Dependence of entanglement on initial states
under amplitude damping channel in non-inertial frames

Wenpin Zhang, Junfeng Deng and Jiliang Jing*
Department of Physics,
and Key Laboratory of Low-dimensional Quantum Structures
and Quantum Control of Ministry of Education,
Hunan Normal University, Changsha,
Hunan 410081, P. R. China

Under amplitude damping channel, the dependence of the entanglement on the initial states $|\Theta\rangle_1$ and $|\Theta\rangle_2$, which reduce to four orthogonal Bell states if we take the parameter of states $\alpha = \pm 1/\sqrt{2}$ are investigated. We find that the entanglements for different initial states will decay along different curves even with the same acceleration and parameter of the states. We note that, in an inertial frame, the sudden death of the entanglement for $|\Theta\rangle_1$ will occur if $\alpha > 1/\sqrt{2}$, while it will not take place for $|\Theta\rangle_2$ for any $\alpha$. We also show that the possible range of the sudden death of the entanglement for $|\Theta\rangle_1$ is larger than that for $|\Theta\rangle_2$. There exist two groups of Bell state here we can’t distinguish only by concurrence.

PACS numbers: 03.65.Ud, 03.67.Mn, 04.70.Dy
Keywords: Entanglement, Initial states, Amplitude damping channel.

I. INTRODUCTION

In the theory of quantum information, entanglement, a very subtle phenomenon, has been investigated many years since it was first brought to light by Einstein, Podolsky and Rosen [1], and by Schrödinger [2,3]. It took about 30 years to distinguish it from classical physics by Bell [4], and it was also found that the entanglement plays a key role in quantum computation algorithms [5]. To the best of our knowledge, the early studies were just confined to isolated system. However, anything can be thought of as being encompassed by its environment which may influences its dynamics, so the study of entanglement in an open systems is imperative. Some inchoate ideas about this topic were presented in quantum optics [6]. On the other hand, with the rise of relativistic quantum information, much attention has been concentrated on the behavior of quantum correlations in a relativistic setting [7–11]. These works provide us some new way in understanding the quantum theory. Recently, the decoherence in non-inertial frame has been first discussed under a noise environment [12] also.

It is well known that the Bell state is a concept in quantum information science and represents the simplest possible examples of entanglement. And there are four orthogonal Bell states

$$|\Phi^\pm\rangle = \frac{|0\rangle_A|0\rangle_R \pm |1\rangle_A|1\rangle_R}{\sqrt{2}},$$

$$|\Psi^\pm\rangle = \frac{|0\rangle_A|1\rangle_R \pm |1\rangle_A|0\rangle_R}{\sqrt{2}},$$

where $|n\rangle_A$ indicate Minkowski modes described by Alice and $|n\rangle_R$ described by Rob, respectively. Sibasish Ghosh showed that it is not possible to discriminate between any three Bell states if only a single copy is provided and if only local operations and classical communication are allowed [13]. At present most of the studies consider only one of the Bell states but ignore the other three [9–12, 14, 15] because different Bell states will give the same result without considering environment. On the other hand, Philip Walther and Anton Zeilinger realized a probabilistic for Bell state analyzer for two photonic quantum bits by use of a non-destructive controlled-NOT gate based on entirely linear optical elements [16]. And Miloslav Dusek showed that with no auxiliary photons it is impossible to discriminate Bell states without errors and it is impossible to discriminate such Bell states with certainty in any way by the means of linear optics [17]. Along the way, it is natural to ask whether the entanglement is related to the initial (Bell) states if we introduce environment? In this paper, we will address this question by studying concurrence when both subsystems are coupled to a noise environment. For the sake of universality, we take two general initial states

$$|\Theta\rangle_1 = \sqrt{1-\alpha^2}|0\rangle_A|0\rangle_R + \alpha|1\rangle_A|1\rangle_R, \quad (2)$$

$$|\Theta\rangle_2 = \sqrt{1-\alpha^2}|0\rangle_A|1\rangle_R + \alpha|1\rangle_A|0\rangle_R, \quad (3)$$

where $-1 < \alpha < 1$, $\alpha \neq 0$. $|\Theta\rangle_1$ can degrade into the Bell states $|\Phi^\pm\rangle$ and $|\Theta\rangle_2$ into $|\Psi^\pm\rangle$ if we take $\alpha = \pm 1/\sqrt{2}$, respectively. Then, we can find that the behavior of the entanglement will be greatly influenced by initial states, but we can only distinguish the initial states $|\Theta\rangle_1$ (or $|\Phi^\pm\rangle$) from $|\Theta\rangle_2$ (or $|\Psi^\pm\rangle$).

In this paper, we will investigate the dependence of the entanglement on the initial states which reduce to four orthogonal Bell states under amplitude damping channel. We will show that the entanglements for different initial states will decay along different curves even with the same acceleration and parameter of the states, and the possible range of the sudden death of the entanglement for 1 is larger than that for 2.

This paper is structured as follows. In Sec. II we will...
study the concurrence when both of the qubits under amplitude damping channel using the initial state $|\Theta\rangle_I$. In Sec. III we will consider the concurrence when both of the qubits under the same environment by taking the state $|\Theta\rangle_2$. Our work will be summarized in last section.

II. ENTANGLEMENT FOR INITIAL STATES $|\Theta\rangle_I$

We first study the entanglement for initial states $|\Theta\rangle_I$. We assume two observers, Alice who stays stationary has a detector only sensitive to mode $|n\rangle_A$ and Rob who moves with a uniform acceleration has a detector which can only detect mode $|n\rangle_R$, share an entangled initial state $|\Theta\rangle_I$ at the same point in Minkowski spacetime. We can use a two-mode squeezed state to expand the Minkowski vacuum from the perspective of Rob $|0\rangle_M = \cos r|0\rangle_H|0\rangle_H + \sin r|1\rangle_H|1\rangle_H$, where $\cos r = (e^{-2\mu c^2/\hbar} + 1)^{-1/2}$, $\alpha$ is Rob’s acceleration, $\omega$ is energy of the Dirac particle, $c$ is the speed of light in vacuum, and $|\{n\}_H\}$ indicate Rindler modes in region $H$, and $|\{n\}_I\}$ indicate Rindler modes in region $I$. And the only excited state can be given by $|1\rangle_M = |\gamma\rangle_H|0\rangle_H$. Thus, we can rewrite Eq. (2) in terms of Minkowski modes for Alice and Rindler modes for Rob

$$|\Theta\rangle_{A,I,H} = \sqrt{(1-\alpha^2)} \cos r|0\rangle_A|0\rangle_H|H\rangle + \alpha|1\rangle_A|1\rangle_H|H\rangle + \sqrt{(1-\alpha^2)} \sin r|0\rangle_A|1\rangle_H|H\rangle. \quad (4)$$

On account of Rob is causally disconnected from region $H$, and tracing over the states in region $H$, we obtain

$$\rho_I = \begin{pmatrix} (1-\alpha^2) \cos^2 r & 0 & 0 & \alpha \sqrt{(1-\alpha^2)} \\ 0 & (1-\alpha^2) \sin^2 r & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \alpha \sqrt{(1-\alpha^2)} & 0 & 0 & \alpha \sqrt{(1-\alpha^2)} \end{pmatrix}. \quad (5)$$

We now let both Rob and Alice interact with a amplitude damping environment [13]. There is a simple way to understand this process if we use the quantum map [19]

$$|0\rangle_S|0\rangle_E \rightarrow |0\rangle_S|0\rangle_E, \quad (6)$$

$$|1\rangle_S|0\rangle_E \rightarrow \sqrt{1 - P} |1\rangle_S|0\rangle_E + \sqrt{P} |0\rangle_S|1\rangle_E. \quad (7)$$

Eq. (6) shows that if the system stays $|0\rangle_S$ both it and its environment will not change at all. Eq. (7) indicates that if the system stays $|1\rangle_S$ the decay will exist in the system with probability $P$, and it can also remain there with probability $(1 - P)$.

If the environment acts independently on Alice’s and Rob’s states, the total evolution of these two qubits system can be expressed as [14] $L(\rho) = \sum_{i} M_i^A \otimes M_i^R$, where $M_i^A$ are the Kraus operators

$$M_i^A = \begin{pmatrix} 1 & 0 & 0 & \sqrt{P} \\ 0 & 0 & 1 & \sqrt{1 - P} \end{pmatrix}, \quad M_i^R = \begin{pmatrix} 1 & 0 & 0 & \sqrt{P} \\ 0 & 0 & 1 & \sqrt{1 - P} \end{pmatrix}. \quad (8)$$

where $i = (A, R)$, $P_A$ is the decay parameter in Alice’s quantum channel and $P_R$ is the decay parameter in Rob’s quantum channel, and $P_i (0 \leq P_i \leq 1)$ is a parameter relating only to time. Under the Markov approximation, the relationship between the parameter $P_i$ and the time $t$ is given by $P_i = (1 - e^{-t\Gamma}) [14] [18]$, where $\Gamma$ is the decay rate. We must note that here we just consider the local channels [14], in which all the subsystems interact independently with its own environment and no communication appears. i.e., $P_A = P_R = P$. Then we can obtain the evolved states in this case

$$\rho_{iI} = \begin{pmatrix} P^2 \alpha^2 + \gamma (\cos^2 r + P \sin^2 r) & 0 & 0 & \alpha \beta \sqrt{P} \cos r \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \alpha \beta \sqrt{P} \cos r & 0 & 0 & \beta \alpha^2 \end{pmatrix}. \quad (9)$$

where $\beta = 1 - P$ and $\gamma = 1 - \alpha^2$. Since it is well known that the degree of entanglement for a two-qubits mixed state in noisy environments can be quantified very conveniently by the concurrence $[20, 21] C_S = \max \{0, \sqrt{\lambda_1} - \sqrt{\lambda_2} - \sqrt{\lambda_3} - \sqrt{\lambda_4}\}$, $\lambda_i \geq \lambda_{i+1} \geq 0$, where $\sqrt{\lambda_i}$ are square roots of the eigenvalues of the matrix $\rho \hat{\rho}^T$, with $\hat{\rho} = (\sigma_y \otimes \sigma_y) \rho^T (\sigma_y \otimes \sigma_y)$ is the "spin-flip" matrix for the state [5]. So, we obtain the concurrence as a function of $\alpha, r$ and $P$

$$C_{iI} = 2 |\alpha| (1 - P) \left[ \sqrt{1 - \alpha^2} \cos r - \sqrt{P} \alpha^2 \right]. \quad (10)$$

Due to the concurrence is just depended on $\alpha^2$ and $|\alpha|$, we can’t distinguish the initial states described by $|\Theta\rangle_I$ with $1 > \alpha > 0$ or $-1 < \alpha < 0$. 

### III. ENTANGLEMENT FOR INITIAL STATES $|\Theta_2\rangle$

Now, we consider the other initial state $|\Theta_2\rangle$. Using the same method as mentioned above we obtain its density matrix

$$
\rho_2 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 - \alpha^2 & \alpha \sqrt{1 - \alpha^2} \cos r & 0 \\
\alpha \sqrt{1 - \alpha^2} \cos r & a^2 \cos^2 r & 0 & 0 \\
0 & 0 & 0 & a^2 \sin^2 r
\end{pmatrix},
$$

(11)

Thus, the concurrence is

$$
C_{s2} = 2|\alpha|(1 - P)\sqrt{1 - \alpha^2} \cos r
$$

$$
- \sin r \sqrt{P((1 - \alpha^2) + a^2(\cos^2 r + P \sin^2 r))}.
$$

(13)

From which we know that we can’t distinguish the initial states described by $|\Theta_2\rangle$ with $1 > \alpha > 0$ or $-1 < \alpha < 0$, too.

### IV. DISCUSSIONS AND CONCLUSIONS

By comparing Eqs. (10) and (13), we can see that there are obvious differences between $C_{s1}$ and $C_{s2}$. Especially, we find that $C_{s1} = (1-P)^2$ and $C_{s2} = (1-P)$ for Bell states ($\alpha = 1/\sqrt{2}$) in an inertial frame. But if $P = 0$, we have $C_{s1} = C_{s2}$ for any $r$ and $\alpha$, which means that the two groups of the initial states will be equivalent without the effect of environment.

To learn the behavior of the entanglement intuitively, we plot the concurrence for different initial states $|\Theta_1\rangle$ and $|\Theta_2\rangle$ with different parameters in Fig. 1. From the left two panels we find that, in an inertial frame (i.e., $r = 0$), the $C_{s1}$ will tend to zero for a finite time which is called sudden death if $\alpha > 1/\sqrt{2}$. However, the $C_{s2}$ will not tend to zero for any $\alpha$ and it will decay along the same curve for both $\alpha$ and its normalized partner $\sqrt{1 - \alpha^2}$, which shows us that we can’t discriminate Alice’s excited states from Rob’s excited states for initial states $|\Theta_2\rangle$, i.e., $\alpha$ and $\sqrt{1 - \alpha^2}$ will lead to a symmetrical structure at $r = 0$ for initial states $|\Theta_2\rangle$. We also note that the concurrences for $|\Theta_1\rangle$ and $|\Theta_2\rangle$ decay different from each other even they have the same $\alpha$.

From Fig. 1 if we fix $\alpha$, it is easy to find out that, as $r$ becomes large which means the increase of the Rob’s acceleration, the sudden death of the entanglement for both $|\Theta_1\rangle$ and $|\Theta_2\rangle$ would happen earlier and earlier. That is to say, a bigger acceleration leads to a faster decay of the entanglement, in another word, the stronger Unruh effect will speed the decay of entanglement. On the other hand, if we fix $r$, we find that the entanglement decay faster and faster as the $\alpha$ increases except a special case for $|\Theta_2\rangle$ with $r = 0$. For the states $|\Theta_1\rangle$, the more the initial excited states there are, the stronger is the interaction between the system with environment, which will lead to a faster disappear of the entanglement. For the states $|\Theta_2\rangle$, although the total number of the excited states keeps conservable whatever $\alpha$ is, the time of sudden death can also change with $\alpha$ because the proportion of Alice’s excited states and the evolved state for $|\Theta_2\rangle$
find that the sudden death of the entanglement will appear if \( \alpha \) satisfy the relation

\[
1 > |\alpha| > \frac{\sqrt{\cos 2r}}{\sqrt{1 + \cos 2r}}
\]

(16)

And for the states \( |\Theta > \), the sudden death of entanglement can happen only when

\[
1 > |\alpha| > \frac{\sqrt{\cos 2r}}{\cos r}
\]

(17)

It is obviously that the possible range of the sudden death of the entanglement for \( |\Theta > \) is larger than that for \( |\Theta > \). If \( \alpha < \sqrt{\frac{1}{2}} \), whatever \( r \) is, the disappear of the entanglement for \( |\Theta > \) will be earlier than that for \( |\Theta > \).

Above discussions reveal some different behaviors of concurrences for the initial states \( |\Theta > \) and \( |\Theta > \) when both subsystems are coupled to noise environment. Thus, the entanglement is dependent to the initial states under the amplitude damping channel.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11175065, 10935013; the SRDFP under Grant No. 20114306110003; PCSIRT, No. IRT0964; the Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001; and the Construct Program of the National Key Discipline.

[1] A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. Vol. 47, No. 10, 1935, pp. 777. doi:10.1103/PhysRev.47.777
[2] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik.” Naturwiss., Vol. 23, No. 48, 1935, pp. 807. doi:10.1007/BF01491891
[3] E. Schrödinger, “Probability relations between separated systems.” Proc. Cambridge Philos. Soc., Vol. 32, No. 3, 1936, pp. 446. doi:10.1017/S0305004100013554
[4] J. S. Bell, “On the Einstein Podolsky Rosen Paradox.” Phys. Rev. D, Vol. 1, No. 3, 1964, pp. 195-200.
[5] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information.” Cambridge University Press, Cambridge, U. k., 2000
[6] W. H. Louisell, “Quantum Statistical Properties of Radiation.” John Wiley and Sons, 1973.
[7] R. M. Gingrich and C. Adami, “Quantum Entanglement of Moving Bodies.” Phys. Rev. Lett., Vol. 89, No. 27, 2002, pp. 270402. doi:10.1103/PhysRevLett.89.270402
[8] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, “Entanglement of Dirac fields in noninertial frames.” Phys. Rev. A, Vol. 74, No. 3, 2006, pp. 032326. doi:10.1103/PhysRevA.74.032326
[9] Qiyuan Pan and Jiliang Jing, “Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames.” Phys. Rev. A, Vol. 77, No. 2, 2008, pp. 024302. doi:10.1103/PhysRevA.77.024302
[10] Jieci Wang, Qiyuan Pan, Songbai Chen, and Jiliang
FIG. 2: (Color online) The grid surface presents the possible range of the sudden death for the initial states $|\Theta\rangle_1$ (left) and $|\Theta\rangle_2$ (right) when both qubits are coupled to a noise environment.

Jing, “Entanglement of coupled massive scalar field in background of dilaton black hole.” Phys. Lett. B, Vol. 677, No. 3, 2009, pp. 186. doi:10.1016/j.physletb.2009.05.028

[12] Jiecì Wang and Jiliang Jing, “Quantum decoherence in noninertial frames.” Phys. Rev. A, Vol. 82, No. 03, 2010, pp. 032324. doi:10.1103/PhysRevA.82.032324

[13] Sibasish Ghosh, Guruprasad Kar, Anirban Roy, Aditi Sen, and Ujjwal Sen, “Distinguishability of Bell States.” Phys. Rev. Lett., Vol. 87, No. 27, 2001, pp. 277902. doi:10.1103/PhysRevLett.87.277902

[14] A. Salles, F. de Melo, M. P. Almeida, M. Hor-Meyll, S. P. Walborn, P. H. Souto Ribeiro, and L. Davidovich, “Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment.” Phys. Rev. A, Vol. 78, No. 02, 2008, pp. 022322. doi:10.1103/PhysRevA.78.022322

[15] I. Fuentes-Schuller and R. B. Mann, “Alice Falls into a Black Hole: Entanglement in Noninertial Frames.” Phys. Rev. Lett., Vol. 95, No. 12, 2005, pp. 120404. doi:10.1103/PhysRevLett.95.120404

[16] Philip Walther and Anton Zeilinger, “Experimental realization of a photonic Bell-state analyzer.” Phys. Rev. A, Vol. 72, No. 01, 2005, pp. 010302. doi:10.1103/PhysRevA.72.010302

[17] Miloslav Dusek, “Discrimination of the Bell states of qudits by means of linear optics.” Optics Communications, Vol. 199, No. 01, 2001, pp. 161. doi:10.1016/S0030-4018(01)01565-6

[18] J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity.” Rev. Mod. Phys., Vol. 73, No. 3, 2001, pp. 565. doi:10.1103/RevModPhys.73.565

[19] H. P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems,” Oxford University Press, Oxford, 2002; H. Carmichael, “An Open Systems Approach to Quantum Optics,” Springer, Berlin, 1993.

[20] W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits.” Phys. Rev. Lett., Vol. 80, No. 10, 1998, pp. 2245. doi:10.1103/PhysRevLett.80.2245

[21] V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement.” Phys. Rev. A, Vol. 61, No. 5, 2000, pp. 052306. doi:10.1103/PhysRevA.61.052306