Study of marbles from Middle Atlas (Morocco): elemental, mineralogical and structural analysis

S Khrissi¹, L Bejjit¹, M Haddad¹,², C Falguères², S Ait Lyazidi¹, M El Amraoui¹

¹ Laboratoire de Spectrométrie des matériaux et archéomatériaux (LASMAR), Unité de recherche associée au CNRST (URAC11), Université Moulay Ismail, Faculté des sciences, B. P. 11201, Zitoune, 50000, Meknès, Maroc.
² Département Homme et Environnement, Muséum National d’Histoire Naturelle, UMR7194, 75 013 Paris, France.

*E-mail: mhaddad22@yahoo.fr

Abstract. A series of marbles sampled from the region of Middle Atlas (Morocco), are characterized by different complementary spectroscopic techniques. X-Ray fluorescence is used to determine elemental composition of rock while X-Ray diffraction and the Raman spectroscopy are used to determine major crystalline phases (calcite and dolomite) and minor ones (quartz). The samples display typical EPR spectra of Mn²⁺ in calcite and reveal the presence of Fe³⁺ ions.

Keywords: Marbles; Middle Atlas (Morocco); characterization; XRF; XRD; Raman; EPR; Provenance.

1. Introduction
Marble is a naturally occurring stone mainly used in the construction industry or as a raw material for artwork. Since antiquity, it is one of the most frequently used materials for architecture and sculpture and therefore has been given an exceptional importance, particularly under the Romans [1,2]. Marble consists of calcite (CaCO₃) and dolomite (CaMg(CO₃)₂) grains interbedded with other minerals like quartz, mica, graphite, iron oxides, etc., which represent impurities [1,2].

The use of limestone and marble in the Moroccan structures and buildings goes back to Roman antiquity [3,4]. The ornamental rocks are abundant in central Morocco, this is the principal reason why marbles industry is more developed in this country [3,4]. The goal of this work is to provide a multi-technical characterization of marbles and limestones, sampled from Middle Atlas quarries (Morocco). The characterization combines elemental, mineralogical and structural analyses.

2. Materials and characterization techniques

2.1. Samples
Several samples of marbles (fig.1 and table 1) were collected from quarries located in the region of Middle Atlas: Tiskram (KB and KN), Sidi Lamine (K1, K2, K3, K4 and K6) and Sidi Amer (K5 and K7); some of these areas contain fossils. The samples are listed in Table 1 with the corresponding colors and sites.
Figure 1. The samples of studied marbles.

Table 1. Samples codes and quarries of their provenance.

Sample code	Color	Provenance
K1	White	Sidi Lamine
K2	White	Sidi Lamine
K3	White/Yellow	Sidi Lamine
K4	White	Sidi Lamine
K5	Grey	Sidi Amer
K6	White	Sidi Lamine
K7	Grey	Sidi Amer
KN	Black	Tiskram
KB	White	Tiskram

2.2. Experimental techniques

Elemental analyses were determined using an Axios XRF spectrometer with dispersion wavelength. The samples were ground in an agate mortar in pellet form.

X-Ray powder diffraction analysis was carried out on powdered samples at room temperature using the Shimadzu XDR-6100 with Cu Kα radiation at the wavelength 1.5405 Å. Samples were analyzed from 5° to 70°.

Micro Raman spectra were recorded in the range of 100 - 2000 cm⁻¹ using a Renishaw RM 1000 spectrometer, equipped with a CCD detector and an external Leica DMLM confocal microscope with 10x, 20x, 50x, and 100x objectives. The excitation source is a He-Ne laser operating at 632.8 nm with a resolution greater than 2 cm⁻¹. The samples were used directly, without any preparation or pre-size fraction.

X-band EPR spectra of the samples were recorded by a Bruker spectrometer at room temperature, the microwave frequency was 9.5 GHz with a 100 KHz modulation. EPR spectroscopy involves the resonant absorption of microwave power by a few milligrams of samples (≈ 200 mg) in powder form placed in a cavity inside a quartz tube, across which a magnetic field (5- 8000 Gauss) is scanned. It detects paramagnetic atoms and ions, unpaired electrons and free radicals.

3. Results and discussion

3.1. Elemental analyses: XRF

X-ray fluorescence spectrometry has been applied on powders of marbles to determine their chemical composition. The obtained results are summarized in Table 2, they show that the studied marbles contain CaO principally and small amounts of Fe₂O₃, SiO₂, MgO, Al₂O₃, Na₂O, SrO, MnO₂, Cl, SO₃, I, P₂O₅, Y₂O₃ and K₂O. All the samples contain CaO (50.1 - 55.1%) as major element and MgO (0.45 - 1.13%), SiO₂ (0.41 - 8.48%), Fe₂O₃ (0.06 – 1.35 %) and Al₂O₃ (0.2 – 1.13%) as minor elements. The analysis revealed also the presence of trace of other elements such as Na, Sr, Cl, Mn, I, S, P, K and Y in certain marbles.
Table 2. XRF analysis of marble samples.

	CaO	Fe₂O₃	SiO₂	MgO	Al₂O₃	Na₂O	SrO	Cl	SO₃	I	P₂O₅	K₂O	Y₂O₅	LOI*
K1	51.5	1.35	0.76	0.5	0.43	0.14	0.11	0.08	0.07	0.06	0.03	0.02	-	-
K2	54.8	0.13	1.54	0.62	0.34	0.12	0.03	-	-	0.03	0.03	0.02	-	-
K3	55.1	0.09	0.97	0.45	0.28	0.08	0.03	-	-	0.03	0.03	0.03	-	-
K4	53.2	0.21	2.45	0.68	0.78	0.07	0.03	-	0.04	0.03	0.02	0.15	0.08	-
K5	55.1	0.07	0.52	0.61	0.27	0.10	0.03	-	0.06	0.06	0.02	0.13	-	-
K6	52.6	0.28	2.48	0.85	0.99	0.09	0.03	-	-	0.04	0.02	0.06	0.12	-
K7	54.9	0.06	0.41	0.63	0.20	0.11	0.05	-	0.05	0.07	0.03	0.22	-	-
KN	50.1	0.37	5.07	1.43	1.13	0.19	0.12	0.06	-	0.3	0.02	0.08	0.12	0.004
KB	52	1.07	8.48	0.58	0.37	0.09	0.24	0.07	0.05	0.03	0.02	0.01	-	0.004

*LOI: Loss on ignition

3.2. Crystalline phases: XRD

The various Bragg reflections are indexed using (JCPDS) files [5]. The marbles K1 and K6 are calcitic relatively pure; K2, K3, K4, K5, K7 and KB are calcitic also but with low contents of quartz. The sample KN is calcitic with low contents of both quartz and dolomite.

![Figure 2. Powder XRD patterns of samples KN, KB, K2 and K1. C: Calcite, D: Dolomite and Q: Quartz.](image)

3.3. Crystalline phases: Micro Raman

The results obtained with XRD are confirmed by the Raman analyses. Indeed, the Raman spectra of marbles are similar; they show bands at 1085, 1435, 710 and 280 cm⁻¹ characteristics of CO₃ groups in calcite [6-8]; the weak line at 1747 cm⁻¹ may be attributed to the combination of the vibrational modes v₁ and v₄ of the CO₃.

Besides these bands, an additional wide signal at 460 cm⁻¹, signature of α-quartz SiO₂ [6,8,9], is observed in the case of the samples K5 and KN. The spectra of these two marbles also show two supplementary bands at 1325 and 1609 cm⁻¹, which are related to carbonaceous matter (graphite) in the samples [8-11]. Marbles often contain carbonaceous matter resulting in a more or less grey color [10,11].
The strongest band observed on all spectra obtained from the studied marbles corresponds to the symmetric stretching ν_1 mode located around 1085 cm$^{-1}$ and the weak lines located near 1435 and 710 cm$^{-1}$ can be attributed respectively to the ν_3 (asymmetric stretching) and ν_4 (in-plane-bending) vibrational modes [12,13]. The observed frequency shifts about 152 and 280 cm$^{-1}$ originate from the external vibrations of the CO$_3$ groups involving translatory and rotary oscillations [12-14]. We observe also a weak band at 1747 cm$^{-1}$ which may be regarded as the combination band of ν_1 and ν_4 [12,14].

3.4. EPR spectrometry

Because of its high sensitivity, the EPR technique has been used to detect crystal imperfections that may be related to the nature of the quarry from which the marble comes; it is one of the best methods to determine the provenance of marbles. The recorded EPR spectra (fig. 4) were attributed to Mn$^{2+}$ ions; traces of these ions are omnipresent impurities in calcium carbonates. As it possesses a 3d5 electronic configuration, it has six oxygen atoms as its nearest neighbours, each atom belongs to a different CO$_3^{2-}$ group, in an octahedral structure [15-17]. The Mn$^{2+}$ presents a spectrum with six principal lines, due to the hyperfine interaction (allowed transitions), with supplementary intermediate weak lines (forbidden transitions).

The shape of the EPR features, showing dependence on the sampling quarry (fig. 4), constitutes a powerful comparison element in the provenance study of marbles. It’s linked to the details of the chemical environment of the Mn$^{2+}$ [18-20]. Indeed, in calcite (CaCO$_3$) manganese ions substitute for calcium atoms in the calcium carbonate lattice generating thus only one kind of paramagnetic site [15,18].

Figure 3. Raman spectra of samples K5, KN, K4 and K1.

Figure 4. EPR spectra of samples K1, K2 and KN.
All EPR lines from studied marbles correspond to Mn\(^{2+}\) in Ca\(^{2+}\) sites (calcite), the other lines associated to Mn\(^{2+}\) in Mg\(^{2+}\) sites (dolomite) depend strongly on the original quarry; the dolomite/calcite ratio calculated from the EPR spectra, Y and X (fig.4) can be used as an indicator of provenance [9,21,22], it varies from one quarry to another. The other transitions are also observed in these spectra but they are very weak (fig. 4). These lines, outside the six lines of Mn\(^{2+}\), indicate that the symmetry is slightly distorted octahedron. This is due to the presence of Mn\(^{2+}\) in a low symmetry environment caused by the random orientations in the polycrystalline powder [9,15,23].

The marble from Tiskram (KN), exhibits a weak EPR signal between the third and fourth Mn\(^{2+}\) lines at \(g \approx 2.007\); (fig. 4). This signal has been attributed to a paramagnetic defect centers induced in minerals by a low level of ionizing radiation that originates from natural radioactivity. The signal intensity is an indicator of provenance and may also be useful for marble dating [9,21,24].

![EPR spectra of Fe\(^{3+}\) ions in KN, K5, K4, K3 and K2 marbles.](image)

In the low magnetic field region (fig. 5), the peaks at \(g \approx 14.25\), \(g \approx 5.9\) and \(g \approx 2.9\) are attributed to Fe\(^{3+}\) in the calcium carbonate lattice. The peak at \(g \approx 4.3\) is related to Fe\(^{3+}\) in silicates and oxides [20,21,25].

4. Conclusion
Marbles sampled at different quarries in the region of Middle Atlas (Morocco) were characterized by taking a multi-technical approach. XRD showed that the calcite is the major phase in all the marbles. These results were confirmed by Raman spectrometry which shows also the graphitic nature of marbles from certain sites. Quartz and dolomite with low content have been detected in some marbles.

The EPR study shows that all the marbles exhibit principally the same spectrum due to Mn\(^{2+}\), but for each sample the spectrum present a shape and supplementary EPR lines which depend on the quarry origin of the marble. That means that EPR technique may be a useful method to determine the provenance of the marbles.

References
[1] Vagenas N V and Kontoyannis C G 2003 A methodology for quantitative determination of minor components in minerals based on FT-Raman Spectroscopy the case of calcite in dolomitic marble Vib. Spectrosc. 32 261-64.
[2] Saraci D E 2016 Thermal deterioration of marbles: Gloss, color changes Constr. Build. Mater. 102 416-21.
[3] Origlia F, Gliozzo E, Gandin A, Meccheri M, Spangenberg J E and Memmi I T 2012 Marbles and carbonate rocks from central Morocco: a petrographic, mineralogical and geochemical study Environ. Earth Sci. 66 (1) 209-22.
[4] Bouhaouli A, Caraman V and Hilali E 1979 Les marbres du Maroc Mines, Géologie et Énergie, 45 35-102.
[5] JCPDS ASTM card NOS. 5-0586, 36-0426 and 33-1161.
[6] Koralay T and Kılınçarslan S 2016 A multi-analytical approach for determining the origin of the marbles in Temple-A from Laodicea ad Lycum (Denizli-Western Anatolia, Turkey) J. Cult. Herit. 17 42-52.

[7] Rutt H N and Nicola J H 1974 Raman spectra of carbonates of calcite structure J. Phys. C: Solid State Phys. 7 (24) 4522-28.

[8] Krhissi S, Haddad M, Bejjit L, Ait Lyazidi S, El Amraoui M and Falguères C 2017 Raman and XRD characterization of Moroccan Marbles IOP Conf. Ser.: Mater. Sci. Eng. 186 012028.

[9] Krhissi S, Haddad M, Bejjit L, Ait Lyazidi S, El Amraoui M and Falguères C 2017 Étude spectrométrique de marbres du Maroc central L'Anthropologie 121 82-93.

[10] Jehlička J, Šťastná A and Přikryl R 2009 Methodology of analytical study for provenance determination of calcitic calcite-dolomitic and impure marbles from historical quarries in the Czech Republic J. Cult. Herit. 10 82-93.

[11] Jehlička J, Šťastná A and Přikryl R 2009 Raman spectral characterization of dispersed carbonaceous matter in decorative crystalline limestones Spectrochim. Acta, Part A 73 404-09.

[12] Gunasekaran S, Anbalagan G and Pandi S 2006 Raman and Infrared spectra of carbonates of calcite structure J. Raman Spectrosc. 37 892-99.

[13] Krishnamurti D 1957 Proc. Ind. Acad. Sci. 27A 183.

[14] Gunasekaran S and Anbalagan G 2008 Spectroscopic study of phase transitions in natural calcite mineral Spectrochim. Acta, Part A 69 1246-51.

[15] Gunasekaran S and Anbalagan G 2008 Optical absorption and EPR studies on some natural carbonate minerals Spectrochim. Acta, Part A 69 383-90.

[16] Shepherd R A and Graham W R M 1984 EPR of Mn$^{2+}$ in polycrystalline dolomite J. Chem. Phys. 81 (12) 6080-84.

[17] Wildeman T R 1970 The distribution of Mn$^{2+}$ in some carbonates by electron paramagnetic resonance Chem. Geol. 5 (3) 167-177.

[18] Duliu O G and Velter-Stefanescu M 2006 Numerical taxonomy: Mn$^{2+}$ EPR line shape as a criterion in provenance studies J. Optoelectron. Adv. Mater. 8 (4) 1557-61.

[19] Lloyd R V, Smith P W and Haskell H W 1985 Evaluation of the manganese ESR method of marble characterization Archaeometry 27 (1) 108-116.

[20] Polikreti K, Maniatis Y, Bassiakos Y, Kourou N and Karageorghis V 2004 Provenance of archaeological limestone with EPR spectroscopy: the case of the Cypriote-type statuettes J. Archaeol. Sci. 31 (7) 1015-28.

[21] Polikreti K and Maniatis Y 2002 A new methodology for the provenance of marble based on EPR spectroscopy Archaeometry 44 (1) 1-21.

[22] Attanasio D and Platania R 2000 ESR spectroscopy as a tool for Identifying joining fragments of antique marbles: the example of a pulpit by Donatello and Michelozzo J. Magn. Reson. 144 (2) 322-9.

[23] Cordischi D, Monna D and Segre A L 1983 ESR analysis of marble samples from Mediterranean quarries of archaeological interest Archaeometry 25 (1) 68-76.

[24] Maniatis Y and Mandi V 1992 Electron paramagnetic resonance signals and effects in marble induced by working J. Appl. Phys. 71 (10) 4859-67.

[25] Polikreti K and Maniatis Y 2004 Distribution changes of Mn$^{2+}$ and Fe$^{3+}$ on weathered marble surfaces measured by EPR spectroscopy Atmosph. Environ. 38 (22) 3617-24.