Characterising and Engaging a Computationally Defined Treatment Target for Depression

Erdem Pulcu PhD¹ and Michael Browning MB.BS, DPhil², ²*

1 Department of Psychiatry, University of Oxford
2 Oxford Health NHS Trust, Oxford

*Corresponding Author:

Michael Browning, Dept. of Psychiatry, Warneford Hospital, Oxford, OX3 7JX.

Tel: +441865 223635
Fax: +441865 251076
michael.browning@psych.ox.ac.uk

Word Count:
Abstract: 250
Main Text: 3497
Figures: 4
Tables: 1

Supplementary Information: 1 File (including 6 Supplementary Figures and 1 Table)
Abstract

Computational modelling of behaviour can identify neurocognitive processes which are not measurable using standard analyses and may thus be used to characterise novel psychiatric treatment targets. For example, computational work demonstrates that informative events, those which improve prediction of future outcomes, are preferentially processed. This suggests that the cognitive biases towards negative events which are causally associated with depression arise because patients overestimate how informative these events are. In this study we assess whether the estimated information content of positive relative to negative events is a viable treatment target, testing whether participants maintain separate valence specific estimates, whether altering the volatility of experienced outcomes modifies these estimates and their association with a physiological marker, central norepinepheric activity. 30 non-clinical participants completed a learning task in which choices led to both wins and losses. The information content of the outcomes was manipulated by varying their volatility. Computational modelling of participant choice was used to estimate learning rate and pupilometry data was collected as a measure of norepinepheric function. Participants independently altered the learning rates used for win and loss outcomes to reflect how informative the outcomes were. Pupil dilation was greater for informative than non-informative loss outcomes and was associated with participants’ loss learning rate. These results characterise a computationally defined potential treatment target for depression. The target was associated with norepinepheric function and was engaged by modifying the volatility of experienced events. By identifying novel treatment targets computational approaches may spur the development of a new generation of psychiatric treatments.
Introduction

Despite the range of pharmacological, psychological and physical interventions available for the treatment of major depressive disorder, remission rates are disappointingly low and relapse common1,2. There is thus a strong incentive to develop new, more effective treatments. A critical first step in the development of new treatments is the identification of novel treatment “targets”;

causal processes which lead to depression and which may be modified by interventions.

Recently there has been increasing interest in applying computational techniques, such as the formal modelling of cognition and behaviour, to psychiatric problems3,4. These techniques allow the characterisation of cognitive processes which are difficult to measure using traditional analytic methods, raising the possibility that they may be used to identify novel, computationally defined treatment targets. In this paper we describe results which characterise a potential computational treatment target. We introduce the relevant conceptual background below, first describing the computational framework of the study and then linking this to the causal cognitive processes which underlie depression.

One of the insights provided by computational models of cognition is that individuals’ expectations are influenced more by those events which carry more information; that is, those events which improve predictions of future outcomes to a greater degree5–7. For example, imagine trying to learn what your colleagues think about your performance at work, based solely on their day-to-day feedback. One colleague compliments you about your work on 80% of the occasions you meet, never increasing or decreasing this frequency. In this case, each particular event (being complimented or not) provides little new information about what your colleague thinks about you, as you will always have an 80% chance of being complimented the next time you meet. In contrast, a second colleague’s appraisal of you seems to be more changeable, with periods when they compliment you regularly and others when you are rarely complimented at all. In this case each event provides more information; if you have recently been complimented by this colleague it is
more likely that their opinion of you is currently high and they will compliment you the next time you meet (Figure 1B). When learning what your colleagues currently think about you, you should be more influenced by whether the second, more volatile, colleague compliments you or not, because this provides more useful information than the behaviour of the stable colleague.

Within a reinforcement learning framework, the influence of events on one’s belief is captured by the learning rate parameter, with a higher learning rate reflecting a greater influence of more recently experienced events. Humans adjust their learning rate precisely as described above, using a higher learning rate for events, such as those occurring in a volatile context, which they estimate to be more informative. The neural mechanism by which this modification of learning rate is achieved is thought to depend on activity of the central norepinephric system, with increased phasic activity of the system, which may be estimated using pupilometry, reporting the occurrence of more informative events and acting to enhance the cognitive processing of these events.

Cognitive theories of depression propose that a tendency to preferentially process negative at the expense of positive events is causally related to the development and maintenance of symptoms. For example, patients with depression attend to, remember and learn more from negative and less from positive events. Consistent with the causal role of these negative biases, interventions designed to target and reduce them, such as cognitive behavioural therapy or more specific bias modification procedures can lead to improvement in symptoms. However, relatively little work has explored why individuals might develop negative cognitive biases in the first place. One way of answering this question is to consider when negative biases might be the appropriate way to think about the world. The computational framework described above provides an overarching logic for when this might occur; individuals should bias their processing towards negative events if they estimate that these events are more informative than positive events.

This reformulation of the cognitive biases of depression in computational terms suggests a potential novel cognitive treatment target: the estimated information content of negative relative to positive.
events. That is, if depressed patients are more influenced by negative events because they estimate
the information content of these events to be higher than for positive events, an intervention which
reduces this inflated estimated information content would be expected to reduce negative bias and
thus improve symptoms of the illness.

In this paper we take a first step in assessing whether estimated information content is likely to be a
viable treatment target in depression, by addressing three critical questions. Firstly, no previous
study has demonstrated that humans maintain separate estimates of the information content of
positive and negative events. We tested whether these estimates were maintained using a novel
learning task (Figure 1) in which participant choice led to both positive and negative outcomes, with
the volatility of the outcomes (and therefore their information content) being independently
manipulated in separate task blocks. Secondly, we tested whether we could engage the target; that
is, whether the volatility manipulation described above altered participants’ estimated information
content as reflected by the learning rates they used. Lastly, we assessed whether we could scaffold
the behavioural assessment of participants’ estimated information content with a physiological
measure, activity of the central NE system, which we measured using pupilometry. We hypothesised
that humans maintain separable estimates of the information content of positive and negative
outcomes, that we could measure and manipulate these estimates using our task and that NE
activity would track this cognitive process.
Materials and Methods

Participants. 30 English-speaking, individuals aged between 18 and 65 were recruited from the local community via advertisements. The number of participants recruited for the current cohort was selected to provide >95% power of detecting a similar effect size as that reported in a previous study in which a volatility manipulation was used to influence learning rate. Participants who were currently on a psychotropic medication or who had a history of neurological disorders were excluded from the study.

General procedure. The study involved a single experimental session during which participants completed a novel learning task (described below) as well as standard questionnaire measures of depression (Quick Inventory of Depressive Symptoms, QIDS) and anxiety (Spielberger State-Trait Anxiety Inventory, trait subscale, STAI) symptoms. The study was approved by the University of Oxford Central Research Ethics Committee. Written informed consent was obtained from all participants, in accordance with the Declaration of Helsinki.

The Information Bias Learning Task (IBLT). The information bias learning task (Figure 1) was adapted from a structurally similar learning task previously reported in the literature. On each trial of the task participants were presented with two abstract shapes (letters selected from the Agathodaimon font) and chose the shape which they believed would result in the best outcome. On each trial one of the shapes, if chosen, would result in a win of 15p and one would result in a loss of 15p. These two outcomes were independent of each other so that a particular shape could be associated with one, both or neither of the win and loss outcomes. Participants learned from the outcomes of previous trials the likely location of the win and the loss and therefore which was the most advantageous shape to choose on the current trial. Throughout the task the number and type of stimuli displayed during each phase of the trials was kept constant (Figure 1a) in order to minimise variations in luminance between trials.
Participants are presented with two shapes (referred to as shape “A” and “B”) and have to choose one. On each trial, one of the two shapes will be associated with a “win” outcome (resulting in a win of 15p) and one with a “loss” outcome (resulting in a loss of 15p). Using trial and error participants learn where the win and loss are likely to be found and use this information to guide their choice. (B) Overall task structure. The task consisted of 3 blocks of 80 trials each (i.e. vertical, dashed, dark lines separate the blocks). The y-axis represents the probability, \(p \), that an outcome (win in solid green or loss in dashed red) will be found under shape “A” (the probability that it is under shape “B” is 1-\(p \)). The blocks differ in how volatile (changeable) the outcome probabilities are. Within the first block both win and loss outcomes were volatile, in the second two blocks one outcome was volatile and the other stable (here wins are stable in the second block and losses stable in the third block). The volatility of the outcome influences how informative that outcome is. Consider the second block in which the losses are volatile and the wins stable. Here, regardless of whether the win is found under shape “A” or shape “B” on a trial, it will have the same chance of being under each shape in the following trials, so the position of a win in this block provides little information about the outcome of future trials. In contrast, if a loss is found under shape “A”, it is more likely to occur under this shape in future trials than if it is found under shape “B”. Thus, for the second block losses provide more information than wins and participants are expected to learn more from them.

In total, the participants completed three blocks of 80 trials each, with a rest session between blocks. The same two shapes were used for all trials within a block, with different shapes being used between blocks. The outcome schedules were determined such that the probability that wins and losses were associated with shape A within a block always averaged 50%. In the volatile blocks the association between shape A and the outcome changed from 15 to 85% and back again in runs ranging from 14 to 30 trials. As described in the introduction, outcomes in the volatile blocks were more useful when predicting future outcomes, making them “informative”, whereas in the stable blocks outcome probabilities were fixed at 50%, making the outcomes “uninformative” in terms of...
predicting future trials (Figure 1B). In the first block of the task, both outcomes were volatile (informative), whereas in blocks 2 and 3 only one of the outcomes was volatile (informative) with the other being stable (uninformative). See supplementary materials for results from a control task in which volatility was kept constant, while the strength of the association between stimuli and outcomes was varied. The order in which blocks 2 and 3 were completed was counterbalanced across participants. Participants were paid all the money they had collected in the task, in addition to a £10 baseline payment. Choice data from the task was analysed by fitting a behavioural model consisting of a Rescorla-Wagner learning rule with separate learning rates for win and loss outcomes coupled to a softmax action selector which incorporated separate inverse temperatures terms for wins and losses. This and alternative models, as well as the procedure used to estimate model parameters, are described in detail in the supplementary methods.

Pupilometry Data. Full details of the preprocessing of the pupilometry data is provided in the supplementary methods. Preprocessing resulted in difference timeseries of pupil dilation data which represented the differential pupil dilation occurring during trials when the outcome (win or loss) was received relative to when it was not received over the six seconds after presentation of the outcomes. These timeseries were binned into 1 second bins to facilitate analysis.

Data Analysis. Parameters derived from the computational models were transformed before analysis so that they were on the infinite real line (an inverse logit transform was used for learning rates and a log transform for inverse temperatures). Figures illustrate non-transformed parameters for ease of interpretation. The effect of the volatility manipulation on these transformed parameters was tested using a repeated measures ANOVA of data derived from the last two task blocks (i.e. when volatility was manipulated). In this ANOVA block information (win volatile block, loss volatile block) and parameter valence (wins, losses) were within subject factors and block order (win volatile first, loss volatile first) was a between subject factor. The critical term of this analysis is the block.
volatility x parameter valence interaction which tests for a differential effect of the volatility manipulation on the win and loss parameters.

The binned pupil timeseries data was analysed using a repeated measures ANOVA with time bin (1-6 seconds), block type (win volatile, loss volatile) and valence (wins, losses) as within subject factors and block order as a between subject factor. Again a block type x valence interaction tests for a differential effect of the volatility manipulation on the pupil dilation in response to wins vs. losses. In order to perform between subject correlations of the pupilometry data the mean relative dilation across the entire six second outcome period was also calculated for each participant and each block. In all analyses significant interactions were followed up by standard post-hoc tests.
Results

Participant demographic details are reported in Table 1.

Table 1. Demographic details of participants

Measure	Mean (SD)
Age	30.52 (9.51)
Gender	76% Female
QIDS-16	5.03 (3.95)
Trait-STAI	35.79 (10.63)

QIDS-16; Quick Inventory of Depressive Symptoms, 16 item self-report version. Trait-STAI; Spielberger State-Trait Anixiety Inventory, trait form.

Effect of Volatility Manipulation on Learning Parameters

As predicted, participants’ learning rates for positive and negative outcomes reflected the information content of the outcomes in the IBLT (block information x parameter valence; F(2,27) =26.488, p <0.001 ;Figure 2). Specifically, learning rates were higher for win (F(1,27) =16.59, p <0.001) and loss (F(1,27) =16.02, p <0.001) outcomes when they were volatile (informative) than when they were stable (not informative). Similarly the learning rate for wins was higher than that for losses when wins were more volatile than losses (F(1,27) =23.958, p <0.001) and the learning rate for losses was higher than for wins when losses were more volatile (F(1,27) =6.793, p <0.015). These results demonstrate that participants maintain independent estimates of the information content of positive and negative outcomes and that it is possible to alter these estimates using a simple volatility manipulation. In contrast to the effects on learning rate there were no significant effects of the task on the inverse temperature parameter of the learning model (F(1,27) =0.038, p=0.846) indicating that, as intended, the volatility manipulation specifically altered learning rate rather than
the relative weights placed on positive and negative outcomes20. See the Supplementary Materials for additional analysis of the behavioural results as well as an additional control experiment.

\textbf{Figure 2. Effect of Volatility Manipulation on Participant Behaviour.} (A) Mean (SEM) learning rates for each block of the IBLT. As can be seen the win learning rates (light green bars) and loss learning rate (dark red bars) varied independently as a function of the volatility of the relevant outcome (F(1,27)=26.488, p<0.001), with a higher learning rate being used when the outcome was volatile than stable (* p<0.05, *** p<0.001 for pairwise comparisons). (B) No effect of volatility was observed for the inverse temperature parameters (F(1,27)=0.038, p=0.846).

\textbf{Effect of Volatility Manipulation on Pupil Dilation}

Next, we investigated the extent to which central NE activity, as estimated using pupilometry, was related to the information content of positive and negative outcomes in the IBLT. Consistent with the behavioural findings a significant interaction between block information and outcome valence was found for the degree to which participants’ pupils dilated in response to outcome receipt (Figure 3; F(1,27)=4.9; p=0.04). In other words, participants’ pupils dilated more on receipt of an outcome when that outcome was volatile (informative) than when it was stable (not informative). This effect
was not further modified by the time bin following outcome (block information x outcome valence x time; F(5,135)=0.340, p=0.565). Analysing the positive and negative outcomes separately indicated that the effect of block volatility was significant for the loss outcomes (F(1,27)=7.597, p = 0.01), but not for the win outcomes (F(1,27)=0.157, p = 0.695).

Figure 3. Pupil response to outcome delivery during the IBLT. Lines illustrate the mean pupil dilation to the receipt relative to non-receipt of an outcome across the 6 seconds after outcomes are presented. Light green lines (with crosses and circles) report response to win outcomes, dark red lines report response to loss outcomes. Solid lines report blocks in which the wins were more informative (volatile), dashed lines blocks in which losses were more informative. As can be seen pupils dilated more when the relevant outcome was more informative, with this effect being particularly marked for loss outcomes. Shaded regions represent the SEM.

Relationship Between Choice Behaviour and Pupil Dilation

As central NE activity is thought to mediate the effect of outcome information content on participant choice\(^9\), there should be a relationship between how much a participant’s pupils differentially dilate in response to an outcome during the informative and non-informative blocks.
and the degree to which that participant adjusts their learning rate between blocks for the same outcome. We tested this by assessing the correlation between the change in mean pupil response between blocks and the change in behaviourally estimated learning rates, separately for wins and losses. As can be seen (Figure 4) the change in pupil response to loss outcomes between blocks was significantly correlated with the change in loss learning rate \(r(28) = 0.5, p = 0.009 \) but pupil response to win outcomes was not correlated with change in win learning rate \(r(28) = -0.08, p = 0.7 \).

Figure 4. Relationship between behavioural and physiological measures. The more an individual altered their loss learning rate between blocks, the more that individual’s pupil dilation in response to loss outcomes differed between the blocks (panel b; \(p = 0.009 \)), however no such relationship was observed for the win outcomes (panel a; \(p = 0.7 \)). Note that learning rates are transformed onto the real line using an inverse logit transform before their difference is calculated and thus the difference score may be greater than ±1.
Discussion

Humans adapt the degree to which they are influenced by positive and negative outcomes in response to how informative they estimate those outcomes to be. These estimates may represent a novel, computationally defined cognitive treatment target for depression. In this study we demonstrated that participants maintain independent estimates of how informative positive and negative outcomes are and use these estimates to control how much the outcomes influence their choices. We also demonstrated that the putative treatment target, the estimated information content of the outcomes, may be engaged using a simple cognitive intervention, such as the volatility manipulation used in the current paper. A physiological measure of central NE activity was associated with the target process, although this was only seen for loss outcomes.

Previous work has demonstrated that humans adapt their learning in response to subtle statistical aspects of the environment, such as employing an increased learning rate in volatile, or changeable, contexts. This suggests that learners maintain an estimate of how useful, or informative, an event is and learn more from events they estimate to be more informative. The current study extends this work by providing evidence that humans are able to maintain independent estimates of the information content of different classes of event, in this case positive and negative outcomes (winning vs. losing money). The parallel representation of estimated information content of wins and losses provides a mechanism by which individuals may come to be generally more influenced by events of one class than another. In the case of depression, patients have been shown to be more influenced by negative events, for example tending to remember more negative than positive events and learn more from negative and less from positive outcomes. The results of the current study suggest that these observed negative biases may all be understood as a consequence of patients estimating that the information content of negative relative to positive events was higher than non-patients. As the negative biases described above are believed to be causally related to symptoms of depression, and interventions designed...
to alter negative biases can reduce symptoms16,17, these results raise the possibility that novel interventions which target expected information content may act to reduce symptoms of the illness.

Of course, the current paper which identifies a potential computational target and a method for engaging that target is only the first step in the development of new treatments. The next step, analogous to a phase 2a study in drug development21, is to assess the initial efficacy of an intervention which engages the target in a clinical population. A study designed to do just that is currently underway (study identifier NCT02913898).

A particular advantage of computational approaches in psychiatry is that formal models are often useful when linking together different levels of observation, such as participant behaviour to the underlying neurochemistry which produces that behaviour22. In the current study we investigated the link between the learning rate used by participants, which provides a behavioural index of how informative they estimate an outcome to be, and pupil dilation which has been shown to correlate with central norepinephric activity10. Pupil dilation in response to outcome receipt differed as a function of the information content of the outcome, although this was only significant for losses. Specifically, when losses were informative, the difference in pupil dilation between trials in which a loss was received and when it was not received was greater than when the losses were not informative. This result is similar to previously reported findings of an increased pupil response to stimuli in a volatile context6,7, although these earlier studies reported a general increase in pupil dilation rather than a dilation conditioned on receipt of an outcome. A possible explanation of this difference is that, in the current study, one of the outcomes (win or loss) was always volatile and presentation order of the outcomes was randomised. Therefore, in contrast to the previous studies in which only one class of outcome was used, the estimated volatility in the current study was dependent on the outcome presented and thus modified response to that outcome only. This observation may also explain why the pupilometry measure was sensitive only to loss and not win outcomes; receipt of a loss lead to a greater pupil dilation overall than a win (see Sup Figure 6) and
thus the effect of estimated outcome information, which modifies the relative dilation observed when an outcome is received, may be less apparent for wins.

The pupilometry measure included in the current study raises the possibility that estimated information content may be influenced by pharmacological as well as cognitive interventions. Pupil size is influenced by activity of the central norepinephrine system10 and previous work exploring the neural systems which control response to volatility also predict a key role for this system9 suggesting it as an obvious pharmacological target. A single study has reported an effect of atomoxetine, a norepinephrine reuptake inhibitor, on learning in a volatile environment23 although no previous work has examined the effect of a pharmacological intervention on learning to positive vs. negative outcomes. It would be interesting to test whether a pharmacological manipulation of norepinephric function was able to modify the outcome specific volatility effect demonstrated in this paper as such an effect may indicate a clinically useful interaction between pharmacological and cognitive interventions.

The information content of an outcome is not solely a function of the volatility of its occurrence. Other factors, such as the strength of the association between a stimulus, or action, and the subsequent outcome, sometimes called the “expected uncertainty”9 of the association, will also influence how informative the outcome is. Outcomes in the IBLT task differ in terms of both volatility and expected uncertainty, with both of these factors predicted to influence learning rate in the same direction (i.e. both factors should increase learning rate in the volatile blocks). A control experiment (see supplementary materials) suggested that the current findings were likely to be due to the effects of volatility rather than expected uncertainty on learning. However, it would be interesting in future studies to test whether it was possible to use manipulations of expected uncertainty, in the same way that volatility is used in this study, to induce a preference for positive over negative events. This may provide an alternative approach to engaging and altering expected information content than the volatility based effect reported here.
The current study demonstrated that human learners maintain separable estimates of the information content of positive and negative outcomes and provides an initial proof of principle as to how these estimates may be modified. The study illustrates a potentially exciting application of computational techniques in psychiatry; they may be used to identify novel treatment targets and by so doing spur the development of new and more effective treatments.

Funding and Disclosures

This study was funded by a MRC Clinician Scientist Fellowship awarded to MB (MR/N008103/1). MB has received travel expenses from Lundbeck for attending conferences. EP declares no potential conflict of interest.
References

1. Casacalenda N, Perry JC, Looper K. Remission in major depressive disorder: a comparison of pharmacotherapy, psychotherapy, and control conditions. *Am J Psychiatry* 2002; 159: 1354–1360.

2. Rush MD A. STAR*D: What Have We Learned? *Am J Psychiatry* 2007; 164: 201–204.

3. Redish, A. D., Gordon, J. A. (eds.). *Computational Psychiatry. New Perspectives on Mental Illness*. MIT Press, 2016.

4. Paulus MP, Huys QJM, Maia TV. A Roadmap for the Development of Applied Computational Psychiatry. *Biol Psychiatry Cogn Neurosci Neuroimaging* 2016; 1: 386–392.

5. Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS. Learning the value of information in an uncertain world. *Nat Neurosci* 2007; 10: 1214–1221.

6. Browning M, Behrens TE, Jocham G, O’Reilly JX, Bishop SJ. Anxious individuals have difficulty learning the causal statistics of aversive environments. *Nat Neurosci* 2015; 18: 590–596.

7. Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI. Rational regulation of learning dynamics by pupil-linked arousal systems. *Nat Neurosci* 2012; 15: 1040–1046.

8. Sutton R, Barto AG. *Reinforcement Learning*. MIT Press: Cambridge, Massachusetts, 1998.

9. Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. *Neuron* 2005; 46: 681–92.

10. Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. *Neuron* 2016; 89: 221–234.

11. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. *Annu Rev Neurosci* 2005; 28: 403–450.

12. Mathews A, MacLeod C. Cognitive vulnerability to emotional disorders. *Annu Rev Clin Psychol* 2005; 1: 167–195.

13. Gotlib IH, Krasnoperova E, Yue DN, Joormann J. Attentional biases for negative interpersonal stimuli in clinical depression. *J Abnorm Psychol* 2004; 113: 127–135.

14. Bradley BP, Mogg K, Williams R. Implicit and explicit memory for emotion-congruent information in clinical depression and anxiety. *Behav Res Ther* 1995; 33: 755–770.

15. Eshel N, Roiser JP. Reward and punishment processing in depression. *Biol Psychiatry* 2010; 68: 118–124.

16. NICE. Treatment and management of depression in adults, including adults with a chronic physical health problem. NICE: London, 2009.

17. Browning M, Holmes EA, Charles M, Cowen PJ, Harmer CJ. Using attentional bias modification as a cognitive vaccine against depression. *Biol Psychiatry* 2012; 72: 572–579.

18. Rush AJ, Trivedi MH, Ibrahim HM, Carmody TJ, Arnow B, Klein DN et al. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-
SR): a psychometric evaluation in patients with chronic major depression. *Biol Psychiatry* 2003; **54**: 573–583.

19 Spielberger CD, Gorsuch RL, Lushene RD. *Manual for the State-Trait Anxiety Inventory (STAI)*. Consulting Psychologists Press.: Palo Alto, CA, 1983.

20 Huys QJ, Pizzagalli DA, Bogdan R, Dayan P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. *Biol Mood Anxiety Disord* 2013; **3**: 12.

21 Ciociola AA, Cohen LB, Kulkarni P, Kefalas C, Buchman A, Burke C et al. How Drugs are Developed and Approved by the FDA: Current Process and Future Directions. *Am J Gastroenterol* 2014; **109**: 620–623.

22 Corlett PR, Fletcher PC. Computational psychiatry: a Rosetta Stone linking the brain to mental illness. *Lancet Psychiatry* 2014; **1**: 399–402.

23 Jepma M, Murphy PR, Nassar MR, Rangel-Gomez M, Meeter M, Nieuwenhuis S. Catecholaminergic Regulation of Learning Rate in a Dynamic Environment. *PLoS Comput Biol* 2016; **12**: e1005171.
Supplementary Methods

Further Details of the IBLT

The task was presented on a VGA monitor connected to a laptop computer running Presentation software version 18.3 (Neurobehavioural Systems). Participants’ heads were stabilised using a head-and-chin rest placed 70 cm from the screen on which an eye tracking system was mounted (Eyelink 1000 Plus; SR Research). The eye tracking device was configured to record the coordinates of both of the eyes and pupil area at a rate of 500 Hz. The abstract shapes of the learning task were drawn on either side of a fixation cross which marked the middle of the screen and were offset by around 7° visual angle. The two outcomes (win and loss) were displayed on the screen in randomised order for a jittered interval of 2-6 (mean 4) seconds. Auditory stimuli lasting 0.7 seconds were played when participants received a win (“chi-ching” sound) or loss (error buzz). Participants’ accumulated total winnings was displayed under the fixation cross and was updated based at the beginning of the subsequent trial.

Preprocessing of Pupil Data

Blinks were identified using the Eyelink system’s built in filter and were then removed from the data. Missing data points (including blinks) were linearly interpolated. The resulting trace was subjected to a low pass Butterworth filter with a cut-off of 3.75 Hz and then z transformed across the session. The pupil response to the win and the loss outcomes were extracted separately from each trial, using a time window based on the presentation of the outcomes. This included a 1-s baseline period before the presentation of the outcome, and a 6-s period following outcome presentation. Baseline correction was performed by subtracting the mean pupil size during the 1 second baseline period prior to the presentation of each outcome, from each time point in the post outcome period. Individual trials were excluded from the pupillometry analysis if more than 50% of the data from the outcome period had been interpolated (mean =7% of trials). One participant was excluded from the pupillometry analysis as more than 99% of their trials were excluded on this basis. The first 10 trials from each block were not used in the analysis as initial pupil adaption can occur in response to luminance changes in this period. The preprocessing resulted in two sets of timeseries per participant, one set containing pupil dilation data for each included trial when the win outcomes were displayed and the other when the loss outcomes were displayed. A difference timeseries, calculated as the mean pupil response to the receipt vs. non-receipt of the outcome in each block was then calculated (See below for a complementary regression analysis of this data). In order to statistically compare these timeseries the mean of each 1 second time bin after outcome presentation was calculated.
Behavioural Model Used in Analysis of the IBLT

The primary measure of interest in the IBLT is the learning rate for wins and for losses in each of the three blocks. A simple behavioural model, based on that employed in related tasks\(^4,\!5\) was used to estimate learning rate. This model first estimated the separate probabilities that the win and loss would be associated with shape “A” using a Rescorla-Wagner learning rule\(^19\):

\[
\begin{align*}
 r_{\text{win}}(i+1) &= r_{\text{win}}(i) + a_{\text{win}} \times (w_{\text{out}}(i) - r_{\text{win}}(i)) \\
 r_{\text{loss}}(i+1) &= r_{\text{loss}}(i) + a_{\text{loss}} \times (l_{\text{out}}(i) - r_{\text{loss}}(i))
\end{align*}
\]

In these equations, \(r_{\text{win}}(i)\), which was initialised at 0.5, is the estimated probability that the win will be associated with shape “A” on trial \(i\) (NB the probability that the win is associated with shape “B” is \(1-r_{\text{win}}(i)\)), \(w_{\text{out}}(i)\) is a variable coding for whether the win was associated with shape “A” (in which case the variable has a value of 1) or shape “B” (giving a value of 0) and \(a_{\text{win}}\) is a free parameter, the learning rate for the wins. \(r_{\text{loss}}(i)\), \(l_{\text{out}}(i)\) and \(a_{\text{loss}}\) are the same variables for the loss outcome. These estimated outcome probabilities were then transformed into a single choice probability using a soft max function:

\[
P_{\text{choice}}A(i) = \frac{1}{1 + \exp(-\beta_{\text{win}} \times r_{\text{win}}(i) - \beta_{\text{loss}} \times r_{\text{loss}}(i))}
\]

Where \(P_{\text{choice}}A(i)\) is the probability of choosing shape “A” on trial \(i\), and \(\beta_{\text{win}}\) and \(\beta_{\text{loss}}\) are inverse decision temperatures for wins and losses, respectively. The four free-parameters of this model (learning rates and inverse temperatures for wins and losses) were estimated separately for each task block and each participant by calculating the full joint posterior probability of the parameters, given participants’ choices, and then deriving the expected value of each parameter from their marginalised probability distributions\(^4,\!5\). Choice data from the first 10 trials of each block was not used when estimating the parameters as these trials were excluded from the pupil analysis (due to initial pupil adaption)\(^5,\!6\). Data on alternative behavioural models and model fits can be found in the next section.

Alternative Behavioural Models and Model Selection

The behavioural model used in this study (Referred to as model 1 below) was developed based on the models used in previous studies in which volatility is manipulated\(^1-\!3\) and to allow for the possibility that differential behaviour in response to win and loss outcomes may have arisen due to changes in learning rate (captured using separate win and loss learning rates) or outcome sensitivity.
(captured using separate inverse temperature parameters). However, it is possible that this model does not provide the best fit to participant choice data. In order to assess this possibility we compared the fit of this model against a range of comparator models using the Bayesian Information Criteria (BIC) metric, which includes a penalty term for model complexity.

Model 2: It is possible for participants to perform our task without learning the independent probability of the win and loss outcomes, but rather by taking a model-free approach in which the overall value of each shape was learned.

\[v_A^{i+1} = v_A^i + \alpha \text{value} \times (\text{out}_{(i)} - (r\text{win}_{(i)} - r\text{loss}_{(i)})) \]

Here the value of shape A \(v_A \) initiates at 0 on trial 1, and is updated on every trial based on the joint outcome (i.e. the win – loss for that shape) of the trial \(\text{out}_{(i)} \), which can be -1, 0 or 1 with a single learning rate \(\alpha \text{value} \). The estimated relative values of the 2 shapes were then transformed into a choice probability using a softmax function with a single inverse temperature parameter.

Model 3: An alternative approach, described by Behrens and colleagues estimates trialwise volatility independently estimate the expected probabilities of the win and loss outcomes during the task (note that there are no free parameters for this learner). These estimates were then combined using the same selector model described in the main text with two inverse temperature parameters.

Model 4: This was a slightly simpler version of Model 1 in that it employed only a single inverse temperature parameter allowing assessment of the degree to which using 2 such parameters influenced model fit.

Model 5: Finally, we tested a slightly more complex version of Model 4 by including a risk parameter \(\gamma \), as used in previous studies, which modulates the estimated probabilities of wins and losses in a non-linear way. Risk parameters have been shown to account for non-normative aspects of human choice, particularly when outcome probabilities are particularly high or low:

\[r\text{win}_{(i)} = 2^{-\log_2(r\text{win}_{(i)}) \gamma} \]
\[r\text{loss}_{(i)} = 2^{-\log_2(r\text{loss}_{(i)}) \gamma} \]

A summary of the five models can be found in Supplementary Table 1 below:
Table S1: Description of Comparator Models

Model Name	Number of Learning Rate Parameters	Number of Inverse Temperature Parameters	Notes
1.	2	2	Model used in paper
2.	1	1	Model-free learner
3.	0	2	Bayesian learner
4.	2	1	Single inverse temperature model
5.	2	1	Additional risk parameter

All models were fitted to participant data using the same procedure described in the main paper. BIC scores for each model are illustrated in figure S1 below (note that lower scores indicate a better fit). As can be seen the model reported in the main paper (Model 1) fits the data best. The single inverse temperature model (Model 4) performs almost as well, with the other models performing less well.

Supplementary Figure S1: BIC Scores for Comparator Models (see table S1 for model descriptions). Smaller BIC scores indicate a better model fit.
Supplementary Results

Switch-Stay Analysis of Behaviour

The IBLT includes both positive and negative outcomes which are independent of each other. As a result, the task contains trials in which both positive and negative outcome encourage the same behaviour in future trials (e.g. when the win is associated with shape A and the loss with shape B, both outcomes encourage selection of shape A in the following trial) as well as trials in which the positive and negative outcomes act in opposition (e.g. when both outcomes are associated with shape A, then the win outcome encourages selection of shape A in the next trial and the loss outcome encourages selection of shape B). This second type of trial provides a simple and sensitive means of assessing how the volatility manipulations alters the impact of win and loss outcomes on choice behaviour in the task blocks. Specifically an increased influence of win outcomes (e.g. when wins are volatile) should be associated with:

a. A decreased tendency to change (shift) choice when both win and loss outcomes are associated with the chosen shape in the current trial
b. An increased tendency to change (shift) choice when both win and loss outcomes are associated with the unchosen shape in the current trial.

This analysis does not depend on any formal model and thus can be used to complement the model based analysis reported in the main paper. We calculated the proportion of shift trials separately for trials in which both outcomes were associated with the chosen or unchosen shape for each of the three blocks. Consistent with the model based analysis, participants switched significantly less frequently when both outcomes were associated with the chosen option in the win relative to loss informative blocks (Figure S2; F(1,27)=6.193, p=0.019) and switched significantly more frequently when both outcomes were associated with the unchosen option in the win relative to loss informative blocks (Figure S2; F(1,27)=4.353, p=0.047). This indicates that the results reported in the main paper are unlikely to be dependent on the exact form of the behavioural model used to derive the learning rate parameter.
Supplementary Figure S2: Analysis of switching behaviour in the IBLT task. The mean (SEM) probability of switching choice in the subsequent trial is plotted separately for trials in which both win and loss outcome are associated with the chosen option ("both") and the non-chosen option ("nothing"). The columns represent the probability of switching in the first block of the task when both outcomes were informative/volatile (dark columns), in the block in which losses were more informative (grey columns) and the block in which wins were more informative (white column). As can be seen, when wins are more informative than losses (i.e. white bars), participant choice is more influenced by the win relative to loss outcomes than when losses are more informative (grey bars). Specifically, participants are more likely to stick with a choice which has just resulted in both a win and a loss and are more likely to switch to a choice if they didn't choose it when the wins are informative. *=p<0.05 for comparison between win informative and loss informative blocks.

Expected vs Unexpected Uncertainty

When learning, a number of different forms of uncertainty can influence behaviour. One form, which is sometimes called “unexpected uncertainty” is caused by changes in the associations being learned (i.e. volatility) and is the main focus of this paper (see main text for a description of how volatility influences learning). A second form of uncertainty, sometimes called “expected uncertainty” arises when an association between a stimulus or action and the subsequent outcome is more or less predictive. For example, this form of uncertainty is lower if an outcome occurs on 90% of the times an action is taken and higher if the outcome occurs on 50% of the time an action is taken. Normatively, expected uncertainty should influence learning rate—a less predictive association (i.e. higher expected uncertainty) leads to more random outcomes which tell us less about the underlying association we are trying to learn, so learners should employ a lower learning rate when expected uncertainty is higher. In the task described in this paper both the expected and unexpected uncertainty differ between blocks. Specifically, when an outcome is stable in the task it
occurs on 50% of trials, whereas when it is volatile it varies between occurring on 85/15% of trials. Thus the stable outcome is, at any one time, also less predictable (i.e. noisier) than the volatile outcome. This task schedule was used as a probability of 50% for the stable outcome improves the ability of the task to accurately estimate learning rates (it allows more frequent switches in choice). Further, for the purpose of characterising a potential treatment target the differentiation between expected and unexpected uncertainty is relatively unimportant as both forms of uncertainty would be expected to reduce learning rate in the stable blocks and increase it in the volatile block of the task. However, this aspect of the task raises the possibility that the observed effects on behaviour described in the main paper may arise secondary to differences in expected uncertainty (noise) rather than the unexpected uncertainty (volatility) manipulation. In order to test this possibility we developed a similar learning task in which volatility was kept constant and expected uncertainty was varied (Figure S4). In this task, participants again had to choose between two shapes in order to win as much money as possible, however on each trial 100 “win points” and 100 “loss points” were divided between the two shapes and participants received money proportional to the number of win points – loss points of their chosen option. Thus, a win and loss outcome occurred on every trial of this task, but the magnitude of these outcomes varied. During the task, participants had to learn the expected magnitude of wins and losses for the shapes rather than the probability of their occurrence. This design (Figure S4a) allowed us present participants with schedules in which the volatility (i.e. unexpected uncertainty) of win and loss magnitudes was constant but the noise (expected uncertainty) varied (Figure S4b). Otherwise the task was structurally identical to the IBLT with 240 trials split into 3 blocks. We recruited a separate cohort of 30 healthy participants who completed this task and then estimated their learning rate using a model which was structurally identical (i.e. 2 learning rates and 2 inverse temperature parameters) to that used in the main paper (Model 1). As can be seen (Figure S4c), there was no effect of expected uncertainty on participant learning rate (block information x parameter valence; F(1,28)=1.97, p=0.17) during this task. This suggests that the learning rate effect seen in the IBLT cannot be accounted for by differences in expected uncertainty and therefore is likely to have arisen due to the unexpected uncertainty (volatility) manipulation. Inverse decision temperature did differ between block (F(1,28)=5.56, p=0.026). As can be seen in Figure S4d, there was a significantly higher win inverse temperature during the block in which the losses had lower noise (F(1,28)=9.26,p=0.005) and when compared to the win inverse temperature when wins had lower noise (F(1,28)=5.35,p=0.028), but no equivalent effect for loss inverse temperature. These results suggest that, if anything, participants were more influenced by noisy outcomes.
Figure S4: Magnitude Task. A) example outcome screen from the task. Participants chose between two shapes. Each shape, if chosen, resulted in winning a proportion of 100 win points (bar on top of fixation cross with green fill) and loosing a proportion of 100 loss points (bar under fixation cross with red fill), with participants receiving the difference between the two. B) The task schedule for win (green) and loss (red) magnitudes included 3 blocks; in the first block both outcomes had low expected uncertainty (noise), in the last two blocks one outcome had high and the other low expected uncertainty. The volatility of the outcomes was constant across blocks. C) Participants did not significantly adjust their learning rates in response to expected uncertainty and D) inverse temperature for wins was increased during the block in which the losses had lower noise, with no effect on loss inverse temperature.

Regression Analysis of Pupil Data

The analysis of pupil data reported in the main text examines the effect of block information content (i.e. win volatile vs. loss volatile) and outcome receipt on the pupil response to win and loss outcomes. However a number of other factors may also influence pupil dilation such as the order in which the outcomes were presented and the surprise associated with the outcome. In order to
ensure that these additional factors could not account for our findings we ran a regression analysis
of the pupil data from the IBLT task. In this analysis we derived, for each participant, trialwise
estimates of the outcome volatility and outcome surprise of the chosen option using the Ideal
Bayesian Observer reported by Behrens et al.2. These estimates were entered as explanatory
variables alongside variables coding for outcome order (i.e. win displayed first or second), outcome
of the trial (outcome received or not) and an additional term coding for the interaction between the
outcome volatility and outcome of the trial (i.e. analogous to the pupil effect reported in Figure 3 of
the main paper). Separate regression analyses were run for each 2ms timepoint across the outcome
period, for win and loss outcomes and for each participant. This resulted in timeseries of beta
weights representing the impact of each explanatory factor, for each participant and for win and loss
outcomes. As can be seen in Figure S5 below, consistent with the results reported in the paper this
analysis revealed a significant volatility x outcome interaction for loss outcomes (F(1,27)=6.249, p =
0.019), with no effect for wins (F(1,27)=0.215, p = 0.646). This result indicates that pupil effects
reported in the main paper are not the result of outcome order or surprise effects on pupil dilation.

Supplementary Figure S5. Regression analysis of pupil data. The mean (SEM) beta weight of the
volatility x outcome regressor of the regression analysis of the pupil data is shown separately for
win (green) and loss (red) outcomes. The loss regressor differs significantly from 0 for the loss
outcomes indicating that, across participants, pupil dilation was greater in response to an
outcome in the volatile than stable block for losses. No significant effect was observed for win
outcomes.
Post-Hoc Analysis of Pupil Data

Figure 3 from the paper illustrates the difference in pupil dilation between trials in which an outcome was received and those in which the outcome was not received. In order to further investigate this effect Figure S6 below separately plots the mean pupil response for trials in which the outcome was and was not received. As can be seen, whereas there is relatively little difference in pupil response during the win trials, there is a large difference in dilation between trials on which a loss is received and those in which no loss is received. Further, the effect of loss volatility is seen to both increase dilation on receipt of a loss and reduce dilation when no loss is received, suggesting that the effect of the volatility manipulation is to exaggerate the effect of the outcome.

Supplementary Figure S6. Individual time courses for trials in which wins (panel a) and losses (panel b) are either received or not received. Lines represent the mean and shaded areas the SEM of pupil dilation over the 6 seconds after outcomes are presented.

Relationship Between Baseline Symptoms of Anxiety and Depression and Task Outcomes

Although participants in the current study were not selected on the basis of their symptoms of depression or anxiety, baseline questionnaires were completed allowing assessment of the relationship between symptoms and task performance. Consistent with previous work symptoms of anxiety, measured using the trait-STAI and depression, measured using the QIDS, correlated significantly negatively with differential pupil response to losses (all r<-0.43, all p<0.02). That is,
higher the symptom score, the less pupil dilation differed between the loss informative and loss non-informative blocks. These measures did not correlate with pupil response to wins (all p>0.2). A marginal correlation was found between trait-STAI and the change in learning rate to losses, with participants with higher scores adjusting their learning rate less than those with a lower score (r=-0.34, p=0.07). We did not observe any relationship between either questionnaire measure and change in the win learning rate or between QIDS score and change in loss learning rate (all p>0.2).

Supplementary References

1 Browning M, Behrens TE, Jocham G, O’Reilly JX, Bishop SJ. Anxious individuals have difficulty learning the causal statistics of aversive environments. *Nat Neurosci* 2015; 18: 590–596.

2 Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS. Learning the value of information in an uncertain world. *Nat Neurosci* 2007; 10: 1214–1221.

3 Behrens TE, Hunt LT, Woolrich MW, Rushworth MF. Associative learning of social value. *Nature* 2008; 456: 245–9.

4 Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on humans’ choices and striatal prediction errors. *Neuron* 2011; 69: 1204–1215.

5 Yu AJ, Dayan P. Uncertainty, neuromodulation, and attention. *Neuron* 2005; 46: 681–92.