Spatial Analysis of Data on the Basis of the Digital Model of Relief and Locality (Example of Shemakha, Akhsu and Ismayilli Districts).

Dr. Z.H. Aliyev

Institute of Soil Science and Agrochemistry of NAS of Azerbaijan, Az 1073. Baku. str. M. Raqima 5.

*Corresponding Author: Dr. Z.H. Aliyev Institute of Soil Science and Agrochemistry of NAS of Azerbaijan, Az1073. Baku.str Email: zakirakademik@mail.ru

ABSTRACT

The article examines the issues of studying the degree of susceptibility of sloping lands in Azerbaijan in the example of specific administrative-territorial units, flat areas with a slope of up to 6% (about 3.50) are concentrated in Akhsu district - 71%, and in Shemakha - almost 49%. The steepest slopes are observed in the Ismaili region, where almost 26% of the territory has a slope of 10-18%, 30% of its area slope is 18%.

Keywords: sloping slopes, arable lands, a layer, a database, a gradient class, soil, forests, pastures, geese, cartographic materials

INTRODUCTION

Spatial analysis includes operations performed on geographic data using available methods and techniques in GIS software, with a view to describing the relationships between elements of the geographical environment. The analysis can be carried out on the data, both in the vector and raster systems, and touch the geometry and attributes of the vector data.

SEARCH FOR INFORMATION IN THE DATABASE

The main operation that can be performed based on the GIS database is information retrieval. This database has a relational nature and therefore, the object designation provokes the selection of the corresponding records from the corresponding attribute table, and vice versa. The first thematic layer in the database was the Digital Elevation Model in raster format. On its basis, as a result of the transformations and calculations, information on the height of the nos. and the slope of the terrain on the territory of Azerbaijan selected for analysis, which includes three regions: Shemakha, Akhsu and Ismayil.

VERTICAL POSITION FACTOR

The major part of the study area is in the following ranges of heights: 1) from 0 to 300 mas-23.16%, from 300 to 600 m-19.84% and 3) 600-900 m-23, 75% of the total area. Above 900 m and up to 3400 m above sea level, about 30% of its area is located (Table 1).

Of the administrative units belonging to the study area, the most highly allocated land is the Ismaili region. In this area 90: it is at an altitude of more than 300 meters above sea level, and sometimes the altitude is even higher than 3400 m. In Akhsu region about 73% of the territory has a slope of 10-18%, 30% of its area slope is 18%.

In this area there is also a territory located below sea level-31244.66 hectares.

CLASSES OF SLOPE

In the analyzed territory, the largest area is occupied by areas with a slope of up to 6-46%. Significant areas are also in the intervals from 6 to 10% -18% and from 18% to almost 23% of the total area (Table 2). Against the backdrop of
Spatial Analysis of Data on the Basis of the Digital Model of Relief and Locality (Example of Shemakha, Akhsu and Ismayilli Districts).

administrative-territorial units, gently sloping areas with a slope of up to 6% (about 3.50) are concentrated in the Akhsu district-71%, and in Shemakha - almost 49%. The steepest slopes are observed in the Ismaili region, where almost 26% of the territory has a slope of 10-18%, 30% of its area slope is 18%.

Table 1. The distribution of the study area (ha and%) over the altitude intervals

Height, m. h.y.m.	Regions	Togethe			
	Shemakha	Akhsuinsky	Ismailinskiy		
<0	ha	%	%	%	31245
0-300	31 245	0	0	31245	
	8,12	0,00	0,00	5	
300-600	69 737	73 029	17 334	160101	
	18,13	72,99	8,39	23	
600-900	8 4924	11 744	40 470	137138	
	22,08	11,74	19,58	20	
900-1200	101 678	13 550	48 965	164193	
	26,44	13,54	23,69	24	
1200-1500	46 975	15 621	15 671	64 208	
	12,21	1,56	7,58	9	
1500-1800	23 469	162	20 529	44 159	
	6,10	0,16	9,93	6	
1800-2100	15 775	0	22 305	38 080	
	4,10	0,00	10,79	6	
2100-2400	7 885	0	22 460	30 345	
	2,05	0,00	10,87	4	
2400-2700	2 279	0	10 223	12 502	
	0,59	0,00	4,95	2	
2700-3000	572	0	4 197	4 769	
	0,15	0,00	2,03	1	
3000-3300	42	0	2 915	2 967	
	0,01	0,00	1,41	0	
>3400	0	0	1 191	1 191	
	0,00	0,00	0,09	0	
Together	384 582	100 047	20 6660	69 1289	

Classes of the slope of the terrain, depending on the altitude intervals

Tables (3-5) contain data that allow analyzing the distribution of the slope of the terrain along altitude intervals. This distribution was prepared for all administrative units of the area under consideration.

In the Shemakha region, a clear dependence is shown, an increase in the slope, along with an increase in altitude above sea level. Up to a height of 1200 m there are lands with a slight slope-up to 6% (3.50). They occupy 49% of the area. Territories here with a slope of 6-10% and 10-18% are located at an altitude of 400-1700 m. M.u.m.-about 23% of the area's area. Areas with a slope of more than 18% make up more than 5% of the total area and are located in the highlands. In the Akhsuinsky area, the terrain with an insignificant slope of up to 6% (3.50) prevails and they are located mainly at an altitude of 300 m above sea level - this is 71% of the total area.

Areas with a slope of more than 6% are located at altitudes from 300 to 1400 m above sea level - about 29%. Clearly marked (17% of the total area) of land with a slope of 10-18% (6-100) (Table 4).

Table 2. The distribution of the study area (ha and%) over the slopes of the terrain

Height, m. h.y.m.	Regions	Togethe			
	Shemakha	Akhsuinsky	Ismailinskiy		
0-6	ha	%	%	%	319792
	18 7157	71 131	61 504	319792	
	48,67	71,10	29,76	46,26	
Spatial Analysis of Data on the Basis of the Digital Model of Relief and Locality (Example of Shemakha, Akhsu and Ismayilli Districts).

Height, above sea level	Agricultural area (ha)	Forest areas (ha)	Water areas (ha)	Urban areas (ha)	Total area (ha)
6-10	88330	7393	28770	124993	
%	23.10	7.39	13.92	18.08	
10-18	87641	17033	53425	158099	
%	22.79	17.02	25.85	22.87	
18-27	17782	4326	34060	56168	
%	4.62	4.32	16.48	8.13	
27-35	2855	164	20176	23195	
%	0.74	0.16	9.76	3.36	
>35	317	0	8724	9041	
%	0.08	0.00	4.22	1.31	
Total	**384582**	**10 047**	**206660**	**691289**	

In the Ismayilli region, most of the territory with a slope of <6 to 10% is located at an altitude of 300 to 900 m above sea level. Areas with a slope of 10 to 37% occur at an altitude of 3000 meters above sea level. Locations with a slope of more than 37% are located at the highest altitude, but make up only 4% of the total area of the area.

The second, from the thematic layers created in the database, is the land use of the study area. Due to the availability of cartographic materials, it was considered exclusively for the territory of the Akhsu district.

Analysis of the structure of land use in the Akhsu district showed that it is purely agricultural. The area is dominated by arable land, which makes up about 50% and tilled areas, which include pastures, meadows and degrees - more than 23% of the total area. Agricultural lands are supplemented with vegetable gardens, orchards and vineyards, occupying 3% of the area. There are few forests and shrubs, in general, about 12%.

There are also areas completely devoid of vegetation in the Akhsu district, about 4% of them. A small part is occupied by water reservoirs, wetlands and urban and rural areas, amounting to 6.9% of the total area.

Table 3. The distribution of the territory of the Shemakha district according to the grades of the terrain according to the altitude intervals

Height, above sea level	Agricultural area (ha)	Forest areas (ha)	Water areas (ha)	Urban areas (ha)	Total area (ha)
6-10	88330	7393	28770	124993	
%	23.10	7.39	13.92	18.08	
10-18	87641	17033	53425	158099	
%	22.79	17.02	25.85	22.87	
18-27	17782	4326	34060	56168	
%	4.62	4.32	16.48	8.13	
27-35	2855	164	20176	23195	
%	0.74	0.16	9.76	3.36	
>35	317	0	8724	9041	
%	0.08	0.00	4.22	1.31	
Total	**384582**	**10 047**	**206660**	**691289**	
Table 4. Distribution of the territory of the Akhsu region according to the grade of the terrain depending on the altitude intervals

Height, m. above sea level	Slope classes				Sum					
	6-10	10-18	18-27	27-35						
	%	%	%	%	%					
0-6 0.00-1.00	52626	52.60	16.02	13.01	0.01	0.00	0.00	52656		
1.00-2.00	12380	12.37	87.17	0.82	48.55	0.49	74.07	0.07	0.00	13757
2.00-3.00	3413	3.41	15.91	11.15	1.83	31.70	0.32	5.00	0.01	6617
3.00-4.00	418	0.41	69.39	0.09	20.51	2.05	50.76	0.51	19.02	3687
4.00-5.00	215	0.21	39.06	0.39	22.20	2.22	83.45	0.38	13.01	3672
5.00-6.00	273	0.27	53.05	0.54	25.94	2.59	97.49	0.97	5.01	4384
6.00-7.00	327	0.32	57.55	0.76	33.33	3.34	84.86	0.88	20.02	5318
7.00-8.00	690	0.69	151.06	1.52	268.93	2.69	406.31	0.41	22.01	5324
8.00-9.00	681	0.68	98.06	0.99	106.00	1.06	166.51	1.13	17.01	2909
9.00-10.00	154	0.15	25.16	0.28	21.04	0.24	79.08	0.16	17.57	2711
10.00-11.00	29	0.03	29.03	0.28	17.04	0.28	77.00	0.31	17.01	5517
11.00-12.00	32	0.03	36.04	0.12	12.77	0.13	32.00	0.03	17.02	236
12.00-13.00	0	0.00	7.01	0.08	29.00	0.03	13.00	0.03	13.01	131
13.00-14.00	0	0.00	4.00	0.00	20.00	0.02	5.00	0.00	3.01	31
Sum	71131	71.15	7393	7.39	17033	17.02	4326	4.32	164.00	10047

Table 5. The distribution of the territory of the Imayylli region according to the grades of the terrain according to the altitude intervals

Height, m. above sea level	Slope classes				Sum					
	16	10-18	18-27	27-37	37-68					
	%	%	%	%	%					
1-2	364	3.64	169.01	0.18	48.44	0.23	51.05	0.02	10.00	1546
3-4	1060	1.06	90.76	0.18	24.44	0.23	51.05	0.02	10.00	13527
5-6	825	0.82	109.01	0.18	24.44	0.23	51.05	0.02	10.00	8507
7-8	64	0.64	68.01	0.18	24.44	0.23	51.05	0.02	10.00	21964
9-10	744	0.74	31.01	0.18	24.44	0.23	51.05	0.02	10.00	23476
11-13	327	0.33	10.01	0.18	24.44	0.23	51.05	0.02	10.00	17154
14	188	0.19	0.01	0.00	0.00	0.00	0.00	0.00	0.00	8336

32 International Journal of Research in Agriculture and Forestry V5 •18•2018
Spatial Analysis of Data on the Basis of the Digital Model of Relief and Locality (Example of Shemakha, Akhsu and Ismayilli Districts).

Table 6. Land use in Ahsuinsky district

Land use	ha	%
The Cities	1237	1.24
Pschenitsa	49979	49.96
Gardens	1123	1.12
Vineyards	528	0.53
Arable land	52868	52.84
Pastures	12394	12.39
Green grounds	6511	6.51
Power	4708	4.71
Dry dried valleys	673	0.67
Coniferous forests	535	0.53
Deciduous forests	8451	8.45
Mixed forests	216	0.22
Marshes	844	0.84
Reservoirs	27	0.03
Stavy	25	0.02
Piece of lake	80	0.08
Bays	1137	1.14
Shrubs	2668	2.67
Soil without vegetation	248	0.25
Rocks	3827	3.38
Rural low construction	527	0.53
City low building	3919	3.92
High Urban Construction	147	0.15
Rockstones, mines	241	0.24
Together	**100047**	**10000**

Tables 7 and 8 provide information on the distribution of land use patterns over altitudinal intervals and grades of terrain slopes. Most agricultural land is located at a height of up to 400 m above sea level. Only pastures are located up to an altitude of 1400 meters above sea level. Forest territories are in all altitude intervals. The remaining forms of land use are located at lower altitudes (Table 7.).

Considering the slope of the slopes, most of the territories are in the gradient class 0-6% - almost 71%. Only pastures, green lands, as well as deciduous forests, are located on slopes with a higher slope (Table 8.).

Table 7. Land use by altitude intervals

Land use	Height, m. above sea level							
	<100	100-200	200-300	300-400	400-500	500-600	600-700	700-800
	ha %	ha %	ha %	ha %	ha %	ha %	ha %	ha %
The Cities	231	0.23	231	0.23	0	0.00	0	0.00
Pschenitsa	42825	42.81	5607	5.60	690	0.69	235	0.23
Gardens	339	0.34	701	0.70	42	0.04	0	0.00
Vineyards	19	0.02	113	0.11	306	0.31	40	0.04
Pastures	438	0.44	1635	1.63	461	0.46	235	0.23
Green grounds	42	0.04	596	0.59	1345	1.34	1418	1.42
Power	3188	3.19	1459	1.46	61	0.06	0	0.00
Dry dried valleys	223	0.22	242	0.24	201	0.20	6	0.01
Coniferous forests	535	0.53	0	0.00	0	0.00	0	0.00

International Journal of Research in Agriculture and Forestry V5 18 2018 33
Spatial Analysis of Data on the Basis of the Digital Model of Relief and Locality (Example of Shemakha, Akhsu and Ismayilli Districts).

Land use	800-900	900-1000	1000-1100	1100-1200	1200-1300	1300-1400		
	ha	%	ha	%	ha	%	ha	%
1	1	3	4	5	6	7	8	9
The Cities	0	0,00	0	0,00	0	0,00	0	0,00
Pshchenitsa	367	0,37	105	0,11	1	0,00	0	0,00
Gardens	0	0,00	0	0,00	0	0,00	0	0,00
Vineyards	4	0,00	0	0,00	0	0,00	0	0,00
Pastures	1530	1,53	384	0,38	217	0,22	98	0,10
Green grounds	189	0,19	3	0,00	0	0,00	0	0,00
Power	0	0,00	0	0,00	0	0,00	0	0,00
Coniferous forests	0	0,00	0	0,00	0	0,00	0	0,00
Deciduous forests	617	0,62	260	0,26	334	0,33	137	0,14
Mixed forests	0	0,00	0	0,00	0	0,00	0	0,00
Marshes	0	0,00	0	0,00	0	0,00	0	0,00
Reservoirs	0	0,00	0	0,00	0	0,00	0	0,00
Stavy	0	0,00	0	0,00	0	0,00	0	0,00
Piece of lake	0	0,00	0	0,00	0	0,00	0	0,00
Bays	0	0,00	0	0,00	0	0,00	0	0,00
Shrubs	0	0,00	0	0,00	0	0,00	0	0,00
The soil layer without vegetation	0	0,00	0	0,00	0	0,00	0	0,00
Rocks	21	0,02	0	0,00	0	0,00	0	0,00
Rural low construction	180	0,18	22	0,02	0	0,00	0	0,00
Citylowbuilding	0	0,00	0	0,00	0	0,00	0	0,00
HighUrbanConstruction	0	0,00	0	0,00	0	0,00	0	0,00
Rockstones, mines	0	0,00	0	0,00	0	0,00	0	0,00
Together	2909	2,91	775	0,77	551	0,55	236	0,24

Table 8. Land use according to grades of the slope of the terrain

Land use	0-6	6-10	10-18	18-27	27-37	Together						
	ha	%	ha	%	ha	%	ha	%				
The Cities	49085	49,06	533,2	0,53	348	0,35	13	0,01	1	0,00	49979	49,96
Pshchenitsa	1113	1,11	105,3	0,11	19	0,02	0	0,00	0	0,00	1237	1,24
Gardens	1083	1,08	32,8	0,03	8	0,01	0	0,00	0	0,00	1123	1,12
Vineyards	371	0,37	51,2	0,05	90	0,09	16	0,02	0	0,00	528	0,53
Pastures	2895	2,89	2602,5	2,60	5956	5,95	932	0,93	8	0,01	12394	12,39
Green grounds	658	0,66	1462,2	1,46	3486	3,48	893	0,89	12	0,01	6511	6,51
Power	4632	4,63	53,8	0,05	19	0,02	3	0,02	0	0,00	4708	4,71
Coniferous forests	535	0,53	0	0,00	0	0,00	0	0,00	0	0,00	535	0,53
Spatial Analysis of Data on the Basis of the Digital Model of Relief and Locality (Example of Shemakha, Akhsu and Ismayilli Districts).

Deciduous forests	595	0.60	1565.0	1.56	4655	4.65	1501	1.50	134	0.13	8451	8.45
Mixed forests	208	0.21	1.7	0.00	6	0.01	1	0.00	0	0.00	216	0.22
Marshes	844	0.84	0.0	0.00	0	0.00	0	0.00	0	0.00	844	0.84
Reservoirs	27	0.03	0.0	0.00	0	0.00	0	0.00	0	0.00	27	0.03
Stavy	25	0.02	0.4	0.00	0	0.00	0	0.00	0	0.00	25	0.02
Piece of lake	78	0.08	1.9	0.00	0	0.00	0	0.00	0	0.00	80	0.08
Bays	735	0.74	146.5	0.15	179	0.18	74	0.07	2	0.00	1137	1.14
Shrubs	2550	2.55	25.3	0.03	62	0.06	31	0.03	0	0.00	2668	2.67
The soil layer	196	0.20	16.8	0.02	24	0.02	11	0.01	0	0.00	248	0.25
without vegetation												
Rocks	310	0.31	585.5	0.59	2051	2.05	872	0.87	8	0.01	3827	3.83
Rural low	354	0.35	117.1	0.12	55	0.05	1	0.00	0	0.00	527	0.53
City low building	3723	3.72	87.9	0.09	98	0.10	1	0.01	0	0.00	3919	3.92
High Urban	147	0.15	0.0	0.00	0	0.00	0	0.00	0	0.00	147	0.15
Construction												
Rockstones, mines	217	0.22	8.1	0.01	16	0.02	0	0.00	0	0.00	241	0.24
Togethers	71026	70.99	7403.2	7.40	17084	17.08	4369	4.37	165	0.17	100047	100.00

LITERATURE

[1] Alekperov KA, 1980. Soil-erosion map for the protection of lands. Moscow.

[2] Aliev GA, 1980. The problem of desertification in Azerbaijan, ways of solving it, Baku "Zia-Nurlan".

[3] Aliev GA, 1959. Soil of Azerbaijan. Publishing house Volobuev V.R. «AN. Azerb. The USSR » p. 122.

[4] Aliev BG, Aliev ZG and Aliev IN, 2000. Problems of erosion in Azerbaijan and ways to solve it. Baku: ZIMA-CPI "Nurlan" p. 122.

[5] Armand, DL, 1956. Anthropogenic erosion processes. In the book. "Agricultural erosion and the fight against it", ed. An USSR, Moscow.

[6] Babaeva KM, 1995. Influence of simple and complex mineral fertilizers and lucerne sowing on restoration of fertility of eroded soils of the south-eastern slope of the Greater Caucasus. Author. Dis. Baku.

[7] Bennet H.H., 1958. Fundamentals of soil protection (translated from English).

[8] Grossgeim AA, 1948. Vegetative cover of the Caucasus. Publishing house of the Moscow Society of Naturalists, Moscow.

[9] Huseynov AA, 1991. Efficiency of surface improvement of eroded pastures. All-Union Scientific Conference. Dushanbe, p.

[10] MN Zaslavsky, 1969. To the draft classification of soils according to the degrees of erosion. Sat. "Materials on the methodology of soil-erosion mapping of erosion control measures." Moscow.

[11] M. Zaslavsky. 1983. Erosiology. "high school".

[12] Ibragimov, AA, Mapping of eroded soils on agricultural lands, for example, Dashkesan district, Azerb. THE USSR.

[13] Ibragimov AA, 2000. Agroecological feature of eroded soils in Azerbaijan.

[14] Materials on the study of erosion and irrigation and soil conservation in Azerbaijan. Baku.

[15] Ibragimov A, A., 1972. Mapping of eroded soils on agricultural lands (on the example of the Dashkesan district of the Azerbaijan Soviet Socialist Republic). Questions of the methodology of soil-erosion mapping

[16] Groom G, Muclher CA, Margareta I, Thomas W (2006) Remote sensing inlandcape ecology: experience and perspectives in the European context. Landscape Ecology 21 (3): 391-408.

[17] Harris A, Carr AS, Dash J (2014) Remote sensing of vegetative intergumentary dynamics and stability in southern Africa. International Journal of Earth Observation and Geoinformation 28: 131-139.

[18] Klemas V (2013) The use of remote sensing for the selection and monitoring of wetland restoration sites: an overview. Journal of Coastal Research 29 (4): 958-970.

Citation: Dr.Z.H.Aliyev (2018). "Spatial Analysis of Data on the Basis of the Digital Model of Relief and Locality (Example of Shemakha, Akhsu and Ismayilli Districts).". International Journal of Research in Agriculture and Forestry, 5(8), pp.29-35

Copyright: © 2018 Dr.Z.H.Aliyev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.