A TOPOLOGICAL PROOF OF THE NON-DEGENERACY OF HARMONIC STRUCTURES ON SIERPINSKI GASKETS

SHIPING CAO AND HUA QIU

Abstract. We present a direct proof of the non-degeneracy of the harmonic structures on the level-\(n\) Sierpinski gaskets for any \(n \geq 2\), which was conjectured by Hino in \([H1,H2]\) and confirmed to be true by Tsougkas \([T]\) very recently using Tutte’s spring theorem.

1. Introduction

The theory of analysis on fractals, analogous to that on manifolds, has been being well developed. The pioneering work, developed by Kigami \([K1,K2]\), is the analytic construction of the Laplacians, for a class of finitely ramified fractals, named p.c.f. self-similar sets, including the Sierpinski gasket as a typical example, where Laplacians are defined as renormalized limits of graph Laplacians, playing the role of differential operators of second order on manifolds.

The harmonic functions on fractal domains may have some different nature from the classical ones as a consequence of the finitely ramified topology of the fractals. For example, the Hexagasket and the Vicsek set \([S2]\) consume degenerate harmonic structures so that nonconstant harmonic functions vanishing locally on small cells exist. It seems that such phenomenon always happens on those fractals containing nonjunction inner vertices.

Recently, Tsougkas \([T]\) gives a proof on the non-degeneracy of harmonic structures on the level-\(n\) Sierpinski Gasket \(SG_n\), \(n \geq 2\), based on certain geometric graph theory, in which Tutte’s spring theorem plays the key role, which was conjectured and numerically checked for the standard case for \(n \leq 50\) by Hino \([H1,H2]\).

Theorem 1.1. For \(n \geq 2\), each harmonic structure of \(SG_n\) is non-degenerate.

In this note, we aim to provide an elementary proof for this theorem using only the basic facts of the discrete Laplacians on finite sets.

2000 Mathematics Subject Classification. Primary 28A80.

Key words and phrases. fractal analysis, harmonic functions, fractal Laplacians, harmonic structures, Sierpinski gaskets.

The research of the second author was supported by the Nature Science Foundation of China, Grant 11471157.

Definition 1.2. Let \(V\) be a finite set. A symmetric linear operator (matrix) \(H : l(V) \to l(V)\) is called a Laplacian on \(V\) if it satisfies

1. \(H\) is non-positive definite,
2. \(Hu = 0\) if and only if \(u\) is a constant on \(V\),
3. \(H_{pq} \geq 0\) for all \(p \neq q\).

Denote \(\mathcal{L}A(V)\) the set of Laplacians on \(V\).
Recall that S_G_n is the unique nonempty compact subset of \mathbb{R}^2 satisfying $S_G_n = \bigcup_{i=0}^{n^2+n-2} F_i S_G_n$ with F_i's being contraction mappings defined as $F_i(z) = n^{-1}z + d_{n,i}$ with suitable $d_{n,i} \in \mathbb{R}^2$. See Figure 1.1. The set V_0 consisting of the three vertices q_0, q_1, q_2 of the smallest triangle containing S_G_n is called the boundary. In this note, we mainly discuss the Laplacians on $V_1 = \bigcup_{i=0}^{n^2+n-2} V_0$.

Let $D \in \mathcal{LA}(V_0)$, and \mathcal{E}_0 be its associated Dirichlet form

$$\mathcal{E}_0(u, v) = \sum_{p, q \in V_0} D_{pq}(u(p) - u(q))(v(p) - v(q)), \quad u, v \in l(V_0).$$

For $r = (r_0, r_1, \cdots, r_{n^2+n-2})$ with $r_i > 0$, denote by \mathcal{E}_1 the induced Dirichlet form on V_1 with

$$\mathcal{E}_1(u, v) = \sum_{i=0}^{n^2+n-2} r_i^{-1} \mathcal{E}_0(u \circ F_i, v \circ F_i), \quad u, v \in l(V_1).$$

We call the pair (D, r) a harmonic structure if the restriction of \mathcal{E}_1 on V_0 equals \mathcal{E}_0. Once the pair (D, r) is a harmonic structure, it could naturally induce a self-similar Dirichlet form on the fractal S_G_n, see [K3]. The Laplacian on V_1 associated with \mathcal{E}_1, denoted by H_1, can be expressed as

$$H_1 = \sum_{i=0}^{n^2+n-2} r_i^{-1} R_i^t DR_i,$$

where $R_i : l(V_1) \to l(V_0)$ is defined by $R_i v = v \circ F_i$.

By Theorem 3.2.11 in [K3], it is easy to check that $(H_1)_{pq} > 0$ if and only if $p, q \in F_i V_0$ for some $0 \leq i \leq n^2+n-2$ due to the topology of S_G_n. We always denote $p \sim q$ if $(H_1)_{pq} > 0$. The edge relation \sim together with the vertex set V_1 gives the level-1 graph approximation G_1 of S_G_n. See Figure 1.2 for $n = 2, 3, 4$ cases.

Let h be a harmonic function on S_G_n and $v = h|_{V_1} \in l(V_1)$, then

$$(1.1) \quad (H_1 v)|_{V_1 \setminus V_0} = 0.$$

Conversely, for any v satisfying (1.1), it has a unique extension h so that h is harmonic on S_G_n. Thus we only need to study the solutions of (1.1). The following discrete maximum principle is important. See Proposition 2.1.7 in [K3].
Proposition 1.3. (Maximum Principle) Let V be a finite set and $H \in \mathcal{L}A(V)$. Let U be a proper subset of V. For $p \in V \setminus U$, write

$U_p = \{ q \in U : \text{There exist } p_1, p_2, \ldots, p_m \in V \setminus U \text{ with } p_1 = p \}
H_{p, p_{i+1}} > 0 \text{ for } i = 1, 2, \ldots, m - 1 \text{ and } H_{p_m q} > 0 \}.

Then if $(Hv)|_{V \setminus U} = 0$, then for any $p \in V \setminus U$,

$$\min_{q \in U_p} v(q) \leq v(p) \leq \max_{q \in U_p} v(q).$$

Moreover, $v(p) = \max_{q \in U_p} v(q)$ (or $v(p) = \min_{q \in U_p} v(q)$) if and only if v is constant on U_p.

2. Main Result

Call a finite sequence of vertices $\{ p_1, p_2, \ldots, p_m \} \subset V_1$ a chain if $p_i \sim p_{i+1}$ for $1 \leq i < m$ and $p_i \neq p_j$ for $i \neq j$. Before proving Theorem 1.1, we list some lemmas.

Lemma 2.1. Let $v \in l(V_1)$ satisfying (1.1), and assume v is not a constant. If $p \in V_1 \setminus V_0$ is a vertex with a neighbor $q \sim p$ such that $v(q) \neq v(p)$, then there exists a chain $\{ p_1, p_2, \ldots, p_m \}$ with $p_1 = p$ and $p_m \in V_0$ satisfying

$v(p_1) < v(p_2) < \cdots < v(p_m)$. Similarly, there is another chain satisfying $v(p_1) > v(p_2) > \cdots > v(p_m)$.

Proof. Let $p_1 = p$. There must exist some $q \sim p_1$ such that $v(p_1) < v(q)$, since by (1.1),

$$(H_1 v)(p_1) = \sum_{p' \sim p_1} (H_1)_{p_1 p'} (v(p') - v(p_1)) = 0.$$ Set this q as p_2. If $p_2 \in V_0$, then we have already find the chain. Otherwise, repeat the above procedure until we find a $p_m \in V_0$. The process will stop after finite times of operations, since V_1 is a finite set.

Lemma 2.2. Let A be a proper subset of $V_1 \setminus V_0$ with at least two vertices. Write $\partial A = \{ p \in A | \text{There exists } q \in V_1 \setminus (A \cup V_0) \text{ such that } (H_1)_{pq} > 0 \}$. Then $\# \partial A \geq 2$.

Proof. If $\partial A = A$, then we immediately get the lemma. Otherwise, it is easy to see that $A \setminus \partial A$ and $V_1 \setminus (A \cup V_0)$ are disconnected with each other, which also leads to $\# \partial A \geq 2$ as $(V_1 \setminus V_0, \sim)$ is 2-connected. Here we call a graph 2-connected if it could not be disconnected by removing 1 vertex.
Proof of Theorem 1.1. Let \(v \) be the restriction of a nonconstant harmonic function \(h \) on \(V_1 \). For \(c \in \mathbb{R} \), define

\[
E(v, c) = \{ p \in V_1 : v(p) = c \}.
\]

We only need to show that \(F_i V_0 \not\subseteq E(v, c) \) for any \(0 \leq i \leq \frac{n^2+n-2}{2} \) and any \(c \in \mathbb{R} \).

Assume \(F_i V_0 \in E(v, c) \) for some \(i \). We may find another \(i_2 \) such that \(F_{i_2} V_0 \in E(v, c) \) and \(F_{i_2} V_0 \cap F_i V_0 \neq \emptyset \). Also, another \(i_k \) such that \(F_{i_k} V_0 \in E(v, c) \) and \(F_{i_k} V_0 \cap \bigcup_{k=1}^{i-1} F_i V_0 \neq \emptyset \). Repeat the procedure until we can not find another such \(i \), and set \(A \) to be the union of these \(F_i V_0 \)'s. As a consequence of Lemma 2.2, there should be at least two vertices, denoted by \(a_1, a_2 \in A \setminus V_0 \), such that for each \(a_i \), there exists a neighbor \(p \sim a_i \) with \(v(p) \neq c \).

Let \(CH = \{p_1, p_2, \ldots, p_m\} \subset A \) be a geodesic chain (with minimal number of edges, may not be unique) in \(A \) connecting \(p_1 = a_1 \) and \(p_m = a_2 \). See Figure 2.1 for examples of such chains. The value of \(v \) is always \(c \) along this chain. On the other hand, for each \(i = 1, 2 \), by using Lemma 2.1, we could connect \(a_i \) to the boundary \(V_0 \) by two different chains \(CH^{S,i} \) and \(CH^{L,i} \), denoted as

\[
CH^{S,i} = \{p_{k,1}^{S,i} \}_{k=1}^{m_{S,i}}, \quad \text{with} \quad p_{1}^{S,i} = a_i \text{ and } p_{m_{S,i}}^{S,i} \in V_0,
\]

\[
CH^{L,i} = \{p_{k,1}^{L,i} \}_{k=1}^{m_{L,i}}, \quad \text{with} \quad p_{1}^{L,i} = a_i \text{ and } p_{m_{L,i}}^{L,i} \in V_0,
\]

satisfying that \(p_{k}^{S,i} < c, \forall 2 \leq k \leq m_{S,i} \) and \(p_{k}^{L,i} > c, \forall 2 \leq k \leq m_{L,i} \).

![Figure 2.1. Examples of possible cases for \(CH \).](image)

Take a vertex \(p \in A \setminus CH \) such that \(p \sim p_{i_1}, p \sim p_{i_2} \) for two different \(p_{i_1}, p_{i_2} \in CH \). Note that \(v(p) = c \). It is not possible for \(p \in V_0 \), otherwise it will contradict to the fact that there exist five chains as shown above, since \(CH^{S,i} \) and \(CH^{L,i} \) never cross when \(i \neq j \). Now as in Proposition 1.3, we take \(U \) to be the union of \(V_0 \) and above five chains, and \(V \) to be \(V_1 \). Noticing that \(p \in V \setminus U \), we have

\[
(2.1) \quad \text{either } U_p \subset CH \cup CH^{S,1} \cup CH^{S,2} \text{ or } U_p \subset CH \cup CH^{L,1} \cup CH^{L,2}.
\]

Moreover, since \(CH \) is a geodesic chain, it could not encircle a nonempty subset of \(V_1 \setminus V_0 \), and thus there must exist a chain in \(V_1 \setminus CH \) which connects \(p \) to some \(q \in V_0 \). So we have

\[
(2.2) \quad U_p \setminus CH \neq \emptyset.
\]

By (2.1), (2.2) and the definition of \(CH^{S,i} \) and \(CH^{L,i} \), we have either \(\min_{q \in U_p'} v(q) < c = \max_{q \in U_p'} v(q) \) or \(\min_{q \in U_p'} v(q) = c < \max_{q \in U_p'} v(q) \). Thus we get \(v(p) \neq c \) by using the maximum principle as stated in Proposition 1.3. However, this contradicts to the fact that \(p \in A \). \(\Box \)
As we know, harmonic functions on \mathcal{SG}_n are of 3-dimensional, and could be uniquely determined by their boundary values on V_0. More precisely, there exist harmonic extension matrices A_i, $0 \leq i \leq \frac{n^2+n-2}{2}$, so that
\[h|_{F_iV_0} = A_i h|_{V_0} \]
holds for any harmonic function h on \mathcal{SG}_n. We could restate Theorem 1.1 as following.

Corollary 2.3. All the harmonic extension matrices A_i of \mathcal{SG}_n are nondegenerate.

Proof. Let h be a harmonic function and let $v = h|_{V_1}$. If $v|_{V_0} = c \neq 0$, then $v|_{F_iV_0} = c$. If $v|_{V_0}$ is not a constant, then by Theorem 1.1, $v|_{F_iV_0}$ is also not a constant. These show that $A_i v|_{V_0} \neq 0$ if $v|_{V_0} \neq 0$. \qed

References

[H1] M. Hino, *Some properties of energy measures on Sierpinski gasket type fractals*. J. Fractal Geom. vol. 3 (2016), 245-263.

[H2] M. Hino, *Energy measures and indices of Dirichlet forms, with applications to derivatives on some fractals*. Proc. Lond. Math. Soc. 100.1 (2009), 269-302.

[K1] J. Kigami, *A harmonic calculus on the Sierpinski spaces*. Japan. J. Appl. Math. 6 (1989), 259-290.

[K2] J. Kigami, *Harmonic calculus on p.c.f. self-similar sets*. Trans. Amer. Math. Soc. 335 (1993), 721-755.

[K3] J. Kigami, *Analysis on Fractals*. Cambridge University Press, 2001.

[S1] R.S. Strichartz, *Some properties of Laplacians on fractals*. J. Funct. Anal. 164 (1999), 181-208.

[S2] R.S. Strichartz, *Differential Equations on Fractals: A Tutorial*. Princeton University Press, 2006.

[T] K. Tsougkas, *Non-degeneracy of the harmonic structure on Sierpinski Gaskets*. arXiv:1605.04117