On a degenerate singular elliptic problem

Prashanta Garain

Department of Mathematics and Systems Analysis, Otakaari 1, 02150, Aalto University, Espoo, Finland

Abstract

In this article we provide existence, uniqueness and regularity results of a degenerate singular elliptic boundary value problem whose prototype is given by

\[
\begin{cases}
-\text{div} \left(w(x) |\nabla u|^{p-2} \nabla u \right) = \frac{f(x)}{u^2} \quad \text{in} \quad \Omega, \\
u > 0 \quad \text{in} \quad \Omega, \\
u = 0 \quad \text{on} \quad \partial \Omega,
\end{cases}
\]

where \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \) with \(N \geq 2 \), \(w \) belongs to the Muckenhoupt class \(A_p \) for some \(1 < p < \infty \), \(f \) is a nonnegative function belonging to some Lebesgue space and \(\delta > 0 \).

KEYWORDS

degenerate elliptic equation, Muckenhoupt weight, singular nonlinearity, weighted Sobolev space

MSC (2010)
35D30, 35J70, 35J75

1 INTRODUCTION

In this article, we establish existence, uniqueness and regularity results to the following degenerate singular elliptic boundary value problem:

\[
\begin{cases}
-\text{div}(\mathcal{A}(x, \nabla u)) = \frac{f(x)}{u^2} \quad \text{in} \quad \Omega, \\
u > 0 \quad \text{in} \quad \Omega, \\
u = 0 \quad \text{on} \quad \partial \Omega,
\end{cases}
\]

where \(\delta > 0 \), \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \) with \(N \geq 2 \) and \(f \) is a nonnegative function belonging to some Lebesgue space but not identically zero. The function \(\mathcal{A} : \Omega \times \mathbb{R}^N \to \mathbb{R}^N \) is Carathéodory, that is,

- the function \(\mathcal{A}(\cdot, s) \) is measurable on \(\Omega \) for every \(s \in \mathbb{R}^N \), and
- the function \(\mathcal{A}(x, \cdot) \) is continuous on \(\mathbb{R}^N \) for a.e. \(x \in \Omega \).
Moreover, the following additional hypothesis on the function A will be imposed throughout the paper.

(H1) Every w belongs to the Muckenhoupt class A_p (defined in Section 2),

(H2) (Growth) $|A(x, \zeta)| \leq |\zeta|^{p-1} w(x)$, for a.e. $x \in \Omega$, $\forall \zeta \in \mathbb{R}^N$.

(H3) (Degeneracy) $A(x, \zeta) : \zeta \leq |\zeta|^p w(x)$, for a.e. $x \in \Omega$, $\forall \zeta \in \mathbb{R}^N$.

(H4) (Homogeneity) $A(x, t\zeta) = t |t|^{p-2} A(x, \zeta)$, for $t \in \mathbb{R}$, $t \neq 0$.

(H5) (Strong Monotonicity) For $\gamma = \max\{p, 2\}$,

$$\langle A(x, \zeta_1) - A(x, \zeta_2), \zeta_1 - \zeta_2 \rangle \geq c \left| \zeta_1 - \zeta_2 \right|^{1-\gamma/p} \left\{ \bar{A}(x, \zeta_1, \zeta_2) \right\}^{\gamma} w(x),$$

for some positive constant c where \bar{A} is defined by

$$\bar{A}(x, \zeta_1, \zeta_2) := \frac{1}{w(x)} \left(\langle A(x, \zeta_1), \zeta_1 \rangle + \langle A(x, \zeta_2), \zeta_2 \rangle \right).$$

A prototype of Equation (1.1) is given by the following boundary value problem

$$\begin{cases}
Lu := -\text{div}(M(x)|\nabla u|^{p-2}\nabla u) = \frac{f(x)}{u^\delta} & \text{in } \Omega, \\
u > 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

(1.2)

where $M(\cdot)$ is a continuous function with values in the set of $N \times N$ symmetric matrix satisfying

$|M(x)\zeta| \leq w(x)|\zeta|$, $M(x)\zeta \cdot \zeta \geq w(x)|\zeta|^2$, for a.e. $x \in \Omega$, for all $\zeta \in \mathbb{R}^N$.

In case of $M(x) = w(x)I$, where I is the $N \times N$ identity matrix, the operator L reduces to the weighted p-Laplace operator $\Delta_{p,w}$ defined by

$$\Delta_{p,w} u := \text{div}(w(x)|\nabla u|^{p-2}\nabla u).$$

We observe that for $w = 1$, $\Delta_{p,w} u = \Delta p u$, which is the standard p-Laplace operator. For the constant weight w, singular problems of type (1.2) has been widely studied in the last three decades, see [2–5, 7–10, 20–23, 30] and the references therein. We would like to point out some historical developments made in this direction which are closely related to the problem (1.2).

The case of $M = I$ and $p = 2$ with Dirichlet boundary condition is settled in the pioneering work of Crandall et al. [13], where the existence of a unique classical solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ to Equation (1.2) is proved for any $\delta > 0$. This solution $u \in W^{1,2}_0(\Omega)$ if and only if $\delta < 3$, and for $\delta > 1$, u does not belong to $C^1(\overline{\Omega})$ is proved by Lazer–McKenna [28] for a positive Hölder continuous data f.

Boccardo–Orsina [7] studied the semilinear case $p = 2$ for a constant weight function w and nonnegative (not identically zero) data f in some Lebesgue space to obtain existence and regularity results for any $\delta > 0$ to the problem (1.2). De Cave [14] generalised these results in the quasilinear case $1 < p < N$. Further Canino et al. [9] proved existence in addition to uniqueness results to the problem (1.2) in the full range $1 < \delta < \infty$ for $M = I$. In summary, depending on p and the nonlinearity f, the authors in [7, 9, 14] proved existence of a solution $u \in W^{1,p}_0(\Omega)$ if $0 < \delta < 1$ and $u \in W^{1,p}_{loc}(\Omega)$ such that $u^{(\delta+1)/p} \in W^{1,p}_0(\Omega)$ (this was the meaning of $u = 0$ on $\partial \Omega$) if $\delta \geq 1$ to the problem (1.2). Moreover, we emphasize that when $0 < \delta < 1$ under the assumption $f \in L^1(\Omega)$, the authors in [7] (for $p = 2$) proved existence result in a larger Sobolev space than $W^{1,2}_0(\Omega)$, whereas if $2 - \delta + (\delta - 1)/N \leq p < N$, the author in [14] proved existence result in a larger Sobolev space than $W^{1,p}_0(\Omega)$ to the problem (1.2). When f is a Radon measure, existence results to singular p-Laplace equations has also been investigated in the recent past and we refer the reader to De Cave et al. [15], De Cave–Oliva [16] and the references therein.
In contrast to [7, 9, 14], a natural question can be posed to say what happens to Equation (1.2) in the presence of a nonconstant weight function \(w \)? Indeed, our main motive in this paper is to answer this question affirmatively by providing a certain class of weight function (which may vanish or blow up near the origin) to ensure existence, uniqueness and regularity results analogous to [7, 9, 14] for the more general weighted singular problem (1.1).

We have started with choosing the weight function \(w \) in the class of Muckenhoupt weight \(A_p \) whose theory is well developed, see [11, 17, 19, 24, 26, 31, 33]. Such class of weights was firstly introduced by Muckenhoupt [31], where the author proved these are the only class of weights such that the Hardy–Littlewood maximal operator is bounded from the weighted Lebesgue space into itself and thus plays a very significant role in harmonic analysis.

Due to the presence of the weight function, solutions of (1.1) are investigated in a weighted Sobolev space (see Section 2 for definition). We mainly adapt the approximation approach introduced by the authors in [7] along [9, 14] although there are some difficulties we will face in our setting. To be more precise, by regularizing the right hand size of (1.1) we prove existence of a uniform positive and bounded solutions to the approximated problem (3.2). But in contrast to [7], weak convergence is not enough to pass the limit in the approximated problem (3.2). In this concern a gradient convergence theorem was proved by the De Cave in [14] which allows to pass the limit (see also [9]). Here, we establish a counterpart of gradient convergence theorem in our setting (see Theorem 2.12) by following the idea from Boccardo–Murat [6] in order to pass the limit in Equation (3.2) and obtain our existence results. The availability of embedding results in the classical Sobolev space \(W^{1, p}(\Omega) \) (see [1, 18]) is one of the main ingredients in [7, 9, 14]. Such embeddings are not readily available in our setting which we establish here for a subclass of \(A_p \) (see Theorem 2.7). Then following the idea from [7, 14] choosing suitable test functions into Equation (3.2) along with an application of our embedding theorem we obtain regularity results depending on the summability of \(f \). Finally, to obtain uniqueness results, we establish a variational inequality (see Lemma 2.14) further avoiding the use of boundary continuity of solutions to the regularized \(p \)-Laplace equations (see, e.g., [29, 32, 34, 35]) as implemented by the authors in [9].

Notations: Throughout the paper, the following notations will be used:

- \(X := W^{1, p}_0(\Omega, w) \)
- \(X^* := \text{Dual space of } X \)
- \(||x||_X := ||x||_{1, p, w} \)
- \(c, c_i, i \in \mathbb{N} \), will denote constants whose values may vary depending on the situation from line to line or even in the same line.
- \(|S| := \text{Lebesgue measure of a set } S \)
- \(T_\eta(s) := \min\{\eta, s\} \) for \(\eta > 0, s \geq 0 \)
- \(B(x, r) := \text{Ball of radius } r \text{ with center } x \)

This paper is organized as follows: In Section 2, we present some preliminary results. In Section 3, existence and regularity results and in Section 4, uniqueness results are proved.

2 | PRELIMINARIES

In this section, we present some basic properties of \(A_p \) weights and a brief literature of the corresponding weighted Sobolev space. For a more general theory we refer the reader to the nice surveys by Drábek et al. [17], Fabes et al. [19], Heinonen et al. [24] and Kilpeläinen [26].

2.1 | Muckenhoupt weight

Definition 2.1. Let \(w \) be a locally integrable function in \(\mathbb{R}^N \) such that \(0 < w < \infty \) a.e. in \(\mathbb{R}^N \). Then for \(1 < p < \infty \), we say that \(w \) belongs to the Muckenhoupt class \(A_p \) or \(w \) is an \(A_p \)-weight, if there exists a positive constant \(c_{p, w} \) (called the \(A_p \) constant of \(w \)) depending only on \(p \) and \(w \) such that for all balls \(B \) in \(\mathbb{R}^N \),

\[
\left(\frac{1}{|B|} \int_B w \, dx \right) \left(\frac{1}{|B|} \int_B w^{-1/(p-1)} \, dx \right)^{p-1} \leq c_{p, w}.
\]
Example 2.2.

- \(w(x) = |x|^{\alpha} \in A_p \) if and only if \(-N < \alpha < N(p-1)\), see [24, 26].

Definition 2.3. (Weighted Sobolev Space) For any \(w \in A_p \), define the weighted Sobolev space \(W^{1,p}(\Omega, w) \) by

\[
W^{1,p}(\Omega, w) = \left\{ u : \Omega \to \mathbb{R} \text{ measurable} : ||u||_{1,p,w} < \infty \right\},
\]

where

\[
||u||_{1,p,w} = \left(\int_{\Omega} |u(x)|^p w(x) \, dx \right)^{1/p} + \left(\int_{\Omega} |\nabla u|^p w(x) \, dx \right)^{1/p}.
\]

(2.1)

- Observe that if \(0 < c \leq w \leq d \) for some constants \(c \) and \(d \), the weighted Sobolev space \(W^{1,p}(\Omega, w) \) becomes the classical Sobolev space \(W^{1,p}(\Omega) \).
- The fact \(w \in A_p \) implies \(w \in L^1_{\text{loc}}(\Omega) \) and hence \(C_c^\infty(\Omega) \subset W^{1,p}(\Omega, w) \). Therefore we can introduce the space

\[
W_0^{1,p}(\Omega, w) = (C_c^\infty(\Omega), ||.||_{1,p,w}).
\]

- Both the spaces \(W^{1,p}(\Omega, w) \) and \(W_0^{1,p}(\Omega, w) \) are uniformly convex Banach spaces with respect to the norm \(||.||_{1,p,w} \), see [24].

Definition 2.4. We say that \(u \in W^{1,p}_{\text{loc}}(\Omega, w) \) if and only if \(u \in W^{1,p}(\Omega', w) \) for every \(\Omega' \Subset \Omega \).

Theorem 2.5 (Poincaré inequality [24]). For any \(w \in A_p \), we have

\[
\int_{\Omega} |\phi|^p w(x) \, dx \leq c \int_{\Omega} |\nabla \phi|^p w(x) \, dx \text{ for all } \phi \in C_c^\infty(\Omega),
\]

for some positive constant \(c \) independent of \(\phi \).

By using Theorem 2.5, an equivalent norm to (2.1) on the space \(W_0^{1,p}(\Omega, w) \) can be defined by

\[
||u||_{1,p,w} = \left(\int_{\Omega} |\nabla u(x)|^p w(x) \, dx \right)^{1/p}.
\]

(2.2)

2.2 | Embedding theorems

The following compactness result follows from Chua et al. [11].

Theorem 2.6 (Theorem 2.2, [11]). Let \(w \in A_p \) with \(1 < p < \infty \), then the inclusion map

\[
W^{1,p}(\Omega, w) \hookrightarrow L^p(\Omega, w)
\]

is compact.

For the rest of the paper, we assume that the weight function \(w \in A_s \), unless otherwise stated, where \(A_s \) is a subclass of \(A_p \) given by

\[
A_s := \left\{ w \in A_p : w^{-s} \in L^1(\Omega) \text{ for some } s \in \left[\frac{1}{p-1}, \infty \right) \cap \left(\frac{N}{p}, \infty \right) \right\}.
\]
For example, $w(x) = |x|^a$ with $-N/s < a < N/s$ belong to A_s for any $s \in \left[1/(p-1), \infty \right) \cap \left(N/p, \infty \right)$, provided $1 < p < N$. This subclass allows one to shift from the weighted Sobolev space into the classical Sobolev space using the idea of [17]. Indeed, we prove the following embedding theorem.

Theorem 2.7 (Embedding from weighted to classical Sobolev space).

- For any $w \in A_s$, we have the following continuous inclusion map

$$W^{1,p}(\Omega, w) \hookrightarrow W^{1,p_s}(\Omega) \hookrightarrow \begin{cases} L^q(\Omega), & \text{for } p_s \leq q \leq p_s^*, \text{ in case of } 1 \leq p_s < N, \\ L^q(\Omega), & \text{for } 1 \leq q < \infty, \text{ in case of } p_s = N, \\ C(\Omega), & \text{in case of } p_s > N, \end{cases}$$

where $p_s = (ps)/(s + 1) \in [1, p)$.

- Moreover, the above embeddings are compact except for $q = p_s^*$ in case of $1 \leq p_s < N$.

- The same result holds for the space $W^{1,p}_0(\Omega, w)$.

Proof. Let $u \in W^{1,p}(\Omega, w)$. Since $p/p_s > 1$, by using the Hölder inequality with exponents p/p_s and $(p/p_s)' = s + 1$, we obtain

$$\int_\Omega |u(x)|^{p_s} \, dx = \int_\Omega |u(x)|^{p_s} w(x)^{p/p} w(x)^{-p/p} \, dx \leq \left(\int_\Omega |u(x)|^p w(x) \, dx \right)^{p_s/p} \left(\int_\Omega w(x)^{-s} \, dx \right)^{1/(s+1)},$$

which implies

$$||u||_{L^{p_s}(\Omega)} \leq \left(\int_\Omega w(x)^{-s} \, dx \right)^{1/p_s} \left(\int_\Omega |u(x)|^p w(x) \, dx \right)^{1/p}.$$ \hspace{1cm} (2.3)

Replacing u by ∇u, similarly we obtain

$$||\nabla u||_{L^{p_s}(\Omega)} \leq \left(\int_\Omega w(x)^{-s} \, dx \right)^{1/p_s} \left(\int_\Omega |\nabla u|^p w(x) \, dx \right)^{1/p}.$$ \hspace{1cm} (2.4)

Adding (2.3) and (2.4) we have

$$||u||_{W^{1,p_s}(\Omega)} \leq ||w^{-s}||_{L^1(\Omega)}^{1/p_s} ||u||_{1,p,w}.$$

Hence the embedding

$$W^{1,p}(\Omega, w) \hookrightarrow W^{1,p_s}(\Omega)$$

is continuous. The rest of the proof follows from the classical Sobolev embedding theorem (Theorem 1.1.3 of Ambrosetti–Arcoya [1]). \qed

Remark 2.8. Observe that the fact $s \in \left[1/(p-1), \infty \right) \cap \left(N/p, \infty \right)$ implies that $p_s^* > p$. Therefore, by Theorem 2.7 there exists a constant $q > p$ such that the inclusion

$$W^{1,p}(\Omega, w) \hookrightarrow L^q(\Omega)$$

is continuous. The existence of such q is an important tool to prove some a priori estimates later, see [17] for more applications.
Now we state two important theorems on \(A\) superharmonic functions, for the definition of such functions we refer the reader to [24].

Theorem 2.9 (Theorem 7.12, [24]). A nonconstant \(A\) superharmonic function cannot attain its infimum in \(\Omega\).

Theorem 2.10 (Corollary 7.18, [24]). If \(u \in W^{1,p}_\text{loc}(\Omega, w)\) is a weak supersolution of the equation
\[- \text{div} \ A(x, \nabla u) = 0\]
in \(\Omega\), i.e.,
\[\int_\Omega A(x, \nabla u) \cdot \nabla \phi \, dx \geq 0\]
whenever \(\phi \in C_c^\infty(\Omega)\) is nonnegative, then there exists \(A\) superharmonic function \(v\) such that \(v = u\) a.e.

Theorem 2.11. Let \(u \in W^{1,p}_\text{loc}(\Omega, w)\) be positive a.e. in \(\Omega\) and let \(\alpha \geq 1\) be such that \(u^\alpha \in X\). Then for every \(\epsilon > 0\), we have \((u - \epsilon)^+ \in X\).

Proof. Since \(u^\alpha \in X\), there exists a sequence of nonnegative functions \(\{\phi_n\} \in C_c^\infty(\Omega)\) such that \(\phi_n\) converges to \(u^\alpha\) in the norm of \(X\). Set
\[v_n := \left(\frac{1}{\alpha} - \epsilon \right)^+\]
Observe that, since \(\alpha \geq 1\), one has
\[\|v_n\|_X^p = \int_\Omega w(x)|\nabla v_n|^p \, dx \leq \int_{\{\phi_n > \epsilon \alpha\}} w(x)\epsilon^{\alpha(1/\alpha - 1)}|\nabla \phi_n|^\alpha \, dx \leq M,
\]
where \(M\) is a constant independent of \(n\), since \(\|\phi_n\|_X \leq c\) for some positive constant \(c\) independent of \(n\). Therefore, the sequence \(v_n\) is uniformly bounded in \(X\) and by the reflexivity of \(X\), it follows that \((u - \epsilon)^+ \in X\).

Theorem 2.12 (Gradient Convergence Theorem). Given \(n \in \mathbb{N}\) and \(w \in A_s\), consider the following equation
\[- \text{div} \ (A(x, \nabla u_n)) = G_n \text{ in } \Omega.\]

Assume that \(u_n \rightharpoonup u\) weakly in \(W^{1,p}(\Omega, w)\). In addition, suppose \(G_n\) satisfies
\[|\langle G_n, \phi \rangle| \leq C_K \|\phi\|_{L^\infty(\Omega)},\]
for all \(\phi \in C_c^\infty(\Omega)\) with support \(\phi \subset K\), where \(C_K\) is a constant depending on \(K\). Then, up to a subsequence \(\nabla u_n \rightharpoonup \nabla u\) pointwise a.e. in \(\Omega\).

Proof. In the unweighted case this theorem was proved in Theorem 2.1 of [6] and following the same arguments we present the proof in the weighted case as follows.

Step 1. Fix a compact set \(K \subset \Omega\) and a function \(\phi_K \in C_c^\infty(\Omega)\) such that \(0 \leq \phi_K \leq 1\) and \(\phi_K \equiv 1\) on \(K\). Define the truncated function
\[L_\mu(s) := \begin{cases} \frac{s}{\mu} & \text{for } |s| \leq \mu, \\ \frac{1 - s}{|s|} & \text{for } |s| > \mu. \end{cases}\]
Then \(v_n = \phi_K L_\mu(u_n - u) \in W^{1,p}_0(\Omega, w) \) with compact support.

\[
\int_\Omega \phi_K \{ A(x, \nabla u_n) - A(x, \nabla u) \} \cdot \nabla L_\mu(u_n - u) \, dx
= \langle G_n, v_n \rangle - \int_\Omega L_\mu(u_n - u) A(x, \nabla u_n) \cdot \nabla \phi_K \, dx
- \int_\Omega \phi_K A(x, \nabla u) \cdot \nabla L_\mu(u_n - u) \, dx.
\]

Now,

\[
I_n := \left| \int_\Omega L_\mu(u_n - u) A(x, \nabla u_n) \cdot \nabla \phi_K \, dx \right|
\leq \| \nabla \phi_K \|_{L^\infty(\Omega)} \int_K w|u_n - u|\|\nabla u_n\|^{p-1} \, dx
\leq \| \nabla \phi_K \|_{L^\infty(\Omega)} \| u_n - u \|_{L^p(\Omega, w)} \| u_n \|_{W^{1,p}(\Omega, w)}^{p-1}.
\]

Since \(u_n \to u \) weakly in \(W^{1,p}(\Omega, w) \), by Theorem 2.6 the sequence \(I_n \) converges to 0 as \(n \to \infty \). Moreover, since the sequence \(L_\mu(u_n - u) \to 0 \) weakly in \(W^{1,p}(\Omega, w) \) as \(n \to \infty \), it follows that the sequence

\[
J_n := \int_\Omega \phi_K A(x, \nabla u) \cdot \nabla L_\mu(u_n - u) \, dx
\]

converges to 0 as \(n \to \infty \). Now, by the given condition we have \(|\langle G_n, v_n \rangle| \leq c_K \mu \).

Step 2. Fix \(\theta \in (0,1) \) and define the sequence of function

\[
e_n(x) = \{ A(x, \nabla u_n) - A(x, \nabla u) \} \cdot \nabla (u_n - u)(x).
\]

We denote by

\[
S_n^\mu = \{ x \in K : |u_n(x) - u(x)| \leq \mu \}, \quad G_n^\mu = \{ x \in K : |u_n(x) - u(x)| > \mu \}.
\]

Therefore

\[
\int_K e_n^\theta \, dx = \int_{S_n^\mu} e_n^\theta \, dx + \int_{G_n^\mu} e_n^\theta \, dx \leq \left(\int_{S_n^\mu} e_n^1 \, dx \right)^{\theta} \left| S_n^\mu \right|^{1-\theta} + \left(\int_{G_n^\mu} e_n^1 \, dx \right)^{\theta} \left| G_n^\mu \right|^{1-\theta}.
\]

By Theorem 2.7, we have \(u_n \to u \) strongly in \(L^p(\Omega) \). Therefore \(|G_n^\mu| \to 0 \) as \(n \to \infty \). Also, the sequence \(\{ e_n \} \) is bounded in \(L^1(\Omega) \), since

\[
\int_\Omega |e_n| \, dx = \int_\Omega |A(x, \nabla u_n) \cdot \nabla u_n - A(x, \nabla u) \cdot \nabla u_n - A(x, \nabla u_n) \cdot \nabla u + A(x, \nabla u) \cdot \nabla u| \, dx
\leq \int_\Omega w \left(|\nabla u_n|^p + |\nabla u_n||\nabla u|^p + |\nabla u_n|^{p-1} + |\nabla u|^{p-1} + |\nabla u|^p \right) \, dx
\leq M,
\]

for some constant \(M \) independent of \(n \). By Step 1 and the fact \(\phi_K \equiv 1 \) on \(K \), we obtain

\[
\limsup_{n \to \infty} \int_K e_n^\theta \, dx \leq (c_K \mu)^\theta |\Omega|^{1-\theta}.
\]

Letting \(\mu \to 0 \), we have \(e_n^\theta \to 0 \) in \(L^1(K) \). Therefore up to a subsequence \(e_n(x) \to 0 \) a.e. in \(\Omega \) and by using the hypothesis (H5), we obtain up to a subsequence \(\nabla u_n \to \nabla u \) pointwise a.e. in \(\Omega \).

\[\square \]
Moreover, we will use the following three important results, see Ciarlet [12] for Theorem 2.13–Theorem 2.14 and Kinderlehrer–Stampacchia [27] for Theorem 2.15 respectively.

Theorem 2.13 (Theorem 9.14, [12]). Let V be a real reflexive Banach space and let $A : V \to V^*$ be a coercive and demi-continuous monotone operator. Then A is surjective, i.e., given any $f \in V^*$ there exists $u \in V$ such that $A(u) = f$. If A is strictly monotone, then A is also injective.

Theorem 2.14 ([12]). Let U be a nonempty closed and convex subset of a real separable reflexive Banach space and let $A : V \to V^*$ be a coercive and demi-continuous monotone operator. Then for every $f \in V^*$ there exists $u \in U$ such that

$$\langle A(u), v - u \rangle \geq \langle f, v - u \rangle \text{ for all } v \in U.$$

Moreover, if A is strictly monotone, then u is unique.

Theorem 2.15 (Lemma B.1, [27]). Let $\phi(t), k_0 \leq t < \infty$, be nonnegative and nonincreasing such that

$$\phi(h) \leq \left[\frac{c}{(h - k)^l} \right]^m_k h > k > k_0,$$

where c, l, m are positive constants with $m > 1$. Then $\phi(k_0 + d) = 0$, where

$$d^l = c \left[\phi(k_0) \right]^{m-1} 2^{(m)/(m-1)}.$$

3 EXISTENCE AND REGULARITY RESULTS

Definition 3.1. A function $u \in W^{1,p}_{\text{loc}}(\Omega, w)$ is said to be a weak solution of the problem (1.1), if for every $K \Subset \Omega$ there exists a positive constant c_K such that $u \geq c_K > 0$ in K and for all $\phi \in C^1_c(\Omega)$, one has

$$\begin{cases}
\int_{\Omega} A(x, \nabla u(x)) \cdot \nabla \phi(x) \, dx = \int_{\Omega} \frac{f(x)}{u^2} \phi(x) \, dx, \\
u > 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,
\end{cases} \tag{3.1}$$

where by $u = 0$ on $\partial \Omega$, we mean that for some $\alpha \geq 1$, the function $u^\alpha \in X$.

Our main existence and regularity results in this paper reads as follows:

3.1 The case $0 < \delta < 1$

Theorem 3.2. For any $0 < \delta < 1$, the problem (1.1) has at least one weak solution in X, if

(a) $f \in L^m(\Omega), m = \left(\frac{p_\delta}{p_\delta - \delta} \right)\prime$, provided $1 \leq p_\delta < N$, or
(b) $f \in L^m(\Omega)$ for some $m > 1$, provided $p_\delta = N$, or
(c) $f \in L^1(\Omega)$ for $p_\delta > N$.

Theorem 3.3. Let $0 < \delta < 1$, then the solution u given by Theorem 3.2 satisfies the following properties:

(a) For $1 \leq p_\delta < N$,
 (i) if $f \in L^m(\Omega)$ for some $m \in \left(\left(\frac{p_\delta}{p_\delta - \delta} \right)\prime, \frac{p_\delta}{p_\delta - \delta} \right)$, then $u \in L^t(\Omega), t = \frac{p_\delta}{p_\delta - \delta} \gamma$ where $\gamma = \frac{(\delta + p - 1)m'}{(pm' - p)}$.
 (ii) if $f \in L^m(\Omega)$ for some $m \geq \frac{p_\delta}{p_\delta - \delta} - \delta$, then $u \in L^\infty(\Omega)$.

(b) Let \(p_s = N \) and assume \(q > p \). Then if \(f \in L^m(\Omega) \) for some \(m \in \left(\frac{q}{1-\delta}, \frac{q}{q-p} \right) \), we have \(u \in L^t(\Omega) \), \(t = p\gamma \) where
\[
\gamma = \frac{pm'}{pm'-q}.
\]
(c) For \(p_s > N \) and \(f \in L^1(\Omega) \), we have \(u \in L^\infty(\Omega) \).

3.2 The case \(\delta = 1 \)

Theorem 3.4. For \(\delta = 1 \) with any \(p_s \), the problem (1.1) has at least one weak solution in \(X \), provided \(f \in L^1(\Omega) \).

Theorem 3.5. Let \(\delta = 1 \), then the solution \(u \) given by Theorem 3.4 satisfies the following properties:

(a) For \(1 \leq p_s < N \),

(i) if \(f \in L^m(\Omega) \) for some \(m \in \left(1, \frac{p^*_s}{(p^*_s - p)} \right) \), then \(u \in L^t(\Omega) \), \(t = p^*_s \gamma \), where \(\gamma = \frac{pm'}{pm'-p^*_s} \).

(ii) if \(f \in L^m(\Omega) \) for some \(m > \frac{p^*_s}{(p^*_s - p)} \), then \(u \in L^\infty(\Omega) \).

(b) Let \(p_s = N \) and assume \(q > p \). Then if \(f \in L^m(\Omega) \) for some \(m \in \left(1, \frac{q}{q-p} \right) \), we have \(u \in L^t(\Omega) \), \(t = q \gamma \), where \(\gamma = \frac{pm'}{pm'-q} \).

(c) For \(p_s > N \) and \(f \in L^1(\Omega) \), we have \(u \in L^\infty(\Omega) \).

3.3 The case \(\delta > 1 \)

Theorem 3.6. For \(\delta > 1 \) with any \(p_s \), the problem (1.1) has at least one weak solution, say \(u \in W^{1,p}_{\text{loc}}(\Omega, w) \) such that \(u^{(\delta+p-1)/p} \in X \), provided \(f \in L^1(\Omega) \).

Theorem 3.7. Let \(\delta > 1 \), then the solution \(u \) given by Theorem 3.6 satisfies the following properties:

(a) For \(1 \leq p_s < N \),

(i) if \(f \in L^m(\Omega) \) for some \(m \in \left(1, \frac{p^*_s}{(p^*_s - p)} \right) \), then \(u \in L^t(\Omega) \) where \(t = p^*_s \gamma \), where \(\gamma = \frac{(\delta+p-1)m'}{pm'-p^*_s} \).

(ii) if \(f \in L^m(\Omega) \) for some \(m > \frac{p^*_s}{(p^*_s - p)} \), then \(u \in L^\infty(\Omega) \).

(b) Let \(p_s = N \) and assume \(q > p \). Then if \(f \in L^m(\Omega) \) for some \(m \in \left(1, \frac{q}{q-p} \right) \), we have \(u \in L^t(\Omega) \), \(t = q \gamma \), where \(\gamma = \frac{(\delta+p-1)m'}{pm'-q} \).

(c) For \(p_s > N \) and \(f \in L^1(\Omega) \), we have \(u \in L^\infty(\Omega) \).

3.4 Preliminaries

For \(n \in \mathbb{N} \), define \(f_n(x) := \min \{ f(x), n \} \) and consider for \(\delta > 0 \), the approximated problem

\[
\begin{aligned}
-\text{div} \left(A(x, \nabla u) \right) &= \frac{f_n(x)}{(u + \frac{1}{n})^{\frac{\delta}{\delta}}} \quad \text{in } \Omega, \\
u > 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega.
\end{aligned}
\]

Definition 3.8. A function \(u \in X \) is said to be a weak solution of the problem (3.2) if \(u > 0 \) in \(\Omega \) and for all \(\phi \in X \), one has

\[
\int_\Omega A(x, \nabla u) \cdot \nabla \phi(x) \, dx = \int_\Omega \frac{f_n(x)}{(u + \frac{1}{n})^{\frac{\delta}{\delta}}} \phi(x) \, dx.
\]
Define the operator \(J : X \to X^* \) by
\[
\langle J(u), \phi \rangle := \int_{\Omega} A(x, \nabla u) \cdot \nabla \phi \, dx, \text{ for all } \phi, u \in X.
\]

Lemma 3.9. \(J \) is a surjective and strictly monotone operator.

Proof. The proof follows applying Theorem 2.13, since

1. **Boundedness:** By using Hölder’s inequality and hypothesis (H2) we obtain
 \[
 ||J(u)||_{X^*} = \sup_{||\phi||_X \leq 1} |\langle J(u), \phi \rangle| \\
 \leq \sup_{||\phi||_X \leq 1} \left| \int_{\Omega} A(x, \nabla u) \cdot \nabla \phi \, dx \right| \\
 \leq \sup_{||\phi||_X \leq 1} \left| \int_{\Omega} (w^{1/p'} |\nabla u|^{p-1}) (w^{1/p} |\nabla \phi|) \, dx \right| \\
 \leq ||u||_{X}^{p-1}.
 \]
 Hence \(J \) is bounded.

2. **Demicontinuity:** Let \(u_n \to u \) in the norm of \(X \), then \(w^{1/p} \nabla u_n \to w^{1/p} \nabla u \) in \(L^p(\Omega) \). Therefore up to a subsequence \(u_{n_k} \) of \(u_n \), we have \(\nabla u_{n_k}(x) \to \nabla u(x) \) pointwise for a.e. \(x \in \Omega \). Since the function \(A(x, \cdot) \) is continuous in the second variable, we have
 \[
 w(x)^{-1/p} A(x, \nabla u_{n_k}(x)) \to w(x)^{-1/p} A(x, \nabla u(x))
 \]
 pointwise for a.e. \(x \in \Omega \). Now using the growth condition (H2), we obtain
 \[
 \left\| w^{-1/p} A(x, \nabla u_{n_k}) \right\|_{L^{p/(p-1)}(\Omega)}^{p/(p-1)} = \int_{\Omega} w^{-1/(p-1)}(x) A(x, \nabla u_{n_k}(x)) \right|^{p/(p-1)} \, dx \\
 \leq \int_{\Omega} w^{-1/(p-1)}(x) w^{p/(p-1)}(x) |\nabla u_{n_k}(x)|^p \, dx \\
 \leq \left\| u_{n_k} \right\|_X^p \\
 \leq c^p
 \]
 where \(\left\| u_{n_k} \right\|_X \leq c \). Therefore since the sequence \(w^{-1/p} A(x, \nabla u_{n_k}(x)) \) is uniformly bounded in \(L^{p/(p-1)}(\Omega) \), we have \(w^{-1/p} A(x, \nabla u_{n_k}(x)) \to w^{-1/p} A(x, \nabla u(x)) \) weakly in \(L^{p/(p-1)}(\Omega) \), see Jakszto [25]. Since the weak limit is independent of the choice of the subsequence \(u_{n_k} \), it follows that
 \[
 w^{-1/p} A(x, \nabla u_{n}(x)) \to w^{-1/p} A(x, \nabla u(x))
 \]
 weakly. Now \(\phi \in X \) implies the function \(w^{1/p} \nabla \phi \in L^p(\Omega) \) and therefore by the weak convergence, we obtain
 \[
 \langle J(u_n), \phi \rangle \to \langle J(u), \phi \rangle
 \]
as \(n \to \infty \) and hence \(J \) is demicontinuous.
3. **Coercivity:** By using (H3), we have the inequality
\[\langle J(u), u \rangle = \int_{\Omega} A(x, \nabla u) \cdot \nabla u \, dx \geq \int_{\Omega} w|\nabla u|^p \, dx = ||u||_X^p. \]
Therefore \(J \) is coercive.

4. **Strict monotonicity:** By using the strong monotonicity condition (H5), for all \(u \neq v \in X \), we have
\[\langle J(u) - J(v), u - v \rangle = \int_{\Omega} \{ A(x, \nabla u(x)) - A(x, \nabla v(x)) \} \cdot \nabla (u(x) - v(x)) \, dx > 0. \]

Lemma 3.10. The operator \(J^{-1} : X^* \to X \) is bounded and continuous.

Proof. By using H"older’s inequality for all \(u, v \in X \), we have the estimate
\[\langle J(v) - J(u), v - u \rangle \geq \left(||v||_X^{p-1} - ||u||_X^{p-1} \right) \left(||v||_X - ||u||_X \right), \]
which implies that the operator \(J^{-1} \) is bounded. Suppose by contradiction \(J^{-1} \) is not continuous, then there exists \(g_k \to g \) strongly in \(X^* \) such that \(||J^{-1}(g_k) - J^{-1}(g)||_X \geq \gamma \) for some \(\gamma > 0 \). Denote by \(u_k = J^{-1}(g_k) \) and \(u = J^{-1}(g) \). Therefore, by using (H3) we have
\[||u_k||_X^p \leq \int_{\Omega} A(x, \nabla u_k(x)) \cdot \nabla u_k(x) \, dx = \langle J(u_k), u_k \rangle = \langle g_k, u_k \rangle \leq ||g_k||_{X^*} ||u_k||_X, \]
which implies
\[||u_k||_X^{p-1} \leq ||g_k||_{X^*}. \]
Since \(g_k \to g \) strongly in \(X^* \), we have that the sequence \(\{ u_k \} \) is uniformly bounded in \(X \). Therefore up to a subsequence there exists \(u^1 \in X \) such that \(u_k \to u^1 \) weakly in \(X \). Now
\[\langle J(u_k) - J(u^1), u_k - u^1 \rangle = \langle J(u_k) - J(u) + J(u) - J(u^1), u_k - u^1 \rangle = \langle J(u_k) - J(u), u_k - u^1 \rangle + \langle J(u) - J(u^1), u_k - u^1 \rangle. \]
Since \(J(u_k) \to J(u) \) in \(X^* \) and \(u_k \to u^1 \) weakly in \(X \), both the terms
\[\langle J(u_k) - J(u), u_k - u^1 \rangle \text{ and } \langle J(u) - J(u^1), u_k - u^1 \rangle \]
converges to 0 as \(k \to \infty \). Therefore,
\[\langle J(u_k) - J(u^1), u_k - u^1 \rangle \to 0 \text{ as } k \to \infty. \]
Putting \(v = u_k \) and \(u = u^1 \) in the inequality (3.4) we obtain \(||u_k||_X \to ||u^1||_X \). Therefore by the uniform convexity of \(X \), it follows that \(u_k \to u^1 \) in \(X \) which together with the convergence \(J(u_k) \to J(u) \) in \(X^* \) implies that \(J(u^1) = J(u) \). Now the injectivity of \(J \) implies \(u = u^1 \), a contradiction to our assumption. Hence \(J^{-1} \) is continuous. \(\square \)
Lemma 3.11. Let $\zeta_k, \zeta \in X$ satisfies
\[
\langle J(\zeta_k), \phi \rangle = \langle h_k, \phi \rangle,
\]
\[
\langle J(\zeta), \phi \rangle = \langle h, \phi \rangle,
\]
for all $\phi \in X$ where \langle , \rangle denotes the dual product between X^* and X. If $h_k \to h$ in X^*, then we have $\zeta_k \to \zeta$ in X.

Proof. By the strict monotonicity of J, we have $J(\zeta) = h$ and $J(\zeta_k) = h_k$. Therefore applying Lemma 3.10, if $h_k \to h$ in X^* then $J^{-1}(h_k) \to J^{-1}(h)$, i.e., $\zeta_k \to \zeta$ as $k \to \infty$. Hence the proof. □

By using Lemma 3.9, we can define the operator $A: L^{p_s}(\Omega) \to X$ by $A(v) = u$ where $u \in X$ is the unique weak solution of the problem
\[
-\text{div}(A(x, \nabla u)) = \frac{f_n(x)}{|v| + \frac{1}{n}} \delta \text{ in } \Omega, \tag{3.5}
\]
i.e., for all $\phi \in X$,
\[
\int_{\Omega} A(x, \nabla u(x)) \cdot \nabla \phi(x) \, dx = \int_{\Omega} \frac{f_n(x)}{|v(x)| + \frac{1}{n}} \delta \phi(x) \, dx.
\]

Lemma 3.12. The map $A: L^{p_s}(\Omega) \to X$ is continuous as defined above.

Proof. Let $v_k \to v$ in $L^{p_s}(\Omega)$. Suppose $A(v_k) = \zeta_k$ and $A(v) = \zeta$. Then for every fixed $n \in \mathbb{N}$ and for all $\phi \in X$, we have
\[
\int_{\Omega} A(x, \nabla \zeta_k(x)) \cdot \nabla \phi(x) \, dx = \int_{\Omega} \frac{f_n(x)}{|v_k(x)| + \frac{1}{n}} \delta \phi(x) \, dx,
\]
\[
\int_{\Omega} A(x, \nabla \zeta(x)) \cdot \nabla \phi(x) \, dx = \int_{\Omega} \frac{f_n(x)}{|v(x)| + \frac{1}{n}} \delta \phi(x) \, dx.
\]
Denote by
\[
g_k(x) = \frac{f_n(x)}{|v_k(x)| + \frac{1}{n}} \delta \text{ and } g(x) = \frac{f_n(x)}{|v(x)| + \frac{1}{n}} \delta.
\]
Now, by Theorem 2.7, one has
\[
\|g_k - g\|_{X^*} = \sup_{\|\phi\|_{X} \leq 1} \left| \int_{\Omega} f_n \left\{ \left(|v_k| + \frac{1}{n} \right)^{-\delta} - \left(|v| + \frac{1}{n} \right)^{-\delta} \right\} \phi \, dx \right|
\leq n \|\phi\|_{L^{p_s}(\Omega)} \left\| \left(|v_k| + \frac{1}{n} \right)^{-\delta} - \left(|v| + \frac{1}{n} \right)^{-\delta} \right\|_{L^{p_s'}(\Omega)}.
\]
Now since \(|v_k| + \frac{1}{n}\)^{−δ} − \(|v| + \frac{1}{n}\)^{−δ} \leq 2n^{\delta+1} and \(v_k \to v\) in \(L^{p_\delta}(\Omega)\), up to a subsequence \(v_{k_l} \to v\) pointwise a.e. in \(\Omega\).

As a consequence of the Lebesgue dominated theorem, we obtain

\[
\left\|\left(|v_{k_l}| + \frac{1}{n}\right)^{−\delta} − \left(|v| + \frac{1}{n}\right)^{−\delta}\right\|_{L^{p_\delta}(\Omega)} \to 0 \quad \text{as} \quad k_l \to \infty.
\]

Since the limit is independent of the choice of the subsequence, we have

\[
\left\|\left(|v_{k}| + \frac{1}{n}\right)^{−\delta} − \left(|v| + \frac{1}{n}\right)^{−\delta}\right\|_{L^{p_\delta}(\Omega)} \to 0 \quad \text{as} \quad k \to \infty.
\]

Therefore by Lemma 3.12, we have \(\zeta_{k_l} \to \zeta\) as \(k \to \infty\). Hence \(A : L^{p_\delta}(\Omega) \to X\) is a continuous map.

Theorem 3.13. For any \(p_\delta \geq 1\) the following holds:

1. The problem (3.2) has a unique weak solution, say \(u_n\) in \(X \cap L^\infty(\Omega)\) for every fixed \(n \in \mathbb{N}\),
2. \(u_{n+1} \geq u_n\) for every \(n \in \mathbb{N}\),
3. For every \(K \Subset \Omega\) there exists a positive constant \(C_K\) (independent of \(n\)) such that \(u_n \geq C_K > 0\) in \(K\).

Proof.

1. **Existence:** Define

\[
S := \{ v \in L^{p_\delta}(\Omega) : \lambda A(v) = v, \ 0 \leq \lambda \leq 1 \}.
\]

Let \(v_i \in S\) and \(A(v_i) = u_i\) for \(i = 1, 2\). Using \(u_i\) as test function in (3.5) we obtain

\[
\|u_i\|_X \leq c(n),
\]

where \(c(n)\) is a constant depending on \(n\) but not on \(u_i, i = 1, 2\). Therefore, by Lemma 3.12 and the compactness of the inclusion

\[
X \hookrightarrow L^{p_\delta}(\Omega)
\]

together with the inequality (3.6), it follows that the map

\[
A : L^{p_\delta}(\Omega) \to L^{p_\delta}(\Omega)
\]

is both continuous and compact.

Observe that

\[
\|v_1 - v_2\|_{L^{p_\delta}(\Omega)} = \lambda \|A(v_1) - A(v_2)\|_{L^{p_\delta}(\Omega)}
\]

\[
= \lambda \|u_1 - u_2\|_X
\]

\[
\leq 2\lambda c(n) < \infty.
\]

Hence the set \(S\) is bounded in \(L^{p_\delta}(\Omega)\). By Schaefer’s fixed point theorem, there exists a fixed point of the map \(A\), say \(u_n\) i.e., \(A(u_n) = u_n\), and hence \(u_n \in X\) is a solution of (3.2).

\(L^\infty\)-estimate: For any \(k > 1\), define the set

\[
A(k) := \{ x \in \Omega : u_n(x) \geq k \text{ a.e. in } \Omega \}.
\]

Choosing

\[
\phi_k(x) := \begin{cases} u_n(x) - k, & \text{if } x \in A(k), \\ 0, & \text{otherwise}, \end{cases}
\]

as a test function in (3.3) together with the Hölder inequality and Remark 2.8, we obtain

\[
\int_{\Omega} |\nabla \phi_k|^p w(x) \, dx \leq n^{\delta+1} \int_{A(k)} |u_n(x) - k| \, dx \leq c n^{\delta+1} |A(k)|^{(q-1)/q} \|\phi_k\|_X.
\]
Therefore we get

\[\| \phi_k \|_{X}^{p-1} \leq c |A(k)|^{(q-1)/q}, \]

where \(c \) depends on \(n \). Now for \(1 < k < h \), by the Remark 2.8, we obtain

\[(h-k)^p |A(h)|^{p/q} \leq \left(\int_{A(h)} (u_n(x) - k)^q \, dx \right)^{p/q} \]

\[\leq \left(\int_{A(k)} (u_n(x) - k)^q \, dx \right)^{p/q} \]

\[\leq \int_{\Omega} |\nabla \phi_k|^p w(x) \, dx \]

\[\leq c |A(k)|^{p'/q'}. \]

Hence we obtain the inequality

\[|A(h)| \leq \frac{c}{(h-k)^q} |A(k)|^{(p'q)/(pq')} \]

Now \(q > p \) implies \((p'q)/(pq') > 1\), therefore by Theorem 2.15, we obtain

\[\| u_n \|_{L^\infty(\Omega)} \leq c, \]

where \(c \) is a constant dependent on \(n \).

2. **Monotonicity:** Let \(u_n \) and \(u_{n+1} \) satisfies the equations

\[\int_{\Omega} A(x, \nabla u_n(x)) \cdot \nabla \phi(x) \, dx = \int_{\Omega} \frac{f_n(x)}{(u_n + \frac{1}{n})^\delta} \phi(x) \, dx \tag{3.7} \]

and

\[\int_{\Omega} A(x, \nabla u_{n+1}(x)) \cdot \nabla \phi(x) \, dx = \int_{\Omega} \frac{f_{n+1}(x)}{(u_{n+1} + \frac{1}{n+1})^\delta} \phi(x) \, dx \tag{3.8} \]

respectively for all \(\phi \in X \). Choosing \(\phi = (u_n - u_{n+1})^+ \in X \) and using the inequality \(f_n(x) \leq f_{n+1}(x) \) we obtain after subtracting Equation (3.7) from (3.8)

\[I := \int_{\Omega} \left\{ A(x, \nabla u_n(x)) - A(x, \nabla u_{n+1}(x)) \right\} \cdot \nabla \left(u_n - u_{n+1} \right)^+(x) \, dx \]

\[= \int_{\Omega} \left\{ \frac{f_n(x)}{(u_n + \frac{1}{n})^\delta} - \frac{f_{n+1}(x)}{(u_{n+1} + \frac{1}{n+1})^\delta} \right\} \left(u_n - u_{n+1} \right)^+(x) \, dx \]

\[\leq \int_{\Omega} f_{n+1}(x) \left\{ \frac{1}{(u_n + \frac{1}{n})^\delta} - \frac{1}{(u_{n+1} + \frac{1}{n+1})^\delta} \right\} \left(u_n - u_{n+1} \right)^+(x) \, dx \]

\[\leq 0. \]
Again by using the strong monotonicity condition (H5), we have

- for \(p \geq 2, \)
 \[
 0 \leq \left\| (u_n - u_{n+1})^+ \right\|_X^p \leq I \leq 0,
 \]

- and for \(1 < p < 2, \)
 \[
 0 \leq \int_{\Omega} w(x) \left\| \nabla (u_n - u_{n+1})^+ \right\|^2 \left\{ \left\| \nabla u_n \right\|^p + \left\| \nabla u_{n+1} \right\|^p \right\}^{1-(2/p)} \leq I \leq 0,
 \]

which gives \(u_{n+1} \geq u_n. \)

Uniqueness: The uniqueness of \(u_n \) follows by arguing similarly as in monotonicity.

3. Choosing \(\phi = \min \{ u_n, 0 \} \) as a test function in Equation (3.3) we get \(u_n \geq 0 \) in \(\Omega. \) Applying Theorem 2.9 we get \(u_1 > 0 \) in \(\Omega. \) Hence by the monotonicity and Theorem 2.10 there exists \(C_K > 0 \) (independent of \(n \)) such that \(u_n \geq C_K > 0 \) for every \(K \subset \Omega. \)

\[\square \]

3.5 Proof of the existence and regularity results

3.6 The case \(0 < \delta < 1 \)

Proof of Theorem 3.2. Let \(0 < \delta < 1. \)

(a) Let \(1 \leq p_s < N. \) Choosing \(\phi = u_n \in X \) as a test function in Equation (3.3) and by using Hölder’s inequality together with the continuous embedding \(X \hookrightarrow L^{p^*}(\Omega) \) we obtain

\[
\left\| u_n \right\|_X^p \leq \int_{\Omega} \left| f \right| u_n^{1-\delta} \, dx
\]

\[
\leq \left\| f \right\|_{L^m(\Omega)} \left(\int_{\Omega} \left| u_n \right|^{(1-\delta)m'} \, dx \right)^{1/m'}
\]

\[
\leq c \left\| f \right\|_{L^m(\Omega)} \left\| u_n \right\|_X^{1-\delta}.
\]

Since \(\delta + p - 1 > 0, \) we have \(\left\| u_n \right\|_X \leq c, \) where \(c \) is a constant independent of \(n. \) Therefore one can apply Theorem 2.12 to conclude that up to a subsequence \(\nabla u_{n_k} \rightarrow \nabla u \) pointwise a.e. in \(\Omega. \) Since the function \(A(x, \cdot) \) is continuous, we have \(w^{-1/p}(x) A(x, \nabla u_{n_k}(x)) \rightarrow w^{-1/p}(x) A(x, \nabla u(x)) \) pointwise for a.e. \(x \in \Omega. \) Now we observe that

\[
\left\| w^{-1/p} A(x, \nabla u_{n_k}) \right\|_{L^{p/(p-1)}(\Omega)}^{p/(p-1)} = \int_{\Omega} w^{-1/(p-1)}(x) A(x, \nabla u_{n_k}(x))^{p/(p-1)} \, dx
\]

\[
\leq \left\| u_{n_k} \right\|_X^p \leq c^p.
\]

Since the sequence \(w^{-1/p} A(x, \nabla u_{n_k}) \) is uniformly bounded in \(L^{p/(p-1)}(\Omega), \) the sequence

\[
w^{-1/p} A(x, \nabla u_{n_k}(x)) \rightarrow w^{-1/p} A(x, \nabla u(x))
\]

weakly in \(L^{p/(p-1)}(\Omega). \) As the weak limit is independent of the choice of the subsequence \(u_{n_k}, \) it follows that \(w^{-1/p} A(x, \nabla u(x)) \rightarrow w^{-1/p} A(x, \nabla u(x)) \) weakly. Now \(\phi \in X \) implies the function \(w^{1/p} \nabla \phi \in L^p(\Omega) \) and hence by the weak convergence, we obtain

\[
\lim_{n \rightarrow \infty} \int_{\Omega} A(x, \nabla u_n(x)) \cdot \nabla \phi(x) \, dx = \int_{\Omega} A(x, \nabla u(x)) \cdot \nabla \phi(x) \, dx.
\]
Moreover, by Theorem 3.13 we have \(u \geq u_n \geq c_K > 0 \) for every \(K \Subset \Omega \). Since for \(\phi \in C^1_c(\Omega) \), one has

\[
\left| \frac{f_n \phi}{(u_n + \frac{1}{n})^\delta} \right| \leq \frac{||\phi||_\infty}{c_K^\delta} f \in L^1(\Omega),
\]

and \(\frac{f_n}{(u_n + \frac{1}{n})^\delta} \phi \rightarrow \frac{f}{u^\delta} \phi \) pointwise a.e. in \(\Omega \) as \(n \to \infty \), by the Lebesgue dominated convergence theorem we obtain

\[
\lim_{n \to \infty} \int_\Omega \frac{f_n}{(u_n + \frac{1}{n})^\delta} \phi \, dx = \int_\Omega \frac{f}{u^\delta} \phi \, dx.
\]

Therefore we have for all \(\phi \in C^1_c(\Omega) \),

\[
\int_\Omega A(x, \nabla u(x)) \cdot \nabla \phi(x) \, dx = \int_\Omega \frac{f}{u^\delta} \phi \, dx
\]

and hence \(u \in X \) is a weak solution of (1.1).

(b) Let \(p_s = N \). Choosing \(\phi = u_n \in X \) as a test function in (3.3) and by using the Hölder inequality together with the continuous embedding \(X \hookrightarrow L^q(\Omega), \; q \in [1, \infty) \), we obtain

\[
\|u_n\|_{X}^p \leq \int_\Omega |f||u_n|^{1-\delta} \, dx
\]

\[
\leq ||f||_{L^m(\Omega)} \left(\int_\Omega |u_n|^{(1-\delta)m'} \, dx \right)^{1/m'}
\]

\[
\leq c ||f||_{L^m(\Omega)} \left(\int_\Omega |u_n|^{m'} \, dx \right)^{(1-\delta)/m'}
\]

\[
\leq c ||f||_{L^m(\Omega)} \|u_n\|_{X}^{1-\delta},
\]

where \(c \) is a constant independent of \(n \). Since \(\delta + p - 1 > 0 \) we have that the sequence \(\{u_n\} \) is uniformly bounded in \(X \). Now arguing similarly as in case (a) we obtain the required result.

(c) Let \(p_s > N \). Choosing \(\phi = u_n \in X \) as a test function in (3.3) and by using the Hölder inequality together with the continuous embedding \(X \hookrightarrow L^\infty(\Omega) \) we obtain

\[
\|u_n\|_{X}^p \leq \int_\Omega |f||u_n|^{1-\delta} \, dx
\]

\[
\leq ||f||_{L^1(\Omega)} \|u_n\|_{L^\infty(\Omega)}^{1-\delta}
\]

\[
\leq c ||f||_{L^1(\Omega)} \|u_n\|_{X}^{1-\delta}.
\]

Since \(\delta + p - 1 > 0 \), we have \(\|u_n\|_{X} \leq c \), where \(c \) is a constant independent of \(n \). Therefore the sequence \(\{u_n\} \) is uniformly bounded in \(X \). Arguing similarly as in (a) we obtain the required result.

\[\square \]

Proof of Theorem 3.3.

(a) Let \(1 \leq p_s < N \), then \(p_s^* > p \).
(i) We observe that

- for $m = \left(\frac{p^*_s}{(1 - \delta)} \right)'$, i.e., $(1 - \delta)m' = p^*_s$, we have $\gamma = \frac{(\delta + p - 1)m'}{(p^*_s - p)} = 1$ and

- $m \in \left(\frac{p^*_s}{1 - \delta}, \frac{p^*_s}{p^*_s - p} \right)$ implies $\gamma = \frac{(\delta + p - 1)m'}{(p^*_s - p)} > 1$.

Note that $(p\gamma - p + 1 - \delta)m' = p^*_s \gamma$ and choosing $\phi = u^* \gamma^{-p+1} \in X$ as a test function in (3.3) we obtain

$$
\|u^*_n\|^p_X \leq \|f\|_{L^m(\Omega)} \left(\int_{\Omega} |u_n|^p \gamma \ dx \right)^{1/m'}.
$$

Now using the continuous embedding $X \hookrightarrow L^{p^*_s}(\Omega)$ and the fact $\frac{p}{p^*_s} - \frac{1}{m'} > 0$ we obtain $\|u^*_n\|_{L^{p^*_s}(\Omega)} \leq c$, where c is independent of n, which implies that the sequence $\{u^*_n\}$ is uniformly bounded in $L^t(\Omega)$ where $t = p^*_s \gamma$.

Therefore the pointwise limit u belongs to $L^t(\Omega)$, e.g., see [25].

(ii) Let $m > \frac{p^*_s}{(p^*_s - p)}$ and for $k > 1$. Choosing $\phi_k = (u_n - k)^{+} \in X$ as a test function in (3.3) we obtain from Hölder’s and Young’s inequalities with $\epsilon \in (0, 1)$

$$
\int_{\Omega} w|\nabla \phi_k|^p \ dx \leq c \int_{A(k)} |f||u_n - k| \ dx
$$

$$
\leq c \left(\int_{A(k)} |f|^\frac{p^*_s}{p^*_s + p'} \ dx \right)^{1/\left(\frac{p^*_s}{p^*_s + p'}\right)} \left(\int_{A(k)} |u_n - k|^{p^*_s} \ dx \right)^{1/\left(\frac{p^*_s}{p^*_s + p'}\right)}
$$

$$
\leq c \left(\int_{A(k)} |f|^\frac{p^*_s}{p^*_s + p'} \ dx \right)^{1/\left(\frac{p^*_s}{p^*_s + p'}\right)} \left(\int_{\Omega} w|\nabla \phi_k|^p \ dx \right)^{1/p}
$$

$$
\leq c \epsilon \left(\int_{A(k)} |f|^\frac{p^*_s}{p^*_s + p'} \ dx \right)^{\frac{p^*_s}{p^*_s + p'} - 1} + c \left(\int_{\Omega} w|\nabla \phi_k|^p \ dx \right)^{1/p}
$$

where $A(k) = \{ x \in \Omega : u_n \geq k \text{ a.e. in } \Omega \}$. Since $m > \frac{p^*_s}{(p^*_s - p)}$, we have $m > p^*_s'$. By using Hölder’s inequality in the above estimate we obtain

$$
\int_{\Omega} w|\nabla \phi_k|^p \ dx \leq c \|f\|_{L^m(\Omega)}^{\frac{p^*_s}{p^*_s + p'}} \left(\frac{m}{p^*_s} \right)^{\frac{1}{p^*_s}}
$$

where c is a constant independent of n. Now using the continuous embedding $X \hookrightarrow L^{p^*_s}(\Omega)$ we obtain for $1 < k < h$,

$$
(h - k)^p |A(h)|^{p/p^*_s} \leq \left(\int_{A(h)} (u_n - k)^{p^*_s} \ dx \right)^{p/p^*_s}
$$

$$
\leq \left(\int_{A(h)} (u_n - k)^{p^*_s} \ dx \right)^{p/p^*_s}
$$

$$
\leq c \int_{\Omega} w|\nabla \phi_k|^p \ dx
$$

$$
\leq c \|f\|_{L^m(\Omega)}^{\frac{p^*_s}{p^*_s + p'}} \left(\frac{m}{p^*_s} \right)^{\frac{1}{p^*_s}}.
$$
Therefore

\[|A(h)| \leq \frac{c|f|^p_{L^m(\Omega)}}{(h-k)^{p_{s}^*}} |A(k)| \left(\frac{p_{s}^*}{m} \right)^{1/p_{s}^*} \left(\frac{m}{p_{s}^*} \right)^{1/m} \].

Since \(p_{s}^* > 1 \), by Theorem 2.15, we have \(\|u_n\|_{L^{\infty}(\Omega)} \leq c \), where \(c \) is a constant independent of \(n \). Therefore we have \(u \in L^{\infty}(\Omega) \).

(b) Let \(p_{s} = N \) and \(q > p \). Observe that

- for \(m \in (q/(1-\delta), \infty) \), i.e., \((1-\delta)m' = q \), we have \(\gamma = \frac{(\delta+p-1)m'}{(pm'-q)} = 1 \) and
 - \(m \in \left[\frac{q}{1-\delta}, \frac{pm'}{pm'-q} \right) \) implies \(\gamma = \frac{(\delta+p-1)m'}{pm'-q} > 1 \).

Note that \((p_{s}^* - p + 1 - \delta)m' = q \gamma \) and choosing \(\phi = u_n^{p_{s}^* - p + 1} \in X \) as a test function in (3.3) we obtain

\[\|u_n\|_{L^{m}(\Omega)}^{p_{s}^*} \leq \|f\|_{L^{m}(\Omega)} \left(\int_{\Omega} |u_n|^q \right)^{1/m}. \]

Now using the continuous embedding \(X \hookrightarrow L^q(\Omega) \) and the fact \(p/q - 1/m' > 0 \) we obtain \(\|u_n\|_{L^q(\Omega)} \leq c \), where \(c \) is independent of \(n \), which implies that the sequence \(\{u_n\} \) is uniformly bounded in \(L^t(\Omega) \) where \(t = q \gamma \). Therefore \(u \) belong to \(L^t(\Omega) \).

(c) Follows from Theorem 3.2 using the continuous embedding \(X \hookrightarrow L^{\infty}(\Omega) \).

3.7 | The case \(\delta = 1 \)

Proof of Theorem 3.4. Let \(\delta = 1 \) and \(f \in L^1(\Omega) \). Then choosing \(\phi = u_n \in X \) as a test function in (3.3) for any \(p_{s} \geq 1 \), we obtain \(\|u_n\|_{X} \leq \|f\|_{L^1(\Omega)} \). Now arguing similarly as in Theorem 3.2 we obtain the existence of weak solution \(u \in X \) of (1.1).

Proof of Theorem 3.5.

(a) Let \(1 \leq p_{s} < N \), then \(p_{s}^* > p \).

(i) Observe that \(m \in (1, p_{s}^*/(p_{s}^* - p)) \) implies \(\gamma = \frac{pm'}{(pm'-p_{s}^*)} > 1 \). Now choosing \(\phi = u_n^{p_{s}^* - p + 1} \in X \) as a test function in (3.3) together with the continuous embedding \(X \hookrightarrow L^{p_{s}^*}(\Omega) \) and arguing similarly as in part (i) of Theorem 3.3 we obtain the required result.

(ii) Follows arguing similarly as in part (ii) of Theorem 3.3.

(b) Let \(p_{s} = N \) and \(q > p \). Observe that \(m \in (1, q/(q - p)) \) implies \(\gamma = \frac{pm'}{pm'-q} > 1 \). Choosing \(\phi = u_n^{p_{s}^* - p + 1} \in X \) as a test function in (3.3) together with the continuous embedding \(X \hookrightarrow L^q(\Omega) \) and proceeding similarly as in part (b) of Theorem 3.3 we obtain the required result.

(c) Follows from Theorem 3.4 using the continuous embedding \(X \hookrightarrow L^{\infty}(\Omega) \).

3.8 | The case \(\delta > 1 \)

Proof of Theorem 3.6. Let \(\delta > 1 \) and \(f \in L^1(\Omega) \) with \(p_{s} \geq 1 \). By Theorem 3.13 for every fixed \(n \in \mathbb{N} \) we have \(u_n \in L^{\infty}(\Omega) \) (the bound may depend on \(n \)). Choosing \(\phi = u_n^{\delta} \in X \) as a test function in (3.3) (which is admissible since \(\delta > 1 \) and \(u_n \in L^{\infty}(\Omega) \) by Theorem 3.13) we obtain

\[\int_{\Omega} \delta u_n^{\delta-1} |\nabla u_n|^p w(x) dx \leq \int_{\Omega} \delta u_n^{\delta-1} A(x, \nabla u_n) \cdot \nabla u_n dx \leq \int_{\Omega} |f(x)| dx, \]
which implies
\[\int_{\Omega} w \left\| \nabla \left(u_n \left(\frac{\delta + p - 1}{p} \right) \right) \right|^p dx \leq c \| f \|_{L^1(\Omega)}, \]

where \(c \) is independent of \(n \). Therefore the sequence \(\{ u_n \left(\frac{\delta + p - 1}{p} \right) \} \) is uniformly bounded in \(X \). Let \(\phi \in C_c^\infty(\Omega) \) and consider \(v_n = \phi u_n \in X \). We observe that
\[\int_{\Omega} A(x, \nabla u_n) \cdot \nabla (\phi u_n) dx = p \int_{\Omega} \phi^{p-1} u_n A(x, \nabla u_n) \cdot \nabla \phi dx + \int_{\Omega} \phi^p A(x, \nabla u_n) \cdot \nabla u_n dx, \tag{3.9} \]

and by using Young’s inequality for \(\varepsilon \in (0, 1) \), we obtain for some positive constant \(c_\varepsilon \),
\[\left| p \int_{\Omega} \phi^{p-1} u_n A(x, \nabla u_n) \cdot \nabla \phi dx \right| \leq \varepsilon \int_{\Omega} w |\phi|^p |\nabla u_n|^p dx + c_\varepsilon \int_{\Omega} w |u_n|^p |\nabla \phi|^p dx. \tag{3.10} \]

Now choosing \(\phi = v_n \in X \) as a test function in (3.3) and using the estimates (3.9), (3.10), we obtain
\[\int_{\Omega} \phi^p |\nabla u_n|^p w(x) dx \leq \int_{\Omega} \phi^p A(x, \nabla u_n) \cdot \nabla u_n dx \]
\[= \int_{\Omega} \frac{f_n}{u_n + \frac{1}{n} \delta} \phi^p u_n dx - p \int_{\Omega} \phi^{p-1} u_n A(x, \nabla u_n) \cdot \nabla \phi dx \]
\[\leq \int_{K} \frac{f_n}{u_n} \phi^p dx + \varepsilon \int_{\Omega} |\phi|^p |\nabla u_n|^p w(x) dx + c_\varepsilon \int_{\Omega} |u_n|^p |\nabla \phi|^p w(x) dx \]
\[\leq \frac{\| \phi \|_{L^\infty(\Omega)} \| f \|_{L^1(\Omega)} + \varepsilon \int_{\Omega} |\phi|^p |\nabla u_n|^p w(x) dx + c_\varepsilon \| \nabla \phi \|_{L^\infty(\Omega)} }{c_\delta K} \int_{K} \frac{1}{u_n^{\delta-1}} |u_n^{(\delta+p-1)/p}|^p dx \]
\[\leq c_\delta \| f \|_{L^1(\Omega)} + \varepsilon \int_{\Omega} |\phi|^p |\nabla u_n|^p w(x) dx + c_\phi \| u_n^{(\delta+p-1)/p} \|_{X'}, \]

where \(K \) is the support of \(\phi \) and \(c_\phi \) is a constant depending on \(\phi \). Therefore we have
\[(1 - \varepsilon) \int_{\Omega} \phi^p |\nabla u_n|^p w(x) dx \leq c_\phi \left\{ \| f \|_{L^1(\Omega)} + \| u_n^{(\delta+p-1)/p} \|_{X'} \right\}. \]

Now since the sequence \(\{ u_n^{(\delta+p-1)/p} \} \) is uniformly bounded in \(X \) we have the sequence \(\{ u_n \} \) is uniformly bounded in \(W^{1,p}_{\text{loc}}(\Omega, w) \). Now arguing similarly as in Theorem 3.2, we obtain \(u \in W^{1,p}_{\text{loc}}(\Omega, w) \) is a weak solution of (1.1). The fact that \(u^{(\delta+p-1)/p} \in X \) follows from the uniform boundedness of the sequence \(\{ u_n^{(\delta+p-1)/p} \} \) in \(X \). \qed

Proof of Theorem 3.7.

(a) Let \(1 \leq p_s < N \), then \(p_s^* > p \).
 (i) Observe that \(m \in (1, p_s^*/(p - p_s)) \) implies \(\gamma = \frac{(\delta+p-1)m'}{pmt'-p} > \frac{\delta+p-1}{p} > 1 \), since \(\delta > 1 \). Now choosing \(\phi = u_n^{p_{s'}^{p-1}} \in X \) as a test function in (3.3) together with the continuous embedding \(X \hookrightarrow L^{p_{s'}}(\Omega) \) and arguing similarly as in part (i) of Theorem 3.3 the result follows.
 (ii) Follows by arguing similarly as in part (ii) of Theorem 3.3.

(b) Let \(p_s = N \) and \(q > p \). Observe that \(\delta > 1, m \in (1, q/(q - p)) \) implies \(\gamma = \frac{(\delta+p-1)m'}{pmt'-q} > 1 \). Choosing \(\phi = u_n^{p_{s'}^{p-1}} \in X \) as a test function in (3.3) together with the continuous embedding \(X \hookrightarrow L^{p}(\Omega) \) and proceeding similarly as in part (b) of Theorem 3.3 we obtain the required result.

(c) Follows from Theorem 3.6 using the continuous embedding \(X \hookrightarrow L^{\infty}(\Omega) \). \qed
4 | UNIQUENESS RESULTS

In this section we state and prove our main uniqueness results.

4.1 | The case $0 < \delta \leq 1$

Theorem 4.1. For any $0 < \delta \leq 1$ and $w \in A_p$, the problem (1.1) admits at most one weak solution in $W_0^{1,p}(\Omega, w)$ for any nonnegative $f \in L^1(\Omega)$.

Proof. Let $0 < \delta \leq 1$, let $w \in A_p$ be arbitrary and let $u_1, u_2 \in X$ be two solutions of Equation (1.1). The fact $(u_1 - u_2)^+ \in X$ allows us to choose $\{\varphi_n\} \in C_c^\infty(\Omega)$ converging to $(u_1 - u_2)^+$ in $|| \cdot ||_X$. Now setting,

$$
\psi_n := \min \left\{ (u_1 - u_2)^+, \varphi_n^+ \right\} \in X \cap L_\infty^c(\Omega)
$$

as a test function in (1.1) we get

$$
\int_\Omega (A(x, \nabla u_1) - A(x, \nabla u_2)) \cdot \nabla \psi_n \, dx \leq \int_\Omega \left(\frac{1}{u_1^\delta} - \frac{1}{u_2^\delta} \right) \psi_n \, dx \leq 0.
$$

Passing to the limit and using the strong monotonicity condition (H5), $(u_1 - u_2)^+ = 0$ a.e. in Ω which implies $u_1 \leq u_2$. Similarly changing the role of u_1 and u_2, we get $u_2 \leq u_1$. Therefore, $u_1 \equiv u_2$. \hfill \Box

4.2 | The case $\delta > 1$

Theorem 4.2. Let $\delta > 1$ and $w \in A_p$. Then the problem (1.1) has at most one weak solution in $W^{1,p}_{\text{loc}}(\Omega, w)$ if

1. $f \in L^m(\Omega)$ for some $m = (p_s^\ast)'$, provided $1 \leq p_s < N$, or
2. $f \in L^m(\Omega)$ for some $m > 1$, provided $p_s = N$, or
3. $f \in L^1(\Omega)$ for $p_s > N$.

Remark 4.3. In case $w \equiv 1$ our main results in this paper will hold by replacing p_s by p. Moreover, since $(p^\ast)' < N/p$, Theorem 4.2 improves the range of f in Theorem 1.5 of [9] to get the uniqueness provided $1 < p < N$.

Preliminaries: Define for $k > 0$ and $\delta > 1$ the truncated function

$$
g_k(s) := \begin{cases}
\min \{s^{-\delta}, k\}, & \text{for } s > 0, \\
k, & \text{for } s \leq 0.
\end{cases}
$$

Definition 4.4. We say that $v(> 0) \in W^{1,p}_{\text{loc}}(\Omega, w)$ is a super-solution of the problem (1.1), if for every $K \Subset \Omega$ there exists a positive constant c_K such that $v \geq c_K > 0$ in K and for every nonnegative $\phi \in C_c^\infty(\Omega)$ one has

$$
\int_\Omega A(x, \nabla u) \cdot \nabla \phi \, dx \geq \int_\Omega \frac{f(x)}{v^\delta} \phi \, dx.
$$

Definition 4.5. We say that $v(> 0) \in W^{1,p}_{\text{loc}}(\Omega, w)$ is a sub-solution of the problem (1.1), if for every $K \Subset \Omega$ there exists a positive constant c_K such that $v \geq c_K > 0$ in K and for every nonnegative $\phi \in C_c^\infty(\Omega)$ one has

$$
\int_\Omega A(x, \nabla u) \cdot \nabla \phi \, dx \leq \int_\Omega \frac{f(x)}{v^\delta} \phi \, dx.
$$
For a fixed super-solution v of (1.1), consider the following non-empty closed and convex set

$$ \mathcal{K} := \{ \phi \in X : 0 \leq \phi \leq v \text{ a.e. in } \Omega \}. $$

Lemma 4.6. There exists $z \in \mathcal{K}$ such that for every nonnegative $\phi \in C^1_c(\Omega)$ one has

$$ \int_{\Omega} A(x, \nabla z) \cdot \nabla \phi \, dx \geq \int_{\Omega} f(x) g_k(z) \phi \, dx. \quad (4.3) $$

Proof. Under the assumptions on f and applying Theorem 2.7 one can define the operator $J_k : X \to X^*$ for every $u, \psi \in X$ by

$$ \langle J_k(u), \psi \rangle := \int_{\Omega} A(x, \nabla u) \cdot \nabla \psi \, dx - \int_{\Omega} f g_k(u) \psi \, dx. $$

Following the same arguments as in Lemma 3.9, it follows that J_k is demicontinuous, coercive and strictly monotone. As a consequence of Theorem 2.14, there exists a unique $z \in \mathcal{K}$ such that for every $\psi \in \mathcal{K}$, one has

$$ \int_{\Omega} A(x, \nabla z) \cdot \nabla (\psi - z) \, dx \geq \int_{\Omega} f(x) g_k(z)(\psi - z) \, dx. \quad (4.4) $$

Let us consider a real valued function $g \in C^\infty_c(\mathbb{R})$ such that $0 \leq g \leq 1$, $g \equiv 1$ in $[-1, 1]$ and $g \equiv 0$ in $(-\infty, -2] \cup [2, \infty)$. Define the function

$$ \phi_h := g \left(\frac{z}{h} \right) \phi $$

and

$$ \phi_{h,t} := \min \{ z + t \phi_h, v \} $$

with $h \geq 1$ and $t > 0$

for a given nonnegative $\phi \in C^1_c(\Omega)$. Then by the inequality (4.4), we have

$$ \int_{\Omega} A(x, \nabla z) \cdot \nabla (\phi_{h,t} - z) \, dx \geq \int_{\Omega} f(x) g_k(z)(\phi_{h,t} - z) \, dx. \quad (4.5) $$

By (H5), we have

$$ I = c \int_{\Omega} | \nabla (\phi_{h,t} - z) |^\gamma \left\{ A(x, \nabla \phi_{h,t}, \nabla z) \right\}^{1-\gamma/p} w(x) \, dx $$

$$ \leq \int_{\Omega} \{ A(x, \nabla \phi_{h,t}) - A(x, \nabla z) \} \cdot \nabla (\phi_{h,t} - z) \, dx $$

$$ = \int_{\Omega} A(x, \nabla \phi_{h,t}) \cdot \nabla (\phi_{h,t} - z) \, dx - \int_{\Omega} A(x, \nabla z) \cdot \nabla (\phi_{h,t} - z) \, dx $$

$$ \leq \int_{\Omega} A(x, \nabla \phi_{h,t}) \cdot \nabla (\phi_{h,t} - z) \, dx - \int_{\Omega} f(x) g_k(z)(\phi_{h,t} - z) \, dx \text{ (using (4.5)).} $$

Therefore,

$$ I - \int_{\Omega} f(x)(g_k(\phi_{h,t}) - g_k(z))(\phi_{h,t} - z) \, dx $$

$$ \leq \int_{\Omega} A(x, \nabla \phi_{h,t}) \cdot \nabla (\phi_{h,t} - z) \, dx - \int_{\Omega} f(x) g_k(\phi_{h,t})(\phi_{h,t} - z) \, dx $$

$$ = \int_{\Omega} g(x) \, dx - \int_{\Omega} f(x) g_k(\phi_{h,t})(\phi_{h,t} - z - t \phi_h) \, dx + t \int_{\Omega} A(x, \nabla \phi_{h,t}) \cdot \nabla \phi_h \, dx - t \int_{\Omega} f(x) g_k(\phi_{h,t}) \phi_h \, dx, $$

$$ \quad (4.6) $$
where
\[g(x) := A(x, \nabla \phi_h) \cdot \nabla (\phi_{h,t} - z - \phi_h). \]

Let us denote by
\[g_v(x) := A(x, \nabla v) \cdot \nabla (\phi_{h,t} - z - \phi_h). \]

Set \(\Omega = S_v \cup S_v^c \), where \(S_v := \{ x \in \Omega : \phi_h(x) = v(x) \} \) and \(S_v^c := \Omega \setminus S_v \). Observe that \(g(x) = g_v(x) = 0 \) on \(S_v^c \) and \(g(x) = g_v(x) \) on \(S_v \). This gives from (4.6),
\[
I - \int_\Omega f(x)(g_k(\phi_{h,t}) - g_k(z))(\phi_{h,t} - z) \, dx
= \int_\Omega g_v(x) \, dx - \int_\Omega f(x)g_k(\phi_{h,t})(\phi_{h,t} - z - t\phi_h) \, dx + t \int_\Omega A(x, \nabla \phi_{h,t}) \cdot \nabla \phi_h \, dx - t \int_\Omega f(x)g_k(\phi_{h,t})\phi_h \, dx.
\]
(4.7)

Since \(v \) is a super-solution of (1.1), choosing \((z + t\phi_h - \phi_{h,t})\) as a test function in (4.1) and using the fact that \(\phi_{h,t} = v \) on \(S_v \), we obtain
\[
\int_\Omega g_v(x) \, dx - \int_\Omega f(x)g_k(\phi_{h,t})(\phi_{h,t} - z - t\phi_h) \, dx \leq 0.
\]

Since \(I \geq 0 \) and \(\phi_{h,t} - z \leq t\phi_h \), using the inequality (4.7), we get
\[
\int_\Omega A(x, \nabla \phi_{h,t}) \cdot \nabla \phi_h \, dx - \int_\Omega f(x)g_k(\phi_{h,t})\phi_h \, dx \geq - \int_\Omega f|g_k(\phi_{h,t}) - g_k(z)|\phi_h \, dx.
\]

Therefore letting \(t \to 0 \), we obtain
\[
\int_\Omega A(x, \nabla z) \cdot \nabla \phi_h \, dx - \int_\Omega f(x)g_k(z)\phi_h \, dx \geq 0.
\]

As \(h \to \infty \), we obtain
\[
\int_\Omega A(x, \nabla z) \cdot \nabla \phi \, dx \geq \int_\Omega f(x)g_k(z)\phi \, dx.
\]

Hence the proof. \(\square \)

Proof of Theorem 4.2. Suppose \(u, v \in W^{1,p}_{loc}(\Omega, w) \) both are solutions of the problem (1.1). Then, we can assume that \(u \) is a sub-solution and \(v \) is a super-solution of (1.1). By the given condition on \(f \), one can use Lemma 4.6 to get the existence of \(z \in \mathbb{K} \) satisfying the inequality (4.3). Let \(\varepsilon = 2k^{-1/\delta} \) for \(k > 0 \). Since \(u = 0 \) on \(\partial \Omega \), one can use Theorem 2.11 to obtain \((u - z - \varepsilon)^+ \in X \). Applying Lemma 4.6, for any \(\eta > 0 \), by standard density arguments one has
\[
\int_\Omega A(x, \nabla z) \cdot \nabla T_\eta((u - z - \varepsilon)^+) \, dx \geq \int_\Omega f(x)g_k(z)T_\eta((u - z - \varepsilon)^+) \, dx.
\]
(4.8)

Since \((u - z - \varepsilon)^+ \in X \), there exists a sequence \(\phi_n \in C^\infty_c(\Omega) \) such that \(\phi_n \to (u - z - \varepsilon)^+ \) in \(|| \cdot ||_X \). Denote by
\[
\psi_{n,\eta} := T_\eta(\min\{(u - z - \varepsilon)^+, \phi_n^+\}) \in X \cap L^\infty_c(\Omega),
\]
and since \(u \) is a sub-solution of (1.1), we obtain
\[
\int_\Omega A(x, \nabla u) \cdot \nabla \psi_{n,\varepsilon} \, dx \leq \int_\Omega \frac{f}{u^\delta}\psi_{n,\varepsilon} \, dx.
\]
Since \(w|\nabla u|^p \) is integrable on the support of \((u - z - \epsilon)^+\), one can pass to the limit as \(n \to \infty \) and obtain

\[
\int_{\Omega} A(x, \nabla u) \cdot \nabla \eta \ ((u - z - \epsilon)^+) \, dx \leq \int_{\Omega} \frac{f}{w^\frac{p}{2}} \eta \ ((u - z - \epsilon)^+) \, dx.
\] (4.9)

By using (4.8), (4.9), the fact \(\epsilon > k^{-1/\delta} \) together with (H5), we obtain for \(\gamma := \max \{ p, 2 \} \),

\[
\int_{\Omega} |\nabla \eta \ ((u - z - \epsilon)^+) |^{\gamma/\psi} (|\nabla u|^p + |\nabla z|^p)^{1-\gamma/p} w(x) \, dx \leq \int_{\Omega} \left\{ A(x, \nabla u) - A(x, \nabla z) \right\} \cdot \nabla \eta \ ((u - z - \epsilon)^+) \, dx
\]

\[
\leq \int_{\Omega} f(x) \left(\frac{1}{w^\frac{p}{2}} - g_k \ (z) \right) \eta \ ((u - z - \epsilon)^+) \, dx
\]

\[
\leq \int_{\Omega} f(x) (g_k (u) - g_k (z)) \eta \ ((u - z - \epsilon)^+) \, dx \leq 0.
\]

Since \(\eta > 0 \) is arbitrary, we have \(u \leq z + 2k^{-1/\delta} \leq v + 2k^{-1/\delta} \). Letting \(k \to \infty \), we get \(u \leq v \) a.e. in \(\Omega \). Arguing similarly we obtain \(v \leq u \) a.e. in \(\Omega \). Hence \(u \equiv v \). □

ACKNOWLEDGEMENT

The author would like to thank the anonymous referee for his/her valuable comments and suggestions. The author thanks Professor Juha Kinnunen for sharing his deep insight in the topic that greatly improved the manuscript. The author would like to heartily thank Professors Adi Adimurthi, Kaushik Bal, and Karthik Adimurthi for some fruitful discussion on the topic. This research was supported by NBHM Fellowship No: 2-39(2)-2014 (NBHM-RD-II-8020-June 26, 2014). The author thanks Indian Institute of Technology Kanpur, located in Kanpur, Uttar Pradesh, India, and Aalto University, located in Espoo, Finland, for the nice hospitality.

REFERENCES

[1] A. Ambrosetti and D. Arcoya, An introduction to nonlinear functional analysis and elliptic problems, Progr. Nonlinear Differential Equations Appl., vol. 82, Birkhäuser Boston, Inc., Boston, MA, 2011.
[2] D. Arcoya and L. Boccardo, Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities, Differential Integral Equations 26 (2013), no. 1–2, 119–128.
[3] D. Arcoya and L. Moreno-Mérida, Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity, Nonlinear Anal. 95 (2014), 281–291.
[4] K. Bal and P. Garain, Multiplicity results for a quasilinear equation with singular nonlinearity, Mediterr. J. Math. 17 (2020), Article number: 100.
[5] L. Boccardo, A Dirichlet problem with singular and supercritical nonlinearities, Nonlinear Anal. 75 (2012), no. 12, 4436–4440.
[6] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), no. 6, 581–597.
[7] L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37 (2010), no. 3–4, 363–380.
[8] A. Canino and B. Sciunzi, A uniqueness result for some singular semilinear elliptic equations, Commun. Contemp. Math. 18 (2016), no. 6, 1550084, 9.
[9] A. Canino, B. Sciunzi, and A. Trombetta, Existence and uniqueness for \(p \)-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Art. 8, 18.
[10] A. Canino et al., Nonlocal problems with singular nonlinearity, Bull. Sci. Math. 141 (2017), no. 3, 223–250.
[11] S.-K. Chua, S. Rodney, and R. Wheeden, A compact embedding theorem for generalized Sobolev spaces, Pacific J. Math. 265 (2013), no. 1, 17–57.
[12] P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.
[13] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193–222.
[14] L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (2013), no. 3–4, 181–195.
[15] L. M. De Cave, R. Durastanti, and F. Oliva, Existence and uniqueness results for possibly singular nonlinear elliptic equations with measure data, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 3, Paper No. 18, 35.
[16] L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Anal. 128 (2015), 391–411.
[17] P. Drábek, A. Kufner, and F. Nicolosi, *Quasilinear elliptic equations with degenerations and singularities*, De Gruyter Ser. Nonlinear Anal. Appl., vol. 5, Walter de Gruyter & Co., Berlin, 1997.

[18] L. C. Evans, *Partial differential equations*, Grad. Stud. in Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.

[19] E. B. Fabes, C. E. Kenig, and R. P. Serapioni, *The local regularity of solutions of degenerate elliptic equations*, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116.

[20] V. Felli and M. Schneider, *A note on regularity of solutions to degenerate elliptic equations of Caffarelli–Kohn–Nirenberg type*, Adv. Nonlinear Stud. 3 (2003), no. 4, 431–443.

[21] M. Ghergu and V. Radulescu, *Singular elliptic problems with lack of compactness*, Ann. Mat. Pura Appl. (4) 185 (2006), no. 1, 63–79.

[22] J. Giacomoni, I. Schindler, and P. Takáč, *Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 117–158.

[23] Y. Haitao, *Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem*, J. Differential Equations 189 (2003), no. 2, 487–512.

[24] J. Heinonen, T. Kilpeläinen, and O. Martio, *Nonlinear potential theory of degenerate elliptic equations*, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications.

[25] M. Jaksztó, *Another proof that L^p-bounded pointwise convergence implies weak convergence*, Real Anal. Exchange 36 (2010/11), no. 2, 479–481.

[26] T. Kilpeläinen, *Weighted Sobolev spaces and capacity*, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 1, 95–113.

[27] D. Kinderlehrer and G. Stampacchia, *An introduction to variational inequalities and their applications*, Pure Appl. Math., vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980.

[28] A. C. Lazer and P. J. McKenna, *On a singular nonlinear elliptic boundary-value problem*, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721–730.

[29] G. M. Lieberman, *Boundary regularity for solutions of degenerate elliptic equations*, Nonlinear Anal. 12 (1988), no. 11, 1203–1219.

[30] A. Mohammed, *Positive solutions of the p-Laplace equation with singular nonlinearity*, J. Math. Anal. Appl. 352 (2009), no. 1, 234–245.

[31] B. Muckenhoupt, *Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc. 165 (1972), 207–226.

[32] J. Serrin, *Local behavior of solutions of quasi-linear equations*, Acta Math. 111 (1964), 247–302.

[33] E. W. Stredulinsky, *Weighted inequalities and degenerate elliptic partial differential equations*, Lecture Notes in Math., vol. 1074, Springer-Verlag, Berlin, 1984.

[34] P. Tolksdorf, *Regularity for a more general class of quasilinear elliptic equations*, J. Differential Equations 51 (1984), no. 1, 126–150.

[35] N. S. Trudinger, *On the regularity of generalized solutions of linear, non-uniformly elliptic equations*, Arch. Rational Mech. Anal. 42 (1971), 50–62.

How to cite this article: P. Garain, *On a degenerate singular elliptic problem*. Mathematische Nachrichten 295 (2022), 1354–1377. https://doi.org/10.1002/mana.201900431