Hints for possible low redshift oscillation around the best fit ΛCDM model in the expansion history of the universe

L. Kazantzidis 1,1, H. Koo 2,3,4, S. Nesseris 4,†, L. Perivolaropoulos 5,1,§ and A. Shafieloo 6,2,3,¶

1Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece
2Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
3University of Science and Technology, Yuseong-gu 217 Gajeong-ro, Daejeon 34113, Korea
4Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
(Dated: October 8, 2020)

We search for possible deviations from the expectations of the concordance ΛCDM model in the expansion history of the Universe by analysing the Pantheon Type Ia Supernovae (SnIa) compilation along with its Monte Carlo simulations using redshift binning. We demonstrate that the redshift binned best fit ΛCDM matter density parameter Ωm0 and the best fit effective absolute magnitude M oscillate about their full dataset best fit values with considerably large amplitudes. Using the full covariance matrix of the data taking into account systematic and statistical errors, we show that at the redshifts below z ≈ 0.5 such oscillations can only occur in 4 to 5% of the Monte Carlo simulations. While statistical fluctuations can be responsible for this apparent oscillation, we might have observed a hint for some behaviour beyond the expectations of the concordance model or a possible additional systematic in the data. If this apparent oscillation is not due to statistical or systematic effects, it could be due to either the presence of coherent inhomogeneities at low z or due to oscillations of a quintessence scalar field.

I. INTRODUCTION

In 1998, two independent groups [1, 2] confirmed that the Universe is undergoing a phase of accelerated expansion, which has been attributed to the cosmological constant [3], thus establishing ΛCDM as the concordance model of modern cosmology. Despite its simplicity and consistency with most cosmological observations for almost two decades [4–10], ΛCDM faces some challenges at the theoretical level [11–14], as well as at the observational one, since recent observations revealed some inconsistencies between the measured values of the basic parameters of ΛCDM [15–22].

The most prominent tension in the context of ΛCDM is the so-called “H0 tension”, which describes the discrepancy between the Planck measurement of the Hubble parameter H0 [10] and the measurement published from Type Ia supernovae (SnIa) data that ranges from 4.4σ [9] to 6σ depending of the subset of SnIa that is used [23]. Moreover, a tension that is currently at a 2–3σ level, is the so-called “growth tension”, which refers to the mismatch between the σ8 (density rms matter fluctuations in spheres of radius of about 8 Mpc) and/or Ωm0 (matter density parameter) measurement of the Planck mission [10] with Weak Lensing (WL) [24–28] and Redshift Space Distortion (RSD) data [29–36].

In order to explain the aforementioned challenges a plethora of theories have been proposed in the literature to solve the theoretical [37–43] and the observational challenges of ΛCDM. In particular, for the observational challenges the mechanisms that have been proposed and can alleviate one or even both of these tensions simultaneously include early [44–48] and late dark energy models [49–55], interacting dark energy models [56–61], metastable dark energy models [18, 62–64], modified gravity theories [65–70] as well as modifications of the basic assumptions of ΛCDM such as non zero spatial curvature [71, 72], and many more [73–76] (see also the reviews [35, 77, 78] and references within).

The measurement of H0 that has been published by the SnIa data leading to the “H0 tension” is based on the assumption that SnIa can be considered as standard candles, thus allowing to probe the Hubble parameter through the apparent magnitude

\[m(z) = M + 5 \log_{10} \left[\frac{d_L(z)}{1 \text{Mpc}} \right] + 25, \]

(1.1)

where \(d_L(z) \) is the luminosity distance, which in a flat Universe can be expressed as

\[d_L(z) = c(1 + z) \int_0^z \frac{dz'}{H(z')}, \]

(1.2)

while \(M \) corresponds to the corrected, over stretch and color, absolute magnitude.

Alternatively, the apparent magnitude can be expressed in terms of the dimensionless Hubble-free luminosity distance \(D_L \equiv H_0 d_L/c \) as

\[m(z) = M + 5 \log_{10} [D_L(z)] + 5 \log_{10} \left(\frac{c/H_0}{1 \text{Mpc}} \right) + 25. \]

(1.3)

Clearly, from Eq. (1.3) it is evident that the parameters \(H_0 \) and \(M \) are degenerate and since in the context of ΛCDM both of these are assumed to be constant, usually,
TABLE I: The best fit values with the 1σ error of \mathcal{M} and Ω_0m for the four redshift bins with equal number of datapoints for the real data. Notice that for first three redshift bins the σ distance ($\Delta \sigma$) of the best fit from the full dataset best fit is at least 1σ and on the average it is larger than 1.2σ. In the simulated Pantheon data such large simultaneous deviations for the first three bins occurs for about 2% of the datasets.

Bin	z Range	$\mathcal{M} \pm 1\sigma$ error	$\Delta \sigma_\mathcal{M}$	$\Omega_0m \pm 1\sigma$ error	$\Delta \sigma_{\Omega_0m}$
Full Data	0.01 < z < 2.26	23.81 ± 0.01	-	0.29 ± 0.02	-
1st	0.01 < z < 0.13	23.78 ± 0.03	1.14	0.07 ± 0.17	1.35
2nd	0.13 < z < 0.25	23.80 ± 0.06	1.48	0.56 ± 0.19	1.34
3rd	0.25 < z < 0.42	23.75 ± 0.06	0.99	0.18 ± 0.11	1.05
4th	0.42 < z < 2.26	23.85 ± 0.06	0.69	0.33 ± 0.06	0.50

a marginalization process is performed \cite{4, 9, 79} over the degenerate combination

$$\mathcal{M} ≡ M + 5 \log_{10} \left[\frac{c/H_0}{1\text{Mpc}} \right] + 25$$

$$= M - 5 \log_{10}(h) + 42.38, \quad (1.4)$$

where $h ≡ H_0/100 \text{ km s}^{-1} \text{ Mpc}^{-1}$. However, in our analysis we choose to keep \mathcal{M} in order to avoid any loss of crucial information.

The latest (and largest thus far) compilation of SnIa that has been published is the Pantheon dataset \cite{9}, consisting of 1048 SnIa in the redshift range 0.01 < z < 2.3. Using Eqs. (1.1)-(1.4), the corresponding χ^2 function reads

$$\chi^2(\mathcal{M}, \Omega_0m) = V_{\text{SnIa}} C_{ij}^{-1} V_{\text{SnIa}}^T,$$

where $V_{\text{SnIa}} ≡ m_{\text{obs}}(z_i) - m(z)$ and C_{ij}^{-1} is the inverse covariance matrix. The covariance matrix can be considered as the sum of two matrices: a diagonal matrix that is associated with the statistical uncertainties of the apparent magnitude m_{obs} of each SnIa and a non-diagonal part that is connected with the systematic uncertainties due to the bias correction method \cite{9}.

In Refs. \cite{70, 80} it was shown that the best fit ΛCDM parameter values for the best fit parameters \mathcal{M} and Ω_0m of redshift binned Pantheon data oscillate around the full dataset best fit at a level that is consistently larger than 1σ for the first three out of four redshift bins. If this variation is due to statistical fluctuations, then the same variation is anticipated to be evident in simulated Pantheon-like datasets. In this analysis we will address the following questions:

- How likely is this behaviour of the data in the context of the ΛCDM model?

- In how many realizations we can see more than the σ deviations of the real data (σ^{real}) for both \mathcal{M} and Ω_0m in the first three or any three out of four redshift bins?

- In how many realizations we can see more than the 1σ deviations for both \mathcal{M} and Ω_0m in the first three or in any three out of four redshift bins?

The structure of the paper is the following: In Section II we describe the statistical analysis and the comparison of the constructed simulated datasets with the actual Pantheon data searching for abnormalities of the real data in the context of the reported level of Gaussian uncertainties. Finally, in Section III we summarize our results and discuss possible extensions of the present analysis.

II. REAL VERSUS MONTE CARLO DATA

In our Monte Carlo statistical analysis we split the Pantheon dataset \cite{9} into four redshift bins, consisting of equal number of datapoints (262). We then find the best fit parameters \mathcal{M} and Ω_0m and σ uncertainties in the context of a ΛCDM model for each bin, with \mathcal{M} and Ω_0m being allowed to vary simultaneously. We also find the corresponding best fit for the full Pantheon dataset and identify the σ distance between the best fit parameter values in each bin and the best fit value of the full dataset. The results of the tomography for the real data can be seen in Table I. Clearly, all first three bins of the real data best fits of \mathcal{M} and Ω_0m differ by at least 1σ from the full dataset best fits.

In order to estimate the likelihood of such a σ deviation of best fit values in the first three bins, we construct 1000 simulated Pantheon-like datasets, with random apparent magnitudes m obtained from a multivariate normal distribution with a mean value equal to the best fit ΛCDM value of the real data using the full covariance matrix of the real data. The corresponding probability distribution is of the form

$$f_m(m_1, \ldots, m_k) = \frac{\exp \left[-\frac{1}{2} (m - \bar{m})^T C^{-1} (m - \bar{m}) \right]}{\sqrt{(2\pi)^k |C|}},$$

where C is the full non-diagonal covariance matrix including both statistical and systematic errors, m is the vector $\{m_1, m_2, \ldots, m_k\}$ and \bar{m} corresponds to the mean value of the apparent magnitude vector. Using this multivariate normal distribution we construct the simulated datasets and find the percent fraction of them where all first three redshift bins have best fit ΛCDM parameter values \mathcal{M} and Ω_0m that have simultaneously σ distance from the real data best fit more than $k \sigma = \sigma_k \sigma$. The variations for the first three bins is anticipated to be evident in simulated Pantheon-like datasets.
These results for the parameters M ($\sigma_k = \sigma_{k,M}$) and Ω_{0m} ($\sigma_k = \sigma_{k,\Omega}$) are shown in Fig. 1.

According to Fig. 1, the probability that all three first bins differ simultaneously more than 1σ from the best fit of each simulated full dataset in the context of ΛCDM is less than 5%. This is an effect approximately at 2σ level. The statistical level of this effect increases to nearly 3σ (or about 2.7% of the simulated datasets) when only the statistical part of the covariance matrix is taken into account in the construction of the simulated datasets.

In fact, this probability is even smaller if we consider the exact σ differences that are shown in Table I and find the fraction of simulated datasets with simultaneous σ differences larger that the exact corresponding σ differences of the real data. In particular we find that the probability to have simultaneously 1.14σ difference (or larger) in the first bin, 1.48σ difference (or larger) in the second bin and 0.99σ difference (or larger) in the third bin for M, is $1.3 \pm 0.7\%$. Similarly, for Ω_{0m} we find the same probability to be $1.4 \pm 2\%$. Even though this decrease of probability is interesting to note, it is not generic as it is based on the fine tuned σ deviations of the real data bins from the full data best fits (1.14σ, 1.48σ and 0.99σ).

Therefore, we adopt the more generic and conservative statistical level of significance of 5% corresponding to the simultaneous deviation of at least 1σ for all three lowest z bins. Note that a similar oscillating effect was also observed in Refs. [70, 80] even though its statistical significance was not quantified using simulated data as in the present analysis.

Moreover, it is interesting to check if this behaviour is also evident for any three out of four bins. In 1000 Monte Carlo realizations we find that the number of simulated datasets where the derived Ω_{0m} in any 3 bins is more than 1σ away from the best fit Ω_{0m} to the whole (random) data sample is $10.4 \pm 2.2\%$ while the corresponding number of cases for M is $11.1 \pm 2.4\%$ as it is demonstrated in Fig. 2. The probability is smaller if we consider the exact σ difference of Table I. In particular, we derive the number of cases where the derived Ω_{0m} in any 3 bins is more than σ_{real_i} away from the best fit Ω_{0m} to the whole (random) data sample is $7.5 \pm 1.5\%$, while the corresponding number of cases for M is $7.4 \pm 1.5\%$. A summary of the results can be seen in Table II. These results indicate that the aforementioned oscillating effect is much more prominent at low $z \lesssim 0.5$ where the dark energy density is more prominent than in the fourth bin, which involves higher z. This fact favors the possibility that the effect has a physical origin since a systematic effect would probably affect equally all four redshift bins.

III. CONCLUSION - OUTLOOK

We performed a redshift tomography of the Pantheon data dividing them into four redshift bins of equal number of datapoints and searched for hints of abnormal oscillation behaviour for the best fit parameter values of M and Ω_{0m} in these bins with respect to the corresponding best fits of the full Pantheon dataset.

We constructed 1000 simulated Pantheon-like datasets and found that including both systematic and statistical uncertainties, the percentage of the simulated Pantheon dataset with a similar amplitude oscillating behaviour is $\simeq 5\%$. Considering only statistical uncertainties in the construction of the simulated datasets this probability decreases to about 2.7%.

While the statistical significance of the oscillations reduces when we consider any 3 bins out of 4 bins, we emphasise that the first three bins covering the 75% of the total data points are all at relatively low redshifts ($z < 0.42$) where dark energy is dominant. Hence, concerning the physical origin of the aforementioned effect,
we anticipate that the importance of the first three bins is amplified compared to any other three bin combination. Plausible physical causes for such low \(z \) oscillating behavior of the data include the following

- The presence of large scale inhomogeneities at low \(z \) including voids or superclusters \([81, 82]\).
- Dark energy with oscillating density in redshift. Such oscillations may be induced \(e.g. \) by scalar field potentials with a local minimum \([83, 84]\).

Finally, some interesting extensions of the present analysis include the following

- Further investigation for a similar oscillating behaviour in other data (\(e.g. \) BAO or \(H(z) \) cosmic chronometer data \([78]\)). Clearly, if such oscillations are observed in other cosmological datasets, the overall statistical significance of such an effect would be considerably boosted.
- Construction of physical models that naturally lead to such an oscillating low \(z \) behavior of the data.
- Forecasts with future SNIa compilations, \(e.g. \) by the LSST survey, to ascertain whether this oscillatory effect would be more prominent in upcoming data.

- Making some internal consistency checks such as using “Robustness” criterion \([85]\) or/and looking for redshift evolution in the light curve parameters of the data \([86]\) to determine whether the Pantheon sample is statistically consistent or is contaminated with systematics.

ACKNOWLEDGEMENTS

The research of LK is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research – 2nd Cycle” (MIS-5000432), implemented by the State Scholarships Foundation (IKY). The research of LP is co-financed by Greece and the ESF through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project No. MIS 5047648. SN acknowledges support from the Research Projects PGC2018-094773-B-C32, the Centro de Excelencia Severo Ochoa Program SEV-2016-0597 and the Ramón y Cajal program through Grant No. RYC-2014-15843. AS would like to acknowledge the support
of the Korea Institute for Advanced Study (KIAS) grant funded by the government of Korea.

[1] Adam G. Riess et al. (Supernova Search Team), “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009–1038 (1998), arXiv:astro-ph/9805201.

[2] S. Perlmutter et al. (Supernova Cosmology Project), “Measurements of Ω and Λ from 42 high redshift supernovae,” Astrophys. J. 517, 565–586 (1999), arXiv:astro-ph/9812133.

[3] Sean M. Carroll, “The Cosmological constant,” Living Rev. Rel. 4, 1 (2001), arXiv:astro-ph/0004075.

[4] M. Betoule et al. (SDSS), “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples,” Astron. Astrophys. 568, A22 (2014), arXiv:1401.4064 [astro-ph.CO].

[5] Eric Aubourg et al., “Cosmological implications of baryon acoustic oscillation measurements,” Phys. Rev. D 92, 123516 (2015), arXiv:1411.1074 [astro-ph.CO].

[6] E. Baxter et al., “Joint measurement of lensing–galaxy correlations using SPT and DES SV data,” Mon. Not. Roy. Astron. Soc. 461, 4099–4114 (2016), arXiv:1602.07384 [astro-ph.CO].

[7] Shabab Alam et al. (BOSS), “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Mon. Not. Roy. Astron. Soc. 470, 2617–2652 (2017), arXiv:1607.03155 [astro-ph.CO].

[8] George Efstathiou and Pablo Lemos, “Statistical inconsistencies in the KiDS-450 data set,” Mon. Not. Roy. Astron. Soc. 476, 151–157 (2018), arXiv:1707.00483 [astro-ph.CO].

[9] D.M. Scolnic et al., “The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample,” Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO].

[10] N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” (2018), arXiv:1807.06209 [astro-ph.CO].

[11] Steven Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61, 1–23 (1989), [569(1988)].

[12] Varun Sahni, “The Cosmological constant problem and quintessence,” The early universe and cosmological observations: A critical review. Proceedings, Conference, Cape Town, South Africa, July 23–25, 2001, Class. Quant. Grav. 19, 3435–3448 (2002), arXiv:astro-ph/0202076 [astro-ph].

[13] Steinhardt P.J., Critical Problems in Physics (Princeton University Press, 1997).

[14] H. E. S. Velten, R. F. vom Marttens, and W. Zimdahl, “Aspects of the cosmological ‘coincidence problem’,” Eur. Phys. J. C74, 3160 (2014), arXiv:1410.2509 [astro-ph.CO].

[15] Varun Sahni, Arman Shafiello, and Alexei A. Starobinsky, “Model independent evidence for dark energy evolution from Baryon Acoustic Oscillations,” Astrophys. J. Lett. 793, L40 (2014), arXiv:1406.2209 [astro-ph.CO].

[16] Gong-Bo Zhao et al., “Dynamical dark energy in light of the latest observations,” Nature Astron. 1, 627–632 (2017), arXiv:1701.08165 [astro-ph.CO].

[17] Joan Solà, Adria Gómez-Valent, and Javier de Cruz Pérez, “First evidence of running cosmic vacuum: challenging the concordance model,” Astrophys. J. 836, 43 (2017), arXiv:1602.02103 [astro-ph.CO].

[18] Xiaolei Li, Arman Shafiello, Varun Sahni, and Alexei A. Starobinsky, “Revisiting Metastable Dark Energy and Tensions in the Estimation of Cosmological Parameters,” Astrophys. J. 887, 153 (2019), arXiv:1904.03790 [astro-ph.CO].

[19] Will Handley, “Curvature tension: evidence for a closed universe,” (2019), arXiv:1908.09139 [astro-ph.CO].

[20] Rubén Arjona and Savvas Nesseris, “What can Machine Learning tell us about the background expansion of the Universe?” Phys. Rev. D 101, 123525 (2020), arXiv:1910.01529 [astro-ph.CO].

[21] Eleonora Di Valentino, Alessandro Melchiorri, and Joseph Silk, “Planck evidence for a closed Universe and a possible crisis for cosmology,” Nature Astron. 4, 196–203 (2019), arXiv:1911.02087 [astro-ph.CO].

[22] Rubén Arjona and Savvas Nesseris, “Hints of dark energy anisotropic stress using Machine Learning,” (2020), arXiv:2001.11420 [astro-ph.CO].

[23] Adam G. Riess, “The Expansion of the Universe is Faster than Expected,” Nature Rev. Phys. 2, 10–12 (2019), arXiv:2001.03624 [astro-ph.CO].

[24] H. Hildebrandt et al., “KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing,” Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), arXiv:1606.05338 [astro-ph.CO].

[25] F. Köhlinger et al., “KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters,” Mon. Not. Roy. Astron. Soc. 471, 4412–4435 (2017), arXiv:1706.02892 [astro-ph.CO].

[26] Shahab Joudaki et al., “KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering,” Mon. Not. Roy. Astron. Soc. 474, 4894–4924 (2018), arXiv:1707.06627 [astro-ph.CO].

[27] Catherine Heymans et al., “KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints,” (2020) arXiv:2007.15632 [astro-ph.CO].

[28] T.M.C. Abbott et al. (DES), “Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing,” Phys. Rev. D 98, 043526 (2018), arXiv:1708.01530 [astro-ph.CO].

[29] Edward Macaulay, Ingunn Kathrine Wehus, and Hans Kristian Eriksen, “Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected,” Phys. Rev. Lett. 111, 161301 (2013), arXiv:1303.6583 [astro-ph.CO].

[30] Joan Solà, “Cosmological constant vis-a-vis dynamical cold dark matter: bold challenging the ΛCDM,” Int. J. Mod. Phys. A31, 1630035 (2016), arXiv:1612.02449 [astro-ph.CO].

[31] Spyros Basilakos and Savvas Nesseris, “Conjoined constraints on modified gravity from the expansion history
and cosmic growth,” Phys. Rev. D 96, 063517 (2017), arXiv:1705.08797 [astro-ph.CO].

[32] Savvas Nesseris, George Pantazis, and Leandro Perivolaropoulos, “Tension and constraints on modified gravity parametrizations of $G_{	ext{eff}}(z)$ from growth rate and Planck data,” Phys. Rev. D 96, 023542 (2017), arXiv:1703.10538 [astro-ph.CO].

[33] Lavrentios Kazantzidis and Leandro Perivolaropoulos, “Evolution of the f_{σ_8} tension with the Planck15/ΛCDM determination and implications for modified gravity theories,” Phys. Rev. D 97, 103503 (2018), arXiv:1803.01337 [astro-ph.CO].

[34] Leandro Perivolaropoulos and Lavrentios Kazantzidis, “Hints of modified gravity in cosmos and in the lab?” Int. J. Mod. Phys. D 28, 1942001 (2019), arXiv:1904.09462 [gr-qc].

[35] Lavrentios Kazantzidis and Leandro Perivolaropoulos, “Is gravity getting weaker at low z? Observational evidence and theoretical implications,” (2019), arXiv:1907.03176 [astro-ph.CO].

[36] F. Skara and L. Perivolaropoulos, “Tension of the E_C statistic and redshift space distortion data with the Planck - ΛCDM model and implications for weakening gravity,” Phys. Rev. D 101, 063521 (2020), arXiv:1911.10609 [astro-ph.CO].

[37] C. Armendariz-Picon, Viatcheslav F. Mukhanov, and Paul J. Steinhardt, “A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration,” Phys. Rev. Lett. 85, 4438–4441 (2000), arXiv:astro-ph/0004134.

[38] Winfried Zimdahl, Dominik J. Schwarz, Alexander B. Balakin, and Diego Pavon, “Cosmic anti-friction and accelerated expansion,” Phys. Rev. D 64, 063501 (2001), arXiv:astro-ph/0009353.

[39] John W. Moffat, “Late-time inhomogeneity and acceleration without dark energy,” JCAP 05, 001 (2006), arXiv:astro-ph/0505326.

[40] Javier Grande, Joan Sola, and Hrvoje Stefanić, “ΛXCDM: A Cosmon model solution to the cosmological coincidence problem?” JCAP 08, 011 (2006), arXiv:gr-qc/0604057.

[41] Gabriela Caldera-Cabral, Roy Maartens, and L.Arturo Urena-Lopez, “Dynamics of interacting dark energy,” Phys. Rev. D 79, 063518 (2009), arXiv:0812.1827 [gr-qc].

[42] David Benisty and Eduardo I. Guendelman, “Unified dark energy and dark matter from dynamical spaceetime,” Phys. Rev. D 98, 023506 (2018), arXiv:1802.07981 [gr-qc].

[43] Fotios K. Anagnostopoulos, David Benisty, Spyros Basilakos, and Eduardo I. Guendelman, “Dark energy and dark matter unification from dynamical space-time: observational constraints and cosmological implications,” JCAP 06, 003 (2019), arXiv:1904.05762 [gr-qc].

[44] Tanvi Karwal and Marc Kamionkowski, “Dark energy at early times, the Hubble parameter, and the string axiverse,” Phys. Rev. D 94, 103523 (2016), arXiv:1608.01309 [astro-ph.CO].

[45] Dhiraj Kumar Hazra, Arman Shafieloo, and Tarun Souradeep, “Parameter discordance in Planck CMB and low-redshift measurements: projection in the primordial power spectrum,” JCAP 04, 036 (2019), arXiv:1810.08101 [astro-ph.CO].

[46] Vivian Poulin, Tristan L. Smith, Tanvi Karwal, and Marc Kamionkowski, “Early Dark Energy Can Resolve The Hubble Tension,” Phys. Rev. Lett. 122, 221301 (2019), arXiv:1811.04083 [astro-ph.CO].

[47] Prateek Agrawal, Francis-Yan Cyr-Racine, David Pinner, and Lisa Randall, “Rock ‘n’ Roll Solutions to the Hubble Tension,” (2019), arXiv:1904.01016 [astro-ph.CO].

[48] Ryan E. Keeley, Arman Shafieloo, Dhiraj Kumar Hazra, and Tarun Souradeep, “Inflation Wars: A New Hope,” JCAP 09, 055 (2020), arXiv:2006.12710 [astro-ph.CO].

[49] Eleonora Di Valentino, Alessandro Melchiorri, Eric V. Linder, and Joseph Silk, “Constraining Dark Energy Dynamics in Extended Parameter Space,” Phys. Rev. D 96, 023523 (2017), arXiv:1704.00762 [astro-ph.CO].

[50] Weiqiang Yang, Supriya Pan, Eleonora Di Valentino, Emmanuel N. Saridakis, and Subenoy Chakraborty, “Observational constraints on one-parameter dynamical dark-energy parametrizations and the H_0 tension,” Phys. Rev. D 99, 043543 (2019), arXiv:1810.05141 [astro-ph.CO].

[51] Weiqiang Yang, Supriya Pan, Andronikos Paliathanasis, Subir Ghosh, and Yabo Wu, “Observational constraints of a new unified dark fluid and the H_0 tension,” Mon. Not. Roy. Astron. Soc. 490, 2071–2085 (2019), arXiv:1904.10436 [gr-qc].

[52] Xiaolei Li and Arman Shafieloo, “A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension,” Astrophys. J. Lett. 883, L3 (2019), arXiv:1906.08275 [astro-ph.CO].

[53] Sunny Vagnozzi, “New physics in light of the H_0 tension: An alternative view,” Phys. Rev. D 102, 023518 (2020), arXiv:1907.07569 [astro-ph.CO].

[54] Xiaolei Li and Arman Shafieloo, “Generalised Emergent Dark Energy Model: Confronting Λ and PEDE,” (2020), arXiv:2001.05103 [astro-ph.CO].

[55] G. Alestas, L. Kazantzidis, and L. Perivolaropoulos, “H_0 tension, phantom dark energy, and cosmological parameter degeneracies,” Phys. Rev. D 101, 123516 (2020), arXiv:2004.08363 [astro-ph.CO].

[56] Weiqiang Yang, Supriya Pan, Eleonora Di Valentino, Rafael C. Nunes, Sunny Vagnozzi, and David F. Mota, “Tale of stable interacting dark energy, observational signatures, and the H_0 tension,” JCAP 09, 019 (2018), arXiv:1805.08252 [astro-ph.CO].

[57] Weiqiang Yang, Ankan Mukherjee, Eleonora Di Valentino, and Supriya Pan, “Interacting dark energy with time varying equation of state and H_0 tension,” Phys. Rev. D 98, 123527 (2018), arXiv:1809.06883 [astro-ph.CO].

[58] Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena, and Sunny Vagnozzi, “Interacting dark energy in the early 2020s: a promising solution to the H_0 and cosmic shear shear tensions,” Phys. Dark Univ. 30, 100666 (2020), arXiv:1908.04281 [astro-ph.CO].

[59] Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena, and Sunny Vagnozzi, “Nonminimal dark sector physics and cosmological tensions,” Phys. Rev. D 101, 063502 (2020), arXiv:1910.09853 [astro-ph.CO].

[60] Matteo Lucca and Deanna C. Hooper, “Tensions in the dark: shedding light on Dark Matter-Dark Energy interactions,” (2020), arXiv:2002.06127 [astro-ph.CO].

[61] Adrià Gómez-Valent, Valeria Pettorino, and Luca Amendola, “Update on coupled dark energy and the H_0 tension,” Phys. Rev. D 101, 123513 (2020), arXiv:2004.00610 [astro-ph.CO].
[62] Arman Shafieloo, Dhiraj Kumar Hazra, Varun Sahni, and Alexei A. Starobinsky, “Metastable Dark Energy with Radioactive-like Decay,” Mon. Not. Roy. Astron. Soc. 473, 2760–2770 (2018), arXiv:1610.05192 [astro-ph.CO].

[63] Marek Szydlowski, Aleksander Stachowski, and Krzysztof Urbanowski, “The evolution of the FRW universe with decaying metastable dark energy—a dynamical system analysis,” JCAP 04, 029 (2020), arXiv:1812.00616 [gr-qc].

[64] Weiqiang Yang, Eleonora Di Valentino, Supriya Pan, Spyros Basilakos, and Andronikos Paliathanasis, “Metastable dark energy models in light of Planck 2018 data: Alleviating the H_0 tension,” Phys. Rev. D 102, 063503 (2020), arXiv:2001.04307 [astro-ph.CO].

[65] Mario Ballardini, Fabio Finelli, Caterina Umiltà, and Daniela Paoletti, “Cosmological constraints on induced gravity dark energy models,” JCAP 05, 067 (2016), arXiv:1601.03387 [astro-ph.CO].

[66] Meng-Xiang Lin, Marco Raveri, and Wayne Hu, “Phenomenology of Modified Gravity at Recombination,” Phys. Rev. D 99, 043514 (2019), arXiv:1810.02333 [astro-ph.CO].

[67] Massimo Rossi, Mario Ballardini, Matteo Braglia, Fabio Finelli, Daniela Paoletti, Alexei A. Starobinsky, and Caterina Umiltà, “Cosmological constraints on post-Newtonian parameters in effectively massless scalar-tensor theories of gravity,” Phys. Rev. D 100, 103524 (2019), arXiv:1906.10218 [astro-ph.CO].

[68] Celia Escamilla-Rivera and Jackson Levi Said, “Cosmological viable models in $f(T, B)$ gravity as solutions to the H_0 tension,” Class. Quant. Grav. 37, 165002 (2020), arXiv:1909.10328 [gr-qc].

[69] Matteo Braglia, Mario Ballardini, William T. Emond, Fabio Finelli, A. Emir Gumrukcuoglu, Kazuya Koyama, and Daniela Paoletti, “Larger value for H_0 by an evolving gravitational constant,” Phys. Rev. D 102, 023529 (2020), arXiv:2004.11161 [astro-ph.CO].

[70] L. Kazantzidis and L. Perivolaropoulos, “Hints of a Local Matter Underdensity or Modified Gravity in the Low z Pantheon data,” Phys. Rev. D 102, 023520 (2020), arXiv:2004.02155 [astro-ph.CO].

[71] Junpei Ooba, Bharat Ratra, and Naoshi Sugiyama, “Planck 2015 Constraints on the Non-flat ACM Inflation Model,” Astrophys. J. 864, 80 (2018), arXiv:1707.03452 [astro-ph.CO].

[72] Chan-Gyung Park and Bharat Ratra, “Using the tilted flat-ACM and the untitled non-flat ACM inflation models to measure cosmological parameters from a compilation of observational data,” Astrophys. J. 882, 158 (2019), arXiv:1801.00213 [astro-ph.CO].

[73] Shahab Joudaki et al., “KiDS-450: Testing extensions to the standard cosmological model,” Mon. Not. Roy. Astron. Soc. 471, 1259–1279 (2017), arXiv:1610.04606 [astro-ph.CO].

[74] Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, and Xin Zhang, “Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant,” Phys. Rev. D 96, 043520 (2017), arXiv:1703.08456 [astro-ph.CO].

[75] Joan Solà, Adrià Gómez-Valent, and Javier de Cruz Pérez, “The H_0 tension in light of vacuum dynamics in the Universe,” Phys. Lett. B 774, 317–324 (2017), arXiv:1705.06723 [astro-ph.CO].

[76] Adrià Gómez-Valent and Joan Solà Peracaula, “Density perturbations for running vacuum: a successful approach to structure formation and to the σ_8-tension,” Mon. Not. Roy. Astron. Soc. 478, 126–145 (2018), arXiv:1801.08501 [astro-ph.CO].

[77] Dragán Huterer and Daniel L Shafer, “Dark energy two decades after: Observables, probes, consistency tests,” Rept. Prog. Phys. 81, 016901 (2018), arXiv:1709.01091 [astro-ph.CO].

[78] Mustapha Ishak, “Testing General Relativity in Cosmology,” Living Rev. Rel. 22, 1 (2019), arXiv:1806.10122 [astro-ph.CO].

[79] A. Conley et al. (SNLS), “Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey,” Astrophys. J. Suppl. 192, 1 (2011), arXiv:1104.1443 [astro-ph.CO].

[80] Domenico Sapone, Savvas Nesseris, and Carlos A.P. Benítez, “Is there any measurable redshift dependence on the SN Ia absolute magnitude?” (2020), arXiv:2006.05461 [astro-ph.CO].

[81] J. Grande and L. Perivolaropoulos, “Generalized LTB model with Inhomogeneous Isotropic Dark Energy: Observational Constraints,” Phys. Rev. D 84, 023514 (2011), arXiv:1103.4143 [astro-ph.CO].

[82] Tom Shanks, Lucy Hogarth, and Nigel Metcalfe, “Gaia Cepheid parallaxes and ‘Local Hole’ relieve H_0 tension,” Mon. Not. Roy. Astron. Soc. 484, L64–L68 (2019), arXiv:1810.02595 [astro-ph.CO].

[83] Michele Cicoli, Senarah De Alwis, Anshuman Maharana, Francesco Muia, and Fernando Quevedo, “De Sitter vs Quintessence in String Theory,” Fortschr. Phys. 67, 1800079 (2019), arXiv:1808.08967 [hep-th].

[84] Ruchiha, Koushik Dutta, Ankan Mukherjee, and Anjan A. Sen, “Observational Constraints on Axion(s) with a Cosmological Constant,” (2020), arXiv:2005.08813 [astro-ph.CO].

[85] Luca Amendola, Valerio Marra, and Miguel Quartin, “Internal Robustness: systematic search for systematic bias in SN Ia data,” Mon. Not. Roy. Astron. Soc. 430, 1867–1879 (2013), arXiv:1209.1897 [astro-ph.CO].

[86] Hanwool Koo, Arman Shafieloo, Ryan E. Keeley, and Benjamin L’Huillier, “Model-independent constraints on Type Ia supernova light-curve hyper-parameters and reconstructions of the expansion history of the Universe,” Astrophys. J. 899, 9 (2020), arXiv:2001.10887 [astro-ph.CO].