NHC-Catalyzed Annulations of Aza-\(\alpha\)-Quinone Methides and Carboxylic Acids

Significance: The group of Scheidt reports an enantioselective annulation of aza-\(\alpha\)-quinone methides and NHC enols A. Both active species are generated in situ under the conditions employed, and the reaction was found to give high stereoselection with a variety of substrates. Importantly, intermediate A was generated from carboxylic acids as starting materials, which were activated by intermediate conversion into the acyl imidazoles. The authors propose a stereochemical model based on the preferred conformation (A rather than B) of the intermediate preceding the stereodetermining step.

Comment: By merging the in situ activation of carboxylic acids with NHC catalysis, the authors introduce an alternative to the utilization of enals as substrates for analogous reactions. Importantly, with carboxylic acids as substrates, the dimerization typically observed with enals is circumvented, thus enabling a cleaner reaction profile. Additional advantages of carboxylic acids as substrates are their availability and higher stability compared to alternative substrates. Therefore, the strategy presented by Scheidt and co-workers may also prove valuable for other methods relying on NHC-enolate reactivity.

SYNFACTS Contributors: Benjamin List, Manuel van Gemmeren

Synfacts 2014, 10(10), 1086 Published online: 17.09.2014
DOI: 10.1055/s-0034-1379090; Reg-No. B08314SF