Repeated encoding fosters retention of perceptual detail in visual recognition memory

Mengting Zhang and Almut Hupbach

Department of Psychology, Lehigh University, Bethlehem, Pennsylvania 18015, USA

In a 2014 issue of Learning & Memory, Reagh and Yassa proposed that repeated encoding leads to semanticization and loss of perceptual detail in memory. We presented object images one or three times and tested recognition of targets and corresponding similar lures. Correct lure rejections after one in comparison to three exposures were more frequently associated with corresponding target misses, suggesting that higher lure rejections after one exposure reflect memory failure rather than perceptual fidelity. Signal detection theory analysis showed that three exposures improved lure-old discriminations. Thus, repeated encoding fosters rather than hinders retention of perceptual detail in visual recognition memory.

Throughout life, many events repeat themselves, such as commutes, coffee breaks, birthdays, and family visits. It can be challenging to differentiate repeating events in memory, as reflected in source misattribution and memory distortions (e.g., Kim et al. 2012, 2019; Sievers et al. 2019). At the same time, we are able to retrieve separate instances of repeating events, an ability that is assumed to reflect pattern separation processes in the hippocampus that prevent interference by recruiting distinct neural patterns to establish orthogonal memory representations for overlapping inputs (O’Reilly and McClelland 1994; Yassa and Stark 2011). Kirwan and Stark (2007) developed the Mnemonic Similarity Task (MST) as a tool to behaviorally assess pattern separation processes (for review, see Stark et al. 2019). In this task, subjects are asked to differentiate previously encoded stimuli from perceptually similar and novel stimuli in a yes/no recognition task, with the assumption that lure-old discriminations are based on detailed representations of old stimuli, whereas novel-old discriminations require only gist-like representations. Using this task, Reagh and Yassa (2014) showed that repeated encoding enhances target recognition but, surprisingly, also impairs similar lure discrimination. The authors explain this counterintuitive finding with the Competitive Trace Theory (CTT) (Yassa and Reagh 2013). According to CTT, item repetition establishes similar but nonidentical memory traces. With repetition, the overlapping trace elements become strengthened and gist-extracted, enhancing novel-old discriminations, whereas the nonoverlapping contextual elements start to compete with one another, causing trace interference and impaired lure-old discriminations.

Loiotile and Courtney (2015) (see also Zhang and Hupbach 2019) replicated this finding when using the lure discrimination index (LDI) by Reagh and Yassa (2014). However, when applying signal detection theory (SDT), they found that repeated exposure improved both novel-old and lure-old discrimination. SDT takes differences in memory strength between lures and old stimuli into account whereas the LDI considers lure strength only, such that small differences in lure correct rejection rates are not calibrated against stark differences in target strength between one and three repetitions. Thus, depending on which analysis method is used, vastly different conclusions are reached about the impact of encoding frequency on memory precision. Separate from these analytical considerations and of theoretical importance is the question of why repeated encoding increases false alarm rates in the first place. Similar lures can be correctly rejected for two very different reasons (Loiotile and Courtney 2015): (1) The lure triggers recall of the target, and differences between the retrieved target details and lure details are noticed (“recall-to-reject”-strategy) (see also Kirwan and Stark 2007), or (2) the resemblance of the lure to the target is missed, because the target is only weakly represented or forgotten, and therefore, the lure is perceived as an entirely new item. Repeated encoding strengthens target memory, and therefore, the majority of correct rejections in the repeated encoding condition should be based on reason 1. However, single-trial encoding is associated with weaker target strength, and therefore, increased lure rejection rates could reflect increased forgetting (reason 2), instead of better detail memory (reason 1). The paradigm used by Reagh and Yassa (2014) cannot differentiate between these two possibilities, because for each encoded image, either the target or the lure is presented during recognition. Thus, it is unclear whether targets could have been recognized for rejected corresponding lures.

To overcome this limitation and to specify the mechanisms for lure rejection after single versus repeated encoding, a new condition was created in which both targets (e.g., the calculator that was encoded) and their corresponding lures (e.g., a different calculator, see Fig. 1) were presented for recognition. This allowed us to assess whether lure rejections were based on successful vs. failed target retrieval. In a first experiment, encoding and recognition were administered within a single experimental session, as in previous studies. In a second experiment, we implemented a 24-h delay between encoding and recognition to test whether accelerated semanticization of repeated items requires a prolonged consolidation period. Thirty-eight undergraduates (seven males, M = 20.3 yr of age, SD = 2.0) from Lehigh University participated in Experiment 1 after providing informed consent. The study was approved by Lehigh’s Institutional Review Board. During the first phase, participants incidentally encoded 192 images of common objects (from https://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst/) for 2.5 sec each (0.5-sec interstimulus interval) while performing an indoor/outdoor judgment task. Half of the images were viewed once (one-repeat), and half were seen three times (three-repeat), resulting in 384 total trials. The order of
presentation was pseudorandomized such that items repeated three times were not presented consecutively. In an old/new recognition task, for half of the images both targets and their corresponding lures were presented (48 one-repeat and 48 three-repeat targets and their corresponding lures, for a total of 192 trials), and for the other half, either the targets or corresponding lures were presented (24 one-repeat targets, 24 one-repeat lures, 24 three-repeat targets, 24 three-repeat lures). Lures were drawn from two similarity bins and equally assigned to the repeat/correspondence conditions. Of all lure items, half were from bin 2, which is more similar to the original target and half were from bin 3, which are more distinctive (see Reag and Yassa 2014). In addition, 96 novel foil images were presented. Targets, lures and foil stimuli were presented randomly throughout the recognition test with the restriction that the lag between targets and corresponding lures was at least five items. Participants were asked whether an image was “old” or “new.” They were explicitly told “old” referred to exactly the same image that they had seen earlier and “new” referred to an item that they had not seen within the context of this study. Following each judgment, they were asked to rate their confidence from “not at all sure” to “very sure.” The experimental procedure is illustrated in Figure 1.

Table 1 shows proportions of target hits, correct lure rejections, and modified LDI s (see below) for corresponding and noncorresponding items in each repetition condition. For corresponding items, the proportion of hits when corresponding lures were correctly rejected is also displayed.

First, we assessed novel-old discrimination by analyzing d' scores $d'(|\text{novel}| - |\text{old}|)$ with a repeated measures ANOVA with repetition and target-lure correspondence as fixed factors. Repeated encoding improved novel-old discrimination, $F_{1,37} = 148.84, P < 0.001, \eta^2_p = 0.80$. No other effects were significant, $F \leq 1.08, P \geq 0.30$. Following Loiotile and Courtney (2015), we also measured novel-old discrimination using SDT. For this analysis, confidence ratings were converted to five cumulative confidence bins. For each participant and repetition condition, these bins were used to fit receiver operator characteristic (ROC) and z-transformed ROC curves, plotting hit rates for targets against false alarm rates for novel items, using the RCorePlus algorithm (Harvey 2013). The slopes and intercepts extracted from these curves were used to calculate $d_z(z = \sqrt{2/(1+zROC\ \text{slope}^2)} \times zROC \ \text{intercept})$, which captures the distance between novel and target stimuli and reflects a participant’s discriminative sensitivity. Analysis of d_z showed that repetition improved participants’ ability to discriminate targets from novel stimuli, $t_{(37)} = 11.62, P < 0.001$, Cohen’s $d = 1.89$. Both analysis methods confirm prior reports of repetition benefitting target recognition (Reag and Yassa 2014; Loiotile and Courtney 2015).

Second, we assessed lure-old discrimination by calculating a modified LDI that calibrates lure correction rejections on target miss rates in each repetition condition, for example, LDI_{1-repeat} = p(“new”|lure)_{1-repeat} – p(“new”|old)_{1-repeat}. A repeated-measures
ANOVA with repetition and target-lure correspondence as factors revealed a significant effect of repetition, $F_{(1,37)} = 48.78, P < 0.001$, $\eta^2_p = 0.57$, no main effect of correspondence, $F_{(1,37)} = 2.02, P = 0.16$, but a significant interaction between repetition and target-lure correspondence, $F_{(1,37)} = 4.28, P = 0.046$, $\eta^2_p = 0.10$. Repeated exposures improved lure-old discrimination. The presentation of corresponding targets impaired participant’s ability to reject similar lures in the one-repeat but not in the three-repeat condition. In both conditions, targets likely recovered gist information (Barry et al. 2019; McCormick et al. 2020), however, follow-up elaboration of episodic details that were needed to differentiate targets from lures failed more frequently in the one- than three-repeat condition. Additionally, for each participant and repetition condition, we fitted ROC and zROC curves, plotting hit rates for targets against false alarm rates for lures (see Fig. 2). Analysis of d_+' showed that repeated encoding enhanced lure-old discrimination, $t_{(37)} = 7.41, P < 0.001$, Cohen’s $d = 1.20$. These results directly contradict the finding by Reagh and Yassa (2014) of impaired lure discrimination after repeated exposures but confirm the results of Loiotile and Courtney (2015) that were obtained when analyzing lure-old discrimination with SDT.

Critically, the presentation of both targets and their corresponding lures allowed us to explore the basis for correct rejections after varying repetitions. For the corresponding condition, we analyzed the proportion of hits when corresponding lures were correctly rejected to see if participants could recognize the old memory accuracy overall, we selected lures from bin 3 only because images in this bin are more dissimilar from one another. Additionally, the number of items was reduced to 160 items, of which half were presented once, and half presented three times. As in Experiment 1, in the old/new recognition test, for half of the items in each repeat condition, both target and corresponding lures, and for the other half, either targets or lures were presented. Twenty-seven Lehigh University Students participated in this study. One participant was excluded due to foil false alarm rates exceeding 0.5, leaving 26 participants for analysis (12 males, M = 21.4, SD = 3.0). Because Experiment 2’s sample was more balanced than Experiment 1 in terms of gender distribution, we included gender as a factor in the ANOVAs of d' and modified LDI. Female participants showed marginally better target memory than male participants (d': $F_{(1,24)} = 4.18, P = 0.052$, $\eta^2_p = 0.15$), consistent

![Figure 2](https://www.learnmem.org/459/Learning&Memory)

Figure 2. Lure-old ROC and zROC curves for the one-repeat (Exp. 1: A,C; Exp. 2: E,G) and three-repeat conditions (Exp. 1: B,D; Exp. 2: F,H). The black curves/lines represent the fitted SDT model, averaged across all participants. The ROC (zROC) data points are cumulative proportions (z-scored cumulative proportions) of each response type—for example, “very sure old”—for lure and old stimuli, across all participants. The increased distance of the three-repeat points (and models) from the line $y = x$ is evidence for better discrimination between lure and old stimuli in the three-repeat condition.
with the results of a recent meta-analysis showing a female advantage for memory of nameable images (Asperholm et al. 2019). No gender differences were observed for lure discrimination [modified LDI; $F < 1$]. Replicating Experiment 1, gender did not significantly interact with any other factors, neither in the d' nor the LDI analysis ($F \leq 2.97$; $p \geq .10$).

Figure 3. Proportion of target hits when corresponding lures were correctly rejected in Experiments 1 and 2.

Academic Press

References

Asperholm M, Högman N, Rafl J, Helitz A. 2019. What did you do yesterday? A meta-analysis of sex differences in episodic memory. *Psych Bull* 145: 785–821. doi:10.1037/bul0000019

Bakker A, Kirwan CB, Miller M, Stark CE. 2008. Pattern separation in the human hippocampal CA3 and dentate gyrus. *Science* 319: 1640–1642. doi:10.1126/science.1152882

Barry DN, Barnes GR, Clark IA, Maguire EA. 2019. The neural dynamics of recognition memory. *Annu Rev Neurosci* 36: 79–102. doi:10.1146/annurev-neuro-062012-170429

Barry DN, Barnes GR, Clark IA, Maguire EA. 2019. The neural dynamics of recognition memory. *Annu Rev Neurosci* 36: 79–102. doi:10.1146/annurev-neuro-062012-170429

Kim G, Yi DJ, Raye CL, Johnson MK. 2012. Negative effects of item repetition on source memory. *Mem Cognit* 40: 889–901. doi:10.3758/s13421-012-0196-2

Kim G, Norman KA, Turk-Browne NB. 2019. Neural overlap in item representations across episodes impairs context memory. *Cereb Cortex* 29: 2682–2693. doi:10.1093/cercor/bhy137

Kirwan CB, Stark CE. 2007. Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. *Learn Mem* 14: 625–633. doi:10.1101/lm.663507

Lloiotile RE, Courtney SM. 2015. A signal detection theory analysis of behavioral pattern separation paradigms. *Learn Mem* 22: 364–369. doi:10.1101/lm.038141.115

McCormick CJ, Barry DN, Jafarian A, Barnes GR, Maguire EA. 2020. VmPFC drives hippocampal processing during autobiographical memory recall regardless of remoteness. *Cereb Cortex* doi:10.1093/cercor/bhaa172
O’Reilly RC, McClelland JL. 1994. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. *Hippocampus* 4: 661–682. doi:10.1002/hipo.450040605

Pidgeon LM, Morcom AM. 2016. Cortical pattern separation and item-specific memory encoding. *Neuropsychologia* 85: 256–271. doi:10.1016/j.neuropsychologia.2016.03.026

Reagh ZM, Yassa MA. 2014. Repetition strengthens target recognition but impairs similar lure discrimination: evidence for trace competition. *Learn Mem* 21: 342–346. doi:10.1101/lm.034546.114

Sabia M, Hardt O, Hupbach A. 2017. The long-term consequences of correctly rejecting and falsely accepting target-related foils in visual recognition memory. *Learn Motiv* 57: 67–81. doi:10.1016/j.lmot.2016.10.002

Sekeres MJ, Bonasia K, St-Laurent M, Pishdadian S, Winocur G, Grady C, Moscovitch M. 2016. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory. *Learn Mem* 23: 72–82. doi:10.1101/lm.039057.115

Sekeres MJ, Winocur G, Moscovitch M. 2018. The hippocampus and related neocortical structures in memory transformation. *Neurosci Lett* 680: 39–53. doi:10.1016/j.neulet.2018.05.006

Sievers C, Bird CM, Renoult L. 2019. Predicting memory formation over multiple study episodes. *Learn Mem* 26: 465–472. doi:10.1101/lm.049791.119

Stark SM, Kirwan CB, Stark CE. 2019. Mnemonic similarity task: a tool for assessing hippocampal integrity. *Trends Cogn Sci* 23: 938–951. doi:10.1016/j.tics.2019.08.003

Winocur G, Frankland PW, Sekeres M, Fogel S, Moscovitch M. 2009. Changes in context-specificity during memory reconsolidation: selective effects of hippocampal lesions. *Learn Mem* 16: 722–729. doi:10.1101/lm.1447209

Yassa MA, Reagh ZM. 2013. Competitive trace theory: a role for the hippocampus in contextual interference during retrieval. *Front Behav Neurosci* 7: 107. doi:10.3389/fnbeh.2013.00107

Yassa MA, Stark CE. 2011. Pattern separation in the hippocampus. *Trends Neurosci* 34: 515–525. doi:10.1016/j.tins.2011.06.006

Zhang M, Hupbach A. 2019. Repeated exposure does not lead to poor trace discriminability [Poster presentation]. 60th Annual Meeting of the Psychonomic Society, Montreal, QC, Canada.

Received June 20, 2020; accepted in revised form August 19, 2020.