Respective Role of Membrane and Nuclear Estrogen Receptor (ER) α in the Mandible of Growing Mice: Implications for ERα Modulation

Alexia Vinel,1 Amelie E Coudert,2 Melissa Buscato,1 Marie-Cécile Valera,1 Agnès Ostertag,3 John A Katzenellenbogen,4 Benita S Katzenellenbogen,5 Ariane Berdal,2 Sylvie Babajko,2 Jean-François Arnal,1 and Coralie Fontaine1

1INSERM-U 1048, I2MC, University of Toulouse 3, Toulouse, France
2Molecular Oral Pathophysiology Team, Centre de Recherche des Cordeliers, INSERM-U 1138, University of Paris-Diderot, Paris, France
3UMR1132, BIOSCAR, University of Paris-Diderot, Paris, France
4Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
5Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

ABSTRACT

Estrogens play an important role in bone growth and maturation as well as in the regulation of bone turnover in adults. Although the effects of 17β-estradiol (E2) are well documented in long bones and vertebrae, little is known regarding its action in the mandible. E2 actions could be mediated by estrogen receptor (ER) α or β. ERs act primarily as transcriptional factors through two activation functions (AFs), AF1 and AF2, but they can also elicit membrane-initiated steroid signaling (MISS). The aim of the present study was to define ER pathways involved in E2 effects on mandibular bone. Using mice models targeting ERβ or ERα, we first show that E2 effects on mandibular bone are mediated by ERα and do not require ERβ. Second, we show that nuclear ERαAF2 is absolutely required for all the actions of E2 on mandibular bone. Third, inactivation of ERαMISS partially reduced the E2 response on bone thickness and volume, whereas there was no significant impact on bone mineral density. Altogether, these results show that both nuclear and membrane ERα are requested to mediate full estrogen effects in the mandible of growing mice. Finally, selective activation of ERαMISS is able to exert an effect on alveolar bone but not on the cortical compartment, contrary to its protective action on femoral cortical bone. To conclude, these results highlight similarities but also specificities between effects of estrogen in long bones and in the mandible that could be of interest in therapeutic approaches to treat bone mass reduction. © 2018 American Society for Bone and Mineral Research.

KEY WORDS: ESTROGENS; SERMS; BONE REMODELING; GENETIC ANIMAL MODELS; BONE QCT/μCT

Introduction

Estrogens play a major role in bone growth and maturation, and adult bone turnover. Although the effects of 17β-estradiol (E2) in long bones and vertebrae have been extensively described,11 little is known regarding its action in oral bone. Histomorphogenesis and bone growth dynamics associated with the morphology of the mouse mandible represent a well-established model to study the development and evolution of these complex structures.23 Alveolar bone is a very specific part of maxillary bones supporting teeth, receiving mechanical strains developed during mastication and constantly challenged by the oral microbiota and ensuing inflammation. It has been shown that the local environment is a confounding factor in the control of jaw bone density. For instance, low masticatory constraints (soft diet) induce alterations in the cancellous network within the alveolar process.10 In addition, particular distribution of bone modeling areas observed in the fourth postnatal week in the alveolar region could be related to diet but also to hormonal changes resulting from the endocrine activity of the ovaries.23 Indeed, experimental approaches revealed that ovariectomy is associated with alterations in alveolar and condylar bone of the mandible, including a decrease in mineral density,5–11 an effect fully prevented by E2 replacement.10,12

Estrogen effects are mediated by estrogen receptors alpha and beta (ERα and ERβ) that belong to the nuclear receptor superfamily.13 Animal studies using mutant mice models deficient for either ERα or ERβ demonstrated that ERα is absolutely required for the bone-sparing effects of E2 on long bones and vertebrae in both male and female mice, whereas
ERβ exerts only a minor protective role in female and is dispensable in male mice. In addition, a recent publication highlighted that ERα is required to maintain the microarchitecture of maxillary alveolar bone in intact female mice. However, invalidation of ERα in mice results in disturbed serum sex steroid levels, with elevated levels of ovarian-derived testosterone and estradiol, which in turn could act on bone mass via an activation of other receptors such as the androgen receptor. To avoid the confounding effects of high serum sex hormones, experiments on ovariectomized mice supplemented or not with E2 are required to definitively conclude on the respective roles of ERα and ERβ subfunctions on E2 effects on jaw bone, as previously studied on long bones.

Besides the well-recognized role of nuclear ERα, which regulates target gene transcription (genomic action) through two independent activation functions (AFs), AF1 and AF2, a subpopulation of ERα is also present at or near the plasma membrane, where it can elicit rapid, nongenomic, membrane-initiated steroid signaling (MISS) effects. Although ERα/MISS actions are mainly characterized by short-term changes in signal transduction pathways, activation of membrane ERα may also impact nuclear events, including ERα activity, through phosphorylation of the nuclear receptor itself and/or of its cofactors, ultimately resulting in changes in the transcriptional activity of ERα. Experimental approaches on long bone from mice selectively deficient in ERα-AF1 (ERα-AF1 mice) or ERα-AF2 (ERα-AF2 mice) revealed that ERα-AF2 is necessary for the osteoprotective effects of E2 on both cortical and cancellous bone, whereas ERα-AF1 is only necessary in the cancellous compartment. In addition, we and others recently demonstrated that ERα/MISS effects are necessary to induce full E2 osteoprotective actions in the femur using a mouse model in which ERα cannot be directed to the plasma membrane (ERα-C451A),

In addition to natural estrogens, selective ER modulators (SERMs) are a class of drugs acting on ERα. Among them, raloxifene (RAL), lasofoxifene (LAS), and bazedoxifene (BZA) can be used to treat postmenopausal osteoporosis. Experimental data on ovariectomized mice demonstrated that these three SERMs had similar effects on axial bone mass but slightly different effects on the appendicular skeleton. Importantly, all these effects require a functional ERα-AF1. Pharmacological tools were also developed to specifically activate the ERα pool localized at the plasma membrane. The estrogen–dendrimer conjugate (EDC) consists of ethinyl-estradiol attached to a large, positively charged, nondegradable poly(amido)amine dendrimer via hydrothetically stable linkages. EDC is highly effective in stimulating non-nuclear signaling, but inefficient in stimulating nuclear ER target gene expression because it does not enter metabolic tissues (adipose tissue and liver) and in bone, whereas ERα osteoprotective effects of E2 on both cortical and cancellous compartments in femoral and vertebral bones. However, its full E2 osteoprotective actions in the femur using a mouse model in which ERα were randomly distributed in the different experimental groups and were ovariectomized before puberty, at age 4 weeks, to avoid any endogenous estrogen impregnation, as described. After 2 weeks recovery, they were implanted with a subcutaneous pellet delivering either vehicle, E2 (8 μg/kg/day, pellet of 0.01 mg, 60-day release; Innovative Research of America, Sarasota, FL, USA); or PaPE-1 (pellet of 8 mg PaPE-1 and 12 mg cholesterol) or were implanted with s.c. osmotic minipumps (Alzet, Cupertino, CA, USA; model 2004, 0.25 μL/hour, 28 days) to deliver EDC (240 μg/kg/day) or an empty dendrimer, for 3 weeks. C57BL/6J mice were obtained from Charles River Laboratories (Saint Germain Nuelles, France); the ERα−/−, ERβ−/−, ERα-AF2−/−, and ERα-C451A mouse lines were generated at the Institut Clinique de la Souris (Illkirch-Graffenstaden, France) as described, and littersmates control were used in each experiment. All mouse lines were on C57BL/6J background, except for the ERα-C451A mouse line that was generated on C57BL/6N background (n = 5 mice per group).

Bone imaging

Mouse mandibles were dissected out after euthanasia and kept in 70% ethanol. Micro–computed tomography (μCT) analyses were performed using a microtomograph (μCT) systems, used at 100 kV, 100 μA, pixel size 6 μm, with a 0.25-mm aluminum filter (Bruker microCT, Kontich, Belgium), according to the manufacturer’s instructions and the recent guidelines from the American Society for Bone and Mineral Research (ASBMR). Three-dimensional reconstruction images were respectively obtained and analyzed with NRecon and CTAn software (Skyscan). Alveolar, trabecular, and cortical bones were analyzed from transaxial sections, respectively, between the roots of the first molar, at the mandibular condyle, and at the posterior edge of the ramus. Parameters such as bone volume per tissue volume (BV/TV), trabecular separation (Tb.Sp), number (Tb.N), and thickness (Tb.Th), as well as cortical thickness (Ct.Th) were measured. Bone mineral density (BMD) was analyzed using Bruker-microCT BMD calibration phantoms, with concentrations of calcium hydroxyapatite (CaHA) of 0.25 and 0.75 g/cm² at each studied site.
Morphometric measurements were performed with Data-Viewer64 software (Bruker microCT). Analyses were performed between the following reference points: infradental (Id); third molar’s most posterior part (M3); mandibular foramen’s most posterior point (MF); condylion (Cd); and gonion (Go), as described in Supplemental Fig. 1A.

Statistical analysis

Results are reported as the mean ± SE (n = 5). To test the effect of treatments, Mann-Whitney test or one-way ANOVA followed by a Bonferroni post-test was performed. Two-way ANOVA was realized to test the interaction between treatment and genotype. When an interaction was observed between two parameters, the effect of treatment was studied for each genotype with the Bonferroni post hoc test. A value of p < 0.05 was considered statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001).

Results

Mandibular effects of E2 on growing mice are mediated by ERα but not by ERβ

In order to evaluate the effect of estrogens in our experimental conditions, and as previously described for long bone,\(^\text{20}\) mandibles from sham operated or ovariectomized C57BL/6J mice supplemented or not with exogenous E2 (8 μg/kg/day)

![Fig. 1. E2 treatment reverses the effects of ovariectomy on mandibular bone compartments. C57BL/6J mice were either sham operated, or ovariectomized at 4 weeks and treated with vehicle (Veh) or estradiol (E2 8 μg/kg/day) for 3 weeks. Mandibular sites analyzed: alveolar bone between first molar’s roots; cortical bone at the mandible posterior edge; cancellous bone at the condyle level; the areas analyzed are delineated in white (A). Body and uterine weights (B). Representative images generated by μCT and quantification of BV/TV (C, D) or Ct.Th (E) of alveolar, cancellous, and cortical bones in the mandible. Results are presented as mean ± SE (n = 5). Veh – vehicle; BV/TV – bone volume/tissue volume; Ct.Th – cortical thickness.](image_url)
were analyzed using micro-computed tomography (μCT) in three compartments: alveolar bone between the first molar’s roots, cancellous bone in the condylar area, and cortical bone in the posterior part of the mandible (Fig. 1A). Prior to experiment, no significant difference was observed in body weight between the three groups. To ensure that both ovariectomy and E2 treatment were efficient, mice uteri were systematically weighted after euthanasia (Fig. 1B). As expected, ovariectomy led to uterine atrophy, as reflected by a lower weight, and E2 treatment increased uterine weight (Fig. 1B).

In alveolar and cancellous bones, both endogenous (ie, sham versus ovariectomized mice) and exogenous E2 led to a decrease of BV/TV (Fig. 1C, D) and Tb.Sp with an increase of bone marrow density (BMD) (Table 1). In addition, ovariectomy was associated with a marked and significant decrease in Tb.N in cancellous but not in alveolar bone, despite a tendency in this last compartment. Exogenous E2 treatment increased this parameter in both alveolar and cancellous bones. By contrast, no effect of estrogens was observed on Tb.Th whatever the bone compartment.

Regarding cortical bone morphology parameters, bone thickness was significantly smaller in ovariectomized mice than in sham-operated or E2-treated mice (Fig. 1E). Measurements between the following anatomical references: Id, M3, MF, Cd, and Go, indicated that neither ovariectomy nor E2 treatment had an effect on mandibular morphology in these experimental conditions (Supplemental Fig. 1A, B).

Then, in order to evaluate the respective role of ERα and ERβ in E2 effects on oral bone, mandible from ovariectomized ERα−/− and ERβ−/− mice, and their respective wild-type (WT) control littermates (ie, ERα+/− and ERβ+/−, respectively), supplemented or not with E2, were analyzed. As expected, in WT mice, ovariectomy led to a complete atrophy of the uterus, whereas E2 treatment increased uterine weight. Uterine hypertrophy in response to E2 was totally absent in ERα−/− mice (Supplemental Fig. 2A) and fully preserved in ERβ−/− mice (Supplemental Fig. 2B). In addition and as expected, E2 treatment increased percentage of BV/TV, BMD, and Tb.Sp, and decreased Tb.N in both alveolar and cancellous mandibular bones from ERα−/− mice, whereas E2 effects were totally abolished in ERβ−/− mice (Fig. 2A, C; Table 2). By contrast, E2 displayed similar beneficial action in these bone compartments from ERβ+/− and ERβ−/− mice, as indicated by the absence of interaction between treatment and genotype (Fig. 28, D; Table 3). As observed in C57BL/6 mice (Table 1), trabecular thickness was not affected by either ovariectomy or E2 treatment, regardless of the genotype (Tables 2 and 3). Finally and similarly to alveolar and cancellous bone, while E2 effects on cortical thickening were absent in ERα−/− mice, they remained unaffected in ERβ−/− mice (Fig. 2E, F). Altogether, these results demonstrated that the E2 effects on mandibular bone are mediated by ERα and do not require ERβ.

Both nuclear and membrane ERα are requested for full bone effects of E2 in the mandible of growing mice

Because both nuclear and membrane ERα are requested in E2 beneficial effects in long bone, we next explored the respective role of these ERα subfunctions in the effects of E2 on mandibular bone using ERα-AF20 and ERα-C451A mice and their respective littermates (ie, ERα-AF2+/− and ERα-WT, respectively). As expected, E2 increased uterine weight in WT and ERα-C451A mice but not in ERα-AF20 mice (Supplemental Fig. 2C, D). Alveolar and cancellous bone analysis revealed that E2 effects on BMD, BV/TV, Tb.N, and Tb.Sp were completely absent in ERα-AF20 mice (Fig. 3A–D). In addition, the increase of cortical thickness in response to E2 observed in cortical bone from ERα-AF2+/− mice was absent in ERα-AF20 mutant mice (Fig. 3E, F). Altogether, as previously described in long bones and in vertebrae,[19] these results showed that the effects of E2 on mandibular bone absolutely require ERα-AF2.

Analysis of ERα-C451A mice revealed no difference with control mice regarding the beneficial effects of E2 on BMD and Tb.N in alveolar and cancellous bone (Fig. 4B, D). In addition, even if E2 effects on BV/TV were still effective in both alveolar (Fig. 4A, B) and cancellous (Fig. 4C, D) bone from ERα-C451A mice, they were significantly decreased compared to their control littermates in both alveolar (Fig. 4A, B) and cancellous (Fig. 4C, D) compartments. Tb.Sp was significantly less impacted by E2 treatment in ERα-C451A than in control mice in the alveolar compartment (Fig. 4B), but not in the cancellous compartment (Fig. 4D). Finally, E2 effects on Ct.Th were significantly reduced in ERα-C451A mice compared to WT mice (Fig. 4E, F). All these results demonstrate that contrary to nuclear activation, ERα-MISS is not absolutely required but contributes to the effects of E2 on mandibular bone.

Table 1. Changes in Alveolar and Cancellous Bone Microarchitecture Following OVX and E2 Treatment

	Sham	Vehicle	E2
Alveolar bone			
BMD (g/cm³)	1.204 ± 0.049 ***	0.786 ± 0.013	1.163 ± 0.037 ***
Tb.Th (mm)	0.083 ± 0.005	0.073 ± 0.002	0.075 ± 0.004
Tb.N (1/mm)	9.600 ± 0.436	8.520 ± 0.204	11.130 ± 0.588 **
Tb.Sp (mm)	0.034 ± 0.003 **	0.044 ± 0.001	0.029 ± 0.002 ***
Cancellous bone			
BMD (g/cm³)	1.378 ± 0.053 ***	0.912 ± 0.063	1.296 ± 0.015 ***
Tb.Th (mm)	0.038 ± 0.002	0.030 ± 0.002	0.034 ± 0.001
Tb.N (1/mm)	19.680 ± 0.370 ***	14.680 ± 0.255	19.870 ± 0.584 ***
Tb.Sp (mm)	0.032 ± 0.002 ***	0.062 ± 0.004	0.030 ± 0.001 ***

Values are mean ± SE (n = 5).
OVX = ovariectomy.
**p < 0.01 versus OVX.
***p < 0.001 versus OVX.
Selective activation of ERαMISS is sufficient to affect alveolar bone but not cancellous and cortical compartments in the mandible

Because it was previously shown that selective activation of ERαMISS was able to elicit some osteoprotective effects in long bones using EDC compound,\(^{29}\) we then evaluated the impact of EDC in the mandible (Fig. 5A). Three-dimensional representative reconstruction images and BV/TV analysis of ERα and ERβ mice alveolar (A, B) and cancellous (C, D) bones. Images and thickness measurements of ERα and ERβ deficient mice cortical bone (E, F). Results are presented as mean ± SE (n = 5). BV/TV = bone volume/tissue volume; Ct.Th = cortical thickness; Veh = vehicle.

![Images of bone analysis](fig2.png)

Fig. 2. Mandibular effects of E2 are mediated by ERα but not ERβ. Four-week-old ERα−/− and ERβ−/− female mice and their littermate controls (ERα+/+, ERβ+/+) were ovariectomized and subcutaneously treated with placebo (control – white bars) or 17β-estradiol (E2 8 μg/kg/day – dark gray bars) for 3 weeks. Mandibular bone was analyzed using μCT. Three-dimensional representative reconstruction images and BV/TV analysis of ERα and ERβ mice alveolar (A, B) and cancellous (C, D) bones. Images and thickness measurements of ERα and ERβ deficient mice cortical bone (E, F). Results are presented as mean ± SE (n = 5). BV/TV = bone volume/tissue volume; Ct.Th = cortical thickness; Veh = vehicle.
Demonstrated that the effects of E2 on mandibular bone do not require ER. Here, using engineered mice aimed at functionally ablating the ER, we generated a mouse model with a point mutation of this ER palmitoylation site (ER-C451A) that Cys-447 of human ER is a crucial palmitoylation site for the receptor membrane localization, (42) Thus, an interaction with GPR30 allows the recruitment of coactivators. (35) Using mouse models lacking this function (ERα-C451A), Börjesson and colleagues showed that the ERα-C451A function is absolutely required for E2 osteoprotective effects on cortical and cancellous bone in femur and vertebra. Here, we show that this function is also necessary to mediate the E2 action on oral bone. Besides the classical nuclear functions of ERα, this receptor is also able to mediate extracellular signaling, which includes posttranscriptional modifications and interactions of the receptor with other molecular actors, like adaptor molecules, kinases, and G proteins. (13) Indeed, a fraction of ERα is localized at the plasma membrane where it can elicit rapid signaling, as demonstrated in cell culture models. (32) Based on in vitro work demonstrating that Cys-447 of human ERα (Cys-451 in mouse) is a crucial palmitoylation site for the receptor membrane localization, (43,44) we generated a mouse model with a point mutation of this ERα palmitoylation site (ERα-C451A) in which membrane activation

**Table 2. **µCT Analysis of Alveolar and Cancellous Mandibular Bone in ERα+/– Mice

	ERα+/+	ERα−/−	Interaction	Genotype	Treatment	
Alveolar bone						
BMD (g/cm³)	0.768 ± 0.047	1.185 ± 0.089	0.754 ± 0.029	0.771 ± 0.023	p = 0.002	–
Tb.Th (mm)	0.044 ± 0.001	0.040 ± 0.001	0.044 ± 0.003	0.043 ± 0.001	ns	ns
Tb.N (1/mm)	10.252 ± 0.659	16.936 ± 1.735	10.033 ± 0.985	9.201 ± 0.280	p = 0.003	ns
Tb.Sp (mm)	0.150 ± 0.008	0.060 ± 0.023	0.149 ± 0.01	0.155 ± 0.004	p = 0.002	–
Cancellous bone						
BMD (g/cm³)	0.885 ± 0.22	1.318 ± 0.065	0.913 ± 0.037	1.048 ± 0.023	p = 0.002	–
Tb.Th (mm)	0.041 ± 0.009	0.047 ± 0.001	0.043 ± 0.002	0.044 ± 0.001	ns	ns
Tb.N (1/mm)	13.085 ± 0.488	16.813 ± 0.747	12.019 ± 0.442	13.527 ± 0.304	p = 0.048	–
Tb.Sp (mm)	0.057 ± 0.002	0.024 ± 0.001	0.065 ± 0.005	0.056 ± 0.004	p = 0.004	–

Values are mean ± SE (n = 5). ns = nonsignificant; BMD = bone mineral density; Tb.Th = trabecular thickness; Tb.N = trabecular number; Tb.Sp = trabecular separation. * * * p < 0.001 versus Vehicle of the same genotype.

Discussion

In this study, we show that: (i) E2 effects on mandibular bone are mediated by ERα but not ERβ; (ii) these E2 effects are totally abrogated in Erα-/- mice and partially altered in Erα-C451A mice; and (iii) selective activation of Erα-MISS is sufficient to strengthen microarchitecture in alveolar but not in cancellous and cortical bone.

ERα and ERβ are the two main receptors that mediate the majority of estrogen effects. (13) Their roles on long bones and vertebrae have been extensively explored in vivo using transgenic mouse models, that showed that E2 effects are mediated by ERα, whereas ERβ only has minor role in female long and vertebral bones and none on male bones. (14,15) However, those studies remained controversial due to several genetically engineered mice aimed at functionally ablating the ERβ, which exhibited somewhat divergent phenotypes. (14,15,34,36) Here, using the last generation of mouse model in which exon 3 of ERβ was completely deleted by Cre/LoxP-mediated excision and devoid of any transcript downstream of this exon, we definitively demonstrated that the effects of E2 on mandibular bone do not require ERβ. By contrast, we showed that ERα is absolutely required because all the effects of E2 at the mandible are absent in Erα−/− mice. Besides ERs, a member of the seven-transmembrane

G protein-coupled receptor family, GPR30, has emerged as a third ER. GPR30 activation has been reported to exert several beneficial effects in the bone system. (39–41) Thus, an interaction with GPR30 could be envisioned, but this aspect is beyond the scope of this work.

ERα acts mainly as a transcription factor in the nucleus through its AF2 function (ERα-AF2), which allows the recruitment of coactivators. (35) Using mouse models lacking this function (ERα-AF2-), Börjesson and colleagues (19) showed that the ERα-AF2 function is absolutely required for E2 osteoprotective effects on cortical and cancellous bone in femur and vertebra. Here, we show that this function is also necessary to mediate the E2 action on oral bone. Besides the classical nuclear functions of ERα, this receptor is also able to mediate extracellular signaling, which includes posttranscriptional modifications and interactions of the receptor with other molecular actors, like adaptor molecules, kinases, and G proteins. (13) Indeed, a fraction of ERα is localized at the plasma membrane where it can elicit rapid signaling, as demonstrated in cell culture models. (32) Based on in vitro work demonstrating that Cys-447 of human ERα (Cys-451 in mouse) is a crucial palmitoylation site for the receptor membrane localization, (43,44) we generated a mouse model with a point mutation of this ERα palmitoylation site (ERα-C451A) in which membrane activation

**Table 3. **µCT Analysis of Alveolar and Cancellous Mandibular Bone in ERβ−/− Mice

	ERβ+/+	ERβ−/−	Interaction	Genotype	Treatment	
Alveolar bone						
BMD (g/cm³)	0.801 ± 0.032	1.252 ± 0.022	0.732 ± 0.033	1.240 ± 0.041	ns	ns
Tb.Th (mm)	0.081 ± 0.005	0.074 ± 0.005	0.080 ± 0.007	0.078 ± 0.007	ns	ns
Tb.N (1/mm)	8.540 ± 0.416	12.243 ± 0.890	7.444 ± 0.458	12.641 ± 0.458	ns	p < 0.0001
Tb.Sp (mm)	0.044 ± 0.003	0.025 ± 0.001	0.053 ± 0.007	0.023 ± 0.001	ns	p < 0.0001
Cancellous bone						
BMD (g/cm³)	1.034 ± 0.029	1.354 ± 0.014	1.010 ± 0.027	1.328 ± 0.032	ns	ns
Tb.Th (mm)	0.037 ± 0.002	0.036 ± 0.003	0.035 ± 0.001	0.035 ± 0.001	ns	ns
Tb.N (1/mm)	15.945 ± 0.959	21.213 ± 1.631	15.198 ± 0.332	20.821 ± 0.738	ns	p < 0.0001
Tb.Sp (mm)	0.053 ± 0.003	0.025 ± 0.001	0.057 ± 0.003	0.026 ± 0.001	ns	p < 0.0001

Values are mean ± SE (n = 5). ns = nonsignificant; BMDs = bone mineral density; Tb.Th = trabecular thickness; Tb.N = trabecular number; Tb.Sp = trabecular separation.
ERα nuclear pathways are necessary to mediate E2 effects on mandibular bone. Four-week-old ERα-AF20 and their littermate controls (ERα-AF2+/+)
female mice were ovariectomized and subcutaneously treated with placebo (control – white bars) or 17β-estradiol (E2 8 µg/kg/day – dark gray bars) for 3 weeks. Mandibular bone was analyzed using μCT. Three-dimensional representative reconstruction images of alveolar bone (A); and BMD, cancellous BV/TV, Tb.N, and Tb.Sp measurements (B). (C) Representative images of cancellous bone three-dimensional reconstructions. (D) The same parameters as in alveolar bone were studied on condylar cancellous bone. (E) Indicative images of cortical bone after three-dimensional reconstruction. (F) Ct.Th was measured at the posterior edge of the mandible. Results are represented as mean ± SE (n = 5). BMD = bone mineral density; BV/TV = bone volume/tissue volume; Tb.N = trabecular number; Tb.Sp = trabecular separation; Ct.Th = cortical thickness; Veh = vehicle.

Fig. 3. ERα nuclear pathways are necessary to mediate E2 effects on mandibular bone. Four-week-old ERα-AF20 and their littermate controls (ERα-AF2+/+)
female mice were ovariectomized and subcutaneously treated with placebo (control – white bars) or 17β-estradiol (E2 8 µg/kg/day – dark gray bars) for 3 weeks. Mandibular bone was analyzed using μCT. Three-dimensional representative reconstruction images of alveolar bone (A); and BMD, cancellous BV/TV, Tb.N, and Tb.Sp measurements (B). (C) Representative images of cancellous bone three-dimensional reconstructions. (D) The same parameters as in alveolar bone were studied on condylar cancellous bone. (E) Indicative images of cortical bone after three-dimensional reconstruction. (F) Ct.Th was measured at the posterior edge of the mandible. Results are represented as mean ± SE (n = 5). BMD = bone mineral density; BV/TV = bone volume/tissue volume; Tb.N = trabecular number; Tb.Sp = trabecular separation; Ct.Th = cortical thickness; Veh = vehicle.
ERαMISS is requested for full E2 effects on mandibular bone. Four-week-old ERα-C451A and their littermate controls (ERα-WT) female mice were ovariectomized and subcutaneously treated with placebo (control – white bars) or 17β-estradiol (E2 8 μg/kg/day – dark gray bars) for 3 weeks. Mandibular bone was analyzed using μCT. Three-dimensional representative reconstruction images of alveolar bone (A); and BMD, cancellous BV/TV, Tb.N, and Tb.Sp measurements (B). (C) Representative images of cancellous bone three-dimensional reconstructions. (D) The same parameters as in alveolar bone were studied on condylar cancellous bone. (E) Indicative images of cortical bone after three-dimensional reconstruction. (F) Ct.Th was measured at the posterior edge of the mandible. Results are represented as mean ± SE (n = 5). BMD = bone mineral density; BV/TV = bone volume/tissue volume; Tb.N = trabecular number; Tb.Sp = trabecular separation; Ct.Th = cortical thickness; Veh = vehicle.
of ERα is abrogated.\(^{(23)}\) Using this mouse model, we recently demonstrated that the mutation leading to an abolition of membrane ERα actions also decreased E2 effects on long bone;\(^{(20)}\) the same observation was reported by others.\(^{(45)}\) Here, we show that the action of E2 on mandibular bone is also altered in ERα-C451A mice in alveolar, trabecular, and cortical compartments.

Interestingly, besides estrogens, synthetic compounds are able to bind ERα and induce specific tissue-selective actions, being agonists and mimicking some effects of estrogens while antagonizing others.\(^{(24,46)}\) The main explanation for the actions of these SERMs is based on the relative activation of nuclear, AF1 and AF2 ERα functions, and MISS activation.\(^{(13)}\) ERα-MISS selective activation using EDC and/or PaPE-1 has been shown to exert beneficial protection against vascular and metabolic disorders as well as against long-bone demineralization without impacting sex targets.\(^{(33)}\) Interestingly, it has been demonstrated that selective activation of this pathway using EDC was able to exert beneficial effects on cortical but not trabecular bone of femur and vertebra.\(^{(29)}\) Here, we showed that both EDC

Fig. 5. ERα-MISS selective activation affects alveolar bone. Four-week-old C57BL/6J mice were ovariectomized and treated with either empty dendrimer (Dend) or vehicle (Veh) (control – white bars), or EDC (light gray bars), or PaPE-1 (dark gray bars) for 3 weeks. (A) Chemical structure of 17β-estradiol (E2), EDC and PaPE-1. (B) Representative images generated by μCT and quantification of BV/TV of alveolar and cancellous bone, and Ct.Th from EDC-treated mice. (C) Representative images generated by μCT and quantification of BV/TV of alveolar and cancellous bone, and Ct.Th from mice treated with PaPE-1. Results are presented as mean ± SE (n = 5). BV/TV = bone volume/tissue volume; Ct.Th = cortical thickness; Veh = vehicle.
Table 4. μCT Analysis of Alveolar and Cancellous Mandibular Bone in C57Bl/6J Mice Following Ovariectomy and EDC Treatment

	Dend	EDC
Alveolar bone		
BMD (g/cm³)	0.808 ± 0.063	1.183 ± 0.018**
Tb.Th (mm)	0.069 ± 0.003	0.079 ± 0.004
Tb.N (1/mm)	9.118 ± 0.279	10.590 ± 0.556*
Tb.Sp (mm)	0.045 ± 0.002	0.037 ± 0.002*
Cancellous bone		
BMD (g/cm³)	1.068 ± 0.056	1.177 ± 0.029
Tb.Th (mm)	0.032 ± 0.001	0.033 ± 0.0006
Tb.N (1/mm)	15.380 ± 0.393	15.990 ± 0.455
Tb.Sp (mm)	0.059 ± 0.004	0.056 ± 0.004

Values are mean ± SE (n = 5).
Dend = Empty Dendrimer.
*p < 0.05 versus Dend.
**p < 0.01 versus Dend.

Estrogens are necessary not only for bone growth and maturation, but also for the regulation of bone turnover in adults. Consequently, menopause, resulting from decreased production of 17β-estradiol (E2) due to cessation of ovarian function, is currently associated with osteoporosis, a widespread pathology characterized by bone tissue loss, leading to skeleton fragility and increased fracture risk.(48) Although there is no consensus today, several clinical studies suggest an association between osteoporosis and oral bone loss.(49–52) Recent studies reported in women an association between osteoporosis and tooth loss, indicating that low femoral BMD and T-score were associated with fewer remaining teeth.(53–55) In addition, low BMD and bone stiffness were associated with low number of teeth in women but not in men.(56,57) Furthermore, studies reported that dental panoramic and measurements of mandibular cortical thickness could be used to diagnose osteoporosis and thus identify women at risk of low BMD.(58–60) In addition, even if hormonal replacement therapy (HRT) has been extensively recognized to exert beneficial actions to prevent and treat osteoporosis, its effect on mandibular bone is still poorly described. If one observational study reported no beneficial effect of HRT in postmenopausal women on alveolar bone height and porosity reduction,(61) several others showed that postmenopausal women receiving HRT exhibited less alveolar bone loss than untreated women.(62–64) Interestingly, two experimental studies showed that E2 treatment in mature mice was able to reverse the effects of ovariectomy on alveolar and condylar bone microarchitecture, respectively.(15,16) Moreover, ERα has also been shown to be necessary for estrogen’s protective effect on alveolar bone in intact mature mice.(16) Here, we show that ERα is also required to mediate E2 effect at the mandible in the growing mice. In addition, it was proposed that selective activation of ERα-MISS could represent an optimized alternative to induce the beneficial effects of E2 on vascular, metabolic, and long-bone parameters(29,33) with limited deleterious effects on breast and endometrial proliferation.(133) The results of the present study suggest that this strategy could also offer beneficial action on mandibular bone.

At first glance, a pharmacological approach with EDC and PaPE-1 on the one hand and results from the genetically modified models targeting ERα nuclear loss-of-function ERα-AF2a on the other hand could seem contradictory. Indeed, whereas the selective activation of ERα-MISS by EDC could act on long(29) and mandibular bone, there is a total abrogation of E2-beneficial actions using ERα-AF2a nuclear-deficient mice.(199) However, it has been recently shown that nuclear ERα-AF1 is crucial for EDC effect, highlighting the importance of the crosstalk between nuclear and extranuclear ERs to mediate beneficial effects of estrogens on long bone.(47) In addition, it can be hypothesized that part of the action of EDC and PaPE-1 could involve an activation of both AF1 and AF2, suggesting another level of interaction between membrane and nuclear ERα.

Table 5. μCT Analysis of Alveolar and Cancellous Mandibular Bone in C57Bl/6J Mice Following OVX and PaPE-1 Treatment

	Vehicle	PaPE-1
Alveolar bone		
BMD (g/cm³)	0.742 ± 0.037	0.882 ± 0.028*
Tb.Th (mm)	0.074 ± 0.002	0.081 ± 0.003
Tb.N (1/mm)	7.874 ± 0.223	8.783 ± 0.142*
Tb.Sp (mm)	0.045 ± 0.002	0.037 ± 0.043**
Cancellous bone		
BMD (g/cm³)	0.801 ± 0.023	0.793 ± 0.019
Tb.Th (mm)	0.039 ± 0.002	0.034 ± 0.001
Tb.N (1/mm)	14.040 ± 0.64	14.530 ± 0.34
Tb.Sp (mm)	0.066 ± 0.005	0.059 ± 0.002

Values are mean ± SE (n = 5).
OVX = ovariectomy.
*p < 0.05 versus OVX.
**p < 0.01 versus OVX.

Disclosures
All authors state that they have no conflicts of interest.

Acknowledgments

The work at INSERM U1048 was supported by INSERM, CHU, and Université de Toulouse III, Faculté de Médecine Toulouse-Rangueil, Fondation de France, Fondation pour la Recherche Médicale (FRM, Grant number DEQ20160334924), Agence Nationale de la Recherche (ANR) and Conseil Régional Midi-Pyrénées. AV was supported by a grant from the Institut Français pour la Recherche en Odontologie (IFRO). Support from the National Institutes of Health (NIH DK015556 to JAK) and the...
Breast Cancer Research Foundation (BCRF-17-083 to JAK and BSK) is gratefully acknowledged. The authors thank the Anexpro-Genotoul platform (CREFEUS006/INSERM), G. Carcasses from the animal facility, and F. Boudou (INSERM U 1048) for skillful technical assistance.

Authors’ roles: study design: JFA, CF, SB, and AB. Study conduct: AV and AEC. Data collection: AV, AEC, MCV, and MB. Data analysis: AV and CF. Technical support: OA. Drafting the manuscript: AV and CF. JAK and BSK gave pharmacological tools and conceptual advice. Approving the manuscript: JFA, SB, and CF. AV, JFA, and CF take responsibility for the integrity of the data analysis.

References

1. Manolagas S, O’Brien C, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev. 2013;9:699–712.
2. Martinez-Maza C, Montes L, Lamroux H, Ventura J, Cubo J. Postnatal histomorphogenesis of the mandible in the house in mouse. J Anat. 2012 May;220(5):472–83.
3. Martinez-Vargas J, Martinez-Maza C, Muñoz-Muñoz F, et al. Comparative postnatal histomorphogenesis of the mandible in wild and laboratory mice. Ann Anat. 2018 Jan;215:8–19.
4. Movropoulos A, Odman A, Ammann P, Kiliaridis S. Rehabilitation of masticatory function improves the alveolar bone architecture of the mandible in adult rats. Bone. 2011 Sep;47(3):687–92.
5. Tanaka M, Eijiri S, Toyooka E, Kohno S, Ozawa H. Effects of ovarioectomy on trabecular structures of rat alveolar bone. J Periodontal Res. 2002 Apr;37(2):161–6.
6. Dai QG, Zhang P, Wu YQ, et al. Ovarioectomy induces osteoporosis in the maxillary alveolar bone: an in vivo micro-CT and histomorphometric analysis in rats. Oral Dis. 2014 Jul;20(5):514–20.
7. Johnston BD, Ward WE. The ovarioctomized rat as a model for studying alveolar bone loss in postmenopausal women. Biomed Res Int. 2015;2015:635023.
8. Kobayashi M, Matsumoto C, Hirata M, Tominari T, Inada M, Miyaura C. The correlation between postmenopausal osteoporosis and inflammatory periodontitis regarding bone loss in experimental models. Exp Anim. 2012;61(2):183–7.
9. Bonnet N, Lescloux P, Saffar JL, Ferrari S. Zoledronate effects on systemic and jaw osteopenias in ovarioctomized peristin-deficient mice. PLoS One. 2013;8(3):e59726.
10. Macari S, Dufles L, Queiroz-Junior C, et al. Oestroge regulates bone resorption and cytoint production in the maxillae of female mice. Arch Oral Biol. 2015;60:333–41.
11. Liu XL, Li CL, Wu WW, Cai WX, Zheng LW. Skeletal site-specific response to ovarioectomy in a rat model: change in bone density and microarchitecture. Clin Oral Implants Res. 2015 Apr;26(4):392–8.
12. Fujita T, Kawata T, Tokimasa C, Tanno K. Influence of oestrogen and androgen on modelling of the mandibular condylar bone in ovarioctomized and orchietomized growing mice. Arch Oral Biol. 2001 Jan;46(1):57–65.
13. Arnal JF, Lenfant F, Metivier R, et al. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev. 2017;97(3):1045–87.
14. Sims NA, Dupont S, Krust A, et al. Deletion of estrogen receptors regulates a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone. 2002 Jan;30(1):18–25.
15. Sims NA, Clément-Lacroix P, Minet D, et al. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest. 2003 May;111(9):1319–27.
16. Macari S, Ajay Sharma L, Wyatt A, et al. Osteoprotective effects of estrogen in the maxillary bone depend on ERα. J Dent Res. 2016 Jun;95(6):689–96.
17. Couse JF, Yates MM, Walker VR, Korach KS. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lacking ERα but not ERβ. Mol Endocrinol. 2003 Jun;17(6):1039–53.
18. Lindberg MK, Alatalo SL, Halleen JM, Mohan S, Gustafsson JA, Ohlsson C. Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol. 2001 Nov;171(2):229–36.
19. Börjesson AE, Windahl SH, Lagerquist MK, et al. Roles of trans-activating functions 1 and 2 of estrogen receptor-alpha in bone. Proc Natl Acad Sci U S A. 2011 Apr;108(15):6288–93.
20. Vinel A, Hay E, Valera MC, et al. Role of ERα in the effect of estradiol on cancellous and cortical femoral bone in growing female mice. Endocrinology. 2016 Jun;157(6):2533–44.
21. Arnal J, Fontaine C, Abot A, et al. Lessons from the dissection of the activation functions (AF-1 and AF-2) of the estrogen receptor alpha in vivo. Steroids. 2013;78:576–82.
22. Börjesson AE, Farman HH, Engdahl C, et al. The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice. J Bone Miner Res. 2013 May;28(5):1117–26.
23. Adlammerini M, Solinahc R, Abot A, et al. Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci U S A. 2014 Jan;111(2):E283–90.
24. Rigg L, Hartmann L. Selective estrogen-receptor modulators: mechanisms of action and application to clinical practice. N Engl J Med. 2003;348:618–29.
25. Cummings SR, Ensrud K, Delmas PD, et al. Losafosifexine in postmenopausal women with osteoporosis. N Engl J Med. 2010 Feb;362(8):686–96.
26. Pinkerton JV, Harvey JA, Lindsay R, et al. Effects of bazedoxifene/conjugated estrogens on the endometrium and bone: a randomized trial. J Clin Endocrinol Metab. 2014 Feb;99(2):E180–98.
27. Börjesson AE, Farman HH, Moverare-Skrtic S, et al. SERMs have substance-specific effects on bone, and these effects are mediated via ERα-AF-1 in female mice. Am J Physiol Endocrinol Metab. 2016 Jun;301(11):E912–8.
28. Harrington W, Sung Hoon K, Funk C, et al. Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action. Mol Endocrinol. 2006;20:491–502.
29. Bartell SM, Han L, Kim HN, et al. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass. Mol Endocrinol. 2013 Apr;27(4):649–56.
30. Madak-Erdogan Z, Kim SH, Gong P, et al. Design of pathway preferential estrogenics that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci Signal. 2016 May;9(429):ra53.
31. Handgraaf S, Riant E, Fabre A, et al. Prevention of obesity and insulin resistance by estrogens requires ERα activation function-2 (ERα-AF-2), whereas ERα-AF-1 is dispensable. Diabetes. 2013 Dec;62(12):4098–108.
32. Valéa MC, Gratacap MP, Gourdy P, et al. Chronic estradiol treatment reduces platelet responses and protects mice from thromboembolism through the hematopoietic estrogen receptor α. Blood. 2012 Aug;120(8):1703–12.
33. Chambless KL, Wu Q, Oltmanns S, et al. Non-nuclear estrogen receptor alpha signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J Clin Invest. 2010 Jul;120(7):2319–30.
34. Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M. Effect of single and compound knockouts of estrogen receptors alpha (ERα/β) and beta (ERβ) on mouse reproductive phenotypes. Development. 2000;127(19):4277–91.
35. Billon-Galéa A, Krust A, Fontaine C, et al. Activation function 2 (AF2) of estrogen receptor-alpha is required for the atheroprotective action of estradiol but not to accelerate endothelial healing. Proc Natl Acad Sci U S A. 2011 Aug;108(32):13311–6.
36. Antal MC, Krust A, Chambon P, Mark M. Sterility and absence of histopathological defects in nonreproductive organs of a mouse ERβ-null mutant. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2433–8.
37. Bouxsein ML, Boyd SK, Christiansen BA, Goldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010 Jul;25(7):1468–86.
38. Dempster D, Compston J, Dreznher N, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013 Jan;28(1):2–17.
39. Windahl SH, Andersson N, Chagin AS, et al. The role of the G protein-coupled receptor GPR30 in ovariectomized mice. Am J Physiol Endocrinol Metab. 2009 Mar;296(3):E490–6.
40. Kang WB, Deng YT, Wang DS, et al. Osteoprotective effects of estrogen membrane receptor GPR30 in ovariectomized rats. J Steroid Biochem Mol Biol. 2015 Nov;154:237–44.
41. Ford J, Hajibeigi A, Long M, et al. GPR30 deficiency causes increased bone mass, mineralization, and growth plate proliferative activity in male mice. J Bone Miner Res. 2011 Feb;26(2):298–307.
42. Wu Q, Chambliss K, Umantem M, Mineo C, Shaul PW. Non-nuclear estrogen receptor signaling in the endothelium. J Biol Chem. 2011 Apr 29;286(17):14737–43.
43. Acconcia F, Ascenzi P, Boccoli A, et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005 Jan;16(1):231–7.
44. Pedram A, Razandi M, Deschenes RJ, Levin ER. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell. 2012 Jan;23(1):188–99.
45. Gustafsson KL, Farman H, Henning P, et al. The role of membrane ERα signaling in bone and other major estrogen responsive tissues. Sci Rep. 2016 Jul;6:29473.
46. Pickar JH, MacNeil T, Ohleth K. SERMs: progress and future perspectives. Maturitas. 2012 Jan;75(6):811–7.
47. Farman HH, Wu J, Gustafsson KL, et al. Extra-nuclear effects of estrogen in ovariectomized female mice. J Bone Miner Res. 2011 Feb;26(2):298–307.
48. Wu Q, Chambliss K, Umantem M, Mineo C, Shaul PW. Non-nuclear estrogen receptor signaling in the endothelium. J Biol Chem. 2011 Apr 29;286(17):14737–43.
49. Ardakani FE, Mirmohamadi SJ. Osteoporosis and oral bone resorption: a review. J Maxillofac Oral Surg. 2009 Jun;8(2):121–6.
50. Jeffcoat M. The association between osteoporosis and oral bone loss. J Periodontol. 2005 Nov;76(11 Suppl):2125–32.
51. Taguchi A, Sanada M, Kral E, et al. Relationship between dental panoramic radiographic findings and biochemical markers of bone turnover. J Bone Miner Res. 2003 Sep;18(9):1689–94.
52. Yamashita-Mikami E, Tanaka M, Sakurai N, et al. Correlations between alveolar bone microstructure and bone turnover markers in pre- and post-menopausal women. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013 Apr;115(4):e12–9.
53. Nicopoulou-Karayianni K, Tsouzoukos P, Mitsea A, et al. Tooth loss and osteoporosis: the OSTEODENT Study. J Clin Periodontol. 2009 Mar;36(3):190–7.
54. Gondim V, Auj A, Fukuda CT, et al. Severe loss of clinical attachment level: an independent association with low hip bone mineral density in postmenopausal females. J Periodontol. 2013 Mar;84(3):352–9.
55. Darcey J, Horner K, Walsh T, Southern H, Marjanovic EJ, Devlin H. Tooth loss and osteoporosis: to assess the association between osteoporosis status and tooth number. Br Dent J. 2013 Feb;214(4): E10.
56. Jang KM, Cho KH, Lee SH, Han SB, Han KD, Kim YH. Tooth loss and bone mineral density in postmenopausal South Korean women: the 2008-2010 Korea National Health and Nutrition Examination Survey. Maturitas. 2015 Dec;82(4):360–4.
57. Silveira JL, Albers M, Vargas DM, et al. Reduced bone stiffness in women is associated with clinical attachment and tooth loss: the Study of Health in Pomerania. J Dent Res. 2016 Dec;95(13):1464–71.
58. Calciolegari E, Donos N, Park J, Petrie A, Mardas N. Panoramic measures for oral bone mass in detecting osteoporosis: a systematic review and meta-analysis. J Dent Res. 2015 Mar; 94(3 Suppl):175–275.
59. Karayanni K, Horner K, Mitsea A, et al. Accuracy in osteoporosis diagnosis of a combination of mandibular cortical width measurement on dental panoramic radiographs and a clinical risk index (OSIRIS): the OSTEODENT project. Bone. 2007;40:223–9.
60. Lee K, Taguchi A, Ishii K, et al. Visual assessment of the mandibular cortex on panoramic radiographs to identify postmenopausal women with low bone mineral densities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005 Aug;100(2):226–31.
61. Taguchi A, Sanada M, Suei Y, et al. Effect of estrogen use on tooth retention, oral bone height, and oral bone porosity in Japanese postmenopausal women. Menopause. 2004 Sep-Oct;11(5):556–62.
62. Civitelli R, Pilgram TK, Dotson M, et al. Alveolar and postcranial bone density in postmenopausal women receiving hormone/estrogen replacement therapy: a randomized, double-blind, placebo-controlled trial. Arch Intern Med. 2002 Jun;162(12):1409–15.
63. Hildebolt CF, Pilgram TK, Dotson M, et al. Estrogen and/or calcium plus vitamin D increase mandibular bone mass. J Periodontol. 2004 Jun;75(6):811–6.
64. Wang Y, LaMonte MJ, Hovey KM, et al. Association of serum 17beta-estradiol concentration, hormone therapy, and alveolar crest height in postmenopausal women. J Periodontol. 2015 Apr;86(4):595–605.