Absorption of the ω and ϕ Mesons in Nuclei

M.H. Wood,1,3 R. Nasseripour,2 M. Paolone,3 C. Djalali,3 D.P. Weygand,4 K.P. Adhikari,30 M. Anghinolfi,20 J. Ball,14 M. Battaglieri,20 V. Batourine,4 I. Bedlinskiy,23 M. Bellis,9 B.L. Berman,2 A.S. Biselli,15,9 D. Branford,14 W.J. Briscoe,2 W.K. Brooks,36,4 V.D. Burkert,4 S.L. Careccia,30 D.S. Carman,4 P.L. Cole,18,4 P. Collins,6 V. Crede,17 A. D'Angelo,21,33 A. Daniel,29 R. De Vita,20 E. De Sanctis,19 A. Deur,4 P. Dey,9 S. Dhamija,16 R. Dickson,9 D. Doughty,12,4 R. Dupre,5 H. Egiyan,27 A. El Aaloui,5 L. El Fassi,5 P. Eugenio,17 S. Fegan,37 M.Y. Gabrielyan,16 M. Garçon,11 G.P. Gilfoyle,32 K.L. Giovannetti,24 F.X. Girod,11,9 J.T. Goetz,7 W. Gohn,13 R.W. Gote,3 L. Graham,3 M. Guidal,22 L. Guo,4 K. Hafidi,5 H. Hakobyan,36,40 C. Hanretty,17 N. Hassall,37 K. Hicks,29 M. Holtrop,27 Y. Ilieva,3,2 D.G. Ireland,37 B.S. Ishkhanyan,34 S.S. Jawalkar,39 H.S. Jo,22 K. Joo,13,36 D. Keller,29 M. Khandaker,28 P. Khetarpal,31 A. Kim,25 W. Kim,25 A. Klein,30 F.J. Klein,10 P. Konczyszynski,11 V. Kubarovsky,4,3 S.V. Kuleshov,36,23 V. Kuznetsov,25 K. Livingston,37 D. Martinez,18 M. Mayer,30 J. McAndrew,14 M.E. McCracken,9 B. McKinnon,37 C.A. Meyer,9 T. Mineeva,13 M. Mirazita,19 V. Mokeev,34,4 B. Moreno,11 K. Moriya,9 B. Morrison,6 E. Munear,2 P. Nadel-Turonski,4 A. Ni,25 S. Niccolai,22 G. Niculescu,24 I. Niculescu,24 M.R. Niroula,30 M. Osipenko,20 A.I. Ostrovidov,17 R. Paremuzyan,40 K. Park,3,25 S. Park,17 E. Pasyuk,3,6 S. Arefeos Perez,19 S. Pisano,22 O. Pogorelko,23 S. Pozdniakov,23 J.W. Price,8 S. Procureur,11 Y. Prok,38 D. Protopopescu,37,27 B.A. Raue,16,4 G. Ricco,20 M. Ripani,20 G. Rosner,37 P. Rossi,19 F. Sabatié,11 M.S. Saini,17 J. Salamanca,18 C. Salgado,28 D. Schott,16 R.A. Schumacher,9 E. Seder,13 H. Seraydaryan,30 Y.G. Sharabian,4 G.D. Smith,37 D.I. Sober,10 D. Sokhan,22 S. Steparyan,3 S.S. Stepanyan,25 P. Stoler,31 I.I. Strakovsky,5 S. Strauch,3,2 M. Taiti,29 W. Tang,29 C.E. Taylor,18 D.J. Tedeschi,3 S. Tkachenko,3 M. Ungaro,13,31 B. Vernarsky,9 M.F. Vineyard,35 E. Voutier,26 D.P. Watts,14 L.B. Weinstein,30 J. Zhang,30 B. Zhao,13,9 and Z.W. Zhao3 (The CLAS Collaboration)

1 Cansius College, Buffalo, NY 14208, USA
2 The George Washington University, Washington, DC 20052, USA
3 University of South Carolina, Columbia, South Carolina 29208, USA
4 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
5 Argonne National Laboratory, Argonne, Illinois 60439, USA
6 Arizona State University, Tempe, Arizona 85287-1504, USA
7 University of California at Los Angeles, Los Angeles, California 90095-1547, USA
8 California State University, Dominguez Hills, Carson, CA 90747, USA
9 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
10 Catholic University of America, Washington, D.C. 20064, USA
11 CEA, Centre de Saclay, Irfu/Service de Physique Nucl´eaire, 91191 Gif-sur-Yvette, France
12 Christopher Newport University, Newport News, Virginia 23606, USA
13 University of Connecticut, Storrs, Connecticut 06269, USA
14 Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
15 Fairchild University, Fairﬁeld CT 06824, USA
16 Florida International University, Miami, Florida 33319, USA
17 Florida State University, Tallahassee, Florida 32306, USA
18 Idaho State University, Pocatello, Idaho 83209, USA
19 INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
20 INFN, Sezione di Genova, 16146 Genova, Italy
21 INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
22 Institut de Physique Nucl´eaire ORSAY, Orsay, France
23 Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
24 James Madison University, Harrisonburg, Virginia 22807, USA
25 Kyungpook National University, Daegu 702-701, Republic of Korea
26 LPSC, Universite Joseph Fourier, CNRS/IN2P3, INP Grenoble, France
27 University of New Hampshire, Durham, New Hampshire 03824-3568, USA
28 Norfolk State University, Norfolk, Virginia 23504, USA
29 Ohio University, Athens, Ohio 45701, USA
30 Old Dominion University, Norfolk, Virginia 23529, USA
31 Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
32 University of Richmond, Richmond, Virginia 23173, USA
33 Universita’ di Roma Tor Vergata, 00133 Rome Italy
34 Skobeltsyn Nuclear Physics Institute, Skobeltsyn Nuclear Physics Institute, 119899 Moscow, Russia
35 Union College, Schenectady, NY 12308, USA
Due to their long lifetimes, the \(\omega \) and \(\phi \) mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from \(^2\text{H}, \text{C}, \text{Ti}, \text{Fe}, \) and \(\text{Pb} \) targets. This paper reports the first measurement of the ratio of nuclear transparencies for the \(e^+e^- \) channel. The ratios indicate larger in-medium widths compared with what have been reported in other reaction channels.

PACS numbers: 11.30.Rd, 14.40.Cs, 24.85.+p

The properties of hadrons, such as their masses and widths, are predicted to be modified in dense and/or hot nuclear matter. Particular attention has been given to the modifications of the properties of vector mesons [1–4] in ordinary nuclear matter where chiral symmetry is predicted to be partially restored. Different models predict relatively large measurable changes in the mass and/or widths, are predicted to be modified in dense and/or hot nuclear matter. Particular attention has been given to the modifications of the properties of vector mesons [1–4]. The widths of these mesons \([5–8]\). The

\[\phi\]

meson has a substantial probability of decaying in the nucleus, while the \(\omega \) and \(\phi \) mesons tend to decay outside. In order to directly observe any in-medium modifications of the \(\omega \) and \(\phi \) mesons, one has to select those produced with very small momentum relative to the nucleus, so that they remain in the nucleus until they decay. With such an experiment, it is difficult to collect enough statistics in a reasonable amount of time.

The E01-112 experiment at the Thomas Jefferson National Accelerator Facility (JLab) has studied possible modifications of the \(\rho, \omega, \) and \(\phi \) mesons with momenta greater than 0.8 GeV. The results for the \(\rho \) meson have been reported in Refs. [3, 10]. In this paper, we present the results for the \(\omega \) and \(\phi \) mesons. In this work, we observe the \(\omega \) and \(\phi \) mesons in this experiment are produced at relatively large momenta, with a majority of them decaying outside of the nucleus. However, their in-medium width can be extracted from their absorption in the nuclei. The in-medium width is given by \(\Gamma = \Gamma_0 + \Gamma_{\text{coll}} \), where \(\Gamma_0 \) is the natural width in vacuum and \(\Gamma_{\text{coll}} \) is the width due to collisional broadening. Using the low-density theorem \([11]\), \(\Gamma_{\text{coll}} = \gamma \rho v \sigma^*_{\gamma N} \), where \(\gamma \) is the Lorentz factor, \(\rho \) is the mean effective nuclear density, \(v \) is the velocity of the meson, and \(\sigma^*_{\gamma N} \) is the meson-nucleon total cross section in the nucleus. The low-density theorem assumes the density of nucleons is small so that the meson scatters off of a single nucleon. Thus, meson modifications can be extracted from a measurement of the in-medium meson-nucleon cross section.

A broadening of the in-medium width can be attributed to a number of effects. A lowering of the meson mass raises the number of sub-threshold channels available to the meson. Another effect is the modification of their hadronic components. In the case of the \(\omega \) meson, one can consider it as a virtual \(\pi\rho \) pair, where both the pion and the \(\rho \) meson are modified by the medium. Similarly, the \(\phi \) meson can be considered a virtual \(K^+K^- \) pair, with in-medium modification of the kaons. These medium effects are discussed in detail by Refs. [12, 13] for the \(\omega \) meson and by Refs. [16, 20] for the \(\phi \) meson.

An extensive review of previous experiments searching for modifications of the light vector mesons can be found in Ref. [3]. For the \(\omega \) meson, the KEK-E325 and CB-ELSA/TAPS experiments disagree on the measured masses and widths. In the KEK-E325 experiment, the \(\rho, \omega, \) and \(\phi \) mesons were produced with a 12-GeV proton beam on C and Cu and were detected by their decays to \(e^+e^- \). The CB-ELSA/TAPS collaboration investigated the reaction \(\gamma A \rightarrow \omega X \rightarrow \pi^0\gamma X \) with targets of deuterium and Nb. In this measurement, the \(\rho \rightarrow \pi^0\gamma \) decay channel is suppressed by two orders of magnitude in comparison to the \(\omega \) meson; however, the outgoing \(\pi^0 \)’s interact strongly in the nucleus. The KEK-E325 collaboration reported a 9% decrease in the \(\omega \)-meson mass with no change in the width [21]. The CB-ELSA/TAPS results indicate no mass shift [24] and an in-medium width of 130-150 MeV [25].

For the \(\phi \) meson, the KEK-E325 collaboration reported no change to the mass, but an in-medium width of 14.4 MeV [22, 23]. This disagrees with the measurement at SPring8. At the SPring8 facility, the in-medium \(\phi N \) interaction was studied with the reaction \(\gamma A \rightarrow \phi X \rightarrow K^+K^- X \) on Li, C, Al, and Cu targets [26]. This measurement had the complication of kaon final-state interactions. They reported the in-medium \(\phi N \) cross section to be \(35^{+17}_{-15} \) mb, which corresponds to a collisionally-broadened width of 35 MeV. The SPring8 result is in agreement with two other JLab measurements: one is the coherent \(\phi \)-meson photoproduction on the deuteron [27] and the other is from the \(\hat{\Delta}(\gamma, pK^+K^-)n \) reaction [28]. This paper addresses these discrepancies.
with new measurements from JLab of the in-medium widths of both mesons in heavy nuclei.

For this JLab experiment, we studied the in-medium meson widths with the reaction $\gamma A \rightarrow VX \rightarrow e^+e^-X$, where V is either the ω or ϕ meson. This measurement is the only one with electromagnetic probes in both the incoming and outgoing channels. A beam of real photons illuminated the entire nuclear volume, while the lepton pair suppressed FSI effects. The experiment was conducted with the CEBAF Large Acceptance Spectrometer (CLAS) and the photon tagging facility in Hall B. The CLAS detector is ideal because of its designed multi-particle detection capabilities and its excellent electron identification. The photon beam energy ranged up to 4 GeV. The targets were 2H, C, Ti, Fe, and Pb. Since the Ti and Fe nuclei have similar sizes, their data were combined and the notation Fe–Ti is used throughout the paper. All target materials were in the beam simultaneously, separated by 2.0 cm along the beam direction, to eliminate possible multiple scattering of the outgoing leptons. The target thicknesses were 1 g/cm2 with up to 10% variations between the individual targets. More details about the current experiment can be found in Refs. [9, 10].

To access the A-dependence of the modifications, the nuclear transparency was determined for the individual targets. The transparency is defined as $T_A = \sigma_A/A\sigma_N$, where σ_A and σ_N are the nuclear and nucleon total cross sections, respectively. To obtain the experimental cross sections, the yields, acceptance, and target thicknesses were determined. The number of incident photons canceled in the ratio of cross sections.

To extract the meson yields, a spectrum of the e^+e^- mass was reconstructed for each target, and the ρ-meson shape has been subtracted. The shape of the ρ meson was taken from the realistic GiBUU transport model [31, 32], which reproduced current JLab ρ data [9, 10]. The ρ-meson contribution was normalized to match the e^+e^- mass spectrum in the region between the ω and ϕ mesons ($0.85 \leq M \leq 0.95$ GeV) and subtracted. The top plot in Fig. 1 shows the mass spectrum for the 2H target before the subtraction, along with the normalized ρ-meson line shape. The other plots in the figure show the mass spectra for the four targets after removal of the ρ-meson contribution. These mass spectra differ from those shown in Refs. [9, 10] because a higher cut of 0.7 GeV was applied to the lepton momentum. The yields were the sum of the counts in the region of the mesons ($0.75 \leq M_\omega \leq 0.82$ GeV, $0.99 \leq M_\phi \leq 1.05$ GeV). The positive counts below and the negative counts above the ω-meson mass may be indicative of ρ-ω interference. Instead of a fit to extract the amplitudes and phase angle, upper and lower limits on the yields were determined by summing the absolute value of the counts and by summing the positive and negative counts, respectively.

The acceptances were averaged over the mass range

FIG. 1: (color online) The e^+e^- mass spectra before and after the subtraction of the ρ-meson contribution. The top 2H plot shows the mass spectrum before subtraction. The red histogram is the normalized ρ-meson line shape. The remaining histograms are after subtraction and are labeled by target. The shaded bands are the integration ranges of the ω and ϕ mesons.
of each individual meson and spanned from about 3-5% between the targets for the ω-meson channel and 8-12% for the φ-meson channel.

To eliminate the nucleon cross section in the analysis of the transparency, a ratio was made of the heavier target transparencies and the ^2H transparency, $T_A/T_{^2\text{H}}$. Fig. 2 is a plot of the ratios for the ω and φ mesons. For both mesons, the ratio decreases rapidly with A, indicating a substantial increase of the in-medium width with target atomic mass.

The systematic uncertainties were determined for the vertex matching of the leptons and the yield extraction. The leptons in each event were matched by their difference in z-position along the beamline, the radial position r in the target, and by the difference in their vertex time Δt. More information on these quantities and on the determination of the related systematic uncertainties can be found in Refs. [9, 10]. For both meson channels, the range in the uncertainties for vertex matching was from 0.5-7.0% as a function of A, with the Pb target having the highest value. For the yield extraction, a systematic study of the ρ-meson subtraction, varying the bin width and a lepton momentum cut [9, 10], produced uncertainties from 10-20% for the ω-meson analysis and 3-8% for the φ-meson analysis. These uncertainties dominated the error. The total systematic uncertainties were 20% (C), 11% (Fe - Ti), and 18% (Pb) for the ω meson and 7% (C), 9% (Fe - Ti), and 8% (Pb) for the φ meson. It should be noted that the lower limit on the ω-meson transparency ratio for the Pb data is zero. Therefore, it was only meaningful to apply the systematic uncertainty to the upper limit for this data point.

In order to extract information about the in-medium ωN and ϕN cross sections, a Glauber calculation was made following the prescription of Refs. [12, 33]. Fig. 3 shows a comparison of the data and the Glauber calculations with a range of in-medium cross sections. For the φ meson, $\sigma_{\nu N}$ is in the range of 16-70 mb. The transparency ratios were normalized to the carbon data (T_A/T_C) in order to compare with previous data and calculations in Ref. [25].

The ω meson data are not reproduced by the Glauber calculations. To investigate further, these transparency ratios were compared with the results by the CB-ELSA/TAPS experiment and the calculations by the Valencia and Giessen groups [25]. The calculations by the Valencia group are based on photoproduction of the ω meson off the nucleon and a Monte Carlo simulation of the propagation of the meson and its decay products through the nucleus [13]. The Giessen model also starts with elementary production; however, a Boltzmann-Uehling-Uhlenbeck transport calculation is used for the propagation [12]. The comparisons are shown in Fig. 4. The present results show much greater broadening than the theoretical calculations and the CB-ELSA/TAPS results. Even with the upper limit placed on the Pb data

![Figure 2](image1.png)

FIG. 2: (color online) Transparency ratios, normalized to deuterium, versus atomic mass for the ω meson (red squares) and φ meson (blue triangles). The inner error bars are the statistical uncertainties. The outer error bars represent the total uncertainties, statistical and systematic summed in quadrature. For the ω meson, the statistical error bars contain the upper and lower limits.

![Figure 3](image2.png)

FIG. 3: (color online) Transparency ratios, normalized to carbon, versus atomic mass for the ω meson (a) and φ meson (b). The curves are Glauber calculations where the $\sigma_{\nu N}$ is given in the legend. The error bars are described in Fig. 2.
The in-medium widths of the ω and ϕ mesons have been extracted by utilizing the ratio of nuclear transparency. Large absorption strengths for both mesons have been observed, which implies an increase in the in-medium widths. For the ϕ meson with its strange-quark content, the modifications are expected to originate from the dressing of the virtual $K\bar{K}$ loops and not from nucleon resonances coupling to the ϕN system. The width is predicted to increase with very little change in the mass $\Gamma_{\phi N}$. The experimental results show a strong increase but disagree on the size. Our larger absorption may be evidence of destructive ρ-ω interference in the medium. Since the CB-ELSA/TAPS decay channel is $\omega \to \pi^0\gamma$, the mixing with the ρ meson is negligible.

As with the ω meson, the ϕ-meson experiments had different average meson momenta. The values are <1.25 GeV (KEK-E325), 1.7 GeV (SPRING8), and 2 GeV (JLab). Taken together, the results show evidence of a momentum dependence of the in-medium width. The E04-005 experiment at JLab collected data in 2008 with a high-intensity photon beam on a 1H target. These data are being analyzed for the elementary processes, that will provide necessary information for the in-medium interpretation. The results will be published in a forthcoming article.

The stronger ω-meson absorption cannot be explained with current theoretical calculations. Our Glauber calculation cannot reproduce the data, even as it converges at high cross sections. Moreover, both the Giessen and Valencia models indicate that the in-medium width should be greater than 200 MeV.

As with the ω meson, the ϕ-meson experiments had different average meson momenta. The values are <1.25 GeV (KEK-E325), 1.7 GeV (SPRING8), and 2 GeV (JLab). Taken together, the results show evidence of a momentum dependence of the in-medium width. The E08-018 experiment at JLab will allow for a study of the momentum dependence and will produce more definitive results of the meson absorption.

Our results are the first to measure the ω- and ϕ-meson absorptions by means of their rare decay into e^+e^- and complement previous measurements with hadronic decay channels. These results will impact relativistic heavy-ion studies and medium modification searches. For the relativistic heavy-ion transport calculations, they provide more realistic values of the in-medium widths. For direct measurements of the medium-modified mass and width with low-momentum mesons, there is a reduction in the sensitivity since these mesons are more likely to interact in the medium before they decay.

Our results show a strong absorption for both mesons. The ϕ-meson result indicates that the in-medium cross section is much larger than that in free space. The free absorption has the same structure as the ϕ-meson rescattering matrix element, so there is an enhancement to the effective $\sigma_{\phi N}$. An extension of our experiment with more statistics can test this idea further, since both mesons are produced in nuclei and are present in the reconstructed mass spectrum.

For the ω meson, our results indicate more absorption than can be accounted for by the published CB-ELSA/TAPS results. Unlike our measurement, the CB-ELSA/TAPS experiment has to contend with the final-state interactions of the π^0. In addition, the disagreement may be due to the average meson-momenta in each measurement, 1.1 GeV (CB-ELSA/TAPS) and 1.7 GeV (JLab). To perform a proper comparison, each result needs to be scaled to match the kinematics. In Ref. [27], the Pb data is divided into 5 momentum bins with the highest bin at about 1.7 GeV. The transparency ratio for this data point is about twice as large as our Pb data point in Fig. 4. Even with similar meson momentum, there is still a discrepancy. Our larger absorption may be evidence of destructive ρ-ω interference in the medium.

The in-medium width is predicted to increase with very little change in the mass $\Gamma_{\phi N}$. The experimental results show an agreement may be due to the average meson momenta.

- Γ_{193} MeV (Giessen)
- Γ_{236} MeV (Giessen)
- Γ_{150} MeV (Valencia)
- Γ_{210} MeV (Valencia)

The measurements show that the in-medium width is greater than 200 MeV. The red squares are the JLab data, while the blue circles are from the CB-ELSA/TAPS experiment [25]. The curves are the calculations from the Giessen and Valencia groups. The legend lists the in-medium widths employed in each calculation. The JLab error bars are described in Fig. 2.
space value is less than 10 mb \[36, 37\], while our measurement is in the range of 16-70 mb. This range is closer to the free-space ρN and ωN cross sections. The ω-meson result shows greater absorption than the CB-ELSA/TAPS measurement. Our transparency ratio for the Pb nucleus is around 14%. The theoretical calculations cannot account for the increased absorption. Other effects such as momentum dependence or in-medium $\rho-\omega$ interference may be responsible.

We would like to thank the staff of the Accelerator and Physics Divisions at Jefferson Laboratory who made this experiment possible. This work was supported in part by the U.S. Department of Energy, the National Science Foundation, the Research Corporation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat à l’Energie Atomique, the National Research Foundation of Korea, the U.K. Science and Technology Facilities Council (STFC), Deutsche Forschungsgemeinschaft, and the Chilean Comisión Nacional de Investigación Científica y Tecnológica (CONICYT). Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84ER40150. The authors appreciate the theoretical support provided by U. Mosel and P. Muehlisch.

* Current address:Catholic University of America, Washington, D.C. 20064
† Current address:Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
‡ Current address:Los Alamos National Laboratory, New Mexico, NM
§ Current address:Christopher Newport University, Newport News, Virginia 23606
¶ Current address:College of William and Mary, Williamsburg, Virginia 23187-8795
[1] R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2000).
[2] M. Post, S. Leupold, and U. Mosel, Nucl. Phys. A741, 81 (2004).
[3] S. Leupold, V. Metag, and U. Mosel, arXiv:nucl-th/0907.2388v1 (2009).
[4] A. Accardi et al., Rivista del Nuovo Cimento 32, 439 (2009).
[5] G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).
[6] T. Hatsuda and S. H. Lee, Phys. Rev. C 46, R34 (1992).
[7] V. Bernard and Ulf G. Meissner, Nucl. Phys. A489, 647 (1988).
[8] R. Rapp et al., Nucl. Phys. A617, 472 (1997).
[9] R. Nasseripour et al., Phys. Rev. Lett. 99, 262302 (2007).
[10] M. H. Wood et al., Phys. Rev. C 78, 015201 (2008).
[11] C. B. Dover, J. Hüfner, and R. H. Lemmer, Annals Phys. 66, 248 (1971).
[12] P. Muehlisch and U. Mosel, Nucl. Phys. A773, 156 (2006).
[13] M. Kuskalov, E. Hernandez, and E. Oset, Eur. Phys. J. A 31, 245 (2007).
[14] M. Kuskalov et al., Phys. Rev. C 75, 064616 (2007).
[15] A. I. Titov and B. Kämper, Phys. Rev. C 76, 065211 (2007).
[16] P. Muehlisch and U. Mosel, Nucl. Phys. A765, 188 (2006).
[17] E. Oset and A. Ramos, Nucl. Phys. A679, 616 (2001).
[18] D. Cabrera and M. J. Vicente Vacas, Phys. Rev. C 67, 045203 (2003).
[19] D. Cabrera et al., Nucl. Phys. A733, 130 (2004).
[20] V. K. Magas, L. Roca, and E. Oset, Phys. Rev. C 71, 065202 (2005).
[21] M. Naruki et al., Phys. Rev. Lett. 96, 092301 (2006).
[22] F. Sakuma et al., Phys. Rev. Lett. 98, 152302 (2007).
[23] R. Muto et al., Phys. Rev. Lett. 98, 042501 (2007).
[24] M. Nanova et al., proceedings of Eur. Phys. Soc. Nucl. Phys. conference, Bochum 2009.
[25] M. Kotulla et al., Phys. Rev. Lett. 100, 192302 (2008).
[26] T. Ishikawa et al., Phys. Lett. B 608, 215 (2005).
[27] T. Mibe et al., Phys. Rev. C 76, 052202 (2007).
[28] X. Qian et al., Phys. Lett. B 680, 417 (2009).
[29] B. A. Mecking et al., Nucl. Inst. and Meth. A 503, 513 (2003).
[30] D. Sober et al., Nucl. Inst. and Meth. A 440, 263 (2000).
[31] M. Effenberger and U. Mosel, Phys. Rev. C 62, 014605 (2000).
[32] M. Effenberger, E. L. Bratkovskaya, W. Cassing, and U. Mosel, Phys. Rev. C 60, 027601 (1999).
[33] T. H. Bauer, R. D. Spital, and D. R. Yennie, Rev. Mod. Phys. 50, 261 (1978).
[34] P. Eugenio et al., “Search for New Forms of Hadronic Matter in Photoproduction”, JLab Proposal E-04-005, http://www.jlab.org/exp_prog/proposals/04/PR04-005.pdf
[35] M. H. Wood et al., “In-medium Properties of the ρ, ω, and ϕ Mesons”, JLab Proposal E-08-018, http://www.jlab.org/exp_prog/proposals/08/PR-08-018.pdf
[36] H. J. Lipkin, Phys. Rev. Lett. 16, 1015 (1966).
[37] H.-J. Behrend et al., Phys. Lett. B 56, 408 (1975).