ASYMPTOTIC SYZYGIES IN THE SETTING OF SEMI-AMPLE GROWTH

JULIETTE BRUCE

Abstract. We study the asymptotic non-vanishing of syzygies for products of projective spaces. Generalizing the monomial methods of Ein, Erman, and Lazarsfeld [EEL16] we give an explicit range in which the graded Betti numbers of \(\mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \) embedded by \(\mathcal{O}_{\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}}(d_1, d_2) \) are non-zero. These bounds provide the first example of how the asymptotic syzygies of a smooth projective variety whose embedding line bundle grows in a semi-ample fashion behave in nuanced and previously unseen ways.

The goal of this paper is to initiate the study of the asymptotic behavior of the syzygies of a smooth projective variety as the embedding line bundle grows in a semi-ample fashion. We show that for the prototypical example of such varieties, the product of two projective spaces, the asymptotic behavior is more complicated than in the case when the positivity grows in an ample fashion. In particular, we show that the non-vanishing theorems of Ein and Lazarsfeld and others [CJKW18, EL12, EEL16, EY18] do not describe the non-vanishing syzygies of products of projective space in the setting of semi-ample asymptotics.

More specifically, fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and set \(\mathbb{P}^n := \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \). Given \(b = (b_1, b_2) \in \mathbb{Z}^2 \), we let \(\mathcal{O}_{\mathbb{P}^n}(b) := \pi_1^* \mathcal{O}_{\mathbb{P}^{n_1}}(b_1) \otimes \pi_2^* \mathcal{O}_{\mathbb{P}^{n_2}}(b_2) \), where \(\pi_i \) is the projection from \(\mathbb{P}^n \) to \(\mathbb{P}^{n_i} \). If \(d \in \mathbb{Z}^2 \geq 1 \) then \(\mathcal{O}_{\mathbb{P}^n}(d) \) is very ample, and so defines an embedding:

\[
\mathbb{P}^n = \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \xrightarrow{i_d} \mathbb{P}^H(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) \cong \mathbb{P}^{n \cdot d}.
\]

We call this the d-uple Segre-Veronese map. We are interested in studying the asymptotic behavior of the syzygies of \(\mathbb{P}^n \) under the \((d_1, d_2) \)-uple Segre-Veronese embedding as \(d_1 \) or \(d_2 \) goes to infinity. More generally, following the work of Green [Gre84, Gre84b], we also study the syzygies of other line bundles on \(\mathbb{P}^n \), as this often provides a more unified perspective, see for example [Gre84b, Theorem 2.2], [EL93, Theorem 2], and [EL12, Theorem 4.1]. Thus, let

\[
S(b; d) = \bigoplus_{k \in \mathbb{Z}} H^0(\mathbb{P}^{n \cdot d}, (i_d)_*(\mathcal{O}_{\mathbb{P}^n}(b))(k))
\]

be the graded section ring of the pushforward of \(\mathcal{O}_{\mathbb{P}^n}(b) \) along the map \(i_d \). We consider \(S(b; d) \) as an \(R \)-module where \(R = \text{Sym} H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) \) is the homogeneous coordinate ring of \(\mathbb{P}^{n \cdot d} \). Note if \(d \gg 0 \) then the line bundle \(\mathcal{O}_{\mathbb{P}^n}(d) \) will be normally generated, in which case \(M(0; d) \) is isomorphic to the homogeneous coordinate ring of \(\mathbb{P}^n \) as a subvariety of \(\mathbb{P}^{n \cdot d} \).

Remark 1.1. Using the description of the d-uple Segre-Veronese map given above, one sees that

\[
r_{n,d} := \binom{d_1 + n_1}{n_1} \binom{d_2 + n_2}{n_2} - 1 \in \mathcal{O}(d_1^{n_1} d_2^{n_2}).
\]

Throughout the paper, we will use big-O notation for multivariate functions as follows: if \(f \) and \(g \) are \(\mathbb{R} \)-valued functions defined on some domain \(U \subseteq \mathbb{R}^n \), then we write \(f(x) \in O(g(x)) \) as \(x \to \infty \) if and only if there exists constants \(C > 0 \) and \(M > 0 \) such that \(|f(x)| \leq C|g(x)| \) for all \(x \in U \), with \(||x||_{\infty} \geq M \).

By studying syzygies of \(\mathbb{P}^n \), we mean studying the minimal graded free resolution of \(S(b; d) \) as an \(R \)-module. The Hilbert Syzygy Theorem [Eis05, Theorem 1.1] implies that the minimal graded free resolution of \(S(b; d) \)

\[
\text{2010 Mathematics Subject Classification.} \quad 13D02, 14M25.
\]

The author was partially supported by the NSF GRFP under Grant No. DGE-1256259.
over R is of the form

$$0 \leftarrow S(b; d) \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_{n,d} \leftarrow 0,$$

where F_p is a finitely generated graded free R-module. If we let

$$K_{p,q}(n; b; d) := \text{span}_K \left\{ \text{minimal generators of } F_p \right\}$$

be the finite dimensional vector space of minimal syzygies of homological degree p and degree $(p + q)$, then F_p is isomorphic to $\bigoplus_q K_{p,q}(n; b; d) \otimes_K R(-p + q)$. When $b = 0$, we often write $K_{p,q}(n; d)$ for $K_{p,q}(n; 0; d)$.

The main question we are interested in is the following.

Question 1.2. If $d \gg 0$, then for what p and q is $K_{p,q}(n; b; d) \neq 0$?

Considerations of Castelnuovo-Mumford regularity imply that if $d \gg 0$ then $K_{p,q}(n; b; d)$ for all $q > |n| = n_1 + n_2$. Thus, Question 1.2 is of primary interest when $1 \leq q \leq |n|$. (See Proposition 2.3 for a precise description of how large d must be, relative to b and n, for $K_{p,q}(n; b; d)$ for all $q > |n| = n_1 + n_2$.)

As a running example, consider $\mathbb{P}^1 \times \mathbb{P}^1$ when $b = (0, 0)$ and $d = (d_1, d_2)$. If both $d_1, d_2 \to \infty$, then the work of Ein and Lazarsfeld provides an answer to Question 1.2 [EL12]. For example, Ein and Lazarsfeld’s work implies that if $d_1, d_2 \to \infty$ then $K_{p,2}(n; 0; d) \neq 0$ for 100% of possible p’s [EL12, Theorem A]. That said, Ein and Lazarsfeld’s results require the embedding line bundle to grow in an ample fashion, i.e. the embedding bundle needs to be of the form $B + dA$ where A is ample. Thus, if we fix either d_1 or d_2, then Ein and Lazarsfeld’s non-vanishing results no longer apply.

For example, if we fix d_2 and allow only $d_1 \to \infty$, then the embedding line bundle $\mathcal{O}_{\mathbb{P}^n}(d_1, d_2)$ grows like $\mathcal{O}_{\mathbb{P}^n}(0, 1)$, which is semi-ample. Recall a line bundle L on a smooth variety is **semi-ample** if the complete linear series $|kL|$ is base point free for some $k \geq 1$. The prototypical example of semi-ample line bundles are $\mathcal{O}_{\mathbb{P}^n}(1, 0)$ and $\mathcal{O}_{\mathbb{P}^n}(0, 1)$ on \mathbb{P}^n.

The difference between the cases of ample and semi-ample growth can be visualized if we view the sequence of embedding line bundles as a sequence of points inside the nef cone of $\mathbb{P}^1 \times \mathbb{P}^1$.

The case covered by Ein and Lazarsfeld corresponds to the sequence of points going to infinity along a line of positive slope, for example, the sequence of points (diamonds) along the teal line. The case of semi-ample growth not covered by Ein and Lazarsfeld’s results corresponds to the sequence of points going to infinity along a ray parallel to one of the axes. For example, see the points (circles) along the purple line.
Interestingly, the syzygies of $\mathbb{P}^1 \times \mathbb{P}^1$ in the semi-ample case behave differently than in the ample case. For instance, it is no longer true that in the limit $K_{p,2}((1,1);d) \neq 0$ for 100% of possible p’s. More precisely, following the notation of [EY18], set

$$\rho_q(n;d) := \frac{\# \{ p \in \mathbb{N} \mid K_{p,q}(n;d) = 0 \}}{r_d},$$

which by the Hilbert Syzygy Theorem is the percentage of degrees in which non-zero syzygies appear [Eis05, Theorem 1.1]. A result of Lemmens’s [Lem18] implies that:

$$\lim_{d_1 \to \infty} \rho_2((1,1);d) = \lim_{d_1 \to \infty} \% \text{ of } p \text{ where } K_{p,2}((1,1);d) = 0 = 1 - \frac{2}{d_2 + 1}.$$

Thus, syzygies in the setting of semi-ample growth can behave differently than is suggested by the work of Ein and Lazarsfeld [EL12, EEL16]. Further, the fact that this limit is not zero shows that syzygies in the case of semi-ample growth also do not behave as suggested by Green’s work on syzygies of curves [Gre84,Gre84b]. Hence the asymptotic behavior of syzygies under semi-ample growth is not controlled by either the dimension or the log canonical dimension of the embedding line bundle.

Our main result is the following, which, given q, gives a range for p for which these vector spaces of syzygies, $K_{p,q}(n;d)$, are non-zero.

Theorem A. Fix $n = (n_1, n_2) \in \mathbb{Z}^2_{\geq 1}$, $d = (d_1, d_2) \in \mathbb{Z}^2_{\geq 1}$, and an index $1 \leq q \leq |n|$. If $d_1 > q$ and $d_2 > q$ then $K_{p,q}(n;d) = 0$ for all p in the range:

$$\min \left\{ \left(\frac{d_1 + q}{i} \right) \left(\frac{d_2 + q}{j} \right) \right\}_{i+j=q, 0 \leq i \leq n_1, 0 \leq j \leq n_2} - (q + 2) \leq p \leq r_{n,d} - \min \left\{ \left(\frac{d_1 + n_1 - i}{i_1} \right) \left(\frac{d_2 + n_2 - j}{j_2} \right) \right\}_{i+j=q, 0 \leq i \leq n_1, 0 \leq j \leq n_2} - (|n| + 1).$$

Notice that these bounds depend on both d_1 and d_2. In particular, that asymptotic behavior is dependent, in a nuanced way, on the relationship between d_1 and d_2. Again, this underscores the complicated asymptotic behaviors possible for syzygies under semi-ample growth.

In order to highlight this behavior, and explain the terms appearing in the bounds of Theorem A, let us consider what can occur when $q = 2$. In this case, assuming $n_1, n_2 \geq 2$, the main terms of the bounds in Theorem A can be written as

$$\min \left\{ \frac{d_1^2}{2}, \frac{d_2^2}{2} \right\} - O\left(\text{lower ord. terms} \right) \leq p \leq r_{n,d} - \min \left\{ \frac{d_1 (d_1 - 2)}{n_1! (n_2 - 2)!}, \frac{d_2 (d_2 - 2)}{n_1! (n_2 - 2)!}, \frac{d_1 (d_1 - 1)}{n_1! (n_2 - 1)!}, \frac{d_2 (d_2 - 1)}{n_1! (n_2 - 1)!} \right\} - O\left(\text{lower ord. terms} \right).$$

Focusing our attention on the upper bounds, we see that there are roughly three cases. If $d_1 \gg d_2$, we expect the upper bound to be approximately $r_{n,d} - C d_1^2 d_2^2$ where C is a constant. On the other hand, if $d_1 \sim d_2$, then the upper bound is roughly $r_{n,d} - C' d_1^{n_1 - 1} d_2^{n_2 - 1}$ for some constant C'. Finally, if $d_2 \gg d_1$, we expect the upper bound to be approximately $r_{n,d} - C'' d_1^{n_1} d_2^{n_2 - 2}$ for some constant C''.

For larger q, the number of cases, and the distinctions between them, become much more complicated. We propose the following rough heuristic for thinking about the bounds appearing in Theorem A. The lower bounds reflect the asymptotic syzygies of restricting $O_{\mathbb{P}^n}(d)$ to $\mathbb{P}^i \times \mathbb{P}^{n-i} \subset \mathbb{P}^n$ as i varies. Similarly, the upper bounds reflect asymptotic syzygies of restricting $O_{\mathbb{P}^n}(d)$ to $\mathbb{P}^{n_1 - i} \times \mathbb{P}^{n_2 - j} \subset \mathbb{P}^m$ for $i + j = q$.

In fact, when proving Theorem A we explicitly construct non-trivial syzygies in the given ranges, and in a sense, these syzygies naturally live on subvarieties of the form $\mathbb{P}^i \times \mathbb{P}^j \subset \mathbb{P}^n$ where $i + j = q$. This can be seen in a technical way in that we deduce Theorem A from Theorem 7.1 via a lifting argument.

As an immediate corollary of Theorem A, and a generalization of the example of $\mathbb{P}^1 \times \mathbb{P}^1$ discussed above, we are able to provide a lower bound on the percentage of degrees in which non-zero syzygies asymptotically appear. In the following corollary, let $C_{i,j} = \frac{n_1! n_2!}{(n_1-i)! (n_2-j)!}$ and $D_{i,j} = \frac{n_1! n_2!}{i! j!}$.
Corollary B. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 2}^2 \), and an index \(1 \leq q \leq |n| \). If \(d_1 > q \) and \(d_2 > q \) then
\[
\rho_q(n;d) \geq 1 - \sum_{i+j=q \atop 0 \leq i \leq n_1 \atop 0 \leq j \leq n_2} \left(\frac{C_{ij}}{d_1^{i+1} d_2^{j+1}} + \frac{D_{ij}}{d_1^{i+1} d_2^{j}} + O\left(\frac{d_1 + d_2}{d_1^{i+1} d_2^{j+1}} + \frac{d_1 + d_2}{d_1^{i+1} d_2^{j+1}} \right) \right).
\]

Example 1.3. If we let \(n = (1, 5) \) and \(q = 2 \), then by Corollary B we see that
\[
\rho_2((1,5);d) \geq 1 - \frac{20}{d_2^2} - \frac{60}{d_1 d_2} - \frac{5}{d_1^2 d_2} - \frac{120}{d_2^4} - O\left(\text{lower ord. terms} \right).
\]
In particular, if \(d_2 \) is fixed and \(d_1 \to \infty \), then the limit of \(\rho_q(n;d) \) is greater than or equal to \(1 - \frac{20}{d_2^2} - \frac{120}{d_2^4} \).

In the setting of ample growth, this recovers the results of Ein and Lazarsfeld: namely, if both \(d_1 \to \infty \) and \(d_2 \to \infty \), then \(\rho_q(n;d) \to 1 \). At the other extreme, if \(d_2 \) is fixed and only \(d_1 \to \infty \), then
\[
\lim_{d_1 \to \infty} \rho_q(n;d) \geq 1 - \frac{n_2!}{(n_2 - q)! d_2^q} - \frac{n_2!}{(n_1 - q)! d_2^{n_1 + n_2 - q}}.
\]
In particular, in this case, we do not believe \(\rho_q(n;d) \) will approach 1. Proving this would require a vanishing result for asymptotic syzygies, which is open even in the ample case. See [EL12, Conjecture 7.1, Conjecture 7.5].

Under mild hypotheses, we are able to generalize Theorem A to describe the asymptotic non-vanishing of syzygies for other line bundles on \(\mathbb{P}^n \).

Theorem C. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 2}^2 \), \(b \in \mathbb{Z}_{\geq 0} \), and an index \(1 \leq q \leq |n| \). If \(d_1 > q + b_1 \), \(d_2 > q + b_2 \),
\[
\frac{d_1}{d_2} b_2 - b_1 < n_1 + 1, \quad \text{and} \quad \frac{d_1}{d_2} b_1 - b_2 < n_2 + 1,
\]
then \(K_{p,q}(n,b;d) \neq 0 \) for all \(p \) in the range:
\[
\min \left\{ \left(\begin{array}{c} d_1 + i \\ d_2 + j \end{array} \right) \right\}_{i+j=q \atop 0 \leq i \leq n_1 \atop 0 \leq j \leq n_2} - (q + 2) \leq p \leq \min \left\{ \left(\begin{array}{c} d_1 + n_1 - i \\ n_1 - j \end{array} \right) \right\}_{i+j=q \atop 0 \leq i \leq n_1 \atop 0 \leq j \leq n_2} - (|n| + 1).
\]
In many ways, this theorem mimics Theorem A. For example, since \(b \) is fixed, the bounds governing non-vanishing depend only on \(d \) and are the same as the bounds in Theorem A. The main difference between these theorems is that when \(b = 0 \) the section module \(S(b;d) \) need not be Cohen-Macaulay as an \(R \)-module. Our methods require, in a crucial way, that \(S(b;d) \) be Cohen-Macaulay. The conditions in (1) exactly characterize when this occurs.

Our proof of Theorem A is based on generalizing the monomial methods of [EEL16] to explicitly construct non-zero syzygies in the given ranges after having quotient by a regular sequence. The general idea is that given a linear regular sequence on \(S(b;d) \) and an element \(f \in R \), not contained in the ideal generated by the regular sequence, it is possible to construct non-zero syzygies in a range determined by the regular sequence and the element \(f \). More specifically, if \(I \subset R \) is an ideal generated by linear forms that is a regular sequence on \(S(b;d) \), satisfying a few technical conditions, and \(f \in R \setminus I \) is a monomial of degree \(q \), then there exists a subset \(L(f) \subset (I :_R f) \) such that \(K_{p,q}(n,b;d) \neq 0 \) for all \(p \) in the range:
\[
\#L(f) \leq p \leq \dim_K(I :_R f)_1 - \dim_K I_1.
\]
In [EEL16] Ein, Erman, and Lazarsfeld prove a similar result for a single projective space. In this case, they work with a particular linear monomial regular sequence and define \(L(f) \) in terms of monomials dividing \(f \). However, these methods cannot be directly applied to a product of projective spaces.

First, the case of a product of projective spaces is substantially complicated by the fact that there are no monomial regular sequences of length \(|n| + 1 \) on either the \(\mathbb{Z}^2 \)-graded Cox ring of \(\mathbb{P}^n \), denoted \(\text{Cox}(\mathbb{P}^n) \) (see [Cox95]), or the \(\mathbb{Z} \)-graded homogeneous coordinate ring of \(\mathbb{P}^n \) embedded by \(\mathcal{O}_{\mathbb{P}^n}(d) \). Instead, we work with
a set of bi-degree \(d = (d_1, d_2) \) elements of the Cox ring of \(\mathbb{P}^n \), which, while not a regular sequence on \(\text{Cox}(\mathbb{P}^n) \), corresponds to a regular sequence of length \(|n| + 1 \) on the homogeneous coordinate ring of \(\mathbb{P}^n \) embedded by \(0_{\mathbb{P}^n}(d) \). For example, if \(n = (2, 4) \) and \(d = (d_1, d_2) \) then the sequence we use is:

\[
\begin{align*}
g_0 &= x_0^{d_1} y_0^{d_2} \\
g_1 &= x_1^{d_1} y_0^{d_2} + x_0^{d_1} y_1^{d_2} \\
g_2 &= x_2^{d_1} y_0^{d_2} + x_1^{d_1} y_1^{d_2} + x_0^{d_1} y_2^{d_2} \\
g_3 &= x_2^{d_1} y_1^{d_2} + x_1^{d_1} y_2^{d_2} + x_0^{d_1} y_3^{d_2} \\
g_4 &= x_2^{d_1} y_2^{d_2} + x_1^{d_1} y_3^{d_2} + x_0^{d_1} y_4^{d_2} \\
g_5 &= x_2^{d_1} y_3^{d_2} + x_1^{d_1} y_4^{d_2} \\
g_6 &= x_2^{d_1} y_4^{d_2}.
\end{align*}
\]

Put differently, we work with a set of bi-degree \(d = (d_1, d_2) \) elements of the Cox ring of \(\mathbb{P}^n \) that is not a regular sequence on \(\text{Cox}(\mathbb{P}^n) \), but which define an ideal in \(\text{Cox}(\mathbb{P}^n) \) supported on the irrelevant ideal of \(\mathbb{P}^n \). Thus, in the language of [BZES17], we work with a virtual regular sequence of length \(|n| + 1 \) of bi-degree \(d = (d_1, d_2) \) on \(\text{Cox}(\mathbb{P}^n) \). These forms, when considered as degree one elements of the homogeneous coordinate ring of \(\mathbb{P}^n \) embedded by \(0_{\mathbb{P}^n}(d) \), are a regular sequence of length \(|n| + 1 \).

Example 1.4. Continuing the example when \(n = (2, 4) \) from above, the elements \(g_0, g_1, \ldots, g_6 \) do not form a regular sequence on \(\text{Cox}(\mathbb{P}^2 \times \mathbb{P}^4) \cong k[x_0, x_1, x_2, y_0, y_1, y_2, y_3, y_4] \). In particular, \(\langle g_0, g_1, \ldots, g_6 \rangle \) has \(\langle x_0, x_1, x_2 \rangle \) as one of its associated primes, so the \(g_i \)'s do not even form a system of parameters on \(\text{Cox}(\mathbb{P}^2 \times \mathbb{P}^4) \). That said, one can show that \(g_0, g_1, \ldots, g_6 \) is supported on \(\langle x_0, x_1, x_2 \rangle \cap \langle y_0, y_1, y_2, y_3, y_4 \rangle \).

Working with such a regular sequence poses significant new challenges. For example, in [EEL16] the authors work with a monomial regular sequence, and so computing the analog of \(\langle I :_{\mathcal{R}} f \rangle \) is amenable to monomial techniques. The regular sequence we work with, on the other hand, is complicated, and computing \(\langle I :_{\mathcal{R}} f \rangle \) is in general difficult.

In fact, we devote all of Section 4 to developing methods for understanding \(\langle I :_{\mathcal{R}} f \rangle \). The central theme is to exploit the fact that our regular sequence, while not monomial, has a large number of symmetries. That is, the ideal generated by the regular sequence is homogeneous with respect to a number of non-trivial non-standard gradings. These gradings, when combined with a series of spectral sequence arguments, eventually allow us to describe \(\langle I :_{\mathcal{R}} f \rangle \).

A second subtle challenge is defining the correct subset of \(\langle I :_{\mathcal{R}} f \rangle \), from which to construct non-trivial syzygies. In particular, since \(I \) is not generated by monomials, the notion of one monomial dividing another in \(\mathcal{R}/I \) is quite nuanced. This means the definition of \(L(f) \) used in [EEL16] for a single projective space does not generalize to the case of a product of projective spaces. Instead, we make use of a non-standard grading for which \(I \) is homogeneous, and define \(L(f) \) in terms of certain degrees in this special grading.

Finally, we note that Theorem A is not sharp. One source of error is that we are unable to fully describe \(\langle I :_{\mathcal{R}} f \rangle \), and a better understanding of this ideal would result in sharper non-vanishing statements. That said, we do believe that the upper bounds in Theorem A are asymptotically sharp.

The paper is organized as follows: § 2 gathers background results and sets up the problem. § 3 introduces the regular sequence crucial to our methods, and in § 4 we study the ideal membership question for the ideal generated by this regular sequence. In § 5 we develop the monomial methods we use to construct non-trivial syzygies, and § 6 presents the exact monomials we will use. § 7 contains the key case of \(K_{p,q}(\mathbb{P}^n, \mathcal{B}; d) \) for \(\mathbb{P}^{d-k} \times \mathbb{P}^k \). Finally, § 8 contains the proof of Theorem A.
I would like to thank Daniel Erman, Moisés Herradón Cueto, Kit Newton, Solly Parenti, Claudiu Raicu, and Melanie Matchett Wood for their helpful conversations and comments. The computer algebra system Macaulay2 [M2] provided valuable assistance throughout this work.

Notation

Throughout we work over a field K. When clear we generally admit the reference to the field, and so write F^{r} for $F_{K}^{r} := F(k^{r})$. When referring to vectors (i.e. elements of Z^n or K^n) we normally use a bold font for example a, b, d, v, w. Given a vector $v = (v_1, v_2, \ldots, v_n)$ we denote the sum $v_1 + v_2 + \cdots + v_n$ by $|v|$. For the sake of notational hygiene we abuse notation slightly and write $Z^n_{\geq 1}$ for $(Z^n_{\geq 1})^2$, that is tuples $(a, b) \in Z^2$ such that $a \geq 1$ and $b \geq 1$. Likewise for $Z^2_{\geq 0}$. For brevity we write 1 for $(1, 1) \in Z^2$ and 0 for $(0, 0) \in Z^2$.

2. Background and Set Up

Fixing $n = (n_1, n_2) \in Z^2_{\geq 1}$, we let $S' = k[x_0, x_1, \ldots, x_{n_1}]$ and $S'' = k[y_0, y_1, \ldots, y_{n_2}]$ be standard Z-graded polynomial rings, and set $S = S' \otimes_k S''$ with the induced Z^2-multigrading. Concretely S is isomorphic to the bi-graded polynomial ring $k[x_0, x_1, \ldots, x_{n_1}, y_0, y_1, \ldots, y_{n_2}]$ where $\deg(x_i) = (1, 0) \in Z^2$ and $\deg(y_j) = (0, 1) \in Z^2$, for every $i = 0, 1, \ldots, n_1$ and $j = 0, 1, \ldots, n_2$. Moreover, S is isomorphic to Cox ring of \mathbb{P}^n, which we generally denote $\text{Cox} (\mathbb{P}^n)$ (see [Cox95]). Since S is Z^2-graded, there is a natural decomposition of k-vector spaces

$$S \cong \bigoplus_{a \in Z^2} S_a,$$

where S_a is the k-vector space spanned by monomials in S of bi-degree a. The Hilbert function of S is the function $HF(a, S) = \dim_k S_a$. Similarly, given an ideal $I \subset S$ that is homogeneous with respect to this Z^2-grading, we write I_a for the k-vector space spanned by monomials in I of bi-degree a, and the Hilbert function of I is the function $HF(a, I) = \dim_k I_a$.

Definition 2.1. Given $b \in Z^2$ and $d \in Z^2_{\geq 1}$, we define the bi-graded Veronese module of S to be

$$S(b; d) := \bigoplus_{k \in Z} S_{kd+b} \subset S,$$

which we consider as a Z-graded $R = \text{Sym} S_a$ module.

More specifically a generator ℓ of R corresponds to a monomial $m \in S_d$, and then ℓ acts on $S(b; d)$ via multiplication by this monomial m. Further, the degree k piece of $S(b; d)$ is S_{kd+b}, and so the degree one piece is S_{d+b}. Now as an R-module, $S(b; d)$ is isomorphic to the Z-graded homogeneous coordinate ring of \mathbb{P}^n embedded by $\mathcal{O}_{\mathbb{P}^n}(d)$.

Given $p, q \in \mathbb{N}$ we define (p, q)-th Koszul cohomology group of $S(b; d)$ to be the cohomology of the sequence:

$$\cdots \rightarrow \wedge^{p+1} R_1 \otimes S_{(q-1)d+b} \xrightarrow{d_{p+1,q-1}} \wedge^p R_1 \otimes S_{qd+b} \xrightarrow{d_{pq}} \wedge^{p-1} R_1 \otimes S_{(q+1)d+b} \rightarrow \cdots$$

(2)

where the differentials are given

$$d_{p+1,q-1}(m_0 \wedge m_1 \wedge \cdots \wedge m_p \otimes f) = \sum_{i=0}^{p} (-1)^i m_0 \wedge m_1 \wedge \cdots \wedge \hat{m}_i \wedge \cdots \wedge m_p \otimes m_i f$$

$$d_{pq}(m_1 \wedge m_2 \wedge \cdots \wedge m_p \otimes f) = \sum_{i=1}^{p} (-1)^i m_1 \wedge m_2 \wedge \cdots \wedge \hat{m}_i \wedge \cdots \wedge m_p \otimes m_i f.$$

As in the introduction, we denote this by $K_{p,q}(n, b; d)$, and note that $K_{p,q}(n, b; d) \cong K_{p,q}(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(b); \mathcal{O}_{\mathbb{P}^n}(d))$.

Acknowledgements

That said it will be helpful for us to realize the Koszul complex in (2) above in a different way. Towards this, notice that there exist maps:

\[R \longrightarrow S(0, d) \longleftarrow S. \]

Moreover, when restricted to the degree one piece of \(R \), and the subsequent images, these maps give natural isomorphisms

\[R_1 \longleftarrow S(0; d)_1 \longleftarrow S_d. \]

Thus, the \(R \)-module action of \(R_1 \) on \(S \) is the same as the \(S \)-module action of \(S_d \) on \(S \), and so the Koszul complex in (2) is naturally isomorphic to the following Koszul complex:

\[
\cdots \longrightarrow \bigwedge^{p+1} S_d \otimes S_{(q-1)d+b} \xrightarrow{d_{p+1,q-1}} \bigwedge^p S_d \otimes S_{qd+b} \xrightarrow{d_{p,q}} \bigwedge^{p-1} S_d \otimes S_{(q+1)d+b} \longrightarrow \cdots
\]

where the differentials are defined in an analogous way. So the cohomology of (3) is isomorphic to \(K_{p,q}(n, b; d) \).

We end this section by noting that considerations of Castelnuovo-Mumford regularity show that if \(d \gg 0 \), relative to \(b \), then \(K_{p,q}(n, b; d) = 0 \) for \(q > |n| \). In particular, if \(b = 0 \) then \(K_{p,q}(n, 0; d) = 0 \) for \(q > |n| \) for all choices of \(d \in \mathbb{Z}_{\geq 1}^2 \).

Example 2.2. If \(b \neq 0 \) then it is not the case that \(K_{p,|n|}(n, 0; d) = 0 \) for all choices of \(d \in \mathbb{Z}_{\geq 1}^2 \). For example, using arguments similar to those in Proposition 2.3 one can show that if \(n = (1, 3) \), \(d = (3, 3) \), and \(b = (-2, -1) \) then there exists \(p \) such that \(K_{p,|n|}(n, b; d) \neq 0 \).

Proposition 2.3. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \), and \(b \in \mathbb{Z}^2 \). If the following two pairs of inequalities are satisfied then \(K_{p,q}(n, b; d) = 0 \) for \(q > |n| \):

\[
d_1 + b_1 n_2 > -n_1 - 1 \quad \text{or} \quad d_2 + b_2 n_2 < 0, \quad (4) \\
d_1 + b_1 n_1 < 0 \quad \text{or} \quad d_2 + b_2 n_1 > -n_2 - 1. \quad (5)
\]

Proof. By Proposition 2.38 of [AN10] it is enough to show that \(H^i(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d + b(|n| - i))) = 0 \) for all \(i > 0 \). Using the Künneth formula [TS19, Tag 0BEC] to compute \(H^i(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d + b(|n| - i))) \) we see that these cohomology groups are only potentially non-zero when \(i = n_1, n_2, \) and \(|n| \). In particular, \(H^{n_1}(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d + b(|n| - n_1))) \) is isomorphic to \(H^{n_1}(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d_1 + b_1 n_2)) \otimes H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^2}(d_2 + b_2 n_2)) \). Thus, the condition that \(H^{n_1}(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d + b(|n| - n_1))) = 0 \) is equivalent to (4). An analogous argument shows that the vanishing of \(H^{n_2}(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d + b(|n| - n_2))) \) is equivalent to (5). Finally, in the last case, when \(i = |n| \), by using the Künneth formula we see that \(H^{n_2}(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d + b(|n| - |n|))) \) is zero if and only if \(d_1 > -n_1 - 1 \) or \(d_2 > -n_2 - 1 \). Since \(d_1 \geq 1 \) and \(d_2 \geq 1 \) these conditions are always satisfied. \(\square \)

3. A Regular Sequence on \(\mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \)

One useful approach when attempting to construct non-zero syzygies is to quotient by a linear regular sequence as this does not change the Koszul cohomology groups [AN10, Theorem 2.20]. For example, in order to prove non-vanishing results for \(\mathbb{P}^n \), Ein, Erman, and Lazarsfeld quotient by the regular sequence consisting of powers of the variables [EEL16]. Since we are working on a product of projective spaces such a regular sequence is not an option for us. Namely there are no monomial regular sequences of bi-degree \(d \) of length \(|n| + 1 \) on either the Cox ring of \(\mathbb{P}^n \) or the homogeneous coordinate ring of \(\mathbb{P}^n \) embedded by \(\mathcal{O}_{\mathbb{P}^n}(d) \).

Instead, we choose to work with a sequence of multigraded forms which form a virtual regular sequence of length \(|n| + 1 \) on the Cox ring of \(\mathbb{P}^n \) (i.e. \(S \)). That is to say a sequence of elements \(g_0, g_1, \ldots, g_{|n|} \) of bi-degree \(d \) whose support is contained in the irrelevant ideal \(\langle x_0, x_1, \ldots, x_{n_1} \rangle \cap \langle y_0, y_1, \ldots, y_{n_2} \rangle \) of \(\mathbb{P}^n \). Since the ideal \(\langle x_0, g_1, \ldots, g_{|n|} \rangle \) is supported on the irrelevant ideal, the \(g_i \) form a regular sequence on \(\mathbb{P}^n \). By the isomorphism between \(S_q \) and \(R_1 \) discussed in the previous section, such \(g_0, g_1, \ldots, g_{|n|} \) correspond to a sequence of linear forms \(\ell_0, \ell_1, \ldots, \ell_{|n|} \) in \(R \), that is a regular sequence on \(S(b; d) \). The \(g_i \) we use generalize forms first introduced by Eisenbud and Schreyer in [ES09], and later used in [BZEKS13] and [ORS17].
Definition 3.1. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \). Given \(0 \leq t \leq |n| \) we define
\[
g_t := \sum_{\substack{i+j=t \atop 0 \leq i \leq n_1 \atop 0 \leq j \leq n_2}} x_i^d y_j^d.
\]

Example 3.2. For example if \(n = (1,1) \) and \(d = (d_1, d_2) \) then there are three \(g_t \)'s:
\[
g_0 = x_0^d_1 y_0^d_2, \quad g_1 = x_0^d_1 y_1^d_2 + x_1^d_1 y_0^d_2, \quad g_2 = x_1^d_1 y_1^d_2.
\]
On the other hand if \(n = (2,3) \) and \(d = (d_1, d_2) \) there are six \(g_t \)'s:
\[
g_0 = x_0^d_1 y_0^d_2, \quad g_1 = x_0^d_1 y_1^d_2 + x_1^d_1 y_0^d_2, \quad g_2 = x_0^d_1 y_2^d_2 + x_1^d_1 y_1^d_2 + x_2^d_1 y_0^d_2,
\]
\[
g_3 = x_0^d_2 y_3^d_1 + x_1^d_2 y_2^d_1, \quad g_4 = x_1^d_2 y_3^d_1 + x_2^d_2 y_2^d_1, \quad g_5 = x_2^d_2 y_3^d_1.
\]

Definition 3.3. Throughout the paper we let \(\mathcal{R}(n,d) = \langle g_0, g_1, \ldots, g_{|n|} \rangle \). Note that \(\mathcal{R}(n,d) \) depends on both \(n = (n_1, n_2) \) and \(d = (d_1, d_2) \), however, for notational hygiene we often suppress this and simply write \(\mathcal{R} \) or \(\mathcal{R}(d) \) for \(\mathcal{R}(n,d) \) when we feel it will not cause confusion. We denote the quotient \(S / \mathcal{R} \) by \(\overline{S} \).

An extremely important aspect of these particular forms is that they behave nicely when quotienting by \(x_{n_1} \) or \(y_{n_2} \). For example, if \(n = (2,3) \) then the image of \(g_2 = y_0^d_1 y_2^d_2 + x_1^d_1 y_1^d_2 + x_2^d_1 y_0^d_2 \) in \(S / (x_2) \) is \(x_0^d_1 y_2^d_2 + x_1^d_1 y_1^d_2 \), which is the same as \(g_2 \) when \(n = (1,3) \). This makes them amenable to inductive arguments on \(n_1 \) or \(n_2 \). We make significant use of this fact throughout, and so record it in the following lemma.

Lemma 3.4. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \). Let \(S' = \mathcal{R}(x_0, x_1, \ldots, x_{n_1-i}, y_0, y_1, \ldots, y_{n_2-j}, \ldots, y_{n_2}) / (x_0, x_1, \ldots, x_{n_1-i-1}, x_{n_1-i+2}, \ldots, x_{n_1-1}, y_{n_2-j+1}, y_{n_2-j+2}, \ldots, y_{n_2}) \) such that \(S' \) there exists a natural isomorphism
\[
\mathcal{R}(n_1-i, n_2-j, d) \sim (S_r / \mathcal{R}(d)) \to \mathcal{R}(n,d) \to S.
\]

Proof. By induction it is enough to consider the case when \(i = 1 \) and \(j = 0 \). There is a natural isomorphism
\[
\frac{S}{\langle x_{n_1} \rangle} \sim \frac{\mathcal{R}(n,d) + \langle x_{n_1} \rangle}{\langle x_{n_1} \rangle} \to \mathcal{R}(n,d) + \langle x_{n_1} \rangle.
\]
and since \(S / \langle x_{n_1} \rangle \cong S' \) it is enough to show that \(\frac{\mathcal{R}(n,d) + \langle x_{n_1} \rangle}{\langle x_{n_1} \rangle} \) is isomorphic to \(\mathcal{R}(n_1-1, n_2, d) \). A straightforward argument shows that \(\frac{\mathcal{R}(n,d) + \langle x_{n_1} \rangle}{\langle x_{n_1} \rangle} \) is isomorphic to the ideal \(\langle \overline{x}_0, \overline{x}_1, \ldots, \overline{x}_{|n|} \rangle \) where \(\overline{x}_t \) is the image of \(g_t \) in \(S / \langle x_{n_1} \rangle \). However, one sees that
\[
\overline{S}_t = \sum_{\substack{a+b=t \atop 0 \leq a \leq n_1-1 \atop 0 \leq b \leq n_2}} x_a^d y_b^d,
\]
and so considered as an element of \(S' \), the ideal \(\langle \overline{x}_0, \overline{x}_1, \ldots, \overline{x}_{|n|} \rangle \) is isomorphic to \(\mathcal{R}(n_1-1, n_2, d) \). \(\square \)

As noted in the previous section, there is a natural isomorphism between \(R_{1,1} \) and \(S_d \), and we write \(\ell_t \) for the image of \(g_t \) in \(R_1 \) under this isomorphism. Notice that while \(g_t \in S \) has bi-degree \(d \), the corresponding element \(\ell_t \in R \) is of degree one. We then let \(\mathcal{L}(n,d) \) be the ideal \(\langle \ell_0, \ell_1, \ldots, \ell_{|n|} \rangle \subset R \). As with \(\mathcal{R}(n,d) \) we will often write \(\mathcal{L} \) or \(\mathcal{L}(d) \) for \(\mathcal{L}(n,d) \) when \(n \) and \(d \) are clear from context. We write \(\overline{R} \) for the quotient \(R / \mathcal{L} \), and \(\overline{S}(b,d) \) for \(S(b,d) / \mathcal{L} S(b,d) \), which we consider as a \(\overline{R} \)-module. The natural isomorphisms discussed in the previous section remain isomorphisms after quotienting by \(\mathcal{R} \) and \(\mathcal{L} \).
\[\mathcal{R}_1 \leftrightarrow \mathcal{S}(0;d)_1 \leftrightarrow \mathcal{S}_d. \]

As indicated in the start of the section these \(\ell \)'s form a regular sequence on \(S(b;d) \) as long as \(S(b;d) \) is Cohen-Macaulay as an \(R \)-module. The case when \(d = 1 \) and \(b = 0 \) was shown by Eisenbud and Schreyer in their work on Boij-Söderberg theory [ES09, Proposition 5.2]. The following proposition generalizes their argument to the case of all \(d \in \mathbb{Z}_{\geq 1} \).

Proposition 3.5. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2, d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2, \) and \(b = (b_1, b_2) \in \mathbb{Z}^2 \). If
\[
\frac{d_1}{d_2} b_2 - b_1 < n_1 + 1 \quad \text{and} \quad \frac{d_2}{d_1} b_1 - b_2 < n_2 + 1
\]
then the forms \(\ell_0, \ell_1, \ldots, \ell_{|n|} \) are a regular sequence on \(S(b;d) \) as an \(R \)-module.

A key part of the Proposition 3.5 is the following characterization of when \(S(b;d) \) is Cohen-Macaulay as an \(R \)-module. In particular, the inequalities appearing in Proposition 3.5 are needed as they exactly describe when \(S(b;d) \) is Cohen-Macaulay as an \(R \)-module. This is a major difference between a product of projective spaces and a single projective space, as in the case of a single projective space the equivalent of \(S(b;d) \) is always Cohen-Macaulay [EEL16].

Proposition 3.6. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2, d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2, \) and \(b = (b_1, b_2) \in \mathbb{Z}^2 \). \(S(b;d) \) is Cohen-Macaulay as an \(R \)-module if and only if:
\[
\frac{d_1}{d_2} b_2 - b_1 < n_1 + 1 \quad \text{and} \quad \frac{d_2}{d_1} b_1 - b_2 < n_2 + 1.
\]

Note that \(S(b;d) \) is Cohen-Macaulay for all \(d \) if \(b = 0 \). In particular, since a product of projective spaces is a smooth toric variety, the case when \(b = 0 \) follows from a far more general result of Hochster [Hoc72] (see also [CLS11, Theorem 9.2.9]).

Proof of Proposition 3.6. If we write \(H_{R_k}^i(S(b;d)) \) for the \(i \)-th local cohomology module of \(S(b;d) \), then \(S(b;d) \) is Cohen-Macaulay if and only if \(\dim S(b;d) \) is equal to \(\inf \{ i \in \mathbb{N} : H_{R_k}^i(S(b;d)) \neq 0 \} \) [ILL+07, Theorem 9.1]. Moreover, since \(S(b;d) \) is isomorphic to the section ring of \((i_d), O_{\mathbb{P}^n}(b)\) where \(i_d : \mathbb{P}^n \rightarrow \mathbb{P}^{n,d} \) is the \(d \)-uple Segre-Veronese map induced by \(O_{\mathbb{P}^n}(d) \)
\[
\inf \{ i \in \mathbb{Z}_{\geq 1} \mid H_{R_k}^i(S(b;d)) \neq 0 \} = \inf \left\{ i \in \mathbb{Z}_{\geq 1} \mid H_{R_k}^{i-1}(\mathbb{P}^{n,d}, (i_d), O_{\mathbb{P}^n}(b)(k)) \neq 0 \right\}
\]
and so \(S(b;d) \) is Cohen-Macaulay if and only if \((i_d), O_{\mathbb{P}^n}(b)\) has no intermediate cohomology [ILL+07, Theorem 13.21]. Since \(H_{R_k}^{i-1}(\mathbb{P}^{n,d}, (i_d), O_{\mathbb{P}^n}(b)(k)) \) is isomorphic to \(H_{R_k}^{i-1}\left(\mathbb{P}^n, O_{\mathbb{P}^n}(b + kd) \right) \) by the Künneth formula [TS19, Tag 0BEC] we further reduce to cohomology computation on \(\mathbb{P}^{n_1} \) and \(\mathbb{P}^{n_2} \). From this we see that there is no intermediate cohomology if for every \(k \in \mathbb{Z} \):
\[
b_1 + kd_1 > -(n_1 + 1) \quad \text{or} \quad b_2 + kd_2 < 0
\]
and
\[
b_2 + kd_2 > -(n_2 + 1) \quad \text{or} \quad b_1 + kd_1 < 0.
\]
Now note the first inequality in Equation (6) is true for every \(k > -(n_1 + 1 + b_1)/d_1 \) while the second is true for every \(k < -b_2/d_2 \). Thus, Equation (6) is true for all \(k \) if and only if \((n_1 + 1 + b_1)/d_1 < -b_2/d_2 \). Rearranging this inequality gives the first hypothesis in the proposition statement. A similar analysis for Equation (7) produces the second hypothesis. \(\Box \)

Proof of Proposition 3.5. By Proposition 3.6 \(S(b;d) \) is Cohen-Macaulay as an \(R \)-module, and so showing that \(\ell_0, \ell_1, \ldots, \ell_{|n|} \) is a regular sequence on \(S(b;d) \) is equivalent to showing that \(\ell_0, \ell_1, \ldots, \ell_{|n|} \) is part of a system
of parameters. Equivalently that \(\dim S(b; d) = \dim S(b; d) - (|n| + 1) \) [BH93, Theorem 2.12]. Being system of parameters is a set-theoretic condition on the support of \(S(b; d) \), and since

\[
\text{supp}_R S(b; d) = \text{supp}_R S(b; d) \cap S(0; d) \subset \text{supp}_R S(b; d) \cap \text{supp} S(0; d)
\]

we may reduce to the case when \(b = 0 \). Now let \(I(d) \) be the ideal sheaf generated by \(\ell_0, \ell_1, \ldots, \ell_{|n|} \). Considering the map:

\[
\mathbb{P}^n \xrightarrow{\phi} \mathbb{P}^n
\]

one sees that \(\psi^*I(d) = I(1) \). Therefore, since \(H^0(I(d)) = \mathbb{L}(n, d) \) we see that we may further reduce to the case when \(d = 1 \). This case was proven in [ES09, Proposition 5.2]. □

Since \(\mathbb{L} \) is generated by a linear regular sequence on \(S(b; d) \), quotienting by \(\mathbb{L} \) does not change the cohomology of the Koszul complex of \((3) \).

Notation 3.7. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \), and \(b = (b_1, b_2) \in \mathbb{Z}^2 \). We let \(K^\mathbb{L}_{p,q}(S(b; d)) \) denote the cohomology of the following chain complex

\[
\cdots \rightarrow \wedge^{p+1} S_d \otimes S_{(q-1)d+b} \xrightarrow{\mathbb{L}_{p+1}} \wedge^p S_d \otimes S_{qd+b} \xrightarrow{\mathbb{L}_p} \wedge^{p-1} S_d \otimes S_{(q+1)d+b} \rightarrow \cdots .
\]

Corollary 3.8. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \), and \(b = (b_1, b_2) \in \mathbb{Z}^2 \). If

\[
\frac{d_1}{d_2} b_2 - b_1 < n_1 + 1 \quad \text{and} \quad \frac{d_2}{d_1} b_1 - b_2 < n_2 + 1
\]

then for all \(p, q \in \mathbb{Z}_{\geq 0} \) there exists a natural isomorphism

\[
K_{p,q}(n, b; d) \xrightarrow{\sim} K^\mathbb{L}_{p,q}(S(b; d))
\]

Proof. Combine Proposition 3.5 with Theorem 2.20 from [AN10]. □

4. Ideal Membership for \(R \)

In this section, we turn our attention to describing when certain monomials are contained in the ideal \(R \) introduced in Section 3. This highlights a significant challenge when generalizing the work of Ein, Erman, and Lazarsfeld from the case of a single projective space to a product of projective spaces. Namely, since there are no monomial regular sequences of length \(|n| + 1 \) on \(\mathbb{P}^n \), we must work with a regular sequence for which the ideal membership question is more difficult. For example, describing when a given element of \(S \) is contained in \(R = \langle s_1, s_2, \ldots, s_{|n|} \rangle \), is more complicated then determining when an element is in \(\langle x_0^d, x_1^d, \ldots, x_n^d \rangle \subset \mathbb{K}[x_0, x_1, \ldots, x_n] \). This section is dedicated to studying the ideal membership question for \(R \).

Our approach to ideal membership for \(R \) is to use the fact that \(R \) is homogeneous with respect to a number of interesting gradings. For example, in Section 4.1 we introduce the notion of the modular degree of an element of \(S \). This induces a \((\mathbb{Z}/(d_1))^{\mathbb{N}_{n_1}+1} \otimes (\mathbb{Z}/(d_2))^{\mathbb{N}_{n_2}+1}\)-grading on \(S \) that \(R \) is homogeneous with respect to. Using this grading we show that the ideal membership question for \(R(n, d) \) can be reduced to the ideal membership question for \(R(n, 1) \).

Having reduced the question of ideal membership to the case when \(d = 1 \), we then introduce the notion of the index weighted degree, which induces a non-standard \(\mathbb{Z} \)-grading on \(S \). The index weighted grading allows us to discuss the \(K \)-vector space \(S_{a,k} \) spanned by monomials of bi-degree \(a \) and index weighted degree \(k \). Using this refinement together with a series of spectral sequence arguments we gain insight into the ideal membership question for \(R(n, 1) \). For example, we prove the following:
Theorem 4.1. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2, \) \(a = (a_1, a_2) \in \mathbb{Z}_{\geq 0}^2, \) and \(k \in \mathbb{Z}_{\geq 0}. \) If \(a \) and \(k \) satisfy one of the following inequalities:

(1) \(a_1 \geq 1 \) and \(a_2 \geq n_1 + 1, \)
(2) \(a_2 \geq 1 \) and \(a_1 \geq n_2 + 1, \)
(3) \(0 \leq k \leq a_1 a_2 - 1, \)

then \(S_{a,k} = R(1)_{a,k}. \) Moreover, if \(k = a_1 a_2 \) then \(\dim S_{a,k} = \dim R(1)_{a,k} - 1. \)

Combining these arguments gives us a detailed understanding of what monomials are in \(R(d). \) This, in turn, allows us to understand the ideal quotient \((R : g f) \) for particular polynomials \(f \in S, \) and this provides the range of non-vanishing appearing in Theorem A.

4.1 The Modular Degree on \(S \)

Throughout this section given \(v = (v_1, v_2, \ldots, v_n) \in \mathbb{Z}^n \) and \(d \in \mathbb{Z} \) we write \(v \mod d \) to mean \((v_1 \mod d, v_2 \mod d, \ldots, v_n \mod d) \in (\mathbb{Z}/d)^n. \) Further we use the following multi-index notation for monomials in \(S \) and \(\overline{S}. \)

Notation 4.2. Given \(v = (v_0, v_1, \ldots, v_{n_1}) \in \mathbb{Z}_{\geq 0}^{n_1+1} \) and \(w = (w_0, w_1, \ldots, w_{n_2}) \in \mathbb{Z}_{\geq 0}^{n_2+1} \) write \(x^\alpha y^\beta \) for the monomial:

\[
x^\alpha y^\beta = \prod_{i=0}^{n_1} x_i^{v_i} \prod_{j=0}^{n_2} y_j^{w_j} \in S.
\]

With this notation in hand, we define the modular degree of a monomial in \(S \) as follows.

Definition 4.3. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2. \) Given a monomial \(x^\alpha y^\beta \in S \) we define its modular degree to be:

\[
\text{mod. deg}(x^\alpha y^\beta) = (v \mod d_1, w \mod d_2) \in (\mathbb{Z}/(d_1))^{\oplus n_1+1} \oplus (\mathbb{Z}/(d_2))^{\oplus n_2+1}.
\]

Immediate from the definition we see that the modular degree induces a \((\mathbb{Z}/(d_1))^{\oplus n_1+1} \oplus (\mathbb{Z}/(d_2))^{\oplus n_2+1} \) grading on \(S \) as follows

\[
S \cong \bigoplus_{\alpha \in (\mathbb{Z}/(d_1))^{\oplus n_1+1} \oplus (\mathbb{Z}/(d_2))^{\oplus n_2+1}} S_\alpha
\]

where \(S_\alpha \) is the \(\mathbb{K} \)-vector space spanned by monomials \(m \in S \) such that \(\text{mod. deg}(m) = \alpha. \) We call this the modular grading, and \(R \) is homogeneous with respect to it.

Lemma 4.4. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2. \) The modular degree gives \(S \) a \((\mathbb{Z}/(d_1))^{\oplus n_1+1} \oplus (\mathbb{Z}/(d_2))^{\oplus n_2+1} \) grading. Moreover, the ideal \(R \) is homogeneous with respect to this grading.

Proof. To show that the modular degree induces a grading on \(S \) it is enough to show that if \(m, m' \in S \) are monomials then \(\text{mod. deg}(m \cdot m') \) is equal to \(\text{mod. deg}(m) + \text{mod. deg}(m'). \) This follows from the fact that \(\mathbb{Z}/(d_i) \) is an abelian group.

Shifting to showing that \(R = \langle g_0, g_1, \ldots, g_m \rangle \) is homogeneous with respect to this grading it is enough to show that each of the generators are homogeneous. Towards this recall that

\[
g_t = \sum_{i+j=t} x_i^{d_i} y_j^{d_j},
\]

and so each term in \(g_t \) has modular degree \(0 \) meaning \(g_t \) is homogeneous with respect to this grading. \(\square \)
The key property of the modular grading on S is that thinking of $S^d := \mathbb{K}\{x_0, x_1, \ldots, x_n, y_0, y_1, \ldots, y_m\}$ as a sub-ring of S then S_α is a free rank one S^d-module for every $\alpha \in (\mathbb{Z}/(d_1))^{\oplus n_1+1} \oplus (\mathbb{Z}/(d_2))^{\oplus n_2+1}$. Given a monomial $x^y y^w \in S_\alpha$ then by the division algorithm we may write $v_i = q_i d_i + r_i$ and $w_i = q_i' d_2 + r_i'$ where $0 \leq r_i < d_i$ and $0 \leq r_i' < d_2$. This allows us to write $x^y y^w$ as

$$x^y y^w = \left(\prod_{i=0}^{n_1} x_i^{q_i} \bigg) \left(\prod_{i=0}^{n_2} y_i^{q_i'} \right),$$

where II is a monomial in S^d and I is a monomial determined entirely by the modular degree of $x^y y^w$.

Definition 4.5. Given a monomial $x^y y^w \in S$ we define $\text{remd}(x^y y^w)$ to be the monomial

$$\text{remd}(x^y y^w) = \left(\prod_{i=0}^{n_1} x_i^{q_i} \bigg) \left(\prod_{i=0}^{n_2} y_i^{q_i'} \right) \in S,$$

where by the division algorithm $v_i = q_i d_i + r_i$ and $w_i = q_i' d_2 + r_i'$ with $0 \leq r_i < d_i$ and $0 \leq r_i' < d_2$.

Example 4.6. Let $n = (1, 2)$ so that $S = \mathbb{K}\{x_0, x_1, y_0, y_1, y_2\}$ and set $d = (3, 5)$. If $f = x_0^5 x_1^3 y_0 y_1^3 y_2^8$ then the modular degree of f is $(3, 5)$ and $\text{remd}(f) = x_0^2 y_0 y_1^3 y_2^3$. Any element of modular degree $(3, 5)$ can be written as $x_0^q y_0 y_1^{q_1} y_2^{q_2}$ times an element of S^d. For example, $g = x_0^{11} y_0^2 y_1^5 y_2^{103}$ also has modular degree $(3, 5)$, and we may write it as $\text{remd}(f) = x_0^3 x_1^2 y_0 y_1 y_2^{205}$.

Lemma 4.7. Fix $n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2$ and $d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2$. For any $\alpha \in (\mathbb{Z}/(d_1))^{\oplus n_1+1} \oplus (\mathbb{Z}/(d_2))^{\oplus n_2+1}$ the vector space S_α is a free rank one S^d-module, which is generated by $\text{remd}(f)$ for any $f \in S_\alpha$.

Proof. First let us check that S_α has the structure of a S^d-module. This amounts to showing that S_α is closed under multiplication by elements in S^d. Since S^d is generated by monomials of bi-degree d we further reduce to showing S_α is closed under multiplication by $x_0^{d_1}$ and $y_j^{d_2}$ for $i = 0, 1, \ldots, n_1$ and $j = 0, 1, \ldots, n_2$. This follows immediately from the definition of the modular degree.

Turing our attention to showing that S_α is free of rank one fix $\alpha \in (\mathbb{Z}/(d_1))^{\oplus n_1+1} \oplus (\mathbb{Z}/(d_2))^{\oplus n_2+1}$, let $x^y y^w \in S_\alpha$ be a monomial. By the division algorithm we may write $v_i = q_i d_1 + r_i$ and $w_i = q_i' d_2 + r_i'$ where $0 \leq r_i < d_1$ and $0 \leq r_i' < d_2$. One readily checks that

$$x^y y^w = \left(\prod_{i=0}^{n_1} x_i^{q_i} \bigg) \left(\prod_{i=0}^{n_2} y_i^{q_i'} \right) = \text{remd}(x^y y^w) \left(\prod_{i=0}^{n_1} x_i^{q_i} \bigg) \left(\prod_{i=0}^{n_2} y_i^{q_i'} \right),$$

Moreover, since r_i and r_i' determine the modular degree of $x^y y^w$ we see that every monomial in S_α is of the form $m \cdot \text{remd}(x^y y^w)$ for a unique $m \in S^d$.

We now state a few basic properties regarding $\text{remd}(f)$ that follows immediately from the previous lemma.

Lemma 4.8. Fix $n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2$ and $d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2$. If $f, g \in S$ are homogeneous with respect to the modular grading then

1. f is divisible by $\text{remd}(f)$,
2. $f/\text{remd}(f) \in S^d$, and
3. $\text{mod. deg } f = \text{mod. deg } g$ if and only if $\text{remd}(f) = \text{remd}(g)$.

Finally, the following proposition shows how the modular grading can be used to reduce the ideal membership question for $\mathbb{R}(d)$ to the ideal membership question for $\mathbb{R}(1)$. Before stating it, however, we fix the
following notation that given a monomial \(m \in S^{[d]} \) we let \(m^{1/d} \) be the monomial that is the image of \(m \) under the isomorphism:

\[
S^{[d]} \xrightarrow{1/d} S \\
\xi_i^{d_i} \mapsto \xi_i \\
y_i^{d_i} \mapsto y_i.
\]

Proposition 4.9. Fix \(\mathbf{n} = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(\mathbf{d} = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \). Let \(f \in S \) be homogeneous with respect to the modular grading then \(f \in \mathcal{R}(\mathbf{d}) \) if and only if \((f / \text{remd}(f))^{1/d} \in \mathcal{R}(\mathbf{1}) \).

Proof. By definition \(f \in \mathcal{R}(\mathbf{d}) \) if and only if there exists \(h_i \in S \) such that:

\[
f = \sum_{i=0}^{\left\lfloor \frac{n_1}{d_1} \right\rfloor} h_i g_i.
\]

Now since \(f \) is homogeneous with respect to the modular grading without loss of generality we may assume that the \(h_i \) are also homogeneous with respect to the modular grading. Moreover, by Lemma 4.4 the modular degree of \(g_i \) is equal to 0, and so \(\text{mod. deg } f = \text{mod. deg } h_i \). In particular, by part (3) of Lemma 4.8 we know that \(\text{remd}(f) = \text{remd}(h_i) \). By part (1) Lemma 4.8 we know that \(f \) is divisible by \(\text{remd}(f) \), and so combining these we have that \(f \in \mathcal{R}(\mathbf{d}) \) if and only if:

\[
\frac{f}{\text{remd}(f)} = \sum_{i=0}^{\left\lfloor \frac{n_1}{d_1} \right\rfloor} \frac{h_i g_i}{\text{remd}(f)} = \sum_{i=0}^{\left\lfloor \frac{n_1}{d_1} \right\rfloor} \frac{h_i}{\text{remd}(h_i)} g_i.
\]

By part (2) of Lemma 4.8 the above relation is actually a relation in the subring \(S^{[d]} \). Since under the isomorphism \(-^{1/d}\) the image of \(\mathcal{R}(\mathbf{d}) \) is \(\mathcal{R}(\mathbf{1}) \), we see that \(f \in \mathcal{R}(\mathbf{d}) \) if and only if \((f / \text{remd}(f))^{1/d} \in \mathcal{R}(\mathbf{1}) \). \(\square \)

4.2 The Index Weighted Degree

If we look at one of the generators of \(\mathcal{R}(\mathbf{d}) \) we see that the lower indices of each term all sum to the same thing. For example, \(g_1 = x_0^{d_1} y_1^{d_2} + x_1^{d_1} y_0^{d_2} \) and the lower indices of each term sum to one. We exploit this symmetry by introducing a non-standard \(\mathbb{Z} \)-grading on \(S \), which we call the index weighted grading, which \(\mathcal{R} \) is homogeneous with respect to. Using this grading we will prove Theorem 4.1, and state a conjecture describing exactly when \(S_{a,k} = \mathcal{R}(\mathbf{1})_{a,k} \).

Definition 4.10. Fix \(\mathbf{n} = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(\mathbf{d} = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \). The index weighted grading on \(S \) is the non-standard \(\mathbb{Z} \)-grading given by letting index. deg \(x_i = d_2 i \) and index. deg \(y_j = d_1 j \) for \(i = 0, 1, \ldots, n_1 \) and \(j = 0, 1, \ldots, n_2 \).

The important property of the index weighted grading is that \(\mathcal{R} \) is homogeneous with respect to it.

Lemma 4.11. Fix \(\mathbf{n} = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(\mathbf{d} = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \). The ideal \(\mathcal{R} \) is homogeneous with respect to the index weighted grading.

Proof. Recall that \(\mathcal{R} = \langle g_0, g_1, \ldots, g_{\left\lfloor n_1 \right\rfloor} \rangle \) where for \(0 \leq t \leq \left\lfloor n_1 \right\rfloor \):

\[
g_t = \sum_{0 \leq j \leq n_1} x_j^{d_1} y_j^{d_2}.
\]

Suppose \(x_i^{d_1} y_j^{d_2} \) is a term appearing in \(g_t \) so that \(i + j = t \). Now we have that:

\[
\text{index. deg}(x_i^{d_1} y_j^{d_2}) = d_1 d_2 i + d_1 d_2 j = d_1 d_2 (i + j) = d_1 d_2 t,
\]

and so each term of \(g_t \) has the same index weighted degree meaning \(\mathcal{R} \) is homogeneous. \(\square \)

Definition 4.12. Given \(\mathbf{a} \in \mathbb{Z}^2 \) and \(k \in \mathbb{Z} \) we write \(S_{a,k} \) (respectively \(\mathcal{S}_{a,k} \) and \(\mathcal{R}_{a,k} \)) for the \(k \)-vector space spanned by monomials in \(S \) (respectively \(S \) and \(I \)) of bi-degree \(\mathbf{a} \) and index weighted degree \(k \).
The following conjecture describes exactly the $a \in \mathbb{Z}^2$ and $k \in \mathbb{Z}$ for which $R(1)_{a,k}$ is equal to $S_{a,k}$. Combined with Proposition 4.9 this provides a partial answer for the ideal membership question for R.

Conjecture 4.13. Fix $n = (n_1, n_2) \in Z^2_{\geq 1}$ and let $d = 1$. Given $a = (a_1, a_2) \in Z^2_{\geq 0}$ and $k \in Z_{\geq 0}$ we have that $\dim S_{a,k} = 0$ if and only if a and k satisfy one of the following inequalities:

1. $a_1 \geq 1$ and $a_2 \geq n_1 + 1$,
2. $a_2 \geq 1$ and $a_1 \geq n_2 + 1$,
3. $0 \leq k \leq a_1 a_2 - 1$, or
4. $k \geq a_1 n_1 + (n_2 - a_1) a_2 + 1$.

Moreover, if $k = a_1 a_2$ or $k = a_1 n_1 + (n_2 - a_1) a_2$ then $\dim S_{a,k} = 1$.

While we are unable to prove the full conjecture, we do prove a large portion of it. In particular, the remaining portion of this section is dedicated to proving Theorem 4.1. This shows that conditions (1), (2), and (3) imply $\dim S_{a,k} = 0$, as well as proves that $S_{a,a_1 a_2}$ is one dimensional.

First, using a hypercohomology spectral sequence argument we prove part (1) and (2) of Theorem 4.1. This establishes the sufficiency of conditions (1) and (2) in Conjecture 4.13.

Proof of Part (1) and (2) of Theorem 4.1. Let $d = 1$ and consider the Koszul complex of $O_{\mathbb{P}^n}$-modules defined on $s_0, s_1, \ldots, s_{|n|}$:

$$F_* := [0 \leftarrow O_{\mathbb{P}^n} \leftarrow O_{\mathbb{P}^n}(-1) \leftarrow \cdots \leftarrow O_{\mathbb{P}^n}(-(|n|+1) \cdot 1) \leftarrow 0].$$

More precisely F_* is the Koszul complex of $O_{\mathbb{P}^n}$-modules where $F_j = O_{\mathbb{P}^n}(-i \cdot 1)^{|n|+1}$. Notice that this complex is quasi-isomorphic to zero. Given $a = (a_1, a_2) \in Z^2$ we write $F(a)_*$ for the complex $F_* \otimes O_{\mathbb{P}^n}(a)$. Consider the hypercohomology spectral sequence associated to the complex $F(a)_*$, and the global sections functor $\Gamma(-, O_{\mathbb{P}^n})$, which is defined by:

$$E^1_{p,q} = R^q \Gamma (F(a)_p) = H^q (\mathbb{P}^n, F(a)_p).$$

This spectral sequence abuts to $|\cdot|^{p-q} (F(a)_*)$, which since F_* is quasi-isomorphic to zero is zero. The E^1 page of this spectral sequence looks like:
\[\begin{array}{c|cccc|cccc|cccc} |n| & H^{|n|}(\mathbb{P}^n, F(a)_0) & \hookrightarrow & H^{|n|}(\mathbb{P}^n, F(a)_1) & \cdots & \hookrightarrow & H^{|n|}(\mathbb{P}^n, F(a)_n) & \hookrightarrow & H^{|n|}(\mathbb{P}^n, F(a)_{|n|+1}) \\ \hline |n|-1 & H^{|n|-1}(\mathbb{P}^n, F(a)_0) & \hookrightarrow & H^{|n|-1}(\mathbb{P}^n, F(a)_1) & \cdots & \hookrightarrow & H^{|n|-1}(\mathbb{P}^n, F(a)_n) & \hookrightarrow & H^{|n|-1}(\mathbb{P}^n, F(a)_{|n|+1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & H^1(\mathbb{P}^n, F(a)_0) & \hookrightarrow & H^1(\mathbb{P}^n, F(a)_1) & \cdots & \hookrightarrow & H^1(\mathbb{P}^n, F(a)_{|n|}) & \hookrightarrow & H^1(\mathbb{P}^n, F(a)_{|n|+1}) \\ 0 & H^0(\mathbb{P}^n, F(a)_0) & \hookrightarrow & H^0(\mathbb{P}^n, F(a)_1) & \cdots & \hookrightarrow & H^0(\mathbb{P}^n, F(a)_{|n|}) & \hookrightarrow & H^0(\mathbb{P}^n, F(a)_{|n|+1}) \\ \hline 0 & 1 & \cdots & |n| & |n|+1 \end{array} \]

By the Künneth formula [TS19, Tag 0BEC] the only possible \(q \) for which \(H^q(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(a_1, a_2)) \) is non-zero is \(q = 0, n_1, n_2, \) and \(|n| \). More specifically:

\[
H^q(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(a_1, a_2)) \cong \begin{cases} \mathbb{k}^{(n_1+n_2)} & \text{if } q = 0 \text{ and } a_1 \geq 0, a_2 \geq 0 \\ \mathbb{k}^{(-n_1-1)} \otimes \mathbb{k}^{(n_2)} & \text{if } q = n_1 \text{ and } a_1 \leq -n_1 - 1, a_2 \geq 0 \\ \mathbb{k}^{(n_1)} \otimes \mathbb{k}^{(-n_2-1)} & \text{if } q = n_2 \text{ and } a_1 \geq 0, a_2 \leq -n_2 - 1 \\ \mathbb{k}^{(-n_1-1)} \otimes \mathbb{k}^{(-n_2-1)} & \text{if } q = n_1 + 1 \text{ and } a_1 \leq -n_1 - 1, a_2 \leq -n_2 - 1 \\ \end{cases}
\]

Using this we see that the only non-zero entries on the \(E^1 \) page occur in rows \(q = 0, n_1, n_2, \) and \(|n| \). In fact, the only spots \((p, q)\) on the first page of this spectral sequence, which are non-zero are:

1. \((p, 0)\) for \(p \) in the range \(p \leq \min\{|a_1, a-2, |n|+1\} \),
2. \((p, n_1)\) for \(p \) in the range \(a_1 + n_1 + 1 \leq p \leq \min\{|a_2, |n|+1\} \),
3. \((p, n_2)\) for \(p \) in the range \(a_2 + n_2 + 1 \leq p \leq \min\{|a_1, |n|+1\} \), and
4. \((p, |n|)\) for \(p \) in the range \(\max\{|a_1 + n_1 + 1, a_2 + n_2 + 1\} \leq p \leq |n| + 1 \).

Now consider the \(E^2 \) page of the spectral sequence. Since \(F_\bullet(a) \) is a Koszul complex twisted by \(\mathcal{O}_{\mathbb{P}^n}(a) \) on this page the 0th row is nothing but the degree \((a_1, a_2)\) strand on the Koszul complex. Moreover, since the cokernel of the Koszul complex is \(S \) we have that \(E_{0,0}^2 \cong S_\bullet \).

On the \(j \)th page of this spectral sequence the map to \(E_{0,0}^j \) has source \(E_{j,j-1}^j \). By considering the \(E^1 \) page this means the only maps to the \(E_{0,0}^j \) that may be non-trivial occur when \(j = 1, n_1 + 1, n_2 + 1, \) and \(|n| + 1 \). We have already described the map on the \(E^1 \) page, and so consider the remaining cases.

- Page \(n_1 + 1 \): On the \(E_{n_1+1,0} \) page the map to \(E_{n_1+1}^{n_1+1} \) has source \(E_{n_1+1,0}^{n_1+1} \). Thus, for this map to be trivial it suffices for \(E_{n_1+1,0}^{n_1+1} = 0 \). By our description of the \(E^1 \) page above this is true if and only if \(n_1 + 1 < a_1 + n_1 + 1 \). So if \(a_1 \geq 1 \) then \(E_{n_1+1,0}^{1} = 0 \), and so the map to \(E_{0,0}^{n_1+1} \) is zero.
• Page n_2 + 1: On the E^{n_2+1} page the map to E^{n_2+1} has source E^{n_2+1}_{n_2+1,n_2}. Thus, for this map to be trivial it suffices for E^1_{n_2+1,n_2} = 0. By our description of the E^1 page above this is true if and only if n_2 + 1 < a_2 + n_2 + 1. So if a_2 \geq 1 then E^1_{n_2+1,n_2} = 0, and so the map to E^{n_2+1}_{0,0} is zero.

• Page |n| + 1: On the E^{|n|+1} page the map to E^{|n|+1}_{0,0} has source E^{|n|+1}_{|n|+1,|n|}. Thus, for this map to be trivial it suffices for E^1_{|n|+1,|n|} = 0. By our description of the E^1 page above this is true if and only if |n| + 1 < min\{a_1 + n_1 + 1, a_2 + n_2 + 1\}. So if a_1 \geq n_2 + 1 or a_2 \geq n_1 + 1 then E^1_{|n|+1,|n|} = 0, and so the map to E^{|n|+1}_{0,0} is zero.

Thus, if a_1,a_2 \geq 1 and either a_1 \geq n_2 + 1 or a_2 \geq n_1 + 1 there are no non-zero maps to E_j^{i} for j \geq 2. Since this spectral sequence abuts to zero E_2^{i} \cong S_{a,k} \cong 0.

We now shift to showing that condition (3) of Conjecture 4.13 implies the stated vanishing. Before proving this in full we first consider the special case when a_1 = 1. This will be useful as a base case for our inductive proof of Proposition 4.15.

Lemma 4.14. Fix n = (n_1,n_2) \in \mathbb{Z}_+^2 and let d = 1. Given a = (a_1,a_2) \in \mathbb{Z}_+^2 if k \leq a_2 - 1 then \dim S_{a,k} = 0.

Proof. It is enough to show that if m \in S_{a,k} is a monomial then m \in \mathcal{R}(n,1). Any monomial m \in S_{a,k} is of the form m = x^\ell m' where m' is a monomial of bi-degree (0,a_2) and index weighted degree k - \ell supported on y_0,y_1,\ldots,y_{a_2}. Since the index weighted degree of m is less than or equal to a_2 - 1 the index weighted degree of m' is less than a_2 - (\ell + 1). Thus, we may write m' as m' = x^{\ell + 1}m'' where m'' is a monomial supported on y_0,y_1,\ldots,y_{a_2}. So it is enough to show that x^\ell y_0^{\ell + 1} \in \mathcal{R}(n,1).

Towards this we show that x^\ell y_0^{\ell + 1} \in \mathcal{R}(n,1) for \ell = 0,1,\ldots,n_2 by induction on \ell. The base case when \ell = 0 is clear since x^\ell y_0^{\ell + 1} = g_0. Now suppose the x^\ell y_0^{\ell + 1} \in \mathcal{R}(1) for all 0 \leq \ell' < \ell. We may write x^\ell y_0^{\ell + 1} as

\[x^\ell y_0^{\ell + 1} = x^\ell y_0 y_0^{\ell} = \left(g_0 - \sum_{i=1}^{\ell} x^{\ell - i} y_i \right) y_0^{\ell}, \]

and so it is enough to show that \left(\sum_{i=1}^{\ell} x^{\ell - i} y_i \right) y_0^{\ell} is in \mathcal{R}(1). However, each term in this sum is of the form x^{\ell - i} y_i y_0^{\ell}, which by the inductive hypothesis is contained in \mathcal{R}(n,1).

Proposition 4.15. Fix n \in \mathbb{Z}_+^2 and let d = 1. Given a = (a_1,a_2) \in \mathbb{Z}_+^2 if 0 \leq k \leq a_1 a_2 - 1 then \dim S_{a,k} = 0.

Proof. Fix n = (n_1,n_2) \in \mathbb{Z}_+^2, a = (a_1,a_2) \in \mathbb{Z}_+, and k \in \mathbb{Z} such that k \leq a_1 a_2 - 1. Without loss of generality we assume that n_2 \leq n_1, and that a_2 \leq n_1 since if a_2 > n_1 then dim S_{a,k} = 0 by parts (1) and (2) of Theorem 4.1. We now proceed by induction on n_1 + a_1. Note that the base case when a_1 = n_1 = 1 follows immediately from Lemma 4.14. Our inductive hypothesis can now be stated as follows: Let S' = \mathcal{R}(n_1,n_2,1), which we consider with the natural bi-grading, and write S for S'/\mathcal{R}(n_1,n_2,1). If \langle a',a_2 \rangle \in \mathbb{Z}_+^2 and n'_1 + a'_1 < n_1 + a_1 then dim S_{\langle a',a_2 \rangle,k} = 0 for all 0 \leq k \leq a'_1 a_2 - 1.

Now since \mathcal{R}(n,1) is homogeneous with respects to the bi-grading and index weighted grading, Lemma 4.11, after shifting accordingly we may consider the short exact sequence

\[0 \longrightarrow \overline{S} \longrightarrow \overline{S}^{n_1} \longrightarrow \overline{S}/\langle x_{n_1} \rangle \longrightarrow 0 \]

as a short exact sequence of graded modules with respect to either the bi-grading or index weighted grading. This gives the following:

\[\dim S_{a,k} = \dim \overline{S}_{\langle a_1-1,a_2 \rangle,k-n_1} + \dim \overline{S}/\langle x_{n_1} \rangle_{a,k}. \]
So for the inductive step it is enough for both \(\dim \mathcal{S}_{(a_1-1, a_2), k-1} \) and \(\dim \mathcal{S}/(x_{n_1})_{a,k} \) to equal zero.

First we show that \(\dim \mathcal{S}_{(a_1-1, a_2), k-1} \) is equal to zero. Notice that by applying the inductive hypothesis in the case when \(n'_1 = n_1 \) and \(a'_1 = a_1 - 1 \), it is enough for \(k - n_1 \leq (a_1 - 1)a_2 - 1 = a_1a_2 - a_2 - 1 \). This inequality is true since by our initial assumptions \(k \leq a_1a_2 - 1 \) and \(a_2 \leq n_1 \).

Now we show that \(\dim \mathcal{S}/(x_{n_1})_{a,k} \) is equal to zero. By Lemma 3.4 there is an isomorphism between \(\mathcal{S}/(x_{n_1}) \) and \(\mathcal{S} \) when \(n'_1 = n_1 - 1 \). In particular, the dimension of \(\mathcal{S}/(x_{n_1})_{a,k} \) is equal to the dimension of \(\mathcal{S}_{a,k} \). Applying the inductive hypothesis when \(n'_1 = n_1 - 1 \) and \(a'_1 = a_1 \), we conclude that \(\dim \mathcal{S}/(x_{n_1})_{a,k} = \dim \mathcal{S}_{a,k} = 0 \).

We end this section by proving the last remark of Theorem 4.1. Before proving the full claim we first consider the special case when \(a_1 = n_2 \) and \(a_2 = n_1 \).

Proposition 4.16. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 0}^2 \) and let \(d = 1 \). The dimension of \(\mathcal{S}_{n_2,n_1,n_1n_2} \) is one.

Proof. We use a hypercohomology spectral sequence argument similar to the one used in the proof of parts (1) and (2) of Theorem 4.1. In particular, let \(d = 1 \) and consider the Koszul complex \(F_\bullet \) of \(\mathcal{O}_{\mathbb{P}^n} \)-modules defined on \(g_0, g_1, \ldots, g_m \). Notice this complex is quasi-isomorphic to zero.

Writing \(F(a)_\bullet \) for the complex \(F_\bullet \otimes \mathcal{O}_{\mathbb{P}^n}(a) \), we consider the hypercohomology spectral sequence associated to the complex \(F(a)_\bullet \) and the global sections functor \(\Gamma(-, \mathcal{O}_{\mathbb{P}^n}) \), which is defined by:

\[
E^1_{p,q} = R^p \Gamma(\mathcal{F}(a)_p) = H^p(\mathbb{P}^n, \mathcal{F}(a)_p).
\]

This spectral sequence abuts to \(H^{p+q}(\mathcal{F}(a)) \), which is zero since \(F_\bullet \) is quasi-isomorphic to zero. Using the fact that \(F_0 = \mathcal{O}_{\mathbb{P}^n}(-i \cdot 1) \otimes (\mathbb{P}^{-1}_{i}) \) if \(a_1 = n_2 \) and \(a_2 = n_1 \) the \(E^1 \) page of this spectral sequence looks like:

\[
\begin{array}{cccccccc}
|n| & 0 & 0 & \cdots & 0 & K \\
|n|-1 & 0 & 0 & \cdots & 0 & 0 \\
& \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & H^0(F(a)_0) & H^0(F(a)_1) & \cdots & H^0(F(a)_{|n|}) \\
\end{array}
\]

Since \(F_\bullet(n_2, n_1) \) is the Koszul complex resolving \(\mathcal{O}_Y \) twisted by \(\mathcal{O}_{\mathbb{P}^n}(n_2, n_1) \) notice that the 0th row on this page is nothing by the degree \((n_2, n_1)\)-strand of the Koszul complex resolving \(R(1) \). In particular, since the co-kernel of the Koszul complex resolving \(R(1) \) is \(\mathcal{S} \) we know that \(E^2_{0,0} \) is isomorphic to \(\mathcal{S}_{(n_2, n_1)} \).

A cohomology computation, similar to the one done in the proof of parts (1) and (2) of Theorem 4.1, shows that every map to \(E^j_{0,0} \) has trivial source except when \(j = 1 \) and \(j = |n| + 1 \). Thus, \(E^{|n|+1}_{0,0} \cong E^2_{0,0} \mathcal{S}_{(n_2, n_1)} \).
Likewise since there are no non-trivial maps to $E^j_{[n]+1, [n]}$, we know that $E^{[n]+1}_{[n]+1, [n]} \cong E^1_{[n]+1, [n]}$ and is isomorphic to $H^{[n]+1}(\mathbb{P}^n, O_{\mathbb{P}^n}(-n_1 - 1, -n_2 - 1))$.

The above spectral sequence comes from the bi-complex given by tensoring the Čech complex on \mathbb{P}^n with the Koszul complex on $g_0, g_1, \ldots, g_{[n]}$. Since both of these complexes are homogeneous with respect to the index weighted grading the resulting bi-complex, and hence the associated spectral sequence are also homogeneous with respect to the index weighted grading. Thus all vector spaces and differential appearing in the various pages of the spectral sequence will be graded with respect to the index degree. We would like to determine the index degree of 1-dimensional vector space $H^{[n]+1}(\mathbb{P}^n, O_{\mathbb{P}^n}(-n_1 - 1, -n_2 - 1))$. We compute this as follows: the last term of the Koszul complex is a rank 1-module generated in index weighted grading the resulting bi-complex, and hence the associated spectral sequence are also homological. We see that:

$$\sum_i \text{index.deg}(g_i) - \text{index.deg} \left(\prod_{j=0}^{[n]} \frac{1}{\sum_{j=1}^{n_1} y_j} \right) = \sum_{i=0}^{[n]} i - \sum_{j=0}^{n_1} \sum_{k=0}^{n_2} k = \binom{n_1 + n_2}{2} - \binom{n_1}{2} - \binom{n_2}{2} = n_1 n_2.$$

On the $(|n|+1)$-th there is a non-trivial map from $E^{|n|+1}_{[n]+1, [n]}$ to $E^1_{R, 0}$. Moreover, since this spectral sequence abuts to zero this map must be an isomorphism. Using that $E^{|n|+1}_{[n]+1, [n]} \cong H^{[n]+1}(\mathbb{P}^n, O_{\mathbb{P}^n}(-n_1 - 1, -n_2 - 1))$ and $E^1_{0, 0} \cong S_{(n_2, n_1)}$. As $H^{[n]+1}(\mathbb{P}^n, O_{\mathbb{P}^n}(-n_1 - 1, -n_2 - 1)) \cong \mathbb{K}$ this shows that $\dim S_{(n_2, n_1)} = 1$. Since this isomorphism respects the index weighted grading it follows that the 1-dimensional vector space of bi-degree $S_{(n_2, n_1)}$ will be supported entirely in index weighted degree $n_1 n_2$.

Finally, we complete the proof of Theorem 4.1 by proving the last claim that $\dim \overline{S}_{a_1, a_2} = 1$.

Proof of Theorem 4.1. We proceed by induction upon $n_1 + n_2$. For the base case note that when $n_1 = n_2 = 1$ the claim is as clear as the only case is when $a_1 = a_2 = 1$, which follows from Proposition 4.16. Now suppose that $a_1 \leq n_2$ and $a_2 \leq n_1$. Since we have already prove the claim when $a_1 = n_2$ and $a_2 = n_1$ without loss of generality we may suppose that $a_2 < n_1$. Considering the short exact sequence

$$0 \longrightarrow \overline{S} \xrightarrow{x_{a_2}} \overline{S} \longrightarrow \overline{S}/(x_{n_1}) \longrightarrow 0$$

we see that:

$$\dim \overline{S}_{a_1, a_2} = \dim \overline{S}_{(a_1 - 1, a_2), a_1 a_2 - n_1} + \dim \overline{S}/(x_{n_1})_{a_1 a_2}.$$

As $a_2 \leq n_1 - 1$ we see that $a_1 a_2 - n_1 \leq (a_1 - 1) a_2 - 1$. So by Proposition 4.15 $\dim \overline{S}_{(a_1 - 1, a_2), a_1 a_2 - n_1} = 0$, and thus, is enough for $\dim \overline{S}/(x_{n_1})_{a_1 a_2} = 1$. Letting $S' = \mathbb{K}[x_0, x_1, \ldots, x_{n_1}, y_0, y_1, \ldots, y_{n_2}]$ with the natural bi-grading by Lemma 3.4 there is an isomorphism between $\overline{S}/(x_{n_1})$ and $S'/R((n_1 - 1, n_2), d)$. In particular, $\dim \overline{S}/(x_{n_1})_{a_1 a_2}$ is equal to $\dim S'/R((n_1 - 1, n_2), d)_{a_1 a_2}$, which by the inductive hypothesis is equal to one. \hfill \square

5. **Non-Vanishing via Generalized Monomial Methods**

Our main result shows how to construct non-zero syzygies on \mathbb{P}^n from monomials in \overline{S}. This generalizes Lemma 2.3 and Corollary 2.4 in [EEL16] to a product of projective spaces.

A key observation for these generalizations is that the condition of one monomial dividing another monomial used in [EEL16] can be weakened to a condition on the index weighted degree. This turns out to be crucial as the notion of when two monomials divide each other in \overline{S} is quite subtle since our regular sequence is not generated by monomials. Before stating and proving this result we first establish a few important definitions and background results.
Definition 5.1. An element \(f \in \overline{S} \) is a monomial of degree \(d \) if and only if there exists a monomial \(m \in S_d \) such that \(m = f \) where \(m \) is the image of \(m \) in \(S \).

Definition 5.2. An element \(\zeta \otimes f \in \wedge S \otimes \overline{S} \) is a monomial if and only if \(\zeta = n_1 \wedge \cdots \wedge n_s \) where each \(n_i \in S \) and \(f \in \overline{S} \) are monomials.

Definition 5.3. Given a finite subset \(P \subset \overline{S} \) we write \(\det P \) for the wedge product of all elements in \(P \), and say \(\zeta \in \wedge P \) if \(\zeta = f_1 \wedge \cdots \wedge f_s \) where \(f_i \in P \) for all \(i \).

Lemma 5.4. Let \(\phi : V \to W \) be a map of finite dimensional \(\mathbb{K} \)-vector spaces, \(\{v_1, v_2, \ldots, v_n\} \) be a basis for \(V \), and \(\{w_1, w_2, \ldots, w_m\} \) be a basis for \(W \). If there exists \(I \subset \{1, 2, \ldots, n\} \) such that

\[
w_1 = \sum_{i \in I} \phi(v_i)
\]

then there exists an \(i \in I \) such that if we express \(\phi(v_i) \) in the given basis as

\[
\phi(v_i) = c_1 w_1 + c_2 w_2 + \cdots + c_m w_m
\]

where \(c_i \in \mathbb{K} \) then \(c_1 \neq 0 \).

Proof. Towards a contradiction suppose that

\[
\phi(v_i) = c_{i,1} w_1 + c_{i,2} w_2 + \cdots + c_{i,m} w_m
\]

and \(c_{i,1} = 0 \) for all \(i \in I \). This means that

\[
w_1 = \sum_{i \in I} \phi(v_i) = \sum_{i \in I} (c_{i,2} w_2 + \cdots + c_{i,m} w_m)
\]

which contradicts the fact that \(\{w_1, w_2, \ldots, w_m\} \) is a basis for \(W \). \(\square \)

With this lemma and these definitions in hand, we can now state the key proposition of this section.

Proposition 5.5. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \), \(b = (b_1, b_2) \in \mathbb{Z}^2 \), and \(0 \leq q \leq |n| \). Let \(f \in \overline{S}_{qd+b} \) be a non-zero monomial, and let

\[
L(f) := \left\{ a \text{ monomial of bi-degree } d \mid \text{index deg } m \leq \text{index deg } f \right\} \subset \overline{S}_d
\]

\[
Z(f) := \left\{ a \text{ monomial of bi-degree } d \mid mf = 0 \right\} \subset \overline{S}_d
\]

be the set of monomials of bi-degree \(d \) and of index weighted degree less than \(f \) and the set of annihilators of \(f \) of bi-degree \(d \) respectively. Consider the Koszul complex:

\[
\cdots \to \wedge^{p+1} \overline{S}_d \otimes \overline{S}_{(q-1)d+b} \xrightarrow{\sigma_{p+1}} \wedge^p \overline{S}_d \otimes \overline{S}_{qd+b} \xrightarrow{\sigma_p} \wedge^{p-1} \overline{S}_d \otimes \overline{S}_{(q+1)d+b} \to \cdots
\]

(1) Given \(\zeta \in \wedge^p Z(f) \) the element \(\zeta \otimes f \in \ker \sigma_p \).

(2) Given \(\zeta \in \wedge^q \overline{S}_d \) such that \((\det L(f) \wedge \zeta) \otimes f \neq 0 \) then \((\det L(f) \wedge \zeta) \otimes f \in \text{img } \sigma_{pL(f)+1} \).

Proof. First let us focus our attention on part (1). By definition, since \(\zeta \in \wedge^p Z(f) \) we may write it as \(\zeta = \zeta_1 \wedge \zeta_2 \wedge \cdots \wedge \zeta_p \) where \(\zeta_i \in Z(f) \subset \overline{S}_d \). Thus, we see that

\[
\sigma_p(\zeta \otimes f) = \sigma_p(\zeta_1 \wedge \zeta_2 \wedge \cdots \wedge \zeta_p \otimes f) = \sum_{i=1}^p (-1)^i \zeta_1 \wedge \zeta_2 \wedge \cdots \wedge \hat{\zeta}_i \wedge \cdots \wedge \zeta_p \otimes (\zeta_i f)
\]

\[
= \sum_{i=1}^p (-1)^i \zeta_1 \wedge \zeta_2 \wedge \cdots \wedge \hat{\zeta}_i \wedge \cdots \wedge \zeta_p \otimes 0 = 0,
\]

as desired.
where the penultimate equality follows from the fact that $\zeta_i \in Z(f)$, and so by definition annihilates f.

We now shift to proving part (2). Towards a contradiction suppose that $(\det L(f) \land \zeta) \otimes f$ is non-zero and in the image of the map:

$$\land ^{#L(f)+s+1} S_d \otimes S_{(q-1)d+b} \xrightarrow{\partial_{\#L(f)+s+1}} \land ^{#P(f)+s} S_d \otimes S_{qd+b}.$$

This means there exists $\xi_j \in \land ^{#L(f)+s+1} S_d$ and $g_j \in S_{(q-1)d+b}$ such that:

$$\partial_{\#L(f)+s+1} \left(\sum_{j=1}^t \xi_j \otimes g_j \right) = \sum_{j=1}^t \partial_{\#L(f)+s+1} (\xi_j \otimes g_j) = (\det L(f) \land \zeta) \otimes f. \tag{9}$$

By the linearity of $\partial_{\#L(f)+s+1}$ we may, without without loss of generality, assume that $\xi_j \otimes g_j$ is a monomial.

Now the monomials in $\land ^{#L(f)+s+1} S_d \otimes S_{(q-1)d+b}$ and in $\land ^{#L(f)+s} S_d \otimes S_{qd+b}$ both form spanning sets. Therefore, since $(\det L(f) \land \zeta) \otimes f$ is a monomial in $\land ^{#L(f)+s} S_d \otimes S_{qd+b}$ and $\xi_j \otimes g_j$ is a monomial in $\land ^{#L(f)+s+1} S_d \otimes S_{qd+b}$ by Lemma 5.4 for Equation (9) to be true it must be the case that $(\det L(f) \land \zeta) \otimes f$ appears as a term in $\partial_{\#L(f)+s+1} (\xi_j \otimes g_j)$ for some j.

Since $\xi_j \otimes g_j$ is a monomial we may write $\xi_j \otimes g_j$ as $\Pi_0 \land \Pi_1 \land \cdots \land \Pi_{#L(f)+s} \otimes \overline{\gamma}$ where g and the n_i are monomials in S and $\overline{\gamma}$ and Π_i are their images in S. For $(\det L(f) \land \zeta) \otimes f$ to appear as a term in $\partial_{\#L(f)+s+1} (\Pi_0 \land \Pi_1 \land \cdots \land \Pi_{#L(f)+s} \otimes \overline{\gamma})$ without without loss of generality we have that

$$(\Pi_1 \land \Pi_2 \land \cdots \land \Pi_{#L(f)+s} \otimes (\Pi_0 \overline{\gamma}) = (\det L(f) \land \zeta) \otimes f. \tag{10}$$

This implies two equalities:

1. $\Pi_1 \land \Pi_2 \land \cdots \land \Pi_{#L(f)+s} = (\det L(f) \land \zeta)$ as elements in $\land ^{#L(f)+s} S_d$, and
2. $\Pi_0 \overline{\gamma} = f$ as elements in S_{qd+b}.

The second of these means that

$$\text{index.deg}(\Pi_0) + \text{index.deg}(\overline{\gamma}) = \text{index.deg}(\Pi_0 \overline{\gamma}) = \text{index.deg}(f),$$

which implies that $\text{index.deg}\Pi_0 \leq \text{index.deg} f$ meaning $\Pi_0 \in L(f)$. However, combining this fact with the first equality we see that

$$\Pi_0 \land \Pi_1 \land \cdots \land \Pi_{#L(f)+s} \otimes \overline{\gamma} = \Pi_0 \land (\det L(f) \land \zeta) \otimes \overline{\gamma} = 0$$

contradicting the fact that $(\det L(f) \land \zeta) \otimes f$ is non-zero. \qed

Immediately from Proposition 5.5 we are able to deduce a non-vanishing result giving non-trivial syzygies in a range determined by $L(f)$ and $Z(f)$.

Corollary 5.6. Fix $n = (n_1, n_2) \in \mathbb{Z}^2_{\geq 1}$, $d = (d_1, d_2) \in \mathbb{Z}^2_{\geq 1}$, and $b = (b_1, b_2) \in \mathbb{Z}^2$. Given $0 \leq q \leq |n|$ and $0 \leq k \leq q$

Let $f \in S_{qd+b}$ be a non-zero monomial such that $L(f) \subset Z(f)$ then $K^P_{p,q}(\overline{S}(b;d))$ for all p in the following range:

$$#L(f) \leq p \leq #Z(f).$$

Proof. Fix $#L(f) \leq p \leq #Z(f)$ and write $p = #L(f) + s$. Since $s \leq #(Z(f) \setminus L(f))$ we may pick s distinct elements $\zeta_1, \zeta_2, \ldots, \zeta_s \in (Z(f) \setminus L(f))$. Set $\zeta = \zeta_1 \land \zeta_2 \land \cdots \land \zeta_s$. Note that since the ζ_i are distinct monomials – and so form part of a basis for S_d – ζ is non-zero. By part (1) of Proposition 5.5 $(\zeta \land \det L(f)) \otimes f$ is in the kernel of $\partial_{\#L(f)+s}$, while by part (2) it is not in the image of $\partial_{\#L(f)+s+1}$. Hence it represents a non-zero element in $K^P_{p,q}(\overline{S}(b;d))$. \qed
6. Special Monomials

In Section 5 we showed that given a non-zero monomial \(f \in \mathfrak{S}_{d+b} \), satisfying certain technical conditions described in Proposition 5.5, one can construct a non-zero syzygy \(\zeta_1 \wedge \zeta_2 \wedge \cdots \wedge \zeta_r \otimes f \) in \(\mathcal{K}_{p,q}(\mathfrak{S}(b; d)) \) where \(p \) is controlled in part by the annihilators of \(f \). We now turn to describing the monomials \(f \) we will use in our proof of Theorem A.

Broadly, the idea is that having fixed \(0 \leq q \leq |n| \) and \(b \in \mathbb{Z}^2 \) we will construct a non-zero monomial \(f_{q,k,b} \in \mathfrak{S} \) of bi-degree \(qd \) for every \(0 \leq k \leq q \). Each \(f_{q,k,b} \) will play the role of \(f \) in Proposition 5.5 and Corollary 5.6, and will produce non-trivial syzygies (assuming a few technical conditions) in the range

\[
\left(\frac{d_1 + k}{k} \right) \left(\frac{d_2 + (q-k)}{q-k} \right) - (q+2) \leq \rho \leq r_{n,d} - \left(\frac{d_1 + n_1 - k}{n_1 - k} \right) \left(\frac{d_2 + n_2 - (q-k)}{n_2 - (q-k)} \right) - (|n|+1).
\]

Initially, we will not explicitly define \(f_{q,k,b} \). Instead we utilize the fact that in certain degrees, described by Theorem 4.1, \((S/\mathcal{R}(1))_{a,t} \) is one dimension. In particular, we define \(f_{q,k,b} \) in terms of the generator of \((S/\mathcal{R}(1))(k,q-k,k(q-k)) \), which we denote by \(\tilde{f}_{q,k} \). Thus, the first part of this section focuses on studying the generator \(\tilde{f}_{q,k} \) of \((S/\mathcal{R}(1))(k,q-k,k(q-k)) \). In particular, we show that these \(\tilde{f}_{q,k} \) satisfy a series of recursive relations from which it is possible to explicitly write down \(\tilde{f}_{q,k} \).

Following this, in the second part of this section, we define \(f_{q,k,b} \) and study it’s properties. Namely, we show that \(f_{q,k,b} \) is well-defined, and then show that it is in fact a non-zero in \(\mathfrak{S} \). Moreover, we see that \(f_{q,k,b} \) is supported on the variables \(x_0,x_1,\ldots,x_{q-k},y_0,y_1,\ldots,y_k \).

We then end this section by studying the linear annihilators of \(f_{q,k,b} \). For example, we show that if \(b = 0 \) then \(x_if_{q,k,b} \) and \(y_jf_{q,k,b} \) equal zero as elements of \(\mathfrak{S} \) for \(i = 0,1,\ldots,(q-k-1) \) and \(j = 0,1,\ldots,(k-1) \). Understanding these linear annihilators of \(f_{q,k,b} \) is crucial as it allows us to bound \(\#Z(f_{q,k,b}) \) appearing in Proposition 5.5 and Corollary 5.6.

6.1 Defining \(\tilde{f}_{q,k} \)

As described in Theorem 4.1 for certain degrees \((S/\mathcal{R}(1))_{a,t} \) is one dimensional. The goal of this section is to study the generator, unique up to scalar multiple, of \((S/\mathcal{R}(1))_{a,t} \). This is useful as the monomial \(\tilde{f}_{q,k,b} \) we will define in the next subsection is built from these generators. In particular, many of our results about \(f_{q,k,b} \) given later in this section are built on the understanding of the generator of \((S/\mathcal{R}(1))_{a,t} \).

Definition 6.1. Fix \(n = (n_1,n_2) \in \mathbb{Z}_+^2 \). Given \(0 < q \leq |n| \) and \(0 \leq k \leq q \) such that \(q-k \leq n_1 \) and \(k \leq n_2 \) let \(\tilde{f}_{q,k} \) be the unique, up to scalar multiplication, non-zero monomial in \((S/\mathcal{R}(1))(k,q-k,k(q-k)) \).

A crucial property of \(\tilde{f}_{q,k} \), which is not immediately obvious from the definition, is that \(\tilde{f}_{q,k} \) is supported on \(x_0,x_1,\ldots,x_{q-k},y_0,y_1,\ldots,y_k \). In fact, in \(\tilde{f}_{q,k} \) is independent, up to the isomorphism described in Lemma 3.4, of the \(n \) so long as \(n_1 \geq q-k \) and \(n_2 \geq k \). This is the content for the following lemmas.

Lemma 6.2. Fix \(n = (n_1,n_2) \in \mathbb{Z}_+^2 \), \(0 < q \leq |n| \) and \(0 \leq k \leq q \) such that \(q-k \leq n_1 \) and \(k \leq n_2 \). Let \(S' = k[x_0,x_1,\ldots,x_{n_1-i},y_0,y_1,\ldots,y_{n_2-j}] \). If \(q-k \leq n_1-i \) and \(k \leq n_2-j \) then \(\tilde{f}_{q,k} \) is the unique, up to scalar multiplication, non-zero monomial in \((S'/\mathcal{R}(1))(k,q-k,k(q-k)) \) then \(\tilde{f}_{q,k} = \tilde{f}_{q,k}' \) under the isomorphism described in Lemma 3.4.

Proof. By Lemma 3.4 there exists an isomorphism of \(k \)-vector spaces:

\[
\left(\frac{S'}{\mathcal{R}((q-k,k)\mathfrak{S})} \right)(k,q-k,k(q-k)) \cong \left(\frac{S}{\mathcal{R}(n\mathfrak{S})} \right)^{(x_0,\ldots,x_{n_1-i-1},x_{n_1-i}+x_{n_2-j},\ldots,x_{n_1-i+n_2-j-1},y_0,\ldots,y_{n_2-j-1},y_{n_2-j})}(k,q-k,k(q-k)).
\]
The final remark of Theorem 4.1 shows that left hand side of (10) is one dimensional, and so right hand side is also one dimension. That said since \(f_{q,k} \) is defined to be a representative for the unique, up to scalar multiplication, generator of \(S/\mathcal{R}(n,1)_{(k,q-k),k(q-k)} \), and so \(\tilde{f}_{q,k} = \tilde{f}'_{q,k} \) under the isomorphism in (10).

\[\square \]

Lemma 6.3. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \) and \(0 \leq q \leq |n| \) and \(0 \leq k \leq q \) such that \(q - k \leq n_1 \) and \(k \leq n_2 \). The following identities hold in \(\overline{S} \):

1. \(\tilde{f}_{q,k} = x_{q-k} \tilde{f}_{q-1,k-1} \).
2. \(\tilde{f}_{q,k} = y_k \tilde{f}_{q-1,k} \).
3. \(\tilde{f}_{q,k} = x_{q-k} y_{k-1} \tilde{f}_{q-2,k-1} \), and
4. \(\tilde{f}_{q,k} = x_{q-k-1} y_k \tilde{f}_{q-2,k-1} \).

Proof. Parts (3) and (4) follow by combining parts (1) and (2). For part (1) consider a graded component of the maps induced by multiplication by \(x_{q-k} \):

\[
\left(\frac{S}{\mathcal{R}(1)} \right)_{(k-1,q-k),(q-k)} \xrightarrow{x_{q-k}} \left(\frac{S}{\mathcal{R}(1)} \right)_{(k,q-k),(q-k)}. \tag{11}
\]

By Theorem 4.1 both the source and target of the map in (11) are one dimensional \(\mathbb{k} \)-vector spaces. Moreover, \(\tilde{f}_{q-1,k-1} \) is a generator for the left hand side and \(\tilde{f}_{q,k} \) is a generator for the right hand side. Thus, it is enough to show that \(x_{q-k} \) divides \(\tilde{f}_{q,k} \).

Towards a contradiction suppose that \(x_{q-k} \) does not divide \(\tilde{f}_{q,k} \). Letting \(S' = \mathbb{k}[x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_k] \) by Lemma 3.4 there is an isomorphism of \(\mathbb{k} \)-vector spaces:

\[
\left(\frac{S'}{\mathcal{R}(1)} \right)_{(q-k-1,k+1)} \xrightarrow{\sim} \left(\frac{S}{\mathcal{R}(1)} \right)_{(q-k-1,k+1)} \xrightarrow{\sim} \left(\frac{S}{\mathcal{R}(1)} \right)_{(k,q-k),q-k}. \tag{12}
\]

Part (1) of Theorem 4.1 implies the source of the map in (11) has dimension zero. However, by Lemma 6.2 \(\tilde{f}_{q,k} \) is non-zero after quotienting \(S \) by \(\mathcal{R}(1,k) + \langle x_{q-k+1}, x_{q-k+1}, \ldots, x_n \rangle \). Thus, since \(\tilde{f}_{q,k} \) is not divisible by \(x_{q-k} \) it is non-zero in the target of (11). Hence the target of (11) has dimension one, which is a contradiction.

Part (2) of this lemma follows by a similar argument. \[\square \]

Remark 6.4. While we will not make use of this, notice that as a consequence of Lemma 6.3 we are able to write down an explicit representative for \(\tilde{f}_{q,k} \). Namely, as \(\tilde{f}_{q,0} \) has bi-degree \((0,q)\) and index degree 0 we know \(\tilde{f}_{q,0} = y_q^0 \) and by a similar argument \(\tilde{f}_{q,q} = x_q^0 \). So using inductive structure of Lemma 6.3 relations with these base cases we can find explicit representatives for \(\tilde{f}_{q,k} \). For example,

\[
\tilde{f}_{5,2} = x_3 y_1 \tilde{f}_{3,1} = x_3 y_1 (x_2 y_0 \tilde{f}_{1,0}) = x_2 x_3 y_0^2 y_1.
\]

6.2 Defining \(f_{q,k,b} \)

We are now ready to define \(f_{q,k,b} \) in terms of \(\tilde{f}_{q,k} \). While in Theorem C we restrict our attention to the case when \(b \in \mathbb{Z}_{\geq 0} \), we will define \(f_{q,k,b} \) for a more general range of \(b \). In particular, under suitable hypothesis we will allow \(b \) to have negative coordinates. One might hope that these more general \(f_{q,k,b} \)'s may be used to extend Theorem C to additional cases of \(b \), even though we do not carry this out here.

Notation 6.5. Given a monomial \(x^q y^k \) in \(S \) (or \(\overline{S} \)) we write \((x^q y^k)^d \) for the monomial \(x^{q+b_1} y^{k+b_2} \) in \(S \) (or \(\overline{S} \)).

Definition 6.6. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \), and \(b \in \mathbb{Z}^2 \). Let \(0 < q \leq |n| \) and \(0 \leq k \leq q \) such that \(q - k \leq n_1 \) and \(k \leq n_2 \). If \(d_1 > q - k + b_1 \) and \(d_2 > k + b_2 \) then define \(f_{q,k,b} \) to be:

\[
f_{q,k,b} := \begin{cases}
(x_0 \cdots x_{q-1})^{d_1} y_0^{q+b_1} y_0^{d_2} \tilde{f}_{q,0} \quad & \text{if } k = 0 \\
(x_0 \cdots x_{q-k-1})^{d_1} y_0^{q-k+b_1} y_{k-1}^{d_2} \tilde{f}_{q,k} \quad & \text{if } k \neq 0
\end{cases}
\]
Note that from the definition it is not necessarily clear that \(f_{q,k,b} \) is in fact an element of \(S \). In particular, since \(b_1 \) and \(b_2 \) may be negative the terms \(x_{q-k}^{q+k+b_1} \) and \(y_k^{k+b_2} \) appearing in the definition of \(f_{q,k,b} \) need not be monomials. In fact, if both \(b_1 \) and \(b_2 \) are sufficiently negative \(f_{q,k,b} \) is not an element of \(S \).

However, the following lemma shows that as long as at least one of \(q-k+b_1 \) and \(k+b_2 \) are non-negative and \(d \gg b \) we need not worry about this except in a few edge cases (i.e. when \(k = 0 \) or \(k = q \)). The key insight is that the relations in Lemma 6.3 provide the following alternative definitions for \(f_{q,k,b} \) when exactly one of \(q-k+b_1 \) and \(k+b_2 \) is negative immediate.

Lemma 6.7. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \), and \(b \in \mathbb{Z}^2 \). Let \(0 < q \leq |n| \) and \(0 \leq k \leq q \) such that \(q-k \leq n_1 \) and \(k \leq n_2 \).

1. Suppose \(q-k+b_1 < 0 \) and \(k+b_2 \geq 0 \). If \(d_1 > |q-k+b_1| \) and \(k \neq 0 \) then \(f_{q,k,b} \in S \) and
 \[
 f_{q,k,b} = \left(x_0 \cdots x_{q-k-1}\right)^{d_1-1} x_{q-k}^{q-k+b_1+d_1} y_0^{q+b_1} y_k^{k+b_2} f_{q-1,k-1}^{d_1}.
 \]

2. Suppose \(q-k+b_1 \geq 0 \) and \(k+b_2 < 0 \). If \(d_2 > |k+b_2| \) then \(f_{q,k,b} \in S \) and
 \[
 f_{q,k,b} = \left(x_0 \cdots x_{q-k-1}\right)^{d_1-1} x_{q-k}^{q-k+b_1} y_0^{q+b_1} y_k^{k+b_2+d_2} f_{q-1,k}^{d_2}.
 \]

Proof. Apply Lemma 6.3. \(\square \)

Remark 6.8. Since \(\tilde{f}_{q,k} \) has bi-degree \((k,q-k)\) the monomial \(f_{q,k,b} \) has bi-degree \(qd \). This is key as we wish to apply these \(f_{q,k,b} \) as in Proposition 5.5.

The remainder of this section, is dedicated to proving that for certain \(b \) the monomial \(f_{q,k,b} \) is non-zero as an element of \(S \), and describing a certain subset of \((R : f_{q,k,b})\). An important property, key to proving both of these, is that \(\langle f_{q,k,b}, \text{remd}(f_{q,k,b}) \rangle^{1/d} \) is equal to \(\tilde{f}_{q',k'} \) for some \(q' \) and \(k' \).

Lemma 6.9. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{\geq 1}^2 \), \(d = (d_1, d_2) \in \mathbb{Z}_{\geq 1}^2 \), and \(b \in \mathbb{Z}^2 \). Further fix \(0 < q \leq |n| \) and \(0 \leq k \leq q \) such that \(q-k \leq n_1 \) and \(k \leq n_2 \). Suppose that \(|q-k)+b_1| < d_1 \) and \(|k+b_2| < d_2 \).

1. If \(0 \geq (q-k)+b_1 \) and \(0 \geq k+b_2 \) then
 \[
 \left(f_{q,k,b}, \text{remd}(f_{q,k,b}) \right)^{1/d} \text{ is equal to } \tilde{f}_{q,k}.
 \]

2. If \(q-k+b_1 < 0, k+b_2 \geq 0, \) and \(k \neq 0 \) then
 \[
 \left(f_{q,k,b}, \text{remd}(f_{q,k,b}) \right)^{1/d} \text{ is equal to } \tilde{f}_{q-1,k-1}.
 \]

3. If \(q-k+b_1 \geq 0, k+b_2 < 0 \) then
 \[
 \left(f_{q,k,b}, \text{remd}(f_{q,k,b}) \right)^{1/d} \text{ is equal to } \tilde{f}_{q-1,k}.
 \]

Proof. We only prove part (1) as the the remaining parts follow in a similar manner from Lemma 6.7. First we handle the case when \(k = 0 \). The key facts are that \(\text{remd}(\tilde{f}_{q,0}^{d}) \) is equal to \(\tilde{f}_{q,0} \), and that \(\text{remd}(x_q^{b_1}) = x_q^{b_1} \) and \(\text{remd}(y_0^{b_1}) = y_0^{b_2} \) since \(q+b_1 < d_1 \) and \(b_2 < d_2 \) respectively. Computing:

\[
\left(\frac{f_{q,0,b}}{\text{remd}(f_{q,0,b})} \right)^{1/d} = \left(x_0 \cdots x_{q-1}\right)^{d_1-1} x_q^{q+b_1} y_0^{q+b_1} y_0^{b_2} f_{q,0}^{d_1} = (\tilde{f}_{q,0})^{1/d} \equiv \tilde{f}_{q,0}.
\]

The case when \(k \neq 0 \) is essentially the same. Again the key facts are that \(\text{remd}(\tilde{f}_{q,k}^{d}) = \tilde{f}_{q,k} \), and that \(\text{remd}(x_q^{q+b_1}) = x_q^{q+b_1} \) and \(\text{remd}(y_k^{k+b_2}) = y_k^{k+b_2} \) since \((q-k+b_1) < d_1 \) and \(k+b_2 < d_2 \). From these then the
result follows from the computation:

\[
\left(\frac{f_{q,k,b}}{\text{remd}(f_{q,k,b})} \right)^{1/d} = \left(\frac{(x_0 \cdots x_{q-k-1})^{d_1-1} x_{q-k}^{q-k+b_1} (y_0 \cdots y_{k-1})^{d_2-1} y_k^{k+b_2} f_{q,k}}{x_0 \cdots x_{q-k-1}^{d_1-1} y_k^{q-k} (y_0 \cdots y_{k-1})^{d_2-1} y_k^{k+b_2}} \right)^{1/d} = \left(\tilde{f}_{q,k}^d \right)^{1/d} = \tilde{f}_{q,k}.
\]

Note the conditions that \(d_1 > |q-k+b_1|\) and \(d_2 > |k+b_2|\) ensure that \((q-k+b_1)\) and \(k+b_2\) remain unchanged modulo \(d_1\) and \(d_2\) respectively. This, and Lemma 6.10, are the source of conditions appearing in Theorem A. Using this previous lemma together with Proposition 4.9 we conclude that \(f_{q,k,b} \neq 0\) as an element of \(\mathbb{S}\).

Lemma 6.10. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{2}^{\times}, d = (d_1, d_2) \in \mathbb{Z}_{2}^{\times},\) and \(b \in \mathbb{Z}^2\). Further fix \(0 < q \leq |n|\) and \(0 \leq k \leq q\) such that \(q-k \leq n_1\) and \(k \leq n_2\). Suppose \(|q-k+b_1| < d_1\) and \(|k+b_2| < d_2\). If one of the following pairs of inequalities hold:

1. \(0 \geq (q-k) + b_1\) and \(0 \geq k + b_2\),
2. \(q-k + b_1 < 0, k + b_2 \geq 0,\) or
3. \(q-k + b_1 \geq 0, k + b_2 < 0\)

then the monomial \(f_{q,k,b} \neq 0\) as an element of \(\mathbb{S}\).

Proof. By Proposition 4.9 \(f_{q,k,b} \notin \mathbb{R}(d)\) if and only if \(\left(\frac{f_{q,k,b}}{\text{remd}(f_{q,k,b})} \right)^{1/d} \notin \mathbb{R}(1)\). By Lemma 6.9 \(\left(\frac{f_{q,k,b}}{\text{remd}(f_{q,k,b})} \right)^{1/d}
\)

is equal to \(\tilde{f}_{q',k'}\) for some \(q'\) and \(k'\). So \(f_{q,k,b} \notin \mathbb{R}(d)\) if and only if \(\tilde{f}_{q',k'} \notin \mathbb{R}(1)\). However, by construction \(\tilde{f}_{q',k'} \notin \mathbb{R}(1)\).

\(\square\)

6.3 Linear Annihilators of \(f_{q,k,b}\)

Finally, we show that while \(f_{q,k,b}\) is non-zero it is annihilated by \(x_i\) and \(y_j\) for where \(i\) and \(j\) are by \(q,k,\) and \(b\). For example, if \(b = 0\) then \(x_i f_{q,k,b}\) and \(y_j f_{q,k,b}\) are equal to zero for a number of \(i = 0, 1, \ldots, (q-k-1)\) and \(j = 0, 1, \ldots, (k-1)\). Understanding these linear annihilators of \(f_{q,k,b}\) is crucial to the proof of Theorem A and Theorem C as it allows us to bound the \#(Z(f_{q,k,b})], which is crucial to Corollary 5.6.

Proposition 6.11. Fix \(n = (n_1, n_2) \in \mathbb{Z}_{2}^{\times}\) and \(\mathbb{Z}_{2}^{\times}\). Further fix integers \(0 < q \leq |n|\) and \(0 \leq k \leq q\) such that \((q-k) \leq n_1\) and \(k \leq n_2\). Suppose \(|q-k+b_1| < d_1\) and \(|k+b_2| < d_2\).

1. If \(0 \geq (q-k) + b_1\) and \(0 \geq k + b_2\) then
 \[
 \langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle \subset \langle 0, \mathbb{S} f_{q,k,b} \rangle.
 \]
2. If \(q-k + b_1 < 0, 0k + b_2 \geq 0,\) and \(k \neq 0\) then
 \[
 \langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-2} \rangle \subset \langle 0, \mathbb{S} f_{q,k,b} \rangle.
 \]
3. If \(q-k + b_1 \geq 0, k + b_2 < 0\) then
 \[
 \langle x_0, x_1, \ldots, x_{q-k-2}, y_0, y_1, \ldots, y_{k-1} \rangle \subset \langle 0, \mathbb{S} f_{q,k,b} \rangle.
 \]

Proof. We begin by proving part (1). First we handle the case when \(k = 0\). Fixing an integer \(0 \leq i \leq q-1\), we wish to show that \(x_i f_{q,k,b} \in \mathbb{R}\). By Proposition 4.9 \(x_i f_{q,k,b} \in \mathbb{R}(d)\) if and only if \(\left(\frac{x_i f_{q,k,b}}{\text{remd}(x_i f_{q,k,b})} \right)^{1/d} \in \mathbb{R}(1)\). Using
that \(0 \leq q - k + b_1 < d_1\) and \(0 \leq k + b_2 < d_2\) and performing a computation analogous to the one in Lemma 6.9 we find:

\[
\left(\frac{x_i f_{q,0,0}}{\text{remd}(x_i f_{q,0,0})} \right)^{1/d} = \left(\frac{x_i (x_0 \cdots x_{q-1})^{d_1-1} x_q^{d_2-1} y_q^{d_2} f_{q,0,0}}{(x_0 \cdots x_{q-1})^{d_1-1} x_q^{d_2-1} y_q^{d_2} f_{q,0,0}} \right)^{1/d} = \left(x_i^{d_1} \tilde{f}_{q,0} \right)^{1/d} = x_i \tilde{f}_{q,0}.
\]

Now \(x_i f_{q,0}\) has bi-degree \((1, q)\) and index weighted degree \(i\), and so \(i \leq q - 1\). Theorem 4.1 implies that \(x_i f_{q,0} \in \mathbb{R}(1)\).

Turing to the case when \(k > 0\) fix an integer \(0 \leq i < q - k - 1\). We wish to show that \(x_i f_{q,k,b} \in \mathbb{R}(d)\). By Proposition 4.9 \(x_i f_{q,k,b} \in \mathbb{R}(d)\) if and only if \(\left(\frac{x_i f_{q,k,b}}{\text{remd}(x_i f_{q,k,b})} \right)^{1/d} \in \mathbb{R}(1)\). Using that \(0 \leq q - k + b_1 < d_1\) and \(0 \leq k + b_2 < d_2\) and performing a computation analogous to the one in Lemma 6.9 we find:

\[
\left(\frac{x_i f_{q,k,b}}{\text{remd}(x_i f_{q,k,b})} \right)^{1/d} = \left(\frac{x_i (x_0 \cdots x_{q-1})^{d_1-1} x_q^{d_2-1} y_q^{d_2} f_{q,k,b}}{(x_0 \cdots x_{q-1})^{d_1-1} x_q^{d_2-1} y_q^{d_2} f_{q,k,b}} \right)^{1/d} = \left(x_i^{d_1} \tilde{f}_{q,k} \right)^{1/d} = x_i \tilde{f}_{q,k},
\]

and so it enough to show that \(x_i \tilde{f}_{q,k} \in \mathbb{R}(1)\). Computing we find that \(\deg(x_i \tilde{f}_{q,k}) = (k+1, q-k)\) and index \(\deg(x_i \tilde{f}_{q,k}) = k(q-k) + i\). Finally, notice that since \(0 \leq i \leq q - k - 1\) we have that:

\(k(q-k) + i \leq k(q-k) + (q-k-1) = (k+1)(q-k) - 1\),

and so by Theorem 4.1 \(\dim \mathbb{R}(k+1, q-k), (q-k) + 1) = 0\), which implies that \(x_i f_{q,k} \in \mathbb{R}(1)\).

The argument the \(y_j\)’s is similar. Fixing a natural number \(0 \leq j \leq k - 1\), we wish to show that \(y_j f_{q,k,b} \in \mathbb{R}(d)\). Again using Proposition 4.9 it is enough to show that \(\left(\frac{y_j f_{q,k,b}}{\text{remd}(y_j f_{q,k,b})} \right)^{1/d} \in \mathbb{R}(1)\). A computation analogous to the one in the previous cases shows that:

\[
\left(\frac{y_j f_{q,k,b}}{\text{remd}(y_j f_{q,k,b})} \right)^{1/d} = \left(\frac{y_j (x_0 \cdots x_{q-1})^{d_1-1} x_q^{d_2-1} y_q^{d_2} f_{q,k,b}}{(x_0 \cdots x_{q-1})^{d_1-1} x_q^{d_2-1} y_q^{d_2} f_{q,k,b}} \right)^{1/d} = \left(y_j^{d_2} f_{q,k} \right)^{1/d} = y_j \tilde{f}_{q,k},
\]

and so it enough to show that \(y_j \tilde{f}_{q,k} \in \mathbb{R}(1)\). The bi-degree of this element is \((k, q-k+1)\) and its index weighted degree is \((k, q-k)\). Finally, notice that since \(0 \leq j \leq k - 1\) we have that:

\((k(q-k) + j \leq k(q-k) + (k-1) = k(q-k+1) - 1\),

and so by Theorem 4.1 \(\dim \mathbb{R}(k(q-k+1), (q-k) + j) = 0\), which implies that \(y_j f_{q,k} \in \mathbb{R}(1)\). Parts (2) and (3) follow in a similar fashion.

\[
7. \text{ The Key Case - } K_{p,q} \left(\mathbb{P}^{q-k} \times \mathbb{P}^k, b; d \right)
\]

In this section, we prove a special case of Theorem A. Specifically, we fix \(0 \leq k \leq q\) and consider \(K_{p,q}(\mathbb{P}^{q-k} \times \mathbb{P}^k, b; d)\). Following our heuristic that the non-vanishing of \(K_{p,q}(n, b; d)\) is controlled by subvarieties of the form \(\mathbb{P}^i \times \mathbb{P}^j\) where \(i + j = q\), we see that the case of \(\mathbb{P}^{q-k} \times \mathbb{P}^k\) may be simpler than the general case, since the only subvariety of this form is \(\mathbb{P}^{q-k} \times \mathbb{P}^k\) itself. This special case is crucial to our proof of the full theorem. In particular, our proof of the general case uses a series of arguments to reduce Theorem A to the following special case.

Theorem 7.1. Fix integers \(0 \leq k \leq q, d \in \mathbb{Z}^2_{>0},\) and \(b \in \mathbb{Z}^2_{\geq 0}\). If \(0 \leq q-k+b_1 < d_1\) and \(0 \leq k+b_2 < d_2\) and

\[
\frac{d_1}{d_2} b_2 - b_1 < q - k + 1 \quad \text{and} \quad \frac{d_2}{d_1} b_1 - b_2 < k + 1
\]

then \(K_{p,q}((q-k), b; d) \neq 0\) for \(p = r_{(q-k),a} - (q+1)\).
Before proving Theorem 7.1 we need two lemmas regarding Hilbert functions. The first lemma shows that the Hilbert function of an ideal \(J \subset S \) can be bounded below in terms of the number of the linearly independent forms of total degree one.

Lemma 7.2. If \(J \subset S \) is a homogeneous ideal and \(K \subset \langle I_{(1,0)}, I_{(0,1)} \rangle \) then

\[
HF(d, J) \geq r_n, d - \left(\frac{d_1 + n_1 - \dim K_{(1,0)}}{n_1 - \dim K_{(1,0)}} \right) \left(\frac{d_2 - n_2 - \dim K_{(0,1)}}{n_2 - \dim K_{(0,1)}} \right)
\]

Proof. Since \(K \) is gender by monomials of total degree one, the quotient \(S/K \) is exactly a bi-graded polynomial ring with \(n_1 - \dim K_{(1,0)} \) \(x \)-variables and \(n_2 - \dim K_{(0,1)} \) \(y \)-variables. It follows that \(HF(d, S/K) \) equals \(\left(\frac{d_1 + n_1 - \dim K_{(1,0)}}{n_1 - \dim K_{(1,0)}} \right) \left(\frac{d_2 - n_2 - \dim K_{(0,1)}}{n_2 - \dim K_{(0,1)}} \right) \), and since \(HF(d, S) = HF(d, K) + HF(d, S/K) \), we see that \(HF(d, K) \) equals the right hand side of the displayed equation in the lemma. Now, since \(K \) is a subset of \(J \) we have that \(HF(d, K) \leq HF(d, J) \) yielding the desired result. \(\square \)

The second lemma concerns the Hilbert function of \(\mathcal{R}(d) \).

Lemma 7.3. Fix integers \(0 \leq k \leq q \) and \(d \in \mathbb{Z}_{\geq 1} \) and let \(n_1 = q - k \) and \(n_2 = k \):

\[
HF(d, \mathcal{R}(d)) = (q - k) + k + 1 = q + 1.
\]

Proof. Since \(\mathcal{R}(d) \) is generated in bi-degree \(d \) by \(g_0, g_1, \ldots, g_n \) it is enough to show that these \(g_{\ell} \)'s are linearly independent over \(k \). This follow from the fact that the index weighted degree induces a \(\mathbb{Z} \)-grading on \(S \), and that index weighted degree of each \(g_{\ell} \) is distinct, Lemma 4.11. \(\square \)

Proof of Theorem 7.1. As we are considering the case of \(\mathbb{P}^{q-k} \times \mathbb{P}^k \), i.e. when \(n = (q - k, k) \), thoughtout this proof we let \(S = k[x_0, x_1, \ldots, x_{q-k}, y_0, y_1, \ldots, y_k] \). By Proposition 3.6 the inequalities on \(b \) and \(d \) in the hypothesis of the theorem ensure that \(S(b; d) \) is Cohen-Macaulay as an \(R \)-module. Hence by the Artinian reduction explained in Corollary 3.8 we know that there exists a natural isomorphism between \(K_{p,q}((q-k,k);b,d) \) and \(K_{p,q}^R(\mathcal{S}(b;d)) \). So it is enough to prove that \(K_{p,q}^R(\mathcal{S}(b;d)) \) is non-zero for \(p = r_{(q-k,k);d} - (q+1) \).

We do this by applying Corollary 5.6 to the monomial \(f_{q,k,b} \) described in Definition 6.6. However, before we do this we check that \(f_{q,k,b} \) satisfies the conditions need for Corollary 5.6. In particular, we check that \(f_{q,k,b} \) is a well-defined monomial, which is non-zero in \(\mathcal{S}_{q,d,b} \). The fact that \(f_{q,k,b} \) is a well-defined monomial follows from the fact that both coordinates of \(b = (b_1, b_2) \) are non-negative (see Lemma 6.7). Moreover, since \(0 \leq q - k + b_1 < d_1 \) and \(0 \leq k + b_2 < d_2 \) we know that \(f_{q,k,b} \) is non-zero as an element of \(\mathcal{S} \) (see Lemma 6.10).

Thus, by the monomial methods from Corollary 5.6 if \(L(f_{q,k,b}) \subset Z(f_{q,k}) \) then \(K_{p,q}^R(\mathcal{S}(b;d)) \neq 0 \) for all \(p \) in

\[
#L(f_{q,k,b}) \leq p \leq #Z(f_{q,k,b}).
\]

In particular, using the trivial upper bound that \(#L(f_{q,k,b}) \leq #Z(f_{q,k,b}) \) gives non-vanishing for \(p = #Z(f_{q,k}) \). Thus, it is enough to i) show that \(L(f_{q,k,b}) \subset Z(f_{q,k,b}) \) and ii) give a lower bound on \(#Z(f_{q,k,b}) \) that is also an upper bound on \(#L(f_{q,k,b}) \).

Towards part (i) recall that

\[
Z(f_{q,k,b}) = \left\{ a \text{ monomial of } d \left| mf_{q,k,b} = 0 \right\} \subset \mathbb{S}_d,
\]

and so \(Z(f_{q,k,b}) \) is equal to \(0 \mathcal{S}_{q,d,b} \). By Proposition 6.11 the ideal \(\langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_k \rangle \) is contained in \(\mathcal{R}(d) \langle f_{q,k,b} \rangle \), and so the degree \(d \) part of \(\langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_k \rangle \mathcal{S} \) is contained in
Thus, it is enough to show:

\[L(f_{q,k,b}) = \left\{ \text{a monomial of bi-degree } \mathbf{d} \right\} \in \left(\langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle \rangle \right)_{\mathbf{d}} . \]

Since \(n_1 = q - k \) and \(n_2 = k \) the only monomial of bi-degree \(\mathbf{d} \) not contained in \(\langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle \rangle \) is \(x_{q-k}^d y_k^d \). However, since \(n_1 = q - k \) and \(n_2 = k \) we know that \(x_{q-k}^d y_k^d = s_{[n]} \), and so \(x_{q-k}^d y_k^d = 0 \) as an element of \(\mathbb{S} \). This gives the following containments:

\[L(f_{q,k,b}) \subset \langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle \rangle \subset Z(f_{q,k,b}) . \]

Shifting our focus to step (ii), and giving a lower bound for \(\#Z(f_{q,k,b}) \), note that:

\[\#Z(f_{q,k,b}) = \text{HF}(\mathbf{d}, (0 : \mathbb{S})_{\mathbf{d}}) - \text{HF}(\mathbf{d}, \mathbb{R}) . \]

Utilizing the fact that \(\langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle \rangle \) is contained in \(\langle \mathbb{R} : f_{q,k,b} \rangle \), Proposition 6.11, together with Lemmas 7.2 and 7.3 we get the desired result:

\[\#Z(f_{q,k,b}) = \text{HF}(\mathbf{d}, (\mathbb{R} : f_{q,k,b})) - \text{HF}(\mathbf{d}, \mathbb{R}) \geq r_{q-k} d + 1 - \binom{d_1}{0} - \binom{d_2}{0} - \text{HF}(\mathbf{d}, \mathbb{R}) = r_{q-k} d - (q + 1) . \]

\[\square \]

8. Proof of Main Theorems

We are now ready to prove our main results: Theorem A, Corollary B, and Theorem C. By combining part (1) of Proposition 5.5 and Proposition 6.11 we can now easily construct Koszul co-cycles of the form \(m_1 \wedge \cdots \wedge m_p \otimes f_{q,k,b} \). However, checking such a co-cycle is not a co-boundary is relatively difficult. Our key insight is that the issue of showing \(m_1 \wedge \cdots \wedge m_p \otimes f_{q,k,b} \) is not a co-boundary can, in a sense, be reduced to the special case considered in the Section 7.

More precisely if we fix \(0 \leq q \leq \lvert n \rvert \) and \(0 \leq k \leq q \) so that \(q - k \leq n_1 \) and \(k \leq n_2 \) then the quotient map

\[\mathbb{S} \xrightarrow{\pi} \langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle \rangle = \mathbb{S} \],

induces a map between Koszul complexes

\[\cdots \rightarrow \wedge^{p+1} \mathbb{S} \otimes \mathbb{S}_{(q-1)d+b} \xrightarrow{\partial_{p+1}} \wedge^p \mathbb{S} \otimes \mathbb{S}_{qd+b} \xrightarrow{\partial_p} \wedge^p \mathbb{S} \otimes \mathbb{S}_{(q+1)d+b} \rightarrow \cdots \]

\[\wedge^{p+1} \mathbb{S} \otimes \mathbb{S}_{(q-1)d+b} \xrightarrow{\partial_{p+1}} \wedge^p \mathbb{S} \otimes \mathbb{S}_{qd+b} \xrightarrow{\partial_p} \wedge^p \mathbb{S} \otimes \mathbb{S}_{(q+1)d+b} \rightarrow \cdots \]
Checking directly in coordinates one sees that this induced map is in fact a map of chain complexes

\[\pi(\overline{\partial}_p(m_1 \wedge \cdots \wedge m_p \otimes f)) = \pi\left(\sum_{i=1}^{p} (-1)^i m_1 \wedge \cdots \wedge m_i \wedge \cdots \wedge m_p \otimes m_i f \right) \]

\[= \sum_{i=1}^{p} (-1)^i \pi(m_1) \wedge \cdots \wedge \hat{m}_i \wedge \cdots \wedge \pi(m_p) \otimes \pi(m_i f) \]

\[= \sum_{i=1}^{p} (-1)^i \pi(m_1) \wedge \cdots \wedge \hat{m}_i \wedge \cdots \wedge \pi(m_p) \otimes \pi(m_i(f)) \]

\[= \overline{\partial}_p \left(\pi(m_1) \wedge \cdots \wedge \pi(m_p) \otimes \pi(f) \right) = \overline{\partial}_p \left(\pi(m_1) \wedge \cdots \wedge m_p \otimes f \right). \]

Chasing this diagram of Koszul complexes shows that the condition of an element \(\zeta \in \bigwedge^p S_{d} \otimes \bigwedge^d b \) not being a co-boundary is implied by \(\pi(\zeta) \) not being a co-boundary.

Lemma 8.1. Fix \(\zeta \in \bigwedge^p S_{d} \otimes S_{qd} \). If \(\pi(\zeta) \notin \text{img}(\overline{\partial}_{p+1}) \) then \(\zeta \notin \text{img}(\overline{\partial}_{p+1}) \).

Proof. Towards a contradiction suppose there exists \(\alpha \in \bigwedge^{p+1} S_{d} \otimes \bigwedge^{(q-1)d} b \) such that \(\overline{\partial}_{p+1}(\alpha) = \zeta \). Now since \(\pi \) induces a chain map of Koszul complexes

\[\overline{\partial}_{p+1}(\pi(\alpha)) = \pi(\overline{\partial}_{p+1}(\alpha)) = \pi(\zeta) \]

contradicting the fact that \(\pi(\zeta) \notin \text{img}(\overline{\partial}_{p+1}) \). \(\square \)

Lemma 8.2. Fix \(\zeta \in \bigwedge^p S_{d} \otimes S_{qd} \) and \(m \in S_{d} \). If \(\zeta \notin \text{img}(\overline{\partial}_{p+1,q}) \) then \(m \wedge \zeta \notin \text{img}(\overline{\partial}_{p+2,q}) \).

Proof. We prove the contrapositive that if \(m \wedge \zeta \in \text{img}(\overline{\partial}_{p+2,q}) \) then \(\zeta \in \text{img}(\overline{\partial}_{p+1,q}) \). Towards this let \(\zeta = \zeta_1 \wedge \cdots \wedge \zeta_p \otimes f \), and assume that \(\overline{\partial}_{p+2,q}(\alpha) = m \wedge \zeta \). Now we may write \(\alpha \) as

\[\alpha = m \wedge \left(\sum_j \xi_j \otimes g_j \right) + \sum_i \omega_i \otimes h_i \]

where

\[\xi_j \otimes g_j \in \bigwedge^p \text{span}_K(\bigwedge^d - \{m\}) \otimes \bigwedge^d b \quad \text{and} \quad \omega_i \otimes h_i \in \bigwedge^{p+1} \text{span}_K(\bigwedge^d - \{m\}) \otimes \bigwedge^d b. \]

Computing we see that:

\[m \wedge \zeta = \overline{\partial}_{p+2,q}(\alpha) = \overline{\partial}_{p+2,q}\left(m \wedge \sum_j \xi_j \otimes g_j + \sum_i \omega_i \otimes h_i \right) = \overline{\partial}_{p+2,q}\left(m \wedge \sum_j \xi_j \otimes g_j \right) + \overline{\partial}_{p+2,q}(\sum_i \omega_i \otimes h_i) \]

\[= -m \wedge \left(\overline{\partial}_{p+1,q}\left(\sum_j \xi_j \otimes g_j \right) \right) + \sum_j -\xi_j \otimes mg_j + \overline{\partial}_{p+2,q}\left(\sum_i \omega_i \otimes h_i \right). \quad (13) \]

Now Part II of the above equation is entirely contained in the vector subspace \(\bigwedge^p \text{span}_K(\bigwedge^d - \{m\}) \otimes \bigwedge^{(q+1)d} b \), and hence must equal zero. So Equation (13) simplifies to:

\[m \wedge \zeta = -m \wedge \left(\overline{\partial}_{p+1,q}\left(\sum_j \xi_j \otimes g_j \right) \right). \]

In particular, we see that \(\overline{\partial}_{p+1,q}\left(-\sum_j \xi_j \otimes g_j \right) = \zeta \), and so as claimed \(\zeta \notin \text{img}(\overline{\partial}_{p+1,q}) \). \(\square \)
Proof of Theorem C. By Proposition 3.6 the inequalities on \(\textbf{b} \) and \(\textbf{d} \) in the hypothesis of the theorem ensure that \(S(\textbf{b}, \textbf{d}) \) is Cohen-Macaulay as a \(R \)-module. In particular, Proposition 3.5 implies that \(\ell_0, \ell_1, \ldots, \ell_{|\textbf{m}|} \) is a linear regular sequence on \(S(\textbf{b}, \textbf{d}) \), and so the Artinian reduction argument described in Corollary 3.8 shows that quotienting by \(\langle \ell_0, \ell_1, \ldots, \ell_{|\textbf{m}|} \rangle \) induces an isomorphism between \(K_{p,q}(\textbf{n}, \textbf{b}, \textbf{d}) \) and \(K^\pi_{p,q}(S(\textbf{b}, \textbf{d})) \).

Thus, it is enough to prove the desired non-vanishing for \(K^\pi_{p,q}(S(\textbf{b}, \textbf{d})) \). We do this by first using the special non-trivial syzygy on \(\mathbb{P}^{d-k} \times \mathbb{P}^k \) constructed in Theorem 7.1 together with the lifting argument in Lemma 8.1 to construct a single non-trivial syzygy on \(\mathbb{P}^n \). We then construct other non-zero syzygies from this initial non-zero syzygy by Lemma 8.2.

Set \(\delta = r(q-k, k, d) - (q + 1) \), and choose \(\delta \) degree \(\textbf{d} \) non-zero monomials \(m_1, m_2, \ldots, m_\delta \) contained in the ideal \(\langle x_0, x_1, \ldots, x_{q-k}, y_0, y_1, \ldots, y_k \rangle S \cap \mathbb{k} \{ x_0, x_1, \ldots, x_{q-k}, y_0, y_1, \ldots, y_k \} \). We wish to show that \(\zeta = m_1 \wedge \cdots \wedge m_\delta \otimes f_{q,k,b} \) represents a non-zero class in \(K_{p,q}^\pi(S(\textbf{b}, \textbf{d})) \). That is \(\zeta \) represents a non-trivial class in the cohomology of the following chain complex

\[
\cdots \longrightarrow \bigwedge^{\delta+1} S_d \otimes S_{(q-1)d+b} \longrightarrow \bigwedge^\delta S_d \otimes S_{qd+b} \longrightarrow \bigwedge^{\delta-1} S_d \otimes S_{(q+1)d+b} \longrightarrow \cdots
\]

(14)

Towards this we first show that \(\zeta \) is well-defined and non-zero, which amounts to checking the same for \(f_{q,k,b} \). Since \(b_1 \geq 0 \) and \(b_2 \geq 0 \) we know by Lemma 6.7 that \(f_{q,k,b} \) is a well-defined monomial in \(S_{qd+b} \). Moreover, since \(0 \leq q-k+b_1 < d_1 \) and \(0 \leq k+b_2 < d_2 \) we know that \(f_{q,k,b} \) is non-zero as an element of \(S \) (see Lemma 6.10).

Having showed that \(\zeta \) is well-defined we turn to proving that \(\zeta \) is not in the image of \(\delta_{\delta+1} \). We do this by considering \(\pi(\zeta) \in \bigwedge^\delta S_d \otimes S_{qd+b} \) where \(\pi \) is as defined in the beginning of this section. Using the Koszul complex described in Lemma 3.4 we know that \(S \) is exactly \(S \) in the case when \(n_1 = q-k \) and \(n_2 = k \). Thus, the Koszul complex

\[
\cdots \longrightarrow \bigwedge^{\delta+1} S_d \otimes S_{(q-1)d+b} \longrightarrow \bigwedge^\delta S_d \otimes S_{qd+b} \longrightarrow \bigwedge^{\delta-1} S_d \otimes S_{(q+1)d+b} \longrightarrow \cdots
\]

(15)

actually computes \(K_{p,q}(q-k,k,\textbf{b},\textbf{d}) \). Moreover, by construction one sees that \(\pi(\zeta) \) represents one of the non-trivial syzygies constructed in Theorem 7.1. In particular, \(\pi(\zeta) \) represents a non-zero element in the cohomology of complex (15) above. This means that \(\pi(\zeta) \) is not in the image of \(\delta_{\delta+1} \).

Now by Lemma 8.1 the fact that \(\pi(\zeta) \) is not in the image of \(\delta_{\delta+1} \) implies that \(\zeta \in \bigwedge^\delta S_d \otimes S_{qd+b} \) is not in the image of \(\delta_{\delta+1} \). Thus, to show that \(\zeta \) is a non-trivial syzygy on \(\mathbb{P}^n \), i.e. a non-zero element of the cohomology of complex (14) above, we must show that \(\zeta \) is in the kernel of \(\delta_b \). Using our description of the annihilators of \(f_{q,k,b} \) given in Proposition 6.11 we know that \(m_1, m_2, \ldots, m_\delta \) annihilate \(f_{q,k,b} \). So by part (1) of Proposition 5.5 implies that \(\delta_b(\zeta) = 0 \). Hence \(\zeta \) represents a non-trivial class in \(K^\pi_{p,q}(S(\textbf{b}, \textbf{d})) \).

We now use Lemma 8.2 to construct other non-trivial syzygies from \(\zeta \). In particular, by inductively applying Lemma 8.2 we know that if \((n_1 \wedge \cdots \wedge n_{t_i}) \wedge \zeta \) is non-zero then \((n_1 \wedge \cdots \wedge n_{t_i}) \wedge \zeta \) is not in the image of \(\delta_{b+t_i+1} \). Thus, as long as \((n_1 \wedge \cdots \wedge n_{t_i}) \wedge \zeta \) remains non-zero and in the kernel of \(\delta_{b+t_i+1} \) it will represent a non-trivial class in \(K^\pi_{p,q}(S(\textbf{b}, \textbf{d})) \).

Using the description of the annihilators of \(f_{q,k,b} \) given in Proposition 6.11 together with part (1) of Proposition 5.5 we know that \((n_1 \wedge \cdots \wedge n_{t_i}) \wedge \zeta \) will be in the kernel of \(\delta_{b+t_i+1} \) so long as \(n_i \in \langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle S \) for all \(i \). Further, \((n_1 \wedge \cdots \wedge n_{t_i}) \wedge \zeta \) will be non-zero provided that \(n_1, n_2, \ldots, n_{t_i}, m_1, m_2, \ldots, m_\delta \) are unique in \(S \). As these are all monomials of bi-degree \(\textbf{d} \) contained in \(\langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle S \) the number of such elements is controlled by the Hilbert function of this ideal. Using Lemma 7.2 to compute the Hilbert function of \(\langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle S \) we see that we can construct a non-trivial class in \(K^\pi_{b+t_i+1}(S(\textbf{b}, \textbf{d})) \)
whenever
\[
\delta + t \leq \text{HF}(d, \langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle) \geq \text{HF}(d, \langle x_0, x_1, \ldots, x_{q-k-1}, y_0, y_1, \ldots, y_{k-1} \rangle) - \text{HF}(d, R(n,d)) = r_{n,d} - \left(\frac{d_1 + n_1 - (q-k)}{n_1 - (q-k)} \right) \left(\frac{d_2 + n_2 - k}{n_2 - k} \right) - (|n| + 1).
\]

\[\square\]

Proof of Theorem A. This follows immediately from Theorem C with $b = 0$. \[\square\]

Proof of Corollary B. By Theorem A if $d_1 > q$ and $d_2 > q$ then
\[
\rho_q(n,d) \geq 1 - \frac{\min \left\{ \left(\frac{d_1 + n_1 - i}{n_1 - i} \right) \left(\frac{d_2 + n_2 - j}{n_2 - j} \right) \mid i + j = q, 0 \leq i \leq n_1, 0 \leq j \leq n_2 \right\}}{r_{n,d}} - \frac{\min \left\{ \left(\frac{d_1 + i}{i} \right) \left(\frac{d_2 + j}{j} \right) \mid i + j = q, 0 \leq i \leq n_1, 0 \leq j \leq n_2 \right\}}{r_{n,d}} - \frac{|n| - q - 1}{r_{n,d}}.
\]

The result follows by noting that $d_{n+q}^n = d_{n-1} + O(d^{n-1})$ and $r_{n,d} = O(d_{n+q}^n d_{n+q}^{n+q})$. \[\square\]

References

[AN10] Marian Aprodu and Jan Nagel, Koszul cohomology and algebraic geometry, University Lecture Series, vol. 52, American Mathematical Society, Providence, RI, 2010. MR2573635 77, 10

[BZEKS13] Christine Berkesch Zamaere, Daniel Erman, Manoj Kummini, and Steven V. Sam, Tensor complexes: multilinear free resolutions constructed from higher tensors, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2257–2295, DOI 10.4171/JEMS/421. MR3120743 18

[BZE17] Christine Berkesch Zamaere, Daniel Erman, and Gregory G. Smith, Virtual resolutions for a product of projective spaces (2017). ArXiv pre-print: https://arxiv.org/abs/1703.07631. 15

[BH93] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956 110

[CJKW18] Aldo Conca, Martina Juhnke-Kubitzke, and Volkmar Welker, Asymptotic syzygies of Stanley-Reisner rings of iterated subdivisions, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1661–1691, DOI 10.1090/tran/7149. MR3739188 11

[Cox95] David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17–50. MR1299003 14, 6

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR2810322 19

[EEL15] Lawrence Ein, Daniel Erman, and Robert Lazarsfeld, Asymptotics of random Betti tables, J. Reine Angew. Math. 702 (2015), 55–75, DOI 10.1515/crelle-2013-0032. MR3341466 1

[EEL16] A quick proof of nonvanishing for asymptotic syzygies, Algebr. Geom. 3 (2016), no. 2, 211–222, DOI 10.14231/AG-2016-010. MR3477954 11, 3, 4, 5, 7, 9, 18

[EL19] Lawrence Ein and Robert Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension, Invent. Math. 111 (1993), no. 1, 51–67. 11

[EL12] Asymptotic syzygies of algebraic varieties, Invent. Math. 190 (2012), no. 3, 603–646, DOI 10.1007/s00222-012-0384-5. MR2995182 11, 2, 3, 4

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR1328960 1

[Eis95] The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR2103875 12, 5

[ES90] David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of vector bundles, J. Amer. Math. Soc. 22 (2009), no. 3, 859–888, DOI 10.1090/S0894-0347-08-00620-6. MR2305303 18, 9, 10

[EY18] Daniel Erman and Jay Yang, Random flag complexes and asymptotic syzygies, Algebra & Number Theory 12 (2018), no. 9, 2151–2166, DOI 10.2140/ant.2018.12.2151. 11, 3
[Gre84a] Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR739785 ↑1, 3

[Gre84b] ———, Koszul cohomology and the geometry of projective varieties. II, J. Differential Geom. 20 (1984), no. 1, 279–289. MR772134 ↑1, 3

[Hoc72] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337, DOI 10.2307/1970791. MR0304376 ↑9

[ILL*07] Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, Graduate Studies in Mathematics, vol. 87, American Mathematical Society, Providence, RI, 2007. MR2355715 ↑9

[Lem18] Alexander Lemmens, On the n-th row of the graded Betti table of an n-dimensional toric variety, J. Algebraic Combin. 47 (2018), no. 4, 561–584, DOI 10.1007/s10801-017-0786-y. MR3813640 ↑3

[M2] Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/. ↑6

[ORS17] Luke Oeding, Claudiu Raicu, and Steven V Sam, On the (non-)vanishing of syzygies of Segre embeddings (2017). ArXiv pre-print: https://arxiv.org/abs/1708.03803. ↑8

[OP01] Giorgio Ottaviani and Raffaella Paolini, Syzygies of Veronese embeddings, Compositio Math. 125 (2001), no. 1, 31–37, DOI 10.1023/A:1002662809474. MR1818055 ↑

[TS19] The Stacks project authors, The Stacks project, 2019. ↑7, 9, 15

Department of Mathematics, University of Wisconsin, Madison, WI

E-mail address: juliette.bruce@math.wisc.edu

URL: http://math.wisc.edu/~juliettebruce/