Abstract
In this paper, we show that the CR Q-curvature is orthogonal to the space of CR pluriharmonic functions on any closed strictly pseudoconvex CR manifold of dimension at least five. To this end, we obtain a cohomological expression of the integral of the product of the CR Q-curvature and a CR pluriharmonic function.

Keywords CR Q-curvature · CR pluriharmonic function

Mathematics Subject Classification 32V05 · 32V15

1 Introduction
In conformal geometry, the Q-curvature Q_g introduced by Branson [2] has been of great importance. It is a natural Riemannian invariant on a $2m$-dimensional manifold and transforms as follows under the conformal change $\hat{g} = e^{2\Upsilon} g$:

$$e^{2m\Upsilon} Q_{\hat{g}} = Q_g + P_g \Upsilon,$$

where P_g is the critical GJMS operator [7]. Since P_g is self-adjoint and annihilates constant functions, the integral of Q_g defines a non-trivial global conformal invariant of an even-dimensional closed conformal manifold.

In CR geometry, the CR Q-curvature Q_θ has been introduced by Fefferman and Hirachi [5] using a conformal manifold associated with a non-degenerate CR manifold. It is a natural pseudo-Hermitian invariant on a $(2n + 1)$-dimensional non-degenerate
CR manifold and transforms as follows under the conformal change $\hat{\theta} = e^{\Upsilon} \theta$:

$$e^{(n+1)\Upsilon} Q_{\hat{\theta}} = Q_{\theta} + P_{\theta} \Upsilon,$$

where P_{θ} is the critical CR GJMS operator [6]. Since P_{θ} is formally self-adjoint and annihilates constant functions, the integral of Q_{θ} defines a global CR invariant of a closed non-degenerate CR manifold similar to conformal geometry. However, it turns out that this is identically zero on strictly pseudoconvex CR manifolds [12]. Moreover, the CR Q-curvature itself is identically zero for pseudo-Einstein contact forms [5], which are contact forms satisfying a (weak) Einstein condition. These facts motivate us to pose the following problem:

Problem 1.1 Does any closed strictly pseudoconvex CR manifold admit a contact form with zero CR Q-curvature?

This problem has been solved affirmatively for three-dimensional embeddable CR manifolds [16]. However, it is open in general.

There exists an obstruction to the existence of a contact form with zero CR Q-curvature. Let $(M, T^{1,0} M, \theta)$ be a closed pseudo-Hermitian manifold of dimension $2n + 1$, and $f \in \ker P_{\theta}$. Then the integral

$$Q(f) = \int_M f Q_{\theta} \theta \wedge (d\theta)^n$$

is independent of the choice of θ and defines a CR invariant functional

$$Q : \ker P_{\theta} \to \mathbb{R}.$$

The author [14] has shown that in the case that $(M, T^{1,0} M)$ is embeddable, it admits a contact form with zero CR Q-curvature if and only if the functional Q is identically zero.

The aim of this paper is to show Q is identically zero on the space \mathcal{P} of CR pluriharmonic functions.

Theorem 1.2 Let $(M, T^{1,0} M)$ be a closed strictly pseudoconvex CR manifold of dimension $2n + 1 \geq 5$. Then Q is identically zero on \mathcal{P}; that is, Q_{θ} is orthogonal to \mathcal{P} for any contact form θ.

To this end, we show a cohomological expression of the integral of the product of the CR Q-curvature and a CR pluriharmonic function, which is of independent interest.

Theorem 1.3 Let $(M, T^{1,0} M)$ be as in Theorem 1.2. Then for any $\Upsilon \in \mathcal{P}$ and any contact form θ,

$$\langle [d_{CR}^c \Upsilon] \cup c_1 (T^{1,0} M)^n, [M] \rangle = \frac{(n + 2)^n}{n(n!)^2 (2\pi)^n} \int_M \Upsilon Q_{\theta} \theta \wedge (d\theta)^n,$$

(1.1)

where d_{CR}^c is defined by (2.5).
Note that (1.1) for the three-dimensional case has been proved by the author [16]. Moreover, Case [4] has proved that any closed non-degenerate CR five-manifold satisfies (1.1) by using the bigraded Rumin complex via differential forms [3]. It would be an interesting problem whether (1.1) holds on all closed non-degenerate CR manifolds.

This paper is organized as follows. In Sect. 2 (resp. Sect. 3), we recall basic facts on CR manifolds (resp. strictly pseudoconvex domains). Section 4 is devoted to proofs of Theorems 1.2 and 1.3.

Notation We use Einstein’s summation convention and assume that lowercase Greek indices \(\alpha, \beta, \gamma, \ldots \) run from 1, …, \(n \).

Suppose that a function \(I(\epsilon) \) admits an asymptotic expansion, as \(\epsilon \to +0, \)

\[
I(\epsilon) = \sum_{m=1}^{k} a_m \epsilon^{-m} + b \log \epsilon + O(1).
\]

Then, the logarithmic part \(\text{lp} \, I(\epsilon) \) of \(I(\epsilon) \) is the constant \(b \).

2 CR Geometry

2.1 CR Structures

Let \(M \) be a smooth \((2n + 1)\)-dimensional manifold without boundary. A CR structure is a rank \(n \) complex subbundle \(T^{1,0} M \) of the complexified tangent bundle \(TM \otimes \mathbb{C} \) such that

\[
T^{1,0} M \cap T^{0,1} M = 0, \quad [\Gamma(T^{1,0} M), \Gamma(T^{1,0} M)] \subset \Gamma(T^{1,0} M),
\]

where \(T^{0,1} M \) is the complex conjugate of \(T^{1,0} M \) in \(TM \otimes \mathbb{C} \). A typical example of CR manifolds is a real hypersurface \(M \) in an \((n + 1)\)-dimensional complex manifold \(X \); this \(M \) has the canonical CR structure

\[
T^{1,0} M = T^{1,0} X|_M \cap (TM \otimes \mathbb{C}).
\]

Introduce an operator \(\overline{\partial}_b : C^\infty(M) \to \Gamma((T^{0,1} M)^*) \) by

\[
\overline{\partial}_b f = (df)|_{T^{0,1} M}.
\]

A smooth function \(f \) is called a CR holomorphic function if \(\overline{\partial}_b f = 0 \). A CR pluriharmonic function is a real-valued smooth function that is locally the real part of a CR holomorphic function. We denote by \(\mathcal{P} \) the space of CR pluriharmonic functions.

A CR structure \(T^{1,0} M \) is said to be strictly pseudoconvex if there exists a nowhere-vanishing real one-form \(\theta \) on \(M \) such that \(\theta \) annihilates \(T^{1,0} M \) and

\[
-\sqrt{-1}d\theta(Z, \overline{Z}) > 0, \quad 0 \neq Z \in T^{1,0} M.
\]
We call such a one-form a contact form. The triple \((M, T^{1,0} M, \theta)\) is called a pseudo-Hermitian manifold. Denote by \(T\) the Reeb vector field with respect to \(\theta\); that is, the unique vector field satisfying
\[
\theta(T) = 1, \quad d\theta(T, \cdot) = 0.
\]

Let \((Z_\alpha)\) be a local frame of \(T^{1,0} M\), and set \(Z_\alpha = \overline{Z_\alpha}\). Then \((T, Z_\alpha, \overline{Z_\alpha})\) gives a local frame of \(TM \otimes \mathbb{C}\), called an admissible frame. Its dual frame \((\theta, \theta^\alpha, \theta^{\overline{\alpha}})\) is called an admissible coframe. The two-form \(d\theta\) is written as
\[
d\theta = \sqrt{-1} l_{\alpha \beta}^{\overline{\alpha}} \theta^\alpha \wedge \theta^{\overline{\beta}},
\]
where \((l_{\alpha \beta}^{\overline{\alpha}})\) is a positive definite Hermitian matrix. We use \(l_{\alpha \beta}^{\overline{\alpha}}\) and its inverse \(l^{\alpha \overline{\beta}}\) to raise and lower indices of tensors.

2.2 Tanaka–Webster Connection

A contact form \(\theta\) induces a canonical connection \(\nabla\), called the Tanaka–Webster connection with respect to \(\theta\). It is defined by
\[
\nabla T = 0, \quad \nabla Z_\alpha = \omega_\alpha^{\beta} Z_\beta, \quad \nabla \overline{Z_\alpha} = \omega_\overline{\alpha}^{\beta} Z_\beta \quad \left(\omega_\overline{\alpha}^{\beta} = \omega_\alpha^{\overline{\beta}}\right)
\]
with the following structure equations:
\[
d\theta^\beta = \theta^\alpha \wedge \omega_\alpha^{\beta} + A_\alpha^{\beta} \theta \wedge \theta^{\overline{\gamma}},
\]
\[
dl_{\alpha \overline{\beta}} = \omega_\alpha^{\gamma} l_{\gamma \overline{\beta}} + l_{\alpha \overline{\gamma}} \omega_{\overline{\gamma}}^{\overline{\beta}}.
\]

The tensor \(A_{\alpha \beta} = A_{\overline{\alpha} \overline{\beta}}\) is shown to be symmetric and is called the Tanaka–Webster torsion. We denote the components of a successive covariant derivative of a tensor by subscripts preceded by a comma, for example, \(K_{\alpha \beta, \gamma}\); we omit the comma if the derivatives are applied to a function. Consider commutators of covariant derivatives. The commutators of the second derivatives for \(u \in C^\infty(M)\) are given by
\[
2u_{[\alpha \beta]} = 0, \quad 2u_{[\alpha \overline{\beta}]} = \sqrt{-1} l_{\alpha \overline{\beta}} u_0, \quad 2u_{[0 \alpha]} = A_{\alpha \beta} u^\beta, \quad (2.1)
\]
where \([\cdots]\) means the anti-symmetrization over the enclosed indices. Define the sub-Laplacian \(\Delta_b\) by
\[
\Delta_b u = -u_{\overline{\beta}}^{\overline{\beta}} - u_\alpha^{\alpha}
\]
for \(u \in C^\infty(M)\). It follows from (2.1) that
\[
\Delta_b u = -2u_\overline{\beta}^{\overline{\beta}} - \sqrt{-1} nu_0 = -2u_\alpha^{\alpha} + \sqrt{-1} nu_0. \quad (2.2)
\]
Let \(\hat{\theta} = e^\Upsilon \theta \) be another contact form, and denote by \(\hat{T} \) the corresponding Reeb vector field. The admissible coframe corresponding to \((\hat{T}, Z_\alpha, Z_\beta)\) is given by

\[
\hat{\theta}, \hat{\theta}_\alpha = \theta_\alpha + \sqrt{-1} \Upsilon_\alpha \theta, \quad \hat{\theta}_\beta = \theta_\beta - \sqrt{-1} \Upsilon_\beta \theta.
\]

Under this conformal change, we have

\[
e^\Upsilon \hat{\Delta}_b u = \Delta_b u - n \Upsilon_\alpha u_\alpha - n \Upsilon_\beta u_\beta; \tag{2.4}
\]

see [13, Lemma 1.8] for example.

2.3 CR Pluriharmonic Functions

Let \((M, T^{1,0} M, \theta)\) be a pseudo-Hermitian manifold of dimension \(2n + 1\). We first introduce a CR analogue of \(dc = (\sqrt{-1}/2)(\bar{\partial} - \partial)\). Such an operator has been defined by Case [3] via the bigraded Rumin complex. However, we give an elementary construction following [16] for the reader’s convenience.

Lemma 2.1 The differential operator

\[
dc^{CR}: C^\infty(M) \rightarrow \Omega^1(M); \quad u \mapsto \frac{\sqrt{-1}}{2} \left(u_\beta \bar{\theta}_\beta - u_\alpha \bar{\theta}_\alpha \right) + \frac{1}{2n} (\hat{\Delta}_b u) \theta \tag{2.5}
\]

is independent of the choice of \(\theta\).

Proof From the transformation law of an admissible coframe (2.3) and the sub-Laplacian (2.4), we obtain

\[
\frac{\sqrt{-1}}{2} \left(u_\beta \bar{\theta}_\beta - u_\alpha \bar{\theta}_\alpha \right) + \frac{1}{2n} (\hat{\Delta}_b u) \hat{\theta} = \frac{\sqrt{-1}}{2} \left(u_\beta \bar{\theta}_\beta - u_\alpha \bar{\theta}_\alpha \right) + \frac{1}{2} \left(u_\beta \Upsilon_\beta + u_\alpha \Upsilon_\alpha \right) \theta + \frac{1}{2n} \left(\hat{\Delta}_b u - nu_\beta \Upsilon_\beta - nu_\alpha \Upsilon_\alpha \right) \theta
\]

which completes the proof. \(\square\)

As in complex geometry, CR pluriharmonic functions are smooth functions annihilated by \(ddc^{CR}\).

Lemma 2.2 For \(u \in C^\infty(M)\),

\[
 dd^{CR} u = - \left(P_{\alpha \beta} u \right) \theta_\alpha \wedge \theta_\beta + \left(P_\alpha u \right) \theta \wedge \theta_\alpha + \left(P_{\beta} u \right) \theta \wedge \theta_\beta, \tag{2.6}
\]
where

\[P_{\alpha \beta} u = u_{\alpha \beta} - \frac{1}{n} u_{\gamma} l_{\alpha \beta} = u_{-\beta \alpha} - \frac{1}{n} u_{\gamma} l_{\alpha \beta} , \]

\[P_{\alpha} u = \frac{1}{n} u_{-\gamma} + \sqrt{-1} A_{\alpha \gamma} u^\gamma , \quad P_{\beta} u = \frac{1}{n} u_{\gamma} - \sqrt{-1} A_{\gamma \beta} u^\gamma . \]

In particular, \(u \) is a CR pluriharmonic function if and only if \(dd^c_{\text{CR}} u = 0 \).

Proof We first show (2.6). From (2.5), it follows that

\[
\frac{1}{n} u_{\gamma} + \frac{\sqrt{-1}}{2} \left(\frac{(\Delta_b u)_{\alpha}}{2} - \frac{1}{2} A_{\alpha \gamma} u^\gamma \right) \theta^\alpha \wedge \theta^\beta
\]

\[
\left[- \frac{1}{2n} (\Delta_b u)_{\alpha} - \frac{\sqrt{-1}}{2} u_{\alpha 0} + \frac{\sqrt{-1}}{2} A_{\alpha \gamma} u^\gamma \right] \theta \wedge \theta^\alpha
\]

\[
\left[- \frac{1}{2n} (\Delta_b u)_{\beta} + \frac{\sqrt{-1}}{2} u_{\beta 0} - \frac{\sqrt{-1}}{2} A_{\beta \gamma} u^\gamma \right] \theta \wedge \theta^\beta .
\]

Combining this with (2.1) and (2.2) yields that the \((1, 1)\)-part of \(dd^c_{\text{CR}} u \) is equal to \(\sqrt{-1} P_{\alpha \beta} u \). Hence it suffices to show

\[P_{\alpha} u = - \frac{1}{2n} (\Delta_b u)_{\alpha} - \frac{\sqrt{-1}}{2} u_{\alpha 0} + \frac{\sqrt{-1}}{2} A_{\alpha \gamma} u^\gamma ; \]

the other part is the complex conjugate of this equality. By using (2.1) and (2.2), we have

\[
- \frac{1}{2n} (\Delta_b u)_{\alpha} - \frac{\sqrt{-1}}{2} u_{\alpha 0} + \frac{\sqrt{-1}}{2} A_{\alpha \gamma} u^\gamma
\]

\[
= \frac{1}{n} u_{-\gamma} + \frac{\sqrt{-1}}{2} (u_{0 \alpha} - u_{\alpha 0}) + \frac{\sqrt{-1}}{2} A_{\alpha \gamma} u^\gamma
\]

\[
= \frac{1}{n} u_{-\gamma} + \sqrt{-1} A_{\alpha \gamma} u^\gamma
\]

\[= P_{\alpha} u . \]

The latter statement is a consequence of [10, Propositions 3.3 and 3.4] and the fact that

\[(P_{\alpha \beta} u)_{\beta} = (n - 1) P_{\alpha} u , \quad (P_{\alpha \beta} u)_{\alpha} = (n - 1) P_{\beta} u ; \]

see [9, Lemma 3.2].

A two-form \(\mu \) on \(M \) has *trace-free \((1, 1)\)-part* if

\[\mu \equiv \sqrt{-1} \mu_{\alpha \beta} \theta^\alpha \wedge \theta^\beta \quad \text{modulo} \; \theta, \theta^\alpha \wedge \theta^\gamma, \theta^\beta \wedge \theta^\gamma . \]

\[\Leftarrow \]
with $\mu_\alpha^\alpha = 0$. Note that $dd^c_{CR}u$ has trace-free $(1, 1)$-part, which follows from \eqref{2.6}.

3 Strictly Pseudoconvex Domains

Let Ω be a relatively compact domain in an $(n + 1)$-dimensional complex manifold X with smooth boundary $M = \partial \Omega$. Denote by ι_M the inclusion $M \hookrightarrow X$. There exists a smooth function ρ on X such that

$$\Omega = \rho^{-1}((-\infty, 0)), \quad M = \rho^{-1}(0), \quad d\rho \neq 0 \quad \text{on } M;$$

such a ρ is called a defining function of Ω. A domain Ω is said to be strictly pseudoconvex if we can take a defining function ρ of Ω that is strictly plurisubharmonic near M. The boundary M is a closed strictly pseudoconvex real hypersurface and $\iota_M^* d^c\rho$ is a contact form on M. Conversely, it is known that any closed connected strictly pseudoconvex CR manifold of dimension at least five can be realized as the boundary of a strictly pseudoconvex domain in a complex projective manifold \cite{1, 8, 11}.

3.1 Trace-Free Extension and d^c_{CR}

Assume that M is realized as the boundary of a strictly pseudoconvex domain Ω in a complex manifold X of complex dimension $n + 1$. Take a defining function ρ of Ω with $\iota_M^* d^c\rho = \theta$.

Lemma 3.1 For each $u \in C^\infty(M)$, there exists a smooth extension \tilde{u} such that $\iota_M^* dd^c\tilde{u}$ has trace-free $(1, 1)$-part. Moreover, such a \tilde{u} is unique modulo $O(\rho^2)$, and $\iota_M^* d^c\tilde{u}$ coincides with $d^c_{CR}u$.

Proof Take a smooth function u' on X with $u'|_M = u$. Then,

$$\iota_M^* d^c u' = \frac{\sqrt{-1}}{2} (u_\beta^\alpha \bar{\theta}^\beta - u_\alpha^\beta \theta^\alpha) + \lambda \theta$$

for some $\lambda \in C^\infty(M)$. Hence the $(1, 1)$-part of $\iota_M^* dd^c u'$ is given by

$$\frac{\sqrt{-1}}{2} \left(u_\alpha^\beta + u_\beta^\alpha + 2\lambda l_{\alpha\beta} \right) \theta^\alpha \wedge \bar{\theta}^\beta.$$

On the other hand, the $(1, 1)$-part of $\iota_M^* dd^c (\rho v)$ for $v \in C^\infty(X)$ coincides with

$$\sqrt{-1} v|_M l_{\alpha\beta} \theta^\alpha \wedge \bar{\theta}^\beta.$$

If we choose v so that $v|_M = (2n)^{-1} \Delta_b u - \lambda$, the $(1, 1)$-part of $\iota_M^* dd^c (u + \rho v)$ is trace-free, which gives the existence of \tilde{u}. It follows from the construction that $\iota_M^* d^c\tilde{u} = d^c_{CR}u$. The uniqueness of \tilde{u} modulo $O(\rho^2)$ is a consequence of the above computation of the $(1, 1)$-part of $\iota_M^* dd^c (\rho v)$. \hfill \Box

\copyright Springer
3.2 Asymptotically Complex Hyperbolic Metrics

Let Ω be a strictly pseudoconvex domain in an $(n + 1)$-dimensional complex manifold X with $\partial \Omega = M$. Take a defining function ρ of Ω. There exists a Hermitian metric h on K_X such that
\[
\omega_+ = -dd^c \log(-\rho) + \sqrt{-1}(n + 2)^{-1}\Theta_h
\]
defines a Kähler metric near the boundary and satisfies
\[
\text{Ric}_{\omega_+} + (n + 2)\omega_+ = dd^c O(\rho^{n+2});
\]
see [9, Section 2.2] for example. To simplify notation, we set $\Pi_1 = \sqrt{-1}(n + 2)^{-1}\Theta_h$. Note that Π_1 is a closed real $(1, 1)$-form on X and $-(n + 2)\Pi$ is a representative of $2\pi c_1(T^{1,0}X)$. We also note that the pull-back of ω_+ to the level set $\{\rho = -\epsilon\}$ is equal to that of $\epsilon^{-1}d\vartheta + \Pi$, where $\vartheta = dc\rho$.

3.3 CR Q-curvature

Let Ω be a strictly pseudoconvex domain in an $(n + 1)$-dimensional complex manifold X with $\partial \Omega = M$. Take a defining function ρ of Ω with $\iota^*\Pi dc\rho = \theta$. Denote by \Box_+ the $\overline{\partial}$-Laplacian with respect to ω_+. There exist $F, G \in C^\infty(\Omega)$ such that $F|_M = 0$ and
\[
U = \log(-\rho) - F - G(-\rho)^{n+1} \log(-\rho)
\]
satisfies
\[
\Box_+ U = n + 1 + O(\rho^\infty).
\]
Moreover, the boundary value $G|_M$ of G is given by
\[
G|_M = \frac{(-1)^{n+1}}{n!(n + 1)!} Q_\theta,
\]
where Q_θ is the CR Q-curvature. This is a consequence of a characterization of the CR Q-curvature via \Box_+ [9, Lemma 4.4].

4 Proof of Main Theorems

Let $(M, T^{1,0}M)$ be as in Theorem 1.3. Without loss of generality, we may assume that M is connected. There exists a strictly pseudoconvex domain Ω in an $(n + 1)$-dimensional complex manifold X with $\partial \Omega = M$. Fix a defining function ρ of Ω. Let $\omega_+ = -dd^c \log(-\rho) + \Pi$ and $U = \log(-\rho) - F - G(-\rho)^{n+1} \log(-\rho)$ be as in
Sects. 3.2 and 3.3 respectively. For smooth functions \(f_1, f_2 \) and an \((n, n)\)-form \(\Psi \) on \(\Omega \), we have

\[
d f_1 \wedge d^c f_2 \wedge \Psi = \frac{\sqrt{-1}}{2} (\bar{\partial} f_1 \wedge \bar{\partial} f_2 - \bar{\partial} f_1 \wedge \partial f_2) \wedge \Psi = df_2 \wedge d^c f_1 \wedge \Psi, \tag{4.1}
\]

which will be used repeatedly.

Let \(\Upsilon \) be a CR pluriharmonic function on \(M \). Take its pluriharmonic extension to \(\Omega \) \cite[Theorem A.1]{9}, for which we use the same letter \(\Upsilon \) by abuse of notation. Note that \(\iota^* \Omega \wedge d c \Upsilon \) is a consequence of Lemma 3.1. It follows from (4.1) that

\[
d U \wedge d^c \Upsilon \wedge \omega^n_+ = d \Upsilon \wedge d^c U \wedge \omega^n_+. \tag{4.2}
\]

We first show that \(\mathrm{lp} \int_{\rho < -\epsilon} \) of the left hand side of (4.2) exists. On the one hand,

\[
\int_{\rho < -\epsilon} d(G(-\rho)^{n+1} \log(-\rho)) \wedge d^c \Upsilon \wedge \omega^n_+ = \int_{\rho = -\epsilon} (G \epsilon^{n+1} \log \epsilon) d^c \Upsilon \wedge (\epsilon^{-1} d \vartheta + \Pi)^n = O(1)
\]
as \(\epsilon \to +0 \). On the other hand,

\[
d (\log(-\rho) - F) \wedge d^c \Upsilon \wedge \omega^n_+ = \left(\frac{d \rho}{\rho} - d F \right) \wedge d^c \Upsilon \wedge \omega^n_+
\]
is \((-\rho)^{-n-1}\) times a smooth form up to the boundary. Hence

\[
\int_{\rho < -\epsilon} d (\log(-\rho) - F) \wedge d^c \Upsilon \wedge \omega^n_+ = \sum_{m=1}^{n} a_m \epsilon^{-m} + b \log \epsilon + O(1)
\]
as \(\epsilon \to +0 \). Therefore \(\mathrm{lp} \int_{\rho < -\epsilon} d U \wedge d^c \Upsilon \wedge \omega^n_+ \) is well-defined.

We would like to compute \(\mathrm{lp} \int_{\rho < -\epsilon} \) of both sides of (4.2). On the one hand,

\[
\mathrm{lp} \int_{\rho < -\epsilon} d U \wedge d^c \Upsilon \wedge \omega^n_+ = \mathrm{lp} \int_{\rho < -\epsilon} d(U d^c \Upsilon \wedge \omega^n_+)
\]

\[
= \mathrm{lp} \int_{\rho = -\epsilon} U d^c \Upsilon \wedge \omega^n_+
\]

\[
= \mathrm{lp} \int_{\rho = -\epsilon} (\log \epsilon - F - G \epsilon^{n+1} \log \epsilon) d^c \Upsilon \wedge
\]

\[
\times (\epsilon^{-1} d \vartheta + \Pi)^n
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} \mathrm{lp} \epsilon^{-k} \log \epsilon \int_{\rho = -\epsilon} d^c \Upsilon \wedge (d \vartheta)^k \wedge \Pi^{n-k}.
\]
If \(k \geq 1 \), the integrand \(d^c \gamma \wedge (d\vartheta)^k \wedge \Pi^{n-k} \) is \(d \)-exact on the closed manifold \(\{\rho = -\epsilon\} \). Hence Stokes’ theorem yields

\[
\text{lp} \int_{\rho < -\epsilon} dU \wedge d^c \gamma \wedge \omega_+^n = \int_M d^c \gamma \wedge \Pi^n = \int_M d^c_{\text{CR}} \gamma \wedge (\iota^*_M \Pi)^n. \tag{4.3}
\]

On the other hand,

\[
\text{lp} \int_{\rho < -\epsilon} d\gamma \wedge d^c U \wedge \omega_+^n = \text{lp} \int_{\rho < -\epsilon} d(\gamma d^c U \wedge \omega_+^n) - \text{lp} \int_{\rho < -\epsilon} \gamma dd^c U \wedge \omega_+^n
\]

\[
= \text{lp} \int_{\rho = -\epsilon} \gamma [-\epsilon^{-1} \vartheta - d^c F - d^c (G(-\rho)^{n+1} \log(-\rho))] \wedge (\epsilon^{-1} d\vartheta + \Pi)^n
\]

\[
+ \text{lp} \int_{\rho < -\epsilon} (n + 1)^{-1} \gamma (\Box U) \omega_+^{n+1}
\]

\[
= \text{lp} \int_{\rho = -\epsilon} \gamma [-(-d^c G)\epsilon^{n+1} \log \epsilon + G((n + 1)\epsilon^n \log \epsilon + \epsilon^n) \vartheta] \wedge (\epsilon^{-1} d\vartheta + \Pi)^n
\]

\[
+ \text{lp} \int_{\rho < -\epsilon} \gamma \omega_+^{n+1}
\]

\[
= \frac{(-1)^{n+1}}{(n!)^2} \int_M \gamma Q_\vartheta \wedge (d\vartheta)^n + \text{lp} \int_{\rho < -\epsilon} \gamma \omega_+^{n+1}, \tag{4.4}
\]

where the last equality follows from (3.1). Hence it suffices to compute the second term. We divide \(\gamma \omega_+^{n+1} \) into two parts:

\[
\gamma \omega_+^{n+1} = \gamma \Pi^{n+1} + \sum_{k=1}^{n+1} \binom{n+1}{k} \gamma (-dd^c \log(-\rho))^k \wedge \Pi^{n+1-k}.
\]

First, \(\gamma \Pi^{n+1} \) is smooth up to the boundary, and so

\[
\text{lp} \int_{\rho < -\epsilon} \gamma \Pi^{n+1} = 0.
\]

Next, for \(1 \leq k \leq n + 1 \),

\[
\text{lp} \int_{\rho < -\epsilon} \gamma (-dd^c \log(-\rho))^k \wedge \Pi^{n+1-k}
\]

\[
= \text{lp} \int_{\rho < -\epsilon} d[\gamma (-dd^c \log(-\rho)) \wedge (-dd^c \log(-\rho))^{k-1} \wedge \Pi^{n+1-k}]
\]

\[
+ \text{lp} \int_{\rho < -\epsilon} d\gamma \wedge d^c \log(-\rho) \wedge (-dd^c \log(-\rho))^{k-1} \wedge \Pi^{n+1-k}.
\]
From Stokes’ theorem and (4.1), we obtain

\[
lp \int_{\rho < -\epsilon} \Upsilon (-dd^{c} \log (-\rho))^{k} \wedge \Pi^{n+1-k} = \lp \int_{\rho = -\epsilon} \Upsilon (\epsilon^{-1} \bar{\partial}) \wedge (\epsilon^{-1} \partial \bar{\partial})^{k-1} \wedge \Pi^{n+1-k} + \lp \int_{\rho < -\epsilon} d \log (-\rho) \wedge d^{c} \Upsilon \wedge (-dd^{c} \log (-\rho))^{k-1} \wedge \Pi^{n+1-k} = \lp \int_{\rho < -\epsilon} d[\log (-\rho) d^{c} \Upsilon \wedge (-dd^{c} \log (-\rho))^{k-1} \wedge \Pi^{n+1-k}] = \lp \int_{\rho < -\epsilon} \epsilon^{-k+1} \log \epsilon \int_{\rho = -\epsilon} d^{c} \Upsilon \wedge (d \bar{\partial})^{k-1} \wedge \Pi^{n+1-k}.
\]

If \(k = 1 \), this yields that

\[
\lp \int_{\rho < -\epsilon} \Upsilon (-dd^{c} \log (-\rho)) \wedge \Pi^{n} = \int_{M} d^{c}_{CR} \Upsilon \wedge (\iota_{M}^{*} \Pi)^{n}.
\]

If \(k \geq 2 \), the integrand \(d^{c} \Upsilon \wedge (d \bar{\partial})^{k-1} \wedge \Pi^{n+1-k} \) is \(d \)-exact on the closed manifold \(\{ \rho = -\epsilon \} \). Hence Stokes’ theorem implies

\[
\lp \int_{\rho < -\epsilon} \Upsilon (-dd^{c} \log (-\rho))^{k} \wedge \Pi^{n+1-k} = 0.
\]

Thus we have

\[
\lp \int_{\rho < -\epsilon} \Upsilon \omega_{+}^{n+1} = (n + 1) \int_{M} d^{c}_{CR} \Upsilon \wedge (\iota_{M}^{*} \Pi)^{n}.
\]

Therefore (4.4) yields

\[
\lp \int_{\rho < -\epsilon} d^{c} \Upsilon \wedge d^{c} U \wedge \omega_{+}^{n} = \frac{(-1)^{n+1}}{(n!)^{2}} \int_{M} \Upsilon Q_{\theta} \wedge (d \theta)^{n} + (n + 1) \int_{M} d^{c}_{CR} \Upsilon \wedge (\iota_{M}^{*} \Pi)^{n}. \tag{4.5}
\]

Proof of Theorem 1.3 We deduce from (4.2), (4.3) and (4.5) that

\[
\int_{M} d^{c}_{CR} \Upsilon \wedge (\iota_{M}^{*} \Pi)^{n} = \frac{(-1)^{n+1}}{(n!)^{2}} \int_{M} \Upsilon Q_{\theta} \wedge (d \theta)^{n} + (n + 1) \int_{M} d^{c}_{CR} \Upsilon \wedge (\iota_{M}^{*} \Pi)^{n},
\]

or equivalently,

\[
n \int_{M} d^{c}_{CR} \Upsilon \wedge (\iota_{M}^{*} \Pi)^{n} = \frac{(-1)^{n}}{(n!)^{2}} \int_{M} \Upsilon Q_{\theta} \wedge (d \theta)^{n}.
\]
Since \(-(n+2)\tau^*_M \Pi_i\) is a representative of \(2\pi c_1(T^{1,0} X|_M) = 2\pi c_1(T^{1,0} M)\), we have
\[
\langle [d^{CR}_{\mathcal{Y}}] \cup c_1(T^{1,0} M)^n, [M] \rangle = \frac{(n+2)^n}{n(n!)(2\pi)^n} \int_M \mathcal{Y} Q_0 \theta \wedge (d\theta)^n,
\]
which completes the proof.

\[\square\]

Proof of Theorem 1.2 It follows from [15, Theorem 1.1] that \(c_1(T^{1,0} M)^n = 0\) in \(H^{2n}(M, \mathbb{R})\). Combining this fact with Theorem 1.3 yields Theorem 1.2.

\[\square\]

Acknowledgements This work was motivated by a preprint version of [4]. The author is grateful to Jeffrey Case for sharing it. He also would like to thank Taiji Marugame and Yoshihiko Matsumoto for helpful comments.

References

1. Boutet de Monvel, L.: Intégration deséquations de Cauchy-Riemann induites formelles, Sém. Goulaouic-Lions-Schwartz 1974–1975, équations aux derivées partielles linéaires et non linéaires, 1975, pp. Exp. No. 9, 14
2. Branson, T.P.: Sharp inequalities, the functional determinant, and the complementary series. Trans. Am. Math. Soc. 347(10), 3671–3742 (1995)
3. Case J.S.: The bigraded Rumin complex via differential forms (2021). arXiv:2108.13911
4. Case J.S.: Some \(Q\)-curvature operators on five-dimensional pseudohermitian manifolds (2021). arXiv:2018.13920
5. Gover, C., Hirachi, K.: Ambient metric construction of \(Q\)-curvature in conformal and CR geometries. Math. Res. Lett. 10(5–6), 819–831 (2003)
6. Gover, A.R., Graham, C.R.: CR invariant powers of the sub-Laplacian. J. Reine Angew. Math. 583, 1–27 (2005)
7. Graham, C.R., Jenne, R., Mason, L.J., Sparling, G.A.J.: Conformally invariant powers of the Laplacian. I. Existence. J. Lond. Math. Soc. 46(2), 557–565 (1992)
8. Harvey, F.R., Lawson Jr, H.B.: On boundaries of complex analytic varieties. I. Ann. Math. 102(2), 223–290 (1975)
9. Hirachi, K.: \(Q\)-prime curvature on CR manifolds. Differ. Geom. Appl. 33, 213–245 (2014)
10. Lee, J.M.: Pseudo-Einstein structures on CR manifolds. Am. J. Math. 110(1), 157–178 (1988)
11. Lempert, L.: Algebraic approximations in analytic geometry. Invent. Math. 121(2), 335–353 (1995)
12. Marugame, T.: Some remarks on the total CR \(Q\) and \((Q')\)-curvatures. SIGMA Symmetry Integrability Geom. Methods Appl. 14, Paper No. 010, 8 (2018)
13. Stanton, N.K.: Spectral invariants of CR manifolds. Mich. Math. J. 36(2), 267–288 (1989)
14. Takeuchi, Y.: Analysis of the critical CR GJMS operator (2020). arXiv:2009.13813
15. Takeuchi, Y.: A constraint on Chern classes of strictly pseudoconvex CR manifolds. SIGMA Symmetry Integrability Geom. Methods Appl. 16, 005 (2020)
16. Takeuchi, Y.: Nonnegativity of the CR Paneitz operator for embeddable CR manifolds. Duke Math. J. 169(18), 3417–3438 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.