Human Cytomegalovirus Fcγ Binding Proteins gp34 and gp68 Antagonize Fcγ Receptors I, II and III

Eugenia Corrales-Aguilar1*, Mirko Trilling2, Katja Hunold3, Manuela Fiedler1, Vu Thuy Khanh Le2, Henrike Reinhard1, Katrin Ehrhardt3, Eva Mercé-Maldonado1, Enver Aliyev1, Albert Zimmermann1, David C. Johnson4, Hartmut Hengel5*

1 Institute for Virology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany, 2 Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany, 3 Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany, 4 Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, Oregon, United States of America

Abstract
Human cytomegalovirus (HCMV) establishes lifelong infection with recurrent episodes of virus production and shedding despite the presence of adaptive immunological memory responses including HCMV immune immunoglobulin G (IgG). Very little is known how HCMV evades from humoral and cellular IgG-dependent immune responses, the latter being executed by cells expressing surface receptors for the Fc domain of IgG (FcγRs). Remarkably, HCMV expresses the RL11-encoded gp34 and UL119-118-encoded gp68 type I transmembrane glycoproteins which bind Fcγ with nanomolar affinity. Using a newly developed FcγR activation assay, we tested if the HCMV-encoded Fcγ binding proteins (HCMV FcγRs) interfere with individual host FcγRs. In absence of gp34 or gp68, HCMV elicits a much stronger activation of FcγRI/CD64, FcγRIIA/CD32A and FcγRI/CD64 by polyclonal HCMV-immune IgG as compared to wildtype HCMV. gp34 and gp68 co-expression culminates in the late phase of HCMV replication coinciding with the emergence of surface HCMV antigens triggering FcγRII/CD16 responses by polyclonal HCMV-immune IgG. The gp34- and gp68-dependent inhibition of HCMV immune IgG was fully reproduced when testing the activation of primary human NK cells. Their broad antagonistic function towards FcγRIIA, FcγRIIa and FcγRI activation was also recapitulated in a gain-of-function approach based on humanized monoclonal antibodies (trastuzumab, rituximab) and isotypes of different IgG subclasses. Surface immune-precipitation showed that both HCMV-encoded Fcγ binding proteins have the capacity to bind trastuzumab antibody-HER2 antigen complexes demonstrating simultaneous linkage of immune IgG with antigen and the HCMV inhibitors on the plasma membrane. Our studies reveal a novel strategy by which viral FcγRs can compete for immune complexes against various Fc receptors on immune cells, dampening their activation and antiviral immunity.

Citation: Corrales-Aguilar E, Trilling M, Hunold K, Fiedler M, Le VTK, et al. (2014) Human Cytomegalovirus Fcγ Binding Proteins gp34 and gp68 Antagonize Fcγ Receptors I, II and III. PLoS Pathog 10(5): e1004131. doi:10.1371/journal.ppat.1004131

Editor: Paul Lehner, University of Cambridge, United Kingdom

Received October 22, 2013; Accepted April 3, 2014; Published May 15, 2014

Copyright: © 2014 Corrales-Aguilar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by funds of the DFG through He 2526/6-2, the European Commission through QLRT-2001-01112 and MRTN-CT-2005-019248 and the Helmholtz Association through VISTRIE VH-VI-242. ECA and EA were supported by the German Academic Exchange Service (DAAD), MF by a Düsseldorf Entrepreneur Foundation scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Hartmut.Hengel@uniklinik-freiburg.de

‡ Current address: Virology-CIET, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica

Introduction
Human cytomegalovirus (HCMV) constitutes the prototypical human pathogenic β-herpesvirus found worldwide with high immunoglobulin G (IgG) seroprevalence rates of 50–98% [1]. Despite the expression of a very large antigenic proteome of approximately 750 translational products [2], HCMV avoids sterile immunity and invariably persists lifelong in the human host in a latent state with periodic phases of reactivation and virus shedding. While infection of immune competent individuals is usually subclinical, HCMV causes severe symptoms in immunocompromised individuals and congenitally infected newborns [1,3]. Cytomegalovirus immune control is organized in a hierarchical as well as redundant manner, with crucial roles for natural killer (NK) cells as well as T lymphocytes [4]. HCMV expresses a large set of immune evasion genes that impair recognition of infected cells by CD8+, CD4+ and NK effector cells and thus facilitate virus persistence, spread and superinfection [5–7] while cellular immune responses are nevertheless indispensable for CMV immune surveillance. Experimental and clinical evidence suggest that cytomegalovirus can persist for the lifetime by effectively defending itself from both cellular and humoral immunity. In the absence of either viral immune evasion genes or subsets of immune cells, the balance of pathogenesis versus clearance of the virus can be tilted. For example, B cell deficient mice exhibit a much higher susceptibility during recurrent mouse cytomegalovirus (MCMV) infection compared to control mice, reflected by 100–1,000-fold increased titers in the absence of MCMV-specific IgG [8]. Moreover, adoptive transfer of memory B cells into naïve Rag2−/− mice is sufficient for long term protection from lethal MCMV disease [9], and passive immunization with immune IgG reduces MCMV-induced pathology in newborn mice [10]. In clinical settings, HCMV-immune IgG preparations are used with varying degrees of success. Human intravenous
hyperimmune immunoglobulin against HCMV (e.g. Cytotect) significantly lowers the risk of congenital CMV infection and disease at birth when given to primary HCMV-infected pregnant women [11]. Nevertheless, meta-analyses of clinical studies with solid organ transplant recipients as well as patients undergoing hematopoietic stem cell transplantation document little if any efficacy of therapeutic IgG against HCMV.

IgG antibodies have two functional domains: the fragment antigen binding (Fab) that contains the paratope recognizing the respective epitope of the antigen and the fragment crystallisable (Fc) which recruits IgG effector functions. Receptors for the Fc domain of IgG (FcγRs) are expressed on immune cells to connect the humoral and cellular branches of immunity. Upon IgG binding and receptor activation, FcγRs trigger a diversity of effector responses including antibody-dependent cellular cytotoxicity (ADCC), phagocytosis, endocytosis of immune complexes and cytokine production. Importantly, the set of human FcγRs includes different activating members, i.e. FcγRI (CD64), FcγRIIA (CD32A), FcγRIIC (CD32C) and FcγRIIIA (CD16) which differ in immune cell distribution, affinity for distinct IgG subclasses [15] and effector functions elicited upon activation [16–19].

Fcγ binding activity on the surface of HCMV-infected cells has long been reported [20], but the consequences of Fcγ binding to immune responses are unknown [21]. The latter events occur despite the presence of immune IgG antibodies. IgG acts by neutralization of virions and activation of immune cells bearing one or more surface receptors, called FcγRs, recognizing the constant Fc domain of IgG. Activating FcγRs induce a wide range of immune responses, including antibody dependent cellular cytotoxicity (ADCC) of virus-infected cells by natural killer (NK) cells, cytokine secretion and the uptake of immune complexes to enhance antigen presentation to T cells. We demonstrate that the HCMV glycoproteins RL11/gp34 and UL119/118/gp68 block IgG-mediated activation of FcγRs. A novel reporter cell-based assay was used to test FcγRs individually and assess their relative susceptibility to each antagonist. This approach revealed that gp34 and gp68 block triggering of activating FcγRs, i.e. FcγRI (CD64), FcγRII (CD32A) and FcγRIII (CD16). Co-immunoprecipitation showed the formation of ternary complexes containing IgG, IgG-bound antigen and the viral antagonists on the cell surface. Assigning the redundant abilities of HCMV to hinder IgG effector responses to the viral Fc binding proteins, we discuss gp34 and gp68 as potential culprits which might contribute to the limited efficacy of therapeutic IgG against HCMV.

Results

HCMV and HSV-1 encoded viral FcγRs (vFcγRs) bind Fcγ on the surface of infected cells

To assess the relative surface density of viral Fcγ receptors on the plasma membrane of HSV and HCMV-infected cells, Fcγ binding was evaluated by flow cytometry using FITC-labeled Fcγ fragment. As expected, Fcγ-FITC surface binding was observed for HSV wt virus and the gE revertant virus-infected cells, but not for cells infected with gE HSV (Figure 1A). MRC-5 cells infected with either of two HCMV HB5 single vFcγR deletion mutants, HB5Δgp68 or HB5Δ1AΔ3gp34 [22], were decorated at the cell surface with diminished levels of Fcγ-FITC compared to wt-infected control cells (Figure 1A). Cells infected with a HCMV mutant lacking both gp68 and gp34 [31] showed very low Fc-binding when compared to mock-infected fibroblasts (Figure 1A). Together with our previous experiments documenting Fcγ binding upon ectopic expression of gp34 and gp68 using recombinant vaccinia viruses (rVACV) [22] these data define gp34 and gp68 to be sufficient and essential for Fcγ binding by HCMV-infected cells.

FcγR activating IgG almost exclusively recognizes antigens expressed during the late phase of HCMV replication

In productively infected cells, herpesvirus gene expression is regulated in a cascade fashion. Viral proteins encoded by genes of the early phase of infection are required for viral DNA replication, which is a prerequisite for the subsequent expression of structural virion proteins during the late phase of gene expression. To assign the immune-dominant HCMV and HSV surface antigens recognized by opsonizing IgG to the temporal class of genes, we applied the novel reporter cell system allowing quantification of host FcγR activation [28]. This assay is based on co-cultivation of antigen-bearing cells with reporter cells stably expressing FcγR-ζ chain chimeric receptors which produce mouse IL-2 upon recognition of immune IgG, provided that the opsonizing antibody is able to activate the particular FcγR [28]. Importantly, BW5147/FcγR-ζ reporter cells are neither activated by cells lacking the appropriate antigen (e.g., non-infected cells) nor by antigen-expressing cells which had been cultivated in absence of IgG or in presence of non-immune IgG, proving strict antigen-
and immune IgG specificity of the assay (Figure S1 and Reference [28]). Late phase gene expression was blocked using 250 μg/ml phosphonoacetic acid (PAA) which blocks the viral DNA polymerase and is the active component of the clinically approved anti-HCMV drug Foscarnet. At 72 and 48 hpi, resp., infected cells were opsonized with graded concentrations of intravenous immunoglobulin (IVIG) Cytotect as a source of human HCMV- and HSV-immune IgG. As expected, immune IgG did not induce receptor activation (IL-2 response) in the presence of mock-infected cells (Figure 1B). While late antigens of HCMV efficiently triggered FcγRIII reporter cells, infected cells arrested in the early phase of replication elicited very poor if any responses (Figure 1B). On the contrary, early antigens of HSV-1 were sufficient to efficiently trigger FcγRIII and HSV late antigens.

Figure 1. Viral FcγRs bind Fcγ on the cell surface and opsonizing IgG dependent FcγR activation is restricted to the late phase of HCMV but not HSV replication. (A) MRC-5 cells were infected with 2 PFU/cell for 72 hpi with HCMV HB5 wildtype, HB5Δgp68, HB5ΔIRLΔgp34 or HB5ΔIRLΔgp68/Δgp34 (left) or 24 hpi with HSV-1 (right). Cells were resuspended with PBS/2% (vol/vol) FCS containing 2 mM EDTA, stained with hFcγ-FITC and measured in a FACS Canto II. Dead cells were excluded by PI or DAPI-staining. (B) MRC-5 cells were infected with 2–3 PFU/cell of HCMV HB5 wt or (C) HSV-1 strain F. After centrifugation enhancement of infection, cells were incubated 3 h at 37 °C at 5% CO2. After washing once, PAA (250 μg/ml) in D-MEM 10% (vol/vol) FCS was added. 48 hpi for HSV or 72 hpi for HCMV, cells were opsonized with grading dilutions of Cytotect for 30 minutes, washed twice with D-MEM 10% (vol/vol) FCS and co-cultivated with 1×10^6 BW:FcγR-ζ reporter cells per well. Measurement of mIL-2 in supernatants after 16 h of co-cultivation of reporter cells with targets was performed by ELISA. Values are presented in the graphic as OD 450 nm. 3 independent wells were measured, means are shown with standard deviations (error bars) for 2 independent experiments. Significance of results (Student’s t-test) is presented in Table S1 as *: p<0.05 **: p<0.01 ***: p<0.001.

doi:10.1371/journal.ppat.1004131.g001
only slightly increased FcγR-ζ activation (Figure 1C). Despite the fact that Cytotect is prepared from donors selected for particularly high HCMV IgG titers [11,32] we found - in agreement with earlier studies [28] - that Cytotect contains higher titers of HSV-immune IgG activating FcγRIII compared to FcγRIII-reactive HCMV-immune IgG. Due to this fact, IVIG dilutions used for HSV-1 and HCMV experiments had to be chosen differently. The relatively poor responses triggered by IgG opsonized HCMV-infected cells was compatible with our hypothesis that HCMV could be able to reduce the activation of FcγRIII by immune IgG, and that vFcγR gp68 and gp34 might represent candidates for such inhibition.

Interference with host FcγR activation by HSV-1 gE, HCMV gp68 and HCMV gp34

To test the conjecture that vFcγR gp68 and gp34 could prevent host FcγR activation by HCMV IgG, we pursued the BV5147:FcγR-ζ reporter cell approach. To assess if and to what degree viral FcγRs can interfere with host FcγR activation, we first compared responses of FcγRIII reporter cells co-cultured with IgG-opsonized HSV-1 wt infected vs. HSV-1 ΔgE-infected MRC-5 cells (Figure 2A). Inhibition of ADCC by PBMCs was reported to be a function of the prototypic HSV-1:FcγR eG [30], albeit the specific host FcγRs which are blocked by eG have not been elucidated yet. As before (Figure 1C), we observed a dose-dependent activation of the reporter cells upon co-cultivation with HSV-1-infected cells but not with mock infected cells. The ΔgE HSV-1 mutant led to an increased activation of FcγRIIIA upon opsonization of target cells with Cytotect, in accordance with published data [29,30]. The same type of result was obtained when using BV5147:FcγRIIIA-ζ reporter cells, indicating that gE also antagonizes activation of this host Fcγ receptor. Surprisingly, gE enhanced, rather than inhibited the IgG-dependent activation as deduced from the overall superior activation of the chimeric FcγRII-ζ by wt HSV-1 when compared to HSV-1 ΔgE (Figure 2A).

The results of HSV-1 eG encouraged us to subsequently test HCMV HB5Δgp68 and HB5ΔIRI gp34 mutants using the same experimental strategy. MRC-5 fibroblasts were left uninfected or infected with wt-HCMV strain HB5 versus HB5Δgp68 (Figure 2B), or with HB5ΔIRI (the parental virus of the following mutants) versus HB5ΔIRI Δgp34 and HB5ΔIRI Δgp68/Δgp34, resp., a double mutant lacking both gp68 and gp34 (Figure 2C). 72 h post HCMV infection, target cells were incubated with graded dilutions of Cytotect before BW:FcγRIIIA-ζ reporter cells were added. HB5Δgp68 induced a clearly higher response over an extended range of IgG dilutions compared to wt-HCMV HB5 infected cells. Likewise, HB5ΔIRIΔgp34-opsonized cells induced clearly higher reporter cell responses compared with HB5ΔIRI opsonized targets, while HB5ΔIRIΔgp68/Δgp34 exhibited only marginal further increase of the response (Figure 2C). These results suggested that cells infected with virus mutants lacking viral Fc-binding proteins elicit exaggerated activation of FcγRIIIA, provided that the amount of opsonizable HCMV antigens is indeed comparable between the viruses analyzed. To verify this supposition, cells were labelled with F(ab)2 antibody fragments prepared from Cytotect and analysed by FACS. As shown in Figure S2, cells infected with HCMV mutants lacking gp34 and/or gp68 did not show higher levels of opsonizing antigens on the plasma membrane. To compare the relative impact of gp68 versus gp34 on FcγRIII activation with a higher degree of accuracy, i.e. in the context of an identical HCMV genome possessing a preserved UL7/8 gene region, another set of targeted vFcγR gene deletions was constructed based on the AD169vΔ9L derived BACmid pAD169 which carries unlike pHB5 only a single copy of TRL genes including TRL11/33. As demonstrated in Figure 2D, targeted deletion of UL119/118/gp68 and TRL11/gp34 reproduced the increased activation of BW:FcγRIIIA-ζ responder cells, while combined deletion of both vFcγRs only marginally enhanced the response further. Next we determined if gp34 and gp68 could affect further activating host FcγRs and performed co-cultivation assays with MCR-5 cells infected with the same panels of HCMV mutants after opsonization with Cytotect and incubated with BW:FcγRIIIA-ζ and BW:FcγRII-ζ reporter cells (Figure 2C–D). While deletion of both HCMV Fcγ-binding proteins resulted in significantly enhanced responses by both FcγRIIIA and FcγRII, the isolated removal of gp68 resulted in a slightly more drastic phenotype with regard to BW:FcγRIIIA-ζ activation (Figure 2D). Notably, combined removal of gp34 and gp68 led to a Δgp34-like phenotype, contrasting to the additive effect seen with FcγRIII at low IgG concentrations. In conclusion, the data suggested that both of the HCMV-encoded FcγRs might have developed the ability to interfere with the activation of FcγRIII, FcγRII and FcγRII, while HSV gE blocks FcγRIII and FcγRIIA but fails to inhibit FcγRI activation.

UL118-119 and RL11 gene reversion restore resistance to FcγR activation by immune IgG

To exclude the possibility that second site mutations which occurred during the BACmid mutagenesis procedure are responsible for the observed loss of HCMV-mediated inhibition of host FcγR activation by immune IgG, an entirely independent panel of virus deletion mutants and the appropriate rescued versions were generated. The mutants were constructed using the HCMV TB40/E-derived BACmid [34] taking advantage of i) a single gene copy of RL11 coding for gp34, ii) a complete HCMV UL7/8 gene region lacking in HCMV HB5 but present in HCMV clinical isolates and iii) a technically more feasible re-insertion strategy of the vFcγR coding genes. MRC-5 fibroblasts were left uninfected or infected with the HCMV TB40/E wt expressing gp68 and gp34, or with gp68 and gp34 single gene deletion mutants, resp., or independent single gene revertant mutants expressing gp68 or gp34. Using BW:FcγRIIIA-ζ responder cells and graded concentrations of HCMV immune IVIG, the gp34 and gp68 TB40/E deficient mutants elicited a stronger FcγR-ζ activation response than the TB40/E wt (Figure S3A), while the density of opsonizing cell surface antigens was not altered (Figure S3B). The finding that three independent virus mutants lacking Fc binding proteins show congruent phenotypes makes unintended second site mutations as cause for the effect highly unlikely. Nevertheless, revertant viruses were assessed. As expected, both of the revertant viruses exhibited a wt-like phenotype (Figure S3A). In comparison to HCMV HB5, HCMV TB40/E shows a more protracted replication kinetics. Consequently, we observed more efficient IgG-dependent activation of FcγRIIIA-ζ at 96 hpi compared with 72 hpi. Therefore, HCMV TB40/E-based assays were performed 96 h post infection. The HCMV TB40/E results confirmed that both HCMV-encoded FcγRs inhibit the activation of FcγRIIA and that their reinsertion into the virus genome reestablishes the vFcγR inhibition phenotype.

Inhibition of IgG1 (trastuzumab) mediated activation of FcγRs

To test if gp34 and gp68 suffice to impair IgG-dependent activation of FcγRs, two factors of our experimental approach were modified: i) gp34 and gp68 were expressed outside the context of
Figure 2. HSV-1 gE, HCMV gp68 and HCMV gp34 interfere with host FcγR activation upon opsonization of cells with polyclonal immune IgG. (A) The HSV vFcγR gE inhibits FcγRIIIA and FcγRIIA activation but fails to inhibit FcγRI. Human MRC-5 fibroblasts were infected with 2 PFU/cell of HSV-1 strain F wt and ΔgE for 24 h. Cells were opsonized with Cytotect at different concentrations for 30 min. After removing of unbound antibodies with D-MEM 10% (vol/vol) FCS, 1 × 10^6 BW:FcγR-γ transfectants per well were added and co-cultivated overnight. BW:FcγR activation was determined by measuring mIL-2 by ELISA. Three independent replicates were measured; means with standard deviations (error bars) are shown for 4 independent experiments. (B) HCMV vFcγR gp68 interferes with FcγRIIIA, FcγRIIA and FcγRI activation. MRC-5 cells were infected with HCMV HB5 wt virus or HB5 Δgp68 (2 PFU/cell) for 72 h. Fibroblasts were opsonized with Cytotect at different concentrations for 30 min. After removing of unbound antibodies by washing, 1 × 10^6 BW:FcγR-γ transfectants were added per well. Measurement of mIL-2 in supernatants after 16 h of co-cultivation of
Viral FcγRs Inhibit Effector Cell Activation

HCMV infection by recombinant vaccinia viruses, and (ii) instead of polyclonal HCMV IVIG, a well-defined humanized therapeutic monoclonal IgG1 antibody (trastuzumab) was used as an activator of host FcγRs upon binding to its antigen HER2. rVACV expressing HSV gE-infected HER2 antigen positive SKOV-3 tumor cells were opsonized with graded concentrations of trastuzumab recognizing HER2 and compared with wt-VACV as well as mock-infected cells. The opsonized target cells were co-cultured with the panel of FcγR reporter cells (Figure 3A). Opsonized VACV-infected cells exhibited a reduced capacity to trigger FcγRIIIA in comparison to mock cells, most likely due to the protein host shut-off function of VACV. Importantly, trastuzumab-mediated FcγRIIIA triggering was further impaired by rVACV gE, providing proof of principle that ectopically expressed gE suffices to interfere with IgG1-dependent FcγRIIIA activation. In contrast to FcγRIII, trastuzumab reproducibly failed to induce FcγRII responses (Figure 3A). When trastuzumab-opsonized cells were probed with FcγRI transfectants, the presence of gE did not attenuate but rather enhanced the response (Figure 3A), confirming the unexpected phenotype in the HSV-infected cell setting observed before (Figure 2A). Next, rVACVs were used to express gp34 and gp68 ectopically in HER2 positive SKOV-3 targets which were opsonized with different concentrations of trastuzumab before co-culture with the same panel of responder cells as already described (Figure 3B). Both gp34 as well as gp68 significantly reduced activation of FcγRIII and FcγRI, albeit in this setting gp34 seemed slightly more potent than gp68. In summary, deploying a gain-of-function approach and using a monoclonal human IgG1, the results verified that both HCMV FcγRs are sufficient to prevent the activation of FcγRI and FcγRIII.

Interference with host FcγRIIA activation by ectopic expression of herpesviral FcγRs

Trastuzumab is not capable to activate FcγRIIA (see above, Figure 3A). Nevertheless, we wished to assess the effect of ectopically expressed vFcγRs on FcγRIIA activation. Therefore, in a further approach CD20 transfected 293T cells [35] were infected with rVACV expressing gE, gp68 or gp34 before opsonized with rituximab another well-defined humanized therapeutic monoclonal IgG1 antibody (Figure 3A and S4B). All vFcγRs inhibited FcγRIIA activation verifying that ectopic expression of the viral Fcγ binding proteins gE, gp34 and gp68 hinder the activation of the host FcγRIIA in a gain-of-function approach.

FcγRIIIA inhibition by gp34 and gp68 across IgG subclasses

Humans respond to HCMV infection with the production of IgG1 which is the immunodominant subclass, followed by IgG3, report cells with targets was performed by ELISA. Values are presented in the graphic as OD 450 nm. Three independent wells were measured; means with standard deviations (error bars) are shown for 3 independent experiments. Significance of results (Student’s t-test) are presented in Table S1 as *: p<0.05 **: p<0.01 ***: p<0.001. (C) HCMV vFcγR gp34 interferes with FcγRIIA, FcγRII and FcγRI activation. As in (B) but MRC-5 cells were infected with HCMV HB5 or HCMV gp68 or HCMV gp34 (2 PFU/cell) for 72 h. (D) gp34 and gp68 interfere with FcγR activation in AD169varL infected cells. As in (B) but MRC-5 cells were infected with AD169varL wt, AD169varLΔgp68, AD169varLΔgp34 or AD169varLΔgp68/Δgp34.

doi:10.1371/journal.ppat.1004131.g002

Figure 3. Ectopic expression of HSV-1 gE, HCMV gp68 and HCMV gp34 inhibit IgG1 (trastuzumab) mediated activation of FcγRs. (A) SKOV-3 cells were infected for 24 h with 2 PFU/cell VACV wt and rVACV expressing gE or (B) rVACV expressing gp68 or gp34 before opsonized with trastuzumab at different concentrations for 30 min. After removing of unbound antibodies by repeated washing with D-MEM 10% (vol/vol) FCS, 1×10^6 BW:FcγRIIA-ζ or BW:FcγRII-ζ transfectants per well were added and co-cultivated overnight. BW:FcγR-ζ activation was determined by measuring mIL-2 by ELISA. Three independent replicates were measured, means with standard deviations (error bars) are shown for 3 independent experiments. Significance of results (Student’s t-test) are presented in Table S1 as *: p<0.05 **: p<0.01 ***: p<0.001.

doi:10.1371/journal.ppat.1004131.g003
while HCMV-immune IgG2 and IgG4 is detected only at very low levels if produced at all [36,37]. In contrast to HSV-1 gE, HCMV gp68 and gp34 bind monomorphic IgG of all human subclasses, i.e. IgG1, IgG2, IgG3, and IgG4 [22], whereas gE does not bind IgG3 [36,39]. To assess whether HCMV gp68 and gp34 can inhibit FcγRIIIA/CD16 activation through immune complexes formed by different IgG isotypes, we took advantage of a panel of rituximab-derived isotopic IgG antibodies. CD20 transfected 293T target cells [35] were infected with VACV wt or rVACV expressing gp68, gp34 or MULT-1 as a negative control and gp68/34 antibody isotype for 30 min. and removing of unbound antibody by antibody control. CD20 expression revealed very similar levels of antigen expression on the cell surface of VACV target cells (data not shown). While opsonized IgG1 and IgG3 isotypes efficiently activated FcγRIIIA, very little to no activation was observed with IgG2, IgG4 and IgA, confirming previous data [28]. Both gp34 as well as gp68 strongly reduced activation of FcγRIIIA by IgG1 and IgG3 (Figure 4). The data documented the inhibitory potency of both HCMV FcγRs against IgG1 and IgG3-formed immune complexes and confirmed the functional distinction of gp34 and gp68 against HSV gE.

The herpesviral FcγRs inhibit antibody dependent NK cell degranulation

CD16/FcγRIII is an essential IgG receptor for activation of NK cells mediating ADCC responses [40,41] but also found on human γδ T cells induced by HCMV infection [42]. The data obtained with the FcγRIII-z reporter cells strongly suggested that gp34, gp68 as well as HSV-1 gE operate as inhibitors of FcγRIII/CD16+/NK cells since BW:FcγRIII-z responses showed an excellent match with CD107a mobilization of primary human NK cells upon CD16/FcγRIII cross-linking [28]. Therefore, we tested the activation of primary human NK cells by fibroblasts infected with HSV-1, HCMV and mutants devoid of viral Fcγ binding proteins, respectively, in the presence of virus-immune opsonizing IgG in a CD107a degranulation assay [43]. The sources of the opsonizing IgG were sera donated by HSV/HCMV-seropositive donors (Figure 5A and Figure 5B, resp.) or Cytotect (Figure 5C). rhIL-2 overnight preactivated NK cells from HSV/HCMV-sero-
egative donors were enriched by negative selection and analyzed after 4 hours of co-incubation with infected cells opsonized with graded concentrations of immune IgG. HCMV encodes numerous inhibitors of NK cell activation [44,45]. To focus on IgG-dependent NK cell activation, NK activation was calculated and depicted as percentage of IgG-specific CD107a mobilization (i.e. percentage of CD107a-positive cells obtained with the immune antibody opsonizing target cells minus the percentage of CD107a-positive cells obtained with non-immune antibody treated target cells). A higher ratio of IgG-dependent CD107a positive cells in the case of HSV-1 AgE-infected cells compared with wt HSV-1 infected cells was observed (Figure 5A). Likewise, the HB5Ag68, HB5AIRLAgp34 and HB3AIRLAgp68/Agp34 HCMV mutants yielded clearly increased IgG-dependent CD107a mobilization as HCMV HB5 (Figure 5B). As observed with BW:FcyR-ζ responder cells, gp34 and gp68 inhibited FcγRIIA NK activation independently, but no additive effects were noted upon deletion of both vFcyRs. To exclude donor-specific effects, NK cells from six different donors were analyzed in degranulation assays comparing HCMV HB5 wt with HB5AIRLAgp68/Agp34 -infected targets opsonized with Cytotect as a source of immune IgG and non-immune sera as a negative control. All donors showed a higher percentage of IgG-dependent CD107a positive cells in the case of HB5AIRLAgp68/Agp34 -infected cells (Figure 5C). Taken together, these data demonstrated that vFcyR gE, gp34 and gp68 on the surface of infected cells mediate inhibition of IgG-dependent NK cell degranulation.

HCMV FcγRs form ternary complexes with antigen and IgG on the cell surface compatible with antibody bipolar bridging

HCMV gp68 was found to bind the Fc Cα2-Gα3 interface of monomeric IgG at nanomolar affinity [24]. To get insight into the intermolecular interactions underlying the inhibitory function of gp34 and gp68 when blocking antigen-antibody complexes, we tested the occurrence of a physical complex on the surface of cells consisting of the target antigen, bound IgG and each of the HCMV FcγRs. We took advantage of immune complexes (composed of trastuzumab and its antigen HER2) which were shown to be sensitive to the blockade through gp34 and gp68 when activating FcγRIII and FcγRI (Figure 3B). HER2-expressing SKOV-3 cells were infected with rVACV expressing Flag-tagged gp34, gp68 or a control protein, ΔIg1-m138, a non-functional MCMV m138/fcr-1 truncation mutant [46] and opsonized with trastuzumab (T) or with an IgG1 isotype control antibody, palivizumab (P) (see sketch in Figure 6A). VACV-infected cells were thoroughly washed to remove unbound antibodies and subsequently lysed. To exclude Fcγ-mediated binding of vFcyRs through anti-Flag antibodies, vFcyR proteins were immunoprecipitated using α-Flag (F(ab')2)-coupled agarose beads. The precipitated proteins were separated by SDS-PAGE and analyzed by immunoblotting using an HER2 specific antibody (Figure 6B). An anti-human IgG-specific antibody was used to detect the co-precipitated antibody. An immunoblot confirmed expression and immunoprecipitation of the vFcyRs. Retrieval of palivizumab by gp34 and gp68 was weaker than retrieval of trastuzumab. This difference could be explained by the fact that trastuzumab could be retained by the cells via vFcyRs and via HER2, while palivizumab could only be retained by vFcyRs. Subsequently, gp34 and gp68 retrieved trastuzumab antibodies bound to HER2 during lysis and precipitation. Nevertheless, co-precipitation of human HER2 molecules occurred only in the presence of specific antibody trastuzumab and the HCMV FcγRs but not in the negative control ΔIg1-m138 (Figure 6B, lanes 5,
Figure 5. The presence of the vFcγRs on the surface of infected cells inhibits antibody dependent NK cell degranulation. (A) MRC-5 fibroblasts were infected with HSV-1F wt, ΔgE and ΔgE revertant for 24 h before cells were opsonized with HSV IgG positive and negative human sera. After 30 min of incubation, unbound antibodies were washed away and NK cells at an E:T ratio of 10:1 were added. After 4 h, CD107a surface...
Binding of human IgG antibodies, trastuzumab and the isotype control antibody palivizumab, was observed to both vFcRs (Figure 6B, lanes 5, 6, 7 and 8). No binding of trastuzumab or palivizumab was detectable to the D138-m138-Flag protein (Figure 6B, lanes 3 and 4). Taken together, the ability of cell surface resident vFcRs gp34 and gp68 to bind to IgG immune complexes was demonstrated. This finding is compatible with the model of "antibody bipolar bridging" described for the HSV-1 FcRs gE [47–49]. According to this concept, epitope-bound IgG on the surface of a virus-infected cell is simultaneously sequestered by the gEgI complex via its Fc domain, thus preventing the activation of immune effector molecules via host FcRs.

Soluble ectodomains of HCMV vFcRs inhibit IgG-dependent host FcRs activation

Soluble truncation versions of HSV-1 gE and HCMV gp68 were instrumental to unravel structural requirements and stoichiometry of herpesviral FcRs forming complexes with Fcγ [24,49,50]. To test whether membrane insertion of gp34 and

Figure 6. The HCMV vFcRs gp68 and gp34 bind antigen-IgG complexes. (A) Schematic representation of the ‘antibody bipolar bridging’ model. (B) Lysates of SKOV-3 cells containing the heterocomplex of vFcR-FLAG, antibody and antigen are immunoprecipitated using an anti-FLAG agarose. SKOV3 cells expressing HER2 antibody on the surface were infected with rVACV expressing the vFcRs before opsonized with the trastuzumab antibody (bipolar bridging-antibody) (T) or an isotype control IgG1 antibody, palivizumab (P). Lysates were prepared after incubation of infected cells with antibody. An anti-Flag agarose IP was performed and retrieved antigens were detected in western blot with anti-ErbB2-specific mAb recognizing human HER2, anti-human IgG, and anti-Flag (M2, Sigma-Aldrich) detecting the Flag-tagged vFcRs. Equal expression of HER2 in cell lysates was verified by western blot analysis with an anti-ErbB2-specific rabbit mAb which detects human HER2 (bottom).

doi:10.1371/journal.ppat.1004131.g005
gp68 is required to interfere with the activation of host FcγRs, recombinant C-terminally truncated ectodomains of HCMV FcγRs, generated and purified from supernatants of transfected human 293 cells. To evaluate if soluble gp34 (sgp34) and soluble gp68 (sgp68) are sufficient to block triggering of host Fcγ receptors, HER2-positive cells were opsonized with trastuzumab and different amounts of recombinant soluble FcγRs were concomitantly added to BW:FcγRIIA-ζ cells (Figure 7A) or BW:FcγRI-ζ cells (Figure 7B). Soluble ICOS ligand (sICOSL) served as a negative control protein. Both sgp34 and sgp68 were able to inhibit activation of the reporter cells expressing FcγRIIIA, although clear differences in concentration dependency between soluble FcγRs were observed. In contrast to full-length HCMV FcγRs, sgp34 was more potent against FcγRIIIA compared to sgp68, since trace amounts of sgp34 hardly detectable in western blot (Figure S5) were sufficient for significant inhibition. In the case of FcγRI, sgp68 was not significantly reducing its activation by trastuzumab, suggesting the specific requirement of the gp68 transmembrane domain for effective inhibition of FcγRI/CD64.

To extend the data to HCMV infection and to test BW:FcγRIIA-ζ cells, a polyclonal antibody preparation (IVIG, Cytotect) was used to opsonize MRC-5 fibroblasts infected with HCMV HB5 (Figure 8). Using BW:FcγRIIA-ζ reporter cells, both of the soluble HCMV vFcγRs prevented activation when compared with treatment of cells with the sICOSL control (Figure 7C). Moreover, this approach allowed to test activation of BW:FcγRIIIB-ζ cells which did not respond to trastuzumab (see Figure 3). As depicted in Figure 7D, FcγRII responses were also sensitive to sgp34 and, to a lesser extent, sgp68. These results provide proof of principle that soluble HCMV FcγRs retain FcγR blocking abilities, and that sgp34 is particularly efficient.

Soluble ectodomains of HCMV vFcγRs inhibit IgG-dependent NK cell degranulation

In an attempt to extend the previously made observation of sgp34 and sgp68-mediated inhibition of IgG-triggered FcγRIII/CD16+ BW5147 responder cells to primary human NK cells, purified IVIG Cytotect was coated directly to a plate serving as a source of ‘immune-complexed’ IgG. After blocking with D-MEM 10% FCS (vol/vol), soluble proteins, IL-2 pre-activated primary NK cells and α-CD107a-PECy5 antibody were added. Soluble ICOS ligand (sICOSL) served as a negative control protein. In the absence of coated IgG, only 10% of NK cells responded with CD107a mobilization, while in the presence of coated IgG more than 70% of NK cells translocated CD107a to the cell surface (Figure 8A), confirming the IgG-dependency of the elicited NK cell response. Importantly, both sgp34 and sgp68 were able to

![Figure 7. Soluble ectodomains of HCMV vFcγRs interfere with FcγR activation](image)

(A) SKOV-3 cells were opsonized with 100 ng/ml trastuzumab for 30 minutes and washed three times with D-MEM 10% FCS (vol/vol) before soluble proteins were added in graded concentrations concomitantly with BW:FcγRIIA-ζ transfectants. mIL-2 was determined in supernatants (which were harvested after 16 h of co-cultivation of responder cells with target cells) by ELISA. (B) As in (A) but SKOV-3 cells were opsonized with 500 μg/ml trastuzumab for 30 minutes and washed three times with D-MEM 10% FCS (vol/vol) before soluble proteins were added in graded concentrations concomitantly with BW:FcγRI-ζ cells. (C) MRC-5 cells were infected with HCMV HB5ΔΔLgp68ΔΔgp34 (2 PFU/cell) for 72 h before soluble proteins were added in graded concentrations concomitantly with BW:FcγRIIA-ζ responder cells. MRC-5 fibroblasts were opsonized with 1:50 diluted Cytotect for 30 min. After removing of unbound antibodies by washing, soluble proteins and BW:FcγR-ζ transfectants were added and co-cultivated overnight. (D) as in (C), but HCMV HB5ΔΔLgp68ΔΔgp34 infected target cells were opsonized with 1:10 diluted Cytotect and BW:FcγRIIA-ζ cells were used as responders. n = 3 replicates, means with standard deviations (error bars) are shown for 2 independent experiments. Significance of results (Student’s t-test) are presented in Table S1 as *: p<0.05 **: p<0.01 ***: p<0.001.

doi:10.1371/journal.ppat.1004131.g007
inhibit IgG-dependent NK degranulation, although a clear difference in the concentration dependency between soluble vFcRs was observed. Consistent with the results received with BW:FcγRIIA-ζ reporter cells (Figure 7C), sgp34 was more potent against IgG-dependent NK activation compared to sgp68, since trace amounts of sgp34 (Figure 8B) were sufficient to significantly interfere with degranulation of NK cells. Using a gain of function approach the data confirmed the inhibitory capacity of gp34 and gp68 to attenuate IgG-mediated NK cell activation.

Discussion

Here we identified various members of the human FcγR family, i.e. FcγRI/CD64, FcγRII/CD32A and FcγRIII/CD16A, to be targeted by the HCMV FcγRs gp34 and gp68 which act as antagonists of ligand induced FcγR responses. This ability enables HCMV to evade from IgG effector responses and should have direct proviral effects in scenarios of post-acute and recurrent infection when glycoprotein-specific IgG antibodies are synthesized [51]. Several independent experimental approaches support this conclusion: i) HCMV HB5-derived mutants with deletions of the gp34 and gp68 coding genes, TRL11/IRL11 and UL118-119, respectively, showed significantly increased activation of host FcγRs upon opsonization of infected cells with polyonal HCMV immune IgG using different types of responder cells (i.e. BW5147 transfectants expressing FcγR-ζ chain chimeras and primary human NK cells); ii) this HCMV phenotype was reproduced with targeted RL11 and UL118-119 mutants of the AD169varL and TB40/E strain and iii) fully reversed by retransfer of the responsible genes into the RL11- and UL118-119-deficient TB40/E genomes; iv) a gain-of-function approach based on ectopic VACV-based expression of gp34 and gp68 which allowed functional analysis of well characterized therapeutic human monoclonal antibodies and different IgG isotypes thereof and v) functional testing of recombinant soluble ectodomains of both HCMV inhibitors using BW5147:FcγR reporter cells as well as primary human NK cells. Importantly, the inhibitory effect of gp34 and gp68 was demonstrated at physiological concentrations of polyclonal HCMV immune IgG, i.e. within an extended concentration range of human serum and ten to fifty fold lower.

The quite complex and overlapping expression patterns of host Fc-IgG receptors on a multitude of diverse human immune cell (sub-)populations [17] have obstructed a systematic functional analysis of individual host FcγRs which differ with respect to molecular and functional features including the composition of their ectodomain, intracellular signaling and IgG subclass preferences. Only a recently developed methodologically broadly tested and proven reporter cell assay [28] enabled a comprehensive and quantitative functional assessment of potential viral antagonists and their relative effectiveness against distinct host FcγRs. The new methodology was complemented and validated by immunological as well as biochemical assays, i.e. the use of primary human NK cells as natural responder cells and immunoprecipitation studies, the results of which accord very well with the findings.

Figure 8. Soluble ectodomains of HCMV vFcγR interfere with antibody dependent NK cell degranulation. (A) Cytotect was coated to a plate in binding buffer (0.1 M Na2HPO4, pH 9.0) at a concentration of 0.5 mg/ml and incubated for 2.5 hours at 37 °C. After blocking for 30 minutes and washing unbound antibodies, soluble proteins, rIL-2 pre-activated primary NK cells and α-CD107a-PECy5 antibody were added and incubated for 4 hours at 37 °C. Duplicates were measured for CD107a surface expression after dead cell exclusion with DAPI staining in a FACS Canto II. Means are shown with standard deviations (error bars). Significance of results (Student’s t-test) are presented in Table S1 as *: p<0.05 **: p<0.01 ***: p<0.001. (B) To compare the amounts of soluble proteins used in (A), SDS-PAGE and anti-V5 immunoblotting was performed.

doi:10.1371/journal.ppat.1004131.g008
made with the BW5147:FcyRI-ζ test system. Last but not least, the well-known viral FcγRI inhibitor, HSV gE, was included as an internal control. Previous publications reported inhibition of ADCC, virion neutralization and complement mediated virolysis by HSV gE [47,52,53]. Since the blockade of ADCC by gE was not yet attributed to a specific host FcγR [30,47,54], analysis of the relative impact of HSV gE on distinct host FcγRs represents a novel aspect of our study. On the basis of the test performance of HSV gE, both gp34 and gp68 demonstrated an at least equivalent if not superior efficacy to block FcyRII and FcyRIIA mediated responses. Surprisingly and contrasting with both HCMV vFcγRs, gE enhanced rather than attenuated FcγRI activation. This observation warrants further studies on how HSV-infected cells affect FcγRII bearing immune cells like monocytes, macrophages, DCs and neutrophils in the presence of HSV-immune IgG.

Structural requirements for FcγR inhibition

The inhibition mechanism of IgG-mediated effector functions by gE has been suggested to involve ‘antibody bipolar bridging’ [47]. Pioneering studies of the Bjorkman laboratory demonstrated that the architecture of the gE-gI-IgG complex allows antibody bipolar bridging [49], whereby the gE binding site for FcγR does not directly overlap with the binding sites to the host FcγRs or the C1q component of complement, which both bind to the upper hinge region of IgG or near the C4d domain [55,56]. Therefore, the structure of the gE-gI-Fc complex does not directly explain how gE binding to the Fc region of IgG leads to evasion from FcγR- and complement-mediated immune responses. Our biochemical data reveal formation of ternary heterocomplexes composed of antigen, IgG and gp34/gp68, i.e., a molecular configuration compatible with the minimal requirements of the concept of ‘bipolar bridging’ [47,49]. The observation that soluble gp34 and gp68 remain potent inhibitors of FcγR activation demonstrates that the functional inactivation of the host FcγR on the responder cell does not require fixation of the opsonized IgG to the plasma membrane as insinuated by the classical concept of bipolar bridging. Although there is no crystal structure available for any HCMV vFcγR, detailed biochemical evidence was generated of how HCMV FcγRs recognize FcγRI, particularly for gp68. The gp68 FcγR binding site was mapped to the C4d-C4q interface region of FcγRII [24] which is remote from the FcγRII/III contact site, that involves the hinge between the Fcγ and Fab domains including the upper portion of the C4q2 domain [55,57]. Specifically, gp68 binding to FcγR is affected by mutations at the C4q2-C4q3 domain interface of IgG, mapping its binding site to determinants situated nearby but not identical with those that are recognized by gE [24]. We observed robust functional differences between HSV-1 gE and HCMV gp68 in their manipulation of FcγRI, further substantiating the mechanistic differences between these viral inhibitors regarding their interaction mode with FcγR.

While the binding of IgG by gE must induce conformational changes of the antibody that result in an enhancement of FcγRII activation, gp68 binding to IgG induces the opposite effect. Since both gE and gp68 had concordant inhibitory effects on FcγRII, our data further imply that FcγRI and FcγRIII must bind IgG in a differential fashion. Importantly, the length and flexibility of the hinge region varies considerably among the IgG subclasses, and IgG3 differs from the other subclasses by its unique extended hinge region which is approx. four times as long as the IgG1 hinge, leading to the most hinge-mediated flexibility among human IgG subclasses [58]. Notably, we demonstrate efficient FcγRIIIA blockade by IgG3-shaped immune complexes through gp68 and gp34 (Figure 4) which is not possible by HSV gE [36,37]. Thus, by analogy with HSV gE, HCMV gp34 and gp68 represent promising and unique tools to further probe into the diverse structural requirements of FcγRI/II/III activation by immune complexes constituted by all IgG subclasses.

Functional redundancies of gp34 and gp68?

The presence of independent but redundant immunoevasins jointly targeting one particular immune control mechanism is a typical feature of cytomegaloviruses highlighting the antiviral power of the targeted immune component [6,59–62]. At first glance, the HCMV FcγR antagonists gp34 and gp68 exhibit a surprisingly similar effect on the whole range of activating host FcγRs, despite their simultaneous synthesis during the early and late phase of HCMV replication [22]. As a consequence, removal of both inhibitors from the surface of HCMV infected cells did not reveal additive or even synergistic effects compatible with the notion that the two factors do not act in an obvious cooperative manner. This finding cannot be attributed to differences in the density of plasma membrane resident HCMV antigens between the HCMV gene deletion mutants compared in our study (see Figure S2 and S3). However, both of the antagonists could themselves represent antigens that are recognized by the Fab part of immune IgG, which could either directly activate host FcγRs or block FcγR-mediated bridging of opsonizing IgG (as a counter defense of humoral immunity against vFcγRs) and thus indirectly enhance host FcγR triggering. Moreover, both of the HCMV FcγRs may fulfill further proviral but FcγR-independent functions which exert separate pressures to adapt. This is exemplified by the MCMV m158/kgr-1 molecule which down-regulates the NKG2D ligands MULT-1, H60, RAEL-e [46,63] as well as the B7-1 molecule CD80 [64] beyond its Fcγ binding activity. In addition, besides gp34 and gp68 additional HCMV FcγRs become expressed on infected cells (Mercè-Maldonado and Hengel, in preparation), one of which is encoded by RL13 [65]. Thus gp34 and gp68 may be part of a more complex network of co-expressed HCMV FcγRs jointly combating their host opponents, and removal of one player could confound their interplay and nested hierarchies. Next, drastic quantitative and qualitative differences in the potency of gp34 vs. gp68 became apparent when soluble molecules were compared. Thus it is tempting to speculate that shedding of vFcγRs may be part of the molecular blueprint of particular vFcγRs.

Which HCMV antigens elicit ADCC responses?

While there is extensive knowledge on antigens and processed epitopes which rule anti-HCMV T cell responses [66], viral antigens that are targets of ADCC dependent cellular immunity remain poorly defined. Our finding that late but not early antigens dominate the FcγRIIIA/CD16 activating IgG response (Figure 1B) appears a particular characteristic of HCMV when compared with HSV and could point to structural glycoproteins known to become exposed on the cell surface as the HCMV replication cycle progresses, e.g. gB [67], gH [68] and UL128 [69]. Guided by human antibodies with defined specificity, our BW5147-based FcγR-ζ assay system could be instrumental to identify the relevant HCMV antigens and epitopes. In many tissues and organ compartments, including blood, HCMV is spreading intracellularly (e.g. via infected endothelial cells and leukocytes) rather than as free virions [70]. Therefore, ADCC-inducing IgG is plausible to represent a primary effective component of humoral immunity, which becomes only secondary attenuated by gp34 and gp68. Both immunoevasins could thus contribute to the relatively poor therapeutic efficacy of HCMV-immune IgG observed in a variety of clinical settings [12–14]. Thus a better knowledge of the optimal HCMV IgG epitopes on the one hand, and an understanding of
the action of viral FcyR antagonists on the other hand, could provide us with a basis for the targeted induction or even rational synthetic design of IgG molecules that allow an improved immunotherapy of HCMV diseases.

Materials and Methods

Cell lines, viruses and infection conditions

Human MRC-5 lung fibroblasts (ATCC CCL-171), African green monkey CV-1 (ATCC CCL-70), HEK293 (ATCC CRL-1573) and CD20 transfected 293T cells (a kind gift from Irvin S. Y. Chen, University of California) [55] cells were maintained in culture with D-MEM (Gibco), 10% (vol/vol) heat-inactivated FCS, Penicillin (100 U/ml), Streptomycin (100 µg/ml) and Glutamine (2 mM). Mouse BW5174 thymoma cells (obtained from ATCC, TIB-47), transfectants thereof [28] and SKOV-3 cells were maintained in RPMI 1640 medium with 10% (vol/vol) FBS, Penicillin, Streptomycin, Glutamine, and Sodium Pyruvate (1 mM).

The following viruses were used: the bacterial artificial chromosome plasmid (BACmId-derived) human cytomegalovirus (HCMV) strain HB5 [71], the HB5-derived mutants lacking UL180-120 (Agp68) [22] or lacking IRL/UL11/UL18 (Agp68/Agp34) [31], TB40/E BAC [34], herpes simplex virus 1 strain F (HSV-1), HSV-1 ΔEG and revertant thereof [72], VACV wt Western Reserve, recombinant HB5-derived deletion mutant TRL10-14/IRL truncation mutant of MCMV MULT-1 [74] and a rVACV expressing a non-IgG binding BAC [34], herpes simplex virus 1 strain F (HSV-1), HSV-1 plasmid (BACmid)-derived human cytomegalovirus (HCMV) strain AD169varL, the revertant viruses were infected with 2–3 PFU/cell.

Infection of cells with HCMV and HSV was enhanced by centrifugation at 800 g for 30 min. If not stated otherwise, the cells were infected with 2–3 PFU/cell.

Human immunoglobulin preparations, human serum pools and humanized antibodies

A clinically used IVIG preparation (Cytotect [32,77] (batch no. A158024 and B797053, Biotest Pharma GmbH, Germany) containing ELISA reactive IgG specific for HCMV and HSV was used. For the FACS analysis of HCMV and HSV surface antigens, F(ab)2 fragments were generated using the Pierce F(ab)2 Micro Preparation Kit (Thermo Fisher Scientific Inc., Rockland, IL, USA) according to the manufacturer’s instructions and controlled by Western Blot (data not shown). For the experiments with HCMV and HSV, a pool of two ELISA seronegative donors were used as a negative control. Trastuzumab was purchased from Genentech, Inc., USA and palivizumab from MedImmune, USA. The humanized anti-CD20 IgG1, IgG2, IgG3, IgG4 isotypes and IgA were purchased from InvivoGen, Rockland, France. For the CD107a NK degranulation assay, an HCMV- and HSV-seropositive donor and a negative serum donor as sources of immune and non-immune IgG, respectively, were used. For proving that the assay was antibody-antigen specific (Figure S1), a pool of 6 HCMV- and HSV-seropositive donors and humanized antibodies were used. For the experiments with HCMV and HSV, a pool of two ELISA seronegative donors were used as a negative control. Two pools and humanized antibodies were used. For the experiments with HCMV and HSV, a pool of two ELISA seronegative donors were used as a negative control.
blood was drawn from healthy volunteers after written informed consent.

IgG dependent activation of the BW:FcγR-Δζ transfectants

This assay was described elsewhere [28]. Briefly, in a standard assay, target cells were incubated with dilutions of human sera, IVIG, the anti-hCD20 IgG isotype collection or trastuzumab in D-MEM with 10% (vol/vol) FCS for 30 min at 37°C. Cells were washed before co-cultivation with BW:FcγR-Δζ transfectants (ratio E:T 20:1) for 16 h at 37°C in a 3% CO₂ atmosphere. Then mL-2 secreted was measured by ELISA. When applied to VACV infected cells, a previous step of UV-inactivation at 4000 Jules/m² and 2 steps of washing with PBS were performed before opsonization with Abs. When applied to the inhibition through soluble vFcγR, soluble proteins were added concomitantly with BW:FcγR-Δζ transfectants. For herpesviral late antigens IgG-dependent activation of BW:FcγRIIIA, late phase gene expression was blocked by the use of phosphonoacetic acid (PAA) (250 μg/ml), which blocks viral genome replication and late gene expression. Afterwards, a co-cultivation assay was performed as described above.

Expression and purification of soluble V5-His tagged HCMV vFcγRs ectodomain proteins

The N-terminus of gp34 was amplified by PCR using the following primers 5′-GGAGTTAAGGATCTGACGACCTACGACACC-3′ [22] and 5′-TGTCGATCCGGACCACTACGGGCTTTAAT-3′. Cloning of the N-terminus of gp68 was previously described [24]. The N-terminus of ICOSL (ICOS ligand) was amplified by PCR using the following primers 5′-GAGTTGTAAGCTCAGACATGCGGCTGGG-3′ and 5′-CTGTCTCAGTCTGAGCCGCGCTTTTTC-3′. Sequencing of the coding sequences showed an amino acid change in ICOSL from V121 to I128 but with no detectable functional difference. Each PCR product was cloned in pGene/V5-His B vector (Invitrogen, USA) in frame with the V5-His epitope tag using the restriction sites (Invitrogen, USA) in frame with the V5-His epitope tag using the restriction sites (Invitrogen, USA). For enhanced expression of gp34V5-His and gp68V5-His, γ- Globin cloned from pSG5 vector (Stratagene, USA) was inserted into pIRES-EGFP between the CMV-IE promoter and the coding sequences. The plasmids were transfected in HEK293 cells using Superfect (Qiagen, Germany) and transfected cells were selected with 1.25 mg/ml of Geneticin (Sigma-Aldrich, Germany). After 4–5 days, supernatants were collected, volume reduced, diluted with PBS (1:3), adjusted to a 10 mM Imidazole concentration and passed over a His-Trap FF crude column (GE Healthcare, USA). Proteins were eluted in Imidazole/Phosphate buffer (250 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 100 mM sodium phosphate, 500 mM NaCl) and then dialyzed to PBS. Comparable protein amounts were adjusted based in Western blot analysis using α-V5 antibody (Invitrogen, USA).

FACS analysis for vFcγR expression on infected cells

MRC-5 cells were infected with 2 PFU/cell of wt HCMV and HCMV vFcγR mutants during 72 h and with HSV-1 wt, ΔΔE, and ΔΔE-revertant during 24 h. Cells were resuspended in PBS containing 2 mM EDTA, washed twice in PBS supplemented with 3% (vol/vol) FCS and mock stained or stained with human Fcγ fragment-FTTC (Rockland Immunochemicals, USA). 1×10⁵ living cells were obtained in FACS Canto II using the FACSDiva software and analyzed with FlowJo (Tree Star Inc, USA).

FACS analysis for HCMV and HSV surface antigen expression on infected cells

MRC-5 cells were infected with 1 PFU/cell of wt HCMV and HCMV ΔvFcγR mutants for 72 h and with 10 PFU/cell of HSV-1 wt and ΔΔE for 24 h. Cells were resuspended in PBS containing 2 mM EDTA, washed twice in PBS supplemented with 3% (vol/vol) FCS. HCMV infected cells were stained with the F(ab)₂ preparation of Cytokot, goat anti-human-Fab(2)-Biotin, and Streptavidin-PE (AbD Serotec, UK) or Fcy fragment-FTTC (Rockland Immunochemicals, USA). The comparability of infection of the different HCMV ΔvFcγR mutants was controlled by intracellular staining of CMV nuclear antigens with CCH2 and DDG9 antibodies (Dako, Denmark) and goat anti-mouse-APC (BD Pharmingen, USA) after fixation with 1.5% PFA and permeabilization with PBS supplemented with 3% (vol/vol) FCS and 0.05% (vol/vol) Saponin. HSV infected cells were stained with the F(ab)₂ preparation of Cytokot, goat anti-human-Fab(2)-Biotin (AbD Serotec, UK) or Fcy fragment-Biotin (Rockland Immunochemicals, USA) and Streptavidin-APC (Jackson Immunoresearch, USA). After DAPI staining, 1–2×10⁴ living cells were obtained in a FACSCanto II using the FACSDiva software and analyzed with FlowJo (Tree Star Inc, USA).

CD107a NK cell degranulation assay

PBMCs were prepared from EDTA-blood of healthy donors using Lymphoprep (Axis-Shield, Norway) differential centrifugation. PBMCs were incubated during 3 h at 37°C to allow adherence of unwanted cells. Suspension cells were collected and resuspended in media containing 100 IU/ml of human rIL-2 (PromoKine, Germany) and incubated overnight at 37°C. Cells were resuspended and further processed to obtained polyclonal NK cells using a MACS negative selection NK cell isolation kit (Miltenyi Biotec, Germany). NK cell purity was tested in FACS and was usually above 96% (data not shown). For measuring degranulation by co-cultivation of immune IgG and a viral target, HCMV or HSV infected fibroblasts were opsonized with a serum of a healthy donor positive for HCMV and HSV or with IVIG. As a control, a healthy seronegative donor was also analyzed. Opsonization was done at 37°C for 30 min at 5% CO₂. Two steps of washing with D-MEM 10% (vol/vol) FCS followed to remove unbound IgG. 1×10⁵ polyclonal NK cells (E:T ratio of 10:1) were added in each well and the CD107a assay was performed as elsewhere described [43]. Briefly, polyclonal human NK cells were incubated 4 h at 37°C in the presence of 6 μg/ml Golgi Stop (Monensin, BD Pharmingen, Belgium), 10 μg/ml Golgi Plug (BrefeldinA, BD Pharmingen, Belgium), and CD107 PeCy5 mAb (BD Pharmingen, Belgium). NK cells were collected, washed twice in ice cold PBS containing 2 mM EDTA and stained for extracellular markers (CD56, CD3). 1×10⁴ cells were counted and analyzed.

Immunoprecipitation and detection of proteins by immunoblot

SKOV-3 cells were infected with 2 PFU/cell VACV for 14 h. Infected cells were incubated with 1 μg/ml trastuzumab or palivizumab for 30 min at 4°C, and non-bound antibody was removed by washing cells with PBS. Lysis buffer (200 mM NaCl, 10 mM MgCl₂, 10 mM KCl, 20 mM HEPES, 0.5% (vol/vol) NP-40, 0.1% EDTA, 10% (vol/vol) glycerol, 0.1 mM sodium orthovanadate, 0.1 mM PMFS, 0.5 μM Pepstatin, 1 mM dithiothreitol, pH 7.4) was given to cells and, after removal of cell nuclei by centrifugation, lysates were incubated with agarose immobilized anti-FLAG antibody (Bethyl Laboratories, Inc. USA) during

PLOS Pathogens | www.plospathogens.org

May 2014 | Volume 10 | Issue 5 | e1004131
2 h at 4°C. Previously, a sample of each lysate was taken for subsequent western blot expression analysis. Lysis buffer was used to wash the agarose pellet and proteins were eluted with Laemmli sample buffer. Proteins were separated by sodium-dodecyl-sulfate (SDS)-8% polyacrylamide gel electrophoresis (PAGE) and transferred to nitrocellulose filters. Western Blot was performed with anti-ErbB2-specific rabbit mAb V2W (Abscam Inc, USA), anti-Flag-specific mouse mAb M2 (Sigma-Aldrich, USA), anti-human-peroxidase (Sigma-Aldrich, USA), anti-rabbit-peroxidase (Sigma-Aldrich, USA) and anti-mouse-peroxidase (Dianova, Germany). Proteins were visualized using ECL chemiluminescence system (GE-Healthcare, Germany).

Uniprot list of genes and proteins used
HCMV UL119-118: P16739
HCMV RL11: Q6SX56
HSV gE: Q7O3F0
Human FcγRIIA/CD16: P08637
Human FcγRIIA/CD82A: P12318
Human FcγRI/CD64: P12314
Mouse Tcr zeta chain: P24161
Human ICOSL: O75144

Taxonomy ID for viruses
Human cytomegalovirus (strain AD169): 10360
Herpes simplex virus (type 1/strain F): 10304
Vaccinia virus Western Reserve: 696871

Supporting Information
Figure S1 BW:FcγRs-ζ responses are virus-specific and triggered only in the presence of virus-immune IgG. MRC-5 cells were infected with 2 PFU/cell HSV-1 wt, HCMV HB5 wt or left uninfected (mock) for 24 or 72 h. Afterwards, cells were opsonized with IgG of pooled human sera. ELISA-reactive (immune) HSV IgG and HCMV IgG sera were compared with ELISA non-reactive (non-immune) sera at 2 mg/ml of IgG concentration. After washing, BW:FcγRs-ζ effector cells were added and cultures were incubated for 16 h. mIL-2 was determined by ELISA. Triplicates were measured; means with standard deviations (error bars) are shown for 2 independent experiments. n.d. indicates OD<0.05. (TIF)

Figure S2 Detection of HCMV and HSV surface antigen expression on infected cells. (A) MRC-5 cells were infected with HSV-1 wt, AgE and AgE-revertant with 2 PFU/cell for 24 h. After harvesting and washing in PBS with 3% (vol/vol) FCS cells were mock stained, stained with human Fcγ-FITC or stained with a purified Fab2 preparation of Cytotect, followed by goat anti-human-F(ab2)-Biotin and Streptavidin-PE. 1×10⁴ living cells were analyzed with a FACScanto II using the FACS Diva software and analyzed with FlowJo (Tree Star Inc, USA). As in (A), but MRC-5 fibroblasts were infected with HCMV HB5 wt or HB3Agg68 with 2 PFU/cell for 72 h. (C) as in (B), but MRC-5 cells were infected with HB3ΔIL5, HB5ΔIL5Agg34 or HB5ΔIL5Agg34/Agg68. (D) As in (B), but MRC-5 cells were infected with AD169varL wt, AD169varLAgg68, AD169-varLAgg34 or AD169varLAgg34/Agg68. One of three (A, B, C) or two (D) representative experiments is shown. (TIF)

Figure S3 HCMV TB40/E BAcmid derived vFcγRs revertants restore FcγRIIIA inhibition. MRC-5 cells were infected with HCMV wt virus, vFcγR mutants or vFcγR revertants (2 PFU/cell) for 96 h. (A) Infected MRC-5 fibroblasts were stained with purified Fab2 fragments prepared from IVIG Cytotect, Fcγ-FITC or 2nd step antibody as a control and analysed by FACS. (B) MRC-5 fibroblasts were opsonized with IVIG Cytotect at different concentrations for 30 min. After removing of unbound antibodies by washing, 1×10⁶ BW:FcγR-ζ transfectants were added. Measurement of mIL-2 in supernatants after 16 h of co-cultivation of reporter cells with targets was performed by ELISA. Values are presented in the graphic as OD 450 nm. n = 3; means with standard deviations (error bars) are shown for two independent experiments. (TIF)

Figure S4 Ectopic expression of HSV-1 gE, HCMV gp68 and HCMV gp34 inhibit IgG1 mediated activation of FcγRIIIA. CD20 transfected 293T cells were infected for 16 hours with 2 PFU/cell of VACV wt or rVACV expressing gE (A) or gp68 and gp34 (B). After opsonization with 4 μg of rituximab (anti-hCD20 IgG1) and washing for removing unbound antibody, cells were co-cultivated with 1×10⁵ BW:FcγRIIIA-ζ reporter cells per well for 16 h before supernatants were collected and mIL-2 was determined by ELISA. Each value represents three replicates; means with standard deviations (error bars) are shown for two independent experiments. Significance of results (Student’s t-test) are presented in Table S1 as *: p<0.05 **: p<0.01 ***: p<0.001. (TIF)

Figure S5 Detection of soluble vFcγRs ectodomains. To compare amounts of soluble proteins used in the BW:FcγR-ζ assay, recombinant proteins were loaded in different dilution steps on an SDS-PAGE and detected using an anti-V5 antibody by western blot. Due to the strong inhibition capacity of gp34 protein at very low concentrations, its amounts are hardly detectable in the blot. Therefore higher concentrations (200×, 100×) and a longer exposure are shown. (TIF)

Table S1 Significance of results (Student’s t-test) is presented in Table S1 as *: p<0.05 **: p<0.01 ***: p<0.001 for all figures in need of it. (DOCX)

Table S2 Synopsis of HCMV mutants used in the study. (DOCX)

Author Contributions
Conceived and designed the experiments: ECA MT MF HR HH. Performed the experiments: ECA MT KH VTKL KE MF HR EMM EA. Analyzed the data: ECA MT HH. Contributed reagents/materials/analysis tools: VTKL DCJ AZ. Wrote the paper: ECA MT HH.

References
1. Mocarski ES, Shenk T, and Pass RF (2007) Cytomegaloviruses. In: Knipe, D K and Howley PM, editor. Field’s Virology. Philadelphia: Lippincott, Williams & Wilkins. pp. 2701–2772.
2. Stern-Ginossar N, Weinbard B, Michalski A, Le VTK, Hein MY, et al. (2012) Decoding human cytomegalovirus. Science 338: 1088–1093.
3. Quinnan GV, Masur H, Kook AH, Armstrong G, Frederick WR, et al. (1984) Herpesvirus infections in the acquired immune deficiency syndrome. JAMA 252: 72–77.
4. Poli B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, et al. (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188: 1047–1054.
5. Miller-Kittrell M, Sparer TE. (2009) Feeling manipulated: cytomegalovirus infection and its implications for the acquired immune deficiency syndrome. J Integr Biol 1: 6–4.
6. Mocarski ES (2002) Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol 10: 332–339.
33. Le VTK, Trilling M, Hengel H (2011) The cytomegaloviral protein pUL138 enhances ULb'-encoded modulation of TNF-a signaling. J Virol 85: 13260–13270.

34. Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, et al. (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89: 359–368.

35. Morizono K, Ku A, Xie Y, Hanai A, Kammi SKP, et al. (2010) Redirecting leukoviral vectors pseudotyped with Sindbis virus-derived envelope proteins to DC-SIGN by modification of N-linked glycans of envelope proteins. J Virol 84: 6923–6934.

36. Linde GA, Hammastrom L, Persson MA, Smith CJ, Sundquist VA, et al. (1983) Virus-specific antibody activity of different subclasses of immunoglobulins G and A in cytomegalovirus infections. Infect Immun 42: 237–244.

37. Gupta CK, Leszczynski J, Gupta RK, Silver GR (1996) IgG subclass antibodies to human cytomegalovirus (CMV) in normal human plasma samples and their neutralizing activities. Biologics 24: 117–124.

38. Wiger D, Michaelsen TE (1995) Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor. Immunology 84: 565–572.

39. Johansson PJ, Hallberg T, Ostasli VA, Grubh A, Blomberg J (1984) Human immunoglobulin class and subclass specificity of Fc receptors induced by herpes simplex virus type 1. J Virol 50: 796–804.

40. Mandelboim O, Malik P, Davis JM, Jo CH, Boyson JE, et al. (1999) Human CD16 as a high affinity receptor mediating direct natural killer cell cytotoxicity. Proc Natl Acad Sci USA 96: 5640–5645.

41. Cooper MA, Frøhner TA, Caliguari MA (2001) The biology of natural killer-cell subsets. Trends Immunol 22: 633–640.

42. Couzi I, Pitard V, Sercot X, Garrigue I, Hawashor O, et al. (2012) Antibody-dependent anti-cytomegalovirus activity of human y6 T cells expressing CD16 (Fc-yRIIA). Blood 119: 1419–1427.

43. Alter G, Malenfant JM, Altfeld M (2006) CD107a as a functional marker for the identification of natural killer cell activity. Immunol Methods 296: 15–22.

44. Guma M, Angulo A, Lopez-Botet M (2006) NK cell receptors involved in the recognition of human cytomegalovirus infection. Curr Top Microbiol Immunol 298: 207–223.

45. Wilkinson GWG, Tomasec P, Stanton RJ, Armstrong M, Prod’homme V, et al. (2008) Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 42: 206–212.

46. Lenac T, Budi M, Arabovic J, Hasen M, Zimmermann A, et al. (2006) The herpesviral Fc receptor Fcε-I down-regulates the NGK2/6 ligands MULT-1 and H60. J Exp Med 203: 1843–1856.

47. Frank I, Friedman HM (1989) A novel function of the herpes simplex virus type 1 Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J Virol 63: 4479–4486.

48. Van Vliet KE, De Graaf-Miltenburg LA, Verhoef J, Van Strijp JA (1992) Direct evidence for antibody bipolar bridging on herpes simplex virus-infected cells. Immunol Lett 34: 65–73.

49. Sprague ER, Wang C, Baker D, Bjorkman PJ (2005) Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging. PLoS Biol 4: e146.

50. Sprague ER, Martin WL, Bjorkman PJ (2004) pH dependence and stoichiometry of binding to the Fc region of IgG by the herpes simplex virus Fc receptor Fcε-I. J Biol Chem 279: 14184–14193.

51. Schoppel K, Kropf B, Schmidt C, Vornhagen R, Mach M (1997) The humoral immune response against human cytomegalovirus is characterized by a delayed synthesis of glycoprotein-specific antibodies. J Infect Dis 175: 533–544.

52. Labinski J, Nagashamugam T, Friedman HM (1998) Viral interference with antibody and complement. Semin Cell Biol 9: 329–337.

53. Nagashamugam T, Labinski J, Wang L, Goldstein LT, Weeks BS, et al. (1998) In vivo immune evasion of herpes simplex virus type 1. J Virol 72: 3533–3539.

54. Labinski J, Lazarov HM, Avasthi S, Wang F, Friedman HM (2001) The herpes simplex virus 1 IgG Fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vitro. J Virol 85: 3239–3249.

55. Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-FcgammaRIII complex. Nature 406: 267–273.

56. Kadaev S, Moyska S, Frieman WH, Safran-Cribs G, Sun PD (2001) The structure of the human type III Fcgamma receptor in complex with Fc. J Biol Chem 276: 16469–16477.

57. Sondermann P, Oosthuizen V (2002) X-ray crystallographic studies of IgF1 gamma receptor interactions. Biochem Soc Trans 30: 461–466.

58. Reusch KE, Sleteds L, Michelena TE (1997) Flexibility of human IgG subclasses. J Immunol 159: 3722–3732.

59. Hendel H, Brune W, Kozoszinov UH (1998) Immune evasion by cytomegalovirus-survival strategies of a highly adapted opportunists. Trends Microbiol 6: 180–187.

60. Powers C, Frick K (2008) Rhesus CMV: an emerging animal model for human CMV. Med Microbiol Immunol 197: 109–115.

61. Jonjic S, Babić M, Pocić B, Krmptić A (2008) Immune evasion of human cytomegalovirus by viral Fc receptor. Curr Opin Immunol 20: 50–56.

62. Hendel H, Kozoszinov UH (1997) Interference with antigen processing by viruses. Curr Opin Immunol 9: 470–476.

63. Arapovic J, Lenac T, Antulov R, Polic B, Ruzsics Z, et al. (2009) Differential interference with B7-1 costimulation: a new role for murine cytomegalovirus Fc receptor. J Virol 83: 8198–8207.

64. Minter JD, Klemm EJ, Wagner M, Paquette ME, Napier MD, et al. (2006) Viral interference with B7-1 costimulation: a new role for murine cytomegalovirus Fc receptor-1. J Immunol 177: 8422–8431.
65. Cortese M, Calò S, D’Aurizio R, Lilja A, Pacchiani N, et al. (2012) Recombinant human cytomegalovirus (HCMV) R1.13 binds human immunoglobulin G Fc. PLoS One 7: e50166.

66. Khan N (n.d.) The immunological burden of human cytomegalovirus infection. Arch Immunol Ther Exp (Warsz) 55: 299–308.

67. Radsak K, Eickmann M, Mockenhaupt T, Bogner E, Kern H, et al. (1996) Retrieval of human cytomegalovirus glycoprotein B from the infected cell surface for virus envelopment. Arch Virol 141: 557–572.

68. Manley K, Anderson J, Yang F, Sznastokowski J, Oakley EJ, et al. (2011) Human cytomegalovirus escapes a naturally occurring neutralizing antibody by incorporating it into assembling virions. Cell Host Microbe 10: 197–209.

69. Macagno A, Bernasconi NL, Vanzetta F, Dander E, Sarasini A, et al. (2010) Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol 84: 1005–1013.

70. Plachter B, Sinzger C, Jahn G (1996) Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res 46: 195–261.

71. Borst EM, Hahn G, Koszinowski UH, Messerle M (1999) Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 73: 8320–8329.

72. Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M, et al. (1994) Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68: 834–845.

73. Bell S, Cranage M, Borysiewicz L, Minson T (1996) Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1. J Virol 66: 2181–2186.

74. Krmpotic A, Hasan M, Loewendorf A, Saulig T, Halenius A, et al. (2005) NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J Exp Med 201: 211–220.

75. Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196: 605–616.

76. Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 94: 14759–14763.

77. Snyderman DR, Werner BG, Heine-Lacey B, Berardi VP, Tilney NL, et al. (1987) Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal-transplant recipients. N Engl J Med 317: 1049–1054.