Abstract: The effect of forest harvesting on the composition and structure of a temperate coniferous forest in Mexico was evaluated after three harvesting periods from 2007–2015. In this forest, we identified seven families and eight tree species. The dominant species is *Pinus pseudostrobus* Lindl. which is also the most important commercial species. Harvesting was oriented towards increasing the abundance of the dominant pine species, resulting in a decrease in forest diversity and favoring a transition to a monospecific forest. The tree canopy structure following harvesting showed a gradual recovery in the number of individuals in each diameter class, but the diameter increment may not necessarily guarantee a sustainable harvest because cutting cycles appear to be too short. The size of harvesting gaps and overall forest cover determine the presence and/or abundance of regeneration (small seedlings, seedlings, saplings, large saplings, and young trees). The establishment of *Pinus pseudostrobus* and *Ilex discolor* Hemsl. differed according to their ecological groups.

Keywords: canopy gaps; forest structure; ecological groups; *Pinus pseudostrobus*

1. Introduction

Sustainable forest management involves decisions and activities about harvesting forest resources according to best management practices integrated with forest conservation and economic development and social needs, both direct (wood products) and indirect (carbon fixation, aesthetics, and soil protection) [1–4]. Sustainable forest management is important in temperate and tropical forests [5,6] to conserve biodiversity and maintain forest composition and structure as well as ecosystem function [7]. Forest harvesting can degrade forest structure [8,9], cause soil erosion [10] and negatively alter forest composition [11,12]. It may also, however, be fundamental for the conservation of forest ecosystems [13,14] by increasing tree growth rates and the recruitment of regeneration through gap dynamics [9,15].

The forest ecosystem structure is described by tree distribution by age and size [16–18]. The vertical forest structure describes the distribution of forest biomass stratified by tree height and is often defined by functional ecological groups [19], while horizontal stratification is determined by the number of individuals by diameter class and spatial arrangement [20].

Forest composition is determined by environmental factors including geographic position, climate, soils, topography and forest dynamics [21,22], as well as the ecological traits of tree species [23]. The goal of forest management is to manage forests for forest products while optimizing forest species composition [1,18,24].

In Mexico, forest ecosystems occupy a large land area (65 million ha) [25], approximately half of which are temperate forests [26]. These forests are characterized by pines [27],...
firs, oaks and other broadleaved species [28], the composition of which is determined by climate and soil type [29–31]. These forests are part of the trans-Mexican volcanic system [32,33].

These forests have long been subjected to a variety of human disturbances, such as logging and fire, causing changes to forest structure and species composition [5,25,34–37]. In addition, forest harvesting under the concept of common property land management (agrarian centers) has been typical, with the main management objective of providing timber and firewood for local communities. Land use practices and natural resource management have been regulated by these agrarian centers under their rules and traditions [38], but this has also led to a reduction of species of economic importance [7,39,40]. Community forest management aims to achieve forest sustainability, ensuring the well-being of the rural population, alongside the conservation of forest systems [41].

In the State of Mexico, one of the most widely used species is *Pinus pseudostrobus* due to the quality of its wood and resin; however, the species has experienced a reduction in its range as a result of climate change [42]. Likewise, the demand for raw materials is reducing the state’s oak forests [43]. Particularly, in Nevado de Toluca, the role of local communities has a direct influence on the conservation of their forests [44].

The objective of this study was to evaluate the effect of timber harvesting on the tree canopy structure and composition of temperate forests in Central Mexico, as well as their capacity for recovery, under the current management system with agrarian centers.

2. Materials and Methods

2.1. Study Site

The Nevado de Toluca (4690 masl) is located in the State of Mexico with multiple human settlements around it, characterized by a temperature of 14 °C and an average annual rainfall of 1212 mm [45]. Andisols are the predominant soil type, covering 90% of this area [46]. Stands include conifer forest species such as *Pinus* spp. and *Abies religiosa* (Kunth) Schltdl. & Cham. and deciduous forest species including *Alnus jorullensis* Kunth and *Quercus laurina* Humb. & Bonpl. [35]. The study area was in the Ejido Palo Seco Municipio of Coatepec Harinas in the state of Mexico covering an area of 578 ha, of which 436 ha is subjected to forest harvesting (Figure 1).

![Study site location](image_url)
Figure 1. Study area—Ejido Palo Seco, Coatepec Harinas in the state of Mexico and map of harvested areas in 2007, 2010 and 2015.
Experimental Design

We compared forest stands at three sites that were similar in site and stand characteristics and where tree harvesting was carried out during three different years: 2007, 2010 and 2015. The three harvest areas serve as a space for time chronosequences to examine the effects of harvesting on forest structure and composition.

At all sites, harvesting was carried out by selecting individual trees in all categories (>7.5 cm DBH) and using directional felling with a chainsaw. The extraction rates were similar: 2007 (2736.3 m3 in 27.02 ha), 2010 (2539.9 m3 in 53.3 ha) and 2015 (2662.7 m3 in 30.39 ha). The focus of harvesting was *Pinus pseudostrobus*, the most important commercial species in these forests.

2.2. Sampling Plots

The sampling of the forest composition and tree canopy structure was conducted in a 1 ha plot at each harvested site based on the methodology of Valdez [47] and Lamprecht [48] (Figure 2). The location of the plot was selected using a random walk to select the mooring point for the plot. The average altitude and slope of the plots were 2970 masl and 3$^\circ$, respectively.

![Sampling plots](image)

Figure 2. Sampling design with a 1 ha plot with 25 subplots sampled during each harvest year. Tree measurements for height and DBH. Sampling plots were distributed based on tree size classes.

2.3. Species Composition and Diversity

An importance value index (IVI) was calculated based on the values of relative abundance, dominance, and frequency for each species [48].

Species diversity was estimated using Simpson, Margalef and Shannon–Wiener indices [17,49]. The Sorensen index of similarity was also used to compare forest communities in different years following harvesting.
2.4. Tree Canopy Structure

Vertical structure was determined using counts of trees of the dominant species for each harvesting year, and a one-way analysis of variance was carried out to test for differences among harvesting years. Horizontal structure was evaluated based on the spatial distribution of trees and the abundance of individuals by diameter class.

3. Results

3.1. Species Composition and Diversity

The sampling plot contained eight species of commercial tree species in seven families: Aquifoliaceae (Ilex discolor), Betulaceae (Alnus jorullensis Kunth), Clethraceae (Clethra mexicana), Cupressaceae (Cupressus lindleyi Klotzsch ex Endl.), Fagaceae (Quercus laurina Bonpl.), Pinaceae (Abies religiosa Flora. and Pinus pseudostrobus) and Salicaceae (Salix sp.). Trees of the Pinaceae species were the most dominant.

P. pseudostrobus was the most dominant species and had the highest IVI in each harvest sampling year, with different codominant species in each of the three years: *A. religiosa* (2015), *A. jorullensis* (2010) and *Salix* sp. (2007). In each sampling year, *Q. laurina* only occurred in the understory (Table 1).

Species	Ar	Dr	Fr	Ar	Dr	Fr	Ar	Dr	Fr	2007	2010	2015
Pinus pseudostrobus	88.1	93.4	100	76	88.5	100	82	93.4	100	281.5	264.5	275.4
Abies religiosa	5.65	2.12	52	1.1	0.28	20	10	4.34	64	59.77	21.38	78.34
Alnus jorullensis	1.54	0.85	16	12	6.63	80	2.6	1.17	16	10.38	98.63	19.77
Salix sp.	4.45	1.24	52	1.1	0.15	8	4.1	0.93	16	57.69	9.25	21.03
Quercus laurina	0.17	0.06	4	0.9	0.08	4	0.7	0.15	8	4.23	4.98	8.85
Cupressus lindleyi	-	-	-	8.1	4.32	8	-	-	-	20.42	-	-

Species diversity estimated using the Simpson index (Table 2) showed that the 2007 harvest area had the lowest diversity. The abundance of *P. pseudostrobus* was higher in the 2007 harvest area compared to the areas harvested in 2010 or 2015.

Species	n	pi^2	N	D	1-D
A. jorullensis	9	0.000205	593	0.78572	0.2142849
A. religiosa	33	0.003008			
P. pseudostrobus	524	0.78065			
Q. laurina	1	0			
Salix sp.	26	0.001852			

Species	n	pi^2	N	D	1-D
A. jorullensis	59	0.015792	466	0.60867	0.3913332
A. religiosa	5	0.0000923			
C. lindleyi	37	0.0061470			
I. discolor	2	0.0000092			
Table 2. Cont.

Simpson Index before Forest Harvesting
Figure 4. Horizontal structure characterized by diameter distribution in three years of harvesting (Ejido de Palo Seco, Coatepec Harinas).

Table 3. Harvesting intensity by species and diameter class.

Diametric Category (cm)	P. pseudostrobus 2007	P. pseudostrobus 2010	P. pseudostrobus 2015	Salix sp. 2010	Salix sp. 2015	C. mexicana 2015	A. jorullensis 2015	A. religiosa 2015	C. lindleyi 2010	C. lindleyi 2015
10	2.68	69.23	9.09	33.33	14.29	100.00	100.00	6.67	11.11	
15	11.58	54.35	12.50	50.00	75.00	100.00	33.33	0.00	0.00	
20	26.67	51.09	19.05	0.00	0.00	100.00	95.24	0.00	0.00	
25	12.20	18.87	12.90	-	100.00	-	33.33	-	0.00	
30	24.44	25.64	33.33	-	0.00	-	0.00	0.00	0.00	
35	31.25	7.69	36.00	-	33.33	-	-	0.00	0.00	
40	33.33	24.39	50.00	-	100.00	-	-	0.00	0.00	
45	20.00	10.34	30.00	-	100.00	-	0.00	-	-	
50	28.57	30.77	42.31	-	-	-	-	0.00	-	
55	42.86	17.65	47.83	-	-	-	-	0.00	-	
60	45.45	41.18	42.86	-	-	-	-	-	-	
65	18.75	33.33	14.29	-	-	-	100.00	0.00	-	
3.2.2. Vertical Structure

Harvest years (Figure 5) differed significantly in the lower canopy ($p < 0.05$); data from 2007 and 2015 revealed a dominance of *P. pseudostrobus* ($p < 0.05$), and 2010 showed a codominance ($p > 0.05$) among *P. pseudostrobus*, *A. jorullensis* and *C. lindleyi*, with the 2015 data reflecting reforestation efforts. The abundance of small trees of *A. religiosa* (an intermediate shade-tolerant species) in 2015 decreased as the number of canopy gaps increased.

Diametric Category (cm)	2007	2010	2015	2010	2015	2015	2015	2010	Harvesting Per Category (%)
70	31.25	87.50	42.86	-	100.00	-	-	-	-
75	0.00	0.00	37.50	-	-	-	-	-	0.00
80	33.33	75.00	0.00	-	-	-	-	-	-
85	0.00	0.00	-	-	-	-	-	-	-
90	100.00	100.00	-	-	-	-	-	-	-
95	0.00	0.00	-	-	-	-	-	-	-
100	0.00	0.00	100.00	-	-	-	-	-	-

Figure 5. Vertical structure following harvesting in three different years; (a) *Abies religiosa*, (b) *Salix* sp., (c) *Pinus pseudostrobus*, (d) stump, (e) *Alnus jorullensis*, (f) *Cupressus lindleyi*. Strata-Un: lower canopy; Mi: intermediate canopy, Up: canopy stratum; mean height and DBH by species, year and stratum; median height by year and stratum.
The intermediate strata also showed significant differences among species \((p < 0.05)\) in the three-harvest year, with a dominance of \(P.\) pseudostrobus in 2010, 2015 and a codominance with \(A.\) religiosa in 2007. The canopy stratum was dominated by \(P.\) pseudostrobus \((p < 0.05)\).

3.3. Forest Regeneration

Canopy gaps created by harvesting allowed for the growth of shade-intolerant species, while shade-tolerant species are favored by a closed canopy \([50]\). The establishment patterns of the species in this forest are listed in Table 4. The most abundant species (other than \(P.\) pseudostrobus) were \(Ilex\) discolor, \(Abies\) religiosa, \(Salix\) sp. and \(Alnus\) jorullensis (Table 5). For \(Clethra\) mexicana, its absence is attributable to its establishment being restricted to riverine areas and ravines with slopes greater than 45°.

Ecological Group	Description	Species
Long-lived shade-intolerant	Shade-intolerant, regenerate in disturbed areas and are long-lived and occupy the canopy.	Aile (\(Alnus\) jorullensis) Cedro blanco (\(Cupressus\) lindleyi)
Partial shade-tolerant	Partially tolerant of shade, but depend on gap formation for growth and occupy the canopy.	Oyamel (\(Abies\) religiosa) Cucharillo (\(Clethra\) mexicana) Capulinillo (\(Ilex\) discolor) Encino (\(Quercus\) laurina) Pino (\(Pinus\) pseudostrobus) Guajote (\(Salix\) sp.)

Table 5. Natural regeneration of tree species (Ejido Palo Seco, Coatepec Harinas, México) in a harvested forest.

Species	Small Seedlings	Seedlings	Saplings	Large Saplings	Small Trees
Relative Abundance (%)					
\(P.\) pseudostrobus	94.96	78.95	72.41	38.64	47.19
\(I.\) discolor	4.32	21.05	3.45	13.64	5.62
\(A.\) religiosa	0.72	-	13.79	4.55	15.73
\(Salix\) sp.	-	-	10.34	18.18	15.73
\(Q.\) laurina	-	-	-	13.64	6.74
\(A.\) jorullensis	-	-	-	11.36	6.74
\(C.\) mexicana	-	-	-	-	2.25

The type of forest regeneration in harvested forests depends on the canopy gap size and the ecological group \([9,50]\) and tends to promote pioneer species \([52,53]\). Justiniano and Fredericksen \([54]\) highlighted the need to understand the phenology of tree species in order to manage timber cutting with periods of seed dispersal to promote regeneration.

4. Discussion

4.1. Species Composition

In this study, indices of species diversity and similarity in composition show a decrease in diversity with forest harvesting, which coincides with the results reported by Endara et al. \([35]\), who affirm that the extraction of individuals of pine trees results in a considerable reduction in their population density. This confirms that harvesting in temperate forests can reduce broadleaved species diversity in genera such as \(Quercus\), \(Alnus\), \(Clethra\) and \(Salix\). The results show that in 2015, compared to 2007 and 2010, trees in smaller diameter categories \((10 \text{ and } 15 \text{ cm})\) had a lower density due to selective extraction because pine species in these forests are shade-intolerant and disturbance-adapted \([27]\) and occupy early successional stages that are eventually replaced by \(Quercus\) species \([55,56]\).
Jiménez et al. [57] noted that management needs to be based on the biological requirements of species, the spatial distribution of trees and their growth and size.

The removal of less valuable species (Alnus jorullensis, Clethra mexicana, Cupressus lindleyi, Ilex discolor, Quercus laurina and Salix sp.) favors the development of high-value species such as Pinus pseudostrobus. The Margalef index (Dmg) showed a low diversity of species with a dominance of P. pseudostrobus. Furthermore, according to the IVI, the P. pseudostrobus forests had different codominant tree species in each year: A. religiosa (2015), A. jorullensis (2010) and Salix sp. (2007). The economic value of P. pseudostrobus is attributed to its rapid growth, straight stem and high wood quality [58–60].

4.2. Tree Canopy Structure

Forest regeneration is associated with the creation of canopy gaps and the degree of shade tolerance among species. In the forests of this study, Alnus jorullensis and Salix sp. are indicators of disturbance because of their response to forest harvesting, corresponding to ecological groups of species that are shade-intolerant and regenerate in areas disturbed by tree harvesting [51,61]. The removal of understory species may have increased the growth of P. pseudostrobus (Figure 5) and less abundant species, such as A. jorullensis, which is used for firewood and fences [62], as well as Salix sp., which is used for handicrafts [63].

Forest harvesting modifies the site conditions for the establishment of many commercial tree species [64], but selective harvesting tends to decrease tree species diversity [39]. Mostacedo et al. [65] note that establishing minimum cutting diameters allows for species to reach the age for seed production before harvesting, which may improve regeneration.

The recommended time for the economic recovery of forests following harvesting is determined by cutting cycles and in Mexico is 10 years; in [66–68], this is noted to be shorter compared to other countries such as Bolivia (20 years) [69,70] and Costa Rica (15 years) [71]. It is notable in this study that, according to the forest structure following harvesting in 2007 and 2015, the cutting cycle is too short to allow for sustainable harvests.

From a study in Bolivia, Dauber et al. [72] found that a cutting cycle of 20–35 years could allow for the recovery of timber stocks in tropical forests, which may be necessary for forests in Mexico, depending on forest type, to improve the sustainability of forest harvesting.

5. Conclusions

The abundance and size-class distribution of Pinus pseudostrobus allows for the selective harvesting of this species across different diameter classes. The tree canopy structure following harvesting displays a trend of gradual recovery, but lengthening the cutting cycle with appropriate minimum diameters can help to increase chances for sustainability. The size of canopy gaps and degree of forest cover determine the growth and abundance of species and the dominance of different ecological groups. Harvesting forests decreased species diversity, stimulating the growth of P. pseudostrobus, which displaces species of the same ecological group, particularly broadleaf species, due to competition.

Author Contributions: G.E.V., field work, writing and data analysis; A.R.E.A., conceptualization and methodology; S.V.-L., mapping and field work; F.S.T., formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This article was funding by CONAFOR-UAEM project 3668/2014E.

Data Availability Statement: The datasets in this study are available within this article.

Acknowledgments: We thank the personnel of Ejido Palo Seco, Juan Alvarado and José Luis Hernández, for permission to work, as well as the high mountain forests team of ICAR for the field work.

Conflicts of Interest: The authors declare no conflict of interest.
1. Aguirre, C.O.A. Manejo Forestal en el Siglo XXI. *For. Ambiente* 2015, 21, 17–28.

2. MacDicken, K.G. Global Forest Resources Assessment 2015: What, why and how? *For. Ecol. Manag.* 2015, 352, 3–8. [CrossRef]

3. Cubbage, F.; Díaz, D.; Yapura, P.; Dube, F. Impacts of forest management certification in Argentina and Chile. *For. Policy Econ.* 2010, 12, 497–504. [CrossRef]

4. Wunder, S.; Wertz-Kanounnikoff, S.; Moreno-Sánchez, R. Pago por servicios ambientales: Una nueva forma de conservar la biodiversidad. *Gaceta Ecológica* 2007, 84–85, 39–52.

5. Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Lindquist, G.E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. *For. Ecol. Manag.* 2015, 352, 9–20. [CrossRef]

6. Villegas, Z.; Peña-Claro, M.; Mostacedo, B.; Alarcón, A.; Licona, J.C.; Leaño, C.; Pariona, W.; Choque, U. Silvicultural treatments enhance growth rates of future crop trees in a tropical dry forest. *For. Ecol. Manag.* 2009, 258, 971–977. [CrossRef]

7. Hernández-Salas, J.; Aguirre, O.; Alanis, E.; Jiménez, J.; González, M.A. Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México. *Rev. Chapingo Ser. Cienc. For. Ambiente* 2013, 19, 189–199. [CrossRef]

8. Hernández, L.I. Cambios en la Estructura y Composición del Bosque bajo dos Tratamientos Silviculturales en la Comunidad de Calpulalpan de Méndez, Ixtlán, Oaxaca, México. Master’s Thesis, CATIE, Turrialba, Costa Rica, 2007; p. 100.

9. Kuuluuvainen, T. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: A review. *Ann. Zool. Fennici.* 1994, 31, 35–51.

10. Chediack, S.E. Efecto de la explotación forestal sobre la estructura, diversidad y composición florística de los palmitales de la Selva Atlántica en Misiones, Argentina. *Rev. Biol. Trop.* 2003, 159–176.

11. Bonilla-Luna, N.; Cuesta-Córdova, H.; Valois-Cuesta, H. Efectos de la extracción forestal sobre la estructura y composición de un bosque pluvial del Pacífico colombiano. *Rev. Biodivers. Neotrop.* 2011, 1, 48–54. [CrossRef]

12. Fredericksen, T.S.; Putz, F.E. Silvicultural intensification for tropical forest conservation. *Biodivers. Conserv.* 2003, 12, 1445–1453. [CrossRef]

13. Corral, R.J.; Aguirre-Calderón, O.A.; Alanis-Rodriguez, E.; Monarrez-González, J.C.; González-Tagle, M.A.; Jimenez-Pérez, J. Composición y diversidad de especies forestales en bosques templados de Puebla, México. *For. Ambiente* 2017, 23, 39–51. [CrossRef]

14. Motz, K.; Sterba, H.; Pomerening, A. Sampling measures of tree diversity. *For. Ecol. Manag.* 2010, 260, 1985–1996. [CrossRef]

15. Guzmán-Gutiérrez, R.A. Caracterización y Clasificación de Especies Forestales en Gremios Ecológicos en el Bosque Sub-Húmedo Estacional de la Región de Lomerio, Santa Cruz, Bolivia. Master’s Thesis, CATIE, Turrialba, Costa Rica, 1997; p. 59.

16. Ramos, B.Z.S. Estructura y Composición de un Paisaje Boscoso Fragmentado: Herramienta Para el Diseño de Estrategias de Conservación de la Biodiversidad. Master’s Thesis, CATIE, Turrialba, Costa Rica, 2004; p. 114.

17. Zayas, V. Dinámica forestal y tendencias sucesionales en un bosque maduro de roble y haya de la zona Central de la Cordillera Cantábrica. *Ecología* 2001, 15, 179–211.

18. Bergeron, Y.; Harvey, B. Basing silviculture on natural ecosystem dynamics: An approach applied to the southern boreal mixed forest of Quebec. *For. Ecol. Manag.* 1997, 92, 235–242. [CrossRef]

19. Louman, B.; Quirós, D.; Nilsson, M. *Silvicultura de Bosques Latifolados Húmedos con Énfasis en América Central*; Turrialba, C.R., Ed.; CATIE: Turrialba, Costa Rica, 2001; p. 269.

20. Del Río, M.; Montes, F.; Cañellas, I.; Montero, G. Revisión: Índices de diversidad estructural en masas forestales. *Investig. Agrar. Sist. Recur. For.* 2003, 12, 159–176.

21. Challenger, A.; Soberrón, J. Los Ecosistemas Terrestres, En Capital Natural de México, Vol I: Conocimiento Actual de la Biodiversidad; CONABIO: México City, México, 2008; pp. 87–108.

22. Torres-Rojo, J.M.; Morales-Sánchez, R.; Mendoza-Briseno, M.A. Sustainable Forest Management in México. *Curr. For. Rep.* 2016, 2, 93–105. [CrossRef]

23. Figueroa-Rangel, B.L.; Willis, J.K.; Olvera-Vargas, M. 4200 years of pine-dominated upland forest dynamics in west-central Mexico: Human or natural legacy? *Ecology* 2008, 89, 1893–1907. [CrossRef]

24. Merino, L.; Martínez, A.E. *A Vuelo de Pájaros: Las Condiciones de las Comunidades con Bosques Templados en México*; CONABIO: México City, México, 2014; p. 247.

25. Endara, A.A.R.; Aguirre, N.A.; López, J.L.; Franco, M.S. *Manejo Adaptativo en Bosques de alta Montaña, México*; Congreso Forestal Latinoamericano: Lima, Perú, 2011.

26. Endara-Agramont, A.R.; Calderón-Contreras, R.; Nava-Bernal, G.; Franco-Maass, S. Analysis of Fragmentation Processes in High-Mountain Forests of the Centre of Mexico. *An. J. Plant Sci.* 2013, 4, 607–704. [CrossRef]
60. López-Upton, J. Pinus pseudostrobus Lindl. In *Tropical Tree Seed Manual*; Vozzo, J.A., Ed.; USDA Forest Service: St. Paul, MN, USA, 2002; p. 889.

61. López-Sánchez, C.L.; Bolivar-Cimé, B.; Aparicio-Rentería, A.; Viveros-Viveros, H. Population structure of *Alnus jorullensis*, a species used as firewood by five rural communities in a natural protected area of Mexico. *Bot. Sci.* 2020, 98, 238–247. [CrossRef]

62. Villas, S.A.; Alonso, R.M. Una contribución al conocimiento de los sauces en México. *Rev. Mex. Cienc. For.* 1995, 20, 35–65.

63. Castellanos-Bolaños, J.F.; Treviño-Garza, E.J.; Aguirre-Calderón, O.A.; Jiménez-Pérez, J.; Musálem-Santiago, M.; López-Aguillón, R. Estructura de bosques de *Pinus patula* bajo manejo en Ixtlán de Juárez, Oaxaca, México. *Madera Bosques* 2008, 14, 51–63. [CrossRef]

64. Navarro, F.B.; Jiménez, M.N.; Canadas, E.M.; Gallego, E.; Terrón, L.; Ripoll, M.A. Effects of different intensities of overstory thinning on tree growth and understory plant-species productivity in a semi-arid *Pinus halepensis* Mill. afforestation. *Forest. Syst.* 2010, 19, 410–417. [CrossRef]

65. Mostacedo, B.; Peña, M.; Rumiz, D.; Villegas, Z. *Hacia un Modelo de Manejo Sostenible del Bosque Seco Chiquitano*; Propuesta de ajustes a ciertas prácticas forestales; FCBC: Santa Cruz de la Sierra, Bolivia, 2010.

66. Diario Oficial de la Federación (DOF). *Reglamento de la Ley General de Desarrollo Forestal Sustentable*; DOF: México City, México, 2005.

67. Diario Oficial de la Federación (DOF). *Norma Oficial Mexicana NOM-152-SEMARNAT-2006, Que Establece los Lineamientos, Criterios y Especificaciones de los Contenidos de los Programas de Manejo Forestal Para el Aprovechamiento de Recursos Forestales Maderables en Bosques, Selvas y Vegetación de Zonas Áridas*; DOF: México City, México, 2008.

68. Ramírez, M.J.J. Aprovechamiento y Manejo Silvícola de los Recursos Forestales en Seis Municipios de la Región Oeste del Estado de Jalisco. Bachelor Thesis, Universidad Autónoma Agraria Antonio Narro, Saltillo, México, 1998; p. 34.

69. Fredericksen, T.S. *Aprovechamiento Forestal y Conservación de los Bosques Tropicales en Bolivia*; Proyecto de Manejo Forestal Sostenible BOLFOR: Santa Cruz, Bolivia, 2000; p. 22.

70. BOLFOR. *Normas Técnicas Para la Elaboración de Instrumentos de Manejo Forestal (Inventarios, Planes de Manejo, Planes Operativos, mapas) en Propiedades Privadas o Concesiones con Superficies Mayores a 200 Hectáreas*; Resolución Ministerial No. 62/97; BOLFOR: La Paz, Bolivia, 1997.

71. Figueres-Olsen, J.M.; Castro-Salazar, R. Reglamento a la Ley Forestal. Ley Forestal No. 7575. La Gaceta No. 16. 23 de enero de 1997; San José, Costa Rica, 1997; p. 32. Available online: [https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwikwKyk3qYAhUglysBHQujDMQFnoECAIQAQ&url=http%3A%2F%2Fwww.da.go.cr%2Fwp-content%2Fuploads%2F2016%2F06%2FDecreto-Reglamento-Ley-Forestal-DE-25721-MINAE.pdf&usg=AovVaw2Nijs1gb10Rc4W6wV0g7oil](https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwikwKyk3qYAhUglysBHQujDMQFnoECAIQAQ&url=http%3A%2F%2Fwww(da.go.cr%2Fwp-content%2Fuploads%2F2016%2F06%2FDecreto-Reglamento-Ley-Forestal-DE-25721-MINAE.pdf&usg=AovVaw2Nijs1gb10Rc4W6wV0g7oil) (accessed on 11 May 2021).

72. Dauber, E.; Fredericksen, T.S.; Peña-Claros, M. Sustainability of timber harvesting in Bolivian tropical forests. *For. Ecol. Manag.* 2005, 214, 294–304. [CrossRef]