Parameters of flow in a section compressed by transverse floodplain dams

M Bakiev 1, U Kaxxarov 1, A Jakhonov 1 and Sh Panjiev 1

1Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan

azizjon_1990@umail.uz

Abstract. On floodplain rivers there are characteristic features of the construction of hydrotechnical structures, which in their design should be done taking into account this. These are the different types of floodplain and other floodplain, changes in the period of floodplain inflow, the interaction of flow and floodplain flows, the ability of floodplain rivers to water, the speed of flow and the features of turbidity, etc. The main purpose of this study is to develop a method of determining flow parameters in a two-way compressed cross-section with cross-dumbbells in the floodplain, taking into account the different bias of the Ozen and floodplain as well as the interaction of flows Experimental studies were conducted for parallel case of two-sided poise Ozen and poise flow arrows. The width of the beams is 85 sm, the width of the beams is 30 sm, the length of the lath is 11 m, the slope is i=0.0005, the slope is n=0.016 and the parameter of the dumbbells is \(n_d = 0.023 \). The flow parameters are long \(F_{rp} = 0.01 \rightarrow 0.3 \), \(R_{ep} > 10000 \), floodplain \(F_{rn} = 0.01 \rightarrow 0.18 \): \(R_{ep} > 4000 \). On the surface, the change in the compression coefficient EPR in the cases of dumbbells installation angle \(\alpha_d < 90^0 \) and \(\alpha_d \geq 90^0 \) was found to be heterogeneous and analytical expressions and graphs were developed to determine their values. The formulas for determining the speed of flow in a compressed cross-sectional area were proposed, taking into account the subordination of speed scanning to the expression Shlixting-Ayramovich in the zone of interaction by applying the equations of motion and consumption preservation

1. Introduction
The development of technologies for opening the flow patterns symmetrically swept by floodplain cross-blind dams, determining the hydraulic parameters of the flow in the confining range and the spreading zone, improving methods for calculating the velocity field, the length of the compression and spreading support areas are the most important task [1].

The very movement of the stream in floodplains attracts the attention of researchers from all over the world. In prose, the interaction of riverbed and floodplain flows is of paramount importance [2, 3, 4, 5, 6, 7, 8], the capacity of rivers with floodplains [9, 10, 11].

The construction of cross structures in the hedgehog stream complicates the task more and requires solving the issue of their design taking into account numerous factors [12, 13, 14].

Areas of support, compression, spreading, and recovery appear [15, 16, 17, 18]. Of particular interest is the establishment of regularities of flow reshaping in the constriction range: maximum speeds at the head, uneven speeds in the core, speeds on the floodplain, and regularities of changes in the spatial compression coefficient.

Knowing the parameters of the flow in the alignment, we can predict the possible depth and boundaries of the washout, and correctly assign the depth of the bottom of the attachment.
2. Materials and methods

The purpose is to develop a method for determining the flow parameters in the bipolar cross-section of the rhombus, taking into account the variability of the river and the ridge, and the interaction of the flow in the river and the ridge. Research method and procedure. The study was conducted in the case of parallel axis dynamic dynamics in a rectangular-shaped river with a double rectangular foot. The width of the river is 30 sm, the width of the trunk is 85 sm, the length of the trunk is 11 m, the slope \(i = 0.00005\). Experiments were conducted in two series on river bed weights.

In the first series, the root and root gravity were equal \(n = 0.016\), the second series was obtained by sand \(d = 1.5 \div 2.0\) mm, with the coefficient \(n_l = 0.023\) in the left thigh. To provide visual and instrumental research, the bottom of the tray is drawn 5\(\times\)5 sm and 10\(\times\)10 sm. On the walls, there is a telecentric running on the rails with a horizontal level.

Microcontroller SANIRI electronic system TsISPV – 6 was used to measure speed. Besides, the measurements were used with cracks and spindles. The experimental studies were conducted at the following characteristics of the dump and the angle of installation \(\alpha_d = 45 \div 135^\circ\), with compression level \(\theta_q = Q_{per}/Q = 0.14 \div 0.62\) (where \(Q_{per}\), \(Q\) is the total damages in the dam). Thus, the number of Fruds corresponds to the natural regime in the river \(Q = 5 \div 25\) l/h \(F_{rp} = 0.01 \div 0.3\), \(F_{rp} = 0.01 \div 0.18\). The turbulent mode was created in the hub \(R_{pe} > 4000\), and \(R_{pe} > 10000\). The condition of the planned issue was adopted on the recommendation of I.I. Levi \(B/h > 6\). The velocities and flow directions were studied in the experiments.

Boundary and longitudinal differences of river and riparian flows, boundaries of upper and lower water circulation zones, depth, and transverse velocities were studied. The velocity was measured at depth 3 points, in the case of shallow depths measured at 0.6 \(h\). The distance between the verticals is 2 to 10 sm, depending on the length of the zone. The water level was determined by spin-off and nivification. The upper and lower burrowing zones (zones) were calculated using water cuts and dyes, velocity divergence, and the water meter at the end of the ridge.

3. Results

Based on the results of experiments on the interaction of flow and ripple flow, the outline plan flow in compression and stagnation zones was developed, based on the results of experimental studies of the hydraulic parameters of the flow in the compressed section and the method for calculating the velocity field. The interaction of the river and the ripple flow is based on the results of experimental studies of the different velocities at the boundary of the two streams when the dams are deployed, accelerated mass transfer, slower flow, and acceleration in the ripple flow, the increased velocity at a certain width and similar characteristics. The compression of the two-rods with waterproof dams from the body, however, was based on the formation of zones of water shearing, compression, spreading, and potential energy recovery zones. Existing solutions have been studied based on the average velocity at the compressed cross-section, but the actual velocities are uneven at the O-O cross-section and compression zone (Figure 1).
The following flow parameters are formed in the O-O compression cross-section: Low-impact core in the river, \(U_{po} \) velocity; less affected core in the race, speed \(U_{po} \); first intensive turbulent mixing zone, unevenly distributed flow rate \(U_{10} \); the second intensive turbulent mixing zone, formed after compression cross-section, velocity \(U_{20} \).

We use the G.N.Abramovich [19] method to determine the flow parameters in the compressed stack and enter the hypothetical flow with the width \(B_p \) and velocity \(U_{in} \), Speed \(U_{in} \). Width \((B_i - B_f) \), and \(U_p \) if above the compressed stove.

The flow parameters in the \(F-F \) and \(O-O \) intersections are associated with the cost-saving and mobility equations.

\[
\rho U_m^2 B_f h_n + \rho U_n^2 (B_i - B_f) h_n + \rho U_p^2 B_p h_p = \rho h_n \int_{0}^{1} U_1^2 dY + \rho U_p^2 h_n (B_1 - \alpha_1) + \rho U_p^2 B_p h_p
\]

\((1)

It has been established that the velocity distribution in the first zone \(n \) of intensive turbulent interference is subject to the theoretical dependencies of Shlitsing-Abramovich.

\[
\frac{U_{1,o} - U_{mo}}{U_{m,o} - U_{po}} = \left(1 - \eta^{1.5}\right)^2
\]

in this \(\eta = \frac{V_{Y_1} - V}{V_{Y_{s,6}} - V} \); \(U_{1,o} \) is the relative ordinate of the point to be determined.

Taking the formula (1) into the expression (2), we get the following equations:

\[
U_m^2 B_f h_{mo} + U_m^2 B_f h_n + U_p^2 B_p h_p = U_m^2 h_{mo} \alpha_1 (0.316 + 0.268 m_o + 0.416 m_n^3) +
\]

\[+ U_p^2 h_n (B_1 - \alpha_1) + U_p^2 B_p h_p \quad (3)

\[U_m^2 B_f h_{mo} + U_m^2 (B_i - B_f) h_n + U_p^2 B_p h_p = U_m^2 h_{mo} \alpha_1 (0.45 + 0.55 m_o) + U_m^2 h_n (B_1 - \alpha_1) + U_p^2 B_p h_p \quad (4)

In this equation: \(U_{mo} \) is the maximum velocity formed at the head of the dam; \(U_{po} \) is the speed of the core in the race; \(U_{po} \) is the flow rate in the river; \(h_{mo} \), \(h_{po} \) are ridge and stream depths in the river; \(B_f \) is the width of the flow at which the maximum velocity is formed at the hypothetical cross-section.

Apparently, in the 2 equations obtained, 4 are unknown, \(U_{mo} \), \(B_p \), \(U_{mo} \), and \(U_{mo} \).

A.M.Latyschenkov [18] proposed the coefficient of velocity increase along the river in the formulation of the system solution:

\[
\beta_p = 1 + \frac{\theta}{\tau} \cdot \frac{\omega_p}{\omega_p + \epsilon_{np} \cdot \omega_n}
\]

Where \(\tau = \frac{Q_p}{Q} \) is the relative consumption of the river; \(\omega_p \), \(\omega_n \) are the surface of the river and river sections between the transverse dams; \(\epsilon_{np} = \left(\omega_p + \omega_n'\right) / \left(\omega_p + \omega_n\right) \), where \(\omega_n' \) is live stream surface crosses the river and its compressed section.
Experimental studies were performed ε_{np} to determine the surface compression coefficients, the results are presented in Table 1, and the graphical correlations $\varepsilon_{np}=f(\theta_q)$ and $\varepsilon_{np} = f\left(1 + \frac{\alpha_d}{180}\right)$ were obtained based on the table results (Figure 2, 3). Based on the results, it was found that the angles of the dam installation variations in the case of $\alpha_d < 90^0$ and $\alpha_d \geq 90^0$ ε_{np} the following analytical expressions are suggested

$$\varepsilon_{np} = 1 - 0.1 \cdot \theta_q^{1.15} \cdot \left(1 + \frac{\alpha_d}{180}\right)^{2.84}$$

$\alpha_d < 90^0$ $r^2 = 0.998$

$$\varepsilon_{np} = 1 - 0.2 \cdot \theta_q^{1.62} \cdot \left(1 + \frac{\alpha_d}{180}\right)^{2.59}$$

$\alpha_d \geq 90^0$ $r^2 = 0.983$

Table 1. The values ε_{np} of the surface compression coefficient calculated for the case of compression of the flow in the hinge by two-sided dumps are given in the table below.

α_d	θ_q	135^0	90^0	70^0	45^0
0.14	0.95	0.965	0.97	0.98	
0.20	0.93	0.95	0.955	0.97	
0.30	0.865	0.91	0.93	0.95	
0.44	0.77	0.85	0.89	0.925	
0.56	0.66	0.785	0.86	0.905	
0.62	0.61	0.75	0.845	0.89	

Figure 2. Dependence graph of expenditure depends θ_q on the surface compression coefficient of the $\varepsilon_{np}=f(\theta_q)$
The calculated values θ_q for each angular size are shown β_p in the graphs proposed by A.M.Latyshenkov [18] and the conformity of the graphs is appropriate for their compression states (Figure 4).

To determine the B_f, we compose the cost-saving equation in the $F - F$ (hypothesis cross-section) and $\Pi - \Pi$ (byte mode) states:

$$U_{pF} B_p h_{pF} + B_p U_{nF} h_{nF} = U_{mF} B_f h_{mF} + U_{mF} (B_f - B_f) h_{nF} + B_p U_{pf} h_{pf}$$

(5)

Here $h_{nF} = h_{no}$; $U_{pf} = U_{po}$; $h_{pf} = h_{po}$.

(5) The equation: $h_{no} = h_{pf}$ we get the following equation:

$$U_{pF} B_p h_{pF} + B_p U_{nF} h_{nF} = U_{mF} B_f + U_{mF} B_1 - U_{mF} B_f + B_p U_{pf} h_{pf}$$

(6)

(6) From the equation, we define the width of the hypothesis that the maximum velocity is formed:

$$B_f = \frac{U_{pF} B_p h_{pF} + U_{nF} B_1 h_{nF} - U_{nF} B_1 - U_{mF} B_f}{U_{mF} - U_{mF}}$$

(7)
here \(\bar{h}_{p6} = h_{p6}/h_{no} \), \(\bar{h}_{n6} = h_{n6}/h_{no} \), \(\bar{h}_{po} = h_{po}/h_{no} \)

\(B_f \) is the width of the trunk in the compressed section; \(B_p, B_n \) are the width of the river and the ridge in the endless mode

\(B_f \) is the formula for determining the maximum flow rate in a compressed section using the cost-saving equation is given by equation (4):

\[
U_{mo} = \frac{U_p B_p \bar{h}_{p6} + U_n B_n \bar{h}_{n6} - U_p B_p \bar{h}_{po} - U_n (B_1 - 0.45 \bar{\alpha}_1)}{0.45 \bar{\alpha}_1}
\]

(8)

Here it is \(\bar{h}_{p6} = h_{p6}/h_{no} \); \(\bar{h}_{n6} = h_{n6}/h_{no} \); \(\bar{h}_{po} = h_{po}/h_{no} \)

Experimental studies show that the positions of rays 5 and 2 are stable and determined (Figure 1).

\(\bar{\alpha}_1 = (C_1 + C_2) \cdot X \)

(9)

where are the turbulence constants according to experiments \(C_1=0.23, C_2=0.16 \) (Figure 5).

Let’s use this to determine the distance to the dummy section \(l_f \) and the width of the first zone of turbulent mixing \(\alpha_f \)

It is obvious from the ratio of the rectangle (Figure 1) on target \(F - F \) and \(O - O \) you can record

\[
B_f + l_f \sin \alpha_d = l_d \sin \alpha_d + C_2 l_t
\]

(10)

where from

\[
l_t = 6.25 B_f
\]

then (9) takes the form

\[
\bar{\alpha}_1 = 0.39 l_f = 2.44 B_f
\]

(11)

Substituting the obtained (11) into the equation of the amount of motion (3), after some transformations we get the square equation

\[
0.425 m_1^2 + 0.654 m_0 + 0.229 = 0
\]

(12)

Analysis of equation (12) shows that it has two roots one is greater than or equal to one, it is discarded because it contradicts the physics of the phenomenon that would mean \(U_{no} > U_{mo} \)

A root less than one is accepted as valid and is equal to

\[
m_{Q_2} = U_{no}/U_{mo} = 0.54
\]

(13)

Thus, the fact established experimentally by A. M. Latyshenkov [18] about a proportional increase in speeds on the floodplain and in the riverbed when the flow is constrained by transverse floodplain dams is confirmed theoretically using the equation of the amount of movement.
It should be noted that the proposed method for calculating the speed in the floodplain part of the constraint target is maintained for the flow as the average on the floodplain \(\bar{\vartheta} \) that is, without taking into account the actual distribution of speeds as we have done above.

It is interesting to compare the two methods. To do this we will use the equation of saving the flow rate recorded for the floodplain part of the constraint target \(O^--O \)

\[
\bar{\vartheta}_n h_n B_l = \bar{U}_n h_n (B_l - a_l) + \bar{U}_m h_m \epsilon_l (0.45 + 0.55 m_o)
\]

(14)

Where from

\[
\frac{\bar{\vartheta}_n}{U_{no}} = 1 + 0.45 \epsilon_l (m_o' - 1)
\]

(15)

where \(m_o' = U_{mo} / U_{no} = 1/m_o \)

Since in equation (15), the relative velocity is always \(m_o' > 1 \) that \(\vartheta_n > U_{no} \)

In other words, the calculation of the average speed on the floodplain by the method [18] gives some underestimated values.

The obtained dependencies give the longitudinal component of the velocity vector. Meanwhile, to correctly determine the depth of local erosion at the head of the structure, it is necessary to know the actual values of the maximum speed and specific costs.

It is obvious (Figure 1)

\[
U_{mo}' = U_{mo} \cos \varphi = \kappa' U_{mo}
\]

(16)

where \(\varphi \) is the angle between the channel axis and the velocity vector \(\kappa' = 1/\cos \varphi \)

Experimental research shows the main impact on \(\varphi \) determines the degree of flow restriction and the angle of the dam installation (Figure 6).

![Figure 6. Graphics \(\cos \varphi = f(\theta_d, \alpha_d) \)](image)

1, 2, 3 - \(\cos \varphi = f(\theta_d) \); 1 - (X) \(x/l_{cc} = 0 \); 2 - (○) \(x/l_{cc} = 0.2 \);
3 - (△) \(x/l_{cc} = 0.6 \); 4 - \(\cos \varphi = f(\alpha_d) \)

As seen in Figure 6 \(\cos \varphi \) decreases with increasing degree of constraint \(\theta_d \) and the angle of the dam installation \(\alpha_d \). There is an increase \(\cos \varphi \) by the length of the compression area and by the
width of the stream on the floodplain. In this case, the absolute values ϕ are reduced both in the length and width of the compression area.

According to [18] K' changes from $(1.55 - 2.0)\theta_q$. By formula $U_{mo} = 1.85U_{no}$ also, you must take into account K' according to the schedule (Figure.6) when calculating the maximum speeds in the range of constraint U_{mo}'.

4. Discussion

The construction of floodplain dams that symmetrically constrain the flow requires the establishment of a redefinition of flow parameters in the junction range.

Model studies were performed in the laboratory of the Department "Hydraulic structures and engineering structures" with the following flow parameters and structures: flow rate from 5 to 25 l/s, Froude numbers $F_{rp} = 0.01 \div 0.3$, $F_{rn} = 0.01 \div 0.18$; Reynolds numbers $R_{re} > 4000$, $R_{rep} > 10000$, the degree of constraint on the flow $Q_q = 0.14 \div 0.62$ angles of the dam installation $\alpha_d = 45 \div 135^0$.

The previously proposed dependencies for determining the depth and size of the local washout are based on average speeds. The solution to the problem is given taking into account the uneven distribution of speeds in the range of constraint. Different patterns of changes in the spatial compression coefficient were found at $\alpha_d < 90^0$ and $\alpha_d \geq 90^0$. The dependences for determining the U_{mo} are obtained theoretically, and it is also established that the velocity distribution in the zone of a weakly disturbed core is universal.

A.M. The situation experimentally proved by Latishenkov, that is, when the flow is compressed with cross-dumbbells in the pedestal, the growth of the flow rate in the Ozen and POIS is based on the theoretical way of proportional change. At us $U_{mo}/U_{mo} = 0.54$.

The resulting fasteners allow you to determine the longitudinal vector of the speed. Whereas, to correctly determine the washing depth next to the dumbbells (head), it is necessary to know the maximum speed and the actual values of the comparable costs:

Experimental studies speed vector and the angle between the Ozen axis ϕ to θ_q and α_d; it was shown that the size affects, this is an increase in the size leads to a reduction in cost. Along the length of the compression zone and the width of the poppet flow there was an increase in size.

Together with this ϕ absolute value of decreases. Obtained graphics maximum U_{mo}' in the calculation of speed K' provides the possibility of determining the size

Direct calculations show that the depth of local washing is about $10 \div 30\%$ greater than the average speed of detection. Besides, there was an opportunity to visually determine the boundaries of reinforcement on the head of the structure on a fairly basic basis.

5. Conclusion

1. In contrast to solutions based on the average speed in the compressed section, there were parameters of the flow velocity, the speed in the loop, the maximum speed in the U_{mo}, the maximum speed next to the dumbbell bench U_{mo} the determination formulas were developed taking into account the uneven scanning of the speed.

2. Degree of compaction by spending from experiments θ_q, installation angle of the dumbbell α_d, it has been proved that the increase leads to a decrease in the coefficient of compression on the surface. Reduction intensity when built on dam current 0.09, when built against the current, the equality of 0.34 was determined, as well as ε_{np} to determine, some-some analytical expressions were proposed.

3. With the proposed method, that is, taking into account the uneven breakdown of the speed in the compression section, the calculation was made $10 \div 30$ magnitudes from the displacement depth determined by the average speed.

References
[1] Bakiev M Altunin S Tursunov T Choriev J 2011 Adjust yourself (Mehr, Uzbekistan)
[2] Baryshnikov N Morphology 1984 Hydrology and hydraulics of floodplains (Gidrometeoiتزdat).
[3] Proust S Riviere N Bousmar D Paquier A Zech Y 2006 Journal of Hydraulic Engineering 132(9) pp 37-39
[4] Knight D W and Shiono K J 1990 Journal of hydraulic research 28(2) pp 175-196.
[5] Kishanjit K, K Kanh and Ch Patra J 2012 Journal of Hydraulic Engineering 7(2) pp 11-26
[6] Rajaratnam N and Ahmadi R 1981 Journal of Hydraulic Research 28(2) pp 175-196.
[7] Pagin A 2008 The effect of the interaction of the channel and floodplain flows on the transport of bottom sediments Abstract of Candidate's dissertation (St. Petersburg, Russia)
[8] Shamloo H, Pirzadeh B 2008 Journal of River Engineering. 2(5) pp 37-40
[9] Zheleznyakov G 1981 Bandwidth of channels and rivers (Dustlik, Uzbekistan)
[10] Selina T S 2011 The capacity of the channels with floodplains Author's abstract (St. Petersburg Russia)
[11] Pagin A, Baryshnikov N and Neichinov K, The impact of the floodplain on the transporting ability of the channel flow. News VNIIG them B E Vedeneeva Hydraulics of hydraulic structures Volume 245
[12] Bakiev M R 1974 Patterns of flow spreading behind a deaf and through spur (Tashkent, Uzbekistan)
[13] Bakiev M R 1992 Improving the designs, methods of calculation and design of regulatory structures (Moscow, Russia)
[14] Bakiev M R Khayitov Kh, Recommendations for the design of transverse dams on rivers with a one-sided floodplain for the partial development of the inter-dam floodplain. Toshkent (2011)
[15] Abdul Karim Shihab 1991 Patterns of flow spreading behind a transverse dam on rivers with a wide flood plain
[16] Mohanta A, Khatua K, Patra K 2015 Flow modeling in symmetrically narrowing flood plains www.sciencedirect.com ICWRCOE 3(2) pp 826-833.
[17] Bakiev M R and Kahhorov U 2017 European Science Review pp 195-199
[18] Latyshenkov A M 1960 Hydraulics issues for artificially compressed channels (Moscow Gosstroyizdat) 2(3) pp 184-192
[19] Abramovich G N 1960 Theory of turbulent jets (Moscow Fizmatgiz) 2(6) pp 256-259
[20] Mikhailov M A 1971 Hydraulic calculation of flows with a whirlpool Energy 4(3) pp 241-245
[21] Schlichting G 1962 Theory of the boundary layer M Science 2(5) 120-124
[22] Grishanin K V1992 Hydraulic resistance of natural channels S Petersburg Gidrometeoiتزdat 3(2) pp 184-187