Poisson’s ratio in cryocrystals under pressure

Yu. A. Freiman,1 Alexei Grechnev,1 S. M. Tretyak,1 Alexander F. Goncharov,2,3 and Eugene Gregoryanz4

1B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin avenue, Kharkov, 61103, Ukraine
2Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, USA
3Center for Energy Matter in Extreme Environments and Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, 350 Shushanghu Road, Hefei, Anhui 230031, China
4School of Physics and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ, UK

We present results of lattice dynamics calculations of Poisson’s ratio (PR) for solid hydrogen and rare gas solids (He, Ne, Ar, Kr and Xe) under pressure. Using two complementary approaches - the semi-empirical many-body calculations and the first-principle density-functional theory calculations we found three different types of pressure dependencies of PR. While for solid helium PR monotonically decreases with rising pressure, for Ar, Kr, and Xe it monotonically increases with pressure. For solid hydrogen and Ne the pressure dependencies of PR are non-monotonic displaying rather deep minima. The role of the intermolecular potentials in this diversity of patterns is discussed.

PACS numbers: 67.80.F-,67.80.B-,62.20.dj

At low temperatures and pressures solid helium is an ultimate quantum solid displaying such phenomena as zero-temperature quantum melting and quantum diffusion. As atomic masses and interatomic forces increase in the sequence Ne, Ar, Kr, and Xe quantum effects in their properties become progressively less pronounced. Solid hydrogen is the only molecular quantum crystal where both translational and rotational motions of the molecules are quantum. Translational quantum effects decrease with increasing pressure.

Quantum and classical solids respond to the applied pressure differently. When pressure is applied to a classical solid the atoms are "pushed into" the hard cores of the potential; as a result of this core, the compressibility is usually quite small. Typically, the pressure of 1 GPa results in a few percent change in molar volume. At the same time, quantum solids hydrogen and helium are highly compressible. For hydrogen the pressure of 1 GPa results in a 100% change in volume. The physical reason for this is that the lattice is highly blown up due to the zero-point kinetic energy. The initial compression works against the weaker "kinetic pressure" rather than the harder "core pressure".

One of fundamental thermodynamic characteristics describing behavior of a material under mechanical load is Poisson’s ratio \(\sigma \). For isotropic elastic materials the Poisson’s ratio is uniquely determined by the ratio of the bulk modulus \(B \) to the shear modulus \(G \), which relate to the change in size and shape respectively \(\delta \sigma/\delta P \):

\[
\sigma = \frac{1}{2} \frac{3B/G - 2}{3B/G + 1}.
\]

As can be seen from this equation, PR can take values between -1 (\(B/G \to 0 \)) and 1/2 (\(B/G \to \infty \)). The lower limit corresponds to the case where the material does not change its shape and upper limit corresponds to the case when the volume remains unchanged. Materials with small PR (small \(B/G \)), such as cork, are more easily compressed than sheared, whereas those with PR approaching 1/2 (large \(B/G \)) are rubber-like: they strongly resist compression in favor of shear.

For most isotropic materials PR lies in the range \(0.2 < \sigma < 0.5 \) [4]. Materials with \(0 < \sigma < 0.2 \) are rare - Beryllium (\(\sigma = 0.03 \)), Diamond (\(\sigma = 0.1 \)) - and are very hard [1]. Typically, PR increases with pressure near linearly with the rate \(\delta \sigma/\delta P \sim 10^{-3} \) (GPa)\(^{-1} \) indicating a continuous loss of shear strength.

An unusual pressure dependence of PR decreasing with rising pressure in solid hydrogen in the pressure range up to 24 GPa and solid helium up to 32 GPa was found by Zha et al. With the aim to investigate the distinctions in the response of quantum and classical solids to the applied pressure we calculated pressure dependencies of PR in the quantum (He, H\(_2\), Ne) and classical (Ar, Kr, Xe) cryocrystals under pressure. The calculations were performed using complementary semi-empirical (SE) and density functional theory (DFT) with generalized gradient approximation (GGA) approaches. The DFT calculations were performed using the FP-LMTO code RSPt, while the SE calculations were done using our own code. The calculation details have been published previously [10]. It is important to notice that the two approaches treat solid hydrogen in fundamentally different ways. SE approach deals with interaction between H\(_2\) molecules, which are treated as nearly spherically symmetrical quantum rotators, while the DFT can only treat fully oriented (classical) H\(_2\) molecules, ignoring the zero-point rotations. The Pca\(_2\) oriented structure has been used for our calculations.

One of the signatures of a quantum crystal is that it melts at temperature \(T_m \) much lower the Debye
temperature,

$$\Theta_D/T_m \gg 1.$$ \hspace{1cm} (2)

Figure 1 shows pressure dependencies of Θ_D and T_m for solid hydrogen, helium, neon, and argon. At zero pressure and temperature the ratio Θ_D/T_m is infinitely large for helium and 8.5 for parahydrogen. The ratio rather slowly decreases with rising pressure. For example, at 1 GPa it is still as high as 3.75 for helium and 3.0 for parahydrogen. For solid Ne at zero pressure $\Theta_D/T_m = 2.7$ thus making solid Ne a candidate for the manifestation of quantum effects. Other RGS, with $\Theta_D/T_m = 1; 0.55$; and 0.35 for Ar, Kr and Xe respectively, can be regarded as essentially classical solids.

Rewriting Eq. (1) in terms of the ratio of the bulk (hydrodynamic) v_B to the transverse (shear) sound velocity v_S we have:

$$\sigma = \frac{1}{2} \frac{(v_B/v_S)^2 - 2}{(v_B/v_S)^2 - 1}. \hspace{1cm} (3)$$

The hydrodynamic or bulk sound velocity v_B can be found from Equation of State:

$$v_B = \left(\frac{\partial P}{\partial \rho}\right)^{1/2} = \left[\frac{V^2 \partial P}{\mu \partial V}\right]^{1/2}, \hspace{1cm} (4)$$

where P is pressure, μ is molar mass, and V is molar volume. In the calculations of v_B for H$_2$ we used our SE and DFT-GGA EOS from Ref. [17], for He, Ar and Xe from Refs. [16, 18], and for Kr from Ref. [19]. We have also included zero-point vibrations in the Debye approximation in our calculations of $p(V)$ and $v_B(V)$ [10].

Generally, to find sound velocities v_P and v_S one has to find a complete set of elastic moduli C_{ij}. In the case of hcp lattice there is a simplified scheme based on lattice dynamics [20, 21], which makes it possible to circumvent the problem of calculations of elastic moduli. In particular, in this approach it is possible to relate frequency ν of the Raman-active E_{2g} phonon mode of hcp lattice and the shear elastic constant C_{44}:

$$C_{44} = \frac{1}{4\sqrt{3}a} \frac{c m}{a} \nu^2(E_{2g}), \hspace{1cm} (5)$$

where a, c are the lattice parameters and m is the molecular mass. The pressure dependencies of $\nu(E_{2g})$ and C_{44} were found for H$_2$ [17] and hcp RGS (hcp He, Ar, Kr, and Xe) [18, 22] using both ab initio DFT and semi-empirical (SE) lattice dynamics approaches. The shear velocity v_S was obtained using the relation

$$v_S = \sqrt{C_{44}/\rho}, \hspace{1cm} (6)$$

where ρ is the density, disregarding elastic the anisotropy of the crystal. A special case is solid Ne which preserves the fcc structure up to at least 208 GPa [23] which makes the outlined procedure impossible. For this reason for solid Ne we used results of lattice dynamics calculations by Gupta and Goyal [19].

The sound velocities for H$_2$ and He are given in Ref. [15]; the data for Ne by Gupta and Goyal were published in Ref. [19]; the data for Ar, Kr, and Xe will be published elsewhere. Pressure dependencies of Poisson’s ratios for helium, hydrogen, neon, argon, krypton, and xenon calculated from sound velocities using Eq. (3) are shown in Figs. 2 - 5.

Figure 2 shows the pressure dependence of Poisson’s ratio in solid He obtained in the framework of SE and DFT-GGA approaches in comparison with experimental results from Refs. [9, 24]. Results which account for zero-
Poisson’s ratio of solid He as a function of pressure. Theory: this work, Experiment: Zha et al. [9]; Nieto et al. [24].

Both SE and DFT-GGA calculations agree with the somewhat surprising experimental result of Poisson’s ratio decreasing with pressure. There is a reasonable fair agreement between the SE theoretical curve (comprising ZPV) and experimental data. Usually SE results are preferable at smaller pressures while at higher pressures the DFT approach works better. Comparing the SE and DFT theoretical curves it is hard to say in which way the low-pressure SE results could continuously go over to the high-pressure DFT ones. It should be noted that the experimental points may show that around 30 GPa there is a minimum point at the pressure dependence of PR.

As was said above, typically Poisson’s ratio increases with pressure and tends to 1/2 (the limit of zero compressibility) when pressure goes to infinity. It would appear reasonable to consider anomalous behavior of PR in such quantum solids as He and H\textsubscript{2} as a manifestation of quantum effects. Reasons for such understanding is the following. It is known that the He and H\textsubscript{2} lattices are swelled due to large zero-point vibrations (ZPV). If ZPV were not present, ”classical” solid He and H\textsubscript{2} would have much smaller zero molar volumes (V_{0}^{cl}(He) ≈11.2 cm3/mol; V_{0}^{cl}(H\textsubscript{2}) ≈7.4 cm3/mol), i.e. the swelling effect is huge [18]. Until the volume reaches about V_{0}^{cl}, the main effect of the external pressure is the suppression of the zero-point vibrations and not the compression of the electron shells.

To check whether this explanation is correct we calculated PR of He disregarding ZPV, that is, for ”classical” He both in the SE and DFT approaches (dot-dash and dotted curves, respectively, Fig.2). As can be seen, the pressure dependence of PR with and without ZPV is qualitatively the same. Thus, the anomalous (descending with rising pressure) behavior of PR is not a quantum effect. As can be seen from Fig. 2, the contribution of ZPV into PR is positive. This fact is easily understood if we take into account that the introduction of ZPV is a step to liquation but PR of liquid is an upper bound for PR of any substance. Naturally, the relative value of this contribution increases with decreasing pressure and as pressure goes to zero it increases up to 15%. The effect of ZPV is much higher in the case of H\textsubscript{2}. Nieto et al. [24] showed that the mixture H\textsubscript{3}He-H\textsubscript{4}He has higher PR than pure H\textsubscript{2}. For pure 3He they gave value of PR 0.473 rather close to the liquid limit.
A similar curve with a deep minimum was obtained for PR in solid neon (Fig. 4). The pressure dependence of PR was obtained from the SE theoretical results on sound velocities obtained by Gupta and Goyal [10]. Unfortunately, experimental data on sound velocities in solid Ne exist for very narrow pressure range 5 - 7 GPa [25]. In this region PR ≈ 0.37.

Figure 5 shows the pressure dependencies of PR obtained in the SE approach for Ar, Kr, and Xe. In contrast with He, H$_2$, and Ne, we obtained that PR for the heavy RGS increases with rising pressure.

In conclusion, we present results of lattice dynamics calculations of Poisson’s ratio for solid hydrogen and rare gas solids (He, Ne, Ar, Kr and Xe) under pressure. Using two complementary approaches: lattice dynamics based on the semi-empirical many-body potentials and \textit{ab initio} DFT-GGA we found three different types of the behavior of PR with pressure. While for solid He PR monotonically decreases with rising pressure, for Ar, Kr, and Xe it monotonically increases with pressure. For solid H$_2$ and Ne PR are non-monotonic with pressure displaying rather deep minimums. To investigate the role of quantum effects we performed the calculations of PR disregarding zero-point vibrations and found qualitatively similar results, that is, we proved that the effects have a non-quantum origin. We may rather say that the anomalies, discovered for H$_2$, He and Ne, and quantum effects in these cryocrystals have common origins: weak intermolecular interactions and small masses of constituent atoms and molecules.

We thank J. Peter Toennies for valuable discussions.

[1] G. N. Greaves, A. L. Greer, R. L. Lakes, and T. Rouxel, Nature materials \textbf{10}, 823 (2011).
[2] \textit{Physics of Cryocrystals}, eds. V. G. Manzhelii and Yu. A. Freiman (AIP Press, New York, 1997).
[3] J-P. Poirier, Introduction to the Physics of the Earths Interior (Cambridge Univ. Press, 2000).
[4] P.H. Mott and C.M. Roland, Phys. Rev. B \textbf{80}, 132104 (2009).
[5] G. Steinle-Neumann, L. Stixrude, and R.E.Cohen, Phys. Rev. B \textbf{60}, 791 (1999).
[6] C.-S. Zha, H.-k. Mao, and R.J. Hemley, Y. Wu, PNAS \textbf{97}, 13494 (2000).
[7] D. Antonangeli, M. Krisch, G. Fiquet, J. Badro, D. L. Farber, A. Bossak, and S. Merkel, Phys. Rev. B \textbf{72}, 134303 (2005).
[8] C. S. Zha, T. S. Duffy, H.-k. Mao, and R. J. Hemley, Phys. Rev. B \textbf{48}, 9246 (1993).
[9] C. S. Zha, H.-k. Mao, and R. J. Hemley, Phys. Rev. B \textbf{70}, 174107 (2004).
[10] Yu. A. Freiman, Alexei Grechnev, S. M. Tretyak, Alexander F. Goncharov, C.-S. Zha, and R. J. Hemley, Phys. Rev. B \textbf{88}, 214501 (2013).
[11] William B. Daniels, in Simple Molecular Systems at Very High Density, eds. A. Polian, P. Loubeyre, and N. Boccara (Plenum Pres, New York and London, 1989, pp. 13 - 31. W.B. Daniels, Helium phase diagram
[12] David Santamaria-Pérez, Goutam Dev Mukherjee, Beate Schwager, and Reinhard Boehl, Phys. Rev. B \textbf{81}, 214101
[13] R. Boehler, M. Ross, Per Söderlind, and Daviv B. Boercker, Phys. Rev. Lett. 86, 5731 (2001).
[14] V. V. Kechin, J. Phys.: Condens. Matter 7, 531 (1995).
[15] Yu. A. Freiman, Alexei Grechnev, S. M. Tretyak, Alexander F. Goncharov, and Russell J. Hemley, Fizika Nizkich Temperatur 39, 423 (2013) [Low Temp. Phys. 39, 548 (2013)].
[16] Yu. A. Freiman and S. M. Tretyak, Low Temp. Phys. 33, 545 (2007) [Fizika Nizkich Temperatur 33, 719 (2007)].
[17] Yu. A. Freiman, A. Grechnev, S. M. Tretyak, Alexander F. Goncharov, and R. J. Hemley, Phys. Rev. B 86, 014111 (2012).
[18] Yu. A. Freiman, A. F. Goncharov, S. M. Tretyak, A. Grechnev, J. S. Tse, D. Errandonea, H.-k. Mao, and R. J. Hemley, Phys. Rev. B 78, 014301 (2008).
[19] S. Gupta and S. C. Goyal, Sci. China, Ser. D - Earth Sci. 52, 1599 (2009).
[20] E. A. Metzbower, Phys. Status Solidi 25, 403 (1968).
[21] H. Olijnyk and A. P. Jephcoat, J. Phys.: Condens. Matter 12, 10423 (2000).
[22] H. Shimizu, M. Kawajiri, T. Kume, S. Sasaki, Yu. A. Freiman, and S. M. Tretyak, Phys. Rev. B 79, 132101 (2009).
[23] A. Dewaele, F. Datchi, P. Loubeyre, and M. Mezouar, Phys. Rev. B 77, 094106 (2008).
[24] P. Nieto, G. Benedek, and J. Peter Toennies, New J. Phys. 14, 013007 (2012).
[25] H. Shimizu, H. Imaeda, T. Kumew, and S. Sasaki, Phys. Rev. B 71, 014108 (2005).