Combined APRI/ALBI score to predict mortality after hepatic resection

P. Starlinger \(^1\) *, D. S. Ubi\(^2\), H. Hackl \(^3\), J. Starlinger \(^4\), D. M. Nagorney \(^1\), R. L. Smoot \(^1\), E. B. Habermann \(^2\) and S. P. Cleary \(^3\)

\(^1\)Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, Minnesota, USA
\(^2\)Mayo Clinic Robert D and Patricia E Kern Center for the Science of Health Care Delivery and Department of Health Services Research, Mayo Clinic, Rochester, Minnesota, USA
\(^3\)Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
\(^4\)37binary UG, Berlin, Germany

*Correspondence to: Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, 200 First Street SW Rochester, Minnesota 55905, USA (e-mail: starlinger.patrick@mayo.edu)

Abstract

Background: Aspartate aminotransferase/platelet ratio index (APRI) and albumin–bilirubin grade (ALBI) are validated prognostic indices implicated as predictors of postoperative liver dysfunction after hepatic resection. The aim of this study was to evaluate the relevance of the combined APRI/ALBI score for postoperative clinically meaningful outcomes.

Methods: Patients undergoing hepatectomy were included from the American College of Surgeons National Surgical Quality Improvement Program database. The association between APRI/ALBI score and postoperative grade C liver dysfunction, liver dysfunction-associated and overall 30-day mortality was assessed.

Results: A total of 12 055 patients undergoing hepatic resection from 2014 to 2017 with preoperative blood values and detailed 30-day postoperative outcomes were included (exploration cohort: January 2014 to December 2016; validation cohort: 2017). In the exploration cohort (8538 patients), the combination of both scores (APRI/ALBI) was significantly associated with postoperative grade C liver dysfunction, 30-day mortality, and liver dysfunction-associated 30-day mortality, and was superior to either score alone. The association with postoperative 30-day mortality was confirmed in multivariable analysis. A predictive model was generated using the exploration cohort. The predicted incidence of events closely followed the observed incidence in the validation cohort (3517 patients).

Subgroup analyses of tumour types were used to generate disease-specific risk models to assess risk in different clinical scenarios. These findings informed development of a smartphone application (https://tellaprialbi.37binary.com).

Conclusion: The predictive potential of the combined APRI/ALBI score for clinically relevant outcomes such as mortality was demonstrated. An evidence-based smartphone application will allow clinical translation and facilitation of risk assessment before hepatic resection using routine laboratory parameters.

Introduction

Preoperative assessment of postoperative risk remains a major challenge in patients undergoing hepatic resection. A major cause of persistent difficulties in preoperative assessment of risk of postoperative death is the enormous heterogeneity in liver function in patients undergoing hepatic surgery. In particular, in patients with hepatocellular carcinoma (HCC), underlying liver disease can range from marginally compensated cirrhosis to completely unaffected healthy liver parenchyma. Additionally, neoadjuvant chemotherapy, which is now frequently used in patients with metastatic disease to the liver\(^1\)–\(^3\), can negatively affect liver function by causing chemotherapy-associated liver injury (CALI)\(^4\). The degree of CALI varies significantly among patients, ranging from steatosis, sinusoidal obstruction syndrome to chemotherapy-associated steatohepatitis\(^5\). Similarly, the growing incidence of non-alcoholic steatohepatitis and associated non-alcoholic fatty liver disease poses another frequent source of underlying liver disease, affecting postoperative outcome after hepatic resection\(^6,7\). The quantification of these differences in terms of hepatic function remains difficult. Aspartate to platelet ratio index (APRI) and albumin–bilirubin grade (ALBI) scores were shown as estimates of liver function similar to the Child–Pugh score and indocyanine green (ICG) clearance\(^8–15\). Recently, the combination of APRI and ALBI scores was shown to be predictive of postoperative outcome after hepatic resection in patients with metastatic colorectal cancer to the liver, and correlated dynamically with the recovery of CALI after cessation of chemotherapy, offering the potential for optimized timing of surgery\(^16,17\). Similarly, the combination of APRI and ALBI scores was predictive of outcome after hepatic resection in patients with HCC, and the combination of these scores was superior to each score alone\(^18\).

The aim of this study was to assess the predictive potential of the combination of APRI and ALBI scores in patients undergoing hepatic resection for a variety of indications in a large cohort of...
patients undergoing hepatic resection documented in the American College of Surgeons procedure-targeted National Surgical Quality Improvement Program (NSQIP) database on hepatectomy.

Methods
The procedure-targeted NSQIP database on hepatectomy contains prospectively collected information on patients undergoing hepatic resections in several institutions in the USA. Basic characteristics, preoperative laboratory values, and preoperative comorbidities are documented routinely.

All patients who underwent hepatic resection between 1 January 2014 and 31 December 2017 were included from the procedure-targeted NSQIP database on hepatectomy using current procedural terminology codes: partial hepatectomy (47120) (defined as minor hepatectomy); trisegmentectomy (47122), left lobectomy (47125), and right lobectomy (47130) (defined as major hepatectomy). Patients aged less than 18 years and those with trauma were excluded from the final analysis. The patients were divided into an exploration cohort including patients from the years 2014–2016, and a validation cohort including patients from 2017. Patients were further grouped according to underlying neoplastic entity for subgroup analyses.

Morbidity was assessed within 30 days after surgery, and divided into major and minor complications. Minor complications constituted superficial surgical-site infection (SSI), urinary tract infection, deep incisional SSI, organ space SSI, wound disruption, sepsis, progressive renal insufficiency, deep vein thrombosis or thrombophlebitis. Pulmonary embolism, cardiac arrest requiring cardiopulmonary resuscitation, myocardial infarction, stroke/ce-rebrovascular accident with neurological deficit, unplanned intubation, ventilator requirement for more than 48 h, pneumonia, acute renal failure, and return to the operating room were defined as major complications.

Calculation of liver dysfunction scores
Both, APRI and ALBI were calculated in accordance with previously published formulas (Fig. S1).\(^6\) The Model for End-Stage Liver Disease (MELD) score was calculated using the standard equation: MELD score=\((0.957 \times \ln[creatinine, \text{mg/dl}]+0.378 \times \ln[\text{total bilirubin, mg/dl}]+1.120 \times \ln[\text{INR}]+0.643)\times 10\), where INR is the international normalized ratio. As the timing of dialysis was not documented routinely in the database, patients who were recorded as undergoing chronic dialysis were excluded from comparative analyses including the MELD score.

Definition and classification of outcome parameters
The procedure-targeted NSQIP database on hepatectomy contains detailed prospective data on postoperative outcome in terms of postoperative liver dysfunction (LD), mortality; the data are of very high quality. In particular, the severity of postoperative LD is further classified according to the International Study Group of Liver Surgery (ISGLS) criteria\(^6\): grade A, abnormality in laboratory parameters not requiring a change in clinical management; grade B, deviation from clinical management without invasive treatment; and grade C, deviation from clinical management requiring invasive treatment. Postoperative LD-associated mortality was recorded for patients who died within 30 days and concomitantly fulfilled any ISGLS grade LD. Postoperative morbidity was defined as the development of one or more postoperative complications. The postoperative observation period was 30 days, as in the NSQIP database.

Statistical analysis
Statistical analyses were based on parametric tests and \(P < 0.050\) was considered statistically significant. Receiver operating characteristic (ROC) curve analysis was used to assess and compare the predictive potential of APRI, ALBI, and their combination for postoperative grade C LD, 30-day mortality, and LD-associated mortality. Ultimately, a multivariable model was fit, based on logistic regression including all variables significant in univariable analysis. To determine whether the APRI/ALBI score as a continuous variable had a non-linear effect on the risk of 30-day mortality, generalized additive models with smoothing splines were applied using R version 3.6.1 package mgcv (R Foundation for Statistical Computing, Vienna, Austria). Log odds with 95 per cent c.i. (without intercept/baseline from the model) and average predicted individual risk (percentage probability probability) were illustrated over the range of APRI/ALBI scores (grouped in deciles).

Statistical analyses were performed using SPSS\textregistered version 23 (IBM, Armonk, New York, USA).

Results
A total of 13,401 patients underwent elective hepatic resection between January 2014 and December 2017. Of these, 1,305 patients underwent concomitant abdominal procedures and were therefore excluded. A further 41 patients with obvious documentation errors were also excluded from analyses. To allow validation, the cohort was divided into an exploration/model generation cohort (including 8,538 patients who had surgery between April 2014 and December 2016) and a validation cohort (3,517 patients operated in 2017). Characteristics of the two cohorts are summarized in Table 1.

Association between ALBI, APRI, APRI/ALBI and postoperative complications
The predictive potential of preoperative APRI and ALBI for postoperative grade C LD, 30-day mortality, and LD-associated 30-day mortality was assessed in the exploration cohort. Patients who developed postoperative grade C LD had higher APRI (Fig. S2a) and ALBI (Fig. S2b) scores before hepatic resection. Postoperative 30-day mortality (not significant) and LD-associated 30-day mortality were associated with higher preoperative APRI (Fig. S2c,d) and ALBI (Fig. S2e,f) scores. The combined APRI/ALBI score was significantly higher in patients with postoperative grade C LD, 30-day mortality, and LD-associated 30-day mortality (Fig. S2g–i).

To avoid overfitting, a previously published cut-off value for the combined APRI/ALBI score of \(-2.46\) was used to define a high and a low APRI/ALBI group in the exploratory cohort. Rates of various postoperative outcomes documented routinely in the procedure-targeted NSQIP database on hepatectomy were compared. Accordingly, a consistent increase in multiple postoperative outcomes in patients with an increased APRI/ALBI score was found (Fig. S3).

To compare the discriminatory potential of the APRI and ALBI scores individually and in combination for the clinically relevant outcomes grade C LD, 30-day mortality, and LD-associated 30-day mortality, ROC curve analyses were undertaken in the exploration cohort. ALBI and APRI alone appeared to be equally effective in their predictive potential for grade C LD and LD-associated 30-day mortality, whereas ALBI seemed to be slightly
superior for 30-day mortality (Fig. 1). The combined APRI/ALBI score exceeded the predictive potential of the individual scores. A multivariable analysis was performed to test whether the combined APRI/ALBI score was an independent predictor of 30-day mortality, and to identify potential confounding factors (Table 2). Combined APRI/ALBI score, MELD score, sex, age, ASA grade, diabetes, extent of resection, duration of surgery, and preoperative albumin, bilirubin, aspartate aminotransferase and platelet levels showed an association with 30-day mortality in univariable analysis, and were entered into the multivariable model. In multivariable analysis, only the combined APRI/ALBI score, sex, age, diabetes, extent of resection, and duration of surgery remained as significant, independent variables (Table 2).

Generation of an individual-patient risk stratification model

To evaluate a continuous non-linear relationship between the combined APRI/ALBI score and risk of grade C LD, 30-day mortality, or LD-associated 30-day mortality, generalized additive models with smoothing splines were applied to the exploratory cohort (Fig. 2). To allow better visualization and categorization, the APRI/ALBI score was further divided according to decile risk groups, to facilitate reliable risk stratification for each patient. Although the majority of patients were in the low-intermediate-risk group for these outcomes, a relevant number of patients were at significantly increased risk of postoperative death (Fig. 2, lower panels).

Validation of preoperative APRI/ALBI score-based prediction model

Given the significant risk of possible overfitting, the initial results were validated in an independent validation cohort of 3517 patients who had surgery in 2017. When the cohort was divided into risk groups according to deciles of APRI/ALBI score, a close correlation between predicted and observed outcomes in terms of grade C LD, 30-day mortality, and LD-associated 30-day mortality in the validation cohort was found, with rates that closely followed the predictive model across the risk groups (Fig. 3).

Discussion

Postoperative severe LD and mortality remain critical issues in patients undergoing hepatic resection. Here, the predictive value of the combination of two commonly used liver function scores, APRI and ALBI, was explored in a representative cohort of 12 055 patients undergoing hepatic resection. The combined APRI/ALBI score was found to be specifically predictive of clinically significant poor postoperative outcomes: LD requiring intervention (grade C), overall 30-day mortality, and LD-associated 30-day mortality. APRI/ALBI score was a better predictor of these outcomes than the widely used and validated MELD score. Furthermore, the predictive value of the combined score was

![Fig. 1 Receiver operating characteristic (ROC) curves comparing predictive ability of APRI and ALBI scores, individually or in combination, in relation to clinical outcomes after hepatic resection.](https://academic.oup.com/bjsopen/article/5/1/zraa043/6102898)

Fig. 1 Receiver operating characteristic (ROC) curves comparing predictive ability of APRI and ALBI scores, individually or in combination, in relation to clinical outcomes after hepatic resection.

- a Postoperative grade C liver dysfunction (LD), b postoperative 30-day mortality, and c LD-associated 30-day mortality. Areas under the curve: a aspartate aminotransferase/platelet ratio index (APRI) 0.662, albumin–bilirubin grade (ALBI) 0.659, APRI/ALBI 0.689; b APRI 0.679, ALBI 0.704, APRI/ALBI 0.728; c APRI 0.697, ALBI 0.704, APRI/ALBI 0.735.

- **Predictive potential of APRI/ALBI score compared with MELD score**

The predictive value of the APRI and ALBI scores individually and combined was compared with that of the MELD score, a current widely used and validated predictor of risk after hepatic resection. The three outcomes (grade C LD, 30-day mortality, and LD-associated 30-day mortality) were assessed using ROC curve analyses. Although all scores were highly significantly associated with each clinical outcome variable (P < 0.001), the MELD score seemed inferior to the individual APRI and ALBI scores in its predictive value (Fig. 4). The combined APRI/ALBI score exceeded the predictive value of MELD for each outcome.

- **Subgroup analyses for risk assessment in specified patient cohorts.**

As different disease patterns, surgical indications, and extent of resection are associated with differences in risk, patients were divided according to tumour type as well as extent of resection. Despite a uniform predictive value of the combined APRI/ALBI score, distinct shifts in risk scores were observed in individual patient subgroups (Fig. 5). To optimize and individualize risk prediction within patient subgroups, subgroup-specific prediction models were generated to allow the highest precision in outcome prediction (Fig. 6). Using these results, a smartphone application was designed to allow specific selection of subgroups for personalized individual-patient risk assessment (https://tellaprialbi.37binary.com).

![Fig. 5 Subgroup analyses for risk assessment in specified patient cohorts.](https://academic.oup.com/bjsopen/article/5/1/zraa043/6102898)

Fig. 5 Subgroup analyses for risk assessment in specified patient cohorts.

- a Postoperative grade C liver dysfunction (LD), b postoperative 30-day mortality, and c LD-associated 30-day mortality. Areas under the curve: a aspartate aminotransferase/platelet ratio index (APRI) 0.662, albumin–bilirubin grade (ALBI) 0.659, APRI/ALBI 0.689; b APRI 0.679, ALBI 0.704, APRI/ALBI 0.728; c APRI 0.697, ALBI 0.704, APRI/ALBI 0.735.
verified in patients with different neoplasms and different hepatic resections. The large size of the NSQIP database allowed the development of risk prediction models for disease- and operation-specific subgroups to enhance the precision of risk assessment. Finally, a smartphone application was developed to calculate individual-patient risk for postoperative 30-day mortality that is easily applicable to the clinical setting (https://tellaprialbi.37binary.com).

The severity of liver disease varies substantially in patients undergoing hepatic resection, posing a challenge for individualized care in these patients. HCC has been the best studied malignancy for preoperative risk assessment. Indeed, the recent American Association for the Study of Liver Diseases (AASLD20)/European Association for the Study of the Liver (EASL21) international guidelines for HCC state that patients with portal hypertension should not undergo hepatic resection. However, quantification of portal function and development of liver-specific scores alongside non-liver-related scores are emerging as useful tools in predicting patient outcomes in the future.

Table 1 Patient demographics

Evaluation cohort (n = 8538)	Validation cohort (n = 3517)	
Baseline characteristics		
Sex ratio (M : F)	4245 : 4293	1812 : 1705
Neoplastic entity		
Metastatic disease to liver	3778 (44.2)	1449 (41.2)
HCC	1552 (18.2)	719 (20.4)
CCA	937 (11.0)	406 (11.5)
Perihilar CCA	206 (2.4)	72 (2.0)
Benign	874 (10.2)	395 (11.2)
Other	1190 (13.9)	476 (13.5)
Co-morbidities		
ASA grade		
I	186 (2.2)	55 (1.6)
II	2237 (26.2)	909 (25.8)
III	5529 (64.8)	2313 (65.8)
IV	565 (6.6)	240 (6.8)
Unknown	21 (< 0.1%)	0 (0.0%)
Diabetes	1425 (16.7)	679 (19.3)
Smoking	1315 (15.4)	566 (16.1)
BMI (kg/m²)	27.52 (12.6–89.46)	27.71 (15.18–64.41)
Dialysis	16 (0.2)	6 (0.2)
Preoperative laboratory measurements		
Platelets (x 10³/µl)	219 (24–861)	218 (46–708)
Serum bilirubin (mg/dl)	0.5 (0.1–14.8)	0.5 (0.1–14.0)
AST (units/l)	26 (3–841)	26 (3–815)
Albumin (g/dl)	4.1 (1.3–9.7)	4.0 (1.4–7.4)
International normalized ratio	1.0 (0.1–10.0)	1.4 (0.8–10.0)
Creatinine (mg/dl)	0.8 (0.1–10.3)	0.8 (0.3–14.2)
APRI score	0.240 (0.019–8.894)	0.246 (0.034–7.477)
ALBI score	–2.785 (–7.431 to 1.376)	–2.773 (–5.623 to 1.164)
APRI/ALBI score	–2.543 (–7.352 to 7.318)	–2.539 (–5.032 to 5.809)
MELD score	7 (6–32)	7 (6–32)
Operative data		
Hepatic resection		
Minor	5219 (61.1)	2159 (61.4)
Major	3319 (38.9)	1358 (38.6)
Laparoscopic/robotic†	2255 (26.4)	936 (26.6)
Duration of surgery (min)*	212 (6–1027)	203 (5–758)
Hepatocystomy with bile duct resection	427 (5.0)	141 (4.0)
Hepatocystomy with vascular resection	205 (2.4)	76 (2.2)
Postoperative outcomes		
Readmission	763 (8.9)	306 (8.7)
30-day mortality	137 (1.6)	51 (1.5)
LD-associated 30-day mortality	76 (0.9)	31 (0.9)
Duration of postoperative hospital stay (days)*	5 (0–119)	5 (0–85)
ISGLS LD grade		
No LD	8132 (95.2)	3383 (96.2)
Grade A	173 (2.0)	55 (1.6)
Grade B	137 (1.6)	41 (1.2)
Grade C	96 (1.1)	38 (1.1)
Readmission	763 (8.9)	306 (8.7)
Morbidity, any	1528 (17.9)	604 (17.2)
Morbidity, major	1257 (14.7)	458 (13.0)
Unplanned reintubation	175 (2.0)	57 (1.6)
Reoperation	205 (2.4)	90 (2.6)
Sepsis	430 (5.0)	137 (3.9)
Ventilation for > 48 h	132 (1.5)	56 (1.6)
Pneumonia	268 (3.1)	86 (2.4)

Values in parentheses are percentages unless indicated otherwise; *values are median (range); †including laparoscopic attempts with conversion. HCC, hepatocellular carcinoma; CCA, cholangiocarcinoma; AST, aspartate aminotransferase; APRI, aspartate aminotransferase/platelet ratio index; ALBI, albumin–bilirubin grade; MELD, Model for End-Stage Liver Disease; LD, liver dysfunction; ISGLS, International Study Group of Liver Surgery.
Hypertension requires invasive measurements, and clinical surrogates may not reflect the severity of portal hypertension accurately which may confound indication for resection. Moreover, previous reports documented good results of surgery even in patients with portal hypertension\(^2\). Several invasive and non-invasive tests have been developed to assess preoperative risk for postoperative outcome after hepatic resection, but few have been incorporated into routine clinical practice even in high-risk patients. Major

Fig. 2 Model generation for individualized prediction of postoperative outcome

Given the continuous non-linear relationship between combined aspartate aminotransferase/platelet ratio index/albumin–bilirubin grade (APRI/ALBI) score and clinical outcomes, generalized additive models with smoothing splines were used, as illustrated for a postoperative grade C liver dysfunction (LD), b postoperative 30-day mortality, and c LD-associated 30-day mortality. Shaded areas represent 95 per cent confidence intervals. Based on the respective model, the combined APRI/ALBI score was grouped into deciles and individual risk for each outcome is shown in the lower panels. Number of patients in each decile is also shown.
Fig. 3 Assessment of prediction models in validation cohort

Model-based predicted incidence by aminotransferase/platelet ratio index/albunin-bilirubin grade (APRI/ALBI) score decile of a postoperative grade C liver dysfunction LD, b postoperative 30-day mortality, and c LD-associated 30-day mortality, compared with actual incidence in the validation cohort.

Table 2 Results of univariable and multivariable logistic regression analyses to identify predictors of postoperative 30-day mortality

Preoperative scores	Univariable analysis	Multivariable analysis		
	Odds ratio	P	Odds ratio	P
APRI/ALBI	1.73 (1.52, 1.96)	< 0.001	1.72 (1.16, 2.55)	0.007
MELD	1.14 (1.09, 1.20)	< 0.001	1.04 (0.95, 1.13)	0.411

Patient characteristics	Univariable analysis	Multivariable analysis		
	Odds ratio	P	Odds ratio	P
Male sex	0.36 (0.25, 0.53)	< 0.001	0.59 (0.35, 1.00)	0.049
Age (years)	1.06 (1.05, 1.08)	< 0.001	1.06 (1.04, 1.09)	< 0.001
BMI (kg/m²)	1.01 (0.99, 1.04)	0.303	1.45 (0.92, 2.28)	0.114
ASA grade	3.04 (2.23, 4.14)	< 0.001	6.09 (4.26, 8.70)	< 0.001
Neoplastic entity	0.98 (0.90, 1.07)	0.611	0.95 (0.79, 1.15)	0.611
Race	0.98 (0.80, 1.19)	0.809	0.98 (0.80, 1.19)	0.809
Smoking	1.01 (0.63, 1.61)	0.981	1.01 (0.63, 1.61)	0.981
Diabetes	2.84 (2.00, 4.05)	< 0.001	1.76 (1.08, 2.87)	0.024

Operative data	Univariable analysis	Multivariable analysis		
Major resection	3.39 (2.36, 4.87)	< 0.001	2.14 (1.28, 3.59)	0.004
Duration of surgery	1.006 (1.005, 1.007)	< 0.001	1.005 (1.004, 1.007)	< 0.001

Preoperative laboratory measurements	Univariable analysis	Multivariable analysis		
Albumin (g/dl)	0.34 (0.25, 0.46)	< 0.001	0.96 (0.53, 1.75)	0.903
Serum bilirubin (mg/dl)	1.32 (1.20, 1.46)	< 0.001	0.95 (0.79, 1.15)	0.611
AST (units/l)	1.008 (1.005, 1.010)	< 0.001	0.997 (0.993, 1.005)	0.447
Platelets (× 10^9/μl)	0.998 (0.996, 1.000)	0.049	0.999 (0.996, 1.002)	0.393

Values in parentheses are 95 per cent confidence intervals. APRI, aspartate aminotransferase/platelet ratio index; ALBI, albumin-bilirubin grade; MELD, Model for End-Stage Liver Disease; AST, aspartate aminotransferase. Odds ratios for continuous variables are shown per unit increase.
The increased performance of the combined APRI and ALBI score and its broad applicability to different patient subgroups likely reflect differences between components of the score for assessing various pathophysiological backgrounds. Indeed, ALBI seems to correlate more strongly with advanced fibrosis, whereas APRI score is better associated with CALI. Although advanced fibrosis and cirrhosis pose a significant risk for postoperative fatal outcome after hepatic resection, the relevance of CALI is often underestimated. ICG clearance has been used for identification of patients with CALI, but to date has not been employed widely and routinely. Liver biopsy clearly provides the most accurate method for diagnosis of CALI. However, percutaneous biopsy is reserved for selected patients with high suspicion of severe
Fig. 6 Subgroup model generation for individualized prediction of postoperative 30-day mortality

Generalized additive models with smoothing splines were used, as illustrated for postoperative 30-day mortality in patient subgroups: a major resection, b minor resection, c perihilar cholangiocarcinoma (CCA), d metastatic disease to the liver, e hepatocellular carcinoma (HCC), and f CCA. Shaded areas represent 95 per cent confidence intervals. Based on the respective model, the combined aspartate aminotransferase/platelet ratio index/albumin–bilirubin grade (APRI/ALBI) score was grouped into deciles and individual risk for each subgroup is shown in the lower panel. Number of patients in each decile is also shown.
liver damage after chemotherapy, which leaves the majority of patients without adequate preoperative assessment for CALI. Moreover, liver biopsy and histopathological examination have low sensitivity for most types of CALI31. The APRI/ALBI score might not only detect underlying liver disease from other causes, but also pick up CALI and thereby be used to optimize preoperative risk stratification in these patients, as clearly suggested by the present results. An interesting aspect of previous findings was that the combined APRI/ALBI score changed dynamically during neoadjuvant chemotherapy, suggesting a direct correlation between the marker and induced liver damage32. Indeed, this finding is in line with recent reports of the amelioration of CALI after chemotherapy cessation33. This suggests that repetitive assessment of the APRI/ALBI score after neoadjuvant chemotherapy might be an attractive tool to define an optimized time point for liver surgery in these patients.

A limitation of this study is the retrospective nature of the analyses. However, assessing clinically relevant outcome parameters such as mortality in a prospective fashion remains a major challenge given the low incidence. Another limitation is that the number of patients in the highest risk groups is low. However, included patients were all deemed fit for surgery and therefore had been preselected. In clinical daily life, patients in these risk groups might therefore be significantly more common. Ultimately, the gradually increasing risk per group should be used to stratify patients with respect to patient-related factors such as comorbidities and extent of surgery to allow individualized risk assessment for lower-risk groups as well.

Disclosure. The authors declare no conflicts of interest.

Supplementary material

Supplementary material is available at BJS Open online.

REFERENCES

1. Gruenberger T, Bridgewater J, Chau I, Garcia Alfonso P, Rivoire M, Mudan S et al. Bevacizumab plus FOLFOLFOX-6 or FOLFOLFOXIRI in patients with initially unresectable liver metastases from colorectal cancer: the OLIVIA multinational randomised phase II trial. Ann Oncol 2015;26:702–708
2. Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougié P et al. Perioperative chemotherapy with FOLFOLFOX and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 2008;371:1007–1016
3. Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougié P et al. Perioperative FOLFOLFOX chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol 2013;14:1208–1215
4. Zorzi D, Laurent A, Pawlik TM, Liew YX, Syn N, Teo JY, Lee SY et al. Liver resection for non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J Am Coll Surg 2019;229:467.e1–478.e1
5. Reddy SK, Marsh JW, Varley PR, Mock BK, Chopra KB, Geller DA et al. Underlying steatohepatitis, but not simple hepatic steatosis, increases morbidity after liver resection: a case-control study. Hepatology 2012;56:2221–2230
6. Piato DJ, Yen C, Bettiger D, Ramaswami R, Arizumi T, Ward C et al. The albumin–bilirubin grade improves hepatic reserve estimation post-sorafenib failure: implications for drug development. Aliment Pharmacol Ther 2017;45:714–722
7. Hiraoka A, Kumada T, Hirooka M, Tsuji K, Itohayashi E, Kariyama K et al. A better method for assessment of hepatic function in hepatocellular carcinoma patients treated with radiofrequency ablation: usefulness of albumin–bilirubin grade. Hepatol Res 2017;48(3):E61–E67
8. Cheung RC, Currie S, Shen H, Bini EJ, Ho SB, Anand BS et al. Can we predict the degree of fibrosis in chronic hepatitis C patients using routine blood tests in our daily practice? J Clin Gastroenterol 2008;42:827–834
9. Jin W, Lin Z, Xin Y, Jiang X, Dong Q, Xuan S. Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis B-related fibrosis: a leading meta-analysis. BMC Gastroenterol 2012;12:14
10. Chen B, Lin S. Albumin–bilirubin (ALBI) score at admission predicts possible outcomes in patients with acute-on-chronic liver failure. Medicine 2017;96:e7142
11. Pereyra D, Lumpf B, Ammann M, Perrodin SF, Tamandl D, Haselmann C et al. The combination of APRI and ALBI facilitates preoperative risk stratification for patients undergoing liver surgery after neoadjuvant chemotherapy. Ann Surg Oncol 2019;26:791–799
12. Pereyra D, Starlinger P. ASO author reflections: APRI + ALBI: a novel tool for estimating chemotherapy-associated liver injury in patients with colorectal cancer liver metastasis undergoing liver resection. Ann Surg Oncol 2019;26:Suppl 3:S98–S99
13. Mai RY, Wang YY, Bai T, Chen J, Xiang BD, Wu GB et al. Combination of ALBI And APRI to predict post-hepatectomy liver failure after liver resection for HBV-related HCC patients. Cancer Manag Res 2019;11:8799–8806
14. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 2011;149:713–724
15. Marrero Jorge A, Kulik Laura M, Sirlin Claude B, Zhu Andrew X, Finn Richard S, Abecasis Michael M, Roberts Lewis R, Heimbach Julie K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018;68:723–750
16. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018;69:182–236. Erratum in: J Hepatol 2019;70:8172
17. Ishizawa T, Hasegawa K, Aoki T, Takahashi M, Inoue Y, Sano K et al. Neither multiple tumors nor portal hypertension are
surgical contraindications for hepatocellular carcinoma. Gastroenterology 2008;134:1908–1916

23. La Mura V, Nicolini A, Tosetti G, Primignani M. Cirrhosis and portal hypertension: the importance of risk stratification, the role of hepatic venous pressure gradient measurement. World J Hepatol 2015;7:688–695

24. Stremitzer S, Tamandl D, Kaczirek K, Maresch J, Abbasov B, Payer BA et al. Value of hepatic venous pressure gradient measurement before liver resection for hepatocellular carcinoma. Br J Surg 2011;98:1752–1758

25. Boleslawski E, Petrovai G, Truant S, Dharancy S, Duhamel A, Salleron J et al. Hepatic venous pressure gradient in the assessment of portal hypertension before liver resection in patients with cirrhosis. Br J Surg 2012;99:855–863

26. Hidaka M, Takatsuki M, Soyama A, Tanaka T, Muraoka I, Hara T et al. Intraoperative portal venous pressure and long-term outcome after curative resection for hepatocellular carcinoma. Br J Surg 2012;99:1284–1289

27. Haegel S, Reiter S, Wanek D, Offenberger F, Pereyra D, Stremitzer S et al. Perioperative non-invasive indocyanine green-clearance testing to predict postoperative outcome after liver resection. PloS one 2016;11:e0165481

28. Abdalla EK, Vauthey JN. Chemotherapy prior to hepatic resection for colorectal liver metastases: helpful until harmful? Dig Surg 2008;25:421–429

29. Krieger PM, Tamandl D, Herberger B, Faybik P, Fleischmann E, Maresch J et al. Evaluation of chemotherapy-associated liver injury in patients with colorectal cancer liver metastases using indocyanine green clearance testing. Ann Surg Oncol 2011;18:1644–1650

30. Russolillo N, Langella S, Perotti S, Lo Tesoriere R, Forchino F, Ferrero A. Preoperative assessment of chemotherapy-associated liver injury based on indocyanine green retention test. Int J Surg 2016;31:80–85

31. Vigano L, Ravarino N, Ferrero A, Motta M, Torchio B, Capussotti L. Prospective evaluation of accuracy of liver biopsy findings in the identification of chemotherapy-associated liver injuries. Arch Surg 2012;147:1085–1091

32. Vigano L, De Rosa G, Tosco C, Andres A, Ferrero A, Roth A et al. Reversibility of chemotherapy-related liver injury. J Hepatol 2017;67:84–91