Research on customer satisfaction of lanzhou nongjiale based on SEM

Jixuan Yan 1,2, Dongyuan Sun1, Hong qiang qiao3

1College of Water Resources and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China
2College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
3College of Management, Gansu Agricultural University, Lanzhou 730070, China

Author's brief introduction: Yan Jixuan(1983-), male ,Ph.D.,lecturer,e-mail: yanjx@gsau.edu.cn, research direction for land ecology.

Abstract: The farmhouse is a kind of entertainment form for city residents to alleviate pressure on seeking, the customer satisfaction is helpful to enhance Agritainment service consciousness. In this paper, through the design of scale and field research, the evaluation system of agritainment customer satisfaction (RTCS) is constructed to study the customer satisfaction of agritainment and its influencing factors. The research results show that: in the five latent variables influence the farmhouse of customer satisfaction, customer feedback perceived the greatest impact on the farmhouse satisfaction, followed by the customer perception and customer perception of service facilities. And customer feedback in perceptual "return", "recommended rate, the customer perception" facilities in the "natural environment", "architectural style", "illegal status, customer perception of service" of "food taste", "employee cleanliness" observed variables to the latent variables effect more obvious, is the impact of the main factor of Agritainment in customer satisfaction. On the basis of the conclusion, the paper puts forward the countermeasures and suggestions to improve the satisfaction degree of agritainment.

1. Introduction

With the acceleration of the urbanization process, the pressure of urban life increases, which makes urban residents more and more want to return to nature[1]. In particular, they take advantage of the small holidays of "weekends + holidays" for leisure and entertainment, so as to bathe in the fatigue brought by life and work[2]. As a land for leisure and entertainment, agritainment is a kind of leisure and entertainment formed by the combination of recuperation and vacation, rural scenery, local culture and local complex, for urban population absorbing rural scenery and distinctive delicacies, and brings economic benefits to rural tourist, so in recent years, suburban farmhouse has sprung up like bamboo shoots after a spring rain, which is welcomed by people[3].

Rural leisure tourism industry has gradually become a research hotspot. At present, most scholars have studied the status quo, existing problems and countermeasures of the development of farmhouse, laying a solid theoretical foundation for the study of "farmhouse" as a leisure and entertainment industry. However, as a new industry, "farmhouse" has imperfect infrastructure, lack of scientific
planning and management, and most "farmhouse" is still in the state of low-level repeated development, lacking features, single type, low service quality and serious environmental pollution, which greatly restricts the sustainable development of this industry[3]. To sum up, the academic research on agritainment is qualitative, and the current research results rarely involve quantitative research, especially the empirical research on the customer satisfaction of farmhouse and the sustainable development of leisure and entertainment industry[4]. Therefore, the innovation of this paper starts from the construction of "customer satisfaction of agritainment" model to study the role of customer satisfaction in promoting the development of agritainment.

In 1988, Fornell proposed the Fornell model, namely the Rustomer Satisfaction Index, which used the econometric mathematical model and the perceived effect of customers to analyze the difference function between the customer Satisfaction Index and customer expectation[5-6]. This lays a foundation for future research on customer satisfaction and the establishment of customer satisfaction models in various countries[7]. For example, Tang Xiaofen studied tourist Satisfaction in Shanghai by using the American Customer Satisfaction Index (ACSI) model[8]. Based on the ACSI model, Huang Yanling et al established the hotel customer satisfaction (HCS) model by means of SEM analysis[5]. Through the improvement of the ACSI model, Wang Xia constructed a scenic spot customer satisfaction model[9]. Wang Qun used ACSI to construct tourist satisfaction index of tourism environment[10]. However, the American Customer Satisfaction Index (ACSI) model lacks guidance on the micro level of enterprises' production and operation, so the Satisfaction survey of enterprises with specific operations cannot explain the problem. To sum up, the European Customer Satisfaction Index (ESCI) model is selected, which inherits the basic framework and core concepts of the ACSI model and improves the shortcomings of the ACSI model[11]. Therefore, this paper takes Lanzhou city as an example. Its urban construction is backward, landscape culture is scarce, food and entertainment is monotonous, and the problems facing the development of farmhouse are more specific than any other place. With the help of the European customer satisfaction index (ESCI), a structural equation model of agritainment customer satisfaction (RTCS) is built, which has certain practical significance for the business development of agritainment, the exploration of customer quality value perception, the improvement of customer satisfaction and the promotion of market vitality[12].

2. Research methods

2.1. Model construction

At present, the comprehensive research at home and abroad, the factors affecting rural satisfaction is varied, such as traffic, hygiene, accommodation, service attitude and recommendation intention, loyalty, etc., organic standard evaluation system in our country in this paper, on the basis of adding revised feedback of customer satisfaction, perception of customer feedback, again with the help of the structural equation model to construct the organic model of customer satisfaction (RTCS). RTCS model includes measurement model and structure model. The path connecting ellipse and rectangle is the measurement model, and the path connecting ellipse and ellipse is the structure model. The variables in the 20 rectangles are observation variables, and the variables in the 5 ellipses are potential variables (as shown in table 1)[13].
Tab.1 Construction of a customer satisfaction model for a farmhouse

Observed variable	Latent variable	Observed variable
Return rate \(X_1\)	Customer facility awareness \(\delta_1\)	Natural environment \(y_1\)
		Architectural style \(y_2\)
		health condition \(y_3\)
		traffic condition \(y_4\)
		Parking condition \(y_5\)
	Customer feedback perception \(\xi\)	Accommodation equipment \(y_6\)
	Customer service perception \(\delta_2\)	Farmhouse atmosphere \(y_7\)
		Illegal situation \(y_8\)
		Food taste \(y_9\)
		Food appearance \(y_{10}\)
		Traditional features \(y_{11}\)
		Customer attitude \(y_{12}\)
		Staff cleanliness \(y_{13}\)
Recommendation rate \(X_2\)	Customer value perception \(\delta_3\)	Activities \(y_{14}\)
		Fun degree \(y_{15}\)
		Souvenirs and specialties \(y_{16}\)
		loyalty \(y_{17}\)
	Customer satisfaction \(\delta_4\)	Complaining effect \(y_{18}\)

2.2. Questionnaire and scale design
Since the questionnaire plays a decisive role in the whole model research, the questionnaire should be revised based on regional differentiation and field investigation. The questionnaire mainly includes 20 observation variables, such as sanitation, traffic, accommodation conditions, staff quality, and the overall service level and management level of agritainment. The questionnaire was designed to be measured by Likert five-level scale method (5: Very satisfactory; 4: Relatively satisfied; 3: Satisfaction; 2: Dissatisfaction; 1: Not at all).

2.3. Questionnaire survey
The questionnaire was released on two consecutive Saturdays and Sundays in June 2018, and lasted for four days. The field survey was conducted in eight major gathering places of rural tourists in Lanzhou, Gansu province, including Renshou mountain, Urban Spring, XuJiaShan, Baita mountain, LanShan, Xinglong mountain, GuanTanGou and Shichuan Liyuan. A total of 300 questionnaires were randomly distributed in this survey, 38 of which were abstained and invalid, and the effective recovery rate reached 90.67%.

3. Model test and analysis

3.1. Investigation characteristics of the research area
Through the study of the statistical analysis of the questionnaire sample concluded that respondents Lanzhou citizens accounted for more than 90%, most of them are adults, and most of them had a higher degree, family income is higher, basically achieved the goal that give priority to in order to
investigating organic consumers, for Lanzhou organic satisfaction to make a statement (see table 2).

Tab.2 The basic information of respondents in survey

Age (year old)	Frequency	Proportion(%)
0~20	33	11%
20~30	48	16%
30~40	71	23.67%
40~50	82	27.33%
50 and above	66	22%

Place of residence	Frequency	Proportion(%)
Urban area	191	63.67%
Suburbs	63	21%
Other areas	46	15.33%

Educational level	Frequency	Proportion(%)
Junior high school and below	14	4.67%
Junior high school--High school	71	23.67%
College--Undergraduate	147	49%
Master degree and above	68	22.67%

Monthly household income (yuan)	Frequency	Proportion(%)
1500~2500	52	17.33%
2500~4500	116	38.67%
4500~8000	92	30.67%
8000 or more	40	13.33%

3.2. Reliability and validity analysis

3.2.1. Reliability analysis The reliability of the survey data was analyzed at all levels, according to the reasonable range of variables' skewness and kurtosis, the Cronbach coefficient of the scale at all levels ranged from 0.799 to 0.841, and the reliability of the total scale reached 0.826, indicating that the questionnaire had certain reliability. KMO and Bartlett spherical test analysis of the survey data showed that: all sig values (0.000) < 0.05, through Bartlett spherical test; the total scale KMO value is 0.919, greater than 0.70, so the above sample data are suitable for factor analysis (see table 3).

Tab.3 Reliability analysis, Bartlett’s values of sphericity and KMO of the questionnaire

Latent variable	Observed variable	αcoefficient	KMO value	Approximate chi-square	df	Sig.
Customer feedback perception	X₁, X₂	0.841	0.753	72.715	1	0
Customer facility awareness	Y₁~Y₈	0.806	0.776	294.312	28	0
Customer service perception	Y₀~X₁₃	0.805	0.813	210.31	10	0
Customer value perception	Y₁₄~Y₁₆	0.829	0.723	109.246	3	0
Customer satisfaction	Y₁₇~Y₁₈	0.799	0.716	57.684	1	0
Total table	X₁, X₂ , Y₁~Y₁₈	0.826	0.919	1530.781	190	0

3.2.2. Exploratory factor analysis Using principal component analysis to exploratory factor analysis of data, the results show that there are five common factor to the interpretation of the rate of 71.698%, the questionnaire survey and the five factor loading of each observed variable of latent variables were
greater than 0.5, shows that the factor model of variable better explanation, illustrates the exploratory analysis put forward reasonable five dimensions (see table 4).

Tab.4 Exploratory factor analysis

Observed variable	Factor load				
	1	2	3	4	5
Return rate	.892				
Recommendation rate	.827				
Natural environment	.890				
Architectural style	.824				
health condition	.542				
traffic condition	.517				
Parking condition	.634				
Accommodation equipment	.529				
Farmhouse atmosphere	.652				
Illegal situation	.724				
Food taste	.784				
Food appearance	.774				
Traditional features	.503				
Customer attitude	.761				
Staff cleanliness	.814				
Activities	.768				
Fun degree	.766				
Souvenirs and specialties	.864				
loyalty	.817				
Complaining effect	.871				

Extraction method: principal component analysis.
a. 5 ingredients extracted.

Note: No output is less than 0.5.

In order to test the Reliability between latent variables and measure the interpretation degree of observation variables to latent variables, the Composite Reliability (CR) and Average Variance Extracted (AVE) of the questionnaire were obtained [14]. The CR between latent variables was between 0.82 and 0.86, both greater than 0.60, indicating the intrinsic quality ideal of the model. As for mean variance extraction (AVE), except for the latent variable of "customer facility perception", which is slightly lower than 0.50, the other latent variables are all above 0.50, indicating that observation variables have a good interpretation of latent variables and the relative measurement error of the model is small (see table 5).

Tab.5 The results of normarity examination

Latent variable	Observed variable	Normalized factor load(λ)	Error variation(θ)	Combined reliability (CR)	Average variance estimate (AVE)
Customer feedback	Return rate	0.89	0.21	0.84	0.72
	Recommendation rate	0.81	0.34		
To sum up, after adjusting the observation variables through factor analysis, the farmhouse customer satisfaction model (RTCS) contains a total of 20 observation variables and 5 potential variables, and the correlation is shown in Table 6.

3.3. Model test

The maximum likelihood estimation (ML) method was used to estimate the parameters of the RTCS model, and the parameter estimation results of the model and the normalized path coefficient were obtained (see Table 6).

Tab.6 The path diagram of RTCS’s standardized parameter estimation

Path factor	Parameter estimation results	Observed variable	Latent variable	Latent variable	Observed variable	Path factor	Parameter estimation results
0.9	0.8	Return rate(X1)	Customer feedback perception(ξ)	Customer facility awareness(δ1)	Natural environment(y1)	0.86	0.74
					Architectural style(y2)	0.75	0.57
					health condition(y3)	0.53	0.72
					traffic condition(y4)	0.58	0.66
					Parking condition(y5)	0.59	0.65
					Accommodation equipment(y6)	0.52	0.73
					Farmhouse atmosphere(y7)	0.57	0.68
					Illegal situation(y8)	0.76	0.42
					Food taste(y9)	0.83	0.31
					Food appearance(y10)	0.78	0.39
					Traditional features(y11)	0.51	0.74
					Customer attitude(y12)	0.69	0.52
					Staff cleanliness(y13)	0.87	0.24
					Activities(y14)	0.72	0.48
					Fun degree(y15)	0.73	0.47
					Souvenirs and specialties(y16)	0.86	0.26
					loyalty(y17)	0.80	0.36
					Complaining effect(y18)	0.86	0.26
						0.82	0.60
						0.82	0.69
Food taste(y_9) 0.83 0.69
Food appearance(y_{10}) 0.78 0.61
Traditional features(y_{11}) 0.73 0.11
Customer attitude(y_{12}) 0.69 0.48
Staff cleanliness(y_{13}) 0.87 0.75
Activities(y_{14}) 0.72 0.52
Fun degree(y_{15}) 0.73 0.53
Souvenirs and specialties(y_{16}) 0.86 0.75
Loyalty(y_{17}) 0.64 0.64
Complaining effect(y_{18}) 0.75 0.75

Note: Chi-Square=165.982, df=146 (P=0.000), IFI=0.987, TLI=0.982, CFI=0.986, RMSEA=0.037

The significance test of the normalized path coefficient was performed by T test. As can be seen from the results: T values were all greater than 1.96, and the causal relationship between potential variables reached a significant level of 0.05. P value is significant, if P<0.001, it will be indicated by the symbol "***", if p value >0.001, directly present the size of P value. Therefore, is aware of facilities to customer perception, customer feedback to customer service awareness, awareness of customer feedback customer value perception, perception of customer satisfaction, customer perception of customer service awareness, customer perception service facilities for customer satisfaction, customer service awareness for customer value perception, perception of customer satisfaction, customer service in 0.05 under the confidence level has a positive influence; customer facility perception has a negative impact on customer value perception and customer value perception on customer satisfaction (see table 5). Secondly, the analysis of the overall fitting degree of the model shows that the incremental fitting index IFI is 0.987, the alcohol fitting index TLI is 0.982, and the comparison fitting index CFI is 0.986. Both of which are between 0 and 1 and close to 1. The approximate error index RMSEA is 0.037 and 0.1 below, indicating that the fitting effect is good. In conclusion, the overall fitting effect of this model is good (see table 7).

Tab. 7 The standard regression path coefficients in SEM

Causality between latent variables	Parameter estimates	T value	P	
Customer feedback perception(ξ)\rightarrowCustomer facility awareness(η_1)	γ_1	1.11	6.521	***
Customer feedback perception(ξ)\rightarrowCustomer service perception(η_2)	γ_2	0.90	5.820	***
Customer feedback perception(ξ)\rightarrowCustomer value perception(η_3)	γ_3	0.88	5.492	***
Customer feedback perception(ξ)\rightarrowCustomer satisfaction(η_4)	γ_4	0.97	6.083	***
Customer facility awareness(η_1)\rightarrowCustomer service perception(η_2)	β_{21}	0.93	5.830	***
Customer facility awareness(η_1)\rightarrowCustomer value perception(η_3)	β_{31}	-1.00	5.239	***
Customer facility awareness(η_1)\rightarrowCustomer satisfaction(η_4)	β_{41}	1.00	6.069	***
Customer service perception(η_2)\rightarrowCustomer value perception(η_3)	β_{32}	-0.94	5.331	***
Customer service perception(η_2)\rightarrowCustomer satisfaction(η_4)	β_{42}	0.94	5.839	***
3.4. Model modification
In the previous RTCS model, although the standard regression path coefficient and fitness are both better, and the overall fitting effect of the model is also good, the original RTCS model needs to be modified in order to obtain the ideal model. The modification of the model is mainly based on the t value and the MI value of the correction index, by analyzing the change of correlation fitting index is to decide whether it is desirable or not.

Generally, model modification is implemented in two ways. First, add path to improve the fitting degree of the model. When the path is added again, the path with the maximum MI value is preferred. Through analysis, it is found that the correction index MI between the five potential variables in the original model does not appear to be greater than 4 (when the MI value>4, the model correction is meaningful), indicating that adding path to improve the fitting degree of the model is not feasible for the original model, so adding path is not supported. Second is by deleting or restricting certain paths. After deleting the path, if the chi-square value of the original model increases significantly, the fitting index changes significantly, indicating that deleting the path cannot optimize the model. To delete the path, find the path with the minimum t value of the original model. Through analysis, it was found that the t values of the original model were all greater than 1.96, and the causal relationship between potential variables reached a significant level of 0.05, so there was no need to delete or limit some paths. Therefore, it indicates that the original model is superior.

3.5. Result analysis
Through sorting out the path coefficient and total effect between the external load and t value of each observation variable in the modified model and the latent variable, the measurement results of the farmhouse customer satisfaction (RTCS) model were obtained (see table 9).

Customer value perception(η3)→Customer satisfaction(η4)	β43	5.485	***			
χ²	df	χ²/df	IFI	TLI	CFI	RMSEA
165.982	146	1.137	0.987	0.982	0.986	0.037

Tab.8 In analysis of the model

Tab.9 The estimation of structural equation model of organic customer satisfaction

External load of each observed variable Causal relationship between observed variables and latent variables	Outer Loading (t-value)	Path coefficients and total effects between latent variables Causality between latent variables Outer Loading (t-value)	Total Effect (t-value)	
Customer perception→x₁ feedback	0.90 (13.26)	Customer perception→Customer facility awareness feedback	0.53 (6.52)	0.53 (6.52)
Customer perception→x₂ feedback	0.81 (11.76)	Customer perception→Customer service perception feedback	0.49 (5.82)	0.46 (5.12)
Customer awareness→y₁ facility	0.86 (7.68)	Customer perception→Customer value perception feedback	0.51 (5.49)	0.51 (5.49)
Customer awareness→y₂ facility	0.75 (9.97)	Customer perception→Customer satisfaction feedback	0.48 (6.08)	0.52 (4.73)
Customer awareness→y₃ facility	0.60 (5.38)	Customer awareness→Customer service perception feedback	0.42 (5.83)	0.42 (5.83)
Customer awareness→y₄ facility	0.51 (3.42)	Customer awareness→Customer value perception feedback	-0.31 (5.24)	-0.31 (5.24)
Customer facility awareness → \(y_5 \) 0.59 (7.03) Customer satisfaction ~ value \(0.38 (6.07) \) 0.41 \((8.46) \)
Customer facility awareness → \(y_6 \) 0.62 (5.16) Customer service perception → value \(0.29 (5.33) \) 0.29 \((5.33) \)
Customer facility awareness → \(y_7 \) 0.57 (7.53) Customer service perception → Customer satisfaction 0.34 (5.84) 0.35 (6.21)
Customer facility awareness → \(y_8 \) 0.76 (10.18) Customer service perception → Customer satisfaction \(-0.26 (5.49) \) \(-0.26 (5.49) \)
Customer service perception → \(y_9 \) 0.83 (10.57) Customer service perception → \(y_{10} \) 0.78 (9.48)
Customer service perception → \(y_{11} \) 0.73 (3.27) Customer service perception → \(y_{12} \) 0.69 (7.98)
Customer service perception → \(y_{13} \) 0.87 (8.42) Customer service perception → \(y_{14} \) 0.72 (9.84)
Customer service perception → \(y_{15} \) 0.73 (7.29) Customer service perception → \(y_{16} \) 0.86 (8.69)
Customer satisfaction → \(y_{17} \) 0.80 (10.35) Customer satisfaction → \(y_{18} \) 0.87 (12.43)

Specific analysis the RTCS model test results are as follows: (1) customer feedback perception and customer facilities, customer service awareness and perception of customer value, customer satisfaction perception path coefficient were 0.53, 0.49, 0.51, 0.48, and all through the T test, show that on the basis of organic national standard evaluation to establish customer feedback perceive the latent variable is reasonable; (2) the observed variables "loyalty \((y_{17}) \)" and "complaining effect \((y_{18}) \)" in the latent variable of customer satisfaction have large external load coefficients, which have a significant effect on the latent variable of customer satisfaction, indicating that it is reasonable and feasible to set the two observation variables of loyalty and complaining effect under the customer satisfaction of farmhouse.

In organic many influence factors of customer satisfaction, customer feedback perception of organic most affect customer satisfaction (direct effect is 0.48, the total effect of 0.52), and two observed variables \((x_1 - x_2) \), "turns head \((x_1) \)", "recommended rate \((x_2) \)" factor loading is above 0.8, are more significant effect on customer feedback perception, showed that lead and recommend rate had a great influence on measures of customer satisfaction. Organic customer facilities perception of customer satisfaction directly effect is 0.38, the total effect is 0.41, among them "the natural environment \((y_1) \)" "architecture \((y_2) \)" and "illegal status \((y_3) \)" facilities to customers perceive the role
of the more prominent, external load coefficients is greater than 0.7, shows that these three factors have bigger influence on the organic customer satisfaction. In the influence of customer service perception on customer satisfaction (direct effect: 0.34, total effect: 0.35), "food taste (y9)", "employee cleanliness (y13)" had a more significant effect on customer service perception, and the external load coefficient was both greater than 0.8, indicating that these two factors had a greater impact on customer satisfaction.

4. Countermeasures and Suggestions

(1) Highly value the return rate of farmhouse. For Lanzhou city, where farmhouse develops more and more rapidly, customer return rate has become the most important customer satisfaction factor in the development of farmhouse. The customer return rate is a direct reflection of the good and bad business situation of farmhouse. The higher the return rate is, the more popular farmhouse is with the people, and the more power it has to develop. Measures that can be taken to improve the return rate: first, comprehensively improve the facilities and service level of farmhouse, run projects that meet the taste of the public, and get close to the consumer psychology; second is to establish and improve the customer feedback recovery mechanism, and organize relevant professionals to conduct analysis and research, so as to obtain a reliable return rate and related changes, and formulate scientific and reasonable measures to improve the return rate.

(2) We will increase the construction of public facilities and services for farmers' homes. Given "traffic", "accommodation space", "illegal", "food appearance", "attitude toward the customer" and "cleanliness" employees are the main factors influencing the generated by customer satisfaction, increase the investment in road traffic and accommodation area, build a four-way and eight way road network, reasonably expand the accommodation space of customers, so as to increase the occupancy of customers; add strengthen the service construction of safety protection, rescue and emergency response mechanism of farmhouse to increase the safety of customers in farmhouse entertainment; focus on health safety, quality standardization, service humanization. Strictly require the employees, realize the periodization of employee training, in order to improve the personal quality of employees.

Fund Project
Social science planning project of Gansu Province: Study on the effect of land improvement and poverty reduction and path design of "two prefectures and two cities" in Gansu Province (19yb125); Scientific Research Projects of Higher Learning Institutions in Gansu Province (2017A-034).

References
[1] Guo Xiuying, Jiang Miao. Study on the Evaluation Index System of Satisfaction of Rural-type Farmhouse Tourists [J]. Journal of Southwest Petroleum University (Social Science Edition), 2010, 3 (2): 68-71.
[2] Jiang Ying, Yan Likun, Yang Weikang. Construction of Evaluation Index System of Farmhouses [J]. Modern Agricultural Science and Technology, 2013, (12): 271-274.
[3] Xu Lijun. Survey on the Satisfaction of Tourists in "Farm House" in Yinchuan and Research on Sustainable Development [J]. Journal of Nanjing University of Aeronautics and Astronautics (Social Science Edition), 2012, 15 (4): 17-20.
[4] Zhou Pei, Zhou Ying. Construction of a customer satisfaction index system for farmhouse based on AHP [J]. Industry Review, 2013, (9): 14-16.
[5] Xu Lijun. Survey on the Satisfaction of Tourists in "Farm House" and Sustainable Development in Yinchuan City [J]. Journal of Nanjing University of Aeronautics and Astronautics (Social Science Edition, 2012, 15 (4): 17-20.
[6] Guo Linna. Discussion on the Current Situation and Management of Anning Farmhouse Tourism in Lanzhou [J]. Gansu Science and Technology, 2013, 29 (10): 84-85.
[7] Tang Xiaofen. Customer Satisfaction Evaluation [M]. Shanghai: Shanghai Science and Technology Press, 2001.
[8] Huang Yanling, Huang Zhenfang, Yuan Linwang. Research on the Model of Hotel Customer Satisfaction Evaluation Based on SEM [J]. Tourism Tribune, 2006, 23 (11): 54-60.

[9] Wang Xia, Gu Chaolin, Mei Hu. Customer Satisfaction Index Model for Tourist Attractions [J]. Acta Geographica Sinica, 2005, 60 (5): 807-816.

[10] Wang Qun, Ding Zurong, Zhang Jinhe, et al. Evaluation Model of Tourist Environment Tourist Satisfaction Index: A Case Study of Huangshan Scenic Area [J]. Geographical Research, 2006, 25 (1): 171-181.

[11] Lu Yueping. An Empirical Study on Customer Satisfaction of Farmhouses——A Case Study of Xiaying Town, Tianjin [J]. Anhui Agricultural Sciences, 2012, 40 (20): 10658-10660, 10700.

[12] He Xiaorong, Meng Chuanjin, Luo Wenbin. Construction and Empirical Study of the Measurement Model of Tourist Satisfaction in World Heritage Sites [J]. Economic Geography, 2013, 33 (11): 169-174.

[13] Wu Minglong. Operation and Application of Structural Equation Model-AMOS [M]. Chongqing: Chongqing University Press, 2009.

[14] Rong Taisheng. AMOS and research methods. Chongqing: Chongqing University Press, 2009.