Quality Characteristics of Sponge Cake added with Citrus peel Powder

Gil-Man Shin

Abstract: This study was conducted to evaluate the effect of Citrus peel powder on the quality characteristics of sponge cake. Citrus peel powder sponge cake was prepared with different ratios of Citrus peel powder (0, 10, 20, 30, 40%). The specific gravity, baking loss rate and cake weight increased as the ratio of Citrus peel powder. The sponge cake's a, b level increased with the increasing level of Citrus peel powder 40% appeared to be the highest. In terms of textural characteristics, the samples containing 10, 20, and 40% Citrus peel powder had significantly higher hardness than the control samples. The substance's level of springiness, and cohesiveness decreased as the Citrus peel powder additive increased. In sensory evaluation, overall acceptability and taste of the cake was better than others when 10% Citrus peel powder was added. The results indicated that substituting 10% Citrus peel powder to sponge cake is optimal for quality and provides a product with reasonable high overall acceptability.

Keywords: Citrus peel powder, sponge cakes, characteristics, sensory evaluation

INTRODUCTION

The Citrus, which is a family of Rutaceae and Aurantioideae, but closely related to Fortunella, and Pocirus, is called “Citrus unshiu M” or “Citrus mandarin” and only the genus citrus are raised as a fruit tree. (Chung SK et al 2000). The Citrus is used as a ingredient of functional foods that has not only anti-allergic, anti-inflammatory, but also anti-virus and antitumor effect as well. In addition, it cleans blood vessels by reducing LDL cholesterol in the blood. It is also used as medicinal herbs because Hesperidin (i.e. a flavanone glycoside found in citrus fruits) aids capillary contraction which leads to hypertension prevention (Shin JP et al 1999).

There are research says "Pork Sausage with Added Citrus peel and Dried Lentinus edodes Powders" (Kang YJ et al 2005), “Growth Performance, Hematological Parameter and Fatty Acid Composition of Growing Olive Flounder to Dietary Inclusion of Citrus Meal” (Seo JY et al 2010), “Effects of Feeding Diets Containing Tangerine Pulp, Sea Tangle or Prickly Pear Cactus on Lipid Level, Intestinal Cholesterol Absorption, Platelet Aggregation and Liver Tissue in Hypercholesterolemic Rats” (Kang MS 2011), “Muffin added with Tangerine Peel Powder” (OH SW 2014), “Injeulmi Containing Different Ratios of Citrus Mandarin Powder” (Kim CW 2009), “Pound Cake with Citrus Mandarin Powder” (Park YS et al 2008), “Post-Daged Doenjang (Fermented Soybean Paste) added with Citrus Fruits, Green Tea and Cactus Powder” (Kim JH et al 2010), “Yanggaeng added with Freeze dried Citrus Mandarin Powder” (Cha MA 2013), “Pan Bread Added with Citrus Mandarin Peel Powder” (Lee EJ et al 2012) Sponge cake is a cake based on flour, sugar, and eggs. Combining flour that contains
captured air and foam made of sugar and eggs is a simple process of making sponge cake. There are largely two ways to make sponge cake: hot sponge mix, cold sponge mix. Hot sponge mix is a way to make dough with foam made of a whole egg. Recently, adding new ingredients in sponge cake has become a trend due to an interest and demand on functional foods. Concerning that there are studies like “Rice Sponge Cakes Containing Various Levels of Jerusalem Artichoke Powder” (Suh KH 2014), “Spinach Powder” (Lee UN et al 2014), “Sponge Cake Added with Laminaria japonia Powder” (Lee UN et al 2013), “Sponge Cake Containing Beaknyuncho (Opuntia ficus-indica var. saboten) Powder” (Lee SB 2013), “Sponge Cakes Supplemented with Cinnamon” (Lee SB 2013), “Sponge Cake with Pakchoi (Brassica compestris L. ssp. chinensis Jusl.) Powder” (Chung YS 2009), “Sponge Cakes with Addition of Gastrodiae rhizoma Powder” (Kang CS 2007), “Sponge Cake Containing Varying Amounts of Persimmon Leaf Powder” (Chio GY et al 2007), we conclude tangerine peel powder can be also used on sponge cake products. Therefore, in this study we will make a sponge cake with tangerine peel powder by adding different ratio of the powder; 10, 20, 30, 40%. Then we will measure its general component, specific gravity, pH, weight, volume, loss ratio when baking, chromaticity, texture, and sensory test to decide the optimum compounding ratio of the tangerine peel powder added sponge cake.

MATERIALS

The materials used in the study were as follows: Citrus peel powder (Chinese medicine Store, Seoul, Korea), weak flour (KFMC Co., Dangjin, Korea) milled from American soft flour, eggs and sugar (Samyang Co., Incheon, Korea), refined salt, water.

Material Mixing Ratio of Sponge Cake

The material ratio of the sponge cake used in this experiment is as follows in Table 1. Citrus peel powder were added at the level of flour 0% (Control), 10% (CPP10), 20% (CPP20), 30% (CPP30), 40% (CPP40). The material ratio of Citrus peel powder and wheat flour was set through several preliminary experiments. The sponge cake prepared without Citrus peel powder was designated as control group. The sponge cake with added Citrus peel powder by rate of 10, 20, 30, 40% was designated as test group. The other material ratio of sponge cake except for wheat flour and Citrus peel powder were the same as in the control group.

Preparation of a Sponge Cake with the Addition of Citrus peel Powder

Method of producing a sponge cake with the addition of Citrus peel powder was prepared by the hot sponge method which is the most common method on the shop floor. First, the eggs, sugar and salt was put into a stainless bowl, cooked in a double boiler

| Table 1. Standard formula for sponge cakes with Citrus peel powder(g) |
|-------------------|----------------|----------------|----------------|----------------|----------------|
| Ingredients | Control1) | CPP 10%2) | CPP 20%3) | CPP 30%4) | CPP 40%5) |
| Flour | 400 | 380 | 360 | 340 | 320 |
| Whole egg | 400 | 400 | 400 | 400 | 400 |
| Sugar | 400 | 400 | 400 | 400 | 400 |
| Water | 16 | 14 | 16 | 16 | 16 |
| Citrus peel powder| 0 | 20 | 40 | 60 | 80 |

1) Control: Flour powder 100%.
2) CPP 10%: Citrus peel powder 10% added.
3) CPP 20%: Citrus peel powder 20% added.
4) CPP 30%: Citrus peel powder 30% added.
5) CPP 40%: Citrus peel powder 40% added.
| Weighing ingredients | |
|----------------------|--|
| ↓ | |
| Sugar, whole egg | |
| ↓ | |
| Mixing(1 sec at speed 4 and 5 min at speed 10) | |
| ↓ | |
| Adding flour, Citrus peel powder | |
| ↓ | |
| Adding water | |
| ↓ | |
| Prepare cake paper on the pan | |
| ↓ | |
| Panning(180 g) | |
| ↓ | |
| Oven baking for 180°C, 25 min | |

Figure 1. Diagram for making sponge cake containing Citrus peel powder.

at 45°C and then, mixed with a Kenwoob mixer (Co., London., United Kingdom) for 30 seconds at dial 1, for 5 minutes at dial 4, for 5 minutes at dial 10 in sequence. The batter crust around mixing bowl was scraped out with a rubber spatula. Then, the batter mixture were further mixed for 30 seconds at dial 1. After that, water was added to the batter mixture, mixed well to the floor. Next, 180 g of the cake batter was placed into No. 1 fan. The cakes were then transferred to a lightly greased baking tray and baked in an electric oven (Dae Yung Bakery, Machinery Co., Seoul) at upper temperature of 180°C and lower temperature of 180°C for 25 min. The baked cakes were removed from the baking pan, allowed to cool at room temperature for 1 hr before analysis.

The Specific Gravity and pH of the Sponge Cake Batter with Added Citrus peel Powder

The specific gravity of the sponge cake batter with added Citrus peel powder was calculated using the equation below according to the AACC method 10-15(11)

\[
Specific\ Gravity(\%) = \frac{W_{\text{exp containing water}} - W_{\text{exp}}}{W_{\text{exp containing batter}} - W_{\text{empty exp}}} \times 100
\]

10 grams of cake batter and 45 mL of distilled water were mixed completely and the pH was measured 3 times using a pH meter (ORION Co., Ltd., California, USA) as described in the (Choi et al 2000).

Measurement of Height, Weight, Dough Yield and Baking Loss

The height of sponge cake was measured from 5 different points after cutting into pieces using template according to AACC 10-15(1986). The weight of sponge cake was measured with scale. The dough yield and baking loss were calculated with following equation.

\[
Water\ Holding\ Capacity(\%) = \frac{W_{\text{batter before baking}}}{W_{\text{cake after baking}}} \times 100
\]

\[
Baking\ Loss(\%) = \frac{W_{\text{batter}} - W_{\text{cake}}}{W_{\text{batter}}} \times 100
\]

Measurement of Volume and Specific Volume

The volume of sponge cake prepared with different ration of Citrus peel powder was measured by the method of seed substitution. The Specific volume was calculated with following equation.

\[
Specific\ Volume(mL/g) = \frac{V_{\text{sponge cake}}}{W_{\text{sponge cake}}} \times 100
\]

Physicochemical Measurements of Sponge Cakes

The chromaticity of sponge cake (20×20×20 mm) was measured using a color m meter (CE-7000, Macbeth Spectrophotometer, New York, USA) calibrated with a white tile (Calibration palate CR-A43, L=95.91, a=0.00, b=2.27), and expressed as Hunter’s L(lightness) a(redness) and b(yellowness) color values. The textural properties of cake (40×40×30 mm) were measured using a Rheometer (Sun Scientific Co., Ltd., Tokyo, Japan). Operating conditions were as follows: load cell: 2 kg, adaptor type: circle (diameter 20 mm), table speed: 60 mm/min.
Sensory Evaluation

A panel of 20 assessors were selected from the students in the Department of Culinary Science at Gwangju University (Jeonnam, Korea). All assessors had been trained to get a taste of samples and acquainted with the method and properties of evaluation. The assessors evaluated the appearance, color (internal and external), flavor, taste, texture, and overall acceptability (the level of preference from the customer’s viewpoint) on a 5 point Likert scales. All samples were presented to the size of 3×3×1 cm labeled with three-digit numbers in the white plate using a table of sampling digits. Evaluation items were color, appearance, flavor, taste, texture and overall acceptability.

Statistical Analysis

One-way analysis of variance (ANOVA) and Duncan’s multiple range test were performed for significant differences. The p-values less than 0.05 were considered statistically significant. One-way ANOVA, Pearson’s correlation, and simple linear regression analyses were conducted using SPSS (SPSS Inc., Chicago, IL, USA).

RESULT

Specific Gravity and pH

Table 2 shows the Specific gravity and pH of the sponge cake batter with added Citrus peel powder. High specific gravity makes a compact and small volume pole. In contrast, low specific gravity makes rigid internal injuries due to the lack of entrained air. Specific gravity is influenced by the type of wheat flour, temperature, time and mixing conditions, mixing speed, existence and type of chemical leavening agent. The Specific gravity value of control group was 0.50 and gradually decreased as the added Citrus peel powder increased, ranging from 0.46 to 0.48 in 10~40% sample groups. Similar result was reported for the sponge cake with added black garlic (Uoo YY et al 2006), rice cupcake prepared with pine leaf powder (Kim WJ et al 2012). In terms of pH value, control group was measured to most lowest value of 6.83 and gradually increased as the added pine leaf powder increased, ranging from 4.90 to 6.24 in 10~40% sample groups. Other food conclude ingredient such as oil-and-honey-pastry (Park BH et al 2012) caused similar increase in the pH value of sponge cake.

Table 2. Specific gravity and pH added Citrus peel powder

Samples	Specific gravity	pH
Control	0.50±0.02a 1)	6.83±0.26a 1)
CPP 10%	0.48±0.01ab 2)	6.24±0.03b 2)
CPP 20%	0.48±0.01ab 2)	5.66±0.07c 2)
CPP 30%	0.47±0.00b 2)	5.16±0.08d 2)
CPP 40%	0.46±0.01b 2)	4.90±0.03e 2)

1) Values are mean±standard deviation(n+3).
2) Means with the same superscripts in the row are significantly different (p<0.05).
3) CPP : Citrus peel powder.

Cake Weight, Dough Yield and Baking Loss Added Citrus peel Powder

The weight of sponge cake batter with different ration of Citrus peel powder (0, 10, 20, 30, 40%) before/after baking, dough yield and baking loss is as follows in Table 3. There was no significant difference in the weight of sponge cake batter among all samples. However, after baking, the control was measured to lowest value of 305.3 and those of 10~40% samples.

Table 3. Cake weight, dough yield and baking loss added Citrus peel powder

Samples	Cake weight(g)	Dough yield rate(%)	Baking loss rate(%)
Control	305.33±1.13a 3)	132.45±0.03a 3)	7.68±0.01a 3)
CPP 10%	305.00±1.00a 3)	133.33±0.33a 3)	7.58±0.01a 3)
CPP 20%	306.00±0.00a 3)	132.70±0.58a 3)	7.27±0.01a 3)
CPP 30%	306.67±2.08a 3)	132.89±0.90a 3)	7.07±0.01a 3)
CPP 40%	307.33±2.31a 3)	132.45±0.33a 3)	6.86±0.01a 3)

1) Values are mean±standard deviation(n+3).
2) Means with the same superscripts in the row are significantly different (p<0.05).
3) CPP : Citrus peel powder.
40% samples ranged from 305.0 to 307.3. As the amount incorporated into the formulation increased, the weight of sponge cake significantly decreased \((p<0.001) \). Similar decrease was observed for the sponge cake prepared with roasted black bean powder (Jung, 2012). The dough yield of sponge cake in control group was 131.0% and gradually increased as the amount incorporated into the formulation increased, ranging from 130.1% to 131.1% in 10 ~ 40% sample groups.

This result is considered to be due to the difference between the weight of the samples. It was also reported baking loss is resulted from the dough puffed by the heat and water evaporation in the pores of the dough during baking process. In terms of baking loss, the control was 7.68% and tended to decrease as the pine leaf powder content increased, ranging from 6.86% to 7.58% in 10 ~ 40% sample groups. Similar result was found for sponge cake made with pine leaf powder sponge cake (Lee & Lee, 2013).

Cake Height, Volume and Specific Volume Added Citrus peel Powder

Table 4 shows cake was measured from 5 different point after cutting into pieces using template, according to AACC(2000)10-15. The height value of sponge cake was highest for control group with 6.88 cm and tended to decreased as Citrus peel powder content increased, ranging from 4.70 cm to 6.38 cm in 10 ~ 40% sample groups. Similar result was found for sponge cake made with Ecklonia cava powder (Lee & Heo, 2010), pine leaf powder sponge cake (Lee & Lee, 2013).

Samples	Cake Height(cm)	Volume(cm³)	Specific volume(cm³/g)
Control	6.88±0.01	708.00±7.21	2.32±0.00
CPP 10%	6.38±0.01	643.33±8.08	2.11±0.01
CPP 20%	5.84±0.02	622.67±18.47	2.03±0.01
CPP 30%	5.24±0.05	586.67±5.03	1.91±0.01
CPP 40%	4.70±0.01	491.33±11.10	1.60±0.01

1) Values are mean±standard deviation \((n+3)\).
2) Means with the same superscripts in the row are significantly different \((p<0.05) \).
3) CPP : Citrus peel powder.

Table 5. Hunter’s color value of sponge cake added Citrus peel powder

Samples	L	a	b
Control	46.43 ±0.01	10.62 ±0.06	31.03 ±0.60
CPP 10%	39.17 ±0.23	13.98 ±0.33	27.51 ±0.66
CPP 20%	37.94 ±0.06	13.59 ±0.33	27.81 ±0.30
CPP 30%	31.85 ±0.00	12.25 ±0.01	21.64 ±0.01
CPP 40%	29.31 ±0.66	8.45 ±0.00	18.08 ±1.02

1) Values are mean±standard deviation \((n+3)\).
2) Means with the same superscripts in the row are significantly different \((p<0.05) \).
3) CPP : Citrus peel powder.
Citrus peel powder \((p<0.001) \). Similar decreases in \(L \) are caused by the incorporation of other food ingredient powders such as laver (Keeon et al 2005) and paprica (Jeong et al 2007).

Hunter a value (redness) of the control cake was 10.62 and gradually increased as the added pine leaf powder increased, resulting in the highest value of 18.45 for the cake containing 40% Citrus peel powder. Hunter b value (yellowness) of the control cake was the highest with 31.68 and decreased with the increasing level of the Citrus peel powder, showing the value of 27.52 ~ 18.08 in 10 ~ 40% samples \((p<0.001) \).

In a parallel study with red Ginseng powder, as the amount incorporated into the formulation increased, b value decreased significantly. These results, the significant difference of \(L \), a, b value between control group and Citrus peel powder added groups are considered to be attributable to the own color the Citrus peel powder have itself. Formulation of the Citrus peel powder with other food such as noodle (Jeon et al 2005) and maternity vine (Kim & Shin, 2005) caused similar result. As the amount incorporated into the formulation increased, \(L \) decreased while \(b \) increased significantly. Therefore, it could be stated that The (lightness) value of the sponge cake was affected by the incorporation of Citrus peel powder.

Texture Analysis

Previously reported, subsidiary ingredients affect the texture properties of sponge cake, and thus the textural characteristics of sponge cake with different ration of Citrus peel powder (0, 10, 20, 30, 40%), were determined as follows in Table 6. The hardness of the 10 ~ 40% samples group ranged 1,641.22 to 4,106.21 was significantly higher than the control measured to 650.56 \((g/cm^2) \). In fact, the hardness value was significantly increased as the amount of Citrus peel powder incorporated in the formulation increased. The hardness of the sponge cake was affected by moisture content of the cake, degree of pore development and volume. It was considered to be due to added Citrus peel powder which interfered with bubble foaming, so that the batter was obstructed to make the film of the bubble, resulting in the compact structure inside the cake.

Similar result was found for the sausage with added Citrus peel powder (Kwon et al 2012) and sponge cake with added Cudrania tricuspidata leaf powder (Lee et al 2013). The springiness value was highest for control group with 0.85 and significantly decreased, from 0.76 to 0.80 as added the Citrus peel powder increased in the formulation. The cohesiveness value of control group was highest with 0.44 and gradually decreased with increasing the level of Citrus peel powder, showing the value of 0.43 ~ 0.45 in 10 ~ 40% sample groups \((p<0.001) \). The sponge cake with added pumpkin puree (Park et al 2008) and sponge cake with added artichoke powder (Suh & Kim, 2014) also caused similar decrease in the cohesiveness of sponge cakes.

Sample	Hardness \((g/cm^2)\)	Springiness \((\%)\)	Cohesiveness \((\%)\)
Control	650.56±1.48 \(^{a1)}\)	0.85±0.16 \(^{a}\)	0.44±0.04 \(^{a}\)
CPP 10%	1,641.22±2.25 \(^{a2)}\)	0.80±0.08 \(^{a}\)	0.43±0.01 \(^{a}\)
CPP 20%	1,839.69±2.20 \(^{a3)}\)	0.80±0.09 \(^{a}\)	0.45±0.03 \(^{a}\)
CPP 30%	2,108.93±1.36 \(^{a4)}\)	0.78±0.03 \(^{a}\)	0.43±0.08 \(^{a}\)
CPP 40%	4,105.21±2.13 \(^{a5)}\)	0.76±0.04 \(^{a}\)	0.43±0.11 \(^{a}\)

\(^{1)}\) Values are mean± standard deviation (n+3).
\(^{2)}\) Means with the same superscripts in the row are significantly different \((p<0.05) \).
\(^{3)}\) CPP : Citrus peel powder.

Sensory Analysis

A 9-point hedonic scale was used to determine which sponge cake incorporated with different levels of Citrus peel powder were preferred by the majority of consumers. Table 7 shows the mean scores of consumer sensory results on the several attributes including appearance, taste, flavor, texture and overall acceptability. In terms of appearance, the control received the most favorable mean scores of 4.07 and 10 ~ 40% sample ranged from 3.79 to 4.68. In fact, the appearance acceptance decreased as the percent of pine leaf powder incorporation increased in the formulation.
The consumer preferences on flavor were significantly affected by the amount of Citrus peel powder incorporated in the sample. In the acceptability of flavor, the control received 3.8 and 10～40% sample ranged 3.8 to 4.2. This result is consistent with the study of the rice cake with added pine leaf (Lee & Han, 2002) and cookie with added pine leaf powder (Jung et al. 2009). In terms of taste, the control received the most favorable mean scores of 4.1 and 10～40% sample received relatively low scores ranged 3.8 to 4.5. There were significant differences found among the samples (p<0.001). In terms of texture, the control received 4.18 and 10～40% sample ranged from 3.8 to 4.5. In fact, as the amount incorporated into the formulation increased, the texture acceptance tend to decreased. Overall acceptability was the highest in control group with 4.3 and tended to decreased, from 3.6 to 4.5, with the increasing level of Citrus peel powder. Similar result was found for the study on uniformity and moisture of pore (Shin 2007), the importance of the cake with suitable volume, uniform organization, soft feel (Miizukoshi 1983) and cookie made with matrimony vine (Park et al. 2005). Therefore, The results indicated that substituting 10% Citrus peel powder to sponge cake is optimal for quality and provides a product with reasonable high overall acceptability.

RESULT AND DISCUSSION

The Specific gravity value of control group was 0.50 and gradually decreased as the added Citrus peel powder increased, ranging from 0.46 to 0.48 in 10～40% sample groups. In terms of pH value, control group was measured to lowest value of 6.83 and gradually increased as the added pine leaf powder increased, ranging from 4.90 to 6.24 in 10～40% sample groups. After baking, the control was measured to lowest value of 305.3 and those of 10～40% samples ranged from 305.0 to 307.3. The dough yield of sponge cake in control group was 131.0% and gradually increased as the amount incorporated into the formulation increased, ranging 130.1% to 131.1% in 10～40% sample groups. In terms of baking loss, the control was 7.68% and tended to decrease as the Citrus peel powder content increased, ranging from 6.86% to 7.58% in 10～40% sample groups. The height value of sponge cake was highest for control group with 6.88 cm and tended to decreased as Citrus peel powder content increased, ranging from 4.70 cm to 6.38 cm in 10～40% sample groups.

REFERENCES

AACC (1986). Official Method of the American Association of Cereal Chemist. 8th ed. American Association of Cereal Chemists St. Paul Mn U.S.A., 10-15.
AACC (2000). Approved Method of the American Association of Cereal Chemists 10th ed. American Association of Cereal Chemists St. Paul MN U.S.A., 10-18.

Chung Y, Kim D (2009). Quality characteristics sponge cake with pakchio powder. J Korean Soc Food Nutr 38(7):914-919.

Cha M, Chung H (2013). Quality characteristics of yanggaeng supplemented with freeze-dried citrus mandarin powder. Korea Soc Food Culture 28(5):488-494.

Chio G, Kim H, Bae J (2007). Quality characteristics sponge cake occurred with percentages of persimmon leaves powder added. Korean J Culinary Research 13(4):269-278.

Cho A, Kim N (2013). Quality characteristics of sponge cake containing beaknyuncho (Opuntia ficus-indica var. saboten) powder. J East Asian Soc Dietary Life 23(1):107-118.

Guon S, Shin M, Iee K (2012). Quality characteristics of sausage with added pine needle powder. J East Asian Soc Dietary Life 22(3):357-364.

Jeong C, Kim J, Cho J, Ahn C, Shin K (2007). Quality characteristics sponge cake with upon addition of parprika powder. Korean J Food Preserv 14(1):281-287.

Jung H (2012). Quality characteristics of sausage with added baked black soybean powder. J East Asian Soc Dietary Life 22(3):401-407.

Jeong H, Kim S, Lee M (2009). Storage quality characteristics of cookies prepared with pine needle powder. Korean J Food Preserv 7(1):1139-1146.

Jeong H, Kim S, Lee M (2009). Physicochemical and consumer preference characteristics of tofu incorporated with pine needle powder. Korean J Food Preserv 16(4):506-511.

Kang Y, Yang M, Ko W, Park S, Lee B (2005). Sensory characteristics of pork sausages with added Citrus peel and dried Lentinus edodes powders. Korean Soc Food J Sci Nutr 37(5):783-788.

Kang M, Kang J (2011). Hypocholesterolemic effect of tangerin pulp, sa tangle or prickly pear cactus on lipid level, intestinal cholesterol absorptions, platelet aggregation and liver tissue in hypercholesterolemic rats. J Nutr and Health, 34(2):44-54.

Kim J, Kim M, Kim I (2011). Quality characteristics of sulgidduk supplemented with Citrus peel powder. J Korean Soc Food Sci Nutr 40(7):993-998.

Kim, C, Song, E (2009). Quality characteristics of injeulmi containing different ratios of citrus mandarin powder. J Korean So Food Sci Nutr 22(2):293-301.

Kim J, Oh H, Oh Y, Lim S (2010). The quality properties composition post-daged doenjang (fermented soybean pastes) added with citrus fruits, green tea and cactus powder. East Asian Soc Dietary Life 21(2):279-29.

Kim I, Ko Y, Choi I, Kim Y, Ryu C, Shim K (2012). Antioxidative activities of pine needles and quality characteristics of Korean wheat noodle with pine needle powder. J Agriculture & Life Sci 46(5):125-133.

Kim W, Kim J, Huh Y, Shin M (2012). Antioxidant activities and quality characteristic of rice cupcakes prepared with pine needle powder and extract. Korean J Food Cookery 28(5):613622.

Kim W, Chio H (2001). Dry Spice. Hyoilbooks, Seoul Korea, 161-167.

Kim Y, Shin D (2005). Volatile components and antibacterial effect of pine needle extracts. Korean J Food Microbiol 22(1):37-45.

Kim Y (2011). Effects of dietary supplementation of pine needle powder on carcass characteristics and blood cholesterol contents of broiler chicken. Korean J Poultry Sci 38(1):51-57.

Kim W, Kim J, Cheong H, Huh Y, Shin M (2014). Antioxidative activity and quality characteristics of rice madeleine added with pine needle powder and extract. J Korean Soc Food Sci Nutr 43(3):65-76.

Kim W, Kim J, Cheong H, Huh Y, Shin M (2012). Antioxidative activity and quality characteristics of rice cupcakes prepared with pine needle powder and extract. J Korean So Food Sci Nutr 28(5):31-39.

Kim M, Jeon T, Chi H, Kim J (2011). Physiological activities of extracts from Fomitella fraxinea on brown rice added rice bran, pine needle and turmeric powder. Korean J Soc Food Cookery Sci 39(2):696-702.

Kweon B, Jeon S, Kim D (2005). Quality characteristics sponge cake with addition of leaf powder. J Korean Soc Food Sci Nutr 32(2):1278-1284.
Lee E, Ju H, Lee K (2012). Quality characteristics of pan bread added with citrus mandarin peel powder. *Korean J Culinary Research* 18(1):27-39.

Lee U, Kim Y (2013). Quality characteristics sponge cake occurred with percentages of parsley powder added. *Korean Soc Food & Cookery Sci* 13(2):169-169.

Lee J, Lee S (2013). Quality and antioxidant properties of sponge cakes incorporated with pine leaf powder. *Korean Soc Food Sci Nutr* 45(1):53-55.

Lee S, Lee J (2013). Quality of sponge cakes supplemented with cinnamon. *J Korean Soc Food Sci Nutr* 42(4):650-654.

Lee J, Seong Y, Teong B, Yoon S, Lee I, Jeong Y (2009). Characteristics of sponge cake added with black garlic powders. *Korean Soc Food J Sci Nutr* 38(9):1222-1228.

Lee H, Han J (2002). Sensory and textural characteristics of solsulgi using varied levels of pine leave powders and different type of sweetness. *Korean J Food Cookery Sci* 18(1):164-172.

Moon S, Kang S, Jin Y, Park J, Lee Y, Lee Y, Park D, Kim S (2004). Fermentation of *Citrus unshiu* Marc and functional characteristics of the fermented products. *Korea J Food Sci Technol* 36(1):306-312.

Mizukoshi M (1983). Model studies of cake baking. III. Effect of silicone on form stability of cake batter. *American Cereal Chem* 60(1):396-400.

Oh S, Chung K (2014). Physicochemical and sensory properties of muffins with added powdered tangerine peel. *Food Engineering Progress* 18(3):177-185.

Park Y, Shin S, Shin G (2008). Quality characteristics of pound cake cake with citrus mandarin powder during storage. *J East Asian Soc Dietary Life* 18(6):1022-1031.

Park B, Yang H, Cho H (2012). Quality characteristics and antioxidative effect of yukwa prepared with *Lycii fructus* powder. *J Korean Soc Food Sci Nutr* 41(6):745-751.

Park Y, Kim M, Bea S (2002). Enhancement of anticarcinogenic effect by combination of *Lycii fructus* with vitamin c. *J Korean Soc Food Sci Nutr* 31(1):143-148.

Seo J, Kim K, Son M, Lee M (2010). Growth performance, phemtaological parameter and fatty acid composition of growing olive flounder (*Paralichthys olivaceus*) to dietary inclusion of kelp meal, krill meal, garlic powder or citrus meal. *Korea J Fish Aquat Sci* 43(5):557-561.

Shin G, Shin S, No H (2005). Baeksan publish. Seoul, 35-37.

Shin J, Ryu S, Lee S, Jeong H, Park E (2008). Optimization of formulation condition for muffins with added brocoli powder. *Korea J Food Culture* 23(6):21-28.
감귤분말을 첨가한 스펀지 케이크의 품질특성

신길만

광주대학교 관광경영학과

국문초록

본 연구는 감귤과피 분말을 10, 20, 30, 40%로 첨가하여 스펀지케이크의 반죽의 비중, pH, 무게, 색도, 조직감을 측정하고, 관능검사를 실시하였다. 스펀지케이크의 비중과 무게는 대조군의 비중은 0.50, pH는 6.83로 10~40% 첨가군까지 유의적으로 감소하였다. 무게는 대조군이 305.3 g으로 가장 높게 나타났으며, 10~40% 첨가군은 유의적으로 증가하였다. 케이크의 높이는 대조군이 6.88 cm, 부피는 708.00 mL, 비용적은 2.32 cm³/g으로 가장 높게 나타났으며, 10~40% 첨가군은 유의적으로 감소하는 차이를 나타냈다. 감귤과피 분말을 첨가한 케이크의 색도 L(명도)은 대조군이 46.43으로 가장 높게 나타났으며, 40% 첨가군이 29.31로 가장 낮게 나타났다. b(황색도)는 대조군이 31.03으로 가장 높게 나타났으며, 40% 첨가군이 18.03으로 가장 높은 값을 나타냈다. 감귤과피 분말 첨가량이 증가함수록 a, b값은 유의적으로 감소하게 나타났다. 조직감의 측정결과로 탄력성(springiness), 응집성(cohesiveness)은 대조군이 높게 나타났으며, 감귤과피 분말의 첨가량이 증가함수록 감소하는 경향을 보였다. 관능검사에서는 맛(taste), 종합적인기호도(overall acceptability)에서 감귤과피 분말 10% 첨가군이 가장 우수하게 나타났다. 이와 같이 본 실험을 통한 감귤과피 분말 10%를 첨가하면 건강 지향적인 측면을 고려한 스펀지케이크 상품으로 개발이 가능한 적절한 배합비로 사료되었다.

주제어: 감귤 분말, 스펀지케이크, 특성, 관능검사