Citation for published version (APA):
Li, Z., Oren, N., & Parsons, S. (2017). On the links between argumentation-based reasoning and nonmonotonic reasoning. In The 2017 International Workshop on Theory and Applications of Formal Argument (pp. 67-85). (Part of the Lecture Notes in Computer Science book series (LNCS, volume 10757)). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-319-75553-3_5
On the links between argumentation-based reasoning and nonmonotonic reasoning

Zimi Li\(^1\), Nir Oren\(^2\), and Simon Parsons\(^3\)

\(^1\) Department of Computer Science, Graduate Center, City University of New York
zli2@gradcenter.cuny.edu

\(^2\) Department of Computing Science, University of Aberdeen
n.oren@abdn.ac.uk

\(^3\) Department of Informatics, King’s College London
simon.parsons@kcl.ac.uk

Abstract. In this paper we investigate the links between instantiated argumentation systems and the axioms for non-monotonic reasoning described in [15] with the aim of characterising the nature of argument based reasoning. In doing so, we consider two possible interpretations of the consequence relation, and describe which axioms are met by ASPIC\(^+\) under each of these interpretations. We then consider the links between these axioms and the rationality postulates. Our results indicate that argument based reasoning as characterised by ASPIC\(^+\) is — according to the axioms of [15] — non-cumulative and non-monotonic, and therefore weaker than the weakest non-monotonic reasoning systems considered possible. This weakness underpins ASPIC\(^+\)’s success in modelling other reasoning systems. We conclude by considering the relationship between ASPIC\(^+\) and other weak logical systems.

1 Introduction

The rationality postulates proposed by Caminada and Amgoud [4] have been influential in the development of instantiated argumentation systems. These postulates identify desirable properties for the conclusions drawn from an argument based reasoning process, and focus on the effects of non-defeasible rules within an argumentation system. However, these postulates provide no desiderata with regards to the conclusions drawn from the defeasible rules found within an argumentation system. This latter type of rule is critical to argumentation, and identifying postulates for such rules is therefore important. At the same time, a large body of work exists which deals with non-monotonic reasoning (NMR). Such NMR systems (exemplified by approaches such as circumscription [18], default logic [23] and auto-epistemic logic [21]) introduce various approaches to handling defeasible reasoning, and axioms have been proposed to categorise such systems [15].

In this paper we seek to combine the rich existing body of work on NMR with structured argumentation systems. We aim to identify what axioms structured argument systems, exemplified by ASPIC\(^+\)[19] meet\(^4\). In doing so, we also wish to investigate

\(^4\) ASPIC\(^+\) was selected for this study due to its popularity, and its ability to model a variety of other structured systems [20].
the links between NMR axioms and the rationality postulates. This latter strand of work will, in the future, potentially allow us to identify additional rationality postulates which have not been considered to date.

2 The ASPIC+ Argumentation Framework

ASPIC+ [19] is a widely used formalism for structured argumentation, which satisfies the rationality postulates of [4]. Arguments within ASPIC+ are constructed by chaining two types of inference rules, beginning with elements of a knowledge base. The first type of inference rule is referred to as a strict rule, and represents rules whose conclusion can be unconditionally drawn from a set of premises. This is in contrast to defeasible inference rules, which allow for a conclusion to be drawn from a set of premises as long as no exceptions or contrary conclusions exist.

Definition 1. An argumentation system is a triple \(AS = (L, R, n) \) where:

- \(L \) is a logical language.
- \(R \) is a function from \(L \) to \(2^L \), such that:
 - \(\phi \) is a contrary of \(\psi \) if \(\phi \in \overline{\psi}, \psi \notin \overline{\phi} \)
 - \(\phi \) is a contradictory of \(\psi \) (denoted by ‘\(\phi = \overline{\psi} \)’), if \(\phi \in \overline{\psi}, \psi \in \overline{\phi} \)
 - each \(\phi \in L \) has at least one contradictory.
- \(n : R_d \mapsto L \) is a naming convention for defeasible rules.

We write \(\phi_1, \ldots, \phi_n \dashv \vdash \phi \) if \(R \) contains a (strict or defeasible) rule of the form \(\phi_1, \ldots, \phi_n \rightarrow \phi \) or \(\phi_1, \ldots, \phi_n \Rightarrow \phi \).

Definition 2. A knowledge base in an argumentation system \(AS = (L, R, n) \) is a set \(K \subseteq L \) consisting of two disjoint subsets \(K_n \) (the axioms) and \(K_p \) (the ordinary premises).

An argumentation theory consists of an argumentation system and knowledge base.

Definition 3. An argumentation theory \(AT \) is a pair \((AS, K) \), where \(AS \) is an argumentation system \(AS \) and \(K \) is a knowledge base.

An argumentation theory is strict iff \(R_d = \emptyset \) and \(K_p = \emptyset \), and is defeasible otherwise.

To ensure that reasoning meets norms for rational reasoning according to the rationality postulates of [4], an ASPIC+ argumentation system’s strict rules must be closed under transposition. That is, given a strict rule with premises \(\varphi = \{\phi_1, \ldots, \phi_n\} \) and conclusion \(\phi \) (written \(\varphi \rightarrow \phi \)), a set of \(n \) additional rules of the following form must be present in the system: \(\{\overline{\varphi}\} \cup \varphi \{\phi_i\} \rightarrow \overline{\phi_i} \) for all \(1 \leq i \leq n \).

Arguments are defined recursively in terms of sub-arguments and through the use of several functions: \(\text{Pre}(A) \) returns all the premises of argument \(A \); \(\text{Con}(A) \) returns \(A \)’s conclusion, and \(\text{TopRule}(A) \) returns the last rule used within the argument. \(\text{Sub}(A) \) returns all of \(A \)’s sub-arguments. Given this, arguments are defined as follows.

5 While additional rationality postulates have been proposed [24], we do not consider them in this paper.
Definition 4. An argument A on the basis of an argumentation theory $AT = \langle \mathcal{L}, \mathcal{R}, \pi, n, \mathcal{K} \rangle$ is:

1. ϕ if $\phi \in \mathcal{K}$ with: $\text{Prem}(A) = \{\phi\}$; $\text{Conc}(A) = \{\phi\}$; $\text{Sub}(A) = \{A\}$; $\text{TopRule}(A)$ undefined.
2. $A_1, \ldots, A_n \rightarrow / \Rightarrow \phi$ if A_i are arguments such that there respectively exists a strict/defeasible rule $\text{Conc}(A_1), \ldots, \text{Conc}(A_n) \rightarrow / \Rightarrow \phi$ in $\mathcal{R}_s / \mathcal{R}_d$. $\text{Prem}(A) = \text{Prem}(A_1) \cup \ldots \cup \text{Prem}(A_n)$; $\text{Conc}(A) = \phi$; $\text{Sub}(A) = \text{Sub}(A_1) \cup \ldots \cup \text{Sub}(A_n) \cup \{A\}$; $\text{TopRule}(A) = \text{Conc}(A_1), \ldots, \text{Conc}(A_n) \rightarrow / \Rightarrow \phi$.

We write $\mathcal{A}(AT)$ to denote the set of arguments on the basis of the theory AT, and given a set of arguments \mathcal{A}, we write $\text{Concs}(\mathcal{A})$ to denote the conclusions of those arguments, that is:

$$\text{Concs}(\mathcal{A}) = \{\text{Conc}(A) \mid A \in \mathcal{A}\}$$

Like other argumentation systems, ASPIC$^+$ utilises conflict between arguments — represented through attacks — to determine what conclusions are justified.

An argument can be attacked in three ways: on its ordinary premises, on its conclusion, or on its inference rules. These three kinds of attack are called undermining, rebutting and undercutting attacks, respectively.

Definition 5. An argument A attacks an argument B iff A undermines, rebuts or undercuts B, where:

- A undermines B (on B') iff $\text{Conc}(A) = \overline{\phi}$ for some $B' = \phi \in \text{Prem}(B)$ and $\phi \in \mathcal{K}_p$.
- A rebuts B (on B') iff $\text{Conc}(A) = \overline{\phi}$ for some $B' \in \text{Sub}(B)$ of the form $B''_1, \ldots, B''_n \Rightarrow \phi$.
- A undercut B (on B') iff $\text{Conc}(A) = \overline{\phi}$ for some $B' \in \text{Sub}(B)$ such that $\text{TopRule}(B)$ is a defeasible rule r of the form $\phi_1, \ldots, \phi_n \Rightarrow \phi$.

Note that, in ASPIC$^+$ rebutting is restricted: an argument with a strict TopRule can rebut an argument with a defeasible TopRule, but not vice versa. ([5] and [16] introduce the ASPIC- and ASPIC^+_D systems which use unrestricted rebut). Finally, a set of arguments is said to be consistent iff there is no attack between any arguments in the set.

Attacks can be distinguished by whether they are preference-dependent (rebutting and undermining) or preference-independent (undercutting). The former succeed only when the attacker is preferred. The latter succeed whether or not the attacker is preferred. Within ASPIC$^+$ preferences over defeasible rules and ordinary premises are combined to obtain a preference ordering over arguments [19]. Here, we are not concerned about the means of combination, but, following [19], we only consider reasonable orderings. For our purposes, a reasonable ordering is one such that adding a strict rule or axiom to an argument will neither increase nor decrease its preference level.

Definition 6. A preference ordering \preceq is a binary relation over arguments, i.e., $\preceq \subseteq \mathcal{A} \times \mathcal{A}$, where \mathcal{A} is the set of all arguments constructed from the knowledge base in an argumentation system.

Combining these elements results in the following.
Definition 7. A structured argumentation framework is a triple \(\langle A, \text{att}, \preceq \rangle \), where \(A \) is the set of all arguments constructed from the argumentation system, \(\text{att} \) is the attack relation, and \(\preceq \) is a preference ordering on \(A \).

Preferences over arguments interact with attacks such that preference-dependent attacks succeed when the attacking argument is preferred. In contrast, preference-independent attacks always succeed. Attacks that succeed are called defeats. Using Definition 4 and the notion of defeat, we can instantiate an abstract argumentation framework from a structured argumentation framework.

Definition 8. An (abstract) argumentation framework \(\text{AF} \) corresponding to a structured argumentation framework \(\text{SAF} = \langle A, \text{att}, \preceq \rangle \) is a pair \(\langle A, \text{Defeats} \rangle \) such that \(\text{Defeats} \) is the defeat relation on \(A \) determined by \(\text{SAF} \).

This abstract argumentation framework can be evaluated using standard argumentation semantics [8], defining the notion of an extension:

Definition 9. Let \(\text{AF} = \langle A, \text{Defeats} \rangle \) be an abstract argumentation framework, let \(A \in A \) and \(E \subseteq A \). \(E \) is said to be conflict-free iff there do not exist a \(B, C \in E \) such that \(B \) defeats \(C \). \(E \) is said to defend \(A \) iff for every \(B \in A \) such that \(B \) defeats \(A \), there exists a \(C \in E \) such that \(C \) defeats \(B \). The characteristic function \(F : 2^A \to 2^A \) is defined as \(F(E) = \{ A \in A \mid E \text{defends } A \} \). \(E \) is called (1) an admissible set iff \(E \) is conflict-free and \(E \subseteq F(E) \); (2) a complete extension iff \(E \) is conflict-free and \(E = F(E) \); (3) a grounded extension iff \(E \) is the minimal complete extension; (4) a preferred extension iff \(E \) is a maximal complete extension, where minimality and maximality are w.r.t. set inclusion; and (5) a stable extension iff \(E \) is a preferred extension which attacks all arguments in \(A - E \).

We note in passing that other extensions have been defined and refer the reader to [1] for further details.

The status of an argument is as follows:

- An argument is credulously accepted if it is a member of at least one preferred extension.
- An argument is sceptically accepted if it is a member of every preferred extension.
- If neither of the above hold, then the argument is rejected.

Furthermore, [6] describes the difference between sceptical, credulous and universal acceptance of a conclusion:

Definition 10. For \(T \in \{ \text{admissible, complete, preferred, grounded, stable} \} \), if \(\text{AF} = \langle A, \text{Defeats} \rangle \) is an abstract argumentation framework, we say that:

- \(\phi \) is a \(T \) credulously justified conclusion of \(\text{AF} \) iff there exists an argument \(A \) and a \(T \) extension \(E \) such that \(A \in E \) and \(\text{Conc}(A) = \phi \).
- \(\phi \) is a \(T \) sceptical justified conclusion of \(\text{AF} \) iff for every \(T \) extension \(E \), there exists an argument \(A \in E \) such that \(\text{Conc}(A) = \phi \).
- \(\phi \) is a \(T \) universal justified conclusion of \(\text{AF} \) iff there exists an argument \(A \) for every \(T \) extension \(E \), such that \(A \in E \) and \(\text{Conc}(A) = \phi \).
| Abbr. | Axiom | Name |
|-------|--------|------|
| Ref | $\alpha \vdash \alpha$ | Reflexivity |
| LLE | $\models \alpha \equiv \beta \quad \alpha \vdash \gamma \quad \beta \vdash \gamma$ | Left Logical Equivalence |
| RW | $\models \alpha \leftrightarrow \beta \quad \gamma \vdash \alpha \quad \gamma \vdash \beta$ | Right Weakening |
| Cut | $\alpha \land \beta \vdash \gamma \quad \alpha \vdash \beta \quad \alpha \vdash \gamma$ | Cut |
| CM | $\alpha \vdash \beta \quad \alpha \vdash \gamma \quad \alpha \land \beta \vdash \gamma$ | Cautious Monotonicity |
| M | $\models \alpha \leftrightarrow \beta \quad \beta \vdash \gamma \quad \alpha \vdash \gamma$ | Monotonicity |
| T | $\alpha \vdash \beta \quad \beta \vdash \gamma \quad \alpha \vdash \gamma$ | Transitivity |
| CP | $\alpha \vdash \beta \quad \beta \vdash \pi \quad \pi \vdash \gamma$ | Contraposition |

Table 1. The axioms from [15] that we will consider.

3 Axiomatic Reasoning and ASPIC+$^+$

Kraus et al. [15], building on earlier work by Gabbay [11], identified a set of axioms which characterise non-monotonic inference in logical systems, and studied the relationships between sets of these axioms. Their goal was to characterise different kinds of reasoning; to pin down what it means for a logical system to be monotonic or non-monotonic; and — in particular — to be able to distinguish between the two. Table 1 presents the axioms of [15], which we will use to characterise reasoning in ASPIC+$^+$+. The symbol \vdash encodes a consequence relation, while \models identifies the statements obtainable from the underlying theory. We have altered some of the symbols used in [15] to avoid confusion with the notation of ASPIC+$^+$. Equivalence is denoted \equiv (rather than \leftrightarrow), and \rightarrow (rather than \to) denotes the existence of a strict or defeasible rule.

Consequence relations that satisfy Ref, LLE, RW, Cut and CM are said to be cumulative, and [15] describes them as being the weakest interesting logical system. Cumulative consequence relations which also satisfy CP are monotonic, while consequence relations that are cumulative and satisfy M are called cumulative monotonic. Such relations are stronger than cumulative but not monotonic in the usual sense.

To determine which axioms ASPIC+$^+$ does or does not comply with, we must decide how different aspects of the axioms should be interpreted. We interpret the consequence relation \vdash in two ways that are natural in the context of ASPIC+$^+$+,— describing these in detail later — and which fit with the high level meaning of “if α is in the knowledge base, then β follows”, or “β is a consequence of α.”
Assuming such an interpretation of $\alpha \wedge \beta \vdash \gamma$ we can consider the meaning of the axioms. Some axioms are clear. For example, axiom T says that if β is a consequence of α, and γ is a consequence of β, then γ is a consequence of α. Other axioms are more ambiguous. Does $\alpha \wedge \beta \vdash \gamma$ in Cut mean that γ is a consequence of the conjunction $\alpha \wedge \beta$, or a consequence of α and β together? In other words is \wedge a feature of the language underlying the reasoning system, or a feature of the meta-language in which the properties are written? Similarly, given the distinction between strict and defeasible rules, is $\alpha \hookrightarrow \beta$ a strict rule in ASPIC$^+$, a defeasible rule, or some statement in the property meta-language?

We interpret the symbols found in the axioms as follows:

- $\models \alpha$ means that α is an element of the relevant knowledge base.
- $\alpha \wedge \beta$ means both α and β, in particular in Cut and CM, \wedge means that both α and β are in the knowledge base.
- $\alpha \equiv \beta$ is taken — as usual — to abbreviate the formula $(\alpha \hookrightarrow \beta) \wedge (\beta \hookrightarrow \alpha)$. We assume $\alpha \hookrightarrow \beta$ and $\beta \hookrightarrow \alpha$ have the same interpretation, i.e., both or neither are strict.
- $\alpha \hookrightarrow \beta$ has two interpretations. We have the strict interpretation in which $\alpha \hookrightarrow \beta$ denotes a strict rule $\alpha \rightarrow \beta$ in ASPIC$^+$, and the defeasible interpretation in which $\alpha \hookrightarrow \beta$ denotes either a strict or defeasible rule. We denote the latter interpretation by writing $\alpha \rightsquigarrow \beta$.

4 Axioms and Consequences in ASPIC$^+$

In this section we examine which of the axioms ASPIC$^+$ satisfies. Before doing so however, we must further pin down some aspects of ASPIC$^+$ rules.

4.1 Preliminaries

To evaluate ASPIC$^+$, we have to be a bit more precise about exactly what we are evaluating. We start by saying that we assume an arbitrary ASPIC$^+$ argumentation theory $AT = \langle \langle L, R, n \rangle, K \rangle$, in the sense that we say nothing about the contents of the knowledge base, or what domain-specific rules it contains. However, we distinguish between two classes of theory, with respect to the base logic that the theory contains.

The idea we capture by this is that in addition to domain specific rules — rules, for example, about birds and penguins flying — an ASPIC$^+$ theory might also contain rules for reasoning in some logic. For example, we might equip an ASPIC$^+$ theory with the axioms and inference rules of classical logic. Such a theory would be able to construct arguments using all the rules of classical logic, as well as all the domain-specific rules in the theory. The two base logics that we consider are classical logic, and what we call the “empty” base logic, where the ASPIC$^+$ theory only contains domain-specific rules. (We make some observations about other base logics — intuitionistic logic and defeasible logic [2], but show no formal results for them.)

For each of the base logics, we consider the two different interpretations of the non-monotonic consequence relation \vdash described above, identifying which axioms each
interpretation satisfies. For our theory AT, we write AT_x to denote an extension of this augmentation theory also containing proposition x: $AT_x = \langle \langle L, R, n \rangle, \mathcal{K} \cup \{x\} \rangle$. An argument present in the latter, but not former, theory is denoted A^x.

4.2 Argument Construction

We begin by considering the consequence relation as representing argument construction. In other words, we interpret $\alpha \models \beta$ as meaning that if α is in the axioms or ordinary premises of a theory, we can construct an argument for β. More precisely:

Definition 11. We write $\alpha \models_{\emptyset, \alpha} \beta$, if for every ASPIC$^+$ argumentation theory $AT = \langle \langle L, R, n \rangle, \mathcal{K} \rangle$ with the empty base logic such that $\beta \not\in \text{Conc}(A(\mathcal{A}))$, it is the case that $\beta \in \text{Conc}(A(\mathcal{A}(AT_{\alpha})))$.

Definition 12. We write $\alpha \models_{\gamma, \alpha} \beta$, if for every ASPIC$^+$ argumentation theory $AT = \langle \langle L, R, n \rangle, \mathcal{K} \rangle$ with the classical base logic such that $\beta \not\in \text{Conc}(A(\mathcal{A}))$, it is the case that $\beta \in \text{Conc}(A(\mathcal{A}(AT_{\alpha})))$.

Proposition 1. The consequence relation $\models_{\emptyset, \alpha}$ is cumulative for both strict and defeasible theories.

Proof. Consider an arbitrary theory $AT = \langle \langle L, R, n \rangle, \mathcal{K} \rangle$.

[Ref] Given a theory AT_{α}, we have an argument $A^\alpha = [\alpha]$, so Ref holds for $\models_{\emptyset, \alpha}$.

[LLE] Since $\models_{\emptyset, \alpha} \gamma$, AT_{α} contains a chain of arguments $A_1^\alpha, A_2^\alpha, \ldots, A_n^\alpha$ with $A_1^\alpha = [\alpha]$ and $\text{Conc}(A_n^\alpha) = \gamma$. Given $\models \alpha \equiv \beta$, we have that both $\alpha \models \beta$ and $\beta \models \alpha$ are in the theory AT, so are in the theory AT_{β}. Within AT_{β}, we obtain a chain of arguments $B_0^\beta = [\beta], B_1^\beta = [B_0^\beta \models \alpha], A_2^\beta, \ldots, A_n^\beta$. That is $\beta \models_{\emptyset, \alpha} \gamma$. Therefore, both strict and defeasible versions of LLE hold for $\models_{\emptyset, \alpha}$.

[RW] Since $\gamma \models_{\emptyset, \alpha} \gamma$ in theory AT_{γ}, there is a chain of arguments $A_1^\gamma, A_2^\gamma, \ldots, A_n^\gamma$ with $A_1^\gamma = [\gamma]$ and $\text{Conc}(A_n^\gamma) = \alpha$. Given $\models \alpha \models \beta$, theory AT must contain $\alpha \models \beta$, as must AT_{γ}. In AT_{γ}, we have a chain of arguments $A_1^\gamma, \ldots, A_n^\gamma, A_{n+1}^\gamma = [A_n^\gamma \models \beta]$. Thus, $\gamma \models_{\emptyset, \alpha} \beta$, and both strict and defeasible versions of RW hold for $\models_{\emptyset, \alpha}$.

[Cut] Since $\alpha \wedge \beta \models_{\emptyset, \alpha} \gamma$, there is a chain of arguments $A_1^{\alpha, \beta}, A_2^{\alpha, \beta}, \ldots, A_n^{\alpha, \beta}$ with $A_1^{\alpha, \beta} = [\alpha], A_2^{\alpha, \beta} = [\beta]$ in theory $AT_{\alpha, \beta}$. Then $\gamma \models_{\emptyset, \alpha} \beta$. Hence, $\gamma \models_{\emptyset, \alpha} \gamma$. In theory $AT_{\alpha, \beta}$, since $\alpha \models_{\emptyset, \alpha} \beta$, there is a chain of arguments $B_1^\alpha, B_2^\alpha, \ldots, B_m^\alpha$ with $B_1^\alpha = [\alpha]$ and $\text{Conc}(B_m^\alpha) = \beta$. There is also a chain of arguments $A_1^\alpha, A_2^\alpha, \ldots, A_n^\alpha$. Therefore, cut holds for $\models_{\emptyset, \alpha}$.

[ICM] Since $\alpha \models_{\emptyset, \alpha} \gamma$, AT_{α} has a chain of arguments $A_1^\alpha, \ldots, A_n^\alpha$ with $A_1^\alpha = [\alpha]$. $\text{Conc}(A_n^\alpha) = \gamma$. $AT_{\alpha, \beta}$ has a similar chain of arguments $A_1^{\alpha, \beta}, \ldots, A_n^{\alpha, \beta}$, so $\alpha \wedge \beta \models_{\emptyset, \alpha} \gamma$. CM thus holds for $\models_{\emptyset, \alpha}$.

Since all of the above axioms hold, $\models_{\emptyset, \alpha}$ is cumulative for both strict and defeasible theories.

Proposition 2. The consequence relation $\models_{\emptyset, \alpha}$ satisfies M and T for both strict and defeasible theories.

Proof. Consider an arbitrary theory $AT = \langle \langle L, R, n \rangle, \mathcal{K} \rangle$.

[M] Since $\beta \models_{\emptyset, \alpha} \gamma$, in the theory AT_{β}, there is a chain of arguments $A_1^\beta, A_2^\beta, \ldots, A_n^\beta$...
with $A_1^\beta = [\beta]$ and $\text{Conc}(A_1^\beta) = \gamma$. Given $\models \alpha \rightarrow \beta$, we have $\alpha \sim \beta$ in the theory AT, and also in the theory AT_β. In the latter, there is a chain of arguments $B_0^\alpha = [\alpha], B_1^\alpha = [B_0^\alpha \rightarrow \beta], A_2^\alpha, \ldots, A_n^\alpha$. That is $\alpha \models^{0}_\alpha \gamma$. Therefore, both strict and defeasible versions of M hold for \models^{0}_α. [T] Since $\beta \models^{0}_\alpha \gamma$, in AT_β, there is a chain of arguments $B_0^\beta, B_1^\beta, \ldots, B_n^\beta$ with $B_1^\beta = [\beta]$ and $\text{Conc}(B_n^\beta) = \gamma$. Similarly, since $\alpha \models^{0}_\alpha \beta$, in AT_α, there is a chain of arguments $A_0^\alpha, A_1^\alpha, \ldots, A_n^\alpha$ with $A_1^\alpha = [\alpha]$ and $\text{Conc}(A_n^\alpha) = \beta$. Combined with $B_1^\beta, B_2^\beta, \ldots, B_n^\beta$, we obtain a chain of arguments $A_0^\alpha, A_1^\alpha, \ldots, A_n^\alpha, B_2^\beta, \ldots, B_n^\beta$, that is $\alpha \models^{0}_\alpha \gamma$. Therefore, T holds for \models^{0}_α.

Thus \models^{0}_α is cumulative monotonic for all theories. It is not, however, monotonic.

Proposition 3. \models^{0}_α does not satisfy axiom CP.

Proof. Consider this counter-example. $K = \{c\}, \mathcal{R}_s = \{\alpha, c \rightarrow d; \alpha, \overline{d} \rightarrow \overline{c}; c, \overline{d} \rightarrow \overline{c}, \alpha \rightarrow e; \overline{e} \rightarrow \overline{c}, d \rightarrow \beta; d, \overline{c} \rightarrow \overline{e}, \overline{d}, e \rightarrow \overline{d}\}$. We have $\alpha \models^{0}_\alpha \beta$ but not $\models^{0}_\alpha \overline{c}$, CP does not hold for \models^{0}_α.

Having characterised \models^{0}_α, we consider \models^{\ast}_α. Clearly this will satisfy all the properties that are satisfied by \models^{0}_α, since it includes all the inference rules of \models^{0}_α. In addition, we have the following.

Proposition 4. The consequence relation \models^{\ast}_α satisfies CP for strict theories.

Proof. Any strict ASPIC$^+$ theory with a classical base logic will generate the same set of consequences as classical logic. Furthermore, we know that CP is satisfied under classical logic. Therefore, the consequence relation \models^{\ast}_α satisfies CP for any strict theory.

Thus \models^{\ast}_α is monotonic for strict theories.

4.3 Justified Conclusions

Next we interpret $\alpha \models^{\ast}_\beta$ as meaning that if α is in a theory, we can construct an argument for β such that β is in the set of justified conclusions (regardless of preferences). In the following, we will consider an arbitrary extension containing the justified conclusions, these following results are therefore applicable to any extension based semantics.

Definition 13. For $T \in \{\text{admissible, complete, preferred, grounded, stable}\}, S \in \{\text{creduous, sceptical, universal}\}$, let $AF = (A, \text{Defeats})$ be an abstract argumentation framework, we define

\[\text{Just}_{TS}(A(T)) = \{\phi | \phi \text{ is a } S-T \text{ justified conclusion}\} \]

Definition 14. We write $\alpha \models^{0}_{\emptyset, j} \beta$, if for every ASPIC$^+$ argumentation theory $AT = \langle (\mathcal{L}, \mathcal{R}, n), K \rangle$ with the empty base logic such that $\beta \notin \text{Just}_{TS}(A(T))$, it is the case that $\beta \in \text{Just}_{TS}(A(T_\alpha))$.

Definition 15. We write $\alpha \models^{0}_{\ast, j} \beta$, if for every ASPIC$^+$ argumentation theory $AT = \langle (\mathcal{L}, \mathcal{R}, n), K \rangle$ with classical base logic such that $\beta \notin \text{Just}_{TS}(A(T))$, it is the case that $\beta \in \text{Just}_{TS}(A(T_\alpha))$.
It is worth noting the following result.

Proposition 5. If $\alpha \not\beta$ then $\alpha \not\beta$.

Proof. Follows immediately from the definitions — for β to be a justified conclusion, there must first be an argument with β as a conclusion.

Since there are, in general, less justified conclusions of a theory than there are arguments, $\not\beta$ is a more restrictive notion of consequence than $\not\alpha$. It is therefore no surprise to find that fewer of the axioms from [15] hold. We have the following.

Proposition 6. The consequence relation $\not\beta$ does not satisfy reflexivity, or the defeasible versions of LLE and RW.

Proof. [Ref] Counterexample: consider an ASPIC theory that contains: $K_n = \{\pi\}$ and $R = \emptyset$. Here, we have an argument $A = [\pi]$. If a is in the knowledge base K_p, we have another argument $B = [a]$. However, B is defeated by A, but not vice versa. So B is not in any extension, and Ref does not hold for $\not\beta$. [LLE (defeasible version)]

Counter-example: consider an ASPIC theory that contains $K_n = \{c\}$ and $R = \{a \Rightarrow b; b \Rightarrow a; a \Rightarrow r; c \Rightarrow \pi\}$ where $n(b \Rightarrow a) = n_1$. Here, $a \not\beta r$, but $b \not\beta r$. Therefore, the defeasible version of LLE does not hold for $\not\beta$. [LRW (defeasible version)] Consider any ASPIC theory that contains π in its axioms. For such a theory, β will not appear in any justified conclusions. Therefore, the defeasible version of RW does not hold for $\not\beta$.

Proposition 7. $\not\beta$ satisfies the strict version of LLE and RW, Cut and CM for strict or defeasible theories.

Proof. Consider an arbitrary theory $\alpha \beta = \langle L, R, n, K \rangle$.

[LLE (strict version)] Consider the extension E_α in $\alpha \beta$, containing an argument $\alpha \beta$ with $\text{Conc}(\alpha \beta) = \alpha$. Since $\models \alpha \iff \beta$, under the strict interpretation, we know that $\alpha \Rightarrow \beta$ is in $\alpha \beta$. Therefore, we can construct an argument $B^\beta = [\alpha \beta \Rightarrow \beta]$. Since $\alpha \beta$ is in the extension E_α, we can not undermine B^β. Since $\alpha \Rightarrow \beta$ is a strict rule, B^β can not be directly undercut or rebutted. With the fact that $\alpha \beta$ is not defeated, B^β can not be undercut or rebutted. Overall, B^β can not be defeated. So B^β is in E_α. Therefore the strict version of RW holds for $\not\beta$.

[LLE (strict version)] Since $\not\beta \iff \beta$, under the strict interpretation, the rule $\beta \Rightarrow \alpha$ is in $\alpha \beta$, $\alpha \beta$ and $\alpha \beta$. Since $\alpha \not\beta, \gamma$, we know that there is an extension E_α containing $A^\alpha_1, A^\alpha_2, \ldots, A^\alpha_n$ with $A^\alpha_i = [\alpha]$ and $\text{Conc}(A^\alpha_n) = \gamma$. Furthermore, there is no attack between A_i ($i = 1 \ldots n$) and B^α, where B^α is an argument in E_α. In addition, there is no argument with conclusion β in E_α, since A^α is in E_α and there is a strict rule $\alpha \Rightarrow \beta$. Now consider theory $\alpha \beta$, which has a chain of arguments $A^\alpha_0 = [\beta], A^\alpha_1 = [A^\alpha_0 \Rightarrow \alpha], A^\alpha_2, \ldots, A^\alpha_n$, where $\text{Conc}(A^\alpha_n) = \gamma$. There is an extension.

6 Since $\alpha \beta$ and B^β have the same premises.

7 Note that since $\not\beta \beta$, considers any preference ordering, attacks and defeats are equivalent.

8 Due to closure under strict rules, which this consequence relation must satisfy (see Section 5.1).
$E_\beta = \{ A_0^\beta, \ldots, A_n^\beta \} \cup (E_\alpha - \{ A_0^\alpha, \ldots, A_n^\alpha \})$ in AT_3 under the same semantic. Therefore strict LLE holds for $\neg\neg_0, j$. \textbf{[Cut]} Since $\alpha \land \beta \vdash \neg\neg_0, j \gamma$, we know that there is an extension $E_{\alpha, \beta}$ of $AT_{\alpha, \beta}$ containing $B^{\alpha, \beta}, A_1^{\alpha, \beta}, \ldots, A_n^{\alpha, \beta}$ with $A_1^{\alpha, \beta} = [\alpha], B^{\alpha, \beta} = [\beta]$ and $\text{Conc}(A_n^{\alpha, \beta}) = \gamma$. Now consider the theory AT_α. Since $\alpha \vdash \neg\neg_0, j \beta$, there is an extension E_α containing $B_1^\alpha, B_2^\alpha, \ldots, B_m^\alpha$, $B_1^\alpha = [\alpha]$ and $\text{Conc}(B_m^\alpha) = \beta$. The set $E_\alpha \cup (E_{\alpha, \beta} - \{ B^{\alpha, \beta} \})$ is an extension in AT_α (c.f., LLE above). Therefore cut holds for $\neg\neg_0, j$. \textbf{[CM]} Since $\alpha \vdash \neg\neg_0, j \beta$, AT_α and $AT_{\alpha, \beta}$ contain similar arguments. Since $\alpha \vdash \neg\neg_0, j \gamma$, there is an extension E_α in AT_α containing $A_1^\alpha, \ldots, A_n^\alpha$ with $A_1^\alpha = [\alpha]$ and $\text{Conc}(A_n^\alpha) = \gamma$. E_α is also an extension in $AT_{\alpha, \beta}$, since AT_α and $AT_{\alpha, \beta}$ contain similar arguments. Therefore CM holds for $\neg\neg_0, j$.

Proposition 8. The consequence relation $\neg\neg_0, j$ does not satisfy M, T or CP for defeasible theories.

Proof. We will give counter-examples.

\textbf{[M]} Consider the ASPIC+$^+$ theory that includes $\mathcal{K}_\alpha = \{ \pi \}$ and $\mathcal{R} = \{ a \to b; b \to \pi; b \to \gamma \}$. Thus, $b \vdash \neg\neg_0, j \gamma$, however, $a \not\vdash \neg\neg_0, j \gamma$. Therefore, M does not hold for $\neg\neg_0, j$.

\textbf{[T]} Consider the ASPIC+$^+$ theory which includes $\mathcal{K} = \emptyset$ and $\mathcal{R} = \{ a \to b; b \to c; c \to r; a \to \overline{a} \}$ where $n(c \to r) = n_1$. Thus, $a \vdash \neg\neg_0, j b$ and $b \vdash \neg\neg_0, j r$, but $a \not\vdash \neg\neg_0, j r$. Therefore, T does not hold for $\neg\neg_0, j$. \textbf{[CP]} Since contraposition does not hold for $\neg\neg_0, j$, by Proposition 3 it cannot hold for $\neg\neg_0, j$.

If we consider only strict theories, the following holds.

Proposition 9. The consequence relation $\neg\neg_0, j$ satisfies Ref, M and T for strict theories.

Proof. If the theory is strict, then for any argumentation theory, all conclusions are justified. Therefore, for any strict theory, if $\alpha \vdash \neg\neg_0, j \beta$, then $\alpha \vdash \neg\neg_0, j \beta$. We know that $\neg\neg_0, j \beta$ holds for Ref, M and T, therefore, $\neg\neg_0, j \beta$ holds for Ref, M and T in a strict theory.

Thus $\neg\neg_0, j$ is cumulative monotonic for strict theories. As before, using a classical base logic pushes strict theories into monotonicity.

Proposition 10. The consequence relation $\neg\neg_{c, j}$ satisfies CP for strict theories.

Proof. As above, $\neg\neg_{c, j}$ satisfies CP for strict theories. Since the strict part of the theory is always consistent, any conclusions from the argument construction are justified. Therefore, the consequence relation $\neg\neg_{c, j}$ satisfies CP for strict theories.

4.4 Summary

The results for the two forms of consequence and the two base logics are summarized in Table 2.
Table 2. Summary of axioms satisfied by the argumentation-based consequence relations. Table (a) holds results for theories with only axioms and strict rules; Table (b) holds results for theories with strict and defeasible elements. Y indicates that the axiom holds; [Y] that the strict version of the axiom holds in a theory of strict and defeasible rules (i.e., the rule mentioned in LLE, RW and M has to be strict, and the premise α in the case of Ref and M, but arguments may contain defeasible rules); and N that the axiom does not hold for any theory. The left-hand set of axioms in (a) and (b) are those required for cumulativity.

Ref	LLE	RW	Cut	CM	M	T	CP
$\not\models\emptyset$, α	Y	Y	Y	Y	Y	Y	N
$\not\models c$, α	Y	Y	Y	Y	Y	Y	N
$\not\models\emptyset$, β	Y	Y	Y	Y	Y	Y	N
$\not\models c$, β	Y	Y	Y	Y	Y	Y	N

(a) Strict theories

(b) Defeasible theories

4.5 Discussion

What light do the results in Table 2 shine on ASPIC$^+$ and argumentation-based reasoning in general? Considering $\not\models\emptyset$, α, it is no surprise that the relation is cumulative monotonic and satisfies the axiom M which captures a form of monotonicity. It is clear from the detail of ASPIC$^+$, and indeed any argumentation system, that the number of arguments grows over time, and that once introduced, arguments do not disappear. However, the fact that $\not\models\emptyset$, α is not monotonic in the same strict sense as classical logic, and so is strictly weaker, as a result of not satisfying CP, is a bit more interesting. This is, of course, because arguments are not subject to the law of the excluded middle — it is perfectly possible for there to be arguments for α and α from the same theory.

Turning to $\not\models\emptyset$, β, this is perhaps a more reasonable notion of consequence for ASPIC$^+$ than $\not\models\emptyset$, α. If $\alpha \not\models \beta$, then there is an argument for β which holds despite any attacks (in the scenario we have considered, where all attacks may be defeats for some preference ordering — and therefore succeed — there can still be attacks on the argument for β, but the attacking arguments must themselves be defeated). This is quite a restrictive notion of consequence in a representation that allows for conflicting information, and as Table 2 makes clear, $\not\models\emptyset$, β is a relatively weak notion of consequence. It obeys less of the axioms and thus sanctions less conclusions than the non-monotonic logics analysed in [15], for example. For defeasible theories $\not\models\emptyset$, β is not cumulative, and only satisfies LLE and RW if the rules applied in those axioms are strict. As we pointed out above, at the time that [15] was published, cumulativity was considered the minimum requirement of a useful logic. Whether or not one accepts this, it is clear that ASPIC$^+$ is weak. But is it too weak? To answer this, we should consider the cause of the weakness, which as Table 2 shows is due to LLE, RW and Ref.

LLE and RW only hold if the axioms are applied to strict rules. In both cases, the effect of the axiom is to extend an existing argument, either switching one premise for another (LLE), or adding a rule to the conclusion of an argument (RW). While

Footnote: This position was doubtless a side-effect of the fact that at that time there were no logics that did not obey cumulativity. The subsequent discovery of logics of causality that are not cumulative suggests that this view should be revised.
having these axioms hold for defeasible rules would allow $\neg_{\emptyset,j}$ to be cumulative for defeasible theories, this is not reasonable. Using LLE or RW to extend arguments with defeasible rules by definition means that the new arguments can be defeated. Thus their conclusions may not be justified, and $\neg_{\emptyset,j}$ must not be cumulative for defeasible rules.

This weakness raises the question of whether reasoning in ASPIC$^+$ can be strengthened. When we add classical logic as a base logic, we get CP, and monotonicity for $\neg_{c,\alpha}$, but only if all elements are strict. For theories with defeasible elements, $\neg_{c,\alpha}$ can’t guarantee that CP will hold for arbitrary α and β, and, as above, LLE and RW will only hold for strict rules. Adding a base logic that is weaker than classical logic does not help in strengthening conclusions. If we add intuitionistic logic, for example, we don’t get CP, because intuitionistic logic explicitly rejects this pattern of reasoning. Similarly, since defeasible logic [2] only satisfies Ref, Cut and CM, taking this as a base logic won’t provide any more inferential power. A similar argument applies to Ref. Proposition 9 tells us that Ref holds for $\neg_{\emptyset,j}$ for strict theories, meaning that α has to be an axiom10. If Ref were to hold for defeasible theories, α could be a premise. But premises can be defeated, again by definition, so it is not appropriate to directly conclude that any premise is a justified conclusion (it is necessary to go through the whole process of constructing arguments and establishing extensions to determine this).

From this we conclude that though $\neg_{\emptyset,j}$ is not cumulative, and hence ASPIC$^+$ is, in some sense, weaker than non-monotonic logics like circumscription [18] and default logic [23], it is not clear that it is too weak. That is strengthening $\neg_{\emptyset,j}$ so that it is cumulative for defeasible theories would allow conclusions that make no sense from the point of view of argumentation-based reasoning. Whether there are other ways to strengthen ASPIC$^+$ that do make sense is an open question, and one we will investigate.

Note that in the case of $\neg_{\emptyset,j}$ and $\neg_{c,j}$, we are effectively considering three forms of justified consequence, corresponding to credulously, sceptically and universally justified conclusions. We do not distinguish between them because while the notion of universally justified consequence is weaker (in the sense of sanctioning less conclusions) than sceptically justified conclusions, which is weaker than credulously justified conclusions, all of these are strong enough to satisfy Cut and CM (and Ref for axiom premises), and all are too weak to satisfy LLE or RW for defeasible rules.

5 The Rationality Postulates

Finally, we consider the three postulates of [4] (which ASPIC$^+$ complies with), namely (1) closure under strict rules; and (2) direct and (3) indirect consistency. We ask whether the axioms discussed in this paper are equivalent to any of these postulates. In what follows, we assume that strict rules are consistent.

5.1 Closure under strict rules

Proposition 11. An argumentation framework meets closure under strict rules if and only if the consequence relation for strict rules comles with right weakening (RW) with regards to justified conclusions.

10 This is exactly how defeasible logic [2] satisfies Ref.
Proof. Given an argumentation framework AF, assume that α is in the justified conclusions. Therefore $\top \models_j \alpha$, and assume that there is a strict rule $\models \alpha \rightarrow \beta$. Using RW, we obtain $\top \models_j \beta$. Therefore RW implies closure under strict rules. Furthermore, having $\gamma \models_j \alpha$, as well as a strict rule $\alpha \rightarrow \beta$ results in $\gamma \models_j \beta$, i.e., the strict form of RW.

5.2 Direct consistency

Direct consistency with regards to \models_j requires that no extension contains inconsistent arguments (and therefore inconsistent conclusions). This is equivalent to the following axiom, unobtainable from the axioms discussed previously.

\[
\frac{\alpha \models_j \beta}{\alpha \not\models_j \beta}
\]

5.3 Indirect Consistency

Proposition 12. Assume we have direct consistency, and that strict rules are consistent. Any system which satisfies monotonicity under strict rules will satisfy indirect consistency, and vice-versa.

Proof. From [4, Prop. 7], direct consistency and closure yield indirect consistency. We assume direct consistency, and monotonicity gives closure.

In this section we have shown that the rationality postulates described in [4] can be described using axioms from classical logic and non-monotonic reasoning. In future work, we intend to determine whether these axioms can help identify additional rationality postulates. In addition, we will investigate whether these axioms can represent the additional rationality postulates described in [24].

6 Related Work

There are several papers describing work that is similar in some respects to what we report here. Billington [2] describes Defeasible Logic, a logic that, as its name implies, differs from classical logic in that it deals with defeasible reasoning. In addition to introducing the logic, [2] shows that defeasible logic satisfies the axioms of reflexivity, cut and cautious monotonicity suggested in [11], thus satisfying what [11] describes as the basic requirements for a non-monotonic system (such a system is equivalent to a cumulative system in [15]). [13] subsequently established significant links between reasoning in defeasible logic and argumentation-based reasoning. To do this, [13] provides an argumentation system that makes use of defeasible logic as its underlying logic, and shows that the system is compatible with Dung’s semantics [8]. Given Defeasible Logic’s close relation to Prolog [22], this line of work is closely related to Defeasible Logic Programming (DeLP) [12], a formalism combining results of Logic Programming and Defeasible Argumentation. As a rule-based argumentation system,
DeLP also has strict/defeasible rules and a set of facts. DeLP differs from ASPIC$^+$ in the types of attack relation it permits (no undermining) and in the way that it computes conclusions (it does not implement Dung’s semantics).

[17] first introduce an argument system, containing two kinds of inference rules, namely, monotonic inference rules and non-monotonic inference rules. They show that most well-known non-monotonic systems, such as default logic, autoepistemic logic, negation as failure and circumscription, can be formulated as instances of their argument system. [3] continues this line of work, presenting an abstract framework for default reasoning which includes Theorist, default logic, logic programming, autoepistemic logic, non-monotonic modal logics, and certain instances of circumscription as special cases. [13] subsequently established significant links between reasoning in defeasible logic and argumentation-based reasoning. To do this, [13] provides an argumentation system that makes use of defeasible logic as its underlying logic, and shows that the system is compatible with Dung’s semantics[8]. Similar to the current work, [14] investigates various consequence relations of deductive argumentation and their satisfaction of various properties. However, [14] focuses entirely on argument construction and says nothing about justified conclusions.

Also related are [9] and [10], which investigate cumulativity of ASPIC-like structured argumentation frameworks. Finally, [7] analyzes cautious monotonicity and cumulative transitivity with respect to Assumption-Based Argumentation.

7 Conclusions

In this paper we considered which of the axioms of [15] ASPIC$^+$ meets based on two different interpretations of the consequence relation. We demonstrated that, in terms of those axioms, the most natural forms of consequence in ASPIC$^+$ are rather weak. This is the case even when we assume ASPIC$^+$ theories contain all the inference rules of classical logic. However, as we discuss, strengthening the consequence relation (to, for example, be cumulative) neither makes sense in terms of argumentation-based reasoning, nor can easily be achieved by adding additional inference rules to ASPIC$^+$ theories. We also investigated the relationship between the axioms of [15] and the rationality postulates, and suggested an alternative, axiom based formulation of the latter.

As mentioned above, in the future we will investigate whether additional axioms can encode the rationality postulates described in [24]. We will also examine the properties of different interpretations of the logical symbols. For example, we assumed that \equiv encodes the presence of two rules, but says nothing about their preferences or defeaters. Finally, we may consider other interpretations of the consequence relation. This paper therefore opens up several significant avenues of future investigation.

References

1. P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. Knowledge Engineering Review, 26(4):365–410, 2011.
2. D. Billington. Defeasible logic is stable. Journal of Logic and Computation, 3(4):379–400, 1993.
3. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-theoretic approach to default reasoning. *Artificial intelligence*, 93(1):63–101, 1997.
4. M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. *Artificial Intelligence*, 171(5):286–310, 2007.
5. M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. In *Proceedings of the 5th International Conference on Computational Models of Argument*, pages 209–220, 2014.
6. Madalina Croitoru and Srdjan Vesic. What can argumentation do for inconsistent ontology query answering? In *International Conference on Scalable Uncertainty Management*, pages 15–29. Springer, 2013.
7. Kristijonas Čyras and Francesca Toni. Non-monotonic inference properties for assumption-based argumentation. In *International Workshop on Theorie and Applications of Formal Argumentation*, pages 92–111. Springer, 2015.
8. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-persons games. *Artificial Intelligence*, 77(2):321–358, 1995.
9. P. M. Dung. An axiomatic analysis of structured argumentation for prioritized default reasoning. In *European Conference on Artificial Intelligence*, pages 267–272, 2014.
10. P. M. Dung. An axiomatic analysis of structured argumentation with priorities. *Artificial Intelligence*, 231:107–150, 2016.
11. D. M. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In K. R. Apt, editor, *Proceedings of the NATO Advanced Study Institute on Logics and Models of Concurrent Systems*, pages 439–457. Springer, 1985.
12. Alejandro J García and Guillermo R Simari. Defeasible logic programming: An argumentative approach. *Theory and practice of logic programming*, 4(1+2):95–138, 2004.
13. Guido Governatori, Michael J Maher, Grigoris Antoniou, and David Billington. Argumentation semantics for defeasible logic. *Journal of Logic and Computation*, 14(5):675–702, 2004.
14. A. Hunter. Base logics in argumentation. In *COMMA*, pages 275–286, 2010.
15. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. *Artificial intelligence*, 44(1):167–207, 1990.
16. Z. Li and S. Parsons. On argumentation with purely defeasible rules. In *Scalable Uncertainty Management*, pages 330–343. Springer, 2015.
17. F. Lin and Y. Shoham. Argument systems: A uniform basis for nonmonotonic reasoning. *KR*, 89:245–255, 1989.
18. John McCarthy. Circumscription, a form of nonmonotonic reasoning. *Artificial Intelligence*, 13:27–39, 1980.
19. S. Modgil and H. Prakken. A general account of argumentation with preferences. *Artificial Intelligence*, 195:361–397, 2012.
20. S. Modgil and H. Prakken. The ASPIC+ framework for structured argumentation: a tutorial. *Argument & Computation*, 5(1):31–62, 2014.
21. R. C Moore. Semantical considerations on nonmonotonic logic. *Artificial intelligence*, 25(1):75–94, 1985.
22. Donald Nute. Defeasible logic. In *International Conference on Applications of Prolog*, pages 151–169. Springer, 2001.
23. Raymond Reiter. A logic for default reasoning. *Artificial intelligence*, 13(1):81–132, 1980.
24. Y. Wu. *Between Argument and Conclusion - Argument-based Approaches to Discussion, Inference and Uncertainty*. PhD thesis, 2012.