Synthesis, characterization and \textit{RHF/ab initio} simulations of 2-amino-1,3,4-thiadiazole and its annulated ring junction pyrimidine derivatives

Wafaa S. Hamama *, Moustafa A. Gouda, Mamdouh S. Soliman, Marwa H. Badr, Hanafi H. Zoorob

Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Received 5 August 2011; revised 22 January 2012; accepted 23 January 2012
Available online 10 March 2012

Abstract Michael addition reaction of the 2-amino-1,3,4-thiadiazole to chalcone as biselectrophile afforded 5,7-diphenyl-6-[1,3-diphenylpropan-1-on-3-yl]1,3,4thiadiazolo[3,2-a]pyrimidine (3) instead of 5,7-diphenyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine (5) via further Michael addition at C5 in pyrimidine moiety. The structure 3 was established through the aspect of \textit{ab initio} calculations, elemental analysis and spectral data.

© 2012 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

Introduction

The diverse and interesting biological activity of thiadiazoles has been reported [1–4]. It is well known that these heterocycles are valuable building blocks. Many methods for preparation of these heterocyclic ring systems and their fused analogues have been described in the literature [5,6]. 2-Amino-1,3,4-thiadiazoles as amidine moiety provided a useful method for the synthesis of thiadiazolopyrimidine [7]. Also, the N-alkylation could occur either on the endocyclic or on the exocyclic nitrogen atom [8].

The objective of this work is directed to annulate compound 1 via sequential cycloaddition followed by cyclocondensation reaction with enones as biselectrophile, in order to synthesize 5,7-diphenyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine (5). Formation of compound 5 was unsuccessful and instead, we obtained 5,7-diphenyl-6-[1,3-diphenylpropan-1-on-3-yl]1,3,4thiadiazolo[3,2-a]pyrimidine (3), this result persuaded us to use \textit{RHF/ab initio} calculations with the aim to explore the chemical reactivity of the interacted compounds including the investigation of different reaction processes on the basis of their expected quantum mechanical behavior and to envisage why compound 5 reacted with another equivalent mole of chalcone.
Experimental

The melting point is in degree centigrade (uncorrected) and was determined on Gallenkamp electric melting point apparatus. The IR spectrum (cm\(^{-1}\)) was recorded using KBr discs on a Mattson 5000 FTIR Spectrophotometer at Microanalytical Center, Faculty of Science, Mansoura University. The \(^1\)H NMR spectrum was recorded using KBr discs on a Mattson 5000 FTIR Spectrophotometer at Microanalytical Center, Faculty of Science, Mansoura University. The \(^1\)H NMR spectrum was carried out on a Varian Spectrophotometer at Microanalytical Center, Faculty of Science, Cairo University. High Resolution Mass Spectra (HRMS) were recorded using both a Bruker HCT ultra and a high resolution (Bruker Daltonics micrOTOF) instruments from methanol or dichloromethane solutions using the positive Electrospray Ionization Mode (ESI). The \(^1\)H NMR spectrum was carried out on a Varian Spectrophotometer at 300 MHz, using TMS as an internal reference and DMSO-\(d_6\) as solvent at Chemistry Department, Faculty of Science, Cairo University. The \(^1\)H NMR spectrum was carried out on a Varian Spectrophotometer at 300 MHz, using TMS as an internal reference and DMSO-\(d_6\) as solvent at Chemistry Department, Faculty of Science, Cairo University. High Resolution Mass Spectra (HRMS) were recorded using both a Bruker HCT ultra and a high resolution (Bruker Daltonics micrOTOF) instruments from methanol or dichloromethane solutions using the positive Electrospray Ionization Mode (ESI).

5,7-Diphenyl-6-[1,3-diphenylpropan-1-on-3-yl][1,3,4] thiadiazolo[3,2-a]pyrimidine (3)

A mixture of 2-amino-1,3,4-thiadiazole (1) (0.5 g, 0.5 mmol) and benzalacetophenone (0.5 mmol) in ethanol/glacial acetic acid mixture (1:1, 10 mL) was refluxed for 15 h and then left to cool. The formed precipitate was filtered and recrystallized ethanol/DMF mixture (1:1) to afford the corresponding thia- diazolopyrimidene derivative 3 as yellow crystals; yield (43%); mp 285 °C; \(R_f\) = 0.6 [pet. ether (40–60): ethyl acetate (3:2.5)]; IR (KBr) (cm\(^{-1}\)), 1666 (C=O), 3097 (CH, str.), 1575 (C=C); \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) (ppm): at 8.79 (s, 1H, C=H, pyrimidothiadiazole); (ESI, \(m/z\)) (+)-ESI mass spectrum showed three quasi-molecular ion peak at 500 (MH+), 523 (MH++Na) and 539 (MH++K) pointing 399 as the molecular mass of 5; HRMS (micrOTOF): \(m/z\) for C\(_{32}\)H\(_{26}\)N\(_3\)O\(_7\)S + Na, Calcd.: 569.167.

Table 1 Calculated energies of the tautomeric forms of 2-amino-1,3,4-thiadiazoles (1a–c, Fig. 1).

Character	Amine 1a	Amidine 1b	Amidine 1c	Transition State (1a → 1c)
Total energy (kcal/mol)	-400542.16	-400535.93	-400537.22	-400373.34
\(E\) (HOMO) (eV)	-9.959	-8.922	-8.891	-8.8760
\(E\) (LUMO) (eV)	2.333	2.506	3.395	2.929
Dipole moment (debye)	3.737	2.436	1.979	2.596

Table 2 Calculated atomic charge densities and the HOMO atomic orbital coefficients for the amine 1a.

Atom	Charge	Atomic orbital coefficients			
		\(2s\)	\(2p_x\)	\(2p_y\)	\(2p_z\)
S	+0.2163	0.0060	-0.1101	0.0018	0.0044
N\(_1\)	-0.3633	-0.0661	-0.2289	0.0022	0.0199
N\(_2\)	-0.2274	-0.0300	0.1776	0.0098	-0.0265
N\(_3\)	-0.7227	-0.0499	0.3055	0.0239	0.0566

Table 3 Charge densities and LUMO* atomic orbital coefficients of the chalcone 2.

Atom	Charge	LUMO coefficients			
		\(2s\)	\(2p_x\)	\(2p_y\)	\(2p_z\)
O	-0.630	-0.0001	0.2462	-0.1278	-0.1249
C\(_1\)	+0.852	-0.0014	-0.2428	0.1246	-0.2428
C\(_2\)	-0.548	-0.0013	-0.3357	0.1729	0.1692
C\(_3\)	+0.328	0.0104	0.5196	-0.2679	-0.2652

*Orbital energy = +3.437 eV.

Fig. 1 Possible tautomeric forms of 2-amino-1,3,4-thiadiazole and the transition state for their conversion (1a → 1c).
Results and discussion

Initially, we have theoretically investigated the expected tautomeric behavior of compound 1, to determine if it is acting either as amine [2-amino-1,3,4-thiadiazole] (1a) or as semicyclic amidine [1,3,4-thiadiazol-2(3H)imine] (1b) (Fig. 1).

Results of geometry optimization for the different forms showed that, total energy value of the amine tautomeric is that which has the lowest negative value (−400542.16 kcal/mol) when compared with the other two expected isomers of the semicyclic amidine tautomers 1b and 1c (−400535.93 and −400537.22 kcal/mol). Optimization job was confirmed in each case by calculating the normal vibrations and realizing the absence of the imaginary frequencies. These energy values mean that the amine tautomeric is more stable than the semicyclic amidine (at least by about 4.94 kcal/mol). Moreover, we have also investigated the possible conversion process between the two tautomers, amine and amidine, by studying the expected transition state may formed as a result of the transfer of one of the amine-hydrogen atoms to the ring-imine-nitrogen (N3 atom, see atomic numbering order in Fig. 1). The optimized geometrical parameters of the transition state were determined using the same method of computation. Results indicated that it has a total energy of (−400473.34 kcal/mol) higher than that of the amine form 1a with (68.82 kcal/mol) (Table 1). This high energy barrier indicates that at the normal conditions the structure prevalence is for the amine form and not the amidine.

The amine molecule 1a is expected to act as electron donor when interacted with an electrophile. Such interaction should take place between its highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the electrophile. Calculated atomic charge densities of 1a, as obtained from ab initio calculations are depicted in Table 2. These values indicated that N3 (the imine nitrogen) and N6 (the amino nitrogen) atoms in 1a possess the highest negative charge values (−0.363 and −0.7227, respectively).

Moreover, the calculated atomic orbital coefficients of HOMO of 1a, as given in Table 2, indicated that, the 2s and 2p_z-atomic orbitals have the highest contribution. 2s- and 2p_z-orbitals of the N3 atom contribute the HOMO with the same phase (−0.0661 and −0.2289, respectively) which indicate that they reinforce each other generating an active space for interaction. On the other hand, the highest atomic orbital coefficients of N6 atom in the HOMO were found to be mainly from 2p_z-orbital (+0.3055) and have an opposite phase relative to that of the

Fig. 2 (a) Orbital representation of LUMO of the chalcone (2) at a contour level of 0.12; (b) the calculated atomic charge densities.

Fig. 3 The HOMO–LUMO interaction of 1b with chalcone 2.

Scheme 1 Synthesis of 5,7-diphenyl-6-[1,3-diphenylpropan-1-yl]thiazolo[3,2-a]pyrimidine (3).
N$_3$ atom. According to these values, it is obvious that 1a is available for interaction with an electrophile through its HOMO via N$_3$ and N$_6$ atoms (Table 2).

On the other hand, the chalcone 2 is expected to act as bis-electrophile, and interact with the amine 1a as electron acceptor. Its interaction should take place through its LUMO via the highest positive centers of the molecule. The Molecular geometry of chalcone 2 was optimized and the molecular orbitals were calculated employing the same level of computation used in case of the amine 1a. The calculated atomic charges and the atomic orbital coefficients of its LUMO for the expected reacting atoms are depicted in Table 3 and shown in Fig. 2. The ease of accepting electronic charge can be easily revealed from the low energy value of this LUMO (+3.347 eV). The Calculated charge densities on the different atoms showed that the C$_1$ and C$_3$ atoms have the highest positive (+0.852 and +0.328, respectively). This indicates that these two atoms are the centers of interaction. Moreover, the calculated atomic orbital coefficients showed that it is mainly contributed from the p$_z$-atomic orbitals of C$_3$ and C$_1$ atoms with opposite phases (+0.519 and −0.242, respectively). This indicates that the electrophile molecule will interact with the amine 1a via its LUMO and through the C$_3$ and C$_1$ atoms (Table 3).

Interaction of HOMO of 1a with LUMO of chalcone 2 was investigated on the basis of their atomic orbital coefficients. Calculated data showed that the sp hybrid orbital of N$_3$ atom of 1a has the same orbital phase as the p$_z$-orbital of chalcone 2. Also the p$_z$-orbital coefficient of N$_6$ of 1a has the same orbital phase as p$_z$-orbital of C$_1$ of chalcone 2 (see Fig. 3). Therefore, the interaction of the two molecules will take place first

Fig. 4 (a) prospective representation of the HOMO of compounds 1a and 5; (b) atomic charges at the active positions.
through the interaction of N₃ of 1a with C₃ of chalcone 2, then the N₆ atom of 1a with the carbonyl C₁ of chalcone 2 to form the intermediate compounds 4 and 5 (Scheme 2).

The intermediate 5 will be reacted with another molecule 2. In this case 5 will behave as electron donor, (as enamine) attacking the electrophillic center of 2 (Scheme 1). Therefore, their interaction will take place through the HOMO of 5 and the LUMO of compound 2. The calculated atomic charge densities for 5 (Fig. 4) indicated that the C₂ atom is that one carrying the highest –ve value (–0.308). On the other hand, the calculated atomic orbital coefficients of its HOMO showed that, it is highly contributed from the p₂-atomic orbital of the C₂-atom. These results strongly indicated that molecule 5 is adapted as a nucleophile to be attacked by another molecule of compound 2. The chalcone 2 as discussed before will interact via its LUMO through its positively charged C₃-atom in a similar manner as before with the amine molecule (Table 4).

Regarding the reaction of 1 [9] with chalcone 2 in a mixture of ethanol/acetic acid, it give 5,7-diphenyl-6-[1,3-diphenylpropan-1-yl]1,3,4thiadiazolo[3,2-a]pyrimidine (3) instead of 5,7-diphenyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine (5), similar behavior has been reported [10].

The structure 3 was established on the basis of elemental analysis and spectral data. The plausible reaction mechanism for the formation of 3 via intermediates 4 and 5 is illustrated in the sequence of Scheme 2. The reaction mechanism is displayed via sequential cycloaddition followed by cyclocondensation reaction with enone as biselectrophile.

Table 4 Charge densities and HOMO atomic orbital coefficients of compound 5.

Atom	Charge	HOMO coefficients			
		2s	2pₓ	2pᵧ	2p₂z
C₁	0.7108	–0.0052	–0.1546	–0.0061	0.0141
C₂	–0.3076	0.0115	–0.3835	–0.0089	0.0298
C₃	0.3621	–0.0567	–0.0126	–0.0147	0.0014
N₈	–0.7672	0.0032	0.2660	0.0233	–0.0477

The structure 3 was established on the basis of elemental analysis and spectral data. The plausible reaction mechanism for the formation of 3 via intermediates 4 and 5 is illustrated in the sequence of Scheme 2. The reaction mechanism is displayed via sequential cycloaddition followed by cyclocondensation reaction with enone as biselectrophile.

References

[1] Carraro F, Pucci A, Naldini A, Schenone S, Bruno O, Ranise A, et al. Pyrazolo[3,4-d]pyrimidines endowed with antiproliferative activity on ductal infiltrating carcinoma cells. J Med Chem 2004;47:1595–8.

[2] Mylari BL, Oates PJ, Zembrowski WJ, Beebe DA, Conn EL, Coutcher JB, et al. A sorbitol dehydrogenase inhibitor of exceptional in vivo potency with a long duration of action: 1R-[4,4-(4,6-dimethyl[1,3,5]triazin-2-yl)-2R,6Sdimethylpiperazin-1-yl]pyrimidin-2-yl]ethanol. J Med Chem 2002;45:4398–401.

[3] Prekupec S, Makue D, Plavec J, Suman L, Kralj M, Pavelic K, et al. Novel C-6 fluorinated acyclic side chain pyrimidine derivatives: synthesis, ¹H and ¹³C NMR conformational studies, and antiviral and cytotatic evaluations. J Med Chem 2007;50:3037–45.

[4] Gazivoda T, Sokcevic M, Kralj M, Suman L, Pavelic K, De Clercq E, et al. Synthesis and antiviral and cytotatic evaluations of the new C-5 substituted pyrimidine and furo[2,3-d]pyrimidine 4',5'-didehydro-l-ascorbic acid derivatives. J Med Chem 2007;50:4105–12.

[5] Singh H, Yadav LDS, Shukla KN, Diwedi R. Ring transformation of michael adducts of benzylidene-5-oxazolones and 2-amino-1,3,4-thiadiazoles to antifungal 6,7-dihydro-5H-thiadiazolo[3,2-a]pyrimidin-5-ones. J Agric Food Chem 1990;38:1962–4.

[6] Kornis G, Marks PJ, Chidester CG. Reaction of beta-oxo esters with 2-amino-1,3,4-thiadiazoles. A reinvestigation. J Org Chem 1980;45:4860–3.

[7] Cressier D, Prouillac C, Hernandez P, Amourette C, Diserbo M, Lion C, et al. Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles. Bioorg Med Chem 2009;17:5275–84.

[8] Ambartsumova RF. Interaction of 2-aminobenzothiazoles with halohydrins. Chem Heterocycl Compd 1999;35:860–5.

[9] Lauer RF, Zenchoff G. Cyclic condensations of 2-amino-1,3,4-thiadiazole with 1,3-dicarbonyl compounds. J Heterocycl Chem 1976;13:291–3.

[10] Hamama WS, Gouda MA, Badr MH, Zoorob HH. Synthesis of some new fused and binary 1,3,4-thiadiazoles as potential antitumor and antioxidant agents. J Heterocycl Chem 2011 [JHET-11-0473.R1].