On a Generalized βH – Trirecurrent Finsler Space

Fahmi Yaseen Abdou Qasem* and Fatma Abdullah Mohammed Ahmed**

Department of Mathematics, Faculty of Education – Aden, University of Aden, Khormaksar, Aden, Yemen
*fyaseen358@gmail.com, **fatma.abdulla2018102@gmail.com

DOI: https://doi.org/10.47372/uajnas.2019.n2.a16

Abstract

In this paper, we introduced a Finsler space for which the h – curvature tensor H_{jkh} (curvature tensor of Berwald) satisfies the condition

$$
\beta_i \beta_m \beta_n H_{jkh} = c_{\ell mn} H_{jkh} + d_{\ell mn} (\delta^i_k g_{jhn} - \delta^i_h g_{jnk}) - 2y^\tau b_{mn} \beta_r (\delta^i_k C_{jhr} - \delta^i_h C_{jkr})
$$

where c_{jkm} is (h) hv – torsion tensor, $\beta_i \beta_m \beta_n$ is Berwald's covariant differential operator of the third order with respect to x^n, x^m and x^ℓ, successively, $\beta_i \beta_r$ is Berwald's covariant differential operator of the second order with respect to x^ℓ and x^r, successively, β_r is Berwald's covariant differential operator of the first order with respect to x^r, $c_{\ell mn}$ and $d_{\ell mn}$ are non – zero covariant tensors field of third order, b_{mn} and w_{mn} are non – zero covariant tensors field of second order and μ_r is non – zero covariant vector field. We called this space a generalized βH – trirecurrent space. The aim of this paper is to develop some properties of a generalized βH – trirecurrent space by obtaining Berwald's covariant derivative of the third order for the (h) v – torsion tensor H_{jkh}^i and the deviation tensor H^i_k, the curvature vector H_k and the scalar curvature H are investigated.

Key words: Finsler space, generalized βH – trirecurrent space, Ricci tensor.

1. Introduction

Pandey P.N., Saxena S.S. and Goswami A. [3] introduced and studied a generalized H– recurrent Finsler space. F.Y.A.Qasem [4] introduced and discussed generalized H– birecurrent curvature tensor and W.H.A. Hadi [1] studied the generalized – birecurrent for some tensors and studied some special spaces in this space. Let F_n be an n – dimensional Finsler spaces equipped with the metric function F satisfies condition [5], the tensor C_{ijk} is positively homogeneous of degree -1 in y^i and symmetric in all its indices and is called (h) v – torsion tensor [2]. According to Euler's theorem on homogeneous functions, this tensor satisfies the following:

$$
(1.1) \quad C_{ijk} y^i = C_{jki} y^i = C_{kij} y^i = 0.
$$

Berwald's covariant derivative $B_{k}T_{j}^i$ of an arbitrary tensor field T_{j}^i with respect to x^k is given by [5]

$$
(1.2) \quad B_{k}T_{j}^i = \partial_k T_{j}^i - (\partial_r T_{j}^i) G_{kr}^i + T_{j}^\ell G_{rk}^i - T_{r}^i G_{jk}^r.
$$

Berwald's covariant derivative of y^i vanish as identically [5], i.e.

$$
(1.3) \quad B_{k}y^i = 0.
$$

In view of (1.2), the second covariant derivative of an arbitrary vector field X^i with respect to x^h in the sense of Berwald [5].

$$
(1.4) \quad B_{h}B_{k}X^i = \partial_k (B_{h}X^i) - (\partial_r B_{h}X^i) G_{kr}^i - (B_{r}X^i) G_{hk}^r + (B_{h}X^r) G_{rk}^i.
$$

Using (1.4) and taking skew – symmetric part, with respect to the indices k and h, we get the commutation formula for Berwald's covariant differentiation as follows [5]:
On a Generalized βH – Trirecurrent Finsler Space

Fahmi Y.A.Qasem, Fatma A. M. Ahmed

(1.5) $B_h B_k X^i - B_k B_h X^i = X^r H^i_{rkh} - \left(\partial_r X^i \right) H^i_{kh}$

where

(1.6) (a) $H^i_{jkh} := \partial_h G^i_{jk} + G^r_{jk} G^i_{rh} + G^r_{rjh} G_k^i - h/k$ and (b) $H^i_{kh} := \partial_h G^i_k + G^r_{rk} G^i_{rh} - h/jk$.

Remark 1.1. h/k means the subtraction from the former term by interchanging the indices h and k.

The tensors H^i_{jkh} and H^i_{kh}, as defined above, are called h – curvature tensor (h – curvature tensor of Berwald) and $h(\nu)$ – torsion tensor are positively homogeneous of degree zero and one in y^i, respectively.

Berwald constructed the tensors H^i_{jkh} and H^i_{kh} from the tensor H^i_k called by him as deviation tensor, according to

(1.7) $H^i_k := 2 \partial_h G^i + \partial_\nu G^i y^s + 2 G^r_{hs} G^s - G^i_s G^s_h$.

The $h(\nu)$ – torsion tensor and the deviation tensor satisfy the following [5]:

(1.8) (a) $H^i_{jkh} y^j = H^i_{kh}$, (b) $H^i_{jkh} y^j = H^i_k$ and (c) $\partial_j H^i_{k} = H^i_{jk}$.

The H – Ricci tensor, the curvature vector and the scalar curvature satisfy the following [5]:

(1.9) (a) $H^i_{jki} = H_{jki}$, (b) $H^i_{kki} = H_k$ and (c) $H^i_{i} = H$.

2. Generalized βH – Trirecurrent Space

A Finsler space for which Berwald curvature tensor H^i_{jkh} satisfies the generalized recurrence property, i.e. characterized by the equation [3]

(2.1) $\beta_n H^i_{jkh} = \lambda_n H^i_{jkh} + \mu_n (\delta^i_k g_{jh} - \delta^i_{h} g_{jk})$, $H^i_{jkh} = 0$,

where β_n is the differential operator with respect to x^n in the sense of Berwald, λ_n and μ_n are non – zero covariant vectors field and is called the recurrence vectors field, such space known as generalized H – recurrent Finsler space.

Taking the β – covariant derivative for (2.1) with respect to x^m, we get

$$\beta_m \beta_n H^i_{jkh} = (\beta_m \lambda_n) H^i_{jkh} + \lambda_n (\beta_m H^i_{jkh}) + (\beta_m \mu_n) (\delta^i_k g_{jh} - \delta^i_{h} g_{jk}) + \mu_n \beta_m (\delta^i_k g_{jh} - \delta^i_{h} g_{jk}).$$

In view of the equation (2.1), we can write the above equation as

$$\beta_m \beta_n H^i_{jkh} = (\beta_m \lambda_n + \lambda_n \beta_m) H^i_{jkh} + (\lambda_n \mu_m + \beta_m \mu_n) (\delta^i_k g_{jh} - \delta^i_{h} g_{jk}) - 2y^r \mu_n \beta_r (\delta^i_k C_{jhm} - \delta^i_{h} C_{jkm}),$$

which can be written as [4]

(2.2) $\beta_m \beta_n H^i_{jkh} = a_{mn} H^i_{jkh} + b_{mn} (\delta^i_k g_{jh} - \delta^i_{h} g_{jk}) - 2y^r \mu_n \beta_r (\delta^i_k C_{jhm} - \delta^i_{h} C_{jkm}),$

where $a_{mn} = \beta_m \lambda_n + \lambda_n \beta_m$ and $b_{mn} = \lambda_n \mu_m + \beta_m \mu_n$ are non – zero covariant tensors field of second order and $\beta_m \beta_n$ is the differential operator with respect to x^n and x^m, successively, such space known as generalized βH – birecurrent space.

Remark 2.1. The expression β – covariant derivative stands the covariant derivative in the sense of Berwald.

Taking the β – covariant derivative for (2.2) with respect to x^ℓ, we get

$$\beta_{\ell} \beta_m \beta_n H^i_{jkh} = (\beta_{\ell} a_{mn}) H^i_{jkh} + a_{mn} (\beta_{\ell} H^i_{jkh}) + (\beta_{\ell} b_{mn}) (\delta^i_k g_{jh} - \delta^i_{h} g_{jk})$$

$$+ b_{mn} \beta_{\ell} (\delta^i_k g_{jh} - \delta^i_{h} g_{jk}) - 2y^r (\beta_{\ell} \mu_n) \beta_r (\delta^i_k C_{jhm} - \delta^i_{h} C_{jkm}) - 2y^r \mu_n \beta_{\ell} \beta_r (\delta^i_k C_{jhm} - \delta^i_{h} C_{jkm}).$$

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.2– October 2019 464
In view of the equation (2.1), we can write the above equation as

\[\beta_i \beta_m b_n H^i_{kh} = (\beta_i a_{mn} + a_{mn} \lambda_i) H^i_{jk} + (\beta_i b_{mn} + a_{mn} \mu_i) (\delta^i_k g_{jh} - \delta^i_h g_{jk}) \\
- 2y^r b_{mn} \beta_r (\delta^i_k C_{jht} - \delta^i_h C_{jkt} - 2y^r (\beta_i \mu_n) \beta_r (\delta^i_k g_{jh} - \delta^i_h g_{jk}) \\
- 2y^r \mu_n \beta_i \beta_r (\delta^i_k C_{jhm} - \delta^i_h C_{jkm}) \]

which can be written as

\[(2.3) \quad \beta_i \beta_m b_n H^i_{kh} = c_{lmn} H^i_{jk} + d_{lmn} (\delta^i_k g_{jh} - \delta^i_h g_{jk}) - 2y^r b_{mn} \beta_r (\delta^i_k C_{jht} - \delta^i_h C_{jkt}) \\
- 2y^r w_{tn} \beta_r (\delta^i_k C_{jhm} - \delta^i_h C_{jkm}) - 2y^r \mu_n \beta_i \beta_r (\delta^i_k C_{jhm} - \delta^i_h C_{jkm}) , \]

where \(c_{lmn} = \beta_i a_{mn} + a_{mn} \lambda_i \) and \(d_{lmn} = \beta_i b_{mn} + a_{mn} \mu_i \) are non-zero covariant tensors field of third order \(w_{tn} = \beta_i \mu_n \) is non-zero covariant tensor field of second order and \(\beta_i \beta_m b_n \) is the differential operator with respect to \(x^n, x^m \) and \(x^\ell \), successively.

Definition 2.1. A Finsler space \(F_n \) for which Berwald curvature tensor \(H^i_{jk} \) satisfies the condition (2.3) and called a generalized \(\beta H \) – tricurrent space and the tensor a generalized \(\beta \) – tricurrent. We shall denote them briefly as \(G \beta H \) – TR and \(G\beta \) – TR, respectively.

Now, transvecting the condition (2.3) by \(y^j \), in view of (1.3), and by using (1.8a) and (1.1), we get

\[(2.4) \quad \beta_i \beta_m b_n H^i_{kh} = c_{lmn} H^i_{jk} + d_{lmn} (\delta^i_k y_h - \delta^i_h y_k) \]

Transvecting (2.4) by \(y^h \), in view of (1.3) and by using (1.8b), we get

\[(2.5) \quad \beta_i \beta_m b_n H^i_{kh} = c_{lmn} H^i_{lk} + d_{lmn} (\delta^i_k F^2 - y^l y_k) . \]

Thus, we may conclude

Theorem 2.1. In \(G \beta H \) – TR \(F_n \), Berwald’s covariant derivative of the third order for the \(h(v) \) – torsion tensor \(H^i_{jk} \) and the deviation tensor \(H^i_{k} \) given by the equations (2.4) and (2.5), respectively.

Contracting the indices \(i \) and \(k \) in the condition (2.3) and using (1.9a), we get

\[(2.6) \quad \beta_i \beta_m b_n H^i_{kh} = c_{lmn} H^i_{jh} + d_{lmn} (n-1) g_{jh} - 2b_{mn} (n-1) \beta_i C_{jht} - 2y^r w_{tn} (n-1) \beta_r C_{jhm} \\
- 2y^r \mu_n (n-1) \beta_i \beta_r C_{jhm} . \]

Thus, we may conclude

Theorem 2.2. In \(G \beta H \) – TR \(F_n \), Berwald’s covariant derivative of the third order for the \(H \) – Ricci tensor \(H^i_{jk} \) given by the equation (2.6).

Contracting the indices \(i \) and \(k \) in the equations (2.4) and (2.5), using(1.9b) and (1.9c), we get

\[(2.7) \quad \beta_i \beta_m b_n H^i = c_{lmn} H^i_n + d_{lmn} (n-1) y^h \]

and

\[(2.8) \quad \beta_i \beta_m b_n H = c_{lmn} H_n + d_{lmn} F^2 . \]

The equations (2.7) and (2.8) show that the curvature vector \(H^i \) and the scalar curvature \(H \) can't vanish because the vanishing of them would imply \(d_{lmn} = 0 \), a contradiction.

Thus, we may conclude

Theorem 2.3. In \(G \beta H \) – TR \(F_n \), the curvature vector \(H^i \) and the curvature scalar \(H \) are non - vanishing.

We know that [5]

\[(2.9) \quad H^i_{jk} = H_{hk} - H_{kh} . \]

Taking the \(\beta \) – covariant derivative of the third order with respect to \(x^n, x^m \) and \(x^\ell \), successively,for the equation (2.9), we get
On a Generalized βH – Trirecurrent Finsler Space……Fahmi Y.A.Qasem, Fatma A. M. Ahmed

$$\beta_i \beta_m \beta_n H_{kh}^i = \beta_i \beta_m \beta_n H_{hk} - \beta_i \beta_m \beta_n H_{kh}.$$
By using (2.6), the above equation can be written
$$\beta_i \beta_m \beta_n H_{kh}^i = c_{\ell mn} H_{hk} + d_{\ell mn} (n-1) g_{hk} - 2y^r b_{mn} (n-1) \beta_r C_{hk\ell} - 2y^r w_{\ell mn} (n-1) \beta_r C_{kh\ell}.$$
Then, the above equation can be written as
$$\beta_i \beta_m \beta_n H_{kh}^i = c_{\ell mn} (H_{hk} - H_{kh}).$$
By using (2.9) in the above equation, we get
$$\beta_i \beta_m \beta_n (H_{hk} - H_{kh}) = c_{\ell mn} (H_{hk} - H_{kh}).$$

Thus, we may conclude

Theorem 2.4. In $G \beta H$ – TR F_n, the tensor $(H_{hk} - H_{kh})$ behaves as trirecurrent.

We know that [5]

$$H_{kh}^i = \frac{1}{3} (\delta_k H_h^i - \delta_h H_k^i).$$

Taking the β – covariant derivative of third order with respect to x^n, x^m and x^ℓ, successively, for the equation (2.10), we get
$$\beta_i \beta_m \beta_n H_{kh}^i = \frac{1}{3} \beta_i \beta_m \beta_n (\delta_k H_h^i - \delta_h H_k^i).$$

In view of (1.8c), the above equation can be written as
$$\beta_i \beta_m \beta_n H_{kh}^i = \frac{1}{3} (\beta_i \beta_m \beta_n H_{kh}^i - \beta_i \beta_m \beta_n H_{hk}^i).$$

By using (2.4) in the above equation, we get
$$\beta_i \beta_m \beta_n H_{kh}^i = \frac{1}{3} [c_{\ell mn} H_{hk} + d_{\ell mn} (\delta_k y_h - \delta_h y_k) - c_{\ell mn} H_{hk} + d_{\ell mn} (\delta_k y_h - \delta_h y_k)]$$

which can be written as
$$\beta_i \beta_m \beta_n H_{kh}^i = \frac{1}{3} [c_{\ell mn} (H_{hk} - H_{hk}^i) + d_{\ell mn} (\delta_k y_h - \delta_h y_k)$$
or
$$\beta_i \beta_m \beta_n H_{kh}^i = v_{\ell mn} (H_{hk} - H_{hk}^i) + w_{\ell mn} (\delta_k y_h - \delta_h y_k),$$

where $v_{\ell mn} = \frac{1}{3} c_{\ell mn}$ and $w_{\ell mn} = \frac{2}{3} d_{\ell mn}$.

Thus, we may conclude

Theorem 2.5. In $G \beta H$ – TR F_n, Berwald torsion tensor H_{kh}^i is generalized – trirecurrent tensor.

References
1. Hadi, W.H.A. (2016) : Study of certain types of generalized birecurrent in Finsler space, Ph.D. Thesis, University of Aden, (Aden) (Yemen).
2. Matsumoto, M. (1971): On h – Isotropic and C^h – recurrent Finsler, J. Math. Kyoto Univ., 11, 1–9.
3. Pandey, P.N., Saxena, S. and Goswani, A. (2011) : On a generalized H – recurrent space, Journal of International Academy of Physical Science, Vol. 15, 201–211.
4. Qasem, F.Y.A. (2016) : On generalized H – birecurrent Finsler space, International Journal of Mathematics and its Applications, Vol. 4, Issue 2, 51 – 57.
5. Rund, H. (1981) : The differential geometry of Finsler space, Spring – Verlag, Berlin Gottingen – Heidelberg, (1959); 2nd edit. (in Russian), Nauka, (Moscow).

Univ. Aden J. Nat. and Appl. Sc. Vol. 23 No.2 – October 2019
On a Generalized βH – Tricurrent Finsler Space……Fahmi Y.A.Qasem, Fatma A. M. Ahmed

حول تعميم فضاء فنسلر βH - ثلاثي المعاودة
فهمي ياسين عبده قاسم وفاطمة عبدالله أحمد
قسم الرياضيات، كلية التربية - عدن، جامعة عدن
fatma.abdulla2018102@gmail.com، fyaseen358@gmail.com
DOI: https://doi.org/10.47372/uajnas.2019.n2.a16

المُلخص
تم تقديم تعريف هذا الفضاء من خلال اشتقاق المعادلة المميزة له لتمييز فضاء βH - ثنائي المعاودة βH، وأطلقتنا عليه الفضاء المعمم $G\beta H$ - ثلاثي المعاودة ورمزنا له بالرمز $\mathcal{G}_{\beta H}$، كما تم الوصول إلى H_h والمشتقة التفوقية $H_{/ H}$ وراقي $H_{/ H}$ - ريشي.

بعض المبرهنة المختصرة بهذا الخصوص. وقد تم إثبات أن الموتير $H_{/ H}$ - ريشي هي موثرة لا تنتمي في هذا الفضاء.

الكلمات المفتاحية: فضاء فنسلر، مشتقة متحدة الاختلاف بمفهوم بروالد من المرتبة الثالثة - موتير $H_{/ H}$ - ريشي.