Prognostic role of the beta-2 adrenergic receptor in clear cell renal cell carcinoma

Mihyang Ha1,a, Dong Woo Kim1,a, Jayoung Kim2,a, Chae Mi Hong3,a, Su Min Park4, In Ae Woo5, Min Yong Kim6, Hyunjun Koo7, Jin Namkoong8, Jaehyun Kim9, Myoung-Eun Han10, Parkyong Song11, Jin Hur11, Chi-Dug Kang11, Yun Hak Kim12, Dongjun Lee13 and Sae-Ock Oh1

1Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; 2Department of Premedicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; 3Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; 4Department of Anatomy, Department of Biomedical Informatics, and Biomedical Research Institute, Pusan National University School of Medicine, Yangsan, Republic of Korea

ABSTRACT

The beta-2 adrenergic receptor (ADRB2) regulates the proliferation, apoptosis, angiogenesis, migration, and metastasis of cancer cells. However, its function in the progression of clear cell renal cell carcinoma (ccRCC) is unknown. Here, we report that ADRB2 can be a novel prognostic factor for patients with ccRCC. The differential expression of ADRB2 in low-stage (stages I and II), high-stage (stages III and IV), low-grade (grades I and II), and high-grade (grades III and IV) ccRCC was identified in cohorts of patients from The Cancer Genome Atlas and the International Cancer Genome Consortium. We evaluated ADRB2 expression as a prognostic factor using the Kaplan-Meier survival curve, multivariate analysis, time-dependent area under the curve (AUC) of Uno’s C-index, and AUC of the receiver operating characteristics (ROC) at five years. Kaplan-Meier analysis revealed that reduced ADRB2 expression is associated with poor prognosis in ccRCC patients. Analysis of C-indices and AUC-ROC further confirmed this result. Moreover, multivariate analysis confirmed the prognostic significance of ADRB2 expression. Collectively, these findings suggest that ADRB2 is a potential prognostic factor for ccRCC.

Introduction

Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of kidney cancer and approximately 30% of kidney cancer patients present with metastasis (Nickerson et al. 2008). In addition, approximately 30% of ccRCC patients have been diagnosed with advanced disease (Karakiewicz et al. 2007). Current therapeutic treatments against renal cancer are not sufficiently effective; therefore, novel biomarkers for ccRCC that could provide prognostic information for clinical use are required. Moreover, prognostic biomarkers for ccRCC have been investigated in cohorts of patients from The Cancer Genome Atlas (TCGA) (Cerami et al. 2012; Cancer Genome Atlas Research et al. 2013) and the International Cancer Genome Consortium (ICGC) (International Cancer Genome Consortium et al. 2010).

Beta-adrenergic receptors (βARs) are G protein-coupled receptors that regulate various cellular processes, including proliferation, invasion, and activation of the immune response (Barron et al. 2012). βARs are expressed on tumor cells and stromal cells in the tumor microenvironment (Sloan et al. 2010; Powe et al. 2011), and stress-induced βAR activation recruits immune cells to primary tumors (Sloan et al. 2010). Moreover, the activation of βARs can reduce tumor cell proliferation and primary tumor growth in vivo (Carie and Sebti 2007). The beta-2 adrenergic receptor (ADRB2) is the most abundant receptor for sympathetic signaling in prostate luminal cells (Braadland et al. 2014). ADRB2 expression was decreased during prostate cancer metastasis (Yu et al. 2007). However, the clinical and prognostic significance of ADRB2 in ccRCC remain unknown. In this study, we present the first data on ADRB2 expression in cohorts of patients with well-defined primary ccRCC from TGCA and ICGC and ADRB2 can be an important prognostic factor of ccRCC.

Materials and methods

Patient data acquisition and statistical analysis

The clinical and genomic data were acquired from TCGA and the ICGC data portal (dcc.icgc.org) on March 2018.
Samples with insufficient survival data were excluded, as previously described (Han et al. 2018; Ha et al. 2019). Overall survival (OS) prediction and associated statistical analyses were performed using R software version 3.5.0 (The R Foundation for Statistical Computing). The following statistical methods were used for analyses: (1) Uno’s C-index, (2) area under the curve (AUC) values at five years, and (3) p-value from log-rank test to evaluate the accuracy of the discrimination, as described previously using ‘survival’ and ‘survAUC’ R packages (Cho et al. 2018; Han et al. 2018). The C-index is a well-known parameter of the fit of a survival model, in continuous time, within a clinical study (Uno et al. 2011; Kim, Jeong, Pak, Goh, et al. 2017; Kim, Jeong, Pak, Han, et al. 2017). In the Kaplan-Meier analyses, we determined the optimal cut-off value (TCGA: 31.5365 and ICGC: 0.732) that had the maximal Uno’s C-index by five-fold cross-validation (Table 1) (Cho et al. 2018; Han et al. 2018; Ha et al. 2019). Univariate and multivariate Cox regression analysis was performed to assess the effect of ADRB2 expression as a categorical value on prognosis, along with other clinical variables (Table 2).

Table 1. C-index and area under the curve (AUC) values for ADRB2 in the specified categories in TCGA or ICGC cohorts.

Category	TCGA C-index	TCGA AUC value at 5 years	ICGC C-index	ICGC AUC value at 5 years
All patients	0.605	0.677	0.588	0.642
Stages I & II	0.543	0.442	0.531	0.521
Stages III & IV	0.577	0.758	0.572	0.777
Grades I & II	0.521	–	0.502	–
Grades III & IV	0.600	–	0.602	–

TCGA: The Cancer Genome Atlas; ICGC: International Cancer Genome Consortium.

Results

Downregulation of ADRB2 in high-stage and high-grade patients with ccRCC

In total, 446 patients from TCGA and 91 from the ICGC were included in this study. Patient information is summarized in Table 3. ADRB2 expression was compared between low-stage (stages I and II) and high-stage (stages III and IV) cohorts of patients with ccRCC from TCGA and ICGC, and between low-grade (grades I and II) and high-grade (grades III and IV) cohorts of patients with ccRCC from TCGA, respectively. ADRB2 expression in the low-stage and low-grade ccRCC cohorts was considerably higher than that in the high-stage and high-grade cohorts (Figure 1).

![Figure 1](image_url)

The prognostic value of ADRB2 expression in ccRCC patients

To evaluate the prognostic value of ADRB2 in ccRCC, we analyzed Kaplan-Meier curves for ADRB2 gene expression and OS in TCGA (Figure 2) and ICGC (Figure 3) cohorts. Low expression of ADRB2 correlated with significantly shorter OS than did the high expression of ADRB2 in TCGA (Figure 2) and ICGC cohorts (Figure 3). The prognostic value was further confirmed using multivariate analysis (P < 0.001 and P = 0.003 for TCGA and ICGC, respectively, in Table 2).

To assess the validity of ADRB2 expression as a prognostic factor for ccRCC, we assessed Uno’s C-index from time-dependent AUC analysis and AUC at five years for receiver

Table 2. Univariate and multivariate analysis of overall survival in each cohort (P < 0.05, ** P < 0.01, * P < 0.001).**

Parameters	TCGA	ICGC	Univariate analysis	Multivariate analysis				
	P	HR	95 CI					
TCGA								
ADRB2	<0.001***	0.458	0.324	0.638	<0.001***	0.532	0.375	0.755
Age	<0.001***	1.033	1.018	1.047	<0.001***	1.030	1.015	1.046
Stage (I, II vs. III, IV)	<0.001***	3.478	2.474	4.888	<0.001***	2.730	1.903	3.917
Gender (Female vs. Male)	0.333	0.850	0.612	1.181	0.569	0.904	0.640	1.278
Grade (I, II vs. III, IV)	<0.001***	2.247	1.572	3.212	0.040*	1.486	1.019	2.168
ICGC								
ADRB2	<0.001***	0.299	0.146	0.614	0.003**	0.302	0.137	0.666
Age	0.109	1.031	0.993	1.071	0.157	1.028	0.990	1.067
Stage (I, II vs. III, IV)	<0.001***	4.796	2.264	10.16	<0.001***	4.282	1.978	9.269
Gender (Female vs. Male)	0.863	1.066	0.517	2.194	0.758	1.130	0.518	2.466

TCGA: The Cancer Genome Atlas; ICGC: International Cancer Genome Consortium; ADRB2: Beta-2 adrenergic receptor.
operating characteristics (ROCs) in TCGA and ICGC cohorts (Figure 4). ADRB2 exhibited high C-index values in the two independent cohorts (TCGA: 0.605 and ICGC: 0.677; Figure 4A and Table 1). The five-year ROC graphs revealed high AUC values in TCGA and ICGC cohorts (TCGA: 0.588 and ICGC: 0.642; Figure 4B and Table 1).

Discussion

In this study, we identified ADRB2 expression as a prognostic factor for ccRCC, and demonstrated that reduced expression of ADRB2 is associated with poor patient prognosis. The current therapeutic treatment of ccRCC has a low rate of success (Subramanian and Haas 2018). Although there are many treatment options for ccRCC, surgical intervention is the most effective method to treat clinically localized ccRCC. Despite the availability of advanced surgical and medical techniques, ccRCC recurrence and metastasis rates remain high because of micro-environmental changes (Subramanian and Haas 2018; Wang et al. 2018). Transcriptome-based prognostic factors have been identified in many cancers, some of which have shown a sufficiently satisfactory outcome based on clinical guidelines.
Veer et al. 2002; Paik et al. 2004; Nault et al. 2013; Kim, Jeong, Pak, Goh, et al. 2017; Kim, Jeong, Pak, Han, et al. 2017). Therefore, novel molecular markers can be used in combination with current staging systems.

In summary, the main purpose of our study was to expand the foundation of precision medicine by analyzing big genome data. Our results showed that ADRB2 expression is inversely correlated with patient prognosis in both examined cohorts. Although there are limitations in transcriptome-based studies of ADRB2, we believe that there is sufficient evidence to suggest that ADRB2 can act as a prognostic biomarker in ccRCC.

Acknowledgments

Conception and design: YHK, DL, and SOO. Acquisition of data: MH, DWK, JK, CMH, SMP, IAW, MYK, HK, JN and JK. Analysis and interpretation of data: MH, DWK, CMH, JK, SMP, MEH, PS, JH and CDK. Writing and review of the manuscript: YHK, DL, and SOO.

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the MRC program [grant number NRF-2015R1A5A2009656] and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [grant number NRF-2018R1C1B6001290]; and the Convergence Medical Institute of Technology R&D project Pusan National University Hospital [grant number CMIT2019-03].

References

Barron Tl, Sharp L, Visvanathan K. 2012. Beta-adrenergic blocking drugs in breast cancer: a perspective review. Ther Adv Med Oncol. 4(3):113–125.
Braudland PR, Ramberg H, Grytli HH, Tasken KA. 2014. β-adrenergic receptor signaling in prostate cancer. Front Oncol. 4:375.

Carie AE, Sebti SM. 2007. A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway. Oncogene. 26(26):3777–3788.

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5):401–404.

Cho SH, Pak K, Jeong DC, Han ME, Oh SO, Kim YH. 2018. The AP2M1 gene expression is a promising biomarker for predicting survival of patients with hepatocellular carcinoma. J Cell Biochem. 120(3):3672–3678.

Han ME, Kim JY, Kim GH, Park SY, Kim YH, Oh SO. 2018. SAC3D1: a novel prognostic marker in hepatocellular carcinoma. Sci Rep. 8(1):15608.

International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, et al. 2010. International network of cancer genome projects. Nature. 464(7291):993–998.

Karakiewicz PI, Briganti A, Chun FK, Trinh QD, Perrotte P, Ficarra V, Cindolo L, De la Taille A, Tostain J, Mulders PF, et al. 2007. Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol. 25(11):1316–1322.

Kim YH, Jeong DC, Pak K, Goh TS, Lee CS, Han ME, Kim JY, Liangwen L, Kim CD, Jang JY, et al. 2017. Gene network inherent in genomic big data improves the accuracy of prognostic prediction for cancer patients. Oncotarget. 8(44):77515–77526.

Kim YH, Jeong DC, Pak K, Han ME, Kim JY, Liangwen L, Kim HJ, Kim TW, Kim TH, Hyun DW, et al. 2017. SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma. Oncotarget. 8(40):68381–68392.

Nault JC, De Reynies A, Villanueva A, Calderaro J, Rebouissou S, Couchy G, Decaens T, Franco D, Imbeaud S, Rousseau F, et al. 2013. A hepatocellular carcinoma 5-gene score associated with survival of patients after liver resection. Gastroenterology. 145(1):176–187.

Nickerson ML, Jaeger E, Shi Y, Durocher JA, Mahurkar S, Zardie D, Matveev V, Janout V, Kollarova H, Bencko V, et al. 2008. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 14(15):4726–4734.

Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, et al. 2004. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 351(27):2817–2826.

Powe DG, Voss MJ, Habashy HO, Zanker KS, Green AR, Ellis IO, Entschladen F. 2011. Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study. Breast Cancer Res Treat. 130(2):457–463.

Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, et al. 2010. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70(18):7042–7052.

Subramanian P, Haas NB. 2018. Recent advances in localized RCC: A focus on VEGF and immuno-oncology therapies. Urol Oncol. 36(1):23–30.

Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ. 2011. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 30(10):1105–1117.

van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415(6871):530–536.

Wang Y, Chen L, Wang G, Cheng S, Qian K, Liu X, Wu CL, Xiao Y, Wang X. 2018. Fifteen hub genes associated with progression and prognosis of clear cell renal cell carcinoma identified by coexpression analysis. J Cell Physiol. 234:10225–10237.

Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. 2013. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 45(10):1113–1120.

Yu J, Cao Q, Mehra R, Laxman B, Yu J, Tomlins SA, Creighton CJ, Dhanasekaran SM, Shen R, Chen G, et al. 2007. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell. 12(5):419–431.