GENERALIZATION OF THE HARTOGS-BOCHNER THEOREM FOR FORMS TO UNBOUNDED DOMAINS

SOUHAIBOU SAMBOU

ABSTRACT. We give some generalizations of the \mathcal{C}^∞ Hartogs-Bochner extension theorem for differential forms defined in unbounded domains of a complex analytic manifold in relation with the vanishing of some $\partial\bar{\partial}$ cohomologies groups.

Mots clés: CR differential forms, holomorphic extension, paracompactifying family of closed, $\partial\bar{\partial}$-cohomology.

Mathematics Subject Classification (2010) 32F32.

1. Introduction

Let X be a complex manifold of complex dimension n, and $\Omega \subset X$ a domain with boundary $b\Omega$ of class \mathcal{C}^∞. We assume that Ω is unbounded. If f is a CR differential form of class \mathcal{C}^∞ on $b\Omega$ or with coefficients in $L^p_{\text{loc}}(bD)$, does it exist a differential form F, $\partial\bar{\partial}$-closed on Ω, of class $\mathcal{C}^\infty(\Omega)$ or with coefficients in $L^p_{\text{loc}}(X)$ such that $F|_{b\Omega} = f$ on $b\Omega$?

In the case where Ω is bounded, the answer was given by Christine in [2].

Our objective is to give not only an isomorphism result between $H_{\Phi}^{l,r}(X)$ and $H_{\Phi,\text{cur}}^{l,r}(X)$ but to give a geometric characterization on Ω to obtain the Hartogs-Bochner extension theorem for CR differential forms of class \mathcal{C}^∞ or with coefficients in $L^p_{\text{loc}}(bD)$. More precisely, we give a Hartogs-Bochner extension result for CR differential forms of class \mathcal{C}^∞ or with coefficients in $L^p_{\text{loc}}(bD)$ in an unbounded domain which is related to the vanishing of the some Dolbeault cohomologies groups of differential forms of class \mathcal{C}^∞ with support in Φ denoted by $H_{\Phi}^{l,r}(X)$ or with coefficients in $L^p_{\text{loc}}(bD)$ denoted by $H_{\Phi,\text{cur}}^{l,r}(X)$ where Φ is a closed paracompactifying family of closed set of X.

2. Preliminaries

Definition 2.1. Let X be a complex manifold of complex dimension n and S a real hypersurface of M. For $0 \leq p \leq n$ and $0 \leq q \leq n-1$, a (p,q)-form f of class \mathcal{C}^∞ on a real hypersurface S of X is called CR
of class C^∞ if $q = n - 1$ or if $0 \leq q \leq n - 2$ and

$$\int_S f \wedge \bar{\partial} \varphi = 0$$

for all $\varphi \in \mathcal{E}^{np,nq-2}(X)$ such that $S \cap \text{Supp} \varphi$ is compact.

Definition 2.2. Let X be a complex manifold of complex dimension n and $D \subset X$ be a domain. The pair (X, D) is said to have the C^∞ Hartogs-Bochner extension property for (l, r)-form if: for any (l, r)-form f of class C^∞ on bD and ∂, there exists a (l, r)-form F of class C^∞ on \overline{D} and ∂-closed on D such that $F|_{\partial D} = f$.

Definition 2.3. (see [7]) A family Φ of closed subset of X is called a paracompactifying family of X, if it satisfies the following conditions:

1. Any closed subset of an element of Φ is an element of Φ.
2. Φ is closed under finite unions.
3. Every element of Φ has neighborhoods which is in Φ.

3. An Isomorphism Result

Let Φ be a paracompactifying family of closed sets of a complex analytic manifold X. Let $H_{\Phi, \text{cur}}^{l,r}(X)$ denote the (l, r) Dolbeault cohomology group of currents with support in Φ. We know in the classical case that there is a natural isomorphism between $H^{l,r}(X)$ and $H_{\Phi, \text{cur}}^{l,r}(X)$ called the Dolbeault isomorphism. What can be said about the natural map between $H_{\Phi, \text{loc}}^{l,r}(X)$ and $H_{\Phi, \text{cur}}^{l,r}(X)$? According to [6], the cohomological groups $H_{\Phi, \text{loc}}^{l,r}(X)$, $H_{\Phi, L^\infty}^{l,r}(X)$, $H_{\Phi, \text{cur}}^{l,r}(X)$ and H_{Φ, C^k} are isomorphic. In this part, the objective is to prove this result using Chirka’s Theorem (cf [1]). We have the following result:

Theorem 3.1. Let X be a complex manifold of complex dimension n. Then the natural map between

$$H_{\Phi, \text{loc}}^{l,r}(X) \to H_{\Phi, \text{cur}}^{l,r}(X)$$

is an isomorphism.

Proof: According to [1], we have

$$R_\varepsilon : \mathcal{D}^{l,r}(X) \to \mathcal{E}^{l,r}(X)$$

and

$$A_\varepsilon : \mathcal{D}^{l,r}(X) \to \mathcal{D}^{l,r-1}(X)$$

such that for all $T \in \mathcal{D}^{l,r}(X)$, we have

$$T - R_\varepsilon T = \bar{\partial} A_\varepsilon T + A_\varepsilon \bar{\partial} T.$$

(3.1)

(1) Injectivity: Let $[h] \in H_{\Phi, \text{loc}}^{l,r}(X)$ such that its rang belongs to the null class in $H_{\Phi, \text{cur}}^{l,r}(X)$. Then there exists a $(l, r - 1)$-current u with support in Φ such that $\bar{\partial} u = h$. According to (3.1) and by continuity of the operator A_ε on $(L^p_{\text{loc}})^*(X)$, we
have \(h = \bar{\partial}(R_T^e + A_e^e h) \) and \((R_T^e + A_e^e h) \in (L^p_{loc})^*(X)\) with support in a \(\varepsilon \)-neighborhood of the support of \(h \), for \(\varepsilon > 0 \) small enough, the support of \((R_T^e + A_e^e h)\) is an element of \(\Phi \). So \([h] = [0]\) in \(H_{\Phi, l,r}^{l,r}(X) \). Which proves the injectivity of the natural map.

(2) Surjectivity: Let \([h] \in H_{\Phi, cour}^{l,r}(X)\), we have \(\bar{\partial}h = 0 \). According (3.1), we have \(h - R_e^e h = \bar{\partial}A_e^e h \), where \(R_e^e h \in \mathcal{E}^{l,r}(X) \subset (L^p_{loc})^{(l,r)}(X) \), \(A_e^e h \in \mathcal{D}^{l,r-1}(X) \) and their supports are in a \(\varepsilon \)-neighborhood of the support of \(h \). For \(\varepsilon > 0 \) small enough, the supports of \(R_e^e h \) and of \(A_e^e h \) are in \(\Phi \). Then \([h] = [R_e^e h]\) in \(H_{\Phi, l,r}^{l,r}(X) \). Which proves the surjectivity of the natural map.

\[\square \]

Remark 3.1. Analogously, we show that \(H_{\Phi, l,r}^{l,r}(X) \) is isomorphic to \(H_{\Phi,C^k}^{l,r}(X) \) using the \(C^k \) estimates for the \(\bar{\partial} \).

We can have the following consequence of Proposition 2.2 of [6].

Corollary 3.2. Let \(X \) be a complex manifold of complex dimension \(n \) and \(D \subset X \) a domain such that \(\overline{D} \in \Phi \), \(H_{\Phi}^{l,r}(X) = 0 \) and \(H_{\Phi}^{l,r-1}(X \setminus D) = 0 \). Then

\[
H_{D}^{l,r}(X) = 0, \quad H_{D,L^p_{loc}}^{l,r}(X) = 0 \quad \text{and} \quad H_{D,C^k}^{l,r}(X) = 0.
\]

Proof: Let \(f \) be a \((l, r)\)-form of class \(C^\infty \), \(\bar{\partial} \)-closed and defined on \(X \) with support in \(D \). Since \(H_{\Phi}^{l,r}(X) = 0 \), there exists a \((l, r-1)\)-form \(g \) of class \(C^\infty \) and defined on \(X \) with support in \(\Phi \) such that \(\bar{\partial}g = f \). Then \(\text{supp}(f) \subset \text{supp}(g) \) and \(\bar{\partial}g|_{X \setminus \text{supp}f} = 0 \). If \(\text{supp}g = \overline{D} \), then \(H_{\Phi}^{l,r}(X) = 0 \). Otherwise, we have \(\bar{\partial}g|_{X \setminus \overline{D}} = 0 \) leads to \(\bar{\partial}g|_{X \setminus D} = 0 \). For \(r = 1 \), from Corollary 2.1 of [8], we have \(H_{\Phi}^{l,1}(X) = 0 \). For \(r > 1 \), since \(H_{\Phi}^{l,r-1}(X \setminus D) = 0 \), there exists a \((l, r-2)\)-form \(u \) of class \(C^\infty \) and defined on \(X \setminus D \) such that \(\bar{\partial}u = g \). Let \(\hat{u} \) be an extension of class \(C^\infty \) from \(u \) to \(D \). Thereby

\[
\hat{g} = \begin{cases}
\bar{\partial}\hat{u} \text{ sur } D \\
g \text{ sur } X \setminus D
\end{cases}
\]

is \(\bar{\partial} \)-closed on \(D \) and \(\hat{g} = g - \hat{g} \) is supported in \(\overline{D} \). We have

\[
\bar{\partial}\hat{g} = f
\]

on \(X \). Thus

\[
H_{\Phi}^{l,r}(X) = 0.
\]

By analogy we have

\[
H_{D,L^p_{loc}}^{l,r}(X) = 0 \quad \text{and} \quad H_{D,C^k}^{l,r}(X) = 0.
\]

\[\square \]
4. Extension of CR differential forms of class C^∞

In this part, the object is to show that the Hartogs-Bochner extension phenomenon for differential forms of class C^∞ or differential forms with coefficients in L^p_{loc} is equivalent to $H^{l,r}_\Phi(X) = 0$. For this, we start with the case of differential forms of class C^∞ giving the following result:

Theorem 4.1. Let X be a non compact complex manifold of complex dimension n such that $H^{l,r}_\Phi(X) = 0$ with $0 \leq l \leq n$ and $0 \leq r \leq n$. Let Φ be a paracompactifying family of closed sets of X not containing X. Let $D \subset X$ be a domain with connected boundary, smooth of class C^∞ which is not relatively compact and that $\overline{D} \in \Phi$. We assume that $H^{l,r-1}(X \setminus D) = 0$. Then the Hartogs-Bochner extension phenomenon for differential forms is equivalent to $H^{l,r}_\Phi(X) = 0$ for all $0 \leq l \leq n$ and $0 \leq r \leq n$.

Proof: Let f be a differential CR-form of bidegree $(l, r-1)$, of class C^∞ and defined on bD. Let \tilde{f} be an extension of class C^∞ of f to D and set $g = \chi(\overline{D}) \hat{\partial} \tilde{f}$ is a (l, r)-differential form of class C^∞ with support in \overline{D} and $\hat{\partial}$-closed. Suppose $H^{l,r}_\Phi(X) = 0$, since $\overline{D} \in \Phi$, there is a $(l, r-1)$-form u of class C^∞ and defined on X such that $\hat{\partial}u = g$ and $K = \text{supp}(u) \in \Phi$. We have $\overline{D} \subset K$ which leads to $X \setminus K \subset X \setminus \overline{D}$. We have $\hat{\partial}u_{|X \setminus \overline{D}} = 0$ leads to $\hat{\partial}u_{|X \setminus D} = 0$. For $r = 1$, f is a CR function of class C^∞, defined on bD and we suppose that its support is not compact, then according to Proposition 2.4 of [8], there exists a function $F \in \mathcal{O}(D) \cap C^\infty(\overline{D})$ such that $F_{|bD} = f$. For $r > 1$, since $H^{l,r}(X \setminus D) = 0$, there exists a $(l, r-2)$-form h of class C^∞ and defined on $X \setminus D$ such that $\hat{\partial}h = u$. Let \tilde{h} be an extension of class C^∞ from h to D. Let $\tilde{u} = u - \hat{\partial}h$, we have $\tilde{u}_{|bD} = 0$. We take $F = \tilde{f} - \tilde{u}$. It is a $(l, r-1)$-form, defined on D and of class C^∞ on \overline{D} such that $F_{|bD} = f$. The extension therefore takes place for any domain D not bounded with boundary of class C^∞ such that $\overline{D} \in \Phi$.

Suppose that the extension takes place for any unbounded domain D with boundary of class C^∞ such that $\overline{D} \in \Phi$. Let $[h] \in H^{l,r}_\Phi(X)$, there exists $g \in \mathcal{E}^{l,r-1}(X)$ such that $\hat{\partial}g = h$. Since $\text{supp}(h) \in \Phi$, there exists an open neighborhood D of $\text{supp}(h)$ with smooth boundary bD of class C^∞ such that $\overline{D} \in \Phi$, (see definition 2.3). Since $\text{supp}(h) \subset \overline{D}$, we have $\hat{\partial}g_{|X \setminus \overline{D}} = 0$ this results in $\hat{\partial}g_{|X \setminus D} = 0$. For $r = 1$, then according to Theorem 2.8 of [8], we have $H^{l,1}_\Phi(X) = 0$ for all $0 \leq l \leq n$ and $0 \leq r \leq n$. For $r > 1$, since $H^{l,r}(X \setminus D) = 0$, there exists a $(l, r-2)$-form u of class C^∞ and set to $X \setminus D$ such that $\hat{\partial}u = g$. So

\[
\tilde{g} = \begin{cases}
G & \text{on } D \\
\hat{\partial}u & \text{on } X \setminus D
\end{cases}
\]
is $\bar{\partial}$-closed on D and $\hat{g} = g - \check{g}$ is supported in \bar{D}. We have
\[\bar{\partial} \hat{g} = \partial \check{g} = h \]
on X. Which means that $\lfloor h \rfloor = 0$ in $H_{l,r}^{l,r}(X)$. We thus have
\[H_{l,r}^{l,r}(X) = 0. \]

As a consequence of Theorem 4.1, we have the following result:

Corollaire 4.2. Under the assumptions of Theorem 4.1, the Hartogs-Bochner extension phenomenon for forms is equivalent to
\[H_{l,r}^{l,r}(X) = H_{l,r}^{l,r}(X) = H_{l,r}^{l,r}(X) = 0. \]

Proof: By Theorem 4.1, the Hartogs-Bochner extension phenomenon for differential forms is equivalent to
\[H_{l,r}^{l,r}(X) = 0. \]
From [6], $H_{l,r}^{l,r}(X)$, $H_{l,r}^{l,r}(X)$, $H_{l,r}^{l,r}(X)$ and $H_{l,r}^{l,r}(X)$ are isomorphic so the Hartogs-Bochner expansion phenomenon for differential forms is equivalent to
\[H_{l,r}^{l,r}(X) = H_{l,r}^{l,r}(X) = H_{l,r}^{l,r}(X) = 0. \]

Remark 4.1. The Theorem 4.1 remains valid if X is a stein manifold.

We also have the $L_{loc}^{p}(X)$ version of Theorem 4.1 given by the following result:

Theorem 4.3. Let X be a non compact complex manifold of complex dimension n such that $H^{l,r}(X) = 0$ with $0 \leq l \leq n$ and $0 \leq r \leq n$. Let Φ be a paracompactifying family of closed sets of X not containing X. Let $D \subset X$ be a domain with boundary connected, smooth of class C^{∞} which is not relatively compact and that $\bar{D} \in \Phi$. We assume that $H_{l,r}^{l,r-1}(X \setminus \bar{D}) = 0$. So then the Hartogs-Bochner extension phenomenon for the forms with coefficients in $L_{loc}^{p}(bD)$ is equivalent to $H_{l,r}^{l,r}(X) = 0$ for all $0 \leq l \leq n$ and $0 \leq r \leq n$.

Proof: Let f be a CR-form f of bidegree $(l, r - 1)$, of class C^{∞} on bD with coefficients in $L_{loc}^{p}(bD)$. Let \hat{f} be an extension of class C^{∞} from f to \bar{D}, and set $g = \chi(\bar{D}) \partial \hat{f}$, it is a (l, r)-form with coefficients in $L_{loc}^{p}(X)$, with support in ∂X and $\bar{\partial}$-closed. Since $H_{l,r}^{l,r}(X) = 0$ which implies $H_{l,r}^{l,r}(X) = 0$, then $g = \bar{\partial} \lambda$ where λ is a differential form of bidegree $(l, r - 1)$ with coefficients in $L_{loc}^{p}(X)$ with $K = \text{supp}(\lambda) \in \Phi$. We have $\partial D \subset K$ which leads to $X \setminus K \subset X \setminus D$. We have $\bar{\partial} \lambda|_{X \setminus D} = 0$. For $r = 1$, f is a CR function with coefficients in $L_{loc}^{p}(bD)$ and we assume that its support is not compact, then according to Theorem 1.3
from [9], there is a function $F \in \mathcal{O}(D) \cap L^p_{loc}(\overline{D})$ such that $F_{|bD} = f$.

For $r > 1$, since $H^{l, r}_{\Phi, L^p_{loc}}(X \setminus \overline{D}) = 0$, there is a $(l, r - 2)$-form u with coefficients in $L^p_{loc}(X \setminus \overline{D})$ such that $\bar{\partial}u = \lambda$. Let

$$\hat{u} = \begin{cases} u & \text{on } X \setminus \overline{D} \\ 0 & \text{on } D \end{cases}$$

and

$$\hat{\lambda} = \lambda - \bar{\partial}\hat{u},$$

we have $\hat{\lambda}_{|bD} = 0$. We take $F = \hat{f} - \hat{\lambda}$. It is a $(l, r - 1)$-form with coefficients in $L^p_{loc}(\overline{D})$, $\bar{\partial}$-closed on D and $F_{|bD} = f$.

Suppose the extension takes place for any unbounded domain D with boundary of class C^∞ such that $\overline{D} \in \Phi$. Let $[h] \in H^{l, r}_{\Phi, L^p_{loc}}(X)$, which implies $\bar{\partial}h = 0$. According to Proposition 1.1 of [7], we have $H^{l, r}_{\Phi, L^p_{loc}}(X) = H^{l, r}(X) = 0$, then there exists a $(l, r - 1)$-form g with coefficients in $L^p_{loc}(\overline{D})$ such that $\bar{\partial}g = h$. Since $supp(h) \subset \Phi$, there exists an open neighborhood U of $X \setminus D$ with smooth boundary bD of class C^∞ such that $\overline{D} \in \Phi$, (see definition 2.3). Since $supp(h) \subset \overline{D}$, we have $\bar{\partial}g_{|bD} = 0$ and therefore $\bar{\partial}g = 0$ on bD. By hypothesis, there exists a $(l, r - 1)$-form G with coefficients in $L^p_{loc}(\overline{D})$, $\bar{\partial}$-closed in D such that $G_{|bD} = g$. For $r = 1$, then according to Theorem 2.8 of [8], we have $H^{1, 1}_{\Phi, L^p_{loc}}(X) = 0$ for all $0 \leq l \leq n$ and by isomorphism $H^{l, 1}_{\Phi, L^p_{loc}}(X) = 0$. For $r > 1$, let

$$\tilde{g} = \begin{cases} \bar{\partial}u & \text{on } X \setminus \overline{D} \\ G & \text{on } \overline{D} \end{cases}$$

is $\bar{\partial}$-closed on X and $\tilde{g} = g - \tilde{g}$ is supported in \overline{D}. We have

$$\bar{\partial}\tilde{g} = \bar{\partial}g = h$$

on X. Which means that $[h] = 0$ in $H^{l, r}_{\Phi, L^p_{loc}}(X)$. We thus have

$$H^{l, r}_{\Phi, L^p_{loc}}(X) = 0.$$

\[\square \]

5. Vanishing conditions of $H^{l, r}_{\Phi}(X)$

Definition 5.1. Let X be a complex manifold of complex dimension n. We say that X is a generalized q-concave extension of a domain $D \subset X$ $(0 < q < n - 1)$ if:

1. D meets all the connected components of X.
2. There is a fonction $\rho : \mathbb{R} \times U \to \mathbb{R}$, where U is a neighborhood of $X \setminus D$ such that:
 a) For all $t \in \mathbb{R}$, $\rho(t, .)$ is $(q + 1)$-concave.
 b) For all $z \in U$, $\rho(., z)$ is a decreasing function.
 c) The map $t \mapsto \rho(t, .)$ is continuous from \mathbb{R} in $C^\infty(U, \mathbb{R})$.

d) \(D \cap U = \{ z \in U | \rho(0, z) < 0 \} \) and for all \(t > 0 \), the set \(\{ z \in U | \rho(t, z) < 0 \} \cap \overline{C(D)} \) is relatively compact in \(X \).

Theorem 5.2. Let \(X \) be a Stein manifold of complex dimension \(n \geq 2 \), suppose that the paracompactifying family \(\Phi \) of sets of \(X \) not containing \(X \) and verifying: for all \(K \in \Phi \), \(\exists \tilde{K} \in \Phi \) with \(K \subset \tilde{K} \) such that \(X \) is a Generalized \(q \)-concave extension of \(X \setminus \tilde{K} \) and \(H_{\tilde{\Phi}}^{l,r}(X \setminus \tilde{K}) = 0 \). Then \(H_{\Phi}^{l,r}(X) = 0 \) for all \(0 \leq r \leq q - 1 \).

Proof: Let \([f] \in H_{\Phi}^{l,r}(X)\), then \(\partial f = 0 \) so there is \(u \in \mathcal{E}^{l,r-1}(X) \) such that \(\partial u = f \). Let \(K = \text{supp}(f) \), then there exists \(\tilde{K} \in \Phi \) with \(K \subset \tilde{K} \) such that \(X \) is a Generalized \(q \)-concave extension of \(X \setminus \tilde{K} \). According to [3], the restriction map of \(H^{l,r}(X) \rightarrow H_{\tilde{\Phi}}^{l,r}(X \setminus \tilde{K}) \) is an isomorphism for \(0 \leq r \leq q - 1 \). Since \(\partial u_{|X \setminus K} = 0 \), we have \(\partial u_{|X \setminus \tilde{K}} = 0 \).

For \(r = 1 \), then according to the Theorem 3.2 of [8],

\[
H_{\Phi}^{1,1}(X) = 0.
\]

For \(r > 1 \), since \(H_{\Phi}^{l,r-1}(X \setminus \tilde{K}) = 0 \), there is \((l, r-2)\)-form \(h \) of class \(C^\infty \) and defined on \(X \setminus \tilde{K} \) such that \(\partial h = u \). Let \(\hat{h} \) be an extension of class \(C^\infty \) from \(h \) to \(\tilde{K} \). Let \(\hat{u} = u - \partial \hat{h} \), it is a \((l, r-1)\)-form of class \(C^\infty \) on \(X \) and \(\text{supp}(\hat{u}) \subset \tilde{K} \), so \(\text{supp}(\hat{u}) \in \Phi \). Also, \(\partial \hat{u} = f \). Thus

\[
H_{\Phi}^{l,r}(X) = 0
\]

for all \(1 \leq r \leq q - 1 \).

As a consequence of Theorem 5.2, we have the following result:

Corollaire 5.3. Under the assumptions of Theorem 5.2, we have

\[
H_{\Phi, C^k}^{l,r}(X) = H_{\Phi, P_{loc}}^{l,r}(X) = H_{\Phi, C^{\text{loc}}}^{l,r}(X) = 0.
\]

Proof: By Theorem 5.2, we have \(H_{\Phi}^{l,r}(X) = 0 \).

From [6], \(H_{\Phi}^{l,r}(X) \), \(H_{\Phi, C^k}^{l,r}(X) \), \(H_{\Phi, P_{loc}}^{l,r}(X) \) and \(H_{\Phi, C^{\text{loc}}}^{l,r}(X) \) are isomorphic so we have

\[
H_{\Phi, C^k}^{l,r}(X) = H_{\Phi, P_{loc}}^{l,r}(X) = H_{\Phi, C^{\text{loc}}}^{l,r}(X) = 0.
\]

Theorem 5.4. Let \(X \) be a Stein manifold of complex dimension \(n \geq 2 \). Suppose that the paracompactifying family \(\Phi \) of sets of \(X \) does not contain \(X \) and for all \(K \in \Phi \), we have \(X \) is a generalized \(q \)-concave extension of \(X \setminus K \). Then we have the Hartogs-Bochner extension phenomenon for the \((l, r-1)\)-forms with coefficients in \(L_{loc}^{p} \) for all \(1 \leq r \leq q - 1 \).
Proof: By Theorem 5.2, we have $H^{l,r}_{\Phi,L^p_{\text{loc}}}(X) = 0$, which implies $H^{l,r}_{\Phi,L^p_{\text{loc}}}(X) = 0$. Let $D \subset X$ be a domain with connected boundary such as $\overline{D} \in \Phi$. Let f be a CR form of bidegree $(l, r-1)$ with coefficients in $L^p_{\text{loc}}(bD)$. Let \tilde{f} be an extension of f with coefficients in $L^p_{\text{loc}}(\overline{D})$ such that $\overline{\partial} \tilde{f}$ be a form of bidegere (l, r) with coefficients in $L^p_{\text{loc}}(X)$. Let's pose $g = \chi(\overline{D}) \overline{\partial} \tilde{f}$, g is a (l, r)-form with coefficients in $L^p_{\text{loc}}(X)$ and with support $\overline{D} \in \Phi$ and $\overline{\partial} g = 0$. Now $H^{l,r}_{\Phi,L^p_{\text{loc}}}(X) = 0$, then there exists a $(l, r - 1)$-form λ with coefficients in $L^p_{\text{loc}}(X)$ such that $\overline{\partial} \lambda = g$ and $\text{supp} \lambda \in \Phi$. We have $\overline{\partial} \lambda|_{X \setminus \overline{D}} = 0$. For $r = 1$, f is a CR function with coefficients in $L^p_{\text{loc}}(bD)$ and we assume that its support is not compact, then according the Theorem 1.2 of [9], there is a function $F \in \mathcal{O}(D) \cap L^p_{\text{loc}}(\overline{D})$ such that $F|_{bD} = f$. According to Proposition 1.1 of [4], $H^{l,r}(X)$ is isomorphic to $H^{l,r}_{\Phi,L^p_{\text{loc}}}(X)$ therefore $H^{l,r}(X \setminus \overline{D})$ is isomorphic to $H^{l,r}_{\Phi,L^p_{\text{loc}}}(X \setminus \overline{D})$. Since X is a generalized q-concave extension of $X \setminus \overline{D}$, then the following restriction map $H^{l,r}_{\Phi,L^p_{\text{loc}}}(X) \rightarrow H^{l,r}_{\Phi,L^p_{\text{loc}}}(X \setminus \overline{D})$ is an isomorphism for $0 \leq r \leq q-1$, so $H^{l,r}_{\Phi,L^p_{\text{loc}}}(X \setminus \overline{D}) = 0$. Since $\overline{\partial} u|_{X \setminus \overline{D}} = 0$, there is a $(l, r - 2)$-form λ with coefficients in $L^p_{\text{loc}}(X \setminus \overline{D})$ such that $\overline{\partial} \lambda = u$. Let
\[
\hat{\lambda} = \begin{cases}
\lambda \text{ sur } X \setminus \overline{D} \\
0 \text{ sur } \overline{D}
\end{cases}
\]
and $\hat{u} = u - \overline{\partial} \hat{\lambda}$, we have $\hat{u}|_{bD} = 0$. Let $F = \tilde{f} - \hat{u}$. It is a $(l, r - 1)$-form with coefficients in $L^p_{\text{loc}}(\overline{D})$, $\overline{\partial}$-closed on D and $F|_{bD} = f$. □

Proposition 5.5. Let X be a Stein manifold and Φ a paracompactifying family of closed sets of X not containing X. Let D be a non-compact domain of X, with boundary bD of class C^∞, connected such that $\overline{D} \in \Phi$. We assume that $H^{l,r-1}(X \setminus \overline{D}) = 0$ and for any $(l, r - 1)$-form f of class C^∞, defined on bD, whose support is not compact and $\overline{\partial}_h$-closed, there is $F \in \mathcal{E}^{l,r-1}(\overline{D})$, $\overline{\partial}$-closed in D such that $F|_{bD} = f$, then we have $H^{l,r}_{\Phi}(X) = 0$.

Proof: Let $[f] \in H^{l,r}_{\Phi}(X)$, then $[f] \in H^{l,r}(X) = 0$. There exists $g \in \mathcal{E}^{l,r-1}(X)$ such that $\overline{\partial} g = f$. Let $K = \text{supp}(f)$, we have $\overline{\partial} g|_{X \setminus K} = 0$. By the definition of Φ, there exists D_1 an open neighborhood of K such that $\overline{D}_1 \in \Phi$. Choose D_2 an unbounded domain with boundary of class C^∞ such that $\overline{D}_2 \in \Phi$ and $\overline{D}_1 \subset D_2$. We have $X \setminus \overline{D}_2 \neq \emptyset$ because X does not belong to Φ. We have $\overline{\partial} g|_{X \setminus \overline{D}_2} = 0$ because $X \setminus \overline{D}_2 \subset X \setminus K$ and therefore $\overline{\partial} g = 0$ on bD_2. By hypothesis, there is $G \in \mathcal{E}^{l,r-1}(\overline{D}_2)$, $\overline{\partial}$-closed in D_2 such that $G|_{bD_2} = g$. For $r = 1$, f is a CR function of class C^∞ on bD whose support is not compact, there is a function $F \in \mathcal{O}(D) \cap C^\infty(\overline{D})$ such that $F|_{bD} = f$. Then according to Proposition
For \(r > 1 \), since \(H_{l,r-1}^{l,r}(X \setminus \overline{D}_2) = 0 \), there exists \((l, r-2)\)-form \(u \) of class \(C^\infty \) and defined on \(X \setminus \overline{D}_2 \) such that \(\partial u = g \). Let’s pose

\[
\hat{g} = \begin{cases}
\partial u & \text{ on } X \setminus \overline{D}_2 \\
G & \text{ on } \overline{D}_2
\end{cases}
\]

and

\[
\tilde{g} = g - \hat{g}.
\]

Thus \(\tilde{g} \) is a \((l, r-1)\)-form of class \(C^\infty \) with support in \(\overline{D}_2 \in \Phi \). Moreover \(\partial \tilde{g} = f \) on \(X \). Then we have

\[
H_{\Phi}^{l,r}(X) = 0.
\]

\[\square\]

REFERENCES

[1] CHIRKA A. M., Regularization and \(\partial \)-homotopie on a complex manifold, Soviet. Math. Dokh, vol. 20(1979) 73 – 76.

[2] C. Laurent-Thiébaut, On the Hartogs-Bochner extension phenomenon for differential forms. Math. Ann. 284, 103 – 119 (1989).

[3] C. Laurent, Phénomène de Harthos-Bochner relatif dans une Hypersurface réelle 2-concave d’une variété complexe. Math. Z, 212, 511 – 525 (1993).

[4] C. Laurent, Théorie \(L^p \) et dualité de Serre pour l’équation de Cauchy-Riemann, Ann. Fac. Sci. Toulouse Math. (6) 24, no. 2, (2015), 251 – 279.

[5] C. Laurent, J.Leiterer, Andreotti-Vesentini separation theorem with \(C^k \) estimates and extension of CR forms, Mathematical notes, 38, Princeton university(1993), 416 – 436.

[6] C. Laurent-Thiébaut, M. C. Shaw, Solving \(\partial \) with prescribed support on Hartogs triangles in \(\mathbb{C}^2 \) and \(\mathbb{C}P^2 \), Transactions of the American Mathematical Society, vol.371, n° 9 (2019), pp. 6531 – 6546.

[7] G. Lupacciolu, Some Global Results on Extension of CR objects in Complex manifolds. Trans. Am. Math. Soc. 321 761 – 774 (1990).

[8] S.Sambou, S. Khidr, Generalization of the Hartogs-Bochner theorem to an unbounded domains, Submitted.

[9] S.Sambou, S. Khidr, Generalization of the Hartogs-Bochner theorem to \(L^2_{loc} \) functions on unbounded domains, Submitted.

DEPARTMENT OF MATHEMATICS, UFR OF SCIENCES AND TECHNOLOGY, AS-SANE SECK UNIVERSITY OF ZIGUINCHOR, BP: 523 (SÉNÉGAL)

Email address: s.sambou1440@zig.univ.sn