(k, m)-type slant helices for partially null and pseudo null curves in Minkowski space \mathbb{E}_1^4

Mehmet Bektaş, Münevver Yıldırım Yılmaz†

Department of Mathematics, Fırat University, 23119 Elazığ, Turkey

Abstract

In this study we define the notion of (k, m)-type slant helices in Minkowski 4-space and express some characterizations for partially and pseudo null curves in \mathbb{E}_1^4.

Keywords: Difference equations, rational difference equations

AMS 2010 codes: 53C040, 53A05.

1 Introduction

The curve theory has been one of the most studied research area because of having many application area from geometry to the various branch of science. Especially the characterizations on the curvature and torsion play important role to define special curve types such as so-called helices. The curves of this type have drawn great attention in science. Helices appear naturally in structures of DNA, nanosprings. They are also widely used in engineering and architecture. The concept of slant helix defined by Izumiya and Takeuchi [6] based works have been studied in various spaces. For instance in [1] authors extended slant helix concept to \mathbb{E}^n and conclude that there are no slant helices with non-zero constant curvatures in the space \mathbb{E}^4. The subject is also considered in $3-$, $4-$, and $n-$dimensional Eucliedan spaces, respectively in [7, 10, 12]. Moreover different properties of helices are also considered in [8–11, 13, 18]. On the other hand in A.T. Ali, R. Lopez and M. Turgut extended this study to the k-type slant helix in \mathbb{E}_1^4. In this study they called α curve as k-type slant helix if there exists on (non-zero) constant vector field $U \in \mathbb{E}_1^4$ such that $(V_{k+d}, U) = \text{const}$, for $0 \leq k \leq 3$. Here V_{k+1} shows the Frenet vectors of this curve [2].

One may easily conclude that O-type slant helices are general helices and 1- type slant helices correspond just slant helices. k-type slant helices for partially null and pseudo null curves are also studied. In accordance

†Corresponding author
e-mail: myildirim@firat.edu.tr Tel: +90 424 2370000/3648; Fax: +90 424 2330062

ISSN 2444-8656 doi:10.2478/AMNS.2020.1.00048

Open Access. © 2019 Mehmet Bektaş, Münevver Yıldırım Yılmaz, published by Sciendo. This work is licensed under the Creative Commons Attribution alone 4.0 License.
with above studies, the authors introduced \((k,m)\)-type slant helices in \(E^4\) and we show that there do not exist \((1,m)\) type slant helices in \(E^4\) [15]. In the present work, we define the notion of \((k,m)\)-type slant helices in Minkowski 4-space and express some characterizations for partially and pseudo null curves in \(E^4_1\).

2 Preliminaries

Because of the indefiniteness of the Lorentzian metric \(g\) in \(E^4_1\) vector \(v\) in this space can have one of three causal characters called spacelike \((g(u,u) > O\) or \(u = O\)), timelike \((g(u,u) < O)\) and lightlike (null) \((g(u,u) = O, u \neq O)\), respectively. In accordance with the metric, a curve in \(E^4_1\) is called spacelike, timelike or lightlike if its velocity vectors at \(\alpha'(s)\) are spacelike, timelike and lightlike, respectively. In \(E^4_1\), if \(u\) is a unit vector, we know that \(g(u,u) = \pm 1\) and the norm of a vector \(u\) is given by \(|u| = \sqrt{g(u,u)}\). In addition a spacelike or timelike curve is said to be arclength parametrized if a \(\alpha'(s)\) is a unit vector for any \(s\) [2].

Suppose that \(\alpha = \alpha(s)\) is a spacelike curve with its arclength parameter. The Frenet frame along the curve \(\alpha\) can be denoted by \(\{T(s), N(s), B_1(s), B_2(s)\}\). Here \(T, N, B_1, B_2\) are called tangent, principal normal, the first binormal and the second binormal vector fields of the curve \(\alpha\), respectively. Because of the indefiniteness of the metric \(g\), the vectors \(N, B_1\) and \(B_2\) have different causal characters. In this study we will assume that \(T\) is spacelike, since \(\alpha\) is a spacelike curve.

Definition 2.1 A spacelike curve called partially null curve if \(N\) is spacelike and \(B_1\) is lightlike [16, 17].

For partially null curves the second binormal \(B_2\) is the only lightlike vector orthogonal to \(T\) and \(N\) such that \(g(B_1, B_2) = 1\). The Frenet equations are given as follows

\[
\begin{bmatrix}
T' \\
N' \\
B_1' \\
B_2'
\end{bmatrix} = \begin{bmatrix}
0 & \kappa & 0 & 0 \\
-\kappa & 0 & \tau & 0 \\
0 & 0 & \sigma & 0 \\
0 & -\tau & 0 & -\sigma
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B_1 \\
B_2
\end{bmatrix}
\tag{2.1}
\]

where \(\kappa, \tau\) and \(\sigma\) are first, second and third curvature of the curve \(\alpha\), respectively. Note that after a null rotation of the ambient space the third curvature \(\sigma\) can be chosen as zero, and \(\tau\) is determined up to a constant which means that any partially null curve lies in a three dimensional lightlike subspace orthogonal to \(B_1\).

Definition 2.2. A spacelike curve called pseudo null curve if \(\alpha''(s)\) is a lightlike vector for all \(s\) where the normal vector is \(N = T'\) [16, 17].

For the case \(N'\) is lightlike the curve a lies in the lightlike plane which we omit this trivial case. For the other cases, \(B_1\) is a unit spacelike vector orthogonal to \(\{T, N\}\) and \(B_2\) is the only lightlike vector orthogonal to \(T\) and \(B_1\) such that \(g(N, B_2) = 1\). The Frenet equations are given as follows

\[
\begin{bmatrix}
T' \\
N' \\
B_1' \\
B_2'
\end{bmatrix} = \begin{bmatrix}
0 & \kappa & 0 & 0 \\
0 & 0 & \tau & 0 \\
0 & \sigma & 0 & -\tau \\
-\kappa & 0 & -\sigma & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B_1 \\
B_2
\end{bmatrix}
\tag{2.2}
\]

In this case the first curvature \(\kappa\), can take only 0 and 1 values. As is well known the curve is a straight line if curvature vanishes. We will focus on the cases \(\kappa = 1\) and \(\sigma \tau \neq O\) [2].

3 \((k,m)\)-type slant helices for partially null curves in \(E^4_1\)

In this section, we will define \((k,m)\) type partially null slant helices in \(E^4_1\). From (2.1) we have that \(\sigma = O\). We also suppose that \(\kappa, \tau \neq O\).
Theorem 3.5. There are no (2, 4) type partially null slant helix in \(E^4 \).

Assume that \(\kappa = 0 \) and \(\tau \) is a (1, 3) partially null slant helix. Then we may write \(\langle T, U \rangle = const = a \langle B, U \rangle = const = b \). Also taking account Theorem 3.1 we decompose \(U \) as follows

\[
U = \alpha T + bB_1 + u_1 B_2 + u_2 B_3 + u_3 B_4,
\]

\[
0 = U' = a(\kappa N) + u_1' B_1 + u_2' B_2 + u_3' B_3 + u_4' B_4,
\]

\[
0 = (a\kappa - u_1 \tau)N + (b\sigma)B_1 + (u_1' - u_1 \sigma)B_2 + (u_2' - u_2 \sigma)B_3 + (u_3' - u_3 \sigma)B_4.
\]

From Definition 2.1 we have chosen \(\sigma = 0 \) which means that \(u_1' = 0 \) hence \(u_1 = constant \). From (3.3) we get \(\frac{\alpha}{a} = constant \). Then this completes the proof.

Theorem 3.3. Let \(\alpha \) be a (1, 4) partially null slant helix in \(E^4 \). Then \(\alpha \) is a general helix.

Proof. Assume that \(\alpha \) is a (1, 4) type slant helix. Then we may write \(\langle T, U \rangle = const = a \langle B, U \rangle = const = b \). Also taking account Theorem 3.1 we decompose \(U \) as follows

\[
U = \alpha T + aN + bB_1 + u_1 B_2 + u_2 B_3 + u_3 B_4,
\]

\[
0 = U' = a(\kappa N) + u_1' B_1 + u_2' B_2 + u_3' B_3 + u_4' B_4,
\]

\[
0 = (a\kappa - b\tau)N + (a\tau + b\sigma)B_1 + (u_1' - u_1 \sigma)B_2 + (u_2' - u_2 \sigma)B_3 + (u_3' - u_3 \sigma)B_4.
\]

From Definition 2.1 we have chosen \(\sigma = 0 \) which means that \(u_1' = 0 \) hence \(u_1 = constant \). From (3.3) we get \(\frac{\alpha}{a} = constant \). Then this completes the proof.

Theorem 3.4. There are no (2, 3) partially null type slant helix in \(E^4 \).

Proof. Assume that \(\alpha \) is a (2, 3) partially null type slant helix in \(E^4 \). Then we may write

\[
U = u_1 T + aN + u_2 B_1 + u_3 B_2 + u_4 B_3 + u_5 B_4,
\]

\[
0 = U' = u_1(\kappa N) + u_2(\kappa T + \tau B_1) + u_3(\kappa B_2) + u_4(\kappa B_3) + u_5(\kappa B_4),
\]

\[
0 = U' = (u_1' - a\kappa)T + (u_1' - u_1 \kappa)N + (a\tau + b\sigma)B_1 + (u_2' - u_2 \sigma)B_2 + (u_3' - u_3 \sigma)B_3 + (u_4' - u_4 \sigma)B_4.
\]

Taking into account of \(\sigma = 0 \) we get \(a = O \) which is a contradiction. Hence there are no (2, 3) type slant helix in \(E^4 \).

Theorem 3.5. There are no (2, 4) type partially null slant helix in \(E^4 \).

Proof. Assume that \(\alpha \) is a (2, 4) partially null type slant helix in \(E^4 \). Then we may write

\[
U = u_1 T + aN + u_2 B_1 + u_3 B_2 + u_4 B_3 + u_5 B_4,
\]

\[
0 = U' = u_1'(\kappa N) + u_2'(\kappa T + \tau B_1) + u_3'(\kappa B_2) + u_4'(\kappa B_3) + u_5'(\kappa B_4),
\]

\[
= (u_1' - a\kappa)T + (u_1' - u_1 \kappa)N + (a\tau + b\sigma)B_1 + (u_2' - u_2 \sigma)B_2 + (u_3' - u_3 \sigma)B_3 + (u_4' - u_4 \sigma)B_4.
\]

Noting that \(\sigma = 0 \) we get \(b = O \) which means that there are no (2, 4) type partially null type slant helix in \(E^4 \).
Theorem 3.6. There are no (3, 4) type partially null slant helix in \mathbb{E}^4_1.

Proof. Assume that α is a (3, 4) type partially null slant helix in \mathbb{E}^4_1. Then we may write

\[
U = u_1 T + u_2 N + aB_1 + bB_2
\]

\[
0 = U' = u_1' T + u_1 (\kappa N + u_2 (- \kappa T + \tau B_1) + a(\sigma B_1) + b(- \tau N - \sigma B_2)
\]

\[
0 = (u_1' - u_2 \kappa) T + (u_1 \kappa + u_2' - b \tau) N + (u_2 \tau + a \sigma) B_1 + (u_2 + a \sigma) B_1 + (-b \sigma) B_2
\]

In virtue of $\sigma = O$ we get $b = O$ which means that there are no (3, 4) type partially null slant helix in \mathbb{E}^4_1.

4 (k, m)-type slant helices for pseudo null curves in \mathbb{E}^4_1

In this part, we will focus on the (k, m)-type pseudo null slant helices. Recall that we assume $\kappa = 1$ and $\sigma, \tau \neq O$.

Theorem 4.1. There are no (1, 2) type pseudo null slant helix in \mathbb{E}^4_1.

Proof. Assume that α is a (1, 2) type pseudo null slant helix. Then for a constant vector field $U, g(T, U) = a$ is constant and $g(N, U) = b$ is constant. Differentiating this equation and using Frenet equations, we obtain $\kappa g(N, U) = O$ means that U is orthogonal to N. Hence there are no (1, 2) type pseudo null slant helices in \mathbb{E}^4_1.

Theorem 4.2. There are no (1, 3) type pseudo null slant helix in \mathbb{E}^4_1.

Proof. Assume that α is a (1, 3) type pseudo null slant helix in \mathbb{E}^4_1. Then we may write $\langle T, U \rangle = const = a\langle B, U \rangle = const = b$. Also taking account Theorem 3.1 we decompose U as follows

\[
U = aT + bB_1 + u_1 B_2
\]

\[
0 = U' = a(N) + b(\sigma N - \tau B_2) + u_1 B_2 + u_1 (- T - \sigma B_1)
\]

\[
0 = (-u_1) T + (a + b \sigma) N + (-u_1 \sigma) B_1 + (u_1' - b \tau) B_2
\]

\[
u_1 = 0
\]

\[
(a + b \sigma) = 0
\]

\[
u_1' + b \tau = 0
\]

From (3.25) and (3.27) we conclude $b = O$ which is a contradiction. Hence there do not exist (1, 3) type pseudo null slant helix in \mathbb{E}^4_1.

Theorem 4.3. There are no (1, 4) type pseudo null slant helix in \mathbb{E}^4_1.

Proof. Assume that a is a (1, 4) type pseudo null slant helix in \mathbb{E}^4_1. Then we decompose U as follows

\[
U = aT + u_1 B_1 + b B_2
\]

\[
0 = U' = a(N) + b(- T - \sigma B_1) + u_1' B_1 + u_1 (\sigma N - \tau B_2)
\]

\[
0 = (-b) T + (a + u_1 \sigma) N + (u_1' - b \sigma) B_1 + (-u_1 \tau) B_2
\]

Using (3.25) we get $b = O$ which is a contradiction. Hence there do not exist (1, 4) type pseudo null slant helix in \mathbb{E}^4_1.

From the theorem proved above we conclude the following corollary.

Corollary 4.1. There do not exist $(1, k)$ type pseudo null slant helix in \mathbb{E}^4_1 for $2 \leq k \leq 4$.

Theorem 4.4. Let α be a (2, 3) type pseudo null slant helix in \mathbb{E}^4_1 if and only

\[-(a \sigma \frac{\tau ds}{\tau}) - b \int \tau ds = 0\]
Assume that \(\alpha \) is a \((2, 3)\) type pseudo null slant helix in \(\mathbb{E}_1^4 \). Then we decompose \(U \) as follows

\[
U = u_1 T + a N + b B_1 + u_2 B_2
\]

(4.10)

\[
0 = U' = u'_1 T + u_1 (N) + a (\tau B_1) + b (\sigma N - \tau B_2) + u'_2 B_2 + u_2 (-T - \sigma B_1)
\]

(4.11)

\[
0 = (u'_1 - u_2) T + (u_1 + b \sigma) N + (a \tau - u_2 \sigma) B_1 + (u'_2 - b \tau) B_2
\]

(4.12)

Hence we get

\[
u'_1 - u_2 = 0
\]

(4.13)

\[
u_1 + b \sigma = 0
\]

(4.14)

\[
a \tau - u_2 \sigma = 0
\]

(4.15)

\[
(u'_2 - b \tau) = 0
\]

(4.16)

Using (4.17) we get \(u_2 = b \int \tau ds \) and taking into account of (4.15) with (4.14) we get \(u_1 = -a \sigma \int \frac{\tau ds}{\tau} \). Considering these facts in (4.13) we conclude the desired proof.

Corollary 4.2 An axis of a \((2, 3)\) type pseudo null slant helix is the vector given by

\[
D = \left[\frac{\sigma \int \tau ds}{\tau} \right] T + N + \left[\frac{\tau ds}{\tau} \right] B_1 + b \int \tau ds B_2
\]

Theorem 4.5. There are no \((2, 4)\) type pseudo null slant helix in \(\mathbb{E}_1^4 \).

Proof. Assume that \(\alpha \) is a \((2, 4)\) type pseudo null slant helix in \(\mathbb{E}_1^4 \). Then we decompose \(U \) as follows

\[
U = u_1 T + a N + u_2 B_1 + b B_2
\]

(4.17)

\[
0 = U' = u'_1 T + u_1 (N) + a (\tau B_1) + b (-T - \sigma B_1) + u'_2 B + u_2 (\sigma N - \tau B_2)
\]

(4.18)

\[
0 = (u'_1 - b) T + (u_1 + u_2 \sigma) N + (u'_2 + a \tau - b \sigma) B_1 + (-u_2 \tau) B_2
\]

(4.19)

\[
u'_1 - b = 0
\]

(4.20)

\[
u_1 + u_2 \sigma = 0
\]

(4.21)

\[
u'_2 + a \tau - b \sigma = 0
\]

(4.22)

\[-u_2 \tau = 0
\]

(4.23)

From (4.23) we conclude that \(u_2 = O \) and considering this fact in (4.20) we also see that \(u_1 = O \) which means a contradiction. Hence there do not exist \((2, 4)\) type pseudo null slant helix in \(\mathbb{E}_1^4 \).

Theorem 4.6. There are no \((3, 4)\) type pseudo null slant helix in \(\mathbb{E}_1^4 \).

Proof. Assume that \(\alpha \) is a \((3, 4)\) type pseudo null slant helix in \(\mathbb{E}_1^4 \). Then we decompose \(U \) as follows

\[
U = u_1 T + u_2 N + a B_1 + b B_2
\]

(4.24)

\[
0 = U' = u'_1 T + u_1 (N) + u'_2 N + u_2 (\tau B_1) + a (\sigma N - \tau B_2) + b (-T - \sigma B_1)
\]

(4.25)

\[
0 = (u'_1 - b) T + (u_1 + u_2 + a \sigma) N + (u_2 + a \tau - b \sigma) B_1 + (-a \tau) B_2
\]

(4.26)

\[
u'_1 - b = 0
\]

(4.27)

\[
u_1 + u_2 + a \sigma = 0
\]

(4.28)

\[
u_2 \tau - b \sigma = 0
\]

(4.29)

\[-a \tau = 0
\]

(4.30)

Taking into account of (3.55) we see that \(a = O \) and this is a contradiction.
References

[1] Ali, A.T., Turgut, M. (2010) Some characterizations of slant helices in the Euclidean space En, Hacet. J. Math. Stat., 39(3), pp. 327-336.
[2] Ali, A.T., Lopez, R., Turgut, M (2012), k-type partially null and pseudo null slant helices in Minkowski 4-space. Math. Commun. 17(1), pp. 93-103.
[3] Gluck, H. (1996) Higher curvature of curves in Euclidean space, Amer. Math. Monthly. 73, pp. 699-704.
[4] Gök, I, Okuyucu, O. Z., Kahraman, T., & Hacisalihoğlu, H. H. (2011) On the quaternionic B 2-slant helices in the Euclidean space E 4. Adv. in App. Cliff. Alg, 21(4), pp.707-719.
[5] Hacisalihoğlu, H. H. (1983) Diferensiyel Geometri, İnönü Üniversitesi Fenedebiyat Fakültesi Yayınları (In Turkish)
[6] Izumiya, S., Takeuchi, N (2004) New Special Curves and Developable Surfaces, Turk J Math 28, pp-153-163.
[7] Kula, L. Ekmekci, N, Yayli, Y., Ilarslan, K (2009) Characterizations of slant helices in Euclidean 3-space, Turkish J. Math. 33 pp. 1-13.
[8] Kula, L., Yayli, Y., (2005) On Slant helix and its spherical indicatrix, App. Math. and Comput., 169, pp. 600-607.
[9] Millman, R.S., Parker, G.D., (1977) Elements of differential geometry, Prentice-Hall Inc., Englewood Cliffs, N.J. USA
[10] Onder M, Kazaz M., Kocayigit H, Hand Kılç, O (2008) B2-slant helix in Euclidean 4-space E4, Int. J. Cont. Math. Sci. vol. 3, no.29, pp. 1433-144
[11] Özdemir, Z, Gök I., Ekmekci F. N. & Yaylı Y. (2015). A New Approach on Type-3 Slant Helix in E 4. Gen. Math. Notes 28(1), 40-49.
[12] Şenol, A., Ziplar, E. Yayli, Y., Gök İ (2013) A new approach on helices in Euclidean n-space. Math. Commun., 18(1),pp. 241-256.
[13] Turgut, M., Yilmaz, S., (2008) Characterizations of some special helices in E^4, Sci. Magna, 4(1), pp. 51-55.
[14] Turgut, M., & . Ali, A.T (2010). Some characterizations of special curves in the Euclidean space E4. Acta Univ. Sapientiae Math. 2(1), pp.111-122.
[15] Yıldırım Yılmaz M., Bektas M., (2018) Slant helices of (k, m) type in E^4, Acta Univ. Sapientiae Math, Vol:10, No:2, 395-401.
[16] Camci, Ç., Ilarslan, K., & Sucurovic, E. (2003). On pseudohyperbolical curves in Minkowski space-time. Turkish Journal of Mathematics, 27(2), 315-328.
[17] J. Walrave, Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
[18] Yılmaz, Y. M., Kitahci, M., & Öğrenmiş, A.O. (2012). A slant helix characterization in Riemann-Otsuki space. Mathematica Moravica, 16(2), 99-106.