Auxiliary KChIP4a Suppresses A-type K⁺ Current through Endoplasmic Reticulum (ER) Retention and Promoting Closed-state Inactivation of Kv4 Channels*

Received for publication, March 1, 2013, and in revised form, April 2, 2013. Published, JBC Papers in Press, April 10, 2013, DOI 10.1074/jbc.M113.466052

Yi-Quan Tang‡, Ping Liang‡, Jingheng Zhou‡, Yanxin Lu‡, Lei Lei‡, Xiling Bian‡, and KeWei Wang§‡‡

From the ‡Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, and the §Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China and the ¶Peking University-International Data Group/McGovern Institute for Brain Research, Peking University, Beijing 100871, China

Background: Compared with other auxiliary KChIPs that enhance Kv4 current, KChIP4a inhibits Kv4 function.

Results: We identified an ER retention motif and an adjacent VKL motif within the KChIP4a N terminus that reduces Kv4.3 surface expression and promotes closed-state inactivation (CSI), respectively.

Conclusion: ER retention and CSI enhancement are two distinct mechanisms by which the N terminus of KChIP4a suppresses Kv4 function.

Significance: This study provides mechanistic insight into auxiliary KChIP4a-induced inhibition of A-type Kv4 current.

In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K⁺ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIIVIL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4–KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.

Surface expression and dynamic gating are fundamental properties of rapidly inactivating (A-type) Kv4 potassium channels that play a critical role in regulating firing frequency and shaping action potential waveforms (1, 2). Binding of auxiliary β-subunits can change the expression of Kv4 channels at the membrane surface as well as their intracellular trafficking and gating kinetics (3–7). Cytosolic Kv channel-interacting proteins (KChIPs), a class of β-subunits, co-assemble with pore-forming Kv4 α-subunits to encode the somatodendritic A-type K⁺ current (I₄ᵥ) in neurons (3, 8–10) and the transient outward current (Iₒ) in cardiac myocytes (11, 12). Both I₄ᵥ and Iₒ activate at subthreshold membrane potentials, inactivate rapidly, and recover quickly from inactivation (1). Neuronal I₄ᵥ plays a critical role in regulating dendritic excitability, somatodendritic signal integration, and long-term potentiation (13–17), whereas cardiac Iₒ is the major current for fast phase repolarization of the cardiac action potential (18, 19). Genetic disruption of human Kv4 function causes temporal lobe epilepsy and spinocerebellar ataxias as well as cardiac disorders, such as atrial fibrillation and Brugada syndrome (20–25), demonstrating the essential role of Kv4 channels in physiology and pathology.

Auxiliary KChIP1 to -4 subunits, belonging to the neuronal calcium sensor superfamily, consist of a conserved C-terminal core domain with four EF-hand-like calcium binding motifs (26) and a variable N-terminal domain that has been proposed to mediate diverse modulation on Kv4 function (27–30). Alternative splicing of the four KChIP genes generates a large number of variants with distinct N-terminal domains, making the KChIP class the most diverse among the neuronal calcium sensor protein family (31). Co-expression of different KChIPs with Kv4 in heterologous expression system leads to different effects on Kv4 channel function. The majority of the KChIP isoforms dramatically increase Kv4 surface expression and peak current, slow down fast inactivation, and accelerate the recovery from inactivation (3, 32–34). Consistently, many physiological studies have shown that the current amplitudes and gating kinetics of native Kv4 channels (both I₄ᵥ and Iₒ) are primarily determined by the expression levels of KChIPs (8, 10, 11, 35, 36). It is of interest that the KChIP4 splice variant KChIP4a, which shares a conserved C-terminal core domain with other KChIPs, protein; SSI, steady-state inactivation; CAAX, motif in which C represents cysteine, A represents an aliphatic residue, and X represents any amino acid residue.
functions as an inhibitory subunit and exhibits a distinct modulation on Kv4 channel surface expression and gating kinetics via its unique N-terminal domain (4, 37–39). The first N-terminal 34 residues of KChIP4a, previously known as the KIS (Kv channel inactivation suppressor) domain, slow Kv4 channel activation, disrupt fast inactivation of opened channels, and abolish its core-mediated enhancement of Kv4 current and acceleration of recovery from inactivation (4). However, the mechanisms by which the KChIP4a N terminus functions as a specific Kv4 channel inhibitory domain (KID) to suppress A-type potassium current remains unknown.

In the present study, we show that auxiliary KChIP4a suppresses Kv4.3 function via an alternative N-terminal KID, which can overcome the positive modulatory effect on Kv4.3 channel function by KChIP1. Using confocal imaging, we find that the KID alone is sufficient to retain proteins in the endoplasmic reticulum (ER), and its retention ability is transferable and prominently dependent on its flanking location within the protein sequence. A novel ER retention motif (N-terminal residues 12–17, LIVIVL) within the KID overrides the KChIP4a core domain-mediated enhancement of Kv4.3 surface expression, leading to the reduction of peak current. Further experiments reveal a VKL motif (N-terminal residues 19–21), adjacent to the LIVIVL motif, that can also suppress Kv4.3 current by facilitating Kv4.3 closed-state inactivation (CSI). Taken together, our findings demonstrate that ER retention and CSI enhancement are two distinct mechanisms by which KChIP4a suppresses Kv4 channel function.

EXPERIMENTAL PROCEDURES

Plasmid Construction—For confocal imaging experiments, cDNAs of KChIP4a and KChIP4a mutants were subcloned into a pEGFP-N1 or pEGFP-C2 vector. DsRed2-ER is a red fluorescent protein tagged with the signal sequence from calreticulin at its N terminus and a KDEL sequence at its C terminus (Clontech). The C-terminal CAAX signal of H-Ras (GCMSSCKCVL3), which targets Ras proteins to the plasma membrane (PM), was added to the C terminus of EGFP to construct a PM-targeting EGFP vector (pEGFP-CAAX-N1). For biochemistry experiments, cDNAs of Kv4.3, KChIP1, KChIP4a, and KChIP4a mutants were cloned into a pcDNA3.1 vector. For electrophysiological experiments, wild-type (WT) or mutant cDNA constructs of either Kv4.3 or KChIPs were transferred into a pBlueScript KSM vector.

Confocal Microscopy and Imaging Analysis—For confocal imaging experiments, HEK 293 cells were reseeded on glass coverslips coated with poly-d-lysine for detection and transfected using Lipofectamine 2000 (Invitrogen) following the manufacturer’s instructions. After 24–48 h of transfection, cells were washed twice with phosphate-buffered saline (PBS) containing 1 mM MgCl2 and 0.1 mM CaCl2 and fixed in 4% paraformaldehyde at 4 °C for 15 min. Images were obtained using a confocal microscope (FV1000, Olympus). For staining of localization in the ER, HEK 293 cells were co-transfected with KChIP4a-EGFP or KChIP4a mutants-EGFP and DsRed2-ER. FV1000 Viewer software (Olympus) was used to calculate Pearson’s correlation coefficient values for the co-localization of the fluorescence signals.

Electrophysiological Recordings—For whole-cell patch clamp recording in HEK293 cells, currents were recorded at room temperature using the EPC 10 UBS amplifier with PatchMaster software (HEKA Electronics). Patch pipettes were pulled from borosilicate glass and fire-polished to a resistance of 2–4 megohms. The bath solution contained 135 mM NaCl, 2.5 mM KCl, 10 mM HEPES, 1 mM MgCl2, 1.5 mM CaCl2, and 10 mM glucose at pH 7.4, and the pipette solution contained 135 mM potassium gluconate, 10 mM KCl, 10 mM HEPES, 1 mM CaCl2, 1 mM MgCl2, and 10 mM EGTA at pH 7.3.

For two-electrode voltage clamp recordings in oocytes, all cRNAs were transcribed *in vitro* from linearized plasmids in pBluescript KSM vectors by using the T3 mMESSAGE Machine Kit (Ambion). *Xenopus laevis* oocytes (stage V-VI) were selected and injected with 46 nl of cRNA solution, containing 0.5–5.0 ng of the selected cRNA, using a microinjector (Drummond Scientific). Oocytes were then kept at 17 °C in ND96 solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, pH 7.4, adjusted with NaOH). 24 h after injection, oocytes were impaled with two microelectrodes (0.5–1.0 megaohms) filled with 3 M KCl in a 40-μl recording chamber. Currents were recorded in ND-96 solution at room temperature (22 ± 1 °C) using a GeneClamp 500B amplifier (Axon Instruments).

Data were acquired using PatchMaster software (HEKA Electronics) and digitized at 1 kHz with an LIH 8 + 8 computer interface (HEKA Electronics). OriginPro version 8.6 (OriginLab) was used to analyze the data. To measure the peak current amplitudes and the kinetics of open-state inactivation, the currents were evoked by a 2-s depolarizing pulse to +40 mV from a holding potential of −100 mV. The time constants of macroscopic inactivation were obtained by curve fitting with a single exponential function. The peak conductance-voltage (G-V) relationship was derived from peak current amplitudes evoked by depolarizing steps from −100 to +60 mV at 10-mV increments, and the calculation was based on the equation, $G = I/(V - V_{rev})$, where I is the peak current amplitude at the test potential V, and V_{rev} is the reversal potential. Steady-state inactivation (SSI) was assessed by determining the peak current amplitudes at +40 mV after 1-, 5-, or 10-s prepauses ranging from −120 to 0 mV. The voltage dependence of steady-state activation (G/G_{max}) and inactivation (I/I_{max}) were fitted to the following single Boltzmann relationship, $y = 1/(1 + \exp((V - V_{50})/k))$, where V is the test potential, V_{50} is the potential for half-maximal activation or inactivation, and k is the corresponding slope factor. CSI was monitored with a double-pulse protocol in which the current was evoked by a test pulse of +40 mV from −100 mV (I_{pre}) and from subsequent −50-mV prepauses of variable durations from 5 ms to 10.4 s (I_{post}). Normalized currents for CSI were determined as the ratio of I_{post} to I_{pre}. The kinetics of CSI were obtained by fitting the normalized current amplitudes as a function of prepulse duration. All holding potentials were −100 mV in this study unless specified.

Cell Surface Biotinylation and Western Blotting Assay—Transfected HEK 293 cells were washed three times with ice-cold PBS and incubated for 1 h at 4 °C with EZ-Link Sulfo-NHS-SS-biotin (0.5 mg/ml; Pierce) to biotinylate cell surface proteins. Excess biotin was quenched by incubating the cells for
an additional 10 min with TBS containing 100 mM glycine. Cells were lysed with lysis buffer (150 mM NaCl, 20 mM Tris, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 10 mM EDTA, and proteinase inhibitor mixture (Roche Applied Science), pH 8.0) at 4 °C for 30 min. The cell lysates were then centrifuged at 13,000 g for 15 min to yield the protein extract in the supernatant. One fraction containing 200 g of protein was incubated with 20 l of neutravidin beads (Pierce) for 4 h at 4 °C, and the other fraction was prepared as total protein. After incubation, the bead-binding surface proteins were washed four times with cell lysis buffer and eluted with loading buffer containing DTT. The total and biotinylated proteins were both subjected to Western blot analysis.

For Western blot assays, protein samples were loaded on 8% SDS-PAGE and transferred using gel electrophoresis to nitrocellulose membranes (Millipore). After blocking, nitrocellulose membranes were incubated with mouse monoclonal anti-Kv4.3 (1:2000; Abcam), rabbit polyclonal anti-actin (1:500; Santa Cruz Biotechnology, Inc., Santa Cruz, CA), or mouse monoclonal anti-transferrin receptor (1:500; Invitrogen) antibodies at 4 °C overnight. For comparing expression levels of KChIP4a-3xFLAG and KChIP4a core-3xFLAG, mouse monoclonal anti-FLAG (1:4000; Sigma) antibody was used. The membranes were then incubated with their corresponding secondary HRP-conjugated antibodies and detected using an ECL Western blotting detection system (Millipore). Detection of signals was calculated using Quantity One software (Bio-Rad). For quantification, the signals from anti-Kv4.3 (or anti-FLAG) over the anti-actin (for total Kv4.3, KChIP4a-3xFLAG, or KChIP4a2–34) or the anti-transferrin receptor (for surface Kv4.3) were normalized. The data are expressed as the mean ± S.E.; statistical differences between different groups were assessed using Student’s t test.

RESULTS

KChIP4a Suppresses Kv4.3 Function via Its N-terminal KID—

To investigate the underlying mechanism by which auxiliary KChIP4a inhibits Kv4 function, we started by examining the effect of KChIP4a coexpressed with Kv4.3 on the channel current in both mammalian cells and *Xenopus laevis* oocytes. By sequence alignment, KChIP4a reveals a unique N terminus, consisting of the first 34 amino acids, that has been shown to function as a KID to inhibit the channel activity (Fig. 1A).

FIGURE 1. The N-terminal KID of KChIP4a suppresses Kv4.3 function. A, a schematic representation of the general domain structure of KChIPs. KChIPs consist of an NH2-terminal variable domain (multicolored box) and a conserved COOH-terminal core domain (light blue boxes) containing four EF-hands (light green boxes). The N-terminal domain of KChIP4a (designated KID in this study) is represented with the single-letter amino acid code in the protein sequence. The LIVIVL motif is marked in red, and the VKL motif is marked in black. B, representative current traces of Kv4.3 alone, Kv4.3-KChIP4a, and Kv4.3-KChIP4aΔ2–34 recorded from HEK 293 cells. The currents were evoked by a 1-s depolarizing pulse to +40 mV from a holding potential of −100 mV. C, quantitative analysis of peak current densities recorded from HEK 293 cells expressing the indicated channels or channel complexes. Values are mean ± S.E. (error bars); n = 6–10 cells; ***, p < 0.001. D, quantitative analysis of peak current amplitudes recorded from *Xenopus* oocytes expressing the indicated channels or channel complexes. Values are mean ± S.E.; n = 10–26 oocytes; ***, p < 0.001. E, the fusion of the KID to the C-terminal end of Kv4.3 (Kv4.3-KID) or the N terminus of Kv4.3 N-terminal truncation mutant (KID-Kv4.3Δ2–24) significantly suppressed the channel current. Values are mean ± S.E.; n = 5–10 oocytes. Statistical significance was assessed using Student’s t test, and statistical significance was considered as p < 0.001 (**).
ER Retention and Gating Motifs in KChIP4a N terminus

Kv4.3 current (Fig. 1, B–D). In contrast, deleting the first 34 residues of the KChIP4a N terminus (KChIP4aΔ2–34, also named KChIP4a core) led to a dramatic increase in the current amplitude (Fig. 1, B–D). The inhibitory effect of KChIP4a KID on Kv4 current was further confirmed by fusing the KID to either the C terminus of WT Kv4.3 (Kv4.3-KID) or the N terminus of Kv4.3 N-terminal truncation mutant (KID-Kv4.3Δ2–24) (Fig. 1E). These results demonstrate that the inhibitory effect of KChIP4a on Kv4 is indeed mediated by its N-terminal KID.

In neurons, KChIP4a co-exists with other KChIPs (10, 32), suggesting that KChIP4a may compete with other KChIPs to modulate Kv4 expression and gating (40). To test this hypothesis, we co-injected varying amounts of KChIP4a RNAs with a fixed amount of Kv4.3 and KChIP1 RNAs into *Xenopus laevis* oocytes and recorded the currents (Fig. 2A). As shown in Fig. 2B, with a fixed amount of KChIP1, increasing KChIP4a expression yielded a dose-dependent inhibition of Kv4.3 current amplitude. Consistent with previous reports (4), increasing amounts of KChIP4a gradually slowed the macroscopic open-state inactivation of Kv4.3 current (Fig. 2C). This dose-dependent, KChIP4a-mediated inhibition of Kv4.3-KChIP1 current was further confirmed by parallel biochemical experiments. We observed that total Kv4.3 protein expression was significantly reduced when co-expressed with KChIP4a (Fig. 2, D and E). However, KChIP4a co-expression resulted in a greater decrease in cell surface Kv4.3 protein, as compared with total expression (Fig. 2, F and G). Together, these results show that the N-terminal KID of KChIP4a acts as a dominant negative regulator to suppress the function of Kv4.3-KChIP1 channel complexes by inhibiting Kv4.3 expression as well as forwarding trafficking to the cell surface.

The ER Retention Capacity of the KID Is Transferable and Dependent on Its Location—The above results show that the N-terminal KID of KChIP4a results in the decreased anterograde trafficking of Kv4 channels, and previous studies have suggested that the KChIP4a N terminus is required for ER localization of KChIP4a in heterologous cells (32, 37). To find potential ER retention motifs within the KID, we began testing whether the retention ability of the KID is transferable and dependent upon its location within the protein sequence. We created a series of constructs with insertions of the KID at the proximal N terminus, the intermediate region, and the C-terminal end of the entire fusion protein. As a positive control, N-terminal attachment of full-length KChIP4a to EGFP (KChIP4a-EGFP) completely altered the subcellular distribution of EGFP and led to co-localization with the ER marker DsRed2-ER (Fig. 3A). By contrast, the KID deletion mutant of KChIP4a (KChIP4aΔ2–34-EGFP) showed a diffuse distribution throughout the cytoplasm and nucleoplasm of HEK 293 cells (Fig. 3B). Transplanting the KID to the C terminus of EGFP (EGFP-KID) was sufficient to retain EGFP in the ER (Fig. 3C), whereas inserting the KID into the middle part of intact protein (EGFP-KChIP4a) disrupted its ER retention ability (Fig. 3D).
To establish whether the KID could redirect other membrane proteins to the ER, we fused the KID with EGFP to the C terminus of CD4 (CD4-EGFP-KID). Our results showed that CD4 fused with the KID caused localization of the chimeric proteins to the ER (Fig. 3E). However, fusing CD4 to the N terminus of KChIP4a (CD4-KChIP4a-EGFP, with equivalent insertion of the KID into the intermediate region of the intact protein) had no effect on trafficking and maintained the ability of CD4 proteins targeting to the PM instead of being retained in the ER (Fig. 3F). Quantitative analysis of fluorescence intensity for co-variance of WT KChIP4a or KChIP4a mutants against the ER marker DsRed2-ER further confirmed the effect of ER retention mediated by its KID (Fig. 3G). These results indicate that the KID functions as an ER retention signal when located at either the N or C terminus of a protein but not when buried in the intermediate region.

Identification of a Hydrophobic and Aliphatic ER Retention Motif, LIVIVL, within the N-terminal KID of KChIP4a—Because the N-terminal KID does not contain any canonical ER retention motif, the question then arises as to how the KID causes ER localization of KChIP4a. To identify specific residues critical for ER retention of KChIP4a, N-terminal truncations or mutations were introduced into the KID and the fluorescence intensity of co-variance versus DsRed2-ER was quantified. With N-terminal deletions of residues 2–10 (KChIP4aΔ2–10-EGFP) or 23–34 (KChIP4aΔ23–34-EGFP) and alanine substitutions for residues 19–22 of the KID (KChIP4a 19–22A-EGFP), all of the proteins still co-localized with DsRed2-ER (Fig. 4A, E, F, and G). In contrast, deleting N-terminal residues 2–15 (KChIP4aΔ2–15-EGFP) or substituting alanine for residues 11–14 (KChIP4a 11–14A-EGFP) or 15–18 (KChIP4a 15–18A-EGFP) eliminated ER retention (Fig. 4B, C, D, and G). These data indicate that residues 11–18 of the KID are critical for ER retention.

To understand the mechanism underlying the KID-mediated ER retention, we utilized a CAAAX signal from the H-Ras proteins that functions as a membrane anchor to evaluate the retention ability of KChIP4a and its mutants. The CAAAX signal was appended to the C terminus of KChIP4a-EGFP fusion proteins. We then tested the effect of the KID on CAAAX signal-mediated forward trafficking to the cell surface. The result showed that the intact KID overcame the CAAAX signal-mediated PM translocation (Fig. 5A). Consistent with our previous results shown in Figs. 3B and 4, the mutants KChIP4aΔ2–34-CAAX, KChIP4aΔ2–15-CAAX, KChIP4a 11–14A-CAAX, and KChIP4a 15–18A-CAAX lost their ability to stay in the ER as illustrated by their distribution at the PM (Fig. 5, B, D–F, and I), whereas the mutants KChIP4aΔ2–10-CAAX, KChIP4a 19–22A-CAAX, and KChIP4aΔ23–34-CAAX retained their ER retention ability (Fig. 5, C and G–I). These results demonstrate that residues 11–18 (VLIVIVLF) of the KID function as an ER

FIGURE 3. The ER retention capacity of the KID is transferable and dependent on its location. A, robust co-localization of full-length KChIP4a with the ER marker DsRed2-ER. B, the N-terminal KID deletion mutant of KChIP4a (KChIP4aΔ2–34) showed a diffuse distribution. C, appending the KID to the C terminus of EGFP (EGFP-KID) is sufficient to retain EGFP in the ER. D, disruption of the KID-induced ER retention when the KID was inserted into the middle of the chimeric construct (EGFP-KChIP4a). E, ER retention of CD4 proteins by the KID fused to the C terminus of the chimeric proteins (CD4-EGFP-KID). F, adding CD4 to the N terminus of KChIP4a (CD4-KChIP4a-EGFP) disrupted the ER retention caused by the KID, resulting in the localization of the chimeric proteins to the PM. G, ER localization was quantified by co-localization with the ER marker DsRed2-ER, using Pearson’s correlation. Values are mean ± S.E. (error bars); n = 12–31 cells; *, p < 0.001. Red squares, KID; yellow rectangles, KChIP4aΔ2–34 (the core domain of KChIP4a); green rectangles, EGFP; blue rectangles, CD4. Scale bar, 10 μm.
retention signal that can override the H-Ras-CAAX-mediated classical vesicular trafficking.

To determine whether the VLIVIVLF (residues 11–18) is sufficient for ER retention, we replaced the whole KID (34 amino acids) with VLIVIVLF and appended it to the KChIP4a core. Our results showed that VLIVIVLF alone is not only necessary but also sufficient to retain proteins in the ER, despite the presence of a CAAX signal (Fig. 6, A, F, and K). To further circumscribe the retention motif, we replaced the KID with VLIVI (residues 11–15), LIVIVL (residues 12–16), IVIVL (residues 13–17), or VIVLF (residues 14–18). The VLIVI (residues 11–15) did not alter the cytoplasm and nucleoplasm-diffused distribution of the KChIP4a core domain, as compared with the core expressed alone (Fig. 6, B and K). The PM distribution of VLIVI-core-CAAX fusion proteins was also similar to the core-CAAX (KChIP4a/2–34-EGFP) (Fig. 6, E and F), ER localization was quantified by Pearson’s co-localization with DsRed2-ER. Values are mean ± S.E. (error bars); n = 14–31 cells; *, p < 0.001. Scale bar, 10 μm.

Enhanced CSI of Kv4.3 by the N-terminal KID of KChIP4a—To examine whether the ER retention signal within the N-terminal KID of KChIP4a affected total and surface expression of Kv4.3, surface biotinylation and Western blot were carried out on HEK 293 cells with Kv4.3 co-expressed with WT or mutated KChIP4a. The results showed that mutating residues 11–18 (11–14A and 15–18A) relieved ER retention and reversed the inhibitory effect of KChIP4a on total and surface expression of Kv4.3 (Fig. 8, A and C). The reduction of total Kv4.3 expression resulted from the decreased expression of KChIP4a, as compared with the KChIP4a/2–34 (Fig. 8, E and F), suggesting that the ER retention signal within the KID accelerates the rate of protein degradation. Quantitative analysis showed greater changes of Kv4.3 proteins in surface
expression, as compared with total expression (Fig. 8, B and D), indicating that the KID inhibits the surface expression of Kv4.3 via reducing protein stability as well as anterograde trafficking. Electrophysiological recordings showed a dramatic increase in Kv4.3 current amplitudes when residues 11–18 were disrupted (Fig. 8G), consistent with their role in mediating Kv4.3 retention in the ER.

In addition to the identified residues 11–18 that are critical for ER retention, we were surprised to find that mutating residues 19–22 (19–22A) increased the current density of Kv4.3 without affecting its surface expression (Fig. 8G), consistent with their role in mediating Kv4.3 retention in the ER.

In addition to the identified residues 11–18 that are critical for ER retention, we were surprised to find that mutating residues 19–22 (19–22A) increased the current density of Kv4.3 without affecting its surface expression (Fig. 8G), consistent with their role in mediating Kv4.3 retention in the ER.

In contrast, co-expression of Kv4.3 with KChIP4a increased CSI to about 90%, as compared with Kv4.3 alone (72%) and Kv4.3-core co-expression (38%) (Fig. 9B and Table 1). The SSI curve for Kv4.3 under a 5-s prepulse had a $V_{1/2}$ of 52.0 ± 0.3 mV and a k of 5.5 ± 0.3 mV. The KChIP4a core significantly shifted the inactivation curve ($V_{1/2}$) to the right in a depolarization direction ($V_{1/2}$ of −46.4 ± 0.2 mV and k of 4.6 ± 0.2). Consistent with its effect on CSI, the KID overrode the right-shift effect of the core and caused the curve to shift in the hyperpolarization direction ($V_{1/2}$ of −58.5 ± 0.5 mV and a k of 5.2 ± 0.4 mV) (Fig. 9C and Table 1). We also examined the conductance-voltage ($G-V$) curves and found no significant differences (Fig. 9D). These data suggest that the modulation of Kv4.3 inactivation by the KID is dominant over that by the KChIP4a core.
and reduces the number of Kv4.3 channels available for opening.

To determine which part of the KID is involved in modulating Kv4.3 CSI, we generated mutants and found that residues 19–22 of the KID played a critical role in facilitating the development of CSI and causing a hyperpolarizing shift of SSI (Fig. 10, A and B, and Table 1). The 19–22A mutant completely eliminated the enhancement effect of the KID on CSI, consis-
tent with the effect of the KID deletion mutant (Δ2–34). Further dissection revealed that residues 19–21, VKL, are responsible for promoting CSI, and residue 21 (leucine) is the most critical (Fig. 10, C and D, and Table 1). A previous study suggested that either the N terminus of KChIP2x (2xNt) or KChIP3x (3xNt) functions like the KID (37). To test the effect of 2xNt or 3xNt on CSI, we replaced the KID with 2xNt or 3xNt, where their amino acid residues 19–21 are VKV or IAV, respectively. The VKV from 2xNt exerted an effect similar to that of the KChIP4a 21A mutant on CSI and SSI. The IAV from 3xNt, analogous to the KChIP4a 19–22A or Δ2–34 mutation, had no effect on promoting CSI (Fig. 10, E and F, and Table 1),...
confirming the specific effect of the VKL motif from the KID on CSI. Together, these results demonstrate that the VKL motif of the KID inhibits Kv4.3 function by facilitating the channel CSI.

DISCUSSION

The goal of this study was to understand how auxiliary KChIP4a, which only differs from other KChIPs in the N terminus, inhibits Kv4 function. We found that KChIP4a acts as an inhibitory subunit to suppress Kv4 A-type current (I_{SA}). The inhibitory property of KChIP4a on I_{SA} is primarily mediated by its unique N-terminal KID. Our findings reveal two distinct mechanisms by which KChIP4a exerts its inhibition on Kv4 function. First, an LIVILV motif (N-terminal residues 12–17) mediates ER retention of KChIP4a and Kv4 channels; second, the VKL motif (N-terminal residues 19–21) of the KID directly inhibits Kv4.3 function by increasing the number of channels in the closed inactivated state.

Previous studies on Kv4 modulation by KChIPs have mostly focused on the effects of a single KChIP on Kv4 function. Because all members of the KChIP family share a high homology in their C-terminal core regions and each can form two interfaces associated with two neighboring Kv4 N-terminal domains (46–48), this raises the possibility that different KChIPs may compete for common KChIP-binding sites, resulting in a diversity of modulation of Kv4 function by KChIPs. This hypothesis is supported by our observation that KChIP4a inhibits the surface expression and peak current of Kv4 coexpressed with KChIP4a mutants in a dose-dependent and competitive manner by antagonizing the binding of KChIP1 to Kv4 (Fig. 2). Whether these observations imply that Kv4-KChIP complexes in native cells contain heteromeric KChIPs or only one KChIP isoform is presently unknown and deserves further investigation.

Cell surface expression of proteins depends on the delicate balance of forward trafficking and intracellular retention (49). ER retention/retrieval motifs are dominant trafficking signals that are often encoded in individual subunits of multiprotein complexes, thereby providing a negative regulatory mechanism...
for cell surface protein expression or a quality control mechanism to ensure proper oligomerization or correct folding (50). In most cases, ER retention/retrieval motifs are located in the \(\alpha\)-subunits of ion channels and can be masked by subunit assembly (51–53) or antagonized by auxiliary subunits (54, 55) or regulatory proteins (56–58). Some accessory \(\beta\)-subunits or regulators contain ER retention motifs and down-regulate surface expression of \(\alpha\)-subunits (59, 60). In the current study, we
identified an LIVIVL sequence within the N-terminal KID of KChIP4a that functions as an ER retention motif to suppress Kv4 forward vesicular trafficking from the ER to the Golgi apparatus, which is different from the inhibition of Kv4 endocytosis induced by other KChIPs, such as KChIP2 (34). In addition, we utilized the CAAX signal from H-Ras that functions as a PM targeting signal to evaluate the retention ability of this newfound motif. The H-Ras-CAAX signal uses the exocytosis pathway in a similar fashion to the trafficking pathway of membrane proteins (61). Therefore, our results support that the ER retention motif identified in this study plays a dominant negative role in classical vesicular trafficking pathway, thus leading to the reduction of Kv4 surface expression.

Due to its hydrophobic nature, the LIVIVL motif identified and reported here differs from canonical motifs consisting of basic amino acids. A series of hydrophobic ER retention signals have been identified in different parts of proteins, including the N terminus, C terminus, transmembrane segments, and cytoplasmic linker of transmembrane segments (53, 62–68). Unlike well characterized basic motifs that consist of RXR, RR, and KK, the molecular identity of the hydrophobic motifs still remains to be further explored. The hydrophobic ER retention motifs vary in their location and composition, and the only common feature is membrane adjacency or association. Another interesting observation is that the retention ability of the LIVIVL motif is transferable and dependent on its flanking location within the protein sequence. This feature is similar to the H/KDEL motif that is often located in the C-terminal end of soluble ER-resident proteins, such as Bip (Grp78), calreticulin, endoplasmin (Grp94), protein-disulfide isomerase, etc. (50). The addition of the KDEL to the C terminus of various proteins can also lead to their ER retention (69–72). The H/KDEL motif is recognized by the KDEL receptor ERD2, which is mainly localized to the cis-Golgi and targets the KDEL-containing proteins into the retrograde COPI-mediated transport pathway (73, 74). However, how the LIVIVL motif causes ER retention of LIVIVL-containing proteins requires further investigation.

Previously, we proposed that the core of KChIPs increases total expression level of Kv4.3 by stabilizing Kv4.3 tetramerization via a clamping action (48). In the current study we show that the N-terminal KID of KChIP4a, a non-core region, exerts an inhibitory effect on total Kv4.3 and KChIP4a by reducing their protein stability (Fig. 8). Considering the ER retention effect of the KID, it is likely that the ER retention motif within the KID causes ER-associated protein degradation of KChIP4a itself and its associated proteins, such as Kv4.3. Kv4 expression and functional properties are regulated by KChIPs as well as dipeptidyl peptidase-like proteins containing DPP6 and DPP10 (5, 6). Considerable evidence suggests that native neuronal I_{SA} channels function in macromolecular protein complexes composed of Kv4 pore-forming subunits together with accessory KChIPs and DPP6/10 subunits (75, 76). Different from cytosolic KChIPs, the accessory DPP6/10 subunits are transmembrane proteins and selectively increase surface expression of Kv4.2 but not total expression (77). In this study, we demonstrate that the ER retention of the KID is dominant over surface trafficking of multitransmembrane protein Kv4.3, single transmembrane protein CD4, and the secretory CAAX signal from H-Ras protein, so the DPP-mediated augmentation effect on
Kv4 surface expression is likely to be inhibited when co-assembled with KChIP4a.

The molecular mechanism of Kv4 fast inactivation differs significantly from other rapidly inactivating Kv channels, such as Shaker and Kv1.4 (78–82). Kv4 channels exhibit a preferential CSI, implying that upon voltage-dependent activation, inactivation occurs preferentially from partially activated closed states that precede the open state (82, 83). In contrast to N-type and C-type inactivation, the molecular basis of CSI remains to be determined. The KID has been previously characterized as an open-state inactivation suppressor (so-called KIS domain) of Kv4 in heterologous cells and neurons (4, 84). Surprisingly, in this study, we found that the KID promotes CSI and shifts the voltage dependence of SSI in a hyperpolarization direction, whereas the core of KChIP4a-mediated Kv4 modulation on CSI and SSI kinetics is opposite to that of the KID (Fig. 9). Moreover, we demonstrated that the existence of the VKL motif (N-terminal residues 19–21) is responsible for the KID modulation on Kv4 CSI. Therefore, identification of a putative receptor site for the VKL motif binding to Kv4 channels may provide structural insights into the mechanism of Kv4 CSI.

Similar to Kv4 channels, Kv2 channels (Kv2.1 and Kv2.2) also inactivate preferentially from partially activated closed states, and its steady-state inactivation curve exhibits a U-type shape (85). The functional properties of Kv2 are regulated by forming heteromers with the otherwise “silent” α-subunits of the Kv5, Kv6, Kv8, or Kv9 subfamily. The modulatory effects of these “silent” α-subunits on Kv2 are analogous to those of KChIP4a on Kv4, such as a reduction in peak current amplitude, inhibition of open-state inactivation, acceleration of CSI, and promotion of hyperpolarized shifts in the voltage dependence of SSI (86–89). Altogether, these findings suggest that bidirectional modulation of Kv4 open-state and closed-state inactivation mediated by the KID may be a highly conserved function among various ion channels and ancillary subunits.

The channel subunit composition is a determinant in shaping the repertoire of A-type K+ channels present at the surface of neurons. Differential regulation of auxiliary KChIPs can modify the subunit composition of native Kv4 channel complexes, altering their biophysical and physiological properties as well as neuronal excitability. Recently, an interesting study has demonstrated that activation of noncoding RNA 38A induced by inflammatory stimuli causes a gene-specific alternative splicing shift from KChIP4b to KChIP4a, leading to an inhibition of Kv4 function as well as altered amyloid production associated with neurodegenerative etiology (90). Therefore, it is possible that the expression level of KChIP4a may vary under pathological conditions that are affected by inflammation, pain, meningitis, multiple sclerosis, Alzheimer disease, Parkinson disease, or stroke-mediated neuronal dysfunction (91), resulting in perturbation of I_{SA} and neuronal excitability. Furthermore, because KChIP4a can directly inhibit Kv4 function by promoting channel CSI, a specific disruption of the interaction between the KChIP4a KID and Kv4 channels aimed at enhancing I_{SA} may provide a new strategy for treating hyperexcitable neurological disorders, such as pain and epilepsy.

Acknowledgments—We thank laboratory members Xu Cao, Jun Su, Yuanyuan Cui, and Hao Chen for discussion. We also thank Arun Sharma (Stanford University School of Medicine) for careful and critical reading of the manuscript. K. W. W. thanks J. M. Wang for consistent support during this research.

REFERENCES

1. Birnbaum, S. G., Varga, A. W., Yuan, L. L., Anderson, A. E., Sweatt, J. D., and Schrader, L. A. (2004) Structure and function of Kv4-family transient potassium channels. Physiol. Rev. 84, 803–833
2. Covarrubias, M., Bhattacharjai, A., De Santiago-Castillo, J. A., Dougherty, K., Kaulin, Y. A., Na-Phuket, T. R., and Wang, G. (2008) The neuronal Kv4 channel complex. Neurochem. Res. 33, 1558–1567
3. An, W. F., Bowby, M. R., Betty, M., Cao, J., Ling, Y., Mendoza, G., Hinson, J. W., Mattsson, K. L., Strassle, B. W., Trimmer, J. S., and Rhodes, K. I. (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556
4. Holmqvist, M. H., Cao, J., Hernandez-Pineda, R., Jacobson, M. D., Carroll, K. I., Sung, M. A., Betty, M., Ge, P., Gilbride, K. I., Brown, M. E., Jurman, M. E., Lawson, D., Siros-Santiago, I., Xie, Y., Covarrubias, M., Rhodes, K. I., Distefano, P. S., and An, W. F. (2002) Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc. Natl. Acad. Sci. U.S.A. 99, 1035–1040
5. Nadal, M. S., Ozaità, A., Amarillo, Y., Vega-Saenz de Miera, E., Ma, Y., Mo, W., Goldberg, E. M., Misumi, Y., Ikebara, Y., Neubert, T. A., and Rudy, B. (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37, 449–461
6. Jeng, H. H., Qian, Y., and Pfaffinger, P. J. (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biochem. J. 377, 2380–2396
7. Wang, K. (2008) Modulation by clamping. Kv4 and KChIP interactions. Neurochem. Res. 33, 1964–1969
8. An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Jerng, H. H., Qian, Y., and Pfaffinger, P. J. (2004) Modulation of Kv4.2 N terminus gating motifs in KChIP4a N terminus. Proc. Natl. Acad. Sci. U.S.A. 99, 1035–1040
9. Birnbaum, S. G., Varga, A. W., Yuan, L. L., Anderson, A. E., Sweatt, J. D., and Schrader, L. A. (2004) Structure and function of Kv4-family transient potassium channels. Physiol. Rev. 84, 803–833
10. Covarrubias, M., Bhattacharjai, A., De Santiago-Castillo, J. A., Dougherty, K., Kaulin, Y. A., Na-Phuket, T. R., and Wang, G. (2008) The neuronal Kv4 channel complex. Neurochem. Res. 33, 1558–1567
11. An, W. F., Bowby, M. R., Betty, M., Cao, J., Ling, Y., Mendoza, G., Hinson, J. W., Mattsson, K. L., Strassle, B. W., Trimmer, J. S., and Rhodes, K. I. (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403, 553–556
12. Holmqvist, M. H., Cao, J., Hernandez-Pineda, R., Jacobson, M. D., Carroll, K. I., Sung, M. A., Betty, M., Ge, P., Gilbride, K. I., Brown, M. E., Jurman, M. E., Lawson, D., Siros-Santiago, I., Xie, Y., Covarrubias, M., Rhodes, K. I., Distefano, P. S., and An, W. F. (2002) Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc. Natl. Acad. Sci. U.S.A. 99, 1035–1040
13. Hoffman, D. A., Magee, J. C., Colbert, C. M., and Johnston, D. (1997) KChIP2 gene leads to a complete loss of Kv4 channel function as well as altered amyloid production associated with neurodegenerative etiology. Neurosci. Lett. 24, 305, 387, 869–875
14. Bernard, C., Anderson, A., Becker, A., Poolos, N. P., Beck, H., and Johnston, D. (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305, 532–535
15. Cai, X., Liang, C. W., Muralidaran, S., Muralidharan, S., Kao, P. J., Tang, C. M., and Thompson, S. M. (2004) Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44, 351–364
16. Chen, X., Yuan, L. L., Zhao, C., Birnbaum, S. G., Frick, A., Jung, W. E.,
Burgoyne, R. D. (2007) Neuronal calcium sensor proteins. Generating Kv4 α subunits with K+ channel-interacting protein 2 stabilizes protein expression and promotes surface retention of channel complexes. J. Biol. Chem. 285, 33413–33422

Panama, B. K., Louat-Villamil, D., Farman, G. P., Zhao, D., Bolz, S. S., Kirshenbaum, L. A., and Backx, P. H. (2011) Nuclear factor κB downregulates the transient outward potassium current Ito through control of Kv11.2 expression. Circ. Res. 108, 537–543

Jeyaraj, D., Haldar, S. M., Wan, X., McCauley, M. D., Ripperger, J. A., Hu, K., Lu, Y., Eapen, B. L., Sharma, N., Ficker, E., Cutler, M. J., Gulick, J., Sanbe, A., Robbins, J., Demolombe, S., Kondratov, R. V., Shea, S. A., Albrecht, U., Wrehrens, X. H., Rosenbaum, D. S., and Jain, M. K. (2012) Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96–99

Jerraj, H. H., and Pfaffinger, P. J. (2008) Multiple Kv channel-interacting proteins contain an N-terminal transmembrane domain that regulates Kv4 channel trafficking and gating. J. Biol. Chem. 283, 36046–36059

Schwenk, J., Zilles, K., Gondi, N. G., Neubauer, I., Kalbacher, H., Covarrubias, M., Fakler, B., and Bentrop, D. (2008) NMR analysis of KChIP4 reveals structural basis for control of surface expression of Kv4 channel complexes. J. Biol. Chem. 283, 18937–18946

Li, P., Wang, H., Chen, H., Cui, Y., Gu, L., Chai, J., and Wang, K. (2009) Structural insights into KChIP4a modulation of Kv4.3 inactivation. J. Biol. Chem. 284, 4960–4967

Li, P., Chen, H., Cui, Y., Lei, L., and Wang, K. (2010) Functional rescue of Kv4.3 channel tetramerization mutants by KChIP4a. Biophys. J. 98, 2867–2876

Kim, J. H., Ahn, H. S., Choi, B. H., and Hahn, S. J. (2011) Inhibition of Kv4.3 by genistein via a tyrosine phosphorylation-independent mechanism. Am. J. Physiol. Cell Physiol. 300, C567–C575

Kim, H. J., Ahn, H. S., Choi, J. S., Bohl, S. H., and Hahn, S. J. (2011) Effects of ranolazine on cloned cardiac Kv4.3 potassium channels. J. Pharmacol. Exp. Ther. 333, 952–958

Jeong, I., Choi, B. H., and Hahn, S. J. (2011) Rosiglitazone inhibits Kv4.3 potassium channels by open-channel block and acceleration of closed-state inactivation. Br. J. Pharmacol. 163, 510–520

Jeong, I., Kim, S. W., Yoon, S. H., and Hahn, S. J. (2012) Block of cloned Kv4.3 potassium channels by dapoxetine. Neuropharmacology 62, 2261–2266

Choi, J. S., and Hahn, S. J. (2012) Duloxetine blocks cloned Kv4.3 potassium channels. Brain Res. 1466, 15–23

Scannevin, R. H., Wang, K., Jow, F., Megules, I., Kopsco, D. C., Ediris, W., Carroll, K. C., Lui, Q., Xu, W., Xu, Z., Katz, A. H., Olland, S., Lin, L., Taylor, M., Stahl, M., Malakian, K., Somers, W., Mosyak, L., Bowby, M. R., Chanda, P., and Rhodes, K. J. (2004) Two N-terminal domains of Kv4+ channels regulate binding to and modulation by KChIP1. Neuron 41, 587–598

Pioletti, M., Findeisen, F., Hura, G. L., and Minor, D., Jr. (2006) Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat. Struct. Mol. Biol. 13, 987–995

Wang, H, Yan, Y., Liu, Q., Huang, Y., Shen, Y., Chen, L., Chen, Y., Yang, Q., Hao, Q., Wang, K., and Chai, J. (2007) Structural basis for modulation of Kv4+ channels by auxiliary KChIP subunits. Nat. Neurosci. 10, 32–39

Ma, D., and Jan, L. Y. (2002) ER transport signals and trafficking of potassium channels and receptors. Curr. Opin. Neurobiol. 12, 287–292

Ellgaard, L., and Helenius, A. (2003) Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191

Zerangue, N., Schwappach, B., Jan, N. Y., and Jan, L. Y. (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane Kv4.3 channel. Neuron 22, 537–548

Margenta-Mitrovic, M., Jan, N. Y., and Jan, L. Y. (2000) A trafficking checkpoint controls GABA_A receptor heterodimerization. Neuron 27, 97–106

Wang, J. M., Zhang, L., Yao, Y., Viroonchatapan, N., Rothe, E., and Wang, Z. Z. (2002) A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nat. Neurosci. 5, 963–970

Bichet, D., Cornet, V., Geib, S., Carlier, E., Volsen, S., Hoshi, T., Mori, Y., and De Waard, M. (2000) The I-III loop of the Ca²⁺ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190
55. Zhang, Z. N., Li, Q., Liu, C., Wang, H. B., Wang, Q., and Bao, L. (2008) The voltage-gated Na\(^+\) channel Nav1.8 contains an ER-retention/retrieval signal antagonized by the β3 subunit. *J. Cell Sci.* **121**, 3243–3252
56. Standley, S., Roche, K. W., McCallum, J., Sans, N., and Wenthold, R. J. (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NRI splice variants. *Neuron* **28**, 887–898
57. Girard, C., Tinel, N., Terrenoire, C., Romey, G., Lazdunski, M., and Bor-sotto, M. (2002) p11, an annexin II subunit, an auxiliary protein associated with the background K\(^+\) channel, TASK-1. *EMBO J.* **21**, 4439–4448
58. O’Kelly, I., Butler, M. H., Zilberman, N., and Goldstein, S. A. (2002) Forward transport. 14–3–3 binding overcomes retention in endoplasmic reticulum by dibasic signals. *Cell* **111**, 577–588
59. Renigunta, V., Yuan, H., Zuzarte, M., Rinne, S., Koch, A., Wischmeyer, E., Schlichthörl, G., Gao, Y., Karschin, A., Jacob, R., Schwappach, B., Daut, J., and Preisig-Müller, R. (2006) The retention factor p11 confers an endoplasmic reticulum-localization signal to the potassium channel TASK-1. *Traffic* **7**, 168–181
60. Shrut, S., Urban-Ciecko, J., Fitzpatrick, J. A., Brenner, R., Bruchez, M. P., and Barth, A. L. (2012) The brain-specific β4 subunit downregulates BK channel cell surface expression. *PLoS One* **7**(e33429).
61. Hancock, J. F. (2003) Ras proteins. Different signals from different locations. *Nat. Rev. Mol. Cell Biol.* **4**, 373–384
62. Szczesna-Skorupa, E., and Kemper, B. (2000) Endoplasmic reticulum retention determinants in the transmembrane and linker domains of cytochrome P450 C21. *J. Biol. Chem.* **275**, 19409–19415
63. Kaether, C., Capell, A., Edbauer, D., Winkler, E., Novak, B., Steiner, H., and Haass, C. (2004) The presenilin C terminus is required for ER-retention, nicasrin-binding and γ-secretase activity. *EMBO J.* **23**, 4738–4748
64. Parker, A. K., Gergely, F. V., and Taylor, C. W. (2004) Targeting of inositol 1,4,5-trisphosphate receptors to the endoplasmic reticulum by multiple signals within their transmembrane domains. *J. Biol. Chem.* **279**, 23797–23805
65. Zarei, M. M., Eghbali, M., Alioua, A., Song, M., Knaus, H. G., Stefani, E., and Ruddock, L. (2007) A molecular specificity code for the three mammalian KDEL receptors. *Mol. Biol. Cell.* **18**, 248–257
66. Ma, S., Vassallo, I., Castelnuovo, M., Fiorino, G., Gatta, E., Robello, M., Borghi, R., Tabaton, M., Russo, C., Dieci, G., Canceda, R., and Paganu, A. (2011) RNA polymerase III drives alternative splicing of the potassium channel-interacting protein contributing to brain complexity and neurodegeneration. *J. Biol. Chem.* **236**, 851–866
67. Aktas, O., Ullrich, O., Infante-Duarte, C., Nitsch, R., and Zipp, F. (2007) Neuronal damage in brain inflammation. *Arch. Neurol.* **64**, 185–189
68. Angelotti, T., Daunt, D., Scherbakova, O. G., Koblika, B., and Hurt, C. M. (2010) Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal. *Traffic* **11**, 560–578
69. Dayel, M. J., Hom, E. F., and Verkman, A. S. (1999) Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. *Biophys. J.* **76**, 2843–2851
70. Frigerio, L., Pastres, A., Prada, A., and Vitale, A. (2001) Influence of KDELI on the fate of trimeric or assembly-defective phaseolin. Selective use of an alternative route to vacuoles. *Plant Cell* **13**, 1109–1126
71. Raykhl, L., Alahan, H., Sato, K., Juvansuu, J., Nguyen, V. D., Latva-Ranta, M., and Ruddock, L. (2007) A molecular specificity code for the three mammalian KDEL receptors. *J. Cell Biol.* **179**, 1193–1204
72. Matsukawa, S., Moriyama, Y., Hayata, T., Sasaki, H., Ito, Y., Asashima, M., and Kuroda, H. (2012) KDEL tagging: A method for generating dominant-negative inhibitors of the secretion of TGF-β superfamily proteins. *Int. J. Dev. Biol.* **56**, 351–356
73. Griffiths, G., Ericsson, M., Krijnse-Locker, J., Nilsson, T., Goud, B., Söling, H. D., Tang, B. L., Wong, S. H., and Hong, W. (1994) Localization of the Lys, Asp, Gla, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. *J. Cell Biol.* **127**, 1557–1574
74. Semenza, J. C., Hardwick, K. G., Dean, N., and Pelham, H. R. (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. *Cell* **61**, 1349–1357
75. Zarei, M. M., Eghbali, M., Alioua, A., Song, M., Knaus, H. G., Stefani, E., and Ruddock, L. (2007) A molecular specificity code for the three mammalian KDEL receptors. *Mol. Biol. Cell.* **18**, 248–257
76. Massone, S., Vassallo, I., Castelnuovo, M., Fiorino, G., Gatta, E., Robello, M., Borghi, R., Tabaton, M., Russo, C., Dieci, G., Canceda, R., and Paganu, A. (2011) RNA polymerase III drives alternative splicing of the potassium channel-interacting protein contributing to brain complexity and neurodegeneration. *J. Biol. Chem.* **236**, 851–866
77. Aktas, O., Ullrich, O., Infante-Duarte, C., Nitsch, R., and Zipp, F. (2007) Neuronal damage in brain inflammation. *Arch. Neurol.* **64**, 185–189