Associations between environmental factors and hospital admissions for sickle cell disease

by Frédéric B. Piel, Sanjay Tewari, Valentine Brousse, Antonis Analitis, Anna Font, Stephan Menzel, Subarna Chakravorty, Swee Lay Thein, Baba Inusa, Paul Telfer, Marianne de Montalembert, Gary W. Fuller, Klea Katsouyanni, and David C. Rees

Haematologica 2016 [Epub ahead of print]

Citation: Piel FB, Tewari S, Brousse V, Analitis A, Font A, Menzel S, Chakravorty S, Thein SL, Inusa B, Telfer P, de Montalembert M, Fuller GW, Katsouyanni K, and Rees DC. Associations between environmental factors and hospital admissions for sickle cell disease. Haematologica. 2016; 101:xxx
doi:10.3324/haematol.2016.154245

Publisher’s Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Associations between environmental factors and hospital admissions for sickle cell disease

Frédéric B. Piel1,2, Sanjay Tewari3, Valentine Brourse6, Antonis Analitis5, Anna Font6, Stephan Menzel5, Subarna Chakravorty3, Swee Lay Thein3,7, Baba Inusa9, Paul Telfer9, Marianne de Montalembert6, Gary W. Fuller6, Klea Katsouyanni5,6 & David C. Rees3

1. Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London
2. Department of Zoology, University of Oxford, Oxford, United Kingdom
3. Department of Molecular Haematology, King's College London School of Medicine, King's College Hospital, London, United Kingdom
4. Reference Centre for Sickle-cell Disease, Pediatric Department, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris; Université Paris Descartes, France
5. Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
6. Environmental Research Group, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
7. National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States of America
8. Department of Paediatric Haematology, Evelina Children's Hospital, King's College London, London, United Kingdom
9. Department of Paediatric Haematology and Oncology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
Corresponding Author: Dr Frédéric B. Piel, Department of Epidemiology and Biostatistics, Medical Research Council–Public Health England (MRC-PHE) Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG, UK. Email: f.piel@imperial.ac.uk. Tel: +44(0)2075943346.

Keywords: sickle cell disease, meteorological factors, pollution, hospital admissions, retrospective time-series analyses.
Abstract

Sickle cell disease is an increasing global health burden. This inherited disease is characterised by a remarkable phenotypic heterogeneity, which can only partly be explained by genetic factors. Environmental factors are likely to play an important role but studies of their impact on disease severity are limited and their results are often inconsistent. This study investigated associations between a range of environmental factors and hospital admissions of young patients with sickle cell disease in London and in Paris between 2008 and 2012. Specific analyses were conducted for subgroups of patients with different genotypes and for the main reasons of admissions. Generalized additive models and distributed lag non-linear models were used to assess the magnitude of the associations and to calculate relative risks. Some environmental factors significantly influence the numbers of hospital admissions of children with sickle cell disease, although the associations identified are complicated. Our study suggests that meteorological factors are more likely to be associated with hospital admissions for sickle cell disease than air pollutants. It confirms previous reports of risks associated with wind speed (risk ratio: 1.06/standard deviation [95% confidence interval: 1.00-1.12]) and also with rainfall (1.06/standard deviation [1.01-1.12]). Maximum atmospheric pressure was found to be a protective factor (0.93/standard deviation [0.88-0.99]). Weak or no associations were found with temperature. Divergent associations were identified for different genotypes or reasons of admissions, which could partly explain the lack of consistency in earlier studies. Advice to patients with sickle cell disease usually includes avoiding a range of environmental conditions that are believed to trigger acute complications, including extreme temperatures and high altitudes. Scientific evidence to support such advice is limited and sometimes confusing. This study shows that environmental factors do explain some of the variations in rates of admission to hospital with acute symptoms in sickle cell disease, but the associations are complex, and likely to be specific to different environments and the individual’s exposure to them.
Furthermore, this study highlights the need for prospective studies with large numbers of patients and standardised protocols across Europe.

Introduction

The clinical severity of sickle cell disease (SCD) is extremely variable. Genetic and genome wide association studies have so far only explained a small fraction of this phenotypic variability. Investigations of the impact of environmental factors, including meteorological factors and air quality, on the severity of the disease conducted across a range of countries have provided inconsistent results partly because of i) the use of potentially inaccurate coded data (e.g. ICD 10) rather than specific hospital records; ii) the intricate relationships between weather and air quality exposure variables; and iii) the use of different modelling approaches to assess such interactions. Furthermore, the impact of environmental factors on different types of SCD (HbSS vs HbSC) and on the specific clinical complications leading to hospital admissions has not been previously reported (i.e. all genotypes and clinical complications are typically lumped together).

The costs of care for SCD patients are high and increasing. For the year 2010–2011, it was estimated that the total costs of hospitalisations for SCD crisis (as a primary diagnosis) added up to more than £18,000,000 in England. In London, the highest hospital admission rates are seen among males in their 40s, a demographic group in which rates increased from 7.6 to 26.8 per 100,000 between 2001 and 2009. The vast majority of patients with SCD in the UK and in France live in capital cities (68% in London, 70% in Paris area). Identifying environmental factors triggering clinical complications in urban settings could therefore lead to better patient care, which could result in improved quality of life for patients with SCD and their relatives, as well as in reductions in hospital admissions and health care costs.

We investigated the associations between weather, air quality, and daily hospital admissions for pain, fever and acute chest syndrome (ACS) of young patients known to have SCD, over a five-year
period in London and Paris using generalized additive models (GAM) and distributed lag non-linear models (DLNM), adjusted for long-term trends and day of the week. We then compare our results with those of previous studies and discuss the direct impact that these results could have on the prevention of hospital admissions for SCD.
Methods

Data sources
We extracted anonymised daily hospital admission records from 1 January 2008 to 31 December 2012 for patients with sickle cell disease (SCD) under the age of eighteen-year-old at the time of admission living within a radius of ten kilometres from each of the following hospitals: Kings College Hospital (Camberwell), Evelina Children’s Hospital (Lambeth) and Royal London Hospital (Whitechapel) in London; and the Necker Hospital for Sick Children (15th arrondissement) in Paris (Supplementary Figure 1). Recorded reasons for hospital admissions were pain, fever, acute chest syndrome (ACS) and other. Information on the genotype of patients, either HbSS or HbSC, was available for the three hospitals in London, but not in Paris. Outcome data were collected by inspection of specific databases of SCD patients and admissions at each hospital to optimise accuracy. Too few admissions of patients with HbS β-thalassemia, a third common form of SCD, were available to be included in the study.

Official meteorological data of daily rainfall (mm); air temperature (°C), relative humidity (%), wind speed (m/s) and atmospheric pressure (hPa) were extracted from the British Atmospheric Data Centre (BADC, http://badc.nerc.ac.uk/view/badc.nerc.ac.uk_ATOM_dataent.ukmo-midas) for several monitoring stations, including Heathrow (51°28′13″N, 0°27′02″W, code 708, the reference station in London) and St James Park (51°30′17″N, 0°07′52″W, code 697, the nearest station to the three hospitals). Measurements were highly consistent across different monitoring stations and, as a result, only data from Heathrow were included in the final analyses. Based on these preliminary analyses (not shown), data were purchased from Météo France only for one meteorological station, Paris Montsouris (48°49′18″N, 2°20′12″E). A composite index of temperature and relative humidity was calculated as a measure of apparent (or “feels like”) temperature using the following equations:14, 15

Equation 1: $T_{app} \approx T \left[1 + \frac{100 - RH}{5} \right]$
Equation 2: \(\theta_{a} = -2.653 + (0.994 \times \theta_{d}) + (0.0153 \times \theta_{d}^2) \)

where \(\theta_{a} \) is the dew point temperature in °C; \(\theta_{d} \) is the relative humidity; \(\theta_{a} \) is the apparent temperature in °C; \(\theta \) is the ambient temperature in °C. Lawrence’s simple approximation is fairly accurate for relative humidity values above 50%, which matches conditions in London and Paris.

In addition, a “wind chill” index was also included as a composite index of temperature and wind speed (Equation 3):

Equation 3: \(\theta_{wc} = 13.12 + 0.6215 \times \theta - 11.37 \times \theta^{0.16} + 0.3965 \times \theta \times \theta^{0.16} \)

where \(\theta_{wc} \) is the wind chill index; \(\theta \) is the air temperature in degrees Celsius (°C); and \(\theta \) is the wind speed at standard anemometer height (10 meters), in kilometres per hour (km/h).

Daily mean concentrations of carbon monoxide (CO, mg/m³), nitrogen oxides (NOx = NO + NO₂; µg/m³), sulphur dioxide (SO₂; µg/m³), ozone (O₃; µg/m³), particle matter in two size ranges (< 10 µm or PM₁₀; and < 2.5 µm, both expressed in µg/m³), black carbon (µg/m³) and particle number (N/cm³) were extracted from the London Air Quality Network (http://www.londonair.org.uk/); the DEFRA Black Carbon (https://uk-air.defra.gov.uk/networks/network-info?view=ukbsn) and the DEFRA Particle Numbers and Concentrations Networks (https://uk-air.defra.gov.uk/networks/network-info?view=particle) for London; and from the AirParif Network (http://www.airparif.asso.fr/en/) for Paris. Because all monitoring stations do not record all the above pollutants for the entire period of time of the study, missing records were present in the time-series. We therefore kept only data from the most complete monitoring stations (i.e. records available for at least 80% of days during the study period) and filled the gaps using an expectation–maximization imputation algorithm for multivariate normal time-series implemented in the `mnimput` function of the `mtdsi` R package.

Missing values were therefore estimated by accounting for both correlation between time-series (i.e. from other monitoring stations) and time structure of the series itself (Supplementary Code 1). Air pollutant concentrations were normalised using a log transformation. To assess the error in imputed values, cross-validation based on a left-out sample of 100 daily records was conducted and
the root mean squared error (RMSE) and normalised root mean square error (NRMSE) were calculated (Supplementary Table 1). Separate analyses were run for monitoring stations categorised as “background” and “roadside” sites in London in order to identify potential associations with specific pollution caused by traffic.

Descriptive statistics of hospital admissions (outcome) and environmental variables (exposure) in each of the study settings are shown in Table 1 and Table 2, respectively. Standardised z-score meteorological and air pollution data (Equation 4) were used in the time-series analyses in order to generate relative risks per one standard deviation (SD) increase. Statistical differences between admission rates per year, season, month and day of the week were identified by ANOVAs with Tukey’s honestly significant difference (HSD) test.

Equation 4: \[z = \frac{x - \mu}{\sigma} \]

where \(x\) is the exposure record, \(\mu\) is the mean of the exposure records over the study period, and \(\sigma\) is the standard deviation of the exposure records over the study period.

Data analysis
First, we explored the relationships between the different outcome and standardised exposure variables using quasi-poisson generalized additive models (GAM). We used flexible thin-plate regression splines with shrinkage for long-term trends, seasonality, effects of the year, month and day of the week, and tested for weekend effects.

Second, two standard methods commonly used to assess the relationship between an exposure variable and a health outcome in time-series analyses were implemented: the distributed lag non-linear models (DLNMs) and aggregated case-crossover study (ACC). DLNMs is a flexible modelling framework to describe potential associations with non-linear and delayed effects in time-series data\(^7\). ACC provides an efficient framework for evaluating associations between transient exposures and the onset of rare acute events, when exposure measurements are not available for each individual\(^8\). In a DLNM, seasonality, long-term trends and confounding by other time-varying factors
(e.g. temperature) are typically corrected by fitting flexible spline functions of the different covariates. While delayed exposure effects can be explored for a specific lag, the DLNM offers the advantage of considering all lags considered together. While various maximum lags (up to 3 weeks) were tested, a lag of one week was considered the most relevant, biologically. The standard analysis of aggregated case-crossover studies is by conditional logistic regression on a time-series dataset, in which each case day (a day with at least one hospital admission for SCD) is matched to all the other days within a given time window (e.g. one month). Relatively short time windows avoid long-term or seasonal effects, accounted for by strata, Fourier series or splines in DLNMs. Various levels of constraints can be added by matching case and control days for a given covariate (e.g. temperature within 1°C) or a combination of covariates (e.g. temperature within 1°C and day of the week). While both methods have been previously used individually to assess environmental influences on SCD hospital admissions,8, 9 the consistency of results between them has not been previously investigated.

Third, based on the results from single-exposure models, we explored multiple-exposure GAMs for combined lags of 0 and 1. The different combinations of exposure variables used are shown in Supplementary Table 5.

Finally, sensitivity analyses were performed throughout the whole model selection by i) exploring a full range of measurements (e.g. NO, NO\textsubscript{x}, NO\textsubscript{2} in turn) from several individual monitoring stations and average values; ii) checking the consistency of the results across different methods; and iii) selecting the best-performing model based on objective criteria (Generalized Cross Validation (GCV), Bayesian Information Criteria (BIC) or Akaike Information Criterion (AIC)). All the analyses were performed with R 3.2.4 and full scripts of the code used are provided in the Supplementary Material and available on request.
The study was discussed with the local research ethics committees, and formal ethical approval was not deemed necessary. All analysed data were fully anonymised. The research was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2008.
Results

Over the five-year study period, 1,887 and 346 hospital admissions for SCD (HbSS and HbSC only) were recorded in London and Paris, respectively. The proportions of HbSS and HbSC in London, and the reasons for admissions in London and Paris are shown in Table 1. The average daily number of SCD admissions was 1.03 in London (across the three hospitals) and 0.19 in Paris (1 hospital), with maximums of 5 and 4 per day, respectively. Although individual patient’s data were not analysed as part of this study, it is worth noting that some patients may have been admitted several times over the study period.

Average daily hospital admissions of SCD patients revealed differences in temporal patterns (yearly, monthly, daily and per season) between cities, genotypes and reasons for admissions (Table 3 and Figure 3). Average daily hospital admissions in London significantly increased from 0.52/day in 2008 to 0.98/day in 2009 (ANOVA, P=0.001) before stabilizing around 0.85 admissions per day, probably reflecting increasing patient numbers over that time period. No statistically significant difference was observed between years in Paris. In London, admission rates were significantly greater in autumn than in spring (P=0.045), while in Paris, there were fewest admissions in summer (P=0.029). Hospital admissions, particularly for pain, were lower during weekends, both in London (P<0.0001) and Paris (P=0.042). In London, there were significantly more admissions of SCD patients on Mondays compared to Saturdays (P<0.0001), although the peak of admissions of HbSS patients for pain was observed on Tuesday.

GAMs testing for associations between environmental factors and hospital admissions for SCD in London revealed relative risks per one standard deviation increase of 1.06 [95% confidence interval (CI): 1.01-1.12] for rainfall, and 0.93 [0.88-0.99] for maximum atmospheric pressure (Figure 1 and Supplementary Table 2). Specific GAMs looking at genotypes and reasons for admissions suggested that the former association was mostly seen in HbSS patients admitted for pain (1.07 [1.01-1.14]). The latter association was strongest in SCD patients with fever (0.84 [0.75-0.95]). Further
associations were found in HbSS patients with pain and maximum wind speed (1.09 [1.02-1.16]); with fever and CO (1.14 [1.01-1.30]), and with other complications and PM$_{2.5}$ (1.22 [1.02-1.46]). Similar results were obtained when looking only at “background” or “roadside” monitoring stations (results not shown). No specific associations were identified for HbSC patients, possibly due to the smaller numbers. In Paris, we found relative risks of 0.75 [0.57-0.99] for patients with pain in relation to minimum temperature.

DLNMs, which account for lag effects, only supported associations with rainfall (1.06 [1.01-1.12]) at lag 0 in London (Figure 2 and Supplementary Table 3). An association with black carbon at lag 6 was also found (1.08 [1.02-1.16]). A similar effect of wind speed was found in Paris for a lag of 3 days (1.08 [1.02-1.13]). In addition, an association was found with CO at lag 6 (1.14 [1.00-1.29]). For HbSC, significant associations with maximum pressure (0.66 [0.52-0.83] at lag 0) and maximum relative humidity (0.91 [0.84-1.00] at lag 3, 0.88 [0.79-0.99] at lag 4) were found (Supplementary Figure 2). Statistically significant associations often differed when comparing the main reasons for hospital admission (Supplementary Figure 3). For example, maximum temperature was a risk factor at lags 1 & 2 for ACS but not for fever or pain, while maximum pressure appeared protective at lag 0 for pain and fever but not for ACS.

In London, the results of multiple-exposure GAMs support an association between admissions for pain for patients with HbSS, and rainfall and maximum wind speed, while maximum pressure appeared protective for HbSS patients with fever (Supplementary Table 5). No statistically significant associations were found in multiple-exposure analyses for Paris. These results were consistent with the findings of single-exposure GAMs. A summary of the convergence and divergence of associations identified in London and Paris is presented in Table 4.
Discussion

A better understanding of the environmental factors triggering clinical complications in patients with SCD could allow healthcare professionals to give more accurate information to patients about the risks associated with certain conditions, facilitating behavioural changes to avoid clinical complications and hospital admission. Evidence generated so far about the influence of meteorological factors and pollutants on symptoms in SCD often presented discordant results, which are difficult to translate into health policies and patient advice. This is partly because previous studies were mostly small, combining reasons for admissions and not distinguishing between different types of SCD, in addition to the variability of climate effects in different countries. Perhaps the most consistently quoted effect is the increase in episodes of acute pain associated with cold weather. Using high-quality hospital records from London and Paris, combined with rigorous time-series analysis methods, our results do not support strong associations between hospital admissions for SCD and temperature. This might be related to the urban environment in high-income countries, in which the effects of temperature changes may be countered by access to warm clothes and heated buildings. Environmental factors that consistently appeared significant throughout our analyses were rainfall, wind speed and atmospheric pressure. Wind speed has been identified in several previous studies in urban settings, and is emerging as one of the most important meteorological factors. Rainfall has not been consistently linked to increased hospital admissions, but emerges as an important factor, particular precipitating pain in children with HbSS. Both high wind speed and rainfall have the effect of causing rapid skin cooling, which has been implicated as a cause of vaso-occlusive pain in physiological experiments, and might be the mechanism of action in this case. While standard composite indices used in this study (i.e. apparent temperature and wind chill) did not reveal statistically significant associations, the development of a novel specific composite index allowing to predict the risk of hospitalization in SCD based on the above results would warrant further investigation.
We also identified a clear weekend effect, in both London and Paris, which is relevant in the broader context of healthcare provision.20 Lower admissions during weekends, particularly for pain, may arise from many different social and logistical issues, but are unlikely to be primarily related to environmental factors. Perhaps the most plausible explanation is that parents were able to stay at home and look after their children at the weekends, whereas this becomes much harder during the working week. It does suggest that improved community support for families with sick children may be effective at reducing hospital admissions. Although patients included in this study were managed by hematologists familiar with SCD, delaying seeking healthcare could also reflect the distress of facing common misconceptions (e.g. lack of tolerance to pain, drug addiction) previously reported among medical staff and of longer waiting times compared to other complications (e.g. long bone fracture) previously reported in emergency departments.21

To the best of our knowledge, this study is the largest to use accurate hospital-based registers of patients with SCD with data specifically collected for this study. Other large studies have relied on coded data generated for routine administrative purposes, which are often associated with misclassification errors. We also analysed the different types of SCD separately, as there is considerable evidence that the pathophysiology of HbSS and HbSC disease is significantly different.22 Furthermore, we focused on young children to avoid a series of confounding factors involved at older ages (e.g. smoking, occupational exposure, comorbidities) and used rigorous statistical methods, which revealed mostly consistent results for the main associations identified. Conducting separate analyses for each genotype and reason for admission revealed important differences, which could partly explain the inconsistency of previous results. Despite focusing on a five-year period, the number of admissions in Paris and the number of admissions of HbSC patients in London remained relatively limited, which led to large confidence intervals, potentially masking some associations.
Extreme temperatures are believed to trigger acute vaso-occlusive complications in patients with SCD. This is reflected in advice given to patients, but we could not find consistent support for such an association in our study, although increasing minimum temperature was associated with significant reduction in admissions for acute pain in Paris (RR 0.75, 0.57 – 0.99) (Supplementary Table 2). Instead, we found significant associations with maximum wind speed, which have previously been reported for London.\(^6\) In contrast to an earlier, smaller study in London, we did not find significant association between increased numbers of SCD admissions and low concentrations of nitrogen oxides (\(\text{NO}_x\)), low concentrations of carbon monoxide (\(\text{CO}\)) and high concentrations of ozone (\(\text{O}_3\)).\(^7\)

A recent study of 17,710 emergency hospital admissions (EHA) of SCD patients in Paris concluded that most weather conditions and air pollutants assessed were correlated to each other and influenced the rate of EHA in SCD over a lag period of one week.\(^5\) CO concentrations, day-to-day mean temperature drop and higher wind speed were associated with increased risks in a multiple-exposure analysis. Contrary to our study, the authors did not find a weekend effect, which might be due to their focus on emergency admissions. Despite using a much larger number of admissions, they were partly based on ICD codes, included all types of SCD and all reasons for admission, and covered a much broader age range (2 to 70 year-old). These findings may differ from ours because risk factors for acute complications may be very different in children than adults; additionally, children are known to spend most of their time close to home, exposed to the same environment, whereas adults often work far from home and are potentially exposed to several different environments each day.

Another recent study assessing the association between air pollution and emergency visits of children with SCD in Sao Paulo, Brazil, found remarkably high increases in relation to PM\(_{10}\), \(\text{NO}_x\), \(\text{CO}\) and \(\text{O}_3\).\(^9\) We could not find consistent risks associated with pollutants in this study, particularly of the magnitude described in Brazil. While both studies tested for lag effects, the Brazilian study looked at up to four day lags while we tested for effects up to one week. The levels of exposure to pollution
and environmental co-factors are very different in Brazil (e.g. NO$_2 = 104.59 \mu g/m^3 \pm 48.56$; $T_{\text{min}} = 15.23^\circ C \pm 3.40$) compared to London (NO$_2 = 56.18 \mu g/m^3 \pm 16.84$; $T_{\text{min}} = 7.73^\circ C \pm 5.19$) and Paris (NO$_2 = 35.76 \mu g/m^3 \pm 13.00$; $T_{\text{min}} = 9.04^\circ C \pm 5.79$), and it is perhaps unsurprising that the findings are different.

Environmental factors are important determinants of acute complications in children with SCD, but these effects are complex and differ significantly with geography and city design, even between apparently similar cities such as London and Paris. Better understanding of these factors in different geographic settings is important to allow patients and families to be given accurate information on how to reduce the risk of acute complications. This approach is particularly important in a chronic disease, such as SCD, for which there are few effective therapeutic options. Although the precise mechanism by which wind speed could trigger complications in SCD is not clear, it represents the environmental factors that is most consistently identified in association studies in European cities.

Further studies are needed to accurately define environmental effects in SCD. These are particularly relevant in some cities in sub-Saharan Africa and India, where pollution levels and patient numbers are very high, and are likely to become more relevant as global warming and air pollution increase. Future studies need to consider the different types of SCD separately, and also consider how these may change with the age of the patient. Other important questions on environmental effects which need to be answered include the role of the home environment and the long-term effects of exposure to air pollutants. Due to the range of complications associated with SCD and to differences in exposures between patients living in urban environments, monitoring the exposure of large number of patients through personal devices (e.g. mobile phone apps or personal monitors) might be particularly informative. Environmental factors in SCD are particularly important to understand because they can be manipulated relatively easily and cheaply with simple advice, unlike genetic causes of variation. Increased knowledge in this area will also be valuable for public health
services, to understand when more patients will be admitted to hospital, and what housing requirements are important for families with SCD.
Acknowledgements

The authors acknowledge METEO FRANCE for supplying meteorological data for Paris, Véronique Gherzi from AirParif for advice about air quality data for Paris. This study had no specific funding.

The authors would like to thank the Stroke Association for supporting some of the work involved in this study, although this Association had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

FBP, GWF and DCR were responsible for the study concept and design. ST, VB, AF, VG, BI, PT, MdM were involved in data acquisition. All authors were involved in analysis and interpretation of data.

FBP and DCR drafted the manuscript, and all authors revised it critically for important intellectual content. FBP and DCR had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
References

1. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376(9757):2018-2031.
2. Steinberg MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol. 2005;129(4):465-481.
3. Sebastiani P, Solovieff N, Hartley SW, et al. Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study. Am J Hematol. 2010;85(1):29-35.
4. Serjeant GR. The natural history of sickle cell disease. Cold Spring Harb Perspect Med. 2013;3(10):a011783.
5. Redwood AM, Williams EM, Desal P, Serjeant GR. Climate and painful crisis of sickle-cell disease in Jamaica. BMJ. 1976;1(6001):66-68.
6. Jones S, Duncan ER, Thomas N, et al. Windy weather and low humidity are associated with an increased number of hospital admissions for acute pain and sickle cell disease in an urban environment with a maritime temperate climate. Br J Haematol. 2005;131(4):530-533.
7. Yallop D, Duncan ER, Norris E, et al. The associations between air quality and the number of hospital admissions for acute pain and sickle-cell disease in an urban environment. Br J Haematol. 2007;136(6):844-848.
8. Mekontso Dessap A, Contou D, Dandine-Roulland C, et al. Environmental influences on daily emergency admissions in sickle-cell disease patients. Medicine. 2014;93(29):e280.
9. Barbosa SMdM, Farhat SCL, Martins LC, et al. Air pollution and children’s health: sickle cell disease. Cad Saude Publica. 2015;31(265-275).
10. Kauf TI, Coates TD, Huazhi L, Mody-Patel N, Hartzema AG. The cost of health care for children and adults with sickle cell disease. Am J Hematol. 2009;84(6):323-327.
11. Pizzo E, Laverty AA, Pheko KJ, et al. A retrospective analysis of the cost of hospitalizations for sickle cell disease with crisis in England, 2010/11. J Public Health. 2015;37(3):529-539.
12. Aliuburi G, Laverty AA, Green SA, et al. Trends in hospital admissions for sickle cell disease in England, 2001/02–2009/10. J Public Health. 2012;34(4):570-576.
13. Tewari S, Brousse V, Piel FB, Menzel S, Rees DC. Environmental determinants of severity in sickle cell disease. Haematologica. 2015;100(9):1108-1116.
14. Lawrence MG. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. B Am Meteorol Soc. 2005;86(2):225-233.
15. Rodopoulou S, Samoli E, Analitis A, Atkinson RW, de’Donato FK, Katsouyanni K. Searching for the best modeling specification for assessing the effects of temperature and humidity on health: a time series analysis in three European cities. Int J Biometeorol. 2015;59(11):1585-1596.
16. Blażejczyk K, Epstein Y, Jendrzychy G, Staiger H, Tinz B. Comparison of UTCI to selected thermal indices. Int J Biometeorol. 2012;56(3):515-535.
17. Bhaskaran K, Gasparrini A, Hajat S, Smith L, Armstrong B. Time series regression studies in environmental epidemiology. Int J Epidemiol. 2013;42(4):1187-1195.
18. Armstrong BG, Gasparrini A, Tobias A. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis. BMC medical research methodology. 2014;14(122).
19. Mohan J, Marshall JM, Reid HL, Thomas PW, Hambleton I, Serjeant GR. Peripheral vascular response to mild indirect cooling in patients with homozygous sickle cell (SS) disease and the frequency of painful crisis. Clin Sci. 1998;94(2):111-120.
20. Freemantle N, Ray D, McNulty D, et al. Increased mortality associated with weekend hospital admission: a case for expanded seven day services? BMJ. 2015;351(21).
21. Haywood C, Tanabe P, Naik R, Beach MC, Lanzkron S. The Impact of Race and Disease on Sickle Cell Patient Wait Times in the Emergency Department. Am J Emerg Med. 2013;31(4):651-656.
22. Rees DC, Thein SL, Osei A, et al. The clinical significance of K-Cl cotransport activity in red cells of patients with HbSC disease. Haematologica. 2015;100(5):595-600.
23. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global Burden of Sickle Cell Anaemia in Children under Five, 2010–2050: Modelling Based on Demographics, Excess Mortality, and Interventions. PLoS Med. 2013;10(7):e1001484.
Tables

Table 1. Summary statistics of SCD admission data (outcome) in London and Paris between 1st January 2008 and 31st December 2012

City	Hospital	Average age	M/F ratio	Reason for admission	Number of admissions	SS %	SC %
London	King’s College Hospital	8	1.76	All	471	439	93%
				Pain	283	163	60%
				Fever	62	16	13%
				ACS	47	31	10%
				Other	47	31	10%
	Royal London Hospital	10	1.00	All	445	403	91%
				Pain	258	129	58%
				Fever	77	13	17%
				ACS	25	12	6%
				Other	43	4	10%
	Evelina London Hospital	6	0.78	All	558	510	91%
				Pain	318	150	57%
				Fever	129	35	23%
				ACS	32	11	6%
				Other	29	4	5%
	Total	8	1.19	All	1474	1352	92%
				Pain	859	718	58%
				Fever	268	162	18%
				ACS	104	39	7%
				Other	119	10	8%
Paris	Necker Hospital	8	1.09	All	347	347	100%
				Pain	201	100	58%
				Fever	51	15	3%
				ACS	12	3	4%
				Other	83	24	15%
Table 2. Summary statistics of the meteorological and air quality parameters (exposure) in London and Paris between 1st January 2008 and 31st December 2012.

Weather	London	Paris
Rainfall (mm)	1.69 ± 3.64	1.60 ± 3.68
Maximum Temperature (°C)	14.91 ± 6.42	16.34 ± 7.74
Minimum temperature (°C)	7.72 ± 5.19	9.03 ± 5.79
Maximum wind speed (m/s)	21.26 ± 6.89	10.71 ± 3.64
Maximum pressure (hpa)	1,017.89 ± 9.74	1,016.30 ± 9.14
Maximum relative humidity (%)	91.33 ± 5.95	85.92 ± 8.45
Air quality		
CO (µg/m³)	0.37 ± 0.12	0.62 ± 0.18
NO₂ (µg/m³)	56.18 ± 16.81	35.75 ± 12.98
NOₓ (µg/m³)	126.31 ± 56.49	68.33 ± 36.85
O₃ (µg/m³)	31.57 ± 16.13	45.15 ± 19.76
SO₂ (µg/m³)	3.47 ± 1.89	/
PM10 (µg/m³)	28.62 ± 10.77	30.14 ± 13.22
PM2.5 (µg/m³)	16.65 ± 10.90	20.35 ± 12.05
Black carbon (µg/m³)	5.57 ± 2.25	/
Particle number (µg/m³)	23,919.06 ± 7,457.71	/

Table 3. Effects of day of the week, weekend, season and year on admissions for sickle cell disease in Paris and London between 1st January 2008 and 31st December 2012, based on ANOVA's. Minimum and maximum values are highlighted in green and red, respectively, for columns in which a statistically significant difference was found (P<0.05).

Day of the week	Average daily admissions													
	London	Paris												
	N	All	SS	All	Pain	Fever	ACS	Other	N	All	Pain	Fever	Other	
Monday	253	0.969	0.881	0.556	0.188	0.050	0.088	0.556	0.188	57	0.218	0.123	0.034	0.061
Tuesday	245	0.939	0.851	0.598	0.138	0.065	0.050	0.598	0.138	61	0.234	0.146	0.031	0.046
Wednesday	201	0.770	0.709	0.467	0.107	0.069	0.065	0.467	0.107	52	0.199	0.115	0.027	0.050
Thursday	210	0.805	0.751	0.452	0.149	0.050	0.100	0.452	0.149	54	0.207	0.130	0.019	0.054
Friday	226	0.866	0.797	0.460	0.192	0.069	0.077	0.460	0.192	42	0.161	0.088	0.027	0.038
Saturday	163	0.625	0.571	0.356	0.123	0.061	0.031	0.356	0.123	36	0.138	0.077	0.031	0.023
Sunday	174	0.667	0.613	0.402	0.130	0.034	0.046	0.402	0.130	45	0.172	0.092	0.027	0.046
P-value	<0.0001	<0.0001	0.001	0.116	0.644	0.026	0.508	0.922	0.354	0.202	0.227	0.978	0.574	

Weekend	Average daily admissions													
	London	Paris												
	N	All	SS	All	Pain	Fever	ACS	Other	N	All	Pain	Fever	Other	
Working days	1135	0.870	0.798	0.507	0.155	0.061	0.076	0.507	0.155	266	0.204	0.120	0.028	0.050
Weekend	337	0.646	0.592	0.379	0.126	0.048	0.038	0.379	0.126	81	0.155	0.084	0.029	0.034
P-value	<0.0001	<0.0001	0.001	0.169	0.320	0.005	0.186	0.717	0.056	0.042	0.046	0.899	0.181	

Season	Average daily admissions														
	London	Paris													
	N	All	SS	All	Pain	Fever	ACS	Other	N	All	Pain	Fever	Other		
Spring	328	0.713	0.659	0.450	0.126	0.043	0.039	0.450	0.126	82	0.178	0.117	0.022	0.035	
Summer	360	0.783	0.713	0.404	0.172	0.048	0.089	0.404	0.172	69	0.150	0.070	0.026	0.043	
Autumn	402	0.884	0.811	0.488	0.171	0.066	0.086	0.488	0.171	109	0.240	0.143	0.035	0.053	
Winter	382	0.845	0.774	0.540	0.117	0.071	0.046	0.540	0.117	87	0.192	0.111	0.029	0.051	
Year	Piel et al	Haematologica													
------	-----------	---------------													
	P-value	0.045	0.062	0.029	0.063	0.254	0.008	0.719	0.812	0.017	0.029	0.015	0.700	0.599	
2008	190	0.519	0.475	0.328	0.074	0.044	0.030	0.044	0.328	0.074	84	0.230	0.128	0.033	0.060
2009	353	0.967	0.901	0.545	0.208	0.071	0.077	0.066	0.545	0.208	80	0.219	0.121	0.033	0.049
2010	320	0.877	0.808	0.501	0.167	0.058	0.082	0.068	0.501	0.167	47	0.129	0.077	0.008	0.036
2011	297	0.814	0.759	0.474	0.151	0.060	0.074	0.055	0.474	0.151	69	0.189	0.110	0.030	0.049
2012	312	0.852	0.751	0.503	0.134	0.052	0.063	0.101	0.503	0.134	67	0.183	0.115	0.036	0.033
	P-value	0.001	0.007	0.017	0.339	0.893	0.140	0.019	0.331	0.235	0.107	0.506	0.925	0.135	
Table 4. Summary of the congruence and divergence of statistically significant associations between environmental factors and hospital admissions for sickle cell anemia (SS) in London and Paris between 1st January 2008 and 31st December 2012. Red indicates risk factors, while green indicates protective factors for the following reasons of admissions: all, pain, fever, acute chest syndrome (ACS) or other. Main associations are shown in bold.

Factor	London (n = 1,474)	Paris (n = 347)
Temporal patterns		
Day of the week	Higher on Mondays, lower on Sundays	No differences
Weekend	Lower during weekends	
Season	Higher in Autumn	Lower in Spring
Year	Lower in 2008, higher in 2009	No differences
Meteorological factors		
Rainfall	All, Pain & Fever	No differences
Min Temperature	No differences	Pain
Max Temperature	ACS	
Wind speed	All & Pain	No differences
Atmospheric pressure	All & Pain	
Relative humidity	ACS	No differences
Air quality factors		
Carbon monoxide	Fever	All
Ozone	Fever	No differences
PM$_{2.5}$	Pain & Other	No differences
PM$_{10}$	ACS	No differences
Black carbon	All, Pain	No data
Particle number	Pain	No data
Figures

Figure 1. Forest plot of the association at lags 0 and 1 between environmental factors, including weather and air pollution, and hospital admissions for sickle cell disease (SCD) in London and Paris, based on generalised additive models (GAM) corrected for long-term trends and weekend effect. Panel A shows variables with statistically significant associations, while Panel B shows those with non-statistically significant associations.

Figure 2. Lag plots of relative risks (RR) and 95% confidence intervals (CI) per standard deviation (SD) increase in 15 exposure variables (6 for meteorological conditions and 9 for air quality) based on distributed lag non-linear models (DLNM) with all lags (0-15 days) modelled together using a polynomial constraint for sickle cell anemia (HbSS) admissions in London (red) and Paris (blue) between 1st January 2008 and 31st December 2012. Panel A shows variables with statistically significant associations, while Panel B shows those with non-statistically significant associations. Statistically significant risks are shown in a brighter red or blue for London and Paris, respectively. Data on black carbon and particle number were not available for Paris.

Figure 3. Average daily admissions for sickle cell anemia per day of the week (A), weekday/weekend (B), season (C) and year (D) in three hospitals in London (red) and one hospital in Paris (blue) between 1st January 2008 and 31st December 2012. The number of * indicates the level of statistical significance (***: p<0.001, *: p<0.05).
Relative risks (per 1 SD increment) for sickle cell hospital admissions

A

Rainfall

Maximum wind speed

Maximum pressure

B

Maximum temperature

Minimum temperature

Maximum relative humidity

Apparent temperature

Wind chill

CO

NO2

NOX

O3

SO2

PM10

PM2.5

Black carbon

Particle matter
Associations between environmental factors and hospital admissions for sickle cell disease – Supplementary Information

Frédéric B. Piel, Sanjay Tewari, Valentine Brousse, Antonis Analitis, Anna Font, Stephan Menzel, Subarna Chakravorty, Swee Lay Thein, Baba Inusa, Paul Telfer, Marianne de Montalembert, Gary W. Fuller, Klea Katsouyanni & David C. Rees

Supplementary Figure 1. Map of the hospitals included in this study, in London (left) and Paris (right).
Supplementary Figure 2. Lag plots of relative risks (RR) and 95% confidence intervals (CI) per standard deviation (SD) increase in 15 exposure variables (6 for meteorological conditions and 9 for air quality) based on distributed lag non-linear models (DLNM) with all lags (0-6 days) modelled together using a polynomial constraint for HbSS (red) and HbSC (orange) hospital admissions in London between 1st January 2008 and 31st December 2012. Statistically significant risks are shown in brighter colours.
Supplementary Figure 3. Lag plots of relative risks (RR) and 95% confidence intervals (CI) per standard deviation (SD) increase in 15 exposure variables (6 for meteorological conditions and 9 for air quality) based on distributed lag non-linear models (DLNM) with all lags (0-6 days) modelled together using a polynomial constraint for sickle cell disease hospital admissions in London for pain (red), fever (green) and acute chest syndrome (grey) between 1st January 2008 and 31st December 2012. Statistically significant risks are shown in brighter colours.
Supplementary Table 1. Number of monitoring stations with more than 80% of records available, root mean squared error (RMSE) and normalised root mean square error (NRMSE) associated with the expectation–maximization imputation algorithm for multiple-exposure normal time-series, based on cross-validation using a left-out sample of 100 daily records, in London and Paris over the 5-year study period (1st January 2008 – 31st December 2012).

	CO	NO2	NOX	O3	SO2	PM10	PM2.5	
London								
Background	# of stations included	3 (out of 10)	9 (out of 37)	9 (out of 37)	5 (out of 20)	3 (out of 16)	0 (out of 0)	0 (out of 0)
	RMSE (%)	0.09	6.13	14.43	4.95	1.8	NA	NA
	NRMSE (%)	7.32	7.02	5.85	5.96	15.09	NA	NA
Roadside	# of stations included	4 (out of 11)	21 (out of 76)	21 (out of 76)	6 (out of 13)	2 (out of 15)	16 (out of 71)	1 (out of 12)
	RMSE (%)	0.13	8.78	32.04	5.54	2.84	4.75	NA
	NRMSE (%)	14.37	7.77	6.65	7.00	16.47	7.41	NA
Paris	# of stations included	4 (out of 10)	32 (out of 46)	31 (out of 45)	19 (out of 29)	0 (out of 11)	13 (out of 29)	4 (out of 8)
	RMSE (%)	160.9	6.00	16.03	4.28	NA	3.61	3.57
	NRMSE (%)	11.46	8.75	9.2	4.77	NA	4.04	5.53
Supplementary Table 2. Relative risks (RR) and 95% confidence intervals (CI) from the generalized additive models (GAM) for sickle cell disease admissions and various environmental factors in London and Paris between 1st January 2008 and 31st December 2012. Exposure factors associated to increased/reduced relative risks are shown in red/blue, respectively. The number of admissions falling into each subgroup is shown as N. ACS = Acute chest syndrome.								
City	Genotype	Exposure variable	Reason for admission					
-------------	----------	-------------------	----------------------					
London	SCD							
N								
Rainfall	1.06	1.01	1.12					
Maximum temperature	0.99	0.88	1.11					
Minimum temperature	1.01	0.91	1.11					
Maximum wind speed	1.06	1.00	1.12					
Maximum pressure	0.93	0.88	0.99					
Maximum relative humidity	0.97	0.91	1.02					
CO	1.00	0.94	1.07					
O3	1.03	0.96	1.11					
SO2	0.97	0.91	1.03					
PM10	0.97	0.93	1.06					
Black carbon	1.04	0.97	1.10					
Particle number	1.02	0.96	1.08					
HbSS	N							
N								
Rainfall	1.07	1.02	1.13					
Maximum temperature	1.00	0.89	1.12					
Minimum temperature	1.01	0.91	1.12					
Maximum wind speed	1.06	1.00	1.12					
Maximum pressure	0.94	0.83	1.03					
Maximum relative humidity	0.97	0.87	1.03					
CO	1.00	0.94	1.07					
O3	1.04	0.97	1.12					
SO2	0.97	0.91	1.03					
PM10	0.96	0.90	1.06					
Black carbon	1.03	0.97	1.12					
Particle number	1.02	0.96	1.09					
HbSC	N							
N								
Rainfall	1.01	0.85	1.22					
Maximum temperature	0.95	0.66	1.36					
Minimum temperature	0.99	0.73	1.36					
Maximum wind speed	0.99	0.82	1.19					
Maximum pressure	0.85	0.70	1.02					
Maximum relative humidity	0.95	0.78	1.15					
CO	0.99	0.80	1.21					
O3	1.02	0.84	1.24					
SO2	0.93	0.73	1.18					
PM10	1.00	0.83	1.22					
Black carbon	1.03	0.86	1.32					
Particle number	0.96	0.78	1.20					
Paris	HbSS							
N								
Rainfall	0.98	0.87	1.11					
Maximum temperature	0.80	0.62	1.01					
Minimum temperature	0.85	0.69	1.06					
Maximum wind speed	1.02	0.91	1.14					
Maximum pressure	0.98	0.88	1.10					
Maximum relative humidity	0.97	0.93	1.22					
CO	0.92	0.79	1.06					
O3	0.92	0.80	1.06					
PM10	0.97	0.85	1.09					
PM2.5	0.97	0.86	1.10					
Supplementary Table 3. Relative risks (RR) from the distributed lag non-linear models (DLNM) for sickle cell disease admissions and various environmental factors, at lags up to 6 days, in London and Paris between 1st January 2008 and 31st December 2012. Statistically significant RRs are highlighted in bold. Exposure factors associated to increased/reduced relative risks are shown in red/blue, respectively.

City	Exposure	Lag (days)	0	1	2	3	4	5	6
	Rainfall		1.06	1.03	1.00	0.98	0.97	0.98	1.00
	Maximum temperature		0.94	1.02	1.04	1.03	1.00	1.00	1.03
	Minimum temperature		1.00	0.98	0.99	1.03	1.05	1.04	0.96
	Maximum wind speed		1.06	1.00	0.99	1.00	1.01	1.00	0.96
	Maximum pressure		0.95	0.98	1.00	1.02	1.03	1.02	1.01
	Maximum relative humidity		0.97	1.02	1.02	1.00	0.97	0.97	1.00
London	CO		1.00	1.01	1.01	1.00	0.99	1.00	1.04
	NO₂		0.98	1.01	1.01	0.99	0.98	0.99	1.05
	NOₓ		0.99	1.01	1.01	0.99	0.98	0.99	1.05
	O₃		1.03	1.01	1.01	1.02	1.01	1.01	0.97
	SO₂		0.97	1.01	1.01	0.99	0.97	0.98	1.03
	PM₁₀		0.97	0.99	1.00	1.01	1.01	1.01	0.99
	PM₂₅		1.00	1.01	1.00	0.99	0.97	0.98	1.03
	Black carbon		1.03	1.03	1.01	0.98	0.97	0.99	1.08
	Particle number		1.03	1.00	0.98	0.97	0.98	0.99	1.01
Paris	Rainfall		0.99	1.01	1.02	1.01	1.00	0.97	0.94
	Maximum temperature		0.86	0.98	0.98	0.92	0.88	0.89	1.05
	Minimum temperature		0.97	0.99	0.96	0.92	0.89	0.90	0.97
	Maximum wind speed		1.00	1.04	1.06	1.08	1.06	1.02	0.94
	Maximum pressure		0.98	1.02	1.01	0.98	0.95	0.95	1.02
	Maximum relative humidity		1.09	1.00	0.99	1.00	1.00	0.97	0.88
	CO		0.93	0.97	0.97	0.95	0.95	1.00	1.14
	NO₂		0.94	0.95	0.96	0.97	0.98	1.02	1.08
	NOₓ		0.91	0.99	1.00	0.98	0.96	0.98	1.10
	O₃		1.06	1.02	1.00	0.99	0.99	0.98	0.97
	PM₁₀		0.99	0.99	0.97	0.95	0.96	0.99	1.09
	PM₂₅		1.00	0.97	0.96	0.96	0.98	1.01	1.05
Supplementary Table 4. Relative risks and 95% confidence intervals from the time-series case-crossover generalized additive models (GAM) for sickle cell disease admissions and various environmental factors in London and Paris between 1st January 2008 and 31st December 2012. Exposure factors associated to increased/reduced relative risks are shown in red/blue, respectively. The number of admissions falling into each subgroup is shown as N. ACS = Acute chest syndrome.

City	Genotype	Exposure variable	ALL	Reason for admission	
			RR	Min	Max
			659	1350	119
London	SS	Rainfall	1.10	1.03	1.17
		Maximum temperature	0.93	0.81	1.06
		Minimum temperature	0.99	0.88	1.11
		Maximum wind speed	1.07	1.00	1.15
		Maximum pressure	0.91	0.84	0.97
		Maximum relative humidity	0.98	0.89	1.03
		CO	0.99	0.91	1.07
		NO₂	0.96	0.88	1.05
		NO₃	0.97	0.90	1.06
		O₃	1.07	1.06	1.16
		SO₂	0.95	0.88	1.03
		PM₁₀	0.95	0.87	1.02
		Black carbon	1.03	0.95	1.11
		Particle matter	0.96	0.89	1.04
SC	N	Rainfall	1.04	0.83	1.22
		Maximum temperature	0.86	0.55	1.35
		Minimum temperature	1.05	0.71	1.58
		Maximum wind speed	0.98	0.78	1.24
		Maximum pressure	0.87	0.68	1.10
		Maximum relative humidity	0.95	0.75	1.21
		CO	0.88	0.67	1.17
		NO₂	0.82	0.62	1.10
		NO₃	0.89	0.68	1.16
		O₃	0.94	0.69	1.27
		SO₂	0.86	0.64	1.15
		PM₁₀	0.81	0.60	1.08
		Black carbon	1.08	0.84	1.39
		Particle matter	1.03	0.77	1.31
Paris	SS	Rainfall	0.99	0.87	1.14
		Maximum temperature	0.94	0.71	1.24
		Minimum temperature	0.83	0.65	1.06
		Maximum wind speed	0.99	0.86	1.13
		Mean pressure	1.02	0.89	1.17
		Maximum relative humidity	1.05	0.99	1.23
		CO	0.89	0.75	1.05
		NO₂	0.90	0.75	1.07
		NO₃	0.90	0.76	1.07
		O₃	1.04	0.86	1.26
		PM₁₀	1.00	0.87	1.16
		PM₁₅	1.02	0.88	1.18
Supplementary Table 5. Relative risks and 95% confidence intervals from multiple-exposure generalized additive models (GAM) for sickle cell anemia (HbSS) admissions and selected environmental factors (based on results from single-exposure models) in London and Paris between 1st January 2008 and 31st December 2012. Exposure factors associated to increased/reduced relative risks are shown in red/blue, respectively. The number of admissions falling into each subgroup is shown as N. ACS = Acute chest syndrome.

City	Genotype	Exposure variable (ages 0 & 1)	Rainfall + Ozone	Rainfall + CO	Rainfall + PM$_{2.5}$	Maximum wind speed + Ozone	Maximum wind speed + CO	Maximum wind speed + PM$_{2.5}$	Mean pressure + Ozone	Mean pressure + CO	Mean pressure + PM$_{2.5}$
			RR Min Max	RR Min Max	RR Min Max	RR Min Max	RR Min Max	RR Min Max	RR Min Max	RR Min Max	RR Min Max
London	SS		ALL	PAIN	FEVER	ACS	OTHER				
			1.07 1.01 1.13	1.07 1.00 1.14	1.07 0.95 1.20	1.02 0.84 1.25	1.09 0.93 1.28				
			1.07 1.01 1.13	1.07 1.00 1.14	1.08 0.96 1.20	1.03 0.85 1.25	1.09 0.93 1.27				
			1.07 1.02 1.13	1.07 1.01 1.14	1.07 0.96 1.20	1.02 0.84 1.24	1.11 0.95 1.29				
			1.08 1.00 1.17	1.13 1.02 1.24	0.98 0.82 1.17	0.95 0.72 1.26	1.09 0.84 1.40				
			1.08 1.01 1.16	1.13 1.02 1.21	1.03 0.88 1.20	1.07 0.84 1.35	1.10 0.79 1.26				
			1.09 1.02 1.17	1.14 1.05 1.24	0.96 0.82 1.17	1.01 0.80 1.27	1.15 0.92 1.43				
			0.91 0.82 1.00	0.93 0.82 1.05	0.75 0.59 0.91	1.14 0.80 1.62	1.08 0.77 1.52				
			0.91 0.82 1.00	0.92 0.82 1.04	0.75 0.59 0.80	1.10 0.77 1.58	1.11 0.79 1.56				
			0.91 0.81 0.99	0.92 0.81 1.03	0.75 0.59 0.91	1.12 0.79 1.59	1.08 0.73 1.45				
Paris	SS		347	203	51	12	83				
			0.97 0.86 1.10	1.01 0.87 1.18	0.50 0.33 1.05	/	/				
			0.98 0.85 1.09	1.02 0.88 1.19	0.58 0.42 1.06	/	/				
			1.01 0.87 1.16	1.07 0.89 1.28	0.80 0.56 1.15	/	/				
			0.96 0.83 1.11	1.01 0.84 1.22	0.92 0.63 1.33	/	/				
			0.98 0.85 1.22	1.05 0.90 1.26	0.90 0.62 1.28	/	/				
			0.91 0.73 1.11	0.85 0.67 1.08	1.22 0.71 2.02	/	/				
			0.94 0.78 1.14	0.88 0.69 1.12	1.17 0.71 1.93	/	/				
			0.94 0.78 1.14	0.84 0.66 1.08	1.18 0.71 1.97	/	/				
Supplementary Code 1. Expectation–maximization imputation for multiple-exposure normal time-series of concentrations of air pollutants in London and Paris.

Change variable name accordingly
Options: "background" or "road"
mytype <- "background"
Options: "CO", "NO2", "NOX", "O3", "SO2" (and "PM10", "PM25" if "road")
myvar <- "NOX"

Set Dir as the directory containing the input files
mydata <- read.table(paste(Dir,mytype,"DailyConcentrations_2008to2014_",myvar,".CSV",sep=""), header=T,
sep="",)
Use only data for the study period (2008-2012)
mydata <- mydata[1:1827,]
mydata2 <- data.frame(mydata[,1])
colname <- "date"
j=1
f="~"
Identify columns for which missing data for less than 20% of days
for (i in c(2:ncol(mydata))){
if (sum(is.na(mydata[,i]))<(0.2*nrow(mydata))){
 mydata2 <- cbind(mydata2,mydata[,i])
colname <- c(colname, paste(myvar,colnames(mydata[i]),sep="_"))
 if (j==1) f <- paste(f,myvar,"_",colnames(mydata[i]),sep="") else f <-
paste(f,"+",myvar,"_",colnames(mydata[i]),sep="")
 j=j+1
}
}
colnames(mydata2)<-colname

Fill in the gaps
library (mtsdi)
i <- mnimput(as.formula(f), mydata2, eps=1e-3 ,ts = TRUE ,method="spline", log = FALSE,
sp.control=list(df=rep(7,ncol(mydata2)-1)))
Var.nogap <- predict(i)
Save the output
write.table(Var.nogap, paste(Dir,mytype,"_",myvar,"_nogap.csv",sep=""))

Sensitivity analysis
Replace some measurements with NAs, independently for each column
mydata3 <- na.omit(mydata2)
mydata4 <- mydata3
N <- 100
inds <- matrix(NA,ncol=N,nrow=ncol(mydata3)-1)
for (i in c(2:ncol(mydata3))){
 inds[i-1,] <- round(runif(N,1,nrow(mydata3)))
 mydata4[i,inds[i-1,]] <- NA
}
i4 <- mnimput(as.formula(f), mydata4, eps=1e-3,ts = TRUE, method = "spline", log = TRUE, sp.control =
list(df=rep(7,ncol(mydata2)-1)))
Var.nogap4 <- predict(i4)

Assess prediction performance
library(Hmisc)

Function that returns Root Mean Squared Error
rmse <- function(error) 21

myrmse <- rep(0, ncol(Var.nogap4))
mynrmse <- rep(0, ncol(Var.nogap4))

for (j in c(1:(ncol(mydata3)-1))){
 mypred <- Var.nogap4[,j][inds[,j]]
 myobs <- mydata3[,j+1][inds[,j]]
 mycor <- rcorr(mypred, myobs)
 error <- myobs - mypred
 myrmse[j] <- rmse(error)
 mynrmse[j] <- rmse(error)/(max(myobs) - min(myobs))*100
}
Supplementary Code 2. GAM models and plots

```r
# Code used by Piel et al (2016) Associations between environmental factors and hospital admissions for sickle cell disease
# Last updated: 25 October 2016
# Author: Fred B. Piel

library(mgcv)
library(Epi)
library(forestplot)
library(splines)

setwd("path")
mydata <- read.table("data file", sep="", header=T)

## Tested for "Road air pollution data
mydata <- mydata[1:1827,]
mydata$time <- seq(nrow(mydata))

### Calculate RR, CIs and P-values for London (SCD, SS, SC) and Paris (SS)
mymodel <- matrix(NA, nrow = 17, ncol=16)
colnames(mymodel) <- c("SCD","SCD.CI.low","SCD.CI.high","SC","SC.CI.low","SC.CI.high","SC.p","Paris","Paris.CI.low","Paris.CI.high","Paris.p")
rownames(mymodel) <- c("Rainfall", "Maximum temperature", "Minimum temperature", "Maximum wind speed", "Maximum pressure", "Maximum relative humidity", "Apparent temperature", "Wind chill", "CO", "NO2", "NOX", "O3", "SO2", "PM10", "PM2.5", "Black carbon", "Particle matter")
mymodel <- as.data.frame(mymodel)
y <- 1

# Fill in the data frame for London - SCD, SS, SC
for (j in (68:70)){
k <- 1
for (i in (37:53)){
  myexpo1 <- mydata[,i]
  myoutcome <- mydata[,j]
  mygam1 <- gam(myoutcome ~ myexpo1 + ns(time,df=20) + as.factor(WeekDay), data=mydata,family=quasipoisson)
  eff1 <- cl.in(mygam1,subset="y",Exp=T)
  mymodel[k,c(y,y+1,y+2,y+3)] <- eff1[1,c(5:7,4)]
  k <- k+1
} y <- y+4
}

# Fill in the data frame for Paris - SS
j <- 83
k <- 1
for (i in (54:67)){
  myexpo2 <- mydata[,i]
  myoutcome <- mydata[,j]

```
mygam2 <- gam(myoutcome ~ myexpo2 + ns(time,df=20) + as.factor(WeekDay),
data=mydata,family=quasipoisson)
eff2 <- ci.lin(mygam2,subset="y",Exp=T)
mymodel[k,c(y,y+1,y+2,y+3)] <- eff2[1,c(5:7,4)]
if (i == 65) k <- k+2
else k <- k+1
}
mymodel

Save the table of GAM results
library(xlsx)
write.xlsx(mymodel, "GAM results 20161025.xlsx")

Panel A
mymodelA <- cbind(rownames(mymodel),mymodel[,1:15])
Using log if large range of values
#mymodelA <- cbind(rownames(mymodel),log(mymodel[,1:15]))

Panel B
mymodelB <- cbind(rownames(mymodel[c(2:3,6:17),]), mymodel[c(2:3,6:17),])

Trick to highlight significant variables - TO WORK ON
col=fpColors(box=c("red","darkred","light coral","blue"),line=c("red","darkred","light coral","blue"), line="color="red"",col="red","darkred","light coral","blue"),
title="Relative risks (per 1 SD increment) for sickle cell hospital admissions")

Create a forest plot from the above
mymodel2 <- cbind(rownames(mymodel),mymodel[,1:15])
library(xlsx)
write.xlsx(mymodel2, "GAM results 20161025.xlsx")
xticks=c(round(min(mymodelB[,c(3,7,11,15)], na.rm=T),3),1,round(max(mymodelB[,c(4,8,12,16)], na.rm=T),3)),
col=fpColors(box=c("red", "darkred", "light coral", "blue"),line=c("red", "darkred", "light coral", "blue")))
Supplementary Code 3. DLNM models and plots

Code used by Piel et al (2016) Associations between environmental factors and hospital admissions for sickle cell disease
Last updated: 25 October 2016
Author: Fred B. Piel

library(dlnm)
library(splines)
library(foreign)
library(tsModel)
library(mgcv)

LOAD THE DATA INTO THE SESSION
setwd("path")
mydata <- read.table("data file", sep=";", header=T)
mydata$time <- seq(nrow(mydata))

London and Paris plots all on the same figure
par(mfrow=c(4,4), mar=(c(4,5,1.5,1)))
myvar <- c("Rainfall", "Maximum temperature","Minimum temperature","Maximum wind speed","Maximum pressure","Maximum relative humidity","Apparent temperature","CO","NO2","NOX","O3","SO2","PM10","PM2.5","Black carbon","Particle number")
nlag <- 6
mydlnm.table <- as.data.frame(matrix(NA, nrow = 17*(nlag+1), ncol=8))
colnames(mydlnm.table) <- c("Exposure", "Lag","RR_LON","ci.low_LON","ci.hi_LON",
"RR_PAR","ci.low_PAR","ci.hi_PAR")
mydlnm.table[,1] <- c(rep("Rainfall",(nlag+1)), rep("Maximum temperature",(nlag+1)), rep("Minimum temperature",(nlag+1)), rep("Maximum wind speed",(nlag+1)), rep("Maximum pressure",(nlag+1)),
rep("Maximum relative humidity",(nlag+1)), rep("Apparent temperature",(nlag+1)), rep("CO",(nlag+1)),rep("NO2",(nlag+1)),rep("NOX",(nlag+1)),rep("O3",(nlag+1)),rep("SO2",(nlag+1)),rep("PM10 ", (nlag+1)),rep("PM2.5",(nlag+1)),rep("Black carbon",(nlag+1)),rep("Particle number",(nlag+1)))
x <- "lag0"
for (i in c(1:nlag)){
x <- c(x,paste("lag",i,sep=""))
}
mydlnm.table[,2] <- rep(x,17)
k <- 1
xx <- 1
for (i in c(37:52)){
 # For London - 16 exposure variables
 myexpo1 <- mydata[,i]
 cb1<crossbasis(myexpo1, lag=nlag, argvar=list(fun="lin"), arglag=list(fun="poly",degree=3))
 #cb11<crossbasis(mydata$London_Max_Temp, lag=nlag, argvar=list(fun="lin",cen=FALSE),
 arglag=list(fun="poly",degree=3))
 mydlnm1 <- gam(mydata$LON_SS ~ cb1 + ns(time,df=20) + WeekDay,family=quasipoisson(), data=mydata)
pred1 <- crosspred(cb1,mydlnm1,at=1)
j=0
 if (i %in% c(37:47)) j = i+16
if (i %in% c(49:50)) j = i+15

if (i %in% c(37:47,49:50)){
 # For Paris - 12 exposure variables
 myexpo2 <- mydata[,j]
 cb2<-crossbasis(myexpo2, lag=nlag, argvar=list(fun="lin"), arglag=list(fun="poly",degree=3))
 mydlnm2 <- gam(mydata$Paris_SS ~ cb2 + ns(time,df=20) + WeekDay,family=quasipoisson(), data=mydata)
 pred2 <- crosspred(cb2,mydlnm2,at=1)
 tablag <- cbind(with(pred1,t(rbind(matRRfit,matRRlow,matRRhigh))),
 with(pred2,t(rbind(matRRfit,matRRlow,matRRhigh))))
 colnames(tablag) <- c("RR_LON","ci.low_LON","ci.hi_LON", "RR_PAR","ci.low_PAR","ci.hi_PAR")
 # Different types for x- and y-axis labels depending on position
 if (k %in% c(1,9)) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
 xlab="RR and 95%CI per SD")
 } else if (k %in% c(2,6,8,10,12)) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
 xlab="RR and 95%CI per SD")
 } else if (k == 13) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
 xlab="Lag (days)",ylab="RR and 95%CI per SD")
 } else if (k == 14) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
 xlab="Lag (days)",ylab="")
 }
 abline(h=1)
 # London - Red
 arrows(0:nlag,tablag[,2],0:nlag,tablag[,3],length=0.05,angle=90,code=3,
 col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
 points(0:nlag,tablag[,1],pch=19,
 col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
 # Paris - Blue
 arrows(0:nlag,tablag[,5],0:nlag,tablag[,6],length=0.05,angle=90,code=3,
 col=ifelse(pred2$matRRhigh<1,pred2$matRRlow>1,"#0000FF","#00008050"))
 points(0:nlag,tablag[,4],pch=19,
 col=ifelse(pred2$matRRhigh<1,pred2$matRRlow>1,"#0000FF","#00008050"))
 mydlnm.table[xx:(xx+(nlag)),3:8] <- tablag
} else {
 # London only - 4 exposure variables: Feel temp, SO2, Black carbon and particle number
 tablag <- cbind(with(pred1,t(rbind(matRRfit,matRRlow,matRRhigh))))
 colnames(tablag) <- c("RR_LON", "ci.low_LON", "ci.hi_LON")
 # Different types for x- and y-axis labels depending on position
 if (k %in% c(15,16)) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
 xlab="Lag (days)",ylab="")
 } else if (k == 12) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
 xlab="",ylab="")
 }
 abline(h=1)
 # London - Red
 arrows(0:nlag,tablag[,2],0:nlag,tablag[,3],length=0.05,angle=90,code=3,
 col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
points(0:nlag,tablag[,1],pch=19,
col=ifelse(xor(pred1$matRRhigh<1,pred1$matRLow>1),"#FF0000","#80000050"))
mydlnm.table[xx:(xx+(nlag)),3:5] <- tablag
} k <- k+1
xx <- xx+(nlag+1)
}

Save the table of DLNM results
library(xlsx)
write.xlsx(mydlnm.table, "DLNM results - 7 lags - 20161017.xlsx")

###
2-panel plots
###
Panel 1 - Significant results
par(mfrow=c(2,2), mar=(c(4,5,1.5,1)))
myvar <- c("Rainfall", "Maximum wind speed","CO","Black carbon")
nlag <- 6
mydlnm.table <- as.data.frame(matrix(NA, nrow = length(myvar)*(nlag+1), ncol=8))
colnames(mydlnm.table) <- c("Exposure", "Lag","RR_LON","ci.low_LON","ci.hi_LON",
"RR_PAR","ci.low_PAR","ci.hi_PAR")
mydlnm.table[,1] <- c(rep("Rainfall",(nlag+1)), rep("Maximum wind speed",(nlag+1)), rep("CO",(nlag+1)), rep("Black carbon",(nlag+1)))
x <- "lag0"
for (i in c(1:nlag)){
 x <- c(x,paste("lag",i,sep=""))
}
mydlnm.table[,2] <- rep(x,length(myvar))

k <- 1
xx <- 1
for (i in c(37,40,45,52)){
 # For London - 4 significant exposure variables
 myexpo1 <- mydata[,i]
 cb1<-crossbasis(myexpo1, lag=nlag, argvar=list(fun="lin"), arglag=list(fun="poly",degree=3))
 mydlnm1 <- gam(mydata$LON_SS ~ cb1 + ns(time,df=20) + WeekDay,family=quasipoisson(), data=mydata)
 pred1 <- crosspred(cb1,mydlnm1,at=1)
 j=0
 if (i %in% c(37:48)) j = i+17
 if (i %in% c(50:51)) j = i+16

 if (i %in% c(37:48)){
 # For Paris - 3 exposure variables
 myexpo2 <- mydata[,j]
 cb2<-crossbasis(myexpo2, lag=nlag, argvar=list(fun="lin"), arglag=list(fun="poly",degree=3))
 mydlnm2 <- gam(mydata$Paris_SS ~ cb2 + ns(time,df=20) + WeekDay,family=quasipoisson(), data=mydata)
 pred2 <- crosspred(cb2,mydlnm2,at=1)
 tablag <- cbind(with(pred1,t(rbind(matRRfit,matRLow,matRRhigh))),
 with(pred2,t(rbind(matRRfit,matRLow,matRRhigh))))
 colnames(tablag) <- c("RR_LON","ci.low_LON","ci.hi_LON", "RR_PAR","ci.low_PAR","ci.hi_PAR")
 # Different types for x- and y-axis labels depending on position
 if (k == 1) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
 xlab="",ylab="RR and 95%CI per SD")
 }
else if (k == 2) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k], xlab="",ylab="")
} else if (k == 3) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k], xlab="Lag (days)",ylab="RR and 95%CI per SD")
}
abline(h=1)

London - Red
arrows(0:nlag,tablag[,2],0:nlag,tablag[,3],length=0.05,angle=90,code=3,lwd=4,col=ifelse(xor(pred1$matRRhigh <1,pred1$matRRlow>1),"#FF0000","#80000050"))
points(0:nlag,tablag[1],pch=19,
col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))

Paris - Blue
arrows(0.25:(nlag+.25),tablag[,5],0.25:(nlag+.25),tablag[,6],length=0.05,angle=90,code=3,lwd=4,col=ifelse(xor(pred2$matRRhigh<1,pred2$matRRlow>1),"#0000FF","#00008050"))
points(0.25:(nlag+.25),tablag[4],pch=19,
col=ifelse(xor(pred2$matRRhigh<1,pred2$matRRlow>1),"#0000FF","#00008050"))
mydlnm.table[xx:(xx+(nlag)),3:8] <- tablag
} else {
 # London only - 1 exposure variables: Black carbon
tablag <- with(pred1,t(rbind(matRRfit,matRRlow,matRRhigh)))
colnames(tablag) <- c("RR_LON","ci.low_LON","ci.hi_LON")
Different types for x- and y-axis labels depending on position
if (k == 4) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k], xlab="Lag (days)",ylab="")
} else if (k == 12){
 # plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k], xlab="",ylab="")
}
abline(h=1)

London - Red
arrows(0:nlag,tablag[,2],0:nlag,tablag[,3],length=0.05,angle=90,code=3,lwd=4,col=ifelse(xor(pred1$matRRhigh <1,pred1$matRRlow>1),"#FF0000","#80000050"))
points(0:nlag,tablag[1],pch=19,
col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
mydlnm.table[xx:(xx+(nlag)),3:5] <- tablag
}
k <- k+1
xx <- xx+(nlag+1)

Panel 2 - Non significant associations
###
par(mfrow=c(5,3), mar=(c(4,5,1.5,0.3)))
myvar <- c("Maximum temperature","Minimum temperature","Maximum pressure","Maximum relative humidity","Apparent temperature","Wind chill","NO2","NOX","O3","SO2","PM10","PM2.5","Particle number")
nlag <- 6
mydlnm.table <- as.data.frame(matrix(NA, nrow = length(myvar)*(nlag+1), ncol=8))
colnames(mydlnm.table) <- c("Exposure", "Lag", "RR_LON", "ci.low_LON", "ci.hi_LON",
"RR_PAR", "ci.low_PAR", "ci.hi_PAR")
mydlnm.table[,1] <- c(rep("Maximum temperature", (nlag+1)), rep("Minimum temperature", (nlag+1)),
rep("Maximum pressure", (nlag+1)), rep("Maximum relative humidity", (nlag+1)), rep("Apparent temperature", (nlag+1)), rep("Wind chill", (nlag+1)),
rep("NO2", (nlag+1)), rep("NOX", (nlag+1)), rep("O3", (nlag+1)), rep("SO2", (nlag+1)), rep("PM10", (nlag+1)), rep("PM2.5", (nlag+1)), rep("Particle number", (nlag+1)))
x <- "lag0"
for (i in 1:nlag){
 x <- c(x,paste("lag",i,sep=""))
}
mydlnm.table[,2] <- rep(x,length(myvar))

k <- 1
xx <- 1
for (i in c(38:41,44:46,51,53)){
 # For London - 13 exposure variables
 myexpo1 <- mydata[,i]
 cb1 <- crossbasis(myexpo1, lag=nlag, argvar=list(fun="lin"), arglag=list(fun="poly",degree=3))
#cb11 <- crossbasis(mydata$London_Max_Temp, lag=nlag, argvar=list(fun="lin",cen=FALSE),
#arglag=list(fun="poly",degree=3))
 mydlnm1 <- gam(mydata$LON_SS ~ cb1 + ns(time,df=20) + WeekDay,family=quasipoisson(), data=mydata)
pred1 <- crosspred(cb1,mydlnm1,at=1)
j=0
if (i %in% c(37:48)) j = i+17
if (i %in% c(50:51)) j = i+16

if (i %in% c(38:41,44:46,48,50:51)){
 # For Paris - 11 exposure variables
 myexpo2 <- mydata[,j]
 cb2 <- crossbasis(myexpo2, lag=nlag, argvar=list(fun="lin"), arglag=list(fun="poly",degree=3))
 mydlnm2 <- gam(mydata$Paris_SS ~ cb2 + ns(time,df=20) + WeekDay,family=quasipoisson(), data=mydata)
pred2 <- crosspred(cb2,mydlnm2,at=1)
tablag <- cbind(with(pred1,t(rbind(matRRfit,matRRlow,matRRhigh))),
with(pred2,t(rbind(matRRfit,matRRlow,matRRhigh))))
 colnames(tablag) <- c("RR_LON","ci.low_LON","ci.hi_LON","RR_PAR","ci.low_PAR","ci.hi_PAR")
 # Different types for x- and y-axis labels depending on position
 if (k %in% c(1,4,7)) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
xlab="" ,ylab="RR & 95%CI per SD",cex=1.5)
 }
 else if (k %in% c(2,3,5,6,9)) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
xlab="" ,ylab="" , cex=1.5)
 }
 else if (k %in% c(11:12)) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k],
xlab="" ,ylab="Lag (days)",cex=1.5)
 }
 abline(h=1)
 # London - Red
 arrows(0:nlag,tablag[,2],0:nlag,tablag[,3],length=0.05,angle=90,code=3, lwd=2,
col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
 points(0:nlag,tablag[,1],pch=19,
col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
 # Paris - Blue
arrows(0.25:(nlag+.25),tablag[,5],0.25:(nlag+.25),tablag[,6],length=0.05,angle=90,code=3,lwd=2,col=ifelse(xor(pred2$matRRhigh<1,pred2$matRRlow>1),"#0000FF","#00008050"))

points(0.25:(nlag+.25),tablag[,4],pch=19,col=ifelse(xor(pred2$matRRhigh<1,pred2$matRRlow>1),"#0000FF","#00008050"))

mydlnm.table[xx:(xx+(nlag)),3:8] <- tablag
} else {
 # London only - 4 exposure variables: SO2 and particle number
 tablag <- with(pred1,t(rbind(matRRfit,matRRlow,matRRhigh)))
 colnames(tablag) <- c("RR_LON","ci.low_LON","ci.hi_LON")
 # Different types for x- and y-axis labels depending on position
 if (k == 10) {
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k], xlab="",ylab="RR & 95%CI per SD")
 }
 else if (k == 13){
 plot(-0.5:(nlag+.5),-0.5:(nlag+.5),type="n", bty="n", ylim=c(min(tablag),max(tablag)), main= myvar[k], xlab="Lag (days)",ylab="RR & 95%CI per SD")
 }
 abline(h=1)
 # London - Red
 arrows(0:nlag,tablag[,2],0:nlag,tablag[,3],length=0.05,angle=90,code=3,lwd=2,col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
 points(0:nlag,tablag[,1],pch=19,col=ifelse(xor(pred1$matRRhigh<1,pred1$matRRlow>1),"#FF0000","#80000050"))
 mydlnm.table[xx:(xx+(nlag)),3:5] <- tablag
 k <- k+1
 xx <- xx+(nlag+1)
}