Specific oligonucleotide primers for detection of endoglucanase positive \textit{Bacillus subtilis} by PCR

S. Ashe \cdot U. J. Maji \cdot R. Sen \cdot S. Mohanty \cdot N. K. Maiti

Abstract A polymerase chain reaction (PCR) assay was developed for discrimination of \textit{Bacillus subtilis} from other members of \textit{B. subtilis} group as well as rapid identification from environmental samples. Primers ENIF and EN1R from endoglucanase gene were used to amplify a 1311 bp DNA fragment. The specificity of the primers was tested with seven reference strains and 28 locally isolated strains of endoglucanase positive \textit{Bacillus} species. The PCR product was only produced from \textit{B. subtilis}. The results demonstrated high specificity of two oligonucleotides for \textit{B. subtilis}. This species-specific PCR method provides a quick, simple, powerful and reliable alternative to conventional methods in the detection and identification of \textit{B. subtilis}. To our knowledge this is the first report of a \textit{B. subtilis} specific primer set.

Keywords Endoglucanase gene \cdot PCR \cdot Specific primers \cdot \textit{B. subtilis}

Introduction

Genus \textit{Bacillus} is a Gram-positive, spore-forming, fermentative, aerobic and rodshaped bacteria. Several species of this group are non-pathogenic, simple to cultivate and secrete enzymes such as proteases, amylases and cellulases that are useful for a number of industrial applications (Arbige et al. 1993). The \textit{Bacillus subtilis} group contains the closely related taxa \textit{Bacillus subtilis} subsp. \textit{subtilis} (Smith et al. 1964; Nakamura et al. 1999), \textit{Bacillus licheniformis} (Skerman et al. 1980), \textit{Bacillus amyloliquefaciens} (Priest et al. 1987), \textit{Bacillus atrophaeus} (Nakamura 1989), \textit{Bacillus mojavensis} (Roberts et al. 1994), \textit{Bacillus vallismortis} (Roberts et al. 1996), \textit{Bacillus subtilis} subsp. \textit{spizizenii} (Nakamura et al. 1999). Classical identification methods based on biochemical tests or fatty acid methyl ester profiling were laborious and hence not applicable for the purpose of a rapid screening. These taxa can be differentiated from one another by fatty acid composition analysis, restriction digest analysis and DNA–DNA hybridization analysis, but are quite difficult to differentiate by phenotypic characteristics (Roberts et al. 1994; Nakamura et al. 1999). The use of the 16S rRNA sequence as a target for genetic detection was therefore considered. Numerous \textit{Bacillus} species described so far have been found to display rather conserved 16S rRNA sequences compared to other genera. Thus the use of this taxonomic marker is sometimes inadequate for species definition according to generally accepted criteria (Stackebrandt and Goebel 1994). Such unusual similarities exist for members of the ‘\textit{Bacillus} 16S rRNA group I’, including \textit{B. subtilis}, which displays 99.3 % similarity at the 16S rRNA level to \textit{B. atrophaeus} and 98.3 % to \textit{B. licheniformis} and \textit{B. amyloliquefaciens} (Ash et al. 1991). In the present study, it has been shown that specific primers for detection of endoglucanase gene could be used for identification of \textit{B. subtilis}.

Materials and methods

Bacterial strains and culture conditions

A total 35 \textit{Bacillus} strains were used in this study (Table 1). Of 12 \textit{B. subtilis}, ten strains were isolates from pond sediments. For \textit{Bacillus cereus}, one ATCC strain and nine pond
sediment isolates were tested. Five pond isolates that had
been classified as Bacillus pumilus and two as B. amyloliq-
uefaciens were also included in the test. For Bacillus mega-
terium, B. licheniformis and Bacillus thuringiensis, ATCC
strains were analysed. All the pond sediment isolates were
identified by 16S rDNA sequencing and available in our
laboratory.

Soil samples

24 Soil samples collected from agriculture field and fish
culture ponds were also included.

Primers

The endoglucanase gene sequences (EC, 3.2.1.4) of B. subtilis were retrieved from GenBank nucleotide data-
base and were aligned using Clustal W (1.82) Multiple
Alignment Program. Two sets of primers EN1F (103–124 bp) 5’-CCAGTACCAAGATTGCCAGC-3’,
EN1R (1,413–1,393 bp) 5’-GGAATAATCGCCGCCTTGA
TGC-3’) were designed by analyzing the conserved regions
of the aligned sequences.

DNA isolation

The total genomic DNA was extracted from bacterial sus-
pen sion (after 12 h incubation in LB) using DNA extraction
kit (Merck Bioscience, India) following the manufacture’s
instruction. Soil genomic DNA was extracted by using ultra
clean soil DNA isolation kits (MoBio, USA).

Polymerase chain reaction

The PCR reaction mixtures (50 μl) contained, dNTPs each
100 μmol; 1X PCR buffer (10 mM Tris Cl, 50 mM KCl,
1.5 mM MgCl₂ and 0.01 % gelatin); each primer 10 pmol;
Taq DNA polymerase (NEB) 0.75U and bacterial DNA
100 ng. The touch down PCR in a volume of 50 μl was
carried out with initial denaturation of 94 °C for 5 min
followed by ten cycles of touch down program (94 °C for
30 s, 70 °C for 20 s and 74 °C for 45 s, followed by a 1 °C
decrease of the annealing temperature every cycle). After
completion of the touch down program, 25 cycles were
subsequently performed (94 °C for 30 s, 60 °C for 20 s and
74 °C for 45 s) and ending with a 10 min extension at
74 °C. PCR reactions were run on a 1.5 % agarose gel in
1X TBE.

Cloning and sequencing

Band was excised from the gel and PCR product was
purified by using the QIAgel gel purification kit
according to the manufacturer’s instructions (QIAGEN, Germany). The purified PCR product was cloned in
pGEM®-T Easy vector following manufacturer’s protocol
(promega) and transformed into DH5α cells. Sequencing of
the positive clones were done by Sanger method using 96
capillary high through put sequencer; ABI 3,730 XL
(Xcelris, India) with T7 and SP6 universal primer.

Results and discussion

BlastN search of endoglucanase gene of B. subtilis (acces-
sion numbers HM470252.1, AF355629.1 and CP002906.1)
revealed 93 % similarity with B. amyloliquefaciens, B.
megaterium, B. pumilus and B. licheniformis 90 % with
B. subtilis subsp. spizizenii and 98–99 % with Geobacillus
stearothermophilus and Paenibacillus campinasensis.
Based on multiple alignments of endo-β-1,4-glucanase
genes, a specific consensus motif was identified in the

Table 1 Bacterial strains used
Species
Bacillus subtilis
Bacillus cereus
Bacillus pumilus
Bacillus megaterium
Bacillus thuringiensis
Bacillus licheniformis
Bacillus amyloliquefaciens
endoglucanase gene of *B. subtilis*, *G. stearothermophilus* and *P. campinasensis*. Two PCR primers, EN1F and EN1R, were chosen that were predicted to specifically amplify a 1,311 bpDNA fragment of the *B. Subtilis*, *G. stearothermophilus* and *P. campinasensis*. The Genbank database (NCBI) search for complimentary sequences revealed 100 % homology between the primers and the gene encodes endo-β-1,4-glucanase of *B. subtilis* as well as *G. stearothermophilus* and *P. campinasensis*. No homologous sequences were found for other members of genus *Bacillus* indicating an excellent specificity of the primers for *B. subtilis*.

As expected, the test turned out to be positive only for *B. subtilis* among the different species of Genus *Bacillus* PCR amplification with genomic DNA isolated from in vitro cultured *B. subtilis* resulted in a reproducible amplification of 1,311 bp product with primer combinations EN1F/EN1R. To determine the sensitivity of PCR, endpoint titration with serial dilutions of genomic DNA isolated from the standard strain of *B. subtilis* was carried out and positive results obtained as little as 500 fg of DNA (Fig. 1).

To assess the range of specificity of the PCR test, a number of endoglucanase positive *Bacillus* species were assayed. Given the considerable number of species established to date under *B. subtilis* group, our choice to assess the range of specificity was restricted to *B. subtilis* subsp. *subtilis* that was representative of the *B. subtilis* group.

To test the specificity of the amplified products, control experiments were performed under the same conditions with DNA from different members of *B. subtilis* group as well as *B. cereus* group. The test found to be positive only for *B. Subtilis* (Fig. 2). It is noteworthy that the species detected as positive with this test are very close from a taxonomic point of view when phylogenetic tree was constructed on the basis of endoglucanase gene sequences of different species of Genus *Bacillus* (Fig. 3). Attempt to detect *B. subtilis* directly from soil samples collected from agriculture field and fish culture ponds were successful, out of 24 soil samples collected from fish pond and agricultural field ten samples were positive for amplification. Cloning and sequencing confirmed the amplicon to be endoglucanase gene of *B. subtilis*. However, after enrichment of negative soil samples on TSB 20 % increased positivity rate was obtained by PCR, demonstrating that the initial
concentration of *B. subtilis* was at a proportion below the detection limit. The primers not only differentiated *B. subtilis* from other species but also differentiated at subspecies level as expected product size could not be predicted from *B. subtilis* subsp. *spizizenii* by primer blast (NCBI).

In this report, a PCR method has been established for identification of *B. subtilis*. Endo-β-1,4-glucanase gene has been chosen to design primers that could be useful for identification and direct detection of *B. subtilis* from environmental samples. Detection of *B. subtilis* has been shown to be specific, although the primers showed specificity for *G. stearothermophilus* and *P. campinasensis* in primer blast, and predicted amplicon to be 1,311 bp. However, *B. subtilis* could be differentiated from *G. stearothermophilus* and *P. campinasensis* by sequencing of the pcr product. 16S rRNA gene sequence analysis is the most commonly used method for identifying bacteria or for constructing bacterial phylogenetic relationships (Woese 1987; Vandamme et al. 1996; Joung and Cote 2002); however, its usefulness is limited because of the high percentage of sequence similarity between closely related species (Ash et al. 1991; Martínez-Murcia et al. 1992; Christensen et al. 1998). The use of protein-encoding genes as phylogenetic markers is now a common approach (Yamamoto and Harayama 1998; Ko et al. 2004; Chelo et al. 2007). Detailed investigations have demonstrated that sequences from protein-encoding genes can accurately predict genome relatedness and may replace DNA–DNA hybridization for species identification and delineation in the future (Stackebrandt et al. 2002; Zeigler 2003). Wang et al. (2007) clearly showed that in the *B. subtilis* group, within which species differentiation is very difficult, core genes such as gyrB allow differentiation on genetic basis. Compared to other genera, *Bacillus* species are having conserved 16s rRNA sequences and are difficult to identify at species level using this marker (Stackebrandt and Goebel 1994).

Conclusion

In the present study, the demonstrated specificity of the oligonucleotides used as PCR primers and results of experiments with soil samples provide the basis to develop a diagnostic assay for identification and detection *B. subtilis* form environment samples. As the primers used in this study have been found to be specific to endoglucanase gene of *G. stearothermophilus* and *P. campinasensis*, we suggest to use these primers as supplementary PCR assay to 16s rRNA sequencing for identification of *B. subtilis*.

Acknowledgments The financial help received from AMAAS nodal centre ICAR, New Delhi, India for carrying out the work is duly acknowledged.

Conflict of interest None.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Arbigé MV, Bulthuis BA, Schultz J, Crabb D (1993) Fermentation of *Bacillus*. In: Sonenshein AL, Hoch JA, Losick R (eds) *Bacillus subtilis* and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, DC, pp 871–895

Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD (1991) Comparative analysis of *Bacillus anthracis*, *Bacillus cereus*, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:343–346

Chelo IM, Ze‘-Ze’ L, Tenreiro R (2007) Congruence of evolutionary relationships inside the Leuconostoc–Oenococcus–Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 57:276–286
Christensen H, Nordentoft S, Olsen JE (1998) Phylogenetic relationships of Salmonella based on rRNA sequences. Int J Syst Bacteriol 48:605–610
Joung KB, Cote JC (2002) Evaluation of ribosomal RNA gene restriction patterns for the classification of Bacillus species and related genera. J Appl Microbiol 92:97–108
Ko KS, Kim JW, Kim JM, Kim W, Chung SI, Kim JJ, Kook YH (2004) Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infect Immun 72:5253–5261
Li-T Wang, Lee F-L, Tai C-J, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850
Martínez-Murcia AJ, Benlloch S, Collins MD (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA–DNA hybridization. Int J Syst Bacteriol 42:412–421
Nakamura LK (1989) Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39:295–300
Nakamura LK, Roberts MS, Cohan FM (1999) Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 49:1211–1215
Priest FG, Goodfellow M, Shute LA, Berkeley RCW (1987) Bacillus amyloliquefaciens sp. nov., nom. rev. Int J Syst Bacteriol 37:69–71
Roberts MS, Nakamura LK, Cohan FM (1994) Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264
Roberts MS, Nakamura LK, Cohan FM (1996) Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int J Syst Bacteriol 46:470–475
Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420
Smith NR, Gibson T, Gordon RE, Sneath PH (1964) Type cultures and proposed neotype cultures of some species in the genus Bacillus. J Gen Microbiol 34:269–272
Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCI, Nesme X, Rossello-Mora R, Swings J et al (2002) Report of the ad hoc committee for the reevaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047
Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271
Yamamoto S, Harayama S (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819
Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900