RESEARCH ARTICLE

Larval anatomy of *Dendropsophus decipiens* (A. Lutz 1925) (Anura: Hylidae: Dendropsophini) with considerations to larvae of this genus

Pedro H. S. Dias1*, Katyuscia Araujo-Vieira2, Ana Maria P. T. de Carvalho-e-Silva3, Victor G. D. Orrico4

1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil, 2 División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” – Conicet, Buenos Aires, Argentina, 3 Laboratório de Biossistematização de Anfíbios, Departamento de Zoologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil, 4 Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Salobrinho, Ilhéus, Bahia, Brazil

* pedrodiasherpeto@gmail.com

Abstract

The *Dendropsophus decipiens* clade comprises four species: *D. berthalutzae*, *D. decipiens*, *D. haddadi*, and *D. oliveirai*. Tadpoles of these species were described, but data on their internal morphology are lacking. We provide the first description of the buccopharyngeal anatomy, chondrocranial morphology, and cranial, hyoid and hyobranchial musculature of the tadpole of *D. decipiens*. Larvae of *D. decipiens* are characterized by the absence of lingual papillae, presence of fan-like papilla on the buccal floor, presence of a single-element suprarostral cartilage, presence of a small triangular process at the basis of the processus muscularis, m. levator mandibulae lateralis inserted on the nasal sac, and m. subarcualis rectus II-IV with a single, continuous slip. Tadpoles are likely macrophagous, although not as specialized as those of other species of the genus, suggesting some degree of diversification on the feeding habits within *Dendropsophus*.

Introduction

Dendropsophini is a well-supported tribe of hylid treefrogs composed of the genera *Dendropsophus* and *Xenohyla* [1,2]. The relationships of Dendropsophini with other hylid tribes remain uncertain; it is poorly supported as sister taxon of Sphaenorhynchini [3] or as sister taxon of Pseudini [1,4–8]. *Dendropsophus* is a speciose clade of Neotropical treefrogs comprising 105 species distributed from Southern Mexico to Central-eastern Argentina [9], and the relationships between its species remain poorly known [1,3–8]. Three putative synapomorphies were suggested for the genus: diploid chromosome number of 30, the extreme reduction of quadratojugal, and labial tooth row formula 1/2 in tadpoles [3,10]. 105 species groups are recognized in *Dendropsophus*: the *D. columbianus*, *D. garagoensis*, *D. labialis*, *D. leucophyllatus*, *D. marmoratus*, *D. microcephalus*, *D. minimus*, *D. minutus*, and *D. parviceps* groups [3], whose composition have been slightly modified in the last few years (e.g. [11–13]).
The *Dendropsophus microcephalus* species group comprises more than 30 species, of which 13 are included in the two tentatively recognized clades: the *D. decipiens* and *D. rubicundulus* clades [3,11,13]. Two known morphological synapomorphies for this group are the absence of labial tooth rows and marginal papillae on the oral disc of larvae (with a reversal in the *D. decipiens* clade; [3,14]). The *D. microcephalus* group is the latest diverging taxon of *Dendropsophus*, and the relationship with other groups, as well as between its species remains controversial (e.g. [1,3,8]). The *D. decipiens* clade comprises four species: *D. berthaltuzae, D. decipiens, D. haddadi*, and *D. oliveirai*. *Dendropsophus berthaltuzae* is the only species of this clade included in molecular phylogenetic analyses (e.g. [1,3,15]), and therefore, the monophyly of the *D. decipiens* clade lacks a rigorous test. Putative synapomorphies for this clade are the presence of a posterior row of marginal papillae on the oral disc and oviposition on leaves overhanging water [3,16,17].

The external larval morphology in the *Dendropsophus decipiens* clade has been described for *D. berthaltuzae* [18], *D. decipiens* [16], *D. haddadi* [19,20], and *D. oliveirai* [16], but no aspect of their internal anatomy has been analyzed so far. We describe the buccopharyngeal anatomy, chondrocranial morphology, and cranial, hyoid and hyobranchial musculature of the tadpole of *D. decipiens*. We also provide comments on the larval internal morphology of *Dendropsophus* based on our observations complemented with data from the literature.

Materials and methods

Tadpoles were collected (ICMBio/RAN permit # 13256–1) in a dam of Rio Borboleta (22°59′19″S, 44°06′13″W) at Reserva Rio das Pedras, Mangaratiba, Rio de Janeiro, Brazil. Specimens were euthanized by topical application of 20% benzocaine anesthetic mixed with water, preserved in 5% formaldehyde and deposited in the Coleção de Anfíbios do Laboratório de Biossistemática de Anfíbios da Universidade Federal do Estado do Rio de Janeiro (Lot UNIRIO 3635). Some tadpoles were raised in the laboratory to corroborate species identification. Developmental stages were determined according to Gosner [21].

Two individuals (stages 34 and 35) were dissected according to Wassersug [22] to expose the buccopharyngeal cavity. One individual (stage 34) was submitted to the protocol of Alcalde and Blotto [23] for scanning electron microscopy (SEM). Descriptive terminology follows Wassersug [22,24]. For observations of the chondrocranium and cranial muscles, six individuals (stages 30–36) were treated following the protocol of Dingerkus and Uhler [25] for clearing and staining; we interrupted the procedure just after the staining with alcian blue for two individuals (stage 36) which were then dissected manually for the study of larval muscles. After observations and illustrations, we finished the clearing protocol. Terminology for the chondrocranium and muscles follows Haas [26–28]. The character-states discussed through the text were optimized on the phylogenetic hypothesis proposed by Duellman et al. [1] with the software TNT v1.5 [29].

Results

External morphology

The tadpole of *Dendropsophus decipiens* (stage 37) was described by Pugliese et al. [16]. It is characterized by having a triangular body, high tail fins with brown stripes, and a reduced oral disc with blunt marginal papillae and absence of labial teeth.
Buccopharyngeal anatomy

Buccal floor triangular with two pairs of infralabial papillae; medial pair conical; lateral pair flap-like (Fig 1A). Lingual bud elliptical, lacking lingual papillae. Buccal floor arena U-shaped, laterally delimited by single fan-shaped papilla, with few pustulations. Prepocked pustulations present. Buccal pocket deep, oriented transversely. Glandular zone well-developed, with evident secretory pits, and well-marked spicular support. Ventral velum arch-shaped, lacking marginal projections; medial notch discreet. Branchial basket triangular, with three well-developed filter cavities. Filter plates unconnected, bearing many filter rows. Glottis exposed.

Buccal roof triangular (Fig 1B). Prenarial arena half-circle shaped, with few pustulations. Internal nares elliptical, oriented transversely; anterior border with four to five conical pustulations; posterior margin lacking valve. Postnarial papillae absent. Median ridge triangular, low. Lateral ridge papillae conical. Buccal roof arena poorly defined, delimited posterolaterally by two conical papillae. Glandular zone undistinguished. Dorsal velum arch-shaped, smooth, medially interrupted.

Chondrocranium morphology

Suprarostral cartilage single (Fig 2D); suprarostral alae and suprarostral corpus completely fused. Suprarostral alae triangular, bearing two processes: processus posterior dorsalis and anterior dorsalis. Cornu trabeculæ short, thin, uniform along their extension, and parallel to each other; articulates with suprarostral (Fig 2A and 2B). Planum ethmoidale developed and distinct. Foramen nasalis present, elliptical. Fenestra basicranialis not occluded; planum intertrabeculare not formed in medial region; pierced by the foramen caroticum primarium.

Fig 1. Buccopharyngeal anatomy of Dendropsophus decipiens (stage 34). (A) Buccal floor and (B) buccal roof. Abbreviations: BFA, buccal floor arena; BFAP, buccal floor arena papillae; BP, buccal pocket; BRA, buccal roof arena; DV, dorsal velum; G, glottis; GZ, glandular zone; IL, infralabial papillae; IN, internal nares; LB, lingual bud; LRP, lateral ridge papillae; MR, median ridge; VV, ventral velum. Scale bars = 400 μm.

https://doi.org/10.1371/journal.pone.0219716.g001
Cartilago orbitalis tall, reaching the capsula auditivae posteriorly, forming the dorsal margin of the foramen prooticum; foramina oculomotorium, opticum, and prooticum pierce the cartilago orbitalis. Frontoparietal fontanelle large, rectangular and open (Fig 2A and 2B); laterally bordered by taenia tecti marginales, anteriorly by the planum ethmoidale, and posteriorly by the tectum synoticum. Capsula auditivae robust, rhomboid-shaped, representing c.a. 28% of chondrocranium length. Anterolateral process of crista parotica absent. Jugulare and inferior perilymphaticum foramina present, visible in ventral view.

Palatoquadrate thin, long, slightly curved (Fig 2A and 2B); articular process articulate with cartilago Meckeli. Processes quadrateethmoidalis and pseudopterygoideus absent. Processus muscularis triangular, lower than cartilago orbitalis; triangular process present at the anterior...
margin of the process muscularis, triangular, anteriorly directed. Commissura quadrato-orbita-
lis absent. Processus antorbitalis reduced. Subocular bar with small, triangular, lateral expan-
sions. Processus ascendens attached to cranial floor with an angle of approximately 90°.
Hyoid过程 evident on ventral surface of processus muscularis. Cartilago Meckeli
sigmoid-shaped, orientated almost perpendicular to chondrocranium axis (Fig 2E). Infracra-
tral cartilages rectangular, curved, joined medially by connective tissue.

Ceratohyals long, flat, and subtriangular (Fig 2C); their anterior margin bearing two trian-
gular, well-developed processes: processus anterior hyalis and processus anterolateralis hyalis.
Posterior processes triangular, tall. Ceratohyals are joined by a pars reuniens, which is chon-
drified. Basibranchial rectangular, bearing a rounded processus urobranchialis. Basihyal pres-
ent, slim, cylindrical. Planum hypobranchiale long, triangular, contacting each other along
their anterior half. Branchial basket has four curved ceratobranchials with numerous lateral
projections. Ceratobranchial I continuous with the planum hypobranchiale; dorsally, it bears a
triangular processus anterior branchialis. Ceratobranchials II and III also fuse to the planum
hypobranchiale plate and bear round branchial processes. Ceratobranchial IV is shorter,
wider, and fused to the planum hypobranchiale. Four long, curved spicules develop dorsally;
the third and fourth spicules are connected to the planum hypobranchiale by a thin cartilagi-
nous bridge. Ceratobranchials are distally joined by terminal commissures.

Cranial, hyoid and hyobranchial musculature
We found a total of 31 muscles in larvae of Dendropsophus decipiens (origins and insertions in
Table 1; Figs 3 and 4). Interhyoideus posterior and diaphragmatopraecordialis absent. Subar-
cualis obliquus present in two slips, inserting on the processus branchialis II and III. Subarcu-
alis rectus II-IV continuous, inserting on the ceratobranchial I. Mandibulolabialis with single
slip, corresponding to mandibulolabialis inferior. Intermandibularis arch-shaped. Larval leva-
tor mandibulae externus with two slips, superficialis and profundus. Levator mandibulae later-
alis inserting in the nasal sac. Ramus mandibularis (cranial nerve V₃) runs dorsally to longus
and externus groups.

Discussion
Larval internal morphology
Dendropsophus has been repeatedly found as sister taxon of Xenohyla (always well supported)
in molecular phylogenetic analyses for Hylidae (e.g. [1,3,6,8]). However, the phylogenetic rela-
tionships of the tribe Dendropsophini (Dendropsophus + Xenohyla; sensu [2]) within Hylidae
remain controversial. It is recovered as sister taxon of Sphaenorhynchini, closely related to Pse-
udini and Scinaxini [3] or alternatively, as sister taxon of Pseudini, distantly related to Sci-
navinini and Sphaenorhynchini (e.g. [1,8]).

Descriptions of the internal larval anatomy are scarce for Dendropsophus. The buccophar-
yngeal anatomy is known for D. ebraccatus, D. garagoensis, D. minutus, D. microcephalus, D.
nanus, D. padreluna, D. phlebodes, D. sarayacuensis, D. stingi, and D. virolinensis [24,30–32].
Similarly, descriptions of cranial muscles and the chondrocranium morphology are only avail-
able for D. ebraccatus, D. microcephalus, and D. nanus [28,32–34]. Dendropsophus ebraccatus
was included in the phylogenetic analyses of Haas [28]. Aside from those studies, there is some
scattered information available as the relative size of the buccal depressors muscles of D. micro-
cephalus and D. phlebodes [35], buccal pumping anatomy and secretory ridges of D. microce-
phalus [36,37], hyobranchial morphology of D. nanus [38], and some character-states of chondrocranium for D. microcephalus [39].
Table 1. Cranial, hyoid and hyobranchial musculature of the tadpole of *Dendropsophus decipiens* (stage 36). Abbreviations: CB I, II, and III = Ceratobranchial I, II, and III. c.n. = cranial nerve. LMLP = m. levator mandibulae longus profundus. n. = nerve.

Muscle	Origin	Insertion	Comments
Levator mandibulae longus superficialis	External posterior margin arcus subocularis and processus ascendens	Dorsomedial cartilago Meckeli	Via long tendon
Levator mandibulae longus profundus	External margin (curvature) arcus subocularis	External margin of the suprarostral ala	Via a long tendon; tissue mass near the upper lip
Levator mandibulae externus superficialis	Inner processus muscularis (superior)	Processus posterior dorsalis of suprarostral ala	
Levator mandibulae externus profundus	Inner processus muscularis (medial)	External, anteroven tral margin of suprarostral ala	Share a tendon with LMLP
Levator mandibulae articularis	Inner processus muscularis (inferior)	Dorsal cartilago Meckeli	
Levator mandibulae lateralis	Processus articularis quadrati	Nasal sac	
Submentalis (intermandibularis anterior)	-	-	
Intermandibularis	Median aponeurosis	Ventromedial cartilago Meckeli	
Mandibulolabialis	Ventromedial cartilago Meckeli	Lower lip	Single slip (inferior)
Levator mandibulae internus	Ventr al processus ascendens and few fibers on the lateral curvature	Distal cartilago Meckeli	

Hyoid group, n. facialis (c.n. VII)

Muscle	Origin	Insertion	Comments
Hyoangularis	Dorsal ceratohyal	Retroarticular process of cartilago Meckeli	
Quadratoangularis	Ventral palatoquadrate	Retroarticular process of cartilago Meckeli	
Suspensorioangularis	Descendent posterior margin of the processus muscularis	Retroarticular process of cartilago Meckeli	
Orbitohyoideus	Processus muscularis	Lateral edge of ceratohyal	
Suspensoriohyoideus	Posterior descending margin of processus muscularis	Lateral process of ceratohyal	
Interhyoideus	Median aponeurosis	Ventral ceratohyal	

Branchial group, n. glossopharyngeus (c.n. IX) and vagus (c.n. X)

Muscle	Origin	Insertion	Comments
Levator arcus branchialium I	Arcus subocularis	Ceratobranchial I	
Levator arcus branchialium II	Lateral otic capsule	Ceratobranchial II	
Levator arcus branchialium III	Lateral otic capsule	Ceratobranchial III	
Levator arcus branchialium IV	Otic capsule	Ceratobranchial IV	
Tympanopharyngeus	Otic capsule	Ceratobranchial IV and pericardium	
Dilator laryngis	Otic capsule	Arytenoid cartilage	
Constrictor branchialis I	-	-	
Constrictor branchialis II	Processus branchialis II	Commissura terminalis I by the inner margin of CB I	
Constrictor branchialis III	Processus branchialis II	Commissura terminalis II by the inner margin of CB II	
Constrictor branchialis IV	Processus branchialis II	Commissura terminalis II	Along the CB III
Subarcualis rectus I	Posterior lateral base of ceratohyal	Processus branchialis III, dorsal CB II and CB I	
Subarcualis rectus II-IV	Ceratobranchial IV	Ceratobranchial I	Crossing the CB III
Subarcualis obliquus II	Processus urobranchialis	Processus branchialis II and III	Two slips
Diaphragmatobranchialis	Peritoneum (diaphragm)	Distal Ceratobranchial III	

Spinal group, spinal nerve innervation

Muscle	Origin	Insertion	Comments
Genyoohoideus	Planum hypobranchiale	Infrarostral cartilage	Originating between CB II and III
Rectus abdominis	Peritoneum (diaphragm)	Abdominal wall	Five open myotomes
Rectus cervices	Peritoneum (diaphragm)	Processus branchialis III	Single slip

[10.1371/journal.pone.0219716.t001](https://doi.org/10.1371/journal.pone.0219716.t001)
The controversial phylogenetic position of the tribe Dendropsophini (e.g. [1,3]) within Hylidae, added to the poor knowledge about on internal larval anatomy in *Dendropsophus* prevents us to assess the polarity of most character-states and, therefore, to enhance broad discussions about larval character evolution in *Dendropsophus*; however, there are some interesting exceptions that deserve comments.

Several species of *Dendropsophus* have a reduced number of elements in the buccopharyngeal cavity [24,30–32]. For example, the median ridge is missing in *D. ebraccatus* and *D. nanus* [24,32], and a lower number of papillae in both buccal floor and roof and the absence of lingual papillae were also reported for larvae of *Dendropsophus* (e.g. [31,32]). Faivovich et al. [3] suggested the absence of lingual papillae as a putative synapomorphy for the clade composed of *Dendropsophus*, *Lysapsus*, *Pseudis*, *Scarthyla*, *Scinax*, and *Sphaenorhynchus* (the former Dendropsophini tribe sensu [3]), with reversion in *Lysapsus* and *Pseudis*. Our observations showed that lingual papillae are also present at least in some species of *Sphaenorhynchus* (*S. dorisae*, *S. lacteus*, *S. prasinus*; P.H.S. Dias and K. Araujo-Vieira personal observations). This character-state is unknown for *Xenohyla*. The absence of lingual papillae optimizes ambiguously in the phylogenetic hypothesis of Duellman et al. [1] due to the unknown character-state of *Xenohyla*. The absence of lingual papillae optimizes ambiguously in the phylogenetic hypothesis of *Xenohyla*; it is a synapomorphy of *Dendropsophus* or of a more inclusive clade, the tribe Dendropsophini (*Dendropsophus + Xenohyla* sensu [2]).

Dendropsophus decipiens (*D. microcephalus* group) has a fan-like papilla on the buccal floor, adjacent to the buccal pockets. This character was first described by Kaplan and Ruiz-Carranza [31] for *D. garagoensis*, *D. padreluna*, *D. virolinensis* (*D. garagoensis* group), and *D. stingi*.

![Cranial, hyoid and hyobranchial muscles of Dendropsophus decipiens (stage 36).](https://doi.org/10.1371/journal.pone.0219716.g003)

(A) Ventral and (B) dorsal views. Abbreviations: CB (II-IV), constrictor branchialis; GH, genyohyoideus; HA, hyoangularis; IH, interhyoideus; IM, intermandibularis; LBI, levator arcuum branchialium I; LBIV-TP, levator arcuum branchialium IV + tympanohyoides; LMA, levator mandibulae articularis; LMEP, levator mandibulae externus profundus; LMES, levator mandibulae externus superficialis; LMI, levator mandibulae internus; LMLS, levator mandibulae longus superficialis; ML, mandibulolabialis; OH, orbitohyoideus; RC, rectus cervicis; SO, subarcualis obliquus; SRI, subarcualis rectus I; SRII-IV, subarcualis II-IV. Scale bars = 0.5 mm.
(D. parviceps group) and illustrated for D. minutus (D. minutus group; [30]). Fan-like papillae are absent in larvae of D. ebraccatus, D. microcephalus, D. nanus, D. phlebodes, and D. sarayacuensis [24,28,32]. The presence of a fan-like papilla on the buccal floor in members of the D. garagoensis, D. microcephalus, D. minutus, and D. parviceps groups suggest that it could be a
putative synapomorphy of the genus *Dendropsophus*; however, the taxonomic distribution of this character-state within *Dendropsophus* remains poorly known.

A putative synapomorphy of the *Dendropsophus garagoensis* group is the presence of two pairs of infralabial papillae, which were reported for *D. garagoensis* and *D. padreluna* [31]—with independent evolution in *D. decipiens* [this work]. Other species of *Dendropsophus* that have been studied present a single pair of infralabial papillae (e.g. *D. minutus*, *D. nanus*, *D. phlebodes*; [24,30,32]).

Larvae of *Dendropsophus decipiens* differ from those of its related species *D. microcephalus* and *D. nanus* (characters in parenthesis) in having generalized processus muscularis (broad processus muscularis), marginal projections on arcus subocularis of palatoquadrate (smooth margin), thin ceratohyals (stout and thick ceratohyals), regular branchial basket (reduced branchial basked), and presence of spicules on the ceratobranchialia (absence of spicules) [32–34]. However, *D. decipiens* share with those species short and narrow cornu trabeculae, the presence of a small triangular process at the basis of the processus muscularis, and a single-element suprarostral cartilage. The latter could be a synapomorphy of *Dendropsophus* (with one reversion to a separated element suprarostral cartilage in *D. ebraccatus* within the *D. leucophyllatus* group; [28]) or of the *D. microcephalus* group. In larvae of *Lysapsus*, *Pseudis*, and some *Scinax*, the suprarostral corpora are fused distally, but with a medial indentation that allow the identification of both elements; several other hylids have completely separated suprarostral cartilage (e.g. [32,33,40–43]). This character-state is still unknown for *Scarthyla*, *Sphaenorhynchus*, and *Xenohyla*.

It is worth to note that a single-element suprarostral cartilage is not very common in anuran larvae. Besides some *Dendropsophus*, such morphological condition have been reported in some microhylids [32], *Occidozyga baluensis* (Dicroglossidae) [44], and *Ceratophrys* and *Lepidobatrachus* (Ceratophryidae) [32,45–47]. It is interesting to point that, regarding Ceratophryidae, *Chacophrys pierotti* possesses the suprarostral alae and corpora completely fused (with a small fenestra), but both corpora have a medial indentation [48]. Lavilla and Fabrezi [49] suggested that the complete fused suprarostral could be a synapomorphy of *Ceratophrys + Lepidobatrachus*. Given the phylogenetic relationships within Ceratophryidae [50]—*Chacophrys* and *Lepidobatrachus* are sister taxa, and both sister to *Ceratophrys*—this is not possible. However, the complete fusion between the alae and corpora could be a synapomorphy for the family. While microhylids are filter-feeders, *Ceratophrys*, *Lepidobatrachus*, and *Occidozyga* are macrophagous larvae. Further information are still needed to understand the relationship between macrophyg and the fusion of the elements of the suprarostral cartilage.

Dendropsophus decipiens shares with *D. ebraccatus* the m. subarcualis rectus II-IV with a single, continuous slip; whereas *D. microcephalus* and *D. nanus* have this muscle discontinued at the processus branchialis II [28,32,41]. Larvae of *Scinax* and distantly related hylids (e.g. *Agalychnis, Boana, Osteocephalus, Trachycephalus*; [28,32,42]) have a single subarcualis rectus II-IV, while larvae of *Lysapsus* and *Pseudis* have a discontinued subarcualis rectus II-IV [28,32,34]. The taxonomic distribution of these character-states on the phylogenetic hypothesis of Duellman et al. [1] suggests that *D. decipiens* and *D. ebraccatus* have the plesiomorphic condition (single subarcualis rectus II-IV), being the m. subarcualis rectus II-IV discontinued at the processus branchialis II a putative synapomorphy of *Lysapsus + Pseudis*, with instances of homoplasy in *D. microcephalus* and *D. nanus*.

Larvae of *Dendropsophus*, *Lysapsus*, and *Pseudis* that have been studied share the m. levator mandibulae lateralis inserted on the nasal sac [32,41] [this work]—although Haas [28] mentioned that it inserted on the processus posterior dorsalis of the suprarostral or in the rostral tissue in *D. ebraccatus* [28: ch. 57.0]. In larvae of *Scinax*, the m. levator mandibulae lateralis inserts on the pars alaris of the suprarostral cartilage [32,34,42]. The taxonomic distribution of
these character-states on the phylogenetic hypothesis of Duellman et al. [1] suggests that the m. levator mandibulae lateralis inserted on the nasal sac could be a synapomorphy of the Dendropsophini + Pseudini clade (sensu [2]) or arose twice independently in Dendropsophus and the Lysapsus + Pseudis clade. Other character-state, the absence of the superior slip of the m. mandibulolabialis also optimize ambiguously as a synapomorphy of the Dendropsophini + Pseudini clade or of Dendropsophus and the Lysapsus + Pseudis clade (with some instances of reversion within Pseudis; [28,41]). Larvae of Scinax have the superior slip of the m. mandibulolabialis [42]. The optimizations of both character-states mentioned above are dependent on the conditions, still unknown, present in larvae of Scarthyla, Sphaenorhynchus, and Xenohyla.

Feeding habits

Tadpoles can be distinguished regarding their feeding habits accordingly with the size of their prey (macrophagous or microphagous) and the nature of the feeding items (herbivore, carnivore, or omnivore). Larvae of Dendropsophus have been described as macrophagous feeders (e.g. [51]), or macrophagous herbivores according to Wassersug [24]. However, other reports suggest that tadpoles of Dendropsophus could be omnivorous. For example, Vera Candioti [32] described the presence of entire oligochaetes in the digestive system of D. nanus. Ruas et al. [52] observed tadpoles of D. novaisi chasing and preying on tadpoles of Rhinella crucifer. Also, larvae of D. minutus were observed attacking and preying on living tadpoles of Physalaemus sp.—although it was considered a facultative behavior, given that D. minutus feeds commercial fish food and plant residues in captivity [53].

Most of the macrophagous tadpoles (both herbivorous or carnivores) have terminal mouth, reduced branchial basket, well-developed orbitohyoideus, reduced labial tooth rows, reduced or lost elements of the buccopharynx, massive jaw sheaths, fused elements of suprarostral cartilages, and short intestines [32,35–36,44–47,54] [P.H.S. Dias personal observation]. Almost all these character-states are present, with different combinations, in larvae of Dendropsophus. Wassersug [24] pointed out several buccopharyngeal characters associated with macrophagy in larvae of Dendropsophus, and also reported that D. phlebodes “presented the most extreme reduction in structures associated with fine suspended matters”.

We observed that larvae of Dendropsophus decipiens have some character associated with a macrophagy as a terminal mouth lacking labial teeth, reduction in the elements of the buccopharyngeal cavity, such as papillation and secretory tissue, and single-element suprarostral cartilage. Nevertheless, tadpoles of D. decipiens differ from those of D. microcephalus and D. nanus, which have marked reduction of branchial baskets (well-formed and bearing spicules in D. decipiens) and massive orbitohyoideus [32] that is correlated with powerful suction capacity [35]. This combination of characters suggests that larvae of D. decipiens feed on large elements and have reduced filter capacity, although they are not as specialized for predation (carnivory/omnivory) as the tadpoles of D. microcephalus and D. nanus. Morphological and behavioral observations for more species, as well as the usage of techniques such as stable isotope (see [55]) are necessary for a fully appreciation of the evolution of feeding habits in Dendropsophus.

Our results suggest that larval internal morphology could provide interesting insights into the evolution and diversification of Dendropsophus. However, additional studies on other species of Dendropsophus and its related taxa (e.g. Scarthyla, Sphaenorhynchus, and Xenohyla) are required to corroborate the different putative synapomorphies mentioned in this work. Furthermore, the feeding habits of tadpoles of the genus are, putatively, more diverse than previously observed, with variable degrees of specialization for a macrophagous diet.
Acknowledgments

We thank J. Faivovich and F. Vera Candioti for their comments on earlier drafts of the manuscript. Enio Mattos and Phillip Lenktatis assisted us with the SEM procedures. Financial support and fellowships were provided by Fundação de Amparo ao Pesquisa do Estado de São Paulo (FAPESP; Procs. # 2007/57067-9, 2012/10000-5, 2012/12500-5, 2013/20420-4, 2013/20423-3, 2013/50741-7, 2014/50342-8, 2015/11239-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Grant # 310467/2017-9), and Agencia Nacional de Promoção Científica y Tecnológica (ANPCyT, PICT 404/2013 and 820/2015).

Author Contributions

Conceptualization: Pedro H. S. Dias.

Formal analysis: Pedro H. S. Dias.

Funding acquisition: Pedro H. S. Dias, Katyuscia Araujo-Vieira, Victor G. D. Orrico.

Methodology: Pedro H. S. Dias.

Project administration: Ana Maria P. T. de Carvalho-e-Silva.

Visualization: Pedro H. S. Dias, Katyuscia Araujo-Vieira.

Writing – original draft: Pedro H. S. Dias, Katyuscia Araujo-Vieira, Ana Maria P. T. de Carvalho-e-Silva, Victor G. D. Orrico.

Writing – review & editing: Pedro H. S. Dias, Katyuscia Araujo-Vieira, Ana Maria P. T. de Carvalho-e-Silva, Victor G. D. Orrico.

References

1. Duellman WE, Marion AB, Hedges B. Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arborana). Zootaxa. 2016; 4104: 1–109. https://doi.org/10.11646/zootaxa.4104.1.1 PMID: 27394762

2. Faivovich J, Pereyra MO, Luna MC, Hertz A, Blotto BL, Velázquez-Almazán CR, et al. On the monophyly and relationships of several genera of Hylini (Anura: Hylidae: Hylinae), with comments on recent taxonomy changes in hyliids. S Am J Herpetol. 2018; 13: 1–32. https://doi.org/10.2994/SAJH-D-17-00115.1

3. Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC. Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Mus Nat Hist. 2005; 294: 1–240.

4. Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW. Evolutionary and ecological causes of latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Amer Naturalist. 2006; 158: 579–596. https://doi.org/10.2307/3873455

5. Wiens JJ, Kuczynski CA, Hua X, Moen DS. An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Mol Phylogenet Evol. 2010; 55: 871–882. https://doi.org/10.1016/j.ympev.2010.03.013 PMID: 20304077

6. Pyron A, Wiens JJ. A large–scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol. 2011; 61: 543–583. https://doi.org/10.1016/j.ympev.2011.06.012 PMID: 21723399

7. Pyron A. Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Syst Biol. 2014; 63: 779–797. https://doi.org/10.1093/sysbio/syu042 PMID: 24951557

8. Jetz W, Pyron RA. The interplay of past diversification and evolutionary isolation with present impervious across the amphibian tree of life. Nature Ecology & Evolution. 2018; 2: 850–858. https://doi.org/10.1038/s41559-018-0515-x PMID: 29981588

9. Frost DR. Amphibian Species of the World: an Online Reference. Version 6.0. 2019 [cited 5 August 2018]. Am Mus Nat Hist New York, USA. http://research.amnh.org/herpetology/amphibia/index.html.
10. Suárez P, Cardozo D, Baldo D, Pereyra MO, Faivovich J, Orrico VGD, et al. Chromosome evolution in Dendropsophini (Amphibia, Anura, Hylidae). Cytogenet Genome Res. 2013; 141: 295–308. https://doi.org/10.1159/000334997 PMID: 24107475

11. Fouquet A, Noonan BP, Blanc M, Orrico VGD. Phylogenetic position of *Dendropsophus gaucherie* (Lesure and Marty 2000) highlights the need for an in-depth investigation of the phylogenetic relationships of *Dendropsophus* (Anura: Hylidae). Zootaxa 2011; 3035: 59–67. https://doi.org/10.11646/zootaxa.3035.1.3

12. Rivera-Correia M, Orrico VGD. Description and phylogenetic relationships of a new species of treefrog of the *Dendropsophus leucophylatus* group (Anura: Hylidae) from the Amazon basin of Colombia and with an exceptional color pattern. Zootaxa. 2013; 3686: 447–460. https://doi.org/10.11646/zootaxa.3686.4.3 PMID: 26473232

13. Orrico VGD, Peloso PLV, Sturaro MJ, Silva-Filho HF, Neckel-Oliveira S, Gordo M, et al. A new "bat-voice" species of *Dendropsophus* Fitzinger, 1843 (Anura, Hylidae) from the Amazon Basin, Brazil. Zootaxa. 2014; 3881: 341–361. https://doi.org/10.11646/zootaxa.3881.4.3 PMID: 25543640

14. Duellman WE, Trueb L. Frogs of the *Hyla* group (Anura, Hylidae). In Rhodin AGJ, Miyata K, editors. Advances in herpetology and evolutionary biology. Cambridge, MA, Museum of Comparative Zoology, Harvard University; 1983. pp. 33–51.

15. Peloso PLV, Orrico VGD, Haddad CFB, Lima-Filho GR, Sturaro MJ. A new species of clown tree frog, *Dendropsophus leucophylatus* species group, from Amazonia (Anura, Hylidae). S Am J Herpetol. 2016; 11: 66–80. https://doi.org/10.2994/SAJH-D-16-00031.1

16. Pugliese A, Alves AC, Carvalho-e-Silva SP. The tadpoles of *Hyla oliverai* and *Hyla decipiens* with notes on *Hyla microcephala* group (Anura, Hylidae). Alytes. 2000; 18: 73–78.

17. Carvalho-e-Silva SP, Carvalho-e-Silva AMPT, Izecksohn E. Nova espécie de *Dendropsophus* (Anura, Hylidae). Zootaxa. 2013; 3553–558. https://doi.org/10.1590/S0101-81752003000300029

18. Bokermann WCA. Cuatro nuevos hílidos del Brasil. Neotropica. 1962; 8: 81–92.

19. Lourenço-de-Moraes R, Campos FS, Toledo LF. The tadpole of *Dendropsophus haddadi* (Bastos & Pombal 1996) (Hylidae: Hylinae). Zootaxa. 2012; 3476: 86–88. https://doi.org/10.11646/zootaxa.3476.1.1

20. Abreu RO, Napoli MF, Camardelli M, Fonseca PM. The tadpole of *Dendropsophus haddadi* (Amphibia, Anura, Hylidae): additions on morphological traits and comparisons with tadpoles of the *D. decipiens* and *D. microcephalus* species group. Sitientibus Sér Ciênc Biol. 2013; 13: 1–4. https://doi.org/10.13102/scb202

21. Gosner KL. A simplified table for staging anurans embryos and larvae with notes on identifications. Herpetologica. 1960; 16: 183–190.

22. Wassersug RJ. Oral morphology of anuran larvae: terminology and general descriptions. Occ Pap Mus Nat Hist Univ Kansas. 1976; 48: 1–23.

23. Alcalde L, Blotto BL. Chondrocranium, cranial muscles and buccopharyngeal morphology on tadpoles of the controversial Leptodactylidae frog *Linnomodusa macroglossa* (Anura: Leptodactylidae). Amphibia-Reptilia. 2006; 27: 241–253. https://doi.org/10.1163/156853806777239959

24. Wassersug RJ. Internal oral features of larvae from eight anuran families: Functional, systematic, evolutionary and ecological consideration. Misc Publ Mus Nat Hist Univ Kansas. 1980; 68: 1–148. https://doi.org/10.5962/bhl.title.16230

25. Dingerkus G, Uhler LD. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol. 1977; 52: 229–232. https://doi.org/10.3109/10520297709116780 PMID: 71769

26. Haas A. Cranial features of *Dendrobataidae* larvae (Amphibia: Anura: Dendrobatidae). J Morphol. 1995; 224: 241–264. https://doi.org/10.1002/jmor.1052240302 PMID: 7595955

27. Haas A. Mandibular arch musculature of anurans tadpoles, with comments on homologies of Amphibian jaw muscles. J Morphol. 2001; 247: 1–33. https://doi.org/10.1002/1097-4687(200101)247:1<1::AID-JMOR1000>3.0.CO;2-3 PMID: 11124683

28. Haas A. Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics. 2003; 19: 23–89.

29. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics. 2008; 24: 774–786.

30. Echeverría DD. Microanatomy of the buccal apparatus and oral cavity of *Hyla minuta* Peters, 1872 (Anura, Hylidae), with data on feeding habits. Alytes. 1997; 15: 23–36.

31. Kaplan M, Ruiz-Carranza PM. Two new species of *Hyla* from the Andes of central Colombia and their relationships to the other small Andean *Hyla*. J Herpetol. 1997; 31: 230–244. https://doi.org/10.2307/1565391
32. Vera Candioti MF. Anatomy of anuran tadpoles from lentic water bodies: systematic relevance and correlation with feeding habits. Zootaxa. 2007; 1600: 1–175.
33. Fabrezi M, Lavilla EO. Estructura del condrocranio y esqueleto hiobranquial en larvas de algunos hildos neotropicales (Anura: Hylidae). Acta Zool Lilloana. 1992; 41: 155–164.
34. Vera Candioti MF, Lavilla EO. Echeverría DD. Feeding mechanism in two treefrogs, Hyla nana and Scinax nasus (Anura: Hylidae). J Morphol. 2004; 261: 261–224. https://doi.org/10.1002/jmor.10239 PMID: 15216525
35. Satel SL, Wassersug RJ. On the relative size of buccal floor depressor and elevator musculature in tadpoles. Copeia. 1981; 129–137. https://doi.org/10.2307/1444047
36. Wassersug RJ, Hoff K. A comparative study of the buccal pumping mechanism of tadpoles. Biol J Linnean Soc. 1979; 12: 225–259. https://doi.org/10.1111/j.1095-8312.1979.tb00056.x
37. Wassersug RJ, Rosenberg K. Surface anatomy of branchial food traps of tadpoles: a comparative study. J Morphol. 1979; 159: 393–426. https://doi.org/10.1002/jmor.1051590307 PMID: 30205630
38. Vera Candioti MF, Haas A. Three-dimensional reconstruction of the hyobranchial apparatus of Hyla nana tadpoles (Anura: Hylidae). Cuad Herpetol. 2004; 18: 3–15.
39. Haas A. Das larvale cranium von Gastrotheca ribambae und seine metamorfose (Amphibia, Anura, Hylidae). Abh Verhand Naturwiss Ver Hamburg. 1996; 36: 33–162.
40. Fabrezi M, Vera R. Caracterización morfológica de larvas de anuros del nordeste argentino. Cuad Herpetol. 1997; 11: 37–49.
41. Alcalde L, Barg M. Chondrocranium and cranial muscle morphology in Lysapsus and Pseudis tadpoles (Anura: Hylidae: Hylinae). Acta Zootax. 2006; 87: 91–100. https://doi.org/10.1111/j.1463-6395.2006.00205.x
42. Alcalde L, Vera Candioti F, Kolenc F, Bortolino C, Baldó D. Cranial anatomy of five species of Scinax (Hylidae: Hylinae). Zootaxa. 2011; 2787: 19–36. https://doi.org/10.11646/zootaxa.2787.1.2
43. Dias PHS, Mongin-Aquino M, Vera Candioti F, Carvalho-e-Silva AMPT, Barbosa OL, Gomes MR. Evolutionary significance of oral morphology in the carnivorous tadpoles of tiger frogs, genus Hoplobatrachus (Anura: Hylidae). Copeia. 1981; 1981: 129–137. https://doi.org/10.2307/1444047
44. Haas A, Pohlmeier J, McLeod DS, Kleinteich T, Hertwig ST, Das I, Buchloz DR. Extreme tadpoles II: the highly derived larval anatomy of Occidozyga baluensis (Boulenger, 1886), an obligate carnivorous tadpole. Zoomorphology. 2014; 133: 321–342. https://doi.org/10.1007/s00435-014-0226-7
45. Ruibal R, Thomas E. The obligate carnivorous larvae of the frog Lepidobatrachus laevis (Leptodactyli- dae). Copeia. 1988; 591–604. https://doi.org/10.2307/1445377
46. Wild ER. Description of the adult skeleton and developmental osteology of the hyperossified horned frog, Ceratophrys cornuta (Anura: Leptodactyliidae). J Morphol. 1997; 232: 169–206. https://doi.org/10.1002/(SICI)1097-4687(199705)232:2<169::AID-JMOR4>3.0.CO;2-5 PMID: 9097467
47. Vera Candioti MF. Morphology and feeding in tadpoles of Ceratophrys crenwelli (Anura: Leptodactylidae). Acta Zool. 2005; 86: 1–11. https://doi.org/10.1111/j.0001-7272.2005.00178.x
48. Wild ER. Description of the condrocranium and osteogenesis of the Chacoan burrowing frog, Cha- tophry pieriotti (Anura: Leptodactylidae). J Morphol. 1999; 242: 229–246. https://doi.org/10.1002/(SICI)1097-4687(199912)242:3<229::AID-JMOR4>3.0.CO;2-N PMID: 10580262
49. Lavilla EO, Fabrezi M. Anatomía craneal de larvas de Lepidobatrachus llanensis y Ceratophrys cren- welli (Anura: Leptodactylidae). Acta Zootax. 1992; 42: 5–11.
50. Faivovich J, Nicoli L, Blotto BL, Pereyra MO, Baldó D, Barriouneu JS, Fabrezi M, Wild ER, Haddad CFB. Big, bad, and beautiful: phylogenetic relationships of the horned frogs (Anura: Ceratophryidae). S Am J Herpetol. 2014; 9: 207–227. https://doi.org/10.2994/SAJH-D-14-00032.1
51. Allig R, Johnston GF. Guilds of anuran larvae: relationships among developmental modes, morphologies and habitats. Herpetol Monogr. 1989; 3: 81–109. https://doi.org/10.2307/1466987
52. Ruas DS, Mira-Mendes CV, Del-Grande ML, Zina J, Solé M. The tadpole of Dendropsopus novaisi (Bokermann, 1968) (Anura: Hylidae), with comments on natural history. Zootaxa 2018; 4375: 296–300. https://doi.org/10.11646/zootaxa.4375.2.10 PMID: 2966977
53. Peixoto OL, Gomes MR. Hyla minuta. Predation. Natural history notes. Herpetol Rev. 1997; 28: 146–147.
54. Grosjean S, Vences M, Dubois A. Evolutionary significance of oral morphology in the carnivorous tadpoles of tiger frogs, genus Hoplobatrachus (Ranidae). Biol J Linnean Soc. 2004; 81: 171–181. https://doi.org/10.1111/j.1095-8312.2003.00272.x
55. Altig R, Whiles MR, Taylor C.L. What do tadpoles really eat? Assessing the trophic status of an under-studied and imperiled group of consumers in freshwater habitats. Freshw Biol. 2007; 52: 386–395. https://doi.org/10.1111/j.1365-2427.2006.01694.x