Supplementary Materials

Cooperative binding of the cationic porphyrin Tris-T4 enhances catalytic activity of 20S proteasome unveiling a complex distribution of functional states

Anna Maria Santoro ¹, Alessandro D’Urso ², Alessandra Cunsolo ²,³, Danilo Milardi ¹, Roberto Purrello ², Diego Sbardella ⁴, Grazia R. Tundo ⁵, Donatella Diana ⁶, Roberto Fattorusso ⁷, Antonio Di Dato ⁸, Antonella Paladino ⁹, Marco Persico ⁸,¹⁰, Massimo Coletta ⁵,* and Caterina Fattorusso ⁸,¹⁰,*

Table of Contents:

1. Experimental section: NMR spectroscopy and molecular modeling S2-S6
2. Molecular modelling studies (Tables S1-S15) S7-S28
3. NMR studies (Figures S1-S2) S29-S30
4. Molecular modelling studies (Figures S3-S14) S31-S44
5. Kinetic analyses (Figure S15) S45-S46
6. References S47
Experimental section.

NMR spectroscopy. All NMR spectra were recorded at 298K on a Varian Inova 600 MHz spectrometer, with a 5-mm inverse-detection cryoprobe equipped with z-gradient, located at IBB-CNR, Napoli.

The 1H NMR signal assignment of **Tris-T4** was obtained from the analysis of the spectra assisted by the theoretical prediction based in the molecular structure using ChemAxon software (http://www.chemaxon.com).

For interaction studies, samples (total volume, 250 μl) were prepared in 3 mm NMR tubes, using 0.860 mM of 20S and 175 mM of **Tris-T4** in 50 mM Hepes, 100 mM NaCl and 1mM DTT; ligand/20S molar ratio of 200:1 was used.

STD spectra were acquired with 512 scans with on-resonance irradiation at −0.5 ppm for selective saturation of protein resonances and off-resonance irradiation at 30 ppm for reference spectra. A train of 40 Gaussian-shaped pulses of 50 ms with 1 ms delay between pulses were used, for a total saturation time of 2 s. STD spectra were obtained by internal subtraction of the saturated spectrum from the reference spectrum by phase cycling with a spectral width of 7191.66 Hz, relaxation delay 1.0 s, 8k data points for acquisition, and 16k for transformation. WaterLOGSY NMR experiments employed a 20 ms selective Gaussian 180° pulse at the water signal frequency and a NOE mixing time of 1 s. Both for STD and WaterLOGSY, the FIDs were multiplied by an exponential weighting (lb = 5 Hz) before Fourier transformation.

1H and STD spectra of **Tris-T4** alone were acquired as reference.

1D 1H, STD and WaterLOGSY spectra were processed by means of the ChemAxon software (http://www.chemaxon.com)

The STD factor was calculated as $A_{STD} = \frac{(I_0 - I_{sat})}{I_0} = \frac{I_{STD}}{I_0}$ where I_0 is the intensity of the signal in the reference experiment and I_{sat} is the intensity of the same signal in the saturated spectrum. The signal obtained with the strongest I_{STD}/I_0 value was normalized to 100%. The relative degree of saturation for the individual protons was used to compare the STD effect.
Calculation of the chemical-physical properties of Tris-T4. The apparent pKa values of Tris-T4 were estimated by using the algorithm ACD/pKa GALAS (ACD/Percepta software, version 2017.1.3, Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2017, http://www.acdlabs.com). The compound was considered in its cationic form in all calculations performed, as a consequence of the estimation of percentage of neutral/ionized forms computed at pH 7.2 (cytoplasmic value) using the Handerson–Hasselbalch equation. Atomic potentials were assigned using the CVFF force field, while the partial charges were assigned using the partial charges estimated by MNDO semi-empirical 1 SCF calculations.

The conformational space of the porphyrin was sampled through 200 cycles of simulated annealing (SA; ε =80*r) followed by molecular mechanics (MM) energy minimization. During the SA procedure, the temperature is altered in time increments from an initial temperature to a final temperature by adjusting the kinetic energy of the structure (by rescaling the velocities of the atoms). The following protocol was applied: the system was heated to 1000 K over 2000 fs (time step of 1.0 fs); a temperature of 1000 K was applied to the system for 2000 fs (time step of 1.0 fs) to surmount torsional barriers; successively, temperature was linearly reduced to 300 K in 1000 fs with a decrement of 0.5 K/fs (time step of 1.0 fs). Resulting conformations were then subjected to MM energy minimization within Insight 2005 Discover 3 module (CVFF force field; ε = 80*r) until the maximum rms was less than 0.001 kcal/Å, using conjugate gradient as the minimization algorithm. The resulting MM conformers were subsequently ranked by: i) conformational energy (ΔE from the global energy minimum < 5 kcal/mol), ii) interatomic distances between the charged nitrogen atoms, and iii) conformation of porphyrin ring. In order to properly analyze the electronic properties, the conformers, obtained from molecular dynamics and mechanics calculations, were subjected to a full geometry optimization through semiempirical calculations, using the quantum mechanical method PM7 in the Mopac2012 package (Stewart Computational Chemistry: Colorado Springs, CO, USA; http://OpenMOPAC.net (2012). The EF (Eigenvector Following routine) algorithm of geometry optimization was used, with a GNORM value set to 0.01. To reach a full geometry optimization, the criterion for terminating all optimizations was increased by a factor of 100, using the keyword PRECISE.
The resulting PM7 conformers were subsequently ranked as reported above for MM conformers. The global minimum conformer of Tris-T4 was selected for the dynamic docking studies in complex with human 20S.

Docking studies on human 20S proteasome. Docking calculations were performed by using our previously developed atomic models of human 20S in the closed and open conformational states. It has to be underlined that, since we used as template for human 20S in the open state the structure determined by Chen et al. by cryo-electron microscopy (cryoEM), then, our atomic model of human 20S in the open state is composed by just one “half” (one -ring and one -ring) of the entire 20S structure.

The four starting structures to be used in docking studies were generated by positioning: i) one Tris-T4 molecule at α5-α6 groove (closed state); ii) one Tris-T4 at α4-α5 (open state); iii) three Tris-T4 molecules bound at α1-α2, α4-α5 and α5-α6 grooves (closed and open states). The starting complexes were then subjected to dynamic docking studies (Affinity, SA_Docking; Insight2005, Accelrys, San Diego). In particular, a docking methodology, which considers all the systems flexible (i.e., ligand and protein), was used. Flexible docking was achieved using the Affinity module in the Insight 2005 suite, setting the SA_Docking procedure and using the Cell Multipole method for non-bonded interactions.

The docking protocol included a Monte Carlo based conformational search of the ligand within the obtained homology models of human 20S proteasome (i.e., closed and open conformation) for the random generation of a maximum of 20 acceptable complexes. During the first step, in the starting structures, the ligand was moved by a random combination of translation, rotation, and torsional changes to sample both the conformational space of the ligand and its orientation with respect to the binding domain area (MxRChange = 3 Å; MxAngChange = 180°). The binding domain area was defined as a subset including all residues of human 20S proteasome. Thus, all proteasome atoms were left free to move during the entire course of docking calculations, whereas, in order to avoid unrealistic results during the subsequent SA calculations, a tethering restraint was applied on the SCRs of the protein (defined below).
During the Monte Carlo/Metropolis docking step, van der Waals (vdW) and Coulombic terms were scaled to a factor of 0.1 to avoid very severe divergences in the vdW and Coulombic energies. If the energy of a complex structure resulting from random moves of the ligand was higher by the energy tolerance parameter than the energy of the last accepted structure, it was not accepted for minimization. To ensure a wide variance of the input structures to be successively minimized, an energy tolerance value of 10^6 kcal/mol from the previous structure was used. After the energy minimization step (conjugate gradient; 2500 iterations; $\varepsilon = 1$), the energy test, with an energy range of 50 kcal/mol, and a structure similarity check (rms tolerance = 0.3 kcal/Å) was applied to select the 20 acceptable structures. Each subsequent structure was generated from the last accepted structure. Following this procedure, the resulting docked structures were ranked by their conformational energy and were analyzed considering the non-bonded interaction energies between the ligand and the enzyme (vdW and electrostatic energy contribution; Group Based method9; CUT_OFF = 100; $\varepsilon = 2*r$; Discover_3 Module of Insight2005).

The Monte Carlo docked complexes were then subjected to molecular dynamics simulations at flexible temperatures (Simulated Annealing, SA) to enhance the fixing of the ligand into the binding site and to explore possible ligand-induced large-scale conformational changes of the protein. In particular, the resulting docked complexes were subjected also to a molecular dynamics SA protocol using the Cell_Multipole method for non-bonded interactions and the dielectric constant of the water ($\varepsilon = 80*r$). A tethering restraint was applied on the SCRs of the complex. The set of structural restraints applied was the same as for previous docking calculations. The protocol included 5 ps of a dynamic run divided in 50 stages (100 fs each) during which the temperature of the system was linearly decreased from 500 to 300 K (Verlet velocity integrator; time step = 1.0 fs). In simulated annealing, the temperature is altered in time increments from an initial temperature to a final temperature. The temperature is changed by adjusting the kinetic energy of the structure (by rescaling the velocities of the atoms). Molecular dynamics calculations were performed using a constant temperature and constant volume (NVT) statistical ensemble, and the direct velocity scaling as temperature control method (temp
window = 10 K). In the first stage, initial velocities were randomly generated from the Boltzmann distribution, according to the desired temperature, while during the subsequent stages initial velocities were generated from dynamics restart data. The temperature of 500 K was applied with the aim of surmounting torsional barriers, thus allowing an unconstrained rearrangement of the “ligand” and the “protein” binding site (initial vdW and Coulombic scale factors = 0.1). Successively temperature was linearly reduced to 300 K in 5 ps, and, concurrently, the vdW and Coulombic scale factors have been similarly increased from their initial values (0.1) to their final values (1.0). A final round of 10^5 minimization steps (ε = 80*r) followed the last dynamics steps, and the minimized structures were saved in a trajectory file. The ligand/enzyme complexes thus obtained were ranked by their conformational energy and analyzed considering the non-bonded interaction energies between the ligand and the enzyme (vdW and electrostatic energy contribution; Group Based method; CUT_OFF = 100; ε = 2*r; Discover_3 Module of Insight2005). The complex with the best compromise between the non-bonded interaction energies obtained by Monte Carlo and SA calculations was selected as the structure representing the most probable binding mode. In order to allow the whole relaxation of the protein, the selected annealed complexes were then subjected to MM energy minimization without restraints (Steepest Descent algorithm; ε = 80*r) until the maximum RMS derivative was less than 0.5 kcal/Å (Module Discover; Insight 2005). The protein structural quality in the resulting complexes was then checked using Molprobity structure evaluator software10 and compared to that of the reference PDB structure.

The SCRs of the human 20S proteasome were identified using the Structure Prediction and Sequence Analysis server PredictProtein (http://www.predictprotein.org/) and are reported in Table S15. Within the identified SCRs, the following restraints were used: the distance between backbone hydrogen bond donors and acceptors in the alpha-helices was restrained within 2.5 Å. On the other hand, the φ and ψ torsional angles of the beta-sheets were restrained to -119° and +113°, or -139° and +135°, respectively, according to the presence of a parallel or anti-parallel structure. In particular, according to the reliability index values obtained from the secondary structure prediction, the following set
of force constant values were applied (quadratic form): i) 1 kcal/mol/Å² (maximum force: 10 kcal/mol/Å²) for reliability index values from 0 to 3, ii) 10 kcal/mol/Å² (maximum force: 100 kcal/mol/Å²) for reliability index values from 4 to 6, and iii) 100 kcal/mol/Å² (maximum force: 1000 kcal/mol/Å²) for reliability index values from 7 to 9.

Structural investigation of docked complexes. In order to evaluate proteasome structure atomic position variations upon TrisT4 binding Root Mean Square Deviations (RMSD) were calculated on Cα atoms by comparing each structure to a reference structure: both the closed and the open conformation were used as reference structure. To this end proteasome structures from all docking calculations including starting conformations were collected and analyzed (39 frames; see Tables 3-6SI). RMSDs were computed taking into account both α and β rings and performed using GROMOS (GROningen MOlecular Simulation computer program package; www.gromos.net).

Structural analyses of the docked complexes were performed using Macromolecules and Receptor-Ligand Interaction tools of Discovery Studio 2017 (Dassault Systèmes BIOVIA, San Diego, 2017). Sequence alignments of yeast and human 20S proteasome subunits were performed using PROMALS3D server (http://prodata.swmed.edu/promals3d/promals3d.php). In order to identified the negatively charged ionic residues of h20S involved in the interaction with the RPs and the hydrophobic residues of h20S involved in the interaction with the C-terminal tails of RPs, the previous structural analysis was implemented using the same procedure on the new experimentally determined structures of h20S proteasome in complex with the regulatory particle 19S (PDB ID: 6MSB, 6MSD, 6MSE, 6MSG, 6MSH, 6MSJ and 6MSK) and PA200 (PDB ID: 6WKY and 6REY). These structures were downloaded from the Protein Data Bank (PDB; http://www.rcsb.org/pdb/) and were analyzed using Biopolymer and Homology modules of Insight 2005 (Accelrys, San Diego).

CAVER was used to identify tunnels considered as void pathways leading from a cavity buried in protein core to the bulk solvent. Tunnels were generated selecting as starting point the center of gravity of all residues within 5 Å from the β5-Thr1 (i.e, R19, A20, V31, K33,
A46, G47, G48, A49, C52) (max distance = 3.0 Å and desired radius = 5.0 Å). Tunnels were generated using the following parameters: 0.9 Å for probe radius (minimum radius of the tunnel), 2.0 Å for shell depth (maximal depth of a surface region) and 3.0 Å for shell radius (radius of the shell probe used to define the bulk solvent). Tunnel clustering was performed by the average-link hierarchical algorithm selecting 2.0 Å for the calculation of pairwise tunnel distances (i.e. dissimilarities) as the cutoff able to capture all the representative directions of the identifies tunnels.

Solvent accessible surface area (SASA) calculations were performed using Discovery Studio 2017 (Dassault Systèmes BIOVIA, San Diego, 2017). The SASA of each Tris-T4 molecule bound to h20S in the selected docked complexes (starting either from the open or the closed protein conformation) was calculated and compared to the SASA of the unbound molecule. The rate of SASA decrease was calculated by using Microsoft Excel.

Table S1. Calculated pka values and ionic forms of **Tris-T4** (ACD/pKa GALAS; ACD/Percepta software).

Compound	pka1	pka2	Ionic forms at pH 7.2 (%)
Tris-T4	6.6±1.1	11.3±1.2	Tetra-cationic (21)
			Tri-cationic (79)
Table S2. Identified clusters of three negatively charged amino acids present on the \(\alpha \)-ring surface of human 20S proteasome in closed and open conformation able to interact with Tris-T4 and related inter-residue distances (C\(\alpha \)).

Groove	Closed state	Open State		
	\(d1 (\text{Å}) \)	\(d2(\text{Å}) \)	\(d1 (\text{Å}) \)	\(D2(\text{Å}) \)
\(\alpha_1-\alpha_2 \)	14.07	10.41	13.23	11.72
\(\alpha_4-\alpha_5 \)	E19(\(\alpha_1 \))-E26(\(\alpha_1 \))	E26(\(\alpha_1 \))-D155(\(\alpha_1 \))	E19(\(\alpha_1 \))-E26(\(\alpha_1 \))	E26(\(\alpha_1 \))-D155(\(\alpha_1 \))
\((I)\)	18.64	6.24	19.47	7.16
\((II)\)	D13(\(\alpha_4 \))-E24(\(\alpha_4 \))	D13(\(\alpha_4 \))-E29(\(\alpha_5 \))	D13(\(\alpha_4 \))-E24(\(\alpha_4 \))	D13(\(\alpha_4 \))-E29(\(\alpha_5 \))
\(\alpha_4-\alpha_5 \)	13.21	6.24	12.74	7.16
\((I)\)	E20(\(\alpha_4 \))-D13(\(\alpha_4 \))	D13(\(\alpha_4 \))-E29(\(\alpha_5 \))	E20(\(\alpha_4 \))-D13(\(\alpha_4 \))	D13(\(\alpha_4 \))-E29(\(\alpha_5 \))
\(\alpha_5-\alpha_6 \)	19.54	6.10	-	-
\((I)\)	E29(\(\alpha_5 \))-E18(\(\alpha_5 \))	E18(\(\alpha_5 \))-E27(\(\alpha_6 \))	-	-
\(\alpha_5-\alpha_6 \)	11.48	6.10	14.52	7.86
\((II)\)	E25(\(\alpha_5 \))-E18(\(\alpha_5 \))	E18(\(\alpha_5 \))-E27(\(\alpha_6 \))	E25(\(\alpha_5 \))-E18(\(\alpha_5 \))	E18(\(\alpha_5 \))-E27(\(\alpha_6 \))
Table S3. Summary of Molprobity results obtained for the experimentally determined structures of human 20S proteasome, their full-length atomic models and the docked porphyrin/20S complexes.

Structure	Residues favored regions	Residues allowed regions	Residues outliers	Poor rotamers
X-ray (4R3O) (Closed State)	94.9%	4.3%	0.8%	4.3%
Cryo-EM (5T0J) (Open State)	92.1%	7.7%	0.2%	0.9%
Molecular model (Closed State)	94.8%	4.3%	0.9%	4.1%
Molecular model (Open State)	91.4%	8.2%	0.4%	1.3%
Tris-T4 Cplx_1				
(3 molecules; starting: closed state)	78.9%	18.1%	3.0%	2.1%
Tris-T4 Cplx_1				
(3 molecules; starting: open state)	80.3%	16.6%	3.1%	2.1%
Tris-T4 Cplx_5				
(1 molecule; starting: closed state)	79.7%	17.4%	2.9%	2.1%
Tris-T4 Cplx_4				
(1 molecule; starting: open state)	77.8%	18.8%	3.4%	1.7%
Table S4. Nonbonded interaction energies (kcal/mol) of the 20S-Tris-T4 complexes obtained by Monte Carlo and SA calculations using as starting binding site the α5-α6 groove of 20S in the closed conformation.

Cplx	Nonbonded interaction energies (kcal/mol)					
	Monte Carlo Simulation	Simulated Annealing Simulation				
	vdW	Coulomb	Total	vdW	Coulomb	Total
1	-25.469	-13.735	-39.204	-41.669	-7.209	-48.877
2	-27.596	-13.286	-40.883	-36.189	-7.482	-43.672
3	-22.867	-14.792	-37.659	-36.410	-16.741	-53.151
4	-17.667	-18.392	-36.059	-35.085	-15.979	-51.064
5^a	-23.333	-14.690	-38.023	-51.398	-4.093	-55.491
6	-0.527	-2.558	-3.085	-33.174	0.962	-32.212
7	-8.953	-7.614	-16.567	-51.291	-6.460	-57.751
8	-24.361	-14.594	-38.955	-47.097	-2.378	-49.475
9	-33.095	-6.576	-39.671	-56.979	-7.744	-64.723
10	-25.005	-10.483	-35.487	-43.958	-0.951	-44.909
11	-0.525	-2.739	-3.264	-43.364	9.964	-33.399

^aSelected complexes
Table S5. Nonbonded interaction energies (kcal/mol) of the 20S-Tris-T4 complexes obtained by Monte Carlo and SA calculations using as starting binding site the α4-α5 groove of 20S in the open conformation.

Cplx	Nonbonded interaction energies (kcal/mol)						
		Monte Carlo Simulation	Simulated Annealing Simulation				
		vDW	Coulomb	Total	vDW	Coulomb	Total
1		-18.783	-8.860	-27.643	-53.566	2.540	-51.025
2		-18.005	-8.961	-26.965	-57.454	-0.996	-58.450
3		-16.783	-11.143	-27.928	-42.356	-9.547	-51.903
4^a		-16.636	-10.984	-27.620	-51.230	-9.600	-60.831
5		-3.187	-7.140	-10.327	-62.339	-6.105	-68.444
6		2.679	-7.993	-5.315	-27.843	-4.341	-32.184
7		-5.179	-3.223	-8.401	-56.803	-2.897	-59.700
8		-5.508	-5.007	-10.514	-46.283	-4.819	-51.103
9		-2.834	-3.978	-6.812	-41.699	1.654	-40.045

^aSelected complex
Table S6. Nonbonded interaction energies (kcal/mol) of the 20S in complex with three molecules of Tris-T4 obtained by Monte Carlo and SA calculations using as starting binding sites the α1-α2, α4-α5 and α5-α6 grooves of 20S in the closed conformation.

Cplx	Nonbonded interaction energies (kcal/mol)				Monte Carlo Simulation			Simulated Annealing Simulation		
		vdW	Coulomb	Total	vdW	Coulomb	Total			
1³		-98.800	-41.517	-140.317	-171.108	5.795	-165.313			
2		-22.935	-18.057	-40.992	-160.303	3.802	-156.501			
3		-78.377	-35.529	-113.907	-157.977	10.189	-147.788			
4		-60.500	-34.477	-94.977	-151.422	-1.875	-153.297			
5		-55.782	-40.735	-96.517	-83.516	-15.652	-99.168			
6		-77.702	-15.237	-92.938	-120.808	13.206	-106.874			
7		-78.997	-17.388	-96.385	-143.897	12.652	-131.245			
8		-81.693	-28.753	-110.446	-155.235	-7.881	-163.116			
9		-66.203	-17.685	-83.888	-161.086	4.435	-156.651			

³Selected complex
Table S7. Nonbonded interaction energies (kcal/mol) of the 20S in complex with three molecules of Tris-T4 obtained by Monte Carlo and SA calculations using as starting binding sites the α1-α2, α4-α5 and α5-α6 grooves of 20S in the open conformation.

Cplx	Nonbonded interaction energies (kcal/mol)					
	Monte Carlo Simulation	Simulated Annealing Simulation				
	vdW	Coulomb	Total	vdW	Coulomb	Total
1^a	-66.387	-18.887	-85.274	-144.197	3.380	-140.817
2	-4.039	7.431	3.392	-116.600	-5.287	-121.887
3	-5.680	-0.063	-5.743	-143.156	7.652	-135.504
4	-9.199	-3.893	-13.093	-131.408	22.359	-109.049
5	-1.246	-5.385	-6.631	-40.043	-11.613	-51.656
6	-3.016	4.501	1.484	-89.168	12.507	-76.661
7	-15.019	-3.025	-18.044	-133.642	-10.110	-143.752
8	-2.448	3.231	0.783	-145.664	-12.591	-158.255

^aSelected complex
Table S8. Conformational energies (ΔE from the Global Minimum Conformer) of **Tris-T4** docked on human 20S proteasome.

Complex	ΔE_{GM} (kcal/mol)		
	TrisT4_1	TrisT4_2	TrisT4_3
20S Closed /1 TrisT4	5.54 (α_5-α_6)	-	-
20S Open /1 TrisT4	-	3.70 (α_4-α_5)	-
20S Closed /3 TrisT4	4.10 (α_5-α_6)	3.12 (α_4-α_5)	9.48 (α_1-α_2)
20S Open /3 TrisT4	7.73 (α_5-α_6)	8.35 (α_4-α_5)	10.57 (α_1-α_2)
Table S9. Ligand-residue non-bond interaction energies (kcal/mol) of the Tris-T4/h20S complex obtained by Monte Carlo and SA calculations using as starting binding site the α5-α6 groove of 20S in the closed conformation. The residues involved in the interaction with RPs are noted and the RPs are reported. The corresponding wt y20S residues (PROMALS3D alignment; all conserved in the α3ΔN mutant) are also listed.

h20S amino acids	y20S amino acids	Subunit	Non-bond interaction Energy (kcal/mol)	RPs^b
R20^c	R20	α5	-0.545	19S (E_{A1}-2, E_{Eli}-C2, E_{D1}-2) and PA200
V24^c	V24	α5	-1.110	19S (E_{A1}-2, E_{B1}, E_{Eli}-C1 and E_{D1}-2) and PA200
E25^{c,d}	E25	α5	-2.564	19S (E_{A1}-2, E_{B1}, S_{C1}/E_{C1}-2 and S_{D1}/E_{D1}-2), PA28 and PA200
I28^c	L28	α5	-2.889	19S (E_{C1}-2 and E_{D1}-2) and PA200
E29^d	E29	α5	-7.587	19S (E_{A1}-2)
A30	A30	α5	-0.500	19S (E_{B1})
D157^c	E158	α5	-1.179	19S (E_{B1}) and PA200
A169	A170	α5	-1.766	19S (E_{C1}-2 and E_{D1}-2) and PA200
I170	I171	α5	-0.717	19S (E_{A1}-2)
G171	G172	α5	-0.138	19S (E_{A1}-2)
S174	S175	α5	-1.259	19S (E_{A1}-2)
E175	E176	α5	-10.131	19S (E_{A1}-2)
G176	G177	α5	-0.637	19S (E_{A1}-2)
Q178	Q179	α5	-3.957	19S (E_{A1}-2)
S179	A180	α5	-3.222	19S (E_{A1}-2)
Q182	L183	α5	-3.400	19S (E_{A1}-2)
E183	N184	α5	-6.065	19S (E_{A1}-2, E_{B1}, E_{C1}-2, E_{D1}-2) and PA200
Q53^c	A53	α6	-2.086	19S (E_{A1}-2, E_{B1}, E_{C1}-2, E_{D1}-2) and PA200
S54	D54	α6	-2.117	19S (E_{B1}, E_{C1}-2, E_{D1}-2) and PA200
E55	E55	α6	-3.353	19S (E_{B1}, E_{C1}-2, E_{D1}-2) and PA200
L56	L56	α6	-0.399	19S (E_{B1}, E_{C1}-2, E_{D1}-2) and PA200
Q203	S205	α6	-1.083	19S (E_{B1}, E_{C1}-2, E_{D1}-2) and PA200

^a Both the wild-type and the α3ΔN mutant; the amino acids not conserved between human and yeast 20S proteasome (alignment performed using PROMALS3D server) are evidenced in bold. ^b 19S functional states involved in the reported interaction are specified in brackets. ^cAmino acids of the C-terminal tail of Rpt5 (aa426-aa439; α5/α6) (19S) and PA200 (aa1830-aa1843) having at least one atom within a 4 Å radius from any given h20S residue. ^d Negatively charged residues involved in ionic interaction with RPs (i.e., PA28, PA200 and 19S).
Table S10. Ligand-residue non-bond interaction energies (kcal/mol) of the TrisT4-20S complex obtained by Monte Carlo and SA calculations using as starting binding site the α4-α5 groove of 20S in the open conformation; The residues involved in the interaction with RPs are noted and the RPs are reported. The corresponding wt y20S residues (PROMALS3D alignment; all conserved in the α3ΔN mutant) are also listed.

h20S amino acids	y20S amino acids^a	Subunit	Non-bond interaction Energy (kcal/mol)	RPs^b
D13^{c,d}	D14	α4	-6.607	19S (E_{D1}) and PA28
G14^c	G15	α4	-0.917	
H15^c	H16	α4	-0.481	19S (E_{D1})
E20^{c,d}	E21	α4	-7.593	19S (E_{D1}) and PA28
Q23^c	L24	α4	-2.349	19S (E_{D1})
E24^{c,d}	E25	α4	-7.463	19S (S_A/E_{A1}, S_B/E_B, E_{D1})
T147	T150	α4	-0.164	
D148^c	E151	α4	-5.178	19S (E_{D2})
P149	P152	α4	-0.458	
S150^c	S153	α4	-0.878	19S (E_{D1})
G151	G154	α4	-0.486	
T152^c	I155	α4	-2.562	19S (E_{D1})
G162	G165	α4	-0.241	
G164	N167	α4	-0.451	
E29^d	E29	α5	-2.363	19S (S_A/E_{A1})
I31	I31	α5	-0.715	
K32	K32	α5	-2.271	
L33^c	L33	α5	-5.769	19S (E_{D1})
G34^c	G34	α5	-2.942	19S (E_{D1})
S35^c	S35	α5	-0.929	19S (E_{D1})
T36	T36	α5	-0.630	
E51^d	E51	α5	-4.263	19S (S_A, S_B)
R53^c	R53	α5	-0.153	19S (E_{D1})
G80^c	G80	α5	-0.148	19S (E_{D1})
L81^c	L81	α5	-0.088	19S (E_{D1})
E207^d	E209	α5	-5.963	19S (S_A/E_{A1}, S_B/E_B and S_C/E_{C1})

^aBoth the wild-type and the α3ΔN mutant; the amino acids not conserved between human and yeast 20S proteasome (alignment performed using PROMALS3D server) are evidenced in bold.
^b19S functional states involved in the reported interaction are specified in brackets.
^cAmino acids of the C-terminal tail of Rpt1 (aa421-aa433; α4/α5) (19S) having at least one atom within a 4 Å radius from any given h20S residue.
^dNegatively charged residues involved in ionic interaction with RPs (i.e., PA28, PA200 and 19S).
Table S11. Ligand-residue non-bond interaction energies (kcal/mol) of the 20S in complex with three molecules of Tris-T4 obtained by Monte Carlo and SA calculations using as starting binding sites the α5-α6, α4-α5 and α1-α2 grooves of 20S in the closed conformation. The residues involved in the interaction with RPs are noted and the RPs are reported. The corresponding wt y20S residues (PROMALS3D alignment; all conserved in the α3ΔN mutant) are also listed.

Molecule	h20S amino acids	y20S amino acids³	Subunit	Non-bond interaction Energy (kcal/mol)	RPs²
TrisT4_1					
(α5/α6)					
F15⁴	F15	α5		-0.160	19S
E18⁴	E18	α5		-1.182	19S
G19⁴	G19	α5		-0.556	19S
L21⁴	L21	α5		-0.393	19S
E25⁴,⁵	E25	α5		-2.568	19S
E29⁴	E29	α5		-4.414	19S
D157⁴	E158	α5		-6.356	19S
P158	P159	α5		-0.107	19S
S159⁶	S160	α5		-1.347	19S
G160	G161	α5		-0.316	19S
T161⁴	T162	α5		-1.688	19S
F162	F163	α5		-0.545	19S
V163	Y164	α5		-1.806	19S
A28⁴	A28	α6		-0.989	19S
Q31⁴	Q31	α6		-3.634	19S
G32⁴	G32	α6		-2.111	19S
S33⁴	S33	α6		-0.392	19S
A52⁴	N52	α6		-0.448	19S
Q53⁴	A53	α6		-2.084	19S
G76⁴	G76	α6		-0.716	19S
L77⁴	L77	α6		-1.810	19S
T78⁴	A78	α6		-0.488	19S
A163⁴	A63	α6		-1.824	19S
E197	Q199	α6		-1.237	19S
T198	S200	α6		-1.416	19S
L199	L201	α6		-1.518	19S
P200	R202	α6		-0.602	19S
-------	-------	-------	-------	-------	
Q203	S205	α6	-2.517		
D204⁻		α6	-8.103	PA200	
L205	L206	α6	-0.448		

TrisT4_2

(α4/α5)

Q146	Q149	α4	-0.377	
D148	E151	α4	-2.164	
T152⁻	I155	α4	-0.524	19S (E01-2)
H154	S157	α4	-2.177	
W156⁻	W159	α4	-1.409	19S (E01-2)
A158	A161	α4	-0.497	
N159	Q162	α4	-1.120	
A160	T163	α4	-0.754	
G164	N167	α4	-0.641	
A165⁻	S168	α4	-1.294	19S (E02)
E170⁻	E173	α4	-3.668	PA200
E173	E176	α4	-3.453	
A30	A30	α5	-0.322	
I31	I31	α5	-0.764	
L33⁻	L33	α5	-4.628	19S (E01-2)
G34⁻	G34	α5	-1.624	19S (E01-2)
S35⁻	S35	α5	-0.416	19S (E01-2)
R53⁻	R53	α5	-0.605	19S (E01-2)
T55⁻	T55	α5	-0.468	19S (E01-2)
G80⁻	G80	α5	-0.421	19S (E01-2)
L81⁻	L81	α5	-0.754	19S (E01-2)
I82⁻	T82	α5	-1.766	19S (E01-2)
G171	G173	α5	-0.175	
S172	S174	α5	-2.659	
A173	G175	α5	-1.043	
S174	S176	α5	-0.127	
Q204	Q206	α5	-3.181	
V205	V207	α5	-3.203	
M206	M208	α5	-2.220	
E207⁻	E209	α5	-5.295	19S (S/A/A1-2; S/o/E and S/c/E1-2)
E208	E210	α5	-2.889	

TrisT4_3

(α1/α2)

G20	G23	α1	-0.647	
L22⁻	L25	α1	-1.152	19S (E/A1-2; E/a/E1-2; E1-2)
V25⁻	V28	α1	-1.116	19S (E/A1-2; E/a/E1-2; E1-2)
E26⁻⁻	E29	α1	-7.734	19S (E/A1-2; E/a/E1-2; E1-2) and PA28
F29⁻	F32	α1	-8.420	19S (E/A1-2; E/a/E1-2; E1-2)
I32	T35	α1	-0.205	
N33	N36	α1	-2.428	
Q34	Q37	α1	-2.107	
S39	S42	α1	-0.368	
V40	L43	α1	-0.084	
D155⁻	D158	α1	-5.244	19S (E/A1-2)
G158	G161	α1	-0.189	
Y159⁻	Y162	α1	-7.923	19S (E/A1-2; E/a/E1-2; E1-2)
Y160	Y163	α1	-2.433	
C161⁻	V164	α1	-1.978	19S (E1-2)
G162	G165	α1	-0.192	
F163	Y166	α1	-3.024	
Both the wild-type and the α3ΔN mutant; the amino acids not conserved between human and yeast 20S proteasome (alignment performed using PROMALS3D server) are evidenced in bold.

b 19S functional states involved in the reported interaction are specified in brackets.

c Amino acids of the C-terminal tail of Rpt5 (aa426-aa439; α5/α6), Rpt1 (aa421-433; α4/α5), Rpt3 (aa407-418; α1/α2) (19S) and PA200 (aa1830-aa1843) having at least one atom within a 4 Å radius from any given h20S residue.

d Negatively charged residues involved in ionic interaction with RPs (i.e., PA28, PA200 and 19S).
Table S12. Ligand-residue non-bond interaction energies (kcal/mol) of the 20S in complex with three molecules of **Tris-T4** obtained by Monte Carlo and SA calculations using as starting binding sites the α5-α6, α4-α5 and α1-α2 grooves of 20S in the open conformation. The residues involved in the interaction with RPs are noted and the RPs are reported. The corresponding *wt y*20S residues (PROMALS3D alignment; all conserved in the α3ΔN mutant) are also listed.

Molecule	h20S amino acids	y20S amino acids	Subunit	Non-bond interaction Energy (kcal/mol)	RPs b
TrisT4_1 (α5/α6)	F15^c	F15	α5	-0.737	19S (E_{c1})
	F17	P17	α5	-0.669	19S (S_AEA1-2, S_BE6, S_C; S_DED1-2), PA28 and PA200
	E18^{cd}	E18	α5	-1.428	19S (E_{c1}-E_{d1}-2) and PA200
	G19^c	G19	α5	-1.401	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	R20^c	R20	α5	-0.060	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	L21^c	L21	α5	-2.384	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	V24^c	V24	α5	-3.995	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	E25^{cd}	E25	α5	-5.458	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	Y26	Y26	α5	-0.542	19S (E_{c1}-E_{d1}-2) and PA200
	I28^c	L28	α5	-1.409	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	E29^{cd}	E29	α5	-5.811	19S (S_AEA1-2)
	D157^c	E159	α5	-2.870	19S (E_a) and PA200
	S159^c	S161	α5	-0.028	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	A169	A171	α5	-0.344	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	I170	I172	α5	-0.170	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	A28^c	A28	α6	-1.582	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	V29	I29	α6	-0.526	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	Q31^c	Q31	α6	-3.956	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	G32^c	G32	α6	-2.158	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	S33^c	S33	α6	-0.340	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	A34^c	V34	α6	-0.107	19S (E_{c1}-E_{d1}-2)
	A52^c	N52	α6	-3.273	19S (E_{c1}-E_{d1}-2)
	Q53^c	A53	α6	-7.749	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	S54	D54	α6	-1.288	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	E55	E55	α6	-7.095	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	L56	L56	α6	-1.559	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	A57	S57	α6	-0.286	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
	G76^c	G76	α6	-0.323	19S (E_{a1}-E_b-E_{c1}-E_{d1}-2) and PA200
L77	L77	α6	19S (E1A-2, E8, E1C-2, E1D-2) and PA200		
-----	-----	----	----------------------------------		
L161	L161	α6	-0.725	19S (E1A-2, E8, E1C-2, E1D-2) and PA200	
L205	L206	α6	-0.419	19S (E1A-2, E8, E1C-2, E1D-2) and PA200	
TrisT4_2 (α4/α5)				19S (E1D-2) and PA28	
D13	D14	α4	-6.862	19S (E1D-2) and PA28	
G14	G15	α4	-1.351	19S (E1D-2) and PA28	
H15	H16	α4	-4.261	19S (E1D-2) and PA28	
L16	L17	α4	-0.813	19S (E1D-2) and PA28	
F17	F18	α4	-2.093	19S (E1D-2) and PA28	
V19	V20	α4	-0.309	19S (E1D-2) and PA28	
E20	E21	α4	-11.329	19S (E1D-2) and PA28	
Y21	Y22	α4	-5.754	19S (E1D-2) and PA28	
Q23	L24	α4	-2.031	19S (E1D-2) and PA28	
E24	E25	α4	-2.093	19S (E1D-2) and PA28	
Q146	Q149	α4	-5.754	19S (E1D-2) and PA28	

				19S (E1D-2) and PA28
A160	T163	α4	-0.267	19S (E1D-2) and PA28
S35	S35	α5	-1.202	19S (E1D-2) and PA28
T36	T36	α5	-0.817	19S (E1D-2) and PA28
V50	V50	α5	-0.228	19S (E1D-2) and PA28
E51	E51	α5	-2.093	19S (E1D-2) and PA28
S79	S79	α5	-0.860	19S (E1D-2) and PA28
G80	G80	α5	-0.144	19S (E1D-2) and PA28
I82	T82	α5	-0.079	19S (E1D-2) and PA28

TrisT4_3 (α1/α2)				19S (E1C-1)
C161	V164	α1	-0.123	19S (E1C-1)
F163	Y166	α1	-1.500	19S (E1C-1)
A165	A168	α1	-2.026	19S (E1C-1)
T166	T169	α1	-1.676	19S (E1C-1)
A167	A170	α1	-2.756	19S (E1C-1)
A168	T171	α1	-0.628	19S (E1C-1)
V170	P173	α1	-1.987	19S (E1C-1)
Q172	Q175	α1	-1.660	19S (E1C-1)
T173	Q176	α1	-2.202	19S (E1C-1)
T176	T179	α1	-1.643	19S (E1C-1)
E180	E183	α1	-3.787	19S (E1C-1)
Q52	S52	α2	-2.422	19S (E1C-1)
S54	S54	α2	-2.747	19S (E1C-1)
E56	L56	α2	-0.999	19S (E1C-1)
Y57	M58	α2	-2.438	19S (E1C-1)
D58	S59	α2	-0.888	19S (E1C-1)

Both the wild-type and the α3ΔN mutant; the amino acids not conserved between human and yeast 20S proteasome (alignment performed using PROMALS3D server) are evidenced in bold. 19S functional states involved in the reported interaction are specified in brackets. Amino acids of the C-terminal tail of Rpt5 (aa426-aa439; α5/α6), Rpt1 (aa421-433; α4/α5), of Rpt3 (aa407-418; α1/α2) (19S) and PA200 (aa1830-aa1843) having at least one atom within a 4 Å radius from any given h20S residue. Negatively charged residues involved in ionic interaction with RPs (i.e., PA28, PA200 and 19S).
Table S13. Calculated rate of solvent accessible surface area (SASA) decrease for the phenyl and N-methyl-pyridyl hydrogen atoms of Tris-T4 bound to h20S in the selected docking solutions.

	SASA decrease (%)						
		Starting h20S conformation:		Starting h20S conformation:			
		closed		open			
		α1-α2	α4-α5	α5-α6	α1-α2	α4-α5	α5-α6
para-Phe		100	0	100	100	100	
meta-Phe		100	48	100	100	81	95
ortho-Phe		75	47	43	50	43	61
meta N-Me-Pyr		77	67	42	20	40	64
ortho N-Me-Pyr		80	50	47	31	47	47
Table S14. Salt bridges and charge-assisted hydrogen bonds involving the N-terminals, α_5-loop, and α_6-loop present in the experimentally determined structures of yeast 20S proteasome, wt closed (PDB ID: 1RYP), wt open (PDB ID: 1Z7Q) and the $\alpha_3\Delta N$ mutant (PDB ID: 1G0U).

Structure	Interactions
yeast 20S closed	E125α_5-R4α_3
	E125α_5-Y123α_6
	S128 α_5-Y123 α_6
	R122 α_5-E130α_5
	R136α_5-D84α_5
yeast 20S open	R132 α_5-E130α_5
	R136α_5-D84α_5
	S128 α_5-Y123 α_6
$\alpha_3\Delta N$ mutant 20S	R130α_5-D84α_5
Table S15. Identified structurally conserved regions (SCRs) of the human 20S proteasome using the Structure Prediction and Sequence Analysis server PredictProtein (http://www.predictprotein.org/).

Subunits	Amino acid numbering	Secondary structure
α1	13-16	β-sheet
	23-33	α-helix
	38-43	β-sheet
	48-53	β-sheet
	68-72	β-sheet
	76-80	β-sheet
	85-104	α-helix
	111-128	α-helix
	135-143	β-sheet
	150-154	β-sheet
	160-168	β-sheet
	172-183	α-helix
	191-207	α-helix
	215-222	β-sheet
	226-229	β-sheet
	232-243	α-helix
α2	9-13	β-sheet
	20-30	α-helix
	34-39	β-sheet
	44-49	β-sheet
	66-68	β-sheet
	72-76	β-sheet
	81-100	α-helix
	107-124	α-helix
	131-139	β-sheet
	145-149	β-sheet
	155-163	β-sheet
	167-178	α-helix
	184-198	α-helix
	208-214	β-sheet
	219-220	β-sheet
	223-231	α-helix
α3	10-12	β-sheet
	18-29	α-helix
	33-38	β-sheet
	43-48	β-sheet
α4	66-68	β-sheet
----------	-------	---------
	72-76	β-sheet
	80-100	α-helix
	107-124	α-helix
	131-139	β-sheet
	146-150	β-sheet
	157-164	β-sheet
	168-178	α-helix
	186-200	α-helix
	211-217	β-sheet
	224-227	β-sheet
	230-248	α-helix

α4	6-10	β-sheet
	17-27	α-helix
	31-36	β-sheet
	41-46	β-sheet
	62-65	β-sheet
	69-73	β-sheet
	78-97	α-helix
	104-121	α-helix
	128-136	β-sheet
	143-147	β-sheet
	154-161	β-sheet
	165-176	α-helix
	183-198	α-helix
	206-212	β-sheet
	217-219	β-sheet
	222-243	α-helix

α5	11-15	β-sheet
	22-32	α-helix
	36-41	β-sheet
	46-51	β-sheet
	66-70	β-sheet
	74-78	β-sheet
	83-102	α-helix
	109-120	α-helix
	138-146	β-sheet
	152-156	β-sheet
	162-170	β-sheet
	174-185	α-helix
	191-206	α-helix
	215-221	β-sheet
	226-228	β-sheet
	231-240	α-helix
Region	Type	
--------	--------	
α6	10-13	β-sheet
	19-30	α-helix
	35-39	β-sheet
	45-49	β-sheet
	62-66	β-sheet
	70-74	β-sheet
	79-98	α-helix
	105-122	α-helix
	129-137	β-sheet
	143-147	β-sheet
	154-161	β-sheet
	165-176	α-helix
	184-199	α-helix
	210-216	β-sheet
	221-223	β-sheet
	226-236	α-helix
α7	13-15	β-sheet
	22-32	α-helix
	36-41	β-sheet
	46-51	β-sheet
	67-70	β-sheet
	74-78	β-sheet
	83-102	α-helix
	109-124	α-helix
	133-141	β-sheet
	148-152	β-sheet
	160-166	β-sheet
	170-180	α-helix
	187-202	α-helix
	212-219	β-sheet
	224-227	β-sheet
	229-245	α-helix
β1	2-8	β-sheet
	12-16	β-sheet
	25-27	β-sheet
	34-37	β-sheet
	41-45	β-sheet
	52-69	α-helix
	76-90	α-helix
	95-103	β-sheet
	110-114	β-sheet
	120-122	β-sheet
	124-128	β-sheet
	132-143	α-helix
β2	149-166	α-helix
-------------	---------	---------
	174-180	β-sheet
	185-189	β-sheet
	191-200	α-helix
	2-8	β-sheet
	12-17	β-sheet
	25-27	β-sheet
	33-37	β-sheet
	41-45	β-sheet
	52-67	α-helix
	76-90	α-helix
	95-103	β-sheet
	109-113	β-sheet
	123-127	β-sheet
	131-142	α-helix
	148-165	α-helix
	173-179	β-sheet
	184-186	β-sheet
	194-201	α-helix
	210-213	β-sheet
	215-225	β-sheet
β3	9-14	β-sheet
	18-24	β-sheet
	32-34	β-sheet
	41-44	β-sheet
	48-52	β-sheet
	56-76	α-helix
	83-97	α-helix
	103-111	β-sheet
	119-123	β-sheet
	134-138	β-sheet
	142-152	α-helix
	159-175	α-helix
	184-190	β-sheet
	194-199	β-sheet
β4	3-8	β-sheet
	12-17	β-sheet
	26-27	β-sheet
	32-35	α-helix
	36-38	β-sheet
	42-46	β-sheet
	50-70	α-helix
	77-93	α-helix
	99-107	β-sheet
β5		
----------	----------------------	-------
114-118	β-sheet	
129-132	β-sheet	
136-147	α-helix	
153-170	α-helix	
178-184	β-sheet	
189-190	β-sheet	
2-8	β-sheet	
12-16	β-sheet	
25-26	β-sheet	
31-34	α-helix	
35-37	β-sheet	
41-45	β-sheet	
49-69	α-helix	
76-91	α-helix	
96-104	β-sheet	
110-114	β-sheet	
120-122	β-sheet	
124-128	β-sheet	
132-143	α-helix	
149-166	α-helix	
174-180	β-sheet	
185-186	β-sheet	
189-200	α-helix	
β6		
5-6	β-sheet	
11-16	β-sheet	
20-26	β-sheet	
34-36	β-sheet	
42-46	β-sheet	
50-54	β-sheet	
58-77	α-helix	
85-99	α-helix	
105-113	β-sheet	
120-124	β-sheet	
134-138	β-sheet	
142-152	α-helix	
168-184	α-helix	
193-199	β-sheet	
203-210	β-sheet	
β7		
10-16	β-sheet	
20-25	β-sheet	
33-35	β-sheet	
39-41	α-helix	
42-45	β-sheet	
49-53	β-sheet	
Region	Secondary Structure	
---------	---------------------	
57-77	α-helix	
85-100	α-helix	
107-115	β-sheet	
121-125	β-sheet	
136-139	β-sheet	
143-154	α-helix	
162-179	α-helix	
187-193	β-sheet	
198-199	β-sheet	
207-216	α-helix	
Figure S1. Structure of the Tris-T4 reporting 1H chemical shift assignments.
Figure S2. a) 1H NMR spectra of Tris-T4 (100 μM) in the presence of α3ΔN γ20S proteasome (500 nM); b) STD and c) WaterLOGSY spectra.
Figure S3. Structure of the calculated prevalent (79%) ionic form of Tris-T4 at cytoplasmic pH (7.2).
Figure S4. A-B: Selected docked complex of one **Tris-T4** molecule bound to human 20S (closed conformation). A) Top view: the protein is displayed as Connolly surface and colored in grey except for the negatively charged residues involved in ionic interactions with RPs which are displayed as CPK and colored in red. **Tris-T4** is colored by atom type (C: green; N: blue) and displayed as CPK. B) Close up view of the ligand binding site at the α5-α6 groove: interacting residues (non-bonded interaction energy lower than -2 kcal/mol) are evidenced as CPK and colored: negative = red; polar = orange. C-D: Close up view of the α5-loop interactions pattern of the closed proteasome 20S in the starting conformation (C) and upon one **Tris-T4** molecule binding at the α5-α6 groove (D). The α-ring is rendered in cartoons and labelled; amino acids involved in ionic interactions are displayed in ball and sticks and labelled. α5-L81 at the top of the allosteric pathway between distinct conformational states described by Ruschak et al.13 is evidenced in cyan CPK. **Tris-T4** is shown in grey CPK.
Figure S5. Selected docked complex of one Tris-T4 molecule bound to human 20S (open conformation). A) Top view: the protein is displayed as Connolly surface and colored in grey except for the negatively charged residues involved in ionic interactions with RPs which are displayed as CPK and colored in red. Tris-T4 is colored by atom type (C: green; N: blue) and displayed as CPK. B) Close up view of the ligand binding site at the α4-α5 groove: interacting residues (non-bonded interaction energy lower than -2 kcal/mol) are evidenced as CPK and colored: negative = red; positive = blue; polar = orange; hydrophobic = magenta. C-D: Close up view of the α5-loop interactions pattern of the open proteasome 20S in the starting conformation (C) and upon one Tris-T4 molecule binding at the α4-α5 groove (D). α-ring is rendered in cartoons and labelled; amino acids involved in ionic interactions are displayed in ball and sticks and labelled. α5-L81 at the top of the allosteric pathway between distinct conformational states described by Ruschak et al.13 is evidenced in cyan CPK. Tris-T4 is shown in grey CPK.
Figure S6. A-B: Close up view of the ligand binding site at the α1-α2 (A; closed) and α1-α2 (B; open) grooves. Tris-T4 is colored by atom type (C: green; N: blue) and displayed as CPK. The protein is displayed as Connolly surface and colored in gray. The residues involved in interactions with Tris-T4 are displayed in CPK and colored: orange (negative residues involved in ionic interactions with RPs) and cyan (residues not engaged in RP interactions). The residues involved in interactions with RPs hydrophobic motif are evidenced in ball&stick.
Figure S7. A) Dynamic docking results obtained for Tris-T4 using as starting structure the α5-α6 groove of the closed conformation of human 20S proteasome. B) Top view of dynamic docking results at the first α-ring: the first five generated complexes (Table S4) show Tris-T4 bound at the α5-α6 groove (although presenting a different binding mode with respect to the starting position). C) Top view of dynamic docking results without the first ring of α subunits: the last six generated complexes presented the ligand positioned either at the level of the first β-ring or at the interface between the first and the second β-ring (Table S4). The backbone of the starting complex is displayed as solid ribbons and colored in pink (α1), orange (α2), brown (α3), light green (α4), cyan (α5), magenta (α6), and gray (α7, α subunits of the second ring and all β subunits). The backbone of the calculated complexes is displayed as line ribbons and colored in orange (B and C). The porphyrin ligands are colored by atom type (C: green and N: blue) and displayed as CPK. In B the α subunits and the catalytic β subunits are labeled. In C the catalytic β subunits are labeled and colored in pink (β1), violet (β2), and cyan (β5).
Figure S8. A) Dynamic docking results obtained for Tris-T4 using as starting structure the α4-α5 groove of the open conformation of human 20S proteasome. B) Top view of dynamic docking results at the α-ring: all obtained complexes showed Tris-T4 bound at the α4-α5 groove (Table S5), although assuming different binding poses with respect to the starting position. The backbone of the starting complex is displayed as solid ribbons and colored in pink (α1), orange (α2), brown (α3), light green (α4), cyan (α5), magenta (α6), and grey (α7, all β subunits). The backbone of the calculated complexes is displayed as line ribbons and colored in orange (B). The porphyrin ligands are colored by atom type (C: green and N: blue) and displayed as CPK. In B the α subunits and the catalytic β subunits are labeled.
Figure S9. A) Dynamic docking results obtained for Tris_T4 using as starting points the α1-α2, α4-α5, and α5-α6 grooves of the closed conformation of human 20S proteasome. B) Top view of dynamic docking results without the two rings of β subunits and the second ring of α subunits. C) Top view of dynamic docking results without the first ring of α subunits. The analysis of the whole of the generated complexes using the 20S closed conformation as starting structure showed that in four of them (2-5 in Table S6) one molecule of Tris-T4 is placed at the level of the first β-ring (A and C). The other two molecules are localized on the α-ring, with one of the two always positioned at α5-α6 groove (B). Finally, in the subsequent four complexes (6-9 in Table S6), all three molecules move down, placing at the interface of the β rings or between the α5 and α6 subunits.

The backbone of the starting complex is displayed as solid ribbons and colored in pink (α1), orange (α2), brown (α3), light green (α4), cyan (α5), magenta (α6), and grey (α7, α subunits of the second ring and all β subunits). The backbone of the calculated complexes is displayed as line ribbons and colored in orange (B and C). The porphyrin ligands are colored by atom type (C: green and N: blue) and displayed as CPK. In B the α subunits and the catalytic β subunits are labeled. In C the catalytic β subunits are labeled and colored in pink (β1), violet (β2), and cyan (β5).
Figure S10. A) Dynamic docking results obtained for Tris_T4 using as starting points the α1-α2, α4-α5, and α5-α6 grooves of the open conformation of human 20S proteasome. B) Top view of dynamic docking results without the ring of β subunits. C) Bottom view of dynamic docking results without the ring of β subunits. The ligand molecule bound to the α1-α2 groove moves down the interior of the α-ring or toward the center of the protein (A and C). On the other hand, the other two molecules of Tris-T4 in most solutions bind at α4-α5 and α5-α6 grooves although in some binding poses occupying the substrate channel between the α1 and the β-ring or moving along the grooves toward the substrate gate. Interestingly, in four solutions one Tris-T4 binds the negatively charged α5-loop (B). The backbone of the starting complex is displayed as solid ribbons and colored in pink (α1), orange (α2), brown (α3), light green (α4), cyan (α5), magenta (α6), and grey (α7, α subunits of the second ring and all β subunits). The backbone of the calculated complexes is displayed as line ribbons and colored in orange (B and C). The porphyrin ligands are colored by atom type (C: green and N: blue) and displayed as CPK. In B the α subunits and the catalytic β subunits are labeled.
Figure S11. Solvent accessible surface (SASA) of the three Tris-T4 molecules docked to the closed (A) and open (B) h20S conformation (view: from the interior to the exterior of the protein). SASA is coloured in cyan and displayed as solid surface; ligand molecules are coloured by atom types (C = green; N = blue; H = white).
Figure S12. A) RMSD of the Tris-T4/20S complexes generated upon MC/SA docking calculations carried out on the closed (left) and open (right) states with respect to the starting protein conformation. Squared spots indicate single molecule docking (S on x-axis), circled spots indicate triple molecule docking (T on x-axis). Blue colour indicates complexes where at least one ligand molecule occupies superficial binding poses (α surface) whereas red colour is used for complexes where all ligand molecules occupy internal sites (α/β interface. β subunits). Full coloured spots specify selected binding poses. B) RMSD evolution is calculated with respect to the opposite 20S conformation (closed vs. open and open vs. closed; red line) and compared to those obtained using as reference structure the starting conformation (black line), as an index of divergence/similarity from the open/closed starting states. RMSDs are calculated on Cα atoms of the full-length (upper α and β rings) proteasome.
Figure S13. Top view of the human 20S proteasome structure in the closed (A, C; PDB ID: 4R3O) and open (B, D; PDB ID: 5T0J) conformation. A and B: the protein is displayed as Connolly surface and colored in gray; the negatively charged residues involved in ionic interactions with RPs (i.e., 19S, PA28α and PA200) are displayed as CPK and colored in red. C and D: the protein is displayed in ribbons and secondary structure elements of each subunit are sequentially colored from N- to C-terminal end (αH0= blue; αH1= cyan; αH2= magenta, αH3-αH5= light red to dark red).
Figure S14. wt-yeast and α3ΔN-yeast 20S proteasome. Top-view of the α-ring (left) and close-up view of the gate (right). A) wt yeast 20S proteasome structures in closed state (access code: 1RYP); B) wt yeast 20S proteasome structures in open state (access code: 1Z7Q) and in C) mutant form α3ΔN (access code: 1G0U) are shown in line cartoons. Purple ellipses define the proteasome gate and the α5 loop is indicated and labelled. Amino acids of the N-terminal tails involved in the major interactions with the α5 loop are displayed in ball and sticks and labelled, negatively and positively charged residues are coloured red and blue, respectively.
Figure S15. Multiple sequence alignment of α5-loop (A) and α6-loop (B) of human, *yeast* and α3ΔN *yeast* 20S. Amino acids establishing salt bridges and charge-assisted hydrogen bonds are evidenced in cyan. Amino acids not conserved in the α3ΔN mutant are evidenced with black boxes.
Figure S16. Structural overlap of the PA200 C-terminal tail with Tris-T4 obtained by fitting the Cα atoms of the 20S α-ring of the Tris-T4/h20S best-docked complexes (three ligand molecules; h20S starting conformation: closed (A) and open (B)) on the Cα atoms of the 20S α-ring of the h20S structure in complex with PA200 (PDB ID: 6KWY). The PA200 C-terminal residues overlapping with Tris-T4 are displayed in ball&stick and labelled (residues having at least one atom within a 2 Å radius from any given Tris-T4 atom). For sake of clarity, only the h20S structure of the docked complex is displayed. Residues interacting with both Tris-T4 and the PA200 residues are displayed in stick and coloured in pink. The vdW volume of L77 (α6) is shown in magenta.
Figure S17. Graphical representation of standard Gibbs free energy difference (-ΔG0, as defined in the Experimental section) among the various Tris-T4- and substrate-bound states of h20S. The y-axis values (kJ/mol) are arbitrarily chosen. Circles represent different conformational states and the dimension is indicative of their abundance.
Figure S18. Standard Gibbs free energy difference (-ΔG°, as defined in the Experimental section) among the various Tris-T4 and substrate-bound states of y20S wt and y20S α3ΔN mutant. The y-axis values are in kJ/mol arbitrarily chosen, but the energy differences correspond to those resulting from parameters reported in Table 1. Circles represents different conformational states and the dimension is indicative of their abundance.
References

(1) Dewar, M. J. S.; Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. *J. Am. Chem. Soc.* 1977, 99 (15), 4899–4907. https://doi.org/10.1021/ja00457a004.

(2) Fletcher, R. (Roger). *Practical methods of optimization*; Wiley, 1987.

(3) Stewart, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. *J. Mol. Model.* 2013, 19 (1), 1–32. https://doi.org/10.1007/s00894-012-1667-x.

(4) Baker, J. An algorithm for the location of transition states. *J. Comput. Chem.* 1986, 7 (4), 385–395. https://doi.org/10.1002/jcc.540070402.

(5) Dato, A. Di; Cunsolo, A.; Persico, M.; Santoro, A. M.; D’Urso, A.; Milardi, D.; Purrello, R.; Stefanelli, M.; Paolesse, R.; Tundo, G. R.; Sbardella, D.; Fattorusso, C.; Coletta, M. Electrostatic Map Of Proteasome α-Rings Encodes The Design of Allosteric Porphyrin-Based Inhibitors Able To Affect 20S Conformation By Cooperative Binding. *Sci. Rep.* 2017, 7 (1), 17098. https://doi.org/10.1038/s41598-017-17008-7.

(6) Chen, S.; Wu, J.; Lu, Y.; Ma, Y.-B.; Lee, B.-H.; Yu, Z.; Ouyang, Q.; Finley, D. J.; Kirschner, M. W.; Mao, Y. Structural basis for dynamic regulation of the human 26S proteasome. *Proc. Natl. Acad. Sci. U. S. A.* 2016, 113 (46), 12991–12996. https://doi.org/10.1073/pnas.1614614113.

(7) Senderowitz, H.; Guarnieri, F.; Still, W. C. A Smart Monte Carlo Technique for Free Energy Simulations of Multiconformational Molecules. Direct Calculations of the Conformational Populations of Organic Molecules. *J. Am. Chem. Soc.* 1995, 117 (31), 8211–8219. https://doi.org/10.1021/ja00136a020.

(8) Ding, H.; Karasawa, N.; Goddard, W. A. Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. *J. Chem. Phys.* 1992, 97 (6), 4309–4315. https://doi.org/10.1063/1.463935.

(9) Steinbach, P. J.; Brooks, B. R. New spherical-cutoff methods for long-range forces in macromolecular simulation. *J. Comput. Chem.* 1994, 15 (7), 667–683. https://doi.org/10.1002/jcc.540150702.

(10) Davis, I. W.; Leaver-Fay, A.; Chen, V. B.; Block, J. N.; Kapral, G. J.; Wang, X.; Murray, L. W.; Arendall, W. B.; Snoeyink, J.; Richardson, J. S.; Richardson, D. C. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res.* 2007, 35 (Web Server), W375–W383. https://doi.org/10.1093/nar/gkm216.

(11) Pei, J.; Kim, B.-H.; Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. *Nucleic Acids Res.* 2008, 36 (7), 2295–2300. https://doi.org/10.1093/nar/gkn072.

(12) Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozlikova, B.; Gora, A.; Sustr, V.; Klvana, M.; Medek, P.; Biedermannova, L.; Sochor, J.; Damborsky, J.
CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. *PLoS Comput. Biol.* **2012**, *8* (10), e1002708. https://doi.org/10.1371/journal.pcbi.1002708.

(13) Ruschak, A. M.; Kay, L. E. Proteasome allostery as a population shift between interchanging conformers. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, **109** (50), E3454-62. https://doi.org/10.1073/pnas.1213640109.