Conjugate Gradient Polak Ribiere In Improving Performance in Predicting Population Backpropagation

Medi Herman Tinambunan1*, Erna Budhiarti Nababan2, Benny Benyamin Nasution2

1Universitas Sumatera Utara, Medan - Indonesia
2Politeknik Negeri Medan, Medan - Indonesia

*medi.tinz93@gmail.com

Abstract. Perform predictive data in the form of time series required a correct method, one method is now often used is the propagation of this method is a method that is able to minimize the error value of the output of the predicted number of people, but still generate quite a lot of iteration that needs to be optimized by minimize iterations and use of time, then the use of conjugate gradient polak Ribiere are expected to minimize the use of time, the number of the epoch of the results of standard backpropagation.

1. Introducing

This time the prediction is very often done to determine the circumstances in the future, for example, a company wants to make predictions about earnings in the period of 10 years, a football coach to predict the strategies to be carried out by opponents that the team can do prevention at opponent's strategy. A good predictor that has a range of very slight difference with the data of fact, the less difference prediction data with the data facts, the better the accuracy of these predictions. This case discusses the prediction of the number of people with one method in which back propagation neural network. Backpropagation originally introduced by Rumelhart [1]. The algorithm will be improving the performance by using conjugate gradient. There are several types of Conjugate Gradient method, one of them is Polak Ribiere. In certain cases, Polak Ribiere to find a solution even though the starting point away from the point of minimum so as to converge more quickly than before. Thus in this research network training using the Conjugate Gradient Polak Ribiere on Backpropagation in the case study predicted the number of people in the province of North Sumatra. Conjugate Gradient Polak Ribiere on Backpropagation is one of the neural network methods that is widely used to predict. Moreover, there have been many studies using neural network methods [2]–[15].

Projected population is predicted the number of people based on a particular method by assuming births, deaths and migration. According to demographers, the prediction is generally used to predict the number of people for a period between census and after the census was held in a certain area, While the projection implies that the estimated number of people in the future who have not known the exact number, and the future value of an indication of the number of future residents if implemented in fertility, morality and certain immigration that may apply.

In previous studies, [16] conducted a study in predicting population density by using the binary sigmoid activation function and linear function. The forecast accuracy using a combination of these functions is 94%. The weakness of this study is that this study only uses binary sigmoid functions and linear functions without discussing the function of bipolar sigmoid at all. Therefore, by applying the method Conjugate Gradient Polak Ribiere expected to improve the accuracy of prediction of the number of people in North Sumatra province so that it can cope with a range difference prediction results with the original data is not too far away.
2. Research methods

This study uses data from the Central Bureau of Statistics of North Sumatra. The data used has a time span from 2011-2018 year, each data can be grouped based on the number of cities and districts in North Sumatra. Here is the data used;

Years	Nias	Mandailing	South Tapanuli	Central Tapanuli	...	Field	Binjai	Padangsidimpuan	Gunung Sitoli
2011	132605	408731	266282	314142	...	2117224	248456	193322	127382
2012	132860	410931	268095	318908	...	2122804	250252	198809	128337
2013	133388	413475	268824	324006	...	2123210	252263	204615	129403
2014	133388	413475	268824	324006	...	2123210	252263	204615	129403
2015	136115	430894	275098	350017	...	2210624	264687	209796	135995
2016	141403	435303	276889	356918	...	2229408	267901	212917	137693
2017	142110	439505	278587	363705	...	2247425	270926	216013	139281
2018	142840	443490	280283	370171	...	2264145	273892	218892	140927

The initial step in solving problems is to first make the selection data from the Central Statistics Agency website North Sumatra, then the data will be prepared to do the processing using standard backpropagation method and conjugate gradient backpropagation polak Ribiere. The next step the data will be normalized the data using a sigmoid function which is an asymptotic function did not reach 0 or 1 then needs to be normalized. Once the data is normalized will be made to the training network using a combination of inputs 3-5-1, 4-4-1, 5-3-1, 6-2-1, 2-6-1 this is done to get maximum results in the training process. In the case raised the authors used a combination of input 3-5-1 because it scores fewer errors and has better accuracy results. Once the data is normalized already done training the network and get the testing data that has been normalized earlier into a standard back propagation method This method is used because the method is capable of formulating knowledge and experience and is also flexible enough to change the rules of forecasts, Then, after the data is processed using backpropagation standards and get the next result of the same data is used to perform processing by using backpropagation optimized using the conjugate gradient polak Ribiere to get results in training close to the target and then do the testing, the results of the testing will be conducted comparison of the results so that it can be deduced whether by adding a conjugate gradient method to optimize the results polak Ribiere of accuracy compared with the results of standard propagation.

![Figure 1. Block Diagram of Standard Backpropagation Methods](image-url)
3. Results and Discussion

3.1. Standard Backpropagation Network
By using the standard back propagation method is carried out training of the data that has been normalized. Based on the data obtained epoch were 71 and working time 8 seconds performance results of the training of BP Standard are as follows:

Figure 3. Training Performance Prediction Population Using Backpropagation Standard

From the results of the training showed that finding the best training patterns in the epoch that is large enough that 71 epoch and his best training performance MSE value is 0.0097133.
Figure 4. Comparison Chart View with Results Output Target Population Prediction Using Backpropagation Standard

From the results above shows that the output data of the neural network copies are still too far from the target so it needs to be maximized.

3.2. Network Conjugate Gradient Polak Ribiere

After training using standard backpropagation then done using conjugate gradient Backporgagation polak Ribiere with the data is normalized and the selection of training data and the data on the same target the MSE value obtained by 0.000054846 convergence in the epoch to 4. Here is a figure of the results of MSE:

Figure 5. Backpropagation Training Performance Display CGPR in Predicting Population

From the picture above we can say that by using conjugate gradient obtained polak Ribiere 4 epoch and the time required in the process is only 1 second.

Figure 6. Graph View CGPR Backpropagation Training in Predicting Population
Based on the chart above shows that the output data of the neural network is almost close to the target or it could be said to have a range that is not too far from the targeted data.

3.3. Testing

Target Data	Backpropagation Standard	Backpropagation CGPR
142 840	54 456	159 850
443 490	638 993	424 178
280 283	219 546	282 032
370 171	434 043	365 694
299 881	265173	299 627
182 673	13836	192 457
486 480	748 004	466 623
724 379	1319830	712 493
863 693	1540520	871 622
283 203	227 003	284 133
409 675	540 044	398 739
2155625	1647215	2111081
1035411	1705567	1048274
317 207	306 064	315 687
188 480	24560	199 074
48 119	222 524	52200
125 816	91 062	135 589
614 618	1093532	586 406
412 992	554 952	397 810
267 771	187 035	276 141
275 515	203 005	283 790
332 922	339 282	333 952
360 926	416 519	352 757
137 002	70 876	147 754
81 663	173 402	81 866
87 317	157 315	94 837
173 302	4942	184 695
253 500	158 710	258 967
162 581	24 626	174 240
2264145	1608996	2136018
273 892	203 247	278 524
218 892	84 525	229 321
140 927	64 278	152 256
MSE	0.0097133	0.000054846

4. Conclusion
After testing the results of research that discussed the problems of the conclusions obtained are as follows;
 a. Backpropagation and conjugate gradient method polak Ribiere can be used to perform the prediction process.
 b. Standard backpropagation method has poor accuracy in predicting the data changes.
 c. The combination of the conjugate gradient backpropagation method polak Ribiere and using sigmoid activation function and Biner can improve performance in this case the time series data prediction accuracy significantly nearing the target data to the MSE value of 0.000054846.

References
[1] N. P. Sakinah, I. Cholissodin, and A. W. Widodo, "Prediksi Jumlah Permintaan Koran
[2] E. Siregar, H. Mawengkang, E. B. Nababan, and A. Wanto, “Analysis of Backpropagation Method with Sigmoid Bipolar and Linear Function in Prediction of Population Growth,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[3] G. W. Bhawika *et al.*, “Implementation of ANN for Predicting the Percentage of Illiteracy in Indonesia by Age Group,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[4] W. Saputra, J. T. Hardinata, and A. Wanto, “Resilient method in determining the best architectural model for predicting open unemployment in Indonesia,” *IOP Conference Series: Materials Science and Engineering*, vol. 725, no. 1, pp. 1–7, 2020.

[5] A. Wanto and J. T. Hardinata, “Estimations of Indonesian poor people as poverty reduction efforts facing industrial revolution 4.0,” *IOP Conference Series: Materials Science and Engineering*, vol. 725, no. 1, pp. 1–8, 2020.

[6] A. Wanto *et al.*, “Model of Artificial Neural Networks in Predictions of Corn Productivity in an Effort to Overcome Imports in Indonesia,” *Journal of Physics: Conference Series*, vol. 1339, no. 1, pp. 1–6, 2019.

[7] A. Wanto *et al.*, “Analysis of the Accuracy Batch Training Method in Viewing Indonesian Fisheries Cultivation Company Development,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[8] I. S. Purba *et al.*, “Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[9] P. Parulian *et al.*, “Analysis of Sequential Order Incremental Methods in Predicting the Number of Victims Affected by Disasters,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[10] A. Wanto *et al.*, “Analysis of the Backpropagation Algorithm in Viewing Import Value Development Levels Based on Main Country of Origin,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[11] S. Setti, A. Wanto, M. Syafiq, A. Andriano, and B. K. Sihotang, “Analysis of Backpropagation Algorithms in Predicting World Internet Users,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[12] T. Afriliansyah *et al.*, “Implementation of Bayesian Regulation Algorithm for Estimation of Production Index Level Micro and Small Industry,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[13] A. Wanto *et al.*, “Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[14] M. K. Z. Sormin, P. Sihombing, A. Amalia, A. Wanto, D. Hartama, and D. M. Chan, “Predictions of World Population Life Expectancy Using Cyclical Order Weight / Bias,” *Journal of Physics: Conference Series*, vol. 1255, no. 1, pp. 1–6, 2019.

[15] N. Nasution, A. Zamsuri, L. Linsawita, and A. Wanto, “Polak-Ribiere updates analysis with binary and linear function in determining coffee exports in Indonesia,” *IOP Conference Series: Materials Science and Engineering*, vol. 420, no. 012089, pp. 1–9, 2018.

[16] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” *International Journal Of Information System & Technology*, vol. 1, no. 1, pp. 43–54, 2017.