Introduction

Traditional plant remedies are still the most important sources of therapeutics for most of the developing world populations [1]. In Ethiopia, traditional medicine has played a significant role in treating different public health problems [2-6]. Recent reports revealed that about 80% of the Ethiopian populations still depend on traditional medicinal plants to fulfill their primary healthcare needs [7,8], largely due to its cultural acceptability, economic affordability and efficacy against certain types of disease as compared to modern medicine [9]. However, the plants and the associated indigenous knowledge in the country are gradually being depleted because of environmental degradation, deforestation, lack of documentation and potential acculturation, which in turn brought about the loss of some important medicinal plants [5,10,11].

Similar to other cultural groups in Ethiopia, traditional medicinal plants play a vital role in the primary healthcare system of the Amhara Region, Ethiopia. However, only few attempts made to scientifically document and analyze the ethnobotanical knowledge and the associated plants in the Region [12-20]. So far, no such study has been conducted in Enarj Enawga District, Amhara Region, Ethiopia. Thus, the aim of the present study was to gather and document data on the use of medicinal plant remedies, the indigenous knowledge and practices of the traditional healers and the threats currently affecting medicinal plants in Enarj Enawga District.

Methods

Description of study area

Enarj Enawga District (Woreda) is found in East Gojjam Administrative Zone of the Amhara Regional State, Ethiopia. Its capital, Debre Work town, is located at about 195 km south east of Bahir Dar, the capital city of Amhara Regional State and 291 km north of Addis Ababa, the capital city of Ethiopia (Figure 1). The District is bordered on the south by Enemay District, on the southwest by Debay Telatgen District, on the west by Hulet-Eju Enese District, on the north by Goncha Siso-Enese District, on the northeast by Enese Sar-Midir District, on the east by the Nile River that separate it from the South Wollo Zone, and on the southeast by Shebel Berenta District. According to the 2007
national census conducted by the Central Statistical Agency (CSA) of Ethiopia, the District has a total population of 167,402 in 39,564 households, of whom 82,958 are men and 84,444 women; 13,623 (8.14%) are urban inhabitants. The indigenous people inhabiting the area belong to the Amhara ethnic group and speak Amharic language, the official language of Ethiopia. Most of the inhabitants (97.36%) in the District practiced Ethiopian Orthodox Christianity and the remaining 2.34% of the population were Muslims [21].

Selection of study kebeles and informants

The ethnobotanical data was collected from 22 Kebeles (the smallest administrative unit in Ethiopia) of the study District that were purposively selected in consultation with elders and local authorities. These Kebeles were known to have better vegetation cover, reputable traditional healers and knowledgeable informants. For the interview, 110 traditional healers and knowledgeable informants (five from each Kebele) were recruited using purposive sampling technique [22], of which 103 were men and 7 were women. The ages of the informants ranged between 20 and 82 years. Key informants for the ranking exercises were selected from the aforementioned study group (already sampled for the interviews).

Ethnobotanical data collection

Ethnobotanical data were collected from November 15, 2015 to October 15, 2016 through semi-structured interviews, focus group discussions and field observations by following the standard methods [22,23]. Interviews were carried out to gather data on plant parts used, method of remedy preparation, dosage of remedy, route of remedy administration, diseases treated, threats and conservation practices of medicinal plants. Communications with all informants were held in Amharic, the mother tongue language of the study participants and of course, the official language of the District and Ethiopia. Field observations were also conducted to record the habit and habitat of each medicinal plant with the assistance of informants who participated during the interview. For each reported medicinal plant species, specimen was collected, pressed, dried and identified by botanists at DMU and vouchers were deposited at DMU, College of Natural and Computational Sciences store.

Data analysis

Microsoft Excel 2007 software was used for organizing and summarizing the data. Descriptive statistical analysis was employed to determine the number of medicinal plants used and ailments treated in the study District, the most frequently used plant parts, main route of remedy administration and major habitats of the medicinal plants.

Preference ranking technique [22] was used to identify the most preferred medicinal plants to treat evil eye (against which the highest number of medicinal plant species were prescribed by informants) in the District based on informants’ personal preference or perception. The medicinal plants (nine in number) used in this exercise were seeded by the key informants following group discussion on their importance to manage evil eye. For this purpose, ten individuals were
selected from the key informants and each individual was then asked to rank the plants according to their degree of preference. The highest value (9) was assigned to the most preferred medicinal plant to treat evil eye, while the least preferred plant was given the lowest value (1). Scores of each medicinal plant was then added and ranked.

Similar approach was followed to identify the most threatened medicinal plants in the study District using ten key informants on six medicinal plants reported by most informants as threatened species. The informants were then asked to arrange them based on their perceived level of threat or extinction. A medicinal plant that was believed to be the most threatened was given the highest value (6), and the least threatened plant was given the lowest value (1) and rank was determined based on the total score of each plant species.

Priority ranking exercise was also performed to determine the principal factors perceived as threats to medicinal plants in the study District based on the level of destructive impacts. Ten key informants were selected to rank the six threatening factors (that were suggested by informants during the ethnobotanical data collection) in the District. The highest value (6) was given for the most threatening factor and the lowest value (1) was assigned for the least threatening one, and scores of each plant species were finally summed and ranked.

DMR exercise [22,23] was done for seven medicinal plants that were most frequently reported as multipurpose medicinal plants in the study District. Ten key informants were selected and asked to assign, to each attribute, a value between 0 and 5 (0 for no use and 5 for the highest value). The average scores of key informants were then added and plants ranked.

ICF, which is a measure of informants’ agreements on cures for group ailments, was computed after the reported traditional remedies and corresponding diseases were grouped in to 11 categories [24]. The ICF value of each disease category was calculated as follows:

\[
ICF = \frac{\text{nur-nt/nur-1}}{\text{nur}}
\]

Where,

\[
ICF = \text{Informants Consensus Factor} \\
\text{nur} = \text{Number of use citations in each category} \\
nt = \text{Number of plant species used}
\]

Ethical approval and consent to participate

The study was reviewed and approved by Research Evaluation Committee of Natural and Computational Sciences College, Debre Markos University. Verbal consents, deemed appropriate by the committee for the study, were obtained from informants after brief introduction about the objective of the study prior to the interviews, field observations, ranking exercises. All verbal consents made with research participants were tape-recorded.

Results

Comparison of medicinal plant knowledge among informants

Most of the informants (93.64%) in the study area were men traditional healers, the remaining (6.36%) were women. It was found that men informants were more knowledgeable than women in terms of number medicinal plants reported number of use citations, diversity of disease treated and habitats of medicinal plants. In addition, elder informants (45 years old and above) regardless of their sex, cited more number of medicinal plants, had fruitful conversations on how to collect medicinal plants, prepare and administer remedies than the relatively younger age group (20-44 years old). Informants from all age groups asserted the relatively better curative effects of the remedies prepared by the elders in the study District.

Acquisition and transfer of indigenous medicinal plant knowledge

The main way of indigenous knowledge transfer on types of medicinal plants, traditional concepts of illness and method of diagnosis in the District was through oral tales to a family members (especially to an elder son). Besides, some informants acquired their knowledge secretly through systematic follow up and observation of practitioners at the time of medicinal plant collection and preparation. Furthermore, few informants reported that they develop their knowledge by copying healers after seeking treatment and upon careful observations of domestic animals, especially for plant remedies with antidote effects.

Medicinal plants reported and diseases treated

111 medicinal plant species used to treat 48 human diseases were reported by the informants in the study area, Enarj Enawga District (Appendix A). The medicinal plants belonged to 50 families and 97 genera. The family Asteraceae was represented by 10 species (9.01%), Lamiaceae by 9 species (8.11%), Solanaceae by 8 species (7.21%), Euphorbiaceae by 7 species (6.31%) and Fabaceae by 6 species (5.41%) (Table 1).

Relatively higher numbers of medicinal plant species were used to treat evil eye (23 species), snakebite (16 species), anthrax (10 species), stomachache (12 species), retained placenta (11 species), LIFIE (10 species), eczema (9 species), swelling (9 species), donkey’s wart and febrile illness 8 species each, hepatitis, cut/bleeding and dysentery 6 species each, cough 5 species (Table 2).

Habit, habitat and sources of medicinal plants

Most of the recorded medicinal plants were herbs and shrubs accounting for 47.75% and 31.53% of plant species respectively, followed by trees (11.71%) and climbers (9.01%) (Figure 2). Out of 111 medicinal plant species, 63 (56.76%) were obtained from the wild, 25 (22.52%) from roadside, 12 (10.81%) from home gardens, 5 (4.50%) from croplands, 6 (5.41%) from both wild and roadside (Figure 3). According to informants, the search for medicinal plants in the study area, especially trees and shrubs, required lots of time, energy and travelling longer distances. Among the total medicinal plant species, 66 (59.46%) were rarely encountered, eight (7.21%) were commonly found elsewhere and the remaining 37 (33.33%) were moderately or occasionally encountered (Figure 4).

Plant parts used and condition of remedy preparation

In this study, the most commonly used plant parts in remedy preparations were roots (39.53%), followed by leaves (35.81%), seed (6.05%), stem (2.79%), latex (2.79%) and whole plant (1.40%) (Figure 5). Most of the remedies were prepared from fresh plant materials
Table 1: Medicinal families with three or more species in the study area.

Family name	No of plant species	% of plant species	No of plant genera	% of plant genera
Asteraceae	10	9.01	8	8.25
Lamiaceae	9	8.11	8	8.25
Solanaceae	8	7.21	6	6.19
Euphorbiaceae	7	6.31	4	4.12
Fabaceae	6	5.41	6	6.19
Malvaceae	4	3.6	4	4.12
Ranunculaceae	4	3.6	3	3.09
Apiceae	3	2.7	3	3.09
Polygonaceae	3	2.7	1	1.03
Oleaceae	3	2.7	2	2.06
Rosaceae	3	2.7	3	3.09

Table 2: List of human diseases against which five or more medicinal plants were prescribed.

Disease name	Number of plant species used	Percent of plant species used	Number of plant genera used	Percent of plant genera used
Evil eye	23	20.72	23	23.71
Snake bite	16	14.41	16	16.49
Stomach ache	12	10.81	12	12.37
Retained placenta	11	9.91	10	10.31
Anthrax	10	9.01	10	10.31
LIFIE	10	9.01	10	10.31
Eczema	9	8.11	9	9.28
Swelling	9	8.11	9	9.28
Febrile illness	8	7.21	7	7.22
Donkey's wart	8	7.21	8	8.23
Hepatitis	6	5.41	6	6.19
Cut/bleeding	6	5.41	6	6.19
Dysentery	6	5.41	6	6.19
Cough	5	4.5	5	5.15
(73.95%). Some (9.77%) were prepared from both dry or fresh plant materials and others (16.28%) preferentially from dry parts. Water, honey, milk, butter, salt, tea and local beer/TELA were among the notable additives often used in the preparation of remedies for multiple reasons such as making suitable formulations, localizing remedy administration, improving patient compliance and reducing toxic side-effects of remedies (Figure 6).

Routes of remedy administration and dosage

Most of the medicinal plant preparations reported in the study District were taken orally (43.72%). Around 26.98% of the plant remedies were administered topically through the skin. In addition, 9.3% of the plant remedies were administered nasally (Figure 7). According to informants’ response, the dose of plant remedies differed among traditional healers even in treating the same health problems. The plant remedies in the study area were prescribed with units of traditional dosage measurement such as MANKIA (teaspoon), TIFIR (tablet size), FINJAL (coffee cup), BIRCHIKO (teacup), TASSA (water cup), and ATIQ (a third of finger length). Most of the remedies were reported to have no adverse effects excluding Calpurina aurea, Euphorbia abyssinica, Phytolacca dodecandra, and Nicotiana glauca that were indicated to be poisonous to humans if taken in excess amount.

Market availability of medicinal plants

Surveys were conducted in Debre Work, Felege Birhan, Meaza Genet, Temguma and Gedeb local markets to assess the marketability of medicinal plants in the study District. It revealed that some medicinal plants were sold in the above local markets for their use as food, spice and insect repellents. These includes: Allium sativum (spice), Brassica carinata (food and spice), Citrus aurantifolium (food), Coriandrum sativum (spice), Echinops kebericho (insect repellent), Gaizotia abyssinica (food), Lenis culinaris (food), Linum usitatissimum (food), Lycopersicum esculentum (food), Olea europaea (insect repellent), Trigonella foenum-graecum (spice), Zingiber officinale (spice). Embelia schimperi is the only plant species solely sold for its medicinal significance in the surveyed local markets of Enarj Enawga District.

Informant consensus factor

The public health problems (where informants prescribed remedies and claimed to cure) were grouped in to 11 disease categories and the agreement of informants towards their cures were assessed. Comparatively better informant agreements were observed for evil eye (ICF = 0.90), snakebite (ICF = 0.88), emergency disease (ICF = 0.83), uterine and related disease (ICF = 0.75) categories (Table 3).

Informants’ preference on medicinal plants used to treat evil eye

Evil eye was the disease against which the highest numbers of medicinal plants (23 species) were prescribed by informants in the study District. Among these medicinal plants, Achyranthes aspera, Capparis tomentosa, Carissa spinarum, Clerodendrum myricoides, Cyphostemma moll, Gomphocarpus purpurascens, Leonotis ocymifolia, Lobelia rynchopetalum and Securidaca longepedunculata were also short-listed by the key informants as most preferred plant
species to treat evil eye. Preference ranking exercise conducted on the aforementioned medicinal plants, using ten key informants, revealed that *Lobelia rhynchopetalum* was the most preferred medicinal for the management of evil eye, followed by *Gomphocarpus purpurascens* and *Capparis tomentosa* respectively (Table 4).

Multipurpose medicinal plants

Acacia sleberiana, *Brueca antidysenterica*, *Carissa spinarum*, *Croton macrostachyus*, *Millettia ferruginea*, *Olea europaea* and *Prunus africana* are among the plant species that were repeatedly reported as multipurpose medicinal plants by most of the informants in the study area. The people in the District often used these medicinal plants as a construction material, firewood, medicine, charcoal, agricultural tool, lumbering, shade, forage, etc. According to the DMR exercise result, conducted using ten key informants, *Olea europaea* was the most useful multipurpose medicinal plant species, followed by *Croton macrostachyus* and *Acacia sleberiana* respectively (Table 5).

Table 3: ICF values of traditional medicinal plants used to for human diseases in the study area.

Category of diseases	Diseases included	nt	nur	ICF
Evil eye	Evil eye and evil spirit	27	257	0.9
Snakebite	Snakebite and python poison	17	129	0.88
Emergency diseases	Malaise, QURIBA, anthrax, febrile illness, and KELECHA	38	238	0.84
Uterine and related diseases	Rh diseases, retained placenta, enhanced labor, bleeding after delivery and SHIL MAZAWER	18	69	0.75
Gastrointestinal and parasitic infection	Stomachache, dysentery, hemorrhoids, Donkey's wart and tapeworm	30	107	0.73
Dermatological problems	Leishmanias, itching, eczema, LIFIE, herpes zoster, wound healing, cut/bleeding, wart and fire burn	37	130	0.72
Cancer and swelling	Cancer and swelling	10	33	0.72
Internal diseases	Rabies, malaria and fever	8	25	0.71
Organ diseases	Toothache, hearing loss, eye infection, eye pain and hepatitis	16	52	0.71
Respiratory diseases	Nasal bleeding, epigiottitis, tonsillitis, cough and asthma	13	39	0.68
Others diseases	Epilepsy, urine retention, impotence, weaken babies and babies' sickness	10	33	0.72

Table 4: Preference ranking of medicinal plants reported for treating evil eye in the study area.

Plant species	Respondents (R₁-R₁₀)	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	Totaal	Rank
Achyranthes aspera		5	6	7	8	4	7	6	3	6	1	53	4th
Capparis tomentosa		7	7	8	9	7	6	7	8	9	7	75	3rd
Carissa spinarum		6	4	5	2	5	3	4	2	1	6	38	6th
Clerodendrum myricoides		2	1	1	3	2	2	5	2	4	25	42	8th
Cyphostemma molle		1	1	2	1	2	1	3	1	5	2	21	9th
Gomphocarpus purpurascens		8	9	6	5	9	8	8	9	7	8	77	2nd
Leonotis ocymifolia		4	2	4	1	5	1	4	3	3	31	31	7th
Lobelia rhynchopetalum		9	8	9	7	8	9	6	8	9	82	82	1st
Securidaca longipedunculata		3	5	1	6	6	4	5	7	4	5	46	5th

N:B - Scores in the table indicate ranks given to medicinal plants based on their efficacy. Highest number (9) given for the medicinal plant which informants thought most effective in treating evil spirit and the lowest number (1) for the least effective plant.

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006.

https://dx.doi.org/10.36876/smjmmps.1006
Discussion

Medicinal plant knowledge among informants and its acquisition/transfer

As a rule of thumb, traditional remedy preparation is considered as a routine task for men in different parts of Ethiopia. This scenario is supported by our findings, where most of the traditional healers or knowledgeable informants belong to the male gender group (93.64%). Besides, women traditional healers cited very few numbers of medicinal plants as compared to men in the study District. Other ethnobotanical studies conducted elsewhere in Ethiopia [11,16,28-30] and elsewhere in the world [25,31,32].

The foremost way of indigenous knowledge transfer in the study District was by word of mouth to a family member (especially an elder son). Similar findings were reported for other communities in Ethiopia [16,17,20,29]. Besides, some brave informants acquired their knowledge secretly through systematic follow up and observation of traditional medicinal knowledge acquisition or transfer, which favors males (especially elder sons) [5], was also responsible the observed variation between gender groups. In contrast, Lulekal et al. [16] documented insignificant variation in medicinal plant knowledge between gender groups in the same Region, Ankober District, and North Shewa Zone, Ethiopia. In addition, our findings clearly indicated that, elders are more knowledgeable as far as the number of remedies and their mode of administrations were concerned. This report is in line with different results documented in different parts of Ethiopia [11,16,28-30] and elsewhere in the world [25,31,32].

Table 5: Results of DMR for seven multi-purpose medicinal plants in the study area, Enarj Enawga District.

Plant species	Medicine	Agricultural tool	Firewood	Construction	Lumbering	Charcoal	Shade	Forage	Total	Rank
Acacia sieberiana	3	3	5	4	3	4	2	1	14	3rd
Brucea antisynergetica	4	1	3	3	2	1	1	4	19	7th
Carissa spinarum	5	0	3	2	2	3	2	3	20	6th
Crotton macrostachyus	4	2	5	5	4	3	5	1	29	2nd
Milletia ferruginea	3	2	5	5	3	3	3	27	4th	
Olea europeae	2	3	4	5	5	2	5	3	30	1st
Prunus africana	3	3	3	5	5	2	3	2	26	5th

N:B - Scores in the table shows average scores of ten key informants given to each medicinal plant based on multipurpose use criteria (5 = best; 4 = very good; 3 = good; 2 = less used; 1 = least used and 0 = no value).

Table 6: Priority ranking results of the most threatened medicinal plants in Enarj Enawga District.

Plant Spieces	Respondents (R_{R_{iso}})	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	Total	Rank
Acokanthera schimperi		2	3	1	3	1	2	2	2	2	1	19	5th
Dodonaea angustifolia		3	2	3	2	2	3	4	3	3	28	4th	
Echinops kebericho		4	4	2	5	4	5	3	6	4	5	43	3rd
Embelia schimperi		1	1	4	1	3	1	1	2	1	14	6th	
Prunus africana		5	6	5	4	5	6	5	4	6	4	50	2nd
Securidaca longipedunculata		6	5	6	6	6	4	6	5	5	5	55	1st

N:B - Scores in the table indicate ranks given to the most threatened medicinal plants. Highest number (6) given for the most threatened plant and the lowest number (1) for the least threatened plant.

Table 7: Priority ranking results of the factors perceived as threats to medicinal plants in Enarj Enawga District.

Threatening factor	Respondents (R_{R_{iso}})	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	Total	Rank
Acokanthera schimperi		2	3	1	3	1	2	2	2	1	2	19	5th
Dodonaea angustifolia		3	2	3	2	2	3	4	3	3	28	4th	
Echinops kebericho		4	4	2	5	4	5	3	6	4	5	43	3rd
Embelia schimperi		1	1	4	1	3	1	1	2	1	14	6th	
Prunus africana		5	6	5	4	5	6	5	4	6	4	50	2nd
Securidaca longipedunculata		6	5	6	6	6	4	6	5	5	5	55	1st

N:B - Scores in the table indicate ranks given to threats to medicinal plants. Highest number (6) given for the most threatening factor and the lowest number (1) for the least threatening factor.

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006. https://dx.doi.org/10.36876/smjmps.1006
knowledgeable individuals at the time of medicinal plant collection and preparation. This is due to the existence of high level of secrecy regarding the traditional knowledge among traditional healers, even to family members [16,17]. Moreover, few informants reported that they develop their knowledge by following up healers after seeking treatment. In very few cases, informants develop their knowledge upon careful observations of different animals, which use plant materials to detoxify poisonous substances of snakes and pythons. *Clitia abyssinica* (for python poison and snakebite) and *Abutilon mauritianum* (for snakebite) were among the medicinal plant species discovered in this way by some informants of the study District. Chekole et al. [20] also reported the discovery of Vernonia abeoensis for the treatment of snakebite by a similar mechanism. These nature driven in vivo bioactivity testing results clearly indicated the efficacy of such type medicinal plant species as antidotes.

Medicinal plants distribution and occurrence in the study area

Interestingly, this study documented high numbers of medicinal plants (111 species) used to cover the primary healthcare demand of the local community in Enarj Enawga District. Ethnobotanical studies conducted in Mecha [18], Chilga [19] and Libo Kemkem District [20] of the same Region came up with comparable numbers of medicinal plants, 107, 101 and 163 species respectively. Several medicinal plants documented from Enarj Enawga District were also mentioned in reports of studies previously conducted in the same Region; 31 in Zegie Peninsula [13], 35 in Dek Island [14], 53 in Ankober District [16], 50 in Mecha District [18] and 56 in Libo Kemkem District [20]. Moreover, some of these medicinal plants were found to be used for the same remedial purpose in different parts of the Amhara Region or Ethiopia. For instance, the use of Brucia antisyenterica (for eczema), Calpurina aurea (for QURIBA), Datura stramonium (for toothache), Dracaena steudneri (for evil eye), Glinus laticostus (for tapeworm), Justicia schimperiana (for evil eye), Kalanchoe petiolaris (swelling), Ocimum lamiiifolium (for malaria), Pytholacca dodcandra (for rashes, hepatitis, wound and QURIBA), Rumex nepalensis (for retained placenta), Verbenas officinales (for stomachache) and Zehneria scabra (for malaria) were documented in a similar study conducted in Zegie Peninsula, Northwestern Ethiopia [13], which agrees with our findings in Enarj Enawga District. These findings asserted the pharmacological effectiveness of the aforementioned medicinal plant remedies and the existence of shared indigenous knowledge among different communities in the Region and Ethiopia.

Among the plant families, Asteraceae, Lamiaceae, Solanaceae, Euphorbiaceae and Fabaceae were found as the dominant medicinal plant species in Enarj Enawga District, which could reflect their abundance (species richness) in the flora of Ethiopia and Eritrea [33,34]. The study also revealed the family Asteraceae as a major contributor of plant species (10, 9.01%) used for medicinal purpose than other families, which is in agreement with similar studies conducted in different corners of Ethiopia [35-37]. About 47.75% of the plant remedies in the study area were prepared from herbs. This may be due to their relative better abundance, accessibility in nearby areas as compared to trees and shrubs mostly harvested from forests distantly located from resident areas. Our finding agrees with studies conducted in different parts of the country [38-40]. In contrast, other ethnobotanical studies conducted elsewhere in Ethiopia indicated shrubs as the most frequently used growth forms of medicinal plants [5,30,36,41-43].

Plant parts used for remedy preparation, forms of preparation and collection

Except for evil eye, where multiple plant species were recommended for remedy preparation, most of the reported remedies in the study area were prepared from a single plant or plant parts. The result deviated from other findings where traditional healers mostly used more than one plant species to prepare remedy for an ailment [38,44]. In the present study, roots were the most used plant parts in the preparation of remedies as compared to other parts. Similar studies conducted in Southern Ethiopia [2], Zegie Peninsula (Northwestern Ethiopia) [13], Fentalle area (Eastern Shewa, Ethiopia) [30], Mana Angetu District (Southeastern Ethiopia) [5] and Wonago Woreda (SNNP, Ethiopia) [36], witnessed the common usage of root, which is highly threatening for the survival of the plants. This is because harvesting root of a plant poses more threat to the survival of plant than collecting other parts such as fruits, seeds and leaves [45]. In contrast, many studies conducted elsewhere in Ethiopia revealed the dominance of leaves in the preparation of remedies [35,42,46]. Complimentary to other studies conducted in different parts of the country [28,29,41], the majority (56.76%) of the medicinal plants in the study District were collected from the wild. Thus, such dependence on the wild habitats will have a long-term negative effect on the conservation statuses of medicinal plants in the area.

Crushing was the most widely used method of preparation in the study District. Ethnobotanical studies conducted in Debre Libanos [35], Wayu Tuka [38] and Sekoru [42] Districts of Oromia Region, Ethiopia documented crushing as the most common method for the preparation of plant remedies. However, traditional healers in Wonago Woreda (SNNP, Ethiopia) [36] commonly used powdering as a means to prepare herbal remedies. The informants in the study area prefer fresh plant materials (73.95%) to prepare effective and efficient remedies due to the fact that, most of the bioactive phytochemicals are retained in fresh plant materials as compared to dry ones [47]. Although frequent collection of fresh plant materials in dry seasons has a devastating influence on the conservation statuses of medicinal plants, it is common to use fresh plant materials for the preparation of remedies elsewhere in Ethiopia [13,35,36,42,46].

Route of remedy administration and dosage

The majority (43.72%) of the remedies in the District were reported to be taken orally followed by dermal applications (26.98%). Different studies from other parts of Ethiopia also reported oral as a preferred route of remedy administration followed by dermal [30,38]. Similarities among these results showed that patients visit traditional healers to relieve internal diseases. Contrary to our findings, the studies conducted in Bench District (Southeastern Ethiopia) [11] and Kiltie Awulaelo District (Tigray Region, Ethiopia) [6] witnessed external application as the most common route of remedy administration.

Traditional plant remedies are less costly and more accessible as compared to modern medicine in the study area. Besides this, informants in the study District indicated their preference to...
traditional medicines over modern drugs to relieve certain diseases such as rabies, hepatitis (caused by bat urine), herpes zoster, eczema, snakebite, evil eye and evil spirit. Similar trends were seen in Wayu Tuka District, Oromia Region, Ethiopia, where the local people showed preference to traditional medicine over modern medications for the management of rabies, liver disease, spider poisoning and diseases caused by bat urine [38].

Lack of standard dosage and precise measurement are the common drawbacks of traditional herbal medicine [48]. According to the responses of the informants in the study District, there was no agreement in measurement or unit used among traditional healers even in treating a similar disease. In general, the dose and frequency of remedy administration varied depending on the age, sex, health status of patients and in pregnancy conditions. The variation in quantity, unit of measurement and duration of treatment of prescribed plant preparations was also noted in studies conducted elsewhere in the country [6,16,20,29].

Informants’ consensus on herbal medicines

Relatively highest ICF value was recorded for evil eye disease category (ICF = 0.90) in the study area, indicating the popularity of curative medicinal plants against diseases in the category. In addition, higher share of similar plant use information [49] was observed for snakebite (ICF = 0.88) and emergency disease (ICF = 0.84) categories. Moreover, the preference high plant use citation (23.11%) for treating ailments in the evil eye disease category may also indicate the relatively high incidence of such diseases and ease of identifying ailments and corresponding curative plants occurring in the District [17]. Since plants with high ICF values are thought to be pharmacologically effective [24], it is trustworthy to investigate the efficacy of the medicinal plants species cited in evil eye, snakebite, emergency disease categories using appropriate models.

Most important medicinal plants for the treatment of evil eye

Preference ranking exercise results are important parameters to identify the most favored plant species to treat evil eye in the study area, usually the most efficacious at least in the context of the local people. The people in the study District mainly relied on Achyranthes aspera, Capparis tomentosa, Carissa spinarum, Clerodendrum myricoides, Cyphostemma molle, Gomphocarpus purpurascens, Leonotis ocymifolia, Lobelia rhynchopetalum and Securidaca longepedunculata plant species to manage evil eye. The preference ranking exercise result indicated that Lobelia rhynchopetalum, Gomphocarpus purpurascens and Capparis tomentosa scored highest values (first, second and third respectively) and were found to be the most preferred plants to treat evil eye in Enarj Enawga District. Ethnobotanical investigations done in different parts of the country also reported the use of Carissa spinarum, Capparis tomentosa, and Clerodendrum myricoides for treating evil eye [6,13,20,29], which supports our findings. Taking this in to account, we inferred the presence of bioactive chemicals, in these medicinal plants, responsible to relieve evil eye and shall be considered for further pharmacological investigations.

Medicinal plants used for other purposes

Most of the people in the study area rely on wild plants for various purposes such as agricultural tool, firewood, charcoal, construction material, food, etc. To assess the relative importance and to check the major impact on plant species, DMR exercise was performed on Acacia seberiana, Brueca antidysenterica, Carissa spinarum, Croton macrostachyus, Millettia ferruginea, Olea europaea and Prunus africana. The result indicated that Olea europaea was the most preferred multipurpose medicinal plant followed by Croton macrostachyus and Acacia seberiana. Other studies conducted in different parts of Ethiopia, revealed Croton macrostachyus, Prunus africana and Olea europaea as multipurpose medicinal plants [6,29,38]. These similar reports suggested their relative importance for the livelihood of the local residents and the burden posed on these plant species. Thus, appropriate protection mechanisms with immediate effects are demanded to conserve these plant species before they wiped out.

Ranking of the most threatened medicinal plants

As indicated, most remedy preparations in the study District relied on plant roots, as a result, frequent collection posed a threat to most of the medicinal plants. The preference ranking exercise conducted on Acokanthera schimperi, Dodonaea angustifolia, Echinops kebericho, Embelia schimperi, Prunus africana and Securidaca longepedunculata showed that Securidaca longepedunculata is the most threatened plant followed by Prunus africana and Echinops kebericho. Other ethnobotanical studies conducted in different regions of Ethiopia documented Securidaca longepedunculata [38], Embelia schimperi, Dodonaea angustifolia [30] and Acokanthera schimperi [6,29] as the most threatened medicinal plants, which is in harmony with our findings in Enarj Enawga District. These results showed the depletion of the above plant species in the habitats of the country due to different factors. Thus, we strongly acknowledge the need for a complementary conservation action to save the fast eroding medicinal plant species of the country.

Threats to medicinal plants and conservation practices

Medicinal plants are at increased risk from destruction of their natural habitats due to agricultural expansion, firewood collection, overgrazing, urbanization, drought and collecting plants for construction materials. The preference ranking exercise result revealed agricultural expansion as the most powerful threat for medicinal plants followed by construction material and firewood collection respectively. Similar findings documented agricultural expansion and deforestations (for the purpose of firewood and construction materials) as the main treats of medicinal plants [20,36]. As expected agriculture is the main cause for the loss of medicinal plant habitats, because the communities in the study area depend on mixed agriculture as the main economic activity with limited landholding and high human population.

Sustainable medicinal plant management and conservation are crucial for the rural community healthcare and wellbeing in the study area. The effort to conserve the useful medicinal plants was found to be poor in the study District which agrees with other findings reported in different parts of Ethiopia [5,6,20]. Some traditional healers of the District have tried to conserve medicinal plants by cultivating at their home gardens, yet their efforts were significantly compromised by agro-ecological variations and shortage of land for cultivating trees.

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006. https://dx.doi.org/10.36876/smjmps.1006
and shrubs. Cultivating the useful medicinal plants in home garden is praiseworthy, but conservation in the natural setting (in situ) must also be considered [5] since plants that grow without stress are expected to conserve their bioactive phytochemicals and hence potent as remedies.

In addition to the threat posed on the medicinal plant species, the indigenous knowledge is also on the verge of extinction as lack of interest to use and acquire the traditional medicinal knowledge was observed among the youths in Enarj Enawga District. Let alone the maximum secrecy that exist in the traditional knowledge acquisition or transfer, members of the young generations are lenient to acquire and conserve the practice. Elders mentioned less economic value of the practice, ‘modernization’, and associating traditional knowledge and practices with bad habits (such as witchcrafts) as mitigating factors during the discussions. Other studies also reported lack of interest to acquire the indigenous knowledge among the younger generations in different cultural groups in Ethiopia [5,11,16,30]. Moreover, most of the traditional healers in the study area revealed the decline in their medicinal plant knowledge through time partly because they lacked a habit of properly documenting the ethnomedicinal knowledge. Hence, a great threat is posed on the future use of indigenous ethnomedicinal knowledge to fulfill the primary healthcare demand of the local people under consideration.

Conclusion

Although the future use of medicinal plants and the associated indigenous knowledge are endangered due to poor conservation practices, 119 medicinal plants were reported by informants to treat different human diseases, suggesting their pivotal roles in the primary healthcare system of the study area. The traditional knowledge and practices are still being transferred from generation to generation as oral tales, in the study area, and appeared to weaken in recent years due to ‘modernization’, absence of strong traditional healers’ associations and culture related factors. Thus, participatory conservation strategies are compulsory for sustainable use of the plants and the indigenous medicinal knowledge to fulfill the primary healthcare demand of the local community, to scientifically investigate the efficacy and safety of the medicinal plants and to isolate lead compounds that can serve as templet for the synthesis of drugs with different pharmacological activities.

Acknowledgments

We are grateful to Debre Markos University Research and Publication Directorate for its financial support. The people of Enarj Enawga District including the local authorities were also acknowledged for their positive response, sharing their valuable knowledge and times as well as for their tremendous generosity and hospitality. Dr. Getaneh Belachew and Mr. Yohannes Mulugeta deserved our heartfelt gratitude for their help in identification of plant specimens. Finally, our sincere appreciation goes to Mr. Enawgaw Acham who prepared the local map of the study District.

Appendix A: List of medicinal plants used for treating human ailments in the study area, Enarj Enawga District.

No.	Scientific name	Family	Local name	Habit	Parts used	Disease treated (English/ AMHARIC)	Mode of preparation and application	Application route	Voucher number
1	Abutilon mauritianum (Jack.) Medic.	Malvaceae	Yebeb medihant	Climber	Root	Snakebite	Leaves are chewed and fluid swallowed	Oral	YS096
2	Acacia sieberiana	Fabaceae	Nech girar	Tree	Leaf	Epiglottitis/QOH	Leaves are crushed and pasted on the swelling	Dermal	YS049
3	Achyranthes aspera L.	Amaranthaceae	Telenj	Herb	Leaf	Snakebite	Leaves are crushed, mixed with water, filtered and taken orally	Oral	YS124
					Stem	Cut/bleeding	Stems are crushed and tied on the arm	Dermal	
					Leaf	QURIBA	Leaves are crushed, mixed with butter and pasted on the affected part	Dermal	
					Root, seed	LIFIE	Roots and seeds are roasted, powdered, mixed with butter and applied the affected part	Dermal	
					Root	Evil eye	Roots are crushed with seeds of Allium sativum and leaves of Ruta chalepensis and leaves of Artemisia abyssinica, burned on fire and fumigated	Dermal	
					Leaf	Fire burn	Leaves are crushed, dried, powdered mixed with butter and smeread on the affected part	Dermal	
					Leaf	Swelling	Leaves are crushed and pasted on the affected part	Dermal	
4	Acokanthera schimperi (A. DC) Schweinf.	Apocynaceae	Meriz	Shrub	Leaf	Fieberli illness/ MEGAGNA	Leaves are collected from seven different areas, chopped, grounded and sniffed or taken nasally	Nasal	YS010
					Bark	Stomach ache	Dry bark is grounded, powder mixed with water and taken orally	Oral	
					Root	Hepatitis	Roots are burned on fire and fumigated	Dermal	

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006.
https://dx.doi.org/10.36876/smjmps.1006
No.	Plant Name	Family	Type	Part Used	Medical Uses	Method of Use
5	*Albizia gummifera* (J. F. Gmel.) C. A.Sm.	Fabaceae	Mukarba/Sessa	Leaf	Swelling	Leaves are crushed, mixed with water, filtered and taken orally
			Tree	Leaf	Anthrax/KIFUYIT	Leaves are crushed, filtered and taken orally, then pasted on the swelling
6	*Aloe caculirhiza* Del.	Aloaceae	Eret	Root	Snakebite	Roots are crushed, mixed with water, filtered and taken orally
			Herb	Leaf	Eye infection	Juice is prepared from the leaf and used in the form of ointment
				Root	Rh disease/SHETELAY	Roots are crushed, mixed with water and taken orally, lasting for six months
7	*Aloe pulcherrima* Gilbert & Sebebe	Aloaceae	Sete etet	Root	Evil spirit	Roots are grounded together with seeds of *Allium sativum* and leaves of *Ruta chalepensis*, powder burned on fire in the patient's house or fumigated
8	*Artemisia abyssinica* Sch. Bip. ex A. Rich	Asteraceae	Chiqugne	Leaf	Evil eye	Leaves are crushed with seeds of *Allium sativum* and leaves of *Ruta chalepensis*, powder soaked in water and inhaled; burned on fire and fumigated
9	*Arundo donax* L.	Poaceae	Shenbeko	Root	Evil eye	Roots are grounded with seeds of *Allium sativum* and leaves of *Ruta chalepensis*, powder soaked in water and inhaled, burned on fire and fumigated
10	*Asparagus africanus* Lam.	Asparagaceae	Yeset kest	Root	Bleeding after delivery	Roots are tied in the neck of the patient till bleeding stops
			Shrub	Leaf	Stoma ache	Leaves and stems are chewed and fluid swallowed
				Root	Febrile illness	Roots are chewed and fluid swallowed
				Root	Evil eye	Roots are crushed together with seeds of *Allium sativum* and leaves of *Ruta chalepensis*, powder soaked in water and inhaled
11	*Brassica carinata* A. Braun	Brassicaceae	Gomenzer	Seed	Eczema	Dry seeds are melted in a dish, water seed and smear it on the affected part
12	*Brucea antisynterica* J. F. Mill.	Simaroubaceae	Abalo	Tree	Eczema	Dry seeds are ground, powdered mixed with *Citrus aurantiifolium* juice and honey and applied on the affected part
13	*Calpurina aurea* (All.) Benth.	Fabaceae	Digita	Leaf	Snakebite	Roots are chewed and fluid swallowed, mixed with water and taken orally
			Shrub	Leaf	QURIBA	Leaves are crushed, mixed with water, filtered and taken orally
14	*Capparis tomentosa* Lam.	Capparidaceae	Gumero	Climber	Epilepsy	Roots are crushed together with seeds of *Allium sativum* and leaves of *Ruta chalepensis*, powder soaked in water and inhaled; burned on fire and fumigated
				Root	Evl eye	Roots are burned on fire and fumigated
15	*Carissa spinarum* L.	Apocynaceae	Agam	Leaf	Snakebite	Leaves are chewed and fluid swallowed, mixed with water and taken orally
			Shrub	Leaf	Eye infection	Leaves are crushed with water, filtered and three drops are taken as ointment for five days

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006. https://dx.doi.org/10.36876/smjmps.1006
No.	Species & Genus	Family	Plant Parts	Disease	Description & Notes	
16	Catha edulis (Vahl) Forsk.	Celastraceae	Leaf	Snakebite	Leaves are chewed and fluid swallowed	
					Oral	YS142
17	Centella asiatica L.	Apiaceae	Root	Rabies	A quarter of a finger-sized root is ground, mixed with water, filtered and taken orally	
					Oral	YS102
18	Cimicium auranti ifolia (Christm.) Swingle	Rutaceae	Root	Itching	Roots are crushed and pasted on the affected part	
					Dermal	YS097
19	Citrus aurantium	Rutaceae	Fruit	Cough	Juice is made, mixed with egg yolk, honey and taken orally	
					Oral	YS007
20	Clausena anisata (Wild.) Hook.f. ex Benth.	Rutaceae	Root	Evil eye	Roots are crushed with seeds of Allium sativum and leaves of Ruta chalepensis, powder soaked in water and inhaled; burned on fire and fumigated	
					Nasal/Dermal	YS009
21	Clematis hirsuta	Ranunculaceae	Leaf	Anthrax	Leaves are crushed, filtered and taken orally	
					Oral	YS066
	Perr. & Guill.	Clematis simensis Fresen.	Whole plant	Donkey's wart	The whole plant is washed, crushed and applied on the affected part	
		Ranunculaceae	Root	Swelling	Roots are crushed, dried, powdered in water and applied as cream on the swelling	
					Dermal	
		Azor aeg	Leaf	Epiglottitis	Leaves are squeezed and solution applied on the head or wash head	
		Clematis hirsuta	Leaf	Leishmania	Leaves are crushed, filtered and applied on the affected part using cotton	
		Ranunculaceae	Leaf	Eczema	Leaves are crushed and pasted on the affected part	
22	Clerodendrum myricoides (Hochst) Valke	Lamiaceae	Root	Evil eye	Roots are crushed with seeds of Allium sativum and leaves of Ruta chalepensis, powder soaked in water and inhaled; burned on fire and fumigated	
					Nasal/Dermal	
		Misirich	Root	Retained placenta	Roots are crushed, filtered and taken orally with local beer (TELA)	
					Oral	YS106
24	Clitia abyssinica Jaub. & Spach.	Euphorbiaceae	Root	Snakebite	Roots are chewed and fluid swallowed	
					Oral	YS151
		Fiyele-fej	Leaf	Swelling	Leaves are squeezed and fluid taken orally	
					Oral/Dermal	
					Oral	YS016
					Oral/Dermal	
25	Commicarpus plumbagineus (Cav.) Standl.	Nyctaginaceae	Root	Asthma	Roots are crushed, filtered and taken orally	
					Oral	
		Yejib chama	Root	Retained placenta	Roots are crushed, filtered and taken orally with local beer (TELA)	
					Oral	YS106
					Oral/Dermal	
					Oral	YS016
26	Convolvulus steudneri Engl.	Convolvulaceae	Root	Snakebite	Roots are chewed and fluid swallowed	
		Flatsat	Seed	Cough	Seeds are ground, mixed with water and solution taken orally	
					Oral	YS112
27	Coriandrum sativum L.	Apiaceae	Seed	Cough	Seeds are ground, mixed with water and solution taken orally	
					Oral	YS112
		Dimbilal	Bark	Snakebite	Bark is crushed, powdered, mixed with water, filtered and solution taken orally	
					Oral	YS037
			Shoot	Hepatitis	Shoots are crushed with water, filtered and solution taken orally	
					Oral	
			Bark	Fibrile illness	Bark is crushed with water, filtered and taken orally	
					Oral	
			Root	Evil eye	Roots are crushed, dried, burned on fire and smoke inhaled	
					Nasal	

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006. https://dx.doi.org/10.36876/smjmps.1006
No.	Species Name	Family	Genus	Uses	Part Used	Route	Preparation
29	Cucumis ficifolius A. Rich.	Cucurbitaceae	Yemdir embuay	Snakebite	Root	Oral	A quarter of a finger-sized root chewed and fluid swallowed. Overdose causes severe stomach ache and vomiting
			Climb				
29				Cut/bleeding	Root	Dermal	Leaves are crushed, dried, powdered and smeared on the affected part
29				Retained placenta	Root	Oral	Roots are crushed, filtered and fluid taken orally
29	KELECHA				Root	Oral	Roots are crushed, mixed with water, filtered and drunk for three days.
29					Root	Oral	Roots are chewed and fluid swallowed
29					Leaf, root	Oral	Leavers and roots are crushed, filtered and fluid taken orally
29					Root	Oral	Roots are chewed and fluid swallowed
29					Root	Oral	Roots are crushed together with seeds of Allium sativum and leaves of Ruta chalepensis, powder soaked in water and inhaled
30	Cynoglossum amplifolium Hochst.	Boraginaceae	Shingug	Tonsillitis/ENTIL	Leaf	Oral	Leaves are squeezed and fluid taken orally
			Herb				
30				Malaise/MICH	Leaf	Oral	Leaves are squeezed and fluid taken orally
30					Leaf	Oral	Leaves are squeezed and fluid drunk; boil with water and fumigated
30					Root	Oral	Roots are chewed and fluid swallowed
31	Cyphostemma molle (Bak.) Descoings	Vitaceae	Etse-zewie	Snakebite	Root	Oral	Roots are chewed and fluid swallowed
			Herb				
31				Donkey’s wart	Root	Oral	Roots are crushed, dried, powdered, mixed with butter and applied on the affected part
31					Root	Anal	
31				Evil eye	Root	Oral	Roots are chewed and fluid swallowed
32	Datura stramonium L.	Solanaceae	Astenagir	Toothache	Seed	Oral	Seeds are burned and smoke inhaled via straw
			Herb				
32				Retained placenta	Root	Vaginal	Roots are chopped, boiled and vapor inserted through the vagina
32					Leaf	Dermal	Leaves are squeezed and solution applied
33	Dichrostaechys cinerea (L.) Wight et Am.	Fabaceae	Ader	Stomach ache	Root	Oral	Roots are chewed and fluid swallowed
			Tree				
34	Discopodium penninervium Hochst.	Solanaceae	Aluma	Wound	Leaf	Dermal	Dry leaves are grounded, powder pasted on the affected part
			Shrub				
35	Dodonaea angustifolia L.f.	Sapindaceae	Kikita	Anthrax	Shoot	Dermal	Shoots are roasted, powdered, mixed with butter and applied on the affected part
			Shrub				
35					Seed	Dermal	Dry seeds are grounded, mixed with water and applied on the affected part
36	Dracaena steudneri Mildbr.	Dracaenaceae	Merko	Evil spirit	Leaf	Dermal	Dry leaves are grounded, powder burned on fire and fumigated
			Shrub				
37	Echinops kebericho Mesfin	Asteraceae	Kebercho	Malaria	Root	Oral	Roots are crushed with seeds of Guizotia abyssinica, mixed with water and solution taken orally
38	Embelia schimperi Vallk	Myrsinaceae	Emqopo	Tape worm	Seed	Oral	Dry seeds are grounded, powder mixed with water and taken orally
			Shrub				
39	Eucllea racemosa Murr.	Ebenaceae	Dedeho	Snakelite	Root	Oral	Roots are chewed and fluid swallowed to detoxify the poison

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006. https://dx.doi.org/10.36876/smjmps.1006
	Species	**Family**	**Part**	**Method**	**Symptom**	**Site**	**Ref**	
40	*Euphorbia abyssinica*	Euphorbiaceae	Root	Crushed and pasted	Malaria	Stem	YS033	
41	*Euphorbia ampliphylla*	Euphorbiaceae	Koicolchu	Crushed	Swelling	Latex	Dermal	YS035
42	*Euphorbia schimperiana*	Euphorbiaceae	Wortete	Latex	Snakebite	Latex	Anal	YS090
43	*Euphorbia tirucalli*	Euphorbiaceae	Yemdir	Root	Weaken babies	Yemdir	Oral	
44	*Foeniculum vulgare*	Apiaceae	Wart	Leaf	Urine retention	Leaf	Dermal	YS099
45	*Fuseria africana*	Lamiaceae	Ejamsi	Whole plant	Donkey's wart	Whole plant	Oral	YS064
46	*Gladis candidus*	Iridaceae	Milas golgi	Root, seed	Anthrax	Root	Oral	YS017
47	*Gladis psittacinus*	Iridaceae	Enzeres	Root	Evil eye	Root	Nasal	YS067
48	*Glilus lotoides*	Molluginaceae	Meterie	Leaf	Tape wound	Leaf	Oral	YS014
49	*Gomphocarpus purpurascens*	Asclepiadaceae	Tifrena	Root	Bleeding after delivery	Root	Nasal	YS127
50	*Guizotia abyssinica*	Asteraceae	Nug	Seed	Cough	Seed	Oral	YS051
51	*Guizotia scabra*	Asteraceae	Mech	Root	Stomach ache	Root	Oral	YS011
52	*Hoalndia opposita*	Lamiaceae	Yenin Mehdian	Leaf	SHIL MAZAWER	Leaf	Oral	YS100
53	*Impatiens rothii*	Balsaminaceae	Gishrit	Root	LIFIE	Root	Oral	YS119
54	*Inula confertiflora*	Asteraceae	Woynagift	Leaf	Epilepsy	Leaf	Nasal	YS088
55	*Jasminum abysinicum*	Oleaceae	Tero hareg	Leaf	Fire burn	Leaf	Dermal	YS131
56	*Jasminum grandiflorum*	Oleaceae	Tembelel	Leaf	Tape wound	Leaf	Oral	YS125
57	*Justicia schimperiana*	Acanthaceae	Sensel	Leaf	Evil eye	Leaf	Oral	YS025

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enjar Enawga District, East Gojam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006. https://dx.doi.org/10.36876/smjmmps.1006
No.	Species	Family	Part(s)	Disease(s)	Preparation	Part(s) treated	Reference	
58	Kalanchoe petiolaris A. Rich	Crassulaceae	Root	Evil eye	Dry roots are ground with seeds of Allium sativum and leaves of Ruta chalepensis, powder soaked in water and inhaled	Nasal	YS060	
59	Laggera crispata (Vahl) Hepper & Woo.	Asteraceae	Leaf	Febrile illness	Leaves are crushed, mixed with water, filtered and taken orally for three days	Oral	YS079	
60	Laggera tomentosa (Sch. Bip. Ex A Rich) Olliv & Hiern	Asteraceae	Leaf	Stomach ache	Dry leaves are ground with Lepidium sativum seeds, mixed with water and solution taken orally	Oral	YS083	
61	Lantana camara L.	Verbenaceae	Leaf	LIFIE	Dry seeds are ground, powder mixed with honey and cream applied on the affected part	Dermal	YS104	
62	Lenis culinaris Medic.	Fabaceae	Seed	Herpes zoster	The patient stood on the door of her house while one foot is in and the other outside the house, arm-length stem is rotated around the waist of the patient three times, then tied on house	Dermal	YS160	
63	Leonotis ocymifolia (Burm. F.) Iwarsson	Lamiaceae	Stem	Rh disease	Dry seeds are ground, powder mixed with water and solution drunk for five days	Oral	YS095	
64	Lepidium sativum L.	Brassicaceae	Seed	Dysentery	Dry seeds are ground, powder mixed with water and solution taken orally	Oral	YS145	
65	Linum usitatissimum L.	Linaceae	Seed	Eczema	Dry seeds are ground, mixed with honey and cream applied on the affected part	Dermal	YS041	
66	Lobelia rhynochopteryum Hemsl.	Lobiaceae	Root	Rabies	Roots are ground, mixed with milk and solution drunk for five days	Oral	YS114	
67	Lycopersicon esculentum Mill.	Solanaceae	Leaf	Urine retention	Leagues are crushed, filtered and solution taken orally	Oral	YS043	
68	Malva verticillata L.	Malvaceae	Leaf, root	Retained placenta	Leaves are collected from three different area, crushed and inserted through the vagina	Vaginal	YS008	
69	Millettia ferruginea (Hoscht.) Bak	Fabaceae	Tree	Eczema	Dry seeds are roasted, ground, powder mixed with butter and cream applied on the affected part for three days	Dermal	YS038	
70	Nicotiana tabacum L.	Solanaceae	Leaf	LIFIE	Leaves are crushed and pasted on the affected part	Dermal	YS044	
No.	Genus and Species	Family	Common Name(s)	Part(s) Used	Use(s)	Route of Administration	Code	
-----	-------------------	--------	----------------	-------------	--------	------------------------	------	
71	Ocimum lamillifolium	Lamiaceae	Dama kesse	Shrub	Leaf	Malaise	Oral	YS109
	Hochst. ex Benth.					Leaves are squeezed and solution taken with a cup of coffee		
				Root	Leaf	Dysentery	Oral	
				Leaf, stem, seed	Leaf	Swelling	Oral	
						Leaves are crushed with water, filtered and taken orally		
						Leaves, stems and seeds are ground together and applied on the swelling in the form of cream	Dermal	
72	Olea europea (Wall. ex G. Don) Cif	Oleaceae	Woyra	Tree	Leaf	Stomach ache	Oral	YS091
						Leaves are crushed, mixed with water, filtered and solution drunk		
73	Osyris quadripartita Decn.	Santalaceae	Keret	Shrub	Leaf	Eye pain	Oral	YS084
						Leaves are collected from seven different area, dried, ground and powder inserted in the eye for three days	Ophthalmic	
74	Otoestegia fruticosa (Forsk.) Schweinf. Ex Penzing	Lamiaceae	Tunjite	Shrub	Leaf	Cut/bleeding	Oral	YS132
						Cutting the leaf in to seven pieces by calling his Christianity name	-	
75	Otoestegia integrifolia	Lamiaceae	Tunjite	Shrub	Root	Evil spirit	Nasal	YS134
	Berth.					Dry roots are ground and burned on fire and inhaled		
76	Pavonia urenis Cav.	Malvaceae	Ablatif	Herb	Root	Evil eye	Nasal	YS062
						Roots are ground with seeds of Allium sativum and leaves of Ruta chalepensis, powder soaked in water and inhaled		
						Leaves and roots are crushed and pasted on the affected part	Dermal	
77	Periploca linearifolia	Asclepiadaceae	Moyder	Climber	Root	Cut/bleeding	Oral	YS019
	Quart.-Delt. & A. Rich.					Cut and put the roots on a dormant stone, wish the patient so that he/she to cure from the bleeding		
78	Phytolacca dodecandra	Phytolaccaceae	Endod	Shrub	Root	Rabies	Oral	YS074
	L’Herit.					Roots are chewed and fluid swallowed; as antidote Guizotia abyssinica solution is taken orally		
						Roots are ground after removing the root bark	Oral	
						Roots are chewed and fluid swallowed	Oral	
						Roots and roots are burnt with water and taken orally	Oral	
						Roots are chewed and fluid swallowed	Oral	
79	Plantago lanceolata L.	Plantaginaceae	Wondie gorteb	Herb	Whole plant	Donkey’s wart	Anal	YS089
					The whole plant is washed with water, crushed and applied on the affected part			
80	Plantago major L.	Plantaginaceae	Nech gorteb	Herb	Root	Babies sickness/ ZURIT	Oral	YS048
					Roots are chopped, soaked in water for a while, filtered and taken orally			
					Leaf	Eye pain	Ophthalmic	
					Leaves are chewed and spitted on the patient’s eye			
					Leaf	Cut/bleeding	Oral	
					Cut the leaf near the patient by saying ‘stop the bleeding’	-		
					Root	Snakebite	Oral	
					Roots are crushed, mixed with water, filtered and fluid drunk			
81	Polygala abyssinica	Polygalaceae	Else-lebona	Herb	Leaf	Anthrax	Oral	YS066
	Fres.				Leaves are crushed, filtered, mixed with Euphorbia abyssinica latex and applied on the affected part			
82	Premna schimperi Engl.	Lamiaceae	Checho	Shrub	Leaf	Toothache	Oral	YS140
					Leaves are chewed and hold paste on the affected tooth			
83	Prunus africana (Hook. F.) Kalkm.	Rosaceae	Tikur enchet	Tree	Leaf	Anthrax	Oral/Dermal	YS130
					Leaves are crushed and fluid taken orally; crushed leaves are passed on the affected part			
84	Ranunculus multifidus Forsk.	Ranunculaceae	Etsi-siol	Herb	Leaf	Leishmania	Dermal	YS077
					Leaves are crushed and used to rub the affected part			
85	Rhamnus staddo A. Rich.	Rhamnaceae	Teddo	Shrub	Leaf	Epilepsy	Nasal	YS126
					Leaves are squeezed and fluid is inserted through the nose			
86	Rhizocron rhinorhoea Steud. Ex A. Rich	Anacardiaceae	Tilerm	Herb	Leaf	Snakebite	Oral	YS042
					Leaves are chewed and fluid swallowed			
87	Ricinus communis L.	Euphorbiaceae	Chakima	Shrub	Seed	Ecema	Dermal	YS136
					Seeds are roasted, grounded, mixed with butter and applied as a cream on the affected part			

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enarj Enawga District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006. https://dx.doi.org/10.36876/smjmps.1006
No.	Scientific Name	Family	Common Name	Part Used	Description	Route	Code
88	*Rosa abyssinica* Lindley	Rosaceae	Kega	Shrub	Bulbs are grounded with water, filtered and taken orally	Oral	YS034
				Flower	Flowers are squeezed and applied on the affected part		
				Shoot	Shoots are squeezed and fluid taken orally	Oral	
89	*Rubus steudneri* Schweinf.	Rosaceae	Amoch	Shrub	Leaves are crushed, heated in a dish and inserted through the anus of the patient	Anal	YS069
				Leaf	Leaves are crushed and pasted on the affected part		
90	*Rumex abyssinicus* Jack.	Polygonaceae	Mekmeko	Herb	Root Anthrax Dry roots are grounded, boiled in water and drunk with honey for five days	Oral	YS20
				Root	KELECHA Dry roots are grounded, boiled in water and drunk with tea for three days		
91	*Rumex nepalensis* Spreng.	Polygonaceae	Tult	Herb	Root Fibrile illness Roots are chewed and fluid swallowed	Oral	YS40
				Leaf	Retained placenta Leaves are crushed and tied on the placenta; fluid is taken orally	Oral/vaginal	
92	*Rumex nervosus* Vahl.	Polygonaceae	Embuatie	Shrub	Leaf Donkey’s wart Leaves are crushed and pasted on a dish and inserted through the anus of the patient	Anal	YS059
				Leaf	Eye pain Leaves are chewed and spitted on the patient’s eye	Ophthalmic	
				Leaf, root	Retained placenta Leaves and roots are crushed and inserted via the left ear, and vagina	Vaginal/Auricular	
93	*Salvia nilotica* Jacq.	Lamiaceae	Hulegeb	Herb	Leaf LIFIE Leaves are crushed and pasted on the affected part	Dermal	YS001
94	*Schinus molle* L.	Anacardiaceae	Kundo berbene	Tree	Leaf Evil spirit Dry leaves are ground and burned on fire in the patient house or inhaled	Nasal	YS32
95	*Securidaca longepedunculata* Fresen.	Polygalaceae	Temenahi	Tree	Root Evil eye Roots are grounded with seeds of *Allium sativum*, leaves of *Ruta chalepensis* and leaves of *Artemisia absyssinica*, powder soaked with water and inhaled; burned on fire and fumigated	Nasal/Dermal	YS123
96	*Sida schimperiiana* Hochst. ex A. Rich.	Malvaceae	Chifrig	Shrub	Root Impotence Roots are chewed and fluid swallowed	Oral	YS46
				Root	Evil eye Roots are grounded together with seeds of *Allium sativum* and leaves of *Ruta chalepensis*, powder soaked in water and inhaled	Nasal	
97	*Silene macrosolen* Steud. ex A. Rich.	Caryophyllaceae	Wogert	Herb	Root Malaria Roots are crushed with seeds of *Guizotia absyssinica*, mixed with water and taken orally	Oral	YS085
				Root	Hemorrhoids Roots are grounded, powder mixed with butter and applied on the affected part	Anal	
98	*Solanecio gigas* (Valke) C. Jeffrey	Asteraceae	Boz	Herb	Leaf, Shoot Evil eye Bulbs and leaves are grounded together with seeds of *Allium sativum* and leaves of *Ruta chalepensis*, powder soaked in water and inhaled; burned on fire and fumigated	Nasal/Dermal	YS036
				Stem	Swelling Stems are grounded, mixed with water and pasted on the swelling	Dermal	
				Leaf	Hepatitis Leaves are collected from seven different areas, grounded with *Guizotia absyssinica* seeds, mixed with water and solution taken orally	Oral	
99	*Solanum anguivi* Lam.	Solanaceae	Zerch enbuay	Shrub	Root Impotence Roots are chewed and fluid swallowed	Oral	YS093
100	*Solanum incanum* L.	Solanaceae	Embuay	Shrub	Leaf Fire burn Leaves are crushed and pasted on the affected part using cotton	Dermal	YS055
101	*Solanum marginatuum* L.f.	Solanaceae	Geber embuay	Shrub	Seed Cough Dry sees are burned on fire and smoke inhaled using a straw	Oral	YS120
No.	Species	Family	Part Used	Application Details	Part Used Details	Disorders	Additional Details
-----	---------	--------	-----------	---------------------	------------------	----------	-------------------
102	*Thalictrum rhynchocarpum* Dill & Rich.	Ranunculaceae	Root	Root are crushed, dried, ground with *Lepidium sativum* seeds and applied as cream on the affected part	Anal	YS024	
103	*Thunbergia alata* Bojer ex Sims.	Acanthaceae	Leaf	Leaves are crushed and pasted on the affected part	Dermal	YS003	
485	*Trichodesma zeylanicum* (Brum.f.) R.Br.	Boraginaceae	Leaf	Leaves are crushed and tied on the placenta	Vaginal		
105	*Urtica simensis* Steudel	Urticaceae	Root	Roots are collected and tied in the patient's arm	Dermal	YS021	
106	*Verbascum sinaiticum* Benth.	Scrophulariaceae	Root	Roots are chewed and fluid swallowed to detoxify the poison	Oral	YS029	
107	*Verbena officinalis* L.	Verbenaceae	Leaf	Leaves are squeezed and fluid drunk	Oral	YS117	
108	*Vernonia amygdalina* Del.	Asteraceae	Leaf	Leaves are boiled and fumigated	Dermal	YS002	
109	*Withania somniera* (L.) Dun.	Solanaceae	Leaf	Dry leaves are ground, powdered, burn on fire and fumigated	Dermal	YS015	
110	*Zehneria scabra*	Asteraceae	Leaf	Leaves are boiled and fumigated	Dermal	YS002	
111	*Zingiber officinale* Roscoe	Zingiberaceae	Rhizome	Rhizomes are grounded with *Allium sativum*, powder mixed with water and taken orally	Oral	YS094	
References

1. Awas T, Demissew S. Ethnobotanical study of medicinal plants in Kafficho people, southwestern Ethiopia. In Proceedings of the 16th International Conference of Ethiopian Studies, Norway. NTNU-Trykk Press. 2009; 3: 711-726.

2. Tolossa K, Debela E, Athanasiadou S, Toler A, Ganga G, Houdijk JGM. Ethno-medical study of plants used for treatment of human and livestock ailments by traditional healers in South Omo, Southern Ethiopia. J Ethnobiol Ethnomed. 2013; 9: 32.

3. Yassin S, Aberra B, Kelbessa E. Ethnobotanical study of indigenous knowledge of plant-material culture in Masha and Yeki Districts, Southwest Ethiopia. Afr J Plant Sci. 2015; 9: 25-49.

4. Giday M, Beyene T, Signorini MA, Bruschi P, Yirga G. Traditional medicinal plants used by Kunama ethnic group in Northern Ethiopia. J Med Plants Res. 2015; 9: 494-509.

5. Lulekal E, Kelbessa E, Bekele T, Yineger H. An ethnobotanical study of medicinal plants in Mana Angeli District, southeastern Ethiopia. J Ethnobiol Ethnomed. 2008; 4: 10.

6. Teklay A, Aberra B, Giday M. An ethnobotanical study of medicinal plants used in Kilte Awulaelo District, Tigray Region of Ethiopia. J Ethnobiol Ethnomed. 2013; 9: 65.

7. WHO. Legal Status of Traditional Medicine and Complementary/Alternative Medicine: A Worldwide Review. Geneva, Switzerland. World Health Organization. 2001.

8. Fullas F. The Role of Indigenous Medicinal Plants in Ethiopian Healthcare. 2007.

9. Omoruyi BE, Bradley G, Afolayan AJ. Ethnomedicinal survey of medicinal plants used for the management of HIV/AIDS infection among local communities of Nkorkobre Municipality, Eastern Cape, South Africa. J Med Plants Res. 2012; 6: 3603-3608.

10. Raguunathan M, Abay SM. Ethnomedicinal survey of folk drugs used in Bahdardziria Durisi, Northwestern Ethiopia. Indian J Tradit Knowl. 2009; 8: 281-284.

11. Giday M, Asfaw Z, Woldu Z, Teklehaymanot T. Medicinal plant knowledge on the Bench Ethniic group of Ethiopia: An ethnobotanical investigation. J Ethnobiol Ethnomed. 2009; 5: 34.

12. Giday M, Teklehaymanot T, Abebe A, Yalemsehay M. Medicinal plants of the Shinasha, Agew-awe and Amhara peoples in northwest Ethiopia. J Ethnopharmacol. 2007; 110: 516-525.

13. Teklehaymanot T, Giday M. Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. J Ethnobiol Ethnomed. 2007; 3: 12.

14. Teklehaymanot T. Ethnobotanical study of knowledge and medicinal plants used by the people in Deq Island in Ethiopia. J Ethnopharmacol. 2009; 124: 69-76.

15. Tsgeaye BA, Seid MA. Ethnobotanical survey of traditional medicinal plants in Tehuledere District, South Wolof, Ethiopia. J Med Plants Res. 2011; 5: 6233-6242.

16. Lulekal E, Asfaw Z, Kelbessa E, Damme PV. Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara Region, Ethiopia. J Ethnobiol Ethnomed. 2013; 9: 63.

17. Lulekal E, Asfaw Z, Kelbessa E, Damme PV. Ethnovenematary plants of Ankober District, North Shewa Zone, Amhara Region, Ethiopia. J Ethnobiol Ethnomed. 2014; 10: 21.

18. Gbeheyu G, Asfaw Z, Enyew A, Raja N. Ethnobotanical study of traditional medicinal plants and their conservation status in Mecha Wereda, West Gojam Zone of Ethiopia. Int J Pharm & H Care Res. 2014; 2: 137-154.

19. Mekuanent T, Zebebe A, Solomon Z. Ethnobotanical study of medicinal plants in Chilga District, Northwestern Ethiopia. Journal of Natural Remedies. 2015; 15: 88-112.

20. Chekoole G, Asfaw Z, Kelbessa E. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. J Ethnobiol Ethnomed. 2015; 11: 4.

21. CSA. Population and Housing Census of 2007. Addis Ababa, Ethiopia. Central Statistical Agency (CSA). 2008.

22. Martin GJ. Ethnobotany: A Method Manual. London, England. Chapman and Hall. 1995.

23. Cotton CM. Ethnobotany: Principles and Applications. Chichester, England. John Wiley and Sons Ltd. 1996.

24. Heinrich M, Ankil A, Frei B, Weimann C, Sticher O. Medicinal plants in Mexico: Healers’ consensus and cultural importance. Soc Sci Med. 1998; 47: 1859-1871.

25. Begossi A, Hanazaki N, Tamashiro JY. Medicinal plants in the Atlantic Forest (Brazil): Knowledge, use and conservation. Hum Ecol. 2002; 30: 281-299.

26. Collins S, Martins X, Mitchell A, Teshome A, Amason JT. Quantitative ethnotobotany of two East Timorese cultures. Econ Bot. 2006; 60: 347-361.

27. Voeks RA. Are women reservoirs of traditional plant knowledge? Gender, ethnobotany and globalization in northeast Brazil. Singap J Trop Geogr. 2007; 28: 7-20.

28. Giday M, Asfaw Z, Emquist T, Woldu Z. An ethnobotanical study of medicinal plants used by Zay People in Ethiopia. J Ethnopharmacol. 2003; 85: 43-52.

29. Araya S, Aberra B, Giday M. Study of plants traditionally used in public and animal health management in Sehatam Samre District, Southern Tigray, Ethiopia. J Ethnobiol Ethnomed. 2015; 11: 22.

30. Balemie K, Kelbessa E, Asfaw Z. Indigenous medicinal plant utilization, management and threats in Fentalle area, Eastern Shewa, Ethiopia. Ethiop J Biol Sci. 2004; 3: 37-56.

31. Silva FDS, Ramos MA, Hanazaki N, Albuquerque UP. Dynamics of traditional knowledge of medicinal plants in a rural community in the Brazilian semi-arid region. Brazilian Journal of Pharmacognosy. 2011; 21: 382-391.

32. Uniyal SK, Singh KN, Jamwal P, Lab B. Traditional use of medicinal plants among the tribal communities Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed. 2006; 2: 14.

33. Hedberg I. Flora of Ethiopia and Eritrea, Pittosporaceae to Araliaceae. Addis Ababa, Ethiopia. The National Herbarium, Addis Ababa, Ethiopia and Department of Systemic Botany, Upsalla, Sweden. 1996; 802-804.

34. Hedberg I, Kelbessa E, Edwards S, Demissew S, Persson E, editors. Flora of Ethiopia and eritrea, Gentianaceae to Cycloeliaceae. Addis Ababa, Ethiopia: The National Herbarium, Addis Ababa, Ethiopia and Department of Systemic Botany, Upsalla, Sweden. 2006; 5.

35. Getaneh S, Girma Z. An ethnobotanical study of medicinal plants in Debere Libanos Wereda, Central Ethiopia. Afr J Plant Sci. 2014; 8: 366-379.

36. Mesfin F, Demissew S, Teklehaymanot T. An ethnobotanical study of medicinal plants in Wonago Wereda, SNNP, Ethiopia. J Ethnobiol Ethnomed. 2009; 5: 28.

37. Yineger H, Kelbessa E, Bekele T, Luleka E. Plants used in traditional management of human ailments at Bale Mountain National Park, Southeastern Ethiopia. J Med Plants Res. 2008; 2: 132-153.

38. Megersa M, Asfaw Z, Kelbessa E, Beyene A, Walddeab B. An ethnobotanical study of medicinal plants in Wayu Tuka District, East Wollega Zone of Oromia Regional State, West Ethiopia. J Ethnobiol Ethnomed. 2013; 9: 68.

39. Andarge E, Shonga A, Agize M, Tora A. Utilization and conservation of medicinal plants and their associated Indigenous Knowledge (IK) in Dawuro District, Ethiopia: The National Herbarium, Addis Ababa, Ethiopia and Department of Systemic Botany, Upsalla, Sweden. 2006; 5.

40. Mesfin F, Seta T, Asefa A. An ethnobotanical study of medicinal plants in Amaro Wereda, Ethiopia. Ethnobiology Res Appl. 2014; 12: 341-354.

41. Giday M, Ameni G. An ethnobotanical survey on plants of veterinary

Citation: Birhan YS, Kitaw SL, Alemayehu YA, Mengesha NM. Ethnobotanical study of medicinal plants used to treat human diseases in Enjari Enawega District, East Gojjam Zone, Amhara Region, Ethiopia. SM J Med Plant Stud. 2017; 1(1): 1006.
https://dx/doi.org/10.36877/smjmps.1006
importance in two Weredas of Southern Tigray, Northern Ethiopia. SINET: Ethiop J Sci. 2003; 26: 123-136.

42. Yineger H, Yehuwawal D. Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma Zone, Southwestern Ethiopia. J Ethnobiol Ethnomed. 2007; 3: 24.

43. Hunde D, Asfaw Z. Kelbessa E. Use and management of ethnoveterinary medicinal plants of indigenous people in ‘Boosaaf’ Welenchili area. Ethiop J Biol Sci. 2004; 3: 113-132.

44. Kewessa G, Abebe T, Demessie A. Indigenous knowledge on the use and management of medicinal trees and shrubs in Dale District, Sidama Zone, Southern Ethiopia. Ethnobotany Res Appl. 2015; 14: 171-182.

45. Yirga G. Use of traditional medicinal plants by indigenous people in Mekelle town, capital city of Tigray regional state of Ethiopia. J Med Plants Res. 2010; 4: 799-804.

46. Hailemariam T, Demissew S, Asfaw Z. An ethnobotanical study of medicinal plants used by local people in lowlands of Konta Special Wereda, Southern Nations, Nationalities and Peoples Regional State, Ethiopia. J Ethnobiol Ethnomed. 2009; 5: 26.

47. Fennell CW, Light ME, Sparg SG, Stafford GI, Staden JV. Assessing African medicinal plants for efficacy and safety: agricultural and storage practices. J Ethnopharmacol. 2004; 95: 113-121.

48. Abebe D, Ayeulu A. Medicinal plant and enigmatic health practices of north Ethiopia. Addis Ababa, Ethiopia: Berhanina Selam Printing Enterprise. 1993.

49. Sharma R, Manhas RK, Magotra R. Ethnoveterinary remedies of disease among milk yielding animals in Kathua, Jammu and Kashmir, India. J Ethnopharmacol. 2012; 141: 265-272.

50. Kefyalew A, Asfaw Z, Kelbessa E. Ethnobotany of medicinal plants in Ada’a District, East Shewa Zone of Oromia Regional State, Ethiopia. J Ethnobiol Ethnomed. 2015; 11: 25.