Triangular quantum profiles: transmission probability and energy spectrum

Altuğ Arda
Department of Physics Education, Hacettepe University, 06800, Ankara, Turkey
E-mail: arda@hacettepe.edu.tr

Abstract. Analytical expressions for the transition probability and the energy spectrum of the 1D Schrödinger equation with position dependent mass are presented for the triangular quantum barrier and quantum well. The transmission coefficient is obtained by using the wave functions written in terms of the Airy’s functions and of the solutions of the Kummer’s differential equation. In order to show the validity of our analyze, an example by taking some numerical values for GaAs heterostructure is presented.

1. Introduction
Quantum well [1, 2], quantum dot [3, 4] and quantum wire [5, 6] heterostructures which are classified as low-dimensional semiconductor quantum systems have become an important part within the semiconductor studies. The theoretical and practical investigation gives some possibilities to produce high quality quantum heterostructures. The materials consisting of GaAs/AlAs have been widely used in investigation of the above heterostructures. However, new types of the materials have been also taken into account, for example, silicon carbide (SiC) [7].

To study the semiconductor heterostructures within the theoretical and practical frameworks could give some clues that may be helpful to advance the semiconductor technology such as development of some optoelectronic and communication devices based on the quantum mechanical tunnelling, some visible lasers based on the electronic spectrum of double quantum well [8] and quantum cascade lasers based on the electronic transition between levels of the conduction band [9]. Among the other quantum heterostructures, the triangular quantum well(s) is also important systems since the absorption coefficient value is reduced in the experimental measurement of the electroabsorption when triangular quantum wells used [10]. Moreover, the current absorption spectra of the triangular quantum profile could operate with lower driving voltages [11].

The quantum mechanical tunnelling is a fundamental subject within the studying of the semiconductor quantum systems. This is so because studying of tunnelling helps to understand the physical properties of the related system and gives some hints about the lasing in quantum well lasers and electron transport in some devices [12]. According to the above points, it could be interesting to find the transmission coefficient for the triangular quantum barrier including a numerical presentation and to study the bound states of the triangular quantum well for the 1D Schrödinger equation. We find that the transmission probability oscillates within the range of energy but this behavior is very slightly. The numerical computation is presented for the triangular quantum barrier made of GaAs heterostructure where the thickness is $a = 7$ nm.
while it’s maximum value is \(V_0 = 450 \text{ meV} \). It is observed that our numerical results are in agreement with the ones obtained for the constant mass case \([13]\). We point out that the energy levels of the triangular quantum well is finite and the potential parameter \(\alpha \) controls the bound state numbers. In computation, we take the values of the mass parameters as \(0.067m_0 \) for GaAs where \(m_0 \) is the free electron mass.

In the present work, we study the transmission probability of the 1D Schrödinger equation for the triangular potential barrier by writing the related wave functions in terms of the Airy’s functions and in terms of the solutions of the Kummer’s differential equation, namely, the confluent hypergeometric functions of the first kind. Among the approaches and methods used to study the quantum heterostructures \([12]\), our formalism is based on solving the Schrödinger equation coming from the Hamiltonian written for the case of position dependent mass \([14]\). In this case, the generalization of the standard Hamiltonian is not trivial because the linear momentum and mass operator no longer commute. We propose a mass function depending on spatially coordinate to solve 1D effective Schrödinger equation. Our formalism includes also an approach meaning that we ignore the terms including the derivatives of mass in 1D effective Schrödinger equation by assuming one of the mass parameters goes to zero.

2. Analytical expressions

The generalized Hamiltonian for the case where the mass depends on the spatially coordinate is given \([14]\)

\[
\mathcal{H} = \frac{1}{2} \left[\frac{p}{m} \right] + V ,
\]

where \(p \) is the linear momentum operator and \(V \) is the operator which defines the potential function. The 1D Schrödinger equation for the position dependent mass obtained from the above Hamiltonian is written as \([14]\)

\[
\left\{ \frac{d^2}{dx^2} - \frac{d}{dx} \frac{m(x)}{m(x)} \frac{d}{dx} + Hm(x)[E - V(x)] \right\} \phi(x) = 0 ,
\]

where \(H = 2/\hbar^2 \).

We tend to parameterize the mass as

\[
m(x) = M_0 - M_1 x ,
\]

where \(M_0 \) and \(M_1 \) are the arbitrary parameters. For the rest of the computation, we assume that the terms including the derivatives of the mass could be ignored when the mass parameter \(M_1 \to 0 \).

2.1. Transmission probability

The triangular quantum barrier is defined as (Figure 1a) \([13]\)

\[
V(x) = \begin{cases}
0 & \text{for } x < 0 \\
V_0 - \alpha x & \text{for } 0 < x < a \\
0 & \text{for } x > a
\end{cases}
\]

where \(V_0 \) represents the maximum value of the potential profile and \(\alpha \) controls the thickness of the quantum barrier.

Inserting Eqs. (3) and (4) into Eq. (2), taking into account the above assuming and using a new variable \(y = (HEM_1)^{1/3} x \), we obtain the following equation

\[
\left[\frac{d^2}{dy^2} - y \right] \phi_I(y) = 0
\]
solutions are expressed in terms of the Airy’s functions. So we write the solution for the region I \((x < 0)\) as [15]

\[\phi_I(y) = b_1 Ai(y) + b_2 Bi(y). \] (6)

Similarly, we obtain the following equation for the region II \((0 < x < a)\)

\[\left\{ \frac{d^2}{dx^2} - [a_1 x^2 + a_2 x + a_3] \right\} \phi_{II}(x) = 0, \] (7)

which can be written by using a new variable \(y = x + \frac{a_2}{2a_1}\) as

\[\left\{ \frac{d^2}{dy^2} - [a_1 y^2 + A_I] \right\} \phi_{II}(y) = 0, \] (8)

where

\[a_1 = HM_1 \alpha, \] (9a)

\[a_2 = -H [M_0 \alpha + M_1 (V_0 - E)], \] (9b)

\[a_3 = HM_0 (E - V_0). \] (9c)

and \(A_I = \frac{4a_1 a_3 - a_2^2}{4a_1}\).

In order to get a more suitable form of Eq. (8), we use a new variable \(z = \sqrt{a_1} y^2\) and a trial wave function in terms of \(z\) as \(\phi_{II}(y) = e^{-z/2} f(z)\) which gives

\[\left\{ z \frac{d^2}{dz^2} - \left(z - \frac{1}{2} \right) \frac{d}{dz} - \frac{1}{4} \left[1 + \frac{A_I}{4a_1} \right] \right\} f(z) = 0, \] (10)

which is a kind of the Kummer’s differential equation having the form [15]

\[x \frac{d^2 y(x)}{dx^2} + (c - x) \frac{dy(x)}{dx} - by(x) = 0. \] (11)

Two linear independent solutions of the above equation is written as [15]

\[y(x) \sim _1 F_1 (b; c; x) + U(b; c; x), \] (12)

where \(_1 F_1 (b; c; x)\) is the confluent hypergeometric functions of the first kind and the second part is given

\[U(b; c; x) = \pi csc(\pi c) \left[_1 \tilde{F}_1 (b; c; x) - x^{1-c} \frac{1}{\Gamma(b)} _1 \tilde{F}_1 (b - c + 1; 2 - c; x) \right]. \] (13)

where \(_1 \tilde{F}_1 (b; c; x)\) is the regularized confluent hypergeometric functions of the first kind [15].

With the help of Eq. (12) we write the solution for the region II as

\[f(z) = b_3 _1 F_1 \left(\frac{1}{4} \left[1 + \frac{A_I}{4a_1} \right]; \frac{1}{2}; z \right) + b_4 U \left(\frac{1}{4} \left[1 + \frac{A_I}{4a_1} \right]; \frac{1}{2}; z \right), \] (14)

Following the same steps for region I, we obtain the following equation

\[\left[\frac{d^2}{dy^2} - y \right] \phi_{III}(y) = 0 \] (15)
where we define a new variable as \(y = (HEM_1)^{1/3} x - \frac{HEM_0}{(HEM_1)^{2/3}} \). We write the physical solution for the region III as

\[
\phi_{III}(y) = b_5 Ai(y),
\]

where used the properties given as \(\lim_{x \to +\infty} Bi(x) \to \infty, \lim_{x \to -\infty} Bi(x) \to 0 \) and \(Bi(0) = \frac{1}{\sqrt{3\Gamma(\frac{3}{2})}} \) [15].

Using the continuity conditions for \(\phi(x) \) and \(d\phi(x)/dx \) at \(x = 0 \) and at \(x = a \) and after straightforward calculations we obtain the following expressions

\[
\begin{align*}
&b_1 Ai(y_1) + b_2 Bi(y_1) = b_3 f'_1 + b_4 f_7, \\
&(HEM_1)^{1/3} [b_1 Ai'(y_1) + b_2 Bi'(y_1)] = b_3 f_8 + b_4 f_9, \\
&b_5 Ai(y_3) = b_3 g'_1 + b_4 g_7, \\
&(HEM_1)^{1/3} b_5 Ai'(y_3) = b_3 g_8 + b_4 g_9.
\end{align*}
\]

where prime in \(Ai(y) \) and \(Bi(y) \) derive derivatives in the above expressions and the following abbreviations are used

\[
\begin{align*}
&f_1 = \sqrt{a_1} y_2 \sqrt[3]{\alpha_{11}/2} F_1(1 + \frac{A_I}{\sqrt{a_1}}; \frac{1}{2}; \sqrt{a_1} y_2^2), \\
&f_2 = \sqrt{a_1} y_2 \sqrt[3]{\alpha_{11}/2} F_1(1 + \frac{A_I}{\sqrt{a_1}}; \frac{3}{2}; \sqrt{a_1} y_2^2), \\
&f_3 = \pi \csc \frac{\pi}{2} \sqrt{a_1} y_2 \sqrt[3]{\alpha_{11}/2} \frac{1}{\Gamma(\frac{3}{4} + \frac{A_I}{\sqrt{a_1}})} F_1(1 + \frac{A_I}{\sqrt{a_1}}; \frac{1}{4}; \frac{3}{2}; \sqrt{a_1} y_2^2), \\
&f_4 = \pi \csc \frac{\pi}{2} \sqrt{a_1} y_2 \sqrt[3]{\alpha_{11}/2} \frac{1}{2\Gamma(\frac{3}{4} + \frac{A_I}{\sqrt{a_1}})} (1 + \frac{A_I}{\sqrt{a_1}}) \frac{1}{\Gamma(\frac{3}{4} + \frac{A_I}{\sqrt{a_1}})} F_1(1 + \frac{A_I}{\sqrt{a_1}}; \frac{3}{4}; \frac{3}{2}; \sqrt{a_1} y_2^2), \\
&f_5 = \pi \csc \frac{\pi}{2} \sqrt{a_1} y_2 \sqrt[3]{\alpha_{11}/2} \frac{1}{\Gamma(\frac{3}{4} + \frac{A_I}{\sqrt{a_1}})} F_1(1 + \frac{A_I}{\sqrt{a_1}}; \frac{5}{4}; \frac{5}{2}; \sqrt{a_1} y_2^2), \\
&f'_1 = \frac{f_1}{\sqrt{a_1} y_2}, \\
&f'_3 = \frac{f_3}{\sqrt{a_1} y_2}, \\
&f'_5 = \frac{f_5}{a_1 y_2}, \\
&f_7 = f'_3 - f'_5, \\
&f_8 = f_2 - f_1, \\
&f_9 = f_4 + f_5 - f_3 - f_6.
\end{align*}
\]

and

\[
\begin{align*}
&g_1 = f_1(y_2 \to y_4); g_2 = f_2(y_2 \to y_4); g_3 = f_3(y_2 \to y_4); g_4 = f_4(y_2 \to y_4), \\
&g_5 = f_5(y_2 \to y_4); g_6 = f_6(y_2 \to y_4); g'_1 = f'_1(y_2 \to y_4); g'_3 = f'_3(y_2 \to y_4), \\
&g'_5 = f'_5(y_2 \to y_4); g_7 = g'_3 - g'_5; g_8 = g_2 - g_1; g_9 = g_4 + g_5 - g_3 - g_6.
\end{align*}
\]

(20)
where we use \(\frac{d}{dz} F_1(b; c; z) = \frac{b}{c} F_1(b + 1; c + 1; z)\) and \(\frac{d}{dz} \bar{F}_1(b; c; z) = b \bar{F}_1(b + 1; c + 1; z)\) to obtain the above expressions [15]. The arguments of the above functions coming from the continuity conditions at \(x = 0\) and \(x = a\) are given as

\[
y_1 = -\frac{HEM_0}{(HEM_1)^{2/3}}, \tag{21a}
\]
\[
y_2 = \frac{a_2}{2a_1}, \tag{21b}
\]
\[
y_3 = (HEM_1)^{1/3} a - \frac{HEM_0}{(HEM_1)^{2/3}}, \tag{21c}
\]
\[
y_4 = a + \frac{a_2}{2a_1}. \tag{21d}
\]

With the help of Eqs. (18)-(20), Eqs. (17a)-(17d) gives us the transmission probability as

\[
T = \left| \frac{t_1}{t_2} \right|^2, \tag{22}
\]

where

\[
t_1 = \frac{1}{\pi} (HEM_1)^{1/3} \left[g'_1 g_9 - g_8 g_7 \right], \tag{23a}
\]
\[
t_2 = \left[g_9 Ai(y_3) - (HEM_1)^{1/3} g_7 Ai'(y_3) \right] \left[(HEM_1)^{1/3} f_1 Bi'(y_1) - f_8 Bi(y_1) \right]
\times \left[(HEM_1)^{1/3} g_4 Ai'(y_3) - g_6 Ai(y_3) \right] \left[(HEM_1)^{1/3} f_7 Bi'(y_1) - f_9 Bi(y_1) \right]. \tag{23b}
\]

where the following property of the Airy’s functions \(Ai(y)Bi'(y) - Ai'(y)Bi(y) = \frac{1}{\pi}[15]\) is used.

To check the validity of our formalism, we compute the transmission coefficient in Eq. (22) numerically. For this aim, the parameters are used: \(V_0 = 450\) meV, \(a = 7\) nm [16], the mass made of GaAs \(\rho = 0.067\) kg \(\times 10^{-31}\) kg [12], \(l = 1.05 \times 10^{-34}\) J.s and \(M_1 = M_0\). Figure (2) shows the dependence of the transmission probability on the energy of the incident particle. It is seen that the transmission probability is very slightly within the energy range and observed that goes to one while the energy increases. We plot the dependence of the transmission coefficient on the height and width of quantum barrier in Figures (3) and (4), respectively. The parameter values of mass are the same with the ones used in Figure (2) but Figures (3) and (4) are plotted for \(E = 0.1\) eV. In both of figures, the transmission probability is exactly one for initial values of \(V_0\) and \(a\), respectively. It’s value decreases while the values of height and width of quantum barrier increase. The fluctuations of transmission coefficient are very small as observed in Figure (2). Figure (5) shows varying of the tunnelling coefficient according to the energy of incident particle. It is observed that the tunnelling coefficient is also very slightly within the energy range as in Figure (2).

2.2. Bound states

In order to study the bound states of the triangular quantum well, we parameterize the potential profile as (Figure 1b)

\[
V(x) = \begin{cases}
0 & \text{for } x < 0 \\
-V_0 - ax & \text{for } 0 < x < a \\
0 & \text{for } x > a
\end{cases} \tag{24}
\]

In this case, we obtain a differential equation similar to the one given in Eq. (10) with the
following abbreviations
\[a'_1 = HM_1\alpha = a_1, \quad (25a) \]
\[a'_2 = -H[M_0\alpha - M_1(V_0 + E)], \quad (25b) \]
\[a'_3 = HM_0(E + V_0). \quad (25c) \]
and \(B_I = \frac{4a'_1a'_2 - a'^2}{4a'_1} \) which give a physical acceptable solution as
\[f(z) \sim {}_1F_1\left(\frac{1}{4}|1 + \frac{B_I}{4a'_1}|; \frac{1}{2}; z\right). \quad (26) \]
In order to get a finite solution it must be
\[\frac{1}{4} \left(1 + \frac{B_I}{4a'_1}\right) = -n \ (n \in \mathbb{N}), \quad (27) \]
which is a quantization condition for the bound states. We write the energy spectra of the triangular quantum well as
\[E_n = -V_0 - \frac{M_0\alpha}{M_1} + 2\left(\frac{\alpha^3}{M_1}\right)^{1/4}\sqrt{1 + 4n} . \quad (28) \]
It is worth to say that the parameter \(\alpha \) in the potential profile depends on the diffusion length (or the Debye length) \(L_D \) inversely which controls the number of the bound states [16]. In order to get some numerical values for the bound states we choose the parameter set as \(M_1 = M_0 = 0.067m_0 \) and \(\alpha = 0.01V_0 \) and present our results in Table 1. It shows that the results are agreement with the ones stated in literature [16].

As a final remark, we tend to discuss briefly the effect of an external electric field on a quantum system considered here. For this case, the potential is written as an ‘effective’ potential as following
\[V_{eff} = V(x) + V_E(x), \quad (29) \]
where \(V_E(x) \) denotes the potential part arising from the external electric field. The second term in Eq. (29) depends on the electric field strength linearly [8]. So we expect that the obtained expressions for transmission coefficient and also energy levels have additional terms including the electric field strength.

3. Conclusion
In the present work, we have analyzed the transmission probability for the 1D Schrödinger equation with position-dependent mass for the triangular quantum barrier by applying the continuity conditions on the wave functions which are written in terms of the Airy’s functions and the solutions of the Kummer’s equation. For this aim, we have solved the Schrödinger equation obtained from a non-standard Hamiltonian written for the case where the mass and linear momentum operator does not commute. We have ignored the terms including the derivatives of mass in Schrödinger equation for \(M_1 \to 0 \) to obtain the analytical solutions. We have given the dependence of the transmission probability not only on the energy but also on the height and width of the barrier, respectively. We have observed that the transmission coefficient decreases while the values of parameters \(E, V_0 \) and \(a \) increase, as expected, and the fluctuations of the transmission probability are very small. We have also studied the bound states of the triangular quantum well and observed that the number of the bound states is finite depending on the mass parameter \(M_1 \) and on the diffusion length.
Table 1: Some energy eigenvalues for the triangular quantum profile (eV).

	Ref. [16]	our results
E_1	-0.20986	-0.29407
E_2	-0.00630	-0.00871

References

[1] Fejer, M. M.; Yoo, S. J. B; Beyer, R. L.; Harwit, A; Harris, J. S. Phys. Rev. Lett. 1989, 62, 1041-1044.
[2] Guo, K. X.; Chen, C. Y. J. Phys.:Condens. Matt. 1995, 7, 6583-6589.
[3] Wang, G. H.; Guo, K. X. J. Phys.:Condens. Matt. 2001, 13, 8197-8206.
[4] Li, B.; Guo, K. X.; Zhang, C. J.; Zhang, Y. B. Phys. Lett. A 2007, 367, 493-497.
[5] Yu, Y. B.; Guo, K. X.; Zhu, S. N. Physica E 2005, 27, 62-66.
[6] Yu, Y. B.; Guo, K. X. Physica E 2003, 18, 492-497.
[7] Fissel, A.; Kaiser, U.; Schr"{o}ter, B.; Richter, W.; Bechstedt, F. App. Surface Sci. 2001, 184, 37-42.
[8] Santiago, R. B.; Guimaraes, L. G. Solid-State Electronics 2002, 46, 89-96.
[9] Faist, J.; Capasso, F.; Sirtori, C.; Sivo, D. L.; Hutchinson, A. L.; Hybertsen, M. S.; Cho, A. Y. Phys. Rev. Lett. 1996, 76, 411-414.
[10] Gerber, D. S.; Droopad, R.; Maracas, G. N. Appl. Phys. Lett. 1993, 62, 525-527.
[11] Ishikawa, T.; Tada, K. Jpn. J. Appl. Phys. 1989, 28, L1982-L1984.
[12] He, Y; Cao, Z.; Shen, Q. J. Phys. A 2005, 38, 5771-5780.
[13] Ghatak, A. K.; Sauter, E. G.; Goyal, I. C. Eur. J. Phys. 1997, 18, 199-204.
[14] Dekar, L.; Chetouani, L.; Hammann, T. F. J. Math. Phys. 1998, 39, 2551-2563.
[15] Abramowitz, M.; Stegun, I. A. Eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover: New York, 1965.
[16] Li, W. IEEE J. Quantum Electron. 2010, 46, 970-975.
Figure 1: Graphical representation of the triangular quantum barrier (a) and triangular quantum well (b).
Figure 2: The transmission probability for the triangular quantum barrier versus E.

Figure 3: The variation of transmission probability versus height of barrier V_0.
Figure 4: The transmission probability versus the width of barrier a.

Figure 5: The tunnelling coefficient for the triangular quantum barrier versus E.