CITED2 in breast carcinoma as a potent prognostic predictor associated with proliferation, migration and chemoresistance

Hiroyuki Minemura, Kiyoshi Takagi, Ai Sato, Hikaru Takahashi, Yasuhiro Miki, Yukiko Shibahara, Mika Watanabe, Takanori Ishida, Hirosho Sasano and Takashi Suzuki

Cancer Sci 107 (2016) 1898–1908 doi: 10.1111/cas.13081

Key words
Breast cancer, chemoresistance, immunohistochemistry, prognosis, proliferation

Correspondence
Takashi Suzuki, Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai; Department of Pathology, Tohoku University Hospital, Sendai; *Department of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan

CITED2 (Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2) is a member of the CITED family and is involved in various cellular functions during development and differentiation. Mounting evidence suggests the importance of CITED in the progression of human malignancies, but the significance of CITED2 protein has not yet been examined in breast carcinoma. Therefore, in the present study, we examined the clinical significance and the biological functions of CITED2 in breast carcinoma by immunohistochemistry and in vitro study. CITED2 immunoreactivity was detected in breast carcinoma tissues, and it was significantly higher compared to those in morphologically normal mammary glands. CITED2 immunoreactivity was significantly associated with stage, pathological T factor, lymph node metastasis, histological grade, HER2 and Ki-67, and inversely correlated with estrogen receptor. Moreover, the immunohistochemical CITED2 status was significantly associated with increased incidence of recurrence and breast cancer-specific death of the breast cancer patients, and multivariate analyses demonstrated CITED2 status as an independent worse prognostic factor for disease-free and breast cancer-specific survival. Subsequent in vitro experiments showed that CITED2 expression significantly increased proliferation activity and migration property in MCF-7and 5 KBR-3 breast carcinoma cells. Moreover, CITED2 caused chemoresistance to epirubicin and 5-fluorouracil, but not paclitaxel, in these cells, and it inhibited p53 accumulation after 5-fluorouracil treatment in MCF-7 cells. These results suggest that CITED2 plays important roles in the progression and chemoresistance of breast carcinoma and that CITED2 status is a potent prognostic factor in breast cancer patients.

Invasive breast cancer is generally regarded as a disease that metastasizes at an early stage, and adjuvant therapy, such as endocriner therapy and/or chemotherapy (epirubicin [EPI], 5-fluorouracil [SFU] and paclitaxel [PTX]), is frequently used after surgical treatment. However, some of these carcinomas acquire clinical resistance and recur despite the therapy. The recurrence rate was approximately 10% after 5-years of endocrine therapy in estrogen receptor (ER)-positive early breast cancer, and results of 11 adjuvant chemotherapy trials revealed that 25% of the patients who received adjuvant chemotherapy developed distant recurrence. Therefore, it is very important to evaluate biological markers in breast cancer patients to predict their cancer recurrence after surgery and to evaluate the need for additional therapies.

We previously compared gene expression profiles between recurrent and non-recurrent groups of ER-positive breast carcinoma patients after surgery, and identified 17 genes linked to the recurrence. Among these, we are particularly interesting in CITED2 (Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2). CITED2 is a member of the CITED family and regulates various cellular functions during development and differentiation. The CITED family includes three members, three of which are present in mammals, CITED1, 2 and 4, and mounting evidence suggests the importance of CITED in the progression of breast carcinoma. For instance, CITED1 interacts with ER during normal development of mammary glands and CITED1 expression correlates with a good outcome in breast cancer. Induction of HER2 expression by CITED1 has also been reported in breast carcinoma. CITED4 expression is downregulated in breast carcinoma by DNA methylation and inhibits hypoxia-inducible factor 1α (HIF-1α) transactivation. The association between CITED2 mRNA expression and prognosis of ER-positive human breast cancer has been examined by quantitative RT-PCR, but the results are inconsistent and the significance of CITED2 remains unclear. This may be because the significance of CITED2 protein has not been examined in breast carcinoma tissues. Therefore, in this study, we examined CITED2 in breast carcinoma by immunohistochemistry and in vitro study to explore its clinical significance and biological functions.
Materials and Methods

Patients and tissues. For the present study, 109 specimens of invasive ductal carcinoma, not otherwise specified, were obtained from female Japanese patients who underwent surgical treatment from 2007 to 2008 in Tohoku University Hospital (Sendai, Japan). The patients were derived from a cohort of successive patients treated at Tohoku University Hospital, and review of the charts revealed that 52 patients received adjuvant chemotherapy, while 88 patients received adjuvant endocrine therapy after the surgery. In addition, we obtained 56 specimens of invasive ductal carcinoma, not otherwise classified, from female Japanese patients who underwent surgical treatment from 1995 to 1999 in Tohoku University Hospital (Sendai, Japan), as a second cohort for this study.

As shown in Table S1, the clinicopathological characteristics of the 109 breast carcinomas examined were not markedly different from those previously reported in breast cancer.\(^\text{(12)}\) CITED2 immunoreactivity in non-neoplastic mammary glands was also available for examination in 80 out of the 109 cases examined in this study. Research protocols for the present study were approved by the Ethics Committee at Tohoku University School of Medicine.

Immunohistochemistry. Mouse monoclonal antibodies for CITED2 (LS-B243) and Ki-67 (MIB1) were purchased from LSBio (Seattle, WA, USA) and Dako (Carpinteria, CA, USA), respectively. The antigen–antibody complex was visualized with 3,3′-diaminobenzidine solution and counterstained with hematoxylin. Immunohistochemistry for ER (CONFIRM anti-ER [SP1]) and progesterone receptor (PR) (CONFIRM anti-PR [1E2]; Roche Diagnostics Japan, Tokyo, Japan) was performed with Ventana Benchmark XT (Roche Diagnostics Japan), and that for HER2 was performed by HercepTest (Dako).

Scoring of immunoreactivity and subgroup definition of the breast carcinoma. CITED2 immunoreactivity was detected in the nucleus of carcinoma cells and was evaluated using the H-scoring system with some modifications.\(^\text{(13)}\) Briefly, the H-score was generated by adding together 2× the percentage of strongly stained nuclei, 1× the percentage of weakly stained nuclei and 0× the percentage of negative nuclei, giving a range of 0–200. The CITED2 H-score in the non-neoplastic glands was similarly evaluated as for the carcinoma cells.

For ER, PR and Ki-67 immunostaining, the percentage of immunoreactivity (labeling index [LI]) was determined. Cases with ER or PR LI of more than 1% were considered ER-positive or PR-positive breast carcinoma.\(^\text{(14)}\) HER2 immunostaining was scored according to the standardized HercepTest scoring system, and the score 3+ was considered positive. Intrinsic subtype was defined according to the 2011 St Gallen scoring system, and the score 3+ was generated by adding together 2× the percentage of strongly stained nuclei, 1× the percentage of weakly stained nuclei and 0× the percentage of negative nuclei, giving a range of 0–200. The CITED2 H-score in the non-neoplastic glands was similarly evaluated as for the carcinoma cells.

Plasmid transfection. CITED2 expression plasmids were constructed by inserting a full-length open-reading frame of CITED2 mRNA (NM_006079) into the vector pcDNA3.1 (−) (Invitrogen, Carlsbad, CA, USA) using the restriction enzymes ApaI and Kpn1 (CITED2 plasmid). The plasmid was transfected into MCF-7 and SKBR-3 cells using Lipofectamine 3000 Reagent (Invitrogen). As a control, empty vector pcDNA3.1 (−) was transfected in this study.

siRNA transfection. Two siRNA oligonucleotides for CITED2 used in this study were designed as follows: siCITED2-1 (sense: 5′-UUAGUCCUUGGGAGUAGATT-3′; antisense: 5′-UCUACCAAGGAGCAUATT-3′) and siCITED2-2 (sense: 5′-UGACCGAUCUGGUGCAATT-3′; antisense: 5′-UUGCCACAGAGGUGCCATT-3′). These were purchased from Sigma-Aldrich. MISSION siRNA Universal Negative Control (Sigma-Aldrich) was used as a negative control (siCTRL). The siRNA (10 nM) was transfected using the Lipofectamine 3000 Reagent (Invitrogen) according to the manufacturer’s protocol.

Cell proliferation and wound healing assay. MCF-7 and SKBR-3 were transfected with CITED2 plasmid or CITED2-specific siRNA in 96-well culture plates. The cell proliferation status was measured by the WST-8 (2-(2-methoxy-4-nitrophe- nyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) method using Cell Counting Kit-8 (Dojindo Molecular Technologies, Kumamoto, Japan) 0–4 days after the transfection in these cells.

Chemoresistance assay. To evaluate fluctuation of chemoresistance according to the expression level of CITED2 in MCF-7 and SKBR-3 cells, the cells transfected with CITED2 plasmid or CITED2 siRNA were treated with 1 μM EPI (Wako),
10 µg/mL 5FU (Wako), a combination of EPI (1 µM) and 5FU (1 µg/mL) or 5 nM PTX (Wako). These are frequently used for breast cancer patients, and the concentrations were determined by referring to previous reports.16-18 Three days after the incubation, relative cell viability was calculated as the ratio of treated cells to nontreatment cells the WST-8 assay.

Statistical analysis. CITED2 status and clinicopathological factors were evaluated by a Mann-Whitney U-test or a cross-table using the χ²-test. Disease-free and breast cancer-specific survival curves were generated according to the Kaplan-Meier method, and statistical significance was calculated using the log-rank test. Univariate and multivariate analyses were evaluated using a proportional hazard model (Cox). P-values < 0.05 and 0.05 ≤ P-values < 0.10 were considered significant and borderline significant in this study, respectively.21 In *in vitro* experiments, statistical analyses were performed using Student’s t-test and Fisher’s protected least significant difference test.

Results

CITED2 immunolocalization in human breast carcinoma. CITED2 immunoreactivity was detected in the nucleus of breast carcinoma cells (Fig. 1a,b). CITED2 was also immunolocalized in the morphologically normal glands, but not in the stroma (Fig. 1c). The CITED2 H-score was significantly (P = 0.0007 by a Mann-Whitney U-test) higher in the breast carcinoma (the median with min-max value: 41 with range of 5–160) than the non-neoplastic mammary glands adjacent to the carcinoma (40 with range of 5–65) (Fig. 1d). The CITED2 H-score was also significantly higher in the breast carcinoma than the corresponding non-neoplastic mammary glands of the same case in the 80 paired samples examined (P = 0.0005 by a Wilcoxon signed rank test) (data not shown). Because almost all (90th percentile) non-neoplastic mammary glands revealed an H score ≤60 for CITED2, cases with an H score of more than 60 were considered CITED2-high breast carcinoma in this study.22

Associations between immunohistochemical CITED2 status and clinicopathological parameters in the breast carcinoma cases are summarized in Table 1. The CITED2 status was significantly associated with stage (P = 0.025), pathological T factor (pT) (P = 0.045), lymph node metastasis (P = 0.017), histological grade (P = 0.021), HER2 status (P = 0.024), Ki-67 LI (P = 0.0082) and intrinsic subtype (P = 0.028), while it was inversely correlated with ER status (P = 0.033). No significant association was detected between CITED2 status and other factors examined in this study.

Association between CITED2 status and clinical outcome of the patients. As shown in Figure 2(a), CITED2 status was significantly associated with an increased incidence of recurrence in breast cancer patients (P < 0.0001). A significant association was also detected between CITED2 status and an adverse clinical outcome of these patients (P = 0.0089) (Fig. 2b). A similar tendency was detected regardless of the sample collection period (1995–1999) in which the aromatase inhibitor had not yet been used (Fig. 2c,d). Significant associations between CITED2 status and disease-free survival were also detected in the cases with lymph node metastasis (P = 0.048) (Fig. 2e) and in pT2-4 cases (P = 0.024) (Fig. 2f). Moreover, CITED2 status was significantly associated with recurrence in the patients who received adjuvant chemotherapy (P = 0.016) (Fig. 2g) or endocrine therapy (P = 0.0024) (Fig. 2h). The results of univariate analysis of disease-free survival using Cox (Table 2), Ki-67, pT, CITED2, PR, lymph node metastasis and histological grade were demonstrated to be significant prognostic factors for disease-free survival and ER was determined to be borderline significant. Multivariate analysis revealed that CITED2 (P = 0.0036), Ki-67 (P = 0.0042) and PR (P = 0.029) were independent prognostic factors.

As shown in Table 3, univariate analyses for breast cancer-specific survival revealed Ki-67, PR, histological grade, pT, lymph node metastasis and CITED2 as significant prognostic variables in these patients, and ER was determined to be borderline significant. Subsequent multivariate analysis revealed that PR (P = 0.016), Ki-67 (P = 0.030) and CITED2
Table 1. Association between CITED2 immunoreactivity and clinicopathological parameters in 109 breast carcinoma cases

CITED2 status	High (n = 38)	Low (n = 71)	P-value
Age† (years)	56 (27-82)	56 (36-87)	0.28
Menopausal status			
Premenopausal	13	26	0.66
Postmenopausal	25	45	
Stage			
I	15	45	0.025*
II	12	18	
III	11	8	
Pathological T factor (pT)			
pT1	20	51	0.045*
pT2-4	18	20	
Lymph node metastasis			
Positive	19	18	0.017*
Negative	19	53	
Histological grade			
1 (well)	7	35	0.021*
2 (moderate)	17	26	
3 (poor)	14	10	
ER status			
Positive	26	61	0.033*
Negative	12	10	
PR status			
Positive	22	52	0.11
Negative	16	19	
HER2 status			
Positive	10	7	0.024*
Negative	28	64	
Ki-67 LI† (%)	17 (1–53)	9 (1–60)	0.0082*
Intrinsic subtype			
Luminal A	13	43	0.028*
Luminal B	12	18	
HER2	6	3	
Triple negative	7	7	

*Data represent the median (min–max), and the statistical analyses were performed using Mann-Whitney’s U-test. All other values are presented as the number of cases, and the statistical analyses were performed using a cross-table applying the χ²-test. *P-value < 0.05 was considered significant.

(P = 0.042) were independent parameters of the patients in this study.

Effects of CITED2 expression on cell proliferation and migration in breast carcinoma cells. To examine the biological functions of CITED2 in human breast carcinoma cells, we transfected CITED2 plasmid into ER-positive MCF-7 and ER-negative SKBR-3 cells. As shown in the upper panels of Figure 3(a), CITED2 mRNA expression levels were significantly increased in the cells transfected with CITED2 plasmid compared to those transfected with control plasmid (P < 0.001 in MCF-7 and P < 0.001 in SKBR-3). Accordingly, CITED2 protein levels were markedly increased in these cells transfected with CITED2 plasmid under the same conditions (Fig. 3a, lower panels).

The effects of CITED2 expression on cell proliferation in breast carcinoma cells are summarized in Figure 3(b). The number of cells was significantly increased in MCF-7 cells transfected with CITED2 plasmid from 3 to 4 days after the transfection (Day 3: P < 0.05 and Day 4: P < 0.001) compared to the control cells transfected with control plasmid. Similar tendency was also detected in SKBR-3 cells under the same conditions (Day 3: P < 0.01 and Day 4: P < 0.05). When we performed a wound healing assay in these cells, relative migration areas in MCF-7 and SKBR-3 cells transfected with CITED2 plasmid were significantly decreased compared to their controls (MCF-7; P < 0.05 at 24 h and P < 0.01 at 36 h, and SKBR-3; P < 0.05 at 96 h) (Fig. 3c). As shown in Figure S1, transfection of CITED2 plasmid did not significantly influence the estrogen-mediated proliferation (P = 0.74) and migration properties (P = 0.32) in MCF-7 cells in this study.

Because CITED2 expression was abundant in MCF-7 cells (Fig. 3a), we next transfected specific siRNA for CITED2 into MCF-7 cells. The mRNA expression levels of CITED2 were significantly decreased in MCF-7 cells transfected with specific CITED2 siRNA (siCITED2-1 or siCITED2-2) 3 days after transfection compared with those in cells transfected with negative control siRNA (siCTRL) (Fig. 3d, upper panel). Decreased protein levels of CITED2 were confirmed by immunoblotting under the same conditions (Fig. 3d, lower panel). MCF-7 cells transfected with CITED2 siRNA showed significant decrease in the cell proliferation activity from 3 to 4 days after the transfection (Fig. 3e) and migration area 36 h after removal of the culture insert (Fig. 3f).

Our immunohistochemical analysis showed a significant association between CITED2 and HER2 status in the breast carcinoma (Table 1). HER2 mRNA level was increased 2.0-fold in HER2-positive SKBR-3 cells transfected with CITED2 plasmid compared to the control cells, but it did not reach significance (P = 0.12) in this study (Fig. S2).†

Effects of CITED2 on chemoresistance in breast carcinoma cells. In our immunohistochemical study, CITED2 status was significantly associated with worse clinical outcome of breast cancer patients regardless of the adjuvant chemotherapy after the surgery (Fig. 2g). However, to the best of our knowledge, the effects of CITED2 on chemoresistance have not been reported in breast carcinoma. As shown in Figure 4(a), relative cell viability was significantly higher (P < 0.001 and P < 0.05) in MCF-7 and SKBR-3 cells transfected with CITED2 plasmid compared to the cells transfected with control plasmid under the treatment of EPI. A similar tendency was detected in these cells transfected with CITED2 plasmid under 5FU treatment (Fig. 4b) or combination treatment with EPI and 5FU (Fig. 4c). However, the relative cell viability was not significantly changed in these cells under the PTX treatment in this study (Fig. 4d).

As shown in Figure 4(e), the relative cell viability tended to be decreased in the MCF-7 cells transfected with CITED2 siRNA compared to the cells transfected with siCTRL under the treatment with EPI, 5FU and their combination, although
Original Article
CITED2 in breast carcinoma

(a) Whole cases

Disease-free survival (%)

- CITED2: low (n = 71)
- CITED2: high (n = 38)

P < 0.0001

(b) Whole cases

Disease-free survival (%)

- CITED2: low (n = 71)
- CITED2: high (n = 38)

P = 0.0089

(c) Cases collected from 1995-1999

Disease-free survival (%)

- CITED2: low (n = 36)
- CITED2: high (n = 20)

P = 0.046

(d) Cases collected from 1995-1999

Disease-free survival (%)

- CITED2: low (n = 36)
- CITED2: high (n = 20)

P = NE

(e) Cases with lymph node metastasis

Disease-free survival (%)

- CITED2: low (n = 18)
- CITED2: high (n = 19)

P = 0.048

(f) pT2-4 cases

Disease-free survival (%)

- CITED2: low (n = 20)
- CITED2: high (n = 18)

P = 0.024

(g) Adjuvant chemotherapy group

Disease-free survival (%)

- CITED2: low (n = 28)
- CITED2: high (n = 24)

P = 0.016

(h) Adjuvant endocrine therapy group

Disease-free survival (%)

- CITED2: low (n = 60)
- CITED2: high (n = 28)

P = 0.0024
Effects of CITED2 on cell proliferation and migration properties in breast carcinoma cells. (a) Expression of CITED2 mRNA evaluated by real-time PCR in MCF-7 (left upper panel) and SKBR-3 (right upper panel) cells transfected with CITED2 plasmid (pcCITED2; open bar) or control plasmid (pcDNA3.1; closed bar). Lower panels show the corresponding CITED2 immunoreactivity in MCF-7 (left) and SKBR-3 (right) cells by immunoblotting. (b) Proliferation activity of MCF-7 (left) and SKBR-3 (right) cells transfected with CITED2 plasmid summarized as a ratio compared to that at 0 days after treatment. (c) Expression of CITED2 mRNA evaluated by real-time PCR in MCF7 (left upper panel) and SKBR-3 (right upper panel) cells transfected with CITED2 plasmid (pcCITED2; open bar) or control plasmid (pcDNA3.1; closed bar). Lower panels show the corresponding CITED2 immunoreactivity in MCF-7 (left) and SKBR-3 (right) cells by immunoblotting. (d) Proliferation activity of MCF-7 cells transfected with siRNA summarized as a ratio compared to that at 0 h after removal of culture insert. (e) Proliferation activity of MCF-7 cells transfected with siRNA summarized as a ratio compared to that at 0 h after removal of culture insert. Right panels show representative microphotographs under the indicated condition. In all figures, data were presented as the mean ± SD (n = 3), and statistical analyses were performed compared to the control cells transfected with control plasmid or control siRNA. *P < 0.05, **P < 0.01 and ***P < 0.001.

Table 2. Univariate and multivariate analyses of disease-free survival in 109 breast cancer patients examined

Variable	Univariate	Multivariate
	P-value	P-value
Ki-67 Li† (0–60)	<0.0001**	0.0042
pT (pT1/pT2–4)	0.0033**	0.080
CITED2 status (Low/high)	0.0044**	0.0036
PR status (Negative/positive)	0.0021**	0.029
Lymph node metastasis (Negative/positive)	0.0040**	0.099
Histological grade (1,2/3)	0.0070**	0.11
ER status (Negative/positive)	0.050*	0.36
HER2 status (Negative/positive)	0.26	0.43

Univariate and multivariate analyses of disease-free survival in 109 breast cancer patients examined. Statistical analysis was evaluated by a proportional hazard model (Cox). **P-value < 0.05 and 0.05 ≤ *P-value < 0.10 were considered significant and borderline significant respectively, and these values were examined in the multivariate analyses in this study. Data were evaluated as continuous variables, and all other data were evaluated as dichotomized variables. 95% CI, 95% confidence interval.

Table 3. Univariate and multivariate analyses of breast cancer-specific survival in 109 breast cancer patients examined

Variable	Univariate	Multivariate
	P-value	P-value
Ki-67 Li† (0–60)	0.0001**	0.030
PR status (Negative/positive)	0.0078**	0.016
Histological grade (1,2/3)	0.0081**	0.74
pT (pT1/pT2–4)	0.014**	0.68
Lymph node metastasis (Negative/positive)	0.017**	0.16
CITED2 status (Low/high)	0.023**	0.042
ER status (Negative/positive)	0.072*	0.25
HER2 status (Negative/positive)	0.60	0.57

Univariate and multivariate analyses of breast cancer-specific survival in 109 breast cancer patients examined. Statistical analysis was evaluated by a proportional hazard model (Cox). **P-value < 0.05 and 0.05 ≤ *P-value < 0.10 were considered significant and borderline significant respectively, and these values were examined in the multivariate analyses in this study. Data were evaluated as continuous variables, and all other data were evaluated as dichotomized variables. 95% CI, 95% confidence interval.
P-values did not reach significance in some groups. In contrast, PTX treatment did not significantly alter the relative cell viability in these cells (Fig. 4e). We could not examine the chemoresistance assay in SKBR-3 cells transfected with CITED2 siRNA, because the CITED2 mRNA level was negligible in SKBR-3 cells, as shown in Figure 3(a).
Inhibition of p53 accumulation by CITED2 in MCF-7 cells after 5-fluorouracil treatment. Our present in vitro results showed that CITED2 was involved in the resistance to EPI and 5FU (which are known to cause DNA damage\(^{(24,25)}\) in breast carcinoma cells (Fig. 4). Because DNA damage induces p53 protein accumulation and p53-dependent apoptosis,\(^{(26)}\) we next examined...
the possible regulation of p53 expression by CITED2 under chemotherapy in MCF-7 cells with wild-type p53 (27).

As shown in Figure 5, the p53 protein level in MCF-7 cells transfected with CITED2 plasmid was similar to that in the control MCF-7 cells (97%) when these cells were not treated with the chemotherapy drug. The p53 protein level was accumulated after EPI and 5FU treatment for 3 days, but it was significantly lower (P < 0.01) after PTX treatment. A similar tendency was detected after EPI treatment, although it did not reach significance (P = 0.19). In contrast, the p53 protein level was similar in MCF-7 cells transfected with CITED2 plasmid compared to the cells transfected with control plasmid after PTX treatment (111%).

Discussion
This is the first study to demonstrate the clinical significance of CITED2 immunoreactivity in breast carcinoma. In this study, CITED2 immunoreactivity was significantly higher in breast carcinoma in comparison with non-neoplastic mammary glands. Previously, Lau et al. (11) show that expression of CITED2 mRNA was significantly elevated in invasive ductal carcinoma samples relative to normal mammary epithelium, which is in good agreement with our present results. CITED2 is a downstream target of MYC oncogene (28) and it is also induced by RAS oncogene through tumor susceptibility gene 101 (TSG101) (29). In addition, Sun et al. (30) show that overexpressed CITED2 in Rat1 fibroblasts caused tumor formation with fibrosarcoma-like characteristics in nude mice. Therefore, it is suggested that CITED2 protein is increased in the process of the mammary carcinogenesis and plays important roles in breast carcinomas.

In the present study, CITED2 immunoreactivity was significantly associated with Ki-67 LI and histological grade in breast carcinoma. Ki-67 LI reflects the proliferative activity of breast carcinoma, (31) while histological grade is evaluated by the mitotic rate, nuclear atypia and tubule formation of breast carcinoma. Moreover, the results of in vitro experiments demonstrated that CITED2 expression level was significantly associated with the proliferation activity of MCF-7 and SKBR-3 cells. Sun et al. (30) report increased anchorage-independent growth by overexpressed CITED2 in Rat1 fibroblasts, and Chou et al. (28) show that CITED2 significantly promotes the growth of lung carcinoma xenografts through CITED2/MYC/E2F3/p21 pathway. The present results are consistent with these reports, and it is suggested that CITED2 plays an important role in the cell proliferation of breast carcinoma.

The present study also revealed that CITED2 status was significantly associated with pT in breast carcinoma and CITED2 expression level was significantly associated with the migration property in MCF-7 and SKBR-3 cells. Chou et al. (32) report that knockdown of CITED2 in MDA-MB-231 breast carcinoma cells attenuated transforming growth factor β1 (TGFβ1)-mediated upregulation of matrix metalloproteinase-9 (MMP9) and cell invasiveness in vitro, and Lau et al. (11) show that CITED2 caused osteolytic bone metastasis of breast carcinoma in animal models, possibly through its regulation of TGFβ1 action. CITED2-mediated invasiveness has been also reported in colon cancer cells. (33) Taking these previous results together with our present results, CITED2 appears to promote the invasion of breast carcinoma.

In the present study, CITED2 status was significantly associated with recurrence and worse prognosis in breast cancer patients, and the results of multivariate analyses demonstrated that CITED2 status was an independent prognostic factor for both disease-free and breast cancer-specific survival. Chou et al. (28) demonstrate that CITED2 knockdown increased overall host mouse survival rates in a lung carcinoma xenograft model, and CITED2 expression was significantly associated with poor prognosis of lung cancer patients, which is consistent with our results. The association between CITED2 and the clinical outcome of ER-positive breast cancer patients is currently controversial. van Agthoven et al. (34) show that CITED2 mRNA level was significantly associated with prolonged metastasis-free survival of lymph node-negative patients with ER-positive breast cancer. However, we previously found CITED2 to be linked to the recurrence after tamoxifen therapy in ER-positive breast cancer patients based on microarray data (3) and Lau et al. (34) report that CITED2 mRNA expression in ER-positive breast carcinoma was higher in tumors from patients surviving less than 5 years from the time of diagnosis than those surviving >5 years. Lau et al. (34) also demonstrate that increased CITED2 expression resulted in estrogen-independent ER activation and reduced response to anti-estrogen therapy in breast carcinoma cell lines. The present results are consistent with later findings, and CITED2 may be, at least in a part, involved in the resistance to endocrine therapy of ER-positive breast carcinoma.

The association between CITED2 and chemoresistance has not been examined in breast carcinoma. Previous studies have shown that CITED2 modulates the effect of chemotherapy on some carcinoma cells, but these results are not necessarily consistent. For instance, CITED2 was overexpressed in KFR oxaliplatin-resistant ovarian carcinoma cells (35) cisplatin-resistant HeLa cells (36) and LS174T irinotecan-resistant colorectal carcinoma cells (37). In contrast, Ju et al. (38) report that CITED2 expression was downregulated in chemoresistant ovarian carcinomas and Regel et al. (39) show that gastric carcinoma cell
lines with a low CITED2 expression were more drug resistant to anthracyclines compared with those with high CITED2 expression. They also show that histone deacetylase (HDAC) inhibitor can overcome the resistance of mouse gastric carcinoma cells to anthracycline by inducing expression of CITED2. These divergent findings may be partly due to the different types of carcinoma cells examined. In the present study, CITED2 status was associated with worse prognosis of patients who received adjuvant chemotherapy, and in vitro studies demonstrated that CITED2 caused EPI and 5FU-resistant proliferation of MCF-7 and SKBR-3 cells. Therefore, CITED2 is suggested to play an important role in the chemoresistance of breast carcinoma.

Moreover, our in vitro studies showed that CITED2 inhibited p53 accumulation after 5FU treatment in MCF-7 cells with wild type p53. EPI and 5FU are known to cause DNA damage and it induces accumulation of p53 tumor suppressor protein and p53-dependent apoptosis. Previously, Wu et al. reported that knockdown of CITED2 sensitized cancer cells to cisplatin through stabilization of p53 and enhancement of p53-dependent apoptosis, which is consistent with our findings. However, CITED2 was not associated with the resistance to PTX in the breast carcinoma cells in our study. PTX induces tubulin and inhibits the disassembly of microtubules, and PTX-induced apoptosis is independent of p53 activity. Therefore, it is suggested that CITED2 causes chemoresistance of breast carcinoma through inhibition of p53-dependent apoptosis in the breast carcinoma. However, CITED2 was associated with resistance to EPI and 5FU also in SKBR-3 cells with mutant p53 in our study, and recent studies have demonstrated that CITED2 is involved in the maintenance of stem cells. Because CITED2 expression is associated with an aggressive phenotype of breast carcinoma through regulating a variety of biological functions, as described in this section, residual carcinoma cells following surgical treatment in CITED2-positive breast carcinomas could still have the potential to rapidly recur despite the adjuvant therapies. Further examinations are required to clarify the molecular mechanism of CITED2 associated with resistance to the adjuvant therapy in breast cancer patients.

In summary, CITED2 immunoreactivity was significantly increased in breast carcinoma tissues, and it turned out to be an independent worse prognostic factor for the breast cancer patients. Subsequent in vitro experiments demonstrated that CITED2 significantly promoted the proliferation activity and migration property in MCF-7 and SKBR-3 cells. Moreover, CITED2 increased chemoresistance to EPI and 5FU in these cells, and inhibited p53 accumulation after 5FU treatment in MCF-7 cells. These results suggest that CITED2 plays important roles in the progression and chemoresistance of breast carcinoma and that CITED2 status is a potent prognostic factor in breast cancer patients.

Acknowledgments
This work was partly supported by Grant-in-Aid for Scientific Research (25460410 and 26860229) from Japanese Ministry of Education, Culture, Sports, Science and Technology.

Disclosure Statement
The authors have no conflict of interest to declare.

References
1. Djalalov S, Beca J, Amir E, Krahn M, Trudeau ME, Hoch JS. Economic evaluation of hormonal therapies for postmenopausal women with estrogen receptor-positive early breast cancer in Canada. Curr Oncol 2015; 22: 84–96.
2. Tevaarwerk AJ, Gray RJ, Schneider BP et al. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years. Cancer 2013; 119: 1140–8.
3. Suzuki S, Takagi K, Miki Y et al. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin-treated breast cancer. Mol Cell Biol 2007; 27: 8648–57.
4. Fox SB, Braganca J, Turley H et al. CITED4 inhibits hypoxia-activated transcription in cancer cells, and its cytoplasmic location in breast cancer is associated with elevated expression of tumor cell hypoxia-inducible factor (HIF-1). Cancer Res 2004; 64: 6075–81.
5. Huang KT, Takara EA, Mikeska T, Byrne DJ, Dobrovic A, Fox SB. Aberrant DNA methylation but not mutation of CITED4 is associated with alteration of HIF-regulated genes in breast cancer. Breast Cancer Res Treat 2011; 130: 319–29.
6. van Agthoven T, Sieuwerts AM, Veldscholte J et al. CITED2 and NCOR2 in anti-oestrogen resistance and progression of breast cancer. Br J Cancer 2009; 101: 1824–32.

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
CITED2 in breast carcinoma

Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Fig. S1. Estrogen-mediated cell proliferation and migration activity in MCF-7 cells transfected with CITED2 plasmid.

Fig. S2. Expression of HER2 mRNA in SKBR-3 cells transfected with CITED2 plasmid.

Table S1. Clinicopathological characteristics of 109 breast carcinomas in the present study.