and *M. tiwarii*. Because body length and size in *M. lanchesteri* show such variability, specimens in adult and juvenile stages are likely confused with morphologically similar species living in the same area, such as *M. nipponae*, *M. nipponense*, *M. rosenbergii*, *M. sintangense*, and *M. thai*.

The long-distance dispersal species, *sintangense*, and the recently described species, *suphanense* [70], are widely distributed in the Chao Phraya Basin, and some populations may migrate into the Mekong Basin. The phylogenetic results reveal several deeply divergent lineages, and delimitation methods cluster four new putative groups and place them between *sintangense* and *suphanense* (Fig 4). Another conspecific species closely resembling *sintangense* and *suphanense* is *nipponense*, which has been reported as an introduced species in northern Laos, Vietnam, and Myanmar [49, 50, 53, 113]. In this study, sequences of *nipponense* from Vietnam were successfully sequenced and validated with a previous taxonomic study of Vietnamese fauna [53]. It is unclear whether the distribution of *nipponense* in Indochina is due to human introduction or native migration. However, a recent study on phylogeography and population structure of *nipponense* between coastal China and the island of Taiwan provides evidence that migration was associated with the Pleistocene glacial cycle and ecological isolation within a lake [60].

In Indochina, there are four additional *Macrobrachium* species that likely belong in this group: *dolatum* and *tratense* described from Thailand and two Mekong River species, *saigonense* and *huangi*, described from the lower Mekong Basin, in the Tonle Sap Basin in Cambodia and the Mekong Delta in southern Vietnam. These four species morphologically resemble *sintangense*. Only one deposited sequence of *saigonense* was available (GBCM2451-09) to be included in this study. The delimitation result suggested the insertion of *saigonense* within the distinct lineage of putative sp. 9, which was previously identified as *sintangense* based on morphology. This result indicates the need for taxonomic reassessment of these two morphologically similar species. The life history traits of these species show association with estuarine environments and their morphological characters of the second pereiopods show similarly pattern (by having long and slender telopodites with 1–3 large teeth on chela and pollex). However, the inclusive phylogenetic relationship is unresolved due to low support values in BI and ML. Further revision of taxonomic descriptions and distribution patterns of these species is required.

The two remaining species groups found in this study, i.e., *niphanae* sensu Hanamura, Imai [50] and *pilimanus* sensu Johnson [114] exhibit high genetic and morphological
divergence. The ultrametric tree advocates three species belonging to the *M. niphanacae* group (Fig 5: clade K): *M. chainatense*, *M. niphanacae*, and *M. thai*, whereas the clade of *M. pilimanus* (clade M) contains 12 clustered species. According to phylogenetic positions among members within clade K, the position of *M. chainatense* is rooted as the basal lineage from *M. niphanacae*, *M. thai*, and two putative species. *Macrobrachium niphanacae* and *M. thai* share similar morphological characters, but they were reported separately and with different geographical distributions: *M. niphanacae* was reported from central Thailand and Laos, whereas *M. thai* was narrow distributed in the Korat plateau, Northeast Thailand [48, 115]. Delimitation methods agree with the distinction of *M. niphanacae* from *M. thai*, except the AGBD method. Moreover, BIN, ABGD, mPTP, bPTP, and GMYC delimit two distinct lineages within *M. niphanacae* (putative sp. 13 and 14). Previously, *M. meini*, with morphological characters resembling *M. niphanacae*, was reported to be distributed in central and northeastern Thailand, and in Laos. This species probably coexists with *M. niphanacae* and *M. thai* in several habitats in Indochina [48].

For the clade composed of the *M. pilimanus* group (clade L), genetic divergence shows congruence with delimitation approaches by having OTU counts that seem higher than from traditional identification. Recently, the *M. pilimanus* group was taxonomically examined for its morphological variability [50]. Arguments regarding species validity were discussed due to geographical variability, and the group was re-investigated because of suspected misidentification of name-bearing types [48, 50, 116, 117]. In this study, two patterns of geographical distributions are detected in mainland SE-Asian species, namely the Chao Phraya and Mekong Basins (Fig 5: clade N), although statistical support is lacking for the monophyly of the Chao Phraya group (Fig 5: node O). In the Mekong Basin group (clade Q), tree topology indicates two nominal and two putative species.

Macrobrachium dienbienphuense is the most widespread species of the *M. pilimanus* group in Indochina and is placed in the Mekong Basin group. The taxonomic problem of morphological variability was reported in *M. dienbienphuense*, and insufficient species delimitation was attributed to the effect of geographical variation [48, 50, 110]. In this study, species delimitation approaches indicate one putative OTU, putative sp. 18. The Chao Phraya group also contains two new distinct lineages (putative sp. 16 and 17). Unexpectedly, the new distinct lineage from Cambodian territory (putative sp. 15) appears as a basal clade of the *M. pilimanus* group. This result suggests the need for further taxonomic revision and multi-locus phylogenetic study in order to clarify the taxon validity and to explore cryptic diversity of the *M. pilimanus* species group in Indochina.

Macrobrachium yui and *M. hendersoni*, both land-locked species, are distributed in the northwestern montane area of Indochina with occurrence reported from two major river basins: Chao Phraya and Mekong [48, 50]. Distribution ranges of these species and other nominal taxa such as *M. lanatum* and *M. patheinense* [49, 118] serve as evidence of exchange between Indochinese and Indian-Burmese fauna due to populations found in the Indian subcontinent. In this study, seven species with cross-basin distribution were found: *M. hendersoni*, *M. lanchesteri*, *M. neglectum*, *M. nipponense*, *M. rogersi*, *M. rosenbergii*, and *M. vilosimanus*. The transitional zone of these freshwater species exists along the montane and coastal area of Myanmar-Thailand border. This result advocates that the diversity of Indochinese fauna might be underestimated due to habitat diversification and the connection of river networks. For this reason, the biogeographical study between Indochina and other regions such as India-Burma, East Asia, and some Sunda Islands of the Malay Archipelago should emphasize evolutionary history at a broad regional scale. Moreover, the taxonomic revision of several species previously reported from Laos, Cambodia and Vietnam requires reinvestigation using an integrative taxonomic approach.
Implications of DNA barcode delimitation of groups with high morphological diversification in genus *Macrobrachium*

Barcode-based delimitation provides an additional tool for cryptic diversity exploration and can be used to resolve taxonomic validity in morphologically complex organisms including crustacean decapods [35, 44, 119–123]. Previously, the proposal of a universal threshold for species delimitation in crustaceans using genetic divergence has been introduced [39]. In decapods, the barcode delimitation approach has also been used in particularly important groups such as crayfish [124], shrimp and prawns in families Atyidae and Palaemonidae [121, 125, 126]. The universal barcode gap threshold based on COI and 16s markers has been excavated by broad sampling analysis of crustacean families. The result suggested that the barcode gap threshold from the COI marker is helpful for taxonomy in species-level identification [39]. In this study, the barcode gap distance generated from MEGA provided the broad picture of overall distance values. The graph (Fig 7) can be used to explain the overlap between intra- and inter-specific distances either the best compromised barcode gap threshold value present clearly or hardly determine. A graph from BOLD provides the evidence of high-low genetic differentiation among sequence clusters. The BOLD graph is useful for further taxonomic reinvestigation because the fine resolution of clustering group determination and warning signal provided from BIN discordance. For this reason, barcode gap graphs might give a broad resolution of delimitation based on distance method in both best and compromised barcode gap threshold proportion. The median universal genetic divergence between species of the same genus is between 0.25–1.01 substitutions per site. In this study, the maximum interspecific divergence is 20.9, whereas maximum intraspecific divergence was as high as 23.49 (in *M. malayanum*; Table 2). This finding suggests the possibility of cryptic divergence in *Macrobrachium* species.

Morphological adaptations driven by intrinsic and extrinsic factors in shrimp and prawns have been reported worldwide [56, 127–129]. An impact on developmental stages in species with hermaphroditism was found when the food resource and space were limited [46]. Morphological variation such as phenotypic plasticity or sequential hermaphroditism in aquatic animals was reported in association with food supply and habitat space [58, 130]. These aforementioned factors also cause significant impact on species discrimination due to the degree of morphological overlap in *Macrobrachium* species [131, 132]. In this study, juvenile specimens of the *M. pilimanus* species group are difficult to identify because of the lack or incomplete development of species diagnostic characters generally used in broad sampling. Sexual dimorphism was documented in some *Macrobrachium* species, such as in a male with the pair of second perieopods showing different shape and length of each telopodite, whereas the female exhibited similar form on both sides. A lack of life history data is problematic for species identification as well as for potential use in aquaculture [133–135].

In this study, the BIN discordance function in BOLD provided a warning signal for taxa with low genetic distance compared to their nearest-neighbor species. For example, deposited COI sequences of *M. lanchesteri* and *M. dienbienphuense* exhibit genetic affinity and are possibly closely related to *M. rosenbergii* and *M. puberimanus* sequences (in this study), respectively. The taxonomic identification of *M. puberimanus* and *M. dienbienphuense* was clearly resolved based on multi-locus phylogenetic analysis despite their sympatric distribution patterns and morphological variability [88]. The morphological characters and molecular delimitation agree that these co-existing species must be accepted as distinct species. Moreover, the BIN discordance signal suggests that some *M. dienbienphuense* sequences (GBCMD28530-19 and GBCMD28531-19) placed within the *M. puberimanus* clade require re-investigation of their morphological characters for identification. Within clade B (Fig 3), one deposited sequence
defined as *M. lanchesteri* (GBCMD 28533–19) is not placed within *M. lanchesteri* s.l. clade but rather as a sister lineage of *M. rosenbergii*.

Recent taxonomic revision has validated the taxonomic identity of *M. rosenbergii* [136]. In Indochina, the introduced population of *M. rosenbergii* stock from different geographical populations used in breeding programs may lead to genetic contamination among native populations. This result raises a signal of caution for specimen identification and use of Indochinese *Macrobrachium* sequences deposited in the online database. For this reason, the intensive study of riverine species is critically needed to clarify taxonomic boundaries and to document genetic diversity of native populations. In this study, barcode gap analysis also reveals the concealing effect of this method for species delimitation among Indochinese species due to high inter- and intra-specific genetic variations.

Recently, primers for the COI region were re-configured due to species-specification, improvement of amplification ability, and avoidance of nuclear copied gene amplification. However, the use of DNA barcoding has been debated for intensive systematic study [137–139]. The nuclear mitochondrial DNA (*numts*), a common DNA segment found in crustaceans, was suspected to interfere with the COI sequences used in crustacean phylogeny and barcode analysis [122, 140, 141]. The low quality of COI sequences containing *numts* may cause misleading results in species genealogies and clustering methods [142]. In this study, all COI sequences were automatically checked before BIN assignment in BOLD. The clustering result based on COI sequences was partially congruent with morphological species identification. The phylogenetic position of several morphological species such as *M. dienbienphuense*, *M. eriochierum*, *M. hirsutimanus*, *M. neglectum*, *M. niphanae*, *M. sirindhorn*, and *M. thai* were illustrated. However, the single-locus phylogenetic analysis was unable to resolve relationships in deeply divergent lineages of some nominal species. The integration of other molecular loci for decapod identification such as 16S, 28S, and H3 would allow improvement of taxonomic identification and study of phylogenetic relationships [15, 100]. According to DNA barcoding results, it can be suggested that taxonomic revision and assessment of phylogenetic relationships of mainland SE-Asian *Macrobrachium* including the Indochina subregion are crucially needed, especially in groups that show morphological complexity such as *M. lanchesteri*, *M. niphanae*, and *M. sintangense*. Moreover, deposited sequences in the public barcode library might be of significant importance for fundamental knowledge, utilization and future conservation management projects of mainland SE-Asian *Macrobrachium* fauna.

Distribution patterns of Indochinese freshwater *Macrobrachium* prawns

The biogeography and life history of *Macrobrachium* in SE-Asia have been revealed based on the combination of molecular, morphological and ecological data [37, 38, 100]. The marine-freshwater habitat diversification has been suggested to have had an impact on morphological and genetic diversifications in aquatic animals [143–145]. Previously, life-history traits of *Macrobrachium* prawn species were matched with their evolutionary relationships by using multi-loci phylogenetic analysis [100]. The marine species with larval development in saline water were depicted as the ancestral group for all *Macrobrachium*, while the freshwater group appear to be the derivative group. In this study, the ultrametric tree depicts both marine-brackish and freshwater species. However, the fine resolution of phylogenetic relationships between species with the two life history traits remains undetermined due to low structural signal in the deep node position. Broad-scale phylogeographical studies of giant river prawn species and some Indo-Australian species [43, 146] suggested that the vast genetic diversity could be divided into several groups based on morphological complexity, and that the genetic affinity of some populations supported the hypothesis of an ancient river system during the last glacial
maximum period [147, 148]. The historical connection of several rivers in mainland SE-Asia has been frequently detected in historical biogeographical studies in other aquatic organisms such as semi-aquatic earthworms [149], freshwater mussels [150, 151], fishes [152, 153], as well as from evidence in the fossil record, e.g., crocodilian [154].

From multiple lines of ecological field evidence in this study, together with habitat preferences and distribution ranges gleaned from previous records, the life history of Indochinese *Macrobrachium* are divided into three groups. The first group includes species found in montane streams and comprises seventeen taxa including nominal and putative clustering species: *M. dienbienphuense*, *M. forcipatum*, *M. hendersoni*, *M. hirsutimanus*, *M. malayanum*, *M. naiyanetri*, *M. palmipilosum*, *M. puberimanus*, *M. spelaeus*, *M. sirindhorn*, *M. yui* and putative sp. 5, 6, and 15 to 18. The second group includes estuarine species found among mangrove forests in the Andaman Sea and in the Gulf of Thailand: *M. equidens*, *M. villosimanus*, *M. neglectum* and putative sp. 7 to 11. The third group of species is distributed within inland tributaries of two major drainages of the Mekong and Chao Phraya rivers. This group comprises ten nominal and seven putative species: *M. chainatense*, *M. lanchesteri*, *M. latidactylus*, *M. niphanae*, *M. rogersi*, *M. rosenbergii*, *M. sintangense*, *M. suphanense*, *M. thai*, and putative sp. 1 to 4 and 12 to 14. Further analysis on habitat characteristics such as substrate type and water quality could be investigated to confirm these three life history traits in Indochina fauna.

Distribution patterns of some *Macrobrachium* groups show correlation with historical evidence supporting a paleo river systems hypothesis [37, 150]. In this study, the occurrence records of three *Macrobrachium* species could be used to refer historical geography. Firstly, *M. naiyanetri* exhibited disjunct distribution between the southern Thai peninsula, east coast of Thailand and inland water system of Cambodia. The genetic affinity based on clade composition of sampling population from those areas also supported the geographical isolation. Secondly, the subpopulation of *M. dienbienphuense* has been found along the western part of Thailand, whereas the major population seems distributed in Mekong tributaries. The previous hypothesis about the connection between minor tributary systems of Mekong River and Chaophraya River was discussed and promoted based on phylogeographic analyses of extant and extinct organisms (mentioned below). The records of occurrence for this species would support the river connection hypothesis. *M. lanchesteri* is commonly abundant in lentic water habitats in Indochina. In this study, the genetic affinities were detected and divided into three geographical areas. The genetic structure likely fits with three major river systems in Thailand (Chauphraya, Tapi and Mekong), which were previously part of the ancient river system during Pleistocene. Further investigation on population genetics and molecular dating would be useful to match species diversification with the effects of historical distribution scenarios.

From phylogenetic analysis, two widespread species, *M. neglectum* and *M. sintangense* exhibit low genetic divergence among different geographical populations. In contrast, the phylogenetic tree indicates geographical isolation among the populations of two widespread species, *M. dienbienphuense* and *M. lanchesteri*. Populations of *M. dienbienphuense* and *M. lanchesteri* often are found co-existing with other congeneric species. *Macrobrachium lanchesteri* are highly abundant in flood-plain areas, whereas *M. dienbienphuense* predominantly migrates within the Mekong River and its tributaries. Recently, the migratory period for *M. dienbienphuense* has been locally reported as “parading” in some remote areas in tributaries of the middle Mekong, and the species currently might be threatened by human activity [155]. The discovery of subterranean species such as *M. elegantum*, *M. lingyunense*, and *M. spelaues* [63, 87] highlights the high adaptive ability to extreme habitats and emphasizes the significance of habitat diversity in continental Asia. Previous taxonomic studies and the results of DNA barcoding in this study advocate that the freshwater fauna of Indochina is still underestimated for cryptically diverse species because of river tributary connections [48–50, 156]. For this
reason, the distribution patterns of several Macrobrachium species in Indochina are evidence that help solve the puzzle of SE-Asian freshwater faunal diversity related to a paleo-river basin presented in previous reports. Further analysis using a multi-locus phylogeny and additional samples from the Sundaiac region are required to clarify the broad-scale diversification and biogeographical pattern of SE-Asian Macrobrachium fauna.

Conclusion

This study provides the first DNA barcode library and cryptic evidence of genus Macrobrachium in Indochina. Diagnostic characters of some species have been detected from nucleotide positions and can be included as additional characters for taxonomic identification and species validation (S1 Table). Despite wide geographical dispersion, several species show low genetic affinity between different geographical populations. In contrast, the morphologically complex Macrobrachium species group possesses high genetic diversity and the geographical distribution shows allopatry between Chao Phraya and Mekong river basins. The broad scale phylogenetic relationships of Indochinese species from the COI dataset are still unresolved. However, examples of stable clade composition and monophyletic lineages are found, especially in estuarine species. The DNA species delimitation suggests several candidate OTUs which might be cryptic species hidden within common species, such as the *M. lanchesteri*, *M. sintangense* and *M. pilimanus* species groups. The barcode gap analysis provides a delimitation threshold for Indochinese taxa despite the high intraspecific variation detected in some species. The inappropriate taxonomic identification of some available sequences from the public database raises caution and suggests that dataset reconstruction and re-verification for further taxonomic comparison is required. Finally, the results of this study indicate that the regional fauna share interconnection with other neighboring regions such as India-Burma and East Asia, as indicated by the records of some widely dispersed species.

Supporting information

S1 Table. Nucleotide diagnostic characters of Indochinese Macrobrachium species.

S1 Fig. ML and BI phylogenetic trees of Indochinese Macrobrachium with statistical node support.

Acknowledgments

Authors give thanks and appreciation to all members of the Animal Systematics Research Unit, Chulalongkorn University (ASRU) and Animal Systematics and Molecular Ecology Laboratory, Mahidol University (ASME) for field collecting and analysis support. Sincere thanks for technical and logistical support and permission during field surveys are given to all Thai officers of the Department of National Parks, Wildlife and Plant Conservation under permission of project number DNP 0907.4/14262 in Thailand and to officers of the Inland Fisheries Research and Development Institute (IFReDI, Cambodia). The authors also express our grateful thanks to T.H. Ng (LKCNHM, Singapore) for providing literature and field support. We sincerely thank the reviewers for their constructive comments that improved this manuscript.

Author Contributions

Conceptualization: Warut Siriwut, Ekgachai Jeratthitikul, Chirasak Sutcharit.
Data curation: Warut Siriwut, Ekgachai Jeratthitikul, Ratmanee Chanabun, Peng Bun Ngor, Chirasak Sutcharit.

Formal analysis: Warut Siriwut, Ekgachai Jeratthitikul.

Funding acquisition: Chirasak Sutcharit.

Investigation: Warut Siriwut.

Methodology: Warut Siriwut.

Project administration: Somsak Panha, Chirasak Sutcharit.

Resources: Warut Siriwut, Ratmanee Chanabun, Peng Bun Ngor.

Supervision: Somsak Panha, Chirasak Sutcharit.

Visualization: Warut Siriwut, Ekgachai Jeratthitikul, Chirasak Sutcharit.

Writing – original draft: Warut Siriwut.

Writing – review & editing: Warut Siriwut, Ekgachai Jeratthitikul, Chirasak Sutcharit.

References

1. Hoang MTV, Irinyi L, Chen SCA, Sorrell TC, Meyer W, Arabatzis M, et al. Dual DNA barcoding for the molecular identification of the agents of invasive fungal infections. Frontiers in Microbiology. 2019; 10 (1647). https://doi.org/10.3389/fmicb.2019.01647 PMID: 31379792

2. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the USA. 2012; 109(16):6241. https://doi.org/10.1073/pnas.1117018109 PMID: 22454494

3. Pennisi E. Wanted: a barcode for plants. Science. 2007; 318(5848):190. https://doi.org/10.1126/science.318.5848.190 PMID: 17932267

4. Hebert PND, Cywinska A, Ball SL, deWaard JR. Biological identification through DNA barcodes. Proceedings of the Royal Society of London B. 2003; 270:313–21. https://doi.org/10.1098/rspb.2002.2218 PMID: 12615482

5. Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M, et al. DNA barcoding as a new tool for food traceability. Food Research International. 2013; 50(1):55–63. https://doi.org/10.1016/j.foodres.2012.09.036.

6. Spielmann G, Diedrich J, Haszprunar G, Busch U, Huber I. Comparison of three DNA marker regions for identification of food relevant crustaceans of the order Decapoda. European Food Research and Technology. 2019; 245(5):987–95. https://doi.org/10.1007/s00217-018-3199-9

7. Dalton DL, Kotze A. DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Science International. 2011; 207(1–3):e51–4. Epub 2011/02/01. https://doi.org/10.1016/j.forsciint.2010.12.017 PMID: 21277124.

8. Khedkar GD, Abhayankar SB, Naliege D, Ahmed SN, Khedkar CD. DNA barcode based wildlife forensics for resolving the origin of claw samples using a novel primer cocktail. Mitochondrial DNA Part A: DNA Mapping, Sequencing and Analysis. 2016; 27(6):3932–5. Epub 2014/12/11. https://doi.org/10.1080/19401736.2014.987270 PMID: 25492536.

9. Tätzler R, Sagata K, Surbakti S, Balke M, Riedel A. DNA barcoding for community ecology—how to tackle a hyperdiverse, mostly undescribed Melanesian fauna. PLOS ONE. 2012; 7(1):e28832. https://doi.org/10.1371/journal.pone.0028832 PMID: 22253699

10. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Science of the USA. 2004; 101(41):14812–7. https://doi.org/10.1073/pnas.0406166101 PMID: 15465915

11. Hebert PDN, Gregory TR. The promise of DNA barcoding for taxonomy. Systematic Biology. 2005; 54 (5):852–9. https://doi.org/10.1080/10635150500354886 PMID: 16243770

12. González-Vaquero RA, Roig-Alsina A, Packer L. DNA barcoding as a useful tool in the systematic study of wild bees of the tribe Augochlorini (Hymenoptera: Halictidae). Genome. 2016; 59(10):889–98. Epub 2016/09/28. https://doi.org/10.1139/gen-2016-0006 PMID: 27673501.
13. de Vere N, Rich TC, Trinder SA, Long C. DNA barcoding for plants. Methods in Molecular Biology. 2015; 1245:101–18. Epub 2014/11/07. https://doi.org/10.1007/978-1-4939-1966-6_8 PMID: 25373752.

14. Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceeding of the Royal Society B. 2003; 270:S596–9. https://doi.org/10.1098/rspb.2003.0025 PMID: 12952648.

15. Liu J, Jiang J, Song S, Tombene L, Chabaria R, Naylor GJP, et al. Multilocus DNA barcoding–species identification with multilocus data. Scientific Reports. 2017; 7(1):16601. https://doi.org/10.1038/s41598-017-16920-2 PMID: 29192249.

16. De Mattia F, Gentili R, Bruni I, Galimberti A, Sgorbati S, Casiraghi M, et al. A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Botanical Journal of the Linnean Society. 2012; 169(3):518–29. https://doi.org/10.1111/j.1095-8339.2012.01251.x.

17. Orgiazzi A, Dunbar MB, Panagos P, de Groot GA, Lemanceau P. Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biology and Biochemistry. 2015; 80:244–50. https://doi.org/10.1016/j.soilbio.2014.10.014.

18. Oliverio AM, Gan H, Wikings K, Fierer N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biology and Biochemistry. 2018; 125:37–43. https://doi.org/10.1016/j.soilbio.2018.06.026.

19. Borrell YJ, Miralles L, Do Huu H, Mohammed-Geba K, Garcia-Vazquez E. DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports. PLOS ONE. 2017; 12(9):e0183347. https://doi.org/10.1371/journal.pone.0183347 PMID: 28873426.

20. Hawlitschek O, Fernández-González A, Balmori-de la Puente A, Castresana J. A pipeline for metabarcoding and diet analysis from fecal samples developed for a small semi-aquatic mammal. PLOS ONE. 2018; 13(8):e0201763–e. https://doi.org/10.1371/journal.pone.0201763 PMID: 30106960.

21. Hellberg RS, Hernandez BC, Hernandez EL. Identification of meat and poultry species in food products using DNA barcoding. Food Control. 2017; 80:23–8. https://doi.org/10.1016/j.foodcont.2017.04.025.

22. Parveen I, Gafner S, Techen N, Murch SJ, Khan IA. DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Medica. 2016; 82(14):1225–35. Epub 2016/07/09. https://doi.org/10.1055/s-0042-111208 PMID: 27392246.

23. Weigand H, Beermann AJ, Čiampor F, Costa FO, Czabai Z, Duarte S, et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Science of the Total Environment. 2019; 678:499–524. https://doi.org/10.1016/j.scitotenv.2019.04.247 PMID: 31077928.

24. Rahman MM, Norén M, Mollah AR, Kullander SO. Building a DNA barcode library for the freshwater fishes of Bangladesh. Scientific Reports. 2019; 9(1):9382. https://doi.org/10.1038/s41598-019-45379-6 PMID: 31253861.

25. Dayrat B. Towards integrative taxonomy. Biological Journal of the Linnean Society. 2005; 85(3):407–17. https://doi.org/10.1111/j.1095-8312.2005.00503.x.

26. Pante E, Schoelincx C, Puillandre N. From integrative taxonomy to species description: one step beyond. Systematic Biology. 2014; 64(1):152–60. https://doi.org/10.1093/sysbio/syu083 PMID: 25358968.

27. DeSalle R, Egan MG, Siddall M. The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B. 2005; 360(1462):1905–16. https://doi.org/10.1098/rstb.2005.1722 PMID: 16214748.

28. Fontaneto D, Kaya M, Herniou EA, Barracclough TG. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution. 2009; 53(1):182–9. https://doi.org/10.1016/j.ympev.2009.04.011 PMID: 19398026.

29. Geraci CJ, Al-Saffar MA, Zhou X. DNA barcoding facilitates description of unknown faunas: A case study on Trichoptera in the headwaters of the Tigris River, Iraq. Journal of North American Benthological Society. 2011; 30:163–73. https://doi.org/10.1899/10-011.1.
32. Goldstein PZ, DeSalle R. Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description. Bioessays. 2011; 33(2):135–47. https://doi.org/10.1002/bies.201000036 PMID: 21184470

33. Jorger K, Schroli M. How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology. 2013; 10(1):59. https://doi.org/10.1186/1742-9994-10-59 PMID: 24073641

34. Espindola A, Ruffley M, Smith ML, Carstens BC, Tank DC, Sullivan J. Identifying cryptic diversity with predictive phylogeography. Proceedings of the Royal Society B. 2016; 283(1841). Epub 2016/11/01. https://doi.org/10.1098/rspb.2016.1529 PMID: 27798300; PubMed Central PMCID: PMC5095379.

35. Mathews LM. Cryptic biodiversity and phylogeographical patterns in a snapping shrimp species complex. Molecular Ecology. 2006; 15(13):4049–63. Epub 2006/10/24. https://doi.org/10.1111/j.1365-294X.2006.03077.x PMID: 17054502.

36. Cheng J, Sha ZL. Cryptic diversity in the Japanese mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization. Scientific Reports. 2017; 7(1):1972. Epub 2017/05/18. https://doi.org/10.1038/s41598-017-02059-7 PMID: 28512346; PubMed Central PMCID: PMC5434036.

37. de Bruyn M, Wilson JA, Mather PB. Huxley’s line demarcates extensive genetic divergence between eastern and western forms of the giant freshwater prawn, Macrobrachium rosenbergii. Molecular Phylogenetics and Evolution. 2004; 30(1):251–7. https://doi.org/10.1016/j.schxympev.2007.07.002 PMCID: 3004011.

38. de Bruyn M, Mather PB. Molecular signatures of Pleistocene sea-level changes that affected connectivity among freshwater shrimp in Indo-Australian waters. Molecular Ecology. 2006; 15(13):3000–11. https://doi.org/10.1111/j.1365-294X.2006.03077.x PMID: 17054502.

39. Lefebure T, Douady CJ, Gouy M, Gilbert J. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution. 2006; 40(2):435–47. https://doi.org/10.1016/j.ympev.2006.03.014 PMID: 16647275.

40. Stokkan K, Jurado-Rivera JA, Oromi P, Juan C, Jaume D, Pons J. Species delimitation and mitochondrial phylogenetics in the subterranean genus Pseudoniphargus (Crustacea: Amphipoda). Molecular Phylogenetics and Evolution. 2018; 127:988–99. https://doi.org/10.1016/j.ympev.2018.07.002 PMID: 30004011.

41. Holthuis LB. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. 1980. p. 1–261.

42. Pileggi LG, Mantelatto FL. Molecular phylogeny of the freshwater prawn genus Macrobrachium (Decapoda, Palaemonidae), with emphasis on the relationships among selected American species. Invertebrate Systematics. 2010; 24(2):194–208.

43. Murphy NP, Austin CM. Molecular taxonomy and phylogenetics of some species of Australian palaeomid shrimps. Journal of Crustacean Biology. 2003; 23(1):169–77.

44. Rossi N, Magalhães C, Mesquita ER, Mantelatto FL. Uncovering a hidden diversity: A new species of freshwater shrimp Macrobrachium (Decapoda: Caridea: Palaemonidae) from Neotropical region (Brazil) revealed by morphological review and mitochondrial genes analyses. Zootaxa. 2020; 4732(1):177–95. Epub 2020-02-11. https://doi.org/10.11646/zootaxa.4732.1.9 PMID: 32230278.

45. Charreontwee K, Poopuang S, Na-Nakorn U, Kamonrat W. Genetic diversity of hatchery stocks of giant freshwater prawn (Macrobrachium rosenbergii) in Thailand. Aquaculture. 2007; 271(1–4):121–9. https://doi.org/10.1016/j.aquaculture.2007.07.001 IND43959212.

46. Fiedler GC, Rhyne AL, Segawa R, Aotsuka T, Schizas NV. The evolution of euhermaphroditism in caridean shrimps: a molecular perspective of sexual systems and systematics. BMC Evolutionary Biology. 2010; 10(1):297. https://doi.org/10.1186/1471-2148-10-297 PMID: 20920274.

47. von Rintelen K, von Rintelen T, Glaubrecht M. Molecular phylogeny and diversification of freshwater shrimps (Decapoda, Atyidae, Caridina) from ancient Lake Poso (Sulawesi, Indonesia)—The importance of being colourful. Molecular Phylogenetics and Evolution. 2007; 45(5):1033–41. https://doi.org/10.1016/j.ympev.2007.07.002 PMID: 17702608.

48. Cai Y, Naiyanetr P, Ng PKL. The freshwater prawns of the genus Macrobrachium Bate, 1868, of Thailand (Crustacea: Decapoda: Palaemonidae). Journal of Natural History. 2004; 38(5):581–649. https://doi.org/10.1080/0022293041000033238.

49. Cai YY, Ng PKL. The freshwater palaeomid prawns (Crustacea: Decapoda: Caridea) of Myanmar. Hydrobiologia. 2002; 487(1):59–83. https://doi.org/10.1023/a:1022991224381 WOS:000181732400005.

50. Hanamura Y, Imai H, Lasasimma O, Souliyamath P, Ito S. Freshwater prawns of the genus Macrobrachium Bate, 1868 (Crustacea, Decapoda, Palaemonidae) from Laos. Zootaxa. 2011;3029:1–37. WOS:000294800200001.
PLOS ONE | DNA barcode of *Macrobrachium* prawns in Indochina

51. Dudgeon D. The ecology of tropical asian rivers and streams in relation to biodiversity conservation. Annual Review of Ecology and Systematics. 2000; 31:239–63.

52. Xuan NV. *Macrobrachium hungi*, a new freshwater palaemonid prawn (Decapoda: Caridea: Palaemonidae) from the Tonle Sap Great Lake of Cambodia. Zootaxa. 2012;(3560):32–40. WOS:000311677000002.

53. Dang NT, Nguyen BY. Nouveaux genres, nouvelles espèces de la faune des invertébrés des eaux douces et saumâtres du Nord Vietnam. Journal of Biology and Geology. 1972; 6:155–62.

54. Dang NT, Nguyen HY. Information on freshwater prawn genus *Macrobrachium* Bate (Palaemonidae) from the mountainous regions of North Vietnam. Journal of Biology and Geology. 1972; 10:1–6.

55. Bernardes SC, Pepato AR, von Rintelen T, von Rintelen K, Page TJ, Freitag H, et al. The complex evolutionary history and phylogeography of *Caridina typus* (Crustacea: Decapoda): long-distance dispersal and cryptic allopatric species. Scientific Reports. 2017; 7(1):9044. https://doi.org/10.1038/s41598-017-08494-w PMID: 28831142

56. Rahi ML, Mather PB, Ezaz T, Hurwood DA. The molecular basis of freshwater adaptation in prawns: Insights from comparative transcriptomics of three *Macrobrachium* species. Genome biology and evolution. 2019; 11(4):1002–18. https://doi.org/10.1093/gbe/evz045 PMID: 30840062.

57. Castelin M, Mazancourt V, Marquet G, Zimmerman G, Keith P. Genetic and morphological evidence for cryptic species in *Macrobrachium australis* and resurrection of *M. ustulatum* (Crustacea, Palaemonidae). European Journal of Taxonomy. 2017; 289. https://doi.org/10.5852/ejt.2017.289

58. Duarte RC, Stevens M, Flores AAV. Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp. BMC Evolutionary Biology. 2016; 16(1):218–. https://doi.org/10.1186/s12862-016-0796-8 PMID: 27756220.

59. Anger K. Neotropical *Macrobrachium* (Caridea: Palaemonidae): on the biology, origin, and radiation of freshwater-invading shrimp. Journal of Crustacean Biology. 2013; 33(2):151–83. https://doi.org/10.11646/zootaxa.4482.1.7 PMID: 28831142

60. Chen PC, Shih CH, Chu TJ, Lee YC, Tseng TD. Phylogeography and genetic structure of the oriental river prawn *Macrobrachium nipponense* (Crustacea: Decapoda: Palaemonidae) in East Asia. PLOS ONE. 2017; 12(3):e0173490. https://doi.org/10.1371/journal.pone.0173490 PMID: 28267807

61. Seehausen O, Wagner CE. Speciation in Freshwater Fishes. Annual Review of Ecology, Evolution, and Systematics. 2014; 45(1):621–51. https://doi.org/10.1146/annurev-ecolsys-120213-091818

62. Mejía-Ortíz LM, Alvarez F. Seasonal patterns in the distribution of three species of freshwater shrimp, *Macrobrachium* spp., along an altitudinal river gradient. Crustaceana. 2010:385–97.

63. Cai YX, Ng PKL. Freshwater shrimps from karst caves of Southern China, with descriptions of seven new species and the identity of *Typhlocaris linyunensis* Li and Luo, 2001 (Crustacea: Decapoda: Caridea). Zoological Studies. 2018; 57:33. https://doi.org/10.6620/zs.2018.57–27 WOS:000436599500001.

64. Li J, Cai Y, Clarke A. A new species of troglobitic freshwater prawn of the genus *Macrobrachium* from southern China (Crustacea: Decapoda: Palaemonidae). The Raffles Bulletin of Zoology. 2006; 54(2):277–82.

65. Li WX, Luo ZF. A new troglobitic shrimp from Guangxi (Decapoda: Atyidae). Journal of Guangxi Normal University (Natural Science Edition). 2001; 19(2):72–4.

66. Pan Y, Hou Z, Li S. Description of a new *Macrobrachium* species (Crustacea: Decapoda: Caridea: Palaemonidae) from a cave in Guangxi, with a synopsis of the stygobiotic Decapoda in China. Journal of Cave and Karst Studies. 2010; 72(2):86–93.

67. Naiyanetr P. *Macrobrachium sirindhorn* n. sp., a new freshwater prawn from northern Thailand (Decapoda, Caridea, Palaemonidae). Zootaxa. 2001; 74:609–16. https://doi.org/10.11646/zootaxa.4584.1.27 PMID: 156854001750377885 WOS:000170827100001.

68. Naiyanetr P. Checklist of Crustacean fauna in Thailand (Decapoda and Stomatopoda). Bangkok, Thailand: Office of Natural Resources and Environmental Policy and Planning; 1998. 196 p.

69. Saengphan N, Panijpan B, Senapin S, Laosinchai P, Ruenwongsa P, Suksommit A, et al. *Macrobrachium chainatense* sp. nov. (Decapoda: Palaemonidae): A freshwater prawn from Thailand based on morphology and molecular phylogeny. Zootaxa. 2019; 4664(2):274–84. https://doi.org/10.11646/zootaxa.4664.2.9 WOS:000483575500009. PMID: 31716683

70. Saengphan N, Panijpan B, Senapin S, Laosinchai P, Ruenwongsa P, Suksommit A, et al. Morphology and molecular phylogeny of *Macrobrachium suphanense* sp. nov. (Decapoda: Palaemonidae) from Thailand. Zootaxa. 2018; 4482(1):151–63. https://doi.org/10.11646/zootaxa.4482.1.7 PMID: 30313326
71. Do VTN C.T. A new species of troglobitic freshwater prawn of the genus *Macrobrachium* Bate, 1868 (Crustacea: Decapoda: Palaemonidae) from Phong Nha-Ke Bang National Park, Quang Binh Province. Tap Chi Sinh Hoc. 2015; 36(3):309–15.

72. Dang NT. Classification of freshwater shrimps and crabs. Journal of Biology and Geology. 1975; 13:65–78.

73. Dang NT. Freshwater prawn genus *Macrobrachium* Bate, 1868 (Palaemonidae) from the southern part of Vietnam. Journal of Geology. 1998; 20(3):1–4.

74. Xuan NV. Two new freshwater prawns of the genus *Macrobrachium* (Decapoda, Caridea, Palaemonidae) from the highlands of South Vietnam. Crustacea. 2006; 28(1):5–7.

75. Dang NT. New species of *Macrobrachium* Bate (Decapoda: Caridea: Palaemonidae) from mountainous region Chi Linh (Hai Duong) northern Vietnam. Journal of Biology. 2012; 34(4):405–7.

76. Xuan NV. A new freshwater prawn of the genus *Macrobrachium* (Decapoda, Caridea, Palaemonidae) from the highlands of South Vietnam. Crustacea. 2006; 79(1):1–9.

77. World Register of Marine Species (WoRMS) [Internet]. WoRMS Editorial Board. 2020 [cited 2020-06-07]. Available from: http://www.marinespecies.org.

78. De Grave S, Cai Y, Anker A. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia. 2008; 595(1):287–93. https://doi.org/10.1007/s10750-007-9024-2

79. De Grave S, Smith KG, Adeler NA, Allen DJ, Alvarez F, Anker A, et al. Dead shrimp blues: A global assessment of extinction risk in freshwater shrimps (Crustacea: Decapoda: Caridea). PLOS ONE. 2015; 10(3):e0120198. https://doi.org/10.1371/journal.pone.0120198 PMID: 25807292

80. QGIS.org. QGIS Geographic Information System. QGIS Association; 2021. Available from: www.fao.org/geonetwork.

81. AVME. AVMA Guidelines for the Euthanasia of Animals2020. Available from: https://www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf.

82. Cai Y, Dai AY. Freshwater shrimps (Crustacea: Decapoda: Caridea) from the Xishuangbanna region of Yunnan Province, southern China. Hydrobiologia. 1999; 400:211–41. https://doi.org/10.1023/A:1003717109973 WOS:000083171500020.

83. Holthuis LB. The Decapoda of the Siboga-Expeditie Part X. The Palaemonidae collected by the Siboga and Snellius Expeditions with remarks on other species. I. Subfamily Palaemoninae. Siboga Expedtie Leiden. 1950; 39(a9):1–267.

84. Wowor D, Short JW. Two new freshwater prawns of the genus *Macrobrachium* Bate, 1868 (Crustacea: Decapoda: Palaemonidae) from the Kelian River, East Kalimantan, Indonesia. Raffles Bulletin of Zoology. 2007; 55(1):77–87. WOS:000245879600006.

85. Cai YX, Vidthayanon C. *Macrobrachium spelaeus*, a new species of stygobitic freshwater prawn from Thailand (Decapoda: Palaemonidae). Raffles Bulletin of Zoology. 2016; 64:117–22. WOS:000389717300010.

86. Siriwut W, Jeratthitkul E, Panha S, Chanabun R, Sutcharit C. Molecular phylogeny and species delimitation of the freshwater prawn *Macrobrachium pilimanus* species group, with descriptions of three new species from Thailand. PeerJ. 2020; 8:e10137. https://doi.org/10.7717/peerj.10137 PMID: 33312765

87. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoeck R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 1994; 3:294–9. PMID: 7881515

88. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004; 32(5):1792–7. https://doi.org/10.1093/nar/gkh340 PMID: 15034147

89. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016; 33:1870–4. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

90. Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2017. 2.75; [Available from: http://mesquiteproject.org.

91. Darriba D, Taboada G.L., Doallo R., Posada D. |ModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012; 9(8):772.

92. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2689–90. https://doi.org/10.1093/bioinformatics/btl446 PMID: 16928733
95. Miller MA, Pfeiffer W, Schwartz T, editors. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. The Gateway Computing Environments Workshop (GCE); 2010 14 November 2010; New Orleans, Los Angeles.

96. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research. 2016; 44(W1):W232–5. Epub 2016/04/17. https://doi.org/10.1093/nar/gkw256 PMID: 27084950; PubMed Central PMCID: PMC4987875.

97. Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohns S, et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematics Biology. 2012; 61:539–42. https://doi.org/10.1093/sysbio/sys029 PMID: 22357727

98. Rambaut A. FigTree version 1.3.1. 2009.

99. Ratnasingham S, Hebert PDN. Bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes. 2007; 7(3):355–64. https://doi.org/10.1111/j.1471-8286.2007.01678.x PMID: 18784790.

100. Wowor D, Muthu V, Meier R, Balke M, Cai Y, Ng PKL. Evolution of life history traits in Asian freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae) based on multilocus molecular phylogenetic analysis. Molecular Phylogenetics and Evolution. 2009; 52(2):340–50. https://doi.org/10.1016/j.ympev.2009.01.002 PMID: 19489122

101. Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLOS ONE. 2013; 8(7):e66213. https://doi.org/10.1371/journal.pone.0066213 PMID: 23861743

102. Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology. 2012; 21(8):1864–77. https://doi.org/10.1111/j.1365-294X.2011.05239.x PMID: 21883587

103. Kapli P, Luttero pp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics. 2017; 33(11):1630–8. https://doi.org/10.1093/bioinformatics/btx261 PMID: 28108445

104. Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics (Oxford, England). 2013; 29(22):2869–76. Epub 2013/08/29. https://doi.org/10.1093/bioinformatics/btt499 PMID: 23990417.

105. Fujisawa T, Barraclough TG. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology. 2013; 62(5):707–24. https://doi.org/10.1093/sysbio/sys033 PMID: 23681854

106. Drummond A, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology. 2007; 7:214. https://doi.org/10.1186/1471-2148-7-214 PMID: 17996036

107. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and molecular phylodynamic data integration using BEAST 1.10. Virus Evolution. 2018; 4:vey016. https://doi.org/10.1093/virus/vey016 PMID: 29942656

108. Edzard T, Fujisawa T, Barraclough TG. R package splits: SPeceis’ LImits by Threshold Statistics, version 1.0:18/r45. 2013. https://doi.org/10.1111/jcpr.12111 PMID: 23521332

109. García-Melo JE, Oliveira C, Da Costa Silva GJ, Ochoa-Orrego LE, Garcia Pereira LH, Maldonado-Ocampo JA. Species delimitation of neotropical Characins (Characidae): Implications for taxonomy of complex groups. PLOS ONE. 2019; 14(6):e0216786. https://doi.org/10.1371/journal.pone.0216786 PMID: 31166941

110. Li X, Liu R, Liang X, Chen G. Fauna Sinica Invertebrata. Beijing: Science Press; 2007.

111. Phimphan S, Tanomtong A, Seangphan N, Sangpakdee W. Chromosome studies on freshwater prawn, Macrobrachium lanchesteri (Decapoda, Palaemonidae) from Thailand. The Nucleus. 2019; 62(1):77–82. https://doi.org/10.1007/s13237-018-0260-9

112. Khananpapi R, Thawnon-ngw B, Kongim B. Genetic variation of Macrobrachium lanchesteri (Decapoda, Palaemonidae) in Northeastern Thailand. Cogent Biology. 2019; 5(1):15. https://doi.org/10.1080/23312025.2019.1677126 WOS:000495044900001.

113. Mar W, Kang PF, Mao B, Wang YF. Morphological and molecular features of some freshwater prawn species under genus Macrobrachium Spence Bate, 1868 (Crustacea: Decapoda: Palaemonidae) from Myanmar. Zootaxa. 2018; 4388(1):123–32. Epub 2018/04/25. https://doi.org/10.11646/zootaxa.4388.1.9 PMID: 29690469.

114. Johnson DS, editor Sub-specific and intra-specific variation in some freshwater prawns of the Indopacific region. Proceedings of the Centenary and Bicentenary Congress of Biology; 1960. Singapore: University of Malaya Press.

115. Shokita S, Takeda M. A new freshwater prawn of the genus Macrobrachium (Decapoda, Caridea, Palaemonidae) from Thailand. Bulletin of the National Science Museum, Tokyo. 1989; 15:147–54.
116. Chong SSC, Khoo HW. *Macrobrachium malayanum* (Roux, 1934) stat. nov. (Decapoda, Palaemonidae) as a synonym of *M. geron* Holthuis, 1950, with notes on its distribution. Journal of Natural History. 1987; 21(4):903–13. https://doi.org/10.1080/00222938700770551 WOS:A1987J457100008.

117. Ng PKL. Freshwater decapod crustaceans (Potamidae, Palaemonidae) of Temengor Forest Reserve, Hulu Perak, Malaysia. Malayan Nature Journal. 1995; 48:249–57.

118. Phone H, Suzuki H. *Macrobrachium patheinense*, a new species of freshwater prawn (Crustacea: Decapoda: Palaemonidae) from Myanmar. Proceedings of the Biological Society of Washington. 2004; 117(4):523–8.

119. Borges L, Sivrikaya H, le Roux A, Shipway J, Cragg S, Costa F. Investigating the taxonomy and systems of marine wood borers (Bivalvia: Teredinidae) combining evidence from morphology, DNA barcodes and nuclear locus sequences. Invertebrate Systematics. 2012; 26:572–82. https://doi.org/10.1071/IS12028

120. Cornils A, Held C. Evidence of cryptic and pseudocryptic speciation in the *Paracalanus parvus* species complex (Crustacea, Copepoda, Calanoida). Frontiers in Zoology. 2014; 11(1):19. https://doi.org/10.1186/1742-9994-11-19 PMID: 24581044

121. Robe LJ, Machado S, Bartholomei-Santos ML. The DNA barcoding and the caveats with respect to its application to some species of Palaemonidae (Crustacea, Decapoda). Zoological Science. 2012; 29(10):714–24. https://doi.org/10.2108/zsj.29.714 PMID: 23030345

122. Venera-Pontón DE, Driskell AC, De Grave S, Felder DL, Scioli JA, Collin R. Documenting biodiversity in the Caribbean from DNA barcodes generated during field training in taxonomy. Biodiversity Data Journal. 2020; 8:e47333. https://doi.org/10.1389/bd.8.e47333 PMID: 31966024

123. Matzen da Silva J, Creer S, dos Santos A, Costa AC, Cunha MR, Costa FO, et al. Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLOS ONE. 2011; 6(5):e19449. https://doi.org/10.1371/journal.pone.0019449 PMID: 21589909

124. Larson ER, Castelin M, Williams BW, Olden JD, Abbott CL. Phylogenetic species delimitation for crayfishes of the genus *Pacifastacus*. PeerJ. 2016; 4:e1915. https://doi.org/10.7717/peerj.1915 PMID: 27114875

125. Jordán-Hernández M, Rodríguez-Almaráz G, Favela-Lara S. Delimitation of sympatric *Palaemon* (Decapoda, Palaemonidae) species of the Laguna Madre, Mexico. Zoologica Scripta. 2019; 48(5):667–78. https://doi.org/10.1111/zsc.12364

126. Hernawati R, Nurhaman U, Busson F, Suryobroto B, Hanner R, Keith P, et al. Exploring community assembly among Javanese and Balinese freshwater shrimps (Atyidae, Palaemonidae) through DNA barcodes. Hydrobiologia. 2020; 847(2):647–63. https://doi.org/10.1007/s10750-019-04127-7

127. Wade NM, Anderson M, Sellars MJ, Tume RK, Glencross BD. Mechanisms of colour adaptation in the prawn *Peneaus monodon*. The Journal of Experimental Biology. 2012; 215(2):343–50. https://doi.org/10.1242/jeb.064592 PMID: 22189778

128. Bauer RT. Antifouling adaptations of marine shrimp (Crustacea: Decapoda: Caridea): functional morphology and adaptive significance of antennular preening by the third maxillipeds. Marine Biology. 1977; 40(3):261–76. https://doi.org/10.1007/BF00390881

129. Rocha CP, Quadros MLA, Maciel M, Maciel CR, Abrunhosa FA. Morphological changes in the structure and function of the feeding appendages and foregut of the larvae and first juvenile of the freshwater prawn *Macrobrachium acanthurus*. Journal of the Marine Biological Association of the United Kingdom. 1998; (98):713–20. Epub 2017/01/09. https://doi.org/10.1017/S0025315416001855

130. Hendry AP. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. Journal of Heredity. 2015; 107(1):25–41. https://doi.org/10.1038/jhered/esv060 PMID: 26297912

131. Chen P, Tzeng T, Shih C, Chu T, Lee Y. Morphometric variation of the oriental river prawn (*Macrobrachium nipponense*) in Taiwan. Limnologica. 2015; 52:51–8. https://doi.org/10.1016/j.limno.2015.03.002

132. Dimmock A, Williamson I, Mather PB. The influence of environment on the morphology of *Macrobrachium australiense* (Decapoda: Palaemonidae). Aquaculture International. 2004; 12(4):435–56. https://doi.org/10.1023/B:AQUI.0000042140.48340.c8

133. Chong SSC, Khoo HW. Abbreviated larval development of the freshwater prawn, *Macrobrachium pilingmanus* (deMan, 1879) (Decapoda, Palaemonidae), reared in the laboratory. Journal of Natural History. 1987; 21(3):763–74. https://doi.org/10.1080/00222938700770431 WOS:A1987H258500013.

134. Chong SSC, Khoo HW. The abbreviated larval development of the freshwater prawn, *Macrobrachium malayanum* (Roux, 1934) (Decapoda, Palaemonidae), reared in the laboratory. Crustaceana. 1987; 53(1):29–42.
135. Lal MM, Seeto J, Pickering TD. Complete larval development of the monkey river prawn Macrobrachium lar (Palaemonidae) using a novel greenwater technique. SpringerPlus. 2014; 3:568–. https://doi.org/10.1186/2193-1801-3-568. PMID: 25332868.

136. Worwod D, Ng PKL. Case 3428 Palaemon rosenebergii De Man, 1879 (currently Macrobrachium rosenbergii); Crustacea, Decapoda): proposed conservation of usage by designation of a neotype. The Bulletin of Zoological Nomenclature. 2008; 65(4):288–93. https://doi.org/10.2180/bzn.v65i4.a12

137. Collins R, Cruickshank R. The seven deadly sins of DNA barcoding. Molecular Ecology Resource. 2013; 13:969–75. https://doi.org/10.1111/j.1755-0998.2014.03046.x

138. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, et al. Defining operational taxonomic units using DNA barcode data. Proceedings of the Royal Society of London B. 2005; 360(1462):1935–43. https://doi.org/10.1098/rspb.2005.1725. PMID: 16214751

139. Čandek K, Kuntrer M. DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources. 2015; 15(2):268–77. https://doi.org/10.1111/1755-0998.12304. PMID: 25042335

140. Calvignac S, Konecny L, Malard F, Douady C. Preventing the pollution of mitochondrial databases with nuclear mitochondrial paralogs (numts). Mitochondrion. 2011; 11:246–54. https://doi.org/10.1016/j.mito.2010.10.004. PMID: 21047664

141. Buhay JE. "COI-like" sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology. 2009; 29:96–110. https://doi.org/10.1651/08-3020.1

142. Song H, Buhay JE, Whiting MF, Crandall KA. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Science of the USA. 2008; 105:13486–91. https://doi.org/10.1073/pnas.0803076105. PMID: 18757756

143. Bloom DD, Weir JT, Piller KR, Lovejoy NR. Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of new world silversides (atherinopsidae). Evolution. 2013; 67(7):2040–57. https://doi.org/10.1111/evol.12074. PMID: 23815658

144. Davis AM, Unmack PJ, Pusey BJ, Johnson JB, Pearson RG. Marine–freshwater transitions are associated with the evolution of dietary diversification in terapontid grunter (Teleostei: Terapontidae). Journal of Evolutionary Biology. 2012; 25(6):1163–79. https://doi.org/10.1111/j.1420-9101.2012.02504.x. PMID: 22519660

145. Poulin R. Greater diversification of freshwater than marine parasites of fish. International Journal for Parasitology. 2016; 46(4):275–9. https://doi.org/10.1016/j.ijpara.2015.12.002. PMID: 26802461

146. de Bruyn M, Nugroho E, Hossain MM, Wilson JC, Mather PB. Phylogeographic evidence for the existence of an ancient biogeographic barrier: the Isthmus of Kra Seaway. Heredity. 2004; 94(3):370–8.

147. Sathiamurthy E, Voris HK. Maps of Holocene sea level transgressions and submerged lakes on the continental shelves of Southeast Asia. Biogeography. 2000; 27:1153–67.

148. Voorberg HK. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Biogeography. 2000; 27:1153–67.

149. Jirapatrasilp P, Backeljau T, Prasankon P, Chanabun R, Panha S. Untangling a mess of worms: species delimitations reveal morphological crypsis and variability in Southeast Asian semi-aquatic earthworms (Almidae, Glyphidrilus). Molecular Phylogenetics and Evolution. 2019; 139:106531. https://doi.org/10.1016/j.ympev.2019.106531. PMID: 31185298

150. Bolotov IN, Konopleva ES, Vikhrev IV, Gofarov MY, Lopes-Lima M, Bogan AE, et al. New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Scientific Reports. 2020; 10(1):6616. https://doi.org/10.1038/s41598-020-63612-5. PMID: 32313058

151. Zieritz A, Bogan AE, Froufe E, Klishko O, Kondo T, Kovitvadh U, et al. Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia. 2018; 810(1):29–44. https://doi.org/10.1007/s11856-020-03104-8

152. Adamson EAS, Hurwood DA, Mather PB. A reappraisal of the evolution of Asian snakehead fishes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration. Molecular Phylogenetics and Evolution. 2010; 56(2):707–17. https://doi.org/10.1016/j.ympev.2010.03.027. PMID: 20359539

153. Adamson EAS, Hurwood DA, Mather PB. Insights into historical drainage evolution based on the phylogeography of the chevon snakehead fish (Channa striata) in the Mekong Basin. Freshwater Biology. 2012; 57(1):221–29. https://doi.org/10.1111/j.1365-2427.2012.02864.x

154. Martin JE, Buffetaut E, Nakai S, Lauprasert K, Claude J. Gavialis from the Pleistocene of Thailand and its relevance for drainage connections from India to Java. PLOS ONE. 2012; 7(9):e44541–e. Epub 2012/09/18. https://doi.org/10.1371/journal.pone.0044541. PMID: 23028557.
155. Hongjamrassilp W, Maiphrom W, Blumstein DT. Why do shrimps leave the water? Mechanisms and functions of parading behaviour in freshwater shrimps. Journal of Zoology. 2020; 313(2):87–98. https://doi.org/10.1111/jzo.12841.

156. Imai H, Yanagihara K, Lasasimma O, Kounthongbang A, Souliyamath P, Ito S. Genetic isolation among populations of the landlocked freshwater shrimp Macrobrachium yui in the Mekong River basin. Biogeography. 2014; 16:1–11.