A TRUDINGER–MOSER INEQUALITY WITH MEAN VALUE ZERO
ON A COMPACT RIEMANN SURFACE WITH BOUNDARY

MENGJIE ZHANG

Abstract. In this paper, on a compact Riemann surface \((\Sigma, g)\) with smooth boundary \(\partial \Sigma\), we concern a Trudinger-Moser inequality with mean value zero. To be exact, let \(\lambda_1(\Sigma)\) denotes the first eigenvalue of the Laplace-Beltrami operator with respect to the zero mean value condition and \(\mathcal{S} = \{ u \in W^{1,2}(\Sigma, g) : \| \nabla_g u \|_2^2 \leq 1 \text{ and } \int_{\Sigma} u \, dv_g = 0 \}\), where \(W^{1,2}(\Sigma, g)\) is the usual Sobolev space, \(\| \cdot \|_2\) denotes the standard \(L^2\)-norm and \(\nabla_g\) represent the gradient. By the method of blow-up analysis, we obtain
\[
\sup_{u \in \mathcal{S}} \int_{\Sigma} e^{2\pi u^2 (1 + \alpha \| u \|^2_2)} \, dv_g < +\infty, \quad \forall \ 0 \leq \alpha < \lambda_1(\Sigma);
\]
when \(\alpha \geq \lambda_1(\Sigma)\), the supremum is infinite. Moreover, we prove the supremum is attained by a function \(u_\alpha \in C^\infty(\Sigma) \cap \mathcal{S}\) for sufficiently small \(\alpha > 0\). Based on the similar work in the Euclidean space, which was accomplished by Lu-Yang \([19]\), we strengthen the result of Yang \([29]\).

Mathematics subject classification (2020): 46E35, 58J05, 58J32.

Keywords and phrases: Trudinger-Moser inequality, Riemann surface, blow-up analysis, extremal function.

REFERENCES

[1] ADIMURTHI AND O. DRUET, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Partial Differential Equations, 29, (2004) 295–322.
[2] ADIMURTHI AND M. STRUWE, Global compactness properties of semilinear elliptic equations with critical exponential growth, J. Funct. Anal., 175, (2000) 125–167.
[3] T. AUBIN, Sur la fonction exponentielle, C. R. Acad. Sci. Paris Sér. A-B, 270, (1970) A1514–A1516.
[4] L. CARLESON AND S. CHANG, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110, (1986) 113–127.
[5] W. CHEN AND C. LI, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, (1991) 615–622.
[6] P. Cherrier, Une inégalité de Sobolev sur les variétés Riemanniennes, Bull. Sc. Math., 103, (1979) 353–374.
[7] G. Csató, V. Nguyen and P. Roy, Extremals for the singular Moser-Trudinger inequality via n-harmonic transplantation, J. Differential Equations, 270, (2021) 843–882.
[8] M. De Souza and J. Do Ó, A sharp Trudinger-Moser type inequality in \(\mathbb{R}^2\), Trans. Amer. Math. Soc., 366, (2014) 4513–4549.
[9] W. Ding, J. Jost, J. Li and G. Wang, The differential equation \(\Delta u = 8\pi - 8\pi he^u\) on a compact Riemann Surface, Asian J. Math., 1, (1997) 230–248.
[10] J. Do Ó and M. De Souza, Trudinger-Moser inequality on the whole plane and extremal functions, Commun. Contemp. Math., 18, (2016) 1550054 32 pp.
[11] Y. Fang and M. Zhang, On a class of Kazdan-Warner equations, Turkish J. Math., 42, (2018) 2400–2416.
[12] M. Flucher, Extremal functions for the trudinger-moser inequality in 2 dimensions, Comment. Math. Helv., 67, (1992) 471–497.
[13] L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., 68, (1993) 415–454.
[14] Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations, 14, (2001) 163–192.
[15] Y. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser., A 48, (2005) 618–648.
[16] X. Li and Y. Yang, Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space, J. Differential Equations, 264, (2018) 4901–4943.
[17] Y. Li and P. Liu, Moser-Trudinger inequality on the boundary of compact Riemannian surface, Math. Z., 250, (2005) 363–386.
[18] K. Lin, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc., 348, (1996) 2663–2671.
[19] G. Lu and Y. Yang, A sharpened Moser-Pohozaev-rudinger inequality with mean value zero in \mathbb{R}^2, Nonlinear Anal., 70, (2009) 2992–3001.
[20] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, (1970/71) 1077–1092.
[21] V. Nguyen, Improved Moser-Trudinger inequality for functions with mean value zero in \mathbb{R}^n and its extremal functions, Nonlinear Anal., 163, (2017) 127–145.
[22] V. Nguyen, Improved Moser-Trudinger type inequalities in the hyperbolic space \mathbb{H}^n, Nonlinear Anal., 168, (2018) 67–80.
[23] J. Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier, 16, (1966) 279–317.
[24] S. Pohozaev, The Sobolev embedding in the special case $p=n$, Proceedings of the technical scientific conference on advances of scientific research 1964–1965, Math. sections, Moscov. Energet. Inst., (1965) 158–170.
[25] M. Struwe, Critical points of embeddings of H^1 into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, (1988) 425–464.
[26] C. Tintarev, Trudinger–Moser inequality with remainder terms, J. Funct. Anal., 266, (2014) 55–66.
[27] N. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17, (1967) 473–484.
[28] Y. Yang, A sharp form of Moser-Trudinger inequality in high dimension, J. Funct. Anal., 239, (2006) 100–126.
[29] Y. Yang, Extremal functions for Moser–Trudinger inequalities on 2-dimensional compact Riemannian manifolds with boundary, Internat. J. Math., 17, (2006) 313–330.
[30] Y. Yang, Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary, Pacific J. Math., 227, (2006) 177–200.
[31] Y. Yang, A sharp form of the Moser-Trudinger inequality on a compact Riemannian surface, Trans. Amer. Math. Soc., 359, (2007) 5761–5776.
[32] Y. Yang, A sharp form of trace Moser-Trudinger inequality on compact Riemannian surface with boundary, Math. Z., 255, (2007) 373–392.
[33] Y. Yang, Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two, J. Differential Equations, 258, (2015) 3161–3193.
[34] Y. Yang and J. Zhou, Blow-up analysis involving isothermal coordinates on the boundary of compact Riemann surface, http://arxiv.org/abs/2009.09626.
[35] Y. Yang and X. Zhu, Existence of solutions to a class of Kazdan-Warner equations on compact Riemannian surface, Sci. China Math., 61, (2018) 1109–1128.
[36] Y. Yang and X. Zhu, A Trudinger-Moser inequality for a conical metric in the unit ball, Arch. Math., 112, (2019) 531–545.
[37] V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math. Dokl., 2, (1961) 746–749.
[38] J. Zhu, Improved Moser-Trudinger inequality involving L^p norm in n dimensions, Adv. Nonlinear Stud., 14, (2014) 273–293.
[39] X. Zhu, A generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities, Sci. China Math., 62, (2019) 699–718.