Supplementary Material (SM)

Title of manuscript:
Who is responsible for climate change adaptation?

Authors:
Diana Reckien¹,ii,* Elisaveta P. Petkova iii

Author affiliations:
¹ Present address: University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), Department of Urban and Regional Planning and Geo-Information Management, P.O. Box 217, 7500 AE Enschede, The Netherlands; E: d.reckien@utwente.nl; dianareckien@gmail.com
ii Address where most of the work was conducted: Center for Research on Environmental Decisions, Earth Institute, Columbia University, 419 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY 10027, USA;
iii Columbia University, Department of Earth and Environmental Sciences, 609 Schermerhorn Hall, 1190 Amsterdam Ave, New York, NY 10027, USA; ORCID ID: 0000-0003-3620-3232; E: elisaveta.petkova@columbia.edu

* Corresponding author

Contents
SM1: Detailed information on sampling, and the definition and processing of dependent and independent variables……2
SM2: Supporting information to descriptive statistics of survey sample, including histograms…………………………5
SM3: Full regression results……….………………………………………………………………………………………………………..8
SM4: Regression results to variable “Previous harm/ damage over the last 10 years”…………………………………11
SM5: Full Questionnaire ………12
SM1: Detailed information on sampling, and the definition and processing of dependent and independent variables

Sampling

The sampling frame consists of the five counties making up New York City—Bronx County (The Bronx), Kings County (Brooklyn), New York County (Manhattan), Queens County (Queens), and Richmond County (Staten Island), initially targeting 200 respondents from Manhattan, Brooklyn, the Bronx, and Queens, and 100 respondents from Staten Island. The latter is the maximum number of respondents Qualtrics could assure to generate in that borough. The survey was conducted with a randomly selected sample—representative of the NYC adult population with regard to gender and age. (see Tab.1).

Table 1: Sampling and sampling frame

Borough	Valid responses	Population (July 2013)	% of total	% of borough population
Bronx	111	14.6	1,429,123	0.0000776700
Brooklyn	194	25.5	2,600,098	0.0000746126
Manhattan	200	26.2	1,631,375	0.0001225960
Queens	177	23.2	2,302,881	0.0000768602
Staten Island	80	10.5	472,570	0.0001692871
New York City	762	100	8,436,047	0.0000903267

Table 2: Distribution of fully completed, valid questionnaires, comparing the sample with the population from statistical estimates of the US Census and the American Community Survey. Sample and the statistical data can only serve as a broad comparison; both relate to different years (sample from end of 2013, statistical data estimated as of 1st of July 2016) and are calculated via different methods. Source: Authors’ draft; Data: Authors’ survey; American Factfinder, United States Census Bureau; Key: S – Sample; E- Estimate; SD – Standard Deviation; ACS – American Community Survey; a – years; 1 United States Census Estimate, 1st of July 2013; 2 2016 American Community Survey, 5-year estimate, 2016; 3 calculated from income bands, so not directly comparable to the statistical data; 4 in 2016 dollars, 2012 - 2016.

New York City S, 18 years and older	Bronx	Brooklyn	Manhattan	Queens	Staten Island	Total
#	111	194	200	177	80	762
%	14.6	25.5	26.2	23.2	10.5	100.0
Median Age S (SD)						
a	41.6	40.7	43.9	42.4	47.6	42.8
E2	33.6	34.8	37.1	38.3	39.7	36.2
Female S						
%	52.3	50.5	50.5	52.5	61.3	52.4
E2	52.8	52.6	52.6	51.5	51.6	52.3
White S						
%	38.7	51.0	66.5	48.6	91.3	57.0
E2	44.9	49.2	64.6	48.2	76.6	43.1
Black/ African American S						
%	34.2	24.7	13.5	13.6	5.0	18.5
E2	43.7	34.6	18.0	20.7	11.8	24.4
Hispanic/ Latino S						
%	35.1	10.8	14.0	15.3	1.3	15.2
E2	56.0	19.2	26.0	28.0	18.4	29.0
Asian S						
%	4.5	13.4	7.5	22.0	1.3	11.3
E2	4.4	12.6	12.8	26.7	8.8	13.7
Native S						
%	10.8	1.0	0.5	2.6	0.0	2.5
E2	3.3	1.1	1.4	1.5	0.7	0.4
Per capita income, last year S						
$	30,676	42,036	80,175	47,627	54,438	52,992
Per capita income, past 12 month E						
$	18,896	28,134	66,522	27,631	32,678	34,099
The models test associations of following dependent variables, using:

1) Ordinal logistic regression (testing associations between an ordinal dependent variable given one or more independent variables assuming a multinomial probability distribution):
 - “Direct affectedness by heatwaves/ heavy rainstorms”: calculated based on the responses to the question “How much does [weather event] personally affect you?” using a four-point scale from “Affects me not at all” to “Affects me very much”.
 - “Worry about future”: calculated based on the responses to the question “How worried are you about the impacts of [weather event] in New York City in the next 20 years?” using a four-point scale from “Not at all worried” to “Very worried”.
 - “Adaptation responsibility with individuals”: calculated based on the responses to the question “Do you think citizens themselves should be doing more or less to protect themselves from the impacts of weather event?” using a five-point scale from “much less” to “much more”.

2) Linear regression (testing associations between a continuous dependent variable given two or more independent variables assuming a normal probability distribution):
 - “Average affectedness by secondary impacts”: calculated based on the average affectedness (four-point scale from “Affects me not at all” to “Affects me very much”) to the stated secondary impacts of [weather event] (which could be given as free text; see also “Number of secondary impacts” below).
 - “Severity future impacts”: calculated based on the perceived average severity of impacts of future [weather event] (four-point scale from “Not at all severe” to “Very severe”) on nine different dimensions of harm, calculated from the responses to the question “How much do you think the impact of future [weather event] will harm: You personally/ Your family/ Your community or neighborhood/ Your borough/ NYC in general/ Future generations/ Plant & animal species/ Public property / People’s private property.”
 - “Adaptation responsibility with communities”: calculated based on the perceived average adaptation responsibility for communities (four-point scale from “Not at all important” to “Very important”) on eight different dimensions of adaptation, calculated from the responses to the question “The federal government is encouraging communities to prepare for the impacts of extreme weather events so that people and property are protected. How important do you think is it for New York City to take steps to protect the following from [weather event]? The electricity system/ The drainage and sewer system/ The public's health/ The subway and rail system/ The building stock, e.g. through insulation/ The road system/ The water supply/ Urban greenery and parks.”

3) Poisson regression analysis (testing associations between a dependent variable that consists of "count data" given one or more independent variables assuming a Poisson probability distribution):
 - “Number of secondary impacts”: calculated based on the number of responses to the question “please think about the consequences of [weather event] in New York City, i.e. [description/ definition of weather event]. What are aspects of consequences on your family, your neighborhood, the city and how do [weather event] affect you
personally? Think about how your life is impacted by [weather event] and why. List key words and/or small groups of words below; one aspect per line. …Fill in as many as you remember; but, it is not necessary to fill all lines.” (maximum 8).

- “Previous harm/ damage (last 10a)”: calculated based on the responses to the question “In the last 10 years, did you personally experience any harm during [weather event]? Damage to your property/ Damage to your property/ Lost income, e.g. due to not being able to go to work/ Health-related damage/ Others, such as ... (dichotomous variable yes/ no).

The independent predictors are either categorical variables (dichotomous or multinomial) and therefore entered as factors (gender, ethnicity, building conditions, income) or continuous data (scale or interval) and therefore treated as covariates (age, household structure, social networks, previous harm). Factors are transformed into dummy variables (of 0/1) to allow an easier interpretation of the results. For example, income (household and personal income) is treated as categorical data of two categories, testing differences between low versus medium to high incomes. For personal income, “low” is defined as income up to 20,000 US$/ year and high is defined as income above 20,000 US$ per year while the respective cut-off for households is 50,000 US$/year. “Previous harm/ damage (last 10a)” was treated as socio-economic characteristic and added as independent covariate, as it relates to social vulnerability decreasing a person’s adaptive capacity in the future.
SM2: Supporting information to descriptive statistics of survey sample, including histograms

Figure SM2.1: Distribution of Age

Figure SM2.2: Distribution of population across boroughs

Figure SM2.3: Distribution of gender across boroughs

Figure SM2.4: Distribution of ethnicities/races: White/Caucasian
Figure SM2.5: Distribution of ethnicities/races: African or Black American

Figure SM2.6: Distribution of ethnicities/races: Hispanics/Latinos

Figure SM2.7: Distribution of ethnicities/races: Asian

Figure SM2.8: Distribution of ethnicities/races: Hawaiian/other Pacific Islander

Figure SM2.9: Distribution of ethnicities/races: Other

Figure SM2.10: Distribution of political affiliation (self-reported) across boroughs
Figure SM2.11: Distribution of income bands across boroughs

Bar Chart

What was your total personal income last year? Please select...

- Below 10,000 USD/year
- 10,001-20,000 USD/year
- 20,001-30,000 USD/year
- 30,001-40,000 USD/year
- 40,001-50,000 USD/year
- 50,001-60,000 USD/year
- 60,001-70,000 USD/year
- 70,001-80,000 USD/year
- 80,001-90,000 USD/year
- 90,001-100,000 USD/year
- 100,001-120,000 USD/year
- 120,001-140,000 USD/year
- 140,001-160,000 USD/year
- 160,001-180,000 USD/year
- 180,001-200,000 USD/year
- 200,001-220,000 USD/year
- 220,001-240,000 USD/year
- 240,001-260,000 USD/year
- 260,001-280,000 USD/year
- 280,001-300,000 USD/year
- 300,001-330,000 USD/year
- 330,001-360,000 USD/year
- 360,001-400,000 USD/year
- $400,001 USD/year

Which borough do you live in?

Figure SM2.12: Distribution of income bands across the city

Frequency

What was your total personal income last year? Please select...

- Min = 5,09
- Max = 4,476
- N = 762
HEAT WAVES

Independent variable	Hypothesis Test	95% Wald Confidence Interval for Exp(B)	Average affectedness by secondary impacts	95% Wald Confidence Interval for Exp(B)								
	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper
HEAT WAVES												
Female	3.895	1	.048	1.136	1.002	1.781	.022	1	.883	1.007	.919	1.103
Caucasian	2.357	1	.125	.669	.401	1.118	.565	1	.452	.941	.803	1.103
African American	.664	1	.415	1.257	.725	2.181	.456	1	.499	1.060	.895	1.257
Hispanic	.000	1	.985	1.065	.594	1.702	.068	1	.794	1.022	.868	1.203
Asian	.066	1	.798	.923	.500	1.704	.101	1	.751	1.032	.851	1.250
Native	.089	1	.765	1.154	.451	2.940	.038	1	.845	.970	.719	1.311
#People/HH	458	1	.499	1.043	.923	1.179	.208	1	.648	1.009	.971	1.048
#Children/HH	1.017	1	.313	.955	.469	1.046	.055	1	.814	1.003	.975	1.033
#Friends/Bldg.	.027	1	.869	.997	.965	1.011	.134	1	.714	.998	.988	1.009
#Friends/NH	.004	1	.953	1.000	.389	1.012	.435	1	.509	1.001	.998	1.005
#All	.045	1	.832	.948	.377	1.538	.070	1	.792	.979	.839	1.143
HH income	2.318	1	.128	.779	.565	1.074	1.385	1	.239	.941	.850	1.041
(high versus low)	.014	1	.906	.980	.896	1.378	.052	1	.819	1.013	.910	1.127
Personal income	32.208	1	2.099	1.604	2.642	49.672	1.000	1	1.305	1.212	1.405	
OMNIBUS TEST	L.R. p	15	.000				L.R. p	15	.000			
	461.759						63.643					

HEAVY RAINSTORMS

Independent variable	Hypothesis Test	95% Wald Confidence Interval for Exp(B)	Average affectedness by secondary impacts	95% Wald Confidence Interval for Exp(B)								
	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper
HEAVY RAINSTORMS												
Female	4.918	1	.027	1.384	1.038	1.844	2.698	1	.100	1.080	.985	1.185
Male	2.203	1	.639	1.002	.992	1.012	.319	1	.572	.999	.996	1.002
Caucasian	255	1	.613	.877	.528	1.458	.370	1	.543	.951	.810	1.117
Age												
African American	8.26	1	.364	1.290	.745	2.234	.219	1	.640	1.042	.877	1.238
Hispanic	.698	1	.403	1.249	.741	2.104	.016	1	.498	1.011	.856	1.193
Asian	2.266	1	.132	1.610	.866	2.993	.461	1	.497	1.070	.881	1.299
Native	2.540	1	.111	.466	.183	1.192	1.074	1	.300	.851	.628	1.154
#People/HH	3.724	1	.054	1.126	.998	1.270	1.309	1	.219	1.024	.986	1.065
#Children/HH	.043	1	.837	.991	.909	1.080	.548	1	.459	1.013	.982	1.041
#Friends/Bldg.	5.021	1	.025	1.039	1.005	1.074	3.242	1	.072	1.010	.999	1.021
#Friends/NH	1.441	1	.230	.993	.983	1.004	1.012	1	.314	.998	.995	1.002
#AV	2.581	1	1.08	1.489	.916	2.419	.739	1	.390	1.071	.916	1.253
HH income	1.284	1	.261	.831	.602	1.148	2.892	1	.089	.915	.826	1.044
(high versus low)	.960	1	.327	1.189	.841	1.683	4.231	1	.040	1.122	1.005	1.253
Personal income	46.054	1	1.994	1.634	2.434	49.243	1.000	1	1.246	1.172	1.325	
OMNIBUS TEST	L.R. p	15	.000				L.R. p	15	.000			
	44.466						75.779					
Independent variable	Hypothesis Test	Worry about future	95% Wald Confidence Interval for Exp(B)	Severity future impacts	95% Wald Confidence Interval for Exp(B)							
----------------------	----------------	--------------------	--	------------------------	--							
Female	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper
Male	1.293	1	.256	1.179	.888	1.566	2.25	1	.835	1.023	.930	1.125
Age	.816	1	.366	1.005	.995	1.015	.684	1	.408	1.001	.998	1.005
Caucasian	1.329	1	.249	1.708	.454	1.227	.34	1	.714	.969	.821	1.145
African American	.808	1	.369	1.279	.748	2.186	.534	1	.021	1.234	1.633	1.474
Hispanic	1.149	1	.280	1.327	.795	2.215	7.918	1	.005	1.280	1.078	1.521
Asian	.675	1	.784	1.088	.596	1.984	2.358	1	.110	1.178	.964	1.440
Native	.457	1	.499	1.725	.266	1.844	.655	1	.815	1.038	.759	1.421
#People HH	.781	1	.377	1.948	.841	1.068	3.592	1	.058	1.039	.999	1.081
#Children HH	1.504	1	.220	1.057	.968	1.154	.236	1	.627	.993	.963	1.023
#Friends HH	.003	1	.953	.999	.965	1.034	.199	1	.655	1.002	.992	1.014
A/C	.013	1	.908	.999	.988	1.011	.010	1	.919	1.000	.996	1.003
#Relatives HH	1.102	1	.311	1.291	.788	2.115	1.241	1	.265	1.098	.932	1.294
HHI income	2.401	1	.121	1.799	.568	1.068	4.818	1	.028	.888	.798	.987
personal income	1.061	1	.303	1.192	.853	1.665	.532	1	.466	1.043	.932	1.167
(high versus low)	60.087	1	.000	2.665	2.010	3.415	54.486	1	.000	1.339	1.239	1.447
Omnibus test	LR χ^2	df	p	48.784	15	.000	95.873	15	.000	15784	15	.000

Dependent variable: Worry about future

Hypothesis Test

Independent variable:
- Female
- Male
- Age
- Caucasian
- African American
- Hispanic
- Asian
- Native
- #People HH
- #Children HH
- #Friends HH
- A/C
- #Relatives HH
- HHI income
- personal income

Severity future impacts

95% Wald Confidence Interval for Exp(B)

HEAVY WAVES

HEAVY RAINSTORMS

Omnibus test

LR χ^2, df, p.
Independent variable	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper
Female	2.50	1	.13	1.23	1.00	1.44
Male						
Age	.001	1	1	1.01	1.00	1.02
Caucasian	.040	1	1	1.56	.79	2.78
Hispanic	2.045	1	.15	2.54	.86	7.64
African American	10.456	1	.01	3.93	1.39	10.91
Asian	2.826	1	.09	3.09	.91	9.44
Native	.013	1	1	2.43	.36	14.78
Caucasian						
African American						
Hispanic						
Native						
#People/HH	1.051	1	.30	1.05	.84	1.34
#Children/HH	3.383	1	.06	1.19	.94	1.50
#Friends/Half-HH	.384	1	.53	1.04	.97	1.05
A/C						
HI income	3.99	1	.52	1.24	.65	2.42
Personal income						
Previous harm						
#People/NH	1.824	1	.00	1.16	1.32	2.12

Omnibus Test

LR \(\chi^2 \)	df	p
49.471	15	.001

Independent variable	Wald Chi-Square	df	Sig.	Exp(B)	Lower	Upper
Female	2.50	1	.13	1.23	1.00	1.44
Male						
Age	.001	1	1	1.01	1.00	1.02
Caucasian	.040	1	1	1.56	.79	2.78
Hispanic	2.045	1	.15	2.54	.86	7.64
African American	10.456	1	.01	3.93	1.39	10.91
Asian	2.826	1	.09	3.09	.91	9.44
Native	.013	1	1	2.43	.36	14.78
Caucasian						
African American						
Hispanic						
Native						
#People/HH	1.051	1	.30	1.05	.84	1.34
#Children/HH	3.383	1	.06	1.19	.94	1.50
#Friends/Half-HH	.384	1	.53	1.04	.97	1.05
A/C						
HI income	3.99	1	.52	1.24	.65	2.42
Personal income						
Previous harm						
#People/NH	1.824	1	.00	1.16	1.32	2.12

Omnibus Test

LR \(\chi^2 \)	df	p
49.471	15	.001
SM4: Regression results to variable “Previous harm/damage over the last 10 years”

Independent variable	Previous harm/damage over the last 10 years	Exp (B)	p
HEAT WAVES			
Female	1.035	.782	
Male	1		
Age	1.013	.902	
Caucasian	.891	.610	
African American	1.035	.492	
Hispanic	.920	.321	
Asian	1.039	.885	
Native	1.078	.859	
#People/HH	1.074	.446	
#Children/HH	9.96	.715	
#Friends/Bldg.	1.009	.023	
A/C	1.463	.122	
HH income	.793	.068	
Personal income	1.028	.848	
OMNIBUS TEST	LR \(\chi^2 \) 24.297	.042	
HEAVY RAINSTORMS			
Female	.870	.128	
Age	.996	.227	
Caucasian	1.007	.968	
African American	.820	.285	
Hispanic	.765	.344	
Asian	1.005	.940	
Native	.765	.421	
#People/HH	1.124	.001	
#Children/HH	9.701	.385	
#Friends/Bldg.	1.008	.397	
A/C	1.085	.628	
HH income	.888	.237	
Personal income	1.488	.000	
OMNIBUS TEST	LR \(\chi^2 \) 42.297	.000	
All participants had to provide informed consent before starting the survey. The questionnaire comprised of maximum 68 questions (depending on previous answers the questionnaire differed in length later on), including open- and closed-ended questions, multiple or single choice options. These questions were clustered into groups and sub-groups, each providing a number of indicators of either impacts, adaptation, or the socio-economic characteristics of the respondents. Order effects were accounted for, i.e. answers for multiple-response questions were randomized and blocks of questions regarding extreme events (i.e. asking for heatwaves or heavy rainstorms first) were shuffled.