Structures of Complexes of a Metal-independent Glycosyltransferase GT6 from *Bacteroides ovatus* with UDP-N-Acetylgalactosamine (UDP-GalNAc) and Its Hydrolysis Products*

Received for publication, December 24, 2013, and in revised form, January 22, 2014 Published, JBC Papers in Press, January 23, 2014, DOI 10.1074/jbc.M113.545384

Tram T. K. Pham†‡, Brittany Stinson§∥, Nethaji Thiyagarajan‡§, Michelle Lizotte-Waniewski‡, Keith Brew§¶, and K. Ravi Acharya†§

From the †Department of Biology and Biochemistry, University of Bath, Claveron Down, Bath BA2 7AY, United Kingdom and the §Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431

Background: Bacterial homologues of human blood group synthases (glycosyltransferase family GT6) differ in being metal-independent.

Results: The structure has been determined of a GT6 from *Bacteroides ovatus* in a complex with the substrate UDP-GalNAc.

Conclusion: Interactions with the polypeptide replace substrate-metal interactions in metal-dependent mammalian homologues.

Significance: Metal independence in GT6 is attainable because the metal acts in substrate binding but not directly in catalysis.

Mammalian members of glycosyltransferase family 6 (GT6) of the CAZy database have a GT-A fold containing a conserved Asp-X-Asp (DXD) sequence that binds an essential metal cofactor. *Bacteroides ovatus* GT6a represents a GT6 clade found in more than 30 Gram-negative bacteria that is similar in sequence to the catalytic domains of mammalian GT6, but has an Asn95-Ala-Asn97 (NXX) sequence substituted for the DXD motif and metal-independent catalytic activity. Co-crystals of a low activity mutant of BoGT6a (E192Q) with UDP-GalNAc contained protein complexes with intact UDP-GalNAc and two forms with hydrolysis products (UDP plus GalNAc) representing an initial closed complex and later open form primed for product release. Two cationic residues near the C terminus of BoGT6a, Lys231 and Arg243, interact with the diphosphate moiety of UDP-GalNAc, but only Lys231 interacts with the UDP product and may function in leaving group stabilization. The amide group of Asn95, the first Asn of the NXX motif, interacts with the ribose moiety of the substrate. This metal-independent GT6 resembles its metal-dependent homologs in undergoing conformational changes on binding UDP-GalNAc that arise from structuring the C terminus to cover this substrate. It appears that in the GT6 family, the metal cofactor functions specifically in binding the UDP moiety in the donor substrate and transition state, actions that can be efficiently performed by components of the polypeptide chain.

Glycosyltransferases (GTs)† are essential enzymes for the biosynthesis of polysaccharides and complex oligosaccharides that have vital roles in biological structures and processes including cellular interactions, matrix structures, signaling, pathogenesis, and immunity (1, 2). Their importance is emphasized by the substantial proportion (1–2%) of GT genes in the coding sequences of genomes from all domains of life (1, 2). Based on sequence and structural relationships, GTs are classified into about 90 divergent families in the CAZy database (3); they also form two groups based on whether the anomeric configuration of the transferred sugar is inverted or retained in the reaction product (3, 4). The members of each GT family are expected to have similar folds, and most known GT structures have one of the two predominant folds, designated GT-A and GT-B (4).

The members of GT family 6 (GT6) found in vertebrates are retaining enzymes that catalyze the formation of α-1,3 linkages between galactose or N-acetylgalactosamine and β-galactosyl or N-acetylgalactosaminyl residues in glycoconjugates. They are type II membrane proteins with small N-terminal cytosolic domains, a transmembrane helix, a stem, and the C-terminal catalytic domain with a GT-A fold. Although humans have four GT6 genes, α-1,3-galactosyltransferase (α3GT), isogloboside 3 synthase (iGb3S), histo-blood group A synthase (HBGA/B), and Forsman glycolipid synthase (Gb5S), the products of the α3GT, iGb3S, and Gb5S genes are catalytically inactive, and there are three alleles of the HBGA/B gene that generate individual variations in blood group structures (A, B, AB, or O) (5).

*The abbreviations used are: GT, glycosyltransferase; α3GT, α-1,3-galactosyltransferase; HBG, histo-blood group; FAL, 2′-fucosyl-lactose; Bis-Tris, 2-(bis[2-hydroxyethyl]amino)-2-(hydroxymethyl)propane-1,3-diol.

*This work was supported by a Wellcome Trust equipment grant (number 088464) (to K. R. A.).

†Author’s Choice—Final version full access.

The atomic coordinates and structure factors (codes BSSKRA, BSSRST, and BSSKNA) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 Supported by the Biotechnology Center of Ho Chi Minh City, Vietnam and University of Bath for a postgraduate studentship.

2 Partly funded by the National Science Foundation GK-12 Program.

3 Present address: Division of Biosciences, Faculty of Life Sciences, University College London, London WC1E 6BT, UK.

4 Supported by National Institutes of Health Grant AR40994. To whom correspondence may be addressed: Dept. of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431. Tel.: 561-297-0407; E-mail: kbrew@fau.edu.

5 To whom correspondence may be addressed. Tel.: 44-1225-386238; E-mail: bsskra@bath.ac.uk.

6 The abbreviations used are: GT, glycosyltransferase; α3GT, α-1,3-galactosyltransferase; HBG, histo-blood group; FAL, 2′-fucosyl-lactose; Bis-Tris, 2-(bis[2-hydroxyethyl]amino)-2-(hydroxymethyl)propane-1,3-diol.
6). Adults have circulating natural antibodies against the glycan products of catalytically inactive GT6 (α-gal epitope, HBGA, HBGB, and Forssman glycolipid (Gb5)) (7) that help to provide immunity against enveloped viruses derived from host species that have active α3GT or Gb5 or from individuals with different histo-blood groups (5, 6). Interestingly, a new rare human blood group (Apae or FORS-1) has been found that is associated with a mutation in Gb5S that restores its catalytic activity (R296Q) (8). Because glycans function as receptors for pathogens, the loss or variation in surface glycans can reduce susceptibility to some toxins, bacteria, and viruses; for example the α-gal epitope is a receptor for Clostridium difficile enterotoxin A (9), Forssman glycolipid is a receptor for uropathogenic strains of Escherichia coli (10), and histo-blood group antigens are receptors for Norwalk virus (11).

Although GT6 genes are ubiquitous in vertebrates, they have not been found in invertebrates, plants, fungi, yeast, or archaea. However, the expanding array of sequenced bacterial genomes has revealed genes encoding GT6 catalytic domains in 36 species of bacteria and two cyanophages. They are also found in two unicellular eukaryotic species. Many other GT6 genes from unidentified prokaryotic sources are present in the human gut and marine metagenomes (6, 12). With a single exception, the bacterial GT6 are from Gram-negative species and have substitutions of Asn for Asp in a highly conserved DXD motif that is responsible for binding a divalent metal ion cofactor in vertebrate GT6. A degenerate motif similar to DXD is present in all other GT-A fold GTs that depend on divalent metal ion cofactors for activity (4, 6). In previous studies we have functionally characterized one of the two GT6 from Bacteroides ovatus, BoGT6a, finding that it has a similar specificity to human HBGA synthase, catalyzing the transfer of GalNAc from UDP-GalNAc to 2’-fucosyl-lactose (FAL), and similar acceptors to produce A-antigen-like products (12, 13). Despite its close similarity in sequence to the catalytic domains of mammalian GT6, BoGT6a differs from them in not requiring divalent metal ions for activity (12) (Fig. 1). We also expressed one of two currently known bacterial GT6 that have a DXD motif, from Parachlamydia acanthamoebae (strain Hall’s coccus), and found that it is dependent on divalent metal ions (Mg2+ or Mn2+) for activity, corroborating the link between this motif and metal dependence or independence (13).

Previously reported crystallographic structures of apo-BoGT6a (PDB code 4AYL) and its complex with the acceptor substrate FAL (PDB code 4AYJ) show that its interactions with the acceptor substrate involve residues that are mostly equivalent to those that bind the acceptor substrate in mammalian GT6 (13). To understand how this enzyme can bind its donor substrate, UDP-GalNAc, and be catalytically active in the absence of divalent metal ions, we have investigated its interaction with this substrate by structural studies of co-crystals. Because, like most other GTs, BoGT6a catalyzes the transfer of GalNAc from UDP-GalNAc to water (hydrolysis), albeit at a low rate in comparison with oligosaccharide acceptors, we used an enzyme mutant with Gln substituted for Glu192 that has attenuated activity (4 fold relative to wild type) (12). Even with this mutant, crystal forms were obtained containing some molecules with bound hydrolysis products together with others with intact substrate. Examination of these structures has revealed interactions and conformational changes associated with UDP-GalNAc binding and hydrolysis. Together with the previously described structure of the enzyme complex with FAL and mutational and binding studies (12, 13), the new structures indicate that substrate binding to BoGT6a is ordered,
with UDP-GalNAc binding prior to acceptor, and have some implications regarding the catalytic mechanism and role of metals in the GT6 family.

Experimental Procedures

Protein Expression, Purification, and Crystallization—The catalytic domains of native and mutant (E192Q) BoGT6a (residues 1–246) were expressed in *E. coli* BL21(DE3), purified as described previously (12), and stored at −4 °C in 20 mM Tris-HCl, pH 7, 100 mM NaCl, 2 mM DTT, 10 mM EDTA. The complexes of wild-type BoGT6a and of the BoGT6a E192Q mutant with UDP-GalNAc were prepared by mixing 190 μl of protein solution (8 mg/ml) with 10 μl of UDP-GalNAc (100 mM) and incubating at room temperature for 1 h or at 4 °C overnight. Crystallization screens were conducted using the sitting drop vapor diffusion method with a Phoenix crystallization robot on a 96-well Intelli-plate (Art Robbins Instruments). Designed crystallizations were set up manually using the vapor diffusion hanging drop method with 24-well plates. The drops were set up at a 1:1 ratio of protein to mother liquor and incubated at 16 °C. Crystals of the complex with UDP-GalNAc were obtained using the BoGT6a E192Q mutant, but none were obtained with the wild-type enzyme. One cluster of bar-shaped crystals was grown in a well solution containing 0.1 M sodium citrate, pH 5.0, 20% PEG 8000 with Proplex crystallization screen (Molecular Dimensions Ltd.). Many crystals appeared in two different solutions (namely 0.1 M Bis-Tris, pH 5.5, containing 0.2 M (NH₄)₂SO₄ and 20% PEG 3350; and 0.1 M Bis-Tris, pH 5.5, containing 0.2 M Li₂SO₄ and 20% PEG 3350) on 24-well plates. The recombinant BoGT6a construct used in this study lacks the N-terminal Met¹ residue in some of the 16 chains, which was not observed in the other structures. In addition, two additional residues of the hexahistidine tag, namely His⁶ and Ser⁻¹, were included because these were visible in some of the molecules. The final three structures were obtained through several refinement cycles using PHENIX and COOT.

Results and Discussion

Two orthorhombic crystal forms were obtained. One (form I) was grown in 0.1 M sodium citrate, pH 5.0, containing 20% PEG 8000 and diffracted to 2.78 Å, and the second (form II) was obtained in 0.2 M Li₂SO₄ in 0.1 M Bis-Tris, pH 5.5, containing 20% PEG 3350, and diffracted to 3.42 Å. Both orthorhombic forms had four molecules in the asymmetric unit, but electron density for only GalNAc was found in the form I structure. However, in the form II structure, two molecules (chains A and C) contain intact UDP-GalNAc and the others (chains B and D) contain the hydrolysis products, UDP and GalNAc; the GalNAc was located near the acceptor binding pocket, away from the position of the GalNAc in intact UDP-GalNAc. A monoclinic crystal form (form III) grew in 0.1 M Bis-Tris, pH 5.5, containing 0.2 M (NH₄)₂SO₄ and 20% PEG 3350, and diffracted to 3.50 Å. This structure contains 16 protein molecules per asymmetric unit that contain three different ligand configurations clearly shown by their electron densities (Fig. 2). The crystallographic statistics for the three structures are summarized in Table 1. The recombinant BoGT6a construct used in this study lacks the C-terminal 17 residues of the wild-type BoGT6a, a region that has similar sequence characteristics to lipid binding domains in other proteins (6). This truncation reduces aggregation but does not affect catalytic activity (12). BoGT6a in these complexes has a similar overall structure to that reported for the apo-protein and its complex with FAL (13). As reported previously, BoGT6a has a GT-A fold similar to structures reported for bovine α3 GT (17) (Fig. 1) and histo-blood group A and B synthases (GTA and GTB) (18) but is shortened at the N terminus by 45 residues or more as compared with the mammalian GTs. The C-terminally truncated BoGT6a appears to represent the minimum size of a functional GT6 because residues close to both the N termini and the C termini participate in substrate binding. The structure comprises two contiguous subdomains: the N-subdomain (residues 1–97) that includes four parallel β-strands and three surrounding α-helices and the C-subdomain (residues 98–246) that includes a three-stranded mixed β-sheet and a small two-stranded β-sheets associated with UDP-GalNAc binding prior to acceptor, and have some implications regarding the catalytic mechanism and role of metals in the GT6 family.
Structure of Metal-independent GT6 Complexes with Donor Substrate

Table 1

X-ray crystallographic statistics	BoGT6a E192Q-GalNAc	BoGT6a E192Q-UDP-GalNAc	BoGT6a E192Q-UDP-GalNAc
Ligands used in crystallization	UDP-GalNAc	UDP-GalNAc	UDP-GalNAc
Ligands observed in crystal	GalNAc	GalNAc, UDP, GalNAc	GalNAc, UDP, GalNAc
Space group	P2_1_2_1	P2_1_2_1	P2_1_2_1
No. of molecules/asymmetric unit	4	4	16
Cell dimensions (Å)	a = 80.12, b = 115.60, c = 126.12	a = 80.12, b = 120.15, c = 131.83	a = 176.98, b = 79.77, c = 179.08, \(\beta = 95.23^\circ \)
Resolution range (Å)	67.63–2.78	88.80–3.42	87.98–3.50
Rmerge (outer shell)	0.10 (0.71)	0.09 (0.54)	0.13 (0.50)
I/σI (outer shell)	15.0 (2.3)	13.5 (2.8)	7.4 (2.1)
Completeness (outer shell) %	97.7 (99.5)	97.6 (99.8)	98 (99.0)
Total no. of reflections	158394	93516	168581
Unique no. of reflections	29475	17402	61949
Redundancy (outer shell)	5.4 (4.9)	5.4 (4.6)	2.7 (2.6)
Wilson B-factor (Å²)	45.73	93.61	76.41
Rcryst/Rfree (Å²)	23.14/27.35	28.35/31.41	22.53/24.94
Overall average B-factor (Å²)	41.19	82.25	71.38
No. of protein chains	4	4	16
UDP-GalNAc	4	2	6
UDP	2	2	10
GalNAc	4	2	10
Water	174	7	1
PEG	1	1	5
SO₄			
Glycerol			
r.m.s.d.			
Bond length (Å)	0.004	0.006	0.002
Bond angle (°)	0.979	1.206	0.529
Ramachandran plot statistics			
(%)			
Favored	96.15	92.71	93.66
Outliers	0.11	0.21	0.10
RCSB-PDB codes	4cjb	4jc	4cj8

For discussion purposes, we used representatives from each group, namely chain E for structure A, chain A for structure B, and chain M for structure C.

with two α-helices. In the mammalian GT6, the metal binding DXD motif is at the junction of the two subdomains but, in the bacterial enzyme, it is replaced by the Asn-H-Asn sequence. The DXD motif is a shared feature of all GT families. The DXD motif is at the junction of the two subdomains but, in the mammalian GT6, the metal binding DXD motif is at the junction of the two subdomains but, in the bacterial enzyme, it is replaced by the Asn-H-Asn sequence. The DXD motif is a shared feature of all GT families. The DXD motif is a shared feature of all GT families.
The binding sites for UDP-GalNAc and FAL are located in a pocket on the protein surface that, in the closed structure(s), is covered by a cap formed principally by restructuring the C terminus of the polypeptide chain. The conformation of the enzyme in all complexes containing ligands is more closed and more structured than the apo enzyme (Fig. 5A). The interaction with either substrate stabilizes loop 1 (residues 126–150), which is unstructured in the apo form (13), and induces the enzyme to undergo a conformational change to a less open form (Fig. 4A). In particular, in form II and form III, interactions with the donor substrate in the compact types of structure, A and C, stabilize part of the C terminus, and the structure can be followed beyond Lys231, which interacts with the diphosphate (Fig. 4B). However, there is some variation in the structure between different chains beyond this residue (for example between chains E, F, G, and H), suggesting that this region is flexible. In structures of type B, where the UDP-GalNAc has been hydrolyzed and GalNAc has moved to the acceptor binding site, there is greater flexibility than in structures A or C. In this state, its high level of mobility leads to an absence of electron density for the C-terminal 10 residues, and the models were built only up to residue 236. Similarly, in the complex of BoGT6a with the acceptor, loop 2 (residues 181–192) undergoes a significant conformational change that affects the positions of Trp189, His190, Asp191, and Gln (Glu)192, which are key residues for substrate binding and catalysis (Figs. 3 and 5A). Fig. 5B shows the superimposed structures A, B, and C (represented by chains E, A, and M); these show that the main conformational differences are in the C-terminal region of the structure.

The surface diagrams of the three forms show that C (chain M) is slightly more open than A (chain E), whereas B (chain A) is the most open form in which both the UDP and the GalNAc ligands are exposed to solvent (Fig. 6). In the complexes with intact UDP-GalNAc, the residues that interact with different moieties of the substrate, are listed in Table 2. Although Asn95 has multiple interactions with UDP-GalNAc, Asn97, the second Asn of the NXN motif, does not interact with the substrate. A superimposition of the intact substrate in chain E (structure A) and the hydrolysis products in chain A (structure B) and M (structure C) shows that the uracil and ribose are positioned similarly in all three structures (Fig. 3D), and there are similar interactions between the uracil and ribose moieties and protein in the structures, but those involving the diphosphate and GalNAc differ. In structure A (intact UDP-GalNAc), the e-amino group of Lys231 H-bonds with O1A, O1B, and O3A atoms, and the NH2 of Arg243 interacts weakly with different oxygens in different chains. Also the OH of Tyr13 and peptide N of Ala96 H-bond with the diphosphate (Fig. 7). In structure C, the amino group of Lys231 interacts more strongly with O1A and also with O1B of the diphosphate, and the NH2 of Arg243 is near to but not in H-bonding distance (3.66 Å) of O2A. Ala96 interacts with O3B, but there is a stacking interaction between Tyr13 and the substrate. In structure B, although there are similar interactions between the protein and the uracil and ribose, the diphosphate has a variable orientation in different chains, and the Lys231 NH2 and Tyr13 OH interact with different oxygens, although the Ala96 NH and Asn97 ND2 mainly interact with O3B. The GalNAc in structure A interacts with
Gln192 NE2 through O4′ and Arg73 NH$_2$ and Gly157 N through O3′ as well as with Asn95 OD1 through N2′. In structure C, the β-GalNAc C1 is in close contact with Gln192 NE2 and with Arg73 NH$_2$ through O4′. In structure B, where the GalNAc is located in the acceptor binding site, there are no consistent interactions with the protein in different chains.

The A structure represents the UDP-GalNAc Michaelis complex with BoGT6a, but it should be noted that the Glu192 to Gln mutation in the form of BoGT6a used in these structural studies involves a key residue in catalysis (12), which interacts with both the donor and the acceptor substrates (13). Previous isothermal titration calorimetry studies have shown that this mutation has little net effect on the ΔG for UDP-GalNAc binding (both about −5.8 kcal/mol), but this reflects mutually compensating effects on the ΔH and TΔS of binding (changes from −23.5 to −16.4 kcal/mol and 17.7 to 10.6 kcal/mol, respectively), suggesting that the mutation may weaken noncovalent interactions and reduce substrate-induced conformational rearrangements (13). Structures A, C, and B are models for complexes in the hydrolysis reaction catalyzed by BoGT6a. -C, and -B, being earlier and later steps in product release. However, it should be recognized that these are structures stabilized by being incorporated in different locations in the unusual monoclinic crystal lattice. Only structures A and B are present in molecules in the orthorhombic form.

Although the structure of a ternary complex of BoGT6a with both UDP-GalNAc and FAL has not been determined, examination of the structures of the complexes with individual substrates indicates that the UDP-GalNAc binding site is not accessible in the FAL complex (13) but the FAL binding site is accessible in the complex with UDP-GalNAc. In a modeled ternary complex generated from the complexes with individual substrates, it can be seen that UDP-GalNAc is bound deeply in the structure and that the FAL molecule hinders its solvent access and release. The structures therefore suggest that BoGT6a utilizes an ordered sequential mechanism in which the donor substrate binds prior to acceptor. This is consistent with isothermal titration calorimetry studies that show FAL binds weakly to free BoGT6a (K_d 1.2 mM) but more strongly to the UDP complex (K_d 76 μM); the change in free energy of binding

FIGURE 4. Arrangements and interactions of BoGT6a molecules. A, packing between chains in the monoclinic form III structure showing hydrophobic core interactions. The surfaces of protein molecules are colored gray, and the hydrophobic core is colored orange, respectively. The inset shows the details of the hydrophobic core in which the hydrophobic residues are displayed as sticks and colored by chains. B, arrangement of the minimal packing unit in the monoclinic crystal form. Structure A is in green; structure B is in red, structure C is in cyan, and protein molecules are shown as graphics. C, arrangement of 16 molecules in the asymmetric unit in monoclinic crystal form.
Structure of Metal-independent GT6 Complexes with Donor Substrate

(−1.64 kcal/mol) arises from a more favorable enthalpy of binding (∆H of −1.9 kcal/mol).

Structure-Function Relationships in Metal-dependent and Metal-independent GT6—Previously, crystallographic and mutational studies of structure-function relationships have been conducted with the catalytic domains of mammalian metal-dependent GT6, bovine α3GT (17, 22–25), and human GTA/GTB (18, 26–28). In the complexes containing Mn²⁺ and UDP or a UDP derivative, the metal interacts with the aspartates of the DXD motif (residues Asp²²⁵, Val-Asp²²⁷ in α3GT), through a single interaction with Asp²²⁵ and a bidentate interaction with Asp²²⁷, and also interacts with an oxygen from each of the α- and β-phosphates of the UDP (17, 18). Val²²⁶ and Asp²²⁷ also interact with the ribose moiety of the UDP moiety. In complexes containing free UDP, two cationic residues close to the C terminus of α3GT, Lys³⁵⁹ and Arg³⁶⁵, interact with the diphosphate, but in the complex of the low activity mutant of α3GT (E³¹⁷Q) with the substrate UDP-gal, the side chain of Lys³⁵⁹ is disordered and only Arg³⁶⁵ interacts with the α-phosphate (22). The interaction with Arg³⁶⁵ is facilitated by structural changes in a loop containing Trp¹⁹⁵, with which Arg³⁶⁵ forms a stacking interaction. In the structure of a complex of the inhibitory substrate analog, UDP-2F-gal, with the R365K mutant of α3GT, the side chain of Lys³⁵⁹ points toward the β-phosphate of the inhibitor, but the C-terminal 9 residues including Arg³⁶⁵ are disordered (23). It should be noted that these complexes contain catalytically impaired mutants of the enzyme and, in one case, an inhibitor rather than substrate and are imperfect models of the enzyme-substrate complex. Both Lys³⁵⁹ and Arg³⁶⁵ make contacts with UDP in its complex with α3GT (22, 23), and conservative substitutions of Lys³⁵⁹ to Arg or Arg³⁶⁵ to Lys result in >30-fold reductions in k_cat but have small (~2-fold) effects on the K_m for UDP-gal (23); the Lys to Ala mutation produces a 350-fold reduction in k_cat. Therefore Lys³⁵⁹ and Arg³⁶⁵ are important, although not essential, for activity and appear to have a principal role in transition state stabilization, mediated through interactions with the UDP leaving group, as opposed to (ground-state) substrate binding.

Lys²³¹ of BoGT6α is homologous with Lys³⁵⁹ of α3GT, a residue that is conserved in all metal-dependent (DXD) and metal-independent (NXX) GT6. However, the residue corresponding to Arg³⁶⁵ of α3GT is conserved in most other metal-dependent GT6 enzymes but not in the bacterial enzymes. The present structural studies indicate that Arg²⁴³ of BoGT6a has a similar structural location to α3GT Arg³⁶⁵ but appears to interact less specifically with the diphosphate moiety. Also, it is not within H-bonding distance of the diphosphate in structure C. Substitution of Lys²³¹ by Ala increased the K_m about 2-fold but reduced k_cat more than 200-fold, whereas the double mutation of Arg²⁴³ and Arg²⁴⁴ to Ala reduced k_cat by a factor of 10 (12).

FIGURE 5. Effects of binding different ligands on the conformation of BoGT6α. A, superimposed ribbon structures of apo-protein (orange), FAL complex (green), and UDP-GalNac complex (cyan). The UDP-GalNac ligand from the latter complex is colored gray. The marked loops are regions that undergo major structural adjustments and are discussed under “Results and Discussion.” B, superimposed ribbon structures of chain A (structure B, yellow), chain E (structure A, cyan), and chain M (structure C, purple). The UDP-GalNac ligand from chain E is colored gray.

FIGURE 6. Surface diagrams of three BoGT6α structures. A, structure A. B, structure B. C, structure C. The protein surface is colored in gray, and C-terminal residues (229–245) and ligands are colored by chain structures (structure A in yellow, structure B in green, and structure C in cyan).
Thus, Lys231 has a greater stabilizing effect on the transition state than ground state and appears to help to stabilize the UDP leaving group during catalysis, a role similar to that of the homologous Lys in α3GT, which is consistent with the present structural studies.

Other Metal-independent Members of the GT-A Superfamily—The majority of Leloir GTs, enzymes that utilize sugar nucleotides as donor substrates, group into either of two large superfamilies that have GT-A and GT-B folds. The GT-B superfamily is metal-independent, whereas most representatives of the
GT-A fold superfamily that have been functionally characterized are metal-dependent and have DXD metal binding motifs (4). The sialyltransferases, whose donor substrate is a nucleotide monophosphate sugar (CMP- sialic acid), are metal-independent and include proteins with GT-A and GT-B-like folds, but with distinct topologies; comparisons of structure-function relationships between sialyltransferases and other GTs are challenging because of their nonstandard folds and the character of the donor substrate (29). Among the members of the “standard” GT-A group that have been functionally characterized, only the members of GT14 are metal-independent like BoGT6a. The GT14 and GT6 families differ in catalyzing inverting and retaining reactions, respectively, but GT14 members also differ in having no conserved motif corresponding to DXD (or NXN). The crystallographic structures of one GT14, leukocyte type core 2 β1,6-N-acetylglucosaminyl-transferase (C2GnT-1), in the apo-form and in complexes with either acceptor substrate or UDP, have been determined (21, 30). The enzyme is a disulfide-bonded dimer and, in the complex with UDP, the two molecules of each dimer are in “open” and “closed” conformations. In the closed conformation, two basic residues close to the C terminus of the protein, Arg378 and Lys401, interact with the β-phosphate of the UDP, but these interactions are not present in the open conformer. Substitution of either Arg378 or Lys401 by Ala eliminates catalytic activity, but the Arg378 mutation has relatively small effects on the binding of UDP or UDP-GalNAc, whereas the Lys401 mutation eliminates binding. Based on these observations, these two cationic residues were proposed to fulfill the role of the metal ion in metal-dependent GT-A GTs. Although the characterized enzymes of the GT14 family are metal-independent, in some cases, the activity is enhanced by divalent metals (31). Therefore, they appear to have a metal binding site and may have evolved from a metal-dependent ancestor. In contrast, the activity of BoGT6a decreases when increasing levels of Mn2+ ion are added to the enzyme (12).

Conclusion—As discussed above, two C-terminal basic residues in BoGT6a interact with the donor substrate, but these interactions are similar to those in metal-dependent GT6. If we surmise that the GT-A superfamily evolved from a metal-dependent common ancestor, it would seem that the GT6 and GT14 families have used different adaptations to become metal-independent. In the GT6 family, we propose that the replacement of the DXD motif by NXN was a major factor in the transition between metal dependence and metal independence. This double substitution removes the requirement for a divalent metal ion to counter charge repulsion between the aspartates and diphosphate of the UDP. Therefore in the metal-dependent GT6, the role of the metal ion in donor substrate binding in the ground state and in stabilizing the UDP leaving group in the transition state (4) is effectively performed by the polypeptide in the metal-independent GT6.

Acknowledgments—We thank the scientists at stations I04 and I04-I at the Diamond Light Source, Didcot, Oxon, United Kingdom for support during x-ray diffraction data collection.
21. Pak, J. E., Satkunarajah, M., Seetharaman, J., and Rini, J. M. (2011) Structural and mechanistic characterization of leukocyte-type core 2 β1,6-N-acetylgalcosaminyltransferase: A metal-ion-independent GT-A glycosyltransferase. J. Mol. Biol. 414, 798–811

22. Tumbale, P., Jamaluddin, H., Thiyagarajan, N., Brew, K., and Acharya, K. R. (2008) Structural basis of UDP-galactose binding by α-1,3-galactosyltransferase (α3GT): role of negative charge on aspartic acid 316 in structure and activity. Biochemistry 47, 8711–8718

23. Jamaluddin, H., Tumbale, P., Withers, S. G., Acharya, K. R., and Brew, K. (2007) Conformational changes induced by binding UDP-2F-galactose to α-1,3 galactosyltransferase – implications for catalysis. J. Mol. Biol. 369, 1270–1281

24. Boix, E., Zhang, Y., Swaminathan, G. J., Brew, K., and Acharya, K. R. (2002) Structural basis of ordered binding of donor and acceptor substrates to the retaining glycosyltransferase, α-1,3-galactosyltransferase. J. Biol. Chem. 277, 28310–28318

25. Tumbale, P., Jamaluddin, H., Thiyagarajan, N., Acharya, K. R., and Brew, K. (2008) Screening a limited structure-based library identifies UDP-GalNAc-specific mutants of α-1,3-galactosyltransferase. Glycobiology 18, 1036–1043

26. Alfaro, J. A., Zheng, R. B., Persson, M., Letts, J. A., Polakowski, R., Bai, Y., Borisova, S. N., Seto, N. O., Lowary, T. L., Palcic, M. M., and Evans, S. V. (2008) ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J. Biol. Chem. 283, 10097–10108

27. Hosseini-Maaf, B., Letts, J. A., Persson, M., Smart, E., LePennec, P. Y., Hustinx, H., Zhao, Z., Palcic, M. M., Evans, S. V., Chester, M. A., and Olsson, M. L. (2007) Structural basis for red cell phenotypic changes in newly identified, naturally occurring subgroup mutants of the human blood group B glycosyltransferase. Transfusion 47, 864–875

28. Seto, N. O., Palcic, M. M., Compston, C. A., Li, H., Bundle, D. R., and Narang, S. A. (1997) Sequential interchange of four amino acids from blood group B to blood group A glycosyltransferase boosts catalytic activity and progressively modifies substrate recognition in human recombinant enzymes. J. Biol. Chem. 272, 14133–14138

29. Audry, M., Jeannneau, C., Imberty, A., Harduin-Lepers, A., Delannoy, P., and Breton, C. (2011) Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 21, 716–726

30. Pak, J. E., Arnoux, P., Zhou, S., Sivarajah, P., Satkunarajah, M., Xing, X., and Rini, J. M. (2006) X-ray crystal structure of leukocyte type core 2 β1,6-N-acetylgalcosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism. J. Biol. Chem. 281, 26693–26701

31. Sun, H. Y., Lin, S. W., Ko, T. P., Pan, J. F., Liu, C. L., Lin, C. N., Wang, A. H., and Lin, C. H. (2007) Structure and mechanism of Helicobacter pylori fucosyltransferase: a basis for lipopolysaccharide variation and inhibitor design. J. Biol. Chem. 282, 9973–9982

32. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127–134

33. Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797