The magnetic form factor of the deuteron in chiral effective field theory

S. Kölling,¹ E. Epelbaum,¹ J. and D. R. Phillips² ²

¹Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780, Germany
²Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA

We calculate the magnetic form factor of the deuteron up to \(O(eP^4) \) in the chiral EFT expansion of the electromagnetic current operator. The two LECs which enter the two-body part of the isoscalar NN three-current operator are fit to experimental data, and the resulting values are of natural size. The \(O(eP^4) \) description of \(G_M \) agrees with data for momentum transfers \(Q^2 < 0.35 \) GeV\(^2\).

Introduction: In the past two decades chiral effective field theory (χEFT) was fruitfully applied to few-nucleon dynamics (see Refs. ¹ ² for recent reviews). Two-nucleon potentials at next-to-next-to-next-to-leading order (N\(^3\)LO) in the chiral expansion were developed ³ ⁴ which accurately describe low-energy scattering data and the static properties of the deuteron. Higher-order corrections to the three-nucleon force are presently under investigation, see e.g. ¹⁰, although discussions regarding non-perturbative renormalization of the Schrödinger equation and implications for the χEFT power counting continue, see ⁵ ⁶ for samples of different views. In parallel to these developments in the strong sector, much effort has been devoted to pionic and electroweak reactions in few-nucleon systems, see ¹¹ ¹² for recent examples.

Electromagnetic reactions on light nuclei such as elastic electron scattering, photo-/electrodisintegration and radiative capture have been extensively studied in nuclear physics. In the single-photon approximation, their theoretical description requires knowledge of the electromagnetic current operator, which should be constructed consistently with the nuclear Hamiltonian. The derivation of exchange currents in χEFT was first addressed in the seminal paper by Park et al., ¹⁴, who, however, limited themselves to threshold kinematics |\(q | \ll M_\pi \) with \(M_\pi \) denoting the pion mass. Recently, this work was extended to the general kinematics suitable to study, e.g., electron scattering off light nuclei at momentum transfer of \(|q| \) of order \(M_\pi \) by the JLab-Pisa ¹⁵ ¹⁶ and Bochum-Bonn groups ¹⁸ ¹⁹. Here and in what follows, we discuss the expansion of the irreducible two-nucleon operators \(J^0 \) and \(J \) in powers of \(P \equiv (p, m_\pi)/\Lambda \) with \(\Lambda \) denoting the hard scale in the theory, e.g. the cutoff (≈ 600 MeV) used in calculations. In this expansion the leading-loop order is \(eP^4 \). However, most of the corrections to the two-body pieces of the two-nucleon current and charge operators at this order are of isovector type and thus do not contribute to the deuteron form factors. In particular, up to this order, the only two-body contributions to the isoscalar charge density operator, \(J_0^0 \), emerge from the leading relativistic corrections of one-pion range so that \(J_0^0 \) is parameter free. The impact of these corrections on the deuteron charge and quadrupole form factors, \(G_C \) and \(G_Q \) is studied in Refs. ²⁰ ²¹. In these works the deuteron wave functions obtained from χEFT potentials at various orders were used to compute \(G_C \) and \(G_Q \) (see also Refs. ²² ²³ for earlier work along the same lines). Good agreement with the compilation of elastic electron-deuteron data from Ref. ²⁴ was then found for both form factors in the kinematic range \(Q^2 < 0.35 \) GeV\(^2\), provided factorization was employed in order to account for single-nucleon structure.

On the other hand, the isoscalar two-nucleon current operator, \(J^0 \), has two two-body contributions at order \(eP^4 \), one from a short-distance operator and one of one-pion range. The impact of these terms on the magnetic moments of the deuteron and trinucleons was examined in Ref. ²⁵. However, markedly more information on the interplay of these terms with each other and with one-body mechanisms is available via the \(|q|^2 \)-dependence of observables. In this work we present a study in this direction, using χEFT expressions for \(J^0 \) derived in Refs. ¹⁸ ¹⁹ to extend the predictions given for \(G_M \) in Refs. ²⁰ ²¹ to \(O(eP^4) \). We discuss the relevant terms in the current operator and use the data on the magnetic form factor of the deuteron at low values of \(|q|^2 \) to determine two unknown low-energy constants (LECs). The \(O(eP^4) \) χEFT results thereby obtained accurately describe experimental data on \(G_M \) in the kinematic range \(Q^2 < 0.35 \) GeV\(^2\). This, together with the findings of Ref. ²¹, provides a full set of results for elastic electron-deuteron form factors at \(O(eP^4) \).

In the next section we describe the anatomy of the calculation and outline the relevant terms in the two-nucleon current operator. This is followed by a discussion of our results, including those for the LECs. We finish by summarizing.

Anatomy of the calculation: The magnetic form factor of the deuteron we are focused in this work is related to the Breit-frame matrix element of the four-current operator \(J_\mu \) according to the well-known relation

\[
G_M = \frac{1}{\sqrt{2|\eta|e}} \langle 1|J^+|0 \rangle ,
\]

where \(J^+ = J^1 + iJ^2 \) and \(\eta = |q|^2/(4m_d^2) \) with \(q \equiv p'_e - p_e \) denoting the momentum transfer and \(m_d \) the
deuteron mass. (Since we work in the Breit frame we have $Q^2 = |\mathbf{q}|^2$.) The deuteron states are labelled by the projection of its spin along the direction of \mathbf{q}. Both the deuteron wave functions and the current operator appearing on the right-hand side of the above equation are calculated order-by-order in χEFT.

We now briefly describe the χEFT expansion of the two-nucleon current operator, J_{μ}, as it pertains to the calculation of the deuteron form factors. We employ Weinberg’s power counting throughout this work which makes use of naive dimensional analysis to determine the significance of various contributions. The leading contribution to the charge density, J_0, is given by an A^0 photon coupling to a point proton at order e. Nucleon-structure corrections start contributing to the one-body current at order eP^2 [next-to-leading order (NLO)]. The first isoscalar two-body contribution is generated from a tree-level pion-exchange diagram at order eP^4, provided the nucleon mass is counted as $m_N \sim \Lambda^2/M \gg \Lambda$ \cite{18, 19}. This correction is associated with a relativistic correction to the one-pion-exchange part of the NN potential. There are numerous other corrections to the two-body part of the charge operator at leading-loop order, eP^3, from one- and two-pion exchange diagrams and from pion loops involving the lowest-order contact interactions, but this is the only isoscalar effect. The explicit form of all terms can be found in Refs. \cite{18, 19}.

The chiral expansion of the three-current starts at order eP with the single-nucleon contributions. The first two-body terms emerge from tree-level one-pion exchange diagrams at order eP^2 [NLO]. The next two-body corrections to J occur at order eP^4 from pion loops and tree diagrams involving higher-order vertices from the effective Lagrangian. The two-pion exchange contributions are parameter-free \cite{18}, while the one-pion exchange terms depend on the LECs d_8, d_{18}, d_{21} and d_{22} entering $\mathcal{L}^{(2)}$ \cite{14, 26, 28}. However, the only long-range two-body mechanism in $\mathcal{J}^{(s)}$ at this order is proportional to d_8. While this LEC could, in principle, be constrained by pion photoproduction data, in practice these data provide little information on d_8 \cite{29, 30}.

G_M is of particular interest at $O(eP^4)$ because it is there that the first short-distance NN physics not determined by NN scattering and gauge invariance appears. This is represented by the simplest $M1$ isoscalar four-nucleon-one-photon contact term in the χEFT Lagrangian, which is of the form \cite{18, 22, 31}:

$$L_{M1} = \frac{eL_2}{2} \left(N^\dagger \epsilon_{ijk} \sigma_i F_{jk} N \right) \left(N^\dagger N \right).$$

(2)

The low-energy constant (LEC) L_2 that appears in Eq. (2) must be extracted from data on electromagnetic reactions in the two-nucleon system.

The combination of these two effects yields a two-body isoscalar current operator $\mathcal{J}^{(s)}$ \cite{18, 19}:

$$\mathcal{J}^{(s)}_{2B} = 2e \frac{d_{18}}{F_2^2} d_8 \tau_1 \cdot \tau_2 \frac{\sigma_2 \cdot \mathbf{q}_2}{q_2^2 + M_2^2} [\mathbf{q}_1 \times \mathbf{q}] + ieL_2 \left(\sigma_1 + \sigma_2 \right) \times \mathbf{q}_1 + (1 \leftrightarrow 2),$$

(3)

where \mathbf{q} labels the photon momentum and $\mathbf{q}_{1/2}$ labels the momentum transfer on nucleon one/two respectively. Since G_M is determined completely by the one-body part of $\mathcal{J}^{(s)}$ up to $O(eP^3)$ the total form factor is thus

$$G_M = \frac{1}{\sqrt{2m_ee^2}} \langle 1 | \mathcal{J}^{(s)}_{1B} + \mathcal{J}^{(s)}_{2B} | 0 \rangle.$$

(4)

Here we use factorization to compute \mathcal{J}_{1B}, i.e. we write:

$$\mathcal{J}^{(s)}_{1B} = \frac{eM}{M} (G^{(s)}_E(Q^2)2p^+ + iG^{(s)}_M(Q^2)(\sigma_1 \times \mathbf{q})^+),$$

(5)

with \mathbf{p} the momentum of the struck nucleon, and $G^{(s)}_E$ and $G^{(s)}_M$ the isoscalar single-nucleon form factors, for which we take the parameterization of Ref. \cite{32}. The use of this ansatz for the one-body part of $\mathcal{J}^{(s)+}$ is equivalent (up to corrections that begin only two orders beyond the order to which we work) to making a χEFT expansion for the “body” form factors D_M and D_E \cite{33}. This allows us to focus on the momentum transfer at which the χEFT expansion for the NN current operator J breaks down, without having to worry whether the theory is doing a good job of describing isoscalar nucleon structure.

Results: We now evaluate the matrix elements in Eq. (4) with a variety of χEFT deuteron wave functions computed with the NLO and NNLO χEFT potentials and different values of the cutoffs Λ in the Lippmann-Schwinger equation and Λ in the spectral function. The result found for G_M with LO χEFT wave functions and the leading piece of $\mathcal{J}^{(s)}$, denoted here as $O(eP)$, was computed in Ref. \cite{34}. Corrections to this come both from higher-order pieces of the NN potential, V, which affect the wave function, and from the corrections to $\mathcal{J}^{(s)}$ discussed in the previous section. The NNLO χEFT potential includes all effects up to $O(eP^3)$ relative to leading (in this counting), so its deuteron wave function, when combined with the $O(eP^4)$ $\mathcal{J}^{(s)}$, yields a χEFT calculation for G_M which includes all effects up to $O(eP^4)$.

The pertinent matrix elements are computed via Monte-Carlo (MC) integration. To increase efficiency, we use importance sampling with the weight function of Ref. \cite{35}:

$$p(k) \equiv p(k) = \frac{(r - 3)(r - 2)(r - 1)}{8\pi} \frac{C^{r-3}}{(k + C)^r}.$$

(6)

The functional form of $p(k)$ is chosen such that the weight function is maximal at the origin, reflecting the large S-wave component of the deuteron wave function. The parameters C and r control the vanishing of the weight function at large momenta and are tuned to optimal values (in terms of the efficiency of the MC integration)
by calculating the expectation value of the one-pion exchange potential yielding $C = 1$ GeV and $r = 11$.

As in Ref. [33] we perform a path average over several runs. We use 2730 sample points and the path average is performed for 3000 runs. Analysis of the run-to-run fluctuations indicates a final answer with better than 1% precision throughout the momentum range of $0 \sim 800$ MeV. At several points we compared this MC answer to calculations using quadrature methods, and always found agreement within the precision claimed.

We adopt the following procedure to determine the values of the two LECs entering $J^{(s)}$. First, we fix the value of L_2 for a given d_0 by demanding that the magnetic moment of the deuteron is reproduced. We then perform a χ^2-fit to the experimental data for $|q| < 400$ MeV (including four points from the parametrization of Ref. [37]) to determine d_0. Our attempts to use even lower-$|q|$ data for this fit resulted in unstable answers, reflecting the insensitivity of G_M to this LEC at small values of $|q|$.

The results of this procedure are shown in Fig. 1. The light/blue (dark/red) band is obtained using wave functions computed with the NLO (NNLO) χEFT potential. The width of the band shows the variation of the prediction as Λ and $\tilde{\Lambda}$ are changed in the range $\Lambda = 400 \sim 550$ MeV ($\Lambda = 450 \sim 600$ MeV) at NLO (NNLO) and $\tilde{\Lambda} = 500 \sim 700$ MeV. The cutoff variation is reduced at NNLO, and the data well described for $Q^2 < 0.35$ GeV2.

In order to assess the momentum transfer at which the χEFT expansion for $J^{(s)}$ breaks down, in Fig. 2 we show the size of different contributions to the final result. This time the bands represent the impulse approximation result obtained with NLO (light/blue) and NNLO (dark/red) wave functions. The dotted (dashed) line is the effect from the piece of $J^{(s)}_{2B}$ that is proportional to L_2 (d_0). For both two-body matrix elements, we show results averaged over the five cutoff combinations considered, with the light blue lines showing the NLO case, and the dark red lines obtained with NNLO wave functions. We estimate the breakdown scale of the EFT expansion by values of momentum transfer at which the $O(eP^4)$ two-body contributions start becoming comparable to the effect of the $O(eP)$ (impulse-approximation) piece of the current. Fig. 2 shows that the smaller two-body contributions to G_M found with the NNLO wave function delay the breakdown of the expansion. Even so, we would infer a breakdown scale $|q| = 600$ MeV, as there the short-distance effect $\sim L_2$ becomes equal in magnitude to the impulse-approximation result.

Order	Λ/Λ [MeV]	d_0 [GeV$^{-2}$]	L_2 [GeV$^{-4}$]
NLO	400/500	-0.010	0.243
NLO	400/700	-0.011	0.249
NLO	550/500	0.016	0.605
NLO	550/600	0.017	0.731
NLO	550/700	0.018	0.892
NNLO	450/500	-0.011	0.188
NNLO	450/700	-0.009	0.173
NNLO	550/600	0.005	0.089
NNLO	600/500	0.001	0.113
NNLO	600/700	-0.001	0.028

TABLE I: Values for d_0 and L_2 found by fitting data up to $|q| = 400$ MeV, using different values of the cutoffs.
In Table I we present the values of \bar{d}_9 and L_2 obtained in our fits. Small values of \bar{d}_9 are preferred, which is consistent with the findings of Ref. [22]. Reassuringly, the inferred values of \bar{d}_9 show only a very mild dependence on the cutoffs as compared to the expected natural size of this LEC, $|\bar{d}_9| \sim 1$ GeV$^{-2}$. In contrast, the values of L_2 do depend on the choice of the regulator employed for the NN potential, as one would expect. It is comforting to see that all obtained values of L_2 are natural with respect to the cutoff scale Λ employed in these calculations. The values of L_2 in the table show that two-body effects in G_M play a larger role in the calculation with NLO deuteron wave functions, as seen in Fig. 2.

Summary: The first two-body effects in the deuteron magnetic form factor G_M, occur at $O(eP^2)$ in χEFT, i.e. three orders beyond leading. Inclusion of these mechanisms in the computation of G_M improves the description of data, and allows exact reproduction of the deuteron magnetic moment, which otherwise is underpredicted in χEFT. Experimental data is then well described for $Q^2 < 0.35$ GeV2, and the chiral expansion for G_M is found to converge well for $Q^2 < 0.25$ GeV2, provided that the NNLO wave functions of Ref. [4] are employed. Finally, we note that the proposal of Ref. [6] to change the scaling of short-distance χEFT operators in order to ensure proper renormalization of the theory does not significantly alter the relative importance of such operators in the 3S_1-3D_1 channel [8]. Therefore we expect that the conclusions of this study will be quite robust with respect to developments on this front.

Acknowledgements

We thank Ulf-G. Meißner for useful comments on the manuscript. This work is supported by the EU Hadron-Physics3 project “Study of strongly interacting matter”, by the European Research Council (ERC-2010-StG 259218 NuclearEFT), by the DFG (TR 16, “Subnuclear Structure of Matter”), and by the US Department of Energy (contract no. DE-FG02-93ER40756).

[1] E. Epelbaum, H.-W. Hammer and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
[2] E. Epelbaum and U.-G. Meißner, arXiv:1201.2136 [nucl-th].
[3] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 014001 (2003).
[4] E. Epelbaum, W. Glöckle and U.-G. Meißner, Nucl. Phys. A 747, 362 (2005).
[5] G. P. Lepage, nucl-th/9706029.
[6] A. Nogga, R. G. E. Timmermans and U. van Kolck, Phys. Rev. C 72, 054006 (2005).
[7] E. Epelbaum and U. -G. Meissner, nucl-th/0609037.
[8] M. C. Birse, Phys. Rev. C 74, 014003 (2006).
[9] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 75, 054001 (2006).
[10] H. Krebs, A. Gasparian and E. Epelbaum, Phys. Rev. C 85, 054006 (2012).
[11] V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D. R. Phillips, Phys. Lett. B 694, 473 (2011).
[12] D. Gazit, S. Quaglioni and P. Navratil, Phys. Rev. Lett. 103, 102502 (2009).
[13] H. W. Griesshammer, J. A. McGovern, D. R. Phillips and G. Feldman, arXiv:1203.6834 [nucl-th].
[14] T. -S. Park, D. -P. Min and M. Rho, Nucl. Phys. A 596, 515 (1996).
[15] S. Pastore, R. Schiavilla and J. L. Goity, Phys. Rev. C 78, 064002 (2008).
[16] S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani and R. B. Wiringa, Phys. Rev. C 80, 034004 (2009).
[17] S. Pastore, L. Girlanda, R. Schiavilla and M. Viviani, Phys. Rev. C 84, 024001 (2011).
[18] S. Kölling, E. Epelbaum, H. Krebs and U.-G. Meißner, Phys. Rev. C 80, 045502 (2009).
[19] S. Kölling, E. Epelbaum, H. Krebs and U.-G. Meißner, Phys. Rev. C 84, 054008 (2011).
[20] D. R. Phillips, Phys. Lett. B 567, 12 (2003).
[21] D. R. Phillips, J. Phys. G G 34, 365 (2007).
[22] D. R. Phillips and T. D. Cohen, Nucl. Phys. A 668, 45 (2000).
[23] M. Walz and U.-G. Meißner, Phys. Lett. B 513, 37 (2001).
[24] D. Abbet al. [JLAB t20 Collaboration], Eur. Phys. J. A 7, 421 (2000).
[25] Y. -H. Song, R. Laazuras, T. -S. Park and D. -P. Min, Phys. Lett. B 656, 174 (2007).
[26] G. Ecker and M. Mojiši, Phys. Lett. B 365, 312 (1996).
[27] N. Fettes, U.-G. Meißner and S. Steininger, Nucl. Phys. A 640, 199 (1998).
[28] J. Gasser, M. A. Ivanov, E. Lipartia, M. Mojiši and A. Rusetsky, Eur. Phys. J. C 26, 13 (2002).
[29] A. Gasparian and M. F. M. Lutz, Nucl. Phys. A 848, 126 (2010).
[30] H. W. Fearing, T. R. Hemmert, R. Lewis and C. Unkmeir, Nucl. Phys. A 684, 377 (2001).
[31] J. W. Chen, G. Rupak and M. J. Savage, Nucl. Phys. A 653, 386 (1999).
[32] M. A. Belushkin, H. W. Hammer and U.-G. Meißner, Phys. Rev. C 75, 035202 (2007).
[33] R. A. Gilman and F. Gross, J. Phys. G 28, R37 (2002).
[34] M. Pavon Valderrama, A. Nogga, E. Ruiz Arriola and D. R. Phillips, Eur. Phys. J. A 36, 315 (2008).
[35] S. Liebig, V. Baru, F. Ballout, C. Hanhart, A. Nogga arXiv:1003.3826 [nucl-th].
[36] I. Lindgren, in: K. Siegbahn (ed.), in: Alpha-, Beta- and Gamma-Ray Spectroscopy, Vol. 2, North-Holland, Amsterdam 1965.
[37] I. Sick, Prog. Part. Nucl. Phys. 47, (2001) 245.
[38] S. Auffret et al., Phys. Rev. Lett. 54, (1985) 649.
[39] R. Cramer et al., Z. Phys. C 29, (1985) 513.
[40] G. G. Simon, C. Schmidt, V. H. Walther, Nucl. Phys. A 364, (1981) 285.