Arduino Controller Based 3-Switch Isolated DC-DC Boost Converter for PV and Battery Application

Dr.I.William Christopher1*, J. Jones Priya2, Axin X Raghul3, P.Vignesh Kumar4, S.Vimal Raj 5

1*Associate Professor/EEE, Loyola-ICAM College of Engineering and Technology, Chennai, India
2 Software Engineer, Capgemini Technology Services India Limited, Bangalore, India
3 Electrical Supervisor, Quess Corporation Pvt. Ltd, Chennai, India
4 Maintenance Engineer, Schindler India Pvt.Ltd, Chennai, India
5 R&D Engineer, Anugraha Enterprises, Chennai, India

1*E-mail: iwechristop@gmail.com

Abstract. This paper discusses a Arduino controlled 3-switch Isolated DC-DC Boost converter for PV and battery application. The presented converter has vital benefits such as a switch reduction, snubber circuit elimination with an additional diode, a capacitor; obtain the same primary and secondary voltage waveforms of the transformer with duty cycle variation. The MATLAB Simulink model of the presented converter for 95W PV system has been developed for 20V dc input. The hypothetical forecasts and the performance of the PV based presented converter has been effectively confirmed with the aid of simulation results. The experimental setup of the presented converter for 100W PV module has been successfully implemented using Arduino Uno microcontroller to confirm the simulation outcomes.

Keywords: 3-switch, Photovoltaic (PV), Current-fed full-bridge (CFFB) converter, Voltage double rectifier (VDR);

1. Introduction

Owing to the huge demand, continuous usage of fossil fuels and its enormous harmful impact on the environment, non-conventional energy sources have become the much sought after source of fuel in recent years [7]. Amidst the various forms of non-conventional energy sources, solar energy is one of the firmest upward and capable because of non-pollution. Solar energy is transformed into electrical energy by Photovoltaic (PV) modules. PV modules are found attractive due to clean, lasting long and entail minimum maintenance.

In literature, various types of high step-up dc-dc converters have been introduced to obtain high dc output voltage from convert low voltages. The authors [1] presented the Current-Fed Full-Bridge (CFFB) is appropriate for high step-up voltage gain uses since they have the boost function of input voltage. However, in Voltage-Fed Full-Bridge (VFFB) dc–dc converters since the buck function the
major voltage gain is provided by a high frequency transformer with a large turn ratio. To increase the voltage enhance capability, a boost converter is devoted to the secondary side of the VFFB dc–dc converter. The authors discussed [6] the current-fed full-bridge (CFFB) dc–dc converters as the ripple current and the HF transformer turn’s ratio in CFFB converters are lower than those in VFFB dc–dc converters.

The transformer leakage inductor and the primary switching capacitor cause voltage spikes due to the presence of resonance between them. A passive snubber is used to fascinate the turn-off voltage spike of the switch in CFFB converters. Hence active clamping circuits with growing size and cost have been proposed for the energy recovery of the snubber circuit [6]. A range of topologies have been suggested to elude the use of the active clamping circuits [3].

They are soft-switching naturally clamped CFFB converters without snubber, interleaved CFFB converter to lessen the input current ripple, a dual-input CFFB converter based on a disseminated multi transformer construction and so on. On the other hand, the various types of CFFB converters have been introduced and it consists of more number of transformers and switches, which will escalate the loss and cost of the entire system. This paper describes a 3-switch isolated boost dc–dc converter for PV and battery application which consists of three switches with an additional diode and one more capacitor. The schematic of the 3-switch isolated dc–dc boost converter for photovoltaic application is illustrated in figure.1.

![Schematic of the intended system](image)

This paper comprises the following sections. First, the MPPT controller and P & O algorithm are discussed in section I. The 3-switch isolated dc-dc boost converter power circuit configuration is explained in section II. Then, the 3-switch Isolated Boost DC-DC converter power circuit with its operating modes is presented in detail in section III. Section IV briefly discussed the results of the simulation model of the presented power converter circuit for PV module. The experimental setup and the results are validated in section VI. The last section has the conclusion and the future scope is discussed.

2. Mppt Controller

The most vital rule of MPPT (Maximum Power Point Tracking) is to extort the ultimate existing power from the PV module by making them work at the maximum power point. The MPPT checks the PV panel output and match up to it to the battery potential and afterward sticks with the optimum power that PV panel can generate in order to charge the battery and converts it to the most excellent voltage to get utmost current into the battery. It can moreover deliver power to the dc load, which is connected to the battery directly.

A. Perturbation & Observe (P&O) MPPT Algorithm

In the given algorithm, the perturbations cause the PV panel power to adjust. Due to the perturbation, if the power increases then the perturbation is continued in that direction. At the next moment the power decreases after the crest power is reached and subsequently the perturbation reverses. This algorithm swings more or less the crest point when the firm state is reached. With the
help of flow chart [12] this algorithm can be straightforwardly implicit and the same is shown in figure 2.

![Flow chart of P&O Algorithm](image)

Fig.2 Flow chart of P&O Algorithm

The algorithm is move forward in such a manner that it puts a reference voltage of the PV module matching to the crest voltage of the PV module [12]. But still this algorithm is very popular because of its simplicity.

3. **Power Circuit Description**

The 3-switch isolated dc-dc boost converter consists of three semiconductor switches (S_1, S_2 and S_3), three capacitors (C_1, C_2 and C_3), three diodes (D_1, D_2 and D_3), a boost inductor (L_i), a transformer (TR) and the load (R). The presented power converter circuit [3] is illustrated in figure 3.

![3-Switch Isolated DC-DC boost converter power circuit](image)

Fig. 3 3-Switch Isolated DC-DC boost converter power circuit

The abridged converter topology is reasonably economical compared to other existing topologies, i.e., it uses a switch reduction, snubber circuit elimination with an additional diode, a capacitor than the conventional isolated boost dc-dc converter [3].

4. **Power Circuit Operation**

The operating modes of the 3-switch Isolated DC-DC Boost converter can be steadily implied by the following table. I
Table 1. Operating Modes

Operating Modes	Switching Condition	Capacitance & Inductance	Diodes	Transformer Voltage	Secondary Voltage
Mode-I	S₁: ON S₂ & S₃: OFF	C₁: Charging L₁: Discharging	D₁ & D₂: Forward biased D₃: Reverse biased	Positive Voltage	
Mode-II	S₁: ON S₂ & S₃: OFF	L₁: Charging	D₃: Reverse Biased	Positive Voltage	
Mode-III	S₂ & S₃: ON S₁: OFF	L₁: Charging	D₁, D₂ & D₃: Reverse Biased	Zero	
Mode-IV	S₁: ON S₂ & S₃: OFF	L₁: Discharging	D₃: Free wheels	Zero	
Mode-V	S₁: ON S₂ & S₃: OFF	L₁: Discharging	D₃: Free wheels D₁ & D₂: Reverse Biased	Zero	
Mode-VI	S₂ & S₃: ON S₁: OFF	L₁: Charging C₁: Discharging	D₃: Forward Biased D₁ & D₂: Reverse Biased	Negative Voltage	
Mode-VII	S₂ & S₃: OFF S₁: OFF	L₁: Discharging	D₃: Forward Biased D₁ & D₂: Reverse Biased	Zero	
Mode-VIII	S₁: ON S₂ & S₃: OFF	L₁: Discharging	D₃: Free wheels D₁ & D₂: Reverse Biased	Zer	
Mode-IX	S₁ & S₃: ON S₂: OFF	L₁: Charging	D₁, D₂ & D₃: Reverse Biased	Zero	

5. Discussions On Simulation Results

The MATLAB simulation model of the 3-switch isolated dc-dc boost converter and with PV module are shown in figure.4 and figure.5 respectively. This developed model consists of various modules like PV module, power MOSFET switches passive elements like resistors, inductors and capacitors. The parameter specifications of the PV array and the presented converter are illustrated in table II and table III respectively.

Table 2. Specifications of the PV array (Sun Earth Solar Power TBPb125x125-36-P 95w)

S.No	Parameters	Specifications
1	Short Circuit Current, I_sc	5.52A
2	MPPT Current, I_MPPT	5.28A
3	Open Circuit Voltage, Voc	22.3V
4	MPPT Voltage, V_MPPT	18V
5	Maximum Power, W	95W
6	No. of Cells/Module	36 cells

Table 3. Simulation Parameters Specification of 3-Switch DC-DC Boost Converter

S.No	Parameters	Specifications
1	Switching frequency, fₛ	10kHz
2	Fundamental frequency, f	50Hz
3	Capacitor C₁	220 μF
	Capacitors C₂ = C₃	160 μF
4	Inductor, L₁	2 mH
5	Resistor	500 Ω
6. Primary Inductance 1.5mH
7. Leakage Inductance 15 μH
8. Transformer Turns Ratio 1:2.5
9. Input voltage 40V
10. Output voltage 428V

Fig.4 Simulation model circuit of 3-switch Isolated DC-DC Boost converter

Fig.5 Simulation model circuit of 3-switch DC-DC Boost converter for PV System

The developed PV simulation model I-V characteristic is illustrated in figure 6. The obtained parameter values are 23.3V and 5.52A which represents the open circuit voltage (V_{oc}) and short circuit current (I_{sc}) respectively.
The developed PV simulation model P-V characteristic is illustrated in figure 7. The obtained parameter values are 23.3V and 95W which represents the open circuit voltage (V_{OC}) and the maximum output power respectively. The input dc voltage to the 3-switch isolated dc-dc converter circuit is 40V is obtained from the PV module and the battery is shown in figure 8.
The PWM switching pulses for the MOSFET switches S_1, S_2 and S_3 of the 3-switch isolated dc-dc boost converter are illustrated in figure 9 and figure 10 respectively.

Fig.9. Switching pulses for switches S_1 and S_2

Fig.10. Switching pulse for switch S_3

The drains to source voltages of the three switches (MOSFETs) are illustrated from figure 11 to figure 13.
The presented 3-switch dc dc boost converter follows the vibrant change in the duty cycle and has a improved transient behaviour during the step variation in the load through voltage regulation.
Fig.14. Output voltage

The observed output voltage of the 3-switch isolated dc-dc boost converter with PV module and battery is 428V and it is shown in figure 14. Hence the simulation model of the PV based converter has boosted a changing low input dc voltage in to a fixed high output dc voltage. The obtained results from the 3-switch isolated dc-dc boost converter with PV module simulation are validated with the theoretical outcomes.

6. Experimental Validation

A. Experimental Setup

An experimental setup of 3-switch DC-DC Boost converter with PV module and battery has been developed to prove the hypothetical and simulation results. The specifications of the intended experimental setup are given in the table IV.

S.No.	Component	Specification
1	PV Module (Model No: RSP-100W)	All technical data at STC:
	Poly Silicon Solar Panel	• Peak Power: 100W
		• Maximum Voltage (V_{mp}): 16.9V
		• Maximum Current (Imp): 5.91A
		• Open Circuit Voltage (V_{OC}): 21.2V
		• Short Circuit Voltage (I_{SC}): 6.33A
		• Insolation: 1000W/m^2
		• Dimension: 1010*670*30 mm
2	Battery	Lead-Acid sealed type (CS 7-12)
		• 12V & 7Ah
		• Cycle use (14.1V-14.4V)
3	MOSFETs	IRF840 – 3 numbers
		• I_D = 8A, V_{DS}(BV) = 500V,
		• R_{DS} =0.85Ω
4	Arduino Uno Board (ATmega328P)	Operating Voltage range : 5V
		• Digital Input/output Pins:14
		• Available analog Input Pins: 6
5	MPPT Controller	PWM/6-DDD-12V/6A
6	Diode	1N4007
7	Capacitors	C_1 = 220µF/450V,
		C_2 = C_3 = 150µF/450V
8	Inductor	RFB0807-121L, 120 µH, 1.14A
9	Transformer	12V to 40V
10	Load	40W Lamp load

A 3-switch isolated DC-DC Boost converter power circuit is fabricated using IRF840 power MOSFETs and the switching pulses are obtained from the ATmega328P based Arduino Uno microcontroller board. It have totally 14 digital input/output pins and 6 analog input pins. The different components and the experimental setup of the 3-switch isolated DC-DC Boost converter
power circuit for a Photovoltaic (PV) module using Arduino Uno microcontroller are illustrated in figure 15 and figure 16 respectively.

Fig.15 Power circuit and Transformer

The fabricated 3-switch isolated DC-DC Boost converter power circuit with a lamp load and the entire experimental setup of the intended system are illustrated in figure 17 and figure 18 respectively.

Fig.16 Arduino and MPPT Controllers

Fig.17 Fabricated 3-switch Isolated DC-DC Boost converter Power circuit with a Lamp load
Fig. 18 Complete experimental Setup of the 3-switch Isolated DC-DC Boost converter Power circuit with 100W PV panel and a load

B. Experimental Setup Results
The output parameters of the 3-switch Isolated DC-DC Boost Converter power circuit for a Photovoltaic (PV) module with battery are measured by using the Digital Multimeter and the observed results are cited in the Table V.

S.No	Parameters	Observed Values
1	Input Voltage (V_i)	20V
2	Boosted Output Voltage (V_o)	194.8 V
3	Inductor current (I_L)	1.12A

It is observed that for a given low input voltage of 20V, it is boosted to a high dc output voltage of 194.8V using the 3-switch Isolated DC-DC Boost Converter power circuit with a inductor current of 1.12A. Thus, the hardware implementation of the presented converter for a PV module with a battery and its experimental results has been effectively validated with the theoretical and simulation results.

7. Conclusion
The simulation and the hardware implementation of a 3-switch isolated DC-DC Boost converter for PV and battery application have been successfully implemented and their results are examined in this paper. The functionality verification of the 3-switch isolated DC-DC Boost converter using Arduino Uno microcontroller has been made and the output values measured from the experimental setup provides as good results as anticipated. In the future, the presented converter is a good alternative for renewable energy systems and electrical drives applications. Also its efficiency could be further improved by employing a current digital controller for fast dynamic response and superior control.

References
[1] M.Nymand and M.A.E.Andersen, “High-efficiency isolated boost dc–dc converter for high-power low-voltage fuel-cell applications,” IEEE Trans.Ind. Electron., vol. 57, no. 2, pp. 505–514, Feb. 2010.
[2] D.S.Gautam, F.Musavi, W.Eberle, and W.G.Dunford, “A zero-voltageswitching full-bridge dc–dc converter with capacitive output filter for pluginhybrid electric vehicle battery charging,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5728–5735, Dec. 2013.

[3] Minh-Khai Nguyen, Truong-Duy Duong, Young-Cheol Lim and Yong-Jae Kim, “Isolated Boost DC–DC Converter With Three Switches,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 5728–5735, Dec. 2013. Vol. 33, No. 2, Pp. 1389-1398, February 2018.

[4] C.Yao, X.Ruan, and X.Wang, “Isolated buck-boost dc/dc converters suitablefor wide input-voltage range,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2599–2613, Sep. 2011.

[5] M.Baei, M.Narimani, and G.Moschopoulos, “A new ZVS-PWM fullbridge boost converter,” J. Power Electron., vol. 14, no. 2, pp. 237–248, Mar. 2014.

[6] R.Y.Chen, J.I.Liang, J.F.Chen, R.L.Lin, and K.C.Tseng, “Study and implementation of a current-fed full-bridge boost dc–dc converter with zero-current switching for high-voltage applications,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1218–1226, Jul./Aug. 2008.

[7] EU Energy Trends to 2030, Luxembourg, Publications Office of the European Union, accessed on http://ec.europa.eu/energy/observatory/trends2030, European Commission, 2010.

[8] P.Xuewei and A.K.Rathore, “Novel bidirectional snubberless naturallycommutated softswitching current-fed full-bridge isolated dc/dc converter for fuel cell vehicles,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2307–2315, May 2014.

[9] Dr. Bhushan Bandre. (2013). Design and Analysis of Low Power Energy Efficient Braun Multiplier. International Journal of New Practices in Management and Engineering, 2(01), 08 - 16.

[10] I.William Christopher, J.Jones Priya, Axin X Raghul, P.Vignesh Kumar, S.Vimal Raj, “PV based Three Switch Isolated DC-DC Boost Converter”, 4th International Conference on Energy Efficient Technologies for Sustainability (ICEETS’18), April 2018, St.Xavier’s Catholic College of Engineering, Nagercoil. SSRN e-Library of Elsevier.

[11] B.Gu, J.S.Lai, N.Kees, and C. Zheng, “Hybrid-switching full-bridge dc–dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132–1144, Mar. 2013.

[12] U.R.Prasanna and A.K.Rathore, “Extended Range ZVS active-clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: Analysis, design, and experimental results,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2661–2672, Jul. 2013.

[13] I.William Christopher & R.Ramesh, ‘Comparative Study of P&O and InC MPPT Algorithms’, American Journal of Engineering Research (AJER) vol.2, no.12, pp. 402-408, 2013.

[14] Natarajan, B., Obaidat, M.S., Sadoun, B., Manoharan, R., Ramachandran, S. and Velusamy, N., 2020. New Clustering-Based Semantic Service Selection and User Preferential Model. IEEE Systems Journal. DOI: 10.1109/JSYST.2020.3025407.

[15] Nataraj, S.K., Al-Turjman, F., Adom, A.H., Sitharthan, R., Rajesh, M. and Kumar, R., 2020. Intelligent Robotic Chair with Thought Control and Communication Aid Using Higher Order Spectra Band Features. IEEE Sensors Journal, DOI: 10.1109/JSEN.2020.3020971.

[16] Babu, R.G., Obaidat, M.S., Amudha, V., Manoharan, R. and Sitharthan, R., 2020. Comparative analysis of distributive linear and non-linear optimised spectrum sensing clustering techniques in cognitive radio network systems. IET Networks, DOI: 10.1049/iet-net.2020.0122.

[17] Sitharthan, R., Yuvaraj, S., Padmanabhan, S., Holm-Nielsen, J.B., Sujith, M., Rajesh, M., Prabaharan, N. and Vengatesan, K., 2021. Piezoelectric energy harvester converting wind aerodynamic energy into electrical energy for microelectronic application. IET Renewable Power Generation, DOI: 10.1049/rpg2.12119.

[18] Sitharthan, R., Sujatha Krishnamoorthy, Padmanaban Sanjeevikumar, Jens Bo Holm-Nielsen, R. Raja Singh, and M. Rajesh. “Torque ripple minimization of PMSM using an adaptive Elman neural network-controlled feedback linearization-based direct torque control strategy.” International Transactions on Electrical Energy Systems 31, no. 1 (2021): e12685. DOI: 10.1002/2050-7038.12685.