Review

Fibroblast biology

Effector signals released by the synovial fibroblast in arthritis

Christopher Ritchlin

University of Rochester Medical Center, Rochester, New York, USA

Abstract

There is mounting evidence indicating that the synovial fibroblast is a direct effector of tissue injury and matrix remodeling in inflammatory synovitis. Through the elaboration of effector signals including cytokines and chemokines, mesenchymal cells stimulate or suppress inflammation via autocrine and paracrine mechanisms. Synovial fibroblasts are the principal cells mediating joint destruction through secretion of metalloproteinases, and recent evidence suggests that they may also promote bone resorption by stimulating osteoclastogenesis. Moreover, they may play an integral role in the initial phases of synovitis by releasing chemokines that recruit leukocytes to the joint, and cytokines that trigger angiogenesis. Studies focusing on synoviocyte–leukocyte interactions mediated via the cytokine network and the role of cell–cell contact in driving synoviocyte activation will help define the complex interplay that leads to the initiation and perpetuation of synovial inflammation.

Keywords: chemokines, cytokines, effector cell, rheumatoid arthritis, synovial fibroblast, synovial membrane

Introduction

In rheumatoid arthritis, the normally delicate synovial membrane is transformed into a proliferating invasive cell mass or pannus that erodes the surrounding tissue and bone. Infiltrating T lymphocytes, monocytes and synoviocytes of monocyte (type A) and fibroblast (type B) lineage have been implicated in orchestrating and maintaining synovitis, although their relative contributions have been the subject of considerable debate [1••,2,3]. Recent clinical trials with anti-tumor necrosis factor therapies in rheumatoid arthritis have demonstrated that these agents significantly improve clinical measures and retard bone erosion [4–6]. This focused attention on the pivotal role of the monocyte in mediating the proximal events in inflammatory synovitis. However, enthusiasm for this pathway must be tempered by the observation that 25% of patients are resistant to these therapies and that remissions are rare, suggesting other mechanisms may also be important.

One of the most striking features of inflammatory arthritis is the hyperplasia of synovial fibroblasts (SF) in the lining layer [7•]. In serial culture, these fibroblasts exhibit several novel properties including high proliferative rates, loss of contact inhibition, constitutive expression of cytokine mRNA and protein, and anchorage-independent cell growth [8•,9•,10]. These observations challenged the

BMP = bone morphogenic protein; MCP = macrophage chemotactic protein; MIF = macrophage inhibitory factor; MIP = macrophage inflammatory protein; MMP = metalloproteinase; RA = rheumatoid arthritis; RT-PCR = reverse transcriptase polymerase chain reaction; SCID = severe combined immunodeficient; SF = synovial fibroblasts; TIMP = tissue inhibitors of metalloproteinases; TNF = tumor necrosis factor; VEGF = vascular endothelial growth factor.
Angiogenesis and induction of inflammation

New blood vessel formation or angiogenesis is a characteristic feature of inflamed synovial membranes, and it is now appreciated that the endothelial cell is an active participant mediating both inflammatory and immunologic interactions [12]. The role of pro-angiogenic cytokines in arthritis is the subject of active investigation in many laboratories, and treatment strategies using anti-angiogenic molecules show promising results in animal models [12]. Several important pro-angiogenic cytokines and growth factors are released by SF including transforming growth factor-β, interleukin (IL)-8, platelet derived growth factor, granulocyte-macrophage colony stimulating factor, epidermal growth factor, vascular endothelial growth factor (VEGF) and fibroblast growth factor. VEGF, one of the most potent angiogenic factors, is expressed constitutively in SF, and secretion is augmented by IL-1 and hypoxia [13]. Further support for the inducibility of VEGF by cytokines was demonstrated by suppression of VEGF in dissociated synovial membrane cultures after combined neutralization of IL-1 and tumor necrosis factor (TNF)-α [14].

Table 1

Signal function	Effector molecules
Angiogenesis	IL-8, TGF-β, PDGF, GM-CSF, G-CSF, FGF, VEGF, EGF
Chemoattractant	IL-8, IL-16, MCP-1, MIP-1α
Pro-Inflammatory	IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, LIF, PDGF, MIF, GM-CSF, TRX
Anti-Inflammatory	p55 TNFR, p75 TNFR, IL-10
Matrix degradation	PGE₂, collagenase, stromelysin, 92 kD gelatinase, cathepsins B, L, and K
Inhibit matrix degradation	TIMP, TGF-β IL-11
Osteoclastogenesis	RANKL, VEGF
Bone formation	TGF-β, BMP-2

Mesenchymal stem cells were isolated from the peripheral blood and synovial fluid of patients with inflammatory synovitis. These cells displayed osteocyte and osteoclast morphology, and stained positive for tartrate resistant alkaline phosphatase, vimentin and collagen-1 but not vascular cell adhesion molecule-1. They also expressed receptors for bone morphogenic protein (BMP), a heterodimer expressed by mesenchymal stem cells. Cells of similar appearance were found in the joints of mice with collagen-induced arthritis before the onset of visible synovitis. The presence of these cells in the bare area of the joint suggests that these cells may migrate into the synovium via interconnecting channels from the bone marrow. Furthermore, these cells released the chemokine stromal-derived factor-1, which stimulated transmigration of T and B cells and enhanced their viability. These observations provide an alternative model of inflammation in which the mesenchymal cell is the key effector cell inducing synovitis by recruiting and retaining lymphocytes in the joint space.

Modulation of inflammation: pro- and anti-inflammatory cytokines

A common thread emerging from studies of the synovium is the presence of cytokine networks involving complex interactions between lymphocytes, synovial fibroblasts and macrophages. The release of IL-1 or TNF-α by monocytes/macrophages followed by activation of resident tissue cells (fibroblasts, endothelial cells, stromal cells) triggers the cascade, which can in turn amplify or suppress inflammation by releasing cytokines and/or growth factors. The SF...
secrete a number of different cytokines that exert pleiotropic effects on monocyte/macrophages, T and B lymphocytes, mesenchymal cells and bone marrow cells [21].

Synovial fibroblasts release growth factors (granulocyte-macrophage colony stimulating factor and colony stimulating factor-1) that regulate the development and activation of hematopoietic cells and their precursors [21,22]. They can trigger the acute phase response through secretion of the IL-6-type cytokines (IL-6, IL-11 and Leukemia Inhibitory Factor) [23]. Release of IL-15 and, to a lesser extent, IL-7 promotes T-cell activation and expansion [24]. Unstimulated SF produce abundant quantities of macrophage inhibitory factor (MIF), a cytokine with a broad range of pro-inflammatory actions including induction of TNF-α secretion by macrophages, enhancement of macrophage phagocytosis and intracellular killing, and T-cell activation [25]. Low concentrations of dexamethasone stimulated release of macrophage inhibitory factor from SF, while IL-1β, TNF-α and interferon-gamma had no effect. Both β-fibroblast growth factor and platelet derived growth factor are mitogenic for SF and, as mentioned earlier, are important angiogenic factors. Platelet derived growth factor promotes anchorage-independent cell growth in synovial fibroblasts, a characteristic attributed to transformed cells. Immunolocalization of thioredoxin to SF and monocytes in the rheumatoid synovial lining unveils the presence of a pro-inflammatory pathway induced by oxidative stress [26]. Thioredoxin augments secretion of TNF-α and IL-1, and also blocks apoptosis.

The simultaneous production of endogenous anti-inflammatory cytokines highlights the presence of complex regulatory pathways in the inflamed joint. These inhibitory proteins can specifically block the biologic activity of the early-response cytokines IL-1 and TNF or exert more global suppressive actions on cytokine release. SF secrete both the p55 and p75 soluble TNF receptors that can bind and neutralize TNF-α. They also express mRNA for the IL-1 receptor antagonist, but the intracellular protein is not secreted, making it unlikely that it blocks IL-1 actions in the synovial tissue [11**].

We recently described the immunolocalization of IL-10 to both monocytic and fibroblastoid synoviocytes in the lining layer of inflamed synovial membranes (Ritchlin and Haas-Smith, submitted). Fibroblast synoviocytes constitutively produced IL-10 in serial culture that was enhanced by TNF-α and IL-1β. IL-10, a potent cytokine synthesis inhibitor, can block the release of monokines, lymphokines and class II MHC expression by monocytes. It is present in relatively high levels in inflamed joints, although addition of exogenous IL-10 to dispersed rheumatoid synovial membranes further suppressed IL-1 and TNF production, emphasizing a relative deficiency of anti-inflammatory cytokines in diseased joints [27].

Matrix degradation

A fundamental aspect of inflammatory synovitis is the erosion of articular cartilage and bone by the pannus. The seminal work of Gay et al illustrated that SF can promote cartilage degradation in the absence of T cells or monocytes in the SCID mouse [11**]. Subsequent in vitro studies have expanded on these initial observations and provide a framework to better understand the mechanisms that underlie the invasive properties of SF. Addition of purified macrophages and fibroblasts to radiolabeled cartilage discs resulted in cartilage degradation by osteoarthritis and RA SF but not fibroblasts derived from skin or bone marrow [28*]. Erosion of cartilage was augmented by addition of TNF-α, IL-1β and IL-6. Degradation occurred only when SF were in direct contact with cartilage and CD44 was involved in the fibroblast–cartilage interaction. The enhancing effect of IL-1 on cartilage destruction, and the requirement of β1, α4, αβ5 and αvβ3 integrin expression for fibroblast invasion, were noted using a similar in vitro model [29*]. Taken together, these studies demonstrate that SF can invade bone in the absence of other immune cells but this invasiveness can be dramatically increased by exposure to pro-inflammatory cytokines. Furthermore, expression of adhesion molecules and integrin receptor engagement is required for cartilage invasion.

Degradation of the extracellular matrix is mediated by a number of different enzymes including cathepsin B and cathepsin L, serine proteases and metalloproteinases (MMP). The MMPs collagenase (MMP-1) and stromelysin (MMP-3) are expressed by SF in situ, and production of these enzymes by cultured SF can markedly increase under direct contact with T cells or exposure to pro-inflammatory cytokines [30*]. The prostaglandin PGE2, another mediator of bone resorption, is similarly secreted in large quantities by these cells. The role of cathepsin B and cathepsin L in mediating bone erosion is of questionable relevance because these enzymes function optimally at a pH lower than that observed in the synovial microenvironment. The activity of MMPs is counterbalanced by tissue inhibitors of metalloproteinases (TIMP), also produced by lining cells of fibroblast lineage. Transforming growth factor-β, IL-6 and IL-11 enhance TIMP production, but in studies of rheumatoid synovial membranes MMPs are present in excess of their natural inhibitors favoring catabolism. Bone morphogenetic protein-2 may also participate in this compensatory response by stimulating new bone formation [31].

Cells at the site of bone erosion in RA display phenotypic features of osteoclasts [32*]. A pathway leading to osteoclast differentiation and proliferation was recently described [32*]. It has been shown that bone resorption is stimulated through the upregulation of RANKL, a membrane-bound member of the TNF family. RANKL binds to its receptor RANK expressed by osteoclast precursors [33*]. Macrophage colony stimulating factor (M-CSF) and
RANKL are required for osteoclast differentiation from progenitor cells and subsequent activation, although VEGF can substitute for M-CSF [34]. RANKL mRNA was detected by reverse transcriptase polymerase chain reaction (RT-PCT) in rheumatoid arthritis (RA) synovium but not normal tissues [35]. In addition, RANKL mRNA was expressed by synovial fibroblasts and activated T lymphocytes derived from RA synovium. These findings suggest that synovial fibroblasts can directly promote the formation and activation of osteoclasts at sites of bone erosion in RA.

Conclusions
The synovial fibroblast has emerged as a pivotal effector cell in the inflamed joint, based on its ability to degrade the extracellular matrix and to provide chemotactic and activation signals to resident parenchymal cells and infiltrating immunocytes. In vitro studies have demonstrated that cultured synovial fibroblasts display unique properties that set them apart from fibroblasts isolated from different anatomic sites. These cells, most importantly, release an impressive array of cytokines and growth factors, which have the capacity to stimulate and, in some cases, dampen the inflammatory response. However, the impact of these effector molecules on the pathology of synovitis must be viewed in the context of a cytokine network involving complex cellular interactions both locally and systemically. Exploring the interaction between monocytes and SF may yield valuable insights given the close apposition of these cells in the synovial lining and the key role of TNF in the early phases of synovitis. Moreover, therapeutic strategies that inhibit SF effector pathways responsible for angiogenesis, pro-inflammatory cytokine release and matrix degradation should significantly diminish joint inflammation and prevent bone resorption.

References
Articles of particular interest have been highlighted as:
- of special interest
- of outstanding interest

1. Firestein GS: Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum 1996, 39:1781–1790.
 This is an excellent comprehensive review of synovial fibroblast biology and its role in the pathogenesis of rheumatoid arthritis.

2. Burmester GR, Stuhlmüller B, Keyszer G, Kinne RW: Mononuclear phagocytes and rheumatoid synovitis. Mastermind or workhorse in arthritis? Arthritis Rheum 1997, 40:5–18.

3. Fox DA: The role of T cells in the immunopathogenesis of rheumatoid arthritis: new perspectives. Arthritis Rheum 1997, 40:598–609.

4. Koopman WJ, Moreland LW: Rheumatoid arthritis: anticytokine therapies on the horizon. Ann Intern Med 1998, 128:231–233.

5. Finck B, Martin R, Fleschmann R, Moreland LW, Schiff M, Barton J: A phase III trial of etanercept vs methotrexate (MTX) in early rheumatoid arthritis (Embrel® ERA Trial) [abstract]. Arthritis Rheum 1999, 42:s41.

6. Lipsky PE, St. Claire W, Forst D, Breedveld FC, Smolen J, Kalden JR, Weisman MH, Emery P, Harrriman G, van der Heijde D, Maini RN: 54-Week clinical and radiographic results from the ATTRACT Trial: a phase III study of infliximab (Remicade™) in patients with active RA despite methotrexate [abstract]. Arthritis Rheum 1999, 42:s401.

7. Qu Z, Garcia CH, O'Rourke LM, Planck SR, Kohli M, Rosenbaum JT:
 - Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia. Results of proliferating cell nuclear antigen/cyclin, c-myc, and nuclear organizer region staining Arthritis Rheum 1994, 37:212–220.
 This study demonstrates the importance of local fibroblast division in the hyperplastic synovial lining.

8. Ritchlin C, Dwyer E, Bucala R, Winchester R: Sustained and distinctive patterns of gene activation in synovial fibroblasts and whole synovial tissue obtained from inflammatory synovitis. Scand J Immunol 1994, 40:292–298.

See [9].

9. Bucala R, Ritchlin C, Winchester R, Cerami A: Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J Exp Med 1991, 173:569–574.
 These two reports [8,9] demonstrate that rheumatoid synovial fibroblasts constitutively produce pro-inflammatory cytokine mRNA and protein in long-term culture.

10. Laffaïa R, Renmers EF, Roberts AB, Yocum DE, Sporn MB, Wilder RL: Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-beta and retinoic acid. J Clin Invest 1989, 83:1267–1276.

11. Muller-Ladner U, Kriegsmann J, Franklin, BN, Matsumoto S, Geiler T, Gay RE, Gay S: Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 1996, 149:1607–1615.
 This study presents the first demonstration that pure populations of serially cultured synovial fibroblasts from rheumatoid but not osteoarthritis synovium or normal skin could invade the cartilage matrix when co-implanted with cartilage explants into severe combined immunodeficient mice. This supported the concept that synovial fibroblasts from rheumatoid joints are persistently activated.

12. Koch AE: Review: angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum 1998, 41:951–962.

13. Jackson JR, Minton JA, Ho ML, Wei N, Winkler JD: Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol 1997, 24:1253–1259.

14. Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN: Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 1998, 41:1258–1265.

15. Kunkel SL, Lukacs N, Kasama T, Strieter RM: The role of chemokines in inflammatory joint disease. J Leukocyte Biol 1996, 58:8–12.

16. Smith RS, Smith TJ, Bleden TM, Phipps RP: Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol 1997, 151:317–322.
 This report introduces the concept of the fibroblast as a ‘sentinel’ cell, which can initiate inflammation by recruiting leukocytes to the site of tissue injury.

17. Szekanecz Z, Strieter RM, Kunkel SL, Koch AE: Chemokines in rheumatoid arthritis. Springer Semin Immunopathol 1998, 20:115–132.

18. Franz JK, Kolb SA, Hummel KM, Lahtrz F, Neidhart M, Aicher WK, Pap T, Gay RE, Fontana A, Gay S: Interleukin-16, produced by synovial fibroblasts, mediates chemotraction for CD4+ T lymphocytes in rheumatoid arthritis. Eur J Immunol 1998, 28:2661–2671.
 In vitro evidence is presented in this study showing that the synovial fibroblast is capable of initiating chemotraction of T lymphocytes through the release of IL-16.
19. Zvaifler NJ, Burger JA, Marinova-Mutafchieva L, Taylor P, Maini RN: Mesenchymal cells, stromal derived factor-1 and rheumatoid arthritis [abstract]. Arthritis Rheum 1999; 42:2430.

20. Zvaifler NJ, Marinova L, Burger JA, Mutaﬁchieva C, Evans CH, Adams G, Maini RN: Mesenchymal stem cells in the blood [abstract]. Arthritis Rheum 1999; 42:2435.

21. Koch AE, Kunkel SL, Strieter RM: Cytokines in rheumatoid arthritis. J Invest Med 1996; 43:28–38.

22. Fibbe WE, Van Damme J, Billiau A, Duinkerken N, Lurvink E, Ralph P, Altrock BW, Kaushansky K, Willemze R, Falkenburg JH: Human fibroblasts produce granulocyte-CSF, macrophage-CSF, and granulocyte-macrophage-CSF following stimulation by interleukin-1 and poly(rI).poly(rC). Blood 1988; 72:860–868.

23. Okamoto H, Yamamura M, Morita Y, Harada S, Makino H, Ota Z: The synovial expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum 1999; 42:1096–1105.

24. Harada S, Yamamura M, Okamoto H, Morita Y, Kawashima M, Aita T, Makino H: Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum 1999; 42:1508–1516.

25. Leech M, Metz C, Hall P, Hutchinson P, Gianis K, Smith M, Weedon H, Holdsworth SR, Bucala R, Morand EJ: Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids. Arthritis Rheum 1999; 42:1601–1608.

26. Maurice MM, Nakamura H, Gringhuis S, Okamoto T, Yoshida S, Kullmann F, Lechner S, von der Voort EA, Leow A, Versendaal J, Muller-Ladner U, Yodi C, Tai FB, Reedveld FC, Verweij GL: Expression of the thioredoxin–thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 1999; 42:2430–2439.

27. Katsikis PD, Chu CQ, Brennan FM, Maini RN, Feldmann M: Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J Exp Med 1994; 179:1517–1527.

28. Scott BB, Weisbrot LM, Greenwood JD, Bogoch ER, Paige CJ, Keystone EC: Rheumatoid arthritis synovial fibroblast and U937 macrophage/microcyte cell line interaction in cartilage degradation. Arthritis Rheum 1997; 40:490–498.

29. Wang AZ, Wang JC, Fisher GW, Diamond HS: Interleukin-1beta-stimulated invasion of articular cartilage by synovial fibroblasts is inhibited by antibodies to specific integrin receptors and by collagenase inhibitors. Arthritis Rheum 1997; 40:1298–1307.

30. Burger D, Rezzonico R, Li JM, Modoux C, Pierce RA, Welgus HG, Dayer JM: Imbalance between interstitial collagenase and tissue inhibitor of metalloproteinases 1 in synoviocytes and fibroblasts upon direct contact with stimulated T lymphocytes: involvement of membrane-associated cytokines. Arthritis Rheum 1998; 41:1748–1759.

31. Fowler MJ, Neff MS, Borchgert RC, Pease EA, Mochan E, Thornton RD: Induction of bone morphogenetic protein-2 by interleukin-1 in human fibroblasts. Biochem Biophys Res Commun 1998; 248:450–453.

32. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR: Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1998, 152:943–951.

This is an important study providing evidence that osteoclasts are present at sites of bone resorption in the rheumatoid joint.

33. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Rev 1999, 20:345–357.

This is a thorough and timely review of the steps leading to osteoclast differentiation and activation, with strong emphasis on the RANK–RANKL pathway.

34. Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H: Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 1999; 190:293–298.

35. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR: Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 2000, 43:250–258.

This study provides the first evidence, albeit preliminary, that RANK and RANKL mRNA are present in rheumatoid synovium.

Author’s affiliation: Clinical Immunology & Rheumatology Unit, University of Rochester Medical Center, Rochester, New York, USA

Correspondence: Christopher Ritchlin, University of Rochester Medical Center, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA. Tel: +1 716 275 2891; fax: +1 716 273 1070; e-mail: christopher_ritchlin@urmc.rochester.edu