Blocks of group algebras are derived simple

Qunhua Liu · Dong Yang

Received: 12 April 2011 / Accepted: 24 October 2011
© Springer-Verlag 2011

Abstract A derived version of Maschke’s theorem for finite groups is proved: the derived categories, bounded or unbounded, of all blocks of the group algebra of a finite group are simple, in the sense that they admit no nontrivial recollements. This result is independent of the characteristic of the base field.

Keywords Group algebras · Symmetric algebras · Derived simpleness

Mathematics Subject Classification (2010) 16E35 · 20C05 · 16G30

1 Introduction

Let $G$ be any finite group and $k$ a field. An indecomposable algebra direct summand $B$ of the group algebra $kG$ is called a block. By Maschke’s theorem, all blocks of $kG$ are simple algebras if and only if the characteristic of $k$ does not divide the order of $G$. The main result of this article is a general statement about blocks that does not need any assumption on the characteristic of $k$:

Main Theorem All blocks $B$ of $kG$ are derived simple. More precisely, the bounded derived category $\mathcal{D}^b(\text{mod-}B)$ of finitely generated $B$-modules, as well as the unbounded derived category $\mathcal{D}(\text{Mod-}B)$ of all $B$-modules, are simple in the sense that they do not admit nontrivial recollements by derived categories of the same type.

Simple algebras are, of course, derived simple in this sense. Thus, when the characteristic does not divide the group order the statement is an immediate corollary of Maschke’s theorem.
The context of the main theorem is the following: Recollements of triangulated categories, defined by Beilinson, Bernstein and Deligne [4], can be seen as analogues of short exact sequences of these categories. We focus on (bounded or unbounded) derived categories of finite-dimensional algebras. A derived category is said to be simple if it is nonzero and it is not the middle term of a nontrivial recollement of derived categories. Once simplicity has been defined, one can study stratifications, i.e. ways of breaking up a given derived category into simple pieces using recollements. They are analogues of composition series for groups/modules. Then the question arises which objects are simple and if a Jordan–Hölder theorem holds true, that is, whether finite stratifications exist and are unique. Various positive and negative results recently have been found, see [1,2,6,7]. The main theorem provides a large and quite natural supply of derived simple algebras as well as a derived Jordan–Hölder theorem for group algebras:

**Corollary** Let $G$ be a finite group and $kG$ the group algebra. Then any stratification of $\mathcal{D}$(Mod-$kG$) (respectively, $\mathcal{D}^b$(mod-$kG$)) is finite. Moreover, the simple factors of any two stratifications are the same: they are precisely the derived categories of the blocks of $kG$.

More generally we will prove derived simpleness for larger classes of algebras. In the case of the category $\mathcal{D}^b$(mod) we will show that all indecomposable symmetric algebras are derived simple. In the more difficult case of $\mathcal{D}$(Mod) we will show that indecomposable symmetric algebras with ‘enough’ cohomology (in a sense made precise below) are derived simple. Blocks of group algebras as well as indecomposable symmetric algebras of finite representation type do satisfy this condition.

The second-named author gratefully acknowledges support from Max-Planck-Institute for Mathematics in Bonn and from Hausdorff Research Institute for Mathematics. Both authors are deeply grateful to Steffen Koenig for valuable discussions and suggestions. They thank a referee for helpful comments.

## 2 Recollements and derived simpleness

Let $k$ be a field. For a finite-dimensional $k$-algebra $A$, we denote by $\mathcal{D}$(Mod-$A$) the derived category of (right) $A$-modules, by $\mathcal{D}^b$(mod-$A$) the bounded derived category of finitely generated $A$-modules, and by $K^b$(PA) the homotopy category of bounded complexes of finitely generated projective $A$-modules. We often view $K^b$(PA) as a triangulated full subcategory of the other two categories, and view $\mathcal{D}^b$(mod-$A$) as the triangulated full subcategory of $\mathcal{D}$(Mod-$A$) consisting of complexes whose total cohomology space is finite-dimensional. By abuse of notation we write Hom$_A(−, −)$ for both Hom$_{\mathcal{D}^b$(mod-$A$)}(−, −) and Hom$_{\mathcal{D}$(Mod-$A$)}(−, −).

A recollement [4] of triangulated categories is a diagram of triangulated categories and triangle functors

$$
\begin{array}{cccccc}
C' & & & j^* & & \longrightarrow \\
\downarrow_{i^*} & & & \downarrow j^* & & \\
C & & j^* & & \longrightarrow & \longrightarrow \longrightarrow \\
\downarrow_{i^*} & & & \downarrow j^* & & \\
C'' & & & i_* & & \longrightarrow \\
\end{array}
$$

such that

1. $(i^*, i_*)$, $(i^*, i^*)$, $(j^*, j^*)$, $(j^*, j_*)$ are adjoint pairs;
2. $i_*$, $j_*$, $j^*$ are full embeddings;
3. $i^* \circ j_*=0$ (and thus also $j^* \circ i^*=0$ and $i^* \circ j_*=0$);
Blocks of group algebras are derived simple

4. for each object $X$ of $\mathcal{C}$ there are triangles

$$i_i^i(X) \rightarrow X \rightarrow j_* j^*(X) \rightarrow i_* i^!(X)[1],$$
$$j_* j^!(X) \rightarrow X \rightarrow i_* i^*(X) \rightarrow j_* j^!(X)[1],$$

where the four morphisms starting from/ending at $X$ are the units/counits of the adjoint pairs in (1).

We are particularly interested in recollements of the following two forms

$$\begin{align*}
\mathcal{D}^b(\text{mod-} B) & \xrightarrow{i_* = i} \mathcal{D}^b(\text{mod-} A) \xrightarrow{j^* = j^!} \mathcal{D}^b(\text{mod-} C) \\
\mathcal{D}(\text{mod-} B) & \xrightarrow{i_* = i} \mathcal{D}(\text{mod-} A) \xrightarrow{j^* = j^!} \mathcal{D}(\text{mod-} C)
\end{align*}$$

(R1)

and

$$\begin{align*}
\mathcal{D}(\text{mod-} B) & \xrightarrow{i_* = i} \mathcal{D}(\text{mod-} A) \xrightarrow{j^* = j^!} \mathcal{D}(\text{mod-} C) \\
\mathcal{D}(\text{mod-} B) & \xrightarrow{i_* = i} \mathcal{D}(\text{mod-} A) \xrightarrow{j^* = j^!} \mathcal{D}(\text{mod-} C)
\end{align*}$$

(R2)

with $A$, $B$ and $C$ being finite-dimensional algebras over $k$. By [2, Corollary 2.7(1)], a recollement of the form (R1) always implies the existence of a recollement of the form (R2).

**Lemma 2.1** Let $A$ be a finite-dimensional $k$-algebra admitting a recollement of the form (R2). Then $j_* j^!(A)$, $i_* i^*(A)$ and $i_*(B)$ all belong to $\mathcal{D}^b(\text{mod-} A)$.

**Proof** For an integer $n$ we have isomorphisms of vector spaces

$$H^n(i_* i^*(A)) \cong \text{Hom}_A(A, i_* i^*(A)[n]) \cong \text{Hom}_B(i^*(A), i^*(A)[n]),$$

where the second isomorphism is the adjunction morphism of the adjoint pair $(i^*, i_*)$. By [11, 4.3.6, 4.4.8], $i^*(A)$ belongs to and generates $K^b(P_B)$ (i.e. $K^b(P_B)$ is the smallest triangulated subcategory of $\mathcal{D}(\text{mod-} B)$ which contains $i^*(A)$ and which is closed under taking direct summands). Since $B$ is a finite-dimensional algebra, it follows that the space of self-extensions $\text{Hom}_B(i^*(A), i^*(A)[n])$ of $i^*(A)$ is finite-dimensional and vanishes for all but finitely many integers $n$. Combining this observation with the above isomorphism, we obtain that $i_* i^*(A)$ has finite-dimensional total cohomology space. Therefore it belongs to $\mathcal{D}^b(\text{mod-} A)$. So do $j_* j^!(A)$, thanks to the canonical triangle

$$j_* j^!(A) \rightarrow A \rightarrow i_* i^!(A) \rightarrow j_* j^!(A)[1],$$

and as well as $i_*(B)$, because $i_*(B)$ and $i_* i^*(A)$ generate each other in finitely many steps. \hfill \square

Derived simpleness of a finite-dimensional $k$-algebra $A$ was introduced by Wiedemann [15] (see also [1]). By definition $A$ is said to be derived simple with respect to $\mathcal{D}^b(\text{mod-})$ respectively $\mathcal{D}(\text{mod-})$, if $A$ is nonzero and there are no nontrivial recollements of the form (R1) respectively (R2). Here a recollement is nontrivial if neither of the outer terms is the zero category. We also say that $A$ is $\mathcal{D}^b(\text{mod-})$-simple respectively $\mathcal{D}(\text{mod-})$-simple for short. Some examples of derived simple algebras can be found in [1, 3, 10, 15].

A $\mathcal{D}(\text{mod-})$-simple algebra is always $\mathcal{D}^b(\text{mod-})$-simple since, as mentioned above, a recollement of the form (R1) always induces a recollement of the form (R2). The converse is not true in general. For example, the radical-square-zero algebra given by the quiver

$$\begin{array}{c}
1 \\
\begin{array}{c}
1 \\
\\
2
\end{array}
\end{array}$$

is $\mathcal{D}^b(\text{mod-})$-simple but not $\mathcal{D}(\text{mod-})$-simple, see [3] for details.
An algebra is said to be *indecomposable* if it is not isomorphic to a direct product of two nonzero algebras. Clearly, if an algebra is decomposable, then a nontrivial decomposition of the algebra yields a nontrivial recollement. Hence a decomposable algebra is never derived simple in either sense.

3 The bounded case

Let $A$ be a finite-dimensional $k$-algebra. Recall that $A$ is said to be a *symmetric algebra*, if $DA$ is isomorphic to $A$ as $A$-$A$-bimodules, where $D = \text{Hom}_k(-, k)$ is the $k$-dual. In particular, an $A$-module is projective if and only if it is injective. For equivalent definitions of symmetric algebras see Curtis and Reiner [8]. Group algebras of finite groups form an important class of symmetric algebras.

**Lemma 3.1** ([12, Corollary 3.2]) Let $A$ be a symmetric finite-dimensional $k$-algebra. Then there is a bifunctorial isomorphism

$$D \text{Hom}_A(P, M) \cong \text{Hom}_A(M, P)$$

for $P \in K^b(P_A)$, and $M \in \mathcal{D}(\text{mod-}A)$.

The main result of this section is the following.

**Theorem 3.2** A finite-dimensional indecomposable symmetric $k$-algebra is $\mathcal{D}^b(\text{mod})$-simple.

**Proof** Let $A$ be a finite-dimensional symmetric $k$-algebra and assume that there exists a nontrivial recollement of the form (R1). By [2, Corollary 2.4], $j_!j^!(A)$ and $i_!i^!(A)$ belong to $K^b(P_A)$.

Now apply Lemma 3.1 to $P = j_!j^!(A)$ and $M = i_!i^!(A)[n]$ ($n \in \mathbb{Z}$). We obtain

$$D \text{Hom}_A(j_!j^!(A), i_!i^!(A)[n]) \cong \text{Hom}_A(i_!i^!(A)[n], j_!j^!(A))$$

for all integers $n$. The left hand side always vanishes as $j^*i_! = 0$, and hence so does the right hand side. This means $i_!i^*(A)$ and $j_!j^!(A)$ are orthogonal to each other and the canonical triangle

$$j_!j^!(A) \rightarrow A \rightarrow i_!i^!(A) \rightarrow j_!j^!(A)[1]$$

splits, i.e. $A \cong j_!j^!(A) \oplus i_!i^!(A)$.

In particular, $A = \text{End}_A(A)$ is decomposed as the product of $\text{End}_A(j_!j^!(A))$ and $\text{End}_A(i_!i^!(A))$.

**Remark 3.3** Lemma 3.1 says that the triangulated category $K^b(P_A)$ is 0-Calabi–Yau. The above proof shows that this 0-Calabi–Yau triangulated category is simple, in the sense that it admits no nontrivial recollements of triangulated categories. Notice that in the proof the Calabi–Yau dimension is not important. Thus with the same proof one shows that an indecomposable $d$-Calabi–Yau triangulated category is simple ($d \in \mathbb{Z}$). In fact, it admits no nontrivial stable t-structures. Cluster categories of connected quivers are examples of indecomposable 2-Calabi–Yau categories, and hence are simple.

---

1 We thank Bernhard Keller for pointing this out to us.

Springer
As a corollary, we establish a derived Jordan–Hölder theorem for symmetric algebras, which is on the existence and uniqueness of finite stratifications. Roughly speaking, a stratification is a way of breaking up a given derived category into simple pieces using recollements. More rigorously, a stratification is a full rooted binary tree whose root is the given derived category, whose nodes are derived categories and whose leaves are simple (they are called the simple factors of the stratification) such that a node is a recollement of its two child nodes unless it is a leaf. For a finite-dimensional algebra, a block is an indecomposable algebra direct summand. The number of blocks is a derived invariant.

**Corollary 3.4** Let $A$ be a finite-dimensional symmetric algebra. Then any stratification of $\mathcal{D}^b(\text{mod-}A)$ is finite. Moreover, the simple factors of any two stratifications are the same: they are precisely the bounded derived categories of the blocks of $A$.

**Proof** Suppose the algebra $A$ has $s$ blocks $A_i$ with $A = \bigoplus_{i=1}^s A_i$. Suppose a recollement of $\mathcal{D}^b(\text{mod-}A)$ of the form (R1) is given. The block decomposition of $A$ yields a decomposition of its derived category: $\mathcal{D}^b(\text{mod-}A) = \bigoplus_{i} \mathcal{D}^b(\text{mod-}A_i)$. In particular, $j_i(C)$ is a direct sum $\bigoplus_i X_i$ of $X_i \in \mathcal{D}^b(\text{mod-}A_i)$, and hence $C$, being isomorphic to $\text{End}_A(j_i(C))$, admits a block decomposition $C = \bigoplus_i C_i$ such that $j_i(C_i) = X_i$. Similarly, the algebra $B$ admits a block decomposition $B = \bigoplus_i B_i$ such that $i_\ast(B_i) \in \mathcal{D}^b(\text{mod-}A_i)$. Fix an $i = 1, \ldots, s$. For an indecomposable object $M \in \mathcal{D}^b(\text{mod-}C_i)$, considered as an object in $\mathcal{D}^b(\text{mod-}C)$, there exists an $n \in \mathbb{Z}$ such that $\text{Hom}_C(C_i, M[n]) \neq 0$. Since $j_i$ is fully faithful, it follows that $\text{Hom}_A(X_i, j_i(M)[n]) \neq 0$, implying that $j_i(M) \in \mathcal{D}^b(\text{mod-}A_i)$. Therefore, $j_i$ restricts to a triangle functor $j_i : \mathcal{D}^b(\text{mod-}C_i) \to \mathcal{D}^b(\text{mod-}A_i)$. Similarly, $i_\ast$ restricts to a triangle functor $i_\ast : \mathcal{D}^b(\text{mod-}B_i) \to \mathcal{D}^b(\text{mod-}A_i)$. For an object $N \in \mathcal{D}^b(\text{mod-}A_i)$, we have $\text{Hom}_C(C_i, j_i^\ast(N)) = \text{Hom}_A(j_i(C_i), N) = \text{Hom}_A(X_i, N) = 0$ for $j_i \neq i$, implying that $j_i^\ast(N) \in \mathcal{D}^b(\text{mod-}C_i)$. Therefore, $j_i^\ast$ restricts to a triangle functor $j_i^\ast : \mathcal{D}^b(\text{mod-}A_i) \to \mathcal{D}^b(\text{mod-}C_i)$. Similarly, $j_i$, $i_\ast$ and $i'$ respectively restrict to triangle functors $j_i : \mathcal{D}^b(\text{mod-}C_i) \to \mathcal{D}^b(\text{mod-}A_i)$, $i_\ast : \mathcal{D}^b(\text{mod-}A_i) \to \mathcal{D}^b(\text{mod-}B_i)$ and $i' : \mathcal{D}^b(\text{mod-}A_i) \to \mathcal{D}^b(\text{mod-}B_i)$. It follows that the diagram below is a recollement

$$
\begin{array}{ccc}
\mathcal{D}^b(\text{mod-}B_i) & \xrightarrow{i_\ast} & \mathcal{D}^b(\text{mod-}A_i) \\
\downarrow j_i & & \downarrow j_i' & & \downarrow j_i^\ast
\end{array}
$$

By Theorem 3.2, the blocks $A_i$ are derived simple. Therefore for each $i$, either $B_i = A_i$ and $C_i = 0$ or $B_i = 0$ and $C_i = A_i$, up to derived equivalence. In particular, up to derived equivalence, $B$ and $C$ are algebra direct summands of $A$. Therefore, the desired result follows by induction on the number $s$ of blocks of $A$.

4 The unbounded case

In this section we partially generalise Theorem 3.2 to the unbounded derived category. Let $A$ be a finite-dimensional $k$-algebra. Consider the following condition

(\#) for any finitely generated non-projective $A$-module $M$, there are infinitely many integers $n$ with $\text{Ext}_A^n(M, M) \neq 0$.

We will prove that an indecomposable finite-dimensional symmetric algebra satisfying (\#) is $\mathcal{D}(\text{Mod})$-simple.
Here is an example of a symmetric algebra which satisfies (#). Let $A$ be the quotient of the path algebra of the quiver

$$
\begin{array}{c}
1 \\
\downarrow \alpha \\
\downarrow \beta \\
2
\end{array}
$$

by the ideal generated by $\alpha \beta \alpha$ and $\beta \alpha \beta$. Up to isomorphism $A$ has four indecomposable non-projective modules given by the following representations

$$
\begin{array}{cc}
k & 0, \\
0 & k, \\
k & 1, \\
1 & 0
\end{array}
$$

It is easy to check that

$$\text{Ext}^n_A(M, M) = \begin{cases} k & \text{if } n \geq 0 \text{ and } n \equiv 0, 3 \pmod{4}, \\ 0 & \text{otherwise,} \end{cases}$$

for each of the above modules $M$.

More generally, the condition (#) is satisfied by the following two classes of algebras, by [14, Proposition 3.2, Example 3.1]:

1. group algebras of finite groups over $k$;
2. self-injective $k$-algebras of finite representation type.

Recall that a finite-dimensional algebra is said to be self-injective if all projective modules are injective.

**Proposition 4.1** Let $A$ be a finite-dimensional self-injective $k$-algebra satisfying the condition (#). Assume that $A$ admits a nontrivial recollement of the form $(R2)$. Then $i_*i^*(A)$ belongs to $K^b(P_A)$.

**Proof** Let $A$ be a finite-dimensional $k$-algebra satisfying the condition (#). We claim that for any $X \in D^b(\mod A)$ either $X \in K^b(P_A)$ or there are infinitely many integers $n$ such that $\text{Hom}_A(X, X[n]) \neq 0$. Since $i_*$ is fully faithful, it follows that

$$\text{Hom}_A(i_*i^*(A), i_*i^*(A)[n]) \cong \text{Hom}_B(i^*(A), i^*(A)[n]) \cong H^n(i_*i^*(A)),$$

which vanishes for all but finitely many $n \in \mathbb{Z}$ by Lemma 2.1. Therefore $i_*i^*(A)$ must be in $K^b(P_A)$.

Next we prove the claim. Let $X \in D^b(\mod A)$. Without loss of generality, we assume that $X$ is a minimal complex of finitely generated projective $A$-modules which is bounded from the right. Here minimality means that for any $p \in \mathbb{Z}$ the image of each differential $d^p : X^p \to X^{p+1}$ lies in the radical of $X^{p+1}$. Since $X$ has bounded cohomology, there is an integer $N$ such that $H^n(X) = 0$ for $n \leq N$. Up to shift, we may assume that $N = 0$. Let $X''$ be the subcomplex of $X$ with $(X'')^n = X^n$ for $n > 0$ and $(X'')^0 = 0$ for $n \leq 0$ and let $X'$ be the corresponding quotient complex. Then there is a triangle

$$X'' \to X \to X' \to X''[1].$$

Note that $X'' \in K^b(P_A)$, and $X'$ has cohomology concentrated in degree 0, and hence it is the minimal projective resolution of a finitely generated $A$-module, say $M$.

Case 1: $M$ is projective. This implies that $X'$ is a stalk complex, and hence $X \in K^b(P_A)$.
Case 2: $M$ is not projective. The above triangle gives us two long exact sequences
\[ \cdots \to \text{Hom}_A(X, X''[n]) \to \text{Hom}_A(X, X'[n]) \to \text{Hom}_A(X, X[n]) \to \cdots \]
\[ \cdots \to \text{Hom}_A(X', X''[n]) \to \text{Hom}_A(X', X'[n]) \to \text{Hom}_A(X', X[n]) \to \cdots \]
Recall that $X'' \in K^b(P_A)$. Therefore there exist only finitely many integers $n$ such that $\text{Hom}_A(X, X''[n]) \neq 0$ (respectively, $\text{Hom}_A(X', X'[n]) \neq 0$). So from the above two long exact sequences we see that
\[ \text{Hom}_A(X, X[n]) \cong \text{Hom}_A(X, X'[n]) \cong \text{Hom}_A(X', X'[n]) \]
for all but finitely many integers $n$. Now the claim follows from the condition (#) since $\text{Hom}_A(X', X'[n]) = \text{Ext}_A^n(M, M)$. 

Now we are ready to prove the main results of this section.

**Theorem 4.2** Let $A$ be a finite-dimensional symmetric $k$-algebra satisfying the condition (#). If $A$ is indecomposable, then it is $\mathcal{D}(\text{Mod})$-simple.

**Proof** Let $A$ be finite-dimensional symmetric satisfying the condition (#). It follows from Proposition 4.1 that $i_s i^s(A)$ belongs to $K^b(P_A)$. Now we proceed as in the proof of Theorem 3.2 to show that $A$ is indecomposable. 

**Remark 4.3** In the terminology of Han [9], a recollement of the form (R2) is *perfect* if $i_s(B)$ belongs to $K^b(P_B)$, equivalently, if $i_s i^s(A)$ belongs to $K^b(P_A)$. The second part of the proof of Theorem 4.2 shows that an indecomposable finite-dimensional symmetric algebra does not admit any nontrivial perfect recollements.

**Remark 4.4** The condition (#) is not a necessary condition for an indecomposable finite-dimensional symmetric algebra being $\mathcal{D}(\text{Mod})$-simple. For example, take the Liu–Schulz algebra
\[ A = k\langle x_0, x_1, x_2 \rangle / (x_0^2, x_1^2, x_2^2, x_1 x_0 + q x_0 x_1, x_2 x_1 + q x_1 x_2, x_0 x_2 + q x_2 x_0) \]
for $q \in k^\times$ not a root of unity. Let $M$ be the right ideal $M = (x_1 + x_2)A$ of $A$. Then $M$ admits the following minimal projective resolution (see [13, Sect. 3])
\[ \cdots \to A \xrightarrow{(x_1 + q x_2)^n} A \xrightarrow{(x_1 + q x_2)^n} A \xrightarrow{(x_1 + x_2)^n} M \to 0. \]

It is straightforward to show that
\[ \text{Ext}_A^n(M, M) = \begin{cases} 
  k^3 & \text{if } n = 0, \\
  k & \text{if } n = 1, \\
  0 & \text{if } n \geq 2.
\end{cases} \]

Clearly $M$ is not projective, so (#) is not satisfied by $A$. However, $A$ is $\mathcal{D}(\text{Mod})$-simple: this follows from [1, Proposition 4.10 (1)] since it is a local algebra.

Recall that the condition (#) is satisfied by group algebras of finite groups and finite-dimensional symmetric algebras of finite representation type.

**Corollary 4.5** The following two classes of finite-dimensional symmetric algebras are $\mathcal{D}(\text{Mod})$-simple:
1. blocks of group algebras of finite groups over $k$;
2. indecomposable symmetric $k$-algebras of finite representation type.
Proof This is an immediate consequence of Theorem 4.2. For completeness, we give a proof for the assertion that group algebras of finite groups satisfy the condition (♯). Let $G$ be a finite group and let $A = kG$ be the group algebra. For a finitely generated $A$-module $M$, define
\[
\text{Ext}^\cdot(M, M) = \begin{cases} 
\bigoplus_{n \geq 0} \text{Ext}^n_A(M, M) & \text{if } \text{char}(k) = 2, \\
\bigoplus_{n \geq 0} \text{Ext}^2_n(M, M) & \text{otherwise.}
\end{cases}
\]
Let $k$ also denote the trivial module. Then the graded $k$-algebra $H(G, k) := \text{Ext}^\cdot(k, k)$ is commutative Noetherian. Let $M$ be a finitely generated $A$-module. The tensor product $- \otimes_k M$ induces an algebra homomorphism
\[
\varphi : H(G, k) \to \text{Ext}^\cdot(M, M).
\]
It is known that if $M$ is non-projective, then the Krull dimension of $H(G, k) / \ker(\varphi)$ is greater than or equal to 1 (see for example [5, Sects. 2.24, 2.25]), which implies that it is infinite-dimensional. As a consequence, $\text{Ext}^\cdot(M, M)$ is infinite-dimensional, implying the condition (♯). $\Box$

We have a $\mathcal{D}(\text{Mod})$-counterpart of Corollary 3.4: an unbounded derived Jordan–Hölder theorem for symmetric algebras satisfying the condition (♯).

Corollary 4.6 Let $A$ be a finite-dimensional symmetric algebra satisfying the condition (♯). Then any stratification of $\mathcal{D}(\text{Mod-}A)$ is finite. Moreover, the simple factors of any two stratifications are the same: they are precisely the derived categories of the blocks of $A$.

Proof Similar to the proof for Corollary 3.4. $\Box$

References

1. Angeleri Hügel, L., Koenig, S., Liu, Q.: On the uniqueness of stratifications of derived module categories, preprint, arXiv:1006.5301 (2010)
2. Angeleri Hügel, L., Koenig, S., Liu, Q.: Jordan–Hölder theorems for derived module categories of piecewise hereditary algebras. J. Algebra. doi:10.1016/j.jalgebra.2011.09.041 (2011)
3. Angeleri Hügel, L., Koenig, S., Liu, Q., Yang, D.: Derived simple algebras and restrictions of resolutions of derived module categories, preprint (2011)
4. Beilinson, A.A., Bernstein, J., Deligne P.: Analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, Soc. Math. France, (1982, French)
5. Benson, D.: Modular representation theory: new trends and methods, Lecture Notes in Mathematics 1081. Springer, Berlin (1984)
6. Chen, H.X., Xi, C.C.: Good tilting modules and recollements of derived module categories, Proc. Lond. Math. Soc., arXiv:1012.2176 (2010, to appear)
7. Chen, H.X., Xi, C.C.: Stratifications of derived categories from tilting modules over tame hereditary algebras, preprint, arXiv:1107.0444 (2011)
8. Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. Interscience Publishers, New York (1962)
9. Han, Y.: Recollements and Hochschild theory, preprint, arXiv:1101.5679 (2011)
10. Happel, D.: A family of algebras with two simple modules and Fibonacci numbers. Arch. Math. (Basel) 57(2), 133–139 (1991)
11. Nicolás Zaragoza, P.: On torsion torsionfree triples, PhD thesis, Murcia, arXiv:0801.0507 (2007)
12. Rickard, J.: Equivalences of derived categories for symmetric algebras. J. Algebra 257, 460–481 (2002)
13. Ringel, C.M.: The Liu–Schulz example, representation theory of algebras. In: (Cocoyoc, 1994), CMS Conf. Proc., 18, Am. Math. Soc., Providence, RI, pp. 587–600 (1996)
14. Schulz, R.: Boundedness and periodicity of modules over QF rings, J. Algebra 101, 450–469 (1986)
15. Wiedemann, A.: On stratifications of derived module categories., Can. Math. Bull. 34(2), 275–280 (1991)