NATIONAL DEBTS AND GOVERNMENT DEFICITS WITHIN EUROPEAN MONETARY UNION: STATISTICAL EVIDENCE OF ECONOMIC ISSUES

Mario COCCIA

CNR -- NATIONAL RESEARCH COUNCIL OF ITALY

&

ARIZONA STATE UNIVERSITY

COCCIALAB

at CNR -- NATIONAL RESEARCH COUNCIL OF ITALY
Collegio Carlo Alberto, Via Real Collegio, n. 30-10024, Moncalieri (TO), Italy
E-mail: mario.coccia@cnr.it
National debts and government deficits within European Monetary Union: Statistical evidence of economic issues

Mario Coccia

CNR -- National Research Council of Italy & Arizona State University

E-mail: mario.coccia@cnr.it

Current Address: COCIALB at CNR -- National Research Council of Italy Collegio Carlo Alberto, Via Real Collegio, n. 30, 10024-Moncalieri (Torino), Italy

Mario Coccia ORCID: http://orcid.org/0000-0003-1957-6731

Abstract.
This study analyzes public debts and deficits between European countries. The statistical evidence here seems in general to reveal that sovereign debts and government deficits of countries within European Monetary Union-in average- are getting worse than countries outside European Monetary Unification, in particular after the introduction of Euro currency. This socioeconomic issue might be due to Maastricht Treaty, the Stability and Growth Pact, the new Fiscal Compact, strict Balanced-Budget Rules, etc. In fact, this economic policy of European Union, in phases of economic recession, may generate delay and rigidity in the application of prompt counter-cycle (or acyclical) interventions to stimulate the economy when it is in a downturn within countries. Some implications of economic policy are discussed.

Keywords: National Debt, Public Debt, Debt Crises, Deficit, European Monetary Unification, European Union, Economic Recession, Monetary and Fiscal Policy, Economic Growth.

JEL codes: E00; H60; H62; H63; H69; F43; F44; O52.

1 I gratefully acknowledge financial support from the CNR - National Research Council of Italy for my visiting at Arizona State University (Grant CNR - NEH Memorandum n. 0072373-2014 and n. 0003005-2016) where this research started in 2016.
Introduction

Public debt encompasses all the liabilities that are debt instruments owed by governments and public administrations, public companies and other economic subjects of nations (Barro, 1979). Public debt is also a vital instrument for governments to finance public expenses, especially when it is difficult to increase taxes and/or reduce expenditure (Gnegne and Jawadi, 2013). However, a high public debt is also a critical problem for countries with weak economic system because may generate economic instability and sovereign debt crisis (Domar, 1944; Hall and Taylor, 1993; Amaral and Jacobson, 2011). In addition, high Public Debt-to-GDP ratio of countries is considered an economic issue for investors and policymakers, since it can negatively affect capital market and, in the long run, reduce investments, employment and economic growth (Coccia, 2013).

The vast literature in public economics and political economy of growth has analyzed several factors of the public debt across countries over time (Égert, 2015; Buiatti et al., 2014; Elgin and Uras, 2013). However, the precise evolution of public debt between countries within and outside European Monetary Union and related European policies, before and after the introduction of the Euro currency, is overlooked. In light of the continuing importance of economic analyses concerning the evolution of public debt in current economies, this study seeks to clarify patterns of public debt across European countries to shed some empirical light on recent trends. This study focuses specifically on the following research questions:

- How is the evolution of public debt across European countries, before and after the introduction of the Euro currency?
- Have countries within European Monetary Union an evolution of the public debt similar or different to other countries?
This article endeavors to explain whenever possible, these research questions with statistical analyses. Results can clarify the evolution of public debt of European countries for supporting an appropriate political economy of growth directed to support economic growth and stability of European economic system as a whole over the long run.

Theoretical framework

High public debt and large fiscal deficit are a common feature among countries in Europe (Tamegawa, 2016). Nations with high public debt can have problems in international lending if they do not support a sustainable commitment to repay the lenders in order to keep interest rates low on sovereign debt. The credibility of sovereign debt depends not only on the reputational consequences of borrowers but also on institutions that might prevent default from occurring (Coccia, 2017i). However, the solvency and liquidity of nations cannot solve problems of high sovereign debt, because creditors in international financial markets do not have the means to seize the assets of a defaulting borrower (Elgina and Uras, 2013; Melina et al., 2016).

Lane (2012) claims that European countries have different debt histories. Gogas et al. (2014, p. 1) argue that several European nations in the last decades have had sovereign debt crises and have faced the threat of default, such as Greece. In particular, the financial crisis from 2008 have affected the Eurozone and, combined with economic recessions, increased the public debt ratio from 67.4% in 2008 to 93.9% of Gross Domestic Product (GDP) in the 2014. Greece has reported larger-than-expected increases in fiscal deficits and elevated from 107.9 to 174.1% public debt ratio over 2008-2014 period (Lane, 2012). Ireland has increased this ratio from 27.5 to 123.7%. Italy, Belgium, Spain, France, etc. have also increased levels of public debts-to-GDP ratios in the same

2 About the role of new technology, R&D investment and research labs for economic growth, see: Aghion and Howitt (1998), Calabrese et al., 2005; Calcaletti et al., 2003; Cavallo et al., 2014, 2014a, 2015; Chagpar and Coccia, 2012; Coccia, 2001, 2002, 2003, 2004, 2004a, 2005, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f, 2005g, 2005h, 2006, 2006a, 2008, 2008a, 2008b, 2009, 2009a, 2009b, 2009c, 2009d, 2010, 2010a, 2010b, 2010c, 2010d, 2010e, 2010f, 2011, 2012, 2012a, 2012b, 2012c, 2012d, 2013, 2013a, 2014, 2014a, 2014b, 2014c, 2014d, 2014e, 2014f, 2015, 2015a, 2015b, 2015c, 2016, 2016a, 2016b, 2017, 2017a, 2017b, 2017c, 2017d, 2017e, 2017f, 2017g, 2017h, 2017i, 2017j, 2018, 2018a, 2018b, 2018c, 2018d, 2018e, 2018f, 2018g; Coccia and Bellitto, 2018; Coccia and Bozeman, 2016; Coccia and Cadario, 2014; Coccia and Finardi, 2012; Coccia et al., 2010, 2012, 2015; Coccia and Rolfo, 2002, 2007, 2008, 2009, 2010, 2013; Coccia and Wang, 2015, 2016; Rae (1834); Benati and Coccia, 2017.
period (Matesanz and Ortega, 2015; cf. also, Buiatti et al., 2014; Alesina, 1988 for Italian case study). Other countries, such as Germany and Austria have experienced softer deterioration on their public debt positions, whereas Norway has experienced a reduction in its public debt stock (Matesanz and Ortega, 2015). Neaime (2015, p. 2) argues that the accumulated EU’s national debts are the result of both economic and political/institutional factors. Baxter (1871) is one of the first scholars that analyzed the evolution of public debts across European countries and the pressure of public debt upon the population. Baxter (1871, p. 48) argued, about countries of the Southern Europe, that:

> the history of the debts of the Latin nations…their people are careful and frugal, but their rulers are too often reckless and spendthrift, prone to overspend their income in time of peace and still more largely in time of war; … and sometimes unable to pay even the interest. Perhaps their tendency to arbitrary and therefore irresponsible government has too much to do with the succession of deficits

Current public debt histories of some countries seem to be similar to those of about 150 years ago described by Baxter (1871). As a matter of fact, the recent high debts and financial crises of some countries have generated damages on European and world economy due to weak and unstable public sectors’ finances. Sargent (2012) claims that the high sovereign debt can contribute to maintain persistently high unemployment in Europe (cf., Coccia, 2013). Policy makers and economists have thus been recently devoting efforts in trying to predict financial and debt crises before they occur, given the potential damage on several economic systems. In particular, in the presence of debt crises in Europe, the solvency of some European countries has become a major source of concern for the European Union (EU) as a whole, which is endangering its financial/economic integration efforts, and the successful monetary unification. In addition, some scholars suggest that austerity measures of countries may not resolve the problem of high public debts and should be accompanied with other political/institutional corrective measures (Coccia, 2017i, 2013). Matesanz and Ortega (2015, p. 757) construct a network of public debt-to-GDP quarterly ratios from 2000 to 2014 and show, in times of crisis, that:
countries’ public debts tend to synchronize their changes, increasing global synchronization and hence dramatically decreasing the number of communities in the network. As a result, a homogenization in the member’s co-movements, producing in this way a network topological organization highly susceptible to spread the effects of the crisis among the countries. Finally, at the onset of the financial crisis the new network arrangement that appears seems to be directly related to the debt-to-GDP level itself which clearly puts into difficulties for controlling the public debt dynamic.

Many studies have focused on determinants of sovereign debt defaults, the implied interest rates paid on sovereign debt and impact of high public debt on patterns of economic growth (Elgin and Uras, 2013; Barro, 1974; Dell’Erba et al., 2013; Modigliani, 1961). Other studies have investigated possible non-linear relations between public debt and growth as well as discussed to what extent debt accumulation has a detrimental and causal effect on GDP growth (see, Panizza and Presbitero, 2014). Reinhart and Rogoff (2010) pointed out that public debt as a share of GDP may have a detrimental effect on the rate of growth of real GDP; in particular, public debt-to-GDP ratio higher than 90%, can slow down economic growth considerably (cf. also Coccia, 2013). Eberhardt and Presbitero (2015) find some support for a negative relationship between public debt and long-run growth of countries (cf., Êgert, 2015). In addition, endogenous growth models suggest that public debt has generally a negative effect on long-run growth (Barro, 1990). In particular, high public debt can limit the effectiveness of productive public expenditures on long-run growth (Teles and Mussolini, 2014), create uncertainty or expectations of future financial repression (Cochrane, 2011), and increase sovereign yield spreads (Codogno et al., 2003) leading to higher real interest rates and lower private investment (Laubach, 2009).

Economic literature considers different approaches to limit government deficit and public debt, based on Neoclassical, Keynesian and Ricardian School of economics. Many studies analyzed the way how government budget deficits should be financed: e.g., by increasing taxes and/or by issuing new debt (Gogas et al., 2014; Eichengreen and Panizza, 2016). Teles and Mussolini (2014, p. 1) propose a theoretical model of endogenous
growth that show how the level of the public debt-to-gross domestic product (GDP) ratio can negatively impact the effect of fiscal policy on growth. This effect occurs because government indebtedness extracts a portion of young people's savings to pay interest on debts. Therefore, the payment of debt interest requires an allocation exchange system across generations. Moreover, the large amount of debt across most developed countries also raises the discussion that cutting taxes should take into account. Although a tax cut is expected to improve long-run situation, it will undoubtedly lead to a worsening of the short-run debt situation. Tsuchiya (2016) suggests that an economy with a higher population growth has more room for a tax cut while satisfying its long-run government budget constraint. The dynamic effect of a tax cut improves the government budget situation in the long run but it is likely that low population growth leads to the deterioration of a long-run government budget. Concerning the solution of issuing new debt, Stasavage (2016) argues that states had the best access to credit when institutions gave government creditors privileged access to decision making, while restricting the influence of those who paid the taxes to reimburse debts. This situation sometimes does not improve the welfare of countries and create latent social and political issues.

Several governments and institutions in Europe, in order to reduce large government deficits, expenses and high public debts of nations, support specific measures and austerity programs based on Maastricht Treaty, the Stability and Growth Pact, the new Fiscal Compact in the Economic and Monetary Union (EMU), the creation of fiscal policy committees, etc. (Gnegne and Jawadi, 2013). However, the precise effect of these measures on the evolution of public debt across different economic systems in Europe, in the presence of financial turmoil and market turbulence, is uncertain and hardly known. The main aim of this article is to analyze the evolution of public debt and fiscal deficits across countries within and outside European Monetary Unification, during the period preceding and successive the introduction of the Euro currency. Results can provide insights on recent trends of public debt to support an appropriate political economy of growth.
Materials and methods

Measures

Macroeconomic variables under study, considering the dataset by Eurostat (2016), are:

- General government gross debt as a % of the GDP
- General government deficit/surplus as a % of the GDP
- Current taxes on income, wealth, etc. as a % of the GDP
- Taxes on production and imports as a % of the GDP
- General government fixed investment as a % of the GDP
- Total unemployment rate %
- Crude rate of natural change per 1000 persons

Data are over 1995 – 2014 period (Eurostat, 2016).

Data Analyses and Procedures

Countries analyzed in this study are divided in two clubs:

- Countries within European Monetary Union and with E.U. political economy (CEC): Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain.
- Countries outside European Monetary Union (CNEC): Sweden, United Kingdom, Denmark, Norway and Poland.

Remark: European Union (E.U.) political economy is based on Maastricht Treaty, the Stability and Growth Pact, the new Fiscal Compact in the Economic and Monetary Union (EMU).
The statistical analysis in the sets of countries just mentioned (CEC and CNEC) is performed considering two sub-periods, before and after the introduction of the Euro currency, i.e.,

- **Before** - Euro Currency period (BEC): 1995-2000
- **After** - Euro Currency period (AEC): 2001-2014

Considering the theoretical framework in economic literature, the focal hypothesis **HP** of this study is:

- **HP**: Countries within European Monetary Union and with E.U. political economy, from 2001, have deteriorated and increased public debt and government deficit in comparison to Countries outside European Monetary Union.

This study endeavors to support this HP with statistical evidence.

In particular, a preliminary analysis is performed with trends and bar graphs considering the arithmetic mean of variables across countries within and outside European Monetary Union, before and after the introduction of the Euro Currency.

The main statistical analysis is performed with regression analysis, by applying the linear model as follows:

\[Y_{i,t} = \lambda_0 + \lambda_1 T + u_{i,t} \quad i=1, \ldots, n \text{ (countries)} \]

where:

- Dependent variable \(Y_{i,t} \) = general government gross debts as a % of the GDP
- \(T \) = time, which is the explanatory variable
- \(U_{i,t} \) is error term

The goodness of fit is performed with the coefficient of determination \(R^2 \). The relationships are estimated with Ordinary Least Squares (OLS) method.
The statistical analysis is also performed by applying the Independent Samples T Test (a parametric test) that compares the arithmetic means of two independent sets (Countries within European Monetary Union vs. Countries outside European Monetary Union) in order to determine whether there is statistical evidence of significant difference of arithmetic means between these two clubs of countries.

In particular, before and after the introduction of Euro currency, the null hypothesis (H_0) and alternative hypothesis (H_1) of the independent samples T test are given by:

\[H_0: \mu_1 = \mu_2 \quad H_1: \mu_1 \neq \mu_2 \]

with:
\[\mu_1 = \text{arithmetic mean of General government gross debt as a } \% \text{ of the GDP in Countries within European Monetary Union} \]
\[\mu_2 = \text{arithmetic mean of General government gross debt as a } \% \text{ of the GDP in Countries outside European Monetary Union} \]

Mutatis mutandis, the ANOVA for General government deficit/surplus as a $\%$ of GDP.

Statistical analyses are performed by using the IBM SPSS Statistics ® 21.0
Results of economic facts

Figure 1. Arithmetic mean of General government gross debt as a % of the GDP of countries within and outside European Monetary Union.

Note: a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Source: EUROSTAT (2016).

Figure 1 shows that Countries within European Monetary Union have increased the General government gross debt as a % of the GDP from 73% in the period before the introduction of Euro Currency to about 78% in the period after the introduction of Euro Currency; whereas, Countries outside European Monetary Union have experienced a reduction from 50.47% to 46.09% in the same period. Figure 2 shows that Countries within European Monetary Union have a growing trend of General government gross debt as a % of the GDP, especially from 2007 onwards, that may be due to negative effects of the economic turmoil on economic system of these countries: in average, every year these countries have an expected increases of General government gross debt as a % of the GDP by somewhat of 1.40% ($R^2 = 0.377$, this value indicates the proportion of

Coccia M. (2018) National debts and government deficits within European Monetary Union: Statistical evidence of economic issues

CocciaLab Working Paper 2018 – No. 34/bis
explained variation in total variation, see Table 1A in Appendix). Instead, Figure 2 shows that countries outside European Monetary Union have stationarity in the evolution of General government gross debt as a % of the GDP from 1995 to 2014 (regression equation is not significant statistically, see Tab. 1A in appendix).

Figure 2. Trends of General government gross debt as a % of the GDP (1995-2014) within and outside European Monetary Union.

Note: a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Source: EUROSTAT (2016).

Figure 1A in Appendix confirms that General government gross debt as a % of the GDP of selected European countries within European Monetary Union has growing trends (e.g., Ireland, Portugal, Greece, Italy, etc.), whereas countries outside European Monetary Union have a stability of trends concerning public debt (e.g., Poland, Denmark, Sweden, etc.). Figure 3 shows that the dynamics of General government deficit/surplus as a % of GDP of Countries within European Monetary Union is worse than Countries outside European Monetary Union (2003-2014 period). In particular, Table 1 shows that average General government deficit/surplus as a % of GDP (2008-2014) is −1.77 for Countries outside European Monetary Union, whereas this level is considerably higher.
for Countries within European Monetary Union (−5.30). Figure 2A in Appendix confirms the heterogeneity of these trends across countries within and outside European Monetary Union.

Variable and statistics	Countries WITHIN European Monetary Union	Countries OUTSIDE European Monetary Union
General government deficit/surplus as a % of GDP after the introduction of Euro currency (Arithmetic mean 2008-2014)	−5.30 (2.17)	−1.77 (2.35)
Current taxes on income, wealth, as a % of GDP (Arithmetic mean 2008-2014 with base 2003=100)*	104.08 (4.19)	102.83 (1.62)
Taxes on production and imports as a % of GDP (Arithmetic mean 2008-2014 with base 2003=100)*	98.52 (3.19)	96.06 (0.67)
General government fixed investment as a % of GDP (Arithmetic mean 2008-2014)	3.26 (0.46)	3.99 (0.13)

Note: the different base for some indicators is for creating a comparable framework of data between the two sets of countries. a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Data before the introduction of the Euro currency are not available for these indicators in Eurostat. Standard Deviation (SD) is in round parentheses. * The method considers a base 2003=100 for creating a comparable framework. Source: EUROSTAT (2016).
Figure 3. Trend of General government deficit/surplus as a % of GDP within and outside European Monetary Union, after the introduction of the Euro currency. Note: a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Source: EUROSTAT (2016).

The negative tendencies of countries within European Monetary Union over 2008-2014 may be due to manifold factors, such as high levels of current taxes on income as a % of GDP, that can affect aggregated demand during a period of economic recession. Table 1 shows that Countries within European Monetary Union have an arithmetic mean of current taxes on income as a % of GDP equal to 104.08, whereas countries outside European Monetary Union have and index of 102.83 (the method considers a base of 2003=100 to create a comparable framework).
Table 1 also shows that countries within European Monetary Union have a level of Taxes on production and imports as a % of GDP higher than countries outside European Monetary Union (98.52% vs. 96.06%, respectively, with 2003=100). Figure 4 shows that the trend of Taxes on production and imports as a % of GDP of countries within European Monetary Union has sharply increased from 2009 onwards in comparison to Countries outside European Monetary Union. This result may be due to negative effects of economic recessions.
Figure 5. Trends General government fixed investment as a % of GDP, 2003-2014, within and outside European Monetary Union, after the introduction of the Euro currency. Note: a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Source: EUROSTAT (2016).

In addition, Table 1 shows that levels of General government fixed investment as a % of GDP in countries within European Monetary Union (+3.26%) are lower than Countries outside European Monetary Union +3.99% (cf., Fig. 5 and Fig. 3A in Appendix). The lower level of countries within European Monetary Union can be due to E.U. political economy based on Maastricht Treaty, Stability and Growth Pact, new Fiscal Compact in the Economic and Monetary Union. The different economic policies applied by countries within and outside European Monetary Union may negatively affect the evolution of public debt and its determinants. Figure 6 focuses on EU-19 countries considering trends of key variables (public debts, taxes on income, unemployment and crude rates of natural change per 1000 persons) with 2004=100 as a base for creating a comparable framework. This result may further
explain possible causes of the evolution of public debt in Europe. In particular, over the 2004-2015 period, public debts are increasing in the presence of a deterioration of unemployment rate. These negative effects are combined with increases of taxes on income and reductions of growth rates of population (c.f., Tsuchiya, 2016; Coccia, 2014). In short, in the presence of these demographic, economic, fiscal and labor dynamics, a future scenario for several European countries might be a possible deterioration of structural indicators with negative effects on the European economy as a whole.

Figure 6. Trends of public debts, current taxes, unemployment rates and rates of natural change of population within EU-19 over 2004-2015 (2004=100). Source: EUROSTAT (2016).
Table 2. Independent Samples T Test with the arithmetic mean of General government gross debt as a % of the GDP (before the introduction of the Euro currency: 1995-2000 period).

Countries within European Monetary Union	Years	Arithmetic mean of General government gross debt as a % of the GDP	Std. Deviation	Levene’s Test for Equality of Variances	t-test for Equality of Means
Within	6	72.997	4.14	F	Sig.
Outside European Monetary Union	6	50.467	3.99	Equal variances assumed	9.59 10 0.001

Note: a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Source: EUROSTAT (2016).

Tables 2-3 confirm differences of General government gross debt as a % of the GDP between countries within and outside the European Monetary Union. In general, Countries within European Monetary Union mainly elevated its public debt ratio, whereas Countries outside European Monetary Union experienced a reduction in its public debt (over 1995-2014). In particular, Table 2 shows that the T-test for Equality of Means has $p<0.001$: i.e., the statistical analysis of Independent Samples Test rejects the null hypothesis and concludes that, between countries within and outside European Monetary Union, there is a significant difference of arithmetic mean concerning General government gross debt as a % of the GDP before the introduction of Euro currency. Countries within European Monetary Union had an arithmetic mean of General government gross debt as a % of the GDP equal to about 73, an higher level than countries outside European Monetary Union (arithmetic mean 50.57 over 1995-2000).
Table 3. Independent Samples T Test with arithmetic mean of General government gross debt as a % of the GDP (after the introduction of the Euro currency: 2001-2014 period).

Countries	Years	Arithmetic mean of General government gross debt as a % of the GDP	Std. Deviation	Levene's Test for Equality of Variances	t-test for Equality of Means
Within European Monetary Union	14	77.83	15.86	F	Sig.
				31.47	7.21
				Equal variances assumed	26
				Equal variances not assumed	0.001
Outside European Monetary Union	14	46.09	4.43	7.21	15.02
				0.001	0.001

Note: a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Source: EUROSTAT (2016).

Table 3 shows results of General government gross debt as a % of the GDP after the introduction of the Euro currency. The statistical analysis of Independent Samples Test also rejects the null hypothesis and concludes of significant differences of the arithmetic mean between the two clubs of countries (the t-test for Equality of Means has a $p<0.001$). In particular, Countries within European Monetary Union have an average level of General government gross debt as a % of the GDP roughly of 78 (an higher level than period preceding the introduction of Euro currency!), whereas Countries outside European Monetary Union have an arithmetic mean of about 46.09 (2001-2014), a softer reduction of their public debt level in comparison to period preceding the introduction of Euro currency (cf. Tabb. 2-3).
Table 4. Independent Samples T Test with arithmetic mean of General government deficit/surplus as a % of GDP (2003-2014 period).

Countries	Years	Arithmetic mean of General government deficit/surplus as a % of GDP	Std. Deviation	Levene's Test for Equality of Variances	t-test for Equality of Means
Within European Monetary Union	12	-3.83	2.48	F	Sig.
Outside European Monetary Union	12	-1.32	2.02	Equal variances assumed	0.52 0.477
				Equal variances not assumed	-2.72 22 0.01

Note: a) Countries within European Monetary Union: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Portugal and Spain. b) Countries outside European Monetary Union: Sweden, United Kingdom, Denmark, Norway and Poland. Source: EUROSTAT (2016).

Table 4 analyses the average level of General government deficit/surplus as a % of GDP after the introduction of the Euro Currency. T-test for Equality of Means has $p<0.01$ and then this test rejects the null hypothesis and concludes that the average General government deficit/surplus as a % of GDP between Countries within European Monetary Union and outside European Monetary Union has a significant difference. In particular, Countries within European Monetary Union have a General government deficit/surplus as a % of GDP equal to -3.83, a higher level than Countries outside European Monetary Union (i.e., -1.32, arithmetic mean over 2003-2014). Overall then, the statistical evidence seems in general to show the systematic differences of the evolution of public debts and fiscal deficits as a % of GDP between countries within and outside European Monetary Union: as a matter of fact, Countries within European Monetary Union, from 2001 onwards, have deteriorated public debt ratios and fiscal deficits in comparison to Countries outside European Monetary Union.
Discussion

Public debt of the European countries, after the economic downturn over 2008-2010 period, has sharply increased trajectory, in particular across countries within European Monetary Union (cf., Corsetti et al., 2010). The high sovereign debt for some European countries contributes to maintain persistently high unemployment, low economic growth and stability of Europe as a whole (Sargent, 2012; Coccia, 2013). As a matter of fact, public debt is a complex economic issue and governments should limit public spending (Barro, 1979). Tabellini and Alesina (1990, p. 37) argue that governments choose, a priori, a non-optimal debt policy by budget deficits, because of disagreement between current and future majorities (such as in Italy). Corsetti et al. (2010, p. 45, original emphasis) claim that:

consolidation efforts are likely to include not only tax increases but also sizeable spending cuts. . . . analysis suggests that such prospective spending cuts generally enhance the expansionary effect of current fiscal stimulus.

Austerity packages, balanced-budget rules and high taxation for public debt reductions in some European countries (e.g., in Greece, Italy, France, etc.) seem to negatively affect the dynamics of economic growth and public debt /GDP ratio over time, in particular in the presence of business cycle contractions and economic turmoil (cf., Afonso and Jalles, 2013; Coccia, 2013). Schmitt-Grohé and Uribe (1997, pp. 976) argue that:

A traditional argument against a balanced-budget fiscal policy rule is that it amplifies business cycles by stimulating aggregate demand during booms via tax cuts and higher public expenditures and by reducing demand during recessions through a corresponding fiscal contraction. . . . an additional source of instability that may arise from this type of fiscal policy rule. . . . a balanced budget rule can make expectations of higher tax rates self-fulfilling if the fiscal authority relies heavily on changes in labor income taxes to eliminate short-run fiscal imbalances.

In fact, balanced-budget rule can be a source of economic instability and this result is confirmed in presence of high public debt that could remain constant and/or increase over time, such as in some European countries over 2005-2016 period (Schmitt-Grohé and Uribe, 1997; Stockman, 2010). Several studies do not suggest for governments a balanced-budget rule, since it affects (narrows) the political economy of driving surplus and deficits, by borrowing and lending, to smooth taxes. In addition, “the welfare consequences of decreasing ratio
of debt/output at the exogenous growth rate are negligible” (Stockman, 2001, p. 439). Stockman (2004, p. 382) also claims that:

a balanced-budget rule limits the ability to smooth taxes, rendering a large class of competitive equilibria not compatible with a government honoring its debt obligations. The reputation model predicts default as the equilibrium outcome under a balanced-budget restriction.

Although the reduction of sovereign debt of some European countries is a desirable goal for economic stability of European Monetary Unification, it is not an easy task and should be pursued by long-run economic policies, considering fluctuations of business cycles and demographic dynamics of population, to support steady-state patterns of economic growth. Europe has focused on downsizing of the ratio of public debt to GDP by higher taxation for population and balanced-budget rules for member countries. However, E.U. political economy of the Stability Pact and Fiscal Compact, in the presence of declining average rates of natural change of population, seems to generate negative effects for long-run patterns of economic growth, shaking the stability of countries and Europe to its foundations (Coccia, 2013). Antonucci and Pianta (2002, p. 306) argue that: “macroeconomic constraints of Economic and Monetary Union in Europe have put a serious limit on the economic dynamics of national economies, and of manufacturing industries in particular”. De Grauwe and Fratianni (1983, p. 53) show that: “draw from the evidence . . . higher tax rates are not likely to reduce budget deficits in the long run. They may in fact increase them”. As a matter of fact, results of the study here show in general that stability programmes of the European Monetary Unification seem to have deteriorated the evolution of public debts of some countries, in presence of economic turmoil and demographic crisis. Some economists show that similar rules may not be optimal policy and may generate aggregate instability, considering the initial high level of the public debt in countries (Schmitt-Grohé and Uribe, 1997; Stockman, 2010). Stockman (2004, p. 383) points out that: “The ability to borrow is desirable because debt serves as a buffer to help smooth distortionary taxes over time resulting in higher economic welfare”.
Overall, then, as government consolidated gross debt is measured by the ratio government debt / GDP, an appropriate political economy of growth to reduce public debt over the long run may be to support the GDP growth (denominator of the ratio) with investments and other expansionary economic policies, rather than reduce the numerator (i.e., public debt) by higher taxation of people, also during recessions. In fact, Baxter (1871, p. 122) argued, considering England, that: “the nation by its rapid growth is constantly diminishing its burden. In the peace between 1815 and 1870 England has diminished the pressure of her debt from 9 per cent to less than 3 per cent, principally by her natural growth and increase”.

Concluding observations

This study shows some observed economic facts concerning the evolution of public debts and fiscal deficits in Europe.

a) Firstly, differences of the evolution of public debts across European countries *within* and *outside* European Monetary Unification. In particular, General government gross debt as a % of GDP in Countries *within* European Monetary Unification has increased from 2001 to 2014 in comparison to Countries *outside* European Monetary Unification.

b) Secondly, differences of the evolution of fiscal deficits across European countries *within* and *outside* European Monetary Unification. Countries *within* European Monetary Unification experienced a severe deterioration of General government deficit as a % of GDP (arithmetic mean of −3.83 over 2003-2014) in comparison to countries outside European Monetary Unification (average value of −1.32 in the same period).

c) Thirdly, countries *within* European Monetary Unification have levels of current taxes on income and wealth as a % of GDP and taxes on production and imports as a % of GDP higher than Countries *outside* European Monetary Unification. In addition, General government fixed investment as a % of GDP in Countries *within* European Monetary Unification is lower than Countries *outside* European Monetary Unification. These effects may be due to rules of the Maastricht Treaty, the Stability and Growth Pact, the new Fiscal Compact in the
Economic and Monetary Union that negatively affect the evolution of public debt and fiscal deficit across several European countries in the presence of economic turmoil and low average growth rates of population.

d) Finally, one future scenario in Europe might be that current problematic evolution of economic and demographic factors can negatively affect the performance of public debt, employment and economic growth paths for many years to come.

In general, economic theory suggests that balanced-budget rule may not be optimal policy considering the high initial level of public debts in several European countries (cf., Schmitt-Grohé and Uribe, 1997; Stockman, 2010). Bruno (1992, p. 204) argued: “the dangers of EMU”, which are due to the decision to advance monetary union, before the fiscal federalism and coordination of fiscal, social and industrial policies across all European countries. These contradictions of the process of integration are generating negative effects on several European countries and uncertainty about future scenarios of the European Union (E.U.) economy as a whole. Perhaps the most interesting finding of this study is the high heterogeneity of structural indicators of European countries and different dynamics of public debts of European countries within and outside European Monetary Unification. However, these conclusions are of course tentative, since we know that several factors are often not equal between European countries over time and space. Results discussed here, based on aggregations of different countries, should be considered with great caution. Especially limiting is the fact that the approach here to analysis did not permit some controls and intervening variables that may have been useful in providing a deeper and richer explanation of the phenomena under study. Hence, much work remains if we are to understand in more depth the reasons of European economic policies and implications on the evolution of public debts. To conclude, more fine-grained studies will be useful in future, ones that can more easily examine other complex factors that affect the on-going public debt trends within and outside European Monetary Unification. There is need for much more detailed research into the relations between balanced-budget rule, public debt, unemployment, and economic growth.
Appendix A.

Table 1A – Regressions of General government gross debt equations

Dependent variable	Constant α (St. Err.)	Coefficient β (St. Err.)	\(R^2 \) (St. Err. of the Estimate)	F (Sign.)
Countries within European Monetary Union	-2729.44** (849.77)	1.4** (0.42)	0.377 (10.93)	10.90 (0.004)
General government gross debt as a % of GDP				
Countries outside European Monetary Union	207.04 (371.54)	-0.08 (0.185)	0.01 (4.78)	0.185 (0.67)
General government gross debt as a % of GDP				

*Note: **Coefficient β is significant at 1%; Relationships estimated with OLS.*
Figure 1A. Trends of General government gross debt as a % of GDP of selected European countries within and outside European Monetary Unification. Source: EUROSTAT (2016).
Figure 2A. Trends of General government deficit/surplus as a % of GDP across countries within and outside European Monetary Unification, after the introduction of Euro, 2003-2014 period. Source: EUROSTAT (2016).
Figure 3A. Trends of General government fixed investment as a % of GDP between European countries. Source: EUROSTAT (2016).
References

Afonso A., Jalles J. T. 2013. Growth and productivity: The role of government debt, International Review of Economics & Finance, vol. 25, January, pp. 384-407.

Aghion P., Howitt P., 1998. Endogenous Growth Theory, MIT Press, Cambridge, MA.

Alesina A. 1988. The end of large public debts. In F. Giavazzi e L. Spaventa (eds.), High public debt: the Italian experience, Cambridge University Press.

Amaral P., Jacobson M. 2011. Why some European countries and not U.S., Economic Trend, Federal Reserve Bank of Cleveland, USA (http://www.clevelandfed.org/, accessed December 2011)

Antonucci T., Pianta M. 2002. Employment Effects of Product and Process Innovation in Europe, International Review of Applied Economics, vol. 16, n. 3, pp. 295-307.

Barro R. J. 1974. Are governments bonds net wealth?, Journal of Political Economy, vol. 82, n.6, pp. 1095-1117.

Barro R. J. 1979. On the determination of the public debt, Journal of Political Economy, vol. 87, n. 5, pp. 940-971.

Barro R. J. 1990. Government spending in a simple model of endogenous growth. Journal of Political Economy, vol. 98, n. 2 (pt 2), pp. S103–S125.

Baxter R. D. 1871. National Debts, R.J. Bush, London.

Benati I., Coccia M. 2017. General trends and causes of high compensation of government managers in the OECD countries, International Journal of Public Administration (ISSN: 1591-0709), DOI: 10.1080/01900692.2017.1318399

Briani S. 1992. The dangers of EMU: an industrial policy viewpoint, Revue d’économie industrielle, vol. 59, 1er trimestre, pp. 204-221.

Buiatti C., Carmeci G., Mauro L. 2014. The origins of the public debt of Italy: Geographically dispersed interests?, Journal of Policy Modeling, vol. 36, n. 1, pp. 43-62.

Calabrese G., Coccia M., Rolfo S. 2005. Strategy and market management of new product development: evidence from Italian SMEs, International Journal of Product Development, vol. 2, n. 1-2, pp. 170-189. https://doi.org/10.1504/IJPD.2005.006675

Calcatelli A., Coccia M., Ferraris K., Tagliafico I. 2003. Donne-scienza-tecnologia: analisi di un caso di studio. Working Paper Ceris del Consiglio Nazionale delle Ricerche, vol. 5, n. 7-- ISSN (Print): 1591-0709

Cavallo, E., Ferrari E., Bollani, L., Coccia M. 2014. Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A case study in Italian agricultural system, Agricultural Systems, Vol. 130, pp. 44-54.

Cavallo, E., Ferrari E., Bollani, L., Coccia M. 2014a. Strategic management implications for the adoption of technological innovations in agricultural tractor: the role of scale factors and environmental attitude, Technology Analysis & Strategic Management, vol. 26, n. 7, pp. 765-779, DOI: 10.1080/09537325.2014.890706.

Cavallo, E., Ferrari E., Coccia M. 2015. Likely technological trajectories in agricultural tractors by analysing innovative attitudes of farmers, International Journal of Technology, Policy and Management, vol. 15, n. 2, pp. 158–177, DOI: http://dx.doi.org/10.1504/IJTPM.2015.069203.

Chagpar A., Coccia M. 2012. Breast cancer and socio-economic factors. Working Paper of Public Health, n. 7, Azienda Ospedaliera SS. Antonio e Biagio Arrigo, Alessandria (Italy), ISSN: 2279-9761

Coccia M. 2001. Satisfaction, work involvement and R&D performance, International Journal of Human Resources Development and Management, vol. 1, no. 2/3/4, pp. 268-282. DOI: 10.1504/IJHRDM.2001.001010

Coccia M. 2002. Dinamica e comportamento spaziale del trasferimento tecnologico. Working Paper Ceris del Consiglio Nazionale delle Ricerche, vol. 4, n. 4 - ISSN (Print): 1591-0709

Coccia M. 2003. Metrics of R&D performance and management of public research institute, Proceedings of IEEE- IEMC 03, Piscataway, pp. 231-236 – ISBN: 0-7803-8150-5

Coccia M. 2004. Spatial metrics of the technological transfer: analysis and strategic management, Technology Analysis & Strategic Management, vol. 16, n. 1, pp. 31-51.
Coccia M. 2004a. Analisi della diffusione delle innovazioni: scala della magnitudo del trasferimento tecnologico, Economia e Politica Industriale, n. 123, September, pp. 109-131.

Coccia M. 2005. Economics of scientific research: origins, nature and structure. Proceedings of Economic Society of Australia, ISBN: 07340 26080.

Coccia M. 2005a. Le origini dell’economia dell’innovazione: il contributo di John Rae, Storia del Pensiero Economico, vol. 4, n. 1, pp. 121-142.

Coccia M. 2005b. Countrymetrics: valutazione della performance economica e tecnologica dei paesi e posizionamento dell’Italia, Rivista Internazionale di Scienze Sociali, vol. CXIII, n. 3, pp. 377-412. Stable URL: http://www.jstor.org/stable/41624216.

Coccia M. 2005c. Gli approcci biologici nell’economia dell’innovazione. Working Paper Ceris del Consiglio Nazionale delle Ricerche, Anno VII, n. 1 - ISSN (Print): 1591-0709

Coccia M. 2005d. Measuring Intensity of technological change: The seismic approach. Technological Forecasting and Social Change, vol. 72, n. 2, pp. 117-144.

Coccia M. 2005e. Technometrics: Origins, historical evolution and new direction. Technological Forecasting & Social Change, vol. 72, n. 8, pp. 944-979.

Coccia M. 2005f. Metrics to measure the technology transfer absorption: analysis of the relationship between institutes and adopters in northern Italy. International Journal of Technology Transfer and Commercialization, 4(4), pp. 462-486.

Coccia M. 2005g. A taxonomy of public research bodies: a systemic approach, Prometheus – Critical Studies in Innovation, vol. 23, n. 1, pp. 63-82.

Coccia M. 2005h. A Scientometric model for the assessment of scientific research performance within public institutes, Scientometrics, vol. 65, n. 3, pp. 307-321. DOI: 10.1007/s11192-005-0276-1

Coccia M. 2006. Classifications of innovations: survey and future directions, in Working Paper Ceris del Consiglio Nazionale delle Ricerche, vol. 8, n. 2 - ISSN (Print): 1591-0709, Available at SSRN eLibrary: Available at SSRN: http://dx.doi.org/10.2139/ssrn.2581746 and arXive Open access e-prints: http://arxiv.org/abs/1705.08955.

Coccia M. 2006a. Analysis and classification of public research institutes. World Review of Science, Technology and Sustainable Development, vol. 3, n. 1, pp.1-16.

Coccia M. 2008. New organizational behaviour of public research institutions: Lessons learned from Italian case study, International Journal of Business Innovation and Research, vol. 2, n. 4, pp.402–419.

Coccia M. 2008a. Science, funding and economic growth: analysis and science policy implications, World Review of Science, Technology and Sustainable Development, vol. 5, n. 1, pp.1-27. DOI: 10.1504/WRSTSD.2008.01781.

Coccia M. 2008b. Measuring scientific performance of public research units for strategic change, Journal of Informetrics, vol. 2, n. 3, pp. 183-194.

Coccia M. 2009. A new approach for measuring and analyzing patterns of regional economic growth: empirical analysis in Italy, Italian Journal of Regional Science- Scienze Regionali, vol. 8, n. 2, pp. 71-95. DOI: 10.3280/SCRE2009-002004

Coccia M. 2009a. What is the optimal rate of R&D investment to maximize productivity growth? Technological Forecasting & Social Change, vol. 76, n. 3, pp. 433-446.

Coccia M. 2009b. Measuring the impact of sustainable technological innovation, International Journal of Technology Intelligence and Planning, vol. 5, n. 3, pp. 276-288. https://doi.org/10.1504/IJITIP.2009.026749

Coccia M. 2009c. Research performance and bureaucracy within public research labs. Scientometrics, vol. 79, n. 1, pp. 93-107. DOI: 10.1007/s11192-009-0406-2
Coccia M. 2009d. Bureaucratization in Public Research Institutions, Minerva, vol. 74, n. 1, pp. 31–50.

Coccia M. 2010. Democratization is the driving force for technological and economic change, Technological Forecasting & Social Change, vol. 77, n. 2, pp. 248-264, https://doi.org/10.1016/j.techfore.2009.06.007.

Coccia M. 2010a. Foresight of technological determinants and primary energy resources of future economic long waves, International Journal of Foresight and Innovation Policy, vol. 6, n. 4, pp. 225–232, https://doi.org/10.1504/IJFIP.2010.037468.

Coccia M. 2010b. Public and private R&D investments as complementary inputs for productivity growth, International Journal of Technology, Policy and Management, vol. 10, n. 1/2, pp. 73-91. DOI: 10.1504/IJTPM.2010.032855

Coccia M. 2010c. Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita, Energy Policy, vol. 38, n. 3, pp. 1330-1339, DOI: 10.1016/j.enpol.2009.11.011

Coccia M. 2010d. Spatial patterns of technology transfer and measurement of its friction in the geo-economic space, International Journal of Technology Transfer and Commercialisation, vol. 9, n. 3, pp. 255-267.

Coccia M. 2010e. Public and private investment in R&D: complementary effects and interaction with productivity growth, European Review of Industrial Economics and Policy, vol. 1, ISSN: 2109-9480

Coccia M. 2010f. The asymmetric path of economic long waves, Technological Forecasting & Social Change, vol. 77, n. 5, pp. 730-738. https://doi.org/10.1016/j.techfore.2010.02.003

Coccia M. 2011. The interaction between public and private R&D expenditure and national productivity, Prometheus-Critical Studies in Innovation, vol.29, n. 2, pp.121-130.

Coccia M. 2012. Driving forces of technological change in medicine: Radical innovations induced by side effects and their impact on society and healthcare, Technology in Society, vol. 34, n. 4, pp. 271-283, https://doi.org/10.1016/j.techsoc.2012.06.002.

Coccia M. 2012a. Evolutionary trajectories of the nanotechnology research across worldwide economic players, Technology Analysis & Strategic Management, vol. 24, n.10, pp. 1029-1050, https://doi.org/10.1080/09537325.2012.705117.

Coccia M. 2012b. Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia, Technovation, vol. 32, n. 6, pp. 370–379, DOI: 10.1016/j.technovation.2012.03.005

Coccia M. 2012c. Evolutionary growth of knowledge in path-breaking targeted therapies for lung cancer: radical innovations and structure of the new technological paradigm, International Journal of Behavioural and Healthcare Research, vol. 3, nos. 3-4, pp. 273-290. https://doi.org/10.1504/IJBHR.2012.051406

Coccia M. 2012d. Converging genetics, genomics and nanotechnologies for groundbreaking pathways in biomedicine and nanomedicine, Int. J. Healthcare Technology and Management, vol. 13, n. 4, pp. 184-197.

Coccia M. 2013. What are the likely interactions among innovation, government debt, and employment?, Innovation: The European Journal of Social Science Research, vol. 26, n. 4, pp. 456-471.

Coccia M. 2013a. The effect of country wealth on incidence of breast cancer. Breast Cancer Research and Treatment, vol. 141, n. 2, pp. 225-229.

Coccia M. 2014. Driving forces of technological change: The relation between population growth and technological innovation-Analysis of the optimal interaction across countries, Technological Forecasting & Social Change, vol. 82, n. 2, pp. 52-65.

Coccia M. 2014a. Emerging technological trajectories of tissue engineering and the critical directions in cartilage regenerative medicine, Int. J. Healthcare Technology and Management, vol. 14, n. 3, pp. 194-208, DOI: http://dx.doi.org/10.1504/IJHTM.2014.064247.
Coccia M. 2014b. Socio-cultural origins of the patterns of technological innovation: What is the likely interaction among religious culture, religious plurality and innovation? Towards a theory of socio-cultural drivers of the patterns of technological innovation, Technology in Society, vol. 36, n. 1, pp. 13-25. DOI: 10.1016/j.techsoc.2013.11.002

Coccia M. 2014c. Religious culture, democratisation and patterns of technological innovation, International Journal of sustainable society, vol. 6, n. 4, pp. 397-418, DOI: http://dx.doi.org/10.1504/IJSSOC.2014.066771.

Coccia M. 2014d. Path-breaking target therapies for lung cancer and a far-sighted health policy to support clinical and cost effectiveness. Health Policy and Technology, vol. 1, n. 3, pp. 74-82.

Coccia M. 2014e. Structure and organisational behaviour of public research institutions under unstable growth of human resources, Int. J. Services Technology and Management, vol. 20, nos. 4/5/6, pp. 251–266, DOI: 10.1504/IJSTM.2014.068857

Coccia M. 2014f. Converging scientific fields and new technological paradigms as main drivers of the division of scientific labour in drug discovery process: the effects on strategic management of the R&D corporate change, Technology Analysis & Strategic Management, vol. 26, n. 7, pp. 733-749, DOI:10.1080/09537325.2014.882501

Coccia M. 2015. General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development, Technology in Society, vol. 42, August, pp. 199-226, DOI: http://doi.org/10.1016/j.techsoc.2015.05.008

Coccia M. 2015a. Patterns of innovative outputs across climate zones: the geography of innovation, Prometheus. Critical Studies in Innovation, vol. 33, n. 2, pp. 165-186. DOI: 10.1080/08109028.2015.1095979

Coccia M. 2015b. The Nexus between technological performances of countries and incidence of cancers in society, Technology in Society, vol. 42, August, pp. 61-70. DOI: http://doi.org/10.1016/j.techsoc.2015.02.003

Coccia M. 2015c. Technological paradigms and trajectories as determinants of the R&D corporate change in drug discovery industry. Int. J. Knowledge and Learning, vol. 10, n. 1, pp. 29-43. DOI: http://dx.doi.org/10.1504/IJKL.2015.071052

Coccia M. 2016. Problem-driven innovations in drug discovery: co-evolution of the patterns of radical innovation with the evolution of problems, Health Policy and Technology, vol. 5, n. 2, pp. 143-155. DOI: 10.1016/j.hlpt.2016.02.003

Coccia M. 2016a. Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organizational performance in the discovery process of R&D labs, Technology Analysis & Strategic Management, vol. 28, n. 4, pp. 381-395, DOI: 10.1080/09537325.2015.1095287

Coccia M. 2016b. The relation between price setting in markets and asymmetries of systems of measurement of goods. The Journal of Economic Asymmetries, 14, part B, pp. 168-178, DOI: 10.1016/j.jeca.2016.06.001

Coccia M. 2017. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy's Mobile User Objective System, Technological Forecasting and Social Change, vol. 116, pp. 331-339, DOI: 10.1016/j.techfore.2016.05.019

Coccia M. 2017a. The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies. Journal of Social and Administrative Sciences, J. Adm. Soc. Sci. – JSAS, vol. 4, n. 4, pp. 291-303, DOI: http://dx.doi.org/10.1453/jsas.v4i4.1518, ISSN: 2149-0406. www.kspjournals.org, Available at SSRN: https://ssrn.com/abstract=3100011

Coccia M. 2017b. Varieties of capitalism’s theory of innovation and a conceptual integration with leadership-oriented executives: the relation between typologies of executive, technological and socioeconomic performances, Int. J. Public Sector Performance Management, vol. 3, No. 2, pp. 148–168.

Coccia M. 2017c. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, vol. 29, n. 9, pp. 1048-1061, DOI: 10.1080/09537325.2016.1268682
Coccia M. (2017d). A Theory of general causes of violent crime: Homicides, income inequality and deficiencies of the heat hypothesis and of the model of CLASH. Aggression and Violent Behavior, vol. 37, November-December, pp. 190-200, DOI: 10.1016/j.avb.2017.10.005

Coccia M. (2017e). Fundamental Interactions as Sources of the Evolution of Technology (May 25, 2017). Working Paper CocciaLab n. 23, Arizona State University (USA). Available at: Electronic Library SSRN: https://ssrn.com/abstract=2974043

Coccia M. (2017f). Sources of disruptive technologies for industrial change. L’industria – rivista di economia e politica industriale, vol. 38, n. 1, pp. 97-120, ISSN: 0019-7416

Coccia M. (2017g). New directions in measurement of economic growth, development and under development, Journal of Economics and Political Economy - J. Econ. Pol. Econ. – JEPE, www.kspjournals.org, vol. 4, n. 4, pp. 382-395, DOI: http://dx.doi.org/10.1453/jepe.v4i4.1533, ISSN: 2148-8347, www.kspjournals.org. Available at SSRN: https://ssrn.com/abstract=3100002

Coccia M. (2017h). Economics of Science: Historical Evolution, Working Paper CocciaLab n. 21, Available at Electronic Library SSRN: https://ssrn.com/abstract=2967120

Coccia M. (2017i). Asymmetric paths of public debts and of general government deficits across countries within and outside the European monetary unification and economic policy of debt dissolution. The Journal of Economic Asymmetries, vol. 15, June, pp. 17-31, DOI: 10.1016/j.jeca.2016.10.003

Coccia M. (2017j). Disruptive firms and industrial change, Journal of Economic and Social Thought - J. Econ. Soc. Thoug. JEST, vol. 4, n. 4, pp. 437-450, DOI: http://dx.doi.org/10.1453/jest.v4i4.1511, ISSN: 2149-0422. www.kspjournals.org. Available at SSRN: https://ssrn.com/abstract=3100039

Coccia M. 2018. A Theory of the General Causes of Long Waves: War, General Purpose Technologies, and Economic Change. Technological Forecasting & Social Change, vol. 128, March, pp. 287-295, https://doi.org/10.1016/j.techfore.2017.11.013

Coccia M. 2018a. The relation between terrorism and high population growth, Journal of Economics and Political Economy - JEPE, vol. 5, n. 1, pp. 84-104, DOI: http://dx.doi.org/10.1453/jepe.v5i1.1575

Coccia M. 2018b. Evolution of the economics of science in the Twenty Century, Journal of Economics Library - JEL - vol. 5, n. 1, pp. 65-84, www.kspjournals.org, DOI: http://dx.doi.org/10.1453/jel.v5i1.1577

Coccia M. 2018c. The origins of the economics of Innovation, Journal of Economic and Social Thought - J. Econ. Soc. Thoug. – JEST, vol. 5, n. 1, pp. 9-28, www.kspjournals.org, ISSN: 2149-0422. DOI: http://dx.doi.org/10.1453/jest.v5i1.1574

Coccia M. 2018d. Theorem of not independence of any technological innovation, Journal of Economics Bibliography – JEB, vol. 5, n. 1, pp. 29-35, www.kspjournals.org, DOI: http://dx.doi.org/10.1453/jeb.v5i1.1578

Coccia M. 2018e. Violent crime driven by income Inequality between countries, Turkish Economic Review - TER vol. 5, n. 1, pp. 33-55- www.kspjournals.org, ISSN: 2149-0414. DOI: http://dx.doi.org/10.1453/ter.v5i1.1576

Coccia M. 2018f. Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations, The Journal of Technology Transfer, vol. 43, n. 3, pp. 792-814, DOI: 10.1007/s10961-017-9572-1

Coccia M. 2018g. Methods of inquiry in social sciences: an introduction. Working Paper CocciaLab n. 27, CNR -- National Research Council of Italy. Available at Electronic Library SSRN: https://ssrn.com/abstract=3123662

Coccia M., Bellitto M. 2018. A critique of human progress: a new definition and inconsistencies in society, Quaderni ICR-ES-CNR, 4(3), 51-67. http://dx.doi.org/10.23760/2499-6661.2018.017, ISSN (print): 2499-6955, ISSN (on line): 2499-6661, Available at SSRN: https://ssrn.com/abstract=3186112
Coccia M., Bozeman B. 2016. Allometric models to measure and analyze the evolution of international research collaboration, Scientometrics, vol. 108, n. 3, pp. 1065-1084.

Coccia M., Cadario E. 2014. Organisational (un)learning of public research labs in turbulent context, International Journal of Innovation and Learning, vol. 15, n. 2, pp.115-129, DOI: 10.1504/IJIL.2014.059756.

Coccia M., Falavigna G., Manello A. 2015. The impact of hybrid public and market-oriented financing mechanisms on scientific portfolio and performances of public research labs: a scientometric analysis, Scientometrics, vol. 102, n. 1, pp. 151-168, DOI: 10.1007/s11192-014-1427-z.

Coccia M., Finardi U. 2011. Emerging nanotechnological research for future pathway of medicine, International Journal of Biomedical nanoscience and nanotechnology, vol. 2, nos. 3-4, pp. 299-317. DOI: 10.1504/IJBN.2012.051223

Coccia M., Finardi U., Margon D. 2010. Research trends in nanotechnologies studies across geo-economic areas, Working Paper Ceris del Consiglio Nazionale delle Ricerche, vol. 12, n. 5 - ISSN (Print): 1591-0709

Coccia M., Finardi U., Margon D. 2012. Current trends in nanotechnology research across worldwide geo-economic players, The Journal of Technology Transfer, vol. 37, n. 5, pp. 777-787, DOI: 10.1007/s10961-011-9219-6

Coccia M., Rolfo S. 2002. Technology transfer analysis in the Italian national research council, Technovation, vol. 22, n. 5, pp. 291-299

Coccia M., Rolfo S. 2007. How research policy changes can affect the organization and productivity of public research institutes, Journal of Comparative Policy Analysis, Research and Practice, vol. 9, n. 3, pp. 215-233. DOI: https://doi.org/10.1080/13876980701494624

Coccia M., Rolfo S. 2008. Strategic change of public research units in their scientific activity, Technovation, vol. 28, n. 8, pp. 485-494.

Coccia M., Rolfo S. 2009. Project management in public research organization: strategic change in complex scenarios, International Journal of Project Organisation and Management, vol. 1, n. 3, pp. 235-252. DOI: 10.1504/IJPOM.2009.027537

Coccia M., Rolfo S. 2010. New entrepreneurial behaviour of public research organizations: opportunities and threats of technological services supply, International Journal of Services Technology and Management, vol. 13, n. 1/2, pp. 134-151. DOI: 10.1504/IJSTM.2010.029674

Coccia M., Rolfo S. 2013. Human Resource Management and Organizational Behavior of Public Research Institutions, International Journal of Public Administration, vol. 36, n. 4, pp. 256-268, DOI: 10.1080/01900692.2012.756889

Coccia M., Wang L. 2015. Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, Technological Forecasting and Social Change, Vol. 94, pp. 155–169, DOI: 10.1016/j.techfore.2014.09.007

Coccia M., Wang L. 2016. Evolution and convergence of the patterns of international scientific collaboration, Proceedings of the National Academy of Sciences of the United States of America, 2016 vol. 113, n. 8, pp. 2057-2061, www.pnas.org/cgi/doi/10.1073/pnas.1510820113

Cochrane J. H. 2011. Understanding policy in the great recession: some unpleasant fiscal arithmetic, Eur. Econ. Rev. vol. 55, n. 1, pp. 2–30.

Codogno L., Faver C., Missale A. 2003. Yield spreads on EMU government bonds, Econ. Policy, vol. 18, n.37, pp. 503–532.

Corsetti G., Kuester K., Meier A., Müller G. 2010. Debt Consolidation and Fiscal Stabilization of Deep Recessions, The American Economic Review, vol. 100, n. 2, pp. 41-45.

De Grauwe P., Fratianni M. 1983. US economic policies: are they a burden to the rest of us?, The Banker September, pp. 45-53.

Dell’Erba S., Hausmann R., Panizza U. 2013. Debt levels, debt composition, and sovereign spreads in emerging and advanced economies, Oxford Review of Economic Policy, vol. 29, n. 3, pp. 518-547.

Domar E. 1944. The burden of the debt and the national income, The American Economic Review, vol. 34, n. 4, pp. 798-827.

Coccia M. (2018) National debts and government deficits within European Monetary Union: Statistical evidence of economic issues

CocciaLab Working Paper 2018 – No. 34/bis
Eberhardt M., Presbitero A. F. 2015. Public debt and growth: Heterogeneity and non-linearity, Journal of International Economics, vol. 97, n. 1, pp. 45-58.

Égert B. 2015. Public debt, economic growth and nonlinear effects: Myth or reality?, Journal of Macroeconomics, vol. 43, pp. 226-238.

Eichengreen B., Panizza U. 2016. A surplus of ambition: can Europe rely on large primary surpluses to solve its debt problem? Economic Policy, CEPR;CES; MSH, vol. 31, n. 85, pp. 5-49.

Elgin C., Uras B. R. 2013. Public debt, sovereign default risk and shadow economy, Journal of Financial Stability, vol. 9, n. 4, pp. 628-640.

EUROSTAT 2016. http://ec.europa.eu/eurostat/web/national-accounts/data/main-tables (accessed January 2016).

Galiani F. 1780. Della Moneta e dell’interesse. –Libri cinque. Edizione seconda. Stamperia Simoniana, Napoli.

Gneagne Y., Jawadi F. 2013. Boundedness and nonlinearities in public debt dynamics: A TAR assessment, Economic Modelling, vol. 34, pp. 154-160.

Gogas P., Plakandaras V., Papadimitriou T. 2014. Public debt and private consumption in OECD countries, The Journal of Economic Asymmetries, vol. 11, pp. 1-7

Hall R. E., Taylor J. B. 1993. Macroeconomics: Theory, Performance and Policy. W.W. Norton, New York, NY, USA.

Laubach T. 2009. New evidence on the interest rate effects of budget deficits and debt, J. Eur. Econ. vol. 26, n. 3, pp. 49–68.

Laubach T. 2016. Sustainability of budget deficits and public debts in selected European Union countries, The Journal of Economic Asymmetries, vol. 12, n. 1, pp. 1-21.

Matesanz D., Ortega G. J. 2015. Sovereign public debt crisis in Europe. A network analysis, Physica A: Statistical Mechanics and its Applications, vol. 436, pp. 756-766.

Melina G., Yang S.-C. S., Zanna L.-F. 2016. Debt sustainability, public investment, and natural resources in developing countries: The DIGNAR model, Economic Modelling, vol. 52, Part B, pp. 630-649.

Modigliani F. 1961. Long-run implications of alternative fiscal policies and the burden of the national debt, Economic Journal, vol. 71, n. 284, pp. 730–755.

Neaime S. 2015. Sustainability of budget deficits and public debts in selected European Union countries, The Journal of Economic Asymmetries, vol. 12, n. 1, pp. 21-41.

Panizza U., Presbitero A. F. 2014. Public debt and economic growth: is there a causal effect?, Journal of Macroeconomics, vol. 41, pp. 21–41.

Rae J. 1834. Statement of Some New Principles on the Subject of Political Economy, Exposing the Fallacies of the System of Free Trade, And of some other Doctrines maintained in the "Wealth of Nations", Boston: Hilliard, Gray. Reprinted (1964), New York: Kelley; and (1965), in R. W. James (ed.), John Rae, Political Economist, vol. 2, University of Toronto Press, Aylesbury, Toronto.

Reinhart C.M., Rogoff K.S. 2010. Growth in a time of debt, The American Economic Review, vol. 100, n. 2, pp. 573–578.

Sargent T. J. 2012. Chicago Booth’s 2011 management conference, May 20, at The Gary Becker Milton Friedman Institute for Research in Economics (http://mfi.uchicago.edu/events/20110520_sovrisk/ accessed at 5 January 2012)

Schmitt-Grohé S., M. Uribe 1997. Balanced-budget rules, distortionary taxes and aggregate instability, Journal of political economy, vol. 105, n. 5, pp. 976–1000.

Stasavage D. 2016. What we can learn from the early history of sovereign debt, Explorations in Economic History, vol. 59, pp. 1-16.

Stockman D. R. 2001. Balanced-Budget Rules: Welfare Loss and Optimal Policies, Review of Economic Dynamics, vol. 4, n. 2, pp. 438-459.

Stockman D. R. 2004. Default, Reputation and Balanced-Budget Rules, Review of Economic Dynamics, vol. 7, n. 2, pp. 382-405.

Stockman D. R. 2010. Balanced-Budget Rules: Chaos and Deterministic Sunspots, Journal of Economic Theory, vol. 145, n. 3, pp. 1060-1085.

Tabellini G., Alesina A. 1990. Voting on the budget deficit, The American Economic Review, vol. 80, n. 1, pp. 37-49.

Tamegawa K. 2016. Rating for government debt and economic stability, The Journal of Economic Asymmetries, vol. 13, pp. 35–44.
Teles V. K., Mussolini C. C. 2014. Public debt and the limits of fiscal policy to increase economic growth, European Economic Review, vol. 66, February, pp. 1-15.
Tsuchiya Y. 2016. Dynamic Laffer curves, population growth and public debt overhangs, International Review of Economics & Finance, vol. 41, n. C, pp. 40-52.