Milnor fibration and fibred links at infinity

Arnaud Bodin

29 January 1999

Introduction

Let $f : \mathbb{C}^2 \rightarrow \mathbb{C}$ be a polynomial function. By definition $c \in \mathbb{C}$ is a regular value at infinity if there exists a disc D centred at c and a compact set C of \mathbb{C}^2 such that the map $f : f^{-1}(D) \setminus C \rightarrow D$ is a locally trivial fibration. There are only a finite number of critical (or irregular) values at infinity. For $c \in \mathbb{C}$ and a sufficiently large real number R, the link at infinity $K_c = f^{-1}(c) \cap S^3_R$ is well-defined.

In this paper we sketch the proof of the following theorem which gives a characterization of fibred multilinks at infinity.

Theorem. A multilink $K_0 = f^{-1}(0) \cap S^3_R$ is fibred if and only if all the values $c \neq 0$ are regular at infinity.

We first obtain theorem 1, a version of this theorem was proved by A. Némethi and A. Zaharia in [NZ] (with “semitame” as a hypothesis). Here we give a new proof using resolution of singularities at infinity. This method enables us to describe the fibre and the monodromy of the Milnor fibration in terms of combinatorial invariants of a resolution of f.

Theorem 1. If there is no critical value at infinity outside $c = 0$ then in the homotopy class of

$$\frac{f}{|f|} : S^3_R \setminus f^{-1}(0) \rightarrow S^1$$

there exists a fibration.

The value 0 may be regular or not. One may specify what kind of fibration it is; if f is a reduced polynomial, then this is an open book decomposition, otherwise it is a multilink fibration of $K_0 = f^{-1}(0) \cap S^3_R$ (see paragraph 2). The weights of K_0 are given by the multiplicities of the factorial decomposition of f.

If 0 is a regular value at infinity and $c \neq 0$ is a critical value at infinity, W. Neumann and L. Rudolph proved in [NR] that the link $f^{-1}(0) \cap S^3_R$ is not fibred. In the following theorem we do not have any hypothesis on the value 0, in particular 0 can be a critical value at infinity.
Theorem 2. Suppose that $c \neq 0$ is a critical value at infinity for f, then the multilink $K_0 = f^{-1}(0) \cap S^3_R$ is not a fibred multilink.

We begin with definitions, the second part is devoted to the proof of theorem 1. We conclude with the proof of theorem 2.

1 Definitions

As in [EN], a **multilink** $L(m)$ $(m = (m_1, \ldots, m_k))$ is a link having each component L_i weighted by the integer m_i.

The multilink $L(m)$ is a **fibred multilink** if there exists a differentiable fibration $\theta : S^3_R \setminus L \to S^1$ such that m_i is the degree of the restriction of θ on a meridian of L_i. A fibre $\theta^{-1}(x)$ is a **Seifert surface** for the multilink. The link $K_0 = f^{-1}(0) \cap S^3_R$ is a multilink, the weights being naturally given by the multiplicities of the factorial decomposition of f.

A **fibred link** is a fibred multilink having all its components weighted by $+1$. Then θ is called an **open book decomposition**.

Next we give definitions and results about resolutions, see [LW]. Let n be the degree of f and F be the corresponding homogeneous polynomial with the same degree. The map $\tilde{f} : \mathbb{C}P^2 \to \mathbb{C}P^1$, $\tilde{f}(x : y : z) = (F(x, y, z) : z^n)$ is not everywhere defined, nevertheless there exists a minimal composition of blowing-ups $\pi_w : \Sigma_w \to \mathbb{C}P^2$ such that $\tilde{f} \circ \pi_w$ extends to a well-defined morphism ϕ_w from Σ_w to $\mathbb{C}P^1$. This is the **weak resolution**.

\[
\begin{array}{ccc}
\mathbb{C}^2 & \xrightarrow{f} & \mathbb{C}P^2 \\
\downarrow \quad & \quad & \downarrow \pi_w \\
\mathbb{C} & \xrightarrow{\phi_w} & \mathbb{C}P^1
\end{array}
\]

For an irreducible component D of $\pi_w^{-1}(L_\infty)$ (L_∞ is the line of $\mathbb{C}P^2$ having the equation $(z = 0)$), we distinguish three cases:

1. $\phi_w(D) = \infty$, we denote $D_\infty = \phi_w^{-1}(\infty)$.
2. $\phi_w(D) = \mathbb{C}P^1$, D is a **dicritical component**, the restriction of ϕ_w to D is a ramified covering, the **degree** of D is the degree of this restriction. The divisor which contains all these components is the **dicritical divisor** D_{dic}.
3. $\phi_w(D) = c \in \mathbb{C}$, there is a finite number of such components, collected in $D_{crit} = D_{c_1} \cup \ldots \cup D_{c_g}$.

The irregular values at infinity for f are the values c_1, \ldots, c_g and the critical values of the map ϕ_w restricted to D_{dic}; moreover each divisor D_{c_i} is a disjoint union of bamboos.

We now increase the number of blowing-ups of π_w in a minimal way, in order to obtain $\pi_p : \Sigma_p \to \mathbb{C}P^2$ and $\phi_p = \tilde{f} \circ \pi_p : \Sigma_p \to \mathbb{C}P^1$ such that the fibre
\(\phi_t^{-1}(0) \) cuts the divisor \(D_{\text{dic}} \) transversally and is a normal crossing divisor. This is the \textit{partial resolution} for the value \(c = 0 \).

We continue with blowing-ups in order to obtain \(\pi_t, \Sigma_t, \phi_t \) such that each fibre of \(\phi_t \) cuts the divisor \(D_{\text{dic}} \) transversally and all the fibres of \(\phi_t \) are normal crossing divisors. This is the \textit{total resolution}.

For the total resolution the values \(c_1, \ldots, c_g' \) coming from the components \(D \) of the new \(D_{\text{crit}} \) with \(\phi_t(D) = c_i \) are the critical values at infinity.

2 Milnor fibration at infinity

Until the end of this section, we suppose that the only irregular value at infinity for \(f \) can be the value 0. Let \(\phi = \phi_t \) coming from the total resolution. In \(\Sigma_t \) the sphere \(\pi_t^{-1}(S^3_R) \) is diffeomorphic to the boundary \(S \) of a neighbourhood of \(\pi_t^{-1}(L_{\infty}) \) (see [D]).

Instead of studying \(f|f|^{-1}(0) \) we study \(\phi|\phi|^{-1}(0) \). Let \(\theta \) be the restriction of \(\phi|\phi|^{-1}(0) \). By changing the sphere \(\pi_t^{-1}(S^3_R) \) into \(S \) we only know that \(\theta \) is in the homotopy class of \(f|f|^{-1}(0) \).

As in [LMW] there is a correspondence between the irreducible components of \(\pi_t^{-1}(L_{\infty}) \) and a Waldhausen decomposition of \(S \setminus \phi^{-1}(0) \) into Seifert three-manifolds. We will prove that the restriction of \(\theta \) to the Seifert manifold \(\sigma(D) \) associated to any irreducible component \(D \) of \(\pi_t^{-1}(L_{\infty}) \) is a fibration. If \(D \subset D_{\infty} \cup D_0 \), the equations are similar to the local case; we thus have to look at what happens with the components of the dicritical divisor.

Lemma 1. The smooth points in \(\pi_t^{-1}(L_{\infty}) \) of each dicritical component with non-empty intersection with \(D_{\text{crit}} = D_0 \) is an annulus.

In other words the intersection of \(D_0 \) with each dicritical component is empty or reduced to a single point.

Proof. This is a consequence of the fact that above \(\mathbb{CP}^1 \setminus \{0, \infty\} \), \(\phi \) is a regular covering. \(\square \)

With similar arguments, one can prove:

Lemma 2. Each dicritical component \(D \) with \(D \cap D_{\text{crit}} = \emptyset \) is of degree 1.

2.1 Fibration on \(\sigma(D) \) for \(D \subset D_{\text{dic}} \)

Let \(D \) be a dicritical component and let \(U \) be the simple points of \(D \) in \(\pi_t^{-1}(L_{\infty}) \cup \phi^{-1}(0) \). By lemmas 1 and 2 we know that \(U \) is an annulus and \(\phi_U : U \rightarrow \mathbb{CP}^1 \setminus \{0, \infty\} \) is a regular covering of order \(d \).

Let \(u \in \mathbb{C}^* \) be a parametrisation of \(U \). For each point of \(U \) we choose local coordinates \((u, v) \) such that \(\phi \) can be written \(\phi(u, v) = u \). We choose \(S \) so that \(S \) is locally given by \((|v| = \varepsilon) \) where \(\varepsilon \) is a small positive real number.

With these facts one can calculate that the restriction of \(\theta \) to the Seifert component \(\sigma(D) \) associated to \(D \) is a fibration whose fibres consist of \(d \) annuli.
2.2 Fibration in a neighbourhood of a non-simple point

In a neighbourhood V of a non-simple point, i.e. a point belonging to a dicritical component D and another component $D' \in \pi^{-1}_i(L_\infty) \cup \phi^{-1}(0)$, ϕ is defined in appropriate local coordinates by $(u,v) \mapsto u^d$.

Let T be the tubular neighbourhood of $D \cap V$ given by $(|v| \leq \varepsilon)$. θ_T defines a fibration whose fibres consist of d annuli:

$$\theta^{-1}(e^{i\alpha}) \cap T = \{(u,v) \in T; |v| = \varepsilon, u \neq 0 \text{ and } u^d/|u|^d = e^{i\alpha}\}.$$

Moreover, this fibration is a multilink fibration, because on a torus D of $\partial T \cap \partial T'$, θ is a fibration on V.

2.3 Fibration in a neighbourhood of the strict transform

Let F be an irreducible component of $\phi^{-1}(0) \setminus D_0$ (which corresponds to the affine set $f^{-1}(0)$). F can intersect D_0 or D_{dic}. If $F \cap D_0 \neq \emptyset$ then locally in a neighbourhood V, $\phi(u,v) = u^p v^q$ with $(v = 0)$ is an equation for D_0. The associated component of the link is $\phi^{-1}(0) \cap S \cap V$. Then $\theta|_V$ is a fibration whose fibres consist of $\gcd(p,q)$ annuli:

$$\theta^{-1}(e^{i\alpha}) \cap V = \{(u,v) \in V; |v| = \varepsilon, u \neq 0 \text{ and } u^p v^q/|u^p v^q| = e^{i\alpha}\}.$$

Moreover this fibration is a multilink fibration, because on a torus $D_3^2 \times S_1^1 \setminus \{0\}$, the fibre of the fibre at $v = cst$ is p radii of the annulus $D_3^2 \setminus \{0\} \times v$. If f is a reduced polynomial function then $p = 1$ and θ is an open book decomposition.

Similarly, θ is still locally a fibration if $F \cap D_{dic} \neq \emptyset$.

We now conclude by collecting and gluing previous results. $\phi/|\phi|$ is a fibration in a neighbourhood of $S \cap \phi^{-1}(0)$ and on all $V \cap S$ which cover $S \setminus \phi^{-1}(0)$, so $\phi/|\phi| : S \setminus \phi^{-1}(0) \rightarrow S^1$ is a fibration. Furthermore with the discussion above $\phi/|\phi|$ is an open book decomposition or a multilink fibration depending on f being reduced or not.

3 Non-fibred multilinks

Under the hypotheses of theorem 2 and without loss of generality we suppose that $\{c \alpha \text{ with } \lambda < 0\}$ does not contain critical values of f at infinity. The surface $\mathcal{F} = (f/|f|)^{-1}(c/|c|) \cap S^3_R$ is a Seifert surface for the multilink $K_0 = f^{-1}(0) \cap S^3_R$. Moreover, for complex numbers ω with $0 \leq |\omega - c| \ll |c|$ the links $f^{-1}(\omega) \cap S^3_R$ do not cut \mathcal{F}.

We choose ω as a regular value at infinity. For the partial resolution $\phi = \phi_p$ at infinity for f and the value 0, there exists one dicritical component with a valency at least 3 in $\pi_p^{-1}(L_\infty) \cup \phi^{-1}(0)$; let D be a dicritical component where
c is a critical value at infinity. If the intersection $\phi^{-1}(0) \cap D$ has more than two points or if there is a bamboo of D_c that cuts D then we can easily conclude. But no other case is possible because $\phi|_D$, with the critical values 0 and c, has more than two zeroes. So the manifold $\sigma(D)$ induces a Seifert manifold of the minimal decomposition of $S^3_R \setminus K_0$; by crossing this component, $f^{-1}(\omega)$ defines a virtual component of $M = S^3_R \setminus f^{-1}(0)$ (see [LMW]); that is to say a regular fibre of the minimal Waldhausen decomposition of the manifold M.

According to [EN] th. 11.2, since F and a virtual component of M have empty intersection, K_0 is not a fibred multilink, if we exclude the case where M is $S^1 \times S^1 \times [0, 1]$. This case is studied in the following lemma.

Lemma 3. If the underlying link associated to $K_0 = f^{-1}(0) \cap S^3_R$ is the Hopf link then $c \neq 0$ is a regular value at infinity for f.

Proof. We suppose first that f is a reduced polynomial function. Then K_0 is the Hopf link, and since K_0 is an iterated torus link around Neumann’s multilink L [N] §2], this multilink can only be the trivial knot or the Hopf link.

Case of L being the trivial knot: There is only one dicritical component. If f is not a primitive polynomial (i.e. with connected generic fibre) then with the use of the Stein factorisation, let $h \in \mathbb{C}[t]$ and let $g \in \mathbb{C}[x, y]$ be a primitive polynomial with $f = h \circ g$. By the Abhyankar-Moh theorem (see [A]), there exists an algebraic automorphism Θ of \mathbb{C}^2 with $g \circ \Theta(x, y) = x$ and then $f \circ \Theta(x, y) = h(x)$.

Let x_1, \ldots, x_n be the zeroes of h; $x_1 \times \mathbb{C}, \ldots, x_n \times \mathbb{C}$ are the solutions of $f \circ \Theta(x, y) = 0$. Therefore the link K_0 is a union of trivial knots with zero linking numbers, so K_0 is not the Hopf link.

Case of L being the Hopf link: K_0 and the multilink L are isotopic. On the one hand in the weak resolution for f, the restriction of $\phi = \phi_w$ to D_{dic} cannot have the critical value 0 without a bamboo. If so, one component of K_0 would be a true iterated torus knot around a component of L, in contradiction with the hypothesis. On the other hand, each component of the multilink L can be represented by a disc which crosses transversally the last component of each bamboo (start counting at the dicritical component). If there exists a bamboo for the value 0, the component C of $\phi^{-1}(0) \setminus D_0$ with $C \cap D_0 \neq \emptyset$ must be irreducible, reduced and cross D_0 transversally at the last component; this configuration is excluded by lemma 8.24 of [MW]. So 0 is a regular value at infinity and since K_0 is isotopic to L, all the dicritical components have degree one and there is no value having a bamboo, so c is a regular value at infinity for f.

If f is not reduced, let g be the reduced polynomial function associated to f. Then the link $g^{-1}(0) \cap S^3_R$ is the Hopf link and from the discussion above we know that 0 is a regular value at infinity for g. From the classification of regular algebraic annuli [N] §8], there exists an algebraic automorphism Θ of \mathbb{C}^2 with $\Theta(0, 0) = (0, 0)$ such that $g \circ \Theta(x, y) = xy + \lambda$, $\lambda \in \mathbb{C}$. So $f \circ \Theta(x, y) = (xy + \lambda)^t$ if $\lambda \neq 0$ and $f \circ \Theta(x, y) = x^py^q$ if $\lambda = 0$. In both cases, c is a regular value at infinity for f. \qed
In conclusion, whether 0 is a regular value at infinity or not, the multilink $K_0 = f^{-1}(0) \cap S^3_R$ is not fibred when $c \neq 0$ is a critical value at infinity.

Acknowledgments

I thank Professor Françoise Michel for long discussions and for her many ideas.

References

[A] E. Artal-Bartolo, *Une démonstration géométrique du théorème d’Abhyankar-Moh*, J. reine angew. Math. 464 (1995), 97-108.

[D] A. Durfee, *Neighborhoods of algebraic sets*, Trans. Amer. Math. Soc. 276 (1983), 517-530.

[EN] D. Eisenbud and W. Neumann, *Three-dimensional link theory and invariants of plane curve singularities*, Ann. of Math. Stud. 110, Princeton Univ. Press (1985).

[LMW] D.T. Lê, F. Michel and C. Weber, *Courbes polaires et topologie des courbes planes*, Ann. scient. Éc. Norm. Sup. 24 (1991), 141-169.

[LW] D.T. Lê and C. Weber, *A geometrical approach to the Jacobian conjecture*, Kodai Math. J. 17 (1994), 374-381.

[MW] F. Michel and C. Weber, *On the monodromies of a polynomial map from \mathbb{C}^2 to \mathbb{C}*, preprint (1998).

[NZ] A. Némethi and A. Zaharia, *Milnor fibration at infinity*, Indag. Math. N. S. 3 (1992), 323-335.

[N] W. Neumann, *Complex algebraic plane curves via their links at infinity*, Invent. Math. 98 (1989), 445-489.

[NR] W. Neumann and L. Rudolph, *Unfoldings in knot theory*, Math. Ann. 278 (1987), 409-439 and *Corrigendum: Unfoldings in knot theory*, Math. Ann. 282 (1988), 349-351.

Université Paul Sabatier Toulouse III, laboratoire Émile Picard, 118 route de Narbonne, 31062 Toulouse cedex 4, France; bodin@picard.ups-tlse.fr