EXPONENTIAL SUMS ON \mathbb{A}^n

ALAN ADOLPHSON AND STEVEN SPERBER

Abstract. We discuss exponential sums on affine space from the point of view of Dwork’s p-adic cohomology theory.

1. Introduction

Let p be a prime number, $q = p^a$, \mathbb{F}_q the finite field of q elements. Associated to a polynomial $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ and a nontrivial additive character $\Psi : \mathbb{F}_q \to \mathbb{C}^\times$ are exponential sums

$$S(\mathbb{A}^n(\mathbb{F}_q), f) = \sum_{x_1, \ldots, x_n \in \mathbb{F}_q} \Psi(\text{Trace}_{\mathbb{F}_q/F_q} f(x_1, \ldots, x_n)) \quad (1.1)$$

and an L-function

$$L(\mathbb{A}^n, f; t) = \exp\left(\sum_{i=1}^{\infty} S(\mathbb{A}^n(\mathbb{F}_q), f)\frac{t^i}{i}\right). \quad (1.2)$$

Let $d = \text{degree of } f$ and write

$$f = f^{(d)} + f^{(d-1)} + \cdots + f^{(0)},$$

where $f^{(j)}$ is homogeneous of degree j. A by now classical theorem of Deligne\cite{2, Théorème 8.4] says that if $(p, d) = 1$ and $f^{(d)} = 0$ defines a smooth hypersurface in \mathbb{P}^{n-1}, then $L(\mathbb{A}^n, f; t)^{(-1)^{n+1}}$ is a polynomial of degree $(d-1)^n$, all of whose reciprocal roots have absolute value equal to $q^{n/2}$. This implies the estimate

$$|S(\mathbb{A}^n(\mathbb{F}_q), f)| \leq (d-1)^n q^{n^2/2}. \quad (1.3)$$

In this article, we give a p-adic proof of the fact that $L(\mathbb{A}^n, f; t)^{(-1)^{n+1}}$ is a polynomial of degree $(d-1)^n$ (equation (2.14) and Theorem 3.8) and give p-adic estimates for its reciprocal roots, namely, we find a lower bound for the p-adic Newton polygon of $L(\mathbb{A}^n, f; t)^{(-1)^{n+1}}$ (Theorem 4.3). Using general results of Deligne\cite{3}, this information can be used to compute l-adic cohomology and hence again obtain the archimedian estimate (1.3) (Theorem 5.3).

For Theorems 3.8 and 4.3, we need to assume only that $\{\partial f^{(d)}/\partial x_i\}_{i=1}^n$ form a regular sequence in $\mathbb{F}_q[x_1, \ldots, x_n]$ (or, equivalently, that $\{\partial f^{(d)}/\partial x_i\}_{i=1}^n$ have no common zero in \mathbb{P}^{n-1}). When $(p, d) = 1$, this is equivalent to Deligne’s hypothesis. When d is divisible by p, there are only a few cases satisfying this regular sequence condition. We check them by hand in section 6 to prove the following slight generalization of Deligne’s result.

Date: April 22, 1998.

1991 Mathematics Subject Classification. Primary 11L07, 11T23, 14F20, 14F30.

Key words and phrases. Exponential sum, p-adic cohomology, l-adic cohomology.

The first author was supported in part by NSA Grant #MDA904-97-1-0068.
Theorem 1.4. Suppose \(\{ \partial f^{(d)}/\partial x_i \}_{i=1}^n \) form a regular sequence in \(F_q[x_1, \ldots, x_n] \). Then \(L(A^n, f; t)^{(-1)^{n+1}} \) is a polynomial of degree \((d-1)^n \), all of whose reciprocal roots have absolute value equal to \(q^{n/2} \).

In the article [1], we dealt with exponential sums on tori. After a general coordinate change, one can, by using the standard toric decomposition of \(A^n \), deduce most of the results of this article from results in [1]. Our main purpose here is to develop some new methods that will be more widely applicable. For instance, recent results of García [6] on exponential sums on \(A^n \) do not seem to follow from [1].

In contrast with [1], we work systematically with spaces of type \(C(b) \) (convergent series on a closed disk) and avoid spaces of type \(L(b) \) (bounded series on an open disk). This ties together more closely the calculation of \(p \)-adic cohomology and the estimation of the Newton polygon of the characteristic polynomial of Frobenius, eliminating much of section 3 of [1].

Another new feature of this work is the use of the spectral sequence associated to the filtration by \(p \)-divisibility on the complex \(\Omega \cdot C(b) \) (section 3 below). Although the behavior of this spectral sequence is rather simple in the setting of this article (namely, \(E^{r,s}_1 = E^{r,s}_\infty \) for all \(r \) and \(s \)), we believe it will play a significant role in more general situations, such as that of García [6]. We hope the methods developed here will allow us to extend the results of this article to those situations.

2. Preliminaries

In this section, we review the results from Dwork’s \(p \)-adic cohomology theory that will be used in this paper.

Let \(Q_p \) be the field of \(p \)-adic numbers, \(\zeta_p \) a primitive \(p \)-th root of unity, and \(\Omega_1 = Q_p(\zeta_p) \). The field \(\Omega_1 \) is a totally ramified extension of \(Q_p \) of degree \(p - 1 \). Let \(K \) be the unramified extension of \(Q_p \) of degree \(a \). Set \(\Omega_0 = K(\zeta_p) \). The Frobenius automorphism \(x \mapsto x^p \) of \(\text{Gal}(F_q/F_p) \) lifts to a generator \(\tau \) of \(\text{Gal}(\Omega_0/\Omega_1) (\simeq \text{Gal}(K/Q_p) \) by requiring \(\tau(\zeta_p) = \zeta_p \). Let \(\Omega \) be the completion of an algebraic closure of \(\Omega_0 \). Denote by “ord” the additive valuation on \(\Omega \) normalized by \(\text{ord}_p = 1 \) and by “ord_q” the additive valuation normalized by \(\text{ord}_q = 1 \).

Let \(E(t) \) be the Artin-Hasse exponential series:

\[
E(t) = \exp \left(\sum_{i=0}^\infty \frac{t^p^i}{p^i} \right).
\]

Let \(\gamma \in \Omega_1 \) be a solution of \(\sum_{i=0}^\infty t^p^i / p^i = 0 \) satisfying \(\text{ord} \gamma = 1/(p - 1) \) and consider

\[
\theta(t) = E(\gamma t) = \sum_{i=0}^\infty \lambda_i t^i \in \Omega_1[[t]].
\]

The series \(\theta(t) \) is a splitting function in Dwork’s terminology[3]. Furthermore, its coefficients satisfy

\[
\text{ord} \lambda_i \geq i/(p - 1).
\]

We consider the following spaces of \(p \)-adic functions. Let \(b \) be a positive rational number and choose a positive integer \(M \) such that \(Mb/p \) and \(Md/(p - 1) \) are integers. Let \(\pi \) be such that

\[
\pi^{Md} = p
\]
and put \(\tilde{\Omega}_1 = \Omega_1(\pi), \tilde{\Omega}_0 = \Omega_0(\pi) \). The element \(\pi \) is a uniformizing parameter for the rings of integers of \(\tilde{\Omega}_1 \) and \(\tilde{\Omega}_0 \). We extend \(\tau \in \text{Gal}(\Omega_0/\Omega_1) \) to a generator of \(\text{Gal}(\tilde{\Omega}_0/\tilde{\Omega}_1) \) by requiring \(\tau(\pi) = \pi \). For \(u = (u_1, \ldots, u_n) \in \mathbb{R}^n \), we put \(|u| = u_1 + \cdots + u_n \). Define

\[
C(b) = \left\{ \sum_{u \in \mathbb{N}^n} A_u \pi^{MB[u]} x^u \mid A_u \in \tilde{\Omega}_0 \text{ and } A_u \to 0 \text{ as } u \to \infty \right\}.
\]

For \(\xi = \sum_{u \in \mathbb{N}^n} A_u \pi^{MB[u]} x^u \in C(b) \), define

\[
\text{ord} \xi = \min_{u \in \mathbb{N}^n} \{ \text{ord} A_u \}.
\]

Given \(c \in \mathbb{R} \), we put

\[
C(b, c) = \{ \xi \in C(b) \mid \text{ord} \xi \geq c \}.
\]

Let \(\hat{f} = \sum_u \hat{a}_u x^u \in K[x_1, \ldots, x_n] \) be the Teichmüller lifting of the polynomial \(f \in F_0[x_1, \ldots, x_n] \), i.e., \((\hat{a}_u)^q = \hat{a}_u \) and the reduction of \(\hat{f} \) modulo \(p \) is \(f \). Set

\[
F(x) = \prod_u \theta(\hat{a}_u x^u),
\]

\[
F_0(x) = \prod_{i=0}^{a-1} \theta((\hat{a}_u x^u)^p).
\]

The estimate (2.2) implies that \(F \in C(b, 0) \) for all \(b < 1/(p-1) \) and \(F_0 \in C(b, 0) \) for all \(b < p/q(p-1) \). Define an operator \(\psi \) on formal power series by

\[
\psi \left(\sum_{u \in \mathbb{N}^n} A_u x^u \right) = \sum_{u \in \mathbb{N}^n} A_{pu} x^u.
\]

It is clear that \(\psi(C(b, c)) \subseteq C(pb, c) \). For \(0 < b < p/(p-1) \), let \(\alpha = \psi^a \circ F_0 \) be the composition

\[
C(b) \hookrightarrow C(b/q) \xrightarrow{F_0} C(b/q) \xrightarrow{\psi^a} C(b).
\]

Then \(\alpha \) is a completely continuous \(\Omega_0 \)-linear endomorphism of \(C(b) \). We shall also need to consider \(\beta = \tau^{-1} \circ \psi \circ F \), which is a completely continuous \(\tilde{\Omega}_1 \)-linear (or \(\tilde{\Omega}_0 \)-semilinear) endomorphism of \(C(b) \). Note that \(\alpha = \beta^a \).

Set \(\hat{f}_i = \partial \hat{f}/\partial x_i \) and let \(\gamma_l = \sum_{i=0}^l \gamma^{p^i}/p^i \). By the definition of \(\gamma \), we have

\[
\text{ord} \gamma_l \geq \frac{p^{l+1}}{p-1} - l - 1.
\]

For \(i = 1, \ldots, n \), define differential operators \(D_i \) by

\[
D_i = \frac{\partial}{\partial x_i} + H_i,
\]

where

\[
H_i = \sum_{l=0}^{\infty} \gamma_l p^l x_i^{p^l-1} \hat{f}_i^{p^l} (x^p) \in C \left(b, \frac{1}{p-1} - \frac{d-1}{d} \right)
\]

for \(b < p/(p-1) \). Thus \(D_i \) and “multiplication by \(H_i \)” operate on \(C(b) \) for \(b < p/(p-1) \).
To understand the definition of the D_i, put

$$\hat{\theta}(t) = \prod_{i=0}^{\infty} \theta(t^i)$$

$$\hat{F}(x) = \prod_{u} \hat{\theta}(\hat{a}_u x^u),$$

so that

$$F(x) = \hat{F}(x)/\hat{F}(x^p),$$

$$F_0(x) = \hat{F}(x)/\hat{F}(x^q).$$

Then formally

$$\alpha = \hat{F}(x)^{-1} \circ \psi^{\alpha} \circ \hat{F}(x)$$

$$\beta = \hat{F}(x)^{-1} \circ \tau^{-1} \circ \psi \circ \hat{F}(x).$$

It is trivial to check that $x_i \partial/\partial x_i$ and ψ commute up to a factor of p, hence the differential operators

$$\hat{F}^{-1} \circ x_i \frac{\partial}{\partial x_i} \circ \hat{F} = x_i \frac{\partial \hat{F}}{\partial x_i} / \hat{F}$$

formally commute with α (up to a factor of q) and β (up to a factor of p). From the definitions, one gets

$$\hat{\theta}(t) = \exp \left(\sum_{l=0}^{\infty} \gamma_l t^l \right).$$

It then follows that

$$x_i \partial \hat{F}/\partial x_i / \hat{F} = x_i H_i,$$

which gives

$$x_i \partial \hat{F}/\partial x_i / \hat{F} = x_i H_i,$$

(2.11)

$$\alpha \circ x_i D_i = qx_i D_i \circ \alpha,$$

(2.12)

$$\beta \circ x_i D_i = px_i D_i \circ \beta.$$

Consider the de Rham-type complex $(\Omega_{C(b)}^k, D)$, where

$$\Omega_{C(b)}^k = \bigoplus_{1 \leq i_1 < \cdots < i_k \leq n} C(b) \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}$$

and $D : \Omega_{C(b)}^k \to \Omega_{C(b)}^{k+1}$ is defined by

$$D(\xi \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}) = \left(\sum_{i=1}^{n} D_i(\xi) \, dx_i \right) \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

We extend the mapping α to a mapping $\alpha : \Omega_{C(b)}^k \to \Omega_{C(b)}^k$ defined by linearity and the formula

$$\alpha_k(\xi \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}) = q^{n-k} \frac{1}{x_{i_1} \cdots x_{i_k}} \alpha(x_{i_1} \cdots x_{i_k} \xi) \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$
Equation (2.11) implies that α is a map of complexes. The Dwork trace formula, as formulated by Robba, then gives

$$L(A^n/F_q, f; t) = \prod_{k=0}^{n} \det(I - t\alpha_k | \Omega^k_{C(b)})^{(-1)^{k+1}}.$$

From results of Serre we then get

$$L(A^n/F_q, f; t) = \prod_{k=0}^{n} \det(I - t\alpha_k | H^k(\Omega^k_{C(b)}, D))^{(-1)^{k+1}},$$

where we denote the induced map on cohomology by α_k also.

3. Filtration by p-divisibility

The p-adic Banach space $C(b)$ has a decreasing filtration $\{F^r C(b)\}_{r=-\infty}^{\infty}$ defined by setting

$$F^r C(b) = \{ \sum_{u \in \mathbb{N}^n} A_u \pi^{|Mu|} x^u \in C(b) | A_u \in \pi^r \mathcal{O}_{\tilde{\Omega}} \text{ for all } u \},$$

where $\mathcal{O}_{\tilde{\Omega}}$ denotes the ring of integers of $\tilde{\Omega}$. We extend this to a filtration on $\Omega^r_{C(b)}$ by defining

$$F^r \Omega^k_{C(b)} = \bigoplus_{1 \leq i_1 < \cdots < i_k \leq n} F^r C(b) dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

This filtration is exhaustive and separated, i.e.,

$$\bigcup_{r \in \mathbb{Z}} F^r \Omega^k_{C(b)} = \Omega^r_{C(b)} \quad \text{and} \quad \bigcap_{r \in \mathbb{Z}} F^r \Omega^k_{C(b)} = (0).$$

We normalize the D_i so that they respect this filtration. Put

$$\epsilon = Mb(d-1) - Md/(p-1),$$

a nonnegative integer. Then

$$\pi^\epsilon D_i(F^r C(b)) \subseteq F^r C(b)$$

and the complexes $(\Omega^r_{C(b)}, D)$, $(\Omega^r_{C(b)}, \pi^\epsilon D)$ have the same cohomology.

Since $(\Omega^r_{C(b)}, \pi^\epsilon D)$ is a filtered complex, there is an associated spectral sequence. Its E_1-term is given by

$$E_{1}^{r,s} = H^{r+s}(F^r \Omega^s_{C(b)}/F^{r+1} \Omega^s_{C(b)}).$$

Consider the map $F^0 C(b) \to \mathbf{F}_q[x_1, \ldots, x_n]$ defined by

$$\sum_u A_u \pi^{|Mu|} x^u \mapsto \sum_u \tilde{A}_u x^u,$$

where \tilde{A}_u denotes the reduction of A_u modulo the maximal ideal of $\mathcal{O}_{\tilde{\Omega}_0}$. (Since $A_u \to 0$ as $u \to \infty$, the sum on the right-hand side is finite.) This map induces an isomorphism

$$F^0 \Omega^k_{C(b)}/F^1 \Omega^k_{C(b)} \simeq \Omega^k_{\mathbf{F}_q[x_1, \ldots, x_n]}/\mathbf{F}_q.$$

In particular,

$$F^0 C(b)/F^1 C(b) \simeq \mathbf{F}_q[x_1, \ldots, x_n].$$
We have clearly
\[\frac{\partial}{\partial x_i}(F^r C(b)) \subseteq F^{r+1} C(b), \]
and a calculation show that
\[\pi^r H_i \equiv \pi^{Mb(d-1)} \hat{f}_i \quad (\text{mod } F^1 C(b)) \]
\[\equiv \pi^{Mb(d-1)} \hat{f}^{(d)}_i \quad (\text{mod } F^1 C(b)), \]
hence under the isomorphism (3.2), the map
\[\pi^r D_i : F^0 C(b) \to F^0 C(b) \]
induces the map “multiplication by \(\partial f^{(d)}/\partial x_i \)” on \(F_q[x_1, \ldots, x_n] \). More generally, one sees that under the isomorphism (3.1), the map
\[\pi^r D : F^0 \Omega_C(b) \to F^0 \Omega_C^{k+1}(b) \]
induces the map
\[\phi_{f^{(d)}} : \Omega_F^n[x_1, \ldots, x_n]/F_q \to \Omega_F^{k+1}[x_1, \ldots, x_n]/F_q \]
defined by
\[\phi_{f^{(d)}}(\omega) = df^{(d)} \wedge \omega, \]
where \(df^{(d)} \) denotes the exterior derivative of \(f^{(d)} \). We have proved that there is an isomorphism of complexes of \(F_q \)-vector spaces
\[(F^0 \Omega_C(b)/F^1 \Omega_C(b), \pi^r D) \simeq (\Omega_F^n[x_1, \ldots, x_n]/F_q, \phi_{f^{(d)}}). \]

Since multiplication by \(\pi^r \) defines an isomorphism of complexes
\[(F^0 \Omega_C(b), \pi^r D) \simeq (F^r \Omega_C(b), \pi^r D), \]
we have in fact isomorphisms for all \(r \in \mathbb{Z} \)
\[(F^r \Omega_C(b)/F^{r+1} \Omega_C(b), \pi^r D) \simeq (\Omega_F^n[x_1, \ldots, x_n]/F_q, \phi_{f^{(d)}}). \]

The complex \((\Omega_F^n[x_1, \ldots, x_n]/F_q, \phi_{f^{(d)}}) \) is isomorphic to the Koszul complex on \(F_q[x_1, \ldots, x_n] \) defined by \(\{ \partial f^{(d)}/\partial x_i \}_{i=1}^n \). If we assume \(\{ \partial f^{(d)}/\partial x_i \}_{i=1}^n \) form a regular sequence in \(F_q[x_1, \ldots, x_n] \), we get
\[H^i(\Omega_F^n[x_1, \ldots, x_n]/F_q, \phi_{f^{(d)}}) = 0 \quad \text{for } i \neq n, \]
\[\dim_{F_q} H^n(\Omega_F^n[x_1, \ldots, x_n]/F_q, \phi_{f^{(d)}}) = (d-1)^n. \]

It follows from these equations that
\[E_1^{r,s} = 0 \quad \text{if } r + s \neq n \]
\[\dim_{F_q} E_1^{r,s} = (d-1)^n \quad \text{if } r + s = n. \]

The first of these equalities implies that all the coboundary maps \(d_1^{r,s} \) are zero, hence the spectral sequence converges weakly, i. e.,
\[E_1^{r,s} \simeq F^r H^{r+s}(\Omega_C(b), \pi^r D)/F^{r+1} H^{r+s}(\Omega_C(b), \pi^r D). \]

This spectral sequence actually converges. First observe the following. Let \(x^i, i = 1, \ldots, (d-1)^n, \) be monomials in \(x_1, \ldots, x_n \) such that the cohomology classes \(\{ [x^i \ dx_1 \wedge \cdots \wedge dx_n] \}_{i=1}^{(d-1)^n} \) form a basis for \(H^n(\Omega_F^n[x_1, \ldots, x_n]/F_q, \phi_{f^{(d)}}) \). Then the
images of the cohomology classes \(\{[\pi^r x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n]\}_{i=1}^{(d-1)n}\) in \(E^{r,s}_1\) form a basis for \(E^{r,s}_1\) when \(r + s = n\).

Theorem 3.8. Suppose \(\{\partial f^{(d)}/\partial x_i\}_{i=1}^n\) form a regular sequence in \(F_q[x_1, \ldots, x_n]\). Then

1. \(H^1(\Omega^i_{C(b)}, \pi^s D) = 0\) if \(i \neq n\),
2. the cohomology classes \([x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n], i = 1, \ldots, (d - 1)n\), form a basis for \(H^n(\Omega^i_{C(b)}, \pi^s D)\).

Proof. Suppose \(i \neq n\) and let \(\eta \in \Omega^i_{C(b)}\) with \(\pi^s D(\eta) = 0\). For some \(r\) we have \(\eta \in F^r \Omega^i_{C(b)}\). Equations (3.3) and (3.4) then imply that

\[\eta = \pi \eta_1 + \pi^s D(\zeta_1)\]

with \(\eta_1 \in F^r \Omega^i_{C(b)}\) and \(\zeta_1 \in F^r \Omega^{i-1}_{C(b)}\). Suppose that for some \(t \geq 1\) we have found \(\eta_t \in F^r \Omega^i_{C(b)}\) and \(\zeta_t \in F^r \Omega^{i-1}_{C(b)}\) such that

\[\eta = \pi^t \eta_t + \pi^s D(\zeta_t)\]

and such that

\[\zeta_t - \zeta_{t-1} \in F^{r+t-1} \Omega^{i-1}_{C(b)}\].

Applying \(\pi^s D\) to both sides of (3.9) gives

\[\pi^{t+1} D(\eta_t) = 0\],

hence \(\pi^s D(\eta_t) = 0\) since multiplication by \(\pi\) is injective on \(\Omega^i_{C(b)}\). Equations (3.3) and (3.4) give

\[\eta_t = \pi \eta_{t+1} + \pi^s D(\zeta_{t+1})\],

with \(\eta_{t+1} \in F^r \Omega^{i}_{C(b)}\) and \(\zeta_{t+1} \in F^r \Omega^{i-1}_{C(b)}\). If we put \(\zeta_{t+1} = \zeta_t + \pi^s \zeta_{t+1}\), then substitution into (3.9) gives

\[\eta = \pi^{t+1} \eta_{t+1} + \pi^s D(\zeta_{t+1})\]

with

\[\zeta_{t+1} - \zeta_t \in F^{r+t} \Omega^{i-1}_{C(b)}\].

It is now clear that the sequence \(\{\zeta_t\}_{t=1}^{\infty}\) converges to an element \(\zeta \in F^r \Omega^{i-1}_{C(b)}\) such that \(\eta = \pi^s D(\zeta)\). This proves the first assertion.

It follows easily from (3.3) that the \(\{[x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n]\}_{i=1}^{(d-1)n}\) are linearly independent, hence it suffices to show that they span \(H^n(\Omega^i_{C(b)}, \pi^s D)\). Let \(\eta \in F^r \Omega^n_{C(b)}\). From (3.3) we have

\[\eta = \sum_{i=1}^{(d-1)n} c_i^{(1)} x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n + \pi \eta_1 + \pi^s D(\zeta_1),\]

where \(c_i^{(1)} \in \tilde{\Omega}_0\), \(c_i^{(1)} x^{\mu_i} \in F^r C(b), \eta_1 \in F^r \Omega^i_{C(b)}, \zeta_1 \in F^r \Omega^{i-1}_{C(b)}\). Suppose we can write

\[\eta = \sum_{i=1}^{(d-1)n} c_i^{(1)} x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n + \pi^s \eta_t + \pi^s D(\zeta_t)\]
with $c_i^{(t)} \in \tilde{\Omega}_0$, $c_i^{(t)} x^{\mu_i} \in F^r C(b)$, $\eta_t \in F^r \Omega_{C(b)}^n$, and $\zeta_t \in F^r \Omega_{C(b)}^{n-1}$ such that

$$(c_i^{(t)} - c_i^{(t-1)}) x^{\mu_i} \in F^{r+1} C(b)$$

$$\zeta_t - \zeta_{t-1} \in F^{r+1} \Omega_{C(b)}^{n-1}.$$

By (3.3) we have

$$\eta_t = \sum_{i=1}^{(d-1)^n} c_i^{(t)} x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n + \pi \eta_{t+1} + \pi^x D(\zeta_t'),$$

where $c_i' \in \tilde{\Omega}_0$, $c_i' x^{\mu_i} \in F^r C(b)$, $\eta_{t+1} \in F^r \Omega_{C(b)}^n$, $\zeta_t' \in F^r \Omega_{C(b)}^{n-1}$. If we put $c_i^{(t+1)} = c_i^{(t)} + \pi^x c_i'$ and $\zeta_{t+1} = \zeta_t + \pi^x \zeta_t'$, then

$$\eta = \sum_{i=1}^{(d-1)^n} c_i^{(t+1)} x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n + \pi^{x+1} \eta_{t+1} + \pi^x D(\zeta_{t+1})$$

with

$$(c_i^{(t+1)} - c_i^{(t)}) x^{\mu_i} \in F^{r+1} C(b)$$

$$\zeta_{t+1} - \zeta_t \in F^{r+1} \Omega_{C(b)}^{n-1}.$$

It follows that the sequences \(\{c_i^{(t)}\}_{t=1}^{\infty} \subseteq \tilde{\Omega}_0 \) and \(\{\zeta_t\}_{t=1}^{\infty} \) converge, say, \(c_i^{(t)} \to c_i \in \tilde{\Omega}_0, \zeta_t \to \zeta \in F^r \Omega_{C(b)}^{n-1} \), and that these limits satisfy

$$\eta = \sum_{i=1}^{(d-1)^n} c_i x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n + \pi^x D(\zeta)$$

with $c_i x^{\mu_i} \in F^r C(b)$. This completes the proof of the second assertion.

The following result is a consequence of the proof of Theorem 3.8.

Proposition 3.11. Under the hypothesis of Theorem 3.8, if $\eta \in F^r \Omega_{C(b)}^n$, then there exist \(\{c_i^{(d-1)^n}\}_{i=1}^{\infty} \subseteq \tilde{\Omega}_0 \) such that in \(H^n(\Omega_{C(b)}, \pi^x D) \) we have

$$[\eta] = \sum_{i=1}^{(d-1)^n} [c_i x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n],$$

where $c_i x^{\mu_i} \in F^r C(b)$ for $i = 1, \ldots, (d-1)^n$.

4. p-adic estimates

It follows from (2.14) and Theorem 3.8 that

$$L(A^n, f; t)^{(-1)^{n+1}} = \text{det}(1 - t\alpha_n \mid H^n(\Omega_{C(b)}, D))$$

is a polynomial of degree $(d-1)^n$ (by \(\mathbb{F}_q \), zero is not an eigenvalue of α_n). We estimate its p-adic Newton polygon. Note that

$$H^n(\Omega_{F_q[x_1, \ldots, x_n]/F_q, \phi_f(a)}) \simeq F_q[x_1, \ldots, x_n]/(\partial f^{(d)}/\partial x_1, \ldots, \partial f^{(d)}/\partial x_n)$$

is a graded $F_q[x_1, \ldots, x_n]$-module. Let $H^n(\Omega_{F_q[x_1, \ldots, x_n]/F_q, \phi_f(a)})^{(m)}$ denote its homogeneous component of degree m. It follows from (3.4) that its Hilbert-Poincare
series is \((1 + t + \cdots + t^{d-2})^n\). Write

\[(4.2) \quad (1 + t + \cdots + t^{d-2})^n = \sum_{m=0}^{n(d-2)} U_m t^m,\]

so that

\[U_m = \dim_{F_q} H^n(F_q[x_1, \ldots, x_n]/F_q[\phi_{f(a)}]^{(m)}).\]

Equivalently,

\[U_m = \text{card}\{x^{\mu} \mid |\mu_i| = m\}.\]

Let \(\beta_n \) be the endomorphism of \(H^n(\Omega_{C(b)}, D)\) constructed from \(\beta\) as \(\alpha_n\) was constructed from \(\alpha\), i.e.,

\[\beta_n(\xi dx_1 \wedge \cdots \wedge dx_n) = \frac{1}{x_1 \cdots x_n} \beta(x_1 \cdots x_n \xi) dx_1 \wedge \cdots \wedge dx_n.\]

Then \(\beta_n\) is an \(\tilde{\Omega}_1\)-linear endomorphism of \(H^n(\Omega_{C(b)}, D)\) and \(\alpha_n = (\beta_n)^a\).

Theorem 4.3. Suppose \(\{\partial f(d)/\partial x_i\}_{i=1}^n\) form a regular sequence in \(F_q[x_1, \ldots, x_n]\). Then the Newton polygon of \(L(A^n, f; t)(-1)^{n+1}\) with respect to the valuation “ord\(_q\)” lies on or above the Newton polygon with respect to the valuation “ord\(_q\)” of the polynomial

\[n(d-2) \prod_{m=0}^{n(d-2)} (1 - q^{(m+n)/d}) U_m.\]

We begin with a reduction step. Let \(\gamma_j\) be an \(\tilde{\Omega}_0\)-integral basis for \(\tilde{\Omega}_0\) over \(\tilde{\Omega}_1\). Then under the hypothesis of Theorem 3.8, the cohomology classes

\[[\gamma_j x^{\mu_i} dx_1 \wedge \cdots \wedge dx_n], \quad i = 1, \ldots, (d-1)^n, \quad j = 1, \ldots, a,\]

form a basis for \(H^n(\Omega_{C(b)}, D)\) as \(\tilde{\Omega}_1\)-vector space. We estimate \(p\)-adically the entries of the matrix of \(\beta_n\) with respect to a certain normalization of this basis, namely, we set

\[\xi(i,j) = (\pi^{Mb/p})^{|\mu_i|+n} \gamma_j x^{\mu_i}\]

and use the cohomology classes \([\xi(i,j) dx_1 \wedge \cdots \wedge dx_n]\). This normalization is chosen so that

\[x_1 \cdots x_n \xi(i,j) \in C(b/p, 0),\]

and

\[\beta(x_1 \cdots x_n \xi(i,j)) \in C(b, 0)\]

hence

\[\beta(x_1 \cdots x_n \xi(i,j)) \in C(b, 0)\]

and

\[\frac{1}{x_1 \cdots x_n} \beta(x_1 \cdots x_n \xi(i,j)) \in \pi^{Mb_n} C(b, 0).\]
This says that
\[\beta_n(\xi(i, j) \, dx_1 \wedge \cdots \wedge dx_n) \in F^{Mn} \Omega^n_{C(b)}, \]
hence by Proposition 3.11 and the properties of an integral basis we have
\[[\beta_n(\xi(i, j) \, dx_1 \wedge \cdots \wedge dx_n)] = \sum_{i', j'} A(i', j'; i, j) [\gamma_{j'} x_{i'} dx_1 \wedge \cdots \wedge dx_n] \]
with
\[A(i', j'; i, j) \in \pi^{Mb(\mu | i + n)} \Omega_{\bar{b}_0}. \]
This may be rewritten as
\[[\beta_n(\xi(i, j) \, dx_1 \wedge \cdots \wedge dx_n)] = \sum_{i', j'} B(i', j'; i, j) [\xi(i', j') \, dx_1 \wedge \cdots \wedge dx_n] \]
with
\[B(i', j'; i, j) \in \pi^{Mb(\mu | i + n)(1-1/p)} \Omega_{\bar{b}_0}. \]
i. e., the \((i', j')\)-row of the matrix \(B(i', j'; i, j)\) of \(\beta_n\) with respect to the basis \(\{[\xi(i, j) \, dx_1 \wedge \cdots \wedge dx_n]\}_{i,j}\) is divisible by
\[\pi^{Mb(\mu | i + n)(1-1/p)}. \]
This implies that \(\det_{\bar{b}_1}(I - \beta_n | H^n(\Omega^n_{C(b)}, D))\) has Newton polygon (with respect to the valuation “ord”) lying on or above the Newton polygon (with respect to the valuation “ord”) of the polynomial
\[n(d-2) \prod_{m=0}^{n} (1 - \pi^{Mb(m+n)(1-1/p)} t^a U_m). \]
But \(\det_{\bar{b}_1}(I - \beta_n | H^n(\Omega^n_{C(b)}, D))\) is independent of \(b\), so we may take the limit as \(b \to p/(p-1)\) to conclude that its Newton polygon lies on or above the Newton polygon of
\[n(d-2) \prod_{m=0}^{n} (1 - p^{(m+n)/d} t^a U_m). \]
Theorem 4.3 now follows from Lemma 4.4.

Let \(\{\rho_i\}_{i=1}^{(d-1)n}\) be the reciprocal roots of \(L(A^n, f; t)^{(-1)n+1}\) and put
\[\Lambda(f) = \prod_{i=1}^{(d-1)n} \rho_i \in \mathbb{Q}(\zeta_p). \]
Theorem 4.3 implies that
\[\text{ord}_q \Lambda(f) \geq \frac{1}{d} \sum_{m=0}^{n(d-2)} (m + n)U_m. \]
But it follows from (4.2) evaluated at \(t = 1\) that
\[\sum_{m=0}^{n(d-2)} U_m = (d-1)^n \]
and from the derivative of (4.2) evaluated at \(t = 1\) that
\[\sum_{m=0}^{n(d-2)} mU_m = n(d-1)^n(d-2)/2. \]
We thus get the following.

Corollary 4.5. Under the hypothesis of Theorem 4.3,

\[\text{ord}_q \Lambda(f) \geq \frac{n(d - 1)^n}{2}. \]

It can be proved directly by p-adic methods that equality holds in Corollary 4.5. We shall derive this equality in the next section by l-adic methods.

5. l-adic Cohomology

Let l be a prime, $l \neq p$. There exists a lisse, rank-one, l-adic étale sheaf $\mathcal{L}_q(f)$ on \mathbb{A}^n with the property that

(5.1) \[L(\mathbb{A}^n, f; t) = L(\mathbb{A}^n, \mathcal{L}_q(f); t), \]

where the right-hand side is a Grothendieck L-function. By Grothendieck’s Lefschetz trace formula,

(5.2) \[L(\mathbb{A}^n, f; t) = \prod_{i=0}^{2n} \det(I - tF | H^i_c(\mathbb{A}^n \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathcal{L}_q(f)))^{(-1)^{i+1}}, \]

where H^i_c denotes l-adic cohomology with proper supports and F is the Frobenius endomorphism. The $H^i_c(\mathbb{A}^n \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathcal{L}_q(f))$ are finite-dimensional vector spaces over a finite extension K_i of \mathbb{Q}_l containing the p-th roots of unity. We combine Theorem 3.8 and Corollary 4.5 with general results of Deligne\[2\] to prove the following theorem of Deligne\[2\] Théorème 8.4.

Theorem 5.3. Suppose $(p, d) = 1$ and $f^{(d)} = 0$ defines a smooth hypersurface in \mathbb{P}^{n-1}. Then

1. $H^i_c(\mathbb{A}^n \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathcal{L}_q(f)) = 0$ if $i \neq n$,
2. $\dim_{K_i} H^i_c(\mathbb{A}^n \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathcal{L}_q(f)) = (d - 1)^n$,
3. $H^i_c(\mathbb{A}^n \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathcal{L}_q(f))$ is pure of weight n.

Proof: We consider the theorem to be known for $n = 1$ and prove it for general $n \geq 2$ by induction. For $\lambda \in \mathbb{F}_q$, set

\[f_\lambda(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, \lambda) \in \mathbb{F}_q(\lambda)[x_1, \ldots, x_{n-1}]. \]

Since the generic hyperplane section of a smooth variety is smooth, we may assume, after a coordinate change if necessary, that the hyperplane $x_n = 0$ intersects the variety $f^{(d)} = 0$ transversally in \mathbb{P}^{n-1}. Thus $f^{(d)}(x_1, \ldots, x_{n-1}, 0) = 0$ defines a smooth hypersurface in \mathbb{P}^{n-2}. But

\[f^{(d)}_\lambda = f^{(d)}(x_1, \ldots, x_{n-1}, 0), \]

so by the induction hypothesis the conclusions of the theorem are true for all f_λ.

Consider the morphism of \mathbb{F}_q-schemes $\sigma : \mathbb{A}^n \to \mathbb{A}^1$ which is projection onto the n-th coordinate. The Leray spectral sequence for the composition of σ with the structural morphism $\mathbb{A}^1 \to \text{Spec}(\mathbb{F}_q)$ is

(5.4) \[H^i_c(\mathbb{A}^1 \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, R^j \sigma_! \mathcal{L}_q(f)) \Rightarrow H^{i+j}_c(\mathbb{A}^n \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathcal{L}_q(f)). \]

Proper base change implies that for $\lambda \in \mathbb{F}_q$ and λ^\flat a geometric point over λ

(5.5) \[(R^j \sigma_! \mathcal{L}_q(f))^{\flat} = H^j_c(\sigma^{-1}(\lambda)) \times_{\mathbb{F}_q(\lambda)} \overline{\mathbb{F}}_q, \mathcal{L}_q(f^{\flat})). \]
Applying the induction hypothesis to f_λ shows that the right-hand side of (5.5) vanishes for all $\lambda \in F_q$ if $j \neq n - 1$. It follows that the Leray spectral sequence collapses and we get

\[H^i_c(A^1 \times F_q, \bar{F}_q, R^{n-1}_i \sigma L_\Phi(f)) = H^{i+n-1}_c(A^n \times F_q, \bar{F}_q, L_\Phi(f)). \]

Since $\dim A^1 = 1$, the left-hand side of (5.6) can be nonzero only for $i = 0, 1, 2$. However, $H^{n-1}_c(A^n \times F_q, \bar{F}_q, L_\Phi(f)) = 0$ because A^n is smooth, affine, of dimension n, and $L_\Phi(f)$ is lisse on A^n. This proves that $H^i_c(A^n \times F_q, \bar{F}_q, L_\Phi(f)) = 0$ except possibly for $i = n, n + 1$.

By (5.2) we then have

\[L(A^n, f; t)^{(1)^{n+1}} = \frac{\det(I - tF | H^n_c(A^n \times F_q, \bar{F}_q, L_\Phi(f)))}{\det(I - tF | H^{n+1}_c(A^n \times F_q, \bar{F}_q, L_\Phi(f)))}. \]

Since $L_\Phi(f)$ is pure of weight 0, Deligne’s fundamental theorem tells us that $H^n_c(A^n \times F_q, \bar{F}_q, L_\Phi(f))$ is mixed of weights $\leq n$. Equation (5.5) and the induction hypothesis applied to f_λ tell us that $R^{n-1}_i \sigma L_\Phi(f)$ is pure of weight $n - 1$ and that all fibers of $R^{n-1}_i \sigma L_\Phi(f)$ have the same rank, namely, $(d - 1)^{n-1}$. It follows from Katz, Corollary 6.7.2, that $R^{n-1}_i \sigma L_\Phi(f)$ is lisse on A^1. Equation (5.6) with $i = 2$ now implies, by Deligne, Corollaire 1.4.3, that $H^{n+1}_c(A^n \times F_q, \bar{F}_q, L_\Phi(f))$ is pure of weight $n + 1$, hence there can be no cancellation on the right-hand side of (5.7). However, Theorem 3.8 implies that $L(A^n, f; t)^{(1)^{n+1}}$ is a polynomial of degree $(d - 1)^n$, so we must have

\[H^{n+1}_c(A^n \times F_q, \bar{F}_q, L_\Phi(f)) = 0 \]

and

\[\dim K_r H^n_c(A^n \times F_q, \bar{F}_q, L_\Phi(f)) = (d - 1)^n. \]

This establishes the first two assertions of the theorem.

To prove the last assertion of the theorem, note that $|\rho_i| \leq q^{n/2}$ for every i and every archimedean absolute value since $H^n_c(A^n \times F_q, \bar{F}_q, L_\Phi(f))$ is mixed of weights $\leq n$. Thus we have

\[|\Lambda(f)| \leq q^{n(d-1)^n/2} \]

for every archimedean absolute value on $Q(\zeta_p)$. By Corollary 4.5, we have

\[|\Lambda(f)|_p \leq q^{-n(d-1)^n/2} \]

for every normalized archimedean absolute value on $Q(\zeta_p)$ lying over p, and it is well-known that $|\rho_i|_p = 1$ for every nonarchimedean absolute value lying over any prime $p' \neq p$. It then follows from the product formula for $Q(\zeta_p)$ that equality holds in (5.8) (and also in (5.9)), which implies the last assertion of the theorem.

6. Proof of Theorem 1.4

It remains to consider the case where p divides d. The Euler relation becomes

\[\sum_{i=1}^{n} x_i \frac{\partial f^{(d)}}{\partial x_i} = 0. \]

The regular sequence hypothesis then implies that

\[x_i \in \left(\frac{\partial f^{(d)}}{\partial x_1}, \ldots, \frac{\partial f^{(d)}}{\partial x_i}, \ldots, \frac{\partial f^{(d)}}{\partial x_n} \right), \]
hence there is an equality of ideals of $F_q[x_1, \ldots, x_n]$

\[(x_1, \ldots, x_n) = \left(\frac{\partial f^{(d)}}{\partial x_1}, \ldots, \frac{\partial f^{(d)}}{\partial x_n} \right). \tag{6.1} \]

Conversely, if (6.1) holds, then $\{\partial f^{(d)}/\partial x_i\}_{i=1}^n$ is a regular sequence. Equation (6.1) implies that $d = 2$, hence $p = 2$ as well, thus f is a quadratic polynomial in characteristic 2. We may assume f contains no terms of the form x_i^2 by the following elementary lemma.

Let ζ_p be a primitive p-th root of unity. Since Ψ is a nontrivial additive character of F_q, there exists a nonzero $b \in F_q$ such that $\Psi(x) = \zeta_p \text{Tr}_{F_q/F_p}(bx)$.

\[(6.2) \]

Lemma 6.3. Let $a \in F_q$, $a \neq 0$, and choose $c \in F_q$ such that $c^p = (ab)^{-1}$. Then

\[\sum_{x_1, \ldots, x_n \in F_q} \Psi(f(x_1, \ldots, x_n) + ax_n^p) = \sum_{x_1, \ldots, x_n \in F_q} \Psi(f(x_1, \ldots, x_n) + ac^{p-1}x_n).\]

Proof. Making the change of variable $x_n \mapsto cx_n$, the sum becomes

\[\sum_{x_1, \ldots, x_n \in F_q} \Psi(f(x_1, \ldots, x_{n-1}, cx_n) + b^{-1}x_n^p) = \sum_{x_1, \ldots, x_n \in F_q} \Psi(f(x_1, \ldots, x_{n-1}, cx_n) + b^{-1}x_n)\Psi(b^{-1}(x_n^p - x_n)).\]

But by (6.2),

\[\Psi(b^{-1}(x_n^p - x_n)) = \zeta_p^{\text{Tr}_{F_q/F_p}(x_n^p - x_n)} = 1\]

since $\text{Tr}_{F_q/F_p}(x_n^p - x_n) = 0$ for all $x_n \in F_q$. Making the change of variable $x_n \mapsto c^{-1}x_n$ now gives the lemma.

By the lemma, we may assume our quadratic polynomial f has the form

\[f = \sum_{1 \leq i < j \leq n} a_{ij}x_ix_j + \sum_{k=1}^n b_kx_k + c,\]

where $a_{ij}, b_k, c \in F_q$. This gives

\[f^{(2)} = \sum_{1 \leq i < j \leq n} a_{ij}x_ix_j.\]

Let $A = (A_{ij})$ be the $n \times n$ matrix defined by

\[A_{ij} = \begin{cases} a_{ij} & \text{if } i < j \\ 0 & \text{if } i = j \\ a_{ji} & \text{if } i > j. \end{cases}\]

Thus A is a symmetric matrix with zeros on the diagonal. One checks that

\[\begin{bmatrix} \frac{\partial f^{(2)}}{\partial x_1} \\ \vdots \\ \frac{\partial f^{(2)}}{\partial x_n} \end{bmatrix} = A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix},\]

therefore (6.1) holds if and only if $\det A \neq 0$.

We now evaluate the exponential sum

\[(6.4) \sum_{x_1, \ldots, x_n \in F_q} \Psi \left(\sum_{1 \leq i < j \leq n} a_{ij} x_i x_j + \sum_{k=1}^{n} b_k x_k + c \right). \]

Proposition 6.5. If \(n \) is odd, then (6.1) cannot hold. If \(n \) is even and (6.1) holds, then the sum (6.4) equals \(\zeta q^{n/2} \), where \(\zeta \) is a root of unity.

Proof. If \(n = 1 \), then \(\det A = 0 \), so (6.1) cannot hold. If \(n = 2 \), then \(\det A \neq 0 \) if and only if \(a_{12} \neq 0 \). It is then easy to check that the sum (6.4) equals

\[\Psi \left(\frac{b_1 b_2 + c}{a_{12}} \right) q. \]

Thus the proposition holds for \(n = 1, 2 \). Suppose \(n \geq 3 \). The sum (6.4) can be rewritten as

\[\sum_{x_1, \ldots, x_n \in F_q} \Psi \left(\sum_{1 \leq i < j \leq n-1} a_{ij} x_i x_j + \sum_{k=1}^{n-1} b_k x_k + c \right) \sum_{x_n \in F_q} \Psi \left(\left(\sum_{i=1}^{n-1} a_{in} x_i + b_n \right) x_n \right). \]

But

\[\sum_{x_n \in F_q} \Psi \left(\left(\sum_{i=1}^{n-1} a_{in} x_i + b_n \right) x_n \right) = \begin{cases} 0 & \text{if } \sum_{i=1}^{n-1} a_{in} x_i + b_n \neq 0 \\ q & \text{if } \sum_{i=1}^{n-1} a_{in} x_i + b_n = 0, \end{cases} \]

hence (6.4) equals

\[(6.6) q \sum_{x_1, \ldots, x_{n-1} \in F_q} \Psi \left(\sum_{1 \leq i < j \leq n-1} a_{ij} x_i x_j + \sum_{k=1}^{n-1} b_k x_k + c \right). \]

Since we are assuming \(A \) is invertible, some \(a_{in} \) must be nonzero, say, \(a_{n-1,n} \neq 0 \). By making the change of variable \(x_{n-1} \mapsto (a_{n-1,n})^{-1} x_{n-1} \), we may assume \(a_{n-1,n} = 1 \). Solving \(a_{1n} x_1 + \cdots + a_{n-1,n} x_{n-1} + b_n = 0 \) for \(x_{n-1} \) and substituting into the expression in the additive character, we see that (6.6) equals

\[(6.7) q \sum_{x_1, \ldots, x_{n-2} \in F_q} \Psi \left(\sum_{1 \leq i < j \leq n-2} a'_{ij} x_i x_j + \sum_{k=1}^{n-2} b'_k x_k + c \right), \]

where

\[a'_{ij} = a_{ij} + a_{i,n-1} a_{jn} + a_{j,n-1} a_{in}. \]

Let \(A' = (A'_{ij}) \) be the \((n-2) \times (n-2)\) matrix constructed from the \(a'_{ij} \) as \(A \) was constructed from the \(a_{ij} \). We explain the connection between \(A \) and \(A' \). Let \(\tilde{A} \) be the \(n \times n \) matrix obtained from \(A \) by replacing row \(i \) by

\[\text{row } i + a_{in} \text{ (row } n-1) + a_{i,n-1} \text{ (row } n) \]

for \(i = 1, \ldots, n-2 \). Keeping in mind that \(a_{n-1,n} = 1 \), we see that

\[\tilde{A} = \begin{bmatrix} A' & 0 & 0 \\ a_{1,n-1} & \cdots & a_{n-2,n-1} \\ a_{1n} & \cdots & a_{n-2,n} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}. \]
In particular, $\det A' = \det A$. We can repeat this procedure starting with the sum (6.7) and continue until we are reduced to the one or two variable case, according to whether n is odd or even. If n is odd, this implies $\det A = 0$, a contradiction. Thus there does not exist a quadratic polynomial f satisfying (6.1) in this case. If n is even, this shows that (6.4) equals $q^{n/2}$ times a root of unity, which is the desired result.

A straightforward calculation using Proposition 6.5 then shows that the corresponding L-function has the form asserted in Theorem 1.4.

References

[1] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra: Cohomology and estimates, Ann. of Math. 130(1989), 367–406
[2] P. Deligne, La conjecture de Weil, I, Publ. Math. I. H. E. S. 43(1974), 273–3-7
[3] ———, La conjecture de Weil, II, Publ. Math. I. H. E. S. 52(1980), 137–252
[4] B. Dwork, On the zeta function of a hypersurface, Publ. Math. I. H. E. S. 12(1962), 5–68
[5] ———, On the zeta function of a hypersurface, II, Ann. of Math. 80(1964), 227–299
[6] R. García, On exponential sums, preprint
[7] N. Katz, Perversity and exponential sums, in Algebraic Number Theory—in honor of K. Iwasawa, Advanced Studies in Pure Mathematics 17(1989), 209–259
[8] P. Robba, Une introduction naïve aux cohomologies de Dwork, Soc. Math. France, Mémoire no. 23 (new series) 114(1986), 61–105
[9] J-P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques, Publ. Math. I. H. E. S. 12(1962), 69–85

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
E-mail address: adolphs@math.okstate.edu

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
E-mail address: sperber@math.umn.edu