Ordering of components of Green Supply Chain Practices jointly impacting the individual components of Green Supply Chain Performance – An Empirical Study of the Indian Automobile Manufacturing Sector

Mohd. Asif Gandhi
National Institute of Industrial Engineering (NITIE),
Department of Operations Management, Mumbai, India;
Sanjay Sharma
National Institute of Industrial Engineering (NITIE),
Department of Operations Management, Mumbai, India

ABSTRACT
This paper establishes the order in which five identified green supply chain practices jointly impact ten identified individual component measures of green supply chain performance with reference to the automobile manufacturing sector of India. This research paper is an extension of the research work done by [1]. The purpose of this research paper is to test the hypotheses developed by [1]. Further the joint impact of Green Supply Chain Practices on individual components of Green Supply Chain Performance has been established by means of ten multiple regression models. Consistently the ten multiple regression models that were developed established that there is a definite ordering of the five Green Supply Chain Practices while jointly impacting each of the ten component measures of Green Supply Chain Performance individually. These findings would enable practicing managers in the automobile manufacturing sector of India to take decisions related to implementation of green supply chain practices which would result in enhancing a particular green supply chain performance measure. This information regarding implementation of Green Supply Chain Practices would be very handy as it has financial and policy making implications.

Keywords: Automobile Manufacturing; Empirical Study; Components of Green Supply Chain Practices; Components of Green Supply Chain Performance; Indian.

INTRODUCTION
The research problem here is to test sixty-one hypotheses out of which fifty have been developed by [1] related to the association of Green Supply Chain Practices with individual component measures of Green Supply Chain Performance with reference to the automobile manufacturing sector of India. Additionally another eleven hypotheses have been framed in this paper pertaining to the ordering and joint impact of Green Supply Chain Practices on individual component measures of Green Supply Chain Performance.

Literature that studies the impact of Green Supply Chain Practices on Green Supply Chain Performance measures is on the rise. Few of the studies that have addressed this linkage are as follows: [1]; [2]; [3]; [4]; [5]; [6]; [7].

It has been established by the existing literature that Green Supply Chain Practices have an impact on measures of GSC performance [8] only at a broad level. Not many studies have focused identifying the exact joint impact of Green Supply Chain Practices on particular component measures of Green Supply Chain Performance [4], [5], [6], [7]. Further the existing
studies could not state conclusively the ordering of the GSC Practices that jointly impact a particular component measure of GSC Performance.

The purpose of this study is to test the association between the components of green supply chain practices and the components of green supply chain performance with reference to the automobile manufacturing sector in India. The study also tests already developed hypotheses pertaining to the association of GSC Practices with component measures of Green Supply Chain Performance [1]. The study additionally identifies the joint impact of Green Supply Chain Practices on individual component measures of Green Supply Chain Performance [1]. Finally the study identifies the order of influence of the GSC Practices while jointly impacting the individual component measures of GSC Performance.

THE CONCEPTUAL FRAMEWORK IDENTIFIED FOR TESTING THE HYPOTHESES
The conceptual framework showing the joint influence of green supply chain practices on component green supply chain performance measures as appearing in existing literature [1] is shown in figure 1. One of the Green Supply Chain Performance measures namely Green Supply Chain Execution, as identified in the mentioned paper consists further of five components namely Green Supply Chain Execution-Production; Green Supply Chain Execution-Logistics; Green Supply Chain Execution-Packaging; Green Supply Chain Execution-Marketing; Green Supply Chain Execution-Supply Loops [9].

![Figure 1. Association between components of Green Supply Chain Practices and components of Green Supply Chain Performance](http://dx.doi.org/10.14738/abr.61.4103.)
METHODS

This research may be described as quantitative research. It makes use of deductive reasoning for drawing conclusions. The data was collected by making use of a newly and originally prepared questionnaire instrument to scale the constructs namely Green Supply Chain Practices; and Green Supply Chain Performance as well as their sub-constructs by using a 5-point balanced Likert scale. The population consisted of plants of all Indian automobile manufacturing firms. The sample consisted of respondents from automobile manufacturing firms and their plants from India. The participants consist of representative executives from various automobile manufacturing firms having knowledge of the subject area of the research i.e. Green Supply Chain Practices and Green Supply Chain Performance.

A close-ended questionnaire instrument developed by [1] was used to scale the collected data. The questionnaire was administered on the respondents to scale the five green supply chain practices and the ten component measures of green supply chain performance. The questionnaire items are shown in the appendix section of this document.

A covering letter supported the instrument and the instrument contained demographic items, attitudinal items, behavioral items, factual items and closing instructions. The instrument used a continuous scale to measure the items; the instrument was subjected to expert comments of eminent faculties/practitioners in the field of green supply chain management. The suggestions given by them were subsequently incorporated to further improvise or revise the questionnaire. The pilot survey was of sample size 50 and the major survey was of sample size 103 including the 50 samples of the pilot survey.

The construct Green Supply Chain Practices has five sub-constructs and the construct Green Supply Chain Performance has ten sub-constructs as shown in the Table 1.

Table 1. Summary of the constructs and sub-constructs used in the study in their abbreviated and expanded forms

Sr. No.	Constructs and their sub-constructs in their abbreviated form	Constructs and their sub-constructs in their expanded form
GSC Practices		Green Supply Chain Practices
1	EC	Environmental Certification
2	PP	Pollution Prevention
3	RL	Reverse Logistics
4	LCA	Life Cycle Assessment
5	DfE	Design for the Environment
	GSC Performance	Green Supply Chain Performance
6	GSCPLAN	Green Supply Chain Planning
7	GSCPROC	Green Supply Chain Procurement
8	GSCEXPROD	Green Supply Chain Execution-Production
9	GSCEXLOG	Green Supply Chain Execution-Logistics
10	GSCEXPACK	Green Supply Chain Execution-Packaging
11	GSCEXMARK	Green Supply Chain Execution-Marketing
12	GSCEXSL	Green Supply Chain Execution-Supply Loops
13	CM	Carbon Management
14	GSCMIG	Green Supply Chain Migration
15	GCCCI	Green Supply Chain Continuous Improvement

The data that was collected on administering the questionnaire on the respondents was entered in an EXCEL sheet manually by coding the responses on a 5-point balanced Likert scale as 1, 2, 3, 4, and 5. The data was subsequently transferred to statistical analysis software SASS for the analysis. The descriptive statistics of the data collected is shown in the Table 2.
In order to evaluate the reliability of the data collected, Cronbach Coefficient Alpha was evaluated for each of the sub-constructs in the study. Table 3 shows the various sub-constructs involved in the study along with the corresponding value of the Cronbach Coefficient Alpha. This coefficient is a measure of reliability. Normally values starting from around 0.7 and going upwards are considered to indicate a good reliability. By reviewing the Cronbach Coefficient Alpha for the sub-constructs shown in the table 3, it is observed that the questionnaire is reliable to scale all the fifteen items. Sample size was 50 respondents for this pilot study whereas for getting a true indication of reliability, a sample size of around 100 respondents is needed. Accordingly, 103 samples were taken for this study during the major survey so that better conclusion could be drawn.
Table 3. Cronbach Alpha values as a measure of reliability for the various sub-constructs used in the study

Sr. No.	Sub-constructs	Cronbach Coefficient Alpha for the sub-constructs	
		Raw	Standardized
1	Environmental Certification	0.839954	0.850132
2	Pollution Prevention	0.977275	0.981131
3	Reverse Logistics	0.920683	0.922742
4	Life Cycle Assessment	0.614101	0.649368
5	Design for the Environment	0.886993	0.898978
6	Green Supply Chain Planning	0.947669	0.953422
7	Green Supply Chain Procurement	0.960878	0.954046
8	Green Supply Chain Execution (Green Production)	0.845737	0.888054
9	Green Supply Chain Execution (Green Logistics)	0.775143	0.817626
10	Green Supply Chain Execution (Green Packaging)	0.997976	0.997972
11	Green Supply Chain Execution (Green Marketing)	0.969056	0.968858
12	Green Supply Chain Execution (Supply Loops)	0.279859	0.252359
13	Carbon Management	0.836164	0.831687
14	Green Supply Chain Migration	0.978998	0.979889
15	Green Supply Chain Continuous Improvement	0.989219	0.989432

The Cronbach Coefficient Alpha for Green Supply Chain Execution (Supply Loops) is less but it has got strong support of existing literature in its favour; so it has been retained [9].

FACTOR ANALYSIS OF THE DATA COLLECTED DURING THE PILOT STUDY

Confirmatory Factor Analysis was conducted on the variables constituting the sub-constructs DFE [10], EC [11], LCA [12], PP [13] and RL [14]. Confirmatory Factor Analysis was also conducted on the variables constituting the sub-constructs GSCPLAN [15], GSCPROC [16], GSCEXPROD [17], GSCEXLOG [18], GSCEXPACK [19], GSCEXMARK [20], GSCEXSL [21], CM [22], GSCMIG [23] and GSCCI [24] in a similar manner. This helped in identifying the factors and also in establishing the communality estimates for or each of the sub-constructs in the questionnaire. By sorting the component variables of each sub-construct in descending order of value of their communality estimates, it was possible to establish the order of contribution of component variables constituting each sub-construct [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23] and [24]. The major survey consisted of 103 samples including the 50 samples taken during the pilot survey. The ten sub-constructs of the construct GSC Performance (Green Supply Chain Performance) and the five sub-constructs of the construct GSC Practices (Green Supply Chain Practices) used in correlation analysis are shown in Table 4 in their abbreviated form.

Table 4. The set of constructs used in correlation analysis

10 Constructs	GSCPLAN	GSCPROC	GSCEXPROD	GSCEXLOG	GSCEXPACK	GSCEXMARR	GSCEXSL	CM	GSCMIG	GSCCI
5 Constructs	EC	PP	RL	LCA	DFE	CM	GSCMIG	GSCCI		

The descriptive statistics of the data collected and scaled during the major survey is shown in the Table 5.
Table 5. Descriptive statistics of the data scaled during the major survey

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
GSCPLAN	103	4.40194	0.77788	453.40000	2.00000	5.00000
GSCPROC	103	4.42807	0.7950	456.09091	1.72727	5.00000
GSCEXPROD	103	4.58669	0.55035	472.42857	2.57143	5.00000
GSCEXLOG	103	4.37136	0.43627	450.25000	3.16667	4.75000
GSCEXPACK	103	4.78155	0.41076	492.50000	4.00000	5.00000
GSCEXMARK	103	4.15534	1.03441	428.00000	1.25000	5.00000
GSCEXSL	103	4.69462	0.38461	483.54545	4.00000	5.00000
CM	103	3.81692	0.70112	393.14286	1.00000	5.00000
GSCMIG	103	4.60388	0.44368	474.20000	4.00000	5.00000
GSCCI	103	4.15534	1.03441	428.00000	1.25000	5.00000

Table 6 shows the Pearson’s correlation coefficient between each of the five components of green supply chain practices and each of the ten components of green supply chain performance. Accordingly, in all fifty associations were identified for a co-relational study.

Table 6. Correlations between the sub-constructs of GSC Practices and GSC Performance

Sub-constructs	EC	PP	RL	LCA	DFE
GSCPLAN	0.77652	0.89556	0.58815	0.86637	0.89235
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCPROC	0.79505	0.91784	0.64056	0.89016	0.88818
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCEXPROD	0.81458	0.94278	0.59098	0.90133	0.77809
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCEXLOG	0.73401	0.78128	0.33109	0.78431	0.88357
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCEXPACK	0.75984	0.89303	0.73419	0.91591	0.59887
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCEXMARK	0.43783	0.57391	0.35796	0.72417	0.92030
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCEXSL	0.56192	0.63907	0.29853	0.74510	0.89379
	<.0001	<.0001	<.0001	<.0001	<.0001
CM	0.42258	0.59716	0.50793	0.76088	0.86238
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCMIG	0.63345	0.72321	0.39958	0.81444	0.89433
	<.0001	<.0001	<.0001	<.0001	<.0001
GSCCI	0.75947	0.87719	0.62598	0.93066	0.79845
	<.0001	<.0001	<.0001	<.0001	<.0001
On the basis of Table 6 it is possible to test the association between the fifty pairs of subconstructs and hence test the fifty hypotheses which have been framed [1]. Also additionally eleven hypotheses pertaining to the ordering and the joint influence of components of GSC Practices on individual component measures of GSC Performance have been framed. Table 7 shows all the sixty-one hypotheses to be tested in their null and alternate form. Also it shows the decision of accepting or rejecting the hypotheses on the basis of correlation coefficient and/or regression analysis. For values of p less than 0.05 the null hypotheses have been rejected else they have been accepted.

Table 7. Hypotheses tested along with the decision of accepting or rejecting them based on correlation analysis and/or regression analysis

Sr. No.	Null Hypothesis	Alternate Hypothesis	Pearson’s correlation coefficient	p value for Significance level (α = 0.05)	Decision about the hypothesis	
1	H10	H1a	0.77652	<.0001	Reject Null Hypothesis	
	Environmental Certification has no association with GSC Planning.	Environmental Certification has a significant positive association with GSC Planning.			Accept Alternate Hypothesis	
2	H20	H2a	0.79505	<.0001	Reject Null Hypothesis	
	Environmental Certification has no association with Green Procurement.	Environmental Certification has a significant positive association with Green Procurement.			Accept Alternate Hypothesis	
3	H3a0	H3a	0.81458	<.0001	Reject Null Hypothesis	
	Environmental Certification has no association with Green Production component of GSC Execution.	Environmental Certification has a significant positive association with Green Production component of GSC Execution.			Accept Alternate Hypothesis	
4	H3b0	H3b	0.73401	<.0001	Reject Null Hypothesis	
	Environmental Certification has no association with Green Logistics component of GSC Execution.	Environmental Certification has a significant positive association with Green Logistics component of GSC Execution.			Accept Alternate Hypothesis	
5	H3c0	H3c	0.75984	<.0001	Reject Null Hypothesis	
	Environmental Certification has no association with Green Packaging component of GSC Execution.	Environmental Certification has a significant positive association with Green Packaging component of GSC Execution.			Accept Alternate Hypothesis	
6	H3d0		0.43783	<.0001	Reject Null Hypothesis	
Sr. No.	Null Hypothesis	Alternate Hypothesis	Pearson’s correlation coefficient	p value for Significance level (α = 0.05)	Decision about the hypothesis	
--------	----------------	----------------------	----------------------------------	--	-----------------------------	
7	H3d_a	Environmental Certification has a significant positive association with Green Marketing component of GSC Execution.			Accept Alternate Hypothesis	
	H3e₀	Environmental Certification has no association with Supply Loops component of GSC Execution.		0.56192	Reject Null Hypothesis	
	H3e_a	Environmental Certification has a significant positive association with Supply Loops component of GSC Execution.			Accept Alternate Hypothesis	
8	H4₀	Environmental Certification has no association with Carbon Management.		0.42258	Reject Null Hypothesis	
	H4_a	Environmental Certification has a significant positive association with Carbon Management.			Accept Alternate Hypothesis	
9	H5₀	Environmental Certification has no association with GSC Migration.		0.63345	Reject Null Hypothesis	
	H5_a	Environmental Certification has a significant positive association with GSC Migration.			Accept Alternate Hypothesis	
10	H6₀	Environmental Certification has no association with GSC Continuous Improvement.		0.75947	Reject Null Hypothesis	
	H6_a	Environmental Certification has a significant positive association with GSC Continuous Improvement.			Accept Alternate Hypothesis	
11	H7₀	Pollution prevention has no association with GSC Planning.		0.89556	Reject Null Hypothesis	
	H7_a	Pollution prevention has a significant positive association with GSC Planning.			Accept Alternate Hypothesis	
12	H8₀	Pollution prevention has no association with Green Procurement.		0.91784	Reject Null Hypothesis	
	H8_a	Pollution prevention has a significant positive association with Green Procurement.			Accept Alternate Hypothesis	
13	H9a₀	Pollution prevention has no association with Green Production component of GSC Execution.		0.94278	Reject Null Hypothesis	
	H9a_a	Pollution prevention has a significant positive association with Green Production component of GSC Execution.			Accept Alternate Hypothesis	
Sr. No.	Null Hypothesis	Alternate Hypothesis	Hypothesis	Pearson’s correlation coefficient	p value for Significance level (\(\alpha = 0.05\))	Decision about the hypothesis
--------	-----------------	---------------------	------------	-----------------------------------	---	-----------------------------
14	H9b\(_0\)		Pollution prevention has no association with Green Logistics component of GSC Execution.	0.78128	<.0001	Reject Null Hypothesis
	H9b\(_a\)		Pollution prevention has a significant positive association with Green Logistics component of GSC Execution.			Accept Alternate Hypothesis
15	H9c\(_0\)		Pollution prevention has no association with Green Packaging component of GSC Execution.	0.89303	<.0001	Reject Null Hypothesis
	H9c\(_a\)		Pollution prevention has a significant positive association with Green Packaging component of GSC Execution.			Accept Alternate Hypothesis
16	H9d\(_0\)		Pollution prevention has no association with Green Marketing component of GSC Execution.	0.57391	<.0001	Reject Null Hypothesis
	H9d\(_a\)		Pollution prevention has a significant positive association with Green Marketing component of GSC Execution.			Accept Alternate Hypothesis
17	H9e\(_0\)		Pollution prevention has no association with Supply Loops component of GSC Execution.	0.63907	<.0001	Reject Null Hypothesis
	H9e\(_a\)		Pollution prevention has a significant positive association with Supply Loops component of GSC Execution.			Accept Alternate Hypothesis
18	H10\(_0\)		Pollution prevention has no association with Carbon Management.	0.59716	<.0001	Reject Null Hypothesis
	H10\(_a\)		Pollution prevention has a significant positive association with Carbon Management.			Accept Alternate Hypothesis
19	H11\(_0\)		Pollution prevention has no association with GSC Migration.	0.72321	<.0001	Reject Null Hypothesis
	H11\(_a\)		Pollution prevention has a significant positive association with GSC Migration.			Accept Alternate Hypothesis
20	H12\(_0\)		Pollution prevention has no association with GSC Continuous Improvement.	0.87719	<.0001	Reject Null Hypothesis
	H12\(_a\)		Pollution prevention has a significant positive association with GSC Continuous Improvement.			Accept Alternate Hypothesis
21	H13\(_0\)		Life Cycle Assessment has no association with GSC Planning.	0.86637	<.0001	Reject Null Hypothesis
Sr. No.	Null Hypothesis	Alternate Hypothesis	Hypothesis Description	Pearson’s correlation coefficient	p value for Significance level (α = 0.05)	Decision about the hypothesis
--------	----------------	---------------------	-------------------------	---------------------------------	--	-------------------------------
22	H13a	Life Cycle Assessment has a significant positive association with GSC Planning.				Accept Alternate Hypothesis
23	H140	Life Cycle Assessment has no association with Green Procurement.	0.89016	<.0001	Reject Null Hypothesis	
24	H14a	Life Cycle Assessment has a significant positive association with Green Procurement.			Accept Alternate Hypothesis	
25	H15a0	Life Cycle Assessment has no association with Green Production component of GSC Execution.	0.90133	<.001	Reject Null Hypothesis	
26	H15a1	Life Cycle Assessment has a significant positive association with Green Production component of GSC Execution.			Accept Alternate Hypothesis	
27	H15b0	Life Cycle Assessment has no association with Green Logistics component of GSC Execution.	0.78431	<.0001	Reject Null Hypothesis	
28	H15b1	Life Cycle Assessment has a significant positive association with Green Logistics component of GSC Execution.			Accept Alternate Hypothesis	
29	H15c0	Life Cycle Assessment has no association with Green Packaging component of GSC Execution.	0.91591	<.0001	Accept Alternate Hypothesis	
30	H15c1	Life Cycle Assessment has a significant positive association with Green Packaging component of GSC Execution.			Accept Alternate Hypothesis	
31	H15d0	Life Cycle Assessment has no association with Green Marketing component of GSC Execution.	0.72417	<.0001	Reject Null Hypothesis	
32	H15d1	Life Cycle Assessment has a significant positive association with Green Marketing component of GSC Execution.			Accept Alternate Hypothesis	
33	H15e0	Life Cycle Assessment has no association with Supply Loops component of GSC Execution.	0.74510	<.0001	Accept Alternate Hypothesis	
34	H15e1	Life Cycle Assessment has a significant positive association with Supply Loops component of GSC Execution.			Accept Alternate Hypothesis	
35	H160	Life Cycle Assessment has no association with Carbon Management.	0.76088	<.0001	Reject Null Hypothesis	
Sr. No.	Null Hypothesis	Alternate Hypothesis	Pearson’s correlation coefficient	p value for Significance level ($\alpha = 0.05$)	Decision about the hypothesis	
---------	-----------------	----------------------	-------------------------------	----------------------	-------------------------------	
29	H_{16_a}	Life Cycle Assessment has a significant positive association with Carbon Management.		0.81444	Accept Alternate Hypothesis	
	H_{17_0}	Life Cycle Assessment has no association with GSC Migration.	0.81444	<.0001	Reject Null Hypothesis	
	H_{17_a}	Life Cycle Assessment has a significant positive association with GSC Migration.	0.81444	<.0001	Accept Alternate Hypothesis	
30	H_{18_0}	Life Cycle Assessment has no association with GSC Continuous Improvement.		0.93066	Reject Null Hypothesis	
	H_{18_a}	Life Cycle Assessment has a significant positive association with GSC Continuous Improvement.	0.93066	<.0001	Accept Alternate Hypothesis	
31	H_{19_0}	Design for Environment has no association with GSC Planning.		0.89235	Reject Null Hypothesis	
	H_{19_a}	Design for Environment has a significant positive association with GSC Planning.	0.89235	<.0001	Accept Alternate Hypothesis	
32	H_{20_0}	Design for Environment has no association with Green Procurement.		0.88818	Reject Null Hypothesis	
	H_{20_a}	Design for Environment has a significant positive association with Green Procurement.	0.88818	<.0001	Accept Alternate Hypothesis	
33	H_{21a_0}	Design for Environment has no association with Green Production component of GSC Execution.		0.77809	Reject Null Hypothesis	
	H_{21a_a}	Design for Environment has a significant positive association with Green Production component of GSC Execution.	0.77809	<.0001	Accept Alternate Hypothesis	
34	H_{21b_0}	Design for Environment has no association with Green Logistics component of GSC Execution.		0.88357	Reject Null Hypothesis	
	H_{21b_a}	Design for Environment has a significant positive association with Green Logistics component of GSC Execution.	0.88357	<.0001	Accept Alternate Hypothesis	
35	H_{21c_0}	Design for Environment has no association with Green Packaging component of GSC Execution.		0.59887	Reject Null Hypothesis	
Sr. No.	Null Hypothesis	Alternate Hypothesis	Hypothesis	Pearson’s correlation coefficient	p value for Significance level ($\alpha = 0.05$)	Decision about the hypothesis
---------	------------------	----------------------	--	----------------------------------	---	-------------------------------
36	H21c0	Design for Environment has a significant positive association with Green Packaging component of GSC Execution.	0.92030	<.0001	Accept Alternate Hypothesis	
37	H21d0	Design for Environment has no association with Green Marketing component of GSC Execution.			Reject Null Hypothesis	
	H21d1a	Design for Environment has a significant positive association with Green Marketing component of GSC Execution.			Accept Alternate Hypothesis	
38	H21e0	Design for Environment has no association with Supply Loops component of GSC Execution.	0.89379	<.0001	Reject Null Hypothesis	
	H21e1a	Design for Environment has a significant positive association with Supply Loops component of GSC Execution.			Accept Alternate Hypothesis	
39	H220	Design for Environment has no association with Carbon Management.	0.86238	<.0001	Accept Alternate Hypothesis	
	H221a	Design for Environment has a significant positive association with Carbon Management.				
40	H230	Design for Environment has no association with GSC Migration.	0.89433	<.0001	Accept Alternate Hypothesis	
	H231a	Design for Environment has a significant positive association with GSC Migration.				
41	H240	Design for Environment has a no association with GSC Continuous Improvement.	0.79845	<.0001	Accept Alternate Hypothesis	
	H241a	Design for Environment has a significant positive association with GSC Continuous Improvement.				
42	H250	Reverse Logistics has a no association with GSC Planning.	0.58815	<.0001	Accept Alternate Hypothesis	
	H251a	Reverse Logistics has a significant positive association with GSC Planning.				
43	H260	Reverse Logistics has no association with Green Procurement.	0.64056	<.0001	Accept Alternate Hypothesis	
	H261a	Reverse Logistics has a significant positive association with Green Procurement.				
Sr. No.	Null Hypothesis	Alternate Hypothesis	Pearson's correlation coefficient	p value for Significance level ($\alpha = 0.05$)	Decision about the hypothesis	
--------	-----------------	----------------------	-----------------------------------	---	-----------------------------	
43	H27a0	Reverse Logistics has no association with Green Production component of GSC Execution.	0.59098	<.0001	Reject Null Hypothesis	
	H27a1	Reverse Logistics has a significant positive association with Green Production component of GSC Execution.			Accept Alternate Hypothesis	
44	H27b0	Reverse Logistics has no association with Green Logistics component of GSC Execution.	0.33109	0.0006	Reject Null Hypothesis	
	H27b1	Reverse Logistics has a significant positive association with Green Logistics component of GSC Execution.			Accept Alternate Hypothesis	
45	H27c0	Reverse Logistics has no association with Green Packaging component of GSC Execution.	0.73419	<.0001	Reject Null Hypothesis	
	H27c1	Reverse Logistics has a significant positive association with Green Packaging component of GSC Execution.			Accept Alternate Hypothesis	
46	H27d0	Reverse Logistics has no association with Green Marketing component of GSC Execution.	0.35796	0.0002	Reject Null Hypothesis	
	H27d1	Reverse Logistics has a significant positive association with Green Marketing component of GSC Execution.			Accept Alternate Hypothesis	
47	H27e0	Reverse Logistics has no association with Supply Loops component of GSC Execution.	0.29853	<0.0022	Reject Null Hypothesis	
	H27e1	Reverse Logistics has a significant positive association with Supply Loops component of GSC Execution.			Accept Alternate Hypothesis	
48	H280	Reverse Logistics has no association with Carbon Management.	0.50793	<.0001	Reject Null Hypothesis	
	H281	Reverse Logistics has a significant positive association with Carbon Management.			Accept Alternate Hypothesis	
49	H290	Reverse Logistics has no association with GSC Migration.	0.39958	<.0001	Reject Null Hypothesis	
	H291	Reverse Logistics has a significant positive association with GSC Migration.			Accept Alternate Hypothesis	
Null Hypothesis

Sr. No.	Null Hypothesis	Alternate Hypothesis	Pearson’s correlation coefficient	p value for Significance level ($\alpha = 0.05$)	Decision about the hypothesis	
50	H_{30_0}	Reverse Logistics has a no association with GSC Continuous Improvement			Reject Null Hypothesis	
	H_{30_a}	Reverse Logistics has a significant positive association with GSC Continuous Improvement	0.62598	<.0001	Accept Alternate Hypothesis	
51	H_{31_0}	There is no definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Planning component of Green Supply Chain Performance.			Reject null hypothesis	
	H_{31_a}	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Planning component of Green Supply Chain Performance.			Accept alternate hypothesis	
52	H_{32_0}	There is no definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Procurement component of Green Supply Chain Performance.			Reject null hypothesis	
	H_{32_a}	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Procurement component of Green Supply Chain Performance.			Accept alternate hypothesis	
53	H_{33_0}	There is no definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for			Reject null hypothesis	
Sr. No.	Null Hypothesis	Alternate Hypothesis	Hypothesis	Pearson’s correlation coefficient	p value for Significance level (α = 0.05)	Decision about the hypothesis
------	----------------	---------------------	---	-----------------------------------	--	-----------------------------
54	H33a		Environment; and Reverse Logistics impact the Green Supply Chain Execution (Production) component of Green Supply Chain Performance.		and Figure 14.	Accept alternate hypothesis
55	H34o		There is no definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Execution (Logistics) component of Green Supply Chain Performance.			Reject null hypothesis
	H34a		There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Execution (Logistics) component of Green Supply Chain Performance.		The null hypothesis is rejected and the alternate hypothesis is accepted on the basis of the evidence provided by Table 6, Table 17, Table 18, Table 19, Table 39, Table 41 and Figure 15.	Accept alternate hypothesis
55	H35o		There is no definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Execution (Packing) component of Green Supply Chain Performance.		The null hypothesis is rejected and the alternate hypothesis is accepted on the basis of the evidence provided by Table 6, Table 20, Table 21, Table 22, Table 39, Table 41 and Figure 16.	Reject null hypothesis
Sr. No.	Null Hypothesis	Alternate Hypothesis	Pearson’s correlation coefficient	p value for Significance level (α = 0.05)	Decision about the hypothesis	
--------	-----------------	----------------------	-------------------------------	--	-----------------------------	
56	H35_a	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Execution (Packing) component of Green Supply Chain Performance.			Accept alternate hypothesis	
56	H36_a	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Execution (Marketing) component of Green Supply Chain Performance.			Accept alternate hypothesis	
57	H37_a	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Execution (Supply Loops) component of Green Supply Chain Performance.			Accept alternate hypothesis	
57	H38_a	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Execution (Supply Loops) component of Green Supply Chain Performance.			Accept alternate hypothesis	
Sr. No.	Null Hypothesis	Alternate Hypothesis	Pearson's correlation coefficient	p value for Significance level (α = 0.05)	Decision about the hypothesis	
---------	----------------	----------------------	----------------------------------	--	-----------------------------	
58	H380	There is no definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Carbon Management component of Green Supply Chain Performance.		The null hypothesis is rejected and the alternate hypothesis is accepted on the basis of the evidence provided by Table 6, Table 29, Table 30, Table 31, Table 39, Table 41 and Figure 19.	Reject null hypothesis	
59	H390	There is no definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Migration component of Green Supply Chain Performance.		The null hypothesis is rejected and the alternate hypothesis is accepted on the basis of the evidence provided by Table 6, Table 32, Table 33, Table 34, Table 39, Table 41 and Figure 20.	Reject null hypothesis	
	H38a	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Carbon Management component of Green Supply Chain Performance.		Accept alternate hypothesis	Accept alternate hypothesis	
	H39a	There is a definite order in which the five Green Supply Chain Practices namely Environmental Certification; Pollution Prevention; Life Cycle Assessment; Design for Environment; and Reverse Logistics impact the Green Supply Chain Migration component of Green Supply Chain Performance.		Accept alternate hypothesis	Accept alternate hypothesis	
From the first fifty hypotheses i.e. hypotheses from serial number 1 to serial number 50 of Table 7 it is evident that on the basis of correlation analysis the five components of green supply chain practices are individually associated in varying degrees with the ten sub-construct components of green supply chain performance (Hypotheses H₁ to H₃₀). Also it is evident from table 7 that the five green supply chain practices jointly impact individual component measures of Green Supply Chain Performance (Hypotheses H₃₁ to H₄₀). Finally hypothesis H₄₁ in table 7 makes it evident that there is a definite order of influence of the five green supply chain practices on individual component measures of Green Supply Chain Performance.

REGRESSION ANALYSIS

Ten dependent sub-constructs and five independent sub-constructs were identified. Accordingly ten models and fifty (10 x 5 = 50) hypotheses emerged for doing regression analysis. Each of these models was tested one by one for studying the joint impact of the independent sub-constructs (i.e. components of GSC Practices) on a particular dependent sub-construct (component measures of GSC Performance). Accordingly, all the fifty hypotheses
were stated in their null and alternate form as shown in table 7 for testing them by using multiple regression analysis. Also additional eleven hypotheses pertaining to the ordering of components of GSC Practices jointly influencing the component measures of GSC Performance are stated in their null and alternate form in table 7. In all sixty-one hypotheses are put to test.

Model 1. Green Supply Chain Planning (GSCPLAN)

Model 1 is associated with the five hypotheses namely H_1, H_7, H_{13}, H_{19} and H_{25} wherein the dependent construct is GSCPLAN (Green Supply Chain Planning) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 1 is depicted in figure 2.

![Figure 2. Model 1-Impact of GSC Practices on GSCPLAN](image)

The summary of the multiple regression output for model 1 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCPLAN, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R^2 is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 1, the $R^2 = 0.9606$ which means that 96.06 % of the variance of the dependent construct GSCPLAN is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of $\alpha = 0.05$ ($p < 0.0001$), i.e., this does not hold true 0.0001 % of times. Table 8 shows the analysis of variance for model 1. Table 9 shows the computation of R^2 value for model 1. Table 10 shows the computation of parameter estimates for model 1. Thus, the hypotheses H_{1a}, H_{7a}, H_{13a}, H_{19a} and H_{25a} are substantiated. Since some of the parameter estimates are negative, as shown in the table 10, there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 35 and the new (revised) parameter estimates are obtained as shown in the table 36. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCPLAN component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCPLAN component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 36 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCPLAN component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCPLAN component of GSC performance is...
as follows: LCA, EC, PP, DFE and RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.352077842, 0.311427967, 0.296521179, 0.223926708 and 0.196058173. Accordingly, model 1 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCPLAN component of Green Supply Chain Performance:

\[
\text{GSCPLAN} = -1.733112398 + (0.311427967)(\text{EC}) + (0.296521179)(\text{PP}) + (0.196058173)(\text{RL}) + (0.352077842)(\text{LCA}) + (0.223926708)(\text{DFE})
\]

Table 8. ANOVA for model 1: Dependent variable: GSCPLAN

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	59.29042	11.85808	473.51	<.0001
Error	97	2.42919	0.02504		
Corrected Total	102	61.71961			

Table 9. Computation of R² for model 1

Root MSE	R-Square	Adj R-Sq
0.15825	0.9606	0.9586

| Coeff Var | 3.59501 |

Table 10. Parameter estimates for model 1

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| Variance Inflation |
|----------|----|--------------------|----------------|---------|------|-------------------|
| Intercept| 1 | -0.01935 | 0.24227 | -0.08 | 0.9365| 0 |
| EC | 1 | -0.47431 | 0.10377 | -4.57 | <.0001| 12.30377 |
| PP | 1 | 1.11008 | 0.13184 | 8.42 | <.0001| 28.90365 |
| RL | 1 | 0.20592 | 0.05503 | 3.74 | 0.0003| 6.50446 |
| LCA | 1 | -0.59159 | 0.12174 | -4.86 | <.0001| 16.61923 |
| DFE | 1 | 0.79340 | 0.04851 | 16.36 | <.0001| 4.55562 |

Model 2. Green Supply Chain Procurement (GSCPROC)

Model 2 is associated with the five hypotheses namely H₂, H₈, H₁₄, H₂₀ and H₂₆ wherein the dependent construct is GSCPROC (Green Supply Chain Procurement) and the independent sub-concepts are EC, PP, RL, LCA and DFE. Model 2 is depicted in figure 3.
The summary of the multiple regression output for model 2 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCPROC, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R² is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 2, the R² = 0.9901 which means that 99.01% of the variance of the dependent construct GSCPROC is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of α = 0.05 (p < 0.0001), i.e., this does not hold true 0.0001% of times.

Table 11 shows the analysis of variance for model 2. Table 12 shows the computation of R² value for model 2. Table 13 shows the computation of parameter estimates for model 2. Thus, the hypotheses H₂ₐ, H₈ₐ, H₁₄ₐ, H₂₀ₐ and H₂₆ₐ are substantiated. Since some of the parameter estimates are negative, as shown in the table 13 there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCPROC component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCPROC component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 36 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCPROC component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCPROC component of GSC performance is as follows: LCA, EC, PP, DFE and RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.362416519, 0.320572971, 0.305228448, 0.230502259 and 0.201815371. Accordingly, model 2 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCPROC component of Green Supply Chain Performance:

\[
GSC\text{PROC} = -1.887141383 + (0.320572971)(EC) + (0.305228448)(PP) + (0.201815371)(RL) + (0.362416519)(LCA) + (0.230502259)(DFE)
\]
Table 11. ANOVA for model 2: Dependent variable: GSCPROC

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	61.36375	12.27275	1940.05	<.0001
Error	97	0.61362	0.00633		
Corrected Total	102	61.97737			

Table 12. Computation of R² for model 2

Root MSE	R-Square	Adj R-Sq
0.07954	0.9901	0.9896

Dependent Mean	Coeff Var
4.42807	1.79618

Table 13. Parameter estimates for model 2

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| Variance Inflation |
|----------|----|--------------------|----------------|---------|-------|-------------------|
| Intercept| 1 | -0.30400 | 0.12176 | -2.50 | 0.0142 | 0 |
| EC | 1 | -0.26830 | 0.05216 | -5.14 | <.0001 | 12.30377 |
| PP | 1 | 0.88997 | 0.06626 | 13.43 | <.0001 | 28.90365 |
| RL | 1 | 0.36609 | 0.02766 | 13.24 | <.0001 | 6.50446 |
| LCA | 1 | -0.64308 | 0.06118 | -10.51 | <.0001 | 16.61923 |
| DFE | 1 | 0.80498 | 0.02438 | 33.02 | <.0001 | 4.55562 |

Model 3. Green Supply Chain Execution - Production (GSCEXPROD)

Model 3 is associated with the five hypotheses namely H_{3A}, H_{9A}, H_{15A}, H_{21A} and H_{27A} wherein the dependent construct is GSCEXPROD (Green Supply Chain Execution-Production) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 3 is depicted in figure 4.

![Figure 4. Model 3-Impact of GSC Practices on GSCEXPROD](image)

The summary of the multiple regression output for model 3 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCEXPROD, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R^2 is

URL: http://dx.doi.org/10.14738/abr.61.4103.
indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 3, the $R^2 = 0.9561$ which means that 95.61% of the variance of the dependent construct GSCEXPROD is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of $\alpha = 0.05$ ($p < 0.0001$), i.e., this does not hold true 0.0001% of times. Table 14 shows the analysis of variance for model 3. Table 15 shows the computation of R^2 value for model 3. Table 16 shows the computation of parameter estimates for model 3. Thus, the hypotheses H_{3Aa}, H_{9Aa}, H_{15Aa}, H_{21Aa} and H_{27Aa} are substantiated. Since some of the parameter estimates are negative, as shown in the table 16 there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCEXPROD component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCEXPROD component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCEXPROD component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCEXPROD component of GSC performance is as follows: LCA, EC, PP, DFE and RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.250726008, 0.221777918, 0.211162313, 0.159465444 and 0.13961936. Accordingly, model 3 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCEXPROD component of Green Supply Chain Performance:

$$GSCEXPROD = 0.217714868 + (0.221777918)(EC) + (0.211162313)(PP) + (0.139619360)(RL) + (0.250726008)(LCA) + (0.159465444)(DFE)$$

| Table 14. ANOVA for model 3: Dependent variable: GSCEXPROD |
|---------------------------------|----------------|--------------|--------|--------|
| Analysis of Variance | | | | |
| Source | DF | Sum of Squares | Mean Square | F Value | Pr > F |
| Model | 5 | 29.53856 | 5.90771 | 422.66 | <.0001 |
| Error | 97 | 1.35583 | 0.01398 | | |
| Corrected Total | 102 | 30.89439 | | | |

Table 15. Computation of R^2 for model 3
Root MSE
Dependent Mean
Coeff Var
Table 16. Parameter estimates for model 3

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Variance Inflation |
|----------|----|--------------------|----------------|---------|------|---|---------------------|
| Intercept | 1 | 0.50128 | 0.18099 | 2.77 | 0.0067 | 0 | 12.30377 |
| EC | 1 | -0.33418 | 0.07753 | -4.31 | <.0001 | 28.90365 |
| PP | 1 | 0.93933 | 0.09850 | 9.54 | <.0001 | 16.61923 |
| RL | 1 | -0.34678 | 0.04112 | -8.43 | <.0001 | 6.50446 |
| LCA | 1 | 0.55240 | 0.09095 | 6.07 | <.0001 | 4.55562 |
| DFE | 1 | -0.01472 | 0.03624 | -0.41 | 0.6855 | 4.55562 |

Model 4. Green Supply Chain Execution - Logistics (GSCEXLOG)

Model 4 is associated with the five hypotheses namely H3B, H9B, H15B, H21B and H27B wherein the dependent construct is GSCEXLOG (Green Supply Chain Execution- Logistics) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 4 is depicted in figure 5.

![Figure 5. Model 4-Impact of GSC Practices on GSCEXLOG](image)

The summary of the multiple regression output for model 4 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCEXLOG, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R² is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 4, the R² = 0.9050 which means that 90.50 % of the variance of the dependent construct GSCEXLOG is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of α = 0.05 (p < 0.0001), i.e., this does not hold true 0.0001 % of times. Table 17 shows the analysis of variance for model 4. Table 18 shows the computation of R² value for model 4. Table 19 shows the computation of parameter estimates for model 4. Thus, the hypotheses H3Ba, H9Ba, H15Ba, H21Ba and H27Ba are substantiated. Since some of the parameter estimates are negative, as shown in the table 19 there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain
Practices on the GSCEXLOG component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCEXLOG component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCEXLOG component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCEXLOG component of GSC performance is as follows: LCA, EC, PP, DFE and RL. Accordingly, model 4 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCEXLOG component of Green Supply Chain Performance:

$$\text{GSCEXLOG} = 1.344753781 + (0.153636718)(\text{EC}) + (0.146282754) (\text{PP}) + (0.096721352) (\text{RL}) + (0.173690515) (\text{LCA}) + (0.110469733) (\text{DFE})$$

Table 17. ANOVA for model 4: Dependent variable: GSCEXLOG

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	17.56953	3.51391	184.84	<.0001
Error	97	1.84403	0.01901		
Corrected Total	102	19.41357			

Table 18. Computation of R2 for model 4

Root MSE	R-Square	0.905
Dependent Mean	Adj R-Sq	0.900
Coeff Var	3.15415	

Table 19. Parameter estimates for model 4

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr >	Variance Inflation
Intercept	1	0.91554	0.21108	4.34	<.0001	
EC	1	-0.08449	0.09042	-0.93	0.3524	12.30377
PP	1	0.27390	0.11487	2.38	0.0191	28.90365
RL	1	-0.39933	0.04795	-8.33	<.0001	6.50446
LCA	1	0.70384	0.10607	6.64	<.0001	16.61923
DFE	1	0.15971	0.04226	3.78	0.0003	4.55562

Model 5. Green Supply Chain Execution -Packaging (GSCEXPACK)

Model 5 is associated with the five hypotheses namely H₃C, H₉C, H₁₅C, H₂₁C and H₂₇C wherein the dependent construct is GSCEXPACK (Green Supply Chain Execution-Packaging) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 5 is depicted in figure 6.
The summary of the multiple regression output for model 5 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCEXPACK, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R^2 is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 5, the $R^2 = 0.9286$ which means that 92.86 % of the variance of the dependent construct GSCEXPACK is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of $\alpha = 0.05$ (p < 0.0001), i.e., this does not hold true 0.0001 % of times. Table 20 shows the analysis of variance for model 5. Table 21 shows the computation of R^2 value for model 5. Table 22 shows the computation of parameter estimates for model 5. Thus, the hypotheses H_{3Ca}, H_{9Ca}, H_{15Ca}, H_{21Ca} and H_{27Ca} are substantiated. Since some of the parameter estimates are negative, as shown in the table 22 there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCEXPACK component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCEXPACK component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCEXPACK component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCEXPACK component of GSC performance is as follows: LCA, EC, PP, DFE and RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.180826261, 0.159948591, 0.152292503, 0.115008172 and 0.100694966. Accordingly, model 5 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCEXPACK component of Green Supply Chain Performance:

$$
\text{GSCEXPACK} = 1.630605607 + (0.159948591)(EC) + (0.152292503)(PP) + (0.100694966)(RL) + (0.180826261)(LCA) + (0.115008172)(DFE)
$$
Table 20. ANOVA for model 5: GSCEXPACK

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	15.98130	3.19626	252.34	<.0001
Error	97	1.22865	0.01267		
Corrected Total	102	17.20995			

Table 21. Computation of R^2 for model 5

Root MSE	0.11255	R-Square	0.9286		
Dependent Mean	4.78155	Adj R-Sq	0.9249		
Coef Var	2.35375				

Table 22. Parameter estimates for model 5

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr >	t	Variance	Inflation
Intercept	1	0.50367	0.17230	2.92	0.0043		0	
EC	1	0.45734	0.07380	6.20	<.0001		12.30377	
PP	1	-0.24915	0.09377	-2.66	0.0092		28.90365	
RL	1	-0.08176	0.03914	-2.09	0.0393		6.50446	
LCA	1	1.02099	0.08658	11.79	<.0001		16.61923	
DFE	1	-0.26049	0.03450	-7.55	<.0001		4.55562	

Model 6. Green Supply Chain Execution - Marketing (GSCEXMARK)
Model 6 is associated with the five hypotheses namely H_{3D}, H_{9D}, H_{15D}, H_{21D} and H_{27D} wherein the dependent construct is GSCEXMARK (Green Supply Chain Execution-Marketing) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 6 is depicted in figure 7.

![Figure 7. Model 6-Impact of GSC Practices on GSCEXMARK](image)

The summary of the multiple regression output for model 6 is as follows:
When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCEXMARK, which is interval scaled,
the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R² is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 6, the R² = 0.9403 which means that 94.03 % of the variance of the dependent construct GSCEXMARK is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of α = 0.05 (p < 0.0001), i.e., this does not hold true 0.0001 % of times. Table 23 shows the analysis of variance for model 6. Table 24 shows the computation of R² value for model 6. Table 25 shows the computation of parameter estimates for model 6. Thus, the hypotheses H3Da, H9Da, H15Da, H21Da and H27Da are substantiated. Since some of the parameter estimates are negative, as shown in the table 25 there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCEXMARK component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCEXMARK component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCEXMARK component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCEXMARK component of GSC performance is as follows: EC, PP, RL, LCA and DFE. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.309560444, 0.294743046, 0.194882481, 0.349966556 and 0.222583898. Accordingly, model 6 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCEXMARK component of Green Supply Chain Performance:

\[\text{GSCEXMARK} = -1.942924586 + (0.309560444)(\text{EC}) + (0.294743046)(\text{PP}) + (0.194882481)(\text{RL}) + (0.349966556)(\text{LCA}) + (0.222583898)(\text{DFE}) \]

Table 23. ANOVA for model 6: Dependent Variable: GSCEXMARK
Source
Model
Error
Corrected Total

Table 24. Computation of R² for model 6
Root MSE
Dependent Mean
Coeff Var
Table 25. Parameter estimates for model 6

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Variance Inflation |
|----------|----|--------------------|----------------|---------|-------|---|-------------------|
| Intercept | 1 | -0.92569 | 0.39686 | -2.33 | 0.0217 | | 0 |
| EC | 1 | -0.95163 | 0.16999 | -5.60 | <.0001 | | 12.30377 |
| PP | 1 | 0.16697 | 0.21598 | 0.77 | 0.4413 | | 28.90365 |
| RL | 1 | -0.00758 | 0.09015 | -0.08 | 0.9332 | | 6.50446 |
| LCA | 1 | 0.42019 | 0.19942 | 2.11 | 0.0377 | | 16.61923 |
| DFE | 1 | 1.53564 | 0.07946 | 19.33 | <.0001 | | 4.55562 |

Model 7. Green Supply Chain Execution – Supply Loops (GSCEXSL)

Model 7 is associated with the five hypotheses namely H₃E, H₉E, H₁₅E, H₂₁E and H₂₇E wherein the dependent construct is GSCEXSL (Green Supply Chain Execution-Supply Loops) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 7 is depicted in figure 8.

![Figure 8. Model 7-Impact of GSC Practices on GSCEXSL](image)

The summary of the multiple regression output for model 7 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCEXSL, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R^2 is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 7, the $R^2 = 0.8792$ which means that 87.92% of the variance of the dependent construct GSCEXSL is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of $\alpha = 0.05$ ($p < 0.0001$), i.e., this does not hold true 0.0001% of times. Table 26 shows the analysis of variance for model 7. Table 27 shows the computation of R^2 value for model 7. Table 28 shows the computation of parameter estimates for model 7. Thus, the hypotheses $H_{3Ea}, H_{9Ea}, H_{15Ea}, H_{21Ea}$ and H_{27Ea} are substantiated. Since some of the parameter estimates are negative, as shown in the table 28 there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the...
corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCEXSL component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCEXSL component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCEXSL component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCEXSL component of GSC performance is as follows: LCA, EC, PP, DFE and RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.118031818, 0.10440421, 0.099406806, 0.075069979 and 0.065727233. Accordingly, model 7 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCEXSL component of Green Supply Chain Performance:

\[
\text{GSCEXSL} = 2.312194848 + (0.104404210)(\text{EC}) + (0.099406806)(\text{PP}) + (0.065727233)(\text{RL}) + (0.118031818)(\text{LCA}) + (0.075069979)(\text{DFE})
\]

Table 26. ANOVA for model 7: GSCEXSL
Analysis of Variance
Source

Model
Error
Corrected Total

Table 27. Computation of R² for model 7
Root MSE
Dependent Mean
Coeff Var

Table 28. Parameter estimates for model 7
Parameter Estimates
Variable

Intercept
EC
PP
RL
LCA
DFE

Model 8. Carbon Management (CM)

Model 8 is associated with the five hypotheses namely H₄, H₁₀, H₁₆, H₂₂ and H₂₈ wherein the dependent construct is CM (Carbon management) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 8 is depicted in figure 9.
The summary of the multiple regression output for model 8 is as follows:
When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct CM, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R^2 is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 8, the $R^2 = 0.9005$ which means that 90.05 % of the variance of the dependent construct CM is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of $\alpha = 0.05$ ($p < 0.0001$), i.e., this does not hold true 0.0001 % of times. Table 29 shows the analysis of variance for model 8. Table 30 shows the computation of R^2 value for model 8. Table 31 shows the computation of parameter estimates for model 8. Thus, the hypotheses H_{4a}, H_{10a}, H_{16a}, H_{22a} and H_{28a} are substantiated. Since some of the parameter estimates are negative, as shown in the table 31 there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the CM component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the CM component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the CM component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the CM component of GSC performance is as follows: LCA, EC, PP, DFE and RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.2470523, 0.2185283, 0.2080683, 0.1571289 and 0.1375736. Accordingly, model 8 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the CM component of Green Supply Chain Performance:

$$CM = -0.488033297 + (0.218528332)(EC) + (0.208068271) (PP) + (0.137573596) (RL) + (0.247052261) (LCA) + (0.157128887) (DFE)$$
Table 29. ANOVA for model 8: Dependent variable: CM

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	45.15051	9.03010	175.57	<.0001
Error	97	4.98898	0.05143		
Corrected Total	102	50.13949			

Table 30. Computation of R² for model 8

Root MSE	R-Square	Adj R-Sq
0.2267	0.900	0.895

Table 31. Parameter estimates for model 8

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr >			Variance Inflation	
Intercept	1	0.46613	0.34719	1.34	0.1825	0		0	
EC	1	-0.46090	0.14872	-3.10	0.0025	12.30377			
PP	1	-0.11285	0.18895	-0.60	0.5517	28.90365			
RL	1	0.40711	0.07887	5.16	<.0001	6.50446			
LCA	1	-0.05143	0.17446	-0.29	0.7688	16.61923			
DFE	1	1.08979	0.06952	15.68	<.0001	4.55562			

Model 9. Green Supply Chain Migration (GSCMIG)
Model 9 is associated with the five hypotheses namely H₅, H₁₁, H₁₇, H₂₃ and H₂₉ wherein the dependent construct is GSCMIG (Green Supply Chain Migration) and the independent subconstructs are EC, PP, RL, LCA and DFE. Model 9 is depicted in figure 10.

Figure 10. Model 9-Impact of GSC Practices on GSCMIG
The summary of the multiple regression output for model 9 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCMIG, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R^2 is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 9, the R^2 = 0.8908 which means that 89.08 % of the variance of the dependent construct GSCMIG is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of $\alpha = 0.05$ ($p < 0.0001$), i.e., this does not hold true 0.0001 % of times. Table 32 shows the analysis of variance for model 9. Table 33 shows the computation of R^2 value for model 9. Table 34 shows the computation of parameter estimates for model 9. Thus, the hypotheses H_{5a}, H_{11a}, H_{17a}, H_{23a} and H_{29a} are substantiated. Since some of the parameter estimates are negative, as shown in the table 34 there appears to be an existence of multicollinearity. The effect of multi-co-linearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCMIG component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCMIG component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCPLAN component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCMIG component of GSC performance is as follows: LCA, EC, PP, DFE and RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.173503, 0.15347085, 0.146124824, 0.11035047 and 0.09661693. Accordingly, model 1 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCMIG component of Green Supply Chain Performance:

$$GSCMIG = 1.580545635 + (0.153470848)(EC) + (0.146124824) (PP) + (0.096616930) (RL) + (0.173502995) (LCA) + (0.110350467) (DFE)$$

Table 32. ANOVA for model 9: Dependent variable: GSCMIG

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	17.88517	3.57703	158.20	<.0001
Error	97	2.19328	0.02261		
Corrected Total	102	20.07845			

Table 33. Computation of R^2 for model 9

Root MSE	R-Square	Adj R-Sq
0.15037	0.8908	0.8851
Dependent Mean	4.60388	3.26615
Table 34. Parameter estimates for model 9

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Variance Inflation |
|----------|----|--------------------|----------------|--------|-----|---|-------------------|
| Intercept| 1 | 0.92149 | 0.23020 | 4.00 | 0.0001 | 0 |
| EC | 1 | 0.01409 | 0.09861 | 0.14 | 0.8867 | 12.30377 |
| PP | 1 | -0.13072 | 0.12528 | -1.04 | 0.2994 | 28.90365 |
| RL | 1 | -0.24706 | 0.05229 | -4.72 | <.0001 | 6.50446 |
| LCA | 1 | 0.84481 | 0.11567 | 7.30 | <.0001 | 16.61923 |
| DFE | 1 | 0.26198 | 0.04609 | 5.68 | <.0001 | 4.55562 |

Model 10. Green Supply Chain Continuous Improvement (GSCCI)

Model 10 is associated with the five hypotheses namely H₆, H₁₂, H₁₈, H₂₄ and H₃₀ wherein the dependent construct is GSCCI (Green Supply Chain Continuous Improvement) and the independent sub-constructs are EC, PP, RL, LCA and DFE. Model 10 is depicted in figure 11.

![Figure 11. Model 10-Impact of GSC Practices on GSCCI](image)

The summary of the multiple regression output for model 10 is as follows:

When the five independent or predictor constructs namely EC, PP, RL, LCA and DFE are jointly regressed against the dependent or criterion construct GSCCI, which is interval scaled, the five individual correlations collapse into what is called as a multiple r or multiple correlation. The square of the multiple r which is also commonly known as R-square or R² is indicative of the amount of variance in the dependent construct explained jointly by the predictors. In the case of model 10, the R² = 0.9290 which means that 92.90 % of the variance of the dependent construct is significantly explained jointly by the predictors EC, PP, RL, LCA and DFE at a significance level of α = 0.05 (p < 0.0001), i.e., this does not hold true 0.0001 % of times. Table 35 shows the analysis of variance for model 10. Table 36 shows the computation of R² value for model 10. Table 37 shows the computation of parameter estimates for model 10. Thus, the hypotheses H₆ₐ, H₁₂ₐ, H₁₈ₐ, H₂₄ₐ and H₃₀ₐ are substantiated. Since some of the parameter estimates are negative, as shown in the table 37, there appears to be an existence of multicollinearity. The effect of multicollinearity can be removed by using an advanced statistical analysis technique called as Principal Component Regression. On applying Principal Component Regression the centered and scaled data is as shown in the figure 20 and the new (revised) parameter estimates are obtained as shown in the table 21. Since all the revised
parameter estimates are now positive, the effect of multicollinearity is no more there. So these revised parameter estimates are usable. They are the standardized coefficients of the corresponding multiple regression equation for studying the impact of Green Supply Chain Practices on the GSCCI component of Green Supply Chain Performance. But what remains to be explored is the order in which the five Green Supply Chain Practices impact the GSCCI component of Green Supply Chain Performance. Sorting the revised parameter estimates shown in table 21 in the descending order of magnitude gives the descending order in which the corresponding Green Supply Chain Practices impact the GSCCI component of Green Supply Chain Performance. The Green Supply Chain Practices in the descending order in which they influence the GSCCI component of GSC performance is as follows: LCA, EC, PP, DFE, RL. The corresponding parameter estimates or standardized coefficients in that order are as follows: 0.1731767, 0.1531823, 0.1458501, 0.110143 and 0.0964353. Accordingly, model 1 yields the following regression equation to explain the impact of the five Green Supply Chain Practices on the GSCCI component of Green Supply Chain Performance:

\[\text{GSCCI} = 1.676963178 + (0.153182267)(\text{EC}) + (0.145850056)(\text{PP}) + (0.096435255)(\text{RL}) + (0.173176747)(\text{LCA}) + (0.110142968)(\text{DFE}) \]

Table 35. ANOVA for model 10: Dependent variable: GSCCI

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	14.01715	2.80343	253.82	<.0001
Error	97	1.07135	0.01104		
Corrected Total	102	15.08850			

Table 36. Computation of \(R^2\) for model 10

Root MSE	R-Square	0.9290
Dependent Mean	Adj R-Sq	0.9253
Coeff Var	2.23862	

Table 37. Parameter estimates for model 10

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| | Variance Inflation |
|----------|----|--------------------|----------------|---------|-------|-----|-----------------|
| Intercept| 1 | 0.84773 | 0.16089 | 5.27 | <.0001| | 0 |
| EC | 1 | 0.26804 | 0.06892 | 3.89 | 0.0002| | 12.30377 |
| PP | 1 | -0.19873 | 0.08756 | -2.27 | 0.0254| | 28.90365 |
| RL | 1 | -0.11098 | 0.03655 | -3.04 | 0.0031| | 6.50446 |
| LCA | 1 | 0.83509 | 0.08085 | 10.33 | <.0001| | 16.61923 |
| DFE | 1 | 0.00637 | 0.03221 | 0.20 | 0.8436| | 4.55562 |

PRINCIPAL COMPONENT REGRESSION

Table 38 shows the details of Principal Component Regression which was performed. There were ten response variables and five predictor variables. Missing value was not needed and one factor was extracted. A total of 103 responses were obtained during the survey for the analysis.
Table 38. Details of Principal Component Regression

Item head	Description
Factor Extraction Method	Principle Components Regression
Number of Response Variables	10
Number of Predictor Parameters	5
Missing Value Handling	Exclude
Number of Factors	1
Number of Observations Read	103
Number of Observations Used	103

Table 39 shows that the principal components collectively account for 72.5010% of variation of the five dependent variables.

Table 39. Percentage of variation accounted for by the Principal Components

Number of Extracted Factors	Model Effects	Dependent Variables
	Current	Total
	Current	Total
1	74.7760	74.7760
	72.5010	72.5010

Table 40 shows the parameter estimates for the centered and scaled data pertaining to the GSC practices and GSC performance. Then the new (revised) parameter estimates are calculated.

Table 40. Parameter estimates for centered and scaled data

Parameter Estimates for Centered and Scaled Data
GSCPLAN

Intercept
EC
PP
RL
DPE

The new (revised) parameter estimates are shown in the table 41 along with the intercept values. These new parameter estimates reveal that there is no effect of multicollinearity existing now. Hence these coefficients are dependable for building the ten regression equations.
Accordingly, the regression equations for predicting the ten component measures of GSC performance using the five component measures of GSC practices are as follows:

1. \[\text{GSCPLAN} = -1.733112398 + (0.311427967) \times \text{(EC)} + (0.296521179) \times \text{(PP)} + (0.196058173) \times \text{(RL)} + (0.352077842) \times \text{(LCA)} + (0.223926708) \times \text{(DFE)}\]
2. \[\text{GSCPROC} = -1.88714383 + (0.320572971) \times \text{(EC)} + (0.305228448) \times \text{(PP)} + (0.201815371) \times \text{(RL)} + (0.36241519) \times \text{(LCA)} + (0.230502259) \times \text{(DFE)}\]
3. \[\text{GSCEXPROD} = 0.21771486 + (0.221777918) \times \text{(EC)} + (0.211162313) \times \text{(PP)} + (0.139619360) \times \text{(RL)} + (0.250726008) \times \text{(LCA)} + (0.159465444) \times \text{(DFE)}\]
4. \[\text{GSCEXSL} = 1.344753781 + (0.153636718) \times \text{(EC)} + (0.146282754) \times \text{(PP)} + (0.096721352) \times \text{(RL)} + (0.173690515) \times \text{(LCA)} + (0.110469733) \times \text{(DFE)}\]
5. \[\text{GSCEXMARK} = -1.942924586 + (0.309560444) \times \text{(EC)} + (0.294743046) \times \text{(PP)} + (0.100694966) \times \text{(RL)} + (0.180826261) \times \text{(LCA)} + (0.115008172) \times \text{(DFE)}\]
6. \[\text{GSCEXLOG} = -1.580545635 + (0.153470848) \times \text{(EC)} + (0.146124824) \times \text{(PP)} + (0.139619360) \times \text{(RL)} + (0.250726008) \times \text{(LCA)} + (0.159465444) \times \text{(DFE)}\]
7. \[\text{GSCEXPACK} = 0.305228448 + (0.152292503) \times \text{(EC)} + (0.145850056) \times \text{(PP)} + (0.097056979) \times \text{(RL)} + (0.230502259) \times \text{(LCA)} + (0.110469733) \times \text{(DFE)}\]
8. \[\text{CM} = -0.488033297 + (0.218528332) \times \text{(EC)} + (0.208068271) \times \text{(PP)} + (0.137573596) \times \text{(RL)} + (0.247052261) \times \text{(LCA)} + (0.157128887) \times \text{(DFE)}\]
9. \[\text{GSCMIG} = 1.580545635 + (0.153470848) \times \text{(EC)} + (0.146124824) \times \text{(PP)} + (0.096619693) \times \text{(RL)} + (0.173502995) \times \text{(LCA)} + (0.110350467) \times \text{(DFE)}\]
10. \[\text{GSCCI} = 1.676963178 + (0.153182267) \times \text{(EC)} + (0.145850056) \times \text{(PP)} + (0.096435255) \times \text{(RL)} + (0.173176747) \times \text{(LCA)} + (0.110142968) \times \text{(DFE)}\]

These ten regression equations can be used to scale the ten individual component performance measures of the construct “GSC Performance” based on the extent to which the individual components of GSC practices are used. Further, it is observed that each of the ten GSC Performance measures is influenced by the five GSC Practices in the same order. This means that there is a definite order in which GSC Practices impact GSC Performance measures.
Figure 12. Order of influence of GSC Practices on GSCPLAN

Figure 13 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCPROC component of GSC Performance.

Figure 13. Order of influence of GSC Practices on GSCPROC
Figure 14 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCEXPROD component of GSC Performance.

![Impact of GSC Practices on GSCEXPROD](image)

Figure 14. Order of influence of GSC Practices on GSCEXPROD

Figure 15 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCEXLOG component of GSC Performance.

![Impact of GSC Practices on GSCEXLOG](image)

Figure 15. Order of influence of GSC Practices on GSCEXLOG
Figure 16 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCEXPACK component of GSC Performance.

Figure 17 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCEXMARK component of GSC Performance.
Figure 18 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCEXSL component of GSC Performance.

![Impact of GSC Practices on GSCEXSL](image)

Figure 18. Order of influence of GSC Practices on GSCEXSL

Figure 19 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the CM component of GSC Performance.

![Impact of GSC Practices on CM](image)

Figure 19. Order of influence of GSC Practices on CM
Ordering of components of Green Supply Chain Practices jointly impacting the individual components of Green Supply Chain Performance – An Empirical Study of the Indian Automobile Manufacturing Sector. *Archives of Business Research*, 6(1), 179-225.

Figure 20 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCMIG component of GSC Performance.

![Impact of GSC Practices on GSCMIG](image1)

Figure 20. Order of influence of GSC Practices on GSCMIG

Figure 21 shows graphically using a column chart, the influence of the five GSC Practices namely LCA, EC, PP, DFE and RL on the GSCCI component of GSC Performance.

![Impact of GSC Practices on GSCCI](image2)

Figure 21. Order of influence of GSC Practices on GSCCI

Also the order of influence of each of the five components of GSC Practices on each of the ten components measures of GSC Performance is consistently in the descending order of influence of the GSC Practices namely LCA, EC, PP, DFE and RL. Also on the basis of communality estimates \(h^2 \) of the components of each of the five GSC Practices and on the basis of the communality estimates of the components of each of the ten GSC Performance measures it is possible to rank the order of the variables constituting them as established in [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23] and [24].
CONCLUSION

From table 6 it can be said conclusively that various sub-construct components of green supply chain practices namely Environmental Certification; Pollution Prevention; Design for the Environment; Life Cycle Assessment; and Reverse Logistics are positively associated in varying degrees with various sub-construct components of green supply chain performance namely Green Supply Chain Planning; Green Supply Chain Procurement; Green Supply Chain Execution-Production; Green Supply Chain Execution-Logistics; Green Supply Chain Execution-Packaging; Green Supply Chain Execution-Marketing; Green Supply Chain Execution-Supply Loops; Carbon Management; Green Supply Chain Migration; and Green Supply Chain Continuous Improvement. Further it is evident from the regression coefficients of table 41 and from Fig.12 through Fig. 21 that particular GSC Practices have a pre-dominance over the other ones in influencing the individual GSC Performance measures. In other words there is a definite ordering of each of the five component measures of GSC Practices in jointly influencing each of the ten individual component measures of GSC Performance. The descending order of influence of GSC practices on individual component measures of GSC performance is as follows: LCA, EC, PP, DFE and RL. The existing body of knowledge has established at a broad level that GSC Practices have an impact on GSC Performance. However, it has not been able to establish very conclusively as to which of these GSC Practices specifically impacts which of the GSC Performance measures. This study was set out to explore the unexplored linkages between GSC practices and component measures of GSC Performance. Several definitions of GSC Practices and GSC Performance emerged during a detailed literature review. But the impact of GSC Practices on GSC Performance measures using the combination of definitions of GSC practices and GSC Performance as used in this research study has not been explored before. The research study was set out to study the joint impact of five identified Green Supply Chain Practices on ten identified individual component measures of GSC Performance with reference to the Indian automobile manufacturing sector by means of an empirical study by administering a questionnaire on representatives of automobile manufacturing firms and plants.

The study could establish the fact that each of the five GSC Practices has a significant positive correlation with each of the ten individual component measures of GSC Performance which is evident from the correlation coefficients computed between each of them. This finding is in line with the findings in existing literature also. Also from this it was possible to find the order in which the five GSC Practices are correlated with each of the ten individual component measures of GSC Performance. Looking at it in the other way the study could also establish the order in which each of the ten GSC Performance measures is correlated with each of the five GSC Practices. This is a unique finding made by this study.

On doing regression analysis it was possible to establish ten regression equations each used to establish the joint impact of each of the five GSC Practices on each of the individual component measures of GSC Performance. In short since there are ten measures of GSC Performance, ten multiple linear regression equations were obtained. Each regression equation helps to establish a particular GSC Performance measure.

These ten linear multiple regression equations can be used to predict the individual GSC Performance measures.

A closer look at the coefficients of these ten linear multiple regression equations revealed these coefficients or the parameter estimates follow a particular pattern. In each of the ten multiple regression equations it was observed that the parameter estimates had a particular hierarchy. The parameter estimates were consistently highest for LCA followed by EC followed by PP
followed by DFE followed by RL. This means that whenever the five GSC Practices jointly impact GSC Performance measures, they do so in a particular order. And this order is consistent when applied to each of the ten GSC Performance measures. So it can be conclusively stated that there is a definite order in which each of the five GSC Practices will jointly impact each of the ten individual component measures of GSC Performance. This is a finding which has not been established by existing research. This is one of the key findings of this research work.

Accordingly, in line with the above discussion, in all ten models or multiple linear regression equations were obtained. The goodness of a model is measured by its R2 value. The R2 value is a measure of the amount of variance in the dependent construct explained jointly by the predictors or independent constructs. In the case of this research the dependent constructs are the ten individual GSC Performance measures and the predictors or the independent constructs are the five GSC Practices. By ranking the R2 values of the ten multiple regression equations it is possible to know which model (GSC Performance measure) is able to explain the joint variation of the five GSC Practices the most and also which model or (GSC Performance measure) is able to explain the joint variation of the five GSC Practices the least. Accordingly, we can get the ordering of GSC Performance measures as regards their ability to explain the joint variation of the five GSC Practices. This order is as follows: GSCPROC with a R2 value of 0.9901; followed by GSCPLAN with a R2 value of 0.9606; followed by GSCEXPROD with a R2 value of 0.9561; followed by GSCEXMARK with a R2 value of 0.9403; followed by GSCCI with a R2 value of 0.9290; followed by GSCEXPACK with a R2 value of 0.9286; followed by GSCEXLOG with a R2 value of 0.9050; followed by CM with a R2 value of 0.9005; followed by GSCMIG with a R2 value of 0.8908; followed by GSCEXSL with a R2 value of 0.8792.

This finding is a bye product of this research, but it has interesting insights. Practitioners can make use of this ordering of GSC Performance measures based on R2 to focus on improving a particular component measure of GSC Performance. It is important to know this ordering as it helps in prioritizing the GSC Performance improvement projects to be taken up first. Prioritizing is needed because most of the projects have financial implications associated with them.

The findings of this research also add to the existing body of knowledge as these are unique findings.

Based on the value of communality estimates (h2) of the variables constituting each construct it is possible to conclude about how much of each variable is accounted for by underlying factors taken together. Accordingly it is possible to arrive at the order of contribution of the variables constituting each of the sub-constructs of GSC Practices and GSC Performance.

Using this logic -

1. The five component variables of the construct EC (total h$^2 = 3.824$) contribute in the following descending order: EC4 (0.975), EC5 (0.975), EC2 (0.974), EC3 (0.888), EC1 (0.011).
2. The eleven component variables of the construct PP (total h$^2 = 9.287$) contribute in the following descending order: PP2 (0.963), PP9 (0.962), PP4 (0.962), PP11 (0.962), PP3 (0.868), PP10 (0.865), PP8 (0.774), PP5 (0.765), PP1 (0.736), PP6 (0.734), PP7 (0.691).
3. The fifteen component variables of the construct RL (total h$^2 = 13.725$) contribute in the following descending order: RL13 (0.992), RL14 (0.992), RL4 (0.973), RL11 (0.973),
4. The eight component variables of the construct DFE (total $h^2 = 7.219$) contribute in the following descending order: DFE6 (0.987), DFE5 (0.966), DFE2 (0.944), DFE4 (0.928), DFE3 (0.917), DFE8 (0.878), DFE1 (0.801), DFE7 (0.794).

5. The three component variables of the construct LCA (total $h^2 = 1.867$) contribute in the following descending order: LCA3 (0.884), LCA2 (0.844), LCA1 (0.139).

6. The five component variables of the construct GSCPLAN (total $h^2 = 4.223$) contribute in the following descending order: GSCPLAN1 (0.915), GSCPLAN3 (0.915), GSCPLAN2 (0.885), GSCPLAN4 (0.808), GSCPLAN5 (0.698).

7. The eleven component variables of the construct GSCPROC (total $h^2 = 10.606$) contribute in the following descending order: GSCPROC8 (0.997), GSCPROC4 (0.991), GSCPROC1 (0.986), GSCPROC7 (0.983), GSCPROC10 (0.983), GSCPROC5 (0.981), GSCPROC2 (0.980), GSCPROC9 (0.980), GSCPROC6 (0.975), GSCPROC3 (0.899), GSCPROC11 (0.846).

8. The seven component variables of the construct GSCEXPROD (total $h^2 = 5.68$) contribute in the following descending order: GSCEXPROD5 (0.920), GSCEXPROD2 (0.893), GSCEXPROD7 (0.879), GSCEXPROD6 (0.850), GSCEXPROD4 (0.838), GSCEXPROD3 (0.809), GSCEXPROD1 (0.488).

9. The five component variables of the construct GSCMIG (total $h^2 = 4.629$) contribute in the following descending order: GSCMIG4 (0.963), GSCMIG1 (0.956), GSCMIG2 (0.943), GSCMIG3 (0.913), GSCMIG5 (0.852).

10. The three component variables of the construct GSCEXSL (total $h^2 = 1.82$) contribute in the following descending order: GSCEXSL3 (0.897), GSCEXSL1 (0.703), GSCEXSL2 (0.220).

11. The seven component variables of the construct CM (total $h^2 = 5.231$) contribute in the following descending order: CM1 (0.935), CM4 (0.883), CM5 (0.883), CM7 (0.83), CM2 (0.770), CM3 (0.528), CM6 (0.445).

12. The seven component variables of the construct CM (total $h^2 = 5.231$) contribute in the following descending order: CM1 (0.935), CM4 (0.883), CM5 (0.883), CM7 (0.83), CM2 (0.770), CM3 (0.528), CM6 (0.445).

References

1. Sharma, S. and Gandhi, M. A., Exploring correlations in components of green supply chain practices and green supply chain performance. Competitiveness Review, 2016. 26(3): p. 332-368. http://dx.doi.org/10.1108/CR-04-2015-0027.

2. Gandhi, M. A. and Sharma, S., A Review of Research Methodologies Linking Green Supply Chain Practices and Green Supply Chain Performance, International journal of Supply Chain Management, 2014. 3(4): p. 57-62.

3. Laosirihongthong, T., Adebanjo, D. and Keah, C.T., Green supply chain management practices and performance. Industrial Management & Data Systems, 2013. 113 (8): p. 1088-1109, available at:
4. Green, K.W. Jr, Zelbst, P.J., Meacham, J. and Bhadauria, V.S., Green supply chain management practices: impact on Performance. Supply Chain Management: An International Journal, 2012. 17 (3): p. 290-305

5. Li, Research on the performance measurement of green supply chain management in China. Journal of Sustainable Development, 2011. 4 (3): p. 101.

6. Rha, J.S., The impact of green supply chain practices on supply chain performance. Dissertations and Theses from the College of Business Administration, Paper 11, 2010.

7. Zhu, Q. and Sarkis, J., Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. Journal of Operations Management, 2004. 22 (3): p. 265-289.

8. Zhu, Q., Sarkis, J. and Lai, K.H., Green supply chain management innovation diffusion and its relationship to organizational improvement: an ecological modernization perspective. Journal of Engineering and Technology Management, 2012. 29 (1): p. 168-185.

9. Emmett, S., Sood, V. Green Supply Chains: An Action Manifesto. John Wiley and Sons Ltd., 2010

10. Gandhi, M.A., Contribution of Design for Environment as a Green Supply Chain Practice - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. International Journal of Engineering & Management, 2017. 6 (4): p. 78-83. http://www.ijiaiem.org/Volume6Issue4/IJIAEM-2017-04-17-22.pdf.

11. Gandhi, M.A., Contribution of Environmental Certification as a Green Supply Chain Practice - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2017. 11(4): p. 60-63. DOI: http://www.dx.doi.org/10.9790/2402-1104026063.

12. Gandhi, M.A., Contribution of Life Cycle Assessment as a Green Supply Chain Practice - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. International Journal of Science & Engineering Development Research, 2017. 2 (4): p. 386-388. DOI: http://www.dx.doi.org/10.6084/m9.figshare.4981715.

13. Gandhi, M.A., Contribution of Pollution Prevention as a Green Supply Chain Practice - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Business and Management, 2017. 19 (4): pp. 59-62. DOI: http://www.dx.doi.org/10.9790/487X-1904025962.

14. Gandhi, M.A., Contribution of Reverse Logistics as a Green Supply Chain Practice - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. International Journal for Research Trends and Innovation, 2017. 2 (4): p. 165-169. http://www.ijrti.org/papers/IJRTI1704041.pdf.

15. Gandhi, M.A., Contribution of components of Green Supply Chain Planning as a Green Supply Chain Performance measure - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Humanities and Social Science, 2017. 22(5): p. 53-57.

16. Gandhi, M.A., Contribution of components of Green Supply Chain Procurement in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Economics and Finance, 2017. 8(3): p. 10-14.

17. Gandhi, M.A., Contribution of components of Green Supply Chain Execution-Production in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. International Journal of Research Trends and Innovation, 2017. 2(6): p. 105-110.

18. Gandhi, M.A., Contribution of components of Green Supply Chain Execution-Logistics in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Science, Toxicology and Food Technology, 2017. 11(6): p. 50-55.

19. Gandhi, M.A., Contribution of components of Green Supply Chain Execution-Packaging in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Research & Method in Education, 2017. 7(3): p. 59-62.

20. Gandhi, M.A., Contribution of components of Green Supply Chain Execution-Marketing in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. Archives of Business Research, 2017. 5(8).

21. Gandhi, M.A., Contribution of components of Green Supply Chain Execution-Supply Loops in Green Supply Chain Performance Measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. International Journal of Scientific Development and Research, 2017. 2(6): p. 216-219.
22. Gandhi, M. A., Contribution of components of Green Supply Chain Carbon Management in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Applied Chemistry, 2017. 10(6): p. 47-50.

23. Gandhi, M. A., Contribution of components of Green Supply Chain Migration strategies in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Business and Management, 2017. 19(6): p. 77-80.

24. Gandhi, M. A., Contribution of components of Green Supply Chain Continuous Improvement in Green Supply Chain Performance measurement - A Pilot Empirical Study of the Indian Automobile Manufacturing Sector. IOSR Journal of Mechanical and Civil Engineering, 2017. 14(3), 110-114.