Acute threshold dynamics of an epidemic system with quarantine strategy driven by correlated white noises and Lévy jumps associated with infinite measure

Yassine Sabbar 1 · Driss Kiouach 1 · S. P. Rajasekar 2

Received: 23 February 2022 / Revised: 11 May 2022 / Accepted: 16 May 2022 / Published online: 22 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Several studies have previously been conducted on the dynamics of probabilistic epidemic models driven by Lévy disorder. All of these works have used the Poisson counting process with finite Lévy measures. However, this scope disregards a considerable category of correlated Lévy jump processes governed by an infinite Lévy measure. In this research, we take into consideration this general framework applied to an epidemic model with a quarantine strategy. Under an appropriate hypothetical setting, we infer the exact threshold value between the ergodicity and the disease disappearance. Our analysis completes the work presented by Privault and Wang (J Nonlinear Sci 31(1):1–28, 2021) and puts forward a novel analytical aspect to deal with other stochastic models in several areas. As a numerical application, we implement the algorithm of Rosinski (Stoch Process Appl 117:677–707, 2007) for tempered stable Lévy processes with an infinite Lévy measure.

Keywords Stochastic analysis · Epidemic model · Lévy jumps · Ergodicity · Extinction · Lévy measure

Mathematics Subject Classification 37A50

1 Study background and problematic
Transmissible illness surveillance relies on analytical modeling and future forecasting as a key decision-making tool [1]. However, each illness is modeled and described by its own mode of transmission, so in each specific case, the selection of an appropriate method to adequately characterize disease dynamics is highly demanded [2]. In this regard, mathematical biology, especially through compartmental systems, is the most famous approach for obtaining an understandable view of the disease spread. Many of the mathematical models adopted in the study of epidemics are derived from the basic SIR system suggested by Kermack and McKendrick in 1927 [3]. From then on, diverse formulations of this model have been investigated by many researchers due to their theoretical and functional importance [4,5]. However, the mentioned epidemiological model is not sufficient to describe the mechanism of the spread of highly prevalent viruses such as COVID-19, and some hypotheses or strategies must be included. In fact, many individual public health measures have been practiced during the spread of the COVID-19 pandemic such as staying at home and maximizing physical distancing from others for better protection. By considering the application of the quarantine strategy and the impact of immune deterioration, in this study, we focus on an epidemic model with the following four classes:

1. susceptible class C_1, 2. infected class C_2, 3. quarantined class C_3, 4. recovered class C_4.

In this epidemic system, infected individuals may be isolated and evolve transitory resistance after infection, and recovered persons, with diminished immunity, come back to the susceptible class. The transfer rates between the above classes are characterized by this dynamical system:
Acute threshold dynamics of an epidemic system with… 123

Table 1: Definition of the positive parameters appearing in system (1.1)

Parameter	Epidemiological meaning
a	The flow into the host population C1
b	The prevalence rate between C1 and C2
\(\vartheta \)	The normal mortality rate of Ck, k = 1, 2, 3, 4
\(\vartheta_d \)	The disease-related mortality rate of C2
q	The quarantined rate of C2
c_2	The cure rate of C2
c_3	The cure rate of C3
h	The immune deterioration rate of C4

The immune deterioration rate of \(C_4 \) normally around its value, which is often expressed by perturbing some system parameters with white noises. The addition of these variations is considered to be one of the most logical and prominent ways of describing any real phenomenon under small and continuous fluctuations [38–40]. Unfortunately, this approach is insufficient to model the spread of disease under massive and sudden environmental disturbances, during some economic crises, or through the application of some human interventions (isolation and vaccination in the case of COVID-19 [41,42]). For this reason, we resort to the Lévy processes which are renowned for their ability to correctly formulate this type of randomness [43–51]. Inspired by the above facts and motivations, this study puts forward a stochastic formulation of the illness model (1.1) driven by Lévy jumps of the form:

\[
\begin{align*}
\text{Deterministic part} & : dC_1(t) = (a - bC_1(t) - bC_1(t)C_2(t) + hC_4(t))dt,
\text{Jumps-diffusion part} & : dC_1(t) = (a - bC_1(t) - bC_1(t)C_2(t) + hC_4(t))dt + \sum_{k=1}^{\infty} \int_{\mathcal{F}_k(t_\infty)} C_k(t_\infty) \delta_k(t) d\mathcal{F}_k(t).
\end{align*}
\]

where the positive constants \(a, b, \vartheta, \vartheta_d, q, c_2, c_3 \) and \(h \) are defined in Table 1.

In dealing with transmissible disease systems, one of the main goals is to determine the long-run behavior of the model. Analytically, it is shown that the asymptotic behavior of the deterministic model (1.1) depends on the sign of the expression \(\lambda_0 = \frac{ab}{\vartheta} - (\vartheta + \vartheta_d + q + c_2) \). Minutely,

- If \(\lambda_0 > 0 \), then the illness is continued in the population.
- If \(\lambda_0 < 0 \), then the illness dies out.

Predominantly, \(\lambda_0 \) can be rewritten as the basic reproduction number \(R_0 = \frac{ab}{(\vartheta + \vartheta_d + q + c_2)} \), and we can compare this ratio with the number 1 to assert the large time behavior of the deterministic system (1.1) [6].

As far as we know, environmental disturbances affect the spread of an epidemic and make it more difficult to predict its behavior [7–18]. In such situations, deterministic systems, while able to make very instructive predictions and forecasts, are not actually enough [19]. Hence, we need a developed and sophisticated mathematical model that takes into consideration the randomness effect, especially when studying the prevalence of a highly harmful infectious disease like COVID-19 [20–26]. In this vein, a large number of authors have suggested and evolved many stochastic models that describe the dynamic of many illnesses from various angles and prospects [27–37]. In all these works, the passage from the deterministic formulation to the probabilistic one is done by assuming that the solution of this first wiggles normally around its value, which is often expressed

\[
\begin{align*}
\text{Deterministic part} & : dC_1(t) = (a - bC_1(t) - bC_1(t)C_2(t) + hC_4(t))dt,
\text{Jumps-diffusion part} & : dC_1(t) = (a - bC_1(t) - bC_1(t)C_2(t) + hC_4(t))dt + \sum_{k=1}^{\infty} \int_{\mathcal{F}_k(t_\infty)} C_k(t_\infty) \delta_k(t) d\mathcal{F}_k(t).
\end{align*}
\]

where \(\mathcal{A}_k = (\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4) \) indicates the vector of the random process that describes the intensity of sudden events shocks. Here and elsewhere, \(C_k(t_\infty) \) \((k = 1, 2, 3, 4) \) are respectively the left limits of the Markov processes \(C_k(t) \) \((k = 1, 2, 3, 4) \). For the convenience of the reader and for a finer overview of the formulation of system (1.2), we introduce two categories of the process \(\mathcal{A}_k \).

- Jumps-diffusion with independent Brownian motions and finite Lévy measure:

In [52], the authors considered an SIQS model (a particular case of (1.1)) with the following stochastic process:

\[
\begin{align*}
\text{B.m. part} & : d\mathcal{A}_k(t) = m_k \mathcal{A}_k(t) dt + \int_{\mathcal{H}} \mathcal{J}(ds, dr),
\text{Jumps part} & : d\mathcal{A}_k(t) = m_k \mathcal{A}_k(t) dt + \int_{\mathcal{H}} \mathcal{J}(ds, dr), \quad (k = 1, 2, 3, 4),
\end{align*}
\]

where the positive constants \(m_1, m_2, m_3 \) and \(m_4 \) indicate the intensities of the independent Brownian motions (B.m.s) \(\mathbb{B}_1(t), \mathbb{B}_2(t), \mathbb{B}_3(t) \) and \(\mathbb{B}_4(t) \) defined on a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P}) \) such that \(\{\mathcal{F}_t\}_{t \geq 0} \) is an increasing, right continuous filtration and \(\mathcal{F}_0 \) includes all \(\mathbb{P} \)-null sets. \(\mathcal{N}_k \) is a Poisson measure which is independent of \(\mathbb{B}_k \) with a finite specific measure \(\chi \) defined on a measurable subdomain \(\mathcal{H} \subset \mathbb{R}^+ \setminus \{0\} \). \(\mathcal{J} \) is the compensator process with its
associated Lévy measure (L.m.) χ, where

$$J(t, du) = N_\chi(t, du) - t\chi(du).$$

The jumps magnitude functions $\vartheta_k : \mathcal{H} \to (-1, \infty)$ ($k = 1, 2, 3, 4$) are assumed to be continuous on \mathcal{H}.

Remark 1.1 The above-mentioned work offers the long-run characteristics of an SIQS epidemic system driven by jumps with independent B.M.s and a finite L.m. $\chi(\cdot) < \infty$. Nevertheless, this scope eliminates a special class of Lévy jump processes with two characteristics: the infinitude of Lévy measure χ and the interdependence between the random noise items of model (1.2).

Thoroughly, Lévy process increments driven by finite measures have partially-weighty tails, and they have limited potential to simulate radical and brutal phenomena which usually lead to unexpected variations in the total number of individuals [53]. In the next category, we present an alternative frame that considers a general L.m. and the relationship between B.m.s components.

- **Jumps-diffusion with general L.m. and correlated B.m.s**

In [54], Privault and Wang proposed a novel class of Lévy-jumps perturbation by considering a process $\hat{\mathcal{H}}$ with the associated Lévy–Khintchine formula $E[e^{\Phi(t)}] = e^{\phi(t, u)}$, where

$$\Phi(t) = ia_1 \hat{A}_1(t) + ia_2 \hat{A}_2(t) + ia_3 \hat{A}_3(t) + ia_4 \hat{A}_4(t),$$

$$\phi(t, u) = -0.5 t(a, \mathcal{M}a) + t \int_{\mathcal{H}} \left(e^{i(a, \vartheta(u))} - i[a, \vartheta(u)] - 1\right) \chi(du).$$

Here and elsewhere, we use the flowing notations and definitions:

- $a = (a_1, a_2, a_3, a_4) \in \mathbb{R}^4$.
- $\mathcal{M} = (m_{k,j})_{1 \leq k, j \leq 4}$ is a positive definite matrix.
- The Lévy intensities $\vartheta_k : \mathcal{H} \to \mathbb{R}_+ \setminus \{0\} \to \mathbb{R}$ ($k = 1, 2, 3, 4$) are continuous functions.
- χ verifies that $\int_{\mathcal{H}} \min \{(|\vartheta_k(u)|^2, 1)\} \chi(du) < \infty$, ($k = 1, 2, 3, 4$).

Motivated by the theory presented in [53] and [49], the authors in [54] expressed $\hat{\mathcal{H}}$ by

$$\hat{\mathcal{H}}_k(t) = \begin{cases} \mathbb{B}^m_k(t) & \text{General Lévy tails} \\ \mathbb{B}^m_k(t) + \int_0^t \int_{\mathcal{H}} \vartheta_k(u) \mathbb{I}(ds, du), (k = 1, 2, 3, 4). \end{cases}$$

Here, $\mathbb{B}^m = (\mathbb{B}^m_1, \mathbb{B}^m_2, \mathbb{B}^m_3, \mathbb{B}^m_4)$ is referring to a Gaussian process with the following hypotheses:

- \mathbb{B}^m has independent and stationary increments.
- The associated co-variance matrix of \mathbb{B}^m is donated by \mathcal{M}.
- \mathcal{N}_χ is independent of \mathbb{B}^m.

Furthermore, it is supposed that χ can be infinite or finite and the conveniences of $\hat{\mathcal{H}}$ are expressed by

$$E[\hat{\mathcal{H}}_k(t) \hat{\mathcal{H}}_j(t)] = m_{k,j} t + t \int_{\mathcal{H}} \vartheta_k(u) \vartheta_j(u) \chi(du), k, j = 1, 2, 3, 4.$$

Remark 1.2 In [54], Privault and Wang obtained sufficient criteria for the disease vanishing and its insistence in the case of SIR model with the second representation of \mathcal{H}. However, the ergodicity property has not been investigated due to some technical difficulties. It must be mentioned that the ergodicity is an important statistical property for random systems. In this survey, we properly deal with this question.

Specifically, this study exhibits a novel approach to treat the long-run of the perturbed model (1.2) with the representation (1.4). Under an appropriate hypothetical framework, we present the sufficient and necessary condition for ergodicity and extinction of the model. Based on some nice characteristics of an auxiliary equation with linear jump-diffusion, we establish the exact expression of the threshold \mathcal{R}_c. In other words, if $\mathcal{R}_c > 1$, then system (1.2) has a single ergodic stable distribution, and if $\mathcal{R}_c < 1$, then the illness will tend to disappearance exponentially. We mention that our proof to demonstrate the disease disappearance differs from that presented in [54].

As an instance where the proposed methodology is appropriate, we present and study numerically a robust class of tempered stable distributions. The discrete increments of tempered stable processes have power tails that are strongly applied in infinite Lévy measure cases [54]. In line with the survey presented in [53], the tempered α-stable Lévy measure is expressed as follows:

$$\chi(Y) = \int_{\mathcal{H}} e^{-\tau - \alpha - 1} \gamma^\alpha(\tau) \mathcal{A}(dy) d\tau,$$

$$\alpha \in (0, 2).$$

Here, $\mathcal{A}(\cdot)$ denotes a measure on \mathcal{H} such that $\int_{\mathcal{H}} \min \{||y||^2, \gamma^\alpha(\tau) \} \mathcal{A}(dy) < \infty$. We take $\mathcal{A}(dy) = \phi_-(dy) + \phi_+(dy)$, where $\phi_+ = \zeta_+ \theta_+^a \delta_{1/\theta_+} \delta_{-1/\theta_+} \delta_{-1/\theta_+} \delta_{1/\theta_+}$, $\phi_- = \zeta_- \theta_-^a \delta_{-1/\theta_-} \delta_{1/\theta_-} \delta_{1/\theta_-} \delta_{-1/\theta_-}$, for all $\zeta_-, \zeta_+, \theta_-, \theta_+ > 0$ and...
\[\delta_\tau \] is the Dirac mass measure at point \(\tau \) in \(\mathbb{R}^d \). From (1.5), we infer that the infinite measure \(\chi \) is rewritten as follows:

\[
\chi(\mathcal{Y}) = \int_{\mathbb{R}_+} \psi_+ e^{-\tau} \alpha - 1 d\tau + \int_{\mathbb{R}_+} \psi_- e^{-\tau} \alpha - 1 d\tau,
\]

where \(\psi_+ = \zeta_+ \mathcal{Y}(\tau/\theta_+, \tau/\theta_+, \tau/\theta_+, \tau/\theta_+) \) and \(\psi_- = \zeta_- \mathcal{Y}(\tau/\theta_-, \tau/\theta_-, \tau/\theta_-, \tau/\theta_-) \).

The assumptions \(H_2 \) and \(H_4 \) mean biologically that the intensity of Lévy jumps cannot exceed the environmental carrying capacity.

The next consequence guarantees the well-posedness of the model (1.2) with the representation (1.4).

Lemma 2.1 Under the hypotheses \(H_1 \) and \(H_2 \), the probabilistic system (1.2) is well posed.

By the approach used in [43], we can easily prove that for any positive initial data \(C_0 = (C_1(0), C_2(0), C_3(0), C_4(0)) \), there corresponds one and only one global solution \(C = (C_1(t), C_2(t), C_3(t), C_4(t)) \in \mathbb{R}_+^4 \) of the model (1.2) on \(t \geq 0 \).

Now and based on the positivity of the solution \(C \), we give an estimate of the total class \(T_C(t) = \sum_{k=1}^{4} C_k(t) \).

Lemma 2.2 Let hypotheses \(H_1, H_2, H_3 \) hold and let \(C \) be the solution of (1.2) with initial value \(C_0 \in \mathbb{R}_+^4 \), then for any \(p > 1 \) such that \(\Theta > 0 \), it holds that

\[
\lim_{t \to \infty} \sup_{s \geq 0} t^{-1} \int_0^t \mathbb{E}[(1 + T_C(s))^{2p}] ds \leq \frac{2p\Gamma}{\gamma},
\]

where \(\rho \in (0, 2p\Theta) \) and \(\Gamma = 1 + \sup_{x \geq 0} \left\{ x^{2p-2}\left(-\left(\Theta - \frac{\gamma}{2p}\right)x^2 + \left(a - \Theta + \frac{\gamma}{p}\right)x + a + \frac{\gamma}{2p} \right) \right\} \).

The above result can be proved using an analysis analogous to that of the proof of Lemma 2.2. in [2].

Lemma 2.3 Let hypotheses \(H_1, H_2, H_3, H_4 \) hold and let \(C_0 \) be a given positive value. If \(C \) indicates the unique solution of model (1.2) that begins from \(C_0 \), then

1. \(\lim_{t \to \infty} \frac{C_k(t)}{t} = 0 \) a.s. \(k = 1, 2, 3, 4 \).
2. \(\lim_{t \to \infty} t^{-1} \int_0^t C_k(s) d\mathbb{E}_k^b(s) = 0 \) a.s. \(k = 1, 2, 3, 4 \).
3. \(\lim_{t \to \infty} t^{-1} \int_0^t \int_{\mathcal{H}} \vartheta_k(u) C_k(s-) J(ds, du) = 0 \) a.s. \(k = 1, 2, 3, 4 \).

By employing the method presented in [44] and Kunita’s inequality [55], we can readily demonstrate the above Lemma. A detailed proof is presented in [54] (see Lemmas 2.2, 2.3 and 2.5).

To deal with the new stochastic system (1.2), we propose an alternative method based on a second system very close to the equation of the total population \(T_C(t) \). This new auxiliary system characterizes the epidemic dynamics in limit conditions when the infection is absent. Keeping the same probabilistic part of \(T_C(t) \), the auxiliary system is expressed...
by the following boundary equation:

\[
\begin{aligned}
&\left\{ \begin{array}{l}
d\mathbf{D}(t) = (a - \partial \mathbf{D}(t))dt + \sum_{k=1}^{4} C_k(t-\cdot) \partial \mathbf{D}(t), \\
\mathbf{D}(0) = T_C(0) \in \mathbb{R}_+.
\end{array} \right.
\end{aligned}
\]

(2.1)

The stochastic system (2.1) is biologically well-posed and admits a unique positive solution \(\mathbf{D}(t)\). Moreover, \(\mathbf{D}(t)\) is a Markov process which satisfies nice analytical properties. As an example, we present the next lemma.

Lemma 2.4 Let \(H_1, H_2, H_3, H_4\) hold. Then, \(\lim_{t \to \infty} t^{-1} \int_0^t D(s)ds = 0\) a.s.

Proof By integrating (2.1) and using Lemma 2.3, we can effortlessly and directly prove this result. \(\Box\)

Remark 2.3 Via the probabilistic comparison theorem [56], we conclude that \(T_C(t) \leq D(t)\) for all \(t \in [0, \infty)\) a.s.

Different from the Hasminskii’s method, in this paper, we use the alternating limited possibilities lemma of Feller processes to get the sufficient and almost necessary criterion for the ergodicity of our system.

Lemma 2.5 (Alternately limited possibilities lemma, [57]) We consider a stochastic process \(\mathcal{G} \in \mathbb{R}^n\) that verifies the Feller property. Then, two possibilities are available:

1. A single ergodic stationary distribution exists, or
2. The following result is satisfied

\[
\lim_{t \to \infty} \sup_{\hat{\rho}} t^{-1} \int_0^t \int_{\mathbb{R}^n} \mathbb{P}(x; s, \hat{\rho}) \hat{\varnothing}(dx)ds = 0,
\]

(2.2)

for a given compact domain \(U \subset \mathbb{R}^n\), where \(\hat{\varnothing}\) is the initial distribution on \(\mathbb{R}^n\) and \(\mathbb{P}(x; s, \hat{\rho})\) stands for the probability of \(\mathcal{G}\) belongs to \(U\) with \(\mathcal{G}(0) = x \in \mathbb{R}^n\).

3 Threshold analysis: stationary distribution and extinction

As stated in the introduction, when analyzing a mathematical model that describes the spread of a particular illness, our main preoccupation is to know if it will end or will last. For this reason, we will prove that

\[
\mathcal{R}_c = \mathcal{R}_c - \frac{0.5m_{2,2} + \int_{\mathcal{H}} \left(\varnothing_2(u) - \ln \left(1 + \varnothing_2(u) \right) \right) \chi(du)}{\varnothing + \varnothing_2 + q + c_2},
\]

is the threshold among stationarity and extinction of the stochastic model (1.2) with the representation (1.4). But before doing so, let us first introduce the following assumption:

- \(H_5\): \(\int_{\mathcal{H}} \left(\ln \left(1 + \varnothing_2(u) \right) \right)^2 \chi(du) < \infty, k = 1, 2, 3, 4.\)

Theorem 3.1 Assume that \(H_1, H_2, H_3, H_4\) and \(H_5\) hold. The parameter \(\mathcal{R}_c\) is the sill of the stochastic model (1.2) with the representation (1.4). That is to say that,

1. If \(\mathcal{R}_c > 1\), then the stationarity and ergodicity of our model are verified.
2. If \(\mathcal{R}_c < 1\), then the illness dies out exponentially (rapidly) with probability one.

Biological interpretation 3.1. By Theorem 3.1, we show that:

1. The stationarity and ergodicity reveal that the stochastic model (1.2) has a limiting stable distribution that prophesies the continuation of the illness. That implies that the infected population perseveres for a long time.
2. The quantity \(\mathcal{R}_c\) contains linear random intensities, which are related to the infected class \(C_2\). This designates that if \(\mathcal{R}_c\) is strictly less than one, the stochastic fluctuations help to the inhibition of the illness.

Proof Analogous to the demonstration of (Lemma 3.2. in [58]), we can confirm the Feller property of the Markov process \(C\). In the next step, we prove that (2.2) is not verified for the system (1.2). Let \(G(t) = C_1(t)C_2(t)\) and apply Itô’s formula to function \(V(t) = \ln C_2(t) - \frac{b}{\varnothing} (D(t) - C_1(t))\), then

\[
dV(t) \geq \left(bD(t) - (\varnothing + \varnothing_2 + q + c_2) - 0.5m_{2,2} \\
- \int_{\mathcal{H}} \left(\varnothing_2(u) - \ln \left(1 + \varnothing_2(u) \right) \right) \chi(du) \right) dt \\
- \frac{b^2}{\varnothing} G(t) dt \\
+ dB^m(t) + \int_{\mathcal{H}} \ln \left(1 + \varnothing_2(u) \right) J(du, dr) \\
- \frac{b}{\varnothing} \sum_{k=2}^{4} C_k(t) dB_k^m(t) - \frac{b}{\varnothing} \sum_{k=2}^{4} \\
\int_{\mathcal{H}} \varnothing_2(u) C_k(t-\cdot) J(du, dr) \\
\geq \int_{\mathcal{H}} \varnothing_2(u) C_k(t-\cdot) J(du, dr).
\]

(3.1)

We integrate from 0 to \(t\) on both sides of (3.1), then we get

\[
V(t) - V(0) \geq \int_0^t bD(s)ds - (\varnothing + \varnothing_2 + q + c_2)t
\]
Let \(g(t) \) be given by

\[
\frac{\partial}{\partial t} \left(\ln (1 + g(t)) \right) + \frac{b}{2} \int_0^t G(s)\,ds + b^2 \int_0^t G(s)\,ds
\]

By employing the strong law of large numbers for martingale [55], Lemma 2.3 and hypothesis \(\mathbf{H}_5 \), we obtain

\[
\lim_{t \to \infty} t^{-1} f(t) = 0, \quad \text{a.s.}
\]

From Lemma 3.1 of [45], we conclude that \(\lim_{t \to \infty} t^{-1} \ln \frac{C_2(t)}{C_2(0)} \leq \lim_{t \to \infty} t^{-1} \ln \frac{C_0(t)}{C_0(0)} \leq 0 \) a.s. So,

\[
\lim_{t \to \infty} t^{-1} \int_0^t bG(s)\,ds \\
\geq \frac{b}{\theta} \left(\lim_{t \to \infty} t^{-1} \int_0^t bD(s)\,ds \\
+ \int_0^t \left(\frac{\partial}{\partial t} \left(\ln (1 + g(t)) \right) + \frac{b}{2} \int_0^t G(s)\,ds \right)\,du \right)
\]

To carry on with our proof, we need to consider the following subsets:

\[
S_1 = \{ (t, \omega) \in \mathbb{R}_+ \times \Omega | C_1(t, \omega) \geq \theta, \text{ and, } C_2(t, \omega) \geq \theta \},
\]

\[
S_2 = \{ (t, \omega) \in \mathbb{R}_+ \times \Omega | C_1(t, \omega) \leq \theta \},
\]

\[
S_3 = \{ (t, \omega) \in \mathbb{R}_+ \times \Omega | C_2(t, \omega) \leq \theta \},
\]

where \(\theta > 0 \) is a constant to be specified in the following. Therefore, we obtain

\[
\lim_{t \to \infty} t^{-1} \int_0^t \mathbb{E} \left[bG(s)1_{S_1} \right] \,ds \\
\geq -\limsup_{t \to \infty} t^{-1} \int_0^t \mathbb{E} \left[bG(s)1_{S_2} \right] \,ds \\
+ \liminf_{t \to \infty} t^{-1} \int_0^t \mathbb{E} \left[bG(s) \right] \,ds
\]

Consequently

\[
\lim_{t \to \infty} t^{-1} \int_0^t \mathbb{E} \left[bG(s)1_{S_1} \right] \,ds \\
\geq -\frac{2ab\theta}{\theta} + \frac{b}{\theta} (\theta + \theta + \epsilon)(\theta - 1).
\]
We can choose $\theta \leq \frac{\sigma^2}{4b^2a}(\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1)$, and then we have

$$\liminf_{t \to \infty} t^{-1} \int_0^t \mathbb{E}\left[bG(s) \mathbb{1}_{S_4} \right] ds \geq \frac{\theta}{2b} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1) > 0.$$ \hfill (3.3)

Let $p > 1$ such that $\Theta = \vartheta - (\frac{2p-1}{2}) \|m\|_\infty - \frac{2(2p)}{2p} > 0$ and q is given by $\frac{1}{q} + \frac{1}{p} = 1$. By employing the Young inequality [55], we get

$$\liminf_{t \to \infty} t^{-1} \int_0^t \mathbb{E}\left[bG(s) \mathbb{1}_{S_4} \right] ds \leq \liminf_{t \to \infty} t^{-1} \int_0^t E\left[(p^{-1}(\vartheta bG(s)) + q^{-1} q^{-q}) \mathbb{1}_{S_4} \right] ds \leq p^{-1}(\vartheta b)p \limsup_{t \to \infty} t^{-1} \int_0^t E\left[(1 + T_C(s))^{2p} \right] ds + \liminf_{t \to \infty} t^{-1} \int_0^t E\left[q^{-1} q^{-q} \mathbb{1}_{S_4} \right] ds,$$

where $q > 0$ is a constant verifying $q^p \leq \frac{\vartheta b^{-p+1}}{2\Gamma} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1)$. By Lemma 2.2 and (3.3), we conclude that

$$\liminf_{t \to \infty} t^{-1} \int_0^t \mathbb{E}\left[\mathbb{1}_{S_4} \right] ds \geq q^q \left(\frac{\theta}{2b} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1) - \frac{2\Gamma \vartheta b^p}{\vartheta} \right) \geq \frac{\theta q^q}{4b} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1) > 0.$$ \hfill (3.4)

Setting

$$S_4 = \{(t, \omega) \in \mathbb{R}_+ \times \Omega \mid C_1(t, \omega) \geq \zeta, \text{ or, } C_2(t, \omega) \geq \zeta\},$$

$$S^* = \{(t, \omega) \in \mathbb{R}_+ \times \Omega \mid \theta \leq C_1(t, \omega) \leq \zeta, \text{ and, } \theta \leq C_2(t, \omega) \leq \zeta\},$$

where $\zeta > \theta > 0$ is a constant value to be described in the next. By using the Markov’s inequality [55], we can find that

$$\int_S \mathbb{1}_{S_4}(t, \omega) dP(\omega) \leq P(C_1(t) \geq \zeta) + P(C_2(t) \geq \zeta) \leq \frac{1}{\zeta} E[C_1(t) + C_2(t)].$$

We choose $\frac{1}{\zeta} \leq \frac{\theta^2 q^q}{8ba} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1)$, then we obtain

$$\limsup_{t \to \infty} t^{-1} \int_0^t \mathbb{E}[\mathbb{1}_{S_4}] ds \leq \frac{\theta^2 q^q}{8ba} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1).$$

By (3.4), we have

$$\liminf_{t \to \infty} t^{-1} \int_0^t \mathbb{E}[\mathbb{1}_{S_4}] ds \geq -\limsup_{t \to \infty} t^{-1} \int_0^t \mathbb{E}[\mathbb{1}_{S_4}] ds + \liminf_{t \to \infty} t^{-1} \int_0^t \mathbb{E}[\mathbb{1}_{S_4}] ds \geq \frac{\theta q^q}{8b} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1) > 0.$$ \hfill (3.5)

Ultimately and according to the above treatment, we have specified a compact domain S^* such that

$$\liminf_{t \to \infty} t^{-1} \int_0^t \mathbb{E}[\mathbb{1}_{S_4}] ds \geq \frac{\theta q^q}{8b} (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1) > 0.$$ \hfill (3.5)

In contrary, we check easily that if $\mathcal{R}_0 < 1$, the illness will extinct. In accordance with Lemma 2.3, we obtain

$$\limsup_{t \to \infty} t^{-1} \ln \frac{C_2(t)}{C_2(0)} = \max \sup_{t \to \infty} t^{-1} \int_0^t C_1(s) ds$$

$$- (\vartheta + \varphi_2 + q + c_2) + 0.5m_{2,2}$$

$$+ \int_\mathcal{H} (\vartheta_2(u) - \ln(1 + \vartheta_2(u))) \chi(du)$$

$$\leq b \lim_{t \to \infty} t^{-1} \int_0^t D(s) ds$$

$$- (\vartheta + \varphi_2 + q + c_2) + 0.5m_{2,2}$$

$$+ \int_\mathcal{H} (\vartheta_2(u) - \ln(1 + \vartheta_2(u))) \chi(du)$$

$$= (\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1) < 0 \text{ a.s.}$$

So, $\lim_{t \to \infty} C_2(t) = 0$ a.s. To put it another way, the epidemic of the system (1.2) will quickly be removed, and its deterioration rate is at least $(\vartheta + \varphi_2 + q + c_2)(\mathcal{R}_0 - 1)$. This ends the demonstration. \hfill \Box

4 Application: epidemic model (1.2) driven by tempered stable Poisson process

This part is devoted to introducing the numerical examples and checking the correctness of Theorem 3.1. Through computer simulations, we acquire the trajectories plot, and corresponding histograms, which can more obviously reflect
the complex dynamical attitude of the perturbed system (1.2). Moreover, we choose some reasonable parameter values to verify our hypothetical framework. According to the work presented in [54], we use the following compensated tempered Poisson process:

$$\mathcal{Y}(t) = \int_0^t \int_{\mathbb{R}\setminus\{0\}} u J(ds, du),$$

where $J(ds, du)$ is the compensated Poisson measure.

4.1 Algorithm configuration and inputs tuning

- We suppose that \mathcal{B}^m is generated as follows:
 $$\mathcal{B}_1^m = m_{1,1} B_{a},$$
 $$\mathcal{B}_2^m = m_{2,1} B_{a} + m_{2,2} B_{b},$$
 $$\mathcal{B}_3^m = m_{3,1} B_{a} + m_{2,1} B_{b} + m_{3,2} B_{c},$$
 $$\mathcal{B}_4^m = m_{4,1} B_{a} + m_{4,2} B_{b} + m_{4,3} B_{c} + m_{4,4} B_{d},$$

 where B_a, B_b, B_c, B_d stand for independent Brownian motions.

- $(a_j)_{j \geq 1}$ is an i.i.d. Bernoulli random sequence with the associated distribution $(\frac{\xi_+}{\xi_+ + \xi_{-}}, \frac{\xi_+}{\xi_+ + \xi_{-}})$.

- $(b_j)_{j \geq 1}$ and $(b'_j)_{j \geq 1}$ are i.i.d. exponential random variables with parameter 1, where $B_j = b_1 + \cdots + b'_j$.

- $(c_j)_{j \geq 1}$ are i.i.d. uniform random variables.

- $(d_j)_{j \geq 1}$ is an i.i.d. uniform $U(0,1)$ random sequence.

According to Theorem 5.3 in [53], all above sequences are supposed to be mutually independent. Furthermore, the process \mathcal{Y} with (1.6) can be presented as follows:

- When $0 < \alpha < 1$, then
 $$\mathcal{Y}(t) = \sum_{j=1}^{\infty} 1_{(0,t)}(c_j) a_j^{\alpha} \tilde{S}_j,$$
 where $\tilde{S}_j = \min\left\{\left(\frac{\xi_+ - \xi_{-}}{a_j/\beta_j}\right)^{\frac{1}{\alpha}}, \frac{b_j}{a_j}\right\}$.

- When $1 \leq \alpha < 2$, then
 $$\mathcal{Y}(t) = \sum_{j=1}^{\infty} 1_{(0,t)}(c_j) a_j^{\alpha} \tilde{S}_j - z_0 + \zeta t^{\frac{\alpha - 1}{\alpha}},$$
 where $z_0 = (\xi_1 - \xi_{-})/(\xi_+ + \xi_{-}), z_1 = \xi_1 + \xi_{-} - \xi_+ - \xi_{-} = 1 - \alpha$.

Remark 4.1 In fact, we noticed that:

1. the assumptions on the jump-diffusion intensities H_1, H_2 and H_3 are naturally verified in our case.
2. the condition H_4 holds just for $\alpha \in (0,1)$, $p > 1$.
3. $I(2p)$ is finite when $p > \alpha$.
4. the condition H_5 will be checked according to the choice of other parameters.

In view of the last remark, we will give some numerical simulations in the case of the one-sided tempered stable process $\mathcal{Y}(t)$ with $\xi_1 = 0$ and $\xi_{-} = 0$. So, we choose

$$\alpha = 0.7, \xi_+ = 2.8 \text{ and } \theta_{-} = \theta_{+} = 1.2.$$

For the probabilistic model (4.2), the deterministic parameters are taken as follows: $a = 0.2$, $b = 0.35$, $\varphi = 0.1$, $\vartheta_0 = 0.03$, $\vartheta_2 = 0.025$, $\vartheta_3 = 0.1$, $q = 0.13$, $c_2 = 0.2$, $c_3 = 0.1$. Then, H_3 holds and $\mathcal{R}_\alpha = 1.0098 > 1$. By using Theorem 3.1, we conclude that there is only one stable distribution. In Figs. 1 and 2, we plot the two-dimensional empirical distribution in order to offer a comprehensive overview of the marginal densities of the solution. In Fig. 3, we show the permanence of all trajectories. Now, we decrease the value of b to 0.285 which indicates the reduction of the disease prevalence between C_1 and C_2. Then, H_3 holds and $\mathcal{R}_\alpha = 0.9803 < 1$. From Theorem 3.1, we establish that...
Fig. 1 The 3D graph of the joint two dimensional density at time $t = 5000$ of the classes C_1, C_2, C_3 and C_4
Fig. 2 The upper view of the joint two dimensional densities at time $t = 5000$ of the classes C_1, C_2, C_3 and C_4
the illness will almost certainly extinct. To explore the Lévy jumps effect in this case, we compare the trajectories of (4.2) with the deterministic solution. A simple calculation shows that $R_0 = 1.1025 > 1$. From the Fig. 4, we notice that the Lévy jumps conduct to the cancellation of the disease while the deterministic path persists. Thus, discontinuous jumps have a passive impact on the continuation of the disease and this means that Lévy jumps with infinite measure can change the propagation pattern remarkably in the long term.

Remark 4.2 We have theoretically chosen the parameters used in the simulations according to two criteria:

1. To verify and check appropriately the obtained analytical results in both cases: permanence and extinction of the diseases.
2. To show numerically the sharpness of the obtained thresholds.

It should be pointed out that our theoretical findings are general and can be applied to study many transmissible diseases, for example, COVID 19 epidemic (please see [59]).

Conclusion

In this study, we have analyzed a classical illness model with quarantine strategy and Lévy fluctuations. By considering a general Lévy measure and correlated noise items, we have proposed an analytical framework to deal with our constructed model. Explicitly, we have investigated the properties of stationarity and extinction by using the stochastic comparison theorem, exponential inequalities for martingales, Feller’s property, the mutually limited possibilities lemma, and other mathematical tools. Our method differs from the well-known Khasminskii approach by providing the sufficient and necessary condition for ergodicity and disease suppression, and this is the strong point of our work. It only remains to verify what happens in the situation of $\mathcal{R}_0 = 1$. We will process this open question in the future.
Fig. 4 Computer simulation of the solution of the probabilistic model (4.2) with tempered process

Acknowledgements The authors express their gratitude to the editor, expert reviewers and editorial office for their comments and suggestions. The first author warmly thanks Professor Nicolas Privault (Nanyang Technological University) for his help and clarifications.

Author Contributions Yassine Sabbar: Writing original draft, Formal analysis, Investigation, Conceptualization, Methodology, Software. Driss Kiouach: Methodology, Investigation, Writing review and editing. S.P. Rajasekar: Conceptualization, Investigation, Writing - reviewing and editing.

Funding This work was supported by the Science and Engineering Research Board (SERB) of India (EEQ/2021/001003).

Data availability The theoretical data used to support the findings of this study are already included in the article.

Code Availability The Matlab code of the numerical simulation can be requested from the corresponding author (Dr. Yassine Sabbar).

Declarations

Conflict of interest The corresponding author states that there is no conflict of interest.

References

1. Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280(5721):361–367
2. Kiouach D, Sabbar Y, Idrissi EE (2021) New results on the asymptotic behavior of an SIS epidemiological model with quarantine strategy, stochastic transmission, and Levy disturbance. Math Methods Appl Sci 520(17):489–506
3. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc A Math Phys Eng Sci 115(772):700–721
4. Roy M, Holt RD (2008) Effects of predation on host-pathogen dynamics in SIR models. Theor Popul Biol 73(3):319–331
5. Guo H, Li MY, Shuai Z (2006) Global stability of the endemic equilibrium of multigroup SIR epidemic models. Can Appl Math Q 14(3):259–284
6. Zhou B, Jiang D, Dai Y, Hayat T (2021) Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity. Nonlinear Dyn 105(17):931–955
7. Xu C, Yuan S, Zhang T (2021) Competitive exclusion in a general multi-species Chemostat model with stochastic perturbations. Bull Math Biol 83(1):1–17
8. Zhang S, Zhang T, Yuan S (2021) Dynamics of a stochastic predator–prey model with habitat complexity and prey aggregation. Ecol Complex 45:100889
9. Yang A, Song B, Yuan S (2021) Noise-induced transitions in a non-smooth SIS epidemic model with media alert. Math Biosci Eng 18(1):745–763
10. Yan S, Yuan S (2020) Critical value in a SIR network model with heterogeneous infectiousness and susceptibility. Math Biosci Eng 17(5):5802–5811
11. Shaikhet L (2020) Stability of stochastic differential equations with distributed and state-dependent delays. J Appl Math Comput 4(4):181–188
12. Shaikhet L (2020) Improving stability conditions for equilibria of SIR epidemic model with delay under stochastic perturbations. Mathematics 8(8):1302
13. Bunimovich-Mendrazitsky S, Shaikhet L (2020) Stability analysis of delayed tumor-antigen-activated immune response in combined BCG and IL-2 immunotherapy of bladder cancer. Processes 8(12):1564
14. Bentout S, Chen Y, and Djilali S. Global dynamics of an SEIR model with two age structures and a nonlinear incidence. Acta Appl Math, 171(1)
15. Zhang XB, Huo H, Xiang H, Meng XY (2014) Dynamics of the deterministic and stochastic SIQS epidemic model with nonlinear incidence. Appl Math Comput 243:546–558
16. Zhang XB, Huo H, Xiang H, Shi Q, Li D (2017) The threshold of a stochastic SIQS epidemic model. Phys A 482:362–374
17. Zhang XB, Zhang XH (2021) The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size. Appl Math Model 91:749–767
18. Zhang XB, Liu RJ (2021) The stationary distribution of a stochastic SIQS epidemic model with varying total population size. Appl Math Lett 116:106974
19. May RM (2001) Stability and complexity in model ecosystems. Princeton Landmarks in Biology
20. Din A, Khan A, Baleanu D (2020) Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model. Chaos Solitons Fract 139:110036
21. Din A, Li Y, Khan T, Zaman G (2020) A dynamics stochastic model with two age structures and a nonlinear incidence. Acta Appl Math, 171(1)
22. Wang X, Huo H, Xiang H, Meng XY (2012) Dynamics of the deterministic and stochastic SIQS epidemic model with nonlinear incidence. Appl Math Comput 243:546–558
23. Zhang XB, Huo H, Xiang H, Shi Q, Li D (2017) The threshold of a stochastic SIQS epidemic model. Phys A 482:362–374
24. Bentout S, Chen Y, and Djilali S. Global dynamics of an SEIR model with two age structures and a nonlinear incidence. Acta Appl Math, 171(1)
25. Zhang XB, Huo H, Xiang H, Meng XY (2014) Dynamics of the deterministic and stochastic SIQS epidemic model with nonlinear incidence. Appl Math Comput 243:546–558
26. Jiang D, Yuan S (2011) Asymptotic behavior of global positive solution to a stochastic SIR model. Math Comput Model 45(1):221–232
27. Lin Y, Jiang D, Xia P (2014) Long-time behavior of a stochastic SIR model. Appl Math Comput 236:1–9
28. Bentout S, Tridane A, Djilali S, Touaoula TM (2021) Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria. Alex Eng J 60(1):401–411
29. Pitchaimani M, Brasanna DM (2021) Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies. Chaos Solitons Fract 143:110540
30. Rajasekar SP, Pitchaimani M, Zhu Q (2019) Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function. Phys A 535:122300
31. Khan A, Hussain G, Zahir M, Zaman G (2020) A stochastic SASC epidemic model for HBV transmission. J Biol Dyn 14(1):788–801
32. Hussain G, Khan A, Zahir M, Zaman G (2020) Stochastic permanence of an epidemic model with a saturated incidence rate. Chaos Solitons Fract 139:110005
33. Zhao D, Yuan S (2018) Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat. Appl Math Comput 339:199–205
34. Kiouach D, Sabbar Y (2021) Dynamic characterization of a stochastic sir infectious disease model with dual perturbation. Int J Biomath 14(4):2150016
35. Kiouach D, Sabbar Y (2020) Ergodic stationary distribution of a stochastic hepatitis B epidemic model with interval-valued parameters and compensated poisson process. Comput Math Methods Med 2020:9676501
36. Kiouach D, Sabbar Y (2019) The threshold of a stochastic siqr epidemic model with Levy jumps. Int J Biomath 13:2150016
37. Zhao D, Zhang W (2016) Threshold of a stochastic SIR epidemic model. Appl Math Comput 281:86–95
38. Zhao D, Yuan S, Liu H (2019) Stochastic dynamics of the delayed SICR model with general incidence rate and immunization strategies. Chaos Solitons Fract 143:110540
39. Zhao D, Yuan S, Liu H (2019) Stochastic dynamics of the delayed SICR model with general incidence rate and immunization strategies. Chaos Solitons Fract 143:110540
40. Buonomo B (2020) Effects of information-dependent vaccination behavior on coronavirus outbreak: insights from a SIRI model. Ricerche Mat 69(2):483–499
41. Neufeld Z, Khataee H, Czirok A (2020) Targeted adaptive isolation strategy for COVID-19 pandemic. Infect Disease Model 5:357–361
42. Zhang X, Wang K (2015) Stochastic SIR model with jumps. Appl Math Lett 28(6):867–874
43. Zhou Y, Zhang W (2016) Threshold of a stochastic SIR epidemic model with Levy jumps. Phys A 446:204–2016
44. Zhao D, Yuan S, Liu H (2019) Stochastic dynamics of the delayed chemostat with Levy noises. Int J Biomath 12:5
45. Cheng Y, Zhang F, Zhao M (2019) A stochastic model of HIV infection incorporating combined therapy of haart driven by Levy jumps. Adv Differ Equ 2019(1):1–17
46. Cheng Y, Li M, Zhang F (2019) A dynamics stochastic model with HIV infection of CD4 T cells driven by Levy noise. Chaos Solitons Fract 129:62–70
47. Gao M, Jiang D, Hayat T, Alsaedi A (2019) Threshold behavior of a stochastic Lotka Volterra food chain chemostat model with jumps. Phys A 523:191–203
48. Gilman II, Skorohod AV (1972) Stochastic differential equations. Springer, Berlin
49. Y. Sabbar et al.
51. Akdim K, Ez-zetouni A, Danane J, Allali K (2020) Stochastic viral infection model with lytic and nonlytic immune responses driven by Levy noise. Phys A 549:124367
52. Zhang XB, Shi Q, Ma SH, Huo H, Li D (2018) Dynamic behavior of a stochastic SIQS epidemic model with Levy jumps. Nonlinear Dyn 93(3):1481–1493
53. Rosinski J (2007) Tempering stable processes. Stoch Process Appl 117:677–707
54. Privault N, Wang L (2021) Stochastic SIR Levy jump model with heavy tailed increments. J Nonlinear Sci 31(1):1–28
55. Mao X (2007) Stochastic differential equations and applications. Elsevier, Chichester
56. Peng S, Zhu X (2006) Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch Process Appl 116(3):370–380
57. Stettner L (1986) On the existence and uniqueness of invariant measure for continuous-time markov processes. Technical Report, LCDS, Brown University, province, RI, pp 18–86
58. Tong J, Zhang Z, Bao J (2013) The stationary distribution of the facultative population model with a degenerate noise. Stat Probab Lett 83(2):655–664
59. Sabbar Y, Kiouach D, Rajasekar S, El-idrissi SEA (2022) The influence of quadratic Lévy noise on the dynamic of an SIC contagious illness model: new framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case. Chaos Solitons Fract 2022:112110