Supporting Information

Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B

Jagannath Biswakarma1,2, Kyounglim Kang3, Walter D.C. Schenkeveld3†, Stephan M. Kraemer3, Janet G. Hering1,2,4 and Stephan J. Hug1*

1Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
2Swiss Federal Institute of Technology (ETH) Zurich, IBP, CH-8092 Zürich, Switzerland
3University of Vienna, Dept. of Environmental Geosciences, 1090 Vienna, Austria
4Swiss Federal Institute of Technology Lausanne (EPFL), ENAC, CH-1015 Lausanne, Switzerland

\ast Corresponding author. E-mail: stephan.hug@eawag.ch

\dagger Current address: Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB, Utrecht, the Netherlands.

Number of pages: 14
Number of tables: 3
Number of figures: 9
Table S1. List of chemicals.

Table S2. List of experiments and experimental conditions.

Table S3. Kinetic model with list of reactions and fitted equilibrium constants or rate coefficients.

Figure S1. Speciation of Fe(II) in 3 mM NaHCO$_3$ solutions.

Figure S2. Speciation of Fe(II) in solutions with 100 µM phenanthroline.

Figure S3. Control experiment with Lp and 100 µM phenanthroline.

Figure S4. Control experiments with Lp and 100 µM phenanthroline and 2 and 5 µM Fe(II).

Figure S5. Comparison of carbonate- and MOPS- buffered systems.

Figure S6. 57Fe isotope exchange and Lp dissolution at pH 7.0.

Figure S7. Fe(II)-catalyzed goethite dissolution at pH 7.0 with (20 and 50 µM) DFOB.

Figure S8. Speciation of Fe and DFOB.

Figure S9. Output of kinetic model with different charge distributions between 57Fe and 56Fe surfaces sites.
Table S1. List of chemicals used for the current study

Chemical Name	Chemical formula	Supplier	Purity	Stock solution (mM)
Sodium Chloride	NaCl	Merck	>99%	10
Iron(II) Chloride	FeCl$_2$ 4H$_2$O	Sigma-Aldrich	>99%	10
Iron(III) Chloride	FeCl$_3$ 6H$_2$O	Sigma-Aldrich	>98%	10
Iron (57Fe- 95 atom %, 54Fe 0.04 %, 56Fe 3.04 %, 58Fe 1.86 %)	57Fe	Sigma-Aldrich	≥99.9%	20
Iron -10,000 µg/ml	Fe	J.T Baker		ICP-MS standard
Desferrioxamine mesylate salt	C$_{25}$H$_{48}$N$_6$O$_8$.CH$_2$O$_3$.S	Sigma-Aldrich	>92.5%	100
MES (2-morpholino-ethane sulfonic acid monohydrate)	C$_6$H$_{13}$NO$_4$.S.H$_2$O	Fluka	>99%	100
MOPS (3-(N-) morpholino propane sulfonic acid)	C$_7$H$_{15}$NO$_4$S	Sigma-Aldrich	>99%	100
PIPES (Piperazine-1,4-bis(2-ethane sulfonic acid))	C$_8$H$_{16}$N$_2$O$_6$S$_2$	Sigma-Aldrich	>99%	100
Sodium (bi)carbonate	NaHCO$_3$	Sigma-Aldrich	>99%	3
o-Phenanthroline	C$_{12}$H$_8$N$_2$.H$_2$O	Fluka	>99%	10
Table S2. List of experiments and experimental conditions. The initial concentration of lepidocrocite or goethite was 1125 µM. (To read the table below: column “Experiments” = first reactant + second reactant; the first reactant was added 1800 s before the second reactant)

Nr.	Experiments\(^{(a)}\)	Buffers (/pH)
1	20 µM DFOB	Carbonate at pH 7.0 (3 mM NaHCO\(_3\), p(CO\(_2\))= 0.02 atm)
2	20 µM DFOB + 1 µM Fe(II)	
3	20 µM DFOB + 2 µM Fe(II)	
4	20 µM DFOB + 5 µM Fe(II)	
5	50 µM DFOB	Carbonate at pH 7.0 (3 mM NaHCO\(_3\), p(CO\(_2\))= 0.02 atm)
6	50 µM DFOB + 1 µM Fe(II)	
7	50 µM DFOB + 2 µM Fe(II)	
8	50 µM DFOB + 5 µM Fe(II)	
9	20 µM DFOB + 2 µM \(^{57}\)Fe(II)	
10	2 µM \(^{57}\)Fe(II) + 20 µM DFOB	
11	50 µM DFOB + 2.2 µM \(^{57}\)Fe(II)	
12	2 µM \(^{57}\)Fe(II) + 50 µM DFOB	
13	2 µM \(^{57}\)Fe(II) + 50 µM DFOB	MES (5 mM) (pH 6.0)
14	50 µM DFOB + 2 µM \(^{57}\)Fe(II)	MOPS (5 mM) (pH 7.0)
15	2 µM \(^{57}\)Fe(II) + 50 µM DFOB	
16	50 µM DFOB + 2 µM \(^{57}\)Fe(II)	PIPES (5 mM) (pH 8.5)
17	2 µM \(^{57}\)Fe(II) + 50 µM DFOB	
18\(^{7}\)	2 µM \(^{57}\)Fe(II) + 50 µM DFOB	Carbonate at pH 7.0 (3 mM NaHCO\(_3\), p(CO\(_2\))= 0.02 atm)
19	2 µM \(^{57}\)Fe(II) + 100 µM phenanthroline	
20\(^{7}\)	2 µM \(^{57}\)Fe(II) + 100 µM phenanthroline	

\(^{(a)}\) Exp. Nr. 1-17 and 20 were conducted with lepidocrocite (Lp).

Exp. Nr. 1-8 were conducted once to examine the effect of added Fe(II) in carbonate-buffered suspensions.

Exp. Nr. 9-18 were conducted (in duplicate) to study the isotope exchange and dissolution.

Exp. Nr. 19-20 were conducted (in duplicate) to assess the isotopic exchange at pH 7.0 without dissolution.

\(^{7}\) Experiments were conducted with goethite.
Table S3. Kinetic model with list of complete reactions (a)

Nr.	Reaction	Description	K/ k pH 7	K/ k pH 6
R1	$\equiv Fe^{III} + L \rightleftharpoons \equiv Fe^{III}L$	Adsorption of ligand L on surface Fe^{III}	3.0e5	3.0e4-3.0e5
R1b	$\equiv^{57}Fe^{III} + L \rightleftharpoons \equiv^{57}Fe^{III}L$	Adsorption of ligand L on surface $^{57}Fe^{III}$	3.0e5	3.0e4-3.0e5
R2	$\equiv Fe^{III}L \rightarrow \equiv Fe^{III} + Fe^{III}L$	Non-catalyzed dissolution	3.5e-5	n.d.
R2b	$\equiv^{57}Fe^{III}L \rightarrow \equiv^{57}Fe^{III} + {57}Fe^{III}L$	Non-catalyzed dissolution	3.5e-5	n.d.
R3	$^{57}Fe^{III} + L \rightleftharpoons ^{57}Fe^{III}L$	Dissolved $^{57}Fe^{III}L$ complex formation	5.3e4	3.8e2
R3b	$Fe^{II} + L \rightleftharpoons Fe^{II}L$	Dissolved $Fe^{II}L$ complex formation	5.3e4	3.8e2
R4-1a	$\equiv Fe^{III} + ^{57}Fe^{III}L \rightarrow \equiv Fe^{II} + ^{57}Fe^{III}L$	ET from $^{57}Fe^{III}L$ to surface Fe^{III} and detachment of $^{57}Fe^{III}L$	1.4e2	200-600
R4-1b	$\equiv Fe^{III} + Fe^{II}L \rightarrow \equiv Fe^{II} + ^{57}Fe^{III}L$	ET from $Fe^{III}L$ to surface Fe^{III} and detachment of $^{57}Fe^{III}L$	1.4e2	200-600
R4-1c	$\equiv^{57}Fe^{III} + Fe^{II}L \rightarrow \equiv ^{57}Fe^{III} + Fe^{III}L$	ET from $Fe^{III}L$ to surface $^{57}Fe^{III}$ and detachment of $Fe^{III}L$	1.4e2	200-600
R4-1d	$^{57}Fe^{III} + ^{57}Fe^{III}L \rightarrow \equiv ^{57}Fe^{II} + ^{57}Fe^{III}L$	ET from $^{57}Fe^{III}L$ to surface $^{57}Fe^{III}$ and detachment of $^{57}Fe^{III}L$	1.4e2	200-600
R4-2a	$\equiv Fe^{III}L + ^{57}Fe^{II} \rightarrow \equiv Fe^{II} + ^{57}Fe^{III}L$	ET from $^{57}Fe^{II}L$ to surface $Fe^{III}L$ and detachment of $^{57}Fe^{III}L$	2.2e4	-
R4-2b	$\equiv Fe^{III}L + Fe^{II} \rightarrow \equiv Fe^{II} + Fe^{III}L$	ET from $Fe^{III}L$ to surface $Fe^{III}L$ and detachment of $Fe^{III}L$	2.2e4	-
R4-2c	$^{57}Fe^{III}L + ^{57}Fe^{II} \rightarrow \equiv ^{57}Fe^{II} + ^{57}Fe^{III}L$	ET from $^{57}Fe^{II}L$ to surface $^{57}Fe^{III}L$ and detachment of $^{57}Fe^{III}L$	2.2e4	-
R4-2d	$^{57}Fe^{III}L + ^{57}Fe^{II} \rightarrow \equiv ^{57}Fe^{II} + ^{57}Fe^{III}L$	ET from $^{57}Fe^{II}L$ to surface $^{57}Fe^{III}L$ and detachment of $^{57}Fe^{III}L$	2.2e4	-
R5	$\equiv Fe^{III} + ^{57}Fe^{II} \rightleftharpoons \equiv Fe^{III}L\cdot^{57}Fe^{II}$	Adsorption and desorption of $^{57}Fe^{II}$ on surface Fe^{III}	7.2e6	6.3e4
R5b	$\equiv Fe^{III} + Fe^{II} \rightleftharpoons \equiv Fe^{III}L\cdot Fe^{II}$	Adsorption and desorption of Fe^{II} on surface Fe^{III}	7.2e6	6.3e4
R6	$\equiv Fe^{III}L\cdot^{57}Fe^{II} \rightleftharpoons ^{57}Fe^{III}L\cdot^{57}Fe^{II}$	ET between ^{57}Fe and ^{57}Fe surface sites	$k_{ET}>0.1$	K=1
R7	$^{57}Fe^{III} + ^{57}Fe^{II} \rightleftharpoons ^{57}Fe^{III}L\cdot^{57}Fe^{II}$	Adsorption and desorption of $^{57}Fe^{II}$ on surface $^{57}Fe^{III}$	7.2e6	6.3e4
R7b	$^{57}Fe^{III} + ^{57}Fe^{II} \rightleftharpoons ^{57}Fe^{III}L\cdot^{57}Fe^{II}$	Adsorption and desorption of $^{57}Fe^{II}$ on surface $^{57}Fe^{III}$	7.2e6	6.3e4
R8 \[\equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + L \rightarrow \equiv \text{Fe}^{II} + \equiv \text{Fe}^{III} L \] Adsorption of L on adsorbed \text{Fe}^{II}, ET and detachment 61 <5

R8b \[\equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + L \rightarrow \equiv \text{Fe}^{II} + \equiv \text{Fe}^{III} L \] Adsorption of L on adsorbed \text{Fe}^{II}, ET and detachment 61 <5

R9 \[\equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + L \rightarrow \equiv \equiv \text{Fe}^{II} + \equiv \equiv \text{Fe}^{III} L \] Adsorption of L on adsorbed \text{Fe}^{II}, ET and detachment 61 <5

R9b \[\equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + L \rightarrow \equiv \equiv \text{Fe}^{II} + \equiv \equiv \text{Fe}^{III} L \] Adsorption of L on adsorbed \text{Fe}^{II}, ET and detachment 61 <5

R10 \[\equiv \text{Fe}^{II} + \text{Bulk} \rightarrow \equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} \] Re-formation of surface site with adsorbed \text{Fe}^{II} 1e10 1e10

R11 \[\equiv \equiv \text{Fe}^{II} + \text{Bulk} \rightarrow \equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} \] Re-formation of surface site with adsorbed \text{Fe}^{II} 1e10 1e10

R12a \[\equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + \text{phen} \rightarrow \equiv \equiv \text{Fe}^{II} + \equiv \equiv \text{Fe}^{II} \text{phen} \] Desorption of \text{Fe}^{III} with \text{phen} 20 (Gt) 120 (Lp) -

R12b \[\equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + \text{phen} \rightarrow \equiv \equiv \text{Fe}^{II} + \equiv \equiv \text{Fe}^{II} \text{phen} \] Desorption of \text{Fe}^{II} with \text{phen} 20 (Gt) 120 (Lp) -

R12c \[\equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + \text{phen} \rightarrow \equiv \equiv \text{Fe}^{II} + \equiv \equiv \text{Fe}^{II} \text{phen} \] Desorption of \text{Fe}^{III} with \text{phen} 20 (Gt) 120 (Lp)

R12d \[\equiv \equiv \text{Fe}^{III} O^{\text{Fe}^{II}} + \text{phen} \rightarrow \equiv \equiv \text{Fe}^{II} + \equiv \equiv \text{Fe}^{II} \text{phen} \] Desorption of \text{Fe}^{II} with \text{phen} 20 (Gt) 120 (Lp)

| Initial concentration of active surface sites ([≡FeIII]o) | 8.5 µM | 8.5 µM |

(a) The model appears to be complex, but it consists of the minimal number of reactions that are needed to explain the data. The list of reactions is only long because we need to consider four permutations for all reactions between \text{57Fe} and \text{56Fe} isotopes on the surface and in solution. Although more complex models (for example multisite models) could fit the data more completely, the present model can fit our results reasonably well and supports the proposed mechanisms and reactions pathways.
Figure S1. (A) Speciation of Fe(II) with 3 mM NaHCO$_3$ as a function of Fe(II) concentrations at pH 7.0. (B) Saturation index for siderite formation at pH 6, 7.0, 8.0 and 8.5 in solutions with 3mM NaHCO$_3$. At pH 7.0, solutions are not oversaturated with respect to FeCO$_3$ up to concentrations 32 µM Fe(II). Our suspensions with 2 µM and 5 µM are thus far from saturation with FeCO$_3$.
Figure S2. Calculated speciation of 2 µM (orange line) and 5 µM Fe(II) (red line) in a solution with 3 mM Na\(^+\), 3 mM alkalinity and 100 µM phen. The only species with concentrations above 1 nM are Fe(II)(phen)\(\text{3}^{2+}\).

Figure S3. Dissolved total Fe and Fe(II) in filtered samples of a 1.13 mM Lp suspension with 100 µM phen in 3 mM NaHCO\(\text{3}\) at pH 7.0 (anoxic). No Fe was added for the first 240 min. At 245 min, 5 µM Fe(II) was added. Fe(II)(phen)\(\text{3}^{2+}\) was quantified with UV-Vis at 510 nm (\(\varepsilon=11\,000\,\text{M}^{-1}\text{cm}^{-1}\)). Total dissolved Fe was measured with ICP-MS. Phen alone caused no dissolution (detection limit ±0.1 µM). Added Fe(II) led to formation of [Fe(II)(phen)\(\text{3}^{2+}\) at the expected concentration, which shows that [Fe(II)(phen)\(\text{3}^{2+}\) does not, or only very weakly, adsorb to the surface.
Figure S4. Control experiment with 1.13 mM Lp and 100 μM phen in 3 mM NaHCO₃ at pH 7.0. 2 μM Fe(II) was added at 0 min (orange circles), followed by addition of 3 μM Fe(II) after 60 min to a total concentration of Fe(II) of 5 μM (blue diamonds). The concentration of the Fe(II)(phen)₃²⁺ was measured with UV-VIS at 510 nm. The green triangle at 0 min shows the blank with no added Fe(II) and the purple circle the concentration of Fe(II)(phen)₃²⁺ with 5 μM Fe(II) without Lp. The experiment confirms that less than 5% of Fe(II)(phen)₃²⁺ was adsorbed at both concentrations.
Figure S5. Comparison of carbonated-buffered (filled symbols) and MOPS-buffered (empty symbol) systems (pH 7.0); anoxic conditions. (A) 2 μM 57Fe(II) was added 1800 s after 50 μM DFOB addition. (B) 2 μM 57Fe(II) was added 1800 s before 50 μM DFOB addition. Error bars correspond to the standard deviations of ICP-MS measurements obtained from repeated calibrations. Lines are to guide eyes through the data points. Symbols: triangles (right axis): concentration of Fe released into solution by Lp dissolution ($[^{56}$Fe]$^\text{diss}$); squares (left axis): dissolved concentration of tracer 57Fe corrected for the natural abundance of 57Fe in Lp ($[^{57}$Fe]tracer, diss).
Figure S6. 57Fe isotope exchange and Lp dissolution as a function of time (A) with 50 µM DFOB at pH 7.0 (MOPS-buffered), and (B) with 20 µM DFOB at pH 7 (carbonate-buffered). 2 µM 57Fe(II) was added to a Lp suspension (1125 µM) 1800 s before (filled symbols) or after (empty symbols) DFOB addition under anoxic conditions. Error bars correspond to the standard deviations of ICP-MS measurements obtained from repeated calibrations. Lines serve as visual guide. The data for 57Fe (filled squares) and 56Fe (filled triangles) after 1800 s are also shown in main Figure 3.

Symbols: (purple) triangles (right axis): concentration of Fe released into solution by Lp dissolution ($[{^{56}}$Fe]*$_{diss}$); (orange) squares (left axis): dissolved concentration of tracer 57Fe corrected for the natural abundance of 57Fe in Lp ($[{^{57}}$Fe]$_{tracer, diss}$).
Figure S7. Goethite dissolution at pH 7 under anoxic condition. 57Fe(II) was added, as a tracer for Fe(II), 1800 s before DFOB (50 µM) to a goethite suspension (1125 µM) in carbonate-buffered system. Experiments were conducted in duplicates (n=2). Note that Kang et al., 2019 conducted goethite dissolution experiments in MOPS-buffered conditions by adding both DFOB and Fe(II) at a same time. The inset figure is to highlight the first 20 000 s measurements. Lines serve as visual guides. Goethite dissolution is slower than Lp dissolution (Kang et al. 2019). Our results show that only 1.14 µM goethite dissolution was measured after 5 hr. (20 000 s), when 57Fe(II) was added 1800 s before 50 µM DFOB. When compared to measurements by Kang et al., goethite dissolution within the same time frame was found almost in agreement. Although the concentration of dissolved Fe was measured as 1.57 µM by Kang et al., the differences in measurements could be due to the difference in the applied DFOB concentrations and to the reversed addition of Fe(II). Currently we lack data to explain these subtle differences. However, the key purpose of applying 57Fe(II) before DFOB was to examine the release of 57Fe during accelerated goethite dissolution (as shown by Figure 4).
Figure S8. A: Speciation of 1 µM Fe(II) with 50 µM DFOB, 3 mM Na⁺ and 3 mM HCO₃⁻ as a function of pH. B and C: Speciation of 1 µM Fe(II) as a function of total DFOB (1-60 µM), 3 mM Na⁺ and 3 mM HCO₃⁻ at pH 7.0 (B) and pH 6.0 (C). The speciation was calculated with Visual MINTEQ Ver, 3.1 (Jon Petter Gustafsson, KTH, SEED, Stockholm, Sweden) with complexation constants for DFOB and Fe(II) (from Kim et al., 2010) added to the Visual MINTEQ database. In the kinetic model (Table 1), conditional complex formation constants for the formation of Fe²⁺L (sum of Fe(II)HDFOB, Fe(II)H₂DFOB⁺ and Fe(II)H₃DFOB²⁺) at pH 7 and pH 6 were used. The conditional complex formation constants were obtained by the values for K_L which provide the best fits of [Fe²⁺L] = [Fe²⁺][K_L*L]/(1+K_L*[L]) to the output of Visual MINTEQ (thin dashed black lines, Figures B and C).
Figure S9. Modeled and measured release of 57Fe after addition of 50 µM DFOB to Lp (1.13 mM) with 2 µM adsorbed 57Fe(II). Without ET during adsorption and dissolution (blue line), the model predicts a very quick release of adsorbed 57Fe(II). With ET and distribution of negative charge over 8.5 µM surface sites only during adsorption (orange line; ET 1), the predicted release is slower, but still faster than observed experimentally. With ET and distribution of charge over 8.5 µM surface sites during adsorption and dissolution (green line; ET 1, 2), the model matches the observed release of 57Fe, particularly during the first 4000s where the data is more reliable. (At later times, dissolution rates can slow down due to oxidation of Fe(II) by residual oxygen). With distribution of charge over more surface sites, for example 20 µM (red line), the predicted release of 57Fe is slower than observed.

References

1. Kang, K.; Schenkeveld, W. D. C.; Biswakarma, J.; Borowski, S. C.; Hug, S. J.; Hering, J. G.; Kraemer, S. M., Low Fe(II) Concentrations Catalyze the Dissolution of Various Fe(III) (hydr)oxide Minerals in the Presence of Diverse Ligands and over a Broad pH Range. *Environ. Sci. Technol.* 2019, *53*, (1), 98-107.

2. Kim, D.; Duckworth, O. W.; Strathmann, T. J., Reactions of aqueous iron-DFOB (desferrioxamine B) complexes with flavin mononucleotide in the absence of strong iron(II) chelators. *Geochim. Cosmochim. Acta* 2010, *74*, (5), 1513-1529.