MOTIVIC MEASURES AND \mathbb{F}_1-GEOMETRIES

LIEVEN LE BRUYN

Abstract. Right adjoints for the forgetful functors on λ-rings and bi-rings are applied to motivic measures and their zeta functions on the Grothendieck ring of \mathbb{F}_1-varieties in the sense of Lorscheid and Lopez-Pena (torified schemes). This leads us to a specific subring of $W(\mathbb{Z})$, properly containing Almkvist’s ring $W_0(\mathbb{Z})$, which might be a natural receptacle for all local factors of completed zeta functions.

1. Introduction

In [2] Jim Borger proposes to consider integral λ-rings as \mathbb{F}_1-algebras, with the λ-structure viewed as the descent data from \mathbb{Z} to \mathbb{F}_1. Crucial is the fact that the functor of forgetting the λ-structure has the Witt-ring functor $W(\mathbb{Z})$ as its right adjoint. Recall that the λ-ring $W(\mathbb{Z}) = 1 + t\mathbb{Z}[[t]]$ has addition ordinary multiplication of power series, and a new multiplication induced functorially by demanding that $(1 - mt)^{-1} \ast (1 - nt)^{-1} = (1 - mnt)^{-1}$. We will view $W(\mathbb{Z})$ as a receptacle for motivic data, such as zeta-functions.

A counting measure is a ringmorphism $\mu : K_0(\text{Var}_\mathbb{Z}) \longrightarrow \mathbb{Z}$, with $K_0(\text{Var}_\mathbb{Z})$ the Grothendieck ring of schemes of finite type over \mathbb{Z}. A classic example being $\mu_{\mathbb{F}_p}([X]) = \# X_p(\mathbb{F}_p)$ where X_p is the reduction of X modulo p. The \mathbb{F}_p-counting measure $\mu_{\mathbb{F}_p}$ is exponentiable meaning that it defines a ringmorphism

$$\zeta_{\mathbb{F}_p} : K_0(\text{Var}_\mathbb{Z}) \longrightarrow W(\mathbb{Z})$$

$[X] \mapsto \zeta_{\mathbb{F}_p}(X_p, t) = \exp(\sum_{r \geq 1} \# X_p(\mathbb{F}_p^{2^r}) t^r/r)$

and is rational, meaning that $\zeta_{\mathbb{F}_p}$ factors through the Almkvist subring $W_0(\mathbb{Z})$ of $W(\mathbb{Z})$, consisting of all rational functions.

For a scheme X of finite type over \mathbb{Z}, let $N(x)$ for every closed point $x \in |X|$ be the cardinality of the finite residue field at x, then the Hasse-Weil zeta function of X decomposes as a product

$$\zeta_X(s) = \prod_{x \in |X|} \frac{1}{(1 - N(x)^{-s})} = \prod_p \zeta_{\mathbb{F}_p}(X_p, p^{-s})$$

over the non-archimedean local factors. If we take the product with the archimedean factors (Γ-factors) we obtain the completed zeta function $\hat{\zeta}_X(s)$.

One of the original motivations for constructing \mathbb{F}_1-geometries was to understand these Γ-factors, see the lecture notes [20] by Yuri I. Manin. For example, Manin conjectured that Deninger’s Γ-factor $\prod_{n \geq 0} \frac{e^{-n}}{2\pi} \zeta(\overline{\text{Spec}(\mathbb{Z})})$ at complex infinity
should be the zeta function of (the dual of) infinite dimensional projective space \mathbb{P}_1^∞, see [19 4.3] and [21 Intro].

As a step towards this conjecture, we proposed in [14] to consider integral birings as \mathbb{F}_1-algebras, this time with the co-ring structure as the descent data from \mathbb{Z} to \mathbb{F}_1. Here again, the forgetful functor has a right adjoint with assigns to \mathbb{Z} the bi-ring $L(\mathbb{Z})$ of all integral recursive sequences equipped with the Hadamard product. These two approaches to \mathbb{F}_1-geometry are related, that is, we have a commuting diagram of (solid) ringmorphisms (dashed morphisms are explained below)

$$
\begin{array}{ccc}
\mathbb{W}_0(\mathbb{Z}) & \xrightarrow{\zeta_{\mathbb{F}_1}} & \mathbb{M}(\mathbb{Z}) \\
\downarrow & & \downarrow \\
\mathbb{Z}[L] & \xrightarrow{\zeta_{\mathbb{F}_1}} & L(\mathbb{Z}) \\
\downarrow & & \downarrow \\
& & \mathbb{Z}_1
\end{array}
$$

with the ghost-map $\delta = t \frac{d}{dt} \log(-)$ and $\mathbb{M}(\mathbb{Z})$ the pull-back of δ and the natural inclusion map i. One might speculate that the relevant counting measures $\mu : K_0(\text{Var}_{\mathbb{Z}}) \rightarrow \mathbb{Z}$ are those which determine a ring-morphism $\zeta_{\mu} : K_0(\text{Var}_{\mathbb{Z}}) \rightarrow \mathbb{M}(\mathbb{Z})$, with those factoring over $\mathbb{W}_0(\mathbb{Z})$ corresponding to the non-archimedean factors, and the remaining ones related to the Γ-factors.

This is motivated by our description of the \mathbb{F}_1-zeta function of Lieber, Manin and Marcolli in [15]. Here, one considers integral schemes with a decomposition into tori G^n_m as \mathbb{F}_1-varieties and with morphisms respecting the decomposition and with all restrictions to tori being morphisms of group schemes. The corresponding Grothendieck ring $K_0(\text{Var}_{\mathbb{F}_1})$ can then be identified with the subring $\mathbb{Z}[L]$ of $K_0(\text{Var}_{\mathbb{F}_1})$. Kapranov’s motivic zeta function induces a natural λ-ring structure on $\mathbb{Z}[L]$ and we can also define a bi-ring structure on it by taking $D = L - 2$ to be a primitive generator. By right adjointness we then have natural one-to-one correspondences

$$
\text{comm}^+_{bi}(\mathbb{Z}[L], L(\mathbb{Z})) \leftrightarrow \text{comm}(\mathbb{Z}[L], \mathbb{Z}) \leftrightarrow \text{comm}^+_{bi}(\mathbb{Z}[L], \mathbb{W}(\mathbb{Z}))
$$

To a counting measure $\mathbb{L} \rightarrow m$ corresponds a λ-ring morphism $\zeta_{m} : \mathbb{Z}[L] \rightarrow \mathbb{W}(\mathbb{Z})$ which factors through $\mathbb{W}_0(\mathbb{Z})$ and coincides with $\zeta_{\mathbb{F}_1}$ when $m = p$. If X is an integral scheme with toric decomposition, its \mathbb{F}_1-zeta function is defined to be the ringmorphism

$$
\zeta_{\mathbb{F}_1} : \mathbb{Z}[L] \rightarrow \mathbb{W}(\mathbb{Z}) \quad \zeta_{\mathbb{F}_1}(X, t) = \exp(\sum_{r \geq 1} \#X(\mathbb{F}_1^m) \frac{t^r}{r})
$$

with $\#X(\mathbb{F}_1^m)$ being the total number of m-th roots of unity in the tori making up X, see [15]. This $\zeta_{\mathbb{F}_1}$ is not a λ-ring morphism and does not factor through $\mathbb{W}_0(\mathbb{Z})$. However, the counting measure $\mathbb{L} \rightarrow 3$ corresponds to a bi-ring morphism $c_{\mathbb{F}_1} : \mathbb{Z}[L] \rightarrow L(\mathbb{Z})$ which factors through $\mathbb{M}(\mathbb{Z})$ and such that the composition with $\mathbb{M}(\mathbb{Z}) \rightarrow \mathbb{W}(\mathbb{Z})$ is the zeta-morphism $\zeta_{\mathbb{F}_1}$.
1.1. **Structure of this paper.** In section 2 we use right adjointness of the functor $W(-)$ to give quick proofs of the facts that the pre λ-structure on $K_0(Var_C)$ given by Kapranov’s motivic zeta function does not define a λ-ring structure, and that its universal motivic measure is not exponentiable.

In section 3 we relate the versions of F_1-geometry determined by λ-rings resp. biring-morphisms to the concrete resp. abstract Bost-Connes systems associated to cyclotomic Bost-Connes data as in [24]. This allows to have relative versions of $W_0(Z)$ and $L(Z)$ by imposing conditions on the eigenvalues of actions of Frobenii on (co)homology or on the roots and poles of zeta-polynomials.

In section 4 we study counting measures on the Grothendieck ring of torified integral schemes, proving the results mentioned above. It turns out that the pull-back $M(Z)$ of $W(Z)$ and $L(Z)$ might be the appropriate receptacle for local factors of zeta functions of integral schemes. These results can be extended to other subrings of $K_0(Var_Z)$ which are λ-rings and admit a bi-ring structure.

In section 5 we introduce the category of all linear dynamical systems which plays the same role for $L(Z)$ as does the endomorphism category for $W_0(Z)$. To completely reachable systems we associate their transfer functions which are strictly proper rational functions. As such, these systems may be relevant in the study of zeta-polynomials, as introduced by Manin in [21].

Acknowledgements This paper owes much to recent work of Yuri I. Manin, Matilde Marcolli and co-authors, [23], [15] and [24]. Unconventional symbols are taken from the \LaTeX-package **halloweenmath** [25], befitting the current topic.

2. **Motivic measures on $K_0(Var_k)$**

Let Var_k be the category of varieties over a field k. The Grothendieck ring $K_0(Var_k)$ is the quotient of the free abelian group on isomorphism classes $[X]$ of varieties by the relations $[X] = [Y] + [X - Y]$ whenever Y is a closed subvariety of X, and multiplication is induced by products of varieties, that is, $[X][Y] = [X \times Y]$. As the structure of $K_0(Var_k)$ is fairly mysterious, we try to probe its properties via motivic measures.

Definition 1. A motivic measure on $K_0(Var_k)$ with values in a commutative ring R is a ringmorphism

$$\mu : K_0(Var_k) \rightarrow R$$

The archetypical example of a motivic measure on the Grothendieck ring of varieties over a finite field F_q is the **counting measure** with values in \mathbb{Z}

$$\mu_{\mathbb{Z}_q} : K_0(Var_{\mathbb{Z}_q}) \rightarrow \mathbb{Z} \quad [X] \mapsto \# X(F_q)$$

An example of a motivic measure on the Grothendieck ring of complex varieties $K_0(Var_C)$ with values in \mathbb{Z} is the **Euler characteristic measure**

$$\chi_c : K_0(Var_C) \rightarrow \mathbb{Z} \quad [X] \mapsto \chi_c(X) = \sum_i (-1)^i \dim_{\mathbb{Q}} H^i_c(X^{an}, \mathbb{Q})$$

There are plenty of motivic measures with values in other rings such as the **Hodge characteristic measure** μ_{H} with values in $\mathbb{Z}[u, v]$, see [10] §4.1, the **Poincaré characteristic measure** P_X with values in $\mathbb{Z}[u]$, see [16] §4.1, the **Gillet-Soulé measure** μ_{GS} with values in the Grothendieck ring if Chow motives, see [6].
Of particular importance to us are the 'exotic' Larsen-Lunts measure μ_{LL} on $K_0(\text{Var}_k)$ with values in the quotient field of the monoid ring $\mathbb{Z}[C]$ with C the multiplicative monoid of polynomials in $\mathbb{Z}[t]$ with positive leading coefficient, see [12], and the universal motivic measure, which is the identity morphism $id : K_0(\text{Var}_k) \to K_0(\text{Var}_k)$.

For a commutative ring R let $\mathbb{W}(R)$ be the set $1+tR[[t]]$ of all formal power series over R with constant term equal to one, and let multiplication of formal power series be the addition on $\mathbb{W}(R)$. We say that R admits a pre λ-structure if there exists a morphism of additive groups

$$\lambda_t : R \to \mathbb{W}(R) = 1 + tR[[t]] \quad a \mapsto \lambda_t(a) = 1 + at + \ldots = \sum_{m \geq 0} \lambda^m(a)t^m$$

that is, it satisfies $\lambda_0(a) = 1$, $\lambda_1(a) = a$, and

$$\lambda_t(a + b) = \lambda_t(a)\lambda_t(b) \quad \text{that is} \quad \lambda^m(a + b) = \sum_{i+j=m} \lambda^i(a)\lambda^j(b)$$

Given a pre λ-structure λ_t on R we can define the Adams operations Ψ_m on R via

$$\frac{t}{d} \log(\lambda_t(a)) = t - \frac{1}{\lambda_t(a)} \frac{d\lambda_t(a)}{dt} = \sum_{m \geq 1} \Psi_m(a)t^m$$

and note that for all $m \in \mathbb{N}$ and all $a, b \in R$ we have $\Psi_m(a + b) = \Psi_m(a) + \Psi_m(b)$. We say that a pre λ-ring R is a λ-ring if for all $m, n \in \mathbb{N}$ we have these conditions on the Adams operations

$$\Psi_m(a, b) = \Psi_m(a)\Psi_m(b) \quad \text{and} \quad \Psi_m \circ \Psi_n = \Psi_{mn} \circ \Psi_m$$

Equivalently, if we define a multiplication \ast on $\mathbb{W}(R)$ induced by the functorial requirement that $(1-at)^{-1} \ast (1-bt)^{-1} = (1-abt)^{-1}$ for all $a, b \in R$, then the map λ_t is a morphism of rings. For more on λ-rings, see [9], [11] and [33].

A morphism $\phi : (R, \lambda_t) \to (R', \lambda'_t)$ between two λ-rings is a ringmorphism such that for all $a \in R$ we have that $\lambda'_t(\phi(a)) = \mathbb{W}(\phi)(\lambda_t(a))$ where $\mathbb{W}(\phi)$ is the map on $\mathbb{W}(R) = 1 + tR[[t]]$ induced by ϕ. With comm_L^\pm we will denote the category of all (commutative) λ-rings. If comm is the category of all commutative rings, then

$$\mathbb{W} : \text{comm} \to \text{comm}_L^\pm \quad A \mapsto \mathbb{W}(A)$$

is a functor, which is right adjoint to the forgetful functor $F : \text{comm}_L^\pm \to \text{comm}$. That is, for every λ-ring (R, λ_t) and every commutative ring A we have a natural one-to-one correspondence

$$\text{comm}_L^\pm(R, \mathbb{W}(A)) \leftrightarrow \text{comm}(R, A) \quad \phi \leftrightarrow \bar{\phi} \circ \phi$$

with the ghost components $\bar{\phi}_m : \mathbb{W}(A) \to A$ defined by

$$t \frac{1}{P} \frac{dP}{dt} = \sum_{m=1}^{\infty} \bar{\phi}_m(P)t^m \quad \text{for all} \ P \in \mathbb{W}(A) = 1 + tA[[t]]$$

Kapranov’s motivic zeta function ζ defines a natural pre λ-structure on $K_0(\text{Var}_k)$

$$\zeta : K_0(\text{Var}_k) \to \mathbb{W}(K_0(\text{Var}_k)) \quad [X] \mapsto \zeta_X(t) = 1 + [X]t + [S^2X]t^2 + [S^3X]t^3 + \ldots$$

where $S^nX = X^n/S_n$ is the n-th symmetric product of X.
Definition 2. A motivic measure $\mu : K_0(\text{Var}_k) \longrightarrow R$ with values in R is said to be exponentiable if the uniquely determined map $\zeta_\mu : K_0(\text{Var}_k) \longrightarrow \mathbb{W}(R)$ by

$$\zeta_\mu([X]) = 1 + \mu([X])t + \mu([S^2X])t^2 + \mu([S^3X])t^3 + \ldots$$

is a ringmorphism.

Again, the archetypical example being the counting measure $\mu_{\mathbb{F}_q}$ on $K_0(\text{Var}_{\mathbb{F}_q})$ which is exponentiable, with corresponding zeta-function

$$\zeta_{\mu_{\mathbb{F}_q}} : K_0(\text{Var}_{\mathbb{F}_q}) \longrightarrow \mathbb{W}(\mathbb{Z}) \quad \zeta_{\mu_{\mathbb{F}_q}}([X]) = \sum_{m=1}^{\infty} \#X(\mathbb{F}_q^m)t^m = Z_{\mathbb{F}_q}(X, t)$$

the classical Hasse-Weil zeta function, see [26, Prop. 8] or [29, Thm. 2.1]. Also the Euler characteristic measure on $K_0(\text{Var}_C)$ is exponentiable with corresponding zeta function

$$\zeta_{\mu_c} : K_0(\text{Var}_C) \longrightarrow \mathbb{W}(\mathbb{Z}) \quad \zeta_{\mu_c}([X]) = \frac{1}{(1-t)^{\chi_c(X)}}$$

However, as shown in [30, §4] the Larsen-Luntz motivic measure μ_{LL} on $K_0(\text{Var}_C)$ is not exponentiable. For this would imply that

$$\zeta_{\mu_{\text{LL}}}(C_1 \times C_2) = \zeta_{\mu_{\text{LL}}}(C_1) * \zeta_{\mu_{\text{LL}}}(C_2)$$

for any pair of projective curves C_1 and C_2. Kapranov proved that $\zeta_c(C)$ is a rational function for every curve and every motivic measure, which would imply that $\mu_{\text{LL}}(C_1 \times C_2)$ would be rational too, by [30, Prop. 4.3], which contradicts [12, Thm 7.6] in case C_1 and C_2 have genus ≥ 1.

It is a natural to ask whether the pre λ-structure on $K_0(\text{Var}_k)$ defined by Kapranov’s motivic zeta function defines a λ-ring structure on $K_0(\text{Var}_k)$, see [29, §3 Questions] or [7, §2.2]. The following is well-known to the experts, but we cannot resist including the short proof.

Proposition 1. If Kapranov’s motivic zeta function makes $K_0(\text{Var}_k)$ into a λ-ring, then every motivic measure $\mu : K_0(\text{Var}_k) \longrightarrow R$ is exponentiable.

As a consequence, Kapranov’s zeta function does not define a λ-ring structure on $K_0(\text{Var}_C)$.

Proof. If $K_0(\text{Var}_k)$ is a λ-ring, then by right adjunction of $\mathbb{W}(-)$ with respect to the forgetful functor, we have a natural one-to-one correspondence

$$\text{comm}(K_0(\text{Var}_k), R) \leftrightarrow \text{comm}_\lambda^+(K_0(\text{Var}_k), \mathbb{W}(R))$$

and under this correspondence the motivic measure μ maps to a unique λ-ring morphism $\zeta_\mu : K_0(\text{Var}_k) \longrightarrow \mathbb{W}(R)$.

Because the Larsen-Luntz motivic measure μ_{LL} on $K_0(\text{Var}_C)$ is not exponentiable, it follows that $K_0(\text{Var}_C)$ cannot be a λ-ring. □

Another immediate consequence is this negative answer to [29, §3 Questions].

Proposition 2. The universal motivic measure on $K_0(\text{Var}_C)$ is not exponentiable.
Proof. By functoriality, any motivic measure $\mu : K_0(\text{Var}_C) \to R$ gives rise to a morphism of λ-rings $\mathbb{W}(\mu) : \mathbb{W}(K_0(\text{Var}_C)) \to \mathbb{W}(R)$.

If the universal measure would be exponentiable, this would give a ringmorphism $\zeta : K_0(\text{Var}_C) \to \mathbb{W}(K_0(\text{Var}_C))$ and composition $\mathbb{W}(\mu) \circ \zeta : K_0(\text{Var}_C) \to \mathbb{W}(R)$ would then imply that μ is exponentiable, which cannot happen for μ_{LL}. □

An important condition on a motivic measure $\mu : K_0(\text{Var}_k) \to R$ is its rationality. In order to define this, we need to recall the endomorphism category and its Grothendieck ring, see [1] and [8].

For a commutative ring R consider the category \mathcal{E}_R consisting of pairs (E,f) where E is a projective R-module of finite rank and f is an endomorphism of E. Morphisms in \mathcal{E}_R are module morphisms compatible with the endomorphisms. There is a duality $(E,f)\leftrightarrow (E^*,f^*)$ on \mathcal{E}_R and we have \oplus and \otimes operations

$$(E_1,f_1) \oplus (E_2,f_2) = (E_1 \oplus E_2,f_1 \oplus f_2) \quad (E_1,f_1) \otimes (E_2,f_2) = (E_1 \otimes E_2,f_1 \otimes f_2)$$

with a zero object $0 = (0,0)$ and a unit object $1 = (R,1)$. These operations turn the Grothendieck ring $K_0(\mathcal{E}_R)$ into a commutative ring, having an ideal consisting of the pairs $(E,0)$, with quotient ring $\mathbb{W}_0(R)$.

The ring $\mathbb{W}_0(R)$ comes equipped with Frobenius ring endomorphisms $Fr_n(E,f) = (E,f^n)$, Verschiebung additive maps

$$V_n(E,f) = (E^{\oplus n}, \begin{bmatrix} 0 & 0 & 0 & \ldots & 0 & f \\ 1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 1 & 0 & \ldots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 & 0 \end{bmatrix})$$

and ghost ringmorphisms $\delta_n(E,f) = Tr(f^n) : \mathbb{W}_0(R) \to R$. For various relations among the maps Fr_n, V_n and δ_n, see for example [1] Prop. 2.2.

The connection between Almkvist’s functor $\mathbb{W}_0(-)$ and $\mathbb{W}(-)$ is given by the ringmorphisms

$$L_R : \mathbb{W}_0(R) \to \mathbb{W}(R) \quad L_R(E,f) = \frac{1}{\det(1-tM_{\tilde{f}})}$$

where $M_{\tilde{f}}$ is the matrix associated to f (that is, if $f = \sum_i x_i^* \otimes x_i \in \text{End}_R(E) = E^* \otimes E$, then $M_{\tilde{f}} = (a_{ij})_{i,j}$ with $a_{ij} = x_i^*(x_j)$). By [1] Thm 6.4] we know that L_R is injective with image all rational formal power series of the form

$$\frac{1 + a_1 t + \ldots + a_n t^n}{1 + b_1 t + \ldots + b_m t^m} \quad a_i, b_i \in R, m, n \in \mathbb{N}.$$

Definition 3. We say that a motivic measure $\mu : K_0(\text{Var}_k) \to R$ is rational if it is exponentiable and if the corresponding zeta-function ζ_μ factors through $\mathbb{W}_0(RT)$. That is, there is a unique ringmorphism

$$r_\mu : K_0(\text{Var}_k) \to \mathbb{W}_0(R)$$

such that $\zeta_\mu = L_R \circ r_\mu$.

By a classic result of Dwork we know that the counting measure μ_{F_q} is rational, as is the Euler characteristic measure μ_c.

3. Cyclotomic Bost-Connes data

Let R be an integral domain with field of fractions K of characteristic zero and with algebraic closure \overline{K}. Let \mathbb{K}_\times be the multiplicative group of all non-zero elements and μ_∞ the subgroup consisting of all roots of unity. The power maps $\sigma_n : x \mapsto x^n$ for $n \in \mathbb{N}_+$ form a commuting family of endomorphisms of \mathbb{K}_\times and its subgroups. Following M. Marcolli en G. Tabuada in [24] we define:

Definition 4. A cyclotomic Bost-Connes datum is a divisible subgroup $\Sigma \subseteq \mathbb{K}_\times$ stable under the action of the Galois group $G = \text{Gal}(\overline{K}/K)$.

The subgroup Σ should be considered as ‘generalised’ Weil numbers (recall that for each prime power $q = p^r$ the Weil q-numbers are an instance, see [24, Example 4]).

Observe that cyclotomic Bost-Connes data are special cases of concrete Bost-Connes data as in [24, Def. 2.3] with the endomorphisms σ_n the n-th power maps $\sigma_n(x) = x^n$ and $\rho_n(x) = \mu_n \sqrt[n]{x} \subseteq \Sigma$. In [24, §4] Marcolli and Tabuada associate to a cyclotomic Bost-Connes system with $K = \overline{Q}$ a quantum statistical mechanical system. Further, in [24, §2] both concrete and abstract Bost-Connes systems are associated to a cyclotomic Bost-Connes datum Σ. We will relate these to F_1-geometries.

A powerful idea, due to Jim Borger [2] and [3], to construct ‘geometries’ under $\text{Spec}(\mathbb{Z})$ is to consider a subcategory $\text{comm}^\lambda_{\mathbf{X}}$ of commutative rings comm which allows a right adjoint R to the forgetful functor $F : \text{comm} \longrightarrow \text{comm}$.

The additional structure \mathbf{X} should be thought of as descent data from \mathbb{Z} to F_1, the elusive field with one element. As a consequence, the commutative ring $F(R(\mathbb{Z}))$ can then be considered to be the coordinate ring of the arithmetic square $\text{Spec}(\mathbb{Z}) \times_{\text{Spec}(F_1)} \text{Spec}(\mathbb{Z})$.

We propose to view the object $R(\mathbb{Z}) \in \text{comm}^\lambda_{\mathbf{X}}$ as a receptacle for motivic data. That is, (co)homology groups with actions of Frobenii and zeta-functions determine elements in $R(\mathbb{Z})$ and the subobject in $\text{comm}^\lambda_{\mathbf{X}}$ they generate can then be seen as its representative in the corresponding version of F_1-geometry.

3.1. Concrete Bost-Connes systems and $\text{comm}^\lambda_{\mathbf{X}}$.

Following [24, Def. 2.6] one associates to Σ the concrete Bost-Connes system which consists of the integral group ring $\mathbb{Z}[\Sigma]$ equipped with

1. the induced $G = \text{Gal}(\overline{K}/K)$-action,
2. G-equivariant ring endomorphisms $\bar{\sigma}_n$ induced by $\bar{\sigma}_n(x) = x^n$ for all $x \in \Sigma$,
3. G-equivariant \mathbb{Z}-module maps $\bar{\rho}_n$ induced by $\bar{\rho}_n(x) = \sum_{x' \in \rho_n(x)} x'$ for all $x \in \Sigma$.

Proposition 3. For a cyclotomic Bost-Connes datum Σ, the concrete Bost-Connes system $(\mathbb{Z}[\Sigma], \bar{\sigma}_n, \bar{\rho}_n)$ is a sub-system of $(\mathcal{W}_0(\overline{K}), \text{Fr}_n, V_n)$.
Proof. From [4, Prop. 2.3] we recall that $\mathcal{W}_0(\mathcal{K})$ is isomorphic to the integral group ring $\mathbb{Z}[\mathcal{K}]$ via the map that assigns to (E, f) the divisor of non-zero eigenvalues of f (with multiplicities).

Under this isomorphism the Frobenius maps Fr_n become $\tilde{\sigma}_n$ and the Ver-

schiebung V_n the map $\tilde{\rho}_n$ for the cyclotomic Bost-Connes datum \mathcal{K}_∞.

Definition 5. For a cyclotomic Bost-Connes datum Σ, let $\mathcal{E}_{\Sigma,R}$ be the full sub-category of \mathcal{E}_R consisting of pairs (E, f) with E a projective R-module and M_f a \mathcal{K}-diagonalisable matrix having all its eigenvalues in Σ. With $\mathcal{W}_0(\Sigma, R)$ we denote the subring of $\mathcal{W}_0(R)$ generated by $\mathcal{E}_{\Sigma,R}$.

Example 1. Consider Yuri I. Manin’s idea to replace the action of the Frobenius map on étale cohomology of an \mathbb{F}_q-variety at $q = 1$ by pairs $(H_k(M, \mathbb{Z}), f_{sk})$ where f_{sk} is the action of a Morse-Smale diffeomorphism f on a compact manifold M upon its homology $H_k(M, \mathbb{Z})$, [13, §1.2]. This implies that each f_{sk} is quasi-unipotent, that is all its eigenvalues are roots of unity. This fits in with Manin’s view that 1-Frobenius morphisms acting upon their (co)homology have eigenvalues which are roots of unity.

In [23, §2], Manin and Matilde Marcolli assign an object in comm_Σ^+ to the Morse-Smale setting (M, f) as follows. Each $H_k(M, \mathbb{Z})$ is viewed as a $\mathbb{Z}[t, t^{-1}]$-module by letting t act as f_{sk}. Next, they consider the minimal category C_M of $\mathbb{Z}[t, t^{-1}]$-modules, containing all $H_k(M, \mathbb{Z})$, and closed with respect to direct sums, tensor products and exterior products. Then, its Grothendieck ring $K_0(C_M)$ comes equipped with a λ-ring structure coming from the exterior products, which is then said to be the representative of $\{(H_k(M, \mathbb{Z}), f_{sk}); k\}$ in \mathbb{F}_1-geometry, see [23, Def. 2.1.2].

Alternatively, one can assign to each $(H_k(M, \mathbb{Z}), f_{sk})$ the element $\det(1 - t(f_{sk}|H_k(M, \mathbb{Z})))^{-1} \in 1 + t\mathbb{Z}[t] = \mathcal{W}(\mathbb{Z})$ and consider the λ-subring of $\mathcal{W}(\mathbb{Z})$ generated by these elements. Clearly, all $(H_k(M, \mathbb{Z}), f_{sk})$ lie in $\mathcal{E}_{\Sigma, \mathbb{Z}}$.

3.2. Abstract Bost-Connes systems and comm_Σ^+. Following [23, Def. 2.5] one can associate to a cyclotomic Bost-Connes datum Σ the abstract Bost-Connes system which consists of the Galois-invariants of the group ring of Σ over \mathcal{K}, that is,

(1) the K-algebra $\mathcal{K}[\Sigma]^{\text{Gal}(\mathcal{K}/K)}$, equipped with

(2) K-algebra morphisms $\tilde{\sigma}_n$ induced by $x \mapsto x^n$ for all $x \in \Sigma$, and

(3) K-linear maps $\tilde{\rho}_n$ induced by $x \mapsto x' \in \rho_n(x)$ for all $x \in \Sigma$.

Clearly, $\mathcal{K}[\Sigma]^G$ is a Hopf-algebra and from [23, Thm. 1.5,(iv)] we recall that the affine group K-scheme $\text{Spec}(\mathcal{K}[\Sigma]^G)$ agrees with the Galois group of the neutral Tannakian category \mathcal{E}_Σ^+ consisting of pairs (V, Φ) with V a finite dimensional K-vectorspace and

$$\Phi : V \otimes \mathcal{K} \longrightarrow V \otimes \mathcal{K}$$

a G-equivariant diagonalisable automorphism all of whose eigenvalues belong to Σ, that is, the category $\mathcal{E}_{\Sigma,K}$ introduced above.

In [13] we proposed to consider the category comm_Σ^+ of all (torsion free) commutative and co-commutative \mathbb{Z}-birings. This time, the forgetful functor
For a commutative domain R, consider the polynomial ring $R[t]$ with coring structure defined by letting t be a group-like element, that is, $\Delta(t) = t \otimes t$ and $\epsilon(t) = 1$.

The full linear dual $R[t]^\ast$ can be identified with the module of all infinite sequences $f = (f_n)_{n=0}^{\infty} \in R^{\infty}$ with $f(t^n) = f_n$. $L(R)$ will be $R[t]^\ast$, that is, the submodule of all sequences f such that $\text{Ker}(f) = (m(t))$ with $m(t) = t^r - a_1 t^{r-1} - \ldots - a_r$ is a monic polynomial. As $f(t^r m(t)) = 0$ it follows that f is a linear recursive sequence, that is, for all $n \geq r$ we have $f_n = a_1 f_{n-1} + a_2 f_{n-2} + \ldots + a_r f_{n-r}$. Therefore,

$$L(R) = R[t]^\ast = \lim_{\to} \left(\frac{R[t]}{(m(t))} \right)^*$$

where the limit is taken over the multiplicative system of monic polynomials with coefficients in R.

We define a coring structure on $L(R)$ dual to the ring structure on $R[t]/(m(t))$. With this coring structure, $L(R)$ becomes an integral biring if we equip $L(R)$ with the Hadamard product of sequences, that is, componentwise multiplication (R coefficients in L).

If K is a field of characteristic zero, one can describe the co-algebra structure on $L(K)$ explicitly, see [28] for more details.

On the linear recursive sequence $f = (f_n)_{n=0}^{\infty} \in K^{\infty}$ the counit acts as $\epsilon(f) = f_0$, projection on the first component. To define the co-multiplication recall that the Hankel matrix $M(f)$ of the sequence f is the symmetric $k \times k$ matrix

$$H(f) = \begin{bmatrix} f_0 & f_1 & f_2 & \ldots & f_{k-1} \\ f_1 & f_2 & f_3 & \ldots & f_k \\ f_2 & f_3 & f_4 & \ldots & f_{k+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{k-1} & f_k & f_{k+1} & \ldots & f_{2k-2} \end{bmatrix}$$

with k maximal such that $H(f)$ is invertible. If $H(f)^{-1} = (s_{ij})_{i,j} \in M_n(K)$ then we have in $L(K)$

$$\Delta(f) = \sum_{i,j=0}^{k-1} s_{ij} (D^i f) \otimes (D^j f)$$

where D is the shift operator $D(f_0, f_1, f_2, \ldots) = (f_1, f_2, \ldots)$. Clearly, if K is the fraction field of R, and if a sequence $f \in L(R)$ has Hankel matrix $H(f)$ with determinant a unit in R, the same formula applies for $\Delta(f)$ as $L(R)$ is a sub-biring of $L(K)$. In general however, $\Delta(f)$ cannot be diagonalized in terms of $f, Df, D^2 f, \ldots$ with R-coefficients and we have no other option to describe the comultiplication than as the direct limit of linear duals of the ringstructures on $R[t]/(m(t))$.

Proposition 4. For a cyclotomic Bost-Connes datum Σ, the Hopf-algebra $\mathbb{K}[\Sigma]^G$ describing the abstract Bost-Connes system is a sub-bialgebra of $L(K)$.
We can describe the bialgebra $\mathbb{L}(\mathbb{K})$ of linear recursive sequences over \mathbb{K} using the structural results for commutative and co-commutative Hopf algebras over an algebraically closed field of characteristic zero, see [13].

Let T be the set of all sequences over \mathbb{K} which are zero almost everywhere, then T is a bialgebra ideal in $\mathbb{L}(\mathbb{K})$ and we have a decomposition

$$\mathbb{L}(\mathbb{K}) = \mathbb{K}[t]^\circ \simeq \mathbb{K}[t, t^{-1}]^\circ \oplus T$$

One verifies that in the Hopf-dual $\mathbb{K}[t, t^{-1}]^\circ$ the group of group-like elements is isomorphic to the multiplicative group \mathbb{K}^*, with $s \in \mathbb{K}^*$ corresponding to the geometric sequence $(1, s, s^2, s^3, \ldots)$. Further, there is a unique primitive element corresponding to the sequence $d = (0, 1, 2, 3, \ldots)$. Then, the structural result implies that, as bialgebras, we have an isomorphism

$$\mathbb{L}(\mathbb{K}) \simeq (\mathbb{K}[\mathbb{K}^*] \otimes \mathbb{K}[d]) \oplus T$$

As the Galois group $G = Gal(\mathbb{K}/\mathbb{K})$ acts on this bialgebra and as $\mathbb{L}(\mathbb{K}) = \mathbb{L}(\mathbb{K})^G$, the claim follows.

Example 2. Continuing Example 1 on Morse-Smale diffeomorphism, as anticipated in [23, remark 2.4.3], in the comm$^+$-proposal, one can associate to each $(H_k(M, \mathbb{Z}), f^*|_{H_k(M, \mathbb{Z})})$ the element $(Tr(f^*|_{H_k(M, \mathbb{Z})}), Tr(f^2|_{H_k(M, \mathbb{Z})}), Tr(f^3|_{H_k(M, \mathbb{Z})}), \ldots) \in \mathbb{L}(\mathbb{Z})$ and considers the sub-biring of $\mathbb{L}(\mathbb{Z})$ generated by these elements.

3.3. Motivic measures and $\mathbb{L}(\mathbb{R})$

By taking the trace of the Cayley-Hamilton polynomial we have a ghost ringmorphism $\Delta : \mathbb{W}_0(\mathbb{R}) \longrightarrow \mathbb{L}(\mathbb{R})$

$$(E, f) \mapsto (\Delta_1(E, f), \Delta_2(E, f), \ldots) = (Tr(Mf), Tr(Mf^2), \ldots)$$

Further, we have a traditional ghost morphism $\mathbb{W} : \mathbb{W}(\mathbb{R}) \longrightarrow \mathbb{R}^\infty$ determined by $t \frac{d}{dt} \log(\mathbb{W})$ on $\mathbb{W}(\mathbb{R}) = 1 + t \mathcal{R}[[t]]$

$$\mathbb{W}(f(t)) = (a_1, a_2, \ldots) \quad \text{where} \quad t \frac{d}{dt} \log(f(t)) = \sum_{m=1}^\infty a_m t^m$$

Proposition 5. Let \mathbb{R} be a commutative ring and $\mu : K_0(\text{Var}_k) \longrightarrow \mathbb{R}$ a motivic measure. The measure μ is exponentiable if there exists a ringmorphism ζ_μ, and is rational if there is a ringmorphism r_μ, making the diagram below commute

$$\begin{array}{ccc}
K_0(\text{Var}_k) & \xrightarrow{\mu} & \mathbb{R} \\
\downarrow r_\mu & & \\
\mathcal{E}_R \xrightarrow{\Delta} & \mathbb{W}_0(\mathbb{R}) \xrightarrow{L_R} & \mathbb{W}(\mathbb{R}) \\
\downarrow \Delta & & \downarrow \Delta \\
S_{CR} \xrightarrow{i} & \mathbb{L}(\mathbb{R}) \xrightarrow{\iota} & \mathbb{R}^\infty
\end{array}$$

The left-most maps are additive and multiplicative from the endomorphism category, resp. the category of completely reachable systems, to be defined in §5.

Proof. This follows from the definitions above and the fact that $\log(L_R(E, f)) = \sum_{m \geq 1} Tr(Mf^m) \frac{t^m}{m}$. □
Example 3. As a consequence, an exponentiable motivic measure \(\mu \) assigns to a \(k \)-variety \(X \) the element \(\zeta_\mu([X]) \in \mathbb{W}(R) \), and a rational motivic measure \(\mu \) assigns to \(X \) elements \(\hat{\xi}(r_\mu([X])) \in \mathbb{L}(R) \) and \(L_R(r_\mu([X])) \in \mathbb{W}(R) \).

4. Motivic measures on \(K_0(\text{Var}_{\mathbb{F}_1}^{tor}) \)

In this section we consider yet another approach to \(\mathbb{F}_1 \)-geometry based on the notion of torifications as introduced by Lorscheid and Lopez Pena in [17] and generalized by Manin and Marcolli in [22].

A torification of a complex algebraic variety, defined over \(\mathbb{Z} \), is a decomposition into algebraic tori

\[
X = \sqcup_{i \in I} T_i \quad \text{with} \quad T_i \simeq \mathbb{G}_m^n
\]

We consider here strong morphisms between torified varieties (see [15, §5.1] for weaker notions), that is a morphism of varieties, defined over \(\mathbb{Z} \),

\[
f : X = \sqcup_{i \in I} T_i \longrightarrow Y = \sqcup_{j \in J} T_j'
\]

together with a map \(h : I \longrightarrow J \) of the indexing sets such that the restriction of \(f \) to any torus

\[
f_i = f|_{T_i} : T_i \longrightarrow T'_h(i)
\]

is a morphism of algebraic groups. With \(K_0(\text{Var}_{\mathbb{F}_1}^{tor}) \) we denote the Grothendieck ring generated by the strong isomorphism classes \([X = \sqcup_i T_i]\) of torified varieties, modulo the scissor relations

\[
[X = \sqcup_i T_i] = [Y = \sqcup_j T'_j] + [X \setminus Y = \sqcup_k T''_k]
\]

whenever the decomposition in tori in the torifications of \(Y \) and \(X \setminus Y \) is a union of tori of the torification of \(X \). This condition is very strong and implies that the class of any torified variety in \(K_0(\text{Var}_{\mathbb{F}_1}^{tor}) \) is of the form

\[
[X = \sqcup_i T_i] = \sum_{n \geq 0} a_n T^n \quad \text{with} \quad a_n \in \mathbb{N}_+ \quad \text{and} \quad T = [\mathbb{G}_m] = \mathbb{L} - 1 \in K_0(\text{Var}_{\mathbb{C}})
\]

That is,

\[
K_0(\text{Var}_{\mathbb{F}_1}^{tor}) = \mathbb{Z}[T] = \mathbb{Z}[\mathbb{L}] \subset K_0(\text{Var}_{\mathbb{C}})
\]

with \(\mathbb{L} = [\mathbb{A}^1] \) the Lefschetz motive. Whereas Kapranov’s motivic zeta function does not make \(K_0(\text{Var}_{\mathbb{C}}) \) into a \(\lambda \)-ring, it does define a \(\lambda \)-structure on certain subrings, including \(\mathbb{Z}[\mathbb{L}] \), see [7, §2.2 Example], with \(S^n(\mathbb{L}) = \mathbb{L}^n \)

Proposition 6. Any motivic measure \(\mu : K_0(\text{Var}_{\mathbb{F}_1}^{tor}) \longrightarrow R \) with values in a commutative ring \(R \) is exponentiable and rational.

Proof. Because \(K_0(\text{Var}_{\mathbb{F}_1}^{tor}) = \mathbb{Z}[\mathbb{L}] \) is a \(\lambda \)-ring, we have by right adjointness of \(\mathbb{W}(____) \) a natural one-to-one correspondence

\[
\text{comm}(K_0(\text{Var}_{\mathbb{F}_1}^{tor}), R) \leftrightarrow \text{comm}_\lambda^+(K_0(\text{Var}_{\mathbb{F}_1}^{tor}), \mathbb{W}(R))
\]

with \(\mu \) corresponding to a unique \(\lambda \)-ring morphism

\[
\zeta_\mu : K_0(\text{Var}_{\mathbb{F}_1}^{tor}) \longrightarrow \mathbb{W}(R) = 1 + tR[[t]] \quad \text{with} \quad \mathbb{L} \mapsto 1 + rt + r^2t^2 + \ldots = \frac{1}{1 - rt}
\]

with \(r = \mu(\mathbb{L}) \). That is, \(\mu \) is exponentiable and rational as it factors through the ringmorphism \(r_\mu : K_0(\text{Var}_{\mathbb{F}_1}^{tor}) \longrightarrow \mathbb{W}_0(R) \) defined by \(\mathbb{L} \mapsto [R, r] \). \(\square \)
If we equip $K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_1}) = \mathbb{Z}[L]$ with the bi-ring structure induced by letting L be a group-like generator, that is $\Delta(L) = L \otimes L$ and $\epsilon(L) = 1$, we have a bi-ring morphism $c_\mu : K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_1}) \longrightarrow \mathbb{L}(R)$ defined by $L \mapsto (1, r, r^2, \ldots)$ making the diagram below commutative.

For example, any motivic measure with values in \mathbb{Z} is of the form $\mu_m : K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_1}) = \mathbb{Z}[L] \longrightarrow \mathbb{Z}$ $L \mapsto m + 1$ and if $m + 1 = p$ with p a prime number, the corresponding zeta function $\zeta_{\mu_m}(X, t)$ coincides with the Hasse-Weil zeta function of the reduction mod p of the torified variety X. The reason for choosing $m + 1$ rather than m will be explained in 4.1 below.

Similarly, we can define \mathbb{F}_{1m}-varieties to be torified varieties $X = \sqcup T_i$ with the natural action of the group of m-th roots of unity μ_m on each torus T_i. As a consequence we have $K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_{1m}}) = \mathbb{Z}[T] = \mathbb{Z}[L]$ and the previous result holds also for $K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_{1m}})$.

4.1. Counting \mathbb{F}_{1m}-points. The motivic measure μ_{2m} can be interpreted as a 'counting measure' associated to the \mathbb{F}_{1}-extension \mathbb{F}_{1m}.

Indeed, in [15, Lemma 5.6] Joshua Lieber, Yuri I. Manin and Matilde Marcolli define for a torified variety X with Grothendieck class $[X] = \sum_{i=0}^{N} a_i T_i \in K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_1})$ that

$$\#X(\mathbb{F}_{1m}) = \sum_{i=0}^{N} a_i m^i$$

That is, $\#X(\mathbb{F}_1)$ counts the number of tori in the torified variety X, and $\#X(\mathbb{F}_{1m})$ counts the number of m-th roots of unity in the tori-decomposition of X. Therefore, $\mu_m = \mu_{\mathbb{F}_{1m}}$.

In analogy with this Hasse-Weil zeta function of varieties over \mathbb{F}_q, Lieber, Manin and Marcolli then define the \mathbb{F}_{1}- zeta function to be the ring morphism, by [15, Prop. 6.2]

$$\zeta_{\mathbb{F}_1} : K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_1}) \longrightarrow \mathbb{W}(\mathbb{Z}) \quad [X] = \sum_{k=0}^{N} a_k T^k \mapsto \exp(\sum_{k=0}^{N} a_k Li_{1-k}(t))$$

where $Li_s(t)$ is the polylogarithm function, that is, $Li_{1-k}(t) = \sum_{i>1} t^{k-1} \ln t$. This gives us a motivic measure on $K_0(\text{Var}^{\text{tor}}_{\mathbb{F}_1})$ with values in $\mathbb{W}(\mathbb{Z})$, but it does not correspond to any of the zeta-functions ζ_{μ_k} corresponding to the motivic measure μ_k. In particular, $\zeta_{\mathbb{F}_1}$ is not a morphism of λ-rings.
Mutatis mutandis we can define similarly the \mathbb{F}_1-zeta function, for the field extension \mathbb{F}_1^m of \mathbb{F}_1, to be the ring morphism

$$\zeta_{\mathbb{F}_1^m} : K_0(Var^\text{tor}_{\mathbb{F}_1^m}) \longrightarrow \mathbb{W}(\mathbb{Z}) \quad [X] = \sum_{k=0}^{N} a_k T^k \mapsto \exp(\sum_{k=0}^{N} a_k m^k L_{1-k}(t))$$

and again, this zeta function does not come from any of the motivic measures μ_k on $K_0(Var^\text{tor}_{\mathbb{F}_1^m})$.

However, we can define another bi-ring (actually, Hopf-ring) structure on $K_0(Var^\text{tor}_{\mathbb{F}_1^m}) = \mathbb{Z}[T]$ induced by taking $\mathbb{D} = T - m$ (observe that $\#\mathbb{D}(\mathbb{F}_1^m) = 0$) to be the primitive generator, that is,

$$\Delta(\mathbb{D}) = \mathbb{D} \otimes 1 + 1 \otimes \mathbb{D} \quad \text{and} \quad \epsilon(\mathbb{D}) = 0$$

We will call this the Lie algebra structure on $K_0(Var^\text{tor}_{\mathbb{F}_1^m})$.

Proposition 7. If we equip $K_0(Var^\text{tor}_{\mathbb{F}_1^m}) = \mathbb{Z}[T]$ with the Lie-algebra structure, then under the natural one-to-one correspondence

$$\text{comm}(K_0(Var^\text{tor}_{\mathbb{F}_1^m}), \mathbb{Z}) \leftrightarrow \text{comm}^+(K_0(Var^\text{tor}_{\mathbb{F}_1^m}), \mathbb{L}(\mathbb{Z}))$$

the motivic measure $\mu_{2m} : K_0(Var^\text{tor}_{\mathbb{F}_1^m}) \longrightarrow \mathbb{Z}$ corresponds to a unique bi-ring morphism $c_{\mu_{2m}} : K_0(Var^\text{tor}_{\mathbb{F}_1^m}) \longrightarrow \mathbb{L}(\mathbb{Z})$, making the diagram below commutative

![Diagram](attachment:diagram.png)

Proof. By definition we have that $\zeta_{\mathbb{F}_1^m}(T^i) = \exp(\sum_{k \geq 1} m^i k^{i-1} t^k)$, and therefore, because Δ corresponds to $\frac{d^i}{dT^i} \log(-)$, we have that

$$\Delta(\zeta_{\mathbb{F}_1^m}(T)) = (m^i, m^i 2^i, m^i 3^i, \ldots) = \mathbb{D}(\zeta_{\mathbb{F}_1^m}(T))$$

To enforce commutativity with a ringmorphism c_μ we must have that

$$c_\mu(T) = (m, 2m, 3m, \ldots) = m d + m.1$$

for the primitive element $d = (0, 1, 2, \ldots) \in \mathbb{L}(\mathbb{Z})$, that is, $\Delta(d) = d \otimes 1 + 1 \otimes d$ and $\epsilon(d) = 0$ and with $1 = (1, 1, 1, \ldots) \in \mathbb{L}(\mathbb{Z})$.

But then, for the Lie algebra structure on $K_0(Var^\text{tor}_{\mathbb{F}_1^m})$ we have that $c_\mu(\mathbb{D})$ is the primitive element $m d \in \mathbb{L}(\mathbb{Z})$, and therefore c_μ is the unique bi-ring morphism $K_0(Var^\text{tor}_{\mathbb{F}_1^m}) \longrightarrow \mathbb{L}(\mathbb{Z})$ corresponding to the motivic measure $\mu_{2m} : K_0(Var^\text{tor}_{\mathbb{F}_1^m}) \longrightarrow \mathbb{Z}$ because the second component of $c_\mu(T) = 2m$.

Suppose there would be a ringmorphism $r : K_0(Var^\text{tor}_{\mathbb{F}_1^m}) \longrightarrow \mathbb{W}(\mathbb{Z})$, then we must have that $\mathbb{D}(r(T - m)) = m d \in \mathbb{L}(\mathbb{Z})$. By functoriality we have a commuting
square
\[
\begin{align*}
\mathcal{W}_0(\mathbb{Z}) & \longrightarrow \mathcal{W}_0(\mathbb{Q}) = \mathbb{Z}[\mathbb{Q}_\times] \\
\mathbb{L}(\mathbb{Z}) & \longrightarrow \mathbb{L}(\mathbb{Q}) = (\mathbb{Q}[\mathbb{Q}_\times] \otimes \mathbb{Q}[d]) \oplus K \\
\end{align*}
\]
and \(d\) does not lie in the image of the rightmost map. \(\square\)

Because \(K_0(\var_{\mathbb{F}_1}^{tor})\) is both a \(\lambda\)-ring (with \(\Psi_k(\mathbb{L}^L) = \mathbb{L}^{k_1}\)) and a bi-ring (with the Lie algebra structure with primitive element \(\mathcal{D} = \mathbb{T} - 1\)) we have natural one-to-one correspondences

\[
\text{comm}^+_{bi}(K_0(\var_{\mathbb{F}_1}^{tor}), \mathbb{L}(\mathbb{Z})) \leftrightarrow \text{comm}(K_0(\var_{\mathbb{F}_1}^{tor}), \mathbb{Z}) \leftrightarrow \text{comm}^+_{\lambda}(K_0(\var_{\mathbb{F}_1}^{tor}), \mathcal{W}(\mathbb{Z}))
\]

Under the left correspondence, the motivic measure \(\mu_m\) defined by \(\mu_m(T) = m\) corresponds to the bi-ring morphism

\[
b_m : K_0(\var_{\mathbb{F}_1}^{tor}) = \mathbb{Z}[\mathbb{D}] \longrightarrow \mathbb{L}(\mathbb{Z}) \quad \mathbb{D} \mapsto (m-1)d = (0, m-1, 2(m-1), \ldots)
\]
as \(b_m(T) = (1, m, 2m-1, \ldots)\) and the corresponding ring-morphism to \(\mathbb{Z}\) is composing with projection on the second factor.

Under the right correspondence, the motivic measure \(\mu_m\) corresponds to the \(\lambda\)-ring morphism \(l_m : K_0(\var_{\mathbb{F}_1}^{tor}) = \mathbb{Z}[\mathbb{L}] \longrightarrow \mathcal{W}(\mathbb{Z})\)

\[
\mathbb{L} \mapsto \frac{1}{1- (m+1)t} = 1 + (m+1)t + (m+1)^2t^2 + \ldots
\]
as \(l_m(T) = (1-t)L_1 = 1 + mt + m(m+1)t^2 + \ldots\) and the corresponding ring morphism to \(\mathbb{Z}\) is \(l_m(T) = m\).

It follows from propositions 6 and 7 that these morphisms factor through the pull-back \(M(\mathbb{Z})\).

Motivated by this, one might view \(M(\mathbb{Z})\) as the correct receptacle for ringmorphisms \(K_0(\var_\mathbb{F}_1) \longrightarrow \mathcal{W}(\mathbb{Z})\) determined by a counting measure \(K_0(\var_\mathbb{F}_1) \longrightarrow \mathbb{Z}\). Here, local factors corresponding to non-archimedean places can be distinguished from the \(\Gamma\)-factors by the fact that they factor through \(\mathcal{W}_0(\mathbb{Z})\).

5. Linear systems and zeta-polynomials

The original motivation for proposing bi-rings as \(\mathbb{F}_1\)-algebras was to give a potential explanation of Manin’s interpretation of Deninger’s \(\Gamma\)-factor \(\prod_{n \geq 0} \frac{x^n}{n!}\) at complex infinity as the zeta function of (the dual of) infinite dimensional projective space \(\mathbb{P}_{\mathbb{F}_1}^\infty\), see [19, 4.3] and [21, Intro]. In [13] a noncommutative moduli space was constructed using linear dynamical systems having the required motive. This
suggests the introduction of the category \mathcal{S}_R of discrete R-linear dynamical systems, which plays a similar role for $\mathbb{L}(R)$ as does the endomorphism category \mathcal{E}_R for $\mathbb{W}_0(R)$ and $\mathbb{W}(R)$.

For R a commutative ring consider the category \mathcal{S}_R with objects quadruples (E, f, v, c) with E a projective R-module of finite rank, $f \in \text{End}_R(E)$, $v \in E$ and $c \in E^*$ and with morphisms R-module morphisms $\phi : E \rightarrow E'$ such that $\phi \circ f = f' \circ \phi$, $\phi(v) = v'$ and $c = c' \circ \phi$. A quadruple (E, f, v, c) can be seen as an R-representation of the quiver

![Quiver Diagram](image)

and morphisms correspond to quiver-morphisms.

Again, there is a duality $S = (E, f, v, c) \leftrightarrow S^* = (E^*, f^*, c^*, v^*)$ on \mathcal{S}_R and we have \oplus and \otimes operations

\[
\begin{align*}
(E_1, f_1, v_1, c_1) \oplus (E_2, f_2, v_2, c_2) &= (E_1 \oplus E_2, f_1 \oplus f_2, v_1 \oplus v_2, c_1 \oplus c_2) \\
(E_1, f_1, v_1, c_1) \otimes (E_2, f_2, v_2, c_2) &= (E_1 \otimes E_2, f_1 \otimes f_2, v_1 \otimes v_2, c_1 \otimes c_2)
\end{align*}
\]

with a zero object $0 = (0, 0, 0, 0)$ and a unit object $1 = (R, 1, 1, 1)$.

We will call a quadruple $S = (E, f, v, c)$ a discrete R-linear dynamical system. Borrowing terminology from system theory, see for example [32, VI.§5], we define:

Definition 6. For $S = (E, f, v, c) \in \mathcal{S}_R$ with E of rank n, we say that

1. S is completely reachable if E is generated as R-module by the elements $\{v, f(v), f^2(v), \ldots\}$.
2. S is completely observable if the R-module morphism $\phi : E \rightarrow R^n$ given by $\phi(x) = (c(x), c(f(x)), \ldots, c(f^{n-1}(x)))$ is injective.
3. S is a canonical system if S is both completely reachable and completely observable.
4. S is a split system if both S and S^* are completely reachable.

Definition 7. There is an additive and multiplicative bat-map

$\bullet \bullet \bullet_R : \mathcal{S}_R \rightarrow \mathbb{L}(R)$ \quad $(E, f, v, c) \mapsto (c(v), c(f(v)), c(f^2(v)), c(f^3(v)), \ldots)$

sending a linear dynamical system to its input-output or transfer sequence. We say that a linear recursive sequence $s = (s_0, s_1, s_2, \ldots) \in \mathbb{L}(R)$ is realisable by the system $(E, f, v, c) \in \mathcal{S}_R$ if $\bullet \bullet \bullet_R(E, f, v, c) = s$.

Remark 1. In system theory, see for example [32, VI.§5], one relaxes the condition on the state-space E which is merely an R-module and replaces the $\text{rk}(E) = n$ condition by the requirement that E is generated by n elements.

We will now prove that every element $s \in \mathbb{L}(R)$ is realisable by a completely reachable system and verify when this system is in addition canonical, respectively split.

For $s = (s_0, s_1, s_2, \ldots) \in \mathbb{L}(R)$ satisfying the recurrence relation $s_n = a_1 s_{n-1} + a_2 s_{n-2} + \ldots + a_r s_{n-r}$ of depth r, valid for all $n \in \mathbb{N}$ with the $a_i \in R$. Consider the
system $S_s = (E_s, f_s, v_s, c_s) \in \mathcal{S}_R$ with

$$E_s = \frac{R[x]}{(x^r - a_1x^{r-1} - \ldots - a_r)}.$$

and consider the $r \times r$ matrix, with r the depth of the recurrence relation

$$H_i(s) = \begin{bmatrix}
 s_0 & s_1 & s_2 & \ldots & s_{r-1} \\
 s_1 & s_2 & s_3 & \ldots & s_r \\
 s_2 & s_3 & s_4 & \ldots & s_{r+1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 s_{r-1} & s_r & s_{r+1} & \ldots & s_{2r-2}
\end{bmatrix}$$

Proposition 8. With notations as above, $s \in \mathbb{L}(R)$ is realisable by the system $S_s = (E_s, f_s, v_s, c_s) \in \mathcal{S}_R$, and

1. S_s is completely reachable,
2. S_s is canonical if and only if $\det(H_r(s)) \neq 0$,
3. S_s is split if and only if $\det(H_r(s)) \in R^*$.

Proof. Clearly, E_s is a free R-module of rank r and one verifies that $\bullet \bullet \bullet \bullet \bullet (S_s) = s$. Further, $\{v_s, f_s(v_s), f_s^2(v_s), \ldots, f_s^{r-1}(v_s)\} = \{1, x, x^2, \ldots, x^{r-1}\}$ and these elements generate E_s whence S_s is completely observable if and only if $\det(H_r(s)) \neq 0$.

The dual module, $E_s^* = Re_0 \oplus \ldots \oplus Re_{r-1}$ where $e_i(x^j) = \delta_{ij}$. With respect to this basis we have $f_s^*(e_i) = e_{i-1} + a_{r-i}e_{r-1}$ for $i \geq 1$ and $f_s^*(e_0) = a_re_{r-1}$, that is

$$M_{f_s^*} = \begin{bmatrix} 0 & 1 & \ldots & 0 \\
 & \ddots & \ddots & \vdots \\
 & & 0 & 1 \\
 a_r & a_{r-1} & \ldots & a_1 \end{bmatrix}, \quad c_s^* = \begin{bmatrix} s_0 \\
 s_1 \\
 \vdots \\
 s_{r-1} \end{bmatrix}$$

and $v_s^* = (1, 0, \ldots, 0)$. It follows that $\{c_s^*, f_s^*(c_s^*), f_s^{*2}(c_s^*), \ldots, f_s^{*m}(c_s^*)\}$ generate E_s^* if and only if $H_r(s) \in GL_r(R)$. \hfill \square

Example 4. Consider the sequence $s = (1, 2, 3, \ldots)$ which we encountered in our study of the \mathbb{F}_1-zeta function. We have

$$\begin{bmatrix} 1 & 2 \\
 2 & 3 \end{bmatrix} \in GL_2(\mathbb{Z}) \quad \text{and} \quad \det \begin{bmatrix} 1 & 2 & 3 \\
 2 & 3 & 4 \\
 3 & 4 & 5 \end{bmatrix} = 0$$

leading to the (minimal) recurrence relation $x^2 - 2x + 1 = (x - 1)^2$. The corresponding system $S_s = (E_s, f_s, v_s, c_s)$ is split and determined by

$$E_s = \frac{\mathbb{Z}[x]}{(x - 1)^2}, \quad f_s = \begin{bmatrix} 0 & -1 \\
 1 & 2 \end{bmatrix}, \quad v_s = \begin{bmatrix} 1 \\
 0 \end{bmatrix}, \quad \text{and} \quad c_s = \begin{bmatrix} 1 & 2 \end{bmatrix}.$$
Clearly, if $S = (E, f, v, c)$ is split, it is a canonical system. Over a field K the converse is also true. Note that the difference between canonical and split systems over R is also important for the co-multiplication on $\mathbb{L}(R)$.

Over a field K every recursive sequence $s = (s_0, s_1, \ldots) \in \mathbb{L}(K)$ has a minimal canonical realisation, that is, one with the dimension of the state-space E minimal. To find it, start with a recursive relation $s_t = a_1 s_{n-1} + a_2 s_{n-2} + \ldots + a_r s_{n-r}$ of depth r and form as above the matrix $H_r(s)$ with columns $H_0, H_1, \ldots, H_{r-1}$. Let t be the largest integer such that the columns $H_0, H_1, \ldots, H_{r-1}$ are linearly independent. If $t = r$ then the previous lemma gives a minimal canonical realisation. If $t < r$ then we have unique coefficients $\alpha_i \in K$ such that $H_t = \alpha_1 H_{t-1} + \alpha_2 H_{t-2} + \ldots + \alpha_t H_0$. But then, it follows that

$$s_n = \alpha_1 s_{n-1} + \alpha_2 s_{n-2} + \ldots + \alpha_t s_{n-t}$$

is a recursive relation for s of minimal depth t. Using this recursive relation we can then construct a canonical realisation as in the previous lemma, with this time a state-space of minimal dimension. Over a Noetherian domain R one always has a canonical realisation (in the weak sense that the state module E need not be canonical in general. Still, we can consider its input-output sequence a recursive sequence has a minimal canonical realisation, with free state module, see [32] VI.5.8.iii].

Over a field K we know that canonical systems $S_K = (E_K, f_K, v_K, c_K)$, with $\text{dim}(E_K) = n$ are also classified up to isomorphism by their transfer function

$$T_{S_K}(z) = c_K(z I - M_{f_K})^{-1} v_K = \frac{Y(z)}{X(z)} = \frac{c_n z^{n-1} + \ldots + c_1 z + c_0}{z^n + d_{n-1} z^{n-1} + \ldots + d_1 z + d_0}$$

which are strictly proper rational functions of McMillan degree n, that is, $\text{deg}(Y(z)) < \text{deg}(X(z)) = n$ (this is immediate from Cramer’s rule) and $(Y(z), X(z)) = 1$, see for example [32] II.§5).

Proposition 9. Let $T(z) = \frac{Y(z)}{X(z)}$ be a strictly proper rational K-function with $Y(z), X(z) \in R[z]$, then there is a completely reachable R-linear system $S = (E, f, v, c)$ such that $T(z) = c(z I - M_f)^{-1} v$. If R is a principal ideal every linear recursive sequence has a minimal canonical realisation, with free state module, see [32] VI.5.8.iii].

Proof. We can always find an R-system $S' = (E', f', v', c')$ with transfer function $T(z) = c'.(z I - M_{f'})^{-1} v'$, with $E' = R^n$

$$f' = \begin{bmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ -d_0 & -d_1 & -d_2 & \ldots & -d_{n-1} \end{bmatrix}, \quad v' = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}, \quad c' = \begin{bmatrix} c_0 & c_1 & \ldots & c_{n-1} \end{bmatrix}$$

and this system is completely reachable as $\{v', f'(v'), f'^2(v'), \ldots\}$ generate R^n. However, it need not be canonical in general. Still, we can consider its input-output sequence

$$\mathbb{L}(S') = (c'.v', c'.M_{f'}v', c'.M_{f'}^2v', \ldots) \in \mathbb{L}(R)$$
By surjectivity on canonical systems in case R is a principal ideal domain, there is a canonical R-system $S = (E, f, v, c)$ with $\text{R}(S) = \text{R}(S')$, that is,

$$c'.v' = c.v, \quad c'.M'_f.v' = c.M_f.v, \quad c'.M^2_f.v' = c.M^2_f.v, \ldots$$

But, as $T(z) = c'(zI - M_f)^{-1}.v' = c'.v'z^{-1} + c'.M_f.v'z^{-2} + c'.M^2_f.v'.z^{-3} + \ldots$ we see that $T(z)$ is also the transfer function of the canonical R-system S, proving the claim.

Definition 8. For a cyclotomic Bost-Connes datum Σ, let $S_{cr, R}$ be the full subcategory of S_R consisting of all completely reachable systems $S = (E, f, v, c)$ such that all zeroes and poles of the transfer function

$$T_S(z) = c.(zI - M_f)^{-1}.v$$

are in Σ.

Example 5. Continuing example 4, we have for T_S,

$$\begin{bmatrix} 1 & 2 \\ z & 1 \\ -1 & z - 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{z}{(z - 1)^2} = Li_{-1}$$

5.1. Zeta polynomials.

An interesting class of strictly proper rational functions is associated to Manin’s ‘zeta polynomials’ introduced in [21, §1] and generalized in [10] and [27], see also [23, §2.5]. The terminology comes from a result of F. Rodriguez-Villegas [31]. Let $U(z)$ be a polynomial of degree e with $U(1) \neq 0$ and consider the strictly proper rational function

$$P(z) = \frac{U(z)}{(1 - z)^{e+1}}$$

There is a polynomial $H(z)$ of degree e such that the power series expansion of $P(z)$ is

$$P(z) = \sum_{n=0}^{\infty} H(n)z^n$$

If all roots of $U(z)$ lie on the unit circle, Rodriguez-Villegas proved that the polynomial $Z(z) = H(-z)$ has zeta-like properties: all roots of $Z(z)$ lie on the vertical line $Re(z) = \frac{1}{2}$ and if all coefficients of $U(z)$ are real then $Z(z)$ satisfies the functional equation

$$Z(1 - z) = (-1)^e Z(s)$$

In [21, §1] Yuri I. Manin associates such a zeta-polynomial to each cusp f form of $\Gamma = PSL_2(\mathbb{Z})$ which is an eigenform for all Hecke operators, and views this polynomial as ‘the local zeta factor in characteristic one’. The corresponding numerator $U_f(z)$ of the strictly proper rational function comes from the period polynomial divided by the real zeroes and by [5] the remaining zeros all lie on the unit circle.

In [10] this construction was generalised to the case of cusp newforms of even weight for the congruence subgroups $\Gamma_0(N)$, where this time the zeroes of period polynomials all lie on the circle with radius $\frac{1}{\sqrt{N}}$.

Let $Z_i(z)$ be a suitable collection of zeta-polynomials determined by strictly proper rational functions $P_i(z) = \frac{U_i(z)}{(1 - z)^{e+1}}$, with $U_i(z) \in \mathbb{R}[z]$ then we can view the sub bi-ring of $\mathbb{L}(\mathbb{Z})$ generated by the elements $\text{R}(S_i) \subseteq \mathbb{L}(R)$, where S_i is a
completely reachable or minimal canonical system realizing \(P_i(z) \), as a representative for the collection of zeta-polynomials in the \(\text{comm}_{\mathbb{F}_1} \)-version of \(\mathbb{F}_1 \)-geometry. Again, we can define similarly versions relative to a cyclotomic Bost-Connes datum \(\Sigma \) by imposing that the zeroes of the zeta-polynomials must lie in \(\Sigma \).

References

[1] G. Almkvist, Endomorphisms of finitely generated projective modules over a commutative ring, Arkiv för Matematik Volume 11, Numbers 1-2 (1973), 263 - 301.
[2] J. Borger, The basic geometry of Witt vectors, 1: the affine case, J. Algebra and Number Theory 5 (2011) 231-285.
[3] J. Borger, The basic geometry of Witt vectors, 2: spaces, Math. Ann. 351 (2011) 877-933.
[4] A. Connes and C. Consani, On the arithmetic of the BC-system, arXiv:1103.4672 (2011)
[5] J. B. Conrey, D.W. Farmer and O. Imamoglu, The nontrivial zeros of period polynomials lie on the unit circle, Int. Math. Res. Not. 20 (2013) 4758-4771, arXiv:1201.2322.
[6] H. Gillet and C. Soulé, Descent, motives and K-theory, J. Reine Angew. Mat. 478 (1996) 127-176.
[7] J. B. Conrey, D.W. Farmer and O. Imamoglu, The nontrivial zeros of period polynomials lie on the unit circle, Int. Math. Res. Not. 20 (2013) 4758-4771, arXiv:1201.2322.
[8] H. Gillet and C. Soulé, Descent, motives and K-theory, J. Reine Angew. Mat. 478 (1996) 127-176.
[9] E. Gorsky, Adem operations and power structures, Moscow Math. J. 9 (2009) 305-323, arXiv:0803.3118 (2008).
[10] J. B. Conrey, D.W. Farmer and O. Imamoglu, The nontrivial zeros of period polynomials lie on the unit circle, Int. Math. Res. Not. 20 (2013) 4758-4771, arXiv:1201.2322.
[11] H. Gillet and C. Soulé, Descent, motives and K-theory, J. Reine Angew. Mat. 478 (1996) 127-176.
[12] J. B. Conrey, D.W. Farmer and O. Imamoglu, The nontrivial zeros of period polynomials lie on the unit circle, Int. Math. Res. Not. 20 (2013) 4758-4771, arXiv:1201.2322.
[13] H. Gillet and C. Soulé, Descent, motives and K-theory, J. Reine Angew. Mat. 478 (1996) 127-176.
[14] J. B. Conrey, D.W. Farmer and O. Imamoglu, The nontrivial zeros of period polynomials lie on the unit circle, Int. Math. Res. Not. 20 (2013) 4758-4771, arXiv:1201.2322.
[15] J. B. Conrey, D.W. Farmer and O. Imamoglu, The nontrivial zeros of period polynomials lie on the unit circle, Int. Math. Res. Not. 20 (2013) 4758-4771, arXiv:1201.2322.
[29] Niranjan Ramachandran, *Zeta functions, Grothendieck groups, and the Witt ring*, Bull. Sci. Math. Soc. Math. France 139 (2015) 599-627, arXiv:1407.1813 (2014)

[30] Niranjan Ramachandran and Gaetano Tabuada, *Exponentiable motivic measures*, J. Ramanujan Math. Soc. 30 (2015) 349-360, arXiv:1412.1795 (2014)

[31] Fernando Rodriguez-Villegas, *On the zeros of certain polynomials*, Proc. AMS 130 (2002) 2251-2254

[32] Allen Tannenbaum, *Invariance and System Theory: Algebraic and Geometric Aspects*, Springer LNM 845 (1981)

[33] C. Wilkerson, *Lambda-rings, binomial domains and vector bundles over CP(∞)*, Comm. Alg. 10 (1982) 311-328

Department Mathematics, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp (Belgium) lieven.lebruyn@uantwerpen.be