Model independent analysis of semileptonic B decays to $D^{*\ast}$ for arbitrary new physics

Florian U. Bernlochner, Zoltan Ligeti, and Dean J. Robinson

1 Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
2 Institute of Physics, University of Zagreb, 10000 Zagreb, Croatia
3 Karlsruher Institute of Technology, 76131 Karlsruhe, Germany
4 Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA

We explore semileptonic B decays to the four lightest excited charm mesons, $D^{*\ast} = \{D_0^\ast, D_1^\ast, D_1^\ast_1, D_2^\ast\}$, for nonzero charged lepton mass and for all $b \to c\ell\bar{\nu}$ four-Fermi interactions, including calculation of the $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ and $\mathcal{O}(\alpha_s)$ corrections to the heavy quark limit for all form factors. In the heavy quark limit some form factors are suppressed at zero recoil, therefore, the $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ corrections can be very important. The $D^{*\ast}$ rates exhibit sensitivities to new physics in $b \to c\ell\bar{\nu}$ mediated decays complementary to the D and D^* modes. Since they are also important backgrounds to $B \to D^{(\ast)}\tau\bar{\nu}$, the correct interpretation of future semitauonic $B \to D^{(\ast)}$ rate measurements requires consistent treatment of both the $D^{*\ast}$ backgrounds and the signals. Our results allow more precise and more reliable calculations of these $B \to D^{*\ast}\ell\bar{\nu}$ decays, and are systematically improvable by better data on the e and μ modes. As an example, we show that the $D^{*\ast}$ rates are more sensitive to a new $\bar{c}\sigma_{\mu\ell}b$ tensor interaction than the $D^{(\ast)}$ rates.

I. INTRODUCTION

The measurements of the ratio of semitauonic B decays compared to the light-lepton final states,

$$ R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X\ell\bar{\nu})}, \quad l = \mu, e, $$

show a 4σ tension with the standard model (SM) expectations [1], when the $X = D$ and D^* results are combined. Improving our understanding of the $B \to D^{(\ast)}$ form factors, required for precision calculations of $R(D^{(\ast)})$, has received renewed attention recently [2–8]. To maximize future sensitivity to new physics (NP) contributions, measuring and understanding contributions for additional semileptonic decay modes mediated by the same parton-level transition is important and necessary, not only as they can give complementary information on the new physics, but also as they constitute backgrounds to the $R(D^{(\ast)})$ measurements.

In this paper we study $B \to D^{*\ast}\ell\bar{\nu}$ decays, where

$$ D^{*\ast} = \{D_0^\ast, D_1^\ast, D_1^\ast_1, D_2^\ast\}, $$

denotes the four lightest excited charmed mesons, above the $\{D, D^*\}$ ground-state doublet of heavy quark symmetry (HQS) [9–11]. (The $D^{*\ast}$ notation is common in the experimental literature; these are the 1^P orbitally excited states in the quark model.) In Ref. [12], SM predictions for $R(D^{*\ast})$ were derived, extending results for massless leptons [13–14], but a comprehensive study of NP effects has not been carried out yet. We include contributions from all possible four-fermion operators (assuming no right-handed neutrinos), and derive the $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ and $\mathcal{O}(\alpha_s)$ terms in the expansions of the form factors, going beyond the leading order in the heavy quark expansion. The $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ corrections to the SM matrix elements were calculated a long time ago [13–14], and can be substantial, due to the suppressions of certain leading order matrix elements near zero recoil, imposed by heavy quark symmetry. We show that the available $B \to D_2^\ast l\bar{\nu}$ and $B \to D_1 l\bar{\nu}$ data are in severe tension with the heavy quark limit, that is alleviated by including $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ corrections. Similarly, $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ terms can generate numerically dominant contributions to NP matrix elements as well, and must be included.

Understanding the $B \to D^{*\ast}\ell\bar{\nu}$ decays as precisely as possible, both theoretically and experimentally, is important for several reasons. First, as in $B \to D^{(\ast)}\ell\bar{\nu}$ decays, certain form factor combinations are suppressed by the light lepton mass, and thus cannot be constrained by $B \to D^{*\ast}l\bar{\nu}$ measurements, but enter unsuppressed in the semitauonic rates. The use of heavy quark effective theory (HQET) [15–16] allows more precise future measurements of $B \to D^{*\ast}l\bar{\nu}$ to systematically improve the predictions for $B \to D^{*\ast}\tau\bar{\nu}$ [12], which will provide complementary sensitivity to new physics compared to $B \to D^{(\ast)}\tau\bar{\nu}$. Second, $B \to D^{*\ast}\ell\bar{\nu}$ decays also constitute a significant background to the measurements of $R(D^{(\ast)})$, contributing significantly to its uncertainty at present. As certain $B \to D^{*\ast}\tau\bar{\nu}$ modes may exhibit high sensitivity to NP, good theoretical control of these backgrounds is required in order to understand which NP operators may best fit the data. Third, better theoretical control of these modes will help to improve the determinations of the CKM elements $|V_{cb}|$ and $|V_{ub}|$, both from exclusive and inclusive B decays. The study of these decay modes [17] and their contributions to the Bjorken sum rule [18] will help understanding the composition of the inclusive $B \to X_c\ell\bar{\nu}$ decay in terms of exclusive modes.

In Sec. II we establish notations and calculate all $B \to D^{*\ast}$ form factors, including the complete set of order $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ and $\mathcal{O}(\alpha_s)$ effects. Section III contains expressions for the differential decay rates for arbitrary currents and charged lepton mass. In Sec. IV we study observables that are particularly sensitive to the $\mathcal{O}(\Lambda_{QCD}/m_{c,b})$ corrections, and plot effects of a NP ten-
several spin-parity doublets of heavy quark symmetry, as the spin of the top row of Table I, is presently unsatisfactory [12].) The level of agreement between the measurements of the masses affects the HQET expansion of the form factors [13, 14].

A. Spectroscopy

The spectroscopy of the D^{**} states is important, because in addition to the impact on the kinematics, it also affects the HQET expansion of the form factors [13, 14]. The isospin averaged masses and widths for the six lightest charm meson states are shown in Table I. (The level of agreement between the measurements of the masses and widths of the D^{**} mesons, especially those of D_0^* in the top row of Table I, is presently unsatisfactory [12].)

In the heavy quark limit, the spin-parity of the light degrees of freedom, s_i^j, is a conserved quantum number, yielding doublets of heavy quark symmetry, as the spin s_l is combined with the heavy quark spin s_H. In the quark model, the four D^{**} states correspond to combining the heavy quark and light quark spins with $L = 1$ orbital angular momentum. The masses of each heavy quark spin symmetry doublet of hadrons, H_{\pm}, with total spin $J_{\pm} = s_l \pm \frac{1}{2}$ can be expressed in HQET as

$$m_{H_{\pm}} = m_Q + \frac{\Lambda_H}{2m_Q} \pm \frac{n_{\pm}}{2m_Q} + \ldots,$$

where $n_{\pm} = 2J_{\pm} + 1$ is the number of spin states of each hadron, and the ellipsis denote terms suppressed by more powers of Λ_{QCD}/m_Q. The parameter Λ_H is the energy of the light degrees of freedom in the $m_Q \to \infty$ limit, and plays an important role, as it is related to the semileptonic form factors [13, 14]. The Λ_H and λ_H parameters are related to the heavy quark kinetic energy and chromomagnetic energy in the hadron H. We use the notation Λ, Λ', and Λ^* for the $\frac{1}{2}^-$, $\frac{3}{2}^+$, and $\frac{1}{2}^+$ doublets, respectively, and for the states in each doublet

$$D^{1/2^+} \in \{D_0^*, D_1^*\}, \quad D^{3/2^+} \in \{D_1, D_2^*\}.$$

The current data suggest that the $m_{D_1} - m_{D_2}$ mass splitting is substantially larger than $m_{D_1^*} - m_{D_2^*}$. This possibility was not considered in Refs. [13, 14], since at that time both of these mass splittings were about 40 MeV. The smallness of $m_{D_2} - m_{D_3}$ and $m_{D_1^*} - m_{D_2^*}$ compared to $m_{D_1} - m_{D_2} \approx 140$ MeV was taken as an indication that the chromomagnetic operator matrix elements are suppressed for the four D^{**} states, in agreement with quark model predictions. We relax this constraint, as in Ref. [12].

While the measured masses of the broad D_0^* and D_1^* states changed substantially over the last twenty years, their $2J + 1$ weighted average is essentially unchanged compared to Ref. [14]. We use $\Lambda' - \Lambda = 0.40$ GeV and $\Lambda^* - \Lambda' \approx 0.04$ GeV, and summarize the parameters used in Table II. The uncertainty of Λ is substantially greater than that of $\Lambda' - \Lambda$, and $\Lambda^* - \Lambda'$; as we see below, the form factors are less sensitive to Λ than to these splittings.

B. Matrix elements to order $\Lambda_{QCD}/m_{c,b}$ and α_s

It is simplest to calculate the $\bar{B} \to D^{**}$ matrix elements in HQET using the trace formalism [20, 22]. It allows a straightforward evaluation of the matrix elements of the five operators in Eq. (3), as well as those of additional operators generated by perturbative corrections (for a review, see Ref. [23]). The $O(\alpha_s)$ corrections are given explicitly in Appendix A of Ref. [2], extracted from Refs. [20, 24, 25]. The $O(\alpha_s \Lambda_{QCD}/m_{c,b})$ corrections are known for the SM currents and would be straightforward to calculate for any new physics, but are neglected below.

The three heavy quark spin symmetry doublets relevant for this paper can be represented by the (super)fields, which have the correct transformation prop-

Particle	s_i^j	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^-$	0+	2349	236
D_1^*	$\frac{1}{2}^+$	1+	2427	384
D_1	$\frac{1}{2}^+$	1+	2421	31
D_2^*	$\frac{3}{2}^+$	2+	2461	47
D^*	$\frac{1}{2}^+$	1+	2009	0.0
D	$\frac{1}{2}^-$	0-	1866	0.0

TABLE I. Isospin averaged masses and widths of the six lightest charm mesons, rounded to 1 MeV [19].

The parameter Λ_H is the energy of the light degrees of freedom in the $m_Q \to \infty$ limit, and plays an important role, as it is related to the semileptonic form factors [13, 14]. The Λ_H parameters are related to the heavy quark kinetic energy and chromomagnetic energy in the hadron H. We use the notation Λ, Λ', and Λ^* for the $\frac{1}{2}^-$, $\frac{3}{2}^+$, and $\frac{1}{2}^+$ doublets, respectively, and for the states in each doublet

$$D^{1/2^+} \in \{D_0^*, D_1^*\}, \quad D^{3/2^+} \in \{D_1, D_2^*\}.$$

The current data suggest that the $m_{D_1} - m_{D_2}$ mass splitting is substantially larger than $m_{D_1^*} - m_{D_2^*}$. This possibility was not considered in Refs. [13, 14], since at that time both of these mass splittings were about 40 MeV. The smallness of $m_{D_2} - m_{D_3}$ and $m_{D_1^*} - m_{D_2^*}$ compared to $m_{D_1} - m_{D_2} \approx 140$ MeV was taken as an indication that the chromomagnetic operator matrix elements are suppressed for the four D^{**} states, in agreement with quark model predictions. We relax this constraint, as in Ref. [12].

While the measured masses of the broad D_0^* and D_1^* states changed substantially over the last twenty years, their $2J + 1$ weighted average is essentially unchanged compared to Ref. [14]. We use $\Lambda' - \Lambda = 0.40$ GeV and $\Lambda^* - \Lambda' \approx 0.04$ GeV, and summarize the parameters used in Table II. The uncertainty of Λ is substantially greater than that of $\Lambda' - \Lambda$, and $\Lambda^* - \Lambda'$; as we see below, the form factors are less sensitive to Λ than to these splittings.
In this paper each representation occurs for only one heavy quark flavor, so for simplicity we denote the components of H_v by B_c and B_b. The $e^{cb\beta}$ denote a normalized traceless symmetric spin-2 polarization tensor.

Similar to Ref. [26], including $\Lambda_{QCD}/m_{c,b}$ corrections, the $B \to D^{**}$ matrix elements can be written as

$$\langle D^{1/2^{+}} | \bar{c} \Gamma b | B \rangle = \zeta(w) \left\{ \text{Tr}[K_{v^2} \Gamma H_v] + \varepsilon_c \text{Tr}[K_{v^2}^{(1)} \Gamma H_v] - \varepsilon_b \hat{G}_b \text{Tr}[K_{v^2} \Gamma \frac{1}{2} \gamma_5 B_v] \right\}, \quad \text{(7a)}$$

$$\langle D^{3/2^{+}} | \bar{c} \Gamma b | B \rangle = \tau(w) \left\{ \text{Tr}[v_\sigma \bar{F}_{v^2} \Gamma H_v] + \varepsilon_c \text{Tr}[F_{v^2}^{(1)} \Gamma H_v] + \varepsilon_b \hat{F}_b \text{Tr}[v_\sigma \bar{F}_{v^2} \Gamma \frac{1}{2} \gamma_5 B_v] \right\}, \quad \text{(7b)}$$

where $\varepsilon_{c,b} = 1/(2m_{c,b})$, Γ is an arbitrary Dirac matrix, and

$$K_{v^2}^{(1)} = \left[V_{v^2} \gamma^5 (f \tilde{M}_5 + \epsilon \cdot v \tilde{M}_5) + P_v \tilde{M}_1 \right] \frac{1}{2} + \left[V_{v^2} \gamma^5 (f \tilde{M}_5 + \epsilon \cdot v \tilde{M}_5) + P_v \tilde{M}_4 \right] \frac{1}{2}, \quad \text{(8a)}$$

$$F_{v^2}^{(1)} = \left[T_v (\epsilon^{\mu\nu} \gamma_\mu \gamma_\nu \tilde{N}_6 + \epsilon^{\mu\nu} \gamma_\mu \gamma_\nu \tilde{N}_7 + \epsilon^{\mu\nu} \gamma_\mu \gamma_\nu \tilde{N}_8) + \frac{V_{v^2}}{\sqrt{6}} (f \tilde{N}_9 + \epsilon \cdot v \tilde{N}_9) \right] \frac{1}{2} - \frac{1}{2} \gamma^5 \frac{1}{2}. \quad \text{(8b)}$$

At leading order, in the heavy quark limit, all $B \to D^{1/2^{+}}$ form factors are determined by one Isgur-Wise function, $\zeta(w)$, while all $B \to D^{3/2^{+}}$ form factors are determined by another, $\tau(w)$. (In the notation of Ref. [17], $\zeta(w)$ is twice the function $\tau_{1/2}$ and $\tau(w)$ is $\sqrt{3}$ times the function $\tau_{3/2}$.) All form factors are viewed as functions of the dimensionless kinematic variable w, instead of $q^2 = (p_B - p_{D^{**}})^2$, with

$$w = v \cdot v' = \frac{m_B^2 + m_{D^{**}}^2 - q^2}{2m_B m_{D^{**}}} \quad \text{(9)}$$

Here $v = p_B/m_B$ and $v' = p_{D^{**}}/m_{D^{**}}$ are the four-vectors of the initial and final states.

The coefficients M_i and \tilde{N}_i contain order $\Lambda_{QCD}/m_{c,b}$ corrections. These are expressed in terms of subleading Isgur-Wise functions ζ_1 and $\tau_{1/2}$; (i) matrix elements of the $O(\Lambda_{QCD}/m_{c,b})$ current operators give rise to the subleading (dimensionful) Isgur-Wise functions ζ_1 and $\tau_{1/2}$; (ii) matrix elements involving the $\Lambda_{QCD}/m_{c,b}$ suppressed kinetic energy operator, $h_i(iD)^2h_i/(2m_Q)$, are spin symmetry conserving, and generate the functions $\chi_{ke}^{1,2}$ and $\eta_{ke}^{1,2}$; (iii) matrix elements involving the chromomagnetic operator in the HQET Lagrangian, $(g_5/2) h_i \gamma_\mu \gamma_\nu G^{\mu\nu} h_i/(2m_Q)$, which violates spin symmetry, generate the functions $\chi_{ke}^{1,2}$ and $\eta_{ke}^{1,2}$. The notation for these subleading Isgur-Wise functions are summarized in Table III

$D^{1/2^{+}}$	$D^{3/2^{+}}$
ζ	ζ_1
τ	$\tau_{1/2}$

TABLE III. Leading and subleading Isgur-Wise functions that parametrize $B \to D^{**}$ form factors at $O(\Lambda_{QCD}/m_{c,b})$. The arrows in the last column indicate the minimal set of functions needed for the 1/m Lagrangian corrections, if the replacements in Eq. (10) are made. Omitted upper indices mean ‘c’.
Hereafter it is understood that the replacements in Eq. (10) are made, unless explicitly noted otherwise. As in Table III we omit the c superscript from the remaining (unabsorbed) subleading Isgur-Wise functions. We further define \(\bar{\chi}_{1,2} = \chi_{1,2}/\zeta, \bar{\zeta}_1 = \zeta_1/\zeta, \bar{\eta}_{1,2,3} = \eta_{1,2,3}/\tau, \) and \(\bar{\tau}_{1,2} = \tau_{1,2}/\tau. \) With these conventions, the \(\bar{M}_i \) and \(\bar{N}_i \) coefficients functions in Eq. (8) are

\[
\bar{M}_1 = 6\bar{\chi}_1 - 2\bar{\chi}_2(w + 1), \quad \bar{M}_2 = -2\bar{\chi}_1,
\]
\[
\bar{M}_3 = 2\bar{\chi}_2, \quad \bar{M}_4 = 2\bar{\zeta}_1(w + 1) - 3\bar{\Lambda}w - \bar{\Lambda}w + 1,
\]
\[
\bar{M}_5 = -\bar{\Lambda}w - \bar{\Lambda}, \quad \bar{M}_6 = -2\bar{\zeta}_1,
\]
\[
\bar{G}_b = \frac{(1 + 2w)\bar{\Lambda} - (2 + w)\bar{\Lambda}}{w + 1} - (w - 1)\bar{\zeta}_1(w), \quad (11)
\]
and

\[
\bar{N}_1 = -\bar{\eta}_3(w + 1), \quad \bar{N}_2 = \bar{\eta}_3 - 2\bar{\theta}_1,
\]
\[
\bar{N}_3 = -2\bar{\theta}_2, \quad \bar{N}_4 = -(2\bar{\eta}_1 + 3\bar{\eta}_3)(w + 1),
\]
\[
\bar{N}_5 = 10\bar{\eta}_1 + 4\bar{\theta}_2(w - 1) - 5\bar{\eta}_3,
\]
\[
\bar{N}_6 = (\bar{\tau}_1 - \bar{\tau}_2)(w - 1) - (\bar{\Lambda}w - \bar{\Lambda}),
\]
\[
\bar{N}_7 = -2(\bar{\tau}_1 - \bar{\tau}_2), \quad \bar{N}_8 = -2\bar{\theta}_1,
\]
\[
\bar{N}_9 = 3(\bar{\tau}_1 - \bar{\tau}_2)(w - 1) - 4(\bar{\Lambda}w - \bar{\Lambda}),
\]
\[
\bar{N}_{10} = \bar{\tau}_1(4w - 1) - 5\bar{\theta}_2,
\]
\[
\bar{F}_b = \bar{\Lambda} + \bar{\Lambda}' - (w + 1)\bar{\tau}_1 - \bar{\tau}_2. \quad (12)
\]

The \(\Lambda_{QCD}/m_b \) corrections not absorbed into the leading order Isgur-Wise functions occur exclusively in the \(\bar{F}_b \) and \(\bar{G}_b \) linear combinations. (The sign difference between these terms in Eqs. (7a) and (7b) is simply due to defining their known \(\Lambda^{(\rho, \psi)} \) parts to be positive.)

C. \(\bar{B} \to D^{1/2^+} \) form factors

We define form factors in agreement with those in Refs. [13][14] for the SM currents. For \(\bar{B} \to D_0^0 \)
\[
\langle \bar{D}_0^0 | \bar{c} b | \bar{B} \rangle = \langle \bar{D}_0^0 | \bar{c} \gamma_5 b | \bar{B} \rangle = 0,
\]
\[
\langle \bar{D}_0^+ | \bar{c} \gamma_5 b | \bar{B} \rangle = \sqrt{m_{D^0} m_B} g_P,
\]
\[
\langle \bar{D}_0^+ | \bar{c} \gamma_5 b | \bar{B} \rangle = \sqrt{m_{D^0} m_B} g_T \epsilon^{\alpha \mu \beta} \epsilon^\beta \epsilon^\alpha,
\]
and for \(\bar{B} \to D_1^+ \)
\[
\langle \bar{D}_1^+ | \bar{c} b | \bar{B} \rangle = -\sqrt{m_{D^+_1} m_B} g_S (\epsilon^\alpha \cdot v),
\]
\[
\langle \bar{D}_1^+ | \bar{c} \gamma_5 b | \bar{B} \rangle = 0,
\]
\[
\langle \bar{D}_1^+ | \bar{c} \gamma_5 b | \bar{B} \rangle = \sqrt{m_{D^+_1} m_B} (g_{V_1} \epsilon^\mu + (g_{V_2} v_\mu + g_{V_3} v_\mu^*))(\epsilon^\alpha \cdot v),
\]
\[
\langle \bar{D}_1^+ | \bar{c} \gamma_5 b | \bar{B} \rangle = i \sqrt{m_{D^+_1} m_B} g_A \epsilon^{\mu \alpha \beta} \epsilon^\beta \epsilon^\gamma v_\gamma,
\]
\[
\langle \bar{D}_1^+ | \bar{c} \gamma_5 b | \bar{B} \rangle = i \sqrt{m_{D^+_1} m_B} g_T (\epsilon^\mu v_\nu - \epsilon^\nu v_\mu)
\]
\[
+ g_{T_2} (\epsilon_\mu^* v_\nu - \epsilon_\nu^* v_\mu),
\]
\[
+ g_{T_3} (\epsilon^\alpha \cdot v)(v_\mu v_\nu - v_\nu v_\mu). \quad (14)
\]

These form factors are dimensionless functions of \(w, \) and hereafter we often suppress displaying the \(\bar{w} \) variable. In the heavy quark limit, each of these form factors either vanishes or is determined by the Isgur-Wise function,
\[
g_+ = g_{V_2} = g_{T_3} = 0, \quad g_P = g_{V_1} = (w - 1) \zeta,
\]
\[
g_- = g_{T_1} = g_S = g_A = -g_{V_3} = -g_{T_1} = g_{T_2} = \zeta. \quad (15)
\]

Unlike the leading order Isgur-Wise function in \(\bar{B} \to D^{(\rho, \psi)} \) decays, the function \(\zeta(w) \) is not subject to any symmetry imposed normalization condition. Near zero recoil, only \(g_{T_1}, g_{T_2}, \) and the linear combination \(g_{T_1} + g_{T_2} \) contribute to the decay rates without a \((w - 1) \) suppression (in addition to the \(\sqrt{w^2 - 1} \) phase space factor; see Eqs. (30) and (31) below), so heavy quark symmetry implies that these form factors in the heavy quark limit are suppressed near zero recoil as \((w - 1) \zeta. \) This is why the order \(\Lambda_{QCD}/m_{c,b} \) terms have enhanced significance for these decays [13][14]. At order \(\Lambda_{QCD}^2/m_{c,b}^2 \) and higher, the expansion is expected to behave as suggested by the power counting.

To write the \(\mathcal{O}(\Lambda_{QCD}/m_{c,b}) \) corrections in a compact form, we define
\[
\hat{g}_i(w) = g_i(w)/\zeta(w). \quad (16)
\]

Denoting \(\hat{\alpha}_s = \alpha_s/\pi \) we obtain
\[
\hat{g}_P = (w - 1)(1 + \hat{\alpha}_s C_F) + \varepsilon_c \left(3(w\bar{\Lambda} - \bar{\Lambda}) - 2(w^2 - 1)\hat{\zeta}_1 + (w - 1)[6\hat{\chi}_1 - 2(w + 1)\hat{\chi}_2] \right) - \varepsilon_b (w + 1) \hat{G}_b,
\]
\[
\hat{g}_+ = \hat{\alpha}_s (w - 1) \frac{C_A + C_{A_3}}{2} - \varepsilon_c \left \{ 3\bar{w}\bar{\Lambda} - \bar{\Lambda}w + 1 - 2(w - 1)\hat{\zeta}_1 \right \} - \varepsilon_b \hat{G}_b,
\]
\[
\hat{g}_- = 1 + \hat{\alpha}_s \left \{ C_{A_1} + (w - 1) \frac{C_{A_2} - C_{A_3}}{2} \right \} + \varepsilon_c [6\hat{\chi}_1 - 2(w + 1)\hat{\chi}_2],
\]
\[
\hat{g}_T = 1 + \hat{\alpha}_s C_{T_1} + \varepsilon_c \left \{ 3\bar{w}\bar{\Lambda} - \bar{\Lambda}w + 1 - 2(w - 1)\hat{\zeta}_1 + 6\hat{\chi}_1 - 2(w + 1)\hat{\chi}_2 \right \} - \varepsilon_b \hat{G}_b. \quad (17)
\]
The \(C_i \)'s encode the \(\alpha_s \) corrections (and are given in Appendix A in Ref. [2]), and correspond to integrating out the \(b \) and \(c \) quarks at a common scale, chosen as \(\mu = \sqrt{m_cm_b} \). For the order \(\Lambda_{QCD}/m_{c,b} \) and \(\alpha_s \) contributions to the \(\bar{B} \to D_1^* \) form factors we obtain

\[
\hat{g}_S = 1 + \hat{\alpha}_s C_S - \varepsilon_c \left[\frac{w}{{w+1}} - 2 \left(\frac{w-1}{w+1} \right) \right] - \varepsilon_b \hat{G}_b, \\
\hat{g}_V = (w-1) \left(1 + \hat{\alpha}_s C_{V_1} \right) + \varepsilon_c \left[\frac{w}{w+1} - 2 \left(\frac{w-1}{w+1} \right) \right] - \varepsilon_b \hat{G}_b, \\
\hat{g}_A = 1 + \hat{\alpha}_s C_{A_1} + \varepsilon_c \left[\frac{w}{w+1} - 2 \right] + \varepsilon_b \hat{G}_b, \\
\hat{g}_T = - \hat{\alpha}_s \left[C_{T_1} + (w-1) C_{T_2} \right] + \varepsilon_c \left[\frac{w}{w+1} - 2 \right] + \varepsilon_b \hat{G}_b, \\
\hat{g}_T = - \hat{\alpha}_s \left[C_{T_1} - (w-1) C_{T_3} \right] + \varepsilon_c \left[\frac{w}{w+1} - 2 \right] + \varepsilon_b \hat{G}_b, \\
\hat{g}_T = - \hat{\alpha}_s \left[C_{T_2} + \varepsilon_c \left[\frac{w}{w+1} - 2 \right] + \varepsilon_b \hat{G}_b. \\
\end{array}
\]

(18)

In Eqs. [17] and [18] the expressions for the SM terms \((g_-, g_+, g_{V_1}, g_{V_2}, g_{V_3}, \text{and } g_A) \) agree with Refs. [13] [14]. Only four functions of \(w \) are needed to parametrize all twelve \(\bar{B} \to D^{1/2^+} \) form factors in Eqs. (17) and (18) at this order: \(\zeta, \hat{\zeta}_1, \text{and } \hat{\zeta}_{1,2} \). Only the \(6 \chi_{1} - 2(w+1) \chi_{2} \) occurs for \(\bar{B} \to D_0^* \) in Eq. [17], as expected from Eqs. [8].

D. \(\bar{B} \to D^{3/2^+} \) form factors

We define the form factors for \(\bar{B} \to D^{3/2^+} \) such that they agree with those in Refs. [13] [14] for the SM terms,

\[
\begin{array}{l}
\langle D_1 | \bar{c}b | \bar{B} \rangle = \sqrt{m_{D_1} m_{\bar{B}}} \langle f_{S} | (\varepsilon^* \cdot v) \rangle,
\langle D_1 | \bar{c} \gamma_5 b | \bar{B} \rangle = 0,
\langle D_1 | \bar{c} \gamma_{\mu} b | \bar{B} \rangle = \sqrt{m_{D_1} m_{\bar{B}}} \left[f_{V_1} \epsilon^*_{\mu} + (f_{V_2} v_\mu + f_{V_3} v'_{\mu}) (\varepsilon^* \cdot v) \right],
\langle D_1 | \bar{c} \gamma_5 \gamma_5 b | \bar{B} \rangle = i \sqrt{m_{D_1} m_{\bar{B}}} f_{A} \epsilon^*_{\mu \nu} \epsilon^{\nu \tau} v_\tau v^\tau,
\langle D_1 | \bar{c} \gamma_{\mu \nu} b | \bar{B} \rangle = i \sqrt{m_{D_1} m_{\bar{B}}} f_{T_1} (\epsilon^*_{\mu} v_{\nu} - \epsilon^*_{\nu} v_{\mu}) + f_{T_2} (\epsilon^*_{\mu} v^\tau_{\nu} - \epsilon^*_{\nu} v^\tau_{\mu}) + f_{T_3} (\varepsilon^* \cdot v) (v_\mu v^\tau_{\nu} - v_\nu v^\tau_{\mu}),
\end{array}
\]

(19)

while for \(\bar{B} \to D_2^* \),

\[
\begin{array}{l}
\langle D_2^* | \bar{c} b | \bar{B} \rangle = 0,
\langle D_2^* | \bar{c} \gamma_5 b | \bar{B} \rangle = \sqrt{m_{D_2} m_{\bar{B}}} k_{P} \epsilon^*_{\mu} v^\mu v^\mu v^\mu,
\langle D_2^* | \bar{c} \gamma_{\mu} b | \bar{B} \rangle = i \sqrt{m_{D_2} m_{\bar{B}}} k_{V} \epsilon^*_{\mu \nu} \epsilon^{\nu \alpha} v^\alpha v^\beta v^\beta v^\gamma,
\end{array}
\]

(20)

The form factors \(f_i \) and \(k_i \) are again dimensionless functions of \(w \). In the heavy quark limit, each of these form factors either vanishes or is determined by the Igus-Wise function, \(\tau(w) \). (This Igus-Wise function is different from \(\zeta(w) \), although model calculations can relate the two). The simple parametrizations in Eqs. (19) and (20) yield the slightly complicated relations

\[
\begin{array}{l}
k_{A_2} = k_{T_2} = k_{T_3} = 0, \quad f_{V_1} = (1 - w^2) \tau/\sqrt{6},
-f_{V_2} = f_{V_3} = 3 \tau/\sqrt{6}, \quad f_{A} = f_{S}/2 = f_{T_1} = f_{T_2} = k_{A_1}/\sqrt{6} = (w + 1) \tau/\sqrt{6},
k_{P} = -k_{V} = k_{A_3} = k_{T_1} = \tau.
\end{array}
\]

(21)

At zero recoil where \(w = 1 \) and \(v = v' \), only the \(f_{V_1} \) form factor can contribute (as well as the linear combination \(f_{T_1} + f_{T_2} \)), since \(\epsilon^* v^\mu_{\mu} \) and \(\epsilon^* v'_{\mu} \) vanish. Heavy quark symmetry implies that \(f_{V_1}(1) \) is either of order \(\Lambda_{QCD}/m_{c,b} \), or its dependence on the leading Igus-Wise function, \(\tau(w) \), is suppressed by \((w-1) \). This is why, as explained above, the \(\mathcal{O}(\Lambda_{QCD}/m_{c,b}) \) terms are so significant for semileptonic decays to excited charmed mesons.

We define in analogy with Eq. (16),

\[
\hat{f}_i(w) = f_i(w)/\tau(w), \quad \hat{k}_i(w) = k_i(w)/\tau(w).
\]

(22)

For the order \(\Lambda_{QCD}/m_{c,b} \) and \(\alpha_s \) contributions to the \(\bar{B} \to D_1 \) form factors, we obtain
\[\sqrt{6} \hat{f}_S = -2(w + 1)(1 + \hat{\alpha}_s C_S) - \varepsilon_b 2(w - 1) \hat{F}_b \\
\quad - \varepsilon_c 4(2w' - \Lambda - 2(w - 1)(2w + 1) \hat{\tau}_1 + \hat{\tau}_2 + 2(w + 1)6\hat{\eta}_1 + 2(w - 1) \hat{\eta}_2 - \hat{\eta}_3), \\
\sqrt{6} \hat{f}_{V1} = (1 - w^2)(1 + \hat{\alpha}_s C_{V1}) - \varepsilon_b (w^2 - 1) \hat{F}_b - \varepsilon_c 4(2w + 1)(w' - \Lambda - (w^2 - 1)3\hat{\tau}_1 - 3\hat{\tau}_2 + 2\hat{\eta}_1 + 3\hat{\eta}_3), \\
\sqrt{6} \hat{f}_{V2} = -3 - \hat{\alpha}_s [3C_{V1} + 2(1 + w)C_{V2}] - \varepsilon_b 3\hat{F}_b - \varepsilon_c [(4w - 1)\hat{\tau}_1 + 5\hat{\tau}_2 + 10\hat{\eta}_1 + 4(w - 1)\hat{\eta}_2 - 5\hat{\eta}_3], \\
\sqrt{6} \hat{f}_{T5} = w - 2 - \hat{\alpha}_s [(2 - w)C_{V1} + 2(1 + w)C_{V2}] + \varepsilon_b (2 + w) \hat{F}_b \\
\quad + \varepsilon_c [4w'(w' - \Lambda) + (2 + w)\hat{\tau}_1 + (2 + 3w)\hat{\tau}_2 - 2(6 + w)\hat{\eta}_1 - 4(w - 1)\hat{\eta}_2 - (3w - 2)\hat{\eta}_3], \\
\sqrt{6} \hat{f}_A = -(w + 1)(1 + \hat{\alpha}_s C_{A1}) - \varepsilon_b (w - 1) \hat{F}_b - \varepsilon_c 4w'(w' - \Lambda) - 3(w - 1)(\hat{\tau}_1 - \hat{\tau}_2) - (w + 1)(2\hat{\eta}_1 + 3\hat{\eta}_3), \\
\sqrt{6} \hat{f}_{T1} = (w + 1) \left[1 + \hat{\alpha}_s [C_{T1} + (w - 1)C_{T2}] \right] + \varepsilon_b (w - 1) \hat{F}_b \\
\quad - \varepsilon_c [4w'(w' - \Lambda) - 3(w - 1)(\hat{\tau}_1 - \hat{\tau}_2) + (w + 1)(2\hat{\eta}_1 + 3\hat{\eta}_3)], \\
\sqrt{6} \hat{f}_{T2} = -(w + 1) \left[1 + \hat{\alpha}_s [C_{T1} - (w - 1)C_{T2}] \right] + \varepsilon_b (w - 1) \hat{F}_b \\
\quad - \varepsilon_c [4w'(w' - \Lambda) - 3(w - 1)(\hat{\tau}_1 - \hat{\tau}_2) - (w + 1)(2\hat{\eta}_1 + 3\hat{\eta}_3)], \\
\sqrt{6} \hat{f}_{T3} = 3 + \hat{\alpha}_s [3C_{T1} - (2 - w)C_{T2} + 3C_{T3}] + \varepsilon_b 3\hat{F}_b - \varepsilon_c [(4w - 1)\hat{\tau}_1 + 5\hat{\tau}_2 - 10\hat{\eta}_1 - 4(w - 1)\hat{\eta}_2 + 5\hat{\eta}_3]. \quad (23) \\
\]

For the order $\Lambda_{QCD} / m_{c,b}$ and α_s contributions to the $B \to D^*_2$ form factors we obtain

\[\hat{k}_P = 1 + \hat{\alpha}_s C_P + \varepsilon_b \hat{F}_b \\
\quad + \varepsilon_c [(2w + 1)\hat{\tau}_1 + \hat{\tau}_2 - 2\hat{\eta}_1 - 2(w - 1)\hat{\eta}_2 + \hat{\eta}_3], \\
\hat{k}_V = 1 - \hat{\alpha}_s C_{V1} - \varepsilon_b \hat{F}_b - \varepsilon_c (\hat{\tau}_1 - \hat{\tau}_2 - 2\hat{\eta}_1 + \hat{\eta}_3), \\
\hat{k}_{A1} = -(w + 1)(1 + \hat{\alpha}_s C_{A1}) - \varepsilon_b (w - 1) \hat{F}_b \\
\quad - \varepsilon_c [(w - 1)(\hat{\tau}_1 - \hat{\tau}_2) + (w + 1)(2\hat{\eta}_1 - \hat{\eta}_3)], \\
\hat{k}_{A2} = \hat{\alpha}_s C_{A2} - \varepsilon_c 2(\hat{\tau}_1 + \hat{\eta}_2), \\
\hat{k}_{A3} = 1 + \hat{\alpha}_s (C_{A1} + C_{A2}) + \varepsilon_b \hat{F}_b \\
\quad - \varepsilon_c (\hat{\tau}_1 + \hat{\tau}_2 + 2\hat{\eta}_1 - 2\hat{\eta}_2 - \hat{\eta}_3), \\
\hat{k}_{T1} = 1 + \hat{\alpha}_s \left[C_{T1} + \frac{w - 1}{2} (C_{T2} - C_{T3}) \right] - \varepsilon_c (2\hat{\eta}_1 - \hat{\eta}_3), \\
\hat{k}_{T2} = \hat{\alpha}_s \left[\frac{w - 1}{2} (C_{T2} + C_{T3}) \right] + \varepsilon_b \hat{F}_b - \varepsilon_c (\hat{\tau}_1 - \hat{\tau}_2), \\
\hat{k}_{T3} = -\hat{\alpha}_s C_{T2} + \varepsilon_c 2(\hat{\tau}_1 - \hat{\tau}_2). \quad (24) \]

In Eqs. (23) and (24), the relations for the SM terms (f_v, \hat{f}_{v2}, \hat{f}_{A}, f_{A1}, f_{A2}, f_{A3}, and k_{T1}) agree with Refs. [13,14]. In this case six functions of w are needed to parametrize all sixteen $B \to D^{3/2*}$ form factors in Eqs. (23) and (24), including all $\mathcal{O}(\Lambda_{QCD} / m_{c,b})$ corrections: $\hat{\tau}$, $\hat{\tau}_{1,2}$, and $\hat{\eta}_{1,2,3}$.

E. Equations of motion

As in Ref. [2], we can verify the relations stemming from the QCD equations of motion between the (pseudo)scalar and the (axial)vector matrix elements,

\[-[\bar{m}_b(\mu) + \bar{m}_c(\mu)] \langle D_0^* | \bar{v}_5 b | B \rangle = \langle D_0^* | \bar{v}_5 \gamma_5 b | B \rangle, \]
\[[\bar{m}_b(\mu) - \bar{m}_c(\mu)] \langle D_1^* | \bar{v}_6 b | B \rangle = \langle D_1^* | \bar{v}_6 \gamma_5 b | B \rangle, \]
\[-[\bar{m}_b(\mu) + \bar{m}_c(\mu)] \langle D_2^* | \bar{v}_7 b | B \rangle = \langle D_2^* | \bar{v}_7 \gamma_5 b | B \rangle, \]
\[[\bar{m}_b(\mu) - \bar{m}_c(\mu)] \langle D_3^* | \bar{v}_8 b | B \rangle = \langle D_3^* | \bar{v}_8 \gamma_5 b | B \rangle. \quad (25) \]

Using $m_b = m_B - \Lambda + \mathcal{O}(\Lambda_{QCD}^2 / m_b)$ and $m_c = m_{D*, -\Lambda^{3/2}} + \mathcal{O}(\Lambda_{QCD}^2 / m_c)$ imply that all first order $\Lambda_{QCD} / m_{c,b}$ and α_s corrections agree in Eq. (25) as they must. Note that the left-hand sides of Eq. (25) contain the running quark masses at the common scale μ. At order α_s the results are sensitive to this, and the $\mathcal{O}(\alpha_s)$ terms from the expansion of

\[m_Q = \bar{m}_Q(\mu) \left[1 + \frac{\alpha_s(\mu)}{\pi} \left(\frac{4}{3} - \ln \frac{m_Q^2}{\mu^2} \right) + \ldots \right], \quad (26) \]

are required to be present for Eq. (25) to be satisfied. As emphasized in Ref. [2], it is probably better to evaluate the scalar and pseudoscalar matrix elements using Eqs. (17), (18), (23), and (24) instead of Eq. (25), because the natural choice for μ is below m_b. In the MS scheme fermions do not decouple for $\mu < m$, introducing artificially large corrections in the running, compensated by corresponding spurious terms in the β-function computed without integrating out heavy quarks [30].

III. $B \to D^{}l\bar{\nu}$ RATES FOR GENERIC NP**

It is straightforward to calculate the $B \to D^{**}l\bar{\nu}$ rates including lepton mass effects and all possible four-fermion operators. The double differential distributions in the
SM were written down in Ref. [2], the integrals of which agree with the expressions below. Here we give the single differential distributions as the SM plus generic NP. These expressions can be used with any form factor input to study the SM predictions and possible patterns of NP in $R(D^{**})$. In Appendix [A] we provide explicit results for the $B \to D^{**}\ell\nu$ amplitudes, which may be used in combination with D^{**} and τ decay amplitudes to derive fully differential distributions of the visible decay products in $B \to D^{**}\ell\nu$, including all interference effects [31].

We consider the following complete basis for the four-Fermi operators mediating $b \to c\ell\nu$ decay

SM:

$$\text{SM: } i2\sqrt{2} V_{cb} G_F [\tilde{c}\gamma^\mu P_L b] [\tilde{\ell}_\mu P_L \nu] ,$$

(27a)

Vector:

$$i2\sqrt{2} V_{cb} G_F [\tilde{c} (\tilde{\alpha}_L^Y \gamma^\mu P_L + \tilde{\alpha}_R^Y \gamma^\mu P_R) b] [\tilde{\ell}(\tilde{\beta}_L^Y \gamma_\mu P_L + \tilde{\beta}_R^Y \gamma_\mu P_R) \nu] ,$$

(27b)

Scalar:

$$i2\sqrt{2} V_{cb} G_F [\tilde{c}(\tilde{\alpha}_L^T \sigma^{\mu\nu} P_L b) (\tilde{\beta}_L^T \sigma^{\mu\nu} P_L \nu)] ,$$

(27c)

Tensor:

$$i2\sqrt{2} V_{cb} G_F [\tilde{c}(\tilde{\alpha}_R^T \sigma^{\mu\nu} P_L b) (\tilde{\beta}_R^T \sigma^{\mu\nu} P_L \nu)] .$$

(27d)

The NP couplings to the quark and lepton currents are denoted by $\tilde{\alpha}_i^Y$ and $\tilde{\beta}_i^Y$, respectively. The lower index of $\tilde{\alpha}$ denotes the ν helicity and the lower index of $\tilde{\beta}$ is that of the b quark. (This notation is a variation of the conventions chosen in Ref. [31], whence the seemingly superfluous tildes. See App. [A] for details.) The NP couplings $\tilde{\alpha}_i^Y$ and $\tilde{\beta}_i^Y$ may be complex, and $\tilde{\alpha}_i^Y \tilde{\beta}_j^Y$ products are normalized with respect to the SM couplings, such that setting $\tilde{\alpha}_L^Y \tilde{\beta}_L^Y = 1$ would amount to doubling the coefficient of the $(\tilde{c}\gamma_\mu P_L b)(\tilde{\ell} \gamma^\mu P_L \nu)$ operator compared to its SM value. The CP conjugate operators for $b \to c\ell\nu$ are obtained by Hermitian conjugation. The operators involving right-handed neutrinos are included for completeness, but do not interfere with the SM (neglecting m_u suppressed terms).

We define the dimensionless ratios

$$r = m_{D^{**}}/m_B , \quad \rho_\ell = m_{\ell}^2/m_B^2 ,$$

as well as

$$\bar{q}^2 = \frac{q^2}{m_B^2} = 1 + r^2 - 2r , \quad \Gamma_0 = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} .$$

(29)

In the rest of this section, for brevity, we suppress indication of absolute value squared for the NP terms, so that all $(\tilde{\alpha}_i^Y \tilde{\beta}_j^Y)^2$ terms mean $|\tilde{\alpha}_i^Y \tilde{\beta}_j^Y|^2$. Similarly, all interference terms are understood as the appropriate real parts: terms linear in NP couplings (coming from SM–NP interference) of the form $\tilde{\alpha}_i^Y \tilde{\beta}_j^Y$ mean $\text{Re}(\tilde{\alpha}_i^Y \tilde{\beta}_j^Y)$, while bilinear terms in NP couplings (from NP–NP interference) of the form $\tilde{\alpha}_i^Y \tilde{\beta}_m^k \tilde{\alpha}_j^k \tilde{\beta}_n^k$ mean $\text{Re}(|\tilde{\alpha}_i^Y \tilde{\beta}_n^k|^2)$.

Considering only left-handed neutrinos, we obtain for the $B \to D_0^{(*)}\ell\nu$ rate,

$$\frac{d\Gamma^{(SM)}}{dw} = 4\Gamma_0 r^3 \sqrt{w^2 - 1} \left(\frac{q^2 - \rho_\ell^2}{\bar{q}^2}\right)^2 \left\{ g_1^2 (w - 1) \left[\rho_\ell [(1 + r^2)(2w - 1) + 2r(w - 2)] + (1 - r^2)(w + 1)q^2 \right]
+ g_2^2 (w + 1) \left[\rho_\ell [(1 + r^2)(2w + 1) - 2r(w + 2)] + (1 + r^2)(w - 1)q^2 \right] - 2g - 2g_1 (1 - r^2)(w - 1)q^2 + 2\rho_\ell \right\} .$$

(30a)

$$\frac{d\Gamma_D^{(SM)}}{dw} = \frac{d\Gamma^{(SM)}}{dw} \left(1 + \tilde{\alpha}_L^T \tilde{\beta}_L^T - \tilde{\alpha}_R^T \tilde{\beta}_L^T \right)^2 + 2\Gamma_0 r^3 \sqrt{w^2 - 1} \left(\frac{q^2 - \rho_\ell^2}{\bar{q}^2}\right)^2 \left\{ 3 \left[\tilde{\alpha}_L^S - \tilde{\alpha}_L^S \tilde{\beta}_L^S g_P^2 q^2 \right]
+ 6(\tilde{\alpha}_R^S - \tilde{\alpha}_L^S) \tilde{\beta}_L^S g_P \sqrt{w^2 - 1} \left[1 + \tilde{\alpha}_L^T \tilde{\beta}_L^T - \tilde{\alpha}_R^T \tilde{\beta}_L^T \right] (w - 1) - g - (1 - r)(w + 1) \right\} .$$

(30b)

For the narrow D_1 state ($s_i^{7/2} = 2^+$) we find

$$\frac{d\Gamma^{(SM)}}{dw} = 2\Gamma_0 r^3 \sqrt{w^2 - 1} \left(\frac{q^2 - \rho_\ell^2}{\bar{q}^2}\right)^2 \left\{ f_1^2 \left[2q^2 (w - r)^2 + 2q^2 \right] + \rho_\ell \left[4(w - r)^2 - q^2 \right] \right\}$$

(31a)

$$+ (w - 1) \left[f_2^2 \left[2r^2 q^2 (w - 1) + \rho_\ell \left[3w q^2 + 4r (w - 1) \right] \right] + f_3^2 \left[2q^2 (w^2 - 1) + \rho_\ell \left[4w (w - r)^2 - q^2 \right] \right] \right\} + 2 f_4^2 q^2 (q^2 + \rho_\ell) + 2 f_5^2 (w - r) \left[2q^2 (w - r) + \rho_\ell (3 - r^2 - 2rw) \right] + 4 f_6^2 \left[(w - r) (q^2 + 2\rho_\ell) \right]$$

$$+ 2 f_7^2 \left[2q^2 (w^2 - 1) + \rho_\ell \left[3w q^2 + 4r (w - 1) \right] \right] \right\} ,$$

where f_i are form factors.
\[
\frac{d\Gamma_{D_1}}{dw} = \frac{d\Gamma_{SM}^{(SM)}}{dw} \left(1 + \alpha_L^Y \beta_L^Y - \alpha_R^Y \beta_R^Y\right)^2 + 2\Gamma_0 r^3 \sqrt{w^2 - 1} \left(\frac{q^2 - \rho_C}{\bar{q}^6}\right)^2 \left\{3\left[\left(\alpha_L^S + \alpha_R^S\right) \beta_L^S\right]^2 f_3^2 (w^2 - 1)q^4 + 6\left(\alpha_L^S + \alpha_R^S\right) \beta_L^S k_2^2 (w^2 - 1)q^2 + 6\left[\left(\alpha_L^S + \alpha_R^S\right) \beta_L^S\right]^2 f_3^2 (w^2 - 1)q^4 + 16\left(\alpha_L^S \beta_L^S\right)^2 \left[q^2 (2 + w^2) + 4r(w^2 - 1)\right] + f_3 \left[4(w^2 - 1)q^4 + f_3^2 (w^2 - 1)q^4\right] + 2f_3 \left[3wq^2 + 4r(w^2 - 1)\right) - 2f_3 \left(f_2 w + f_3\right)q^2 (w^2 - 1)\right) - 24\left(\alpha_L^S \beta_L^S\right)^2 \left[1 + \frac{\left(\alpha_L^S + \alpha_R^S\right) \beta_L^S}{\bar{q}^6}\right] f_{A4} (f_4 r + f_7) (w^2 - 1) - \left[1 + \frac{\left(\alpha_L^S + \alpha_R^S\right) \beta_L^S}{\bar{q}^6}\right] \left[2f_3 \left[4(w^2 - 1)r + 3f_5 (w^2 - 1)\right] + f_3 \left[2rq^2 (w^2 - 1)\right] + f_3 \left[3wq^2 + 4r(w^2 - 1)\right] + 2f_5 \left[2r^2 (w^2 - 1)\right]\right) + \left(\alpha_L^S + \alpha_R^S\right) \beta_L^S \left[3f_2^2 (w^2 - 1) + \left[2r^2 (w^2 - 1) + \rho_C (3r^2 - 2r^2)\right] + 4k_A k_{A3} (w^2 - 1)q^2 + 2\rho_C\right) + \left(\alpha_L^S + \alpha_R^S\right) \beta_L^S \left[2r^2 (w^2 - 1) + \rho_C \left[3wq^2 + 4r(w^2 - 1)\right]\right)\right)\right\}.
\]

The result for the broad \(D_1^*\) state \((s_f^* = \frac{1}{2}^+)\) can be obtained from Eqs. (31a) and (31b) via the replacements \(f_s \rightarrow g_s, f_A \rightarrow g_A, f_v \rightarrow g_{V_i}, f_r \rightarrow g_{r_i}\), where \(i = 1, 2, 3\). For \(d\Gamma (B \rightarrow D_2^* \ell \nu) / dw\) the result is

\[
\frac{d\Gamma_{SM}^{(SM)}}{dw} = \frac{d\Gamma_{SM}^{(SM)}}{dw} = \frac{2\Gamma_0}{3} r^3 (w^2 - 1)^{3/2} \left(\frac{q^2 - \rho_C}{\bar{q}^6}\right)^2 \left\{k_2^2 \left[2r^2 (w^2 - 1) + \rho_C \left(3r^2 - 2r^2\right)\right] + 4k_A k_{A3} (w^2 - 1)q^2 + 2k_A k_{A3} \left[2r^2 (w^2 - 1) + \rho_C \left[3wq^2 + 4r(w^2 - 1)\right]\right)\right\},
\]

In the heavy quark limit, for the SM and the tensor coupling contributions, using Eqs. (15) and (21), our results in Eqs. (30)–(32) agree with the results in Eqs. (B9)–(B12) in Ref. [32] (see also Ref. [33]), which studied
the \(R(D^{**}) \) predictions for a NP tensor interaction using QCD sum rule predictions for the leading order Isgur-Wise functions. In Appendix \[13\] for completeness we include the analogous expressions for the \(B \to D^{(*)} \) rates.

In the SM, the only form factors that enter these rates without additional \((w-1)\) suppressions are \(g_+ \) for \(D_0^* \), \(g_{T_1} \) for \(D_1^* \), and \(f_{T_1} \) for \(D_1 \). In the infinite mass limit, these form factors must vanish at \(w = 1 \) due to heavy quark symmetry. The model independent result derived in the SM is that the \(O(\Lambda_{QCD}/m_{c,b}) \) leading terms for these form factors at \(w = 1 \) are determined by hadron mass splittings and the leading order Isgur-Wise functions \[14\],

\[
\hat{g}_+(1) = -\frac{3}{2}(\varepsilon_c + \varepsilon_b)(\Lambda^* - \Lambda) + \ldots,
\]

\[
\hat{g}_{T_1}(1) = (\varepsilon_c - 3\varepsilon_b)(\Lambda^* - \Lambda) + \ldots,
\]

\[
\sqrt{6}\hat{f}_{T_1}(1) = -8\varepsilon_c(\Lambda' - \Lambda) + \ldots, \tag{33}
\]

where the ellipses denote \(O[\alpha_s(w - 1), \varepsilon_{c,b}(w - 1), \varepsilon_{c,b}^2] \) and higher order terms. All terms in \(d\Gamma/dw \) have an overall \((w^2 - 1)^{3/2}\) suppression, so there is no similar constraint for that channel.

In the presence of new physics, the \(g_P \) for \(D_0^* \), \(g_{T_1,2} \) (for \(D_1^* \)), and \(f_{T_1,2} \) (for \(D_1 \)) form factors also have unsuppressed contributions at \(w = 1 \). Of these, \(g_P \) vanishes in the heavy quark limit, and is determined at order \(\Lambda_{QCD}/m_{c,b} \) by hadron mass splittings and the leading order Isgur-Wise function similar to Eq. (33) above

\[
\hat{g}_P(1) = 3(\varepsilon_c - \varepsilon_b)(\Lambda^* - \Lambda) + \ldots. \tag{34}
\]

The \(f_{T_1,2} \) and \(g_{T_1,2} \) form factors are proportional to the respective Isgur-Wise functions, \(\zeta \) and \(\tau \), in the heavy quark limit, without any \((w - 1)\) factors, and their contributions to \(d\Gamma/dw \) neither include a \((w - 1)\) suppression. However, in the heavy quark limit, \(g_{T_1} = -g_{T_2} \) and \(f_{T_1} = -f_{T_2} \), so only \(f_{T_1} + f_{T_2} \) and \(g_{T_1} + g_{T_2} \) terms appear in the rates. One sees in Eq. (31b) that the sum of the terms proportional to \(f_{T_1}^2, f_{T_2}^2 \) and \(f_{T_1}f_{T_2} \) vanishes at \(w = 1 \) in the heavy quark limit, as must (and similarly for the \(g_{T_1}^2, g_{T_2}^2 \), and \(g_{T_1}g_{T_2} \) terms). The contributions to the rate proportional to the linear combinations \((f_{T_1} - f_{T_2})\) and \((g_{T_1} - g_{T_2})\) are suppressed by \((w - 1)\), while

\[
\sqrt{6}\left[\hat{f}_{T_1}(1) + \hat{f}_{T_2}(1)\right] = -8\varepsilon_c(\Lambda' - \Lambda) + \ldots,
\]

\[
\hat{g}_{T_1}(1) + \hat{g}_{T_2}(1) = (\varepsilon_c + 3\varepsilon_b)(\Lambda^* - \Lambda) + \ldots, \tag{35}
\]

are again determined at order \(\Lambda_{QCD}/m_{c,b} \) by hadron mass splittings and the leading order Isgur-Wise function, similar to Eqs. (33) and (34).

IV. SOME PREDICTIONS

The data which can be used to constrain the leading and subleading Isgur-Wise functions are the four \(B \to D^{**}\ell\bar{\nu} \) branching ratios, the \(B \to D_2^*\ell\bar{\nu} \) and \(B \to D_0^*\ell\bar{\nu} \) spectra measured \[34\] in four and five bins of \(q^2 \), respectively, and the \(B \to D^{**}\pi \) rates which are related to the semileptonic rates at \(q^2 = m_b^2 \) using factorization. The available data, used in our fits, is identical to that collected in Tables V–VII in Ref \[12\], and are not repeated here. In all fits we perform, we expand the leading-order Isgur-Wise functions in \((w - 1)\) to linear order,

\[
\tau(w) \approx \tau(1)[1 + \tau'(w - 1)],
\]

\[
\zeta(w) \approx \zeta(1)[1 + \zeta'(w - 1)]. \tag{36}
\]

In our predictions for the \(B \to D^{**}\tau\ell \) and \(R(D^{**}) \), for simplicity we assume that the \(l = e, \mu \) rates are given by the SM, and that NP may only enter the \(\tau \) mode.

A. Fits in the heavy quark limit

To understand the importance of the \(O(\Lambda_{QCD}/m_{c,b}) \) corrections, it is instructive to attempt fitting the data using the form factor parametrizations in the heavy quark limit. Fitting the \(d\Gamma/dw \) data for \(D_0^* \) and \(D_1^* \) and the branching fractions of all four states in the heavy quark limit, using Eqs. (15) and (21), yields an unacceptably poor fit (\(\chi^2/\text{dof} = 80.4 \)). The fit is not improved with the addition of quadratic terms to Eqs. (36). Given the branching ratios and some gain in efficiencies in Belle II over Belle, one may expect sensitivity to such quadratic terms with about \((5-10)/ab\) of Belle II data.

To better quantify this tension, we instead fit \(\tau(1) \) and \(\tau'(1) \) using the branching ratio and \(d\Gamma/dw \) for the \(D_0^* \) alone, and the \(B \to D^* \pi \) rate. This yields good fits, with the results shown in Table IV. From these fits one can predict the ratios,

\[
R_{3/2} = \frac{\Gamma[B \to D_2^*\ell\bar{\nu}]}{\Gamma[B \to D_1^*\ell\bar{\nu}]} \approx 1.67 \pm 0.09, \tag{37}
\]

\[
R_{1/2} = \frac{\Gamma[B \to D_0^*\ell\bar{\nu}]}{\Gamma[B \to D_1^*\ell\bar{\nu}]} \approx 0.88 \pm 0.07,
\]

to be compared to the current experimental values \[12\] \[34\], \(R_{3/2} \approx 0.45 \pm 0.07 \) and \(R_{1/2} \approx 2.2 \pm 0.7 \). (The

\(\chi^2/\text{dof} \)	\(\tau(1) \)	\(\tau' \)
2.5/3	0.65 ± 0.08	-1.3 ± 0.4
\(\tau(1) \)	1	-0.90
\(\tau' \)	-0.90	1

\(\chi^2/\text{dof} \)	\(\zeta(1) \)	\(\zeta' \)
9.1/4	1.14 ± 0.32	-0.20 ± 1.0
\(\zeta(1) \)	1	-0.95
\(\zeta' \)	-0.95	1

TABLE IV. Fit results and correlations, fitting at leading order in HQET the \(B \to D_2^*\ell\bar{\nu} \) data (above) and \(D_0^*\ell\bar{\nu} \) (below).
$R_{3/2} = 1.67$ central value is very close to the ‘B_{κ}’ result, 1.65, in Table II in Ref. [14]. The severe tension for $R_{3/2}$, about 10σ, is evidence for the presence of large deviations from the heavy quark limit. Adding quadratic terms to Eqs. [36] does not resolve this tension. However, including the $O(A_{QCD}/m_{c,b})$ corrections yields good fits [12], in alignment with the expectation that these corrections can be large because of the zero recoil suppression of the heavy quark limit terms. Therefore, hereafter we consider only fits including both $A_{QCD}/m_{c,b}$ and α_s terms.

B. Fits including the subleading terms

To deal with the several unknown subleading Isgur-Wise functions and the limited amount of experimental data, some approximations need to be made. In what is called “Approximation A” in Ref. [14], $(w−1)$ is treated as a small parameter of order $A_{QCD}/m_{c,b}$, up to second order terms are kept, and chromomagnetic terms are neglected. This reduces the number of subleading Isgur-Wise functions that enter, and allows parametrization of the rates with a few numbers (rather than functions). In “Approximation B” one does not expand in $(w−1)$, but still neglects chromomagnetic terms. Finally, Ref. [12] introduced an “Approximation C”, which treats $\tau_1,2$ and ζ_1 as constant fit parameters. It also does not neglect the subleading Isgur-Wise functions parametrizing matrix elements of the chromomagnetic term in the Lagrangian, motivated by the fact that the $m_{D^\ast l} - m_{D^0}$ mass splitting no longer appears much smaller than $m_{D^*} - m_D$.

We have updated the Approximation C fits to include the α_s corrections neglected in Ref. [12]. This changes the fit parameters shown in Table V only slightly compared to Ref. [12]. For $R(D'^\ast)$ defined in Eq. (1) we obtain

$$R(D'^0) = 0.08 \pm 0.03, \quad \tilde{R}(D'^0) = 0.24 \pm 0.05,$$

$$R(D'^1) = 0.05 \pm 0.02, \quad \tilde{R}(D'^1) = 0.18 \pm 0.02,$$

$$R(D_1) = 0.10 \pm 0.02, \quad \tilde{R}(D_1) = 0.20 \pm 0.02,$$

$$R(D'_2) = 0.07 \pm 0.01, \quad \tilde{R}(D'_2) = 0.17 \pm 0.01, \quad (38)$$

and the phase-space constrained ratio is defined as

$$\tilde{R}(X) = \frac{\int_{m_2}^{(m_B - m_X)^2} \frac{d\Gamma(\tilde{B} \to X\tau\bar{\nu})}{dq^2} dq^2}{\int_{m_2}^{(m_B - m_X)^2} \frac{d\Gamma(\tilde{B} \to X\nu\bar{\nu})}{dq^2} dq^2} \quad (39)$$

Our results in Eq. (38) are nearly identical with Eq. (38) in Ref. [12]. The ratio for the sum of the four D'^\ast states is

$$\tilde{R}(D'^\ast) = \frac{\sum_{X \in D'^\ast} \Gamma(\tilde{B} \to X\tau\bar{\nu})}{\sum_{X \in D'^\ast} \Gamma(\tilde{B} \to X\nu\bar{\nu})} = 0.08 \pm 0.01. \quad (40)$$

We next consider new physics generating one of the interactions in the basis defined by Eq. 3. The scalar (O_s) and pseudoscalar (O_P) matrix elements could be estimated in the past using Eq. [25] [12]. A right-handed vector current, $O_V + O_A$, does not help to fit the current data, and $O_V - O_A$ is the SM operator. Hence, we study here in some detail NP generating the tensor operator, O_T, which has best fit for the present data at $\tilde{\alpha}_T^2\tilde{\beta}_L^2 = 0.35$, assuming it is real (corresponding to $C_T \simeq 0.48$ in the conventions of Ref. [33]). This is for primarily for illustration: While exclusively O_T cannot be generated by a dimension-6 new physics operator, it can arise from Fierzing interactions generated in viable scenarios.

Figure 1 (left) shows our predictions for $R(D'^\ast)$ as functions of $\tilde{\alpha}_T^2\tilde{\beta}_L^2$, and Fig. 1 (right) shows the predictions for $R(X)/R(X)_{SM}$ for all six $D'^{(*)}$ states. In the vicinity of $\tilde{\alpha}_T^2\tilde{\beta}_L^2 = 0.35$, where the current $R(D)$ and $R(D'^\ast)$ data can be fit well, measurements of $R(D'^\ast)$ will have a lot of discriminating power. We obtain for $\tilde{\alpha}_T^2\tilde{\beta}_L^2 = 0.35$ the central values for $R(X)/R(X)_{SM} = \{0.46, 4.3, 4.3, 0.47\}$ for $\{D'^0, D'^1, D_1, D'_2\}$, respectively, whereas the corresponding values for $\{D, D'^\ast\}$ are $\{1.51, 1.25\}$. The uncertainty bands are dominated by the first principal components of the fit covariance matrices, added in quadrature with variations in ζ_1 and τ_1 (see Ref. [12] for details). Figure 2 shows the predicted $d\Gamma/dw$ spectra both for the SM and for $\tilde{\alpha}_T^2\tilde{\beta}_L^2 = 0.35$.

Understanding $\tilde{B} \to D'^\ast l\bar{\nu}$ is also important because they give some of the largest experimental backgrounds to the measurements of $R(D'^\ast)$. For example, for Belle, Table IV in Ref. [33] showed that the $B \to D'^\ast l\bar{\nu}$ shapes and composition are significant backgrounds to the $R(D'^\ast)$ measurements. For BaBar, Table V in Ref. [37] lists separately the uncertainties due to $\tilde{B} \to D'^\ast l\bar{\nu}$ and $\tilde{B} \to D'^\ast \tau\bar{\nu}$, which are both significant. The sensitive dependence of the $\tilde{B} \to D'^\ast l\bar{\nu}$ rates on $\tilde{\alpha}_T^2\tilde{\beta}_L^2$ shown in Figs. 1 and 2 illustrate the importance of treating these D'^\ast backgrounds to $\tilde{B} \to D'^\ast l\bar{\nu}$ consistently, when fitting NP to more precise future $R(D'^\ast)$ data.

Figure 3 shows the possible ranges of $R(D_1)$ and $R(D'^0)$ listed in Table V. The central values and errors are for $\tilde{\alpha}_T^2\tilde{\beta}_L^2 = 0.35$. The bands are dominated by the first principal components of the fit covariance matrices.
FIG. 1. Predictions for $R(D^{**})$ as functions of a NP tensor coupling (left), and for $R(X)/R(X)_{SM}$ for all six $D^{(*,**)}$ states (right).

FIG. 2. Predicted $d\Gamma/dw$ distributions normalized to the SM rates for each of the four $D^{(*)}$ states, in the SM (dashed curves) and for $\tilde{\alpha}_T^L \tilde{\beta}_L^T = 0.35$ (solid curves), as determined from the Approximation C best fit result, including $\Lambda_{QCD}/m_{c,b}$ and α_s corrections. The SM prediction is shown by the black dot.

FIG. 3. Allowed ranges of $R(D_1)$ and $R(D_2)$ for the two narrow states, in the presence of any one of the four non-SM currents with arbitrary weak phases, as determined from the Approximation C best fit result, including $\Lambda_{QCD}/m_{c,b}$ and α_s corrections.

V. CONCLUSIONS

We derived the $\bar{B} \rightarrow D^{**}\ell\bar{\nu}$ decay rates for arbitrary beyond SM $b \rightarrow c$ currents and finite charged lepton mass, including all order $\Lambda_{QCD}/m_{c,b}$ and α_s terms in the heavy quark effective theory expansion of the form factors. To describe all $b \rightarrow c$ current matrix elements, including $\Lambda_{QCD}/m_{c,b}$ and α_s corrections, only four functions of w (ζ, ζ_1, and $\tilde{\chi}_{1,2}$) are needed to determine all twelve $B \rightarrow D^{1/2^+}$ form factors in Eqs. (17) and (18) to this order, as well as the mass parameters Λ^* and $\tilde{\Lambda}$. For
\(B \to D^{3/2^+}\) decays, six functions of \(w(\tau, \tilde{\tau}_{1,2}, \text{and } \tilde{\tau}_{1,2})\) describe the sixteen form factors in Eqs. (23) and (24) at this order, plus the mass parameters \(\Lambda'\) and \(\Lambda\).

With the above results, we have now all ingredients in place to consistently study semileptonic \(B\) decays to the six lightest charm mesons, \(B \to D^{(*)}\ell\bar{\nu}\), for arbitrary new physics and for arbitrary charged lepton masses. These results are being implemented in the Hammer \[38\] analysis software, which will allow reweighing fully simulated data for fully differential decays to arbitrary new physics, including arbitrary NP contributions for each of the three lepton flavors. This will lead to better control of both theoretical and experimental uncertainties in \(R(D^{(*)})\) measurements, as well as in the determinations of \(|V_{cb}|\) and \(|V_{ub}|\) from semileptonic \(B\) decays.

Unlike calculations using model-dependent inputs on the form factors, our predictions are systematically improvable with more data on the \(B \to D^{(*)}\ell\bar{\nu}\) decays to light lepton final states and/or input from lattice QCD. The upcoming much larger data sets at LHCb and Belle II will answer many important questions.

ACKNOWLEDGMENTS

We thank Stephan Dueell and Michele Papucci for helpful conversations. We thank the Aspen Center of Physics, supported by the NSF grant PHY-1066293, where parts of this work were completed. FB was supported by the DFG Emmy-Noether Grant No. BE 6075/1-1. ZL was supported in part by the U.S. Department of Energy under contract DE-AC02-05CH11231. DR acknowledges support from the University of Cincinnati.

Appendix A: NP Amplitudes

In this appendix we provide explicit results for the \(B \to D^{(*)}\ell\bar{\nu}\) amplitudes themselves. These \(B \to D^{(*)}\) amplitudes correspond to those used in the Hammer code \[38\].

As in Ref. \[31\], we consider the \(b \to c\) amplitudes, defining the basis of NP operators to be

\begin{align}
\text{SM:} & \quad i2\sqrt{2}V_{cb}^*G_F\bigl(\bar{b}\gamma_\mu P_Lc\bigr)\bigl[\tilde{\nu}\gamma_\mu P_L\ell\bigr], \\
\text{Vector:} & \quad i2\sqrt{2}V_{cb}^*G_F\bigl[\bar{b}\bigl(\alpha_+^V\gamma_\mu P_L + \alpha_-^V\gamma_\mu P_R\bigr)c\bigr] \\
& \times \bigl[\tilde{\nu}\bigl(\beta_L^V\gamma_\mu P_L + \beta_R^V\gamma_\mu P_R\bigr)\ell\bigr], \\
\text{Scalar:} & \quad -i2\sqrt{2}V_{cb}^*G_F\bigl[\bar{b}\bigl(\alpha_+^S\gamma_\mu P_L + \alpha_-^S\gamma_\mu P_R\bigr)c\bigr] \\
& \times \bigl[\tilde{\nu}\bigl(\beta_L^S\gamma_\mu P_L + \beta_R^S\gamma_\mu P_R\bigr)\ell\bigr], \\
\text{Tensor:} & \quad -i2\sqrt{2}V_{cb}^*G_F\bigl[\bigl(\bar{b}\alpha_T^R\sigma^{\mu\nu}P_Rc\bigr)\bigl(\tilde{\nu}\beta_L^T\gamma_\mu\gamma_\nu P_L\ell\bigr) \\
& + \bigl(\bar{b}\alpha_T^L\sigma^{\mu\nu}P_Lc\bigr)\bigl(\tilde{\nu}\beta_R^T\gamma_\mu\gamma_\nu P_R\ell\bigr). \tag{A1d}
\end{align}

Operators for the CP conjugate \(b \to c\) processes are obtained by Hermitian conjugation.

The \(B \to D^{(*)}\ell\bar{\nu}\) process features only a single physical polar helicity angle, \(\theta_\ell\), defined in Fig. 4 below. (Helicity angles and momenta are defined with respect to the \(b \to c\) process. Definitions for the conjugate process follow by replacing all particles with their antiparticles.) With respect to the \(D^{(*)} \to D\ell\bar{\nu}\) decay products, one may define \(\phi_\ell\) and \(\phi_D\) as twist angles of the \(\ell-\nu\) and \(D-Y\) decay planes, in accordance with Fig. 4. The combination \(\phi_\ell - \phi_D\) becomes a physical phase in the presence of \(D^{(*)}\) decays. Anticipating the need to account for interference effects once \(D^{(*)}\) and \(\tau\) decays are included, we therefore write results for the helicity amplitudes including this physical phase combination. We adopt conventions that match the spinor conventions of Ref. \[31\] for the \(\tau\) decay amplitudes. For left-handed neutrino amplitudes, this is achieved by including an extra \(D^{(*)}\) phase factor \(e^{i\lambda_D^{(*)}\phi_D}\) for \(D^{(*)}\) spin \(\lambda_D\), and an additional spinor phase function, \(h_s = 1, e^{-i\phi_\ell}\) for \(s_\ell = 1, 2\) respectively. (We label the leptonic spin by 1 and 2, to distinguish it from the \(D^{(*)}\) spins as well as to match the conventions of Ref. \[31\] for massive spinors.)

Under these conventions, the fully differential \(B \to D^{(*)}\ell\bar{\nu}\) rates may be written as

\[
\frac{d^2\Gamma}{dw \, d\cos\theta_\ell} = \frac{G_F^2 m_B^5}{64\pi^3} \frac{2r^3 \sqrt{w^2 - 1} \left(\hat{q}^2 - r_e^2\right)^2}{\hat{q}^2} \times \sum_{\lambda_D^{(*)},s_\ell} \left|A_{s_\ell}^{\lambda_D^{(*)}}\right|^2, \tag{A3}
\]

in which \(r_e = m_\ell/m_B = \sqrt{\hat{q}^2} \).

In the following subsections, we write the \(A_{s_\ell}^{\lambda_D^{(*)}}\) helicity amplitudes for the \(b \to c\) processes, for left-handed neutrinos only. As in Ref. \[31\], the amplitudes for right-handed neutrinos are straightforward to include. The CP conjugate \(b \to c\) processes are obtained via

\[
A_{b \to c}^s(\theta, \phi; \alpha, \beta) = A_{b \to c}^{\bar{s}}(\theta, -\phi; \alpha^*, \beta^*), \tag{A4}
\]

where \(s\) is the set of external state quantum numbers, and \(\bar{s}\) denotes their corresponding CP conjugates. For the \(D_2^*\) processes, the \(A_{D_2^*} = \pm 2\) amplitudes are all zero, and are not included. We label the remaining amplitudes via \(\lambda_{D_2^*} = \pm, 0\).
FIG. 4. Helicity angle definitions

a. $B \to D_0^* \ell \nu$

\[
A_1 / \sqrt{2} = \left\{ \begin{array}{l}
\frac{1}{2} g_p (\alpha_L^S - \alpha_R^S) \beta_l^S + 2 q T \sqrt{w^2 - 1} \alpha_R^T \beta_L^T \cos \theta_t
- \frac{g^*_r (1 + (\alpha_L^Y - \alpha_R^Y) \beta_L^Y)}{2q^2} (r - 1)(1 + w) + (1 + r) \sqrt{w^2 - 1} \cos \theta_t
- \frac{g^*_r (1 + (\alpha_L^Y - \alpha_R^Y) \beta_L^Y)}{2q^2} (1 + (1 + r)(w - 1) + (r - 1) \sqrt{w^2 - 1} \cos \theta_t)
\end{array} \right.
\]

\[
A_2 / \sqrt{2} = \sin \theta_t \left\{ - 2 q T r \sqrt{\frac{u^2 - 1}{q^2}} \cos \theta_t + \frac{1}{2} \alpha_L^T \beta_L^T + \frac{1}{2} \alpha_R^T \beta_L^T \right\}
\]

b. $B \to D_1 \ell \nu$

\[
A_1 = \sin \theta_t e^{-i (\phi_D - \phi)} \left\{ \begin{array}{l}
\frac{1}{2} g_p (\alpha_L^S - \alpha_R^S) \beta_l^S + f_{\alpha} r \left(\alpha_L^Y - \alpha_R^Y \right) \beta_L^Y + \frac{f_{\alpha} r \left(1 + (\alpha_L^Y + \alpha_R^Y) \beta_L^Y \right)}{2 \sqrt{q^2}} \\
+ 2 (f_{\alpha} r (r - w + \sqrt{w^2 - 1}) + f_{\alpha} r (-1 + r w + r \sqrt{w^2 - 1}) \alpha_R^T \beta_L^T)
\end{array} \right\}
\]

\[
A_2 = \cos^2 \theta_t \sqrt{2} e^{-i (\phi_D - \phi)} \left\{ \frac{f_{\alpha} \sqrt{u^2 - 1} \left(1 + (\alpha_L^Y - \alpha_R^Y) \beta_L^Y \right) \beta_L^Y + f_{\alpha} r \left(1 + (\alpha_L^Y + \alpha_R^Y) \beta_L^Y \right)}{2 \sqrt{q^2}} \\
+ 4 (f_{\alpha} r (r - w + \sqrt{w^2 - 1}) + f_{\alpha} r (-1 + r w + r \sqrt{w^2 - 1}) \alpha_R^T \beta_L^T)
\right\}
\]

\[
A_1^0 = \left\{ \begin{array}{l}
- \frac{f_{S} \sqrt{w^2 - 1} (\alpha_L^S + \alpha_R^S) \beta_l^S}{\sqrt{2} \sqrt{q^2}} + f_{\alpha} r \left(1 + (\alpha_L^Y + \alpha_R^Y) \beta_L^Y \right) \left(\sqrt{w^2 - 1} + (r - w) \cos \theta_t \right)
- \frac{r \sqrt{w^2 - 1} \left(1 + (\alpha_L^Y + \alpha_R^Y) \beta_L^Y \right) \left(f_{\alpha} r (r - w) + f_{\alpha} r (w - 1) + (f_{\alpha} + f_{\alpha} r) \sqrt{w^2 - 1} \cos \theta_t \right)}{2 \sqrt{q^2}}
+ 2 \sqrt{2} (f_{\alpha} + f_{\alpha} r - f_{\alpha} r w - f_{\alpha} r w^2) \alpha_R^T \beta_L^T \cos \theta_t
\end{array} \right\}
\]

\[
A_2^0 = \sin \theta_t \left\{ - \frac{f_{\alpha} r (r - w) (1 + (\alpha_L^Y + \alpha_R^Y) \beta_L^Y)}{\sqrt{2} \sqrt{q^2}} + \frac{f_{\alpha} r (w^2 - 1) (1 + (\alpha_L^Y + \alpha_R^Y) \beta_L^Y)}{\sqrt{2} \sqrt{q^2}} \right\}
\]
\[
- 2\sqrt{2}r_t \left(f_{T_2} + f_{T_3} + f_{T_1} w - f_{T_2} w^2 \right) \frac{\alpha_R^T \beta_L^T}{\sqrt{q^2}}
\]
\[
A_1^+ = \sin \theta_t e^{i(\phi_B - \phi_t)} \left\{ \frac{1}{2} I_A r_t \sqrt{\frac{u^2 - 1}{q^2}} (\alpha^Y_L - \alpha^R_L) \beta_L^Y + f_{V_1} r_t (1 + (\alpha^Y_L + \alpha^R_L) \beta_L^Y) \right\}
\]
\[
A_2^+ = \sin^2 \frac{\theta_t}{2} e^{i(\phi_B - \phi_t)} \left\{ f_{A} \sqrt{u^2 - 1}(1 + (\alpha^Y_L - \alpha^R_L) \beta_L^Y) + f_{V_1} (-1 - (\alpha^Y_L + \alpha^R_L) \beta_L^Y) + \frac{4r_t (f_{T_2} (w - r + \sqrt{w^2 - 1}) + f_{T_1} (1 - r w + r \sqrt{w^2 - 1}) \alpha_R^T \beta_L^T}{q^2} \right\}.
\]

c. $B \rightarrow D^*_2 \ell \nu$

\[
A_1^- = \sin \theta_t e^{-i(\phi_B - \phi_t)} \left\{ k_V r_t (w^2 - 1)(1 + (\alpha^Y_L + \alpha^R_L) \beta_L^Y) + \frac{k_A r_t \sqrt{w^2 - 1}(1 + (\alpha^Y_L - \alpha^R_L) \beta_L^Y)}{2\sqrt{2} \sqrt{q^2}} \right\}
\]
\[
A_2^- = \cos^2 \frac{\theta_t}{2} e^{-i(\phi_B - \phi_t)} \left\{ k_V \sqrt{u^2 - 1}(1 + (\alpha^Y_L + \alpha^R_L) \beta_L^Y) + \frac{k_A \sqrt{w^2 - 1}(1 + (\alpha^Y_L - \alpha^R_L) \beta_L^Y)}{2\sqrt{2} \sqrt{q^2}} \right\}
\]
\[
A_1^0 = \left\{ \frac{k_F (w^2 - 1) (\alpha^S_L - \alpha^S_R) \beta_L^S}{\sqrt{3}} + \frac{k_A r_t (1 + (\alpha^Y_L - \alpha^R_L) \beta_L^Y) (w^2 - 1) + (r - w) \sqrt{w^2 - 1} \cos \theta_t}{\sqrt{3} q^2} \right\}
\]
\[
A_2^0 = \sin \theta_t \left\{ \frac{k_A (w - r) \sqrt{w^2 - 1}(1 + (\alpha^Y_L - \alpha^R_L) \beta_L^Y)}{\sqrt{3} \sqrt{q^2}} + \frac{(k_A + k_A r) (w^2 - 1)^{3/2}(1 + (\alpha^Y_L - \alpha^R_L) \beta_L^Y)}{\sqrt{3} q^2} \right\}
\]
Finally, the $B \to D^* \ell \nu$ amplitudes are obtained from the $B \to D \ell \nu$ results, with the form factor mapping

\begin{equation}
\begin{aligned}
&f_S \mapsto -g_S, \\ &f_{A,V,T} \mapsto g_{A,V,T},
\end{aligned}
\end{equation}

where $i = 1, 2, 3$, as follows from the definitions in Eqs. (14) and (19).

Appendix B: $B \to D^{(*)} \ell \bar{\nu}$

For completeness, and to have all six $B \to D^{(*,**)}$ rates together in the same notation, we list here $d\Gamma/dw$ for arbitrary charged lepton mass and weak current for the $B \to D^{(*)} \ell \bar{\nu}$ modes as well. We use the form factors defined as in Ref. [2]. For $B \to D$,

\begin{equation}
\begin{aligned}
&\langle D | \bar{c} \gamma_\mu b | B \rangle = \sqrt{m_B m_D} h_S (w + 1), \\
&\langle D | \bar{c} \gamma_5 b | B \rangle = \langle D | \bar{c} \gamma^\mu \gamma_5 b | B \rangle = 0
\end{aligned}
\end{equation}

while for the $B \to D^*$,

\begin{equation}
\begin{aligned}
&\langle D^* | \bar{c} \gamma_\mu b | B \rangle = 0, \\
&\langle D^* | \bar{c} \gamma_5 b | B \rangle = -\sqrt{m_B m_D} h_P (\gamma^\mu \cdot \bar{v}), \\
&\langle D^* | \bar{c} \gamma_\mu \gamma_5 b | B \rangle = i\sqrt{m_B m_D} \epsilon_{\mu\rho\nu\sigma} \epsilon^{\nu\rho\sigma} \bar{v}^\alpha v^\beta, \\
&\langle D^* | \bar{c} \gamma^\mu \gamma_5 b | B \rangle = -\sqrt{m_B m_D} \epsilon_{\mu\rho\nu\sigma} \epsilon^{\nu\rho\sigma} \bar{v}^\alpha (v^\beta - h_T v^\beta) + h_T \epsilon_{\alpha} (v^\beta + h_T v^\beta - h_T (v^\beta - v^\beta))
\end{aligned}
\end{equation}

The common sign convention in $B \to D^{(*)} \ell \bar{\nu}$ papers is $\sigma^{\mu\nu} \gamma^5 \equiv -\sqrt{i/2} \epsilon^{\mu\nu\rho\sigma} \sigma_\rho \sigma_\sigma$ such that $\text{Tr}[\gamma^\mu \gamma^\nu \gamma^\rho \gamma^5] = +\delta^{\mu\nu}$, which corresponds to the heavy quark symmetry relations with signs $h_+ = h_{A_1} = h_{A_2} = h_S = h_P = h_T = \xi$ (and $h_- = h_{A_3} = h_{A_4} = h_{T_3} = 0$). This convention is only used in this appendix, and is the opposite of that for $B \to D^{(*)} \ell \nu$ used in Refs. [12, 14] and the rest of this paper.

Then we find
The $B \to D^*$ result is

$$\frac{d\Gamma^{(SM)}_{D^*}}{dw} = 2\Gamma_0 r^3 \sqrt{w^2 - 1} \frac{(q^2 - \rho_r)^2}{\rho_r^6} \left\{ 2(w + 1)q^2 \left(2q^2 \left[h_{A_1}(w + 1) + h_{A_1}(w - 1)\right] + (w + 1)\left[h_{A_1}(w - r) - (r h_{A_1} + h_{A_3})(w - 1)\right]^2\right) + \rho_r(w + 1) \left[h_{A_1}(w + 1) + h_{A_1}(w - 1)\right] \left[4(w - r)^2 - q^2\right] + 2h_{A_1}(w - 1) \left[h_{A_1}(w^2 + 2r - 3) + 4h_{A_1}(w - 1)\right] + (w - 1) \left[2h_{A_1}(w - h_{A_1} q^2 + h_{A_2}(w - 1) + 2h_{A_2} h_{A_3}(3w + 3r^2 w - 2r(w^2 + 2))\right] \right\} \right\}.$$ (B4a)

$$\frac{d\Gamma_{D^*}}{dw} = \frac{d\Gamma^{(SM)}_{D^*}}{dw} \left(1 + \tilde{\alpha}_L^Y \tilde{\beta}_L^V - \tilde{\alpha}_R^Y \tilde{\beta}_L^V\right)^2 + 2\Gamma_0 r^3 \sqrt{w^2 - 1} \frac{(q^2 - \rho_r)^2}{\rho_r^6} \left\{ 3\left[(\tilde{\alpha}_L^S - \tilde{\alpha}_R^S)\tilde{\beta}_L^S\right] h_{p}(w - 1)q^4 \right\}.$$ (B4b)

$$- 6(\tilde{\alpha}_L^S - \tilde{\alpha}_L^Y)\tilde{\beta}_L^S(1 + \tilde{\alpha}_L^V \tilde{\beta}_L^V - \tilde{\alpha}_R^V \tilde{\beta}_L^V) h_p(w - 1)q^2 \sqrt{\rho_r} h_{A_1}(w + 1 - h_{A_1}(1 - r w) - h_{A_3}(w - r))$$

$$+ 16(\tilde{\alpha}_L^Y \tilde{\beta}_L^V)^2 q^2 + 2\rho_r \left(h_{T_1}(w + 1)\left[2q^2(5w + 1) + 8r(w - 1)\right] + h_{T_2}(w - 1)\left[q^2(5w - 1) + 8r(w^2 - 1)\right] + h_{T_3}(w - 1)\left[q^2(w^2 - 1) - 2h_{T_1}(w - 1) + 2h_{T_3}(w - 1)\right] \right)$$

$$+ 24\tilde{\alpha}_L^Y \tilde{\beta}_L^V \sqrt{\rho_r} q^2(1 + \tilde{\alpha}_L^Y \tilde{\beta}_L^V + \tilde{\alpha}_R^Y \tilde{\beta}_L^V) 2h_V \left[h_{T_1}(1 + r) - h_{T_1}(1 - r)\right](w - 1)$$

$$+ h_{A_1}(w + 1) h_{A_2} h_{A_3}(1 + \tilde{\alpha}_L^Y \tilde{\beta}_L^V) \left[h_{A_1}(w - r) - h_{A_1}(w + r)\right](w + 1) + h_{T_2}(w - 1)\left[h_{T_3}(w + 1) + h_{T_5}(w + 1)\right]$$

$$+ 8\tilde{\alpha}_L^Y \tilde{\beta}_L^V h_V \left[2q^2 + \rho_r\right](w - 1)\right\}.$$

[1] Y. Amhis et al. (Heavy Flavor Averaging Group), (2016), and updates at http://www.slac.stanford.edu/xorg/hfag/ [arXiv:1612.07233 [hep-ex]]

[2] P. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J. Robinson, Phys. Rev. D95, 115008 (2017) [arXiv:1703.05330 [hep-ph]]

[3] D. Bigi, P. Gambino, and S. Schacht, Phys. Lett. B769, 441 (2017) [arXiv:1703.06124 [hep-ph]]

[4] B. Grinstein and A. Kobach, Phys. Lett. B771, 359 (2017) [arXiv:1703.08170 [hep-ph]]

[5] F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J. Robinson, (2017) [arXiv:1708.07134 [hep-ph]]

[6] J. A. Bailey et al. (Fermilab Lattice and MILC Collaborations), Phys. Rev. D92, 034506 (2015) [arXiv:1503.07237 [hep-lat]]

[7] A. Vaquero et al. (Fermilab Lattice and MILC Collaborations), Talk at the Lattice 2017 Conference, (2017) https://makondo.ugr.es/event/0/session/92/contribution/120/material/slides/0.pdf

[8] S. Jaiswal, S. Nandi, and S. K. Patra, (2017), arXiv:1707.09977 [hep-ph]

[9] N. Isgur and M. B. Wise, Phys. Lett. B232, 113 (1989)

[10] N. Isgur and M. B. Wise, Phys. Lett. B237, 527 (1990)

[11] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991)

[12] F. U. Bernlochner and Z. Ligeti, Phys. Rev. D95, 014022 (2017) [arXiv:1606.09300 [hep-ph]]

[13] A. K. Leibovich, Z. Ligeti, I. W. Stewart, and M. B. Wise, Phys. Rev. Lett. 78, 3995 (1997) [arXiv:hep-ph/9703213 [hep-ph]]

[14] A. K. Leibovich, Z. Ligeti, I. W. Stewart, and M. B. Wise, Phys. Rev. D57, 308 (1998) [arXiv:hep-ph/9705467 [hep-ph]]

[15] H. Georgi, Phys. Lett. B240, 447 (1990)

[16] E. Eichten and B. R. Hill, Phys. Lett. B234, 511 (1990)

[17] N. Isgur and M. B. Wise, Phys. Rev. D43, 819 (1991)

[18] J. D. Bjorken, Proceedings, 4th Les Rencontres de Physique de la Vallee d’Aoste: Results and Perspectives in Particle Physics: La Thuile, France, March 18-24, 1990, Conf. Proc. C900318, 583 (1990)

[19] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40, 100001 (2016) and updates at http://pdg.lbl.gov/ 1b1.gov/

[20] A. F. Falk, H. Georgi, B. Grinstein, and M. B. Wise, Nucl. Phys. B343, 1 (1990)

[21] J. D. Bjorken, in Gauge bosons and heavy quarks: Proceedings, 18th SLAC Summer Institute on Particle Physics (SSI90), Jul 16-27, 1990 (1990) pp. 0167–198.

[22] A. F. Falk, Nucl. Phys. B378, 79 (1992)

[23] A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000)

[24] A. F. Falk and B. Grinstein, Phys. Lett. B249, 314 (1990)

[25] M. Neubert, Nucl. Phys. B371, 149 (1992)
[26] A. F. Falk and M. Neubert, Phys. Rev. D47, 2965 (1993), arXiv:hep-ph/9209268 [hep-ph].
[27] E. Eichten and B. R. Hill, Phys. Lett. B243, 427 (1990).
[28] M. E. Luke, Phys. Lett. B252, 447 (1990).
[29] A. F. Falk, B. Grinstein, and M. E. Luke, Nucl. Phys. B357, 185 (1991).
[30] A. V. Manohar, Perturbative and nonperturbative aspects of quantum field theory. Proceedings, 35. Internationale Universit¨ atswochen f¨ ur Kern- und Teilchenphysik: Schladming, Austria, March 2-9, 1996, Lect. Notes Phys. 479, 311 (1997), arXiv:hep-ph/9606222 [hep-ph].
[31] Z. Ligeti, M. Papucci, and D. J. Robinson, JHEP 01, 083 (2017), arXiv:1610.02045 [hep-ph].
[32] P. Biancofiore, P. Colangelo, and F. De Fazio, Phys. Rev. D87, 074010 (2013), arXiv:1302.1042 [hep-ph].
[33] M. Duraisamy, P. Sharma, and A. Datta, Phys. Rev. D90, 074013 (2014), arXiv:1405.3719 [hep-ph].
[34] D. Liventsev et al. (Belle), Phys. Rev. D77, 091503 (2008), arXiv:0711.3252 [hep-ex].
[35] M. Freytsis, Z. Ligeti, and J. T. Ruderman, Phys. Rev. D92, 054018 (2015), arXiv:1506.08896 [hep-ph].
[36] M. Huschle et al. (Belle Collaboration), Phys. Rev. D92, 072014 (2015), arXiv:1507.03233 [hep-ex].
[37] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D88, 072012 (2013), arXiv:1303.0571 [hep-ex].
[38] S. Duell, F. Bernlochner, Z. Ligeti, M. Papucci, and D. Robinson, Proceedings, 38th International Conference on High Energy Physics (ICHEP 2016): Chicago, IL, USA, August 3-10, 2016, PoS ICHEP2016, 1074 (2017).