Precursor-Directed Combinatorial Biosynthesis of Cinnamoyl, Dihydrocinnamoyl, and Benzoyl Anthranilates in Saccharomyces cerevisiae.

Permalink
https://escholarship.org/uc/item/5k82n2c2

Journal
PloS one, 10(10)

ISSN
1932-6203

Authors
Eudes, Aymerick
Teixeira Benites, Veronica
Wang, George
et al.

Publication Date
2015

DOI
10.1371/journal.pone.0138972

Peer reviewed
Abstract

Biological synthesis of pharmaceuticals and biochemicals offers an environmentally friendly alternative to conventional chemical synthesis. These alternative methods require the design of metabolic pathways and the identification of enzymes exhibiting adequate activities. Cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates are natural metabolites which possess beneficial activities for human health, and the search is expanding for novel derivatives that might have enhanced biological activity. For example, biosynthesis in *Dianthus caryophyllus* is catalyzed by hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), which couples hydroxycinnamoyl-CoAs and benzoyl-CoAs to anthranilate. We recently demonstrated the potential of using yeast (*Saccharomyces cerevisiae*) for the biological production of a few cinnamoyl anthranilates by heterologous co-expression of 4-coumaroyl:CoA ligase from *Arabidopsis thaliana* (4CL5) and HCBT. Here we report that, by exploiting the substrate flexibility of both 4CL5 and HCBT, we achieved rapid biosynthesis of more than 160 cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates in yeast upon feeding with both natural and non-natural cinnamates, dihydrocinnamates, benzoates, and anthranilates. Our results demonstrate the use of enzyme promiscuity in biological synthesis to achieve high chemical diversity within a defined class of molecules. This work also points to the potential for the combinatorial biosynthesis of diverse and valuable cinnamoylated, dihydrocinnamoylated, and benzoylated products by using the versatile biological enzyme 4CL5 along with characterized cinnamoyl-CoA- and benzoyl-CoA-utilizing transferases.
Introduction

Cinnamoyl and benzoyl anthranilates are bipartite molecules consisting of cinnamate or benzoyl moieties amide-linked to anthranilic acids (Fig 1). The beneficial pharmacological effects of these molecules on human health have been well-documented over the past few years. For example, avenanthramides are natural cinnamoyl anthranilates found in oats and possess antioxidant, anti-inflammatory, and antiproliferative bioactivities [1,2]. Tranilast ([N-(3',4'-dimethoxycinnamoyl)-anthranilic acid], Fig 1A) is a synthetic cinnamoyl anthranilate marketed in Japan for the treatment of allergic diseases, scleroderma, and hypertrophic scars associated with excessive fibrotic response [3]. In particular, tranilast is an antifibrotic agent that inhibits several profibrotic growth factors [4–6]. Recent efforts have been made for the development of tranilast analogs to optimize the antifibrotic effects and reduce toxicity at higher doses [7]. For instance, modification of functional groups on the cinnamoyl ring and the introduction of halogens resulted in cinnamoyl anthranilates with higher bioavailability and enhanced inhibitory effects on fibrosis [8–12]. Other structure optimizations have included double bond saturation resulting in dihydrocinnamoyl anthranilates such as dihydroavenanthramide D (DHavnD, Fig 1B), which is an anti-inflammatory used for the treatment of skin disorders and is currently evaluated for its antidiabetic and anticancer effects [13–15]. Benzoyl anthranilates (Fig 1C) are found in some plant species such as D. caryophyllus [16]; and several analogs were shown to inhibit human aldo-keto reductases involved in different pathophysiological conditions such as prostate cancer [17], as well as to possess cytotoxic activity toward
cancer cell lines [18]. Moreover, certain halogenated benzoyl anthranilates are candidates for the treatment of infectious diseases because of their inhibitory effects on the malaria agent Plasmodium falciparum [19], the human African trypanosomiasis agent Trypanosoma brucei [20,21], and the opportunistic pathogenic bacterium Pseudomonas aeruginosa [22,23].

The chemical synthesis of pharmaceuticals such as cinnamoyl and benzoyl anthranilates—or their purification from source organisms—consumes nonrenewable petroleum-based chemicals, generates toxic byproducts that require downstream waste-processing, and increases production costs. By contrast, biological synthesis is an eco-friendly production method with reduced requirements for toxic chemicals and natural resources. It offers consistent quality, scalability, simple extraction, and potential for higher synthesis efficiency [24]. In addition, biological synthesis could expand the chemical diversity of natural products, the structural complexity of which is sometimes challenging to achieve using multistep chemical synthesis [25]. In this area, the industrial microorganism yeast (Saccharomyces cerevisiae) has emerged as a powerful tool for the biosynthesis of secondary metabolites considering its advantages for the expression of complex metabolic pathways [26]. We previously reported on a yeast strain engineered for the production of tranilast and several analogs [27]. Cinnamates supplied to this strain are converted into coumaroyl-CoAs by 4-coumaroyl:CoA ligase 5 (4CL5) from Arabidopsis thaliana and coupled to anthranilate or 3-hydroxyanthranilate by hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) from D. caryophyllus (Fig 2). In an earlier study, 13 methoxylated and hydroxylated cinnamates were successfully used as precursors for the production of the corresponding hydroxy/methoxycinnamoyl anthranilates [27]. Here, we show how we extended our yeast production platform by screening several new cinnamate derivatives that could potentially be converted by our yeast strain into cinnamoyl anthranilates and explored benzoates as precursors for the production of benzoyl anthranilates (Fig 2). First, a series of halogenated cinnamates were tested because of the importance of halogen groups—particularly fluoride—in drug development [28,29]. Second, several dihydrocinnamates,

Fig 2. Strategy used for the biological synthesis of cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates. Diagram of the reactions catalyzed by 4CL5 and HCBT in the yeast strain engineered for the production of various cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates upon feeding with cinnamates, dihydrocinnamates, or benzoates (donors); and with anthranilates (acceptors). HSCoA, Coenzyme A.
which correspond to cinnamates with a saturated double bond on the propanoid tail, were tested and successfully converted into dihydrocinnamoyl anthranilates—including those that were halogenated. Third, since HCBT is known to use benzoyl-CoA in addition to coumaroyl-CoA [30], we attempted to feed the yeast strain with benzoic acid derivatives and confirmed production of a series of halogenated benzoyl anthranilates.

Altogether, our data demonstrate that the substrate promiscuity of both 4CL5 and HCBT can be exploited for biological synthesis of structurally diverse cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates of potential pharmaceutical value.

Materials and Methods

Chemicals

The cinnamates, dihydrocinnamates (or 3-phenylpropionates), and benzoates used for the yeast feeding experiments are listed in S1, S2 and S3 Tables and were purchased from VWR International (Radnor, PA, USA). DHavnD and dianthramide B were obtained from Enamine Ltd (Monmouth Jct., NJ) and Sigma-Aldrich (Saint-Louis, MO), respectively.

Expression of 4CL5 and HCBT in yeast

The pDRf1-4CL5-HCBT1, pDRf1-HCBT1, and pDRf1-4CL5 vectors [27] were used for the expression of At4CL5 (At3g21230, also named At4CL4 in original studies [31]) and a codon-optimized HCBT (GenBank: Z84385.1) under the control of the constitutive promoters P\textsubscript{HXT7} and P\textsubscript{PMX}, respectively. The S. cerevisiae pad1 knockout (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δpad1, ATCC 4005833) [32] was transformed using the Frozen-EZ Yeast Transformation II Kit™ (Zymo Research Corporation, Irvine, CA) and selected on solid medium containing Yeast Nitrogen Base (YNB) without amino acids (Difco 291940; Difco, Detroit, MI) supplemented with 3% glucose and 1X dropout-uracil (CSM-ura; Sunrise Science Products, San Diego, CA). A pad1 knockout was chosen because PAD1 is a known phenylacrylic acid decarboxylase whose deletion in yeast prevents the degradation of exogenously supplied cinnamates [33, 34].

Production of cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates

An overnight culture from a single colony of the pDRf1-4CL5-HCBT1 recombinant yeast grown on 2X YNB medium without amino acids, supplemented with 6% glucose and 2X CSM-Ura, was used to inoculated 4 mL of fresh minimal medium at an OD\textsubscript{600} = 0.15 and shaken at 200 rpm at 30°C. All precursors were prepared in DMSO and added 5 hours post inoculation at the concentrations indicated in S1, S2 and S3 Tables. The anthranilate acceptors were added to the medium at a final concentration of 300 μM (for anthranilate, 3-hydroxyanthranilate, 3-methylanthranilate, and 5-nitroanthranilate) or 50 μM (for 3-chloroanthranilate, 5-methylanthranilate, 3-methoxyanthranilate, 5-fluoroanthranilate, 5-iodoanthranilate, and 5-chloroanthranilate). These concentrations were selected to limit toxicity and growth inhibition due to either the supplied precursors or the metabolites produced. The cultures were shaken at 200 rpm at 30°C for 24 h in the presence of the precursors for the production of cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates. Yeast colonies harboring the pDRf1-HCBT1 or pDRf1-4CL5 control vectors were grown under similar conditions. For the detection of metabolites, an aliquot of the culture medium was collected and cleared by centrifugation (21,000xg for 5 min at 4°C), mixed with an equal volume of cold methanol:water (1:1, v/v), and filtered using Amicon Ultra centrifugal filters (3,000 Da MW cutoff regenerated cellulose membrane; Millipore, Billerica, MA) prior to LC-TOF MS analysis. The separation and
identification of the metabolites were performed using high-performance liquid chromatography (HPLC), electrospray ionization (ESI), and time-of-flight (TOF) mass spectrometry (MS) as previously described [35]. For each compound, the measured masses agreed with the expected theoretical masses within less than 5 ppm mass error. Standard solutions of DHavnD and dianthramide B were prepared in methanol:water (1:1, v/v). Values obtained for the production of DHavnD and dianthramide B are the average of four replicates (n = 4). ESI-MS spectra of other cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates were obtained from single feeding experiments for each combination of precursors.

Results

Production of halogenated cinnamoyl anthranilates

A yeast strain that co-expresses 4CL5 and HCBT was used as a catalyst for the production of non-natural halogenated cinnamoyl anthranilates. We showed previously that HCBT can accept anthranilate or 3-hydroxyanthranilate as substrates for the production of cinnamoyl anthranilates [27]. We further investigated the substrate promiscuity of HCBT and the possibility of producing additional cinnamoyl conjugates by feeding the yeast strain with new anthranilates in combination with p-coumarate. Of 10 anthranilates individually supplied to the culture medium, five novel p-coumaroyl anthranilates were conclusively produced upon feeding with 3-methylanthranilate, 3-methoxyanthranilate, 3-chloroanthranilate, 5-methylanthranilate, and 5-fluoroanthranilate—indicating that HCBT can also accept these anthranilate analogs (Table 1, S1 Fig). Based on their expected masses, these compounds were identified by LC-MS analysis of the culture medium but could not be detected in control yeast cultures grown with only anthranilates (without p-coumarate). Next, to assess the capacity of the yeast strain to produce non-natural cinnamoyl anthranilates, we fed the 4CL5- and HCBT-expressing yeast strain several halogenated cinnamates in combination with the seven different anthranilates identified as HCBT acceptors. As a result, 45 novel halogenated cinnamoyl anthranilates were biosynthesized out of 98 combinations tested using a series of 14 fluorinated, chlorinated, and brominated cinnamates (Table 1, S1 Fig). These results demonstrate the coenzyme A-ligase activity of 4CL5 toward these non-natural cinnamates and the capacity of HCBT to couple the corresponding CoA-thioesters to various anthranilates.

Production of dihydrocinnamoyl anthranilates

We attempted to produce dihydrocinnamoyl anthranilates by feeding the yeast strain with various dihydrocinnamates (i.e., 3-phenylpropanate derivatives) and anthranilates. First, by comparison with the LC-MS elution profile of an authentic standard, the production of DHavnD (4.03 ± 0.08 μM) was successfully achieved by feeding 4-hydroxydihydrocinnamate and anthranilate (Fig 3), which indicated the promiscuity of 4CL5 and HCBT to use as substrates the saturated propanoid tail of cinnamate and cinnamoyl-CoA, respectively. No DHavnD was detected from the culture medium of control strains, fed with the same precursors and expressing either 4CL5 or HCBT alone. Next, as a preliminary round of screening, the medium of the engineered yeast was supplied with a series of 22 dihydrocinnamates (including halogenated dihydrocinnamates) in combination with anthranilate, which led to the production of 14 individual dihydrocinnamoyl anthranilates, according to the LC-MS analysis of the medium (Table 2, S2 Fig). The dihydrocinnamates that yielded a detectable product in the first round of screening were then co-fed with 3-hydroxyanthranilate or 3-methylanthranilate, which resulted in the production of 13 additional dihydrocinnamoyl anthranilates (Table 2, S2 Fig). The new compounds identified were not produced in the control yeast cultures fed only with
Table 1. Structural characteristics of the cinnamoyl anthranilates (general structure shown in Fig 1A) produced in yeast and their identification based on dominant ion masses in ESI-MS spectra. Values were obtained from single feeding experiments for each combination of precursors.

Donor	Acceptor	Cinnamoyl anthranilates	R₁	R₂	R₃	R₄	R₅	R₆	Formula	Theoretical mass [M-H]	Measured mass [M-H]	Mass accuracy* (ppm)	Retention time (min)	Mass spectrum # in S1 Fig
p-coumaric acid 5-methylantrinalic acid	N-(4-hydroxy cinnamoyl)-5-methylantrinalic acid	CH₃	H	H	H	OH	H	C₁₂H₁₄NO₅	291.0928	291.0937	-0.30	12.56	1	
p-coumaric acid 3-methylantrinalic acid	N-(4-hydroxy cinnamoyl)-3-methylantrinalic acid	H	CH₃	H	H	OH	H	C₁₂H₁₄NO₅	291.0928	291.0925	0.60	10.95	2	
p-coumaric acid 5-fluorocinnamic acid	N-(4-hydroxy cinnamoyl)-5-fluorocinnamic acid	F	H	H	H	OH	H	C₁₀H₁₂FNO₄	300.0678	300.0678	0.00	11.05	3	
p-coumaric acid 3-methoxyantrinalic acid	N-(4-hydroxy cinnamoyl)-3-methoxyantrinalic acid	H	OCH₃	H	H	OH	H	C₁₂H₁₄NO₅	312.0877	312.0874	0.96	9.99	4	
p-coumaric acid 3-chloroantrinalic acid	N-(4-hydroxy cinnamoyl)-3-chloroantrinalic acid	H	Cl	H	H	OH	H	C₁₂H₁₄ClNO₅	310.0433	310.0433	0.00	13.99	9	
2-fluorocinnamic acid anthranilic acid	N-(2-fluorocinnamoyl)-anthranilic acid	H	H	F	H	H	H	C₁₀H₁₂FNO₃	284.0728	284.0734	-2.11	13.51	6	
3-fluorocinnamic acid anthranilic acid	N-(3-fluorocinnamoyl)-anthranilic acid	H	H	H	F	H	H	C₁₀H₁₂FNO₃	284.0728	284.0734	-2.11	13.49	7	
4-fluorocinnamic acid anthranilic acid	N-(4-fluorocinnamoyl)-anthranilic acid	H	H	H	F	H	H	C₁₀H₁₂FNO₃	284.0728	284.0722	2.11	13.45	8	
2-chlorocinnamic acid anthranilic acid	N-(2-chlorocinnamoyl)-anthranilic acid	H	Cl	H	H	H	H	C₁₀H₁₄ClNO₅	300.0433	300.0433	0.00	13.99	9	
2-trifluoromethyl cinnamic acid anthranilic acid	N-(2-trifluoromethyl cinnamoyl)-anthranilic acid	H	H	CF₃	H	H	H	C₁₂H₁₂F₂NO₃	334.0697	334.0713	-4.79	14.08	10	
3-trifluoromethyl cinnamic acid anthranilic acid	N-(3-trifluoromethyl cinnamoyl)-anthranilic acid	H	H	CF₃	H	H	H	C₁₂H₁₂F₂NO₃	334.0697	334.0697	0.00	14.14	11	
2-bromocinnamic acid anthranilic acid	N-(2-bromocinnamoyl)-anthranilic acid	H	H	Br	H	H	H	C₁₀H₁₂BrNO₃	343.9928	343.9936	-2.32	14.16	12	
3-bromocinnamic acid anthranilic acid	N-(3-bromocinnamoyl)-anthranilic acid	H	H	H	Br	H	H	C₁₀H₁₂BrNO₃	343.9928	343.9939	-3.20	14.22	13	
3-difluoromethoxy cinnamic acid anthranilic acid	N-(3-difluoromethoxy cinnamoyl)-anthranilic acid	H	H	OCHF₂	H	H	H	C₁₀H₁₂F₂NO₃	332.0740	332.0741	-0.30	13.79	14	
3-trifluoromethoxy cinnamic acid anthranilic acid	N-(3-trifluoromethoxy cinnamoyl)-anthranilic acid	H	H	OCF₃	H	H	H	C₁₀H₁₂F₂NO₃	350.0646	350.0638	2.28	14.28	15	
2-fluorocinnamic acid 3-hydroxyantrinalic acid	N-(2-fluorocinnamoyl)-3-hydroxyantrinalic acid	H	OH	F	H	H	H	C₁₀H₁₂FNO₃	300.0678	300.0679	-0.33	13.08	16	
3-fluorocinnamic acid 3-hydroxyantrinalic acid	N-(3-fluorocinnamoyl)-3-hydroxyantrinalic acid	H	OH	H	F	H	H	C₁₀H₁₂FNO₃	300.0678	300.0686	-2.67	13.10	17	
4-fluorocinnamic acid 3-hydroxyantrinalic acid	N-(4-fluorocinnamoyl)-3-hydroxyantrinalic acid	H	OH	H	F	H	H	C₁₀H₁₂FNO₃	300.0678	300.0663	0.49	13.08	18	
2-chlorocinnamic acid 3-hydroxyantrinalic acid	N-(2-chlorocinnamoyl)-3-hydroxyantrinalic acid	H	OH	Cl	H	H	H	C₁₀H₁₄ClNO₅	316.0832	316.0836	-1.26	13.59	19	
2-trifluoromethyl cinnamic acid 3-hydroxyantrinalic acid	N-(2-trifluoromethyl cinnamoyl)-3-hydroxyantrinalic acid	H	OH	CF₃	H	H	H	C₁₀H₁₂F₂NO₃	350.0646	350.0645	0.29	13.64	20	
3-trifluoromethyl cinnamic acid 3-hydroxyantrinalic acid	N-(3-trifluoromethyl cinnamoyl)-3-hydroxyantrinalic acid	H	OH	H	CF₃	H	H	C₁₀H₁₂F₂NO₃	350.0646	350.0641	1.43	13.78	21	
2-bromocinnamic acid 3-hydroxyantrinalic acid	N-(2-bromocinnamoyl)-3-hydroxyantrinalic acid	H	OH	H	Br	H	H	C₁₀H₁₂BrNO₃	359.9877	359.9885	-2.22	13.76	22	
3-difluoromethoxy cinnamic acid 3-hydroxyantrinalic acid	N-(3-difluoromethoxy cinnamoyl)-3-hydroxyantrinalic acid	H	OH	H	OCHF₂	H	H	C₁₀H₁₂F₂NO₃	348.0689	348.0693	-1.15	13.45	23	
3-trifluoromethoxy cinnamic acid 3-hydroxyantrinalic acid	N-(3-trifluoromethoxy cinnamoyl)-3-hydroxyantrinalic acid	H	OH	H	OCF₃	H	H	C₁₀H₁₂F₂NO₃	366.0595	366.0595	0.00	13.90	24	
2-fluorocinnamic acid 3-methylantrinalic acid	N-(2-fluorocinnamoyl)-3-methylantrinalic acid	H	CH₃	H	H	H	H	C₁₀H₁₄NO₅	298.0885	298.0880	1.68	13.09	25	

(Continued)
Donor	Acceptor	Cinnamoyl anthranilates	R1	R2	R3	R4	R5	R6	Formula	Theoretical mass [M-H]-	Measured mass [M-H]-	Mass accuracy* (ppm)	Retention time (min)	Mass spectrum # in S1 Fig	
3-fluorocinnamic acid	3-methylanthranilic acid	N-(3'-fluorocinnamoyl)-3-methylanthranilic acid	H	CH3	H	F	H	H	C13H14FNO3	298.0885	298.0884	0.34	13.16	26	
4-fluorocinnamic acid	3-methylanthranilic acid	N-(4'-fluorocinnamoyl)-3-methylanthranilic acid	H	CH3	H	H	F	H	C14H16FNO3	298.0885	298.0888	-1.00	13.10	27	
2-chlorocinnamic acid	3-methylanthranilic acid	N-(2'-chlorocinnamoyl)-3-methylanthranilic acid	H	CH3	Cl	H	H	H	C14H14ClNO3	314.0589	314.0586	1.27	13.55	28	
2- trifluoromethylcinnamic acid	3-methylanthranilic acid	N-(2'-trifluoromethylcinnamoyl)-3-methylanthranilic acid	H	CH3	CF3	H	H	H	C14H13F3NO3	348.0853	348.0853	0.00	13.81	29	
3-trifluoromethylcinnamic acid	3-methylanthranilic acid	N-(3'-trifluoromethylcinnamoyl)-3-methylanthranilic acid	H	CH3	H	CF3	H	H	C14H14F3NO3	348.0853	348.0852	0.29	14.03	30	
2-bromocinnamic acid	3-methylanthranilic acid	N-(2'-bromocinnamoyl)-3-methylanthranilic acid	H	CH3	Br	H	H	H	C14H14BrNO3	358.0084	358.0098	-3.91	13.71	31	
3-bromocinnamic acid	3-methylanthranilic acid	N-(3'-bromocinnamoyl)-3-methylanthranilic acid	H	CH3	H	Br	H	H	C14H14BrNO3	358.0084	358.0091	-1.96	13.90	32	
3-difluoromethoxy cinnamic acid	3-methylanthranilic acid	N-(3'-difluoromethoxy cinnamoyl)-3-methylanthranilic acid	H	CH3	H	OCF3	H	H	C14H14F3NO3	348.0896	348.0893	0.87	13.60	33	
3-trifluoromethoxycinnamic acid	3-methylanthranilic acid	N-(3'-trifluoromethoxy cinnamoyl)-3-methylanthranilic acid	H	CH3	H	OCF3	H	H	C14H14F3NO3	364.0802	364.0801	0.27	14.18	34	
4-fluorocinnamic acid	5-methylanthranilic acid	N-(4'-fluorocinnamoyl)-5-methylanthranilic acid	CH3	H	H	H	F	H	H	C15H16FNO3	298.0885	298.0871	4.70	11.70	35
4-bromocinnamic acid	5-methylanthranilic acid	N-(4'-bromocinnamoyl)-5-methylanthranilic acid	CH3	H	H	H	Br	H	H	C15H14BrNO3	358.0084	358.0073	3.07	12.86	36
2-fluorocinnamic acid	5-fluoroanthranilic acid	N-(2'-fluorocinnamoyl)-5-fluoroanthranilic acid	F	H	F	H	H	H	C15H14F2NO3	302.0634	302.0648	-4.64	13.07	37	
2-chlorocinnamic acid	5-fluoroanthranilic acid	N-(2'-chlorocinnamoyl)-5-fluoroanthranilic acid	F	H	Cl	H	H	H	C15H14ClNO3	318.0339	318.0334	1.57	13.58	38	
3-difluoromethoxy cinnamic acid	5-fluoroanthranilic acid	N-(3'-difluoromethoxy cinnamoyl)-5-fluoroanthranilic acid	F	H	H	OCF3	H	H	C15H14F3NO3	350.0646	350.0639	1.99	13.39	39	
3-trifluoromethoxylcinnamic acid	5-fluoroanthranilic acid	N-(3'-trifluoromethoxy cinnamoyl)-5-fluoroanthranilic acid	F	H	H	CF3	H	H	C15H14F3NO3	352.0602	352.0601	0.28	13.74	40	
2-bromocinnamic acid	3-methoxyanthranilic acid	N-(2'-bromocinnamoyl)-3-methoxyanthranilic acid	H	OCH3	Cl	H	H	H	C14H13BrNO3	330.0539	330.0525	3.99	13.02	41	
2-bromocinnamic acid	3-methoxyanthranilic acid	N-(2'-bromocinnamoyl)-3-methoxyanthranilic acid	H	OCH3	Br	H	H	H	C14H13BrNO3	374.0045	374.0045	0.00	13.17	42	
2-fluorocinnamic acid	3-chloroanthranilic acid	N-(2'-fluorocinnamoyl)-3-chloroanthranilic acid	H	OCH3	F	H	H	H	C14H13ClNO3	318.0339	318.0344	-1.57	12.77	43	
3-fluorocinnamic acid	3-chloroanthranilic acid	N-(3'-fluorocinnamoyl)-3-chloroanthranilic acid	H	Cl	H	F	H	H	C14H13ClNO3	318.0339	318.0333	1.89	12.83	44	
2-chlorocinnamic acid	3-chloroanthranilic acid	N-(2'-chlorocinnamoyl)-3-chloroanthranilic acid	H	Cl	Cl	H	H	H	C14H13Cl2NO3	334.0043	334.0034	2.69	13.18	45	
3-difluoromethoxy cinnamic acid	3-chloroanthranilic acid	N-(3'-difluoromethoxy cinnamoyl)-3-chloroanthranilic acid	H	Cl	H	OCF3	H	H	C14H13ClF2NO3	366.0350	366.0353	-0.82	13.29	46	
2-trifluoromethyl cinnamic acid	3-chloroanthranilic acid	N-(2'-trifluoromethyl cinnamoyl)-3-chloroanthranilic acid	H	Cl	CF3	H	H	H	C14H13ClF2NO3	368.0307	368.0325	-4.89	13.40	47	
3-trifluoromethyl cinnamic acid	3-chloroanthranilic acid	N-(3'-trifluoromethyl cinnamoyl)-3-chloroanthranilic acid	H	Cl	H	CF3	H	H	C14H13ClF2NO3	368.0307	368.0306	0.27	13.59	48	
2-bromocinnamic acid	3-chloroanthranilic acid	N-(2'-bromocinnamoyl)-3-chloroanthranilic acid	H	Cl	Br	H	H	H	C14H13BrClNO3	377.9538	377.9520	4.76	13.33	49	
3-trifluoromethoxy cinnamic acid	3-chloroanthranilic acid	N-(3'-trifluoromethoxy cinnamoyl)-3-chloroanthranilic acid	H	Cl	H	OCF3	H	H	C14H13ClF2NO3	384.0256	384.0251	1.30	13.74	50	

Mass accuracy = [(theoretical mass—measured mass) / (theoretical mass)] x 1.10^6
anthranilates, demonstrating again the substrate promiscuity of both 4CL5 and HCBT enzymes in our in vivo production system.

Production of benzoyl anthranilates
The production of benzoyl anthranilates by the 4CL5-HCBT yeast strain was tested because of the capacity of HCBT to use benzoyl-CoA as a donor in addition to coumaroyl-CoA [30]. We first successfully produced a benzoyl anthranilate named dianthramide B (1.20 ± 0.12 μM), by feeding the 4CL5- and HCBT-expressing yeast strain with benzoic acid and anthranilate. The identity of this new compound, which was detected directly from the culture medium, was confirmed with the authentic standard that exhibits the same LC-MS elution profile and mass (Fig 4), and by its absence in control cultures of strains expressing either 4CL5 or HCBT alone. Considering this unexpected substrate affinity of 4CL5 for benzoic acid, we fed 75 benzoate derivatives in combination with anthranilate for the synthesis of the corresponding benzoyl conjugates. This preliminary screening resulted in the production of 34 individual benzoyl anthranilates, including halogenated benzoyl anthranilates, which were detected directly from

Fig 3. Detection of N-(4'-hydroxydihydrocinnamoyl)-anthranilate (DHavnD) from the recombinant yeast culture medium. Representative ESI-MS spectra were obtained after LC-TOF MS analysis of (A) the culture medium of recombinant yeast incubated with anthranilate and 4-hydroxydihydrocinnamate, and (B) a DHavnD standard solution.

doi:10.1371/journal.pone.0138972.g003
Table 2. Structural characteristics of the dihydrocinnamoyl anthranilates (general structure shown in Fig 1B) produced in yeast and their identification based on dominant ion masses in ESI-MS spectra. Values were obtained from single feeding experiments for each combination of precursors.

Donor	Acceptor	Hydrogenated cinnamoyl anthranilates	R₁	R₂	R₃	R₄	R₅	R₆	Formula	Theoretical mass [M-H]	Measured mass [M-H]	Mass accuracy* (ppm)	Retention time (min)	Mass spectrum # in S2 Fig.
4-hydroxydihydrocinnamic acid	anthranilic acid	N-((4-hydroxydihydrocinnamoyl)-anthranilic acid (DHavnD))	H	H	H	H	OH	H	C₁₆H₁₅NO₄	284.0928	284.0928	0.70	11.02	(Fig 3)
dihydrocinnamic acid	anthranilic acid	N-(dihydrocinnamoyl)-anthranilic acid	H	H	H	H	H	H	C₁₆H₁₅NO₄	284.0928	284.0927	0.74	13.21	1
3-methyldihydrocinnamic acid	anthranilic acid	N-((3-methyl-4-hydroxydihydrocinnamoyl)-anthranilic acid)	H	H	H	OH	H	H	C₁₆H₁₇NO₅	282.1136	282.1136	0.00	13.65	2
4-methyldihydrocinnamic acid	anthranilic acid	N-((4-methyl-4-hydroxydihydrocinnamoyl)-anthranilic acid)	H	H	H	OH	H	H	C₁₆H₁₇NO₅	282.1136	282.1135	0.35	13.65	3
2-hydroxydihydrocinnamic acid	anthranilic acid	N-((2-hydroxydihydrocinnamoyl)-anthranilic acid)	H	H	OH	H	H	H	C₁₆H₁₇NO₅	282.1136	282.1135	0.35	13.65	3
3-methyldihydrocinnamic acid	anthranilic acid	N-((3-methyldihydrocinnamoyl)-anthranilic acid)	H	H	OH	H	C₁₇H₁₇NO₅	282.1136	282.1135	0.35	13.65	3		
2-methoxydihydrocinnamic acid	anthranilic acid	N-((2-methoxydihydrocinnamoyl)-anthranilic acid)	H	H	OCH₃	H	H	H	C₁₇H₁₇NO₅	282.1136	282.1135	0.35	13.65	3
2,5-dimethoxydihydrocinnamic acid	anthranilic acid	N-((2,5-dimethoxydihydrocinnamoyl)-anthranilic acid)	H	H	OCH₃	H	OCH₃	H	C₁₈H₂₀NO₅	328.1190	328.1201	-3.35	13.34	13
3-chlorodihydrocinnamic acid	anthranilic acid	N-((3-chlorodihydrocinnamoyl)-anthranilic acid)	H	H	Cl	H	H	H	C₁₆H₁₅ClNO₃	302.0589	302.0581	2.65	13.91	11
3-hydroxydihydrocinnamic acid	anthranilic acid	N-((3-hydroxydihydrocinnamoyl)-anthranilic acid)	H	H	OCH₃	H	OH	H	C₁₆H₁₅NO₅	300.0877	300.0872	1.67	9.79	10
2,4-dihydroxydihydrocinnamic acid	anthranilic acid	N-((2,4-dihydroxydihydrocinnamoyl)-anthranilic acid)	H	H	OH	H	OH	H	C₁₆H₁₅NO₅	300.0877	300.0872	1.67	9.79	10
3,4-dimethoxydihydrocinnamic acid	anthranilic acid	N-((3,4-dimethoxydihydrocinnamoyl)-anthranilic acid)	H	H	OCH₃	H	OCH₃	H	C₁₈H₂₀NO₅	328.1190	328.1201	-3.35	13.34	13
3,5-dimethoxydihydrocinnamic acid	anthranilic acid	N-((3,5-dimethoxydihydrocinnamoyl)-anthranilic acid)	H	H	OCH₃	H	OCH₃	H	C₁₈H₂₀NO₅	328.1190	328.1201	-3.35	13.34	13

(Continued)
Donor Acceptor	Hydrogenated cinnamoyl anthranilates	R₁	R₂	R₃	R₄	R₅	R₆	Formula	Theoretical mass [M-H]⁻	Measured mass [M-H]⁻	Mass accuracy* (ppm)	Retention time (min)	Mass spectrum # in S2 Fig.
3-methoxy-4-hydroxydihydrocinnamic acid 3-hydroxyanthranilic acid	N\[\text{-3-methoxy-4'-hydroxydihydrocinnamoyl-3-hydroxyanthranilic acid}\]	H	OH	H	OCH₃	OH	H	C₁₇H₁₇NO₆	330.0983	330.0980	0.91	10.52	22
2,5-dimethoxydihydrocinnamic acid 3-hydroxyanthranilic acid	N\[\text{-2,5'-dimethoxydihydrocinnamoyl-3-hydroxyanthranilic acid}\]	H	OH	OCH₃	H	OH	OCH₃	C₁₈H₁₉NO₆	344.1140	344.1139	0.29	12.92	23
4-hydroxydihydrocinnamic acid 3-methylanthranilic acid	N\[\text{-4'-hydroxydihydrocinnamoyl-3-methylanthranilic acid}\]	H	CH₃	H	H	OH	H	C₁₇H₁₇NO₆	298.1085	298.1074	3.69	10.09	24
3,4-dihydroxydihydrocinnamic acid 3-methylanthranilic acid	N\[\text{-3,4'-dihydroxydihydrocinnamoyl-3-methylanthranilic acid}\]	H	CH₃	H	OH	OH	H	C₁₇H₁₇NO₆	314.1034	314.1034	0.00	8.91	25
3-methoxy-4-hydroxydihydrocinnamic acid 3-methylanthranilic acid	N\[\text{-3-methoxy-4'-hydroxydihydrocinnamoyl-3-methylanthranilic acid}\]	H	CH₃	H	OCH₃	OH	H	C₁₇H₁₇NO₆	328.1190	328.1198	-2.44	10.39	26
2,5-dimethoxydihydrocinnamic acid 3-methylanthranilic acid	N\[\text{-2,5'-dimethoxydihydrocinnamoyl-3-methylanthranilic acid}\]	H	CH₃	OCH₃	H	OH	OCH₃	C₁₈H₂₁NO₅	342.1347	342.1337	2.92	12.98	27

*Mass accuracy = ((theoretical mass—measured mass) / (theoretical mass)) x 10⁶
the culture medium by LC-MS analysis (Table 3, S3 Fig). A second round of production using 3-hydroxyanthranilate or 3-methylanthranilate instead of anthranilate in the culture medium led to the production of 50 additional benzoyl anthranilates (Table 3, S3 Fig), which were absent from the culture medium of the yeast strain fed only with the anthranilates. These results demonstrate the capacity for 4CL5 to ligate coenzyme A onto at least 34 benzoate analogs; and the capacity for HCBT to conjugate the corresponding benzoyl-CoAs with various anthranilates.

Discussion

With an emphasis on the class of cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates, we illustrate in this study the possibility of producing numerous chemically diverse molecules using biological synthesis rather than conventional chemical synthesis. Our data imply that the promiscuity of 4CL5 allows the catalytic conversion of a great diversity of dihydrocinnamates, benzoates, and various cinnamates into the corresponding acyl-CoA-thioesters. To our
Table 3. Structural characteristics of the benzoyl anthranilates (general structure shown in Fig 1C) produced in yeast and their identification based on dominant ion masses in ESI-MS spectra. Values were obtained from single feeding experiments for each combination of precursors.

Donor Acceptor	Benzoyl anthranilates	R₁	R₂	R₃	R₄	R₅	R₆	Formula	Theoretical mass [M-H]	Measured mass [M-H]	Mass accuracy* (ppm)	Retention time (min)	Mass spectrum # in S3 Fig.
benzoic acid anthranilic acid	N-(benzoyl)-anthranilic acid (dianthramide B)	H	H	H	H	H	C₆H₅N₂O₄	240.0666	240.0668	-0.83	12.60	(Fig 4)	
3-aminobenzoic acid anthranilic acid	N-(3'-aminobenzoyl)-anthranilic acid	H	H	H	NH₂	H	C₆H₅N₂O₄	255.0775	255.0774	0.39	10.39	1	
2-methylenzoic acid anthranilic acid	N-(2'-methylbenzoyl)-anthranilic acid	H	CH₃	H	H	C₆H₅N₂O₄	254.0823	254.0823	0.00	13.19	2		
3-methylenzoic acid anthranilic acid	N-(3'-methylbenzoyl)-anthranilic acid	H	H	CH₃	H	C₆H₅N₂O₄	254.0822	254.0825	-1.18	13.18	3		
4-methylenzoic acid anthranilic acid	N-(4'-methylbenzoyl)-anthranilic acid	H	H	H	CH₃	HC	C₆H₅N₂O₄	254.0822	254.0825	-1.18	13.16	4	
3-hydroxybenzoic acid anthranilic acid	N-(3'-hydroxybenzoyl)-anthranilic acid	H	H	H	OH	H	C₆H₅N₂O₄	256.0615	256.0628	-2.73	10.68	5	
4-hydroxybenzoic acid anthranilic acid	N-(4'-hydroxybenzoyl)-anthranilic acid	H	H	H	OH	H	C₆H₅N₂O₄	256.0615	256.0610	1.95	10.62	6	
2-fluorobenzoic acid anthranilic acid	N-(2'-fluorobenzoyl)-anthranilic acid	H	H	F	H	H	C₆H₅N₂O₄	258.0572	258.0577	-1.68	12.73	7	
3-fluorobenzoic acid anthranilic acid	N-(3'-fluorobenzoyl)-anthranilic acid	H	H	H	F	H	C₆H₅N₂O₄	258.0572	258.0566	2.32	12.90	8	
4-fluorobenzoic acid anthranilic acid	N-(4'-fluorobenzoyl)-anthranilic acid	H	H	H	F	H	C₆H₅N₂O₄	258.0572	258.0573	-0.39	12.83	9	
2,5-dimethylenzoic acid anthranilic acid	N-(2',5'-dimethylbenzoyl)-anthranilic acid	H	H	CH₃	H	CH₃	C₆H₁₀N₂O₃	268.0979	268.0982	-1.12	13.58	10	
3,4-dimethylenzoic acid anthranilic acid	N-(3',4'-dimethylbenzoyl)-anthranilic acid	H	H	CH₃	CH₃	H	C₆H₁₀N₂O₃	268.0979	268.0981	-0.75	13.52	11	
3,5-dimethylenzoic acid anthranilic acid	N-(3',5'-dimethylbenzoyl)-anthranilic acid	H	H	CH₃	CH₃	H	C₆H₁₀N₂O₃	268.0979	268.0977	0.75	13.61	12	
3-methoxybenzoic acid anthranilic acid	N-(3'-methoxybenzoyl)-anthranilic acid	H	H	H	OCH₃	H	C₆H₁₀N₂O₃	270.0772	270.0777	-1.85	12.86	13	
4-methoxybenzoic acid anthranilic acid	N-(4'-methoxybenzoyl)-anthranilic acid	H	H	H	OCH₃	HC	C₆H₁₀N₂O₃	270.0772	270.0770	0.74	12.74	14	
4-hydroxymethylbenzoic acid anthranilic acid	N-(4'-hydroxymethylbenzoyl)-anthranilic acid	H	H	H	OH₂	H	C₆H₁₀N₂O₃	270.0772	270.0779	-2.59	9.92	15	
2-amino-3-hydroxybenzoic acid anthranilic acid	N-(2'-amino-3'-hydroxybenzoyl)-anthranilic acid	H	H	NH₂	H	CH₃	C₆H₁₀N₃O₃	269.0932	269.0936	-1.48	13.03	16	
2-amino-3-hydroxybenzoic acid anthranilic acid	N-(2'-amino-3'-hydroxybenzoyl)-anthranilic acid	H	H	NH₂	OH	H	C₆H₁₀N₃O₃	271.0724	271.0713	4.05	13.06	17	
2-chlorobenzoic acid anthranilic acid	N-(2'-chlorobenzoyl)-anthranilic acid	H	H	Cl	H	H	C₆H₅ClO₃	274.0276	274.0279	-0.93	13.48	18	
3-chlorobenzoic acid anthranilic acid	N-(3'-chlorobenzoyl)-anthranilic acid	H	H	H	Cl	H	C₆H₅ClO₃	274.0276	274.0272	0.93	13.48	19	
4-chlorobenzoic acid anthranilic acid	N-(4'-chlorobenzoyl)-anthranilic acid	H	H	H	Cl	HC	C₆H₅ClO₃	274.0276	274.0266	3.81	13.48	20	
3-dimethylaminobenzoic acid anthranilic acid	N-(3'-dimethylaminobenzoyl)-anthranilic acid	H	H	H	N	(CH₃)₂	C₆H₁₁N₂O₃	283.1083	283.1081	2.47	13.25	21	
4-dimethylaminobenzoic acid anthranilic acid	N-(4'-dimethylaminobenzoyl)-anthranilic acid	H	H	H	N	(CH₃)₂	C₆H₁₁N₂O₃	283.1083	283.1083	1.77	13.24	22	
4-nitrobenzoic acid anthranilic acid	N-(4'-nitrobenzoyl)-anthranilic acid	H	H	H	NO₂	H	C₆H₅NO₃	285.0517	285.0519	-0.70	8.10	23	
3-methoxy-4-hydroxybenzoic acid anthranilic acid	N-(3'-methoxy-4'-hydroxybenzoyl)-anthranilic acid	H	H	H	OCH₃	OH	C₆H₅NO₃	266.0721	266.0725	-1.40	10.94	24	

(Continued)
Table 3. (Continued)

Donor Acceptor	Benzoyl anthranilates	R₁	R₂	R₃	R₄	R₅	R₆	Formula	Theoretical mass [M-H]	Measured mass [M-H]	Mass accuracy* (ppm)	Retention time (min)	Mass spectrum # in S3 Fig.
3-methylthiobenzoic acid anthranilic acid	N-(3'-methylthiobenzoyl)-anthranilic acid	H	H	H	SO₂H	H	H	C₁₅H₁₃NO₃S	286.0543	286.0545	-0.56	13.60	25
4-methylthiobenzoic acid anthranilic acid	N-(4'-methylthiobenzoyl)-anthranilic acid	H	H	H	SO₂H	H	H	C₁₅H₁₃NO₃S	286.0543	286.0547	-1.39	13.47	26
3,4-dimethoxybenzoic acid anthranilic acid	N-(3',4'-dimethoxybenzoyl)-anthranilic acid	H	H	H	OCH₃	OCH₃	H	C₁₆H₁₅NO₅	300.0877	300.0863	4.66	13.15	27
3-trifluoromethylbenzoic acid anthranilic acid	N-(3'-trifluoromethylbenzoyl)-anthranilic acid	H	H	H	CF₃	H	H	C₁₅H₁₀F₃NO₃	308.0540	308.0546	-1.94	13.76	28
4-trifluoromethylbenzoic acid anthranilic acid	N-(4'-trifluoromethylbenzoyl)-anthranilic acid	H	H	H	CF₃	H	H	C₁₅H₁₀F₃NO₃	308.0540	308.0539	0.32	13.60	29
3-bromobenzoic acid anthranilic acid	N-(3'-bromobenzoyl)-anthranilic acid	H	H	H	Br	H	H	C₁₄H₁₀BrNO₃	317.9771	317.9777	-1.88	13.78	30
3-trifluoromethoxybenzoic acid anthranilic acid	N-(3'-trifluoromethoxybenzoyl)-anthranilic acid	H	H	H	OCF₃	H	H	C₁₅H₁₀F₃NO₄	324.0489	324.0489	0.00	13.76	32
4-trifluoromethoxybenzoic acid anthranilic acid	N-(4'-trifluoromethoxybenzoyl)-anthranilic acid	H	H	H	OCF₃	H	H	C₁₅H₁₀F₃NO₄	324.0489	324.0489	0.00	13.95	33
3-iodobenzoic acid anthranilic acid	N-(3'-iodobenzoyl)-anthranilic acid	H	H	H	I	H	H	C₁₄H₁₀INO₃	365.9633	365.9642	-2.46	13.91	34
4-iodobenzoic acid anthranilic acid	N-(4'-iodobenzoyl)-anthranilic acid	H	H	H	I	H	H	C₁₄H₁₀INO₃	365.9633	365.9633	0.00	13.95	35
3-hydroxyanthranilic acid	3-aminobenzoic acid	H	H	I	H	C₁₄H₁₂N₂O₄	271.0724	271.0728	-1.47	9.90	36		
3-methylbenzoic acid	3-hydroxyanthranilic acid	H	H	H	CH₃	C₁₅H₁₃NO₄	270.0772	270.0773	-0.37	12.37	37		
4-methylbenzoic acid	3-hydroxyanthranilic acid	H	H	H	CH₃	C₁₅H₁₃NO₄	270.0772	270.0773	-0.37	12.75	38		
3-hydroxybenzoic acid	3-hydroxyanthranilic acid	H	H	H	OCH₃	C₁₄H₁₁NO₅	272.0564	272.0575	-4.04	10.12	39		
2-fluorobenzoic acid	3-hydroxyanthranilic acid	H	H	F	H	C₁₄H₁₀FNO₄	274.0521	274.0527	-2.19	11.70	40		
3-fluorobenzoic acid	3-hydroxyanthranilic acid	H	H	H	F	H	H	C₁₄H₁₀FNO₄	274.0521	274.0522	-0.36	12.33	41
4-fluorobenzoic acid	3-hydroxyanthranilic acid	H	H	H	F	H	H	C₁₄H₁₀FNO₄	274.0521	274.0518	1.09	12.30	42
3,4-dimethylbenzoic acid	3-hydroxyanthranilic acid	H	H	H	CH₃	CH₃	C₁₆H₁₅NO₄	284.0928	284.0925	0.66	13.17	43	
3,5-dimethylbenzoic acid	3-hydroxyanthranilic acid	H	H	H	CH₃	CH₃	C₁₆H₁₅NO₄	284.0928	284.0929	-0.35	13.27	44	
3-methoxybenzoic acid	3-hydroxyanthranilic acid	H	H	H	OCH₃	C₁₄H₁₀NO₃	286.0721	286.0723	-0.70	12.38	45		
4-methoxybenzoic acid	3-hydroxyanthranilic acid	H	H	H	OCH₃	C₁₄H₁₀NO₃	286.0721	286.0722	-0.35	12.37	46		
4-hydroxymethylbenzoic acid	3-hydroxyanthranilic acid	H	H	H	CH₂OH	C₁₅H₁₄NO₄	286.0721	286.0719	-0.70	9.23	47		
2-chlorobenzoic acid	3-hydroxyanthranilic acid	H	H	H	Cl	H	H	C₁₄H₁₀ClNO₃	290.0226	290.0221	1.72	12.95	48
3-chlorobenzoic acid	3-hydroxyanthranilic acid	H	H	H	Cl	H	H	C₁₄H₁₀ClNO₃	290.0226	290.0225	0.34	12.99	49
4-chlorobenzoic acid	3-hydroxyanthranilic acid	H	H	H	Cl	H	H	C₁₄H₁₁ClNO₃	290.0226	290.0223	1.03	12.95	50

(Continued)
Table 3. (Continued)

Donor Acceptor	Benzoyl anthranilates	R1	R2	R3	R4	R5	R6	Formula	Theoretical mass [M-H]	Measured mass [M-H]	Mass accuracy* (ppm)	Retention time (min)	Mass spectrum # in S3 Fig.		
3-dimethylaminobenzoic acid	3-hydroxyanthranilic acid	N-(3'-dimethylaminobenzyli)-3-hydroxyanthranilic acid	H	OH	H	N	(CH3)2	299.1037	299.1038	-0.33	12.88	51			
3-methoxy-4-hydroxybenzoic acid	3-hydroxyanthranilic acid	N-(3'-methoxy-4'-hydroxybenzyl)-3-hydroxyanthranilic acid	H	OH	H	OOH	OH	H	C18H16NO5	302.0570	302.0572	-1.26	10.33	52	
3-methyliodo benzoic acid	3-hydroxyanthranilic acid	N-(3'-methyliodo benzyl)-3-hydroxyanthranilic acid	H	OH	H	SOH	H	H	C18H16INO5S	302.0493	302.0491	0.66	13.10	53	
4-methyliodo benzoic acid	3-hydroxyanthranilic acid	N-(4'-methyliodo benzyl)-3-hydroxyanthranilic acid	H	OH	H	H	SOH	H	H	C18H16INO5S	302.0433	302.0439	-1.98	13.04	54
3,4-dimethoxybenzoic acid	3-hydroxyanthranilic acid	N-(3',4'-dimethoxybenzyl)-3-hydroxyanthranilic acid	H	OH	H	OOH	OOH	H	C18H16NO6	316.0827	316.0825	0.63	11.52	55	
3-trifluoromethylbenzoic acid	3-hydroxyanthranilic acid	N-(3'-trifluoromethyl benzyl)-3-hydroxyanthranilic acid	H	OH	H	CF	H	H	C18H16F3NO4	324.0489	324.0487	0.60	13.13	56	
4-trifluoromethylbenzoic acid	3-hydroxyanthranilic acid	N-(4'-trifluoromethyl benzyl)-3-hydroxyanthranilic acid	H	OH	H	H	CF	H	H	C18H16F3NO4	324.0489	324.0487	0.60	13.13	57
3-bromo benzoic acid	3-hydroxyanthranilic acid	N-(3'-bromobenzyl)-3-hydroxyanthranilic acid	H	OH	Br	H	H	C18H16BrNO3	333.9720	333.9723	-0.90	13.20	58		
3-trifluoromethoxybenzoic acid	3-hydroxyanthranilic acid	N-(3'-trifluoromethoxybenzyl)-3-hydroxyanthranilic acid	H	OH	H	OCF	H	H	C18H16F3NO5	340.0438	340.0436	0.59	13.38	60	
4-trifluoromethoxybenzoic acid	3-hydroxyanthranilic acid	N-(4'-trifluoromethoxybenzyl)-3-hydroxyanthranilic acid	H	OH	H	H	OCF	H	H	C18H16F3NO5	340.0438	340.0446	-2.35	13.32	61
3-iodobenzoic acid	3-hydroxyanthranilic acid	N-(3'-iodo benzyl)-3-hydroxyanthranilic acid	H	OH	H	I	H	H	C18H16INO4	381.9582	381.9580	0.52	13.54	62	
4-iodobenzoic acid	3-hydroxyanthranilic acid	N-(4'-iodo benzyl)-3-hydroxyanthranilic acid	H	OH	H	H	I	H	C18H16INO4	381.9582	381.9583	-0.21	13.42	63	
3-methylbenzoic acid	3-methylanthranilic acid	N-(3'-methyl benzyl)-3-methylanthranilic acid	H	CH3	H	CH3	H	H	C16H15NO3	268.0979	268.0978	0.37	12.95	64	
3,4-dimethylbenzoic acid	3-methylanthranilic acid	N-(3',4'-dimethyl benzyl)-3-methylanthranilic acid	H	CH3	H	CH3	CH3	H	C18H17NO3	282.1136	282.1137	-0.35	13.39	65	
3,5-dimethylbenzoic acid	3-methylanthranilic acid	N-(3',5'-dimethyl benzyl)-3-methylanthranilic acid	H	CH3	H	CH3	CH3	H	C18H17NO3	282.1136	282.1135	0.35	13.53	66	
3-methoxybenzoic acid	3-methylanthranilic acid	N-(3'-methoxy benzyl)-3-methylanthranilic acid	H	CH3	H	OOH	H	H	C18H16NO4	284.0928	284.0925	1.06	12.60	67	
4-methoxybenzoic acid	3-methylanthranilic acid	N-(4'-methoxy benzyl)-3-methylanthranilic acid	H	CH3	H	H	OOH	H	H	C18H16NO4	284.0928	284.0927	0.35	12.47	68
3-chlorobenzoic acid	3-methylanthranilic acid	N-(3'-chloro benzyl)-3-methylanthranilic acid	H	CH3	H	Cl	H	H	C18H16ClNO3	288.0433	288.0422	3.82	13.26	70	
4-chlorobenzoic acid	3-methylanthranilic acid	N-(4'-chloro benzyl)-3-methylanthranilic acid	H	CH3	H	H	Cl	H	H	C18H16ClNO3	288.0433	288.0420	4.51	13.19	71
3-dimethylaminobenzoic acid	3-methylanthranilic acid	N-(3'-dimethylaminobenzyl)-3-methylanthranilic acid	H	CH3	H	N	(CH3)2	297.1245	297.1250	-1.68	12.97	72			
3-methoxy-4-hydroxybenzoic acid	3-methylanthranilic acid	N-(3'-methoxy-4'-hydroxybenzyl)-3-methylanthranilic acid	H	CH3	H	OOH	H	H	C18H16NO4	300.0877	300.0877	0.00	10.34	73	
3-methyliodo benzoic acid	3-methylanthranilic acid	N-(3'-methyliodo benzyl)-3-methylanthranilic acid	H	CH3	H	SOH	H	H	C18H16INO5S	300.0700	300.0704	-1.33	13.30	74	
4-methyliodo benzoic acid	3-methylanthranilic acid	N-(4'-methyliodo benzyl)-3-methylanthranilic acid	H	CH3	H	H	SOH	H	H	C18H16INO5S	300.0700	300.0706	-1.99	13.22	75
3,4-dimethoxybenzoic acid	3-methylanthranilic acid	N-(3',4'-dimethoxybenzyl)-3-methylanthranilic acid	H	CH3	H	OOH	OOH	H	C17H17NO3	314.1034	314.1032	0.64	11.67	76	
Table 3. (Continued)

Donor	Acceptor	Benzyll anthranilates	R_1	R_2	R_3	R_4	R_5	R_6	Formula	Theoretical mass [M-H]$^-$	Measured mass [M-H]$^-$	Mass accuracya (ppm)	Retention time (min)	Mass spectrum # in S3 Fig.
3-trifluoromethylbenzoic acid	3-methylanthranilic acid	N-[3'-trifluoromethylbenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	CF$_3$	H	H	C$_{16}$H$_{12}$F$_3$NO$_3$	322.0697	322.0720	-7.14	13.56	77
4-trifluoromethylbenzoic acid	3-methylanthranilic acid	N-[4'-trifluoromethylbenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	H	CF$_3$	H	C$_{16}$H$_{12}$F$_3$NO$_3$	322.0697	322.0688	2.79	13.55	78
3-bromobenzoic acid	3-methylanthranilic acid	N-[3'-bromobenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	Br	H	H	C$_{15}$H$_{12}$BrNO$_3$	331.9928	331.9930	-0.60	13.43	79
4-bromobenzoic acid	3-methylanthranilic acid	N-[4'-bromobenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	H	Br	H	C$_{15}$H$_{12}$BrNO$_3$	331.9928	331.9924	1.20	13.37	80
3-trifluoromethoxybenzoic acid	3-methylanthranilic acid	N-[3'-trifluoromethoxybenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	OCF$_3$	H	H	C$_{16}$H$_{12}$F$_3$NO$_3$	338.0646	338.0646	0.00	13.75	81
4-trifluoromethoxybenzoic acid	3-methylanthranilic acid	N-[4'-trifluoromethoxybenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	H	OCF$_3$	H	C$_{16}$H$_{12}$F$_3$NO$_3$	338.0646	338.0637	2.66	13.70	82
3-iodobenzoic acid	3-methylanthranilic acid	N-[3'-iodobenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	I	H	H	C$_{15}$H$_{12}$INO$_3$	379.9789	379.9803	-3.68	13.75	83
4-iodobenzoic acid	3-methylanthranilic acid	N-[4'-iodobenzoyl]-3-methylanthranilic acid	H	CH$_3$	H	H	I	H	C$_{15}$H$_{12}$INO$_3$	379.9789	379.9789	0.00	13.70	84

aMass accuracy = [(theoretical mass − measured mass) / (theoretical mass)] x 1.106

doi:10.1371/journal.pone.0138972.t003
knowledge, this is the first description of a bona fide 4-coumaroyl-CoA ligase (EC 6.2.1.12) showing benzoyl-CoA (EC 6.2.1.25), 3-hydroxybenzoyl-CoA (EC 6.2.1.37), 4-hydroxybenzoyl-CoA (EC 6.2.1.27), and 4-chlorobenzoyl-CoA (EC 6.2.1.33) ligase activities. Our original attempts to co-express HCBT with known bacterial benzoyl-CoA ligases for the production of benzoyl anthranilates in yeast were unsuccessful, possibly due to the high pH optima (pH > 8.5) of these enzymes [36,37]. Nevertheless, using the 4CL5 enzyme, we demonstrate the feasibility of producing a substantial diversity of benzoyl-CoA thioesters and benzoate conjugate molecules in yeast. This discovery opens new possibilities for the heterologous combinatorial production of valuable benzoylated metabolites such as benzylbenzoates; benzophenones; the anticancer drug taxol; polyketides with antimicrobial activities (e.g., wailupeymycin, enterocin, soraphen A); and unnatural polyketides using engineered benzoyl-CoA-dependent polyketide synthases [38]. Furthermore, heterologously synthesized benzoyl anthranilates can be used as scaffolds for the synthesis of related anti-adenoviral compounds and oncogene inhibitors [39,40].

We observed the activity of 4CL5 towards various dihydrocinnamates and non-natural halogenated cinnamates and exploited its catalytic property to biosynthesize libraries of non-natural and structurally diverse cinnamoyl and dihydrocinnamoyl anthranilates using HCBT. For example, the drug DHavnD was synthesized, and utilization of alternate precursors resulted in the rapid production of 27 additional DHavnD analogs. These results point towards the eventual design of more biologically active drugs through the addition of halogens. They also illustrate the advantage of biological synthesis to achieve bifunctionalization, as exemplified by several of our bi-halogenated compounds. Finally, through co-expression with the adequate synthases, the capacity of 4CL5 to activate dihydrocinnamates creates the potential for biomanufacture of valuable natural products, such as the antibacterial dihydrocinnamoyl forms of flavans and chalcones [41,42].

The HCBT enzyme used in this study belongs to the BAHD enzyme family, which contains multiple members that catalyze the transfer of cinnamoyl- and benzoyl-CoAs into a great diversity of distinct acceptors [43]. Although HCBT offers flexibility for a wide range of acyl-CoA donors, its affinity towards acceptors seems limited to anthranilates. Therefore, engineering yeast strains that co-express 4CL5 with various BAHD transferases would considerably expand the type and number of molecules that can be biosynthesized heterologously.

Ultimately, biosynthesis of particular cinnamoyl or benzoyl anthranilates from renewable and inexpensive carbon sources could be desirable for cost-effective manufacturing. For this purpose, we recently demonstrated a de novo pathway for the production of p-coumarate and two avenanthramides from glucose in E. coli [35]. In this pathway, additional expression of hydroxycinnamoyl-CoA double-bond reductase could be used for the synthesis of dihydrocinnamates [44], whereas benzoate biosynthesis can be achieved from the aromatic amino acid phenylalanine [45]. Finally, the recent discovery of halogenases from bacteria and fungi has already proven to be useful for de novo synthesis of halogenated bioactive metabolites in microorganisms [46,47].

As a conclusion, the use of two promiscuous enzymes, 4CL5 and HCBT, demonstrates the potential to develop a platform for the precursor-directed combinatorial biosynthesis of cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates. In this study and in our previous work [27], this system using a single engineered yeast strain supported the production of more than 180 target metabolites belonging to cinnamoyl, dihydrocinnamoyl, or benzoyl anthranilate families. Moreover, we believe that testing our system with more substituted cinnamates and benzoates could result in the production of several additional metabolites.
Supporting Information

S1 Fig. LC-MS elution profiles of 50 novel cinnamoyl anthranilates produced by the recombinant 4CL5-HCBT yeast strain. ESI-MS spectra were obtained after LC-TOF MS analysis of the culture medium of the yeast strain fed with the precursors indicated in Table 1. (PPTX)

S2 Fig. LC-MS elution profiles of 27 dihydrocinnamoyl anthranilates produced by the recombinant 4CL5-HCBT yeast strain. ESI-MS spectra were obtained after LC-TOF MS analysis of the culture medium of the yeast strain fed with the precursors indicated in Table 2. (PPTX)

S3 Fig. LC-MS elution profiles of 84 benzoyl anthranilates produced by the recombinant 4CL5-HCBT yeast strain. ESI-MS spectra were obtained after LC-TOF MS analysis of the culture medium of the yeast strain fed with the precursors indicated in Table 3. (PPTX)

S1 Table. Structures and concentrations of the cinnamates used for the yeast feedings. (DOCX)

S2 Table. Structures and concentrations of the dihydrocinnamates used for the yeast feedings. (DOCX)

S3 Table. Structures and concentrations of the benzoates used for the yeast feedings. (DOCX)

Acknowledgments
Authors are grateful to Sabin Russell for editing this manuscript.

Author Contributions
Conceived and designed the experiments: AE DL. Performed the experiments: AE VTB GW EB. Analyzed the data: AE VTB GW EB DL. Contributed reagents/materials/analysis tools: AE EB JK DL TSL. Wrote the paper: AE EB JK DL.

References
1. Meydani M. Potential health benefits of avenanthramides of oats. Nutr Rev 2009; 67:731–725. doi:10.1111/j.1753-4887.2009.00256.x PMID: 19941618
2. Singh R, De S, Belkheir A. Avena sativa (Oat), a potential nutraceutical and therapeutic agent: an overview. Crit Rev Food Sci Nutr 2013; 53:126–144. doi:10.1080/10408398.2010.526725 PMID: 23072529
3. Yamada H, Ide A, Sugiura M, Tajima S. Treatment of cutaneous sarcoidosis with tranilast. J Dermatol 1995; 22:149–152. PMID: 7536763
4. Pinto YM, Pinto-Sietsma SJ, Philipp T, Engler S, Kossamehl P, Hocher B, et al. Reduction in left ventricular messenger RNA for transforming growth factor beta(1) attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2)27 Rat. Hypertension 2000; 36:747–754. PMID: 11082138
5. Qi W, Chen X, Twigg S, Poihill TS, Gilbert RE, Pollock CA. Tranilast attenuates connective tissue growth factor-induced extracellular matrix accumulation in renal cells. Kidney Int 2006; 69:989–995. PMID: 16528248
6. Ward MR, Sasahara T, Agrotis A, Dilley RJ, Jennings GL, Bobik A. Inhibitory effects of tranilast on expression of transforming growth factor-beta isoforms and receptors in injured arteries. Atherosclerosis 1998; 137:267–275. PMID: 9622270
7. Zammit SC, Cox AJ, Gow RM, Zhang Y, Gilbert RE, Krum H, et al. Evaluation and optimization of antifibrotic activity of cinnamoyl anthranilates. Bioorg Med Chem Lett 2009; 19:7003–7006. doi: 10.1016/j.bmcl.2009.12.020 PMID: 19791936

8. Gilbert RE, Zhang Y, Williams SJ, Zammit SC, Stapleton DI, Cox AJ, et al. A purpose-synthesised antifibrotic agent attenuates experimental kidney diseases in the rat. PLoS One 2012; 7:e47160. doi: 10.1371/journal.pone.0047160 PMID: 23071743

9. Tan SM, Zhang Y, Wang B, Tan CY, Zammit SC, Williams SJ, et al. An orally active antifibrotic compound, FT011, attenuates structural and functional abnormalities in an experimental model of diabetic cardiomyopathy. Clin Exp Pharmacol Physiol 2012; 39:650–656. doi: 10.1111/j.1440-1681.2012.05726.x PMID: 22612418

10. Williams SJ, Zammit SC, Cox AJ, Shackelford DM, Morizzi J, Zhang Y, et al. 3’,4’-Bis-difluoromethoxy-cinnamoylanthranilic acid (FT061): an orally-active antifibrotic agent that reduces albuminuria in a rat model of progressive diabetic nephropathy. Bioorg Med Chem Lett 2013; 23:6868–6873. doi: 10.1016/j.bmcl.2013.09.100 PMID: 24169234

11. Zhang Y, Edgley AJ, Cox AJ, Powell AK, Wang B, Kompa AR, et al. FT011, a new anti-fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail. 2012; 14:549–562. doi: 10.1093/europath/fts011 PMID: 22417655

12. Zhang Y, Elsik M, Edgley AJ, Cox AJ, Kompa AR, Wang B, et al. A new anti-fibrotic drug attenuates cardiac remodeling and systolic dysfunction following experimental myocardial infarction. Int J Cardioiol 2013; 168:1174–1185. doi: 10.1016/j.ijcard.2012.10.067 PMID: 23219315

13. Heuschkel S, Wohlrab J, Neubert RH. Dermal and transdermal targeting of dihydroavenanthramide D using enhancer molecules and novel microemulsions. Eur J Pharm Biopharm 2009; 72:552–560. doi: 10.1016/j.ejpb.2009.02.007 PMID: 19233266

14. Lee YR, Noh EM, Oh HJ, Hur H, Kim JM, Han JH, et al. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression. Biochem Biophys Res Commun 2011; 405:552–557. doi: 10.1016/j.bbrc.2011.01.065 PMID: 21576175

15. Lv N, Song MY, Lee YR, Choi HN, Kwon KB, Park JW, et al. Dihydroavenanthramide D protects pancreatic beta-cells from cytokine and streptozotocin toxicity. Biochem Biophys Res Commun 2009; 387:97–102. doi: 10.1016/j.bbrc.2009.06.133 PMID: 19576175

16. Ponchet M, Martin-Tanguy J, Marais A, Poupet A. Dianthramides A and B, two N-benzoylanthranilic acid derivatives from elicited tissues of Dianthus caryophyllus Phytochemistry 1984; 23:1901–1903.

17. Sinreih M, Sosič N, Turk S, Adeniji AO, Penning TM, et al. N-Benzoylanthranilic acid derivatives as selective inhibitors of aldo-keto reductase AKR1C3. Bioorg Med Chem Lett 2012; 22:5948–5951. doi: 10.1016/j.bmcl.2012.07.062 PMID: 22897946

18. Hsieh PW, Chang FR, Wu CC, Wu KY, Li CM, Chen SL, et al. New cytotoxic cyclic peptides and diathramide from Dianthus superbus. J Nat Prod 2004; 67:1522–1527. PMID: 15387653

19. Harris MT, Walker DM, Drew ME, Mitchell WG, Dao K, Schroeder CE, et al. (2013) Interrogating a hexokinase-selected small-molecule library for inhibitors of Plasmodium falciparum hexokinase. Antimicrob Agents Chemother 2013; 57:3731–3737. doi: 10.1128/AAC.00662-13 PMID: 23716053

20. Sharlow E, Golden JE, Dodson H, Morris M, Hesser M, Lyda T, et al. Identification of inhibitors of Trypanosoma brucei hexokinases. In: Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information, Bethesda, MD, 2010. Available at http://www.ncbi.nlm.nih.gov/books/NBK63599/

21. Sharlow ER, Lyda TA, Dodson HC, Mustata G, Morris MT, Leimgruber SS, et al. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity. PLoS Negl Trop Dis 2010; 4:e659. doi: 10.1371/journal.pntd.0000659 PMID: 20405000

22. Hinsberger S, de Jong JC, Groh M, Haupenthal J, Hartmann RW. Benzamidobenzoic acids as potent PqsD inhibitors for the treatment of Pseudomonas aeruginosa infections. Eur J Med Chem 2014; 76:343–351. doi: 10.1016/j.ejmech.2014.02.014 PMID: 24589489

23. Weidel E, de Jong JC, Brengel C, Storz MP, Braunshausen A, Negri M, et al. Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa infections and elucidation of binding mode by SPR, STD NMR, and molecular docking. J Med Chem. 2013; 56:6146–6155. doi: 10.1021/jm3006302 PMID: 23834469

24. Keasling JD. Manufacturing molecules through metabolic engineering. Science 2010; 330:1355–1358. doi: 10.1126/science.1193990 PMID: 21272447

25. Sun H, Liu Z, Zhao H, Ang EL. Recent advances in combinatorial biosynthesis for drug discovery. Drug Des Devel Ther 2015; 9:823–833. doi: 10.2147/DDDT.S63023 PMID: 25709407

26. Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 2010; 12:144–170.
27. Eudes A, Baidoo EE, Yang F, Burd H, Hadi MZ, Collins FW, et al. Production of tranilast N-(3',4'-dimethoxycinnamoyl)-anthranilic acid and its analogs in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011; 89:989–1000. doi: 10.1007/s00253-010-2939-y PMID: 20972784

28. Chan KKJ, O’Hagan D. The rare fluorinated natural products and biotechnological prospects for fluorine enzyemology. Methods Enzymol 2012; 516:219–235. doi: 10.1016/B978-0-12-394291-3.00003-4 PMID: 23034231

29. Kosjek T, Heath E. Halogenated Heterocycles as Pharmaceuticals. Top Heterocycl Chem 2012; 27:219–246.

30. Yang Q, Reinhard K, Schiltz E, Matern U. Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Mol Biol 1997; 35:777–789. PMID: 9426598

31. Hamberger B, Hahlbrock K. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci U S A 2004; 101:2209–2214. PMID: 14769935

32. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by deletion and parallel analysis. Science 1999; 285:901–906. PMID: 10436161

33. Clausen M, Lamb CJ, Megret R, Doerner PW. PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Gene 1994; 142:107–112. PMID: 8181743

34. Jiang H, Wood KV, Morgan JA. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2005; 71:2962–2969. PMID: 15932991

35. Eudes A, Juminaga D, Baidoo EE, Collins FW, Keasling JD, Loqué D. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb Cell Fact 2013; 12:62. doi:10.1186/1475-2859-12-62 PMID: 23806124

36. Geissler JF, Harwood CS, Gibson J. Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol 1988; 170:1709–1714. PMID: 3350788

37. Gibson J, Dispensa M, Fogg GC, Evans DT, Harwood CS. 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation. J Bacteriol 1994; 176:634–641. PMID: 8300518

38. Abe I. Engineered biosynthesis of plant polyketides: structure-based and precursor-directed approach. Top Curr Chem 2010; 297:45–66. PMID: 21495256

39. Huth JR, Yu L, Collins I, Mack J, Mendoza R, Isaac B, et al. NMR-driven discovery of benzoylanthranilic acid inhibitors of far upstream element binding protein binding to the human oncogene c-myc promoter. J Med Chem 2004; 47:4851–4857. PMID: 15369388

40. Öberg CT, Strand M, Andersson EK, Edlund K, Tran NP, Mei YF, et al. Synthesis, biological evaluation, and structure-activity relationships of 2-2-(benzoylamino)benzoylamino]benzoic acid analogues as inhibitors of adenovirus replication. J Med Chem 2012; 55:3170–3181. doi: 10.1021/jm201636v PMID: 22369233

41. Lavoie S, Legault J, Simard F, Chiasson É, Pichette A. New antibacterial dihydrochalcone derivatives from buds of Populus balsamifera. Tetrahedron Lett 2013; 54:1631–1633.

42. Simard F, Legault J, Lavoie S, Pichette A. Balsacones D-I, dihydrocinnamoyl flavans from Populus balsamifera buds. Phytochemistry 2014; 100:141–149. doi: 10.1016/j.phytochem.2013.12.018 PMID: 24485585

43. D’Auria JC. Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 2006; 9:331–340. PMID: 16616872

44. Ibda M, Berim A, Martens S, Valderrama AL, Palmieri L, Lewinsohn E, et al. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus × domestica Borkh. Phytochemistry 2014; 107:24–31. doi: 10.1016/j.phytochem.2014.07.027 PMID: 25152451

45. Widhalm JR, Dudareva N. A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 2015; 8:83–97. doi: 10.1016/j.molp.2014.12.001 PMID: 25578274

46. van Péé KH, Patallo EP. Flavin-dependant halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol 2006; 70:631–641. PMID: 16544142

47. Zeng J, Zhan J. A novel fungal Flavin-dependant halogenase for natural product biosynthesis. ChemBioChem 2010; 11:2119–2123. doi: 10.1002/cbic.201000439 PMID: 20827793