Review

Influence of Sox protein SUMOylation on neural development and regeneration

https://doi.org/10.4103/1673-5374.320968

Kun-Che Chang *

Abstract

SRY-related HMG-box (Sox) transcription factors are known to regulate central nervous system development and are involved in several neurological diseases. Post-translational modification of Sox proteins is known to alter their functions in the central nervous system. Among the different types of post-translational modification, small ubiquitin-like modifier (SUMO) modification of Sox proteins has been shown to modify their transcriptional activity. Here, we review the mechanisms of three Sox proteins in neuronal development and disease, along with their transcriptional changes under SUMOylation. Across three species, lysine is the conserved residue for SUMOylation. In Drosophila, SUMOylation of SoxN plays a repressive role in transcriptional activity, which impairs central nervous system development. However, deSUMOylation of Sox6 and Sox11 plays neuroprotective roles, which promote neural crest precursor formation in Xenopus and retinal ganglion cell differentiation as well as axon regeneration in the rodent. We further discuss a potential translational therapy by SUMO site modification using AAV gene transduction and Clustered regularly interspaced short palindromic repeats-Cas9 technology. Understanding the underlying mechanisms of Sox SUMOylation, especially in the rodent system, may provide a therapeutic strategy to address issues associated with neuronal development and neurodegeneration.

Key Words: axon regeneration; neural development; neurological disorder; neuroprotection; post-translational modification; small ubiquitin-like modifier; Sox transcription factor; SUMOylation

Introduction

Post-translational modification (PTM) is the process of covalent addition of a molecular group to proteins, leading to changes in protein subcellular localization, function and stability (Gupta et al., 2021), of which the small protein, small ubiquitin-like modifier (SUMO), is one example (Chang and Yeh, 2020). In Drosophila, only one SUMO has been found (smt3) (Urena et al., 2016) whereas four types of SUMOs (SUMO1/2/3/4) have been identified in humans (Sarge and Park-Sarge, 2011). Unlike the process of ubiquitination leading to protein degradation (Schmidt et al., 2021), SUMOylation, a PTM which attaches SUMO to a lysine residue of protein, does not lead to protein degradation (Savare et al., 2005), and is broadly studied in plants (Augustine and Vierstra, 2018), fruit flies (Nie et al., 2009; Koltun et al., 2017) and frogs (Bertke et al., 2019). There are three enzymatic activities that contribute to the SUMOylation process including E1 SUMO1 activating enzyme subunit 1/2 (Lois and Lima, 2005), E2 ubiquitin conjugating enzyme (Reverter and Lima, 2005), and E3 ligases such as RNA binding protein 2 and protein inhibitor of activated STAT1 (PIAS1) (Morozko et al., 2021). These E3 ligases mainly target the SUMO acceptor lysine within a ΨKXE motif (Ψ is any hydrophobic amino acid and X is any amino acid). In humans, many reports of SUMOylation focus on roles in cancer biology (Seeler and Dejean, 2017) involving transcription factor signal transduction, protein localization and downstream epigenetic regulation of transcription. In the eye, five SUMOylation enzymes have been observed in ocular tissues (Nie et al., 2018). PIAS3-dependent SUMOylation was reported to affect mouse photoreceptor differentiation by modifying Cone enriched transcription factors (TFs) (Onishi et al., 2010), and rod specific TFs (Onishi et al., 2009). Another study reported that PIAS3-independent SUMOylation of neural retina leucine zipper (NRL) is required for rod photoreceptor development and that NRL C terminus reduces transcriptional activation of rod specific TF nuclear receptor subfamily 2 group E member 3 (Rogger et al., 2010). Being a reversible modification, SUMO can be deconjugated by SUMO isopeptidases and proteases such as sentrin-specific protease (SENP) (Chen et al., 2021). A study showed that seven SENPs were observed in retinal, corneal and lens tissues (Xiang et al., 2018), suggesting that the balance between SUMOylation and deSUMOylation plays important roles in regulating signal transduction and cellular physiology. In this mini-review, we explored the function of SUMOylation, focusing on Sox transcription factors in central nervous system (CNS) development, and its potential role as a therapeutic target to treat neurodegeneration.

Search Strategy and Selection Criteria

We performed a literature search on PubMed and Google Scholar until March 2021 published in English. The key words/terms were neural regeneration, neural development, neurological disorder, Sox transcription factor, SUMOylation.

Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

*Correspondence to: Kun-Che Chang, PhD, kcchang@pitt.edu.
https://orcid.org/0000-0002-0871-5612 (Kun-Che Chang)

Funding: This work was supported by NIH CORE Grant P30 EY08098 to the Department of Ophthalmology, University of Pittsburgh, the Eye and Ear Foundation of Pittsburgh (to KCC).

How to cite this article: Chang KC (2022) Influence of Sox protein SUMOylation on neural development and regeneration. Neural Regen Res 17(3):477-481.

NEURAL REGENERATION RESEARCH | Vol 17 | No. 3 | March 2022 | 477
Review

Signaling Pathways of SUMOylation

SUMOylation is known to interact with three major pathways: Ras/mitogen-activated protein kinase (Ras/MAPK), Jun N-terminal kinase (JNK) and Hedgehog (Hh) pathways (Yau et al., 2020). Ras/MAPK is a key signal for cell proliferation and differentiation (Jafry and Sidbury, 2020). In cancer cells, SUMOylated growth factor receptor-bound protein 2 has been reported to promote oncogenic features, while genetic deletion of growth factor receptor-bound protein 2 decreased transplanted cells’ motility and proliferation in a tumor engraftment model by suppressing Ras/MAPK pathways (Qu et al., 2014). JNK, one member of the MAPK superfamily of proteins, is involved in many cellular processes, especially in apoptosis (Hammouda et al., 2020). As a key regulator in cellular physiology, JNK signaling is also regulated by SUMO (Schneider Aguirre and Karpen, 2013). In *Drosophila*, SUMO attaches to homeodomain-interacting protein kinase (Hipk) on lysine 25 in the wing disc, promoting Hipk translocation into the nucleus (Hofmann et al., 2005). Genetic deletion of SUMO in the wing disc leads to apoptosis, which is reversible if JNK signaling is reduced (Huang et al., 2011). In addition, JNK-mediated tumor necrosis factor alpha secretion enhances SUMOylation of retinoid X receptor and this cellular response can be blocked by JNK inhibition (Schneider Aguirre and Karpen, 2013). Hh signaling regulates animal development, and many human developmental diseases, such as Pallister-Hall syndrome, are associated with misregulation of the Hh signaling pathway (Briscoe and Therond, 2013). In *Drosophila*, several studies have revealed that SUMOylation of Smoothened (Smoo) leads to its cell-surface accumulation and elevation of Hh pathway activity (Ma et al., 2016; Zheng and Shabek, 2017). This relationship between SUMO and Hh is conserved in mammals, in which Sonic hedgehog stimulates SUMOylation of mammalian Smo (mSmo), further regulating its ciliary localization and Sonic hedgehog pathway activity (Ma et al., 2016).

Mechanisms of SUMOylation in Neurodegenerative Diseases

In addition to cell differentiation, apoptosis and development, SUMOylation is reported to be involved in neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD) (Chen et al., 2021), which are regulated by mitochondria-mediated responses (He et al., 2020). In PD, growing evidence shows that α-synuclein has a causative role in disease pathology (Wakabayashi et al., 2007) and that SUMO-mediated mechanisms regulate α-synuclein aggregation and degradation (Eckermann, 2013; Rott et al., 2017), which is thought to be involved in disease onset. Amyloid-beta (Aβ) and microtubule-associated protein Tau aggregation is the major pathological hallmark of AD. It was reported that SUMOM1 promotes Aβ production (Cho et al., 2015). Similarly, Tau hyper-phosphorylation enhances its SUMOylation, which decreases its solubility, promoting protein aggregation (Luo et al., 2014). These studies suggest that SUMOylation of Aβ and Tau leads to pathogenic protein aggregation, resulting in AD progression. HD is the result of an abnormal Huntingtin (HTT) protein accumulation due to a polyQ stretch located in the N-terminal domain of the protein, which leads to neuronal toxicity (Steffan et al., 2004). SUMOylation of htt competes for the same residues of ubiquitination, preventing ubiquitin-induced degradation, leading to htt aggregation (Ehrnhoefer et al., 2011). Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is associated with superoxide dismutase 1 (SOD1) mutations (Johnson and Giulivi, 2005). A study showed that SUMO-3 conjugation enhances SOD1 protein stability and promotes intracellular aggregate formation, suggesting an underlying mechanism relevant to the pathogenesis of ALS (Niikura et al., 2014).}

SUMOylation of Sox family proteins

The SRY-related HMG-box (Sox) superfamily includes nine family members (Guth and Wegner, 2008) and potential SUMOylation sites (ΨKXE motif) have been predicted in several Sox proteins in human and *Drosophila* (Savare et al., 2005). Among subfamilies, SoxC TFs, Sox4, Sox11 and Sox12, are involved in embryonic development, tumororigenesis and skeletogenesis (Penzo-Mendez, 2010; Lefebvre and Bhattachary, 2016). In eye development, SoxC TFs are required for retinal ganglion cell (RGC) differentiation (Chang et al., 2017; Chang and Hertz, 2017; Kuwajima et al., 2017) as deletion of Sox4/Sox11 establishes optic nerve defeat, leading to vision loss (Chang et al., 2017). In RGC progeny, Sox11 is SUMOylated at K91 and expressed mainly in the cytoplasm while deSUMOylated Sox11 (Sox11ΔΨK1) is mostly in the nucleus, and blocking Sox11 SUMOylation enhances RGC differentiation (Chang and Hertz, 2017). In addition, exogenous overexpression of a non-SUMOylatable Sox11 mutant (Sox11ΔΨK1) promotes more axon regeneration *in vivo* but reduces sp1 and opn4 gene expression in early postnatal primary RGC cultures (Chang et al., 2021). In addition, SoxC TFs also affect Muller glia development (Chang et al., 2017), a process which may similarly depend on protein SUMOylation. Although another lysine residue (K240) was predicted as a SUMO site in Sox11 (Savare et al., 2005), the physiological influence of its modification remains unclear. The above findings indicate that SUMOylation mediates the transcriptional activity of Sox11 in retinal cell development, RGC survival and axon regeneration (Figure 1). Notably, Sox11 regulation has opposing effects on RGC survival and regeneration. However, the underlying regulatory mechanisms with respect to SUMOylation of Sox11 on axon regeneration and RGC survival, especially the relative ligase(s), remain open for study.

SoxE (Sox8, 9 and 10) subfamily proteins have been characterized as transcriptional activators. In *Xenopus*, Sox8 regulates the onset of expression of Sox9, which further regulates Sox10 expression during neural crest development (O’Donnell et al., 2006). Deletion of Sox8 leads to defects of neural crest precursor formation (O’Donnell et al., 2006), while Sox9 depletion also leads to defects of neural crest formation but inhibits inner ear development in *Xenopus* (Saint-Germain et al., 2004). Like SoxC proteins, SoxE proteins also contain many predicted SUMO sites in human genes (Savare et al., 2005). In *Xenopus*, lysine residues 61 and 365 (K61, 365) were shown as SUMOylated sites of Sox9 (Taylor and Labonne, 2005). Compared to wildtype Sox9, overexpression of Sox9ΔΨK61,365 (unSUMOylated) leads to more neural crest precursors formation but inhibits inner ear development (Taylor and Labonne, 2005). Similar study of TF manipulation in rodents showed that a Sox10 (another SoxE TF) mutation leads to deafness (Brizziolara et al., 2004). A later study reported that Sox9ΔΨK61,365 interacts with CBP/p300 to initiate transcriptional activity, and that SUMOylated Sox9 fails to bind to CBP/p300 but recruits groucho-related gene 4 (Gr4), a corepressor to the transcriptional binding site, which promotes melanocyte formation but inhibits neural differentiation (Lee et al., 2012). This study reveals a novel mechanism for SUMO-mediated recruitment of coregulatory factors (Figure 2). However, how Sox9 SUMOylation plays a positive role in inner ear development but a negative role in neural crest formation remains unclear. One possible mechanism could be that SUMO-modified Sox9 represses expression of genes involved in neural crest formation as well as genes that block inner ear development. Further investigations are needed to study the downstream signaling underlying this regulatory mechanism.

Sox-Neuro (SoxN), encoded by Sox3 in humans, belongs to the SoxB1 subfamily. SoxN was identified in *Drosophila* to function as a developmental regulator (Cremazy et al., 2021).
Mutation of SoxN leads to severe impairments in Drosophila CNS development, especially in neuroblast formation (Overton et al., 2002). Like most of the Sox proteins, SoxN contains a SUMO motif (ΨKXE) at lysine 439 (K439) in Drosophila, which is conserved at K375 in human Sox3 (Savare et al., 2005). Since SUMOylation is functionally conserved in vertebrates and invertebrates, SoxN was able to be SUMO modified in transfected human HeLa cells with both SUMO1 and SUMO2 (Savare et al., 2005). To study the effect of SUMOylation function on SoxN in vivo, SoxN^{K439R} was overexpressed in larval imaginal discs during development. Since overexpression of SoxN^{K439R} globally in Drosophila was lethal, eye-specific overexpression was conducted, which enhances transcriptional activity (Figure 3), leading to severe impairments of CNS development in Drosophila such as headless (Savare et al., 2005). These studies indicate that SUMOylation of SoxN in Drosophila is required for CNS development. In human and mouse, many Sox families show identical genomic organization including Sox3 (Schepers et al., 2002). In human, Sox3 is implicated in mental retardation (Laumonnier et al., 2002) and in mouse, Sox3 is required during the formation of the hypothalamus-pituitary axis (Rizzoti et al., 2004). We therefore speculate that SUMOylation of Sox3 might also be important for neural development in mammals and it would be an interesting area for future study.

Conclusions and Perspectives

This mini review describes the essential roles of Sox protein SUMOylation in neural development and regeneration in invertebrates and vertebrates (Table 1). SUMOylation is a conserved PTM across species, which increases protein functional diversity without requiring additional specific genomic elements for each protein. However, much is still unexplored about SUMOylation. For example, in the eye, neuronal regeneration, which spontaneously occurs in fish and frogs but not mammals, can be controlled by SUMOylation of Sox11 (Fischer and Bongini, 2010), suggesting a comparative difference in SUMOylation dynamics in development and disease. Over the past decade, RNA sequencing (RNA-seq) technology facilitates transcriptome-wide analysis, which is capable of examining gene sliced transcripts, PTMs and single-nucleotide polymorphisms (Stark et al., 2019). A previous RNA-Seq study revealed that SUMOylation of Sox11 regulates RGC survival and axon regeneration by activating different signaling pathways (Chang et al., 2021). Using such a technology would provide a deeper understanding of SUMO regulatory pathways (Chang et al., 2021). Pharmacologic inhibition of E3 ligase might be a potential therapeutic target for those diseases.

Across different species, SUMOylation of SoxN (Drosophila) shows neural protection in CNS development, whereas deSUMOylation of SoxC (murine) and SoxE (Xenopus) can promote axon regeneration and neural crest formation, respectively. It seems, at least in our reviewed cases, deSUMOylation plays a greater role in neural protection. In addition, another study showed that SUMO-specific protease 1 (SENP1) protects neurons from apoptosis during transient brain ischemia in a mouse model, which supports our hypothesis that deSUMOylation plays a neuroprotective role (Zhang et al., 2016). In regard to genetic neurological disorders, aberrant SUMOylation leads to PD, AD and HD (Chen et al., 2021). Pharmacologic inhibition of E3 ligase might be a potential therapeutic target for those diseases.

Table 1 | SUMOylated Sox proteins that influence neural physiology

Gene	Species	Group	SUMO site	Physiologic impacts of SUMOylation	Reference
SoxN	Drosophila	B1	K439	Central nervous system development	Savare et al., 2005
Sox9	Xenopus	E	K61, 365	Retinal ganglion cell differentiation and axon regeneration	Taylor et al., 2005
Sox11	Mouse	C	K91	Neural crest precursor formation	Chang et al., 2017, 2021

SUMO: Small ubiquitin-like modifier.
In contrast, SUMOylation could play a protective role in pathogenesis. For example, vascular endothelial cell growth factor receptor 2 SUMOylation by deleting SENP1 alleviates vascular endothelial cell growth factor-induced angiogenesis in the retina (Zhou et al., 2018), suggesting that enhancing SUMOylation could be a therapeutic strategy for diabetic retinopathy. In addition, SUMOylation of SoxN is important for CNS development in Drosophila. Since Sox3 is involved in mental retardation, investigation of the SUMO site of Sox3 in the human genome can help us to understand the molecular mechanism of Sox3 in such neural diseases. Using SENP inhibitors as a treatment for promoting Sox3 SUMOylation could be a therapeutic strategy targeting Sox3-mediated disease.

Manipulation of signaling pathways might provide another therapeutic strategy. For example, extracellular signal-regulated kinase (ERK) phosphorylation was found to be increased in human cerebral cavernous malformation lesions (Wustehube et al., 2010). PIAS3-mediated nNOS SUMOylation was required for ERK1/2 activation in hippocampal neurons (Du et al., 2020), suggesting a possibility that blockade of PIAS3 can alleviate cerebral cavernous malformation degree by suppressing ERK signaling. In the eye, N-retinylidene-N-retinylethanolamine, a oxidative stress inducer leading to mitochondrial DNA mutation (Donato et al., 2020), is accumulated in retinal pigment epithelium tissue, which causes degeneration (Adler et al., 2015) and neovascularization (Scimone et al., 2020). Since mitochondrial SUMOylations are found frequently in many diseases, it would be an interesting research direction to investigate whether N-retinylidene-N-retinylethanolamine-mediated degeneration is also regulated by SUMOylation.

In regard to gene therapy, overexpression of a SUMO site mutant gene was applied to PRE65-mice by subretinal AAV2 injection, showing a restorative phenotype (Maurya et al., 2019). Growing evidence on intravitreal AAV injection shows that blockade of PIAS3 can alleviate cerebral cavernous malformation degree by suppressing ERK signaling. In the eye, N-retinylidene-N-retinylethanolamine, a oxidative stress inducer leading to mitochondrial DNA mutation (Donato et al., 2020), is accumulated in retinal pigment epithelium tissue, which causes degeneration (Adler et al., 2015) and neovascularization (Scimone et al., 2020). Since mitochondrial SUMOylations are found frequently in many diseases, it would be an interesting research direction to investigate whether N-retinylidene-N-retinylethanolamine-mediated degeneration is also regulated by SUMOylation.

In regard to gene therapy, overexpression of a SUMO site mutant gene was applied to PRE65-mice by subretinal AAV2 injection, showing a restorative phenotype (Maurya et al., 2019). Growing evidence on intravitreal AAV injection shows that blockade of PIAS3 can alleviate cerebral cavernous malformation degree by suppressing ERK signaling. In the eye, N-retinylidene-N-retinylethanolamine, a oxidative stress inducer leading to mitochondrial DNA mutation (Donato et al., 2020), is accumulated in retinal pigment epithelium tissue, which causes degeneration (Adler et al., 2015) and neovascularization (Scimone et al., 2020).

In regard to gene therapy, overexpression of a SUMO site mutant gene was applied to PRE65-mice by subretinal AAV2 injection, showing a restorative phenotype (Maurya et al., 2019). Growing evidence on intravitreal AAV injection shows that blockade of PIAS3 can alleviate cerebral cavernous malformation degree by suppressing ERK signaling. In the eye, N-retinylidene-N-retinylethanolamine, a oxidative stress inducer leading to mitochondrial DNA mutation (Donato et al., 2020), is accumulated in retinal pigment epithelium tissue, which causes degeneration (Adler et al., 2015) and neovascularization (Scimone et al., 2020). Since mitochondrial SUMOylations are found frequently in many diseases, it would be an interesting research direction to investigate whether N-retinylidene-N-retinylethanolamine-mediated degeneration is also regulated by SUMOylation.

References
Adler LT, Boyer NP, Anderson DM, Spraggs JM, Schey KL, Hanneken A, Ablonczy Z, Crouch RK, Koutalos Y (2015) Determination of N-retinylidene-N-retinylethanolamine (A2E) levels in central and peripheral areas of human retinal pigment epithelium. Photochem Photobiol Sci 14:1983-1990.
Arno G, Agrawal SA, Eblimit A, Bellingham J, Xu M, Wang F, Chakarova C, Parfitt DA, Lane A, Burgoyne T, Hull S, Casji KS, Fiorentino A, Hayes MJ, Munro PM, Nicols R, Pontikos N, Holder GE, UKIRDc, Asomugha C, et al. (2016) Mutations in REEP6 cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet 99:1305-1315.
Augustine RC, Vierstra RD (2018) SUMOylation: re-writing the plant nucleus during stress and development.Curr Opin Plant Biol 45:143-154.
Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW (2019) A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. BMC Genomics 20:386.
Briscoe J, Theron DP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416-429.
Brizzolara A, Torre M, Favre A, Pini Prato A, Bocciardi R, Martuccicci G (2004) Histochemical study of Dom mouse: a model for Waardenburg-Hirschsprung’s phenotype. J Pediatr Surg 39:1098-1103.
Chang HM, Yeh ETH (2020) SUMO: from bench to bedside. Physiol Rev 100:1599-1619.
Chang KC, Hertz J (2017) Sox transcription factors in retinal development and regeneration. Neural Regen Res 12:1048-1051.
Chang KC, Bian M, Xia X, Madaan A, Sun C, Wang Q, Li L, Nahmou M, Noro T, Yokota S, Galvao J, Kreymerman A, Tanausa B, Hu Y, Goldberg JL (2021) Post-translational modification of Sox11 regulates RGC survival and axon regeneration. eNeuro doi: 10.1523/ENEURO.0358-20.2020.
Chang KC, Hertz J, Zhang X, Jin XL, Shaw P, Derosa BA, Li JY, Venugopalan P, Valenzuela DA, Patel RD, Russano KR, Alshamekh SA, Sun C, Tenereili K, Li C, Velmeshev D, Cheng Y, Boyce TM, Dreyfuss A, Uddin MS, et al. (2017) Novel regulatory mechanisms for the Sox transcriptional network required for visual pathway development. J Neurosci 37:4967-4981.
Chen X, Zhang Y, Wang Q, Yin Y, Yang X, Xing Z, Shen Y, Wu H, Qi Y (2021) The function of SUMOylation and its crucial roles in the development of neurological diseases. FASEB J 35:e21510.
Cho SJ, Yun SM, Jo C, Lee DH, Choi KJ, Song JC, Park SI, Kim YJ, Koh YH (2015) SUMO1 promotes Abeta production via the modulation of autophagy. Autophagy 11:100-112.
Cremazy F, Berta P, Girard F (2000) Sox neuro, a new Drosophila Sox gene expressed in the developing central nervous system. Mech Dev 93:215-219.
Donato L, Scimone C, Alibrandi S, Pitruzzella A, Scala F, D’Angelo R, Sidoti A (2020) Possible A2E mutagenic effects on RPE mitochondrial DNA from innovative RNA-Seq bioinformatics pipeline. Antioxidants (Basel) 9:1158.
Du CP, Wang M, Geng C, Hu B, Meng L, Xu Y, Cheng B, Wang N, Zhu QJ, Hou XY (2020) Activity-induced SUMOylation of neuronal nitric oxide synthase is associated with plasticity of synaptic transmission and extracellular signal-regulated kinase 1/2 signaling. Antioxid Redox Signal 32:18-34.
Eckermann K (2013) SUMO and Parkinson’s disease. Neuromolecular Med 15:737-759.
Ehmhoefner DE, Sutton L, Hayden MR (2011) Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 17:475-492.
Fischer AJ, Bongini R (2010) Turning Muller glia into neural progenitors in the retina. Mol Neurobiol 42:199-209.
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P (2021) Post-translational modifications: regulators of neurodegenerative proteinopathies. Ageing Res Rev 68:101336.
Guth SI, Wegner M (2008) Having it both ways: Sox protein function between conservation and innovation. Cell Mol Life Sci 65:3000-3018.
Hammouda MB, Ford AE, Liu Y, Zhang J (2020) The JNK signaling pathway in proteinopathies. Ageing Res Rev 68:101336.
Hirschsprung’s phenotype. J Pediatr Surg 39:1098-1103.
Huang H, Du G, Chen H, Liang X, Li C, Zhu N, Xue L, Ma J, Jiao R (2011) Drosophila Smt3 negatively regulates JNK signaling through sequestering Hipk in the nucleus. Development 138:2477-2485.
Huang X, Zhou G, Wu W, Ma G, D'amore PA, Mukai S, Lei H (2017) Editing VEGFR2 blocks VEGF-induced activation of Akt and tube formation. Invest Ophthalmol Vis Sci 58:1228-1236.

Jafry M, Sidbury R (2020) RA Sarcoidoses. Clin Dermatol 38:455-461.

Johnson F, Giulivi C (2005) Superoxide dismutases and their impact upon human health. Mol Aspects Med 26:340-352.

Koltun B, Shackelford E, Bonnay F, Matt N, Reichhart JM, Orian A (2017) The SOX-targeted ubiquitin ligase, Dgrn, is essential for Drosophila innate immunity. Int J Dev Biol 61:319-327.

Kuwajima T, Soares CA, Sitko AA, Lefebvre V, Mason C (2017) SoxC factors promote contralateral retinal ganglion cell differentiation and axon guidance in the mouse visual system. Neuron 93:1110-1125.

Laumonnier F, Ronce N, Hamel BC, Thomas P, Lespinasse J, Raynaud M, Niikura T, Kita Y, Abe Y (2014) SUMO3 modification accelerates the degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 111:16586-16591.

Lee PC, Taylor-Jaffe KM, Nordin KM, Prasad MS, Lander RM, LaBonne C (2012) SUMOylation of VEGFR2 regulates its intracellular trafficking and Hadgehog signaling by the SUMO pathway. Dev Cell 39:438-451.

Ma G, Li S, Han Y, Li S, Yue T, Wang B, Jiang J (2016) Regulation of sumo modified and Hodgehog signaling by the SUMO pathway. Dev Cell 39:438-451.

Maurya S, Mary B, Jayandharan GR (2019) Rational engineering and preclinical evaluation of neddylation and SUMOylation site modified adeno-associated virus vectors in murine models of hemophilia B and leber congenital amaurosis. Hum Gene Ther 30:1461-1476.

Moore DL, Blackmore MG, Hu Y, Kaestner K, Bixby JL, Lennomon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298-301.

Morozko EL, Smith-Geater C, Monteys AM, Pradhan S, Lim RG, Langfelder P, Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes J, Kachemov M, Hill A, Stockdale JT, Cullis PR, Wu J, Ochaba J, Miramontes R, Chakraborty A, Hazra TK, Lau A, St-Cyr S, Orellana I, Kopan L, Wang KQ, et al. (2021) Pias1 modulates stratal transcription, DNA damage repair, and SUMOylation with relevance to Huntington’s disease. Proc Natl Acad Sci U S A 118:e20021836118.

Nie M, Xie Y, Loo JA, Coursey AJ (2009) Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PLoS One 4:e45905.

Nie Q, Yang L, Qing W, Xie J, Gong X, Chen H, Gan Y, Wang L, Xiang JW, Xiao Y, Chen Z, Li DW (2018) Differential expression of sumoylation enzymes SAE1, UBA2, UBC9, Pias1 and RanBP2 in major ocular tissues of mouse eye. Curr Mol Med 18:376-382.

Nikura T, Kita Y, Abe Y (2014) SUMO modification accelerates the aggregation of ALS-linked SOD1 mutants. PLoS One 9:e101080.

O’Donnell M, Hong CS, Huang X, Delnicki RJ, Saint-Jeannet JP (2006) Functional analysis of Sox8 during neural crest development in Xenopus. Development 133:3817-3826.

Onishi A, Peng GH, Chen S, Blackshaw S (2010) Pias3-dependent SUMOylation controls mammary cone photoreceptor differentiation. Nat Neurosci 13:1059-1065.

Onishi A, Peng GH, Hsu C, Alexis U, Chen S, Blackshaw S (2009) Pias3-dependent SUMOylation directs rod photoreceptor differentiation. Neuron 61:234-246.

Overton PM, Meadows LA, Urban J, Russell S (2002) Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development 129:4219-4228.

Penzo-Mendez AI (2010) Critical roles for SoxC transcription factors in development and cancer. Int J Biochem Cell Biol 42:425-428.

Qu Y, Chen Q, Lai X, Zhu C, Chen C, Zhao X, Deng R, Xu M, Yuan H, Wang Y, Yu J, Huang J (2014) SUMOylation of Gbr2 enhances the ERK activity by increasing its binding with Sox5. Mol Cancer 13:35.