A STUDY ON \(q\)-ANALOGUES OF CATALAN-DAEHEE NUMBERS AND POLYNOMIALS

YUANKUI MA, TAEKYUN KIM, DAE SAN KIM, AND HYUNSEOK LEE

ABSTRACT. Catalan-Daehee numbers and polynomials, generating functions of which can be expressed as \(p\)-adic Volkenborn integrals on \(\mathbb{Z}_p\), were studied previously. The aim of this paper is to introduce \(q\)-analogues of the Catalan-Daehee numbers and polynomials with the help of \(p\)-adic \(q\)-integrals on \(\mathbb{Z}_p\). We derive, among other things, some explicit expressions for the \(q\)-analogues of the Catalan-Daehee numbers and polynomials.

1. INTRODUCTION AND PRELIMINARIES

In recent years, many special numbers and polynomials have been studied by using several different tools such as combinatorial methods, generating functions, \(p\)-adic analysis, umbral calculus, differential equations, probability theory, special functions and analytic number theory. Catalan-Daehee numbers and polynomials were studied in [10] and several properties and identities associated with those numbers and polynomials were derived by utilizing umbral calculus techniques. The family of linear differential equations arising from the generating function of Catalan—Daehee numbers were considered in [11] in order to derive some explicit identities involving Catalan—Daehee numbers and Catalan numbers. In [6], \(w\)-Catalan polynomials were introduced as a generalization of Catalan polynomials and many symmetric identities in three variables related to the \(w\)-Catalan polynomials and analogues of alternating power sums were obtained by means of \(p\)-adic fermionic integrals. The aim of this paper is to introduce \(q\)-analogues of the Catalan-Daehee numbers and polynomials with the help of \(p\)-adic \(q\)-integrals on \(\mathbb{Z}_p\), and derive some explicit expressions and identities related to those numbers and polynomials. For the rest of this section, we recall the necessary facts that are needed throughout this paper.

Let \(p\) be a fixed odd prime number. Throughout this paper, \(\mathbb{Z}_p\), \(\mathbb{Q}_p\) and \(\mathbb{C}_p\) denote respectively the ring of \(p\)-adic integers, the field of \(p\)-adic rational numbers and the completion of the algebraic closure of \(\mathbb{Q}_p\). The \(p\)-adic norm \(|\cdot|_p\) is normalized as \(|p|_p = \frac{1}{p}\). Let \(q\) be an indeterminate in \(\mathbb{C}_p\) with \(|1 - q|_p < p^{-\frac{1}{p-1}}\). The \(q\)-analogue of \(x\) is defined by \([x]_q = \frac{1 - q^x}{1 - q}\). Note that \(\lim_{q \to 1} [x]_q = x\).

Let \(f\) be a uniformly differentiable function on \(\mathbb{Z}_p\). Then the \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\) is defined by Kim as

\[
\int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) \mu_q(x + p^N\mathbb{Z}_p)
\]

\[
= \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x) q^x, \quad (\text{see } [7, 8]).
\]
From (1), we have
\[
q \int_{\mathbb{Z}_p} f(x+1) d\mu_q(x) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) + (q-1)f(0) + \frac{q-1}{\log q} f'(0),
\]
where
\[
f'(0) = \frac{df}{dx} \bigg|_{x=0}, \quad \text{(see \([1,2,7,8]\)).}
\]
Let us take \(f(x) = e^{xt} \). Then, by (1), we get
\[
\frac{(q-1) + \frac{q-1}{\log q} t}{q e^t - 1} = \int_{\mathbb{Z}_p} e^{xt} d\mu_q(x).
\]
The \(q \)-Bernoulli numbers are defined, in light of (3), by
\[
\frac{(q-1) + \frac{q-1}{\log q} t}{q e^t - 1} = \sum_{n=0}^\infty B_{n,q} \frac{t^n}{n!}.
\]
From (4), we note that
\[
q(B_q + 1)^n - B_{n,q} = \begin{cases}
q - 1, & \text{if } n = 0, \\
\frac{q-1}{\log q}, & \text{if } n = 1, \\
0, & \text{if } n > 1,
\end{cases}
\]
with the usual convention about replacing \(B_q^n \) by \(B_{n,q} \).

For \(|t|_p < p^{-\frac{1}{\log p}}\), the \((q,\lambda) \)-Dahee polynomials are defined by
\[
\sum_{n=0}^\infty D_{n,q}(x|\lambda) \frac{t^n}{n!} = \frac{2(q-1) + \lambda \frac{q-1}{\log q} \log(1+t)}{q^2(1+t)^\lambda - 1} (1+t)^\lambda, \quad \text{(see \([3,12-17]\)).}
\]
When \(x = 0 \), \(D_{n,q}(\lambda) = D_{n,q}(0|\lambda) \) are called \((q,\lambda) \)-Dahee numbers.

In particular, \(D_{0,q}(0|1) = \frac{2}{[2]_q} \).

The Catalan-Dahee numbers are defined by
\[
\frac{1}{2} \log(1-4t) = \sum_{n=0}^\infty d_n t^n, \quad \text{(see \([5,10]\)).}
\]
We note that
\[
\sqrt{1+t} = \sum_{m=0}^\infty (-1)^{m-1} \binom{2m}{m} \left(\frac{1}{4}\right)^m \left(\frac{1}{2m-1}\right) t^m.
\]
By replacing \(t \) by \(-4t\) in (8), we get
\[
\sqrt{1-4t} = 1 - 2 \sum_{m=0}^\infty \binom{2m}{m} \frac{1}{m+1} t^{m+1} = 1 - 2\sum_{m=0}^\infty C_m t^{m+1},
\]
where \(C_m \) is the Catalan number.

From (7) and (8), we have
\[
d_n = \begin{cases}
1, & \text{if } n = 0, \\
\frac{4^n}{n+1} - \sum_{m=0}^{n-1} \binom{n-m-1}{n-m} C_m, & \text{if } n \geq 1.
\end{cases}
\]
When $q = 1$, by (1), we get
\[\int_{\mathbb{Z}_p} (1 - 4t)^{\frac{1}{2}} d\mu_1(x) = \frac{\frac{1}{2}\log(1 - 4t)}{\sqrt{1 - 4t} - 1} = \sum_{n=0}^{\infty} d_n t^n. \]

2. q-analogues of Catalan-Daehee numbers and polynomials

For $t \in \mathbb{C}_p$ with $|t|_p < p^{-\frac{1}{\log q}}$, we have
\[\int_{\mathbb{Z}_p} (1 - 4t)^{\frac{1}{2}} d\mu_q(x) = \frac{q - 1 + \frac{q - 1}{\log q} \log(1 - 4t)}{q\sqrt{1 - 4t} - 1}. \]

In view of (11) and (12), we define the q-analogue of Catalan-Daehee numbers by
\[\frac{q - 1 + \frac{q - 1}{\log q} \log(1 - 4t)}{q\sqrt{1 - 4t} - 1} = \sum_{n=0}^{\infty} d_{n,q} t^n. \]

Note that $\lim_{q \to 1} d_{n,q} = d_n$, $(n \geq 0)$.

From (6) and (13), we have
\[\sum_{n=0}^{\infty} d_{n,q} t^n = \frac{1}{2} \left(\frac{2(q - 1) + \frac{q - 1}{\log q} \log(1 - 4t)}{q^2(1 - 4t) - 1} \right) \left(q\sqrt{1 - 4t} + 1 \right) \]
\[= \frac{1}{2} \sum_{l=0}^{\infty} (-4)^l D_{l,q}(0|1) t^l \left(1 + q - 2q \sum_{m=0}^{\infty} C_m t^{m+1} \right) \]
\[= \frac{[2]_q}{2} \sum_{n=0}^{\infty} (-4)^n D_{n,q}(0|1) \frac{t^n}{n!} - q \sum_{n=1}^{\infty} \left(\sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} D_{n-m-1,q}(0|1) C_m \right) t^n \]
\[= 1 + \sum_{n=1}^{\infty} \left(\frac{[2]_q}{2} \frac{(-4)^n}{n!} D_{n,q}(0|1) - q \sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} D_{n-m-1,q}(0|1) C_m \right) t^n. \]

Therefore, by comparing the coefficients on both sides of (14), we obtain the following theorem.

Theorem 1. For $n \geq 0$, we have
\[d_{n,q} = \left\{ \begin{array}{ll} \frac{[2]_q}{2} \frac{(-4)^n}{n!} D_{n,q}(0|1) - q \sum_{m=0}^{n-1} \frac{(-4)^{n-m-1}}{(n-m-1)!} D_{n-m-1,q}(0|1) C_m, & \text{if } n \geq 1, \\ 1, & \text{if } n = 0. \end{array} \right. \]

From (13) and (14), we have
\[\sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} x^n d\mu_q(x) = \int_{\mathbb{Z}_p} e^x d\mu_q(x) = \frac{(q - 1) + \frac{q - 1}{\log q} \log(1 - 4t)}{q e^t - 1} = \sum_{n=0}^{\infty} B_{n,q} \frac{t^n}{n!}. \]

Thus, by (15), we get
\[\int_{\mathbb{Z}_p} x^n d\mu_q(x) = B_{n,q}, \quad (n \geq 0). \]
Now, we observe that

\begin{equation}
\sum_{n=0}^{\infty} d_{n,q} t^n = \frac{q - 1 + \frac{q-1}{q} \log (1 - 4t)}{q \sqrt{1 - 4t} - 1} = \int_{\mathbb{Z}_p} (1 - 4t)^{\frac{n}{2}} d \mu_q(x)
\end{equation}

\begin{equation}
= \sum_{m=0}^{\infty} \left(\frac{1}{2}\right)^m \frac{1}{m!} (\log (1 - 4t))^m \int_{\mathbb{Z}_p} x^m d \mu_q(x)
\end{equation}

\begin{equation}
= \sum_{m=0}^{\infty} \left(\frac{1}{2}\right)^m B_{m,q} \sum_{n=m}^{\infty} S_1(n, m) \frac{1}{m!} (-4t)^n
\end{equation}

\begin{equation}
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} 2^{2n-m} (-1)^n B_{m,q} S_1(n, m) \right) \frac{t^n}{n!},
\end{equation}

where \(S_1(n, m) \), \((n, m \geq 0)\) are the Stirling numbers of the first kind defined by

\[(x)_n = \sum_{l=0}^{n} S_1(n, l)x^l, \quad (n \geq 0), \quad \text{see } [1 - 17].\]

Here \((x)_0 = 1, (x)_n = x(x-1) \cdots (x-n+1), (n \geq 1) \).

Therefore, by (17), we obtain the following theorem.

Theorem 2. For \(n \geq 0 \), we have

\[-1]^n d_{n,q} = \frac{1}{n!} \sum_{m=0}^{n} 2^{2n-m} B_{m,q} S_1(n, m).\]

By binomial expansion, we get

\begin{equation}
\int_{\mathbb{Z}_p} (1 - 4t)^{\frac{n}{2}} d \mu_q(x) = \sum_{n=0}^{\infty} (-4)^n \int_{\mathbb{Z}_p} \left(\frac{2}{n}\right) d \mu_q(x) t^n.
\end{equation}

From (12), (17) and (18), we obtain the following corollary.

Corollary 3. For \(n \geq 0 \), we have

\[\int_{\mathbb{Z}_p} \left(\frac{2}{n}\right) d \mu_q(x) = (-1)^n 2^{-2n} d_{n,q} = \frac{1}{n!} \sum_{m=0}^{n} \left(\frac{1}{2}\right)^m B_{m,q} S_1(n, m).\]

The \(q \)-analogue of \(\lambda \)-Daehee polynomials are given by the following \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \):

\begin{equation}
\int_{\mathbb{Z}_p} (1 + t)^{\lambda y + s} d \mu_q(y) = \frac{(q - 1) + \lambda \frac{q-1}{q} \log (1 + t)}{q(1+t)^\lambda - 1} (1 + t)^x
\end{equation}

\begin{equation}
= \sum_{n=0}^{\infty} D_{n,q,\lambda}(x) \frac{t^n}{n!}.
\end{equation}

When \(x = 0 \), \(D_{n,q,\lambda} = D_{n,q,\lambda}(0), (n \geq 0) \), are called the \(q \)-analogue of \(\lambda \)-Daehee numbers.

Here, we note that

\begin{equation}
\sum_{n=0}^{\infty} (-1)^n 4^n D_{n,q,\lambda} \frac{t^n}{n!} = \frac{q - 1 + \frac{q-1}{q} \log (1 - 4t)}{q(1-4t)^{\frac{n}{2}} - 1}
\end{equation}

\begin{equation}
= \sum_{n=0}^{\infty} d_{n,q} t^n.
\end{equation}

Thus, by (20), we get

\[d_{n,q} = (-1)^n 4^n \frac{t^n}{n!} D_{n,q,\lambda}, \quad (n \geq 0).\]
Replacing \(t \) by \(\frac{1}{4}(1 - e^{2t}) \) in (13), we have

\[
\sum_{k=0}^{\infty} d_{k,q} \left(\frac{1}{4} \right)^k (1 - e^{2t})^k = \frac{q - 1 + \frac{q-1}{\log q} \log (1 - 4t)}{q\sqrt{1 - 4t} - 1} = \int_{\mathbb{Z}_p} e^x \, d\mu_q(x)
\]

\[
= \sum_{n=0}^{\infty} B_{n,q} \frac{t^n}{n!}.
\]

On the other hand,

\[
\sum_{k=0}^{\infty} d_{k,q} \left(\frac{1}{4} \right)^k (1 - e^{2t})^k = \sum_{k=0}^{\infty} k! d_{k,q} \left(\frac{-1}{4} \right)^k \left(\frac{1}{k!} (e^{2t} - 1) \right)^k
\]

\[
= \sum_{k=0}^{\infty} k! d_{k,q} \left(\frac{-1}{4} \right)^k \sum_{n=k}^{\infty} S_2(n,k) 2^n \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} (-1)^k k! d_{k,q} 2^{n-2k} S_2(n,k) \right) \frac{t^n}{n!},
\]

where \(S_2(n,k), \ (n,k \geq 0), \) are the Stirling numbers of the second kind defined by

\[
x^n = \sum_{l=0}^{n} S_2(n,l)(x)_l, \quad (n \geq 0).
\]

Therefore, by (21) and (22), we obtain the following theorem.

Theorem 4. For \(n \geq 0 \), we have

\[
B_{n,q} = \sum_{k=0}^{n} (-1)^k 2^{n-2k} k! S_2(n,k) d_{k,q}.
\]

Now, we observe that

\[
\int_{\mathbb{Z}_p} (1 - 4t)^{\frac{x}{2}} \, d\mu_q(y) = \frac{(q - 1 + \frac{q-1}{\log q} \log (1 - 4t))}{q\sqrt{1 - 4t} - 1} (1 - 4t)^{\frac{x}{2}}.
\]

We define the Catalan-Daehee polynomials by

\[
q - 1 + \frac{q-1}{\log q} \frac{\log (1 - 4t)}{q\sqrt{1 - 4t} - 1} (1 - 4t)^{\frac{x}{2}} = \sum_{n=0}^{\infty} d_{n,q}(x) t^n.
\]

Note that

\[
(1 - 4t)^{\frac{x}{2}} = \sum_{l=0}^{\infty} \left(\frac{x}{2} \right)^l \frac{1}{l!} (\log (1 - 4t))^l = \sum_{l=0}^{\infty} \left(\frac{x}{2} \right)^l \sum_{m=l}^{\infty} S_1(m,l) (-4)^m t^m \frac{m!}{m!}
\]

\[
= \sum_{m=0}^{\infty} \sum_{l=0}^{m} S_1(m,l) (-4)^m \left(\frac{x}{2} \right)^l \frac{m!}{m!} t^m.
\]
Thus, by (13), (23) and (24), we get

\[
\sum_{n=0}^{\infty} d_{n,q}(x)t^n = \frac{q - 1 + \frac{q-1}{2}\log(1 - 4t)}{q\sqrt{1 - 4t - 1}} (1 - 4t) \frac{x}{2}.
\]

By comparing the coefficients on both sides (25), we obtain the following theorem.

Theorem 5. For \(n \geq 0 \), we have

\[
d_{n,q}(x) = \sum_{l=0}^{n} \left(\sum_{m=l}^{n} (-1)^m \frac{2m-l}{m!} S_1(m,l) d_{n-m,q} \right) x^l.
\]

3. **Conclusion**

Quite a few special numbers and polynomials have been studied by employing various different tools. Previously, the Catalan-Daehee numbers and polynomials were introduced by means of \(p \)-adic Volkenborn integrals and some interesting results for them were obtained by using generating functions, differential equations, umbral calculus and \(p \)-adic Volkenborn integrals. In this paper, we introduced \(q \)-analogues of the Catalan-Daehee numbers and polynomials and obtained several explicit expressions and identities related to them. In more detail, we expressed the Catalan-Daehee numbers in terms of the \((q, \lambda)\)-Daehee numbers, and of the \(q \)-Bernoulli polynomials and Stirling numbers of the first kind. We obtained an identity involving \(q \)-Bernoulli number, \(q \)-analogues of Catalan-Daehee numbers and Stirling numbers of the second kind. In addition, we got an explicit expression for the \(q \)-analogues of Catalan-Daehee polynomials which involve the \(q \)-analogues of Catalan-Daehee numbers and Stirling numbers of the first kind.

It has been our constant interest to find \(q \)-analogues of some interesting special numbers and polynomials and to study their arithmetic and combinatorial properties and their applications. We would like to continue to study this line of research in the future.

References

[1] Araci, S.; Acikgoz, M.; Kilicman, A. Extended \(p \)-adic \(q \)-invariant integrals on \(\mathbb{Z}_p \) associated with applications of umbral calculus. Adv. Difference Equ. 2013, 2013:96, 14 pp.

[2] Cangul, I. N.; Kurt, V.; Simsek, Y.; Pak, Hong K.; Rim, S.-H. An invariant \(p \)-adic \(q \)-integral associated with \(q \)-Euler numbers and polynomials, J. Nonlinear Math. Phys. 14 (2007), no. 1, 8–14.

[3] Dolgy, D. V.; Jang, G.-W. Kim, D. S.; Kim, T. Explicit expressions for Catalan-Daehee numbers, Proc. Jangjeon Math. Soc. 20 (2017), no. 1, 1–9.

[4] Duran, U.; Acikgoz, M. On applications for Mahler expansion associated with \(p \)-adic \(q \)-integrals, Int. J. Number Theory 15 (2019), no. 1, 67–84.

[5] Kim, D. S.; Kim, T. A new approach to Catalan numbers using differential equations, Russ. J. Math. Phys. 24 (2017), no. 4, 465–475.

[6] Kim, D. S.; Kim, T. Triple symmetric identities for \(w \)-Catalan polynomials, J. Korean Math. Soc. 54 (2017), no. 4, 1243–1264.

[7] Kim, T. \(q \)-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288–299.

[8] Kim, T. On a \(q \)-analogue of the \(p \)-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320–329.

[9] Kim, T. A note on Catalan numbers associated with \(p \)-adic integral on \(\mathbb{Z}_p \), Proc. Jangjeon Math. Soc. 19 (2016), no. 3, 493–501.
A STUDY ON q-ANALOGUES OF CATALAN-DAEHEE NUMBERS AND POLYNOMIALS

[10] Kim, T.; Kim, D. S. Some identities of Catalan-Daehee polynomials arising from umbral calculus, Appl. Comput. Math. 16 (2017), no. 2, 177–189.

[11] Kim, T.; Kim, D. S. Differential equations associated with Catalan-Daehee numbers and their applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 4, 1071–1081.

[12] Moon, E.-J.; Park, J.-W.; Rim, S.-H. A note on the generalized q-Daehee numbers of higher order, Proc. Jangjeon Math. Soc. 17 (2014), no. 4, 557–565.

[13] Ozden, H.; Cangul, I. N.; Simsek, Y. Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. (Kyungshang) 18 (2009), no. 1, 41–48.

[14] Park, J.-W. On a q-analogue of (h,q)-Daehee numbers and polynomials of higher order, J. Comput. Anal. Appl. 21 (2016), no. 4, 769–776.

[15] Saif, M.; Nadeem, R. Evaluation of Apostol-Euler based poly Daehee polynomials, Int. J. Appl. Comput. Math. 6 (2020), no. 1, Paper No. 1, 11 pp.

[16] Sharma, S.I.K.; Khan, W. A.; Araci, S.; Ahmed, S. S. New type of degenerate Daehee polynomials of the second kind, Adv. Difference Equ. 2020, Paper No. 428, 14 pp.

[17] Simsek, Y. Analysis of the p-adic q-Volkenborn integrals: an approach to generalized Apostol-type special numbers and polynomials and their applications, Cogent Math. 3 (2016), Art. ID 1269393, 17 pp.

SCHOOL OF SCIENCE, XI’AN TECHNOLOGICAL UNIVERSITY, XI’AN, 710021, SHAANXI, P. R. CHINA
Email address: mayuankui@xatu.edu.cn

SCHOOL OF SCIENCE, XI’AN TECHNOLOGICAL UNIVERSITY, XI’AN, 710021, SHAANXI, P. R. CHINA, DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA
Email address: tkkim@kw.ac.kr

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, REPUBLIC OF KOREA
Email address: dskim@sogang.ac.kr

DEPARTMENT OF MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA
Email address: luciasconstant@kw.ac.kr