In Vivo Expression of Natural Killer Cell Inhibitory Receptors by Human Melanoma-specific Cytolytic T Lymphocytes

By Daniel E. Speiser,*, Mikaël J. Pittet,*, Danila V almori,*, Rod Dunbar,§ Donata Rimoldi,§ Dani le Liénard,‡§ H. Robson MacDonald,§ Jean-Charles Cerottini,*, H. Robson MacDonald,§ Jean-Charles Cerottini,*,§ Vincenzo Cerundolo,‡ and Pedro Romero*

From the *Division of Clinical Onco-immunology, Ludwig Institute for Cancer Research, Lausanne Branch, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland; the ‡Institute of Molecular Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom; the §Ludwig Institute for Cancer Research, Lausanne Branch, 1066 Epalinges, Switzerland; and the iMultidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland

Summary

Natural killer (NK) receptor signaling can lead to reduced cytotoxicity by NK cells and cytolytic T lymphocytes (CTLs) in vitro. Whether T cells are inhibited in vivo remains unknown, since peptide antigen-specific CD8$^+$ T cells have so far not been found to express NK receptors in vivo. Here we demonstrate that melanoma patients may bear tumor-specific CTLs expressing NK receptors. The lysis of melanoma cells by patient-derived CTLs was inhibited by the NK receptor CD94/NKG2A. Thus, tumor-specific CTL activity may be decreased through NK receptor triggering in vivo.

Key words: cytolytic T lymphocytes • natural killer receptors • melanoma • tumor immunity • peptide antigen

Cytolytic lymphocytes play a central role in the recognition and elimination of abnormal cells. CD8$^+$ T cells are well known to efficiently kill virus-infected cells upon recognition of viral peptides presented by MHC class I molecules on the surface of infected cells (1, 2). In recent years, it became clear that CD8$^+$ T cells can also kill tumor cells through the recognition of tumor cell-derived peptides presented by cell surface MHC class I molecules (3, 4). Although many experimental treatment protocols to enhance tumor immunity have been applied, only a minority of the treated patients have experienced tumor regression (5–7). Undoubtedly, the development of more efficient immune therapy approaches requires a better understanding of tumor immunity. Several biological mechanisms may account for the failures to achieve efficient immune protection: on the one hand, the activation of tumor-specific T cells may be insufficient in intensity and durability (8) to allow a long-lasting antitumor effect. On the other hand, tumor cells may develop strategies to evade or even counteract immune attack, facilitated by the high degree of genetic instability of advanced tumors. Examples for such immune evasion strategies are mutations of genes encoding MHC, tumor antigens, or molecules that regulate antigen presentation or lymphocyte homing (9–12).

Another mechanism may be the inhibition of cytolytic function through the recently described NK receptors. Two families of NK receptor molecules have been identified. The first are type I transmembrane proteins belonging to the Ig superfamily, such as p58.2 (13) or Ig-like transcript 2 (ILT2) (14), and the second are the type II transmembrane proteins containing a C-type lectin domain, such as the heterodimer CD94/NKG2 (15). Upon ligation with MHC class I recognized on target cells, these NK receptors may inhibit the cytolytic function. Most of the known NK receptors have been identified through studies of NK cells, but subpopulations of CD8$^+$ T cells may also express them. However, only small proportions (0–10%) of human CD8$^+$ T cells are positive for a given NK receptor. Furthermore, the studies showing that NK receptors may inhibit CTL activity have so far only been done with T cell lines or clones (16–20). Therefore, it remains questionable whether NK receptors can significantly inhibit CTLs in vivo and whether this may concern a physiologically rele-

1Abbreviations used in this paper: ILT2, Ig-like transcript 2; NKT cell, NK receptor-positive cell expressing CD3 and/or TCR-α/β; TILN, tumor-infiltrated LN.
vant proportion of effector CTLs. Thus, further methodo-
logical progress is required to successfully address this
question experimentally.

Immune protection from melanoma may occur through
CD8+ CTLs that are specific for tumor antigens such as
M elan-A/M AR T-1 (21, 22). In this study, we investigated
T cells specific for the immunodominant peptide antigen
M elan-A EAA GIGILTV , which is presented by the M HC
class I molecule H LA-A*0201 (22). To investigate pheno-
type and function of human M elan-A–specific T cells, we
took advantage of the novel “tetramer” technology (23–
25). As described previously (25), we generated tetramers
consisting of four H LA-A*0201 molecules, four M elan-A
peptides, and a fluorescent dye. Upon tetramer incubation
and flow cytometry analysis, H LA-A/2/M elan-A–specific
lymphocytes were directly visualized without the need for
in vitro expansion. Our study of 10 melanoma patients
shows that tumor antigen–specific T cells may express vari-
ous NK receptors. Furthermore, the lysis of melanoma cells
by patient-derived CTLs was inhibited by the NK receptor
CD94/NKG2A. Together, these findings strongly suggest
that NK receptor triggering may in some instances interfere
with tumor-specific immune responses in vivo.

Materials and Methods

Blood and LN Samples. Lymphocytes, and T arget C eils. Blood
and LN s were obtained from patients with advanced stage
malignant melanoma selected on the basis of H LA-A2 antigen
expression. PBLs were separated from heparinized blood by centrifugation
over Ficoll-Paque (Amersham Pharmacia Biotech), washed three times, and cryopreserved in RPMI 1640, 40% FCS, and
10% DMSO. Vials containing 5–10 × 10^6 cells were stored in
liquid nitrogen. LN s collected by surgical dissection were dissociated
into single cell suspensions in sterile RPMI 1640 supple-
mented with 10% FCS, washed, and cryopreserved as indicated above for PBLs. Aliquots were placed in 24-well tissue culture plates (Costar Corp.) in 2 ml of IMDM (Life T echnologies) supple-
mented with 0.55 mM Arg, 0.24 mM Asn, 1.5 mM Gln, 10% pooled human A1 serum, recombinant human (rh)IL-2 (100
U/ml), and rhIL-7 (10 ng/ml). The melanoma cell line Me 290
and the A2/M elan-A–specific CD8+ T cell clone 17 were estab-
lished from surgically excised melanoma metastases from patient
LAU 203 as described (26). The cells were maintained in DM E
supplemented with 0.55 mM Arg, 0.24 mM Asn, 1.5 mM Gln,
and 10% FCS.

H LA T yping. PBLs were typed for H LA-A2 by flow cytom-
etry using the allele-specific mAb BB7.2 (27). Complete H LA-A
and -B typing was performed by serology, and H LA-A2 allele
typing and H LA-C typing were done by PCR using sequence-
specific oligonucleotides (28). Since all patients were H LA-
A*0201 positive, they all expressed H LA signal peptides able
to bind to H LA-E to and to serve as ligands for CD94/NKG2A (29,
30). All six patients shown in Figs. 1 and 2 had at least one of
the known p58.2 binding ligands C w1, C w3, C w7, and C w8.
In some patients (LAU 181 and LAU 155) both alleles were
p58.2 ligands, while in the other patients there was only one
p58.2 ligand. The M e 290 melanoma cell line and the M elan-
A–specific CD8+ T cell clone 17 were A1, A*0201, B7, B8,
Cw07, Cwx.
mAbs. Antibodies specific for the NK receptors p58.2/
CD158b (GL183), CD94 (X A185 and Y 9), and the heterodimer
CD94/NKG2A (Z1N 199) were provided by A. M orretta, Uni-
versity of Genova, Genova, Italy (31). The ILT2–specific anti-
body HP3F1 (14) was obtained from M. López- Botet, University
Hospital Princesa, Madrid, Spain. N onlabeled IgG1 and IgG2a
antibodies, and PE–labeled antibodies specific for p58.2 and
CD94 were purchased from Immunotech. mAbs specific for hu-
man CD3, CD8, CD14, CD16, CD28, CD45RA, and T CR-α/β
were obtained from Becton Dickinson. All flow cytometry sta-
nings for CD94 were done with the mAb XA185, while Y 9 was
used in the cytotoxicity assays. In this study, the term “NK T cell”
was used for all NK receptor–positive cells expressing CD3 and/or
T CR-α/β.

T etramers. Complexes were synthesized as described (24, 25).
In brief, purified H LA heavy chain and β2-microglobulin were
synthesized by means of a prokaryotic expression system (pET; R & D Systems, Inc.). The heavy chain was modified by deletion
of the transmembrane cytosolic tail and COOH-terminal addi-
tion of a sequence containing the BirA enzymatic biotinylation
site. Heavy chain, β2-microglobulin, and peptide were refolded by dilution. The 45-kD refolded product was isolated by fast pro-
tein liquid chromatography and then biotinylated by BirA (Avidity)
in the presence of biotin, adenosine 5′-triphosphate, and MgCl2 (all from Sigma Chemical Co.). Streptavidin–PE conjugate
(Sigma Chemical Co.) was added in a 1:4 molar ratio, and the
tetrameric product was concentrated to 1 mg/ml. As the anti-
genic peptide, the M elan-A26–35 A27L analogue (ELAGIGILTV)
was used, which has a higher binding stability to H LA-A*0201
and a higher T cell antigenicity and immunogenicity than the
natural M elan-A2 decapeptide EAA GIGILTV or the nonapeptide
AAGIGILTV (26). In this paper, the abbreviation “tetramer” is
used for the H LA-A*0201/M elan-A26–35 A27L tetramers pro-
duced for this study.

Flow Cytometry. LN cells were thawed and cultured for 16–
20 h in IMDM supplemented with 0.55 mM Arg, 0.24 mM Asn,
1.5 mM Gln, 10% pooled human A1 serum, rhIL-2 (100 U/ml),
and rhIL-7 (10 ng/ml). PBLs were thawed and stained after washing. Cells (0.5–1 × 10^6) were stained with tetrarmers and
FIT C–, peridinin chlorophyll protein (PerCP™), and allopho-
cyacin-labeled mAb conjugates in 50 μl of PBS, 2% BSA, and
0.2% azide for 40 min at 4°C. For indirect fluorescence labeling,
cells were incubated (a) with tetrarmers, (b) with the primary (NK
receptor–specific) antibody and washed, (c) with sheep anti-
mouse FIT C–labeled antibody and washed twice, (d) with IgG1
and IgG2a antibodies, and (e) with PerCP™- and allophocya-
cinin-labeled antibodies. Cells were washed once in the same
buffer and analyzed immediately in a FACS calibur™ machine
(Becton Dickinson). With this method, the percentages of tetr-
armers–positive cells were slightly lower compared with methods
without multiple wash steps after tetramer incubation (not shown).
Data acquisition and analysis were performed using CELLQ ues™ software. Only cells falling in the “lymphocyte gate” were analyzed; this gate was defined by forward/side scatter
settings corresponding to a cell population expressing >98% CD45
and <1% CD14 (as determined by control CD45/CD14
staining).

Chromium-release Assay. PBLs were thawed, stained with
H LA-A2/M elan-A tetrarmers, and sorted using a FACStar™ ma-
chine (Becton Dickinson). The cells were then cultured in
IMDM supplemented with 0.55 mM Arg, 0.24 mM Asn, 1.5 mM
Gln, 10% pooled human A1 serum, rhIL-2 (100 U/ml), and
rhIL-15 (10 ng/ml) starting at day 2 to upregulate CD94/
Results

Tumor Antigen–specific CD8+ T Cells Expressing Inhibitory NK Receptors. In PBLs, the frequency of CTLs specific for single MHC/peptide epitopes is usually very low (range 1 in 104–105 CD8+ T cells). Their frequency during acute infections may be much higher (up to 1 in ~103), but such high frequencies are not observed for tumor-specific CD8+ T cells because immune responses to tumors involve much lower antigen-specific T cell numbers compared with acute microbial infections. The frequencies of tumor-specific CD8+ T cells may be significantly higher in tumor-infiltrated lymph nodes (TILNs) than in PBLs, since TILNs may contain up to 3% HLA-A2/Melan-A tetramer–positive cells among CD8+ cells when analyzed ex vivo (25). To study the phenotype of tumor-specific CTLs in more detail, we cultured the TILNs for 2 wk in the presence of IL-2 and IL-7. This procedure induced expansion of the tumor antigen–specific T cells, allowing us to perform multiparameter FACS® analysis. Fig. 1 shows the results of TILNs stained with tetramers and antibodies specific for CD8 and one of four different NK receptors. The TILNs from the three patients contained high percentages of CD8+ tetramer-positive cells (1.3–5.1%). In patient LAU 181, these cells were largely negative for the NK receptors p58.2 and ILT2, but they expressed CD94 and CD94/NKG2A at high percentages. The Melan-A–specific lymphocytes from patient LAU 203 expressed some ILT2 but only low levels of the other three receptors. Finally, ILT2, CD94, and CD94/NKG2A were also expressed by some Melan-A–specific T cells from patient LAU 267. The Melan-A–specific TILNs from four further patients (data not shown) expressed no or only low levels (<0.5%) of NK receptors.

In Vivo Identification of Tumor Antigen–specific CD8+ T Cells Expressing NK Receptors in PBLs from Melanoma Patients with Vitiligo. It has been demonstrated that melanoma patients develop vitiligo more frequently than individuals without melanoma, and that vitiligo is associated with an ongoing immune response directed against melanoma cells (33, 34). We have recently reported that patients with vitiligo have high frequencies of Melan-A–specific circulating CTLs which were detectable ex vivo using HLA-A2/Melan-A tetramers (24, 34a). The relatively high percentages of tetramer-positive circulating CTLs provided us the unique opportunity of investigating NK receptor expression by specific CTLs in vivo. We obtained PBLs from three HLA-A2–positive melanoma patients with vitiligo, and found 0.10–0.17% CD8+ tetramer-positive cells (Fig. 2). These cells expressed the following NK receptors in patient LAU 155, practically all tetramer-positive cells were negative for each of the four NK receptors analyzed (p58.2, ILT2, CD94, and CD94/NKG2A). In contrast, in patient LAU 156, most of the tumor antigen–specific CTLs expressed CD94 and CD94/NKG2A, and about half of them expressed ILT2. Finally, in the third patient (LAU 269), there were low percentages of NK receptor–positive, tet-
Inhibitory Receptors Expressed by Melanoma-specific T Cells

T cells that express NK receptors in vivo have an activated phenotype. The relatively high frequency of tumor-specific CTLs in the patients with vitiligo allowed us to investigate the in vivo phenotype of these cells in more detail. We investigated the expression of CD45RA, a marker for naive T cells (35, 36). In PBLs of patients LAU 155 and LAU 269, the tetramer-positive cells expressed high levels of CD45RA (Fig. 3). In contrast, a reduced level of CD45RA was found in patient LAU 156, i.e., in the cells with high levels of NK receptor expression. We also analyzed the costimulatory molecule CD28 and the "adhesion" molecule CD57, since downregulation of CD28 and upregulation of CD57 have been shown to occur in activated "effector" CTLs (37, 38), and we have recently demonstrated that NK receptor expression by T cells is primarily confined to the CD28− population (39). Interestingly, the tetramer-positive CD8+ cells of the patient with high percentages of NK receptor−expressing CTLs (patient LAU 156) were predominantly CD28− and CD57+ (Fig. 3). In contrast, the tumor-specific CTLs of the other two patients were mostly CD28+ and CD57−.

CD94/NKG2A−mediated Inhibition of Melanoma Cell Lysis. It has been shown that antigen−specific T cell cytotoxicity can indeed be inhibited through triggering of CD94/NKG2A (20) or p58.2 (16, 18, 19). However, these results were obtained with selected T cell lines or clones, leaving the question open whether NK receptor inhibition is functional in polyclonal T cell responses. Therefore, we investigated the cytotoxicity by tetramer−sorted PBLs. Several of our attempts failed, since we did not obtain enough tetramer−positive, NK receptor−positive cells through FACS® sorting. However, one of our patients (LAU 156) had exceptionally high percentages of A2/Melan−A tetramer−positive, CD94/NKG2A−positive cells in the peripheral blood (Fig. 2). After FACS® sorting, the tetramer−positive cells were cultured for 1 wk and sorted again to obtain pure A2/Melan−A tetramer CD94/NKG2A double positive CTLs. These cells were tested in cytotoxicity assays against the
melanoma cell line Me 290, previously stimulated with IFN-γ for 48 h to increase MHC expression and inhibitory receptor triggering (40). Indeed, the killing was enhanced in the presence of blocking anti-CD94 antibody Y9 (Fig. 4, solid line) compared with the killing in the presence of isotype-matched control anti-CD16 antibody (dashed line). The target cells were efficiently killed by the NK receptor-negative CTLs of the patient, and by the HLA-A*0201/Melan-A–specific CTL clone 17, both to a similar extent in the presence of anti-CD94 or control antibody. The killing of the Me 290 melanoma cell line (HLA-A*0201 and Melan-A positive) was antigen specific, since all of the CTLs did not lyse the Melan-A–negative melanoma cells Na8 unless synthetic Melan-A peptide was added (data not shown). In summary, the data demonstrate that the lysis of melanoma cells was inhibited due to the inhibitory receptor CD94/NKG2A expressed by the Melan-A–specific effector CTLs.

Discussion

TILNs of seven melanoma patients were investigated. In one patient, the Melan-A–specific CD8+ T cells were mostly CD94/NKG2A–positive (I) but not by the negative (II) population. In the former, only low cytolytic activity was observed in the presence of the irrelevant isotype-matched control anti-CD16 mAb (dashed line). Lysis by the CD94/NKG2A–negative cells of the patient (II) and by the A2/Melan-A–specific clone 17 were not altered in the presence of either of the two mAbs. Cultures without mAbs gave similar results as with the anti-CD16 control mAb (not shown). The results are representative for two experiments.

Figure 4. CD94/NKG2A–mediated inhibition of melanoma cell lysis by Melan-A–specific CTLs. PBLs from patient LAU 156 were FACS® sorted to obtain purified HLA-A2/Melan-A tetramer–positive cells, then in vitro expanded for 1 wk in the presence of IL-2 and IL-15. Subsequently, a second FACS® sorting was performed to obtain tetramer–positive cells that were positive (I) or negative (II) for CD94/NKG2A (dot plot). These cells were tested against the HLA-A*0201–positive melanoma target cells Me 290 previously stimulated with IFN-γ for 48 h to increase MHC expression. The addition of the blocking mAb Y9 (anti-CD94; solid line) enhanced lysis by the CD94/NKG2A–positive (I) but not by the negative (II) population. In the former, only low cytolytic activity was observed in the presence of the irrelevant isotype-matched control anti-CD16 mAb (dashed line). Lysis by the CD94/NKG2A–negative cells of the patient (II) and by the A2/Melan-A–specific clone 17 were not altered in the presence of either of the two mAbs. Cultures without mAbs gave similar results as with the anti-CD16 control mAb (not shown). The results are representative for two experiments.

The early observation that NK cells preferentially lyse target cells that lack MHC class I molecules led to the formulation of the “missing self” hypothesis (41). This surmised that NK cells were endowed with the ability to recognize and destroy cells lacking expression of MHC class I, whereas normal cells positive for MHC class I would be protected from NK cell lysis. Only after the identification and cloning of several NK receptors could this hypothesis be confirmed (13–15). It is now established that the binding of inhibitory NK receptors to MHC class I molecules on target cells can lead to the delivery of signals that inhibit the cytolytic function of NK cells. As a consequence, abnormal (infected or malignant) cells lacking MHC class I may be destroyed preferentially.

NK receptors were also found to be expressed by T cells. However, although NK cells frequently express these receptors, only small percentages of NK receptor–positive T cells (NKT cells) were identified (16). In addition, some NKT cell populations were found to be mono- or oligo-clonal, as indicated by very limited diversity of T cell receptor rearrangements (42). Based on these findings, it was postulated that NKT cells are a small subpopulation and may represent particular lymphocyte lineages with special antigen specificity and/or special function.

Recently, Ikeda et al. described a melanoma-specific CD8+ T cell clone that was inhibited by p58.2 recognizing HLA-Cw7 on autologous melanoma cells (18). Noppen et al. characterized sister T cell clones bearing the same T cell receptor specific for a melanoma-associated antigen (20). Some clones were NK receptor negative, but others expressed the inhibitory receptor CD94/NKG2A and showed reduced cytotoxicity to melanoma cells. These results demonstrated that cloned NKT cells may bear functional T cell receptors specific for classical peptide antigens presented by MHC class I.

The above-mentioned studies were done with selected T cell clones that may not be representative, since the majority of NK cell lines and clones are NK receptor negative (data not shown). To investigate whether NKT cells are rare or frequent in vivo, we applied the recently developed tetramer technology which allowed us to visualize and phenotype peptide antigen–specific, yet polyclonal CD8+ T cells without in vitro cultivation. Our data show that tu-
malignancy-specific T cells expressing NK receptors can indeed be found at high percentages in some patients. Thus, NKT cells may not necessarily represent separate cell lineages but can belong to the large pool of T cells with classical peptide/MHC class I specificity.

Why should the CTL activity be modulated through this pathway? Current evidence suggests that CTLs which are activated over a prolonged period may need and have inhibitory mechanisms, and that human NKT cells may fall in this category of activated CTLs. Some NK receptor-expressing T cells have been described to be CD28 negative and express activation markers such as CD56 (43), CD18, and CD45RO (42). Using a large panel of different NK receptor-specific mAbs, we have recently demonstrated that the majority of NKT cells in the circulation are TCR-α/β+, CD28+, and CD28−. Furthermore, these cells account for a large fraction of CD28− T cells, which make up 10–80% of circulating CD8+ T cells in melanoma patients (39). CD28− T cells have also been shown to be strongly cytotoxic and to proliferate poorly in vitro (37). Thus, T cells may downregulate CD28 and upregulate NK receptors in association with prolonged activation for cytolytic effector function. It is likely that NK receptors are involved in peripheral regulatory mechanisms avoiding overwhelming immune responses and immunopathology, particularly in situations of strong and/or long-lasting immune activation. The increased numbers of CD28− T cells in prolonged infections such as HIV (44) or CMV (45) may support this notion. The function of NK receptors as inhibitory pathways has the advantage that abnormal infected or tumor cells lacking MHC class I may still be efficiently eliminated by the CTLs.

In summary, we found tumor-specific TCR-α/β+CD8+ T cells expressing NK receptors that could inhibit the lysis of melanoma cells. These data strongly suggest that NK receptors may modulate T cell activities in vivo. NK receptor expression by T cells varies depending on the cellular activation status and cytokines such as IL-12, IL-15, and TGF-β (31, 32, 46). Possibly, new therapeutic strategies modifying NK receptor expression or function may help improve the efficacy of immunotherapy in infectious disease, cancer, autoimmunity, and transplantation.

We would like to thank Alessandro Moretta and Miguel López-Botet for their kind gifts of NK receptor-specific antibodies. We particularly acknowledge the excellent technical assistance of Andrée Porret, Danielle Mährisch, Nicole Montandon, and Renate Mägis, and the secretarial help of Martine van Overloop. We also thank Christian Knabenhans and Pierre Zaech for flow cytometry, Vincent Aubert and Jean-Marie Tiercy for HLA typing, and Ferdy Lejeune, Serge Leyvraz, and Giuseppe Pantaleo for their help.

Address correspondence to Daniel Speiser, Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, CHUV - BH 19-602, CH-1011 Lausanne, Switzerland. Phone: 41-21-314-01-82; Fax: 41-21-314-74-77; E-mail: daniel.speiser@hospvd.ch

Submitted: 19 February 1999 Revised: 17 June 1999 Accepted: 13 July 1999

References

1. Zinkernagel, R.M., and P.C. Doherty. 1974. R estriction of in vitro T cell mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 248:701–702.
2. Townsend, A.R.M., J. Rothbard, F.M. Gotch, G. Bahadur, D. Wraith, and A.J. McMichael. 1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 44:959–968.
3. Robbins, P.F., and Y. Kawakami. 1996. Human tumor antigens recognized by T cells. Curr. Opin. Immunol. 8:628–636.
4. Boon, T., J.C. Cerottini, B. Van den Eynde, P. van der Bruggen, and A. Van Pel. 1994. Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 12:337–365.
5. Rosenberg, S.A., J.C. Yang, D.J. Schwartzentruber, P. Hwu, F.M. Marincola, S.L. Topalian, N.P. Restifo, M.E. Dudley, S.L. Schwarz, P.J. Spiess, et al. 1998. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 4:321–327.
6. Nestle, F.O., S. Aliljagic, M. Gilliet, S. Yunsheeng, S. Grabbe, R. Dummer, G. Burg, and D. Schadendorf. 1998. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 4:328–332.
7. Marchand, M., N. Van Baren, P. Weynants, V. Brichard, B. Drené, M.H. Tisser, E. Rankin, G. Parmiani, F. Arienti, Y. Humbel, et al. 1999. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer. 80:219–230.
8. Speiser, D.E., R. Miranda, A. Zakarian, M.F. Bachmann, K. McAll-Faenza, B. Oderrmat, D. Hanahan, R.M. Zinkernagel, and P.S. Ohashi. 1997. Self antigens expressed by solid tumors do not stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 186:645–653.
9. Ye, X., J. McCarrick, L. Jewett, and B.B. Knowles. 1994. Timely immunization subverts the development of peripheral nonresponsiveness and suppresses tumor development in simian virus 40 tumor antigen-transgenic mice. Proc. Natl. Acad. Sci. USA. 91:3916–3920.
10. Cohen, E.P., and T.S. Kim. 1994. Neoplastic cells that express low levels of MHC class I determinants escape host immunity. Semin. Cancer Biol. 5:419–428.
11. Cromme, F.V., J. Airey, M.-T. Heemels, H.L. Ploeg, P.J. Keating, P.L. Stern, C.J.L.M. Meijer, and J.M.M. Walboomers. 1994. Loss of transporter protein encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J. Exp. Med. 179:335–340.

12. O'ruast, S.V., P.M. Hart, S.D. Rosen, and D. Hanahan. 1996. Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J. Clin. Investig. 97:54–64.

13. Moretta, A., S. Sivori, M. Vitale, D. Pende, L. Morelli, R. Augugliaro, C. Bottino, and L. Moretta. 1995. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med. 182:875–884.

14. Colonna, M., F. Navarro, T. Bellon, M. Llano, P. Garcia, J. Samaridis, L. Angman, M. Cella, and M. Lopez-Botet. 1997. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J. Exp. Med. 186:1809–1818.

15. Moretta, A., M. Vitale, S. Sivori, C. Bottino, L. Morelli, R. Augugliaro, M. Baraes, D. Pende, E. Ciccone, M. Lopez-Botet, and L. Moretta. 1994. Human natural killer cell receptors for HLA-class I molecules: Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles. J. Exp. Med. 180:545–555.

16. Phillips, J.H., J.E. Gumperz, P. Parham, and L.L. Lanier. 1995. Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science. 268:403–405.

17. Ferrini, S., A. Camiacci, R. Mezza, S. Sforzini, S. Marziano, M.C. Mingari, and L. M. Motta. 1994. T cell clones expressing the natural killer cell-related p58 molecule display heterogeneity in phenotypic properties and p58 function. Eur. J. Immunol. 24:2294–2298.

18. Ikeda, H., B. Lethe, F. Lehmann, F. Van Baren, J.-F. Baurain, C. De Smet, H. Chambost, M. Vitale, A. Moretta, T. Boon, and P.G. Coulie. 1997. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 6:199–208.

19. Bakker, A.B.H., J.H. Phillips, C.G. Figdor, and L.L. Lanier. 1998. Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta cells, and antigen-specific CTL. J. Immunol. 160:5239–5245.

20. Oppen, C., C. Schaefer, P. Zajac, A. Schütz, T. Kocher, J. Kloth, M. Heberer, M. Colonna, G. De Libero, and G.C. Spagnoli. 1998. C-type lectin-like receptors in peptide-specific HLA class I-restricted cytotoxic T lymphocytes: Differential expression and modulation of effector functions in clones sharing identical TCR structure and epitope specificity. Eur. J. Immunol. 28:1134–1142.

21. Coulie, P.G., V. Brichard, A. Van Pel, T. Wölfel, J. Schneider, C. Traversari, S. M. Attie, E. De Plaen, C. Lurquin, J.P. Szikora, J.C. Renaud, and T. Boon. 1994. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 180:35–42.

22. Kawakami, Y., S. Elyahu, C.H. Delgado, P.F. Robbins, K. Sakaguchi, E. Appella, J.R. Yannelli, G.J. Adema, T. Miiki, and S.A. Rosenberg. 1994. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with vivo tumor rejection. Proc. Natl. Acad. Sd. U.S.A. 91:6458–6462.

23. Altman, J.D., P.A.H. Moss, P.J.R. Goulder, D.H. Barouch, M.G. Mcheyer-Williams, J. Bell, A.J. Mclichael, and M.M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science. 274:94–96.

24. Ogg, G.S., P.R. Dunbar, P. Romero, J. Chen, and V. Cerundolo. 1998. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J. Exp. Med. 188:1203–1208.

25. Romero, P., P.R. Dunbar, D. Valmori, M. Pittet, G.S. Ogg, D. Rimoldi, J.L. Chen, D. Liènard, J.C. Cerottini, and V. Cerundolo. 1998. In vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytotoxic T lymphocytes. J. Exp. Med. 188:1641–1650.

26. Valmori, D., J.F. Fonteneau, C. Marañón-Lizana, N. Gerovics, D. Liènard, D. Rimoldi, C.V. Jongeneel, F. Jotereau, J.C. Cerottini, and P. Romero. 1998. Enhanced generation of specific tumor-reactive CTL in vivo by selected melan-A/MART-1 immunodominant peptide analogs. J. Immunol. 160:1750–1758.

27. Parham, P., and F.M. Brodsky. 1983. Partial purification and some properties of peptide bound to HLA-B2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum. Immunol. 3:277–284.

28. Speiser, D.E., J.-M. Tiercy, N.R. Ufer, C. Grandschober, A. Gratzwohl, B. Chapuis, C. Helg, C.-L. Löhler, M.K. Siren, E. Roosnek, and M. Janet. 1996. High resolution HLA matching associated with decreased mortality after unrelated bone marrow transplantation. Blood. 87:4455–4462.

29. Braud, V.M., D.S.J. Allan, C.A. O’Callaghan, K. Söderström, A. D’Andrea, G.S. Ogg, S. Lazetic, N.T. Young, J.J. Bell, J.H. Phillips, et al. 1998. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. J. Exp. Med. 187:813–816.

30. Noppen, C., C. Schaefer, A. Schütz, T. Kocher, J. Kloth, M. Heberer, M. Colonna, G. De Libero, and G.C. Spagnoli. 1998. C-type lectin-like receptors in peptide-specific HLA class I-restricted cytotoxic T lymphocytes: Differential expression and modulation of effector functions in clones sharing identical TCR structure and epitope specificity. Eur. J. Immunol. 28:1134–1142.
35. Merkenschlager, M., and P.C. Beverley. 1989. Evidence for differential expression of CD45 isoforms by precursors for memory-dependent and independent cytotoxic responses: human CD8 memory CTLp selectively express CD45RO (UCHL1). Int. Immunol. 1:450–459.

36. de Jong, R., M. Brouwer, F. Miedema, and R.A. van Lier. 1991. Human CD8+ T lymphocytes can be divided into CD45RA+ and CD45RO+ cells with different requirements for activation and differentiation. J. Immunol. 146: 2088–2094.

37. Azuma, M., J.H. Phillips, and L.L. Lanier. 1993. CD28+ T lymphocytes. Antigenic and functional properties. J. Immunol. 150:1147–1159.

38. Hamann, D., P.A. Baars, M.H. Rep, B. Hooibrink, S.R. Kerkhof-Garde, M.R. Klein, and R.A. van Lier. 1997. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186:1407–1418.

39. Speiser, D.E., D. Valmori, D. Rimoldi, M.J. Pittet, D. Liénard, H.R. MacDonald, J.-C. Cerottini, and P. Romero. 1999. CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. Eur. J. Immunol. 29:1990–1999.

40. Pende, D., L. Accame, L. Pareti, A. Mazzocchi, A. Moretta, G. Parmiani, and L. Moretta. 1998. The susceptibility to natural killer cell-mediated lysis of HLA class I-positive melanomas reflects the expression of insufficient amounts of different HLA class I alleles. Eur. J. Immunol. 28:2384–2394.

41. Ljunggren, H.-G., and K. Kärre. 1990. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today. 11:237–244.

42. Mingari, M.C., F. Schiavetti, M. Ponte, C. Vitale, E. Maggi, S. Romagnani, J. Demarest, G. Pantaleo, A.S. Fauci, and L. Maretta. 1996. Human CD8+ T lymphocyte subsets that express HLA class I-specific inhibitory receptors represent oligoclonally or monoclonally expanded cell populations. Proc. Natl. Acad. Sci. USA. 93:12433–12438.

43. Prusin, C., and B. Foster. 1997. TCR Vα24 and Vβ11 co-expression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J. Immunol. 159:5862–5870.

44. Borthwick, N.J., M. Bofill, W.M. Gombert, A.N. Akbar, E. Medina, K. Sagawa, M.C. Lipman, M.A. Johnson, and G. Janossy. 1994. Lymphocyte activation in HIV-1 infection. II. Functional defects of CD28+ T cells. AIDS. 8:31–441.

45. Wang, E.C.Y., P.A. Moss, P.M. Frodsham, P.J. Lehner, J.L. Bell, and L.K. Borysiewicz. 1995. CD8high CD57+ T lymphocytes in normal, healthy individuals are oligoclonal and respond to human cytomegalovirus. J. Immunol. 155:5046–5056.

46. Poggi, A., P. Costa, E. Tomasello, and L. Maretta. 1998. IL-12-induced up-regulation of NKRP1A expression in human NK cells and consequent NKRP1A-mediated down-regulation of NK cell activation. Eur. J. Immunol. 28:1611–1616.