Sonder la matière par les ondes électromagnétiques

L'étude des comètes en ondes radio

Comets at radio wavelengths

Jacques Crovisier, Dominique Bockelée-Morvan, Pierre Colom, Nicolas Biver

Observatoire de Paris, LÉSIA/CNRS, UPMC, Université Paris-Diderot
(jacques.crovisier, dominique.bockelee, pierre.colom, nicolas.biver @obspm.fr)

Mots-clés : Comètes, Composition chimique, Formation du Système solaire.
Keywords : Comets, Chemical composition, Solar System formation.

Résumé
Les comètes sont considérées comme les vestiges les mieux préservés du Système solaire primitif. Leur composition nous renseigne sur la composition de la nébuleuse primitive il y a 4,6 milliards d'années, et par delà fournit des contraintes sur la formation du Système solaire. La radioastronomie est un outil privilégié pour l'étude des glaces cométaires. Le domaine décimétrique permet de mesurer la production en eau, par l'observation du radical OH à 18 cm de longueur d'onde. Le domaine millimétrique et submillimétrique permet d'observer de nombreuses molécules provenant de la sublimation des glaces du noyau, ainsi que leurs isotopologues. Nous présentons un panorama historique des découvertes sur les comètes faites en radioastronomie, incluant des observations récentes avec le radiotélescope de Nançay, les antennes de l'IRAM, le satellite Odin, l'observatoire spatial Herschel, ALMA, et l'instrument MIRO de la sonde spatiale Rosetta.

Abstract
Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present a historical review on radio observations of comets, including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe.

1. Introduction

Les noyaux cométaires, d'une taille de quelques kilomètres, sont pratiquement inobservables de loin, et leur étude directe n'échappe pas une exploration par des sondes spatiales. Mais ce sont des corps glacés, et lorsqu'ils s'approchent du Soleil, les glaces subliment, relâchant gaz et poussières, formant une atmosphère et des queues qui peuvent devenir très spectaculaires (Fig. 1). Formées de matière restée pratiquement intacte depuis les débuts de la formation du Système solaire, les comètes sont des témoins précieux et suscitent à ce titre de nombreuses études.

Tentées très tôt dans l'histoire de la radioastronomie, les premières observations des grandes comètes C/1956 R1 (Arend-Roland), C/1965 S1 (Ikeya-Seki), C/1969 Y1 (Bennett) et quelques autres, n'ont donné aucun résultat probant. Observer une comète en radio n'est pas facile. Le signal étant très faible, il faut disposer de grands radiotélescopes équipés de récepteurs sensibles et ne tenter d'observer que des comètes brillantes, donc rares. L'observation se faisant en aveugle sur un objet mouvant, elle repose sur la fiabilité des éphémérides et du système de poursuite de l'instrument. Enfin, les comètes sont des astres variables, souvent imprévisibles ; une observation ne peut pas toujours être répétée pour confirmation. Ceci explique que le début de l'investigation des comètes en ondes radio a été une succession d'êchecs, d'occasions manquées, de résultats contradictoires, de détections douteuses impossibles à confirmer.
2. 1973 : la comète Kohoutek

À la fin 1973, la NASA a organisé une campagne internationale d'étude de la comète C/1973 E1 (Kohoutek) en soutien à son observation à bord de la station orbitale Skylab. C'est à cette occasion que l'observation des raies du radical OH à 18 cm de longueur d'onde a été tentée – et réussie – au radiotélescope de Nançay, réalisant la première détection d'une comète en ondes radio. (Fig. 2) [1, 2]
Le radical OH est le produit de photo-dissociation de l'eau, ingrédient majeur des glaces cométaires. Son observation permet de remonter à la quantité d'eau produite par la comète et à quantifier ainsi son activité. La comète Kohoutek a marqué le début d'un programme systématique d'observation qui se poursuit de nos jours au radiotélescope de Nançay. Plus de 130 comètes ont ainsi été observées. L'évolution de leur activité a été suivie pendant parfois de nombreux mois, préparant ou complétant leurs observations avec d'autres instruments. [2, 3]

3. **1986 : la comète de Halley**

Comète historique, comète mythique, la comète de Halley (1P/Halley) a été la cible d'une exploration par pas moins de cinq sondes spatiales et l'objet d'une importante campagne d'observation sous la houlette de l'« International Halley Watch ». Les aspects radio de cette campagne ont été coordonnés par Éric Gérard en France, William Irvine et F. Peter Schloerb aux États-Unis.

La comète de Halley a été suivie au radiotélescope de Nançay pendant un an et demi en 1985–1986. Le cyanure d'hydrogène (HCN) a été détecté au radiotélescope de 30 m de l'IRAM (Institut de radio astronomie millimétrique) mis en service depuis peu au Pico Veleta (Espagne). (Fig. 3) [4]

![Image](image.png)

Fig. 3. La détection des raies de rotation J 1–0 à 88,6 GHz du cyanure d'hydrogène HCN dans la comète de Halley par l'antenne de 30 m de l'IRAM en novembre 1985 [4].

Cette entrée de la radioastronomie cométaire dans le monde de la spectroscopie radio moléculaire, qui s'est illustrée avec le succès que l'on sait dans l'étude de molécules interstellaire, s'est poursuivie peu après avec l'identification du méthanol CH₃OH et du sulfure d'hydrogène H₂S dans les comètes C/1989 X1 (Austin) et C/1990 K1 (Levy). [5]

4. **1997 : la comète Hale-Bopp**

Autre comète exceptionnelle, la comète géante C/1995 O1 (Hale-Bopp). Sa découverte précoce, un an et 8 mois avant son passage au périhélie le 1er avril 1997, a facilité l'organisation de sa campagne d'observation. Elle a pu être détectée à Nançay dès avril 1996 à la distance record de 4,6 UA du Soleil. Son taux de production d'eau a atteint 3000 tonnes par secondes au périhélie, soit dix fois plus que la comète de Halley. Le suivi de la production de OH a servi de référence pour les autres observations de molécules en radio.

Il est remarquable que parmi les deux douzaines de composés chimiques relâchées par les glaces cométières alors identifiés dans cette comète, les deux tiers l'ont été par la spectroscopie radio. Outre le monoxyde de carbone, on peut relever :

- Des molécules « CHO » : H₂CO, CH₃OH, HCOOH, HCOOCH₃, (CH₂OH)₂ ;
- Des molécules azotées : NH₃, HCN, HNC, CH₃CN, NH₂CHO ;
- Des molécules soufrées : H₂S, CS, SO₂, OS, H₂CS.
- Les rapports isotopiques D/H, ¹²C/¹³C, ¹⁴N/¹⁵N, ³²S/³⁴S ont également été mesurés.

La plupart de ces détections ont été réalisées en ondes millimétriques ou submillimétriques avec les radiotélescopes de l'IRAM (l'antenne de 30 m en Espagne et l'interféromètre au Plateau de Bure) ainsi que ceux du CSO (Caltech Submillimeter Observatory, 10,5 m) et du JCMT (James Clerk Millimeter Telescope, 15 m) à Hawaï. L'ammoniac a été détecté en ondes centimétriques avec le radiotélescope de 100 m d'Effelsberg (Allemagne). D'autres molécules, non polaires, donc dépouvertes de raies radio, ont été détectées par spectroscopie dans le domaine infrarouge : ce sont le dioxyde de carbone CO₂ et les hydrocarbures CH₄, C₂H₆, C₃H₈. Une autre vague d'identification de molécules cométières viendra avec les spectromètres de masse de la sonde Rosetta. (Figs 4, 5) [6, 7, 8]
Fig. 4. L'évolution des taux de production de diverses molécules observées dans la comète C/1995 O1 (Hale-Bopp) en fonction de sa distance au Soleil, avant (à gauche) et après (à droite) son périhélie [6]. Les données pour le radical OH (carrés noirs), qui trace la production d'eau, proviennent des observations faites à Nançay, celles des autres molécules ont été obtenues au radiotélescope de 30 m de l'IRAM (en Espagne) ou à celui de 15 m du SEST (au Chili). Si la sublimation de l'eau est le processus dominant à moins de 3 unités astronomiques du Soleil, c'est le monoxyde de carbone qui assure l'activité cométaire à de plus grandes distances.

Fig. 5. Un spectre de la comète C/1995 O1 (Hale-Bopp) obtenu à l'antenne de 30 m de l'IRAM montrant les raies millimétriques de plusieurs molécules organiques [8]. Les raies de l'éthylène glycol (CH₂OH) n'ont été identifiées que sept ans après l'observation, suivant la publication du spectre détaillé de cette molécule.

Outre la caractérisation de la composition chimique de l'atmosphère cométaire issue des glaces du noyau, les observations radio nous permettent de cerner les conditions physiques de cette atmosphère :

- Sa vitesse d'expansion, à partir la forme des raies, en mettant à profit l'incomparable résolution spectrale des techniques radio.
- Sa température en mesurant simultanément les intensités de plusieurs raies de rotation d'une molécule comme le méthanol.

Dans la comète Hale-Bopp, il a été possible de suivre l'évolution de ces paramètres sur une large gamme de distances héliocentriques. On a ainsi observé une vitesse d'expansion qui a augmenté de 0,5 à 1,3 km/s et une température qui est pas-
sée d'environ 20 K à 130 K au fur et à mesure que la comète s'est approchée du Soleil. La modélisation thermodynamique de l'atmosphère cométaire rend compte de ces variations.

6. Observations récentes à l'IRAM et avec ALMA

La versatilité des spectromètres qui équipent maintenant le radiotélescope de 30 m de l'IRAM nous offre un avantage certain pour les observations cométières pour lesquelles le temps est compté et qui ne peuvent souvent être répétées. De véritables « surveys » spectraux peuvent être efficacement entrepris. Les observations récentes des comètes C/2012 F6 (Lemmon), C/2013 R1 (Lovejoy) et C/2014 Q2 (Lovejoy) ont permis de retrouver certaines molécules rares qui n'avaient jusqu'alors été observées que dans la comète Hale-Bopp.

Fig. 6. Les cartes de l'émission continuum à 1, 1,5 et 3 mm de longueur d'onde observées avec l'interféromètre de l'IRAM au Plateau de Bure en octobre-novembre 2010 dans la comète 103P/Hartley 2 [15]. Ces cartes montrent la distribution des poussières de grande taille dans la chevelure.

Les interféromètres permettent de cartographier l'émission des comètes : émission continuum et émission des raies moléculaires. L'émission continuum est dominée par l'émission thermique des poussières de la chevelure, celle du noyau étant très difficile à détecter à partir des observatoires terrestres. Les observations millimétriques caractérisent les poussières de grande taille, ce qui et complémentaire des observations dans le visible et l'infrarouge, qui ne sont sensibles qu'aux poussières de très petites tailles. La cartographie des raies moléculaires nous permet de connaître la distribution des molécules dans la chevelure. D'une part, on observe la dissymétrie de cette distribution lorsque ces molécules ne s'échappent pas uniformément du noyau, mais sous forme de jets à partir de « régions actives » de sa surface. D'autre part, on détermine l'origine de ces molécules, qui peuvent soit provenir du noyau, soit être progressivement injectées dans la chevelure suite à des réactions chimiques ou à l'évaporation de grains glacés.

Avec l'interféromètre de l'IRAM au Plateau de Bure (qui comporte actuellement 6 antennes de 15 m et sera étendu à 12 antennes avec le projet NOEMA), les premiers résultats significatifs ont été obtenus sur la comète Hale-Bopp en 1997. L'Atacama Large Millimeter/submillimeter Array (ALMA) au Chili, avec son réseau de 50 antennes de 12 m, est un instrument beaucoup plus sensible. Les observations cométières y ont débuté en 2013 sur les comètes C/2012 F6 (Lemmon) et C/2012 S1 (ISON). (Figs 6, 7) [14, 15, 16]
Les cartes de l'émission du cyanure d'hydrogène HCN, de son isomère HNC et du formal déhyde H$_2$CO observées dans les comètes C/2012 F6 (Lemmon) (en haut) et C/2012 S1 (ISON) avec ALMA [16]. L'analyse de ces observations montre que des molécules comme HNC et H$_2$CO sont progressivement relâchées dans l'atmosphère cométaire à partir de sources qui restent à préciser, alors que HCN semble provenir directement des glaces du noyau.

5. Les radiotélescopes spatiaux : SWAS, Odin, Herschel

Bien que l'eau soit le constituant essentiel des glaces cométaires, son observation directe est délicate et n'a pu être réalisée que tardivement. Ses raies de rotation sont inaccessibles du sol en raison de l'opacité de l'atmosphère. La raie de rotation submillimétrique fondamentale à 557 GHz (0,5 mm de longueur d'onde) a enfin été observée par deux satellites spécialement dédiés à l'étude de cette raie, SWAS (le Submillimeter Wave Astronomy Satellite, lancé par les États-Unis en 1998) et Odin (lancé par l'agence spatiale de Suède en 2001, avec en participation française la construction d'un spectromètre acousto-optique). Odin a observé l'eau dans une douzaine de comètes. Il a également observé les raies de NH$_3$ et H$_2$O, mesurant pour la première fois le rapport isotopique 18O/16O dans une comète. Toujours opérationnel, Odin a été récemment sollicité en février 2015 pour observer la comète C/2014 Q2 (Lovejoy). (Fig. 8) [9, 10]

Fig. 8. Les spectres des deux isotopologues H$_2$O et H$_2$^{18}O de l'eau observés ici par le satellite Odin dans la comète C/2001 Q4 (NEAT) [10].
L'étape suivante a été l'observatoire spatial Herschel, de l'Agence spatiale européenne, fonctionnant dans le domaine submillimétrique et l'infrarouge lointain. Herschel était bien plus sensible avec son miroir de 3 m de diamètre et ses récepteurs refroidis à l'hélium liquide, dont l'instrument HIFI (Heterodyne Instrument for the Far Infrared). Il a pu étudier et cartographier en détail, de 2009 à 2013, plusieurs raies de l'eau dans une douzaine de comètes, dont certaines très faibles. Dans trois d'entre-elles, il a mesuré le rapport isotopique D/H. (Fig. 9) [11, 12, 13]

Fig. 9. Observations de l'eau dans la comète C/2009 P1 (Garradd) par l'observatoire spatial Herschel avec son instrument HIFI [13]. Cartes (en haut) et profils (en bas) de deux raies submillimétriques. On remarque que la raie de gauche n'a pas un profil symétrique : cette raie très intense est saturée et l'indentation présente aux vitesses négatives est due à un phénomène de self-absorption par les couches extérieures en avant-plan de l'atmosphère cométaire.

6. Une comète observée de près avec MIRO, le radiotélescope de Rosetta

La sonde spatiale Rosetta, lancée par l'Agence spatiale européenne, explore en 2014–2015 la comète 67P/Churyumov-Gerasimenko, dont elle s'est rapprochée à des distances parfois inférieures à 8 km. Elle est équipée d'un radiotélescope, MIRO (Microwave Instrument for the Rosetta Orbiter), dont l'antenne a seulement 30 cm de diamètre. La taille modeste de cet instrument est suffisante pour étudier les raies de l'eau, de ses variétés isotopiques et de quelques autres molécules (monoxyde de carbone, ammoniac, méthanol) avec un spectromètre fonctionnant aux alentours de 0,5 mm de longueur d'onde. MIRO est également équipé de deux canaux continuum à 0,5 et 1,6 mm de longueur d'onde dédiés à l'observation de l'émission thermique du noyau. (Figs 10, 11) [17, 18]

Nous pourrons encore suivre avec Rosetta l'évolution de la comète et sa montée en puissance au-delà de son passage au périhélie en août 2015.

Fig. 12. Une carte partielle de la température du noyau de la comète 67P Churyumov-Gerasimenko déduite des observations submillimétriques de l'instrument MIRO, superposée au modèle de la forme de la comète déduit de son imagerie dans le domaine visible [18]. On voit que sur le bord gauche, MIRO observe le côté nuit du noyau pour lequel l'imagerie visible ne donne pas d'information. Les températures observées, suivant l'insolation, vont d'environ 30 K (côté nuit) à 130 K alors que la comète était à 3,5 UA du Soleil.
Fig. 11. Un exemple des raies de l'eau à 0,5 mm de longueur d'onde observées par l'instrument MIRO dans la comète 67P Churyumov-Gerasimenko [18]. En haut, observation faite le 23 juin 2014 à 128 000 km de distance. En bas, observation faite le 19 août 2014 à 81 km de distance ; les raies s'observent alors en absorption sur le continuum du noyau.

8. Autres études et conclusion

Ce rapide panorama est loin d'avoir évoqué tous les aspects des études des comètes en ondes radio. Signalons encore :

- Les études radar des noyaux cométiens, permettant de préciser forme et dimension de ces objets lorsqu'ils s'aventurent à proximité de la Terre [19].
- L'étude de l'environnement plasma des comètes, siège de l'interaction entre le vent solaire et la chevelure cométaire.
- La vélocimétrie des sondes spatiales cométières, encore le seul moyen d'évaluer la masse des noyaux cométiens ; ce qui, comparé aux dimensions du noyau obtenues par imagerie dans le visible, permet d'en estimer la densité. Ainsi Rosetta a pu déterminer une densité de 470 kg/m³ pour 67P/Churyumov-Gerasimenko [20].
- La tomographie du noyau de la comète 67P/Churyumov-Gerasimenko par l'instrument CONSERT, radar bi-statique opérant entre la sonde Rosetta et son atterrisseur Philae [21].
- Les mesures en laboratoire des propriétés radio-électriques d'analogues de matière cométaire pour interpréter les observations radar et radiométriques des noyaux cométiens [22].

L'exploration spatiale des comètes, par la complexité et le coût des moyens mis en œuvre, restera limitée à un petit nombre d'objets et se prête mal à une étude statistique, qui ne peut être menée que par des observations systématiques à partir de la Terre. Les observations de plusieurs dizaines de comètes, et en particulier les observations radio, montrent que les productions relatives d'eau, de monoxyde de carbone, de méthanol et de bien d'autres molécules varient fortement d'un objet à l'autre. Ceci suggère que les comètes ont des composition chimiques diverses, mais nous ne savons pas encore faire la liaison d'une façon cohérente entre cette diversité et l'histoire de leur formation ou de leur évolution.

Le rapport isotopique D/H de l'eau cométaire, comparé à celui des océans terrestres, est souvent utilisé pour tester l'hypothèse d'une origine cométaire de l'eau terrestre. Dans les quelques comètes pour lesquelles il est connu, ce rapport s'étale de un à trois fois la valeur terrestre. Ce qui semble écarter une origine uniquement cométaire. Un approfondissement de cette statistique devrait nous permettre de préciser dans quelles proportions les chutes de comètes, d'astéroïdes et d'autres petits corps ont pu nous apporter le précieux liquide. (Fig. 12) [12, 13, 23]
Fig. 12. Le rapport D/H observé dans l’eau des comètes [23]. Beaucoup de ces mesures proviennent des observations radio. Ce rapport s’étend de une fois (comète 103P/Hartley 2 observée en radio avec Herschel [12]) à trois fois (comète 67P/Churyumov-Gerasimenko observée avec le spectromètre de masse ROSINA de Rosetta [23]) sa valeur dans les océans terrestres.

Références bibliographiques

[1] - Biraud, F., Bourgois, G., Crovisier, J., et al. OH observations of comet Kohoutek (1973f) at 18 cm wavelength. 1974, *Astron. Astrophys.* **34**, 163-166.
[2] - Crovisier, J. Il y a 40 ans, la radioastronomie cométaire prenait son essor à Nançay. 2013, *L’Astronomie*, **66**, 34-41.
[3] - Crovisier, J., Colom, P., Gérard, E., Bockelée-Morvan, D., Bourgois, G. Observations at Nançay of the OH 18-cm lines in comets: The data base. Observations made from 1982 to 1999. 2002, *Astron. Astrophys.*, **393**, 1053-1064. http://www.lesia.obspm.fr/pla-neto/cometes/basecom/
[4] - Despois, D., Crovisier, J., Bockelée-Morvan, D., et al. Observations of hydrogen cyanide in comet Halley. 1986, *Astron. Astrophys.* **160**, L11-L12.
[5] - Bockelée-Morvan, D., Colom, P., Crovisier, J., Despois, D., Paubert, G. Microwave detection of hydrogen sulfide and methanol in comet Austin (1989cl). 1991, *Nature* **350**, 318-320.
[6] - Biver, N., Bockelée-Morvan, D., Winnberg, et al. The 1995–2002 long-term monitoring of comet C/1995 O1 (Hale-Bopp) at radio wavelengths. 2002, *Earth Moon & Planets*, **90**, 5-14.
[7] - Bockelée-Morvan, D., Crovisier, J., Mumma, M.J., Weaver, H.A. The Composition of cometary volatiles. 2005, *Comets II*, M.C. Festou, H.U Keller & H.A. Weaver eds, Univ. Arizona Press, 391-423.
[8] - Crovisier, J., Bockelée-Morvan, D., Biver, N., et al. Ethylene glycol in comet C/1995 O1 (Hale-Bopp). 2004, *Astron. Astrophys.*, **418**, L35-L38.
[9] - Lecacheux, A., Biver, N., Crovisier, J., et al. Observations of the 557 GHz water line in comets with the Odin satellite. 2003, *Astron. Astrophys.* **402**, L55-L58.
[10] - Biver, N., Bockelée-Morvan, D., Crovisier, J., et al. Submillimetre observations of comets with Odin : 2001—2005. 2007, *Planet. Space Sci.*, **55**, 1058-1068.
[11] - Hartogh, P., Crovisier, J., de Val-Borro, et al. HIFI observations of water in the atmosphere of comet C/2008 Q3 (Garradd). 2010, *Astron. Astrophys. (Herschel: the first science highlights)*, **518**, L150.
[12] - Hartogh, P., Lis, D. C., Bockelée-Morvan, D., et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. 2011, *Nature* **478**, 218-220.
[13] - Bockelée-Morvan, D., Biver, N., Swinyard, B., et al. Herschel measurements of the D/H and $^{16}\text{O}/^{18}\text{O}$ ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). 2012, *Astron. Astrophys.*, **544**, L15.

[14] - Biver, N., Bockelée-Morvan, D., Debout, V., et al. Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): detection of ethylene glycol and formamide. 2014, *Astron. Astrophys.*, **566**, L5.

[15] - Boissier, J., Bockelée-Morvan, D., Biver, N., et al. Gas and dust productions of comet 103P/Hartley 2 from millimetre observations: interpreting rotation-induced time variations. 2014, *Icarus*, **228**, 197-216.

[16] - Cordiner, M.A., Remijan, A.J., Boissier, J., et al. Mapping the release of volatiles in the inner coma of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) using the Atacama Large Millimeter/submillimeter Array. 2014, *Astrophys. J.*, **792**, L2.

[17] - Gulkis, S., Frerking, M., Crovisier, J., et al. MIRO : Microwave Instrument for Rosetta Orbiter. 2007, *Space Science Review*, **128**, 561-597.

[18] - Gulkis, S., Allen, M., von Allmen, P., et al. Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko. 2015, *Science*, **347**, aaa0709.

[19] - Harmon, J.K., Nolan, M.C., Ostro, S.J., Campbell, D.B. Radar studies of comet nuclei and grain comae. 2005, *Comets II*, M.C. Festou, H.U Keller & H.A. Weaver eds, Univ. Arizona Press, 265-279.

[20] - Sierks, H., Barbieri, C., Lamy, P.L., et al. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. 2015, *Science*, **347**, aaa1044.

[21] - Kofman, W., Herique, A., Goutail, J.-P., et al. The Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT). 2007, *Space Science Review* **128**, 413-432.

[22] - Brouet, Y., Levasseur-Regourd, A.C., Encrenaz, P., Gulkis, S. Permittivity of porous granular matter, in relation with Rosetta cometary mission. 2014, *Planet. Space Scie.*, **103**, 143-152.

[23] - Altwegg, K., Balsiger, H., Bar-Nun, A., et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. 2015, *Science*, **347**, 1261952.