Pressurized intraperitoneal aerosol chemotherapy in nonresectable carcinomatosis from colorectal cancer

Nicolae BACALBASA1,2, Irina BALESCU3, Adnan Al ALOUL4,5

1 Department of Visceral Surgery, Center of Excellence in Translational Medicine, “Fundeni” Clinical Institute, Bucharest, Romania
2 Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
3 Department of Surgery, Ponderas Academic Hospital, Bucharest, Romania
4 Department of Surgery, Ramnicu Sarat County Hospital, Buzau, Romania
5 Doctoral School, “Titu Maiorescu” University, Bucharest, Romania

Abstract

Peritoneal carcinomatosis colorectal cancer unfortunately represents a frequently encountered condition during the natural history of this malignancy which has been considered for a long period of time as a terminal event. However, once new surgical and oncological therapies have been reported significant changes have been reported in the management of these cases. Therefore, cytoreductive surgery to no residual disease as a stand-alone procedure or in association with intraperitoneal hyperthermic chemotherapy has been proposed and significant benefits in terms of survival have been reported; unfortunately not all patients with peritoneal carcinomatosis are candidates for this combined approach, especially if extended, non-resectable lesions are present. In such cases pressurized intraperitoneal aerosol chemotherapy (PIPAC) has been proposed with promising results. The aim of the current paper is to review the most important studies conducted on this issue.

Keywords: PIPAC, peritoneal carcinomatosis, morbidity, survival

INTRODUCTION

Colorectal cancer represents one of the most commonly encountered malignancies worldwide and, in the meantime an important cause of cancer related death (1). Although rectal cancer usually leads to the apparition of alarming signs such as constipation, rectal bleeding, abdominal pain and modifications of the aspect of the stool, a significant number of patients ignore these signs and are submitted to colonoscopy only late during the course of the disease (2-4); therefore, the final diagnosis is established lately during the course of the disease, when local invasion of the surrounding organs or distant metastases are already present. When it comes to the ways of dissemination, the most commonly encountered routes are represented by the peritoneal and hematogenous ones, leading to the apparition of peritoneal nodules and parenchymatous metastases respectively (5-8). While the development of parenchymatous, lesions is considered as the sign of systemic spread of the disease, the apparition of peritoneal lesions is rather considered as the...
sign of local spread of the malignant cells via the peri-
toneal route, facilitated by the presence of small
amounts of free peritoneal liquid (9,10).

**THERAPEUTIC STRATEGIES IN PATIENTS
WITH PERITONEAL CARCINOMATOSIS
FROM COLORECTAL CANCER**

Once the above mentioned theory has been widely
approved, patients presenting peritoneal carcinomato-
sis have been considered lately as cases with locally
disseminated disease and were therefore submitted to
surgery with curative intent (11). The most efficient
such therapeutic strategy is represented by cytoreduc-
tive surgery to no residual disease in association with
intraperitoneal heated chemotherapy (12-14). The
method proved to be an efficient one and the results in
terms of survival demonstrated a significant benefit;
therefore, it became widely accepted. However, the
most important condition in order to maximize the ef-
fects in terms of survival is represented by achieving a
complete cytoreductive surgery, desiderate which
might be difficult to be obtained especially when dis-
seminated and extended peritoneal lesions are pres-
ent. In order to diminish the number of cases in which
this method is not feasible and to minimize the effects
of systemic therapies, attention was focused on identi-
fying other therapeutic strategies which might provide
a direct administration of the chemotherapeutic agent.
Therefore, direct introduction of the cytostatic agent
into the peritoneal cavity is expected to maximize the
local effect of drug and to minimize the level of system-
ic adverse effects. Meanwhile, certain authors pro-
posed the administration of pressurized agents in or-
der to increase the rate of local absorption and the
bioavailability (15-17).

**THE PRINCIPLES OF PRESSURIZED
INTRAPERITONEAL AEROSOL
CHEMOTHERAPY (PIPAC)**

PIPAC represents a laparoscopic controlled proce-
dure of intraperitoneal administration of low dose cy-
tostatic agent as an aerosol which combines multiple
advantages: therefore local instillation of pressurized
chemotherapeutic agents provides low systemic ab-
sorption, low systemic toxicity, homogenous intraperi-
toneal distribution and more appropriate tissue pene-
tration when compared to standard intravenous
chemotherapy (18-20).

The method has been initially investigated in the
setting of unresectable peritoneal carcinomatosis from
different origins, the type of the administered cytotoxic
agent depending on the origin of the peritoneal le-
sions. Due to the relatively low number of cases sub-
mitted to this therapeutic strategy, specific analysis
according to the type of tumor and to the type of cyto-
toxic agent were initially impossible to be performed
(21-24). Therefore at that moment it was very difficult

to establish which cases could benefit most from this
therapeutic strategy.

**THE EFFECT OF PIPAC ON UNRESECTABLE
PERITONEAL CARCINOMATOSIS FROM
COLORECTAL CANCER**

The first studies which aimed to investigate the role
of PIPAC in treating unresectable peritoneal meta-
estases from colorectal cancer were conducted by Teixeira
and Demtröder on 20 patients and respectively 17 pa-
ients submitted to oxaliplatin based PIPAC for unre-
sectable peritoneal metastases from colorectal cancer.
In the first group the total number of performed proce-
dures was of 37 while in the second group 48 proce-
dures were performed. Both studies demonstrated
into a retrospective manner that this procedure is asso-
ciated with low morbidity rates due to a low systemic
toxicity and to improved rates of cytoreductive surgery;
however, the exact percent of cases in which the proce-
dure was effective was difficult to be established as
long as in certain cases the intraperitoneal route of ad-
ministration was associated with intravenous systemic
chemotherapy (25,26). However other studies came to
demonstrate that performing such therapies might in-
duce a significant degree of local inflammation, making
more difficult a future cytoreductive procedure (27).

An interesting study which has been recently pub-
lished on this issue was conducted by Gockel et al. and
cluded 13 patients with unresectable carcinomatosis
from intestinal origin who were submitted to 26 PIPAC
procedures between 2015 and 2018. The median peri-
toneal cancer index before the first procedure was 14
while the median volume of free intraperitoneal fluid
was of 10 l; among the 13 cases there were six patients
who received at least two procedures of PIPAC and re-
ported significant decrease of the ascites volume, while
the increase of the amount of ascites was reported in a
single case. Meanwhile, peritoneal biopsies which
were retrieved during each PIPAC procedure demon-
strated the decrease of the number of tumoral cells in
seven cases, a constant number of malignant cells in
five cases while in three cases no respond was ob-
erved, increased number of malignant cells being re-
ported after 2 PIPAC procedures. Meanwhile the au-
thors demonstrated a strong correlation ship between
the number of tumoral cells and the amount of free
asites. When it comes to the postoperative outcomes,
no severe complications were reported; therefore,
one of the cases developed systemic renal or hepatic
toxicity; meanwhile transient modifications of the circulating levels of leukocytes and C reactive protein have been reported. As for the long term outcomes, the authors reported an overall survival of 303 days (28).

THEROLEOFREPEPETITIVED & ELECTROSTATIC PIPAC

In order to maximize the effect of PIPAC, recent studies proposed a new technique for PIPAC (29,30). Electrostatic precipitation of the aerosols during PIPAC represents a novel therapeutic strategy which aims to increase the amounts of the cytotoxic agent at peritoneal level and to increase in the meantime tissue penetration of the drug (29). However, at the present moment data published so far underlined the fact that the procedure is associated with a significant deterioration of the quality of life especially within the first week after the administration of the cytotoxic agent, the systemic absorption of the drug being considerably higher than initially expected (30). Therefore the method is still under evaluation.

CONCLUSIONS

PIPAC represents a novel therapeutic strategy which has been tested in the last years in cases with unresectable peritoneal metastases from different primaries including colorectal cancer in order to offer a more efficient palliative effect and even to convert the lesions from unresectable to resectable and therefore to maximize the possibility of performing complete cytoreductive surgery. The method is associated with lower rates of systemic toxicity due to the low rates of systemic absorption; however, in the meantime it can induce local modifications such as severe intraperitoneal inflammation leading in this way to a more difficult surgical procedure whenever cytoreduction is tempted. However, larger, prospective studies are still needed in order to identify which cases could benefit most from this novel therapeutic strategy.

REFERENCES

1. van de Velde CJ, Boelens PG, Borras JM, Coebergh JW, Cervantes A, et al. EURECCA colorectal: multidisciplinary management: European consensus conference colon & rectum. Eur J Cancer. 2014;50(1):e1-e34.
2. Weilhorn D, Arienyt V, Solsky I, Umadat G, Levine R, Rapkin B, Leider J, In H. Diagnosis Setting and Colorectal Cancer Outcomes: The Impact of Cancer Diagnosis in the Emergency Department. Journal of Surgical Research. 2020;255:164-171.
3. Muller P, Woods L, Walters S. Temporal and geographic changes in stage at diagnosis in England during 2008-2013: A population-based study of colorectal, lung and ovarian cancers. Cancer Epidemiol. 2020;67:101743.
4. Chow Z, Osterhaus P, Huang B, Chen Q, Schoenberg N, Dignan M, Evers M, Bhakta A. Factors Contributing to Delay in Specialist Care After Colorectal Cancer Diagnosis in Kentucky. J Surg Res. 2021;259:420-430.
5. Fidler I. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003;3:453-458.
6. Rihimäki M, Hemminki A, Sundquist J, Hemminki K. Patterns of metastasis in colon and rectal cancer. Sci Rep. 2016;6:29765.
7. Hugen N, van de Velde CJH, de Will JHW, Nagelagaal ID. Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 2014;25(3):651-657.
8. Holch JW, Demmer M, Lammersdorf C, Michl M, Schulz C, von Einem JC, Modest DP, Heinemann V. Pattern and Dynamics of Distant Metastases in Metastatic Colorectal Cancer. Vis Med. 2017;33(1):70-75.
9. Lipyc M, Yaeger R. Impact of somatic mutations on patterns of metastasis in colorectal cancer. J Gastrointest Oncol. 2015;6:645-649.
10. Missiaglia E, Jacobs B, D’Ardo G, Di Narzo AF, Soneson C, Budinska E, Popovic V, et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol. 2014;25:1995-2001.
11. Kamada Y, Hida K, Ishibashi H, Sako S, Mizumoto A, Ichinose M, Padmanabhan N, Yoshida S, Yonemura Y. Thirty-three long-term survivors after cytoreductive surgery in patients with peritoneal metastases from colorectal cancer: a retrospective descriptive study. World J Surg Oncol. 2021;19(1):31.
12. Hentzen JERK, Rovers KP, Kuipers H, van der Plas WY, Been LB, et al. Impact of synchronous versus metachronous onset of colorectal peritoneal metastases on survival outcomes after cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC): a multicenter, retrospective, observational study. Ann Surg Oncol. 2019;26:2210-2221.
13. Verwaal VJ, van Tinteren H, van Ruth S, Zoetmulder FA. Predicting the survival of patients with peritoneal carcinoma of colorectal origin treated by aggressive cytoreduction and hyperthermic intraperitoneal chemotherapy. Br J Surg. 2004;91:739-746.
14. Le QT, Fu KK, Kaplan M, Terris DJ, Fee WE, Goffinet DR. Treatment of maxillary sinus carcinoma: a comparison of the 1997 and 1977 American Joint Committee on cancer staging systems. Cancer. 1999;86:1700-1711.
15. Graversen M, Lundell L, Fristrup C, Pfeiffer P, Mortensen BM. Pressure-enhanced IntraPeritoneal Aerosol Chemotherapy (IPAC) as an outpatient procedure. Pleura. 2018;3:20180128.
16. Alyami M, Mercier F, Siebert M, Bonnot PE, Laplace N, Villeneuve L, Passot G, Glehen O, Bakrin N, Kepenekian V. Unresectable peritoneal metastasis treated by pressurized intraperitoneal aerosol chemotherapy (IPAC) leading to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Eur J Surg Oncol. 2021;47(1):128-133.
17. Graversen M, Fristrup C, Kristensen TK, Larsen TR, Pfeiffer P, Mortensen MB, Detlefsen S. Detection of free intraperitoneal tumour cells in peritoneal lavage fluid from patients with peritoneal metastasis before and after treatment with pressurised intraperitoneal aerosol chemotherapy (IPAC). J Clin Pathol. 2019;72:368-3672.
18. Facy O, Al Samman S, Magnin G, Giringhelli F, Ladoire S, Chauffert B, Rat P, Ortega-Deballon P. High pressure enhances the effect of hyperthermia in intraperitoneal chemotherapy with oxaliplatin: an
experimental study. *Ann Surg.* 2012;256:1084-1088.

19. Esquis P, Consolo D, Magnin G, Pointaire P, Moretto P, Yrma MD, et al. High intra-abdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental peritoneal carcinomatosis. *Ann Surg.* 2006;244:106-112.

20. Eveno C, Haidara A, Ali I, Pimpie C, Mirshahi M, Pocard M. Experimental pharmacokinetics evaluation of chemotherapy delivery by PIPAC for colon cancer: first evidence for efficacy. *Pleura Peritoneum.* 2017;2:103-109.

21. Robella M, Vaira M, De Simone M. Safety and feasibility of pressurized intraperitoneal aerosol chemotherapy (PIPAC) associated with systemic chemotherapy: an innovative approach to treat peritoneal carcinomatosis. *World J Surg Oncol.* 2016;14:128.

22. Nowacki M, Alyami M, Villeuneuve L, et al. Multicenter comprehensive methodological and technical analysis of 832 pressurized intraperitoneal aerosol chemotherapy (PIPAC) interventions performed in 349 patients for peritoneal carcinomatosis treatment: an international survey study. *Eur J Surg Oncol.* 2018;44:991-6.

23. Willaert W, Sessink P, Ceelen W. Occupational safety of pressurized intraperitoneal aerosol chemotherapy (PIPAC). *Pleura Peritoneum.* 2017;2:121-8.

24. Blanco A, Giger-Pabst U, Solass W, Zieren J, Reymond MA. Renal and hepatic toxicities after pressurized intraperitoneal aerosol chemotherapy (PIPAC). *Ann Surg Oncol.* 2013;20:2311-2316.

25. Demtröder C, Solass W, Zieren J, Strumberg D, Giger-Pabst U, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy with oxaliplatin in colorectal peritoneal metastasis. *Colorectal Dis.* 2016;18:364-371.

26. Teixeira Farinha H, Grass F, Labgaa I, Pache B, Demartines N, Hubner M. Inflammatory response and toxicity after pressurized intraperitoneal aerosol chemotherapy. *J Cancer.* 2018;9:13-20.

27. Siebert M, Alyami M, Mercier F, Gallice C, Villeuneuve L, Berard F, Giehen O, Bakrin N, Kepenekian V. Severe hypersensitivity reactions to platinum compounds post-pressurized intraperitoneal aerosol chemotherapy (PIPAC): first literature report. *Cancer Chemother Pharmacol.* 2019;83:425-430.

28. Gockel I, Jansen-Winkelin B, Haase L, Niebisch S, Moulla Y, Lyros O, Lordick F, Schierle K, Wittekind C, Thieme R. Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC) in patients with peritoneal metastasized colorectal, appendiceal and small bowel cancer. *Tumori.* 2020;106(1):70-78.

29. Kakchekeeva T, Demtröder C, Herath NI, Griffiths D, Torkington J, Solass W, Dutreix M, Reymond MA. In Vivo Feasibility of Electrostatic Precipitation as an Adjunct to Pressurized Intrapertitoneal Aerosol Chemotherapy (ePIPAC). *Ann Surg Oncol.* 2016;23(5):592-596.

30. Lurvink R, Rovers K, Tajzai R, Wassenaar E, Moes FD, Pluimakers G, Wiezer M, Burger J, Nienhuis S, Boerma D, Deenen M, de Hingh I. Quality of life and the systemic pharmacokinetics of oxaliplatin in patients with unresectable peritoneal metastases from colorectal cancer treated with repetitive electrostatic pressurized intraperitoneal aerosol chemotherapy (ePIPAC): The CRC-PIPAC trial. *Ann Oncol.* 2020;31(S3):211.