Research Article

An Effective New Iterative Method to Solve Conformable Cauchy Reaction-Diffusion Equation via the Shehu Transform

Shahram Rezapour,1,2 Muhammad Imran Liaqat,3 and Sina Etemad

1Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
2Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
3National College of Business Administration & Economics, Lahore, Pakistan

Correspondence should be addressed to Sina Etemad; sina.etemad@azaruniv.ac.ir

Received 8 January 2022; Accepted 6 May 2022; Published 7 June 2022

Academic Editor: Kolade M. Owolabi

Copyright © 2022 Shahram Rezapour et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the first time, we establish a new procedure by using the conformable Shehu transform (CST) and an iteration method for solving fractional-order Cauchy reaction-diffusion equations (CRDEs) in the sense of conformable derivative (CD). We call this recommended method the conformable Shehu transform iterative method (CSTIM). To evaluate the efficacy and consistency of CSTIM for conformable partial differential equations (PDEs), the absolute errors of four CRDEs are reviewed graphically and numerically. Furthermore, graphical significances are correspondingly predicted for several values of fractional-order derivatives. The results and examples establish that our new method is unpretentious, accurate, valid, and capable. CSTIM does not necessarily use He’s polynomials and Adomian polynomials when solving nonlinear problems, so it has a strong advantage over the homotopy analysis and Adomian decomposition methods. The convergence and absolute error analysis of the series solutions is also offered.

1. Introduction

Fractional calculus is well used for proceedings with any order of derivatives or integrals. It is the preferment of integer derivatives and integrals. There are innumerable categories of definitions for fractional-order derivatives. Although the most frequent fractional derivatives, for instance, Riemann–Liouville, Caputo derivative, and Caputo–Fabrizio derivative, are utilized by numerous researchers for studying numerical solutions of distributed order differential equations [1], mathematical modeling of COVID-19 [2], analysis of cancer tumor [3], analytical studies on the physical phenomena [4], and analysis of different diseases [5, 6] and viruses [7], but there are several dissertations in the literature that state that these operators have a bit of a limitation [8, 9].

In 2014 [10], Khalil et al. offered a novel operator, so-called conformable derivative (CD), which contains several of the axioms that the existing operators do not satisfy [8, 9]. The CD is relatively similar to the derivative in the classical limit method, and it is rather uncomplicated to manage. Consequently, it has been acknowledged so swiftly and has been the subject of numerous dissertations for scientists [11–13].

In the disciplines of science and engineering, we find natural and physical events that, when characterized by mathematical models, happen to be differential equations (DEs). For instance, the equations of Kaup–Kupershmidt (KK), Burgers–Huxley equation, and the deflection of a beam are characterized by DEs [14–16]. Consequently, the solutions of DEs are required. Many DEs arising in applications are so intricate that it is sometimes impractical to have close-form solutions. Numerical methods provide a powerful alternative tool for solving the DEs under the given initial conditions. For example, in the past couple of years, various methods have been presented to solve DEs containing the Elzaki residual power series method [17], the Laplace decomposition method [18], the fractional
natural decomposition approach [19], the variational iteration technique [20], the operational matrix scheme [21], the homotopy analysis approach [22], the Sumudu decomposition method [23], the Lie-group integrator based on GL(4, R) [24], and the residual power series method [25].

The reaction-diffusion equations (RDEs) explain numerous nonlinear structures in physics, chemistry, ecology, and biology [26–28]. The RDE is described in the following procedure:

\[
\frac{\partial \xi(v, \tau)}{\partial \tau} = \Delta \xi + \varphi(\xi, \nabla \xi; \Omega, \tau).
\]

(1)

The expression of \(\Delta \xi\) is diffusion term and \(\varphi(\xi, \nabla \xi; \Omega, \tau)\) is the reaction function.

In this study, we discussed the conformable CRDEs of one-dimensional systems, which is described as follows:

\[
T^\lambda_\tau \xi(v, \tau) = \sigma \Delta \nu_o \xi(v, \tau) + \gamma(v, \tau)\xi(v, \tau), \quad 0 < \lambda \leq 1
\]

(2)

where \(T^\lambda_\tau\) is the CD.

If \(\lambda = 1\), then, it converts into a classical RDE; consequently, \(\xi(v, \tau)\) is the concentration, \(\gamma(v, \tau)\) is the reaction parameter, and \(\sigma > 0\) is the diffusion coefficient, by means of the preliminary and boundaries circumstances:

\[
\xi(v, 0) = \theta(v), \quad v \in \mathbb{R},
\]

(3)

\[
\xi(0, \tau) = \theta_1(\tau),
\]

\[
D_{\tau, \xi}(0, \tau) = \theta_2(\tau), \quad \tau \in \mathbb{R}^+.
\]

(4)

Equations (2) and (3) are named as the characteristic Cauchy prototypal in the domain \(\Omega = \mathbb{R} \times \mathbb{R}^+\), and equations (2) and (4) are termed as the noncharacteristic Cauchy equation in the domain \(\Omega = \mathbb{R}^* \times \mathbb{R}\).

In this study, we recognized an effectual CSTIM, which is the collaboration of the ST in the sense of CD and the iterative method familiarized by Daftardar-Gejji and Jafari [29] for gaining approximate and closed-form solutions to CRDEs. The superiority of this new method, which we planned, is that it makes the calculation effortless and extremely precise, allowing us to approximate the definite result.

The subsequent organization of this work is structured as follows. In Section 2, we recall some straightforward definitions and consequences dealing with the CD and ST. The fundamental recommendation beyond the CSTIM with convergence and absolute error analysis for conformable CRDEs is demonstrated in Section 3. In Section 4, we demonstrated numerical examples of CRDEs to exemplify the competency, potential, and straightforwardness of the new method. Lastly, in Section 5, the consequences are gathered in the conclusions.

2. Fundamental Concepts

In this section, we review some necessary definitions, theorems, and mathematical preliminaries concerning CD and ST that will be used in this work.

Definition 1 (see [30]). For given a function \(\xi: [0, \infty) \rightarrow \mathbb{R}\), the CD of \(\xi\) of order \(\lambda\) is formulated as

\[
T^\lambda_\tau \xi(\tau) = \lim_{\varepsilon \to 0} \frac{\xi(\tau + \varepsilon^{1-\lambda}) - \xi(\tau)}{\varepsilon}, \quad \tau > 0, \quad 0 < \lambda \leq 1
\]

(5)

for \(\tau > 0\), and \(\lambda \in (0, 1]\). If \(\xi\) is \(\xi\)-differentiable in some \((0, \eta)\), \(\eta > 0\), and \(\lim_{\tau \to \lambda_{\xi}} (T^\lambda_\tau \xi(\tau)\) occur subsequently, it becomes

\[
(T^\lambda_\tau \xi)(0) = \lim_{\tau \to \xi}(T^\lambda_\tau \xi)(\tau).
\]

(6)

Definition 2 (see [31]). Shehu transform (ST) is a new integral transformation which is defined for function of exponential order. We take a function in the set \(\eta\) defined by

\[
\eta = \{\xi(\tau) \exists \Xi_\tau, \Xi_\tau > 0 \text{ s.t. } |\xi(\tau)| < \Xi_\tau e^{(|\tau|/\Xi_\tau)}, \text{ if } \tau \in [0, \infty)\}.
\]

(7)

The ST which is represented by \(\varphi(\cdot)\) for a function \(\xi(\tau)\) is defined as

\[
\varphi(\xi(\tau)) = \hat{\varphi}(0, \omega) = \int_0^\infty \xi(\tau)e^{-\omega(\tau+1)}d\tau, \quad \tau > 0.
\]

(8)

The ST of a function \(\xi(\tau)\) is \(\hat{\varphi}(0, \omega)\). Then, \(\xi(\tau)\) is called the inverse of \(\hat{\varphi}(0, \omega)\) which is expressed as \(\varphi^{-1}[\hat{\varphi}(0, \omega)] = \xi(\tau)\), for \(\tau \geq 0\), \(\varphi^{-1}\) is called the inverse ST.

Definition 3 (see [32]). Let \(0 < \lambda \leq 1\) and \(\xi: [0, \infty) \rightarrow \mathbb{R}\) be a real valued function. Then, the conformable Shehu transform (CST) of order \(\lambda\) is defined by

\[
\varphi_t[\xi] = \hat{\varphi}(0, \omega) = \int_0^\infty e^{(\omega(\tau+1))}\xi \tau^{\lambda-1}d\tau.
\]

(9)

Definition 4 (see [33]). The Mittag–Leﬄer function is defined as follows:

\[
E_{\alpha}[\tau] = \sum_{\alpha=0}^{\infty} \frac{\tau^\alpha}{\Gamma(\alpha\lambda + 1)}, \quad \lambda \in \mathbb{C}, \text{Re}(\lambda) > 0.
\]

(10)

Theorem 1 (see [34]). Let \(0 < \lambda \leq 1\) and \(\xi_1\) and \(\xi_2\) be \(\lambda\)-differentiable at a point \(\tau > 0\). Then,

\[
\begin{align*}
(1) \quad T^\lambda_\tau (\chi_1 \xi_1 + \chi_2 \xi_2) &= \chi_1 T^\lambda_\tau (\xi_1) + \chi_2 T^\lambda_\tau (\xi_2), \\
\forall \chi_1, \chi_2 &\in \mathbb{R}, \\
(2) \quad T^\lambda_\tau (\psi(\tau)) &= \chi T^\lambda_\tau (\xi), \\
\forall \chi &\in \mathbb{R}, \\
(3) \quad T^\lambda_\tau (c) &= 0, c \in \mathbb{R}, \\
(4) \quad T^\lambda_\tau (\xi_1 \xi_2) &= \xi_1 T^\lambda_\tau (\xi_2) + \xi_2 T^\lambda_\tau (\xi_1), \\
(5) \quad T^\lambda_\tau (\xi_1 / \xi_2) &= (\xi_1 T^\lambda_\tau (\xi_2) - \xi_2 T^\lambda_\tau (\xi_1)) / (\xi_2)^2
\end{align*}
\]

In addition, if \(\xi\) is differentiable, then

\[
T^\lambda_\tau (\xi) = \varphi^{\lambda-\lambda}(d\xi(\tau))\tau.
\]

(11)

Theorem 2 (see [32]). Let \(\xi: [0, \infty) \rightarrow \mathbb{R}\) be a real valued map and \(0 < \lambda \leq 1\); then, we have
Theorem 3 (see [32]). Let \(m, w \) and \(c \in \mathbb{R} \) and \(0 < \lambda \leq 1 \). We have the following:

\[
\begin{align*}
(1) & \quad \Theta_1 [c] = c (\omega/\omega) \\
(2) & \quad \Theta_1 [\tau^r] = \tilde{Y} (\omega, \omega) = \lambda^{|w/\omega| (w/\omega)^{1} (1 + (w/\omega))} \\
(3) & \quad \Theta_1 [\sinh (m (r/\lambda))] = \tilde{Y} (\omega, \omega) = (m w/\omega^2 + m^2 \omega^2), (\omega/\omega) > 0 \\
(4) & \quad \Theta_1 [\cosh (m (r/\lambda))] = \tilde{Y} (\omega, \omega) = (m w/\omega^2 - m^2 \omega^2), (\omega/\omega) > 0 \\
(5) & \quad \Theta_1 [\sin (m (r/\lambda))] = \tilde{Y} (\omega, \omega) = (m w/\omega^2 - m^2 \omega^2), (\omega/\omega) > 0 \\
(6) & \quad \Theta_1 [\cosh (m (r/\lambda))] = \tilde{Y} (\omega, \omega) = (m w/\omega^2 - m^2 \omega^2), (\omega/\omega) > |m|
\end{align*}
\]

In Section 3, we present a novel computational methodology for solving conformable CRDEs utilizing the CST and iteration method. The convergence and absolute error analysis of the series solutions obtained through the mentioned method are also implemented.

3. Methodology of the CSTIM with the Convergence and Error Analysis

In this section, we illustrate the basic idea of CSTIM to solve conformable CRDEs.

3.1. Methodology of the CSTIM. We contemplate the following equation in the common operator system by means of the preliminary condition to demonstrate the straightforward idea of the CSTIM for the CRDEs:

\[
\begin{align*}
T_1^\lambda \xi (v, \tau) + \Phi \xi (v, \tau) + \mathfrak{A} \xi (v, \tau) = \Phi (v, \tau), \\
\xi (v, 0) = \theta (v), \\
0 < \lambda \leq 1,
\end{align*}
\]

where \(T_1^\lambda \) is the CD, \(\theta \) is a linear operator, \(\mathfrak{A} \) is nonlinear operator, and \(\Phi (v, \tau) \) is continuous function. Employing CST at both sides of equation (12), we obtain as follows:

\[
\Theta_1 [T_1^\lambda \xi (v, \tau) + \Phi \xi (v, \tau) + \mathfrak{A} \xi (v, \tau)] = \Theta_1 [\Phi (v, \tau)].
\]

By consuming the linear axiom of CST, we get as follows:

\[
\Theta_1 [T_1^\lambda \xi (v, \tau)] + \Theta_1 [\Phi \xi (v, \tau)] + \Theta_1 [\mathfrak{A} \xi (v, \tau)] = \Theta_1 [\Phi (v, \tau)].
\]

Utilizing the following definition of CST

\[
\Theta_1 [T_1^\lambda \xi (v, \tau)] = \frac{\omega}{\omega} \Theta_1 [\xi (v, \tau)] - \xi (v, 0),
\]

and using equations (15) in (14),

\[
\frac{\omega}{\omega} \Theta_1 [\xi (v, \tau)] - \xi (v, 0) + \Theta_1 [\Phi \xi (v, \tau)] + \Theta_1 [\mathfrak{A} \xi (v, \tau)] = \Theta_1 [\Phi (v, \tau)].
\]

By simplifying equation (16), we obtain as follows:

\[
\begin{align*}
\Theta_1 [\xi (v, \tau)] = \frac{\omega}{\omega} \xi (v, 0) + \Theta_1 [\Phi (v, \tau)] \\
& \quad - \frac{\omega}{\omega} \Theta_1 [\mathfrak{A} \xi (v, \tau)].
\end{align*}
\]

By utilizing the inverse CST on both sides of equation (17), we obtain as

\[
\begin{align*}
\xi (v, \tau) = \Theta_1^{-1} \left[\frac{\omega}{\omega} \xi (v, 0) + \Theta_1 [\Phi (v, \tau)] \right] \\
& \quad - \Theta_1^{-1} \left[\frac{\omega}{\omega} \Theta_1 [\mathfrak{A} \xi (v, \tau)] \right].
\end{align*}
\]

Next, assume the following:

\[
\begin{align*}
\Theta (v, \tau) &= \Theta_1^{-1} \left[\frac{\omega}{\omega} \xi (v, 0) + \Theta_1 [\Phi (v, \tau)] \right], \\
\Psi (\xi (v, \tau)) &= -\Theta_1^{-1} \left[\frac{\omega}{\omega} \Theta_1 [\mathfrak{A} \xi (v, \tau)] \right], \\
N (\xi (v, \tau)) &= -\Theta_1^{-1} \left[\frac{\omega}{\omega} \Theta_1 [\mathfrak{A} \xi (v, \tau)] \right].
\end{align*}
\]

As a result, equation (18) can be written as

\[
\xi (v, \tau) = \Theta (v, \tau) + \Psi (\xi (v, \tau)) + N (\xi (v, \tau)),
\]

where \(\Theta (v, \tau) \) is a recognized function and \(N \) and \(\Psi \) are specified nonlinear and linear operators of \(\xi (v, \tau) \) correspondingly. The outcome of equation (20) can be represented in the expansion form:

\[
\xi (v, \tau) = \sum_{a=0}^{\infty} \xi_a (v, \tau).
\]

Also, we take

\[
\Psi \left(\sum_{a=0}^{\infty} \xi_a (v, \tau) \right) = \sum_{a=0}^{\infty} \Psi (\xi_a (v, \tau)).
\]

The nonlinear operator \(N \) is written as [29]

\[
N \left(\sum_{a=0}^{\infty} \xi_a (v, \tau) \right) = N (\xi_0 (v, \tau)) + \sum_{a=0}^{\infty} N \left(\sum_{b=0}^{a} \xi_b (v, \tau) \right) - N \left(\sum_{b=0}^{a-1} \xi_b (v, \tau) \right). \tag{23}
\]

Therefore, equation (20) can be characterized as this arrangement:

\[
\sum_{a=0}^{\infty} \xi_a (v, \tau) = \Theta (v, \tau) + \sum_{a=0}^{\infty} \Psi (\xi_a (v, \tau)) + N (\xi_0 (v, \tau)) + \sum_{a=0}^{\infty} \left\{ N \left(\sum_{b=0}^{a} \xi_b (v, \tau) \right) - N \left(\sum_{b=0}^{a-1} \xi_b (v, \tau) \right) \right\}. \tag{24}
\]

Defining the recurrence relation by using equation (24), we set
\[\xi_0(v, \tau) = \Theta(v, \tau), \]
\[\xi_1(v, \tau) = \Psi(\xi_0(v, \tau)) + N(\xi_0(v, \tau)), \]
\[\xi_{k+1}(v, \tau) = \Psi(\xi_k(v, \tau)) + N(\xi_0(v, \tau) + \xi_1(v, \tau) + \cdots + \xi_k(v, \tau)) \]
\[- N(\xi_0(v, \tau) + \xi_1(v, \tau) + \cdots + \xi_{k-1}(v, \tau)). \]

(25)

So, we have the following:
\[\xi_1(v, \tau) + \xi_2(v, \tau) + \cdots + \xi_{k+1}(v, \tau) \]
\[= \Psi(\xi_0(v, \tau) + \xi_1(v, \tau) + \cdots + \xi_k(v, \tau)) \]
\[+ N(\xi_0(v, \tau) + \xi_1(v, \tau) + \cdots + \xi_k(v, \tau)). \]

(26)

Namely,
\[\sum_{a=0}^{\infty} \xi_a(v, \tau) = \Theta(v, \tau) + \Psi\left(\sum_{a=0}^{\infty} \xi_a(v, \tau) \right) + N\left(\sum_{a=0}^{\infty} \xi_a(v, \tau) \right). \]

(27)

The kth approximate solution of equation (12) is given by
\[\xi_k(v, \tau) = \xi_0(v, \tau) + \xi_1(v, \tau) + \cdots + \xi_k(v, \tau). \]

(28)

3.2. Convergence and Absolute Error Analysis of CSTIM. In this section, we illustrate the convergence and absolute error analysis of CSTIM for the conformable CRDEs.

The following theorem explains and governs the condition for the convergence of the expansion solution.

Theorem 4. Let \(Y \) be a Banach space; then, the expansion result of \(\xi(v, \tau) \) is convergent if \(\exists \xi \in (0, 1) \) s.t. \(\|\xi_0(v, \tau)\| \leq \xi\|\xi_{n-1}(v, \tau)\|, \forall \alpha \in \mathbb{N} \).

Proof. Consider
\[S_k(v, \tau) = \xi_0(v, \tau) + \xi_1(v, \tau) + \xi_2(v, \tau) + \cdots + \xi_k(v, \tau). \]

(29)

It is essential to validate that the series of kth partial sums \(\{S_k\} \) is a Cauchy series in the Banach space. For this, we have
\[\|S_{k+1}(v, \tau) - S_k(v, \tau)\| \leq \xi_1\|\xi_{k+1}(v, \tau)\| \leq \xi_1^2\|\xi_{k+1}(v, \tau)\| \leq \xi_1^3\|\xi_{k+1}(v, \tau)\| \leq \cdots \leq \xi_1^{k+1}\|\xi_0(v, \tau)\|. \]

(30)

For every k, \(\ell \in \mathbb{N} \) and \(k \leq \ell \) and by using equation (30) and the triangle inequality, we obtain
\[\|S_k(v, \tau) - S_\ell(v, \tau)\| \leq \sum_{a=0}^{\ell} \xi_a(v, \tau) \leq \left(\frac{\xi^{\ell+1}}{1 - \xi} \right)\|\xi_0(v, \tau)\|. \]

(34)

Proof. Let the series \(\sum_{a=0}^{\ell} \xi_a(v, \tau) \) be finite. Then,
\[\|\xi(v, \tau) - \sum_{a=0}^{\ell} \xi_a(v, \tau)\| = \sum_{a=0}^{\ell} \xi_a(v, \tau) \]
\[\leq \sum_{a=0}^{\infty} \xi_a(v, \tau) \]
\[\leq \sum_{a=0}^{\infty} \xi_0(v, \tau) \]
\[\leq \sum_{a=0}^{\infty} \xi_0(v, \tau) \]
\[\leq \sum_{a=0}^{\infty} \left(1 + \xi + \xi^2 + \cdots + \xi^{a-1} \right)\|\xi_0(v, \tau)\| \]
\[\leq \left(\frac{\xi^{a+1}}{1 - \xi} \right)\|\xi_0(v, \tau)\|. \]

(35)

Theorem 5. Let \(\xi(v, \tau) \) be the approximate solution of the truncated finite series \(\xi(v, \tau) = \sum_{a=0}^{\infty} \xi_a(v, \tau) \). Suppose that it is reasonable to acquire a real number \(\Xi \in (0, 1) \), s.t. \(\|\xi_{n+1}(v, \tau)\| \leq \Xi\|\xi_n(v, \tau)\|, \forall \alpha \in \mathbb{N} \). Moreover, the greatest absolute error is
and the proof is completed.

The applicability of the recommended method is examined in Section 4.

4. Numerical Examples and Concluding Remarks

In this section, four problems of CRDEs are established to illustrate the performance and appropriateness of the recommended method.

Example 1. Consider the following Cauchy reaction-diffusion equation [35]:

\[T^\lambda_0 \xi (v, r) = \xi_{rr} (v, r) - \xi (v, r), \quad 0 < \lambda \leq 1, \]

subsequently, the initial condition,

\[\xi (0, v) = e^{-r} + v. \]

Applying CST on both sides of equation (36), we obtain

\[\theta_1 \left[T^\lambda_0 \xi (v, r) \right] = \theta_1 \left[\xi_{rr} (v, r) - \xi (v, r) \right]. \]

By using the linear property of CST, the above equation becomes as

\[\theta_1 \left[T^\lambda_0 \xi (v, r) \right] = \theta_1 \left[\xi_{rr} (v, r) \right] - \theta_1 \left[\xi (v, r) \right]. \]

The CD definition of ST implies that

\[\theta_1 \left[\xi (v, r) \right] = \frac{\omega}{\omega} \xi (0, v) + \frac{\omega}{\omega} \theta_1 \left[\xi_{rr} (v, r) \right] - \frac{\omega}{\omega} \theta_1 \left[\xi (v, r) \right]. \]

By applying the inverse CST on both sides of equation (40), we reach to

\[\xi (v, r) = \theta^{-1}_1 \left[\frac{\omega}{\omega} \xi (0, v) \right] + \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\xi_{rr} (v, r) \right] \right] \]
\[- \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\xi (v, r) \right] \right]. \]

According to the CSTIM, we have

\[\xi (v, r) = \sum_{a=0}^{\infty} \xi_a (v, r), \]
\[\Psi \left[\xi (v, r) \right] = \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\xi_{rr} (v, r) \right] \right] - \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\xi (v, r) \right] \right]. \]

Using equations (42) in (41), it becomes

\[\sum_{a=0}^{\infty} \xi_a (v, r) = \theta^{-1}_1 \left[\frac{\omega}{\omega} \xi (0, v) \right] + \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\sum_{a=0}^{\infty} \xi_a (v, r) \right] \right] \]
\[- \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\sum_{a=0}^{\infty} \xi_a (v, r) \right] \right]. \]

Using the initial value in the above equation, we obtain

\[\sum_{a=0}^{\infty} \xi_a (v, r) = \theta^{-1}_1 \left[\frac{\omega}{\omega} \xi (0, v) + \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\sum_{a=0}^{\infty} \xi_a (v, r) \right] \right] \right] \]
\[- \theta^{-1}_1 \left[\frac{\omega}{\omega} \theta_1 \left[\sum_{a=0}^{\infty} \xi_a (v, r) \right] \right]. \]

By iteration, the following results are obtained from equation (44):

\[\xi_0 (v, r) = e^{-r} + v, \]
\[\xi_1 (v, r) = -\frac{vr}{\lambda}, \]
\[\xi_2 (v, r) = \frac{vr^2}{2\lambda}, \]
\[\xi_3 (v, r) = \frac{vr^3}{6\lambda}, \]
\[\xi_4 (v, r) = \frac{vr^4}{24\lambda}, \]
\[\xi_5 (v, r) = \frac{vr^5}{120\lambda}. \]

Therefore, we have the 5th approximate solution of the problem equations (36) and (37) as follows:

\[\xi^{(5)}(v, r) = e^{-r} + v \left(1 - \frac{r^2}{2\lambda} + \frac{r^3}{3\lambda} - \frac{r^4}{4\lambda} + \frac{r^5}{5\lambda} \right). \]

When \(\lambda = 1 \), equation (46) becomes as

\[\xi^{(5)}(v, r) = e^{-r} + v \left(1 - \frac{r^2}{21} + \frac{r^3}{31} - \frac{r^4}{41} + \frac{r^5}{51} \right). \]

Equation (47) matches with first six terms of \(e^{-r} + vE(-r) \), so the exact solution of equations (36) and (37) equals to \(\xi (v, r) = e^{-r} + vE(-r) \).

Figure 1 depicts the performance of the 5th approximate and exact solutions of equation (36) and (37) for different values of \(\lambda \) when \(\psi = 1 \), in the interval \(r \in [0, 1] \). Undoubtedly, the results in instances of fractional values of \(\lambda \) converge to the results in case of \(\lambda = 1 \). As well, the approximate solutions are consistent with the exact solution at \(\lambda = 1 \) and this confirms the efficiency and exactness of the recommended method.

Figure 2 demonstrates the absolute errors in the interval \(r \in [0, 1] \) over the 5th-approximation and accurate solutions of equations (36) and (37) at \(\lambda = 1 \) when \(\psi = 1 \), attained by means of CSTIM. From the figure, it can be predicted that the approximate solution is very close to the exact solution and this confirms the efficacy of the CSTIM.

Error functions are accessible to perceive the accuracy and applicability of the scheme. To demonstrate the
Consider the following Cauchy reaction-diffusion equation \[\tau \xi(\tau, \xi) = \xi_{\tau\tau}(\tau, \xi) - (1 + 4\nu^4)\xi(\tau, \xi), \quad 0 < \lambda \leq 1, \] subject to the initial condition, \[\xi(\tau, 0) = e^{\nu \xi}. \]

Applying CST on both sides of equation (48), we obtain
\[\Theta_1 \left[T_\tau^1 \xi(\tau, \xi) \right] = \Theta_1 \left[\xi_{\tau\tau}(\tau, \xi) - (1 + 4\nu^4)\xi(\tau, \xi) \right]. \]

By using the linear property of CST, the above equation becomes
\[\Theta_1 \left[T_\tau^1 \xi(\tau, \xi) \right] - \Theta_1 \left[(1 + 4\nu^4)\xi(\tau, \xi) \right] = \Theta_1 \left[\xi_{\tau\tau}(\tau, \xi) \right]. \]

The CD definition of ST implies that
\[\Theta_1 \left[\xi(\tau, \xi) \right] = \frac{\omega}{\partial_\xi} \left[\xi(\tau, 0) + \sum_{n=1}^{\infty} \Theta_1 \left[\xi_{\tau\tau}(\tau, \xi) \right] \right] - \omega \sum_{n=1}^{\infty} \Theta_1 \left[(1 + 4\nu^4)\xi(\tau, \xi) \right]. \]

By applying the inverse CST on both sides of equation (52), we reach to
\[\xi(\tau, \xi) = \frac{\omega}{\partial_\xi} \left[\xi(\tau, 0) + \sum_{n=1}^{\infty} \Theta_1 \left[\xi_{\tau\tau}(\tau, \xi) \right] \right] - \sum_{n=1}^{\infty} \Theta_1 \left[(1 + 4\nu^4)\xi(\tau, \xi) \right]. \]

According to the CSTIM, we have
\[\xi(\tau, \xi) = \sum_{n=0}^{\infty} \xi_n(\tau, \xi), \]

\[\Psi[\xi(\tau, \xi)] = \Theta_1 \left[\frac{\omega}{\partial_\xi} \left[\sum_{n=0}^{\infty} \xi_n(\tau, \xi) \right] \right] - \sum_{n=1}^{\infty} \Theta_1 \left[(1 + 4\nu^4)\sum_{n=0}^{\infty} \xi_n(\tau, \xi) \right]. \]

By using the initial value in the above equation, we obtain
\[\sum_{n=0}^{\infty} \xi_n(\tau, \xi) = e^{-1} \left[\frac{\omega}{\partial_\xi} \left[e^{\nu \xi} \right] \right] + e^{-1} \left[\frac{\omega}{\partial_\xi} \left[D_{\nu \xi} \sum_{n=0}^{\infty} \xi_n(\tau, \xi) \right] \right] \]

\[- e^{-1} \left[\frac{\omega}{\partial_\xi} \left[(1 + 4\nu^4) \sum_{n=0}^{\infty} \xi_n(\tau, \xi) \right] \right]. \]

By iteration, the following results are obtained from equation (56):

\tau	\xi(\tau, 0)
0.08	1.79984471770922 \times 10^{-10}
0.16	1.138977245851435 \times 10^{-8}
0.24	1.28293276668856 \times 10^{-7}
0.32	7.12883521106292 \times 10^{-7}
0.40	0.00000026896486356647
0.48	0.0000794423070488477
\[\xi_0(\nu, \tau) = e^{\nu^2}, \]
\[\xi_1(\nu, \tau) = e^{\nu^2} \frac{\tau^4}{\lambda}, \]
\[\xi_2(\nu, \tau) = e^{\nu^2} \frac{\tau^{21}}{2\lambda^2}, \]
\[\xi_3(\nu, \tau) = e^{\nu^2} \frac{\tau^{31}}{6\lambda^3}, \]
\[\xi_4(\nu, \tau) = e^{\nu^2} \frac{\tau^{41}}{24\lambda^4}, \]
\[\xi_5(\nu, \tau) = e^{\nu^2} \frac{\tau^{51}}{120\lambda^5}. \] (57)

Therefore, we have the 5th approximate solution of the problem equations (48) and (49) as follows:
\[\xi^{(5)}(\nu, \tau) = e^{\nu^2} \left(1 + \frac{\tau^4}{\lambda^2} + \frac{\tau^{21}}{2!\lambda^2} + \frac{\tau^{31}}{3!\lambda^3} + \frac{\tau^{41}}{4!\lambda^4} + \frac{\tau^{51}}{5!\lambda^5} \right). \] (58)

When \(\lambda = 1 \), equation (58) becomes as
\[\xi^{(5)}(\nu, \tau) = e^{\nu^2} \left(1 + \nu^2 + \frac{\nu^4}{2!} + \frac{\nu^6}{3!} + \frac{\nu^8}{4!} + \frac{\nu^{10}}{5!} \right). \] (59)

Equation (59) matches with first six terms of \(e^{\nu^2}E(\nu) \), so the exact solution of equations (48) and (49) equals to \(\xi(\nu, \tau) = e^{\nu^2}E(\nu) \).

Figure 3 depicts the performance of the 5th-approximate and exact solutions of equations (48) and (49) for different values of \(\nu = 1 \), in the interval \(\nu \in [0, 1] \). Definitely, the results in instances of fractional values of \(\lambda \) converge to the results in case of \(\lambda = 1 \). As well, the approximate solutions are consistent with the exact solution at \(\lambda = 1 \), and this once more confirms the efficiency and exactness of the recommended method.

Figure 4 demonstrates the absolute errors in the interval [0, 1] over the 5th-approximation and accurate solutions of equations (48) and (49) at \(\lambda = 1 \) when \(\nu = 1 \), attained by means of CSTIM. From the figure, it can be predicted that the approximate solution is close to the exact one, which confirms the efficacy of the CSTIM.

Table 2 displays the absolute errors at reasonable introduced grid points in the interval [0, 1] amongst the 5th-approximate and exact solutions of equation (48) and (49) at \(\lambda = 1 \) when \(\nu = 0.5 \), attained by means of CSTIM. Table 2 shows that the approximate solution is very near to the exact solution, indicating that the proposed plan is appropriate.

Example 3. Consider the following Cauchy reaction-diffusion equation [36]:
\[T_{\tau^2}^\lambda \xi(\nu, \tau) = \xi_{\nu 0}(\nu, \tau) - \left(4\nu^4 - 2\nu^2 + 2 \right) \xi(\nu, \tau), \quad 0 < \lambda \leq 1, \] (60)

subject to the initial condition,
\[\xi(\nu, 0) = e^{\nu^2}. \] (61)

Applying CST on both sides of equation (60), we obtain
\[\psi_0 \left[T_{\tau^2}^\lambda \xi(\nu, \tau) \right] = \psi_1 \left[\xi_{\nu 0}(\nu, \tau) - \left(4\nu^4 - 2\nu^2 + 2 \right) \xi(\nu, \tau) \right]. \] (62)

By using the linear property of CST, the above equation becomes as
\[\psi_0 \left[T_{\tau^2}^\lambda \xi(\nu, \tau) \right] = \psi_1 \left[\xi_{\nu 0}(\nu, \tau) - \psi_1 \left[\left(4\nu^4 - 2\nu^2 + 2 \right) \xi(\nu, \tau) \right] \right]. \] (63)

The CD definition of ST implies that
\[
\varphi_1 [\xi (v, \tau)] = \frac{\omega}{\varphi} \xi (v, 0) + \frac{\omega}{\varphi} \varphi_1 [\xi_{\nu \nu} (v, \tau)] - \frac{\omega}{\varphi} \varphi_1 \left[(4\nu^4 - 2\nu + 2) \xi (v, \tau) \right].
\]

By applying the inverse CST on both sides of equation (64), we reach to
\[
\xi (v, \tau) = \varphi_1^{-1} \left[\frac{\omega}{\varphi} \xi (v, 0) + \varphi_1^{-1} \left[\frac{\omega}{\varphi} \varphi_1 [\xi_{\nu \nu} (v, \tau)] \right] - \varphi_1^{-1} \left[\frac{\omega}{\varphi} \varphi_1 \left[(4\nu^4 - 2\nu + 2) \xi (v, \tau) \right] \right] \right].
\]

Using equation (66) in (65), it becomes
\[
\sum_{a=0}^{\infty} \xi_a (v, \tau) = \varphi_1^{-1} \left[\frac{\omega}{\varphi} \xi (v, 0) \right] + \varphi_1^{-1} \left[\frac{\omega}{\varphi} \varphi_1 \left[D_{\nu \nu} \sum_{a=0}^{\infty} \xi_a (v, \tau) \right] \right] - \varphi_1^{-1} \left[\frac{\omega}{\varphi} \varphi_1 \left[(4\nu^4 - 2\nu + 2) \sum_{a=0}^{\infty} \xi_a (v, \tau) \right] \right].
\]

By using the initial value in the above equation, we obtain
\[
\sum_{a=0}^{\infty} \xi_a (v, \tau) = \varphi_1^{-1} \left[\frac{\omega}{\varphi} e^\nu \right] + \varphi_1^{-1} \left[\frac{\omega}{\varphi} \varphi_1 \left[D_{\nu \nu} \sum_{a=0}^{\infty} \xi_a (v, \tau) \right] \right] - \varphi_1^{-1} \left[\frac{\omega}{\varphi} \varphi_1 \left[(4\nu^4 - 2\nu + 2) \sum_{a=0}^{\infty} \xi_a (v, \tau) \right] \right].
\]

By iteration, the following results are obtained from equation (68):
\[
\xi_0 (v, \tau) = e^\nu,
\]
\[
\xi_1 (v, \tau) = \frac{e^\nu - 2\nu}{\lambda},
\]
\[
\xi_2 (v, \tau) = \frac{e^\nu - 2\nu}{2\lambda},
\]
\[
\xi_3 (v, \tau) = \frac{e^\nu - 2\nu}{6\lambda},
\]
\[
\xi_4 (v, \tau) = \frac{e^\nu - 2\nu}{24\lambda},
\]
\[
\xi_5 (v, \tau) = \frac{e^\nu - 2\nu}{120\lambda}.
\]

Therefore, we have the 5th approximate solution of the problem equations (60) and (61) as follows:
\[
\xi^{(5)} (v, \tau) = e^\nu \left(1 + \frac{\nu^2}{\lambda^2} + \frac{\nu^4}{2!\lambda^2} + \frac{\nu^6}{3!\lambda^2} + \frac{\nu^8}{4!\lambda^2} + \frac{\nu^{10}}{5!\lambda^2} \right).
\]

When \(\lambda = 1\), equation (70) becomes as
\[
\xi^{(5)} (v, \tau) = e^\nu \left(1 + \nu^2 + \frac{\nu^4}{2!} + \frac{\nu^6}{3!} + \frac{\nu^8}{4!} + \frac{\nu^{10}}{5!} \right).
\]

Equation (71) matches with first six terms of \(e^\nu E (r^2)\), so the exact solution of equations (60) and (61) equals to
\[
\xi (v, \tau) = e^\nu E (r^2).
\]

Figure 5 depicts the performance of the 5th-approximate and exact solutions of equations (60) and (61) for different values of \(\lambda\), when \(\nu = 1\), in the interval \(r \in [0, 1]\). Undoubtedly, the results in instances of fractional values of \(\lambda\) converge to the results in case of \(\lambda = 1\). As well, the approximate solutions are consistent to the exact solution at \(\lambda = 1\), and this once more confirms the efficiency and exactness of the recommended method.

Figure 6 demonstrates the absolute errors in the interval \([0, 1]\) over the 5th-approximation and accurate solutions of equations (60) and (61) at \(\lambda = 1\) when \(\nu = 1\), attained by means of CSTIM. The approximate solution is predicted to be near to the precise solution in the figure, demonstrating that the CSTIM is efficient.

Table 3 displays the absolute errors at reasonable introduced grid points in the interval \([0, 1]\) amongst the 5th-approximate and exact solutions of equations (60) and (61) at \(\lambda = 1\), when \(\nu = 0.5\), attained by means of CSTIM. From Table 3, it can be perceived that the approximate solutions are close to the exact solutions, which confirms the efficacy of the recommended method numerically.

Example 4. In this example, we consider the nonlinear fractional Cauchy reaction-diffusion equation [37]:
\[
T^\nu x (v, r) = \xi_{\nu \nu} (v, r) - \xi (v, r) + \xi (v, r) \xi_{\nu \nu} (v, r) - \xi^2 (v, r) + \xi (v, r), \quad 0 < \lambda \leq 1,
\]
subject to the initial condition,
\[
\xi (v, 0) = e^\nu.
\]

Applying CST on both sides of equation (72), we obtain
\[
\varphi_1 \left[T^\nu x (v, r) \right] = \varphi_1 \left[\xi_{\nu \nu} (v, r) - \xi (v, r) + \xi (v, r) \xi_{\nu \nu} (v, r) - \xi^2 (v, r) + \xi (v, r) \right].
\]

By using the linear property of CST, the above equation becomes as
\[
\xi^{(5)} (v, r) = e^\nu \left(1 + \nu^2 + \frac{\nu^4}{2!} + \frac{\nu^6}{3!} + \frac{\nu^8}{4!} + \frac{\nu^{10}}{5!} \right).
\]
\[\xi (\nu, \tau) = e^{\alpha \nu} + e^{\alpha \nu} \left[\frac{\omega}{\partial \nu} [D_{\nu} \xi (\nu, \tau) - D_{\nu} \xi (\nu, \tau) + \xi (\nu, \tau)] \right] + e^{\alpha \nu} \left[\frac{\omega}{\partial \nu} [\xi (\nu, \tau) \xi_{\nu \nu} (\nu, \tau) - \xi^2 (\nu, \tau)] \right]. \]

(77)

According to the CSTIM, we have

\[\xi (\nu, \tau) = \sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau), \]

\[\Psi [\xi (\nu, \tau)] = e^{\alpha \nu} \left[D_{\nu} \xi (\nu, \tau) - D_{\nu} \xi (\nu, \tau) + \xi (\nu, \tau) \right], \]

\[\mathcal{N} [\xi (\nu, \tau)] = e^{\alpha \nu} \left[\xi (\nu, \tau) \xi_{\nu \nu} (\nu, \tau) - \xi^2 (\nu, \tau) \right]. \]

(78)

Using equations (78) in (77), it becomes

\[\sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau) = e^{\alpha \nu} \left[D_{\nu} \sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau) \right] - D_{\nu} \sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau) + \sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau) \]

\[- e^{\alpha \nu} \left[\sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau) D_{\nu} \sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau) \right] - \sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau) \sum_{\alpha=0}^{\infty} \xi_\alpha (\nu, \tau). \]

(79)

By iteration, the following results are obtained from equation (79):

\[\xi_0 (\nu, \tau) = e^{\nu}, \]

\[\xi_1 (\nu, \tau) = \frac{e^{\nu} r_1}{\lambda}, \]

\[\xi_2 (\nu, \tau) = \frac{e^{\nu} r_2 \lambda}{24 \lambda^3}, \]

\[\xi_3 (\nu, \tau) = \frac{e^{\nu} r_3 \lambda^2}{6 \lambda}, \]

\[\xi_4 (\nu, \tau) = \frac{e^{\nu} r_4 \lambda^3}{24 \lambda^3}, \]

\[\xi_5 (\nu, \tau) = \frac{e^{\nu} r_5 \lambda^4}{120 \lambda^3}. \]

(80)

Therefore, we have the 5th approximate solution of the problem equations (72) and (73) as follows:
the exact solution of equations (72) and (73) equals to

\[\xi(\nu, \tau) = e^{\nu \tau} \left(1 + \frac{\tau^1}{\lambda} + \frac{\tau^2}{2! \lambda^2} + \frac{\tau^3}{3! \lambda^3} + \frac{\tau^4}{4! \lambda^4} + \frac{\tau^5}{5! \lambda^5} \right). \]

When \(\lambda = 1 \), equation (81) becomes as

\[\xi^{(5)}(\nu, \tau) = e^{\nu \tau} \left(1 + \tau + \frac{\tau^2}{2!} + \frac{\tau^3}{3!} + \frac{\tau^4}{4!} + \frac{\tau^5}{5!} \right). \] (82)

Equation (82) matches with first six terms of \(e^{\nu \tau} \), so the exact solution of equations (72) and (73) equals to \(\xi(\nu, \tau) = e^{\nu \tau} \).

Figure 7 depicts the performance of the 5th-approximate and exact solutions of equations (72) and (73) for different values of \(\lambda \), when \(\nu = 1 \), in the interval \(\tau \in [0, 1] \). Undoubtedly, the results in instances of fractional values of \(\lambda \) converge to the results in case of \(\lambda = 1 \). We get the same results from Example 4 as we found in Examples 1, 2, and 3.

Figure 8 demonstrates the absolute errors in the interval [0, 1] over the 5th-approximation and accurate solutions of equations (72) and (73) at \(\lambda = 1 \) when \(\nu = 1 \), attained by means of CSTIM. One can perceive the equivalent verdicts depicted for Examples 1, 2, and 3.

Table 4 displays the absolute errors at reasonable introduced grid points in the interval [0, 1] amongst the 5th-approximate and exact solutions of equations (72) and (73) at \(\lambda = 1 \), when \(\nu = 0.5 \), attained by means of CSTIM. From Table 4, we yield the same outcomes as in Examples 1, 2, and 3.

5. Conclusion

In this study, a novel procedure is designed by a combination of CST and an iterative method. The CSTIM has been effectively applied to obtain approximate and exact solutions for the conformable CRDEs. To assess the effectiveness and reliability of CSTIM for conformable PDEs, the absolute errors of linear and nonlinear problems are studied graphically and numerically, at \(\nu = 1 \) and \(\nu = 0.5 \), respectively, when \(\lambda = 1 \). The interpretation of the 2D plots and tables for different values of \(\lambda \) as well validates that the approximate solution is rapidly convergent to the exact solution. The numerical and graphical consequences confirm that the CSTIM is extremely effective and precise.

The CSTIM distinguishes itself from various other numerical methods in three important aspects. The advantage of this method is that there is no need for any small or large physical parametric assumptions in the problem. Thus, it is applicable to not only weakly but also strongly nonlinear problems, going beyond some of the inherent limitations of the standard perturbation methods. Second, the CSTIM does not need He’s polynomials and Adomian polynomials when solving nonlinear problems. Thus, only a few calculations are required to solve nonlinear fractional-order DEs. As a result, it has a significant advantage over homotopy analysis and Adomian decomposition methods. Finally, unlike the other analytic approximation techniques, the CSTIM can be used to construct expansion solutions for linear and nonlinear fractional-order DEs without perturbation, linearization, or discretization. Therefore, we concluded that the recommended procedure is quick, precise, and easy to implement and yields outstanding results. Consequently, we can further apply this procedure to solve more linear and nonlinear fractional-order DEs.

Data Availability

No data were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
Authors’ Contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Acknowledgments

Also, the first and third authors would like to thank Azarbaijan Shahid Madani University.

References

[1] K. Maleknejad, J. Rashidinia, and T. Eftekhar, "Numerical solutions of distributed order fractional differential equations in the time domain using the muntz-legendre wavelets approach," Numerical Methods for Partial Differential Equations, vol. 37, no. 1, pp. 707–731, 2021.

[2] K. S. Nisar, S. Ahmad, A. Ullah, K. Shah, H. Alrabaiah, and S. Alquran, "Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data," Results in Physics, vol. 21, Article ID 103772, 2021.

[3] Z. Korpinar, M. Inc, E. Hincal, and D. Baleanu, "Residual power series algorithm for fractional cancer tumor models," Alexandria Engineering Journal, vol. 59, no. 3, pp. 1405–1412, 2020.

[4] G. M. Ismail, H. R. Abdallah, H. Ahmad, and Y. M. Chu, "Fractional residual power series method for the analytical and approximate studies of fractional physical phenomena," Open Physics, vol. 18, no. 1, pp. 799–805, 2020.

[5] S. Rezapour, S. Etemad, and H. Mohammadi, "A mathematical analysis of a system of caputo-fabrizio fractional differential equations for the anthrax disease model in animals," Advances in Difference Equations, no. 1, p. 481, 2020.

[6] H. Mohammadi, S. Kumar, S. Rezapour, and S. Etemad, "A theoretical study of the caputo-Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control," Chaos, Solitons & Fractals, vol. 144, Article ID 110668, 2021.

[7] H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, and T. Sitihiwarthatham, "A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractal model via the Adams-Bashforth scheme and Newton polynomials," Mathematics, vol. 10, no. 9, p. 1366, 2022.

[8] A. D. Obembe, H. Y. Al-Yousef, M. E. Hossain, and S. A. Abu-Khamisn, "Fractional derivatives and their applications in reservoir engineering problems: a review," Journal of Petroleum Science and Engineering, vol. 157, pp. 312–327, 2017.

[9] O. Ozkan and A. Kurt, "The analytical solutions for conformable integral equations and integro-differential equations by conformable laplace transform," Optical and Quantum Electronics, vol. 50, no. 2, p. 81, 2018.

[10] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, "A new definition of fractional derivative," Journal of Computational and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[11] T. Abdeljawad, "On conformable fractional calculus," Journal of Computational and Applied Mathematics, vol. 279, pp. 57–66, 2015.

[12] A. Korkmaz, "Exact solutions to (3 + 1) conformable time fractional jimbo-miwa, zakharov-kuznetsov and modified zakharov-kuznetsov equations," Communications in Theoretical Physics, vol. 67, no. 5, pp. 479–482, 2017.

[13] E. Tala-Tebue, A. Korkmaz, H. Rezazadeh, and N. Raza, "New auxiliary equation approach to derive solutions of fractional resonant schrodinger equation," Analysis and Mathematical Physics, vol. 11, no. 4, p. 167, 2021.

[14] T. D. Leta, W. Liu, H. Rezazadeh, J. Ding, and A. El Achab, "Analytical traveling wave and soliton solutions of the (2 + 1) dimensional generalized burgers-huxley equation," Qualitative Theory of Dynamical Systems, vol. 20, p. 90, 2021.

[15] M. Inc, M. Miah, A. Chowdhury et al., "New exact solutions for the kaup-kupershmidt equation," AIMS Mathematics, vol. 5, no. 6, pp. 6726–6738, 2020.

[16] M. Radulescu and S. Radulescu, "Global inversion theorems and applications to differential equations," Nonlinear Analysis: Theory, Methods & Applications, vol. 4, no. 5, pp. 951–965, 1980.

[17] A. Khan, M. I. Liahqat, M. Yousuf, and A. Alam, "Approximate and exact solutions to fractional order cauchy reaction-diffusion equations by new combine techniques," Journal of Mathematics, vol. 202112 pages, Article ID 5337255, 2021.

[18] H. Hosseinzadeh, H. Jafari, and M. Roohani, "Application of laplace decomposition method for solving klein-gordon equation," World Applied Sciences Journal, vol. 8, no. 7, pp. 809–813, 2010.

[19] A. Khalouta and A. Kadem, "Fractional natural decomposition method for solving a certain class of nonlinear time-fractional wave-like equations with variable coefficients," Acta Universitatis Sapientiae, Mathematica, vol. 11, no. 1, pp. 99–116, 2019.

[20] A. Harir, S. Melliani, H. El Harfi, and L. S. Chadli, "Variational iteration method and differential transformation method for solving the SEIR epidemic model," International Journal of Differential Equations, 2020, Article ID 3521936, 7 pages, 2020.

[21] A. Saadatmandi and M. Dehghan, "A new operational matrix for solving fractional-order differential equations," Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1326–1336, 2010.

[22] V. G. Gupta and S. Gupta, "Application of homotopy analysis method for solving nonlinear cauchy problem," Surveys in Mathematics and its Applications, vol. 7, no. 1, pp. 105–116, 2012.

[23] H. Eltayeb and F. Abdelhameid, "Sumudu decomposition method for solving fractional delay differential equations," vol. 1, Article ID 101268, 13 pages, 2017.

[24] M. S. Hashemi, H. Rezazadeh, H. Almusawa, and H. Ahmad, "A Lie group integrator to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet," AIMS Mathematics, vol. 6, no. 12, pp. 13392–13406, 2021.

[25] F. Xu, Y. Gao, X. Yang, and H. Zhang, "Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method," Mathematical Problems in Engineering, pp. 1–15, Article ID 5492535, 2016.

[26] S. Kumar, A. Kumar, S. Abbas, M. Al Qurashi, and D. Baleanu, "A modified analytical approach with existence and uniqueness for fractional cauchy reaction-diffusion equations," Advances in Difference Equations, no. 1, p. 28, 2020.

[27] K. Hosseini, M. Ilie, M. Mirzazadeh, and D. Baleanu, "An analytic study on the approximate solution of a nonlinear time-fractional cauchy reaction-diffusion equation with the mittag-leffler law," Mathematical Methods in the Applied Sciences, vol. 44, no. 8, pp. 6247–6258, 2021.

[28] M. Dehghan and F. Shakeri, "Application of He’s variational iteration method for solving the Cauchy reaction-diffusion problem," Journal of Computational and Applied Mathematics, vol. 214, no. 2, pp. 435–446, 2008.
[29] V. Daftardar-Gejji and H. Jafari, “An iterative method for solving nonlinear functional equations,” *Journal of Mathematical Analysis and Applications*, vol. 316, no. 2, pp. 753–763, 2006.

[30] R. Khalil and H. Abu-Shaab, “Solution of some conformable fractional differential equations,” *International Journal of Pure and Applied Mathematics*, vol. 103, no. 4, pp. 667–673, 2015.

[31] A. Khalouta and A. Kadem, “A comparative study of Shehu variational iteration method and Shehu decomposition method for solving nonlinear Caputo time-fractional wave-like equations with variable coefficients,” *Applications and Applied Mathematics: International Journal*, vol. 15, no. 1, pp. 430–445, 2020.

[32] M. E. Benattia and K. Belghaba, “Shehu conformable fractional transform theories and applications,” *Cankaya University Journal of Science and Engineering*, vol. 18, no. 1, pp. 24–32, 2021.

[33] M. S. Abdo, K. Shah, H. A. Wahash, and S. K. Panchal, “On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative,” *Chaos, Solitons & Fractals*, vol. 135, Article ID 109867, 2020.

[34] E. Unal and A. Gokdogan, “Solution of conformable fractional ordinary differential equations via differential transform method,” *Optik*, vol. 128, pp. 264–273, 2017.

[35] S. S. Nourazar and A. Nazari-Golshan, “A new modification to homotopy perturbation method combined with Fourier transform for solving nonlinear Cauchy reaction diffusion equation,” *Indian Journal of Physics*, vol. 89, no. 1, pp. 61–71, 2015.

[36] A. C. Loyinmi and T. K. Akinfe, “Exact solutions to the family of Fisher’s reaction-diffusion equation using Elzaki homotopy transformation perturbation method,” *Engineering Reports*, vol. 2, no. 2, Article ID e12084, 2020.

[37] S. Nourazar, A. Nazari-Golshan, A. Yildirim, and M. Nourazar, “On the hybrid of Fourier transform and Adomian decomposition method for the solution of nonlinear Cauchy problems of the reaction-diffusion equation,” *Zeitschrift fur Naturforschung A*, vol. 67, no. 6-7, pp. 355–362, 2012.