In mines, water from natural inflows as well as process water from fire protection systems is usually stored in sedimentation tanks, located primarily at the lowest level of the mine. Such water usually contains mechanical contaminants, undergoing the process of sedimentation.

The article presents a method enabling the cleaning of mine water sedimentation tanks. The method involves jet mining, hydrotransport and segregation into sediment (i.e. the solid fraction) and water. The consistence of sediment obtained after segregation makes the former transportable (e.g. using an appropriate conveyor/feeder), whereas water can be reused subsequently in the jet mining of sediment. One of the solutions enabling the performance of the above-named process is a ZEKO series system.

Key words: sediment, jet mining, hydrotransport, sedimentation

1. INTRODUCTION

Water entering mines may come from the following sources:
- rock mass surrounding headings,
- open reservoirs located on the surface,
- technological processes.

Water flows into sedimentation tanks (i.e. the so-called drain-ways) usually located in the deepest part of mines, near the main pumping station. The number and the capacity of sedimentation tanks depends on the volume of water involved. Typically, there are two [1] sedimentation tanks in Polish mines, each having an approximate capacity of 2,000 cubic metres. The tanks are primarily used for the storage of water, prior to it being pumped up to the mine surface.

As water is significantly contaminated mechanically (i.e. with sediments having the form of coal, sand or dust particles), its cleaning takes place through sedimentation. The process of sedimentation may take up to several hours [2]. Depending on the level of water contamination, sedimentation tanks usually take several months to fill up.

The removal of sediment involves its initial “dehumidification”. The process of “dehumidification” involves three stages. First, water must stop filling up a given sedimentation tank and, next, it must be pumped out.

The second stage involves the removal of “dehumidified” sediment (e.g. using spades or loaders) from the sedimentation tank followed by the transport of the former. It should be noted that transport-related solutions may vary depending on a given mine and its specific conditions.

Another method enabling the removal of sediment involves hydromechanical transport requiring the use of sludge pumps. Such a solution is usually based on the use of water from fire protection pipeline systems. Sediment, usually characterised by the high content of coal, is transported to the so-called old workings.
Presented below is a ZEKO system-based method enabling the removal of sediment from sedimentation tanks. The system includes the hydromechanical transport of sediment to a place of its subsequent segregation into solid-state sediment and water. The solution involves the use of water as a sediment carrying medium.

The technology of jet mining (in previously “dried” sedimentation tanks), hydrotransport and the separation of sediment from water [3, 4] is presented in Figure 1. The process is divided into two major stages, where the first stage involves the application of the ZEKO-S system [5], whereas the second phase is based on the ZEKO-Flok system [6].

The first stage involves the obtainment of transportable sludge from mine water sedimentation tanks and water containing particles having a granularity of approximately 0.2 mm. The stage includes three steps aimed to separate sediment from water.

Step 1 involves the removal of large amounts of water from sludge transported from mine water sedimentation tanks. Sludge is fed using pump P1 to a sieve classifier (SC). In the sieve classifier sludge is subjected to the process of segregation, leading to the obtainment of “dirty” water (containing particles having a granularity of below 2 mm) and thickened sludge. “Dirty” water is then transported to container 1, whereas thickened sludge is transported to a dewatering screen (DS).

Step 2 involves the additional filtering of thickened sludge located on the dewatering screen (DS), enabling the obtainment of transportable sediment. Afterwards, sludge is fed onto an “output” haulage conveyor.

Step 3 involves the further transport of water (using pump P2) to a group of hydrocyclones (HC) enabling the obtainment of sediment having a granularity of less than 0.2 mm. During this phase, thickened sludge is still in the liquid form. Afterwards, sludge is further transported to the dewatering screen (DS), where, along with remaining sediment, it is filtered off again and, finally, moved onto the “output” haulage conveyor.

At the second stage (involving the use of the ZEKO-FLOK system), after being processed by the hydrocyclones (HC), water containing sediment having a granularity of less than 0.2 mm flows into tank no. 2. Next, pump P3 feeds the aforesaid water to step 4 of the process. Water with sludge is then mixed with flocculant and transported to a thickener, where the sludge undergoes thickening and segregation into “pure” water and “wet” sludge. Afterwards, the sludge is fed into a classifier where the water is removed from sludge so that “wet” sludge can be obtained. Next, this transportable sludge is fed on the “output” haulage conveyor. At this point, cleaned water contains not more than 2% of sludge; sediment granularity being less than 0.2 mm. Water obtained in the above-presented process is reusable (e.g. in jet mining).

In the years 2005–2022, the ZEKO-S/M-based systems were implemented in ten coalmines [7]. The systems were adapted for zones being at risk of methane and coal dust explosions, as well as for zones free from the aforesaid hazards.

The year 2021 saw the development of an innovative solution enabling the jet mining of sediment/sludge in mine water sedimentation tanks. One of the advantages of such a solution is the possibility of “desludging” (pumping out hydrated sediment) a given tank without the necessity of removing water from it. The aforementioned solution involves the use of a floating system (the so-called SUM) along with necessary jet mining equipment including, among other things, one pump for churning up sediment/sludge and another one for its hydrotransport (performed in the identical manner as that discussed in the previously described technology). The primary difference is that a pipeline used for hydrotransport is laid (along with progressing “desludging”) on the surface of water.

The technology of jet mining and hydrotransport based on the SUM floating system as well as the separation of sediment from water are presented in Figure 2.
Fig. 1. Schematic diagram presenting the technological process of cleaning the sedimentation tank:

- P1–P5 – sludge pumps
- SC – sieve classifier
- HC – hydrocyclon
Fig. 2. Schematic diagram presenting the technological process of cleaning the sedimentation tank from the surface of water: P1–P3 – sludge pumps, SC – sieve classifier
The SUM and ZEKO systems can also be applied to clean mine water sedimentation tanks located on the earth’s surface. Tests involving such an operation were successfully performed in the Ruda Ruch Halemba coalmine in 2021.

4. CONCLUDING REMARKS AND PROSPECTS

1. In many respects, the ZEKO system-based jet mining and hydrotransport of sediment/sludge from sedimentation tanks is, safer, more efficient and less costly than offered by other methods.

2. The ZEKO system should be located in the vicinity of sedimentation tanks and transport equipment (conveyors, cars, etc.). The hydrotransport of sludge between a sedimentation tank/drain-way and the ZEKO system should be performed using appropriate pipelines (e.g. DN 100).

3. In cases of problems with the drainage of sedimentation tanks/drain-ways, it is possible to remove sediment/sludge using the SUM system.

4. The system also makes it possible to clean mine water sedimentation tanks located on the earth’s surface.

5. Jet mining, hydrotransport and the separation of sediment from water shortens and facilitates the cleaning of sedimentation tanks and, consequently, increases their actual capacity.

References

[1] Norma branżowa BN-78j 0444-03: Główne odwadnianie kopalń głębinowych. Zasady projektowania.
[2] Piecuch T: Technika wodno-mułowa. Urządzenia i procesy. WNT, Warszawa 2010.
[3] Patent no. 235141: Sposób i układ oczyszczania zbiorników wodnych, zwłaszcza podziemnych wyrobisk górniczych.
[4] Patent application no. 429867: Sposób i układ oczyszczania zbiorników wodnych, zwłaszcza podziemnych wyrobisk górniczych.
[5] Specification sheet: Zestaw klasyfikacyjno-odwadniający ZEKO-S40.
[6] Specification sheet: Zestaw klasyfikacyjno-odwadniający ZEKO-Flok.
[7] Biel B: Hydromechaniczne oczyszczanie osadników dolowych. XXVI Międzynarodowa Konferencja Naukowo-Techniczna TEMAG 2018. XV Międzynarodowe Warsztaty Techniczne [unpublished].
[8] Specification sheet: Szlamujące urządzenie mobilne SUM.

BRONISŁAW BIEL, Ph.D., Eng
ELPRO-7 Sp. z o.o.
ul. Ziemska 1, 41-800 Zabrze, Poland
b.biel@elpro7.pl

© 2021 Author. This is an open access publication, which can be used, distributed and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.
Innowacyjne rozwiązanie
hydromechanicznego czyszczenia
osadników wód dołowych
w podziemnych wyrobiskach górniczych

W kopalniach podziemnych woda pochodząca z naturalnych dopływów oraz woda technologiczna pochodząca głównie z sieci rurociągów przeciwpożarowych gromadzona jest w osadnikach znajdujących się najczęściej na najniższym poziomie kopalni. Zwykle jest to woda zanieczyszczona mechanicznie. Gromadzenie się osadu odbywa się na zasadzie sedymentacji.

W artykule przedstawiono metodę oczyszczania osadników wód kopalnianych opartą na zasadzie hydrourabiania i hydrotransportu oraz sposób segregacji na część stałą, czyli osad, i wodę. Konsystencja otrzymanego osadu pozwala na jego transport, np. za pomocą przenośnika, a woda może być ponownie wykorzystana w procesie hydrourabiania osadu. Do tego celu stosuje się urządzenia z serii ZEKO.

Słowa kluczowe: osad, hydrourabianie, hydrotransport, sedymentacja

1. WPROWADZENIE

Wody dopływające do kopalni mogą pochodzić z następujących źródeł:
– z górotworu otaczającego wyrobiska górnicze,
– z otwartych zbiorników powierzchniowych,
– z procesów technologicznych.

Woda ta trafia do osadników wodnych, tzw. chodników wodnych, znajdujących przeważnie w najniższej części kopalni w pobliżu pompowni głównego owdiania. Pojemność i liczba osadników zależy od ilości wody. Jednakże minimalna liczba osadników to dwa [1]. Biorąc pod uwagę istniejące kopalnie w Polsce, można przyjąć, że pojemność dla każdego osadnika wynosi około 2 tys. m³. Osadniki te przeznaczone są do gromadzenia wód wody, która następnie wypompowywana jest na powierzchnię.

Ponieważ woda ta jest mocno zanieczyszczona mechanicznie, tj. osadami w postaci drobin węgla, piasku i pyłu, to jej oczyszczanie następuje w wyniku sedymentacji (osadzania). Czas sedymentacji trwa nawet do kilku godzin [2]. W zależności od stopnia zanieczyszczenia wody czas wypełnienia osadnika trwa zwykle kilka miesięcy.

Sposób pozbycia się osadu polega w pierwszej kolejności na jego wstępnym osuszeniu, tj. zaprzestaniu gromadzenia się wody, i sukcesywnym jej odpompowywaniu podczas osuszania.

W kolejnym etapie następuje wydobywanie osuszonego osadu, np. za pomocą łopat, ładowarek, a następnie jego transport. Osad ten jest przekazywany dalej wg rozwiązań danej kopalni.

Inny sposób pozbywania się osadu odbywa się na zasadzie hydromechanicznego transportu przy użyciu pomp szlamowych. Do tego celu wykorzystuje się najczęściej wodę pochodzącą z rurociągów sieci przeciwpożarowej. Taki osad zawierający w większości przydatków dużą zawartość np. węgla transportowany jest do tzw. starych zrobów.
2. ZESTAW KLASYFIKACYJNO-ODWADNIAJĄCY ZEKO STOSOWANY W KOPALNIACH

Ponizej przedstawiono sposób pozywiania się/usuwnia osadów z ww. osadników (z użyciem zestawu ZEKO), który następuje poprzez hydromechaniczny transport do miejsca jego segregacji na część stałą (osad) i wodę. Woda w tym procesie jest środkiem transportu osadu.

Technologia hydourabiania (w osadnikach wcześniej „osuszonych”) i hydrotransportu oraz separacji osadu od wody [3, 4] została przedstawiona na rysunku 1.

Proces ten odbywa się w dwóch etapach. Pierwszy etap dotyczy zestawu ZEKO-S [5], a drugi ZEKO-FLOK [6].

W pierwszym etapie z podawanego szlamu z osadników wód kopalnianych uzyskuje się osad transportowalny (np. za pomocą przenośnika) i wodę zanieczyszczoną osadem o ziarnie około 0,2 mm. W etapie tym można wyróżnić trzy stopnie procesu separacji wody i osadu.

W pierwszym stopniu następuje pozbycie się dużej zawartości wody z transportowanego szlamu z osadników wód kopalnianych. Szlam ten podawany jest pompą P1 i następnie dostaje się do klasyfikatora sítowego KS. Tutaj jest on rozdzielany na wodę brudną zawierającą ziarno poniżej 2 mm i na zagęszczony osad. Woda brudna dostaje się do zbiornika 1, a zagęszczony osad do przesiewacza odwadniającego PO.

W drugim stopniu zagęszczony osad znajdujący się na PO zostaje dodatkowo odsączony (gotowy do transportu), a następnie dostaje się na przenośnik odstawy urobku.

W trzecim stopniu woda pochodząca z poprzednich stopni za pomocą pomp P2 podawana jest na zespół hydrocyklonów HC, gdzie następuje uzyskanie osadu o ziarnie poniżej 0,2 mm. Jest to jednak osad zagęszczony w postaci płynnej. Osad ten przekazywany jest na przesiewacz, gdzie wspólnie z pozostałąm osadem zostaje odsączony i dalej podawany jest na przenośnik odstawy urobku.

W drugim etapie (ZEKO-FLOK) woda z osadem o ziarnie poniżej 0,2 mm pochodząca z hydrocyklonów HC dostaje się do zbiornika 2. Stąd za pomocą pomp P3 podawana jest ona na czwarty stopień układu. Dostająca się woda z osadem zostaje zmieszana w floculantem, a następnie podawana jest ona do zagęszczacza. Tutaj następuje zagęszczenie osadu i jego separacja na wodę czystą i mokry osad. Osad ten podawany jest na klasyfikator, który ostatecznie odsacza wodę z mokrego osadu. Następnie jako gotowy osad w postaci transportowanej podawany jest do odstawy urobku. Natomiast woda oczyszczona (zawierająca osad o wielkości ziarna poniżej 0,2 mm) nie zawiera w sobie więcej niż 2% osadu. Woda ta może być ponownie wykorzystana, np. w procesie hydourabiania.

Układy z zestawem ZEKO-S/M wdrożono w latach 2005–2022 w dziesięciu kopalniach węgla kamiennego [7]. Zostały one wykonane dla stref zagrożonych i niezagrożonych wybuchem metanu i pyłu węglowego.

3. INNOWACYJNE ZASTOSOWANIE ZESTAWU KLASYFIKACYJNO-ODWADNIAJĄCEGO ZEKO-SUM

W 2021 roku opracowano innowacyjne rozwiązanie dotyczące sposobu hydourabiania osadu/szlamu w zawodnionych osadnikach wód kopalnianych. Zależną tego rozwiązania jest to, że można „szlamować” (zasysać rozwodniony osad przy użyciu pompy) dany osadnik bez konieczności opróżniania go z wody. Do tego celu zbudowano zestaw pływający SUM wraz z zabudowanymi urządzeniami niezbędnymi do hydourabiania. Są to m.in. pompy, gdzie jedna z nich służy do wzburzenia osadu/mułu, a druga do hydrotransportu. Hydrotransport odbywa się w analogiczny sposób jak w poprzedniej technologii. Jednak różnica polega głównie na tym, że rurociąg służący do hydrotransportu jest układany (w miarę postępu „szlamo-wania”) na powierzchni lustra wody.

Budowa urządzenia została dostosowana do czyszczenia osadników wodnych w warunkach ruchu zakładu górniczego. Jego całkowite gabaryty to: ok. 5,5 m długości, ok. 4 m szerokości i 1,4 m wysokości, a jego zanurzenie nie przekracza 0,5 m [8]. Na platformie urządzenia swobodnie mogą przebywać cztery osoby.

W miarę postępu szlamowania wzrasta jego odległość od miejsca podłączenia rurociągu hydrotransportowego. Zatem konieczne staje się przemieszczanie załogi do zestawu SUM i z powrotem. Jest to możliwe z użyciem podestu nawodnego, który w miarę postępu szlamowania zostaje wydłużony. Alternatywnym środkiem transportu może być również łódka. Przemieszczanie się załogi w obu przypadkach odbywa się na zasadach zgodnych z przepisami BHP.

Technologia hydourabiania i hydrotransportu z wykorzystaniem urządzenia pływającego SUM, a następnie separacji osadu od wody, została przedstawiona na rysunku 2.
Rys. 1. Schemat technologiczny oczyszczania osadnika ze spągu (dno) osadnika: P1–P5 – pompa szlamowa, KS – klasyfikator siony, HC – hydrocyklon, PO – przesiewacz odwadniający.
Rys. 2. Schemat technologiczny oczyszczania osadnika z powierzchni lustra wody: P1–P3 – pompa szlamowa, KS – klasyfikator sitowy
Zestaw SUM wraz z zestawem ZEKO może być również wykorzystywany w procesie oczyszczania powierzchniowych osadników wód dołowych. Takie próby z wynikiem pozytywnym zostały przeprowadzone w 2021 roku w kopalni KWK Ruda Ruch Halemba.

4. WNIOSKI I PERSPEKTYwy

1. Metoda hydrourabiania i hydrotransportu osadu/szlamu z osadników wodnych z wykorzystaniem układu ZEKO jest pod wieloma względami bezpieczniejsza, bardziej wydajna i mniej kosztowna niż oferowana w innych metodach.

2. W zależności od warunków związanych z lokalizacją osadników i dostępem środków transportowych (przenośniki, wozy itp.) zestaw ZEKO powinien być budowany w ich pobliżu. Natomiast hydrotransport szlamu pomiędzy osadnikiem/chodnikiem wodnym a ZEKO powinien odbywać się z wykorzystaniem rurociągów, np. DN 100.

3. W przypadku trudności z osuszaniem osadników/chodników wodnych, istnieje możliwość wydobywania osadu/szlamu z zastosowaniem zestawu SUM.

4. Istnieje możliwość oczyszczania osadników wód dołowych zlokalizowanych na powierzchni zakładów.

5. Hydrourabianie i hydrotransport wraz z układem separacji osadu od wody znacznie skraca i ułatwia proces czyszczenia osadników wodnych, a co za tym idzie zwiększa realną pojemność osadników wodnych.

Literatura

[1] BN-78/0444-03: Główne odwadnianie kopalni głębinowych. Zasady projektowania. Wydawnictwa Normalizacyjne, Warszawa 1978.
[2] Piecuch T.: Technika wodno-mułowa. Urządzenia i procesy. WNT, Warszawa 2010.
[3] Patent nr 235141: Sposób i układ oczyszczania zbiorników wodnych, zwłaszcza podziemnych wyrobisk górniczych.
[4] Zgłoszenie wynalazku nr 429867: Sposób i układ oczyszczania zbiorników wodnych, zwłaszcza podziemnych wyrobisk górniczych.
[5] Karta katalogowa: Zestaw klasyfikacyjno-odwadniający ZEKO-S40.
[6] Karta katalogowa: Zestaw klasyfikacyjno-odwadniający ZEKO-Flok.
[7] Biel B.: Hydromechaniczne oczyszczanie osadników dołowych. XXVI Międzynarodowa Konferencja Naukowo-Techniczna TEMAG 2018. XV Międzynarodowe Warsztaty Techniczne [niepublikowane].
[8] Karta katalogowa: Szlamujące urządzenie mobilne SUM.

dr inż. BRONISŁAW BIEL
ELPRO-7 Sp. z o.o.
ul. Ziemska 1, 41-800 Zabrze
b.biel@elpro7.pl

© 2021 Autor. Jest to publikacja ogólnodostępna, którą można wykorzystywać, rozpowszechniać i kopiować w dowolnej formie zgodnie z licencją Creative Commons CC-BY 4.0.