Data Article

Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes

Franziska A. Thomasa, Ilaria Viscoa, Zdeněk Petrášeka,b, Fabian Heinemanna,c, Petra Schwillea,*

a Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
b Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, Petersgasse 10-12/I, A-8010 Graz, Austria
c Roche Diagnostics, Nonnenwald 2, D-82377 Penzberg, Germany

\textbf{A R T I C L E I N F O}

\begin{itemize}
 \item Article history: Received 3 September 2015
 \item Received in revised form 29 September 2015
 \item Accepted 1 October 2015
\end{itemize}

\textbf{A B S T R A C T}

Recently, a new and versatile assay to determine the partitioning coefficient \(K_P \) as a measure for the affinity of peripheral membrane proteins for lipid bilayers was presented in the research article entitled, “Introducing a fluorescence-based standard to quantify protein partitioning into membranes” [1]. Here, the well-characterized binding of hexahistidine-tag (His\textsubscript{6}) to NTA(Ni) was utilized. Complementarily, this data article reports the average diffusion coefficient \(D \) of His\textsubscript{6}-tagged enhanced green fluorescent protein (eGFP-His\textsubscript{6}) and the fluorescent lipid analog ATTO-647N-DOPE in giant unilamellar vesicles (GUVs) containing different amounts of NTA(Ni) lipids. In addition, dissociation constants \(K_d \) of the NTA(Ni)/eGFP-His\textsubscript{6} system are reported. Further, a conversion between \(K_d \) and \(K_P \) is provided.

\(\copyright \) 2015 Elsevier Inc. Published by Elsevier Inc. All rights reserved.

DOI of original article: http://dx.doi.org/10.1016/j.bbamem.2015.09.001

* Corresponding author. Tel.: +49 89 8578 2900; fax: +49 89 8578 2903.
E-mail address: schwille@biochem.mpg.de (P. Schwille).

http://dx.doi.org/10.1016/j.dib.2015.10.002

2352-3409/© 2015 Elsevier Inc. Published by Elsevier Inc. All rights reserved.
Specifications table

Subject area	Biophysics
More specific subject area	Molecular Biophysics
Type of data	Table, figure
How data was acquired	Fluorescence Correlation Spectroscopy, Confocal Microscopy using a LSM 780 with a ConfoCor 3 unit (Zeiss, Jena, Germany)
Data format	Analyzed
Experimental factors	GUVs consisting of DOPC and 2, 3, 4 or 5 mol% DGS-NTA(Ni), labeled with 0.05 mol% ATTO-647N-DOPE
Experimental features	Titration of eGFP-His₆ to the GUVs
Data source location	Max Planck Institute of Biochemistry, Martinsried, Germany
Data accessibility	The data are provided within this article

Value of the data

- We provide the first valuable characterization of the eGFP-His₆/NTA(Ni) system with precise dissociation constants K_d for increasing percentages of DGS-NTA(Ni) in the membrane.
- The eGFP-His₆/NTA(Ni) dissociation constants could serve as reference for other His₆-tagged proteins reconstituted in GUVs.
- We provide a conversion between K_d and K_P for the His₆-NTA(Ni) system, which can be extended to any protein-lipid interaction with a known 1:1 stoichiometry.
- Protein diffusion coefficients could be used as an indicator of crowding effects.
- As for DOPC/DGS-NTA(Ni) the lipid dynamics is independent of increasing protein concentrations, the ATTO-647N-DOPE diffusion coefficient could serve as a standard.

1. Data

Hexahistidine-tag (His₆) binding to Nickel (Ni) chelated with nitrilotriacetic acid (NTA) is a well-characterized process [2,3] and it is extensively used to reconstitute protein systems in giant unilamellar vesicles (GUVs) [4–6]. We made GUVs consisting of 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphocholin (DOPC) and 2, 3, 4 or 5 mol% 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] nickel salt (DGS-NTA(Ni)), labeled with 0.05 mol% ATTO-647N-DOPE. These GUVs were incubated with increasing amounts of His₆-tagged enhanced green fluorescent protein (eGFP-His₆) and point fluorescence correlation spectroscopy (FCS) was performed both at the top pole of the GUVs and in solution. From the obtained FCS auto-correlation functions the diffusion coefficient D of both eGFP-His₆ and ATTO-647N-DOPE was determined.

Table 1

Diffusion coefficient D determined by GUV-FCS assay. Calculated diffusion coefficients by averaging all data points for increasing amounts of DGS-NTA(Ni) via the GUV method (mean ± combined s.e.m.).

DGS-NTA(Ni)	eGFP-His₆ D in $\mu m^2/s$	ATTO-647N-DOPE D in $\mu m^2/s$
2%	4.36 ± 1.12 ($n=548$)	10.03 ± 0.68 ($n=549$)
3%	3.20 ± 0.75 ($n=775$)	9.74 ± 0.66 ($n=900$)
4%	3.14 ± 0.94 ($n=740$)	9.67 ± 0.76 ($n=969$)
5%	1.90 ± 1.01 ($n=593$)	9.72 ± 0.52 ($n=705$)
2. Experimental design, materials and methods

The materials, the preparation of eGFP-His₆ and GUVs, the optical setup used and the FCS data acquisition/analysis were described elsewhere [1].

2.1. Determination of average diffusion coefficients

We determined the average diffusion coefficients D of eGFP-His₆ attached to DGS-NTA(Ni) in the lipid bilayer and of ATTO-647N-DOPE (Table 1 and Fig. 1) by applying the following equation:

$$D = \frac{\omega_0^2}{4\tau_{2D}} \quad (1)$$

The average focal waist w_0 obtained from a calibration with Alexa488 and with ATTO-655, were $w_0 = 218.0 \pm 6.0$ nm (mean ± s.e.m, $n = 19$) and $w_0 = 246.2 \pm 4.6$ nm (mean ± s.e.m, $n = 19$), respectively. The diffusion times τ_{2D} were determined fitting the auto-correlation curves with a weighted $2D - 3D + T$ model function. The D values were averaged and the significance of their deviation was tested using a one-way analysis of variance (ANOVA) in SigmaPlot 12.3 (Systat Software, Inc., San Jose, CA). This statistical analysis indicated a significance of deviation for the average diffusion coefficients of eGFP-His₆ in presence of different DGS-NTA(Ni) concentrations ($F(3,78) = 19.48, p < 0.001$). With increasing amount of DGS-NTA(Ni), the eGFP-His₆ average diffusion coefficients decreases from $D = 4.36 \pm 1.12 \mu m^2/s$ (mean ± combined s.e.m., $n = 548$) to $D = 1.90 \pm 1.01 \mu m^2/s$ (mean ± combined s.e.m., $n = 593$). In contrast, the average diffusion coefficient of ATTO-647N-DOPE for all concentrations DGS-NTA(Ni) was $D = 9.81 \pm 0.70 \mu m^2/s$ (mean ± combined s.e.m., $n = 3123$) and did not show any statistical significant difference ($F(3,86) = 3.24, p = 0.026$).

2.2. K_d for eGFP-His₆ DGS-NTA(Ni) system

Only in cases where the protein-lipid binding is purely stoichiometric and if the stoichiometry is known, the protein affinity for the lipid membrane can be expressed by the dissociation constant K_d. In equilibrium, an identical number of molecules P will dissociate from and associate to the lipid

![Fig. 1. Diffusion coefficients determined by GUV-FCS assay. D for eGFP-His₆ coordinated to NTA(Ni) (filled squares) and the membrane dye ATTO-647N-DOPE (circles) with increasing amounts of DGS-NTA(Ni). Error bars represent the combined standard error of mean. The D of ATTO-647N-DOPE shows no significant differences, whereas the D of eGFP-His₆ decreases with increasing amounts of DGS-NTA(Ni).](image-url)
phase L per area and time $P + nL \rightarrow nPL$. For 1:1 binding stoichiometry ($n = 1$), K_d is defined as:

$$K_d = \frac{[P_f]}{[P_l]}$$

(2)

where $[P_f]$ is the freely diffusing species in solution, $[PL] = [P_m]$ the membrane associated fraction and $[L_f] = [L] - [L_m]$ with the total accessible lipid concentration $[L] > [L_m]$. Thus,

$$K_d = \frac{[P_f]}{[P_m]} = \frac{k_{off}}{k_{on}}$$

(3)

$[L]$ is constant in a given sample and can be expressed by:

$$[L] = \frac{A}{A_L N_A V}$$

(4)

Here, A is the total accessible lipid area, A_L the area per lipid, N_A the Avogadro’s constant and V the volume of the sample chamber. $[P_f]$ and $[P_m]$ can be determined by FCS [1]. In particular, $[P_m]$ is obtained by:

$$[P_m] = [P_{2D}] \frac{A}{V}$$

(5)

where $[P_{2D}]$ is the surface concentration on the top pole of a GUV.

A rearrangement of Eq. (3) gives:

$$[P_m] = \frac{[L]}{K_d}[P_f]$$

(6)

Combining Eq. (6) with Eqs. (4) and (5) gives the following main equation (A and V cancel out):

$$[P_{2D}] = \frac{1}{K_d A_L N_A} [P_f]$$

(7)

When a set of $[P_f]$ and $[P_{2D}]$ is plotted and fitted with a linear equation passing through the origin of the axis, K_d can be calculated from the slope a:

$$K_d = \frac{1}{a A_L N_A}$$

(8)

Comparing Eq. (8) with Eq. (7) in Thomas et al. [1] leads to the following conversion between K_d and partition coefficient K_P:

$$\frac{K_P}{W} = \frac{1}{K_d}$$

(9)

with the water concentration $[W]$ being constant with $[W] = W = 55.5$ M.

Assuming that the binding stoichiometry for the NTA(Ni)/eGFP-His$_6$ system is 1:1 [2,7], we could calculate the dissociation constant K_d from the reported partitioning coefficient K_P [1] with Eq. (9) or directly from the slope a with Eq. (8). In Table 2 and Fig. 2 the values of the dissociation constant K_d are given for the different content of DGS-NTA(Ni). They correspond to the upper range of values reported in the literature, which vary from 10 nM to 10 μM [7–9].

DGS-NTA(Ni)	K_d in M
2%	$2.18 \pm 0.23 \cdot 10^{-5}$
3%	$1.28 \pm 0.26 \cdot 10^{-5}$
4%	$3.60 \pm 0.27 \cdot 10^{-6}$
5%	$1.15 \pm 0.27 \cdot 10^{-6}$
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2015.10.002.

References

[1] F.A. Thomas, I. Visco, Z. Petrášek, F. Heinemann, P. Schwille, Introducing a fluorescence-based standard to quantify protein partitioning into membranes, BBA–Biomembranes, 1848 (2015), 2932–2941.
[2] S. Knecht, D. Ricklin, A.N. Eberle, B. Ernst, Oligohis-tags: mechanisms of binding to Ni²⁺-NTA surfaces, J. Mol. Recognit. 22 (2009) 270–279.
[3] F. Khan, M. He, M.J. Taussig, Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni-nitrilotriacetic acid surfaces, Anal. Chem. 78 (2006) 3072–3079.
[4] I. López-Montero, P. López-Navajas, J. Mingorance, M. Vélez, M. Vicente, F. Monroy, Membrane reconstitution of FtsZ-ZipA complex inside giant spherical vesicles made of E. coli lipids: large membrane dilation and analysis of membrane plasticity, BBA–Biomembranes 1828 (2013) 687–698.
[5] W. Römer, L.L. Pontani, B. Sorre, C. Rentero, L. Berland, V. Chambon, C. Lamaze, P. Bassereau, C. Sykes, K. Gaus, L. Johannes, Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis, Cell 140 (2010) 540–553.
[6] A.J. García-Sáez, J. Ries, M. Orzáez, E. Pérez-Payà, P. Schwille, Membrane promotes tBid interaction with BCL(XL), Nat. Struct. Mol. Biol. 16 (2009) 1178–1185.
[7] E.G. Guignet, R. Hovius, H. Vogel, Reversible site-selective labeling of membrane proteins in live cells, Nat. Biotechnol. 22 (2004) 440–444.
[8] M. Hintersteiner, T. Weidemann, T. Kiemmerlin, N. Filiz, C. Bauer, M. Auer, Covalent fluorescence labeling of His-tagged proteins on the surface of living cells, ChemBioChem 9 (2008) 1391–1395.
[9] S.A. Lauer, J.P. Nolan, Development and characterization of Ni-NTA-bearing microspheres, Cytometry 48 (2002) 136–145.