Left pulmonary artery sling (LPAS) is a rare vascular anomaly causing respiratory distress in which the left pulmonary artery (LPA) arises from the right pulmonary artery (RPA) and passes posteriorly, above the right main bronchus and between the trachea and esophagus, to the hilum of the left lung. The first reported case with definitive prenatal diagnosis was by echocardiography at 32 weeks' gestation in 2011 [1].

LPAS have been subdivided into 4 types: 2 main types based on the thoracic level of the carina, and 2 subtypes based on the presence or absence of an eparterial or tracheal right upper lobe bronchus [2].

We report 2 types of LPAS and discuss the value of fetal magnetic resonance imaging (MRI) to accurately diagnose LPAS as a complement to fetal ultrasound, and to help improve perinatal management. A hospital ethics committee approved the study. Written informed consent was obtained in both cases.

Case reports

Case 1: This case involved a 28-year-old woman whose routine ultrasound examination at 21 weeks' gestation revealed an abnormal right-sided heart location. Fetal MRI images were
obtained on a non-contrast-enhanced 1.5T unit (PHILIPS Medical Systems, Amsterdam, Netherlands) using a 16-element phased-array body coil. To minimize claustrophobia, the supine, feet-first position was used. Balanced fast field echo (BFFE) and single-shot fast spin echo (SSFSE) sequences were used. The BFFE parameters were repetition time (TR), shortest; echo time (TE), shortest; field of view (FOV) 280 × 280 mm-350 × 350 mm; voxel size right-left (RL), 1.4; voxel size anterior-posterior (AP), 1.36; matrix, 216 × 218; thickness, 5.0–7.0 mm; gap, −5 to −3 mm; flip, 90°; number of signal average times (NSA), 3. The SSFSE parameters were TR, 12,000–15,000 ms; TE, 120 ms; FOV 280 × 280 mm-350 × 350 mm; voxel size RL, 1.0; voxel size AP, 1.37; matrix, 216 × 218; thickness, 5.0–7.0 mm; gap, −1 to 0 mm; flip, 80°. NSA, 1. Fetal MRI demonstrated that the RPA originated from the main pulmonary artery and the LPA originated from the RPA. The LPA then turned leftward posterior to the trachea to reach the left lung hilum. The distal RPA was not clearly displayed, and the right main bronchus was stenotic (Fig. 1). Also, the right lung was relatively small and the mediastinum was shifted toward the right. On the coronal view, the carina was obviously lower than the aortic arch, which was located at approximately the sixth or seventh thoracic vertebra (Fig. 2). Based on these findings, the diagnoses of LPAS, RPA stenosis, right main bronchus and right lung dysplasia, and possible bridging bronchi were made.

Premature rupture of membranes occurred at 24 weeks, and the baby did not survive after birth. The parents requested an autopsy. The anatomic results were consistent with the prenatal diagnosis of LPAS type IIB, with presence of a bridging bronchus and absence of the right upper lobe bronchus. Furthermore, pseudo-carina position demonstrated approximately at T6, and the right lung was unilobar (Figs. 3 and 4).

Case 2: A 29-year-old woman was referred for fetal MRI at 29 weeks’ gestation because of an LPA origin abnormality on ultrasound. Fetal MRI showed that the LPA originated from the superior aspect of the RPA and then turned leftward posterior to the trachea (Figs. 5 and 6). There was no obvious tracheal compression or narrowing. The carina position, bronchial anatomy, and lung volumes were normal (Fig. 7). The diagnosis of LPAS type IA was made and confirmed by thoracic computed tomography after birth (Figs. 8 and 9).
Discussion

Value of prenatal diagnosis and classification of LPAS

Early diagnosis of this rare malformation is important because it may prevent the occurrence of recurrent pulmonary infections and other postnatal complications [1]. The classification of LPAS can be made using the system proposed by Wells et al. (Fig 10) [3,4]. Type I LPAS, as in case report 2, can be found incidentally in asymptomatic adults. It has also become apparent that type II slings tend to cause greater morbidity and mortality. This subtype cannot be treated by reanastomosis of the pulmonary artery alone, usually because of concurrent tracheal stenosis due to complete cartilage rings and absence of the pars membranacea [5]. Instead, the narrow airway generally also requires repair [3].

Fetal MRI protocol to diagnose and classify LPAS

The most useful sequence to observe the structure and course of the LPA and RPA in our protocol was BFFE. Because the blood in the heart and great vessels has high signal under normal circumstances, it is possible to see the main pulmonary artery...
dividing into the LPA and RPA in the 3 vessel-pulmonary artery branch view, usually in the axial plane. When the LPA originates from the RPA and loops behind the trachea, passing between the trachea and esophagus, the diagnosis of LPAS is confirmed. We used negative interval scanning from the thoracic inlet to the diaphragm (20 slices) with a slice thickness of 7 mm and overlap of 5 mm about 40 seconds per scan time. The overlap enhances visualization of anatomic detail of cardiovascular structures including the pulmonary artery and the other great thoracic vessels, as well as the cardiac chambers. After BFFE, we used the SSFSE sequence. In this sequence, the blood in the heart and great vessels has low signal, whereas the trachea (filled with amniotic fluid) has high signal, allowing us to observe the anatomic structure of the tracheobronchial tree. The SSFSE sequence technique also allows clear visualization of the aortic arch anatomy. To account for effects of fetal movement, we repeated sequences that were degraded by fetal motion [6]. Fetal MRI may also provide relevant information on lung volume and signal intensity, and is an accurate prenatal method for evaluating fetal lung maturity using the lung-to-liver signal intensity ratio on T2-weighted images [5].

Relevance for future diagnosis and management of LPAS

Fetal diagnosis of LPAS or bridging bronchus is rare. This is likely due to the rarity of both disease processes, lack of referring clinician and radiologist awareness, and previously limited capability of imaging technology to detect these anomalies. With increasing availability of high-resolution and motion-resistant fetal MR techniques, prenatal diagnosis is becoming more feasible. Although LPAS is rare, early diagnosis and classification is important. Early detection could allow stratification of high-risk patients (type II, more likely to have complete cartilage rings and airway stenosis), and perhaps direct at-risk neonates into higher level monitoring or earlier surgical intervention.

In conclusion, prenatal diagnosis of LPAS is possible and valuable, and may be worth including in routine fetal magnetic resonance evaluation.
REFERENCES

[1] Yorioka H, Kasamatsu A, Kanzaki H. Prenatal diagnosis of fetal left pulmonary artery sling. Ultrasound Obstet Gynecol 2011;37:245–6.

[2] du Plessis AM, Andronikou S, Goussaard P. Bridging bronchus and sling left pulmonary artery: a rare entity demonstrated by coronal CT with 3-D rendering display and minimal-intensity projections. Pediatr Radiol 2008;38(9):1024–6.

[3] Wells TR, Gwin JL, Landing BH, et al. Reconsideration of the anatomy of sling left pulmonary artery: the association of one form with bridging bronchus and imperforate anus. Anatomic and diagnostic aspects. J Pediatr Surg 1988;23(10):892–8.

[4] Baden W, Schaefer J, Kumpf M, et al. Comparison of imaging techniques in the diagnosis of bridging bronchus. Eur Respir J 2008;31(112):5–1131.

[5] Li X, Li XL, Hu K, et al. The value of cardiac magnetic resonance in the diagnosis of fetal aortic arch anomalies. J Matern Fetal Neonatal Med 2016;1–6.

[6] Oka Y, Rahman M, Sasakura C, et al. Prenatal diagnosis of fetal respiratory function: evaluation of fetal lung maturity using lung-to-liver signal intensity ratio at magnetic resonance imaging. Prenat Diagn 2014;34(13):1289–94.