Impaired mental rotation in benign paroxysmal positional vertigo and acute vestibular neuritis

Matteo Candidi1,2 ,* , Alessandro Micarelli1 , Andrea Viziano3 , Salvatore M. Aglioti1,2 , Ilaria Minio-Paluello1,2 and Marco Alessandrini2

1 Department of Psychology, “Sapienza” University of Rome, Rome, Italy
2 Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
3 Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy

*Correspondence: Matteo Candidi, Department of Psychology, “Sapienza” University of Rome, Via del Mastro 76, 00185 Rome, Italy. e-mail: matteo.candidi@uniroma1.it

INTRODUCTION

Vestibular information is used to evaluate and maintain one’s own posture with respect to the vertical and to perceive the direction and velocity of one’s own head movement in space (Angelaki and Cullen, 2008). These functions are fundamental to our sense of self-location in space which is known to be further supported by the ability to integrate vestibular inputs with proprioceptive, motor, and visual information (Angelaki and Cullen, 2008; Cullen, 2012). Vestibular processing is fundamental to our sense of orientation in space which is a core aspect of the representation of the self. Vestibular information is processed in a large subcortical-cortical neural network. Tasks requiring mental rotations of human bodies in space are known to activate neural regions within this network suggesting that vestibular processing is involved in the control of mental rotation. We studied whether mental rotation is impaired in patients suffering from two different forms of unilateral vestibular disorders (vestibular neuritis – VN – and Benign Paroxysmal positional Vertigo – BPPV) with respect to healthy matched controls (C). We used two mental rotation tasks in which participants were required to: (i) mentally rotate their own body in space (egocentric rotation) thus using vestibular processing to a large extent and (ii) mentally rotate human figures (allocentric rotation) thus using own body representations to a smaller degree. Reaction times and accuracy of responses showed that VN and BPPV patients were impaired in both tasks with respect to C. Significantly, the pattern of results was similar in the three groups suggesting that patients were actually performing the mental rotation without using a different strategy from the control individuals. These results show that dysfunctional vestibular inflow impairs mental rotation of both own body and human figures suggesting that unilateral acute disorders of the peripheral vestibular input massively affect the cerebral processes underlying mental rotations.

Keywords: vestibular neuritis, benign paroxysmal positional vertigo, vestibular disorder, mental imagery, body rotations, embodied cognition

Vestibular processing is fundamental to our sense of orientation in space which is a core aspect of the representation of the self. Vestibular information is processed in a large subcortical-cortical neural network. Tasks requiring mental rotations of human bodies in space are known to activate neural regions within this network suggesting that vestibular processing is involved in the control of mental rotation. We studied whether mental rotation is impaired in patients suffering from two different forms of unilateral vestibular disorders (vestibular neuritis – VN – and Benign Paroxysmal positional Vertigo – BPPV) with respect to healthy matched controls (C). We used two mental rotation tasks in which participants were required to: (i) mentally rotate their own body in space (egocentric rotation) thus using vestibular processing to a large extent and (ii) mentally rotate human figures (allocentric rotation) thus using own body representations to a smaller degree. Reaction times and accuracy of responses showed that VN and BPPV patients were impaired in both tasks with respect to C. Significantly, the pattern of results was similar in the three groups suggesting that patients were actually performing the mental rotation without using a different strategy from the control individuals. These results show that dysfunctional vestibular inflow impairs mental rotation of both own body and human figures suggesting that unilateral acute disorders of the peripheral vestibular input massively affect the cerebral processes underlying mental rotations.

Keywords: vestibular neuritis, benign paroxysmal positional vertigo, vestibular disorder, mental imagery, body rotations, embodied cognition
rotating in order to assume the observed posture and solve the task. Object-based transformations have been studied by using joined blocks and non-tool objects although some of these stimuli might allow individuals to adopt non-rotational strategies (e.g., counting the blocks) allowing them to solve the task by judging object equivalence rather than performing a mental rotation. Previous literature suggests that subjects tend to use an object-based mental transformation (imaged rotation of the picture in space) when pictures of non-human objects are presented, but use an egocentric perspective-based mental transformation (imagined turning of oneself in space) for pictures of human bodies (Zacks and Tversky, 2005). One study by Lenggenhager et al. (2008), however, showed that this difference might not be stable by reporting that the strategy used by individuals did not depend on the visually presented stimuli (plant or human body in that study). Egocentric mental rotation might thus be better compared to object-based rotation by using the same stimulus (body images) but forcing individuals to use an “image-based” strategy in the latter condition. Mental motor imagery tasks (such as left/right judgments concerning an observed body) activate cortical regions largely overlapping with those activated during imagination and actual execution of actions (Parsons, 1987, 2003)

Furthermore, imagining one’s own body rotations induces similar eye-movements to those associated to actual body rotation (Rodinson et al., 2004) and imagining oneself walking reduces spontaneous vestibular nystagmus to the same extent as in actual walking (Jahn et al., 2002). A consequence of the activation of these shared neural circuits during mental imagery rotations and actual body rotations is that perturbing activity in the peripheral vestibular system, i.e., alteration of the vestibular information inflow to cortical sites involved in higher-order processes, may disturb the performance of rotational mental imagery tasks. Indeed, according to the embodied theory of cognition (Balsalou, 2008), the same neural resources used to directly perceive a stimulus or perform a motor task are also called into causal play during the mental recreation (mental imagery) of that stimulus or sensorimotor state. Evidence for a causal role of sensorimotor correlates in the vicarious representation of seen and imagined sensorimotor states comes from behavioral and functional imaging studies on mental imagery (Kosslyn et al., 2000; Jeannerod, 2001; Ionta et al., 2007; Albright, 2012; Zvyagintsev et al., 2013) as well as from neuropsychological and brain stimulation studies (Fourkas et al., 2008; Moro et al., 2008; Bufalari et al., 2010; Avenanti et al., 2013).

In line with this view, experimentally induced vestibular stimulation, which is known to produce an imbalance in vestibular processing, does in fact affect the ability to perform mental imagery rotational tasks (Mast et al., 2006; Lenggenhager et al., 2008; Döld et al., 2012). Lenggenhager et al. (2008) have shown that Galvanic Vestibular Stimulation (GVS) impairs the ability to perform left/right judgments about an observed human body image only if individuals mentally rotate their own body in space to match the orientation of the figure but not if they rotate the figure without imagining themselves rotating. Consistent with this, it has also been recently shown that actual body rotations influence the ability to perform own-body mental rotations in a direction-specific manner (van Elk and Blanke, 2013). The ability to mentally rotate one’s own body in space has been tested in studies on vestibular patients and individuals reporting dizziness (Grabherr et al., 2011; Wallwork et al., 2013).

In chronic vestibular patients (i.e., patients with vestibular loss), bilateral (but not unilateral) vestibular failure is known to induce the inability to perform mental imagery rotations of the whole body or body parts (Grabherr et al., 2011). A recent study showed that individuals experiencing dizziness do not show any difference between whole-body and body-part mental rotation (Wallwork et al., 2013) but do show a general impairment in mental rotation abilities suggesting that although rotational tasks may be more demanding for individuals suffering from dizziness, this effect might reflect a general inability to perform mental rotations regardless of the need to use one’s own body representation.

What is not known is whether the inability to perform mental rotations is specifically impaired in patients suffering from two forms of unilateral vestibular disorders such as acute vestibular neuritis (VN) and benign paroxysmal positional vertigo (BPPV) and whether this inability is specific to own-body rotations or expands to figure-based rotations as well.

Vestibular neuritis is a purely peripheral lesion of the vestibular system and constitutes an ideal “experimental model” of a partial vestibular de-afferentation as it offers the possibility of studying the effects of unilateral pathologically distorted vestibular inflow on mental imagery tasks. VN is one of the most common causes of vertigo, it is defined as a sudden, usually partial, unilateral failure of the peripheral vestibular organ without hearing impairments or any signs of brainstem dysfunction (Alessandrini et al., 2003; 2013a).

Benign paroxysmal positional vertigo on the other hand is the most frequently observed pathology in otorhinolaryngological clinical practice. Patients experiencing this condition report acute vertigo when moving their head due to the presence of free otocional debris migrating into a semicircular canal and resulting in abnormal and brief vestibular stimulation, accompanied by the prolonged loss of equilibrium (Blätt et al., 2000; Giacommi et al., 2002; Alessandrini et al., 2013b). It should be noted that, unlike VN, BPPV is not associated with vertigo when the head is kept stable.

Previous studies investigated extensively the nature of vestibular patients cognitive impairment (review in Smith et al., 2005; Hanes and McCallum, 2006) and have highlighted a spatial component. Based on previous studies investigating the ability to solve body-based and object-based rotations (Lenggenhager et al., 2008; Grabherr et al., 2011; Wallwork et al., 2013) in individuals and patients experiencing a vestibular dysfunction (either due to GVS, vestibular resection, or dizziness) we intended to compare the ability to solve mental rotations of human figures either using a “own-body” or an “object-based” strategy so to tap VN and BPPV visuo-spatial abilities. In this study we explored the ability of patients with acute peripheral vestibular disorders to perform two different visuo-spatial imagery tasks, namely “own-body” (egocentric) and “human-figure” (allocentric) rotation which are thought to require, respectively, high- and low vestibular processing. In fact, egocentric rotations are thought to call into play vestibular processing to a greater extent than allocentric ones.
All the participants performed the experimental procedures while seated in a noiseless and patient-friendly room. VN and BPPV patients performed the tasks within 5 and 10 days from the onset of symptoms and BPPV patients performed the tasks 30 min after the diagnostic Dix–Hallpike maneuver which insured they were not experiencing vertigo and nystagmus.

MATERIALS AND METHODS

PARTICIPANTS

All participants gave written consent to the protocol approved by the local ethic committee. The study was conducted in accordance with the Declaration of Helsinki.

BPPV patients

Fourteen right-handed patients (eight female, six male; mean age 58 years) affected by a single and sole episode of BPPV caused by canalolithiasis of the right posterior semicircular canal (PSC) were enrolled in the study after a thorough otoneurological examination. Diagnosis of BPPV engaging the PSC was performed triggering a direction-changing torsional nystagmus by Dix–Hallpike maneuver (Dix and Hallpike, 1952; Bruno et al., 2007; Alessandrini et al., 2013b).

VN patients

Nine right-handed patients (five female, four male; mean age 58 years) affected by a single and sole episode of right-sided VN were enrolled in the study after a neurological and otoneurological examination. The diagnosis was established according to the generally accepted criteria for this condition (Cooper, 1983; Strupp and Brandt, 2009; Alessandrini et al., 2013a): (1) sudden onset of vertigo and neurovegetative symptoms; (2) static and dynamic ataxia; (3) spontaneous, one-way, and persistent nystagmus with slow phase toward the affected ear detected by means of binocular electrooculography analysis; absence of (4) cochlear and (5) associated neurological symptoms or signs. T2-weighted and/or diffusion-weighted magnetic resonance imaging (MRI) sequences of the brainstem were acquired with a 1.5-T clinical MRI scanner to exclude the possibility that pseudoneuritis affected the vestibular nucleus or vestibular afferents within the brainstem.

Other exams were also conducted and consisted in calorice testing and subjective visual vertical. In the former case asymmetry was calculated by the formula of Jongkees from the slow-phase velocity, according to Hourahine (1994), vestibular paresis was defined as more than 25% asymmetry between the right-sided and the left-sided responses. In the latter case we used the binocular Bucket Test, according to Zwergal et al. (2009). All the patients showed unilateral vestibular paresis when studied by using caloric testing, the mean side asymmetry was 72%. With regard to the Bucket Test the mean of absolute deviation of subjective visual vertical was 8.6°.

Exclusion criteria. For both the BPPV and VN patients, exclusion criteria were based on the presence of major systemic illnesses, other vestibular disorders, psychiatric or neurological diseases, pregnancy, major vision illnesses, head trauma as well as the current and/or chronic use of medication.

Healthy individuals

Sixteen right-handed healthy volunteers (eight female, eight male; mean age 43 years) served as controls (C).

Exclusion criteria. Exclusion criteria were based on the presence of major systemic illnesses, vestibular, psychiatric or neurological disorders, pregnancy, major vision illnesses, head trauma as well as the current and/or chronic use of medication.

PATIENTS’ SETTING

All the participants performed the experimental procedures while seated in a noiseless and patient-friendly room. VN and BPPV patients performed the tasks within 5 and 10 days from the onset of symptoms and BPPV patients performed the tasks 30 min after the diagnostic Dix–Hallpike maneuver which insured they were not experiencing vertigo and nystagmus.

TASKS

Task 1 “Own-body rotation”

Stimuli. Images depicting a human figure with one arm extended laterally and slightly raised or stretched laterally across the chest (i.e., crossing the vertical midline of the body). The vertical orientation of the figures was rotated through the roll plane by 30° or 60° with respect to the vertical in clockwise or anti-clockwise directions. Images of figures both facing the participant and with their backs to the participant were used (Figure 1A).

Procedure. In each trial a fixation cross was shown on the screen for 1 s before stimulus presentation. The body image appeared at the center of the screen and remained until the participant gave a response. Presentation of front view/back-view, 30°/60° rotated, left/right raised hand, and crossed/uncrossed arm was randomized within individuals. Individuals performed 48 trials in total in this Task (12 per each of the 4 conditions (30°-Back, 30°-Front, 60°-Back, 60°-Front).

Task. In this task participants were asked to mentally rotate their own body in order to reach the orientation and the posture of the stimulus. Once they had mentally performed this own-body rotation, they had to judge whether the right or left arm was raised in image of the human figure by pressing two keys on the keyboard (Figure 1B).
FIGURE 1 | Examples of stimuli and experimental trials from the two tasks. Panel (A) shows examples of the images used in the two tasks. Panel (B) shows example trials through the timeline of the Task 1 figure (own-body rotation). Panel (C) shows example trials through the timeline of Task 2 figure (human-figure rotation).

Task 2 “Human-figure rotation”

Stimuli. The same images as those used in Task 1 “Own body rotation” were used (Figure 1A). However, in this task two human figures were presented simultaneously on a screen, one in the upper part of the screen (Target) and one in the lower part (Sample). The Sample always represented the back-view of a human figure with either the left or right arm extended laterally and slightly raised or extended laterally across the chest (crossing the vertical midline of the body). The Target image represented a human figure in either a front- or back-view with the elevated hand that either matched (identical image) or did not match (different image) the Sample. The Target could be rotated with respect to the Sample image by either 30° or 60° so that the Task 2 figures matched the degree of rotation on the roll plane of Task 1 figure (i.e., when the Target was rotated 30° to the left, the Sample was up-right; when the Target was rotated 60° to the left, the Sample image was up-right; Figure 1C).

Procedure. At each trial a fixation cross appeared on the screen for 1 s before the Target and Sample images were presented. The pair of stimuli remained until the participant made a response. Presentations of back-to-back/back-to-front rotation, 30°/60° rotated, left/right raised hand and crossed/uncrossed arm were randomized within individuals. Individuals performed 48 trials in total in this Task (12 each of the 4 conditions (30°-Back-Back, 60°-Back-Back, 30°-Back-Front, 60°-Back-Front).

Task. Individuals were asked to rotate the Sample image to the orientation of the Target and to judge whether the Sample image was identical to the Target by pressing two keys on the keyboard. In this task individuals were always asked to perform a back-to-front rotation when the Sample and the Target were presented in different views, thus matching the spatial rotation of the own-body task (Figure 1C).

The testing time for the rotational tasks was of about 30 min according to individual needs (i.e., familiarization with the tasks).

DATA HANDLING

Individual mean Reaction Times (RTs) and Accuracy of response (ACC) were calculated for each experimental condition of the two tasks. Individuals that fell above or below 3 SD from group mean in a condition were discarded as outliers. Using this criterion we excluded 6 BPPV outliers (from an initial sample of 20 patients) no VN patients, and 4 controls (from an initial sample of 20 individuals). All RTs and ACC are provided in Table 1. RTs and ACC were log10-transformed in order to solve non-normality issues. Preliminary analyses were performed on individual RTs and ACC of response separately to test whether the experimental conditions showed any specific impact on each of these parameters. These two ANOVAs had Group as between factor and Angle (30°/60°), Rotation (Back-to-front/No-jaw rotation) and Task (Task 1 figure/Task 2 figures) as within factors (results in Table 2). A correlation was run on RTs and ACC of each condition within each Group to test for any speed-accuracy trade off.

In order to control for speed-accuracy trade off the main analysis of the study was performed on the index mean RTs/ACC for each individual’s condition. This decision is based on the advice of Salthouse and Hedden (2002) which suggest to analyze composite scores of RT and ACC after having tested the experimental effects on each of these parameter separately and after having tested whether RTs and ACC are correlated. The pilot analysis of RTs and ACC of responses showed that: (i) the same pattern of results was found in each of these parameters, and (ii) the two parameters resulted to be negatively correlated suggesting that the same effect was modulating RTs and ACC thus making it necessary to consider them in a combined manner (i.e., through the RTs/ACC index).
Thus in order to avoid speed-accuracy trade-off the main analysis was run on the ratio between RT and ACC in order to analyze participants’ behavior. Furthermore, RTs/ACC were log10-transformed in order to solve non-normality issues.

Table 1 | The table reports the RTs and ACC of responses (mean ± standard deviation) for each group in all experimental conditions.

Group	Task 1 own-body rotation (M ± SD)	Task 2 human-figure rotation (M ± SD)						
	RTs (ms)	ACC (%)						
BPPV	2030 ± 732	99 ± 3	2251 ± 626	90 ± 13	2052 ± 794	96 ± 8	2364 ± 776	92 ± 1
VN	3169 ± 1592	92 ± 1	3600 ± 2415	81 ± 3	3597 ± 2184	90 ± 2	4202 ± 2589	80 ± 3
Controls	1274 ± 352	98 ± 6	1792 ± 800	93 ± 1	1356 ± 621	90 ± 2	1812 ± 683	95 ± 6

Table 2 | The table reports the significant main effects of the ANOVAs performed on the log10Acc and log10RTs of responses.

Effect	Significance
LogAcc	Group: F(2,36) = 7.323, p = 0.002
	Task: F(1,36) = 15.551, p < 0.001
	Rotation: F(1,36) = 13.959, p < 0.001
LogRTs	Group: F(2,36) = 11.893, p < 0.001
	Task: F(1,36) = 12.48, p < 0.001
	Angle: F(1,36) = 4.5049, p = 0.039
	Rotation: F(1,36) = 67.158, p < 0.001

No interaction resulted to be significant (all p > 0.05). For a detailed description of post hoc comparisons please refer to the text.

RESULTS

Strategy

Data from one individual from the BPPV group, two individuals from the VN group and one from the Controls were discarded because of technical problems during Strategy recordings. Thus this analysis is performed on 35 individuals (13 BPPV, 7 VN and 15 Controls).

Visual Analogue Scale ratings concerning the subjective evaluation of one’s own ability to follow the instructions were analyzed by means of a mixed model ANOVA with Group (BPPV, VN, and Control) as between group factor and Task (Own body and Figure) as within factor. None of the factors nor their interactions turned out to be significant (all p > 0.302) showing that the three groups of participants were confident they were able to efficiently follow the instructions (Figure 2, mean ± SD).

ROTATION TESTS

BPPV vs. VN vs. Controls

LogAcc. Main effect of Group [F(2,36) = 7.325, p = 0.002] where VN (1.863 %) performed worse than BPPV (1.951 %, p = 0.014) and controls (1.968 %, p = 0.002) respectively. Main effect of Task [F(1,36) = 15.551, p = 0.001] with Task 1 figure being more easy than Task 2 figure. Main effect of Rotation [F(1,36) = 13.959, p < 0.001] where Back-to-front rotations were easier than No-jaw rotations (p = 0.001).

LogRTs. Group main effect [F(2,36) = 11.893, p < 0.001] where controls (3.308) performed better than BPPV (3.462, p = 0.025) and VN (3.6079, p = 0.001) and BPPV tended to perform better than VN (p = 0.086).
FIGURE 2 | Group VAS ratings (mean ± standard deviation) for the subjective evaluation of the ability to follow the strategies in the two tasks.

Task 1 figure resulted to be easier than Task 2 figures \([F(1,36) = 122.88, p < 0.001] \). 60° roll rotations resulted to be more difficult than 30° ones \([F(1,36) = 4.595, p = 0.039] \). Back-to-front rotations resulted to be overall more difficult than No-jaw rotations \([F(1,36) = 67.158, p < 0.001] \).

Furthermore, in order to control for any correlation between speed and ACC we run a correlation analysis on the two parameters. RTs and ACC of response resulted to be negatively correlated \((p < 0.05) \) in 6 out of 8 \((2 \text{ Tasks} \times 2 \text{ Rotations} \times 2 \text{ Angles}) \) conditions indicating slower RTs were associated to lower ACC across all groups. Although the negative correlation speaks against any speed-accuracy trade off, the two parameters were combined together and the RTs/ACC index was analyzed.

\[\log_{10}(\text{RTs/ACC}) \]

The mixed model repeated measures ANOVA on the Log10-transformed RTs/ACC indexes highlighted a significant main effect of Group \([F(2,36) = 15.358, p < 0.001] \). The VN group was more seriously impaired in solving the tasks with respect to both BPPV \((p = 0.011) \) and Controls \((p < 0.001) \). BPPV group was more impaired than Controls \((p = 0.035) \).

The Task also reached statistical significance \([F(1,36) = 112.57, p < 0.001] \) with Task 2 figures being more difficult than the Task 1 figure.

Performance was more difficult during 60° rotations on the roll plane in all groups as indicated by the significant main effect of Angle \([F(1,36) = 7.560, p = 0.009] \).

As expected, the Back-to-front rotations were significantly more difficult than the No-jaw rotation condition in both Tasks \([\text{main effect of Rotation, } F(1,36) = 91.606, p < 0.001] \).

Back-to-front rotations however were comparatively more difficult with respect to No-jaw rotations in the Task 2 figures than during the Task 1 figure as suggested by the significant Task × Rotation interaction \([F(1,36) = 4.253, p = 0.046] \). Post hoc comparisons indicated that Back-to-front rotations were more difficult than No-jaw rotations in the Task 1 figure \((p < 0.001) \) and that this difference was even greater in Test 2 figures \((p < 0.001) \).

No other interaction reached statistical significance (all \(ps > 0.193 \) for the interaction Angle × Group).

Crucially no interaction with the Group factor reached statistical significance (all \(ps > 0.193 \) for the interaction Angle × Group) indicating that the three groups of individuals were not differently affected by any task and experimental condition.

All experimental conditions for the three groups averaged across Task 1 and 2 figures are shown in Figure 3.

DISCUSSION

The main result of the present study is that VN and BPPV patients are more impaired than controls in performing mental rotation tasks although these two pathological conditions differ for a number of clinical symptoms. In fact, while VN is associated with nausea, nystagmus and intense vertigo in its acute phase, no such symptoms occur in BPPV when patients stay still in an upright seated posture (which is the condition adopted in our experimental tasks). Thus, the different forms of peripheral vestibular dysfunction cause mental rotation deficits regardless of the specific clinical condition. We propose that finding similar pattern of results in the Test 1 and 2 figures suggests that patients were more challenged by spatial rotations in general, regardless of the vestibular involvement, and that a more demanding task (i.e., Task 2 figures) might have tapped individual spatial abilities to a greater extent but failed to highlight any specific interaction with the Groups, thus suggesting that patients impairments regarded mental rotation in general and not spatial processing per se.

BPPV

The BPPV pathophysiology is believed to be linked to the presence of free otoconial debris migrating into semicircular canals of the inner ear during head movements, resulting in an abnormal...
stimulation of the ampullary crests (Brandt and Steddin, 1993). This phenomenon is thought to be the cause of the acute rotary vertigo experienced by patients when they move their head. However, after the acute attacks associated with head movements, BPPV patients often also report prolonged problems with balance of unclear origin (Vicini and Campanini, 1995) which can last for weeks and subsides spontaneously regardless of the therapy followed. This prolonged dizziness has been more difficult to study (Di Girolamo et al., 1998) but has been characterized by using static posturography approaches which show a postural imbalance on the anterior-posterior plane 3 days after treatment with the Epley maneuver (Guazzoni et al., 2002).

Previous studies have shown that peripheral vestibular deficits are associated with cognitive impairments under conditions of postural challenge which is clearly critical for vestibular patients (Yardley et al., 2001; Smith et al., 2005; Hanes and McCollum, 2006). Significantly, it has to be noticed that well compensated patients suffering from benign paroxysmal positional nystagmus show mild cognitive impairments in specific tasks although they tend to perform normally in the Digit Span test (which tests memory span by measuring the length of a sequence of random numerals that can be repeated by the subject) and the Mini Mental State Exam (which tests orientation, attention, immediate and short-term recall, language, and ability to comprehend and follow commands; Erickson et al., unpublished). Similarly Yardley et al. (1998) showed that individuals experiencing mild forms of dizziness demonstrate a connection between mild balance/vestibular problems and persistent cognitive difficulties.

Here we show for the first time that mental rotational tasks are able to capture BPPV impairments in cognitive tasks which may represent a consequence of their mild postural challenges. More importantly we show that mental rotation tasks permit the tracking of unilateral vestibular dysfunctions in two clinical conditions characterized by profound differences in the pattern of symptoms. This suggests that altered central vestibular processing may be the common cause of the rotational impairments in these patients rather than the symptoms which are different in the two pathologies. In view of this, the present findings do not exclude a causal role of vestibular disfunctions in performing mental rotation tasks (embodied cognition hypothesis) and in fact they strengthen the idea that altered vestibular inflow may result in graded impairments in spatial cognition.

VESTIBULAR NEURITIS

The fact that VN patients performed worse overall is unlikely to depend on any pathological ocular behavior (nystagmus) since although Test 2 figures is visually more demanding than the Test 1 figure, the impairment in the two tests in VN patients follows the same pattern with respect to BPPV and Controls. As the angle and the rotation also made the tasks incrementally difficult for VN patients, the indication is that these patients were impaired in mentally rotating their own body as well as a visual stimulus. The absence of interaction between the Group and the other factors that reached statistical significance as main effects (Angle, Task, and Rotation) shows that VN patients were affected by these factors to the same extent as the BPPV group and the Controls. Furthermore, the significant Task by Rotation interaction shows that VN patients followed the same behavioral pattern as BPPV patients and Controls when performing the tasks.

For the same reason, it seems unlikely that the known reduction in activity in visual cortices which is found at early stages from VN onset (Bense et al., 2004; Dieterich and Brandt, 2008; Alessandrini et al., 2013a) and during vestibular stimulation (Bense et al., 2001; Brandt et al., 2002), and which is considered to be a form of neural compensation in order to reduce the visual processing of unstable information due to nystagmus, is the cause of the pattern of results. The amount of mental rotation to solve the tasks is the
critical factor that impairs VN performance in both visually less demanding tasks (Test 1 figure) and in a more visually demanding task (Test 2 figures) with respect to the others individuals. Furthermore, we wish to emphasize here that it is possible that a reduction in metabolic activity in visual areas may explain the impairment in the VN group, this does not hold true for the BPPV group.

These functional changes are also reflected in morphological alterations in VN patients (Helmchen et al., 2009; zu Eulenburg et al., 2010). A voxel-based morphometry study on VN patients 2.5 years after onset showed changes in the vestibular system (increases in gray matter in medial vestibular nuclei and in white matter in the pontine commissural vestibular fibers), somatosensory system (increased gray matter in the right gracile nucleus) and visual motion-related areas in those patients with residual vestibular hypofunction (increased gray matter in MT/VS; zu Eulenburg et al., 2010).

As suggested by previous studies on labyrinthectomy patients and individuals experiencing dizziness (Grubberr et al., 2011; Wallwoork et al., 2015), the fact that VN and BPPV patients performed worse in the rotation of a human figure with respect to their performance when they were directly asked to mentally rotate themselves in space shows that vestibular deficits may not specifically affect the ability to perform own-body based mental rotations but rather they affect the ability to mentally rotate a seen stimulus regardless of the strategy.

In similar tasks to the one we used here, Grubberr et al. (2011) used an own-body (egocentric based, in their words) and a figure (object based, in their words) task and found similar impairments in the two tasks in bilateral but not unilateral vestibular patients. Furthermore, the fact that we observe impairments in unilateral VN patients while they fail to report this might be due to differences between the pathologies under study. Indeed, while Grubberr et al. included in the unilateral group individuals who underwent labyrinthectomy (mainly due to Meniere's disease) 8 years before testing, we tested unilateral patients in their acute phase. The study by Grubberr et al. (2011) on unilateral and bilateral vestibular resected patients failed to find any rotational impairments in unilateral patients supporting the idea of a "graded impact" of vestibular processing in solving mental rotational issues (i.e., when correct vestibular inflow is maintained by one ear the rotations are made possible, not when both vestibular nerves are resected). Further studies are needed in order to better qualify the impact of unilateral and bilateral vestibular processing to solve mental rotation tasks.

Significantly, VN patients showed that they were overall more impaired on both the roll and the yaw plane suggesting that the disease impacts both rotational planes equally. If this were the case, the impaired ability to rotate human figures on the roll plane using an "egocentric" strategy found in healthy individuals undergoing GVS (Lenggenhager et al., 2008) might indicate a different relationship between experimentally induced vestibular stimulation, vestibular deficits and mental imagery abilities.

Both unilateral vestibular stimulation and unilateral failure of the vestibular endorgan create a vestibular tonic imbalance; however, this imbalance occurs at different levels of vestibular system activity (i.e., the trigger zone at the hair-cell afferent axon interface and the pars medialis of the utricular macula for GVS, vestibular nerve in VN and macula for BPPV; Bense et al., 1998; Bense et al., 2001; Lobel et al., 1998). Beside a similar activation-deactivation in vestibular-visual cortices in patients with vestibular failure (VN) and healthy volunteers during experimental vestibular stimulation, these authors reported a difference at the cortical level where VN patients only show a contralateral increase of metabolism in PIVC which they ascribe to either (1) a depression of the more dominant ipsilateral right-sided ascending projections to the right insular cortex by right-sided VN, because there is no tonic endorgan input (resting discharge), or (2) a left-sided vestibular excitation due to a higher resting discharge rate of the unaffected left vestibular nuclei complex induced by the acute right-sided vestibular failure.

With respect to the results of the present paper and the comparison between similar task execution in healthy individuals undergoing GVS, it has to be noticed that Lenggenhager et al. (2008) study only asked participants undergoing GVS to perform rotations on the roll plane since GVS is known to predominantly evoke illusory motion of both body and visual field in the roll plane (due to the response of semicircular canal organs and the medial part of the utricular macula; Fitzpatrick and Day, 2004). These differences, and their interactions with cognitive strategies, may explain the different pattern of results found in the ability to solve mental rotation tasks found in healthy individuals undergoing GVS (Lenggenhager et al., 2008) or actual body rotations (van Els and Blanke, 2013).

Mental Rotations and Gravitational Processing

The relation between gravitational information and mental rotation tasks have been tackled by studies in conditions of altered gravity (microgravity and increased gravity) in cosmonauts (Matsakis et al., 1993; Leone et al., 1995; Grabherr et al., 2007; Dalecki et al., 2013). Studies comprising object rotation in altered gravity setting reported inconsistent result (either a facilitation (Matsakis et al., 1993) or no effect (Leone et al., 1995) on rotational abilities in microgravity). Grabherr et al. (2007) studied mental rotation in microgravity specifically with respect to body and body parts rotations. These authors report higher error rates for both bodies and body parts in microgravity with respect to 1 g and no such effect for object rotations. Furthermore, RTs showed a congruent pattern with longer RTs in microgravity with respect to 1 g (and even longer for body parts than full body rotations). In the object rotation task no such effect on RTs were observed. The results supported the view that vestibular information are crucial in a spatial embodiment framework which holds that imagined body transformation is likely to use some gravitational reference information regarding the actual body position whereas this is not necessary for object-based mental rotations. A missing update about body orientation with respect to gravity (a condition that may be experienced in VN and BPPV and microgravity) could thus interfere with the task of mentally transforming one's own body. During exposure to microgravity, vestibular input from the otoliths about
the direction of gravity is absent (apart from the resting discharge level) while during VN and BPPV there is an unbalance in bilateral vestibular information which triggers vertigo and balance problems. As discussed, several cortical sites receive vestibular input, and a missing update about the direction of gravity, or a corrupted update, could interfere with tasks in which this information is involved.

CONCLUSION

The results of the present study showed that mental rotation of both own-body and human figures (egocentric and allocentric, respectively) were impaired in acute vestibular patients with respect to healthy controls and especially so in individuals suffering from VN with respect to other forms of vestibular disorder (BPPV). The present findings expand previous literature (Yates et al., 2001; Smith et al., 2003; Hanes and McCollum, 2006; Grabher et al., 2011; Wallwerk et al., 2013) by showing that vestibular patients in two different neurological and clinical conditions (namely VN and BPPV) show difficulties in performing mental rotations regardless the use of egocentric and allocentric strategies but that spatially demanding tasks may more strongly tap their visuo-spatial difficulties. This evidence is in line with the notion that individuals experiencing vestibular dysfunction do not show any difference between whole body and human figure mental rotation and supports the idea that vestibular failures are reflected in a general inability to perform mental rotations regardless of the need to use one’s own body representation and regardless of the specific clinical condition.

ACKNOWLEDGMENTS

Matteo Candidi was funded by Progetto di Ricerca Sapientia 2012 (Prot. C26A12ZZPS), Salvatore M. Aglioti was funded by the Italian Ministry of Health (Grant 616 Nos. RC11.G and RF2010-2312912) and by EU Information and Communication Technologies Grant (VIERE project, FP7-ICT-2009-5, Prot. Num. 257695). This text has been revised by a native English, professional proof-reader.

AUTHOR CONTRIBUTIONS

Matteo Candidi, Alessandro Micarelli, Ilaria Minio-Paluello, Salvatore M. Aglioti, Marco Alessandrini designed the study; Alessandro Micarelli, Andrea Viziano, Marco Alessandrini performed the study; Matteo Candidi, Alessandro Micarelli, Ilaria Minio-Paluello, Salvatore M. Aglioti, Marco Alessandrini wrote the paper.

REFERENCES

Aglioti, S. M. and Candidi, M. (2011). Out-of-place bodies, out-of-body selves. Nat Neurosci 14, 779-780. doi: 10.1038/nn.2798
Aglioti, S. M. and Candidi, M. (2011). On the perception of probable change: neural substrates of associative memory, imagery, and perception. Neurocogn. Sci. 74, 227-245. doi: 10.1016/j.neuron.2012.04.010
Alessandrini, M., D’Erme, G., Bruno, E., Napolitano, B., and Magrini, A. (2003). Ventilatory compensation: analysis of postural re-arrangement as a central update for unilateral vestibular deficit. Neuroreport 14, 1075-1079.
Alessandrini, M., Pagani, M., Napolitano, B., Micarelli, A., Candidi, M., and Bruno, E. (2013a). Early and phase cortical metabolic changes in vestibular neuritis onset. Proc. ONE #e57996. doi: 10.1576/journal.pone.0057996
Alessandrini, M., Micarelli, A., Petroni, I., Vitiano, A., Micarelli, D., and Bruno, E. (2013b). Persistent benign paroxysmal positional vertigo: our experience and proposal for an alternative treatment. Eur. Arch. Otorhinolaryngol. 270, 2769-2774. doi: 10.1007/s00405-013-2620-x
Anghisi, D. E. and Callan, K. E. (2008). Vestibular system: the many facets of a multimodal sense. Annu. Rev. Neurosci. 31, 125-158. doi: 10.1146/annurev.neuro.31.040407.125505
Averani, A., Candidi, M., and Urgo, C. (2013). Vicarious motor activation during action perception: beyond correlational evidence. Front. Hum. Neurosci. 7:185. doi: 10.3389/fnhum.2013.01185
Bardwell, E. W. (2008). Geocentric cognition. Annu. Rev. Psychol. 59, 617-645. doi: 10.1146/annurev.psych.59.103006.093639
Berne, S., Stephan, T., Yousry, T. A., Brandt, T., and Dieterich, M. (2003). Multisensory cortical signal increase and decrease during vestibular galvanic stimulation (MBR). J. Vestib. Res. 13, 885-890.
Berne, S., Bartemini, P., Lischmann, M., Schindewohl, P., Brandt, T., and Dieterich, M. D. (2004). Metabolic changes in vestibular and visual cortex in acute vestibular neuritis. Acta Neurol. Scand. 96, 624-630. doi: 10.1016/j.jневe.2003.11.002
Berne, S., Meier, C., Michel, C. M., Pausch-Armeni A., Brügger, F., Seuck, M., et al. (2003). Linking out-of-body experience and autopsychosis of neurological origin. Brain 127, 243-258. doi: 10.1093/brain/awl464
Brandt, T., Gheorgakakis, G. A., Herishanu, S. J., Clendaniel, R. A., and Yusa, R. J. (2009). The effect of the canthal repositioning maneuver on resolving postural instability in patients with benign paroxysmal positional vertigo. Am. J. Otol. 30, 376-383. doi: 10.1016/j.amjoto.2008.04.009-0
Brandt, T., Gheorgakakis, G. A., Herishanu, S. J., Clendaniel, R. A., and Yusa, R. J. (2009). The effect of the canthal repositioning maneuver on resolving postural instability in patients with benign paroxysmal positional vertigo. Am. J. Otol. 30, 376-383. doi: 10.1016/j.amjoto.2008.04.009-0
Brandt, T., and Dieterich, M. (1999). The vestibular cortex. Its locations, functions, and disorders. Ann. N. Y. Acad. Sci. 871, 293-312. doi: 10.1111/j.1749-6632.1999.tb09133.x
Brandt, T., Gheorgakakis, G. A., Herishanu, S. J., Clendaniel, R. A., and Yusa, R. J. (2009). The effect of the canthal repositioning maneuver on resolving postural instability in patients with benign paroxysmal positional vertigo. Am. J. Otol. 30, 376-383. doi: 10.1016/j.amjoto.2008.04.009-0
Brandt, T., and Steddin, S. J. (1996). Current view of the mechanism of benign paroxysmal positional vertigo: cupulolithiasis or canalolithiasis? J. Vestib. Res. 6, 379-382.
Bruni, E., Napolitano, B., Di Giorlando, S., De Padova, A., and Alessandrini, M. (2007). Persistent positional vertigo in patients with chronic shoulder and hamstrings. Eur. Arch. Otorhinolaryngol. 264, 381-385. doi: 10.1007/s00405-006-0198-4
Buddeke, L., Storhaug, A., Cser, P., Aglioti, S. M., and Fonck, A. D. (2000). Motor imagery beyond the joint limits: a transcranial magnetic stimulation study. Brain 123, 283-290. doi: 10.1093/brain/123.2.283
Camarata, C., Fronza, M. J., and Dagnino, O. (2009). Mental representation of space in vestibular patients with otolithic or rotary vertigo. Neuroreport 20, 457-461. doi: 10.1097/WNR.0b013e3282f3f851
Cooper, C. W. (1993). Vestibular neuritis: a review of a common cause of vertigo in general practice. Br. J. Gen. Pract. 43, 104-107.
Cullen, K. E. (2012). The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci. 35, 185-194. doi: 10.1016/j.tins.2011.12.001
Dalalci, M., Derr, S., and Steinberg, E. (2013). Mental rotation of a letter, hand, and complex scene in microgravity. Neurosci. Lett. 546, 53-58. doi: 10.1016/j.neulet.2013.02.023
de Weele, C., Baudonniere, P. M., Lepecq, J. C., Tran Ba Huy, P., and Vidal, P. P. (2007). Vestibular projections in the human cortex. Exp. Brain Res. 181, 541-551. doi: 10.1007/s00221-006-0894-7

"fnhum-7-00783" — 2013/11/22 — 21:16 — page 9 — #9
Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. *Neuroimage* 14 (4 Pt 2), 1015–1019. doi:10.1016/S1053-8119(01)00052-5

Koslow, S. M., Ganos, G., Thompson, W. L. (2003). Neural foundations of imagery. *Nat Rev Neurosci* 4, 635–642. doi:10.1038/nrn1105

Lenggenhager, B., Lopez, C., and Blanke, O. (2008). Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations. *Exp Brain Res* 184, 211–221. doi:10.1007/s00221-007-0959-9

Leone, G., Lippsich, M., Grafef, K., and Berthoz, A. (1995). Is there an effect of weightlessness on mental rotation of three-dimensional objects? *Brain Res Cogn. Brain Res.* 2, 235–267. doi:10.1016/0926-6410(95)00017-9

Lobel, E., Klein, J. F., Le Bihan, D., Leroy-Willeg, A., and Berthoz, A. (1998). Functional MRI of galvanic vestibular stimulation. *J Neurophysiol* 80, 2699–2709.

Lopez, C., and Blanke, O. (2011). The thalamocortical vestibular system in animals and humans. *Brain Res* 137, 119–146. doi:10.1016/j.jneurosci.2010.12.082

Mast, F. W., Marflid, D. M., and Koslow, S. M. (2006). Visual imagery imagery during caloric vestibular stimulation. *Neuropsychologia* 44, 101–109. doi:10.1016/j.neuropsychologia.2005.11.005

Matsumoto, Y., Lippsich, M., Grafef, K., and Berthoz, A. (1997). Effects of prolonged weightlessness on mental rotation of three-dimensional objects. *Exp Brain Res* 113, 166–177. doi:10.1007/s00221001355

Pollak, L., Klein, C., Rafael, S., Vera, K., and Rabey, J. M. (2003). Anxiety in the first 48 days of life. *Adv Oto-Rhino-Laryngol.* 64, 237–241. doi:10.1159/000064130

Shepard, R. N., and Metzler, J. (1971). Mental rotation of three-dimensional objects. *Science* 171, 253–256. doi:10.1126/science.171.991.253
Candidi et al. Mental rotations in vestibular disorders

rotation; a case-control comparison. Front. Hum. Neurosci. 7:258. doi: 10.3389/fnhum.2013.00258

Yardley, L., Burhman, J., Nazareth, I., and Luxon, L. (1998). Neuro-otological and psychiatric abnormalities in a community sample of people with dizziness: a blind, controlled investigation. J. Neurol. Neurosurg. Psychiatry 63, 679–684. doi: 10.1136/jnnp.65.5.679

Yardley, L., Gardner, M., Brummett, A., Davis, R., Buckwell, D., and Luxon, L. (2001). Interference between postural control and mental task performance in patients with vestibular disorder and healthy controls. J. Neurol. Neurosurg. Psychiatry 71, 48–54. doi: 10.1136/jnnp.71.1.48

Zada, J. M. (2008). Neuroimaging studies of mental rotation: a meta-analysis and review. J. Cogn. Neurosci. 20, 1–19. doi: 10.1162/jocn.2008.20013

Zada, J. M., and Tversky, B. (2005). Multiple systems for spatial imagery: transformations of objects and bodies. Spat. Cogn. Comput. 5, 271–306. doi: 10.1207/s15427633scc0504_1

zu Eulenburg, P., Stoeter, P., and Dieterich, M. (2010). Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann. Neurol. 68, 241–249. doi: 10.1002/ana.22083

Zvyagintsev, M., Clemens, B., Chechko, N., Mathiak, K. A., Sack, A. T., and Mathiak, K. (2013). Brain networks underlying mental imagery of auditory and visual information. Eur. J. Neurosci. 37, 1421–1434. doi: 10.1111/ejn.12140

Zwergal, A., Rettinger, N., Freund, C., Dieterich, M., Brands, T., and Strupp, M. (2009). A basket of static vestibular function. Neurology 72, 1689–1692. doi: 10.1212/WNL.0b013e3181e38555

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 August 2013; accepted: 29 October 2013; published online: 26 November 2013.

Citation: Candidi M, Micarelli A, Viziano A, Aglioti S M, Minio-Paluello I and Alessandrini M (2013) Impaired mental rotation in benign paroxysmal positional vertigo and acute vestibular neuritis. Front. Hum. Neurosci. 7:783. doi: 10.3389/fnhum.2013.00783

This article was submitted to the journal Frontiers in Human Neuroscience. Copyright © 2013 Candidi, Micarelli, Viziano, Aglioti, Minio-Paluello and Alessandrini. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

"fnhum-07-00783" — 2013/11/22 — 21:16 — page 11 — #11