Les tourbières du bassin du Congo : les menaces et les mesures de conservation prioritaires

Greta C. Dargie1,2,3 • Ian T. Lawson3 • Tim J. Rayden4 • Lera Miles5 • Edward T. A. Mitchard6 • Susan E. Page7 • Yannick E. Bocko8 • Suspense A. Ifo9 • Simon L. Lewis1,2

Résumé

La publication récente de la première carte spatialement explicite des tourbières de la Cuvette Centrale dans le centre du bassin du Congo témoigne de l'existence du plus vaste complexe tourbeux en zone tropicale, dont on estime que la superficie avoisine 145 500 km². Avec un stockage de carbone estimé à 30,6 Pg dans ces tourbières, la question désormais est de savoir si ces stocks de carbone sont exposés à des menaces, et si c'est le cas, quelles mesures de gestion conservatoire sont possibles. Le présent article analyse les possibles menaces qui pèsent sur les stocks de carbone dans la tourbe du bassin du Congo et repère les lacunes dans les connaissances à l'égard de ces menaces et de la manière dont les systèmes des tourbières sont susceptibles de répondre. Il en ressort que le changement climatique est une préoccupation extrêmement urgente, étant donné sa capacité de déstabiliser les stocks de carbone dans l'ensemble de la zone. Les développements socio-économiques se multiplient partout en Afrique centrale et, bien qu'une grande partie de la zone des tourbières bénéficie d'une protection écrite sous la forme d'une désignation de conservation, l'exploration des hydrocarbures, l'exploitation forestière, les plantations et d'autres formes de perturbations

✉ Greta C. Dargie
greta.dargie@btinternet.com

1 École de Géographie, Université de Leeds, Leeds LS2 9JT, R.-U.
2 Département de Géographie, Université Collège de Londres, Londres WC1E 6BT, R.-U.
3 Adresse actuelle : Département de Géographie et de Développement Durable, Université de St Andrews, St Andrews KY16 9AL, R.-U.
4 Société pour la conservation de la vie sauvage, 2300 Southern Boulevard, Bronx, NY 10460, É.-U.
5 Centre mondial de surveillance continue de la conservation de la nature (PNUE), 219 Huntingdon Road, Cambridge CB3 0DL, R.-U.
6 École de Géosciences, Université d’Édimbourg, Édimbourg EH9 3FF, R.-U.
7 École de Géographie, de Géologie et de l'Environnement, Université de Leicester, Leicester LE1 7RH, R.-U.
8 Faculté des Sciences et Techniques, Université Marien N’GOUABI, Brazzaville, République du Congo
9 École Normale Supérieure, Université Marien N’GOUABI, Brazzaville, République du Congo
risquent de provoquer des dégâts considérables au sein des écosystèmes des tourbières. À présent, le faible niveau d’intervention humaine suggère qu’il est encore possible de protéger les tourbières en état quasiment intact, en s’appuyant sur le financement pour l’atténuation du changement climatique, qui peut être déployé non seulement pour protéger le carbone contenu dans la tourbe mais aussi pour améliorer les moyens de subsistance des habitants qui vivent à l’intérieur des tourbières et aux alentours.

Mots clés Congo • Carbone • Conservation • Tourbe • Menaces

1 Introduction

La Cuvette Centrale, dans le centre du bassin du Congo, est la deuxième plus grande zone humide aux latitudes tropicale. Des études récentes suggèrent que la tourbe, qui est présente sous de nombreuses forêts marécageuses du bassin, s’étend sur une superficie estimée à 145 500 km², et stocke environ 30,6 pétagrammes (Pg ; 1×10^{15} g) de carbone (Dargie et al. 2017). Cela fait de la Cuvette Centrale—à cheval sur la République du Congo (Rép. du Congo) et la République démocratique du Congo (Rép. dém. du Congo)—le bloc compact le plus vaste qui a été découvert en zone tropicale (Dargie et al. 2017), dont les stocks de carbone souterrain sont équivalents aux stocks de carbone souterrain de la forêt tropicale dans l’ensemble du bassin du Congo (Saatchi et al. 2011 ; Verhegghen et al. 2012). Depuis la découverte de cette immense quantité de tourbe dans le bassin du Congo, on se voit contraint à réévaluer le rôle des marécages congolais dans le cycle mondial du carbone. Nous devons savoir si les stocks de carbone dans les tourbières sont stables, ou s’ils sont vulnérables aux perturbations induites par les actions humaines et/ou par le changement climatique ; nous devons également savoir quelles sont les mesures à prendre pour réduire les risques au minimum.

Roucoux et al. (2017) ont récemment examiné les menaces potentielles pesant sur les tourbières tropicales intactes et les opportunités de conservation, en se concentrant sur les tourbières du bassin de l’avant-pays du Pastaza-Marañón au Pérou. Dans le présent article, nous nous appuyons sur leurs recherches en analysant les possibles menaces à la stabilité des réserves de carbone dans les tourbières du bassin du Congo et en considérant d’une manière plus générale les menaces à l’intégrité de ces écosystèmes. Ensuite nous évaluons les mesures de protection en place présentement et les possibles moyens de les élargir. Finalement nous précisons les priorités en matière de futures recherches visant à informer la conservation, la gestion et le développement de la région.

2 Site d'étude

Les recherches scientifiques récentes menées à la Cuvette Centrale par Dargie et al. (2017) portent principalement sur la mise à disposition d’une première estimation du stockage de carbone et de la répartition de la tourbe. Des échantillons ont été prélevés de la tourbe et du couvert végétal le long de 57,5 km de transects, répartis sur une surface large du bassin à l’ouest de la rivière Oubangui en Rép. du Congo. Quelques 211 mesures de l’épaisseur de la tourbe, et des échantillons de la densité du carbone provenant de 44 carottes, en combinaison avec des données sur la composition et la structure de la végétation, ont été utilisés afin de modéliser la répartition de la végétation et le stockage du carbone dans la tourbe dans l’ensemble de la
Cuvette Centrale. Relativement peu de points de vérification au sol étaient disponibles en Rép. dém. du Congo, ou dans la partie sud du bassin en Rép. du Congo, ce qui contribue à une incertitude considérable quant à l'estimation des stocks de carbone ; les intervalles de confiance à 95 % varient de 6,3 à 46,8 Pg, en grande partie en raison de l'épaisseur extrêmement variable de la tourbe. Les datations par le radiocarbone des couches basales indiquent que l'accumulation de la tourbe a démarré près de 10 500 années calendaires avant le présent (BP, le présent se définit comme l'an 1950 ; Dargie et al. 2017) pendant une période d'humidité climatique croissante de l’Holocène précoce (la période africaine humide, Shanahan et al. 2015). Les données hydrologiques et géochimiques indiquent qu’à présent, la pluviométrie contribue de manière importante et directe au bilan hydrique des sites d'étude ; le débordement des rivières semble être d'une importance secondaire (Dargie et al. 2017). Malgré ces avancées des connaissances sur le stockage actuel de carbone, il existe encore des déficits de connaissances considérables sur ces écosystèmes, y compris leur topographie et hydrologie, la dynamique du stockage de carbone dans le passé et dans le présent et l'écologie passée et présente des marécages à feuillus et à palmiers associés à la tourbe (Fig. 1).

![Fig. 1 La végétation de recouvrement des tourbières de la Cuvette Centrale. a Marécage dominé par les palmiers (crédit I.T. Lawson) et b marécage dominé par les feuillus (crédit S.L. Lewis), qui recouvre la tourbe dans le Département de la Likouala, République du Congo.](image-url)
Des recherches scientifiques précédentes sur la région se sont concentrées majoritairement sur les grands mammifères (Fay et Agnagna 1991 ; Inogwabini et al. 2012). La mégafaune est depuis longtemps emblématique de la Cuvette Centrale. Les forêts marécageuses hébergent des concentrations importantes de gorilles des basses plaines (Gorilla gorilla gorilla), d’éléphants de forêt (Loxodonta cyclotis), de chimpanzés (Pan troglodytes) et de bonobos (Pan paniscus) (Fay et Agnagna 1991 ; Rainey et al. 2010 ; Inogwabini et al. 2012), ainsi que des vertébrés plus petits, dont divers singes et crocodiles nains (Osteolaemus tetraspis ; Riley and Huchzeremeyer 1999). Un inventaire complet des espèces de la flore et de la faune reste à achever ; par exemple, très peu d’informations existent sur la végétation, les poissons et les invertébrés.

De plus, un certain nombre d’études existent qui portent sur la chimie des eaux de rivière (Laraque et al. 2001, 2009), les origines géologiques du bassin (Daly et al. 1992 ; Crosby et al. 2010 ; Kadima et al. 2011 ; Buitier et al. 2012), des études basées sur la télédétection de l’hydrologie et la répartition végétale (Mayaux et al. 2004 ; Vancutsem et al. 2009 ; Bwangoy et al. 2010 ; Jung et al. 2010 ; Betbeder et al. 2014 ; Lee et al. 2015), et les origines encore remises en question du lac Télé (Master 2010). Aucune de ces études n’a pris en compte le statut de la Cuvette Centrale en tant que complexe tourbeux d’importance majeure, pourtant avec du recul elles s’avèrent souvent pertinentes à la compréhension du système dans sa totalité.

Bien que ceux de l’extérieur le considèrent en général comme une zone sauvage, des gens résident dans toute la Cuvette Centrale, tant en Rép. du Congo qu’en Rép. dém. du Congo, s’installant la plupart dans des villages ou de petites villes le long des réseaux de transport fluvial ou routier. Les populations d’origine bantoue constituent le groupe ethnique le plus nombreux de la région et mènent souvent des activités de subsistance centrées sur la pêche et l’agriculture vivrière de cultures telles que le manioc (Manihot esculenta) et la banane (Musa spp.), et l’élevage d’un nombre restreint de bétail, comprenant des chèvres et des poules. L’arrivée des populations bantoues date probablement des 2000 dernières années (Brnic et al. 2007), alors que la présence des groupes de chasseurs-cueilleurs autochtones est beaucoup plus ancienne (remontant peut-être aussi loin que les 40 000 ans BP ; Oslishly et al. 2006). Même si certaines communautés autochtones mènent encore un mode de vie entièrement nomade, les politiques de regroupement des gouvernements coloniaux et postcoloniaux, la perte d’accès coutumier aux ressources forestières et des attraits économiques ont entraîné une incidence plus élevée de communautés nomades qui choisissent soit sous pression ou volontairement la sédentarisation partielle ou totale (Lewis 2002 ; Riddell 2013). À travers la Cuvette Centrale, les moyens de subsistance des habitants dépendent en partie des ressources de la forêt sur tourbe. C’est le cas particulièrement pour les communautés autochtones, et il en résulte que ces communautés sont les plus touchées par les impacts des activités industrielles (telles que la dégradation forestière) ou de conservation (l’accès réglementé à la forêt) dans la région (Lewis 2002 ; Riddell 2013). En même temps, du fait de la marginalisation sociale des communautés autochtones, il n’est pas rare que les processus de consultation ne les impliquent pas et l’arrivée de ces activités ne leur permettent pas d’en tirer des bénéfices économiques (Lewis 2002 ; Riddell 2013).
3 Les Menaces

3.1 Le changement climatique

En ce qui concerne la température, l'impact futur des émissions anthropiques de gaz à effet de serre sur le climat régional du bassin du Congo ne fait aucun doute : la région se réchauffera, l'ordre de magnitude dépendant du niveau des émissions de gaz à effet de serre. Sous le modèle représentatif d'évolution de concentration (scénario dit RCP) 2.6, on prévoit que la température va s'élever d'environ 0,5 °C dans la période comprise entre la fin du vingtième siècle et la fin du vingt-et-unième siècle, la hausse s'élevant à 4,3 °C sous le modèle RCP 8.5 (Niang et al. 2014). Cependant, les projections obtenues par les modèles ne montrent aucun consensus général sur l'évolution des précipitations à l'échelle régionale. Certains modèles indiquent une diminution du taux des précipitations dans l'ensemble du bassin vers la fin du vingt-et-unième siècle (James et al. 2013 ; Fotso-Nguemo et al. 2016), alors que d'autres suggèrent que le bilan des précipitations ne changera que très peu voire pas du tout ou même il s'élèvera légèrement (Haensler et al. 2013 ; Laprise et al. 2013). Même lorsqu'il n'y a aucun changement dans le taux global des précipitations, certains modèles montrent des changements dans les caractéristiques du régime de pluviométrie, par exemple une augmentation dans l'intensité des pluies et dans la fréquence des périodes sèches (Haensler et al. 2013).

Le manque de certitude à propos de l'avenir du climat dans le bassin du Congo s'attribue à de nombreux facteurs. Dans un premier temps, les données d'observation de la région font défaut (Giles 2005). Ces données permettraient l'évaluation du fonctionnement des modèles selon leur capacité de reconstituer les climats présents. Deuxièmement, la résolution spatiale des modèles diffère, les modèles à plus faible pouvoir de résolution étant moins capables de simuler la complexité du système climatique à l'intérieur du bassin (Haensler et al. 2013 ; Laprise et al. 2013). Finalement, les différences au niveau des structures des modèles, telles que la simulation de différents processus, contribuera à l'écart entre les projections climatiques (Barston et al. 2012).

Il semble que le maintien d'un équilibre hydrique positif dans les tourbières du bassin du Congo dépende principalement de la pluviométrie (Dargie et al. 2017). En raison du climat à régime bimodal dans le bassin du Congo, avec deux saisons des pluies par an (du mars au mai, du septembre au novembre ; Samba et al. 2008), les tourbières ne connaissent pas des périodes sèches prolongées. Cependant, à travers la Cuvette Centrale on assiste à des précipitations annuelles relativement basses par rapport aux autres systèmes de tourbières tropicales (environ 1700 mm/an−1 (Samba et al. 2008) ; contre Pastaza-Marañón, Pérou, environ 3000 mm/an−1 (Marengo 1998) ; Kalimantan central, Indonésie, environ 2900 mm/an−1 (Susilo et al. 2013)). Ainsi, une réduction des précipitations globales, un changement de la répartition temporelle des précipitations et une évaporation augmentée à cause des températures plus élevées dans le bassin du Congo pourraient tous exercer un impact négatif sur les stocks de carbone dans les tourbières. Des conditions plus sèches ou une augmentation de la fréquence des périodes sèches intenses pourraient entraîner une augmentation du taux de décomposition et des pertes de carbone du système des tourbières.

Quoique la mise en place des tourbières semble coïncider avec et serait vraisemblablement induit par une augmentation des précipitations régionales au début de l'Holocène, il n'est pas clair comment l'accumulation de la tourbe dans la Cuvette Centrale a répondu aux variations
climatiques ultérieures. Les datations par le radiocarbone des parties bassales de trois carottes prélevées d'un seul site montrent une période d'accumulation de la tourbe faible voire négative (Dargie et al. 2017) dont la chronologie est mal définie, mais qui a eu lieu, semble-t-il, au milieu de l'Holocène. La tourbe s'est accumulée plus rapidement au cours des derniers ~ 2000 ans. Ce ralentissement ou cessation du rythme d'accumulation de la tourbe et du carbone à la mi-Holocène semble coïncider avec la fin de la période africaine humide à travers la Cuvette Centrale aux environs des 3000 ans BP (Shanahan et al. 2015). La datation par le radiocarbone à plus haut pouvoir de résolution des carottes prélevées de plusieurs sites, accompagnée d'études paléoécologiques, aideraient à nous éclaircir sur la réponse des tourbières dans le passé aux variations des précipitations régionales, nous permettant ainsi d'avoir une idée de leurs possibles réponses à l'avenir.

3.2 La foresterie et l'agriculture

La conversion des tourbières en terres à des fins agricoles implique souvent un abaissement de la nappe phréatique en creusant des canaux de drainage. Les conditions plus oxygénées de la surface de la tourbe favorisent la décomposition rapide de la matière organique (Hooijer et al. 2010). Même s'il n'y a pas de drainage actif, l'abattage des arbres des tourbières boisées pourrait entraîner une réduction des apports de matière organique (Könönen et al. 2016) et la perte de la canopée forestière peut exposer la surface de la tourbe à des températures plus élevées, contribuant à l'assèchement (Jauhiainen et al. 2012) ou elle peut réduire l'évapotranspiration, augmentant par la suite la saturation en eau (Moore et al. 2013). De surcroît, le drainage des tourbières entraîne un risque plus élevé d'affaissement de terrain (parfois de nouvelles inondations en résultent) et d'incidences de feux (Page et al. 2002 ; Jauhiainen et al. 2012). Les tourbières étant souvent des milieux acides et pauvres en nutriments, leur conversion en terres à des fins agricoles nécessite souvent l'utilisation des engrais, ce qui a tendance à accélérer la décomposition (Takakai et al. 2006).

Dans l'ensemble de la Cuvette Centrale, tant en Rép. du Congo qu'en Rép. dém. du Congo, les activités forestières et agricoles actuelles, qu'elles soient à petite échelle ou industrielles, semblent se poursuivre pour la plupart dans la forêt de terre ferme (Fig. 2a et observations personnelles). Une grande partie des riverains de la Cuvette Centrale pratique l'agriculture vivrière. Les parcelles se caractérisent par une taille relativement réduite et une situation en proximité des villages ou à l'intérieur des secteurs forestiers à terre ferme. L'activité locale dans les tourbières se limite à la chasse et à la récolte de produits forestiers non ligneux tels que les feuilles de palmier pour la construction des toits. À en juger par des observations personnelles, l'impact probable des riverains sur les écosystèmes des tourbières sera encore minime et relativement durable sous sa forme actuelle.

Près de 29 000 km² des tourbières boisées cartographiées font l'objet de concessions forestières. Pourtant, l'exploitation forestière commerciale à travers la Cuvette Centrale ne semble pas avoir commencé pour l'instant dans les forêts sur tourbe (Hansen et al. 2013). Cela s'explique en partie en raison du moratoire sur l'exploitation forestière en Rép. dém. du Congo depuis 2002, et en partie parce que l'exploitation forestière se poursuit de préférence dans la forêt de terre ferme et non pas dans les zones marécageuses. Une levée du moratoire, qui permettrait l'abattage sélectif à grande échelle en Rép. dém. du Congo, est à l'examen, motivé par la volonté d'améliorer le développement socio-économique dans la région et de limiter le
déboisement illégal et non réglementé des forêts (Ministry of Climate and Environment, Kingdom of Norway 2017). Pourtant, toute expansion des activités d'exploitation forestière court le risque d'avoir un impact sur les tourbières, soit directement par l'extraction du bois, soit indirectement par l'expansion de l'infrastructure, en particulier le changement des schémas de drainage entraîné par la construction de routes (voir la section 3.4 ci-dessous), à moins qu'un suivi minutieux se réalise et la réglementation s'applique. Des preuves du contexte africain montrent également que lorsque la gouvernance est faible, l'exploitation forestière déclenche des vagues de dégradation forestière qui aboutissent au défrichage (Ahrends et al. 2010).

Au moins un accord de concession a été approuvé pour des plantations de palmiers à huile et pour d'autres activités dans le secteur qui se trouve en Rép. du Congo, couvrant quelques 4700 km² au total, dont on a cartographié 4200 km² dans les tourbières boisées (Fig.2a; La Fondation Rainforest UK 2013). En Asie du Sud-Est, les plantations de palmiers à huile ont constitué l'un des principaux moteurs de la dégradation des tourbières (aussi bien que l'échec du projet des ‘Méga Rizières’ en Indonésie des années 1990 ; Rieley 2001). Sur les 4,3 millions d'hectares de tourbières en Malaisie péninsulaire, au Sumatra et au Bornéo qui ont subi des conversions en plantations, 73 % est couvert de plantations de palmiers à huile (Miettinen et al. 2016). À l'heure actuelle, 85 % de l'huile de palme du monde provient de la Malaisie et de l'Indonésie (USDA Foreign Agricultural Service 2017), mais avec l'amélioration de la demande mondiale et le ralentissement de la croissance de la productivité en Asie du Sud-Est (Wright et Rahmanulloh 2017), les investissements dans le palmier à huile en Afrique vont probablement augmenter dans les années à venir (Ordway et al. 2017), surtout lorsque l'arrivée de grandes entreprises de palmiers à huile dans le bassin du Congo est soutenue par des fonds internationaux et des incitations gouvernementales, telles que des avantages fiscaux (La Fondation Rainforest UK 2013).

3.3 L'exploitation minière et les hydrocarbures

La Rép. du Congo est le quatrième producteur de pétrole en Afrique subsaharienne (The Oil and Gas Year 2017a). La plupart de l'exploration et de l'exploitation des hydrocarbures se réalise en mer, l'exploitation étant autorisée uniquement dans un seul bloc d'hydrocarbures à terre, Kayo Sud, dans le sud du pays. Il en est de même en Rép. dém. du Congo, où l'exploitation des hydrocarbures est limitée aux activités en mer à l'heure actuelle, le travail de prospection étant en cours dans l'est de la Rép. dém. du Congo (US Department of Commerce 2017). Pourtant le gouvernement de la Rép. du Congo semble prêt à considérer le développement de l'exploration pétrolière à terre dans la Cuvette Centrale. En collaboration avec des sociétés internationales, l'exploration se poursuit dans les blocs de Ngolo et de Ngoki, qui englobent tous deux de vastes zones de tourbières (Ministère des Hydrocarbures 2016). Les concessions de palmiers à huile et les sites Ramsar sont également localisés dans la Cuvette Centrale (Dargie et al. 2017).
Fig. 2 (suite)
République du Congo et SNPC 2016 ; Fig. 2b), depuis 2013 et 2016 respectivement (The Oil and Gas Year 2017b). Tandis que l'accès difficile à la région et la présence de zones humides constituent d'importants écueils pratiques à l'exploitation pétrolière, le manque de données d'études géologiques jusqu'à ce jour a représenté un facteur important qui a limité l'intérêt des investisseurs dans la Cuvette Centrale : seuls quatre puits, tous en Rép. dém. du Congo et tous secs, ont fait l'objet de forages antérieurs dans la Cuvette Centrale (The Oil and Gas Year 2017b). Les résultats de l'exploration des hydrocarbures dans les blocs de Ngolo et de Ngoki vont probablement déterminer le niveau d'intérêt des investisseurs à l'avenir (The Oil and Gas Year 2017b).

La construction des routes d'accès (voir 3.4 ci-dessous) et des oléoducs (Roucoux et al. 2017) est à l'origine de certains impacts majeurs de l'exploitation des hydrocarbures dans d'autres massifs forestiers (tels que l'Ouest amazonien, abritant également des écosystèmes de tourbières remarquables). Le déboisement ne se limite pas à la voie des routes et des oléoducs : leur construction ouvre la forêt autrefois inaccessible à l'exploitation forestière illégale et expose les populations fauniques à des pressions accrues liées à la chasse (Finer et al. 2008). De plus les déversements de pétrole et d'eaux usées risquent d'endommager l'écologie des tourbières, comme l'on a constaté dans certaines parties de l'Ouest amazonien (Finer et al. 2008 ; Arellano et al. 2015).

Même sans tenir compte de ses réserves de pétrole, le bassin du Congo compte parmi les régions les plus riches en minéraux sur la planète. La Rép. dém. du Congo est le premier producteur de cobalt et figure parmi les dix premiers producteurs de cuivre, de diamants, de lithium, de tantale et d'étain (USGS 2016). Tout comme l'exploration pétrolière, l'activité minière apporte les menaces du déboisement et de la pollution par les déchets. Étant donné que le lancement d'activité minière officielle est souvent suivi d'une exploitation minière artisanale non réglementée, la zone touchée souvent dépasse celle qui avait été prévue initialement (Edwards et al. 2014). À travers la Rép. dém. du Congo et la Rép. du Congo, les concessions minières actuelles et la modélisation des tourbières se chevauchent dans une certaine mesure (Global Forest Watch 2017a, b ; Fig. 2b). Pourtant, le chevauchement se limite aux bords des zones de tourbières et les concessions minières et les dépôts minéraux connus se retrouvent en grande partie en dehors des zones de tourbières (Edwards et al. 2014). Ainsi, les preuves actuelles suggèrent que si l'activité minière pourrait toucher les tourbières du bassin du Congo, l'impact sur la zone restera probablement minime.

3.4 Les infrastructures de transports

La Cuvette Centrale est peu desservie par les routes, les cours d'eau étant le réseau de transport principal. Ce facteur, combiné au grand éloignement de tout port international et aux faibles densités de population, est l'une des raisons pour lesquelles les tourbières du bassin du Congo ont jusqu'à présent échappé au sort des tourbières de l'Asie du Sud-Est. Récemment, le gouvernement de la Rép. du Congo a investi 60 millions d'Euros dans la modernisation du port de la capitale, Brazzaville (The Oil and Gas Year 2017b). Faciliter l'accès au nord du pays à des fins d’exploration des hydrocarbures est l'un des facteurs qui a motivé l'investissement.

Bien qu'elles soient peu nombreuses, des routes qui traversent certaines zones de la Cuvette Centrale ont déjà été construites (par exemple entre Epena et Impfondo, dans le département de la Likouala en Rép. du Congo). Il n'existe aucune étude pour l'instant qui considère l'impact de ces routes sur les propriétés de la tourbe, l'hydrologie ou la végétation, bien que des
Traduction d'un article paru dans la revue MITIG ADAPT STRATEG GLOB CHANGE

...observations personnelles de terrain témoignent de pertes de la forêt marécageuse suite à la construction des routes. Ceci suggère que les routes pourraient avoir un impact négatif sur les zones humides de la région. Les routes, en tant que possibles barrières à l'écoulement des eaux souterraines et des chenaux, peuvent détourner ou bloquer l'eau, ce qui conduit à l'assèchement de la tourbe en aval, et à de plus fortes crues en amont et/ou à l'érosion, entraînant des changements dans la communauté végétale et dans la dynamique du carbone de la tourbe (Patterson and Cooper 2007 ; Grootjans et al. 2010 ; Chimner et al. 2016). En ce qui concerne les routes pour l'accès à l'exploitation forestière ou aux infrastructures des hydrocarbures, il se peut que les effets directs soient beaucoup moins importants que les effets indirects qui en résultent, facilitant l'accès à des régions autrefois isolées ; des études dans l'ensemble des zones tropicales ont montré que la construction des routes aboutit presque toujours à l'immigration et à des changements d'affectation des terres (Laurance et al. 2017).

3.5 L'hydroélectricité

Depuis les années 1950, le gouvernement de la Rép. dém. du Congo a élaboré des plans de construction d'une série de grands barrages hydroélectriques sur le fleuve Congo, en aval de la capitale Kinshasa, qui est connu comme le projet hydroélectrique de Grand Inga. Le projet de Grand Inga aurait une capacité de production finale de 40 000 MW, ce qui en ferait le plus important projet hydroélectrique au monde (International Rivers 2017). En 2014 la Banque mondiale a accepté d'investir 73,1 millions de USD dans les premières étapes du projet, mais en 2016 le financement a été suspendu « lorsque le gouvernement a décidé de poursuivre des orientations stratégiques divergentes à celles qui avaient été conclues » (World Bank 2016). Le gouvernement de la Rép. dém. du Congo est à la recherche d'autres financements pour la continuation du projet (Fabricius 2016).

En raison du déficit actuel de connaissances des rapports entre l'hydrologie des tourbières et le système fluvial régional, les effets d'un tel projet sur les tourbières du bassin du Congo ne sont pas clairs. Bien que le débordement des cours d'eau ne soit pas la principale source d'alimentation en eau des tourbières (Dargie et al. 2017), le changement des gradients hydrologiques à la suite de la construction de barrages pourrait entraîner des impacts sur l'hydrologie des tourbières, voire éventuellement réduire le drainage des tourbières, si le gradient hydrologique entre les tourbières et les cours d'eau se réduit. Quels que soient les effets, la construction d'un grand projet hydroélectrique sans aucune évaluation d'impact environnemental de ses effets potentiels sur les écosystèmes en amont et leurs réserves de carbone (Fabricius 2016) est préoccupante.

Un autre projet de développement qui pourrait avoir des conséquences imprévues pour les tourbières est un projet de grande envergure visant à transférer l'eau des affluents de la rive droite du fleuve Congo vers le Lac Tchad. Le projet, connu sous le nom de Transaqua, vise à reconstituer le Lac Tchad, dont le niveau des eaux est en baisse, par la construction d'un canal qui part de la région du Kivu en Rép. dém. du Congo, traverse la République centrafricaine (Rép. centr.), franchit la ligne de partage des eaux Congo-Tchad, pour finalement canaliser l'eau dans un affluent du lac Tchad (Bonifica S.p.A 2017). Le projet vise également à produire de l'énergie grâce à une série de barrages hydroélectriques le long du parcours, ainsi que de fournir une source d'irrigation pour la région du Sahel et un réseau de transport vers le bassin du Congo (Commission du Bassin du Lac Tchad 2016a). Bien que proposé pour la première fois dans les années 1970, le projet reste à une étape précoce de développement, la dernière...
étude de faisabilité ayant été approuvée en décembre 2016 (Commission du Bassin du Lac Tchad 2016a). Pourtant, il s’agit de la continuation d’une première étude de faisabilité qui s’était concentrée sur la possibilité du transfert des eaux du sous-bassin de l’Oubangui en Rép. cent., et qui avait confirmé la faisabilité technique et la viabilité économique de la proposition (Commission du Bassin du Lac Tchad 2016b). Si le projet Transaqua se poursuit, d’après les estimations, entre 50 et 100 milliards de mètres cube d’eau, l’équivalent d’environ 4 à 8 % du débit annuel à l’embouchure du fleuve Congo, seront détournés de la Cuvette Centrale (Commission du Bassin du Lac Tchad 2016a ; Bonifica S.p.A 2017). En termes des menaces sur les tourbières, on peut souligner une différence notable entre les projets Grand Inga et Transaqua : les plus grands défenseurs et bénéficiaires du projet Transaqua, à savoir les États membres de la Commission du Bassin du Lac Tchad (Commission du Bassin du Lac Tchad 2016c), ont peu d’intérêt environnemental, social ou économique au maintien de la conservation des tourbières et ils ne seraient pas obligés de gérer les perturbations aux tourbières qui en découleraient. Si la Rép. dém. du Congo est en mesure de contrôler l’éventuelle extension du projet Transaqua sur son territoire, il est possible que la Rép. dém. du Congo et la Rép. du Congo n’aient que peu d’influence sur les activités du projet Transaqua en Rép. centr.. Il est ainsi important que les responsables du projet Transaqua apprécient à leur juste valeur les tourbières de la Cuvette Centrale et que l’étude de faisabilité et toute planification par la suite évaluent en détail les effets du projet sur les tourbières de la Cuvette Centrale, dans le but d’atténuer ses impacts à travers des solutions politiques ou d’ingénierie.

3.6 Les synergies de la dégradation

Chacune des menaces potentielles qui pèsent sur les tourbières discutées ci-dessus a été traité à titre individuel. Pourtant, en réalité les changements d’affectation des terres ont lieu suite à de multiples facteurs environnementaux, économiques et politiques de caractère complexe et connexe, qui sont susceptibles d’accélérer ou d’aggraver les impacts négatifs de toute menace individuelle sur les tourbières. L’échec du projet des Méga Rizières du gouvernement de l’Indonésie présente un exemple bien connu de ce phénomène. Lancée en 1996, l’initiative avait pour but de convertir un million d’hectares (10 000 km²) des tourbières du Kalimantan central à la culture du riz (Rieley 2001). En vendant des rizières javanaises pour des projets de développement commercial et urbain, le projet des Méga Rizières était censé augmenter la production alimentaire de l’Indonésie et alléger la pression démographique à Java, en faisant venir des travailleurs javanais par un programme de transmigration (Rieley 2001). Avec des milliers de kilomètres de canaux de drainage creusés à travers les tourbières, abaissant la nappe phréatique et ouvrant la canopée forestière, la sécheresse pendant l’événement El Niño de 1997 a provoqué de grands incendies qui se sont propagés à travers les tourbières (Page et al. 2002). Couvrant plus de 50 % de la superficie des tourbières, il est estimé que ces incendies ont libéré entre 0,12–0,15 Pg de carbone (Page et al. 2002). Bien que le gouvernement ait abandonné le projet en 1999, la dégradation des tourbières se perpétue dans la région, car les canaux de drainage continuent d’assécher les tourbières et les communautés appauvries qui restent poursuivent la conversion des forêts en terre agricole le long de ces canaux (Medrilzam et al. 2014). Les incendies annuels continuent (Langner and Siegert 2009) et sont particulièrement graves pendant les événements El Niño (le plus récemment en 2015 ; Huijnen et al. 2016).

Dans la Cuvette Centrale, on pourrait prévoir une situation hypothétique à l’avenir, avec des prix élevés des produits de base, un meilleur accès aux marchés par voie routière et fluviale,
des températures plus élevées et des sécheresses plus fréquentes, où les conditions qui ont conduit aux incendies ravageurs observés en Indonésie pourraient se reproduire. Vu que l'application de réglementations environnementales robustes dans les régions reculées de pays à faibles revenus s'est avérée difficile dans le passé, et même si la dégradation à grande échelle des zones de tourbières dans la Cuvette Centrale semble lointaine aujourd'hui, c'est une situation qui pourrait potentiellement se transformer très rapidement.

4 Les perspectives de conservation et les recommandations pour la recherche

4.1 Les aires protégées

Quelques 16 600 km2 des 145 500 km2 de tourbières, soit 11 %, se situent à l'intérieur des limites officielles des aires protégées nationales. En Rép. du Congo, la Réserve Communautaire du Lac Télé (4600 km2) et la Réserve de Ntokou-Pikounda (4400 km2) couvrent une superficie respectivement de 3500 et 3000 km2 de tourbières (Fig. 2c). En Rép. dém. du Congo, quatre réserves s'étendent partiellement sur les zones de tourbières : la Réserve Naturelle du Triangle de la Ngiri (5400 km2 ; 3900 km2 tourbières), la Réserve de Tumba-Lediima (7700 km2 ; 2600 km2 tourbières), le Parc National de la Salonga (36,100 km2 ; 790 km2 tourbières) et la Réserve de Lomako-Yokokala (3700 km2 ; 76 km2 tourbières).

En outre, de très grandes parties des tourbières, tant en Rép. du Congo qu'en Rép. dém. du Congo, figurent parmi les sites inscrits sur la Liste des zones humides d'importance internationale (les sites Ramsar) au titre de la Convention Ramsar de 1971 (Ramsar 2017a), qui dans certains cas chevauchent également les aires protégées nationales citées ci-dessus (Fig. 2d). En effet, la Rép. du Congo et la Rép. dém. du Congo hébergent toutes les deux les sites Ramsar qui sont parmi les plus vastes au monde (Ramsar 2017a). Pourtant, peu de travaux ont été réalisé pour traduire l'inscription sur la liste en règles d'application sur le terrain. La Convention Ramsar oblige les Parties contractantes (c'est-à-dire les États nations) à promouvoir l'utilisation rationnelle des zones humides, y compris la planification de l'affectation des terres, et comporte un accord de 2015 portant sur les tourbières en particulier (Ramsar 2015), mais l'utilisation rationnelle est un concept général et la Convention n'oblige pas l'attribution d'un statut de protection juridique à un site Ramsar (Secrétariat de la Convention de Ramsar 2016). Il est à attendre que des plans de gestion conservatoire s'élaborent et se réalisent pour les sites inscrits sur la liste. Mais si la convention de Ramsar fournit un cadre pour promouvoir la protection des zones humides de la Cuvette Centrale, sans l'investissement des financements nécessaires à la gestion de ces sites, il paraît qu'il manque encore une protection active.

L'établissement des aires protégées sans reconnaître la présence des tourbières constitue une autre préoccupation. Ceci est important car les tourbières fonctionnent en tant que des unités hydrologiques de paysage. La dégradation d'un secteur des tourbières pourrait entraîner des effets secondaires de grande ampleur, en raison de l'interdépendance de l'ensemble du système. En outre, les tourbières de la Cuvette Centrale semblent couvrir des surfaces d'une taille exceptionnelle. Des tourbières individuelles, qui fonctionnent en tant que des unités hydrologiques homogènes, semblent occuper des bassins interfluviaux entiers, atteignant près
de 50 km de large. Les aires protégées qui n'englobent que des secteurs d'une unité de tourbière pourraient s'avérer vulnérables à la dégradation en raison d'activités en dehors des limites de l'aire protégée, ce qui exercent des impacts sur le stockage de carbone dans les tourbières et diminuent la capacité de cette aire protégée dans l'atteinte de ses objectifs de conservation de la biodiversité. Une option pour gérer l'unité dans son ensemble serait l'extension des limites des aires protégées existantes jusqu'aux limites hydrologiques des tourbières qu'elles englobent. Il n'est pas clair dans quelle mesure la tourbe elle-même est essentielle au maintien de la biodiversité qui est si précieuse. Certaines espèces—par exemple des crocodiles nains—se servent de la tourbe elle-même pour faire leur nid (Riley and Huchzermeyer 1999), et l'abondance de végétation herbacée dans les forêts marécageuses fournit une ressource alimentaire importante pour des espèces de primates (Fay et al. 1989 ; Hashimoto et al. 1998 ; Terada et al. 2015). Il faut absolument mener à bien plus de recherches, mais la présence d'énormes réserves de carbone ne peut qu'augmenter la valeur des tourbières tant du point de vue de la biodiversité que du point de vue des services écosystémiques.

4.2 Le financement climatique

Vu la présence de tant de carbone stocké dans la tourbe de la Cuvette Centrale, la possibilité s'ouvre d'attirer des financements d'atténuation du changement climatique à la région. Le mécanisme de Réduction des émissions provenant du déboisement et de la dégradation des forêts (REDD+) de la Convention-cadre des Nations unies sur les changements climatiques (CCNUCC) (UN-REDD Programme 2016) et des programmes connexes de compensation volontaire des émissions de carbone (Verified Carbon Standard 2017) pourraient fournir d'éventuelles voies d'investissement. La Rép. du Congo a déjà soumis un niveau de référence à la CCNUCC, et bien qu'il reconnaîsse la présence des sols tourbeux, il n'inclut pas dans les calculs le carbone organique du sol et il constate que les émissions sont peu importantes jusqu'ici (Coordination Nationale REDD République du Congo 2017). La Rép. dém. du Congo a développé son plan d'action REDD+ sur les mêmes principes. Les régions qui disposent d'un plan précis pour combattre à une menace quantifiable sur les stocks de carbone bénéficient d'un meilleur accès au financement REDD+, de sorte que des paiements basés sur les résultats s'effectuent lorsque réussissent les réductions prévues des émissions liées au gaz à effet de serre. De plus amples recherches, tant en sciences naturelles qu'en sciences sociales, visant à approfondir l'évaluation et la variation spatiale des menaces évoquées dans la section 3 ci-dessus, pourraient contribuer à plaider en faveur de futurs projets REDD+ et d'autres projets d'atténuation du changement climatique dans les tourbières congolaises, qui seraient avantageux aux populations locales.

De plus en plus, on observe dans le monde entier une tendance à développer et à investir dans des projets qui atteignent de multiples objectifs environnementaux et sociaux, notamment l'atténuation du changement climatique et l'adaptation fondée sur les écosystèmes (Munroe and Mant 2014). En exemple, on peut citer l'inauguration récente du premier projet financé par le Fonds vert pour le climat de l'ONU dans la province de Date de Maraño du Pérou (Green Climate Fund 2017 ; Roucoux et al. 2017). Ce projet bénéficie d'un financement de 9,1 millions de dollars US pour développer des « bio-entreprises » qui permettront une conservation durable des ressources des tourbières. Les démarches du projet favorisent non seulement l'adaptation au changement climatique, mais aussi la préservation des stocks de carbone, tout en facilitant le développement économique et en contribuant à répondre aux attentes de justice sociale, telles
que l'autonomisation des femmes. Il ne prévoit pas de réclamer des paiements basés sur les résultats pour la réduction du déboisement des forêts, mais plutôt d'établir une économie verte (une économie écologiquement durable qui encourage la justice sociale) qui ne dépend pas des fonds carbone. Cet exemple pourrait servir de modèle pour des investissements d'une envergure beaucoup plus grande dans le bassin du Congo.

4.3 Sommaire et recommandations pour la recherche

Les tourbières de la Cuvette Centrale sont des écosystèmes riches en carbone, abritant des espèces de vertébrés d'un intérêt remarquable mais aussi vulnérables. Dans le présent article, nous avons mis en évidence les potentiels menaces pour les tourbières, qui incluent le changement climatique, l'exploration des hydrocarbures, l'exploitation forestière, l'agriculture à grande échelle et les possibles synergies entre eux. A l'heure actuelle les tourbières de la Cuvette Centrale sont relativement intactes et les menaces paraissent assez lointaines. C'est pour cette raison qu'il est l'heure d'agir pour assurer leur protection. Nous proposons que les mesures de conservation puissent être financées par une combinaison de fonds pour le climat, la biodiversité et le développement, en utilisant les désignations Ramsar déjà en place qui couvrent la plupart des tourbières comme cadre pour la conception et la mise en œuvre de plans de gestion complets qui protègent l'hydrologie contre les modifications. Des recherches qui portent sur l'aménagement du territoire sont en cours dans le bassin du Congo au travers de l'Initiative pour les Forêts d’Afrique Centrale, ce qui pourrait fournir l'occasion de mieux cerner les politiques nationales sur la protection et la gestion des tourbières et les intégrer dans la planification plus générale.

Notre capacité d'évaluer la menace que représente, par exemple, le changement climatique sur les tourbières souffre d'un manque de connaissances en matière de la réponse historique des tourbières aux variations climatiques, leur hydrologie actuelle et le climat futur de la région au cours du vingt-et-unième siècle. Il en reste beaucoup à faire pour comprendre la forme et le fonctionnement de ces écosystèmes tourbeux, et pour évaluer leurs vulnérabilités. Bien qu'en fin de compte les décisions concernant les priorités en matière de développement socio-économique d'une nation ne relèvent pas de la compétence de la communauté scientifique, les chercheurs peuvent quand même identifier et combler les lacunes dans les connaissances et s'efforcer davantage de faire parvenir les découvertes des recherches aux principaux décideurs. L'une des principales lacunes de la recherche est notre manque de compréhension des interactions entre la tourbe, la faune et la flore, et les moyens de subsistance des populations locales. Par exemple, comme on peut constater, les études des tourbières en Asie du Sud-Est (Thornton et al. 2016), nous savons que les populations locales ont une forte dépendance à la pêche comme source principale de protéine, et qu'une partie de la pêche se poursuit à l'intérieur des tourbières. Mais nous ne savons pas comment les populations de poissons dans les cours d'eau et les marécages sont reliées, s'ils le sont, ni quels sont les apports des milieux tourbeux à la diversité additionnelle et/ou à la résilience des ressources au sein du paysage dans son ensemble. Ceci n’est qu’un seul exemple des synergies possibles entre le carbone, la biodiversité et les facteurs socio-économiques pour une gestion attentive des tourbières de la Cuvette Centrale. Les recherches futures doivent donc rassembler les connaissances des communautés locales, des sciences naturelles et des sciences sociales afin de développer une compréhension plus globale des tourbières de la Cuvette Centrale et de permettre aux communautés locales et aux gouvernements de gérer et de protéger cette région d'importance mondiale.
Remerciements Nous tenons à remercier B. MAC SHARRY (Centre mondial de la surveillance continue de la conservation de la nature (PNUE)) et H. RAINEY (Société pour la conservation de la vie sauvage) qui ont fourni des informations sur les sites de Ramsar en Rép. du Congo et en Rép. dém. du Congo, P. GULLIVER (Laboratoire de mesure au radiocarbone du NERC) pour les analyses au radiocarbone et H. PLANTE (traduction).

Informations sur le financement Les recherches sur les tourbières ont fait l'objet d'une bourse Open CASE (n° de référence 1087746) du Conseil de recherche sur l'environnement naturel accordé à S.L.L et à G.C.D.; d'un financement du Laboratoire de mesure au radiocarbone du NERC NRCF010001 (n°s d'allocation 1688.0313 et 1797.0414) accordé à I.T.L., S.L.L. et G.C.D.; du prix Phillip Leverhulme (accordé à S.L.L.) et de la Société pour la conservation de la vie sauvage du Congo (accordé à G.C.D.).

Références

Ahrends A, Burgess ND, Milledge SAH, Bulling MT, Fisher B, Smart JCR, Clarke GP, Mhoro BE, Lewis SL (2010) Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. PNAS 107(33):14556–14561. https://doi.org/10.1073/pnas.0914471107

Arellano P, Tansey K, Balzter H, Boyd DS (2015) Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ Pollut 205:225–239. https://doi.org/10.1016/j.envpol.2015.05.041

Barnston AG, Tippett MK, L’Heureux ML et al (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93(5):631–651. https://doi.org/10.1175/BAMS-D-11-00111.1

Betheder J, Gond V, Frappart F et al (2014) Mapping of Central Africa forested wetlands using remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 7:531–542

Bonifica S.p.A (2017) Transaqua: Africa Sahel. http://bonifica2.accentra.it/water/transaqua-an-idea-forthesahel/. Accessed 22 Nov 2017

Brncic TM, Willis KJ, Harris DJ, Washington R (2007) Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philos Trans R Soc Lond Ser B Biol Sci 362(1478):229–242. https://doi.org/10.1098/rstb.2006.1982

Buiter SJH, Steinberger B, Medvedev S, Tetreault JL (2012) Could the mantle have caused subsidence of the Congo Basin? Tectonophysics 514–517:62–80

Bwangoy JB, Hansen MC, Roy DP et al (2010) Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114(1):73–86. https://doi.org/10.1016/j.rse.2009.08.004

Chimner RA, Cooper DJ, Wurster FC, Rochefort L (2016) An overview of peatland restoration in North America: where are we after 25 years? Restor Ecol 25:283–292

Commission du Bassin du Lac Tchad (2016a) Projet de transfert des eaux inter bassins : Signature d’un protocole d’accord entre la CBLT et la société chinoise PowerChina International Group Limited. http://www.cblt.org/fr/actualites/projet-de-transfert-des-eaux-inter-bassins-signature-dun-protocole-daccord-entre-la-cblt. Accessed 22 Nov 2017

Commission du Bassin du Lac Tchad (2016b) Projet de transfert d’eau interbassin (PTEIB). http://www.cblt.org/fr/projets/projet-de-transfert-eau-interbassin. Accessed 22 Nov 2017

Commission du Bassin du Lac Tchad (2016c) Commission du Bassin du Lac Tchad. http://www.cblt.org/fr. Consulté le 22 nov 2017

Coordination Nationale REDD République du Congo (2017) Niveau d’émissions de référence pour les forêts (NERF) de la République du Congo. Programme ONU-REDD, Genève

Crosby AG, Fishwick S, White N (2010) Structure and evolution of the intracratonic Congo Basin. Geochem Geophys Geosyst Q06010(6). https://doi.org/10.1029/2009GC003014

Daly MC, Lawrence SR, Diemu-Tshiband K, Matouana B (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J Geol Soc Lond 149(4):539–546. https://doi.org/10.1144/gsjgs.149.4.0539

Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542(7639):86–90. https://doi.org/10.1038/nature21048
Edwards DP, Sloan S, Weng L, Dirks P, Sayer J, Laurance WF (2014) Mining and the African environment. Conserv Lett 7(3):302–311. https://doi.org/10.1111/conl.12076

Fabricius P (2016) The World Bank has suspended funding for the DRC’s Inga 3 hydropower scheme. Where does this leave the project? ISS Today https://issafrica.org/issa-today/inga-dream-again-deferred. Accessed 15 Jul 2017

Fay JM, Agnagna M (1991) A population survey of forest elephants (Loxodonta africana cyclotis) in northern Congo. Afr J Ecol 29:177–187

Fay JM, Agnagna M, Moore J, Oko R (1989) Gorillas (Gorilla gorilla gorilla) in the Likouala swamp forests of north central Congo: preliminary data on populations and ecology. Int J Primatol 10(5):477–486. https://doi.org/10.1007/BF02736372

Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS One 3(8):e2932. https://doi.org/10.1371/journal.pone.0002932

Fotso-Ngoumo TC, Vondou DA, Tchawoua C, Haensler A (2016) Assessment of simulated rainfall and temperature from the regional climate model REMO and future changes over Central Africa. Clim Dyn 48:3655–3705

Giles J (2005) Solving Africa’s climate-data problem. Nature 435:863–863

Global Forest Watch (2017a) Democratic Republic of the Congo mining permits. http://data.globalforestwatch.org/datasets/3b4c0c91306c47abaec0c3fd46088242_5/?uiTab=metadata. Accessed 25 Jul 2017

Global Forest Watch (2017b) Republic of the Congo mining permits. http://data.globalforestwatch.org/datasets/84fbbcc10e9f471f90570dd42426cb12_18. Accessed 25 Jul 2017

Global Forest Watch (2017c) Democratic Republic of the Congo forest titles. http://data.globalforestwatch.org/datasets/535eb1335c4841b0bf272b78e2cc2f4_6. Accessed 25 Jul 2017

Global Forest Watch (2017d) Republic of the Congo logging concessions. http://data.globalforestwatch.org/datasets/557bfce901c584b7a8884aa455cfa6de2_19. Accessed 25 Jul 2017

Green Climate Fund (2017) Project FP001: building the resilience of wetlands in the province of Datem del Marañón, Peru. http://www.greenclimatefund.org/-/building-the-resilience-of-wetlands-in-the-province-odatem-del-maranon-peru. Accessed 21 Jul 2017

Grootjans A, Iturraspe R, Lanting A, et al (2010) Ecologicalhydrological features of some contrasting mires in Tierra del Fuego, Argentina. Mires Peat 6:Article 1 1–15

Haensler A, Saeed F, Jacob D (2013) Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim Chang 121(2):349–363. https://doi.org/10.1007/s10584-013-0863-8

Hansen MC, Potapov P V., Moore R, et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. Data available on-line from: http://earthenginepartners.appspot.com/science2013-global-forest

Hashimoto C, Tashiro Y, Kimura D, Enomoto T, Ingmanson EJ, Idani G, Furuichi T (1998) Habitat use and ranging of wild bonobos (Pan paniscus) at Wamba. Int J Primatol 19(6):1045–1060. https://doi.org/10.1023/A:1020378320913

Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk I, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7(5):1505–1514. https://doi.org/10.5194/bg-7-1505-2010

Huijnen V, Wooster MJ, Kaiser JW, Geave DLA, Fleming J, Parrington M, Inness A, Murdiyarso D, Main B, van Weele M (2016) Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci Rep 6(1):26886. https://doi.org/10.1038/srep26886

Inogwabini B, Abokome M, Kamenge Tet al (2012) Preliminary bonobo and chimpanzee nesting by habitat type in the northern Lac Tumba Landscape, Democratic Republic of Congo. Afr J Ecol 50:285–298

International Rivers (2017) The Inga 3 hydropower project. https://www.internationalrivers.org/campaigns/theinga-3-hydropower-project. Accessed 15 Jul 2017

James R, Washington R, Rowell DP (2013) Implications of global warming for the climate of African rainforests. Philos Trans R Soc Lond Ser B Biol Sci 368(1625):20120298. https://doi.org/10.1098/rstb.2012.0298

Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9(2):617–630. https://doi.org/10.5194/bg-9-617-2012

Jung HC, Hamski J, Durand M, Alsdorf D, Hossain F, Lee H, Hossain AKMA, Hasan K, Khan AS, Hoque AKMZ (2010) Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra rivers. Earth Surf Process Landf 35(3):294–304. https://doi.org/10.1002/esp.1914
Kadima E, Delvaux D, Sebagenzi SN, Tack L, Kabeya SM (2011) Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res 23(5):499–527. https://doi.org/10.1111/j.1365-2177.2011.00500.x

Könönen M, Jauhiainen J, Laiho R, Spetz P, Kusin K, Limin S, Vasander H (2016) Land use increases the recalcitrance of tropical peat. Wetl Ecol Manag 24(6):717–731. https://doi.org/10.1007/s11273-016-9498-7

Langner A, Siegert F (2009) Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob Chang Biol 15(1):48–62. https://doi.org/10.1111/j.1365-2486.2008.01828.x

La Fondation Rainforest UK (2013) Planter pour détruire? La Fondation Rainforest, Londres

Laprise R, Hernández-Diaz L, Tete K, Sushama L, Šeparović L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn 41(11-12):3219–3246. https://doi.org/10.1007/s00382-012-1651-2

Laraque A, Mahé G, Orange D, Marieu B (2001) Spatiotemporal variations in hydrological regimes within Central Africa during the XXth century. J Hydrol 245(1–4):104–117. https://doi.org/10.1016/S0022-1694(01)00340-7

Laraque A, Bricquet JP, Pandi A, Olivry JC (2009) A review of material transport by the Congo River and its tributaries. Hydrol Process 23(22):3216–3224. https://doi.org/10.1002/hyp.7395

Laurance WF, Campbell MJ, Alamgir M, Mahmoud MI (2017) Road expansion and the fate of Africa’s tropical forests. Front Ecol Evol 5:Article 75. https://doi.org/10.1016/j.fronteco.2014.11.030

Lewis J (2002) Forest hunter-gatherers and their world: a study of the Mbendjele Yaka pygmies of Congo-Brazzaville and their secular and religious activities and representations. Doctoral Thesis, University of London

MapforEnvironment (2017a) Oil Blocs 2013. https://mapeforenvironment.org/layer/info/184/#4.65/3.013/21.755. Accessed 4 Aug 2017

MapforEnvironment (2017b) DRC protected areas. https://mapeforenvironment.org/layer/info/193/#4.38/-3.547/21.568. Accessed 25 Jul 2017

Marengo JA (1998) Climatología de la zona de Iquitos, Perú. In: Kalliola R, Flores Paitán S (eds) Geocología y desarrollo amazónico: estudio integrado en la zona de Iquitos, Perú. Annales Un. University of Turku, Finland, pp 35–57

Master S (2010) Lac Télè structure, Republic of Congo: geological setting of a cryptozoological and biodiversity hotspot, and evidence against an impact origin. J Afr Earth Sci 58(4):667–679. https://doi.org/10.1016/j.jafresci.2009.07.017

Mayaux P, Bartholomé E, Fritz S, Belward A (2004) A new land cover map of Africa for the year 2000. J Biogeogr 31(6):861. https://doi.org/10.1111/j.1365-2699.2004.01073.x

Medrilzam M, Dargusch P, Herbohn J, Smith C (2014) The socio-ecological drivers of forest degradation in part of the tropical peatlands of Central Kalimantan, Indonesia. Forestry 87(2):335–345. https://doi.org/10.1093/forestry/cpt033

Miettinen J, Shi C, Liew SC (2016) Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol Conserv 6:67–78

Ministère des Hydrocarbures République du Congo & SNPC (2016) Congo License Round 2016: Cuvette Basin. http://www.congolr2016.com/cuveette-basin. Accessed 25 Jul 2017

Ministry of Climate and Environment, Kingdom of Norway (2017) Rainforest Foundation UK misleads the public about the international community’s efforts to preserve Congo’s forests. https://www.regjeringen.no/no/aktuelt/rainforest-foundation-uk-misleads-the-public-about-the-international-communitys-efforts-topreserve-congos-forests/id2564628/. Accessed 30 Sep 2017

Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493(7434):660–664. https://doi.org/10.1038/nature11818

Munroe R, Mant R (2014) Info brief 2: REDD+ and adaptation: identifying complementary responses to climate change. UN-REDD Programme, Geneva

Niang I, Ruppel OC, Abdrabo MA, et al (2014) Africa. In: Barros VR, Field CB, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, pp 1199–1265

Ordway EM, Asner GP, Lambin EF (2017) Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ Res Lett 12(4):044015. https://doi.org/10.1088/1748-9326/aa6509
USGS (2016) Mineral commodity summaries 2016. USGS, Reston
Vancutsem C, Pekel JF, Evrard C, Malaisse F, Defourny P (2009) Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series. Int J Appl Earth Obs Geoinf 11(1):62–76. https://doi.org/10.1016/j.jag.2008.08.001
Verheggen A, Mayaux P, de Wasseige C, Defourny P (2012) Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences 9(12): 5061–5079. https://doi.org/10.5194/bg-9-5061-2012
Verified Carbon Standard (2017) The VCS Program. http://www.v-c-s.org/project/vcs-program/. Accessed 21 Jul 2017
World Bank (2016) World Bank Group suspends financing to the Inga-3 Basse Chute technical assistance project. http://www.worldbank.org/en/news/press-release/2016/07/25/world-bank-group-suspendsfinancing-to-the-inga-3-basse-chute-technical-assistance-project. Accessed 5 Jul 2017
Wright T, Rahmanulloh A (2017) Indonesia oilseeds and products annual report 2017. USDA Foreign Agricultural Service, Washington