Production Risk with Feasible Generalized Least Square

Kanis Fatama Ferdushi, Md Kamrul Hossain, Anton Abdulbasah Kamil.
1Department of Statistics, Shahjalal University of Science and Technology, Sylhet - 3114, Bangladesh,
2Department of General Educational Development, Daffodil International University, Dhaka – 1207, Bangladesh,
3Faculty of Economics, Administrative and Social Sciences, Istanbul Gelisim University, Istanbul – 34310, Turkey.
corresponding author’s e-mail address: * akamil@gelisim.edu.tr

Abstract. This study investigates production risk. A multistage stratified random sampling technique was adopted to select sampling unit. In between Cobb Douglas and Linear quadratic model, the linear quadratic model had been picked through feasible generalized least square method. The numerical model, we utilize the information from rice cultivating in Bangladesh. The results show that uneven socioeconomic and farm-specific inputs are creating risk in rice production. Input variables such as area, labour, and fertilizer and managerial factors, for example, experience, schooling, contact with extension, training, natural calamity, member and status indicated a significant impact on rice productions uncertainty. This indicated that both input and managerial factors were important for the rice production.

1. Introduction
Production risk is natural phenomena in agriculture especially for the emerging countries. Agricultural production faced extensive risks because of environmental factors, geological factors as well as diseases of crops, though farmers are generally risk averse [1-4]. As livelihood of farmers mostly depends on agriculture, the adverse outcomes have large consequences on their life. Through inputs and output, they try to mitigate the production risk.

Just and Pope [6] proposed a function to estimate production risk. Later, Griffiths and Anderson [7] extended the Just and Pope’s model (JP model) for panel data. Kumbhakar [8] extended the JP model for technical efficiency and used the modified model for cross-section in 2002 [9]. Sarkar et al. [5] express that it is necessity to estimate production risk in case of cross sectional research for Transplanted Aman rice, however, his study has limitation that it did not use cross sectional data. Therefore, this study is designed to give empirical insight into production risk of regional rice farmers. Objective of this study is to estimate production risk using production function with feasible generalized least square.

2. Methodology
2.1. Production Function
The general form of Just-Pope production function is
\[y = f(x; \beta) + h(z; \delta) + \epsilon \]
Where:
\[f(x; \beta) \] is the mean production function,
\(h(z;\delta) \) is the variance or risk function,
\(x \) and \(z \) are the vectors of inputs,
\(\beta \) and \(\delta \) are parameter vectors.
\(E(\varepsilon) = 0 \) and \(V(\varepsilon) = \sigma^2 \) are the exogenous stochastic disturbances. Mean output can be represented as \(E(y) = f(x) + u \) and the variance of output can be represented as \(V(y) = V(u) = [h(z;\delta)]^2 \sigma^2 \). A positive sign on parameter \(h(z;\delta) \) implies an increase in the variability of production; on the other hand, a negative sign on the same function indicates a decrease in the variability.

2.2. Estimation Procedure: ML and FGLS
Maximum Likelihood (ML) and Feasible Generalized Least Square (FGLS) estimation procedure had been applied to estimate production risk [12 – 17]. The method of ML provides consistence and asymptotically fully efficient estimates of both mean production function and variance function, in a single stage [18] though, FGLS estimator is used in most empirical studies of production risk [16]. Therefore, both FGLS and ML were chosen for estimation in this study. The Cobb-Douglas (CD) production function and variance function respectively were estimated through the ML estimation procedure. The LQ mean function and variance function in Equations 2 and 3 respectively.

The FGLS procedure is given as follows. The general model in Equation (1) is used to describe conventionally. First, mean production function of Equation (1) was estimated by using ordinary least squares, which gives consistent estimates of the parameters \(\beta \). The predicted residuals were used as the output variable in the estimation of the output risk function.

\[
\hat{u} = y - f(x) = h(z;\delta) \cdot \varepsilon
\]

Second, Harvey [18] specified model was used for the output risk function

\[
\ln(\hat{u})^2 = z\delta + \nu
\]

where \(\nu \) is the error term. Estimated Equation (3) provided consistent estimates of the parameters \(\delta \) and the predicted value of the variance function \(\hat{h}(z;\delta) \). This predicted value was used to re-estimate the mean function for gaining efficient estimation

\[
y/\hat{h}(z;\delta) = f(x;\beta)/\hat{h}(z;\delta) + \varepsilon
\]

This weighted regression was corrected for heteroskedasticity and provided efficient estimates for the mean function \(f(x;\beta) \). Again, the estimated residual from Equation (4) was used to re-estimate the output risk function. Following the procedure of FGLS, the CD mean function and output variance function were estimated through the FGLS estimation procedure.

3. Numerical Example

3.1. Materials
In this cross sectional study, a structured questionnaire was used to collect data from farmers. T. Aman rice cropping farmers were included for interview. Data were collected immediately after the rice harvested to minimize errors arising from recall. A multistage stratified sampling technique was designed to select rice farm household in which a union (smallest administrative unit of Government of Bangladesh) was considered as a strata. The respondents had freedom to withdrawal him/herself from the interview at any time.

The sample size was calculated using the following formula given by Islam [10]:

\[
n = z^2 \left[P(1-P)/d^2 \right] * D_{eff}
\]

Where:
\(n \) is the size of the sample,
\(z \) is two-sided normal variate at 95% confidence level (1.96),
\(P \) is the percentage of indicator,
\(d \) denotes the precision,
\(D_{\text{eff}} \) is the design effect.

To obtain data on indicators at a 10% precision and 95% confidence interval, assuming a design effect of 2.20 and the most conservative estimate of indicator percentage (50%), the sample size required was 200. Therefore, 200 farm households were required to measure the efficiency of rice growing farmers from each division. Regional difference varies due to farm manager’s personal qualification, farming practice, availability of irrigation facility, favourable climate, and soil etc. Bangladesh consists of 30 agro-ecological zones (AEZ). That is overlapping with each other. A total number of 7 mutually exclusive regions were considered for the data set and presented in Appendix (Table A1). The description of the data sets has been given in Appendix (Table A2). The descriptive statistics of input, output, socio-economic, and farm-specific variables are given in Appendix (Table A3). This study followed the categorization of variables of Sherlund et al. [11].

3.2. Log Quadratic (LQ) Production Function for the Study

The empirical LQ mean function of Equation (1) is given as

\[
\ln y_{it} = \beta_0 + \beta_1 \text{Area}_{it} + \beta_2 \text{Labor}_{it} + \beta_3 \text{Seed}_{it} + \beta_4 \text{Pesticide}_{it}
+ \frac{1}{2}(\beta_5 \text{Area}_{it} \times \text{Area}_{it} + \beta_6 \text{Labor}_{it} \times \text{Labor}_{it} + \beta_7 \text{Seed}_{it} \times \text{Seed}_{it}
+ \beta_8 \text{Fertilizer}_{it} \times \text{Fertilizer}_{it} + \beta_9 \text{Pesticide}_{it} \times \text{Pesticide}_{it}) + \beta_{10} \text{Labor}_{it}
+ \beta_{11} \text{Area}_{it} \times \text{Seed}_{it} + \beta_{12} \text{Fertilizer}_{it} \times \text{Labor}_{it} + \beta_{13} \text{seed}_{it} \times \text{Pesticide}_{it}
+ \beta_{14} \text{Fertilizer}_{it} \times \text{Seed}_{it} + \beta_{15} \text{Seed}_{it} \times \text{Fertilizer}_{it} + \beta_{16} \text{Pesticide}_{it} \times \text{Seed}_{it} + u_{it} (6)
\]

3.3. LQ Variance Function

Variance functions can be represented as a special case of variance function specification given by Harvey [18]:
\(V(u) = \exp[\delta z] \), where \(z \) is the input level or transformation of input and can also be a managerial variable. The production variability might also be related to the farmers’ educational background and experience, which had been included in this empirical analysis. The interaction term is omitted from LQ model in variance function.

The LQ model output risk function of Equation (1) is

\[
V(u_{it}) = \exp(\delta_0 + \delta_1 \text{Area}_{it} + \delta_2 \text{Labor}_{it} + \delta_3 \text{Seed}_{it} + \delta_4 \text{Fertilizer}_{it}
+ \delta_5 \text{Pesticide}_{it} + \delta_6 \text{ST}_{it} + \delta_7 \text{MEM}_{it} + \delta_8 \text{EDU}_{it} + \delta_9 \text{EXP}_{it} + \delta_{10} \text{TRAIN}_{it} + \delta_{11} \text{CEO}_{it}
+ \delta_{12} \text{PS}_{it} + \delta_{13} \text{ST}_{it} + \delta_{14} \text{IS}_{it} + \delta_{15} \text{CL}_{it} + \delta_{16} \text{DSE}_{it} + \delta_{17} \text{NCL}_{it}) (7)
\]

The marginal output risk in input \(k \) is given by

\[
\frac{\partial \text{var}(y_{it})}{\partial z_k} = \frac{\partial \text{var}(u_{it})}{\partial z_k} = \exp \left\{ \delta_0 + \delta_1 \text{Area}_{it} + \delta_2 \text{Labor}_{it} + \delta_3 \text{Seed}_{it} + \delta_4 \text{Fertilizer}_{it}
+ \delta_5 \text{Pesticide}_{it} + \delta_6 \text{ST}_{it} + \delta_7 \text{MEM}_{it} + \delta_8 \text{EDU}_{it} + \delta_9 \text{EXP}_{it}
+ \delta_{10} \text{TRAIN}_{it} + \delta_{11} \text{CEO}_{it} + \delta_{12} \text{PS}_{it} + \delta_{13} \text{ST}_{it} + \delta_{14} \text{IS}_{it} + \delta_{15} \text{CL}_{it} + \delta_{16} \text{DSE}_{it} + \delta_{17} \text{NCL}_{it} \right\}
\frac{\partial z_k}{\partial z_k}
\exp \left\{ \delta_0 + \delta_1 \text{Area}_{it} + \delta_2 \text{Labor}_{it} + \delta_3 \text{Seed}_{it} + \delta_4 \text{Fertilizer}_{it}
+ \delta_5 \text{Pesticide}_{it} + \delta_6 \text{ST}_{it} + \delta_7 \text{MEM}_{it} + \delta_8 \text{EDU}_{it} + \delta_9 \text{EXP}_{it}
+ \delta_{10} \text{TRAIN}_{it} + \delta_{11} \text{CEO}_{it} + \delta_{12} \text{PS}_{it} + \delta_{13} \text{ST}_{it} + \delta_{14} \text{IS}_{it} + \delta_{15} \text{CL}_{it} + \delta_{16} \text{DSE}_{it} + \delta_{17} \text{NCL}_{it} \right\}
\]

The output variance elasticity with respect to input \(k \) is given by

\[
\text{VE}_{it}^{(k)} = \frac{\partial \text{var}(y_{it})}{\partial z_k} \frac{\partial z_k}{\partial \text{var}(y_{it})} = \delta_k z_k (8)
\]
The first element of \(z \), \(z_0 \) is taken as unity. This implies \(\text{var}(\varepsilon) = \exp(\delta_b) \).

If \(V \)E is greater (less) than zero, then input \(k \) is risk-increasing (risk-decreasing). The total output variance elasticity in inputs and managerial is defined as

\[
TVE(z) = \sum \text{VE}^{z_{ij}}
\]

If \(TVE \) is greater (smaller) than zero, then a factor neutral expansion of input levels will lead to an increase (decrease) in the variance of output.

The output variance elasticity’s are given in Table 5. The estimated output risk model confirmed that there were both risk-accumulating and risk-diminishing inputs. For DHR, RAJR, SYR negative variance elasticity found by labor input. In this case, the variance elasticity implied that labor input played a risk-diminishing role which is similar with the study of Tveteras and Wan [14]. Labor input elasticity was positive for CHR, KHR, BAR and RANGR that is, in these regions labor is risk increasing factor. However, the value indicates inelasticity which is very small as well as there is no alternate substitution. Total output variance elasticity (TVE) is higher than one for the regions SYR (-1.254) and CHR (-1.11) which reflect that there is flexible substitution of inputs. RANGR is very close to one (-0.931) as can consider as elastic. TVE is negative in DHR, CHR, BAR, SYR and RANGR that is, the production variability is decreasing. On the other hand, TVE were inelastic in the farm of RAJR (0.178) and KHR (0.115).

3.4. Data Validation

3.4.1. Normality Test

The normality test statistics of Jarque Berra for \(JB_{DHR}, JB_{CHR}, JB_{RAJR}, JB_{KHR}, JB_{SYR}, JB_{RANGR} \) are less than \(\chi^2_{\text{critical}} \) at 1% level of significance. The test statistics \(JB_{BAR} \) is less than \(\chi^2_{\text{critical}} \) at 10% level of significance (Table 1). Therefore, there is no evidence to reject the null hypothesis that residuals were normally distributed.

3.4.2. Multicollinearity Test

To test the multicollinearity among the output and input variables a Variance Inflation Factor test was run. Multicollinearity test showed that there was no high multicollinearity among the input variables (Table 2).

3.5. Feasible Generalized Least Square

The estimation of Likelihood value of C-D and LQ production function for the two methods ML and FGLS have presented in Table 3. Between the estimation methods, the likelihood value of FGLS is higher compare to the method of ML for all the regions. LQ production function is more appropriate to estimate the output variable than C-D production function for all the regions except Dhaka region (DHR). C-D production function is more appropriate for DHR. LQ model was adequately fit data; hence former results have been shown from LQ model through FGLS method (Table 4).

Area and labor are risk decreasing inputs for rice production in DHR by FGLS method. This result was supported by Picazo-Tadeo and Wall [16]. Picazo-Tadeo and Wall [16] also estimated the parameter in the context of Spanish rice farm by FGLS method.

In CHR, seed, fertilizer and pesticide were risk reducing. In RAJR, except pesticide rest of the input, area, labor, seed, fertilizer were risk reducing. In KHR, only area and pesticide was risk reducing input, but labor and seed were risk increasing input. Area, seed and fertilizer in BAR farms were risk decreasing input. Labor, fertilizer, and pesticide were working as risk reducing in SYR farms. Seed, fertilizer, and pesticide were showing risk reducing input in RANGR.

The inclusion of socioeconomic and farm-specific variables was strongly supported by likelihood ratio test. Socioeconomic and farm specific variables give negative relation with production risk. In case of DHR, input experience was negatively associated with output risk. Coelli, Rahman, and Thirtle [19] stated that more experienced farmers have more knowledge about traditional management system. Older farm managers are reluctant about to adopt risk in production. Training was positively associated with
production risk. Poor farm managers’ rarely received training in Bangladesh. In this condition, it is noted that uneven socioeconomic and farm-specific inputs are creating risk in production.

4. Discussion

The study identified the general causes of production variability in the T. AMAN rice farms. The obtained results showed that the chosen LQ model provided the best fit for the selected farms of T. AMAN rice over a cross-sectional period.

The results suggested that the input variables such as area, labor, and fertilizer had a significant influence on T. AMAN rice production. On the other hand, the managerial variables, such as experience, schooling, contact with extension, training, natural calamity, member status showed a significant positive impact on T. AMAN production uncertainty. This indicated that both input and managerial variables were important for better T. AMAN production, and required proper guidelines of input use. The main motivation was to show the level of inputs and other farm-specific factors affect T. AMAN production technologies in Bangladesh. The higher amount of labor input per farm increases the output variability, but these empirical results showed that labor was a reducing variability, similar to Gardebroek et al [20]. Better training of the farm manager was found to reduce inefficiency in production. This empirical study showed similar result with Tveteras et al. [21]. It can be recommended on the basis of findings that the farmer may after have received some vocational schooling can optimize his return based on an enhanced ability to evaluate the associated risks and opportunities for him. Moreover, agricultural production are generally uncertain, as natural disasters such as the weather, pests, diseases, and other production calamities affect the farm output. Even slight changes in the input conditions may produce serious impact on farm production, leading to a loss of part or all of the crop’s produce. Many small farmers can be considered as risk-averse in this case. If experienced farmers know the specific risk profiles for their agricultural products and try to manage these risks, then they may have a golden opportunity to increase their production as well as their living standard by means of the limited available land.

5. Conclusions

In this study, the C-D and LQ models were employed to estimate the production risk technologies on a cross-sectional data of Bangladesh T. AMAN rice farms. However, relatively little attention has been paid to the possibility of the production risk, associated with input variable characteristics which have the potential to alter findings regarding farm inefficiency and through this policy conclusion regarding the applicable and focus in rural development efforts in the area. The two systems of approaches, FGLS and ML were applied to give a clear picture of production risk in T. AMAN rice farms. In farmed T. AMAN rice production, risk plays an important part. Consequently, it is important to know which inputs are risk increasing or decreasing. For this we estimate the partial derivatives of the production risk, function. Typically small-scale farmers always face severe financial constraints. The financial constraint problem is most severe among farmers in developing country like Bangladesh. Thus the relative risk is higher than well diversified financially strong investors. The results of this study are of great concern to academics, agriculturists, policymakers, as well as government. Furthermore, these findings have important applied implications to different agricultural farms. The presence of heterogeneity of T. AMAN rice farm indicates to the regulators and policymakers that appropriate measures should be taken to increase the production through proper utilization of input in the farm. In addition, the extent and direction of government involvement is also an important factor in rice farm evolution. Government involvement must be continued to avoid most production risks.

Research on production risk is therefore of great importance, especially for small-scale farming systems in developing countries, where farmers are more vulnerable to risk.

This shows that different climate zones can be impacted differently by climate change. Therefore, the severity of climate change effects on rice yields may vary between climate zones. Our results suggest that region-specific or climate zone specific awareness policies should be implemented.

This will enable the development of local or micro-level adaptation policies for reducing yield variability, and ensuring food security in the presence of climate change.
6. References

[1] Chavas, J. P., & Holt, M. T. 1996. Economic behavior under uncertainty: A joint analysis of risk preferences and technology. *Review of economics and Statistics*, 78(2), pp 329-335.

[2] Lence, S. H. 2000. Using consumption and asset return data to estimate farmers' time preferences and risk attitudes, *American Journal of Agricultural Economics, 82*, pp 934-47.

[3] Isik, M. and Khanna, M. 2003. Stochastic technology, risk preferences, and adoption of site-specific technologies, *American Journal of Agricultural Economics, 85*, pp 305-17.

[4] Kumbhakar, S. C. and Tveteras, R. 2003. Risk preferences, production risk and firm heterogeneity, *Scandinavian Journal of Economics, 105*, pp 275-93.

[5] Sarker, M., Alam, K., & Gow, J. 2017. Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change. *Renewable Agriculture and Food Systems*, pp 1-9. doi:10.1017/S1742170517000473

[6] Just, R. E., & Pope, R. D. 1979. Production function estimation and related risk considerations. *American Journal of Agricultural Economics, 61*(2), pp 276-284.

[7] Griffiths, W. E., & Anderson, J. R. 1982. Using time-series and cross-section data to estimate a production function with positive and negative marginal risks. *Journal of the American Statistical Association, 77*(379), pp 529-536.

[8] Kumbhakar, S. C. 1993. Production risk, technical efficiency, and panel data. *Economics Letters 41*(1), pp 11-16.

[9] Kumbhakar, S. C. 2002. Specification and Estimation of Production Risk, Risk Preferences and Technical Efficiency. *American Journal of Agricultural Economics 84*(1), pp 8-22.

[10] Islam, M. N. (2011). *An introduction to research methods: A handbook for business & health research*. (Dhaka: Mullick & Brothers)

[11] Sherlund, S. M., Barrett, C. B., & Adesina, A. A. 2002. Smallholder technical efficiency controlling for environmental production conditions. *Journal of development economics, 69*(1), pp 85-101.

[12] Saha, A., Havenner, A. and Talpaz, H. 1997. Stochastic production function estimation: small sample properties of ML versus FGLS. *Applied Economics 29*(4), pp 459-469.

[13] Tveteros, R. 1999. Production risk and productivity growth: Some findings for Norwegian salmon aquaculture. *Journal of Productivity Analysis, 12*(2), pp 161-179.

[14] Tvetetar, R., & Wan, G. H. 2000. Flexible panel data models for risky production technologies with an application to salmon aquaculture. *Econometric Reviews, 19*(3), pp 367-389.

[15] Isik, M., & Devadoss, S. 2006. An analysis of the impact of climate change on crop yields and yield variability. *Applied Economics, 38*(7), pp 835-844.

[16] Picazo-Tadeo, A. J. and Wall, A. 2011. Production risk, risk aversion and the determination of risk attitudes among Spanish rice producers. *Agricultural Economics 42*(4), pp 451-464.

[17] Cabrera, B. L., & Schulz, F. 2016. Volatility linkages between energy and agricultural commodity prices. *Energy Economics, 54*, pp 190-203.

[18] Harvey, A. C. 1976. Estimating Regression Models with Multiplicative Heteroscedasticity. *Econometrica 44*(3), pp 461-465.

[19] Coelli, T., Rahman, S., & Thirtle, C. 2002. Technical, allocative, cost and scale efficiencies in Bangladesh rice cultivation: a non-parametric approach. *Journal of Agricultural Economics, 53*(3), pp 607-626.

[20] Gardebroek, C., Chavez, M. D., & Lansink, A. O. 2010. Analysing production technology and risk in organic and conventional Dutch arable farming using panel data. *Journal of Agricultural Economics, 61*(1), pp 60-75.

[21] Tveteteras, R., Flaten, O., & Lien, G. 2011. Production risk in multi-output industries: estimates from Norwegian dairy farms. *Applied Economics, 43*(28), pp 4403-4414.
Table 1: Value of Test Statistic for Jarque-Bera Normality Test

REGION	CHI-SQUARE TEST	TEST STATISTICS
DHR	2.6993**	
CHR	2.4813**	
RAJR	2.4473**	
KHR	2.8343**	
BAR	7.5737*	
SYR	0.8071***	
RANGR	1.6204***	

Note. ***, **, * represents statistically significant at 1%, 5%, and 10% respectively

Table 2: Multicollinearity test between input variables

Description of Variable	Symbol of the Variable	VIF-Score
Production of T. AMAN	(y)	3.020274
Area	(x₁)	2.548984
Labor	(x₂)	1.858775
Seed	(x₃)	2.424339
Fertilizer	(x₄)	2.065635
Pesticide	(x₅)	1.393408
Status	(z₁)	1.290092
Member	(z₂)	1.090466
Education	(z₃)	1.196204
Experience	(z₄)	1.126743
Contact with extension	(z₅)	1.374852
Officer	(z₆)	1.483119
Training	(z₇)	1.197550
Plough System	(z₈)	1.217695
Seed Type	(z₉)	1.262293
Irrigation System	(z₁₀)	1.249655
Condition of Land	(z₁₁)	1.347588
Natural Calamity	(z₁₂)	1.019288
Table 3. Hypothesis Test for Selecting Appropriate production function and method for estimation

Region	Log-likelihood C-D	Log-likelihood LQ	FGLS estimates C-D	FGLS estimates LQ	Accepted Decision
DHR	-970.104	-931.884	-418.213	-436.563	CD
CHR	-902.108	-927.844	-421.802	-416.358	FGLS
RAJR	-982.826	-926.151	-457.310	-424.672	LQ
KHR	-985.719	-932.754	-437.598	-423.578	FGLS
BAR	-994.339	-937.716	-434.368	-410.372	LQ
SYR	-985.471	-889.250	-408.532	-360.436	FGLS
RANGR	-1009.03	-975.683	-435.436	-418.753	LQ

Note: *, ** and *** is statistically significant at 1%, 5% and 10% level of significance.

Table 4. Feasible Generalized Least Square Estimation for Output Risk in Linear Quadratic Production

Variables	DHR	CHR	RAJR	KHR	BAR	SYR	RANGR	
Constant	(δ₀)	7.30*	11.51*	4.43***	4.99*	7.17*	14.39*	9.62*
Area	(δ₁)	3.64	3.40	3.35	3.35	3.35	3.35	3.35
Labor	(δ₂)	-0.83*	0.25	-0.00	0.11	0.00	-0.35	0.62
Seed	(δ₃)	0.69	-0.37	-0.13	0.21	-0.10	0.17	-0.10
Fertilizer	(δ₄)	-0.07	-0.70***	-0.12	0.37	-0.03	-0.43	-0.31
Pesticide	(δ₅)	-0.08	-0.28	0.22**	-0.00	0.03	-0.18	-0.85*
STS	(δ₆)	0.00	0.00	-0.00	-0.00**	0.00	0.00	0.08
MEM	(δ₇)	0.03	-0.19	-0.37	-0.38	-0.45	-1.80	0.20***
EDU	(δ₈)	0.07	-0.06	0.05	0.03	0.05	0.06	0.05
EXP	(δ₉)	0.01	-0.07	-0.00	-0.00	0.01	0.01**	0.02
CEO	(δ₁₀)	0.04	0.04	-0.00	0.01	0.01**	0.02	0.34
TR	(δ₁₁)	-0.12	0.01	0.01	-0.00	0.17	0.41	0.11
PS	(δ₁₂)	-0.00	-0.50	0.46	-0.44	0.17	0.41	0.11
ST	(δ₁₃)	-0.29	-0.33	0.04	-0.83	-0.00	-0.37	-0.31
IS	(δ₁₄)	0.04	0.07	0.39	0.01	0.11	0.03	0.03
CL	(δ₁₅)	-0.04	-0.37	-0.75***	0.03	-0.24	-0.34	1.36
DSE	(δ₁₆)	0.00	0.69**	0.36	-0.47	-0.34	-1.11**	0.47

IOP Publishing
Table 5. Output Variance Elasticity from LQ model by Feasible Generalised Least Square

VARIABLES	DHR	CHR	RAJR	KHR	BAR	SYR	RANGR
Area	0.007	-0.010	0.048	0.128	0.023	-0.022	-0.014
Labor	-0.410	0.123	-0.0008	0.050	0.001	-0.121	0.370
Seed	0.342	-0.171	-0.0879	0.097	-0.055	0.096	-0.034
Fertilizer	-0.050	-0.586	-0.109	0.297	3.079	-0.304	-0.307
Pesticide	-0.083	-0.286	0.195	0.0002	-3.069	-0.159	-1.031
STS	0.010	0.015	-0.005	-0.064	-0.015	0.008	0.025
MEM	0.008	-0.049	-0.114	-0.121	-0.108	-0.305	0.215
SCH	0.068	-0.069	0.047	0.032	0.047	0.090	0.053
EXP	0.037	-0.013	0.045	-0.037	0.015	-0.116	-0.074
TR	0.029	0.073	-0.019	0.054	0.049	0.082	0.004
CEO	-0.007	-0.014	0.018	-0.010	0.009	0.008	-0.011
PS	-0.0003	-0.056	-0.051	0.002	-0.016	-0.113	0.547
ST	-0.0698	-0.120	0.019	-0.290	-0.0009	-0.124	-0.158
IS	0.015	-0.231	0.154	0.006	0.092	0.411	-0.249
CL	-0.294	0.067	-0.073	0.022	-0.080	-0.075	0.086
Disease	0.0005	0.160	0.082	-0.015	-0.090	-0.284	-0.084
NCL	0.078	0.057	0.030	-0.036	-0.041	-0.326	-0.269
TVE	-0.319	-1.11	0.178	0.115	-0.159	-1.254	-0.931

Note. *, **, *** are Significance level at 1%, 5%, 10% consecutively; Values in parentheses are standard deviations.
Appendixes

Table A1. Districts Covered Under AEZ

AEZ	Division Covered under AEZ	District Covered under AEZ
Brahmaputra-Jamuna Floodplain	Dhaka Division (DHR)	Jamalpur, Kishoreganj
Middle Meghna River Floodplain and Lower Meghna River and Estuarine Floodplain	Chittagong Division (CHR)	Brahmanbaria, Feni
Karatoya Floodplain and Atrai Basin	Rajshahi Division (RAJR)	Naogaon, Jhalokhathi
High Gaunges River Floodplain	Khulna Division (KHR)	Jhenaidah, Kustia
Ganges Tidal Floodplain	Barisal Division (BAR)	Barguna, Patuakhali
Sylhet Basin and Surma-Kusiyara Floodplain	Sylhet Division (SYR)	Sunamgonj, Gopalgonj
Old Himalayan Piedmont Plain and Tista Floodplain	Rangpur Division (RANGR)	Gaibandah, Lalmonirhat
Table A2. Description of the variables

Name of Variables	Symbol	Description of Variables
Input Variables		
Production	(y)	Production was the output variable and represented by standard unit as kilogram. Total production of T. AMAN during monsoon season year 2011.
Area	(x₁)	The quantity of appropriate land used for T. AMAN rice farm was considered as Area. As a single crop, the area coverage of AMAN rice is highest. Area was measured by standard unit as hectare.
Labor	(x₂)	The amount of day labor worked for T. AMAN rice farm, included the farmer, family member (unpaid) and hired man power.
Seed	(x₃)	The quantities of seed were produced by the farmer themselves or from the government or from other organizations are considered for the variable seed.
Fertilizer	(x₄)	Fertilizers that were consumed by T. AMAN rice farmers were also considered as a variable. Chemical and non-chemical fertilizers were considered for this study. Fertilizers were measured by kilogram. The chemical fertilizers were UREA, MP and GIPSAM. We considered a combination of all fertilizers. Mostly used non-chemical fertilizer was cow dung in Bangladesh.
Pesticide	(x₅)	The total cost of pesticide during monsoon season of T. AMAN rice farms year 2011 were considered as variable pesticide.
Socioeconomic Variables		
Status	(z₁)	Status is defined by the farmers’ size of the farm. Size of the farm was categorized into three types: large farm (>2 hectares), medium farm (>1 hectare and ≤2 hectares), and small farm/marginal farm (≤1 hectare).
Member	(z₂)	The spouse and the number of children were considered as family members.
Education	(z₃)	The numbers of schooling years of the farmers were considered for education.
Experience (EXP)	(z₄)	The number of years the farmers had been working in the T. AMAN rice farm until 2015 was considered as variable Experience.
Contact with extension Officer	(z₅)	CWE=1, if farmers had contact with the agricultural officer; otherwise, zero.
Training	(z₆)	Skilled worker=1, if farmers had training within 5 years; otherwise, zero.
Farm-specific Variables		
Plough System	(z₇)	Bangladesh has many types of plough systems. If used machine, bullock=1 and Not used machine/ bullock=0.
Seed Type	(z₈)	Different types of seed were used by farmers. ST=1, if improved seed (High Yielding Variety) supplied by Govt., own self or other organization were used by farmers; ST=0, supplied by other’s company were used by farmers.
Irrigation System	(z₉)	There are many traditional irrigation systems available in Bangladesh. Categorical variable had been defined for irrigation systems. If farmer’s irrigation systems were traditional; then traditional irrigation=1, Had not received any irrigation=0
Variable	Condition	
-------------------	------------------------------------	
Condition of Land	Condition of land was a dummy variable. Before cultivation, if farm land was degraded by any unusual circumstances. If degraded CL=1, not degraded CL=0.	
Natural Calamity	Categorical variable that farmers’ rice farm was affected by drought, flood, insects, or others. NCL=1, if farm had been faced flood during production; NCL=0, if farm had not been faced flood during production	
Disease	Disease was a dummy variable. DSE=1, if rice farm had been affected by the disease; DSE=0, if rice farm had not been affected.	
Table A3. Descriptive Statistics of Output, Input and Socioeconomic Variables

Variable	Dhaka Region	Chittagong Region	Rajshahi Region	Khulna Region	Barisal Region
Production (Kg)	1288	1330.600	2876.125	1287.000	1733.385
Area (Ha)	.470	.366	1.1567	.432	.472
Labor (Person)	22	18	40	19	21
Seed (Kg)	18.99	12.695	63.645	20.152	37.255
Fertilizer (Kg)	79.315	16.105	176.630	63.645	173.605
Pesticide (Taka)	324.225	176.630	338.655	357.145	173.385
Family Member (Person)	5	6	5	5	5
Education (Years)	3.97	5	5	5	5
Experience (Years)	14	14	20	14	20

Variable	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum
Dhaka Region	4800	80.00	13000	320	28000	40
Chittagong Region	3.34	.07	4600	.00	8000	25
Rajshahi Region	28000	25	13000	320	6400	40
Khulna Region	21600	25	6400	40	21600	25
Barisal Region	4800.00	0	240.00	1	4800.00	0

	Family Member (Person)	Education (Years)	Experience (Years)
	5	4	18
	2	4	15
	2	0	63

Sylhet Region

	Production (Kg)	Area (Ha)	Labor (Person)	Seed (Kg)	Fertilizer (Kg)	Pesticide (Taka)	Family Member (Person)	Education (Years)	Experience (Years)
	1358.000	.862	14	20.266	33.351	150.226	5	3	14
	5676.849	.962	7	15.294	31.028	66.958	2	4	7
	120	.13	2	5	7	60	2	0	2
	80000	10.70	51	80	200	350	12	12	12

Rangpur Region

	Production (Kg)	Area (Ha)	Labor (Person)	Seed (Kg)	Fertilizer (Kg)	Pesticide (Taka)	Family Member (Person)	Education (Years)	Experience (Years)
	1084.300	.334	37	13.525	221.615	554.275	5	5	11
	824.235	.208	38.475	8.622	248.283	446.077	2	5	5
	200	.00	2	2	6	20	2	0	0
	6800	1.34	250	70	1400	3200	9	9	9

Family Member (Person) = 5, 2, 2, 12
Education (Years) = 3, 4, 0, 20
Experience (Years) = 14, 7, 2, 50