Vibrio vulnificus VvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells

S-J Lee¹, YH Jung¹, SY Oh¹, EJ Song¹, SH Choi² and HJ Han*¹

The Gram-negative bacterium Vibrio vulnificus produces hemolysin (VvhA), which induces cytotoxicity in mammalian cells. However, our understanding of the cytotoxic mechanism and the modes of action of VvhA are still fragmentary and incomplete. The recombinant protein (r) VvhA (50 pg/ml) significantly induces necrotic cell death and apoptosis in human intestinal epithelial (INT-407) cells. The apoptotic cell death induced by rVvhA is highly susceptible to the sequestration of cholesterol by methyl-β-cyclodextrin, whereas for necrotic cell death, this shows a marginal effect. We found that rVvhA induces the aggregation of lipid raft components coupled with NADPH oxidase enzymes, in which rVvhA increased the interaction of NADPH oxidase 2 (NOX2, gp91phox) with a cytosolic protein NCF1 (p47phox) to facilitate the production of reactive oxygen species (ROS). rVvhA uniquely stimulated a conventional PKC isoform PKCa and induced the phosphorylation of both ERK and JNK, which are responsible for the activation of transcription factor NF-κB. rVvhA induced an NF-κB-dependent imbalance of the Bcl-2/Bax ratio, the release of mitochondrial cytochrome c, and caspase-3/9 activation during its promotion of apoptotic cell death. In addition, rVvhA has the ability to inhibit the expression of cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, and cyclin E. These results demonstrate that rVvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production by the distinct activation of PKCa and ERK/JNK in intestinal epithelial cells.

Received 10.11.14; revised 07.1.15; accepted 07.1.15; Edited by A Stephanou

Cell Death and Disease (2015) 6, 1655; doi:10.1038/cddis.2015.19; published online 19 February 2015

Intestinal epithelial cell death is a host defense response that eliminates damaged cells as well as pathogens to maintain gut homeostasis.¹ However, many bacterial pathogens eventually elicit epithelial cells death and disrupt the gut barrier function to propagate persistent bacterial colonization.²⁻⁵ Vibrio vulnificus is a food-borne pathogenic bacterium that causes septicemia, necrotizing wound infections, or gastroenteritis.⁶ Many secreted and cell-associated virulence factors of V. vulnificus have been shown to induce fulminating and destructive actions in animal tissues.⁷ Among the secreted virulence factors of V. vulnificus, cytolytic pore-forming hemolysin (VvhA)⁸ and multifunctional autoprocessing RTX (MARTXVv)⁹ have been shown to promote intestinal colonization, which can be responsible for the death of the host during bacterial infection. Despite the functional role of the MARTXVv, which has been thoroughly studied owing to its significant contribution to mouse lethality studies, the mechanism of the cytotoxicity of VvhA remains a topic of much debate. VvhA is a 51-kDa water-soluble pore-forming toxin that has been shown to induce cytotoxicity through oligomerization at cholesterol-enriched membrane domains known as lipid rafts.¹⁰,¹¹ However, it has been reported that lipid rafts may not be involved in the cytotoxicity of VvhA.¹² Thus the cytotoxic mechanism of VvhA and how it acts with regard to lipid rafts remain controversial and vaguely understood issues.

Apoptosis is a cell death mechanism accompanied by a highly complex cellular events mediated by the caspase cascade that results in chromatin condensation, DNA fragmentation, cytoplasmic membrane blebbing and cell shrinkage.¹³ In contrast, necrosis is associated with caspase-independent inflammation characterized by membrane rupture, nuclear swelling, and the release of cellular contents.¹⁴ Bacterial pathogens can induce apoptosis and/or necrosis by a variety of direct and indirect mechanisms and eventually disturb a fine balance between apoptosis and necrosis that may be a key element in the development of some diseases.¹⁵ Given that VvhA has the ability to induce two general modes of cell death, apoptosis¹⁶ and necrosis,¹⁷ it is important to know how VvhA selectively regulates apoptosis and necrosis in determining the mode of host cell death.

Many enteric bacterial pathogens such as Salmonella typhimurium,²,³ Helicobacter pylori,⁴ and Enteropathogenic Escherichia coli (EPEC)⁵ are known to induce apoptosis through unique cellular mechanisms that regulate intrinsic/
extrinsic environmental factors, such as oxidative stress, the mitogen-activated protein kinase (MAPK) signaling pathway, mitochondrial damage, and caspase-3 activation. Membrane lipid rafts are another important element in the initiation of many apoptotic signaling pathways, having a main role in the interaction between bacterial pathogens and hosts.\(^{18,19}\) Emerging evidence has shown that lipid rafts form unique functional redox signaling platforms that are responsible for the production of reactive oxygen species (ROS) via the clustering of the NADPH oxidase (NOX) family in promoting apoptotic cell death.\(^{20–22}\) Although VvhA is also known to induce apoptosis via ROS production in several cells, our understanding of the apoptotic mechanism and the modes of action of VvhA during intestinal infection remains fragmentary and incomplete. In this study, therefore, we investigate both the role of VvhA in promoting the cell death of intestinal epithelial cells and related signaling pathways.

Results

VvhA induces apoptotic cell death as well as necrosis. To find the cytotoxic mechanism of VvhA, human intestinal epithelial (INT-407) cells were exposed to various concentrations (0–200 pg/ml) of rVvhA for 2 h. rVvhA significantly induced cytotoxicity of INT-407 cells from 50 to 200 pg/ml, compared with the cells with no treatment (Figure 1a). An increase in cytotoxicity was observed after 2 h of incubation with 50 pg/ml of rVvhA (Figure 1b). In addition, 50 pg/ml rVvhA was able to induce cytotoxicity for most population of cells (~90%) at 24 h (Supplementary Figure S1). The results after the \(^{3}H\)thymidine incorporation of INT-407 cells also showed that 50 pg/ml of rVvhA significantly attenuated the level of DNA synthesis, compared with the vehicle (Figure 1c). In addition, flow cytometric analysis showed that rVvhA significantly induced the necrotic cell death (a 3.9±0.2-fold increase compared with the vehicle) as well as apoptosis (a 8.7±0.4-fold increase compared with the vehicle) of INT-407 cells (Figure 1d), suggesting that rVvhA might have distinct pathways to induce cell death. We further confirmed the apoptosis/necrosis-promoting effect of rVvhA by using another reagent that monitors the apoptotic cells with phosphatidylserine marker as well as the necrotic cells with 7-aminoactinomycin D (7-AAD), which has a strong affinity for GC-rich regions of DNA. As shown in Supplementary Figure S2, we found that rVvhA is able to induce apoptosis as well as necrosis. Consistent with the results of the flow cytometric analysis, rVvhA was essential for triggering the apoptotic cell death rather than the necrosis. This result suggests that the functional role of rVvhA to induce cell death is reproducible in different assays. Cholesterol has been thought to be one of the cellular receptors of VvhA.\(^{11}\) To confirm the structural importance of membrane lipid rafts in the rVvhA-mediated signaling pathway, we employed the lipid raft sequester methyl-\(\beta\)-cyclodextrin (M\(\beta\)CD), which is known to deplete cholesterol from the cell membrane. Interestingly, M\(\beta\)CD has relatively more inhibitory potency on the apoptotic cell death (a 91±8% decrease compared with the rVvhA alone) than the necrotic cell death (a 34±9% decrease compared with the rVvhA alone) (Figure 1e), suggesting that rVvhA in acting through lipid raft is essential for triggering the apoptotic cell death rather than the necrosis.

Involvement of a lipid raft and NOX2-mediated ROS production in apoptotic cell death. To know how VvhA mediates apoptosis via lipid raft signaling, we determined the effect of rVvhA on the membrane location of caveolin-1 and flotillin-2, which are the major markers of lipid rafts, by means of discontinuous sucrose-density-gradient centrifugation. Figure 2a shows that caveolin-1 and flotillin-2 were detected in fractions 4 and 5. Interestingly, the cells treated with rVvhA induced recruitment of caveolin-1 and flotillin-2 into fraction 5, suggesting that rVvhA regulates cellular location of caveolin-1 and flotillin-2. Moreover, the subunits of NADPH oxidases (NOX) enzymes, NOX2 (gp91\(^{poph}\)) and NCF1 (p47\(^{phox}\)), were highly enriched in the fractions 9–12. However, rVvhA treatment resulted in translocations of NOX2 and NCF1 into fractions 5–8, including lipid rafts. The effect of rVvhA on the membrane location of caveolin-1 was further visualized by staining the caveolin-1 and lipid raft marker molecule, cholera toxin subunit B (CTB). As shown in Figure 2b, rVvhA significantly increased the co-localization of CTB with caveolin-1. In addition, we found that NOX2 co-immunoprecipitated with NCF1 as well as caveolin-1, and importantly, that the interaction with NCF1 and caveolin-1 was enhanced by the rVvhA treatment, suggesting that rVvhA induces clustering of lipid raft molecules and NOX enzymes (Figure 2c). In addition, a significant increase in the ROS level appeared after incubation with 50–200 pg/ml for 30 min compared with the vehicle alone (Figure 2d). The increase in ROS production was augmented between 30 and 180 min after incubation with 50 pg/ml of rVvhA (Figure 2e). To clarify the involvement of lipid rafts in rVvhA-mediated ROS production, cells were pretreated with a M\(\beta\)CD or an antioxidant, N-acetylcysteine (NAC). As shown in Figure 2f, the production of ROS by rVvhA was significantly blocked by the treatment with M\(\beta\)CD as well as NAC. Increased levels of ROS after treatment with 50 pg/ml of rVvhA were visualized by staining INT-407 cells with a fluorescent dye, 2,7’-dichlorofluorescein diacetate (DCF-DA) (Figure 2g). However, a pretreatment with M\(\beta\)CD or NAC significantly blocked the ROS production induced by rVvhA. In addition, NAC has relatively more inhibitory potency on the apoptotic cell death (a 78±11% decrease compared with the rVvhA alone) than the necrotic cell death (a 39±8% decrease compared with the rVvhA alone) (Figure 2h).

Essential role of protein kinase C (PKC) in apoptosis. ROS have an important role as signal messengers in regulating cellular functions through the activation of PKC.\(^{23}\) We found that rVvhA significantly induces PKC phosphorylation between 30 and 60 min (Figure 3a). In addition, Figure 3b showed that rVvhA stimulated membrane (M) translocation of PKCo from cytosol (C) compartment in the INT-407 cells treated with 50 pg/ml of rVvhA for 30 min, whereas it did not have any effect on the other PKC isoforms such as PKCa and PKC\(\gamma\). The membrane translocation of PKCo was further confirmed by immunofluorescence staining in rVvhA-treated INT-407 cells (Figure 3c). In addition, knockdown of PKCo by
small interfering RNA (siRNA) showed inhibitory effect on cytotoxicity causing apoptosis (a 88 ± 2% decrease compared with the rVvhA alone) rather than necrosis (a 39 ± 6% decrease compared with the rVvhA alone) induced by rVvhA (Figure 3d). We also assessed the involvement of calcium influx during the apoptosis induced by rVvhA. As shown in Figure 3e, 50 pg/ml of rVvhA induced an increase in calcium influx [Ca^{2+}]i. A Ca^{2+} ionophore (A23187), which increases [Ca^{2+}]i, was used as a positive control to validate the results. Interestingly, the silencing of ROS with NAC significantly blocked the rVvhA-induced phosphorylation of PKCα (Figure 3f). These data suggest a functional role of PKCα in regulating rVvhA-mediated apoptosis.

Regulatory effect of VvhA on MAPK activation and nuclear factor-kappa B (NF-κB) phosphorylation. We then determined how rVvhA links to the activation of MAPKs, which are interesting candidates as downstream mediators of ROS and PKC in the regulation of apoptotic cell death. rVvhA increased the phosphorylation of extracellular
signal-regulated kinases (ERKs) between 15 and 60 min or c-Jun N-terminal kinase (JNK) at 60 min (Figure 4a) but did not affect the phosphorylation of p38 MAPK. A pretreatment with the ERK inhibitor PD98059 or JNK inhibitor SP600125 significantly blocked the cytotoxic effect of rVvhA, where PD98059 and SP600125 have more inhibitory potency on apoptotic cell death than a necrosis (Figure 4b). To provide more evidence of the involvement of ERK and JNK, we further studied whether knockdown of ERK1/2 and JNK regulates apoptotic/necrotic cell death in rVvhA-treated INT-407 cells (Supplementary Figure S3). Similar to the inhibitory effect of PD98059 and SP600125 on cytotoxic effect of rVvhA, silencing of ERK1/2 and JNK by siRNAs showed significant inhibitory effect on the apoptotic cell death rather than the necrotic cell death. In addition, the phosphorylation of ERK and JNK evoked by a treatment with rVvhA was markedly inhibited by knockdown of PKCα by siRNA (Figure 4c). These data represent an evidence that the phosphorylation of ERK and JNK is regulated by the activation of PKC, as required for induction of apoptosis.
We further examined the role of rVvhA in activation of NF-κB, which is a direct transcriptional target for apoptotic signaling pathway. As shown in Figure 4d, NF-κB phosphorylation increased between 60 and 120 min after incubation with 50 pg/ml of rVvhA.

The increased accumulation of NF-κB phosphorylation in the nucleus was further confirmed by immunofluorescence staining and counter-labeling with propidium iodide (PI) (Figure 4e). Pretreatment with the ERK inhibitor PD98059 and JNK inhibitor SP600125 significantly blocked rVvhA-induced phosphorylation of NF-κB (Figure 4f). In addition, knockdown of NF-κBp65 by siRNA also showed significant inhibitory effect on the apoptotic cell death rather than the necrotic cell death (Figure 4g).

Regulatory effect of VvhA on mitochondria-mediated apoptotic cell death. To further elucidate the rVvhA-induced apoptosis, INT-407 cells were exposed to 50 pg/ml of rVvhA for 3 h. rVvhA decreased Bcl-2 expression but increased Bcl-2-associated X protein (Bax) expression, suggesting that rVvhA treatment altered the balance of Bcl-2/Bax in a time-dependent manner (Figure 5a). In addition, rVvhA induced decrease in Bcl-2 and increase in Bax were reversed by knockdown of NF-κBp65 by siRNA (Figure 5b) or pretreatment with inhibitors for ERK (PD98059) or JNK (SP600125) (Figure 5c). Moreover, rVvhA induced cytochrome c release from mitochondria to cytosol (Figure 5d), which was inhibited by silencing of NF-κBp65 by siRNA (Figure 5e), suggesting the involvement of NF-κB at a key step of mitochondrial apoptosis during rVvhA treatment. Consistent with these results, rVvhA stimulated the expression of caspase-9 and cleaved caspase-3 cleavages (Figure 5f), which were blocked by knockdown of NF-κBp65 by siRNA (Figure 5g) or pretreatment with the inhibitors of ERK (PD98059) or JNK (SP600125) (Figure 5h). Additionally, INT-407 cells were exposed to 50 pg/ml of rVvhA for 2 h to confirm the effects of rVvhA on the expression of cell cycle-related proteins. rVvhA treatment yielded significant decreases in cell cycle-related proteins.
in the level of CDK2 and CDK4 expression (Figure 5i) as well as cyclin D1 and cyclin E expression (Figure 5j) in a time-dependent manner. We have further addressed whether p53 and Akt activation is involved in apoptotic signaling pathway induced by rVvhA. Knockdown of p53 by siRNA did not show any significant effect on apoptotic/necrotic cell death in rVvhA-treated INT-407 cells (Supplementary Figure S4A). In addition, rVvhA did not regulate phosphorylation of Akt as well as p53 expression (Supplementary Figure S4B), suggesting that rVvhA may have unique signaling pathway to regulate mitochondria-mediated apoptotic cell death.

Discussion

In this study, we present new findings showing that rVvhA has the ability to induce cytotoxicity mainly via an apoptotic mechanism, through which rVvhA induces the aggregation of lipid raft molecules coupled with NOX2 to stimulate the ROS-dependent phosphorylation of PKCα/ERK/JNK, which is responsible for the activation of the NF-κB pathway. First, we show that rVvhA is the relevant cytolysin in promoting the apoptosis pathway via lipid rafts. This result is in contrast to a previous report, which revealed that the effect of VvhA in promoting cytotoxicity is independent of the action of lipid
rafts. Although the discrepancy with regard to the functional role of rVvhA may be due to differences in the concentration of the treated rVvhA, the cell types, and/or the experiment conditions, our data revealed that lipid rafts aggregation is clearly involved in rVvhA-induced apoptosis, whereas the functional role of lipid rafts in necrotic cells induced by rVvhA was relatively weak, suggesting that rVvhA acting through lipid rafts has a selective effect on apoptosis. In fact, it has been shown that the cytotoxic mechanism of rVvhA in endothelial, gastric, and hepatoma cells is closely related to its ability to induce apoptotic cell death. In addition to rVvhA, many studies have reported that several enteric bacterial pathogens, including H. pylori vacuolating toxins and the enterotoxin Clostridium perfringens, may interact with a detergent-resistant cellular membrane (DRM) composed of relatively abundant cholesterol, using the lipid rafts as an initial attachment platform and therefore having a cytotoxic effect on intestinal physiological functions. Therefore, our results indicate that rVvhA may also interact with lipid rafts in a similar manner.

Figure 5 Regulatory effect of VvhA on mitochondria-mediated apoptotic cell death. (a) INT-407 cells were incubated in the presence of rVvhA (50 pg/ml) for various times (0–180 min) and then harvested. Total protein was extracted and blotted with Bcl-2 and Bax antibodies. Error bars represent the means ± S.E. (n = 4). *P < 0.05 versus 0 min. INT-407 cells were (b) transfected with siRNA for NF-αBp65 or (c) pretreated with inhibitors of ERK (PD98059, 10 μM) and JNK (SP600125, 10 μM) prior to rVvhA (50 pg/ml) exposure for 120 min. The expression of Bcl-2 and Bax was shown. Error bars represent the means ± S.E. (n = 4). *P < 0.01 versus nt siRNA+C (boiled rVvhA, 200 pg/ml) or Cont (boiled rVvhA, 200 pg/ml). p < 0.01 versus nt siRNA+rVvhA or rVvhA. (d) INT-407 cells were incubated in the presence of rVvhA (50 pg/ml) for various times (0–120 min) and then isolated to cytosol and mitochondria fractions. COX IV and β-actin were used internal control for mitochondria and cytosolic fractions, respectively. Error bars represent the means ± S.E. (n = 5). *P < 0.05 versus 0 min. (e) INT-407 cells transfected with siRNAs for non-targeting (nt) and control (NF-αBp65 siRNA) were incubated in the presence of rVvhA (50 pg/ml) for 120 min. The expression of cytochrome c was shown. Error bars represent the mean ± S.E. (n = 4). *P < 0.01 versus nt siRNA+C (boiled rVvhA, 200 pg/ml). p < 0.01 versus nt siRNA+rVvhA. (f) INT-407 cells were incubated in the presence of rVvhA (50 pg/ml) for various times (0–120 min), and then total protein was extracted. The expression of Caspase-9 and Cleaved Caspase-3 were confirmed by western blotting with Caspase-9 and Cleaved Caspase-3 antibodies. Error bars represent the means ± S.E. (n = 4). *P < 0.01 versus nt siRNA or C (boiled rVvhA, 200 pg/ml). p < 0.01 versus nt siRNA+rVvhA. (g) INT-407 cells were transfected with siRNA for NF-αBp65 (g) or pretreated with inhibitors of ERK (PD98059, 10 μM) and JNK (SP600125, 10 μM) (h) prior to rVvhA (50 pg/ml) exposure for 120 min. The expression of Caspase-9 and Cleaved Caspase-3 was shown. Error bars represent the means ± S.E. (n = 4). *P < 0.01 versus nt siRNA+C (boiled rVvhA, 200 pg/ml) or Cont (boiled rVvhA, 200 pg/ml). p < 0.01 versus nt siRNA+rVvhA or rVvhA. INT-407 cells were incubated in the presence of rVvhA (50 pg/ml) for various times (0–120 min) and then harvested. Total protein was extracted and blotted with (i) CDK2 and CDK4 antibodies as well as (j) cyclin D1 and cyclin E antibodies. Error bars represent the means ± S.E. (n = 4). *P < 0.05 versus 0 min. ROD, relative optical density.
here suggest that lipid rafts are a functional mediator that initiates the virulence effect of rVvhA to induce apoptotic cell death.

Increasing evidence has suggested that lipid rafts are clustered to form a redox signaling platform through gp91phox (NOX2) coupling with cytosolic factors that include p47phox (NCF1), p67phox (NCF1), and small GTPase Rac120–22 and that these processes subsequently produce superoxides and other ROS.20 These ROS may be either direct or indirect mediators of intracellular signaling cascades that, among other actions, may induce the collapse of the mitochondrial membrane potential and trigger a series of mitochondria-associated events, including apoptosis. Although, in most cell types, mitochondrial ROS are thought to be the largest contributor to intracellular ROS production,27 our result showed that the sequestration cholesterol by MβCD attenuates intracellular ROS production and apoptosis induced by rVvhA. Hence, this finding further indicates that the epithelial ROS are generated by NADPH oxidase within lipid rafts and that this is initially associated with mitochondrial damage, resulting in the production of mitochondrial ROS and thereby contributing to increased total intracellular ROS generation for apoptosis.

We also showed that rVvhA induces an influx of Ca^{2+} on PKC activation, in that PKC is required for ROS production to induce apoptosis. Many pathogens have been shown to evoke the mobilization of Ca^{2+}, leading to cytotoxic and myotoxic effects.28 Indeed, multifunctional autoprocessing RTX from V. vulnificus has the ability to regulate Ca^{2+} signaling during programmed cell death.29 In addition, we and others have suggested that multiple signaling processes, such as those acting through the Ca^{2+} and PKC pathways, were rapidly activated in target cells through ROS30–32 and that these pathways are linked to bacterial stratagems to modulate the host signaling pathway.33 Interestingly, rVvhA uniquely activates conventional PKCα in PKC isoforms in INT-407 cells. Although novel PKCε activation was found to require the apoptosis induced by bacterial lipopolysaccharide,34 many studies have established a critical role of conventional PKCα in apoptotic process during infection of EPEC or C. perfringens.20 Particularly, PKCα activation in response to EPEC infection appears to be involved in impairing intestinal barrier function as well as causing apoptotic cell death in the host.36,37 Hence, our results suggest that rVvhA has a pivotal role in Ca^{2+}-dependent PKCα activation via ROS generation compounded by the recruitment of lipid rafts in intestinal epithelial cells. Interestingly, our results revealed that PKCα is a unique downstream event of the rVvhA-evoked mitochondrial apoptotic pathway accompanying the cleavage of caspase-9 and caspase-3. The translocation of Bax into the mitochondria is known to induce oligomer formation and mitochondrial membrane permeabilization, facilitating the release of mitochondrial cytochrome c as well as binding of caspase-activating proteins to procaspase-9 that are necessary for the processing and activation of downstream caspase activation.38,40 Interestingly, other pore-forming alpha toxin from Staphylococcus aureus has been shown to induce massive necrosis without having apoptotic process,39 while EPEC was shown to disrupt the mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis.40 Thus these results imply that VvhA is a unique pore-forming toxin that has the ability to stimulate mitochondrial apoptotic pathway in intestinal epithelial cells. In support of rVvhA-mediated apoptotic signal pathways, our results also elucidate the potential role of rVvhA in the inhibition of the expression of cell-cycle-related proteins. It is not clear whether these additional effects of rVvhA in promoting apoptotic cell death are a sequential result of mitochondrial cell death or, alternatively, an independent process involving other cellular signaling events. However, it is clear that these signs of apoptosis are closely related to the cell cycle blockade. Thus our results indicate that rVvhA stimulates mitochondrial cell death by decreasing the expression of CDK2/4 and cyclin D1/E.
Collectively, our results suggest that rVvhA induces NF-κB-dependent mitochondrial cell death via the production of lipid raft-dependent ROS. Thus highlighting the signaling pathways involved in the rVvhA-stimulated apoptosis pathway may provide potential targets for strategic modulations during V. vulnificus infections. In conclusion, rVvhA acting on lipid rafts induces NOX2-mediated ROS production, with this being necessary for PKC/ERK/JNK activation in intestinal epithelial cells. It thereby stimulates the NF-κB-mediated Bcl-2/Bax imbalance to facilitate the cytochrome-c-mediated caspase-9/-3 activation in promoting mitochondrial cell death.

Materials and Methods

Materials. Fetal bovine serum (FBS) was purchased from BioWhittaker Inc. (Walkersville, MD, USA). The following antibodies were purchased: p-PKC, caspase-9, cyclin D1, cyclin E, CDK2, CDK4, cleaved caspase-3, p53, and PKC antibodies (from Cell Signaling Technology, Danvers, MA, USA); NOX2 antibody (from BD Biosciences, Franklin Lakes, NJ, USA); NCF1 antibody (from LifeSpan Biosciences, Seattle, WA, USA); p-ERK1/2, ERK, p-JNK, JNK, p-p38, p38, p-NF-κBp65, NF-κBp65, p-AKT, AKT, β-actin, pan-cadherin (Pan-cad), PKCα, PKCβ, PKCγ, Bcl-2, and Bax antibodies (from Santa Cruz Biotechnology, Paso Robles, CA, USA); and horseradish peroxidase (HRP)-conjugated goat anti-rabbit and goat anti-mouse immunoglobulin G (from Jackson Immunoresearch, West Grove, PA, USA). 2′, 7-dichlorofluorescein diacetate (CM-H2DCFDA) was obtained from Invitrogen (Carlsbad, CA, USA). A23187, MβCD, NAC, P388D1, P388D1/SW41 Rotor (Beckman Coulter, Fullerton, CA, USA) to result in pKS1201 (Supplementary Table S2).

Purification of the recombinant protein (r) VvhA. To find the functional role of VvhA in INT-407 cells, we have prepared a recombinant protein of VvhA (rVvhA). The oligonucleotides were designed using the GenBankTM accession number CP002469 and CP002470, www.ncbi.nlm.nih.gov. Briefly, the open reading frame of VvhA (rVvhA) was amplified by PCR using a pair of primers for VvhA (Supplementary Table S1) and cloned into a His6-tag expression vector, pET29a(+) (Novagen, Madison, WI, USA) to achieve pKS1201. The pKS1201 was grown in LB-ampicillin media at 37 °C until the cultures reached an OD600 of 0.8. The cultures were then the cells were centrifuged at 16,000 × g for 20 min at 4 °C. The cell pellets were resuspended by buffer A (30 mM Tris-Cl, pH 8.0, and 500 mM NaCl). For the cell suspensions were ultrasonicated. The crude cell extracts were centrifuged at 16,000 × g for 30 min at 4 °C, and the supernatant was collected and analyzed by 12% SDS-PAGE (Supplementary Figure S5).

siRNA transfection. Cells were grown to confluence in 100-mm dishes were used to prepare caveolin-rich membrane fraction. INT-407 cells grown to confluence in 96-well plates were synchronized by serum starvation for 24 h and then exposed to 50 pg/ml rVvhA for 24 h. After the incubation period, 1 μl of [methyl-3H]-thymidine (specific activity: 74 GBq/mmol, 2.0 Ci/mmol; Amersham Biosciences, Buckinghamshire, UK) was added to the cultures for 1 h at 37 °C. Cellular [3H]thymidine uptake was quantified by liquid scintillation counting of harvested cellular material (Wallac, Turku, Finland). All values were converted from absolute counts to percentages of control and reported as mean ± S.E. of triplicate experiments.

Flow cytometry. Cells were synchronized in the G0/G1 phase by culture in serum-free media for 24 h before incubation of rVvhA. The cell death of INT-407 cells was detected with an Annexin V and PI Staining Kit (BD Biosciences) according to the manufacturer’s instructions. Briefly, the cells were detached with 0.05% trypsin/ethylenediaminetetraacetic acid (EDTA), and 1 × 106 cells were resuspended with Annexin V-binding buffer (0.1 M 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES)/NaOH (pH 7.4), 1.4 M NaCl, 25 mM CaCl2). Then the cells were stained with Annexin V (25 μg/ml) and PI (125 ng/ml) and incubated for 15 min at room temperature in the dark. The sample was read by flow cytometry and analyzed using the CXP software (Beckman Coulter, Brea, CA, USA).

Apoptosis/necrosis detection. INT-407 cells grown to confluence in 96-well plates were synchronized in the G0/G1 phase by culture in serum-free media for 24 h before incubation of rVvhA. The cell death of INT-407 cells was detected with an Annexin V-staining detection kit (Abcam, Cambridge, MA, USA) according to the manufacturer’s instructions. Briefly, the cells were treated with Annexin V-FITC and propidium iodide (PI) according to the manufacturer’s instructions. The level of cell death was examined using a luminescence reader (Victor3; Perkin-Elmer, Waltham, MA, USA) and quantified by measuring absorbance at excitation and emission wavelengths of 490 and 525 nm for detection of Annexin V or excitation and emission wavelengths of 490 and 650 nm for detection of 7-AAD.

Immunoprecipitation. Interaction of NOX with NCF1 or caveolin-1 was analyzed by immunoprecipitation and western blotting. Cells were lysed with lysis buffer (1% Triton X-100 in 50 mM Tris–HCl pH 7.4 containing 150 mM NaCl, 5 mM

[3H]Thymidine incorporation. The [3H]thymidine incorporation experiments were performed as previously described by Brett et al. Briefly, INT-407 cells were synchronized by serum starvation for 24 h and then exposed to 50 pg/ml rVvhA for 24 h. After the incubation period, 1 μl of [methyl-3H]-thymidine (specific activity: 74 GBq/mmol, 2.0 Ci/mmol; Amersham Biosciences, Buckinghamshire, UK) was added to the cultures for 1 h at 37 °C. Cellular [3H]thymidine uptake was quantified by liquid scintillation counting of harvested cellular material (Wallac, Turku, Finland). All values were converted from absolute counts to percentages of control and reported as mean ± S.E. of triplicate experiments.

Flow cytometry. Cells were synchronized in the G0/G1 phase by culture in serum-free media for 24 h before incubation of rVvhA. The cell death of INT-407 cells was detected with an Annexin V and PI Staining Kit (BD Biosciences) according to the manufacturer’s instructions. Briefly, the cells were detached with 0.05% trypsin/ethylenediaminetetraacetic acid (EDTA), and 1 × 106 cells were resuspended with Annexin V-binding buffer (0.1 M 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES)/NaOH (pH 7.4), 1.4 M NaCl, 25 mM CaCl2). Then the cells were stained with Annexin V (25 μg/ml) and PI (125 ng/ml) and incubated for 15 min at room temperature in the dark. The sample was read by flow cytometry and analyzed using the CXP software (Beckman Coulter, Brea, CA, USA).

Apoptosis/necrosis detection. INT-407 cells grown to confluence in 96-well plates were synchronized in the G0/G1 phase by culture in serum-free media for 24 h before incubation of rVvhA. The cell death of INT-407 cells was detected with an Annexin V and PI Staining Kit (BD Biosciences) according to the manufacturer’s instructions. Briefly, the cells were treated with Annexin V-FITC and propidium iodide (PI) according to the manufacturer’s instructions. The level of cell death was examined using a luminescence reader (Victor3; Perkin-Elmer, Waltham, MA, USA) and quantified by measuring absorbance at excitation and emission wavelengths of 490 and 525 nm for detection of Annexin V or excitation and emission wavelengths of 490 and 650 nm for detection of 7-AAD.

Detergent-free purification of caveolin-rich membrane fraction. INT-407 cells grown to confluence in 100-mm dishes were used to prepare caveolin-enriched membrane fractions as described previously. Cells were washed twice with ice-cold PBS, scraped into 2 ml of 500 mM sodium carbonate (pH 11.0), transferred to a plastic tube, and homogenized with a Sonicator apparatus with ice-cold PBS, scraped into 2 ml of 500 mM sodium carbonate (pH 11.0), transferred to a plastic tube, and homogenized with a Sonicator apparatus with 490 and 525 nm for detection of Annexin V or excitation and emission wavelengths of 490 and 650 nm for detection of 7-AAD.
EDTA, 2 mM Na3VO4, 2.5 mM Na2PO4, 100 mM NaF, 200 mM microcystin lysine—arginine, and protease inhibitors). Cell lysates (400 μg) were mixed with 10 μg of each antibodies. The samples were incubated for 4 h, mixed with Protein A/G PLUS-agarose immunoprecipitation reagent (Pierce, Rockford, IL, USA) and then incubated for additional 12 h. The beads were washed four times, and the bound proteins were released from the beads by boiling in SDS-PAGE sample buffer for 5 min. Samples were analyzed by western blotting.

Western blotting analysis. Cells were harvested, washed twice with PBS, and lysed with buffer (20 mM Tris (pH 7.5), 1% SDS, 1 mM ethylene glycol tetracetic acid, 1% Triton X-100, 1 mg/ml aprotinin, and 1 mM phenylmethylsulfonyl fluoride) for 30 min on ice. The lysates were then cleared by centrifugation (22,500 × g for 4°C for 30 min). Protein concentration was determined by the Bradford method. Equal amounts of protein (20 μg) were resolved by 10% SDS-PAGE and transferred to a polyvinylidene fluoride membranes. The membranes were washed with Tris-buffer solution-Tween 20 solution (10 mM Tris-HCl (pH 7.6), 150 mM NaCl, and 0.05% Tween-20), blocked with 5% skim milk for 1 h, and incubated with appropriate primary antibody at 4°C overnight. The membrane was then washed and detected with a horseradish peroxidase-conjugated secondary antibody. The bands were visualized by enhanced chemiluminescence (Amersham Pharmacia Biotech Inc., Buckinghamshire, UK). The relative optical density of the bands was quantified using the Scion Imaging Software (Scion Image Beta 4.02, Frederick, MD, USA).

Confocal microscopy. INT-407 cells were fixed in 4% paraformaldehyde in PBS for 10 min at room temperature, permeabilized in 0.2% Triton X-100 in PBS for 5 min, and blocked in PBS containing 5% normal goat serum for 30 min at room temperature. Cells were then stained with primary antibody for overnight at 4°C. Following three washes with PBS, the cells were incubated with antibodies for caveolin-1, PKCα, and NF-κB or Alexa 488-conjugated CTB, counterstained with PI in PBS containing 1% (v/v) BSA, and washed three times for 10 min each with PBS. Samples were mounted on slides and visualized with an Olympus Fluoview 300 confocal microscope (Olympus, Tokyo, Japan) with ×400 objective.

Measurement of intracellular ROS production. CM-H2DCFDA (DCF-DA), which acts as a ROS-sensitive fluorophore, was used to detect the general ROS production. DCF-DA (10 μM) was added to cells, which were then incubated in the dark for 30 min at room temperature. Cells were then viewed using the Fluoview 300 confocal microscope (Olympus) with a ×200 objective for imaging, the fluorescence was excited at 488 nm, and the emitted light was observed at 515–540 nm. In order to quantify the intracellular ROS levels, the cells treated with DCF-DA were rinsed twice with ice-cold PBS and then scraped. A 100-μL cell suspension was loaded into a 96-well plate and examined using a luminescent (Vidro3; Perkin-Elmer) and a fluorescent plate reader at excitation and emission wavelengths of 485 and 535 nm, respectively.

Subcellular fractionation. Harvested cell pellets were mixed with buffer 1 (250 mM sucrose, 50 mM Tris-HCl, 5 mM MgCl2) in the presence of protease inhibitor cocktail (Pierce) and incubated for 10 min on an end-over-end shaker and centrifuged at 1000 × g for 10 min. The supernatants with cytosolic protein were transferred to ice-cold PBS and then scraped. A 100-μL cell suspension was loaded into a 96-well plate and examined using a luminescent (Vidro3; Perkin-Elmer) and a fluorescent plate reader at excitation and emission wavelengths of 485 and 535 nm, respectively.

Measurement of calcium influx. Changes in intracellular calcium concentrations were monitored using Fluo-3-AM that had initially been dissolved in DMSO. Cells in 35-mm diameter culture dishes were rinsed with a bath solution (140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 0.5 mM MgCl2, 10 mM glucose, 5.5 mM HEPES (pH 7.4)) and were then incubated in a bath solution containing 2 μM Fluo-3-AM for 40 min, rinsed, mounted on a perfusion chamber, and scanned at 1-s intervals using Olympus Fluoview 300 confocal microscope with ×300 objective. The fluorescence was produced by excitation at 486 nm, and the emitted light was observed at 515 nm. All analyses of calcium influx were processed in a single cell, and the results are expressed as the fluorescent intensity (F/F0), arbitrary unit, where F is fluorescence captured at a particular time and F0 is the initial fluorescence image captured.

Cytosol and mitochondria fractionation. Isolation of mitochondria from cultured INT-407 cells was performed by using the Mitochondria Isolation Kit (Thermo Fisher Scientific Inc., Rockford, IL, USA) according to the manufacturer’s instructions. Briefly, INT-407 cells were harvested, and 800 μl of mitochondria isolation reagent A containing the protease inhibitor was added. After addition of 10 μl of reagent B and 800 μl reagent C containing the protease inhibitor, they were centrifuged at 700 × g for 10 min at 4°C. The supernatant were centrifuged at 12,000 × g for 15 min at 4°C. The supernatant contains cytosolic fraction and the pellet contains the isolated mitochondria. For isolated mitochondria lysis, 100 μl of 2% CHAPS in Tris-buffer solution (25 mM Tris, 0.15 M NaCl (pH 7.2)) was added to the mitochondrial pellet. And then they were centrifuged at 12,000 × g for 2 min. The fractions were subjected to western blotting.

Statistical analysis. Results are expressed as means ± S.Es. All experiments were analyzed by ANOVA, followed, in some cases, by a comparison of treatment means with the control using the Bonferroni–Dunn test. Differences were considered statistically significant at P <0.05.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements. This research was supported by grants to both Hu Han and SH Cho from the Agriculture, Food and Rural Affairs Research Center Support Program, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

1. Ashida H, Ogawa M, Kim M, Mimuro H, Sasaiwaka C, Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 2012; 8: 36–45.
2. Paesold G, Guiney DG, Eckmann L, Kagnoff MF. Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. Cell Microbiol 2002; 4: 771–781.
3. Jones RM, Wu H, Wentrup C, Luo L, Collier-Hyams L, Neish AS. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 2008; 3: 233–244.
4. Ki MR, Lee HR, Goo MJ, Hong H, Do SH, Jeong DH et al. Differential regulation of ERK1/2 and p38 MAP kinases in VacA-induced apoptosis of gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 294: G635–G647.
5. Nougayrede JP, Donnenberg MS. Enteropathogenic Escherichia coli Esf1 is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell Microbiol 2004; 6: 1091–1111.
6. Hase CC, Finkelstein RA. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 1993; 57: 832–837.
7. Gulik PR, Bourdage KL, Starks AM. Molecular pathogenesis of Vibrio vulnificus. J Microbiol 2005; 43: 118–131.
8. Wright AC, Morris Jr., Jefferys JM, Heyward M, Linton LM, Kaper JB. Cloning of the cytotoxin-hemolysin gene of Vibrio vulnificus. Infect Immun 1985; 50: 922–924.
9. Lee JH, Kim MW, Kim BS, Kim SM, Lee BC, Kim TS et al. Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 2007; 45: 146–152.
10. Park JW, Jahng TA, Rho HW, Park BH, Kim NH, Kim HR. Inhibitory mechanism of Ca2+ on the hemolysin caused by Vibrio vulnificus cytotoxin. Biochem Biophys Acta 1994; 1194: 166–170.
11. Kim HR, Rho HW, Jeong MH, Park JW, Kim JS, Park BH et al. Hemolytic mechanism of cytotoxin produced from Vib. vulnificus. Life Sci 1993; 53: 571–577.
12. Sugiyama H, Kashimoto T, Ueno S, Ehara H, Kodama T, Iida T et al. Relationship between localization on cellular membranes and cytotoxicity of Vibrio vulnificus hemolysin. PLos One 2011; 6: e26018.
13. Hodonobory DM, Ahsain ZN, Yin XM, Milliman CL, Komorn J. Bel-2 functions in an antioxidant pathway to prevent apoptosis. Cell 2001; 75: 241–251.
14. Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sasaiwaka C, Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 2011; 195: 931–942.
15. Butler RE, Brodin P, Jiang J, Jiang MS, Robertson BD, Gicquel B et al. The balance of apoptotic and necrotic cell death in Microbatetum tuberculosis infected macrophages is not dependent on bacterial virulence. PLoS One 2012; 7: e47573.
16. Kwon KB, Yang YJ, Ryu DG, Rho HW, Kim JS, Park JW et al. Vibrio vulnificus cytotoxin induces superoxide anion-initiated apoptotic signaling pathway in human ECV304 cells. J Biol Chem 2001; 276: 47158–47163.
17. Jeong HG, Satchell KJ. Additive function of Vibrio vulnificus MARTX(V) and VvhA cytolsins promotes rapid growth and epithelial tissue necrosis during intestinal infection. PLoS Pathog 2012; 8: e1002581.

18. Tabei N, Yahi N, Fantrini J.Rafts and related glycosphingolipid-enriched microdomains in the intestinal epithelium: bacterial targets linked to nutrient absorption. Adv Drug Deliv Rev 2004; 56: 779–784.

19. Riethmuller J, Riehle A, Grassme H, Gubins E. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 2006; 1758: 2319–2417.

20. Li PL, Zhang Y, Yi F. Lipid raft redox signaling platforms in endothelial dysfunction. Biochim Biophys Acta 2005; 1728: G300–G307.

21. Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am J Physiol Heart Circ Physiol 2003; 284: H650–H612.

22. Wu WS, Wu JR, Hu CT. Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 2008; 27: 313–314.

23. Phan MW, Choi MJ, Lee JN, Park JW, Kim JS, Park BH et al. Vibrio vulnificus cytolsins in CPE/AE cells. Life Sci 2002; 70: 1923–1934.

24. Fassino S, Svatick D, Abbate-Daga G, Leombruni P, Amianto F, Stanci S et al. Anorectic family dynamics: temperament and character data. Compr Psychiatry 2004; 45: 114–120.

25. van der Goot FG, Harder T. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathological attack. Semin Immunol 2001; 13: 89–97.

26. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15: 411–421.

27. Monturol-Gross L, Flores-Diaz M, Pineda-Padilla MJ, Castro-Castro AC, Alape-Giron A. Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NF-κB activation. PLoS One 2014; 9: e86475.

28. Kim YR, Lee SE, Kang IC, Nam KI, Choi HE, Rhee JH. A bacterial RTX toxin causes programmed cell death through calcium-mediated mitochondrial dysfunction. J Infect Dis 2013; 207: 1406–1415.

29. Bai XC, Deng F, Liu AL, Zou WP, Wang Y, Ke ZY et al. Phospholipase C-γ1 is required for cell survival in oxidative stress by protein kinase C. Biochem J 2002; 363: 395–402.

30. Lee SH, Lee YJ, Han HJ. Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: involvement of MAPKs, NF-κB and HIF-1α. J Cell Physiol 2013; 222: 585–591.

31. Lee SH, Na SI, Heo JS, Kim MH, Kim YH, Lee MY et al. An arachidonic acid release by H2O2-mediated proliferation of mouse embryonic stem cells: involvement of Ca2+/PKC and MAPKs-induced EGFR transactivation. J Cell Biochem 2003; 90: 787–797.

32. Xiong C, Yang G, Kumar S, Aggarwal S, Leustik M, Snaed C et al. The lecitin-like domain of TNF protects from liposyringoinduced hyperpermeability in human pulmonary microvascular endothelial cells - a crucial role for protein kinase Cε inhibition. Vascul Pharmacol 2010; 52: 207–213.

33. Comalada M, Xu X, Valledor AF, Lopez-Lopez C, Pennington DJ, Celada A. PKCδ is involved in JNK activation that mediates LPS-induced TNF-α, which induces apoptosis in macrophages. Am J Phys Cell Physiol 2003; 285: C1215–C1245.

34. Crane JK, Veitana CM. Externalization of host protein cell protein C during enteropathogenic Escherichia coli infection. Cell Death Differ 2005; 12: 115–127.

35. Malladi V, Shankar B, Williams PH, Balakrishnan A. Enteropathogenic Escherichia coli outer membrane proteins induce changes in cadherin junctions of Caco-2 cells through activation of PKCε. Microbes Infect 2004; 6: 38–50.

36. Croken MA, Finlay BB. Molecular biology of Escherichia coli pathogenicity. Nat Rev Microbiol 2010; 8: 26–38.

37. Seo BN, Ryu JM, Yun SP, Jeon JH, Park SS, Oh KB et al. Delphinidin prevents hypoxia-induced mouse embryonic stem cell apoptosis through reduction of intracellular reactive oxygen species-mediated activation of JNK and NF-κB, and Akt inhibition. Apoptosis 2013; 18: 811–824.

38. Liddle DS, Huang F, Post JN, Reeger B, Wilsbacher J, Thomas JF et al. ERK nuclear translocation is dimerization-independent but controlled by the rate of phosphorylation. J Biol Chem 2010; 285: 3092–3102.

39. Chen BC, Lin WW, PKC- and ERK-dependent activation of IκB kinase by lipopolysaccharide: macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br J Pharmacol 2001; 134: 1055–1065.

40. Lindsay J, Esposito MD, Gilmore AP. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim Biophys Acta 2011; 1813: 532–539.

41. Lessene G, Czabator PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 2008; 7: 889–1000.

42. Czabator PE, Lessene G. Bcl-2 family proteins as therapeutic targets. Curr Pharm Des 2010; 16: 3132–3148.

43. Grimm T, Schneider S, Naschberger E, Huber J, Guenzl E, Kieser A et al. EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood 2005; 105: 3263–3269.

44. Wang T, Zhang X, Li JL. The role of NF-κB in the regulation of cell stress responses. Int Immunopharmacol 2002; 2: 1509–1520.

45. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis - the p33 network. J Cell Sci 2003; 116: 4077–1537.

46. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12: 440–450.

47. Sharpe JC, Arnott D, Yule RC. Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 2004; 1644: 107–113.

48. Li P, Nijenhuis D, Budhvardi P, Srinivasan SV, Ahmad M, Alnemri ES et al. Cytochrome c and死亡-dependent formation of Apaf-1-caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

49. Hillebrandt A, Pohl M, Bhard A. Staphylococcus aureus α-toxin. Dual mechanism of binding to target cells. J Biol Chem 1991; 266: 17195–17200.

50. Lee BC, Kim MS, Cho D, Choi SH, Kim TS. Co-culture supernatants from Vibrio vulnificus-infected H447 cells induce IL-8 production in intestinal epithelial cells: crucial role of V. vulnificus rflE. Int J Mol Med 2010; 26: 651–659.

51. Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS et al. Vibrio vulnificus rflE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 2006; 74: 3637–3643.

52. Lee JK, Lee NY, Han YS, Kim J, Lee KH, Park SJ. Functional characterization of the V. vulnificus protein of Vibrio vulnificus as an adhesin and its role in bacterial pathogenesis. Infect Immun 2010; 78: 2408–2417.

53. Park JH, Cho YJ, Chun J, Seok YJ, Lee JK, Kim KS et al. Complete genome sequence of Vibrio vulnificus M06-24/D. J Bacteriol 2011; 193: 2062–2063.

54. Brett CM, Washington CB, Ott RJ, Gutierrez MM, Giacomini KM. Interaction of nucleoside analogues with the sodium-nucleoside transport system in brush border membrane vesicles from human kidney. Pharm Res 1993; 10: 423–426.

55. Yun SP, Lee SJ, Jung YH, Han HJ. Galleria-stimulated motility of human umbilical cord blood-derived mesenchymal stem cells by downregulation of smad3-dependent collagen 3/5 upregulation of NF-κB-dependent fibroblastin/vitamin E expression. Cell Death Dis 2014; 5: e1049.

56. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)