Bacteriological Quality Assessment and Molecular Detection of Shiga Toxin-Producing *Escherichia coli* (STEC) from Milk and Meat Based Fast Foods from Mizoram (India)

L. Hnamte¹, E. Motina¹, P. Roychoudhury² and J.L. Kataria¹*

¹Department of Veterinary Public Health and Epidemiology, ²Department of Veterinary Microbiology, C.V.Sc & A.H., Selesih, Aizawl, Mizoram – 796014, India

*Corresponding author

---

**A B S T R A C T**

Diseases that result from foods are one of the major health problems in developing and developed countries. The determination of the microbiological quality of foods needs to be established by analytical protocols to detect indicator and pathogenic organisms. Commonly approved indices of microbial quality include the Total Viable Count (TVC) and Coliform count. Shiga toxin-producing *Escherichia coli* (STEC), foodborne pathogens of public health concern and responsible for both outbreaks and sporadic cases of human diseases, ranging from mild diarrhea to hemorrhagic colitis (HC) and life-threatening hemolytic uremic syndrome (HUS) leading to kidney failure and death.

**Introduction**

Foodborne disease (FBD) is a global public health concern, and foods from animal sources have been associated with outbreaks of food-related illness (Jaja *et al.*, 2018).

Shiga toxin-producing *Escherichia coli* (STEC) are a group of food and water-borne pathogens associated with a wide spectrum of human diseases, ranging from mild diarrhea to hemorrhagic colitis (HC), thrombocytopenia, hemolytic uremic syndrome (HUS), and can also lead to people death (Baranzoni *et al.*, 2016). Humans most frequently become infected with STEC by ingestion of contaminated food (meat, especially undercooked beef hamburgers; raw milk; cheese; ready-to-eat sausages; sprouts) or water or by direct contact with animals (Gyles, 2007).

**Materials and Methods**

A total of 205 numbers of milk (73 nos) and meat (132 nos) based fast food were collected from four different districts (Aizawl, Kolasib, Champhai and Siaha) in Mizoram. All the
samples were collected aseptically and were brought to the laboratory under cold chain. The samples were processed immediately upon arrival for bacteriological quality and isolation of *E. coli*. Total viable count (TVC) and coli form count were determined according to the procedure recommended by American Public Health Association (1976). Isolation and identification of *E. coli* was done as per Cowan and Steel (1993). All the isolates were further assessed by polymerase chain reaction (PCR) assay for the presence of putative virulence gene(s) (*stx*₁ and *stx*₂) (Paton and Paton, 1998).

All the fast food samples (205 nos) were examined for TVC and coliform count. The TVC of the entire sample ranged between 4.51 and 5.74 log₁₀ cfu/g with a mean value 4.82±0.01 log₁₀ cfu/g (Table 1).

The mean values of milk based fast food from Aizawl, Kolasib, Champhai and Siaha districts were 4.82±0.06, 4.72±0.06, 4.83±0.06, 4.82±0.02 and the mean values of meat based fast food from Aizawl, Kolasib, Champhai and Siaha districts were 4.81±0.05, 4.85±0.05, 4.83±0.04, 4.86±0.02 which was in accordance to the findings of earlier workers (Mahmoudi et al., 2014; Hassan, 1986).

147 (71.70%) samples were found to be positive for coliform organism. The coliform count of the entire sample ranged from 4.00 and 4.71 with a mean value of 4.57±0.01 log₁₀ cfu/g. The mean value of coliform count was 4.53±0.01, 4.59±0.01, 4.58±0.01, 4.61±0.01 log₁₀ cfu/g respectively for Aizawl, Kolasib, Champhai and Siaha districts. No significance difference was observed between Aizawl, Champhai, Kolasib and Siaha districts in case of milk based products however, in case of meat based fast food, significance difference was found between Aizawl and Kolasib at P≤0.05, Aizawl and Champhai and Aizawl and Siaha districts at P≤0.01. Significance difference was also found between Kolasib and Siaha district at P≤0.05 (Table 1). Similar findings were also recorded by Mahmoudi et al., (2014) and Datta et al., (2012). As 71.70% of the samples were positive for coliform organism and exceeded the acceptable limit set by ICMSF (1986). This could be due to poor hygiene practices followed by food handlers and inadequate handling practices at the selling point. The higher incidence of coliform was also in agreement with Kuljinder and Kahlon (2014) and also with Rath and Patra (2012) who reported coliform organism in 86.66% of the fast food samples tested.

Table 1 Statistical analysis of Total Viable Count (TVC) and coliform count of milk and meat based fast foods in four different districts of Mizoram

| District | Total Viable Count (TVC) | Coliform Count |
|----------|--------------------------|----------------|
|          | Milk based fast food     | Meat based fast food |
|          | (log₁₀ cfu/g) ± S.E      | (log₁₀ cfu/g) ± S.E |
| Aizawl   | 4.82±0.06                | 4.81±0.05        |
| Kolasib  | 4.72±0.06                | 4.85±0.05        |
| Champhai | 4.83±0.06                | 4.83±0.04        |
| Siaha    | 4.82±0.02                | 4.86±0.02        |
| F value  | 0.707 NS                 | 0.213 NS         |

Note: Values bearing different superscripts within the column differs significantly from each other; * = single asterisk denotes significantly different at ≤ 0.05 and ** = double asterisk denote significantly different at ≤ 0.01
A total of 46 E. coli isolates (30 isolates were from meat based and 16 were from milk based fast food) were isolated from 205 fast food samples, two isolates (4.34%) were found to be positive for stx2 gene (both from milk based products) and none were found to be positive for stx1 gene. Low prevalence of the stx2 genes were also observed by other workers (Gupta et al., 2013; Zende et al., 2013 and Kalliopi et al., 2012). Stx2 is considered to be the most important virulence factor associated with human diseases. It is about 400 fold more toxic to mice than Stx1 and has also shown to induce foeto-placental re-absorption, intrauterine haemotoma, fibrin deposition and neutrophil infiltration (Tesh et al., 1993). Though low in prevalence, detection of virulence genes indicates distribution of potentially pathogenic E. coli in milk and meat based fast food in Mizoram. Therefore, presence of virulence genes in the fast food is of great importance from public health point of view as it may serve as a vehicle for transmission of E. coli infection to the human being through consumption.

Acknowledgement

The authors are thankful to Dean, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India for providing necessary funds and facilities to carry out the investigation.

References

American Public Health Association (APHA). 1976. Compendium of methods for the microbiological examination of foods. Speck, ML ed. 1015, Eighteen street, New York, Washington D C 20036.

Baranzoni, G.M., Fratamico, P.M., Gangiredla, J., Patel, I., Bagi, L.K., Delannoy, S., Fach, P., Boccia, F., Anastasio A. and Pepe T. 2016. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Frontier Microbiology. 7:574. doi: 10.3389/fmicb.2016.00574.

Cowan and Steel’s Manual for the identification of medical bacteria. 1993. 3rd Edition. In G. I. Barrow and R. K. A. Feltham (eds). Cambridge University Press, London.

Datta, S., Akter, A., Shah, I.G., Fatema, K., Islam, T.H., Bandyopadhyay, A., Khan, Z.U.M. and Biswas, D. 2012. Microbiological quality assessment of raw meat and meat products and antibiotic susceptibility of isolated Staphylococcus aureus. Agriculture, Food and Analytical Bacteriology. 2:187-194.

Gupta, B., Ghatak, S. and Gill, J.P.S. 2013. Incidence and virulence properties of E. coli isolated from fresh fish and ready-to-eat fish products. Vet World. 6:5-9.

Gyles, C.L. 2007. Shiga-producing Escherichia coli: an overview. Journal of Animal Science. 85: E45-E62.

Hassan, A.I. 1986. Microbiological quality of ready to eat meat meals in air catering. M.V.Sc. Thesis, Submitted to Faculty of Veterinary Medicine, Cairo University.

ICMSF. 1986. Microorganisms in Foods 2. Sampling for microbiological analysis: Principles and specific applications. 2nd Ed. International Commission on Microbiological Specifications for Foods.

Jaja, I.F., Green, E. and Muchenje, V.A. 2018. Aerobic Mesophilic, Coliform, Escherichia coli and Staphylococcus aureus Counts of Raw Meat from the Formal and Informal Meat Sectors in South Africa. International Journal of Environmental Research and Public Health. 15: 819; doi:10.3390/ijerph15040819.
Kalliopi, R., Valentina, A. and Luca, C. 2012. Prevalence of shiga toxin producing *Escherichia coli* in food products of animal origin as determined by molecular methods. International Journal of Food Microbiology. 154:37-43.

Kuljinder, K. and Kahlon, R.S. 2014. Multi-drug resistance in indicator bacteria: Coliforms and *Escherichia coli* isolated from ready to eat food sample. International Journal of Current Microbiology and Applied Sciences. 3:465-488.

Mahmoudi, R., Norian, R., Alamoti, M.R.P. and Kiyani, R. 2014. Hygienic quality of food stuff in catering services and restaurants in Iran. International Food Research Journal. 21:673-676.

Paton, J.C. and Paton, A.W. 1998. Pathogenesis and diagnosis of Shiga toxin-producing *Escherichia coli* infections. Clinical Microbiology Reviews. 11:450–479.

Rath, C.C. and Patra, S. 2012. Bacteriological quality assessment of selected street foods and Antibacterial action of essential oils against food borne pathogens. Internet Journal of Food Safety. 14:5-10.

Tesh, V.L., Burris, J.A., Owens, J.W., Gordon, V.M., Wadolkowski, E.A., O'Brien, A.D. and Samuel, J.E. 1993. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infection Immunity. 61:3392-3402.

Zende, R.J., Chavhan, D.M., Suryawanshi, P.R., Rai, A.K. and Vaidya, V.M. 2013. PCR detection and serotyping of enterotoxigenic and shigatoxigenic *Escherichia coli* isolates obtained from chicken meat in Mumbai, India. Veterinary World. 6:770-773.

**How to cite this article:**

Hnamte, L., E. Motina, P. Roychoudhury and Kataria, J.L. 2018. Bacteriological Quality Assessment and Molecular Detection of Shiga Toxin-Producing *Escherichia coli* (STEC) from Milk and Meat Based Fast Foods from Mizoram (India). *Int.J.Curr.Microbiol.App.Sci*. 7(09): 2636-2639. doi: [https://doi.org/10.20546/ijemas.2018.709.329](https://doi.org/10.20546/ijemas.2018.709.329)