Topology of Clique Complexes of Line Graphs

Shuchita Goyal, Samir Shukla, Anurag Singh

Abstract

The clique complex of a graph \(G \) is a simplicial complex whose simplices are all the cliques of \(G \), and the line graph \(L(G) \) of \(G \) is a graph whose vertices are the edges of \(G \) and the edges of \(L(G) \) are incident edges of \(G \). In this article, we determine the homotopy type of the clique complexes of line graphs for several classes of graphs including triangle-free graphs, chordal graphs, complete multipartite graphs, wheel-free graphs, and 4-regular circulant graphs. We also give a closed form formula for the homotopy type of these complexes in several cases.

Keywords: \(H \)-free complex, clique complex, line graph, chordal graphs, wheel-free graphs, circulant graphs

2010 Mathematics Subject Classification: 05C69, 55P15

1 Introduction

For a fixed graph \(H \), a subgraph \(K \) of a graph \(G \) is called \(H \)-free if \(K \) does not contain any subgraph isomorphic to \(H \). Finding \(H \)-free subgraphs of a graph \(G \) is a well studied notion in extremal graph theory. It is easy to observe that \(H \)-freeness is a hereditary property, thereby giving a simplicial complex for any fixed graph \(G \), denoted \(\mathcal{F}(G,H) \). These complexes have already been studied for different graphs \(H \), for example see [2, 7, 11, 14, 15, 22] when \(H \) is a complete graph, [9, 19, 21] when \(H \) is a star graph, [8, 13] when \(H \) is \(r \) disjoint copies of complete graphs on 2 vertices, denoted \(rK_2 \).

Replacing \(H \) by a class of trees on fixed number of vertices has also gained attention in the last decade, for instance see [6, 18, 20].

In this article, our focus will be on the complex \(\mathcal{F}(G,2K_2) \). In [13], Linusson et. al have studied \(\mathcal{F}(G,rK_2) \) for complete graphs and complete bipartite graphs. They showed that \(\mathcal{F}(G,rK_2) \) is homotopy equivalent to a wedge of \((3r - 4)\)-dimensional spheres when \(G \) is a complete graph, and \((2r - 3)\)-dimensional spheres if \(G \) is a complete bipartite graph. Further, Holmsen and Lee [8] studied these complexes for general
graph G and they showed that $\mathcal{F}(G, rK_2)$ is $(3r - 3)$-Leray\(^1\), and it is $(2r - 2)$-Leray if G is bipartite. It is worth noting that $\mathcal{F}(G, 2K_2)$ is the clique complex of the line graph of G, denoted $\Delta L(G)$. Clique complexes of graphs have a very rich literature in topological combinatorics, for instance see [1, 10]. Recently, Nikseresht [17] studied some algebraic properties like Cohen-Macaulay, sequentially Cohen-Macaulay, Gorenstein, etc., of clique complexes of line graphs. In this article, we determine the exact homotopy type of $\Delta L(_)$ for various classes of graphs including triangle-free graphs, chordal graphs, complete multipartite graphs, wheel-free graphs and 4-regular circulant graphs. Moreover, we show that $\Delta L(_)$ in each of these cases is homotopy equivalent to a wedge of equidimensional spheres, except for the 4-regular circulant graphs for which it is homotopy equivalent to a wedge of circles and 2-spheres.

This article is organized as follows. In Section 2, we recall various definitions and results which are needed. In the next section, we analyze $\Delta L(G)$ as the 2-skeleton of the clique complex of G and then use it to compute the homotopy type of $\Delta L(G)$ for various classes of graphs including triangle free graphs and chordal graphs. In Section 3.1, by realizing ΔL as a functor from the category of graphs to the category of simplicial complexes, we compute the homotopy type of $\Delta L(G)$ when G is a complete multipartite graph. Section 4 is devoted towards the study of ΔL of wheel-free graphs and 4-regular circulant graphs. In the last section, we discuss a few questions that arise naturally from the work done in this article.

2 Preliminaries

A (simple) graph is an ordered pair $G = (V(G), E(G))$, where $V(G)$ is called the set of vertices and $E(G) \subseteq (V(G))^2$, the set of (unordered) edges of G. The vertices $v_1, v_2 \in V(G)$ are said to be adjacent, if $(v_1, v_2) \in E(G)$ and this is also denoted by $v_1 \sim v_2$. For $v \in V(G)$, the set of its neighbours, $N_G(v)$, in G is $\{x \in V(G) : x \sim v\}$. The degree of a vertex $v \in V(G)$ is the cardinality of the set of its neighbours. A vertex v of degree 1 is called a leaf vertex and the vertex adjacent to v is called the parent of v. An edge adjacent to a leaf vertex is called a leaf/hanging edge. A graph H with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ is called a subgraph of the graph G. For a nonempty subset $U \subseteq V(G)$, the induced subgraph $G[U]$, is the subgraph of G with vertices $V(G[U]) = U$ and $E(G[U]) = \{(a, b) \in E(G) : a, b \in U\}$. Similarly, for a nonempty subset $F \subseteq E(G)$, the induced subgraph $G[F]$, is the subgraph of G with vertices $V(G[F]) = \{v \in V(G) : v \in e \text{ for some } e \in F\}$ and $E(G[F]) = F$. In this article, the graph $G[V(G) \setminus A]$ will be denoted by $G - A$ for $A \subseteq V(G)$.

For $n \geq 1$, the complete graph on n vertices is a graph where any two distinct vertices are adjacent, and is denoted by K_n. For $n \geq 3$, the cycle graph C_n is the graph with $V(C_n) = \{1, \ldots, n\}$ and $E(C_n) = \{(i, i + 1) : 1 \leq i \leq n - 1\} \cup \{(1, n)\}$. For $r \geq 1$, the path graph of length r is a graph with vertex set $V(P_r) = \{0, \ldots, r\}$ and edge set $E(P_r) = \{(i, i + 1) : 0 \leq i \leq r - 1\}$, and is denoted by P_r. The line graph, $L(G)$,

\(^1\)A simplicial complex K is called d-Leray (over a field \mathbb{F}) if $\check{H}_i(L, \mathbb{F}) = 0$ for all $i \geq d$ and for every induced subcomplex $L \subseteq K$.

2
of a graph G is the graph with $V(L(G)) = E(G)$ and $E(L(G)) = \{(v_1, v_2), (v'_1, v'_2) : |\{v_1, v_2\} \cap \{v'_1, v'_2\}| = 1\}$.

An (abstract) simplicial complex \mathcal{K} is a collection of finite sets such that if $\tau \in \mathcal{K}$ and $\sigma \subseteq \tau$, then $\sigma \in \mathcal{K}$. The elements of \mathcal{K} are called the simplices (or faces) of \mathcal{K}. If $\sigma \in \mathcal{K}$ and $|\sigma| = k + 1$, then σ is said to be k-dimensional. The maximal simplices of \mathcal{K} are also called facets of \mathcal{K}. The set of 0-dimensional simplices of \mathcal{K} is denoted by $V(\mathcal{K})$, and its elements are called vertices of \mathcal{K}. A subcomplex of a simplicial complex \mathcal{K} is a simplicial complex whose simplices are contained in \mathcal{K}. For $k \geq 0$, the k-skeleton of a simplicial complex \mathcal{K} is a subcomplex consisting of all the simplices of dimension $\leq k$ and it is denoted by $\mathcal{K}^{(k)}$. The cone of a simplicial complex \mathcal{K} with apex w, denoted $C_w(\mathcal{K})$, is a simplicial complex whose facets are $\sigma \cup \{w\}$ for each facet σ of \mathcal{K}. In this article, we always assume empty set as a simplex of any simplicial complex and we consider any simplicial complex as a topological space, namely its geometric realization. For the definition of geometric realization, we refer to Kozlov’s book [12].

The clique complex, $\Delta(G)$, of a graph G is the simplicial complex whose simplices are subsets $\sigma \subseteq V(G)$ such that $G[\sigma]$ is a complete graph.

The clique complex of line graph of a graph G, $\Delta L(G)$, has also been studied by Linusson, Shareshian, and Welker in [13] and Holmsen and Lee in [8]. They denoted these complexes by $NM_2(G)$ and proved the following results.

Theorem 2.1 (Theorem 1.1, [13]). Let n be a positive integers. Then $NM_2(K_n)$ is homotopy equivalent to a wedge of spheres of dimension 2.

Theorem 2.2 (Theorem 1.1, [8]). For a graph G, the complex $NM_2(G)$ is 3-Leray.

It is worth mentioning here that the Lerayness of the clique complex of the complement of a claw-free graph has also been studied in [3] and [16].

2.1 (Homotopy) Pushout

Let X, Y, Z be topological spaces, and $p : X \rightarrow Y$ and $q : X \rightarrow Z$ be continuous maps. The pushout of the diagram $Y \leftarrow X \rightarrow Z$ is the space

$$ \left(\frac{Y \sqcup Z}{\sim}\right), $$

where \sim denotes the equivalence relation $p(x) \sim q(x)$, for $x \in X$.

The homotopy pushout of $Y \leftarrow X \rightarrow Z$ is the space $\left(\frac{Y \sqcup (X \times [0, 1]) \sqcup Z}{\sim}\right)$, where \sim denotes the equivalence relation $(x, 0) \sim p(x)$, and $(x, 1) \sim q(x)$, for $x \in X$.

It can be shown that homotopy pushouts of any two homotopy equivalent diagrams are homotopy equivalent.

Remark 1. If spaces are simplicial complexes and maps are subcomplex inclusions, then their homotopy pushout and pushout spaces are equivalent up to homotopy. For elaborate discussion on this, we refer interested reader to [5, Chapter 7].
Remark 2. Consider a diagram $Y \xrightarrow{p} X \xrightarrow{q} Z$ and let W be its pushout object. If p, q are null-homotopic, then $W \simeq Y \vee Z \vee \Sigma(X)$, where \simeq and \vee respectively denotes homotopy equivalence and the wedge of topological spaces; and $\Sigma(X)$ denotes the suspension of X.

2.2 Simplicial Collapse

Let \mathcal{K} be a simplicial complex and $\tau, \sigma \in \mathcal{K}$ be such that $\sigma \subseteq \tau$ and τ is the only maximal simplex in \mathcal{K} that contains σ. A simplicial collapse of \mathcal{K} is the simplicial complex \mathcal{L} obtained from \mathcal{K} by removing all those simplices γ of \mathcal{K} such that $\sigma \subseteq \gamma \subseteq \tau$. Here σ is called a free face of τ and (σ, τ) is called a collapsible pair. We denote this collapse by $\mathcal{K} \smallsetminus \mathcal{L}$. A complex is called collapsible if it collapses onto a point by applying a sequence of simplicial collapses. It is a simple observation that, if $\mathcal{K} \smallsetminus \mathcal{L}$ then $\mathcal{K} \simeq \mathcal{L}$ (in fact, \mathcal{K} deformation retracts onto \mathcal{L}). Throughout this article, we write $\mathcal{K} \smallsetminus \langle A_1, A_2, \ldots, A_r \rangle$ to mean that \mathcal{K} collapses onto a subcomplex whose faces are A_1, \ldots, A_r and all its subsets.

We now give a result about collapsing which will be used throughout this article. To the best of our knowledge, this result is not present in writing anywhere in literature.

Lemma 2.3. Let \mathcal{K} be a simplicial complex and σ be a facet of \mathcal{K}. Let $A, B, C \subset \sigma$ be such that $A, B \neq \emptyset$ and $\sigma = A \cup B \cup C$. For each $a \in A$ and $b \in B$, let $\{a, b\}$ be a free face of σ in \mathcal{K}.

1. If $C \neq \emptyset$, then $\sigma \smallsetminus \langle \sigma \smallsetminus A, \sigma \smallsetminus B \rangle$.
2. If $C = \emptyset$ and $|A| = 1$ and $|B| \geq 2$, then for each $a \in A$ and $b \in B$, $\sigma \smallsetminus \langle B, \{a, b\} \rangle$.
3. If $C = \emptyset$ and $|A|, |B| \geq 2$, then for each $a \in A$ and $b \in B$, $\sigma \smallsetminus \langle A, B, \{a, b\} \rangle$.

Proof. Let $A = \{a_1, \ldots, a_p\}$ and $B = \{b_1, \ldots, b_q\}$. Without loss of generality, we can assume that $a_p = a$ and $b_q = b$.

1. We first do collapsing using the vertex a_1 from set A and then use similar arguments for the rest. Since $\{a_1, b_1\}$ is a free face of σ, $\sigma \smallsetminus \langle \sigma \smallsetminus \{b_1\}, \sigma \smallsetminus \{a_1\} \rangle$. Now $(\{a_1, b_2\}, \sigma \smallsetminus \{b_1\})$ is a collapsible pair and therefore $\sigma \smallsetminus \{b_1\} \smallsetminus \langle \sigma \smallsetminus \{b_1, b_2\}, \sigma \smallsetminus \{a_1, b_1\} \rangle$. Hence $\sigma \smallsetminus \langle \sigma \smallsetminus \{b_1, b_2\}, \sigma \smallsetminus \{a_1\} \rangle$. Inductively, assume that for some $1 \leq j < q$, $\sigma \smallsetminus \langle \sigma \smallsetminus \{b_1, \ldots, b_j\}, \sigma \smallsetminus \{a_1\} \rangle$. Now $(\{a_1, b_{j+1}\}, \sigma \smallsetminus \{b_1, \ldots, b_j\})$ is a collapsible pair and therefore $\sigma \smallsetminus \langle \sigma \smallsetminus \{b_1, \ldots, b_{j+1}\}, \sigma \smallsetminus \{a_1\} \rangle$. Using induction, we get that $\sigma \smallsetminus \langle \sigma \smallsetminus \{b_1, \ldots, b_q\} = \sigma \smallsetminus B, \sigma \smallsetminus \{a_1\} \rangle$.

If $p = 1$, then this completes the proof, otherwise we proceed as follows:

By doing similar collapsing using vertices $a_2, a_3, \ldots, a_{p-1}$ from set A, we get that $\sigma \smallsetminus \langle \sigma \smallsetminus B, \sigma \smallsetminus \{a_1, \ldots, a_{p-1}\} \rangle$. Now $(\{a_p, b_1\}, \sigma \smallsetminus \{a_1, \ldots, a_{p-1}\})$ is a collapsible pair and therefore $\sigma \smallsetminus \{a_1, \ldots, a_{p-1}\} \smallsetminus \langle \sigma \smallsetminus \{a_1, \ldots, a_{p-1}, a_p\} = \sigma \smallsetminus A, \sigma \smallsetminus \{a_1, \ldots, a_{p-1}, b_1\})$. Thus $\sigma \smallsetminus \langle \sigma \smallsetminus B, \sigma \smallsetminus A, \sigma \smallsetminus \{a_1, \ldots, a_{p-1}, b_1\} \rangle$. We now show that $\sigma \smallsetminus \{a_1, \ldots, a_{p-1}, b_1\} \smallsetminus \langle \sigma \smallsetminus A, \sigma \smallsetminus B \rangle$.
Since $C \neq \emptyset$, it is easy to observe that by using collapsible pairs in the following order:

$$((a_p, b_2), \sigma \setminus \{a_1, \ldots, a_{p-1}, b_1\}), \ldots, ((a_p, b_q), \sigma \setminus \{a_1, \ldots, a_{p-1}, b_1, \ldots, b_{q-1}\}),$$

and applying the collapses, we get that $\sigma \setminus \{a_1, \ldots, a_{p-1}, a_p, b_1, \ldots, b_{q-1}\}, \sigma \setminus \{a_1, \ldots, a_{p-1}, b_1, \ldots, b_{q-1}\}$. Since $\sigma \setminus \{a_1, \ldots, a_{p-1}, a_p, b_1, \ldots, b_{q-1}\} \subseteq \sigma \setminus A$ and $\sigma \setminus \{a_1, \ldots, a_{p-1}, b_1, \ldots, b_{q-1}\} \subseteq \sigma \setminus B$, we get that $\sigma \setminus (\sigma \setminus A, \sigma \setminus B)$.

2. Here $\sigma = \{a, b_1, \ldots, b_q\}$. Using similar arguments as in the first paragraph of previous case and using the collapsible pairs in the following order:

$$((a, b_1), \sigma), ((a, b_2), \{a, b_2, \ldots, b_q\}), \ldots, ((a, b_{q-1}), \{a, b_{q-1}, b_q\}),$$

and doing the collapses, we get the desired result.

3. Using similar arguments as in the proof of case 1, we get that $\sigma \setminus (\sigma \setminus B, \sigma \setminus \{a_1, \ldots, a_{p-1}\})$. Observe that $\sigma \setminus \{a_1, \ldots, a_{p-1}\} = \{a_p, b_1, \ldots, b_q\}$. We now use case 2 to collapse $\sigma \setminus \{a_1, \ldots, a_{p-1}\}$ and get the result. \hfill \qed

Induction along with Lemma 2.3 gives the following result.

Corollary 2.4. Let \mathcal{K} be a simplicial complex and let $\sigma = A_1 \sqcup A_2 \ldots \sqcup A_k \sqcup C$ be a facet of \mathcal{K}, where $A_j = \{a^1_j, \ldots, a^s_j\}$ for $1 \leq j \leq k$. Let $\{a^s_i, a^s_t\}$ be a free face of σ for each $i \neq j$, $s \in [l_i]$ and $t \in [l_j]$.

1. If $C = \emptyset$, then $\sigma \setminus \langle A_1, \ldots, A_k, \{a^1_i, a^s_i\}, \{a^2_i, a^s_i\}, \ldots, \{a^{k-1}_i, a^s_i\} \rangle$.

2. If $C \neq \emptyset$, then $\sigma \setminus \langle A_1 \sqcup C, \ldots, A_k \sqcup C \rangle$.

3 Structural properties of ΔL

In this section, we first analyze $\Delta L(G)$ as the 2-skeleton of the clique complex of G and then we use it to compute the homotopy type of $\Delta L(G)$ for various classes of graphs including triangle free graphs and chordal graphs. Later we realize ΔL as a functor from the category of graphs to the category of simplicial complexes and compute the homotopy type of $\Delta L(G)$, when G is a complete multipartite graph, using the functoriality of ΔL.

The *nerve* of a family of sets $(A_i)_{i \in I}$ is the simplicial complex $N = N(\{A_i\})$ defined on the vertex set I so that a finite subset $\sigma \subseteq I$ is in N precisely when $\bigcap_{i \in \sigma} A_i \neq \emptyset$.

Theorem 3.1 (Theorem 10.6 (i), [4]). Let \mathcal{K} be a simplicial complex and $(\mathcal{K}_i)_{i \in I}$ be a family of subcomplexes such that $\mathcal{K} = \bigcup_{i \in I} \mathcal{K}_i$. Suppose every nonempty finite intersection $\mathcal{K}_{i_1} \cap \ldots \cap \mathcal{K}_{i_t}$ for $i_j \in I, t \in \mathbb{N}$ is contractible, then \mathcal{K} and $N(\{\mathcal{K}_i\})$ are homotopy equivalent.
Remark 3. Since any non-empty intersection of simplices is again a simplex, Theorem 3.1 implies that the nerve of the facets of a simplicial complex K is homotopy equivalent to K.

Lemma 3.2. For any graph G, the complex $\Delta L(G)$ is homotopy equivalent to the 2-skeleton of the clique complex of G, i.e.,

$$\Delta L(G) \simeq (\Delta(G))^{(2)}.$$

Proof. Let F be the set of facets of $\Delta L(G)$. It is easy to observe that any $F \in F$ is either a collection of three edges of G forming a triangle in G or of the form $\sigma_a = \{(a, v) : v \in N_G(a)\}$ for some $a \in V(G)$. From Remark 3, $N(F) \simeq \Delta L(G)$. It is therefore enough to show that $N(F) \simeq (\Delta(G))^{(2)}$.

Let K be a simplicial complex obtained from $(\Delta(G))^{(2)}$ by adding a barycenter to every 2-simplex of $(\Delta(G))^{(2)}$. Clearly $K \simeq (\Delta(G))^{(2)}$ and $K \simeq N(F)$. □

Let $v(G)$ and $e(G)$ denote the number of vertices and edges in a graph G, respectively. For a given graph G, define $u(G) = e(G) - e(T)$, where T is a spanning tree of G. The following is an immediate consequence of Lemma 3.2.

Corollary 3.3. Let G be a triangle free graph. Then $\Delta L(G)$ is homotopy equivalent to G (considered as a 1-dimensional simplicial complex). In particular

$$\Delta L(G) \simeq \bigvee_{u(G)} S^1,$$

A graph G is called chordal if it has no induced cycle of length greater than 3, i.e., each cycle of length more than 3 has a chord.

Theorem 3.4. Let G be a connected chordal graph. Then $\Delta L(G)$ is homotopy equivalent to a wedge of 2-dimensional spheres.

Proof. It is well known that the 2-skeleton of the clique complex of a chordal graph is simply connected. Also, we know that any 2-dimensional simply connected simplicial complex is homotopy equivalent to a wedge of 2-spheres (cf. [4, (9.19)]). The result therefore follows from Lemma 3.2. □

Let G be a graph. The cone over G with apex vertex w, denoted as $C_w G$, is the graph with $V(C_w G) = V(G) \cup \{w\}$ and edge set $E(C_w G) = E(G) \cup\{(w, v) : v \in V(G)\}$.

Lemma 3.5. Let G be a graph with m triangles. Then $\Delta L(C_w G)$ is homotopy equivalent to a wedge of m spheres of dimension 2.

Proof. Let $F = \{ F \in (\Delta(C_w G))^{(2)} : |F| = 3 \text{ and } w \notin F\}$. Observe that $|F| = m$. Clearly $(\Delta(C_w G))^{(2)} \setminus F \cong C_w (G)$ (here G is considered as a 1-dimensional simplicial complex) and therefore $(\Delta(C_w G))^{(2)} \setminus F$ is contractible. Hence, from [12, Proposition 7.8], we have that $(\Delta(C_w G))^{(2)} \simeq ((\Delta(C_w G))^{(2)} \setminus F)$. Thus, from Lemma 3.2, $\Delta L(C_w G) \simeq (\Delta(C_w G))^{(2)} \simeq \bigvee_{|F|} S^2$. □
The suspension ΣG of a graph G is the graph with vertex set $V(\Sigma G) = V(G) \cup \{a, b\}$ and $E(\Sigma G) = E(G) \cup \{(a, v) : v \in V(G)\} \cup \{(b, v) : v \in V(G)\}$.

Lemma 3.6. Let G be a triangle free connected graph on at least two vertices. Then

$$\Delta L(\Sigma G) \simeq \Sigma(\Delta L(G)).$$

Proof. We know that $\Delta L(\Sigma G) \simeq (\Delta(\Sigma G))^{(2)}$. Since G is triangle free, $(\Delta(\Sigma G))^{(2)} = \Sigma((\Delta(G))^{(2)}) \simeq \Sigma(\Delta L(G)).$ \hfill \Box

3.1 Complete multipartite graphs

Let m_1, m_2, \ldots, m_r be positive integers and let A_i be a set of cardinality m_i for $1 \leq i \leq r$. A complete multipartite graph K_{m_1,\ldots,m_r} is a graph on vertex set $A_1 \cup \ldots \cup A_r$ and two vertices are adjacent if and only if they lie in different A_i’s. Using functoriality of ΔL, we study the homotopy type of ΔL of complete multipartite graphs. The following result can be obtained from Lemma 3.2.

Corollary 3.7. Let H be a connected induced subgraph of connected graphs G_1 and G_2. Then,

$$\Delta L(G_1 \bigcup_H G_2) \simeq \begin{cases} \Delta L(G_1) \bigcup \Delta L(G_2) & \text{if } |V(H)| = 0, \\ \Delta L(G_1) \bigcup \Delta L(G_2) & \text{if } |V(H)| = 1, \\ \Delta L(G_1) \bigcup \Delta L(G_2) & \text{otherwise.} \end{cases}$$

In particular, for any $1 \leq s \leq m_r - 1$, $\Delta L(K_{m_1,m_2,\ldots,m_r})$ is homotopy equivalent to the pushout of

$$\Delta L(K_{m_1,m_2,\ldots,m_r-1,s}) \hookrightarrow \Delta L(K_{m_1,m_2,\ldots,m_r-1}) \hookrightarrow \Delta L(K_{m_1,m_2,\ldots,m_r-1,m_r-s}).$$

Proposition 3.8. For $m, n, r \in \mathbb{N}$, $\Delta L(K_{m,n}) \simeq \bigvee_t S^1$ and $\Delta L(K_{m,n,r}) \simeq \bigvee_{t(r-1)} S^2$, where $t = mn - (m + n - 1)$.

Proof. For the graph $K_{m,n}$, recall $u(K_{m,n}) = e(K_{m,n}) - e(T_{m,n}) = mn - (m + n - 1)$, where $T_{m,n}$ denotes a spanning tree of $K_{m,n}$. Since any bipartite graph is triangle-free, Corollary 3.3 implies that $\Delta L(K_{m,n})$ is homotopy equivalent to $\bigvee_{u(K_{m,n})} S^1$.

Further, $K_{m,n,1}$ is a cone over the triangle-free graph $K_{m,n}$, and hence $\Delta L(K_{m,n,1})$ is contractible by Lemma 3.5. Now using Remark 2 and Corollary 3.7, $\Delta L(K_{m,n,2}) \simeq \{\text{pt}\} \bigvee_{u(K_{m,n})} \{\text{pt}\} \bigvee (\bigvee_{\text{pt}} S^2)$. Inductively, we construct $K_{m,n,r}$ as a pushout of $K_{m,n,r-1} \hookrightarrow K_{m,n} \hookrightarrow K_{m,n,1}$. Then repeating the similar arguments, we get that

$$\Delta L(K_{m,n,r}) \simeq \bigvee_{u(K_{m,n})} S^2.$$ \hfill \Box

Note. The homotopy type of $\Delta L(K_{m,n})$ has also been computed by Linusson et al. in [13, Theorem 1.4] using discrete Morse theory.
Theorem 3.9. For a complete r-partite graph K_{m_1,\ldots,m_r}, $\Delta L(K_{m_1,\ldots,m_r})$ is homotopy equivalent to a wedge of S^2's for $r > 2$.

Proof. From Proposition 3.8, $\Delta L(K_{m_1,m_2,m_3})$ is homotopy equivalent to a wedge of 2-dimensional spheres. So let $r > 3$. Since $K_{m_1,m_2,m_3,1}$ is a cone over K_{m_1,m_2,m_3}, Lemma 3.5 gives that $\Delta L(K_{m_1,m_2,m_3,1})$ is homotopy equivalent to a wedge of S^2's. If $m_4 > 1$, we inductively construct K_{m_1,m_2,m_3,m_4} as a pushout of

$$K_{m_1,m_2,m_3,m_4-1} \hookrightarrow K_{m_1,m_2,m_3} \hookrightarrow K_{m_1,m_2,m_3,1}.$$

Note that after applying ΔL to this diagram and using Proposition 3.8, we get the following pushout diagram

$$\bigvee S^2 \hookrightarrow (\bigvee S^2) \vee (\bigvee B^3)$$
$$\bigvee S^2 \vee (\bigvee B^3) \twoheadrightarrow X \simeq \Delta L(K_{m_1,m_2,m_3,m_4})$$

Figure 1: $\Delta L(K_{m_1,m_2,m_3,m_4})$ as a pushout

Here B^3 denotes a closed ball of dimension 3. From Figure 1, it is easy to see that $\Delta L(K_{m_1,m_2,m_3,m_4})$ is homotopy equivalent to a wedge of spheres of dimension 2 and 3. However, Theorem 2.2 implies that $\tilde{H}_3(\Delta L(K_{m_1,m_2,m_3,m_4})) = 0$, and hence $\Delta L(K_{m_1,m_2,m_3,m_4}) \simeq \bigvee S^2$. We now repeat these arguments for K_{m_1,\ldots,m_r} to get the desired result. \hfill \Box

4 Wheel-free graphs and 4-regular circulant graphs

For $n \geq 3$, a wheel graph on $n + 1$ vertices, denoted by W_n, is a graph isomorphic to cone over a cycle graph C_n. For a wheel graph, we call apex vertex of the cone as the center of the wheel.

Theorem 4.1. Let G be a connected wheel-free graph. Then $\Delta L(G)$ is homotopy equivalent to a wedge of circles.

Proof. In view of Lemma 3.2, we can assume that G does not have any leaf. Observe that any maximal simplex σ in $\Delta L(G)$ is one of the following two types

1. $\sigma = \{e_1, \ldots, e_t\}$ such that $\bigcap_{i \in [t]} e_i = \{x\}$, i.e., every edge shares a common vertex.

2. $\sigma = \{e_1, e_2, e_3\}$ and e_1, e_2, e_3 forms a triangle in G.

We now show that each facet of $\Delta L(G)$ can be collapsed to a 1-dimensional subcomplex. First we collapse facets of type 1.
Case 1: Let $\sigma = \{e_1, \ldots, e_t\}$ be a facet and $\bigcap_{i \in [t]} e_i = \{x\}$. Without loss of generality, we can assume that $t \geq 3$. We partition the set $N_G(x) = A \sqcup B$, where

- $A = \bigcup_{i \in [r_1]} \{a_i\}$, where each a_i is an isolated vertex in the induced subgraph $G[N_G(x)]$.
- $B = \bigsqcup_{j \in [r_2]} B_j$, where each $B_j \subseteq N_G(x)$ such that $G[B_j]$ is a connected component of $G[N_G(x)]$ and has more than 1 vertex.

Since G is wheel-free graph, it is easy to see that $G[B_j]$ is a tree for each $j \in [r_2]$. Define,

$$A = \{ (x, a_i) : i \in [r_1] \}$$

$$B = \bigsqcup_{j \in [r_2]} \{ (x, a) : a \in B_j \},$$

(cf. Figure 2). For each $j \in [r_2]$, let $B_j = \{ (x, a) : a \in B_j \}$. It is easy to see that each $\{e, e'\}$ is a free face of σ whenever

(i) $e \in B_i$, $e' \in B_j$ and $i \neq j$, or

(ii) $e \in A$ and $e' \in B$, or

(iii) $e, e' \in A$.

For each $j \in [r_2]$, let $B_j = \{e_1^j, e_2^j, \ldots, e_l^j\}$ and $A = \{e_1, \ldots, e_{r_1}\}$. By Corollary 2.4(1), $\sigma \setminus \langle B_1, \ldots, B_{r_2}, A, \{e_1, e_2, \ldots, e_{r_1}\} \rangle$.

![Figure 2](image-url)
Again using Corollary 2.4(2), $\mathcal{A} \setminus \langle \{e_1, e_{r_1}\}, \ldots, \{e_{r_1-1}, e_{r_1}\} \rangle$. We now show that each \mathcal{B}_j can be collapsed onto a 1-dimensional subcomplex of $\Delta L(G)$. We prove this by induction on the number of elements in \mathcal{B}_j. If $l_j = 2$ then the simplex \mathcal{B}_j itself is of dimension 1.

Fix $j \in [r_2]$ and assume that $l_j \geq 3$. For each $1 \leq i \leq l_j$, let $e_i = (x, a_i')$. Without loss of generality, we can assume that the a_i' is a leaf vertex in tree $G[\mathcal{B}_j]$ and a_2' is its parent. This implies that for any $i \in \{3, \ldots, l_j\}$, there exist no triangle in G which contains both the edges e_i' and e_i''.

Since e_i' and e_i'' are not part of any triangle, $\langle \{e_1', e_3''\}, \mathcal{B}_j \rangle$ is a collapsible pair and therefore $\mathcal{B}_j \setminus \langle \mathcal{B}_j \setminus \{e_1'\}, \mathcal{B}_j \setminus \{e_3''\}\rangle$. If $l_j = 3$, then $\mathcal{B}_j \setminus \{e_1'\}$ and $\mathcal{B}_j \setminus \{e_3''\}$ are 1-dimensional. Assume $l_j \geq 4$.

Now $\langle \{e_1', e_3''\}, \mathcal{B}_j \setminus \{e_1''\}\rangle$ is a collapsible pair and therefore $\mathcal{B}_j \setminus \{e_3''\} \setminus \langle \mathcal{B}_j \setminus \{e_1', e_3''\}, \mathcal{B}_j \setminus \{e_3''\}\rangle$. Since $\mathcal{B}_j \setminus \{e_3'', e_1'\} \subseteq \mathcal{B}_j \setminus \{e_1', e_3''\}, \mathcal{B}_j \setminus \langle \mathcal{B}_j \setminus \{e_1', e_3''\}, \mathcal{B}_j \setminus \{e_3''\}\rangle$. It is easy to observe that by using collapsible pairs in the following order:

\[(\{e_1', e_3''\}, \mathcal{B}_j \setminus \{e_3'', e_1'\}), \ldots, (\{e_1', e_3''\}, \mathcal{B}_j \setminus \{e_3'', e_1'\}, \mathcal{B}_j \setminus \{e_3''\}, \ldots, e_{l_j-1}''\}\]

and applying the collapses, we get that $\mathcal{B}_j \setminus \langle \mathcal{B}_j \setminus \{e_1'\}, \{e_1', e_3''\}\rangle$. Since a_1' is a leaf vertex of $G[\mathcal{B}_j]$, $G[\mathcal{B}_j - \{a_1'\}]$ is again a tree (cf Figure 2e). Therefore, from induction, we have that $\mathcal{B}_j \setminus \{e_1'\}$ collapses onto a 1-dimensional subcomplex of $\Delta L(G)$. Which implies that, \mathcal{B}_j collapses onto a subcomplex of dimension 1.

Case 2: Once we have collapsed all simplices of type 1 then given any simplex $\{e_1, e_2, e_3\}$ of type 2, it is easy to see that $\langle \{e_1, e_2\}, \{e_1, e_2, e_3\}\rangle$ is always a collapsible pair. Thus we can collapse all these simplices to a 1-dimensional subcomplex of $\Delta L(G)$.

Since G is connected, $\Delta L(G)$ is connected. Therefore the result follows from the fact that any connected one dimensional simplicial complex is homotopy equivalent to a wedge of circles.

It is an easy observation that any graph which is not K_4 and has maximal degree 3 is a wheel-free graph, and hence the previous result implies the following corollary.

Corollary 4.2. Let G be a connected graph of maximal degree at most 3 and $G \not\cong K_4$. Then $\Delta L(G)$ is homotopy equivalent to a wedge of circles.

Let $n \geq 3$ be a positive integer and $S \subseteq \{1, 2, \ldots, \lfloor \frac{n}{2} \rfloor\}$. The circulant graph $C_n(S)$ is the graph, whose set of vertices $V(C_n(S)) = \{0, 1, \ldots, n-1\}$ and any two vertices x and y adjacent if and only if $x - y \ (\text{mod} \ n) \in S \cup (-S)$, where $-S = \{n - a : a \in S\}$. Circulant graphs are also Cayley graphs of \mathbb{Z}_n, the cyclic group on n elements. Since $n \notin S$, $C_n(S)$ is a simple graph, i.e., does not contains any loop. Further, $C_n(S)$ are $|S \cup (-S)|$-regular graphs. We now prove a structural result for 4-regular circulant graphs. This result will enable us to do the computation of the homotopy type of their ΔL.

Proposition 4.3. Let G be a 4-regular circulant graph. Then each connected component of G is either wheel-free or isomorphic to K_5 or to ΣC_4.
Proof. Let \{s, t\} be the generating set of \(G\) such that \(s < t\) and \(V(G) = \{0, 1, \ldots, n - 1\}\). Symmetry in the circulant graph implies that connected components of \(G\) are isomorphic. Suppose \(G\) is not wheel-free and say it has a subgraph \(H\) isomorphic to \(W_m\), a wheel on \(m + 1\) vertices. Since \(G\) is 4-regular, \(3 \leq m \leq 4\). Without loss of generality we can assume that 0 is the center vertex of \(W_m\). Clearly, \(N_G(0) = \{s, t, n - s, n - t\}\).

Case 1: \(m = 3\).

Since \(W_3 \cong K_4\), we see that \(|V(W_3) \cap N_G(0)| = 3\). Therefore, either \(s \sim t\) or \(n - s \sim n - t\) in \(W_3\). In both the cases we get that \(t = 2s\). Since \(s < t\), \(n - t < n - s\). If \(N_{W_3}(0) = \{s, t, n - t\}\), then \(n - t < n - s\) implies that \(n - t = 3s\), thus \(n = 3s + 2s = 5s\). Similar analysis for any 3 element subset of \(N_G(0)\) implies that \(n = 5s\). This implies that \(N_G(0) = \{s, 2s, 3s, 4s\}\) and therefore \(G[N_G(0) \cup \{0\}]\) is a clique in \(G\). Moreover, 4-regularity of \(G\) implies that \(G[\{0, s, 2s, 3s, 4s\}]\) is a component.

Case 2: \(m = 4\).

Let \(a \sim b \sim c \sim d \sim a\) be the outer cycle of \(W_4\). By symmetry, the vertex \(a\) is also a center of a wheel with 5 vertices, say \(W'_4\). Let \(N_G(a) = \{b, d, 0, x\}\). If \(x \neq c\), then \(\{a, b, c, 0\}\) forms a \(K_4\). By Case 1, we get that \(\{a, b, c, d, 0\}\) forms a \(K_5\). Therefore, let \(x = c\), then \(a \sim b \sim 0 \sim d\) is the outer cycle of \(W'_4\). Similarly, \(b\) is the center of some other wheel with 5 vertices, say \(W''_4\). Since \(N_G(b) = \{a, 0, c, x\}\), the outer cycle of \(W''_4\) is given by \(a \sim x \sim c \sim 0 \sim a\). Therefore, \(N_G(x) = N_G(0) = \{a, b, c, d\}\). Again, the 4-regularity of \(G\) implies that \(G[\{0, a, b, c, d, x\}]\) is a component and is isomorphic to \(\Sigma C_4\).

Corollary 4.4. Let \(G\) be a 4-regular circulant graph. Then each connected component of \(\Delta L(G)\) is homotopy equivalent to either a wedge of circles or a wedge of 2-spheres.

Proof. We first note that for any cycle graph \(C_r\), \(\Delta L(C_r) \simeq S^1\) whenever \(r \geq 4\). From Proposition 4.3, each connected component of \(G\) is either wheel-free or isomorphic to \(K_5\) or to \(\Sigma C_4\). Since \(\Delta L(\text{wheel-free}) \simeq \bigvee S^1\) (cf. Theorem 4.1), \(\Delta L(K_5) \simeq \bigvee S^2\) (cf. Theorem 2.1) and \(\Delta L(\Sigma C_4) \simeq \Sigma (\Delta L(C_4)) \simeq \Sigma (S^1) = S^2\) (cf. Lemma 3.6), the result follows.

It is to note here that the computations done in this section gives the exact homotopy type of \(\Delta L\) for all the 2, 3 and 4-regular circulant graphs.

5 Further directions

For any simplicial complex \(\mathcal{K} \simeq (\bigvee_{m} S^1) \vee (\bigvee_{n} S^2)\), Corollary 3.7 shows that \(\Delta L((\bigvee_{m} C_4) \vee (\bigvee_{n} K_4)) \simeq \mathcal{K}\), where the wedge of graphs is taken along a vertex as 1-dimensional simplicial complexes. It is well known that the clique complex functor \(\Delta\) is universal (i.e., given any simplicial complex \(\mathcal{K}\), there is a graph \(G\) such that \(\Delta(G) \simeq \mathcal{K}\)), whereas the line graph functor \(L\) is not (for example, \(K_{1,3}\) is not a line graph of any graph). This raises the following natural question.

Question 1. Is the functor \(\Delta L\) universal from the category of graphs to the category of 3-Leray simplicial complexes?
We note here that for all the classes of graphs considered in this article, ΔL has always been a wedge of equidimensional spheres. Therefore, it would be interesting to know the following.

Question 2. Can the classes of graphs be classified whose ΔL is a wedge of equidimensional spheres? More specifically, can we classify those graphs whose ΔL is simply connected?

Acknowledgements

We would like to thank Russ Woodroofe for his insightful comments and suggestions. We are also thankful to the anonymous referee for pointing out the connection between the nerve of a cover of ΔL and the 2-skeleton of the clique complex, which helped us in shortening many proofs of Section 3 significantly. The first and third authors are partially supported by a grant from the Infosys Foundation.

References

[1] M. Adamaszek. *Clique complexes and graph powers*, Israel Journal of Mathematics, 196(1):295–319, 2013.

[2] J. A. Barmak and J. Ariel. *Star clusters in independence complexes of graphs*, Advances in Mathematics, 241:33–57, 2013.

[3] T. Biyikoğlu and Y. Civan. *Castelnuovo-Mumford regularity of graphs*, Combinatorica, 38:1353–1383, 2018.

[4] A. Björner, *Topological methods*. Handbook of combinatorics, 2, 1819–1872, 1995.

[5] G. E Bredon. *Topology and geometry*, Springer Science & Business Media, vol. 139, 2013.

[6] P. Deshpande, S. Shukla and A. Singh. *Distance r-domination number and r-independence complexes of graphs*, arXiv:2001.06775, 2020.

[7] A. Dochtermann and A. Engström. *Algebraic properties of edge ideals via combinatorial topology*, The Electronic Journal of Combinatorics, 16(2), 2009.

[8] A. Holmsen and S. Lee. *Leray numbers of complexes of graphs with bounded matching number*, arXiv:2003.11270, 2020.

[9] J. Jonsson. *Simplicial complexes of graphs*, vol. 3, Springer, 2008.

[10] M. Kahle. *Sharp vanishing thresholds for cohomology of random flag complexes*, Annals of Mathematics 2, 179(3):1085–1107, 2014.
[11] K. Kawamura. *Independence complexes of chordal graphs*, Discrete Mathematics, 310(15–16):2204–2211, 2010.

[12] D. Kozlov. *Combinatorial algebraic topology*, Algorithms and Computation in Mathematics, vol. 21, Springer, Berlin, 2008.

[13] S. Linusson, J. Shareshian and V. Welker. *Complexes of graphs with bounded matching size*, Journal of Algebraic Combinatorics, 27(3):331-349, 2008.

[14] R. Meshulam. *Domination numbers and homology*, Journal of Combinatorial Theory, Series A, 102(2):321–330, 2003.

[15] S. Moradi. *t-clique ideal and t-independence ideal of a graph*, Communications in Algebra, 46(8):3377–3387, 2018.

[16] E. Nevo. *Regularity of edge ideals of C₄-free graphs via the topology of the lcm-lattice*, Journal of Combinatorial Theory, Series A, 118(2):491–501, 2011.

[17] A. Nikseresht. *Algebraic properties of clique complexes of line graphs*, arXiv:2007.13082, 2020.

[18] G. Paolini and M. Salvetti. *Weighted sheaves and homology of artin groups*, Algebraic & Geometric Topology, 18(7):3943–4000, 2018.

[19] A. Singh. *Higher matching complexes of complete graphs and complete bipartite graphs*, arXiv:2006.13632, 2020.

[20] T. Szabó and G. Tardos. *Extremal problems for transversals in graphs with bounded degree*, Combinatorica, 26(3):333–351, 2006.

[21] M. L Wachs. *Topology of matching, chessboard, and general bounded degree graph complexes*, Algebra Universalis, 49(4):345–385, 2003.

[22] R. Woodroofe. *Vertex decomposable graphs and obstructions to shellability*, Proceedings of the American Mathematical Society, 137(10):3235–3246, 2009.