Management of patients with allergic diseases in the era of COVID-19

Eun Lee, MD, PhD
Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea

In the early days of the coronavirus disease 2019 (COVID-19) pandemic, allergic diseases, especially asthma, were considered to be risk factors for severe COVID-19 infection, hospitalization, and death. These concerns stemmed from the idea that individuals with allergic diseases are generally more susceptible to respiratory virus infections, which are major causes of exacerbation of allergic diseases. However, epidemiologic data with mechanistic studies showed that the associations between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and clinical outcomes of allergic diseases are complex and affected by diverse factors such as allergic disease severity, phenotypes, and control status with current medications. In addition, children generally have less severe clinical outcomes of COVID-19 than those of adults, which complicates the association between allergic diseases and COVID-19-related outcomes among them. The present review summarizes the complex relationship between COVID-19-related outcomes and allergic diseases (Table 1) to aid the management of SARS-CoV-2 infections among patients with allergic diseases.

Key words: Allergic disease, COVID-19, SARS-CoV-2

Introduction

Individuals with allergic diseases, particularly asthma, are more susceptible to respiratory virus infections, which are the leading causes of exacerbations of allergic diseases. Accordingly, in the early days of the coronavirus disease 2019 (COVID-19) pandemic, patients with allergic diseases were considered to have higher risk for COVID-19-related morbidity and mortality. However, accumulating evidence suggests that allergic diseases are not always associated with poor clinical outcomes of COVID-19 and that the relation between allergic diseases and COVID-19 is rather complex. Considering the relatively high prevalence of allergic diseases, a considerable number of patients with them become infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Various factors of allergic diseases, including phenotypes, medications, and control status, should be considered when predicting the clinical outcomes of COVID-19 in patients with allergic diseases. The present review summarizes the complex relationship between COVID-19-related outcomes and allergic diseases (Table 1) to aid the management of SARS-CoV-2 infections among patients with allergic diseases.

Asthma

Since the beginning of the COVID-19 pandemic, patients with asthma and their caregivers have been concerned about increased susceptibility to SARS-CoV-2 infection and severe COVID-19.

Table 1. Summary of the association between allergic diseases and COVID-19-related outcomes
Allergic diseases
Asthma
Nonallergic asthma
Allergic asthma
Severe uncontrolled asthma
ICS
Systemic corticosteroid
Biologics
Allergic rhinitis
No medication
Intranasal corticosteroid
Atopic dermatitis
No medication
Topical corticosteroid
Long-term (1 year) methotrexate
Long-term (1 year) systemic corticosteroid
Dupilumab
COVID-19, coronavirus disease 2019; ICS, inhaled corticosteroid

Table 1. Summary of the association between allergic diseases and COVID-19-related outcomes

Corresponding author: Eun Lee, MD, PhD. Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea

Email: unelee@daum.net, https://orcid.org/0000-0002-0145-7067

Received: 27 May 2022, Revised: 30 July 2022, Accepted: 11 August 2022

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2022 by The Korean Pediatric Society
The COVID-19 pandemic has affected the patterns of visits to medical institutions during asthma exacerbations. Patients with more severe asthma visited emergency departments and were hospitalized more often during versus before the pandemic. To better predict the clinical outcomes of patients with asthma who become infected with SARS-CoV-2, several factors including the medical history, severity, and treatment of individual asthma cases should be considered. Moreover, to manage asthma during the COVID-19 pandemic, each patient’s asthma phenotype and endotype require elucidation.

1. Association between asthma and clinical outcomes of COVID-19

Viral respiratory infections are common causes of asthma exacerbation in children and adults. Several studies have reported a substantial reduction in asthma exacerbation during the COVID-19 pandemic. However, whether SARS-CoV-2 infections cause or are associated with acute exacerbation in patients with asthma remains controversial. Such associations might be independent of improved asthma control during the COVID-19 pandemic considering possible confounding factors such as social distancing, minimal social interactions, and lower susceptibility of younger individuals to SARS-CoV-2 infection. To date, few studies have reported that SARS-CoV-2 infection can trigger asthma exacerbation but does not cause severe asthma exacerbation. Further large-scale studies are needed to confirm these associations between SARS-CoV-2 infection and asthma exacerbation.

In the early stages of the COVID-19 pandemic, the effect of asthma on COVID-19 severity in children was examined in small studies, partially because of the lower prevalence of COVID-19 in children. Whether asthma is a risk factor for COVID-19-associated hospitalization or severe COVID-19 remains controversial. Some studies have reported that asthma is not a risk factor for severe COVID-19 (Table 2). However, others reported that children (12–17 years) with asthma are at higher risk of requiring hospitalization for COVID-19. It has also reported that COVID-19 patients aged ≥16 years with asthma are more likely to require critical care (adjusted odds ratio [aOR], 1.20; 95% confidence interval [CI], 1.05–1.37), noninvasive ventilation (aOR, 1.36; 95% CI, 1.18–1.57), and oxygen supplementation (aOR, 1.33; 95% CI, 1.17–1.50) than those without asthma. These findings suggest that the association between asthma and severe COVID-19 is complex and that the characteristics of the study population require consideration to reveal the potential connections.

2. Effect of asthma severity and phenotypes on clinical outcomes of COVID-19

Asthma severity and control status affect COVID-19 severity. Because the prevalence of severe asthma in children is relatively low compared with that in adults, few studies have reported the effects of severe asthma on the clinical outcomes of COVID-19 in adolescents. Children aged 12–17 years with asthma prescribed one (adjusted hazard ratio [aHR], 2.58; 95% CI, 1.82–3.66) or 2 or more (aHR, 3.80; 95% CI, 2.41–5.95) courses of oral corticosteroids in the year preceding the COVID-19 pandemic were reportedly at greater risk of COVID-19-related hospitalization. In adults, uncontrolled asthma (OR, 1.64; 95% CI, 1.35–2.00) and the requirement of higher amounts of asthma medications, such as high-dose inhaled corticosteroid (ICS) combined with long-acting β-agonists (OR, 1.40; 95% CI, 1.22–1.60), was associated with severe COVID-19. Also, in patients aged ≥16 years, severe asthma significantly increases COVID-19-related mortality rates (aHR, 1.96; 95% CI, 1.25–3.08).

One reason for the ongoing debate about the association between asthma and COVID-19 outcome is the difference in asthma phenotype and endotype among patients. Allergic asthma, compared with nonallergic asthma, is associated with a lower risk of COVID-19-related hospitalization. Moreover, nonallergic asthma is associated with severe COVID-19, while allergic asthma is not. Although the mechanisms underlying these associations are unclear, the relation between angiotensin-converting enzyme 2 (ACE2) receptor expression in the airway and the degree of Th2 inflammation with genetic predisposition may provide some clues.

3. Effect of asthma medications on clinical outcomes of COVID-19

ICS is the mainstay of asthma medications. However, concern exists regarding whether ICS use is associated with an increased risk of susceptibility to SARS-CoV-2 infection or severe COVID-19 due to the potential immunosuppressive effects of ICS through increased susceptibility to secondary infection, viral replication promotion, and delayed viral clearance. However, ICS can be safely used in patients with asthma even during the COVID-19 pandemic and SARS-CoV-2 infection.

Table 2. Summary of results of studies on the impact of asthma and allergic rhinitis on COVID-19-related outcomes

Variable	Asthma	Allergic rhinitis
Susceptibility to SARS-CoV-2	No increased risk	No increased risk
COVID-19-related hospitalization	No increased risk or increased risk, especially in cases of severe, or uncontrolled asthma	No increased risk
Severe COVID-19	No increased risk or increased risk, especially in cases of nonallergic asthma	No increased risk
COVID-19-related mortality	No increased risk or increased risk, especially in cases of nonallergic asthma and/or severe, or uncontrolled asthma	No increased risk

COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
Several studies have reported that patients aged 16–49 years using ICS with or without long-acting β-agonists do not carry an increased risk for COVID-19-related in-hospital mortality.\(^{19}\) The proportion of ICS usage in adult asthma patients is significantly lower among those who are hospitalized due to COVID-19 than among those who are not.\(^{29}\) Moreover, ICS use in adult asthma patients is not associated with COVID-19 related mortality.\(^{28}\) The potential protective role of ICS against COVID-19 may be due to the suppressive effect of ICS on coronavirus replication,\(^{30}\) which can also support its use to treat COVID-19 itself. Furthermore, ACE2 and transmembrane serine protease 2 (TMPRSS2) gene expression levels are lower in asthmatic patients receiving ICS treatment.\(^{31}\) Previous studies reported that ICS use is safe regardless of SARS-CoV-2 infection; therefore, ICS should be used as prescribed. The discontinuation of asthma medication is linked with poorly controlled asthma and decreases quality of life.\(^{32,33}\) Therefore, maintaining a stable asthmatic status helps improve the clinical course and outcomes of COVID-19.

Studies on the safety of chronic or regular systemic corticosteroid treatment in COVID-19 patients remain scarce, and the results of the few studies to date are inconclusive. A need for systemic corticosteroid treatment indicates severe uncontrolled asthma associated with increased risks of severe COVID-19 and COVID-19-related mortality rates.\(^{2,34}\)

Allergic rhinitis

Since COVID-19 symptoms can often accompany upper respiratory tract infections, it can be difficult to distinguish from common cold and allergic rhinitis. The European Academy of Allergy and Clinical Immunology (EAACI) provides a set of criteria to distinguish COVID-19 from other rhinologic diseases using a modified Delphi process.\(^{35}\) Smell dysfunction, taste dysfunction, dyspnea, and cough are predominant symptoms of COVID-19, whereas sneezing, stuffy nose, and nasal pruritus with ocular itch or redness predominantly indicate allergic rhinitis. For the common cold, a runny and stuffy nose are the most common symptoms. When more than 2 rhinologic diseases develop simultaneously, more diverse symptoms may present.

During the COVID-19 pandemic, medications used for allergic rhinitis treatment, including intranasal corticosteroids, have been safely administered to patients with allergic rhinitis and SARS-CoV-2 infection. Although no studies have examined the association between intranasal corticosteroid use and COVID-19-related disease burden in children, studies in adults showed that intranasal corticosteroid therapy is associated with a lower risk of severe COVID-19 outcomes, including hospitalization, intensive care unit admission, and mortality.\(^{30}\) Similar patterns were observed when intranasal corticosteroids were administered to patients who had never been diagnosed with allergic rhinitis.\(^{36}\) Therefore, intranasal corticosteroids can be safely used in the management of allergic rhinitis even during SARS-CoV-2 infection.

Atopic dermatitis

Atopic dermatitis is one of the most common chronic inflammatory skin diseases.\(^{37}\) The association between atopic dermatitis and COVID-19 outcomes has been less commonly investigated.\(^{38}\) During the COVID-19 pandemic, an increased incidence of skin irritation and exacerbation of atopic dermatitis was reported, particularly among healthcare workers with prolonged use of personal protective equipment and increased work-related stress levels. Some studies in adults showed that atopic dermatitis was associated with an increased risk of COVID-19.\(^{39,40}\) Conversely, others reported that patients with atopic dermatitis do not have a significantly increased risk of SARS-CoV-2 infection.\(^{41}\) On the other hand, the risk of COVID-19-related hospitalization was significantly lower in children with atopic dermatitis, compared with those without atopic dermatitis, with no differences noted in the prevalence of COVID-19-related severity and critical care admission.\(^{42}\) These findings underline the complex relation among SARS-CoV-2 infection, COVID-19 outcomes, and atopic dermatitis.

Furthermore, concern exists regarding the effects of medications used to treat atopic dermatitis on SARS-CoV-2 infection and COVID-19 outcomes. Treatment with methotrexate for 1 year was not associated with severe COVID-19, COVID-19-related hospitalization, or critical care admission among children.\(^{43}\) However, use of systemic corticosteroids for 1 year was associated with an increased risk of COVID-19-related hospitalization.\(^{44}\) Even during the COVID-19 pandemic, well-controlled status of atopic dermatitis with appropriate medication is important for its proper management.

Food allergy

Only few studies have investigated the association between food allergy and COVID-19. A recent report stated that food allergy is associated with a decreased risk of SARS-CoV-2 infection.\(^{45}\) One plausible explanation might be behavioral changes in patients with food allergy, such as a decreased frequency of eating out. Apart from the association between food allergy and COVID-19, emphasis was placed on appropriate strategies for the management of food allergy with anaphylaxis during the pandemic due to the restriction of access to medical facilities.\(^{44,45}\) These strategies included the use of telemedicine to improve treatment decision-making, full-time carrying of epinephrine autoinjector devices, and avoidance of known allergens.\(^{44,45}\)

Possible mechanisms for protective effects of allergic diseases in COVID-19 era

Type 2 inflammation might play a role in the association among allergic diseases, protective role of the therapies for asthma and allergic rhinitis, allergen sensitization, individuals’ aller-
Allergic immunotherapy in the era of COVID-19

Allergic immunotherapy can alter the clinical course of asthma and allergic rhinitis, even in children. Concern exists about the continuity of allergen immunotherapy in respiratory tract infections, including SARS-CoV-2 infection. A study on the effect of allergen immunotherapy in children infected with influenza virus indicated that children on maintenance doses of allergen immunotherapy show fewer symptoms and quick recovery from respiratory tract infections.56 These findings suggest that allergen immunotherapy can be continued even during respiratory virus seasons, and likewise, during the COVID-19 pandemic.57

The EAACI recommends administration of the COVID-19 vaccine at intervals of 7 days from subcutaneous allergen immunotherapy due to potential side effects.57 In addition, it is recom-
mended to discontinue sublingual immunotherapy 3 days before COVID-19 vaccination and resume 7 days after COVID-19 vaccination.\(^57\)

Biologics in the era of COVID-19

Biologics can be prescribed for uncontrolled severe asthma and moderate to severe atopic dermatitis, even in children and adolescents.\(^20\) The biologics used in allergic diseases block type 2 inflammation pathways.\(^58\) Some epidemiologic studies reported that biologics are not associated with an increased risk of COVID-19\(^59\) and that patients treated with biologics have a relatively low prevalence of COVID-19-related hospitalization.\(^29\) Biologics used to treat asthma are not associated with increased risks of SARS-CoV-2 infection or severe COVID-19.\(^60-62\) In addition, dupilumab therapy for severe atopic dermatitis is safely and continuously used for better disease outcome, regardless of the presence of COVID-19,\(^63,64\) as dupilumab does not affect antibody levels after mRNA vaccination for COVID-19.\(^65\) Based on the above mentioned findings, biologics can be safely used even during the COVID-19 pandemic.

COVID-19 vaccination in patients with allergic diseases

The age at which children can be vaccinated against COVID-19 has been gradually expanded, although more data are required to confirm the adverse reactions of COVID-19 vaccine in younger children.\(^66\) COVID-19 vaccination can be safely administered in children and adolescents with allergic diseases except in cases of polysorbate or poly-ethylene glycol allergy and COVID-19 vaccine allergy. The pre-vaccine risk stratification algorithm can be used with a thorough history taking of adverse reactions to vaccines or other medications.\(^67\)

Evidence is limited on the potential effects of allergen immunotherapies and biologics targeting Th2 inflammation on anti-infectious vaccines.\(^57\) A previous study showed that allergen immunotherapy has no effect on the booster vaccine dose for tick-borne encephalitis.\(^68\) Omalizumab therapy is well tolerated in response to live attenuated influenza vaccine.\(^69\) Although further evidence is needed, allergen immunotherapy and biologics for allergic diseases can be safely used regardless of COVID-19 vaccination.

Conclusion

The risk of SARS-CoV-2 infection and severe COVID-19 outcomes are not elevated in patients with well-controlled asthma, particularly the type 2 phenotype of asthma and other allergic diseases. The mainstay treatment, i.e., ICS, intranasal corticosteroid, and topical corticosteroid can be safely used even in SARS-CoV-2-infected patients with allergic diseases. COVID-19 vaccine can also be safely administered to patients with allergic diseases. Moreover, allergen immunotherapy and biologics used to treat allergic diseases can be safely continued without concern about antibody responses.

Footnotes

Conflicts of interest: No potential conflict of interest relevant to this article was reported.

Funding: This study was financially supported by Chonnam National University (Grant number: 2020–3735).

ORCID:

Eun Lee @ https://orcid.org/0000-0002-0145-7067

References

1. Cui J, Zhang Y, Zhao H, Sun X, Chen Z, Zhang Q, et al. The relationship between lower respiratory tract microbiome and allergic respiratory tract diseases in children. Front Microbiol 2021;12:630345.
2. Adir Y, Saliba W, Bearnier A, Humbert M. Asthma and COVID-19: an update. Eur Respir Rev 2021;30:210152.
3. Alabdulkarim N, Gai J, Bost J, Pillai D, Teach SJ, Rastogi D. Effect of the COVID-19 pandemic on morbidity among children hospitalized for an asthma exacerbation. Ann Allergy Asthma Immunol 2022;129:194-8.e1.
4. Yang Z, Wang X, Wan XG, Wang ML, Qiu ZH, Chen JI, et al. Pediatric asthma control during the COVID-19 pandemic: a systematic review and meta-analysis. Pediatr Pulmonol 2022;57:20-5.
5. Fan HF, He CH, Yin GQ, Qin Y, Jiang N, Lu G, et al. Frequency of asthma exacerbation in children during the coronavirus disease pandemic with strict mitigative countermeasures. Pediatr Pulmonol 2021;56:1455-63.
6. Ferraro VA, Zamunaro A, Spaggiari S, Di Riso D, Zanconato S, Carraro S. Pediatric asthma control during the COVID-19 pandemic. Immun Inflamm Dis 2021;9:561-8.
7. Golan-Tripto I, Arwas N, Mainon MS, Bari R, Aviram M, Gatt D, et al. The effect of the COVID-19 lockdown on children with asthma-related symptoms: a tertiary care center experience. Pediatr Pulmonol 2021;56:2825-32.
8. Guijon OL, Morphew T, Ehwerrhemuepha L, Galant SP. Evaluating the impact of coronavirus disease 2019 on asthma morbidity: a comprehensive analysis of potential influencing factors. Ann Allergy Asthma Immunol 2021;127:91-9.
9. Levene R, Fein DM, Silver EJ, Joels JR, Khine H. The ongoing impact of COVID-19 on asthma and pediatric emergency health-seeking behavior in the Bronx, an epicenter. Am J Emerg Med 2021;43:109-14.
10. Shah SA, Quitt JK, Sheikh A. Impact of COVID-19 pandemic on asthma exacerbations: Retrospective cohort study of over 500,000 patients in a national English primary care database. Lancet Reg Health Eur 2022; 100428.
11. Skevali C, Karonova A, Karaulov A, Fomina D, Xie M, Chinthrajah S, et al. SARS-CoV-2 infection and COVID-19 in asthmatics: a complex relationship. Nat Rev Immunol 2021;21:202-3.
12. Solanke F, Easton S, Selby A, James D, Roberts G. Impact of COVID-19 pandemic on emergency department attendances for young people. Arch Dis Child 2022;107:e27.
13. Ruano FJ, Somozza Alvarez ML, Haroun-Diaz E, Vazquez de la Torre M, Lopez Gonzalez P, Prieto-Moreno A, et al. Impact of the COVID-19 pandemic in children with allergic asthma. J Allergy Clin Immunol Pract.
33. Lacwik P, Szydlowska D, Kupczyk M, Palczynski C, Kuna P. High levels of anxiety during the COVID-19 pandemic as a risk factor of clinical worsening in patients with severe asthma. J Allergy Clin Immunol Pract 2021;9:1381-3.
34. Chihia KD, Patel GB, Yu THT, Chen MM, Guo A, Kudlaty E, et al. Prevalence and characterization of asthma in hospitalized and non-hospitalized patients with COVID-19. J Allergy Clin Immunol 2020;146: 307-14.e4.
35. Hagemann J, Onorato GL, Junel M, Akdis CA, Agache I, Zabertier T, et al. Differentiation of COVID-19 signs and symptoms from allergic rhinitis and common cold: an ARIA-EAACI-GA(2)LEN consensus. Allergy 2021;76:2354-66.
36. Strauss R, Jawhari N, Attaway AH, Hu B, Jelsi L, Milinovich A, et al. Intranasal corticosteroids are associated with better outcomes in coronavirus disease 2019. J Allergy Clin Immunol Pract 2021;9:3934-40.e9.
37. Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet 2020;396: 345-60.
38. Alkhafifia A. Risk factors for hand eczema in the general population of Saudi Arabia during the COVID-19 pandemic: an internet-based cross-sectional study. JAAD Int 2022;6:e119-24.
39. Fan R, Leasure AC, Damsky W, Cohen JM. Association between atopic dermatitis and COVID-19 infection: a case-control study in the All of Us research program. JAAD Int 2022;6:e77-81.
40. Patrick MT, Zhang H, Waskowski R, Prens ER, Weidinger S, GadjoonssJE, et al. Associations between COVID-19 and skin conditions identified through epidemiology and genomic studies. J Allergy Clin Immunol 2021;147:857-69.e7.
41. Nguyen C, Yake L, Casale F, Giugi A, Zheng K, Silverberg JJ, et al. SARS-CoV-2 infection in patients with atopic dermatitis: a cross-sectional study. Br J Dermatol 2021;185:640-1.
42. Raiker R, Fakhchian H, Jenkins K, Shen LY. COVID-19 outcomes in pediatric patients with atopic dermatitis: a multicenter analysis. Dermatitis 2022;Apr 28. https://doi.org/10.1097/DER.0000000000000881. [EVER].
43. Sebold MA, Moore CM, Everman JL, Williams BJM, Nolin JD, Fairbanks-Mahnke A, et al. Risk factors for SARS-CoV-2 infection and transmission in households with children with asthma and allergy: a prospective surveillance study. J Allergy Clin Immunol 2022;150:302-11.
44. Brar KK, Harizaj A, Nowak-Wegrzyz N. Management of anaphylaxis during the SARS-CoV-2 pandemic. Curr Treat Options Allergy 2021;8:88-96.
45. Greenlaww M, Shaker M, Stakus DR, Fleischer DM, Hourihane J, Tang MLK, et al. Managing food allergy in schools during the COVID-19 pandemic. J Allergy Clin Immunol Pract 2020;8:2845-50.
46. Carr TF, Kraft M. Asthma and atopy in COVID-19: 2021 updates. J Allergy Clin Immunol 2022;149:562-4.
47. Flores-Torres AS, Salinas-Carmona MC, Salinas E, Rosas-Tarago AC. Eosinophils and respiratory viruses. Viral Immunol 2019;32:198-207.
48. Ho KS, Howell D, Rogers L, Narasimhan B, Verma H, Steiger D. The relationship between asthma, eosinophilia, and outcomes in coronavirus disease 2019 infection. Ann Allergy Asthma Immunol 2021;127:42-48.
49. Ferastraoura D, Hudes G, Jerschow E, Jarwala S, Karajic M, de Vos G, et al. Eosinophilia in asthma patients is protective against severe COVID-19 illness. J Allergy Clin Immunol Pract 2021;9:1152-62.e3.
50. Moon HJ, Kim K, Kang EK, Yang HJ, Lee E. Prediction of COVID-19-related mortality and 30-day and 60-day survival probabilities using a nomogram. J Korean Med Sci 2021;36:e248.
51. Abrehart T, Suryadinata R, McCaffery C, Jacobson J, Ignjatovic V, Robinson E, et al. Age-related differences in SARS-CoV-2 binding factors: An explanation for reduced susceptibility to severe COVID-19 among children? Paediatr Respir Rev 2022;51:526-50542(2200009-4. https://doi.org/10.1016/j.prrv.2022.01.008. [EVER].
52. Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021;136;111193.
53. Bunyavichichit S, Do A, Vicenico A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA 2020;323:2427-9.46. Heinonen S, Helve O, Andersson S, Janer C, Suvari L, Kaskinen A. Nasal
expression of SARS-CoV-2 entry receptors in newborns. Arch Dis Child Fetal Neonatal Ed 2022;107:95-7.

55. Vahidy FS, Pan AP, Ahnstedt H, Munshi Y, Choi HA, Tiruneh Y, et al. Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area. PLoS One 2021;16:e0245556.

56. Li Y, Wang D, Zhu L, Zhu Y, Qiao L, Zhu Y, et al. Respiratory tract infections in children with allergic asthma on allergen immunotherapy during influenza season. Sci Rep 2021;11:2083.

57. Jutel M, Torres MJ, Palomares O, Akdis CA, Eiwegger T, Untersmayr E, et al. COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologics-EAACI recommendations. Allergy 2022;77:2313-36

58. Russo D, Di Filippo P, Artesani M, Lizzi M, Di Pillo S, Chiarelli F. Biologic therapy and severe asthma in children. Biomedicines 2021;9:760

59. Adir Y, Humbert M, Saliba W. COVID-19 risk and outcomes in adult asthmatic patients treated with biologics or systemic corticosteroids: Nationwide real-world evidence. J Allergy Clin Immunol 2021;148:361-7.e13

60. Choi YJ, Park JY, Lee HS, Suh J, Song JY, Byun MK, et al. Effect of asthma and asthma medication on the prognosis of patients with COVID-19. Eur Respir J 2021;57:2002226

61. Rial MJ, Valverde M, Del Pozo V, Gonzalez-Barcala FJ, Martinez-Rivera C, Munoz X, et al. Clinical characteristics in 545 patients with severe asthma on biological treatment during the COVID-19 outbreak. J Allergy Clin Immunol Pract 2021;9:487-9.e1

62. Ungar B, Gluckman JW, Golant AK, Dubin C, Marushchak O, Gontzes A, et al. COVID-19 symptoms are attenuated in moderate-to-severe atopic dermatitis patients treated with dupilumab. J Allergy Clin Immunol Pract 2022;10:134-42.

63. El-Qushayri AE, Mahmoud MA, Salman S, Sarsik S, Nardone B. Dupilumab therapy in atopic dermatitis is safe during COVID-19 infection era: A systematic review and meta-analysis of 1611 patients. Dermatol Ther 2022;35:e15476.

64. Kridin K, Schonnmann Y, Solomon A, Om E, Bitan DT, Weinstein O, et al. Risk of COVID-19 and its complications in patients with atopic dermatitis undergoing dupilumab treatment—a population-based cohort study. Immunol Res 2022;70:106-13.

65. Ungar B, Lavin L, Golant AK, Gontzes A, David E, Estrada YD, et al. The impact of dupilumab treatment on severe acute respiratory syndrome coronavirus 2-coronavirus disease 2019 antibody responses in patients with atopic dermatitis. Ann Allergy Asthma Immunol 2022;128:734-6

66. Walter EB, Talat KR, Sabharwal C, Gurman A, Lockhart S, Paulsen GC, et al. Evaluation of the BNT162b2 Covid-19 vaccine in children 5 to 11 years of age. N Engl J Med 2022;386:35-46.

67. Banerji A, Wolfson AR, Wickner PG, Cogan AS, McMahon AE, Saff R, et al. COVID-19 vaccination in patients with reported allergic reactions: updated evidence and suggested approach. J Allergy Clin Immunol Pract 2021;9:2135-8.

68. Wiertsema SP, Baynam G, Khoo SK, Veenhoven RH, van Heerbeek N, Zhang G, et al. Impact of genetic variants in IL-4, IL-4 RA and IL-13 on the anti-pneumococcal antibody response. Vaccine 2007;25:306-13.

69. Vultaggio A, Agache I, Akdis CA, Akdis M, Bavbek S, Bossios A, et al. Considerations on biologics for patients with allergic disease in times of the COVID-19 pandemic: an EAACI statement. Allergy 2020;75:2764-74.

How to cite this article: Lee E. Management of patients with allergic diseases in the era of COVID-19. Clin Exp Pediatr 2022;52:529-35. https://doi.org/10.3345/cep.2022.00759