Nitrogen Management in Soybean: A Review

Ritu Bhangu 1, Harpreet Kaur Virk 2

ABSTRACT

Soybean (Glycine max) is a leguminous crop grown worldwide for its dual qualities viz. high protein and oil content. It contains about 40–42% protein and 20–22% oil and is one of the major cash crops of the rainy season. The plant growth parameters like plant height, leaf area index (LAI), and dry matter accumulation of soybean increased with the application of nitrogen from 30–80 kg N ha\(^{-1}\). Nodule number and nodule dry weight increased with the application of 40 kg N ha\(^{-1}\) and decreased afterward whereas, yield and yield attributes of soybean increased with the application of nitrogen up to 100 kg ha\(^{-1}\). Application of nitrogen from 40–80 kg N ha\(^{-1}\) as basal dose resulted in an increase in protein content. The split application of nitrogen as basal and at reproductive stages also resulted in an increase in protein content. However, oil content decreased with increasing level of nitrogen. The oil content increased with the application of nitrogen up to 40 kg N ha\(^{-1}\). Application of nitrogen also improved soil properties like organic carbon, available NPK, and saturated hydraulic conductivity.

Keywords: Growth, Nitrogen, Productivity, Soybean.

Agricultural Reviews (2019)

INTRODUCTION

Soybean [Glycine max (L.) Merril] is an important legume crop grown which is grown worldwide for its high protein and oil content and accounts for 60% of the world’s supply of vegetable protein. In India, soybean is grown extensively in Maharashtra, Madhya Pradesh, Rajasthan and in some parts of Karnataka and Tamil Nadu as a sole or intercrop. In India, soybean was grown on an area of 11.6 million hectares, with a production of 8.5 million tonnes and productivity of 738 kg ha\(^{-1}\) during 2015–16 (INDIA STAT 2018). India ranks fifth in the soybean production in the world after USA, Brazil, Argentina, and China. The production of the USA, Brazil, and Argentina together contributes about 80% of the total soybean production of the world, whereas the USA alone contributes about 40% to the production pool. Presently, India exports 55% of its soya meal.

The cultivation of soybean is spreading fast in India; however, the productivity of the crop is very low (738 kg ha\(^{-1}\)). The main constraint for the low productivity of soybean in India is the nutritional imbalance. Hence, proper nutrient management is one of the ways to enhance soybean productivity. Nutrient management practices, available nutrient sources, production practices, and other management practices influence nutrient availability and crop productivity. Among the fertilizers, nitrogen is a major essential plant nutrient. It has been observed that fertilizer application is very important for high yield in all the crops. For higher yields in legume crops, relatively high amount of nitrogen is required due to their high protein content (Sinclair and De Wit, 1976; Giller and Cadisch, 1995). Soybean utilizes nitrogen either through direct root uptake of NO\(_3^-\) or NH\(_4^+\) from the soil or the N\(_2\) fixed by the Rhizobium in the root nodules. Biological nitrogen fixations (BNF), uptake of residual N from soil and fertilizer nitrogen are the main sources for meeting the nitrogen demands of the crop.

Effect of Nitrogen on Growth Parameters

Nitrogen (N) is an important nutrient essential for plant growth and development. The application of nitrogen to the crop helps in enhancing above-ground vegetative growth. The parameters like plant height, dry matter production, and crop yield are enhanced with the application of nitrogen. Saxena and Chandal, 1992 studied the effect of nitrogen on crop yield and recorded the maximum plant height with the application of 40 kg N ha\(^{-1}\) in soybean. Whereas in a field study conducted by Praharaj, (1994), it was reported that with additional application of 30 kg N ha\(^{-1}\) at flowering and pod filling stages, there was a significant increase in plant height, leaf area index (LAI) and dry matter accumulation of soybean. An increase in plant height was observed when nitrogen levels were increased from 0 to 80 kg ha\(^{-1}\) (Pradhan et al. 1995). Dhurandher et al. (1995) reported that dry matter yield of soybean increased with the application of 20 kg N ha\(^{-1}\).
as basal and 20 kg N ha\(^{-1}\) at pod initiation. In an experiment conducted by Naik and Rao (2004), it was reported that plant height and dry matter accumulation increased significantly with the application of 40 kg N ha\(^{-1}\) during the reproductive stage. Werner and Newton (2005), reported that nitrogen application resulted in increased LAI, interception of solar radiations, chlorophyll pigments, photosynthesis and accumulation of dry matter. Caliskan et al. (2008) recorded higher LAI, dry matter, and leaf photosynthesis when nitrogen was applied as 80 kg N ha\(^{-1}\) (40 kg ha\(^{-1}\) before sowing + 40 kg N ha\(^{-1}\) at the full blooming stage). Mehmert, 2008 reported that maximum plant height was recorded with the application of nitrogen @ 90 kg ha\(^{-1}\).

In an experiment conducted by Mrkovacki et al. (2008), it was reported that the highest plant height and above ground dry matter were recorded at a flowering stage when 60 kg N ha\(^{-1}\) was applied. Similarly, Jahangir et al. (2009) conducted an experiment to study the effect of different levels of nitrogen and observed that plant height increased by 17.6 % with the application of 40 kg N ha\(^{-1}\) in soybean.

The maximum plant height and number of trifoliate leaves at 30, 60 and 90 days after sowing (DAS) with the application of 50% recommended nitrogen through urea + 50 % N applied through FYM + PSB was recorded by Koushal and Singh, (2011). Begum et al. (2015), reported that the maximum plant height was obtained with the application of 40 kg N ha\(^{-1}\). Whereas, the number of branches plant\(^{-1}\), number of nodes plant\(^{-1}\) were recorded maximum with the application of 25 kg N ha\(^{-1}\). Similar results were reported by Niranjan et al. (2015). The maximum plant height, number of branches plant\(^{-1}\) and root length were recorded with the application of 40 kg N ha\(^{-1}\) as basal. In an experiment conducted with three nitrogen levels (0, 30 and 60 kg N ha\(^{-1}\)) in soybean, Shafi et al. (2011) reported that application of 60 kg N ha\(^{-1}\) recorded the maximum dry matter and the plant height was non-significantly affected by varying levels of nitrogen. Application of 45 kg N and 80 kg P\(_2\)O\(_5\) ha\(^{-1}\) recorded higher leaf area index as compared to 15 kg N and 40 kg P\(_2\)O\(_5\) ha\(^{-1}\) at 50 DAS (Singh et al. 2012).

Yadravi and Angadi, (2016) conducted an experiment in Dharwad to investigate the response of soybean to time and method of nitrogen application. In the experiment three levels of nitrogen (20, 40 and 60 kg ha\(^{-1}\)) were applied three times as basal, 40 and 60 DAS as both soil and foliar spray. The results revealed that the maximum plant height (50.6 cm), total dry matter (34.4 g plant\(^{-1}\)) at harvest and LAI (3.6) at 60 DAS was obtained when nitrogen was applied as 30 kg ha\(^{-1}\) (basal) + 30 kg ha\(^{-1}\) (40 DAS).

A field experiment was conducted by Anil et al. (2017) to know the effect of nitrogen on growth of soybean and reported that the application of 75% recommended dose of nitrogen (RDN) through urea, 25% nitrogen through FYM and sulfur @ 40 kg ha\(^{-1}\) recorded the highest plant height, dry matter accumulation, and leaf area. Raghuveer and Hosmath, (2017) reported that plant height, total dry matter accumulation, the number of branches plant\(^{-1}\), leaf area and leaf area index were increased significantly with the application of 60 kg N ha\(^{-1}\) as compared to 20 and 40 kg N ha\(^{-1}\). Aboutalebian and Malmir (2017) recorded the maximum plant height with the application of Bradyrhizobium + 60 kg N ha\(^{-1}\).

In an experiment conducted by Virk et al. (2018), it was reported that there was no significant effect of the application of different N levels on plant height of soybean. However, the increase in LAI of soybean was reported with the application of nitrogen level from 0 to 100% recommended N level (39 kg ha\(^{-1}\)).

Effect of Nitrogen on Symbiotic Parameters

Generally, application of nitrogen is not recommended in legumes under favorable conditions as they can grow well on soil nitrogen, symbiotic nitrogen, and nitrogen stored within the cotyledons. However, in the case of soybean, nitrogen application is recommended to ensure maximum seed yield. Application of nitrogen in soybean helps in the formation of nodules and thus, helps in increasing the symbiotic nitrogen fixation rate.

The increase in number and dry weight of nodules and nodule N % with application of 40 kg N ha\(^{-1}\) was reported by Pandey et al. (1995). In another experiment conducted by Prarajag and Dhingra (2001), it was concluded that nodulation and nitrogenase activity in the nodules were reduced significantly with the application of 90 kg N ha\(^{-1}\) over 0, 30 and 60 kg N ha\(^{-1}\). However, the decrease in the number of nodules plant\(^{-1}\) with an increase in nitrogen level up to 90 kg ha\(^{-1}\) (Singh and Bansal, 2000).

Gan et al. (2003) reported that the application of 25 kg N ha\(^{-1}\) as starter dose and 50 kg N ha\(^{-1}\) at top dressing significantly increased the total N fixed over without N application as a top dressing. However, higher dry weight of nodules plant\(^{-1}\) was reported by Kaul and Vyas, (2004) with the application of 40 kg N ha\(^{-1}\). Similarly, Niranjan et al. (2015) reported that a number of nodules plant\(^{-1}\) and nodule dry weight was the maximum with the application of 40 kg N ha\(^{-1}\) at sowing. Yoseph and Worku (2014) recorded the maximum number of nodules plant\(^{-1}\) and nodule dry weight with the application of 46 kg N ha\(^{-1}\).

Kaschuk et al. (2016) conducted an experiment with four treatments of nitrogen viz. control, application of 30 kg N ha\(^{-1}\) at sowing, 50 kg N ha\(^{-1}\) at full flowering and 30 kg N ha\(^{-1}\) as basal and 50 kg N ha\(^{-1}\) as basal and top dressing in soybean and found that basal and top dressing treatments of nitrogen had a negative effect on the nodule number, and dry weight with no improvement in the crop yield. In an experiment conducted by Ntambo et al. (2017), it was observed that increasing level of nitrogen decreased nodule number and nodule dry weight plant\(^{-1}\) and these were significantly higher under inoculation + 50 kg N ha\(^{-1}\) as compared to 100 kg N ha\(^{-1}\) and 200 kg N ha\(^{-1}\).

Effect on Yield Attributes and Yield

Various researchers have reported that supplementing soybean with nitrogenous fertilizer helps in increasing the seed yield of the crop. Nitrogen along with symbiotic
nitrogen fixation helps in bridging the gap of nitrogen availability and uptake of the crop.

Kang et al. (1985) reported that seed yield of soybean increased by 27% when 40 kg N ha\(^{-1}\) and 10-20 kg N ha\(^{-1}\) was applied as basal and as a top dressing, respectively over control. Similarly, Afa et al. (1987) found that total dry matter production and seed yield increased by 11–23% and 37–40%, respectively by application of 20 kg N ha\(^{-1}\) as a starter followed by additional application of 40 kg N ha\(^{-1}\) during pod filling stage in soybean over control.

In a field experiment conducted by Jayapaul and Ganesraja (1990), it was concluded that the seed yield of soybean was significantly higher with the application of 40 kg N ha\(^{-1}\). Reddy et al. (1990) recorded the highest seed yield in soybean with the application of 60 kg N ha\(^{-1}\). Similar results were given by Misra et al. (1990) that a significant increase in seed yield was recorded with the application of 60 kg N ha\(^{-1}\). Other researchers revealed that pods plant\(^{-1}\), seeds pod\(^{-1}\), and 100-seed weight and seed yield were maximum with the application of 40 kg N ha\(^{-1}\) (Singh and Gopalswamy, 1991; Krishnamohan and Rao, 1998).

Rani (1999) reported that seed yield of soybean increased by 26.6% and 43.1% with application of 20 and 40 kg N ha\(^{-1}\), respectively over control. Singh et al. (2001a) observed that a split application of nitrogen as a ½ basal and ½ top dressing in soybean resulted in higher seed yield. A similar trend was shown in stover and biological yield. Gan et al. (2002) conducted a field experiment on soybean and concluded that maximum biomass and pod yield was obtained when 50 kg N ha\(^{-1}\) was applied as a top dressing at the flowering stage.

Maximum pod yield was obtained with the application of 50 kg N ha\(^{-1}\) as a top dressing at the flowering stage (Yinbo et al. 2002). Similarly, higher productivity of soybean was reported with the application of 40 kg N ha\(^{-1}\) (Padmavathi et al. 2003). Ravankar et al. (2003) reported that with the application of 15, 30, and 45 kg N ha\(^{-1}\), there was an increase in seed yield of 6.5, 18.4 and 29.9%, respectively over control.

Ralli and Dihingra (2003) recorded higher seed yield (10.7%) over control with application of 30 kg N ha\(^{-1}\) as top dressing during pod formation stage in soybean and there was a significant increase in straw yield when N was applied in split doses at reproductive stages, whereas, when nitrogen was applied at later growth stages, harvest index was decreased. Significant increase in the yield attributes and harvest index (HI) was reported when 10 kg N ha\(^{-1}\) was applied at 50% flowering stage in green gram (Anbumani et al. 2003).

Increase in seed size by 3.6% was reported with the application of 100 kg N ha\(^{-1}\) at the R3 growth stage (Gutierrez-Boem et al. 2004). Laharia et al. (2004) observed that when nitrogen was applied at different growth stages with various application rates (0, 15, 30, 45, 60, 75 kg N ha\(^{-1}\)) in soybean, dry matter accumulation, yield and yield components of soybean increased with 75 kg N ha\(^{-1}\). In a study conducted by Nandurkar et al. (2000) it was reported that with the application of 45 kg N ha\(^{-1}\), maximum seed yield was obtained, followed by 30 kg N ha\(^{-1}\) and 15 kg N ha\(^{-1}\). Gan et al. (2003) observed that application of nitrogen @ 50 kg N ha\(^{-1}\) at V2 or R1 stages of soybean significantly increased the nitrogen fixation and seed yield.

Barker and Sawyer (2005) reported that when nitrogen was applied at the R6 growth stage of soybean there was an increase in nitrogen concentration in aboveground plant dry matter whereas there was a negative effect on seed yield and seed quality components.

Sabale (2005) recorded higher seed yield (32.87 q ha\(^{-1}\)) with the application of nitrogen at 50 kg ha\(^{-1}\) half through urea and half through FYM. In another study conducted by Shinde et al. (2007), it was reported that there was a significant increase in seed yield, 100-seed weight and number of pods plant\(^{-1}\) over control with the application of 45 kg N ha\(^{-1}\) (the basal dose). Increase in number and weight of pods, a number of seeds and 1000-seed weight of soybean with the application of increased level of fertilizer from 25–75 kg ha\(^{-1}\) was reported by Jadhav et al. (2009).

Yadav and Chandel (2010) reported that with the application of 40 kg N ha\(^{-1}\) basal + 40 kg N ha\(^{-1}\) at 60 DAS + 20 kg N ha\(^{-1}\) at 75 DAS along with 34.96 kg P ha\(^{-1}\), provided the highest seed yield of soybean. The seed and straw yield of soybean increased with the application of N up to 75 kg ha\(^{-1}\) and decreased with further increase in nitrogen levels as reported by Malhi et al. (2011) in a study conducted in Canada. Vaiyapuri et al. (2012) reported better growth, yield parameters, and seed yield of soybean with the application of 20 kg N ha\(^{-1}\) as basal + 100 ppm foliar spray of salicylic acid. In an experiment conducted by Jyothi et al. (2013) to study the effect of foliar application on nitrogen at different growth stages of soybean. It was observed that there was an increment of about 56.9% in seed yield and of about 50% and 27.2% in 100-seed weight and number of pods plant\(^{-1}\), respectively with foliar application of 2% urea at flowering and at early pod development stage over control.

Rathod et al. (2012) observed that the maximum seed yield (1968 kg ha\(^{-1}\)) was obtained when 60 kg N ha\(^{-1}\) as basal + Rhizobium was applied. The seed yield was statistically at par with the treatments when nitrogen was applied @ 80 kg ha\(^{-1}\) as basal or in two splits as basal and at 50 or 80 DAS. Singh and Singh (2013) observed that there was significant increase in the yield of soybean if nitrogen was applied in two splits i.e. at pre-flowering and pod filling stages as compared to application of single dose of nitrogen at either of these stages and the maximum number of pods plant\(^{-1}\), seeds pod\(^{-1}\), seed, and straw yield were obtained with application of 20 kg N ha\(^{-1}\) at sowing + 10 kg N ha\(^{-1}\) at pod filling + 30 kg K\(_2\)O ha\(^{-1}\) at sowing.

Sohrabi et al. (2012) conducted an experiment to know the effect of nitrogen application during reproductive stages in soybean and reported that 100 kg N ha\(^{-1}\) as starter dose gave the maximum number of seeds pod\(^{-1}\) and seed yield. Valinejad et al. (2013) stated that the application of starter nitrogen @ 32 kg ha\(^{-1}\) resulted in higher yield as compared to the control. Begum et al. (2015) reported that yield attributes
and seed yield was maximum with the application of 25 kg N ha\(^{-1}\) followed by 40 kg N ha\(^{-1}\). The increase in yield attributes and yield was reported by Niranjan et al. (2015) with a split application of nitrogen at reproductive stages. The application of 20 kg N ha\(^{-1}\) (basal) + 20 kg N ha\(^{-1}\) as a top dressing at pod filling stage gave higher yield attributes and seed yield. Similary, Yadav and Angadi (2016) observed that the maximum number of pods plant\(^{-1}\) (62.2), number of seeds pod\(^{-1}\) (3.0) and 100-seed weight (13.18 g), seed yield (3287 kg ha\(^{-1}\)) and haulm yield (3748 kg ha\(^{-1}\)) were obtained when nitrogen was applied as 30 kg ha\(^{-1}\) (basal) + 30 kg ha\(^{-1}\) (40 DAS).

Gai et al. (2017) reported that the highest seed yield was recorded at 50 kg N ha\(^{-1}\). However, Anil et al. (2017) recorded the highest seed yield (2290 kg ha\(^{-1}\) and stover yield (3270 kg ha\(^{-1}\)) with the application of 75% RDN through urea, 25% nitrogen through FYM and 40 kg S ha\(^{-1}\). Raghuvir and Hosmath (2017) recorded significantly higher seed (2444 kg ha\(^{-1}\)) and haulm yield (2975 kg ha\(^{-1}\)) with application of 60 kg N ha\(^{-1}\) as compared to 40 kg N ha\(^{-1}\) (2242 and 2735 kg ha\(^{-1}\), respectively) and 20 kg N ha\(^{-1}\) (1745 and 2140 kg ha\(^{-1}\), respectively). Increase in yield attributes and yield of soybean by increasing nitrogen level from 0 to 100% recommended N (39 kg N ha\(^{-1}\)) was reported by Virk et al. (2018).

Effect on Nutrient Uptake

Morshed et al. (2008) reported the highest N uptake (490.78 mg plant\(^{-1}\)) over control with the application of 26.45 kg N ha\(^{-1}\), whereas, P and K uptake in seed was maximum with the application of 10.58 kg N ha\(^{-1}\). Singh et al. (2010) reported that application of 20 kg N ha\(^{-1}\) at sowing + 10 kg N ha\(^{-1}\) at pod filling recorded the highest total uptake of N in straw and seeds of the soybean. In an experiment conducted by Malhi et al. (2011), it was reported that with the application of 75 kg N ha\(^{-1}\) uptake of N was increased in both seed and straw. Whereas, Rathod et al. (2012) reported that NPK uptake increased with the application of 80 kg N ha\(^{-1}\). Maximum nitrogen uptake in seed and straw was recorded with the application of 46 kg N ha\(^{-1}\) (Yoseph and Worku, 2014).

The maximum nitrogen uptake in seed and straw was recorded with the application of 20 kg N ha\(^{-1}\) (basal) + 20 kg N ha\(^{-1}\) (75 DAS) was reported by Niranjan et al. (2015). In another study conducted by Yadav and Angadi (2016), it was reported that uptake of nitrogen (251 kg ha\(^{-1}\)), phosphorus (28 kg ha\(^{-1}\)) and potassium (169 kg ha\(^{-1}\)) increased with the application of 30 kg N ha\(^{-1}\) at basal +30 kg N ha\(^{-1}\) at 40 DAS.

Effect on Quality Parameters

Pareek and Shahtawat (1998) reported that there was a significant increase in protein content with the application of 60 kg N ha\(^{-1}\). Jayapaul and Ganesaraja (1990) observed that there was a significant increase in oil and protein content with the application of 40 kg N ha\(^{-1}\). Similar results were given by Vara et al. (1994).

Kumawat et al. (2000) stated that protein content increased with increase in nitrogen levels from 20-80 kg ha\(^{-1}\), whereas, oil content decreased with increasing level of nitrogen. Singh et al. (2001) conducted a field experiment in Ludhiana and reported that oil and protein yield increased with the application of 60 kg N ha\(^{-1}\).

Singh et al. (2001a) revealed that application of nitrogen as ½ basal+ ½ top dressing and ½ basal + 1/4 foliar spray resulted in an increase of 11.1% and 13.2% in oil and protein content, respectively as compared to the basal application of nitrogen. Rathod et al. (2006) provided the maximum seed protein content (42.9%) by application of 45 kg N ha\(^{-1}\) (basal) + 30 kg N ha\(^{-1}\) as top dressing at 40 DAS. In another study conducted by Morshed (2008) it was observed that maximum protein content (44.75 %) was obtained with the application of 26.45 kg N ha\(^{-1}\) to soybean. In an experiment conducted by Yadav and Chandel (2010) to study the effect of nitrogen at different growth stages of soybean and reported that when nitrogen was applied at the rate of 40 kg ha\(^{-1}\) as basal and 40 kg ha\(^{-1}\) at 60 DAS, the oil content increased significantly, whereas when additional 20 kg ha\(^{-1}\) was applied at 75 DAS then 24.4% protein content of seeds was increased over control.

Jyothi et al. (2013) reported that protein and oil content was higher as compared to the control when nitrogen was applied as 2% urea sp.ray during flowering and early pod development stage along with 30 kg N, 60 kg P\(_2\)O\(_5\), and 40 kg K\(_2\)O ha\(^{-1}\) as a basal dose. Maryam et al. (2013) also reported that soybean protein content increased over control and 16 kg N ha\(^{-1}\) with the application of 32 kg N ha\(^{-1}\). Yoseph and Worku (2014) also reported an increase of about 29.8 % and 11.1% in oil and protein content, respectively with the application of 46 kg N ha\(^{-1}\). Niranjan et al. (2015) observed that with the application of 20 kg N ha\(^{-1}\) as basal dose + 20 kg N ha\(^{-1}\) as a top dressing at pod filling stage gave maximum seed protein content of 38 %.

Effect of Nitrogen on Soil Properties

Liebig et al. (2002) reported that increased nitrogen rate up to 68 kg ha\(^{-1}\) recorded higher organic carbon and total N. However, it lowered soil pH and also reduced microbial biomass by 20%. Kaul and Vyas (2004) reported that application of a higher dose of nitrogen (40 kg N ha\(^{-1}\)), recorded the highest gain of available N (170.1 kg ha\(^{-1}\)). Similarly, Rathod et al. (2012) also reported that available N status of soil increased with increasing level of nitrogen up to 80 kg N ha\(^{-1}\). However, available P and K status of soil decreased with increasing level of nitrogen.

Mere et al. (2013) also reported that available NPK in the soil at harvest was highest with the application of 125% RDF (20:80:40 + FYM 5 t ha\(^{-1}\)). Sikk et al. (2013) reported that organic carbon, available N, P, and K was maximum with the application of 30 kg N, 60 kg P\(_2\)O\(_5\), 30 kg K\(_2\)O and 10 tonnes FYM ha\(^{-1}\). However, the soil organic carbon, aggregate stability, and saturated hydraulic conductivity were significantly higher with the application of 150% N as
Nitrogen Management in Soybean: A Review

compared to 50% N (Hati et al. 2015). A positive increase in N status in soil with the application of nitrogen as 20 kg N ha⁻¹ as basal + 10 kg N ha⁻¹ as a top dressing at seed initiation stage was reported by Niranjan et al. (2015).

REFERENCES

Aboutalebian M. A. and Malmir M. (2017) Soybean yield and yield components affected by mycorrhiza and Bradyrhizobium at different rates of starter nitrogen fertilizer. Semina: Ciências Agrárias, Londrina, 38:2409-2418.

Afja R., Hardarson G., Zapota F. and Danso S. K. A. (1987) Effect of delayed soil and foliar nitrogen fertilization on yield and N-fixation of soybean. Plant Soil, 97:361-368.

Anbumani S., Chandrasekharan B., Rajendran P. and Velayudham K. (2003) Studies on nitrogen management in green gram. Legume Res, 26:51-53.

Anil D., Sagar V., Sreenivas G. and Sharma S. H. K. (2017) Effect of sulphur and nitrogen application on growth characteristics and yield of soybean [Glycine max (L.) Merrill], Int J Pure App Biosci, 51:1548-1554.

Barker D. W. and Sawyer J. E. (2005) Nitrogen application to soybean at early reproductive development. Agron J, 97:615-19.

Begum M. A., Islam M. A., Ahmed Q. M., Islam M. A., Rahman M. M. (2015) Effect of nitrogen and phosphorus on the growth and yield performance of soybean. Res Agric Livest Fish, 2:35-42.

Caliskan S., Ozkaya I., Caliskan M. E. and Arslan M. (2008) The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Res, 108:126-132.

Dhurandher R., Pandey N. and Tripathi R. S. (1995) Effect of irrigation and nitrogen on dry matter, yield and water requirement of summer soybean (Glycine max). J Oil Seeds Res, 12:304-306.

Gai Z., Zhang J. and Li C. (2017) Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield. Plos One, 12:1-15.

Gan Y., Stulen I., Keulen H., Van H. and Kuiper P. J. C. (2003) Effect of N fertilizer top-dressing at various reproductive stages on growth, N₂ fixation and yield of three soybean [Glycine max (L.) Merr.] genotypes. Field Crops Res, 80:142-155.

Gan Y., Stulen I., Posthumus F., Keulen H. V. and Pieter J. C. (2002) Effects of N management on growth, N₂ fixation and yield of soybean. Nutr Cycl in Agroecosys, 62:163-174.

Giller K. E. and Cadisch G. (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. In: Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems. Springer, Netherlands, pp. 255-277.

Gutierrez-Boem F. H., Schiener J. D., Korsakov H. R. and Lavado R. S. (2004) Late season nitrogen fertilization of soybeans: effects on leaf senescence, yield and environment. Nutr Cycl Agroecosys, 68:109-115.

Hati K. M., Chaudhary R. S., Mandal K. G., Bandyopadhyay K. K., Singh R. K., Sinha N. K., Mohanty M., Somasundaram J. and Saha R. (2015) Effects of tillage, residue and fertilizer nitrogen on crop yields, and soil physical properties under soybean–wheat rotation in vertisols of Central India. Agric Res 4:48-56.

INDIASTAT (2018) http://www.indiastat.com

Jadhav A. S., Andhale R. P. and Patil P. A. (2009) Effect of integrated nutrient management on yield attributes and yield of soybean. J Maharashtr Agric Univ, 34:86-88.

Jahangir A. A., Mondal R. K., Nada K., Sarker M. A. M., Moniruzzaman M and Hossain M K (2009) Response of different level of nitrogen and phosphorus on seed yield, oil quality and nutrient uptake of soybean. Bangladesh J Sci Ind Res, 44:187-192.

Jayapaul P. and Ganesaraja V. (1990) Studies on response of soybean varieties to nitrogen and phosphorus. Indian J Agron, 35:329-330.

Jyothi C. N., Ravichandra K. and Sudhakara Babu K. (2013) Effect of foliar supplementation of nitrogen and zinc on soybean [Glycine max (L.)] yield, quality and nutrient uptake. Indian J Dryland Agric Res and Dev, 28:46-48.

Kang A. S., Lee H. J. and Hur I. B. (1985) Effect of basal and top dressing nitrogen on nodule formation plant growth and seed yield in soybean. Field Crop Abstr, 39:5921.

Kaschuk G., Nogueira M. A., Luca M. J. and Hungria M. (2016) Response of determinate and indeterminate soybean cultivars to basal and top dressing N fertilization as compared to sole inoculation with Bradyrhizobium. Field Crops Res, 195:21-27.

Kaul D. and Vyas M. D. (2004) Effect of different levels of nitrogen, phosphorus and potassium on growth, yield and quality of soybean. Thesis submitted to Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur.

Koushal S. and Singh P. (2011) Effect of integrated use of fertilizer, FYM and biofertilizer on growth and yield performance on soybean (Glycine max (L.) Merrill). Res J Agric Sci, 43:193-197.

Krishnamohan K. and Rao L. M. (1998) Effect of Bradyrhizobium sp. strains and N on growth N₂ fixation and yield of soybean genotypes during monsoon seasons. J Res Acharya N G Ranga Agricultural University, 26:28-32.

Kumawat S. M., Dhakar L. L. and Maliwal P. L. (2000) Effect of irrigation regimes and nitrogen on yield, oil content and nutrient uptake of soybean (Glycine max (L.) Merrill). Indian J Agron, 45:361-366.

Laharia G. S., Rane P. V., Sanjay B. and Hiwarale J. S. (2004) Effects of different levels of N on soybean grown on Typic Haplustert. Ann Plant Physiol, 18:31-36.

Liebig M.A., Varvel G.E., Doran J.W. and Weinhold B.J. (2002) Crop sequence and nitrogen fertilization effects on soil properties in the western corn belt. Soil Sci Soc Am J, 66:596-601.

Malhi S.S., Nyborg M., Solberg E.D., Dyck M.F. and Purveen D. (2011) Improving crop yield and N uptake with long-term straw retention in two contrasting soil types. Field Crops Res, 124:378-391.

Maryam V., Sekineh V. and Mehran A. (2013) Starter nitrogen fertilizer impact on soybean yield and quality. J Eng Adv Tech, 3:333-337.

Mehmet O. Z. (2008) Nitrogen rate and plant population effects on soybean yield and yield components affected by mycorrhiza and Bradyrhizobium at different rates of starter nitrogen fertilizer. Semina: Ciências Agrárias, Londrina, 38:2409-2418.

Mehr M. H. and Khorramdel S. (2008) Effect of integrated nitrogen and phosphorus on yield and quality of soybean. African J Biotechnol, 7:4464-4470.

Mere V., Singh A.K., Singh M., Jamir Z. and Gupta R.C. (2013) Effect of tillage, residue and fertilizer nitrogen on crop yields, and soil physical properties under soybean–wheat rotation in vertisols of Central India. Agric Res 4:48-56.

INDIASTAT (2018) http://www.indiastat.com

Jadhav A.S., Andhale R. P. and Patil P. A. (2009) Effect of integrated nutrient management on yield attributes and yield of soybean. J Maharashtr Agric Univ, 34:86-88.

Jahangir A. A., Mondal R. K., Nada K., Sarker M. A. M., Moniruzzaman M and Hossain M K (2009) Response of different level of nitrogen and phosphorus on seed yield, oil quality and nutrient uptake of soybean. Bangladesh J Sci Ind Res, 44:187-192.

Jayapaul P. and Ganesaraja V. (1990) Studies on response of soybean varieties to nitrogen and phosphorus. Indian J Agron, 35:329-330.

Jyothi C. N., Ravichandra K. and Sudhakara Babu K. (2013) Effect of foliar supplementation of nitrogen and zinc on soybean [Glycine max (L.)] yield, quality and nutrient uptake. Indian J Dryland Agric Res and Dev, 28:46-48.

Kang A. S., Lee H. J. and Hur I. B. (1985) Effect of basal and top dressing nitrogen on nodule formation plant growth and seed yield in soybean. Field Crop Abstr, 39:5921.

Koushal S. and Singh P. (2011) Effect of integrated use of fertilizer, FYM and biofertilizer on growth and yield performance on soybean (Glycine max (L.) Merrill). Res J Agric Sci, 43:193-197.

Krishnamohan K. and Rao L. M. (1998) Effect of Bradyrhizobium sp. strains and N on growth N₂ fixation and yield of soybean genotypes during monsoon seasons. J Res Acharya N G Ranga Agricultural University, 26:28-32.
Nitrogen Management in Soybean: A Review

Misra R.C., Sahu P.K. and Uttaray S.K. (1990) Response of soybean to nitrogen and phosphorus application. J Oilseeds Res, 7:6-9.

Morshed R.M., Rahman M.M. and Rahman, M.A. (2008) Effect of nitrogen on seed yield, protein content and nutrient uptake of soybean (Glycine max L.). J Agric Rural Dev, 6:13-17.

Mrkovacki N., Marinkovic J. and Acimovic R. (2008) Effect of N fertilizer application on growth and yield of inoculated soybean. Not Bot Hort Agrobot Cluj, 36:48-51.

Naik K.R. and Rao S.K. (2004) Effect of nitrogen application at reproductive phase on seed production of soybean. Seed Res, 32:94-95.

Nandurkar G.P., Malvi G.C. and Nandurkar P.N. (2000) Effect of nitrogen levels on growth and yield of soybean. J Soils and Crops, 10:269-271.

Niranjan P., Vyas M.D. and Maravi P.S. (2015) Effect of methods of nitrogen application on growth and productivity of soybean (Glycine max (L.) Merril). Soybean Res, 13:91-99.

Ntambu M.S., Chilinda I.S., Taruvinga A., Hafeez S., Anwar T., Sharif R., Chambi C. and Kies L. (2017) The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield of soybeans (Glycine max L.). Int J Biosci, 10:163-172.

Padmavathi P., Wani S.P. and Virmani S.M. (2003) Seed yield of soybean and pigeonpea based intercropping system in vertisol with integrated nutrient management options. J Oilseeds Res, 20:239-243.

Pandey P., Dhurandher and Tripathi R.S. (1995) Effect of irrigation and nitrogen on nodulation, N accumulation and seed yield of soybean (Glycine max). Indian J Agron, 40:306-308.

Pareek and Shahtawat (1998) Soybean yield as affected by nitrogen levels, rhizobial inoculation and different tillage systems. Ann Agric Sci, 34:107-24.

Pradhan L., Rout D. and Mohapatra B.K. (1995) Response of soybean (Glycine max) to nitrogen and phosphorus. Indian J Agron, 40:305-306.

Prahara J. and Dhingra K.K. (2001) Growth, productivity and biological nitrogen fixation in soybean (Glycine max) under Bradyrhizobium inoculation, pendimethalin and nitrogen schedules, and their residual effect on succeeding wheat (Triticum aestivum) crop. Indian J Agron, 46:635-642.

Prahara J.S. (1994) Growth and productivity of soybean (Glycine max L. Merrill) as affected by interacting influence of Rhizobium, nitrogen and potassium and herbicide use; and their residual effect on wheat. Ph.D. Dissertation, Punjab Agricultural University, Ludhiana.

Raghveer and Hosmath J.A. (2017) Yield and economics of soybean as influenced by various levels of nitrogen and phosphorus. J Pharmacognosy Phytochem, 6:1485-1487.

Ralli S and Dhingra K.K (2003) Effect of nitrogen application at different growth stages of soybean. Ann Agric Biol Res, 8: 193-95.

Rani B.P. (1999) Response of soybean to nitrogen and phosphorus application in the black soils of Krishna Godawari zone of Andhra Pradesh. Ann Agric Res, 20:367-368.

Rathod K.S., Pannu R. K. and Dahiya S. S. (2012). Effect of nitrogen management on soil fertility and NPK uptake in soybean. J Food Legumes, 25:153-155.

Rathod T.H., Shinde, Sachin, Jadhav S.D. and Nagone A.H. (2006) Effect of nitrogen on growth, nodulation and seed protein content in soybean. Asian J Bio Sci, 1:92-94.

Ravankar H.N., Borale V.M., Hadole S.S., Raut P.D. and Nikersar R.J. (2003) Effect of nitrogen levels on dry matter, yield and protein content and nitrogen use efficiency of legumes. New Agriculturist, 14:65-69.

Reddy T.R., Rao M. and Rao K.R. (1990) Response of soybean [Glycine max (L)] to nitrogen and phosphorus. Indian J Agron, 35:308-310.

Sabale R.N. (2005) Effect of source of nitrogen on yield of soybean. J Maharashtra Agric Uni, 30:262-63.

Saxena S.C. and Chandal A.S. (1992). Effect of nitrogen fertilization on different varieties of soybean. Indian J Agric Sci, 62:695-697.

Shafigi F., Ali E., Sajed K. and Amir E. (2011) Soybean response to nitrogen fertilizer under water deficit conditions. African J Biotechnol, 10:3112-3120.

Shinde S.M., Rathod T.H., Thakur S.V. and Neelam D. (2007) Effect of nitrogen nutrition on yield and its attributes in soybean. Ann Plant Physiol, 21:38-41.

Sikka R., Singh D. and Deol J.S. (2013) Productivity and nutrient uptake by soybean as influenced by integrated nutrient and some other agronomic management practices. Legume Res 36: 545-551.

Sinclair T.R and De Wilt C.T (1976) Analysis of the carbon and nitrogen limitations to soybean yield. Agron J, 68:319-324.

Singh G., Singh H. and Kolar J.S. (2001) Response of soybean (Glycine max L. Merrill) to nitrogen, phosphorus and zinc fertilization. J Res Punjab Agri Univ, 38:14-16.

Singh H. and Singh G. (2013) Effect of potassium and split application of nitrogen on yield attributes and yield of soybean [Glycine max (L.) Merrill], Agric Sci Digest, 33:264-268.

Singh H., Singh G. and Deol J.S. (2010) Nodulation and uptake of nitrogen and potassium by seed and straw of soybean [Glycine max (L.) Merrill] as affected by potassium and split application of nitrogen. Legume Res, 33:249-255.

Singh R. D. and Gopalswamy N. (1991) Effect of plant geometry and levels of nitrogen and phosphorus on the growth and productivity of soybean (Glycine max L. Merrill). Indian J Agric Sci, 42:1028-1031.

Singh S.P. and Bansal K.N. (2000) Response of soybean (Glycine max (L.) Merrill) to nitrogen, its application time and sulphur. Indian J Agric Sci, 70:34-36.

Singh S.P., Bansal K.N. and Nepalia V. (2001a) Effect of nitrogen, its application time and sulphur on yield and quality of soybean (Glycine max). Indian J Agron, 46:141-144.

Singh S., Kang J.S. and Singh A. (2012) Influence of planting methods and nitrogen on yield and growth parameters of soybean. J Res Punjab Agric Univ, 49:227-230.

Sohrabi Y., Habibi A., Mohammadi K. and Sohrabi M. (2012) Effect of nitrogen (N) fertilizer and foliar-applied iron (Fe) fertilizer at various reproductive stages on yield, yield component and chemical composition of soybean (Glycine max L. Merr.) seed. African J Biotechnol, 11:9599-605.

Vaiyapuri, K., Ammanullah M. M. and Rajendran K. (2012) Growth and yield of soybean as influenced by nitrogen and growth regulators. Madras Agric J, 99:79-80.
Valinejad M., Vaseghi S. and Afzali M. (2013) Starter nitrogen fertilizer impact on soybean yield and quality. Int J Eng Advanced Tech, 3:333-337.

Vara J.A., Modhwadia M.M., Patel B.S., Patel J.C. and Khanpara V.D. (1994) Response of soybean to nitrogen, phosphorus and Rhizobium inoculation. Indian J Agron, 39:678-680.

Virk H., Singh G. and Manes G.S. (2018) Growth, symbiosis, productivity, and profitability of soybean at varying planting methods and nitrogen levels. J Plant Nutr, 41:1184-1196.

Werner D. and Newton W.E. (2005) Nitrogen fixation in agriculture, forestry, ecology and environment. Springer, Netherlands.

Yadav R. and Chandel A.S. (2010) Effect of nitrogen nutrition at different physiological stages and varying levels of phosphorus at sowing on soybean (Glycine max). Ind J Agric Sci, 73:615-617.

Yadravi M. and Angadi V.V. (2016) Effect of time and method of application of varied levels of nitrogen in soybean (Glycine max). J Farm Sci, 29:332-336.

Yinbo G., Stulen I., Posthumus F., Keulen H., Van and Kuiper P.J.C (2002) Effect of nitrogen application at different growth stages of soybean. Nutr Cycl Agroecosys, 62:163-174.

Yoseph T. and Worku W. (2014) Effect of NP fertilizer rate and Bradyrhizobium inoculation on nodulation, N-uptake and crude protein content of soybean [Glycine max (L.) Merrill] at Jinka, Southern Ethiopia. J Biol Agric Healthcare, 4:49-54.