Protein surface recognition using geometrically pure Ru(II) tris(bipyridine) derivatives

Filby, M. H., Muldoon, J., Dabb, S., Fletcher, N., Ashcroft, A. E., & Wilson, A. J. (2011). Protein surface recognition using geometrically pure Ru(II) tris(bipyridine) derivatives. Chemical Communications, 47(1), 559-561. DOI: 10.1039/c0cc04754f

Published in:
Chemical Communications

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Protein surface recognition using geometrically pure Ru(II) tris(bipyridine) derivatives†‡

Maria H. Filby,ab James Muldoon,ab Serin Dabb,c Nicholas C. Fletcher,c Alison E. Ashcroftb and Andrew J. Wilson*a

Received 2nd November 2010, Accepted 15th November 2010
DOI: 10.1039/c0cc04754f

This manuscript illustrates that the geometric arrangement of protein-binding groups around a ruthenium(II) core leads to dramatic differences in cytochrome c (cyt c) binding highlighting that it is possible to define synthetic receptors with shape complementarity to protein surfaces.

A major challenge in chemical biology is the competitive inhibition of protein-protein interactions (PPIs).1 To competitively inhibit PPIs, high affinity recognition of one of the interfaces involved is required. Successful resolution of the challenge relies on being able to construct molecules capable of high affinity protein surface recognition by making discrete non-covalent contacts over a large (>800 Å²) surface with a less well-defined shape than the substrate binding cavities that have often served as targets for intervention.2 Over the past decade a number of groups have used various scaffolds to project functionality capable of making multivalent hydrophobic,4 ion-pairing5–17 and metal–ligand interactions18,19 over a protein surface to achieve high affinity binding. In certain cases inhibition of PPIs4,20–24 and selective recognition have been observed6,8,12,25,26 although the latter property has ordinarily derived from complementary matching of electrostatic interactions between protein and ligand. Thus far, these fundamental studies have focused on varying the dimensions and functional composition of molecules designed to recognise protein surfaces. In contrast, variation in the 3D projection of functional groups has not been exploited to modify binding properties. In the current manuscript we illustrate that the geometric arrangement of functional groups around a ruthenium(II) core such as compound 1 leads to differences in protein-binding affinity towards cytochrome c.3

Hamachi and co-workers introduced ruthenium(II) trisbipyridine complexes as receptors for proteins in 1999.27 More recently Okhanda’s group,28 followed by our own,26 illustrated such compounds act as fluorescent receptors for proteins. Compared with wholly organic receptors, these complexes are uniquely modular, allowing combinations of recognition elements to be assembled on a single rigid, three-dimensional scaffold with built-in sensing capability. Trischelate complexes of bipyridine ligands result in two optical isomers, Δ or Λ; and in the case of unsymmetrical bidentate ligands of Cs symmetry, geometrical facial (fac) and meridional (mer) isomers. This offers the opportunity to explore if different projections of binding functionality result in preferential binding of target proteins. Indeed, the binding properties of Δ or Λ optical isomers have been exploited for peptide assembly,29 lectin recognition30 and direct intercalation between the metal–ligand core and DNA.31 The isolation of geometrical isomers is less well established and so binding properties for these compounds have not been explored although simple anion recognition has been studied.32

Receptor 1 functionalized at the 5 position of bipyridine with an optically pure recognition motif incorporating two L-aspartyl groups was synthesized with tert-butyl ester protecting groups as described in the ESI.† We separated

This article is part of the ‘Emerging Investigators’ themed issue for ChemComm

† Electronic supplementary information (ESI) available: Synthetic procedures, characterization and fluorescence binding studies. See DOI: 10.1039/c0cc04754f

Fig. 1 Structures and proteins used in this study (a) cyt c (b) acetylated cyt c (c) α-chymotrypsin (d) compounds 1 and 2.
the tert-butyl protected fac/mer Δ/Δ 1 and Δ/mer Δ/Δ 1 (H2O, pH 7.0, 100 μM).

Fig. 2 (a) 1H NMR Spectra (500 MHz, d6-acetone) of tert-butyl protected fac/mer Δ/Δ 1 and (b) circular dichroism spectra (CD) of fac/mer Δ/Δ 1 (H2O, pH 7.0, 100 μM).

The data were fit to a 1:1 binding isotherm using non-linear regression to obtain dissociation constants, which for the highest affinity compound is in the low nM regime (Table 1). One-order of magnitude difference in the K_d between fac and the mer isomers upon binding to cyt c is observed (equivalent to 4 kJ mol$^{-1}$ in free energy). The data, however, showed little discrimination between the Δ and Λ isomers for the pair of geometrical isomers. It is noteworthy that saturation is reached with only a 50% reduction in signal for mer 1 and 25% for fac 1—perhaps a manifestation of the different geometrical relationship that will exist between fluorophore and quencher as a consequence of geometrical selectivity. Ruthenium complex 2, which is functionalized on the isophthalalimide motifs with hexylamino groups (see ESI), was synthesized as a negative control and as expected did not show any binding to cyt c. In addition, none of the compounds exhibited any quenching upon titration with 60% acetylated cyt c. Acetylation of surface exposed lysine residues prevents key electrostatic interactions involving these residues from taking place. The majority of solvent exposed lysine residues on cyt c surround the haem exposed edge so the result indicates that (a) the nature of recognition between cyt c and the isomers of I is electrostatic in nature (b) molecular recognition occurs at the haem exposed edge and (c) it is the geometrical placement of carboxylates that is the source of differential binding.

To provide further evidence that recognition occurs at the protein surface, all isomers of I were tested in a functional ascorbate reduction assay (see ESI). In the presence of the receptor I, the reduction of cyt c by ascorbate occurs at a much slower rate, indicating binding of the receptors to the heme region. The degree of inhibition is dose dependent and although minor differences between fac and mer isomers are observed the experiment must be performed at concentrations well above K_d so a comparison with K_d determined by fluorescence is not possible.

To establish if the difference in binding between different isomers is protein-specific or an intrinsic difference between geometrical isomers, we performed titrations with α-chymotrypsin, which has been shown to be a good target for related ruthenium complexes by Okhanda. In our experiments, increases in fluorescence were observed for each isomer of I, however these occurred over a concentration range much greater than the concentration of the ruthenium complex and did not reach saturation, which suggests ill defined binding.

560 | Chem. Commun., 2011, 47, 559–561

This journal is © The Royal Society of Chemistry 2011
surface exposed lysine residues on cyt
placement of carboxylate groups that make contacts with
binding affinity attributable to the different geometrical
78112/Z/05/Z] and EPSRC [EP/F039069 & EP/F038712].
testing the biological utility of these metal complexes.
directed towards a structural rationalisation of this result and
bind to cyt
funcitonalised ruthenium complexes will therefore be needed
to probe this aspect.
This work was supported by the Wellcome Trust [WT
Notes and references

Table 1 Dissociation constant for the binding of receptors I to cyt c
as determined by fluorescence titration

Compound	K_d/nM
α-mer 1	25 ± 0.8
α-mer 1	29 ± 0.8
α-fac 1	172 ± 0.2
α-fac 1	130 ± 0.3

$1 \mu M$, 5 mM sodium phosphate buffer, pH 7.4, ex 467 nm.

(see ESI†). Further studies with an expanded selection of
functionalised ruthenium complexes will therefore be needed
to probe this aspect.
In conclusion, we have illustrated that affinity of
functionalized Ru(II) tris(bipyridine) complexes towards cyt c
is dependent on their geometrical configuration. The complexes
bind to cyt c in a specific and selective manner with differences in
binding affinity attributable to the different geometrical
placement of carboxylate groups that make contacts with
exposed lysine residues on cyt c. Our future studies are
directed towards a structural rationalisation of this result and
testing the biological utility of these metal complexes.

This work was supported by the Wellcome Trust [WT 78112/Z/05/Z] and EPSRC [EP/F039069 & EP/F038712].

References

1 A. J. Wilson, Chem. Soc. Rev., 2009, 38, 3289–3300.
2 H. Yin and A. D. Hamilton, Angew. Chem., Int. Ed., 2005, 44, 4130–4163.
3 M. W. Pezzruh and A. D. Hamilton, Chem. Rev., 2000, 100, 2479–2493.
4 D. K. Leung, Z. W. Yang and R. Breslow, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5050–5053.
5 Y. Hamuro, M. C. Calama, H.-S. Park and A. D. Hamilton, Angew. Chem., Int. Ed. Engl., 1997, 36, 2680–2683.
6 H. S. Park, Q. Lin and A. D. Hamilton, J. Am. Chem. Soc., 1999, 121, 8–13.
7 R. K. Jain and A. D. Hamilton, Org. Lett., 2000, 2, 1721–1723.
8 N. O. Fischer, C. M. McIntosh, J. M. Simard and V. M. Rotello, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5018–5023.
9 A. J. Wilson, K. Groves, R. K. Jain, H. S. Park and A. D. Hamilton, J. Am. Chem. Soc., 2003, 125, 4420–4421.
10 M. Braun, S. Atalick, D. M. Guld, H. Lanig, M. Bretteich, S. Burghardt, M. Hatzimariani, E. Ravanelli, M. Prato, R. v. Eldik and A. Hirsch, Chem.–Eur. J., 2003, 9, 3867–3875.
11 D. M. Tragore, K. I. Sprinz, S. Fletcher, J. Jayawickramarajah and A. D. Hamilton, Angew. Chem., Int. Ed., 2007, 46, 223–225.
12 D. Paul, H. Miyake, S. Shinoda and H. Tsukube, Chem.–Eur. J., 2006, 12, 1328–1338.
13 M. Arendt, W. Sun, J. Thomann, X. Xie and T. Schrader, Chem.–Asian J., 2006, 1, 544–554.
14 O. Hayashida, H. Ogawa and M. Uchiyama, J. Am. Chem. Soc., 2007, 129, 13698–13705.
15 F. Chiba, T.-C. Hu, L. J. Twyman and M. Wagstaff, Chem. Commun., 2008, 4351–4353.
16 P. B. Crowley, P. Ganji and H. Ibrahim, ChemBioChem, 2008, 9, 1029–1033.
17 A. J. Wilson, J. Hong and A. D. Hamilton, Org. Biomol. Chem., 2007, 5, 276–285.
18 A. Oida, Y. Mito-oka, M.-a. Inoue and I. Hamachi, J. Am. Chem. Soc., 2002, 124, 6256–6257.
19 A. L. Banerjee, M. Swanson, B. C. Roy, X. Jia, M. K. Haldar, S. Malik and D. K. Srivastava, J. Am. Chem. Soc., 2004, 126, 10875–10883.
20 M. A. Blaskovich, Q. Lin, F. L. Delarue, J. Sun, H. S. Park, D. Coppola, A. D. Hamilton and S. M. Sebti, Nat. Biotechnol., 2000, 18, 1065–1070.
21 Y. Wei, G. L. McLendon, A. D. Hamilton, M. A. Case, C. B. Purring, Q. Lin, H. S. Park, C. S. Lee and T. N. Yu, Chem. Commun., 2001, 1380–1581.
22 H. Bayraktar, P. S. Ghosh, V. M. Rotello and M. J. Knapp, Chem. Commun., 2006, 1390–1392.
23 H. Azuma, Y. Yoshida, D. Paul, S. Shinoda, H. Tsukube and T. Nagasaki, Org. Biomol. Chem., 2009, 7, 1700–1704.
24 H. S. Park, Q. Lin and A. D. Hamilton, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5105–5109.
25 A. M. Fazal, B. C. Roy, S. Sun, S. Malik and K. Rogers, J. Am. Chem. Soc., 2001, 123, 6283–6290.
26 J. Muldoon, A. E. Ashcroft and A. J. Wilson, Chem.–Eur. J., 2010, 16, 100–103.
27 H. Takashima, S. Shinkai and I. Hamachi, Chem. Commun., 1999, 2345–2346.
28 J. Ohkanda, R. Satoh and N. Kato, Chem. Commun., 2009, 5949–5951.
29 M. R. Ghadiri, C. Soares and C. Choi, J. Am. Chem. Soc., 1992, 114, 825–831.
30 S. Sakai, Y. Shigemasa and T. Sasaki, Bull. Chem. Soc. Jpn., 1999, 72, 1313–1319.
31 K. E. Erkkila, D. T. Odom and J. K. Barton, Chem. Rev., 1999, 99, 2777–2796.
32 N. C. A. Baker, N. McGaughey, N. C. Fletcher, A. V. Chernikov, P. N. Horton and M. B. Hursthouse, Dalton Trans., 2009, 965–972.
33 E. A. P. Armstrong, R. T. Brown, M. S. Sekwale, N. C. Fletcher, X.-Q. Gong and P. Hu, Inorg. Chem., 2004, 43, 1714–1722.
34 N. C. Fletcher, C. Martin and H. J. Abrahams, New J. Chem., 2007, 31, 1407–1411.
35 N. C. Fletcher, M. Nieuwenhuyzen and S. Rainey, J. Chem. Soc., Dalton Trans., 2001, 2641–2648.
36 H. Pelletier and J. Kraut, Science, 1992, 258, 1748–1755.
37 A. Juris, S. Barigelletti, S. Campagna, V. Balzani, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85–277.
38 E. Mochan and P. Nicholls, Biochim. Biophys. Acta, Bioenerg., 1972, 267, 309–319.