Electronic Supporting Information

New Di-cationic DABCO-based Ionic Liquids: A Scalable Metal-Free One-pot Synthesis of Bis-2-amino-5-arylidethiazol-4-ones

Wael Abdelgayed Ahmed Arafa,*a,b and Asmaa Kamal Mouradb

aChemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia.

bChemistry Department, Faculty of Science, Fayoum University P.O. Box 63514, Fayoum City, Egypt.

E-mail: waa00@fayoum.edu.eg

Index

No.	Content
1.	Copies of NMR spectra
2.	HRMS and 1H NMR of (2-hydroxy-3-(hydroxymethyl)-5-methylphenyl)(piperidin-1-yl)methanone
3.	Experimental details for 9a-m synthesis
4.	SEM and TEM of TiO2 and ZnO NPs
5.	Green Metrics Calculations
6.	References

Page No.

S2-S29

S30, S31

S31-S36

S36-S39

S40

S40
S2

1H NMR (CDCl₃): 3a

[Image of the NMR spectrum with chemical structure and peak assignments]
13C NMR (CDCl$_3$): 3a
1H NMR (CDCl$_3$): 3b
$^{19}\text{F NMR (CDCl}_3\text{): 3b}$
13C NMR (CDCl$_3$): 3b
1H NMR (DMSO-d_6): 7a
13C NMR (DMSO-d_6): 7a
^{1}H NMR (DMSO-d_6): 7b
$^1\text{H NMR (DMSO-$d_6$): 7c}$
1H NMR (DMSO-d_6): 7d
1H NMR (DMSO-d_6): 7e
13C NMR (DMSO-d_6): 7e
1H NMR (DMSO-d_6): 7f
13C NMR (DMSO-d_6): 7f
1H NMR (DMSO-d_6): 7g
13C NMR (DMSO-d_6): 7g
1H NMR (DMSO-d_6): 7h
13C NMR (DMSO-d_6): 7h
1H NMR (DMSO-d_6): 7i
13C NMR (DMSO-d_6): 7i
1H NMR (DMSO-d_6): 7j
13C NMR (DMSO-d_6): 7j
1H NMR (DMSO-d_6): 7k
13C NMR (DMSO-d_6): 7k
^{1}H NMR (DMSO-d_6): 71
13C NMR (DMSO-d_6): 71
1H NMR (DMSO-d_6): 7m
13C NMR (DMSO-d_6): 7m
HRMS of (2-hydroxy-3-(hydroxymethyl)-5-methylphenyl)(piperidin-1-yl)methanone

Synthesis of 9a-m derivatives

(Z)-5-Benzylidene-2-(piperidin-1-yl)thiazol-4(5H)-one 9a

Yield 99%; yellow solid; mp = 215-216 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.80 (s, 1H, =CH), 7.55 (d, 2H, J = 7.5 Hz, Ar-H), 7.48-7.44 (m, 2H, Ar-H), 7.39-7.35 (m, 1H, Ar-H), 4.05-4.00 (m, 2H, Piperidine-H), 3.58-3.61 (m, 2H, Piperidine-H), 1.69-1.81 (m, 6H, Piperidine-H); IR (KBr, cm$^{-1}$): ν_{max} 1705 (C=O), 1612 (C=N), 1599 (C=C); HRMS: m/z [M + H]$^+$ calcd: 273.1062, found 273.1054.

(Z)-5-(4-Chlorobenzylidene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9b

Yield 99%; white solid, mp = 206-208 °C; 1H NMR (400 MHz, DMSO-d_6) δ: 7.99 (s, 1H, =CH), 7.53 (brs, 4H, Ar-H), 3.89 (brs, 4H, Piperidine-H), 1.94-1.89 (m, 6H, Piperidine-H); IR (KBr, cm$^{-1}$): ν_{max} 1668 (C=O), 1611 (C=N), 1587 (C=C); HRMS: m/z [M]$^+$ calcd: 306.0592, found 306.0598.
(Z)-5-(4-Methylbenzylidene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9c

Yield 99%; yellowish solid; mp = 154-156 °C; 1H NMR (400 MHz, CDCl$_3$): δ 7.56 (s, 1H, =CH), 7.48 (d, J = 8.1 Hz, 2H, Ar-H), 7.27 (d, J = 7.8 Hz, 2H, Ar-H), 3.88-3.84 (m, 2H, Piperidine-H), 3.59 (br, 2H, Piperidine-H), 2.31 (s, 3H, CH$_3$), 1.65 ppm (br, 6H, Piperidine-H); IR (KBr, cm$^{-1}$): ν_{max} 1689 (C=O), 1621 (C=N), 1603 (C=C); HRMS: m/z [M]$^+$ calcd: 286.1141, found 286.1147.

(Z)-5-(4-Methoxybenzylidene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9d

Yield 99%; white solid; mp = 200-201 °C; 1H NMR (400 MHz; CDCl$_3$): δ 7.71 (s, 1H, =CH), 7.40 (d, J = 8.8 Hz, 2H, Ar-H), 6.86 (d, J = 9 Hz, 2H, Ar-H), 3.96-3.92 (m, 2H, Piperidine-H), 3.65 (s, 3H, OCH$_3$), 3.50 (m, 2H, Piperidine-H), 1.72 (m, 6H, Piperidine-H); IR (KBr, cm$^{-1}$): ν_{max} 1683 (C=O), 1608 (C=N), 1598 (C=C); HRMS: m/z [M + H]$^+$ calcd: 303.1169, found 303.1184.

(Z)-5-(2-Bromobenzylidene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9e

Yield 97%; yellow solid, mp = 165-168°C; 1H NMR (400 MHz, CDCl$_3$) δ: 8.02 (s, 1H, =CH), 7.66 (d, J = 7.7 Hz, 1H, Ar-H), 7.56 (d, J = 7.7 Hz, 1H, Ar-H), 7.38 (t, J = 7.4 Hz, 1H, Ar-H), 7.22 (t, J = 7.7 Hz, 1H, Ar-H), 4.01 (s, 2H, Piperidine-H), 3.57 (s, 2H, Piperidine-H), 1.76 (br, 6H, Piperidine-H); IR (KBr, cm$^{-1}$): ν_{max} 1698 (C=O), 1611 (C=N), 1599 (C=C); HRMS: m/z [M]$^+$ calcd: 350.0089, found 350.0084.
(Z)-4-((4-Oxo-2-(piperidin-1-yl)thiazol-5(4H)-ylidene)methyl)benzonitrile 9f

Yield 98%; yellow solid; mp = 193-195; 1H NMR (400 MHz, DMSO-d_6): δ 7.97 (d, J = 8.7 Hz, 2H, Ar-H), 7.80 (d, J = 8.7 Hz, 2H, Ar-H), 7.67 (s, 1H, =CH), 3.96–3.90 (m, 2H, Piperidine-H), 3.65-3.66 (m, 2H, br s, Piperidine-H), 1.66-1.67 (m, 6H, Piperidine-H); IR (KBr, cm$^{-1}$): ν_{max} 2223 (C≡N), 1689 (C=O), 1617 (C=N), 1610 (C=C); HRMS: m/z [M + H]$^+$ calcd: 298.1015, found 298.1019.

(Z)-5-(Benzo[d][1,3]dioxol-4-ylmethylene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9g

Yield 98%; white solid; mp = 185-186 °C; 1H NMR (400 MHz; CDCl$_3$): δ 7.69 (s, 1H, =C-H), 7.01 (d, J = 8.8 Hz, 1H, Ar-H), 6.97 (m, 1H, Ar-H); 6.80 (d, J = 8.8 Hz, 1H, Ar-H); 6.03 (s, 2H, CH$_2$), 3.99-3.96 (m, 2H, Piperidine-H), 3.49 (m, 2H, Piperidine-H), 1.79-1.73 (m, 6H, Piperidine-H); IR (KBr, cm$^{-1}$): ν_{max} 1699 (C=O), 1605 (C=N), 1585 (C=C); HRMS: m/z [M + H]$^+$ calcd: 317.0960, found 317.0957.

(Z)-5-(3,4-Dimethoxybenzylidene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9h

Yield 97%; yellowish solid; mp = 198-199°C; 1H NMR (400 MHz, CDCl$_3$) δ: 7.72 (s, 1H, =CH), 7.13-7.14 (dd, J = 8.7, 1.7 Hz, 1H, Ar-H), 7.01 (d, J = 1.7 Hz, 1H, Ar-H), 6.93 (d, J = 8.7 Hz, 1H, Ar-H),
3.99-4.01 (t, J = 5.9 Hz, 2H, Piperidine-H), 3.90 (d, 6H, -OCH3), 3.56 (br, 2H, piperidine-H), 1.78 (br, 6H, piperidine-H); IR (KBr, cm⁻¹): νmax 1655 (C=O), 1614 (C=N), 1601 (C=C); HRMS: m/z [M + H]⁺ calcd: 333.1271, found 333.1274.

(Z)-5-(4-Aminobenzylidene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9i

Yield 96%; yellow solid, mp = 213-215 °C; ¹H NMR (400 MHz, DMSO-d6) δ: 7.43 (s, 1H, =CH), 7.25 (d, J = 8.7 Hz, 2H, Ar-H), 6.69 (d, J = 8.8 Hz, 2H, Ar-H), 5.90 (br, 2H, NH2), 3.92 (br, 2H, Piperidine-H), 3.55 (br, 2H, Piperidine-H), 1.60 (br, 6H, Piperidine-H); IR (KBr): 1688 (C=O), 1609 (C=N), 1597 (C=C); HRMS: m/z [M + Na]⁺ calcd: 310.0991, found 310.0987.

(Z)-5-(4-Hydroxy-3-methoxybenzylidene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9j

Yield 98%; yellow solid; mp = 193-195°C; ¹H NMR (400 MHz, CDCl3) δ: 7.70 (s, 1H, =CH), 7.10-7.12 (dd, J = 8.5, 1.7 Hz, 1H, Ar-H), 7.03-7.00 (m, 2H, Ar-H), 4.00-4.02 (t, J = 5.9 Hz, 2H, Piperidine-H), 3.96 (s, 3H, OCH3), 3.59 (br, 2H, Piperidine-H), 1.76 (br, 6H, Piperidine-H); IR (KBr, cm⁻¹): νmax 1672 (C=O), 1598 (C=N, C=C); HRMS: m/z [M]⁺ calcd: 318.1036, found 318.1038.
(Z)-2-(Piperidin-1-yl)-5-(pyridin-4-ylmethylene)thiazol-4(5H)-one 9k

Yield 98%; yellow solid; mp = 171-173 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \): 8.67 (d, \(J = 5.0 \) Hz, 2H, Ar-H), 7.56-7.52 (m, 3H, Ar-H + =CH), 3.89 (br, 2H, Piperidine-H), 3.63 (br, 2H, Piperidine-H), 1.65 (br, 6H, Piperidine-H); IR (KBr, cm\(^{-1}\)): \(\nu_{\text{max}} \) 1691 (C=O), 1624 (C=N), 1611 (C=C); HRMS: \(m/z \) [M + Na]\(^+\) calcd: 296.0832, found 296.0837.

(Z)-2-(Piperidin-1-yl)-5-(thiophen-2-ylmethylene)thiazol-4(5H)-one 9l

Yield 96%; greenish solid; mp = 203-205 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6 \)) \(\delta \): 7.93 (d, \(1H, J = 5.4 \) Hz, Ar-H), 7.87 (s, \(1H, =CH \)), 7.59 (d, \(1H, J = 3.5 \) Hz, Ar-H), 7.26-7.24 (dd, \(1H, J = 1.4, 4.1 \) Hz, Ar-H), 3.96–3.88 (m, 2H, Piperidine-H), 3.66–3.63 (m, 2H, Piperidine-H), 1.62-1.65 ppm (m, 6H, Piperidine-H); IR (KBr, cm\(^{-1}\)): \(\nu_{\text{max}} \) 1701 (C=O), 1609 (C=N), 1591 (C=C); HRMS: \(m/z \) [M]\(^+\) calcd: 278.0548, found 278.0529.

(Z)-5-((1H-Indol-3-yl)methylene)-2-(piperidin-1-yl)thiazol-4(5H)-one 9m

Yield 98%; yellow solid; mp = 244-246 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6 \)) \(\delta \): 11.99 (s, \(1H, NH \)), 7.89 (s, \(1H, =CH \)), 7.85 (d, \(J = 8.7 \) Hz, 1H, Ar-H), 7.74 (s, \(1H, Ar-H \)), 7.49 (d, \(J = 7.5 \) Hz, Ar-H), 7.46 (d, \(J = 8.1 \) Hz, Ar-H), 7.14–7.01 ppm (m, 2H, Indole-H).
1H, Ar-H), 7.19-7.11 (m, 2H, Ar-H), 3.88-3.78 (m, 4H, Piperidine-H), 1.78–1.70 ppm (m, 6H, Piperidine-H); IR (KBr, cm\(^{-1}\)): \(\nu_{\text{max}}\) 1691 (C=O), 1612 (C=N), 1598 (C=C); HRMS: \(m/z\) [M + H]\(^{+}\) calcd: 312.1167, found 312.1172.

SEM of TiO\(_2\)

![SEM of TiO\(_2\)](image)
TEM of TiO$_2$
SEM of ZnO
TEM of ZnO
Green Metrics Calculations1,2

\[
\% \text{ Atomic Efficiency (AE)} = \frac{\text{Mol Wt. of desired product}}{\text{Mol Wt. of all reagents}} \times 100
\]

\[
\% \text{ Carbon Efficiency (CE)} = \frac{\text{Mass of carbon in product}}{\text{Totall mass of carbon in the reactants}} \times 100
\]

\[
\text{Reaction Mass Efficiency (RME)} = \frac{\text{Mass of the isolated product}}{\text{Total mass of reactants used in the reaction}} \times 100
\]

\[
\% \text{ Yield Economy (YE)} = \frac{\text{Reaction percent}}{\text{Time in min}} \times 100
\]

\[
\text{E-Factor (EF)} = \frac{\text{Mass of the total waste}}{\text{Mass of the crude product}}
\]

\[
\text{Process Mass Intensity (PMI)} = \frac{\text{Total mass used in process}}{\text{Mass of product}}
\]

References

1. D. Curzons, D. J. C. Constable, D. N. Mortimer and V. L. Cunningham, *Green Chem.*, 2001, 3, 1-6.
2. C. Jimenez-Gonzalez, D. J. C. Constable and C. S. Ponder, *Chem. Soc. Rev.*, 2012, 41, 1485-1498.