INTRODUCTION

Thiourea derivatives are widely used as building blocks in numerous organic synthesis such as in the synthesis of heterocyclic compounds. Many thiourea derivatives also act as versatile ligands in numerous applications due to their ability to coordinate with various transition metal ions as monodentate or bidentate ligands. Furthermore, the nucleophilic nature of the sulphur atom and the presence of N-H donor groups make thiourea derivatives enable to form extensive intra- and intermolecular hydrogen bonds. These interactive properties of thiourea compounds make them broadly used in numerous fields such as pharmaceutical, environmental, electrochemical and also agrochemical industry.

Carbonyl thiourea, one kind of thiourea derivatives, has been extensively explored in recent years. Most of carbonyl thioureas have been synthesized from the reaction of carbonyl isothiocyanate with amine compound in acetone. Only a few of them have been synthesized from diamine compound to produce bis-carbonyl thioureas.

SYNTHESIS AND X-RAY CRYSTALLOGRAPHIC STUDY OF \(\text{N,N}' - \text{bis}(2-, 3-, \text{and} 4\text{-methoxybenzamidothiocarbonyl}) \text{Hydrazines} \)

Syadza Firdausiah\(^{1,2}\), Siti Aishah Hasbullah\(^1\), Bohari M. Yamin\(^1\)

School of Chemical Sciences and Food Technology, Faculty of Science and Technology, 43600 UKM Bangi, Selangor D.E. Malaysia; Chemistry Department, Faculty of Mathematics and Natural Science, Hasanuddin University, Indonesia.

ABSTRACT

Introduction: Most of carbonyl thioureas have been synthesized from the reaction of carbonyl isothiocyanate with amine compound in acetone. Only a few of them have been synthesized from diamine compound to produce bis-carbonyl thioureas.

Objective: To investigate the one-pot reaction of 2, 3, and 4-methoxybenzoyl chloride with ammonium thiocyanate and hydrazine in acetone by reflux condition.

Methods: Each of the crystal compounds was analysed by X-ray crystallography.

Result: Three compound of bis-thiourea derivatives, namely \(\text{N, N}' - \text{bis} \) (2-methoxy-benzamidothiocarbonyl) hydrazine (1), \(\text{N, N}' - \text{bis} \) (3-methoxybenzamidothiocarbonyl) - hydrazine (2), and \(\text{N, N}' - \text{bis} \) (4-methoxybenzamidothiocarbonyl) hydrazine (3) were successfully synthesised by the reaction of each 2, 3, and 4-methoxybenzoyl chloride with ammonium thiocyanate and hydrazine in acetone. The structure of these compounds was studied by chemical crystallography.

Conclusion: Compound 1 and 3 were crystallized in the triclinic crystal system while compound 2 was crystallized in the monoclinic crystal system. The thiourea moiety in all compounds have trans geometry and each of the hydrogens of the amide group is trans to the carbonyl group.

Key Words: Bis-carbonyl thiourea; bis-thiourea; carbonyl thiourea; \(\text{N, N}' - \text{bis} \) (benzamidothiocarbonyl) hydrazine derivatives; X-ray Crystallography

Figure 1: Chemical Structures of Reported Bis-carbonyl Thioureas with Hydrazine Linker.
In this paper, we reported a one-pot reaction of 2, 3, and 4-methoxybenzoyl chloride with ammonium thiocyanate and hydrazine in acetone by reflux condition. Each reaction produced N, N'-bis (methoxybenzamidothiocarbonyl) hydrazine isomer in moderate yield. Each of the crystal compounds was analysed by X-ray crystallography.

Materials and Methods

Synthesis Method

The synthesis of bis(benzamidothiocarbonyl)hydrazine derivatives followed the previous report by using 2-, 3-, and 4-methoxybenzoylchlorides as the substrates.

N,N'-bis(o-methoxybenzamidothiocarbonyl) hydrazine (1)

Yield 16%; Yellow solid, m.p 327.3-327.9 °C. IR (KBr, cm⁻¹): ν(N-H)3407; ν(C=O)1661; δ(N-H)1610; ν(C-N)1240; ν(C-S)1090; ν(C=O-Me) Asym. 1305; sym. 1014. ¹H-NMR (DMSO-d₆, 400 MHz): δ 3.88 (s, 3H); 7.06-7.63 (m, 13H). Anal. Calc. For C₁₈H₁₈N₄O₄S₂: C, 51.66; H, 4.34; N, 15.29; S, 15.32. Found: C, 52.23; H, 4.81; N, 15.93; S, 15.04. λmax 302.5 nm, ε 18,850.17 L.mol⁻¹.cm⁻¹. MS exact mass 418.08; m/z 417.06 (M-1)⁻ (10%).

N,N'-bis(m-methoxybenzamidothiocarbonyl) hydrazine (2)

Yield 72%; colourless solid, m.p 327.3-327.9 °C. IR (KBr, cm⁻¹): ν(N-H)3401; ν(C=O)1678; δ(N-H)1611; ν(C-N)1230; ν(C=O-Me) Asym. 1324; sym. 1034. ¹H-NMR (DMSO-d₆, 400 MHz): δ 3.86 (s, 3H); 7.22-7.61 (m, 14H); 12.16 (s, 1H). ¹³C-NMR (DMSO-d₆, 100 MHz): δ 159.6; 133.3; 130.2; 121.7; 120.3; 113.8; 56.0. Anal. Calc. For C₁₈H₁₈N₄O₄S₂: C, 51.66; H, 4.34; N, 15.29; S, 15.32. Found: C, 52.54; H, 4.96; N, 14.17; S, 16.20. λmax 301.5 nm, ε 21,577.73 L.mol⁻¹.cm⁻¹. MS exact mass 441.03; m/z 441.05 (MNa)⁻ (41%).

N,N'-bis(p-methoxybenzamidothiocarbonyl) hydrazine (3)

Yield 42%; colourless solid, m.p 327.3-327.9 °C. IR (KBr, cm⁻¹): ν(N-H)3319; ν(C=O)1656; δ(N-H)1599; ν(C-N)1212; ν(C=S)1076; ν(C=O-Me) Asym. 1311; sym. 1018. ¹H-NMR (DMSO-d₆, 400 MHz): δ 3.86 (s, 3H); 7.22-7.61 (m, 14H); 12.16 (s, 1H). ¹³C-NMR (DMSO-d₆, 100 MHz): δ 56.0; Anal. Calc. For C₁₈H₁₈N₄O₄S₂: C, 51.66; H, 4.34; N, 15.29; S, 15.32. Found: C, 51.69; H, 4.89; N, 13.91; S, 16.01. λmax 336 nm, ε 21,577.73 L.mol⁻¹.cm⁻¹. MS exact mass 441.08; m/z 441.03 (MNa)⁻ (41%).

X-ray Crystallographic Study

Compound 1, 2 and 3 were crystallized in a different type of solvent. Crystal of compound 1 was recrystallized in CHCl₃, while compound 2 was obtained in DMSO. In the other hand, compound 3 crystalized in DMF. All of the crystals were treated by using the method. Single crystal data were collected by using Bruker SMART APEX CCD Diffractometer with graphite monochromatic Mo Kα radiation source. Crystal structures were solved by the SHELXS-97 program and refined by SHELXL-97 program.

Results and Discussion

Synthesis

The synthesis of bis(methoxybenzoylthiourea)hydrazine is followed the previous method which the X substituent is o-, m-, and p-methoxy for compound 1, 2, and 3 (Figure 2), respectively, as shown in Figure 2. The mixture of methoxybenzoyl chloride and ammonium thiocyanate in acetone gave white precipitate, indicated that ammonium chloride, as well as methoxybenzoyl isothiocyanate, were produced. The addition of hydrazine gave precipitate after the mixture was refluxed for around 30 minutes.

X-Ray Crystallographic Study

Both 1 and 3 crystallized in the triclinic crystal system with a space group of P. In the other hand, compound 2 crystallized in the monoclinic crystal system, and the space group is C2/m. The crystal system of all compounds, as well as the refinement parameters, are shown in Table 1.

Molecule 2 is highly disordered. One of the hydrogen atoms attached to C7 is symmetryally generated. The DMSO C11 is disordered. Furthermore, C10 is also symmetryally generated. Therefore, no attempt to treat the disordered was pursued.

The asymmetric unit of the three isomers consists of half molecule. Molecule 1 and 3 possess a centre of inversion at N2-N2A bond and molecule 2 is centrosymmetric at the midpoint of N2-N2A bond. Molecule 1 and 3 contain one solvated molecule of chloroform and DMSO, respectively.
Table 1: Crystal Data and Structure Refinement of 1, 2, and 3

Data	Compound		
Empirical formula	C_{18}H_{18}N_{4}O_{4}S_{2}·2(CHCl)	C_{18}H_{18}N_{4}O_{4}S_{2}·2(C_{4}H_{9}O)	C_{18}H_{18}N_{4}O_{4}S_{2}·2(C_{4}H_{9}O)
Formula weight	657.24	604.85	314.34
Temperature	301(2) K	300(2) K	301(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system, space group	Triclinic, P\(_{1}\)	Monoclinic, C 2/m	Triclinic, P\(_{1}\)
Unit cell dimensions	a = 8.6332(12) Å, α= 102.424(4)°	a = 19.0998(14) Å, α = 90°	a = 6.4304(4) Å, α = 88.8555(17)°
Volume, Z	b = 9.318(13) Å, β = 107.682(3)°	b = 6.7421(5) Å, β = 91.507(2)°	b = 8.2379(5) Å, β = 76.4842(18)°
Density (calculated)	c = 9.9351(13) Å, γ = 104.5139(4)°	c = 10.9230(8) Å, γ = 90°	c = 9.6961(6) Å, γ = 67.1326(18)°
Absorption coefficient	699.46(17) Å\(^{-1}\), 1	1406.10(18) Å\(^{-1}\), 4	
F(000)	1.560 Mg/m\(^3\)	1.485 Mg/m\(^3\)	471.63(3) Å\(^3\), 1
Crystal size	0.798 mm\(^3\)	0.396 mm\(^3\)	1.473 Mg/m\(^3\)
Theta range for data collection	334	648	0.307 mm\(^3\)
Index ranges	0.260 x 0.250 x 0.250 mm\(^3\)	0.320 x 0.160 x 0.150 mm\(^3\)	218
Reflections collected	2.888 to 25.999°	2.871 to 25.999°	0.440 x 0.140 x 0.090 mm\(^3\)
Independent reflections	-10<=h<=10, -11<=k<=11, -12<=l<=12	-23<=h<=23, -8<=k<=8, -13<=l<=13	3.286 to 25.999°.
Completeness to theta = 25.242°	15640	15683	
Refinement method	2756 [R(int) = 0.1200]	1512 [R(int) = 0.0600]	25980
Data / restraints / parameters	Full-matrix least-squares on F\(^{2}\)	99.8 %	3537 [R(int) = 0.0560]
Goodness-of-fit on F\(^{2}\)	2756 / 0 / 164	1512 / 1 / 118	99.9 %
Final R indices [I>2sigma(I)]	1.029	1.069	Full-matrix least-squares on F\(^{2}\)
R indices (all data)	R\(_{1}\) = 0.0562, wR\(_{2}\) = 0.0835	R\(_{1}\) = 0.0857, wR\(_{2}\) = 0.2298	3537 / 3 / 271
Largest diff. peak and hole	R\(_{1}\) = 0.1315, wR\(_{2}\) = 0.1011	R\(_{1}\) = 0.1113, wR\(_{2}\) = 0.2524	R\(_{1}\) = 0.0407, wR\(_{2}\) = 0.0901
	0.200 and -0.241 e.Å\(^{-3}\)	1.177 and -0.471 e.Å\(^{-3}\)	0.216 and -0.302 e.Å\(^{-3}\)
Molecule 1 possesses four pseudo-six-membered rings \{(C8/N1/C9/N2/H2A\ldots O2), (C8A/N1A/C9A/N2A/H2AA\ldots O2A), (C1/C6/C8/N1/H1\ldots O1), (C1A/C6A/C8A/N1A/H1A\ldots O1A)\} by N2-H2A\ldots O2, N2A-H2AA\ldots O2A, N1-H1\ldots O1, and N1A-H1A\ldots O1A intramolecular hydrogen bonds, and two pseudo-five-membered rings \{(C9/N2/H2AA\ldots S1) and (C9A/N2A/H2AA\ldots S1A)\} by N2-H2A\ldots S1A and N2A-H2AA\ldots S1 intramolecular hydrogen bonds (Figure 3).

Similarly, molecule 3 also has two pseudo-six-membered rings \{(C8/N1/C9/N2/H2A\ldots O1) and (C8A/N1A/C9A/N2A/H2AA\ldots O1A)\} by N2-H2A\ldots O2 and N2A-H2AA\ldots O2A intramolecular hydrogen bonds, and two pseudo-five-membered rings \{(C9/N2/H2AA\ldots S1) and (C9A/N2A/H2AA\ldots S1A)\} by N2-H2A\ldots S1A and N2A-H2AA\ldots S1 intramolecular hydrogen bonds (Figure 3).

Figure 3: The molecular structure of \textit{N}, \textit{N}'-bis(2-methoxybenzamido-thiocarbonyl)hydrazine 1 drawn at 50\% probability displacement ellipsoid. The hydrogen bonds are illustrated by the dashes lines.

Compound 2 has two pseudo-six-membered rings \{(C8/N1/C9/N2/H2A\ldots O1) and (C8A/N1A/C9A/N2A/H2AA\ldots O1A)\} by N2-H2A\ldots O2 and N2A-H2AA\ldots O2A intramolecular hydrogen bonds, and two pseudo-five-membered rings \{(C9/N2/H2AA\ldots S1) and (C9A/N2A/H2AA\ldots S1A)\} by N2-H2A\ldots S1A and N2A-H2AA\ldots S1 intramolecular hydrogen bonds (Figure 3).

Figure 4: The molecular structure of \textit{N}, \textit{N}'-bis(3-methoxybenzamido-thiocarbonyl)hydrazine 2 drawn at 50\% probability displacement ellipsoid. The hydrogen bonds are illustrated by the dashes lines. Compound 2 has two pseudo-six-membered rings \{(C8/N1/C9/N2/H2A\ldots O1) and (C8A/N1A/C9A/N2A/H2AA\ldots O1A)\} by N2-H2A\ldots O2 and N2A-H2AA\ldots O2A intramolecular hydrogen bonds, and two pseudo-five-membered rings \{(C9/N2/H2AA\ldots S1) and (C9A/N2A/H2AA\ldots S1A)\} by N2-H2A\ldots S1A and N2A-H2AA\ldots S1 intramolecular hydrogen bonds (Figure 3).

Molecular packing of 1 shows the connection of the main molecule to two chloroform solvent molecules through C10-H10\ldots O2 intermolecular hydrogen bond. They are arranged along the bc face (Figure 5).

Similarly, molecule 3 also has two pseudo-six-membered rings \{(C8/N1/C9/N2/H2A\ldots O1) and (C8A/N1A/C9A/N2A/H2AA\ldots O1A)\} by N2-H2A\ldots O2 and N2A-H2AA\ldots O2A intramolecular hydrogen bonds, and two pseudo-five-membered rings \{(C9/N2/H2AA\ldots S1) and (C9A/N2A/H2AA\ldots S1A)\} by N2-H2A\ldots S1A and N2A-H2AA\ldots S1 intramolecular hydrogen bonds (Figure 3).

Figure 5: The molecular structure of \textit{N}, \textit{N}'-bis(4-methoxybenzamido-thiocarbonyl)hydrazine 3 drawn at 50\% probability displacement ellipsoid. The hydrogen bonds are illustrated by the dashes lines. The packing of the \textit{meta} isomer 2 is slightly different. The molecules are connected by C3-H3A\ldots O1 intermolecular hydrogen bond and form one dimensional chain along the a-axis. At the same time, the DMSO solvent molecule is connected to two thiourea molecules by N1-H1a\ldots O3, C5-H5a\ldots O3 and C10-H10a\ldots O2 intermolecular hydrogen bonds (Figure 6).

Figure 6: Molecular packing of compound 1 viewed down b axis. The hydrogen bonds are illustrated by the dashes lines.
bonds and form a polymeric chain. Overall, the arrangement of the molecules is a 2-dimensional network along a and c axis (Figure 6).

Molecule 3 also forms a 2-dimensional network but slightly different when compared to compound 2. It has no solvent molecules. Each of the centrosymmetric molecules is connected to four other molecules by N1-H1A···S1, N1A-H1AA···S1A, C7-H7A···O1 and C7A-H7AA···O1A intermolecular hydrogen bonds (Figure 7, 8). The symmetry codes of all three isomers are shown in Table 2,3,4.

Table 2: Hydrogen bonds geometry of N, N'-bis(2-methoxybenzamido-thiocarbonyl) hydrazine 1 (Å and °)

D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)
N1-H1···O1	0.86	1.91	2.625(4)	139
N2-H2A···O2	0.86	1.89	2.568(4)	134
N2-H2A···S1	0.86	2.56	2.933(3)	107
C5-H5···O2#2	0.93	2.38	2.722(5)	101
C10-H10···O2#3	0.98	2.34	3.171(4)	142

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y+2,-z+2 #2 x,y,z #3 x,y,z-1

Table 3: Hydrogen bonds geometry of N,N'-bis(3-methoxybenzamido-thiocarbonyl) hydrazine 2 (Å and °)

D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)
N1-H1a···O3#3	0.82(3)	2.21(3)	3.017(6)	170(5)
N2-H2a···O2	0.65(6)	2.08(6)	2.547(5)	131(7)
N2-H2a···S1	0.65(6)	2.56(6)	2.933(6)	120(6)
C1-H1b···O2#4	0.93	2.42	2.746(7)	101
C3-H3a···O1#6	0.93	2.50	3.433(8)	178
C5-H5a···O3#3	0.93	2.17	3.103(7)	177
C10-H10a···O2#7	0.96	2.48	3.389(10)	158

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z+1 #2 x,-y+2,z #3 x,-y,z #4 x,y,z
#5 -x+1,y,-z+1 #6 -x,y,-z+1 #7 x,-y+1,z+1

Figure 7: Molecular packing of compound 2 viewed down b axis. The hydrogen bonds are illustrated by the dashes lines.

Figure 8: Molecular packing of crystal 3 viewed down b axis. The hydrogen bonds are illustrated by the dashes lines.
Table 4: Hydrogen bonds geometry of N,N'-bis(4-methoxybenzamido-thiocarbonyl) hydrazine 3 (Å and °)

D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)
N1-H1A···S1#2	0.861(18)	2.867(15)	3.6219(17)	147(2)
N2-H2A···O2	0.86(2)	1.91(2)	2.566(3)	133(2)
N2-H2A···S1	0.86(2)	2.55(2)	2.9412(18)	109(2)
C1-H1B···O2#3	0.93	2.43	2.756(3)	101
C7-H7A···O1#4	0.98	2.50	3.397(3)	155

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z #2 -x,-y+2,-z #3 x,y,z #4 -x+2,-y+2,-z+1

The bond lengths and angles of compound 1, 2 and 3 are presented in Table 5 and 6. All bond lengths and angles are in normal ranges.23

Table 5: Selected bond lengths of 1, 2, and 3

Bond Length	1	2	3
S1 – C9	1.651(3)	1.668(5)	1.622(2)
N2 – N2A	1.368(4)	1.375(9)	1.376(3)
N2 – C9	1.325(3)	1.313(7)	1.326(3)
N1 – C9	1.384(4)	1.386(6)	1.387(2)
N1 – C8	1.366(4)	1.379(6)	1.379(2)
O2 – C8	1.223(3)	1.220(6)	1.221(2)
C7 – O1	1.431(3)	1.440(10)	1.427(3)

Table 6: Selected bond angles of 1, 2, and 3

Bond Angle	1	2	3
O2 – C8 – C6	120.9(3)	121.1(5)	122.02(18)
C6 – C8 – N1	117.9(2)	118.0(4)	116.97(17)
O2 – C8 – N1	121.2(3)	120.9(5)	121.01(17)
N1 – C9 – N2	114.6(3)	115.8(5)	115.16(17)
N2 – C9 – S1	124.2(2)	122.8(4)	124.03(14)
C9 – N2 – N2A	119.5(3)	121.0(6)	119.6(2)

CONCLUSION

As a conclusion, three isomers of N, N'-bis (methoxybenzamidothiocarbonyl) hydrazines have been synthesized from 2, 3, and 4-methoxybenzoyl chloride, ammonium thiocyanate and hydrazine hydrate in room temperature and reflux conditions. Crystal of compound 2 crystallized in the monoclinic system, while 1 and 3 crystallized in the triclinic crystal system. All thiourea moieties of these three crystals revealed trans geometry.

ACKNOWLEDGEMENT

Authors thank School of Chemical Science and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM) as well as The Centre for Research and Instrumentation (CRIM) UKM for all the facilities. We also thank Indonesia Endowment Fund for Education (LPDP) of the Indonesian Ministry of Finance for the scholarship, and Publication Management Centre of Hasanuddin University for the publication support.

Source(s) of Funding: No funding is involved.

Conflicting Interest: The authors declare no conflicting interest.

REFERENCES

1. Rahimizadeh M, Bakavoli M, Shiri A, Faridnia R, Pordeli P, Oroojalian F. Thiazole [4, 5- d] pyrimidines : synthesis and antibacterial evaluation. Heterocycl Commun 2011;17(1–2):43–7.
2. Reinoso García MM, Verboom W, Reinhoudt DN, Malinowska E, Pietrzak M, Wojciechowska D. Heavy metal complexation by N-acyl(thio)urea-functionalized cavitands: synthesis, extraction and potentiometric studies. Tetrahedron 2004;60(49):11299–306.

3. Netalkar PP, Netalkar SP, Revankar VK. Nickel(II) complexes of thiosemicarbazones: synthesis, characterization, X-ray crystallographic studies and in vitro antibacterial and antimicrobial studies. Transit Met Chem 2014;39(5):519–26.

4. Saad FA. Synthesis, spectral, electrochemical and X-ray single-crystal studies on Ni(ii) and Co(ii) complexes derived from 1-benzoyl-3-(4-methylpyridin-2-yl) thiourea. Spectrochim Acta Mol Biomol Spectrosc 2014;128:386–92.

5. Yamin BM, Yusof MSM. N,N′-bis(benzamidothiocarbonyl) hydrazine dimethyl sulfoxide disolvate. Acta Crystallogr Sect Struct Reports 2003;59(3):o358–9.

6. Saeed S, Rashid N, Jones PG, Ali M, Hussain R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur J Med Chem 2010;45(4):1323–31.

7. Saeed A, Khurshid A, Jasinski JP, Pozzi CG, Fantoni AC, Erben MF. Competing intramolecular NHOC hydrogen bonds and extended intermolecular network in 1-(4-chlorobenzoyl)-3-(2-methyl-4-oxopentan-2-yl) thiourea analyzed by experimental and theoretical methods. Chem Phys 2014;431:39–46.

8. Saeed A, Khurshid A, Bolte M, Fantoni AC, Erben MF. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Intra- and intermolecular hydrogen bonding and conformation in 1-acyl thioureas: An experimental and theoretical approach on 1- (2-chlorobenzoyl) thiourea. Spectrochim Acta Part A Mol Biomol Spectrosc 2015;143:59–66.

9. Garg B, Bisht T, Murat S, Chauhan S. Sensors and Actuators B: Chemical. 2, 2’-Diaminooazo-benzene, a potential scaffold for the synthesis of bis-ureas and thioureas: Solution phase anion sensing and binding studies. Sensors Actuators B Chem 2012;168:318–28.

10. Jing-Ying L, Xiu-li X, Wen-quan L. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag 2012 Jun;32(6):1209–12.

11. Singh AK, Singh UP, Mehtab S, Aggarwal V. Thiocyanate selective sensor based on tripodal zinc complex for direct determination of thiocyanate in biological samples. Sensors Actuators B Chem 2007;125(2):453–61.

12. Mohamed N, Abd El-Ghany N. Preparation and antimicrobial activity of some carbamyl chitosan acyl thiourea derivatives. Int J Biol Macromol 2012 Jun;50(5):1280–5.

13. Jose DA, Kumar DK, Ganguly B, Das A. Urea and thiourea based efficient colorimetric sensors for oxygens. Tetrahedron Lett 2005;46(32):5343–6.

14. Xu X, Qian X, Li Z, Huang Q, Chen G. Synthesis and insecticidal activity of new substituted N-aryl-N′-benzoylthiourea compounds. J Fluor Chem 2003;121:51–4.

15. Embong NF, Sukeri M, Yusof M, Kadir MA, Yamin BM, Terengganu K. Synthesis and Characterisation a Series Of N-(2/3/4-Chlorophenyl)-N′-(4-Chlorobutyl) Thiourea. Chem Sci Food Tech 2012;1113–9.

16. Koca İ, Özgür A, Çokkun KA, Tutar Y. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety. Bioorg Med Chem 2013;21(13):3859–65.

17. Firdausiah S, Aqeela A, Huddin S, Hasbullah SA, Yamin BM. Crystal structure of 4-fluoro-N-2-(4-fluorobenzoyl)hydrazine-1-carboxothioyl)benzamide. Acta Crystallogr Sect E 2014; E70:o915–o916.

18. Li Z, Liu Z, Liao Q, Wei Z, Long L, Jiang Y. N,N′-Bis (benzamido)thioureas as anion receptors. C R Chim. 2008;11:67–72.

19. Halim NIM, Kassim K, Fadzil AH, Yamin BM. Synthesis, Characterisation and Antibacterial Studies of 1,2–Bis(N′-2,3 and 4-methoxybenzoylthioureido)-4-nitrobenzene. APCBEE Procedia. 2012 Jan;3(May):129–33.

20. Firdausiah S, Hasbullah SA, Yamin BM. Synthesis, structural elucidation and antioxidant study of Ortho -substituted N, N′-bis (benzamidothiocarbonyl). J Phys Conf Ser 2018;979:012010.

21. Firdausiah S, Hasbullah SA, Yamin BM. Synthesis, characterization and antioxidant study of thiourea derivatives bearing pyrazole moiety. Sensors Actuators B Chem 2008;64(Pt 1):112–22.

22. Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008;64(Pt 1):112–22.

23. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG. Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J Chem Soc Perkin Trans 1987;1–19.