Gazeau–Klauder squeezed states associated with solvable quantum systems

M. K. Tavassoly

Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran
e-mail: mktavassoly@yazduni.ac.ir

July 6, 2009

Abstract

A formalism for the construction of some classes of Gazeau–Klauder squeezed states, corresponding to arbitrary solvable quantum systems with a known discrete spectrum, are introduced. As some physical applications, the proposed structure is applied to a few known quantum systems and then statistical properties as well as squeezing of the obtained squeezed states are studied. Finally, numerical results are presented.

Keyword: Gazeau–Klauder coherent states, Gazeau–Klauder squeezed states, nonlinear coherent states, solvable quantum systems.

PACS: 42.50.Dv, 42.50.-p

1 Introduction

The standard coherent states may be obtained from the action of the "displacement operator" (or "coherence operator") on the vacuum,

\[D(z) = \exp(za^{\dagger} - z^{*}a), \quad D(z)|0\rangle = |z\rangle, \]

where \(a, a^{\dagger}\) are the standard bosonic annihilation, creation operators, respectively. Nowadays generalization of coherent states and their experimental generations, have made quantum physics much interesting, especially quantum optics. These states exhibit some interesting "nonclassical properties" particularly quadrature squeezing, antibunching, sub-Poissonian photon statistics and oscillatory number distribution.

Although some classes of generalized coherent states may possess squeezing in one of the quadrature components of the radiation field, another set of states known as "squeezed
states” which are the simplest representatives of nonclassical states also play an important role in quantum optics. These states are nonclassical states of the electromagnetic radiation field in which certain observables exhibit fluctuations less than the vacuum. Among them the ”standard squeezed states” obtained by the action of ”squeezing operator” on the vacuum \([22]\):

\[
S(\xi) = \exp \left[\frac{1}{2}(\xi a^2 - \xi^* a^2) \right], \quad S(\xi) |0\rangle = |\xi\rangle.
\]

Bearing in mind that a special realization of the \(su(1,1)\) algebra can be considered with the generators \(K_0 = \frac{1}{2}(a^\dagger a + \frac{1}{2})\), \(K_+ = \frac{1}{2}(a^\dagger)^2\), \(K_- = \frac{1}{2}a^2\), the squeezed operator \(S(\xi)\) in (2), may be re-written as the displacement operator \(D(\xi) = \exp \left[\frac{1}{2}(\xi K_+ - \xi^* K_-) \right]\). These are the Perelomov [16] form of generalized coherent states which defined for reducible representation of \(SU(1,1)\) group in analogy with the displacement operator definition. Therefore, the squeezed states in (2) sometimes have been called the \(SU(1,1)\) coherent states, which are of great relevance to quantum optics for single mode fields. The number states expansion of the states in (2) will be re-obtained as a special case of the proposed formalism in the present manuscript (see example 1 in section 4). Anyway, squeezing (of the quantized radiation field) means that the uncertainty of one of the quadratures of the field falls below the uncertainty of the vacuum state at the cost of increased uncertainty in the other quadrature, hence the state is nonclassical. The usefulness of this property in various fields such as the measurement techniques and detection of gravitational waves [3], enhancement and suppression of spontaneous emission [4], and optical communication [21] are well understood. Some generalizations of the squeezed states are also introduced in literature. To say a few, it may be referred to as ”squeezed coherent states”, ”nonlinear squeezed states” [11], representations of squeezed states in an \(f\)-deformed Fock space [17] and ”a class of nonlinear squeezed states” recently introduced in [15] (for a squeezed review on nonclassical states see [6] and references therein).

The present work is motivated to enlarge the class of squeezed states and especially provide a framework to be able to introduce the ”squeezed states” in a direct relation to physical systems. Recall that this purpose has been achieved in the ”generalized coherent states” domain, by J-P. Gazeau and J. R. Klauder in an elegant fashion [8, 9, 10]. Actually, in addition to the ”continuity” and the ”resolution of the identity”, they imposed ”temporal stability” and ”action identity” requirements as two new physical criteria, to force the generalized coherent states to more classical situation. Obviously, any (coherent or squeezed) state preserves the temporal stability under the Hamiltonian dynamics, if one considers the eigen-value equation \(\hat{H}|n\rangle = e_n|n\rangle\), i.e. that of harmonic oscillator. Whereas, if one deals with a specific quantum system with Hamiltonian \(\hat{H}\) and eigen-energies \(e_n\), so that \(\hat{H}|n\rangle = e_n|n\rangle\), and looks forward to construct the coherent or squeezed states, there will appear some problems with temporal stability of the states in hand. Fortunately, the proposed formalism of Gazeau and Klauder attacked the problem and the so-called
"Gazeau–Klauder coherent states" possess the temporal stability property, under the action of the time evolution operator $e^{-i\hat{H}t}$, essentially. The Hamiltonian \hat{H} in the latter operator is responsible for the dynamics of the quantum system. As Roknizadeh et al established algebraically in [18, 19], the Hamiltonian \hat{H} is constructed by $A_{\text{GK}} = a_{\text{GK}}(\alpha, \hat{n})$ and $A^\dagger_{\text{GK}} = f^\dagger_{\text{GK}}(\alpha, \hat{n})a^\dagger$ as the f-deformed annihilation and creation operators, respectively, via the factorization method $\hat{H} = A^\dagger_{\text{GK}}A_{\text{GK}}$. In this fashion, the Gazeau–Klauder coherent states are the generalized nonlinear coherent states with the generalized operator valued nonlinearity function $f_{\text{GK}}(\alpha, \hat{n})$, which depends explicitly on the intensity of light.

Finally, a point is worth to mention. Recall that in the construction of the dual pair of Gazeau–Klauder coherent states in [19] a different and non-usual method has been employed. This was due to recognition that the dual pair of the Gazeau–Klauder coherent states must possess all of the four mentioned criteria in [8], carefully. But, as it will be demonstrated in the continuation of the present manuscript, although the presented formalism is essentially based on the structure of Gazeau–Klauder coherent states, it is not necessary to reconsider the whole criteria of Gazeau and Klauder for the squeezed states will be introduced in this manuscript. The reason is clear, since when one deals with the squeezed states, he(she) automatically relaxes from classicality.

This paper is organized as follows. Section 2 is devoted to a brief review on the fundamental structure of Gazeau–Klauder coherent states. A new (and more general) proposal Gazeau–Klauder squeezed states associated with solvable quantum systems 11585 for constructing a set of squeezed states, which have been called Gazeau–Klauder squeezed states, will be presented in section 3. Then, in section 4 the formalism will be applied to some quantum systems with a known discrete spectrum, and finally in section 5 the quantum statistical properties and squeezing of the obtained states will be studied.

2 Gazeau-Klauder Coherent States as Nonlinear Coherent States

Gazeau–Klauder coherent states have been introduced associated with quantum systems with known discrete spectrum E_n [8]. According to [7, 8], the analytical representations of these states have been introduced as follows:

$$|z, \alpha\rangle = \mathcal{N}(|z|^2)^{-1/2} \sum_{n=0}^{\infty} \frac{z^n e^{-i\alpha e_n}}{\sqrt{\rho(n)}} |n\rangle, \quad z \in \mathbb{C}, \quad 0 \neq \alpha \in \mathbb{R},$$

where $\mathcal{N}(|z|^2)$ is some appropriate normalization constant. In equation (3) the kets $\{|n\rangle\}_{n=0}^{\infty}$ are the eigen-vectors of the Hamiltonian \hat{H}, with the eigen-energies E_n such that,

$$\hat{H}|n\rangle = E_n|n\rangle \equiv \hbar \omega e_n|n\rangle \equiv e_n|n\rangle, \quad \hbar = 1 = \omega, \quad n = 0, 1, 2, \ldots,$$

Thus, the Gazeau–Klauder coherent states are a generalization of the nonlinear coherent states.
where the re-scaled spectrum \(e_n \), satisfy the inequalities \(0 = e_0 < e_1 < e_2 < \cdots < e_n < e_{n+1} < \cdots \). The action identity criteria with the condition \(e_0 = 0 \), imposed the requirement

\[
\rho(n) = [e_n]!, \quad \Leftrightarrow \quad e_n = \frac{\rho(n)}{\rho(n-1)}.
\]

It is established in [18] that the states in the expansion (3) are ”nonlinear coherent states” with the operator valued (and also intensity dependent) nonlinearity function

\[
f_{\text{GK}}(\alpha, \hat{n}) = e^{i\alpha(\hat{e}_n-\hat{e}_{n-1})} \sqrt{\hat{e}_n / \hat{n}}, \quad \hat{e}_n = \frac{\rho(\hat{n})}{\rho(\hat{n}-1)},
\]

where \(\hat{n} = a^\dagger a \) is the number operator. The explicit dependence of the nonlinearity function on the spectrum of an arbitrary quantum system is notable. Therefore, the rising and lowering operators related to any solvable system may be defined as:

\[
A_{\text{GK}} = af_{\text{GK}}(\alpha, \hat{n}), \quad A_{\text{GK}}^\dagger = f_{\text{GK}}^\dagger(\alpha, \hat{n})a^\dagger,
\]

with a commutator between \(A_{\text{GK}} \) and \(A_{\text{GK}}^\dagger \) as

\[
[A_{\text{GK}}, A_{\text{GK}}^\dagger] = (\hat{n} + 1)f_{\text{GK}}(\hat{n} + 1)f_{\text{GK}}^\dagger(\hat{n} + 1) - \hat{n}f_{\text{GK}}(\hat{n})f_{\text{GK}}^\dagger(\hat{n}).
\]

Equations (5) and (6) show clearly that the \(f \)-deformed ladder operators for any solvable quantum system may be easily obtained. Using the ”normal-ordered” form of the Hamiltonian and taking \(\hbar = 1 = \omega \), for the Hamiltonian corresponding to Gazeau–Klauder coherent states one gets

\[
\hat{H} \equiv A_{\text{GK}}^\dagger A_{\text{GK}} = \hat{n} \left| f_{\text{GK}}(\alpha, \hat{n}) \right|^2 \equiv \hat{e}_n.
\]

Consequently, the relation (4) holds, obviously. Moreover, one can get the two canonical conjugate of the operators \(A_{\text{GK}} \) and \(A_{\text{GK}}^\dagger \), as

\[
B_{\text{GK}}^\dagger = \frac{1}{f_{\text{GK}}(-\alpha, \hat{n})}a^\dagger, \quad B_{\text{GK}} = a \frac{1}{f_{\text{GK}}(-\alpha, \hat{n})},
\]

respectively. As a result \([A_{\text{GK}}, B_{\text{GK}}^\dagger] = \hat{I} = [B_{\text{GK}}, A_{\text{GK}}^\dagger] \), where \(\hat{I} \) is the unit operator. Roknizadeh et al have introduced these set of operators to establish that the Gazeau–Klauder coherent states may be constructed by a non-unitary displacement type operator [19]:

\[
D(z)|0\rangle = \exp(zA_{\text{GK}}^\dagger - z^* B_{\text{GK}})|0\rangle = |z, \alpha\rangle.
\]

It is also shown that another displacement operator may be introduced, by which one can derive another class of nonlinear coherent states (have been called the ”dual states” [2 [19]) as follows,

\[
\tilde{D}(z)|0\rangle = \exp(zB_{\text{GK}}^\dagger - z^* A_{\text{GK}})|0\rangle = |\tilde{z}, \alpha\rangle.
\]
For achieving this purpose, recall that the "dual family of Gazeau–Klauder coherent states" have been introduced in [19] as follows,

\[|\tilde{z}, \alpha \rangle \doteq \mathcal{N}(|z|^2)^{-1/2} \sum_{n=0}^{\infty} \frac{z^n e^{-i\alpha \varepsilon_n}}{\sqrt{\mu(n)}} |n\rangle, \quad \mu(n) = \frac{(n!)^2}{\rho(n)}, \quad z \in \mathbb{C}, \quad 0 \neq \alpha \in \mathbb{R}. \quad (11) \]

The deformed annihilation and creation operators \(\tilde{A}_{\text{GK}} \) and \(\tilde{A}_{\text{GK}}^\dagger \) of the dual oscillator algebra, encountered the operator valued nonlinearity function:

\[\tilde{f}_{\text{GK}}(\alpha, \hat{n}) = e^{i\alpha(\varepsilon_n - \varepsilon_{n-1})} \sqrt{\frac{\varepsilon_n}{n}}, \quad \varepsilon_n \equiv \frac{\mu(n)}{\mu(n-1)}. \quad (12) \]

Hence, the deformed annihilation and creation operators of the dual oscillator may be expressed as:

\[\tilde{A}_{\text{GK}} = a \tilde{f}_{\text{GK}}(\alpha, \hat{n}), \quad \tilde{A}_{\text{GK}}^\dagger = \tilde{f}_{\text{GK}}^\dagger(\alpha, \hat{n})a^\dagger. \quad (13) \]

The normal-ordered Hamiltonian of dual oscillator is therefore:

\[\tilde{\mathcal{H}} = \tilde{A}_{\text{GK}}^\dagger \tilde{A}_{\text{GK}} = \hat{n} \left| \tilde{f}_{\text{GK}}(\alpha, \hat{n}) \right|^2 \equiv \hat{\varepsilon}_n. \quad (14) \]

As a result,

\[\tilde{\mathcal{H}} |n\rangle = \varepsilon_n |n\rangle, \quad \varepsilon_n \equiv \tilde{\varepsilon}_n = \frac{n^2}{\varepsilon_n}, \quad (15) \]

where again the units \(\omega = 1 = \hbar \) have been used. The eigenvalues of \(\tilde{\mathcal{H}} \) are also required to satisfy the following inequalities: \(0 = \varepsilon_0 < \varepsilon_1 < \varepsilon_2 < \cdots < \varepsilon_n < \varepsilon_{n+1} < \cdots \).

Now constructing the two conjugate operators of \(\tilde{A}_{\text{GK}} \) and \(\tilde{A}_{\text{GK}}^\dagger \) i.e. \(\tilde{B}_{\text{GK}} = a^{1/2} \tilde{f}_{\text{GK}}(-\alpha, \hat{n})^{-1/2} \), \(\tilde{B}_{\text{GK}}^\dagger = a^{-1/2} \tilde{f}_{\text{GK}}(-\alpha, \hat{n})^{-1/2} a^\dagger \), respectively, one has \([\tilde{B}_{\text{GK}}, \tilde{A}_{\text{GK}}^\dagger] = \mathcal{I} = [\tilde{A}_{\text{GK}}, \tilde{B}_{\text{GK}}^\dagger] \).

Substituting \(\alpha = 0 \), so that \(e_n = nf^2(n) \ (\varepsilon_n = \frac{n}{f^2(n)}) \) in the above relations (equations (3) to (15)) in this section will recover the nonlinear coherent states (their dual family) which have been already introduced by Man’ko et al [12], Matos Filho et al [13, 14] (Ali et al [2] and Roy et al [20]).

3 General Structure of Gazeau–Klauder Squeezed States

Following the explained path for the introduction of the dual pair of the Gazeau–Klauder coherent states, "dual families of Gazeau–Klauder squeezed states" for arbitrary solvable quantum systems with known discrete spectrum can be simply obtained. Upon using the considerations outlined in section 2, two new classes of squeezed states may be introduced.
by the actions of the "generalized squeezing operators" S and \tilde{S}, which are now "energy dependent", on the vacuum as follows:

$$S(\xi, \alpha, f)|0\rangle = \exp \left[\frac{1}{2}(\xi A_{GK}^\dagger - \xi^* B_{GK}^2) \right] |0\rangle = |\xi, \alpha, f\rangle,$$

(16)

and

$$\tilde{S}(\xi, \alpha, f)|0\rangle = \exp \left[\frac{1}{2}(\xi B_{GK}^\dagger - \xi^* A_{GK}^2) \right] |0\rangle = |\tilde{\xi}, \alpha, f\rangle.$$

(17)

The explicit form of the generalized squeezed states, $|\xi, \alpha, f\rangle$, may be straightforwardly found by the superposition of even Fock states,

$$|\xi, \alpha, f\rangle = N \sum_{n=0}^{\infty} \sqrt{\frac{(2n)!}{n!}} \left[f_{GK}^\dagger(\alpha, 2n) \right]! \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle,$$

(18)

where in this case and what follows, $\xi = \tanh r \exp(i\phi)$ and N is chosen so that the states be normalized (in what follows we will calculate it, explicitly). Inserting the explicit form of the nonlinearity function f_{GK} from (5) with the help of the definition of Jackson’s factorial one immediately gets $[f_{GK}^\dagger(\pm \alpha, n) \right]! = e^{\mp i\alpha e_n} \sqrt{\frac{[e_n]!}{n!}}$. To this end, the explicit form of the first class of the "Gazeau–Klauder squeezed states" will be expressed as the following superposition:

$$|\xi, \alpha, f\rangle = N \sum_{n=0}^{\infty} e^{-i\alpha e_{2n}} \sqrt{\frac{[e_{2n}]!}{n!}} \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle,$$

(19)

where

$$N = \left[\sum_{n=0}^{\infty} \frac{[e_{2n}]!}{n!^2} \left(\frac{\tanh r}{2} \right)^{2n} \right]^{-\frac{1}{2}}.$$

(20)

The states $|\tilde{\xi}, \alpha, f\rangle$ introduced previously in (17), the dual pair of the generalized squeezed states in (16), may be given by the superposition of even Fock states,

$$|\tilde{\xi}, \alpha, f\rangle = N' \sum_{n=0}^{\infty} \sqrt{\frac{(2n)!}{n!}} \frac{1}{[f_{GK}^\dagger(-\alpha, 2n)]!} \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle,$$

(21)

Again inserting the equivalent form of the $[f_{GK}^\dagger(-\alpha, n)]!$ from (222) in terms of the eigenvalues of the system e_n, the "dual family of Gazeau–Klauder squeezed states" can be rewritten in the form

$$|\tilde{\xi}, \alpha, f\rangle = N' \sum_{n=0}^{\infty} e^{-i\alpha e_{2n}} \frac{(2n)!}{n! \sqrt{[e_{2n}]!}} \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle,$$

(22)

where

$$N' = \left[\sum_{n=0}^{\infty} \left(\frac{(2n)!}{n!^2} \right)^{\frac{1}{2}} \frac{1}{[e_{2n}]!} \left(\frac{\tanh r}{2} \right)^{2n} \right]^{-\frac{1}{2}}.$$

(23)
In addition to the above two distinct classes of squeezed states (introduced in (19) and (22)) which are in duality, it is also possible to propose two new sets of squeezed states based on the dual Hamiltonian in (14) as follows,

\[S(\xi, \alpha, \tilde{f})|0\rangle = \exp \left[\frac{1}{2} \left(\xi (\tilde{A}_{GK}^\dagger)^2 - \xi^* \tilde{B}_{GK}^2 \right) \right] |0\rangle = |\xi, \alpha, \tilde{f}\rangle, \]

and

\[\tilde{S}(\xi, \alpha, \tilde{f})|0\rangle = \exp \left[\frac{1}{2} \left(\xi (\tilde{B}_{GK}^\dagger)^2 - \xi^* \tilde{A}_{GK}^2 \right) \right] |0\rangle = |\tilde{\xi}, \alpha, \tilde{f}\rangle. \]

The generalized squeezed states, in (24) and (25), can be decomposed by the even Fock states as

\[|\xi, \alpha, \tilde{f}\rangle = \tilde{N} \sum_{n=0}^{\infty} \sqrt{\binom{2n}{n}} \binom{\epsilon_{2n}}{n} \exp(i\phi) \tanh \frac{r}{2} \frac{\exp(i\phi) \tanh \frac{r}{2}}{2} |2n\rangle, \]

and

\[|\tilde{\xi}, \alpha, \tilde{f}\rangle = \tilde{N}' \sum_{n=0}^{\infty} \sqrt{\binom{2n}{n}} \binom{\epsilon_{2n}}{n} \exp(i\phi) \tanh \frac{r}{2} \frac{\exp(i\phi) \tanh \frac{r}{2}}{2} |2n\rangle. \]

Substituting the explicit form of \([\tilde{f}_{GK}^\dagger(\pm \alpha, n)]! = e^{\pm i\alpha \epsilon_n} \sqrt{\frac{\epsilon_n!}{n!}} \) in (28) and (27), one readily obtains the third and fourth classes of Gazeau–Klauder squeezed states with the following superpositions:

\[|\xi, \alpha, \tilde{f}\rangle = \tilde{N} \sum_{n=0}^{\infty} e^{-i\alpha \epsilon_{2n}} \sqrt{\frac{\epsilon_{2n}}{n!}} \exp(i\phi) \tanh \frac{r}{2} \frac{\exp(i\phi) \tanh \frac{r}{2}}{2} |2n\rangle, \]

and

\[|\tilde{\xi}, \alpha, \tilde{f}\rangle = \tilde{N}' \sum_{n=0}^{\infty} e^{-i\alpha \epsilon_{2n}} \frac{(2n)!}{n!} \frac{\epsilon_{2n}}{n!} \exp(i\phi) \tanh \frac{r}{2} \frac{\exp(i\phi) \tanh \frac{r}{2}}{2} |2n\rangle, \]

where \(\tilde{N} \) and \(\tilde{N}' \) may be determined by the normalization condition as follows,

\[\tilde{N} = \left[\sum_{n=0}^{\infty} \frac{\epsilon_{2n}!}{(n!)^2} \frac{\tan^2 r}{2} \right]^{\frac{1}{2}}, \]

and

\[\tilde{N}' = \left[\sum_{n=0}^{\infty} \frac{(2n)!}{n!} \frac{\epsilon_{2n}}{n!} \frac{\tan^2 r}{2} \right]^{\frac{1}{2}}. \]

respectively. The introduced states in (19) and (22) (in (28) and (29)) explicitly show the relation of Gazeau–Klauder squeezed states (the dual of Gazeau–Klauder squeezed states) to the spectrum of the quantum system (the dual of the quantum system). Note that from the form of the four classes of obtained squeezed states in equations (19), (22), (28) and (29), it may be recognized that they are temporally stable, i.e. possess one of the
main features of the Gazeau–Klauder coherent states. This is in fact due to the existence of the exponential term \(\exp(\pm i\alpha \epsilon_n) \) in the expansion coefficient of the obtained squeezed states (\(\epsilon \) stands appropriately for \(e \) or \(\varepsilon \)). Hence, for instance by the following definition, the invariance of the squeezed states under appropriate time evolution operator can be guaranteed, i.e.

\[
e^{i\hat{H}t}|\xi, \alpha, f\rangle = |\xi, \alpha + i\omega t, f\rangle, \quad e^{i\hat{H}t}|\tilde{\xi}, \alpha, f\rangle = |\tilde{\xi}, \alpha + i\omega t, \tilde{f}\rangle,
\]

(32)

and

\[
e^{i\hat{H}t}|\xi, \alpha, \tilde{f}\rangle = |\xi, \alpha + i\omega t, \tilde{f}\rangle, \quad e^{i\hat{H}t}|\tilde{\xi}, \alpha, \tilde{f}\rangle = |\tilde{\xi}, \alpha + i\omega t, \tilde{f}\rangle.
\]

(33)

To investigate the above equations, there should be emphasis on using the eigen-value equations \(\hat{H}|n\rangle = e_n|n\rangle \) in (32) and \(\tilde{\hat{H}}|n\rangle = \varepsilon_n|n\rangle \) in (??). Therefore, seemingly the name "temporally stable squeezed states" for the states introduced in (19), (22), (28) and (29) is suitable, if one chooses the normally ordered Hamiltonian composed from multiplication of annihilation and creation operators, respectively, in the evolution operator.

Based on the nonlinear coherent states formalism in [12], recently the "nonlinear vacuum squeezed states" have been introduced through the following actions on the vacuum states [11]:

\[
S(\xi)|0\rangle = \exp\left[\frac{1}{2}(\xi A^2 - \xi^* B^2)\right]|0\rangle = |\xi, f\rangle,
\]

(34)

\[
\tilde{S}(\xi)|0\rangle = \exp\left[\frac{1}{2}(\xi B^2 - \xi^* A^2)\right]|0\rangle = |\tilde{\xi}, \tilde{f}\rangle.
\]

(35)

In the above equations \(A \) and \(A^\dagger \) may be obtained by simply setting \(\alpha = 0 \) in (6), similarly for \(B \) and \(B^\dagger \). The number states expansion of the first one, \(|\xi, f\rangle \) in (34), has the following superposition [11],

\[
|\xi, f\rangle = \mathcal{N} \sum_{n=0}^{\infty} \frac{\sqrt{(2n)!}}{n!} [f(2n)!] \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle,
\]

(36)

where \(\xi = \tanh r \exp(i\phi) \) and \(\mathcal{N} \) is chosen so that the states be normalized. Then the authors have studied the statistical properties of the squeezed states (36) for a special case with nonlinearity function describing the center of mass motion of a trapped ion (TI):

\[
f_{TI}(n) = L_n^1(\eta^2)[(n + 1)L_n^0(\eta^2)]^{-1},
\]

(37)

where \(\eta \) is the Lamb–Dicke parameter and \(L_n^m(x) \) are associated Laguerre polynomials. It can be easily investigated that the presented formalism recovers the results of [11] as a special case. Taking \(f \) to be a real function, i.e. setting \(\alpha = 0 \) in (18) (or \(e_n = nf^2(n) \) in (19)), eventually arrives one at the nonlinear squeezed states in (36). Also, it is notable
that setting $\alpha = 0$ in (21) (or $e_n = nf^2(n)$ in (22)), yields the "dual family of nonlinear squeezed states" in (36) as

$$|\tilde{\xi}, \alpha, f\rangle = N' \sum_{n=0}^{\infty} \sqrt{(2n)!} \frac{1}{n!} \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle. \quad (38)$$

The latter states are the number states expansion of (35). The states obtained in (36) and (38) are exactly equations (11a) and (11b) of a recent paper, respectively [15].

Moreover, it ought to be mentioned here that the constructed squeezed states in this paper have been called the "Gazeau–Klauder squeezed states" do not fully guarantee the criteria of Gazeau and Klauder [8]. The fact that might be expected. Since relaxing from the "action identity" criteria (which imposed on the Gazeau–Klauder coherent states in order to emphasize on the "classicality" of states) is neither necessary nor suitable here, because the squeezed states are not essentially expected to show classical exhibition. Rather, generally most interesting in constructing the squeezed states is the nonclassical nature of them.

4 Gazeau–Klauder squeezed states of some physical systems

As some physical appearance of the proposed formalism, it is now possible to apply the scheme to a few well-known systems, i.e. simple harmonic oscillator, Pöschl-Teller and the infinite square-well potentials, hydrogen-like spectrum and at last the center of mass motion of a trapped ion. Gazeau–Klauder coherent states and the corresponding dual pairs of all these systems (except the last one) have been previously constructed [19].

Example 1: Harmonic oscillator

As the simplest example one can apply the formalism to the harmonic oscillator Hamiltonian, whose nonlinearity function is equal to 1, hence $\varepsilon_n = n = e_n$ and so $\mu(n) = n! = \rho(n)$. Note that we have considered a shifted Hamiltonian to lower the ground states energy to zero ($e_0 = 0 = \varepsilon_0$). Eventually, it can be easily observed that for the case of harmonic oscillator, all the four classes of the Gazeau–Klauder squeezed states coincide with each other in the following way:

$$|\xi, \alpha, f\rangle = N' \sum_{n=0}^{\infty} \sqrt{(2n)!} \frac{1}{n!} \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n e^{-i\alpha 2n} |2n\rangle = |\xi, \alpha, f\rangle = |\tilde{\xi}, \alpha, f\rangle = |\tilde{\xi}, \alpha, \tilde{f}\rangle. \quad (39)$$

For these states the normalization constant can be evaluated in a closed form as follows:

$$N = (\cosh r)^{-\frac{1}{2}}. \quad \text{Relation (39) clearly illustrates the "self-duality" of the Gazeau–Klauder squeezed states of harmonic oscillator. Ordinarily the self-duality, holds in this case, can}$$
be viewed as a checkpoint to be sure about the presented formalism \[18, 19\]. Note that substituting $\alpha = 0$ in (39) will recover the exact form of the squeezed vacuum obtained by the unitary operator $S(\xi)$ in (2). Strictly speaking, comparing $|\xi\rangle$ in (2) and $|\xi, \alpha\rangle$ in (39), it can be easily observed that ξ maps to $\xi \exp(-2i\alpha)$, both in the complex plane, by the Gazeau and Klauder approach.

Example 2: Pöschl-Teller and infinite square-well potentials These potentials and their coherent states are interesting due to various applications in many fields of physics such as atomic and molecular physics. The Gazeau–Klauder coherent states corresponding to the Pöschl-Teller potential, have been demonstrated by J-P. Antoine *et al* in [3]. Their obtained results are based on the eigenvalues

$$e_n = n(n + \nu), \quad \nu > 2.$$

In (40) $\nu = \lambda + \kappa$, where λ and κ are two parameters that determine the form (i.e. depth and width) of the potential well. Consequently, using the presented formalism the explicit form of the four classes of Gazeau–Klauder squeezed states corresponding to the Pöschl-Teller potential read as

$$|\xi, \alpha, f\rangle = \mathcal{N} \sum_{n=0}^{\infty} e^{-i\alpha 2(n+\nu)} \frac{(2n)!}{n! \sqrt{2(n(2n + \nu))!}} \left[\exp(i\phi) \tanh r \right]^n |2n\rangle,$$

$$|\widetilde{\xi}, \alpha, f\rangle = \mathcal{N}' \sum_{n=0}^{\infty} e^{-i\alpha 2(n+\nu)} \frac{(2n)!}{n! \sqrt{2(n(2n + \nu))!}} \left[\exp(i\phi) \tanh r \right]^n |2n\rangle,$$

$$|\xi, \alpha, \tilde{f}\rangle = \tilde{\mathcal{N}} \sum_{n=0}^{\infty} e^{-i\alpha \frac{2n+\nu}{2\nu+\nu}} \frac{1}{n!} \sqrt{\frac{2n}{2n + \nu}}! \left[\exp(i\phi) \tanh r \right]^n |2n\rangle,$$

$$|\widetilde{\xi}, \alpha, \tilde{f}\rangle = \tilde{\mathcal{N}'} \sum_{n=0}^{\infty} e^{-i\alpha \frac{2n+\nu}{2\nu+\nu}} \frac{(2n)!}{n! \sqrt{2n + \nu}!} \left[\exp(i\phi) \tanh r \right]^n |2n\rangle.$$

In the same manner, the squeezed states associated with the infinite square-well potential may be obtained by replacing $\nu = 2$ in equations (41)-(44).

Example 3 Hydrogen-like spectrum We now choose the hydrogen-like spectrum whose corresponding coherent states, has been a long-standing subject and discussed frequently in the literature. The eigen-values of the one-dimensional model of such a system with the Hamiltonian $\hat{H} = -\omega/(\hat{n} + 1)^2$ has been considered in [8] with eigenvalues

$$e_n = 1 - \frac{1}{(n + 1)^2},$$
to be such that $e_0 = 0$ (while $\omega = 1$). So, the Gazeau–Klauder squeezed states for this system can be easily calculated as

\[
|\xi, \alpha, f\rangle = \mathcal{N} \sum_{n=0}^{\infty} e^{-i\alpha \frac{2n(2n+2)}{(2n+1)^2}} \frac{1}{n!} \sqrt{\frac{2n(2n+2)}{(2n+1)^2}} |2n\rangle \times \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle ,
\]

(46)

\[
|\tilde{\xi}, \alpha, f\rangle = \mathcal{N}' \sum_{n=0}^{\infty} e^{-i\alpha \frac{2n(2n+2)}{(2n+1)^2}} \frac{(2n)!}{n!} \sqrt{\frac{(2n+1)^2}{2n(2n+2)}} |2n\rangle \times \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle ,
\]

(47)

\[
|\xi, \alpha, \tilde{f}\rangle = \tilde{\mathcal{N}} \sum_{n=0}^{\infty} e^{-i\alpha \frac{2n(2n+1)}{2n+2}} \frac{1}{n!} \sqrt{\frac{2n(2n+1)^2}{2n+2}} |2n\rangle \times \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle ,
\]

(48)

\[
|\tilde{\xi}, \alpha, \tilde{f}\rangle = \tilde{\mathcal{N}}' \sum_{n=0}^{\infty} e^{-i\alpha \frac{2n(2n+1)}{2n+2}} \frac{(2n)!}{n!} \sqrt{\frac{2n+2}{2n(2n+1)^2}} |2n\rangle \times \left[\frac{\exp(i\phi) \tanh r}{2} \right]^n |2n\rangle .
\]

(49)

Seemingly, this is the first time that the squeezed states associated with the hydrogen-like atom are introduced in such a direct relation to the general structure of squeezed states and also to the related spectrum.

Example 4: Center of mass motion of a trapped ion:

As a final example, the center of mass motion of a trapped ion with the nonlinearity function in (37) will be considered here. The associated (nonlinear) coherent and squeezed states were of much interest in recent decade [13, 14]. Fortunately, the presented formalism in section 2 allows one to define a \hat{n}– dependent Hamiltonian associated with the trapped ion system such that

\[
\hat{H}_{TI} = \hat{n} f_{TI}^2(\hat{n}) = \frac{\hat{n}}{(\hat{n} + 1)^2} \left[\frac{L_{n}^1(\eta^2)}{L_{n}^0(\eta^2)} \right]^2 ,
\]

(50)

where we have used the nonlinearity function of trapped ion introduced in (37). It seems that the Gazeau–Klauder type of squeezed states is also possible to be introduced, if on
considers the system with the n-dependent Hamiltonian as stated in (50). Therefore, the system will be specified with the spectrum

$$e_n = \frac{n}{(n+1)^2} \left[\frac{L_n^1(\eta^2)}{L_n^0(\eta^2)} \right]^2,$$

(51)

from which the spectrum of the dual system will be easily calculated using $\varepsilon_n = \frac{n^2}{e_n}$. Hence, having e_{2n} and ε_{2n}, the four classes of Gazeau–Klauder squeezed states for the center of mass motion of trapped ion may be easily obtained with the help of the general structure introduced in equations (19), (22), (28) and (29).

5 The quantum statistical properties and squeezing of Gazeau–Klauder squeezed states

The quantum statistical properties of the squeezed states outlined in the present paper as well as the squeezing exhibition of them will be considered in this section. As one of the manifest nonclassicality features of all the generalized squeezed states obtained in this paper, one may refer to the oscillatory number distribution of these states. Photon statistics of the states in (19), (22), (28) and (29) may be easily obtained as

$$P(2n) = N^2 \frac{(e_{2n})!}{(n!)^2} \left[\frac{\tanh r}{2} \right]^{2n},$$

(52)

$$P'(2n) = N'^2 \left[\frac{(2n)!}{n!} \right]^2 \frac{1}{e_{2n}}! \left[\frac{\tanh r}{2} \right]^{2n},$$

(53)

$$\tilde{P}(2n) = \tilde{N}^2 \frac{(e_{2n})!}{(n!)^2} \left[\frac{\tanh r}{2} \right]^{2n},$$

(54)

$$\tilde{P}'(2n) = \tilde{N}'^2 \left[\frac{(2n)!}{n!} \right]^2 \frac{1}{e_{2n}}! \left[\frac{\tanh r}{2} \right]^{2n},$$

(55)

respectively. N, N', \tilde{N} and \tilde{N}' in the above four relations determined in (20), (23), (30) and (31), respectively. Generally, it is seen that for all of the introduced Gazeau–Klauder squeezed states one has

$$P(2n) \neq 0, \quad \text{while} \quad P(2n + 1) = 0, \quad \text{for all} \quad n.$$

(56)

which clearly shows the non-classicality nature of the obtained squeezed states in (19), (22), (28), (29).

To complete the study of the statistical properties of the squeezed states associated with the physical examples introduced in the previous section, the Mandel parameter
and the squeezing of the quadratures of the field will be illustrated numerically, since the analytical form of the above quantities can not be given in closed form. The calculation of the Mandel parameter defined as:

\[Q = \frac{\langle n^2 \rangle - \langle n \rangle^2}{\langle n \rangle} - 1, \quad n = a^\dagger a, \]

(57)

determines the supper-Poissinian (if \(Q > 0 \)), sub-Poissinian (if \(Q < 0 \)) and Poissinian (if \(Q = 0 \)) nature of the states. The case of the Poissinian is the characteristics of the standard coherent states. The sub-Poissinian is an important property which implies the non-classicality of the states, and the supper-Poissinian statistics has important consequence for the properties of localization and temporal stability of the wave packet \[3\]. For the squeezing of the states according to \(x = (a + a^\dagger)/\sqrt{2} \), \(p == (a - a^\dagger)/(i\sqrt{2}) \) one has to calculate the following quantities:

\[(\Delta p)^2 = \langle p^2 \rangle - \langle p \rangle^2 = \langle a^\dagger a \rangle - \frac{1}{2} \langle a^2 \rangle - \frac{1}{2} \langle (a^\dagger)^2 \rangle + \frac{1}{2}, \]

(58)

\[(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2 = \langle a^\dagger a \rangle + \frac{1}{2} \langle a^2 \rangle + \frac{1}{2} \langle (a^\dagger)^2 \rangle + \frac{1}{2}. \]

(59)

In the latter two equations it is set \(\langle a \rangle = 0 = \langle (a^\dagger) \rangle \) which holds for all classes of the obtained squeezed states (since all of them are some superpositions of the even Fock states, \(|2n\rangle\)). Note that all of the expectation values in the equations \(57\), \(58\), \(59\) must be calculated with respect to the squeezed states in states in \(19\) and \(22\) (in \(28\) and \(29\)) for the quantum physical examples of outlined in this paper. Squeezing holds in the \(x\)-, \(p\)-quadrature, if \((\Delta x)^2\), \((\Delta p)^2\) be less than \(\frac{1}{2}\), respectively. Seemingly, it will be enough to present here the needed terms for one of the squeezed states, other cases may be derived in a similar fashion. For the the states in \(19\) it can be easily seen that,

\[\langle (a^\dagger a) \rangle = 2N^2 \sum_{n=0}^{\infty} \frac{[e_{2n+2}]!}{n!(n+1)!} \left(\frac{\tanh r}{2} \right)^{2n+2}, \]

(60)

\[\langle (a^\dagger a)^2 \rangle = 4N^2 \sum_{n=0}^{\infty} \frac{[e_{2n+2}]!}{((n+1)!)^2} \left(\frac{\tanh r}{2} \right)^{2n+2}, \]

(61)

\[\langle a^2 \rangle = N \sum_{n=0}^{\infty} e^{i\phi} e^{(e_{2n} - e_{2n+2})} \]

(62)

\[\times \left(\frac{2n+1)(2n+2)e_{2n+2}[e_{2n}]!}{n!(n+1)!} e^{-i\phi} \left(\frac{\tanh r}{2} \right)^{2n+1}, \]

\[\langle a^4 \rangle = \langle a^2 \rangle^4. \]

(63)
Setting $\phi = 0$ and the eigenvalue e_{2n} associated with the physical examples of section 4, $Q, (\Delta x)^2, (\Delta p)^2$ can be easily evaluated. Similar calculations can be done for the states in (22), (28) and (29), straightforwardly.

Part of the numerical calculations, for some classes of the Gazeau–Klauder squeezed states have been presented in figures which follows. Figure 1a shows the super-Poissonian statistics for S.H.O. (simple harmonic oscillator) for all values of r (note that the results for any state of S.H.O. cover all the four classes of squeezed states for S.H.O, due to its self-duality). For the trapped ion system the states in (19) shows the sub-Poissonian statistics for a wide rang of values of r and η (figure 1b shows Q as a function of r for fixed value of $\eta = 0.5$ and figure 1c shows Q versus η for fixed value of $r = 1$). Figure 1d describes Q versus r with the choice $\eta = 0.7$ for the trapped ion corresponding to formula (29). It illustrates the supper-Poissonian exhibition of the constructed squeezed states in a wide range of the values of r.

The numerical calculations show that the Gazeau–Klauder type of squeezed states of trapped ion motion according to equation (22) is super-Poissonian, using the parameters $r \geq 0.1, \eta = 0.7$, and the same system according to equation (28) has $Q < 0$, for $r \geq 0.03, \eta = 0.7$. The Mandel parameter for infinite square-well and Pöschl-Teller potentials gives $Q < 0$ when equation (19) has been used, $Q > 0$ for equation (22), $Q > 0$ while equation (28) has been in consideration and $Q < 0$ for equation (29). It is worth noting that generally all of the sub-Poissonian cases whose results have been given here without the graphs have $Q > 0$ very near to $r \approx 0$. The calculations of Q for the Hydrogen atom shows $Q > 0$ for equation (19), $Q < 0$ for equation (22) $Q < 0$ for equation (28) and $Q > 0$ when equation (29) has been used.

The plot of squeezing in x- and p-quadrature for the S.H.O. has been shown in Figure 2a in terms of the fixed value of $r = 1$. Squeezing can be observed for x-quadrature, when $1.22 \leq \alpha \leq 1.92$, and also in p-quadrature in two distinct regions: when and $0 \leq \alpha \leq 0.35$ and $2.8 \leq \alpha \leq 3.49$. Again, for the harmonic oscillator $(\Delta x)^2$ is plotted as a function of r for a fixed value of $\alpha = 1.5$ in figure 2b. It is observed that the squeezing occurs for $r \leq 2.6$ in x-quadrature. Figure 2c indicates the squeezing in p-quadrature for the hydrogen atom according to formula (19) Δx as a function of r (when $\alpha = 1.5$) which occurs for all values of r. It is shown that the squeezing occurs for $r \leq 2.6$ in x-quadrature. Figure 2c indicates the squeezing in p-quadrature for the Hydrogen atom according to the state (19) (when $\alpha = 1.5$) which occurs for all values of r.

Figure 3a demonstrates the squeezing in p-quadrature of the Pöschl-Teller ($\nu = 5$) for $\alpha = 4$ and potential well ($\nu = 2$) for $\alpha = 0.1$, when the equation (22) has been used. In this case the squeezing may interpolate between x- and p-quadrature by tuning α and r parameters. In figure 3b Δx of the trapped ion of equation (22) has been plotted, the squeezing of which may be observed in the range $r \leq 0.5$ (the other parameters are choosen so that $\eta = 0.1$ and $\alpha = 1.5$).

In figure 4a the squeezing in x-quadrature for the trapped ion of the equation (28)
is plotted (using the parameters $\eta = 0.3$ and $\alpha = 1.5$). As can be observed, squeezing occurs in the range $r \leq 0.6$. Figure 4b indicates the squeezing in p-quadrature of the Pöschl-Teller ($\nu = 20$) and potential well ($\nu = 2$), where in both cases the α parameter is chosen to be 1.5. It is interesting to note that the squeezing occurs in the whole range of r for the two cases, and the one for the infinite square-well potential is always stronger. At last, the numerical calculations for the Hydrogen atom in equation (29) shows that the p-quadrature is squeezed for all values of r, when α is chosen equal to 1.5 (figure 5). Altogether, by the above results the non-classicality nature of the introduced squeezed states in this paper has been established, obviously.

Acknowledgments: The author would like to express his utmost thanks to Dr R Roknizadeh at the Quantum Group of the University of Isfahan for his insightful comments. Also, he is pleased to acknowledge the referees for their useful suggestions which considerably improved the quality of the paper. Finally, thanks to the research council of the University of Yazd for financial supports to this project.

Figure Captions:

Fig. 1a: Mandel parameter of Gazeau–Klauder squeezed states of harmonic oscillator as a function of r.

Fig. 1b: Mandel parameter of trapped ion of Gazeau–Klauder SSs of equation (19) as a function of r ($\eta = 0.5$).

Fig. 1c: Mandel parameter of trapped ion of Gazeau–Klauder SSs of equation (19) as a function of η ($r = 1$).

Fig. 1d: Mandel parameter of trapped ion of Gazeau–Klauder SSs of equation (29) as a function of r ($\eta = 0.7$).

Fig. 2a: The squeezing in x-quadrature(solid line) and p-quadrature(dashed line) for harmonic oscillator as a function of α ($r = 1$).

Fig. 2b: Plot of (Δx) as a function of r ($\alpha = 1.5$) for harmonic oscillator.

Fig. 2c: Plot of (Δp) as a function of r ($\alpha = 0.5$) of the Hydrogen atom, when the states of equation (19) has been used.

Fig. 3a: Plot of (Δp) as a function of r for the potential well, $\nu = 2$, (solid line) and Pöschl-Teller potential, $\nu = 5$, (dashed line). The structure of equation (22) is considered.

Fig. 3b: Plot of (Δx) of the trapped ion system of the Gazeau–Klauder squeezed states of equation (22) as a function of r ($\alpha = 1.5, \eta = 0.1$).

Fig. 3c: Plot of (Δx) of the trapped ion system of the Gazeau–Klauder squeezed states of equation (28) as a function of r ($\alpha = 1.5, \eta = 0.3$).

Fig. 4a: Plot of (Δp) as a function of r for potential well ($\nu = 2$) and Pöschl-Teller
potential ($\nu = 20$), where the equation (28) is used and $\alpha = 1.5$.

Fig. 4b: Plot of squeezing in p-quadrature as a function of r for the Hydrogen atom where the equation (29) and $\alpha = 1.5$ is used.
References

[1] Ali S. Twareque., Antoine J-P. and Gazeau J-P., Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York (2000).

[2] Ali S. Twareque., Roknizadeh R and Tavassoly M. K., J. Phys. A: Math. Gen. 37 4407 (2004).

[3] Antoine J-P., Gazeau J-P., Klauder J. R., Monceau P. and Penson K. A., J. Math. Phys. 42 2349 (2001).

[4] Carmichael H. J., Lane A and Walls D. F., Phys. Rev. Lett. 58 2539 (1987).

[5] Caves C. M. and Schumaker B. L., Phys. Rev. A 31 3068 (1985).

[6] Dodonov V. V., J. Opt. B: Quantum Semiclass. Opt. 4 R1 (2002).

[7] El Kinani A. H. and Daoud M., Phys. Lett. A 283 291 (2001).

[8] Gazeau J-P. and Klauder J. R., J. Phys. A: Math. Gen. 32 123 (1999).

[9] Klauder J. R., J. Phys. A: Math. Gen. 29 L293 (1996).

[10] Klauder J. R., “Coherent States for Discrete Spectrum Dynamics”, quant-ph/9810044 (1998).

[11] Kwek L. C. and Kiang D, J. Opt B: Quantum Semiclass. Opt. 5 383 (2003).

[12] Man’ko V. I., Marmo G., Sudarshan S. E. C. G. and Zaccaria F., Physica Scripta 55 528 (1997).

[13] Matos Filho R. L. de and Vogel W., Phys. Rev. A 54 4560 (1996).

[14] Matos Filho R. L. de and Vogel W., Phys. Rev. Lett. 76 608 (1996).

[15] Obada A-s. F and Darwish M, J. Opt. B: Quantum Semiclass. Opt. 7 57 (2005).

[16] Perelomov A. M., Commun. Math. Phys. 26 222 (1972).

[17] Roknizadeh R. and Tavassoly M. K., J. Phys. A: Math. Gen. 37 5649 (2004).

[18] Roknizadeh R. and Tavassoly M. K., J. Phys. A: Math. Gen. 37 8111 (2004).

[19] Roknizadeh R. and Tavassoly M. K., J. Math. Phys. 46 042110 (2005).

[20] Roy B. and Roy P., J. Opt B: Quantum Semiclass. Opt. 2 65 (2000).
[21] Shapiro J. H., Yuen H. P. and Machado J. A., *IEEE Trans. Inform. Theory* **25** 179 (1979).

[22] Stoler D., *Phys. Rev. D* **4** 1925 (1971).