Weyl Consistency Conditions and γ_5

C. Poole* and A. E. Thomsen†

CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Abstract

The treatment of γ_5 in Dimensional Regularization leads to ambiguities in field-theoretic calculations, of which one example is the coefficient of a particular term in the four-loop gauge β-functions of the Standard Model. Using Weyl Consistency Conditions, we present a scheme-independent relation between the coefficient of this term and a corresponding term in the three-loop Yukawa β-functions, where a semi-naïve treatment of γ_5 is sufficient, thereby fixing this ambiguity. We briefly outline an argument by which the same method fixes similar ambiguities at higher orders.

*cpoole@cp3.sdu.dk
†aethomsen@cp3.sdu.dk
1 Introduction

The treatment of γ_5 in Dimensional Regularization is a well-known theoretical issue \cite{1}, and can be summarized in the following statement: given a four-dimensional, Poincaré-invariant quantum field theory, there is no gauge-invariant regularization method that preserves chiral symmetry \cite{2}. The precise connection between the two is most easily demonstrated using the ABJ anomaly, the derivation of which requires

$$\text{tr} \left[\gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma \gamma_5 \right] = 4i\epsilon^{\mu\nu\rho\sigma}, \quad \epsilon_{0123} = -\epsilon^{0123} = 1 \quad (1.1)$$

in four dimensions, whereas the d-dimensional γ-matrix algebra

$$\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu}1, \quad g^{\mu\nu}g_{\mu\nu} = d, \quad \{\gamma^\mu, \gamma^5\} = 0 \quad (1.2)$$

plus trace-cyclicity directly implies

$$\text{tr} \left[\gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma \gamma_5 \right] = 0 \quad (1.3)$$

even when $d \to 4$. Thus, if one wishes to renormalize a gauge theory with chiral fermions, one must sacrifice either cyclicity of the trace over Dirac matrices involving γ_5, or break gauge invariance at intermediate stages of a calculation in perturbation theory. The former option is preferable for the purpose of calculating higher-order perturbative corrections, but will inevitably give rise to ambiguities in loop integrals stemming from the precise location of γ_5 in the Dirac traces. Such ambiguities may appear for the first time at three loops, however the β-functions of the gauge \cite{3} and scalar \cite{4} couplings in the Standard Model are spared, due to the cancellation of the ABJ anomaly. Furthermore, for the Yukawa couplings, one can use a “semi-naïve” treatment of γ_5,

$$\text{tr} \left[\gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma \gamma_5 \right] = 4i\tilde{\epsilon}^{\mu\nu\rho\sigma} + O(\epsilon), \quad \tilde{\epsilon}^{\mu\nu\rho\sigma} \epsilon_{\alpha\beta\gamma\delta} = g^{\mu[a}g^{\nu\beta}g^{\sigma\rho]}g^{\gamma\delta]}, \quad \tilde{\epsilon}^{\mu\nu\rho\sigma} \xrightarrow{d \to 4} \epsilon^{\mu\nu\rho\sigma} \quad (1.4)$$

in order to show that the resulting ambiguity in the relevant Feynman integral is $O(\epsilon)$, and hence cannot affect the Yukawa β-function \cite{5}. Unfortunately, such minor miracles no longer hold at four loops; by parametrizing the integrals according to the position of γ_5, the resulting ambiguity in the four-loop strong-coupling β-function, $\beta_{\alpha_s}^{(4)}$, has been explicitly calculated as \cite{7,8}

$$\beta_{\alpha_s}^{(4)} \supset R \left(\frac{16}{3} + 32\zeta_3 \right) T_F^2\alpha_s^3\alpha_t^2, \quad R = 1, 2, \text{ or } 3. \quad (1.5)$$

While the pursuit of higher-order loop calculations has motivated many significant computational developments, there have also been notable advances in our understanding of renormalization itself, which are not yet as well-known in the phenomenological community. One such development is the notion of Weyl Consistency Conditions \cite{9}: if one extend
a theory to curved spacetime and local couplings, then the Wess-Zumino consistency conditions for the trace anomaly imply a plethora of relations between various RG quantities, amongst them Osborn’s equation\(^1\)

\[
\partial_I \tilde{A} \equiv \frac{\partial \tilde{A}}{\partial g^I} = T_{IJ} \beta^J, \quad T_{IJ} = G_{IJ} + 2\partial_{[I} W_{J]} + 2\tilde{\rho}_{[I} Q_{J]} \tag{1.6}
\]

where \(g^I\) labels the marginal couplings of the theory. For the purpose of calculation, it is easier to work with an equivalent equation, obtained by multiplying (1.6) by \(dg^I\):

\[
d\tilde{A} \equiv dg^I \partial_I \tilde{A} = dg^I T_{IJ} \beta^J \tag{1.7}
\]

This equation therefore demonstrates the existence of a function, \(\tilde{A}\), of the couplings in a general renormalizable theory, which places constraints on the corresponding \(\beta\)-functions. Central to these constraints is the “3-2-1” phenomenon, where the gauge \(\beta\)-function is related to the Yukawa \(\beta\)-function one loop below, and the scalar \(\beta\)-function two loops below. The reason for this ordering is topological, and is thus manifestly preserved to all orders; consequently, given enough information at lower orders, one can use (1.6) to predict coefficients of terms at higher orders. Most importantly, the \(\beta\)-functions in (1.6) are precisely the four-dimensional functions that one should obtain after taking the \(\epsilon \to 0\) limit of Dimensional Regularization. This is the crux of our approach: if there exists a consistency condition relating the ambiguous term in \(\beta^{(4)}_{\phi}\) to lower-order \(\beta\)-function coefficients, and if the consistency condition is simple enough, then it may be possible to fix the ambiguity inherent in the treatment of \(\gamma_5\).

2 Constraints from Weyl Consistency Conditions

In order to derive constraints on the four-loop gauge \(\beta\)-function, one must construct \(\tilde{A}\) at five loops. This is already a somewhat awkward task, but there is a further complication: in order to isolate particular contributions to the \(\beta\)-function, such as those stemming from the integrals involving \(\gamma_5\), one must work with a completely general theory, described in terms of tensor couplings between arbitrary multiplets of matter fields\(^2\). Expressing the matter content as \(n_\phi\) real scalars \(\phi_a\) and \(n_\psi\) Weyl fermions \(\psi_j\), the Lagrangian density of a general theory with a semi-simple gauge symmetry group \(G = G_1 \times \ldots \times G_n\), containing

\(^1\)This equation is not generally known by any set name, but one of us (CP) is fed up of using phrases such as the technically-incorrect “gradient-flow equation”, the correct-but-cumbersome “gradient-flow-like equation”, and the frankly horrific “equation defining the four-dimensional perturbative \(A\)-function”. As the power of this equation is only now being realized, we feel it appropriate that its author be suitably recognised.

\(^2\)This is related to well-known questions regarding which terms actually contribute to the \(\beta\)-functions in a particular scheme.
at most one U(1) factor\(^3\), is given by

\[
\mathcal{L} = \sum_{\alpha=1}^{n} \left(-\frac{1}{4} (G_\alpha)^{\mu\nu}_{a\alpha}(G_\alpha)^{a\mu}_{a\alpha} \right) + i\bar{\psi}_j \sigma^\mu D_\mu \psi^j + \frac{1}{2} D_\mu \phi_a D^\mu \phi_a \\
- \frac{1}{2} (Y_{a0j} \phi_a \bar{\psi}_i \psi^j + \bar{Y}_{a0j} \phi_a \bar{\psi}_i \psi^j) - \frac{1}{4!} \lambda_{abcd} \phi_a \bar{\psi}_b \psi^c \phi_d \\
+ \text{mass terms} + \text{gauge-fixing} + \text{ghost terms} \tag{2.1}
\]

with covariant derivatives

\[
D_\mu \psi_j = \partial_\mu \psi_j - iq_j (A_1)_\mu \psi_j - i \sum_{\alpha=2}^{n} \sum_{a=1}^{[G_\alpha]} g_\alpha (R_\alpha)_{a\mu} (A_\alpha)_{a\mu} \psi_k \\
D_\mu \phi_a = \partial_\mu \phi_a - iq_a (A_1)_{\mu} \phi_a - i \sum_{\alpha=2}^{n} \sum_{a=1}^{[G_\alpha]} g_\alpha (S_\alpha)_{a\mu} (A_\alpha)_{a\mu} \phi_b
\tag{2.2}
\]

where we have assumed that \(G_1 = U(1) \). The fermions transform under a representation \(R_\alpha \) of the corresponding gauge group \(G_\alpha \), with Hermitian generators \((R_\alpha)_{a\mu} \rightarrow (R_\alpha)^{\mu}_{a\nu}\) and the scalars likewise transform under a representation \(S_\alpha \) with antisymmetric, Hermitian generators \((S_\alpha)_{a\mu} \rightarrow -(S_\alpha)^{a\mu}_{ab}\). When constructing \(\bar{A} \), it proves convenient to assemble the Yukawa couplings and fermion generators into matrices,

\[
y_a = \begin{pmatrix} Y^a & 0 \\ 0 & \bar{Y}^a \end{pmatrix}, \quad \dot{y}_a = \begin{pmatrix} \bar{Y}^a & 0 \\ 0 & Y^a \end{pmatrix} = \sigma_1 y_a \sigma_1, \\
T^a = \begin{pmatrix} R^a & 0 \\ 0 & -(R^a)^* \end{pmatrix}, \quad \dot{T}^a = \sigma_1 T^a \sigma_1 = -(T^a)^T
\tag{2.3}
\]

so that there is a single Yukawa interaction involving Weyl fermions assembled into Majorana spinors \(\Psi^T = (\psi_i^T, (\bar{\psi}^j)^T) \) \([10]\). Yet another complication is the identities that the gauge generators must satisfy, in order for a theory with scalar and Yukawa interactions to be gauge-invariant:

\[
0 = (T^p)^T_{ik} y_{akj} + y_{aik} T^p_{kj} + S^p_{ba} y_{bij} \\
0 = S^p_{ae} \lambda_{ebcd} + S^p_{be} \lambda_{acde} + S^p_{ce} \lambda_{abed} + S^p_{de} \lambda_{abcde} \tag{2.4}
\]

These identities relate various gauge-dependent tensor structures, leading to redundancies; one must therefore reduce the set of tensors in each \(\beta \)-function to a basis. Taking all this into account, the construction of \(\bar{A} \) for a general four-dimensional theory with a single gauge group has been done at four loops, using a diagrammatic representation of the tensor couplings to express the \(\beta \)-functions as a sum over tensor structures, each multiplied

\(^3\)Extension to multiple U(1)s requires an extended treatment due to kinetic mixing \([13]\); such treatment may be implemented by uniting the U(1)s into a single object with a matrix coupling \(G \equiv G_{\alpha\beta} \) \([14]\).
Figure 1: Tensor structures related to the ambiguous treatment of γ_5 in the Standard Model.

by a coefficient4 [10]. The authors extracted scheme-independent relations between the coefficients of $\beta^{(1)}_\lambda \equiv \beta_{abcd}$, $\beta^{(2)}_Y \equiv \beta_{aij}$, and $\beta^{(3)}_g$, and used $\overline{\text{MS}}$ results to show how one could deduce many of the coefficients in $\beta^{(3)}_g$ without explicit calculation. By expressing the gauge couplings as entries in a diagonal matrix $G_k^{\alpha\beta} \equiv \text{diag}(g^k_1, \ldots, g^k_n)$, representing β_{G} as a two-point tensor, and adopting the convention that contracted gauge lines sum over all gauge couplings and associated generators, we have extended the notation of [10] to a general semi-simple gauge group, whereby a dot on a gauge line with label k represents the new coupling matrix $G_k^{\alpha\beta}$, and have written a bespoke Mathematica procedure to automate the generation of consistency conditions in the same manner [15].

The diagram of interest in $\beta^{(4)}_G$ is given in Fig. 1a, and indeed such a diagram appears in the basis of terms generated by our program. In line with our extended notation, it is easy to see that \tilde{A} will receive a contribution to the diagram in Fig. 1b by contracting $\beta^{(4)}_G$ with the leading-order tensor $T^{(1)}_{GG} = T^{(1)}_G G^{-2} \delta_{\gamma_5}$, at which point certain special features become obvious. Fig. 1b is in fact topologically equivalent to a cube, hence has no subdiagrams in the form of a subdivergence, and therefore has no other contributions from higher-order terms in T_{GJ}. Similarly, the basis of terms in the general three-loop Yukawa β-function $\beta^{(3)}_Y$ contains the tensor shown in Fig. 1c, so \tilde{A} receives the same contribution by contracting $\beta^{(3)}_Y$ with the leading-order tensor $T^{(2)}_{YY} = T^{(2)}_Y \delta_{YY}$, and there are again no possible higher-order contributions from T_{YJ}. Consequently, (1.6) and (1.7) imply that, if $b^{(4)}$ is the coefficient of Fig. 1a and $y^{(3)}$ the coefficient of Fig. 1c, then the coefficient $a^{(5)}$ of Fig. 1b must satisfy

$$4a^{(5)} = T^{(1)}_G b^{(4)} = T^{(2)}_Y y^{(3)} \quad (2.5)$$

Using the leading-order calculations of T_{IJ} in [11], we obtain the desired scheme-independent consistency condition

$$y^{(3)} = 12b^{(4)} \quad (2.6)$$

4Scheme-dependence of the β-functions then simply corresponds to changes in these coefficients.

5In [12], the topologically-equivalent case of constructing \tilde{A} for six-dimensional ϕ^3 theory demonstrated the exact same behaviour, whereby the only contribution to $A^{(5)}_s$ came from the tensor $g^{(3k)}_{(3d)}$ contracted with the leading-order $T^{(2)}_{2g}$.

We have, of course, used our program to generate the full set of consistency conditions for a completely general theory, and found precisely this condition \[(2.6) \].

3 Standard Model \(\beta \)-functions and \(\gamma_5 \)

The consistency condition \((2.6)\) relates two tensor structures that may receive non-trivial contributions from integrals involving \(\gamma_5 \), and holds for a completely general renormalizable theory with a semi-simple gauge group. The Standard Model is, of course, precisely such a theory, and so by inserting the SM matter content we may extract relations between various terms in the SM \(\beta \)-functions. As indicated in [3–8], the SM matter content is such that integrals involving \(\gamma_5 \) only contribute to these tensors, and so \((2.6)\) directly relates the ambiguous treatment in \(\beta^{(4)}_{\alpha_S} \) to the semi-naïve treatment in \(\beta^{(3)}_Y \). By considering the set of tensor structures in the general \(\beta^{(3)}_{a_{i,j}} \) that contain four generators, a trace over two Yukawa tensors, and an additional untraced Yukawa tensor, we can extract the \(\overline{\text{MS}} \) coefficient \(y^{(3)} \) by using the results in appendix D of [3] and matching with the SM calculations in [6]:

\[
y^{(3)} = 12 + 72 \zeta_3 \tag{3.1}
\]

Equation \((2.6)\) then requires that

\[
b^{(4)} = 1 + 6 \zeta_3 \tag{3.2}
\]

so expanding out the tensor structure in Fig. 1a and multiplying by \((3.2)\) gives

\[
\beta^{(4)}_{\alpha_S} \supset (16 + 96 \zeta_3) T_T^2 \alpha_S^3 \alpha_I^2 \tag{3.3}
\]

By comparing with \((1.5)\), we are therefore forced to take

\[
R = 3 \tag{3.4}
\]

in the \(\beta^{(4)}_{\alpha_S} \) calculation of [7, 8], corresponding to a reading of the traces whereby one insert \(\gamma_5 \) at any of the internal vertices. While [7] gave some theoretical justifications for preferring this value of \(R \), we believe this constitutes the first proof that it must be so. We stress that there is no wiggle-room in the conclusion: \((2.6)\) relates the final \(\beta \)-function coefficients after removal of the regulator, and holds for all perturbative renormalization schemes, thus the four-loop integral involving \(\gamma_5 \) must be treated in this manner.

The topological argument guaranteeing that no higher-order \(T_{1,1} \) contributions influence the consistency condition can easily be extended to higher loops: if the tensor structure in \(\tilde{A}^{(n)} \) is topologically equivalent to a connected symmetric graph\(^6\), and the associated

\(^6\)A symmetric graph generally refers to a graph with a set number of edges connected to each vertex, such that the automorphism group acts transitively on both the associated vertex- and edge-graph; a connected symmetric graph is then a symmetric graph with no disconnected vertices or subgraphs. Due to the multiple interaction types, the graph topologies that contribute to the \(A \)-function and lead to a simple consistency condition like \((2.6)\) are more general - we are unaware of a classification scheme for all such topologies, but the connected symmetric graphs form a well-defined subset.

primitive tensors in $\beta^{(n-1)}_G$, $\beta^{(n-2)}_{aij}$ and/or $\beta^{(n-3)}_{abcd}$ contain non-trivial contributions from γ_5, then one can quickly derive an analogous consistency condition to fix the potential ambiguity, as parametrized by the same trace-cutting procedure used at four loops. It may of course be possible that, for a particular theory, γ_5 does not contribute to the terms in these simple conditions. If this is so, it is still possible to use the full set of consistency conditions to infer a consistent treatment, although the amount of work required will be dramatically increased.

Acknowledgements

CP would like to thank Joshua Davies for his off-the-cuff question that eventually led to the result in this paper, and Ian Jack for his careful reading of the manuscript. AET would like to thank Fermi National Accelerator Lab for hosting him during the completion of this paper, and gratefully acknowledges financial support from the Danish Ministry of Higher Education and Science through an EliteForsk Travel Grant. This work is partially supported by the Danish National Research Foundation grant DNRF90.

References

[1] G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl.Phys. B44 (1972) 189-213.

[2] F. Jegerlehner, Facts of life with γ_5, Eur.Phys.J. C18 (2001) 673-679.

[3] L. N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and beta functions for the gauge couplings of the Standard Model to three-loop order, Phys.Rev. D86 (2012) 096008.

[4] A. V. Bednyakov, A. F. Pikelner and V. N. Velizhanin, Higgs self-coupling beta-function in the Standard Model at three loops, Nucl.Phys. B875 (2013) 552-565.

[5] K. G. Chetyrkin and M. F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the Standard Model, JHEP 1206 (2012) 033.

[6] A. V. Bednyakov, A. F. Pikelner and V. N. Velizhanin, Three-loop SM beta-functions for matrix Yukawa couplings, Phys.Lett. B737 (2014) 129-134.

[7] A. V. Bednyakov and A. F. Pikelner, Four-loop strong coupling beta-function in the Standard Model, Phys.Lett. B762 (2016) 151-156.

[8] M. Zoller, Top-Yukawa effects on the β-function of the strong coupling in the SM at four-loop level, JHEP 1602 (2016) 095.
[9] H. Osborn, Derivation of a Four-dimensional c-theorem, Phys. Lett. B222 (1989) 97; H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B363 (1991) 486.

[10] I. Jack and C. Poole, The a-function for gauge theories, JHEP 1501 (2015) 138.

[11] I. Jack and H. Osborn, Analogs For The c-Theorem For Four-dimensional Renormalizable Field Theories, Nucl. Phys. B343 (1990) 647.

[12] J. A. Gracey, I. Jack and C. Poole, The a-function in six dimensions, JHEP 1601 (2016) 174.

[13] M. Luo and Y. Xiao, Renormalization group equations in gauge theories with multiple U(1) groups, Phys.Lett. B555 (2003) 279-286.

[14] R. M. Fonseca, M. Malinský and F. Staub, Renormalization group equations and matching in a general quantum field theory with kinetic mixing, Phys.Lett. B726 (2013) 882-886.

[15] C. Poole and A. E. Thomsen, Weyl Consistency Conditions and constraints on the RG flow of renormalizable theories, in preparation.