Glycine-extended gastrin activates two independent tyrosine-kinases in upstream of p85/p110 phosphatidylinositol 3-kinase in human colonic tumour cells

Audrey Ferrand, Aline Kowalski-Chauvel, Julie Pannequin, Claudine Bertrand, Daniel Fourmy, Marlene Dufresne, Catherine Seva

Abstract

AIM: To investigate whether Src, JAK2 and phosphatidylinositol 3-kinase (PI3K) pathways are involved in the proliferation of human colonic tumour cells induced by glycine-extended gastrin (G-gly), the precursor of the mature amidated gastrin and to elucidate the molecular interaction between these three kinases in response to this peptide.

METHODS: Using the human colonic tumour cell line HCT116 as a model, we first measured the activation of PI3K, p60-Src and JAK2 in response to G-gly by in vitro kinase assays. Then we investigated the involvement of these kinases in G-gly-induced cell proliferation by MTT test.

RESULTS: G-gly stimulation induced p60-Src, JAK2 and PI3K activation in HCT116. The different pathways were involved in proliferation of human colon cancer cells induced by G-gly. Furthermore, we found that both Src and JAK2 were necessary to PI3K regulation by this peptide. However, we did not find any cross-talk between the two tyrosine kinases.

CONCLUSION: Our results suggest that the p60-Src/PI3K and JAK2/PI3K pathways act independently to mediate G-gly proliferative effect on human colonic tumour cells.
tion and survival. During the last years, many studies have shown the implication of the PI3K in colon carcinogenesis. In particular, the PI3K has been found to play an important role in colon cancer development and progression by promoting cell growth and allowing cells to escape apoptosis. Activation of this pathway is also involved in the progression of human colon adenocarcinoma.

Different groups including ours, have demonstrated the involvement of the phosphatidylinositol 3-kinase in G-gly functions. We have reported the activation of lipid kinase in response to this peptide in a pancreatic tumoral cell line, AR4-2J. Afterwards, Hollande et al. have described the involvement of the phosphatidylinositol 3-kinase in adhesion and migration of gastric epithelial cells regulated by G-gly. More recently, we described the overexpression of the regulatory subunit p85 as well as an overactivation of the downstream effector Akt, in the hyperproliferative colonic mucosal epithelium of MTI/G-Gly mice. Moreover, in the same study, we have demonstrated the involvement of the PI3K pathway as well as Src and JAK2 pathways in the proliferation of isolated normal murine colonic epithelial cells in response to G-gly.

Our aim here was to investigate whether these three kinases are involved in G-gly-induced proliferation of human colonic tumour cells and to elucidate the molecular interaction between Src, JAK2 and PI3K in response to the peptide. In HCT116, a human colon tumour cell line, we first measured the activation of these kinases by G-gly as well as their involvement in G-gly-induced cells proliferation. The results indicate that both p60-src and JAK2 are necessary to PI3K regulation by the peptide. However, we did not observe any cross-talk between the two tyrosine kinases, suggesting that the p60-src/PI3K and JAK2/PI3K pathways act independently.

MATERIALS AND METHODS

Materials

Polyclonal anti-JAK2 antibody was purchased from Upstate Biotechnology Inc. Monoclonal anti-p60-src antibody was obtained from Oncogene Science. Rabbit polyclonal antibody specific to p85, the regulatory subunit of the phosphatidylinositol 3-kinase, was kindly provided by Drs. Y. Le Marchand-Brustel and J. F. Tanti (Nice, France). DFO, Ly 294002, PP2 and AG490 were from Calbiochem. The phospholipids were purchased from Sigma.

Cell culture

HCT116, human colonic tumour cells, were grown in DMEM containing 4.5g/L glucose-glutamax, supplemented with 10% fetal calf serum at 37 °C in a 50mL/L CO2 atmosphere.

Proliferation assay

Approximately 75 000 cells/well were plated into 96-well plates. Forty-eight hours after plating, cells were treated for 48 h with G-gly (10 pmol/L) with or without inhibitors (10µmol/L). MTT colorimetric assay (MTT, Sigma) was used to measure proliferation as previously described.

Immunoprecipitation and Western-blot analysis

HCT116 cells were serum-starved for 18 h before peptide addition. After stimulation, the cells were lysed, and the soluble fractions containing identical levels of proteins were immunoprecipitated and analyzed by Western-blot with the indicated antibodies as described previously. Band intensity was analyzed using the image analyzer Biocom (France).

Src kinase assay

Src kinase activities were determined on anti-p60-Src-immunoprecipitates as previously described. Briefly, kinase assay was carried out at 37 °C for 10 min in kinase buffer (12.5 mmol/L. MnCl2, 1.25 mmol/L. DTT, 25 mmol/L. Heps, pH 7.4) containing 3.75 µmol/L ATP, 10 µCi/point ATP[γ-32P]. Proteins were separated by SDS–PAGE and the gel was autoradiographed. The gels were then treated with 1N KOH at 50 °C for 1h and autoradiographed. Band intensity was analyzed using the image analyzer Biocom (France).

JAK2 kinase assay

JAK2 kinase activities were determined on anti-JAK2-immunoprecipitates as previously described. Briefly, kinase assay was carried out at 37 °C for 10 min in kinase buffer (10 mmol/L. MnCl2, 5 mmol/L. MgCl2, 0.1 mmol/L. Vn2+, 10 mmol/L. Tris, pH 7.4) containing 3.75 µmol/L ATP, 10 µCi/point ATP[γ-32P]. Proteins were separated by SDS–PAGE and the gel was autoradiographed. Band intensity was analyzed using the image analyzer Biocom (France).

Phosphatidylinositol 3-kinase assay

Cell lysates were immunoprecipitated with the indicated antibodies. PI3K assay was performed on immunoprecipitates as described previously. Briefly, phosphatidylinositol used as an exogenous substrate, was prepared in 5 mmol/L HEPES and then sonicated for 15 min at 4 °C. The samples were incubated for 15 min at room temperature with phosphatidylinositol (0.2 mg/mL) and 50 µmol/L ATP[γ-32P] (10 µCi/point). The reaction was stopped by adding HCl 4N and lipids were extracted using agitation in chlorofom/methanol (1/1) solution for 45 s. After centrifugation, the upper phase containing the lipids was analyzed. The phospholipids were separated by thin layer chromatography and analyzed by autoradiography. Spot intensity was analyzed using the image analyzer Biocom (France). When indicated, the cells were pretreated for 1h with 1µmol/L desferrioxamine (DFO).

Statistical analysis

Statistical analysis was carried out by Student’s t test using GraphPad Prism.

RESULTS

Glycine-extended gastrin activated phosphatidylinositol 3-kinase

We first tested whether the p85/p110 phosphatidylinositol 3-kinase (PI3K) was activated in HCT116 cells after G-gly stimulation. Cells were treated with the peptide for varying

The specificity of G-gly activation was accessed by pretreating the cells with ferric chelator DFO (1 pmol/L). Representative autoradiograms from at least three separate experiments are shown.

Involvement of JAK2, Src and phosphatidylinositol 3-kinase pathways in glycine-extended gastrin-induced proliferation

In order to identify the role of PI3K, Src and JAK2 pathways in the proliferation of human colonic tumour cells induced by G-gly, we measured HCT116 proliferation in the presence or absence of specific inhibitors for each pathway, LY290042, PP2 and AG490 respectively. Stimulation of HCT116 cells for 48h by G-gly induced a significant increase of cell proliferation (mean ± SE; 1.38 ± 0.07; P < 0.05; n = 5) (Figure 3). Treatment of the cells with PP2, AG 490 or LY 290042 completely inhibited G-gly-induced HCT116 proliferation while inhibitors alone did not affect basal cell proliferation (data not shown). The result indicated that these three pathways could mediate G-gly proliferative effects not only on normal colonic epithelial cells but also on human colonic tumoral cells.

Involvement of both p60-Src and JAK2 upstream of PI3K activation in response to G-gly

In order to determine whether p60-Src was involved in PI3K activation by G-gly, we first tested whether PI3K activity was detected in HCT116 cells in response to G-gly. The activation of p60-Src was detected 1 min after peptide addition. The stimulation was maximal at 3 min and decreased after 5 min (Figure 2A).

To test whether JAK2 was activated by G-gly, lysates from cells stimulated for various times were immunoprecipitated with anti-JAK2 antibodies and in vitro kinase assays were performed on immunoprecipitates as described in “Methods”. We observed a rapid and transient increase in JAK2 autophosphorylation in response to G-gly stimulation. The maximal activation obtained within 5 min after peptide addition decreased toward the basal level at 15 min (Figure 2B).

Glycine-extended gastrin activated tyrosine kinases p60-Src and JAK2

To investigate whether glycine-extended gastrin could regulate p60-Src activation, serum-starved HCT116 cells were treated with G-gly for various times and lysed. Tyrosine kinase assays were performed in anti-p60-Src immunoprecipitates using enolase as an exogenous substrate. Our results indicated that p60-src was very rapidly and transiently activated in HCT116 cells in response to G-gly. The activation of p60-Src was detected 1 min after peptide addition. The stimulation was maximal at 3 min and decreased after 5 min (Figure 2A).

To test whether JAK2 was activated by G-gly, lysates from cells stimulated for various times were immunoprecipitated with anti-JAK2 antibodies and in vitro kinase assays were performed on immunoprecipitates as described in “Methods”. We observed a rapid and transient increase in JAK2 autophosphorylation in response to G-gly stimulation. The maximal activation obtained within 5 min after peptide addition decreased toward the basal level at 15 min (Figure 2B).

lengths of time. Lipid kinase assay was performed in vitro on anti-p85 immunoprecipitates using inositol phosphate as an exogenous substrate. Lipids were then separated by thin layer chromatography. Increase in phosphatidylinositol-3-kinase activity was detected within 3-5 min after treatment with G-gly. This stimulation similar to our previous observation in pancreatic tumour cells[11], indicated that PI3K activation was also an early event of G-gly signalling in colon cancer cells. The ferric ion chelator, desferrioxamine (DFO) could inhibit both the binding of G-gly to its receptor and biological activity[17]. To test the specificity of the activation by G-gly, we performed PI3K assays after pretreatment of the cells with DF0 for 1h. DFO could completely inhibit PI3K activation in response to the peptide (Figure 1).
lipid kinase assay indicated that anti-JAK2 immunoprecipitates. Increased PI-kinase activity in PP2 pretreated cells, indicating the role of Src in PI3K activation (Figure 4B). After peptide treatment for the time indicated, we pretreated the cells for 1h with PP2 and AG 490 (10 µmol/L), were pretreated for 1h with PP2 and AG 490 prior to G-gly addition. The PI3K activation in response to G-gly was inhibited in the presence of JAK2 inhibitor, indicating the role of this tyrosine kinase upstream in PI3K activation (Figure 5B).

No cross-talk between p60-Src and JAK2 pathways in response to G-gly

To investigate the possible association between p60-Src and JAK2, solubilized proteins were immunoprecipitated with an anti-JAK2 antibody and the precipitates were analyzed by immunoblot using an anti-p60-Src antibody. No p60-Src protein associated with JAK2 was detected in control cells or in cells stimulated with G-gly, whereas comparable amounts of JAK2 proteins were detected in immunoprecipitates (data not shown).

Independently of any association, we studied whether Src-family kinases were involved in JAK2 activation by G-gly. We tested the effect of PP2 on JAK2 activity. Cells were pretreated for 1h with PP2 5 min before stimulation with G-gly. JAK2 kinase assay was performed on JAK2 immunoprecipitates. PP2 did not inhibit G-gly-induced JAK2 activation, indicating that Src kinases were not involved in upstream of JAK2 activation by G-gly (Figure 6A). Similarly, using AG490, we tested a possible role of JAK2 activation in the presence of JAK2 inhibitor, indicating the role of this tyrosine kinase upstream in PI3K activation (Figure 5B).

DISCUSSION

The p85/p110 phosphatidylinositol 3-kinase (PI3K) is a...
lipid kinase which plays an important role in human colon cancer. Its specific inhibitor, LY 294002, has been shown to inhibit cell growth and to induce apoptosis. Treatment of human colon cancer cell lines in vitro with LY 294002 or transplanted in vivo abolishes tumour cell growth and leads to apoptosis[19]. In addition, Philip et al[30] have identified somatic mutations in the gene of the p85 subunit leading to a constitutive active form of PI3K. These mutations are present in primary human colon tumours and cancer cells, suggesting that PI3K is involved in human colonic tumorigenesis.

Non-amidated gastrin precursors, including G-gly, are produced by colorectal cancers and exert growth factor effects on these tissues[11,20]. They are expressed in 80% - 90% of colorectal tumours and polyps in human beings[21-24]. Identification of signalling pathways involved in colonic mucosa hyperproliferation is important for the understanding of tumour processes. In a previous study we have identified that Src, JAK2 and PI3K pathways are overactivated in the colonic epithelium of mice overexpressing G-gly and involved in G-gly-induced proliferation of normal colonic epithelial cells isolated from control mice[3].

In the current study, we used the human colon tumour cell line, HCT116, to investigate whether these three kinases interact to regulate the growth of human tumoral colon cells. The results indicate that both p60-Src and JAK2 are necessary to PI3K regulation by the peptide. These results are in accordance with previous reports showing that JAK2 are involved upstream of the PI3K pathway of other cellular models. Pretreatment of human neutrophils with the JAK2 inhibitor, AG 490 could abolish the stimulation of the p85/p110 PI3K in response of the granulocyte-macrophage colony-stimulating factor. In addition, Attoub et al[8] have shown that leptin can induce a transient elevation of the PI3K lipid products in JAK2 immunoprecipitates prepared from MDCK cells. Similarly, Src family kinases are involved upstream of the PI3K/AKT pathway[26,27]. Previous studies suggest that the IRS proteins could serve as scaffolding intermediates between tyrosine kinases and PI3K[28]. This mechanism is likely involved in PI3K activation by G-gly. In HCT116 cells we observed a basal association between JAK2 and IRS1 and the tyrosine phosphorylation of IRS-1 in response to G-gly (data not shown). In addition, we have previously reported that tyrosine phosphorylation of IRS-1 in pancreatic tumour cells, leading to the rapid recruitment of PI3K to different cell compartments by molecules, it seems that the cellular localization of PI3K is conferring a growth advantage to the cells via the constitutive activation of numerous signalling pathways.

REFERENCES

1 Sev A, Dickinson CJ, Yamada T. Growth-promoting effects of glycine-extended progastrin. Science 1994; 265: 410-412

2 Holland F, Imdahl A, Mantamadiotis T, Ciccotosto GD, Shulkes A, Baldwin GS. Glycine-extended gastrin acts as an autocrine growth factor in a nontransformed colon cell line. Gastroenterology 1997; 113: 1576-1588

3 Singh P, Ovelia A, Espeijo R, Dai B. Novel gastrin receptors mediate mitogenic effects of gastrin and processing intermediates of gastrin on Swiss 3T3 fibroblasts. Absence of detectable cholecystokinin (CCK)-A and CCK-B receptors. J Biol Chem 1995; 270: 8429-8438

4 Iwase K, Evers BM, Hollmich MR, Guo YS, Higashide S, Kim HJ, Townsend CM Jr. Regulation of growth of human gastric cancer by gastrin and glycine-extended progastrin. Gastroenterology 1997; 113: 782-790

5 Stepan VM, Sawada M, Todicso A, Dickinson CJ. Glycine-extended gastrin exerts growth-promoting effects on human colon cancer cells. Mod Med 1999; 5: 147-159

6 Koh TJ, Dockray GJ, Varro A, Cahill RJ, Dangler CA, Fox JG, Wang TC. Overexpression of glycine-extended gastrin in transgenic mice results in increased colonogenic proliferation. J Clin Invest 1999; 103: 1119-1126

7 Aly A, Shulkes A, Baldwin GS. Short term infusion of glycine-extended gastrin(17) stimulates both proliferation and formation of aberrant crypt foci in rat colonic mucosa. Int J Cancer 2001; 94: 307-313

8 Duronio V, Scheid MP, Ettinger S. Downstream signalling events regulated by phosphatidylinositol 3-kinase activity. Cell Signal 1998; 10: 233-241

9 Semb C, Itoh N, Ito M, Harada M, Yamakawa M. The in vitro and in vivo effects of (4-morpholino)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3'-kinase, in human colon cancer cells. Clin Cancer Res 2002; 8: 1957-1963

10 Khaleghpour K, Li Y, Banville D, Yu Z, Shen SH. Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis 2004; 25: 241-248

11 Kowalski-Chauvel A, Pradayrol L, Vayss N, Seva C. Tyrosine phosphorylation of insulin receptor substrate-1 and actin...
vation of the PI-3-kinase pathway by glycine-extended gastrin precursors. *Biochem Biophys Res Commun* 1997; 236: 687-692

12 **Holland F**, Chequet A, Blanc EM, Lee DJ, Bali JP, Baldwin GS. Involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinases in glycine-extended gastrin-induced dissociation and migration of gastric epithelial cells. *J Biol Chem* 2001; 276: 40402-40410

13 **Ferrand A**, Bertrand C, Portolan G, Cui G, Carlson J, Pradayrol L, Fourmy D, Dufresne M, Wang TC, Seva C. Signaling pathways associated with colonic mucosa hyperproliferation in mice overexpressing gastrin precursors. *Cancer Res* 2005; 65: 2770-2777

14 **Ferrand A**, Kowalski-Chauvel A, Bertrand C, Pradayrol L, Fourmy D, Dufresne M, Seva C. Involvement of JAK2 upstream of the PI 3-kinase in cell-cell adhesion regulation by gastrin. *Exp Cell Res* 2004; 301: 128-138

15 **Daulhac L**, Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C. Src-family tyrosine kinases in activation of ERK-1 and p85/p110-phosphatidylinositol 3-kinase by G/CCKB receptors. *J Biol Chem* 1999; 274: 20657-20663

16 **Kowalski-Chauvel A**, Pradayrol L, Vaysse N, Seva C. Gastrin stimulates tyrosine phosphorylation of insulin receptor substrate 1 and its association with Grb2 and the phosphatidylinositol 3-kinase. *J Biol Chem* 1996; 271: 26356-26361

17 **Pannequin J**, Barnham KJ, Hollande F, Shulkes A, Norton RS, Baldwin GS. Ferric ions are essential for the biological activity of the hormonally glycine-extended gastrin. *J Biol Chem* 2002; 277: 48602-48609

18 **Philp AJ**, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH, Thomas RJ, Phillips WA. The phosphatidylinositol 3-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. *Cancer Res* 2001; 61: 7426-7429

19 **Aly A**, Shulkes A, Baldwin GS. Gastrins, cholecystokinin and gastrointestinal cancer. *Biochim Biophys Acta* 2004; 1704: 1-10

20 **Ferrand A**, Wang TC. Gastrin and cancer: a review. *Cancer Lett* 2006; 238: 15-29

21 **Ciccotosto GD**, McLeish A, Hardy KJ, Shulkes A. Expression, processing, and secretion of gastrin in patients with colorectal carcinoma. *Gastroenterology* 1995; 109: 1142-1153

22 **Nemeth J**, Taylor B, Pauwels S, Varro A, Dockray GJ. Identification of progastrin derived peptides in colorectal carcinoma extracts. *Gut* 1993; 34: 90-95

23 **Kochman ML**, DeValley J, Dickinson CJ, Boland CR. Post-translational processing of gastrin in neoplastic human colonic tissues. *Biochem Biophys Res Commun* 1992; 189: 1165-1169

24 **Smith AM**, Watson SA. Gastrin and gastrin receptor activation: an early event in the adenoma-carcinoma sequence. *Gut* 2000; 47: 820-824

25 **Attoub S**, Noe V, Pirola L, Bruyneel E, Chastre E, Mareel M, Wymann MP, Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 3-kinase-, rho-, and rac-dependent signaling pathways. *FASEB J* 2000; 14: 2329-2338

26 **Frame MC**. Src in cancer: deregulation and consequences for cell behaviour. *Biochim Biophys Acta* 2002; 1602: 114-130

27 **Penuel E**, Martin GS. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. *Mot Biol Cell* 1999; 10: 1693-1703

28 **Yamauchi T**, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I, Tohe K, Yazaki Y, Kadovaki T. Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. *J Biol Chem* 1998; 273: 15719-15726

29 **Murakami Y**, Nakano S, Morimoto Y, Hamaoka K. Constitutive activation of Jak-2 and Tyk-2 in a v-Src-transformed human gallbladder adenocarcinoma cell line. *J Cell Physiol* 1998; 175: 220-228

30 **Yu CL**, Jove R, Burakoff SJ. Constitutive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase. *J Immunol* 1997; 159: 5206-5210

S- Editor Wang J L- Editor Wang XL E- Editor Liu WF

www.wjgnet.com