Effects of in vitro culture types on regeneration and acclimatization of yellow poplar (Liriodendron tulipifera L.) from somatic embryos

Chan Hoon An · Yong Wook Kim · Heung Kyu Moon · Jae Seon Yi

Received: 23 February 2016 / Revised: 6 March 2016 / Accepted: 7 March 2016
ⓒ Korean Society for Plant Biotechnology

Abstract We compared germination efficiency for somatic embryos (SE) of Liriodendron tulipifera using semi-solid (SS), temporary immersion bioreactors (TIB), and continuous immersion bioreactors (CIB) to produce vigorous plants. The bioreactors were designed to be immersed in liquid media with plantlets with an adjustable immersion time. TIB and CIB improved germination rates up to 80.86% and 95.21%, respectively, however, CIB produced more hyperhydric plantlets than TIB. The height of plantlets in TIB was significantly higher than for those in CIB. Fresh weights of plantlets grown in CIB of were significantly lower than for those grown in TIB. The lowest chlorophyll concentration was found in in vitro plantlets from CIB. We examined abnormally developed leaves, stems, and apical zones of in vitro plantlets that were produced in CIB. Among the three types, SS showed the highest stomatal density and the shortest stomatal length in in vitro plantlets. After acclimatization, plants from CIB exhibited the lowest values in biomass, such as height, root collar diameter, leaf fresh weight, leaf length, leaf width, petiole length, petiole diameter, and leaf area. Photosynthesis and transpiration rates of ex vitro plants were not significantly different among the three culture types, but stomatal conductance was higher in TIB than in the SS and CIB. Therefore, the results suggest that TIB is the preferable bioreactor to improve in vitro plantlet regeneration of L. tulipifera. TIB-originated plants showed higher growth rate than SS and CIB after transferring to soil.

Keywords Bioreactor, Liriodendron tulipifera, Regeneration, Somatic Embryogenesis, Temporary immersion

Introduction

Yellow poplar (Liriodendron tulipifera L.) was introduced from USA in the 1960s to support afforestation in the Republic of Korea (Ryu and Kim 2003). This species has a straight trunk and rapid growth when compared with other tall trees in the temperate region, e.g., pines (Pinus spp.), oaks (Quercus spp.), and firs (Abies spp.) (Wilcox and Raft 1969). It is also a highly adaptable species in terms of altitude and can be planted in various areas in Korea (Ryu et al. 2008). It provides good timber for furniture and veneer boards, and is a good source for bio-energy.

Clonal propagation is used to reduce variation and increase productivity in trees (Park 2002; Husen 2004; Bonga et al. 2010). Traditionally, cutting has been used as the main method; however, cutting has limited use because of the large requirement for plant material. Tissue cultures could be used as an alternative to this vegetative propagation technique. Among various techniques, somatic embryogenesis technology is the best method for efficient clonal plant multiplication (Park 2002; Bonga et al. 2010). Propagation techniques using somatic embryogenesis have been applied to overcome low productivity and genetic variability in spruce, conifer and oaks (Park 2002; Merkle 2005). Study of somatic embryos induction in L. tulipifera began with proembryogenic masses induction from zygotic embryos by Merkle and Sommer (1986). Induction and proliferation of proembryogenic masses (PEMs) of L. tulipifera was accomplished on solidified medium through a filtering process (Merkle et al. 1990). Protoplasts were isolated from suspension cultures of L. tulipifera and were regenerated on solidified media (Merkle and Somme 1987). This was similar to the traditional method...
in which semi-solid media was used. In Korea, somatic embryogenesis and plant regeneration of yellow poplar using immature seed material for yellow poplar has been attempted (Lee 2003; Son et al. 2005; Kim and Moon 2013); furthermore, An et al. (2010) attempted plant regeneration from somatic embryos using bioreactors and produced small, normal plants.

Conventionally, tissue cultures are produced on solid media (George et al. 2008). In vitro plants are typically grown in conditions of high relative humidity, low light density, constant temperature, changing CO\textsubscript{2} concentrations, and limited space to produce controlled culture conditions (Lamhamedi et al. 2003). Recently, methods were introduced using bioreactors to promote culture efficiency, which might be the most efficient system and could be conducted using an automatic system (Paek et al. 2001). Bioreactors are classified into several types based on operational methods. The temporary immersion type increases somatic embryos and enhances the quality of embryogenic tissue (Etienne and Berthouly 2002). Additional advantage of reducing the costs by reducing the number of containers needed, reduces oxygen used, use efficient mixing, has limitative share levels, enables sequential media exchanges, and reduces contamination (Teisson et al. 1999). This method has been applied to numerous species. For example, it was used with somatic embryos of Coffee spp. (Etienne-Barry et al. 1999; Alberran et al. 2005) and cacao (Theobroma cacao) (Niemenak et al. 2008), for regeneration of strawberries (Fragaria spp.) (Hanhineva et al. 2005), and bud propagation of sugarcane (Saccharum spp.) (Lorenzo et al. 2001) and Charybdis numidica (Kongbangkerd and Wawrosch 2003).

The purpose of this study was to investigate physical conditions needed for somatic embryo germination of L. tulipifera, and to increase cultural efficiency using temporary immersion bioreactors.

Materials and methods

Plant material

To induce embryogenic calli, immature seeds were placed on Litvay (LM 1981) with 3% sucrose (w/v), 9.04 \(\mu \text{M} \) 2,4-dichlorophenoxyacetic acid (2,4-D), 1.11 \(\mu \text{M} \) 6-benzylaminopurine (BA), 0.8% glutamine (w/v), and 0.4% gelrite (w/v). After six weeks, cultured embryos were transferred to the medium without 2,4-D and BA for somatic embryo induction. After six weeks, the torpedo-stage somatic embryos were transferred to three culture types.

Culture types

Somatic embryos were cultured on three types of bioreactors for two weeks. The temporary immersion bioreactor (TIB) type was designed to immerse embryos temporarily in the medium. The cultures were immersed into the medium for one hour every four hours (Fig. 1). Air was supplied from a sparger at a flow rate of 1.0 vvm. Using the same bioreactor as in TIB, we also continuously supplied air to the medium by air pressure for the continuous immersion bioreactor (CIB) type. The semi-solid (SS) type was a gelled medium with 0.2% gelrite (w/v). All media based on 1/2 LM including 2% sucrose (w/v) were adjusted to a pH of 5.8. In TIB and CIB types, somatic embryos were inoculated with 6 g per 1 L of medium. Cultures were kept at 24 ± 1°C with a 16 h light and 8 h dark photoperiod under fluorescent lights. Observations were recorded for the cultures every two weeks. Germination rate, plantlet length, fresh weight, and hyperhydricity rate were measured. Hyperhydricity rate (%) was calculated as (hyperhydricity plantlet number / total plantlet number) × 100.

Fig. 1 Structure of the temporary immersion bioreactor. A withdrawal phase, B immersion phase, and C inoculated bioreactor. 1- Membrane filter, 2- Glass filter (sparger), 3- Solenoid valve (open), 4- Medium, 5- Solenoid valve (closed), and 6- Exchange medium line
Measurement of chlorophyll contents

Levels of photosynthetic pigments (chlorophyll a, b, and carotenoids) were determined using the Lichtenthaler (1987) method. Fresh leaves were extracted with an 80% acetone solution (v/v). They were extracted in the dark at 4°C for 48 h. Pigment concentration was measured using a visible spectrometer (Uvikon-930, Kontron Instruments, Wurich, Switzerland) at 470 nm, 646.8 nm, and 663.2 nm.

Histological examination

To determine the development of the leaf, stem, and apical zone, regenerated plantlets were collected from the bioreactors of the three culture types. Samples were fixed with a solution containing 0.05 M glutaraldehyde and 1.6% paraformaldehyde buffer, prepared in 0.05 M phosphate buffer (pH 6.8), for 48 h. Next, they were dehydrated in a series of progressively more concentrated ethanol (30%, 50%, 60%, 80%, 90%, 95%, and 100%) and then embedded in glycolmethacrylate (Technovit 7100, Kulzer, Germany) according to the protocol of Yeung (1999). Sections of 3 μm thickness were cut using an auto-cut rotary microtome (Leica RM 2165, Germany) and were mounted on glass slides. Mounted specimens were stained with 0.1% periodic acid, Schiff’s solution, and 0.05% toluidine blue O, and examined under a light microscope (Leica D. M. R., Germany).

Free sugar analysis in the media

To examine carbohydrate levels, such as those for sucrose, glucose, and fructose in the medium from the three culture types, HPLC (TSP operating system) was used with a Prevail™ carbohydrate ES column (Alltech, 5 µm, 4.6 × 250 mm), gas flow of 2.2 L min⁻¹, injection volume of 20 μL, and detector tube temperature of 85°C. A mobile phase consisting of acetonitrile and water at 72 : 280 was used at a flow rate of 0.7 mL min⁻¹.

Stomata examination

Leaves were cut into 5 mm² sections and the abaxial sides were peeled off. Leaf segments were stained for 15 min in 0.01% acridine orange and washed with distilled water a minimum of three times. Stomatal density, length, and width were determined by fluorescent microscopic observation with a laser scanning system (IM50, Leica, USA).

Acclimatization

Plantlets from the three culture types were cultured on SS media for eight weeks. Next, plants were transferred to soil for acclimatization. The soil was a mixture of nursery bed soil : sand (1 : 1, v/v). The plants were grown at 21 ± 1°C. After four weeks, plant height, root collar diameter, leaf fresh weight, leaf size, petiole size, and photosynthesis capacity were recorded. Photosynthesis capacity was measured with the Li-6400 portable photosynthesis system (Li-cor. Inc., USA) at a relative humidity of 60% ~ 65%.

Statistical analysis

The experiments were performed using a randomized design. Each treatment consisted of five dishes with 10–15 explants per dish and was repeated twice. Data were analyzed using Duncan’s multiple range test in the SAS program (SAS Institute, Cary, NC, USA).

Results

In vitro plantlets exhibited different features, as observed in somatic embryos (SEs) among the three culture types (Table 1, Fig. 2). The highest germination rate (95.21%) was served upon the CIB treatment. The highest ratio of normal plantlets without hyperhydricity was obtained using the TIB treatment, whereas TIB had a germination rate of 80.86%. Significant

Type	Germination rate (%)	Height (mm)	Fresh weight / normal plantlets (mg)	Hyperhydricity / normal plantlets (%)
SS	56.78	8.50**	11.35**	32.14
TIB	80.86	11.09a	8.19b	15.22
CIB	95.21	10.15b	14.61a	35.71
F value	-	3.66	4.75	-
p	-	0.03	0.01	-

** SS - semi-solid medium; TIB - temporary immersion bioreactor; and CIB - continuous immersion bioreactor.
**The same letter indicates there was no difference at the 5% significance level.
The developmental features of germinated plantlets by culture type were examined for leaf, stem, and apical zone differences among the three culture types (Fig. 4). Mesophyll and intercellular space of leaves grown in CIB were aggregated loosely compared with those from the other types. The epidermal and cortical layers were characterized as thin and underdeveloped. On the other hand, the cellular space of leaves grown in SS and TIB showed the regular arrangement and normal structures. The apical zone, including the apical meristem, grown in the CIB treatment was smaller than that of SS and TIB. The appearance of hyperhydric symptoms, such as low frequencies of conversion of SEs, excessive weight of plantlets, and production of abnormal plantlets were observed among plantlets grown in CIB.

Following the cultures, free sugar in the media was analyzed and was lower than 0.5% (w/v) for all three types (Fig. 5), although 2% of sucrose was included in all media initially. Glucose and fructose were below 0.3% (w/v) in both the TIB and CIB media, whereas it was not detected in the SS media. Leaf stomata of plantlets from the SS treatment were most dense, whereas their length was the smallest among the three types (Table 2, Fig. 6). Stomata in SS were approximately twice as dense as those from TIB and CIB treatment, although stomatal density was similar for TIB and CIB treatments. Stomata length was shorter in SS than in the bioreactors (TIB and CIB), whereas their width was not significantly different among the three culture types.

Regenerated plants showed different morphological characters in height, root collar, leaf length, petiole length, petiole diameter, leaf fresh weight, and leaf area after they were transferred to soil (Table 3). The height, root collar diameter, leaf and petiole size were not in significant level between SS and TIB-originated plants, but the lower plants produced in CIB after growing in greenhouse for 8 weeks. TIB-originated plants demonstrated higher growth in all traits measured than CIB plants (Fig. 7). SS-derived plantlets also
Fig. 4 Histological observations of leaf (A, B and C), stem (A1, B1 and C1), and apical zone (A2, B2 and C2) obtained from plantlets cultured on different culture types. A- semi-solid medium, B- temporary immersion bioreactor, and C- continuous immersion bioreactor. The magnification was 200X in A–C, 100X in D–E, and 200X in G–H

Table 2 Stomata characteristics of leaves in plantlets produced in different culture types

Type	Density (mm²)	Length (µm)	Width (µm)
SS	256**	23.98**	16.96ns
TIB	130b	30.64a	18.80ns
CIB	113c	30.84a	17.14ns
F value	1615.12	22.03	2.66
p	0.00	0.00	0.11

*SS - semi-solid medium; TIB - temporary immersion bioreactor; and CIB - continuous immersion bioreactor.
**The same letter indicates no difference at 5% significance level.

Fig. 5 Soluble carbohydrate content in media by culture type. *ns means that there was no difference at the 5% significance level

exhibited higher growth in all traits measured than CIB plants. Net photosynthetic rate was not significantly different among

the three culture types; stomatal conductance was higher in the TIB treatment than in the two other types; transpiration was higher in SS than in the two other types (Table 4).
Discussion

We can reduce time and cost effectively by suspension culture, in which we can renew media without using new containers, provide relatively regular culture conditions by medium asepsis using a micro-filter, and remove the container easily (Etienne and Berthouly 2002). CIB exhibited the highest germination rate (95.21%), which was probably related to the extended immersion time. Suspension cultures, including traditional bioreactors have been reported to induce hyperhydricity. Conversely, in vitro plantlets were regenerated slowly in the SS treatment, which did not have enough aeration to provide full contact with nutrients (Escalona et al. 1999). TIB was reported to increase the germination rate of SEs up to 60% and reduced the abnormal plantlets to half that of SS (Etienne and Berthouly 2002). The present study showed that healthy plants conversed in TIB system followed by germinated efficiency. Hyperhydricity plants were investigated lower in TIB than the other types (SS and CIB). So, we are proposing the TIB systems for somatic embryo conversion stage of *L. tulipifera*.

Because the TIB type supplies sufficient oxygen, it appears to offer advantages in the reduction of hyperhydricity and increase in stimulatory growth substances (Alister et al. 2005; Zhao et al. 2012). Plant tissue culture techniques have been employed to propagate many species but acclimation is still a problem for successful plant production (Preece and Sutter 1991; Kozai 1999). The problems observed are related to relative lower humidity, lack of stomata control, and moisture loss caused by an abnormal cuticle layer and necrosis (Brainerd and Fuchigami 1982; Estrada-Luna et al. 2003). The results of our trials were similar to that of earlier reports. Many CIB plantlets were did not develop normally, and the results of in vitro conditions did not support the production of healthy plants. For this reason, many researchers have used the TIB system to increase the multiplication ratio and root

Fig. 6 Different shapes of stomata in germinated plantlets obtained from different culture types. A- semi-solid medium, B- temporary immersion bioreactor, and C- continuous immersion bioreactor

Fig. 7 Ex vitro growing plants obtained from different culture types. SS- semi-solid medium, TIB- temporary immersion bioreactor, and CIB- continuous immersion bioreactor
initiation from in vitro plantlets (Yan et al. 2011; Niemenak et al. 2013; Akdemir et al. 2014; Ramos-Castella et al. 2014; Gao et al. 2015). Relatively high humidity seemed to result in high stomatal density in the semi-solid medium. Similarly, SEs of black spruce (Picea mariana) did not germinate because they could not pass the pre-germination stage in non-ventilated containers; however, they developed into normal plantlets when cultured in ventilated containers (Abdelmalek and Francine 1999).

Sucrose is widely used in tissue culture as an in vitro energy source and osmoticum. Various carbohydrates are used for these purposes, such as sucrose, glucose, and fructose. When used in tissue cultures, sucrose is hydrolyzed to glucose and fructose, which are utilized for plant growth (Vishnevetsky et al. 2000; George et al. 2008). Sucrose content was decreased to 0.5% in all treatments after two weeks, and therefore it is necessary to supply sucrose with a salt compound for long-term cultures. Through our trials using different culture conditions, we determined that hyperhydricity, observed either histologically or morphologically, resulted in poor mesophyll development, low chlorophyll and protein content, and disorder of the grana arrangement (Wetzestein and Sommer 1982; Ziv et al. 1983; Lee et al. 1988; Capellades et al. 1991).

Plantain (Plantago spp.) plants from TIB cultures had a higher survival rate than those from gelled medium. Photosynthetic rate at the midpoint of acclimatized plants grown in TIB cultures was significantly higher than that of plants grown in gelled media (Aragon et al. 2014). Chlorophyll content of leaves is indirectly related to nitrogen content, and carotenoids increase antioxidant activity with leaf growth (Zhao et al. 2005). Photosynthetic rate was not significantly different among the three culture types we studied. Shoot meristem culture was effective for producing healthy plantlets and TIB helped to increase efficiency in the case of a high loss rate for seeds and/or vegetative organs in yam (Dioscorea spp.) (Balogun et al. 2014). Furthermore, TIB may be utilized as an alternative for the above constituents, such as isomangiferin and iriflophenone 3-C-β-glucoside, which are expensive and difficult to obtain (Kokotkiewicz et al. 2015).

Embryogenesis is still limited in forestry as a commercial technique because of low acclimatization rate and high cost (Lamhamedi et al. 2003; Thompson 2014). Thus, we suggest the use of TIB to increase efficiency of embryo germination and improve acclimatization of in vitro plants.

References

Abdelmalek EM, Francine MT (1999) Effects of sealed and vented gaseous microenvironments on the maturation of somatic embryos of black spruce with a special emphasis on ethylene. Plant Cell Tiss. Org. Cult. 56:201-209

Akdemir H, Suzer V, Onay A, Tilkat E, Ersali Y, Ciftci YO (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tiss. Org. Cult. 117:65-76

Albarran J, Bertrand B, Lartaud M, Etienne H (2005) Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffee arabica) somatic embryos. Plant Cell Tiss. Org. Cult. 81:27-36

Alister B, Finnie J, Watt MP, Blakeway F (2005) Use of the

Table 3

Type	Height (mm)	Root collar diameter (mm)	Fresh weight of leaf (g)	Leaf length (mm)	Leaf width (mm)	Petiole length (mm)	Petiole diameter (mm)	Leaf area (cm²)
SS	47.89**	2.96**	0.19**	35.46**	59.26**	33.19**	0.65**	21.16**
TIB	48.24*	3.28*	0.32*	40.27*	65.24*	36.49*	0.73*	27.45*
CIB	37.47†	2.01†	0.10†	24.21†	38.30†	23.54†	0.55†	10.14†
F value	8.54	4.18	21.43	15.62	14.00	7.46	9.91	16.44
p	0.00	0.04	0.00	0.00	0.00	0.01	0.00	0.00

**The same letter indicates there was no difference at the 5% significance level.

Table 4

Type	Photosynthesis (umol CO₂ m⁻² s⁻¹)	Stomatal Conductance (mol H₂O m⁻² s⁻¹)	Transpiration (mmol H₂O m⁻² s⁻¹)
SS	5.75**	0.12**	1.61**
TIB	7.16**	0.20**	2.38**
CIB	6.67**	0.11†	1.39**
F value	1.97	51.12	3.12
p	0.19	0.03	0.09

**The same letter indicates there was no difference at the 5% significance level.
temporary immersion bioreactor system (RITA®) for production of commercial eucalyptus clones in Mondi Forest (SA). Liquid Culture Systems for in vitro plant propagation. Springer Netherlands. pp. 421-442

An CH, Yi JS, Kim YW, Moon H K (2010) Somatic embryo germination and the related biochemical changes of Liriodendron tulipifera by bioreactor immersion time. J. Korean For. Soc. 99:423-431

Arango CE, Sanchez C, Gonzalez-olmedo J, Escalona M, Carvalho L (2014) Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol. Plantarum. 58:29-38

Page dimensions: 595.0x794.0

Balogun MO, Maroya N, Asiedu R (2014) Status and prospects for in vitro cell propagation of carbohydrate plants. In: Bajaj, Y. P. S. (Ed.) Biotechnology in Agriculture and Forestry, Vol. 17. High-Tech and Micropropagation 1. Springer-Verlag, Berlin, Germany:127-141

Bonga JM, Klimaszewska KK, Von Aderkas P (2010) Recalcitrance and greenhouse apple leaves in darkness, mannitol, ABA, and CO2. J. Exp. Bot. 53:388-392

Capellades M, Fontarnau R, Carulla C, Debergh P (1990) Environment influences anatomy of stomata and epidermal cells in tissue-cultured Rosa multiflora. J. Afr. Soc. Hort. Sci. 115:141-145

Escalona M, Lorenzo JC, Gonzalez B, Daquinta M, Gonzalez JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus) micropropagation in temporary immersion systems. Plant Cell Rep. 18:743-748

Etienne-Barry D, Bertrand B, Vasquez N, Etienne H (1999) Direct sowing of Coffee arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep. 19:111-117

Etienne H, Berthouly M (2002) Temporary immersion system in plant propagation. Plant Cell Tiss. Org. Cult. 69:215-231

Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J. Plant Physiol. 160:1073-1083

Gao M, Jiang W, Wei S, Lin Z, Cai B, Yang L, Luo C, He X, Tan J, Chen L (2015) High-efficiency propagation of Chinese water chestnut [Eleocharis dulcis (Burm.f.) Trin. ex Hensch.] using a temporary immersion bioreactor system. Plant Cell Tiss. Org. Cult. 121:761-772

George EF, Michael AH, Geert-Jan DK (2008) Plant tissue culture procedure-background. Plant propagation by tissue culture. Springer The Netherlands. p. 28

Hanhineva K, Kokko H, Karenlampi S (2005) Shoot regeneration from leaf explants of five strawberry (Fragaria × Ananassa) cultivars in temporary immersion bioreactor system. In Vitro Cell. Dev. Biol- Plant. 41:826-831

Husen A (2004) Clonal Propagation of Dalbergia sissoo Roxb. By softwood nodal cuttings:Effects of genotypes, application of IBA and position of cuttings on shoots. Silvae Genet. 53:50-55

Kim YW, Moon HK (2013) Comparison of physiological characteristics, stomata and DNA content between seedling and 5-year-old somatic plant (somatic embryo derived-plant) in Liriodendron tulipifera. J. Korean. For. Soc. 102:537-542

Koevakkiewicz A, Bucinski A, Laczkiewicz M (2015) Xanthone, benzophenone and bioflavonoid accumulation in Cyclopia genistoides (L.) Vent. (honeybush) shoot cultures grown on membrane raft and in a temporary immersion system. Plant Cell Tiss. Org. Cult. 120:373-378

Kozai T (1991) Acclimation of micropropagated plants. In: Bajaj, Y. P. S. (Ed.) Biotechnology in Agriculture and Forestry, Vol. 17. High-Tech and Micropropagation 1. Springer-Verlag, Berlin, Germany:127-141

Kongbangkerd A, Wawrosch C (2003) Improved shoot regeneration from nodules of Charybdis numidica in a temporary immersion system. J. Hortic. Sci. Biotech. 78:650-655

Lamhamedi MS, Chamberland H, Tremblay FM (2003) Epidermal transpiration, ultrastructural characteristics and net photosynthesis of white spruce somatic seedling in response to in vitro acclimatization. Physiol. Plantarum, 118:554-581

Lee JS, Moon HK, Kim YW (2003) Mass propagation of Liriodendron tulipifera L. via somatic embryogenesis. Korean J. Plant. Biotechnol. 30:359-363

Lee N, Wetzesin HY, Sommer SE (1988) Quantum flux density effects on the anatomy and surface morphology of in vitro and in vitro-developed sweetgum leaves. J. Am. Soc. Hortic. Sci. 113:167-171

Lichtenthaler HK (1987) Chlorophyll and carotenoids: the pigments of photosynthetic biomembranes. In: Douce R, Packer L. (Eds.) Methods Enzymol., vol. 148. Academic Press Inc., New York:350-382

Litvay JD, Johnson MA, Verma D, Einspahr D, Weyrauch K (1981) Conifer suspension culture medium development using analytical data from developing needs. IPC Technical Paper 115:1-7

Lorenzo JC, Ojeda E, Espinosa A, Borroto C (2001) Field performance of temporary immersion bioreactor-derived sugarcane plants. In Vitro Cell. Dev. Biol. –Plant. 37:803-806

Merkle SA, Sommer HE (1986) Somatic embryogenesis in tissue cultures of Liriodendron tulipifera. Can. J. Forest. Res. 16:420-422

Merkle SA, Sommer HE (1987) Regeneration of Liriodendron tulipifera (family magnoliaceae) from protoplast culture. Am. J. Bot. 74:1317-1321

Merkle SA, Wieckto AT, Sotak RJ, Sommer HE (1990) Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Cell. Dev. Biol-Plant. 26:1086-1093

Niemenak N, Saare-Surminski K, Rosius C, Ndoumou DO, Lieberei R (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analysis of free amino acids in different tissues. Plant Cell Rep. 27:667-676

Niemenak N, Noah AM, Omokolo DN (2013) Micropropagation of cocoyam (Xanthosoma sagittifolium L. Schott) in temporary immersion bioreactor. Plant Biotechnol. Rep. 7:383-390

Paek KY, Hahn EJ, Son SH (2001) Application of bioreactors for...
large-scale micropropagation systems of plants. In Vitro Cell.
Dev. Biol-Plant. 37:149-157
Park Y-S (2002) Implementation of conifer somatic embryogenesis
in clonal forestry: technical requirements and deployment
considerations. Ann. For. Sci. 59:651-656
Preece JE, Sutter EG (1991) Acclimatization of micropropagated
plants to the greenhouse and field. In: Debergh P. C., Zimmer-
man R. H. (Eds) Micropropagation Technology and
Applications. Kluwer Academic Publishers, Dordrecht, The
Netherlands:71-93
Ramos-Castella A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa
H (2014) Improved propagation of vanilla (Vanilla planifolia
Jacks. ex Andrews) using temporary immersion system. In
Vitro Cell. Dev. Biol.-Plant. 50:576-581
Ryu K-O, Kim H-E (2003) Development of techniques and
handling for seedling production of yellow-poplar (Liriodendron
tulipifera Linne). J. Korean For. Soc. 92:236-245
Ryu KO, Kim YJ, Kim IS, Choi HS, Lee DH, Kim YY (2008)
Liriodendron tulipifera L. – growth characteristic and using
technic. Research Report of Korea Forest Research Institute.
p. 26 (in Korean)
Teisson C, Alvard D, Lartaud M, Etienne H, Berthouly M,
Escalona M, Lorenzo JC (1999) Temporary immersion for
plant tissue culture. In: Plant Molecular and Cellular Biology.
Kluwer Academic Publisher, Dordrecht, The Nether lands.pp.
105-110
SAS Institute. 1989. SAS/STAT user’s guide. 4th ed. vers. 6. SAS
Inst., Cary, NC, USA
Son SG, Moon HK, Kim YW, Kim JA (2005) Effect of mother
trees and dark culture condition affecting on somatic emb-
ryogenesis of Liriodendron tulipifera L. J. Korean For. Soc.
94:39-44
Thompson D (2014) Challenges for the large-scale propagation of
forest trees by somatic embryogenesis – a review. In: Proceedings
of the third International Conference of the IUFRO unit
2.09.02 on “Woody Plant Production Integrating Genetic and
Vegetative Propagation Technologies” Sep. 18-22, 2014,
Vitoria-Gasteiz, Spain:81-91
Valdes AE, Fernandex B, Centeno ML (2003) Alterations in
endogenous levels of cytokinins following grafting of Pinus
radiate support ratio of cytokinins as an index of ageing and
vigour. J. Plant Physiol. 160:1407-1410
Vishnevetsky J, Zamski E, Ziv M (2000) Carbohydrate metabolism
in Nerine sarniennis bulbs developing in liquid culture. Physiol.
Plantarum, 18:361-369
Wetzstein HY, Sommer HE (1982) Leaf anatomy of tissue cultured
Liquidambar styraciflua (Hamamelidaceae) during acclim-
ization. Am. J. Bot. 69:1579-1586
Wilcox JR, Taft KA (1969) Genetics of yellow-poplar. USDA
Forest Service Research Paper. WO-6. p. 12
Yan H, Yang L, Li Y (2011) Improved growth and quality of
Dioscorea fordii Prain et Burk and Dioscorea alata plantlets
using a temporary immersion system. Afr. J. Biotechnol.
10:19444-19448
Yeung EC (1999) The use of histology in the study of plant tissue
culture systems – some practical comments. In Vitro Cell Dev.
Biol.- Plant. 35:137-143
Zhao D, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen
deficiency effects on plant growth, leaf photosynthesis and
hyperspectral reflectance properties of sorghum. Eur. J.
Agron. 22:391-403
Zhao Y, Sun W, Wang Y, Saxena PK, Liu C-Z (2012) Improved
mass multiplication of Rhodiola crenulata shoots using temporary
immersion bioreactor with forced ventilation. Appl. Biochem.
Biotech. 166:1480-1490
Ziv M (1991) Vitrification: morphological and physiological
disorders of in vitro plants In: Debergh P. C. and Zimmermam
R. H. (Eds) Micropropagation Technology and Application.
Kluwer Academic Publishers, Dordrecht, The Netherlands.
pp. 45-69