SUPPLEMENTARY MATERIAL OF **BioSeqZip: a collapser of NGS redundant reads for the optimisation of sequence analysis**

A PREPRINT

Gianvito Urgese
Interuniversity Department of Regional and Urban Studies and Planning
Politecnico di Torino
Torino, Italy 10129
gianvito.urgese@polito.it

Emanuele Parisi
Department of Control and Computer Engineering
Politecnico di Torino
Torino, Italy 10129
emanuele.parisi@polito.it

Orazio Scicolone
Department of Control and Computer Engineering
Politecnico di Torino
Torino, Italy 10129
orazio.scicolone@polito.it

Santa Di Cataldo
Department of Control and Computer Engineering
Politecnico di Torino
Torino, Italy 10129
santa.dicataldo@polito.it

Elisa Ficarra
Department of Control and Computer Engineering
Politecnico di Torino
Torino, Italy 10129
elisa.ficarra@polito.it

December 2, 2019

ABSTRACT

In this document the supplementary material of the paper *BioSeqZip: a collapser of NGS redundant reads for the optimisation of sequence analysis*

Keywords Read collapser · NGS · RNA-Seq · Sequence aligner · Mapper · DNA-Seq · External sort

1 Supplementary Text

1.1 In/Out File Formats of **BioSeqZip_Collapser**

BioSeqZip_Collapser accepts as input Fasta, Fastq, Sam, and Bam file formats and generates compact output with four different file formats: Fasta, Fastq, Tag, and Tagq, respectively. All the input/output file formats can be optionally provided in compressed form (gzip). In the following we provide a brief summary of the key features of these formats.

- **FASTA** is a text-based file format used to represent either nucleotide or amino acids sequences. A sequence begins with a single-line description, followed by lines containing the sequence data. The description line begins with the sequence ID and is characterised by a ‘>’ (greater than) symbol as the first character of the string. Following lines contain strings of characters representing the bio-molecule, using an appropriate alphabet for the encoding (ACGTN for DNA and ACGUN for RNA). Each sequence ends when another line starts with a ‘>’ symbol.
- **FASTQ** format embeds in a FASTA-like file additional information about the quality with which sequences were produced by the NGS machines. The quality scores are encoded with a single ASCII character: the ‘!’
character represents the lowest quality and the ‘∼’ character the highest, respectively. In a FASTQ file each sequence is represented on four lines: i) the first line start with a ‘@’ character and is followed by a sequence identifier and an optional description (like in a FASTA title line). ii) the second line contains the sequence of letters of a read. iii) the third line begins with a ‘+’ character; iv) the fourth line encodes the quality values of the sequence, one per base. Hence, it must contain the same number of symbols as line two.

- Tag and Tagq file formats are customized output files of BioSeqZip_Collapser, and have a column-based structure that is usually adopted by the smallRNA-Seq analysis tools. Tagq files have three columns: i) in the first column, the unique sequence (called tag) obtained after the read collapsing. ii) in the second column, the tag quality, obtained as the average quality of the collapsed sequences. iii) in the third column, the number of identical sequences in the input file that were collapsed to generate the tag. Tag files will have the same structure but with two columns only, as the quality information is not provided in this format.

1.2 In/Out File Formats of BioSeqZip_Expander

BioSeqZip_Expander can work on SAM and BAM file formats detailed in the following.

- **SAM** format is used for storing sequence data, either aligned or unaligned, in a human readable format [?]. A header section provides a list of reference sequences as well as other supplementary information provided by the alignment tool. In the second part, the file lists all the reads and the mapping positions on the reference in a tabular format. Each line includes eleven mandatory fields, the most important ones being the query name, the reference name, the position in the reference, and the read sequence).
- **BAM** format provides a binary version of the same data available in the SAM format. Clear advantage of this format is that it can be efficiently compressed to reduce storage occupancy.

2 Supplementary Availability

For the BioSeqZip project, we provide the following three repositories:

- https://github.com/bioinformatics-polito/BioSeqZip.git containing the BioSeqZip source code implementing the collapser and expander functionalities.
- https://github.com/bioinformatics-polito/BioSeqZip-BWA.git containing a modified version of BWA capable of using as input the read files generated by BioSeqZip for creating the full mapping files. This tool version does not need an expansion procedure of the output mapping files.
- https://github.com/bioinformatics-polito/BioSeqZip-Yara.git containing a modified version of Yara capable of using as input the read files generated by BioSeqZip for creating the full mapping files. This tool version does not need an expansion procedure of the output mapping files.

3 Supplementary Figures

	S1	S2	S3	S4	S5	S6
BSZ	49.2%	71.8%	63.0%	47.0%	27.3%	53.6%
FU	49.2%	71.8%	63.0%	47.0%	27.3%	53.6%
FXT	49.2%	71.8%	63.0%	47.0%	27.3%	53.6%
PDR	49.2%	71.8%	63.0%	45.4%	26.4%	52.1%
SC	49.2%	71.8%	63.0%	47.0%	27.3%	53.6%
SD	71.3%	77.1%	73.2%	62.9%	65.4%	66.7%

Figure 1: Experimental comparison of collapsed files generated with different collapsing tools. In green, instances where the output file contained only non-redundant reads. In yellow, instances where not all the redundant reads were collapsed. In red, instances where the input files were over-collapsed (i.e. not equal reads are grouped together) and the coherent representation of the read set is lost.

4 Supplementary Analysis

4.1 Collapsing performance on Single Cell samples

For this experiment, we used the two Single-Cell RNA-Seq samples from 10-week human embryo forebrain tissues (SRP129388), characterized by a conspicuous number of reads: in total 505 million reads with a 98 bp length. These samples were sequenced by Illumina HiSeq 2500 sequencing technology and the original files are 150GB large.

The results of this test are shown in the barchart of Figure 2. More specifically, the five groups of bars in the figure show the impact of the tool on the analysis of two samples (S906 and S907), in terms of % reduction of five figures of merit: file size, number of reads, computational time for mapping with Yara, Bowtie2 and BWA, respectively.

The same alignment time reductions shown in this chart were also experienced when using as a reference the Human Genome HG38.

Figure 2: Collapsing performance on Single Cell samples. Bars represent the percentage reduction in terms of file size, number of reads, computational time for mapping with Yara, Bowtie2 and BWA, respectively. Green and blue bars refer to the two Single Cell samples used for the experiment.
4.2 BioSeqZip on DNA-Seq data

We tested the collapsing procedure provided by BioSeqZip on a 74x coverage DNA-seq paired-end sample (SRR7890958) with the following Library specs:

- Name: FFG_IL_N_6h
- Instrument: Illumina HiSeq 4000
- Strategy: WGS
- Source: GENOMIC
- Selection: RANDOM
- Layout: PAIRED
- Coverage: 74x
- Total reads after trimming: 1,523,752,982

First of all, we tested single-end collapsing running BioSeqZip on the first mate of the sample, experiencing an 18.38% gain in terms of the number of reads in the file which corresponds to 19.65% gain in disk space. Then, we run the BioSeqZip_collapser on the paired-end files experiencing a read compression of 8.70% and a disk space reduction of 10.01%.

The reason of these observations could be that DNA-seq samples, given the origin of the sequenced data, expose a lower redundancy, leading to lower compression, making the collapsing procedure less effective reducing the gain the user can expect to have in post-collapsing pipelines.

4.3 BioSeqZip - RAM/Runtime trade-off

In Table 1 we explore the trade-off between the maximum amount of RAM BioSeqZip is allowed to use and the number of seconds required for running the collapse procedure.

Max RAM [GB]	ERR030890 1 thread	ERR030890 4 threads	ERR030896 1 thread	ERR030896 4 threads	ERR030902 1 thread	ERR030902 4 threads
4	377	304	435	379	470	379
8	405	329	467	372	472	397
16	379	336	481	394	512	442
32	301	227	413	300	457	313

The analysis highlights that the runtime required for collapsing a sample slightly increases as the size of the internal buffer, used for storing the sequences, increases. This is due to the algorithmic structure of BioSeqZip: it is composed of an I/O part, which scales linearly with the amount of data to be read or written, and a collapsing part whose core is the buffer sorting engine, which sorts the sequences to be collapsed in alphabetical order. The higher runtime observed when collapsing a larger amount of data is related to the asymptotic complexity of the sorting algorithm being $O(n \times \log(n))$. Basically, given X sequences read from the disk in time R and sorted in time S, performing I/O on $2 \times X$ data requires $2 \times R$, but sorting them requires more than $2 \times S$.

This trend is broken when the collapser is allowed to use an amount of RAM bigger than the size of the samples (all three samples have approximately 17-18 GB size). In this case, the higher runtime required by the sorting algorithm is balanced by the fact that BioSeqZip does not need to create temporary files on the disk for performing sequences merging, allowing the collapser to used much less I/O operations, which are the real runtime bottleneck in the typical scenario where BioSeqZip operates.

4.4 BioSeqZip+STAR vs Rail-RNA

In Table 2 we reports the output of the comparison between samples alignment with Rail-RNA and with the combination of BioSeqZip and STAR. Rail-RNA was run with the default local configuration using 8 running threads, in order to be fair with the previous analysis carried on with STAR. Also, Rail-RNA was not asked to report deliverables different from its default one.
Table 2: Specification of the raw and collapsed samples part of the BodyMap dataset

Tool	Runtime partials [s]	Runtime total [s]	Runtime total [h]
ERR030888 (single-sample x 75bp)			
BioSeqZip collapse	367	2521	0.7
STAR	1086		
BioSeqZip expand	1068	22892	
Rail-RNA default		22892	6.36
BodyMap Single-End (16 samples x 75bp)			
BioSeqZip collapse	7763	55047	15.29
STAR	40255		
BioSeqZip expand	7029	170538	47.37
Rail-RNA default		170538	

The exact command line used is:

```
   rail-rna go local -m <manifest path> \ 
   -x <bowtie index path> <bowtie2 index path> \ 
   -p 8 -o <output directory path>
```

As highlighted by the result table the runtime of the pipeline featuring BioSeqZip and STAR is lower than the one of Rail-RNA. However, such comparison is not completely fair: first of all, the information the two alignment tools provide are not the same, with Rail-RNA providing more data than STAR. Then, it should be noticed that Rail-RNA is a cloud-ready alignment tool whose design and implementation may have led to solutions which do not perform best on local and resource-constrained machines, which are the targets BioSeqZip was mainly designed for.
Supplementary Tables

Table 3: Specification of the raw and collapsed samples part of the BodyMap dataset

SAMPLE	RAW RECORDS	RAW SIZE [GB]	COLLAPSED RECORDS	COLLAPSED SIZE [GB]	TIME [s]	RAM [GB]	GAIN	
ERR030872	81.91	24.96	44.24	10.53	655	7.20	45.99%	57.83%
ERR030873	81.84	24.94	43.39	10.33	623	7.20	46.98%	58.60%
ERR030874	80.95	24.67	52.56	12.51	690	7.20	35.06%	49.29%
ERR030875	81.22	24.75	30.01	7.61	566	7.20	60.59%	69.25%
ERR030876	82.11	25.03	30.91	7.35	566	7.20	62.35%	70.62%
ERR030877	82.33	25.09	33.88	8.06	611	7.20	58.85%	67.89%
ERR030878	82.08	25.02	26.77	6.36	567	7.20	67.39%	74.56%
ERR030879	79.30	24.17	24.96	5.93	562	7.20	68.52%	75.45%
ERR030880	77.30	23.56	37.49	8.92	631	7.20	51.50%	62.14%
ERR030881	74.47	22.70	40.94	9.74	583	7.20	45.03%	57.09%
ERR030882	73.51	22.41	53.48	12.73	619	7.20	27.25%	43.19%
ERR030883	75.86	23.12	39.87	9.49	568	7.20	47.44%	58.98%
ERR030884	82.44	25.13	30.07	7.15	590	7.20	63.53%	71.55%
ERR030885	80.40	24.51	32.03	7.62	624	7.20	60.16%	68.92%
ERR030886	82.92	25.28	38.46	9.15	590	7.20	53.61%	63.80%
ERR030887	80.05	24.40	31.40	7.47	569	7.20	60.77%	69.39%
ERR030888	76.27	15.17	22.63	3.70	367	7.20	70.33%	75.62%
ERR030889	76.17	15.15	29.14	4.77	394	7.20	61.74%	68.54%
ERR030890	64.31	12.79	32.68	5.35	337	7.20	49.19%	58.21%
ERR030891	77.20	15.36	26.10	4.27	388	7.20	66.19%	72.21%
ERR030892	80.26	15.97	22.61	3.70	380	7.20	71.83%	76.85%
ERR030893	79.77	15.87	22.93	3.75	379	7.20	71.25%	76.38%
ERR030894	76.77	15.27	27.97	4.58	368	7.20	63.56%	70.05%
ERR030895	77.45	15.41	20.94	3.42	366	7.20	72.96%	77.79%
ERR030896	81.26	16.17	16.84	2.75	401	7.20	79.28%	82.98%
ERR030897	81.92	16.30	19.29	3.15	386	7.20	76.46%	80.66%
ERR030898	83.32	16.58	19.21	3.14	382	7.20	76.95%	81.06%
ERR030899	82.86	16.49	13.68	2.23	350	7.20	83.49%	86.45%
ERR030900	82.79	16.47	20.45	3.34	409	7.20	75.30%	79.70%
ERR030901	81.00	16.12	33.94	5.55	404	7.20	58.10%	65.54%
ERR030902	82.04	16.32	30.38	4.97	409	7.20	62.97%	69.56%
ERR030903	80.25	15.97	28.56	4.67	386	7.20	64.41%	70.74%
Table 4: Runtime report of three experiments: (BWA only) samples alignment using the BWA tool as it is, (BWA + BioSeqZip separate expander) collapsed samples alignment using BWA, considering the runtime of the BioSeqZip-expander tool, (BWA + BioSeqZip embedded expander) collapsed samples alignment using BioSeqZip-BWA, i.e. BWA with the expanding functionalities integrated (BioSeqZip-BWA is available at https://github.com/bioinformatics-polito/BioSeqZip-BWA.git)

Sample	BWA only	BWA + BioSeqZip (Separate expander)	BWA + BioSeqZip (Embedded expander)
	Align	Collapse Align Expand Tot Gain	Collapse Align Tot Gain
ERR030872	2483	655 1298 1196 3149 -26.82%	655 1234 1899 23.92%
ERR030873	2329	623 1237 1216 3076 -32.07%	623 1192 1815 22.07%
ERR030874	2578	690 1587 1349 3626 -40.65%	690 1520 2210 14.27%
ERR030875	2542	585 1016 1045 2646 -4.09%	585 980 1565 38.43%
ERR030876	2168	566 797 994 2357 -8.72%	566 796 1362 37.18%
ERR030877	2510	611 1029 1042 2682 -6.85%	611 1010 1621 35.42%
ERR030878	2721	567 898 878 2343 13.89%	567 965 1532 43.70%
ERR030879	2414	562 791 920 2273 5.84%	562 761 1323 45.19%
ERR030880	2120	631 1089 1078 2798 -31.98%	631 996 1627 23.25%
ERR030881	2402	583 1358 1106 3047 -26.85%	583 1249 1832 23.73%
ERR030882	1963	619 1493 1319 3431 -74.78%	619 1356 1975 -0.61%
ERR030883	2121	568 1169 1128 2865 -35.08%	568 1070 1638 22.77%
ERR030884	2314	590 903 1002 2495 -7.82%	590 832 1422 38.55%
ERR030885	2254	624 967 1014 2605 -15.57%	624 888 1512 32.92%
ERR030886	1986	590 1001 1133 2724 -37.16%	590 914 1504 24.27%
ERR030887	2131	569 874 1011 2454 -15.16%	569 782 1351 36.60%
ERR030888	1272	367 441 463 1271 0.08%	367 435 802 36.95%
ERR030889	1495	394 656 506 1556 -4.08%	394 642 1036 30.70%
ERR030890	1040	337 602 552 1491 -43.37%	337 585 922 11.35%
ERR030891	1289	388 520 487 1395 -8.22%	388 510 898 30.33%
ERR030892	1299	380 459 471 1310 -0.85%	380 449 829 36.18%
ERR030893	1451	379 488 457 1324 8.75%	379 453 832 42.66%
ERR030894	1215	368 504 507 1379 -13.50%	368 474 842 30.70%
ERR030895	1310	366 403 446 1215 7.25%	366 376 742 43.36%
ERR030896	1468	401 370 436 1207 17.78%	401 350 751 48.84%
ERR030897	1716	386 442 451 1279 25.47%	386 415 801 53.32%
ERR030898	1453	382 407 449 1238 14.80%	382 387 769 47.08%
ERR030899	1248	350 266 434 1050 15.87%	350 251 601 51.84%
ERR030900	1407	409 424 478 1311 6.82%	409 395 804 42.86%
ERR030901	1406	404 690 586 1680 -19.49%	404 645 1049 25.39%
ERR030902	1336	409 599 562 1570 -17.51%	409 560 969 27.47%
ERR030903	1358	386 588 564 1538 -13.25%	386 545 931 31.44%

Paired-End 37036 9633 17507 17431 44571 -20.35% 9633 16545 26178 29.32%
Single-End 21763 6106 7859 7849 21814 -0.23% 6106 7472 13578 37.61%
Table 5: Runtime report of three experiments: (Yara only) samples alignment using the Yara tool as it is, (Yara + BioSeqZip separate expander) collapsed samples alignment using Yara, considering the runtime of the BioSeqZip-expander tool, (Yara + BioSeqZip embedded expander) collapsed samples alignment using BioSeqZip-Yara, i.e. Yara with the expanding functionalities integrated (BioSeqZip-Yara is available at https://github.com/bioinformatics-polito/BioSeqZip-Yara.git)

Sample	Yara only	Yara + BioSeqZip (Separate expander)	Yara + BioSeqZip (Embedded expander)
	Align	Collapse Align Expand Tot Gain	Collapse Align Embedded expander Tot Gain
ERR030872	1323	655 981 1337 2973 -124.72%	655 1041 1696 -28.19%
ERR030873	1316	623 925 1291 2839 -115.73%	623 860 1483 -12.69%
ERR030874	1442	690 1148 1424 3262 -126.21%	690 1024 1714 -18.86%
ERR030875	1397	585 724 1150 2459 -76.02%	585 668 1253 10.31%
ERR030876	1218	566 566 1021 2153 -76.77%	566 558 1124 7.72%
ERR030877	1419	611 756 1130 2497 -75.97%	611 718 1329 6.34%
ERR030878	1675	567 662 966 2195 -31.04%	567 638 1205 28.06%
ERR030879	1623	562 602 950 2114 -30.25%	562 595 1157 28.71%
ERR030880	1253	631 774 1137 2542 -102.87%	631 720 1351 -7.82%
ERR030881	1713	583 1102 1139 2824 -64.86%	583 1000 1583 7.59%
ERR030882	1367	619 1090 1360 3069 -124.51%	619 981 1600 -17.04%
ERR030883	1258	568 915 1147 2630 -109.06%	568 839 1407 -11.84%
ERR030884	1356	590 707 1045 2342 -72.71%	590 667 1257 7.30%
ERR030885	1550	624 973 1029 2626 -69.42%	624 889 1513 2.39%
ERR030886	1192	590 731 1141 2462 -106.54%	590 688 1278 -7.21%
ERR030887	1222	569 610 1089 2268 -85.60%	569 555 1124 8.02%
ERR030888	597	367 199 521 1087 -82.08%	367 323 690 -15.58%
ERR030889	668	394 302 499 1195 -78.89%	394 349 743 -11.23%
ERR030890	515	337 303 514 1154 -124.08%	337 457 794 -54.17%
ERR030891	590	388 254 474 1116 -89.15%	388 284 672 -13.90%
ERR030892	583	380 208 464 1052 -80.45%	380 301 681 -16.81%
ERR030893	707	379 226 440 1045 -47.81%	379 206 585 17.26%
ERR030894	607	368 252 522 1142 -88.14%	368 232 600 1.15%
ERR030895	676	366 198 487 1051 -55.47%	366 191 557 17.60%
ERR030896	710	401 159 453 1013 -42.68%	401 152 553 22.11%
ERR030897	741	386 183 438 1007 -35.90%	386 177 563 24.02%
ERR030898	726	382 179 462 1023 -40.91%	382 169 551 24.10%
ERR030899	619	350 112 390 852 -37.64%	350 116 466 24.72%
ERR030900	661	409 197 509 1115 -68.68%	409 196 605 8.47%
ERR030901	655	404 325 617 1346 -105.50%	404 315 719 -9.77%
ERR030902	625	409 287 550 1246 -99.36%	409 256 665 -6.40%
ERR030903	710	386 286 525 1197 -68.59%	386 246 632 10.99%
Paired-End	22324	9633 13266 18356 41255 -84.80%	9633 12441 22074 1.12%
Single-End	10390	6106 3670 7865 17641 -69.79%	6106 3970 10076 3.02%