Torus actions on compact quotients

Anton Deitmar
Math. Inst. d. Univ., INF 288, 69126 Heidelberg, Germany

Contents

1 Euler-Poincaré functions 2
2 De-twisted Euler characteristics 3
3 The Lefschetz formula 6
4 Geometric interpretation 13

Introduction

Let G denote a Lie group and Γ a uniform lattice in G. We fix a maximal torus T in G and consider the action of T on the compact quotient Γ/G. Assuming T to be noncompact we will prove a Lefschetz formula relating compact orbits as local data to the action of the torus T on a global cohomology theory (tangential cohomology). Modulo homotopy, the compact orbits are parametrized by those conjugacy classes $[\gamma]$ in Γ whose G-conjugacy classes meet T in points which are regular in the split component. Having a bijection between homotopy classes and conjugacy classes in the discrete group we will identify these two. For a class $[\gamma]$ let X_γ be the union of all compact orbits in that class. Then it is known that X_γ is a smooth submanifold and with $\chi_r(X_\gamma)$ we denote its de-twisted Euler characteristic (see sect. 2). Note that $\chi_r(X_\gamma)$ is local, i.e. it can be expressed as the integral over X_γ of a canonical differential form (generalized Euler form). On the other hand $\chi_r(X_\gamma)$ can be expressed as a simple linear combination of Betti numbers (see sect. 2). Next, λ_γ will denote the volume of the orbit and P_γ
the stable part of the Poincaré map around the orbit. Then the number

\[L(\gamma) := \frac{\lambda_\gamma \chi_\gamma (X_\gamma)}{\det(1 - P_s)} \]

will be called the Lefschetz number of \([\gamma] \) (compare [8]). The class \([\gamma] \) defines a point \(a_\gamma \) in the split part \(A \) of the torus \(T \) modulo the action of the Weyl group. In the case when the Weyl group has maximal size (for example when \(T \) is maximally split) our Lefschetz formula is an equality of distributions:

\[\sum_{[\gamma]} L(\gamma) \delta_{a_\gamma} = \text{tr}(\cdot | H^*(F)), \]

where \(H^* \) is the tangential cohomology of the unstable/neutral foliation \(F \) induced by the torus action. In [3] a similar formula is proven to hold up to a smooth function in the case of a flow. The present paper extends results of Andreas Juhl [10], [13] in the real rank one case. See also [11], [12].

1 Euler-Poincaré functions

In this section and the next we list some technical results for the convenience of the reader. Let \(G \) denote a real reductive group of inner type [14] and fix a maximal compact subgroup \(K \). Let \((\tau, V_\tau)\) be a finite dimensional unitary representation of \(K \) and write \((\check{\tau}, V_{\check{\tau}})\) for the dual representation. Assume that \(G \) has a compact Cartan subgroup \(T \subset K \). Let \(g_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0 \) be the polar decomposition of the real Lie algebra \(g_0 \) of \(G \) and write \(g = \mathfrak{t} + \mathfrak{p} \) for its complexification. Choose an ordering of the roots \(\Phi(g, \mathfrak{t}) \) of the pair \((g, \mathfrak{t}) \). This choice induces a decomposition \(\mathfrak{p} = \mathfrak{p}_- \oplus \mathfrak{p}_+ \).

Proposition 1.1 For \((\tau, V_\tau)\) a finite dimensional representation of \(K \) there is a compactly supported smooth function \(f_\tau \) on \(G \) such that for every irreducible unitary representation \((\pi, V_\pi)\) of \(G \) it holds:

\[\text{tr} \pi(f_\tau) = \sum_{p=0}^{\dim(p)} (-1)^p \dim(V_\pi \otimes \wedge^p \mathfrak{p} \otimes V_{\check{\tau}})^K. \]

Proof: [3].
Proposition 1.2 Let g be a semisimple element of the group G. If g is not elliptic, then the orbital integral $O_g(f_\tau)$ vanishes. If g is elliptic we may assume $g \in T$, where T is a Cartan in K and then we have

$$O_g(f_\tau) = \frac{\text{tr } \tau(g)|W(t, g)| \prod_{\alpha \in \Phi^+_g}(\rho_g, \alpha)}{|G_g : G^0_g|c_g},$$

where c_g is Harish-Chandra’s constant, it does only depend on the centralizer G_g of g. Its value is given for example in [3].

Proof: [5]. □

Proposition 1.3 For the function f_σ we have for any $\pi \in \hat{G}$:

$$\text{tr } \pi(f_\sigma) = \sum_{p=0}^{\dim \ g/\mathfrak{t}} (-1)^p \dim \text{Ext}^p_{(\mathfrak{g}, K)}(V_\sigma, V_\pi),$$

i.e. f_σ gives the Euler-Poincaré numbers of the (\mathfrak{g}, K)-modules (V_σ, V_π), this justifies the name Euler-Poincaré function.

Proof: [5]. □

2 De-twisted Euler characteristics

Let \mathcal{C}^+ denote the category of complexes of \mathbb{C}-vector spaces which are zero in negative indices and have degreewise finite dimensional cohomology, i.e. the dimension of $H^j(E)$ is finite for all j. Let \mathcal{K}^+ denote the weak Grothendieck group of \mathcal{C}^+, i.e. \mathcal{K}^+ is the abelian group generated by all isomorphism classes of objects modulo the relations $A = B + C$, whenever any object in A is isomorphic to the direct sum of an object in B and one in C. An element $E = E_+ - E_-$ of \mathcal{K}^+ is called a virtual complex. Define the de-twist of an element E of \mathcal{K}^+ as $E' = \sum_{k=0}^{\infty} E[-k]$, where $E[k]_j = E_{k+j}$. Since the sum is degreewise finite this defines a new element of \mathcal{K}^+. The higher de-twists are defined inductively, so $E^{(0)} = E$ and $E^{(r+1)} = E^{(r)'}$.
We need to extend the notion of an **Euler characteristic** to infinite virtual complexes by

$$\chi(E) = \sum_{k=0}^{\infty} (-1)^k \dim H^k(E),$$

provided $\dim H^k(E) = \dim H^k(E_+) - \dim H^k(E_-)$ vanishes for almost all k.

Call a virtual complex **cohomologically finite** if $\dim H^j(E) = 0$ for large j, in other words, the total cohomology $\text{H}(E)$ is finite dimensional.

Observation: Let the virtual complex E be cohomologically finite and assume that the Euler characteristic $\chi(E)$ vanishes. Then the de-twist E' is cohomologically finite.

So start with a cohomologically finite virtual complex E. If $E^{(1)}, \ldots, E^{(r)}$ are cohomologically finite we have

$$\chi(E^{(0)}) = \ldots = \chi(E^{(r-1)}) = 0$$

and

$$\chi(E^{(r)}) = (-1)^r \sum_{j=0}^{\infty} \binom{j}{r} (-1)^j \dim H^j(E).$$

This is easily proven by induction on r. This motivates the following Definition: The **r-th de-twisted Euler characteristic** of a cohomologically finite virtual complex E is defined by

$$\chi_r(E) := (-1)^r \sum_{j=0}^{\infty} \binom{j}{r} (-1)^j \dim H^j(E).$$

To every compact manifold M we now can attach a sequence of Euler numbers

$$\chi_0(M), \ldots, \chi_n(M),$$

where n is the dimension of M. The most significant of these is, as we shall see, the first nonvanishing one, so define the **generic Euler number** of M as

$$\chi_{\text{gen}}(M) = \chi_r(M),$$

where r is the least index with $\chi_r(M) \neq 0$.
Proposition 2.1 Let M, N be compact manifolds. We have

$$\chi_{\text{gen}}(M \times N) = \chi_{\text{gen}}(M)\chi_{\text{gen}}(N).$$

Proof: See [4].

To give another example of a situation in which higher Euler characteristics occur we will describe a situation in Lie algebra cohomology which will show up later.

We consider a short exact sequence

$$0 \to n \to l \to a \to 0$$

of finite dimensional complex Lie algebras where a is abelian. In such a situation a l-module V is called acceptable, if the a-module $H^q(n, V)$ is finite dimensional. Note that V itself needn’t be finite dimensional.

Example 1.: Any finite dimensional l-module will be acceptable.

Example 2.: Let g_0 denote the Lie algebra of a semisimple Lie group G of the Harish-Chandra class, i.e. G is connected and has a finite center. Let K be a maximal compact subgroup of G and let $G = KAN$ be an Iwasawa decomposition of G. Write the corresponding decomposition of the complexified Lie algebra as $g = t \oplus a \oplus n$. Now let $l = a \oplus n$ with the structure of a subalgebra of g. Consider an admissible (g, K)-module V. A theorem of [HeSchm] assures us that V then is an acceptable l-module.

Proposition 2.2 Let

$$0 \to n \to l \to a \to 0$$

be an exact sequence of finite dimensional complex Lie algebras. Assume that the Lie algebra a is abelian. Let V be an acceptable l-module then with $r = \dim(a)$ we have

$$\chi_0(H^s(l, V)) = \ldots = \chi_{r-1}(H^s(l, V)) = 0,$$

and

$$\chi_r(H^s(l, V)) = \chi_0(H^s(n, V)^a),$$

where $H^s(n, V)^a$ denotes the a-invariants in $H^s(n, V)$.

Proof: [5].
3 The Lefschetz formula

Let G be a connected Lie group and $\Gamma \subset G$ a uniform lattice. Note that the existence of Γ forces G to be unimodular. Fix a Haar measure on G and consider the representation of G on the Hilbert space $L^2(\Gamma \backslash G)$ given by $R(g)\varphi(x) = \varphi(xg)$. For any smooth compactly supported function f on G define $R(f)\varphi(x) := \int_G f(y)\varphi(xy)dy$, then a calculation shows that $R(f)$ is an integral operator with smooth kernel $k(x,y) = \sum_{\gamma \in \Gamma} f(x^{-1}\gamma y)$. From this it follows that $R(f)$ is a trace class operator. Since this holds for any f we conclude that $L^2(\Gamma \backslash G)$ decomposes under G as a discrete sum of irreducibles with finite multiplicities:

$$L^2(\Gamma \backslash G) = \bigoplus_{\pi \in \hat{G}} N_\Gamma(\pi)\pi.$$

It follows that $\text{tr} R(f) = \sum_{\pi \in \hat{G}} N_\Gamma(\pi)\text{tr} \pi(f)$. On the other hand, the trace of $R(f)$ equals the integral over the diagonal of the kernel, so

$$\text{tr} R(f) = \int_{\Gamma \backslash G} k(x,x)dx = \sum_{[\gamma]} \text{vol}(\Gamma_\gamma \backslash G_\gamma) O_\gamma(f),$$

where $O_\gamma(f) := \int_{G_\gamma \backslash G} f(x^{-1}\gamma x)dx$ is the orbital integral. Note that this expression depends on the choice of a Haar measure on G_γ. So we state the Selberg trace formula as

$$\sum_{\pi \in \hat{G}} N_\Gamma(\pi)\text{tr} \pi(f) = \sum_{[\gamma]} \text{vol}(\Gamma_\gamma \backslash G_\gamma) O_\gamma(f).$$

From now on we will assume:

(A1) G is a direct product: $G \cong H \times R$

of an abelian Lie group R and a semisimple connected Lie group H with finite center.

For the following fix a maximal torus T of H, write $T = AB$, where A is the split component and B is compact. Let $P = MAN$ a parabolic then $B \subset M$. Let A^{reg} be the set of regular elements of the split torus A. Since H acts on R it acts on the unitary dual \hat{R}. Our second assumption is
(A2) Any element of $A^{reg}M$ acts freely on $R - \{0\}$ and on $\hat{R} - \{\text{triv}\}$.

For any $\tau \in \hat{R}$ let H_τ be its stabilizer in H. For the trivial representation we clearly have $H_{\text{triv}} = H$. The condition (A2) says that for any nontrivial $\tau \in \hat{R}$ we have $H_\tau \cap A^{reg}M = \emptyset$.

Example: Clearly any semisimple connected G with finite center would give an example but there are also a lot on nonreductive examples such as the following: Let $R := \text{Mat}_2(\mathbb{R})$ with the addition, $H := \text{SL}_2(\mathbb{R})$ and let H act on R by matrix multiplication from the left. Let $G := H \times N$ and $T := \left\{ \begin{pmatrix} a & \ 0 \\ a^{-1} & 1 \end{pmatrix} \right\}$. It is easily seen that our assumptions are satisfied in this case.

We will only consider uniform lattices of the form $\Gamma = \Gamma_H \times \Gamma_R$, where Γ_H and Γ_R are uniform lattices in H and R. We will further assume Γ_H to be weakly neat, this means, Γ_H is a cocompact torsion free discrete subgroup of H which is such that for any $\gamma \in \Gamma_H$ the adjoint $\text{Ad}(\gamma)$, acting on the Lie algebra of H does not have a root of unity $\neq 1$ as an eigenvalue. Any arithmetic group has a weakly neat subgroup of finite index \[1\].

Example: Take up the above example and let D denote a quaternion division algebra over \mathbb{Q} which splits over \mathbb{R}. So we have $D \hookrightarrow GL_2(\mathbb{R})$ and $D^1 \hookrightarrow SL_2(\mathbb{R})$, where D^1 is the set of elements of reduced norm 1. Let O denote an order in D and $O^1 := O \cap D^1$. Then $\Gamma := O^1 \times O$ is a uniform lattice in $SL_2(\mathbb{R}) \times \text{Mat}_2(\mathbb{R})$.

Write the real Lie algebras of G, H, M, A, N, R as $\mathfrak{g}_0, \mathfrak{h}_0, \mathfrak{m}_0, \mathfrak{a}_0, \mathfrak{n}_0, \mathfrak{r}_0$ and their complexifications as $\mathfrak{g}, \mathfrak{h}, \mathfrak{m}, \mathfrak{a}, \mathfrak{n}, \mathfrak{r}$. Let $\Phi(\mathfrak{h}, \mathfrak{a})$ denote the set of roots of the pair $(\mathfrak{h}, \mathfrak{a})$. The choice of the parabolic P amounts to the same as a choice of a set of positive roots $\Phi^+(\mathfrak{h}, \mathfrak{a})$. Let $A^- \subset A$ denote the negative Weyl chamber corresponding to that ordering, i.e. A^- consists of all $a \in A$ which act contractingly on the Lie algebra \mathfrak{n}. Further let $\overline{A^-}$ be the closure of A^- in G, this is a manifold with boundary. Let K_M be a maximal compact subgroup of M. We may suppose that K_M contains B. Fix an irreducible unitary representation (τ, V_τ) of K_M. Let K be a maximal compact subgroup of H. We may assume $K \supset K_M$.

Since Γ_H is the fundamental group of the Riemannian manifold $X_{\Gamma_H} = \Gamma_H \backslash X = \Gamma_H \backslash H / K$
it follows that we have a canonical bijection of the homotopy classes of loops:

\[[S^1 : X_{\Gamma_H}] \to \Gamma_H/\text{conjugacy}. \]

For a given class \([\gamma]\) let \(X_\gamma\) denote the union of all closed geodesics in the corresponding class in \([S^1 : X_{\Gamma}]\). Then \(X_\gamma\) is a smooth submanifold of \(X_{\Gamma_H}\). Let \(\chi_r(X_\gamma)\) denote the \(r\)-fold de-twisted Euler characteristic of \(X_\gamma\), where \(r = \dim A\).

Let \(E_P(\Gamma)\) denote the set of all conjugacy classes \([\gamma]\) in \(\Gamma\) such that \(\gamma_H\) is in \(H\) conjugate to an element \(a_\gamma b_\gamma\) of \(A^- B\).

Take a class \([\gamma]\) in \(E_P(\Gamma)\). Modulo conjugation assume \(\gamma \in T = AB\), then the centralizer \(\Gamma_{H,\gamma}\) projects to a lattice \(\Gamma_{A,\gamma}\) in the split part \(A\). Let \(\lambda_\gamma\) be the covolume of this lattice. Normalize the measure on \(R\) such that \(\text{vol}(\Gamma_R \backslash R) = 1\).

Theorem 3.1 (Lefschetz formula, first version) Let \(\phi\) be compactly supported on \(A^-\), \(\dim G\)-times continuously differentiable and suppose \(\phi\) vanishes on the boundary to order \(\dim G + 1\). Then we have that the expression

\[
\sum_{\pi \in \hat{G}} N_{\Gamma}(\pi) \sum_{p,q} (-1)^{p+q} \int_{A^-} \varphi(a) \text{tr}(a)(H^p(n, \pi) \otimes \wedge^q \mathfrak{p}_M \otimes V_\tau)^{K_M}) da
\]

equals

\[
(-1)^{\dim(N)} \sum_{[\gamma] \in E_P(\Gamma)} \lambda_\gamma \chi_r(X_\gamma) \frac{\varphi(a) \text{tr}(b_\gamma)}{\det(1 - a_\gamma b_\gamma | n) \det(1 - \gamma | r)}.
\]

Proof: Let \(H\) act on itself by conjugation, write \(h.x = hxh^{-1}\), write \(H.x\) for the orbit, so \(H.x = \{hxh^{-1} | h \in H\}\) as well as \(H.S = \{hs^{-1}h^{-1} | s \in S, h \in H\}\) for any subset \(S\) of \(H\). We are going to consider functions that are supported on the closure of the set \(H.(MA^-)\). At first let \(f_\tau\) be the Euler-Poincaré function defined on \(M\) attached to the representation \((\tau, V_\tau)\) of \(K_M\). Next fix a smooth function \(\eta\) on \(N\) which has compact support, is positive, invariant under \(K_M\) and satisfies \(\int_N \eta(n) dn = 1\). Given these data let \(\phi = \phi_{\eta, \tau, \varphi} : H \to \mathbb{C}\) be defined by

\[
\phi(knma(kn)^{-1}) := \eta(n)f_\tau(m)\frac{\varphi(a)}{\det(1 - (ma)|n)},
\]
for \(k \in K, n \in N, m \in M, a \in A^\perp \). Further \(\phi(h) = 0 \) if \(h \) is not in \(H.(M.A^\perp) \).

Next choose any compactly supported positive function \(\psi \) on \(R \) with \(\int \psi = 1 \). Let \(\Phi(h,r) := \phi(h)\psi(r) \). We will plug \(\Phi \) into the trace formula. For the geometric side let \(\gamma = (\gamma_H, \gamma_R) \in \Gamma \). We have to calculate the orbital integral:

\[
O_\gamma(\Phi) = \int_{G_\gamma \backslash G} \Phi(x^{-1}_\gamma x) dx.
\]

Now let \(x = (h,r) \in G \) and compute

\[
x^{-1}_\gamma x = (h^{-1}_\gamma H h, r + h^{-1}_\gamma H - h^{-1}_\gamma H h r).
\]

So \((h,r)\) lies in the centralizer \(G_\gamma \) iff \(h \in H_\gamma \) and \(r \in R \) satisfies

\[
(1 - h^{-1}_\gamma)\gamma_R = (1 - h^{-1}_\gamma) r.
\]

Note that by (A2) to any \(\gamma \) such that \(\gamma_H \) is conjugate to an element of \(A^{reg} M \), and to any \(h \in H_\gamma \) such an \(r \) exists and is unique. But this condition on \(\gamma \) is satisfied if \(\varphi(h^{-1}_\gamma H h) \neq 0 \). So suppose \(\gamma_H \) is in \(H.(A^{reg} M) \). In this case we have the integration rule

\[
\int_{G_\gamma \backslash G} f(g) dg = \int_{H_\gamma \backslash H} \int_R f(h, r) dr dh.
\]

This is proven by showing that the right hand side is in fact \(G \)-invariant. We compute

\[
\int_R \Phi((h, r)^{-1}_\gamma (h, r)) dr = \frac{\varphi(h^{-1}_\gamma H h)}{\det(1 - \gamma_H | r)}
\]

from which we see that the geometric side of the trace formula coincides with our claim.

Now for the spectral side let \(\pi \in \hat{G} \) then the restriction of \(\pi \) to \(R \) is a direct integral over \(\hat{R} \). The irreducibility of \(\pi \) implies that the corresponding measure is supported on a single orbit \(o \) of the \(H \)-action on \(\hat{R} \). So we have

\[
\pi|_R = \int_o V_\pi(\tau) dm(\tau),
\]

where \(m \) is a scalar valued measure and \(V_\pi(\tau) \) is a multiple of \(\tau \). Fix \(\tau_0 \in o \) then the stabilizer \(H_{\tau_0} \) acts trivially on \(\tau_0 \) and not only its class since by \(\dim \tau_0 = 1 \) these two notions coincide. It follows that as \(H_{\tau_0} \)-modules we have \(V_\pi(\tau) \cong \eta \otimes \tau \) for some representation \(\eta \) of \(H_{\tau_0} \). The measure \(m \) induces a measure on \(G_{\tau_0} \backslash G \) also denoted \(m \) which is quasi-invariant. It follows that
\(\pi = \text{ind}^G_{H_G \ltimes R}(\eta \otimes \tau) \) and hence \(\eta \) must be irreducible since \(\pi \) is. Let \(\lambda(x, y) \) denote the Radon-Nikodym derivative of the translate \(m_x \) with respect to \(m \). We conclude that \(\pi(\Phi) \) is given as an integral operator on \(G_{\tau_0} \backslash G \) with kernel
\[
k(x, y) = \int_{G_{\tau_0}} \Phi(x^{-1}zy)\lambda(x^{-1}zy, x)^{1/2} (\eta \otimes \tau_0)(z)dz.
\]
From this we get
\[
\text{tr} \, \pi(\Phi) = \int_{G_{\tau_0}} \text{tr} \left(\int_{G_{\tau_0}} \Phi(x^{-1}zx)\lambda(x^{-1}zx, x)^{1/2} (\eta \otimes \tau_0)(z)dz \right)dx.
\]
Consider the term \(\Phi(x^{-1}zx) = \varphi(x_H^{-1}zxH)\psi(\ldots) \). By (A2) this expression vanishes unless \(\tau_0 \) is the trivial character. In the case \(\tau_0 = \text{triv} \) it follows that \(\pi(R) = 1 \), so \(\pi \) may be viewed as an element of \(\hat{H} \).

To evaluate \(\text{tr} \, \pi(\Phi) \) further we will employ the Hecht-Schmid character formula [9]. For this let \((MA)^- = \text{interior in } MA \text{ of the set} \\{ g \in MA | \det(1 - ga|n) \geq 0 \text{ for all } a \in A^- \} \). The character \(\Theta^G_\pi \) of \(\pi \in \hat{G} \) is a locally integrable function on \(G \). In [9] it is shown that for any \(\pi \in \hat{H} \), denoting by \(\pi^0 \) the underlying Harish-Chandra module we have that all Lie algebra cohomology groups \(H^p(n, \pi^0) \) are Harish-Chandra modules for \(MA \). The main result of [9] is that for \(ma \in (MA)^- \cap H^{reg} \), the regular set, we have
\[
\Theta^{H}_\pi(ma) = \sum_{p=0}^{\dim n} (-1)^p \frac{\Theta^{MA}_{H, (n, \pi^0)}(ma)}{\det(1 - ma|n)}.
\]
Let \(f \) be supported on \(H(MA^-) \), then the Weyl integration formula states that
\[
\int_H f(x)dx = \int_{H/MA} \int_{MA^-} f(hmah^{-1})|\det(1 - ma|n \oplus \bar{n})|dadm dh.
\]
So that for \(\pi \in \hat{H} \):
\[
\text{tr} \, \pi(\phi) = \int_H \Theta^H_\pi(x)\phi(x)dx
= \int_{MA^-} \Theta^H_\pi(ma)f_\tau(m)\varphi(a)|\det(1 - ma|n)|dadm
= (-1)^{\dim N} \int_{MA^-} f_\tau(m)\Theta^{MA}_{H, (n, \pi^0)}(ma)\varphi(a)dadm,
\]
where we have used the isomorphism $H_p(n, \pi^0) \cong H^{\dim N - p}(n, \pi^p) \otimes \wedge^p n$. This gives the claim.

In the second version of the Lefschetz formula we want to substitute the character of the representation τ by an arbitrary central function on K_M. A smooth function f on K_M is called central if $f(kk_1k^{-1}) = f(k)$ for all $k, k_1 \in K_M$. Since B is a Cartan subgroup of the compact group K_M, any $k \in K_M$ is conjugate to some element of B so the restriction gives an isomorphism from the space of smooth central functions on K_M to the space of smooth functions on B, invariant under the Weyl group. Hence we are led to consider Weyl group invariant functions on T.

Let A denote the convolution algebra of all $W(H, T)$-invariant smooth functions on T with compact support. Let $S \subset T$ be the set of all ab with singular a-part.

For any $t = ab$ in T let n_t be the space of all $X \in \text{ad}(t)g$ on which t acts contractingly. Then n_t is a nilpotent Lie subalgebra of g.

Theorem 3.2 (Lefschetz formula, second version) Let $\varphi \in A$ and suppose φ vanishes on the singular set to order $\dim G + 1$ then the expression

$$
\sum_{\pi \in \hat{G}} N_{\Gamma}(\pi) \sum_q (-1)^q \int_{T/W(H, T)} \varphi(t) \text{tr}(t|H^q(n_t, \pi)) dt
$$

equals

$$
(-1)^{\dim(N)} \sum_{[\gamma] \in \mathcal{E}_F(T)} \lambda_{\gamma} \chi_\gamma(X_\gamma) \frac{\varphi(t_\gamma)}{\det(1 - t_\gamma|p_M \oplus n_{h_\gamma})\det(1 - \gamma|t)}. \tag{1}
$$

Proof: Extend $b \mapsto \varphi(ab)$ to a central function on K_M. Then expand φ into K_M-types:

$$
\varphi(ab) = \sum_{\tau \in K_M} c\tau \text{tr}(\tau(b)\varphi_\tau(a)), \tag{2}
$$

since φ is smooth the coefficients $c\tau$ are rapidly decreasing so the expressions of Theorem 3.1 when plugging in $\varphi_\tau|_{A^+}$ converge to

$$
\sum_{\pi \in \hat{G}} N_{\Gamma}(\pi) \sum_{p, q} (-1)^{p+q} \int_{T/W(H, T)} \varphi(t) \text{tr}(t|H^q(n_t, \pi) \otimes \wedge^p p_M) dt, \tag{3}
$$

where φ is smooth the coefficients $c\tau$ are rapidly decreasing.
which equals

\[(-1)^{\dim(N)} \sum_{[\gamma] \in \mathcal{E}_H(\Gamma)} \lambda_{\gamma} \chi_{r}(X_{\gamma}) \frac{\varphi(t_{\gamma})}{\det(1 - t_{\gamma}|n_{h_{\gamma}}) \det(1 - \gamma|r)}. \]

Now replace \(\varphi(t) \) by \(\varphi(t) / \det(1 - t|p_M) \) which gives the claim. \(\square \)

At last we also mention a reformulation in terms of relative Lie algebra cohomology. Again, fix a parabolic \(P = MAN \) and now fix also a finite dimensional irreducible representation \((\sigma, V_\sigma)\) of \(M \).

Theorem 3.3 (Lefschetz formula, third version) Let \(\varphi \) be compactly supported on \(A^- \), \(\dim G \)-times continuously differentiable and suppose \(\varphi \) vanishes on the boundary to order \(\dim G + 1 \). Then we have that the expression

\[
\sum_{\pi \in \hat{G}} N_\Gamma(\pi) \sum_q (-1)^q \int_{A^-} \varphi(a) \text{tr}(a|H^q(m \oplus n, K_M, \pi \otimes V_\sigma))
\]

equals

\[
(-1)^{\dim(N)} \sum_{[\gamma] \in \mathcal{E}_P(\Gamma)} \lambda_{\gamma} \chi_{r}(X_{\gamma}) \frac{\varphi(a_{\gamma}) \text{tr}(\sigma(b_{\gamma}))}{\det(1 - a_{\gamma}b_{\gamma}|n) \det(1 - \gamma|r)}.
\]

Proof: Extend \(V_\sigma \) to a \(m \oplus n \)-module by letting \(n \) act trivially. We then get

\[
H^p(n, \pi^0) \otimes V_\sigma \cong H^p(n, \pi^0 \otimes V_\sigma).
\]

The \((m, K_M)\)-cohomology of the module \(H^p(n, \pi^0 \otimes V_\sigma) \) is the cohomology of the complex \((C^*)\) with

\[
C^q = \text{Hom}_{K_M}(\wedge^q p_M, H^p(n, \pi^0) \otimes V_\sigma) = (\wedge^q p_M \otimes H^p(n, \pi^0) \otimes V_\sigma)^{K_M},
\]

since \(\wedge^q p_M \) is a self-dual \(K_M \)-module. Therefore we have an isomorphism of virtual \(A \)-modules:

\[
\sum_q (-1)^q (H^p(n, \pi^0) \otimes \wedge^q p_M \otimes V_\sigma)^{K_M} \cong \sum_q (-1)^q H^q(m, K_M, H^p(n, \pi^0 \otimes V_\sigma)).
\]
Now one considers the Hochschild-Serre spectral sequence in the relative case for the exact sequence of Lie algebras

$$0 \to n \to m \oplus n \to m \to 0$$

and the $\langle m \oplus n, K_M \rangle$-module $\pi \otimes V_{\theta}$. We have

$$E_2^{p,q} = H^q(m, K_M, H^p(n, \pi^0 \otimes V_{\theta}))$$

and

$$E_\infty^{p,q} = \text{Gr}^q(H^{p+q}(m \oplus n, K_M, \pi^0 \otimes V_{\theta})).$$

Now the module in question is just

$$\chi(E_2) = \sum_{p,q} (-1)^{p+q} E_2^{p,q}.$$

Since the differentials in the spectral sequence are A-homomorphisms this equals $\chi(E_\infty)$. So we get an A-module isomorphism of virtual A-modules

$$\sum_{p,q} (-1)^{p+q} (H^p(n, \pi^0) \otimes \wedge^q p_M \otimes V_{\theta})^K_M \cong \sum_j (-1)^j H^j(m \oplus n, K_M, \pi^0 \otimes V_{\theta}).$$

The claim follows.

4 Geometric interpretation

Now consider the first version of the Lefschetz formula in the case $R = 0$. The representation τ defines a homogeneous vector bundle E_τ over G/K_M and by homogeneity this pushes down to a locally homogeneous bundle over $\Gamma\backslash G/K_M = M X_\Gamma$. The tangent bundle $T(M X_\Gamma)$ can be described in this way as stemming from the representation of K_M on

$$\mathfrak{g}/\mathfrak{t}_M \cong \mathfrak{a} \oplus p_M \oplus n \oplus \bar{n}.$$
acts contractingly on T_s. On the **unstable part** T_u the opposite chamber A^- acts contractingly. T_c, the **central part** is spanned by the ”flow” A itself and T_n is an additive **neutral part**. Note that T_n vanishes if we choose H to be the maximal split torus. The bundle $T_n \oplus T_u$ is integrable, so it defines a foliation \mathcal{F}. To this foliation we have the tangential cohomology $H^*(\mathcal{F})$ and also for its τ-twist: $H^*(\mathcal{F} \otimes \tau)$. The flow A acts on the tangential cohomology whose alternating sum we will consider as a virtual A-module. For any $\varphi \in C^\infty_c(A^-)$ we define $L_\varphi = \int_{A^-} \varphi(a)(a|H^*(\mathcal{F} \otimes \tau))da$ as a virtual operator on $H^*(\mathcal{F} \otimes \tau)$. Then we have

Proposition 4.1 Under the assumptions of theorem 3.1 the virtual operator L_φ is of trace class and the RHS of Theorem 3.1 can be written as

$$\sum_q (-1)^q \text{tr}(L_\varphi H^q(\mathcal{F} \otimes \tau)).$$

References

[1] Borel, A.: *Introduction aux groupes arithmétiques*. Hermann, Paris 1969.

[2] Borel, A.; Wallach, N.: *Continuous Cohomology, Discrete Groups, and Representations of Reductive Groups*. Ann. Math. Stud. 94, Princeton 1980.

[3] Deitmar, A.: *Higher torsion zeta functions*. Adv. Math. 110, 109-128 (1995).

[4] Deitmar, A.: *Product expansions for zeta functions attached to locally homogeneous spaces*. to appear in Duke Math. J.

[5] Deitmar, A.: *On some zeta functions attached to Shimura manifolds of higher rank*. preprint [dg-ga/9511004](http://example.com).

[6] Duistermaat, J.; Guillemin, V.: *The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics*. Invent. math. 29, 39-79 (1975).

[7] Duistermaat, J.J.; Kolk, J.A.C.; Varadarajan, V.S.: *Spectra of locally symmetric manifolds of negative curvature*. Invent. math. 52 (1979) 27-93.

[8] Guillemin, V.: *Lectures on spectral theory of elliptic operators*. Duke Math. J. 44, 485-517 (1977).

[9] Hecht, H.; Schmid, W.: *Characters, asymptotics and \mathfrak{g}-homology of Harish-Chandra modules*. Acta Math. 151, 49-151 (1983).

[10] Juhl, A.: *Zeta-Funktionen, Index-Theorie und hyperbolische Dynamik*. Habilitationsschrift. Humboldt-Universität zu Berlin 1993.

[11] Osborne, M.: *Lefschetz formulas on non-elliptic complexes*. Thesis. Yale University 1972.
Osborne, M.: Lie algebra cohomology of certain infinite dimensional representations. Bull. AMS 80, 852-854 (1980).

Schubert, V.: Ein kohomologischer Zugang zu verallgemeinerten Selbergschen Zeta-Funktionen auf lokalsymmetrischen kompakten Rang-1-Räumen. Dissertation. Göttingen 1994.

Wallach, N.: Real Reductive Groups I. Academic Press 1988.

Math. Inst. d. Univ., INF 288, 69126 Heidelberg, Germany