On Explicit Evaluation of Ratio’s of Theta Function Which is Analogous to Ramanujan’s
Function $a_{m,n}$

S. Vasanth Kumar

ABSTRACT: In this article, Ramanujan defined $a_{m,n}$ [3], B. N. Dharmendra and S. Vasanth Kumar defined $E_{m,n}$ [5] for any positive real numbers m and n involving Ramanujan’s product of theta-functions. We established new relation between $a_{m,n}$ and $E_{m,n}$ and explicit evaluations of $E_{m,n}$.

Key Words: Modular equation, Theta-function.

Contents

1 Introduction 1

2 Preliminary Results 2

3 Modular relation between $a_{m,n}$ and $E_{m,n}$ 3

4 Explicit evaluation of $E_{m,n}$ 4

1. Introduction

The Ramanujan’s general theta function [11] is defined by

$$f(a, b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1,$$

$$= (-a; ab)_{\infty} (-b; ab)_{\infty} (ab; ab)_{\infty}$$

where,

$$(a; q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n), \quad |q| < 1.$$

Three special cases of $f(a, b)$ are defined as follows:

$$\varphi(q) := f(q, q) = \sum_{n=-\infty}^{\infty} q^{n^2} = \frac{(-q; -q)_{\infty}}{(q; -q)_{\infty}},$$

$$\psi(q) := f(q, q^3) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}},$$

$$f(-q) := f(-q, -q^2) = \sum_{n=-\infty}^{\infty} q^{n(3n-1)/2} = (q; q)_{\infty}.$$
On page 338 in his first notebook [11], Ramanujan defines
\[
a_{m,n} = \frac{ne^{-(n-1)\pi/4} \sqrt{mn} \psi^2(e^{-\pi \sqrt{mn}})}{\psi^2(e^{-\pi \sqrt{mn}}) \varphi^2(-e^{-2\pi \sqrt{mn}})},
\]
where \(m\) and \(n\) are positive real numbers.

In [3], on pages 337 - 338, Ramanujan has listed eighteen particular values. Berndt, Chan and Zhang [4] have been established all these values. For some general theorems and explicit evaluation on \(a_{m,n}\) one can refer [6,7,8,10].

Following the above definition [9], Mahadeva Naika et al. defined a new function \(b_{m,n}\) and in [5], B. N. Dharmendra and S. Vasanth Kumar defined the Ramanujan theta function \(E_{m,n}\). They established new properties of \(b_{m,n}\) and \(E_{m,n}\) and find its explicit values.

In [9], defined the theta function
\[
b_{m,n} = \frac{ne^{-(n-1)\pi/4} \sqrt{mn} \psi^2(e^{-\pi \sqrt{mn}})}{\psi^2(e^{-\pi \sqrt{mn}}) \varphi^2(-e^{-2\pi \sqrt{mn}})}.
\]

In [5], B. N. Dharmendra and S. Vasanth Kumar defined the Ramanujan theta function
\[
E_{m,n} = \frac{f(e^{-\pi \sqrt{mn}}) \psi(e^{-\pi \sqrt{mn}})}{e^{-\pi/(1-m) \sqrt{mn}} f(e^{-\pi \sqrt{mn}}) \psi(e^{-\pi \sqrt{mn}})}.
\]

The main purpose of this paper to be establish new relation between \(a_{m,n}\) and \(E_{m,n}\) and explicit evaluation of \(E_{m,n}\).

2. Preliminary Results

In this section, we tend to collect many identities that square measure helpful in proving our main results.

Lemma 2.1. [6] If \(m\) is any positive rational,
\[
a_{m,3} = \frac{3q^{1/2} \psi^2(-q^3) \varphi^2(q^3)}{\psi^2(-q) \varphi^2(q)},
\]
then we have,
\[
a_{m,3}^2 = \frac{9(1 + P^4)}{P^4(9 + P^4)} = \frac{9(1 - Q^4)}{Q^4(Q^4 - 9)}, \quad Q^4 \neq 9.
\]

Lemma 2.2. [5] If \(n\) is any positive rational,
\[
E_{3,n} = \frac{f(q) \psi(-q^3)}{q^{-1/6} f(q^3) \psi(-q)}; \quad q := e^{-\pi \sqrt{n}}.
\]
then we have,
\[
E_{3,n}^6 = \frac{P^4 + 9}{P^4(1 + P^4)}.
\]
Lemma 2.3. [6] If \(m \) is any positive rational,

\[a_{m,5} = \frac{5q\psi^2(-q^5)\varphi^2(q^5)}{\psi^4(-q)\varphi^2(q)}, \quad (2.7) \]

\[P = \frac{\psi(-q)}{q^{1/2}\psi(-q^5)} \quad \text{and} \quad Q = \frac{\varphi(q)}{\varphi(q^5)}, \quad (2.8) \]

then we have,

\[a_{m,5} = \frac{5(1 + P^2)}{P^2(5 + P^2)} = 5\left(1 - \frac{Q^2}{Q^2 - 5}\right), \quad Q \neq \sqrt{5}. \quad (2.9) \]

Lemma 2.4. [5] If \(n \) is any positive rational,

\[E_{5,n} = \frac{f(q)\psi(-q^5)}{q^{-1/3}f(q^5)\psi(-q)}; \quad q := e^{-\pi\sqrt{n}} \quad (2.10) \]

\[P := \frac{\psi(-q)}{q^{1/2}\psi(-q^5)} \quad \text{and} \quad Q := \frac{f(q)}{q^{1/6}f(q^5)}, \quad (2.11) \]

then we have,

\[E_{5,n}^5 = \frac{P^2 + 5}{P^2(P^2 + 1)}. \quad (2.12) \]

Lemma 2.5. [5] We have,

\[a_{m,n} = a_{n,m} \]

and

\[E_{m,n} = E_{n,m}. \]

3. Modular relation between \(a_{m,n} \) and \(E_{m,n} \)

Theorem 3.1. If \(x := E_{m,3} \) and \(y := a_{m,3} \) then

\[x^3 - \frac{1}{x^3} = 3\left(y - \frac{1}{y}\right). \quad (3.1) \]

Proof. From Lemma (2.1), we obtain

\[P^4 := \frac{9 - 9y + 3\sqrt{9y^2 - 14y + 9}}{2y}, \quad (3.2) \]

where,

\[y := a_{m,3}^2. \]

Employing the above equation (3.2) in Lemma (2.2), we obtain

\[(x^3(yx^3 - 3 + 3y^2) - y)(x^3(yx^3 + 3 - 3y^2) - y) = 0 \]

(3.3)

By examining the behavior of the above factors near \(q = 0 \), we can find a neighborhood about the origin, where the second factor is zero; whereas another factor is not zero in this neighborhood. By the Identity Theorem second factor vanishes identically. This completes the proof. \(\square \)
Theorem 3.2. If \(x := E_{m,5} \) and \(y := a_{m,5} \) then
\[
\left(x^3 + \frac{1}{x^3} \right) + 8 = 5 \left(y + \frac{1}{y} \right).
\] (3.4)

Proof. From Lemma (2.3), we obtain
\[
p^2 := \frac{5 - 5y + \sqrt{25y^2 - 30y + 25}}{2y}.
\] (3.5)

Employing the above equation (3.5) in Lemma (2.4), we get
\[
x^3(5 - x^3y - 8y + 5y^2) - y = 0
\] (3.6)

By examining the behavior of the above term near \(q = 0 \). This completes the proof. \(\square \)

4. Explicit evaluation of \(E_{m,n} \)

Corollary 4.1. Explicit values of \(E_{3,n} \)

Sr. No	\(a_{3,n} \)	\(E_{3,n} \)
1	\(a_{3,2} = \sqrt[3]{\frac{x}{4} - 1} \)	\(E_{3,2} = \frac{(-4\sqrt{3} + 12 - 12\sqrt{3} + 16\sqrt{2})\sqrt{3} - 1}{2} \)
2	\(a_{3,3} = \frac{1}{2} \)	\(E_{3,3} = \frac{(2 - \sqrt{3})^\frac{3}{2}}{2} \)
3	\(a_{3,4} = \frac{2}{\sqrt{3}} \)	\(E_{3,4} = \frac{(28 - 12\sqrt{3})^\frac{3}{2}}{2} \)
4	\(a_{3,5} = \frac{2}{\sqrt{3}} \)	\(E_{3,5} = \frac{(28 - 12\sqrt{3})^\frac{3}{2}}{2} \)
5	\(a_{3,6} = \frac{1}{(3\sqrt{3} + 1)} \)	\(E_{3,6} = \frac{1}{3} \)
6	\(a_{3,7} = 2\sqrt{3} - \sqrt{11} \)	\(E_{3,7} = \frac{1}{3} \)
7	\(a_{3,8} = \sqrt{2} - \sqrt{3} \)	\(E_{3,8} = \frac{1}{3} \)
8	\(a_{3,9} = \sqrt{2} - \sqrt{3} \)	\(E_{3,9} = \frac{1}{3} \)
9	\(a_{3,10} = \sqrt{2} - \sqrt{3} \)	\(E_{3,10} = \frac{1}{3} \)
10	\(a_{3,11} = \sqrt{2} - \sqrt{3} \)	\(E_{3,11} = \frac{1}{3} \)
11	\(a_{3,12} = \sqrt{2} - \sqrt{3} \)	\(E_{3,12} = \frac{1}{3} \)
12	\(a_{3,13} = \sqrt{2} - \sqrt{3} \)	\(E_{3,13} = \frac{1}{3} \)

Proof. In Ramanujan notebook Part V \([3]\) he recorded many values of \(a_{3,n} \). In particularly, he recorded for \(n = 3,5,7,9,11,15,19,31,59 \).

Then, M. S. Mahadeva Naika, B. N. Dharmendra and K. Shivashankar \([7]\) also evaluated the values of \(a_{3,n} \) for \(n = 2,35,55 \).

Noting all these values of \(n \), we have established the values for \(E_{3,n} \).

If
\[
n = 3
\]

then, we find in \([3]\), \(a_{3,3} = \frac{1}{\sqrt{3}} \), substituting this value in (3.3) we obtain an equation
\[
-2x^3 + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} x^6
\]
and solving for \(x \) we get the desired result.

i.e.,
\[
E_{3,3} = (2 - \sqrt{3})^\frac{3}{2}.
\]

Similarly we can obtain for remaining values of \(n \) which is mentioned in the above table 1. \(\square \)
Corollary 4.2. Explicit evaluation of $E_{5,n}$

Sr.No	$a_{5,n}$	$E_{5,n}$
1	$a_{5,2} = (\sqrt{2} + 1)(\sqrt{5} - 2)$	$E_{5,2} = \frac{(\sqrt{5}+1)(\sqrt{2} - 1)}{2}$
2	$a_{5,5} = \frac{1}{5}$	$E_{5,5} = \frac{3 - \sqrt{5}}{2}$
3	$a_{5,9} = (2 - \sqrt{3})^2$	$E_{5,9} = (31 - 8\sqrt{15})^\frac{1}{4}$
4	$a_{5,11} = \left(\frac{\sqrt{7} + \sqrt{5} - \sqrt{3} - 1}{8}\right)^8$	$E_{5,11} = \left(\frac{1 + \sqrt{5}}{2}\right)\left(\frac{12 + 2\sqrt{15} + 2\sqrt{5} - 2\sqrt{2}}{16}\right)$
5	$a_{5,13} = \left(\frac{\sqrt{9 + 2\sqrt{15}} - \sqrt{7 + 6\sqrt{2}}}{2}\right)^2$	$E_{5,13} = \frac{(\sqrt{5} - 1)(\sqrt{13} - 1)}{4}$
6	$a_{5,21} = 32 + 3\sqrt{105} - 4\sqrt{123 + 12\sqrt{105}}$	$E_{5,21} = \left(\left(\sqrt{35} - 6\right)(15\sqrt{3} - 26)\right)^\frac{1}{4}$
7	$a_{5,29} = \left(4 + 4\sqrt{145} - 4\sqrt{48 + 4\sqrt{145}}\right)^2$	$E_{5,29} = \frac{13 + \sqrt{145}(7 - \sqrt{145})\sqrt{12 + \sqrt{145}}}{4}$
8	$a_{5,33} = (2 - \sqrt{3})^2 \left(2\sqrt{3} - \sqrt{11}\right)^2$	$E_{5,33} = \left((9 - 4\sqrt{5})(89 - 12\sqrt{55})\right)^\frac{1}{4}$
9	$a_{5,69} = \frac{(5-\sqrt{23})(4\sqrt{5} - \sqrt{11})^2}{4}$	$E_{5,69} = \left((1126 - 105\sqrt{115})(26 - 15\sqrt{3})\right)^\frac{1}{4}$
10	$a_{5,77} = 11303 + 576\sqrt{385} - 1524\sqrt{55} - 4272\sqrt{7}$	$E_{5,77} = \frac{1126 - 105\sqrt{115} \left(26 - 15\sqrt{3}\right)}{4}$

Proof. In [3] Ramanujan has recorded many values of $a_{5,n}$ for $n = 9, 11, 13, 29$. Then [7], M. S. Mahadeva Naika et al. also evaluated the values of $a_{5,n}$ for $n = 2, 5, 9, 33, 69, 77$. Noting all these values of n we have established the values for $E_{5,n}$.

If $n = 5$

then, $a_{5,5} = \frac{1}{5}$, [3] substituting this value in (3.6) we obtain an equation

$$\frac{18}{5} x^3 - \frac{1}{5} x^6 - \frac{1}{5} = 0$$

and solving for x we get the desired result.

i.e.,

$$E_{5,5} = \frac{3 - \sqrt{5}}{2}.$$

Similarly we can obtain for remaining values of n which is mentioned in the above table 2.

Conclusion: Finally in this article we established new relation between $a_{m,n}$ and $E_{m,n}$ and explicit evaluations of $E_{3,n}$ and $E_{5,n}$ by setting particular values to n, similarly we can also obtain for other values of m.

Acknowledgments

I thank referees for their valuable suggestions which are considerably improving the standard of the paper.

References

1. B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.
2. B. C. Berndt, Ramanujan’s Notebooks, Part IV, Springer-Verlag, New York, 1994.
3. B. C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1997.
4. B. C. Berndt, H. H. Chan and L.-C. Zhang, Ramanujan’s remarkable product of the theta-function, Proc. Edinburgh Math. Soc., 40, (1997), 583-612.
5. B. N. Dharmendra and S. Vasanth Kumar, Theorems on Analogous of Ramanujan’s Remarkable Product of Theta-Function and their Explicit Evaluations. Boletim da Sociedade Paranaense de Matematica. (2019)

6. M. S. Mahadeva Naika and B. N. Dharmendra, On some new general theorems for the explicit evaluations of Ramanujan’s remarkable product of theta-function Ramanujan J. 15(3), (2008), 349-366.

7. M. S. Mahadeva Naika, B. N. Dharmendra and K. Shivashankar, On some new explicit evaluations of Ramanujan’s remarkable product of theta-function, South East Asian J. Math. Math Sci., 5(1) 107-119 MR2301684 (2008d: 33012) (2006).

8. M. S. Mahadeva Naika and M. C. Maheshkumar, Explicit evaluations of Ramanujan’s remarkable product of theta-function, Adv. Stud. Contemp. Math., 13(2), 235-254 (2006).

9. M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, On some remarkable product of theta-function, Aust. J. Math. Anal. Appl., 5(1), 1-15 (2008).

10. Nipen Saikia, Some Properites, Explicit Evaluation and Applications of Ramanujan’s Remarkable Product of Theta-Functions, Acta Math Vietnam, Journal of Mathematics, DOI 10.1007/s40306-014-0106-8, (2015).

11. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

12. S. Ramanujan, The lost notebook and other unpublished papers, Narosa, New Delhi, 1988.

Vasanth Kumar,
Research Scholar, Department of Mathematics,
Bharathiar University, Coimbatore-641046,
India.

Assistant Professor, Department of Mathematics,
Mysuru Royal Institute of Technology, Mandya, India.
E-mail address: svmaths.174@gmail.com