Yu. N. Bratkov
The hyperbolic Monge–Ampere equation:
classical solutions on the whole plane

Abstract
The Cauchy problem for the hyperbolic Monge–Ampere equation
\[
\begin{align*}
 A + Bz_{xx} + Cz_{xy} + Dz_{yy} + \text{hess } z &= 0, \\
 z(0, y) &= z^0(y), \\
 z_x(0, y) &= p^0(y), \quad y \in \mathbb{R}
\end{align*}
\]
is considered. Here \(\text{hess } z = z_{xx}z_{yy} - z_{xy}^2 \), \(A, B, C, D \) depends on
\(x, y, z, z_x, z_y \). The equation is hyperbolic when \(C^2 - 4BD + 4A > 0 \).
Sufficient conditions on the existence of a (unique) \(C^3 \)-solution on
the whole plain are formulated.

Contents

1 Introduction 2

2 Systems in Riemann invariants 4
 2.1 One model equation 4
 2.2 Systems in Riemann invariants 6

3 Systems in Riemann invariants and hyperbolic Monge–
 Ampere equations 8
 3.1 The Cauchy problem for the Monge–Ampere equation 8
 3.2 The system in total differentials 9
 3.3 The system in Riemann invariants 10
 3.4 Reducing the Monge–Ampere equation to a system in Rie-
 mann invariants 13
 3.5 Final form of the system in Riemann invariants 17

4 Successful approximations 20
 4.1 Iterative loop 20
 4.2 Uniform boundedness 21
 4.3 Hyperbolicity in the restricted sence 23
 4.4 Solvability of the iterative system 24

5 Derivatives of successful approximations 25
1 Introduction

This well-known problem was posed to the author by E. V. Shikin. The first publication was made in [Br] (it was received by the journal in February 1998). The author is grateful to D. V. Tunitsky for finding some subtle (not essential) error. Here we publish the full text of the revised proof. Changing is getting another successive approximations. The result doesn’t depend on this changing. Certainly, this paper was a good reason for extending and improving the result.

The Monge–Ampere equation could be reduced to the system of five equations in Riemann invariants [Tun]. The theory of hyperbolic systems is a perfect one, when eigenvalues are separable (for example, are separated by constants). In our case eigenvalues are the solution of the system, i.e. unknown functions. It is required to find them.

The essence of the problem was formulated by J. Leray in his Princeton lectures on hyperbolic equations (1953): ”It turns out well to prove the local existence theorem only... It shows that for hyperbolic equations the existence of solutions on the whole depends on getting a priory estimations for their derivatives... Except of equations which are linear outside some small area, we don’t have examples of such known a priory estimations” [Ler], Chapter IX. Comments of N. H. Ibragimov (1984): ”Now we know some nonlinear equations for which the Cauchy problem is solvable on the whole. For example, for the Yang-Mills equations the theorem of the existence of the solution on the whole is proved by two different ways” ([Ler], Russian edition, p. 162).
Global classical solvability is a sophisticated kind of sport. B. Riemann proved the nonexistence of global classical solutions for some system of hyperbolic equations [Yan]. This system isn’t weakly nonlinear. Weakly nonlinear systems were introduced by N. N. Yanenko in 1955 [Yan]. The system of two equations in Riemann invariants

\[(\partial_x + \xi_1(u_1, u_2) \partial_y) u_1 = 0, \quad (\partial_x + \xi_2(u_1, u_2) \partial_y) u_2 = 0\]

was considered. Weak nonlinearity

\[\partial \xi_i / \partial u_i = 0, \quad i = 1, 2,\]

is required for global classical solvability.

The system

\[
(\partial_x + \xi_1(x, y, u_2) \partial_y) u_1 = f_1(x, y, u_1, u_2), \\
(\partial_x + \xi_2(x, y, u_1) \partial_y) u_2 = f_2(x, y, u_1, u_2)
\]

was considered by B. L. Rozhdestvensky and A. D. Sydorenko in 1967. This weakly nonlinear system has global classical solutions, when it is hyperbolic in the restricted sense. Restricted hyperbolicity means separability of eigenvalues of the system. Thus by the Rozhdestvensky—Sydorenko theorem ([RYa], Chapter 1, § 10, Subsection 3) the problem of a priori estimations for derivatives is reduced to the problem of separability of eigenvalues, or to the problem \(\xi_1 \neq \xi_2\).

Consider an example. Let the coefficients of the Monge–Ampere equation depend on \(x, y\) only. The equation could be reduced to the system

\[
(\partial_x + u_2 \partial_y) u_1 = (u_1 - u_2) a_1(x, y, u_1), \\
(\partial_x + u_1 \partial_y) u_2 = (u_1 - u_2) a_2(x, y, u_2)
\]

From this system, subtracting and integrating, we have

\[
(u_1 - u_2)(x, y) = (u_1^0 - u_2^0) \exp \left\{ \int_0^x (a_1 - a_2 - u_2 y) \, d\tau \right\}.
\]

If \(u_1^0(y) \neq u_2^0(y) \forall y \in \mathbb{R}\), and \(u_1, u_2, u_2 y \neq \infty\) in any finite point, then \(u_1 - u_2 \neq 0\) in any finite point. A priori estimations for derivatives in this case are equivalent to a priori estimations for \(u_1, u_2, u_1 - u_2\).
Author’s approach is the next. We don’t prove the existence of a priory estimations, and we don’t search a priory estimations. We set a priory estimations for $u_1, u_2, u_1 - u_2$. Thinking in this direction was blockaded.

Finally, refer to papers of Jia-Xing Hong [Hong-93], [Hong-95]. The author found out on the existence of these papers in Beijing in 2002. The paper [Hong-95] on global classical solutions of the equation

$$\text{hess } z = -k^2(x, y)$$

is unclear to the author, and the author couldn’t find the paper [Hong-93]. The paper [Hong-93] could be considered, in particular, as solving the equation

$$\text{hess } z = -k^2(x, y)(1 + z_x^2 + z_y^2)^2.$$

2 Systems in Riemann invariants

2.1 One model equation

Consider the plane $\mathbb{R}^2 = (x, y)$. Let $u(x, y)$ be an unknown function. Let the equation

$$(\partial_x + \xi(x, y)\partial_y) u(x, y) = f(x, y)$$

be an example for studying the main concepts, such as a characteristic and integration along a characteristic ([RYa], Chapter 1). Suppose $\xi, f \in C^1(\mathbb{R}^2)$.

Definition. Consider the plane $\mathbb{R}^2 = (x, y)$. The curve

$$x = \tau, \quad y = g(\tau, x, y)$$

is a characteristic of the equation (2.1). Here the function $g(\tau, x, y)$ is a solution of the Cauchy problem

$$\begin{cases}
\partial_\tau g = \xi(\tau, g(\tau, x, y)), \\
g(x, x, y) = y.
\end{cases}$$

Lemma 2.1.

$$(\partial_x + \xi \partial_y) g = 0.$$ (2.3)

Proof. Suppose the existence of functions g_x, g_y. Following [Poz], we’ll find these functions.
Differentiating (2.2) with respect to \(x \), we obtain an ordinary differential equation with respect to \(\partial_x g \):

\[
\partial_\tau \partial_x g = \frac{\partial \xi}{\partial g}(\tau, g) \partial_x g. \tag{2.4}
\]

Differentiating the initial condition in (2.2) with respect to \(x \), we obtain

\[
\partial_x g(x, x, y) = 0,
\]

or

\[
\partial_\tau g(\tau, x, y)|_{\tau=x} + \partial_x g(\tau, x, y)|_{\tau=x} = 0,
\]

therefore, taking into account (2.2), we have

\[
\partial_x g(\tau, x, y)|_{\tau=x} = -\xi(x, y). \tag{2.4^0}
\]

Solving the Cauchy problem (2.4), (2.4^0), we have

\[
\partial_x g(\tau, x, y) = -\xi(x, y) \exp \left\{ \int_x^\tau \frac{\partial \xi}{\partial g}(t, g(t, x, y)) \, dt \right\}. \tag{2.5}
\]

Analogously, solving the Cauchy problem with respect to the function \(\partial_y g \)

\[
\left\{ \begin{array}{l}
\partial_\tau \partial_y g = \frac{\partial \xi}{\partial g}(\tau, g) \partial_y g, \\
\partial_y g(\tau, x, y)|_{\tau=x} = 1,
\end{array} \right.
\]

we have

\[
\partial_y g(\tau, x, y) = \exp \left\{ \int_x^\tau \frac{\partial \xi}{\partial g}(t, g(t, x, y)) \, dt \right\}. \tag{2.6}
\]

From (2.5), (2.6) we have (2.3). \(\Box \)

Consider the Cauchy problem for the equation (2.1). Let an initial condition be

\[
u(0, y) = u^0(y). \tag{2.1^0}\]

Here \(u^0 \in C^1(\mathbb{R}_1) \).

The problem (2.1), (2.1^0) is well-defined [RYa]. We'll solve it in the half-plane \(x \geq 0 \). Solving in the half-plane \(x \leq 0 \) is analogous.

Lemma 2.2. The solution of the problem (2.1), (2.1^0) is

\[
u(x, y) = u^0(g(0, x, y)) + \int_0^x f(\tau, g(\tau, x, y)) d\tau. \tag{2.7}
\]
Proof. The condition (2.10) is true, because
\[u(0, y) = u^0(g(0, 0, y)) = u^0(y) \]
by the initial condition (2.2). Differentiating (2.7), we use the formula
\[\partial_x \int_0^x \varphi(\tau, x) d\tau = \int_0^x \partial_x \varphi(\tau, x) d\tau + \varphi(x, x). \]
Therefore,
\[(\partial_x + \xi \partial_y) u = u^0_t(t) \Big|_{t=g(0,x,y)} (\partial_x + \xi \partial_y) g(0, x, y) + \]
\[+ \int_0^x \frac{\partial f}{\partial g}(\tau, g(\tau, x, y)) (\partial_x + \xi \partial_y) g(\tau, x, y) d\tau + f(x, g(x, x, y)). \]
By Lemma 2.1 and the initial condition (2.2),
\[(\partial_x + \xi \partial_y) u(x, y) = f(x, y). \]

The procedure of solving (2.1), (2.10) by (2.7) is called integrating the equation (2.1) along the characteristic.

2.2 Systems in Riemann invariants
The developed theory works in more general case. Consider vector-functions
\[u = (u_1, \ldots, u_m), \quad u_i = u_i(x, y) \in C^1(\mathbb{R}^2), \]
\[\xi = (\xi_1, \ldots, \xi_m), \quad \xi_i = \xi_i(x, y, u) \in C^1(\mathbb{R}^2), \]
\[f = (f_1, \ldots, f_m), \quad f_i = f_i(x, y, u) \in C^1(\mathbb{R}^2), \quad i = 1, \ldots, m. \]
Definition. The system
\[(\partial_x + \xi_i(x, y, u) \partial_y) u_i(x, y) = f_i(x, y, u), \quad i = 1, \ldots, m, \quad (2.8) \]
is called a system in Riemann invariants [RYa].

Consider the Cauchy problem for the system (2.8). Let an initial condition be
\[u(0, y) = u^0(y). \quad (2.8^0) \]
Here \(u^0 = (u_1^0, \ldots, u_m^0) \), \(u_i^0 = u_i^0(y) \in C^1(\mathbb{R}) \), \(i = 1, \ldots, m \).

Definition. Consider the plane \(\mathbb{R}^2 = (x, y) \). The curve

\[
x = \tau, \quad y = g_i(\tau, x, y)
\]

is an \(i \)-th characteristic of the system (2.8). Here the function \(g_i(\tau, x, y) \) is a solution of the Cauchy problem

\[
\begin{aligned}
\partial_x g_i &= \xi_i(\tau, g_i(\tau, x, y), u(\tau, x, y)), \\
g_i(x, x, y) &= y.
\end{aligned}
\]

(2.9)

Lemma 2.3. The \(i \)-th component of the solution of the problem (2.8), (2.8\(^0\)) is a result of integrating the \(i \)-th equation of the system along the \(i \)-th characteristic, \(i = 1, \ldots, m \):

\[
u_i(x, y) = u^0_i(g_i(0, x, y)) + \int_0^x f_i(\tau, g_i(\tau, x, y), u(\tau, g_i(\tau, x, y))) \, d\tau.
\]

(2.10)

Proof. Suppose the solution \(u(x, y) \) of the problem (2.8), (2.8\(^0\)) is known. Inserting it in (2.8), we see that each equation of the system is in the form of (2.1), because it is possible to suppose

\[
\begin{aligned}
\xi_i(x, y, u(x, y)) &= \tilde{\xi}(x, y), \\
f_i(x, y, u(x, y)) &= \tilde{f}(x, y), \quad i = 1, \ldots, m.
\end{aligned}
\]

Therefore for

\[
(\partial_x + \tilde{\xi}_i(x, y) \partial_y) u_i(x, y) = \tilde{f}_i(x, y), \quad i = 1, \ldots, m,
\]

we obtain Lemma 2.1 and Lemma 2.2. Further, (2.5), (2.6) are

\[
\begin{aligned}
\partial_x g_i(\tau, x, y) &= -\xi_i(x, y, u) \exp \left\{ \int_x^\tau \left[\xi_{iy} + \sum_{j=1}^m \frac{\partial \xi_i}{\partial u_j} \frac{\partial u_j}{\partial y} \right] (t, g_i(t, x, y)) \, dt \right\}, \\
\partial_y g_i(\tau, x, y) &= \exp \left\{ \int_x^\tau \left[\xi_{iy} + \sum_{j=1}^m \frac{\partial \xi_i}{\partial u_j} \frac{\partial u_j}{\partial y} \right] (t, g_i(t, x, y)) \, dt \right\}.
\end{aligned}
\]

(2.11)

Finally, (2.7) is (2.10). \(\Box \)

The formula (2.10) is used for studying properties of solutions. It is recursive, so it doesn’t give a solution of the problem (2.8), (2.8\(^0\)) in an explicit form. The solution could be obtained by successive approximations.
3 Systems in Riemann invariants and hyperbolic Monge–Ampere equations

Here we follow a chapter of the dissertation of Tunisky [Tun-dis]. This chapter was published separately as [Tun].

It was well-known that the hyperbolic Monge–Ampere equation could be reduced to a system of five equations of the first order ([Cour], Supplement 1 to Chapter V, § 2), and it was well-known that this system could be reduced to a system in Riemann invariants (in [Cour] the system of five equations isn’t a system in Riemann invariants). In Tunisky’s paper the system in invariants is written in an explicit form, and everyone can use it.

3.1 The Cauchy problem for the Monge–Ampere equation

Consider the plane $\mathbb{R}^2 = (x, y)$ and an unknown function $z = z(x, y)$ on this plane. Consider the Monge–Ampere equation with respect to z

$$A + Bz_{xx} + Cz_{xy} + Dz_{yy} + E \text{ hess } z = 0.$$

Here hess $z = z_{xx}z_{yy} - z_{xy}^2$, A, B, C, D, E are functions of x, y, z, z_x, z_y; $E \neq 0$. Dividing by E, we obtain $E \equiv 1$, so we consider the equation

$$A + Bz_{xx} + Cz_{xy} + Dz_{yy} + \text{hess } z = 0. \quad (3.1)$$

Suppose $A, B, C, D \in C^2(\mathbb{R}^5)$.

Let $z(x, y)$ be a C^2-solution of the equation (3.1). We say that the equation (3.1) is hyperbolic at the solution $z(x, y)$ ([Cour], Supplement 1 to Chapter 5, § 2), if

$$\Delta^2(x, y, z(x, y), z_x(x, y), z_y(x, y)) = C^2 - 4BD + 4AE > 0. \quad (3.2)$$

Recall that $E \equiv 1$. By $\Delta^2 > 0$, we set $\Delta > 0$. Initial functions for the Cauchy problem on the Oy axis are

$$z(0, y) = z_0(y), \quad z_x(0, y) = p_0(y); \quad (3.3)$$

Here $z_0 \in C^3(\mathbb{R}^1)$, and $p_0 \in C^2(\mathbb{R}^1)$. Suppose z_0, p_0 satisfy the next two conditions. First, the axis Oy is free, i.e.

$$z_0''(y) + B(0, y, z_0(y), p_0(y), z_0'(y)) \neq 0. \quad (3.4)$$
Secondly, on the axis Oy the hyperbolic condition (3.2)

$$\Delta^2(0, y, z_0(y), p_0(y), z'_0(y)) > 0 \quad (3.5)$$

holds.

The full formulation for the Cauchy problem for the Monge–Ampere equation is the next. The aim is to find the C^3-function $z(x, y)$ satisfying the initial condition (3.3), the equation (3.1), and (at the solution $z(x, y)$) the hyperbolic condition (3.2).

Now we explain C^3-smoothness, when a classical solution of the equation (3.1) is assumed to be C^2-smooth. To obtain the system in Riemann invariants, the integrability conditions $p_{xy} = p_{yx}$, $q_{xy} = q_{yx}$ will be used. Here p, q are assumed to be z_x, z_y.

3.2 The system in total differentials

Let $z(x, y)$ be a C^3-solution of the equation (3.1) in some domain T. Suppose the equation (3.1) is hyperbolic at the solution z, and

$$z_{yy}(x, y) + B(x, y, z(x, y), z_x(x, y), z_y(x, y)) \neq 0, \quad (3.6)$$

$\forall (x, y) \in T$. The inequality (3.6) means that vertical lines $x = \text{const}$ are free.

By definition, put

$$u_1 = \frac{C + \Delta - 2z_{xy}}{2(z_{yy} + B)}, \quad u_2 = \frac{C - \Delta - 2z_{xy}}{2(z_{yy} + B)} \quad (3.7)$$

Functions u_1, u_2 are tangents of angles of inclinations of characteristics of the equation (3.1) (Corm, Supplement 1 to Chapter V, § 2). By the hyperbolic condition (3.2), we obtain $u_1 \neq u_2$, so it is possible to solve (3.7) (uniquely) with respect to z_{xy}, z_{yy}:

$$z_{yy} = \frac{\Delta}{u_1 - u_2} - B, \quad z_{xy} = \frac{\Delta u_1 + u_2}{2u_2 - u_1} + \frac{C}{2} \quad (3.8)$$

Substituting (3.8) in (3.1), we obtain a linear equation with respect to z_{xx}. Solving it, we have

$$z_{xx} = \frac{\Delta u_1 u_2}{u_1 - u_2} - D \quad (3.9)$$
Following Monge, by definition, put

\[z_x = p, \quad z_y = q. \] \hspace{1cm} (3.10)

From (3.8), (3.9), we obtain that \(z, p, q \) as functions of variables \(x, y \) in the domain \(T \) are a solution of the system in total differentials

\[\begin{align*}
 p_x &= \Delta(x, y, z, p, q) \frac{u_1 u_2}{u_1 - u_2}(x, y) - D(x, y, z, p, q), \\
p_y &= \frac{\Delta}{2}(x, y, z, p, q) \frac{u_1 + u_2}{u_2 - u_1}(x, y) + \frac{C}{2}(x, y, z, p, q), \\
q_x &= \frac{\Delta}{2}(x, y, z, p, q) \frac{u_1 + u_2}{u_2 - u_1}(x, y) + \frac{C}{2}(x, y, z, p, q), \\
q_y &= \frac{\Delta(x, y, z, p, q)}{(u_1 - u_2)(x, y)} - B(x, y, z, p, q).
\end{align*} \] \hspace{1cm} (3.11)

Right sides of (3.11) are continuously differentiable functions of \(x, y, z, p, q \).

Thus, we proved the next. If \(z(x, y) \) is a \(C^3 \)-solution of the equation (3.1) in the domain \(T \), and inequalities (3.2) (3.6) hold, then three functions \(z, p, q \) are defined, and they are a solution of the system (3.10)–(3.11).

Conversely, suppose there exist two continuously differentiable functions \((u_1, u_2) \) in the domain \(T \), such as \(u_1 \neq u_2 \), and suppose there exists a \(C^1 \)-solution of the system (3.10)–(3.11) in the domain \(T \), such as

\[\Delta(x, y, z(x, y), z_x(x, y), z_y(x, y)) > 0. \] \hspace{1cm} (3.12)

Clearly, in this case we have \(z_{xx} = p_x, \quad z_{xy} = p_y = q_x, \quad z_{yy} = q_y \). Therefore, \(z \in C^3(T) \). Substituting second derivatives of \(z \) in the left part of (3.1), we see that \(z(x, y) \) is a solution of the equation (3.1). By (3.12), the equation (3.1) is hyperbolic at \(z \), and the inequality (3.6) holds.

Summarize the obtained results as a lemma.

Lemma 3.1. There exists in the domain \(T \) a function \(z(x, y) \in C^3(T) \) satisfying (3.1), (3.2), (3.6) iff there exists in the domain \(T \) a \(C^1 \)-solution \((z, p, q) \) of the system (3.10)–(3.11), satisfying (3.12). \(\Box \)

3.3 The system in Riemann invariants

The system of differential equations in total differentials is overdetermined, so, generally speaking, it doesn’t have a solution. The solution exists iff integrability conditions hold. Integrability conditions for the equations (3.10)–(3.11) could be reduced to differential relations for functions \(u_1, u_2, z, p, q \).
Indeed, right parts of the system (3.10)–(3.11) are continuously differentiable, so functions \(z, p, q \) are twice continuously differentiable. Therefore, on \(T \) we have equalities

\[
z_{xy} = z_{yx}, \quad p_{xy} = p_{yx}, \quad q_{xy} = q_{yx}. \tag{3.13}
\]

By (3.10)–(3.11), the first equality (3.13) is an identity. The second equality (3.13) is

\[
\begin{align*}
\Delta_y \frac{u_1 u_2}{u_1 - u_2} + \Delta \frac{u_1^2 u_2 y - u_2 u_1 y}{(u_1 - u_2)^2} - D_y + \left(\frac{u_1 u_2}{u_1 - u_2} \Delta z - D_z \right) q + \\
+ \left(\frac{u_1 u_2}{u_1 - u_2} \Delta p - D_p \right) \left(\frac{\Delta u_1 + u_2}{2(u_2 - u_1)} + C \right) + \\
+ \left(\frac{u_1 u_2}{u_1 - u_2} \Delta q - D_q \right) \left(\frac{\Delta u_1 - u_2}{u_1 - u_2} - B \right) = \\
= \frac{\Delta u_1 + u_2}{u_2 - u_1} + \Delta \frac{u_2 u_1 y - u_1 u_2 y}{(u_2 - u_1)^2} + C \left(\frac{u_1 + u_2}{u_2 - u_1} \frac{\Delta z}{2} + C \right) + \\
+ \left(\frac{u_1 + u_2}{u_2 - u_1} \Delta p - D_p \right) \left(\frac{\Delta u_1 + u_2}{2(u_2 - u_1)} + C \right) + \\
+ \left(\frac{u_1 + u_2}{u_2 - u_1} \Delta q - D_q \right) \left(\frac{\Delta u_1 + u_2}{2(u_2 - u_1)} + C \right). \tag{3.14}
\end{align*}
\]

Analogously, the third equality (3.13) is

\[
\begin{align*}
\Delta_x \frac{u_1 u_2}{u_1 - u_2} + \Delta \frac{u_2 u_1 y - u_1 u_2 y}{(u_2 - u_1)^2} + C \left(\frac{u_1 + u_2}{u_2 - u_1} \frac{\Delta z}{2} + C \right) q + \\
+ \left(\frac{u_1 + u_2}{u_2 - u_1} \Delta p - D_p \right) \left(\frac{\Delta u_1 + u_2}{2(u_2 - u_1)} + C \right) + \\
+ \left(\frac{u_1 + u_2}{u_2 - u_1} \Delta q - D_q \right) \left(\frac{\Delta u_1 - u_2}{u_1 - u_2} - B \right) = \\
= \frac{\Delta u_1 + u_2}{u_1 - u_2} + \Delta \frac{u_2 u_1 y - u_1 u_2 y}{(u_2 - u_1)^2} - B_x + \left(\frac{\Delta u_1 + u_2}{u_2 - u_1} - B_z \right) p + \\
+ \left(\frac{\Delta u_1 + u_2}{u_2 - u_1} \frac{\Delta z}{2} + B \right) + \\
+ \left(\frac{\Delta u_1 + u_2}{u_2 - u_1} \frac{\Delta p}{2} - D_p \right) \left(\frac{\Delta u_1 + u_2}{2(u_2 - u_1)} + C \right) + \\
+ \left(\frac{\Delta u_1 + u_2}{u_2 - u_1} \frac{\Delta q}{2} - B_q \right) \left(\frac{\Delta u_1 + u_2}{2(u_2 - u_1)} + C \right). \tag{3.15}
\end{align*}
\]
(3.14)–(3.15) is a linear system of two algebraic equations with respect to \(u_{1x} + u_{2u_{1y}}, u_{2x} + u_{1u_{2y}} \). The determinant is \(\Delta^2/(u_1 - u_2)^3 \). By \(u_1 \neq u_2 \), this system has a unique solution. The solution is

\[
\begin{align*}
\begin{cases}
 u_{1x} + u_{2u_{1y}} = E_o + E_1u_1 + E_2u_2 + E_3u_1^2 + E_4u_1u_2 + E_5u_2^2, \\
 u_{2x} + u_{1u_{2y}} = I_o + I_1u_1 + I_2u_2 + I_3u_2^2 + I_4u_1u_2 + I_5u_1u_2^2.
\end{cases}
\end{align*}
\]

(3.16)

Coefficients \(E_j, I_j, 0 \leq j \leq 5 \), depend on functions \(B, C, D, \Delta \) and on their first derivatives:

\[
\begin{align*}
E_0 &= I_0 = D_y, & E_5 &= I_5 = -B_p, \\
E_1 &= \alpha_1 + \alpha_2 + \frac{1}{4\Delta}(CC_q - 3\Delta C_q + C\Delta_q + \Delta\Delta_q - 2\Delta D_p), \\
E_2 &= -\alpha_1 - \alpha_2 + \frac{1}{4\Delta}(-CC_q - \Delta C_q - C\Delta_q - \Delta\Delta_q - 2\Delta D_p), \\
E_3 &= -\beta_1 + \beta_2 + \frac{1}{4\Delta}(-CC_p + \Delta C_p + C\Delta_p - \Delta\Delta_p + 2\Delta B_q), \\
E_4 &= \beta_1 - \beta_2 + \frac{1}{4\Delta}(CC_p + 3\Delta C_p - C\Delta_p + \Delta\Delta_p + 2\Delta B_q), \\
I_1 &= \alpha_1 - \alpha_2 + \frac{1}{4\Delta}(CC_q - \Delta C_q - C\Delta_q + \Delta\Delta_q - 2\Delta D_p), \\
I_2 &= -\alpha_1 + \alpha_2 + \frac{1}{4\Delta}(-CC_q - 3\Delta C_q + C\Delta_q - \Delta\Delta_q - 2\Delta D_p), \\
I_3 &= \beta_1 + \beta_2 + \frac{1}{4\Delta}(CC_p + \Delta C_p + C\Delta_p + \Delta\Delta_p + 2\Delta B_q), \\
I_4 &= -\beta_1 - \beta_2 + \frac{1}{4\Delta}(-CC_p + 3\Delta C_p - C\Delta_p - \Delta\Delta_p + 2\Delta B_q),
\end{align*}
\]

where

\[
\begin{align*}
\alpha_1 &= \frac{1}{2\Delta}(2D_y + C_s + 2D_zq + Czp + CD_p - DCP - 2BD_q), \\
\alpha_2 &= \frac{1}{2\Delta}(\Delta_s + \Delta_s p - D\Delta_p), \\
\beta_1 &= \frac{1}{2\Delta}(2B_x + C_y + 2B_zp + Czq + CB_q - BCP - 2BD_p), \\
\beta_2 &= \frac{1}{2\Delta}(\Delta_y + \Delta_s q - B\Delta_q).
\end{align*}
\]

Let \(z(x, y) \) be a \(C^3 \)-solution of (3.1) in \(T \). Suppose inequalities (3.2), (3.6) hold. By Lemma 3.1, so that \(z, p = z_x, q = z_y \) satisfy (3.10)–(3.11), where \(u_1, u_2 \) are defined by (3.7).

Multiplying the second equation (3.10) by \(u_1 \), and then adding with the first equation (3.10), we get

\[
z_x + u_1z_y = p + u_1q.
\]

(3.18)
Analogously, consider (3.11). Multiplying the second equation (3.11) by \(u_2 \), and then adding with the first equation (3.11), we get

\[
p_x + u_2 p_y = \frac{C + \Delta}{2} u_2 - D. \tag{3.19}
\]

Multiplying the fourth equation (3.11) by \(u_1 \), and then adding with the third equation (3.11), we get

\[
q_x + u_1 q_y = \frac{C + \Delta}{2} - B u_1. \tag{3.20}
\]

Thus, the next fact is proved.

Theorem 3.1. Let \(z(x, y) \) be a \(C^3 \)-solution of (3.1) in the domain \(T \). Suppose (3.2), (3.6) are satisfied by \(z \). Then the set of functions \((u_1, u_2, z, p, q)\), where \(u_1, u_2 \) we get from (3.7), \(p = z_x \), \(q = z_y \), is a \(C^1 \)-solution of the system of five equations (3.16)–(3.20) in \(T \). □

3.4 Reducing the Monge–Ampere equation to a system in Riemann invariants

Suppose the domain \(T \) has a nonempty intersection with the axis \(Oy \). The next statement in some sense is inverse with respect to Theorem 3.1.

Theorem 3.2. Let \((u_1, u_2, z, p, q)\) be a \(C^1 \)-solution of (3.16)–(3.20) in the domain \(T \). Let initial values for this solution be

\[
\begin{align*}
z(0, y) &= z_0(y), \\
p(0, y) &= p_0(y), \\
q(0, y) &= z'_0(y), \\
u_1(0, y) &= \frac{(C + \Delta)((0, y, z_0(y), p_0(y), z'_0(y))) - 2p'_0(y)}{2(z''_0 + B(0, y, z_0(y), p_0(y), z'_0(y)))}, \\
u_2(0, y) &= \frac{(C - \Delta)((0, y, z_0(y), p_0(y), z'_0(y))) - 2p'_0(y)}{2(z''_0 + B(0, y, z_0(y), p_0(y), z'_0(y)))}.
\end{align*} \tag{3.21}
\]

Let \(T \) be a domain in which this solution is defined. Suppose (3.12) holds. Then \(z \) is a \(C^3 \)-solution of (3.1)–(3.3) in the domain \(T \), and, further, \(z_x = p \), \(z_y = q \), and (3.6) holds.
Proof. First let us prove that $u_1 \neq u_2$ in the domain T. By (3.21) and (3.5), we get
\[
\frac{\Delta(0, y, z_0(y), p_0(y), z_0'(y))}{z_0'(y) + B(0, y, z_0(y), p_0(y), z_0'(y))} \neq 0. \tag{3.22}
\]
Consider (3.16). Subtracting the second equation from the first, and taking into account (3.17), we obtain
\[
(u_1 - u_2)_x + u_2(u_1 - u_2)_y =
\]
\[
= (u_1 - u_2) \left(2\alpha_2 + \frac{C\Delta_q - \Delta C_q}{2\Delta} + \right.
\]
\[
+ (u_1 + u_2) \left(\beta_2 + \frac{B_q}{2} + \frac{C\Delta_p + \Delta C_p}{4\Delta} \right) +
\]
\[
+ (u_2 - u_1) \left(\beta_1 + \frac{CC_p + \Delta\Delta_p}{4\Delta} \right) - B_p u_1 u_2 + u_{2y} \bigg). \tag{3.23}
\]
A solution of (3.16)–(3.20) is defined in the domain T, so on the segment $[0, x]$ there exist a solution of the Cauchy problem
\[
\begin{cases}
\frac{dg}{d\tau} = u_2(\tau, g), \\
g(x, x, y) = y.
\end{cases}
\]
If $(x, y) \in T$, then $(\tau, g(\tau, x, y)) \in T$ for $0 \leq \tau \leq x$. Integrating the equation (3.23) along the characteristic $\eta = g(\tau, x, y)$ over $[0, x]$, we get
\[
\begin{aligned}
(u_1 - u_2)(x, y) &=
\]
\[
= (u_1 - u_2)(0, g(0, x, y)) \times
\]
\[
\times \exp \left\{ \int_0^x \left(2\alpha_2 + \frac{C\Delta_q - \Delta C_q}{2\Delta} + \right.
\]
\[
+ (u_1 + u_2) \left(\beta_2 + \frac{B_q}{2} + \frac{C\Delta_p + \Delta C_p}{4\Delta} \right) +
\]
\[
+ (u_2 - u_1) \left(\beta_1 + \frac{CC_p + \Delta\Delta_p}{4\Delta} \right) - B_p u_1 u_2 + u_{2y} \bigg) \right\} (\tau, g(\tau, x, y)) d\tau \bigg). \tag{3.24}
\]

14
From (3.24), taking into account (3.22), we get $u_1 \neq u_2$ in T.

Further, by definition, put

$$r(x, y, z, p, q) = \frac{\Delta u_1 u_2}{u_1 - u_2} - D,$$

$$s(x, y, z, p, q) = \frac{\Delta u_1 + u_2}{2 u_2 - u_1} + \frac{C'}{2},$$

$$t(x, y, z, p, q) = \frac{\Delta}{u_1 - u_2} - B.$$ \hspace{1cm} (3.25)

Therefore, equations (3.19)–(3.20) are

$$p_x + u_2 p_y = r + u_2 s, \hspace{1cm} \text{(3.19')}$$

$$q_x + u_1 q_y = s + u_1 t. \hspace{1cm} \text{(3.20')}$$

Taking into account $u_1 \neq u_2$ in T, we obtain equivalence of (3.16) to (3.14)–(3.15). Equations (3.14)–(3.15) are

$$r_y + r z q + r p s + r q t = s_x + s_z p + s_p r + s_q s, \hspace{1cm} \text{(3.14')}$$

$$s_y + s z q + s p s + s q t = t_x + t_z p + t_p r + t_q s. \hspace{1cm} \text{(3.15')}$$

We obtain characteristics of the system (3.18), (3.19'), (3.20') from the Cauchy problem

$$\begin{cases}
\frac{dg_i}{d\tau} = u_{3-i}(\tau, g_i), \\
g_i(x, x, y) = y \quad (i = 1, 2).
\end{cases} \hspace{1cm} (3.26)$$

Integrating (3.18), (3.19'), (3.20') along relevant characteristics over $[0, x]$, we get

$$z(x, y) = z_0(g_2(0, x, y)) + \int_0^x \{p + u_1 q\}(\tau, g_2(\tau, x, y)) \, d\tau,$$

$$p(x, y) = p_0(g_1(0; x, y)) + \int_0^x \{r + u_2 s\}(\tau, g_1(\tau, x, y)) \, d\tau, \hspace{1cm} (3.27)$$

$$q(x, y) = q_0'(g_2(0, x, y)) + \int_0^x \{s + u_1 t\}(\tau, g_2(\tau, x, y)) \, d\tau.$$

Right parts of (3.26) are continuously differentiable. Therefore, functions $g_i(\tau, x, y)$ ($i = 1, 2$) are continuously differentiable, and they have continuous
secondary derivatives with respect to τ, x and with respect to τ, y. Also for derivatives of g_i with respect to x and with respect to y we have

$$g_{ix}(\tau, x, y) + u_{3-i}(x, y)g_{iy}(\tau, x, y) = 0.$$ \hspace{1cm} (3.28)

Now we find first derivatives of functions z, p q. Differentiating (3.27), taking into account (3.14′) – (3.15′), (3.28), integrating by parts, taking into account the initial data (3.21), we obtain

$$z_y(x, y) = q(x, y) + \int_0^x \{(p_y - s) + (s - q_x)\}(\tau, g_2(\tau, x, y))g_{2y}(\tau, x, y) \, d\tau,$$

$$z_x(x, y) = p(x, y) + \int_0^x \{(p_y - s) + (s - q_x)\}(\tau, g_2(\tau, x, y))g_{2x}(\tau, x, y) \, d\tau,$$

$$p_y(x, y) = s(x, y, z(x, y), p(x, y), q(x, y)) +$$

$$+ \int_0^x \{s_z(p - z_x) + r_z(z_y - q) + s_p(r - p_x) + r_p(p_y - s) +$$

$$+ s_q(s - q_x) + r_q(q_y - t)\}(\tau, g_1(\tau, x, y))g_{1y}(\tau, x, y) \, d\tau,$$

$$p_x(x, y) = r(x, y, z(x, y), p(x, y), q(x, y)) +$$

$$+ \int_0^x \{s_z(p - z_x) + r_z(z_y - q) + s_p(r - p_x) + r_p(p_y - s) +$$

$$+ s_q(s - q_x) + r_q(q_y - t)\}(\tau, g_1(\tau, x, y))g_{1x}(\tau, x, y) \, d\tau,$$

$$q_y(x, y) = t(x, y, z(x, y), p(x, y), q(x, y)) +$$

$$+ \int_0^x \{t_z(p - z_x) + s_z(z_y - q) + t_p(r - p_x) + s_p(p_y - s) +$$

$$+ t_q(s - q_x) + s_q(q_y - t)\}(\tau, g_2(\tau, x, y))g_{2y}(\tau, x, y) \, d\tau,$$

$$q_x(x, y) = s(x, y, z(x, y), p(x, y), q(x, y)) +$$

$$+ \int_0^x \{t_z(p - z_x) + s_z(z_y - q) + t_p(r - p_x) + s_p(p_y - s) +$$

$$+ t_q(s - q_x) + s_q(q_y - t)\}(\tau, g_2(\tau, x, y))g_{2x}(\tau, x, y) \, d\tau.$$

\hspace{1cm} (3.29)
By (3.29), we get

\[
\begin{align*}
 z_y(x, y) &= q(x, y), \\
 z_x(x, y) &= p(x, y), \\
 p_y(x, y) &= q_z(x, y) = s(x, y, z(x, y), p(x, y), q(x, y)), \\
 p_x(x, y) &= r(x, y, z(x, y), p(x, y), q(x, y)), \\
 q_y(x, y) &= t(x, y, z(x, y), p(x, y), q(x, y)).
\end{align*}
\]

By (3.25), so that three functions \(z, p, q \) are a \(C^1 \)-solution of the system (3.10)–(3.11). By Lemma 3.1, so that \(z \) is a \(C^3 \)-solution of the problem (3.1)–(3.3) in the domain \(T \). \(\square \)

Remark. The system (3.16)–(3.20) consists of five equations with respect to five unknown functions \(u_1, u_2, z, p, q \). If coefficients \(A, B, C, D \) of the equation (3.1) don’t depend on \(z \), then equations (3.16), (3.19), (3.20) are a closed system of four equations with respect to four unknown functions \(u_1, u_2, p, q \). If we know \(u_1, u_2, p, q \), then we can find \(z \) from (3.18) or from the first equation (3.27).

Let equations (3.16) be a closed system with respect to \(u_1, u_2 \). Obviously, this situation holds iff

\[
\frac{\partial E_j}{\partial z} = \frac{\partial E_j}{\partial p} = \frac{\partial E_j}{\partial q} = \frac{\partial I_j}{\partial z} = \frac{\partial I_j}{\partial p} = \frac{\partial I_j}{\partial q} = 0 \quad (3.30)
\]

\((j = 0, \ldots, 5)\). Here we get \(E_j, I_j \) from (3.17). In this case, after finding \(u_1, u_2 \), one could get functions \(z, p, q \) from (3.18)–(3.20) or from (3.11).

3.5 Final form of the system in Riemann invariants

The system (3.16) was obtained by D. V. Tunitsky [Tun]. Right parts of this system are polynomial, generators are \(u_1, u_2 \), coefficients contain unknown functions \(p, q \). So it isn’t easy to formulate conditions on the coefficients. We propose another form for the system (3.16). Let generators be unknown functions \(u_1, u_2, p, q \), and let coefficients be known functions.

By definition, put

\[
\begin{align*}
 r &= u_1, \\
 s &= u_2.
\end{align*}
\]

Here \(r, s \) are characteristic variables ([Cor], Supplement 1 to Chapter V, § 2). Also \(r, s \) are Riemann invariants and eigenvalues of the system (3.16)
(see [RYa], Chapter 1). We underline that in this context \(r, s\) aren’t the Monge notations for second derivatives from (3.25). Both notations (3.31) and (3.25) are traditional.

The final system is

\[
(\partial_x + \xi(\omega)\partial_y) \omega = f_\omega(x, y, r, p, q, z),
\]

here \(\omega\) is an index, \(\omega \in \{r, s, p, q, z\}\); the function \(\xi(\omega)\) is

\[
\xi(r) = s, \quad \xi(s) = r, \quad \xi(p) = s, \quad \xi(q) = r, \quad \xi(z) = r;
\]

functions \(f_\omega\) are

\[
f_r = \rho_0 + \rho_1 r + \rho_2 s + \rho_3 pr + \rho_4 qr + \rho_5 ps + \rho_6 qs + \rho_7 r^2 + \rho_8 rs + \rho_9 pr^2 + \rho_{10} q^2 r + \rho_{11} prs + \rho_{12} qr^2 s = f_r(p, r, s, p, q),
\]

\[
f_s(\sigma, r, s, p, q) = f_r(\sigma, s, r, p, q),
\]

\[
f_p = \pi_0 + \pi_1 s, \quad f_q = \kappa_0 + \kappa_1 r, \quad f_z = p + qr;
\]

vector-functions \(\rho, \sigma, \pi, \kappa\) depend on \(x, y, z, p, q\),

\[
\rho_0 = D_q, \quad \sigma_0 = D_q,
\]

\[
\rho_3 = \frac{1}{\Delta}(C + \Delta)_z, \quad \quad \sigma_3 = -\frac{1}{\Delta}(C - \Delta)_z,
\]

\[
\rho_4 = \frac{1}{\Delta}D_z, \quad \sigma_4 = -\frac{1}{\Delta}D_z,
\]

\[
\rho_5 = -\frac{1}{\Delta}(C + \Delta)_z, \quad \quad \sigma_5 = \frac{1}{\Delta}(C - \Delta)_z,
\]

\[
\rho_6 = -\frac{1}{\Delta}D_z, \quad \quad \sigma_6 = \frac{1}{\Delta}D_z,
\]

\[
\rho_9 = -\frac{1}{\Delta}B_z, \quad \quad \sigma_9 = \frac{1}{\Delta}B_z,
\]

\[
\rho_{10} = -\frac{1}{\Delta}(C - \Delta)_z, \quad \quad \sigma_{10} = \frac{1}{\Delta}(C + \Delta)_z,
\]

\[
\rho_{11} = \frac{1}{\Delta}B_z, \quad \quad \sigma_{11} = -\frac{1}{\Delta}B_z,
\]

\[
\rho_{12} = \frac{1}{\Delta}(C - \Delta)_z, \quad \quad \sigma_{12} = -\frac{1}{\Delta}(C + \Delta)_z,
\]

\[
\rho_{13} = -B_p, \quad \quad \sigma_{13} = -B_p,
\]
\[\rho_1 = \frac{1}{2a}(\Delta x + C_x + 2D_y + CD_p - D\Delta p - DC_p - 2BD_q + \frac{1}{2}CC_q - \frac{3}{2}\Delta C_p + \frac{1}{2}C\Delta_q + \frac{1}{2}\Delta \Delta q - \Delta D_p), \]
\[\rho_2 = -\frac{1}{2a}(\Delta x + C_x + 2D_y + CD_p - D\Delta p - DC_p - 2BD_q + \frac{1}{2}CC_q + \frac{1}{2}\Delta C_p + \frac{1}{2}C\Delta_q + \frac{1}{2}\Delta \Delta q + \Delta D_p), \]
\[\rho_7 = -\frac{1}{2a}(\Delta y + C_y + 2B_x + CB_q + B\Delta q - BC_q - 2DB_p + \frac{1}{2}CC_p - \frac{1}{2}\Delta C_p - \frac{1}{2}C\Delta_q + \frac{1}{2}\Delta \Delta q - \Delta B_q), \]
\[\rho_8 = \frac{1}{2a}(\Delta y + C_y + 2B_x + CB_q + B\Delta q - BC_q - 2DB_p + \frac{1}{2}CC_p + \frac{3}{2}\Delta C_p - \frac{1}{2}C\Delta_q + \frac{1}{2}\Delta \Delta q + \Delta B_q), \]
\[\sigma_1 = -\frac{1}{2a}(\Delta x + C_x + 2D_y + CD_p + D\Delta p - DC_p - 2BD_q + \frac{1}{2}CC_q + \frac{3}{2}C\Delta q - \frac{1}{2}C\Delta_p + \frac{1}{2}\Delta \Delta p + \Delta D_p), \]
\[\sigma_2 = \frac{1}{2a}(\Delta x + C_x + 2D_y + CD_p + D\Delta p - DC_p - 2BD_q + \frac{1}{2}CC_q + \frac{1}{2}\Delta C_q - \frac{1}{2}C\Delta_p + \frac{1}{2}\Delta \Delta p - \Delta D_p), \]
\[\sigma_7 = \frac{1}{2a}(\Delta y + C_y + 2B_x + CB_q - B\Delta q - BC_q - 2DB_p + \frac{1}{2}CC_p + \frac{1}{2}C\Delta p + \frac{1}{2}\Delta \Delta p + \Delta B_q), \]
\[\sigma_8 = -\frac{1}{2a}(\Delta y + C_y + 2B_x + CB_q - B\Delta q - BC_q - 2DB_p + \frac{1}{2}CC_p - \frac{3}{2}C\Delta p + \frac{1}{2}C\Delta q + \frac{1}{2}\Delta \Delta q - \Delta D_q), \]
\[\pi_0 = -D, \quad \kappa_0 = \frac{1}{2}(C + \Delta), \quad \kappa_1 = -B. \]

Taking into account (3.31), we get initial conditions (3.21) for the system (3.32):

\[r(0, y) = r^0(y) = \frac{(C + \Delta)(0, y, z^0(y), p^0(y), z_0^0(y)) - 2p_0^0(y)}{2(\Delta_{yy}(y) + B(0, y, z_0^0(y), \Delta^0(y), z_0^0(y)))}, \]
\[s(0, y) = s^0(y) = \frac{(C - \Delta)(0, y, z^0(y), p_0^0(y), z_0^0(y)) - 2p_0^0(y)}{2(\Delta_{yy}(y) + B(0, y, z_0^0(y), p_0^0(y), z_0^0(y)))}, \]
\[p(0, y) = p^0(y), \quad q(0, y) = q^0(y) = z_0^0(y), \quad z(0, y) = z^0(y). \]

Let the system (3.320) be

\[\left\{ \begin{array}{l}
 p_y^0 = -\frac{\Delta}{2}r_0^0 + s_0^0 + \frac{C}{2}, \\
 q_y^0 = \frac{\Delta}{r_0^0 - s_0^0} - B, \\
 z_y^0 = q_0.
\end{array} \right. \]
Let r^0, s^0 be initial functions. Therefore we get z^0, p^0 from (3.32). If coefficients A, B, C, D depend on x, y only, then the system (3.32) is linear. In general case, the system (3.32) is nonlinear.

If coefficients A, B, C, D of the Monge–Ampere equation depend on x, y only, then the equation could be reduced to the system with respect to r, s:

\[
(\partial_x + s\partial_y)r = (r-s)(a_{r1} + a_{r2}r),
\]
\[
(\partial_x + r\partial_y)s = (r-s)(a_{s1} + a_{s2}s),
\]

where

\[
a_{r1} = \frac{1}{2\Delta}(2D_y + C_x + \Delta_x), \quad a_{r2} = \frac{1}{2\Delta}(-2B_x - C_y + \Delta_y),
\]
\[
a_{s1} = \frac{1}{2\Delta}(2D_y + C_x - \Delta_x), \quad a_{s2} = \frac{1}{2\Delta}(-2B_x - C_y - \Delta_y).
\]

The system (3.33) is a system of the first and the second equations from the system (3.32). After getting r, s (from (3.33)) we solve the third, the fourth, and the fifth linear equations (3.32) with respect to p, q, z. By (3.32), we get initial functions p^0, q^0, z^0 from r^0, s^0.

4 Successful approximations

4.1 Iterative loop

Let $\omega(x, y)$, $\omega = r, s, p, q, z$, be known functions. Let $\omega(x, y)$, $\omega = r, s, p, q, z$, be a solution of the nonlinear Cauchy problem

\[
\begin{align*}
(\partial_x + \xi(\omega)\partial_y)^n \omega &= f_\omega(x, y, r, s, p, q, z), \\
n^1 \omega(0, y) &= \omega^0(y), \quad \omega = r, s, p, q, z.
\end{align*}
\]

The Cauchy problem (4.1) falls into four independent problems. The first is a problem for a nonlinear system with respect to n^1, n^1. Another are three problems for independent linear equations with respect to p, q, z. Before solving the nonlinear system we’ll get a priori bounds.

By definition, put

\[
\omega(x, y) = \omega^0(y), \quad \omega = r, s, p, q, z.
\]
By (3.32), it follows that the vector-function ω_x is defined by $\omega = r, s, p, q, z$. Suppose the existence of continuous functions ω, ω_y, then there exists a C^1-solution of (3.32), (3.32'). Proof of the existence of continuous vector-functions ω, ω_y is a proof of uniform convergence of $\{\omega\}, \{\omega_y\}, \omega = r, s, p, q, z$. The main part of this proof is uniform boundedness of $\{\omega\}, \{\omega_y\}$.

4.2 Uniform boundedness

Suppose vector-functions $\rho, \sigma, \pi, \kappa$ and functions r^0, s^0, p^0, q^0 are C^1-smooth and bounded, $z^0 \in C^1(\mathbb{R})$.

Consider functions f_r, f_s as right parts of (3.32). There are two kinds of monomials. Some monomials contain generators p, q, another monomials don’t contain generators p, q. So we distinguish coefficients ρ, σ for the two cases by introducing the next two sets of indexes. By definition, put $J_{rs} = \{0, 1, 2, 7, 8, 13\}$ for the first case (no p, q), and put $J_{pq} = \{3, 4, 5, 6, 9, 10, 11, 12\}$ for the second case (p, q are).

By definition, put

$$U_0 = \max_{\omega = r, s} \sup_{y \in \mathbb{R}} |\omega^0(y)| = \text{const},$$

$$\alpha_1(x) = \sup_{(y, z, p, q) \in \mathbb{R}^4} \sup_{j \in J_{rs}} \sup_{a \in \{\rho, \sigma\}} |a_j(x, y, z, p, q)|,$$

$$\alpha_2(x) = \sup_{(y, z, p, q) \in \mathbb{R}^4} \sup_{j \in J_{pq}} \sup_{a \in \{\rho, \sigma\}} |a_j(x, y, z, p, q)|,$$

$$\alpha_3 = \sup_{(x, y, z, p, q) \in \mathbb{R}^5} \sup_{j = 0, 1} \sup_{a \in \{\pi, \kappa\}} |a_j(x, y, z, p, q)| = \text{const}.$$

Lemma 4.1. Suppose

$$|p^0| \leq 1, \quad |q^0| \leq 1,$$

$$U_0 + 6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3|x|)\alpha_2(x) \, dx \leq 1.$$

21
Suppose there exists \(n \geq 0 \) such that
\[
\begin{align*}
| \omega^n(x, y) | & \leq 1 , \quad \omega = r, s , \\
| \omega^n(x, y) | & \leq 1 + 2\alpha_3 |x| , \quad \omega = p, q , \\
| n z^n(x, y) | & \leq \max_{t \in [y - |x|, y + |x|]} | z^0(t) | + 2 |x| + 2\alpha_3 x^2 ,
\end{align*}
\]
for \(\forall (x, y) \in [0, +\infty) \times \mathbb{R} \). Suppose the existence of functions \(n^{+1} \omega , \omega = r, s, p, q, z \). Then we have the same bounds (4.5) for the number \(n + 1 \).

Proof. By (4.2), (4.4), we obtain (4.5) for \(n = 0 \). Suppose (4.5) holds for some number \(n \); then we shall prove (4.5) for the number \(n + 1 \).

Consider right parts \(f_\omega \) of the system (3.32). By (2.10), we obtain the next estimations. For \(\omega = r, s \) we have
\[
| \omega^{n+1}(x, y) | \leq |\omega^0| + \int_0^x |f_\omega| d\tau \leq
\]
\[
\leq U_0 + 6 \int_0^{+\infty} \alpha_1(\tau) d\tau + 4 \int_0^{+\infty} \alpha_2(\tau) |p| d\tau + 4 \int_0^{+\infty} \alpha_2(\tau) |q| d\tau \leq
\]
\[
\leq U_0 + 6 \int_0^{+\infty} \alpha_1(\tau) d\tau + 8 \int_0^{+\infty} \alpha_2(\tau)(1 + 2\alpha_3 \tau) d\tau \leq 1 .
\]

For \(\omega = p, q, a = \pi, \kappa \) we have
\[
| \omega^{n+1}(x, y) | \leq |\omega^0| + \int_0^x |f_\omega| d\tau \leq \quad \text{(see (4.3) for } \alpha_3) \]
\[
\leq 1 + \int_0^x (|a_0| + |a_1|) d\tau \leq 1 + 2\alpha_3 \int_0^x d\tau \leq 1 + 2\alpha_3 |x| .
\]

For \(\omega = z \), taking into account \(|n| \leq 1 \), that is \(g_\omega^n(\tau, x, y) \in [y - x + \tau, y + x - \tau] \), we have
\[
| \omega^{n+1}(x, y) | \leq |\omega^0| + \int_0^x |p + q| d\tau \leq \max_{t \in [y - |x|, y + |x|]} | z^0(t) | +
\]
\[
+ \int_0^x 2(1 + 2\alpha_3 \tau) d\tau = \max_{t \in [y - |x|, y + |x|]} |z^0(t)| + 2 |x| + 2\alpha_3 x^2 .
\]

Corollary. Suppose conditions (4.4) are satisfied; then \(\{\omega^n\} , \omega = r, s, p, q, z \) are uniformly bounded on the compactum
\[
G(\bar{x}, \bar{y}) = \{ (x, y) | x \in [0, \bar{x}] , \ y \in [\bar{y} - \bar{x} + x , \ \bar{y} + \bar{x} - x] \} \quad (4.6)
\]
for \(\forall (\bar{x}, \bar{y}) \in [0, +\infty) \times \mathbb{R} \).

Proof. Consider any point \((x, y) \in G(\bar{x}, \bar{y})\). By \(|r| \leq 1, |s| \leq 1\), so that outgoing (from \((x, y)\)) characteristics are being inside the compactum \(G(\bar{x}, \bar{y})\). Therefore, functions \(\bar{n}, \omega = r, s, p, q, z\), are defined on the compactum \(G(\bar{x}, \bar{y})\). By (4.5), we obtain uniform boundedness. \(\square\)

4.3 Hyperbolicity in the restricted sense

Let the initial data \(r^0, s^0\) be separated by some constant. More exactly, \(\exists \delta > 0\) such that

\[
\inf_{y \in \mathbb{R}} r^0(y) - \sup_{y \in \mathbb{R}} s^0(y) \geq \delta > 0 . \tag{4.7}
\]

Lemma 4.2. Suppose \(\exists \varepsilon \in (0, \delta]\) such that

\[
6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3 |x|) \alpha_2(x) \, dx \leq \frac{\delta - \varepsilon}{2} . \tag{4.8}
\]

Then for \(n = 0, 1, 2, \ldots\)

\[
\inf_{(x, y) \in \mathbb{R}^2} \bar{n}_r(x, y) - \sup_{(x, y) \in \mathbb{R}^2} \bar{n}_s(x, y) \geq \varepsilon > 0 . \tag{4.9}
\]

Proof. By (2.10), taking into account (4.3), (4.5), (4.8), we have

\[
\bar{n}_r(x, y) \geq \inf_{y \in \mathbb{R}} r^0(y) - \left(6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3 |x|) \alpha_2(x) \, dx \right) \geq \inf_{y \in \mathbb{R}} r^0(y) - \frac{\delta - \varepsilon}{2} ,
\]

\[
\bar{n}_s(x, y) \leq \sup_{y \in \mathbb{R}} s^0(y) + \left(6 \int_{-\infty}^{+\infty} \alpha_1(x) dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3 |x|) \alpha_2(x) \, dx \right) \leq \sup_{y \in \mathbb{R}} s^0(y) + \frac{\delta - \varepsilon}{2}.
\]

Then, by (4.7),

\[
\inf_{(x, y) \in \mathbb{R}^2} \bar{n}_r(x, y) - \sup_{(x, y) \in \mathbb{R}^2} \bar{n}_s(x, y) \geq \inf_{y \in \mathbb{R}} r^0(y) - \sup_{y \in \mathbb{R}} s^0(y) - (\delta - \varepsilon) \geq \varepsilon . \, \square
\]
4.4 Solvability of the iterative system

Lemma 4.3. There exists a C^1-solution of (4.1) on the whole plain.

Proof. Consider the subsystem of two equations with respect to r^{n+1}, s^{n+1}. It is weakly nonlinear ([RYa], Chapter 1, § 10, Subsection 3). (For (2.8) weak nonlinearity is $\partial \xi_i/\partial u_i = 0$ for all i.) By (4.5), the solution of this system is bounded on the whole half-plane. By (4.9), the system is hyperbolic in the restricted sense. By the Rozhdestvensky—Sydorenko theorem ([RYa], Chapter 1, § 10, Subsection 3), first derivatives of functions r^{n+1}, s^{n+1} aren’t infinite at finite x. Therefore, by the corollary of this theorem ([RYa], Chapter 1, § 10, Subsection 3), the subsystem of the first and the second equations of (4.1) is solvable on the whole (half-)plane, that is, it has a global C^1-smooth solution.

Indeed, the problem (4.1) is solvable locally, i.e. in some neighborhood of the axis $x = 0$. We get this well-known fact, for example, from the existence theorem ([RYa], Chapter 1, § 8, Subsection 2), taking into account Corollary of Lemma 4.1. Consider prolongation of the local solution. By the Rozhdestvensky—Sydorenko theorem, a strong break is impossible. (A strong break is an infinite first derivative at finite x.) In the proof of this theorem some majorant of the (modulus of the) classical solution is constructed. So, before going to infinity, the solution (it is classical yet) must go outside the majorant, but it is impossible.

Further, from studying weak breaks (finite jumps of first derivatives), let a solution and its first derivatives be bounded, and let a weak break of a hyperbolic quasilinear system be propagating along a characteristic; then the weak break can’t arise or disappear ([RYa], Chapter 1, § 10, Subsection 1). We have smooth initial functions, so weak breaks aren’t. Thus, there exists a C^1-smooth solution on the whole half-plane.

Another three equations of the system (4.1) are linear. Therefore, their Cauchy problems (4.1) are C^1-solvable on the whole half-plane. □

Lemma 4.4. Let $\omega^{n+1}(x, y)$ be a solution of (4.1). Then for $\forall \tau \in [0, x]$ there exist characteristics of the problem (4.1).

Proof. By definition, characteristics are solutions of (2.9). For systems

$$\frac{d}{d\tau} u_i = f_i(\tau, u_1, \ldots, u_n), \quad i = 1, \ldots, n$$

we have the next classical Cauchy theorem of the existence and uniqueness.
Consider a closed domain
\[
\bar{G} = \left\{ (\tau, u_1, \ldots, u_n) \mid |\tau - \tau^0| \leq a, \quad |u_i - u_i^0| \leq b, \quad i = 1, \ldots, n. \right\}
\]

Suppose the next conditions hold in this domain:
1) functions \(f_i \) are continuous;
2) \(|f_i| \leq A \);
3) functions \(f_i \) are Lipschitz with respect to \(u_1, \ldots, u_n \).

Then for \(\forall \tau \) such that \(|\tau - \tau^0| \leq \min(a, b/A) \) there exists a unique solution of the system with initial functions \(u_i(\tau^0) = u_i^0 \).

In our case, by uniform estimation (4.5), we have \(A = 1 \). Further, \(a = x \), and any big value of \(b \) could be chosen. Partial derivatives with respect to \(u_1, \ldots, u_n \) are bounded in \(\bar{G} \), because, by Lemma 4.3, right parts are a classical solution of (4.1), so they belong to \(C^1([0, +\infty) \times \mathbb{R}) \). Therefore, there exist both characteristics for \(\forall \tau \in [0, x] \). Thus we can integrate along characteristics. \(\square \)

5 Derivatives of successful approximations

The Rozhdestvensky—Sydorenko theorem ([RYa], Chapter 1, § 10, Subsection 3) was proved for an exact solution of a system of two equations. We expand it to successful approximations for a system of five equations with two different characteristics.

When we write \((\bar{u})_y\), we mean that the first operation is getting the \(n \)-th successful approximation for \(u \), and the second operation is differentiation with respect to \(y \). Not conversely.

Let \(G(\bar{x}, \bar{y}) \) be a compactum (4.6), \(\forall (\bar{x}, \bar{y}) \in [0, +\infty) \times \mathbb{R} \).

Lemma 5.1. There exists a function \(\Phi(x) \in C^0(\mathbb{R}) \) such that
\[
|\left((\bar{n})_y\right)(x, y)| \leq \Phi(x) \tag{5.1}
\]
for \(\omega = r, s, p, q, z \), \(\forall (\bar{x}, \bar{y}) \in G(\bar{x}, \bar{y}) \), \(n = 0, 1, 2, \ldots \)

Proof. By definition, put \(\bar{g}_\omega(x, y_0) = \bar{g}_\omega(x, 0, y_0) \). Then \(\bar{g}_\omega(x, y_0) \) is a solution of the Cauchy problem
\[
\left\{ \begin{array}{l}
\partial_x \bar{g}_\omega = \xi(\omega)(x, \bar{g}_\omega), \\
\bar{g}_\omega(0, y_0) = y_0, \quad \omega = r, s, p, q, z.
\end{array} \right. \tag{5.2}
\]

25
It means that the curve \((x, n^+ g_\omega(x, y_0))\) is a characteristic that goes through the point \((0, y_0)\). The formula (2.10) is

\[
n^+ \omega(x, n^+ g_\omega(x, y_0)) = \omega^0(y_0) + \int_0^x f_\omega(\tau, g_\omega(\tau, y_0), \Omega(\tau, g_\omega(\tau, y_0))) \, d\tau,
\]

where \(\Omega = (\omega) = (r, s, p, q, z)\). By definition, put

\[
n^+ \bar{\omega}(x, y_0) = n^+ \omega(x, n^+ g_\omega(x, y_0)). \tag{5.3}
\]

Then for \(\omega = r, s, p, q, z\) we obtain

\[
n^+ \bar{\omega}(x, n^+ g_\omega(x, y_0)) = \omega^0(y_0) + \int_0^x f_\omega(\tau, n^+ g_\omega(\tau, y_0), \Omega(\tau, g_\omega(\tau, y_0))) \, d\tau. \tag{5.4}
\]

Therefore, \(n^+ \bar{\omega}(x, y_0)\) is a solution of the Cauchy problem

\[
\begin{cases}
\partial_x n^+ \bar{\omega} = f_\omega(x, n^+ g_\omega(x, y_0), \Omega(x, n^+ g_\omega(x, y_0))), \\
n^+ \bar{\omega}(0, y_0) = \omega^0(y_0), \quad \omega = r, s, p, q, z.
\end{cases} \tag{5.5}
\]

Differentiating (5.3) with respect to \(y_0\), we get

\[
\partial_{y_0} n^+ \bar{\omega}(x, y_0) = \partial_y n^+ \bar{\omega}(x, y) \bigg|_{y = n^+ g_\omega(x, y_0)} \partial_{y_0} n^+ \omega(x, y_0),
\]

therefore,

\[
\partial_y n^+ \bar{\omega}(x, y) = \partial_{y_0} n^+ \bar{\omega}(x, y_0) \partial_{y_0} n^+ \omega(x, y_0). \tag{5.6}
\]

Differentiating (5.2) with respect to \(y_0\), we get

\[
\partial_x \left(\partial_{y_0} n \omega(x, y_0) \right) = \partial_y f_\omega(x, n g_\omega(x, y_0)) \bigg|_{y = n g_\omega(x, y_0)} \partial_{y_0} n \omega(x, y_0),
\]

that is

\[
\partial_x \ln \left(\partial_{y_0} n \omega(x, y_0) \right) = \partial_y f_\omega(x, n g_\omega(x, y_0)) \bigg|_{y = n g_\omega(x, y_0)}, \tag{5.7}
\]

and the initial condition

\[
(\partial_{y_0} n \omega)(0, y_0) = 1. \tag{5.7^0}
\]
Let \(v(x, y) \in C^1 \) be an arbitrary function. By definition, put

\[
\left(\frac{d}{dx} v \right)_\omega = (\partial_x + \xi(\omega) \partial_y) v.
\]

Subtracting from

\[
(\partial_x + n^{1+1}_r \partial_y)^{n+1}_s = f_s(x, y, \Omega)
\]

the equality

\[
(\partial_x + n^{1+1}_s \partial_y)^{n+1}_s = \left(\frac{d}{dx} n^{1+1}_s \right)_r,
\]

we get

\[
\partial_y^{n+1}_s = \frac{f_s(x, y, \Omega) - (\frac{d}{dx} n^{1+1}_s)_r}{n+1_r - n+1_s}.
\]

Transforming, we get

\[
\partial_y^{n+1}_s = \frac{f_s(x, y, \Omega) - f_r(x, y, \Omega)}{n+1_r - n+1_s} + \frac{f_r(x, y, \Omega) - (\frac{d}{dx} n^{1+1}_s)_r}{n+1_r - n+1_s} = \frac{f_s(x, y, \Omega) - f_r(x, y, \Omega)}{n+1_r - n+1_s} + \frac{\left(\frac{d}{dx} n^{1+1}_r - (\frac{d}{dx} n^{1+1}_s)_r \right)}{n+1_r - n+1_s},
\]

(5.8)

By (5.7), we have

\[
\left. \left((\partial_x + n^{1+1}_s \partial_y) \ln \left(\frac{\partial_y^{n+1}_s}{n+1_r - n+1_s} \right) \right) \right|_{y=g_r^n(x, y_0)} = \frac{f_s(x, y, \Omega) - f_r(x, y, \Omega)}{n+1_r - n+1_s} \left|_{y=g_r^n(x, y_0)} \right.
\]

By (2.10), integrating along a characteristic, and taking into account (5.70), we get

\[
\partial_{y_0}^{n+1} g_r^n(x, y_0) = \frac{n+1_r - n+1_s}{r - s} \exp \left\{ \int_0^x \frac{f_s^n - f_r^n}{n+1_r - n+1_s} d\tau \right\}.
\]

(5.9)
Functions \(f_\omega, \omega = r, s, p, q, z \), are continuously differentiable with respect to \(r, s, p, q, z, x, y \), and \(\{\Omega \} \) is uniformly bounded. Therefore, there exist a constant \(a \) such that for \(\omega = r, s, p, q, z \), \(\mu = r, s, p, q, z, x, y \) we have

\[
|f_\omega| \leq a, \quad \left| \frac{\partial f_\omega}{\partial \mu} \right| \leq a.
\]

(5.10)

By (4.5), (4.9), (5.10), we get from (5.9) the following estimate:

\[
\frac{1}{\psi(x)} \leq \partial_{y_0} g_{\omega}(x, y) \leq \psi(x),
\]

(5.11)

where

\[
\psi(x) = \frac{2}{\varepsilon} \exp \{2ax/\varepsilon\}.
\]

Estimates for \(\partial_{y_0} g_{\omega}(x, y_0) \) we get analogously. Recall that there are two characteristics only, therefore, for \(\omega = r, s, p, q, z \), \(\mu = r, s, p, q, z, x, y \) we obtain estimates

\[
\frac{1}{\psi(x)} \leq \partial_{y_0} g_{\omega}(x, y_0) \leq \psi(x).
\]

(5.12)

We don’t need an estimation for \(n = 0 \).

Differentiating (5.5) with respect to \(y_0 \), we get

\[
\left\{
\begin{array}{l}
\partial_x (\partial_{y_0} g_{\omega}) = \sum_{\mu=r,s,p,q,z} \frac{\partial f_\omega}{\partial \mu} \frac{\partial n}{\partial y} \frac{\partial n+1}{\partial y_0} + \frac{\partial f_\omega}{\partial g_\omega} \frac{\partial n+1}{\partial y_0}, \\
\partial_{y_0} g_{\omega}(0, y_0) = \omega_0^0(y_0), \quad \omega = r, s, p, q, z.
\end{array}
\right.
\]

(5.13)

By definition, put

\[
V_0 = \max_{\omega=r,s,p,q,z} \sup_{y_0 \in \Omega} |\omega_0^0(y_0)|.
\]

Taking into account (5.13), consider the majorant problem

\[
\frac{d}{dx} V = 5a\psi^2(x) V + a\psi(x), \quad V(0) = V_0.
\]

(5.14)

By linearity, the Cauchy problem (5.14) is solvable on the whole compactum \(G(\bar{x}, \bar{y}) \).
Recall that \(\psi \geq 1 \) and right parts of (5.14) are nonnegative. Therefore, the initial approximation \(\omega_0 \) satisfy to
\[
|\partial_y \omega_0| \leq \psi(x) V(x), \quad \omega = r, s, p, q, z.
\]
Suppose
\[
|\partial_y^n \omega| \leq \psi(x) V(x), \quad \omega = r, s, p, q, z. \quad (5.15)
\]
By (5.10), (5.12), (5.15), we get
\[
|\partial_y^{n+1} \omega| \leq \psi(x) V(x), \quad \omega = r, s, p, q, z. \quad (5.16)
\]
From (5.6), by estimates (5.12), (5.16), we get
\[
|\partial_y^{n+1} (x, y)| \leq \psi(x) V(x), \quad \omega = r, s, p, q, z.
\]
Thus,
\[
\Phi(x) = \psi(x) V(x). \quad \square
\]

6 Existence and uniqueness of a solution

The uniqueness of a solution of the Cauchy problem (3.32), (3.32\(^0\)) follows the uniqueness theorem ([RYa], Chapter 1, § 8, Subsection 2).

In this section, as far as in the Section 2, we consider the Cauchy problem for the general system (2.8), (2.8\(^0\)) with respect to the unknown vector-function \(u = (u_1, \ldots, u_m) \). Suppose successive approximations \(\{\tilde{u}(x, y)\} \) and their derivatives \(\{\tilde{u}(x, y)\} \) are uniformly bounded on the compactum (4.6) for an arbitrary point \((\bar{x}, \bar{y}) \in [0, +\infty) \times \mathbb{R} \). All considerations are being made over this compactum. We follow here the standard scheme of the proof from [RYa], Chapter 1, § 8, Subsection 2. Also [Tun-dist] was used.
Suppose \(\varphi(u) \in C^1 \). By definition, put \(\bar{\varphi}(\lambda) = \varphi(\bar{u} + \lambda(u - \bar{u})) \), \(\lambda \in \mathbb{R} \).

By the Newton—Leibniz formula, we have

\[
\bar{\varphi}(1) - \bar{\varphi}(0) = \varphi(u) - \varphi(\bar{u}) = \int_0^1 \bar{\varphi}_\lambda d\lambda = \int_0^1 \left(\sum_{j=1}^{m} \frac{\partial \varphi}{\partial u_j}(\bar{u} + \lambda(u - \bar{u}))(u_j - \bar{u}_j) \right) d\lambda.
\]

Finally, we obtain

\[
\varphi(u) - \varphi(\bar{u}) = \sum_{j=1}^{m} (u_j - \bar{u}_j) \int_0^1 \frac{\partial \varphi}{\partial u_j}(\bar{u} + \lambda(u - \bar{u})) d\lambda. \tag{6.1}
\]

6.1 Continuity of the solution

Lemma 6.1. The vector-function \(\lim_{n \to \infty} u(x, y) \) is continuous.

Proof. A sufficient condition on convergence of a functional sequence to a continuous function is given by the classical theorem: *elements of a sequence must be continuous functions, and the sequence must be uniformly convergent.*

Uniform convergence of the sequence \(\{\bar{u}^n\} \) follows uniform convergence of the series \(\sum_{n=0}^{\infty} (\bar{u}^{n+1} - \bar{u}^n)(x, y) \).

Let \(\bar{u}^{n+1} \), \(\bar{u}^n \) be successful approximations. By (4.1), we have

\[
(\partial_x + \xi_i(x, y, \bar{u}^n) \partial_y) \bar{u}^{n+1}_i = f_i(x, y, \bar{u}^n),
\]

\[
(\partial_x + \xi_i(x, y, \bar{u}^{n+1}) \partial_y) \bar{u}^n_i + \xi_i(x, y, \bar{u}^n) u_{iy} = f_i(x, y, \bar{u}^{n+1}) + \xi_i(x, y, \bar{u}^n) u_{iy},
\]

\[
\bar{u}^n(0, y) = u(0, y) = u^0(y).
\]

By subtracting, with respect to \(\bar{u}^{n+1} - \bar{u}^n \) we get the Cauchy problem

\[
\begin{cases}
(\partial_x + \xi_i(x, y, \bar{u}^{n+1}) \partial_y)(\bar{u}^{n+1}_i - \bar{u}^n_i) = f_i(x, y, \bar{u}^{n+1}) - f_i(x, y, \bar{u}^n), \\
\quad -u_{iy}(\xi_i(x, y, \bar{u}^{n+1}) - \xi_i(x, y, \bar{u}^n)), \\
(\bar{u}^{n+1} - \bar{u}^n)(0, y) = 0.
\end{cases}
\]
By (6.1), with respect to $r = \frac{n+1}{r} = \frac{n+1}{u} - \frac{n}{u}$ we get

$$
\begin{align*}
\left\{ \begin{array}{l}
(\partial_x + \xi_i(x, y, \frac{n+1}{r}) \partial_y) \frac{n+1}{r} = \\
= \sum_{j=1}^m \int_0^1 \left(\frac{\partial f_i}{\partial u_j}(x, y, \frac{n}{r} + \lambda r) - \frac{n}{u_i y} \frac{\partial \xi_i}{\partial u_j}(x, y, u + \lambda r) \right) d\lambda,
\end{array} \right. \\
n \frac{n+1}{r}(0, y) = 0.
\end{align*}
$$

By (2.10), we get

$$
|\frac{n+1}{r}| \leq \int_0^x \max_k |r_k| \sum_{j=1}^m \int_0^1 \left(|\frac{\partial f_i}{\partial u_j}| + |\frac{n}{u_i y}| |\frac{\partial \xi_i}{\partial u_j}| \right) d\lambda d\tau. \quad (6.2)
$$

From (3.32), taking into account C^1-boundedness of vector-functions $\rho, \sigma, \pi, \kappa$ and uniform boundedness of $\{\frac{n}{u_i y}\}$, we obtain uniform boundedness of $|\frac{\partial f_i}{\partial u_j}|$, $|\frac{\partial \xi_i}{\partial u_j}|$ is 0 or 1, and $\{\frac{n}{u_i y}\}$ is uniformly bounded, therefore, we have

$$
\sum_{j=1}^m \int_0^1 \left(|\frac{\partial f_i}{\partial u_j}| + |\frac{n}{u_i y}| |\frac{\partial \xi_i}{\partial u_j}| \right) d\lambda \leq C,
$$

where C is some constant. So the left part is uniformly bounded. By definition, put

$$
R_n(x) = \max_i \sup_{(\tau, y) \in [0, x] \times \mathbb{R}} |\frac{\partial f_i}{\partial u_j}|(\tau, y)|.
$$

Then (6.2) is

$$
R_{n+1}(x) \leq C \int_0^x R_n(\tau) d\tau. \quad (6.3)
$$

By recursive applying (6.3), we have

$$
R_{n+1}(x) \leq \max_{\tau \in [0, x]} R_1(\tau) \left(\frac{C x}{n!} \right) n \leq \max_{\tau \in [0, x]} R_1(\tau) \left(\frac{C x}{n!} \right) n,
$$

therefore, by the Weierstrass criterion, we obtain uniform convergence of $\sum_{n=0}^\infty \left(\frac{n+1}{r} - \frac{n}{u} \right)(x, y)$ in $[0, x] \times \mathbb{R}$. Thus $\lim_{n \to \infty} \frac{n}{u}(x, y)$ is continuous in $[0, x] \times \mathbb{R}. \Box$
6.2 Continuous differentiability of the solution

Lemma 6.2. The vector-function \(\lim_{n \to \infty} n\mathbf{u}(x, y) \) is continuously differentiable.

Proof. To prove continuity of \(\lim_{n \to \infty} (n\mathbf{u})_y \), we get the Arzela theorem. Uniform boundedness of \(\{n\mathbf{u}_y\} \) is proved already. Now we shall prove equicontinuity of \(\{n\mathbf{u}_y\} \).

First, we shall prove equicontinuity of \(\{n\mathbf{u}_y\} \). By (6.1), we have

\[
\begin{align*}
\mathbf{u}(x_1, y_1) - \mathbf{u}(x_2, y_2) &= (x_1 - x_2) \int_0^1 n\mathbf{u}_x(x_2 + \lambda (x_1 - x_2), y_2 + \lambda (y_1 - y_2)) d\lambda + \\
&+ (y_1 - y_2) \int_0^1 n\mathbf{u}_y(x_2 + \lambda (x_1 - x_2), y_2 + \lambda (y_1 - y_2)) d\lambda.
\end{align*}
\]

From (4.1) and from uniform boundedness of \(\{n\mathbf{u}_x\}, \{n\mathbf{u}_y\} \), we get uniform boundedness of \(\{n\mathbf{u}_x\} \). Finally, we obtain equicontinuity of \(\{n\mathbf{u}_y\} \).

By (6.1), with respect to the vector-function \(n\mathbf{g}(\tau, x, y) \), we have

\[
\begin{align*}
\mathbf{g}(\tau, x_1, y_1) - \mathbf{g}(\tau, x_2, y_2) &= (x_1 - x_2) \int_0^1 n\mathbf{g}_x(\tau, x_2 + \lambda (x_1 - x_2), y_2 + \lambda (y_1 - y_2)) d\lambda + \\
&+ (y_1 - y_2) \int_0^1 n\mathbf{g}_y(\tau, x_2 + \lambda (x_1 - x_2), y_2 + \lambda (y_1 - y_2)) d\lambda.
\end{align*}
\]

Uniform boundedness of \(\{\mathbf{n g}_x\}, \{\mathbf{n g}_y\} \) follows (2.11) and uniform boundedness of \(\{\mathbf{n u}_x\}, \{\mathbf{n u}_y\} \) (here \(\xi_{yi} = 0, \partial \xi_{yi} / \partial n \mathbf{u}_j \) is 0 or 1). Therefore,

\[
|\mathbf{g}_i(\tau, x_1, y_1) - \mathbf{g}_i(\tau, x_2, y_2)| \leq \text{const} \left(|x_1 - x_2| + |y_1 - y_2| \right),
\]

i.e. \(\{\mathbf{g}_i\} \) is equicontinuous.

Consider the function \(n+1 \mathbf{u}_{iy} \) on the compactum \(G(\bar{x}, \bar{y}) \):

\[
\begin{align*}
n+1 \mathbf{u}_{iy}(x, y) &= n \mathbf{u}_{iy}(\mathbf{g}_i(0, x, y)) + \\
&+ \int_0^\tau \left\{ -n+1 \xi_{iy} + \sum_j \frac{\partial \xi_{i}}{\partial n+1 \mathbf{u}_{j}} \cdot n+1 \mathbf{u}_{jy} \right\} + \left(f_{iy} + \sum_j \frac{\partial f_{i}}{\partial n \mathbf{u}_{j}} \cdot n \mathbf{u}_{jy} \right) d\tau \quad \text{(6.4)}
\end{align*}
\]

32
Here \(\xi_{iy} = 0 \), \(\partial \xi_i/\partial u_j \) is 0 or 1. \(\{\alpha^i\}, \{g^i\} \) are equicontinuous, therefore we have equicontinuity of

\[
\{u_0^{i\nu}(g_i(0; x, y))\},
\{f_{iy}(\tau, g_i^1(\tau, x, y), \alpha^{i\nu}(\tau, g_i(\tau, x, y))\}
\{\partial f_{iy}/\partial \alpha_{uj}(\tau, g_i^1(\tau, x, y), \alpha^{i\nu}(\tau, g_i(\tau, x, y))\}.
\]

We shall use the Cantor theorem: if a function is continuous on a compactum from \(\mathbb{R}^s \), then the function is equicontinuous on this compactum. Taking into account uniform boundedness of \(\{\alpha^i\} \) and the Cantor theorem, we obtain equicontinuity of right parts of (6.4), i.e. of \(\{\alpha^i\} \), on the compactum \(G(\bar{x}, \bar{y}) \).

We shall use the Arzela theorem: if a functional sequence is uniformly bounded and equicontinuous on a compactum, then there exists a uniformly convergent subsequence on the compactum. Therefore, there exists a uniformly convergent subsequence \(\{\alpha_{k^i}^i\} \). By the theorem on termwise differentiating of a functional sequence, the vector-function \(\lim_{k \to \infty} \alpha^{i\nu}(x, y) \) is continuously differentiable with respect to \(y \), and

\[
\partial_y \lim_{k \to \infty} \alpha_k^i = \lim_{k \to \infty} \partial_y \alpha_k^i. \quad (6.5)
\]

Taking into account the previously proved uniform convergence of \(\{\alpha^i\} \), we have

\[
\lim_{k \to \infty} \alpha^i = \lim_{n \to \infty} \alpha^i. \quad (6.6)
\]

By (6.6), we get from (6.5) the next rule for differentiating the vector-function \(\lim_{n \to \infty} \alpha^i \) with respect to \(y \):

\[
\partial_y \lim_{n \to \infty} \alpha^i = \lim_{k \to \infty} \partial_y \alpha_k^i. \quad (6.7)
\]

Vector-functions \(\alpha_{kj}^i \) are continuous, therefore the vector-function \(\partial_y \lim_{n \to \infty} \alpha^i \) is continuous.
By passage to the limit, we get from (4.1) the next rule for differentiating the vector-function $\lim_{n \to \infty} \overrightarrow{u}(x, y)$ with respect to x:

$$\partial_x \lim_{n \to \infty} \overrightarrow{u}(x, y) = f_i(x, y, \lim_{n \to \infty} \overrightarrow{u}) - \xi_i(x, y, \lim_{n \to \infty} \overrightarrow{u})(\partial_y \lim_{n \to \infty} \overrightarrow{u}_i). \quad (6.8)$$

By continuity of vector-functions f, ξ, $\lim_{n \to \infty} \overrightarrow{u}$, $\partial_y \lim_{n \to \infty} \overrightarrow{u}$, we get continuity of the derivative with respect to x.

Now we proved that $\lim_{n \to \infty} \overrightarrow{u}(x, y) \in C^1(G(\bar{x}, \bar{y}))$.

Put the limit function into the Cauchy problem (2.8), (2.80). Taking into account (6.8), we see that the limit function is a solution of the Cauchy problem.

It remains to note that for $\forall (x, y) \in [0, +\infty) \times \mathbb{R}$ we can get some compactum $G(\bar{x}, \bar{y}) \ni (x, y)$. Consider an intersection of two such compact sets. Initial approximations are coincide in the intersection, and they are equal to the initial approximation for the half-plane $[0, +\infty) \times \mathbb{R}$. Therefore, limit functions are coincide too, so they are restrictions of the limit function for the half-plane $[0, +\infty) \times \mathbb{R}$.

The Arzela theorem is a pure existence theorem. Note that we use the Arzela theorem in the proof, but we don’t use this theorem for constructing the solution. \square

7 The main result

7.1 Theorem of the existence and the uniqueness

If (4.4), (4.7), (4.8) are satisfied, then there exists a unique C^1-solution of (3.32), (3.320) in the half-plane $x \geq 0$. It was proved above. Now we formulate conditions on coefficients of the equation (3.1) and on initial functions. Under these conditions the inequalities (4.4), (4.7), (4.8) are satisfied.

Let M_1, M_2 be arbitrary positive constants, and let ε, δ be constants under conditions

$$0 < \varepsilon \leq \delta, \quad (\delta - \varepsilon)/2 < 1; \quad (7.1)$$

here $\eta(x) \in C^0(\mathbb{R})$ is an arbitrary nonnegative function.
By definition, put
\[
N_1 = \max\{M_1, \frac{1}{2}M_2 (4M_1 + 9M_1^2)\},
\]
\[
N_2 = M_1 M_2 ,
\]
\[
\tilde{\eta}(x) = \frac{1}{1 + 2M_1 |x|} \eta(x) .
\] (7.2)

Suppose

1) \(A, B, C, D \in C^2(\mathbb{R}^5) \);
2) \(z^0 \in C^3(\mathbb{R}) , \ p^0 \in C^2(\mathbb{R}) \);
3) \(|a| \leq M_1 , \ 1/\Delta \leq M_2 , \)
\[
\left| \frac{\partial a}{\partial \omega} \right| \leq M_1 \eta(x) , \quad \left| \frac{\partial a}{\partial z} \right| \leq M_1 \tilde{\eta}(x) ,
\]
\(a = B, C, D, \Delta , \ \omega = x, y, p, q \); (7.3)
4) \((6N_1 + 8N_2) \int_{-\infty}^{+\infty} \eta(x) \ dx \leq (\delta - \varepsilon)/2 ; \)
5) \(|r^0|, |s^0| \leq 1 - (\delta - \varepsilon)/2 , \quad |z^0_y|, |p^0| \leq 1 ; \)
6) \(\inf_{y \in \mathbb{R}} r^0(y) - \sup_{y \in \mathbb{R}} s^0(y) \geq \delta > 0 . \)

Theorem 7.1. Under conditions (7.3) there exists a unique \(C^3 \)-smooth solution of the Cauchy problem (3.1), (3.3).

Proof. First, we shall prove that conditions (4.4), (4.7), (4.8) (and conditions before them in the beginning of Subsection 4.2) follow conditions (7.3).

In conditions (4.4) we suppose \(C^4 \)-smoothness and boundedness of \(r^0 , s^0 \). Now we shall prove that the condition \(r^0 , s^0 \in C^1 \) follows (7.3). From the first and the second equations of (3.32), we have
\[
r^0(y) - s^0(y) = \frac{\Delta(0, y, z^0(y), p^0(y), z^0_y(y))}{z^0_{yy}(y) + B(0, y, z^0(y), p^0(y), z^0_y(y))} ,
\]
hence,
\[
\frac{z^0_{yy}(y) + B(0, y, z^0(y), p^0(y), z^0_y(y)) = \frac{\Delta(0, y, z^0(y), p^0(y), z^0_y(y))}{r^0(y) - s^0(y)}} .
\]
Therefore, by (7.3), point 6), and by the condition $1/\Delta \leq M_2$ from (7.3), point 3), we get

$$z_{yy}^0(y) + B(0, y, z^0(y), p^0(y), z_y^0(y)) \neq 0.$$

Then, by (3.32) and by (7.3), points 1), 2), we get $r^0, s^0 \in C^1$. By (7.3), point 5), we have boundedness of r^0, s^0.

The conditions (4.4) are formulated under assumptions of C^1-smoothness and boundedness of p^0, q^0. By (3.32), we have $q^0 = z_y^0$. By (7.3), point 2), we get C^1-smoothness of p^0, q^0. By (7.3), point 5), we have boundedness of p^0, q^0.

Further, the conditions (4.4) are formulated under assumptions of C^1-smoothness and boundedness of vector-functions $\rho, \sigma, \pi, \kappa$. By (3.32), these vector-functions depend on $1/\Delta$ and on first derivatives of B, C, D, Δ. By (7.3), point 3), $1/\Delta$ is bounded away from zero by some positive constant. Then, by (7.3), point 1), from C^2-smoothness of A, B, C, D, we have C^1-smoothness of vector-functions $\rho, \sigma, \pi, \kappa$. By (7.3), point 3), we have boundedness of vector-functions $\rho, \sigma, \pi, \kappa$.

By (7.3), point 3), we obtain

$$|\rho_i|, |\sigma_i| \leq M_1\eta, \quad i = 0, 13;$$
$$|\rho_i|, |\sigma_i| \leq \frac{1}{2}M_2(4M_1 + 9M_1^2)\eta, \quad i = 1, 2, 7, 8;$$
$$|\rho_i|, |\sigma_i| \leq M_1M_2\tilde{\eta}, \quad i = 3, 4, 5, 6, 9, 10, 11, 12;$$
$$|\pi_i|, |\kappa_i| \leq M_1, \quad i = 0, 1;$$

Hence, by (4.3), (7.2), we have

$$\alpha_1(x) \leq \max\{M_1, \frac{1}{2}M_2(4M_1 + 9M_1^2)\}\eta(x) = N_1\eta(x),$$
$$\alpha_2(x) \leq M_1M_2\tilde{\eta}(x) = N_2\tilde{\eta}(x),$$
$$\alpha_3 \leq M_1. \quad (7.4)$$

Then, by points 4), 5) of (7.3), we satisfy the second inequality (4.4):

$$U_0 + 6\int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8\int_{-\infty}^{+\infty} (1 + 2\alpha_3|x|) \alpha_2(x) \, dx \leq$$
$$\leq U_0 + (6N_1 + 8N_2)\int_{-\infty}^{+\infty} \eta(x) \, dx \leq (1 - (\delta - \varepsilon)/2) + (\delta - \varepsilon)/2 = 1.$$
The first inequality (4.4) follows (7.3), point 5). (4.7) is (7.3), point 6).

Taking into account (7.2) and (7.4), we see that (4.8) is (7.3), point 4).

Thus, (4.4), (4.7), (4.8) follows (7.3). By (4.4), (4.7), (4.8), there exists a unique C^1-solution of (3.32), (3.320) in the half-plane $x \geq 0$.

In the half-plane $x \leq 0$ a solution is constructed analogously. By the same initial functions, we obtain C^1-smoothness of a solution on the whole plain.

By $1/\Delta \leq M_2$ (it is (7.3), point 3)), we have $\Delta > 0$. By Theorem 3.2, it is sufficient for corresponding a C^1-solution of (3.32), (3.320) to a C^3-solution of (3.1), (3.3). □

Example 7.1. Conditions (7.3) define nonempty set of coefficients and initial data. Indeed, we take $A = 1/16$, $B = 1/2$, $C = 0$, $D = 0$, $z^0 = 1$, $p^0 = 1$. Then, by (3.2), we have $\Delta^2 = 4A$, so $\Delta = 1/2$. (3.32) is $r^0, s^0 = (C \pm \Delta)/2B$, therefore, $r^0, s^0 = \pm 1/8$. Thus, constants $M_1 = 1/2$, $M_2 = 2$, $\delta = 1/4$, $\varepsilon = 1/4$ and functions $\eta(x) = 0$, $\tilde{\eta}(x) = 0$ satisfy (7.3). Constants N_1, N_2 are defined by (7.2). □

Example 7.2. Equations with constant coefficients. (3.32) is reduced to its independent subsystem (3.33):

\[
\begin{align*}
(\partial_x + s \partial_y) r &= 0, \\
(\partial_x + r \partial_y) s &= 0.
\end{align*}
\]

For this system conditions (7.3) are conditions on initial functions r^0, s^0. We get r, s by solving this Cauchy problem, and then we solve linear equations (3.32) with respect to p, q, z. By (3.320), initial functions p^0, q^0, z^0 are functions of r^0, s^0. □

7.2 Initial conditions

We set some sufficient conditions such that conditions on initial functions in (7.3) are satisfied.

Let $m_1 \geq 0$, $m_2 \geq 0$, $L_1 > 0$, $L_2 > 0$, $L_3 > 0$
be arbitrary constants. By definition, put constants

\[
m_3 = \frac{m_1}{L_1 - m_1} \left(1 + L_3 + \frac{m_2}{2L_1}\right) + \frac{m_2}{2L_1},
\]
\[
m_4 = \frac{m_1(2 + L_3)}{L_1 - m_1} + \frac{m_2}{2(L_1 - m_1)},
\]
\[
L_4 = \frac{1}{2M_2L_2},
\]

where \(M_2 \) is the constant from (7.3), point 3).

Suppose

1) \(z^0 \in C^3(\mathbb{R}), \ p^0 \in C^2(\mathbb{R}) \);
2) \(|z^0_y| \leq 1, \ |p^0| \leq 1 \);
3) \(|z^0_{yy}| \leq m_1, \ |p^0_y| \leq m_1 \);
4) \(0 < L_1 \leq B \leq L_2 \);
5) \(L_1 - m_1 > 0 \);
6) \(|C| \leq m_2 \);
7) \(\frac{\Delta}{2L_1} \leq L_3 \);
8) \(L_3 + m_3 \leq 1 - \frac{\delta - \varepsilon}{2} \);
9) \(L_4 - m_4 \geq \delta/2 > 0 \).

Theorem 7.2. Suppose coefficients \(A, B, C, D \) of the equation (3.1) satisfy (7.3), and, moreover, conditions (7.6) are satisfied. Then \(z^0, p^0 \), and functions \(r^0, s^0 \) as functions of \(z^0, p^0 \) (see (3.32)) satisfy (7.3).

Proof. (7.3), point 2) follows (7.6), point 1). (7.3), point 5) for functions \(z^0_y, p^0 \) is (7.6), point 2).

Now we shall prove that for \(r^0, s^0 \) the condition (7.3), point 5) is satisfied. We have

\[
\frac{C \pm \Delta - 2p^0_y}{2(z^0_{yy} + B)} = \frac{C \pm \Delta}{2B} - \frac{p^0_y}{z^0_{yy} + B} - \frac{(C \pm \Delta)z^0_y}{2(z^0_{yy} + B)}.
\]

therefore,

\[
\frac{C \pm \Delta - 2p^0_y}{2(z^0_{yy} + B)} = \frac{C \pm \Delta}{2B} - \frac{p^0_y}{z^0_{yy} + B} - \frac{(C \pm \Delta)z^0_y}{2(z^0_{yy} + B)}. \tag{7.7}
\]
By definition, put the index $\omega = r, s$. By (3.32), (7.7), we get
\[
|\omega| = \left| \frac{C \pm \Delta - 2p_y^0}{2(z_y^0 + B)} \right| \leq \frac{|C| + |\Delta|}{2|B|} + \frac{|p_y^0|}{|z_y^0 + B|} + \frac{|C| + |\Delta||z_y^0|}{2|z_y^0 + B| \cdot |B|} \leq (7.6), \ p. 3) - 6)
\]
\[
\leq \frac{|\Delta| + m_2}{2L_1} + \frac{1}{L_1 - m_1} \left(m_1 + \frac{m_1(|\Delta| + m_2)}{2L_1} \right) = (7.6), \ p. 7)
\]
\[
\leq L_3 + \frac{m_2}{2L_1} + \frac{m_1}{L_1 - m_1} \left(1 + L_3 + \frac{m_2}{2L_1} \right) = L_3 + m_3 \leq 1 - \frac{\delta - \varepsilon}{2}.
\]
Now we shall prove that (7.3), point 6) is satisfied. We have
\[
\frac{C \pm \Delta - 2p_y^0}{2(z_y^0 + B)} - \frac{\pm \Delta}{2B} = \frac{(C \pm \Delta)B - 2p_y^0B - (\pm \Delta)(z_y^0 + B)}{2(z_y^0 + B)B} =
\]
\[
= \frac{CB - 2p_y^0B - (\pm \Delta)z_y^0}{2(z_y^0 + B)B} = \frac{C - 2p_y^0}{2(z_y^0 + B)} - \frac{(\pm \Delta)}{2B} \cdot \frac{z_y^0}{z_y^0 + B},
\]
therefore,
\[
\frac{C \pm \Delta - 2p_y^0}{2(z_y^0 + B)} = \frac{\pm \Delta}{2B} - \frac{(\pm \Delta)}{2B} \cdot \frac{z_y^0}{z_y^0 + B} + \frac{C - 2p_y^0}{2(z_y^0 + B)}.
\] (7.8)
By definition, put the index $\omega = r, s$. By (3.32), (7.8), we get
\[
|\omega| = \left| \frac{C \pm \Delta - 2p_y^0}{2(z_y^0 + B)} \right| \geq
\]
\[
\geq \inf \left| \frac{\pm \Delta}{2B} \right| - \sup \left| \frac{\pm \Delta}{2B} \cdot \frac{z_y^0}{z_y^0 + B} \right| - \sup \left| \frac{C - 2p_y^0}{2(z_y^0 + B)} \right| \geq (7.6), \ p. 4)
\]
\[
\geq \frac{1}{M_2} \cdot \frac{1}{2L_2} - \sup \left| \frac{\pm \Delta}{2B} \cdot \frac{z_y^0}{z_y^0 + B} \right| - \sup \left| \frac{C - 2p_y^0}{2(z_y^0 + B)} \right| \geq (7.6), \ p. 3, 5, 7)
\]
\[
\geq \frac{1}{M_2} \cdot \frac{1}{2L_2} - L_3 \cdot \frac{m_1}{L_1 - m_1} - \frac{m_2 + 2m_1}{2(L_1 - m_1) \geq (7.5)
\]
\[
\geq L_4 - m_4 \geq \delta/2 > 0.
\]
The sign of ω^0 is defined by its principal part $\pm \Delta/2B$, hence, r^0 and s^0 have different signs. Moreover, from $B > 0$ ((7.6), point 4)) and from $\Delta > 0$ ((7.3), point 3)), we get $r^0 > 0, s^0 < 0$. Then, from the proved estimate $|\omega^0| \geq \delta/2$, we obtain $\inf_{y \in \mathbb{R}} r^0(y) - \sup_{y \in \mathbb{R}} s^0(y) \geq \delta > 0$. □

Example 7.3. Conditions (7.6) are satisfied by coefficients and initial functions of Example 7.1. In this case, we have $M_2 = 2, m_i = 0, L_i = 1/2, i = 1, 2, 3, 4$. Setting small perturbations of coefficients and of initial functions from Example 7.1, we obtain an example of an equation with nonconstant coefficients, dependent on x, y, z, z_x, z_y, and with nonconstant initial functions. □

8 Supplement. Contact approach

8.1 A contact transformation can transform a classical solution into a solution which is singular at each point

Consider the next example. The author is grateful to V. V. Lychagin [Ly75], [Ly79] and to L. V. Zilbergleit for acquainting foundations on this theme.

Example 8.1. Consider the $J^1(\mathbb{R}^2)$ space with coordinates x, y, z, p, q. Here x, y mean independent variables, z means an unknown function $z(x, y)$, and p, q mean first derivatives z_x, z_y respectively. There exists the $\Lambda^2 J^1(\mathbb{R}^2)$ space over $J^1(\mathbb{R}^2)$.

Assuming $p = f_x, q = f_y$, where $f(x, y)$ is some function over \mathbb{R}^2, we have

$$
\begin{align*}
&dx \wedge dq + dy \wedge dp = dx \wedge d(f_y) + dy \wedge d(f_x) = dx \wedge (f_{xy} dx + f_{yy} dy) + \\
&+dy \wedge (f_{xx} dx + f_{xy} dy) = f_{xy} dx \wedge dx + f_{yy} dx \wedge dy + f_{xx} dy \wedge dx + \\
&+f_{xy} dy \wedge dy = f_{yy} dx \wedge dy - f_{xx} dx \wedge dy = (f_{yy} - f_{xx}) dx \wedge dy
\end{align*}
$$

and

$$
\begin{align*}
&dp \wedge dq + dx \wedge dy = d(f_x) \wedge d(f_y) + dx \wedge dy = (f_{xx} dx + f_{xy} dy) \wedge (f_{xy} dx + \\
&+f_{yy} dy) + dx \wedge dy = f_{xx} f_{xy} dx \wedge dx + f_{xx} f_{yy} dx \wedge dy + f_{xy} f_{xy} dy \wedge dx + \\
&+f_{xy} f_{yy} dy \wedge dy + dx \wedge dy = (f_{xx} f_{yy} - (f_{xy})^2) dx \wedge dy + dx \wedge dy = \\
&= (\text{hess } f + 1) dx \wedge dy.
\end{align*}
$$
The next formulae for exterior forms \[\text{[Bour]}\] were used:

\[
\begin{align*}
\omega_1 \wedge (\omega_2 + \omega_3) &= \omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3, \\
aw_1 \wedge \omega_2 &= \omega_1 \wedge a\omega_2 = a(\omega_1 \wedge \omega_2), \\
\omega \wedge \omega &= 0,
\end{align*}
\]

where \(\omega, \omega_1, \omega_2, \omega_3\) are exterior forms, \(a\) is a constant.

Therefore, to each form

\[
dx \wedge dq + dy \wedge dp
\]
from \(\Lambda^2 J^1(\mathbb{R}^2)\) we assign the form

\[
(f_{yy} - f_{xx}) \ dx \wedge dy
\]
from \(\Lambda^2(\mathbb{R}^2)\), or a linear wave equation, and to each form

\[
dp \wedge dq + dx \wedge dy
\]
from \(\Lambda^2 J^1(\mathbb{R}^2)\) we assign the form

\[
(hess \ f + 1) \ dx \wedge dy
\]
from \(\Lambda^2(\mathbb{R}^2)\), or a simple Monge–Ampere equation.

Consider the Ampere transformation

\[
\bar{x} = -p, \quad \bar{y} = y, \quad \bar{z} = z - px, \quad \bar{p} = x, \quad \bar{q} = q.
\]

It is a contact transformation, i.e. it conserves the form \(dz - p \ dx - q \ dy\). Namely,

\[
\begin{align*}
d\bar{z} - \bar{p} \ d\bar{x} - \bar{q} \ d\bar{y} &= d(z - px) - x \ d(-p) - q \ dy = \\
&= dz - dp \ x - p \ dx + x \ dp - q \ dy = dz - p \ dx - q \ dy.
\end{align*}
\]

The Ampere transformation takes the Monge–Ampere equation \(\text{hess} \ z = -1\) to the linear wave equation \(z_{xx} - z_{yy} = 0\), because

\[
d\bar{p} \wedge d\bar{q} + d\bar{\bar{x}} \wedge d\bar{\bar{y}} = dx \wedge dq + d(-p) \wedge dy = dx \wedge dq - dp \wedge dy = dx \wedge dq + dy \wedge dp.
\]

The Ampere transformation takes the classical solution \(z = xy\) of the equation \(\text{hess} \ z = -1\), which is a 2-dimensional integral variety \((u, v, uv, v, u)\), to the integral variety \((-v, v, 0, u, u)\), which is a multivalued solution of the wave equation \(z_{xx} - z_{yy} = 0\). The projecting map from \(\mathbb{R}^5\) to \(\mathbb{R}^2 = (x, y)\) takes the 2-dimensional integral variety \((-v, v, 0, u, u)\) to the 1-dimensional line \((-v, v)\), which isn’t a 2-dimensional domain. So the 2-dimensional integral variety \((-v, v, 0, u, u)\) at any its point couldn’t be used as a classical solution of the wave equation. \(\square\)
References

[Br] Bratkov Yu. N. On the existence of a classical solution of the hyperbolic Monge–Ampere equation on the whole, Fundamental’naya i Prikladnaya Matematika, 6, 2000, 2, 379–390. (Russian)

[Cour] Courant R. Partial differential equations, New York, London, 1962.

[HW] Hartman P., Wintner A. On hyperbolic partial differential equations // Amer. J. Math., 1952, v. 74, 834–864.

[KLV] Krasil’shchik I. S., Lychagin V. V., Vinogradov A. M. Geometry of jet spaces and non linear partial differential equations, New York: Gordon and Breach, 1986.

[Ler] Leray J. Hyperbolic differential equations, The Institute for Advanced Study, Princeton, 1953. Russian: Leray J. Hyperbolic differential equations, Moscow: Nauka, 1984.

[Poz] Poznyak E. G. On the regular realization in the large of two dimensional metrics of negative curvature, Ukrainsky Geom. Sbornik, 1966, 3, 78–92. (Russian)

[RYa] Rozhdestvensky B. L., Yanenko N. N. Systems of quasilinear equations and their applications to gas dynamics, 2-nd Ed., Moscow, Nauka, 1978. (Russian) English version: Rozhdestvenskii B. L. and Yanenko N. N. Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983.

[Tun] Tunitsky D. V. Systems in Riemann invariants and Monge–Ampere equations of hyperbolic type, Dep. VINITI 16.07.87, No. 5122–B 87, Moscow, 1987. (Russian)

[Tun-dis] Tunitsky D. V. Systems in Riemann invariants and Monge–Ampere equations of hyperbolic type, Thesis, Moscow State University, 1987. (Russian)

[Ly75] Lychagin V. V. Local classification of nonlinear partial differential equations of the first order, Uspekhi Matematicheskikh Nauk 30, 1975, 1, 101–171. (Russian)
[Ly79] Lychagin V. V. Contact geometry and nonlinear differential equations of the second order, *Uspekhi Matematicheskikh Nauk* 34, 1979, 1, 137–165. (Russian)

[Vin] Vinogradov A.M. Geometric Singularities of Solutions of Nonlinear Partial Differential Equations *Differential Geometry and Its Applications. Proceedings of the Conference. August 24 – 30, 1986, Brno, Czechoslovakia*, 359–379. (English)

[Bour] N. Bourbaki, *Algèbre. Chapitre 3. Algèbre multilinéaire*, Paris: Hermann.

[Yan] N. N. Yanenko, ”On breaks in solutions of quasilinear equations”, *Uspekhi Matematicheskikh Nauk*, 10:2 (1955), 195–202. (Russian)

[Hong-93] J. X. Hong, ”Realization in \mathbb{R}^3 of Complete Riemannian Manifolds with Negative Curvature”, *Communications in Analysis and Geometry*, 1:4 (1993), 487–514. (English)

[Hong-95] Hong, Jiaxing, ”The Global Smooth Solutions of Cauchy Problems for Hyperbolic Equation of Monge–Ampere Type”, *Nonlinear Analysis, Theory, Methods & Applications*, Vol. 24, No. 12, pp. 1649–1663, 1995. (English)
Ю. Н. Братков
Гиперболическое уравнение Монжа-Ампера: классические решения на всей плоскости

Аннотация
На плоскости \(\mathbb{R}^2 = (x, y) \) рассматривается задача Коппи для гиперболического уравнения Монжа-Ампера

\[
\begin{cases}
 A + B z_{xx} + C z_{xy} + D z_{yy} + \text{hess} z = 0, \\
 z(0, y) = z^0(y), \quad z_x(0, y) = p^0(y), \quad y \in \mathbb{R}.
\end{cases}
\]

Здесь \(\text{hess} z = z_{xx} z_{yy} - z_{xy}^2 \), коэффициенты \(A, B, C, D \) зависят от \(x, y, z, z_x, z_y \). Уравнение гиперболично, если \(C^2 - 4BD + 4A > 0 \). Формулируются достаточные условия существования (единственного) \(C^2 \)-решения на всей плоскости.

Содержание

1 Введение .. 2

2 Системы в римановых инвариантах 4
 2.1 Одно модельное уравнение 4
 2.2 Система в римановых инвариантах........... 6

3 Системы в римановых инвариантах и уравнения Монжа-Ампера гиперболического типа 7
 3.1 Задача Коппи для уравнения Монжа-Ампера 8
 3.2 Система в полных дифференциалах 8
 3.3 Система в римановых инвариантах 10
 3.4 Сведение уравнения Монжа-Ампера к системе в инвариантах 14
 3.5 Окончательный вид системы в инвариантах .. 18

4 Последовательность приближенных решений 21
 4.1 Итерационная последовательность 21
 4.2 Равномерная ограниченность 22
 4.3 Гиперболичность в узком смысле 24
 4.4 Разрешимость итерационной системы 25
1 Введение

Эта известная задача была поставлена автору Е. В. Шикиным. Первая публикация сделана в [59] (получено редакцией в феврале 1998). Автор благодарен Д. В. Тунику, обнаружившему весьма тонкую (непринципиальную) ошибку. Ниже публикуется полный текст исправленного доказательства; замена метод последовательных приближений. Эта замена на результат не влияет. Пользуясь случаем, автор расширил и дополнил результат.

Используется сведение к системе пяти уравнений в римановых инвариантах [Тун]. Теория гиперболических систем весьма популярна для случая, когда собственные значения системы отделяются (например, разделись константами). В случае уравнения Монжа-Ампера собственные значения совпадают с решением системы, т.е. они неизвестны и их требуется найти.

Суть проблемы сформулировал в принстонских лекциях (1953) Ж. Лере ([Лере], гл. IX): "Удаётся доказать только локальную теорему существования... Она показывает, что для гиперболических уравнений существование решений в целом зависит от получения априорных оценок для их производных."

Построение классических решений на всей плоскости — особый вид спорта. Если в заданной области решение имеет особенности, то их заменой переменных можно вывести за пределы области. К этому сводятся
многие работы. Но если заданная область — вся плоскость, то выводить
сингулярности некуда. Мы получаем качественно иную задачу.

Еще Б. Риман показал, что некая конкретная гиперболическая си-
стема [Ωн] регулярных решений на всей плоскости не имеет. Класс слабо
нелинейных систем

\[(\partial_x + \xi_1(u_2)\partial_y) u_1 = 0,\]

\[(\partial_x + \xi_2(u_1)\partial_y) u_2 = 0\]

(имеется в виду \(\partial \xi_i/\partial u_i = 0, \ i = 1, 2\)) как систем, имеющих регулярные
решения на всей плоскости, ввел в 1955 г. Н. Н. Яненко [Ωн]. Рассмот-
рение систем двух уравнений в инвариантах с ненулевой правой частью
было проведено в 1967 г. Б. Л. Рождественским и А. Д. Сидоренко ([РД],
гл. 1, § 10, п. 3). Подходящим оказался класс (слабо нелинейных) систем,
гиперболических в узком смысле, т. е. систем с отделяемыми собственны-
ми значениями. Таким образом, теорема Рождественского-Сидоренко пе-
рерывает проблему априорной оценки производных в проблему априорной
оценки отделяемости собственных значений (\(\xi_1 \neq \xi_2\) на всей плоскости).

Приведем пример. Гиперболическое уравнение Монжа-Ампера с ко-
эффicientsами, зависящими только от \(x, y\), сводится к системе

\[(\partial_x + u_2\partial_y) u_1 = (u_1 - u_2) a_1(x, y, u_1),\]

\[(\partial_x + u_1\partial_y) u_2 = (u_1 - u_2) a_2(x, y, u_2).\]

Вычтем из первого уравнения второе, разделим на \(u_1 - u_2\) и, интегрируя
вдоль характеристики, получим равенство

\[(u_1 - u_2)(x, y) = (u_1^0(y) - u_2^0(y)) \exp \left\{ \int_0^x (a_1 - a_2 - u_2(y)) \, d\tau \right\}.\]

Из него следует, что если \(u_1^0(y) \neq u_2^0(y)\) для \(\forall y \in \mathbb{R}\), а \(u_1, u_2, u_2\) не
ходят в бесконечность ни в какой конечной точке, то \(u_1 - u_2 \neq 0\) в лю-
бой конечной точке. Попросту говоря, здесь мы имеем эквивалентность
априорных оценок для производных и для \(u_1, u_2, u_1 - u_2\), где условие
\(u_1 - u_2 \neq 0\) — это условие \(\xi_1 \neq \xi_2\).

Подход автора: автор волевым образом задает априорную оценку для
\(u_1, u_2, u_1 - u_2\). Мышление в этом направлении было блокировано.

Упомянем работы Чан-Шен Хона (Jia-Xing Hong) [Хон-93], [Хон-95],
о которых автор узнал в 2002 г. в Пекине. Статью [Хон-95] о глобальных
классических решениях уравнения

\[\text{hess } z = -k^2(x, y)\]
автор не смог понять, а статью Кон-93, которую можно рассматривать, в частности, как решение уравнения

$$\text{hess } z = -k^2(x, y)(1 + z_x^2 + z_y^2)^2,$$

не смог достать.

2 Системы в римановых инвариантах

2.1 Одно модельное уравнение

Пусть имеется плоскость $\mathbb{R}^2 = (x, y)$, и пусть $u(x, y)$ — неизвестная функция. Рассмотрим на примере уравнения

$$\left(\partial_x + \xi(x, y)\partial_y\right) u(x, y) = f(x, y) \quad (2.1)$$

основные понятия характеристики и интегрирования вдоль характеристики ([П2], гл. 1). Пусть $\xi, f \in C^1(\mathbb{R}^2)$.

Определение. Кривая на плоскости (x, y), задаваемая уравнениями

$$x = \tau, \quad y = g(\tau, x, y),$$

где функция $g(\tau, x, y)$ — решение задачи Коши

$$\begin{cases}
\partial_\tau g = \xi(\tau, g(\tau, x, y)), \\
g(x, x, y) = y,
\end{cases} \quad (2.2)$$

называется **характеристикой** уравнения (2.1).

Лемма 2.1.

$$\left(\partial_x + \xi\partial_y\right) g = 0. \quad (2.3)$$

Доказательство. Предположим, что функции g_x, g_y существуют, и найдем их явный вид, следуя [П3]. Продифференцируем соотношение (2.2) по x:

$$\partial_\tau \partial_x g = \left(\frac{\partial \xi}{\partial g}\right)(\tau, g) \partial_x g. \quad (2.4)$$

Получаем линейное обыкновенное дифференциальное уравнение относительно $\partial_x g$. Начальное условие для него получаем дифференцированием начального условия (2.2):

$$\partial_x g(x, x, y) = 0,$$

$$\partial_\tau \partial_x g = 0, \quad (2.3)$$

В итоге получаем дифференциальное уравнение второго порядка для $g(x, y)$.
т.е.

$$\partial_\tau g(\tau, x, y)|_{\tau=x} + \partial_x g(\tau, x, y)|_{\tau=x} = 0,$$

откуда, с учетом (2.2),

$$\partial_x g(\tau, x, y)|_{\tau=x} = -\xi(x, y). \tag{2.4^0}$$

Решая задачу Коши (2.4), (2.4^0), получаем:

$$\partial_x g(\tau, x, y) = -\xi(x, y) \exp \left\{ \int_x^\tau \frac{\partial \xi(t, g(t, x, y))}{\partial g} \, dt \right\}. \tag{2.5}$$

Аналогично, решая задачу Коши для функции $\partial_y g$

$$\begin{cases}
\partial_\tau \partial_y g = \frac{\partial \xi}{\partial g}(\tau, g)\partial_y g, \\
\partial_y g(\tau, x, y)|_{\tau=x} = 1,
\end{cases}$$

имеем

$$\partial_y g(\tau, x, y) = \exp \left\{ \int_x^\tau \frac{\partial \xi(t, g(t, x, y))}{\partial g} \, dt \right\}. \tag{2.6}$$

Из формул (2.5), (2.6) следует (2.3). □

Поставим для уравнения (2.1) задачу Коши, задав начальное условие на оси Oy:

$$u(0, y) = u^0(y), \tag{2.1^0}$$

где $u^0 \in C^1(\mathbb{R}^1)$.

Задача (2.1), (2.1^0) корректна [22]. Будем решать ее в полуплоскости $x \geq 0$ (построение решения в полуплоскости $x \leq 0$ проводится аналогично).

Лемма 2.2. Решение задачи (2.1), (2.1^0) задается формулой

$$u(x, y) = u^0(g(0, x, y)) + \int_0^x f(\tau, g(\tau, x, y)) \, d\tau. \tag{2.7}$$

Доказательство. Условие (2.1^0) выполнено:

$$u(0, y) = u^0(g(0, 0, y)) = u^0(y)$$

в силу начального условия (2.2). При дифференцировании соотношения (2.7) воспользуемся формулой для дифференцирования интеграла, зависящего от параметра:

$$\partial_x \int_0^x \varphi(\tau, x) \, d\tau = \int_0^x \partial_x \varphi(\tau, x) \, d\tau + \varphi(x, x).$$
Имеем:
\[
(\partial_x + \xi \partial_y) u = u_0^i(t) \big|_{t=g(0,x,y)} (\partial_x + \xi \partial_y) g(0, x, y) + \\
+ \int_0^x \frac{\partial f}{\partial g}(\tau, g(\tau, x, y)) (\partial_x + \xi \partial_y) g(\tau, x, y) d\tau + f(x, g(x, x, y)).
\]

Из леммы 2.1 и начального условия (2.2) следует, что
\[
(\partial_x + \xi \partial_y) u(x, y) = f(x, y). \quad \square
\]

Процедура получения решения задачи (2.1), (2.10) при помощи формулы (2.7) называется интегрированием уравнения (2.1) вдоль характеристики.

2.2 Система в римановых инвариантах

Развитая выше теория работает и в более общем случае. Пусть имеются вектор-функции
\[
\begin{align*}
 u &= (u_1, \ldots, u_m), \quad u_i = u_i(x, y) \in C^1(\mathbb{R}^2), \\
 \xi &= (\xi_1, \ldots, \xi_m), \quad \xi_i = \xi_i(x, y, u) \in C^1(\mathbb{R}^2), \\
 f &= (f_1, \ldots, f_m), \quad f_i = f_i(x, y, u) \in C^1(\mathbb{R}^2), \quad i = 1, \ldots, m.
\end{align*}
\]

Определение. Система вида
\[
(\partial_x + \xi_i(x, y, u) \partial_y) u_i(x, y) = f_i(x, y, u), \quad i = 1, \ldots, m,
\]
называется системой в римановых инвариантах [PQ].

Поставим для системы (2.8) задачу Коши, задав на оси \(Oy\) начальные условия
\[
u(0, y) = u^0(y), \quad (2.8^0)
\]
где \(u^0 = (u_1^0, \ldots, u_m^0), \quad u_i^0 = u_i^0(y) \in C^1(\mathbb{R}), \quad i = 1, \ldots, m.

Определение. Кривая на плоскости \((x, y)\), задаваемая уравнениями
\[
x = \tau, \quad y = g_i(\tau, x, y),
\]
где функция \(g_i(\tau, x, y)\) — решение задачи Коши
\[
\begin{align*}
 &\partial_\tau g_i = \xi_i(\tau, g_i(\tau, x, y), u(\tau, x, y)), \\
 &g_i(x, x, y) = y,
\end{align*}
\]
(2.9)
называется \(i \)-й характеристикой системы (2.8).

Лемма 2.3. \(i \)-я компонента решения задачи (2.8), (2.8\(^0\)) может быть представлена как результат интегрирования \(i \)-го уравнения системы вдоль \(i \)-й характеристики, \(i = 1, \ldots, m \):

\[
u_i(x, y) = u_i^0(g_i(0, x, y)) + \int_0^x f_i(\tau, g_i(\tau, x, y), u(\tau, g_i(\tau, x, y))) \, d\tau. \tag{2.10}
\]

Доказательство. Предположим, что решение \(u(x, y) \) задачи (2.8), (2.8\(^0\)) известно. Подставляя его в (2.8), убеждаемся в том, что каждое уравнение системы имеет вид (2.1), так как можно считать, что

\[
\xi_i(x, y, u(x, y)) = \tilde{\xi}(x, y), \quad f_i(x, y, u(x, y)) = \tilde{f}(x, y), \quad i = 1, \ldots, m.
\]

Поэтому для уравнений

\[
(\partial_x + \tilde{\xi}_i(x, y)\partial_y) u_i(x, y) = \tilde{f}_i(x, y), \quad i = 1, \ldots, m,
\]

справедливы леммы 2.1 и 2.2, при этом равенства, аналогичные (2.5) и (2.6), записываются в виде

\[
\partial_x g_i(\tau, x, y) = -\xi_i(x, y, u) \exp \left\{ \int_x^\tau \left[\xi_{iy} + \sum_{j=1}^m \frac{\partial \xi_i}{\partial u_j} \frac{\partial u_j}{\partial y} \right] (t, g_i(t, x, y)) \, dt \right\},
\]

\[
\partial_y g_i(\tau, x, y) = \exp \left\{ \int_x^\tau \left[\xi_{iy} + \sum_{j=1}^m \frac{\partial \xi_i}{\partial u_j} \frac{\partial u_j}{\partial y} \right] (t, g_i(t, x, y)) \, dt \right\}, \tag{2.11}
\]

а равенство (2.7) имеет вид (2.10). \(\square \)

Формула (2.10) используется при изучении свойств решения. Она рекурсивна и поэтому не дает решение задачи (2.8), (2.8\(^0\)) в явном виде. Построение решения можно проводить методом последовательных приближений.

3 Системы в римановых инвариантах и уравнения Монжа–Ампера гиперболического типа

Здесь мы следуем статье Туницкого [Тун], вошедшей в [Тун-дис]. Безусловно, о том, что гиперболическое уравнение Монжа–Ампера можно
свести к системе пяти уравнений первого порядка, известно давно ([Курилисов], приложение 1 к гл. V, § 2), и что эта система сводится к системе в римановых инвариантах, также было известно (в [Курилисов] система не в инвариантах). У Тукицкого система в инвариантах выписана в явном виде, и её можно пользоваться.

3.1 Задача Коши для уравнения Монжа–Ампера

На плоскости \(\mathbb{R}^2 = (x, y) \) будем рассматривать уравнение Монжа–Ампера относительно неизвестной функции \(z = z(x, y) \)

\[
A + Bz_{xx} + Cz_{xy} + Dz_{yy} + E \text{hess } z = 0,
\]

где \(\text{hess } z = z_{xx}z_{yy} - z_{xy}^2 \). \(A, B, C, D, E \) — функции, зависящие от \(x, y, z, z_x, z_y \); \(E \neq 0 \). Так как делением на \(E \) всегда можно добиться того, что \(E \equiv 1 \), то без ограничения общности будем рассматривать уравнение

\[
A + Bz_{xx} + Cz_{xy} + Dz_{yy} + \text{hess } z = 0. \tag{3.1}
\]

В дальнейшем будем считать, что \(A, B, C, D \in C^2(\mathbb{R}^5) \).

Предположим, что \(z(x, y) \) — дважды непрерывно дифференцируемое решение уравнения (3.1). Будем говорить, что уравнение (3.1) гиперболично на решении \(z(x, y) \) ([Курилисов], приложение 1 к гл. V, § 2), если

\[
\Delta^2(x, y, z(x, y), z_x(x, y), z_y(x, y)) = C^2 - 4BD + 4AE > 0. \tag{3.2}
\]

У нас здесь всегда будет \(E \equiv 1 \). Поскольку \(\Delta^2 > 0 \), полагаем также \(\Delta > 0 \). Для уравнения (3.1) на оси \(Oy \) поставим задачу Коши

\[
z(0, y) = z_0(y), \quad z_x(0, y) = p_0(y); \tag{3.3}
\]

здесь \(z_0 \in C^3(\mathbb{R}^1) \), а \(p_0 \in C^2(\mathbb{R}^1) \). Предположим, что для начальных значений \(z_0 \) и \(p_0 \) выполнены два условия. Во-первых, ось \(Oy \) свободна, то есть

\[
z_0''(y) + B(0, y, z_0(y), p_0(y), z_0'(y)) \neq 0. \tag{3.4}
\]

Во-вторых, на оси ординат выполнено условие гиперболичности (3.2)

\[
\Delta^2(0, y, z_0(y), p_0(y), z_0'(y)) > 0. \tag{3.5}
\]

8
Полная формулировка задачи Коши для уравнения Монжа–Ампера будет следующей. Требуется найти трижды непрерывно дифференцируемую функцию \(z(x, y) \), которая принимает начальные значения (3.3), удовлетворяет уравнению (3.1), и на которой это уравнение гиперболично.

Поясним, откуда берется \(C^3 \)-дифференцируемость, тогда как классическое решение уравнения (3.1) подразумевается \(C^2 \)-гладким. Для вывода системы в римановых инвариантах будут использованы условия интегрируемости \(p_{xy} = p_{yx}, \quad q_{xy} = q_{yx} \), где \(p, q \) имеют смысл \(z_x, z_y \).

3.2 Система в полных дифференциалах

Пусть \(z(x, y) \) — \(C^3 \)-решение уравнения (3.1) в некоторой области \(T \). Потребуем, чтобы уравнение (3.1) было гиперболично на решении \(z \) и

\[
z_{yy}(x, y) + B(x, y, z(x, y), z_x(x, y), z_y(x, y)) \neq 0
\]

(3.6)

для всех точек \((x, y) \) множества \(T \). Неравенство (3.6) означает, что вертикальные прямые \(x = \text{const} \) свободны.

Положим

\[
u_1 = \frac{C + \Delta - 2z_{xy}}{2(z_{yy} + B)}, \quad u_2 = \frac{C - \Delta - 2z_{xy}}{2(z_{yy} + B)}.
\]

(3.7)

Значения функций \(u_1 \) и \(u_2 \) совпадают с тангенсами углов наклона характеристик уравнения (3.1) ([Kyp], прил. 1 к гл. V, § 2). Из условия гиперболичности (3.2) вытекает неравенство \(u_1 \neq u_2 \), которое позволяет однозначно разрешить соотношения (3.7) относительно \(z_{xy} \) и \(z_{yy} \):

\[
z_{yy} = \frac{\Delta}{u_1 - u_2} - B; \quad z_{xy} = \frac{\Delta u_1 + u_2}{2 u_2 - u_1} + \frac{C}{2}.
\]

(3.8)

Подставим выражения (3.8) в уравнение (3.1). Получим линейное уравнение относительно \(z_{xx} \). Решая его, находим

\[
z_{xx} = \frac{\Delta u_1 u_2}{u_1 - u_2} - D.
\]

(3.9)

Следуя Монжу, положим

\[
z_x = p, \quad z_y = q.
\]

(3.10)
Из равенств (3.8)–(3.9) ясно, что три функции z, p и q переменных x и y удовлетворяют в области T системе уравнений в полных дифференциалах

$$p_x = \Delta(x, y, z, p, q) \frac{u_1 u_2}{u_1 - u_2} (x, y) - D(x, y, z, p, q),$$
$$p_y = \frac{\Delta}{2} (x, y, z, p, q) \frac{u_1 + u_2}{u_2 - u_1} (x, y) + C'(x, y, z, p, q),$$
$$q_x = \frac{\Delta}{2} (x, y, z, p, q) \frac{u_1 - u_2}{u_2 - u_1} (x, y) + C'(x, y, z, p, q),$$
$$q_y = \Delta (x, y, z, p, q) (u_1 - u_2) (x, y) - B(x, y, z, p, q).$$

Правые части уравнений (3.11) — непрерывно дифференцируемые функции от x, y, z, p и q.

Таким образом, нами установлено следующее. Если $z(x, y)$ — трижды непрерывно дифференцируемое решение уравнения (3.1) в области T, для которого выполнены неравенства (3.2) и (3.6), то определены три функции z, p и q, являющиеся решением системы уравнений (3.10)–(3.11).

Обратно, пусть в области T существует пара (u_1, u_2) непрерывно дифференцируемых функций таких, что $u_1 \neq u_2$, и в этой области существует C^1-решение системы уравнений (3.10)–(3.11) такое, что

$$\Delta(x, y, z(x, y), z_x(x, y), z_y(x, y)) > 0.\quad (3.12)$$

Понятно, что в этом случае $z_{xx} = p_x$, $z_{xy} = p_y = q_x$, $z_{yy} = q_y$. Следовательно, $z \in C^3(T)$. Подставляя значения вторых производных функции z в левую часть соотношения (3.1), убеждаемся, что $z(x, y) = (x, y)$ — решение уравнения (3.1). В силу оценки (3.12) это уравнение гиперболично на z, и справедливо неравенство (3.6).

Резюмируем полученные результаты в виде леммы.

Лемма 3.1. В области T тогда и только тогда определена функция $z(x, y)$ класса $C^3(T)$, удовлетворяющая соотношениям (3.1), (3.2) и (3.6), когда в этой области существует C^1-решение (z, p, q) системы уравнений (3.10)–(3.11), удовлетворяющее условию (3.12). □

3.3 Система в римановых инвариантах

Система дифференциальных уравнений в полных дифференциалах является перепределенной и, вообще говоря, решения не имеет. Для су-
ществования решения необходимо и достаточно, чтобы выполнялись условия интегрируемости. Условия интегрируемости уравнений (3.10)–(3.11) сводятся к дифференциальным соотношениям между функциями \(u_1, u_2, z, p \) и \(q \).

Действительно, так как правые части системы (3.10)–(3.11) непрерывно дифференцируемы, то функции \(z, p \) и \(q \) дважды непрерывно дифференцируемы. Следовательно, на множестве \(T \) имеют место равенства

\[
 z_{xy} = z_{yx}, \quad p_{xy} = p_{yx}, \quad q_{xy} = q_{yx}. \quad (3.13)
\]

Первое из равенств (3.13) выполняется тождественно в силу системы (3.10)–(3.11). Второе приводится к виду

\[
\begin{align*}
\Delta_y \frac{u_1 u_2}{u_1 - u_2} + \Delta_y \frac{u_1^2 u_2 y - u_2^2 u_1 y}{(u_1 - u_2)^2} - D_y + \left(\frac{u_1 u_2}{u_1 - u_2} \Delta_z - D_z \right) q + \\
+ \left(\frac{u_1 u_2}{u_1 - u_2} \Delta_p - D_p \right) \left(\frac{\Delta u_1 + u_2}{2 u_2 - u_1} + \frac{C}{2} \right) + \\
+ \left(\frac{u_1 u_2}{u_1 - u_2} \Delta_q - D_q \right) \left(\frac{\Delta}{u_1 - u_2} - B \right) &= \\
= \frac{\Delta z}{2} \frac{u_1 + u_2}{u_2 - u_1} + \Delta \frac{u_2 u_1 x - u_1 u_2 x}{(u_2 - u_1)^2} + \frac{C_p}{2} + \left(\frac{u_1 + u_2 \Delta z}{u_2 - u_1} + \frac{C_z}{2} \right) p + \left(3.14\right) \\
+ \left(\frac{u_1 + u_2 \Delta p}{u_2 - u_1} \right) \left(\Delta \frac{u_1 u_2}{u_1 - u_2} - D \right) + \\
+ \left(\frac{u_1 + u_2 \Delta q}{u_2 - u_1} \right) \left(\Delta \frac{u_1 + u_2}{2 u_2 - u_1} + \frac{C}{2} \right).
\end{align*}
\]
Аналогичным образом третье из равенств (3.13) сводится к соотношению

\[\frac{\Delta y}{2} u_1 + u_2 + \Delta \frac{u_2 u_{1y} - u_1 u_{2y}}{(u_2 - u_1)^2} + \frac{C_y}{2} + \left(\frac{u_1 + u_2 \Delta z}{2} + \frac{C_z}{2} \right) q + \]

\[+ \left(\frac{u_1 + u_2 \Delta p}{2} + \frac{C_p}{2} \right) \left(\frac{\Delta u_1 + u_2}{u_2 - u_1} + \frac{C}{2} \right) + \]

\[+ \left(\frac{u_1 + u_2 \Delta q}{2} + \frac{C_q}{2} \right) \left(\frac{\Delta u_1 - u_2}{u_2 - u_1} - B \right) = \]

\[= \frac{\Delta x}{u_1 - u_2} + \Delta \frac{u_{2x} - u_{1x}}{(u_1 - u_2)^2} - B_x + \left(\frac{\Delta z}{u_1 - u_2} - B_z \right) p + \]

\[+ \left(\frac{\Delta p}{u_1 - u_2} - B_p \right) \left(\Delta \frac{u_1 u_2}{u_1 - u_2} - D \right) + \]

\[+ \left(\frac{\Delta q}{u_1 - u_2} - B_q \right) \left(\frac{\Delta u_1 + u_2}{u_2 - u_1} + \frac{C}{2} \right). \]

(3.15)

Соответствия (3.14)–(3.15) представляют собой линейную систему двух алгебраических уравнений с двумя неизвестными \(u_{1x} + u_2 u_{1y} \) и \(u_{2x} + u_1 u_{2y} \). Ее определитель равен \(\Delta^2/(u_1 - u_2)^3 \), а так как \(u_1 \neq u_2 \), то эта система однозначно разрешима:

\[\begin{aligned}
 u_{1x} + u_2 u_{1y} &= E_o + E_1 u_1 + E_2 u_2 + E_3 u_1^2 + E_4 u_1 u_2 + E_5 u_2^2, \\
 u_{2x} + u_1 u_{2y} &= I_o + I_1 u_1 + I_2 u_2 + I_3 u_1^2 + I_4 u_1 u_2 + I_5 u_2^2.
\end{aligned} \]

(3.16)

Коэффициенты \(E_j, I_j, 0 \leq j \leq 5 \), определяются через функции
B, C, D, Δ и их первые производные следующим образом:

$$E_0 = I_0 = D_q, \quad E_5 = I_5 = -B_p,$$

$$E_1 = \alpha_1 + \alpha_2 + \frac{1}{4\Delta}(CC_q - 3\Delta C_q + C\Delta_q + \Delta\Delta_q - 2\Delta D_p),$$

$$E_2 = -\alpha_1 - \alpha_2 + \frac{1}{4\Delta}(-CC_q - \Delta C_q - C\Delta_q - \Delta\Delta_q - 2\Delta D_p),$$

$$E_3 = -\beta_1 + \beta_2 + \frac{1}{4\Delta}(-CC_p + \Delta C_p + C\Delta_p - \Delta\Delta_p + 2\Delta B_q),$$

$$E_4 = \beta_1 - \beta_2 + \frac{1}{4\Delta}(CC_p + 3\Delta C_p - C\Delta_p + \Delta\Delta_p + 2\Delta B_q),$$

где

$$\alpha_1 = \frac{1}{2\Delta}(2D_y + C_x + 2D_zq + C_zp + CD_p - DC_p - 2BD_q),$$

$$\alpha_2 = \frac{1}{2\Delta}(\Delta_x + \Delta_zp - D\Delta_p),$$

$$\beta_1 = \frac{1}{2\Delta}(2B_x + C_y + 2B_zp + C_zq + CB_q - BC_q - 2DB_p),$$

$$\beta_2 = \frac{1}{2\Delta}(\Delta_y + \Delta_zq - B\Delta_q).$$

Пусть функция $z(x, y) - C^3$-решение уравнения (3.1) в области T, для которого имеют место неравенства (3.2) и (3.6). Согласно лемме 3.1 функции $z, p = z_x$ и $q = z_y$ удовлетворяют системе уравнений (3.10)–(3.11), где u_1 и u_2 определены равенствами (3.7).

Умножим второе из равенств (3.10) на u_1 и сложим с первым. В результате получим

$$z_x + u_1z_y = p + u_1q. \quad (3.18)$$

Аналогичным образом поступим с равенствами (3.11). Первое из них прибавим ко второму, умноженному на u_2, а третье сложим с четвертым, умноженным на u_1. Получаем

$$p_x + u_2p_y = \frac{C + \Delta}{2}u_2 - D \quad (3.19)$$
и

\[q_x + u_1 q_y = \frac{C + \Delta}{2} - B u_1 \]

соответственно.

Таким образом, доказан следующий факт.

Теорема 3.1. Пусть \(z(x, y) = C^3 \)-решение уравнения (3.1) в области \(T \) такое, что справедливы условия (3.2) и (3.6). Тогда набор функций \((u_1, u_2, z, p, q)\), где \(u_1, u_2 \) найдены из выражений (3.7), \(p = z_x \) и \(q = z_y \), является \(C^1 \)-решением системы пяти уравнений (3.16)–(3.20) в этой области. \(\square \)

3.4 Сведение уравнения Монжа–Ампера к системе в инвариантах

Допустим, что область \(T \) имеет непустое пересечение с осью \(Oy \). Следующее утверждение является в определенном смысле обратным по отношению к теореме 3.1.

Теорема 3.2. Пусть \((u_1, u_2, z, p, q) = C^1 \)-решение системы (3.16)–(3.20) в области \(T \), принимающее начальные значения

\[
\begin{align*}
z(0, y) &= z_0(y), \\
p(0, y) &= p_0(y), \\
q(0, y) &= z'_0(y), \\
u_1(0, y) &= \frac{(C + \Delta)((0, y, z_0(y), p_0(y), z'_0(y))) - 2p'_0(y)}{2(z'_0 + B(0, y, z_0(y), p_0(y), z'_0(y)))}, \\
u_2(0, y) &= \frac{(C - \Delta)((0, y, z_0(y), p_0(y), z'_0(y))) - 2p'_0(y)}{2(z'_0 + B(0, y, z_0(y), p_0(y), z'_0(y)))},
\end{align*}
\]

и пусть \(T \) является областью определенности этого решения. Тогда, если выполнена оценка (3.12), то \(z \) является \(C^3 \)-решением задачи (3.1)–(3.3) на множестве \(T \), причем \(z_x = p, z_y = q \), и имеет место неравенство (3.6).

Доказательство. В первую очередь покажем, что \(u_1 \neq u_2 \) в области \(T \). Согласно начальным значениям (3.21) и оценке (3.5) имеем

\[
u_1(0, y) - u_2(0, y) = \frac{\Delta(0, y, z_0(y), p_0(y), z'_0(y))}{z'_0(y) + B(0, y, z_0(y), p_0(y), z'_0(y))} \neq 0.
\]

14
Рассмотрим уравнения (3.16). Вычтем из первого уравнения второе. Опираясь на представление (3.17), получим равенство

\[
(u_1 - u_2)_x + u_2(u_1 - u_2)_y = \\
= (u_1 - u_2) \left(2\alpha_2 + \frac{C\Delta q - \Delta C_q}{2\Delta} + \right. \\
+ (u_1 + u_2) \left(\beta_2 + \frac{Bq}{2} + \frac{C\Delta p + \Delta C_p}{4\Delta} \right) + \\
+ (u_2 - u_1) \left(\beta_1 + \frac{CC_p + \Delta \Delta p}{4\Delta} \right) - B_p u_1 u_2 + u_2 y \right) .
\]

(3.23)

Так как \(T \) — область определенности решения системы (3.16)—(3.20), то на отрезке \([0, x]\) существует решение задачи Коши

\[
\left\{ \begin{array}{l}
\frac{dg}{d\tau} = u_2(\tau, g), \\
g(x, x, y) = y,
\end{array} \right.
\]

и точка \((\tau, g(\tau, x, y))\) содержится в \(T \) при \(0 \leq \tau \leq x \), если точка \((x, y)\) содержится в \(T \). Принтегрируем уравнение (3.23) вдоль характеристики \(\eta = g(\tau, x, y) \) от 0 до \(x \). Получим

\[
(u_1 - u_2)(x, y) = \\
= (u_1 - u_2)(0, g(0, x, y)) \times \\
\times \exp \left\{ \int_0^x \left(2\alpha_2 + \frac{C\Delta q - \Delta C_q}{2\Delta} + \right. \\
+ (u_1 + u_2) \left(\beta_2 + \frac{Bq}{2} + \frac{C\Delta p + \Delta C_p}{4\Delta} \right) + \\
+ (u_2 - u_1) \left(\beta_1 + \frac{CC_p + \Delta \Delta p}{4\Delta} \right) - B_p u_1 u_2 + u_2 y \right) \\
\left. d\tau \right\}.
\]

(3.24)

Учитывая неравенство (3.22), из выражения (3.24) заключаем, что \(u_1 \neq u_2 \) в области \(T \).
Далее, положим

\[r(x, y, z, p, q) = \Delta \frac{u_1 u_2}{u_1 - u_2} - D, \]
\[s(x, y, z, p, q) = \Delta \frac{u_1 + u_2}{2 u_2 - u_1} + \frac{C'}{2}, \] (3.25)
\[t(x, y, z, p, q) = \Delta \frac{u_1}{u_1 - u_2} - B. \]

Введенные обозначения позволяют записать уравнения (3.19)–(3.20) в виде

\[p_x + u_2 p_y = r + u_2 s, \] (3.19′)
\[q_x + u_1 q_y = s + u_1 t. \] (3.20′)

Так как \(u_1 \neq u_2 \) в области \(T \), то уравнения (3.16) эквивалентны уравнениям (3.14)–(3.15). Последние можно записать следующим образом:

\[r_y + r_2 q + r_p s + r_q t = s_x + s_2 p + s_p r + s_q s, \] (3.14′)
\[s_y + s_2 q + s_p s + s_q t = t_x + t_2 p + t_p r + t_q s. \] (3.15′)

Характеристики системы уравнений (3.18), (3.19′), (3.20′) находим, решая задачу Коши для обыкновенного дифференциального уравнения

\[\begin{cases} \frac{d g_i}{d \tau} = u_{3-i}(\tau, g_i), \\ g_i(x, x, y) = y \quad (i = 1, 2). \end{cases} \] (3.26)

Проинтегрируем уравнения (3.18), (3.19′), (3.20′) вдоль соответствующих характеристик от 0 до \(x \). В результате получим

\[z(x, y) = z_0(g_2(0, x, y)) + \int_0^x \{ p + u_1 q \}(\tau, g_2(\tau, x, y)) d\tau, \]
\[p(x, y) = p_0(g_1(0; x, y)) + \int_0^x \{ r + u_2 s \}(\tau, g_1(\tau, x, y)) d\tau, \] (3.27)
\[q(x, y) = q_0'(g_2(0, x, y)) + \int_0^x \{ s + u_1 t \}(\tau, g_2(\tau, x, y)) d\tau. \]

Правые части уравнений (3.26) непрерывно дифференцируемы. Поэтому функции \(g_i(\tau, x, y) \) \((i = 1, 2) \) непрерывно дифференцируемы и имеют
непрерывные смешанные производные второго порядка по \(\tau \), \(x \) и по \(\tau \), \(y \), а между производными \(g_i \) по \(x \) и по \(y \) имеется зависимость

\[
g_{ix}(\tau, x, y) + u_{3-i}(x, y)g_{iy}(\tau, x, y) = 0. \tag{3.28}
\]

Вычислим первые производные функций \(z, p \) и \(q \). Для этого предифференцируем равенства (3.27). Принимая во внимание соотношения (3.14') – (3.15'), (3.28), интегрируя по частям и учитывая начальные значения (3.21), получаем

\[
z_y(x, y) = q(x, y) + \int_0^x \{ (p_y - s) + (s - q_x) \} (\tau, g_2(\tau, x, y))g_{2y}(\tau, x, y) \, d\tau,
\]

\[
z_x(x, y) = p(x, y) + \int_0^x \{ (p_y - s) + (s - q_x) \} (\tau, g_2(\tau, x, y))g_{2x}(\tau, x, y) \, d\tau,
\]

\[
p_y(x, y) = s(x, y, z(x, y), p(x, y), q(x, y)) + \\
+ \int_0^x \{ s_z(p - z_x) + r_z(z_y - q) + s_p(r - p_x) + r_p(p_y - s) + \\
+ s_q(s - q_x + r_q(q_y - t)) (\tau, g_1(\tau, x, y))g_{1y}(\tau, x, y) \, d\tau,
\]

\[
p_x(x, y) = r(x, y, z(x, y), p(x, y), q(x, y)) + \\
+ \int_0^x \{ s_z(p - z_x) + r_z(z_y - q) + s_p(r - p_x) + r_p(p_y - s) + \\
+ s_q(s - q_x + r_q(q_y - t)) (\tau, g_1(\tau, x, y))g_{1x}(\tau, x, y) \, d\tau,
\]

\[
q_y(x, y) = t(x, y, z(x, y), p(x, y), q(x, y)) + \\
+ \int_0^x \{ t_z(p - z_x) + s_z(z_y - q) + t_p(r - p_x) + s_p(p_y - s) + \\
+ t_q(s - q_x + s_q(q_y - t)) (\tau, g_2(\tau, x, y))g_{2y}(\tau, x, y) \, d\tau,
\]

\[
q_x(x, y) = s(x, y, z(x, y), p(x, y), q(x, y)) + \\
+ \int_0^x \{ t_z(p - z_x) + s_z(z_y - q) + t_p(r - p_x) + s_p(p_y - s) + \\
+ t_q(s - q_x + s_q(q_y - t)) (\tau, g_2(\tau, x, y))g_{2x}(\tau, x, y) \, d\tau.
\]

(3.29)
Выражения (3.29) позволяют сделать вывод о том, что

\[
\begin{align*}
z_y(x, y) &= q(x, y), \\
zs(x, y) &= p(x, y), \\
p_y(x, y) &= q_z(x, y) = s(x, y, z(x, y), p(x, y), q(x, y)), \\
p_z(x, y) &= r(x, y, z(x, y), p(x, y), q(x, y)), \\
q_y(x, y) &= t(x, y, z(x, y), p(x, y), q(x, y)).
\end{align*}
\]

С учетом соответствий (3.25) это означает, что три функции \(z, p \) и \(q \) — \(C^1 \)-решение системы (3.10)–(3.11). Отсюда согласно лемме 3.1 вытекает, что \(z = C^3 \)-решение задачи (3.1)–(3.3) в области \(T \). □

Замечание. Система (3.16)–(3.20) состоит из пяти уравнений и содержит пять неизвестных функций \(u_1, u_2, z, p \) и \(q \). В случае, если коэффициенты \(A, B, C \) и \(D \) уравнения (3.1) не зависят от значения \(z \), уравнения (3.16), (3.19) и (3.20) образуют замкнутую систему четырех уравнений с четырьмя неизвестными функциями \(u_1, u_2, p \) и \(q \). Зная \(u_1, u_2, p \) и \(q \), мы можем найти \(z \) из уравнения (3.18) или первого равенства (3.27). Определенный интерес представляет ситуация, при которой уравнения (3.16) образуют замкнутую систему с двумя неизвестными \(u_1 \) и \(u_2 \). Очевидно, что указанная ситуация имеет место тогда и только тогда, когда

\[
\frac{\partial E_j}{\partial z} = \frac{\partial E_j}{\partial p} = \frac{\partial E_j}{\partial q} = \frac{\partial I_j}{\partial z} = \frac{\partial I_j}{\partial p} = \frac{\partial I_j}{\partial q} = 0 \quad (j = 0, \ldots, 5),
\]

где \(E_j \) и \(I_j \) вычислены согласно выражениям (3.17). В этом случае после нахождения решения \(u_1, u_2 \) значения \(z, p \) и \(q \) могут быть найдены из уравнений (3.18)–(3.20) или (3.11).

3.5 Окончательный вид системы в инвариантах

Система (3.16), полученная Д. В. Туницким [Тун], имеет в правой части многочлены с образующими \(u_1, u_2 \), а функции \(p, q \), тоже искомые, содержатся в коэффициентах. Это может вызвать трудности при попытке наложить условия на коэффициенты. В работах автора предложена другая запись системы (3.16): искомые функции \(u_1, u_2, p, q \) являются образующими, а коэффициенты состоят из известных функций.
Введем переобозначение

\[r = u_1, \quad s = u_2. \] (3.31)

Подчеркнем, что здесь \(r, s \) являются характеристическими переменными ([RyP], прил. 1 к гл. V, § 2) (они же римановы инварианты и собственные значения системы ([P2]), гл. 1), а не обозначениями Монжа для вторых производных из (3.25). И те, и другие обозначения являются традиционными.

Система имеет вид

\[
(\partial_x + \xi(\omega)\partial_y) \omega = f_\omega(x, y, r, s, p, q, z),
\] (3.32)

где индекс \(\omega \) принимает значения \(r, s, p, q, z \), функция \(\xi(\omega) \) имеет вид

\[
\xi(r) = s, \quad \xi(s) = r, \quad \xi(p) = s, \quad \xi(q) = r, \quad \xi(z) = r,
\]

\[
f_r = \rho_0 + \rho_1 r + \rho_2 s + \rho_3 pr + \rho_4 q r + \rho_5 p s + \rho_6 q s + \rho_7 r^2 + \rho_8 r s + \rho_9 pr^2 + \rho_{10} q r^2 + \rho_{11} pr s + \rho_{12} q r s + \rho_{13} r^2 s = f_r(\rho, r, s, p, q),
\]

\[
f_s(\sigma, r, s, p, q) = f_r(\sigma, s, r, p, q),
\]

\[
f_p = \pi_0 + \pi_1 s, \quad f_q = \kappa_0 + \kappa_1 r, \quad f_z = p + q r,
\]

вектор-функции \(\rho, \sigma, \pi, \kappa \) зависят от \(x, y, z, p, q, \)

\[
\rho_0 = D_q, \quad \sigma_0 = D_q, \]
\[
\rho_3 = \frac{1}{2\Delta}(C + \Delta)z, \quad \sigma_3 = -\frac{1}{2\Delta}(C - \Delta)z, \]
\[
\rho_4 = \frac{1}{\Delta}D_z, \quad \sigma_4 = -\frac{1}{\Delta}D_z, \]
\[
\rho_5 = -\frac{1}{2\Delta}(C + \Delta)z, \quad \sigma_5 = \frac{1}{2\Delta}(C - \Delta)z, \]
\[
\rho_6 = -\frac{1}{\Delta}D_z, \quad \sigma_6 = \frac{1}{\Delta}D_z, \]
\[
\rho_9 = -\frac{1}{\Delta}B_z, \quad \sigma_9 = \frac{1}{\Delta}B_z, \]
\[
\rho_{10} = -\frac{1}{2\Delta}(C - \Delta)z, \quad \sigma_{10} = \frac{1}{2\Delta}(C + \Delta)z, \]
\[
\rho_{11} = \frac{1}{\Delta}B_z, \quad \sigma_{11} = -\frac{1}{\Delta}B_z, \]
\[
\rho_{12} = \frac{1}{2\Delta}(C - \Delta)z, \quad \sigma_{12} = -\frac{1}{2\Delta}(C + \Delta)z, \]
\[
\rho_{13} = -B_p, \quad \sigma_{13} = -B_p,
\]

19
\[
\rho_1 = \frac{1}{\Delta x} \left(\Delta_x + C_x + 2D_y + CD_p - D\Delta_p - DC_p - 2BD_q + \frac{1}{2} CC_q - \frac{3}{2} \Delta C_q + \frac{1}{2} C\Delta_q + \frac{1}{2} \Delta\Delta_q - \Delta D_p \right),
\]
\[
\rho_2 = -\frac{1}{\Delta x} \left(\Delta_x + C_x + 2D_y + CD_p - D\Delta_p - DC_p - 2BD_q + \frac{1}{2} CC_q + \frac{1}{2} \Delta C_q + \frac{1}{2} C\Delta_q + \frac{1}{2} \Delta\Delta_q + \Delta D_p \right),
\]
\[
\rho_7 = -\frac{1}{\Delta x} \left(-\Delta_y + C_y + 2B_x + CB_q + B\Delta_q - BC_q - 2DB_p + \frac{1}{2} CC_p - \frac{1}{2} \Delta C_p - \frac{1}{2} C\Delta_p + \frac{1}{2} \Delta\Delta_p - \Delta B_q \right),
\]
\[
\rho_8 = -\frac{1}{\Delta x} \left(-\Delta_y + C_y + 2B_x + CB_q + B\Delta_q - BC_q - 2DB_p + \frac{1}{2} CC_p + \frac{3}{2} \Delta C_p - \frac{1}{2} C\Delta_p + \frac{1}{2} \Delta\Delta_p + \Delta B_q \right),
\]
\[
\sigma_1 = -\frac{1}{\Delta x} \left(-\Delta_x + C_x + 2D_y + CD_p + D\Delta_p - DC_p + 2BD_q + \frac{1}{2} CC_q - \frac{1}{2} \Delta C_q - \frac{1}{2} C\Delta_q + \frac{1}{2} \Delta\Delta_q + \Delta D_p \right),
\]
\[
\sigma_2 = \frac{1}{\Delta x} \left(\Delta_y + C_y + 2B_x + CB_q - B\Delta_q - BC_q - 2DB_p + \frac{1}{2} CC_p + \frac{1}{2} \Delta C_p + \frac{1}{2} C\Delta_p + \frac{1}{2} \Delta\Delta_p + \Delta B_q \right),
\]
\[
\sigma_7 = -\frac{1}{\Delta x} \left(\Delta_y + C_y + 2B_x + CB_q - B\Delta_q - BC_q - 2DB_p + \frac{1}{2} CC_p + \frac{3}{2} \Delta C_p + \frac{1}{2} C\Delta_p + \frac{1}{2} \Delta\Delta_p - \Delta B_q \right),
\]
\[
\sigma_8 = -\frac{1}{\Delta x} \left(\Delta_y + C_y + 2B_x + CB_q - B\Delta_q - BC_q - 2DB_p + \frac{1}{2} CC_p + \frac{3}{2} \Delta C_p + \frac{1}{2} C\Delta_p + \frac{1}{2} \Delta\Delta_p - \Delta B_q \right),
\]
\[
\pi_0 = -D, \quad \kappa_0 = \frac{1}{2}(C + \Delta), \quad \kappa_1 = -B.
\]

Начальные условия (3.21) для системы (3.32) с учетом переобозначений (3.31) имеют вид
\[
\begin{align*}
r(0, y) &= r^0(y) = \frac{(C + \Delta)(0, y, z_0^0(y), p_0^0(y), z_0^0(y)) - 2p_0^0(y)}{2(z_{yy}^0(y) + B(0, y, z_0^0(y), p_0^0(y), z_0^0(y)))}, \\
s(0, y) &= s^0(y) = \frac{(C - \Delta)(0, y, z_0^0(y), p_0^0(y), z_0^0(y)) - 2p_0^0(y)}{2(z_{yy}^0(y) + B(0, y, z_0^0(y), p_0^0(y), z_0^0(y)))}, \\
p(0, y) &= p^0(y), \quad q(0, y) = q^0(y) = z_0^0(y), \quad z(0, y) = z_0^0(y).
\end{align*}
\]

Запишем систему (3.32) в виде
\[
\begin{align*}
p_y^0 &= -\frac{\Delta}{2} r^0 + s_0^0 + \frac{C}{2}, \\
q_y^0 &= \frac{\Delta}{r^0 - s_0^0} - B, \\
z_y^0 &= q^0.
\end{align*}
\]
Удобно задавать в качестве начальных данных функции r^0, s^0, а функции z^0, p^0 находить из системы (3.32). Если коэффициенты A, B, C, D зависят только от переменных x, y, система является линейной. В общем случае она нелинейна.

Уравнение с коэффициентами, зависящими только от x, y, сводится к системе

\[
(\partial_x + s \partial_y) r = (r - s)(a_{r1} + a_{r2} r), \quad (\partial_x + r \partial_y) s = (r - s)(a_{s1} + a_{s2} s),
\]

где

\[
a_{r1} = \frac{1}{2\Delta}(2D_y + C_x + \Delta_x), \quad a_{r2} = \frac{1}{2\Delta}(-2B_x - C_y + \Delta_y),
\]

\[
a_{s1} = \frac{1}{2\Delta}(2D_y + C_x - \Delta_x), \quad a_{s2} = \frac{1}{2\Delta}(-2B_x - C_y - \Delta_y).
\]

После нахождения функций r, s решаются линейные уравнения (3.32) для функций p, q, z. Начальные данные p^0, q^0, z^0 в этом случае выражаются через r^0, s^0 при помощи (3.32).

4 Последовательность приближенных решений

4.1 Итерационная последовательность

Пусть известны функции $\omega^n(x, y), \omega = r, s, p, q, z$. Функции $\omega^{n+1}(x, y), \omega = r, s, p, q, z$, определяем как решение нелинейной задачи Коши

\[
\left\{
\begin{array}{l}
(\partial_x + \xi(\omega) \partial_y) \omega^{n+1} = f_\omega(x, y, r^n, s^n, p^n, q^n, z^n), \\
n^{n+1} \omega(0, y) = \omega^0(y), \quad \omega = r, s, p, q, z.
\end{array}
\right.
\]

Задача Коши (4.1) распадается на четыре независимые задачи: нелинейная система для r^n, s^n и три независимых линейных уравнения для оставшихся функций. Доказательству разрешимости нелинейной системы мы предшествует установление априорных оценок.

Начальное приближение определяем так:

\[
\omega^0(x, y) = \omega^0(y), \quad \omega = r, s, p, q, z.
\]
4.2 Равномерная ограниченность

Пусть вектор-функции ρ, σ, π, κ и функции \(r^0, s^0, p^0, q^0 \) \(C^1 \)-гладки и ограничены, \(z^0 \in C^1(\mathbb{R}) \).

В выражениях для функций \(f_r, f_s \) из правых частей (3.32) мономы разбиваются на две категории: содержащие \(p, q \) и не содержащие. Соответственно требуется различать коэффициенты \(\rho, \sigma \) из разных категорий. Для различения введем множества индексов: \(J_{rs} = \{0, 1, 2, 7, 8, 13\} \) для мономов, не содержащих \(p, q \), и \(J_{pq} = \{3, 4, 5, 6, 9, 10, 11, 12\} \) — для содержащих.

Введем обозначения

\[
U_0 = \max_{\omega = r,s} \sup_{y \in \mathbb{R}} |\omega^0(y)| = \text{const},
\]

\[
\alpha_1(x) = \sup_{(y,z,p,q) \in \mathbb{R}^4, j \in J_{rs}, a \in \{\rho,\sigma\}} |a_j(x,y,z,p,q)|,
\]

\[
\alpha_2(x) = \sup_{(y,z,p,q) \in \mathbb{R}^4, j \in J_{pq}, a \in \{\rho,\sigma\}} |a_j(x,y,z,p,q)|, \tag{4.3}
\]

\[
\alpha_3 = \sup_{(x,y,z,p,q) \in \mathbb{R}^5, j=0,1, a \in \{\pi,\kappa\}} |a_j(x,y,z,p,q)| = \text{const}.
\]

Лемма 4.1. Пусть

\[
|p^0| \leq 1, \quad |q^0| \leq 1,
\]

\[
U_0 + 6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3|x|)\alpha_2(x) \, dx \leq 1. \tag{4.4}
\]
Предположим, что для некоторого номера \(n \geq 0 \) имеют место оценки

\[
\begin{align*}
| \omega^n (x, y) | & \leq 1 , & \omega = r, s , \\
| \omega^n (x, y) | & \leq 1 + 2\alpha_3|x| , & \omega = p, q , \\
| \zeta^n (x, y) | & \leq \max_{t \in [y-x, y+x]} |z^0(t)| + 2|x| + 2\alpha_3x^2
\end{align*}
\]

для \(\forall (x, y) \in [0, +\infty) \times \mathbb{R} \). Тогда для номера \(n + 1 \) при условии сущестовования функций \(n+1 \), \(\omega = r, s, p, q, z \), справедливы те же оценки (4.5).

Доказательство. Из соотношений (4.2), (4.4) следует, что для \(n = 0 \) неравенства (4.5) верны. Предположим, что неравенства (4.5) выполнены для некоторого номера \(n \), и докажем их для номера \(n + 1 \).

Воспользуемся представлением правых частей \(f_\omega \) в системе (3.32). Из формулы (2.10) получаем: для \(\omega = r, s \)

\[
| \omega^{n+1} (x, y) | \leq |\omega^0| + \int_0^x |f_\omega| d\tau \leq \\
\leq U_0 + 6 \int_0^{+\infty} \alpha_1(\tau) d\tau + 4 \int_0^{+\infty} \alpha_2(\tau) |\hat{p}| d\tau + 4 \int_0^{+\infty} \alpha_2(\tau) |\hat{q}| d\tau \leq \\
\leq U_0 + 6 \int_0^{+\infty} \alpha_1(\tau) d\tau + 8 \int_0^{+\infty} \alpha_2(\tau)(1 + 2\alpha_3\tau) d\tau \leq 1 .
\]

Для \(\omega = p, q, a = \pi, \kappa \)

\[
| \omega^{n+1} (x, y) | \leq |\omega^0| + \int_0^x |f_\omega| d\tau \leq \langle \text{см. (4.3) для } \alpha_3 \rangle \\
\leq 1 + \int_0^x (|a_0| + |a_1|) d\tau \leq 1 + 2\alpha_3 \int_0^x d\tau \leq 1 + 2\alpha_3|x| .
\]

Для \(\omega = z \), так как \(|\zeta^n| \leq 1 \), т.е. \(n+1 \) \(g_z (\tau, x, y) \in [y-x+\tau, y+x-\tau] \):

\[
| \zeta^{n+1} (x, y) | \leq |z^0| + \int_0^x \hat{p} + \hat{q} |d\tau \leq \max_{t \in [y-x, y+x]} |z^0(t)| + \\
+ \int_0^x 2(1 + 2\alpha_3\tau) d\tau = \max_{t \in [y-x, y+x]} |z^0(t)| + 2|x| + 2\alpha_3x^2 . \square
\]

Следствие. При выполнении условий (4.4) семейства \(\{\omega^n\} \), \(\omega = r, s, p, q, z \), равномерно ограничены на компакте

\[
G(\bar{x}, \bar{y}) = \{(x, y) | x \in [0, \bar{x}], y \in [\bar{y} - \bar{x} + x, \bar{y} + \bar{x} - x]\} \quad (4.6)
\]
для \(\forall (\bar{x}, \bar{y}) \in [0, +\infty) \times \mathbb{R} \).

Доказательство. Функции \(\omega, \omega = r, s, p, q, z \), определены на компакте \(G(\bar{x}, \bar{y}) \), так как характеристики, выходящие из любой точки \((x, y) \in G(\bar{x}, \bar{y}) \), лежат в компакте \(G(\bar{x}, \bar{y}) \) в силу \(|r| \leq 1, |s| \leq 1 \). Равномерная ограниченность следует из неравенств (4.5). \(\square \)

4.3 Гиперболичность в узком смысле

Потребуем, чтобы начальные данные \(r^0, s^0 \) были разделены некоторой постоянной. Более точно: \(\exists \delta > 0: \)

\[
\inf_{y \in \mathbb{R}} r^0(y) - \sup_{y \in \mathbb{R}} s^0(y) \geq \delta > 0. \tag{4.7}
\]

Лемма 4.2. Пусть \(\exists \varepsilon \in (0, \delta] \):

\[
6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3|x|) \alpha_2(x) \, dx \leq \frac{\delta - \varepsilon}{2}. \tag{4.8}
\]

Тогда для \(n = 0, 1, 2, \ldots \)

\[
\inf_{(x, y) \in \mathbb{R}^2} r^n(x, y) - \sup_{(x, y) \in \mathbb{R}^2} s^n(x, y) \geq \varepsilon > 0. \tag{4.9}
\]

Доказательство. Согласно формуле (2.10), учитывая оценки (4.3), (4.5), (4.8), имеем

\[
r^n_{r}(x, y) \geq \inf_{y \in \mathbb{R}} r^0(y) - \left(6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3|x|) \alpha_2(x) \, dx \right) \geq \inf_{y \in \mathbb{R}} r^0(y) - \frac{\delta - \varepsilon}{2},
\]

\[
s^n_{s}(x, y) \leq \sup_{y \in \mathbb{R}} s^0(y) + \left(6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2\alpha_3|x|) \alpha_2(x) \, dx \right) \leq \sup_{y \in \mathbb{R}} s^0(y) + \frac{\delta - \varepsilon}{2}.
\]

Тогда согласно условию (4.7)

\[
\inf_{(x, y) \in \mathbb{R}^2} n_{r}^{+1}(x, y) - \sup_{(x, y) \in \mathbb{R}^2} n_{s}^{+1}(x, y) \geq \inf_{y \in \mathbb{R}} r^0(y) - \sup_{y \in \mathbb{R}} s^0(y) - (\delta - \varepsilon) \geq \varepsilon. \tag{4.10}
\]

24
4.4 Разрешимость итерационной системы

Лемма 4.3. C^1-решение задачи (4.1) существует на всей полуплоскости.

Доказательство. Рассмотрим подсистему двух уравнений относительно $\frac{n+1}{r}$, $\frac{n+1}{s}$. Она является слабо-нелинейной ([P2], гл. 1, § 10, п. 3).

(Для системы (2.8) слабая нелинейность — это $\partial \xi_i/\partial u_i = 0$ для всех i.) Решение этой системы ограничено на всей полуплоскости согласно оценкам (4.5). Система является гиперболической в узком смысле согласно оценкам (4.9). Согласно теореме Рождественского — Сидоренко ([P2], гл. 1, § 10, п. 3) первые производные функций $\frac{n+1}{r}$, $\frac{n+1}{s}$ не обращаются в бесконечность при конечном значении x. Следовательно, согласно следствию из этой теоремы ([P2], гл. 1, § 10, п. 3), подсистема первых двух уравнений задачи (4.1) разрешима на всей (полу)плоскости, т.е. имеет глобальное C^1-гладкое решение.

Действительно, задача (4.1) разрешима локально, т.е. в некой окрестности прямой $x = 0$. Этот хорошо известный факт следует, например, из теоремы существования ([P2], гл. 1, § 8, п. 2) с учетом следствия из леммы 4.1. При продолжении локального решения сильный разрыв, т.е. уход первой производной в бесконечность при конечном x, невозможен согласно теореме Рождественского — Сидоренко. В доказательстве этой теоремы строятся мажоранта, ограничивающая классическое решение (по модулю), и, таким образом, перед уходом в бесконечность решение, оставаясь классическим, должно выйти за мажоранту, чего быть не может.

Далее, как следует из изучения слабых разрывов (разрывов первого рода, т.е. конечных скачков первой производной), слабый разрыв системы квазилинейных уравнений гиперболического типа, распространяется вдоль характеристики, не может ни возникнуть, ни исчезнуть, если только решение и его первые производные остаются ограниченными ([P2], гл. 1, § 10, п. 1). Поскольку у нас начальные данные C^1-гладкие, слабых разрывов нет. Таким образом, C^1-гладкое решение существует на всей полуплоскости.

Оставшиеся три уравнения системы (4.1) являются линейными и, снабженные начальными данными (4.1), имеют решения на всей полуплоскости. □

Лемма 4.4. Пусть $\omega^{\frac{n+1}{s}}(x, y)$ — решение задачи (4.1). Тогда харак-
теристики задачи (4.1) существуют для любого значения параметра $\tau \in [0, x]$.

Доказательство. Характеристики определяются как решения задачи (2.9). Классическая теорема Коши существования и единственности для систем вида

$$\frac{d}{d\tau} u_i = f_i(\tau, u_1, \ldots, u_n), \quad i = 1, \ldots, n$$

имеет следующий вид:

Пусть в замкнутой области

$$\bar{G} = \{ (\tau, u_1, \ldots, u_n) | |\tau - \tau^0| \leq a, \quad |u_i - u^0_i| \leq b, \quad i = 1, \ldots, n \}$$

выполнены условия:
1) функции f_i непрерывны,
2) $|f_i| \leq A$;
3) функции f_i липшицевы по переменным u_1, \ldots, u_n.

Тогда система с начальными условиями $u_i(\tau^0) = u^0$ имеет единственное решение для $|\tau - \tau^0| \leq \min(a, b/A)$.

В нашем случае $A = 1$ согласно равномерной оценке (4.5). Далее, $a = x$, и мы можем выбрать сколь угодно большое значение b. Липшицевость обеспечивается ограниченностью в области \bar{G} частных производных по u_1, \ldots, u_n; согласно лемме 4.3 правые части принадлежат к классу $C^1([0, +\infty) \times \mathbb{R})$ как классическое решение задачи (4.1). Следовательно, обе характеристики существуют для $\forall \tau \in [0, x]$. Таким образом, мы можем интегрировать вдоль характеристик. □

5 Производные приближенных решений

Распространяем теорему Рождественского – Сидоренко ([П2], гл. 1, § 10, п. 3), доказанную для точного решения в случае системы двух уравнений, на метод последовательных приближений для системы пяти уравнений с двумя различными характеристиками.

Запись $\binom{n}{y}$ означает, что к u сначала применяется оператор взятия n-го приближения, и лишь затем оператор дифференцирования по y, а не наоборот.

Пусть $G(\bar{x}, \bar{y})$ — компакт, определенный условием (4.6), $\forall(\bar{x}, \bar{y}) \in [0, +\infty) \times \mathbb{R}$.

26
Лемма 5.1. Существует функция \(\Phi(x) \in C^0(\mathbb{R}) \) такая, что

\[
|\binom{n}{y}(x, y)| \leq \Phi(x)
\]

для \(\omega = r, s, p, q, z, \forall (\bar{x}, \bar{y}) \in G(\bar{x}, \bar{y}), n = 0, 1, 2, \ldots \)

Доказательство. Введем обозначение \(g^\omega(x, y_0) = \tilde{g}^\omega(x, 0, y_0) \). Тогда \(g^\omega(x, y_0) \) есть решение задачи Коши

\[
\begin{cases}
 \partial_x g^\omega = \xi^\omega(x, g^\omega), \\
 g^\omega(0, y_0) = y_0, \quad \omega = r, s, p, q, z,
\end{cases}
\]

те. кривая \((x, g^\omega(x, y_0))\) — характеристика, проходящая через точку \((0, y_0)\). Формула (2.10) принимает вид

\[
g^{n+1}(x, g^{n+1}(x, y_0)) = \omega^0(y_0) + \int_0^x f_\omega(\tau, g^{n+1}(\tau, y_0), \Omega(\tau, g^{n+1}(\tau, y_0))) \, d\tau,
\]

где \(\Omega = (\omega) = (r, s, p, q, z) \). Введя обозначение

\[
\tilde{\omega}^n(x, y_0) = \omega^n(x, g^n(x, y_0)),
\]

получим для \(\omega = r, s, p, q, z \):

\[
g^{n+1}(x, g^{n+1}(x, y_0)) = \omega^0(y_0) + \int_0^x f_\omega(\tau, g^{n+1}(\tau, y_0), \tilde{\omega}^{n+1}(\tau, y_0), \Omega(\tau, g^{n+1}(\tau, y_0))) \, d\tau.
\]

Отсюда следует, что \(g^{n+1}(x, y_0) \) есть решение задачи Коши

\[
\begin{cases}
 \partial_x g^{n+1} = f_\omega(x, g^{n+1}(x, y_0), \Omega(x, g^{n+1}(x, y_0))), \\
 g^{n+1}(0, y_0) = \omega^0(y_0), \quad \omega = r, s, p, q, z,
\end{cases}
\]

Дифференцированием по \(y_0 \) равенства (5.3) получим

\[
\partial_{y_0} g^{n+1}(x, y_0) = \partial_y \tilde{\omega}^{n+1}(x, y) \bigg|_{y=g^{n+1}(x, y_0)} \partial_y g^{n+1}(x, y_0),
\]

откуда

\[
\partial_y g^{n+1}(x, y) = \partial_{y_0} \tilde{\omega}^{n+1}(x, y_0) \partial_{y_0} g^{n+1}(x, y_0).
\]

(5.6)
Дифференцируя по y_0 формулу (5.2), получим уравнение
\[
\partial_x \left(\partial_{y_0}^{n} g_\omega(x, y_0) \right) = \partial_y \xi(\omega)(x, y) \bigg|_{y = y_0(g_\omega(x, y_0))} \partial_{y_0}^{n} g_\omega(x, y_0),
\]
или
\[
\partial_x \ln \left(\partial_{y_0}^{n} g_\omega(x, y_0) \right) = \partial_y \xi(\omega)(x, y) \bigg|_{y = y_0(g_\omega(x, y_0))},
\]
(5.7)
и начальное условие
\[
(\partial_{y_0}^{n} g_\omega)(0, y_0) = 1.
\]
(5.70)
Пусть $v(x, y) \in C^1$ — произвольная функция. Введем обозначение
\[
\left(\frac{d}{dx}^{n+1} v \right)_\omega = (\partial_x + \frac{n+1}{s} \xi(\omega) \partial_y) v.
\]
Вычитая равенства
\[
(\partial_x + \frac{n+1}{r} \partial_y)^{n+1} s = f_s(x, y, \Omega)
\]
равенство
\[
(\partial_x + \frac{n+1}{s} \partial_y)^{n+1} s = \left(\frac{d}{dx}^{n+1} s \right)_r,
\]
получим
\[
\partial_y^{n+1} s = \frac{f_s(x, y, \Omega)}{n+1} - \left(\frac{d}{dx}^{n+1} s \right)_r.
\]
Преобразуем это равенство:
\[
\partial_y^{n+1} s = \frac{f_s(x, y, \Omega)}{n+1} - \left(\frac{d}{dx}^{n+1} s \right)_r = \frac{f_r(x, y, \Omega)}{n+1} - \left(\frac{d}{dx}^{n+1} s \right)_r = \frac{f_s(x, y, \Omega)}{r - s} - \left(\frac{d}{dx} \left(\frac{n+1}{r - s} \right) \right)_r = \frac{f_s(x, y, \Omega)}{r - s} - \left(\frac{d}{dx} \ln \left(\frac{n+1}{r - s} \right) \right)_r.
\]
(5.8)
Используем равенство (5.7):
\[
\left. \left(\partial_x + n \frac{n+1}{s} \partial_y \ln \frac{\partial y_0}{\partial x} \right) \right|_{y = \frac{n+1}{r}} = \left. \left(\frac{f_s(x, y, \Omega) - f_r(x, y, \Omega)}{n+1} \right) \right|_{y = \frac{n+1}{r}}.
\]

Интегрируем вдоль характеристики согласно формуле (2.10), учитывая начальное условие (5.7):
\[
\partial_{y_0} g_r(x, y_0) = \frac{\frac{r}{0} - \frac{s}{0}}{\frac{r}{s} - \frac{s}{0}} \exp \left\{ \int_0^x \frac{f_s}{n+1} \frac{f_r}{n+1} \frac{d\tau}{r - s} \right\}. \tag{5.9}
\]

Так как функции \(f_\omega, \omega = r, s, p, q, z \), непрерывны дифференцируемы по \(r, s, p, q, z, x, y \), а семейство \(\{ \Omega \} \) равномерно ограничен, то существует константа \(a \) такая, что для \(\omega = r, s, p, q, z, \mu = r, s, p, q, z, x, y \)
\[
|f_\omega| \leq a, \quad \left| \frac{\partial f_\omega}{\partial \mu} \right| \leq a. \tag{5.10}
\]

Используя оценки (4.5), (4.9), (5.10), получаем из (5.9) оценку
\[
\frac{1}{\psi(x)} \leq \partial_{y_0} g_r(x, y) \leq \psi(x), \tag{5.11}
\]
где
\[
\psi(x) = \left(\frac{2}{\varepsilon} \right) \exp \left\{ 2ax/\varepsilon \right\}.
\]

Оценки для \(\partial_{y_0} g_s(x, y_0) \) получаются аналогично. Напомним, что всех характеристики две, т.е. для \(\omega = r, s, p, q, z, g_r(x, y_0) \) совпадает либо с \(g_r(x, y_0) \), либо с \(g_s(x, y_0) \). Тем самым для \(\omega = r, s, p, q, z, n = 1, 2, 3, \ldots \) справедливы оценки
\[
\frac{1}{\psi(x)} \leq \partial_{y_0} g_\omega(x, y_0) \leq \psi(x). \tag{5.12}
\]

Оценка для \(n = 0 \) нам не потребуется.

Дифференцируя формулы (5.5) по параметру \(y_0 \), получим
\[
\begin{cases}
\partial_x \left(\partial_{y_0} g_r \right) = & \sum_{\mu=r,s,p,q,z} \left. \frac{\partial f_\omega}{\partial \mu} \frac{\partial g_\omega}{\partial y_0} + \frac{\partial f_\omega}{\partial \mu} \frac{\partial g_\omega}{\partial y_0} \right|_{y_0}^{n+1} \\
\partial_{y_0} g_r(0, y_0) = & \omega_0(y_0), \quad \omega = r, s, p, q, z. \tag{5.13}
\end{cases}
\]
Вводя обозначение

\[V_0 = \max_{\omega = r, s, p, q, z} \sup_{y_0 \in G(x, y) | x = 0} |\omega_0'(y_0)|, \]

рассмотрим ассоциированную с задачей (5.13) мажорантную задачу

\[\frac{d}{dx} V = 5a\psi^2(x) V + a\psi(x), \quad V(0) = V_0. \] (5.14)

Задача Коши (5.14) в силу линейности имеет решение на всем компакте \(G(\bar{x}, \bar{y}). \)

Начальное приближение \(0 \) удовлетворяет неравенству

\[|\partial_y^0 \omega| \leq \psi(x) V(x), \quad \omega = r, s, p, q, z, \]

так как \(\psi \geq 1 \) и правые части задачи (5.14) неотрицательны. Предположим, что

\[|\partial_y^n \omega| \leq \psi(x) V(x), \quad \omega = r, s, p, q, z. \] (5.15)

Учитывая оценки (5.10), (5.12), (5.15), получим

\[\left| \partial_{y_0}^{n+1} \omega \right| \leq V_0 + \int_0^x \left(\sum_{\mu = r, s, p, q, z} |\partial f_{\mu}^{n+1} | \left| \partial g_{\omega}^{n+1} \frac{\partial f_{\mu}}{\partial y_0} \right| + |\partial f_{\omega}^{n+1} | \left| \partial g_{\omega}^{n+1} \frac{\partial f_{\omega}}{\partial y_0} \right| \right) d\tau \leq \] (5.16)

\[\leq V_0 + \int_0^x \left(5a\psi(\tau)\psi(\tau) V(\tau) + a\psi(\tau) \right) d\tau \quad (5.14) = V(x). \]

Из формулы (5.6), пользуясь оценками (5.12), (5.16), получаем

\[|\partial_y^{n+1} \omega(x, y)| \leq \psi(x) V(x), \quad \omega = r, s, p, q, z. \]

Итак,

\[\Phi(x) = \psi(x) V(x). \] \(\square \)
6 Существование и единственность решения

Единственность решения задачи Коши (3.32), (3.32) следует из теоремы единственности [P2], гл. 1, § 8, п. 2.

В этом разделе, как и в разделе 2, будем рассматривать задачу Коши для системы общего вида (2.8), (2.8) относительно неизвестной вектор-функции \(u = (u_1, \ldots, u_m) \). Будем предполагать, что последовательность приближенных решений \(\{u^n(x, y)\} \) и последовательность их производных \(\{(u^n)_y(x, y)\} \) равномерно ограничены на компакте (4.6) для произвольной точки \((\bar{x}, \bar{y})\in[0, +\infty) \times \mathbb{R}\). Все рассмотрения будем проводить на этом компакте. В доказательствах будем следовать стандартной схеме, приведенной в [P2]. Также использована Глуб-диск.

Пусть \(\varphi(u) \in C^1 \). Рассмотрим функцию \(\hat{\varphi}(\lambda) = \varphi(\bar{u} + \lambda(u - \bar{u})) \), \(\lambda \in \mathbb{R} \). По формуле НьютонаЛейбница имеем Глуб-диск

\[
\hat{\varphi}(1) - \hat{\varphi}(0) = \varphi(u) - \varphi(\bar{u}) = \int_0^1 \hat{\varphi}_\lambda d\lambda = \int_0^1 \left(\sum_{j=1}^m \frac{\partial \varphi}{\partial u_j} (\bar{u} + \lambda(u - \bar{u}))(u_j - \bar{u}_j) \right) d\lambda.
\]

Доказанная формула

\[
\varphi(u) - \varphi(\bar{u}) = \sum_{j=1}^m (u_j - \bar{u}_j) \int_0^1 \frac{\partial \varphi}{\partial u_j} (\bar{u} + \lambda(u - \bar{u})) d\lambda
\]

называется формулой конечных приращений.

6.1 Непрерывность решения.

Лемма 6.1. Вектор-функция \(\lim_{n \to \infty} \hat{u}(x, y) \) непрерывна.

Доказательство. Кlassическая теорема анализа дает достаточное условие сходимости функциональной последовательности к непрерывной функции: элементы последовательности должны быть непрерывными функциями, и последовательность должна равномерно сходиться.

Равномерная сходимость последовательности \(\{\hat{u}\} \) будет следовать из равномерной сходимости ряда \(\sum_{n=0}^{\infty} (\hat{u}_{n+1} - \hat{u}_n)(x, y) \).
Пусть имеются два последовательных приближения \(u^{n+1} \), \(u^n \), т.е., согласно (4.1),

\[
\begin{align*}
(\partial_x + \xi_i(x, y, u^n) \partial_y) u_i^{n+1} &= f_i(x, y, u^n), \\
(\partial_x + \xi_i(x, y, u^n) \partial_y) u_i^n + \xi_i(x, y, u^n) u_{iy} &= f_i(x, y, u^n) + \xi_i(x, y, u^n) u_{iy}, \\
u^{n+1}(0, y) &= \frac{n}{n+1} u(0, y) = u^0(y).
\end{align*}
\]

Вычитанием получаем задачу Коши для \(u^{n+1} - \hat{u} \):

\[
\begin{align*}
(\partial_x + \xi_i(x, y, u^n) \partial_y) (u^n - \hat{u}) &= f_i(x, y, u^n) - f_i(x, y, u^n) - \xi_i(x, y, u^n) u_{iy}(\xi_i(x, y, u^n) - \xi_i(x, y, u^n)), \\
(\hat{u} - \hat{u})(0, y) &= 0.
\end{align*}
\]

Для \(r = \frac{n+1}{n+1} u - \hat{u} \) с помощью формулы конечных приращений (6.1) получим систему

\[
\begin{align*}
(\partial_x + \xi_i(x, y, u^n) \partial_y) r_i^{n+1} &= \\
= \sum_{j=1}^m \int_0^1 \left(\frac{\partial f_i}{\partial u_j}(x, y, u^n + \lambda^n) - \xi_i(x, y, u^n + \lambda^n) u_{ij} \right) d\lambda,
\end{align*}
\]

воспользовавшись формулой (2.10), получим

\[
|r_i^{n+1}| \leq \int_0^x \max_k |r_k| \sum_{j=1}^m \int_0^1 \left(\left| \frac{\partial f_i}{\partial u_j} \right| + |u_{iy}| \left| \frac{\partial \xi_i}{\partial u_j} \right| \right) d\lambda \, d\tau. \tag{6.2}
\]

Из формулы (3.32) видно, что из \(C^1 \)-ограниченности вектор-функций \(\rho, \sigma, \pi, \kappa \) и равномерной ограниченности последовательности \(\{\hat{u}^n\} \) следует равномерная ограниченность функции \(\left| \frac{\partial f_i}{\partial u_j} \right| \). Величина \(\left| \frac{\partial \xi_i}{\partial u_j} \right| \) есть либо 0, либо 1, последовательность \(\{u_{iy}\} \) равномерно ограничена, и, значит,

\[
\sum_{j=1}^m \int_0^1 \left(\left| \frac{\partial f_i}{\partial u_j} \right| + |u_{iy}| \left| \frac{\partial \xi_i}{\partial u_j} \right| \right) d\lambda \leq C,
\]

32
где C — некоторая константа, т.е. левая часть неравенства равномерно ограничена. Введем обозначение

$$R_n(x) = \max_i \sup_{(\tau,y) \in [0,x] \times \mathbb{R}} |\vec{r}_i(\tau,y)|.$$

Тогда формула (6.2) примет вид

$$R_{n+1}(x) \leq C \int_0^x R_n(\tau) \, d\tau. \quad (6.3)$$

Последовательно применяя формулу (6.3), получаем:

$$R_{n+1}(x) \leq \max_{\tau \in [0,x]} R_1(\tau) \frac{(Cx)^n}{n!} \leq \max_{\tau \in [0,x]} R_1(\tau) \frac{(C\bar{x})^n}{n!},$$

откуда согласно признаку Вейерштрасса следует равномерная сходимость ряда $\sum_{n=0}^{\infty} (\vec{u}^{n+1} - \vec{u}^n)(x,y)$ в полосе $[0, \bar{x}] \times \mathbb{R}$. Поэтому предельная вектор-функция $\lim_{n \to \infty} \vec{u}(x,y)$ непрерывна в полосе $[0, \bar{x}] \times \mathbb{R}$. □

6.2 Непрерывная дифференцируемость решения

Лемма 6.2. Вектор-функция $\lim_{n \to \infty} \vec{u}(x,y)$ непрерывно дифференцируем.

Доказательство. Для доказательства непрерывности вектор-функции $\lim_{n \to \infty} (\vec{u})_y$ воспользуемся теоремой Арцела. Равномерная ограниченность семейства $\{\vec{u}_x\}$ уже доказана. Докажем равнотемпенную непрерывность семейства $\{\vec{u}_y\}$.

Сначала докажем равнотемпенную непрерывность семейств $\{\vec{u}_x\}, \{\vec{u}_y\}$. По формуле конечных приращений (6.1) имеем:

$$\vec{u}_x(x_1, y_1) - \vec{u}_x(x_2, y_2) = (x_1 - x_2) \int_0^1 \vec{u}_x(x_2 + \lambda(x_1 - x_2), y_2 + \lambda(y_1 - y_2)) \, d\lambda +$$

$$+ (y_1 - y_2) \int_0^1 \vec{u}_y(x_2 + \lambda(x_1 - x_2), y_2 + \lambda(y_1 - y_2)) \, d\lambda.$$

Равномерная ограниченность семейства $\{\vec{u}_x\}$ следует из формул (4.1) и равномерной ограниченности семейств $\{\vec{u}\}, \{\vec{u}_y\}$. Отсюда следует равнотемпенная непрерывность последовательности $\{\vec{u}\}$.

33
Для вектор-функции \(n g(\tau, x, y) \) по формуле конечных приращений (6.1) имеем:

\[
\begin{align*}
n g(\tau, x_1, y_1) - n g(\tau, x_2, y_2) &= \\
= (x_1 - x_2) \int_0^1 n g_x(\tau, x_2 + \lambda(x_1 - x_2), y_2 + \lambda(y_1 - y_2)) \, d\lambda + \\
+ (y_1 - y_2) \int_0^1 n g_y(\tau, x_2 + \lambda(x_1 - x_2), y_2 + \lambda(y_1 - y_2)) \, d\lambda.
\end{align*}
\]

Равномерная ограниченность семейств \(\{ g_x \}, \{ g_y \} \) следует из формул (2.11) и из равномерной ограниченности семейств \(\{ u \}, \{ u_y \} \) (в нашем случае \(\xi_{iy} = 0, \partial \xi_i / \partial u_j \) либо 0, либо 1). Поэтому

\[
| \bar{g}_i(\tau, x_1, y_1) - \bar{g}_i(\tau, x_2, y_2) | \leq \text{const} \left(|x_1 - x_2| + |y_1 - y_2| \right),
\]

t.e. семейство \(\{ \bar{g} \} \) равноравномерно непрерывно.

Рассмотрим теперь на компакте \(G(\bar{x}, \bar{y}) \) функцию \(u_{iy}^{n+1} \):

\[
\begin{align*}
u_{iy}^{n+1}(x, y) &= u_{iy}^0(n^{+1}g_i(0, x, y)) + \\
&\quad + \int_0^x \left\{ -u_{iy}^{n+1} \left(\xi_{iy} + \sum_j \partial \xi_i / \partial u_j^{n+1} \cdot u_{iy}^{n+1} \right) + \left(f_{iy} + \sum_j \partial f_i / \partial u_j^{n+1} \cdot u_{iy}^{n+1} \right) \right\} d\tau. \quad (6.4)
\end{align*}
\]

В нашем случае \(\xi_{iy} = 0, \partial \xi_i / \partial u_j^{n+1} \) либо 0, либо 1. Поскольку равноравномерно непрерывны семейства \(\{ u \}, \{ g \} \), то равноравномерно непрерывны и семейства

\[
\begin{align*}
\{ u_{iy}^0(n^{+1}g_i(0, x, y)) \}, \\
\{ f_{iy}(\tau, g_i(\tau, x, y), u(\tau, g_i(\tau, x, y))) \}, \\
\{ \partial f_i / \partial u_j(\tau, g_i(\tau, x, y), u(\tau, g_i(\tau, x, y))) \}.
\end{align*}
\]

Воспользуемся теоремой Кантора: непрерывная на компакте в \(\mathbb{R}^s \) функция равноравномерно непрерывна на этом компакте. Учитывая равноравномерную
ограниченность семейства \(\{ u^n_y \} \) и теорему Кантора, получаем равномерно непрерывность правых частей равенства (6.4), т.е. семейства \(\{ u^n_y \} \) на компакте \(G(\bar{x}, \bar{y}) \).

Воспользуемся теоремой Арцела: если функциональная последовательность равномерно ограничена и равномерно непрерывна на компакте, то из нее можно выделить подпоследовательность, равномерно сходящуюся на этом компакте. Поэтому существует равномерно сходящаяся подпоследовательность \(\{ u^n_k \} \). По теореме о почленном дифференцировании функциональной последовательности вектор-функция

\[
\lim_{k \to \infty} u^n_k(x, y),
\]

непрерывно дифференцируема по \(y \), и

\[
\partial_y \lim_{k \to \infty} u^n_k = \lim_{k \to \infty} \partial_y u^n_k.
\]

(6.5)

Из доказанной ранее равномерной сходимости последовательности \(\{ u^n \} \) следует, что

\[
\lim_{k \to \infty} u^n_k = \lim_{n \to \infty} u^n.
\]

(6.6)

Воспользовавшись равенством (6.6), получаем из равенства (6.5) правило дифференцирования по \(y \) для вектор-функции \(\lim_{n \to \infty} u^n \):

\[
\partial_y \lim_{n \to \infty} u^n = \lim_{k \to \infty} \partial_y u^n_k.
\]

(6.7)

Вектор-функция \(\partial_y \lim_{n \to \infty} u^n \) непрерывна, так как непрерывны вектор-функции \(u^n_k \).

Правило дифференцирования по \(x \) для вектор-функции \(\lim_{n \to \infty} u^n(x, y) \) получаем, переходя в равенстве (4.1) к пределу:

\[
\partial_x \lim_{n \to \infty} u^n_i(x, y) = f_i(x, y, \lim_{n \to \infty} u^n) - \xi_i(x, y, \lim_{n \to \infty} u^n)(\partial_y \lim_{n \to \infty} u^n_i).
\]

(6.8)

Непрерывность производной по \(x \) обеспечивается непрерывностью вектор-функций \(f, \xi, \lim_{n \to \infty} u, \partial_y \lim_{n \to \infty} u^n \).

Итак, доказано, что \(\lim_{n \to \infty} u^n(x, y) \in C^1(G(\bar{x}, \bar{y})) \). Подставив построенную функцию в задачу Коши (2.8), (2.80) и воспользовавшись равенством (6.8), видим, что она является решением задачи Коши.
Остается сказать, что для любой точки \((x, y) \in [0, +\infty) \times \mathbb{R}\) можно построить компакт вида \(G(\bar{x}, \bar{y})\), содержащий эту точку. Поскольку в пересечении двух таких компактов начальные приближения совпадают и равны начальному приближению, заданному в полуплоскости \([0, +\infty) \times \mathbb{R}\), то совпадают и предельные функции, являющиеся, следовательно, ограничениями предельной функции, определенной в полуплоскости \([0, +\infty) \times \mathbb{R}\), на соответствующую область.

Отметим, что теорема Арцела, являющаяся чистой теоремой существования, используется в доказательстве, но в построении решения не используется. □

7 Основной результат

7.1 Теорема существования и единственности

Выше было установлено, что при выполнении неравенств (4.4), (4.7), (4.8) в полуплоскости \(x \geq 0\) существует единственное \(C^1\)-решение задачи (3.32), (3.32\(0\)). Сформулируем условия на коэффициенты уравнения (3.1) и начальные данные, обеспечивающие выполнение неравенств (4.4), (4.7), (4.8).

Пусть \(M_1, M_2\) — произвольные положительные постоянные, \(\varepsilon, \delta\) — постоянные, связанные условиями

\[0 < \varepsilon \leq \delta, \quad (\delta - \varepsilon)/2 < 1,\]

\(\eta(x) \in C^0(\mathbb{R})\) — произвольная неотрицательная функция.

Введем обозначения

\[N_1 = \max\{M_1, \frac{1}{2}M_2(4M_1 + 9M_1^2)\},\]

\[N_2 = M_1M_2,\]

\[\tilde{\eta}(x) = \frac{1}{1 + 2M_1|x|} \eta(x).\]

(7.1)
Будем предполагать выполненными следующие условия:

1) коэффициенты $A, B, C, D \in C^2(\mathbb{R}^5)$;
2) начальные функции $z^0 \in C^3(\mathbb{R})$, $p^0 \in C^2(\mathbb{R})$;
3) $|a| \leq M_1$, $1/\Delta \leq M_2$,
 $\left| \frac{\partial a}{\partial \omega} \right| \leq M_1 \eta(x)$, $\left| \frac{\partial a}{\partial z} \right| \leq M_1 \tilde{\eta}(x)$,
 где $a = B, C, D, \Delta$, $\omega = x, y, p, q$; (7.3)
4) $(6N_1 + 8N_2) \int_{-\infty}^{+\infty} \eta(x) \, dx \leq (\delta - \varepsilon)/2$;
5) $|r^0|, |s^0| \leq 1 - (\delta - \varepsilon)/2$, $|z^0_y|, |p^0| \leq 1$;
6) $\inf_{y \in \mathbb{R}} r^0(y) - \sup_{y \in \mathbb{R}} s^0(y) \geq \delta > 0$.

Теорема 7.1. При выполнении условий (7.3) C^3-гладкое решение задачи Коши (3.1), (3.3) существует и единственно.

Доказательство. Докажем, что условия (7.3) обеспечивают выполнение условий (4.4), (4.7), (4.8) и требований, которые предшествуют им в начале раздела 4.2.

Условия (4.4) сформулированы в предположении C^4-гладкости и ограниченности начальных данных r^0, s^0. Сначала покажем, что условия (7.3) обеспечивают условие $r^0, s^0 \in C^4$. Из первых двух уравнений системы (3.320) получаем

$$r^0(y) - s^0(y) = \frac{\Delta(0, y, z^0(y), p^0(y), z^0_y(y))}{z^0_{yy}(y) + B(0, y, z^0(y), p^0(y), z^0_y(y))},$$

откуда

$$z^0_{yy}(y) + B(0, y, z^0(y), p^0(y), z^0_y(y)) = \frac{\Delta(0, y, z^0(y), p^0(y), z^0_y(y))}{r^0(y) - s^0(y)}.$$

Таким образом, неравенство

$$z^0_{yy}(y) + B(0, y, z^0(y), p^0(y), z^0_y(y)) \neq 0$$

обеспечивается условием (7.3), пункт 6), и условием $1/\Delta \leq M_2$ из условия (7.3), пункт 3).
Тогда условие $r^0, s^0 \in C^1$ обеспечивают формулы (3.32) и условия (7.3), пункты 1, 2). Ограниченнность функций r^0, s^0 обеспечивается условием (7.3), пункт 5).

Условия (4.4) сформулированы также в предположении C^1-гладкости и ограниченности начальных данных p^0, q^0. Согласно (3.32) $q^0 = z^0_0$. C^1-гладкость функций p^0, q^0 обеспечивается условием (7.3), пункт 2). Ограниченнность функций p^0, q^0 обеспечивается условием (7.3), пункт 5).

Далее, условия (4.4) сформулированы в предположении C^1-гладкости и ограниченности вектор-функций $\rho, \sigma, \pi, \kappa$. Согласно (3.32) в выражении для этих вектор-функций входят первые производные функций B, C, D, Δ и выражение $1/\Delta$. Согласно условиям (7.3), пункт 3) функция $1/\Delta$ отделена от нуля положительной константой. Тогда C^1-гладкость вектор-функций $\rho, \sigma, \pi, \kappa$ обеспечивается C^2-гладкостью функций A, B, C, D согласно условиям (7.3), пункт 1). Ограниченнность вектор-функций $\rho, \sigma, \pi, \kappa$ обеспечивается условиями (7.3), пункт 3).

Используя условие (7.3), пункт 3), получаем оценки

\[
|\rho_i|, |\sigma_i| \leq M_1 \eta, \quad i = 0, 13; \\
|\rho_i|, |\sigma_i| \leq \frac{1}{2} M_2 (4 M_1 + 9 M_1^2) \eta, \quad i = 1, 2, 7, 8; \]
\[
|\rho_i|, |\sigma_i| \leq M_1 M_2 \bar{\eta}, \quad i = 3, 4, 5, 6, 9, 10, 11, 12; \\
|\pi_i|, |\kappa_i| \leq M_1, \quad i = 0, 1;
\]

Отсюда согласно формулам (4.3), (7.2) имеем оценки

\[
\alpha_1(x) \leq \max\{M_1, \frac{1}{2} M_2 (4 M_1 + 9 M_1^2)\} \eta(x) = N_1 \eta(x), \]
\[
\alpha_2(x) \leq M_1 M_2 \bar{\eta}(x) = N_2 \bar{\eta}(x), \quad \alpha_3 \leq M_1.
\]

Тогда пункты 4), 5) условия (7.3) обеспечивают выполнение второго неравенства (4.4):

\[
U_0 + 6 \int_{-\infty}^{+\infty} \alpha_1(x) \, dx + 8 \int_{-\infty}^{+\infty} (1 + 2 \alpha_3 |x|) \alpha_2(x) \, dx \leq
\]
\[
\leq U_0 + (6 N_1 + 8 N_2) \int_{-\infty}^{+\infty} \eta(x) \, dx \leq (1 - (\delta - \varepsilon)/2) + (\delta - \varepsilon)/2 = 1.
\]

Первое неравенство (4.4) следует из условия (7.3), пункт 5). Неравенство (4.7) есть условие (7.3), пункт 6). Неравенство (4.8) с учетом обозначений (7.2) и оценок (7.4) есть условие (7.3), пункт 4).
Таким образом, условия (7.3) обеспечивают выполнение неравенств (4.4), (4.7), (4.8), которые в свою очередь обеспечивают существование единственного \(C^1 \)-решения задачи (3.32), (3.32) в полуплоскости \(x \geq 0 \).

Решение в полуплоскости \(x \leq 0 \) строится аналогично. \(C^1 \)-гладкость решения на всей плоскости обеспечивается одинаковыми начальными данными.

\(C^1 \)-решению задачи (3.32), (3.32) соответствует \(C^2 \)-решение задачи (3.1), (3.3), поскольку согласно теореме 3.2 для этого достаточно выполнения неравенства \(\Delta > 0 \), справедливого в силу условия \(1/\Delta \leq M_2 \) (условие (7.3), пункт 3)). \(\square \)

Пример 7.1. Покажем, что условия (7.3) задают непустое множество входных данных. Пусть \(A = 1/16, \ B = 1/2, \ C = 0, \ D = 0, \ z^0 = 1, \ p^0 = 1. \) Тогда согласно (3.2) \(\Delta^2 = 4A, \) откуда \(\Delta = 1/2. \) Выражения (3.32) для начальных данных принимают вид \(r^0, s^0 = (C \pm \Delta)/2B, \) откуда \(r^0, s^0 = \pm 1/8. \) Таким образом, существуют постоянные \(M_1 = 1/2, \ M_2 = 2, \ \delta = 1/4, \ \varepsilon = 1/4 \) и функции \(\eta(x) = 0, \ \tilde{\eta}(x) = 0, \) для которых выполнены соотношения (7.3). Постоянные \(N_1, N_2 \) определяются выражениями (7.2). \(\square \)

Пример 7.2. Уравнение с постоянными коэффициентами. Система (3.32) сводится к независимой подсистеме (3.33), которая принимает вид

\[
(\partial_x + s \partial_y) r = 0, \\
(\partial_x + r \partial_y) s = 0.
\]

Для этой системы от условий (7.3) остаются только условия на начальные функции \(r^0, s^0. \) После нахождения функций \(r, s, \) решаются линейные уравнения (3.32) для функций \(p, q, z. \) Начальные данные \(p^0, q^0, z^0 \) в этом случае выражаются через \(r^0, s^0 \) при помощи (3.320). \(\square \)

7.2 Начальные данные

Конкретизируем достаточные условия, обеспечивающие выполнение условий (7.3) в пунктах, касающихся начальных данных.

Пусть

\[m_1 \geq 0, \quad m_2 \geq 0, \quad L_1 > 0, \quad L_2 > 0, \quad L_3 > 0 \]
— произвольные постоянные. Введем постоянные

\[m_3 = \frac{m_1}{L_1 - m_1} \left(1 + L_3 + \frac{m_2}{2L_1} + \frac{m_2}{2L_1} \right), \]
\[m_4 = \frac{m_1(2 + L_3)}{L_1 - m_1} + \frac{m_2}{2(L_1 - m_1)}, \]
\[L_4 = \frac{1}{2M_2L_2}, \]

где \(M_2 \) — постоянная из условий (7.3), пункт 3).

Будем предполагать выполненными следующие условия:

1) \(z^0 \in C^3(\mathbb{R}), \ p^0 \in C^2(\mathbb{R}); \)
2) \(|z_y^0| \leq 1, \ |p^0| \leq 1; \)
3) \(|z_{yy}^0| \leq m_1, \ |p_{yy}^0| \leq m_1; \)
4) \(0 < L_1 \leq B \leq L_2; \)
5) \(L_1 - m_1 > 0; \)
6) \(|C| \leq m_2; \)
7) \(\frac{|\Delta|}{2L_1} \leq L_3; \)
8) \(L_3 + m_3 \leq 1 - \frac{\delta - \varepsilon}{2}; \)
9) \(L_4 - m_4 \geq \delta/2 > 0. \)

Теорема 7.2. Пусть коэффициенты \(A, B, C, D \) уравнения (3.1) удовлетворяют условиям (7.3), и пусть сверх того выполнены условия (7.6). Тогда начальные функции \(z^0, p^0 \) и определяемые ими с помощью формул (3.320) функции \(r^0, s^0 \) удовлетворяют условиям (7.3).

Доказательство. Пункт 2) условий (7.3) следует из пункта 1) условий (7.6). Пункт 5) условий (7.3) для функций \(z_y^0, p_y^0 \) есть пункт 2) условий (7.6).

Покажем, что для функций \(r^0, s^0 \) пункт 5) условий (7.3) выполнен. Так как

\[
\frac{C + \Delta - 2p_y^0}{2(z_{yy}^0 + B)} - \frac{C + \Delta}{2B} = \frac{(C + \Delta)B - 2p_y^0B - (C + \Delta)(z_{yy}^0 + B)}{2(z_{yy}^0 + B)B} = \]
\[
= \frac{-2p_y^0B - (C + \Delta)z_{yy}^0}{2(z_{yy}^0 + B)B} - \frac{p_y^0}{z_{yy}^0 + B} - \frac{(C + \Delta)z_{yy}^0}{2(z_{yy}^0 + B)B},
\]
то

\[
\frac{C + \Delta - 2p_y^0}{2(z_{yy}^0 + B)} = \frac{C + \Delta}{2B} - \frac{p_y^0}{z_{yy}^0 + B} - \frac{(C + \Delta)z_{yy}^0}{2(z_{yy}^0 + B)B}. \quad (7.7)
\]
Вводя индекс ω = r, s, из равенств (3.32⁰), (7.7) получаем оценки

\[|ω⁰| = \left| \frac{C ± Δ - 2p_y^0}{2(z_{yy}^0 + B)} \right| \leq \frac{|C| + |Δ|}{2|B|} + \frac{|p_y^0|}{2|z_{yy}^0 + B|} + \frac{(|C| + |Δ|)|z_{yy}^0|}{2|z_{yy}^0 + B| \cdot |B|} \leq \]

(7.6), n. 3)-6) \[\frac{|Δ| + m_2}{2L_1} + \frac{1}{L_1 - m_1} \left(m_1 + \frac{m_1(|Δ| + m_2)}{2L_1} \right) \]

(7.6), n. 7) \[\leq \frac{|Δ|}{2L_1} + \frac{m_2}{2L_1} + \frac{m_1}{L_1 - m_1} \left(1 + \frac{|Δ|}{2L_1} + \frac{m_2}{2L_1} \right) \]

(7.5) \[\leq L_3 + \frac{m_2}{2L_1} + \frac{m_1}{L_1 - m_1} \left(1 + L_3 + \frac{m_2}{2L_1} \right) \]

(7.6), n. 8) \[= L_3 + m_3 \leq 1 - \frac{δ - ε}{2}. \]

Покажем, что выполнен пункт 6) условий (7.3). Так как

\[\frac{C ± Δ - 2p_y^0}{2(z_{yy}^0 + B)} - \frac{±Δ}{2} = \frac{(C ± Δ)B - 2p_y^0B - (±Δ)(z_{yy}^0 + B)}{2(z_{yy}^0 + B)B} = \]

(7.8) \[= \frac{CB - 2p_y^0B - (±Δ)z_{yy}^0}{2(z_{yy}^0 + B)B} - \frac{C - 2p_y^0}{2(z_{yy}^0 + B)} = \]

то \[\frac{C ± Δ - 2p_y^0}{2(z_{yy}^0 + B)} = \frac{±Δ}{2B} - \frac{(±Δ)}{2B} \cdot \frac{z_{yy}^0}{z_{yy}^0 + B} + \frac{C - 2p_y^0}{2(z_{yy}^0 + B)} \]

Вводя индекс ω = r, s, из равенств (3.32⁰), (7.8) получаем оценки

\[|ω⁰| = \left| \frac{C ± Δ - 2p_y^0}{2(z_{yy}^0 + B)} \right| \geq \]

(7.6), n. 4) \[\inf \left| \frac{±Δ}{2B} \right| \cdot \sup \left| \frac{±Δ}{2B} \cdot \frac{z_{yy}^0}{z_{yy}^0 + B} \right| - \sup \left| \frac{C - 2p_y^0}{2(z_{yy}^0 + B)} \right| \]

(7.3), n. 3) \[\geq \frac{1}{M_2} \cdot \frac{1}{2L_2} - \sup \left| \frac{±Δ}{2B} \cdot \frac{z_{yy}^0}{z_{yy}^0 + B} \right| - \sup \left| \frac{C - 2p_y^0}{2(z_{yy}^0 + B)} \right| \]

(7.6), n. 3), 5), 7) \[\geq \frac{1}{M_2} \cdot \frac{1}{2L_2} - L_3 \cdot \frac{m_1}{L_1 - m_1} - \frac{m_2 + 2m_1}{2(L_1 - m_1)} \]

(7.5) \[\geq \frac{L_4 - m_4}{2} \]

(7.6), n. 9) \[\geq \frac{δ}{2} > 0. \]
Поскольку знак функции ω^0 определяется ее главной частью $\pm \Delta/2B$, то функции r^0 и s^0 имеют разные знаки, причем из условия $B > 0$ (§(7.6), пункт 4)) и условия $\Delta > 0$ (§(7.3), пункт 3)) следует, что $r^0 > 0$, $s^0 < 0$. Тогда из доказанных соотношений $|\omega^0| \geq \delta/2$ получаем $\sup_{y \in \mathbb{R}} r^0(y) - \inf_{y \in \mathbb{R}} s^0(y) \geq \delta > 0$. □

Пример 7.3. Условиям (7.6) удовлетворяют коэффициенты и начальные функции примера 7.1. В этом случае $M_2 = 2$, $m_i = 0$, $L_i = 1/2$, $i = 1, 2, 3, 4$. Задавая малые возмущения входных данных из примера 7.1, получаем пример уравнения с переменными коэффициентами, зависящими от x, y, z, z_x, z_y, и с непостоянными начальными функциями. □

8 Приложение. Контактный подход

8.1 Контактное преобразование может переводить классическое решение в решение, особое в каждой точке.

Рассмотрим ниже следующий пример. Автор благодарен В. В. Лычагину [Лыч-75], [Лыч-79] и Л. В. Эльберглейту, введшим его в курс дела.

Пример 8.1. Рассмотрим пространство джетов первого порядка $J^1(\mathbb{R}^2)$ с координатами x, y, z, p, q, где x, y имеют смысл независимых переменных, z — смысл искомой функции $z(x, y)$, и p, q — смысл первых производных z_x, z_y соответственно. На $J^1(\mathbb{R}^2)$ имеется пространство внешних форм 2-го порядка $\Lambda^2 J^1(\mathbb{R}^2)$.

Имея в виду, что $p = f_x$, $q = f_y$, где $f(x, y)$ — некоторая функция на \mathbb{R}^2, получаем равенство

$$
dx \wedge dq + dy \wedge dp = dx \wedge d(f_y) + dy \wedge d(f_x) = dx \wedge (f_{xy} dx + f_{yy} dy) +$$

$$+dy \wedge (f_{xx} dx + f_{xy} dy) = f_{xy} dx \wedge dx + f_{yy} dy \wedge dy + f_{xx} dy \wedge dx +$$

$$+f_{xy} dy \wedge dy = f_{yy} dx \wedge dy - f_{xx} dx \wedge dy = (f_{yy} - f_{xx}) dx \wedge dy$$

и равенство

$$
dp \wedge dq + dx \wedge dy = d(f_x) \wedge d(f_y) + dx \wedge dy = (f_{xx} dx + f_{xy} dy) \wedge (f_{xy} dx +$$

$$+f_{yy} dy) + dx \wedge dy = f_{xx} f_{xy} dx \wedge dx + f_{xx} f_{yy} dx \wedge dy + f_{xy} f_{xy} dy \wedge dx +$$

$$+f_{xy} f_{yy} dy \wedge dy + dx \wedge dy = (f_{xx} f_{yy} - (f_{xy})^2) dx \wedge dy + dx \wedge dy =$$

$$= (\text{hess } f + 1) dx \wedge dy.$$
Здесь использованы следующие тождества алгебры внешних форм [5упр.]:
\[
\omega_1 \wedge (\omega_2 + \omega_3) = \omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3,
\]
\[
a\omega_1 \wedge \omega_2 = \omega_1 \wedge a\omega_2 = a(\omega_1 \wedge \omega_2),
\]
\[
\omega \wedge \omega = 0,
\]
где \(\omega, \omega_1, \omega_2, \omega_3\) — внешние формы, \(a\) — константа.

Итак, форму
\[
d\bar{x} \wedge dq + dy \wedge dp
\]
из \(\Lambda^2 J^1(\mathbb{R}^2)\) мы поставили в соответствие форму
\[
(f_{yy} - f_{xx}) \, dx \wedge dy
\]
из \(\Lambda^2(\mathbb{R}^2)\), т.е. линейное волновое уравнение, а форму
\[
dp \wedge dq + dx \wedge dy
\]
из \(\Lambda^2 J^1(\mathbb{R}^2)\) — форму
\[
(\text{hess } f + 1) \, dx \wedge dy
\]
из \(\Lambda^2(\mathbb{R}^2)\), т.е. простейшее уравнение Монжа-Ампера.

Рассмотрим преобразование Ампера
\[
\bar{x} = -p, \quad \bar{y} = y, \quad \bar{z} = z - p \, x, \quad \bar{p} = x, \quad \bar{q} = q.
\]
Оно является контактным, т.е. сохраняет форму \(dz - p \, dx - q \, dy\):
\[
d\bar{z} - \bar{p} \, d\bar{x} - \bar{q} \, d\bar{y} = d(z - p \, x) - x \, d(-p) - q \, dy =
\]
\[
= dz - dp \, x - p \, dx + x \, dp - q \, dy = dz - p \, dx - q \, dy.
\]
Преобразование Ампера переводит уравнение Монжа-Ампера \(\text{hess } z = -1\) в линейное волновое уравнение \(z_{xx} - z_{yy} = 0\), так как
\[
d\bar{p} \wedge d\bar{q} + d\bar{x} \wedge d\bar{y} = dx \wedge dq + d(-p) \wedge dy = dx \wedge dq - dp \wedge dy = dx \wedge dq + dy \wedge dp.
\]
Преобразование Ампера переводит классическое решение \(z = xy\) уравнения \(\text{hess } z = -1\), т.е. двумерное интегральное многообразие \((u, v, uv, v, u)\), в интегральное многообразие \((-v, v, 0, u, u)\), т.е. многозначное решение волнового уравнения \(z_{xx} - z_{yy} = 0\). Это последнее интегральное многообразие при проектировании на плоскость \(\mathbb{R}^2 = (x, y)\) дает прямую \((-v, v)\), а не двумерную область, т.е. оно ни в одной своей точке не может использоваться в качестве классического решения волнового уравнения. \(\Box\)
Список литературы

[Бр] Ю. Н. Братков, "О существовании классического решения гиперболического уравнения Монжа-Ампера в целом Фундам. и прикл. матем., 6:2 (2000), 379–390.

[Тун] Д. В. Тунюк, Системы в римановых инвариантах и уравнения Монжа-Ампера гиперболического типа, Деп. ВИНИТИ 16.07.87, № 5122-В 87.

[Лер] Ж. Лер, Гиперболические дифференциальные уравнения, М.: Наука, 1984.

[Ян] Н. Н. Яненко, "О разрывах в решениях квазилинейных уравнений УМН, 10:2 (1955), 195–202.

[РЯ] Б. Л. Рождественский, Н. Н. Яненко, Системы квазилинейных уравнений и их приложения к газовой динамике. Изд. 2-е, М.: Наука, 1978.

[Хон-93] J. X. Hong, "Realization in \mathbb{R}^3 of Complete Riemannian Manifolds with Negative Curvature Communications in Analysis and Geometry, 1:4 (1993), 487–514.

[Хон-95] Hong, Jiaxing, "The Global Smooth Solutions of Cauchy Problems for Hyperbolic Equation of Monge-Ampere Type Nonlinear Analysis, Theory, Methods & Applications, Vol. 24, No. 12, pp. 1649–1663, 1995.

[Поз] Э. Г. Позняк, "О регулярной реализации в целом двумерных метрик отрицательной кривизны Укр. геометр. сб., 3(1966), 78–92.

[Тун-дис] Д. В. Тунюк, Системы в римановых инвариантах и уравнения Монжа-Ампера гиперболического типа. Дис. канд. физ.-мат. наук, МГУ, Москва, 1987.

[Кур] Р. Курант, Уравнения с частными производными, М.: Мир, 1964.
[Лыч-75] В. В. Лычагин, "Локальная классификация нелинейных дифференциальных уравнений в частных производных первого порядка УМН, т. XXX, 1975, 1, 101–171.

[Лыч-79] В. В. Лычагин, "Контактная геометрия и нелинейные дифференциальные уравнения второго порядка УМН, т. 34, 1979, 1, 137–165.

[Бурб] Н. Бурбаки, Алгебра. Алгебраические структуры, линейная и полилинейная алгебра, М.: Физматгиз, 1962.