Research Article

An Improved Nonequidistant Grey Model Based on Simpson Formula and Its Application

Zhiming Hu 1 and Chong Liu 2

1 School of Zhejiang College, Shanghai University of Finance & Economics, Jinhua 321013, China
2 School of Science, Inner Mongolia Agricultural University, Hohhot 010018, China

Correspondence should be addressed to Chong Liu; liuchong@emails.imau.edu.cn

Received 1 November 2020; Revised 13 April 2021; Accepted 21 April 2021; Published 29 April 2021

1. Introduction

Time-series forecasting has received extensive attention in the past decades. Accordingly, there exist a plenty of approaches for time-series analysis and forecasting. From [1, 2] and the references therein, these methods can be divided into three categories: statistical methods (e.g., regression analysis [3], functional state space model [4], logistic regression [5], spatial-temporal model [6], Markov chain model [7], etc.), machine learning methods [8–11], and grey modeling technique [12–14]. Each method has its own advantages and limitations [15]. Regarding statistical methods and machine learning methods, the growing body of data is required in the modeling procedure. However, it is difficult to collect data available for model calibration in practical applications [16–18]. This is the principal reason that the grey model has been widely used in various disciplines [19, 20].

Grey prediction models proposed by Deng [21] have been widely used in various fields of society due to their high prediction accuracy. In particular, the GM (1, 1, \(t^2 \)) model is an important branch of the grey prediction model, which was pioneered by Qian et al. [22]. To further improve the prediction accuracy and applicability of the GM (1, 1, \(t^2 \)) model, many scholars have made efforts. For example, Luo and Wei [23] constructed the expectation function by using the sum of error squares and solved the expression of the optimal constant in the time response function. Considering that the background values are key factor that affects the prediction accuracy of the GM (1, 1, \(t^2 \)) model, Wei et al. [24] used the linear interpolation method to reconstruct the background values of the GM (1, 1, \(t^2 \)) model. Although these studies have improved the prediction accuracy of the GM (1, 1, \(t^2 \)) model in the field of equidistant time series, to the best of our knowledge, there is a dearth of research on nonequidistant time series. However, in our real world, there exist a large number of nonequidistant time series, such as samplings in reaction furnaces and building settlements. On this basis, this paper develops a novel nonequidistant grey model by combining the existing GM (1, 1, \(t^2 \)) model and...
concept of nonequidistant time series. To further enhance the prediction performance of the nonequidistant GM (1, 1, \(r^2 \)) model, a Simpson formula is applied to optimize the background value of the nonequidistant GM (1, 1, \(r^2 \)) model; as a result, an improved nonequidistant GM (1, 1, \(r^2 \)) model (denoted as INEGM (1, 1, \(r^2 \)) is proposed in this paper. The main contributions of this paper are summarized as follows:

1. A conventional nonequidistant GM (1, 1, \(r^2 \)) model is constructed by incorporating the concept of non-equidistant time series into the GM (1, 1, \(r^2 \)) model already in place.

2. Simpson formula is applied to optimize the background value of the conventional nonequidistant GM (1, 1, \(r^2 \)) model to increase the prediction performance.

3. Two real-world cases are used to verify the validity and superiority of the proposed model in comparison with other benchmark models.

The rest of this paper is organized as follows. Section 2 introduces the conventional nonequidistant GM (1, 1, \(r^2 \)) model and analyzes the discretization error. Section 3 optimizes the nonequidistant GM (1, 1, \(r^2 \)) model by using a Simpson formula. Section 4 verifies the applicability of the proposed model and Section 5 concludes the paper.

$$x^{(1)}(k_i) - x^{(1)}(k_{i-1}) + az^{(1)}(k_i) = \frac{(k_i^3 - k_{i-1}^3)b}{3} + \frac{(k_i^2 - k_{i-1}^2)c}{2} + d\Delta k_i,$$

where \(z^{(1)}(k_i) \) is the background value and \(z^{(1)}(k_i) = 0.5(x^{(1)}(k_i) + x^{(1)}(k_{i-1})) \), \(k = 2, 3, \ldots, n \).

Step 3. The model parameters can be calculated as

$$\begin{bmatrix} (a, b, c, d)^T \end{bmatrix} = (B^T B)^{-1} B^T Y,$$

where

$$B = \begin{bmatrix} -z^{(1)}(k_2)\Delta k_2 & \frac{1}{3}(k_2^3 - k_1^3) & \frac{1}{2}(k_2^2 - k_1^2) & \Delta k_2 \\ -z^{(1)}(k_3)\Delta k_3 & \frac{1}{3}(k_3^3 - k_2^3) & \frac{1}{2}(k_3^2 - k_2^2) & \Delta k_3 \\ \vdots & \vdots & \vdots & \vdots \\ -z^{(1)}(k_n)\Delta k_n & \frac{1}{3}(k_n^3 - k_{n-1}^3) & \frac{1}{2}(k_n^2 - k_{n-1}^2) & \Delta k_n \end{bmatrix},$$

$$Y = \begin{bmatrix} x^{(0)}(k_2)\Delta k_2, x^{(0)}(k_3)\Delta k_3, \ldots, x^{(0)}(k_n)\Delta k_n \end{bmatrix}^T.$$

2. Classic Nonequidistant GM (1, 1, \(r^2 \)) Model and Its Error Analysis

2.1. Nonequidistant GM (1, 1, \(r^2 \)) Model. In accordance with the description in [25], it is easy to establish the nonequidistant GM (1, 1, \(r^2 \)) model (denoted as NEGM (1, 1, \(r^2 \)), whose modeling process can be outlined as follows.

Step 1. Suppose that the original time series is \(X^{(0)}(k_1), x^{(0)}(k_2), \ldots, x^{(0)}(k_n) \), where \(\Delta k_i = k_i - k_{i-1} \neq \text{const}, i = 2, 3, \ldots, n \); then \(X^{(1)}(k_1), x^{(1)}(k_2), \ldots, x^{(1)}(k_n) \) denotes the first-order accumulated generating operation sequence of \(X^{(0)}(k) \), where

$$x^{(1)}(k_i) = \sum_{j=1}^{i} x^{(0)}(k_j), \ i = 1, 2, \ldots, n.$$

Step 2. The differential equation of NEGM (1, 1, \(r^2 \)) model is expressed as

$$\frac{dx^{(1)}(t)}{dt} + ax^{(1)}(t) = bt^2 + ct + d.$$

Then, we get the discrete formula of equation (2) expressed as

Step 4. The time response function of equation (2) is expressed as

$$\bar{x}^{(1)}(k_i) = e^{-a(k_i - k_1)} \left(x^{(1)}(k_1) - \frac{b}{a}k_i^2 + \frac{ac}{a^2}k_i^3 + \frac{2b - ac + a^2d}{a^3} \right).$$

Step 5. The predicted values of the original sequence are expressed as

$$\tilde{x}^{(0)}(k_i) = \begin{cases} \frac{\bar{x}^{(1)}(k_i) - \bar{x}^{(1)}(k_{i-1})}{\Delta k_i}, & i = 2, 3, \ldots, \\ x^{(0)}(k_i), & i = 1. \end{cases}$$
2.2. Error Analysis. Having reviewed the above modeling procedure, it is noticed that the prediction accuracy of NEGM (1, 1, \(t^2\)) model depends on the model parameters that are closely related to the background value; thus the background value is essential for the prediction precision. In the classic NEGM (1, 1, \(t^2\)) model, both sides of equation (2) are integrated over the interval \([k_{i-1}, k_i]\), expressed as

\[
\int \frac{dx^{(1)}}{dt} \, dt + a \int x^{(1)} \, dt = \int (bt^2 + ct + d) \, dt = 0
\]

\[
x^{(1)}(k_i) - x^{(1)}(k_{i-1}) + a \int x^{(1)} \, dt = \frac{(k_i^3 - k_{i-1}^3)b}{3} + \frac{(k_i^2 - k_{i-1}^2)c}{2} + d\Delta k_i.
\]

We observe from equations (3) and (9) that the discretization method, so-called trapezoid formula, is employed to approximately calculate the integral \(\int x^{(1)} \, dt\), thus producing the discretization error in such a transition process. To be specific, when the above integral has a concave trend, the approximate value is larger than the actual one; when the above integral has an upward convex trend, the approximate value is lower than the actual one.

3. Presentation of INEGM (1, 1, \(t^2\))

3.1. Nonequidistant Simpson Numerical Integral. To decline the discretization error mentioned in Section 2.2, this section applies the concept of function approximation to calculate the area of the curved trapezoid. Since the integrable function is easily approached by the Lagrange function, we get a Lagrange polynomial \(\psi(x)\) over the interval \(a \leq x_1 < x_2 < \cdots < b\) denoted as \(L_n(x)\), where

\[
L_n(x) = \sum_{j=1}^{n+1} l_j(x)f(x_j),
\]

where \(l_j(x)\) is the fundamental polynomial.

Definition 1 (see [26]). If the n-order polynomial

\[
l_j(x), \quad j = 0, 1, \ldots, n,
\]

satisfies

\[
l_j(x) = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases} \quad j, k = 0, 1, \ldots, n.
\]

Theorem 1. Assume that

\[
\int_{k_{i-1}}^{k_{i+1}} x^{(1)}(t) \, dt = I_{i-1,i+1}[x^{(1)}],
\]

and then the nonequidistant Simpson numerical integral formula is given as

\[
I_{i-1,i+1}[x^{(1)}] = \frac{\Delta k_i + \Delta k_{i+1}}{6} \left(\frac{2\Delta k_i - \Delta k_{i+1}}{\Delta k_i} x_i^{(1)} + \frac{(\Delta k_i + \Delta k_{i+1})^2}{\Delta k_i \Delta k_{i+1}} x_i^{(1)} + \frac{2\Delta k_{i+1} - \Delta k_i}{\Delta k_{i+1}} x_{i+1}^{(1)} \right).
\]

Proof. By integrating \(x^{(1)}(t)\) over the interval \([k_{i-1}, k_{i+1}], \ i = 2, 3, \ldots, n - 1\), we have

\[
I_{i-1,i+1}[x^{(1)}] = \sum_{m=i-1}^{i+1} A_m x^{(1)}(k_m) = \sum_{m=i-1}^{i+1} A_m x_m^{(1)}.
\]

Then, we get

\[
A_m = \int_{k_{m-1}}^{k_m} l_m(x) \, dx.
\]
When \(m = i - 1 \), we have

\[
A_{i-1} = \int_{k_{i-1}}^{k_i} I_{i-1}(k)dk = \int_{k_{i-1}}^{k_i} \frac{(k - k_i)(k - k_{i+1})}{(k_{i-1} - k_i)(k_{i+1} - k_i)} dk = \frac{(\Delta k_i + \Delta k_{i+1})(2\Delta k_i - \Delta k_{i+1})}{6\Delta k_i}. \tag{20}
\]

When \(m = i, m = i + 1 \), we have

\[
A_i = \frac{(\Delta k_i + \Delta k_{i+1})^3}{6\Delta k_i\Delta k_{i+1}},
\]

\[
A_{i+1} = \frac{(\Delta k_i + \Delta k_{i+1})(2\Delta k_{i+1} - \Delta k_i)}{6\Delta k_{i+1}}. \tag{21}
\]

Thus,

\[
\int dx^{(1)}(t) \approx x^{(1)}(k_{i+1}) - x^{(1)}(k_{i-1}) = x^{(0)}(k_{i+1})\Delta k_{i+1} + x^{(0)}(k_{i})\Delta k_i.
\]

It is proved.

3.2. Model Establishment. By integrating both sides of equation (2) over the interval \([k_{i-1}, k_{i+1}]\), we get

\[
\int_{k_{i-1}}^{k_i} dx^{(1)}(t) = x^{(1)}(k_{i+1}) - x^{(1)}(k_{i-1}) = x^{(0)}(k_{i+1})\Delta k_{i+1} + x^{(0)}(k_{i})\Delta k_i.	ag{24}
\]

Furthermore,

\[
x^{(0)}(k_{i+1})\Delta k_{i+1} + x^{(0)}(k_{i})\Delta k_i + a\int_{k_{i-1}}^{k_i} x^{(1)}(t)dt = \frac{b}{3}(k_{i+1}^3 - k_{i-1}^3) + \frac{c}{2}(k_{i+1}^2 - k_{i-1}^2) + d(\Delta k_{i+1} + \Delta k_i).	ag{25}
\]

Then, we replace \(\int_{k_{i-1}}^{k_i} x^{(1)}(t)dt\) with the nonequidistant Simpson numerical integral formula, which yields that

\[
x^{(0)}(k_{i+1})\Delta k_{i+1} + x^{(0)}(k_{i})\Delta k_i + a\frac{\Delta k_i + \Delta k_{i+1}}{6} \left(\frac{2\Delta k_i - \Delta k_{i+1}}{\Delta k_i} x_{i-1}^{(1)} + \frac{(\Delta k_i + \Delta k_{i+1})^2}{\Delta k_i\Delta k_{i+1}} x_i^{(1)} + \frac{2\Delta k_{i+1} - \Delta k_i}{\Delta k_{i+1}} x_{i+1}^{(1)} \right) = \frac{b}{3}(k_{i+1}^3 - k_{i-1}^3) + \frac{c}{2}(k_{i+1}^2 - k_{i-1}^2) + d(\Delta k_{i+1} + \Delta k_i).	ag{26}
\]

Then, the model parameters can be obtained by the least-square method expressed as

\[
(a, b, c, d)^T = (\Theta^T\Theta)^{-1}\Theta^T\omega,	ag{27}
\]

where
In this section, two real-world examples are used to demonstrate the superiority of the proposed model in comparison with other benchmark models including the GM (1, 1), NGM (1, 1, k), and NEGM (1, 1, r^2) models.

Case 1. In this case, monitoring data of building's settlement point, seen in Table 2, are considered as an example to examine the prediction accuracy of the proposed model. It is noticed that the first seven pieces of data are used for calibrating these competitive models and the remaining six pieces of data are used to validate the prediction performance.

In accordance with the current study and references herein, the time response functions of the competitive models are calculated as follows:

(1) GM (1, 1)
\[\bar{x}^{(1)}(k_i) = 23160.665572e^{-0.001062(k_i-k_1)} - 23082.05572. \]

(2) NGM (1, 1, k)
\[\bar{x}^{(1)}(k_i) = 2279845e^{-0.19278(k_i-k_1)} - 82.31431k_i - 26.51276. \]

(3) NEGM (1, 1, r^2)
\[\bar{x}^{(1)}(k_i) = 2.52708e^{-1.15026(k_i-k_1)} - 0.09669k_i^2 - 79.42318k_i - 3.44695. \]

(4) INEGM (1, 1, r^2)
\[\bar{x}^{(1)}(k_i) = 2.63554e^{-2.22606(k_i-k_1)} - 0.09426k_i^2 - 79.44938k_i - 3.57919. \]

We observe from Tables 3 and 4 and Figure 1 that the predicted values of the NGM (1, 1, k) model are lower than the actual one, while the predicted values of the GM (1, 1) model are higher than the actual one. Meanwhile, the six indicators of the proposed model are better than those of other benchmarks as a whole; therefore, the proposed model has a better prediction performance than those of other competitive models in this experiment.

Case 2. This case takes an example collected from the literature [28] to illustrate the applicability of the proposed model, as shown in Table 5. Similar to Case 1, modeling data is divided into two groups: the first six data sets are applied for model calibration and the remaining four data sets are used to demonstrate the prediction performance of the proposed model. The time response functions of these competitors are calculated as follows:

(1) GM (1, 1)
\[\bar{x}^{(1)}(k_i) = 10116.41987e^{-0.001062(k_i-k_1)} - 10107.13987. \]

(2) NGM (1, 1, k)
\[\bar{x}^{(1)}(k_i) = 186.20269e^{-0.12001(k_i-k_1)} - 12.68897k_i - 189.61166. \]

(3) NEGM (1, 1, r^2)
\[\bar{x}^{(1)}(k_i) = 25.12103e^{-0.03456(k_i-k_1)} + 0.003836k_i^2 + 11.23871k_i - 27.08358. \]

(4) INEGM (1, 1, r^2)
\[\bar{x}^{(1)}(k_i) = 14.719505e^{-0.05473(k_i-k_1)} - 0.0046978k_i^2 - 11.04246k_i - 16.48645. \]

After a simple calculation, the predicted values of the original sequence by the four competitive models are tabulated in Table 6, and the relevant error-value metrics are listed in Table 7; for the intuition purpose, these values in Table 7 are plotted in Figure 2.
We know from Table 7 and Figure 2 that, in the simulation period, the indicators of the proposed model, except the correlation coefficient, are better than those of other benchmarks including the GM (1, 1), NGM (1, 1, k), and NEGM (1, 1, t²) models. Meanwhile, in the prediction period, the indicators of the proposed model, namely MAPE, RMSPE, MAE, MSE, and IA, are 1.6697%, 0.0440%, 0.2208, 0.0758, and 0.9065, respectively, which
Table 4: Errors by the competitive models in Case 1.

Index	In-sample	Out-of-sample				
	MAPE (%)	RMSPE (%)	MAE	MSE	IA	R
	GM (1, 1)	NGM (1, 1, k)	NEGM (1, 1, t^2)	INEGM (1, 1, t^2)		
	0.4129	0.2960	0.1456	0.0904		
	0.0027	0.0011	0.0035	0.0001		
	0.3301	0.2382	0.1163	0.0726		
	0.1701	0.0716	0.0222	0.0070		
	0.9675	0.9873	0.9960	0.9987		
	0.9564	0.9919	0.9951	0.9986		
	1.0750	1.6552	0.3643	0.3152		
	0.0192	0.0330	0.0020	0.0015		
	0.9039	1.3891	0.3060	0.2646		
	1.3616	2.3374	0.1390	0.1051		
	0.7427	0.4344	0.9495	0.9604		
	0.9618	0.9437	0.9599	0.9599		

Figure 1: Continued.
Table 5: Building’s settlement data in Case 2.

Time	Data
1	9.28
25	10.71
53	11.31
83	11.64
116	12.00
147	12.23
177	13.05
237	13.16
269	13.61
355	13.94

Table 6: Simulative and predictive values by the competitive models in Case 2.

Time	Data	GM (1, 1)	NGM (1, 1, k)	NEGM (1, 1, t²)	INEGM (1, 1, t²)		
		Value	APE (%)	Value	APE (%)	Value	APE (%)
		In-sample		Out-of-sample			
1	9.28	9.28	0.00	9.28	0.00	9.28	0.00
25	10.71	10.88	1.59	10.75	0.37	10.75	0.37
53	11.31	11.19	1.06	11.27	0.35	1.30	0.09
83	11.64	11.54	0.86	11.68	0.34	11.67	0.26
116	12.00	11.93	0.58	12.00	0.00	11.97	0.25
147	12.23	12.34	0.90	12.22	0.08	12.24	0.08
177	13.05	12.75	2.30	12.36	5.29	12.48	5.29
237	13.16	13.38	1.67	12.50	5.02	12.83	5.02
269	13.61	14.04	3.16	12.58	7.57	13.18	7.57
355	13.94	14.96	7.32	12.63	9.40	13.63	9.40

Figure 1: Errors by the competitive models in Case 1: (a) MAPE, (b) RMSPE, (c) MAE, (d) MSE, (e) IA, and (f) R.
Table 7: Errors by the competitive models in Case 2.

Index	GM (1, 1)	NGM (1, 1, k)	NEGM (1, 1, t^2)	INEGM (1, 1, t^2)
In-sample				
MAPE (%)	0.9980	0.2305	0.2103	0.1861
RMSPE (%)	0.0111	0.0008	0.0006	0.0005
MAE	0.1140	0.0260	0.0240	0.0221
MSE	0.0141	0.0010	0.0007	0.0007
IA	0.9916	0.9994	0.9996	0.9996
R	0.9940	0.9996	0.9997	0.9997
Out-of-sample				
MAPE (%)	3.6118	6.8170	3.0647	1.6697
RMSPE (%)	0.1790	0.4967	0.1007	0.2208
MAE	0.4925	0.9225	0.4100	0.0758
MSE	0.3409	0.9222	0.7818	0.0758
IA	0.7710	0.4260	0.7818	0.9065
R	0.9823	0.9142	0.9807	0.9815

Figure 2: Continued.
are better than the others. This fact indicates that the proposed model has a better prediction performance in this experiment.

5. Conclusion

Establishing a proper model for nonequidistant time-series forecasting has always been an issue that puzzles many scholars. In order to further broaden the development of nonequidistant grey prediction models, this paper develops a nonequidistant GM (1, 1, t²) model (abbreviated as NEGM (1, 1, t²)) based on the previous literature.

To further improve the prediction accuracy of the NEGM (1, 1, t²) model, the modeling mechanism of the NEGM (1, 1, t²) model is deeply analyzed; it is known that, in the NEGM (1, 1, t²) model, the trapezoidal formula is used to calculate the area of curved trapezoid, thus producing an unacceptable error in such a transition process. To this end, we use the Simpson formula to optimize the NEGM (1, 1, t²) model based on the idea of function approximation and establish an improved NEGM (1, 1, t²) model (abbreviated as INEGM (1, 1, t²)). To verify the feasibility and validity of the INEGM (1, 1, t²) model, the INEGM (1, 1, t²) model and three other grey prediction models are applied to two published cases. The results show that the accuracy of the INEGM (1, 1, t²) model is higher than those of the NEGM (1, 1, t²) model and two other prediction models. Therefore, the feasibility and validity of the INEGM (1, 1, t²) model proposed in this paper are verified.

Although the advantages of the proposed model have been discussed, there are some limitations of the proposed model which should be considered in the following work; for example, this model is among the building blocks of the univariate model, potentially neglecting the relevant factors in practical applications. Meanwhile, combining the existing nonequidistant grey model with intelligent techniques merits further research.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by Zhejiang College of Shanghai University of Finance and Economics for scientific research projects at the provincial and above levels and by the Academic Program of the Association for Science and Technology of Jinhua (201920).

References

[1] W. Zhou, X. Wu, S. Ding, and J. Pan, “Application of a novel discrete grey model for forecasting natural gas consumption: a case study of Jiangsu Province in China,” Energy, vol. 200, Article ID 117443, 2020.
[2] W. Xie, W. Z. Wu, C. Liu, and J. Zhao, “Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction,” Energy, vol. 202, Article ID 117682, 2020.
[3] F. Yao, H. G. Müller, and J. L. Wang, “Functional linear regression analysis for longitudinal data,” The Annals of Statistics, vol. 33, pp. 2873–2903, 2005.
[4] I. Škrjanc and D. Matko, "Fuzzy predictive functional control in the state space domain," Journal of Intelligent and Robotic Systems, vol. 31, no. 1, pp. 283–297, 2001.
[5] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression, Vol. 398, John Wiley & Sons, Hoboken, NY, USA, 2013.
[6] D. R. Cox and V. Isham, “A simple spatial-temporal model of rainfall,” A. Mathematical and Physical Sciences, vol. 415, no. 1849, pp. 317–328, 1988.
[7] K. R. Gabriel and J. Neumann, "A Markov chain model for daily rainfall occurrence at Tel Aviv," Quarterly Journal of the Royal Meteorological Society, vol. 88, no. 375, pp. 90–95, 1962.

[8] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, "Dendritic neuron model with effective learning algorithms for classification approximation and prediction," IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601–614, 2018.

[9] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang, "Financial time series prediction using a dendritic neuron model," Knowledge-Based Systems, vol. 105, pp. 214–224, 2016.

[10] J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[11] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, "Quantum machine learning," Nature, vol. 549, no. 7671, pp. 195–202, 2017.

[12] C. Zheng, W. Z. Wu, W. Xie, Q. Li, and T. Zhang, "Forecasting the hydroelectricity consumption of China by using a novel unbiased nonlinear grey Bernoulli model," Journal of Cleaner Production, vol. 278, Article ID 123903, 2021.

[13] W. Xie, W.-Z. Wu, T. Zhang, and Q. Li, "An optimized conformable fractional non-homogeneous grey model and its application," Communications in Statistics-Simulation and Computation, pp. 1–16, 2020.

[14] Z.-X. Wang and D.-J. Ye, "Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models," Journal of Cleaner Production, vol. 142, pp. 600–612, 2017.

[15] B.-L. Wei, N.-m. Xie, and Y.-j. Yang, "Data-based structure selection for unified discrete grey prediction model," Expert Systems with Applications, vol. 136, pp. 264–275, 2019.

[16] X. Ma, X. Mei, W. Wu, X. Wu, and B. Zeng, "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, vol. 178, pp. 487–507, 2019.

[17] W. Wu, X. Ma, Y. Zhang, W. Li, and Y. Wang, "A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries," Science of the Total Environment, vol. 707, Article ID 135447, 2020.

[18] M. Xie, L. Wu, B. Li, and Z. Li, "A novel hybrid multivariate nonlinear grey model for forecasting the traffic-related emissions," Applied Mathematical Modelling, vol. 77, pp. 1242–1254, 2020.

[19] U. Şahin, "Forecasting of Turkey’s greenhouse gas emissions using linear and nonlinear rolling metabolic grey model based on optimization," Journal of Cleaner Production, vol. 239, Article ID 118079, 2019.

[20] L. Liu, Y. Chen, and L. Wu, "The damping accumulated grey model and its application," Communications in Nonlinear Science and Numerical Simulation, vol. 95, Article ID 105665, 2021.

[21] D. Ju-Long, "Control problems of grey systems," Systems & Control Letters, vol. 1, no. 5, pp. 288–294, 1982.

[22] W. Y. Qian, Y. G. Dang, and S. F. Liu, "Grey GM (1 1 ta) model with time power and its application," Systems Engineering-Theory & Practice, vol. 32, no. 10, pp. 2247–2252, 2012.

[23] L. Dang and W. Baolei, "Grey forecasting model with polynomial term and its optimization," Optimization, vol. 29, no. 3, pp. 58–69, 2017.

[24] B. Wei, N. Xie, and A. Hu, "Optimal solution for novel grey polynomial prediction model," Applied Mathematical Modelling, vol. 62, pp. 717–727, 2018.

[25] J. Cui, Y. G. Dang, and S. F. Liu, "Novel grey forecasting model and its modeling mechanism," Control and Decision, vol. 24, no. 11, pp. 1702–1706, 2009.

[26] F. B. Hildebrand, Introduction to Numerical Analysis, Courier Corporation, Chelmsford, MA, USA, 1987.

[27] Z. Yonglei and H. Xiufeng, "Improved discrete grey prediction model of ground settlement around excavation," Geotechnical Investigation & Surveying, vol. 2, 2013.

[28] L. Xi, D. Song, N. Xu, and P. P. Xiong, "Research on optimization of non-equidistant GM (1 1) model based on the principle of new information priority," Control and Decision, vol. 34, pp. 2221–2228, 2019.