Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities

Man-Young Jung, Christopher J. Sedlacek, K. Dimitri Kits, Anna J. Mueller, Sung-Keun Rhee, Linda Hink, Graeme W. Nicol, Petra Pjevac, Barbara Bayer, Laura Lehtovirta-Morley, Chloe Wright, Jose R. de la Torre, Craig W. Herbold, Holger Daims and Michael Wagner

The ISME Journal (2022) 16:272–283; https://doi.org/10.1038/s41396-021-01064-z

INTRODUCTION

Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrososomus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that—for AOB—ammonia and not ammonium is the substrate for the ammonia monoxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.

The substrate affinity of a microorganism can be expressed with Michaelis–Menten kinetic equations, analogous to enzyme kinetics, defined by an apparent-half-saturation concentration (substrate affinity; \(K_{\text{m(app)}}\)) and a maximal reaction rate (\(V_{\text{max}}\)). In addition, the specific substrate affinity \(\alpha\); \(V_{\text{max}}\) divided by \(K_{\text{m(app)}}\) takes into account both the cellular \(K_{\text{m(app)}}\) and \(V_{\text{max}}\), and is thus

\[
\frac{\alpha}{\frac{V_{\text{max}}}{K_{\text{m(app)}}}} = \frac{1}{K_{\text{m(app)}}} + \frac{1}{V_{\text{max}}}
\]

These authors contributed equally: Man-Young Jung, Christopher J. Sedlacek.

© The Author(s) 2021

Published online: 27 July 2021

Received: 10 March 2021 Revised: 1 July 2021 Accepted: 7 July 2021
an appropriate measure for comparing interspecies competitiveness [28]. Throughout this study, instantaneous substrate-dependent kinetic properties were measured which represent cellular activity in the absence of growth. Therefore, the Michaelis–Menten modeled kinetic properties discussed here (Km(app) and Vmax) differ from Monod modeled kinetic properties (Ks and μmax), which also take into account other cellular processes (e.g., growth, division, stress, and repair). Our focus on Michaelis–Menten modeled kinetic properties is in part due to the numerous challenges that would be associated with growing such a wide array of AOA under the continuous cultivation conditions necessary to determine Monod kinetic properties.

Based on whole cell kinetic properties, AOM were observed to have different survival or lifestyle strategies. The first study investigating the whole cell kinetics of an AOA revealed that Nitrospumilus maritimus SCM1 displayed a low maximum NH3 oxidation rate (Vmax) but a very high substrate affinity and α for NH3 compared with AOB [29]. Based on these findings with a single AOA strain, substrate affinity was postulated as a major niche-differentiating factor between AOA and AOB [20, 29]. However, recently it was shown that (i) the only comammox isolate Nitrospira inopinata has a Km(app) for NH3 lower than that of all characterized AOB and (ii) that the Km(app) for NH3 in a few non-marine AOA strains is not always orders of magnitude lower than that of AOB [5]. Nevertheless, the AOA with comparatively high marine AOA strains is not always orders of magnitude lower than C. baltica [5]. Taxa chosen for phylogenetic reconstruction met at least one of three different criteria: (1) inclusion in the current study, (2) published as a culture/enrichment or (3) designation as a “GTDB representative of species” for the group of taxa classified as “Nitrososphaerales” by the Genome Taxonomy Database release 05-R595 [41]. A concatenated alignment of 34 universal genes (43 markers) was automatically constructed using CheckM [42]. IQ-TREE v 2.1.2 [43] was used for phylogenetic reconstruction following automatic model determination with modelFinder [44], which identified LG + F + R8 as the best-fit model according to the Bayesian Information Criterion (BIC). Bipartition support was determined with ultrafast bootstraps (UFBots [45]).

Materials and Methods

Cultivation of ammonia oxidizers

Methods. In addition, in this study, Ca. N. uzonensis N4 was isolated as a pure culture from a previously described geothermal spring enrichment culture [40]. Further details are provided below and in the supplementary Materials and Methods.

Phylogenetic analysis

Taxa chosen for phylogenetic reconstruction met at least one of three different criteria: (1) inclusion in the current study, (2) published as a culture/enrichment or (3) designation as a “GTDB representative of species” for the group of taxa classified as “Nitrososphaerales” by the Genome Taxonomy Database release 05-R595 [41]. A concatenated alignment of 34 universal genes (43 markers) was automatically constructed using CheckM [42]. IQ-TREE v 2.1.2 [43] was used for phylogenetic reconstruction following automatic model determination with modelFinder [44], which identified LG + F + R8 as the best-fit model according to the Bayesian Information Criterion (BIC). Bipartition support was determined with ultrafast bootstraps (UFBots [45]).

Substrate-dependent oxygen uptake measurements

Cellular substrate oxidation kinetics were determined from instantaneous substrate-dependent oxygen uptake measurements as previously described [5, 29, 46]. Briefly, measurements were performed with a MR system, equipped with a PA 2000 picoammeter and a 500 μm tip diameter OX-MR oxygen microsensor (Unisense, Denmark), polarized continuously for at least 24 h before use.

Active AOA, AOB, and N. inopinata cells were harvested (4000 x g, 10 min, 20 °C) from ammonium replete active cultures, using 10 kDa-cutoff, Amicon Ultra-15 centrifugal filter units (Merck Millipore, Germany). Concentrated cultures were washed with and resuspended in substrate-free medium appropriate for the respective cultures. Exceptions were Ca. Nitrososcoocosmus franklankus’ C13 and the marine AOA, N. maritimus SCM1, N. piranensis D3C, and N. adriaticus NFS. These four AOA strains were not active in the MR chambers after attempts to concentrate their biomass. Therefore, ammonium concentrations were monitored daily for these four cultures, and cells were used without concentration for MR before substrate depletion [29]. AOM harvested cells for MR experiments were incubated for at least 30 min in a recirculating water bath set to the experimental temperature (Tables S2 and S3) prior to being transferred to the MR chambers (~2 ml).

In addition to MR experiments at optimal growth temperature and pH (Table S2), MR experiments were also performed at non-optimal growth temperatures and medium pH (Table S3). Ca. N. olenopillus’ MY3 was cultivated at 30 °C, harvested with centrifugal filter units (see above), and incubated for ~2 h in substrate-free medium across a range of temperatures (25, 30, and 35 °C). MR experiments were then performed at the respective preincubation temperature. Likewise, N. inopinata and Ca. N. olenopillus’ MY3 cells were harvested with centrifugal filter units (see above) and resuspended in substrate-free medium containing 10 mM HEPES (pH 7.4). The pH was adjusted to 6.5–8.4 with 1 M HCl or 1 M NaOH (Table S3). These cultures were then incubated at their optimum growth temperature for ~1 h prior to cellular kinetic measurements. Culture pH was determined before and after oxygen uptake measurements to confirm the pH did not change during MR. Substrate-dependent oxygen uptake measurements were performed as described below.

For all MR experiments, glass MR chambers containing glass-coated magnetic stir bars were filled headspace-free, sealed with MR injection lids, and submerged in a recirculating water bath. An OX-MR microsensor was inserted into each MR chamber and left to equilibrate (300 rpm, ~1 h). Exact temperatures used for each culture and experiment are provided in Tables S2 and S3. Stable background sensor signal drift was measured for at least 15 min prior to initial substrate injections, and the background oxygen consumption rate was subtracted from the measured oxygen uptake rates. Hamilton syringes (10 or 50 μl; Hamilton, USA) were used to inject NH4Cl stock solutions into MR chambers. Both single and multiple trace oxygen uptake measurements were performed. For single trace measurements, a single substrate injection was performed, and oxygen uptake was recorded until substrate depletion. For multiple trace measurements, multiple injections of varying substrate concentration were performed in a single MR chamber. Once stable, discrete slopes of oxygen uptake were calculated following each substrate injection. Immediately following oxygen uptake measurements, the total ammonium concentration and pH of the MR chamber contents were determined. The cells were stored at −20 °C for protein analysis. Cells were lysed with the Bacterial Protein Extraction Reagent (BPER, Thermo Scientific) and the total

Materials and Methods

Cultivation of ammonia oxidizers

Several previously described growth media were used to cultivate the AOM used in this study. A comprehensive guide with medium components and cultivation conditions is provided in the Supplementary Materials and Methods, Tables S1, and S2. Briefly, all cultures were grown without shaking, in the dark, at their optimum growth temperature and pH, unless otherwise stated. Ammonium (NH4Cl) from pre-sterilized stocks was added as substrate as needed. The growth medium of Nitrosarchaeum koreense MY1, ‘Ca. Nitrosotenuis chungbukensis’ MY2, ‘Ca. Nitrosotenuis uzonensis’ N4, N. maritimus SCM1, Nitrospumilus piranensis D3C, and Nitrosopumilus inopinata NFS was supplemented with sodium pyruvate (0.5 mM) at all times. The pH of all growth media were adjusted when necessary by addition of sterile NaHCO3. Ammonia oxidation activity was determined by measuring ammonium, nitrite, and nitrate concentrations photometrically [36–39] using an Infinite 200 Pro M Nano- spectrophotometer (Tecan Group AG, Switzerland).

Novel AOA enrichments and pure culture

The sampling site, enrichment process, and initial strain characterization details for the two novel thermophilic AOA enrichment cultures ‘Ca. Nitrososervidus tengchonensis’ DRC1, and ‘Ca. Nitrososphaera nevadensis’ GerE used in this study are provided in the Supplementary Materials and

M.-Y. Jung et al.
protein content was determined photometrically with the Pierce bicinchoninic acid Protein Assay Kit (Thermo Scientific) as per the manufacturer’s instructions. Before and after MR assays of *N. piranensis* D3C, *Ca. N. uzonensis* N4, and *Ca. N. oleophilus* MY3, an aliquot of culture was filtered onto membranes (0.2 μm polycarbonate GTP membranes; Merck Milipore, Germany) and DAPI (4,6-diamidino-2-phenylindole; 10 μg ml⁻¹; 5 min; room temperature) stained prior to microscopic measurement of biomass cell aggregate size, as described previously [47, 48].

Calculation of kinetic properties

K_{m(app)} and *V_{max}* were calculated from both single and multiple trace substrate-dependent oxygen uptake measurements. Total ammonium (NH₃ + NH₄⁺) oxidation rates were calculated from oxygen uptake measurements using a substrate to oxygen consumption ratio of 1:1.5 [5, 29]. Total ammonium uptake rates were fitted to a Michaelis-Menten model using the equation:

\[
V = \left(\frac{V_{max} \times [S]}{K_{m(app)} + [S]}\right) \cdot \frac{1}{1 + \frac{[S]}{K_{m(app)}}}
\]

where *V* is the reaction rate (μM h⁻¹), *V_{max}* is the maximum reaction rate (μM h⁻¹), *S* is the total ammonium concentration (μM), and *K_{m(app)}* is the reaction half saturation concentration (μM). A nonlinear least squares regression analysis was used to estimate *K_{m(app)}* and *V_{max*} [49]. The *K_{m(app)}* for NH₃ for each strain was calculated based on the *K_{m(app)}* for total ammonium, incubation temperature, pH, and salinity [50]. *K_{m(app)}* values for AOM not determined in this study were compiled from the literature [5, 29, 33, 34, 51-55]. If only total ammonium information was given by the authors for *K_{m(app)}*, the corresponding NH₃ values were calculated based on the reported experimental temperature, pH, and salinity values. *V_{max}* values of pure cultures were normalized to culture protein content. The specific substrate affinity (*α*; g wet cells⁻¹ h⁻¹) of each pure culture strain was calculated using the equation:

\[
α = \frac{V_{max}}{(\text{cellular protein} \times 5.7) \times K_{m(app)}}
\]

where the *V_{max}* is normalized to the protein concentration (g⁻¹) of the culture in the MR chamber and the factor of 5.7 g wet cell weight per g of protein was used for all AOM [5, 29, 56]. The *α* for NH₃ or total ammonium were calculated using the respective *K_{m(app)}* for NH₃ or total ammonium.

Cell surface area to volume ratio calculation

Approximate cell SA/V ratios were determined using cell dimensions provided by or calculated from previously published phase contrast, transmission electron, or scanning electron microscopy images (Table S4). The following equations for the surface (SA) area and volume (V) of a sphere (3) and rod (4) were used:

\[
SA = 4πr^2; \quad V = \frac{4}{3}πr^3
\]

\[
SA = 2mr(h + r); \quad V = mh^2
\]

where *r* is the cell radius (μm) and *h* is the cell length (μm). The cell size and volume from published phase contrast images were verified using MicrobeTracker [57].

RESULTS AND DISCUSSION

AOA kinetic properties

In this study we investigated the kinetic properties of 12 AOA strains, including representatives from all four described AOA phylogenetic lineages: *Nitrosopumilales* (Group I.1a), *Ca. Nitrosotaleales* (Group I.1a-associated), *Nitrosphaerales* (Group I.1b), and *Ca. Nitrosoxidales* (thermophilic AOA clade) [58, 59] (Fig. 1). These AOA isolates and enrichments were obtained from a variety of habitats (marine, soil, sediment, hot spring) and have optimal growth pH and temperatures ranging from 5.3–7.8 to 25–72°C, respectively (Table S2). The substrate-dependent oxygen consumption rates for all AOA tested followed Michaelis–Menten kinetics. Below, the kinetic properties of these AOA are put into a broader context with comparisons to previously characterized AOM. It is important to note that the whole cell kinetic properties, such as substrate competitiveness, detailed here were generated from instantaneous activity measurements in the absence of growth. It is unknown how the substrate competitiveness of nitrifiers may or may not differ from their competitiveness when cellular processes such as growth, division, stress, and repair are involved.

Nitrosopumilales (Group I.1a)

From this lineage, three mesophilic marine (*N. piranensis* D3C, *N. adriaticus* NFS, and *N. maritimus* SCM1) [3, 60], two agricultural soil (*N. koreensis* MY1 and *Ca. N. chungbukensis* MY2) [61, 62] and one thermal spring isolate (*Ca. N. uzonensis* N4) [40] were kinetically characterized (Fig. S1). These AOA all displayed a high substrate affinity for NH₃, ranging from ~2.2 to 24.8 μM. Thus, all characterized *Nitrosopumilales*, and not just marine isolates, are adapted to oligotrophic conditions. All possess substrate affinities several orders of magnitude higher (lower *K_{m(app)*}) than any characterized AOB, with the exception of the recently characterized acidophilic gammaproteobacterial AOB *Ca. Nitrosacidococcus tergens* [55] (Fig. 2a). This finding appears to support the widely reported hypothesis that regardless of the environment, AOA in general are adapted to lower substrate concentrations than AOB [22, 29, 30]. However, as described later, this trend does not apply to all AOA.

As the substrate oxidation kinetics of the marine AOA strain, *N. maritimus* SCM1, originally characterized by Martens-Habbema et al. [29] have recently been disputed [63], they were revisited in this study (Fig. S2). With the same strain of *N. maritimus* used in Hink et al. [63] (directly obtained by the authors), we were able to reproduce (Figs. S1 and S2) the original kinetic properties of *N. maritimus* SCM1 reported in Martens-Habbema et al. [29] ruling out strain domestication during lab propagation as cause for the observed discrepancy. Therefore, the reported differences in the literature possibly reflect the measurements of two distinct cellular properties, *K_{m(app)*} [29] and *K_{c} [63]*, representing the half saturation of activity and growth, respectively. In addition, differences in pre-measurement cultivation and growth conditions could also contribute to these unexpected differences [63, 64]. More details are provided in the Supplementary Results and Discussion.

Ca. Nitrosotaleales (Group I.1a-associated). The only isolated AOA strains in this lineage *Ca. Nitrosotalea devanaeterra* Nd1 and *Ca. Nitrosotalea sinensis* Nd2, are highly adapted for survival in acidic environments and grow optimally at pH 5.3 [25, 65]. Both display a relatively low affinity for total ammonium (*K_{m(app)*} = 3.43–11.23 μM), but their affinity for NH₃ is among the highest calculated of any AOA characterized (*K_{m(app)*} = 0.6–2.8 μM) (Fig. 2a,c, and Fig. S3). This seemingly drastic difference in substrate affinity for total ammonium versus NH₃ is due to the combination of the high acid dissociation constant of ammonium (pKₐ = 9.25) and the kinetic properties of these strains being carried out at pH 5.3. The very limited availability of NH₃ under acidic conditions has led to the hypothesis that these acidophilic AOA should be highly adapted to very low NH₃ concentrations and possess a high substrate affinity (low *K_{m(app)}* for NH₃ [66, 67]. Our data corroborate this hypothesis.

Nitrososphaerales (Group I.1b)

The AOA strains *Ca. N. nevadensis* GerE (culture information provided in Supplementary Results and Discussion), *Ca. N. oleophilus* MY3 [68] and *Ca. N. franklandus* C13 [69] were kinetically characterized, and contextualized with the previously published kinetic characterization of *Nitrososphaera viennensis* EN76 and *Ca. Nitrososphaera gargarensis* [5]. Together, the *Nitrososphaerales* AOA possess a wide range of affinities for NH₃ (*K_{m(app)*} = 0.04–31.5 μM) (Fig. 2a and Fig. S4). Although this range of NH₃ affinities spans more than two orders of magnitude, none of the *Nitrososphaerales* AOA possess an affinity for NH₃ as high as any *Nitrosopumilales* or *Ca. Nitrosotaleales* AOA (Fig. 2a).
Phylogenetic reconstruction of ammonia oxidizing archaea (AOA) rooted on closely related non-AOA members of the “Thaumarcheota”. Black taxon labels correspond to AOA from cultures or enrichments. Gray taxon labels correspond to representative metagenome assembled genomes from release 05-RS95 of the genome taxonomy database [41]. AOA that were kinetically characterized in the current study are highlighted in gray and AOA that were previously characterized are indicated with an asterisk (*). The phylogeny was calculated with IQ-TREE under modelLG+F+I using an alignment of 34 universal genes (43 markers) produced by CheckM [42]. Support values (UFboot) greater than 95% for bipartitions are shown with a black circle and support values between 80% and 95% are shown with a small circle. The scale bar indicates amino acids changes per site.
increases with increasing temperatures [33]. It should be noted that both of these AOA cultures are enrichment cultures, as no other AOA tested here and may represent previously published values from reference studies (references provided in Materials and Methods). The four different gradations of red differentiate the four AOA phylogenetic lineages: (I) Nitrosopumilales, (II) ‘Ca. Nitrosotaleales’, (III) Nitrososphaerales, and (IV) ‘Ca. Nitrosococcales’. Measurements were performed with either pure cultures or enrichment cultures. Multiple symbols per strain represent independent measurements performed in this study and/or in the literature. The individual Michaelis–Menten plots for each AOM determined in this study are presented in Figs. S1, S3–5, and S8. Note the different scales.

The moderately thermophilic enrichment culture ‘Ca. N. nevadensis’ GerE displayed a higher substrate affinity (lower K_m) for NH$_3$ (0.17 ± 0.03 µM) than the other characterized AOA strains within the genus Nitrosophaera (Fig. 2a). In contrast, ‘Ca. N. oleophilus’ MY3 and ‘Ca. N. franklandus’ C13, which belong to the genus Nitrosocomnicus, had the lowest affinity (highest K_m) for NH$_3$ (12.37 ± 6.78 µM and 16.32 ± 14.11 µM, respectively) of any AOA characterized to date. In fact, their substrate affinity is comparable to several characterized AOB (Fig. 2a). In this context it is interesting to note that several Nitrosocomnicus species have been shown to tolerate very high ammonium concentrations [68–70], a trait usually associated with AOB [24, 54]. The low substrate affinity observed in Nitrosocomnicus AOA correlates with the absence of a putative Amt-type high affinity ammonium transporter in the genome of any sequenced Nitrosocomnicus species to date [68, 69, 71].

‘Ca. Nitrosococcales’ (Thermophilic AOA lineage). The thermophilic AOA enrichment cultures, ‘Ca. Nitrosococcus yellowstonensis’ HL72 [72] and ‘Ca. N. tenchongensis’ DRC1 (culture information provided in Supplementary Results and Discussion), possess affinities for NH$_3$ ($K_{\text{m(app)}}$ = 1.36 ± 0.53 µM and ~0.83 ± 0.01 µM, respectively) comparable to AOA within the genus Nitrosophaera (Fig. 2a). Notably, the substrate oxidation rate of these two AOA quickly dropped with increasing substrate concentrations after V_{max} was reached (Fig. S5). This trend was not observed with any other AOA tested here and may reflect an increased susceptibility to NH$_3$ stress at high temperatures, as the free NH$_3$ concentration increases with increasing temperatures [33]. It should be noted that both of these AOA cultures are enrichment cultures, as no member of the ‘Ca. Nitrosococcales’ has been isolated to date.

Together, these results highlight that the substrate affinity for NH$_3$ among AOA species is much more variable than previously hypothesized, spanning several orders of magnitude and in some cases overlapping with the substrate affinity values of characterized non-oligotrophic AOB. In addition, the substrate affinity of AOA is related, to a certain degree, to their phylogenetic placement within each of the four AOA phylogenetic lineages mentioned above (Fig. 2). Although the substrate affinity ranges of these AOA lineages overlap, the link between AOA phylogeny and kinetic properties provides deeper insights into the physiological and evolutionary differences among AOA species. As a limited number of AOA have been isolated and characterized to date, the continued isolation and characterization of AOA from under-represented phylogenetic lineages and new habitats is needed. While substrate affinity is certainly one of multiple factors that contribute to niche differentiation between AOM in general, it may also present a previously under acknowledged factor in AOA niche differentiation.

Maximum substrate oxidation rates (V_{max}). The normalized maximum substrate oxidation rate of all the AOA characterized to date only span about one order of magnitude from 4.27 to 54.68 µmol N mg protein$^{-1}$ h$^{-1}$. These normalized AOA V_{max} values are in the same range as the recorded V_{max} for the comammox N. inopinata (~12 µmol N mg protein$^{-1}$ h$^{-1}$) and the marine AOB strain Nitrosooccus oceani ATCC 19707 (~38 µmol N mg protein$^{-1}$ h$^{-1}$) but are lower than the normalized V_{max} of the AOB Nitrosomonas europaea ATCC 19718 (average of 84.2 µmol N mg protein$^{-1}$ h$^{-1}$; Fig 2e). The high V_{max} value for N. europaea is the only real outlier among the AOM characterized to date and it remains to be determined whether other AOB related to N. europaea also possess such a high V_{max}.
the variability of these ecologically important parameters within this guild.

Specific substrate affinity (α). Although the \(K_{\text{m(app)}} \) and \(V_{\text{max}} \) of AOM can be compared by themselves and provide useful information on cellular properties, the ability of an AOM to scavenge (and compete for) substrate from a dilute solution is most appropriately represented by the α°, which takes into account both the cellular \(K_{\text{m(app)}} \) and \(V_{\text{max}} \) [28]. In previous studies, the α° of AOM has been calculated using the \(K_{\text{m(app)}} \) value for total ammonium (\(\text{NH}_3 + \text{NH}_4^+ \)) and not the \(K_{\text{m(app)}} \) value for \(\text{NH}_3 \) [5, 29]. Calculating the α° based on the \(K_{\text{m(app)}} \) value for total ammonium allows for the α° of AOM to be compared with the α° of microorganisms that do not use \(\text{NH}_3 \) as a sole energy generating substrate, such as ammonia assimilating heterotrophic bacteria or diatoms [29]. While this is useful when evaluating competition for total ammonium in mixed communities or environmental settings, an α° calculated using the \(K_{\text{m(app)}} \) value for \(\text{NH}_3 \) may be more useful when directly comparing the interspecies competitiveness of AOM for the following reasons: (i) our data support the hypothesis that the substrate for all AOM is \(\text{NH}_3 \) and not \(\text{NH}_4^+ \) (see below) and (ii) the \(K_{\text{m(app)}} \) value for total ammonium is more dependent on the environmental factors it was measured at (e.g., pH, temperature, salinity) than the \(K_{\text{m(app)}} \) for \(\text{NH}_3 \).

All characterized AOA (with the exception of representatives of the genus *Nitrososomus*) and the comammox bacterium *N. inopinata* possess much higher α° for total ammonium or \(\text{NH}_3 \) (~10–3000×) than the AOB, *N. oceani* or *N. europaea* (Fig. 2b–d), indicating that they are highly competitive in environments limited in either total ammonium or only \(\text{NH}_3 \). However, due to the lower number of published normalized \(V_{\text{max}} \) values for AOB, α° could only be calculated for these two AOB representatives. Thus, extrapolations to the α° of all AOB species, based solely on these observations should be approached with caution.

The low variation in experimentally measured \(V_{\text{max}} \) values (Fig. 2e) across all measured AOM in combination with the high variation in \(K_{\text{m(app)}} \) values leads to a strong relationship between cellular α° and the reciprocal of \(K_{\text{m(app)}} \) (Fig. 3) according to Eq. 2 (see Materials and Methods). AOM adapted to oligotrophic (low substrate) conditions should possess both a high substrate affinity (low \(K_{\text{m(app)}} \)) and a high α° [28]. Therefore, the AOM best suited for environments limited in total ammonium are the AOA belonging to the *Nitrosopumilus* and the comammox isolate *N. inopinata* (top right corner of Fig. 3a). Overall, when looking at solely \(\text{NH}_3 \) or total ammonium, the separation of species in these plots remains similar, with the exception that the acidophilic AOA belonging to the ‘Ca. Nitrosotaleales’ are predicted to be best suited for life in environments limited in \(\text{NH}_3 \) (Fig. 3b). The correlation correlates well with the fact the AOA ‘Ca. Nitrosotalea devanaterra’ N’d1 and ‘Ca. Nitrosotalea sinensis’ Nd2 were isolated from acidic soils with a pH of 4.5 and 4.7, respectively [25, 65], where the \(\text{NH}_3\text{N}_\text{H}_4^+ \) equilibrium is heavily shifted toward \(\text{NH}_3 \).

In either case, when looking at \(\text{NH}_3 \) or total ammonium, the AOA belonging to the genus *Nitrososomus* (‘Ca. N. oleophilus’ MY3 and ‘Ca. N. franklandii’ C13) and AOB populate the lower left section of these plots, indicating that they are not strong substrate competitors in \(\text{NH}_3 \) or total ammonium limited environments (Fig. 3). Here, the \(V_{\text{max}} \) of all the AOM reported spans ~10×, whereas the difference in \(K_{\text{m(app)}} \) spans about five orders of magnitude. If the cellular kinetic property of \(V_{\text{max}} \) really is so similar across all AOB, AOA, and comammox species (Fig. 2e) compared to the large differences in \(K_{\text{m(app)}} \) values, then substrate competitiveness can be predicted from an AOMs \(K_{\text{m(app)}} \) for either \(\text{NH}_3 \) or total ammonium (Fig. 2a–c). This may prove especially helpful when characterizing enrichment cultures, where normalizing ammonia-oxidizing activity to cellular protein in order to obtain a comparable \(V_{\text{max}} \) value is not possible. However, there is also a need for more kinetically characterized AOB and comammox species to confirm this hypothesis. In addition, when comparing AOM, differences in the \(V_{\text{max}} \) cellular property will play a larger role, the closer the \(K_{\text{m(app)}} \) values of the AOM strains are. This is important to consider when comparing AOM from similar habitats and likely adapted to similar substrate concentrations.

The effect of environmental and cellular factors on AOM kinetic properties. The concentration of \(\text{NH}_3 \) present in a particular growth medium or environment can vary by orders of magnitude, based solely on the pH, temperature, or salinity of the system [73]. This is notable because at a given total ammonium concentration, the concentration of \(\text{NH}_3 \) is ~10 times higher at 70 °C versus 30 °C and ~1000 times lower at pH 5.3 versus pH 8.4 (representative of maximum ranges tested). While it should be recognized that in our dataset no AOM were included that have a pH optimum between 5.3 and 7.0, the effect of pH and temperature on the ammonia oxidation kinetics of AOM must be considered in order to understand their ecophysiological niches. However, there was no correlation between the kinetic properties of AOM (\(K_{\text{m(app)}} \), \(V_{\text{max}} \), and α°) measured in this study and their optimal growth temperature or pH. This lack of correlation between AOM species kinetic properties and growth conditions does not imply that the cellular kinetic properties of an individual AOM species will remain the same over a range of pH and temperature conditions. Therefore, we investigated the effect of pH and temperature variation on the substrate-dependent kinetic properties of the AOA strain ‘Ca. N. oleophilus’ MY3, and the effect of pH on the comammox strain *N. inopinata*. Here, the AOA ‘Ca. N. oleophilus’ MY3 was selected based on the fact that it is a non-marine, mesophilic, pure culture, that does not require external hydrogen peroxide scavengers for growth. These traits are shared with the previously characterized AOB, *N. europaea* [35], and the comammox organism, *N. inopinata* (this study) and thus facilitate comparison.

The effect of temperature. The effects of short-term temperature changes on the substrate-dependent kinetic properties of ‘Ca. N. oleophilus’ MY3 were determined. Temperature shifts of 5 °C above and below the optimal growth temperature (30 °C) had no effect on the \(K_{\text{m(app)}} \) for total ammonium. However, the \(K_{\text{m(app)}} \) for \(\text{NH}_3 \), \(V_{\text{max}} \) and α° of ‘Ca. N. oleophilus’ MY3 all increased with increasing temperatures (Fig. 5e). Therefore, as temperature increased, ‘Ca. N. oleophilus’ MY3 displayed a lower substrate affinity (higher \(K_{\text{m(app)}} \) for \(\text{NH}_3 \)) but would be able to turnover substrate with a higher \(V_{\text{max}} \) and better compete for substrate with a higher α°. Increasing AOA \(K_{\text{m(app)}} \) values for \(\text{NH}_3 \) with increasing temperatures have also been observed across studies with *N. viennensis* EN76 (Fig. S2), and this is discussed in more detail in the Supplementary Results and Discussion. In addition, similar observations have previously been made for AOB strains belonging to the genus *Nitrosomonas* [33, 34]. The increase in \(V_{\text{max}} \) and α° can be explained in terms of the Van’t Hoff rule (reaction velocity increases with temperature) [74], or in terms of a temperature sensitivity coefficient (\(Q_{10} \); change in reaction velocity over 10 °C) [75]. Here, the maximal reaction velocity of ‘Ca. N. oleophilus’ MY3, displays a relative \(Q_{10} \) of 2.17 between 25 and 35 °C, which is in line with more general microbial respiration measurements [75, 76].

The increase in \(K_{\text{m(app)}} \) for \(\text{NH}_3 \) (lower \(\text{NH}_3 \) affinity) with increasing temperature is less straightforward to interpret. As this is a whole cell measurement, the observed differences may result from either broad cellular changes or from changes in individual enzymes involved in the ammonia oxidation pathway specifically. At the cellular level, changes in the proteinaceous surface layer (S-layer) or lipid cell membrane could affect substrate movement/transport and enzyme complex stability. It has been suggested that the negatively charged AOA S-layer proteins act as a substrate reservoir, trapping \(\text{NH}_3 \) and consequently increasing
the \(\text{NH}_3 \) concentration in the AOA pseudo-periplasmic space [77]. It is interesting to note that sequenced representatives from the genus ‘\textit{Ca. Nitrosocosmosis}’ lack the main S-layer protein (slp1) found in all \textit{Nitrospumiales}, \textit{Nitrosophaeales}, and ‘\textit{Ca. Nitroso-

taleales}’ sequenced isolates [71], although it remains to be demonstrated whether ‘\textit{Ca. Nitrosocosmosis}’ members actually lack a S-layer or form S-layers composed of other proteins. In addition, it has been demonstrated that elevated temperatures significantly alter the lipid composition in the AOA cell membrane [78, 79]. However, it is unclear how differences in the cell membrane or S-layer composition between AOA species may affect the observed kinetic properties. In this context it is important to note that on the single enzyme level, previous studies have shown the same trend of decreasing substrate affinity and increasing maximal reaction velocity with increasing temperatures, due to altered protein structures and an increased enzyme-substrate dissociation constant [80, 81].

Notably, differing optimum growth and activity conditions were previously determined for the marine AOB strain \textit{Nitrosomonas cryotolerans} [34]. These observations raise interesting, albeit unanswered, questions about why the growth and activity temperature optima are or can be uncoupled in AOM, and what this means for AOM niche differentiation and their competitiveness in-situ. Moving forward, investigations into the growth and cellular kinetic properties of AOM across a range of environmental factor gradients will be essential in understanding competition between AOM in engineered and environmental systems.

\textbf{The effect of pH.} The effects of short-term pH changes on the substrate-dependent kinetics of ‘\textit{Ca. N. oleophilus}’ MY3 and \textit{N. inopinata} were determined. The \(V_{\text{max}} \) of both ‘\textit{Ca. N. oleophilus}’ MY3 and \textit{N. inopinata} were stable at \(37.3 \pm 6.6 \) \(\mu \text{mol N mg protein}^{-1} \text{ h}^{-1} \) and \(11.2 \pm 2.5 \) \(\mu \text{mol N mg protein}^{-1} \text{ h}^{-1} \), respectively, in medium with a pH between \(\sim 6.5 \) and \(\sim 8.5 \) (Table S3). The \(K_{m(app)} \) for total ammonium of ‘\textit{Ca. N. oleophilus}’ MY3 and \textit{N. inopinata} decreased by more than an order of magnitude \((\sim 11 \times)\) across this pH range, while the \(K_{m(app)} \) for \textit{NH}_3 remained more stable, increasing only \(3-4 \) times (Fig. 4). This stability of the \(K_{m(app)} \) for \textit{NH}_3 compared with the larger change in the \(K_{m(app)} \) for total ammonium across this pH range suggests that the actual substrate used by AOA and comammox is indeed the undisso-

ciated form (\(\text{NH}_3 \)) rather than the ammonium ion (\(\text{NH}_4^+ \)), as previously demonstrated for AOB [34, 35, 54, 82]. As these kinetic measurements were performed with whole cells, the change in \(K_{m(app)} \) for \textit{NH}_3 across this pH range may be due to cellular effects of the differing pH values unrelated to the direct ammonia oxidation pathway. The changes in \(K_{m(app)} \) for \textit{NH}_3 and \(K_{m(app)} \) for total ammonium demonstrated here for ‘\textit{Ca. N. oleophilus}’ MY3 and \textit{N. inopinata} are similar to what has been observed for AOB. That AOA and AOB utilize the \textit{NH}_3 as a substrate, aligns with the fact that both are competitively inhibited by the non-polar acetylene compound [83, 84].

Interestingly, the only exception to this rule to date is the gammaproteobacterial marine AOB \textit{Nitrosococcus oceani}. The reported \(K_{m(app)} \) for total ammonium of \textit{N. oceani} remained more stable \((\sim 2.3 \times) \) than the \(K_{m(app)} \) for \textit{NH}_3 \((78 \times) \) when the pH was shifted from 6.3 to 8.6 [85]. With this exception in mind, our results support the hypothesis that AOA, AOB, and comammox utilize \textit{NH}_3 as their substrate. As only a few AOB have been characterized in this manner, the characterization of a more diverse set of AOM species is needed in order to make broader conclusions.

It is important to note that the substrate affinities reported here represent whole cell affinities and not the substrate affinity of ammonia monoxygenase (AMO) enzymes. Therefore, further experimental investigation with purified AMO and ammonia/ammonium transporter proteins is warranted. Although \textit{NH}_3 can freely diffuse passively into AOM, this does not mean that the cellular affinity reported here is necessarily unrelated to the transporter-mediated movement of \textit{NH}_3/\textit{NH}_4^+ into AOM cells. For example, AOB have previously been shown to accumulate very high \((1 \text{ M})\) intracellular \textit{NH}_4^+ concentrations [86]. This high intracellular \textit{NH}_4^+ concentration may provide a concentrated substrate reservoir, indirectly increasing the concentration of \textit{NH}_3 around the AMO enzyme complex. In addition, the negatively charged S-layer of \textit{N. maritimus} has been shown to act as a substrate reservoir for the positively charged \textit{NH}_4^+ . This total ammonium concentration in the pseudo-periplasmic space of AOA, may also act to indirectly increase \textit{NH}_3 concentrations around the AMO enzyme complex [77]. However, the impact of total ammonium capture and transport on the ammonia oxidation kinetic properties of AOB, AOA, and comammox are not yet well understood. It is unknown if such a concentration mechanism would be more important for an AOB with a low substrate affinity (e.g., \textit{N. europaea}) or for an AOA living in extremely substrate-

limited environments (e.g., \textit{N. maritimus}).
their nutrient uptake capabilities [89, 90]. Postulated to select for organisms with a high SA/V ratio, enhancing consistently, these oligotrophic environments have already been and terrestrial environments, such as the pelagic marine water SA/V ratio will likely outcompete other AOM in many natural aquatic for these cellular kinetic properties. Consequently, AOM with a high V ratio of newly cultured AOM might be a useful general indicator for nutrient uptake and utilization in general [88]. Therefore, the SA/V (Table S4) correlates to the log of their observed properties of the AOA belonging to the genus Nitrosocosmicus properties of AOM sheds some light on the unusual kinetic effect of cell morphology. All AOM share the primary enzyme involved in ammonia oxidation, AMO, which is located in the cytoplasmic membrane with its substrate-binding site most likely facing the outside of the cell [77]. Therefore, a higher cellular SA/V ratio likely contributes to an increase in a°, as it increases the space available for AMO and the chance to bind NH$_3$ at very low concentrations. This assumption is based on the hypothesis that an increased abundance of uptake enzymes (e.g., permeases) leads to a higher a° [28, 56]. In fact, the SA/V ratio of AOM (Table S4) correlates to the log of their observed $K_{m(app)}$ for NH$_3$ ($R^2 = 0.88$), $K_{m(app)}$ for total ammonium ($R^2 = 0.70$), a° for NH$_3$ ($R^2 = 0.78$), and a° for total ammonium ($R^2 = 0.72$; Fig. 5). This type of casual semi-log relationship between cell size and nutrient affinities has previously been observed between microorganisms and their affinity for phosphate [87] as well as theoretically modeled for nutrient uptake and utilization in general [88]. Therefore, the SA/V ratio of newly cultured AOM might be a useful general indicator for these cellular kinetic properties. Consequently, AOM with a high SA/V ratio will likely outcompete other AOM in many natural aquatic and terrestrial environments, such as the pelagic marine water column that has a very low standing total ammonium pool. Consistently, these oligotrophic environments have already been postulated to select for organisms with a high SA/V ratio, enhancing their nutrient uptake capabilities [89, 90].

The correlation between the SA/V ratio and cellular kinetic properties of AOM sheds some light on the unusual kinetic properties of the AOA belonging to the genus Nitrososocmius. Both 'Ca. N. oleophilus' MY3 and 'Ca. N. franklandus' C13 possess a very low SA/V ratio compared to other AOA isolates and they both possess several characteristics normally associated with AOB—high substrate tolerances [68–70], low affinities for NH$_3$, and a low a° for NH$_3$—that are not consistent with the long-held convention that all AOA are much stronger competitors for NH$_3$ than AOB in substrate-limited environments. Therefore, the individual cell morphology of AOM may have a direct relationship with their cellular kinetic properties. Although this is only a correlation-based observation, it highlights that further investigation into these characteristics is warranted.

In addition to cellular morphology, the size of cell aggregates can affect the kinetic properties of AOM [48]. Cell aggregates have a lower SA/V ratio than individual cells, which can decrease diffusion rates and create microscale substrate/oxygen gradients within aggregates [91]. In order to ensure that the large differences in substrate affinity among AOA are not caused by differences in cell aggregation, the aggregate size of 'Ca. N. uzonensis' N4, 'Ca. N. oleophilus' MY3, and N. piranensis D3C cultures were inspected before and after MR experiments (Fig. S7).

The three AOA were chosen to highlight the aggregate sizes observed in cultures that displayed the lowest ('Ca. N. oleophilus' MY3) and among the highest ('Ca. N. uzonensis' N4 and N. piranensis D3C) substrate affinities. No aggregation pattern was observed that would explain the multiple orders of magnitude differences in substrate affinity between these AOA. In fact, of the three AOA investigated, the only strain to form large cell aggregates either before or after MR experiments was N. piranensis D3C, which has one of the highest measured substrate affinities (lowest $K_{m(app)}$ for NH$_3$) [77]. In contrast, the cell aggregate size of 'Ca. N. oleophilus' MY3 and 'Ca. N. uzonensis' N4 were unaffected by the MR experiment and remained relatively small (Fig. S7). As 'Ca. N. oleophilus' MY3 has one of the lowest substrate affinities (highest $K_{m(app)}$ for NH$_3$) and formed only small cell aggregates, the low substrate affinity of 'Ca.

The effect of medium pH on the substrate affinity of 'Ca. N. oleophilus' MY3 and 'N. inopinata'. The substrate affinities for both (a,b) NH$_3$ and (c,d) total ammonium (NH$_3$ + NH$_4^+$) are provided. Individual substrate affinity values determined at each pH are shown as single points (circles). The boxes represent the first and third quartiles (25–75%) of the substrate affinity range under each condition. The median (line within the boxes) and mean substrate affinity (black diamonds) values are also indicated. The whiskers represent the most extreme values within 1.58× of quartile range. The variation of the substrate affinity range across the entire tested pH range are indicated in each panel. In all four instances there was a significant difference between the affinity at the lowest pH and the highest pH, as determined by a Student’s t test ($p < 0.005$). The average substrate affinity values for 'Ca. N. oleophilus' MY3 and 'N. inopinata' at each pH are provided in Table S3.

The ISME Journal (2022) 16:272 – 283

M.-Y. Jung et al.
Taken together, both environmental (pH and temperature) and AOM cellular (SA/V ratio) factors affect or are related to the observable cellular kinetic properties of individual AOM species. These factors need to be considered when investigating AOM competition or niche differentiation in situ, as they are often in flux in environmental settings. This can be especially true considering cell morphology, which is often dependent on growth conditions [92]. However, the plasticity of the cellular kinetic properties within individual AOM species does not explain the larger trends observed here across AOA lineages or between AOM (Figs. 2, S1, S3–5, S8).

CONCLUDING REMARKS

In this study we substantially extended the set of available substrate oxidation kinetic properties for AOA by the analysis of pure cultures or enrichments from various lineages within this guild. Furthermore, our kinetic data obtained at different pH values supports the hypothesis that, like for AOB, the substrate for AOA and comammox is NH₃. Together, our findings provide novel insights for our understanding of niche differentiation among AOM and demonstrate a surprising variability of the inferred kinetic properties among AOA. Thus, our data strengthens the recent discovery [5] that not all AOA possess an extremely high substrate affinity or specific substrate affinity. The observed links between AOA kinetic properties, phylogeny, and cell morphology also enables the formulation of testable hypotheses on nitrification kinetics in systems thus far characterized solely with molecular (e.g., amplicon sequencing or metagenomic) tools.

As environmental factors such as temperature and pH influence kinetic properties of AOA including their cellular affinity for NH₃, future analyses of kinetic properties of AOM should not only be performed at their optimal growth conditions, but also over a range of conditions that reflect their environmental niches. Such experiments will generate a more informative picture on AOM competition and niche differentiation.

Newly isolated Nitrosotenuis species

The isolated strain N4 is a novel species of the genus Nitrosotenuis of the order Nitrosopumilales, and we propose the following candidate status:

Taxonomy.

(i) **Etymology.** The taxonomy for ‘Candidatus Nitrosotenuis uzonensis’ sp. nov. is as follows: Nitrosus (Latin masculine adjective), nitrous; tenuis (Latin masculine adjective), small; uzonensis (Latin neutrum genitive), from Uzon.

(ii) **Locality.** A terrestrial thermal spring located in the Uzon caldera on the Kamchatka peninsula, Russia.

(iii) **Diagnosis.** A chemolithoautotrophic ammonia oxidizer of the phylum Thaumarchaeota, which is straight and rod-shaped, with a diameter of 0.2–0.3 μm and a length of 0.4–1.7 μm. Growth over a period of several years has been
maintained in a medium with a pH of 7.5 at 37 °C. It belongs to the AOA order *Nitrosopumilales* (group I.A). AOA with almost identical 16S rRNA and amoA gene sequences have been detected in various environments, including soil and groundwater [22, 40, 62].

REFERENCES

1. Ward BB, Arp DJ, Klotz MG. Nitrification. Washington, D.C.: American Society of Microbiology; 2011.
2. Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263–76.
3. Koenneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;367:543–6.
4. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C. Novel genera of nitrite reductase and AmoA-related proteins indicate a role of uncultivated mesophilic archaea in nitrogen cycling. Environ Microbiol. 2005;7:1985–95.
5. Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 2017;549:269–72.
6. van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, et al. Complete nitrification by a single microorganism. Nature. 2015;526:355–9.
7. Daims H, Lebedeva EV, Pjevac P, Han P, Herbord C, Albertsen M, et al. Complete nitrification by *Nitrospira* bacteria. Nature. 2015;528:504–9.
8. Leininger S, Urch T, Schloter M, Schwark L, Qi J, Nicol GW, et al. *Archaea* predominantly associate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–9.
9. Verhamme DT, Prosser JJ, Nicol GW. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 2011;5:1067–71.
10. Wuchter C, Abbas B, Coolen MJ, Herfort L, van Bleijswijk J, Timmers P, et al. Archeal nitrification in the ocean. Proc Natl Acad Sci USA. 2006;103:13217–22.
11. Yang Y, Zhang J, Zhao Q, Zhou Q, Li N, Wang Y, et al. Sediment ammonia-oxidizing microorganisms in two plateau freshwater lakes at different trophic states. Microb Ecol. 2016;71:257–67.
12. Fan F, Yang Q, Li Z, Wei D, Cui X, Liang Y. Impacts of organic and inorganic fertilizers on nitriﬁcation. ISME J. 2017;11:896–908.
13. Groeneweg J, Sellner B, Tappe W. Ammonia oxidation in *Nitrosomonas* at N\textsubscript{2}O concentrations near \textit{k}_{\textit{c}} effects of pH and temperature. Water Res. 1994;28:2561–6.
14. Jones RD, Morita RY. Low-temperature growth and whole-cell kinetics of a marine ammonium oxidizer. Mar Ecol Prog Ser. 1985;21:239–43.
15. Suzuki I, Dular U, Kwok SC. Ammonia or ammonium ion as substrate for oxidation by *Nitrosomonas europaea* cells and extracts. J Bacteriol. 1974;120:556–8.
16. Kandel E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soils. 1986;6:58–72.
17. Hood-Nowotny R, Umana NH-N, Inselbacher E, Oswald-Lachouani P, Wanek W. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Sci Soc Am J. 2010;74:1018–27.
18. Miranda KM, Espey MG, Wink DA. Rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.
19. Kits KD, Jung MY, Vieheilig H, Pjevac P, Sedlacek CJ, Liu S, et al. Low yield and abiotic origin of N\textsubscript{2}O formed by the complete nitrifier *Nitrospira inopinata*. Nat Commun. 2019;10:1836.
20. Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group I.A ammonia-oxidizing *Archaean* “*Cn* Nitrosoarchaeum umzonensis” representing a clade globally distributed in thermophilic habitats. PLoS ONE. 2013;8:e60835.
21. Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Musig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–108.
22. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genom Res. 2015;25:1043–55.
23. Nguyen LT, Schmidt HA, van Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
24. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. Modeller: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:387–9.
25. Minh BQ, Nguyen NA, van Haeseler A. Ultrafast approximation for phylogenetic bootstrapping. Mol Biol Evol. 2013;30:1188–95.
26. Martens-Habbena W, Stahl DA. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea. Methods Enzymol. 2011;496:465–87.
27. Luksembuya M, Kristensen JM, Kitzinger K, Pommerening-Roser A, Nielsen PH, Wagner M, et al. A refined set of *rRNA*-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. Water Res. 2020;166:116372.
28. Sakoulas D, Koch H, Frank J, Jetten MSM, van Kessel M, Lucker S. Enrichment and physiological characterization of a novel *comammox* *Nitrospira* indicates ammonia inhibition of complete nitrification. ISME J. 2020;15:1010–24.
29. Kemmer G, Keller S. Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc. 2010;5:267–81.
50. Clegg SL, Whitfield M. A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from –2 to 40 °C. Geochim Cosmochim Acta. 1999;59:2403–21.
51. Koper TE, Stark JM, Habteselassie MY, Norton JM. Nitrification exhibits Haldane kinetics in an agricultural soil treated with ammonium sulfate or dairy-waste compost. FEMS Microbiol Ecol. 2010;74:316–22.
52. Koops H-P, Pommerening-Röser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol. 2001;37:1–9.
53. Bollmann A, Bar-Gilissen MJ, Laanbroek HJ. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl Environ Microbiol. 2002;68:4751–7.
54. van den Enden E, Meijer HJG, Tramper J. Kinetics of Nitrosomonas europaea at extreme substrate, product and salt concentrations. Appl Microbiol Biotechnol. 1992;37:802–7.
55. Picone N, Pol A, Mesman R, van Kessel M, Cremers G, van Gelder AH et al. Nitrous oxide production by microorganisms according to kinetic parameters from theory as related to cytoarchitecture. Microbiol Mol Biol Rev. 1998;62:36–45.
56. Slusarenko O, Heinritz J, Emenet T, Jacobs-Wagner C. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol. 2011;80:12–27.
57. Bovera F, Mccarthy SE, Zavaleta S, Palenik B. Ammonia monooxygenase in Nitrosomonas europaea by alkyne, aniline and cyclopropane derivatives. Biochim Biophys Acta. 1998;1388:373–82.
58. Wang C, Morrissey EM, Mau RL, Hayer M, Pineiro J, Mack MC et al. The thermotolerance of Nitrosomonas europaea gen. nov., a novel ureolytic soil ammonia-oxidizing archaeon “Candidatus Nitrosotenermus ozonensis” at different growth temperatures. Appl Environ Microbiol. 2019;85:e01332–19.
59. Qin W, Carlson LT, Armbrust EV, Devol AH, Moffett JW, Stahl DA et al. Cultured ammonia-oxidizing archaea “Candidatus Nitrosotenermus ozonensis” at different growth temperatures. Appl Environ Microbiol. 2000;66:979–87.
60. Koops H-P, Pommerening-Röser A. Distribution and ecophysiology of the nitri-
AUTHOR CONTRIBUTIONS
M-YJ, CJS, HD, and MW designed the study and wrote the paper with the help of all authors. M-YJ and CJS performed the kinetic experiments with the help of KDK, LH, BB, L L-M, and CW. Additional data analysis was performed by AM, S-KR, PP, GWN, JRT, and CWH.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41396-021-01064-z.

Correspondence and requests for materials should be addressed to M.-Y.J. or C.J.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021