Leading finite-size effects on some three-point correlators in $AdS_5 \times S^5$

Plamen Bozhilov

Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences
1784 Sofia, Bulgaria
plbozhilov@gmail.com

Abstract

In the framework of the semiclassical approach, we find the leading finite-size effects on the normalized structure constants in some three-point correlation functions in $AdS_5 \times S^5$, expressed in terms of the conserved string angular momenta J_1, J_2, and the worldsheet momentum p_w, identified with the momentum p of the magnon excitations in the dual spin-chain arising in $\mathcal{N} = 4$ SYM in four dimensions.
1 Introduction

The correspondence between type IIB string theory on AdS$_5 \times S^5$ target space and the $\mathcal{N} = 4$ super Yang-Mills theory (SYM) in four space-time dimensions, in the planar limit, is the most studied example of the AdS/CFT duality [1]. A lot of impressive progresses have been made in this field of research based on the integrability structures discovered on both sides of the correspondence (for recent overview on AdS/CFT integrability, see [2]).

Various classical string solutions play an important role in testing and understanding the AdS/CFT correspondence. To establish relations with the dual gauge theory, we have to take the semiclassical limit of large conserved charges like string energy E and spins $S_{1,2}$ on AdS$_5$ and angular momenta $J_{1,2,3}$ on S^5 [3].

An example of such string solution is the so called ”giant magnon”, for which the energy E and the angular momentum J_1 go to infinity, but the difference $E - J_1$ is finite, while $S_{1,2} = 0$, $J_{2,3} = 0$ [4]. It lives on $R_t \times S^2$ subspace of AdS$_5 \times S^5$, and gave a strong support for the conjectured all-loop $SU(2)$ spin chain, arising in the dual $\mathcal{N} = 4$ SYM, and made it possible to get a deep insight in the AdS/CFT duality. This was extended to the giant magnon bound state ($J_2 \neq 0$), or dyonic giant magnon, corresponding to a string moving on $R_t \times S^3$ and related to the complex sine-Gordon model [5]. Further extension to $R_t \times S^5$ have been also worked out in [6], where it was also shown that such type of string solutions can be obtained by reduction of the string dynamics to the Neumann-Rosochatius integrable system. It can be used also for studying the finite-size effects, related to the wrapping interactions in the dual field theory [7]. From the string theory viewpoint, the leading and even sub-leading finite size effect on the giant magnon dispersion relation was first found and described in [8]. The case of leading finite-size effect on dyonic giant magnon dispersion relation was considered in [9]. There, the string theory result was compared with the result coming from the μ-term Lüscher correction, based on the S-matrix description. Both results coincide.

During the years, many important achievements concerning correlation functions in the AdS/CFT context have been made. Recently, interesting developments have been done by considering general heavy string states [10]-[70].

In [37, 39], the three-point correlation functions of finite-size (dyonic) giant magnons [4, 5] and three different ”light” states have been obtained. They are given in terms of hypergeometric functions and several parameters. However, it is important to know their dependence on the conserved string charges J_1, J_2 and the worldsheet momentum p, because namely these quantities are related to the corresponding operators in the dual gauge theory, and the momentum of the magnon excitations in the dual spin-chain. That is why, we are going to find this dependence here. Unfortunately, this can not be done exactly for the finite-size case due to the complicated dependence between the above mentioned parameters and J_1, J_2, p. Because of that, we will consider only the leading order finite-size effects on
the three-point correlators. In this paper, we will restrict ourselves to the case of $\text{AdS}_5 \times S^5 / \mathcal{N} = 4$ SYM duality.

The paper is organized as follows. In Sec. 2, we first give a short review of the giant magnon solution. Then, we explain the limitations under which the three-point correlation functions considered here are computed and give the exact results in the semiclassical limit. Sec. 3 is devoted to the computation of the leading order finite-size effects on the three-point correlators given in Sec. 2 in terms of the conserved string angular momenta and the worldsheet momentum p. In Sec. 4 we conclude with some final remarks.

2 Finite-size giant magnons and three-point correlators

2.1 Review of the giant magnon solutions

The denote with Y, X the coordinates in AdS_5 and S^5 parts of the background $\text{AdS}_5 \times S^5$.

$$Y_1 + iY_2 = \sinh \rho \sin \eta \, e^{i\varphi_1},$$
$$Y_3 + iY_4 = \sinh \rho \cos \eta \, e^{i\varphi_2},$$
$$Y_5 + iY_0 = \cosh \rho \, e^{it}.$$

The coordinates Y are related to the Poincare coordinates by

$$Y_m = \frac{x_m}{z},$$
$$Y_4 = \frac{1}{2z} \left(x^m x_m + z^2 - 1 \right),$$
$$Y_5 = \frac{1}{2z} \left(x^m x_m + z^2 + 1 \right),$$

where $x^m x_m = -x_0^2 + x_i x_i$, with $m = 0, 1, 2, 3$ and $i = 1, 2, 3$. We parameterize S^5 as in [20].

Euclidean continuation of the time-like directions to $t_e = it$, $Y_0e = iY_0$, $x_{0e} = ix_0$, will allow the classical trajectories to approach the AdS_5 boundary $z = 0$ when $\tau_e \to \pm \infty$, and to compute the corresponding correlation functions.

The dyonic finite-size giant magnon solution, where (τ, σ) are the world-sheet coordinates, can be written as $(t = \sqrt{W} \tau, \, i\tau = \tau_e)$

$$x_{0e} = \tanh(\sqrt{W} \tau_e), \quad x_i = 0, \quad z = \frac{1}{\cosh(\sqrt{W} \tau_e)},$$
\[\cos \theta = \sqrt{\chi_p} \, dn \left(\frac{\sqrt{1-u^2}}{1-v^2} \sqrt{\chi_p} (\sigma - v \tau) \left| 1 - \epsilon \right. \right), \]
(2.1)

\[\phi_1 = \frac{\tau - v \sigma}{1-v^2} + \frac{vW}{\sqrt{1-u^2} \sqrt{\chi_p} (1-\chi_p)} \times \]

\[\Pi \left(-\frac{\chi_p}{1-\chi_p} \left| 1 - \epsilon \right. \right), am \left(\frac{\sqrt{1-u^2}}{1-v^2} \sqrt{\chi_p} (\sigma - v \tau) \left| 1 - \epsilon \right. \right) \]

\[\phi_2 = \frac{u \tau - v \sigma}{1-v^2}, \]

where \(\theta \) is the angle on which the metric on \(S^3 \subset S^5 \) depends, while \(\phi_{1,2} \) are the isometric angles on it. \(dn (\alpha|1-\epsilon) \) is one of the Jacobi elliptic functions, \(\Pi (\alpha, \beta|1-\epsilon) \) is the incomplete elliptic integral of third kind, and \(am(x) \) is the Jacobi amplitude. Let us also mention that \(\chi_p, \chi_m \) are related to \(u, v, W \) parameters according to

\[\chi_p + \chi_m = \frac{2 - (1 + v^2)W - u^2}{1 - u^2}, \]

\[\chi_p \chi_m = \frac{1 - (1 + v^2)W + (vW)^2}{1 - u^2}, \]
(2.2)

and

\[\epsilon \equiv \frac{\chi_m}{\chi_p}. \]
(2.3)

For the finite-size dyonic giant magnon string solution, the explicit expressions for the conserved quantities and the worldsheet momentum \(p \) can be written as [30]

\[E = \frac{2\sqrt{W}(1-v^2)}{\sqrt{1-u^2} \sqrt{\chi_p}} K (1-\epsilon), \]

\[J_1 = \frac{2\sqrt{\chi_p}}{\sqrt{1-u^2}} \left[\frac{1 - u^2 W}{\chi_p} K (1-\epsilon) - E (1-\epsilon) \right], \]

\[J_2 = \frac{2u\sqrt{\chi_p}}{\sqrt{1-u^2}} E (1-\epsilon) \]

\[p = \frac{2v}{\sqrt{1-u^2} \sqrt{\chi_p}} \left[\frac{W}{1-\chi_p} \Pi \left(-\frac{\chi_p}{1-\chi_p} (1-\epsilon) \left| 1 - \epsilon \right. \right) - K (1-\epsilon) \right], \]
(2.5)

where

\[E = \frac{2\pi E}{\sqrt{\lambda}}, \quad J_{1,2} = \frac{2\pi J_{1,2}}{\sqrt{\lambda}} \]

are the string energy and the two angular momenta. \(K (1-\epsilon), E (1-\epsilon) \), and

\[\Pi \left(-\frac{\chi_p}{1-\chi_p} (1-\epsilon) \left| 1 - \epsilon \right. \right) \]
are the complete elliptic integrals of first, second and third kind. As

\[^2 \text{The relation between the string tension } T \text{ and the 't Hooft coupling } \lambda \text{ in the dual } \mathcal{N} = 4 \text{ SYM is } TR^2 = \sqrt{\lambda}/2\pi, \text{ where } R \text{ is the common radius of } AdS_5 \text{ and } S^5 \text{ subspaces. Here } R \text{ is set to } 1. \]
explained in [8] (2.5) should be identified with the momentum of the magnon excitations in the spin chain arising in the dual $\mathcal{N} = 4$ SYM theory.

The dyonic giant magnon dispersion relation, including the leading finite-size correction, can be written as

$$E - J_1 = \frac{\sqrt{\lambda}}{2\pi} \left[\sqrt{J_2^2 + 4\sin^2(p/2)} - \frac{\sin^4(p/2)}{\sqrt{J_2^2 + 4\sin^2(p/2)}} \epsilon \right],$$

(2.6)

where

$$\epsilon = 16 \exp \left[-2 \frac{\left(J_1 + \sqrt{J_2^2 + 4\sin^2(p/2)} \right) \sqrt{J_2^2 + 4\sin^2(p/2)\sin^2(p/2)}}{J_2^2 + 4\sin^4(p/2)} \right].$$

(2.7)

The second term in (2.6) represents the leading finite-size effect on the energy-charge relation, which disappears for $\epsilon \to 0$, or equivalently $J_1 \to \infty$. It is nonzero only for J_1 finite.

The above two equalities are found under the following conditions on the parameters

$$0 < u < 1, \quad 0 < v < 1, \quad 0 < W < 1, \quad 0 < \chi_m < \chi_p < 1.$$

The case of finite-size giant magnons with one angular momentum can be obtained by setting $u = 0$, or $J_2 = 0$, as can be seen from (2.4).

2.2 Three-point correlation functions

It is known that the correlation functions of any conformal field theory can be determined in principle in terms of the basic conformal data $\{\Delta_i, C_{ijk}\}$, where Δ_i are the conformal dimensions defined by the two-point correlation functions

$$\langle O_i^\dagger(x_1)O_j(x_2) \rangle = \frac{C_{ij} \delta_{ij}}{|x_1 - x_2|^{2\Delta_i}},$$

and C_{ijk} are the structure constants in the operator product expansion

$$\langle O_i(x_1)O_j(x_2)O_k(x_3) \rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_1 + \Delta_2 - \Delta_3}|x_1 - x_3|^{\Delta_1 + \Delta_3 - \Delta_2}|x_2 - x_3|^{\Delta_2 + \Delta_3 - \Delta_1}}.$$

Therefore, the determination of the initial conformal data for a given conformal field theory is the most important step in the conformal bootstrap approach.

The three-point functions of two ”heavy” operators and a ”light” operator can be approximated by a supergravity vertex operator evaluated at the ”heavy” classical string configuration [14, 26]:

$$\langle V_H(x_1)V_H(x_2)V_L(x_3) \rangle = V_L(x_3)_{\text{classical}}.$$
For \(|x_1| = |x_2| = 1, x_3 = 0 \), the correlation function reduces to
\[
\langle V_H(x_1)V_H(x_2)V_L(0) \rangle = \frac{C_{123}}{|x_1 - x_2|^{2\Delta_H}}.
\]
Then, the normalized structure constants
\[
C = \frac{C_{123}}{C_{12}}
\]
can be found from
\[
C = c_\Delta V_L(0)_\text{classical}, \tag{2.8}
\]
where \(c_\Delta \) is the normalized constant of the corresponding "light" vertex operator.

Recently, first results describing finite-size effects on the three-point correlators appeared \cite{30, 31, 35, 37, 39}. This was done for the cases when the "heavy" string states are finite-size giant magnons, carrying one or two angular momenta, and for three different choices of the "light" state:

1. Primary scalar operators: \(V_L = V_{pr}^j \)
2. Dilaton operator: \(V_L = V_d^j \)
3. Singlet scalar operators on higher string levels: \(V_L = V^q \)

The corresponding (unintegrated) vertices are given by \cite{14}

\[
V_{pr}^j = (Y_4 + Y_5)^{-\Delta_{pr}}(X_1 + iX_2)^j \left[z^{-2} (\partial x_m \bar{\partial} x^m - \partial z \bar{\partial} z) - \partial X_k \bar{\partial} X_k \right], \tag{2.9}
\]
where the scaling dimension is \(\Delta_{pr} = j \). The corresponding operator in the dual gauge theory is \(Tr (Z^j) \).

\[
V_d^j = (Y_4 + Y_5)^{-\Delta_d}(X_1 + iX_2)^j \left[z^{-2} (\partial x_m \bar{\partial} x^m + \partial z \bar{\partial} z) + \partial X_k \bar{\partial} X_k \right], \tag{2.10}
\]
where now the scaling dimension \(\Delta_d = 4 + j \) to the leading order in the large \(\sqrt{\lambda} \) expansion. The corresponding operator in the dual gauge theory is proportional to \(Tr (F_{\mu\nu}^2 Z^j + \ldots) \), or for \(j = 0 \), just to the SYM Lagrangian.

\[
V^q = (Y_4 + Y_5)^{-\Delta_q}(\partial X_k \bar{\partial} X_k)^q. \tag{2.11}
\]

\footnote{\(Z \) is one of the three complex scalars contained in \(\mathcal{N} = 4 \) SYM.}
This operator corresponds to a scalar string state at level \(n = q - 1 \), and to leading order in \(\frac{1}{\sqrt{\lambda}} \) expansion

\[
\Delta_q = 2 \left(\sqrt{(q-1)^2 + 1 - \frac{1}{2}q(q-1) + 1} \right).
\]

(2.12)

The value \(n = 1(q = 2) \) corresponds to a massive string state on the first exited level and the corresponding operator in the dual gauge theory is an operator contained within the Konishi multiplet. Higher values of \(n \) label higher string levels.

The results obtained for the normalized structure constants (2.8), for the case of finite-size giant magnons in \(AdS_5 \times S^5 \), and the above three vertices, are as follows \([37, 39]\)

\[
C_{pr}^j = \frac{\pi^{3/2}}{c_{pr}^j} \frac{\Gamma \left(\frac{j}{2} \right)}{\Gamma \left(\frac{j+1}{2} \right)} \frac{x_{pr}^{j+1}}{\sqrt{(1-u^2)W}} \left[(1-W+j(1-v^2W)) \right. \\
\[\left. 2F1 \left(\frac{1}{2}, \frac{1}{2} + \frac{j}{2}; 1; 1 - \epsilon \right) \right. \\
\[\left. - (1+j) (1-u^2) \chi_p 2F1 \left(\frac{1}{2}, -\frac{1}{2} - \frac{j}{2}; 1; 1 - \epsilon \right) \right) , \\
\]

(2.13)

\[
C_{d}^j = 2\pi^{3/2} c_{d}^j \frac{\Gamma \left(\frac{4+j}{2} \right)}{\Gamma \left(\frac{5+j}{2} \right)} \frac{x_{d}^{j+1}}{\sqrt{(1-u^2)W}} \left[(1-u^2)\chi_p 2F1 \left(\frac{1}{2}, -\frac{1}{2} - \frac{j}{2}; 1; 1 - \epsilon \right) \\
\[- (1-W) 2F1 \left(\frac{1}{2}, -\frac{1}{2} + \frac{j}{2}; 1; 1 - \epsilon \right) \right) , \\
\]

(2.14)

\[
C_{q} = c_{\Delta q} \pi^{3/2} \frac{\Gamma \left(\frac{\Delta q}{2} \right)}{\Gamma \left(\frac{\Delta q+1}{2} \right)} \frac{(-1)^q [2 - (1+v^2W)]^q}{(1-v^2)^{q-1} \sqrt{(1-u^2)W}} \chi_p \sum_{k=0}^{q} \frac{q!}{k!(q-k)!} \left[-\frac{1}{1 - \frac{1}{2}(1+v^2)W} \right] k \chi_p^{k} 2F1 \left(\frac{1}{2}, \frac{1}{2} - k; 1; 1 - \epsilon \right) , \\
\]

(2.15)

where \(2F1 \left(a, b; c; z \right) \) is Gauss’ hypergeometric function.

3 Leading order finite-size effects

As we already point out in the beginning, (2.4), (2.5), can not be solved exactly with respect to the parameters involved, in order to express the relevant three-point correlation functions
in terms of the conserved charges and p. That is why, we will consider here only the leading order finite-size effects on the three-point correlators. This means that we will consider the limit J_1 large, i.e. $J_1 \gg \sqrt{\lambda}$, where the finite-size corrections to both conformal dimensions and energies of string states have been computed also from the Lüscher corrections. Practically, the problem reduces to consider the limit $\epsilon \to 0$, since $\epsilon = 0$ corresponds to the infinite-size case, i.e. $J_1 = \infty$. The relevant expansions of the parameters are \[30\]

$$
\begin{align*}
\chi_p &= \chi_{p0} + (\chi_{p1} + \chi_{p2} \log(\epsilon)) \epsilon, \\
\chi_m &= \chi_{m1} \epsilon, \\
W &= 1 + W_1 \epsilon, \\
v &= v_0 + (v_1 + v_2 \log(\epsilon)) \epsilon, \\
u &= u_0 + (u_1 + u_2 \log(\epsilon)) \epsilon.
\end{align*}
$$

(3.1)

The coefficients on the first line in (3.1) can be obtained by using the equalities (2.2) and the definition of ϵ (2.3) to be

$$
\begin{align*}
\chi_{p0} &= 1 - \frac{v_0^2}{1 - u_0^2}, \\
\chi_{p1} &= \frac{v_0}{(1 - v_0^2)(1 - u_0^2)} \left\{ v_0 \left[(1 - v_0^2)^2 - 3(1 - v_0^2)u_0^2 + 2u_0^4 - 2(1 - v_0^2)u_0u_1 \right] \\
&\quad - 2 \left(1 - v_0^2 \right) \left(1 - u_0^2 \right) v_1 \right\}, \\
\chi_{p2} &= -2v_0v_2 + (v_0u_2 - u_0v_2)u_0 \\
&\quad \frac{v_0^2u_2 - (1 - v_0^2)u_0}{(1 - u_0^2)^2}, \\
\chi_{m1} &= 1 - \frac{v_0^2}{1 - u_0^2}, \\
W_1 &= -\frac{(1 - u_0^2 - v_0^2)^2}{(1 - u_0^2)(1 - v_0^2)}.
\end{align*}
$$

(3.2)

The coefficients in the expansions of v and u, we take from \[71\], where for the case under consideration we have to set $K_1 = \chi_{m1} = 0$, or equivalently $\Phi = 0$. This leads to

$$
\begin{align*}
v_0 &= \frac{\sin(p)}{\sqrt{J_2^2 + 4\sin^2(p/2)}}, \\
u_0 &= \frac{J_2}{\sqrt{J_2^2 + 4\sin^2(p/2)}}, \\
v_1 &= \frac{v_0(1 - v_0^2 - u_0^2)}{4(1 - u_0^2)(1 - v_0^2)} \left[(1 - v_0^2)(1 - \log(16)) - u_0^2 \left(5 - v_0^2(1 + \log(16)) - \log(4096) \right) \right], \\
v_2 &= \frac{v_0(1 - v_0^2 - u_0^2)}{4(1 - u_0^2)(1 - v_0^2)} \left[1 - v_0^2 - u_0^2(3 + v_0^2) \right], \\
u_1 &= \frac{u_0(1 - v_0^2 - u_0^2)}{4(1 - v_0^2)} \left[1 - \log(16) - v_0^2(1 + \log(16)) \right], \\
u_2 &= \frac{u_0(1 - v_0^2 - u_0^2)}{4(1 - v_0^2)} \left(1 + v_0^2 \right).
\end{align*}
$$

(3.3)

We need also the expression for ϵ. It can be found from the expansion of J_1, and to the leading order is given by (2.7).
3.1 Giant magnons and primary scalar operators

Let us first point out that (2.13) simplifies a lot when \(j \) is odd \((j = 2m + 1, m = 0, 1, 2, \ldots)\). In that case, Gauss’ hypergeometric functions in (2.13) reduce to polynomials. This results in

\[
C_{pr}^{2m+1} = \pi^{3/2} C_{2m+1} \frac{\Gamma(m + \frac{1}{2})}{\Gamma(m + 2)} \frac{\epsilon^{m/2} \chi_m}{\sqrt{(1 - u^2)W}} \left[-2(m + 1)(1 - u^2)\sqrt{\epsilon} \chi_m P_{m+1} \left(\frac{1 + \epsilon}{2\sqrt{\epsilon}} \right) \\
+ (1 - W + (2m + 1)(1 - \nu^2W)) P_m \left(\frac{1 + \epsilon}{2\sqrt{\epsilon}} \right) \right],
\]

where \(P_n(z) \) are Legendre’s polynomials.

Since the corresponding operators in the dual gauge theory are of the type \(Tr(Z^j) \), we will restrict ourselves to integer-valued \(j \).

Let us start with the simpler case when \(J_2 = 0 \), or equivalently \(u = 0 \). Expanding (2.13) in \(\epsilon \) and using (3.1) - (3.3), one finds that

\[
C_{10}^{pr} \approx 0, \quad C_{20}^{pr} \approx \frac{4}{3} C_{2}^{pr} J_1 \sin^2(p/2) \epsilon, \quad C_{j0}^{pr} \approx C_j^{pr} a_j \sin(p/2)^{j+1} \epsilon, \quad j = 3, \ldots, 10,
\]

where

\[
\epsilon = 16 \exp[-2 - J_1 \csc(p/2)],
\]

for the case under consideration\(^6\). The numerical coefficients \(a_j \) are given by

\[
a_j = \left(\frac{1}{4\pi^2}, \frac{1}{3.5}, \frac{1}{16\pi^2}, \frac{27}{3^2.5^2.7}, \frac{3.5}{2^9\pi^2}, \frac{2^{10}}{3^3.5^2.7}, \frac{5.7}{2^{11}\pi^2}, \frac{2^{14}}{3^2.5^2.7^2.11} \right).
\]

A few comments are in order. From (3.5) one can conclude that the \(C_{10}^{pr} \) and \(C_{20}^{pr} \) cases are exceptional, while \(C_{j0}^{pr} \) have the same structure for \(j \geq 3 \). \(C_{10}^{pr} \approx 0 \) means that the small \(\epsilon \) - contribution to the three point correlator is zero to the leading order in \(\epsilon \). \(C_{20}^{pr} \) is the only one normalized structure constant of this type proportional to \(J_1 \). It is still exponentially suppressed by \(\epsilon \). The common feature of \(C_{j0}^{pr} \) in (3.5) is that they all vanish in the infinite size case, i.e., for \(\epsilon = 0 \). This property was established in [26], and confirmed even for the \(\gamma \)-deformed case in [37]. Here, we obtained the leading finite-size corrections to it.

Now, let us turn to the dyonic case, i.e. \(J_2 \neq 0 \). Working in the same way, but with \(u \neq 0 \), we derive

\(^5\)We use the notation \(C_{j0}^{pr} \) in order to say that \(C_{j}^{pr} \) are computed for the case \(J_2 = 0 \).

\(^6\)This expression for \(\epsilon \) comes from [24] after setting \(J_2 = 0 \).
\[j = 1: \]

\[
\begin{align*}
C_1^{pr} & \approx c_1^{pr} \frac{\pi^2}{16 [J_2^2 + 4 \sin^2(p/2)]^{3/2}} \left[J_2^2 \csc(p/2) \right. \\
& \left. \times \right\{ 8 [J_2^2 + 4 \sin^2(p/2)] [J_2^2 + 4 \sin^4(p/2)] \\
& + \sin^2(p/2) \left[40 + 17 J_2^2 + 2 J_2^4 - 20 (3 + J_2^2) \cos(p) \right] \right. \\
& \left. + 3 (8 + J_2^2) \cos(2p) - 4 \cos(3p) - 4 \frac{J_2^2 + 8 \sin^2(p/2)}{J_2^2 + 4 \sin^4(p/2)} \times \\
& \left(J_1 \sqrt{J_2^2 + 4 \sin^2(p/2)} + J_2^2 + 4 \sin^2(p/2) \right) \times \\
& \left(J_2^2 + 4 \sin^4(p/2) + 2 \sin^2(p) \right) \sin^2(p/2) \} \epsilon, \tag{3.7} \end{align*}
\]

\[j = 2: \]

\[
\begin{align*}
C_2^{pr} & \approx \frac{4}{3} c_2^{pr} \left[J_2^2 + 4 \sin^2(p/2) \right]^{3/2} \left[J_2^2 + 4 \sin^4(p/2) \right] \times \\
& \left\{ 2 J_2^2 [J_2^2 + 4 \sin^2(p/2)] [J_2^2 + 4 \sin^4(p/2)] - \sin^4(p/2) \right. \\
& \left. \times \right\} \left[8 [J_2^2 - 2 J_2^4 - 2 (15 + 2 J_2^2) \cos(p) + (12 + J_2^2) \cos(2p) - 2 \cos(3p) \right] \\
& \left. + \frac{8}{J_2^2 + 4 \sin^4(p/2)} \right. \\
& \left. \times \right\} \left(J_1 \sqrt{J_2^2 + 4 \sin^2(p/2)} + J_2^2 + 4 \sin^2(p/2) \right) \times \\
& \left(-3 + 2 (2 + J_2^2) \cos(p) - \cos(2p) \right) \sin^4(p/2) \} \epsilon, \tag{3.8} \end{align*}
\]

\[j = 3: \]

\[
\begin{align*}
C_3^{pr} & \approx c_3^{pr} \frac{\pi^2}{256} \csc(p/2) [J_2^2 + 4 \sin^2(p/2)]^{1/2} \times \\
& \left\{ 48 J_2^2 \sin^2(p/2) \frac{J_2^2 + 4 \sin^4(p/2)}{[J_2^2 + 4 \sin^2(p/2)]^3} \right. \\
& \left. - \frac{25 J_4^2}{[J_2^2 + 4 \sin^2(p/2)]^2} \right. \\
& \left. - \frac{3}{2} \frac{J_2^4}{[J_2^2 + 4 \sin^2(p/2)]^4} \right. \\
& \left. \left(3 J_2^2 \left(J_2^2 + 4 \sin^2(p/2) + J_1 \sqrt{J_2^2 + 4 \sin^2(p/2)} \right) \times \\
& \left(80 + 42 J_2^2 + 12 J_2^4 - (120 + 47 J_2^2 - 4 J_2^4) \cos(p) \right) \times \\
& \left(8 + J_2^2 \right) \left(6 \cos(2p) - \cos(3p) \right) \sin^4(p/2) \right. \\
& \left. \right] \frac{1}{[J_2^2 + 4 \sin^2(p/2)]^4 [J_2^2 + 4 \sin^4(p/2)]} \times \\
& \left. \right\} \left(J_2^2 + 4 \sin^4(p/2) \right) \sin^2(p/2) \} \epsilon, \tag{3.9} \end{align*}
\]
$j = 4$:

\[
C_4^{pr} \approx \frac{2}{45} C_4^{pr} \left[\mathcal{J}_2^2 + 4 \sin^2(p/2) \right]^{5/2} \{ 32 \mathcal{J}_2^2 \mathcal{J}_2^2 + 4 \sin^4(p/2) \} \sin^2(p/2) - \frac{17 \mathcal{J}_2^4}{\left[\mathcal{J}_2^2 + 4 \sin^2(p/2) \right]^2} - \frac{1}{2} \frac{\mathcal{J}_2^2 \mathcal{J}_2^2 + 4 \sin^4(p/2)}{\left[\mathcal{J}_2^2 + 4 \sin^2(p/2) \right]^3} (39 - 32 \cos(p) - 7 \cos(2p) + 16 \mathcal{J}_2^2) \]

\[
- \mathcal{J}_2^4 \left[11 - 12 \cos(p) + \cos(2p) + 6 \mathcal{J}_2^2 \right] \left[\mathcal{J}_2^2 + 4 \sin^2(p/2) \right]^{1/4}
\]

\[
+ \left(2 \mathcal{J}_2^2 \left(\mathcal{J}_2^2 + 4 \sin^2(p/2) \right) + \mathcal{J}_1 \sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)} \right) \times
\]

\[
\left(75 + 44 \mathcal{J}_2^2 + 16 \mathcal{J}_2^2 - 2 \left(58 + 23 \mathcal{J}_2^2 - 4 \mathcal{J}_2^4 \right) \cos(p) + 4 \left(13 + \mathcal{J}_2^2 \right) \cos(2p) - 2 \left(6 + \mathcal{J}_2^2 \right) \cos(3p) + \cos(4p) \right) \sin^4(p/2) \times
\]

\[
\frac{1}{\left[\mathcal{J}_2^2 + 4 \sin^2(p/2) \right]^4} - \frac{13 \mathcal{J}_2^4 \sin^2(p)}{\left[\mathcal{J}_2^2 + 4 \sin^2(p/2) \right]^3} + \frac{2 \mathcal{J}_2^4 \sin^4(p)}{\left[\mathcal{J}_2^2 + 4 \sin^2(p/2) \right]^4} - 3 \left(\frac{\mathcal{J}_2^2 + 4 \sin^4(p/2)}{\mathcal{J}_2^2 + 4 \sin^2(p/2)} \right)^2 \}
\]

In the four formulas above ϵ is given by (2.7).

3.2 Giant magnons and dilaton operator

The leading finite-size effect on the normalized structure constant in the three-point correlator of two finite-size giant magnon’s states and zero-momentum dilaton operator ($j = 0$), in the limit $J_1 \gg \sqrt{\lambda}$, has been considered in [30]. Here, we will deal with the $j > 0$ cases. Since the corresponding operators in the dual gauge theory are proportional to $\text{Tr} \left(F_{\mu\nu}^2 Z^2 + \ldots \right)$, we will restrict ourselves to integer-valued j.

When j is odd ($j = 2m + 1, m = 0, 1, 2, \ldots$), the normalized structure constants (2.14) simplify to

\[
C_{2m+1}^d = 2 \pi^{3/2} c_{2m+5}^d \frac{\Gamma \left(m + \frac{5}{2} \right)}{\Gamma \left(m + 3 \right)} \frac{e^{m/2} \chi_p}{\sqrt{(1 - u^2) W}}
\]

\[
\left[(1 - u^2) \sqrt{\epsilon} \chi_p \right] P_{m+1} \left(\frac{1 + \epsilon}{2 \sqrt{\epsilon}} \right) - (1 - W) \frac{P_{m} \left(\frac{1 + \epsilon}{2 \sqrt{\epsilon}} \right)}{2 \sqrt{\epsilon}}
\]

Expanding (2.14) in ϵ and using (3.1) - (3.3), one finds
\[j = 1: \]
\[
C_1^d \approx \frac{3}{4} \pi^2 c_5^d \sin^3(p/2) \left\{ \frac{1}{\sqrt{J_2^2 + 4 \sin^2(p/2)}} \right. \\
- \frac{1}{128} \left(J_2^2 + 4 \sin^2(p/2) \right)^{3/2} \left(J_2^2 + 4 \sin^4(p/2) \right)^{3/2} \left[\left(840 + 826 J_2^2 + 258 J_2^4 - 24 J_2^6 \right)
\right. \\
- 2 \left(744 + 707 J_2^2 + 244 J_2^4 + 72 J_2^6 \right) \cos(p)
\right. \\
+ 4 \left(255 + 218 J_2^2 + 62 J_2^4 - 6 J_2^6 \right) \cos(2p) - \left(520 + 367 J_2^2 + 24 J_2^4 \right) \cos(3p)
\right. \\
+ 2 \left(92 + 47 J_2^2 + 3 J_2^4 \right) \cos(4p) - \left(40 + 11 J_2^2 \right) \cos(5p) + 4 \cos(6p) \left(840 + 826 J_2^2 + 258 J_2^4 - 24 J_2^6 \right)
\right. \\
- \left. \left(8 + 3 J_2^2 \right) \cos(3p) - 2 \left(5 + 5 J_2^2 - 2 J_2^4 - \cos(4p) \right) \right] \epsilon, \]

\[j = 2: \]
\[
C_2^d \approx \frac{2^8}{3^2 5^d} c_6^d \sin^4(p/2) \left\{ \frac{1}{\sqrt{J_2^2 + 4 \sin^2(p/2)}} \right. \\
- \frac{1}{128} \left(J_2^2 + 4 \sin^2(p/2) \right)^{3/2} \left(J_2^2 + 4 \sin^4(p/2) \right)^{3/2} \left[\left(210 + 8 J_2^2 \left(6 - J_2^2 \right) \right) \left(7 + 4 J_2^2 \right)
\right. \\
- 8 \left(63 + 84 J_2^2 + 38 J_2^4 + 16 J_2^6 \right) \cos(p)
\right. \\
+ \left(585 + 576 J_2^2 + 176 J_2^4 - 32 J_2^6 \right) \cos(2p) - 4 \left(115 + 84 J_2^2 + 4 J_2^4 \right) \cos(3p)
\right. \\
+ 2 \left(111 + 56 J_2^2 + 4 J_2^4 \right) \cos(4p) - 4 \left(15 + 4 J_2^2 \right) \cos(5p) + 7 \cos(6p) \left(210 + 8 J_2^2 \left(6 - J_2^2 \right) \right)
\right. \\
- \left. \left(8 + 3 J_2^2 \right) \cos(3p) - 2 \left(5 + 5 J_2^2 - 2 J_2^4 - \cos(4p) \right) \right] \epsilon, \]
\(j = 3:\)

\[
C_3^d \approx \frac{3.5}{25} \pi^2 c_7^d \sin^5(p/2) \left\{ \frac{1}{\sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)}} \right\} + \frac{1}{960 \left(\mathcal{J}_2^2 + 4 \sin^2(p/2) \right)^{3/2} \left(\mathcal{J}_2^2 + 4 \sin^4(p/2) \right)^{1/2}} \left[20 \left(256 (13 + 15 \cos(p)) \sin^{10}(p/2) + 288 \mathcal{J}_2^2 (5 + 7 \cos(p)) \sin^8(p/2) + \mathcal{J}_2^4 (54 + 241 \cos(p) + 10 \cos(2p)) + 15 \cos(3p)) \sin^2(p/2) + 1 \right] \left\{ \sum \mathcal{J}_2^9 \sin(p/2) \right\} \epsilon \right\},
\]

\(j = 4:\)

\[
C_4^d \approx \frac{2^{11}}{3.5^2 \pi^2 c_7^d \sin^6(p/2)} \left\{ \frac{1}{\sqrt{\mathcal{J}_2^2 + 4 \sin^2(p/2)}} \right\} + \frac{1}{8192 \left(\mathcal{J}_2^2 + 4 \sin^2(p/2) \right)^{3/2} \left(\mathcal{J}_2^2 + 4 \sin^4(p/2) \right)^{1/2}} \left[64 (294 + 14 \mathcal{J}_2^2 - 60 \mathcal{J}_2^4 + 48 \mathcal{J}_2^6) - 4 (51 - 49 \mathcal{J}_2^2 - 53 \mathcal{J}_2^4 - 36 \mathcal{J}_2^6) \cos(p) - (435 + 8 \mathcal{J}_2^2 (61 + 19 \mathcal{J}_2^2 - 6 \mathcal{J}_2^4)) \cos(2p) + 2 (305 + 209 \mathcal{J}_2^2 + 6 \mathcal{J}_2^4) \cos(3p) - 2 (179 + 83 \mathcal{J}_2^2 + 6 \mathcal{J}_2^4) \cos(4p) + 2 (53 + 13 \mathcal{J}_2^4) \cos(5p) - 13 \cos(6p)) \right\}
\]

In the four formulas above \(\epsilon\) is given by (2.7).

Actually, we computed the normalized coefficients in the three-point correlators up to \(j = 10\). However, since the expressions for them are too complicated, we give here only the results for the first two odd and two even values of \(j\). Knowing these expressions, the conclusion is that they have the same structure for any \(j\) in the small \(\epsilon\) limit\(^7\). Namely

\(^7\)The only difference in that sense is that for \(j\) odd an additional overall factor of \(\pi^2\) appears, as can be seen from the formulas above.
\[C_j^d \approx A_j c_{j+4}^d \sin^j \left(\frac{p}{2} \right) \left\{ \frac{1}{\sqrt{J_2^2 + 4 \sin^2 \left(\frac{p}{2} \right)}} + \frac{a_j}{(J_2^2 + 4 \sin^2 \left(\frac{p}{2} \right))^{3/2}} \left(J_2^2 + 4 \sin^4 \left(\frac{p}{2} \right) \right)^2 \right\} \]

\[\left[P_j^3(J_2^2) + J_1 \sin^2 \left(\frac{p}{2} \right) \sqrt{J_2^2 + 4 \sin^2 \left(\frac{p}{2} \right)} Q_j^2(J_2^2) \right] \epsilon. \]

(3.12)

where \(\epsilon \) is given in (2.7), \(A_j \) and \(a_j \) are numerical coefficients, while \(P_j^3(J_2^2) \) and \(Q_j^2(J_2^2) \) are polynomials of third and second order respectively, with coefficients depending on \(p \) in a trigonometric way.

Now, let us restrict ourselves to the simpler case when \(J_2 = 0 \), i.e. giant magnon string states with one (large) angular momentum \(J_1 \neq 0 \). Knowing the above results for \(1 \leq j \leq 10 \), one can conclude that the normalized structure constants in the three-point correlators for any \(j \geq 1 \) in the small \(\epsilon \) limit look like

\[C_{j0}^d \approx \frac{A_j}{2} c_{j+4}^d \sin^j \left(\frac{p}{2} \right) \left\{ \sin \left(\frac{p}{2} \right) + B_{j0} \sin \left(\frac{p}{2} \right) + C_{j0} \sin \left(\frac{3p}{2} \right) + D_{j0} (1 + \cos(p)) J_1 \right\} e^{-2 \frac{J_1^2}{\sin^2 \frac{p}{2}}} \],

(3.13)

where

\[B_{j0} = (-2^2, 3, 2.11, 3, 5^2, 3, 2.73, 7^3, \ldots) \quad \text{for} \quad j = (1, \ldots, 8, \ldots), \]
\[C_{j0} = 1 + 3j, \quad D_{j0} = 2(j + 1). \]

3.3 Giant magnons and singlet scalar operators on higher string levels

For that case, the expressions for the normalized structure constants in the three-point correlation functions for dyonic giant magnons are too long and complicated. That is why, we will write down here the results for finite-size giant magnon states only, i.e. for \(J_2 = 0 \). Then, after small \(\epsilon \) expansion, one can find that (2.15) reduces to

\[C_q^q \approx c_{\Delta q} \sqrt{\pi} \frac{\Gamma \left(\frac{\Delta q}{2} \right)}{A_{q_0} \Gamma \left(\frac{1+\Delta q}{2} \right)} \left\{ A_{q_1} \sin(p/2) + A_{q_2} J_1 \right\} \]

\[+ \left[(A_{q_3} + A_{q_4} \cos(p)) \sin(p/2) + (A_{q_5} + A_{q_6} \cos(p)) J_1 + A_{q_7} \csc(p/2) (1 + \cos(p)) J_1^2 \right] \epsilon, \]

(3.14)

\[^8 C_{j0}^d \] is used for \(C_{j0}^d \) computed for \(J_2 = 0 \) case.

\[^9 C_q^q \equiv C_q^q \] computed for \(J_2 = 0 \).
where A_{q_i} ($i = 0, 1, ..., 7$) are numerical coefficients, and for the case at hand ϵ is given by (3.6).

This is the general structure of C_q^0. The values of A_{q_i} we found are as follows ($q = 1, \ldots, 10$)

\begin{align*}
A_{q_0} &= (8, 24, 60, 420, 2520, 27720, 180180, 180180, 3063060, 116396280), \\
A_{q_1} &= (16, -16, 152, -632, 7216, -55216, 559304, -420312, 10089896, -301915216), \\
A_{q_2} &= (-8, 24, -60, 420, -2520, 27720, -180180, 180180, -3063060, 116396280), \\
A_{q_3} &= (2, -66, 147, -2575, 13446, -272694, 1555993, -2484923, 37469109, -2088496586), \\
A_{q_4} &= (2, -10, 171, -1027, 15334, -144942, 1747825, -1523631, 41620821, -1396357874), \\
A_{q_5} &= (-5, 31, -187, 1837, -6343, 86653, -1256569, 3 \cdot 490499, -2 \cdot 27342361, 587890603), \\
A_{q_6} &= (1, 13, -97, 1207, -4453, 65863, -986299, 3 \cdot 400409, -2 \cdot 22747771, 500593393), \\
A_{q_7} &= (-1, 3, -15, 105, -315, 3465, -45045, 3 \cdot 15015, -765765, 2 \cdot 14549535).
\end{align*}

4 Concluding Remarks

In this paper, in the framework of the semiclassical approach, we computed the leading finite-size effects on the normalized structure constants in some three-point correlation functions in $AdS_5 \times S^5$, expressed in terms of the conserved string angular momenta J_1, J_2, and the worldsheet momentum p_{w}, identified with the momentum p of the magnon excitations in the dual spin-chain arising in $\mathcal{N} = 4$ SYM in four dimensions. Namely, we found the leading finite-size effects on the structure constants in three-point correlators of two ”heavy” (dyonic) giant magnon’s string states and the following three ”light” states:

1. Primary scalar operators;
2. Dilaton operator with nonzero-momentum ($j \geq 1$);
3. Singlet scalar operators on higher string levels.

A natural generalization of the above results would be to consider the case of γ-deformed (or TsT-transformed) $AdS_5 \times S^5$ type IIB string theory background. Another possible issue to investigate is the case of $AdS_4 \times CP^3$ type IIA string theory background, dual to $\mathcal{N} = 6$ super Chern-Simons-matter theory in three space-time dimensions (ABJM model) and its TsT-deformations. We hope to report on these soon.
References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:hep-th/9711200];
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B428, 105 (1998) [arXiv:hep-th/9802109];
E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[2] Niklas Beisert, Changrim Ahn, Luis F. Alday, Zoltan Bajnok, James M. Drummond, Lisa Freyhult, Nikolay Gromov, Romuald A. Janik, Vladimir Kazakov, Thomas Klose, Gregory P. Korchemsky, Charlotte Kristjansen, Marc Magro, Tristan McLoughlin, Joseph A. Minahan, Rafael I. Nepomechie, Adam Rej, Radu Roiban, Sakura Schafer-Nameki, Christoph Sieg, Matthias Staudacher, Alessandro Torrielli, Arkady A. Tseytlin, Pedro Vieira, Dmytro Volin, Konstantinos Zoubos, “Review of AdS/CFT Integrability: An Overview”, Lett. Math. Phys. 99 3 (2012) [arXiv:hep-th/1012.3982v5].

[3] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “A semi-classical limit of the gauge/string correspondence”, Nucl. Phys. B636 99-114 (2002) [arXiv:hep-th/0204051].

[4] D.M. Hofman and J. Maldacena, “Giant magnons”, J. Phys. A 39 13095-13118 (2006), [arXiv:hep-th/0604135]

[5] H.-Y. Chen, N. Dorey and K. Okamura, “Dyonic giant magnons,” JHEP 0609 024 (2006), [arXiv:hep-th/0605155].

[6] M. Kruczenski, J. Russo, A.A. Tseytlin, “Spiky strings and giant magnons on S_5”, JHEP 0610 002 (2006), [arXiv:hep-th/0607044].

[7] J. Ambjorn, R.A. Janik, and C. Kristjansen, “Wrapping interactions and a new source of corrections to the spin-chain / string duality”, Nucl. Phys. B736, 288 (2006) [arXiv:hep-th/0510171]; R.A. Janik and T. Lukowski, “Wrapping interactions at strong coupling - the giant magnon”, Phys. Rev. D76, 126008 (2007) [arXiv:hep-th/0708.2208].

[8] G. Arutyunov, S. Frolov, M. Zamaklar, “Finite-size Effects from Giant Magnons”, Nucl. Phys. B 778 1 (2007) [arXiv:hep-th/0606126v2]

[9] Y. Hatsuda, R. Suzuki,“Finite-Size Effects for Dyonic Giant Magnons”, Nucl. Phys. B800 349-383 (2008), [arXiv:hep-th/0801.0747v5]

[10] R. A. Janik, P. Surowka and A. Wereszcynski, “On correlation functions of operators dual to classical spinning string states”, JHEP 1005 030 (2010) [arXiv:hep-th/1002.4613].

[11] E. I. Buchbinder and A. A. Tseytlin, “On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT”, JHEP 1008 057 (2010) [arXiv:hep-th/1005.4516].
[12] K. Zarembo, “Holographic three-point functions of semiclassical states”, JHEP 1009 030 (2010) [arXiv:hep-th/1008.1059].

[13] M. S. Costa, R. Monteiro, J. E. Santos and D. Zoakos, “On three-point correlation functions in the gauge/gravity duality”, JHEP 1011 141 (2010) [arXiv:hep-th/1008.1070].

[14] R. Roiban and A. A. Tseytlin, “On semiclassical computation of 3-point functions of closed string vertex operators in $AdS_5 \times S^5$” Phys. Rev. D82 106011 (2010) [arXiv:hep-th/1008.4921].

[15] R. Hernández, “Three-point correlation functions from semiclassical circular strings”, J. Phys. A 44, 085403 (2011) [arXiv:1011.0408 [hep-th]].

[16] S. Ryang, “Correlators of Vertex Operators for Circular Strings with Winding Numbers in $AdS_5 \times S^5$”, JHEP 1101, 092 (2011) [arXiv:1011.3573 [hep-th]].

[17] G. Georgiou, “Two and three-point correlators of operators dual to folded string solutions at strong coupling”, JHEP 1102, 046 (2011) [arXiv:1011.5181 [hep-th]].

[18] J. Escobedo, N. Gromov, A. Sever, P. Vieira, “Tailoring Three-Point Functions and Integrability”, JHEP 1109, 028 (2011) [arXiv:1012.2475v2 [hep-th]].

[19] D. Arnaudov, R.C. Rashkov, “On semiclassical calculation of three-point functions in $AdS_4 \times CP^3$”, Phys. Rev. D83 066011 (2011) [arXiv:1011.4669v2 [hep-th]].

[20] J. G. Russo and A. A. Tseytlin, “Large spin expansion of semiclassical 3-point correlators in $AdS_5 \times S^5$”, JHEP 1102, 029 (2011) [arXiv:1012.2760 [hep-th]].

[21] C. Park and B. Lee, “Correlation functions of magnon and spike”, Phys. Rev. D83 126004 (2011) [arXiv:1012.3293 [hep-th]].

[22] E. I. Buchbinder and A. A. Tseytlin, “Semiclassical four-point functions in $AdS_5 \times S^5$”, JHEP 1102, 072 (2011) [arXiv:1012.3740 [hep-th]].

[23] D. Bak, B. Chen and J. Wu, “Holographic Correlation Functions for Open Strings and Branes”, JHEP 1106, 014 (2011) [arXiv:1103.2024 [hep-th]].

[24] A. Bissi, C. Kristjansen, D. Young and K. Zoubos, “Holographic three-point functions of giant gravitons”, JHEP 1106, 085 (2011) [arXiv:1103.4079 [hep-th]].

[25] D. Arnaudov, R. C. Rashkov and T. Vetsov, “Three- and four-point correlators of operators dual to folded string solutions in $AdS_5 \times S^5$”, Int. J. Mod. Phys. A26 3403 (2011) [arXiv:1103.6145 [hep-th]].

[26] R. Hernández, “Three-point correlators for giant magnons”, JHEP 1105 123 (2011) [arXiv:hep-th/1104.1160].

[27] X. Bai, B. Lee and C. Park, “Correlation function of dyonic strings”, Phys. Rev. D84 026009 (2011) [arXiv:1104.1896 [hep-th]].
[28] J. Escobedo, N. Gromov, A. Sever, P. Vieira, “Tailoring Three-Point Functions and Integrability II. Weak/strong coupling match”, JHEP 1109 029 (2011) [arXiv:1104.5501v2[hep-th]].

[29] L. F. Alday and A. A. Tseytlin, “On strong-coupling correlation functions of circular Wilson loops and local operators”, J. Phys. A44 395401 (2011) [arXiv:1105.1537[hep-th]].

[30] C. Ahn and P. Bozhilov, “Three-point Correlation functions of Giant magnons with finite size”, Phys. Lett. B 702, 286 (2011) [arXiv:hep-th/1105.3084v1].

[31] B. Lee and C. Park, “Finite size effect on the magnon’s correlation functions”, Phys. Rev. D84 086005 (2011) [arXiv:1105.3279[hep-th]].

[32] Thomas Klose, Tristan McLoughlin, “A light-cone approach to three-point functions in $AdS_5 \times S^5$”, JHEP 1204 080 (2012) [arXiv:hep-th/1106.0495v3].

[33] D. Arnaudov, R.C. Rashkov, “Quadratic corrections to three-point functions”, Fortschr. Phys. 60 217 (2012) [arXiv:hep-th/11060859v3].

[34] D. Arnaudov, R.C. Rashkov, “Three-point correlators: examples from Lunin-Maldacena background”, Phys. Rev. D84 086009 (2011) [arXiv:hep-th/11064298].

[35] C. Ahn and P. Bozhilov, “Three-point Correlation function of Giant Magnons in the Lunin-Maldacena background”, Phys. Rev. D84 126011 (2011) [arXiv:hep-th/1106.5656v1].

[36] G. Georgiou, “SL(2) sector: weak/strong coupling agreement of three-point correlators”, JHEP 1109 132 (2011) [arXiv:hep-th/1107.1850v1].

[37] P. Bozhilov, “More three-point correlators of giant magnons with finite size”, JHEP 1108 121 (2011) [arXiv:hep-th/1107.2645].

[38] M. Michalcik, R. C. Rashkov, M. Schimpf, “On semiclassical calculation of three-point functions in $AdS_5 \times T^6(1,1)$”, Mod. Phys. Lett. A27 1250091 (2012) [arXiv:hep-th/1107.5795v2].

[39] P. Bozhilov, “Three-point correlators: Finite-size giant magnons and singlet scalar operators on higher string levels”, Nucl. Phys. B855 268-279 (2012) [arXiv:hep-th/1108.3812].

[40] S. Ryang, “Extremal Correlator of Three Vertex Operators for Circular Winding Strings in $AdS_5 \times S^5$”, JHEP 1111 026 (2011) [arXiv:hep-th/1109.3242].

[41] R. Janik, A. Wereszczynski, “Correlation functions of three heavy operators - the AdS contribution”, JHEP 1112 095 (2011) [arXiv:hep-th/1109.6262].

[42] Y. Kazama, S. Komatsu, “On holographic three point functions for GKP strings from integrability”, JHEP 1201 110 (2012) [arXiv:hep-th/1110.3949].
[43] E. I. Buchbinder, A. A. Tseytlin, “Semiclassical correlators of three states with large S^5 charges in string theory in $AdS_5 \times S^5$”, Phys. Rev. D85 026001 (2012) [arXiv:hep-th/1110.5621v3].

[44] N. Gromov, A. Sever, P. Vieira, “Tailoring Three-Point Functions and Integrability III. Classical Tunneling”, JHEP 1207 044 (2012) [arXiv:hep-th/1111.2349v1].

[45] Omar Foda, “N=4 SYM structure constants as determinants”, JHEP 1203 096 (2012) [arXiv:hep-th/1111.4663v2].

[46] A. Bissi, T. Harmark, M. Orselli, “Holographic 3-point function at one loop”, JHEP 1202 133 (2012) [arXiv:hep-th/1112.5075v3].

[47] G. Georgiou, V. Gili, A. Grossardt, J. Plefka, “Three-point functions in planar N=4 super Yang-Mills Theory for scalar operators up to length five at the one-loop order”, JHEP 1204 038 (2012) [arXiv:hep-th/1201.0992v1].

[48] C. A. Cardona, “Comments on Correlation Functions of Large Spin Operators and Null Polygonal Wilson Loops”, Nucl. Phys. B867 165-181 (2013) [arXiv:hep-th/1202.1736v1].

[49] N. Gromov, P. Vieira, “Quantum Integrability for Three-Point Functions”, [arXiv:hep-th/1202.4103v1].

[50] R. Hernandez, “Semiclassical correlation functions of Wilson loops and local vertex operators”, Nucl. Phys. B862 751 (2012) [arXiv:hep-th/1202.4383v2].

[51] Changrim Ahn, Omar Foda, Rafael I. Nepomechie, “OPE in planar QCD from integrability”, JHEP 1206 168 (2012) [arXiv:hep-th/1202.6553v2].

[52] Didina Serban, “A note on the eigenvectors of long-range spin chains and their scalar products” [arXiv:hep-th/1203.5842v3].

[53] Ivan Kostov, “Classical Limit of the Three-Point Function of N=4 Supersymmetric Yang-Mills Theory from Integrability” Phys. Rev. Lett. 108 261604 (2012) [arXiv:hep-th/1203.6180v2].

[54] P. Bozhilov, P. Furlan, V. B. Petkova, M. Stanishkov, “On the semiclassical 3-point function in AdS_3”, Phys. Rev. D86 066005 (2012) [arXiv:hep-th/1204.1322v3].

[55] Gianluca Grignani, A. V. Zayakin, “Matching three-point functions of BMN operators at weak and strong coupling”, JHEP 1206 142 (2012) [arXiv:hep-th/1204.3096v2]

[56] Shijong Ryang, “Three-Point Correlator of Heavy Vertex Operators for Circular Winding Strings in AdS_{5xS^5}”, Phys. Lett. B713 122 (2012) [arXiv:hep-th/1204.3688v2]

[57] Pawel Caputa, Robert de Mello Koch, Konstantinos Zoubos, “Extremal vs. Non-Extremal Correlators with Giant Gravitons”, JHEP 1208 143 (2012) [arXiv:hep-th/1204.4172v1]
[58] S. Hirano, C. Kristjansen and D. Young, Giant Gravitons on $AdS_4 \times CP^3$ and their Holographic Three-point Functions, JHEP 1207 006 (2012) [arXiv:hep-th/1205.1959]

[59] Ivan Kostov, “Three-point function of semiclassical states at weak coupling”, J. Phys. A45 494018 (2012) [arXiv:hep-th/1205.4412v4]

[60] Gianluca Grignani, A. V. Zayakin, “Three-point functions of BMN operators at weak and strong coupling II. One loop matching”, JHEP 1209 087 (2012) [arXiv:hep-th/1205.5279v2].

[61] Nikolay Gromov, Pedro Vieira, “Tailoring Three-Point Functions and Integrability IV. Theta-morphism” [arXiv:hep-th/1205.5288v1].

[62] Yoichi Kazama, Shota Komatsu, “Wave functions and correlation functions for GKP strings from integrability”, JHEP 1209 022 (2012) [arXiv:hep-th/1205.6060v2]

[63] D. Arnaudov, R. C. Rashkov, “On semiclassical four-point correlators in $AdS_5 \times S^5$” [arXiv:hep-th/1206.2613v1]

[64] Joseph A. Minahan, “Holographic three-point functions for short operators”, JHEP 1207 187 (2012) [arXiv:hep-th/1206.3129v2].

[65] Agnese Bissi, Gianluca Grignani, A. V. Zayakin, “The SO(6) Scalar Product and Three-Point Functions from Integrability” [arXiv:hep-th/1208.0100v1]

[66] J. Caetano, J. Toledo, “χ-Systems for Correlation Functions”, [arXiv:hep-th/1208.4548v2]

[67] Hai Lin, “Giant gravitons and correlators”, JHEP 1212 011 (2012) [arXiv:hep-th/1209.6624v3]

[68] Pawel Caputa, Badr Awad Elseid Mohammed, “From Schurs to Giants in ABJ(M)” [arXiv:hep-th/1210.7705v2]

[69] A. Bissi, C. Kristjansen, A. Martirosyan and M. Orselli, On Three-point Functions in the AdS_4/CFT_3 Correspondence, [arXiv:hep-th/1211.1359].

[70] Bogeun Gwak, Bum-Hoon Lee, Chanyong Park, “Correlation functions of the ABJM model” [arXiv:hep-th/1211.5838]

[71] P. Bozhilov, “Close to the Giant Magnons” [arXiv:hep-th/1010.5465v1]