Regular Moebius transformations of the space of quaternions

Caterina Stoppato

Abstract Quaternionic Moebius transformations have been investigated for more than 100 years and their properties have been characterized in detail. In recent years G. Gentili and D. C. Struppa introduced a new notion of regular function of a quaternionic variable, which is developing into a quite rich theory. Several properties of regular quaternionic functions are analogous to those of holomorphic functions of one complex variable, although the diversity of the non-commutative setting introduces new phenomena. Unfortunately, the (classical) quaternionic Moebius transformations are not regular. However, in this paper we are able to construct a different class of Moebius-type transformations that are indeed regular. This construction requires several steps: we first find an analog to the Casorati-Weierstrass theorem and use it to prove that the group $\text{Aut}(\mathbb{H})$ of biregular functions on \mathbb{H} coincides with the group of regular affine transformations. We then show that each regular injective function from $\mathbb{H} = \mathbb{H} \cup \{\infty\}$ to itself belongs to a special class of transformations, called regular fractional transformations. Among these, we focus on the ones which map the unit ball $B = \{q \in \mathbb{H} : |q| < 1\}$ onto itself, called regular Moebius transformations. We study their basic properties and we are able to characterize them as the only regular bijections from B to itself.

Keywords Function of one quaternionic variable · Hypercomplex analysis · Quaternionic Moebius transformation · Quaternionic linear fractional transformation · Quaternionic affine transformation · Casorati-Weierstrass theorem

Partially supported by GNSAGA of the INdAM, by PRIN “Proprietà geometriche delle varietà reali e complesse” and by PRIN “Geometria Differenziale e Analisi Globale” of the MIUR.

C. Stoppato (✉)
Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134 Florence, Italy
e-mail: stoppato@math.unifi.it
1 Introduction

Denote by \mathbb{H} the real algebra of quaternions, obtained by endowing \mathbb{R}^4 with the following multiplicative operation: if $1, i, j, k$ denotes the standard basis, define

\[i^2 = j^2 = k^2 = -1, \]

\[ij = -ji = k, jk = -kj = i, ki = -ik = j, \]

let 1 be the neutral element and extend the operation by linearity and distributivity to all quaternions $q = x_0 + x_1i + x_2j + x_3k$.

Over the last century, there have been several attempts to identify a class of quaternionic functions serving as the holomorphic functions do in the complex case. The best known is due to Fueter [11–13], who considered solutions of the equation $\frac{\partial f}{\partial \bar{q}} = 0$, where

\[\frac{\partial}{\partial \bar{q}} = \frac{1}{4}\left(\frac{\partial}{\partial x_0} + i \frac{\partial}{\partial x_1} + j \frac{\partial}{\partial x_2} + k \frac{\partial}{\partial x_3} \right). \]

Fueter proved analogs of Cauchy’s theorem and Cauchy’s integral formula for this class of functions (see [27] for an excellent survey). This gave rise to a rich theory that still produces new results and has been extended to other Clifford algebras with the notion of monogenic function (see [3,4] and references therein). Despite the success of this theory, room was left for alternative notions of regularity for quaternionic functions: consider, for instance, the fact that the identity function and the powers $q \mapsto q^2, q \mapsto q^3, \ldots$ fail to comply with Fueter’s definition. An interesting class of functions containing all polynomials of the type $a_0 + qa_1 + \cdots + q^n a_n$ has been defined by Gentili and Struppa in [18,19] on the basis of a notion of regularity, inspired by Cullen’s work [10]. If $\mathcal{S} = \{ q \in \mathbb{H} : q^2 = -1 \}$ denotes the 2-sphere of quaternionic imaginary units and if, for all $I \in \mathcal{S}$, we let $L_I = \mathbb{R} + IR \simeq \mathbb{C}$, their definition can be stated as follows.

Definition 1.1 Let Ω be a domain in \mathbb{H}. A real differentiable function $f : \Omega \to \mathbb{H}$ is said to be Cullen-regular if, for all $I \in \mathcal{S}$, its restriction $f_I = f|_{\Omega_I}$ to $\Omega_I = \Omega \cap L_I$ is holomorphic, i.e. the function $\bar{\partial}_I f : \Omega_I \to \mathbb{H}$ defined by

\[\bar{\partial}_I f(x + Iy) = \frac{1}{2} \left(\frac{\partial}{\partial x} + I \frac{\partial}{\partial y} \right) f_I(x + Iy) \]

vanishes identically.

The set of Cullen-regular functions and Fueter’s class do not include each other, as shown by the aforementioned polynomial examples and by the fact that the function $x_0 + ix_1 + jx_2 + kx_3 \mapsto x_0 + ix_1$ solves Fueter’s equation, but it is not Cullen-regular. After identifying $\mathbb{H} = (\mathbb{R} + IR) + (\mathbb{R} + IR)j$ with \mathbb{C}^2, the same examples prove that Cullen-regularity does not imply nor is implied by holomorphicity in two complex variables.

The properties of Cullen-regular functions proven in [19] and in the subsequent papers [7,9,14–17,20,22,26] recall holomorphic functions of one complex variable rather than Fueter’s theory. For instance, the zero-sets of Fueter’s functions can have real dimension zero, one, two, or four while the zero-set of a Cullen-regular function consists of isolated points and isolated 2-spheres of a special type. An even more interesting fact is that Fueter’s functions are not open in general, while there is an analog of the open mapping theorem for Cullen-regular functions (these results are surveyed in Sect. 2). Let us also mention that the study of Cullen-regular functions allowed the construction of new theories of functional calculus in non commutative settings (see [5,6,8]). Finally, Cullen-regular functions also have