Quantitative association analysis between PM$_{2.5}$ concentration and factors on industry, energy, agriculture, and transportation

Nan Zhang1, Hong Huang2, Xiaoli Duan3, Jinlong Zhao2 & Boni Su4

Rapid urbanization is causing serious PM$_{2.5}$ (particulate matter $\leq 2.5 \mu m$) pollution in China. However, the impacts of human activities (including industrial production, energy production, agriculture, and transportation) on PM$_{2.5}$ concentrations have not been thoroughly studied. In this study, we obtained a regression formula for PM$_{2.5}$ concentration based on more than 1 million PM$_{2.5}$ recorded values and data from meteorology, industrial production, energy production, agriculture, and transportation for 31 provinces of mainland China between January 2013 and May 2017. We used stepwise regression to process 49 factors that influence PM$_{2.5}$ concentration, and obtained the 10 primary influencing factors. Data of PM$_{2.5}$ concentration and 10 factors from June to December, 2017 was used to verify the robustness of the model. Excluding meteorological factors, production of natural gas, industrial boilers, and ore production have the highest association with PM$_{2.5}$ concentration, while nuclear power generation is the most positive factor in decreasing PM$_{2.5}$ concentration. Tianjin, Beijing, and Hebei provinces are the most vulnerable to high PM$_{2.5}$ concentrations caused by industrial production, energy production, agriculture, and transportation (IEAT).

PM$_{2.5}$ (particulate matter $\leq 2.5 \mu m$) has recently emerged as a serious pollutant in many countries. Some Asian countries such as India1, Japan2, and Malaysia3 have severe PM$_{2.5}$ pollution problems. The situation has been very challenging in China4. China is experiencing extremely rapid urbanization which leads to high risk of PM$_{2.5}$ pollution. This problem has attracted wide attention since 2013. In Beijing, the capital of China, the highest daily average PM$_{2.5}$ concentration measured was more than 500$\mu g/m^3$, which is 20-fold higher than the WHO guideline value5. Similar high concentrations have occurred several times in the past four years. According to a report from the Asian-development Bank, less than 1% of the 500 largest cities in China meet the WHO air quality guideline values (10$\mu g/m^3$ for the annual mean and 25$\mu g/m^3$ for the daily mean)6. Long-term exposure to PM$_{2.5}$ has been consistently linked to heart and lung disease7, and reduces personal resistance8. For every PM$_{2.5}$ concentration increase of 10$\mu g/m^3$, the risk of emergency hospital admissions for cerebrovascular diseases increased by 1.29%9. An aggressive global program of PM$_{2.5}$ mitigation in line with WHO guidelines could avoid 750,000 (23%) of the current 3.2 million associated deaths per year10. Ways to efficiently control PM$_{2.5}$ under rapid urbanization and aging populations need to urgently be found.

The Chinese government has placed great emphasis on PM$_{2.5}$ control. The Chinese State Council released the Atmospheric Pollution Prevention and Control Action Plan on September 10, 2013 which aimed to reduce PM$_{2.5}$ by up to 25% by 2017 relative to the 2012 level11. At an APEC meeting in October 2014, Chinese President Xi Jinping stated that China will make a concerted effort to reduce air pollution12. In the 13th Five-Year Plan (2016–2020), environmental pollution control is one of the first tasks specified. The plan also advocates the use of ‘big’ data to support pollution mitigation13.

Satellite and ground monitoring data are usually used to predict PM$_{2.5}$ in the short term14,15. Models such as the WRF-Chem model16, the GEOS-Chem model17, and the CMAQ model18 are also used to analyze PM$_{2.5}$

1Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. 2Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, China. 3School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China. 4Electric Power Planning & Engineering Institute, Beijing, China. Correspondence and requests for materials should be addressed to B.S. (email: bnsu@eppei.com)
concentrations. Many studies have been devoted to finding the influencing factors for PM$_{2.5}$ concentration. Meteorological factors such as temperature21, wind speed22, and rainfall23, and human factors such as industrial processes24, energy production and consumption25, and transportation26 are the most important. Previous research has shown that many human activities severely impact air pollution such as crop straw burning27, coal burning28, and vehicle exhaust emissions29. Many research has been carried out on PM$_{2.5}$ concentration using Chemistry Transport Models (CTMs). CTMs can simulate the distribution of PM$_{2.5}$ concentration in certain regions. Currently, however, this method still has some limitations. First, more work should be done on the mechanism of PM$_{2.5}$ formation and development30. Second, data on pollution sources in a whole nation are often not accurate enough and will lead to significant simulation error31.

In this paper, PM$_{2.5}$ concentration is studied through a different approach. We tried to figure out the most important influencing factors of industrial production, energy production, agriculture, and transportation (IEAT) on PM$_{2.5}$ concentration based on available statistics data. Based on millions of collected PM$_{2.5}$ data, we determined the spatial and temporal characteristics of PM$_{2.5}$ distribution in mainland China, and analyzed trends in PM$_{2.5}$ for different provinces. We also collected multisource statistical data that included meteorological and IEAT-factors for each month from January 2013 to May 2017. We found associations between PM$_{2.5}$ and IEAT-factors, and developed a regression formula PM$_{2.5}$ concentration based on 10 primary factors. In addition, we calculated the meteorological and IEAT contributions to PM$_{2.5}$ levels in the different provinces. The results are helpful for governments providing macroscopic mitigation plans for controlling PM$_{2.5}$ in the future.

Data and Methods

Data source. We summarized the collected data into 49 influencing factors, as listed in Table S1. These factors can be grouped into 5 categories: meteorology, industrial production, energy production, agriculture, and transportation. Since 2013, PM$_{2.5}$ data were collected hourly by 391 monitoring stations managed by the Ministry of Environment Protection, China (MEP); PM$_{2.5}$ data from January 2014 through May 2017 were collected daily by 190 monitoring cities from Air Quality Inspection Platform of China32; meteorological data between 2013 and 2016 were collected by 195 weather stations of the China Meteorological Administration (CMA)33; meteorological data between January and May 2017 are from the National Oceanic and Atmospheric Administration (NOAA)34; all data for industrial and energy production are from the National Bureau of Statistics of China (NBSC)35; all transportation data are from the Ministry of Transport, China (MOT)36; data for straw burning are from the Ministry of Environmental Protection, China (MEP)37; data for geographic division of mainland China are from the Ministry of Civil Affairs, China (MCA)38.

Data processing. All data have different temporal collection frequency. PM$_{2.5}$ and meteorological data were collected hourly and daily, while other data for human factors were collected monthly. To unify these data sets, the monthly value for each factor is used in this study, therefore a monthly averaged value is calculated for PM$_{2.5}$ and meteorological data. PM$_{2.5}$ and meteorological data, which were obtained by stations or cities, are averaged by province to obtain a provincial value.

To obtain the regression formula, all data are from the 53 months between January 2013 and May 2017. There are 34 provinces in China. Since there is no available data for Hong Kong, Macau, and Taiwan, we only considered the 31 provinces of mainland China. Therefore, the total data volume for each index should be 1643 (31 × 53) if no data was missing. In reality, there are data missing as shown in Table S1. We used linear interpolation to obtain this missing data. Most of the meteorological factors, and some of the human factors vary periodically by year. We therefore give priority to linear interpolation by year rather than by month. For example, if the data (X, M, Y) for province X in month M, Year Y is missing, we determine the data by linear interpolation based on data (X, M, Y − 1) and data (X, M, Y + 1). If data (X, M, Y − 1) or data (X, M, Y + 1) is missing, we use data (X, M − 1, Y) and data (X, M + 1, Y) to interpolate the missing data. We do not fill data outside the periods for which they were measured, for example, if data was only recorded from May 2015 to May 2017, then data before May 2015 cannot be determined via interpolation. Finally, 3.1% of the data was determined using linear interpolation.

To remove the differences due to geometrical area variation among the 31 provinces and the number of days in a month, all accumulative data (industrial production, energy production, agriculture, and transportation) were divided by province area and number of days in the month.

In this study, we used stepwise regression39,40 to process data to obtain the primary influencing factors that contribute the most to PM$_{2.5}$ concentration. In statistics, stepwise regression is a method of fitting regression models in which the choice of predictive variables is made by an automatic procedure41. The variables ending up in the final equation signify the best combination of independent variables for predicting the dependent variable42. Stepwise regression is frequently used in the statistical analysis of air pollution and has the advantage of being able to avoid collinearity31. SPSS software (IBM SPSS, version 20) was used for the statistical analysis44.

All the 49 influencing factors (as listed in Table S1) are used as input variables. Using stepwise regression, 10 factors having the highest impact on PM$_{2.5}$ are found. In addition, the regression formula for PM$_{2.5}$ concentration is obtained.

Results

General analysis for PM$_{2.5}$ in China. Because of periodicity of meteorological impacts and human behavior, PM$_{2.5}$ variation is also periodic. Figure 1 shows the pollution level and mean concentration of PM$_{2.5}$ in China for 12 months based on data from the past four years. The month with the best air quality is August, with a mean concentration of PM$_{2.5}$ of 36.0 μg/m3. 81.1% of the days had good air quality, and 17.5% of the days had moderate air quality. January has the worst air quality with on average 94.3 μg/m3 of PM$_{2.5}$. In January, only 27.6% of the days have good air quality, and 37.1% days have light, moderate, heavy, or severe pollution. Generally speaking,
Concentrations of PM$_{2.5}$ are much higher in winter than in summer. Therefore, better control of PM$_{2.5}$ in winter is critical.

Figure 1 shows the temporal distribution of PM$_{2.5}$, while Fig. 2 shows its spatial distribution. The number in Fig. 2 shows the average number of polluted days (PM$_{2.5}$ concentration > 100 μg/m3) per year. From Fig. 2, Henan, Hebei, Beijing, Tianjin, and Hubei ranked in the top five for average concentration of PM$_{2.5}$. Beijing experiences about 100 polluted days on average every year. The average PM$_{2.5}$ concentration in Beijing was 79.1 μg/m3 for the past 4 years. The five provinces with best air quality are Hainan, Tibet, Fujian, Yunnan, and Guangdong. Hainan has on average 20.0 μg/m3 of PM$_{2.5}$ while there was not one polluted day in Tibet from 2013 to 2016. Generally, the highly polluted areas are North, Central and some parts of East China. The Coastal province and Northwest China have better air quality.

Combining the results of spatial and temporal distribution of PM$_{2.5}$, Fig. 3 shows the concentration of PM$_{2.5}$ in five typical provinces from April 2013 to March 2017. Beijing (black dashed line) experiences serious air pollution during these years. The PM$_{2.5}$ concentration in Beijing decreased between 2013 and 2015, but increased slightly again to 76.7 μg/m3 in 2016. Shanghai, with the highest income per capita in China, experienced a gradual decrease in PM$_{2.5}$ concentration from 60.8 to 41.4 μg/m3 between April 2013 and March 2017. Henan, the province with the highest population, experienced the most serious air pollution in China. The PM$_{2.5}$ concentration in Henan gradually decreased from 107.0 to 79.5 μg/m3 in the same period. Because of the impact of heavy industry, the PM$_{2.5}$ concentration in Tianjin increased by 11.0% year-on-year. Ningxia, a representative city with low economic development, saw only a slight increase in PM$_{2.5}$ concentration for the period covered by the data.
Table 1. Top 10 influencing factors highly associated with PM$_{2.5}$ concentration. Constant = $1.37 \times 10^4 \mu g\cdot m^{-3}$.

Rank	Factor	Coefficient	Standard error	Unit	Sig.	Accumulative R2
1	Temperature	-1.57×10^4	7×10^{-2}	$\mu g\cdot m^{-3}\cdot ^{\circ}C^{-1}$	0.000	0.358
2	Air pressure	8.3×10^{-4}	6×10^{-3}	$\mu g\cdot m^{-3}\cdot hPa^{-1}$	0.000	0.518
3	Wind speed	-1.2×10^4	1×10^{-1}	$\mu g\cdot m^{-3}\cdot m^{-1}$	0.000	0.577
4	Natural gas production	4.3×10^4	5×10^{-1}	$10^{-4} \mu g\cdot m^{-3}\cdot km^{-2}\cdot d^{-1}$	0.000	0.634
5	Industrial boiler production	6.0×10^{-1}	9×10^{-2}	$\mu g\cdot m^{-3}\cdot (vapor)\cdot km^{-2}\cdot d^{-1}$	0.000	0.673
6	Ore production	3.0×10^9	4×10^{-1}	$\mu g\cdot m^{-3}\cdot hPa^{-1}\cdot km^{-2}\cdot d^{-1}$	0.000	0.694
7	Tractor production	1.1×10^4	2×10^{-3}	$10^{-4} \mu g\cdot m^{-3}\cdot km^{-2}\cdot d^{-1}$	0.000	0.707
8	Nuclear power generation	-7×10^4	2×10^3	$10^{-4} \mu g\cdot m^{-3}\cdot kW\cdot km^{-2}\cdot d^{-1}$	0.000	0.713
9	Locomotive production	2.4×10^4	8×10^{-2}	$10^{-4} \mu g\cdot m^{-3}\cdot km^{-2}\cdot d^{-1}$	0.003	0.717
10	24-hour rainfall	-6×10^{-1}	2×10^{-3}	$\mu g\cdot m^{-3}\cdot mm^{-1}$	0.004	0.721

Figure 3. Concentration trends of PM$_{2.5}$ in Beijing, Shanghai, Tianjin, Henan, and Ningxia provinces (data from April 1st 2013 to March 31st 2017).

Association between PM$_{2.5}$ Concentration and IEAT-factors. The ten most important factors influencing PM$_{2.5}$ concentration, determined by stepwise regression, are listed in Table 1. Meteorological factors including temperature, air pressure, and wind speed are the most strongly associated with PM$_{2.5}$ concentration. The top six IEAT factors having a strong association with PM$_{2.5}$ concentration include the production of: natural gas; industrial boilers; ore; tractors; nuclear power, and locomotives.

Shaanxi, Tianjin, and Beijing have the highest production of natural gas per unit area. Henan, Shanghai, and Jiangsu are the three biggest industrial boiler producers per unit area. Hebei, Beijing, and Liaoning have the highest production of ore per unit area. Shandong, Henan, and Chongqing are the top three provinces in tractor production per unit area. Zhejiang, Tianjin, and Beijing rank highest in the production of locomotives per unit area. Nuclear power generation is the only positive human factor among the top ten factors. Using clean energy can efficiently reduce PM$_{2.5}$ air pollution. Just 7 out of 31 provinces have nuclear power generation. The average PM$_{2.5}$ concentrations per year in Zhejiang, Guangdong, and Fujian provinces (which have high nuclear power generation) are 49.5, 37.2, and 30.4 $\mu g/m^3$, respectively. Constant in this formula is 13.7 which means the background concentration of PM$_{2.5}$ is $13.7\mu g/m^3$ in China. In addition, R^2 of the linear fitting by these 10 factors is 0.721.

According to values in Table 1, the regression formula for PM$_{2.5}$ concentration can be written as (Eq. 1):

$$C_{PM_{2.5}} = -1.57T + 8.3 \times 10^{-2}P_A - 12S_W - 0.6R_{24} + 4.3 \times 10^{-2}P_{NG} + 0.60P_{IB}$$

$$+ 3.0P_O + 1.1 \times 10^3P_T - 7 \times 10P_{NP} + 2.4P_{RL} + 13.7$$

where $C_{PM_{2.5}}$ is the PM$_{2.5}$ concentration ($\mu g/m^3$), T average temperature ($^{\circ}C$), P_A average air pressure (hPa), S_W average wind speed (m-s$^{-1}$), R_{24} average rainfall for 24 hours (mm); P_{NG}, P_{IB}, P_O, P_T, P_{NP}, and P_{RL} are production rates (production per square kilometer per day) of natural gas ($10^4 m^3/km^2\cdot d^{-1}$), industrial boilers (t-(vapor)-km$^{-2}\cdot d^{-1}$), tractors (km$^{-2}\cdot d^{-1}$), nuclear power (104 kW-h-km$^{-2}\cdot d^{-1}$), and locomotives (10$^{-4}$ km$^{-2}\cdot d^{-1}$) per square kilometer per day, respectively.

Meteorological and IEAT contributions to PM$_{2.5}$ concentration. In this study, we divided the influencing factors into meteorological and IEAT elements. Meteorological and IEAT contributions to PM$_{2.5}$ concentration are calculated using Eq. 1 with meteorological and human factors, respectively.

Figure 4(a,b) show the meteorological and IEAT contributions to PM$_{2.5}$. In Fig. 4(a) we see that the three northeastern provinces of China and North China (except Inner Mongolia and Tianjin) have a high meteorological contribution to PM$_{2.5}$, while the south of China has a lower meteorological contribution to PM$_{2.5}$.
Heilongjiang (38.0 μg/m³), Jilin (36.3 μg/m³), and Hebei (33.5 μg/m³) provinces have the highest meteorological contribution, while Hainan (4.8 μg/m³), Tibet (14.0 μg/m³), and Guangdong (14.0) provinces have the lowest meteorological contribution. In Fig. 4(b) we see that the three northeastern provinces of China are not bad in regard to IEAT contribution to PM$_{2.5}$. North China (except Inner Mongolia), Sichuan, Shaanxi, Henan, and Shandong provinces are high IEAT contributors to PM$_{2.5}$. Some southern coastal provinces such as Shanghai and Jiangsu also have high IEAT contributions. Tianjin (30.5 μg/m³), Beijing (27.5 μg/m³), and Hebei province (26.7 μg/m³) have the highest IEAT contribution to PM$_{2.5}$ while Fujian (−1.5 μg/m³), Tibet (0.0 μg/m³), and Ningxia (0.2 μg/m³) rank lowest. More detailed information can be found in Table S2.

Verification. Another group of data from June 2017 to December 2017 was used to verify the robustness of regression formula obtained above (Eq. 1). In Fig. 5, a total of 217 points show the monthly averaged PM$_{2.5}$ data for 7 months of 31 provinces. From comparison between the measured data and calculated values by regression formula based on ten influencing factors from June 2017 to December 2017 (Fig. 5), R^2 is 0.62, which is slightly lower than regression formula’s accumulative R^2 (0.72). The average errors between the measured data and the calculated value is 11.1 μg/m³.

Discussion

In this study we investigated 49 influencing factors including meteorology, industrial production, energy production, agriculture, and transportation on PM$_{2.5}$ concentrations. We determined a quantitative association between PM$_{2.5}$ concentration and IEAT factors, and obtained a formula for PM$_{2.5}$ concentration considering 10 primary factors based on stepwise regression. Stepwise regression is used because it is suitable for processing collinear data. We have tried to use common linear regression to process data, and found that the results are not as good as results obtained by stepwise regression (see Supplementary Information for details).
In this study, we analyzed PM$_{2.5}$ concentrations in China from January 2013 to May 2017. The average PM$_{2.5}$ concentration over 12 months shows an upward parabola. Severe pollution (>300 μg/m³) appeared in winter in many areas of China. Using clean energy such as nuclear power to replace coal burning power plants is a very efficient way to reduce the number of severely polluted days in China. North and Central China have serious PM$_{2.5}$ pollution problems. Research has shown that a 10 μg/m³ increase over a previous day’s PM2.5 level results in a 1.78% increase in respiratory related mortality and a 1.03% increase in stroke related mortality. In China, residents in high-PM$_{2.5}$ concentration areas look forward to gale force winds to reduce pollution. However, reducing PM$_{2.5}$ generated by human activity is the key solution. One approach would be a reasonable distribution of PM$_{2.5}$ sources to help balance PM$_{2.5}$ concentration between highly-populated areas and rural areas. In addition, efforts should be made to reduce the number of severely polluted days rather than just reducing the average PM$_{2.5}$ concentration.

Meteorological contributions to PM$_{2.5}$ are high in the three northeastern provinces of China and North China (excluding Inner Mongolia and Tianjin). These areas are cold in winter, resulting in more coal consumption. Less rainfall in these inland areas is another meteorological reason for high PM$_{2.5}$ levels. North China (excluding Inner Mongolia), Central China, and some provinces of East China have high IEAT contributions to PM$_{2.5}$. Beijing is a typical polluted city which had an average PM$_{2.5}$ concentration of 76.7 μg/m³ from April 2016 to March 2017. In the 13th Five-Year Plan, The Ministry of Environment Protection, China (MEP) set a target for the concentration of PM$_{2.5}$ in Beijing to be reduced to 56 μg/m³ by 2020. This is a considerable challenge. Shanghai provides a good example where in the past four years, the PM$_{2.5}$ concentration has gradually decreased even though urban construction continues and the economy keeps improving.

According to stepwise regression, we found that of the 49 influencing factors (meteorology, industrial production, energy production, agriculture, and transportation), the production of natural gas, industrial boilers, ore, tractors, nuclear power, and locomotives are the top six IEAT factors contributing to PM$_{2.5}$ concentrations. Since the production of natural gas, energy, ore, locomotives and tractors do not need to be concentrated in one area, future planning should include spreading these industries over wider areas to avoid creating areas with high population densities and heavy pollution. Finally, the regression formula was verified by the data from another seven months from June 2017 to December 2017.

Some researchers are focusing on the relationship between human factors and PM$_{2.5}$ pollution. Previous research has suggested that clean fuels such as natural gas should replace the coal used for small domestic boilers to reduce air pollution because combustion for natural gas is cleaner. However, some recent studies noticed that several air pollutants, including VOCs, NO$_x$, PM$_{2.5}$ and SO$_2$, will be emitted during production stage of the natural gas. Our results also show the production of natural gas is strongly related to PM$_{2.5}$ concentrations. Using clean energy (such as solar power, wind power, and nuclear power) to replace fossil energy, rather than using natural gas to replace coal, would be a better solution for PM$_{2.5}$ control. Industrial boilers, which are usually used for burning coal, are bad for air quality. We also found that provinces with high production of industrial boilers, usually have high PM$_{2.5}$ concentrations. Industrial boilers are usually heavy and not convenient for long-range transportation, so most of the produced boilers are likely to be installed and used locally, leading to this phenomenon. Through analysis of collected 24-h PM$_{2.5}$ samples in Brazil, researchers found that environmental contamination is led by ore mining and related activities such as the transport of products to and from the mines. In our study, we found that production of ironstone and phosphate ore were the third biggest generators of PM$_{2.5}$ (P < 0.001), followed by the production of natural gas and industrial boilers. Turkish researchers found that the PM$_{2.5}$ concentration around tractors can reach thousands μg/m³. We found that the production of tractors is also strongly related to PM$_{2.5}$ concentration (P < 0.001). New tractors are usually transported to nearby regions, and tractor operation will also generate PM$_{2.5}$. In New York, the levels of PM$_{2.5}$ rapidly reached a peak when a diesel-powered locomotive passed. In China, locomotives are widely used. We found that producing locomotives will increase PM$_{2.5}$ concentration. High production of locomotives generally reflects a high level of heavy industry, which lead to serious air pollution. As for meteorological factors, many studies have shown that the PM$_{2.5}$ concentration is negatively correlated with wind speed and rainfall which agrees with our findings.
Because many human factors such as coal burning are strongly related to meteorological factors, the impacts of meteorological factors on PM$_{2.5}$ concentration are difficult to quantitatively measure.

There are some limitations to this study. Because of data limitation, we considered only some influencing factors in meteorology, industrial production, energy production, agriculture, and transportation. Other meteorological and IEAT factors may also influence PM$_{2.5}$ levels. For example, energy consumption is very important on emissions and air pollution. However, accurate monthly fuel consumption data at provincial level is unavailable, mainly because there are numerous distributed consumers. In the future, we should take these factors into consideration, if advanced statistical method is developed and accurate energy consumption data are available. In addition, some unconsidered human factors are strongly related to meteorological factors. For example, the consumption of coal and fireworks is high when the temperature is low (Spring Festival which consumes many fireworks is around January and February)\(^9\). Therefore, the meteorological contribution in this study is mainly comprised of both unconsidered human and meteorological factors. In addition, all data is from January 2013 to May 2017. The precision could be improved if we could collect more data over longer periods.

We used the province as the spatial unit in this study. City-scale data should be analyzed in the future once more precise data is obtained. In our data processing, some data was obtained using yearly and monthly linear interpolation, and this may slightly influence the precision of the regression formula for PM$_{2.5}$ concentration. Moreover, since all factors and results are related to industrial technologies, personal living habits, and a few other characteristics, the association should be adjusted when being used for analysis of PM$_{2.5}$ concentrations in other countries.

Conclusions

PM$_{2.5}$ in China in spatial and temporal dimensions was analyzed for data from January 2013 to May 2017. We quantitatively obtained the impacts of meteorology, industrial production, energy production, agriculture, and transportation on PM$_{2.5}$ concentration over an extended period. We found that production of natural gas, industrial boilers, ore production, tractors, and locomotives were the five human factors with the strongest association with PM$_{2.5}$ concentration. The model and the results provide efficient references for governments to make better plans on controlling PM$_{2.5}$ concentrations.

In the future, more types of data, longer time periods, and more detailed regionalization should be considered to improve the precision of the association analysis for PM$_{2.5}$ concentration.

References

1. Kulshrestha, A., Satsangi, P. G., Mash, J. & Tanega, A. Metal concentration of PM$_{2.5}$ and PM 10 particles and seasonal variations in urban and rural environment of Agra, India. *Science of the Total Environment* **407**, 6196–6204 (2009).
2. Goto, D. *et al.* Estimation of excess mortality due to long-term exposure to PM$_{2.5}$ in Japan using a high-resolution model for present and future scenarios. *Atmospheric Environment* **140**, 320–332 (2016).
3. Fujii, Y., Mahmud, M., Tohno, S., Okuda, T. & Mizohata, A. A case study of PM$_{2.5}$ characterization in Bangi, Selangor, Malaysia during the Southwest monsoon season. *Air Quality, Atmosphere & Health* **16**, 2685–2691 (2016).
4. Han, L., Zhou, W. & Li, W. Increasing impact of urban fine particles (PM$_{2.5}$) on areas surrounding Chinese cities. *Scientific Reports* **5**, 12467 (2015).
5. Ma, Z. *et al.* Satellite-based spatiotemporal trends in PM$_{2.5}$ concentrations: China, 2004–2013. *Environmental Health Perspectives* **124**, 184–192 (2016).
6. Xu, P., Chen, Y. & Ye, X. Haze, air pollution, and health in China. *Lancet* **382**, 2067 (2013).
7. Cao, C. *et al.* Inhalable microorganisms in Beijing's PM$_{2.5}$ and PM$_{10}$ pollutants during a severe smog event. *Environmental Science & Technology* **48**, 1499–1507 (2014).
8. Zhang, Y. L. & Cao, F. Fine particulate matter (PM$_{2.5}$) in China at a city level. *Scientific Reports* **5**, 14884 (2015).
9. Kouroumatoglou, M. A. *et al.* Long-term PM$_{2.5}$ exposure and neurological hospital admissions in the northeastern United States. *Environmental Health Perspectives* **124**, 23–29 (2016).
10. Zhang, N., Huang, H., Duarte, M. & Zhang, J. Dynamic population flow based risk analysis of infectious disease propagation in a metropolis. *Environment International* **94**, 369–379 (2016).
11. Leiva, G. M. A., Santibáñez, D. A., Ibarra, E. S., Matus, C. P. & Seguel, R. A five-year study of particulate matter (PM$_{2.5}$) and cerebrovascular diseases. *Environmental Pollution* **181**, 1–6 (2013).
12. Apté, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient PM$_{2.5}$. *Environmental Science & Technology* **49**, 8057–8066 (2015).
13. Huang, R. J. *et al.* High secondary aerosol contribution to particulate pollution during haze events in China. *Nature* **514**, 218–222 (2014).
14. Xinhua. President Xi: Carry out pollution control with great efforts. Available at: http://www.qstheory.cn/yaowen/2014-11/13/c_1112339067.htm (Accessed 2017 July 1).
15. CEN (China Environmental News). Strengthen the environmental impact assessment during 13th Five-Year. Available at: http://www.qstheory.cn/zoology/2017-02/21/c_1120501829.htm (Accessed 2017 July 1).
16. Ma, Z., Hu, X., Huang, L., Bi, J. & Liu, Y. Estimating ground-level PM$_{2.5}$ in China using satellite remote sensing. *Environmental Science & Technology* **48**, 7346–7354 (2014).
17. Sellnerich, N. A clearer picture of China’s air: using satellite data and ground monitoring to estimate PM$_{2.5}$ over Time. *Environmental Health Perspectives* **124**, A38 (2016).
18. Zhang, H. *et al.* Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. *Science of the Total Environment* **473**, 275–285 (2014).
19. Lee, H. M. *et al.* PM$_{2.5}$ source attribution for Seoul in May from 2009 to 2013 using GEOS-Chem and its adjoint model. *Environmental Pollution* **221**, 377–384 (2017).
20. Chemel, C. *et al.* Application of chemical transport model CMAQ to policy decisions regarding PM$_{2.5}$ in the UK. *Atmospheric Environment* **82**, 410–417 (2014).
21. Zhang, R. *et al.* Nanofiber air filters with high-temperature stability for efficient PM$_{2.5}$ removal from the pollution sources. *Nano Letters* **16**, 3642–3649 (2016).
22. Yu, L. *et al.* Characterization and source apportionment of PM$_{2.5}$ in an urban environment in Beijing. *Aerosol and air quality research* **13**, 574–583 (2013).
23. Ozbek, N., Baltaci, H. & Baysal, A. Investigation of fluorine content in PM$_{2.5}$ airborne particles of Istanbul, Turkey. *Environmental Science and Pollution Research* **23**, 13169–13177 (2016).
59. Kong, S.
52. de Fatima Andrade, M.
57. Pillai, P. S., Babu, S. S. & Moorthy, K. K. A study of PM, PM$_{10}$ and PM$_{2.5}$ concentration at a tropical coastal station.

43. Chen, Y., Shi, R., Shu, S. & Gao, W. Ensemble and enhanced PM$_{10}$ concentration forecast model based on stepwise regression and wavelet analysis.

41. Hocking, R. R. A Biometrics invited paper. The analysis and selection of variables in linear regression.

39. Lv, J., Liu, Y., Zhang, Z. & Dai, J. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials 261, 387–397 (2013).

38. MCA (Ministry of Civil Affairs of the People's Republic of China). National administrative division information inquiry platform. Available at: http://www.mca.gov.cn/data/jgsq/index.shtml (Accessed 2017 July 1).

34. NOAA (National Oceanic and Atmospheric Administration). Climate Data Online: Dataset Discovery. Available at: https://www.ncdc.noaa.gov/cdo-web/datasets (Accessed 2017 July 1).

32. AQIPC (Air Quality Inspection Platform of China). Available at: https://www.aqistudy.cn/historydata/ (Accessed 2017 July 1).

30. Hu, M., Guo, S., Peng, J. & Wu, Z. Insight into characteristics and sources of PM$_{2.5}$ in the Beijing-Tianjin-Hebei region, China. Atmospheric Environment 75, 265–269 (2013).

29. Zhang, L., Liu, Y. & Hao, L. Contributions of open crop straw burning emissions to PM$_{2.5}$ concentrations in China. Environmental Research Letters 11, 014014 (2016).

28. Yang, L. et al. Source identification and health impact of PM$_{2.5}$ in a heavily polluted urban atmosphere in China. Atmospheric Environment 75, 265–269 (2013).

27. Xu, H.
24. Huang, Y. et al. Quantification of global primary emissions of PM$_{2.5}$, PM$_{10}$, and TSP from combustion and industrial processes. Environmental Science & Technology 48, 13834–13843 (2014).

25. Xu, Y. et al. Field measurements on the emission and removal of PM$_{2.5}$ from Coal-Fired power stations: 4. PM removal performance of wet electrostatic precipitators. Energy Fuels 230, 7465–7473 (2016).

23. Huang, Y.
21. Franklin, M., Zeka, A. & Schwartz, J. Association between PM$_{2.5}$ and all-cause and specific-cause mortality in 27 US communities.

20. Hocking, R. R. A Biometrics invited paper. The analysis and selection of variables in linear regression.

19. Lv, J., Liu, Y., Zhang, Z. & Dai, J. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials 261, 387–397 (2013).

18. Moore, C. W., Zielinska, B., Petron, G. & Jackson, R. B. Air impacts of increased natural gas acquisition, processing and use: a critical review. Environmental Science & Technology 48, 8349–8359 (2014).

15. Gilden, J. B., Lerner, B. M., Kuster, W. C. & Gouw, J. A. Source signature of volatile organic compounds from oil and natural gas production in northeastern Colorado. Environmental Science & Technology 47, 1297–1305 (2013).

14. Li, Q. et al. Semi-coke briquettes: towards reducing emissions of primary PM$_{2.5}$ particulate carbon, and carbon monoxide from household coal combustion in China. Scientific Reports 6, 19306 (2016).

13. Wang, S., Zhang, Q. & Liu, Y. A study of PM$_{2.5}$ concentration and its sources in Shanghai. Atmospheric Environment 149, 123–131 (2018).

12. de Fatima Andrade, M. et al. Semi-coke briquettes: towards reducing emissions of primary PM$_{2.5}$ particulate carbon, and carbon monoxide from household coal combustion in China. Scientific Reports 6, 19306 (2016).

11. Wang, S., Zhang, Q. & Liu, Y. A study of PM$_{2.5}$ concentration and its sources in Shanghai. Atmospheric Environment 149, 123–131 (2018).

10. Arslan, S., Aybek, A. & Ekerbicer, H. C. Measurement of personal PM$_{10}$, PM$_{2.5}$, and PM$_{1}$ exposures in tractor and combine operations and evaluation of health disturbances of operators. Journal of Agricultural Sciences 16, 104–115 (2010).

9. Vilcassim, M. J. R., Thurston, G. D., Peltier, R. E. & Gordon, T. Black carbon and particulate matter (PM$_{2.5}$) concentrations in New York City's subway stations. Environmental Science & Technology 48, 14738–14745 (2014).

8. Li, Q. et al. Source identification and health impact of PM$_{2.5}$ in a heavily polluted urban atmosphere in China. Atmospheric Environment 75, 265–269 (2013).

7. Wang, S., Zhang, Q. & Liu, Y. A study of PM$_{2.5}$ concentration and its sources in Shanghai. Atmospheric Environment 149, 123–131 (2018).

6. Ni, X.-Y., Huang, H. & Du, W. P. Relevance analysis and short-term prediction of PM$_{2.5}$ concentrations in Beijing based on multi-source data. Atmospheric Environment 150, 146–161 (2017).

5. Pillai, P. S., Babu, S. S. & Moorthy, K. K. A study of PM$_{2.5}$ and PM$_{10}$ concentration at a tropical coastal station. Atmospheric Research 61, 149–167 (2002).

4. Li, Q. et al. Source identification and health impact of PM$_{2.5}$ in a heavily polluted urban atmosphere in China. Atmospheric Environment 75, 265–269 (2013).

3. Wang, S., Zhang, Q. & Liu, Y. A study of PM$_{2.5}$ concentration and its sources in Shanghai. Atmospheric Environment 149, 123–131 (2018).
Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27771-w.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018