Temperature hysteresis in bilayer FeRh/PZT structure

Ivan Starkov¹,², Abdulkarim Amirov³,⁴, Viacheslav Nikulin³,
Konstantin Starkov², Alexander Starkov²

¹St. Petersburg Electrotechnical University, Prof. Popova st. 5, 197376 St. Petersburg, Russia
²ITMO University, Kronversky pr. 49, 197101 St. Petersburg, Russia
³Immanuel Kant Baltic Federal University, A. Nevsky st. 14, 236041 Kaliningrad, Russia
⁴Daghestan Scientific Center, Russian Academy of Sciences, Yagarskogo st. 94, 367015 Makhachkala, Russia
E-mail: ferroelectrics@ya.ru

Abstract. We investigate temperature hysteresis of magnetization in a two-layer composite structure composed of magnetocaloric and electrocaloric materials. The proposed model describes the simultaneous application of electric and magnetic fields. Such an approach allows analysing features of multicaloric effect in bilayer FeRh/PZT structure. To verify the correctness of the developed model, the theoretical results are compared with the experimental data for the multicaloric effect in the FeRh-PZT structure.

1. Introduction

In recent years, multiferroics are considered as perspective materials for solid-state coolers, due to the coexisting of magnetocaloric, electrocaloric and elastocaloric effects. Multiferroics with two or more calorific effects are called multicalories and observing in them calorific effect is named multicaloric effect (µCE) [1, 2]. With a direct µCE, a change in entropy or temperature occurs with a simultaneous change in the electric, magnetic or elastic field. When the temperature changes, the crystal lattice deforms, which leads to the appearance of an electric and magnetic field, as well as to the appearance of elastic stresses. This effect is called the inverse µCE. For natural materials, these effects are very small. An increase in µCE is possible in multiferroics with strong pairwise interaction of the fields. The electric and elastic fields (the piezoelectric effect) interact most strongly, and the electric and magnetic fields interact most weakly (the magnetoelectric effect). Since the magnetoelectric susceptibility α characterizing the magnetoelectric effect is small, composite materials are used to increase it. Laminate composites are the simplest materials to produce, for which a substantial increase in α is possible. For example, the value of α is 1.6 · 10⁻⁵ sm⁻¹ for a two-layered structure of Fe₅₀ Rh₅₀ and BaTiO₃ layers [3]. This is five orders of magnitude more than in the best natural materials. Thus, of undoubted interest is the study of µCE in a bilayer composite composed of magnetocaloric and electrocaloric materials. Caloric effects are noticeable near phase transitions, where elasticity plays an important role, and all three of the above fields interact in such system. The main goal of this research is to study the temperature hysteresis of magnetization as a crucial feature of µCE within the Landau model. For the model demonstration and validation, we used a...
composite consisting of magnetic Fe_{48}Rh_{52} (FeRh) and piezoelectric PbZr_{0.53}Ti_{0.47}O_{3} (PZT) layers.

2. Magnetic, electric, and elastic fields in a thin bilayer plate

Let us consider a bilayer plate depicted in figure 1. The thickness of the piezoelectric layer is denoted by h^{e} and the thickness of the magnetic layer by h^{m}. For the total thickness and the relative thicknesses we introduce the notations $h = h^{e} + h^{m}$ and $\vartheta^{e} = h^{e}/h$, $\vartheta^{m} = h^{m}/h$, respectively. The plate is assumed to be thin: its width of A and the length of B is much greater than h. Hereinafter, we designate by a subscript e all the coefficients related to the piezoelectric layer and to the magnetic one by m. In turn, we employ the subscripts e and m for variables. In some cases, we omit these indices in order not to duplicate the same type of equality. To describe the structure properties in the Cartesian coordinate system $(x_{1}, x_{2}, x_{3}) \equiv (x, y, z)$, we use the electric and magnetic field strengths E and H, polarization P and magnetization M, displacement vector u, strain $u_{ij} = (u_{i,j} + u_{j,i})/2$ and stress σ_{ij} tensors.

Note that the electric and magnetic fields directed across the layers along the x_{3} axis (see, figure 1). Therefore, we may assume that the quantities E, H, P, M are scalars. The electric field E_{e} can be considered known and defined as $E_{e} = U/h^{e}$ for the electrodes connected only to the piezoelectric layer. Here U is the applied potential difference. If the electrodes are connected to the edges of the plate, then the arising electric field is much less than this value. This decrease is explained by the fact that in a layered system the electric field is inversely proportional to the dielectric constant of the layer, and the dielectric constant of piezoelectrics as a rule is large.

The free energies of the layers F^{e} and F^{m} are written as [4]

$$F^{e} = \chi^{ee}P^{2} / 2 - PE + \chi^{me}M^{2} / 2 - MH + c_{ijkl}^{e}u_{ij}u_{kl} - e_{3jk}u_{jk}E, \tag{1}$$

$$F^{m} = \chi^{em}P^{2} / 2 - PE + aM^{2} / 2 + bM^{4} / 4 + cM^{6} / 6 - MH + c_{ijkl}^{m}u_{ij}u_{kl} - q_{ij33}u_{ij}M^{2}.$$

Here $\{a, b, c\}$ are the Landau coefficients, χ^{me} is the magnetic susceptibility of the piezoelectric layer, χ^{ee} and χ^{em} are the electric susceptibility of the piezoelectric and magnetic layers, c_{ijkl}^{e} is...
the elastic moduli, q_{j33} are the magnetostriction coefficients, e_{3jk} are the piezoelectric constants.

In the last two sets of coefficients, subscript 3 indicates that polarization and magnetization have only one component, i.e. the third. When writing out the free energy (1), the Einstein convention was used: summation is performed over repeated indices. All coefficients are assumed to be independent of temperature T except for the coefficient a for which a linear dependence on temperature is assumed, $a = a_0(T - T_m)$. Here T_m is the phase transition temperature for the magnetic layer and a_0 is some constant.

As the phase transition temperature for PZT lies substantially above room temperature, a linear relationship between the electric field and polarization is used to describe the piezoelectric layer. For the magnetic layer, the temperature T_m is 315 K, i.e. close to the room temperature and the Landau model can be applied to describe this layer. Varying the free energies F^e and F^m leads to a system of equations

$$
\begin{cases}
P = \chi^{ee}E_e + e_{31}(u^{e}_{11} + u^{e}_{22}) + e_{33}u_{33}, \\
\sigma_{11}^{e} = c_{11}^{e}u_{11}^{e} + c_{12}^{e}u_{22}^{e} + c_{13}^{e}u_{33}^{e} - e_{31}E, \\
\sigma_{22}^{e} = c_{12}^{e}u_{11}^{e} + c_{11}^{e}u_{22}^{e} + c_{13}^{e}u_{33}^{e} - e_{31}E, \\
\sigma_{33}^{e} = c_{13}^{e}(u_{11}^{e} + u_{22}^{e}) + e_{33}^{e}u_{33} - e_{33}E, \\
H^m = a^mM + b^mM^3 + c^mM^5 - 2(q_{31}(u_{11} + u_{22}) + q_{33}u_{33})M, \\
\sigma_{11}^{m} = c_{11}^{m}u_{11}^{m} + c_{12}^{m}u_{22}^{m} + c_{13}^{m}u_{33}^{m} - q_{31}M^2, \\
\sigma_{22}^{m} = c_{12}^{m}u_{11}^{m} + c_{11}^{m}u_{22}^{m} + c_{13}^{m}u_{33}^{m} - q_{31}M^2, \\
\sigma_{33}^{m} = c_{13}^{m}(u_{11}^{m} + u_{22}^{m}) + e_{33}^{m}u_{33}^{m} - q_{33}M^2.
\end{cases}
$$

(2)

When writing the system of equations (2), the Voigt notation [6] is used for convenience. The plate is considered free, i.e. the components of the stress tensor must go to 0 at plate borders

$$
\sigma_{11}|x=\pm A/2 = 0, \quad \sigma_{22}|y=\pm B/2 = 0, \\
\int_{-h}^{h_m} \sigma_{11} dz = 0, \quad \int_{-h}^{h_m} \sigma_{22} dz = 0.
$$

(3)

The components of the displacement vector u_i and the stress tensor σ_{ij} must be continuous at the interface between the layers. The last boundary conditions in (3) mean that the total force acting on the plate [6] is zero. Since the plate is thin, the Love-Kirchhoff theory [6] is applicable to its description. In accordance with this theory, we look for the solution of the elasticity problem (2),(3) in the form of series in powers of z and restrict ourselves only to the main terms

$$
u_1(x, y, z) = u(x, y), \\
u_2(x, y, z) = v(x, y), \\
u_3(x, y, z) = zw(x, y).
$$

(4)

The functions $u(x, y)$ and $v(x, y)$ are the same for both layers due to the continuity of the displacements. For the function $w(x, y)$, the first condition in (3) implies the equality

$$
w = \frac{e_{33}}{c_{33}}E - \frac{c_{13}}{c_{33}}(u_{11} + u_{22}),
$$

(5)

that is, the values of $w(x, y)$ in the piezoelectric and magnetic layer may differ from each other. From the last conditions in (3), we obtain a system of linear equations for determining the unknowns u_{11} and u_{22}, from which we express the components of the strain tensor through an electric and magnetic field
\[u_{11} + u_{22} = \alpha E_e + \beta M_m^2, \]
\[u_{33} = \frac{c_{33} - \alpha c_{13}}{c_{33}} E_e - \frac{c_{13}}{c_{33}} \beta M_m^2, \] \(\text{(6)} \)

where the following notations are introduced
\[\alpha = \frac{E_{13} h^e}{(C_{11} + C_{12}) h^e + (C_{11} + C_{12}) h^m}, \]
\[\beta = \frac{Q_{13} h^m}{(C_{11} + C_{12}) h^e + (C_{11} + C_{12}) h^m}, \]
\[C_{11} = c_{11} - \frac{c_{13}^2}{c_{11}}, \quad C_{12} = c_{11} - \frac{c_{13}}{c_{11}}, \]
\[Q_{13} = q_{13} - \frac{c_{13} q_{33}}{c_{11}}, \quad E_{13} = e_{13} - \frac{c_{13} e_{33}}{c_{11}}. \] \(\text{(7)} \)

The relations (6) include the known values of the electric field in the piezoelectric \(E_e \) and the magnetic field in the magnetic material \(M_m \). As a result of elimination of the elastic field, we obtain the final equation for determining the magnetization
\[\frac{B}{\mu_0} = \hat{a} M + \hat{b} M^3 + c^m M^5, \] \(\text{(8)} \)

where the constants \(k \) and \(b_0 \) have the form
\[k = -2 \left(q_{31} \alpha + q_{33} \frac{c_{33} - \alpha c_{13}}{c_{33}} \right), \]
\[b_0 = -2 \left(q_{31} - q_{33} \frac{c_{13}}{c_{33}} \beta \right). \] \(\text{(9)} \)

Thus, the presence of the piezoelectric layer simply leads to a change in the Landau coefficients in the equation for determining the magnetization.

3. Results and discussion
A comparison was made with the results of the experiment [7] to check the dependence (8). \(\text{PbZr}_{0.53}\text{Ti}_{0.47}\text{O}_3 \) was chosen as the piezoelectric and \(\text{Fe}_{48}\text{Rh}_{52} \) as the magnetic material. An alternating magnetic field with a frequency of 0.4 Hz and a magnitude \(B=0.62 \text{T} \) was applied to the sample. Each layer had a thickness of 0.2 mm. The potential difference of the electric field was 25 V. Figure 2 shows the results of measuring the temperature hysteresis of the magnetization during heating and cooling regimes for the specified composite and the calculation using the formula (8). It is important to emphasize that for a complete description of the hysteresis the Landau-Khalatnikov differential equation should be used [8]
\[\frac{\partial M}{\partial T} = \frac{B}{\mu_0} - \hat{a} M - \hat{b} M^3 - c^m M^5, \] \(\text{(10)} \)

where the coefficient \(\tau \) characterizes the relaxation temperature of the magnetic layer. When calculating, the Landau coefficients were chosen from the best fit, by the least-squares criterion, of the experimental and theoretical curves and turned out to be \(\hat{a} = -739.49, \hat{b} = -0.0111 \text{ m/A}, \)
Figure 2. Comparison of the experimental temperature dependence of the magnetization of the FeRh/PZT composite at a magnetic field $B=T$ in the “heating-cooling” cycle with the theoretical curve (8).

$c = 0.103 \cdot 10^{-5} \text{m}^2/\text{A}^2$. As seen from the figure 2, both curves coincide well at temperatures from 300 to 325 K. Outside this temperature range, the experimental curves tends to the horizontal asymptote, and the theoretical one is unlimited. This means that the Landau model is unsuitable for large deviations from the temperature of the phase transition and it is necessary to use the Weiss model, which explains the presence of the saturation line of magnetization [9].

From the results obtained, it follows that for thin plates the magnetization does not depend on the shape of the plate, but is determined only by the thickness of its layers. This conclusion is valid for free samples. If the plate is fixed along the edge, then the method proposed in the work also allows one to find an equation for magnetization. However, the coefficients in new equation will include a dependence on the plate size. Also, the derived formula (8) allows finding the optimal ratio of plate thicknesses at which the magnetostrictive coefficient k reaches the maximum value. One of the important results of the study is explicit expression for k. The magnetostrictive effect in the examined composite turned out to be linear in both the electric and magnetic fields. A change in the electric field, as follows from the equation (8), leads to a change in the temperature of the phase transition T_m by the value of kE_e. This fact is experimentally confirmed: the shift of the magnetization curve is 3-5 K [7]. Note that if we take an BaTiO$_3$-type electrostriction material as the second layer, the change in T_m will be quadratic in the electric field. If both piezoelectric and electrostrictive effects are taken into account, two magnetostrictive coefficients appear [7].

Thus, the electric field does not lead to an enhancement of μCE in bilayer FeRh/PZT structure, but only allows it to be controlled. In contrast, the magnitude of electrocaloric effect in the PZT single layer can reach a significant value [10]. That is the enhancement technique reported in [11] is not relevant for μCE in the case under study. It is well known that the synergistic interaction of various fields may lead to an increase in the phenomenon size, and μCE can exceed individual components. However, the simultaneous use of two or more caloric effects allows raising the thermodynamic efficiency in a certain temperature range and under special conditions [12]. Such a finding can be used in the thermodynamic cycles of solid-state coolers. The main goal of the subsequent studies is to achieve such a ratio of the temperature of the phase transitions of the magnetic and electric phase by varying the additions to the multiferroic in such a way that mutual reinforcement of the μCE main component terms (synergistic effect)
occurs. Also, to increase μ_{CE}, a resonant amplification of the magnetoelectric coefficient k can be employed during the excitation of elastic oscillations [13].

Acknowledgments
This work was supported by the Russian Science Foundation (project no. 18-19-00512). The experimental data used for modeling were obtained with the support of the Russian Foundation for Basic Research (project no. 18-32-01036 mol_a) and of the 5 top 100 Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University.

References
[1] Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[2] Starkov I A and Starkov A S 2016 Int. J. Solids Struct. 100 187
[3] Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N and Mougín A 2014 Nat. Mater. 13 345
[4] Starkov I A and Starkov A S 2019 Ferroelectrics 539 55
[5] Starkov I A and Starkov A S 2016 Solid State Commun. 226 5
[6] Landau L D and Lifshitz E M 2013 Course of theoretical physics: Theory of elasticity (Amsterdam: Elsevier)
[7] Amirov A A, Rodionov V V, Starkov I A, Starkov A S and Aliev A M 2019 J. Magn. Magn. Mater. 470 77
[8] Starkov A and Starkov I 2014 Ferroelectrics 461 50
[9] Lines M E and Glass A M 2001 Principles and applications of ferroelectrics and related materials (Oxford: Oxford university press)
[10] Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
[11] Starkov A S, Pakhomov O V and Starkov I A 2011 Tech. Phys. Lett. 37 1139
[12] Starkov A S, Pakhomov O V, Rodionov V V, Amirov A A and Starkov I A 2010 Tech. Phys. 64 547
[13] Nan C W, Bichurin M I, Dong S, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 1