Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity

Sandeep Saini1,2*, Avneet Saini2, Chander Jyoti Thakur1, Varinder Kumar1, Rishabh Dilip Gupta1, Jogesh Kumar Sharma1

1) Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
2) Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India

ABSTRACT

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete genome of SARS-CoV-2 to predict pre-miRNAs. The potential pre-miRNAs were identified by ViralMir and mature miRNAs were recognized by Mature Bayes. Additionally, predicted mature miRNAs were analysed against human genome by miRDB server to retrieve target genes. Besides that we also retrieved GO (Gene Ontology) terms for pathways, functions and cellular components. We predicted 26 mature miRNAs from genome of SARS-CoV-2 that targets human genes involved in pathways like EGF receptor signaling, apoptosis signaling, VEGF signaling, FGF receptor signaling. Gene enrichment tool analysis and substantial literature evidences suggests role of genes like BMPR2 and p53 in pulmonary vasculature and antiviral innate immunity respectively. Our findings may help research community to understand virus pathogenesis.

Keywords: microRNA; coronavirus; target; COVID-19; pathways; gene silencing

INTRODUCTION

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was confirmed in 12,10956 peoples and there has been 67,594 deaths reported worldwide till now [1]. The genome sequence analysis of SARS-CoV-2 relates it to previously identified SARS-CoV (severe acute respiratory syndrome-related coronavirus, bat-SL-CoVZC45 and bat-SL-CoVZXC21) clade and hence it was classified under family Coronaviridae and genus Betacoronavirus. Furthermore, phylogenetic analysis suspected bat as the original host of the virus but possibility of intermediate host animal was also purposed [2-4].
A brief study of previously identified coronaviruses indicated six human coronaviruses (HCoVs) types: 229E, OC43, NL63, HKU1, SARS-CoV and Middle East respiratory syndrome (MERS-CoV). SARS-CoV and MERS-CoV are of zoonotic origin, and they have been outbreaks earlier during 2003 (China) and 2012 (Saudi Arabia) [5, 6]. The current disease clinical symptoms include fever, cough, dyspnoea which after chest radiography diagnosed as viral pneumonia, now named as COVID-19 (Coronavirus disease 2019) by WHO [7, 8]. The diagnostic determination of virus infection can be done by newly provided real-time RT-PCR assay [9].

MicroRNAs (miRNAs) are small (~22 nt) non-coding RNAs that play role in post-transcriptional gene regulation by binding to complementary sites on mRNA. The binding may results either in inhibition of translation or complete cleavage of mRNA depending upon complementarity of hybridization [10, 11]. The occurrence of miRNAs in plant, animal and fungi has been documented previously [12, 13]. Furthermore, the instances of viral encoded miRNAs in the host defense mechanism, cell differentiation, apoptosis and cell proliferation in different virus families and genus has been reported in literature [14].

The role of miRNAs in inducing the lung pathology, a characteristic symptom of SARS-CoV was identified previously by analyzing deep sequencing data from the lungs of SARS-CoV-MA15-infected BALB/c mice. 18-22 nucleotide long small viral RNAs were identified from genomic region of SARS-CoV, interestingly it was found that these small RNAs target the host cellular miRNAs 3'UTR specific target sequences and upon in vivo inhibition of these small viral RNAs by antisense inhibitor a significantly decrease in pulmonary inflammation was observed. [15]. Furthermore, the fact that existence of nuclear life cycle of SARS viruses exist was purposed by isolation of SARS-CoV from nucleus of Vero E6 Cells [16]. But the experimental approaches of miRNA identification was relied on expression in specific cell type and therefore based on time consuming cloning techniques. In the urgent need to understand the disease etiology, the computational based miRNAs prediction approaches can provide early evidences by genome analysis to predict miRNAs in timely manner, so that the impact of miRNAs on disease etiology can be traced during outbreaks or emergence [17, 18].

Mainly two approaches have been used for computational miRNAs prediction: ab-intio based and homology based. Homology based approach depends on evolutionary conservation, and therefore limited in locating novel miRNAs in genome. Whereas ab-intio based approach scan for hair-pin loop fold in genome to detect novel pre-miRNAs therefore is more significant [19, 20].

Till date, the RNA viruses-encoded miRNAs have been predicted in Hepatitis-A virus (HAV), Hepatitis-E virus (HEV), Dengue virus (DENV), ZIKA Virus ZIKV), Ebola virus, Japanese Encephalitis virus (JEV), Kyasanur forest disease virus (KFDV) and Nipah virus [21-28]. Therefore, in this study the genome of SARS-CoV-2 was being analysed to predict mature viral miRNAs. Moreover, predicted mature viral miRNAs were also scanned for target genes in human genome and these targets were further analysed for gene ontology.

MATERIALS AND METHODS

Genome Data Retrieval & Analysis: The complete genome sequence of SARS-CoV-2 was retrieved from NCBI genome database (https://www.ncbi.nlm.nih.gov/genome/) using accession number: MN908947. Genome is positive sense single stranded RNA molecule with linear topology. It contains 29903 nucleotide (nt) base pair.

An ab-intio based pre-miRNA prediction software package, Vmir (v2.3) was used for identification of SARS-CoV-2’s pre-miRNAs. VMIr package contains two individual modules: VMir analyzer and VMir viewer for prediction and viewing pre-miRNAs respectively [29]. The analysis was done using default parameters (window count: 500, conformation: linear, orientation: both) in VMir analyzer. Furthermore, filtering parameter (min. hairpin size: 70,
min. score: ≥150 and min. window count: ≥35) was used in VMir viewer to filter out top scorer pre-miRNAs as described previously in literature [21, 25].

Identification of Potential pre-miRNAs & mature miRNAs: Potential pre-miRNAs were identified by using ViralMir (http://csb.cse.yzu.edu.tw/viralmir/), a SVM (support vector machine) based web-server. ViralMir was specially designed for viruses with SVM model for prediction has been trained on sequence and structural features of experimentally validated pre-miRNAs data set [30]. The Mfold (http://unafold.rna.albany.edu/?q=mfold) web server was used with default parameters to predict the secondary structure (Supplementary Fig. S1.) and minimum free energy (MFE) of pre-miRNAs [31]. Mature Bayes (http://mirna.imbb.forth.gr/MatureBayes.html) web-server was used for identification of mature miRNAs from pre-miRNAs. Mature Bayes uses Naive Bayes Classifier (NBC) and takes into account sequence as well as structural information of experimental predicted miRNA precursors for deducing mature miRNAs from precursors [32].

Prediction of target genes & GO (Gene Ontology) analysis: Target prediction of mature miRNAs against human genome was done using an online web based server, miRDB (http://mirdb.org/). The custom prediction module of server was used for predicting target genes in human. The server uses seeding approach and scans viral mature miRNAs against 3’ UTR (untranslated regions) of human’s genome for possible hybridization [33]. GO analysis of the target genes was performed using PANTHER (Protein Analysis through Evolutionary Relationships) (http://www.pantherdb.org) and Enrichr (https://amp.pharm.mssm.edu/Enrichr/) to explore the role of target gene’s product in biological process, molecular function, cellular component and pathways [34, 35]. NCBI’s Gene IDs were used for this analysis to find GO terms related to gene products. The associations of screened target genes with related pathways were established by literature evidences to deduce disease etiology.

RESULTS

VMir analysis predicted a total of 1114 hair-pin like pre-miRNAs folds in SARS-CoV-2 genome that were filtered using filtering parameter as described in methodology above. After filtering done by VMir viewer only top 13 pre-miRNAs were selected for further study. Nine pre-miRNAs were found on direct strand whereas four pre-miRNAs on reverse strand. Additionally, all 13 pre-miRNAs were in length range 78-148 nt. The sequence, rank, score, length and orientation are listed in Table 1.

As ab-intio based tools have the limitation of false-positive pre-miRNAs prediction because of selection of the pseudo hair pin loops structures [36, 37] therefore to validate and find reliable candidates pre-miRNAs, all 13 predicted pre-miRNAs were further analysed by ViralmiR for identification for real or pseudo viral pre-miRNAs. All 13 pre-miRNAs were found to be real or potential pre-miRNAs folds, which were further confirmed by assessment of minimum free energy (MFE) by Mfold Table 2. Because pre-miRNAs sequence folding is one of the feature that confer stability to structural fold therefore by calculating MFE more confidence in authenticity of predicted pre-miRNAs can be done [38].

After authentication of pre-miRNAs, Mature Bayes server was used for retrieving the mature miRNAs. A total of 26 mature miRNAs were obtained from 13 precursors on 5’ and 3’ stem location as shown in Table 3. As mentioned in literature, one or both strands can serve as mature miRNA molecule depending on the assembly of RISC complex therefore we retained both for further analysis [39].
Table 1: pre-miRNAs rank, orientation, size, genomic position, score and sequence as predicted by VMir.

No	Predicted pre-miRNAs	Rank	Orientation	Size (nt)	Genomic Position	VMir Score	pre-miRNAs Sequence
1	SARS-CoV-2-MD135	1	Direct	101	11234-1133	211.4	GCUGAUUGGCGAGGUGAUUAUGGACAU AGUGUUAUGGUUUAUGACAU UAGGCAUGACUGUAG
2	SARS-CoV-2-MD241	2	Direct	110	21131-21240	204.7	AACAAAAGCUACUGCCUUGGAGGUUGCU GGCUAAAGAGACGAAGAAGAUGCUUAGG AAUGGCAUGCCCAGUAAUAGGCGAGCAU ACUGCCAGGUGCGAGGACAGCUUAG
3	SARS-CoV-2-MR243	3	Reverse	148	23563-23710	188.8	UUGGUGCUUAGGCAUAUGAGUUAUAUGAG UAAGCAUGCAUAUGUUGGACCAAGAUGUAC AAUGGAGAGAACUGGGCAUAGGCAUAGCAGCUAGGCGAGGAAAUAGGCUAGACUGAUAACAGGCGGCAU
4	SARS-CoV-2-MR304	4	Reverse	94	29532-29625	184.6	GAAGUCAUUCUGCUAGACAAAGUAGAAGCUAUAUAUGCCAAUCUGCCCACUGUGCUGAG
5	SARS-CoV-2-MR155	5	Reverse	109	14973-15081	183.9	GCACAAUGUUAAGAUUUCAGUAGGAGUAAGU AGAGGAAUGCAUAUGCAUGCCUUGGCUAGUAGG CGAAAUGGCUGAUACUAGCCUAGACUACUG
6	SARS-CoV-2-MD20	6	Direct	107	21072-2213	180.1	UAGAGAUGCGUGGCUAUAUGGGAAAGCUAAUCAAUGCUUGGUGUCUGAGCUGAGCUGAGGCUAG
7	SARS-CoV-2-MD110	7	Direct	128	9797-9924	179.1	UAGAGAUGCGUGGCUAUAUGGGAAAGCUAAUCAAUGCUUGGUGUCUGAGCUGAGCUGAGGCUAG
8	SARS-CoV-2-MD3	8	Direct	94	398-491	171.8	CAUCUAAAAGAGGACACUGUUUGGCUAG
9	SARS-CoV-2-MD85	9	Direct	78	8144-8221	170.2	GACAGAUGCUUACUAUCUAAUUCUGAC
10	SARS-CoV-2-MD308	10	Direct	119	26995-27113	169.1	GUGUGUACUGAUAUGGCCUGCUAGACUGAGA
11	SARS-CoV-2-MD29	11	Direct	80	2002-2081	159.3	CGACAAUGUUAACUCUCUAAUAAUUGAG
12	SARS-CoV-2-MD30	12	Direct	131	2981-3111	152.8	CUGUGUACUGAUAUGGCCUGCUAGACUGAGA
13	SARS-CoV-2-MR186	13	Reverse	101	18089-18189	152.7	CUGUGUACUGAUAUGGCCUGCUAGACUGAGA

Table 2: Potential pre-miRNAs as validated by ViralMir and their Minimum Free Energy (MFE) calculated by Mfold

Predicted pre-miRNA	Potential	Minimum Free Energy (MFE) (ΔG.kcal/mol)
SARS-CoV-2-MD135	Potential	36.20
SARS-CoV-2-MD241	Potential	38.10
SARS-CoV-2-MR243	Potential	44.00
SARS-CoV-2-MR304	Potential	28.30
SARS-CoV-2-MR155	Potential	28.80
SARS-CoV-2-MD20	Potential	29.30
SARS-CoV-2-MD110	Potential	26.50
SARS-CoV-2-MD3	Potential	25.50
SARS-CoV-2-MD85	Potential	28.80
SARS-CoV-2-MD30	Potential	21.30
SARS-CoV-2-MR30	Potential	40.30
SARS-CoV-2-MR186	Potential	32.50

http://mbrc.shirazu.ac.ir
Molecular functions were classified into eight categories essentially comprised of transporter (GO:0022610), biological regulation (GO:0065007) and response to stimulus (GO:0050896). System process (GO:0002376), metabolic process (GO:0008152), biological adhesion (GO:0045182), transcription regulator activity (GO:0140110) and binding (GO:0005488).

Table 4: along with literature evidence.

Mature miRNAs	Length (nt)	Location	Mature miRNAs sequence
SARS-CoV-2-MD135 3P	22	5’	AUACUAAGUUGUGAGUGUUUAAA
SARS-CoV-2-MD135 3P	22	3’	UGGUGUAUAGCAUCAGCUG
SARS-CoV-2-MD241 3P	22	5’	UUGGAGGUGUCGUGCCUAUA
SARS-CoV-2-MD241 3P	22	3’	UGACUUAUAAGGUGUGAA
SARS-CoV-2-MD243 3P	22	5’	GGCAAAUGAAGUUGACUAGC
SARS-CoV-2-MR243 3P	22	3’	UGAAAUACUCGGCAUAUACCU
SARS-CoV-2-MR304 3P	22	5’	AAGAGUAGCUAAUAUACUG
SARS-CoV-2-MR304 3P	22	3’	UUAAUAAGCCCAUCUCGGU
SARS-CoV-2-MR155 3P	22	5’	CAUUGAGUUAAGAGGGAUG
SARS-CoV-2-MR155 3P	22	3’	AAAAGUGCAUCUAGUACU
SARS-CoV-2-MD20 3P	22	5’	ACUCAAAACCCGGCUCUCG
SARS-CoV-2-MD20 3P	22	3’	UAAGGGAAGGGUGAGAGUUUCU
SARS-CoV-2-MD110 3P	22	5’	UGAUGUGCUCUAUCUCUUACG
SARS-CoV-2-MD110 3P	22	3’	CUUACGCAAUAUAAGAUA
SARS-CoV-2-MD3 3P	22	5’	AAAAGGGCUUUGGCUACU
SARS-CoV-2-MD3 3P	22	3’	ACUUGAACACGCCUUAUGUGU
SARS-CoV-2-MD85 3P	22	5’	UUAAUCACUAUAUAAUCAGC
SARS-CoV-2-MD85 3P	22	3’	UUGUGUACUACAGUAGGAA
SARS-CoV-2-MD308 3P	22	5’	UGCAUCAUCAGCAAGCUUG
SARS-CoV-2-MD308 3P	22	3’	GACUCUUGGCGUAGGAG
SARS-CoV-2-MD229 3P	22	5’	UAAUGGUUGCUUUAUACAGA
SARS-CoV-2-MD229 3P	22	3’	AGUGUUAAGGGUUAACCA
SARS-CoV-2-MD30 3P	22	5’	CUGUGAGUGUUAUAAUGGCU
SARS-CoV-2-MD30 3P	22	3’	UCUGUGAGUUAUAAUGGCU
SARS-CoV-2-MR186 3P	22	5’	AGUUGUAAUGUUAUACUG
SARS-CoV-2-MR186 3P	22	3’	ACUGAGGUGUGAGGCC

Computational prediction of miRNA-mRNA binding depends on Watson-Crick base pairing which is mostly implemented using seed pairing approach [40]. miRDB also adopts 7-mer seed pairing approach through MirTarget algorithm. We predicted 1059 human target genes (Supplementary Table S1) by custom prediction using mature miRNAs sequences which bind at 3’ UTRs. We selected top scoring target genes with prediction score >80 because score above this threshold are most likely to be real and not required any other supporting evidence [33].

Gene Ontology term for the target genes were identified by PANTHER database which cluster and group them into biological process (Fig. 1a), molecular function (Fig. 1b) and cellular component (Fig. 1c). Biological processes important for antiviral responses are immune system process (GO:0002376), metabolic process (GO:0006152), biological adhesion (GO:0022610), biological regulation (GO:0065007) and response to stimulus (GO:0050896). Molecular functions were classified into eight categories essentially comprised of transporter activity (GO:0005215), catalytic activity (GO:0003824) translation regulator activity (GO:0045182), transcription regulator activity (GO:0140110) and binding (GO:0005488). Cellular Components encompasses eight subcellular components including extracellular region (GO:0005576), cell (GO:0005623) and organelle (GO:0043226).

Target genes were further evaluated using Enrichr, a gene list enrichment analysis tool which retrieved total 82 pathways. On the basis of p value<0.1 few important pathways associated with targeted gene are listed in (Fig. 1d) which are important in human immune response to virus infection including angiogenesis (P000050), EGFR receptor signaling pathway (P000180), apoptosis signaling pathway (P000060), VEGF signaling pathway (P000560), FGF receptor signaling pathway (P00021) and CCKR signaling map ST pathway (P06959). Screened target genes and their associated roles that may involve in virus pathogenesis were listed in Table 4, along with literature evidence.

Table 4: Screened target genes and their associated role with literature evidences

Mature miRNAs	Gene	Gene Description	Role	PubMed ID
SARS-CoV-2-MD241 3P	BMP2R	bone morphogenetic protein receptor type 2	Pulmonary vasculature	30149506
SARS-CoV-2-MD3 3P	p53	Tumor suppressor p53	Antiviral innate immunity	21994612, 22978174

http://mbrc.shirazu.ac.ir

Saini et al., / Mol Biol Res Commun 2020;9(2):83-91 DOI: 10.22099/mbrc.2020.36507.1487 MBRC
DISCUSSION

In the genomic age, there are now more ways to find and studying miRNA biology, the most trending one is the genome-wide identification of this small non-coding RNAs [41]. The ab-intio prediction approach even can detect miRNAs that were not identified in cloning experiments due to under expression [42]. There are now ample amount of evidences that several viruses encode miRNAs, which directly downregulate the expression of genes involve in immunological, apoptosis, axon guidance and cell differentiation pathways [43, 44].

The significance of miRNAs in viral induced respiratory infection and immune regulation has been established previously [15]. Here in this study, the genome analysis of recent outbreak SARS-CoV-2 was done to explore the role of miRNAs in acute respiratory syndrome.

We found significant pathways that may contribute to disease etiology for example apoptosis play an important role in physiological processes and pathogenesis of infectious diseases caused by viruses. nCoV-MD3-3P target p53 which act as a main inducer of apoptosis pathway during viral infection [45], p53-dependent apoptosis has been reported to control viral infection of herpes simplex virus (HSV), vesicular stomatitis virus (VSV) and polio virus [46]. Tumor suppressor p53 (TP53) diminish the ability of viral replication and spreading as well as up regulate many genes of type I IFN transcriptional target that suggest p53 role in innate immunity [47].

nCoV-MD241-3P target BMPR2 (bone morphogenetic protein receptor type 2) which involved in transforming growth factor (TGF)-β signaling pathway. Upon viral infection, BMPR2 gets suppressed which result inhibition of pulmonary vascular homeostasis [48].

The previous studies on different viral miRNAs and their target gene silencing explained interesting facts, particularly about disease etiology [49-51]. Above all, the occurrence of same
miRNAs in in-vitro studies as is found by computational means build confidence in in-silico approaches [52]. To our knowledge this is the first paper on computational prediction of mature miRNAs from SARS-CoV-2 genome where we found that predicted mature miRNAs are targeting the large number of significant human target genes. The main findings of the work are the two target genes: BMPR2 and TP53 that involves in the pulmonary vasculature and antiviral innate immunity respectively. The inhibition of these two target genes by predicted viral miRNAs may induce the respiratory lung disease pathology and decrease in antiviral response of the body. This study may results in exploring the disease manifestation.

Acknowledgements: The authors are grateful to DBT (Department of Biotechnology), Ministry of Science & Technology, Government of India for providing facilities under Star College Scheme.

Conflict of Interest: The authors declare that they have no conflict of interest.

REFERENCES

1. WHO. Coronavirus disease 2019 (COVID-19) Situation Report-77. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200406-sitrep-77-covid-19.pdf?sfvrsn=21d1e632_2 (accessed on: April 7, 2020).
2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565-574.
3. Jiang S, Shi ZL. The first disease X is caused by a highly transmissible acute respiratory syndrome Coronavirus. Virol Sin 2020.
4. Li X, Song Y, Wong G, Cui J. Bat origin of a new human coronavirus: there and back again. Sci China Life Sci 2020;63:461-462.
5. Bailey ES, Fieldhouse JK, Choi JY, Gray GC. A mini review of the zoonotic threat potential of Influenza viruses, Coronaviruses, Adenoviruses, and Enteroviruses. Front Public Health 2018;6:104-110.
6. Lim YX, NgYL, Tam JP, Liu DX. Human Coronaviruses: A review of virus-host interactions. Diseases 2016;4:E26.
7. Jiang S, Xia S, Ying T, Lu L. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cell Mol Immunol 2020.
8. Jiang S, Shi Z, Shu Y, Song J, Gao GF, Tan W, Guo D. A distinct name is needed for the new coronavirus. Lancet 2020;395:949.
9. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brüning S, Schneider J, Schmidt ML, Mulders DG, Haagmans BL, van der Veer B, van den Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MP, Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020;25.
10. Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012;19:586-593.
11. He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-531.
12. Lukasik A, Zielenkiewicz P. Plant microRNAs-novel players in natural medicine? Int J Mol Sci 2016;18:9.
13. Moran Y, Agron M, Praher D, Technau U. The evolutionary origin of plant and animal microRNAs. Nat Ecol Evol 2017;1:27.
14. Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 2012;8:e1003018.
15. Morales L, Oliveros JC, Fernandez-Delgado R, tenOever BR, Enjuanes L, Sola I. SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology. Cell Host Microbe 2017;21:344-355.
16. Qinfen Z, Jinming C, Xiaojun H, Huanying Z, Jicheng H, Ling F, Kunpeng L, Jingqiang Z. The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol 2004;73:332-337.
17. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297.
18. Samols MA, Hu J, Skalsky RL, Renne R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol 2005;79:9301-9305.
19. Allmer J, Yousef M. Computational methods for ab initio detection of microRNAs. Front Genet 2012;3:209.
20. Kong Y, Han JH. MicroRNA: biological and computational perspective. Genomics Proteomics Bioinformatics 2005;3:62-72.
21. Shi J, Duan Z, Sun J, Wu M, Wang B, Zhang J, Wang H, Hu N, Hu Y. Identification and validation of a novel microRNA-like molecule derived from a cytoplasmic RNA virus antigenome by bioinformatics and experimental approaches. Virol J 2014;11:121.
22. Baruah V, Bose S. Computational identification of hepatitis E virus-encoded microRNAs and their targets in human. J Med Virol 2019;91:1545-1552.
23. Ospina-Bedoya M, Campillo-Pedroza N, Franco-Salazar JP, Gallego-Gomez JC. Computational identification of Dengue virus microRNA-like structures and their cellular targets. Bioinform Biol Insights 2014;8:169-176.
24. Cristina J, Echeverria N, Gambaro F, Fajardo A, Moreno P. Genome-wide prediction of microRNAs in Zika virus genomes reveals possible interactions with human genes involved in the nervous system development. bioRxiv.
25. Teng Y, Wang Y, Zhang X, Liu W, Fan H, Yao H, Lin B, Zhu P, Yuan W, Tong Y, Cao W. Systematic Genome-wide Screening and Prediction of microRNAs in EBOV During the 2014 Ebola Virus Outbreak. Sci Rep 2015;5:9912.
26. Saxena L. In silico identification of miRNAs and their target prediction from Japanese encephalitis. J Bioinform Seq Anal 2013;5:25-33.
27. Saini S, Thakur CJ, Kumar V. Genome wide computational prediction of miRNAs in Kyasanur forest disease virus and their targeted genes in human. Innov Thoug Intern Res J 2017;5:13-46.
28. Saini S, Thakur CJ, Kumar V, Tandon S, Bhardwaj V, Maggar S, Namgyal S, Kaur G. Computational prediction of miRNAs in Nipah virus genome reveals possible interaction with human genes involved in encephalitis. Mol Biol Res Commun 2018;7:107-118.
29. Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 2006;12:733-750.
30. Huang KY, Lee TY, Teng YC, Chang TH. ViralmiR: A support-vector-machine-based method for predicting viral microRNA precursors. BMC Bioinformatics 2015;16:Suppl1-S9.
31. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406-3415.
32. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PLoS One 2010;5:e11843.
33. Wong N, Wang X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 2015;43:D146-152.
34. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Thesfeld
CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R. Gene Ontology Consortium. The gene ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258-D261.

35. Kuleshov M V., Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44(W1):W90-97.

36. Gomes CP, Cho JH, Hood L, Franco OL, Pereira RW, Wang K. A review of computational tools in microRNA discovery. Front Genet 2013;4:81.

37. Sacar Demirci MD, Baumbach J, Allmer J. On the performance of pre-microRNA detection algorithms. Nat Commun 2017;8:330.

38. Lopes Ide O, Schliep A, de Carvalho AC. The discriminant power of RNA features for pre-miRNA recognition. BMC Bioinformatics 2014;15:124.

39. Guo L, Lu Z. The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 2010;5:e11387.

40. Akbari Moqadam F, Pieters R, Den Boer ML. The hunting of targets: Challenge in miRNA research. Leukemia 2013;27:16-23.

41. Lai EC. Two decades of miRNA biology: Lessons and challenges. RNA 2015;21:675-677.

42. Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011;411:325-343.

43. Carl JW, Trgovcich J, Hannenhalli S. Widespread evidence of viral miRNAs targeting host pathways. BMC Bioinformatics 2013;14(Suppl 2):S3.

44. Cullen BR. MicroRNAs as mediators of viral immune evasion. Nat Immunol 2013;14:205-210.

45. Collins M. Potential roles of apoptosis in viral pathogenesis. Am J Respir Crit Care Med 1995;152, S20-S24.

46. Kvansakul M. Viral Infection and Apoptosis. Viruses 2017;9:356.

47. Rivas C, Aaronson SA, Munoz-Fontela C. Dual role of p53 in innate antiviral immunity. Viruses 2010;2:298-313.

48. Andruska A, Speikerkoeetter E. Consequences of BMPR2 deficiency in the pulmonary vasculature and beyond: Contributions to pulmonary arterial hypertension. Int J Mol Sci 2018;19:2499.

49. Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in cellular metabolism and immune responses. Front Microbiol 2017;8:1318.

50. Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Herpesviruses and microRNAs: New pathogenesis factors in oral infection and disease? Front Immunol 2018;9:2099.

51. Islam MS, Khan MA, Murad MW, Karim M, Islam ABMMK. In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J Med Virol;91:1584-1594.

52. Prasad AN, Ronk AJ, Widen SG, Wood TG, Basler CF, Bukreyev A. Ebola virus produces discrete small non-coding RNAs independent of the host microRNA pathway and which lack RNA interference activity in bat and human cells. J Virol 2020;94.