Frequency of Cataract in Iran: A Meta‑Analysis and Systematic Review

Hosien Shahdadi¹, Mohammad Naim Aminifard², Abbas Balouchi¹³, Hosein Rafiemanesh⁴⁵, Jasem Allahyari¹

Abstract:
PURPOSE: Cataract is the leading cause of blindness and the second cause of low vision in the world. In the world, Asia has the highest number of blind population. The aim of the present systematic review and meta‑analysis was to assess the frequency of clinical cataracts in Iran.

MATERIALS AND METHODS: The frequency of clinical cataract was defined based on the international criteria and the measured outcome of the disease. Study selection, data extraction, and quality assessment were performed by two independent reviewers. We explored PubMed, Google Scholar, ISI Web of Science, and national databases (scientific information database, Magiran) to evaluate the clinical cataract of cataract in the Iranian populations from 1995 to July 2017. Statistical analysis was performed using STATA 14.0 software.

RESULTS: Of 283 studies, 27 studies utilized meta‑analysis. In 2017, the pooled overall frequency of clinical cataract in 59668 people was 9.27% (95% confidence interval [CI]: 8.09, 10.45, I² = 98.82%). Based on subgroup analysis, in the random effect method, the frequency of clinical cataract in males and females were 8.03% (CI: 6.78, 9.28) and 8.32% (CI: 7.08, 9.55), respectively.

CONCLUSION: Regarding the high frequency of clinical cataract in Iran, it seems that paying attention to the results of the current study and the application of international policy plans may contribute to better cataract control in Iran.

Keywords: Cataract, Iran, meta‑analysis, systematic reviews

Introduction

According to the World Health Organization (WHO), cataract is the leading cause of blindness and second cause of visual impairment in the world.[¹] More than 80% of cataract patients are in low-income countries.[²] In 80% of patients, cataract is curable by surgery, but in many countries, a lot of cataract patients are blind due to low access to suitable cataract surgery service.[³] The different types of cataracts are as follows age‑related cataract (senile cataract), traumatic cataract, congenital cataract, and secondary cataract. Age‑related cataract is the most common cataract in the world.[⁴‑⁶] According to meta‑analysis and systematic review studies, cataract is the cause of the highest percentage of blindness (41.7%–42%) in Asia.[⁵,⁶] Considering the high prevalence of cataract in Asian countries like Iran,[¹] and the importance of determining a correct and evidence‑based estimation of cataract prevalence in developing countries, this study evaluated the frequency of clinical cataract in Iran from 1990 to 2017. Another reason for conducting this study is due to the imposition of a large portion of health budget for cataract treatment and to help policymakers in eliminating...
Shahdadi, et al.: Frequency of clinical cataracts

Materials and Methods

Eligibility criteria
The methods adopted for this systematic review have been developed in accordance with the guidelines detailed on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.[8] Observational studies (cross-sectional, case–control, and cohort) were included in present study. Case series, case reports, clinical trials, and reviews (systematic review and narrative reviews) were excluded from the study. The target populations were general populations, patients with eye disease and children. The frequency of clinical cataract was measured in this study. Cataract defined as clouding of the lens of the eye which prevents clear vision.[9] Minimum required sample size was ≥25 patients.

Search strategy and databases
Literature review was done using the medical subject headings and keywords related to cataract frequency in Iran. We explored the electronic databases including international databases (MEDLINE [PubMed interface], Google Scholar and ISI Web of science [web of science interface]) and national databases (scientific information database [SID] and Magiran), National key journal (Journal of Current Ophthalmology) for relevant studies. No settings and language limits were imposed on the search. The specific search strategies were created by a health sciences librarian with expertise in systematic review searching. PRESS standard used for creating the search strategy.[10] The MEDLINE search strategy was adopted to search in another databases. Moreover, PROSPERO searched for the ongoing or recently completed systematic reviews. Keywords that used in search strategy were cataract, prevalence, frequency, incidence, population and Iran that were combined with Boolean operators included AND, OR, and NOT.

Study selection
The Endnote software was used to upload the literature review results. The team developed the test screening questions and forms for Level 1 and 2 assessments based on the inclusion and exclusion criteria. Citation abstracts and full-text articles were uploaded by screening questions to the Endnote. Before the formal screening process, a calibration exercise was undertaken to pilot and refine the screening questions. The formal screening process of titles and abstracts were conducted by two researchers according to the eligibility criteria, and the consensus method was used for solving controversies among the two researchers. The full text was obtained for all titles that meet the inclusion criteria. Additional information was obtained from the study, to resolve queries regarding the eligibility criteria. We recorded the reasons for the exclusion criteria. Neither of the review authors was blinded to the journal titles or to the study authors or institutions.

Data extraction and quality assessment
Extracted data items included the general information (authors, title, source, and year of publication), study characteristics (study design), participant characteristics (demographics, sample size), and outcome measures (frequency of cataract). The tool of Hoy et al. was used for assessing the quality of studies.[11] This decision was made independently by two review authors based on the criteria for judging the risk of bias, in case of any disagreement, the consensus method was used to resolve any controversies.

Data synthesis
All the eligible studies were included in the synthesis after a systematic review. Data were combined with the forest plot. The overall frequency of clinical cataract was estimated by the random-effects model. The heterogeneity of the preliminary studies was evaluated with I² tests. Subgroup analysis was conducted to diagnose the heterogeneity based on the kind of study participants, sex, and age. Meta-analysis was performed using the STAT 14 Statistics software (StataCorp, Texas, USA).

Results

Study selection
A total of 283 articles were retrieved from the initial search in different databases. Out of 261 nonduplicated studies in the title and abstracts screening process, 203 studies were excluded due to unrelated titles. Of 58 studies, 27 studies met the eligibility criteria. Of the 31 excluded studies, six studies were review, three studies were study protocol, five studies were letter to editor, four studies did not have full text, and 13 studies could not meet the least quality requirement for inclusion in the study. The list of studies is available at http://uploadboy.me/q5u7148ao4ld/list of final included papers.pdf.html [Figure 1].

Study characteristics
These studies were conducted on 59668 patients in 22 years, the mean age of the participants was 48.8 years and most of them were female (n = 33923; 56.8%). Of the 27 included studies, 26 studies provided only cross-sectional data, one study provided only retrospective descriptive data. Studies were conducted only in 12 out of 31 provinces in Iran. Most studies were carried out in Tehran province (n = 9). Most studies
were conducted in hospitals \((n = 12)\), utilized a cluster sampling method \((n = 12)\), had low risk of bias \((n = 21)\), and was conducted in a period of 1 year \((n = 14)\) [Table 1].

Meta-analysis frequency of clinical cataract

Based on the results of the random-effect method, the overall frequency of clinical cataract in 59668 people was 9.27% (95% confidence interval [CI]: 8.09, 10.45, \(P = 98.82\%\)). Subgroup analysis was conducted for the diagnosis of heterogeneity based on the kind of study participants, sex, and age.

The frequency of clinical cataract was about three times more in people with vision problems compared to those without; such that the pool estimated (in random model) frequency of clinical cataract in people without and with vision problems were 7.00% (95% CI: 5.72, 8.27, \(P = 98.92\%\)) and 16.44% (95% CI: 11.15, 21.73, \(P = 98.16\%\)), respectively [Figure 2].

Based on subgroup analysis using the random-effect method, the frequency of clinical cataract in males and females were 8.03% (95% CI: 6.78, 9.28, \(P = 97.55\%\)) and 8.32% (95% CI: 7.08, 9.55, \(P = 97.77\%\)), respectively, and a difference was also found in the study participants subgroup [Table 2].

Based on subgroup analysis using the random-effect method, the frequency of clinical cataract in the study with participants of mean age >50 years and <50 years were 16.82% (95% CI: 12.71, 20.94, \(P = 99.54\%\)) and 4.92% (95% CI: 3.98, 5.86, \(P = 98.82\%\)).

Discussion

Cataract is the major cause of blindness in the world, and its prevalence rate increased in the last decade. The present systematic review study includes cross-sectional and retrospective descriptive studies on the frequency of clinical cataract over the past 22 years which were
The prevalence/frequency of cataract in Iran is equal to some other Asian countries, such as Taiwan (10.7%) and Singapore (9.7%) and higher than countries such as Indonesia (2.2%) and Nepal (5.3%). This may be due to differences in the type of studies, sample sizes, and accessibility to effective eye-care services. Despite scientific advances in cataract control from 1990 to 2010, the results of a study by ACOSTA showed that the prevalence of cataract in Europe, USA, and Australia is very considerable from 5% to 30%. The prevalence/frequency of cataract in Iran is 9.27%. The results of a study by ACOSTA showed that the prevalence of cataract in Europe, USA, and Australia is very considerable from 5% to 30%.
the increase in global incidence rate of cataract is 1% among men and 3% among women. It is still the most important cause of blindness and second leading cause of visual impairment in the world. Cataract accounts for >33.4% of blindness worldwide and >42% of it in Asian countries including Iran. The current study reported

ID	First author	Male ES	95% CI for ES	Percentage weight	Female ES	95% CI for ES	Percentage weight
1	Abdollahi	24.77	17.00-33.96	1.59	26.83	14.22-42.94	0.71
2	Aghadoost	40.32	33.21-47.75	1.90	39.32	33.02-45.89	2.22
4	Besharati	9.59	3.94-18.76	2.00	13.89	4.67-29.50	0.97
5	Faeze	33.33	23.24-44.68	1.13	45.45	35.41-55.77	1.21
17	Maeiati	8.61	5.41-12.86	3.49	9.43	5.38-15.08	3.04
19	Mirdehghan	13.33	9.05-18.69	2.92	13.82	8.76-20.34	2.56
21	Nowroozpoor Dailami	3.06	1.13-5.64	4.09	4.55	0.95-12.71	2.78
24	Sharifi	15.60	11.57-23.7	3.11	27.52	21.71-33.96	2.36
26	Soori	3.74	3.21-4.33	4.79	3.66	3.24-4.11	5.12
27	Yaqubi	3.86	1.94-6.80	4.18	3.78	1.74-7.06	4.30
Sub-total random pooled ES	14.26	9.70-18.82	22.92	18.00	11.37-24.63	25.28	

ID	First author	Male ES	95% CI for ES	Percentage weight	Female ES	95% CI for ES	Percentage weight
3	Akhgary	2.21	0.46-6.31	4.06	1.47	0.04-7.92	4.04
6	Feghhi	3.30	2.68-4.03	4.77	2.69	2.22-3.23	5.11
7	Fotouhi	1.10	0.68-1.68	4.80	1.51	1.08-2.05	5.12
8	Hashemi	0.41	0.19-0.77	4.82	0.5	0.28-0.83	5.15
9	Hashemi	30.57	26.28-35.14	3.06	29.48	25.52-33.68	3.35
10	Hashemi	1.62	0.98-2.52	4.75	1.87	1.2-2.77	5.06
11	Hashemi	2.23	1.51-3.16	4.74	2.18	1.54-2.97	5.08
12	Hatef	1.21	0.76-1.83	4.79	1.38	0.96-1.91	5.12
13	Javadi	12.16	10.00-14.61	4.18	11.89	10.21-13.74	4.68
14	Katibe	2.13	1.30-3.27	4.71	1.94	1.2-2.95	5.04
15	Katibeh	12.15	10.52-13.93	4.44	12.04	10.35-13.89	4.68
16	Khalaj	13.52	9.50-18.47	3.08	10.4	6.55-15.45	3.23
20	Nodehi Moghadam	42.08	35.19-49.21	1.99	36.32	29.48-43.59	2.00
22	Ostadi-Moghadam	10.83	6.44-16.77	2.79	13.18	7.87-20.26	2.40
23	Shahriari	1.75	1.26-2.37	4.79	2.1	1.62-2.66	5.11
25	Shirzadeh	5.03	3.77-6.56	4.57	6.69	5.48-8.08	4.89
28	Yekta	3.22	1.77-5.34	4.45	4.38	2.77-6.56	4.65
Sub-total random pooled ES	6.32	4.98-7.67	70.78	6.17	4.89-7.45	74.71	
Overall random pooled ES	8.03	6.78-9.28	100	8.32	7.08-9.55	100	

CI: Confidence interval, ES: Effect size
that its frequency was three times higher in people with eye problem than the healthy individuals. Moreover, the current study showed that the prevalence/frequency of cataract was 16.82% and 4.92% in people older and younger than 50 years, respectively.\cite{45,46} Consistent with the results of other studies, this finding emphasizes the role of gender in this disease in different studies.\cite{6,47} Although cataract is categorized as preventable eye disease, there are different barriers against the reduction of the incidence rate of blindness and visual impairment caused by cataract. Some of these barriers are as follows: (i) high cost of cataract treatment due to limited insurance coverage, (ii) limited knowledge of people with cataract specifically in developing countries (which present >80% of blindness), such as Iran, resulting in a lengthy delay in visiting a doctor, (iii) the lack of necessary basic structures, and (iv) unfair distribution of medical equipment and ophthalmologists across different countries.

Conclusion

Despite the many attempts and marked progress in cataract control, this problem has continued to remain an issue in Iran and other countries. Regarding the high frequency of cataract in Iran, as the major cause of blindness worldwide, it seems that paying attention to the results of the current study and application of international policy plans, such as the WHO's VISION 2020, may contribute to better cataract control in Iran. It is also recommended to conduct a comprehensive study at the national level to measure a more accurate cataract prevalence rate across the country.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. World Health Organization. Blindness and Visual Impairment Prevention; 2017. Available from: http://www.who.int/blindness/en/ [Last accessed on 2017 Nov 24].

2. Ramke J, Kuper H, Limburg H, Kinloch J, Zhu W, Lansingh VC, et al. Avoidable waste in ophthalmic epidemiology: A Review of blindness prevalence surveys in low and middle income countries 2000-2014. Ophthalmic Epidemiol 2018;25:13-20.

3. Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: A systematic analysis. Lancet Glob Health 2013;1:e339-49.

4. Sheeladavhi S, Lawrenson JG, Fielder AR, Suttle CM. Global prevalence of childhood cataract: A systematic review. Eye (Lond) 2016;30:1160-9.

5. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 2012;96:614-8.

6. Khairallah M, Kahloun R, Bourne R, Limburg H, Flaxman SR, Jonas JB, et al. Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010. Invest Ophthalvmol Vis Sci 2015;56:6762-9.

7. Gilbert C, Foster A. Childhood blindness in the context of VISION 2020 – The right to sight. Bull World Health Organ 2001;79:227-32.

8. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097.

9. WHO. Cataract; 2017. Available from: http://www.who.int/blindness/causes/priority/en/index1.html. [Last accessed on 2017 Nov 24].

10. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C, et al. PRESS peer review of electronic search strategies: 2015 guideline Statement. J Clin Epidemiol 2016;75:40-6.

11. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol 2012;65:934-9.

12. Abdollahi A, Mansouri MR, Valaei N. Epidemiologic evaluation of ophthalmic traumatic in 130 patients hospitalized in Farabi hospital in Tehran. Feyz J 2001;5:28-32.

13. Aghadoost D, Yegeaneh Moghaddam A, Jamei B. Etiology of blindness and low vision in an OPD-ophthalmology clinic setting. FEYZ J 2006;9:27-30.

14. Akhgary M, Ghassemi BM, Aghazadeh AM, Tabatabaee SM. Prevalence of preventable causes of low vision in different ages and genders. Zahedan J Res Med Sci 2014;16:83-5.

15. Besharati M, Miratashi A, Shoja M, Ezoddini-Ardakani F. Prevalence and causes of low vision and blindness in the blind population supported by the Yazd welfare organization. J Shahid Sadoughi Univ Med Sci 2006;13:19-24.

16. Faeze K, Amin S, Tahere M, Fatemeh K, Mina A, Ghazale A. Relationship between intra ocular pressure and some risk factors, in Northern Iran. Int J Med Res Health Sci 2016;5:104-10.

17. Feghi M, Khataminia G, Ziaei H, Latifi M. Prevalence and causes of blindness and low vision in Khuzestan Province, Iran. J Ophthalmic Vis Res 2009;4:29-34.

18. Fotouhi A, Hashemi H, Mohammad K, Jalali KH, Tehran Eye Study. The prevalence and causes of visual impairment in Tehran: The Tehran eye study. Br J Ophthalmol 2004;88:740-5.

19. Hashemi H, Khabazkhoob M, Emamian MH, Shariati M, Fotouhi A. Visual impairment in the 40- to 64-year-old population of Shahroud, Iran. Eye (Lond) 2012;26:1071-7.

20. Hashemi H, Khabazkhoob M, Nabovati P, Ostadimoghaddam H, Shafaei S, Doostdar A, et al. The prevalence of age-related eye disease in an elderly population. Ophthalmic Epidemiol 2017;24:222-8.

21. Hashemi H, Rezvan F, Yekta A, Ostadimoghaddam H, Soroush S, Dadbin N, et al. The prevalence and causes of visual impairment and blindness in a rural area of the North of Iran. J Public Health 2015;44:853-64.

22. Hashemi H, Yekta A, Jafarzadehpur E, Doostdar A, Ostadimoghaddam H, Khabazkhoob M, et al. The prevalence of visual impairment and blindness in underserved rural areas: A crucial issue for future. Eye (Lond) 2017;31:1221-8.

23. Hatat E, Fotouhi A, Hashemi H, Mohammad K, Jalali KH. Prevalence of retinal diseases and their pattern in Tehran: The Tehran eye study. Retina 2008;28:755-62.

24. Javadi M, Rezaei A, Karimi F, Amini H, Pakravan M, Nouri MK, et al. Prevalence of cataract in Tehran. BINA 2004;9:309-17.

25. Katibe M, Pakravan M, Yaseri M, Pakbin M, Soleimanizad R. Prevalence and causes of visual impairment and blindness in central Iran; the Yazd eye study. J Ophthalmic Vis Res 2015;10:279-85.

26. Katibeh M, Ziaei H, Rajavi Z, Hosseini S, Javadi MA. Profile of cataract surgery in varamin Iran: A population-based study. Clin Exp Ophthalmol 2014;42:354-9.
27. Khalaj M, Barikani A, Ghasemi H. Eye disorders in old people. Glob J Health Sci 2013;5:79-86.

28. Maeiiaat M, Ghassemi Broumand M, Aghazedeh Amiru M, Akbarzadeh Baghban A. Causes of blindness and low vision among visually impaired population supported by welfare organization in Ardabil province. Sci J Rehabil Med 2013;2:31-9.

29. Mirdehghan SA, Dehghan MH, Mohammaddour M, Heidari K, Khosravi M. Causes of severe visual impairment and blindness in schools for visually handicapped children in Iran. Br J Ophthalmol 2005;89:612-4.

30. Nodehi Moghadam A, Goudarzian M, Azadi F, Nasiri A, Hosseini SM, Mosallanezhad Z, et al. Prevalence of eye disorders in elderly population of Tehran, Iran. Eld Health J 2015;1:46-51.

31. Nowroozpoor Dalami K, Sheykhrezae MR, Kabirzadeh A, Mohseni Sarabi B, Yamrali J. Prevalence and causes of eye injuries in inpatients at hospitals of the Mazandaran university of medical sciences in 2007-2008. J Mazandaran Univ Med Sci 2011;21:77-83.

32. Ostadi-Moghaddam H, Khabaz-Khoub M, Yekta A, Heravian J, Mebdi-Zadeh AR. An investigation in causes of severe visual impairment & blindness in students from the blind schools of Mashad. Arch Rehabil 2007;8:56-60.

33. Shahriari HA, Izadi S, Rouhani MR, Ghasemzadeh F, Maleki AR. Prevalence and causes of visual impairment and blindness in Sistan-Va-Baluchestan province, Iran: Zahedan eye study. Br J Ophthalmol 2007;91:579-84.

34. Sharifi N. The Frequency of ocular diseases in eye clinic at imam Khomeini hospital of Urmia. Urmia Med J 2009;20:137-43.

35. Shirzadeh E, AAii B, Mohamadi Nikpoor M, Bemani Naeini M. A survey of impaired vision and the common etiology in the rural population of Sabzevar, Iran. J Med Sci Res 2007;2:19-24.

36. Soori H, Ali JM, Nasrin R. Prevalence and causes of low vision and blindness in Tehran province, Iran. J Pak Med Assoc 2013;61:544-9.

37. Yaqubi G, Hosseini S. Prevalence of ophthalmic problems in Birjand hospitals (1994-2001). J Birjand Univ Med Sci 2004;11:52-6.

38. Yekta A, Hashemi H, Ostadjimoghaddam H, Shafaee S, Norouzirad R, Radayev-Moghadsm S, et al. Prevalence and causes of visual impairment among the elderly of sari, 2011. Iran J Ophthalmol 2013;25:262-9.

39. Acosta R, Hoffmeister L, Román R, Comas M, Castilla M, Castells X, et al. Systematic review of population-based studies of the prevalence of cataracts. Arch Soc Esp Oftalmol 2006;81:509-16.

40. Shi YH, Chang HY, Lu MJ, Hurung BS. Time trend of prevalence of self-reported cataract and its association with prolonged sitting in Taiwain from 2001 and 2013. BMC Ophthalmol 2014;14:128.

41. Gupta P, Zheng Y, Ting TW, Lamoureux EL, Cheng CY, Wong TY, et al. Prevalence of cataract surgery and visual outcomes in Indian immigrants in Singapore: The Singapore Indian eye study. PLoS One 2013;8:e75584.

42. Saw SM, Husain R, Gazzard GM, Koh D, Widjaja D, Tan DT, et al. Causes of low vision and blindness in rural Indonesia. Br J Ophthalmol 2003;87:1075-8.

43. Pokharel GP, Regmi G, Shrestha SK, Negrel AD, Ellwein LB. Prevalence of blindness and cataract surgery in Nepal. Br J Ophthalmol 1998;82:600-5.

44. Keefe J, Taylor HR, Fotis K, Pesudovs K, Flaxman SR, Jonas JB, et al. Prevalence and causes of vision loss in Southeast Asia and Oceania: 1990-2010. Br J Ophthalmol 2014;98:586-91.

45. Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL 3rd; Age-Related Eye Disease Study Research Group, et al. Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS) AREDS report no 19. Ophthalmology 2005;112:533-9.

46. Age-Related Eye Disease Study Research Group. The age-related eye disease study (AREDS) system for classifying cataracts from photographs: AREDS report no 4. Am J Ophthalmol 2001;131:167-75.

47. Bourne RR, Taylor HR, Flaxman SR, Keefe J, Leasher J, Naidoo K, et al. Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990 – 2010: A Meta-analysis. PLoS One 2016;11:e0162229.