High quality ferromagnetic 0 and \(\pi \) Josephson tunnel junctions

M. Weides
Center of Nanoelectronic Systems for Information Technology (CNI), Research Centre Jülich, D-52425 Jülich, Germany

M. Kemmler, E. Goldobin, D. Koelle, and R. Kleiner
Physikalisches Institut—Experimentalphysik II, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

H. Kohlstedt
Center of Nanoelectronic Systems for Information Technology (CNI), Research Centre Jülich, D-52425 Jülich, Germany; Department of Material Science and Engineering and University of Berkeley, California 94720; and Department of Physics, University of Berkeley, California 94720

A. Buzdin
Institut Universitaire de France, 75005 Paris, France and Condensed Matter Theory Group, CPMOH, University Bordeaux 1, UMR 5798, CNRS, F-33405 Talence Cedex, France

(Received 12 April 2006; accepted 1 August 2006; published online 19 September 2006)

The authors fabricated high quality Nb/Al\(_2\)O\(_3\)/Ni\(_{0.6}\)Cu\(_{0.4}\)/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Depending on the thickness of the ferromagnetic Ni\(_{0.6}\)Cu\(_{0.4}\) layer and on the ambient temperature, the junctions were in the 0 or \(\pi \) ground state. All junctions have homogeneous interfaces showing almost perfect Fraunhofer patterns. The Al\(_2\)O\(_3\) tunnel barrier allows one to achieve rather low damping, which is desired for many experiments especially in the quantum domain. The McCumber parameter \(\beta \) increases exponentially with decreasing temperature and reaches \(\beta = 700 \) at \(T = 2.11 \) K. The critical current density in the \(\pi \) state was up to 5 A/cm\(^2\) at \(T = 2.11 \) K, resulting in a Josephson penetration depth \(\lambda \) as low as 160 \(\mu \)m. Experimentally determined junction parameters are well described by theory taking into account spin-flip scattering in the Ni\(_{0.6}\)Cu\(_{0.4}\) layer and different transparencies of the interfaces. © 2006 American Institute of Physics. [DOI: 10.1063/1.2356104]

The realization of solid state qubits attracts considerable interest. Josephson junctions (JJs) are used to realize charge,\(^1\) phase,\(^2\) or flux\(^3\) qubits. For the “quiet” flux qubit,\(^4\) which is self-biased and well decoupled from the environment, one needs to use high quality \(\pi \) JJs with high resistance (to avoid decoherence) and reasonably high critical current density \(j_c \) (to have the Josephson energy \(E_J \gg k_B T \) for junction sizes of few microns or below). High \(j_c \) is also required to keep the Josephson plasma frequency \(\omega_c \ll \sqrt{j_c} \), which plays the role of an attempt frequency in the quantum tunneling problem, on the level of a few gigahertz.

The concept of \(\pi \) JJs was introduced long ago,\(^5,6\) but only recently superconductor-ferromagnet-superconductor (SFS) \(\pi \) JJs were realized.\(^7,8\) Unfortunately SFS \(\pi \) JJs are highly overdamped and cannot be used for applications where low dissipation is required. The obvious way to decrease damping is to make a SFS-like tunnel junction, i.e., a superconductor-insulator-ferromagnet-superconductor (SIFS) junction. Due to the presence of the tunnel barrier the critical current \(I_c \) in SIFS is lower than in SFS, but both the resistance \(R \) (at \(I \approx I_c \)) and the \(I_c R \) product are much higher. Moreover, the values of \(I_c \) and \(R \) can be tuned by changing the thickness \(d_F \) of the insulator (tunnel barrier).

A set of SIFS JJs with different thicknesses \(d_F \) of the F-layer was recently fabricated and JJs with both 0 and \(\pi \) ground states were observed depending on \(d_F \).\(^9\) Although, in the \(\pi \) state the specific resistance of the barrier was high (\(\rho \approx 3 \) m\(\Omega \) cm\(^2\)), \(j_c \) was below 7 mA/cm\(^2\) at 1.5 K, resulting in an \(I_c R \) product below 20 \(\mu \)V, as can be estimated from the data in Ref. 9.

In this letter we report on fabrication and characterization of high quality Nb/Al\(_2\)O\(_3\)/Ni\(_{0.6}\)Cu\(_{0.4}\)/Nb \(\pi \) JJs with different \(d_F \) having as high as possible \(j_c \) and \(I_c R \) values. In the \(\pi \) state we reached \(j_c \) up to 5 A/cm\(^2\) at \(T = 2.11 \) K and maximum \(I_c R \) values \(\approx 400 \) \(\mu \)V. SIFS and reference superconductor-insulator-superconductor (SIS) JJs were fabricated \(\text{in situ} \) by magnetron sputtering and patterned using optical lithography and (reactive) dry etching.\(^10\) On thermally oxidized Si wafers we deposited 120 nm Nb and 5 nm Al. To form the Al\(_2\)O\(_3\) barrier (which should be as thin as possible, but without pinholes) we oxidized at 0.015 or at 50 mbarss to have \(j_c (1) = 4.0 \) kA/cm\(^2\) (wafer 1) and \(j_c (2) = 0.19 \) kA/cm\(^2\) (wafer 2) for reference SIS JJs. For reference SIS JJs on wafer 1 the \(I_c R \) product was 1.55 mV.

To control the properties of SIFS JJs the thickness and the roughness of the F-layer should be controlled on a sub-nanometer scale. To provide uniform growth of the F-layer, a 2 nm Cu interlayer was deposited between the I-layer and the F-layer. As the F-layer we used diluted Ni\(_{0.6}\)Cu\(_{0.4}\), followed by a 40 nm Nb cap layer. To produce JJs with different \(d_F \) in a single run, during sputtering of the F-layer, the substrate and sputter target were shifted about half the substrate length, producing a wedgelike F-layer with \(d_F \) from 1 to 15 nm across the 4 in. wafer. All other layers had uniform thicknesses. The SIFS junctions had a squared shape with an area of \(100 \times 100 \) \(\mu \)m\(^2\).

We have used diluted Ni\(_{1-x}\)Cu\(_x\) alloy rather than pure Ni to have suitable \(d_F \) (much larger than roughness) for the \(\pi \).
state. In very diluted alloy with $y \leq 0.53$ strong spin-flip scattering11 and Ni cluster formation are observed. To avoid this magnetic inhomogeneity we have used $y = 0.6$, as confirmed by Rutherford backscattering spectroscopy. The Curie temperature $T_C \approx 225$ K was determined by superconducting quantum interference device magnetometry and anisotropic Hall measurements on bare Ni$_{0.6}$Cu$_{0.4}$ films. Both T_C and resistivity $\rho_F(10$ K$) = 54 \, \mu \Omega \mathrm{cm}$ are in good agreement with the literature.14,15 The magnetization of such thin Ni$_{0.6}$Cu$_{0.4}$ films is in plane. Interpolation of the magnetic moment μ from published data17,16–18 yields $\mu = 0.15 \mu_B/$atom for our Ni$_{0.6}$Cu$_{0.4}$ alloy.

Following Ref. 19 one can derive that at $T \leq T_C$

$$I_c(d_F) = \frac{1}{\gamma_F} \exp \left(\frac{-d_F}{\xi_{1F}} \right) \exp \left(\frac{-d_F - d_F^\text{lead}}{\xi_{2F}} \right),$$

(1)

where $\xi_{1F}, \xi_{2F} = \xi_F / \sqrt{1 + 4\alpha^2 \pm \alpha}$ are the decay and oscillation lengths of order parameter,20 $\xi_F = \sqrt{4D / E_{\text{ex}}}$ is the decay/oscillation length without spin-flip scattering,19 E_{ex} is the exchange energy, $\alpha = 1 / (\tau_0 E_{\text{ex}})$, τ_0 is the inelastic magnetic scattering time,21 and γ_F is the transparency parameter of the SIF part treated like a single interface. d_F^lead is the magnetic dead layer thickness. Equation (1) is derived assuming that the interfaces are not spin active (cf. Ref. 22), short decay length $\xi_{1F} < d_F$, $\xi_{1F} < \xi_{2F}$, and FS interface transparency parameter $\gamma_{F1} = 0$ ($\gamma_{F1} \ll \gamma_{F2}$). In comparison with Ref. 23 Eq. (1) takes into account magnetic impurity scattering which enters via τ_0. Since ξ_{2F} weakly depends on temperature T, the 0–π crossover can be observed by changing T.

The spread in I_c among SIFS JJs with the same d_F is about 2%.10 The $I_c(d_F)$ dependence of our SIFS JJs is clearly nonmonotonic as shown in Fig. 1. We argue that the minimum of $I_c(d_F)$ at $d_F \approx 5.21$ nm corresponds to 0 to π crossover. To rule out the possibility of 0–π crossover at smaller d_F we have investigated $I_c(d_F)$ down to $d_F = 2$ nm and did not observe any decrease or oscillation of $I_c(d_F)$. In Fig. 1 we show only data for “low” I_c JJs ($L < 2 \lambda_D$) that we can treat as short JJs to fit experimental $I_c(d_F)$ using Eq. (1). Due to a finite dead magnetic layer the change of phase takes place in an effectively reduced F-layer thickness. By fitting $I_c(d_F)$ for wafer 1 using Eq. (1), we estimated $\xi_{F1} = 0.78$ nm, $\xi_{F2} = 1.35$ nm, and $d_F^\text{lead} = 3.09$ nm. As we see, the inelastic magnetic scattering is strong ($\xi_{F1} < \xi_{F2}$) and the decay length $\xi_{F1} \ll d_F$; thus Eq. (1) is applicable. Also, the found value of d_F^lead supports our claim that we observed 0 to π rather than 0 to π crossover. According to Eq. (1) the coupling changes from 0 to π at the crossover thickness $d_F = (\pi/2) \xi_{F2} + d_F^\text{lead} = 5.21$ nm, the shape of the $I_c(d_F)$ curve does not change with the thickness of the insulator, but the amplitude of $I_c(d_F)$ is proportional to the reciprocal transparency parameter γ_{F2}^{-1}. In the interval of d_F from 0 (for SIS) to 9 nm the value of j_c at 4.2 K changes over five orders of magnitude from 4 kA/cm2 to below 0.05 A/cm2 (wafer 1).

The maximum j_c in the π state is 3.8 A/cm2 (wafer 1) and $j_c(\pi) = 90$ mA/cm2 (wafer 2) at $T = 4.2$ K. This gives $\lambda_F \approx 190 \, \mu m$, which can be easily increased by increasing d_F. Further decrease of λ_F by lowering d_F is limited by the appearance of microshorts in the barrier.

For comparison, in 21 SFS JJs were fabricated using the weaker ferromagnet Ni$_{0.53}$Cu$_{0.47}$ ($T_C = 60$ K). Although the spin-flip scattering was also taken into account, the high interface transparencies ($\gamma_{F1} = 0.52$) lead to a different $I_c(d_F)$ dependence than Eq. (1) predicts. Also, the lower E_{ex} lead to larger $\xi_{F1} = 1.24$ nm and $\xi_{F2} = 3.73$ nm. The magnetic dead layer was 1.4 times larger than in our system.

Figure 1(b) shows the dependence of the McCumber parameter $\beta_c (d_F)$, which was estimated from the values of I_c and I_c (return current), at $T = 4.2$ K for wafer 1. The capacitance $C = 800$ pF, determined from the Fiske step spacing of $73 \, \mu V$, is nearly independent from d_F but depends on d_F. Near the 0–π crossover and for large d_F the value of I_c is very low and the junctions become overdamped ($\beta_c < 0.7$). For π JJs with d_F near the maxima of the $I_c(d_F)$ curve a hysteresis appears on the I-V characteristic.

The I-V characteristics and $I_c(H)$ patterns (voltage criterion of 5 μV) for a SIFS π JJ with highest I_c are shown in Fig. 2, c.f. the I-V characteristic of the SIS JJs shown in the inset. Theoretically, at lower temperature the quasiparticle current decreases and the gap appears at higher voltages. In experiment, due to heating effects at high bias currents, part of the sample became normal before we were able to reach the gap voltage. At $T \leq 2.61$ K the first zero field step at 149 μV is visible on the I-V characteristic.

The energy dependences of the density of states in Al, Cu, and NiCu are not exactly BCS-like and $I_c(T)$ for SIFS JJs should show a more linear behavior24 than originally found by Ambegaokar and Baratoff.25 Variation of T modifies ξ_{F1} and ξ_{F2} and can even change the ground state.7,11
Since E_{cs} of Ni$_{0.6}$Cu$_{0.4}$ is relatively large, a change of T affects our JJs much less than in previous work on the stronger diluted NiCu alloys. The $I(T)$ dependences for three JJs from wafer 1 are shown in Fig. 3(a). At $d_f=5.11$ nm the JJ is 0 coupled, but we attribute the nearly constant I_c below 3.5 K to the interplay between increasing Cooper pair density and decreasing oscillation length $\xi_F(T)$. The JJ with $d_f=5.20$ nm is 0 coupled at $T=4.2$ K, but changes coupling to π below 3.11 K. During the 0–π transition its critical current is not vanishing completely ($I_{\text{cmin}}=0.8 \mu$A) either due to roughness of the ferromagnet or a prominent sin(2ϕ) component in the current-phase relation, which can appear intrinsically or again due to roughness. At the crossover temperature $T_x=3.11$ K, $I_c(H)$ can still be traced through several minima, so the large scale roughness must be small. The $d_f=5.87$ nm JJ (also shown in Fig. 2) exhibits the highest critical current among π JJs ($j_c=5$ A/cm2 at 2.11 K). Up to now the corresponding $\lambda_J=160 \mu$m is the smallest achieved for SIFS JJs. Figure 3(b) shows $\beta_c(T)$ for the same JJs. $\beta_c(T)$ increases exponentially below 4 K for both 0 and π JJs, indicating very weak Cooper pair breaking in the F-layer for these temperatures. The β_c of the always overdamped JJ with $d_f=5.20$ nm was not estimated.

In summary, we have fabricated and investigated SIFS Josephson junctions with Ni$_{0.6}$Cu$_{0.4}$ tunnel barriers. The critical current I_c changes sign as a function of the F-layer thickness d_f in accordance with theory, exhibiting regions with 0 and π ground states. For d_f near the 0 to π crossover the ground state can be controlled by changing the temperature. Our SIFS π junctions show critical current densities j_c up to 5 A/cm2 at $T=2.11$ K and I_cR products up to 400 μV. The achieved π junction’s Josephson penetration depth λ_J as low as 160 μm at 2.11 K allows one to fabricate long Josephson 0–π junctions of reasonable size and study half integer flux quanta (semifluxons) that appear at the 0–π boundaries and have a size $\sim \lambda_J$. Reasonable λ_J and low damping in such 0–π junctions may lead to useful classical or quantum circuits based on semifluxons.

The authors thank B. Hermanns for help with fabrication and V. Ryazanov for fruitful discussions. This work is supported by ESF program PiShift and by the DFG Project Nos. GO-1106/1 and SFB/TR21.

Y. Nakamura, Y. A. Pushkin, and J. S. Tsai, Nature (London) 398, 786 (1999).
J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002).
J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, Science 285, 1036 (1999).
L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchère, and G. Blatter, Nature (London) 398, 679 (1999).
V. K. L. Bulaevskii and A. Sobyanin, JETP Lett. 25, 7 (1977).
A. Buzdin and M. Kupriyanov, JETP Lett. 53, 321 (1991).
V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V. Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86, 2427 (2001).
Y. Blum, A. Tsukernik, M. Karpovski, and A. Palevski, Phys. Rev. Lett. 89, 187004 (2002).
T. Kontos, M. Aprili, J. Lesueur, F. Genet, B. Stephanidis, and R. Bourisier, Phys. Rev. Lett. 89, 137007 (2002).
M. Weides, K. Tillmann, and H. Kohlstedt, Physica C 437-438, 349 (2005).
H. Sellier, C. Baraduc, F. Lefloch, and R. Calameczuk, Phys. Rev. B 68, 054531 (2003).
K. Levin and D. L. Mills, Phys. Rev. B 9, 2354 (1974).
R. W. Houghton, M. P. Sarachik, and J. S. Kouvel, Phys. Rev. Lett. 25, 238 (1970).
A. T. Hindmarch, C. H. Marrows, and B. J. Hickey, Phys. Rev. B 72, 100401 (2005).
J. C. Ondodo and B. R. Coles, J. Phys. F: Met. Phys. 7, 2393 (1977).
F. Brouers, A. V. Vedyayev, and M. Giorgino, Phys. Rev. B 7, 380 (1973).
V. V. Ryazanov, V. A. Oboznov, A. S. Prokofiev, V. Bolginov, and A. K. Feofanov, J. Low Temp. Phys. 136, 385 (2004).
A. Rusanov, R. Boogaard, M. Hesselberth, H. Seiler, and J. Aarts, Physica C 369, 300 (2002).
A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005a).
E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B 55, 15174 (1997).
V. A. Oboznov, V. V. Bo’l’ginov, A. K. Feofanov, V. V. Ryazanov, and A. I. Buzdin, Phys. Rev. Lett. 96, 197003 (2006).
A. Cottet and W. Belzig, Phys. Rev. B 72, 180503 (2005).
A. Buzdin and I. Baladie, Phys. Rev. B 67, 184519 (2003).
N. L. Rowell and H. J. J. Smith, Can. J. Phys. 54, 223 (1976).
K. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).
A. Buzdin, Phys. Rev. B 72, 100501 (2005).
M. Houzet, V. Vinokur, and F. Pistoletti, Phys. Rev. B 72, 220506 (2005).
R. G. Mints, I. Papiashvili, J. R. Kirtley, H. Hilgenkamp, G. Hammerl, and J. Mannhart, Phys. Rev. Lett. 89, 067004 (2002).
A. Buzdin and A. E. Koshelev, Phys. Rev. B 67, 220504 (2003).
J. R. Kirtley, K. A. Moler, and D. J. Scalapino, Phys. Rev. B 56, 886 (1997).
E. Goldberg, D. Koelle, and R. Kleiner, Phys. Rev. B 67, 224515 (2003).
H. Susanto, S. A. van Gils, T. P. P. Visser, Ariando, H.-J. H. Smilde, and H. Hilgenkamp, Phys. Rev. B 68, 104501 (2003).
N. Lazarides, Phys. Rev. B 69, 212501 (2004).
H. Susanto, E. Goldberg, D. Koelle, R. Kleiner, and S. A. van Gils, Phys. Rev. B 71, 174510 (2005).
T. Kato and M. Imada, J. Phys. Soc. Jpn. 66, 1445 (1997).
T. Koyama, M. Machida, M. Kato, and T. Ishida, Physica C 426-431, 1561 (2005).
E. Goldberg, K. Vogel, O. Crassier, R. Walser, W. P. Schleich, D. Koelle, and R. Kleiner, Phys. Rev. B 72, 054527 (2005).