Interacting partners of Golgi-localized small G protein Arl5b identified by a combination of in vivo proximity labelling and GFP-Trap pull down

Fiona J. Houghton1, Christian Makhoul1, Ellie Hyun-Jung Cho1 2, Nicholas A. Williamson1 3 and Paul A. Gleeson1

1 The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Vic, Australia
2 Biological Optical Microscopy Platform, The University of Melbourne, Vic, Australia
3 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Vic, Australia

Correspondence
P. Gleeson, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
Tel: +61 3 8344 2354
E-mail: pgleeson@unimelb.edu.au

(Received 9 March 2022, revised 10 June 2022, accepted 23 June 2022, available online 1 August 2022)
doi:10.1002/1873-3468.14443
Edited by Lukas Alfons Huber

The small G protein Arl5b is localised on the trans-Golgi network (TGN) and regulates endosomes-to-TGN transport. Here, we combined in vivo and in vitro techniques to map the interactive partners and near neighbours of Arl5b at the TGN, using constitutively active, membrane-bound Arl5b (Q70L)-GFP in stably expressing HeLa cells, and the proximity labelling techniques BioID and APEX2 in parallel with GFP-Trap pull down. From MS analysis, 22 Golgi proteins were identified; 50% were TGN-localised Rabs, Arfs and Arls. The scaffold/tethering factors ACBD3 (GCP60) and PIST (GOPC) were also identified, and we show that Arl5b is required for TGN recruitment of ACBD3. Overall, the combination of in vivo labelling and direct pull downs indicates a highly organised complex of small G proteins on TGN membranes.

Keywords: ACBD3/GCP60; Arl5b; in vivo proximity labelling; membrane transport; small G proteins; tethering factors; trans-Golgi network

Small GTP-binding proteins (G proteins) of the Rab and Arf families are key regulators of intracellular membrane transport and organelle homeostasis in the endocytic and secretory pathways [1,2]. The Arf family of GTPases constitute the Arf, Sar and Arf-like proteins (Arls) [3-5]. Small G proteins cycle between a GDP-bound inactive conformation and a membrane-associated GTP active conformation [6]. The GTP-bound Rab and Arf family members mediate their suite of functions by the interaction with a variety of binding partners, or effectors, which have a diverse range of activities, and including roles in membrane

Abbreviations
ACBD3, Acyl-CoA-binding domain-containing 3; APEX2, ascorbate peroxidase-based proximity labelling, version 2; Arf, ADP ribosylation factor; Arl, ADP ribosylation factor-like; BioID, proximity-dependent biotin identification; CID, collision-induced activation; CPI, complete protease inhibitors; DMSO, dimethyl sulphoxide; ECL, enhanced chemiluminescence; FBS, fetal bovine serum; GAP, guanine exchange factor; GFP, green fluorescent protein; GOPC, Golgi-associated PDZ and coiled-coil motif-containing protein; GST, glutathione S-transferase; H2O2, hydrogen peroxide; HA, haemagglutinin; HRP, horseradish peroxidase; LC–MS, liquid chromatography–mass spectrometry; MFI, mean fluorescence intensity; PBS, phosphate-buffered saline; PFA, paraformaldehyde; PI4KB, phosphatidylinositol 4-kinase beta; PIST, protein interacting specifically with Tc10; PVDF, polyvinylidene fluoride; SA, streptavidin; SA-agarose, streptavidin agarose; SA-HRP, streptavidin-horseradish peroxidase; siRNA, small interfering RNA; SRP, signal recognition particle; SSL, solid-state laser; TCL, total cell lysate; TEAB, triethylammonium bicarbonate; TGN, trans-Golgi network; WT, wild-type.
tethering, membrane budding, regulation of motor proteins and vesicular fusion. Understanding the biological functions of small G proteins requires knowledge of the identity of their interactive effectors. Although many effectors have been identified for different Rab s [7], effectors have not yet been identified for many of the Arfs/Arls.

The identification of the interactive partners of small G proteins is a challenge in view of the transient and often low-affinity interactions with effectors. A variety of methods had been used in the past to identify the interactive partners of small G proteins, including cross linking, two-hybrid screens and GST pulldowns [7]. Recently, a more promising approach has been the use of in vivo proximity biotinylation methods, which have the potential to detect weak and transient interactions in vivo and which have been successfully used for a number of the Rab proteins [8,9]. An advantage of this approach is that the labelling is performed in vivo with the small G protein associated with its target membrane. A disadvantage of the in vivo proximity biotinylation methods is that the proteins labelled include not only interactive partners but also proteins in close proximity to the bait; hence, the interactive partners and close neighbours need to be distinguished. This particularly applies to the application of this method to membrane proteins orientated on the cytosolic side of the membrane, as the biotinylation reaction is not restricted within a closed compartment.

The TGN is a very active cargo sorting and transport hub where transport carriers exit to a variety of destinations and are also received via retrograde traffic from endosomes [10-13]. Many (>20) Rab and Arf family members have been located to the TGN [1,12,14,15]. We have previously identified Arl5b as a TGN small G protein, which regulates endosome to the TGN transport [16]; however, the identity of the interactive partners of Arl5b is unknown. Here, we have incorporated two different proximity-based methods, namely BioID and APEX2. Usually, only one of the two methods has been employed; however, the advantage of including both methods is that each method uses a different chemistry for biotinylation, which potentially broadens the capture of partners, as well as using different fusion proteins with Arl5b, an advantage to minimise inadvertent effects of the fusion partners interfering with the binding of Arl5b to effectors. In addition, we have also incorporated a GFP-Trap pull down in this study to compare the in vivo biotinylation methods with an approach which directly identifies interaction partners with sufficient affinity to remain bound after cell extraction. Here, we report the analysis of the three proteomic approaches using constitutively active Arl5b as bait, with the finding that a number of TGN/Golgi-localised small G proteins were detected by all three approaches, suggesting an organised complex of small G proteins, and that the Golgi location of the tethering molecules ACBD3 and PIST is partially regulated by Arl5b.

Materials and methods

DNA constructs

For GFP-Trap, pEGFP-N3 (control vector) and pEGFP-N3-Arl5b(Q70L) were previously described [16]. For BioID, pEGFP-N3-Arl5b(Q70L) was used as a template for PCR to amplify Arl5b(Q70L) DNA fragment and introduce in frame restriction sites EcoR1 and BamHI. This fragment was ligated into EcoR1/BamHI linearised pcDNA3.1-MCS-BirA(R118G)-HA (#36047; Addgene, Watertown, MA, USA) (control vector) to generate pcDNA3.1BirA(R118G)-Arl5b(Q70L)-HA. Transformed DH5alpha Escherichia coli were screened by PCR and positive clones confirmed by sequence analysis. For APEX2, pcDNA3-Connexin43-GFP-APEX2 (#49385; Addgene) was digested with AllIII and BamHI to remove the connexin43 sequence to generate pcDNA3-GFP-APEX2. The Arl5b(Q70L) sequence from pcDNA3.1BirA(R118G)-Arl5b(Q70L)-HA was amplified and ligated into pcDNA3-GFP-APEX2. Clones were identified by colony PCR, and positive clones were confirmed by sequence analysis.

To construct pEGFP-C1-ARF1-myc, full-length cDNA of ARF1 was amplified from human HeLa cells cDNA using the specific primers GGGAACATCTTCGCCAACCTC and CTTCTGGTTCCGAGCTG. A myc-tag nucleotide sequence (GAACAGAAACTGATCTCTGAAGAAGACC TG) was inserted at the C terminus of ARF1 in a stepwise PCR process. The final PCR product was digested and cloned into pcDNA3.1BirA(R118G)-HA (#36047; Addgene, Watertown, MA, USA) (control vector) to generate pcDNA3.1BirA(R118G)-HA. Transformed DH5alpha Escherichia coli were screened by PCR and positive clones confirmed by sequence analysis. For APEX2, pcDNA3-Connexin43-GFP-APEX2 (#49385; Addgene) was digested with AllIII and BamHI to remove the connexin43 sequence to generate pcDNA3-GFP-APEX2. The Arl5b(Q70L) sequence from pcDNA3.1BirA(R118G)-Arl5b(Q70L)-HA was amplified and ligated into pcDNA3-GFP-APEX2. Clones were identified by colony PCR, and positive clones were confirmed by sequence analysis.

Antibodies

Purified mouse anti-GM130 clone 35 catalogue # 610822 1 : 300 and mouse antibody to PI4 Kinase β (#611816) were purchased from BD Biosciences, Macquarie Park, NSW, Australia. Mouse monoclonal antibody to the myc epitope (9E10) was obtained from the Walter and Elisa Hall Institute (Melbourne) monoclonal facility. Mouse monoclonal antibody (mAb) to golgin 97 (CDF4) # A21270 used at 1 : 300 was purchased from Thermo Fisher Scientific, Scoresby, VIC, Australia. HA-Tag (C29F4) rabbit mAb #3724 1 : 800 was purchased from Cell Signalling Technologies (CST), Notting Hill, VIC, Australia. Recombinant anti-GM130 rabbit mAb (EP892Y) # ab52649 1 : 1000 was purchased from Abcam (Melbourne, VIC, Australia). Anti-ACBD3 mouse mAb (518) #sc101277 1 : 100 and anti-PIST
mouse mAb (A-7) #sc393026 1 : 100 were purchased from Santa Cruz Biotechnology, Dallas, TX, USA. Rabbit polyclonal antibodies to human GCC88 have been previously described [17]. Streptavidin, Alexa Fluor™488 conjugate #S32354 (SA-AF488), Streptavidin, Alexa Fluor™647 conjugate #S32357 (SA-AF647) used at 1 : 1000 were purchased from Thermo Fisher Scientific. Secondary conjugates used for immunofluorescence were goat anti-mouse IgG (H + L) Conjugated Streptavidin (SA-HRP) #656120, and streptavidin–horseradish peroxidase (SA-HRP) #SA10001 were purchased from Thermo Fisher Scientific.

Reagents

GFP-Trap® Agarose (gtma-10) and GFP-Trap® Magnetic Agarose (gtma-10) were purchased from ChromoTek (BioNovus, Cherrybrook, NSW, Australia). Dynabeads® MyO- One™ Streptavidin C1 (65001) were from Invitrogen/Thermo Fisher Scientific, cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail (CPI) (11836170001) was from Roche/Sigma-Aldrich, Bayswater, VIC, Australia, FuGENE 6 transfection reagent (E2691) was purchased from Promega, Alexandria, NSW, Australia, 4% Paraformaldehyde Phosphate Buffer Solution (PFA) (16320145) was purchased from Wako (Novochem, VIC, Australia), according to the manufacturer’s instructions for 72 h before analysis. Human Arl5b was targeted with the specific siRNA 5'- CAGAGUCAUCAUUCUUUGU -3' [16] and human ACBD3 siRNA (5' AAUUGUCUGUGCCAAAUUC -3'). All duplex mission predesigned siRNAs, including a control siRNA, were synthesized by Sigma-Aldrich (North Ryde, NSW, Australia).

Indirect immunofluorescence

Monolayers on coverslips were fixed with 4% (vol/vol) paraformaldehyde (PFA) for 15 min, followed by quenching in 50 mM NH4Cl/phosphate-buffered saline (PBS) for 10 min. Cells were permeabilised in 0.1% Triton X-100 in PBS for 4 min and incubated in blocking buffer (5% FBS in PBS) for 15 min to reduce nonspecific binding. Monolayers were incubated with primary and secondary conjugates as described [18]. Monolayers were then incubated with primary antibody, diluted in blocking buffer for 1 h, washed in PBS, and incubated with secondary conjugates for 30 min. Monolayers were stained with 4',6-diamidino-2-phenylindole (DAPI) for 5 min, washed in PBS and finally rinsed with MilliQ water before being mounted in Mowiol mounting solution (9.6% w/v Mowiol 4-88 polymer, 24% w/v glycerol, 0.1M Tris-HCL pH 8.5).

Confocal microscopy and image analysis

Images were acquired using a laser confocal scanning microscope (Leica TCS SP2 or SP8) using a 63 × 1.4 NA HCX PL APO CS oil immersion objective. GFP and Alexa Fluor 488 were excited with the 488-nm solid-state laser (SSL), Alexa Fluor 647 with a 552-nm SSL, and DAPI with 405-nm diode laser. Images were collected sequentially for multicolour imaging. Fluorescence images for each experiment were collected using identical settings for quantitative analysis. Quantitation was carried out for the indicated number of cells. The area of the Golgi for each cell was identified as described [19]. Monolayers as the area of the Golgi for each cell was defined using Fiji [19].
Immunoblotting

Cells were lysed by freezing/thawing (ECL) (RPN2106) (GE Healthcare, Bio-Strategy, Ryde, NSW, Australia). Aliquots of the extracts were added to reducing SDS sample buffer and boiled for 5 min at 100 °C. Proteins were resolved by SDS/PAGE using 4%–12% NuPAGE gels (Thermo Fischer Scientific) and transferred onto Immobilon-P polyvinylidene fluoride (PVDF) membrane (Millipore, Bayswater, VIC, Australia) at 10–20 V overnight at 4 °C. The membrane was blocked by drying at 37 °C. The membrane was incubated with antibodies diluted in 5% (wt/vol) skim milk/PBS-0.1% (v/v) Tween 20, or 1% (wt/vol) BSA in PBS-0.1% Tween 20 (1% BSA-PBS/Tween) at room temperature for 1–2 h or overnight at 4 °C and then washed three times, each for 10 min, in 0.1% (vol/vol) PBS/Tween 20. The PVDF membrane was then incubated with horseradish peroxidase (HRP)–conjugated secondary antibodies, diluted in 5% (wt/vol) milk/PBS or 1% BSA-PBS/Tween for 1 h and washed as above.

For streptavidin immunoblots, the protocol was adapted from [20]. PVDF membranes were blocked in BSA blocking buffer [1% (w/v) bovine serum albumin fraction V, 0.2% (w/v) Triton X-100 in PBS] rocking at RT for 20 min and incubated with SA-HRP, diluted 1 : 20 000 in BSA blocking buffer, with shaking for 1 h, and then washed thrice in PBS. To visualise MagicMark™ XP Western Protein Standard # LC5602 (Invitrogen, Thermo Fisher Scientific), membrane was incubated with anti-mouse-HRP or anti-rabbit-HRP in BSA buffer for 30 min and then washed 3 x in PBS. To reduce background, PVDF was incubated shaking with ABS blocking buffer (10% v/v adult bovine serum, 1% w/v Triton X-100 in PBS) for 5 min, then washed 3 x in PBS and again in PBS for a further 5 min. Bound antibodies were detected by enhanced chemiluminescence (ECL) (RPN2106) (GE Healthcare, Bio-Strategy, Campbellfield, VIC, Australia) and captured using the Chemi-Doc MP imager system (Bio-Rad, South Granville, NSW, Australia).

Immunoprecipitation using GFP-Trap

HeLa WT or HeLaArl5b-GFP cell lines were grown in monolayers in 3 x 100 mm cell culture dishes. One set of HeLa WT dishes was transfected with GFP vector alone for 24 h. At least 5 x 10⁶ cells per treatment were harvested and washed in ice-cold PBS. Immunoprecipitation was carried out using either GFP-Trap™_M kit or GFP-Trap®_A kit (ChromoTek, Bionovus Life Sciences, Cherrybrook, NSW, Australia), according to the manufacturer’s instructions. Briefly, washed cells were lysed in the provided NP40 Lysis buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.5% NP-40) with CPI (1 x cOmplete Protease inhibitor cocktail) (Sigma-Aldrich) and centrifuged at 20 000 g at 4 °C to separate insoluble pellet from soluble fraction. GFP-Trap magnetic or agarose beads 20 μl slurry were washed in dilution buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA) containing CPI. Soluble lysates were incubated rotating at 4 °C with beads for 2 h. GFP-Trap beads were washed thrice with ice-cold dilution buffer (without CPI). Samples were collected for immunoblot analysis. Bead/protein complexes were processed for MS analysis.

BioID

BioID was carried out using 4–6 x 100 mm tissue culture plates per sample, with the following modifications from the method described [20]. HeLa cells (~ 1.0 x 10⁶) were seeded into each plate and after 24 h were transiently transfected with 3–4.5 μg DNA (BirA*-HA or Arl5b-BirA*-HA) per plate. The medium was supplemented with 50 μg/ml sterile filtered biotin (Sigma-Aldrich, North Ryde, NSW, Australia) in c-DMEM (Life Technologies, Scoresby, VIC, Australia) for a period of 16–20 h and the cells harvested 24 h after transfection by scraping in 5 ml EDTA/PBS. For analysis, there was at least 1 x 10⁷ cells/sample. Cells were harvested, extracted and incubated with MyOne™ Streptavidin C1 DynaBeads™ (Thermo Fisher Scientific/Invitrogen) (10 μl beads/sample) and the beads washed as per the manufacturer’s instructions.

APEX2

Proximity biotinylation using APEX2 was performed according to the protocol described by Lam et al. [21] and Hung et al. [22]. Briefly, HeLa cells (5 x 100 mm tissue culture plates per sample) were transfected with APEX2 constructs for 24 h and treated with 500 μM streptavidin (B-P) in c-DMEM for 30 min. Freshly prepared H₂O₂ (100 mM) in PBS was added to a final concentration of 1 mM directly into the culture medium, with cells rocking for 1 min, and then the reaction stopped by the addition of freshly prepared Trolox Quenching Solution (10 mM Sodium Ascorbate, 5 mM Trolox, 10 mM sodium azide in PBS). Cells were harvested in Trolox quenching solution into chilled tubes and washed in cold PBS, pelleted and lysed in RIPA buffer (50 mM Tris, 150 mM NaCl, 0.1% v/v SDS, 0.5% sodium deoxycholate, 1.0% TX-100 in PBS) + cOmplete protease inhibitors + 5 mM Trolox for 20 min on ice. The cell extracts were centrifuged at 16 000 g 4 °C for 10 min and the solution fraction collected.

In solution trypsin digest for MS

To identify the GFP-Trap immunoprecipitated proteins, GFP-Trap agarose or magnetic beads were incubated with cell extracts and washed as described above. To identify the biotinylated proximity proteins, total cell lysate (TCL)
samples of Arl5b in either BioID and APEX2 fusion proteins or control samples (vector alone or unrelated fusion protein, also biotinylated) were incubated with streptavidin agarose (SA-agarose) or SA-magnetic beads. After rigorous wash steps, bound proteins were directly digested from the GFP-Trap, SA-agarose or SA-magnetic beads by trypsin in the presence of reducing agent [5% trifluoroethanol (TFE), 50 mM TEAB, 1 mM tris (2-carboxyethyl) phosphine (TCEP)] and 0.25 mg trypsin per sample. Samples were digested overnight at 37 °C, then either magnetically separated or centrifuged to separate beads from the eluted digested peptides. The resulting peptide samples were then analysed on a LTQ Orbitrap Elite (Thermo Scientific, Scoresby, VIC, Australia) coupled to an Ultimate 3000 RSLC nanosystem (Dionex, Scoresby, VIC, Australia). The nanoLC system was equipped with an Acclaim Pepmap nanotrap column and an Acclaim Pepmap analytical column. 2 μL of the peptide mix was loaded onto the trap column of 3% CH3CN containing 0.1% formic acid for 5 min before the enrichment column is switched in-line with the analytical column. The LTQ Orbitrap Elite mass spectrometer was operated in the data-dependent mode, whereby spectra were acquired first in positive mode followed by collision-induced activation (CID). Ten of the most intense peptide ions with charge states ≥2 were isolated and fragmented using normalised collision energy of 35 and activation Q of 0.25. Peptides were identified using MASCOT V2.4 against the human SWISSPROT database with an allowance for three missed cleavages and the fixed modification Carbamidomethyl (C) and variable modification oxidation (M). Protein hits were restricted to those proteins that had 2 or more significant peptides.

Brightfield staining of APEX2

HeLa cell monolayers were transfected with either APEX2 alone or Arl5b-GFP-APEX2 for 24 h. Cells were fixed in 4% PFA for 15 min, quenched in 30 mM glycine/PBS for 10 min, washed with PBS and then incubated with freshly prepared 3,3′-Diaminobenzidine (DAB)/H2O2 in PBS for 30 min. Cells were imaged using transmission settings on a Leica confocal SP8.

Immunofluorescence of APEX2 transfected cells

For immunofluorescence of APEX2 transfected cells, cells treated with biotin for 30 min and freshly prepared H2O2 for 1 min, then quenched in freshly prepared Trolox as above and washed twice in PBS. Cells were fixed with 4% PFA and quenched with 50 mM NH4Cl and permeabilised with 0.1% TX100 4 min, then washed 3 × in PBS, blocked in 5% FBS/PBS for 15 min, then washed once in PBS and then incubated with SA-647 1:1000 for 45 min and washed in PBS.

Co-immunoprecipitation of Myc-tagged Arf1 and Arl5b-GFP

HeLa cell monolayers were seeded at 1.0 × 10⁶ in 2 × 10 cm dishes per sample and cultured 24 h. Cells were transfected for 24 h using FuGENE6 (Promega # E2691) according to the manufacturer’s protocol, with single transfections of either Arl5bT30N-GFP or Arl5bQ70L-GFP, or double transfections with each Arl5b construct plus Arf1-Myc. After 24 h, transfected cells were harvested by trypsinisation, washed twice in chilled PBS and resuspended in chilled cell lysis buffer [0.5% (v/v) IGEPAL CA-630 (I-3021, Sigma-Aldrich, North Ryde, NSW, Australia)] and 1 × Complete™, mini EDTA-free protease inhibitor (CPI) (Roche/ Merck, Bayswater, VIC, Australia), in PBS for 30 min on ice. Lysates were cleared via centrifugation at 20 000 g for 15 min at 4 °C. The soluble lysates were transferred to a fresh tube, and 10% of the volume was kept aside as an input reference. Protein G Dynabeads (Thermo Fisher Scientific) were washed in W + B buffer (0.1 M sodium phosphate buffer, 0.01% v/v Tween®20) (Sigma-Aldrich) containing CPI and used following manufacturer’s instructions. Briefly, 50 μl washed Protein G Dynabead slurry were bound to 5 μg rabbit anti-Myc antibody (αab9106; Abcam) (per sample) on a rotating wheel at room temp for 30 min, separated on magnet and washed thrice in chilled wash buffer (0.1% IGEPAL CA-630 in PBS supplemented with 1 × CPI). Cell lysates were pre-cleared on washed Protein G Dynabeads rotating at room temp for 10 min. Myc-tagged proteins and their precipitates were captured from pre-cleared lysates on Protein G Dynabeads loaded with Myc antibodies rotating at room temp for 30 min, separated on magnet and washed thrice in chilled wash buffer (0.1% IGEPAL CA-630 in PBS that was supplemented with 1 × CPI), with a final PBS wash. Samples were then boiled in 50 μL 1 × NuPAGE SDS sample reducing buffer (Thermo Fisher Scientific) at 100 °C for 10 min for SDS/PAGE and immunoblotting analysis.

Statistical analyses

Quantitation was carried out using GRAHPAD PRISM software for the indicated number of cells at each time point. All analyses included samples from two or more independent experiments. Data were expressed as mean fluorescence intensity (MFI) ± s.e.m, as indicated, and analysed by an unpaired, two-tailed, Student’s t-test. *P < 0.05 (*) was considered significant, **P < 0.01 (**) was highly significant, and ***P < 0.001 (***)) was very highly significant. An absence of a P-value indicates that the differences were not significant (n.s.).

Results

Generation of constructs for BioID, APEX2 and GFP-Trap

The identification of effectors of small G proteins is challenging due to their dynamic and transient
interactions. To identify the interacting proteins of Arl5b, we used the constitutive active form of Arl5b, namely Arl5b(Q70L), and incorporated three different approaches. Two of the three approaches used in vivo proximity labelling methods in live cells, namely BioID [9] and APEX2 [21]. Both these in vivo labelling methods have been widely used in the literature; however, there have been limited studies which have incorporated both methods for the same target. We considered that the incorporation of both in vivo labelling methods should yield a larger pool of potential binding partners as different chemistries and schedules are used in the labelling procedures and different amino acids are biotinylated [9,21]. In addition, we included a GFP-Trap pull down to identify direct interactors following cell lysis. The later method has the advantage of a more direct analysis of interacting proteins, but the disadvantage of the potential loss of low-affinity interactive proteins following cell lysis. Figure 1 shows the overall strategy of the approach using the three methods. Although all three methods rely on the over-expression of Arl5b, the use of multiple approaches should increase the capacity to distinguish relevant near neighbours and interactors.

For BioID, we generated a Arl5b(Q70L)-BirA*-HA fusion protein (where * represents the mutation R118G) that was localised at the Golgi in transfected HeLa cells, as detected by antibodies to the HA epitope (Fig. 2A) and was detected as a ~50 kDa species by immunoblotting, the predicted size of Arl5b(Q70L)-BirA*-HA (Fig. S1A). There was extensive overlap of Arl5b(Q70L)-BirA*-HA with the TGN marker, golgin97 (Fig. 2A), indicating that the Arl5b fusion was correctly targeted to the TGN. Addition of biotin to Arl5b-BirA*-HA fusion transfected cells resulted in the biotinylation of proteins, as detected by Streptavidin-488 (SA-AF488), and moreover, the biotinylated proteins localised extensively with Arl5b(Q70L)-BirA*-HA (Fig. 2B). This immunofluorescent data indicate that the majority of proteins biotinylated by Arl5b(Q70L)-BirA*-HA are restricted to the Golgi environment. As a control experiment, we have transfected cells with BirA*-HA (Fig. 2A) alone and observed that the proteins are dispersed in the cytosol.

For APEX2, we generated a Arl5b(Q70L)-GFP-APEX2 fusion protein which was localised to the juxtanuclear location, typical of the Golgi, whereas APEX2 alone was detected throughout the cytosol as detected by peroxidase-mediated DAB staining (Fig. 3A) and by GFP fluorescence (Fig. 3B), indicating Golgi location of both the GFP tag and peroxidase activity. Incubation with biotin-phenol for 30 min and 1 min incubation with 1 mM H2O2, then immediately quenched in Trolox, and fixed cells were stained for the Golgi marker GM130, followed by SA-AF647 to detected biotinylated species, showed very strong co-localization of the GFP-tagged Arl5b with SA-AF647 indicating the majority of labelling in close proximity to the Golgi (Fig. 3B).

For GFP-Trap, we used a stable cell line expressing Arl5b(Q70L)-GFP, which has been previously described [16] and the control was free GFP expression in the cytosol. Based on our earlier report, there is an eightfold increase in Arl5b mRNA in the Arl5b(Q70L)-GFP stable cell line compared with WT HeLa cells, as assessed by qPCR [16].

Proteomic analysis of biotinylated proteins from in vivo labelling and from pull downs

Biotinylated proteins from BioID and APEX2 experiments were purified from lysed cells by affinity chromatography using streptavidin. Analysis of the BioID affinity-purified biotinylated proteins by blotting and probing with streptavidin-HRP detected multiple components with sizes from 20 kD → 200 kD (Fig. S1B). As a control in the analyses, we included cells transfected with BirA*-HA alone, and in contrast to the Golgi-localised Arl5b(Q70L)-BirA*-HA, BirA*-HA protein is distributed throughout the cytosol (Fig. 2A). Purified biotinylated proteins were analysed by MS as described in materials and methods. Peptides with ion score greater than the homology score were considered significant. Proteins identified in the BirA*-HA control were subtracted from the Arl5b(Q70L)-BirA*-HA sample and proteins further filtered in the Arl5b(Q70L)-BirA*-HA sample to contain at least two unique peptide matches. In total, 257 unique proteins were identified with 2 significant peptides from two independent BioID experiments and 43 proteins detected in both experiments (including the bait) (Appendix 1). We also identified biotinylated proteins from transfected cells expressing the Arl5b(Q70L)-GFP-APEX2 fusion protein. Proteins identified in the APEX2 control were subtracted from the Arl5b(Q70L)-GFP-APEX2 sample and proteins further filtered to contain at least two unique peptide matches. One hundred and fifty seven proteins were identified from Arl5b(Q70L)-GFP-APEX2 sample from two independent experiments. The data from the BioID and APEX2 experiments were combined. Of the total 395 unique proteins, 54 proteins were detected in at least 2 of the 4 BioID and APEX2 experiments, listed in Appendix 1.

To identify direct interacting partners of Arl5b(Q70L)-GFP, pull downs were performed on cell
extracts using GFP-nanotrap and bound material analysed by MS. Peptides with ion score greater than the homology score were considered significant. Proteins identified in the GFP control were subtracted from the Arl5b(Q70L)-GFP sample and proteins further filtered in the Arl5b(Q70L)-GFP sample to contain at least two unique peptide matches. A protein was designated as a candidate interactor of Arl5b(Q70L)-GFP if it exclusively appeared in at least 2 out of 3 independent experiments; 24 proteins (including Arl5b) were detected in at least 2 out of the 3 independent experiments (Appendix 1 and Fig. 4). Seven of the 24 are known Golgi proteins. Of the 24 proteins, 5 overlapped with both GFP-Trap and BioID/APEX2 (Fig. 4A). The five proteins detected by both in vivo proximity and GFP-Trap are Arl5a, Arl5b (bait), Rab10, Arf1/Arf3 and SRPRB. The peptides identified for Arf1 and Arf3 are identical, and the two Arfs could not be distinguished. SRPRB, signal recognition particle receptor subunit beta, is a component of the signal recognition particle (SRP), and it is not clear why this cytosolic and ER subunit would be associated with Arl5b.

Collectively of the 54 proteins detected from 2 independent BioID and APEX2 experiments, and the 24 proteins from the GFP-Trap pull down, 22 (28%) are known to localise to the Golgi. Eleven of the 22 proteins, including the bait, are small G proteins, namely Arl5A, Arl5B, Arf1/3, Arf4, Arf5, Rab1A, Rab6A, Rab6B, Rab8A, Rab10 and Rab14. The remaining proteins include vesicle transport proteins (3) such as SNAREs, membranes proteins (6) including tethering...
factors and signal receptors (2) as depicted in the Venn diagram in Fig. 4B. The list of Golgi proteins and the protein scores from the MS are shown in Table 1.

To further investigate the interaction of Arl5b with the candidate small G proteins, we choose Arf1 for further analysis. A reciprocal co-IP was performed by co-transfecting HeLa cells with Arf1-myc and either the Arl5b GDP-restricted mutant (Arl5b(T30N)-GFP) or Arl5b GTP-restricted mutant (Arl5b(Q70L)-GFP) and assessed whether Arf1-myc co-precipitated the Arl5b-GFP variants using anti-myc antibodies and Protein G Dynabeads. Immunoblotting of the immunoprecipitates with antibodies to GFP detected a band of ~45 kDa, the predicted size of Arl5b-GFP, from the IP with Arl5b(Q70L)-GFP, whereas Arl5b (T30N)-GFP was not detected in the IP, rather was recovered in the Protein G unbound fraction (Fig. S2A). Similar levels of Arf1-myc were precipitated in both IPs (Fig. S2B). Thus, this finding demonstrates that Arf1 can interact with Arl5b and that the interaction is GTP-dependent and/or requires a membrane surface.

Identification of TGN scaffold molecules regulated by Arl5b

Small G proteins are known to recruit scaffolds/tethers to the Golgi membranes, which in turn regulate many of the Golgi functions. From the combined proteomic analysis discussed above, we were interested in
identifying potential scaffold/tethering molecules, which interact and/or are recruited to the Golgi by Arl5b. It was of particular interest that two scaffold molecules were identified in the set of 22 Golgi proteins from the combined analyses, namely Acyl-CoA-binding domain-containing 3 (ACBD3) (gene GCP60) and PIST, a PDZ domain-containing Golgi protein (gene GOPC). ACBD3 is a multi-functional protein, which has been reported to be localised to the Golgi, which has been associated with a diverse array of cellular functions including regulation of lipid transport and maintenance of Golgi structure [23,24]. PIST is also a scaffold located on the TGN, which is known to regulate the trafficking of a number of receptors [25,26]. These two proteins were detected in all 4 in vivo proximity labelling methods. However, neither were detected by the GFP-Trap pull downs, which may indicate the interactions are weak/transient or that they are in close proximity to Arl5b and do not directly interact.

We firstly analysed the localisation of ACBD3 in HeLa cells to confirm that ACBD3 was localised to the Golgi and to establish whether ACBD3 is located on the TGN. In wild-type (WT) HeLa cells, ACBD3 showed substantial co-localisation with the cis-Golgi marker, GM130, confirming a Golgi location. Line scan analysis of GM130 and ACBD3 showed a partial overlap indicating the location of ACBD3 was not restricted to the cis-Golgi. To analyse for TGN location, HeLa cells stably expressing Arl5b(Q70L)-GFP cells were stained with both GM130 and ACBD3. Arl5b and ACBD3 show strong co-localisation. The localisation of Arl5b(Q70L)-GFP and GM130 can be discriminated by line scan analysis. ACBD3 partially colocalises with both markers indicating that ACBD3 is located on the cis-Golgi and also the TGN (Fig. 5A, B). As expected from previous reports [26], PIST also shows strong co-localisation with the TGN marker Arl5b(Q70L)-GFP (Fig. 5C).

Both ACBD3 and PIST are peripheral membrane proteins, and it remains unclear how these proteins are recruited from the cytosol to the TGN membranes. Therefore, we investigated whether the levels of Arl5b
impact on Golgi levels of ACBD3 and PIST. Comparison of staining of WT HeLa cells and the overexpressing Arl5b(Q70L)-GFP HeLa cell line, under identical conditions, showed increased ACBD3 staining in the Golgi of the Arl5b(Q70L)-GFP HeLa cell line (Fig. S3A). Quantitation of ACBD3 levels on the Golgi demonstrates a significant increase in ACBD3 in HeLaArl5b(Q70L)-GFP cells compared with WT HeLa (Fig. 6A). Moreover, knock-down of Arl5b resulted in reduction of intensity of ACBD3 staining.

Fig. 4. Analysis of proteins identified from proximity labelling and GFP-Trap. (A) Venn diagram showing the overlap in hits from the proximity labelling techniques with the hits from GFP-Trap affinity isolation and the identity of the proteins. (B) The list of 22 unique proteins from (A) which localise to the Golgi, including the bait, Arl5b, and a pie chart of the classification of these Golgi proteins.
in both HeLaArl5b(Q70L)-GFP cells (Fig. 7) and WT HeLa cells (not shown). Quantitation of the fluorescence levels following Arl5b knock-down showed a significant reduction (~50%) of endogenous ACBD3 on the Golgi of either WT HeLa or HeLaArl5b(Q70L)-GFP cells (Fig. 8A). The specificity of the ACBD3 antibodies was confirmed by the reduced staining (>50%) in cells treated with ACBD3 siRNA (Fig. 8A). Collectively, these results demonstrate that Arl5b is required for recruitment of ~50% of ACBD3 to the Golgi.

Phosphatidylinositol 4-kinase beta (PI4KB) has been reported to be recruited to the TGN by ACBD3 and plays an important role for transport carrier formation [23]. Therefore, we examined the potential role of Arl5b in recruitment of PI4KB to the TGN. Quantitation of PIST levels on the Golgi demonstrated no significant change in the level of PIST in HeLaArl5b-GFP cells compared with WT HeLa cells (Fig. 6B). Moreover, and in contrast to ACBD3, knock-down of Arl5b in either WT HeLa or HeLaArl5b(Q70L)-GFP cells did not reduce the level of PIST at the Golgi (Fig. 8B). Hence Arl5b is not required for PIST recruitment. Collectively, these findings show the advantage of combining multiple methods in detection of interaction partners.

Discussion

Rabs, Arls and Arfs are major regulators of TGN sorting and trafficking pathways exiting and returning to the TGN [1,12,14]. The interactive partners of these GTPases play an essential role in mediating their activities; however, the identity of the Arl and Arf effectors

Table 1. Golgi localizing proteins identified from BioID, APEX2 and GFP-Trap. Bait indicated in green. Significant gene/protein lists for each technique were pooled (total 76 genes) and analysed in Gene Ontology (GO) enrichment analysis http://geneontology.org/ filtering on Homo Sapiens and cell components. Of the 76 genes, three proteins could not be mapped by this analysis (LAP2B, SRPR, SUGT1). Of the 76 remaining proteins, 22 genes (including bait) were localized to the Golgi apparatus. Dark grey indicates the peptide score was below 30 or not detected, and light grey indicates the peptide score was <40.

Gene name	Protein name	Peptide score per expt
ARL5B	ADP-ribosylation factor-like protein 5B;ARL5B	592.85 214.73 127.07 40.9 495 616.69 237.47
ARL5A	ADP-ribosylation factor-like protein 5A;ARL5A	101.46 48.9 98.86 41.46 207.7 245.63 73.63
ARF1	ADP-ribosylation factor 1;ARF1/ADP-ribosylation factor 3;ARF3	78.71 186.94 125.07 76.46 43.1 86.96
ARF4	ADP-ribosylation factor 4;ARF4	84.03 117.47 105.37 60.71 30.31 37.35
ARF5	ADP-ribosylation factor 5;ARF5	56.91 120.91 49.15
CD44	CD44 antigen;CD44	115.12 137.03 82.94 145.13 231.84 54.72 55.77
GCP60	Golgi resident protein GCP60;ACBD3	61.44 113.54 132.78 112.41
GOPC	Golgi-associated PDZ and coiled-coil motif-containing protein;GOPC	20.27 67.44 126.42 70.94
GORS2	Golgi reassembly-stacking protein 2;GORASP2	47.99 51.43
IT5	Integrin alpha-5;IT5A	64.2 225.08 141.89
LMAN1	Protein ENGIC/53;LMAN1	96.03 150.73 34.75 65
RAB10	Ras-related protein Rab-10;RAB10	58.22 64.05 30.18 128.96 77.61 82.66
RAB14	Ras-related protein Rab-14;RAB14	42.7 46.76 30.18 148.41 49 61.66
RAB1A	Ras-related protein Rab-1A;RAB1A	110.58 248.77 105.73 45.76 115.09 49 89.81
RAB6A	Ras-related protein Rab-6A;RAB6A	87.32 174.32 68.25 30.18 49 61.66 78.92
RAB6B	Ras-related protein Rab-6B;RAB6B	55.73 124.8 46.76 30.18 49 61.66 66.31
RAB8A	Ras-related protein Rab-8A;RAB8A	58.22 58.67 30.18 93.83 55.05 89.81
TM165	Transmembrane protein 165;TMEM165	55.4 133.29 33.03
TM87A	Transmembrane protein 87A;TMEM87A	42.11 193.46
VAMP2	Vesicle-associated membrane protein 2;VAMP2	172.52 139.72 48.69
VAMP3	Vesicle-associated membrane protein 3;VAMP3	195.82 301.82 78.18
VPS54	Vacuolar membrane sorting-associated protein 54;VPS54	78.94 260.14
remains poorly characterised. Here, we have sought to identify the interacting partners of Arl5b, which regulates endosomal-TGN transport [16,27]. We incorporated three proteomic approaches in the study to maximise the capture of both membrane-bound and peripheral membrane proteins incorporating both direct pull downs and proximity-based labelling methods. A notable finding from these analyses was the detection of a number of small G proteins, with Rab10 and Arf1/Arf3 detected by all three methods. We also confirmed an interaction between Arl5b and Arf1 by a reciprocal IP experiment where Arl1-myc co-precipitated Arl5b-GFP. The proximity assays also identified Arf4, Arf5 and Rab14, Rab6A and Rab6B and the GFP pull-down assays also identified Rab8A. All these small G proteins have been reported to be associated with the Golgi, and most with the TGN [7,12], whereas the medial-Golgi Rab, Rab33B [28] was not detected at significant levels, which provides confidence in the strategy to identify spatially relevant proteins. The identification of a cluster of small G proteins is relevant as it indicates a co-ordinated suite of small G proteins regulating functions at the TGN, rather than each acting independently.

A challenge in the field is to identify the interactome of membrane proteins. Approaches involving relocation of the bait to different organelles have been used [29] to enhance the identification of binding partners using proximity methods; however, these approaches will only detect peripheral membrane proteins which interact with the bait but not membrane proteins, such as small G proteins, which are specifically targeted to

Fig. 5. ACBD3 and PIST co-localise with the marker, Arl5b-GFP. HeLa WT (A) and HeLaArl5b(Q70L)-GFP cells (C–E) were fixed and permeabilised and stained for ACBD3 (red) and GM130 (A green, C greyscale) and PIST (red) (E). For (A) and (C), a line scan profile was generated, B and D, respectively, for the region marked with a white line in the images magnified from the boxed regions. Bars represent 10 μm.
membranes of selected organelles. Hence, approaches to identify effectors in situ on their normal membrane sites are required. A strength of the current approach was the application of 3 different strategies to identify the Arb5b neighbourhood within TGN membranes. The findings from this work highlight the complexity of small G protein regulated pathways at the Golgi/TGN and suggest caution should be applied when manipulating the levels of individual Rabs or Arls as they could influence the activities of other G proteins in the same pathway. Of note is that a recent study has also incorporated pull downs and BioID to analyse complexes on different organelles using a uniquely designed single construct [30]. One caveat of our strategy is that it involved overexpression of the Arb5b bait, which may result in non-physiological interactions. Further analysis is required to confirm the interaction of endogenous Arb5b with all of the targets and whether these interactions are dependent or independent on GTP-bound Arb5b.

Why are so many G proteins detected in the current analyses? The findings here suggest that the G proteins either exist as an interactive complex or that they are spatially organised within the same domain. Small G protein cascades have been reported on the early and late endosomes [31,32] and proposed for recycling endosomes [33,34], and our findings suggest that Rab/Arf/Arl cascades may occur on the TGN. A more detailed study is required to determine how these small proteins may regulate each other. One possibility is that GEFs and GAPs are effectors of the TGN small G proteins that regulate the conversion process of small G protein cascades [35], for example, the late Golgi Arf1 has been shown to control the conversion of a Rab in the yeast late Golgi [36]. GEF and GAP proteins were not detected in the current study; however, these may be difficult to label and or pull down.

Fig. 6. Expression of HeLaArb5b-GFP results in an increase in endogenous ACBD3 at the Golgi, but not PIST. HeLa WT and HeLaArb5b-GFP cells were fixed and permeabilised and stained for either (A) ACBD3 or (B) PIST and the Golgi staining quantified as described in methods and expressed as mean fluorescence intensity (MFI) ± SEM. Each symbol represents an individual cell (n ≥ 26). Student’s t-test, ****P < 0.0001, n.s. not significant.

Fig. 7. Impact of silencing of Arb5b on endogenous ACBD3 at the Golgi. Monolayers of HeLaArb5b(Q70L)-GFP cells were transfected with either control siRNA or Arb5b siRNA, as indicated, for 72 h, fixed and permeabilised and stained for ACBD3 (red) and DAPI (blue). Bars represent 10 μm.
A recent study has identified the heat shock protein, HSC70, as an interactive partner of Arl5b [37]. HSC70 was not detected in our study; however, as these authors showed that HSC70 bound preferentially to the GDP-bound form of Arl5b [37], the absence of HSC70 from the interactive partners of GTP-bound Arl5b(Q70L) in our study is probably not surprising.

One key function of small G proteins at the Golgi is the recruitment of scaffolds/tethers to the Golgi membranes, which in turn regulate many of the Golgi functions. It was of particular interest that two Golgi-resident proteins PIST (GOPC) and ACBD3 (GCP60) were identified from the combined proximity labelling techniques, but were not detected with the GFP-Trap pull down. ACBD3 endogenous levels were elevated in HeLaArl5b(Q70L)-GFP cells compared with wild-type HeLa cells. ACBD3 has a number of functions associated with the Golgi stack and the TGN. Giantin, which is localised to the cis- and medial-cisternae, has been reported to bind to ACBD3 [38]. At the TGN, ACBD3 has been reported to recruit PI4KB to the Golgi [39], a kinase located to the TGN [40]; however, the mechanisms for the location of ACBD3 to the TGN had not been defined. Here, we showed that an increase in expression of active Arl5b resulted in an increase in ACBD3 at the Golgi with substantial overlap with Arl5b-GFP, indicating that Arl5b was enhancing ACBD3 localisation at the TGN. Knock-down experiments demonstrated that Arl5b was required for the recruitment of the tethering factor ACBD3 to the TGN, indicating an association of ACBD3 with Arl5b. There was a partial reduction of ACBD3 at the Golgi following Arl5b knock-down, indicating additional mechanisms for ACBD3 recruitment, such as giantin-mediated recruitment to the cis/medial Golgi. Thus, the approach used was able to identify a tethering factor which interacts with Arl5b either directly or indirectly. The lack of detection of ACBD3 by the GFP-Trap pull-down assay may reflect a low-affinity interaction. These findings, together with previous work, suggest that the tethering factor ACBD3 has multiple roles in the early and late Golgi compartments.

In summary, this study shows the benefit of employing multiple approaches to study in situ interactions with small G proteins and highlights a potential...
interactive network of small G proteins at the TGN. Further investigation is now required to determine whether these G proteins act in a co-ordinated G protein cascade.

Acknowledgements

Confocal Microscopy was performed at the Biological Optical Microscopy Platform (BOMP), University of Melbourne and mass spectrometry in the Bio21 Mass Spectrometry and Proteomics Facility (MSPF) at the Bio21 Molecular Science and Biotechnology Institute, University of Melbourne. This work was supported by funding from the Australian Research Council (DP160102394). We thank Dr Ismail Mahmoud for the construction of Arl1-myc. CM was supported by a University of Melbourne Graduate Scholarship. Open access publishing facilitated by The University of Melbourne, as part of the Wiley - The University of Melbourne agreement via the Council of Australian University Librarians.

Author contributions

FJH and PAG conceived the project, designed the experiments, interpreted the data and wrote the manuscript. FJH performed the majority of the experiments. EHJC provided tools and expertise for image quantitation analysis. NAW performed the MS analysis on trypsin digests and CM assisted with the analysis of MS data and fluorescence image analysis.

Data accessibility

The data supporting the findings of this study are available on request from the authors.

References

1 Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12:362–75.
2 Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.
3 D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol. 2006;7:347–58.
4 Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 2002;3:1035–41.
5 Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012;196:189–201.
6 Muller MP, Goody RS. Molecular control of Rab activity by GEFs, GAPs and GDI. Small GTPases. 2018;9:5–21.
7 Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021;288:36–55.
8 Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science. 2013;339:1328–31.
9 Roux KJ, Kim DI, Raida M, Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. 2012;196:801–10.
10 Derby MC, Gleeson PA. New insights into membrane trafficking and protein sorting. Int Rev Cytol. 2007;261:47–116.
11 Guo Y, Sirkis DW, Schekman R. Protein sorting at the trans-Golgi network. Anna Rev Cell Dev Biol, 2014;30:169–206.
12 Tan JZA, Gleeson PA. Cargo sorting at the trans-Golgi network for shunting into specific transport routes: role of Arf small G proteins and adaptor complexes. Cell. 2019;8:531.
13 De Matteis MA, Luini A. Exiting the Golgi complex. Nat Rev Mol Cell Biol. 2008;9:273–84.
14 Goud B, Gleeson PA. TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol. 2010;20:329–36.
15 Goud B, Liu S, Storrie B. Rab proteins as major determinants of the Golgi complex structure. Small GTPases. 2018;9:66–75.
16 Houghton FJ, Bellingham SA, Hill AF, Bourges D, Ang DK, Gemetzis T, et al. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport. Exp Cell Res. 2012;318:464–77.
17 Luke MR, Kjer-Nielsen L, Brown DL, Stow JL, Gleeson PA. GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network. J Biol Chem. 2003;278:4216–26.
18 Kjer-Nielsen L, van Vliet C, Erlich R, Toh B-H, Gleeson PA. The Golgi-targeting sequence of the peripheral membrane protein p230. J Cell Biol. 1999;112:1645–54.
19 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
20 Roux KJ, Kim DI, Burke B. BioID: a screen for protein-protein interactions. *Curr Protoc Protein Sci.* 2013;74:19.23.1–19.23.14.

21 Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, et al. Directed evolution of APX2 for electron microscopy and proximity labeling. *Nat Methods.* 2015;12:51–4.

22 Hung V, Udeshi ND, Lam SS, Loh KH, Cox KJ, Pedram K, et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. *Nat Protoc.* 2016;11:456–75.

23 Klíma M, Tóth DJ, Hexnerova R, Baumlova A, Chalupska D, Tykvart J, et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. *Sci Rep.* 2016;6:23641.

24 Yue X, Qian Y, Gim B, Lee I. Acm-CoA-binding domain-containing 3 (ACBD3; PAP7; GCP60): a multifunctional membrane domain organizer. *Int J Mol Sci.* 2019;20:208.

25 Bergbrede T, Chuhy N, Schoebl S, Blankenfeldt W, Geyer M, Fuchs E, et al. Biophysical analysis of the interaction of Rab6a GTPase with its effector domains. *J Biol Chem.* 2009;284:2628–34.

26 Kolier J, Park M, Bauch C, von Zastrow M, Kreienkamp HJ. The golgi-associated PDZ domain protein PIST/GOPC stabilizes the beta1-adrenergic receptor in intracellular compartments after internalization. *J Biol Chem.* 2015;290:6120–9.

27 Toh WH, Tan JZ, Zulkelli KL, Houghton FJ, Gleeson PA. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway. *Traffic.* 2016;18:159–75.

28 Starr T, Sun Y, Wilkins N, Storrie B. Rab33b and Rab6 are functionally overlapping regulators of Golgi homeostasis and trafficking. *Traffic.* 2010;11:626–36.

29 Gillingham AK, Bertram J, Begum M, Munro S. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. *elife.* 2019;8:e45916.

30 Liu X, Salokas K, Tamene F, Jiu Y, Weldatsadik RG, Ohman T, et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. *Nat Commun.* 2018;9:1188.

31 Pfefler SR. Rab GTPases: master regulators that establish the secretory and endocytic pathways. *Mol Biol Cell.* 2017;28:712–5.

32 Novick P. Regulation of membrane traffic by Rab GEF and GAP cascades. *Small GTPases.* 2016;7:252–6.

33 Lowery J, Szul T, Styers M, Holloway Z, Oorschot V, Klumperman J, et al. The Sec7 guanine nucleotide exchange factor GBF1 regulates membrane recruitment of BIG1 and BIG2 guanine nucleotide exchange factors to the trans-Golgi network (TGN). *J Biol Chem.* 2013;288:11532–45.

34 Nakai W, Kondo Y, Saitoh A, Naito T, Nakayama K, Shin HW. ARF1 and ARF4 regulate recycling endosomal morphology and retrograde transport from endosomes to the Golgi apparatus. *Mol Biol Cell.* 2013;24:2570–81.

35 Thomas LL, Fromme JC. Extensive GTPase crosstalk regulates Golgi trafficking and maturation. *Curr Opin Cell Biol.* 2020;65:1–7.

36 Thomas LL, Highland CM, Fromme JC. Arf1 orchestrates Rab GTPase conversion at the trans-Golgi network. *Mol Biol Cell.* 2021;32:1104–20.

37 Jaimon E, Tripathi A, Khurana A, Ghosh D, Sugatha J, Datta S. Binding with heat shock cognate protein HSC70 fine-tunes the Golgi association of the small GTPase ARL5B. *J Biol Chem.* 2021;297:101422.

38 Sohda M, Misumi Y, Yamamoto A, Yano A, Nakamura N, Ikehara Y. Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin. *J Biol Chem.* 2001;276:45298–306.

39 Sasaki J, Ishikawa K, Arita M, Taniguchi K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. *EMBO J.* 2012;31:754–66.

40 Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. *EMBO J.* 2017;36:3156–74.
Appendix 1. Gene ontology list

Genes and proteins—3 techniques combined

Genes	BioID	Proximity at least 2–4	GFP-Trap at least 2–3	Accession #	Protein name
ABCD3	ABCD3			P28288	ATP-binding cassette subfamily D member 3
AL3A2	AL3A2			P51648	Aldehyde dehydrogenase family 3 member A2; ALDH3A2
ARF1_ARF3	ARF1_ARF3	ARF1_ARF3		P84077, P61204	ARF1 and/or ARF3
ARF4	ARF4			P18085	ADP-ribosylation factor 3; ARF3
ARF5	ARF5			P84085	ADP-ribosylation factor 4; ARF4
ARL5A	ARL5A	ARL5A		Q9Y689	ADP-ribosylation factor-like protein 5A; ARL5A
ARL5B	ARL5B	ARL5B		Q96KC2	ADP-ribosylation factor-like protein 5B; ARL5B
ATG2B	ATG2B			Q968Y7	Autophagy-related protein 2 homolog B; ATG2B
ATP8	ATP8			P06576	ATP synthase subunit beta, mitochondrial; ATP5F1B
ATX10	ATX10	ATX10		Q9UBB4	Ataxin-10; ATXN10; ortholog
CD44	CD44			P16070	CD44 antigen; CD44
DNJ1A	DNJ1A			P31689	DnaJ homolog subfamily A member 1; DNJA1
DNJ2A	DNJ2A			O60884	DnaJ homolog subfamily A member 2; DNJA2
DNJB1	DNJB1			P25685	DnaJ homolog subfamily B member 1; DNJB1
DPM1	DPM1			O60762	Dolichol-phosphate mannosyltransferase subunit 1; DPM
GCN60	GCN60			Q9H3P7	Golgi resident protein GCN60; ACBD3
GOPC	GOPC			Q9HD26	Golgi-associated PDZ and coiled-coil motif-containing protein; GOPC
GORS2	GORS2			Q9H8Y8	Golgi reassembly-stacking protein 2; GORASP2
HDAC2	HDAC2			Q92769	Histone deacetylase 2; HDAC2
HLAA	HLAA			P04439	HLA class I histocompatibility antigen, A alpha chain; HLA-A
HLAC	HLAC			P10321	HLA class I histocompatibility antigen, C alpha chain; HLA-C
IF5A1	IF5A1	IF5A1		P63241	Eukaryotic translation initiation factor 5A-1; EIF5A
ITA3	ITA3			P26006	Integrin alpha-3; ITG3A
ITA5	ITA5			P08648	Integrin alpha-5; ITG5A
ITB1	ITB1			P05565	Integrin beta-1; ITGB1
KAISO	KAISO			Q86T24	Transcriptional regulator Kaiso; ZBTB33
LAP2A	LAP2A	LAP2A		P42166	Lamina-associated polypeptide 2, isoform alpha; TMPO
LAT1	LAT1			Q01650	Large neutral amino acid transporter small subunit 1; SLC7A5
LDHB	LDHB			P07195	L-lactate dehydrogenase B chain; LDHB
LMAN1	LMAN1			P49257	Protein ERGIC-53; LMAN1
LMNA	LMNA	LMNA		P02545	Prelamin-A/C; LMNA
MUC18	MUC18	MUC18		P43121	Cell surface glycoprotein MUC18; MCAM
NPR3L	NPR3L			Q12980	GATOR complex protein NPR3L; NPR3L
NUDC	NUDC	NUDC		Q9Y686	Nuclear migration protein nudC; NUDC
PDL15	PDL15	PDL15		Q96HC4	PDZ and LIM domain protein 5; PDLIM5
PFKA2	PFKA2	PFKA2		Q9UFP1	Histone lysine demethylase PHF8; PHF8
PGRC2	PGRC2	PGRC2		Q15173	Membrane-associated progesterone receptor component 2; PGRC2
PLAK	PLAK	PLAK		P14923	Junction plakoglobin; JUP
PPIA	PPIA			P62136	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit; PPP1CA
PRDX2	PRDX2			P32119	Peroxiredoxin-2; PRDX2
PTH2	PTH2			Q9Y3E5	Peptidyl-tRNA hydrolase 2, mitochondrial; PTHR2
RAB1A	RAB1A	RAB1A		P62820	Ras-related protein Rab-1A; RAB1A
RAB6A	RAB6A	RAB6A		P20340	Ras-related protein Rab-6A; RAB6A
RAB7B	RAB7B	RAB7B		Q9NRW1	Ras-related protein Rab-8B; RAB7B
RAB8A	RAB8A	RAB8A		P61006	Ras-related protein Rab-9A; RAB8A
Appendix 1. (Continued).

Genes	BioID	Proximity at least 2-4	GFP-Trap at least 2-3	Accession #	Protein name
RAB8B	RAB8B	2-2	RAB8B	Q92930	Ras-related protein Rab-8B; RAB8B
RAB10	RAB10	2-2	RAB10	P61026	Ras-related protein Rab-10; RAB10
RAB14	RAB14	2-2	RAB14	P61106	Ras-related protein Rab-14; RAB14
RIR1	RIR1	2-4	RIR1	P23921	Ribonucleoside-diphosphate reductase large subunit; RRM1
RL40	RL40	2-4	RL40	P62967	Ubiquitin-40S ribosomal protein L40; UBA52
RP9	RP9	2-3	RP9	Q8TA86	Retinitis pigmentosa 9 protein; RP9
RPB4	RPB4	2-3	RPB4	Q15514	DNA-directed RNA polymerase II subunit RPB4; POLR2D
RPN1	RPN1	2-3	RPN1	P04843	Dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit 1; RPN1
RS27A	RS27A	2-3	RS27A	P62979	Ubiquitin-40S ribosomal protein S27a; RPS27A
RTN4	RTN4	2-3	RTN4	Q9NC3	Reticulon-4; RTN4
RUVB1	RUVB1	2-3	RUVB1	Q9Y265	RuvB-like 1; RUVBL1
S61A1	S61A1	2-3	S61A1	P61619	Protein transport protein Sec61 subunit alpha isoform 1; SEC61A1
SMYD3	SMYD3	2-3	SMYD3	Q9H7B4	Histone-lysine N-methyltransferase SMYD3; SMYD3
SRPR	SRPR	2-3	SRPR	Q6IA9	Signal recognition particle receptor
SRPRB	SRPRB	2-3	SRPRB	Q9Y5M8	Signal recognition particle receptor subunit beta; SRPRB
SSRD	SSRD	2-3	SSRD	P51571	Translocon-associated protein subunit delta; SSR4
STAT1	STAT1	2-3	STAT1	P42224	Signal transducer and activator of transcription 1-alpha/beta; STAT1
TADBP	TADBP	2-3	TADBP	Q13148	TAR DNA-binding protein 43; TARDBP
TM165	TM165	2-3	TM165	Q9H0C7	Transmembrane protein 165; TMEM165
TM87A	TM87A	2-3	TM87A	Q9NB0N	Transmembrane protein 87A; TMEM87A
TPD54	TPD54	2-3	TPD54	O43399	Tumor protein D54; TFDP52L2
UBB	UBB	2-3	UBB	P0CG47	Polyubiquitin-B; UBB
UBC	UBC	2-3	UBC	P0CG48	Polyubiquitin-C; UBC
VAMP2	VAMP2	2-3	VAMP2	P63027	Vesicle-associated membrane protein 2; VAMP2
VAMP3	VAMP3	2-3	VAMP3	Q15836	Vesicle-associated membrane protein 3; VAMP3
VPS54	VPS54	2-3	VPS54	Q9P1D0	Vacular protein sorting-associated protein 54; VPS54
XCT	XCT	2-3	XCT	Q9UPY5	Cystine/glutamate transporter; SLC7A11
ZCCHV	ZCCHV	2-3	ZCCHV	Q7Z2W4	Zinc finger CCCH-type antiviral protein 1; ZC3HAV1

| 74 | 43 | 54 | 24 | Total |

 Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. Immunoblot analysis of Arl5b (Q70L)-BirA* fusion protein and biotinylated products of in vivo labelling.

Fig. S2. Arf1-myc co-immunoprecipitates Arl5b-Q71L-GFP.

Fig. S3. Comparison of ACBD3 and PI4PB staining in HeLa WT and HeLaArl5b(Q70L)-GFP cells.