The Road to VEGAS: Guiding the Search over Neutral Networks

M-E. Marmion, C. Dhaenens, L. Jourdan, A. Liefooghe, S. Verel

Firstname.lastname@inria.fr

INRIA Lille-Nord Europe
Université Lille 1
Université Nice Sophia Antipolis
France
Motivations

• Fitness landscapes
 • To analyze the structure of the search space
 • Understanding the problem structure to design efficient search methods

• Many combinatorial optimization problems involve neutrality (robot controller, planning problem, learning problem, protein folding...)

• Can we and how to exploit this neutrality?
Motivations

- **Fitness landscapes**
 - To analyze the structure of the search space
 - Understanding the problem structure to design efficient search methods

- Many combinatorial optimization problems involve **neutrality** (robot controller, planning problem, learning problem, protein folding...)

- Can we and how to exploit this neutrality?
Objectives

- How to exploit neutrality?
- How to guide the search adaptively over a neutral network?
- What is Exploration / Exploitation tradeoff of neutral networks?

→ VEGAS: Varying Evolvability Guided Adaptive Search
Fitness Landscape

\(\text{FiL} (S, N, f) \)

- **S** \hspace{1cm} \text{Search space}
 - all feasible solutions

- **N : S → 2^S** \hspace{1cm} \text{Neighborhood relation}
 - \(N(s) : \text{neighborhood, } s' \in N(s) \): neighbor of \(s \)

- **f : S → R** \hspace{1cm} \text{Evaluation function}
 - Fitness values assigned to solution

local optima, ruggedness, etc.
Neutrality properties

- **Neutral Network (NN) - Plateau**
 - Connected sub-graph
 - Vertices: equivalent solutions (same fitness value)
 - Edges: Neighborhood structure

- **Degree of neutrality**
 - Number of neighbors with the same fitness value
 \[
 \mathcal{N}_n(s) = \{ s' \in \mathcal{N}(s) \mid f(s') = f(s) \}
 \]

- **Portal (exit solution)**
 - Solution from NN with at least one improving neighbor
Guiding the search on NN

- How to guide the search?
 - Consider all solutions with the same fitness
 - Estimate the evolvability of solutions
 - Select the most promising solution
Estimate Evolvability

Altenberg: the ability of random variations to sometimes produce improvement

Existing measures of evolvability:
- Average, max fitness values from the neighborhood
- Probability to increase
- Neutral degree...

Our approach
- Inspired by the « Area Under Curve » (AUC) scheme used for operator selection
- Neighborhood sampling

Altenberg, L.: The evolution of evolvability in genetic programming. In Kinnear, Jr., K.E., ed.: Advances in Genetic Programming. MIT Press (1994) 47–74

Álvaro Fialho, Marc Schoenauer and Michele Sebag. Toward Comparison-based Adaptive Operator Selection. In J. Branke et al., eds.: "GECCO'10: Proc. 12th Annual Conference on Genetic and Evolutionary Computation", ACM Press: p. 767-774. July 2010
Estimate Evolvability

Fitness

Fitness	Solution
14	S1
13	S1
12	S2
11	S2
9	S1
6	S1
6	S2
5	S2
4	S1

AUC(S1)=11.5
Select the most promising solution

- Exploration vs. exploitation
 - Multi-armed bandit
 - Upper Confidence Bound strategy (UCB)

\[
\arg \max_{i=1..K} \left(\hat{r}_{i,t} + C \sqrt{\frac{\log \sum_{k} n_{k,t}}{n_{i,t}}} \right)
\]

- \(K \) : number of arms
- \(\hat{r}_{i} \) : credit of arm \(i \)
- \(n_{i} \) : number of applications of arm \(i \)
- \(C \) : controls the trade-off (exploitation vs. exploration)

Álvaro Fialho, Marc Schoenauer and Michele Sebag. *Toward Comparison-based Adaptive Operator Selection*. In J. Branke et al., eds.: "GECCO'10: Proc. 12th Annual Conference on Genetic and Evolutionary Computation", ACM Press: p. 767-774. July 2010
Select the most promising solution

\[\arg \max_{i=1..K} \left(\hat{r}_{i,t} + C \sqrt{\frac{\log \sum_k n_{k,t}}{n_{i,t}}} \right) \]

At iteration \(t \):

\(\rightarrow \) Arms = sampling from NN

\(K \): sample size

\(\rightarrow \) Credit assignement based on evolvability

\(\hat{r}_i \): AUC of solution \(i \)

\(\rightarrow \) Number of sampled neighbors

\(n_i \): evaluated neighbor

\(\rightarrow \) Exploitation / Exploration trade-off parameter

\(C \): small (exploitation), large (exploration)

Management of the NN sample:

• Add equivalent solutions
• Delete solutions when \(n_j = |N(s)| \)
VEGAS

$S = \{s_0\}$

WHILE $\exists s \in S$ such that s is not visited do

 $s \leftarrow \text{select}(S)$

 Choose a solution $s' \in N(s)$ at random (no repetition)

 IF $f(s) < f(s')$ THEN

 $S \leftarrow \{s'\}$

 ELSE IF $f(s) = f(s')$ THEN

 $S \leftarrow S \cup \{s'\}$

 END IF

 Update $\text{rewards}(s, s')$

END WHILE

Return $s \in S$
NKq fitness landscapes

\[f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i (x_i, x_{i_1}, \ldots, x_{i_k}) \]

- \(N \) : length of the bit string, \(x_i \in \{0, 1\} \)
- \(K \leq N-1 \) number of interactions (epistasis, non-linearity)
- \(q \) number of possible values (neutral degree level)
- \(\{i_1, \ldots, i_K\} \subset \{1, \ldots, i-1, i+1, \ldots, N\} \)
- \(f_i : \{0, 1\}^{K+1} \rightarrow [0,q) \cap \mathbb{N} \) chosen at random

Newman, M. And Engelhardt R.: **Effect of neutral selection on the evolution of molecular species**, In Proc. R. Soc. London B, vol. 56, 1998, 1333-1338
Experimental design

• Test problems
 • NKq N=64, K∈{2,4,6,8}, q ∈{2,3,4}
• Neighborhood
 • 1 bit-flip
• Comparisons with
 • FIHC: First Improvement Hill-Climbing
 • NC: NetCrawler (HC which accepts if f(s) ≤ f(s’))
 • F2NS: Fair Neutral Network Search (Select = random)
• Parameters
 • Stopping criteria: max number of eval. 10^5
 • 100 experiments/algorithm
• VEGAS
 • $C \in \{10^{-4}, 10^{-3} \ldots 10^1, 10^2, 5.10^2\}$
Dynamics of compared methods

FIHC
- Without neutrality

NetCrawler
- With Neutrality
- NN sample size = 1

F2NS
- With Neutrality
- NN sample size > 1

VEGAS
- With Neutrality
- NN sample size > 1
- With Evolvability
Neutrality?
NN sample size > 1?
Evolvability?

K = 4

FIHC << NC
NC << F2NS, VEGAS
F2NS < VEGAS\textsubscript{100}

K = 8

Average Normalized Performance
Impact of parameter \(C \)

\(C \) controls the **Trade-off** Exploration vs. Exploitation?
- small \(C \) → Importance of evolvability = **Exploitation**
- high \(C \) → Towards less visited solutions = **Exploration**
Impact of neutrality

NN Solutions evaluated on NN increases exponentially with neutral degree
Exploration vs Exploitation

$C > 1$ (exploration) \rightarrow more NN are sampled, few evaluations on NN

$C < 1$ (exploitation) \rightarrow few NN are sampled, more evaluations on NN
Conclusion

- Algorithm to exploit neutrality
- Adaptive balance exploration / exploitation of neutrality
- Evolvability-guided search

→ VEGAS
 - Multi-Armed Bandit
 - Evolvability
 - A single parameter to control the exploration and exploitation trade-off of NN

- Open issues
 - Other evolvability measures?
 - Flowshop scheduling?
The Road to VEGAS: Guiding the Search over Neutral Networks

M-E. Marmion, C. Dhaenens, L. Jourdan, A. Liefooghe, S. Verel
Firstname.lastname@inria.fr
INRIA Lille-Nord Europe
Université Lille 1
Université Nice Sophia Antipolis
France