Accelerating Surgical Robotics Research: A Review of 10 Years with the da Vinci Research Kit

Claudia D’Ettorre1,*, Andrea Mariani2,*, Agostino Stilli1, Ferdinando Rodriguez y Baena3, Pietro Valdastri4, Anton Deguet5, Peter Kazanzides5, Russell H. Taylor3, Gregory S. Fischer6, Simon P. DiMaio7, Arianna Menciassi2 and Danail Stoyanov1

Abstract— Robotic-assisted surgery is now well-established in clinical practice and has become the gold standard clinical treatment option for several clinical indications. The field of robotic-assisted surgery is expected to grow substantially in the next decade with a range of new robotic devices emerging to address unmet clinical needs across different specialties. A vibrant surgical robotics research community is pivotal for conceptualizing such new systems as well as for developing and training the engineers and scientists to translate them into practice. The da Vinci Research Kit (dVRK), an academic and industry collaborative effort to re-purpose decommissioned da Vinci surgical systems (Intuitive Surgical Inc., CA, USA) as a research platform for surgical robotics research, has been a key initiative for addressing a barrier to entry for new research groups in surgical robotics. In this paper, we present an extensive review of the publications that have been facilitated by the dVRK over the past decade. We classify research efforts into different categories and outline some of the major challenges and needs for the robotics community to maintain this initiative and build upon it.

I. INTRODUCTION

Robotics is at the heart of modern healthcare engineering. Robotic-assisted surgery in particular has been one of the most significant technological additions to surgical capabilities over the past two decades [1]. With the introduction of laparoscopic or minimally invasive surgery (MIS) as an alternative to traditional open surgery, the decoupling of the surgeon’s direct access to the internal anatomy generates the need to improve ergonomics and creates favorable arrangement for robotic tele-manipulator support. In MIS, the visceral anatomy is accessed through small trocar made ports using specialized elongated instruments and a camera (i.e., laparoscope) to observe the surgical site. Robotic-assisted MIS (RMIS) uses the same principle but the tools and the scope are actuated by motors and control systems providing enhanced instrument dexterity and precision, as well as immersive visualization at the surgical console. The most successful and widely used RMIS platform, the da Vinci surgical system (Intuitive Surgical Inc. (ISI), Sunnyvale, CA, USA), is shown in Fig.1 (left). To date, more than 5K da Vinci surgical system have been deployed worldwide performing over 7M surgical procedures across different anatomical regions [2]. Urology, gynecology and general surgery represent the main application areas where the da Vinci surgical system has been used although many other specializations have also developed robotic approaches, for example in thoracic and transoral surgery [3] (Fig. 1, right).

The impact on both clinical science and engineering research of the da Vinci surgical system has also been significant, with more than 25K peer-reviewed articles reported, as shown in Fig. 1 (right). Many clinical studies and case reports belong to this body of literature and focus on investigating the efficacy of RMIS or its development for new approaches or specialties. In addition to clinical research, the da Vinci surgical system has also facilitated many engineering publications and stimulated innovation in surgical robotics technology. In the early years since the clinical introduction of the robot, such engineering research was predominantly focused on the development of algorithms that utilize data from the system, either video or kinematic information, or external sensors adjunct to the main robotic platform. However, relatively few institutions had da Vinci surgical systems available for research use, the majority of platforms were dedicated to clinical utilization, and kinematic information was accessible through an API which required a research collaboration agreement with ISI. This inevitably restricted the number of academic or industry researchers able to contribute to advancing the field.

To address the challenges in booting surgical robotics research, the da Vinci Research Kit (dVRK) research platform was developed through a collaboration between academic institutions, Johns Hopkins University and Worcester Polytechnic Institute, and ISI in 2012 [4]. Seminal papers...
The da Vinci surgical system (Intuitive Surg. Inc.)

[5],[6] where the platform was presented for the first time, outline the dVRK and its mission. The idea behind the dVRK initiative is to provide the core hardware, i.e., a first-generation da Vinci surgical system, to a network of researchers worldwide, by repurposing retired clinical systems. This hardware is provided in combination with dedicated electronics to create a system that enables researchers to access to any level of the control system of the robot as well as the data streams within it. The dVRK components are the master console (the interface at the surgeon side), the robotic arms to handle the tools and the scope at the patient side, and the controller boxes containing the electronics (Fig. 2). To date, the dVRK, together with the purely research focused RAVEN robot [7] are the only examples of open research platforms in surgical robotics that have been used across multiple research groups. The introduction of the dVRK allowed research centers to share a common hardware platform without restricted access to the underlying back- and forward control system. This has led to a significant boost to the development of research in surgical robotics during the last decade and generated new opportunities for collaboration and to connect a surgical robot to other technologies. Fig. 1 (bottom, right) shows the increasing number of publications citing and using the da Vinci surgical system.

With this paper, we aim to provide a comprehensive overview of the research carried out to date using the dVRK. We hope to help readers to quickly understand the current activities of the community and the possibilities enabled by the open access architecture. It is our view that the impact of the system should be a precedent for similar initiatives between industry-academic consortia.

Fig. 1. (left) The da Vinci surgical system is a surgical tele-manipulator: the surgeon sits at a workstation and controls instruments inside the patient by handling a couple of masters; (right top) global distribution of da Vinci surgical systems in 2020; (right middle) surgical specialties and total number of interventions up to 2019 using the da Vinci surgical system; (right bottom, blue curve) number of publications citing the da Vinci surgical system as found in Dimensions.ai [11] looking for the string “da Vinci Surgical System” in the Medical, Health Sciences and Engineering fields; (right bottom, red curve) number of publications citing the da Vinci Research Kit (dVRK) as found in Dimensions.ai [11] looking for the string “da Vinci Research Kit”.

Fig. 2. The da Vinci Research Kit (dVRK) is available as the collection and integration of spare parts from the first-generation da Vinci surgical system (subfigure A, on the left, from Johns Hopkins University) or as the full retired first-generation da Vinci surgical system (subfigure B, on the right, from Worcester Polytechnic Institute). All the dVRK platforms feature the same main components: the patient side, i.e., the robotic arms to handle the surgical tools; the master console, i.e., the interface at the surgeon side; the controller boxes containing the electronics that guarantee accessibility and control of the system. The former version (subfigure A, on the left) does not include the endoscopic camera and its robotic manipulator at the patient side.
Fig. 3. This histogram shows the publications associated to the dVRK community members. All the research centers are listed in temporal order based on their joining year. They feature name, acronym and respective country. The left side of the graph represents the number of publications for each research center. Each square represents a single publication. The color code is used to classify the topic of the paper corresponding to each square, according to its research field, whose legend is reported on the bottom.

II. SEARCH PROTOCOL

The dVRK community is currently composed of 40 research centers from more than 10 different countries. The initiative is US led, starting in 2012 with the later addition of research sites in Europe and Asia. The full timeline and list of research centers can be found at [4], [9]. Today, the dVRK consortium includes mostly universities and academic centers within hospitals, and some companies (i.e., Surgnova [8] and of course ISI who support and underpin the entire initiative with their technology [9]).

Our review focuses only on scientific publications rather than research resulted in patents. In order to identify and catalog all the available publications involving the dVRK, we followed a protocol querying three main databases: the dVRK Wiki Page [4], Google Scholar [10] and Dimensions.ai [11]. The PRISMA flow diagram associated to our search and selection can be found in the Appendix section (Fig. 6). All the papers published in international conferences or journals were taken into account, as well as all the publications related to workshops or symposiums, and the open-access articles stored in arXiv [12].

Firstly, we manually visited the research centers’ websites as listed on the dVRK Wiki [4]. Whenever the link was active, papers were collected from the lab’s website; if inactive, the name of the principal investigator was used to locate the laboratory website and the relative available list of publications. This first refined research generated a cluster of 142 publications.

We then extended this collection with the results from Google Scholar [10] with the query “da Vinci Research Kit”. The research time interval was set between 2012 (origin of the dVRK community [4]) and 2020 producing 523 results. The results were further processed and refined by removing outliers where the dVRK was not actually mentioned in the Methods section of the work (that means it was just cited but not used in the experimental work), as well as filtering out master theses, duplicates and the works where the full text of the paper in English was not available online. This research finally generated 266 papers.

The last paper harvesting search was performed on Dimensions.ai [11] looking for the same “da Vinci Research Kit” string, generating 394 results. The same paper filtering, as carried out for the results from Google Scholar, was performed resulting in 270 publications. At this stage, these three screened datasets of papers (i.e., from the dVRK Wiki, Google Scholar and Dimensions.ai) have been cross-checked in order to ensure no duplications in the final collection of dVRK-related papers. 296 publications were obtained as final number.

In Fig. 3, the dVRK community members (for which at least one publication was found) are shown. They are listed on a timeline indicating the year they received the dVRK system following the same order of [4]. In case of publications involving multiple centers, the publication was assigned to the principal investigator’s affiliation. In case of collaborations between dVRK community members and institutes external to the community, the publication was assigned to the dVRK community member.
III. PAPER CLASSIFICATION - RESEARCH FIELDS AND DATA TYPES

For analyzing the body of publications, six research fields were used for clustering: Automation, Training, skill assessment and gesture recognition, Hardware implementation and integration, System simulation and modelling, Imaging and vision, Reviews. These broadly categorize the published works though notably some works may involve multiple fields or be at the interface between fields. In the histogram of Fig. 3, each colored box corresponds to a publication of the related research field. A second clustering criteria to classify publications relies on five different data types, shown in Fig. 4 (bottom). The classes were defined based on the data used and/or collected to underpin the papers. The five different data types are: Raw Images (RI), i.e. the left and right frames coming from the da Vinci stereo endoscope or any other cameras, Kinematics Data (KD) and Dynamics Data (DD), i.e. all the information associated to the kinematics and dynamics of the console side of the dVRK - Master Tool Manipulators (MTMs), as well as the instrument side - Patient Side Manipulators (PSMs) and Endoscopic Camera Manipulator (ECM), System Data (SD), i.e. the data associated to the robot teleoperation states, as signals coming from foot pedals, head sensor for operator presence detection, etc. External data (ED), a category that groups all the data associated with additional sensors that were connected and integrated with the dVRK platform in experimental test rigs, such as eye trackers, different imaging devices and sensors. Because of the importance of data and its utilization, especially with artificial intelligence (AI), this second categorization adds an important perspective to the work underpinned through the dVRK.

Table I reports the proposed classification highlighting both clustering categorizations.

A. Automation
There is a large spectrum of opportunity for automating aspects of RMIS [308]: some of them may be already existing features such as tremor reduction; others are more forward-looking, such as the automation of an entire surgical task, where a clinician must rely on the robot for the execution of the action itself.

Automation in RMIS is always a combination of multiple areas of robotics research: robot design and control, medical image/sensing and real-time signal processing, and AI and machine learning. This category of dVRK research includes 81 publications, representing one of the most popular research areas that has benefitted from a system where algorithms can be used on hardware. There are different approaches that can be used to automate surgical tasks, for example involving a human in a preplanning stage, utilizing control theory to follow a human during the operation, or use machine learning techniques examples and execute them autonomously later.

We decided to group efforts in RMIS automation based on the aim of the proposed control strategy, as general control, instrument control and camera control.

General control: several efforts focus on developing new high-level control architectures for automation in RMIS without specializing on task-oriented applications [148], [169], [174], [291]. From focusing their attention to human-robot interaction approaches [65], [168], to general motion compen-
Automation	Training, Skill Assessment and Gesture Recognition	Hardware Implementation and Integration	System Simulation and Modelling	Imaging and Vision	Reviews
RI	KD	SD	ED		
1[34]	[35]	[36]	[37]	[38]	
1[44]	[45]	[46]	[47]	[48]	
1[49]	[50]	[51]	[52]	[53]	
1[54]	[55]	[56]	[57]	[58]	
1[59]	[60]	[61]	[62]	[63]	
1[64]	[65]	[66]	[67]	[68]	
1[69]	[70]	[71]	[72]	[73]	
1[74]	[75]	[76]	[77]	[78]	
1[81]	[82]	[83]	[84]	[85]	
1[86]	[87]	[88]	[89]	[90]	
1[91]	[92]	[93]	[94]	[95]	
1[96]	[97]	[98]	[99]	[100]	
1[101]	[102]	[103]	[104]	[105]	
1[106]	[107]	[108]	[109]	[110]	
1[111]	[112]	[113]	[114]	[115]	
1[116]	[117]	[118]	[119]	[120]	
1[121]	[122]	[123]	[124]	[125]	
1[126]	[127]	[128]	[129]	[130]	
1[131]	[132]	[133]	[134]	[135]	
1[136]	[137]	[138]	[139]	[140]	
1[141]	[142]	[143]	[144]	[145]	
1[146]	[147]	[148]	[149]	[150]	
1[151]	[152]	[153]	[154]	[155]	
1[156]	[157]	[158]	[159]	[160]	
1[161]	[162]	[163]	[164]	[165]	
1[166]	[167]	[168]	[169]	[170]	
1[171]	[172]	[173]	[174]	[175]	
1[176]	[177]	[178]	[179]	[180]	
1[181]	[182]	[183]	[184]	[185]	
1[186]	[187]	[188]	[189]	[190]	
1[191]	[192]	[193]	[194]	[195]	
1[196]	[197]	[198]	[199]	[200]	
1[201]	[202]	[203]	[204]	[205]	
1[206]	[207]	[208]	[209]	[210]	
1[211]	[212]	[213]	[214]	[215]	
1[216]	[217]	[218]	[219]	[220]	
1[221]	[222]	[223]	[224]	[225]	
1[226]	[227]	[228]	[229]	[230]	
1[231]	[232]	[233]	[234]	[235]	
1[236]	[237]	[238]	[239]	[240]	
1[241]	[242]	[243]	[244]	[245]	
1[246]	[247]	[248]	[249]	[250]	

Table Footnotes:

- Hardware Implementation: *RI* – Raw Images, *KD* – Kinematics Data, *DD* – Dynamics Data, *SD* – System Data, *ED* – External Data.
- Reviews: *RI* – Raw Images, *KD* – Kinematics Data, *DD* – Dynamics Data, *SD* – System Data, *ED* – External Data.

Notes:

- The sixth column is dedicated to reviewing dVRK-related technologies.
sation [73], or control considering uncertainties [234].

Instrument control: this section groups all the contributions that have been made towards the attempt of automation of specific surgical subtasks. Six main tasks appear to be targets widely investigated for automation. For the suturing task, including works related to knot tying and needle insertion, we reported the following: [77], [78], [93], [96], [97], [185], [225], [226], [227], [233], [285], [17], [288], [289]. The pick, transfer and place task was primarily characterized by experiments relying on pegs and rings from the Fundamentals of Laparoscopic Surgery (FLS) training paradigm [310] ([59], [75], [76], [99], [104], [111], [170], [187], [171], [74], [172], [306]) or new surgical tools [204]. A lot of the remaining works focus on tissue interaction. This application category includes papers working on cutting and debridement [66], [95], [98], [100], [103], [105], [110], [259]. As well as retraction and dissection of tissues [109], [146], [147], [149], [151], [175], [189], [301] or blood suction [257], [258]. Also tissue palpation for locating tumors or vessels and more general tissue manipulation as in [14], [15], [16], [18], [90], [91], [94], [106], [107], [256], [283], [188], [173], sometimes just using common fabric [102], [108].

Camera control: additional literature included studies that investigated how to control the endoscopic camera or assist in controlling it. In RMSIS, the surgeon can switch between controlling the tools and the camera through a pedal clutch interface. This acts as a safety mechanism to ensure that joint motion, which can be risky, is prevented but the transition typically leads to a segmented workflow, where the surgeon repositions the camera in order to minimize the time lost in repositioning the camera. Investigations on how to optimize the camera control in order to minimize the time lost in repositioning the camera have been a longstanding effort focused on autonomous navigation of the endoscope [19], [101], [142], [150], [266], [284].

B. Training, skill assessment and gesture recognition

This research field encompasses all the publications focusing on gesture learning and recognition utilizing different data sources to infer surgical process, for a total of 46 publications. Surgical robots, like all the surgical instrumentation, require extensive, dedicated training to learn how to operate precisely and safely. Robotics with the additional encoder information compared to normal instrumentation (specifically an open platform such as the dVRK) open attractive opportunities to study motor learning: as haptic interfaces, robots provide easy access to the data associated to the operator’s hand motion. This information (mainly kinematics and dynamics) can be used to study gestures, assess skills, and improve learning by training augmentation.

Training platforms and augmentation: several studies propose the development of training platforms (in dry lab [20], [22], and simulation [21], [272], as well as training protocols (based on data from expert surgeons [79], [134], [165], or introducing autonomous strategies that can adapt the training session to the trainee [276], [269], [271], [305]). Among these protocols, haptic guidance and virtual fixtures (i.e. the application of forces to the trainee’s manipulators to guide and teach the correct movement) have been of particular interest [251], [252], [270], [275].

Skill assessment: as a fundamental component of training, skill assessment has received attention (focusing on proficiency analysis [23], [115], [166], [176], [179], [253], [254], [267], [303], [304], as well as addressing the mental and physical workload of the user [153], [307], and the influence of training on haptic perception [67]).

Workflow analysis: gesture analysis [68], [126], [152], [164], [250] and segmentation [112], [113], [125], [164], [177], [178], [191], [207], [208], [273], have been also widely investigated in the research community, both for image segmentation and augmentation.

C. Hardware implementation and integration

Hardware implementation and integration is the most heterogeneous category, hence the highest number of publications (111) belong to this group.

dVRK platform implementation and integration: this group includes all the works published during the development of the dVRK. Both the hardware and software components are described in [5], [6], [13], [24], [27], [35], [36], [39], [40], [41], [42], [43]. Few new integrations were lately published in [297].

Haptics and pseudo-haptics: several research groups have investigated how to overcome the lack of haptic feedback in the current da Vinci system. Numerous hardware and software applications [70], [71], [72], [87], [88], [118], [119], [127], [139], [223], with eventual links to automation [131], [242], [243], [255], [262], are the main contributions to the force sensing integration with the dVRK. Related to this topic, the use of virtual fixtures, previously mentioned in Section B, as an intra-operative guiding tool, has been investigated in [28], [29], [30], [85], [92], [192], [193], [235], [238], [239], [278]. Furthermore, research works focused on augmented reality to provide the surgeons with visual feedback about forces (the so called pseudo-haptics) have been presented in [31], [32], [34], [116], [117], [261], [277], [298].

New surgical tools: another group of publications includes all those works focusing on the design and integration of new tools compatible with the dVRK: new surgical instruments [120], [121], [122], [123], [124], [128], [129], [127], [144], [145], [184], [224], [236], [237], [244], [293], [294], [296], and new sensing systems [81], [82], [208], [228], [292].

New control interfaces: few works focused on the development of novel control interfaces of the endoscopic camera [44], [141], [142], [143], [167] and new flexible endoscopes and vision devices [286], [287], as well as novel master interfaces [191], [194], [195].

Surgical workflow optimization: the last large subgroup of publications in this research area is related to the implementation and integration with the dVRK of technologies that can enhance the surgeon’s workflow and perception, such
as [33], [80], [84], [86], [114], [135], [136], [137], [182], [184], [196], [209], [210], [241], [264], [279], [295]. A significant research effort has been done also for improving the teleoperation paradigm such as in [25], [37], [38], [45], [46], [60], [69].

Other: additional works investigate the use of the dVRK as basis platform to explore clinical indications or non-clinical applications beyond the current intent for the clinical da Vinci system. For example in retinal surgery [26], heart surgery [83], portable simulators [240], and using the master controllers to drive vehicles in simulations [154].

D. System simulation and modelling

This smaller group of 8 publications contains all the studies that focused on the integration of the dVRK into simulation environments to obtain realistic robot interaction with rigid and soft objects [47], [63], [245]. In this framework, the identification of the kinematics and dynamics properties of the robotic arms have been addressed [48], [62], [64], [133], [246]. The size of this research field is limited since all the works using simulation environments as tools to implement other solutions (e.g., for testing task automation, or as a training environment) have been classified in the specific category of application.

E. Imaging and Vision

This category includes 36 publications related to the processing of the images and video coming from the dVRK’s stereo laparoscopic camera. A wide range of vision algorithms are applied and developed to this data with publications ranging from investigations of the detection of features in the images (to perform camera calibration, tissue and instrument tracking or image segmentation) to systems enabling overlays of additional information onto the images displayed by the scope for augmented reality.

Camera calibration: this first group includes publications investigating approaches for endoscope to surgical tools registration (i.e. hand-eye calibration) [50], [183],[199], [200], [213], [214], [299], [232], as well as determining the camera intrinsic parameters using dVRK information [49].

Segmentation: works aimed at detecting, segmenting and tracking important elements in the surgical scene, such as surgical instruments [198], [211], [212], [215], [217], [218], [220], [221], [222], [229], [249], [265],[300], suturing needles [231], tissues [302] and suturing threads [230]. The dVRK has been important in this area for developing open datasets especially for instrument detection and segmentation as well as pose estimation.

Augmentation: other works rely on different or emerging imaging modalities and techniques like ultrasound or photoacoustic imaging [51], [55] to implement image guidance [54] to enhance surgical capabilities and patient safety during operations [53], [216], [280], [281]. In [52] the segmentation of a marker is used as control of a 4-DOF laparoscopic instrument. In [201], [219], images are used to learn how to estimate the depth and 3D shape of the workspace, or how to automatically remove smoke from the surgeons’ field of view [197].

F. Reviews

Several major review publications cite the dVRK and study the literature in RMIS related topics. Comprehensive reviews on the state of the art of RMIS and future research directions have been presented in [57], [58], [140], [156], [158], [159], [160], [282]. Works like [155], [157] review the general aspects of autonomy in robotic surgery, while [89] and [247] focus on human aspects in control and robotic interaction. In [203] the legal implications of using AI for automation in surgical practice are discussed, while virtual and augmented reality in robotic surgery are reviewed in [56].

IV. DISCUSSION

This review paper focuses on describing the state of the art as we approach the first decade of the dVRK by providing a comprehensive collection of the papers that have been published so far in a wide range of research topics. Overall, 296 papers have been classified into five different categories. In
each category, each publication was then classified also based on the type of data it relied on because one of the main advantages the dVRK has offered is the use of a surgical robot for data generation. As a summary, Fig. 5 shows the percentage usage of a given type of data for each research field.

Starting from the automation research category, almost all the papers we reviewed rely on the use of endoscopic images and/or KD from the encoders. This trend obviously persists in the imaging and vision classes with research outputs based on KD being slightly less active. For training and skill assessment and surgical gesture recognition most papers rely on KD, using any other type of data in less than 50% of the cases or exploiting ED. When it comes to hardware implementation and integration almost all the types of data are greater than 50%, preserving a good balance except for the KD. For system simulation and integration, it is possible to notice how KD and DD are used in the vast majority of publications, leaving the other data type to less than 25%. In general, the correlation between the type of data and each application area shows the increasingly importance of images in RMIS, since in almost all the categories RI crosses the 50%. The extensive use of KD and DD also highlights the importance of having a research platform, as the dVRK, that facilitates the ability to exploit the robot as a haptic interface and to make use of the systems’ data generation capabilities. Furthermore, the open-access design of the dVRK incentivizes and enables researchers to integrate it with different types of hardware and software, as shown by the extensive usage of external data in almost all of the classes.

By taking consideration of the data usage in the published research and the research categories for the dVRK we hope to map the worldwide research activity the system has stimulated. Despite the non-exhaustive nature of this review report and analysis, we believe that the information collected provides a compelling account of the research areas and directions explored and enabled through the dVRK. It offers adopters of the dVRK a comprehensive overview of the research outputs, synopsis of activity of the different consortium stakeholders across the globe.

The review has highlighted the importance and impact that dVRK data generation and availability has had on stimulating research. This is not surprising because of the huge surge in activity in data intensive research in machine learning, computer vision and artificial intelligence in general. A future improvement for the dVRK platform would be enabling researchers to collect and store synchronized system data with minimum effort so that it can be used for different applications as well as providing basis for benchmarks and challenges. For example, all the experiments carried out in papers around surgeon training and skill assessment could be recorded in centralized data storage and used as demonstration to train algorithms for task automation. This also links to clinical data availability and areas of active development with research institutions under research agreements with ISI where data can be recorded from the clinical setting (using custom recording tools such as the dVLogger by ISI, like in [312]). Multiple new initiatives can build on and evolve the dVRK’s current capabilities and also can spawn additional development. An interesting addition considering the recent thrust in the automation area would be to invest significant effort and develop and integrate a fully-fledged simulation environment for research. This would open opportunities for researchers with the possibility to develop and test algorithms that require a vast number of learning iterations in reinforcement learning or unsupervised learning strategies. Additionally, a simulation dVRK would allow research teams without the space or hardware support infrastructure to work in the field. A connection between such a simulator and real systems with community development of the libraries and facilities for teleoperation could also be a exiting capability to explore further.

In summary of our review of the impact the dVRK has had on robotics research, we note a strong trend towards more effective data utilization in surgical robotic research is related to the possibility of making research platforms more compliant and open to the integration of different systems, in order to facilitate data collection, storage, sharing and usage. The work facilitated by the dVRK highlights this current area of development. However, the dVRK also does much more, with examples of significant effort and development facilitated by the platform in new hardware, integration with imaging or other non-robotic capabilities, and human factors studies. It is the authors’ opinion that the platform has been a huge catalyst to research acceleration in RMIS and hopefully to the transition of research efforts into clinically meaningful solutions in future years. Maintaining the spirit of the dVRK both in terms of underpinning system and community will have continued impact on surgical robotics research. It will be extremely valuable to continue the initiative and see future generations of the da Vinci system become part of the research ecosystem the dVRK has created as their clinical use becomes retired or decommissioned.

REFERENCES

[1] G.-Z. Yang et al., “Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy,” Sci. Robot., vol. 2, no. 4, Mar. 2017.
[2] “2020 Intuitive Investor Presentation,” (Accessed: June 2020). Retrieved from https://isrg.gcs-web.com/static-files/7b0470fb-cfd2-456a-b6eb-24af76d6d0f6d
[3] “daVinci Intuitive Surgical - Procedures,” (Accessed: May 2020). Retrieved from https://www.intuitive.com/en-us/products-and-services/da-vinci/education.
[4] N. B. Coils, “da Vinci Research Kit Research Wiki Page,” vol. 2012, (Accessed: August 2020). Retrieved from: Available:https://research.intusurg.com/index.php/Main_P age.
[5] Z. Chen, A. Deguet, R. Taylor, S. DiMaio, G. Fischer, and P. Kazanzides, “An open-source hardware and software platform for telesurgical robotics research,” in Proceedings of the MICCAI Workshop on Systems and Architecture for Computer Assisted Interventions, Nagoya, Japan, 2013.
[6] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio, “An open-source research kit for the da Vinci® Surgical System,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014.
[7] H. Alemzadeh, J. Raman, N. Leveson, Z. Kalbarczyk, and R. K. Iyer, “Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data,” PLoS One, vol. 11, no. 4, 2016.
[8] “Surgnova Healthcare Technology,” 2014. (Accessed: August 2020). Retrieved from https://www.surgnova.com/en/.
[9] A. Deguet, “da Vinci Research Kit Johns Hopkins University GitHub,” 2016 (Accessed: May 2020). Retrieved from https://github.com/jhu-dvrk/sawIntuitiveResearchKit/wiki/Timeline.
“Google Scholar.” Retrieved from https://scholar.google.com/.

“Dimensions | The Next Evolution in Linked Scholarly Information.” (Accessed: June 2020). Retrieved from Available: https://www.dimensions.ai/.

“Arxiv,” Cornell University. Retrieved from https://arxiv.org/.

Z. Chen and P. Kazanzides, “Multi-kilohertz control of multiple robots via IEEE-1394 (firewire),” IEEE Conf. Technol. Pract. Robot Appl. TelPRA, vol. 1394, 2014.

F. Alambeigi, Z. Wang, R. Hegeman, Y.-H. Liu, and M. Armand, “Autonomous Data-Driven Manipulation of Unknown Anisotropic Deformable Tissues Using Unmodeled Continuum Manipulators,” IEEE Robot. Auton. Lett., vol. 4, no. 2, 2019.

F. Alambeigi, Z. Wang, Y. Liu, R. H. Taylor, and M. Armand, “Toward Semi-autonomous Cryoablation of Kidney Tumors via Model-Independent Deformable Tissue Manipulation Technique,” Ann. Biomed. Eng., vol. 46, no. 10, 2018.

P. Caccianiga, A. Mariani, E. De Momi, G. Cantarero, and J. D. Brown, “Preliminary Evaluation of an Online Estimation Method for Organ Geometry and Tissue Stiffness,” IEEE Robot. Auton. Lett., vol. 3, no. 3, 2018.

V. M. Varier, D. K. Rajamani, N. Goldfarb, F. Tavakkolmoghadam, A. Munawar, and G. S. Fischer, “Collaborative Saturating: A Reinforcement Learning Approach to Automate Hand-off Task in Surgery,” in 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2020.

F. Alambeigi, Z. Wang, R. Hegeman, Y.-H. Liu, and M. Armand, “A Robust Data-Driven Approach for Online Learning and Manipulation of Unmodeled 3-D Heterogeneous Compliant Objects,” IEEE Robot. Auton. Lett., vol. 3, no. 4, 2018.

L. Qian, C. Song, Y. Jiang, Q. Luo, X. Ma, and P. W. Chiu, “FlexVision: Teleporting the Sargeon ’s Eyes via Robotic Flexible Endoscope and Head-Mounted Display,” in IEEE International Conference on Intelligent Robots and Systems (IROS), 2020.

G. Caccianiga, A. Mariani, E. De Momi, G. Cantarero, and J. D. Brown, “An Evaluation of Inanimate and Virtual Reality Training for Psychomotor Skill Development in Robot-Aided Minimally Invasive Surgery,” IEEE Trans. Med. Robot. Bionics, 2020.

A. Munawar, N. Srishankar, and G. S. Fischer, “An Open-Source Framework for Rapid Development of Interactive Soft-Body Simulations for Real-Time Training,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020.

G. Caccianiga, A. Mariani, E. De Momi, and J. D. Brown, “Virtual Reality Training in Robot-Assisted Surgery: a Novel Experimental Setup for Skill Transfer Evaluation,” in Proceedings of Hamlyn Symposium 2019, 2019.

J. Y. Wu, A. Tamhane, P. Kazanzides, and M. Unberath, “Cross Modal self-supervised representation learning for gesture and skill recognition in robotic surgery,” Int. J. Comput. Assist. Radiol. Surg., Mar. 2021.

P. Kazanzides, A. Deguet, B. Vagvolgyi, Z. Chen, and R. H. Taylor, “Modular interoperability in surgical robotics software,” Mech. Eng., vol. 137, no. 09, 2015.

S. Vozar, Z. Chen, P. Kazanzides, and L. L. Whitcomb, “Preliminary study of virtual nonholonomic constraints for time-delayed teleoperation,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.

Z. Li et al., “Hybrid Robot-assisted Frameworks for Endomicroscopy Scanning in Retinal Surgeries,” IEEE Trans. Med. Robot. Bionics, 2020.

Z. Chen, A. Deguet, S. Vozar, A. Munawar, G. Fischer, and P. Kazanzides, “Interfacing the da Vinci Research Kit (dVRK) with the Robot Operating System (ROS),” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

Z. Chen et al., “Virtual fixture assistance for needle passing and knot tying,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

L. Wang et al., “Updating virtual fixtures from exploration data in force-controlled model-based telemanipulation,” in ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016.

S. Vozar, S. Léonard, P. Kazanzides, and L. L. Whitcomb, “Experimental evaluation of force control for virtual-fixture-assisted teleoperation for on-orbit manipulation of satellite thermal blanket insulation,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

L. Qian, A. Deguet, Z. Wang, Y.-H. Liu, and P. Kazanzides, “Augmented reality–assisted instrument insertion and tool manipulation for the first assistant in robotic surgery,” in 2019 International Conference on Robotics and Automation (ICRA), 2019.

B. P. Vagvolgyi et al., “Scene modeling and augmented reality interface for telerobotic satellite servicing,” IEEE Robot. Autom. Lett., vol. 3, no. 4, 2018.

P. Chalasani, A. Deguet, P. Kazanzides, and R. H. Taylor, “A Computa middleware framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots,” in 2018 Second IEEE International Conference on Robotic Computing (IRC), 2018.

B. Vagvolgyi, W. Niu, Z. Chen, P. Wilkening, and P. Kazanzides, “Augmented reality for model-based teleoperation,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

L. Qian, Z. Chen, and P. Kazanzides, “An Ethernet to FireWire bridge for real-time control of the da Vinci Research Kit (dVRK),” in 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 2015.

Z. Chen, A. Deguet, R. H. Taylor, and P. Kazanzides, “Software architecture of the da Vinci Research Kit,” in 2017 First IEEE International Conference on Robotic Computing (IRC), 2017.

M. M. Marinho and L. L. Whitcomb, “An Open-Source Framework for the Development of Surgical Robots in Constrained Workspaces,” in 2019 International Conference on Robotics and Automation (ICRA), 2019.

G. Chrysilla, N. Easman, A. Deguet, and P. Kazanzides, “A Compliance Model to Improve the Accuracy of the da Vinci Research Kit (dVRK),” Acta Polytech. Hungarica, vol. 16, no. 8, 2019.

J. Y. Wu, Z. Chen, A. Deguet, and P. Kazanzides, “FPGA-Based Velocity Estimation for Control of Robots with Low-Resolution Encoders,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.

Y.-H. Su et al., “Collaborative Robotics Toolkit (CRTK): Open Software Framework for Surgical Robotics Research,” in 2020 Fourth IEEE International Conference on Robotic Computing (IRC), 2020.

Z. Li, A. Gordon, T. Looi, J. Drake, C. Forrest, and R. H. Taylor, “Anatomical Mesh-Based Virtual Fixtures for Surgical Robots,” in IEEE International Conference on Intelligent Robots and Systems (IROS), 2020.

L. Qian, A. Deguet, and P. Kazanzides, “dVRK-XR: Mixed Reality Extension for da Vinci Research Kit,” in The Hamlyn Symposium on Medical Robotics, 2019.

F. Alambeigi, Z. Wang, Y.-H. Liu, R. H. Taylor, and M. Armand, “A Versatile Data-Driven Framework for Model-Independent Control of Continuum Manipulators Interacting With Obstructed Environments With Unknown Geometry and Stiffness,” arXiv preprint, 2020.

G. Fu, E. Azimi, and P. Kazanzides, “Mobile Teleoperation: Evaluation of Wireless Wearable Sensing of the Operator’s Arm Motion,” in arXiv preprint, 2021.

A. Munawar, J. Y. Wu, R. H. Taylor, P. Kazanzides, and G. S. Fischer, “A Framework for Customizable Multi-User Teleoperated Control,” IEEE Robot. Autom. Lett., vol. 6, no. 2, 2021.

J. Y. Wu, P. Kazanzides, and M. Unberath, “Leveraging vision and kinematics data to improve realism of biomechanic soft tissue simulation for robotic surgery,” Int. J. Comput. Assist. Radiol. Surg., 2020.

N. Yilmaz, J. Y. Wu, P. Kazanzides, and U. Tumerdem, “Neural Network based Inverse Dynamics Identification and External Force Estimation on the da Vinci Research Kit,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020.

S. Leonard, “Registration of planar virtual fixtures by using augmented reality with dynamic textures,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

Z. Wang et al., “Vision-Based Calibration of Dual RCMB-Based Robot Arms in Human-Robot Collaborative Minimally Invasive Surgery,” IEEE Robot. Autom. Lett., vol. 3, no. 2, 2018.

N. Gandhi, M. Allard, S. Kim, P. Kazanzides, and M. A. L. Bell, “Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot,” J. Biomed. Opt., vol. 22, no. 12, 2017.

Z. Wang et al., “Image-based trajectory tracking control of 4-DOF
larynx and pancreatic cancer, "in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.

[55] S. Kim, Y. Tan, A. Deguet, and P. Kazanzides, “Real-time image-guided robotic system integrating 3D Slicer and the da Vinci Research Kit,” in 2017 First IEEE International Conference on Robot Intelligence and Systems (IRC), 2017.

[56] S. Kim, Y. Tan, P. Kazanzides, and M. A. L. Bell, “Feasibility of photoacoustic image guidance for teleoperated endonasal transsphenoidal surgery,” in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016.

[57] L. Qian, J. Y. Wu, S. DiMaio, N. Navab, and P. Kazanzides, “A Review of Augmented Reality in Robot-Assisted Surgery,” IEEE Trans. Med. Imaging, vol. 25, no. 12, 2006.

[58] R. H. Taylor, P. Kazanzides, G. S. Fischer, and N. Simeon, “Medical robots and computer-integrated interventional medicine,” in Biomedical Information Technology, Elsevier, 2020.

[59] A. Lasso and P. Kazanzides, “System integration,” in Handbook of Medical Image Computing and Computer Assisted Intervention, Elsevier, 2020.

[60] A. Munawar and G. Fischer, “A Surgical Robot Teleoperation Framework for Providing Haptic Feedback Incorporating Virtual Environment-Based Guidance,” Front. Robot. AI, vol. 3, 2016.

[61] A. Munawar and G. Fischer, “Towards a haptic feedback framework for multi-DOF robotic laparoscopic surgery platforms,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

[62] R. A. Gondokaryono, A. Agrawal, A. Munawar, C. J. Nyicz, and G. S. Fischer, “An Approach to Modeling Closed-Loop Kinematic Chain Mechanisms, Applied to Simulations of the da Vinci Surgical System,” Acta Polytech. Hung., vol. 16, no. 8, 2019.

[63] A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A real-time dynamic simulator and an associated front-end representation format for simulating complex robots and environments,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

[64] Y. Wang, R. Gondokaryono, A. Munawar, and G. S. Fischer, “A Convex Optimization-Based Dynamic Model Identification Package for the da Vinci Research Kit,” IEEE Robot. Autom. Lett., 2019.

[65] K. E. Kaplan, K. A. Nichols, and A. M. Okamura, “Toward human-robot collaboration in surgery: Performance assessment of human and robotic agents in an inclusion segmentation task,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016.

[66] K. Shamaei et al., “A paced shared-control teleoperated architecture for supervised automation of multilateral surgical tasks,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.

[67] Z. Chua, A. M. Jare, S. Wren, I. Nisky, and A. M. Okamura, “Task Dynamics of Prior Training Influence Visual Force Estimation Ability During Teleoperation,” IEEE Trans. Med. Robot. Biomech., 2020.

[68] I. Nisky, Y. Che, Z. F. Quek, M. Weber, M. H. Hsieh, and A. M. Okamura, “Teleoperated versus open needle driving: Kinematic analysis of experienced surgeons and novice users,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[69] L. H. Kim, C. Bargar, Y. Che, and A. M. Okamura, “Effects of master-slave tool misalignment in a teleoperated surgical robot,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[70] Z. F. Quek, W. R. Provancher, and A. M. Okamura, “Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks,” IEEE Trans. Haptics, vol. 12, no. 2, 2019.

[71] Y. Kamikawa, N. Enayati, and A. M. Okamura, “Magnified Force Sensory Substitution for Telemanipulation via Force-Controlled Skin Deformation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

[72] Y. Che, G. M. Haro, and A. M. Okamura, “Two is not always better than one: Effects of teleoperation and haptic coupling,” in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016.

[73] A. Ruszkowski, C. Schneider, O. Mohareri, and S. Salcudean, “Bimanual teleoperation with heart motion compensation on the da Vinci® Research Kit: Implementation and preliminary experiments,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016.

[74] M. Hwang et al., “Efficiently Calibrating Cable-Driven Surgical Robots With RGBD Fiducial Sensing and Recurrent Neural Networks,” IEEE Robot. Autom. Lett., vol. 5, no. 4, 2020.

[75] M. Hwang et al., “Superhuman Surgical Peg Transfer Using Depth-Sensing and Deep Recurrent Neural Networks,” arXiv Prepr, 2020.

[76] S. Paradis et al., “Intermittent Visual Servoing: Efficiently Learning Policies Robust to Instrument Changes for High-precision Surgical Manipulation,” arXiv Prepr, 2020.

[77] B. Thananjeyan et al., “Optimizing Robot-Assisted Surgery Suture Plans to Avoid Joint Limits and Singularities,” in 2019 International Symposium on Medical Robotics (ISMR), 2019.

[78] A. E. Abdeelaal, J. Liu, N. Hong, G. D. Hager, and S. E. Salcudean, “Parallelism in Autonomous Robotic Surgery,” IEEE Robot. Autom. Lett., vol. 6, no. 2, 2021.

[79] A. E. Abdeelaal et al., “Play me back: a unified training platform for robotic and laparoscopic surgery,” IEEE Robot. Autom. Lett., vol. 4, no. 2, 2018.

[80] H. Moradi, S. Tang, and S. E. Salcudean, “Toward Intra-Operative Prostate Photoacoustic Imaging: Configuration Evaluation and Implementation Using the da Vinci Research Kit,” IEEE Trans. Med. Imaging, vol. 38, no. 1, 2019.

[81] A. Avinash, A. E. Abdeelaal, P. Mathur, and S. E. Salcudean, “A ‘tap-and-go’ stereocentor for surgical robots with vision and force aligned control for the da Vinci surgical system: a preliminary study,” Int. J. Comput. Assist. Radiol. Surg., vol. 14, no. 7, 2019.

[82] C. Schneider, C. Nguan, R. Rohling, and S. Salcudean, “Tracked ‘Pick-Up’ Ultrasound for Robot-Assisted Minimally Invasive Surgery,” IEEE Trans. Biomed. Eng., vol. 63, no. 2, 2016.

[83] A. Ruszkowski, O. Mohareri, S. Lichtenstein, R. Cook, and S. Salcudean, “On the feasibility of heart motion compensation on the daVinci® Research Kit,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[84] I. Tong, O. Mohareri, S. Tatasurya, C. Hennessey, and S. Salcudean, “A retrofit eye gaze tracker for the da Vinci and its integration in task execution using the da Vinci Research Kit,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.

[85] H. Moradi, S. Tang, and S. E. Salcudean, “Toward Robot-Assisted Photoacoustic Imaging: Implementation Using the da Vinci Research Kit and Virtual Fixtures,” IEEE Robot. Autom. Lett., vol. 4, no. 2, 2019.

[86] Z. Li, I. Tong, L. Metzalf, C. Hennessey, and S. E. Salcudean, “Free Head Movement Eye Gaze Contingent Ultrasound Interfaces for the da Vinci Surgical System,” IEEE Robot. Autom. Lett., vol. 3, no. 3, 2018.

[87] O. Mohareri, C. Schneider, and S. Salcudean, “Bimanual telerobotic surgery with asymmetric force feedback: a daVinci® surgical system implementation,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.

[88] D. G. Black, A. H. H. Hosseinabadi, and S. E. Salcudean, “6-DOF Force Sensing for the Master Tool Manipulator of the da Vinci Surgical System,” IEEE Robot. Autom. Lett., vol. 5, no. 2, 2020.

[89] A. E. Abdeelaal, P. Mathur, and S. E. Salcudean, “Robotics In Vivo: A Perspective on Human–Robot Interaction in Surgical Robotics,” Annu. Rev. Control. Robot. Auton. Syst., vol. 3, 2020.

[90] H. Salmon et al., “Trajectory-Optimized Sensing for Active Search of Tissue Abnormalities in Robotic Surgery,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

[91] J. M. Ferguson et al., “Toward image-guided partial nephrectomy with the da Vinci robot: exploring surface acquisition methods for intraoperative re-registration,” in Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, 2018.

[92] L. Wang et al., “Force-controlled exploration for updating virtual fixture geometry in model-mediated telemanipulation,” J. Mech. Robot., vol. 9, no. 2, 2017.

[93] S. Sen, A. Garg, D. Gealy, S. McKinley, Y. Jen, and K. Goldberg, }
“Automating Multi-Throw Multilateral Surgical Suturing with a Mechanical Needle Guide and Sequential Convex Optimization,” IEEE Int. Conf. Robot. Autom., 2018.

S. McKinley et al., “A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery,” in 2015 IEEE International Conference on Automation Science and Engineering (CASE), 2015.

D. Seita, S. Krishnan, R. Fox, S. McKinley, J. Canny, and K. Goldberg, “Fast and Reliable Autonomous Surgical Debridement with Cable-Driven Robots: Using a Two-Phase Calibration Procedure,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

B. Thananjeyan et al., “Safety Augmented Value Estimation from Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks,” EEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2020.

P. Sundaresan, B. Thananjeyan, J. Chiu, D. Fer, and K. Goldberg, “Automated Extraction of Surgical Needles from Tissue Phantoms,” in 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019.

S. Krishnan et al., “SWIRL: A sequential windowed inverse reinforcement learning algorithm for robot tasks with delayed rewards,” Int. J. Rob. Res., vol. 38, no. 2-3, 2019.

J. Liang, J. Mahler, M. Laskey, P. Li, and K. Goldberg, “Using dVRK teleoperation to facilitate deep learning of automation tasks for an industrial robot,” in 2017 13th IEEE Conference on Automation Science and Engineering (CASE), 2017.

B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and K. Goldberg, “Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.

J. Ji, S. Krishnan, V. Patel, D. Fer, and K. Goldberg, “Learning 2D Surgical Camera Motion From Demonstrations,” in 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), 2018.

R. Hoque et al., “VisuoSpatial Foresight for Multi-Step, Multi-Task Fabric Manipulation,” Robotics: Science and Systems, 2020.

A. Murali et al., “Learning by observation for surgical subtasks: Multilateral cutting of 3D viscoelastic and 2D Orthotropic Tissue Phantoms,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

J. Mahler et al., “Learning accurate kinematic control of cable-driven surgical robots using data cleaning and Gaussian Process Regression,” in 2014 IEEE International Conference on Automation Science and Engineering (CASE), 2014.

B. Koho et al., “Autonomous multilateral debridement with the Raven surgical robot,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014.

A. Garg et al., “Tumor localization using automated palpation with Gaussian Process Adaptive Sampling,” in 2016 IEEE International Conference on Automation Science and Engineering (CASE), 2016.

C. Shin, P. W. Ferguson, S. A. Pedram, J. Ma, E. P. Dutson, and J. Rosen, “Autonomous Tissue Manipulation via Surgical Robot Using Learning Based Model Predictive Control,” in 2019 IEEE International Conference on Robotics and Automation (ICRA), 2019.

D. Seita et al., “Deep Imitation Learning of Sequential Fabric Smoothing From an Algorithmic Supervisor,” in IEEE International Conference on Intelligent Robots and Systems (IROS), 2020.

S. McKinley et al., “An interchangeable surgical instrument system with applications to supervalved autonomous multilateral tumor resection,” in 2016 IEEE International Conference on Automation Science and Engineering (CASE), 2016.

V. Patel, S. Krishnan, A. Goncalves, C. Chen, W. D. Boyd, and K. Goldberg, “Using intermittent synchronization to compensate for robotic body motion during autonomous surgical cutting and debridement,” in 2018 International Symposium on Medical Robotics (ISMR), 2018.

B. Thananjeyan et al., “Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones,” IEEE Robot. Autom. Lett., vol. 6, no. 3, 2021.

A. Murali et al., “Tsc-dl: Unsupervised trajectory segmentation of multi-modal surgical demonstrations with deep learning,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016.

S. Krishnan et al., “Transition state clustering: Unsupervised surgical trajectory segmentation for robot learning,” Int. J. Rob. Res., vol. 36, no. 13-14, 2017.

V. Patel, S. Krishnan, A. Goncalves, and K. Goldberg, “SPRK: A low-cost Stewart platform for motion study in surgical robotics,” in 2018 International Symposium on Medical Robotics (ISMR), 2018.

A. Zhang, L. Guo, and A. M. Jarc, “Prediction of task-based, surgeon efficiency metrics during robotic-assisted minimally invasive surgery,” in 2019 International Symposium on Medical Robotics (ISMR), 2019.

N. Zevallos et al., “A Real-time Augmented Reality Surgical System for Overlaying Stiffness Information,” in Robotics: Science and Systems, 2018.

N. Zevallos et al., “A surgical system for automatic registration, stiffness mapping and dynamic image overlay,” in 2018 International Symposium on Medical Robotics (ISMR), 2018.

G. C. Y. Wu, D. J. Podolsky, T. Looi, L. A. Kahrs, J. M. Drake, and C. R. Forrest, “A mm Wristed Instrument for the da Vinci Robot: Setup, Characterization, and Phantom Tests for Clef Palate Repair,” IEEE Trans. Med. Robot. Biometrics, 2020.

P. Francis, K. W. Eastwood, V. Bodani, T. Looi, and J. M. Drake, “Model Design, and Teleoperation of a 2 mm Diameter Compliant Instrument for the da Vinci Platform,” Ann. Biomed. Eng., vol. 46, no. 10, 2018.

S. Kumar, P. Singhal, and V. N. Krovı, “Computer-vision-based decision support in surgical robotics,” IEEE Des. Test, vol. 32, no. 5, 2015.

I. Riva-Bianco et al., “A surgical dataset from the da Vinci Research Kit for task automation and recognition,” arXiv Prepr, 2021.

A. Saracino et al., “Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 15, no. 4, Aug. 2019.

A. Diodato et al., “Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery,” Surg. Innov., vol. 25, no. 1, 2018.

M. Brancadoro et al., “A novel microwave tool for robotic liver resection in minimally invasive surgery,” Minim. Invasive Ther. Allied Technol., 2020.

Y. Huan, I. Tamadon, C. Scatena, V. Cela, and A. G. Naccarato, “Soft Graspers for Safe and Effective Tissue Clutching in Minimally Invasive Surgery,” IEEE Trans. Biomed. Eng., 2020.

A. Saracino, T. J. C. Oude Vrielink, A. Menciassi, E. Sinibaldi, and G. G. Mylonas, “Haptic feedback system using a single-throw parallel robot: a user study,” IEEE Trans. Biomed. Eng., 2020.

M. Dimitri et al., “Development of a Robotic Surgical System of Thermal Ablation and Microwave Coagulation,” in 2019 Photonics & Electromagnetics Research Symposium-Spring (PIERS-Spring), 2019.

P. Pique, M. N. Boushaki, M. Brancadoro, E. De Momi, and A. Menciassi, “Dynamic Modeling of the Da Vinci Research Kit Arm for the Estimation of Interaction Wrench,” in 2019 International Symposium on Medical Robotics (ISMR), 2019.

M. Shahbazi, S. F. Atashpar, C. Ward, H. A. Talebi, and R. V. Patel, “Multimodal Sensorimotor Integration for Expert-in-the-Loop Telerobotic Surgical Training,” IEEE Trans. Robot., vol. 34, no. 6, 2018.

A. S. Naidu, M. D. Naish, and R. V. Patel, “A breakthrough in tumor localization: Combining tactile sensing and ultrasound to improve
tumor localization in robotics-assisted minimally invasive surgery,” IEEE Robot. Autom. Mag., vol. 24, no. 2, 2017.

[136] F. Anooshahpour, S. Y. Polushin, and R. V Patel, “A motion transmission model for multi-DOF tendon-driven mechanisms with hysteresis and coupling: Application to a da Vinci® instrument,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

[137] F. Anooshahpour, I. G. Polushin, and R. V Patel, “Tissue compliance determination using a da Vinci instrument,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[138] I. Khalaji, M. D. Naish, and R. V. Patel, “Articulating minimally invasive ultrasonic tool for robotics-assisted surgery,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[139] K. S. Shahzada, A. Yurkewich, R. Xu, and R. V. Patel, “Sensorization of a surgical robotic instrument for force sensing,” Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI, 2019.

[140] M. Shahbazi, S. F. Atashzar, and R. V. Patel, “A systematic review of multilateral teleoperation systems,” IEEE Trans. Haptics, vol. 11, no. 3, 2018.

[141] N. Hong, M. Kim, C. Lee, and S. Kim, “Head-mounted interface for intuitive vision control and continuous surgical operation in a surgical robot system,” Med. Biol. Eng. Comput., vol. 57, no. 3, 2019.

[142] Y. et al., “Virtual Reality-based Control of Robotic Endoscope in Laparoscopic Surgery,” Int. J. Control. Autom. Syst., vol. 18, no. 1, 2020.

[143] M. Kim, C. Lee, N. Hong, Y. J. Kim, and S. Kim, “Development of a stereo endoscope system with its innovative master interface for continuous surgical operation,” Biomed. Eng. Online, vol. 16, no. 1, 2017.

[144] M. Kim et al., “A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick,” Biomed. Eng. Online, vol. 15, no. 1, 2016.

[145] C. Lee et al., “Pneumatic-type surgical robot end-effector for laparoscopic surgical-operation-by-wire,” Biomed. Eng. Online, vol. 13, no. 1, 2014.

[146] D. A. Nagy, T. D. Nagy, R. Elek, I. J. Rudas, and T. Haidegger, “Ontology-Based Surgical Subtask Automation, Automating Blunt Dissection,” J. Med. Robot. Comput. Assist. Surg., vol. 3, no. 1, 2017.

[147] R. Elek et al., “Towards surgical subtask automation—Blunt dissection,” in 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES), 2017.

[148] Á. Takács, I. Rudas, and T. Haidegger, “Open-source research platforms and system integration in modern surgical robotics,” Acta Univ. Sapientiae: Electr. Mech. Eng., vol. 14, no. 6, 2015.

[149] T. Nagy and T. Haidegger, “A DVRK-based Framework for Surgical Subtask Automation,” Acta Polytech. Hungarica, vol. 16, no. 8, 2019.

[150] C. Molnar, T. D. Nagy, R. N. Elek, and T. Haidegger, “Visual servoing-based camera control for the da Vinci Surgical System,” in 2020 IEEE 18th International Symposium on Intelligent Systems and Informatics (ISyI), 2020.

[151] T. D. Nagy, M. Takacs, I. J. Rudas, and T. Haidegger, “Surgical subtask automation — Soft tissue retraction,” in 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMII), 2018.

[152] D. El-Saig, R. N. Elek, and T. Haidegger, “A Graphical Tool for Parsing and Inspecting Surgical Robotic Datasets,” in 2018 IEEE 18th International Symposium on Computer Intelligence and Informatics (CINTI), 2018.

[153] R. Nagyének Elek and T. Haidegger, “Non-Technical Skill Assessment and Mental Load Evaluation in Robot-Assisted Minimally Invasive Surgery,” Sensors, vol. 21, no. 8, 2021.

[154] T. D. Nagy, N. Ukhrenkov, D. A. Drexlér, Á. Takács, and T. Haidegger, “Enabling quantitative analysis of situation awareness: system architecture for autonomous vehicle handover studies,” in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 2019.

[155] R. Elek, T. D. Nagy, D. Á. Nagy, G. Kronreif, I. J. Rudas, and T. Haidegger, “Recent trends in automating robotic surgery,” in 2016 IEEE 20th Jubilee International Conference on Intelligent Engineering Systems (INES), 2016.

[156] R. Nagyének Elek and T. Haidegger, “Robot-Assisted Minimally Invasive Surgical Skill Assessment—Manual and Automated Platforms,” Acta Polytech. Hungarica, vol. 16, no. 8, 2019.

[157] T. Haidegger, “Autonomy for Surgical Robots: Concepts and Paradigms,” IEEE Trans. Med. Robot. Bionics, vol. 1, no. 2, 2019.

[158] T. Haidegger, “Surgical robots of the next decade: New trends and paradigms in the 21th century,” in 2017 IEEE 30th Neumann Colloquium (NC), 2017.

[159] Á. Takács et al., “Joint platforms and community efforts in surgical robotics research,” MACRö 2015, vol. 1, no. 1, 2015.

[160] T. D. Nagy and T. Haidegger, “Recent Advances in Robot-Assisted Surgery: Soft Tissue Contact Identification,” in 2019 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), 2019.

[161] S. Eslamian, L. A. Reisner, and A. K. Pandya, “Development and evaluation of an autonomous camera control algorithm on the da Vinci Surgical System,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 16, no. 2, 2020.

[162] S. Eslamian, L. A. Reisner, B. W. King, and A. K. Pandya, “Towards the Implementation of an Autonomous Camera Algorithm on the da Vinci Platform,” in Medicine Meets Virtual Reality Conference MMVR, 2016.

[163] S. E. Pandya, L. A. Reisner, B. W. King, and A. K., “An Autonomous Camera System using the da Vinci Research Kit,” in International Conference on Intelligent Robots and Systems (IROS), 2017.

[164] M. J. Ford, A. K. Pandya, R. B. Chinnam, M. D. Klein, and R. D. Ellis “Distance-based task planning approach for task recognition with application in surgical robot autonomy,” in Int. J. Med. Robot. Comput. Assist. Surg., vol. 13, no. 3, 2017.

[165] A. Pandya, S. Eslamian, H. Ying, M. Nokleby, and L. A. Reisner, “A Robotic Recording and Playback Platform for Training Surgeons and Learning Autonomous Behaviors Using the da Vinci Surgical System,” Robotics, vol. 8, no. 1, 2019.

[166] M. I. J. Fard, S. Ameri, R. B. Chinnam, A. K. Pandya, and M. D. Klein, “Automated robot-assisted surgical skill evaluation: Predictive analytics approach,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 14, no. 1, 2018.

[167] T. Dardona, S. Eslamian, L. A. Reisner, and A. Pandya, “Remote presence: Development and usability evaluation of a head-mounted display for camera control on the da Vinci surgical system,” Robotics, vol. 8, no. 2, 2019.

[168] F. Ferraguti et al., “A two-layer approach for shared control in semi-autonomous robotic surgery,” in 2015 European Control Conference (ECC), 2015.

[169] A. Sozzi, M. Bonfè, S. Farsoni, G. De Rossi, and R. Muradore, “Dynamic Motion Planning for Autonomous Assistive Surgical Robots,” Electronics, vol. 8, no. 9, 2019.

[170] M. Ginesi, D. Meli, A. Roberti, N. Sansonetto, and P. Fiorini, “A knowledge-based framework for task automation and situation awareness in robotic surgery,” in IEEE International Conference on Intelligent Robots and Systems (IROS), 2020.

[171] M. Ginesi, D. Meli, H. Nakawala, A. Roberti, and P. Fiorini, “A knowledge-based framework for task automation in surgery,” in 2019 19th International Conference on Advanced Robotics (ICAR), 2019.

[172] M. Minelli et al., “Integrating Model Predictive Control and Dynamic Waypoints Generation for Motion Planning in Surgical Scenario,” in IEEE International Conference on Intelligent Robots and Systems (IROS), 2020.

[173] E. Tagliazucchi, A. Pore, D. D. Alba, E. Magnanobosco, M. Piccinnelli, and P. Fiorini, “Soft Tissue Simulation Environment to Learn Manipulation Tasks in Autonomous Robotic Surgery,” in IEEE International Conference on Intelligent Robots and Systems (IROS), 2020.

[174] F. Setti et al., “A Multirobots Teleoperated Platform for Artificial Intelligence Training Data Collection in Minimally Invasive Surgery,” in 2019 International Symposium on Medical Robotics (ISMR), 2019.

[175] E. Tagliazucchi et al., “Data-Driven Intra-Operative Estimation of Anatomical Attachments for Autonomous Tissue Dissection,” IEEE Robot. Autom. Lett., vol. 6, no. 2, 2021.

[176] M. Bombergi, D. D. Alba, S. Ramesh, G. Menegozzo, C. Schneider, and P. Fiorini, “Joints-Space Metrics for Automatic Robotic Surgical Gestures Classification,” in IEEE International Conference on Intelligent Robots and Systems (IROS), 2020.

[177] P. Fiorini, D. D’Alba, G. De Rossi, D. Naftalovich, and J. W. Burdick, “Mining Robotic Surgery Data: Training and Modeling using the DVRK,” in The Hamlyn Symposium on Medical Robotics, 2017.
[178] G. Menegozzo, D. Dall’Alba, C. Zandonà, and P. Fiorini, “Surgical gesture recognition with time delay neural network based on kinematic data,” in 2019 International Symposium on Medical Robotics (ISMRR), 2019.

[179] G. Di Flumeri et al., “EEG-Based Workload Index as a Taxonomic Tool to Evaluate the Similarity of Different Robot-Assisted Surgery Systems,” in International Symposium on Human Mental Workload: Models and Applications, 2019.

[180] Z. Cheng et al., “Design and Integration of Electrical Bio-impedance Sensing in Surgical Robotic Tools for Tissue Identification and Display,” Front. Robot. AI, vol. 6, 2019.

[181] A. Leporini et al., “Technical and Functional Validation of a Teleoperated Multirobots Platform for Minimally Invasive Surgery,” IEEE Trans. Med. Robot. Bionics, vol. 2, no. 2, 2020.

[182] K. L. Schwane, D. Dall’Alba, Z. Cheng, L. S. Mattos, P. Fiorini, and T. R. Savarimuthu, “Robotically assisted electrical bio-impedance invasive surgery,” in the Hamlyn Symposium on Medical Robotics, 2019.

[183] A. Roberi, N. Piccinelli, D. Meli, R. Muradore, and P. Fiorini, “Improving Rigid 3-D Calibration for Robotic Surgery,” IEEE Trans. Med. Robot. Bionics, vol. 2, 2020.

[184] Z. Cheng, D. Dall’Alba, D. G. Caldwell, P. Fiorini, and L. S. Mattos, “Design and Integration of Electrical Bio-impedance Sensing in a Bipolar Forceps for Soft Tissue Identification: A Feasibility Study,” in International Conference on Electrical Bioimpedance, 2019.

[185] Y. Gu, Y. Hu, L. Zhang, J. Yang, and G.-Z. Yang, “Cross-Scene Suture Thread Parsing for Robot Assisted Anastomosis based on Joint Feature Learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.

[186] L. Zhang, M. Ye, P. Giataganas, M. Hughes, and G.-Z. Yang, “Autonomous tracking and path planning for endoscopic mosaic imaging and 3D fusion,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.

[187] D. Zhang, B. Xiao, B. Huang, L. Zhang, J. Liu, and G.-Z. Yang, “A Self-Adaptive Motion Scaling Framework for Surgical Robot Remote Control,” IEEE Robot. Autom. Lett., vol. 4, no. 2, 2019.

[188] J. Zhan, J. Cartucho, and S. Giannarou, “Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020.

[189] P. Pratt et al., “Autonomous Ultrasound-Guided Tissue Dissection,” in Proceedings of the MICCAI Workshop on Systems and Architecture for Computer Assisted Interventions, 2015.

[190] Y.-Y. Tsai, B. Huang, Y. Guo, and G.-Z. Yang, “Transfer Learning for Surgical Task Segmentation,” in 2019 International Conference on Robotics and Automation (ICRA), 2019.

[191] D. Zhang, J. Liu, L. Zhang, and G.-Z. Yang, “Design and verification of a portable master manipulator based on an effective workspace analysis framework,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

[192] A. Banach, K. Leibrandt, M. Grammatikopoulos, and G.-Z. Yang, “Active constraints for tool-shaft collision avoidance in minimally invasive surgery,” in 2019 International Conference on Robotics and Automation (ICRA), 2019.

[193] M. Grammatikopoulos, K. Leibrandt, and G.-Z. Yang, “Motor channeling for safe and effective dynamic constraints in Minimally Invasive Surgery,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

[194] D. Zhang, J. Liu, A. Gao, and G.-Z. Yang, “An Ergonomic Shared Workspace Analysis Framework for the Optimal Placement of a Compact Master Control Console,” IEEE Robot. Autom. Lett., vol. 5, no. 2, 2020.

[195] D. Zhang, J. Liu, L. Zhang, and G.-Z. Yang, “Hamlyn CRM: a compact master manipulator for surgical robot remote control,” Int. J. Comput. Assist. Radiol. Surg., vol. 15, no. 3, 2020.

[196] L. Zhang et al., “Motion-Compensated Autonomous Scanning for Tumour Localisation Using Intraoperative Ultrasound,” in Proceedings of the MICCAI Workshop on Systems and Architecture for Computer Assisted Interventions, 2017.

[197] C. Wang, A. K. Mohammed, F. A. Cheikh, A. Beghdadi, and O. J. Elle, “Multiscale deep desmoking for laparoscopic surgery,” in Medical Imaging 2019: Image Processing, 2019.

[198] M. Ye, L. Zhang, S. Giannarou, and G.-Z. Yang, “Real-time 3d tracking of articulated tools for robotic surgery,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016.

[199] Z. Zhang, L. Zhang, and G.-Z. Yang, “A computationally efficient method for hand–eye calibration,” Int. J. Comput. Assist. Radiol. Surg., vol. 12, no. 10, 2017.

[200] L. Zhang, M. Ye, P.-L. Chan, and G.-Z. Yang, “Real-time surgical tool tracking and pose estimation using a hybrid cylindrical marker,” Int. J. Comput. Assist. Radiol. Surg., vol. 12, no. 6, 2017.

[201] M. Ye, E. Johns, A. Handa, L. Zhang, P. Pratt, and G.-Z. Yang, “Self-supervised siamese learning on stereo image pairs for depth estimation in robotic surgery,” arXiv Prepr. arXiv1705.08260, 2017.

[202] L. Zhang et al., “From Macro to Micro: Autonomous Multiscale Image Fusion for Robotic Surgery,” IEEE Robot. Autom. Mag., vol. 24, no. 2, 2017.

[203] S. O’Sullivan et al., “Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 15, no. 1, 2019.

[204] C. D. Ettorre, A. Stilli, G. Dwyer, J. B. Neves, M. Tran, and D. Stoyanov, “Semi-Autonomous Interventional Manipulation using Pneumatically Attachable Flexible Rails,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

[205] C. D’Ettorre et al., “Automated Pick-Up of Suturing Needles for Robotic Assisted Surgical Assistance,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

[206] B. van Amsterdam, H. Nakawala, E. De Moni, and D. Stoyanov, “Weakly Supervised Recognition of Surgical Gestures,” in 2019 International Conference on Robotics and Automation (ICRA), 2019.

[207] E. Mazomenos, D. Watson, R. Kotovor, and D. Stoyanov, “Gestures Classification in Robotic Surgery using Recurrent Neural Networks with Kinematic Information,” in In 8th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS), 2018.

[208] A. Stilli, E. Dimitrakakis, C. D’Ettorre, M. Tran, and D. Stoyanov, “Pneumatically Attachable Flexible Rails for Track-Guided Ultrasound Scanning in Robotic-Assisted Partial Nephrectomy—A Preliminary Design Study,” IEEE Robot. Autom. Lett., vol. 4, no. 2, 2019.

[209] C. Wang et al., “Ultrasound 3D reconstruction of malignant masses in robotic-assisted partial nephrectomy using the PAF fail system: a comparison study.,” Int. J. Comput. Assist. Radiol. Surg., 2020.

[210] A. Stilli, E. Dimitrakakis, M. Tran, and D. Stoyanov, “Track-Guided Ultrasound Scanning for Tumour Margins Outlining in Robot-Assisted Partial Nephrectomy,” in Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS) 2018, 2018.

[211] E. Colleoni, S. Moccia, X. Du, E. De Moni, and D. Stoyanov, “Deep Learning Based Robotic Tool Detection and Articulation Estimation With Spatio-Temporal Layers,” IEEE Robot. Autom. Lett., vol. 4, no. 3, 2019.

[212] L. C. Garcia-Peraza-Herrera et al., “ToolNet: Holistically-nested real-time segmentation of robotic surgical tools,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

[213] K. Pachtrachai, M. Allan, V. Pawar, S. Hailes, and D. Stoyanov, “Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.

[214] K. Pachtrachai et al., “Adjoint transformation algorithm for hand–eye calibration with applications in robotic assisted surgery,” Ann. Biomed. Eng., vol. 46, no. 10, 2018.

[215] M. Allan, S. Ourselin, D. J. Hawkes, J. D. Kelly, and D. Stoyanov, “3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery,” IEEE Trans. Med. Imaging, vol. 37, no. 5, 2018.

[216] V. Penza, X. Du, D. Stoyanov, A. Forgione, L. S. Mattos, and E. De Moni, “Long term safety area tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery,” Med. Image Anal., vol. 45, 2018.

[217] D. Bouget, M. Allan, D. Stoyanov, and P. Jannin, “Vision-based and marker-less surgical tool detection and tracking: a review of the literature,” Med. Image Anal., vol. 35, 2017.

[218] A. Max et al., “Image based surgical instrument pose estimation with multi-class labelling and optical flow,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015.
[304] Z. Wang and A. M. Fey, “SATR-DL: Improving surgical skill assessment and task recognition in robot-assisted surgery with deep neural networks,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018.

[305] Z. Wang et al., “A Comparative Human-Centric Analysis of Virtual Reality and Dry Lab Training Tasks on the da Vinci Surgical Platform,” J. Med. Robot. Res., 2020.

[306] G. T. Gonzalez et al., “From the DESK (Dexterous Surgical Skill) to the Battlefield — A Robotics Exploratory Study,” in Military Health System Research Symposium, 2020.

[307] C. Wu et al., “Eye-Tracking Metrics Predict Perceived Workload in Robotic Surgical Skills Training,” Hum. Factors, 2019.

[308] G. Z. Yang et al., “Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy,” Sci. Robot., vol. 2, no. 4, 2017.

[310] A. M. Derossis, G. M. Fried, M. Abrahamowicz, H. H. Sigman, J. S. Barkun, and J. L. Meakins, “Development of a Model for Training and Evaluation of Laparoscopic Skills This work was supported by an educational grant from United States Surgical Corporation (Auto Suture Canada),” Am. J. Surg., vol. 175, no. 6, 1998.

[312] A. J. Hung, J. Chen, A. Jarc, D. Hatcher, H. Djaladat, and I. S. Gill, “Development and Validation of Objective Performance Metrics for Robot-Assisted Radical Prostatectomy: A Pilot Study,” J. Urol., vol. 199, no. 1, pp. 296–304, Jan. 2018.

APPENDIX

Fig. 6 - PRISMA flow diagram associated to the paper search and selection of this systematic review.