Association network analysis identifies enzymatic components of gut microbiota that significantly differ between colorectal cancer patients and healthy controls

Dongmei Ai, Hongfei Pan, Xiaoxin Li, Min Wu, Li C Xia

1 Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing, China
2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
3 Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA

The human gut microbiota plays a major role in maintaining human health and was recently recognized as a promising target for disease prevention and treatment. Many diseases are traceable to microbiota dysbiosis, implicating altered gut microbial ecosystems, or, in many cases, disrupted microbial enzymes carrying out essential physiobiochemical reactions. Thus, the changes of essential microbial enzyme levels may predict human disorders. With the rapid development of high-throughput sequencing technologies, metagenomics analysis has emerged as an important method to explore the microbial communities in the human body, as well as their functionalities. In this study, we analyzed 156 gut metagenomics samples from patients with colorectal cancer (CRC) and adenoma, as well as that from healthy controls. We estimated the abundance of microbial enzymes using the HMP Unified Metabolic Analysis Network method (HUMAnN2) and identified the differentially abundant enzymes between CRCs and controls. We constructed enzymatic association networks using the extended local similarity analysis (ELSA) algorithm. We identified CRC-associated enzymic changes by analyzing the topological features of the enzymatic association networks, including the clustering coefficient, the betweenness centrality, and the closeness centrality of network nodes. The network topology of enzymatic association network exhibited difference between the healthy and the CRC environments. The ABC (ATP binding cassette) transporter and small subunit ribosomal protein S19 enzymes, had the highest clustering coefficient in the healthy enzymatic networks. In the contrast, the Adenosylhomocysteinase enzyme had the highest clustering coefficient in the CRC enzymatic networks. These enzymic and metabolic differences may serve as risk predictors for colorectal cancers and are worthy of further research.
Association network analysis identifies enzymatic components of gut microbiota that significantly differ between colorectal cancer patients and healthy controls

Dongmei Ai 1,2*, Hongfei Pan 2, Xiaoxin Li 2, Min Wu 2, Li C. Xia 3*

1 Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Xueyuan Road, Haidian District, Beijing, 100083, China
2 School of Mathematics and Physics, University of Science and Technology Beijing, Xueyuan Road, Haidian District, Beijing, 100083, China
3 Department of Medicine, Stanford University School of Medicine, 269 Campus Dr., Stanford, CA 94305, USA

Corresponding Author:
Dongmei Ai
No.30, Xueyuan Road, Haidian District, 100083, Beijing, China
aidongmei@ustb.edu.cn

Li C. Xia
269 Campus Dr., Stanford, CA 94305, USA
l.c.xia@stanford.edu
Abstract

The human gut microbiota plays a major role in maintaining human health and was recently recognized as a promising target for disease prevention and treatment. Many diseases are traceable to microbiota dysbiosis, implicating altered gut microbial ecosystems, or, in many cases, disrupted microbial enzymes carrying out essential physio-biochemical reactions. Thus, the changes of essential microbial enzyme levels may predict for human disorders. With the rapid development of high-throughput sequencing technologies, metagenomics analysis has emerged as an important method to explore the microbial communities in the human body, as well as their functionalities. In this study, we analyzed 156 gut metagenomics samples from patients with colorectal cancer (CRC) and adenoma, as well as that from healthy controls. We estimated the abundance of microbial enzymes using the HMP Unified Metabolic Analysis Network method (HUMAnN2) and identified the differentially abundant enzymes between CRCs and controls. We constructed enzymatic association networks using the extended local similarity analysis (ELSA) algorithm. We identified CRC-associated enzymic changes by analyzing the topological features of the enzymatic association networks, including the clustering coefficient, the betweenness centrality, and the closeness centrality of network nodes. The network topology of enzymatic association network exhibited difference between the healthy and the CRC environments. The ABC (ATP binding cassette) transporter and small subunit ribosomal protein S19 enzymes, had the highest clustering coefficient in the healthy enzymatic networks. In the contrast, the Adenosylhomocysteinase enzyme had the highest clustering coefficient in the CRC enzymatic networks. These enzymic and metabolic differences may serve as risk predictors for colorectal cancers and are worthy of further research.
Introduction

The human body harbors hundreds of trillions of microorganisms (Huttenhower et al. 2012; Turnbaugh et al. 2007). These microbial communities, comprising of bacteria, fungi, archaea, and viruses, are highly complex. These microbes colonize internal and external surfaces, such as mouth, esophagus, stomach, colon, respiratory tract, genitourinary tract and skin (Grice et al. 2009). In particular, the disruption of gut microbiota has been linked to a number of gastrointestinal diseases (Cotter et al. 2013). With the rapid development of high-throughput sequencing technologies, the metagenomics approach allowed us to extensively investigate the human microbiota in their naturally occurring state. These findings will ultimately lead to a better understanding of the gut microbiota in relation to the onset of gastrointestinal (GI) diseases (Sung et al. 2016). The colonic microbiota also might promote colorectal cancer by eliciting host responses (Cho & Blaser 2012).

Gut microbiota was known to play an active role in gut homeostasis for many years. The gut microbial composition and metabolic activity can modify the host’s susceptibility to diseases via diverse pathologies. For instance, the disruption of gut microbial communities was implicated with colorectal cancer (CRC) (Cipe et al. 2015). In particular, the alterations in the composition, distribution, and metabolism of colon microbiota were shown to disrupt normal homeostasis and lead to the onset of inflammation, dysplasia, and eventually cancer (Abreu & Peek Jr 2014; Nistal et al. 2015). More recently, many specific species whose abundance were positively associated with CRC have been identified. Those included *Streptococcus bovis*, *Helicobacter pylori*, *Bacteroides fragilis*, *Enterococcus faecalis*, *Clostridium septicum*, *Fusobacterium* spp., and *Escherichia coli* (Boulangé et al. 2016; Gagnière et al. 2016).

However, these earlier works have primarily analyzed the species abundance and diversity differences among communities to reveal the associations between gut microbiota and CRC (Halfvarson et al. 2017; Sobhani et al. 2011). It was only recently, researchers begun to study microbes at the functional level. The development of metabolomics has markedly facilitated such endeavors. This is made possible because the microbial abundance change will disrupt microbial enzymes that carry out essential physio-biochemical reactions. Such enzymes, as profiled by metabolomics, thus may predict for human disorders. For examples, in the metabolic disorders, such as IBD or obesity, the changes in gut microbiota cause a state of imbalance in metabolic activity and lead to the diseases (Chang et al. 2015; Tsuda et al. 2010; Weir et al. 2013).

Identifying such systematic enzymatic changes requires a high resolution analysis of
microbial metabolic networks. Two primary methods are available to construct enzymatic networks: the constraint-based method (Borenstein 2012) and the topological theory-based method. The constraint-based method requires establishing a series of ecological constraint conditions, which requires iterative approximation of unknown parameters in turn. In contrast, the topological theory-based method constructs the network directly by pulling the annotated metabolic and biochemical reaction pathways from databases and removing redundant information from these pathway data as necessary.

Alternatively, in this paper, we demonstrated an approach to construct association networks by computing the local association coefficients of enzymes involved in biochemical reactions and constructing the enzymatic networks using these statistically significant local associations as edges and nodes. Using such derived enzymatic networks, we studied the differentially presented microbial enzymes and metabolic activities using topological analysis. Applying our approach to a large CRC dataset, we identified that the relative abundance of the enzymatic components of *Bifidobacterium*, *Clostridium*, *Fusobacterium nucleatum*, *Porphyromonas gingivalis*, and *Eubacterium*, were significantly higher in the adenoma and colorectal cancer patients, as compared to the healthy controls.

Materials and methods

Cohort, fecal samples and metagenomic sequencing

The metagenomic dataset (Zeller et al. 2014) used in this study consists of 156 fecal samples of randomly selected volunteers recruited from the Henri Mondor Hospital (Creteil, France), including 61 healthy people, 42 patients with colorectal adenoma, and 53 colorectal cancer patients. The dataset were downloaded from the EBI database, where the detailed data description can be found: https://www.ebi.ac.uk/ena/data/view/PRJEB6070.

Estimation of enzyme abundance

Raw metagenomics data were translated to functional enzymes using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog database and the HMP Unified Metabolic Analysis Network 2 (HUMAnN2) software, which is a pipeline for efficient and accurate profiling of abundance in microbial pathways from a community based on metagenomic or metatranscriptomic sequencing data (Abubucker et al. 2012). We computed the difference of relative abundances for 2400 microbial enzymes involved in biochemical reactions between the CRC patients and the healthy controls. The results were standardized to eliminate potential bias in sequencing batches, and to remove any batch effects in enzyme abundances either specific to
HUMAnN2 uses an in-house script to normalize the abundance of enzymes. The script provides a method called ‘total sum scaling’ (TSS) normalization. The relative abundance is then calculated as follows:

\[Ra_i = \frac{a_i}{\sum_j a_j} \]

where \(Ra_i \) is the relative abundance of the i-th enzyme and \(a_i \) is its absolute abundance.

Enzymatic association network construction

We performed enzymatic association network construction using the Extended Local Similarity Analysis (ELSA) algorithm. ELSA was designed and developed by Xia et al. (2011) which uses a dynamic programming algorithm to effectively discover potential local and time-delayed associations of time-series and cross-sectional data. The dynamic programming algorithm can find all potential global, local and time-delayed associations between two series and identify the association with the highest similarity score as the maximum association between them. We used a false discovery rate Q-value cutoff of 0.05 to assess the statistical significance. The resulting enzymatic association networks representing statistically significant associations within the three environments were visualized by the Cytoscape (Shannon et al. 2003) software, in which nodes with blue borders in the three association networks represent enzymes enriched in the healthy controls, while yellow nodes represent enzymes enriched in colorectal cancer patients.

The ELSA algorithm has been extensively used in the association network analysis of microbial ecological data with a good performance (Weiss et al. 2016). Studies using ELSA have discovered symbiotic relationships among microbes and relationships between microbes and the environment that could not be identified by conventional correlation methods. For instance, Shade et al. found dynamic mixed associations between bacteria in lakes by using ELSA (Shade et al. 2010). Ki et al. examined the relationship between bacterial community structure and odor emissions during the degradation of soil and pig carcasses by using ELSA. This algorithm not only finds the associations between delayed data, but also effectively calculates the pairwise global associations between for multivariate series data (Ki et al. 2018).

Network topological analysis

Several topological measures were used in our network analysis, including the clustering...
coefficient and the betweenness and closeness centralities. The clustering coefficient is a
measure of the degree to which nodes in a graph tend to cluster together. The clustering
coefficient of the nodes represents their proximity in the network. An increased clustering
coefficient correlates with the higher tightness of the cluster involving the node and its
neighbors, hence, the node’s importance. This feature of clustering coefficient allows its use for
the identification of key enzymes. The clustering coefficient is defined as
\[C_v = \frac{2n}{k(k-1)}, \]
where \(n \) is the number of edges between all the \(k \) neighbors of node \(v \).

The betweenness centrality is a topological measure that refers to the number of times a node
acts as a bridge along the shortest path between two other nodes. As the betweenness centrality
of a node increases, the frequency with which the node acts as a “mediator” between other nodes
also increases, indicating the importance of the node. In a enzymatic association network, a high
betweenness centrality indicates that a node plays an important linking role and is likely an
important disease-related enzyme.

We also used the closeness centrality measure, which is the inverse of the distance from the
node to all other nodes in the network. The more important nodes in a network generally have a
higher closeness centrality, because they tend to locate close to the center of the network from
the geometrical perspective. We identified the shortest paths within the network using the
Kruskal’s algorithm as implemented in the R package \(\text{plyr} \).

Statistical analysis

We tested for the statistically significant abundance difference of enzymes associated with
biochemical reactions of gut microbiota between the healthy controls, and adenoma or colorectal
cancer patients by the two-tailed Wilcoxon rank-sum test.
Results and Discussion

Analysis of disease-associated enzymes

We got 157 differentially abundant enzymes among healthy control, adenoma and CRC patients. We selected 13 enzymes with differentially node degree among healthy control, adenoma and CRC patients association network. In Figure 1, we identified 13 enzymes showing statistically significant changes in abundance levels. We conducted a detailed analysis of differential enzymes (IDs and names listed in Table 1) and associated microorganisms to better understand the relationships between microbial metabolic functions and human disease. The enzymes K02003 (ABC transport system ATP-binding protein, P= 5.22E-04), K06147 (ATP-binding cassette, subfamily B, bacterial, P= 9.80E-05), K02025(Multiple sugar transport system permease protein, P= 1.74E-06), K02965 (Small subunit ribosomal protein S19, P= 1.17E-04), K02470(DNA gyrase subunit B,P= 3.62E-04), K01624(Fructose-bisphosphate aldolase, P= 2.90E-04), K02878 (Large subunit ribosomal protein L16, P= 3.45E-04), K04043(Molecular chaperone DnaK, P= 4.66E-03), K09157(Uncharacterized protein, P= 1.46E-05), K01854(UDP-galactopyranose mutase, P= 4.31E-06), K03091(RNA polymerase sporulation-specific sigma factor, P= 2.10E-03) were all significantly higher in healthy controls. The enzymes K01667(Tryptophanase, P= 4.57E-04) and K01251(Adenosylhomocysteinase, P= 2.37E-03) were all significantly higher in CRC patients. These difference trends were also observed between adenoma and CRC patients, however, with less significant P-values, suggesting that though adenoma is an intermediary stage in the CRC development, the enzymatic levels observed in adenoma patients resemble more the healthy controls’ as compared to that of the CRC patients.

K02003 is the ABC (ATP binding cassette) transporter, and this protein showed a higher relative abundance in the healthy environment in comparison to either the adenoma or the colorectal environment. As one of the largest metabolic transport systems in humans, the ABC (ATP binding cassette) transporter system mainly transfers nutrients, biosynthetic precursors, trace metals, and vitamins, but it also transports lipids, drugs, and primary and secondary metabolites. It plays a major role in biosynthetic pathways. It was noted that low ATP-binding cassette protein subfamily (ABCB1,P-glycoprotein) protein levels may promote colorectal carcinogenesis (Andersen et al. 2013). ABCB1 protein levels were also found to be lower in CRC tissue as compared to well-differentiated tissue (De Iudicibus et al. 2008).

In another example, K01854 (UDP-galactopyranose mutase (UGM), an enzyme that
catalyzes chemical reactions) had a higher abundance in healthy samples compared to the other
two groups (Figure 1). This enzyme is specifically involved in galactose metabolism, as well as
amino sugar and nucleotide sugar metabolism, and it plays a major role in the production of
cellular energy and the modification of proteins and glycolipids. In an early study, Petry et al.
indicated the importance of galactose metabolism in humans. Galactose can be converted into
energy. UGM is one of the main enzymes involved in galactose metabolism. Galactose
metabolism is crucial for the health of both neonatal development and adults. Disruption of the
production of this enzyme will affect galactose metabolism and even cause transferase-
deficiency galactosemia in severe cases (Petry & Reichardt 1998). Brown et al. have shown the
presence of galactose metabolism disorders in colorectal cancer patients. Based on our metabolic
association network, we have shown that the abundance of K01854 is lower in the colorectal
cancer patients than the healthy controls, in agreement with previous findings (Brown et al.
2016).

We also found that UDP-galactopyranose mutase, a main enzyme involved in galactose
metabolism, was more abundant in healthy people. The result again indicated that the reduced
galactose metabolism was associated with the development of colorectal cancer. The main
enzymatic active genera of galactose metabolism are Bacteroides spp. and Bifidobacterium spp..
The Bacteroides spp. participates in polysaccharide degradation and the Bifidobacterium spp.
participates in galactose metabolism in the gut. Thus, both of these genera may exert protective
effects against developing colorectal cancer.

There are enzymes had significantly higher abundances in cancer patients. The most
prominent enzymes of the kind were K01251 (adenosylhomocysteinase) and K01667
(tryptophanase) (Figure 1). Therefore, the microbial species producing adenosylhomocysteinase,
an enzyme involved in tryptophan metabolism, may facilitate tumor progression as it presented a
significantly higher abundance in cancer patients. By using gas chromatography, Kim et al.
found adenosylhomocysteinase to be a protein marker for colorectal cancer (Kim et al. 2009; Yin
et al. 2013). Interestingly, our enzymatic association network also showed an enriched
abundance of K01667 (tryptophanase) in colorectal cancer samples. Tryptophanase is a basic
amino acid, and tryptophanase metabolism can help cancer escape immune surveillance.
Indoleamine 2,3-dioxygenase 1 (IDO1) is a tryptophan-catabolizing enzyme and the main
enzyme expressed in malignant inflamed gut. In addition, clinical data have shown that
tryptophan metabolism promotes tumor progression (Santhanam et al. 2016).
Topological attributes of enzymatic association networks

In Figure S1, we showed the global enzymatic association networks we constructed from the ELSA analysis of the enzymic abundance values. Meanwhile, we exhibited the enzymatic network topological attributes of thirteen enzymes in Table 2, including the clustering coefficient, and the closeness and betweenness centralities. As we can see, in the order from healthy, to adenoma and to colorectal cancer samples, there is a decreasing trend of node degree among the enzymes enriched in healthy controls (nodes with blue circles). Here, the degree of a node refers to the number of neighboring nodes that the node has. Such decreasing trend suggested that these enzymes were highly cooperating in the metabolic processes in health controls (Figure S1A), while the level of cooperation was reduced in adenoma (Figure S1B) and further reduced to minimum in the colorectal cancer environment (Figure S1C). Notably, a similar decreasing trend was observed in the clustering coefficient (Table 2) of healthy control enriched enzymes, which suggested a gradual loss of importance of these healthy enzymes in a pathogenic CRC gut microbial environment.

The enzyme K02003, an ABC (ATP binding cassette) transporter, had the highest clustering coefficients in the healthy enzymatic network. This ABC transporter was also identified as significantly more abundant in healthy samples by abundance level (see Figure 1). Both results consistently suggested its status as a signature enzyme species for the healthy gut microbial environment. Similarly, the clustering coefficient of enzyme K02965 (small subunit ribosomal protein S19) was one in the healthy network; however, the coefficient was zero in the colorectal cancer network, also suggesting that the enzyme has an important biochemical role in the healthy people, which was no longer found in cancer patients.

In the contrast, for the enzymes enriched in the colorectal cancer patients, they showed an increasing connectivity from healthy, to adenoma and to colorectal cancer enzymatic networks. Several such enzymes were uniquely presented in the CRC network. For instance, the K01251 enzyme (Adenosylhomocysteinase), which is a highly connected node in the CRC and adenoma network, however, did not show up in the healthy network at all (Figure 1), suggesting its functional role in the early stage of tumorigenesis. We also found that the betweenness centrality of K01251 was higher in the colorectal cancer environment, and zero in the healthy controls (see Table 2). These results suggest that K01251 may play a negative role in intestinal flora metabolism causing its enrichment in the colorectal cancer patients.
Conclusion

We analyzed a large human gut metagenomics dataset by using the HUMAnN2 tool to estimate the relative abundances of microbially produced enzymes in the healthy control, the adenoma and the colorectal cancer patient samples, respectively. We identified differentially abundant enzymes among these healthy, adenoma, and colorectal cancer patient groups. We constructed enzymatic association networks representing the healthy, adenoma, and colorectal cancer microbial environments using the ELSA algorithm, and analyzed the topological attributes of the resulting networks.

The new enzymatic network analysis approach we took in this study addressed the issue in previous studies that the enzymatic association networks were constructed only for individual metabolic pathways involving a limited number of microorganisms. We were able to globally integrated thousands of enzymes and hundreds of metabolic substrates carrying out biochemical reactions. These microbial enzymatic networks represent the set of essential relationships between enzymes of microbial origin. These relationships were indicators of underlying biochemical reactions and production of metabolites. Among the methods available to study such relationships between microbes and metabolites, only this systematic network-based study can reveal these relationships between microbial communities and their host in high resolution.

The innovative point of our network construction is to use an extensively tested and validated metric – local similarity score for building edges in the network. We know various noises and biases are associated with large-scale network construction, which incur challenges in subsequent topological analysis. And many constructed enzymatic networks are not specific simply because of the presence of irrelevant metabolites. The use of an accurate and robust association metrics helped us in truthfully representing these metabolic interactions.

Moreover, the topological attributes of the enzymatic network can carry important information of underlying dynamics between the enzymes and the tumorigenesis process. For example, the clustering coefficient is a positive indicator of an enzyme’s cooperativity with other enzymes. By systematically constructing the networks using the ELSA algorithm and data-mining in node degree, clustering coefficient, betweenness and closeness centralities of the enzymatic network under different tutorial stages, we were able to identify signature enzymic species as well as the local shift in network structure of cooperating enzymes as potential cancer
risk markers, which merit further research.

Acknowledgements

Dongmei Ai thanks Professor Fengzhu Sun at the University of Southern California. Li.C.Xia thanks Dr. Nancy Zhang at the University of Pennsylvania and Dr. Hanlee Ji at Stanford University for their support and helpful discussions.

References

Abreu MT, and Peek Jr RM. 2014. Gastrointestinal malignancy and the microbiome. Gastroenterology 146:1534-1546. e1533.

Abubucker S, Segata N, Goll J, Schubert AM, Iizard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, and Henrissat B. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS computational biology 8:e1002358.

Andersen V, Vogel U, Godiksen S, Frenzel FB, Sæbo M, Hamfjord J, Kure E, and Vogel LK. 2013. Low ABCB1 gene expression is an early event in colorectal carcinogenesis. PLoS one 8:e72119.

Borenstein E. 2012. Computational systems biology and in silico modeling of the human microbiome. Briefings in bioinformatics 13:769-780.

Boulangé CL, Neves AL, Chilloux J, Nicholson JK, and Dumas M-E. 2016. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome medicine 8:42.

Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, and Ryan EP. 2016. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer & metabolism 4:11.

Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, and van der Windt GJ. 2015. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229-1241.

Cho I, and Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nature Reviews Genetics 13:260.

Cipe G, Idiz UO, Firat D, and Bektasoglu H. 2015. Relationship between intestinal microbiota and colorectal cancer. World J Gastrointest Oncol 7:233-240.

Cotter PD, Ross RP, and Hill C. 2013. Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology 11:95.

De Iudicibus S, De Pellegrin A, Stocco G, Bartoli F, Bussani R, and Decorti G. 2008. ABCB1 gene polymorphisms and expression of P-glycoprotein and long-term prognosis in colorectal cancer. Anticancer research 28:3921-3928.

Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer M-A, Pezet D, and Bonnet M. 2016. Gut microbiota imbalance and colorectal cancer. World journal of gastroenterology 22:501.

Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW,
Murray PR, and Green ED. 2009. Topographical and temporal diversity of the human skin microbiome. science 324:1190-1192.

Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, D'Amato M, Bonfiglio F, McDonald D, and Gonzalez A. 2017. Dynamics of the human gut microbiome in inflammatory bowel disease. Nature microbiology 2:17004.

Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, and Fulton RS. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207.

Ki B-M, Ryu HW, and Cho K-S. 2018. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition. Journal of Environmental Science and Health, Part A:1-10.

Kim H-J, Kang HJ, Lee H, Lee S-T, Yu M-H, Kim H, and Lee C. 2009. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. Journal of proteome research 8:1368-1379.

Nistal E, Fernández-Fernández N, Vivas S, and Olcoz JL. 2015. Factors determining colorectal cancer: the role of the intestinal microbiota. Frontiers in oncology 5:220.

Petry KG, and Reichardt JK. 1998. The fundamental importance of human galactose metabolism: lessons from genetics and biochemistry. Trends in Genetics 14:98-102.

Santhanam S, Alvarado DM, and Ciorba MA. 2016. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Translational Research 167:67-79.

Shade A, Chiu CY, and McMahon K. 2010. Differential bacterial dynamics promote emergent community robustness to lake mixing: an epilimnion to hypolimnion transplant experiment. Environmental microbiology 12:455-466.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, and Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13:2498-2504.

Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Van Nhieu JT, and Furet JP. 2011. Microbial dysbiosis in colorectal cancer (CRC) patients. PloS one 6:e16393.

Sung J, Hale V, Merkel AC, Kim P-J, and Chia N. 2016. Metabolic modeling with Big Data and the gut microbiome. Applied & translational genomics 10:10-15.

Tsuda H, Ochiai K, Suzuki N, and Otsuka K. 2010. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells. Journal of periodontal research 45:626-634.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, and Gordon JL. 2007. The human microbiome project. nature 449:804.

Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, and Ryan EP. 2013. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PloS one 8:e70803.

Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, Xia LC, Xu ZZ, Ursell L,
and Alm EJ. 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. The ISME journal 10:1669.
Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, Fuhrman JA, and Sun F. 2011. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC systems biology: BioMed Central. p S15.
Yin H-R, Zhang L, Xie L-Q, Huang L-Y, Xu Y, Cai S-J, Yang P-Y, and Lu H-J. 2013. Hyperplex-MRM: a hybrid multiple reaction monitoring method using mTRAQ/iTRAQ labeling for multiplex absolute quantification of human colorectal cancer biomarker. Journal of proteome research 12:3912-3919.
Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Böhm J, Brunetti F, and Habermann N. 2014. Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular systems biology 10:766.
Figure 1

Enzymes with significant differences of relative abundance in healthy people, adenoma patients, and colorectal cancer patients.

Green bar is the relative abundance of enzymes of healthy people. Orange bar is the relative abundance of enzymes of adenoma patients. Red bar is the relative abundance of enzymes of colorectal cancer patients. *** represent p<0.001, ** represent p<0.01, * represent p<0.05.
Table 1 (on next page)

Enzyme annotations
ID	Name of Enzyme
K02003	ABC transport system ATP-binding protein
K06147	ATP-binding cassette, subfamily B, bacterial
K02025	Multiple sugar transport system permease protein
K02965	Small subunit ribosomal protein S19
K02470	DNA gyrase subunit B
K01624	Fructose-bisphosphate aldolase
K02878	Large subunit ribosomal protein L16
K04043	Molecular chaperone DnaK
K09157	Uncharacterized protein
K01854	UDP-galactopyranose mutase
K03091	RNA polymerase sporulation-specific sigma factor
K01667	Tryptophanase
K01251	Adenosylhomocysteinase
Table 2 (on next page)

Topological attributes of 13 nodes of metabolic association networks in the healthy, adenoma, and colorectal cancer environments

The data range in the table is between [0,1].
ID	Clustering Coefficient	Closeness Centrality	Betweenness Centrality
	Healthy	Adenoma of Gut	CRC
	Healthy	Adenoma of Gut	CRC
	Healthy	Adenoma of Gut	CRC
K09157	7.42E-01	6.70E-01	4.72E-01
	5.66E-01	4.62E-01	4.14E-01
	8.76E-03	4.58E-03	4.62E-03
K06147	7.79E-01	7.17E-01	5.49E-01
	6.09E-01	6.10E-01	5.03E-01
	3.75E-03	5.71E-03	8.28E-03
K04043	7.81E-01	7.33E-01	5.00E-01
	5.72E-01	5.12E-01	4.17E-01
	3.98E-03	9.93E-03	1.73E-03
K03091	5.85E-01	6.65E-01	7.20E-01
	4.97E-01	5.31E-01	4.95E-01
	4.32E-03	3.07E-03	6.63E-03
K02965	1.00E+00	7.56E-01	0.00E+00
	4.49E-01	4.38E-01	3.00E-01
	0.00E+00	7.65E-05	0.00E+00
K02878	9.62E-01	6.98E-01	0.00E+00
	4.61E-01	5.30E-01	3.63E-01
	9.23E-06	2.89E-03	2.53E-04
K02470	7.31E-01	7.18E-01	6.43E-01
	5.97E-01	5.35E-01	4.70E-01
	8.81E-03	3.79E-03	3.20E-03
K02025	8.17E-01	6.12E-01	4.83E-01
	6.06E-01	6.31E-01	5.47E-01
	4.36E-03	1.03E-02	1.27E-02
K02003	8.81E-01	7.67E-01	8.02E-01
	5.37E-01	5.67E-01	4.52E-01
	1.20E-03	3.68E-03	7.40E-04
K01854	8.76E-01	8.07E-01	6.19E-01
	5.31E-01	5.59E-01	4.45E-01
	2.72E-03	1.65E-03	1.84E-03
K01667	7.33E-01	8.67E-01	5.16E-01
	4.72E-01	3.65E-01	4.06E-01
	2.82E-04	5.77E-05	3.82E-03
K01624	9.82E-01	7.93E-01	7.33E-01
	5.02E-01	5.15E-01	3.85E-01
	2.55E-05	1.82E-03	7.60E-04
K01251	0.00E+00	0.00E+00	5.90E-01
	0.00E+00	4.38E-01	4.03E-01
	0.00E+00	3.69E-04	2.32E-03