Transcriptome analysis reveals normalization effect of nicotinamide and butyrate sodium on breast muscles of broilers under high stocking density

Yuqin Wu
China Agricultural University https://orcid.org/0000-0002-1762-1896

Youli Wang
China Agricultural University

Dafei Yin
China Agricultural University

Tahir Mahmood
China Agricultural University

Jianmin Yuan (✉ yuanjm@cau.edu.cn)

Research article

Keywords: stocking density; broiler; nicotinamide; butyrate sodium; transcriptome

Posted Date: October 24th, 2019

DOI: https://doi.org/10.21203/rs.2.16378/v1

License: ☑️ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on June 18th, 2020. See the published version at https://doi.org/10.1186/s12864-020-06827-0.
Abstract

Background In recent years, increased attention has been focused on breast muscle yield and meat quality in poultry production. Supplementation with nicotinamide and butyrate sodium can improve the meat quality of broilers. However, the potential molecular mechanism is not clear yet. This study was designed to investigate the effects of supplementation with a combination of nicotinamide and butyrate sodium on breast muscle transcriptome of broilers under high stocking density.

Methods A total of 300 21-d-old Cobb broilers were randomly allocated into 3 groups based on stocking density: low stocking density control group (L; 14 birds/m²), high stocking density control group (H; 18 birds/m²), and high stocking density group provided with a combination of 50 mg/kg nicotinamide and 500 mg/kg butyrate sodium (COMB; 18 birds/m²), raised to 42 days of age.

Results The H group significantly increased cooking losses, pH decline and activity of lactate dehydrogenase in breast muscle while COMB showed a significant decrease in these indices (P < 0.05). The transcriptome results showed that key genes involved in glycolysis, proteolysis and immune stress were up-regulated whereas those relating to muscle development, cell adhesion, cell matrix and collagen were down-regulated in the H group. In contrast, genes related to muscle development, hyaluronic acid, mitochondrial function, and redox pathways were up-regulated while those associated with inflammatory response, acid metabolism, lipid metabolism, and glycolysis pathway were down-regulated in the COMB group.

Conclusions The combination of nicotinamide and butyrate sodium may improve muscle quality by enhancing mitochondrial function and antioxidant capacity, inhibiting inflammatory response and glycolysis, and promoting muscle development and hyaluronic acid synthesis.

Background

Intensive stocking in the rapidly developing poultry industry worldwide has become a norm. However, high stocking density causes oxidative stress in broilers [1] and reduces the tenderness and increases the drip loss of breast muscle [3, 4]. Oxidation is one of the leading reasons for the deterioration of meat quality [2], and oxidative stress causes protein and lipid peroxidation as well as cellular damage [5, 6] which ultimately affects meat quality [7]. Nicotinamide (NAM) reduces oxidative stress and inhibits reactive oxygen species (ROS) production [8, 9]. Dietary supplementation with NAM has been observed to minimize the formation of carbonylated proteins in the liver of high-fat fed mice [10]. Butyrate sodium (BA) could also improve antioxidant capacity in a human study [11]. Further, the addition of BA can enhance the activities of superoxide dismutase and catalase and reduce the level of malondialdehyde in serum [12]. Butyrate treatment has been reported to decrease the levels of markers of oxidative stress and apoptosis in mice [13]. As treatment with NAM and BA both can elevate antioxidant capacity and muscle function, it may improve the muscle quality of broilers under high stocking density. Dietary supplementation with 60 mg/kg niacin (NAM precursor) reduces the drip loss of breast muscles in broilers [14]. Dietary supplementation with BA can increase broiler weight, decrease abdominal fat percentage [15], and reduce intramuscular fat content [16].

Mitochondrial biogenesis has previously been associated with preservation of muscle mass and beneficial effects on metabolism [17]. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) is a crucial regulator of mitochondrial biogenesis. Replenishment with nicotinamide adenine dinucleotide (NAD) induces mitochondrial biogenesis by increasing PGC1α expression [18, 19]. NAM is the primary source of NAD which is obtained through the salvage pathway. As a precursor of NAD, treatment with NAM also enhances PGC-1α expression [20]. Impaired intramuscular NAD synthesis compromises skeletal muscle mass and strength over time, which can be quickly restored with an oral NAD precursor [21]. Besides, NAD biosynthesis alleviates muscular dystrophy in a zebrafish model [22] and promotes muscle function in Caenorhabditis elegans [23]. Addition of niacin (precursor of NAM) has been reported to increase the number of oxidative type I fibres in skeletal muscles of growing pigs [24] and induce type II to type I muscle fibre transition in sheep [25]. Further, supplementation with butyrate increases mitochondrial function and biogenesis of skeletal muscle in mice and rats [26, 27]. Further, the intake of BA increases the percentage of type 1 fibres [26, 28] and muscle fibre cross-sectional area in skeletal muscle [13].

Although supplementation with NAM or BA alone can elevate antioxidant capacity and improve the meat quality of broilers, the effect of combined supplementation with NAM and BA on the meat quality of broilers is not clear yet. Therefore, we performed transcriptome sequencing of broiler breast muscles to elucidate the molecular mechanism of the effect of feeding density and nutrient regulation on meat quality.

Results

Meat quality

Compared with the L group, the H group showed significantly increased cooking loss of breast muscle (P < 0.05). The COMB group showed decreased cooking loss compared with the H group (P < 0.05). Besides, the drip loss in the COMB group was lower than that in the L group, as
well (P < 0.05) (Figure 1).

The 45-min pH value in the H group was higher than that in the other 2 groups (P < 0.05) while there was no significant difference in 24-h pH values among the groups. Thus, the pH decline during 45 min to 24 h in the H group was significantly higher than that in the other 2 groups, indicating that the H group had rapid pH drop rate, which was attenuated in the COMB group under high stocking density (Figure 2).

Anti-oxidant capacity

The activity of LDH in the H group was higher (P < 0.05) than that in the L group. The COMB group had significantly decreased (P < 0.05) activity of LDH when compared with the H group. However, stocking density had no significant effect on the activities of CK, T-AOC, MDH, anti-superoxide anion and the content of hydroxyproline (Table 3).

RNA sequencing data and differentially expressed genes (DEGs)

In the principal component analysis (PCA), there was a clear divergence among the H, L and COMB groups. In the Venn diagram, the number of identified genes in the H, L and COMB were 11777, 12554 and 11633, respectively (Figure 3). Compared with the H group, the number of DEGs in the L group and COMB group were 3752 and 773, respectively (Figure 4).

The gene sets were produced by DEGS. From Venn analysis of genes sets, we found that there were 1310 genes shared in common between the COMB group and the L group. Nevertheless, there were only 6 genes owed by both the COMB group and the H group. Similarly, from the iPath map of metabolic pathways, there were a total of 830 pathways annotated in common. In contrast, there was only 1 pathway owed by both the COMB group and the H group (Figure 5).

Up-regulated genes in the H group

Compared with those in the L group, a total of 1894 genes were up-regulated in the H group (Figure 4), which were mainly involved in muscle contraction, cell localization, ion transport, lipid metabolism, glycolysis, proteolysis, and immune stress (Figure 6).

Muscle contraction-related pathways were enriched in the H group. They involved vital genes including MYLK2, NOS1, TMOD4, and Six1 (Table 4). The H group was enriched for cell-localization-related genes such as KEAP1, CDKN1A, ERBB4, and TMD4 (Table 4). Additionally, high-density up-regulated ion and amino acid transport-related genes included KCNJ12, KCNA7, SLC38A3 and SLC38A4, which are involved in ion transmembrane transport and transporter activity (Table 5). High-density enriched glycolysis-related pathways included fructose metabolism, fructose-2,6-diphosphate 2-phosphatase activity, and fructose 2,6-diphosphate metabolism (Table 6). The lipid metabolism-related genes such as MID1IP1, ACACB and Lpin1 were up-regulated in H group, which are involved in lipid synthesis and lipid oxidation (Table 6).

Stress response pathways including non-biologically stimulated cellular responses, extracellular stimuli response and nutritional level response were also enriched in the H group. Furthermore, high-density up-regulated proteolysis-related genes include TINAG, USP24, OTUD1, KEAP1, KLHL34, and SMCR8. Also, high-density enriched immune pathways include the regulation of host defence responses to viruses and prostaglandin receptor-like binding (Table 7).

In Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, genes involved in calcium signalling pathway (RYR), inflammatory mediator regulation of RTP channels (PLA2) and chemokine signalling pathway (SOS) (Fig. S1-S3) were enriched in the H group.

Down-regulated genes in the H group

Compared with those in the L group, a total of 1858 genes were down-regulated in the H group (Figure 4), which were involved in cell adhesion, cell matrix, and cell migration, etc (Figure 7).

The genes involved in muscle development include muscle fibre assembly and binding (LMOD2, MYOZ2 and ACTN1, etc.) and muscle fibre development (DSG2, LMOD2 and FSCN1, etc.), which were down-regulated in H group (Table 8). High-density also down-regulated genes related to cell-matrix pathways such as MMP9, FBLN1, THBS4, and VCAN. High-density also down-regulated collagen synthesis and collagen binding related genes including ADAMTS3, ADAMTS14, COL1A2, and LUM (Table 9). Besides, the adhesion-associated genes including DSG2, CSTA, THY1, TGFβ1, NOV, CDH11 and FN1 were diminished. Additionally, antioxidant genes including MGST2, PTGS2, NCF1, SOD3, and CYBB were also down-regulated (Table 10).

In KEGG enrichment analysis, down-regulated genes in the H group were involved in ECM-receptor interaction (COL1A3, THBS1, FN1, TN, ITGA5, ITGA8 and ITGB8), adherens junction (SHP-1, TGFβR, α-Actinin and Slug) and focal adhesion (Actinin and MLC) (Fig. S4-S6).

Up-regulated genes in the COMB group
Compared with those in the H group, up-regulated genes in the COMB group were involved in muscle development, hyaluronic acid synthesis, mitochondrial function, and redox pathway (Figure 8).

The muscle development-related pathways enriched in the COMB group included positive regulation of muscle tissue development and muscle cell decision processes, which involved key genes such as MYF6, LMCD1 and TRPC3. Besides, the COMB group was enriched for mitochondria-associated pathways such as electron transport chains, mitochondrial respiratory chain complex I and mitochondrial protein complex pathways, which involved genes including TOMM6, NDUFV1, NDUFS5, NDUFB2, NDUF2, LMCD1, ZNF593 and COASY (Table 11). The hyaluronic acid-related genes up-regulated in the COMB group included HYAL1 and HYAL3. Besides, the redox-related genes including LDHD, CPOX, SUOX, NDUFV1, GRHPR, DOHH and NDUF2 were up-regulated in the COMB group, which were involved in the pathways such as redox process, NAD binding, NADPH binding and NADH dehydrogenase complex (Table 12). In KEGG enrichment analysis, up-regulated genes in the COMB group were involved in oxidative phosphorylation (NDUFS5, NDUVF1, NDUF2, NDUF13, NDUF12, NDUF7 and NDUC2) (Fig. S7).

Down-regulated genes in the COMB group

Compared with those in the H group, down-regulated genes in the COMB group were involved in the inflammatory response, acid metabolism, fatty acid metabolism, and glycolysis-related pathways (Figure 9).

The inflammatory response-related genes down-regulated in the COMB group included CCR5 and ALOX5 while the immune response-related genes included C1S, BLK, CCR5 and MARCH1 (Table 13). The acid metabolism-related pathways include organic acid synthesis process, oxoacid metabolism process and carboxylic acid synthesis process, which involved genes such as PSAT1, SCD, MAT1A, ALOX5, ST3GAL1 and ALDOB. The genes involved in fatty acid metabolism pathways include SCD and ALOX5. In addition, down-regulated genes in the COMB group were involved in glycolytic and carbohydrate metabolism, which included GALNT16, ST3GAL1, ALDOB and MAT1A (Table 13).

In KEGG enrichment analysis, genes involved in the regulation of lipolysis in adipocytes (PLIN), glycolysis/gluconeogenesis (ALDO) and arachidonic acid metabolism (ALOX5) were down-regulated in the COMB group (Fig. S8-S10).

Transcriptome differential gene verification

The transcriptome differential genes were verified by real-time PCR, and the gene expression pattern was consistent with the transcriptome results (Figure 10).

Discussion

In the current study, the H group showed significantly increased cooking loss of breast muscle when compared with the L group. The muscle disease such as PSE (Pale, Soft and Exudative) meat [36] and wooden breast [37] have higher cooking loss than normal meat.

Stress is an essential cause of the decline in meat quality. In this study, the activity of LDH in the H group was higher than that in the L group. In transcriptome analysis, the enriched genes in the H group were involved in stimuli response pathway. In the H group, genes encoding nitric oxide synthase 1 (NOS1), Kelch-Like ECH-associated protein 1 (KEAP1) and cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A) were up-regulated. High levels of NO reduce the antioxidant capacity of post-mortem muscles, increasing the accumulation of ROS and reactive nitrogen, resulting in high levels of protein oxidation. Studies have shown that inhibition of nitric oxide synthase can significantly reduce protein carbonyl content and protein oxidation [38]. Inhibition of CDKN1A expression by miRNAs promotes myoblast proliferation [39]. Up-regulation of KEAP1 expression increases the degradation of Nrf2 in cells, making cells more susceptible to free radical damage [40]. Heat stress can reduce the oxidative stability of broiler muscle protein and reduce the strength of the myofibrillar gel, resulting in increased drip loss and cooking loss in broilers [41]. A study has shown that genes involved in the stimulation response pathway are significantly enriched in muscles with high drip loss [42]. Therefore, increased expression of stress pathway-related genes such as KEAP1 and CDKN1A may be one of the causes of muscle quality deterioration.

This study found that the H group had the fastest pH decline rate. The rapid decline in pH is usually accompanied by an increase in the rate of glycolysis and the accumulation of lactic acid, resulting in a decrease of muscle function [43]. In this study, high stocking density led to up-regulation of genes involved in glycolysis and fat metabolism pathways. Anaerobic glycolysis is a vital energy metabolism pathway for post-mortem broilers. Under anaerobic conditions, muscle glycogen degradation occurs through glycolysis, which causes pyruvate to synthesize lactic acid, thus leading to a decrease in muscle pH due to the accumulation of lactic acid [44, 45]. High stocking density in this study also caused up-regulation of striated muscle contraction pathway-related genes such as SIX homeobox 1 (Six1). It has been found that white streak muscles have up-regulated expression of striated muscle contraction-related genes compared with normal meat [46]. Six1 converts slow muscle fibres into fast muscle fibres [47, 48]. The proportion of fast muscle fibres was negatively correlated with post-mortem pH [49]. Besides,
the enriched genes in the H group were involved in calcium transport, sodium transport, and cation transport. Importantly, ion balance is the basis for maintaining normal physiological functions. Abnormal metabolism caused by high concentrations of calcium ions may be associated with the incidence of turkey PSE [50]. Furthermore, changes in muscle cation homeostasis may mark the beginning of muscle degeneration [51] and cause a reduction in meat quality [52].

Dietary supplementation with niacin (nicotinamide precursor) at 60 mg/kg was reported to reduce the drip loss of breast muscles in broilers [14]. In our study, the COMB group showed significantly reduced drip loss and cooking loss compared with the H group. Further, the COMB group showed significantly decreased activity of LDH compared to the H group. Besides, the COMB group showed inhibited expression of glycolytic and inflammation genes [43].

In KEGG enrichment analysis, the enriched genes in the H group were involved in inflammatory mediator regulation of RTP channels and chemokine signalling pathway. In contrast, the up-regulated genes in the COMB group were involved in the inflammatory response. Macrophage infiltration in the pectoral muscle might cause muscle damage [53]. The muscle disease such as white striped muscle is usually accompanied by elevated expression of immune-related genes [46]. During tissue degeneration, immune cells immediately enter the site of injury, triggering an inflammatory response, and attracting more immune cells to the damaged area. It can cause phagocytosis of cell debris and release of cytokines, prostaglandins and other signalling proteins, resulting in interstitial spaces [54].

We found that key genes down-regulated in the H group, such as MYOZ2, were involved in muscle development, cell adhesion, cell matrix, collagen, and cytoskeleton. MYOZ2 belongs to sarcomeric family and links calcineurin to alpha-actinin at the Z-line of skeletal muscle sarcomere and can play a role in skeletal muscle differentiation and growth [55]. It was suggested that MYOZ2 knockout mice had neuromuscular disease [56]. Also, genes down-regulated in the H group were involved in cell matrix and collagen pathways. Extracellular matrix (ECM) is a major macromolecule in skeletal muscle and has a substantial effect on meat quality. The remodelling of ECM is mainly regulated by matrix metalloproteinases. The expression of matrix metalloproteinase-1 is negatively correlated with cooking loss and positively correlated with hydraulic performance [57]. Collagen is an abundant connective tissue protein that is an important factor in the tenderness and texture of the meat and is well resistant to physical damage during cooking [58]. The addition of collagen increases the ability of pork [59] and poultry [60] to combine with water and reduces cooking losses. Furthermore, high stocking density downregulates cell adhesion, cytoskeletal and integrin binding-related genes such as integrin subunit alpha 8 (ITGA8), integrin subunit beta 8 (ITGB8) and integrin subunit beta like 1 (ITGBL1). Proteolytic degradation of cell adhesion proteins is associated with the production of drip channels [61]. The cytoskeleton is a highly complex network composed of a large number of connections between myofibrils and myofibrillar membranes. Degradation of the cytoskeleton causes extracellular water to flow into the muscle cells, thereby increasing drip loss [62]. Integrins are heterodimeric cell adhesion molecules that bind the extracellular matrix to the cytoskeleton and play an essential role in controlling cell membrane-cytoskeletal attachment and signalling pathways [63]. The β1 integrin is responsible for the attachment of the cell membrane to the cytoskeleton [64]. Degradation of β1 integrin promotes the formation of water channels between cells and cell membranes, thereby increasing drip loss [65]. In addition, it has been found that integrins are inversely related to pork drip loss [66].

Compared with the H group, the COMB group showed up-regulation of muscle development, hyaluronic acid levels, mitochondrial function, and the redox pathway. Studies have found that hyaluronic acid is a crucial water-holding molecule [67, 68]. Furthermore, supplementation with antioxidant isoflavones can be achieved by reducing lipid peroxidation and increasing oxidative stability in the pectoral muscles [69]. Therefore, enhanced hyaluronic acid biosynthesis and antioxidant capacity may improve muscle quality.

Additionally, up-regulated genes in the COMB group involved the complex I-related gene NDUFS5. The mitochondrial respiratory chain (MRC) consists of four membrane-bound electron transport protein complexes (I-IV) and ATP synthase (complex V) that produce ATP for cellular processes. Complex I deficiency, NADH ubiquinone oxidoreductase is the most common form of MRC dysfunction and is associated with a variety of diseases [70, 71]. Complex I deficiency leads to various physiological disorders such as ATP depletion, calcium homeostasis, ROS accumulation [72] and induction of apoptosis [73]. A study found that mitochondrial and oxidative phosphorylation-related gene expression was negatively correlated with drip loss. A negative correlation with drip loss means that there is a decrease in the number of mitochondria in muscles with high drip loss [74].

Conclusion

High stocking density may cause oxidative stress, abnormal muscle contraction, and abnormal metabolism of glycolipids; destroy ion channels and cell matrix; reduce muscle strength by inhibiting muscle development, and cell adhesion and collagen synthesis, all of which result in reduced muscle function. Supplementation with NAM and BA in combination can improve mitochondrial function and antioxidant capacity, and inhibit inflammatory response and glycolysis by promoting muscle development and hyaluronic acid synthesis, thereby reducing drip loss of the breast muscle and improving muscle quality (Figure 11).
Methods

Experimental birds, diets, and management

A total of 300, 21-day-old Cobb broilers, were randomly divided into 3 groups: low stocking density (L, 14 birds/m²), high stocking density (H, 18 birds/m²) and combination of NAM and BA (COMB, 18 birds/m²), with 6 replicates for each group. The L and H groups were fed a basal diet. The COMB group was fed basal diet supplemented with 50 mg/kg NAM and 500 mg/kg BA.

NAM (99% purity, Jiangxi Brothers Medicine Co. Ltd., China) and BA (encapsulated, 30% effective content, Hangzhou King Technology Feed Co. Ltd., China) were purchased from the market. The composition and nutrient levels of basal diet are shown in Table 1. Experimental diets were formulated to meet or exceed the minimum nutrient requirements recommended by the National Research Council (1994) [29].

This study was conducted in an experimental chicken farm of the College of Animal Science and Technology, China Agricultural University. Broilers were raised from 21 to 42 days of age, and feed and water were provided ad libitum. The temperature was maintained at 20-21 °C throughout the experiment while the illumination period was 18 h per day.

Sample collection

At 42-day, after 5 h of starvation, 1 broiler per replicate was randomly selected and euthanized by intravenous injection of pentobarbital sodium (390 mg/ml) at a dose of 300 mg/kg. The breast muscle of each broiler was collected and put into liquid nitrogen immediately, then stored at -80°C until further analysis. Each group had six replicates for the determination of meat quality, enzyme activities and mRNA relative expression; there were three biology replicates in each group for RNA-sequencing.

Meat quality analysis

After slaughtering, the right side of the major pectoral muscle was quickly removed for meat quality evaluation, including drip loss, cooking loss and pH. For the determination of drip loss, approximately 10 g muscle was weighed (W1) and placed in a sealed polyethylene bag at 4°C. The muscle was reweighed (W2) after 24 h, and drip loss was expressed as (W1–W2) / W2 * 100% [30]. Cooking loss was determined according to the method described by Cai et al. [31]. Cooking loss of samples was calculated as: (initial weight-final weight)/initial weight × 100%. The pH values of the pectoral muscle at 45 minutes and 24 hours were measured by a pH meter (testo 205; Germany). Each sample was tested at 3 different locations (top, middle and bottom) and the average of 3 measurements was calculated.

Enzyme Activity Determination in breast muscle

The activities of total antioxidant capacity (T-AOC, cat#A015), lactate dehydrogenase (LDH, cat#A020-2), creatine kinase (CK, cat#A032), malic dehydrogenase (MDH, cat#A021-2), anti-superoxide anion (cat#A052) and the content of hydroxyproline (cat# A030-2) in breast muscle were measured with commercial analytical kits according to the manufacturer's recommendations (Jian Cheng Bioengineering Institute, Nanjing, China).

RNA extraction

Total RNA was extracted from the breast muscle using TRIzol® Reagent according to the manufacturer's instructions (Invitrogen, Carlsbad, CA, USA). Then RNA quality was determined by 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and quantified using the ND-2000 (Nanodrop Technologies, Wilmington, Delaware). Only high-quality RNA sample (OD260/280=1.8~2.2, OD260/230≥2.0, RIN≥6.5, 28S:18S≥1.0, >10μg) was used to construct a sequencing library.

Library preparation and Illumina Hiseq xten Sequencing

RNA-seq transcriptome library was prepared following TruSeqTM RNA sample preparation Kit from Illumina (San Diego, CA, USA) using 5μg of total RNA. Shortly, messenger RNA was isolated according to the polyA selection method by oligo (dT) beads and then fragmented by fragmentation buffer firstly. Secondy, double-stranded cDNA was synthesized using a SuperScript double-stranded cDNA synthesis kit (Invitrogen, CA, USA) with random hexamer primers (Illumina). Then the synthesized cDNA was subjected to end-repair, phosphorylation and ‘A’ base addition according to Illumina's library construction protocol. Libraries were size selected for cDNA target fragments of 200-300 bp on 2% Low Range Ultra Agarose followed by PCR amplified using Phusion DNA polymerase (NEB) for 15 PCR cycles. After quantified by TBS380, paired-end RNA-seq sequencing library was sequenced with the Illumina HiSeq xten (2 × 150bp read length).

Read mapping
The raw paired-end reads were trimmed and quality controlled by SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/sickle) with default parameters. Then clean reads were separately aligned to the reference genome with orientation mode using TopHat version2.0.0 (http://tophat.cbcb.umd.edu/) [32] software. The mapping criteria of bowtie was as follows: sequencing reads should be uniquely matched to the genome allowing up to 2 mismatches, without insertions or deletions. Then the region of the gene was expanded following depths of sites and the operon was obtained. Also, the whole genome was split into multiple 15kbp windows that share 5kbp. New transcribed regions were defined as more than 2 consecutive windows without the overlapped region of genes, where at least 2 reads mapped per window in the same orientation.

Differential expression analysis and Functional enrichment

To identify DEGs (differentially expressed genes) between two different samples, the expression level of each transcript was calculated according to the fragments per kilobase of exon per million mapped reads (FRKM) method. RSEM (http://deweylab.biostat.wisc.edu/rsem/) [33] was used to quantify gene abundances. R statistical package software EdgeR (Empirical analysis of Digital Gene Expression in R, http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html) [34] was utilized for differential expression analysis. Besides, functional-enrichment analysis including GO and KEGG were performed to identify which DEGs were significantly enriched in GO terms and metabolic pathways at P-value ≤ 0.05 compared with the whole-transcriptome background. GO functional enrichment and KEGG pathway analysis were carried out by Goatools (https://github.com/tanghaibao/Goatools) and KOBAS (http://kobas.cbi.pku.edu.cn/home.do) [34].

Muscle developmental gene

The cDNA was synthesized by using a reverse transcription kit PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time) (RR047A, TAKARA, Japan). Then it was stored in a -80 °C refrigerator. Fluorescence quantitative PCR was performed according to the instructions of TB Green™ Premix Ex Taq™ (Tli RNaseH Plus) (RR420A, TAKARA, Japan). The reaction apparatus was a 7500 fluorescence detection system (Applied Biosystems), and the PCR reaction conditions were as follows: after pre-denaturation at 95 °C for 30 s, 40 cycles of denaturation at 95 °C for 5 s and 60 °C for 34 s. After the completion of PCR amplification, the dissolution curve was observed, and agarose gel electrophoresis was performed to identify whether the amplified gene fragment conformed to the design length, and the specificity of the amplification product was verified. The target gene and the internal reference gene beta-actin primer sequence are shown in Table 2. The results of gene expression were analyzed and compared using $2^{\Delta \Delta CT}$.

Statistical analysis

The results are expressed as means with their standard error mean (SEM). One-way ANOVA was used for single factor analysis by SPSS 20.0 for Windows (SPSS Inc. Chicago, IL). Differences were considered significant at $P < 0.05$.

Abbreviations

L: low stocking density group; H: high stocking density group; COMB: a combination of nicotinamide and sodium butyrate group; NAM: nicotinamide; ROS: reactive oxygen species; BA: butyrate sodium; PGC1α: peroxisome proliferator-activated receptor-γ coactivator 1α; NAD: nicotinamide adenine dinucleotide; T-AOC: total antioxidant capacity; LDH: lactate dehydrogenase; CK: creatine kinase; MDH: malic dehydrogenase; DEGs: differentially expressed genes; NOS1: nitric oxide synthase 1; KEAP1: Kelch-Like ECH-associated protein 1; CDKN1A: cyclin-dependent kinase inhibitor 1A.

Declarations

Conflict of Interest

All authors declare no conflicts of interest.

Acknowledgments

We would like to thank Dr. Adam John Rose from Monash University for his critical revision and suggestions.

Funding

This research was supported by the National Key Research and Development Program of China (Project Number: 2016YFD0500509-9) and the System for Poultry Production Technology, Beijing Agriculture Innovation Consortium (Project Number: BAIC04-2018).

Availability of data and materials
All the sequencing data are deposited in SRA under the Bioproject accession number PRJNA558637.

Authors’ contributions

JMY conceived and designed the experiment; YQW, YLW, DFY performed the experiments. YQW analyzed RNA Sequencing data and drafted the manuscript. TM and JMY reviewed and edited the manuscript. All authors critically revised the manuscript for important intellectual content and all approved the final version of this manuscript.

Ethics approval and consent to participate

All procedures used in our experiments were approved by the Institutional Animal Care and Use Committee of the China Agricultural University (Beijing, China, permit number SYXK20130013).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Najafi P, Zulkifli I, Jajuli NA, Farjam AS, Ramiah SK, Amir AA, O’Reilly E, Eckersall D: Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens. INT J BIOMETEOROL 2015, 59(11):1577-1583.
2. Falowo AB, Fayemi PO, Muchenje V: Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. FOOD RES INT 2014, 64:171-181.
3. Zhang YR, Zhang LS, Wang Z, Liu Y, Li FH, Yuan JM, Xia ZF: Effects of stocking density on growth performance, meat quality and tibia development of Pekin ducks. ANIM SCI J 2018, 89(6):925-930.
4. Patria CA, Afrin R, Arief II: Physical and microbiological qualities of kampong-broiler crossbred chickens meat raised in different stocking densities. Media Peternakan 2016, 39(3):141-147.
5. Zhang L, Yue HY, Wu SG, Xu L, Zhang HJ, Yan HJ, Cao YL, Gong YS, Qi GH: Transport stress in broilers. II. Superoxide production, adenosine phosphate concentrations, and mRNA levels of avian uncoupling protein, avian adenosine nucleotide translocator, and avian peroxisome proliferator-activated receptor-gamma coactivator-1alpha in skeletal muscles. Poult Sci 2010, 89(3):393-400.
6. Selman C, McLaren JS, Himanka MJ, Speakman JR: Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal. Free Radic Biol Med 2000, 28(8):1279-1285.
7. Zhang C, Yang L, Zhao X, Chen X, Wang L, Geng Z: Effect of dietary resveratrol supplementation on meat quality, muscle antioxidative capacity and mitochondrial biogenesis of broilers. J Sci Food Agric 2018, 98(3):1216-1221.
8. Choi HJ, Jang SY, Hwang ES: High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8(+) T Cell Activation. MOL CELLS 2015, 38(10):918-924.
9. Kwak JY, Ham HJ, Kim CM, Hwang ES: Nicotinamide exerts antioxidative effects on senescent cells. MOL CELLS 2015, 38(3):229-235.
10. Mitchell SJ, Bernier M, Aon MA, Cortassa S, Kim EY, Fang EF, Palacios HH, Ali A, Navas-Enamorado I, Di Francesco A et al: Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. CELL METAB 2018, 27(3):667-676.
11. Jahns F, Wilhelm A, Jablonowski N, Mothes H, Greulich KO, Glei M: Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues. Mol Carcinog 2015, 54(4):249-260.
12. Zhang WH, Jiang Y, Zhu QF, Gao F, Dai SF, Chen J, Zhou GH: Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. BRIT POULTRY SCI 2011, 52(3):292-301.
13. Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Van Remmen H: The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. AGING CELL 2015, 14(6):957-970.
14. Jiang RR, Zhao GP, Chen JL, Zheng MQ, Zhao JP, Li P, Hu J, Wen J: Effect of dietary supplemental nicotinic acid on growth performance, carcass characteristics and meat quality in three genotypes of chicken. J ANIM PHYSIOL AN N 2011, 95(2):137-145.
15. Panda AK, Rao SVR, Raju MVLN, Sunder GS: Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. ASIAN AUSTRAIL J ANIM 2009, 22(7):1026-1031.
16. Xiong J, Qiu H, Bi Y, Zhou HL, Guo S, Ding B: Effects of Dietary Supplementation with Tributyrin and Coated Sodium Butyrate on Intestinal Morphology, Disaccharidase Activity and Intramuscular Fat of Lipopolysaccharide-Challenged Broilers. BRAZ J POULTRY SCI 2018, 20(4):707-715.

17. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT: Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 2009, 106(48):20405-20410.

18. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, Mottis A, Jo YS, Viswanathan M, Schoonjans K et al: The NAD(+) /Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. CELL 2013, 154(2):430-441.

19. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle ER, Lutolf MP, Aebersold R et al: NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. SCIENCE 2016, 352(6292):1436-1443.

20. Hathorn T, Snyder-Keller A, Messer A: Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington’s disease. NEUROBIOL DIS 2011, 41(1):43-50.

21. Frederick DW, Lero E, Liu D, Davila AJ, Chellappa K, Silverman IM, Quinn WR, Gosai SJ, Tichy ED, Davis JG et al: Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. CELL METAB 2016, 24(2):269-282.

22. Goody MF, Kelly MW, Reynolds CJ, Khalil A, Crawford BD, Henry CA: NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLOS BIOL 2012, 10(10):e1001409.

23. Vrablik TL, Wang W, Upadhyay A, Hanna-Rose W: Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans. DEV BIOL 2011, 349(2):387-394.

24. Khan M, Ringseis R, Mooren FC, Kruger K, Most E, Eder K: Niacin supplementation increases the number of oxidative type I fibers in skeletal muscle of growing pigs. BMC VET RES 2013, 9:177.

25. Khan M, Couturier A, Kubens JF, Most E, Mooren FC, Kruger K, Ringseis R, Eder K: Niacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheep. ACTA VET SCAND 2013, 55:85.

26. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J: Butyrate improves insulin sensitivity and increases energy expenditure in mice. DIABETES 2009, 58(7):1509-1517.

27. Huang Y, Gao S, Jun G, Zhao R, Yang X: Supplementing the maternal diet of rats with butyrate enhances mitochondrial biogenesis in the skeletal muscles of weaned offspring. Br J Nutr 2017, 117(1):12-20.

28. Henagan TM, Stefanska B, Fang Z, Navard AM, Ye J, Lenard NR, Devarshi PP: Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 2015, 172(11):2782-2798.

29. National Research Council. Nutrient requirement of poultry. 9th ed. Washington, DC: National Academy Press, 1994.

30. Liu Y, Yuan JM, Zhang LS, Zhang YR, Cai SM, Yu JH, Xia ZF: Effects of tryptophan supplementation on growth performance, antioxidative activity, and meat quality of ducks under high stocking density. Poult Sci 2015, 94(8):1894-1901.

31. Cai K, Shao W, Chen X, Campbell YL, Nair MN, Suman SP, Beach CM, Guyton MC, Schilling MW: Meat quality traits and proteome profile of woody broiler breast (pectoralis major) meat. Poult Sci 2018, 97(1):337-346.

32. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. BIOINFORMATICS 2009, 25(9):1105-1111.

33. Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC BIOINFORMATICS 2011, 12:323.

34. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. BIOINFORMATICS 2010, 26(1):139-140.

35. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L: KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. NUCLEIC ACIDS RES 2011, 39(Web Server issue):W316-W322.

36. Van Laack R, Liu CH, Smith MO, Loveday HD: Characteristics of pale, soft, exudative broiler breast meat. POULTRY SCI 2000, 79(7):1057-1061.

37. Mudalal S, Lorenzi M, Soglia F, Cavani C, Petracci M: Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. ANIMAL 2015, 9(4):728-734.

38. Zhang W, Marwan AH, Samaraweera H, Lee EJ, Ahn DU: Breast meat quality of broiler chickens can be affected by managing the level of nitric oxide. Poult Sci 2013, 92(11):3044-3049.

39. Wang J, Song C, Cao X, Li H, Cai H, Ma Y, Huang Y, Lan X, Lei C, Ma Y et al: MiR-208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDK11A. J CELL PHYSIO 2019, 234(4):3720-3729.

40. Kensler TW, Wakabayashi N, Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007, 47:89-116.
41. Wang RR, Pan XJ, Peng ZQ: Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poult Sci 2009, 88(5):1078-1084.

42. Wimmers K, Murani E, Ponsuksili S: Functional genomics and genetical genomics approaches towards elucidating networks of genes affecting meat performance in pigs. BRIEF FUNCT GENOMICS 2010, 9(3):251-258.

43. Huang JC, Yang J, Huang M, Zhu ZS, Sun XB, Zhang BH, Xu XL, Meng WG, Chen KJ, Xu BC: Effect of pre-slaughter shackling and wing flapping on plasma parameters, postmortem metabolism, AMPK, and meat quality of broilers. Poult Sci 2018, 97(5):1841-1847.

44. Zeferino CP, Komiyama CM, Pelicia VC, Fascina VB, Aoyagi MM, Coutinho LL, Sartori JR, Moura AS: Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. ANIMAL 2016, 10(1):163-171.

45. Huang JC, Yang J, Huang F, Huang M, Chen KJ, Xu XL, Zhou GH: Effect of fast pH decline during the early postmortem period on calpain activity and cytoskeletal protein degradation of broiler M. pectoralis major. Poult Sci 2016, 95(10):2455-2463.

46. Marchesi J, Ibelli A, Peixoto JO, Cantao ME, Pandolfi J, Marciano C, Zanella R, Settles ML, Coutinho LL, Ledur MC: Whole transcriptome analysis of the pectoralis major muscle reveals molecular mechanisms involved with white striping in broiler chickens. Poult Sci 2019, 98(2):590-601.

47. Wu W, Huang R, Wu Q, Li P, Chen J, Li B, Liu H: The role of Six1 in the genesis of muscle cell and skeletal muscle development. INT J BIOL SCI 2014, 10(9):983-989.

48. Sakakibara I, Wurmsner M, Dos SM, Santolini M, Ducommun S, Davaze R, Guemec A, Sakamoto K, Maire P: Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle. SKELET MUSCLE 2016, 6(1):30.

49. Ryu YC, Lee MH, Lee SK, Kim BC: Effects of muscle mass and fiber type composition of longissimus dorsi muscle on postmortem metabolic rate and meat quality in pigs. Journal of Muscle Foods 2006, 17(3):343-353.

50. Strasburg GM, Chiang W: Pale, soft, exudative turkey-The role of ryanodine receptor variation in meat quality. Poult Sci 2009, 88(7):1497-1505.

51. Sandercock DA, Mitchell MA: The role of sodium ions in the pathogenesis of skeletal muscle damage in broiler chickens. Poult Sci 2004, 83(4):701-706.

52. Sandercock DA, Barker ZE, Mitchell MA, Hocking PM: Changes in muscle cell cation regulation and meat quality traits are associated with genetic selection for high body weight and meat yield in broiler chickens. GENET SEL EVOL 2009, 41(8).

53. Nierobisz LS, Felts JV, Mozdziak PE: Apoptosis and macrophage infiltration occur simultaneously and present a potential sign of muscle injury in skeletal muscle of nutritionally compromised, early post-hatch turkeys. Comp Biochem Physiol B Biochem Mol Biol 2009, 153(1):61-65.

54. Kaariainen M, Jarvinen T, Jarvinen M, Rantanen J, Kalimo H: Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports 2000, 10(6):332-337.

55. Braun T, Gautel M: Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 2011, 12(6):349-361.

56. Schiaffino S, Sandri M, Murgia M: Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 2007, 22:269-278.

57. Qi YX, Zhang XH, Wang YQ, Pang YZ, Zhang ZB, Zhang TL, Zhang ZX: Expression of MMP-1, -2, and -8 in longissimus dorsi muscle and their relationship with meat quality traits in cattle. Genet Mol Res 2016, 15(1):15017593.

58. Weston AR, Rogers RW, Althen TG: Review: The Role of Collagen in Meat Tenderness. The Professional Animal Scientist 2002, 18(2):107-111.

59. Schilling MW, Mink LE, Gochenour PS, Marriott NG, Alvarado CZ: Utilization of pork collagen for functionality improvement of boneless cured ham manufactured from pale, soft, and exudative pork. MEAT SCI 2003, 65(1):547-553.

60. Daigle SP, Schilling MW, Marriott NG, Wang H, Barbeau WE, Williams RC: PSE-like turkey breast enhancement through adjunct incorporation in a chunked and formed deli roll. MEAT SCI 2005, 69(2):319-324.

61. Huff-Lonergan E, Lonergan SM: Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. MEAT SCI 2005, 71(1):194-204.

62. Kristensen L, Purslow PP: The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins. MEAT SCI 2001, 58(1):17-23.

63. Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. CELL 1992, 69(1):11-25.

64. van der Flier A, Sonnenberg A: Function and interactions of integrins. CELL TISSUE RES 2001, 305(3):285-298.

65. Lawson MA: The role of integrin degradation in post-mortem drip loss in pork. MEAT SCI 2004, 68(4):559-566.
Table 1. The composition and nutrient level of basal diet

Ingredient	%	Nutrients	%
Corn	62.05	Metabolic energy	3100 Kcal
Soybean meal	26.90	Crude Protein	18.08
Corn Gluten Meal	4.00	Lysine	1.04
Soybean oil	3.10	Methionine	0.49
DL-Methionine	0.18	Threonine	0.74
L-Lysine sulphate	0.40	Tryptophan	0.24
Sodium chloride	0.30	Calcium	0.86
Choline chloride (50%)	0.15	Available Phosphorus	0.32
Vitamin premix^2	0.02	Met+Cys^3	0.80
Trace mineral premix^1	0.20		
Dicalcium phosphate	1.40		
Limestone	1.20		
Phytase	0.02		
Antioxidant	0.03		
Medical stone	0.05		

1 The trace mineral premix provided the following per kg of diets: Cu, 16 mg (as CuSO_4·5H_2O); Zn, 110 mg (as ZnSO_4); Fe, 80 mg (as FeSO_4·H_2O); Mn, 120 mg (as MnO); Se, 0.3 mg (as Na_2SeO_3); I, 1.5 mg (as KI); Co, 0.5mg.

2 The vitamin premix provided the following per kg of diets: vitamin A, 10,000 IU; vitamin D3, 2,400 IU; vitamin E, 20 mg; vitamin K3, 2 mg; vitamin B1, 2 mg; vitamin B2, 6.4 mg; VB6, 3 mg; VB12, 0.02 mg; biotin, 0.1 mg; folic acid, 1 mg; pantothentic acid, 10 mg; nicotinamide, 30 mg.

3 Met+Cys: Methionine+ Cysteine
Gene	Primer sequence (5’-3’)	Size	Accession NO.
GAPDH	Forward: GGTAGTGAAGGCTGCTGCTGATG		
Reverse: AGTTCCACAACACGGTTCGCTGATC	200	NM_204305.1	
ERBB4	Forward: ATCACCAGCATCGAGCACAACAG		
Reverse: CAGGTTCTCCAGTGGCAGGTATTC	114	NM_001030365.1	
TMOD4	Forward: GATGGAGATGGGACGAGATGCTG		
Reverse: CCTTCTCGTGCGACGAGGATTC	135	NM_204774.1	
PTGS2	Forward: ACTGCTGGCCTCGGTCCCTTG		
Reverse: CCTCGTGCACTTCACTACCG	121	NM_001167719.1	
COL1A2	Forward: TCCTCCTGTAACAACGGTCCTG		
Reverse: GAGACCATTGCAGCACTTACC	85	NM_001079714.2	
POSTN	Forward: CAGCCGCATCTGTCACATGAC		
Reverse: CTTCATGTAGCCAGGACCTC	200	NM_001030541.1	
COL14A1	Forward: CCAACTGAGCAGCAGACTC		
Reverse: TCCACTAGGAACACCAGGAGC1TCC	107	NM_205334.1	
TGBF1	Forward: ACCACCAGGACAGCAGACTC		
Reverse: GTTGAGGTCAAGACAGCAGAGC	87	NM_205036.1	
ACTN1	Forward: GCGTGGAACAGATTGCTGCTATTG		
Reverse: ATCTTCTGGCCACCTGGGCATTGAC	88	NM_204127.1	
NDUFA2	Forward: CACGAGCAGACGACTC		
Reverse: TTGGCAACTTCATCCAGCAGCAGG	159	NM_001302137.1	
ADAM19	Forward: GACAGGAGAGGACGACTGACCTGAC		
Reverse: AGGAAGCAGGCTCAGGACTGACTG	166	NM_001195122.1	
CCR5	Forward: GAGATCGCTGTGCGAGGATTC		
Reverse: TGCTGGTGAAGGATGCTAGG | 159 | NM_001271141.1|

Table 3. Enzyme activities of the breast muscle.

Enzyme	L	H	COMB	SEM	P-value
CK	2.51	2.41	2.25	0.12	0.702
LDH	450.38a	724.10b	383.22a	56.74	0.022
T-AOC	100.81	82.17	86.01	8.25	0.650
MDH	1.37	1.21	1.53	0.08	0.252
Anti-superoxide anion	10.30	9.32	10.39	0.39	0.489
Hydroxyproline	155.56	164.22	172.01	8.51	0.755

Table 4. Muscle contraction and cell location related pathways
GO ID	Term Type	Description	P-value	Genes
GO:0044449	CC	contractile fiber part	0.026498	NOS1; TMOD4
GO:0006936	BP	muscle contraction	0.000194	MYLK2; NOS1
GO:0006941	BP	striated muscle contraction	0.000908	MYLK2; NOS1
GO:0003012	BP	muscle system process	0.00051	MYLK2; NOS1
GO:0051015	MF	actin filament binding	0.002704	TMOD4
GO:0003779	MF	actin binding	0.000614	TMOD4
GO:0008092	MF	cytoskeletal protein binding	0.033316	TMOD4
GO:0004687	MF	myosin light chain kinase activity	0.022364	MYLK2

Table 5. Ion transport related pathways

GO ID	Term Type	Description	P-value	Genes
GO:0030001	BP	metal ion transport	0.015075	KCNJ12
GO:0002028	BP	regulation of sodium ion transport	0.017458	NOS1
GO:0051365	BP	cellular response to potassium ion starvation	0.011244	SLC38A3
GO:0006813	BP	potassium ion transport	0.030866	KCNJ12
GO:0034220	BP	ion transmembrane transport	0.015681	SLC38A4; SLC38A3; KCNJ12
GO:0010107	BP	potassium ion import	0.004526	KCNJ12
GO:0006813	BP	potassium ion transport	0.030866	KCNJ12
GO:0098655	BP	cation transmembrane transport	0.024337	SLC38A3; KCNJ12
GO:0006812	BP	cation transport	0.027707	SLC38A3; KCNJ12
GO:0098662	BP	inorganic cation transmembrane transport	0.046453	KCNJ12
GO:0015075	MF	ion transmembrane transporter activity	0.008902	KCNA7; SLC38A4; SLC38A3
GO:0046873	MF	metal ion transmembrane transporter activity	0.007993	KCNJ12
GO:0008324	MF	cation transmembrane transporter activity	0.01451	SLC38A3; KCNJ12
GO:0022890	MF	inorganic cation transmembrane transporter activity	0.022537	KCNJ12
GO:0005261	MF	cation channel activity	0.045897	KCNJ12
GO:0005216	MF	ion channel activity	0.03925	KCNA7; KCNJ12
GO:0015276	MF	ligand-gated ion channel activity	0.026498	KCNJ12
GO:0015079	MF	potassium ion transmembrane transporter activity	0.029581	KCNJ12
Table 7. Proteolysis, immune and stress related pathways

GO ID	Term Type	Description	P-value	Genes
GO:0008234	MF	cysteine-type peptidase activity	0.032179	TINAG; USP24; OTUD1
GO:0031463	CC	Cul3-RING ubiquitin ligase complex	0.028791	KEAP1; KLHL34
GO:0010499	BP	proteasomal ubiquitin-independent protein catabolic process	0.03336	KEAP1
GO:0010508	BP	positive regulation of autophagy	0.034688	SMCR8
GO:1902902	BP	negative regulation of autophagosome assembly	0.03336	SMCR8
GO:1901096	BP	regulation of autophagosome maturation	0.011244	SMCR8
GO:1901098	BP	positive regulation of autophagosome maturation	0.011244	SMCR8

Immune and stress related pathways

GO ID	Term Type	Description	P-value	Genes
GO:0031867	MF	EP4 subtype prostaglandin E2 receptor binding	0.005638	FEM1A
GO:0031862	MF	prostanoid receptor binding	0.005638	FEM1A
GO:0050691	BP	regulation of defense response to virus by host	0.031097	ALKBH5; ALPK1
GO:0022230	BP	positive regulation of defense response to virus by host	0.026558	ALKBH5; ALPK1
GO:0071214	BP	cellular response to abiotic stimulus	0.042948	CDKN1A; SLC38A3
GO:0009991	BP	response to extracellular stimulus	0.022488	ACACB; CDKN1A; SLC38A3
GO:0031667	BP	response to nutrient levels	0.018345	ACACB; CDKN1A; SLC38A3

Table 8. Muscle development related pathway.
Table 9. Cellular matrix and collagen related pathway.

GO ID	Term Type	Description	P-value	Genes
GO:0030198BP	extracellular matrix organization	1.05E-06	MMP9; TGFBI; ABI3BP; POSTN; FBLN1, etc	
GO:0044420CC	extracellular matrix component	2.83E-05	COL1A2; FN1; THBS2; THBS4; LTBP1, etc	
GO:0005614CC	interstitial matrix	0.013106	FN1; ABI3BP	
GO:0043062BP	extracellular structure organization	1.15E-06	MMP9; TGFBI; ABI3BP; ADAMTS14; COL12A1, etc	
GO:0005201MF	extracellular matrix structural constituent	0.017449	MGP; VCAN; FBLN1	
GO:0019897CC	extrinsic component of plasma membrane	0.000874	SERPINE2	
GO:1990430MF	extracellular matrix protein binding	0.047928	ITGGB8	

Table 10. Cell adhesion and antioxidant related pathway.

GO ID	Term Type	Description	P-value	Genes
GO:0032964BP	collagen biosynthetic process	0.047928	ADAMTS3	
GO:0032963BP	collagen metabolic process	0.027114	MMP9; ADAMTS3	
GO:0010712BP	regulation of collagen metabolic process	0.023978	SERPINF2; FAP	
GO:0010710BP	regulation of collagen catabolic process	0.032211	FAP	
GO:0030199BP	collagen fibril organization	0.000216	ADAMTS14; SFRP2; LUM; SERPINF2	
GO:005518MF	collagen binding	0.00265	TGFB1; ABI3BP; COMP; LUM	
GO:005540MF	hyaluronic acid binding	0.037432	TNFAIP6; VCAN	
GO:005581MC	collagen trimer	0.000699	COL1A2; COL12A1; COLEC12C; LUM; COL14A1	
GO:005583CC	fibrillar collagen trimer	0.001541	COL1A2; LUM	
GO:005539MF	glycosaminoglycan binding	3.59E-09	MDK; SLIT3; NOV; SERPINE2; JCHAIN, etc	
GO:1901617BP	organic hydroxy compound biosynthetic process	0.033592	NR4A2; PLTP; LCAT; AKR1D1	
GO ID	Term Type	Description	P-value	Genes
----------	-----------	---	----------	---
GO:0007155	BP	cell adhesion	3.1E-08	DSG2; TGFBI; NOV; FN1; THBS2; COMP, etc
GO:0098609	BP	cell-cell adhesion	0.030671	DSG2; CSTA; NOV; CDH11; THBS4; BMP5, etc
GO:0007160	BP	cell-matrix adhesion	0.02187	FN1; ITGB8; ITG8
GO:0050839	MF	cell adhesion molecule binding	0.000141	DSG2; THY1; TGFBI; NOV; FN1; THBS4, etc
GO:005911	CC	cell-cell junction	0.001091	DSG2; CD3E; GJA1, NOV; ABCB11; ACTN1, etc
GO:0007045	BP	cell-substrate adherens junction assembly	0.010838	THY1; FN1
GO:0045216	BP	cell-cell junction organization	2.94E-06	DSG2; THY1; GJA1; FN1; WNT11; FSCN1
GO:0007043	BP	cell-cell junction assembly	0.028627	WNT11; FSCN1
GO:0034332	BP	adherens junction organization	0.048995	THY1; FN1
GO:0034329	BP	cell junction organization	0.002273	THY1; FN1; WNT11; FSCN1
GO:0010811	BP	positive regulation of cell-substrate adhesion	0.00285	THY1; FN1; ABI3BP; EDIL3; FBLN1
GO:0034333	BP	adherens junction assembly	0.027114	THY1; FN1
GO:0005178	MF	integrin binding	2.56E-07	THY1; TGFBI; NOV; FN1; THBS4; EDIL3, etc

Antioxidant related pathways

GO ID	Term Type	Description	P-value	Genes
GO:0016209	MF	antioxidant activity	0.040595	MGST2; PTGS2; SOD3
GO:0004784	MF	superoxide dismutase activity	0.047928	SOD3
GO:0006801	BP	superoxide metabolic process	0.00047	NCF1; SOD3; CYBB
GO:1901031	BP	regulation of response to reactive oxygen species	0.048995	HGF
GO:0050664	MF	oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor	0.01556	NCF1; CYBB
GO:0098869	BP	cellular oxidant detoxification	0.040595	MGST2; PTGS2; SOD3

Table 11. Muscle development and mitochondria related pathway.

Number	GO ID	Term Type	Description	P-value	Genes
Muscle development related pathways					
GO:1901741	BP	positive regulation of myoblast fusion	0.000717	MYF6	
GO:0010831	BP	positive regulation of myotube differentiation	0.003478	MYF6	
GO:0014743	BP	regulation of muscle hypertrophy	0.00447	LMCD1:TRPC3	
GO:0048643	BP	positive regulation of skeletal muscle tissue development	0.00447	MYF6	
GO:1901863	BP	positive regulation of muscle tissue development	0.020276	MYF6	
GO:0051149	BP	positive regulation of muscle cell differentiation	0.025719	MYF6	
GO:0048743	BP	positive regulation of skeletal muscle fiber development	0.035113	MYF6	
GO:0045844	BP	positive regulation of striated muscle tissue development	0.017276	MYF6	
GO:0051155	BP	positive regulation of striated muscle cell differentiation	0.011102	MYF6	
GO:0048636	BP	positive regulation of muscle organ development	0.017276	MYF6	
GO:0014744	BP	positive regulation of muscle adaptation	0.023546	TRPC3	
Mitochondria related pathways					
GO:0042775	BP	mitochondrial ATP synthesis coupled electron transport	0.023546	NDUFV1	
GO:0022904	BP	respiratory electron transport chain	0.025719	NDUFV1	
GO:0022900	BP	electron transport chain	0.029237	NDUFV1	
GO:0098800	CC	respiratory chain complex	0.002546	NDUFV1:NDUF5:NDUF2	
GO:0045271	CC	respiratory chain complex I	0.000532	NDUFV1:NDUF5:NDUF2	
GO:0005747	CC	mitochondrial respiratory chain complex I	0.00532	NDUFV1:NDUF5:NDUF2	
GO:0098798	CC	mitochondrial protein complex	0.022727	TOMM6:NDUFV1:NDUF5:NDUF2	
GO:0098800	CC	inner mitochondrial membrane protein complex	0.009305	NDUFV1:NDUF5:NDUF2	
GO:0005742	CC	mitochondrial outer membrane translocase complex	0.046544	TOMM6	
GO:0098779	BP	mitophagy in response to mitochondrial depolarization	0.04939	LMCD1:ZN5F93	
Table 12. Hyaluronan and redox related pathway.

Number	GO ID	Term Type	Description	P-value	Genes	
	GO:0030213	BP	hyaluronan biosynthetic process	0.023546	HYAL1	
	GO:0030214	BP	hyaluronan catabolic process	0.000207	HYAL3	HYAL1
	GO:0030212	BP	hyaluronan metabolic process	0.001519	HYAL3	HYAL1
	GO:1900106	BP	positive regulation of hyaluronan cable assembly	0.017711	HYAL1	
	GO:0004415	MF	hyaluronoglucosaminidase activity	0.000514	HYAL3	HYAL1
	GO:0033906	MF	hyaluronoglucuronidase activity	0.011842	HYAL3	
	GO:0036117	CC	hyaluronan cable	0.011842	HYAL1	
	GO:0005001	MF	hyaluronan synthase activity	0.017711	HYAL1	
	GO:0006027	BP	glycosaminoglycan catabolic process	0.00122	HYAL3	HYAL1
	GO:0030203	BP	glycosaminoglycan metabolic process	0.039481	HYAL3	HYAL1
	GO:0006026	BP	aminoglycan catabolic process	0.003025	HYAL3	HYAL1
	GO:1903510	BP	mucopolysaccharide metabolic process	0.013602	HYAL3	HYAL1

Table 13. Immune response and inflammatory response related pathways.

Number	GO ID	Term Type	Description	P-value	Genes	
	GO:0006954	BP	inflammatory response	0.004612	CCR5	ALOX5
	GO:0002532	BP	production of molecular mediator involved in inflammatory response	0.01346	ALOX5	
	GO:002538	BP	arachidonic acid metabolite production involved in inflammatory response	0.008097	ALOX5	
	GO:0050778	BP	leukotriene production involved in inflammatory response	0.008097	ALOX5	
	GO:005087	BP	positive regulation of immune response	0.017271	C1S	BLK
	GO:0056956	BP	complement activation	0.005145	C1S	BLK
	GO:001867	BP	complement activation, lectin pathway	7.08E-05	C1S	
	GO:0004950	MF	chemokine receptor activity	0.047636	CCR5	
	GO:0016493	MF	C-C chemokine receptor activity	0.02101	CCR5	
	GO:0090026	BP	positive regulation of monocyte chemotaxis	0.02101	CCR5	
	GO:0002495	BP	antigen processing and presentation of peptide antigen via MHC class II	0.032008	MARCH1	
	GO:0042287	MF	MHC protein binding	0.045049	MARCH1	

Table 14. Organic acid, fatty acid metabolic process, glycolytic and carbohydrate metabolism related pathways.
Number	GO ID	Term Type	Description	P-value	Genes
	GO:0006082 BP	organic acid metabolic process	organic acid metabolic process	0.002344	PSAT1;SCD;MAT1A;ALOX5;ST3GAL1;ALDOB
	GO:0016053 BP	organic acid biosynthetic process	organic acid biosynthetic process	0.006961	PSAT1;SCD;ALOX5
	GO:0043436 BP	organic acid metabolic process	organic acid metabolic process	0.002254	PSAT1;SCD;MAT1A;ALOX5;ST3GAL1;ALDOB
	GO:0046394 BP	carboxylic acid biosynthetic process	carboxylic acid metabolic process	0.006961	PSAT1;SCD;ALOX5
	GO:0019752 BP	carboxylic acid metabolic process	carboxylic acid metabolic process	0.001555	PSAT1;SCD;MAT1A;ALOX5;ST3GAL1;ALDOB
	GO:0006633 BP	fatty acid biosynthetic process	fatty acid biosynthetic process	0.012538	SCD;ALOX5
	GO:0006636 BP	unsaturated fatty acid biosynthetic process	unsaturated fatty acid biosynthetic process	0.002054	SCD;ALOX5
	GO:0016215 MF	acyl-CoA desaturase activity	acyl-CoA desaturase activity	0.002706	SCD
	GO:0030388 BP	fructose 1,6-bisphosphate metabolic process	fructose 1,6-bisphosphate metabolic process	0.01613	ALDOB
	GO:006000 BP	fructose metabolic process	fructose metabolic process	0.018794	ALDOB
	GO:0070061 MF	fructose binding	fructose binding	0.010782	ALDOB
	GO:0061609 MF	fructose-1-phosphate aldolase activity	fructose-1-phosphate aldolase activity	0.002706	ALDOB
	GO:004332 MF	fructose-bisphosphate aldolase activity	fructose-bisphosphate aldolase activity	0.010782	ALDOB
	GO:0005975 BP	carbohydrate metabolic process	carbohydrate metabolic process	0.029095	GALNT16;ST3GAL1;ALDOB
	GO:0030246 MF	carbohydrate binding	carbohydrate binding	0.041651	GALNT16;ALDOB

Additional File Legends

Fig. S1 Inflammatory mediator regulation of RTP channels pathway analysis. Differential expressed genes that are involved in the inflammatory mediator regulation of RTP channels [map04750], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S2 Chemokine signaling pathway analysis. Differential expressed genes that are involved in the chemokine signaling pathway [map04062], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S3 Calcium signaling pathway analysis. Differential expressed genes that are involved in the calcium signaling pathway [map04020], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S4 ECM-receptor interaction pathway analysis. Differential expressed genes that are involved in the inflammatory mediator regulation of RTP channels [map04512], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S5 Adherens junction pathway analysis. Differential expressed genes that are involved in the adherens junction [map04520], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S6 Focal adhesion pathway analysis. Differential expressed genes that are involved in the focal adhesion [map04510], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S7 Oxidative phosphorylation pathway analysis. Differential expressed genes that are involved in the oxidative phosphorylation [map00190], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S8 Regulation of lipolysis in adipocytes pathway analysis. Differential expressed genes that are involved in the Regulation of lipolysis in adipocytes [map04923], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S9 Glycolysis/Gluconeogenesis pathway analysis. Differential expressed genes that are involved in the Glycolysis/Gluconeogenesis [map00010], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Fig. S10 Arachidonic acid metabolism pathway analysis. Differential expressed genes that are involved in the arachidonic acid metabolism [map00590], are highlighted. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].

Figures
Figure 1

Water holding capacity of breast muscle. Data are shown as the means ± SEM. Different letters a, b indicate that there are significant differences (P < 0.05) among these groups. L, low stocking density (14 birds/m²); H, high stocking density (18 birds/m²); COMB, combination of NAM and BA (18 birds/m²).

Figure 2

The pH values of breast muscle. Data are shown as the means ± SEM. Different letters a, b indicate that there are significant differences (P < 0.05) among these groups. L, low stocking density (14 birds/m²); H, high stocking density (18 birds/m²); COMB, combination of NAM and BA (18 birds/m²).
Figure 3
Principal Component Analysis (PCA) and Wayne (VEEN) analysis of gene sets. For the PCA graph, the distance between each sample point represents the distance of the sample. The closer the distance means higher the similarity between samples; for the VEEN graph, the numbers inside the circle represents the sum of the number of expressed genes in the group. The crossover region represents the number of consensus expressed genes for each groups.

Figure 4
Volcanic map of differential expression genes. The abscissa is the fold change of the gene expression difference between the two samples and the ordinate is the statistical test value of the gene expression. Each dot in the figure represents a specific gene, the red dot indicates a significantly up-regulated gene, the green dot indicates a significantly down-regulated gene, and the grey dot is a non-significant differential gene.

Figure 5

The Veen diagram and the map of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis of gene sets. For VEEEN diagram: the sum of all the numbers inside the circle represents the total gene of the set. The number, circle intersection area represents the number of shared genes among the gene sets. For the map of KEGG metabolic pathway, the red represents the pathway of the common annotation of the genes in the gene sets of two groups. We thank Kanehisa Laboratories for providing the copyright permission of KEGG pathway maps [75].
Figure 6

GO enrichment analysis of up-regulated genes in the H group. The abscissa indicates the GO term, and the ordinate indicates the enrichment ratio. "*" means $P < 0.05$, "**" means $P < 0.01$ and "***" means $P < 0.001$.
Figure 7

GO enrichment analysis of down-regulated genes in the H group. The abscissa indicates the GO term, and the ordinate indicates the enrichment ratio. "*" means $P < 0.05$, "**" means $P < 0.01$ and "***" means $P < 0.001$.
Figure 8

GO enrichment analysis of up-regulated genes in the COMB group. The abscissa indicates the GO term, and the ordinate indicates the enrichment ratio. "*" means $P < 0.05$, "**" means $P < 0.01$ and "***" means $P < 0.001$.
Figure 9

GO enrichment analysis of down-regulated genes in the COMB group. The abscissa indicates the GO term, and the ordinate indicates the enrichment ratio. "*" means $P < 0.05$, "**" means $P < 0.01$ and "***" means $P < 0.001$.
Figure 10

The mRNA relative expression of DEGs quantified by quantitative reverse transcription-PCR. Data presented as means ± SEM.
Figure 11

The graphic description of the normalization effect of nicotinamide and sodium butyrate on breast muscle.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Fig.S9.tif
- Fig.S8.tif
- Fig.S4.tif
- Fig.S3.tif
- Fig.S2.tif
- Fig.S7.tif
- Fig.S1.tif
- NC3RsARRIVEGuidelinesChecklistfillable2.pdf
- Fig.S10.tif
- Fig.S5.tif
- Fig.S6.tif