Sol narae (Sona) is a *Drosophila* ADAMTS involved in Wg signaling

Go-Woon Kim*,†, Jong-Hoon Won*, Ok-Kyung Lee, Sang-Soo Lee, Jeong-Hoon Han, Orkhon Tsogtbaatar, Sujin Nam, Yeon Kim & Kyung-Ok Cho

ADAMTS (a disintegrin and metalloproteases with thrombospondin motif) family consists of secreted proteases, and is shown to cleave extracellular matrix proteins. Their malfunctions result in cancers and disorders in connective tissues. We report here that a *Drosophila* ADAMTS named Sol narae (Sona) promotes Wnt/Wingless (Wg) signaling. *sona* loss-of-function mutants are lethal and rare escapers had malformed appendages, indicating that *sona* is essential for fly development and survival. *sona* exhibited positive genetic interaction with *wntless* (*wls*) that encodes a cargo protein for Wg. Loss of *sona* decreased the level of extracellular Wg, and also reduced the expression level of Wg effector proteins such as Senseless (Sens), Distalless (Dll) and Vestigial (Vg). Son and Wg colocalized in Golgi and endosomal vesicles, and were in the same protein complex. Furthermore, co-expression of Wg and Sona generated ectopic wing margin bristles. This study suggests that Sona is involved in Wg signaling by regulating the level of extracellular Wg.

Proteases were originally started out as simple destructive enzymes in order to digest proteins and to provide amino acids to ancient organisms, but many proteases evolved in later times are specialized to change activity, localization, and binding properties of proteins and thereby affect many cellular functions. More than four hundred thousand proteases in all organisms can be classified into 9 categories and numerous subfamilies. Among these proteases, ADAMTS family as a subclass of ADAM (a disintegrin and metalloproteases) family constitutes a group of zinc-dependent secreted proteases widely expanded during metazoan evolution, including 6 members in flies, 5 members in nematodes, and 19 members in mammals. These ADAMTSs are involved in many biological actions by processing mostly ECM and some non-ECM substrates. For example, ADAMTS-1 cleaves versican and aggrecan, and plays a key role in the ovulation process. ADAMTS-2, 3, and 14 cleave procollagen 1-6-8, and mutations in ADAMTS-2 cause Ehlers-Danlos syndrome, a connective tissue disorder. ADAMTS-7 and 12 are significantly upregulated in arthritic patients. Besides ECM proteins, ADAMTS-13 cleaves von Willebrand factor (vWF) in blood, and mutations in ADAMTS-13 result in thrombotic thrombocytopenic purpura (TTP). In addition, ADAMTSs either enhance or inhibit cancer development. The level of ADAMTS-7 is upregulated in carcinoma and ADAMTS-1 promotes tumor development through the induction of stromal reaction. In contrast, ADAMTS-9 suppresses the formation of carcinoma by inhibiting angiogenesis, and stable expression of ADAMTS-16 decreases proliferation of cancer cells. Loss of ADAMTS-12 in mammals also increased tumor growth and progression.

ADAMTS is synthesized as a zymogen and has a relatively long prodomain. The physical interaction between the prodomain and the metalloprotease domain is essential for the latency of enzyme activity. Removal of prodomain in most ADAMTSs is mediated by furin, a proprotein convertase, in the secretory pathway. However, prodomains of ADAMTS-9, -10, and -15 are processed by furin in ECM. In case of MIG-17 that is involved in male gonadal formation in *C. elegans*, the prodomain is cleaved autocatalytically. Thus, the activation mechanism of ADAMTS family appears to be diverse and may be tightly controlled in order to ensure the generation of active forms at the right time and place.

We report here that an ADAMTS encoded by the CG9850 gene in *Drosophila melanogaster* is capable of promoting Wnt/Wg signaling. Wnt family proteins are conserved morphogens for growth, development and adult homeostasis in all metazoans. *CG9850* was named *sol narae* (*sona*) meaning ‘small wing’ in Korean, based on the small wing phenotype of mutant escapers. Fly Wg, a homolog of mammalian Wnt-1, is a prototype of Wnt family proteins essential for the development of all fly appendages, and the wing imaginal disc has been an

Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu Daejeon, Korea. †Present address: Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to K.-O.C. (email: kocho@kaist.ac.kr)
excellent system to study Wg signaling. Wg is known to be secreted from Wg-producing cells at the dorsal-ventral (DV) midline in the wing pouch and forms a concentration gradient in extracellular matrix (ECM). Wg binding to Frizzled receptors on the plasma membrane of Wg-responding cells activates Wg signaling cascade, and Wg effector proteins including Sens, Dll and Vg are expressed in different regions of wing pouch29–31.

In this study, we focused on answering the following questions. Where and when is sona transcribed and translated? Where is the active form of Sona present? Which gene shows genetic interaction with sona? What are the in vivo roles of sona? We report here that sona exhibits a positive genetic interaction with wntless (wls) whose function is essential for secretion of Wg, and sona is positively involved in Wg signaling. Based on data provided in this report, we propose that Sona may modify proteins involved in Wg signaling.

Results
Sona is an essential ADAMTS. Drosophila has six ADAMTSs: Stall, Papilin, CG4096, CG6232, ADAMTS-A and CG9850 (Sona)32–35. Sona described in this study is Sona-PA, one of five Sona isoforms described in Flybase. Sona-PA protein shows ~45% similarity to mammalian ADAMTSs, and is composed of four domains: prodomain, protease domain, disintegrin-like domain and cysteine-rich domain. Members of ADAMTS family differ in the number of thrombospondin (TS) motifs, and some have unique carboxyl terminal domains. Sona is most similar to Caenorhabditis elegans MIG-17 involved in male gonadal formation25 (Fig. 1a; Supplementary Fig. S1), and Bombyx mori BmADAMTS-like that is induced in wing discs during pupal ecdysis36.

The sona gene is present in the 59F7-60A1 region at the tip of right arm in the second chromosome. P{GawB} CG9850[NP5284] flies used as a ‘sona-Gal4’ line in this study has a P element in an intron of the sona gene and was homozygous viable (Fig. 1b). However, homozygous larvae of P{GawB}CG9850 were occasionally lethal and much larger with extended larval stage at a low frequency (<1%). These larvae had tumorous imaginal discs as seen in lethal giant larvae (lgl) or discs large (dlg) mutants. To test if some P{GawB}CG9850 flies had lgl or dlg mutation, they were crossed with dlgm30, dlgm52, and lgl4 mutants for complementation test. Cross between P{GawB} flies and lgl4 but not dlg yielded giant larvae, indicating that minor fraction of P{GawB} flies had lgl mutation. To remove lgl and any other potential mutations, P{GawB} was crossed with w1118 flies for four generations. The cleaned P{GawB} line was homozygous viable without lgl phenotype. This line was crossed to Δ2–3 for P element excision, and about 200 white-eyed flies were obtained. These white-eyed flies were crossed with deficiencies (Df(2R)X32, Df(2R)23, Df(2R)3-659) that uncover all or part of the genomic region containing the sona gene. Nine lines that failed complement these deficiencies were identified (Fig. 1b).

The regions deleted in the nine lines were identified by both RT-PCR and genomic PCR. All lines except sona had deletion in the exons of the sona gene, and sona had a point mutation that changed Trp344 to stop codon.

Figure 1. Domain structure of Sona and generation of sona mutants. (a) Domain structures of mammalian ADAMTS16, C. elegans MIG-17 and Drosophila Sona. The regions used to generate RNAi lines and those used to generate Sona-Pro antibody and Sona-C antibody were marked with black lines. (b) Three deficiency lines were shown with the genomic map of the region including the sona gene. The dashed lines represent the deleted regions in the deficiencies, and the sona gene is drawn as a pointed blue bar. Red asterisk indicates a mutation site of premature truncation in sona mutant, which was not produced by P element excision but by spontaneous mutation. The left and right arrows mark the region deleted in sona mutants by P element excision.
Figure 2. **Sona is essential for the development of fly appendages.** These phenotypes were observed from escapers of *sona*Δ1, *sona*Δ3, and *sona*Δ4 as well as transheterozygotes. (a,b) Arita in *w*1118 as a wild-type (wt) control (a), and missing and malformed branches of arista in *sona*Δ1 escapers are marked with arrow and arrowhead, respectively (b). (c,d) Disrupted ommatidial bristles in *sona* (d) compared to control (c). (e,f) Kinked femur of *sona* (arrowhead in f) compared to control (e). (g,h) Wings of *sona*Δ1 (h) are smaller than those of *sona* heterozygotes (g). (i,j) Missing bristles at the anterior wing margin of *sona*Δ2 (j) compared to the heterozygous wing (i). (k–n) Wing size becomes smaller by expression of *sona* RNAi-1 (l,m) and *sona*RNAi-2 (n) by *nub*-Gal4. Wings become crumpled in severe cases (m). (o–q) Wings become smaller by expression of *sona* RNAi-1 (p) and *sona*RNAi-2 (q) by *en*-Gal4. (r) Quantitative analysis of the wing size (*n* = 10 each) shown in (g,h). Genotypes are indicated at lower left.

and incomplete excision of the P element. On the contrary, ten other white-eyed lines that were complemented by the deficiency lines did not have deletion in the *sona* coding region. We further cleaned up *sona* deletion mutants by crossing them with *w*1118 for four generations in order to remove any unwanted mutations that might have been generated during the process of imprecise excision of the P element.

Sona is essential for survival and development of flies. All *sona* mutants exhibited lethality throughout larval and pupal stages. Three *sona* mutants, *sona*Δ1, *sona*Δ3, and *sona*Δ4, were chosen for further analysis. Rare escapers from these *sona* mutants could reach adulthood at a very low frequency (<1%), and exhibited various developmental defects. The percentage of escapers and their morphological defects were overall similar in the *sona* mutants. Branches in their arista were partially missing or malformed (Fig. 2a,b), and the interommatidial bristles were disoriented in dorsal eye (*n* = 31; Fig. 2c,d; Supplementary Fig. S2). 40% of the legs had kinks in the femur (*n* = 36; Fig. 2e,f), and loss of tarsal claw was occasionally observed (not shown). Their wings were crumpled and ~25% smaller than *sona* heterozygous wings (*n* = 26; Fig. 2g,h,r). Their wing margin bristles were missing in 80% of wings with average 2.7 anterior bristles (*n* = 26) (Fig. 2i,j).

We also generated two *UAS-sona* RNAi lines by using two different regions of the *sona* cDNA (Fig. 1a; Supplementary Fig. S1). Expression of these two lines by various *Gal4* lines induced similar phenotypes such as lethality and malformation of appendages (Supplementary Table S1). Thus, the *sona* RNAi phenotypes were due to the loss of *sona* function but not off-target effects. For instance, expression of *sona* RNAi-1Δ1–4 (sona RNAi-1 hereafter) driven by *nubbin* (*nub*)-Gal4 at 18 °C and 25 °C resulted in small and crumpled wings, and similar wing phenotype was induced by expression of *sona* RNAi-2Δ2–4 (sona RNAi-2 hereafter) at 29 °C (Fig. 2k–n). When *sona* RNAi-1 and *sona* RNAi-2 were driven by *en* (en)-Gal4 at 18 °C and 25 °C, respectively, rarely obtained adults had smaller wings (Fig. 2o–q). In summary, *sona* RNAi-1 induced stronger phenotype than *sona* RNAi-2, and *Gal4* lines that drive expression of *sona* RNAi during embryonic stages induced lethality while those during later stages of development induced loss or malformation of appendages (Supplementary Table S1).

The lethality of *sona* mutants can be rescued by overexpression of Sona. Similar to the phenotypes induced by *sona* RNAi expression, overexpression of Sona resulted in lethality or defects in appendages (Supplementary Table S1). This indicated that protease activity of Sona must be tightly regulated for proper development and survival. To test whether the protease activity of Sona is essential for its role *in vivo*, we generated
analyses to examine the expression pattern of sona first step toward understanding the role of Sona during development, we carried out both Northern and Western

transcripts in the same stage. 70 kDa Sona protein was most abundant in the late 3rd instar larval stage (arrow in Fig. 3b). For instance, the level of sona was highly increased in the late third instar stage, which was corresponding to the increased level of sona that multiple forms of Sona are dynamically expressed during development (Fig. 3b). For instance, the level of Sona was highly increased in the late third instar stage, which was corresponding to the increased level of sona transcripts in the same stage. 70 kDa Sona protein was most abundant in the late 3rd instar larval stage (arrow in Fig. 3b), implying that 70 kDa band is most likely the Sona-PA form (Fig. 3a).

To test whether multiple bands in the Western blot were authentic Sona proteins, UAS-sona RNAi-1 and UAS-sona RNAi-2 were crossed with actin-Gal4, cultured at 18 °C to the third instar stage, shifted to 29 °C for 24 hours, and the larval extracts were prepared. No protein bands were identified with Sona-Pro antibody in the larval extracts. Thus, the bands in the control extract are either different isoforms or processed forms that contain all or some portion of the prodomain (Fig. 3c). Furthermore, full-length Sona was absent in homozygous sona13, sona18 and sona47 larvae (Supplementary Fig. S4). The sona18 extract had a smaller fragment that may be the truncated Sona protein. Sona-C antibody was not suitable for Western analysis.

Active Sona form is present in both intra- and extra-cellular regions. Because ADAMTSs are secreted proteases, we examined if active form of Sona is secreted. An S2 cell line that constitutively expresses sona cDNA was established (Materials and Methods) and used for protein expression and analysis (CX) for Western analysis. Sona-Pro antibody detected both full-length 70 kDa Sona and smaller fragments in CX but only 22 kDa prodomain-containing fragments in CM, indicating that the full-length Sona is not secreted (Fig. 3d). To detect the active form of Sona, we constructed a sona cDNA tagged with HA in front of the stop codon and established S2 sonsa-HA cell line. Both CX and CM from the culture of this cell line were analyzed with anti-HA antibody (Fig. 3e). The 37 kDa form was detected in both fractions as an active form devoid of the prodomain. This demonstrated that active Sona is present in both intracellular and extracellular regions.

Sona is expressed in discrete regions and can diffuse far from the expressed site in imaginal discs. We checked expression pattern of sona transcripts in imaginal discs by in situ hybridization and the pattern of GFP driven by sona-Gal4. In the eye-antenna disc of sona > GFP, GFP was expressed at a high level in dorsal peripodial epithelium (arrow in Fig. 4b) and in photoreceptor clusters (Supplementary Fig. S5a–d). In the leg disc, GFP was expressed in the presumptive region of claw, tibia, and femur (arrow and arrowheads in Fig. 4e). In the pouch of wing discs, sona was expressed in a complicated mosaic pattern (Fig. 4h). Although the expression pattern of sona transcripts was not at high resolution, it was in accordance with the pattern of sona > GFP (arrows and arrowheads in Fig. 4a,d,g).

We then examined the expression pattern of Sona protein in imaginal discs with both Sona-Pro and Sona-C antibodies that had been tested for their specificity (Supplementary Figs S5 and S6). Sona was more or less evenly distributed except some regions with a higher level of Sona (Fig. 4c,i). At higher magnification, Sona was highly enriched in the apical region of photoreceptor clusters (Supplementary Fig. S5a–d) and in the disc proper of wing discs, and was present at a negligible level in sona mutants (Supplementary Fig. S5e–i).

Because Sona protein was ubiquitously present in entire discs in contrast to the localized pattern of sona transcripts, we thought that Sona may be efficiently diffused from the expressed site. To check how far Sona can diffuse, we generated UAS-sona-HA and UAS-sona-HA-mCherry (hereafter ‘UAS-sona-mCherry’) flies using sona cDNA tagged with HA or HA-mCherry in the stop codon. These UAS lines driven by various Gal4 lines could induce lethality and structural defects, indicating that the tags did not compromise the protease activity of Sona (Supplementary Fig. S7). We generated clones expressing Sona-mCherry by the flp-out method and detected both intra- and extra-Sona-mCherry proteins far from the GFP+ Sona-mCherry+ clone (Fig. 4k). The cross-section view of the same clone also showed the diffusion of Sona-mCherry proteins away from the clone (Fig. 4l). mCherry signals were genuine because no signal was detected in and around a control GFP+ clone at the same level of laser intensity (Fig. 4j). We proved that the mCherry signal is not from the mCherry tag cleaved off from Sona by Western analysis, in which Anti-HA antibody recognized full-length and active form of Sona-HA and Sona-HA-mCherry in
CX and CM, respectively, but not any other smaller bands (Supplementary Fig. S8). Thus, our data demonstrated that Sona can diffuse far from the source. How Sona can diffuse and which form of Sona can diffuse need further studies.

Figure 3. Transcriptional and translational expressions of Sona during development and active form of Sona in S2 cell culture. (a) Expression of sona transcripts during development detected with the probe representing 732th to 1920th nucleotides of the sona-RA cDNA. sona-RA transcript is marked with an arrow. E1, AEL (After egg laying) 0~12 hr; E2, AEL 12~24 hr; L1,2, first and second instar larvae; L3, late third instar larvae; P1, early pupae; P2, mid pupae; P3, late pupae; AB, adult body; AH, adult head. (b) Expression of Sona protein during development. E1, AEL 0.5~11 hr; E2, AEL 16~24 hr; L1, first instar larvae; L3, late third instar larvae; P, late pupae; AM, adult male; AF, adult female. The arrow indicates the full-length Sona-PA form. (c) The cellular extract was obtained from the late 3rd instar larvae raised at 18 °C and then at 29 °C for 24 hrs until dissection. C is actin-Gal4 (act) > Gal80ts, (1) is act > sona RNAi-1; Gal80ts, and 2 is act > sona RNAi-2; Gal80ts. (d,e) Sona proteins in the cellular extract (CX) or conditioned media (CM) of sona (d) or sona-HA (e) S2 cells. Red arrows and black arrows mark full-length Sona and activated Sona, respectively. Asterisk marks the 22 kDa prodomain fragments. Arrowheads indicate intracellular fragments of Sona.
Carboxyl region and prodomain of Sona are not colocalized in ECM. To confirm that the active form but not the full-length Sona are secreted in vivo, Canton S (CS) wing discs were stained to visualize extracellular Sona with Sona-Pro and -C antibodies, as described previously (see Materials and Methods). Both antibodies recognized extracellular Sona in the presumptive region of wing blade in the same region as lip-shaped but not in the DV midline region on the basal side of the disc proper (Fig. 5a). To prove that the pattern of extracellular Sona is authentic but not due to non-specific binding of Sona antibodies to ECM, Viking-GFP, Collagen IV protein fused to GFP commonly used as an ECM marker, was also examined at the same confocal level. At a glance, extracellular Viking-GFP was more evenly distributed than extracellular Sona-Pro, which was confirmed by the image at higher magnification (Supplementary Fig. S9).

A cross-section view of a wing disc also showed that extracellular Sona is present in the basal ECM of both disc proper and peripodial epithelium (Fig. 5c,d). However, there were clear differences between the structures recognized by the two Sona antibodies. The Sona-C antibody recognized some particulate structures that were not recognizable by the Sona-Pro antibody (Fig. 5e). These particulate structures may have active Sona that is devoid of the prodomain. In contrast, Sona-Pro antibody recognized a bunch of string-like structures (Fig. 5e'). Similar pattern was also observed in nub > sona-HA wing discs visualized with both Sona-Pro and HA antibodies (Fig. 5f). A magnified image revealed that a Sona form recognized by only anti-HA antibody, probably an active Sona, was localized in ECM as a separate identity (Fig. 5g).

Loss of sona decreases the level of extracellular Wg. To understand the in vivo role of sona, we carried out a genetic screen with ethyl methanesulfonate (EMS) as a mutagen to obtain suppressors that could overcome the lethality by Sona overexpression. One of suppressors turned out to have a mutation in the wls gene. This study will be addressed in detail elsewhere (J.-H. W. and K.-O. C., manuscript in preparation). Wls is a transmembrane protein that is required for the secretion of Wnt/Wg and interacts with retromer complex for cycling from Golgi to the plasma membrane. Consistent with the positive genetic interaction between sona and wls, dpp > wls RNAi flies had notched wing phenotype (n > 50 each), but dpp > wls RNAi sona flies had no notching...
Figure 5. Active Sona is present in ECM. (a) Extracellular patterns of Sona in the basal ECM of disc proper. Sona-Pro and -C antibodies detected overlapping structures. The region marked with a square was magnified in (e). (b) Extracellular patterns detected by Sona-Pro antibody in Collagen IV GFP-trap line, viking^{G454} (Vkg-GFP/CY0). GFP signal (green) was detected as representing both intracellular and extracellular Viking-GFP. To detect only the extracellular Viking-GFP, rabbit anti-GFP antibody and Cy5-conjugated secondary antibody were used with extracellular staining method in (b”). (c) A diagram of peripodial epithelium (PE) and disc proper (DP) layer of a wing disc. (d) A cross-section image of a wing disc with the extracellular pattern shown with Sona-Pro antibody. Intracellular Dlg that is enriched at the septate junction was counterstained to show the structure of the wing disc. (e) The magnified image of the marked region in (a), showing the difference in the pattern recognized by Sona-Pro and Sona-C antibodies. (fg) Extracellular patterns of HA-tagged Sona and Sona prodomain visualized with HA and Sona-Pro antibody in a nub > sono-HA disc. The region marked with a square in (f) was magnified in (g). Scale bars: (a,d) 100 μm; (e) 18.8 μm; (f) 40 μm; (g) 6.5 μm.

(n = 20) at 18 °C (Fig. 6a–d). dpp > wls RNAi sonoE475A flies had notched wings, demonstrating that protease activity of Sona is essential to suppress the wls RNAi phenotype. The penetrance was 100% in all cases.

The result above prompted us to examine whether secretion of Wg is compromised in the clones expressing sono RNAi-1. Because loss of sono causes cell death (O. T. and K.-O. C., manuscript in preparation), the flp-out clones that coexpressed sono RNAi and caspase inhibitor p35 were generated. The level of intracellular Wg was increased in some clones compared to that of control clones (Fig. 6e,f). Not all clones showed the same phenotype, which suggests that only certain cells express Sona and need the function of Sona. This idea is consistent with the mosaic expression pattern of sono > GFP in wing pouch (Fig. 4h). When sono RNAi-1 was expressed by the apterous (ap)-Gal4 driver in the dorsal wing pouch, the level of intracellular Wg was also increased in the dorsal region regardless of coexpression with p35 (Supplementary Fig. S10). On the contrary, the level of extracellular Wg was overall decreased in the dorsal region regardless of coexpression with p35 (Supplementary Fig. S11). When the sono RNAi-2 was expressed by cubitus interruptus (ci)-Gal4 in the anterior region of the wing disc, the extracellular level of Wg was lower in the anterior region than the posterior region (Fig. 6g, Supplementary Fig. S11). We also generated sono^{ci} clones by the FLP-FRT method, and some of them exhibited the decreased level of extracellular Wg (Fig. 6k). Taken together, loss of sono increased the level of intracellular Wg but decreased that of extracellular Wg.

Sona and Wg colocalize in Golgi and endosomal vesicles. Because both Sona and Wg are secreted proteins, and loss of sono decreased the level of extracellular Wg, we examined whether intracellular Sona and Wg are colocalized in S2 cells and wing discs. Both Wg and Sona-mCherry were enriched in the apical region of the wg > sono-mCherry wing disc (Supplementary Fig. S12), and about 60% (46/75, n = 4) of Sona-mCherry+ vesicles contained Wg and vice versa (Fig. 7a). Vesicles containing both Wg and Sona were also observed in S2 cells cotransfected with GFP-wg and sono-mCherry cDNAs (Fig. 7b). To address the nature of the vesicles containing both Wg and Sona, we checked whether Sona+ vesicles corresponded to Golgi vesicles in both wing discs and S2 cells. We found that some Sona+ vesicles are visualized with a Golgi marker P120^{G51,52} in S2 cells (Fig. 7c).

Vesicles containing both Rab5-YFP and Sona-mCherry were frequently observed inside of S2 cells (Fig. 7d). About 30% (16/53) of Sona+ vesicles in the DV boundary region also contained Rab5-YFP in wg > rab5-YFP wing discs (Fig. 7e). Furthermore, Rab5-YFP+ Sona+ vesicles also contained Wg (Fig. 7e”). Rab5, a small GTPase that regulates endocytic vesicle formation and early endosome fusion, is known to significantly co-localize with Wg and is involved in activation of Wg signaling^{37}. Co-immunoprecipitation analysis showed that Sona and Wg are
present in the same protein complex (Fig. 7f,g). Taken together, Sona and Wg may be secreted together in the same secretory pathway.

Figure 6. Loss of Sona increases the level of intracellular but decreases extracellular Wg. (a–d) Notched wing phenotype of dpp > wls RNAi flies (a) was rescued by expression of sona (c) but not sonaE475 protease mutant form (d). dpp > sona wings had no phenotype (b). (e,f) Intracellular Wg in sona RNAi clones. hs-Flip, P[Actin > yellow > Gal4; w+]/+/; UAS-p35, UAS-GFP/+ wing disc as a control (e). sona RNAi-1 clones in hs-Flip, P[Actin > yellow > Gal4; w+]/+; UAS-p35, UAS-sona RNAi-1/+ (f). Arrows indicate the sona RNAi-1 clones with the increased level of intracellular Wg (f'). (g–i) Changes in the level of extracellular Wg by sona RNAi expression. UAS-p35, UAS-GFP/apterous (ap)-Gal4; +/TM6 Tb as a control (g), UAS-p35, UAS-GFP/ap-Gal4; UAS-sona RNAi/+ (h), and UAS-GFP/ap-Gal4; UAS-sona RNAi/+ (i). (j) Decrease in the extracellular level of Wg in the anterior region of ci > sona RNAi-2 discs. The control is shown in Supplementary Fig. S11. (k) Decrease in the level of extracellular Wg in sona clones near the DV boundary. Scale bar: (e,f) 40 μm; (g–j) 60 μm; (k) 9.5 μm.
Sona positively regulates Wg signaling. To further test whether Sona is required for Wg signaling, we checked the effect of *sona RNAi-1* on the expression of Sens, Dll and Vg in wing discs. P35 was coexpressed to prevent cell death by *sona cDNA* expression. Expression level of Sens was reduced in 80% (*n* = 9), and those of Dll (*n* = 46) and Vg (*n* = 25) were reduced in 100% of discs expressing *sona RNAi-1* (Fig. 8b,d,f), compared to the control discs (*n* > 10 for each) (Fig. 8a,c,e). Same results were obtained with *sona RNAi-2* driven by *ci-Gal4* (Supplementary Fig. S13). The expression level of Wg-LacZ was not decreased upon *sona RNAi* expression (Supplementary Fig. S14). Hence, Sona positively regulates Wg signaling by post-transcriptional regulation.

We then examined adult wings whether Sona can enhance Wg signaling. Since prolonged overexpression of either Sona or Wg caused lethality and developmental defects, we used Gal80*ts* system to transiently express...
GFP-Wg and Sona54. Transient expression of either GFP-wg or sona with nub-Gal4 during the late third larval and early pupal stage for 18 hours had no effect on the number of anterior bristles in adult wings or on lethality (n > 40 each; Fig. 8g,h). However, coexpression of GFP-wg and sona in the same culture condition caused lethality in about 85% of animals, and the survivors had multiple ectopic bristles near the anterior wing margin (n > 50; Fig. 8i,j). These phenotypes demonstrated that Sona promotes Wg signaling.

Discussion

ADAMTSs are secreted metalloproteases that are known to be involved in mainly ECM remodeling. Among six ADAMTSs in the fly, Papilin is essential for the formation of basement membrane and fly development32, Stall functions in ovarian follicle formation and exhibits positive genetic interaction with Delta35, and ADAMTS-A is important for cell migration, especially in detaching cells from the apical ECM in salivary gland34. In this report, we have shown that Sona is a fly ADAMTS essential for fly development and survival. Transient coexpression of Sona and Wg increased the number of wing margin bristles, indicating that Sona is positively involved in Wg signaling.

Figure 8. Sona enhances Wg signaling. (a–f) UAS-p35, UAS-GFP/CyO-GFP; UAS-sona RNAi/TM6 Tb and ap-Gal4/CyO-GFP flies were crossed and the larval progeny UAS-p35 UAS-GFP/ap-Gal4, +/TM6 Tb and UAS-p35, UAS-GFP/ap-Gal4; UAS-sona RNAi/+ were used as control and experimental animals, respectively. Patterns of Sens, Dll and Vg in wing discs. Anterior is left, and dorsal is up. Images of control discs (a,c,e) and experimental discs (b,d,f) are shown. Black and white images of Sens, Dll or Vg in (a’–f’). The expression region of ap-Gal4 is marked by GFP (green). (g–j) Wing phenotypes of flies transiently expressing GFP-Wg (g), Sona (h) or both (i,j) by nub-Gal4 driver. The anterior margins of wings in (g–j) are magnified in (g’–j’). Ectopic bristles are marked with arrows (i’,j’). Genotypes of discs and adult wings are indicated at lower left. Scale bar: (a–f) 100 μm.
Accordingly, loss of *sona* decreased the level of Wg effector proteins as well as the level of extracellular Wg. Based on these results, we propose that Sona, as an ADAMTS, modifies yet unidentified protein(s) essential for Wg signaling.

During fly development, *sona* was transcribed at a high level in discrete regions in imaginal discs, which corresponded to the malformed regions in adult appendages of *sona* escapers (Figs 2 and 4). For instance, dorsal eye disc, the center of antenna disc, and outer ring of leg disc expressed the high level of *sona* transcripts, and *sona* escapers accordingly had disoriented ommatidial bristles in the dorsal eye, malformed arista, and kinked femur (Figs 2a–f and 4a–f). Wing disc also exhibited the complicated mosaic pattern of *sona* transcription, and adult wings of *sona* escapers were small and abnormally shaped (Figs 2g–i and 4g–i). Involvement of Sona in modulating the level of extracellular Wg may explain why these malformed adult structures are generated in *sona* escapers because Wg is specifically expressed in eye, wing and leg discs and determines the fate of organs.85–88

The genetic link between Sona and Wg signaling was identified in a genetic screen in which a *wls* allele could rescue the lethal phenotype caused by the overexpression of Sona. Likewise, wing notching by the loss of *wls* was rescued by overexpression of *sona* (Fig. 6c). Furthermore, the loss of *sona* decreased the level of extracellular Wg (Fig. 6g–i). Taken together, these results raised a possibility that Sona may be involved in Wg signaling by affecting Wg secretion. How may Sona positively regulate Wg secretion? To act on Wg secretion, Sona has to be activated intracellularly, and function in secretory pathways. It has been shown that the progeny of most ADAMTSs are cleaved in trans-Golgi network to become active. Thus, activated intracellular Sona may cleave unidentified proteins involved in Wg secretion and thereby promote the secretion of Wg. Indeed, intracellular Sona was enriched in the apical region while extracellular Sona is more enriched in the basolateral region. Similarly, intracellular and extracellular Wg are enriched in the apical and basolateral regions, respectively (Fig. 3d; Supplementary Fig. S12).

It has been recently shown that Wg is secreted to the apical side and then re-entered by endocytosis, and then moves to the basal side and secreted by transcytosis.22 It will be interesting to figure out whether Sona and Wg may be secreted together by transcytosis.

Besides the function of intracellular Sona for Wg secretion, presence of active Sona in conditioned medium of S2 cell culture suggests that extracellular active Sona may be involved in Wg signaling by modifying unknown ECM components (Fig. 3e). Immunocytochemical analysis of Sona confirmed that the active form of Sona devoid of the prodomain is present in basal ECM of wing discs (Fig. 5e–g). Therefore, active Sona may cleave ECM proteins that affect stability or activity of Wg. Well-studied ECM proteins essential for Wg signaling and formation of Wg gradient are Heparan sulfate proteoglycans (HSPG) such as Division abnormally delayed (Dally) and Dally-like (Dlp).60–67 These HSPGs can be modified by proteins such as Notum and Matrix metalloprotease 2 (Mmp2). Notum blocks Wg activity as α/β-hydrolase by modifying Dally and Dlp, and Mmp2 cleaves Dlp to inhibit the interaction between Dlp and Wg.68 Thus, Sona may act on these HSPGs or related ECM proteins to affect the stability or activity of extracellular Wg.

Extracellular Sona was highly localized in the presumptive region of wing blade in the basal ECM near the Collagen-IV containing region, but was present at lower level in the DV midline region where Wg is synthesized (Fig. 5). This data suggests that secreted extracellular Sona may not be diffused freely but restricted to a defined region by interacting with some ECM components. Another component of Wg signaling, Frizzled2 (Fz2), is strategically localized to bind the extracellular Wg in order to regionally regulate strength of Wg signaling. Similarly, Dally-like (Dlp)60–67. These HSPGs can be modified by proteins such as Notum and Matrix metalloprotease 2 (Mmp2). Notum blocks Wg activity as α/β-hydrolase by modifying Dally and Dlp, and Mmp2 cleaves Dlp to inhibit the interaction between Dlp and Wg.68 Thus, Sona may act on these HSPGs or related ECM proteins to affect stability or activity of extracellular Wg.

Involvement of Sona in Wg signaling raises a possibility that some mammalian ADAMTSs may also be involved in Wnt signaling. Some mammalian ADAMTSs are known to function as positive factors for tumor invasion and progression.74–76. Overexpression of Wnts or downstream components of Wnt signaling also induces various tumors such as colon cancer, breast cancer, and leukemia.77–78. Wnt signaling is also essential for the growth and remodeling of bones and connective tissues.79–82 Overlapping functions of ADAMTSs and Wnt signaling supports our view that some mammalian ADAMTSs may be linked to Wnt signaling. Further work on identifying the intracellular or extracellular substrate(s) of Sona is required to fully understand how Sona is positively involved in Wg signaling.

Materials and Methods

Drosophila strains, transgenic lines and generation of ectopic clones. We carried out imprecise excision of a P element, P[GawB]CG9850[NP5284], and obtained 9 *sona* deletion mutants by screening about 200 flies. Deficiency lines (Df(2R)X32, Df(2R)B3, Df(2R)3-659) that uncover the *sona* gene were used to confirm *sona* deletions. We generated two *sona* RNAi lines targeting different regions of the *sona* coding region (Fig. 1b; Supplementary Fig. S1) and several UAS transgenic flies: UAS-*sona*, UAS-*sona-HA*, UAS-*sona-E475A*, and UAS-*sona-mCherry*. UAS-GFP-wg, wg-Gal446 and viking-GFP41 were kindly provided. All other lines were obtained from Bloomington stock center.

For generation of ectopic clones, hs-Flip, UAS-*sona-mCherry*/TM6 Tb males and y w; P[Actin > CD2 > Gal4; w+]/CyO-GFP, UAS-GFP/TM6 Tb females were crossed, their progeny were raised at 18 °C until 48 hr AEL, and then heat shocked at 37 °C for 1 hour as described1. They were then kept at 18 °C until dissection.

DNA constructs. *sona* cDNA was originally obtained from a two-hybrid cDNA library screening84 using the first and second PDZ domains of Discs-Large (Dlg) as a bait85,86. Out-of-frame fusion between the Gal4 activating domain and the portion of *sona* gene that encodes the carboxyl terminus fortuitously generated a perfect but gratuitous PDZ binding motif, which let Sona to be identified in the screen.
To generate *sona-HA* construct, HA tag was attached at Gly638 by removing stop codon with *HpaI* digestion and ligating amplified HA tag. pUAST-*sona-HA-mCherry* was generated by tagging *mCherry* at the downstream of HA tag in the pUAST-*sona-HA* plasmid. pUAST-*sonaE475A* was generated by changing GAA (glu) to GCA (ala) by site-directed mutagenesis. pAc-GFP-wg was constructed by recombining the pAc5.1 vector and GFP-wg that was derived from MK33-GFP-wg (a gift from J.P. Vincent, unpublished).

Northern blot and in situ hybridization. For Northern analysis, RNA was prepared as described and 20 μg of RNA each was loaded in 2.2 M formaldehyde containing agarose gel. The RNAs were transferred to nitrocellulose and probed with 32P-labeled 1.9 kb *XhoI* fragment that covers the 3′ half of the *sona* cDNA for Northern analysis. The same 1.9 kb *XhoI* fragment was linearized and amplified by polymerase chain reaction using one primer to make digoxigenin-labelled single-stranded DNA probe for *in situ* mRNA hybridization as described (a gift from J.P. Vincent, unpublished).

Cell culture and transfection. *Drosophila* S2 cells were grown in M3 media (Sigma-Aldrich) supplemented with 10% IMS (Sigma-Aldrich) at 25°C. Transfections were carried out with transfection reagents effectene (Qiagen) or celfectin (Invitrogen) according to the manufacturers’ instructions. For each transfection, a total of 1–2 μg DNA was used.

To establish S2 *sona-HA* cell line that stably expresses *sona-HA*, Hygromycin B selection system was used according to the manufacturers’ instructions (Invitrogen life technologies). Briefly, 4 × 10^6 S2 cells were cotransfected with total 1 μg of two plasmids, pAC sona-HA and pCoHygro (1:9 ratio), for 3 days. Then, the culture medium was changed to selective medium containing 150 μg/ml of hygromycin B (Invitrogen). The selective medium was replaced every 5 days, and the *sona-HA* cell lines were established after 3 weeks. The established *sona-HA* cell line was maintained in selective medium containing Hygromycin B.

Antibodies and immunocytochemistry. We generated Sona-Pro antisera in rabbits using GST fusion protein with 245 amino acid residues representing 20th to 264th, and Sona-C antisera in mice using 378 amino acid residues representing 262th to 639th of Sona protein as antigens. Both Sona-Pro and Sona-C antisera were purified by affinity purification using MBP-Pro and GST-C, respectively. Following dilutions were used for Western analysis: Sona-Pro, 1:5,000; HA (Roche, rat), 1:150; HA (Santa Cruz, rabbit), 1:100; Dlg (rabbit), 1:500; Dlg (DSHB, mouse), 1:100; Wg (DSHB, mouse), 1:100; Dil (Santa Cruz, goat), 1:100; Vg, 1:100 (gift from S. Carroll, rabbit).

Fly larvae were cultured at 25°C unless stated otherwise. For intracellular staining, imaginal discs were dissected and stained as described (a gift from J.P. Vincent, unpublished). The samples were incubated with primary antibodies in washing buffer (50 mM Tris pH6.8, 150 mM NaCl, 0.5% NP-40, 1 mg/ml BSA) for overnight at 4°C or room temperature and washed with washing buffer several times. Then, samples were incubated with secondary antibodies and washed several times before mounting. For extracellular staining of Wg and Sona, we followed the method as described (a gift from J.P. Vincent, unpublished). The wing imaginal discs were dissected in M3 media at 4°C. The samples were incubated with about 3–4 fold more primary antibodies than for intracellular staining in cold M3 media for 2 hrs. Then, samples were washed with cold M3 and PBS twice, fixed for 40 minutes in 4% paraformaldehyde/PBS, and then soaked in non-detergent blocking buffer four times and detergent blocking buffer twice before mounting. For HA and GFP extracellular staining, the following antibodies, HA (Roche, rat, 1:30) and GFP (Abcam, rabbit, 1:30) were used. Fluorescent images were captured using Zeiss LSM laser scanning confocal microscope and presented using Adobe Photoshop.

Western analysis and co-immunoprecipitation. For Western analysis, samples were mixed with 4 × SDS sample buffer and boiled at 95°C for 10 min. Samples were then separated by 10–12% SDS-PAGE and transferred to the nitrocellulose membrane (Millipore). Membranes were blocked with 5% nonfat milk in TBST buffer (10 mM Tris pH 7.4, 0.8% NaCl, 0.1% Tween-20), and probed with the antibody. After washing membranes with TBST several times, membranes were incubated with horseradish peroxidase (HRP)-conjugated secondary antibody in TBST with 5% nonfat milk. After washing, protein bands were visualized using the ECL system (AbFrontier). For co-immunoprecipitation, cells were lysed in HEPES buffer (20 mM HEPES, 70 mM KCl, 2 mM DTT, 0.1% NP40, 8% Glycerol, 1 mM PMSE, 10 mM EDTA, 10 mM EGTA, and protease inhibitor cocktail (Roche)) on ice. The lysates were precleared by incubating with protein G-sepharose beads (Amersham Bioscience) for 30 min at 4°C. A new set of G-sepharose beads were incubated with anti-GFP (Abcam, rabbit) or Sona-Pro (rabbit) for coupling at room temperature for 2 hrs. The precleared lysates were then incubated with coupled protein G-sepharose beads for overnight at 4°C. The protein G-sepharose beads were washed with HEPES buffer and Western blots were performed as described.

References

1. Page, M. J. & Di Cera, E. Evolution of peptidase diversity. *J Biol Chem* **283**, 30010–30014, doi: 10.1074/jbc.M804650200 (2008).
2. Rawlings, N. D., Barrett, A. J. & Bateman, A. Using the MEROPS Database for Proteolytic Enzymes and Their Inhibitors and Substrates. *Curr Protoc Bioinformatics* **46**, 1.25.21–21 25 33, doi: 10.1002/0471250953.bi0125s48 (2014).
3. Porter, S. C., Clark, I. M., Kevorkian, L. & Edwards, D. R. The ADAMTS metalloproteinases. *Biochem J* **386**, 15–27, doi: 10.1042/BJ20040424 (2005).
5. Russell, D. L., Doyle, K. M., Ochsner, S. A., Sandy, J. D. & Richards, J. S. Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. *J Biol Chem* **278**, 42330–42339, doi: 10.1074/jbc.M300519200 (2003).

6. Colige, A. et al. cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. *Proc Natl Acad Sci USA* **94**, 2374–2379 (1997).

7. Jones, G. C. & Riley, G. P. ADAMTS proteins: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. *Arthritis Res Ther* **7**, 160–169, doi: ar178 (2005).

8. Wang, W. M. et al. Transforming growth factor-beta induces secretion of activated ADAMTS-2. A procollagen III N-proteinase. *J Biol Chem* **278**, 19549–19557, doi: 10.1074/jbc.M300767200 (2003).

9. Colige, A. et al. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. *Am J Hum Genet* **65**, 308–317, doi: S0002-9297(07)00264-7 10.1086/520304 (1999).

10. Liu, C. J. The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis. *Nat Clin Pract Rheumatol* **5**, 38–45, doi: 10.1038/ncprheum0961 (2009).

11. Dong, J. F. et al. ADAMTS-13 rapidly cleaves newly secreted ultra-large von Willebrand factor multimers on the endothelial surface under flowing conditions. *Blood* **100**, 4033–4039, doi: 10.1182/blood-2002-05-1401 2002-05-1401 (2002).

12. Roy, R. et al. Tumor-specific matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. *Clin Cancer Res* **14**, 6610–6617, doi: 10.1158/1078-0432.CCR-08-1136 (2008).

13. Rocks, N. et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. *Biochimie* **90**, 369–379, doi: S0300-9847(07)00222-2 10.1016/j.bioch.2007.08.008 (2008).

14. Lo, P. H. et al. Extracellular protease ADAMTS9 suppresses esophageal and nasopharyngeal carcinoma tumor formation by inhibiting angiogenesis. *Cancer Res* **70**, 5567–5576, doi: 10.1158/0008-5472.CAN-09-4510 0008-5472.CAN-09-4510 (2010).

15. Surrade, A. K. et al. Characterization and regulation of ADAMTS-16. *Matrix Biol* **28**, 416–424, doi: 10.1016/j.mabi.2009.07.001 (2009).

16. El Hour, M. et al. Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis. *Oncogene* **29**, 3025–3032, doi: 10.1038/onc.2010.49 onc201049 (2010).

17. Moncada-Pazos, A. et al. The ADAMTS12 metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer. *J Cell Sci* **122**, 2903–2913, doi: 10.1242/jcs.050468 jcs.050468 (2009).

18. Cal, S. et al. Cloning, expression, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. *Gene* **283**, 49–62, doi: S0378111901008617 (2002).

19. Tortorella, M. D. et al. ADAMTS-4 (aggrecanase-1): N-terminal activation mechanisms. *Arach Biochem Biophys* **444**, 34–44, doi: S0001-8029(01)02162-6 2005.0109.018 (2005).

20. Longpre, J. M. & Ledac, R. Identification of predominant determinants involved in ADAMTS-1 biosynthesis. *J Biol Chem* **279**, 33237–33245, doi: 10.1074/jbc.M311511200 (2004).

21. Wang, P. et al. Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. *J Biol Chem* **279**, 15434–15440, doi: 10.1074/jbc.M31297200 (2004).

22. Koo, B. H. et al. Cell-surface processing of pro-ADAMTS9 by furin. *J Biol Chem* **281**, 12485–12494, doi: M511083200 10.1074/jbc.M511083200 (2006).

23. Somerville, R. P., Jungers, K. A. & Apte, S. S. Discovery and characterization of a novel, widely expressed metalloprotease, ADAMTS-10, and its proteolytic activation. *J Biol Chem* **279**, 51208–51217, doi: M400936200 M400936200 (2004).

24. Dancetic, C. M. et al. Biosynthesis and Expression of a Disintegrin-like and Metalloproteinase Domain with Thrombospondin-1 Repeats-15: A Novel Versican-Cleaving Proteoglycanase. *J Biol Chem* **288**, 37267–37276, doi: 10.1074/jbc.M111.418624 M111.418624 (2013).

25. Nishiwaki, K., Hisamoto, N. & Matsumoto, K. A metalloprotease disintegrin that controls cell migration in Caenorhabditis elegans. *Science* **288**, 2205–2208, doi: 8628 (2000).

26. Ihara, S. & Nishiwaki, K. Predomain-dependent tissue targeting of an ADAMTS protease controls cell migration in Caenorhabditis elegans. *EMBO J* **26**, 2607–2620, doi: 7601718 10.1038/sj.emboj.7601718 (2007).

27. Clevers, H. & Nusse, R. Wnt/beta-catenin signaling and disease. *Cell* **149**, 1192–1205, doi: 10.1016/j.cell.2012.05.012 S0092-8674(12)00586-7 (2012).

28. Ligon, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. *Annu Rev Cell Dev Biol* **20**, 781–810, doi: 10.1146/annurev.cellbio.20.01103.113126 (2004).

29. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. *Cell* **87**, 833–844, doi: S0092-8674(00)81991-1 (1996).

30. Neumann, C. J. & Cohen, S. M. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. *Development* **124**, 871–880 (1997).

31. Nolo, R., Abbott, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. *Cell* **102**, 349–362, doi: S0092-8674(00)00440-4 (2000).

32. Kramerova, I. A. et al. Paplin in development: a pericellular protein with a homology to the ADAMTS metalloproteinases. *Development* **127**, 5475–5480 (2000).

33. Meyer, H. et al. Drosophila metalloproteases in development and differentiation: the role of ADAM proteins and their relatives in their organs. *J Cell Biol* **190**, 777–778, doi: 10.1016/j.jcb.2011.04.015 S0021-9907(11)00084-4 (2011).

34. Ismat, A., Cheshire, A. M. & Andrew, D. J. The secreted AdamTS-A metalloprotease is required for collective cell migration. *Development* **140**, 1981–1993, doi: 10.1242/dev.087908 dev.087908 (2013).

35. Ote, M., Mita, K., Kobayashi, M. & Shimada, T. Characteristics of two genes encoding proteins with an ADAM-type metalloproteinase domain, which are induced during the molting periods in Bombyx mori. *Arch Insect Biochem Physiol* **59**, 2205–2208, doi: 2628 (2000).
87. Choi, K. W. & Benzer, S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. *Cell* **78**, 125–136 (1994).
88. Sambrook, J., Fritsch, E. F. & Maniatis, T. *Molecular Cloning: A Laboratory Manual, Second Edition* (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press) (1989).
89. McLean, I. W. & Nakane, P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. *J Histochem Cytochem.* **22**, 1077–1083 (1974).

Acknowledgements
We are grateful to K.-W. Choi and colleagues in our lab and Y.-K. Bae at KRISS for discussion and comments on manuscript. We are in debt to J. P. Vincent, K. Basler, S. Eaton, S. Hayashi, S. M. Cohen, R. Holmgren and H. Kramer for fly lines, K. Basler, J. P. Vincent and S.-T. Hong for DNA constructs, and H. Bellen and S. Carroll for antibodies. We thank Bloomington Stock Center, Drosophila Genetic Resource Center and Developmental Studies Hybridoma Bank for fly strains and antibodies. This research was supported by a KAIST Grant G04080077, N10100001, National Research Foundation R1A1A301573, and National Research Council of Science and Technology Grant DRC-14-2-KRISS.

Author Contributions
G.-W.K., J.-H.W. and K.-O.C. designed experiments, analyzed the data and wrote the paper. G.-W.K., J.-H.W., O.-K.L., S.-S.L., J.-H.H., O.T., S.N. and Y.K conducted the experiments.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kim, G.-W. *et al.* Sol narae (Sona) is a *Drosophila* ADAMTS involved in Wg signaling. *Sci. Rep.* **6**, 31863; doi: 10.1038/srep31863 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016