A contemporary decennial examination of changing agricultural field sizes using Landsat time series data

Emma V. White and David P. Roy

Field size distributions and their changes have not been studied over large areas as field size change datasets are not available. This study quantifies agricultural field size changes in a consistent manner using Landsat satellite data that also provide geographic context for the observed decadal scale changes. Growing season cloud-free Landsat 30 m resolution images acquired from 9 to 25 years apart were used to extract field object classifications at seven sites located by examination of a global agricultural yield map, agricultural production statistics, literature review, and analysis of the imagery in the US Landsat archive. High spatial resolution data were used to illustrate issues identifying small fields that are not reliably discernible at 30 m Landsat resolution. The predominant driver of field size change was attributed by literature review. Significant field size changes were driven by different factors, including technological advancements (Argentina and USA), government land use and agricultural policies (Malaysia, Brazil, France), and political changes (Albania and Zimbabwe). While observed local field size changes were complex, the reported results suggest that median field sizes are increasing due to technological advancements and changes to government policy, but may decrease where abrupt political changes affect the agricultural sector and where pastures are converted to arable land uses. In the limited sample considered, median field sizes increased from 45% (France) to 159% (Argentina) and decreased from 47% (Brazil) to 86% (Albania). These changes imply significant impacts on landscape spatial configuration and land use diversity with ecological and biogeochemical consequences.

Key words field size; agriculture; land cover land use; change; drivers

Introduction

Agriculture is associated with some of the most significant human-induced land cover land use changes, with dramatic cropland expansion in the last several hundred years and a marked increase in productivity in the past few decades driven by increasing populations and changing diets (Goldewijk and Ramankutty 2004; Kastner et al. 2012; Tilman et al. 2002). Globalisation has shortened the connections between consumers and agricultural commodities with contemporary production patterns influenced by demands from distant urban areas and by food, fuel and fibre preferences among nations (Garrett et al. 2013; Seto et al. 2012). Although demands remain high, agricultural productivity as well as cropland area is unevenly distributed globally (Foley et al. 2011; Lambin et al. 2013; Monfreda et al. 2008; van Asselen and Verburg 2012).

Field sizes are indicative of the degree of agricultural capital investment, mechanisation, and labour intensity (Herzog et al. 2006; Kuemmerle et al. 2013; Rodriguez and Wiegand 2009). Information on the size of fields is needed to plan and understand these factors, and may help the allocation of agricultural resources such as water, fertiliser, herbicide, and farming equipment (Anderson et al. 2012; Johnson 2013; Rudel et al. 2009; You et al. 2009). Field sizes are thought to be increasing due to agricultural intensification as farmers seek to maximise profit and reduce risk through larger agricultural enterprises, with ecological and biogeochemical consequences. Various national and international agencies report crop yields, and sometimes farm size statistics, but statistics concerning the sizes of agricultural fields or their changes are not reported. Recently, a c. 2005 global field size dataset was developed by spatial interpolation of 13 963 crowd sourced (internet and
mobile phone based) geotagged categorisations of GoogleEarth images into very small, small, medium and large field size categories (Fritz et al. 2015). The interpolated global field size dataset has unknown accuracy and does not capture field size change. Studies of the incidence, drivers, modifiers, and impacts of changing field sizes have not been undertaken over large areas and certainly not from a global perspective.

Satellite data provide a synoptic view and have been used for agricultural applications, including cropland distribution mapping, crop condition monitoring, crop production assessment, and yield prediction (Bauer et al. 1978; Becker-Reshef et al. 2010; Johnson and Mueller 2010). The ability of satellite data to monitor agriculture reliably is dependent on many factors but is fundamentally constrained by the satellite spatial resolution relative to the field spatial dimensions. Commercial high spatial resolution (<10 m) satellite data have only been available since 1999 (Belward and Skøien 2014; Johansen et al. 2008; Turket and Ozdarici 2011) and so cannot be used for field size change analysis prior to 1999. The Landsat series of satellites provides the longest satellite data record spanning from 1972 to present day (Roy et al. 2014) and with appropriate resolution for monitoring anthropogenic surface changes (Hansen and Loveland 2012; Townshend and Justice 1988). The recent free availability of the Landsat data in the US Landsat archive (Wulder et al. 2012) provides the opportunity to study field size changes for large areas and in a globally distributed and consistent way. Landsat-based agricultural applications were developed after the launch of the first Landsat in 1972 and have been subject to multi-agency funded support through initiatives such as the Large Area Crop Inventory Experiment (LACIE) (MacDonald et al. 1975) and US Department of Agriculture (USDA) initiatives (Hanuschak et al. 1980; Johnson and Mueller 2010). A seminal agricultural field size study was undertaken by digitising more than 112 000 US and Canadian agricultural field boundaries from Landsat data sensed from 1977 through 1980 (Ferguson et al. 1986).

This study, for the first time, quantifies agricultural field size changes. Satellite data are used to extract field sizes and to provide geographic context for the spatial nature of observed changes and literature review is used to attribute the change drivers. A pragmatic approach is used to select Landsat images at locations where agricultural field size changes are discernible. Major global agricultural production regions are identified by analysis of 2010 FAO continental crop production statistics (FAOSTAT 2010) and global 5 min EarthStat crop yield data (Monfreda et al. 2008). Within these regions, pairs of cloud-free growing season Landsat images acquired about a decade apart at locations with documented changes in field size, farm size, agricultural intensity, or extent are selected. GoogleEarth high spatial resolution data are used to help ensure that only crop fields are examined. In addition, Landsat image pairs are selected where rapid political changes caused significant agricultural sector change. Fourteen Landsat images sensed up to 25 years apart at seven locations that each include a major cereal or biofuel crop are considered. High spatial resolution 2.5 m Quickbird 2 data are used to illustrate difficulties in identifying small field sizes that are not discernible at 30 m Landsat resolution. The implications of observed field size changes on landscape spatial configuration and land use diversity and their ecological and biogeochemical consequences are considered briefly, and recommendations for future research discussed.

Materials and methods

Satellite data

Growing season cloud-free Landsat 30 m resolution images acquired from 9 to 25 years apart were used to examine field size changes. Global 30 m multispectral Landsat observations have been provided by the Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Landsat Imager (OLI) from 1984 to present (Loveland and Dwyer 2012; Roy et al. 2014). These sensors provide multispectral observations in similar reflective wavelength bands, in the visible, near-infrared and middle-infrared that can be used to identify landscape features such as fields and their boundaries (Yan and Roy 2014). For example, Figure 1 illustrates qualitatively the utility of 30 m Landsat data to monitor field size change over a 25-year period.

The Landsat data were obtained from the United States Geological Survey (USGS) Earth Resources Observation and Science (EROS) via the Global Visualisation Viewer internet system (GloVis: http://glovis.usgs.gov/). Selected Landsat data were converted from digital numbers to top of atmosphere reflectance and brightness temperature using Landsat acquisition specific calibration and standard processing algorithms to ensure temporally consistent data needed for their multi-temporal comparison (Roy et al. 2010). These data are made available in approximately 180 × 170 km scenes defined in a Worldwide Reference System of path (groundtrack parallel) and row (latitude parallel) coordinates (Arvidson et al. 2001). The Landsat sensor geometry and orbit characteristics are such that each path/row can be sensed every 16 days, however globally not every scene is stored in the US Landsat archive due to a number of factors and because of cloud obscuration at the time of satellite overpass (Kovalsky and Roy 2013). The Landsat 5 TM was launched in 1984 and remained operational until 2011. The Landsat 7 ETM+ was launched in 1999 and remains operational with an overpass 8 days later than Landsat 5 TM. In May 2003 the Landsat 7 ETM+ scan line corrector failed, systematically reducing the amount of usable ETM+ image data by 22% (Markham et al. 2004) and
so limiting the area over which reliable mapping can be performed. In this study 30 m Landsat 5 TM from 1984 to present and Landsat ETM+ data from 1999 to 2002, i.e. before the ETM+ scan line corrector failure, were examined.

High spatial resolution data were used to illustrate the difficulties in identifying small field sizes that are not discernible at Landsat resolution. High spatial resolution data are well suited for interpretation of agricultural fields, in particular small and irregularly shaped fields, but are not available before 1999 (Johansen et al. 2008; Turker and Ozdarici 2011). In this study therefore a small number of Quickbird-2 high spatial resolution 2.5 m red, green, blue and near-infrared wavelength images (Johansen et al. 2008) were used to illustrate Landsat field size detection issues.

GoogleEarth time series imagery (http://www.google.com/earth/) are freely available and have near global coverage. They were used in this study as they include high spatial resolution satellite and airborne images from a variety of commercial providers and US government agencies. Only image pictures are available and the sensor characteristics are undefined so, although useful for visualisation and contextual interpretation (Hansen et al. 2014), the imagery cannot be reliably processed using standard remote sensing algorithms. In this study GoogleEarth time series imagery were used to help visually confirm that fields identified in the Landsat data were arable and not pasture or other grassland uses which can be hard to discriminate using just Landsat data (Müller et al. 2015). In addition, GoogleEarth imagery was used to examine rice fields.

Agricultural statistics

Agricultural statistics extracted from the 2010 global FAO crop commodity production statistical database (FAOSTAT 2010) were used to identify the top four harvested staple cereal crops, namely, wheat, maize, rice, and soybeans, that together account for more than 50% of the total global harvested acreage and production (FAOSTAT 2010). In addition statistics for the top producing non-cereal biofuel crops, i.e. oil palm and sugar cane, were extracted as these crops have experienced rapid development in the last several decades (Cassidy et al. 2013; Goldemberg 2008; Graham-Rowe 2011). The FAO crop data were collated using the best available information provided by national governments, online databases, publications and questionnaires, and unofficial sources and provide the most complete publically available resource for global agricultural crop production (FAOSTAT 2010). The FAO data were used to identify the global rank by crop production for each of the six crops at continental scale.

For the USA, county level statistics produced by the USDA agricultural census were also examined. The census is undertaken every 5 years by classification of aerial survey photography, field sampling and by mailing a questionnaire to a sample of farmers with holdings that produce and sell at least $1000 of agricultural products per year (Johnson 2013; USDA 2009). County level mean farm size statistics are reported but the farm area definition includes the area of land used for livestock agriculture and on-farm infrastructure. Therefore, in order to derive a US metric more compatible with this research, an alternate measure of mean farm size per county was calculated by dividing the total harvested cropland area per county by the number of farms.
with harvested cropland per county. Percent county level mean farm size change was computed using the 1987 and 2007 census data.

Global crop yield map

The global 5 min EarthStat crop yield data (Monfreda et al. 2008) were used to map the major global agricultural yield regions for the four harvested staple cereal and the two biofuel crops. The EarthStat data are derived by spatial disaggregation of national and sub-national scale 1990–2003 agricultural census information into cultivated cropland areas defined by Ramankutty et al. (2008). The data, acquired from EarthStat (http://www.earthstat.org/), include a quality layer that designates if the data were derived at (1) county level, (2) state level, (3) interpolated from the nearest county or state level data within 2 degrees, (4) national level, or (5) were not defined. In this study only sub-national scale data [i.e. (1) to (3)] were used as the national scale data do not provide sufficiently detailed spatial information. Figure 2 shows the 80%, 90%, and 95% crop yield percentiles for the four cereal and two biofuel crops.

Location of Landsat scenes capturing contemporary agricultural field size change

The globe was divided into five continental regions (Africa, Americas, Asia, Europe and Oceania) and the 2010 global FAO statistics were used to identify the top two continents by production (tons) for each of the six crop types. Antarctica was not considered as it has no cropland. Within the chosen continents, only regions where the global crop yield exceeded the 80th percentile (coloured, Figure 2) were considered. Selection was further refined within these major production regions by review of the post 1980 published agricultural literature concerning documented changes in field size, farm size, and agricultural intensity or extent. Priority for selection was given to agricultural regions where the literature described information on field and farm size change. If the literature on these aspects were limited then regions were selected where there were documented changes in agricultural extent and then agricultural intensity. For example, in the USA, the percentage county level mean farm size change was used to identify counties where farm size (and so

Figure 2 Global high-yield agricultural regions for staple cereal crops (maize, rice, wheat, and soybeans) and biofuel crops (oil palm and sugarcane). The 5 min EarthStat crop yield data were used to derive the illustrated global crop yield percentiles coloured as red (>95th percentile), orange (>90th to 95th percentile), yellow (>80th to 90th percentile), grey (<80th percentile or undefined)

ISSN 2054-4049 Citation: 2015, 2, 33–54 doi: 10.1002/geo2.4
© 2015 The Authors. Geo: Geography and Environment published by John Wiley & Sons Ltd and the Royal Geographical Society (with the Institute of British Geographers)
potentially field size) changes were maximal. Additional regions that were reported in the literature to have significant changes in field size or agricultural productivity that were not evident in the global crop yield map or in the FAO statistics were included. These were in nations that experienced rapid political changes that dramatically altered the agricultural sector.

The literature review helped attribute primary field size change drivers that were broadly categorised as being associated with technological advancements, with government land use and agricultural policy changes, and with political changes (Brown and Schulte 2011; Hazell and Wood 2008; Muller and Munroe 2008). When several regions could be selected with the same crop type an attempt was made to select those that were representative of different primary driving forces. A more sophisticated categorisation was not undertaken given the relatively small number of Landsat locations that could be considered and because of the complexity of understanding land cover land use changes (Turner et al. 2007; Veldkamp and Lambin 2001).

A single Landsat 180 × 170 km path/row was chosen within each selected primary crop production region. There were typically several suitable Landsat path/row locations in each selected region. Only path/row locations where approximately decadal growing season image pairs acquired with approximately the same calendar date were considered. This was required as field boundaries may not be spectrally separable from field interiors at different phenological stages (Ozdogan and Woodcock 2006; Pan et al. 2012; Rydberg and Borgefors 2001; Yan and Roy 2014). The image selection was also constrained by limited Landsat data availability in the US Landsat archive, especially for geographic regions outside of the USA, and because of cloud obscuration (Kovalsky and Roy 2013). Only Landsat path/row locations with suitable images available in the growing season and with cloud cover less than 30%, as defined by the Landsat metadata and indicated in the GloVis Landsat ordering system, were considered. GoogleEarth high spatial resolution data were used to check that the Landsat data contained crop fields and not grasslands, although this was not always possible where there were no high spatial resolution data in GoogleEarth and was not possible for the pre-1999 Landsat scenes.

Landsat subset selection

From each selected Landsat image pair a 15 × 15 km spatial subset that was representative of the majority agricultural land use in the image and where obvious field size change was most visually evident was selected. This was a subjective and time-consuming process. The subset size was kept small due to the time-consuming nature of the field extraction process described below. The 15 km subset side dimension was selected as it is greater than the largest field dimensions reported in the literature that report long-axis field dimensions as great as 6 km in the USA (Connor et al. 2011; Ferguson et al. 1986). The 15 km dimension was more than an order of magnitude greater than the largest field size dimensions observed in the Landsat data selected in this study.

Landsat field extraction

Field boundaries can often be identified by visual inspection of appropriately displayed Landsat data (e.g. Figure 1) and can be straightforward to extract, especially if undertaken by a capable interpreter, for example, by screen digitising or by interactive thresholding spectral band indices (Basnyat et al. 2004; Lobell et al. 2003). Ideally, seasonal Landsat data acquired in the same year would be used to better capture seasonal agricultural differences (Lo et al. 1986; Schriever and Congalton 1993), and enable more clear differentiation between, for example, cropland and managed grasslands (Kuemmerle et al. 2006; Prishchepov et al. 2012), and provide improved field boundary delineation (Yan and Roy 2014). However, the availability of decadal pairs of seasonal Landsat data over suitable field size change locations was limited, particularly for Asia and Africa. Consequently, in this study, fields were extracted independently from single date Landsat images acquired about a decade apart. An interactive object based classification approach that is directly applicable to the extraction of discrete objects such as agricultural fields (Blaschke et al. 2014) was used. Only the field boundaries, and not the field crop types, were extracted.

Each 15 × 15 km Landsat subset was segmented using the Definiens eCognition multispectral image segmentation package (Definiens 2009). Different surface features within a subset can be identified by their remotely sensed spectral signatures (the amount of electromagnetic radiation that they reflect at different wavelengths). Due to different phenological stages certain field boundaries, such as grass strips and irrigation ditches, were not always clearly spectrally separable from the field interiors (Ozdogan and Woodcock 2006; Yan and Roy 2014). Moreover, within-field spectral variability, caused by spatial variations in factors such as soil moisture, salinity, fertility and nutrient limitations, pesticide, herbicide and fertiliser treatments, pollution, pests and diseases, reduce field boundary separability (Chang et al. 2007; Hall and Badhwar 1987; Rao 2008). Consequently, the Landsat subsets were purposefully over segmented so that there were many segments per field that were then subsequently merged together into single field objects. This approach reflects standard practice; most object-based classifiers over-segment the scene prior to merging (Pavlidis and Liow 1990; Rydberg and Borgefors 2001). The eCognition software was used to group adjacent pixels...
with similar spectral signatures together, considering the six available reflective wavelength Landsat bands and by setting object shape and compactness segmentation parameters. The shape and compactness parameters were different for each Landsat subset as field sizes and shapes varied considerably (parameters ranged between 0.3 and 0.9 for shape and between 0.3 and 0.5 for compactness). The segments were merged into distinct unambiguous objects by interactive on-screen selection. The objects were then classified as agricultural fields or other objects using the nearest neighbour eCognition supervised classifier. The classifier requires training data which were generated by selecting a representative sample of objects that were unambiguously visually identified as agricultural or non-agricultural. The classifier was applied to the Landsat spectral band values averaged over each object to classify them into agricultural fields and other objects of no interest to this study. This process was iterated and more training samples were added as needed to provide a visually unambiguous classification. Agricultural field objects that did not fall entirely within the 15 × 15 km Landsat subset were removed.

Field objects that were too small to be mapped reliably were removed. The minimum field size that can be reliably extracted from satellite data is dependent on factors including the sensor spatial resolution, satellite geolocation errors, the spectral contrast between field interiors and exteriors, and the field shape (Duvellerie and Defourny 2010; Ji 1996; Mueller 2004; Özdogan and Woodcock 2006; Rydberg and Borgefors 2001; Yan and Roy 2014). Figures 3 and 4 show example 30 m Landsat (left columns) and 2.5 m Quickbird (right columns) images that illustrate fields that are not clearly discernible in Landsat imagery. The top rows of these figures show 15 × 15 km images and the rows below show illustrative 750 × 750 m details. The China images (Figure 3) were sensed over rice paddies in Jiangsu province, southeastern China, where irrigation systems and fertiliser inputs contribute to high rice yields (Jing et al. 2007) with a typical paddy rice and then winter wheat or rapeseed rotation (Xiao et al. 2006). The India images (Figure 4) were sensed over north-western India in the Punjab where traditional small-scale intensive farming has kept field sizes small despite the adoption of new irrigation technologies and new improved varieties of rice and wheat (Sampath 1992; Smale et al. 2008). The China Landsat and Quickbird data were acquired only one month apart and show unambiguously that fields with small axis dimensions less than two 30 m Landsat pixels cannot be discerned in the Landsat data. The China Quickbird 750 × 750 m detail images illustrate typical rice paddies that are narrow in one axis and long in the other and include fields with dimensions as little as about 10 m and 60 m in the small and long axis dimensions, respectively. The India Landsat and Quickbird data were acquired in the same month but one year apart due to limited satellite data availability, and exhibit inter-annual variation in crop planting and harvesting. The India Quickbird data include distinct fields that are often more than two Landsat pixels wide but are sometimes not separable in the Landsat data, particularly where adjacent fields are similar and not separated by large and/or distinct boundaries. These issues were observed by Yan and Roy (2014) who adopted a conservative minimum field size extraction of sixteen 30 m Landsat pixels for their automated US Landsat field extraction algorithm research. As the field extraction methodology used in this study is interactive and includes visual assessment, a smaller minimum field size was used. Based on the results illustrated in Figures 3 and 4, and upon our experience examining the field extraction results applied to the selected Landsat data, a minimum field size mapping unit of six 30 m pixels was used. Thus, Landsat extracted field objects composed of less than six 30 m pixels were removed, i.e. the smallest extracted field size corresponded to 0.0054 km².

The absolute accuracy of the resulting field extractions was unknown but, given the interactive and visual extraction approach, the field segmentations reflect the highest accuracy we judged possible. Conventionally the accuracy of satellite products is assessed by comparison with independent reference data (Justice et al. 2000). However, the earlier Landsat images were acquired before the availability of independent reference data, namely high spatial resolution satellite data. Statistically robust and transparent approaches for assessing the accuracy of satellite temporal change products have been recommended using approaches that assess pixel level thematic mapping accuracy and the accuracy of areal change estimates (Olofsson et al. 2014). These established approaches do not quantify the extraction accuracy of individual objects which is still an area of active research (Möller et al. 2013; Persello and Bruzzone 2010; Yan and Roy 2014). Consequently, in this study we assumed that if any field extraction errors did occur then they were systematic for each pair of subsets and so did not unduly affect the change information. Moreover, we ensured that the metrics used to summarise field size change (described below) were non-parametric and robust to extraction errors.

Decadal Landsat field size change assessment

The area of each agricultural field object was calculated by counting the number of 30 m pixels it encompassed. The median field size, i.e. the 50th percentile, and also the 25th and 75th percentile field size statistics were computed for each 15 × 15 km subset and for each of the two time periods. Non-parametric summary statistics, rather than parametric statistics (mean and
standard deviation), were used as field size frequency distributions can be skewed (Ferguson et al. 1986) and because they are robust to outlying values due to, for example, field extraction errors. The percentage change in the median field size between the earlier and later time periods was computed as \[
\frac{\text{median}_{\text{later}} - \text{median}_{\text{earlier}}}{\text{median}_{\text{earlier}}} \times 100.
\]

Histograms of the field sizes were computed for each 15 × 15 km Landsat subset and ‘back-to-back’ histograms were created for the two time periods using the same optimal histogram binning scheme derived by combining the datasets using the Sturges method (Sturges 1926). The significance of any changes in field size distribution between the two dates was

Figure 3 Comparison of Landsat 5 TM 30 m (left column) and Quickbird-2 2.5 m (right column) true colour satellite data over rice paddies in Jiangsu province, Southeastern China (latitude 32.79°, longitude 120.77°). Data were acquired on 23 March 2005 (Landsat) and 7 April 2005 (Quickbird). The top row shows the same 15 × 15 km area and the boundaries of three 750 × 750 m detailed subsets, and the bottom three rows show the subsets in detail.
quantified using a bootstrap version of the two-sample Kolmogorov–Smirnov (KS) test (Conover 1971) that is more robust to the presence of potential ties (Abadie 2002).

In accordance with packing theory (Erdős and Graham 1975), the field sizes are expected to be inversely related to the number of fields if the fields are regularly shaped. To examine this, the field sizes (km2) were plotted against the number of fields per cultivated km2 for each subset at all locations. To examine if the median field size was related to field size diversity the median field size was compared with the field size interquartile range, defined as the 75th–25th percentile field size.

Figure 4 Comparison of Landsat 7 ETM+ 30 m (left column) and Quickbird-2 2.5 m (right column) true colour satellite data over rice and wheat in north western India in the Punjab (latitude 30.14°, longitude 74.86°). Data were acquired on 28 October 2002 (Landsat) and 7 October 2003 (Quickbird). The top row shows the same 15 × 15 km area and the boundaries of three 750 × 750 m detailed subsets, and the bottom three rows show the subsets in detail.
Results

Selected contemporary agricultural field size change locations

Table I summarises the seven selected 15 × 15 km subsets. The cereal and biofuel crop subsets were located in continents defined by the FAO 2010 production statistics with the top two greatest crop productions. No Landsat subsets over rice agriculture were selected because even though there were high rice yield locations in all continents (Figure 2) an exhaustive search found no significant unambiguous change in rice field size; this is discussed in more detail below. Landsat subsets were selected within Argentina (soybeans), Brazil (sugarcane), France (wheat), Malaysia (oil palm) and the USA (maize), where yields for the selected crop type exceeded the 80th percentile (Figure 2) and where there was documented change in field size, farm size, agricultural intensity or extent. In addition, subsets in Albania (wheat) and Zimbabwe (wheat) were added as, although they do not exhibit particularly high crop yields or production, they have experienced documented dramatic political and agricultural change. The primary driving force of agricultural field size change is tabulated in Table I and the context and likely causes of field size changes are discussed below after the quantitative field size change analysis.

Landsat field extractions

Figure 5 shows the fields extracted from the Argentinian Pampas subset data, which since the 1990s has become an area of intensive soybean production (Gavier-Pizarro et al. 2011). The two Landsat dates were sensed in mid-February in the Pampas growing season (USDA 1994) and capture a time period 25 years apart. A 25-year time period was used in order to capture the agricultural landscape before and after the intensification of soybean production and because the availability of cloud-free Landsat images acquired in the same growing season was limited for shorter periods.

The locations and extents of the extracted fields (Figure 5) appear correctly identified when compared with the Landsat true colour reflectance data (Figure 1). The extracted fields (white) are surrounded by non-agricultural areas, including ditches, grassy swards, rivers, roads, and farm buildings. Fields that did not fall completely within the subset were discarded from the subsequent field size analysis. This example illustrates the utility of the object-based classification to identify agricultural fields and also to provide geographic context for the nature of the field size changes. The field sizes appear to have increased from 1986 to 2011 due to a consolidation of adjacent land parcels and a reduction in the number of fields. The spatial arrangement of the fields has been largely preserved between the two dates. This is likely because of constraints imposed by the historic land use (paved roads and farm buildings are not converted to agricultural fields) and by the landscape structure (the rivers in the North and South of the image).

Figure 6 shows the fields extracted from the two Landsat acquisitions for the other sites (Table I). The sites in France, Malaysia, and the USA exhibit field size increases whereas the sites in Brazil, Albania, and Zimbabwe exhibit decreases. The smallest fields occurred in the 1984 France, 1990 Malaysia, and in the 2010 Albania Landsat images. A minority of fields were removed from the 1984 France and 1990 Malaysia field segmentations because they had areas

Major crop	Continent (crop rank)	Nation	Locale	15 × 15 km subset centre Lat., Long.	Landsat path/row	Landsat acquisition dates	Primary field size change driver
Soybeans	Americas (1)	Argentina	Argentinian Pampas Córdoba	−32.85°, −62.11°	228/83	02/10/1986	Technological advancements
Sugarcane	Americas (1)	Brazil	Coastal Brazil northern Paraná	−22.79°, −52.19°	223/76	02/15/2011	Government policy changes
Wheat	Europe (2)	France	Central France, Poitou-Charentes	46.78°, −0.01°	200/27	12/22/1991	Government policy changes
Oil Palm	Asia (1)	Malaysia	Coastal Malaysian peninsular, Perak	4.20°, 101.10°	127/57	09/28/1984	Government policy changes
Maize	Americas (1)	USA	Corn Belt Plains, Iowa	42.88°, −94.73°	28/30	06/12/1991	Technological advancements
Wheat	Europe	Albania	Northern coastal region	19.45°, 41.97°	186/31	06/14/2011	Political change
Wheat	Africa	Zimbabwe	Moshaland East province	−18.47°, 31.60°	169/73	06/22/2001	Political change
The greatest number of small fields occurred in the 2010 Albanian Landsat acquisition and we estimate 40% of the cultivated land had fields that could not be unambiguously mapped as they were too small. Some fields were introduced or removed between the dates of the two Landsat acquisitions, this is particularly evident for the Malaysian site, but for all sites the 15 × 15 km subset dimensions were sufficiently large to capture the field size populations in each Landsat acquisition (Figures 5 and 6) and their changes (Figure 7).

Quantitative decadal field size change analysis

The largest field sizes were in Argentina (2011) and the USA (2011) with 75% percentiles of 0.447 km² and 0.364 km² and maximum field sizes of 2.023 km² and 1.284 km², respectively (Table II). The magnitudes of these values are similar to those reported by Ferguson et al. (1986), who observed maximum field sizes of 0.8 km² (200 acres) for spring wheat fields in Montana. Similarly, Yan and Roy (2014) found a South Dakota median field area to be 0.1053 km² with several fields greater than 3 km². The smallest fields occurred in the later Albanian Landsat subset which was consequently the most difficult to interpret.

The results of the bootstrap two sample non-parametric KS test (Table II) indicate that the field size distributions changed significantly at all seven locations. This is expected given the location selection criteria and is evident in the back-to-back field size histograms (Figure 7). The field size histograms are skewed and so are displayed with a log scale.

The field sizes are inversely related to the number of fields (Figure 8). The number of fields per cultivated km² is plotted on the x axis with a log scale to capture the considerable variation in the number of fields and cultivated areas among the seven locations. The later Argentinian acquisition (2011) had the smallest number of fields per cultivated km² (2.7) and the second Albania acquisition (2010) had the greatest number (75.0) (Table II). The circles show the median field sizes and the arrows point from the earlier (first) to the later (second) Landsat subset acquisition date, illustrating where the median field sizes increased or decreased.

The field size interquartile range (75th – 25th percentile) is directly proportional to the median field size (Figure 9). A reduced major axis linear regression fit, used as it allows for both the dependent and independent variables to have error (Cohen et al. 2003), provides a relationship of the form interquartile range = 0.104 + (1.123 median field size) with an \(R^2 = 0.933 \). This relationship occurs because field sizes were smaller in the vicinity of roads, buildings, and rivers that segment the landscape. Consequently, subsets where the median field size increase but that retain a number of small fields, due to the landscape structure and pre-existing land use, have an increased field size interquartile range. Other local factors, including spatial gradients of soil fertility and sub-surface drainage, and spatial patterns of human tenure and management and farmer decision making, may also play a similar spatial constraining role. However, these factors are not possible to assess from the Landsat data.

Significant increases in field sizes occurred in Argentina (soybeans), France (wheat), Malaysia (oil palm), and the USA (maize) (Table II, Figure 8). The greatest median field size increase was in Argentina where the median increased from 0.123 km² (1986) to

Figure 5 Argentina extracted agricultural field objects (white), for the 15 × 15 km subset area (grey) segmented and classified in eCognition from the two Landsat acquisitions illustrated in Figure 1. Classified field objects composed of less than six 30 m pixels removed as they could not be confidently identified.
Table 1: Landsat field size change

Country	Year 1	Year 2	Year 3		
France (wheat)	1984	Malaysia (oil palm)	1990	U.S. (maize)	1989
France	1999	Malaysia	2010	U.S.	2011
Brazil (sugarcane)	1991	Albania (wheat)	1991	Zimbabwe (wheat)	2001
Brazil	2011	Albania	2010	Zimbabwe	2011

Figure 6 Extracted agricultural field objects (white), for the 15 × 15 km subset areas (grey), for all the study sites (Table 1) except Argentina (already shown in Figure 5). Classified field objects composed of less than six 30 m pixels removed as they could not be confidently identified.
In France, the USA, and Malaysia, the median field size increases were 100%, 89%, and 45%, respectively. For all these locations the number of fields per cultivated km2 decreased by a factor of about two.

Significant decreases in field sizes occurred in Brazil (sugarcane), Albania (wheat), and Zimbabwe (wheat) (Table II, Figure 8). The greatest field size decrease was in Albania where the median field size decreased from 0.087 km2 (1991) to 0.013 km2 (2011), an 86% decrease and the number of fields per cultivated km2 increased by a factor of about 7. In Brazil and Zimbabwe the median field size decreases were 47% and 55%, respectively, and the number of fields per cultivated km2 increased by a factor of about 1.6 and 1.8, respectively (Figure 8, Table II).

No quantitative decadal field size change analysis was undertaken for rice because, even though there was high rice yield locations in all the continents, an exhaustive search of the global Landsat archive and the available high spatial resolution GoogleEarth time series found no systematic or significant unambiguous rice field changes. The majority of the regions with high rice yields (Figure 2) had fields that were not discernible in Landsat data, primarily because, as illustrated in Figure 3, the fields were too small relative to the...
Table II Summary field size change statistics for the seven selected locations (Table I)

Location name	Landsat acquisition years	25th Percentile (km²)	50th Percentile (i.e. median km²)	75th Percentile (km²)	Largest field size (km²)	No. of fields	Total field area (km²)	No. of fields/cultivated km²	% Change in median field size	Two-sample KS test
Argentina	1986 2011	0.053 0.196	0.123 0.319	0.233 0.447	0.800 2.023	1071 436	172.055 160.135	6.225 2.723	159 100	0.443 0.412
France	1984 1999 2010	0.014 0.025 0.017	0.030 0.065 0.029	0.235 0.381 0.282	2697 1977 676	2697 1977 676	67.348 33.182	7684 39.857	45 40 45	0.412 0.262
Malaysia	1990 2010	0.013 0.119	0.020 0.233	0.029 0.364	0.400 1.283	2697 1977 676	100.348 20.372	18.968 39.587	100 89	0.086 0.313
USA	1989 2011	0.077 0.119	0.123 0.364	0.203 0.364	0.680 1.283	964 160.797	146.600 3.725	6.576 3.725	89 89	0.085 0.375
Brazil	1991 2011	0.095 0.056	0.151 0.364	0.242 0.364	1.671 1202	1071 436	129.975 141.166	5.186 8.515	–47 –86	0.357 0.988
Albania	1991 2010	0.066 0.009	0.087 0.013	0.113 0.015	0.294 0.084	775 2661	73.206 35.465	10.505 75.031	–86 75.031	0.056 0.379
Zimbabwe	2001 2011	0.045 0.031	0.092 0.041	0.132 0.071	0.515 0.495	438 511	46.343 29.267	9.451 17.460	–55 7.460	0.106 0.379

For clarity the field size statistics are shown in km² to the nearest three decimal places and the percentage change in median field size results are expressed to the nearest percent. The minimum field size considered was 0.0054 km². Note that 1 km² = 100 ha. The two-sample KS tests were significant for all the locations at the 99% confidence level (p-values were < 2.2×10^{-16} for all sites).
Landsat 30 m resolution. Typically, these small fields were rectangular and narrow and only a minority had curvilinear shapes associated with terraced rice cultivation. Detailed examination of 61 globally distributed high-yield rice cultivation locations discernible in the available high spatial resolution GoogleEarth imagery revealed no changes in rice field area. Certainly, rice field boundaries were sometimes moved but the field areas were not significantly changed. A global minority of very large (more than ~0.2 km²) and intermediate sized (typically ~0.05 km²) rice fields that were discernible in the Landsat data record were found in regions including California (USA), Arkansas (USA), Sinaloa (Mexico), and New South Wales (Australia), and in regions including Andalucía (Spain), the Po Valley (Italy), and Epirus (Greece), respectively. No large rice field areal change was evident in the post-1984 Landsat data record. We expect that the high rice yield locations (Figure 2) contain rice that is grown predominantly using irrigated cultivation methods that produce the greatest yields (Maclean et al. 2002). Limited studies suggest that the size of irrigated rice fields is constrained by water management issues, and depends on the slope, the soil type, and the water supply flow rate needed to ensure optimal irrigation depth and soil infiltration rates (Anbumozhi et al. 1998; Brouwer et al. 1988). We hypothesise, therefore, that the lack of any significant observable rice field change is associated with these constraints, i.e. that smaller rice fields evident in the high spatial resolution imagery have already been adapted by farmers to their optimal size.

Decadal field size change contextual analysis

Argentina

The Americas is by continent the largest producer of soybeans and Argentina is the third largest national producer of soybeans within the Americas (after the USA and Brazil) (FAOSTAT 2010). The Landsat data were located in the state of Córdoba, over the northern portion of the Central Pampas, in an area of historical agricultural production that has experienced significant increases in intensive soybean cultivation (Gavier-Pizarro et al. 2011; Viglizzo et al. 2001). Genetically modified (GM) soybean varieties were adopted in Argentina from the 1990s to reduce costs and expand production into marginal lands using zero-till cultivation practices (Craviotti 2002; Pengue 2005; Zak et al. 2008). Increased demand for biofuels, and the growth of large agricultural enterprises and one year land leasing encouraged the replacement of pasture and mixed cropping with profit maximising soybean monocultures, creating larger fields that are better suited to mechanised cultivation (Craviotti 2002; Lamers et al. 2008; Mathews and Goldsztein 2009; Viglizzo et al. 2011). This is unambiguously consistent with the results obtained in this study, where the Argentinean median field sizes exhibited a 159% increase over a 25-year period from 1986 to 2011.
Europe is by continent the second largest producer of wheat after Asia, and France is the largest national producer of wheat in Europe (FAOSTAT 2010). High yields of wheat were encouraged after the development of the European Union (EU) (Bouma et al. 1998) and were facilitated by high nitrogen fertiliser application rates (Brisson et al. 2010). The Landsat subset was located over the province of Poitou-Charentes in north-west France in an area of relatively high wheat production. Despite agricultural intensification encouraged by the EU Common Agricultural Policy (CAP) to remove hedgerows and increase field sizes, the fields in France still remain relatively small (Busch 2006; Stoate et al. 2009; Thenail and Baudry 2004). Indeed, field size growth is constrained by the prevalence of historic bocage landscape patterns dating to the nineteenth and early twentieth centuries (Thenail and Baudry 2004; van Eetvelde and Antrop 2004). Reforms to the CAP in the 1990s shifted focus away from intensification to an increased emphasis on environmentally friendly agriculture and the adoption of agricultural set-aside and field margin preservation schemes (Daniel and Perraud 2009; Mosnier et al. 2009). As previously noted, the median field size increase for this location was 100% over a 15-year period from 1984 to 1999.

Malaysia

Asia is by continent the largest producer of oil palm and Malaysia is the largest oil palm producing nation globally (FAOSTAT 2010). Oil palm plantations have expanded significantly in the past few decades encouraged by increased global demand for food and biofuel (Abdullah et al. 2009; Wicke et al. 2011). The Landsat data were located over the eastern end of the Malaysian peninsular, in the state of Perak, an area where existing agricultural lands have been converted to oil palm plantations (Abdullah and Nakagoshi 2006). Since 1985, industrial development driven by government policy reforms, including a 2005 national biofuels policy, has stimulated the domestic conversion of oil palm into biodiesel for export to primarily European markets (Abdullah et al. 2009; Abdullah and Nakagoshi 2006; Gan and Li 2008; Wicke et al. 2011). An increase in the area of land under palm oil (that exhibits larger field sizes compared with surrounding food crop fields) has been unambiguously driven by changes in government policy, resulting in a 45% median field size increase from 1990 to 2010.

USA

The Americas is by continent the largest producer of maize and the USA is the largest national producer (FAOSTAT 2010). Farm sizes (and so potentially field sizes) in the USA have increased in the past few decades due to a shift toward industrialised agriculture (Barlett 1993; Cleveland 1995; Hart 1986; USDA 2009). The Landsat data were located over Iowa in the eastern end of the Corn Belt plains ecoregion that is an area of particularly intensive agriculture, primarily maize and soybeans for animal feed and biofuels (Karr-Lilienthal et al. 2005; Petrout and Pappis 2009). Intensive cash grain production has been facilitated by technological advancements, including selective breeding, genetic manipulation, irrigation, and mechanisation (Plourde et al. 2013; USDA and Natural Resources Conservation Service 2007). Similar to farm size increases noted in the literature (MacDonald 2011), the median field sizes increased by 89% over a 22-year period from 1989 to 2011 and this was driven primarily by technological advancements.

Brazil

The Americas is by continent the largest producer of sugarcane and Brazil is the largest national producer (FAOSTAT 2010). Sugarcane, grown primarily for ethanol production, was adopted in Brazil in the 1970s in response to government policies (including the ProAlcool scheme) initiated to reduce fossil fuel dependence (Hira and de Oliveira 2009; Moraes 2011). Although subsidies for ethanol production were withdrawn by 2004 (Uriarte et al. 2009) global demand for food, fibre and energy has caused continued production and expansion of Brazilian sugar cane plantations (Smeets and Faaij 2010). The Landsat data were located in Paraná, one of the largest sugarcane producing states, that in recent decades has experienced expansion of sugarcane at the expense of other agricultural and pastoral land uses (Nassar et al. 2008). This conversion to sugarcane plantations was observed, with changes in both the field sizes (earlier pasture and agricultural fields were larger than the later sugarcane fields; Figures 6 and 7) and the field arrangement (due to the placement of completely new field boundaries). These changes resulted in an increase in the number of fields and a median field size decrease of about 47% over a 20-year period from 1991 to 2011.

Albania

Albania was considered because of well documented rapid agricultural change. The Landsat data were in the northern coastal agricultural district of Shkodër. Intensive collectivised large-scale agriculture with guaranteed markets and predominantly wheat crop cultivation was practiced until the collapse of communism in 1991 (Christensen 1994; Cungu and Swinnen 1999). This political change produced a shift from state to private ownership of lands, with land being divided based on household size (Muller and Sikor 2006; Swinnen 1999). Inappropriate tenure agreements led to land fragmentation (Sikor et al. 2009; van Dijk 2003) and small field sizes due to limited opportunities for expansion (Muller and Munroe 2008). This is apparent in the Landsat results, with nearly all the large fields subdivided into fields with distinct field boundaries.
and a median field size decrease of 86% over a 19-year period from 1991 to 2010.

Zimbabwe

Zimbabwe was considered because of well documented rapid agricultural change. The Landsat data were located over Mashonaland East Province, one of the highest crop production areas in Zimbabwe (Jingura and Matengaifa 2008), with cash (cotton and tobacco) and food crops (primarily irrigated wheat and maize) and also some subsistence farming (Nyagumbo and Rurinda 2012; Palmer 1990; Yates 1980). Until 2000 the greater majority of the commercial agricultural land in Zimbabwe was farmed by colonial, predominantly European, farmers. After independence in 1979, a government-based process of land reform aimed to redistribute lands more equally on a ‘willing seller, willing buyer’ basis (Palmer 1990). In 2000 the forced seizure and redistribution of land by a fast track process of land reform without compensation was legalised and commercial farmland was redistributed to small-scale indigenous farmers (Cliffe et al. 2011). This resulted in the mismanagement of many commercial farms and caused declining yields and cropland degradation (Prince et al. 2009; Richardson 2007; Sachikonye 2003). The number of fields per cultivated km² almost doubled due to the introduction of smaller plots constructed within the preserved outer boundaries of pre-existing field boundaries. A 55% median field size decrease over a 10-year period from 2001 to 2011 was found for this location, likely driven by the fast track land reforms.

Discussion

A body of literature has alluded to the likelihood of field sizes changing due to increasing demand for food, fibre and biofuel. Significant changes in field sizes were observed over approximately decadal periods and are likely to have significant ecological and biogeochemical consequences. The magnitude and relative speed of the observed changes were dramatic and greater than changes due to many natural processes.

A pragmatic approach was used to select seven locations where there were cloud-free Landsat data and that captured contemporary field size change. The reported sample results indicate increasing field sizes associated with technological advancements (improved mechanisation and new and improved crop varieties) and governmental policy changes (economic investment reforms, incentives for agricultural practices, and biofuel mandates). Decreasing field sizes were associated with political events that rapidly changed the agricultural sector and where pastures were converted to arable agriculture. Local patterns of field size change were complex however. Field sizes remained small where there were constraints imposed by the landscape structure and pre-existing land uses, presumably because these constraints were not easily or profitably removed. Other local factors, including spatial gradients of soil fertility and sub-surface drainage, and spatial patterns of human tenure and management as well as farmer decisionmaking, may also play a spatially constraining role. However, these factors are not possible to assess from Landsat data and were not possible to ascertain from the available literature. No systematic or significant unambiguous changes in rice field sizes could be detected and this may be due to physical constraints concerning water management issues. This study illustrates that changes may be influenced by a multitude of environmental and human factors, although the attribution of land use change drivers is challenging (Veldkamp and Lambin 2001; Verburg et al. 2004).

A pattern of increasing field sizes was indicated by this research. This may decrease landscape spatial complexity and therefore decrease landscape diversity through the homogenisation of land uses. These changes are likely to have significant ecological and biogeochemical consequences. Potential consequences include a reduction in the number of natural and semi-natural landscape patches (Merriam and Wegner 1992; Petit and Firbank 2006; Pogue and Schnell 2001), declines in biodiversity and loss of habitat (Benton et al. 2003; Duro et al. 2014; Green et al. 2005; Krebs et al. 1999), increased Aeolian soil erosion (Skidmore et al. 1970), reduced plant–pollinator interactions (Gabriel and Tscharntke 2007), modification of the ability of invasive species to establish themselves (Holway 2005; Yates et al. 2004), increased likelihood of disease pathogens and pests (Margosian et al. 2009), and loss or degradation in buffers to nutrient, herbicide and pesticide flows from agricultural lands (Martin 2011; Ryszkowski 1992). Evidence also suggests that larger regular-shaped fields are more likely to be irrigated and therefore have increased water consumption (O’Brien et al. 1998; Schuck and Green 2001). Field size increases have been associated with agricultural intensification (Kuemmerle et al. 2013; Tscharntke et al. 2005) that is associated with increased agricultural water and energy use and emission of greenhouse gases (Foley et al. 2005; Matson et al. 1997; Robertson et al. 2000).

While this research provides a snapshot of field size changes, the extrapolation of results to infer reliable, more general patterns will depend on the number of sample locations and their placement relative to the heterogeneity of field size distributions and changes. As this information is not well defined, global wall-to-wall quantitative spatially explicit field size mapping is suggested. Terrestrial changes may be exhibited and understood in quite different ways in the context of multi-decadal rather than decadal time series, and so...
repeated decadal field size mapping is suggested. It is expected that more Landsat data acquired in the 1970s to the present day will become available as they are repatriated from non-US receiving stations into the US Landsat archive. A limitation of the current research is the 0.0054 km² minimum mapping unit that results from the 30 m Landsat pixel size and that precludes small field identification. In regions that are, or have previously been dominated by small holder agriculture, such as in Asia (Fan and Chan-Kang 2005) and Africa (Morton 2007), this may be an issue when Landsat data are used. As higher spatial resolution satellite alternatives to Landsat are not available prior to 1999, a potential solution is to use historical aerial photography such as declassified military imagery (Tappend et al. 2000).

The absolute accuracy of the resulting field extractions was unknown but, given the interactive and visual extraction approach used, the field extractions reflect the highest accuracy we judged possible. We admit that if other operators followed the same approach the resulting field maps could be different, particularly for smaller fields. The minimum field size that can be extracted reliably from satellite data is dependent on several factors, including the sensor spatial resolution, satellite geolocation errors, the spectral contrast between field interiors and exteriors, the field shape, and the extraction methodology. The use of a minimum field size threshold is problematic for locations where field sizes changes occur above and below the threshold. In this research both the consolidation of small adjacent fields into larger fields, and the subdivision of larger fields into smaller ones was observed. However, the percentage change in the median field size will only be sensitive to small field size detection issues if 50% or more of the field sizes were undetectable. Of the seven sites considered, only the second Landsat image acquired over the Albanian site had more than a minority of fields (and less than 50%) that were close to the 0.0054 km² minimum field size limit and so the changes in Albanian field sizes from 1991 to 2010 were sufficient to reveal an unambiguous decrease.

Future agricultural production is expected in many regions to rely on increased agricultural yield rather than agricultural land expansion (Erb et al. 2013), although yield increases are likely to vary geographically and with crop type, and to be sensitive to climate changes (Lobell and Field 2007). This research suggests that in such regions future field sizes may also increase, likely facilitated by opportunities provided by technological developments, and driven by the need to increase agricultural yield and by demand for particular crops in response to macroeconomic drivers and governmental policies. However, the extent to which field sizes globally have already increased is unquantified.

Acknowledgements

This research was funded by NASA NNH09ZDA001N-LCLUC (grant number NNX11AH99G – NSR 311144). The US Landsat project management and staff at USGS EROS, Sioux Falls, South Dakota, are thanked for provision of the Landsat 7 ETM+ data. The Quickbird images were obtained from the NASA NGA commercial very-high resolution satellite data archive. Dr Chris Justice, Department of Geographical Sciences, University of Maryland, is thanked for the original suggestion for this study. The comments of the anonymous reviewers helped to improve the paper considerably.

References

Abadie A 2002 Bootstrap tests for distributional treatment effects in instrumental variable models Journal of the American Statistical Association 97 284–92
Abdullah A Z, Salamatinia B, Mootabadi H and Bhatia S 2009 Current status and policies on biodiesel industry in Malaysia as the world’s leading producer of palm oil Energy Policy 37 5440–8
Abdullah S A and Nakagoshi N 2006 Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia Landscape and Urban Planning 77 263–75
Anbumozhi V, Yamaji E and Tabuchi T 1998 Rice crop growth and yield as influenced by changes in ponding water depth, water regime and fertilization level Agricultural Water Management 37 241–53
Anderson M C, Allen R G, Morse A and Kustas W P 2012 Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources Remote Sensing of Environment 112 50–65
Arvidson T, Gasch J and Goward S N 2001 Landsat 7’s long-term acquisition plan – an innovative approach to building a global imagery archive Remote Sensing of Environment 78 13–26
Barlett P F 1993 American dreams rural realities family farms in crisis University of North Carolina Press, Chapel Hill, NC
Basnyat P, McConkey B, Meinert B, Gatkze C and Noble G 2004 Agriculture field characterization using aerial photography and satellite imagery IEEE Geoscience and Remote Sensing Letters 1 7–10
Bauer M E, Hixson M M, Davis B J and Etheridge J B 1978 Area estimation of crops by digital analysis of Landsat data Photogrammetric Engineering and Remote Sensing 44 1033–43
Becker-Reshef I, Justice C, Sullivan M, Vermote E, Tucker C, Anyamba A et al. 2010 Monitoring global croplands with coarse resolution earth observations: the Global Agriculture Monitoring (GLAM) project Remote Sensing 2 1589–609
Belward A S and Skøien J O 2014 Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites ISPRS Journal of Photogrammetry and Remote Sensing 28 April doi:10.1016/j.isprsjprs.2014.03.009
Benton T G, Vickery J A and Wilson J D 2003 Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution 18 182–8

ISSN 2054-4049 Citation: 2015, 2, 33–54 doi: 10.1002/geo2.4
© 2015 The Authors. Geo: Geography and Environment published by John Wiley & Sons Ltd and the Royal Geographical Society (with the Institute of British Geographers)
Blaschke T, Hay G J, Kelly M, Lang S, Hofmann P, Addink E et al. 2014 Geographic object-based image analysis — towards a new paradigm ISPRS Journal of Photogrammetry and Remote Sensing 87 180–91

Bouma J, Varallyay G and Batjes N H 1998 Principal land use changes anticipated in Europe Agriculture, Ecosystems and Environment 67 103–19

Brisson N, Gate P, Gouache D, Charmet G, Oury F-X and Huard F 2010 Why are wheat yields stagnating in Europe? A comprehensive data analysis for France Field Crops Research 119 201–12

Brouwer C, Prins K, Kay M and Heibloem M 1988 Irrigation water management: irrigation methods Training Manual No. 5, Food and Agriculture Organization of the United Nations, Rome, Italy

Brown P W and Schulte L A 2011 Crop ecol-technology for Biofuels 4 33–7

Busch G 2006 Future European agricultural landscapes — what can we learn from existing quantitative land use scenario studies? Agriculture, Ecosystems and Environment 114 121–40

Cassidy E S, West P C, Gerber J S and Foley J A 2013 Redefining agricultural yields: from tonnes to people nourished per hectare Environmental Research Letters 8 034015

Chang J, Hansen M C, Pittman K, Carroll M and DiMiceli C 2007 Corn and soybean mapping in the United States using MODIS time-series data sets Agronomy Journal 99 1654–64

Christensen G 1994 When structural adjustment proceeds as prescribed: agricultural sector reforms in Albania Food Policy 19 557–60

Cleveland C J 1995 Resource degradation, technical change, and the productivity of energy use in U.S. agriculture Ecological Economics 13 185–201

Cliffe L, Alexander J, Cousins B and Gaidzanwa R 2011 An overview of Fast Track Land Reform in Zimbabwe: editorial introduction The Journal of Peasant Studies 38 907–11

Cohen W B, Maiersperger T K, Gower S T and Turner D P 2003 An improved strategy for regression of biophysical variables and Landsat ETM+ data Remote Sensing of Environment 84 561–71

Connor D J, Loomis R S and Cassman K G 2011 Crop ecology, productivity and management in agricultural systems Cambridge University Press, New York

Conover W J 1971 Practical nonparametric statistics John Wiley and Sons, New York

Craviotti C 2002 Pampas family farms and technological change: strategies and perspectives towards genetically modified crops and no-tillage systems International Journal of Sociology of Agriculture and Food 10 23–33

Cungu A and Swinnen J F M 1999 Albania’s radical agrarian reform Economic Development and Cultural Change 47 605–19

Daniel F-J and Perraud D 2009 The multifunctionality of agriculture and contractual policies. A comparative analysis of France and the Netherlands Journal of Environmental Management 90 S132–8

Definiens 2009 Definiens eCognition Developer 8 user guide Definiens AG, Munchen, Germany

Duro D C, Girard J, King D J, Fahrig L, Mitchell S, Lindsay K and Tischendorf L 2014 Predicting species diversity in agricultural environments using Landsat TM imagery Remote Sensing of Environment 144 214–25

Duveller G and Defourny P 2010 A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing Remote Sensing of Environment 114 2637–50

Erb K-H, Haberl H, Jepsen M R, Kuemmerle T, Lindner M, Müller D et al. 2013 A conceptual framework for analysing and measuring land-use intensity Current Opinion in Environmental Sustainability 5 464–70

Erdős P and Graham R L 1975 On packing squares with equal squares Journal of Combinatorial Theory, Series A 19 119–23

Fan S and Chan-Kang C 2005 Is small beautiful? Farm size, productivity, and poverty in Asian agriculture Agricultural Economics 32 135–46

FAOSTAT 2010 FAO statistical databases (http://faostat3.fao.org/) Accessed 9 March 2015

Ferguson M C, Badhwar G D, Chikara R S and Pitts D E 1986 Field size distributions for selected agricultural crops in the United States and Canada Remote Sensing of Environment 19 25–45

Foley J A, DeFries R, Asner G P, Barford C, Bonan G, Carpenter S et al. 2005 Global consequences of land use Science 309 570–4

Foley J A, Ramankutty N, Braun M A, Cassedy E, Gerber J, Johnston M et al. 2011 Solutions for a cultivated plant Nature 478 337–42

Fritz S, See L, McCellum I, You L, Bun A, Molchanova E et al. 2015 Mapping global cropland and field size Global Change Biology 16 January doi: 10.1111/gcb.12838

Gabriel D and Tscharkor T 2007 Insect polluted plants benefit from organic farming Agriculture, Ecosystems and Environment 118 43–8

Gan P Y and Li Z 2008 An econometric study on long-term energy outlook and the implications of renewable energy utilization in Malaysia Energy Policy 36 890–9

Garrett R D, Rueda X and Lambin E F 2013 Globalization’s unexpected impact on soybean production in South America: linkages between preference for non-genetically modified crops, eco-certifications, and land use Environmental Research Letters 8 044055

Gavier-Pizarro G I, Calamari N C, Thompson J, Canavelli S B, Solari L M, Decarre J et al. 2011 Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density Agriculture, Ecosystems and Environment 145 44–55

Goldenberg J 2008 The Brazilian biofuels industry Biotechnology for Biofuels 1 1–7

Goldewijk K K and Ramankutty N 2004 Land cover change over the last three centuries due to human activities: The availability of new global data sets Geojournal 61 335–44

Graham-Rowe D 2011 Agriculture: beyond food versus fuel Nature 474 S6–8

Green R E, Cornell S J, Scharlemann J P W and Balmford A 2005 Farming and the fate of wild nature Science 307 550–5

Hall F G and Badhwar G D 1987 Signature-extensible technology: global space-based crop recognition IEEE Transactions: Geoscience and Remote Sensing GE-25 93–103
Hansen M C, Egorov A, Potapov P V, Stehman S V, Tyukavina A, Turubanova S A et al. 2014 Monitoring con-
terminous United States (CONUS) land cover change with
Web-Enabled Landsat Data (WELD) Remote Sensing of En-
vironment 140 466–84
Hansen M C and Loveland T R 2012 A review of large area
monitoring of land cover change using Landsat data Remote
Sensing of Environment 122 66–74
Hanuschak G A, Sigman R, Craig M E, Ozga M, Luebbe R
C, Cook P W, Kleweno D D et al. 1980 Crop-area esti-
mates from Landsat: transition from research and develop-
ment to timely results IEEE Transactions: Geoscience
and Remote Sensing GE-18 160–6
Hart J F 1986 Change in the corn belt Geographical Review 76
51–72
Hazell P and Wood S 2008 Drivers of change in global agri-
culture Philosophical Transactions of the Royal Society B-
Biological Sciences 363 495–515
Herzog F, Steiner B, Bailey D, Baudry J, Billetter R,
Bukácek R et al. 2006 Assessing the intensity of temperate
European agriculture at the landscape scale European Jour-
nal of Agronomy 24 165–81
Hira A and de Oliveira L G 2009 No substitute for oil? How
Brazil developed its ethanol industry Energy Policy 37 2450–6
Holway D A 2005 Edge effects of an invasive species across a
natural ecological boundary Biological Conservation 121 561–7
Ji C Y 1996 Delineating agricultural field boundaries from TM
imagery using dyadic wavelet transforms ISPRS Journal of
Photogrammetry and Remote Sensing 51 268–83
Jing Q, Bouman B A M, Hengsdijk H, Van Keulen H and
Cao W 2007 Exploring options to combine high yields with
high nitrogen use efficiencies in irrigated rice in China
European Journal of Agronomy 26 166–77
Jingura R M and Matengaifa R 2008 The potential for bio-
mass energy production from crop residues in Zimbabwe Biomass
and Bioenergy 32 1287–92
Johansen K, Roelfsema C and Phinn S 2008 High spatial
resolution remote sensing for environmental monitoring and
management preface Journal of Spatial Science 53 43–7
Johnson D M 2013 A 2010 map estimate of annually tilled
cropland within the conterminous United States Agricultural
Systems 114 95–105
Johnson D M and Mueller R 2010 The 2009 cropland data
layer Photogrammetric Engineering and Remote Sensing 76
1201–5
Justice C, Belward A, Morissette J, Lewis P, Privette J and
Baret F 2000 Developments in the ‘validation’ of satellite
sensor products for the study of the land surface Interna-
tional Journal of Remote Sensing 21 3383–90
Karr-Lilienthal L K, Kadzere C T, Grieshop C M and
Fahey J G C 2005 Chemical and nutritional properties of
soybean carbohydrates as related to nonruminants: a review Livestock Production Science 97 1–12
Kastner T, Rivas M J I, Koch W and Nonhebel S 2012
Global changes in diets and the consequences for land
requirements for food Proceedings of the National Academy of
Sciences 109 6868–72
Kovalskyy V and Roy D P 2013 The global availability of
Landsat 5 TM and Landsat 7 ETM+ land surface observa-
tions and implications for global 30m Landsat data product
generation Remote Sensing of Environment 130 280–93
Krebs J R, Wilson J D, Bradbury R B and Siriwudena G M
1999 The second Silent Spring? Nature 400 611–12
Kuemmerle T, Erb K, Meyfroidt P, Müller D, Verburg P H,
Estel S et al. 2013 Challenges and opportunities in mapping
land use intensity globally Current Opinion in Environmental
Sustainability 5 484–93
Kuemmerle T, Radloff V C, Perzanowski K and
Hostert P 2006 Cross-border comparison of land cover and
landscape pattern in Eastern Europe using a hybrid
classification technique Remote Sensing of Environment 103
449–64
Lambin E F, Gibbs H K, Ferreira L, Grau R, Mayaux P,
Mayfroidt P, Morton D C et al. 2013 Estimating the world’s potentially available cropland using a bottom-up ap-
proach Global Environmental Change 23 892–901
Lammers P, McCormick K and Hilbert J A 2008 The emerg-
ing liquid biofuel market in Argentina: implications for do-
meric demand and international trade Energy Policy 36
1479–90
Lo T H C, Scarpace F L and Lillesand T M 1986 Use of
multitemporal spectral profiles in agricultural land cover
classification Photogrammetric Engineering and Remote Sens-
ing 52 535–44
Lobell D B, Asner G P, Ortiz-Monasterio J I and Benning
T L 2003 Remote sensing of regional crop production in the
Yaqui Valley, Mexico: Estimates and uncertainties Agricul-
ture, Ecosystems and Environment 94 205–20
Lobell D B and Field C B 2007 Global scale climate–crop
yield relationships and the impacts of recent warming Envi-
rionmental Research Letters 2 014002
Loveland T R and Dwyer J L 2012 Landsat: building a strong
future Remote Sensing of Environment 122 22–29
MacDonald J M 2011 Why are farms getting larger? The case
of the U.S. in Paper Presented at the 51st Annual Conference,
Sept. 28–30, 2011 Halle/Saale
MacDonald R B, Hall F G and Erb R B 1975 The use of
Landsat data in a Large Area Crop Inventory Experiment (LACIE) in Symposium on Machine Processing of Remotely
Sensed Data, June 3–5, 1975 West Lafayette, Indiana
Maclean J L, Dawe D C, Hardy B and Hettel G P 2002 Rice
amalan: source book for the most important economic ac-
tivity on earth CABI Publishing, Wallingford, UK
Margosian M L, Garrett K A, Shawn Hutchinson J M and
With K A 2009 Connectivity of the American agricultural
landscape: assessing the national risk of crop pest and dis-
ease spread BioScience 59 141–51
Markham B L, Storey J C, Williams D L and Irons J R 2004
Landsat sensor performance: history and current status IEEE
Transactions: Geoscience and Remote Sensing 42 2691–4
Martin J 2011 Perspective: don’t foul the water Nature 474 S17
Mathews J A and Goldsstein H 2009 Capturing latecomer
advantages in the adoption of biofuels: the case of Argentina
Energy Policy 37 326–37
Matson P A, Parton W J, Power A G and Swift M J 1997
Agricultural intensification and ecosystem properties Science
277 504–9
Merriam G and Wegner J 1992 Local extinctions, habitat frag-
mentation, and ecotones in the American agricultural sys-
tem, and ecotones in Agricultural intensification and ecosystem properties Landscape boundaries Springer, New York 150–69
Mölter M, Birger J, Gidudu A and Gläßer C 2013 A
framework for the geometric accuracy assessment of

ISSN 2054-4049 Citation: 2015, 2, 33–54 doi: 10.1002/geo2.4
© 2015 The Authors. Geo: Geography and Environment published by John Wiley & Sons Ltd and the Royal Geographical Society (with the Institute of British Geographers)
satellite images IEEE Transactions: Geoscience and Remote Sensing 39 2514–20

Ryszkowski L 1992 Energy and material flows across boundaries in agricultural landscapes in Hansen A and Di Castri F eds Landscape boundaries Springer, New York 270–84

Sachikonye L M 2003 From ‘growth with equity’ to ‘fast-track’ reform: Zimbabwe’s land question Review of African Political Economy 30 227–40

Sampanth R K 1992 Farm size and land use intensity in Indian agriculture Oxford Economic Papers 44 494–501

Schriever J R and Congalton R J 1995 Mapping forest cover types in New Hampshire using multi-temporal Landsat Thematic Mapper data in ASPRS/ACSM Annual Convention and Exposition, 15–19 February (New Orleans, Louisiana) 3 333–342

Schuck E C and Green G P 2001 Field attributes, water pricing, and irrigation technology adoption Journal of Soil and Water Conservation 56 293–8

Seto K C, Reenberg A, Boone C G, Fragkias M, Haase D, Langanke T, Marcotullio P et al. 2012 Urban land teleconnections and sustainability Proceedings of the National Academy of Sciences of the United States of America 109 7687–92

Sikor T, Muller D and Stahl J 2009 Land fragmentation and cropland abandonment in Albania: implications for the roles of state and community in post-socialist land consolidation World Development 37 1411–23

Skidmore A E L, Fisher P S, Woodruff N P 1970 Wind erosion equation: computer solution and application Proceedings of the Soil Science Society of America 34 931–5

Smale M, Singh J, Di Falco S and Zambrano P 2008 Wheat breeding, productivity and soil variation change: Evidence from the Punjab of India after the Green Revolution Australian Journal of Agricultural and Resource Economics 52 419–32

Smeets E M W and Faaij A P C 2010 The impacts of sustainability criteria on the costs and potentials of bioenergy production – applied for case studies in Brazil and Ukraine Biomass and Bioenergy 34 319–33

Stoate C, Baldi A, Beja P, boatman N D, Herzon I, van Doorn I et al. 2009 Ecological impacts of early 21st century agricultural change in Europe – a review Journal of Environmental Management 91 22–46

Sturges H A 1926 The choice of a class interval Journal of the American Statistical Association 21 65–6

Swinnen J F M 1999 The political economy of land reform choices in Central and Eastern Europe Economics of Transition 7 637–64

Tappan G G, Amadou H, Wood E C and Lietzow R W 2000 Use of Argon, Corona, and Landsat imagery to assess 30 years of land resource changes in west-central Senegal Photogrammetric Engineering and Remote Sensing 96 727–35

Thenail C and Baudry J 2004 Variation of farm spatial land use pattern according to the structure of the hedgerow network (bocage) landscapes: a case study in northeast Brittany Agriculture, Ecosystems and Environment 101 53–72

Tilman D, Cassman K G, Matson P A, Naylor R and Polasky S 2002 Agricultural sustainability and intensive production practices Nature 418 671–7

Townshend J R G and Justice C O 1988 Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations International Journal of Remote Sensing 9 187–236

Tschernike T, Klein A M, Kruess A, Stefan-Dewenter I and Thies C 2005 Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management Ecology Letters 8 857–74

Turker M and Ozdarici A 2012 Field-based crop classification using SPOT4, SPOT5, IKONOS and QuickBird imagery for agricultural areas: a comparison study International Journal of Remote Sensing 32 9735–68

Turner B L, Lambin E F and Reenberg A 2007 The emergence of land use science for global environmental change and sustainability Proceedings of the National Academy of Sciences of the United States of America 104 20666–71

USDA 1994 Major world crop areas and climatic profiles (revised) in Agricultural handbook No. 664 US Department of Agriculture, Washington, DC

USDA 2009 United States summary and state data volume 1 – geographic area series part 51 AC-07-A-51 2007 Census of Agriculture US Department of Agriculture, Washington DC

USDA and Natural Resources Conservation Service 2007 National resources inventory 2003, land use US Department of Agriculture, Washington DC

Uriarte M, Yackulic C B, Cooper T, Flynn D, Cortes M, Crk T et al. 2009 Expansion of sugarcane production in São Paulo, Brazil: implications for fire occurrence and respiratory health Agriculture, Ecosystems and Environment 132 48–56

van Asselen S and Verbong P H 2012 A Land System representation for global assessments and land-use modeling Global Change Biology 18 3125–48

van Dijk T 2003 Scenarios of Central European land fragmentation Land Use Policy 20 149–58

van Eetvelde V and Antrop M 2004 Analyzing structural and functional changes of traditional landscapes — two examples from Southern France Landscape and Urban Planning 67 79–95

Veldkamp A and Lambin E F 2001 Predicting land-use change Agriculture, Ecosystems and Environment 85 1–6

Verbong P, Schot P, Dijst M and Veldkamp A 2004 Land use change modelling: current practice and research priorities Geojournal 61 309–24

Vigliizzo E F, Frank F C, Carreño L V, Jobbagy E G, Pereyra H, Clatt J et al. 2011 Ecological and environmental footprint of 50 years of agricultural expansion in Argentina Global Change Biology 17 950–73

Vigliizzo E F, Lértora F, Pordomingo A J, Bernardos J N, Roberto Z E and Del Valle H 2001 Ecological lessons and applications from one century of low external-input farming in the Pampas of Argentina Agriculture, Ecosystems and Environment 83 65–81

Wicke B, Sikkema R, Dornburg V and Faij B 2011 Exploring land use changes and the role of palm oil production in Indonesia and Malaysia Land Use Policy 28 193–206

Wulder M A, Masek J G, Cohen W B, Loveland T R and Woodcock C E 2012 Opening the archive: how free data has enabled the science and monitoring promise of Landsat Remote Sensing of Environment 122 2–10

Xiao X, Boles S, Froliking S, Li C, Babu J Y, Salas W and Moore Iii B 2006 Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images Remote Sensing of Environment 100 95–113

ISSN 2054-4049 Citation: 2015, 2, 33–54 doi: 10.1002/geo2.4

© 2015 The Authors. Geo: Geography and Environment published by John Wiley & Sons Ltd and the Royal Geographical Society (with the Institute of British Geographers)
Yan L and Roy D P 2014 Automated crop field extraction from multi-temporal Web Enabled Landsat Data Remote Sensing of Environment 144 42–64

Yates E D, Levia D F and Williams C L 2004 Recruitment of three non-native invasive plants into a fragmented forest in southern Illinois Forest Ecology and Management 190 119–30

Yates P 1980 The prospects for socialist transition in Zimbabwe Review of African Political Economy 7 68–88

You L, Wood S and Wood-Sichra U 2009 Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach Agricultural Systems 99 126–40

Zak M, Cabido M, Cáceres D and Díaz S 2008 What drives accelerated land cover change in Central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors Environmental Management 42 181–9