Short communication

Histopathology of Tilapia tissues harbouring Clinostomum tilapiae parasites

Adeyemo A.O1* and Agbede, S.A2

1Department of Fisheries Technology
Nigeria Delta University,
Wilberforce Island, Bayelsa State.

2Department of Veterinary Public Health and preventive Medicine
University of Ibadan,
Ibadan, Oyo State

ABSTRACT

Tissues obtained from infected Oreochromis niloticus were processed sectioned and stained with haemotoxylin and eosin. Good sections were selected, studied and photographed. The histopathology revealed a proliferation of eosinophiles at the secondary lamellar of the gills. The site of attachment on the fish skin showed the cyst to be double walled, the metacercariae is suspected to produce this cyst as a form of defensive mechanism to wall off and prevent dislodgement. Other tissues did not show observable lesions.

(Afr. J. Biomed. Res. 11: 115 - 118)

Key words: - Oreochromis niloticus, infection, Clinostomum tilapiae, histopathology

*Address for Correspondence: text2abiodun@yahoo.com
INTRODUCTION

The impact exerted by parasites on host could be mechanical, chemical or physical. Effects of parasitic infection on fish are of notable importance, for instance respiratory function of the skin and gills of fish are disturbed by *gyrodactylus, dactylogrus* and argulosis infections, causing the fish to become dull, feeble, frequently swimming to water surface with erratic movement and may die of exhaustion (Moore, *et al* 1984). *Metacercariea* of the trematode *Clinostomum marginatum* were known to cause considerable damage to the viscera and musculature of many fish species both wild and cultivated from North America (Hoffman & Meyer 1974), Although the pathogenicity of *Clinostomum* species has not been given prominency in the past, but insignificant conditions have been reported on fish being second intermediate host of the parasite. This study presented a histopathological aspect of the *Clinostomum tilapiae* infection on *Oreochromis niloticus* tissues, harbouring the parasites namely the skin and the gills.

MATERIALS AND METHODS

Tissues of *Oreochromis niloticus* that were infected by *Clinostomum tilapiae* were obtained from the Dept. of Wildlife and fisheries Management fish farm, University of Ibadan. The tissues were fixed in Bouin’s fluid for 24hrs. the fixed materials were transferred and processed through ascending grades of alcohol, dried in a wax miscible agent and impregnated in wax. Sectioning was carried out on a rotary microtome at 5mm. Sections were floated on warm water at 48°C and mounted on chemically clean slides coated with egg albumin. The mounted, unstained sections were dewaxed in three stages of xylene at 1 minute each and actual staining was carried out using the haemoxylin and eosin staining was carried out using the haemoxylin and eosin staining technique. (Bullock, 1978). Stained mounted sections were examined under light microscope for good ones that were selected for photomicroscopy. Photographs were taken at x40 magnification of microscope eye piece using the camera at 50mm focal length.

RESULT AND DISCUSSION

Skin, body cavity and pharyngeal region of *Clinostomum tilapiae* was found as cysts, on the niloticus, shown in plate I and II. Helminthes generally harm their host through mechanical damage produced by devouring host tissues. The metacercariae cyst of clinostomo tilapiae are produced by the epithelia of the fish in reaction to infection, this may also cause irritation on the skin and excess mucus secretions leading to an inflammatory response at the site of attachment. The cyst is double walled as shown in PLATE II.

Plate 1:
Showing the parasite in the fish cavity around the opercula region.

Containing the metacercane. The skin produced this cyst as a defensive mechanism to prevent further penetration. Amlacher (1966) observed that adult trematode may not invade organs by embedding in the tissues but only attaches to convenient site where they may be able to obtain all its nutrient requirements. In this study the cysts were obtained on the skin and pharyngeal region and Ractiliffe, (1968) found that C tilapia actually has the physiological adaptation of upward turning towards the mouth rather than going into the intestine because of the oxygen requirement. Eosinophilic dermatitis associated with *C complanatum* infection on the
Histopathology of parasite-infected Tilapia

African Journal of Biomedical Research 2008 (Vol. 11) / Adeyemo and Agbede

Skin of Tilapia species was found by Garcia et al. (1993). Eosinophiles proliferation on secondary lamella of las shown the gills in PLATE III can be explained by the findings of Barnett et al. (1996), when eosinophilic granulocytes. Occurred abundantly on the skin, gut and haemopoietic tissues of many fishes as a result of handling stress and helminthic infections. This also showed that the defensive mechanism of the host was functioning adequately. Coulibay et al. (1995) found no serious pathology on the fish infected by clinostomids except that the fish were unsightly causing its rejection.

Plate 2:
Showing the cyst on the skin of a fish with double wall and partial erosion of the epithelia.

Skin of Tilapia species was found by Garcia et al. (1993). Eosinophiles proliferation on secondary lamella of las shown the gills in PLATE III can be explained by the findings of Barnett et al. (1996), when eosinophilic granulocytes. Occurred abundantly on the skin, gut and haemopoietic tissues of many fishes as a result of handling stress and helminthic infections. This also showed that the defensive mechanism of the host was functioning adequately. Coulibay et al. (1995) found no serious pathology on the fish infected by clinostomids except that the fish were unsightly causing its rejection.

Plate 3:
Showing proliferation of Eosinophiles on the secondary lamella of the gills

No gross lesions was observed in any of the internal organs having the cyst of C tilapia the metacercaue the was suspected to secrete substances at the pharynx, that causes the proliferation of oesinophiles at the gills and capillary congestion with the presence of melonomacro phages centees.

REFERENCES

Amlacher, E. (1996) Textbook of Fish Diseases. Translated by Canroy D.A and Herman, R.L.T.F.H publication inc. 308pp.

Barnett, R.R; Akindele, T; orfe, C and Shepherd, K.L. (1996) Eosiniphilic granulocytes
in the epidermis of O. mossambics gill filaments studied in situ. *Journal. Fish. Biology* 49.:148-156pp

Bullock, A.M. (1978) Laboratory Methods. In fish Pathology. Roberts, R.J. (*Editor*). Bailliere Tindall Publ. 235-266p

Chung, D; Moon, C.K; Choi, H and Lim, D.K (1995) The first Human case of *Clinostomum complanatum* (Trematode) *Clinostomatidae* Infection in Korea Republic Korea journal of Parasitology. Vol. 7:501pp.

Coulibay, N.D; Salembere, S and Bessin, R (1995) Larval *Clinostomosis* In Cichlid Fish in Lake Kompeinga, Burkina Faso. A threat to Fishing and public Health. Francophones Sante 5:3;199-205

Garacia, M.L.J; Osorio, S.O and Constantino, F.(1993) Prevalance of parasites and the histological lesions they produce in Tilapia from Amelia Lakes. Tecoman Colima. Vet Mex. 4:3;199-205.

Hoffman, G.L and Meyer, F.P(1974) Parasite Control and Treatment. T.F.H public. 224pp

Moore, B.R; Mitchell, A.J; Griffin, B.R and Hoffman, G.L (1984) Parasites and Disease of Pond Fishes. United State Dept. of interior for Fish and Wildlife Services. Reprints of 3rd Report to fish Farmers. 177-205pp

Needham, T and Wooten, R. (1978) Parasitology of Telesot in Fish Pathology. Robber R.J (1978) Bailliere Tindal Public. 144-182p

Olsen, O.W (1985) Animal parasites. Their biology and Life Cycles burgress Public Co. Minnesota. 100-106pp.