The Messaging Kettle: It’s IoTea Time.

Alessandro Soro, Margot Brereton, Paul Roe
Electrical Engineering and Computer Science, Queensland University of Technology
2 George St, Brisbane, QLD 4000, Australia
[alessandro.soro, m.brereton, p.roe]@qut.edu.au

ABSTRACT
We demonstrate a working prototype of a Messaging Kettle designed to facilitate asynchronous communication and enable a sense of presence between adult children and their older parents living abroad. Our goal is to offer a human centred critique of the Internet of Things, which has largely been conceived without consideration of the people who will use the things, and rather has traditionally moved from a technology oriented perspective. In the case of smart homes this approach has produced a wide array of projects focused on monitoring the habits of the elderly, recognizing anomalies and alerting the caregivers. In contrast we propose to focus on engagement and reciprocity, building on the rituals associated to habitually used and cherished objects. We conclude revisiting the technology oriented framework for the Internet of Things to include our observations on people’s perspective on smart communicating objects.

Author Keywords
ACM Classification Keywords
H.5.m. Information interfaces and presentation

INTRODUCTION
The vision for the Internet of Things has moved over time from a supply chain management perspective [1] to one aimed at combining the power of smart objects, ubiquitous connectivity and semantic interoperability [2]. At the same time, fuelled by the increasing availability of miniaturized computing and cheap sensing devices, a multitude of research initiatives has envisioned, prototyped and investigated in depth a wide range of tools and architectures.

In the smart home, especially when aiming at elderly users, these have often taken the form of intelligent surveillance systems, aimed at monitoring, making sense and (mostly automatically) acting upon the behaviors of the occupants. However, despite the claimed direct and indirect benefits that would result from a fast and widespread adoption, older people often actively resist such technologies, suggesting problems in their conception and or design [5, 6].

Our work is aimed at designing technologies that engage older people by building on their individual affective attachment to habituated objects [3, 8] and leveraging, from a participatory design perspective, the associated rituals and the meaning that such objects have in day by day life.

We explored such research space by means of a Messaging Kettle [4] consisting of two augmented kettles that can connect and exchange information over the Internet. When one kettle boils, its remote partner kettle glows and vice versa. Each party can see when the other's kettle is boiling or has recently boiled. Voice or written messages can also be sent through the kettle, with the idea that it is simple to send a message each time one boils the kettle. This is done with a simple push of a button and does not involve any kind of complex configuration.

Figure 1 Kettle Mate and Tea Box. When the connected remote kettle (in another house) is switched on, the kettle mate displays a dynamic orange/red show of lights as shown.

SYSTEM ARCHITECTURE
To implement the Messaging Kettle (Figure 1) we designed two devices that complement a common kettle (not shown in the figure), endowing it with sensing and voice/scribble messaging capabilities.

The Kettle Mate (Figure 1, right) hosts an Arduino microcontroller, a contact-less infra-red temperature sensor to recognize the state of use of the local kettle (for example when it is switched on, boiling, or cooling down) and the corresponding visualization of the remote kettle’s state of use by means of an orange/red glowing animation.
It is shaped itself as a kettle and is meant to sit close to the actual kettle or teapot and augment its functionalities without interfering with its original and primary uses, thus allowing people to use their own kettle. It also houses a microphone and speaker to provide voice messaging controlled by a minimalistic (two pushbuttons) user interface for recording/replaying.

A second device, the smart Tea Box (Figure 1, left), consists of an Android tablet embedded in a hardwood tea chest, and has scribbling and message archive abilities. The two devices communicate via Bluetooth, and an embedded GSM (phone) chip is used to provide internet connectivity, so that no home network is needed. The Tea Box allows the user to draw small notes using a stylus and scroll through previous messages. On the top edge of the screen, a simple interface allows changing ink color, erasing errors, posting a message and browsing received messages.

The Messaging Kettle is coupled to an identical companion device, possibly located several time zones away. The two provide a “red telephone” connection between the two locations, restoring (although on a virtual level) the intimacy associated to the ritual of boiling the kettle and serving tea.

A CRITICAL VIEW ON THE INTERNET OF THINGS
An initial evaluation consisting of ‘morning teas’ and in-home demonstrations was conducted and results have been recently presented [4]. Besides the usability challenges and the numerous issues that emerge from the special setting and intended users, designing and evaluating the Messaging Kettle reshaped our understanding of the role that people have (or should have) in the conceptualization of the Internet of Things.

A useful and widely adopted technical framework by Atzori et al. [2] places the Internet of Things at the intersection of Things, Internet and Semantic oriented visions. As Koreshoff et al. [7] have observed, such model can be fruitfully extended to include HCI oriented efforts. This resulted in including in the model such topics central to HCI research as involving people in the sensemaking of things/data, smart interoperability of things, and design implications resulting from devices’ and networks’ capabilities.

We propose to further extend the model, in order to fully include people (i.e. aims, goals, values, skills, emotions) in the Internet of Things picture, as we summarize in Figure 2. We argue that such modified version provides a more complete account of the current research issues and design opportunities of smart communicating objects.

By demonstrating the Messaging Kettle at the conference we aim at leveraging insights from the other delegates and exchange views on this subject with researchers coming from different backgrounds and disciplines.

REFERENCES

[1] Ashton, K. 2009. That “internet of things” thing. RFID Journal. 22, 7 (2009), 97–114.
[2] Atzori, L., Iera, A. and Morabito, G. 2010. The internet of things: A survey. Computer networks. (2010).
[3] Brereton, M. 2013. Habituated Objects: Everyday Tangibles That Foster the Independent Living of an Elderly Woman. interactions. 20, 4 (Jul. 2013), 20–24.
[4] Brereton, M., Soro, A., Vaisutis, K. and Roe, P. 2015. The Messaging Kettle: Prototyping Connection over a Distance Between Adult Children and Older Parents. Proc. of the 33rd ACM SIGCHI (New York, NY, USA, 2015), 713–716.
[5] Gaul, S. and Ziefle, M. 2009. Smart Home Technologies: Insights into Generation-Specific Acceptance Motives. HCI and Usability for e-Inclusion SE - 22. A. Holzinger and K. Miesenberger, eds. Springer Berlin Heidelberg. 312–332.
[6] Kleinberger, T., Becker, M., Ras, E., Holzinger, A. and Müller, P. 2007. Ambient Intelligence in Assisted Living: Enable Elderly People to Handle Future Interfaces. Universal Access in HCI. Ambient Interaction SE - 11. C. Stephanidis, ed. Springer Berlin Heidelberg. 103–112.
[7] Koreshoff, T.L., Leong, T.W. and Robertson, T. 2013. Approaching a Human-centred Internet of Things. Proceedings of the 25th Australian CHI Conference: Augmentation, Application, Innovation, Collaboration (New York, NY, USA, 2013), 363–366.
[8] Vaisutis, K., Brereton, M., Robertson, T., Vetere, F., Durick, J., Nansen, B. and Buys, L. 2014. Invisible Connections: Investigating Older People’s Emotions and Social Relations Around Objects. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (New York, NY, USA, 2014), 1937–1940.
