Acute lymphoblastic leukemia

Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions

Claus Meyer¹ · Bruno A. Lopes¹,² · Aurélie Caye-Eude³ · Hélène Cave³ · Chloé Arfeuille³ · Wendy Cuccuini⁴ · Rosemary Sutton⁵ · Nicola C. Venn⁵ · Seung Hwan Oh¹,⁶ · Grigory Tsaur⁷ · Gabriele Escherich⁸ · Tobias Feuchtinger⁹ · Hansen J. Kosasih¹⁰ · Seong L. Khaw¹⁰ · Paul G. Ekert⁵,¹⁰ · Maria S. Pombo-de-Oliveira¹¹ · Audrey Bidet¹² · Bardya Djahanschir¹³ · Ingo Ebersberger¹³,¹⁴ · Marketa Zaliova¹⁵ · Jan Zuna¹⁵ · Zuzana Zermanova¹⁶ · Vesa Juvelon¹⁷ · Renate Panzer Grümayer¹⁸ · Grazia Fazio¹⁹ · Gianni Cazzaniga¹⁹ · Patrizia Larghero¹ · Mariana Emerenciano¹⁶,² · Rolf Marschalek¹

Received: 17 January 2019 / Revised: 15 February 2019 / Accepted: 8 March 2019 / Published online: 21 March 2019 © The Author(s) 2019. This article is published with open access

To the Editor:

For nearly 3 decades, the human MLL (KMT2A) gene and its rearrangements have been investigated in many different laboratories around the world. At our diagnostic center (DCAL Frankfurt), our standard strategy for the identification of MLL-r is based on two independent approaches, namely “Multiplex” (MP)-polymerase chain reaction (PCR) and “Long distance inverse” (LDI)-PCR approach [1]. The MP-PCR approach is used to rapidly identify the eight most frequent MLL fusions (AF4, AF6, AF9, AF10, ENL, ELL, EPS15, and PTDs) which encompass ~90% of all diagnosed MLL-leukemia patients, while LDI-PCR is used for all other patients (~10%). By applying both technologies, we have accumulated 94 direct MLL-gene fusions and 247 reciprocal fusion partner genes [2]. Nearly, all breakpoints have been identified in the major breakpoint cluster region (BCR) of the MLL gene (MLL exons 8–14). However, some of the patients remained negative, although they were positively prescreened by various methods.

In order to diagnose MLL breakpoints in every patient, a total of 2688 overlapping Illumina capture probes covering the whole-MLL gene were designed and used to analyze a cohort of AL patients (n = 109) where we had either limited (n = 4; PCR positive but not sequenced) or no information (n = 105) on their molecular status. As depicted in Fig. 1a, we identified chromosomal rearrangements in 93 out of 109 patient cases. Sixteen patients remained MLL-r negative and were therefore assigned as patients with “unknown status”. The data analyses of the remaining 93 patients revealed the following distribution: for 67 patients (72%) a breakpoint could be analyzed in the major BCR; 5 patients (5%) displayed only the reciprocal der(TP) with breakpoints in exon 11 (putative CEP83-MLL spliced fusion), intron 11 (n = 3; putative FKBP8-MLL spliced fusion, AF9-MLL, RELA-MLL) and intron 27 (IFT46-MLL), respectively. Surprisingly, an additional 21 patients (23%) had their breakpoints outside of the major BCR, but inside a novel, minor BCR. This novel BCR is localizing between MLL intron 19 and exon 24 (with a clear preference for MLL intron 21–23).

Most of the new BCR cases represented MLL–USP2 gene fusions (n = 17). USP2 is localized about 1 Mbp telomeric to MLL at 11q23.3 and transcriptionally orientated in direction of the centromere of chromosome 11, classifying all these fusions as intrachromosomal inversions (see Fig. 1b). In addition, we identified four balanced translocations in the minor BCR: one patient with an USP8 fusion (see Fig. 2 and Suppl. Figure S1), two with AF4 and one with AF9.

MLL–USP2 and MLL–USP8 alleles seem to be restricted to the minor BCR (see Fig. 2), because they were never diagnosed in association with the major BCR. Most of the reciprocal USP2–MLL fusions were scattered over a larger region at 11q23.3 (see Fig. 2), involving also upstream (C2CD2L) and downstream genes (USP2-AS1). Our analysis revealed also five patients with 3′-MLL deletions that were caused by microdeletions (<200 bp), larger deletions (up to 34 kbp), or complex rearrangements including other
chromosomes as well (n = 4; chromosome regions 2p21, 4q13.1, 12p13.33, and 18p11.32). A detailed picture of the investigated MLL- USP2 and MLL- USP8 and their reciprocal fusions is shown in the Suppl. Fig. S2A–D. All patients with a rearrangement of USP2 or USP8 fused the conserved “UCH-domain” to an extended 5'-MLL portion (see Suppl. Fig. S1A). This may indicate that the UCH domain has a functional importance for the resulting MLL fusion protein. USP genes belong to a large group of deubiquitinating proteins binding to specific target proteins [3–5]. The USP family exhibits a ubiquitin-specific protease (UCH domain) that is characterized by several conserved amino acids that are summarized as CYS- and ASP-box (see Suppl. Fig. 1B). USP2 protein deubiquinates and stabilizes MDM2, leading to an enhanced degradation of p53 [6]. This in turn activates MYC, because active p53 induces the transcription of several microRNAs that target MYC mRNA.

MLL fusions with the conserved 3'-UCH domain of USP2 and USP8 may change profoundly the functions of these novel MLL fusion proteins. It has already been shown that PHD2 [7] and PHD3/BD [8] both bind to proteins (CDC34 and ESC[A8B2]) that mediate the destruction of MLL by poly-ubiquitination and proteasomal degradation. Fusing single or all PHD domains to a der(11) product (MLL-AF9 and MLL-ENL) caused even a strong drop of their transforming potential [9, 10]. This well-described degradation mechanism of MLL may now be counteracted by the UCH domain of MLL- USP2 or MLL- USP8, and thus, restoring their oncogenic transformation capacity.

In our cohort, we also identified new MLL fusion partner genes (n = 3). These novel fusion genes were SNX9 (6q25.3), USP8 (15q21.2), and SEPT3 (22q13.2). SNX9 encodes a protein known to be a member of the sorting nexin family which contain a phosphoinositide binding domain and are involved in intracellular trafficking. The SNX9 protein has a variety of interaction partners, including an adapter protein 2, dynamin, tyrosine kinase non-receptor 2, Wiskott–Aldrich syndrome-like, and AR3 actin-related protein 3. USP8 has diverse functions,
required for the internalization of liganded receptor tyrosine kinases and stabilization of ESCRT components. The USP8 protein is thought to regulate the morphology of the endosome by ubiquitination of proteins on this organelle and is involved in cargo sorting and membrane trafficking at the early endosome stage. **SEPT3** is the seventh member of the septin family of GTPases that is fused to MLL. Members of this family are required for cytokinesis. A few cases of MLL–USP2 fusions have already been described. However, these were single patient cases and they were classified as exceptional rearrangements [11–13]. Our NGS approach allowed for the first time the characterization of breakpoints in this novel minor BCR region of the MLL gene. Moreover, our targeted NGS approach enabled us to overcome the technical limitations associated with LDI-PCR and MP-PCR approaches.

Another advantage of the targeted NGS approach is the simultaneous identification of 3′ MLL deletions or copy number variations. In the current study, 23 of the patients (out of 88: 26%) had a 3′ MLL deletion. According to our data, 3′-MLL deletions were present in both breakpoint groups (major and minor) to a similar extent with 26.9% and 23.8%, respectively. This seems to be much higher than previously described (Andersson et al. [12]: 13%; Peterson et al. [14]: 7%).

In diagnostic fluorescence in situ hybridization analyses, these MLL–USP2 cases revealed two major patterns: (1) loss of the 3′-MLL probe signal, and (2) a normal pattern typical for MLL wild-type (Suppl. Table S1b, Suppl. Fig. S3). Considering the clinical data (Suppl. Table S1a–c), our 17 patients with MLL–USP2 were divided into 8 males and 9 females. All of them were children, and the median age at diagnosis was 17 months (range: 3–120 months). The median leukocyte count was 30.4 × 10⁹/L (range: 3.4–324.0 × 10⁹/L), and the disease phenotype was predominantly B-ALL (n = 12), followed by mixed-phenotype acute leukemia (MPAL) (n = 4) and acute myeloid leukemia (n = 1). The MPAL cases all had mixed myeloid and B-cell phenotype. The patients were treated with diverse therapy protocols. Five patients (29%) presented with central nervous system disease, and 13 patients (76%) had positive-minimal residual disease (MRD) levels at day 33. Prednisone response was measured in 12 patients with a poor response in 5 patients (42%). The median follow-up of the patients was 1.2 years (range: 0.1–11.1 years), and 2 cases died after 5 and 9 months following

Fig. 2 Detailed distribution of all breakpoints in both BCRs of MLL. The **MLL** gene is depicted from exon 4 to the end. The major BCR is marked in green, the minor BCR in red. Main breakpoint regions are depicted in dark green/red while regions with fewer breakpoints are depicted in light green/red. The fusions sites and the fusion partners are shown. Information about the 5 cases with no der(11) or the 23 cases with 3′-MLL deletions are given in the box at the right bottom.
diagnosis. The remaining patients are still at first clinical remission.

In conclusion, we have identified a minor BCR within the human MLL gene that is recurrently associated in acute leukemia patients with MLL–USP2 fusion alleles as well as MLL fusion partnerships with USP8, AF4, and AF9. However, with 17 cases out of ~2500 analyzed patients the incidence is less than 1% while still ranking fourteenth of our updated fusion gene list (see Table 1 of reference 1). The discovery of a second, minor BCR extends our knowledge of the MLL-recombinome and MLL-r oncogenesis. Moreover, these findings will enable many labs to make changes in their diagnostic set-up for MLL-MRD diagnostics to ensure the best medical treatment for a group of patients that is still very hard to cure.

Acknowledgements BAL received a fellowship provided by CAPES and the Alexander von Humboldt Foundation (#8881.13/6091/2017-01). ME is supported by CNPq (PO-2017#305529/2017-0) and FAPEMIG-ICONE (#26/203.214/2017) research scholarships, and ZZ by grant RVO-VFN64165. GC is supported from RM by grants to RM from the Sander foundation (grant 2018.070.1) and DFG grant MA 1876/12-1.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnitterg S, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA. 2005;102:449–54.
2. Meyer C, Burmeister T, Gröger D, Tsaur G, Fechlin H, Rennerville A, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32:273–84.
3. Zhang W, Sulea T, Tao L, Cui Q, Purisima EO, Vongsamphanh R, et al. Contribution of active site residues to substrate hydrolysis by USP2: insights into catalysis by ubiquitin specific proteases. Biochemistry. 2011;50:4775–85.
4. Nishi R, Wijnhoven P, Le Sage C, Tjeertes J, Galanty Y, Forment JV, et al. Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat Cell Biol. 2014;16:1016–26.
5. Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev. 2013;93:1289–315.
6. Sacco JJ, Coulson JM, Clague MJ, Urbé S. Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life. 2010;62:140–57.
7. Wang J, Muntean AG, Hess JL. ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood. 2012a;119:1151–61.
8. Wang J, Muntean AG, Wu L, Hess JL. A subset of mixed lineage leukemia proteins has plant homeodomain (PHD)-mediated E3 ligase activity. J Biol Chem. 2012b;287:43410–6.
9. Muntean AG, Giannola D, Udager AM, Hess JL. The PHD fingers of MLL block MLL fusion protein-mediated transformation. Blood. 2008;112:4690–3.
10. Chen J, Santillan DA, Koonce M, Wei W, Luo R, Thriran MJ, et al. Loss of MLL PHD finger 3 is necessary for MLL-ENL-induced hematopoietic stem cell immortalization. Cancer Res. 2008;68:6199–207.
11. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.
12. Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, et al. St Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. The genetic basis and cell of origin of mixed phenotype acute leukemia. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47:330–7.
13. Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK, Xu B, et al. The genetic basis and cell of origin of mixed phenotype acute leukemia. Nature. 2018;562:373–9.
14. Peterson JF, Baughn LB, Pearce KE, Williamson CM, Benevides Demasi JC, Olson RM, et al. KMT2A (MLL) rearrangements observed in pediatric/young adult T-lymphoblastic leukemia/lymphoma: A 10-year review from a single cytogenetic laboratory. Genes Chromosomes Cancer. 2018;57:541–6.

Affiliations

Claus Meyer1 · Bruno A. Lopes1,2 · Aurélie Caye-Eude3 · Hélène Cave3 · Chloé Arfeuille3 · Wendy Cucuinni4 · Rosemary Sutton5 · Nicola C. Venn5 · Seung Hwan Oh1,6 · Grigory Tsaur7 · Gabriele Escherich8 · Tobias Feuchtinger9 · Hansen J. Kosasih10 · Seong L. Khaw10 · Paul G. Ekert5,10 · Maria S. Pombo-de-Oliveira11 · Audrey Bidet12 · Bardya Djahanschiri13 · Ingo Ebersberger13,14 · Marketa Zaliowa15 · Jan Zuna15 · Zuzana Zermanova16 · Vesa Juvonen17 · Reneate Panzer Grümayer18 · Grazia Fazio19 · Gianni Cazzaniga19 · Patrizia Larghero1 · Mariana Emerenciano17 · Rolf Marschalek1

2309
Animal models

FLT3^{N676K} drives acute myeloid leukemia in a xenograft model of **KMT2A-MLLT3** leukemogenesis

Axel Hyrenius-Wittsten1 • Mattias Pilheden1 • Antoni Falqués-Costa1 • Mia Eriksson1 • Helena Sturesson1 • Pauline Schneider2 • Priscilla Wander2 • Cristian Garcia-Ruiz2 • Jian Liu1 • Helena Ågerstam1 • Anne Hultquist3,4 • Henrik Liljebjörn5 • Ronald W. Stam2 • Marcus Järås1 • Anna K. Hagström-Andersson1

Received: 6 December 2018 / Revised: 1 March 2019 / Accepted: 22 March 2019 / Published online: 5 April 2019

© The Author(s) 2019. This article is published with open access

To the Editor:

Activating signaling mutations are common in acute leukemia with **KMT2A** (previously **MLL**) rearrangements (**KMT2A-R**) [1]. When defining the genetic landscape of infant **KMT2A-R** acute lymphoblastic leukemia (ALL), we identified a novel **FLT3^{N676K}** mutation in both infant ALL and non-infant acute myeloid leukemia (AML) [1]. **FLT3^{N676K}** was the most common **FLT3** mutation in our cohort and we recently showed that it cooperates with **KMT2A-MLLT3** in a syngeneic mouse model [1, 2]. To study the ability of **FLT3^{N676K}** to cooperate with **KMT2A-MLLT3** in human leukemogenesis, we transduced human...
CD34+‐enriched cord blood (CB) cells and followed leukemia development immunophenotypically and molecularly in NOD.Cg‐PrkdscidIl2rgtm1Wjl/SzJ (NSG) mice.

Mice that received KMT2A‐MLLT3 with or without FLT3N676K developed a lethal leukemia, often with splenomegaly, thrombocytopenia, and leukocytosis, with no difference in median disease latency (107.5 and 119 days, respectively, \(P = 0.48 \)) and mice receiving FLT3N676K alone showed no sign of disease (Fig. 1a, Supplementary Fig. 1A–E, and Supplementary Data 1). Leukemic mice succumbed to ALL (\(> 50\% \) CD19+CD33+) AML (\(> 50\% \) CD19+CD33+), double‐positive leukemia (DPL, \(> 20\% \) CD19+CD33+), or bilineal leukemia (BLL, \(< 50\% \) CD19+CD33+, \(< 50\% \) CD19+CD33+, and \(< 20\% \) CD19+CD33+); thus, the leukemias often coexisted with leukemia cells of another immunophenotype (Supplementary Fig. 1F, G and Supplementary Data 1) [3–5]. Previous studies have shown that retroviral overexpression of KMT2A‐MLLT3 in human CB cells in NOD.CB17Prkdscid (NOD/SCID), NOD.Cg‐Prkdscid B2m+1Unc (NOD/SCID‐B2m), or NSG immunodeficient mice, primarily gives rise to ALL, sometimes to leukemias expressing both lymphoid and myeloid markers or bilineal leukemias, but rarely AML [3–6]. KMT2A‐MLLT3‐driven AML can only be generated with high penetrance, and re‐transplanted in immunodeficient mice transgenically expressing human myeloid cytokines, consistent with the idea that external factors can influence the phenotype of the developing leukemia [3, 6]. In agreement, most recipients that received KMT2A‐MLLT3 alone developed ALL (16/23, 69.6%) or DPL (4/23, 17.4%) and AML was rare (2/23, 8.7%) [3, 4, 6]. By contrast, five out of six recipients that received KMT2A‐MLLT3+FLT3N676K and that had \(> 60\% \) (\(n = 6 \), range 60.4–94.1%) of co‐expressing cells, developed AML and one developed ALL (Fig. 1b, Supplementary Fig. 1H, I, and Supplementary Data 1). Thus, FLT3N676K preferentially drives myeloid expansion, similar to mutant Flt3 in a syngeneic setting [7]. FLT3 is expressed in human hematopoietic stem and progenitor cells, with the highest expression in granulocyte–macrophage progenitors (GMPs), and its signaling supports survival of those cells [8]. Combined, this suggests that FLT3N676K affects the survival of myeloid progenitors. In this context, it is interesting to note that FLT3 tyrosine kinase domain mutations are enriched in pediatric AML with KMT2A‐MLLT3 [9, 10]. Most recipients with \(< 10\% \) (\(n = 11 \), range 0.2–5.3%) of co‐expressing KMT2A‐MLLT3+FLT3N676K cells succumbed to ALL, consistent with leukemia being driven by KMT2A‐MLLT3 alone. Among those with 10–60% (\(n = 6 \), range 10.9–31.6%) of co‐expressing cells, a mixture of diseases developed since leukemia could be driven both by KMT2A‐MLLT3 alone and KMT2A‐MLLT3+FLT3N676K (Fig. 1b, Supplementary Fig. 1H, I, and Supplementary Data 1).
Co-expression of KMT2A-MLLT3 and FLT3N676K preferentially expanded myeloid cells (\(P < \text{0.0001}, \text{Supplementary Fig. 1J}\) and a high proportion of CD19+CD33+ cells at sacrifice, across the cohort, correlated with accelerated disease (\(r_s = - \text{0.6537}, \text{0.0001}, \text{Supplementary Fig. 1K, L}\)). In agreement, AML developed with significantly shorter latency as compared with ALL and DPL (89 vs. 120 and 133 days, respectively, both \(P > \text{0.0001}\)), but not with BLL (84 days, Fig. 1c). Further, FLT3N676K-driven AML had a tendency toward shorter survival (median latency 78 days, range 62–117 days vs. 93 days for KMT2A-MLLT3 alone, Supplementary Data 1).

To determine the evolution of phenotypically distinct leukemia cells in secondary recipients, BM cells from six primary KMT2A-MLLT3 + FLT3N676K leukemias (three each with >60\% or 20–32\% of FLT3N676K-expressing cells) and from four primary KMT2A-MLLT3 leukemias, were retransplanted. All leukemias gave rise to secondary malignancies and recipients that received BM from AML (\(n = 2\)) and ALL (\(n = 1\)) with >60\% of KMT2A-MLLT3 + FLT3N676K cells had an accelerated disease onset and maintained leukemia immunophenotype (median latency of 117 and 41 days, for the primary and secondary recipients, respectively) (Supplementary Fig. 2A-E and Supplementary Data 2). Thus, FLT3N676K circumvented the cytokine dependence normally required for myeloid cells in immunodeficient mice [3]. By contrast, all secondary recipients that received BM with 20–32\% KMT2A-MLLT3 + FLT3N676K cells succumbed to ALL, irrespective of disease phenotype in the primary recipients (one AML and two BLL). Thus, the myeloid FLT3N676K-expressing cells unexpectedly decreased in size, while the KMT2A-MLLT3-expressing lymphoid cells increased to clonal dominance (Supplementary Fig. 2F, G and Supplementary Data 2). This suggests that the FLT3N676K-containing myeloid leukemia population needs to be sufficiently large to expand in secondary recipients, either because they otherwise are outcompeted by the larger population of more easily engrafted ALL cells, or because they themselves need to mediate the permissive microenvironment that allows myeloid cells to engraft. Similarly, in all but one of the secondary recipients that received BM from leukemias expressing only KMT2A-MLLT3 (two AML, one ALL, and one BLL), the disease phenotype changed and myeloid cells did not engraft (Supplementary Fig. 2H-J and Supplementary Data 2).

In the secondary recipient with maintained immunophenotype (a BLL, h11.13-1), the myeloid cells unexpectedly expanded from 38\% to close to 50\% (Fig. 1d and Supplementary Data 2). This suggested that the myeloid cells had acquired a de novo mutation that allowed serial transplantation, similar to what was observed for FLT3N676K. Strikingly, targeted sequencing of AML-associated genes on hCD45+ BM from this mouse identified a KRASG13D in 34\% of the cells. Resequencing of hCD45+CD19+CD33+ and hCD45+CD19+CD33− BM showed that KRASG13D was present exclusively in the myeloid population and based on the variant allele frequency of 51\%, that all cells carried the mutation (Fig. 1d and Supplementary Table 1, 2). Further, KRASG13D likely arose independently in h11.13-1 as no mutation was identified, at the level of our detection, in the primary (h11.13) or in a separate secondary recipient (h11.13-2) from the same primary mouse (h11.13) that developed ALL (Supplementary Table 2 and Supplementary Data 2).

Gene expression profiling (GEP) followed by principal component analysis (PCA) showed that the leukemias segregated based on their immunophenotype, with an evident separation between leukemias and normal hematopoietic cells (Fig. 2a, Supplementary Fig. 3A, B, and Supplementary Table 3). All leukemias expressed high levels of known KMT2A-R target genes and showed enrichment of gene signatures associated with primary KMT2A-R leukemia, indicating that they maintain a GEP representative of human disease (Supplementary Fig. 3C, D and Supplementary Data 3–6). In line with the hypothesis that KMT2A-MLLT3 DPL cells are ALL cells with aberrant CD33 expression, they clustered closely with ALL cells. Both populations expressed high levels of ALL-associated cell surface markers and lymphoid transcription factors (Fig. 2a and Supplementary Fig. 3B, E-H). Further, CD33 and other AML-associated cell surface markers and key myeloid transcription factors, all showed lower expression in DPL cells as compared with normal myeloid- and AML cells (Supplementary Fig. 3G-I).

By correlating the GEPs of the xenograft leukemias to those of normal hematopoietic cells [11], DPL and ALL were found to resemble normal common lymphoid progenitors (CLPs) and AML cells normal GMPs (Fig. 2b). Further, ALL and DPL cells had significantly higher expression of the transcription factor CEBPA as compared with normal lymphoid cells which lacked CEBPA expression (Fig. 2c). CEBPA drives myeloid programs and is expressed in most hematopoietic progenitors, in particular in GMPs, with CLPs lacking CEBPA expression (Fig. 2c) [11]. Finally, to link the GEPs of our xenograft leukemias to those of pediatric KMT2A-R leukemia, we utilized a dataset of pediatric B-cell precursor ALL (BCP-ALL) [12]. Multigroup comparison visualized by PCA showed that KMT2A-MLLT3 DPL and ALL mainly resembled KMT2A-R BCP-ALL (Fig. 2d), again highlighting that the xenograft leukemias resemble human leukemia.

We next studied the transcriptional changes induced by FLT3N676K in KMT2A-MLLT3 AML cells. Gene set enrichment analysis (GSEA) revealed enrichment of gene sets connected to the Myc-transcriptional network, cell
cycle, and proliferation when compared with KMT2A-MLLT3 AML (Supplementary Data 7). Similar to our previous findings in a syngeneic KMT2A-MLLT3 mouse model [2], the Myc-centered program [13] was not linked to the pluripotency network (Supplementary Fig. 4A and Supplementary Data 8, 9). Since FLT3 mutations activate mitogen-activated protein kinase (MAPK) signaling [14], we investigated if FLT3N676K increased expression of MEK/ERK-pathway genes, by studying the expression of known transcriptional output genes and negative feedback regulators of the pathway [15]. Indeed, enrichment of MEK/ERK-associated genes was evident in FLT3N676K-expressing cells, suggesting that FLT3N676K allows cells to overcome normal feedback regulation, leading to sustained signaling [15] (Supplementary Fig. 4B). Finally, FLT3N676K-expressing AML showed preserved transcriptional changes to those seen in infant KMT2A-AFF1 ALL with activating mutations [1] (Supplementary Fig. 4C). Thus, FLT3N676K

Fig. 2 DPL cells are ALL cells with aberrant CD33 expression. a Hierarchical clustering based on multigroup comparison of myeloid CD19–CD33+ leukemia cells from KMT2A-MLLT3 + MSCV-GFP (KM-CD33) and KMT2A-MLLT3 + FLT3N676K (KM + FLT3N676K-CD33), lymphoid CD19+CD33+ leukemia cells from KMT2A-MLLT3 + MSCV-GFP (KM-CD19), and double-positive CD19+CD33+ leukemia cells from KMT2A-MLLT3 + MSCV-GFP (KM-CD19,CD33), as well as normal myeloid-CD19–CD33+ (normal CD33) and lymphoid CD19+CD33+ (normal CD33) cells from MSCV-GFP + MSCV-mCherry using 637 variables (P = 2.2e−15, FDR = 4.9e−15). b Supervised (1500 variables, P = 3.6e−1, FDR = 3.1e−5) PCA based on human hematopoietic stem cells (HSC), multipotent progenitors (MPP), lymphoid-primed multipotent progenitors (LMPP), common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), and common lymphoid progenitors (CLP) [11]. Samples with leukemia cells from KM-CD33, KM + FLT3N676K-CD33, KM-CD19, and KM-CD19,CD33 were inserted into the same PCA (still based solely on the normal populations [11]), revealing that AML cells mainly resembled GMPs and that both ALL and DPL mainly resembled CLPs. c CEBPA expression (FPKM log2) within sorted leukemia, normal populations, and within HSC, MPP, LMPP, CMP, GMP, CLP, MEP, monocytes, and B cells [11]. d Supervised (1501 variables, P = 3.3e−10, FDR = 3.1e−9) PCA based on pediatric BCP-ALL with ETV6-RUNX1, high hyperdiploid (HeH), TCF3-PBX1, or KMT2A-R [12]. Samples with leukemia cells from KM-CD19 and KM-CD19,CD33 were inserted into the same PCA (still based solely on the pediatric BCP-ALL populations [12]). Mann–Whitney U test used in (c), *P ≤ 0.05, **P ≤ 0.01, ns = not significant.
may circumvent the cytokine dependence seen for myeloid cells in immunodeficient mice by providing constitutive active signaling promoting cell proliferation, likely through the MAPK/ERK pathway.

Herein, we demonstrate that co-expression of MLLT2-MLLT3 and FLT3G676K in human CB cells primarily causes AML and thus alters the lineage distribution of MLLT2-MLLT3-driven leukemia. AML could only be serially transplanted with maintained immunophenotype in the presence of FLT3G676K. This is consistent with the idea that activated signaling allows myeloid cells to more efficiently engraft and maintain their self-renewal. In agreement, we identified a de novo KRASG12D in myeloid MLLT2-MLLT3-expressing cells that had expanded upon secondary transplantation. Altogether, this shows that constitutively active signaling mutations can substitute for external factors and influence the phenotype of the developing MLLT2-R leukemia, at least in xenograft models.

Accession code
GSE127492.

Acknowledgements This work was supported by Waed Swedish Childhood Cancer Foundation, The Swedish Cancer Society, The Swedish Research Council, The Knut and Alice Wallenberg Foundation, BioCARE, The Crafoord Foundation, The Per-Eric and Ulla Schyberg Foundation, The Nilsson-Ehle Donations, The Wiberg Foundation, and Governmental Funding of Clinical Research within the National Health Service. Work performed at the Center for Translational Genomics, Lund University has been funded by Medical Faculty Lund University, Region Skåne and Science for Life Laboratory, Sweden.

Author contributions AHW and AKHA designed the study and experiments; AHW, MP, AFC, ME, HS, PS, PW, CGR, JL, and HÅ performed experiments; AHW, MP, HL, and AKHA analyzed sequencing data; AHW, AKHA, AH, MJ, and RWS interpreted data; AHW and AKHA wrote the paper. MJ and RWS performed critical reading and contributed to the writing of the paper.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47:330–7.
2. Hyrenius-Wittsten A, Pihlased M, Sturehans H, Hansson J, Walsh MP, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in MLL2-rearranged leukemia. Nat Commun. 2018;9:1770.
3. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008;13:483–95.
4. Sontakke P, Carretta M, Jaques J, Brouwers-Vos AZ, Lubbers-Aalders L, Yuan H, et al. Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold-based xenograft model. Leukemia. 2016;30:2064–73.
5. Horton SJ, Jaques J, Woolhuis C, van Dijk J, Mesuraca M, Huls G, et al. MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny. Leukemia. 2013;27:1116–26.
6. Barabé F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316:600–4.
7. Bailey E, Li L, Duffield AS, Ma HS, Hurco DL, Small D, FLT3/D835Y mutation knock-in mice display less aggressive disease compared with FLT3/ITD mice. Proc Natl Acad Sci USA. 2013;110:21113–8.
8. Kikushige Y, Yoshimoto G, Miyamoto T, Iino T, Mori Y, Iwasaki H, et al. Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol. 2008;180:7358–67.
9. Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108:3654–61.
10. Andersson A, Paalsson K, Liljeblom H, Lassen C, Strömbeck B, Heldrup J, et al. FLT3 mutations in a 10 year consecutive series of 177 childhood acute leukemias and their impact on global gene expression patterns. Genes Chromosomes Cancer. 2008;47:64–70.
11. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016;48:1193–203.
12. Liljeblom H, Henningsson R, Hyrenius-Wittsten A, Olsson L, Orsmark-Pietras C, Paffy von S, et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790.
13. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell. 2010;143:313–24.
14. Choudhary C, Schwäble J, Brandts C, Tickenbrock L, Sargin B, Kindler T, et al. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood. 2005;106:265–73.
15. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, et al. (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 2009;106:4519–24.
Immunotherapy

Unique CDR3 epitope targeting by CAR-T cells is a viable approach for treating T-cell malignancies

Jinqi Huang1,2 · Stepanov Alexey3 · Jian Li4 · Terri Jones2 · Geramie Grande2 · Lacey Douthit2 · Jun Xie4 · Danna Chen5 · Xiaolei Wu6 · Maschan Michael7 · Changchun Xiao4,8 · Jiangning Zhao9 · Xuehua Xie10 · Jia Xie2 · Xiao Lei Chen4 · Guo Fu4 · Gabibov Alexander3 · Chi-Meng Tzeng1,11

To the Editor:

Efficient and specific removal of malignant cells is the ultimate goal of cancer therapy. The current rapid development of chimeric antigen receptor T-cell (CAR-T-cell or CART) therapy potentially provides high efficiency and allows long-term surveillance, which have greatly extended the frontier of leukemia treatment.

T-cell leukemia/lymphoma accounts for 15–25% of the incidence of malignant lymphoid diseases and represents 22 clinicopathologic entities in the most recent classification [1–3]. Recently, researchers have started to investigate approaches using chimeric antigen receptor T-cells (CAR-T-cells or CARTs) to treat T-cell leukemia/lymphoma by targeting common antigens such as CD4, CD5, TRBC1/2, and the chemokine receptor CCR4 [4–7]. The major hallmark of T-cell leukemia is the clonal expansion of malignant lymphocytes [8–10], which is both a characteristic and diagnostic marker [11, 12]. Given the vast diversity of the immune repertoire, leukemia cell germ-lines from each patient have a unique T-cell receptor (TCR) on the cell surface that distinguishes these cells from normal T-cells. We hypothesized that targeting complementarity-determining region 3 (CDR3) on TCRs on leukemia cells by personalized tumor-specific CARTs would be a valid and superior approach that may offer higher precision and lower off-tumor toxicity than current treatment approaches. Recent advancements in next-generation sequencing (NGS) technology have enabled researchers to investigate TCR diversity with unprecedented depth and efficiency. Here, we propose a novel pipeline based on epitope screening technology aimed at isolating unique CDR3 regions from patients with leukemia/lymphoma for the subsequent redirection of human T-cells toward malignant epitopes. We assumed that the screening of combinatorial single-chain variable fragment

These authors contributed equally: Jinqi Huang, Stepanov Alexey, Jian Li

Supplementary information The online version of this article (https://doi.org/10.1038/s41375-019-0455-3) contains supplementary material, which is available to authorized users.

Xiao Lei Chen
xcl2015@xmu.edu.cn

Guo Fu
guofu@xmu.edu.cn

Gabibov Alexander
gabibov@mx.ibch.ru

Chi-Meng Tzeng
cmtzeng@xmu.edu.cn

1 Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
2 Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
3 M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16 /10, Moscow 117997, Russia
4 State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
5 The Affiliated Hospital of Putian University, Putian, Fujian, China
6 Present address: ProteinT Biotechnology Ltd. Co. Tianjin Airport Free Trade Zone, Tianjin, China
7 Present address: Dmitrii Rogachev Federal Research Center for Pediatric Hematology, Oncology and Immunology, Samory Mashela Str. 1, Moscow 117997, Russia
8 Present address: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
9 Department of Hematology, zhongshan Hospital of Xiamen University, Xiamen 361004 Fujian, China
10 Department of Oncology, The first hospital of Putian City, Putian 351100 Fujian, China
11 School of Pharmacology, Nanjing Tech University, Nanjing, China
(scFv) libraries derived from the immune repertoire of cancer patients would allow us to select malignancy-specific epitopes that could facilitate the generation of redirected tumor-specific T-cells. We established a platform spanning from clinical pathology to antigen identification and from targeted scFv screening to in vitro/in vivo validation, and the entire process can be completed in a relatively short time frame (Fig. 1a). We believe that clonal T-cell CDR3-selective CART therapy is a viable approach for further clinical development, with the potential for extrapolation to B-cell malignancies.

We collected pathological samples from nine leukemia patients (four with T-cell acute lymphoblastic leukemia (T-ALL) and 5 with T-cell non-Hodgkin lymphoma (T-NHL), Supplementary Table S1) pathologically confirmed by histology and flow cytometry, and four healthy donors (normal controls) to study TCR diversity. Isolated cells (as well as Jurkat and MOLT-4 cells as controls) were used for gDNA extraction, amplification of the CDR3 region of TCRβ chain sequences and NGS analysis (Supplementary Fig. S1, Table S2). Consistent with previous reports [13], the TCR diversity of T-cells from leukemia patients showed an abnormal predominance of CDR3 sequences (the frequency ranged from 7 to 94%), while no single clone exhibited a frequency of higher than 2% in T-cells from healthy donors (Fig. 1b). Identified dominant, unique CDR3 sequences from the leukemia, Jurkat and MOLT-4 cells were chemically synthesized and used for further applications.

Fig. 1 a Workflow for the selection of ligands for personalized CDR3-selective CART therapy for lymphoma and leukemia. A biopsy sample from a patient with lymphoma or leukemia was isolated, and the collected tumor cells were utilized for identification of the TCR CDR3 sequence on malignant T cells. The identified CDR3 sequences were chemically synthesized and used for scFv phage panning. Selected scFv clones were sequenced and transferred to the CAR backbone. Autologous T cells were modified by personalized patient CDR3-selective CARs.

b NGS analysis of the TCR repertoire from Jurkat, MOLT-4, patient biopsy and healthy donor cells. Representative Circos plots of the frequencies of Vβ and Jβ usage and combinations of unique productive templates. The width of the band is proportional to the frequency. c Flow cytometric analysis of Jurkat cells and patient #1 biopsy sample cells stained by GFP fusions of the scFvs specific to the CDR3 regions of the Jurkat cells (J-CDR3-scFv) or Patient#1 malignant T cells (P1-CDR3-scFv). d Immunohistochemistry analysis of the patient#6 biopsy sample stained by GFP fusions of the scFv specific to the CDR3 regions of the Patient#6 malignant T cells (P6-CDR3-scFv and isotype antibody control). e Immunohistochemistry analysis of the patient#8 biopsy sample stained by GFP fusions of the scFv specific to the CDR3 regions of the Patient#8 malignant T cells (P8-CDR3-scFv) and isotype antibody control.
display screening of individual peptides. After three rounds of selection, we obtained specific scFvs against CDR3 peptides (Supplementary Table S3). The results of previous structural studies suggest that some CDR3 fragments form rather sophisticated tertiary conformations, which may not be fully represented by chemically synthesized linear peptides. To validate whether our selected antibodies could recognize TCRs harboring the CDR3 sequences, selected scFv-GFP fusion proteins were used to stain the biopsy samples from the patients. The scFv fusion proteins specifically labeled both dispersed cancer cells (Jurkat and patient #1-T-ALL) (Fig. 1c) and lymphoma biopsy (patient #6-peripheral T-cell lymphoma (PTCL) and patient #8-angioimmunoblastic T-cell lymphoma (AITL)) (Fig. 1d, e). To analyze off-target specificity, clinical bone marrow, liver, spleen, and lymph node tissue specimens were stained with selected scFv-GFP fusion proteins. Immunohistochemical examination did not show any detectable off-target binding of the CDR3-specific scFvs (Supplementary Fig. S2). Thus, we concluded that patient B cell repertoire-aided combinatorial antibody library screening is a valid approach to identify antibodies against TCR CDR3 regions on malignant cells for subsequent therapeutic applications.

To explore the possibility of personalized immunotherapy with the CAR approach, the library-selected CDR3-specific scFvs against TCRs on MOLT-4 cells, Jurkat cells, and cells from patient #1 were cloned into lentiviral vectors encoding second-generation CARs and named J-CAR, MOLT-4-CAR and P#1-CAR, respectively. The corresponding lentiviruses were produced and used for transduction of activated primary human T-cells.

We next determined whether T-cells modified with the P#1-CAR and J-CAR constructs exhibited specific cytototoxicity in vitro. We incubated CARTs with biopsy cells from patient #1, Jurkat cells or modified Jurkat cells expressing TCRs with the replaced CDR3 from the tumor cells from patient #1 (P1-CDR3-Jurkat). After 24 h of coculture, activated human CDR3-specific T-cells responded to their corresponding Jurkat or patient malignant T-cells by secreting IL-2 and IFN-γ, as well as undergoing highly efficient cell lysis (Fig. 2a).

To validate the specificity of the CARTs targeting CDR3 epitopes on malignant cells, we analyzed the TCR repertoire diversity before and after coinoculation of the CDR3-selective CARTs or control CART-cells with biopsy cells from patient #1 or Jurkat cells. By ranking the frequency of the V and J regions of the TCRs, we found that control CARTs did not alter the frequency of TCR sequences on malignant cells (Fig. 2b, left panel). However, both J-CARTs and P#1-CARTs drastically reduced the percentage of malignant T-cell clones (Fig. 2b, right panel), suggesting the safety and substantial therapeutic potential of TCR targeting.

The encouraging results described above prompted us to investigate whether this approach could be further validated in vivo. We tested the efficacy of J-CARTs, MOLT-4-CARTs, and P#1-CARTs in a disseminated leukemia model by i.v. engrafting the corresponding target cell lines (Jurkat, MOLT-4 or P1-CDR3-Jurkat cells expressing luciferase) into immunodefi cient NOD mice. Two days after tumor inoculation, animals from all experimental groups were treated with CARTs specific to the TCRs on the injected cells or control CARTs with irrelevant CDR3 specificity.

Injection of J-CARTs, MOLT-4-CARTs, and P#1-CARTs significantly reduced the tumor burden in animals and led to cancer cell elimination, while animals injected with control CARTs hosted a progressively increasing number of malignant cells (Fig. 2c). Indeed, compared with animals in the control CART-treated groups, animals in the CDR3-specific groups exhibited improved body weight and extended survival (Fig. 2d).

We demonstrated for the first time that targeting the CDR3 regions of malignant T-cell clones by cell therapy is a viable approach to eliminate leukemia cells. Due to its intrinsic uniqueness, the CDR3 region has historically been an intriguing target with much historical discussion. A few attempts have been made to use this region as the antigen for a cancer vaccine [15]. Due to the clonal nature of leukemia cells and the uniqueness of a given CDR, targeting CDR3 should offer a few advantages not offered by targeting common antigens: (1) Lower “on-target, off-tumor” effect; (2) Minimized impact on a patient’s immune system during treatment; and (3) Great capacity for development as a personalized treatment that can be tailored to individual needs, as a percentage of patients do not respond well to existing therapies with common targets. In the current study, we validated the idea of using CARTs as targeting agents and observed excellent continuous efficacy as well as specificity. Combining CDR3 targeting with the CART approach provides a solution for a substantial portion of patients with T-cell leukemia and lymphoma, with supposedly minimized side effects. The potential problems to be solved in the future include establishing effi cient and streamlined good laboratory practice (GLP)-level CDR3 binder discovery and good manufacturing practice (GMP)-level personalized CART manufacturing and decreasing the financial burden for individual patients. However, these issues may be short-lived as technologies develop rapidly.

Nevertheless, after validation of this strategy to eliminate pathological T-cells ex vivo and in vivo, we envisage this approach as a generally useful alternative and supplement to the popular approach of common antigen targeting to treat T-cell malignancies, especially considering its safety.

Acknowledgements This work was supported by the Fujian Provincial Natural Science Foundation 2016S016 China and Putian city Natural Science Foundation 2014S06(2), Fujian Province, China. Alexey Stepanov and Alexander Gabibov were supported by Russian Scientific Foundation project No. 17-74-30019. Jinqi Huang was supported by a doctoral fellowship from Xiamen University, China.
Author Contributions JH, SA, JL, GF, XC, and CMT designed the study; JH, SA, JL, JXJZ, and XX performed and analyzed the experiments; JH, DC, and XW contributed to patient clinical care and data collection; JX and GF provided scientific advice; TJ, GG, and LD proof read the manuscript; JH, SA, JL, GF, MM, AG, JX, and CMT wrote the paper; and all authors read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest: The authors declare that they have no conflict of interest.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;2016:12.

2. Guru Murthy GS, Dhakal I, Mehta P. Incidence and survival outcomes of chronic myelomonocytic leukemia in the United States. Leuk Lymphoma. 2017;58:1648–54.

3. Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2016;2016:580–8.

4. Pinz KG, Yakaboski E, Jares A, Liu H, Firor AE, Chen KH, et al. Targeting T-cell malignancies using anti-CD4 CAR NK-92 cells. Oncotarget. 2017;8:112783–96.

5. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126:983–92.

6. Maciocia PM, Wawrzyniecka PA, Philip B, Ricciardelli I, Akarca AU, Onuoha SC, et al. Targeting the T-cell receptor beta-chain constant region for immunotherapy of T-cell malignancies. Nat Med. 2017;23:1416–23.

7. Perera LP, Zhang M, Nakagawa M, Petrus MN, Maeda M, Kadin ME, et al. Chimeric antigen receptor modified T-cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol. 2017;92:892–901.

8. Gong Q, Wang C, Zhang W, Iqbal J, Hu Y, Greiner TC, et al. Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep. 2017;7:11301.
Chronic myelogenous leukemia

The phosphatase UBASH3B/Sts-1 is a negative regulator of Bcr-Abl kinase activity and leukemogenesis

Afsar A. Mian1,6 · Ines Baumann2,7 · Marcus Liebermann3 · Florian Grebien2,8 · Giulio Superti-Furga2,4 · Martin Ruthardt1,3 · Oliver G. Ottmann1,3 · Oliver Hantschel2,5

Received: 15 March 2019 / Revised: 20 March 2019 / Accepted: 22 March 2019 / Published online: 8 April 2019
© The Author(s) 2019. This article is published with open access

To the Editor:

The t(9;22) translocation results in the expression of the constitutively active BCR-ABL1 tyrosine kinase. It is detected in chronic myelogenous leukemia (CML) and in ~30% of adult acute lymphoblastic leukemia (ALL) patients [1]. Thus, Ph+ ALL is not only the largest genetically defined subgroup of ALL, but also characterized by a poor prognosis [2]. The two major protein isoforms of Bcr-Abl are p210 and p190. Whereas the shorter p190 isoform is specific for Ph+ ALL, the longer p210 isoform causes CML, but is also present in ~30% of Ph+ ALL patients [1, 3]. BCR-ABL1 was the first oncogene targeted successfully with the tyrosine kinase inhibitor (TKI) imatinib, which results in durable remissions in most CML patients and increased remission rates and survival in Ph+ ALL patients. Still, resistance to imatinib occurs particularly frequently in Ph+ ALL. Several next-generation TKIs were developed to address TKI resistance and intolerance [4]. Various TKI resistance mechanisms, including dozens of Bcr-Abl mutations, were described, but causes for resistance are still elusive in a significant portion of patients [5].

Deregulation of protein tyrosine phosphatases (PTP) plays an important role in maintaining a wide range of cancers. The ability of tyrosine phosphatases to antagonize
oncogenic tyrosine kinases makes them candidate tumor suppressors. We previously showed that deregulation of PTP1B causes resistance in Ph− leukemias [6]. The phosphatase Sts-1 (suppressor of T-cell receptor signaling 1, encoded by the human UBASH3A gene) was found to be transcriptionally upregulated in Ph− ALL as compared with Ph+ ALL patients [7]. Notably, Sts-1 also is one of the most prominent interactors of Bcr-Abl as determined by a systematic interaction proteomics screen [8]. In two recent independent studies, Sts-1 was found to interact more strongly with the Bcr-Abl p210 isoform than with p190 and to be phosphorylated in Bcr-Abl expressing cells [9, 10]. Sts-1 and its only human and mouse paralogue, Sts-2 (UBASH3A), comprise an N-terminal ubiquitin-associated (UBA) domain, an Src homology 3 (SH3) domain and a C-terminal phosphoglycerate mutase (PGM) domain, which has structural homology with the histidine phosphatase superfamily. It was demonstrated that Sts-1 (and to a lesser extent Sts-2) possesses tyrosine phosphatase activity [11]. Strikingly, Sts-1 is a negative regulator of several tyrosine kinase pathways, including not only EGFR and PDGFR, but also ZAP-70 and SYK, thereby antagonizing T- and B-cell receptor signaling, respectively [12, 13]. As genetic and functional perturbation of kinase/phosphatase networks have been implicated in oncogenesis and based on our previous expression and proteomics data, we reasoned that the interaction between the Bcr-Abl kinase and the Sts-1 phosphatase may contribute to leukemogenesis. We therefore investigated the functional relationship between these two proteins, in particular the ability of Sts-1 to dephosphorylate Bcr-Abl and how it may contribute to TKI resistance in Ph− ALL patients.

To study the interaction of Bcr-Abl p190 with Sts-1 and its dependence on kinase activity in Ph− ALL cells, we performed coimmunoprecipitation (co-IP) assays of the endogenous p190 and Sts-1 in Sup-B15 cells either in the absence or presence of imatinib. Sts-1 binding to p190 was more strongly and equally well (Fig. 1g). Conversely, only Sts-1 binding to the Abl-portion of Bcr-Abl was affected by modulating its autophosphorylation, we next investigated how Sts-1 may regulate Bcr-Abl kinase activity and autophosphorylation at different tyrosine (Y) residues: Y177 in the Bcr-portion is critical for Ras-MAPK signaling, whereas Y245 and Y412 in the Abl-portion are important markers for kinase activation [14]. Thus, we examined the autophosphorylation of Bcr-Abl in Ba/F3 cells in the presence and absence of Sts-1. In line with its binding properties, Sts-1 caused strong dephosphorylation of Bcr-Abl at Abl-Y245 and Abl-Y412, whereas Bcr-Y177 was only mildly dephosphorylated (Fig. 1f). In a second step, we cotransfected HEK293 cells with either Bcr-Abl or an oligomerization-deficient mutant (ΔCC-Bcr-Abl) together with either wild-type or a phosphatase-dead (H391A) Sts-1 [11]. We found that Sts-1 dephosphorylates both Bcr-Abl and itself, and that Sts-1 is a kinase substrate of Bcr-Abl. In fact, Sts-1 dephosphorylated Bcr-Abl and ΔCC-Bcr-Abl strongly and equally well (Fig. 1g). Conversely, only phosphatase-dead Sts-1, but not wild-type Sts-1, was strongly phosphorylated in the presence of Bcr-Abl, demonstrating that Sts-1 is able to dephosphorylate itself (Fig. 1g).

Given that Sts-1 may regulate kinase activity of Bcr-Abl by modulating its autophosphorylation, we next investigated whether Sts-1 impacts on cell proliferation in IL-3-independent Ba/F3 cells expressing wild-type (wt) Bcr-Abl or the gatekeeper mutation T315I, which conveys resistance to multiple TKIs. These cells were retrovirally transduced with GFP or Sts-1-GFP, and proliferation competition assays were performed over the course of 12 days. The expression of GFP alone did not alter the proliferation of BCR-ABL expressing Ba/F3 cells as revealed by the constant percentage of GFP positive cells (Fig. 2a). In contrast, expression of Sts-1-GFP reduced the proliferation of Ba/F3 cells expressing Bcr-Abl wt and T315I. Concomitant treatment with 1 µM imatinib further decreased proliferation.
of Bcr-Abl wt, but, as expected, not Bcr-Abl-T315I cells (Fig. 2a). These results indicate that Sts-1 activity negatively regulates cell proliferation induced by Bcr-Abl wt and T315I.

To assess the role of Sts-1 in Bcr-Abl-driven leukemogenesis, we examined the induction of Bcr-Abl p210-induced CML-like disease in wt vs. Sts-1/Sts-2 double-knockout bone marrow cells using a transplantation model. The absence of Sts-1/Sts-2 decreased the survival of recipient mice significantly and further aggravated the pronounced splenomegaly observed in mice transplanted with Bcr-Abl-expressing wt cells (Fig. 2b).
These results indicate that Sts-1/Sts-2 are functionally relevant negative regulators of Bcr-Abl-dependent leukemogenesis in a CML mouse model.

The glucocorticoid dexamethasone and Sts-1 seem to regulate several common signaling pathways: Both inhibit T-cell receptor (TCR) signaling by regulating TCR expression and Sts-1 additionally inhibits certain down-stream effectors [15]. In order to harness the therapeutic potential of Sts-1’s ability to inhibit growth of Bcr-Abl-positive cells, we explored whether dexamethasone may alter Sts-1 expression and activity. Exposure of Sup-B15 and Sup-B15RT cells to clinically relevant concentrations of dexamethasone increased Sts-1 expression over time, accompanied by decreased Bcr-Abl autophosphorylation in Sup-B15 cells (Fig. 2c, d), indicating that it increases the sensitivity of Bcr-Abl-transformed cells to TKIs. In cell proliferation assays, concomitant treatment with dexamethasone and imatinib showed stronger inhibition than each drug alone in both Sup-B15 and Sup-B15RT cells (Fig. 2e).

Deregulation of the tyrosine phosphatase Sts-1 may be an important and pharmacologically targetable mechanism for Bcr-Abl mutation-independent resistance. Upregulation of Sts-1 in Ph⁺ ALL together with its direct interaction with both p190 and p210 Bcr-Abl strongly suggests a functional deregulation of protein phosphorylation similar to that we previously showed for PTP1B [6]. The fact that its normal function can be restored by ectopic overexpression not only indicates a central role for Sts-1 in the regulation of Bcr-Abl but also that the deregulation of Sts-1 is based on a loss of balance between Bcr-Abl kinase and Sts-1 phosphatase activity. This establishes the upregulation of Sts-1 by drugs, such as dexamethasone, as a valid therapeutic approach for increasing the sensitivity to TKIs.

In conclusion, we delineated the molecular interaction mode of the Sts-1 phosphatase with the Bcr-Abl kinase and provide strong evidence that Sts-1 is a negative regulator of Bcr-Abl signaling, cell proliferation, and leukemogenesis. In addition, the parallel study by Udainiya et al. (cosubmitted) shows a broad impact of Sts-1 on the Bcr-Abl signalling pathway.

Fig. 2 Sts-1 negatively regulates Bcr-Abl-dependent leukemogenesis and cell proliferation and its expression is upregulated by dexamethasone. a The proliferation competition assay with Ba/F3 cell transduced with BCR-ABL1 wt or T315I in the absence or presence of STS-1 expression and without (left) or with (right) imatinib treatment (2 µM). BCR-ABL1-positive cells are marked with GFP and the relative changes in GFP expression were measured by FACS and followed over time. Mean values ± SD from three replicates are shown. b Equal amounts of primary murine Lin− c-Kit+ Sca-1+ cells from wt or Sts-1/Sts-2 knockout animals expressing BCR-ABL1 were injected in lethally irradiated recipient mice (n = 8 for each group). Overall survival of transplanted mice was monitored over 60 days. P-value = 0.014 was calculated using a logrank (Mantel–Cox) test. Representative spleens from control mice, BCR-ABL1/STS-1/2 wt and BCR-ABL1/STS-1/2 KO mice are shown. c SupB15 Ph⁺ ALL cells and their imatinib-resistant subline SupB15RT were exposed to 10⁻⁷ M dexamethasone, and STS-1 expression was investigated at the given time points. α-Tubulin was used as loading control. d SupB15 Ph⁺ ALL cells and their imatinib-resistant subline SupB15RT were exposed to 10⁻⁷ M dexamethasone, and the effect of increasing expression of STS-1 on BCR-ABL1 phosphorylation was investigated by an anti-p-Y antibody. e SupB15 and SupB15RT were exposed to imatinib (1 µM) and 10⁻⁷ M dexamethasone alone or in combination and proliferation was analyzed by the XTT assay. The bars represent the mean (±SEM) of three independent experiments, each performed in triplicates. Statistical significance was calculated using student’s t test. ***p ≤ 0.001
phosphoproteome network and precisely delineated the Sts-1 interactome using quantitative functional proteomics techniques. Furthermore, we show that modulation of Sts-1 expression by dexamethasone influences TKI sensitivity of Ph+ ALL cells. Therefore, the inclusion of dexamethasone for therapy regimens in Ph+ ALL may increase sensitivity to TKIs by upregulating Sts-1.

Acknowledgments This work was supported by the Swiss National Science Foundation (grant 31003A_140913; OH) and the Cancer Research UK Experimental Cancer Medicine Centre Network, Cardiff ECMCL grant C7838/A15733. We thank N. Carpino for the Sts-1/2 double-KO mice.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–56.
2. Ottmann OG, Pfeifer H Management of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Hematol Am Soc Hematol Educ Program. 2009;1:371–81.
3. Reckel S, Gebin C, Tardivon D, Georgeon S, Kukenshoner T, Lohr F, et al. Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase. Nat Commun. 2017;8:2101.
4. Hantschel O, Grebien F, Superti-Furga G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res. 2012;72:4890–5.
5. O’Hare T, Zabriskie MS, Eiring AM, Deininger MW. Pushing the limits of targeted therapy in chronic myeloid leukemia. Nat Rev Cancer. 2012;12:513–26.
6. Koyama N, Koschmieder S, Tyagi S, Portero-Robles I, Chronic J, Myloch S, et al. Inhibition of phosphotyrosine phosphatase 1B causes resistance in BCR-ABL-positive leukemia cells to the ABL kinase inhibitor STI571. Clin Cancer Res. 2006;12:2025–31.
7. Juric D, Lacayo NJ, Ramsey MC, Racevskis J, Wiernik PH, Rowe JM, et al. Differential gene expression patterns and interaction networks in BCR-ABL-positive and -negative adult acute lymphoblastic leukemias. J Clin Oncol. 2007;25:1341–9.
8. Brehme M, Hantschel O, Colinge J, Kaupe I, Planyavsky M, Kocher T, et al. Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci USA. 2009;106:7414–9.
9. Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D, et al. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia. 2017;31:1502–12.
10. Cutler JA, Tahir R, Sreenivasamurthy SK, Mitchell C, Renuse S, Nirujoyi RS, et al. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia. 2017;31:1513–24.
11. Mikhailik A, Ford B, Keller J, Chen Y, Nassar N, Carpino N. A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol Cell. 2007;27:486–97.
12. Carpino N, Turner S, Mekala D, Takahashi Y, Zang H, Geiger TL, et al. Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. Immunity. 2004;20:37–46.
13. Raguaz J, Wagner S, Dikic I, Hoeller D. Suppressor of T-cell receptor signalling 1 and 2 differentially regulate endocytosis and signalling of receptor tyrosine kinases. FEBS Lett. 2007;581:4767–72.
14. Hantschel O. Structure, regulation, signaling, and targeting of abl kinases in cancer. Genes Cancer. 2012;3:436–46.
15. Migliorati G, Bartoli A, Nocentini G, Ronchetti S, Moraca R, Riccardi C. Effect of dexamethasone on T-cell receptor/CD3 expression. Mol Cell Biochem. 1997;167:135–44.
Multiple myeloma (MM) is the third most common hematological malignancy, after Non-Hodgkin Lymphoma and Leukemia. MM is generally preceded by Monoclonal Gammapathy of Undetermined Significance (MGUS) [1], and epidemiological studies have identified older age, male gender, family history, and MGUS as risk factors for developing MM [2].

The somatic mutational landscape of sporadic MM has been increasingly investigated, aiming to identify recurrent genetic events involved in myelomagenesis. Whole exome and whole genome sequencing studies have shown that MM is a genetically heterogeneous disease that evolves through accumulation of both clonal and subclonal driver mutations [3] and identified recurrently somatically mutated genes, including Kras, Nras, Fam46c, Tp53, Dis3, Braf, Traf3, Cyld, Rbl1 and Prdm1 [3–5].

Despite the fact that family-based studies have provided data consistent with an inherited genetic susceptibility to MM compatible with Mendelian transmission [6], the molecular basis of inherited MM predisposition is only partly understood. Genome-Wide Association (GWAS) studies have identified and validated 23 loci significantly associated with an increased risk of developing MM that explain ~16% of heritability [7] and only a subset of familial cases are thought to have a polygenic background [8]. Recent studies have identified rare germline variants predisposing to MM in Kdm1a [9], Arid1a and Usp45 [10], and the implementation of next-generation sequencing technology will allow the characterization of more such rare variants.

In this study, we sought to explore the involvement of rare germline genetic variants in susceptibility to MM.
Within our discovery cohort of peripheral blood samples (see Supplementary Methods) from 66 individuals from 23 unrelated families analyzed by WES, DIS3 (NM_014953) was the only gene in which putative loss-of-function variants were observed in at least two families. An additional cohort of 937 individuals (148 MM, 139 MGUS, 642 unaffected relatives and eight individuals with another hematological condition) from 154 unrelated families (including the individuals in the discovery cohort) were screened for germline variants in DIS3 using targeted sequencing (Supplementary Table S1). In total, we detected DIS3 germline putative loss-of-function variants in four unrelated families. The DIS3 genotypes for the identified variants were concordant between WES and targeted sequencing (where available) and independently confirmed by Sanger sequencing on DNA extracted from uncultured whole blood. The variant allele frequencies (VAF) were close to 50%, as expected of a germline variant (Supplementary figure S1).

The DIS3 gene, located in 13q22.1, encodes for the catalytic subunit of the human exosome complex, and is recurrently somatically mutated in MM patients [4, 5, 11, 12]. The somatic variants are predominantly missense variants localized in the RNB domain mainly abolishing the exoribonucleolytic activity [4, 13], and are often accompanied by LOH or biallelic inactivation due to 13q14 deletion, implying a tumor suppressor role for DIS3 in MM [5, 12, 13].

The first DIS3 variant, observed in 2 affected siblings (1 MGUS and 1 MM case) from family B (Fig. 1a), was located in the splice donor site of exon 13 (c.1755+1G>T; chr13: 73,345,041; GRCh37/hg19, rs769194741) (Supplementary Figure S1a). It is predicted to abolish the splice donor site and cause skipping of exon 13, introducing a premature termination codon (p.Arg557Argfs*3) and result in a truncated DIS3 protein with an additional 13 amino acids in the C-terminus (p.*959Glnext*14). It was detected in 3 out of 4 affected siblings (2 MGUS (M63, O53) and 1 MM case (O29)), as well as 5 unaffected relatives (N14, N13, L41, M33 M50) from family A. The Mendelian segregation of this variant in this pedigree is also consistent with germline origin. An additional MM case from family C carried the variant, while we were unable to assess the other MM-affected family member (Fig. 1a). As expected of a stop-loss variant, NMD was not observed (data not shown), and gene expression analysis showed no effect on DIS3 mRNA levels (Fig. 1b, c). However, western blot analysis demonstrated that DIS3 protein levels were markedly lower (~50%) in the p.*959Glnext*14 carrier (O53, family A) compared to non-carriers (Fig. 2b, c).

Next, we sought to determine if rare, putative deleterious variants in DIS3 were more frequent in an independent series of MM cases compared to unaffected individuals. We performed mutation burden tests between 781 MM cases and 3534 controls from the MMRF CoMMpass Study with WES data available. After testing for systemic bias in this dataset (see Supplementary Methods, Supplementary Figure S2), we undertook a burden test for association between functional DIS3 variants and MM. DIS3 putative functional variants (truncating and likely deleterious missense variants, see Supplementary Methods) were more frequent among MM patients (30/781) than controls (72/3534) (OR = 1.92 95% CI:1.25–2.96, p = 0.001). Although the p.*959Glnext*14 stop-loss variant was recurrently found in 10/781 MM cases and 15/3534 controls (OR = 3.07 95% CI:1.38 to 6.87, p = 0.0007), it did not entirely explain the excess of DIS3 variants among cases as there is evidence for association with other putative functional variants (Supplementary Figure S3a). We additionally genotyped the p.*959Glnext*14 stop-loss variant in an independent series of sporadic MM cases and controls from the IMMeNSE Consortium. While this variant was very rare in this series (8/3020 MM cases relative to 3/1786 controls), there was a consistent but non-significant association between this variant and MM (OR = 3.15 95% CI: 0.74–13.43 p = 0.122).
To explore the functional consequence of germ-line DIS3 variants, we compared MM tumor transcriptomes from patients harboring germline \(n = 21 \) and somatic \(n = 96 \) DIS3 putative functional variants to non-carriers \(n = 655 \). Differential expression analyses showed an enrichment of pathways associated with global ncRNA processing and translational termination in germline DIS3 carriers including ncRNA processing, ncRNA metabolic process, translational termination, and RNA metabolism. Among somatic DIS3 carriers, significantly enriched pathways include interferon alpha/beta signalling, mRNA splicing, mRNA processing and transcription (Supplementary Figure S3b, Supplementary tables S3 and S4a–d). These findings are consistent with the proposed DIS3 role in regulating mRNA processing [14] and

Fig. 1 DIS3 variants in MM cases. a Pedigrees from families carrying a germline DIS3 variant. Available samples for screening are marked with a “+” symbol. Families A and C carry the p.*959Glnext*14 (c.2875T>C) stop-loss variant. Family B carries the c.1755+1G>T splicing variant and family D carries the c.1883+1G>C splicing variant. The genotype of all screened individuals is shown on each pedigree. WT: wild type. b, c Schematic representation of identified germline and somatic variants in the distinct DIS3 protein domains. b Germline variants were identified through WES and targeted resequencing in families with reoccurrence of MM/MGUS as well as in a collection of sporadic MM cases (MMRF CoMMpass Study). The DIS3 variants discussed in the present study are depicted with a star on the upper part of the figure. c Somatic DIS3 variants were identified in sporadic MM cases from the MMRF CoMMpass Study. We observe that in contrast to the clustering of somatic DIS3 missense variants in the RNB and PIN domains, germline variants are scattered throughout the gene and consist of splicing, stop-loss and missense variants.
more specifically mRNA decay, gene expression and small RNA processing [15]. We also observed that, several long
intergenic non-protein coding RNAs, non-coding and anti-
sense RNAs were significantly enriched among DIS3 carriers
(Supplementary table S5a, b) supporting previous studies that
demonstrate an accumulation of transcripts from non-protein
 coding regions, snoRNA precursors and certain lncRNAs in
DIS3 mutant cells, along a general deregulation of mRNA
levels probably due to the sequestration of transcriptional
factors from the accumulated nuclear RNAs [16].

To our knowledge, this is the first observation of germline
DIS3 likely deleterious variants in familial MM and our
results suggest that the involvement of DIS3 in MM etiology
may extend beyond somatic alterations to germline suscept-
bility. We reported rare germline DIS3 variants in ~2.6% of
our cohort of families with multiple cases of MM and MGUS
(4/154). The germline variants described here are predicted to
have loss-of-function impact on DIS3. Consistent with this,
the 1755+1G>T (rs769194741) splicing variant induces
NMD and results in reduced DIS3 mRNA expression, sup-
porting the proposal that DIS3 is acting as a tumor suppressor
gene in MM [13]. Moreover, the c.2875C>T (p.*959Glnext*14)
stop-loss variant results in reduced DIS3 protein expression
suggesting that the mutant allele is translated but degraded shortly after

![Fig. 2 DIS3 c.1755+1G>T splicing variant results in nonsense-
mediated mRNA decay (NMD) and affects mRNA expression, while
the c.2875C>T (p.*959Glnext*14) stop-loss variant affects protein
levels. (a) LCLs from patients E18 and E28 (not shown) carrying the
c.1755+1G>T splicing variant were cultured with and without pur-
omyycin. The chromatogram from treated cells (with puromycin)
showed a mixture of the wild-type and mutant transcript lacking exon
13, which was not detected in the non-treated cells (without pur-
omyycin). Thus, the mutant transcript is degraded by NMD. (b) Box plot
representing the relative DIS3 mRNA expression in c.1775+1G>A
(n=2) and p.*959Glnext*14 (n=1) carriers compared to non-carriers
(n=4). All reactions were performed in triplicates. (c) Western blot
with an anti-DIS3 antibody was performed in LCLs from one p.
*959Glnext*14 carrier and two wild-type individuals (anti-GAPDH
antibody as internal control). The relative DIS3 expression in the p.
*959Glnext*14 carrier was reduced by 50% compared to non-carriers,
suggesting that the mutant allele is translated but degraded shortly after

Letter 2327
analyses provided supportive data towards DIS3 acting as an “intermediate-risk” MM susceptibility gene.

Acknowledgements This work was supported by the French National Cancer Institute (INCA) and the Fondation Française pour la Recherche contre le Myélome et les Gammapathies (FFMRG), the Intergroupe Francophone du Myélome (IFM), NCI R01 NCIA167824 and a generous donation from Matthew Bell. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the Association des Malades du Myélome Multiple (AF3M) for their continued support and participation. Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood. 2009;113:5418–22.

2. Morgan GJ, Davies FE, Linet M. Myeloma aetiology and epidemiology. Biomed Pharmacother. 2002;56:223–34.

3. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

4. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2013;471:467–72.

5. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

6. Morgan GJ, Johnson DC, Weinhold N, Goldschmidt H, Landgren O, Lynch HT, et al. Inherited genetic susceptibility to multiple myeloma. Leukemia. 2014;28:518–24.

7. Went M, Sad A, Försti A, Halvarsson B-M, Weinhold N, Kimber S, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018:9:3707.

8. Halvarsson B-M, Wihlborg A-K, Ali M, Lemonakis K, Johnsson E, Niroula A, et al. Direct evidence for a polygenic etiology in familial multiple myeloma. Blood Adv. 2017;1:619–23.

9. Wei X, Calvo-Vidal MN, Chen S, Wu G, Revuelta MV, Sun J, et al. Germline mutations in lysine specific demethylase 1 (LSD1/KDM1A) confer susceptibility to multiple myeloma. Cancer research. 2018. https://doi.org/10.1158/0008-5472.CAN-17-1900.

10. Walker RG, Darlington TM, Wei X, Madsen MJ, Thomas A, Curtin K, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk. PLoS Genet. 2018;14:e1007111.

11. Weißbach S, Langer C, Puppe B, Nedeva T, Bass E, Kulm M, et al. The molecular spectrum and clinical impact of DIS3 mutations in multiple myeloma. Br J Haematol. 2015;169:57–70.

12. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 2018;132:587–97.

13. Lionetti M, Barbieri M, Toldo A, Agnelli L, Fabris S, Tonon G, et al. A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget. 2015;6. https://doi.org/10.18632/oncotarget.4674.

14. Dziembowski A, Lorentzen E, Conti E, Séraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core function and its biological impact. Nat Struct Mol Biol. 2007;14:15–22.

15. Robinson S, Oliver A, Chevasset T, Newbury S. The 3′ to 5′ exoribonuclease DIS3: from structure and mechanisms to biological functions in human disease. Biomolecules. 2015;5:1515–39.

16. Szczepańska T, Kalisiak K, Tomecki R, Labno A, Borowski LS, Kulinski TM, et al. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Res. 2015;25:1622–33.

Maroulio Pertos, Maxime Vallée, Xiaomuo Wei, Maria V. Revuelta, Perrine Galia, Delphine Demangel, Javier Oliver, Matthieu Foll, Siwei Chen, Emeline Perrial, Laurent Garderet, Jill Corre, Xavier Leleu, Eileen M. Boyle, Olivier Dechaux, Philippe Rodon, Brigitte Kolb, Borhane Slama, Philippe Mineur, Eric Voog, Catherine Le Bris, Jean Fontan, Michel Maigre, Marie Beaumont, Aurore Perrot, Pascale Cony-Makhoul, Christian Berthou, Florence Desquesnes, Brigitte Pegourie, Serge Leyvraz, Laurent Mosser, Nicole Frenkie, Karine Augeul-Meunier, Isabelle Leduc, Cécile Leyronnas, Laurent Voillot, Philippe Casassus, Claire Mathiot, Nathalie Cheron, Etienne Paubelle, Philippe Moreau, Yves–Jean Bignon, Bertrand Joly, Pascal Bourquard, Denis Caillot.
Hervé Naman55 · Sophie Rigaudieau56 · Gérald Marit57 · Margaret Macro58 · Isabelle Lambrecht59 · Manuel Cliquennois60 · Laure Vincent61 · Philippe Helias62 · Hervé Avet-Loiseau63 · Victor Moreno64,65 · Rui Manuel Reis66,67 · Judit Zarkowy6 · Marc Kruzewski68 · Annette Juul Vangsted69 · Artur Jurczyszyn70 · Jan Maciej Zaucha71 · Juan Sainz72 · Małgorzata Krawczuk-Kulis73 · Marzena Wątek74 · Matteo Pelosini75 · Elżbieta Iskierka-Jaźdewiecka76 · Norbert Grążyński77 · Joaquin Martinez-Lopez78 · Andrés Jerez79 · Daniele Campa80 · Gabriele Buda81 · Fabienne Lesueur82 · Marek Dudziński83 · Ramón García-Sanz84 · Arnon Nagler85 · Marcin Rymko86 · Krzysztof Jamrozik87 · Aleksandra Butrym88 · Federico Canzian89 · Ofure Obazee89 · Björn Nilsson2 · Robert J. Klein90 · Steven M. Lipkin4 · James D. McKay1 · Charles Dumontet5,6,8,9

1 Genetic Cancer Susceptibility, International Agency for Research on Cancer, Lyon, France
2 Department of Laboratory Medicine, Division of Hematology and Transfusion medicine, Lund University, Lund, Sweden
3 Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
4 Medicine, Weill Cornell Medical College, New York, NY, USA
5 ProfilExpert, Lyon, France
6 Hospices Civils de Lyon, Lyon, France
7 Medical Oncology Service, Hospitals Universitarios Region y Virgen de la Victoria; Institute of Biomedical Research in Malaga (IBIMA), CIMES, University of Málaga, Málaga, Spain
8 INSERM 1052, CNRS 5286, CRCL, Lyon, France
9 University of Lyon, Lyon, France
10 INSERM, UMR_S 938, Paris, France
11 AP-HP, Hôpital Saint Antoine, Departement d’hematologie et de therapie cellulaire, Paris, France
12 Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, Paris, France
13 IUC-Oncopole and CRCT INSERM U1037, Toulouse, France
14 Inserm CIC 1402 & Service d’Hématologie et Thérapie Cellulaire, CHU La Miletrie, Poitiers, France
15 Hôpital Claude Huriez, CHRU, Lille, France
16 Service de Medecine Interne, CHU Rennes, Rennes, France
17 Faculte de Medecine, Universite de Rennes 1, Rennes, France
18 INSERM UMR U1236, Rennes, France
19 Unite d’Hematologie et d’Oncologie, Centre Hospitalier, Périgueux, France
20 Hematologie Clinique, CHU de Reims, Reims, France
21 Service d’Onco hematologie, CH Avignon, Avignon, France
22 Hematologie et pathologies de la coagulation, Grand Hôpital de Charleroi, Charleroi, Belgium
23 Centre Jean Bernard, Institut Inter-regional de Cancérologie, Le Mans, France
24 Service post urgences, CHU de FORT DE FRANCE, pôle RASSUR, Martinique, France
25 Hopital Jean Minjoz, CHRU Besançon, Besançon, France
26 Service d’Hemato-Oncologie, CHU Chartres, Chartres, France
27 Hematologie clinique et therapie cellulaire, CHU Amiens, Amiens, France
28 Service de rhumatologie, CHU Poitiers, Poitiers, France
29 Cancer Genetics Department, Paoli-Calmettes Institute, Aix-Marseille University, Marseille, France
30 Service d’Immuno-hematologie, Hôpital Saint Louis, Paris, France
31 Service d’Hematologie, CHU de Nancy, Universite de Lorraine, Vandoeuvre les Nancy, Nancy, France
32 Internal Medicine Department, Archet Hospital, CHU Nice, Nice, France
33 Service d’Hematologie, CHR Mercy, Metz, France
34 Unité d’Hematologie, CH Valence, Valence, France
35 Service d’Hematologie, Centre Hospitalier Ancely Genevois, Epagny Metz-Tessy, France
36 Service d’Hematologie, CHU de Brest, Brest, France
37 Haematology Department, CHU UCL Namur, Yvoir, Belgium
38 Hematologie clinique, CHU de Grenoble, La Tronche, France
39 Departement d’oncologie, CHUV, Lausanne, Switzerland
40 Unite d’oncologie medicale, Pôle medical 2, Hôpital Jacques Puel, Rodez, France
41 CH Poissy, Saint-Germain-en-Laye, France
42 Service Hematologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
43 Hematologie, CHG Abbeville, Abbeville, France
44 Institut Daniel Hollard, Groupe Hospitalier Mutualiste de Grenoble, Grenoble, France
45 Service hemato/oncologie, CH William Morey, Chalon sur Saône, France
46 Hematologie clinique, Hôpital Avicenne, Bobigny, France
47 Intergroupe Francophone du Myelome (IFM), Bobigny, France
48 Service Hematologie, CH Bligny, Briis-sous-Forges, France
49 Service Hematologie, CH Lyon Sud, Pierre Benite, France
50 Service Hematologie, CHU Nantes, Nantes, France
51 Laboratoire de Biologie Medicale OncoGènAuvergne;
To the Editor:

Germline predispositions are involved in the development of 5% of childhood leukemias [1], although their contribution is believed to be higher. However, to reveal the full spectrum of pathogenic germline variants, individualized genomic patient analyses, in the context of the respective familial background (trio-calling), are needed.

Here, we present the finding of a germline predisposition to B-cell precursor acute lymphoblastic leukemia (BCP-ALL) that is exerted through two synergizing, separately transmitted germline variants (JAK2 p.G571S and STAT3 p.K370R). We demonstrate a modest proliferation potential of JAK2 G571S, which is additionally increased by STAT3 p.K370R through rewiring of intracellular signaling pathways and show that JAK2 G571S can rescue a STAT3 p.K370R-induced cell cycle arrest. Protein modeling of both variants structurally underlines the observed phenotypes. Furthermore, JAK2 p. G571S could be identified in a second patient with Down syndrome ALL, emphasizing its significance as a recurrent synergizing germline susceptibility variant.

Taken together, we describe JAK2 p.G571S as a novel germline predisposition in BCP-ALL. Moreover, our data emphasize the synergistic interplay between separately
transmitted germline risk variants that can render B-cell precursors susceptible to additional somatic hits, allowing BCP-ALL development. Expanding this knowledge is a crucial step towards targeted treatments as well as precision-prevention programs.

Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer (4/100,000) under the age of 15, with the majority of cases affecting B-cell precursors (BCP-ALL) [2]. Although survival rates exceed 90%, it remains a significant cause of death in young children. Thus, to develop novel individualized therapeutic approaches, or even better, to envision precision-prevention programs—in particularly for subtypes of high-risk ALL, elucidation of the tumor genetics are fundamental [3]. In this regard, inherited germline variants are of special interest. Recently, novel germline predisposition syndromes have been described [4], and current studies increasingly highlight the importance of trio-calling analyses in childhood cancer [5, 6].

In this study, we performed trio-calling and describe a novel scenario for lymphoid malignancies, in which two susceptibility loci are inherited—a paternal one and a maternal one—and both act synergistically in the same signaling pathway, thereby forming a susceptible B-cell precursor compartment that is prone to secondary mutations driving BCP-ALL.

Utilizing whole-exome sequencing we identified two concomitant germline single-nucleotide variants (SNVs) affecting the JAK2/STAT3 pathway in a boy with BCP-ALL (Fig. S1A). The JAK2 variant, rs139504737 (c.1711G > A), leads to an aminoacid substitution from glycine to serine (p.G571S) and is rarely found within the general population (minor allele frequency (MAF) < 0.01). Interestingly, the same JAK2 p.G571S germline variant was identified in a Down syndrome (DS-ALL) patient from an independent family (Fig. 1a). The second variant found in the BCP-ALL patient, constitutes an extremely rare, and so far for leukemia undescribed, missense mutation in the STAT3 gene (c.1109 A > G), causing an exchange of lysine to arginine (p.K370R). While JAK2 p.G571S was transmitted from the father, STAT3 p.K370R was inherited from the mother’s side (Fig. 1a). Both variants are located in functionally relevant domains, with STAT3 p.K370R being

Fig. 1 a Pedigree of two independent families harboring JAK2 p. G571S. The ALL patients are marked with a red triangle, while the transmission of the identified target mutations is highlighted with red symbols (JAK2 = circle; STAT3 = +; trisomy 21 = #). b Domain organization of JAK2 and STAT3 proteins. Identified mutations (red) and the known activating JAK2 mutation p.V617F (black), which was used as a control, are highlighted. c Overview of the STAT3-WT (gray) with bound DNA (orange). The blue rectangle indicates the region with the residues of interest (sticks). A close-up depicts the mutated region in STAT3-WT (gray) and the p.K370R variant (dark green). While in the STAT3-WT, p.K370 only interacts with p.E455, p.R370 of the p.K370R variant interacts with both p.E442 and p.E455 as indicated by the yellow lines. The mutation of lysine to arginine also distorts the local backbone conformation. d Homology model of the p.G571S variant in the JAK2 protein (green). P.S571 (sticks) is located in a loop between two β-strands next to p.Y570 (sticks), which is one of the most important phosphorylation sites in JAK2.
localized in the DNA-binding domain and JAK2 p.G571S in the pseudo-kinase domain, respectively (Fig. 1b).

Furthermore, 11 somatic mutations were identified in the BCP-ALL (Fig. S1B), with a missense mutation in the CEP89 gene (p.K138T) being the only tumor specific somatic variant. In addition, CytoScan™-HD analysis revealed loss of CDKN2A and IKZF1 loci, which groups the patient into the recently described IKZF1Plus subgroup that was shown to have a particularly poor outcome [7] (Fig. S1C). Moreover, a somatic JAK2 rearrangement was detected by cytogenetic analysis in the second JAK2 allele. While molecular genetic analysis could rule out a classical JAK2 fusion with ETV6, BCR, or PAX5, the actual fusion partner was not identified. The patient was enrolled into the AIEOP-BFM 2009 therapy protocol, responded poorly to therapy (prednisone-poor response at day 8, nonremission at day 33) and underwent hematopoietic stem cell transplantation from a matched unrelated donor after achieving first remission (MRD level < 10^-4).

To understand potential phenotypic influences of both mutant proteins on a structural level, we generated homology models of the mutated pseudokinase domain of JAK2 and the mutated STAT3, and compared the models to their respective wild types.

STAT3 p.K370R is located in a loop adjacent to the DNA binding site (Fig. 1c). Moreover, STAT3 p.K370 is an important site for acetylation, which enables STAT3’s interaction with RELA, in turn promoting further downstream signaling [8]. In the deacetylated state, STAT3 p.K370 interacts with p.E455 in a β-sheet. Substitution of lysine to arginine at position p.370 has two implications: first, the arginine can interact with both p.E455 and p.E442 simultaneously, that way strengthening the interaction in the β-sheet. Second, in contrast to lysine, arginine cannot be acetylated. This combination leads to a constitutively non-acetylated form of STAT3 at position p.370, which was shown to have functional consequences in its interaction capacity with various signaling partners in HEK293T cells [8]. Furthermore, the STAT3 p.K370R protein did not show an activating phenotype in STAT3 reporter luciferase assays in HEK293T cells (Fig. S2A). This is in line with the structural modeling, suggesting impaired acetylation rather than phosphorylation (Fig. S2B).

JAK2 p.G571 is located in a 12-residue loop connecting 2 β-strands (Fig. 1d), adjacent to p.Y570, one of the most important phosphorylation sites in JAK2. This suggests an influence on the phosphorylation of p.Y570 either through steric hindrance, interactions of the serine sidechain or changes in the backbone conformation near p.Y570. Its unique position affecting amino acid 571, which lies adjacent to the p.Y570 residue that downregulates kinase activity via autophosphorylation hints at a potential functional mechanism of p.G571S by inhibiting p.Y570-directed negative feedback.

To assess the cooperative potential of both variants, BaF3 depletion assays were carried out. In normal BaF3 cells, neither STAT3 p.K370R nor JAK2 p.G571S protein expression alone were sufficient to induce IL-3 independent growth, although immunoblot analyses confirmed increased p-STAT3 levels in cells expressing both JAK2 p.G571S and STAT3 p.K370R (Fig. 2a). Since dimerization by a cytokine receptor facilitates the constitutive activation of JAK2 mutants, we further transfected BaF3 cells which expressed human CRLF2 and the IL7R alpha chain (leading to the formation of the heterodimeric receptor for thymic stromal lymphopoietin (TSLP) [9]) with the identified target variants. In BaF3/CRLF2-IL-7RWT cells, JAK2 p.G571S protein expression conferred IL-3 independent growth. Moreover, the combination of both mutant proteins (JAK2 p.G571S + STAT3 p.K370R) showed a mild but significant growth advantage starting 2 days after IL-3 withdrawal (Fig. 2b). Immunoblot analysis revealed high-p-AKT levels in cells expressing JAK2 p.G571S, which was changed to p-STAT3 through additional expression of STAT3 p.K370R. Since hyperactivation of p-AKT negatively affects precursor B-cell survival [10], the here observed signal rewiring indicates a synergistic effect of both variants by balancing out signaling strengths.

Besides the cooperating capacity of both identified germline variants, we further observed that the STAT3 p.K370R mutant protein alone changed the phenotype of the cells in culture, with an accumulation of enlarged BaF3 cells. Surprisingly, this phenotype was reversed in the double mutant cells expressing both STAT3 p.K370R and JAK2 p.G571S (Fig. 2c). Cell cycle analysis was in line with this observation, showing a significant increase in >4n cells (p = 0.0009), while those in the G1 phase were significantly decreased (p = 0.0031) in STAT3 p.K370R expressing BaF3 cells compared to STAT3-WT cells (Fig. 2c). Again, this phenotype was reduced in BaF3 cells transfected with both mutants simultaneously (G1 phase p = 0.0026; >4n, p = 0.0032). In line with the reversed cell cycle phenotype in the double mutant cells, immunoblot analysis of the different conditions confirmed increased p-CDC-2, p-CyclinB1/ Cyclin-B1, and Cyclin-A2 in BaF3 cells expressing both JAK2 p.G571S and STAT3 p.K370R compared to STAT3 p.K370R alone (Fig. 2c). Taken together, STAT3 p.K370R conferred a cell cycle arrest in BaF3 cells which is consistent with a loss-of-function phenotype in the STAT3 reporter luciferase assay and the structural modeling.

These data suggest that the two mutations can act in concert to exert a germline susceptibility toward BCP-ALL development by the accumulation of a susceptible precursor compartment. This compartment might be prone to acquire additional secondary lesions in IKZF1 and CDKN2A or
alterations of the JAK2 WT allele, which act as somatic oncogenic drivers leading to malignant growth.

Activation of the JAK-STAT pathway is known to be a key event in a variety of hematological malignancies. JAK2 p.V617F leads to constitutively active STAT5 signaling in about 80% of patients suffering from myeloproliferative neoplasms [11], and a high frequency of somatic rearrangements or SNVs activating JAK2 are found in Ph-like ALL [12] and DS-ALL [13, 14]. However, germline JAK2 mutations particularly in BCP-ALL are rare. Here, we identified a second patient harboring germline JAK2 p.G571S in a DS-ALL cohort of 88 patients (Fig. 1a and Fig. S3) [14]. A major proportion of DS-ALL shows high expression of CRLF2 and somatic JAK/STAT pathway activation [15]. Although the analyzed DS-ALL patient did not express a P2RY8-CRLF2 transcript or show a CRLF2 p.232 mutation, he may harbor an activating translocation of CRLF2 into the IGH chain locus. However, due to the lack of patient material we could not test this hypothesis. Therefore, though CRLF2 activation in association with JAK2 p.G571S and trisomy 21 seems highly likely, we cannot confirm an active CRLF2 status in this patient. Nevertheless, the germline JAK2 p.G571S mutation in combination with trisomy 21 can be a complementary scenario of two germline variants acting in synergy to render cells susceptible to additional somatic alterations that can drive ALL development. This insight further strengthens the unique and important role of weak oncogenic germline risk variants (e.g., JAK2 p.G571S) and how they can synergize with additional low-penetrance mutations/alterations to predispose to ALL development.
Thus, we suggest a scenario where STAT3 p.K370R or trisomy 21 in synergy with JAK2 p.G571S prime precursor B-cells susceptible for oncogenic transformation through the acquisition of secondary somatic hits. This can be a rational explanation why parents of affected children are healthy throughout life, whereas children who carry both germline variants develop ALL. Increasing knowledge of inherited di-/polygenic variants will be of great importance for the development of novel precision-prevention approaches in the future.

We are indebted to all members of our groups for useful discussions and for their critical reading of the manuscript. Special thanks go to Silke Furlan, Friederike Opitz and Bianca Killing. F.A. is supported by the Deutsche Forschungsgemeinschaft (DFG, AU 525/1-1). J.H. has been supported by the German Children’s Cancer Foundation (Translational Oncology Program 70112951), the German Carreras Foundation (DJCLS 02R2016), Kinderkrebsstiftung (2016/2017) and ERA PerMed GEPARD. Support by Israel Science Foundation, ERA-NET and Science Ministry (SI). A. B. is supported by the German Consortium of Translational Cancer Research, DKTK. We are grateful to the Jülich Supercomputing Centre at the Forschungszentrum Jülich for granting computing time on the supercomputer JURECA (NIC project ID HKF7) and to the “Zentrum für Informations- und Medientechnologie” (ZIM) at the Heinrich Heine University Düsseldorf for providing computational support to H. G. The study was performed in the framework of COST action CA16223 “LEGEND”.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373:2336–46.
2. Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest. 2012;122:3407–15.
3. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52.
4. Churchman ML, Qian M, Te Kronnie G, Zhang R, Yang W, Zhang H, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell. 2018.
5. Brozou T, Taebchner J, Velleuer E, Dugas M, Wieczorek D, Borkhardt A, et al. Genetic predisposition in children with cancer—affected families’ acceptance of Trio-WES. Eur J Pediatr. 2018;177:53–60.
6. Kuhlen M, Borkhardt A. Trio sequencing in pediatric cancer and clinical implications. EMBO Mol Med. 2018.
7. Stanulla M, Dagdan E, Zaliova M, Moricke A, Palmi C, Cazzana G, et al. IKZF1(plus) defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric b-cell precursor acute lymphoblastic leukemia. J Clin Oncol. 2018;36:1240–9.
8. Nan J, Hu H, Sun Y, Zhu L, Wang Y, Zhong Z, et al. TNFR2 stimulation promotes mitochondrial fusion via Stat3 and NF-kB-dependent activation of OPA1 expression. Circ Res. 2017;121:392–409.
9. Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G, et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med. 2011;208:901–8.
10. Shojaei S, Chan LN, Buchner M, Cazzaniga V, Cosgun KN, Geng H, et al. PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nat Med. 2016;22:379–87.
11. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.
12. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.
13. Schwartzman O, Savino AM, Gombert M, Palmi C, Cario G, Schrappe M, et al. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci USA. 2017;114:E4030–9.
14. Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, Elimelech A, et al. Mutations of JAK2 in acute lymphoblastic leukemias associated with Down’s syndrome. Lancet. 2008;372:1484–92.
15. Izrae1 S. The acute lymphoblastic leukemia of Down syndrome—genetics and pathogenesis. Eur J Med Genet. 2016;59:158–61.
Animal models

STAT5BN642H drives transformation of NKT cells: a novel mouse model for CD56+ T-LGL leukemia

Klara Klein1 · Agnieszka Witalisz-Siepracka1 · Barbara Maurer1 · Daniela Prinz1 · Gerwin Heller1,2 · Nicoletta Leidenfrost1 · Michaela Prchal-Murphy1 · Tobias Suske3 · Richard Moriggl3,4,5 · Veronika Sexl1

Received: 14 November 2018 / Revised: 26 March 2019 / Accepted: 27 March 2019 / Published online: 9 April 2019
© The Author(s) 2019. This article is published with open access

To the Editor:

The signal transducer and activator of transcription 5B (STAT5B), downstream of IL-15 signaling and Janus kinase (JAK)1, and 3-mediated activation, is a master regulator of development, survival, and function of innate and innate-like lymphocytes (including natural killer (NK) and NKT cells) [1–3]. Gain-of-function mutations in the SH2 domain of human STAT5B, especially STAT5BN642H, are associated with aggressive forms of CD56+ T cell (NKT) and NK cell lymphomas/leukemias [4–6]. We described a mouse model expressing human (h)STAT5BN642H under the Vav-1 promoter, which develops severe CD8+ T cell neoplasia [7]. Here, we explore the ability of hSTAT5BN642H to serve as an oncogenic driver in innate lymphocyte neoplasms.

We found an increase in absolute NK cell numbers in the spleen of T cell-diseased hSTAT5BN642H transgenic compared to wild-type (WT) mice (Fig. 1a), despite the relative decrease of the proportion of NK cells among splenic lymphocytes (Fig. S1A), while nonmutant hSTAT5B control mice showed intermediate NK cell numbers (Fig. 1a, Fig. S1A). No significant differences in NK cell numbers were observed in the bone marrow (BM) between genotypes (Fig. S1B). In addition, both hSTAT5B and hSTAT5BN642H mice showed a similar increase in the proportion of mature NK cells (CD27−CD11b+ and KLRG1+) in the spleen (Fig. S1C, D). These findings suggest that the enforced expression of nonmutant hSTAT5B is sufficient to boost NK cell maturation, which is not further enhanced by introducing the activating hSTAT5B mutation. We hypothesized that any phenotypic alterations affecting innate lymphocytes might be masked by the hSTAT5BN642H-driven aggressive CD8+ T cell disease established in hSTAT5BN642H mice at the age of 6–8 weeks [7]. To explore the potential of hSTAT5BN642H to promote NK cell expansion in vivo, we transplanted CD3-depleted BM from hSTAT5B N642H or hSTAT5B mice in immune-deficient Rag2−/−γc−/− recipient mice. Using this approach, we observed an enhanced expansion of NK cells in the blood of hSTAT5BN642H compared to hSTAT5B-transplanted recipients over a time course of 4 weeks (Fig. 1b). Long-term analysis of NK cells in hSTAT5BN642H-transplanted mice was not possible due to expansion of residual CD8+ T cells (Fig. S1E, F), which forced us to terminate the experiment. However, after 4 weeks, increased numbers of NK cells were also detected in the spleen upon transplantation of CD3-depleted hSTAT5BN642H compared to hSTAT5B BM (Fig. S1G).

To investigate long-term effects of hSTAT5BN642H on innate lymphocytes, we sorted Lineage (Lin)− (CD3/B220/Ter119/Grl1/CD11b) Sca1−c-Kit−CD127−CD8− cells. This cellular fraction is devoid of hematopoietic stem cells, common lymphoid progenitors, and CD8+ T cells and was obtained from hSTAT5BN642H or hSTAT5B BM for further transplantation into Rag2−/−γc−/− recipient mice. We monitored NK and T cell numbers in the blood over a period of 5 weeks. Again, a modest increase but subsequent drop in NK cell numbers in mice transplanted with hSTAT5BN642H compared to hSTAT5B BM cells was observed (Fig. S1H), whereas we failed to detect CD8+ T cells in the blood of the
recipient animals (Fig. S1I). This indicated that our sorting strategy successfully eliminated CD8^+ T cell disease, but did not allow us to uncover persistent hSTAT5B_N642H-mediated NK cell expansion. Of note, after 4.5–10 months all three hSTAT5B_N642H-recipient mice (#1–3) developed a rapidly progressing disease, characterized by expansion of CD3^-NK1.1^ NKT cells in blood, BM, spleen, and liver (Fig. 1c, Table S1). Disease development was restricted to transplantation of mutant hSTAT5B cells and was not detected upon transplantation of hSTAT5B BM, despite following these animals for 10 months.

To investigate, whether hSTAT5B_N642H NKT cells are indeed transformed and fulfill the criteria of being leukemic, we started to perform serial whole BM transplants from the earlier diseased recipient #1 (survival: 133 d) with the presumably more aggressive disease. To do so,
we transplanted BM containing 1×10^6 NKT cells into immune-deficient Rag2$^{-/-}$γc$^{-/-}$ or NSG-recipient mice. This serial transplantation approach was continued for a total of six rounds. The first two rounds were performed to maintain and amplify the NKT cell disease. We confirmed the presence of the hSTAT5BN642H transgene in a diseased mouse (Fig. S1J). Upon the 3rd to the 6th round of serial transplant, we characterized the manifested disease as an aggressive leukemia accompanied by hepatosplenomegaly (Fig. 2a), increased white blood cell (WBC) counts (Fig. S2A) and a high frequency of NKT cells in blood, BM, spleen, and liver (Fig. S2C, D) with a mean survival of 17.6 days (Fig. S2B). Infiltration of leukemic cells into various organs was confirmed by histological analysis (Fig. S2E). In the 6th round, a titration of transplanted NKT cell numbers was performed. Disease severity at the end point was comparable, while a delay of 3 days occurred between each titration step (Fig. 2a, Fig. S2A–D). Despite the increased disease latency in recipients #2 (survival: 294 d) and #3 (survival: 301 d), the disease could also be serially transplanted giving rise to a similarly aggressive disease (Fig. S3A–H) as for recipient #1.

A more detailed characterization of surface markers on transformed NKT cells from the serially transplanted disease of recipient #1 verified expression of the T cell receptor (TCR) β chain, while CD4, CD8, and TCRγδ expression was not detected. Leukemic cells also stained positive for CD122 and the NK cell markers NKp46 and DX5. No interaction with the CD1d tetramer was observed (Fig. 2b). This surface marker profile corresponds to previously described CD1d-independent NKT cells [8, 9], which were recently identified as a source for CD3$^+$NK1.1$^+$ T-cell large granular lymphocyte (T-LGL) leukemia in IL-15 transgenic mice [10]. In analogy to our NKT cell leukemia model, human CD56$^+$ T-LGL leukemia cells were also shown to express NKp46 [10]. Additionally, CD3$^+$CD56$^+$ blasts in human T-LGL leukemia express CD8 [4]. Interestingly, we found CD8 expressed on a subset of hSTAT5BN642H NKT leukemia cells in the two later disease recipients #2 and #3, but not in recipient #1 (Table S1).

Furthermore, the serially transplanted leukemic NKT cells from recipient #1 were largely negative for activating and inhibitory NK cell receptors, except for Ly49G2 and KLRG1 (Fig. S4A), but stained positive for CD43, CD44, and CD69, while lacking CD62L (Fig. S4A). In summary, this surface receptor expression profile is consistent with an activated phenotype comparable to the leukemic blasts found in IL-15 transgenic mice [11]. The fact that IL-15 transgenic mice develop NK1.1$^+$ T-LGL (NKT) or NK cell leukemia [10, 11] supports the importance of the IL-15-STAT5 axis for the transformation of subsets of innate lymphocytes. The occurrence of leukemia with an NKT cell profile in our model suggests that additional IL-15-derived signals, independent of STAT5, may be required for NK cell transformation. In contrast to IL-15 transgenic mice, in which transformation is restricted to innate-like lymphocytes, NKp46$^+$ NKT cell disease required the absence of classical CD8$^+$ T cells bearing mutant hSTAT5B in vivo. As NKp46$^+$ NKT cells represent a minor population [10], the higher number of CD8$^+$ T cells may simply outcompete potentially transformed NKT cells. Alternatively, it is possible that CD8$^+$ T cells actively suppress the development of NKT cell tumors providing a hostile tumor microenvironment.

hSTAT5BN642H-driven CD8$^+$ T cell disease is susceptible to JAK1/JAK2 inhibition by Ruxolitinib treatment [7]. As JAK inhibitors have also been suggested as therapeutic strategy for NK/T-cell lymphoma and aggressive NK cell leukemia [6, 12], we transplanted NSG mice with hSTAT5BN642H NKT leukemia cells and treated them with ruxolitinib for 3 weeks. Treatment attenuated disease severity and decreased hepatosplenomegaly and WBC counts compared to the control group (Fig. 2c and Fig. S4B).

Although initial attempts to grow transformed NKT cells in vitro failed, after 6–8 weeks we detected outgrowth of hSTAT5BN642H NKT cell lines from cultured hepatic leukocytes of three out of nine NSG mice from different serial transplant rounds from recipient #1 (Table S2, Fig. S5A). Two cell lines, derived from the same mouse cultured without or with IL-2 (4165.1 and 4165.2, respectively), were treated with Ruxolitinib and remained sensitive towards it (IC50 of 83 and 72.5 nM, respectively) (Fig. S5B). Furthermore, these cell lines could give rise to leukemia when injected into immune-competent Ly5.1/CD45.1$^+$ mice (Fig. S5C–E).

In this study, we identify STAT5BN642H as an oncogenic driver in innate-like lymphocytes. Our novel NKT leukemia...
hSTAT5BN642H induces leukemia of CD1\textdagger-independent NKP46+ NKT cells, which is serially transplantable and sensitive to Ruxolitinib treatment. a BM from NKT cell-diseased recipient #1, transplanted with sorted hSTAT5BN642H BM cells, was serially transplanted into Rag2−/− γc−/− or NSG-recipient mice for six rounds. Whole BM, containing 1×10^6 transformed NKT cells, was transplanted. Of note, in the 6th serial transplant (ST) round a titration of the number of transplanted NKT cells was performed, with two mice each receiving BM containing 1×10^6 (circle), 0.3×10^6 (rectangle), or 0.1×10^6 (triangle) NKT cells. Representative images of liver and spleen from an hSTAT5BN642H NKT cell-transplanted (6th ST) compared to a non-transplanted NSG mouse are shown; line denotes 1 cm (left panel). Relative liver and spleen to body weights are shown for the 3rd to 6th ST (n = 3 (3rd ST), n = 4 (4th ST), n = 13 (5th ST), n = 6 (6th ST)) (right panel). Symbols represent results from individual mice, horizontal lines indicate mean ± SEM. ***$p < 0.001$, unpaired t-test with Welch’s correction.

Surface marker expression on transformed hSTAT5BN642H NKT cells was analyzed by flow cytometry. Representative histograms from BM NKT cells of one diseased NSG mouse (4th ST) are shown (unfilled histogram: negative staining control; filled histogram: surface staining). Numbers depict the mean of MFI (median fluorescence intensity, normalized to negative staining control) ± SEM from three diseased mice (4th ST). a, b Analysis was performed when the diseased mice reached the humane endpoint. c NSG mice were transplanted with BM containing 1×10^6 hSTAT5BN642H NKT cells (from 5th ST) and treated with Ruxolitinib (RUXO) (85 mg/kg body weight, twice daily) or vehicle control (Nutella®) (n = 4 per treatment), starting 1 day after NKT cell transplant for 21 days (one experiment). Representative images of liver and spleen to body weights from untreated control and RUXO-treated mice are depicted; line denotes 1 cm (left panel). Relative liver and spleen weights were analyzed in the mice after 3 weeks of treatment (right panel). Symbols represent results from individual mice, horizontal lines indicate mean ± SEM. ***$p < 0.001$, **$p < 0.01$, *$p < 0.05$, unpaired t-test
model, which is serially transplantable and inducible by frozen material or from cell lines, recapitulates human CD56+ LGL leukemia and provides new means for translational research. It will allow a deeper understanding of mechanisms driving NKT leukemia progression and maintenance as well as facilitate finding new therapeutic options. This is of vital importance as the STAT5B^{N642H} mutation in CD56+ LGL leukemia patients is associated with a particularly aggressive chemo-refractory phenotype [4].

Acknowledgments We thank Sabine Fajmann and Philipp Jodl for great technical support and Manuela Kindl for maintaining and monitoring the mice.

Funding The work was supported by the Austrian Science Fund FWF grant SFB-F06105 to RM and SFB-F06107 to VS and FWF grant W1212 to VS.

Author contributions VS initiated and supervised the study. KK, AWS, and BM designed the experiments; KK, AWS, BM, DP, and NL performed the experiments; MPM and TS provided technical support; KK and GH analyzed the data; RM provided the mouse model. KK and VS wrote the manuscript. AWS, BM, DP, TS, and RM revised the manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate if changes were made.

References

1. Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T, et al. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood. 2011;117:1565–74.
2. Gotthardt D, Sexl V. STATs in NK-cells: the good, the bad, and the ugly. Front Immunol. 2017;7:1–8.
3. Villarino AV, Sciumé G, Davis FP, Iwata S, Zitti B, Robinson GW, et al. Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. J Exp Med. 2017;214:2999–3014.
4. Rajala HLM, Eldfors S, Kuusamn H, Van Adrichem AJ, Olson T, Lagstr S, et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood. 2013;121:4541–51.
5. Kucuk C, Jiang B, Hu X, Zhang W, Chan JKC, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from y8-T or NK cells. Nat Commun. 2015;6:6025.
6. Dufva O, Kankainen M, Kelkka T, Sekiguchi N, Awad SA, Eldfors S, et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun. 2018;9:1–12.
7. Pham HTT, Maurer B, Prchal-Murphy M, Grausenburger R, Grundsober E, Javaheri T, et al. STAT5B N642H is a driver mutation for T cell neoplasia. J Clin Invest. 2018;128:387–401.
8. Maeda M, Shadeo A, Macfadyen AM, Takefi F. CD1d-independent NKT cells in β2-microglobulin-deficient mice have hybrid phenotype and function of NK and T cells. J Immunol. 2004;172:6115–22.
9. Farr AR, Wu W, Choi B, Cavalcoli JD, Laouar Y. CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells. Proc Natl Acad Sci USA. 2014;111:12841–6.
10. Yu J, Trindandapani S, Caligiuri MA, Yu J, Mitsui T, Wei M, et al. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J Clin Invest. 2011;121:1456–70.
11. Yokohama A, Mishra A, Mitsui T, Becknell B, Johns J, Curphey D, et al. A novel mouse model for the aggressive variant of NK cell and T cell large granular lymphocyte leukemia. Leuk Res. 2010;34:1–14.
12. Hee YT, Yan J, Nizetic D, Chng W. LEE011 and ruxolitinib: a synergistic drug combination for natural killer/T-cell lymphoma (NKTCL). Oncotarget. 2018;9:31832–41.
Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions

Citation:
Meyer, C., Lopes, B. A., Caye-Eude, A., Cave, H., Arfeuille, C., Cuccuini, W., Sutton, R., Venn, N. C., Oh, S. H., Tsaur, G., Escherich, G., Feuchtinger, T., Kosasih, H. J., Khaw, S. L., Ekert, P. G., Pombo-de-Oliveira, M. S., Bidet, A., Djahanschiri, B., Ebersberger, I., ..., Marschalek, R. (2019). Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. LEUKEMIA, 33 (9), pp.2306-2310. https://doi.org/10.1038/s41375-019-0451-7.

Persistent Link:
http://hdl.handle.net/11343/250684

File Description:
published version

License:
CC BY