β-thymosins and interstitial lung disease: study of a scleroderma cohort with a one-year follow-up

Maria De Santis¹, Rosanna Inzitari², Silvia L Bosello¹, Giusy Peluso¹, Chiara Fanali², Federica Iavarone², Gaetano Zizzo¹, Mario Bocci¹, Tiziana Cabras³, Irene Messana³, Leo Fuso⁴, Francesco Varone⁴, Gabriella Pagliari⁴, Massimo Castagnola²,5, Gianfranco Ferraccioli¹*

Abstract

Background: β-thymosins play roles in cytoskeleton rearrangement, angiogenesis, fibrosis and reparative process, thus suggesting a possible involvement in the pathogenesis of systemic sclerosis. The aim of the study was to investigate the presence of thymosins β₄, β₄ sulfoxide, and β₁₀ in bronchoalveolar lavage fluid of scleroderma patients with interstitial lung disease and the relation of these factors with pulmonary functional and radiological parameters.

Methods: β-thymosins concentrations were determined by Reverse Phase-High Performance Liquid Chromatography-Electrospray-Mass Spectrometry in the bronchoalveolar lavage fluid of 46 scleroderma patients with lung involvement and of 15 controls.

Results: Thymosin β₄, β₄ sulfoxide, and β₁₀ were detectable in bronchoalveolar lavage fluid of patients and controls. Thymosin β₄ levels were significantly higher in scleroderma patients than in controls. In addition, analyzing the progression of scleroderma lung disease at one-year follow-up, we have found that higher thymosin β₄ levels seem to have a protective role against lung tissue damage. Thymosin β₄ sulfoxide levels were higher in the smokers and in the scleroderma patients with alveolitis.

Conclusions: We describe for the first time β-thymosins in bronchoalveolar lavage fluid and their possible involvement in the pathogenesis of scleroderma lung disease. Thymosin β₄ seems to have a protective role against lung tissue damage, while its oxidation product mirrors an alveolar inflammatory status.

Background

β-thymosins are a family of G-actin sequestering peptides involved in cytoskeleton rearrangement, intracellular signaling, cell-cell adhesion, motility, survival, differentiation, and malignant transformation [1]. While in mammalian tissues thymosin β₄ is usually the main peptide, representing about 70-80% of the total β-thymosins content [2], thymosin β₁₀ is usually detectable at concentrations about 5-10-fold lower compared to thymosin β₄. However, in preneoplastic and neoplastic tissues and in activated lymphocytes the ratio thymosin β₁₀/β₄ seems to increase [3,4]. The oxidation product of thymosin β₄ at the Methionine₆ residue, thymosin β₄ sulfoxide, was also detectable in many body fluids [5].

Although the secretion pathway is not fully understood, recent studies highlighted various extra-cellular roles for these peptides [1]. Thymosin β₄ is essential for platelet-clot formation and wound healing [6]. Moreover, while thymosin β₁₀ seems to have anti-angiogenic properties, significantly decreasing mRNA levels of vascular endothelial growth factor (VEGF) and of VEGF receptor-1, thymosin β₄ promotes angiogenesis [7,8]. Of interest thymosin β₄ can up-regulate the expression of hepatocyte growth factor and down-regulate the expression of platelet derived growth factor-beta receptor in a model of liver fibrosis, thus suggesting an anti-fibrotic potential role of thymosin β₄ [9]. Furthermore, both thymosin β₄ and thymosin β₄ sulfoxide seem to have anti-inflammatory properties [10,11].

The role of β-thymosins in cytoskeleton rearrangement, angiogenesis, fibrosis and reparative process...
suggests a possible involvement of these peptides in the pathogenesis of systemic sclerosis, a multi-organ connective tissue disease characterized by skin and internal organ fibrosis and microvascular abnormalities. The cytokines and paracrine factors underlying fibrosis and vasculopathy in scleroderma are not completely characterized yet.

The presence of thymosin β4 and thymosin β10 in body fluids, such as saliva, has been recently demonstrated using a number of immunological [12] and proteomic [5] techniques, but not in bronchoalveolar lavage fluid (BALF). Therefore, the present study has been carried out with the aim to demonstrate the presence of β-thymosins in BALF of normal subjects and of scleroderma patients with interstitial lung disease and to correlate their levels with the biologic, functional and radiological parameters of lung involvement, through Reverse Phase-High Performance Liquid Chromatography-Electrospray-Mass Spectrometry analysis (RP-HPLC-ESI-MS) of the naturally occurring peptides.

In this study we have described for the first time β-thymosins in human BALF. Moreover, we have hypothesized a possible involvement of these factors in the pathogenesis of scleroderma lung disease. In fact, we have found higher concentrations of thymosin β4 in the BALF of scleroderma patients with lung involvement compared to the normal counterpart and of thymosin β4 sulfoxide in the subset of scleroderma patients with alveolitis. In addition, analyzing the progression of scleroderma lung disease at one-year follow-up, we have found that higher thymosin β4 levels seem to have a protective role against lung tissue damage.

Methods

Scleroderma patients

46 scleroderma patients with evidence of interstitial lung disease on high resolution computed tomography (HRCT) (reticular pattern and/or ground glass or honeycombing), consecutively admitted to the outpatient clinic of the Rheumatology Division of the Catholic University in Rome from January 2007 to December 2009, consenting to undergo bronchoalveolar lavage, have been included in the study. All the patients have fulfilled the criteria proposed by the American College of Rheumatology [13] and have been classified in limited and diffuse subset according to LeRoy classification [14]. ANA (antinuclear antibodies) have been determined by indirect immunofluorescence using Hep 2 cells as substrates and autoantibody specificities were assessed by enzyme-linked immunosorbent assay (ELISA) [15]. Demographic, clinical and lung involvement characteristics of the patients are summarized in the table 1.

The study is conform to the recommendations of the Declaration of Helsinki and the study protocol has been approved by the local ethical committee. An informed written consent has been obtained from the patients.

Control subjects

As controls we have used the BALF from 15 subjects who performed the exam for a solitary pulmonary nodule, either in the lobe with the nodule or in the contra-lateral normal lobe, after obtaining an informed written consent. BALF cytological and microbiological exams have been all negative. Controls’ mean age has been 60.0 ± 12.0 years, females have been 9 (60.0%), smokers have been 3 (20.0%).

Study design

We have investigated through RP-HPLC-ESI-MS the presence of β-thymosins in the BALF of 46 scleroderma patients with interstitial lung disease and 15 normal subjects, and we have studied the correlations between BALF β-thymosin levels and the biologic, functional and radiological parameters of scleroderma lung involvement and of its progression. All the enrolled patients have performed pulmonary function tests, echocardiography, HRCT of the lung within one month before performing bronchoalveolar lavage. Pulmonary function tests and HRCT have been repeated after a one-year follow-up.

Pulmonary function tests

Pulmonary function tests have been performed to define forced vital capacity (FVC) and carbon monoxide diffusion capacity (DLCO), as described elsewhere [16,17]. FVC <80% with normal forced expiratory volume in one second/FVC has been defined as restrictive lung disease [16]. A decrease in FVC >10% and in DLCO >15% at one-year follow-up has been considered a clinically significant variation [18,19].

Echocardiography

Pulmonary artery systolic pressure has been calculated with the simplified Bernoulli equation [15]. High pulmonary arterial pressure (HPAP) has been defined as pulmonary artery systolic pressure >35 mmHg [20].

HRCT score system

HRCT has been performed as described elsewhere [15]. Two independent readers have scored ground glass opacity (alveolar score) and honeycombing (honeycombing score) on a scale of 0-5 in the three lobes of both lungs, as described elsewhere [15]. An increase in alveolar or honeycombing score >1 point at one-year follow-up has been considered clinically significant.

Bronchoalveolar lavage analysis

Bronchoalveolar lavage has been performed as reported elsewhere [15]. Four 60 mL aliquots of saline solution
have been instilled and BALF mean recovery has been
112.4 ± 30.3 mL in the patients with alveolitis, 129.6 ±
25.7 mL in the patients without alveolitis, and 100.4 ±
28.4 mL in control subjects. The percentages of alveolar
macrophages, lymphocytes, neutrophils and eosinophils
have been recorded. Cells with the forward and side scat-
ter properties of lymphocytes have been analyzed on a
flow cytometer (Beckman Coulter, EXPO32). Used anti-
bodies included Phycoerythrincyanin(PC5)-conju gated
anti-CD3 monoclonal antibodies (mAb), Phycoerythrin
Texas red(ECD)-conju gated anti-CD4 mAb, fluorescein
isothiocyanate(FITC)-conju gated anti-CD8 mAb, Phy-
cerythrin(PE)-conju gated anti-CD19 mAb, (all from
Beckman Coulter, Marseille, France). Alveolitis has been
diagnosed when the percentage of neutrophils was33%
and/or eosinophils 32% [21].

Among the patients with alveolitis, 5 received azathiopr-
ine 100 mg/die per os for 12 months, and 7 received cyclo-
phosphamide 100 mg/die per os for 8.6 weeks (6 g) then
followed by azathioprine as above, 12 received only con-
ventional therapies [15].

Table 1 Demographic, clinical and lung involvement characteristics of 46 scleroderma patients

	All scleroderma Patients	24 scleroderma pts with alveolitis	22 scleroderma pts without alveolitis
Age (y, mean ± SD)	55.1 ± 14	60.6 ± 11.7*	49 ± 14
Disease duration (y, mean ± SD)**	6.1 ± 6.2	5.4 ± 5.4	6.9 ± 7.1
Early disease (<3 y) n (%)	21 (45.6%)	12 (50%)	9 (40.9%)
Female n (%)	36 (78.3%)	20 (83.3%)	16 (72.7%)
dSSc n (%)	15 (32.6%)	7 (29.2%)	8 (36.4%)
AntiScl70 n (%)	28 (60.9%)	16 (66.7%)	12 (54.5%)
Anticentromere n (%)	5 (10.9%)	2 (8.3%)	3 (12.6%)
Antiribonucleoprotein n (%)	3 (6.5%)	1 (4.2%)	2 (9.1%)
Antinucleolus n (%)	3 (6.5%)	2 (8.3%)	1 (4.5%)
FVC% (mean ± SD)	93.1 ± 20.9	89.2 ± 23.1	973 ± 17.8
DLCO% (mean ± SD)	52.3 ± 14.8	48.9 ± 17.1	56 ± 11.2
Restrictive lung disease n (%)	14 (30.4%)	11 (45.8%)*	3 (13.6%)
Ground glass score (mean ± SD)	7.8 ± 5.6	9.7 ± 5.8*	5.6 ± 4.6
Interstitial score (mean ± SD)	6.3 ± 2.7	6.6 ± 2.8	5.9 ± 2.6
Alveolitis on BALF	24 (52.2%)	/	/
PASP (mmHg; mean ± SD)	27.8 ± 5.7	30.8 ± 5.7*	25.1 ± 4.2
HPAP n (%)	5 (10.9%)	5 (20.8%)*	0
Treatment n (%)	12 (26.1%)	12 (50.0%)	0
Smokers n (%)	6 (13%)	4 (16.7%)	2 (9.1%)

p < 0.05: pts with alveolitis versus pts without alveolitis.
first SSc sign other than Raynaud’s phenomenon.

 centered at 10,000 g for 10 min. The supernatant has
been separated from the precipitate. The acid clear speci-
men has been freeze-dried, dissolved in 1 mL of 0.2%
aqueous trifluoroacetic acid solution and 100 ul aliquots
of the solution directly injected into the RP-HPLC-MS
apparatus. The remaining acidic solution has been stored
to -80°C for further analysis.

RP-HPLC-ESI-MS analysis

All HPLC-MS reagents have been of analytical grade and
have been purchased from Farmitalia Carlo Erba (Milan,
Italy), Merck (Damstadt, Germany), and Sigma-Aldrich
(St. Louis, MI, USA). Standards of β-thymosins have
been purchased from Bachem (Bubendorf, Switzerland).

The HPLC-ESI-IT-MS apparatus has been a Surveyor
HPLC system (Thermo Fisher, San Jose, CA, USA) con-
nected by a T splitter to a photo diode-array detector
and to an LCQ Deca-XP Plus mass spectrometer. The
chromatographic column has been a 150 × 2.1 mm
Vydac (Hesperia, CA, USA) C8 column, with 5 μm parti-
cle diameter. The eluents have been (A) 0.056% aqueous
TFA and (B) 0.050% TFA in ACN/water 80:20 v/v. The
applied gradient has been linear from 0 to 55% of (B) in
40 min, at a flow rate of 0.30 mL/min. The T splitter has
addressed 0.20 mL/min toward the diode-array detector
and 0.10 mL/min toward the ESI source. The diode array
detector has been set at 214 and 276 nm. Mass spectra
have been collected every 3 ms in positive ion mode. MS spray voltage has been 4.50 kV and the capillary temperature 220°C.

Some samples of BALF have been also analyzed by an Ultimate 3000 Nano/Micro-HPLC apparatus (Dionex, Sunnyvale, CA, USA) equipped with an FLM-3000-Flow manager module coupled to an LTQ Orbitrap XL apparatus (Thermo Fisher). The column has been a Biobasic 8 capillary column with 3 lm particle diameter (column dimension 180 lm id610 cm). The chromatographic eluents have been (A) 0.1% aqueous formic acid and (B) 0.1% formic acid in ACN. The applied gradient has been 0-4 min 5% B, 4-38 min from 5 to 50% B (linear), 38-41 min from 50 to 90% B (linear), at a flow rate of 4 μL/min. Mass spectra have been collected in full scan (MS data) and also in data-dependent scan (MS/MS data) mode with a capillary temperature of 250°C, a sheath gas flow of 17 arbitrary units, a source voltage of 3.6 kV, and a capillary voltage of 32 V. Measurements have been performed in the positive ion mode and mass accuracy has been calibrated before measurements. Selected protein charge states have been isolated with a width of m/z 6-10 and activated for 30 ms using 30% normalized collision energy and an activation q of 0.25.

Identification and quantification of β-thymosins

β-thymosins have been identified in the HPLC-ESI pattern by comparison with peptide standards. Sequences of thymosin β4 and thymosin β₁₀ have been also confirmed by high resolution dynamic MS/MS experiments performed by the LTQ Orbitrap XL apparatus on a BALF sample using the conditions described in the previous section and obtaining fragmentations comparable to that previously reported for the identification of thymosin β₄ and thymosin β₁₀ in human saliva [5].

Satisfactory linear correlation has been found between the absolute quantity of thymosin β₄ and thymosin β₁₀ peptide standards and the extracted ion current peak area (R = 0.999; coefficient 2.16 × 10⁶ extracted ion current peak area per picomole of peptide). Thus, the extracted ion current peak area has been used to calculate concentrations, taking into account the correlation coefficient and the injected sample volume. The latter has corresponded to 100 μL in experiments performed on 10 times concentrated BALF. The extracted ion current peaks have been revealed by selecting the following ions: thymosin β₄, [M+5H]₅⁺ = 993.8 m/z, [M+4H]₄⁺ = 1241.9 m/z, [M+3H]₃⁺ = 1655.5 m/z; thymosin β₄ sulfoxide [M+5H]₅⁺ = 996.9 m/z, [M + 4H]₄⁺ = 1245.9 m/z, [M + 3H]₃⁺ = 1608.8 m/z; thymosin β₁₀, [M + 5H]₅⁺ = 988.3 m/z, [M+4H]₄⁺ = 1235.1 m/z, [M+3H]₃⁺ = 1646.5 m/z. Windows for all these values have been ± 0.5 m/z. The percentage error of the measurements has been less than 10%.

Data analysis

Deconvolution of averaged ESI mass spectra has been automatically performed either by the software provided with the Deca-XP instrument (Bioworks Browser) or by MagTran 1.0 software (Zhang and Marshall, 1998). Experimental mass values have been compared with average theoretical values available at the Swiss-Prot data bank (http://us.expasy.org/tools), where thymosin β₄ and thymosin β₁₀ have the codes P62328 and P63313, respectively. Deconvolutions of Orbitrap MS/MS data have been performed using the software provided with the LTQ Orbitrap XL (Xtract on QualBrowser 2.0).

Statistical analysis

Data have been analyzed using SPSS 12.0 (SPSS, Chicago, IL-USA). Categorical variables have been analyzed using c² test or Fisher’s test, depending on sample size restrictions and the Odds’ Ratio (OR) with 95% confidence interval (CI95%) have been calculated. Mann-Whitney’s or Wilcoxon’s rank sum test, as appropriate, have been used to compare continuous variable. Spearman’s rank correlation have been used to evaluate the relationship between different disease parameters. A value of p <0.05 has been considered statistically significant.

Results

β-thymosins in the BALF of scleroderma patients and controls

Considering the total β-thymosin content, the percentages of thymosin β₄, β₄ sulfoxide and β₁₀ have been similar in patients and controls (82.4%, 4.3%, 13.3% versus 82.4%, 5.0%, 12.6%, respectively).

Thymosin β₄ has been consistently detected in all the BALF of both patients and controls. Thymosin β₄ sulfoxide was detected in 14 (30%) of the scleroderma patients and in 5 (33.3%) of the controls and thymosin β₁₀ in 28 (60.9%) of the scleroderma patients and in 8 (53.3%) of the controls (p = ns) (Table 2).

Thymosin β₄ concentration has been significantly higher in the BALF of the scleroderma patients than in the controls (0.310 ± 0.372 μmol/L versus 0.112 ± 0.084 μmol/L, respectively; p = 0.008) (Table 2 and figure 1). Thymosin β₄ sulfoxide and thymosin β₁₀ levels have been also found to be higher in the BALF of the scleroderma patients compared to the controls, yet the differences have been not significant (Table 2 and figure 1).

Among the control subjects, higher thymosin β₄ and β₄ sulfoxide levels have been found in the BALF of the smokers (0.238 ± 0.037 and 0.023 ± 0.011 μmol/L versus 0.08 ± 0.058 and 0.003 ± 0.007 μmol/L; p = 0.014 and p = 0.006, respectively). Thymosin β₄ sulfoxide has been detected in the BALF of 3/3 smoking control subjects and in 2/6 scleroderma smoking patients.
Table 2 Concentration and frequency of β-thymosins in scleroderma patients and controls

46 scleroderma pts	15 controls	
presence of Tβ4, n pts (%)	46 (100%)	15 (100%)
Tβ4 (μmol/L, mean ± SD)	0.310 ± 0.372*	0.112 ± 0.084
(median, range)	(0.21, 0.21)	(0.09, 0.26)
presence of sTβ4, n pts (%)	14 (30%)	5 (33%)
sTβ4 (μmol/L, mean ± SD)	0.016 ± 0.041	0.007 ± 0.011
(median, range)	(0.0, 0.04)	(0.01, 0.008)
presence of Tβ10, n pts (%)	28 (60.9%)	8 (53.3%)
Tβ10 (μmol/L, mean ± SD)	0.050 ± 0.072	0.017 ± 0.022
(median, range)	(0.02, 0.3)	(0, 0.04)
Tβ4/sTβ4 ratio (mean ± SD)	9.4 ± 2.6	11.0 ± 4.6

* p < 0.05: pts versus controls.

β-thymosins in the BALF of scleroderma patients with alveolitis and without alveolitis

Among the scleroderma patients, thymosin β4 sulfoxide has been detected in 10 (41.6%) of the patients with alveolitis versus 4 (18.1%) of the patients without alveolitis (p = ns) (Table 3). Thymosin β10 has been detected in 13 (54.2%) of the patients with alveolitis versus 15 (68.2%) of the patients without alveolitis (p = ns) (Table 3).

In addition, thymosin β4 sulfoxide levels have been significantly higher and thymosin β4/β4 sulfoxide ratio has been significantly lower in the scleroderma patients with alveolitis compared to the patients without alveolitis (0.025 ± 0.052 and 7.3 ± 4.6 μmol/L versus 0.006 ± 0.02 and 14.6 ± 4.9 μmol/L; p = 0.052 and p = 0.024, respectively) (Table 3 and figure 1). Although thymosin β4 and thymosin β10 levels have been higher in the BALF of scleroderma patients with alveolitis compared to the patients without alveolitis, the differences have been not significant (Table 3 and figure 1). No correlations have been found between thymosin β10/β4 ratio and any lung involvement indices.

Correlation between BALF β-thymosin levels and BALF cytology

A significant, even if weak, correlation has been found between thymosin β4 sulfoxide levels and BALF neutrophil percentage count (p = 0.010; r = +0.36) (Figure 2). Moreover, thymosin β4 sulfoxide levels have inversely correlated with BALF CD4/CD8 ratio (p = 0.007; r = -0.40) (Figure 2) and CD4 percentage count (p = 0.036; r = -0.32) and directly with CD8 percentage count (p = 0.016; r = +0.36).

Thymosin β10 levels have directly correlated with BALF CD3 (p = 0.035; r = +0.31) and CD4 percentage count (p = 0.039; r = +0.31) (Figure 2).

Correlation between BALF β-thymosin levels and lung involvement parameters

The scleroderma patients with restrictive lung disease have had higher thymosin β4 sulfoxide levels (0.034 ± 0.065 μmol/L versus 0.008 ± 0.022 μmol/L; p = 0.042). This data has associated with the significantly higher frequency of restrictive lung disease in the patients with alveolitis. Thymosin β10 levels have inversely with DLCO (p = 0.009; r = -0.38) (Figure 2).

The scleroderma patients experiencing a significant alveolar score worsening on high resolution computed tomography after one-year follow-up have had lower...
Table 3 Concentration and frequency of β-thymosins in scleroderma patients with or without alveolitis

	24 scleroderma pts with alveolitis	22 scleroderma pts without alveolitis
presence of Tβ4 n pts (%)	24 (100%)	22 (100%)
Tβ4 (μmol/L, mean ± SD)	0.356 ± 0.464	0.256 ± 0.236
(median, range)	(0.21, 0.21)	(0.13, 0.10)
presence of sTβ4 n pts (%)	10 (41.6%)	4 (18.1%)
sTβ4 (μmol/L, mean ± SD)	0.025 ± 0.052*	0.006 ± 0.219
(median, range)	(0.0-0.24)	(0.0-0.1)
presence of Tβ4 n pts (%)	13 (54.2%)	15 (68.2%)
Tβ4 (μmol/L, mean ± SD)	0.059 ± 0.088	0.040 ± 0.049
(median, range)	(0.01, 0.03)	(0.02, 0.17)
Tβ4/sTβ4 ratio (mean ± SD)	7.328 ± 4.626 *	14.582 ± 4.907

Tβ4: thymosin β4; n: number; pts: patients; SD: standard deviation; sTβ4: thymosin β4 sulfoxide; Tβ10: thymosin β10.

*p < 0.05: pts versus controls.

BALF thymosin β4 levels (0.214 ± 0.290 versus 0.386 ± 0.457 μmol/L, respectively; p = 0.034). There have been no correlations between β-thymosin levels and pulmonary function test decline. There were no differences between treated and untreated patients.

Discussion

In this study we have described for the first time the presence of β-thymosins in human BALF. The BALF relative proportions of thymosin β4 (about 85%), β4 sulfoxide (about 5%) and β10 (about 10%) have been similar to those reported in other biological fluids and in the intracellular compartment [2,5]. However, thymosin β4 concentration in BALF (0.1 μM) was about 10-fold higher than that reported in the plasma (10 nM) [22,23]. Although the mechanism of thymosin β4 extra-cellular release is not known, it seems that thymosin β4 might escape from damaged cells because of its small size [23]. Then, considering that pulmonary epithelial cells and alveolar macrophages are constantly exposed to environmental toxicants, it can be hypothesized a passive cellular release of thymosin β4 rather than an active compartmentalization of thymosin β4 in the lung where it would exert a cyto-protective effect. In this context it could be explained the higher BALF thymosin β4 levels found in smokers and in a pathological condition such as scleroderma interstitial lung disease. Interestingly, the scleroderma patients experiencing a worsening in the alveolar score had relatively lower BALF thymosin β4 levels. This data could support the role of thymosin β4 in tissue repairing as already reported in other conditions as wound healing [6], ischemic heart disease [24], and cornea lesions [25]. These data are consistent with the ability of thymosin β4 to down-regulate a number of key inflammatory cytokines like tumor necrosis factor-α [9].

Our study suggests but does not clarify the possible involvement of β-thymosins in scleroderma lung disease; however, considering the significant difference (about 3 folds) in thymosin β4 levels in the BALF of scleroderma patients compared to normal counterpart, thymosin β4 could be considered a biomarker of lung involvement in systemic sclerosis. This seems to be particularly interesting in the light of a recent peptidomic study reporting that plasma thymosin β4 is a biomarker of rheumatoid arthritis, another rheumatologic disease with lung involvement [26]. In parallel, thymosin β4 sulfoxide could be considered a biomarker of lung oxidative stress. In fact, the higher levels of thymosin β4 sulfoxide found in smoking control subjects could mirror the oxidative stress status. Methionine residues are somewhat sensitive to oxidation, and many proteins can be inactivated through this mechanism. In smokers, methionine oxidation is essential for α(1)-antitrypsin inactivation and pathologic lung remodeling [27]. Indeed, thymosin β4 oxidation could actually represent a scavenger mechanism, able to reduce the negative effects of oxidative stress on other lung proteins and enzymes. It has been reported that scleroderma patients with alveolitis had a more extensive interstitial lung disease, a higher risk to worsen and a poor prognosis [28]. All pulmonary diseases with an inflammatory component, like alveolitis, have also a component of oxidative stress. This explains the higher thymosin β4 sulfoxide levels in the subgroup of scleroderma patients with alveolitis and the positive correlation between thymosin β4 sulfoxide and both BALF neutrophil percentage count and CD8 cells. BALF CD8 cells are, in fact, associated with the production of T-helper 2 cytokines and the decline of pulmonary function in scleroderma patients [29].

Although many studies on thymosin β10 have been reported, its functions and molecular mechanisms in human diseases are largely unknown. Even if thymosin β4 and β10 have identical actin-binding sites, they have different extracellular activity and different expression pattern during embryological development or in cancer. Our data show that thymosin β4 and β10 have a similar expression pattern in scleroderma interstitial lung disease, maybe due to a passive release from damaged cells. The relationship between thymosin β10 and BALF lymphocyte percentage count indicates that thymosin β10 could be released by infiltrated and activated BALF lymphocytes [3]. The negative correlation between thymosin β10 and DLCO suggests a potential inhibiting role of thymosin β10 on alveolar-capillary permeability. Recently a positive correlation between BALF VEGF and DLCO...
[30] has been reported, thus considering the antiangiogenic effect of thymosin β10 and the main role of VEGF in the regulation of lung permeability, it will be interesting to investigate the possible relationship between thymosin β10 and VEGF in the lung.

Conclusions

In this study we have described for the first time the presence of β-thymosins in human BALF with a concentration about 10-fold higher than that reported in the plasma. Moreover, we found higher concentrations of thymosin β4 in the BALF of scleroderma patients with lung involvement compared to the normal counterpart and of thymosin β4 sulfoxide in the subset of scleroderma patients with alveolitis, thus suggesting a possible role of these paracrine factors in systemic sclerosis as biomarkers of interstitial lung disease and alveolitis, respectively. Interestingly, the scleroderma patients experiencing a worsening in the alveolar score at one-year follow-up were found to have lower thymosin β4 levels. We have hypothesized that the release of high amounts of thymosin β4 in the extracellular compartment during lung
fibrogenesis is due to epithelial damage and that thymosin β4 may exert a cyto-protective effect during lung injury being BALF lower levels associated to interstitial lung disease progression. Further studies in a larger number of SSc patients are needed to validate BALF β-thymosins as biomarkers of lung involvement. Moreover, it would be clinically helpful to investigate if β-thymosin plasma levels correlate to BALF levels.

Author details
1Department of Rheumatology, Catholic University, Rome, Italy. 2Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy. 3Department of Sciences Applied to Biosystems, Cagliari University, Cagliari, Italy. 4Department of Pneumology, Catholic University, Rome, Italy. 5Institute for the Chemistry of Molecular Recognition, CNR, Catholic University, Rome, Italy.

Authors’ contributions
MDS conceived the study, coordinated the groups, gave substantial contribution to acquisition of data, performed statistical analysis and wrote the study; RL and SLB gave substantial contribution to acquisition of data, analysis and interpretation of data; GP, CF, FI, GZ, MB, and TC, participated in the design of the study and to the statistical analysis and gave substantial contribution to acquisition of the data; JM, CM, and GP, participated in the design of the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 20 November 2010 Accepted: 11 February 2011 Published: 11 February 2011

References
1. Hannappel E. b-Thymosins. Ann N Y Acad Sci 2007, 1112:21-37.
2. Huff T, Muller CS, Otto AM, Natknek R, Hannappel E: beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 2001, 33:205-220.
3. Santelli G, Califano D, Chiappetta G, Vento MT, Bartoli PC, Zullo F, Trapasso F, Viglietto G, Fusco A: Thymosin beta10 gene overexpression is a general event in human carcinogenesis. Ann J Pathol 1999, 155:799-804.
4. Capelli E, Campo I, Panelli S, Damiani G, Barbone MG, Lucchelli A, Cuccia M: Evaluation of gene expression in human lymphocytes activated in the presence of melatonin. Int Immunopharmacol 2002, 2(7):885-92.
5. Inzitari R, Cabras T, Pisano E, Fanali C, Manconi B, Scarano E, Fiorita A, Frestoli R, Paludetti G, Manni A, Nermolato S, Fag G, Castagnola M, Messana I: HPLC-ESI-MS analysis of oral human fluids reveals that gingival crevicular fluid is the main source of oral thymosins beta(4) and beta(10). J Exp Sci 2009, 33(1):57-63.
6. Malinda KM, Siddhu GS, Mani H, Banauudha K, Maheshwark R, Goldenstein AL, Kleinman HK: Thymosin beta4 accelerates wound healing. J Invest Dermatol 1999, 113(3):364-8.
7. Smart N, Rossdeutsch A, Riley PR. Thymosin b4 and angiogenesis: modes of action and therapeutic potential. Angiogenesis 2007, 10:229-241.
8. Zhang T, Li X, Yu W, Yan Z, Zhou H, He X: Overexpression of thymosin beta-10 inhibits VEGF mRNA expression, autocrine VEGF protein production, and tube formation in hypoxia-induced monkey choroidal-retinal endothelial cells. Ophthalmic Res 2009, 41(1):36-43.
9. Banaeva E, Nadezhdah A, Hannappel E, Jojgren MH, Rokkind M: Thymosin beta4 upregulates the expression of hematocyte growth factor and downregulates the expression of PGDF-beta receptor in human hepatic stellate cells. Ann N Y Acad Sci 2007, 1112:54-60.
10. Soone G, Qiu P, Christopherson PL, Wheeler MK: Thymosin β4 suppression of corneal NFKB: a potential anti-inflammatory pathway. Exp Eye Res 2007, 84:663-669.
11. Young JD, Lawrence AJ, MacLean AG, Leung BP, McInnes IB, Canas B, Pappin DJ, Stevenson RD: Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat Med 1999, 5(12):1424-7.
12. Badamchian M, Danavandya AA, Darvandian H, Wadhwa SD, Katz B, Goldstein AL: Identification and quantification of thymosin β4 in human saliva and tears. Ann NY Acad Sci 2007, 1112:458-465.
13. Subcommittee for scleroderma criteria of the American Rheumatism Association diagnostic and therapeutic criteria committee: Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980, 23:581-90.
14. Lefoy EC, Black C, Fleshmajer R, Jablonska S, Krieg T, Mediger TA, Rovell N, Wohleim F: Scleroderma (systemic sclerosis): classification, subset and pathogenesis. J Rheumatol 1988, 15:202-5.
15. De Santi S, Bosello S, La Torre G, Capuano A, Tulosso B, Paglieri G, Pistelli R, Danza FM, Zoli A, Ferraccioli G: Functional, radiological and biological markers of alveolitis and infections of the lower respiratory tract in patients with systemic sclerosis. Respir Res 2005, 176:96.
16. American Thoracic Society: Standardization of Spirometry-1994 Update. Am J Respir Crit Care Med 1995, 152:1107-1136.
17. American Thoracic Society: Single breath Carbon Monoxide Diffusing Capacity (Transfer Factor). Recommendation for a standard technique-1995 Update. Am J Respir Crit Care Med 1995, 152:2185-2196.
18. Egan JJ, Martinez FJ, Wells AU, Williams T: Lung function estimates in idiopathic pulmonary fibrosis: the potential for a simple classification. Thorax 2003, 59(3):270-273.
19. Behr J, Forst DE: Pulmonary function tests. Rheumatol 2008, 47:65-67.
20. Mediger TA, Bombardieri S, Czajk L, Scosza R, Della Rossa A, Bencivelli W: Assessment of disease severity and prognosis in Scleroderma. Clin Exp Rheumatol 2003, 21:4-2-46.
21. Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Forst DE, Arriola E, Silver R, Strange C, Bolster M, Seibold JR, Riley DJ, Hsu VM, Varga J, Schraufnagel DE, Theoreau A, Simms R, Wise R, Wileg F, White B, Steen V, Read C, Mayes M, Parsley E, Mubarak K, Connolly MD, Golden J, Olman M, Fesler B, Rothfeld N, Meteysky M: Scleroderma Lung Study Research Group. Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med 2006, 354(25):2655-66.
22. Hannappel E, van Kampen M: Determination of thymosin beta 4 in human blood cells and serum. J Chromatogr 1987, 26397-279-285.
23. Mannheitz HG, Hannappel E: The β-Thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil Cytoskeleton 2009, 66:839-851.
24. Bock-Marquette I, Saxena A, White MD, Demiao J, Smavastava D: Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 2004, 432:466-72.
25. Sorese G, Christopherson PL, Barrett RP, Fridman R: Thymosin β4 modulates corneal matrix metalloprotease levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci 2005, 46:2388-2395.
26. Zheng X, Wu S, Hincapie M, Hancock WS: Cysteine. Cell Mol Cytokine 2009, 66:693-693.
27. Taggart C, Cervantes-Laurean D, Kim G, McEvaney NG, Wehr N, Moss J, Levine RL: Oxidation of either methione 351 or methionine 358 in alpha 1-antitripsin causes loss of anti-neutrophil elastase activity. J Biol Chem 2001, 276(25):22726-22725.
28. Koval-Bielecka O, Kowal K, Highland KB, Silver RM: Bronchoalveolar Lavage Fluid in Scleroderma Interstitial Lung Disease: Technical Aspects and Clinical Correlations. Sem Arthritis Rheum 2009, 40(1):73-88.
29. Atamas SP, Yurovsky VW, Wise R, Wileg FM, Goter Robinson CJ, Henry P, Alms W, White B: Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum 1999, 42(6):1168-78.
30. Vasakova M, Stercova M, Kolera L, Stavec A, Pohnuek P, Suk J, Skiboka J, Striz I: Bronchoalveolar lavage fluid cellular characteristics, functional parameters and cytokine and chemokine levels in interstitial lung diseases. Scand J Immunol 2009, 69(3):268-74.

Cite this article as: De Santis et al.: β-thymosins and interstitial lung disease: study of a scleroderma cohort with a one-year follow-up. Respiratory Research 2011 12:22.