Identification of the genetic diversity of sweet potato germplasm based on quantitative morphological characters

Febria Cahya Indriani¹, Joko Restuono¹, Wiwit Rahajeng¹, Nia Romania Patriyawaty², Sumeru Ashari³, Titik Sundari¹, Made Jana Mejaya¹

¹Indonesian Legumes and Tuber Crops Research Institute (ILETRI), Jl. Raya Kendalpayak KM.8 PO BOX 66 Malang, East Java, Indonesia
²Indonesian Food Crops Research and Development (ICFORD)
³Faculty of Agriculture, University of Brawijaya

Email: febria_cahya@yahoo.co.id

Abstract. Sweet potato is one of the prospective food crops to be used as an export commodity. Information on genetic diversity of sweet potato is needed as a consideration for the improvement of superior sweet potato varieties that have export quality. The research was conducted in Wringin Songo village, Tumpang, Malang Regency. The materials used were 150 sweetpotato accessions in total that consisting of: 19 superior varieties, 38 local clones, 1 introduced variety and 92 promising clones. This experiment was arranged in randomized block design (RBD) with two replications. The quantitative morphological variables such as: potential yield, tuber weight, dry matter, stover weight, harvest index and number of tubers plot⁻¹ were observed. The results showed that the genetic diversity was quite high in the sweet potato germplasm, there were 41 clones that had yield potential (≥ 30 t ha⁻¹). Some of these clones were prospective to be used as parents for crossing due to their ability to flower. Two sweet potato clones (MSU 10001-18 and MSU 07030-64) with dark purple flesh colour, Kidal variety with yellow flesh color and above 30% tuber dry matter have the criteria required for export market.

1. Introduction

Sweet potato commodity plays a very important role in increasing food diversification, especially to reduce the consumption of rice and wheat. Non-rice food such as tuber crops need to be socialized to the public, and hence it is expected to reduce domestic rice consumption. High nutritional content also plays a physiological role for the health of the human body. The yield potential of sweet potato is high, easy to cultivate and indispensable as an industrial raw material, so the government has set sweet potato as one of the targets for increasing export commodities with a threefold movement of exports program.

Sweet potato is a commodity that has chemical advantages as an alternative food, including high dietary fiber content, low starch digestibility, starch structure including RS-2, and low glycemic index. All those advantages will prevent digestive tract such as cancer, diverticulosis, ulcers, hemorrhoids, and diabetes through controlling blood glucose levels remain low [1]. The main nutritional component of Sweet potato is carbohydrates that function as energy, besides that Sweet potatoes are rich in vitamins, minerals and fibers [2].
Breeding of high-yielding sweet potato varieties is currently prioritized not only to meet food needs but also to meet industrial needs. The released varieties also have criteria in accordance with the domestic market and export market. The criteria of sweet potato tuber for export market are flesh color (yellow, purple, and orange) and tuber dry matter above 30%. Identification of potential germplasm continues to be carried out in order to obtain characters and have good and prospective genetic potential to be developed and meet consumer tastes. Breeding of high-yielding varieties requires high genetic diversity, so the opportunity to obtain new genotypes that are superior to their parents is greater. The objective of the study was to obtain the information on the genetic diversity of Sweetpotatoes in which required as a consideration for the formation of high-yielding Sweetpotato varieties which meets export quality.

2. Materials and Method

The experiment was conducted at one location in Wringinsongo village, Tumpang sub-district, Malang district, East Java province, Indonesia. The material used were 150 sweet potato clones consisted of: 19 superior varieties, 38 local clones, one introduced variety and 92 promising clones. This experiment was designed as a randomized block design consisting of 150 clones as a treatment with two replications in which the analysis of variance was carried out according to [3]. The genetic diversity of Sweet potato germplasm can be known from the Coefficient of Genetic Diversity (CGD) and the Coefficient of Phenotypic Diversity (CPD), according to [4]. To determine the value of the high and low diversity of traits, the standard value of the relative criteria according to [5] is low (0% - 25%), rather low (25 - 50%), moderately high (50% - 75%) and high (75% - 100%). Observations were recorded for yield potential, dry matter content, stover weight plant, harvest index, number of tuber plot, flowering ability, skin and flesh color.

3. Results and Discussion

3.1. Genetic diversity based on quantitative morphological characteristics

The type of clone affected the yield potential, tuber weight plant\(^{-1}\), dry matter content, stover weight, harvest index, number of tubers plot\(^{-1}\). The diversity of phenotypic, genetic and environmental mean values, broad heritability and coefficients of phenotypic and genetic diversity are shown in Table 1.

Variable	Mean	Min.	Max.	\(\sigma^2_p\)	\(\sigma^2_g\)	\(\sigma^2_e\)	\(h^2\)	CPD*	CGD*
Yield potential (t ha\(^{-1}\))	25.5	4.4	53.9	116.6	50.9	65.7	0.44	42.30	27.90
Tuber weight g plant\(^{-1}\)	640.5	115.0	1350.0	69788.0	28698.4	41089.6	0.41	41.20	26.50
Dry matter content (%)	30.8	22.2	43.3	20.9	17.6	3.3	0.84	14.85	13.62
Stover weight kg plant\(^{-1}\)	6.5	2.3	12.0	4.9	2.5	2.5	0.50	34.29	24.32
Harvest index (%)	46.0	10.6	72.7	186.6	108.2	78.4	0.58	29.69	22.61
Number of tubers plot\(^{-1}\)	22.7	7.5	56.5	124.9	66.5	58.4	0.53	49.22	35.93

* CPD = coefficient of phenotypic diversity (0.0 – 15.0% = narrow, 15.0 - 30.0% = slightly narrow, 30.0 – 45.0% = slightly broad, and 45.0 - 60.0% = broad);
* CGD = coefficient of genetic diversity (0.0 – 10.0% = narrow, 10.0 – 20.0% = slightly narrow, 20.0 – 30.0% = slightly broad, and 30.0 – 40.0% = broad).
The expressed phenotype is the sum of genetic influences and deviations caused by the environment, where the distribution of genotypes in the environment is random, the phenotype variety is as follows [3]:

$$\sigma_p^2 = \sigma_g^2 + \sigma_e^2 \text{ (in one environment)}$$

where σ_p^2 is the phenotypic variance, σ_g^2 is the genetic influence variance and σ_e^2 is the environmental variance. The coefficient of genetic diversity was expressed in the phenotypic as seen in the coefficient of phenotypic diversity. In general, a high coefficient of genetic diversity is followed by a high coefficient of phenotypic diversity [6]. Heritability values describe the genetic diversity of characters that are influenced by the environment, heritability values for tuber yields range from low to high for several experiments conducted. Meanwhile, [7] obtained an average tuber yield heritability value of 0.41 (ranging from 0.21 to 0.6) from the parents and their F1 at 3 locations for two years. Mariscal (1983) in [8] stated that the low heritability value was due to the influence of non-additive genes. The results of this study showed that the heritability values of various characters were observed for yield potential of 0.44, tuber weight 0.41, dry matter 0.84, stover weight 0.5 and number of tubers plot -1 0.53. Genetic diversity of each character can be described as follows:

The potential yield of Sweetpotato germplasm is average 25.5 t.ha -1, the highest MSU 07015-92 clone is 53.9 t.ha -1 and MSU 07009-12 has the lowest weight (4.4 t ha -1). The yield potential has a moderate heritability with a value of 0.44, which indicates the level of genetic diversity due to genetic and environmental factors giving the same large role to the phenotype. This can also be seen from the fairly broad coefficient of genetic diversity and phenotype. Sweetpotatoes are very sensitive to environmental changes, [9] observed yield variations and stability at many locations and different genotypes, the results showed that there was a significant interaction between environmental genotypes and tuber yield characters. Plant growth and yield is an interaction between genotype and environment. Information on the interaction of genotypes and the environment is needed to determine whether the genotype has broad or specific (narrow) adaptation. Genotypes that provide a good phenotype indicate that the genotype is able to adapt to the environment. Other tuber characteristics such as tuber weight, number of tubers, and dry matter can be used as good indicators of yield. Moreover, it can be used as a criterion for the evaluation and selection of high yielding clones [8].

The average tuber weight was 640.5 g plant -1, the diversity of tuber weight plant -1 showed variations between clones. The rate of photosynthesis will affect the tuber development process, each genotype has a different response. Similar result was observed in an earlier work by [10] stated that there was a fairly high variation in tuber weight plant -1. The heritability value of tuber weight plant -1 was included in the medium category (0.42). This suggested that genetic and environmental influences each has the same effect. Meanwhile, the coefficient of phenotypic and genetic diversity shows a rather broad category, as shown in Table 1.

The average dry matter of tubers was 30.8% with the lowest range of 22% (MSU clone 07030-118) and clone MSU 07024-123 had the highest dry matter content (43.3%). The genetic diversity of dry matter content in Sweetpotato germplasm was high, this can be seen from the high broad sense heritability value of 0.84%. This illustrated the high genetic diversity in the Sweetpotato germplasm. Meanwhile the coefficient of phenotypic and genetic diversity was slightly narrow, which shows a fairly uniform value (Table 1).

3.2. Correlation between harvest index (%) with tuber weight (kg), stover weight (kg) and whole plant weight

The average stover weight was 6.47 kg plot -1 with a range of 2.3 to 12.0 kg plot -1, the Papua solossa variety was able to produce the highest stover weight, while the lowest was MSU clone 07035-118. The broad meaning heritability value indicates the medium category which shows the genetic diversity of the stover weight is quite high, the diversity based on the CPD value is 34.29% which indicates the area, and this illustrates the phenotype of the stover weight having high variation. Meanwhile, based on the CGD value, it has a value of 24.32 or is quite broad, which means it is still quite genetically uniform.
The average harvest index was 46%, the range of harvest indexes showed differences, the diversity of HI values ranged from 12% - 56% [11] and 37% - 81% [12]. Bulb yields were affected by HI, which showed a positive correlation between the two, as well as HI and biomass positively correlated with tuber dry matter, indicating that increasing HI and biomass also played an important role in increasing tuber yields [10]. These results are similar to those observed by [13], tuber yields were positively correlated with HI, whole plant weight and number of tubers per plant. A high HI value indicates a greater distribution of assimilate to tubers, while a low harvest index indicates a greater distribution of assimilate to the top of the plant than to tubers, resulting in low tuber weight.

The heritability value of 0.58 which is classified as moderate, this shows the harvest index has a fairly high genetic diversity. Meanwhile, based on the CPD and CGD, it illustrates that these characters have a rather broad value, which can be interpreted as having a fairly high genetic diversity. Harvest index was related to the variables of stover weight, tuber weight and whole plant weight. The relationship between the three variables can be described in Table 2 as below.

Category	Correlation values between harvest index (%) with tuber weight (kg), stover weight (kg) and whole plant weight (kg).
Tuber weight	0.76**
Stover weight	-0.60**
Whole plant	0.14

** and ns = significance value at 0.01 and no significance value at 0.05 significance level, respectively, based on Pearson correlation.

Harvest index and tuber weight in sweetpotato germplasm have a positive correlation and have a high category of 0.76, which means that a high HI value means a high tuber weight. On the other hand, the relationship between the harvest index and the weight of the stovetop shows a negative correlation, which means that if the harvest index value is high, the weight of the stovetop will be low. Meanwhile, the relationship between the harvest index and the weight of all plants showed no correlation between the two. According to [10], HI and biomass are positively correlated with tuber dry matter, this relationship indicates that increasing HI and biomass will increase yield. Harvest index values can be used for indirect selection in improving tuber yields [14].

The average number of tubers per plot is 22.7, the heritability value is 0.53 which indicates the medium category. The number of tubers per plot had genetic diversity based on the broad CPD and CGD values (Table 1).

3.3. Selection of sweetpotato germplasm for determining the parents of the crosses

Determination of the crossbreeding parents with selection criteria based on high yield potential (30 t ha⁻¹), the result of germplasm selection was that 41 clones had yield potential of 30 t ha⁻¹ which were then used as female parents. The character of the ability to flower is also a very important character as a consideration in determining the parentage of the cross. Most of the selected clones had the high ability to flower (17 clones), moderate ability (13 clones), very high ability (1 clone), low ability (7 clones) and very low to flower (1 clone). The large number of clones that high and very high ability to flower showed a large potential to be used as cross parents considering the specific characters of sweetpotato crosses were self- and cross-incompatibility and sterility. Cross-pollination in sweetpotato produced 10% normal seedling, incompatibility causes the low percentage of fruitset and seed produced, not all the formed seed are filled with an embryo [15]. The level of compatibility of each crosses combination showed differences, each parent showed its suitability as male parent and female parent [16].

| Table 3. High yielding potential of Sweetpotato clones (≥ 30 t ha⁻¹). |
No.	Clone no.	Clone name	Yield potential (ton ha\(^{-1}\))	Dry matter (%)	Flowering ability	Color	Skin	Flesh*
1.	150	MSU 07015-92	53.9	24.03	Moderate	R4	Y3	
2.	139	MSU 07023-86	50.83	23.32	High	R5	O4	
3.	53	UJ-35 Batatas Merah	48.85	25.41	Moderate	Y5	Y4O1	
4.	103	MSU 07035-118	48.08	23.70	Low	R4	Y3	
5.	89	MSU 07031-28	45.11	24.08	Very low	R2	O3	
6.	145	MSU 07022-15	42.92	26.65	Moderate	Y3	Y3	
7.	110	MSU 10001-18	42.63	32.27	High	P6	P6	
8.	38	UJ-15 Tinta	40.53	26.84	High	Y2	Y3	
9.	62	MSU 10039-03	39.96	31.07	High	Y2	Y1	
10.	142	MSU 07009-90	39.03	27.72	High	R3	Y3	
11.	127	RIS 10068-02	38.86	31.12	Moderate	Y5	Y3O3	
12.	149	MSU 07025-50	38.69	29.12	Low	Y5	Y2	
13.	24	Senduro	38.48	27.04	High	R4	W	
14.	90	MSU 09008-92	37.54	29.77	Very high	R6	P5	
15.	128	MSU 07030-54	37.11	34.47	Moderate	Y5	Y4O1	
16.	125	MSU 07022-12	37.02	30.34	High	Y2	Y2	
17.	11	Beta-2	36.81	23.70	High	R6	O3	
18.	77	MSU 07031-82	36.48	23.62	Moderate	R5	O2	
19.	28	UJ-2 Ningkey 2	36.38	24.14	High	R5	O4	
20.	39	UJ-16 Slape	36.34	25.79	Moderate	O1	O4	
21.	131	MSU 07012-06	36.29	25.38	Moderate	R4	O3	
22.	87	MSU 07030-88	35.8	23.28	Low	R2	Y3	
23.	129	MSU 07022-13	34.95	34.77	Low	R3	Y4	
24.	50	UJ-32	34.04	28.62	High	R3	W	
25.	41	UJ-19 Malagurom	33.92	22.50	Moderate	R5	O6	
26.	16	IR Melati	33.80	24.90	Moderate	R4	Y1	
27.	84	MSU 07023-58	33.71	26.40	Moderate	R6	O3U3	
28.	37	UJ-13 Yoka 5	33.51	29.63	High	Y4	Y3	
29.	65	MSU 10048-09	33.17	26.81	High	Y2	W	
30.	67	MSU 10054-19	33.11	30.58	Moderate	R2	Y3	
31.	66	MSU 10051-02	32.72	29.77	Low	Y3	O3	
32.	117	RIS 10062-01	32.45	29.70	Moderate	P5	P5	
33.	123	MSU 07009-75	32.18	32.98	High	R4	Y2	
34.	7	Papua Solossa	31.94	34.25	High	Y3	Y3	
35.	4	Kidal	31.58	35.02	High	R4	Y4	
36.	97	MU 07023-63	31.42	29.45	Moderate	P5	P4	
37.	68	MSU 10054-40	30.82	33.25	Low	R2	Y3	
38.	26	Cilembu-1	30.64	30.38	Moderate	Y4	Y3O3	
39.	89	MSU 07030-64	30.34	33.06	Low	P6	P6	
40.	29	UJ-3 Ningkey 3	30.16	27.63	High	R1	O4	
41.	141	MSU 07015-54	30.03	33.90	Very high	R4	W	

*The color of the skin and flesh of the tuber includes red (M), white (W), yellow (Y), orange (O) and purple (P). Color intensity: 7=very dark, 6=dark, 5=slightly dark, 4=light, 3=pale, 2=slightly pale and 1=very pale (Rasco, 1994).

Characteristics of skin color and flesh of tubers showed mostly red skin and yellow flesh as shown in Table 3. Based on the criteria of sweetpotato tuber for export market which are flesh color (yellow, purple, and orange) and tuber dry matter above 30%, there are two clones (MSU 10001-18 and MSU...
07030-64) have dark purple (code P6) flesh color and Kidal variety, the clones have above 30% of tuber dry matter. The darker the flash color, the higher the antioxidant concentration of the tuber, therefore it is better for functional food. Purple sweet potato has higher antioxidant activity than yellow sweet potato and white sweet potato [17].

4. Conclusion
There is a fairly high genetic diversity of the morphological characters of Sweetpotato germplasm. Out of 150 clones of sweetpotato germplasm evaluated, 41 clones were identified as having high yield potential (≥ 30 t/ha t). Most of the selected clones had the ability to flower. The ability to flower is also a very important character as a consideration in determining the parentage of the crosses. The potential heritability of the selected clones is in the medium category, indicated that the genetic diversity of the two characters is quite high. Genetic and environmental factors show an equally large role in the appearance of the two characters. Two sweetpotato clones (MSU 10001-18 and MSU 07030-64) with dark purple flesh color and Kidal variety have above 30% tuber dry matter have the criteria required for export market.

Acknowledgment
We would like to acknowledge the the Director General of the Indonesian Agency for Research and Development (IAARD), Director of the Indonesian Food Crops Research and Development (ICFORD), the Head of the Indonesian Legumes and Tuber Crops Research Institute (ILETRI) for providing all supports to this research. The authors are also thankful to all staffs who have assisted this research.

References
[1] Widowati, S. and J. Wargiono. 2009. Nilai gizi dan sifat fungsional ubijalar. Inovasi teknologi dan kebijakan pengembangan, Puslitbangtan, Bogor.
[2] Ginting, E., J.S. Utomo, and N. Richana. 2012. Keunggulan fungsional ubijalar dari aspek kesehatan. Dalam Ubijalar (Inovasi Teknologi dan prospek pengembangan), Pusat Penelitian Tanaman pangan. Badan Litbang Pertanian.
[3] Basuki, N. 2005. Genetika Kuantitatif. Unit Penerbitan Fakultas Pertanian Universitas Brawijaya.
[4] Singh, R.K.B.D. 1979. Chaudhary, Biometrical Methods in Quantitative Genetic Analysis. Biometrical Methods in Quantitative Genetic Analysis, Kalyani Publishers, New Delhi.
[5] Murdaningsih, H.K., A. Baihaki, G. Satari, T. Danakusuma, and A.H. Permadi. 1990. Variasi genetik sifat-sifat tanaman bawang putih di Indonesia. Ziriat, 1: 26-36.
[6] Kuswantoro, H., N. Basuki, and D.M. Asyad. 2006. Identifikasi plasma nutfah kedelai toleran terhadap tanah masam berdasarkan keragaman genetik dan fenotipik. Agrivita, 28: 54 – 63.
[7] Jones, A. 1980. Hybridization of crop plants in: W.R. Fehr, H. Hadley (Eds.) Sweetpotato, American Society of Agronomy-Crop Science Society of America, USA, pp. 645-655.
[8] Teresa, M.L and G. Sta, Cruz, E. 1994. Chujoy, Heritability estimates of some root characters in sweetpotatoes. Phillipps. J. Crop Sc, 19: 27-32.
[9] Gruneberg, W.J, K. Manrique, Z. Dapeng, and M. Hermann. 2005. Genotype x environment interactions for a diverse set of sweetpotato clones evaluated across varying ecogeographic conditions in Peru. Crop Science. 45: 2160 – 2171.
[10] Bhagsari, A.S, and D.A. Asley. 1990. Relationship of photosynthesis and Harvest Index to Sweetpotato Yield. J. Amer Sot Hort Sci. 115: 288-293.
[11] Bhagsari, A.S, and S.A. Harmon. 1982. Photosynthesis and photosynathe partitioning in sweetpotato genotypes. J. Amer Sot Hort Sci, 107: 506-510.
[12] Bouwkamp, J.C., and M.N.M. 1988. Hassam, Source-sink relationships in sweetpotato, J. Amer Sot Hort Sci. 113: 627-629.
[13] Jha, G. 2012. Increasing productivity of sweetpotato (Ipomoea batatas L.) Lam through clonal selection of ideal genotypes from open pollinated seedling population, *International Journ. of Farm. Sci.* 2: 17-27.

[14] Dash, S.P., J. Singh, T. Panigrahi, and T. Thakur. 2015. Correlation and path analysis in sweetpotato (Ipomoea batatas (L.) Lam). *Plant Archives.* 15: 695-699.

[15] Indriani, F.C., S. Ashari, N. Basuki, and M. Jusuf. 2017. Normal seedling as a new parameter for predicting cross incompatibility level on sweetpotato, *Agrivita Journal of Agricultural Science*, 39: 56 – 65.

[16] Indriani, F.C., J. Restuono, W. Rahajeng, R. Iswanto, T. Sundari, R. Soehendi, D. Harnowo, Y. Baliadi, and M.J. Mejaya. 2021. Clone x Tester Crosses on Compatibility Level of Sweetpotato (Ipomoea batatas L.), *Annual Research & Review in Biology*, 36: 23 – 37.

[17] Palupi ES, Sarto M, and Pratiwi R. 2012. Aktivitas Antioksidan Jus Ubi Jalar Kultivar Lokal sebagai Penangkal Radikal Bebas 1,1-diphenyl-2-picrylhydrazyl (DPPH). *Sains & Mat.* 1(1): 13–16.